PATTERN RECOGNITION

From Classical to Modern Approaches

Editors
Sankar K. Pal
Amita Pal L e

= =
= - T 3 "
e \\"'-\. _I" -ll.:‘ =< i -
- i " - W = g LR
. - - e - - -
- pade o7 = .
(L i - “. _I:__ .
e L - T
L= — =
g A g a7 .

\B e
i

World Scientific

PATTERN RECOGNITION

From Classical to Modern Approaches

PATTERN RECOGNITION

From Classical to Modern Approaches

Editors

Sankar K. Pal
Amita Pal

Indian Statistical Institute, Calcutta

\é World Scientific

NewdJersey+London * Singaporee Hong Kong

Published by

World Scientific Publishing Co. Pte. Ltd.

P O Box 128, Famrer Road, Singapore 912805

USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661

UK affice: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

PATTERN RECOGNITION
From Classical to Modern Approaches

Copyright © 2001 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher,

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 981-02-4684-6

Printed in Singapore.

To our parents
and our children

Foreword

Recognizing patterns is at the core of man's attempts to understand the uni-
verse that we inhabit. Through the development of sensors and instruments,
we have extended our ability to gather data far beyond the range and scale of
man's natural senses. As a result we are now able to gather data on phenomena
occurring in the far reaches of the electromagnetic spectrum at scales from the
quantum mechanical to the galactic,

In the middle of the fast century, the emergence of computer-related tech-
nology led to serious starting attempts in automatic pattern recognition, ma-
chine intelligence and machine learning. The goal then, and now, is the trans-
formation of raw data into information which helps individuals and groups solve
problems, make decisions or take some action. Unlike those earlier times, when
researchers faced a paucity of data and small samples for pattern recognition
system design, now the converse is often the case; namely, very large datasets
gathered in some cases at very high data rates. Thus the current prominence
of areas of inquiry and application named data warehousing, data mining and
(real-time) content-based classification and retrieval. These areas combine
modern data-base technology with feature-extraction, pattern classification,
machine learning and related soft-computing methodologies.

In the present volume of lecture notes on pattern recognition, Prof. Sankar
Pal and co-editor Dr, Amita Pal have brought together expository, research,
and applications articles by recognized experts to give a comprehensive and
state-of-the art coverage of classical and modern hybrid methodologies cur-
rently being applied in pattern recognition.

The ultimate goal of pattern recognition and data mining is to acquire
knowledge or understanding about a domain, and to communicate it so that

vii

viii Foreword

information may be translated into action by individuals and groups. Knowledge
acquisition from databases and humans has been a key problem in the design of
Al expert systems and the authoring of content for training and education. The
methodologies and thinking have developed separately in those fields without
much interaction with pattern recognition and soft computing. The ideas
presented in this volume have potential to enhance the possibility of bringing
the thinking and methodologies from these disparate fields together to address
the automation of domain knowledge acquisition.

| commend the editors and authors for their success in presenting a wealth of
knowledge and experience in a form accessible to a wide audience, and highly
recommend this volume to students and professionals interested in pattern
recognition and its diverse applications.

College Park, MD, USA Laveen N, Kanal
May 2001

Preface

Pattern recognition and machine learning form a major area of research and de-
velopment that encompasses the processing of pictorial and other non-numerical
information obtained from interaction between science, technology and society.
A mativation for this spurt of activity in this field is the need for the people
to communicate with computing machines in their natural mode of commu-
nication. Another important motivation is that scientists are also concerned
with the idea of designing and making intelligent machines that can carry out
certain tasks as we human beings do. The most salient outcome of these is
the concept of future generation computing systems.

The ability to recognize a pattern is an essential requirement for sensory
intelligent machines. Pattern recognition is a must component of the so-called
“Intelligent Control Systems" which involve processing and fusion of data from
different sensors and transducers. It is also a necessary function providing failure
detection, verification, and diagnosis tasks. Machine recognition of patterns
can be viewed as a two-fold task, consisting of learning the invariant and
common properties of a set of samples characterizing a class, and of deciding
that a new sample is a possible member of the class by noting that it has
properties common to those of the set of samples. Therefore, the task of
pattern recognition by a computer can be described as a transformation from
the measurement space M to the feature space F and finally to the decision
space D.

Though the field has matured enough over the years, it remains evergreen
due to the continuous cross-fertilization of ideas from disciplines like com-
puter science, neuro-biology, psychology, physics, engineering, mathematics,
statistics and cognitive science. Depending on the need and practical demand,

X Preface

various modern methodologies are being developed which often supplement the
classical techniques. Such an evolution ranges from decision theoretic approach
(both deterministic and probabilistic), syntactic and structural approach, con-
nectionist approach, fuzzy set theoretic approach to newly-developed soft com-
puting (integration/hybridization of fuzzy sets, artificial neural networks, ge-
netic algorithms and rough sets) approach.

The present volume provides a collection of twenty one articles including
an introductory chapter, containing both review and new material, describing,
in a unified way, the recent development of various methodologies, ranging
from classical to modern, with significant real life applications. These articles,
written by different experts over the world, demonstrate the significance of this
evolution, relevance of different approaches with characteristic features and the
formulation of various modern theorjes.

The volume starts with an introductory article written by the editors them-
selves, explaining the basic concepts of pattern recognition, different tasks
involved, some conventional classification techniques and the subsequent de-
velopment of modern methodologies. The significance of data mining, which
has recently drawn the attention of many researchers all over the world, is also
mentioned. This chapter is included for the convenience of understanding the
theory of pattern recognition and hence the remaining chapters of the book,

Chapters 2-5 deal with decision theoretic classification using statistical ap-
proach. T. Krishnan considers in Chapter 2 the problem of supervised learning
based on the multivariate normal model with a common covariance matrix lead-
ing to Fisher's linear discriminant function. The effect of imperfect supervision
is studied and the efficiency of learning under two imperfect situations, namely,
deterministic but error-prone, and stochastic, is determined as compared to per-
fect supervision. Chapter 3 of M.A.L. Thathachar and P.S. Sastry addresses
some adaptive stochastic algorithms for finding optimal decision rules based on
learning automaton models. Various examples are considered to demonstrate
the characteristic features of the algorithms. While these chapters consider
the problem of supervised learning, Chapter 4 deals with unsupervised learn-
ing of classifiers. Here A. Pal, one of the editors, describes some significant
recent Bayesian approaches that can be applied to the unsupervised classifica-
tion problem, if it is formulated as one of decomposition of finite mixtures of
probability densities. In Chapter 5, K. V. Mardia focuses on a specific problem
of pattern recognition, namely, recognition of shapes (objects) in an image.
The author presents an excellent review of the recent advances with emphasis
on high level Bayesian image analysis.

Preface xi

Hierarchical pattern classification using decision tree is a simple and pow-
erful approach being used in pattern recognition. In Chapter 6, R. Kothari
and M. Dong provide an overview of decision tree induction algorithms and
approaches, and describe a new method of decision tree construction based
on the concept of “look-ahead”. These are given from the perspective that
decision trees of small size and depth lead to lesser computational expense in
determining classes.

The limitation of the decision theoretic approach lies in its incapability to
articulate the interrelationship of the pattern substructures. This has lead to the
development of syntactic or structural pattern recognition. Chapter 7 by A.K.
Majumdar and A. K. Roy provides a fairly extensive review on such an approach
considering its different facets, e.g., primitive selection, pattern grammars,
formal linguistic models, grammatical inference, fuzzy syntactic models, formal
power series. An application to character recognition is also shown.

When the pattern indeterminacy is due to inherent vagueness rather than
randomness, fuzzy set theoretic approach becomes useful. The basic notion
that a pattern may have origin from (and hence membership to) more than
one class is the key concept behind that approach. Chapter 8 of W. Pedrycz
and N. Pizzi presents a motivation for the use of fuzzy sets as a logic canvas for
pattern recognition problems with imprecise (vague) information. The authors
focus on fuzzy set based generalization of logic processors and petri nets as well
as on the context-based partially supervised extensions to the fuzzy c-means
clustering. In Chapter 9, M. Grabisch describes the role of fuzzy integrals
and fuzzy measures in the development of two new methodologies for pattern
recognition.

Artificial neural network based methods have characteristics like adaptiv-
ity (to new data or information), speed (via massive parallelism), robustness
(to missing, confusing and/or noisy data) and optimality (regarding the er-
ror rates in performance). Chapters 10-12 deal with pattern recognition in
neural computing paradigm. V. David Sanchez A. describes in Chapter 10,
the relationship between traditional methods and neural networks for pattern
recognition. Tasks like classification, clustering and regression are considered
in this regard. Chapter 11 of N, B. Karayiannis and his colleagues R. Kret-
zschmar and H. Richner focuses on the development, testing and evaluation
of pattern classifiers using quantum neural networks (QNN). It is shown that
QNN based classifier can remove upto 90% of bird-contamination in wind pro-
filer data. Chapter 12 concentrates on the application of networks of spiking
neurons in data mining problems. Here the authors, K. Cios and D.M. Sala,

xii Preface

present some new findings in design and applications of neural networks that
use a biologically inspired spiking neuron model. Examples are given to show
that such a network emulates several graph algorithms.

Genetic algorithms (GAs), another biologically inspired tool, have recently
drawn the attention of the pattern recognition community because of its robust,
adaptive and parallel searching capability. Chapter 13 which is from the group
of S.K, Pal shows such an attempt in designing a nonparametric classifier. Here
Pal and his colleagues, S. Bandyopadhyay and C.A. Murthy, have used the con-
ventional and various enhanced versions of GAs for determining automatically
an appropriate number of hyperplanes for approximating any kind of decision
boundary with minimum error rate. Based on this principle, an algorithm is then
developed for determining optimal architectures of layered networks; thereby
demonstrating its significance to the domain of neurocomputing.

Chapter 14 is based on rough set theory which has emerged as another
mathematical approach for dealing with imprecise or vague concepts arising
mainly from the granularity in the universe of discourse. Here A. Skowron and
R. Swiniarski present an application of rough sets for feature selection /extraction,
discovery of patterns and their applications for decomposition of large data ta-
bles.

The next three chapters deal with synergistic integration of the merits of
fuzzy logic, neural networks and genetic algorithms in order to build more effi-
cient recognition systems under soft computing framework. Chapter 15 of L.I.
Kuncheva explains how the aforesaid three technologies can be used in classifier
combination, which is an established subdiscipline of pattern recognition. The
problem of representing complex objects and retrieving " interesting” structures
from a large database has been addressed in Chapter 16 by E. Ruspini and I.
J. Zwir in the framework of soft computing. It deals with the user-defined
qualitative features of the objects rather than the original data. In this regard,
some results of a fuzzy clustering algorithm that utilizes evolutionary compu-
tation for designing a knowledge discovery system, are presented, Chapter 17
concerns about the neuro-fuzzy approach which is considered to be the most
visible hybridization, so far made, in soft computing paradigm. Here S.K. Pal
and R.K. De explain how a fuzzy feature evaluation index can be optimized in
connectionist framework for feature selection under both supervised and unsu-
pervised modes. The design of the requisite networks is explained. Results are
validated with k-NN classifier and scatter plots. In another part, the authors
have explained the design procedure of a fuzzy knowledge-based network for
pattern classification.

Preface xiii

Chapters 18-21 demonstrate various applications. Chapter 18 of N.M.
Nasrabadi and his colleagues H. Kwon and S.Z. Der deals with adaptive seg-
mentation (supervised and unsupervised) techniques for hyperspectral imagery.
This involves template making technique, Bayes' classifier, quadtree-based seg-
mentation, and sliding window based segmentation. Chapter 19 is concerned
with pattern recognition issues in speech processing. Here B. Yegnanarayana
and C. Chandra Sekhar provide a nice survey encompassing different pattern
recognition methods used, followed by some of the challenging problems. The
problem of on-line handwriting recognition is considered in Chapter 20 by
S.H. Cha and S.N. Srihari. Some techniques for writing speed and writing
sequence invariant recognition are presented using stroke direction sequence
string; thereby making the recognizer more robust to noise and allowing more
freedom to writers in writing. The last article (Chapter 21) of K. Wang, D.
Zhang, N. Li and B. Pang addresses an important problem, namely, tongue
diagnosis based on biometric pattern recognition. Biometric technology is ap-
plied to Chinese medicine. The methodology involves tongue image capturing
and database design, and segmentation, feature extraction and classification
of tongue images.

This comprehensive collection provides a cross-sectional view of the ad-
vances in pattern recognition comprising the evolution of various methodologies
with applications. The book, which in unique in its character, will be useful in
a graduate level course as a part of the subject of pattern recognition, machine
learning and artificial intelligence, or as a reference book for professionals and
researchers in the fields |ike system design, control, artificial intelligence, soft
computing, pattern recognition, data mining and vision.

We take this opportunity to thank all the contributors for agreeing to write
for the volume. We owe a vote of thanks to Dr. K.K. Phua and Ms Lakshmi
Narayan of World Scientific Publishing Co. for inviting us to write the book.
The technical/software assistance provided by Mr. Pabitra Mitra, Sanjoy Das,
Mr. Indranil Dutta, Mrs. Maya Dey, Dr. Swati Choudhury and Ms Meenakshi
Banerjee during the preparation of the book is gratefully acknowledged.

Calcutta, India Sankar K. Pal
May 2001 Amita Pal

Contents

Foreword

Preface

Chapter 1

PATTERN RECOGNITION: EVOLUTION OF
METHODOLOGIES AND DATA MINING
A. Pal and S.K. Pal

1.1 Introduction« . v .t e e e
1.2 The pattern recognition problem
1.3 Thestatisticalapproach
14 Thesyntacticapproach
15 Classification trees.o it
1.6 The fuzzy set theoretic approach
1.7 The connectionist approach
1.8 Use of geneticalgorithms
1.9 The hybrid approach and soft computing
1.10 Data mining and knowledge discovery
LAY Conclusions & v vovenvusstsod e b s v i Enai

vii

ix

w0 v Lo

xvi Contents

Chapter 2
IMPERFECT SUPERVISION IN STATISTICAL
PATTERN RECOGNITION 25
T. Krishnan
2.1 Statistical pattern recognition 26
2.2 Preliminaries e e e e e e e 30
23 Unsupervised learning 38
2.4 Models for imperfect supervision 45
2.5 Effect of imperfect supervision 49
2.6 Learning with an unreliable supervisor ., 52
2.7 Learning with a stochastic supervisor 55
Chapter 3
ADAPTIVE STOCHASTIC ALGORITHMS FOR PATTERN
CLASSIFICATION 67
M.A.L. Thathachar and P.S. Sastry
1 Introduction . v v . v v v v i s v wE s E e e T e e E 67
3.2 Learningautomata 75
3.3 A common payoff game of automata for pattern classification . . 82
3.4 Three layer network consisting of teams of automata for pattern
classification e 93
35 Modules of learning automata, 103
367 DUscUsSsion; ¢ s w v g o s g v 2 2R g @ WA YE Y Y YN S 107
Chapter 4
UNSUPERVISED CLASSIFICATION: SOME BAYESIAN
APPROACHES 115
A. Pal
A1) Introdietion ; « « v v e v u v w r v w e 38 5 B s E WG R E D A 115
4.2 Finite mixtures of probability distributions 117
4.3 Bayesian approaches for mixture decomposition 119

48 DBEcUssIon « + v v v i v v s s S a s B s T G R W W gy b E 133

Contents

Chapter 5

SHAPE IN IMAGES
K. V. Mardia

51
52
53
54
5.5
5.6

High-level Bayesian image analysis
Prior models forobjects
Inference
Multiple objects and occlusions
Warping and image averaging
DISCUSSION: . o v i v 5w s & 6 v o 5 €0 5 5w s o s w e m

Chapter 6

DECISION TREES FOR CLASSIFICATION :
A REVIEW AND SOME NEW RESULTS

R. Kothari and M. Dong

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Introduction e
The different node splitting criteria
PIURIDE 5600 95 0 0 50 apn i as danmnaansamn
Look-ahead
Other issues in decision tree construction,
A new look-ahead criterion: somenew results
ConclUsions . . . v o o i e e e

Chapter 7

SYNTACTIC PATTERN RECOGNITION
A. K. Majumdar and A. K. Ray

71
72
7.3
74
7.5
7.6
7.7

Introduction
Primitive selection strategies
Formal linguistic model: basic definitions and concepts
High-dimensional pattern grammars ., ., .,
Structural recognition of imprecise patterns
Grammatical inference.
Recognition of ill-formed patterns: error-correcting grammars . . .

xvii

147

148
149
154
157
159
161

169

169
171
174
176
176
177
181

185

186
188
190
194
196
203
221

xviii Contents

Chapter 8

FUZZY SETS AS A LOGIC CANVAS FOR PATTERN
RECOGNITION 231
W. Pedrycz and N. Pizzi

8.1 Introduction: fuzzy sets and pattern recognition . . ., 232
8.2 Fuzzy set-based transparent topologies of the pattern classifier . 233
8.3 Supervised, unsupervised, and hybrid modes of learning 245
B4 Conclusions e s 253
Chapter 9

FUZZY PATTERN RECOGNITION BY FUZZY

INTEGRALS AND FUZZY RULES 257
M. Grabisch

0.1 Introduction v v v v e e e e e e e 257
9.2 Classification by fuzzyrules o0 258
9.3 Classification by fuzzy integrals, 266
Chapter 10

NEURAL NETWORK BASED PATTERN

RECOGNITION 281
V. David Sanchez A.

101 JtrodUStion | .. o o o svererinineararanaras § 5% 6 % 5 5 0% & G B 281
10.2 The essence of pattern recognition 282
10.3 Advanced neural network architectures, . 285
10.4 Neural pattern recognition i u .. 288

105 Conelusions . & . ¢ o v v v v e e e e e e e 295

Contents Xix

Chapter 11

PATTERN CLASSIFICATION BASED ON QUANTUM
NEURAL NETWORKS: A CASE STUDY 301
N. B. Karayiannis, R. Kretzschmar and H. Richner

1L Introduction . . v v v v s v e R sn e s s s a e s 302
11.2 Quantum neural networks 303
113 Wind profilers 306
11.4 Formulation of the bird removal problem 309
11.5 Experimental results 313
11.6 Conclusions e e e 325
Chapter 12

NETWORKS OF SPIKING NEURONS IN DATA

MINING 329
K. Cios and D.M. Sala

12,1 Introduction o e e e e e e e e 330
12.2 Graph algorithms 332
123 Clustering . . . - . v o o e e e e e e e e 336
12.4 Critical pathmethod 0o oL 340
12.5 The longest common subsequence 342
126 Conclusions e 344
Chapter 13

GENETIC ALGORITHMS, PATTERN CLASSIFICATION
AND NEURAL NETWORKS DESIGN 347
S. Bandyopadhyay, C. A. Murthy and S. K. Pal

13.1 Introduction L. e 348
13.2 Overview of genetic algorithms 351
13.3 Description of the genetic classifiers 353
13.4 Determination of MLP architecture 366

13.5 Discussion and conclusions, 375

XX Contents

Chapter 14

ROUGH SETS IN PATTERN RECOGNITION 385
A. Skowron and R. Swiniarski

14.1 Basic rough set approach 385
14.2 Searching forknowledge, 390
14.3 Hybrid methods 416
144 Conclusions o . 0o e e e 416
Chapter 15

COMBINING CLASSIFIERS: SOFT COMPUTING
SOLUTIONS 427
L. I. Kuncheva

15.1 Introduction 427
15.2 Classifier combination 428
15.3 Soft computing in classifier combination 434
15.4 Conclusions . ., 445
Chapter 16

AUTOMATED GENERATION OF QUALITATIVE
REPRESENTATIONS OF COMPLEX OBJECTS BY
HYBRID SOFT-COMPUTING METHODS 453
E. H. Ruspini and I. S. Zwir

16.1 Introduction e 454
6.2 Problem: ¢ s v v s m o m v wm e v a6 a d % hwm %G S n n e 456
16.3 Approach 460
16.4 Conclusions i e e e 472
Chapter 17

NEURO-FUZZY MODELS FOR FEATURE SELECTION
AND CLASSIFICATION 475

R. K. De and S. K. Pal

17.1 Introduction o e e 475

Contents

1702 A Brief veVieW ..oi.owmesinimmians s wTei e 5 5 B w6 B B G 5 0
17.3 Neuro-fuzzy methods for feature selection
17.4 Neuro-fuzzy knowledge-based classification.
T RESUIES: oo v v we el el e 0aha (oo™ a7 4 5 4 7 3 e i 4 e

Chapter 18

ADAPTIVE SEGMENTATION TECHNIQUES FOR
HYPERSPECTRAL IMAGERY
H. Kwon, S. Z. Der and N. M. Nasrabad:

18.1 Introduction o 0 v i i s
18.2 Hyperspectral imaging system
18.3 Segmentation of hyperspectral imagery
18.4 Adaptive segmentation based on iterative local feature extraction

18.5 Adaptive unsupervised segmentation ,
18,6 Conclusions

Chapter 19

PATTERN RECOGNITION ISSUES IN SPEECH
PROCESSING
B. Yegnanarayana and C. Chandra Sekhar

19.1 Introductiono
19.2 Nature of speechsignal
19.3 Feature extractioninspeech
19.4 Pattern recognition models for speech recognition
19.5 Challenges in pattern recognition tasks in speech

xxii Contents

Chapter 20

WRITING SPEED AND WRITING SEQUENCE
INVARIANT ON-LINE HANDWRITING RECOGNITION 559

S.-H. Cha and §5. N. Srihari

20.1 Introduction i e 559
20.2 Writing speed invariance e 562
20.3 Writing sequence invariance e 568
204 ReCOgMZEr v v v vy i v e 572
205 ConclUSIONS . . v . v v v e e e e e 572
Chapter 21

TONGUE DIAGNOSIS BASED ON BIOMETRIC
PATTERN RECOGNITION TECHNOLOGY 575
K. Wang, D. Zhang, N. Li and B. Pang

211 Introduction v . e e e e e e e e e e 576
21.2 Tongue image capturing v . v v v v v v e 582
21.3 Segmentation of tongueimages 583
21.4 Tongue feature extraction 590
21,5 Tongue classification 594
216 Conclusions v .o e 595
Index 599

About the editors 611

Chapter 1

PATTERN RECOGNITION:
EVOLUTION OF
METHODOLOGIES AND DATA
MINING

A. Palt and S. K. Pal*

t Applied Statistics Unit
* Machine Intelligence Unit
Indian Statistical Institute

Calcutta 700 035, INDIA

e-mail: {pamita,sankar} @isical.ac.in

Abstract

This chapter provides an introduction to the discipline of pat-
tern recognition (PR), explaining the basic underlying concepts,
different tasks involved, some conventional classification techniques
and the subsequent development of modern methodologies. It tries
to trace the evolution of PR over the years, from its humble be-
ginnings as an extension of statistical discriminant analysis, to the
multidisciplinary approach that it has become now, on account of
the continuous import of ideas from various scientific disciplines,
The evolution has been nurtured and aided by the likes of sta-
tistical decision theory (both deterministic and probabilistic), the
theory of formal languages (which led to the syntactic or structural
approach), followed by the theories of fuzzy sets, artificial neural
networks, genetic algorithms and rough sets individually (leading
to different modern approaches), and finally, their integration into
the newly-developed theory of soft computing. The authors trace
the journey of pattern recognition along this complex route, high-
lighting significant aspects. They also discuss the significance of
data mining, which has recently drawn the attention of many PR
researchers over the world, in this context.

1

2 A. Pal and 5.K. Pal
1.1 Introduction

Pattern recognition is an activity that we humans normally excel in. We do it
almost all the time, and without conscious effort, We receive information via
our various sense organs, which is processed instantaneously by our brain so
that, almost immediately, we are able to identify the source of the information,
without having made any perceptible effort. What is even more impressive is
the accuracy with which we can perform recognition tasks even under non-ideal
conditions, for instance, when the information that needs to be processed is
vague, imprecise or even incomplete. In fact, most of our day-to-day activities
are based on our success in performing various pattern recognition tasks. For
example, when we read a book, we recognize the letters, words and, ultimately,
concepts and notions, from the visual signals received by our brain, which
processes them speedily and probably does a neurobiological implementation
of template-matching!

The discipline of Pattern Recognition (PR) or Pattern Recognition by ma-
chine essentially deals with the problem of developing algorithms and method-
ologies/devices that can enable the computer-implementation of many of the
recognition tasks that humans normally perform, The motivation is to perform
these tasks more accurately, or faster, and perhaps, more economically than
humans and, in many cases, to release them from drudgery resulting from per-
forming routine recognition tasks repetitively and mechanically. The scope of
PR also encompasses tasks humans are not good at, like reading bar codes. The
goal of pattern recognition research is to devise ways and means of automating
certain decision-making processes that lead to classification and recognition,
PR has been a thriving field of research for the past few decades, as is amply
borne out by the numerous books (References (6, 7, 13, 14, 15, 16, 19, 20,
40, 44, 50, 55, 64, 65], for example) and journals devoted exclusively to it. In
this regard, mention must be made of the seminal article by Kanal [30], which
gives a comprehensive review of the advances made in the field till the early
nineteen-seventies. More recently, a review article by Jain et al. [27] provides
an engrossing survey of the advances made in statistical pattern recognition
till the end of the twentieth century.

Though the subject has attained a very mature level during the past four
decades or so, it remains evergreen to the researchers due to continuous cross-
fertilization of ideas from disciplines like computer science, physics, neurobi-
ology, psychology, engineering, statistics, mathematics and cognitive science.
Depending on the practical need and demand, various modern methodologies

Pattern recognition: evolution of methodologies and date mining 3

have come into being, which often supplement the classical techniques. The
present article gives a bird's-eye view of the different methodologies that have
evolved so far including the emergence of data mining. Before we describe
them, we explain briefly the basic concept of PR including supervised and un-
supervised classification, and feature selection/extraction.

1.2 The pattern recognition problem

Let §2 denote the universe of patterns that are of interest, and let X be a
vector of p variables (called features) defined on objects in §2, which together
provide some sort of numerical description for them. Let X' be the feature
space, or the domain of variation of X corresponding to all patterns in 2,
which contains K categories of objects, where K may or may not be known
a priori. Let Cy,Cq,...,Cx denote the corresponding categories or pattern
classes. In this setup, the pattern recognition problem is to determine, for any
pattern of unknown categorization (or label) from 2 and having a corresponding
feature vector =, which pattern class it belongs to. Essentially, the general
approach to solving the problem is to find, in some way, a partition of A into
X1, Aa, ..., Ak, so that if @ € A}, we can infer that the unknown pattern
comes from the pattern class C;. Obviously, this is not possible unless some
additional information is provided, say, in the form of a set of n patterns, called
training samples.

1.2.1 Supervised vs unsupervised classification

Human pattern recognition capability is mainly learnt from past experiences,
though it is certainly not possible to describe the procedure by which the
human brain accomplishes this. Thus learning is an indispensable component
of pattern recognizers, both human and mechanical. The information contained
in the training samples provides the basis for learning in pattern recognition
systems. In some cases, learning is done with the help of a teacher, that is,
an external agency of some sort that provides the correct labelsindextraining
samples!labels of or classifications of the training samples provided for building
the classifier. The training samples in such cases become representatives of
the classes they belong to, and can be processed in a suitable manner so that
the class-specific information they carry may be distilled from them. This is
referred to as supervised pattern recognition. References [15, 16, 20, 59, 60,

4 A. Pal and 5. K. Pal

62, 64, 65, 66] are a few of the many books in which detailed information on
this is available,

On the other hand, if no teacher is available for a pattern classification
task, that is, the training samples are not labeled, then we have a case of
unsupervised pattern recognition. In such cases, learning essentially means
discovery of the natural groupings inherent in the training set. The generic
name for computational techniques applicable to unsupervised classification
is clustering, for which there is no dearth of literature [1, 6, 7, 8, 25, 28,
63].

1.2.2 Feature selection and extraction

Most of the approaches designed for solving PR problems presuppose the rep-
resentation of patterns by a set of measurements, called features. A judicious
selection of features for building classifiers is a very crucial aspect of classifier
design, and deserves careful consideration. On one hand, there is certainly
nothing to lose in using all available measurements in classifier design. On
the other hand, too many features make the classifier increasingly complex
(sometimes confusing too), in fact, unnecessarily so, in case some of the mea-
surements are redundant. It is encouraging to see that this aspect of classifier
design has indeed been given the importance it deserves, judging from the
work reported. References may be found, for example, in [8, 13, 40, 44, 64,
65]. Two broad approaches have been used traditionally. The first is called
feature selection, and is essentially the selection of the subset of measurements
that optimizes some criterion of separability of classes, since, intuitively, the
best set of features should discriminate most efficiently among the classes, that
is, enhance the separability among them, while increasing homogeneity within
classes at the same time. The other approach, called feature extraction, aims
to reduce the number of measurements available in a different way by looking
for a transformation of the original vector of measurements that optimizes some
appropriately defined criterion of separability among classes, possibly leading
to fewer features at the same time.

The following sections give a bird's-eye view of the major developments
that have taken place as the discipline of pattern recognition evolved gradually
to reach the position it occupies at present. On going through them, the reader
is sure to get the impression that PR is thriving and growing at a phenomenal
pace, not in the least shy in borrowing methodologies from myriad scientific
disciplines in order to provide progressively better techniques over the years.

Pattern recognition: evolution of methodologies and data mining 5

1.3 The statistical approach

When pattern recognition was just beginning to develop as a distinct entity, its
practitioners were quick to realize that statistics and probability theory were
ideal tools for the task that they had in mind. Statistics could help them to
model the inherent variability of patterns in the pattern space via multivariate
probability distributions. The classical method of linear discrimination, first
proposed by Fisher [18] and later extended by Rao [54] suggested the use of
linear combinations of the features, whose coefficients were chosen so as to
maximize the ratio of the between-group variance to the within-group variance
(the so-called Fisher separability criterion). Such functions, called linear dis-
criminants, could also be constructed using other approaches, like minimum
least-squares, linear programming, and so on. A Bayesian decision theoretic
approach for building classification rules was seen to provide an elegant solu-
tion to the PR problem in the form of the famous Bayes classifier [13, 15, 186,
64). It was also possible to build Bayes and other classifiers using nonparamet-
ric estimates of the probability density functions involved, in case one did not
wish to assume unnecessarily restrictive probabilistic models for the classes. All
these seemed to work pretty well in the case of supervised classification, and still
do for a multitude of problems. For implementing unsupervised classification,
too, statistics has been able to provide tools like clustering and estimation of
parameters of mixture densities that are used to model the data in such cases,
For a variety of pattern recognition problems, statistical solutions work rea-
sonably well, both for supervised and unsupervised types. However, there are
many other scenarios where they fall short of expectations. Over the years, a
multitude of alternative techniques have appeared to take care of such prob-
lems. The more noteworthy of these are discussed in some of the following
sections. Before moving on to them, let us take a quick look at the major
contributions of statistics to PR, that have withstood the test of time. A
comprehensive survey of statistical PR is provided by Jain et al. in [27].

1.3.1 Bayes decision theoretic classification

This is essentially a parametric classification procedure, which means that the
class-conditional probability densities of the feature vector are assumed to be of
a specific type, say, f(X|C;) for the jth class. Moreover, it is Bayesian, which
means that an e priori probability distribution is assumed for the parameter
of interest which, in this case, is the class label. This associates an e priori

6 A. Pal and §.K. Pal

probability 7; with class Cj, j = 1,2,..., K. Reverting to the notation of Sec-
tion 1.2, we can represent the Bayes classifier for the PR problem mentioned
therein, as follows:

Assign an unknown pattern with feature vector x to class Cx
if

PClz) = . max p(C;le)

where p(C;|x) is the a posteriori probability for the class C;,
defined as

p(Cjlx) = M_

Z f(z|Cp)m,

=1

It has been shown [2, 15, 16, 20, 55, 64] that this rule has the smallest mis-
classification probability if one assumes a simple zero-one loss function, and
the smallest Bayes risk (that is, the total expected loss assuming both the
feature vector and the class label to be random) if we assumes a more general
loss-function, as compared to rival classifiers for the same problem. Even now
the performance of the Bayes classifier for a given PR problem serves as a
benchmark against which all other classifiers for the same problem are judged.

1.3.2 Discriminant analysis

The simplest example of this is linear discriminant analysis (LDA), which essen-
tially amounts to approximating boundaries between classes by placing hyper-
planes optimally in the p-dimensional feature space among regions correspond-
ing to the different classes, assuming them to be linearly separable. Unknown
patterns are classified on the basis of where they lie with respect to the hyper-
planes. Since hyperplanes are defined by linear functions of the features (called
linear discriminants in this context), essentially this amounts to classifying
samples on the basis of the linear discriminant function, disjoint sets of values
corresponding to different classes. Classifier design amounts to optimal estima-
tion of the coefficient vector for the linear discriminant on the basis of labeled
samples. The crudest way of doing this is to use linear programming techniques

Pattern recognition: evelution of methodologies and data mining 7

to solve the inequalities obtained corresponding to the training samples. More
sophisticated methods optimize criteria like mean squared error, among others.

The same idea can easily be generalized to the optimal placement of more
complex surfaces corresponding to nonlinear discriminant functions.

1.3.3 Nonparametric approach

In situations where there is not enough prior information available to us for
making distributional assumptions about the feature vector in the different
classes, or we do not wish to make too rigorous assumptions about it, then it
is possible to take recourse to nonparametric or distribution-free methods in
statistics to perform the pattern recognition task. The most obvious way of
doing this is to implement parametric classifier like the Bayes rule, by replacing
the probability densities therein by their nonparametric estimates, and then
implementing them. A variety of probability density estimators are available
in statistical literature, beginning with simple ones like histogram estimators,
followed by window estimators, kernel estimators, and so on (13, 15, 16, 24,
55], The other approach is to use metric-based classification rules like the
k-nearest neighbor rules and minimum distance classifiers [13, 15, 16, 65] that
are based on the premise that points in the feature space that are close to each
other are very likely to correspond to patterns belonging to the same class.
The k-nearest neighbor family of classification rules have certain attractive
properties, and certain modifications of it perform almost as well as the Bayes
rule.

1.3.4 Clustering

The problem of unsupervised pattern classification may be solved, like problems
of various other disciplines, by a method of data analysis known as clustering.
The objective of cluster analysis is to partition the given data set into a certain
number of natural and homogeneous subsets where the elements of each subset
are as similar as possible and dissimilar from those of the other subsets. These
subsets are called clusters. The number of such sets may be fixed beforehand
or may result as a consequence of some constraints imposed on them. Various
algorithms have been developed to date to obtain the clusters from a given
data sets. Generally they belong to one of two broad categories: partitioning
methods and hierarchical methods. A survey of these conventional algorithms
is available in many books, for instance, [1, 15, 16, 25, 63, 64, 65].

8 A. Pal and S.K. Pal
1.4 The syntactic approach

A significant shortcoming of the statistical and most other subsequent ap-
proaches to pattern recognition is that they are ill-equipped to handle con-
textual or structural information in patterns, that may be very significant in
distinguishing among the various pattern classes of interest, In such cases, the
pattern can typically be reconstructed from the knowledge of its parts and their
interrelationships, and this knowledge may well help in discriminating among
pattern classes if the parts and/or interrelationships (that is, the structure) of
patterns in one class differs significantly from one class to another, Statisti-
cal theory was just not capable to incorporating such complex information as
discriminating features. So practitioners of pattern recognition had to search
for other approaches which could enable them to model the representation
of complex patterns in terms of a recursive decomposition into progressively
simpler subpatterns, the interrelationships in the hierarchy of decompositions
being well-defined. This was very similar to the problem of decomposing a
sentence in some natural language into phrases of different categories which,
in turn, are decomposed into words from the vocabulary of the language, using
the grammatical rules valid for it (the language). So researchers turned quite
naturally to the theory of formal languages [26], and found that much of it was
applicable to problems of this type. Hence they used the qualifier linguistic or
syntactic to describe the PR approach that resulted.

Patterns that they were concerned with, were no longer looked upon as
arrays of numbers. Rather, they could be described in terms of very simple
subelements, called primitives, and certain rules, called syntactical or produc-
tion rules, governing the relationships among them. The collection of primitives
and syntactical rules together formed the pattern grammar that characterized
the pattern class and specified as completely as possible the patterns that le-
gitimately constitute the class. In order to use this idea for pattern recognition,
there should be one grammar for each pattern class, patterns being represented
by strings of primitives, The classification strategy was to infer that a given
pattern came from a certain class if it belonged to the language (the set of all
possible strings of primitives that can be constructed by the grammar) gener-
ated by its grammar. The formal procedure that makes this possible is called
syntax analysis or parsing. Of course, there was the very important problem
of grammatical inference, namely, constructing the syntax rules for each class
on the basis of a set of (supervised) training samples (in the form of strings
of primitives) belonging to it. Tailor-made procedures for both parsing and

Pattern recognition: evolution of methodologies and data mining 9

grammatical inference were already a part of formal language theory and could
easily be applied. Further, the utility, in the context of PR, of various types
of automata that serve as recognizers of specific formal languages, was also
self-evident.

The approach worked pretty well for idealized patterns, but was, quite nat-
urally, found wanting when it was applied to real-life problems where patterns
tended to be noisy and distorted, and hence more complicated, leading very
often to ambiguity, namely, a situation where one string or pattern could be
generated by more than one grammar, This led, again quite naturally, to the
incorporation of probability theory, and later on, fuzzy-set theoretic concepts
to model the randomness and vagueness/ imprecision. The outcome of all this
activity has been in the form of various types of stochastic and fuzzy grammars
and languages. A comprehensive survey, of these as well as other significant
developments in the area, is available in the excellent book by Fu {19]. The
approach has great potential, yet has not witnessed much research activity, par-
ticularly after the death of Fu, whose contribution to syntactic PR is universally
acknowledged.

1.5 Classification trees

Tree-based methods for classification have traditionally been popular in fields
like biology and the medical sciences and have the advantage of making the
classification procedure easy to comprehend. Classification trees are essentially
symbolic systems that assign symbolic decisions to examples and are built upon
attributes of the patterns that are symbolic in nature or, at the least, discretized
if they are not symbolic to begin with, The terminology associated is graph-
theoretic, the root being the top node, and examples are passed down the tree.
At each node decisions are made, until a terminal node, or leaf, is reached. A
question is associated with each non-terminal node, based on the answer of
which a split is made. The label of a classification is contained in each leaf.
A classification tree partitions the pattern space (or, equivalently, the feature
space) into subregions corresponding to its leaves, and each unknown pattern
is classified by the label of the leaf it reaches. It is not difficult to visualize
that a classification tree provides a structured or hierarchical description of
the knowledge base. The commonest type of tree-structured classifier is the
binary tree classifier in which each non-terminal node has exactly two children.
Detailed discussion on this particular approach to classification can be found, for

10 A. Pal and S.K. Pal

example, in the books by Breiman et al. [9], Devroye et al. [14] and Ripley [55].

The most crucial aspect of tree-based classification is the automatic con-
struction of trees from a set of examples, that is, tree induction. As can be
expected, a variety of algorithms are available in literature, one of the better-
known ones being the ID3 of Quinlan [53]. The main differences in the algo-
rithms available for tree construction lie in the rule they use for splitting nodes
and in the pruning strategy they use, pruning being the term used to describe
the removal of redundant subtrees. For both activities, optimality criteria like
information gain or entropy are used. For example, when splitting nodes, the
attribute that is used to perform the splitting is selected to be the one for which
the optimality criterion is optimized. Similarly, when pruning, the subtree whose
removal results in the optimization of the criterion being used, is selected. Many
of the algorithms available in literature for tree induction are discussed in [9,
14, 55].

Like syntactic PR, tree-based classification too has imbibed concepts and
notions from fuzzy set theory, leading to fuzzy decision trees [11, 29] that
exploit the flexibility in knowledge representation provided by fuzzy logic, in
order to deal with vague or imprecise symbolic information. This has, in turn,
led to fuzzy versions of many tree-induction algorithms like the ID3 [g].

1.6 The fuzzy set theoretic approach

in 1965, Zadeh [67] proposed a novel approach to the modeling of vagueness
and imprecision by means of fuzzy sets, which are generalizations of conven-
tional {crisp) sets. A fuzzy (sub)set of a universe {2 is defined to be a collection
of ordered pairs

A = {(pal(z),x) Yz},

where g 4(z), (0 < py(z) < 1) gives the degree of belonging of the element
to the set A or the degree of its possession of an imprecise property represented
by A. Being a generalization of classical set theory, the theory of fuzzy sets
allows for greater flexibility in the representation and processing of imprecise
or vague information. Various aspects of fuzzy set theory and its relevance to
PR are discussed in [3, 5, 6, 7, 31, 32, 40, 52].

It is well-established by now that fuzzy sets can be applied at the feature
level to represent input data as an array of membership values denoting the
degrees of possession of certain properties; in representing linguistically phrased

Pattern recognition: evolution of methodologies and data mining 11

input features for their processing; in weakening the strong commitments for
extracting ill-defined image regions, properties, primitives, and relations among
them; and, at the classification level, for representing class memberships of ob-
Jects, and for providing an estimate of missing information in terms of member-
ship values. In other words, fuzzy set theory provides a notion of embedding,
in the sense that a better solution to a crisp problem can be found by visual-
izing it initially in a wider space, by subjecting it to different (usually fewer)
constraints, thus allowing the algorithm greater freedom to avoid errors that
are forced upon it by imposition of hard solutions at intermediate levels.

It is worth noting that fuzzy set theory has led to the development of
the concept of soft computing (to be discussed later) as a foundation for the
conception and design of a high machine 1Q (MIQ) system.

The earliest application [5] of the notion of fuzzy sets to supervised pattern
recognition was to visualize pattern classes, particularly overlapping ones, as
fuzzy subsets of the pattern space, Classification involved abstraction, namely,
the estimation of the membership functions characterizing the fuzzy pattern
classes from the training samples, and generalization , which involves imputa-
tion of these estimates in the evaluation of the membership values for each class
of unknown patterns. Representation of pattern classes in terms of linguistic
features and fuzzy relations is also possible [68, 69]. Decision-theoretic clas-
sifiers based on linguistically phrased features have also been proposed [39],
as also classification models that incorporate @ priori knowledge about the
classifier from experts in a linguistic form [37]. Pal and Mandal [42] proposed
a multivalued approach to supervised classification based on approximate rea-
soning, that can accept imprecise input in linguistic form and provide output
in multiple states,

Fuzzy versions of many crisp notions and procedures have been developed,
e.g., the k-NN rule, decision trees, phrase structure grammars, tree gram-
mars, and so on, which lead to fuzzy forms of classical supervised classification
methods. The corresponding references may be found in, for example, [7,
44).

Fuzzy sets have also been used in knowledge-based (KB) approaches to PR
that emerged in the beginning of the eighties. In the KB approach, classes
are described by rules and the task of recognition is accomplished through
automated reasoning or inference procedure, Fuzzy logic can be implemented
for describing rules in natural linguistic terms and in fuzzy inferencing with a
degree of certainty.

Decidedly more activity has been seen in the area of clustering based on

12 A. Pal and S.K. Pal

fuzzy set theory, as is borne out by literature [3, 6, 7, 8]. In all classical
clustering algorithms, it is implicitly assumed that disjoint clusters exist in the
set of data while in practice, in many cases, the clusters are not completely
disjoint; rather, the separation of clusters is a fuzzy notion. The concept of
fuzzy subsets offers special advantage over conventional clustering and allows
representation of intractable overlapping configurations of pattern classes. In
fuzzy clustering each element is assigned a finite membership to each of the
clusters.

The problem of fuzzy clustering was first posed by Ruspini [58] who in-
troduced the notion of a fuzzy partition to represent the clusters in a data
set. Zadeh [70] proposed the fuzzy affinity property in order to character-
ize fuzzy clusters induced by a fuzzy relction R. A new direction in the
application of fuzzy set theory to cluster analysis was initiated by Bezdek
and Dunn in their work on fuzzy ISODATA [6, 17]. A fuzzy version of the
clustering algorithm DYNOC has also been proposed by Pal and Mitra [43].
Backer [3] introduced a clustering model which tries to achieve an optimal
decomposition of a group of objects into a collection of induced fuzzy sets
by means of a point-to-subset affinity concept, based on their structural prop-
erties, among objects in the representation space. A broad overview of the
state of the art, as far as fuzzy clustering is concerned, can be had from [7,
8.

1.7 The connectionist approach

The normal human brain performs countless complex cognitive (and other)
tasks effortlessly, accurately and instantaneously by virtue of its architecture,
namely, a massively parallel network of biological neurons (or nerve cells), that
are basically extremely simple information processing units. Its information
processing capability is so robust that the death or malfunctioning of a few of
its component neurons generally does not affect its performance perceptibly.
Impressed by the efficiency and fault-tolerance of this type of architecture,
researchers have tried, over the years, to model information processing systems
on it. The models that have emerged from their endeavors, albeit much simpler
versions, have succeeded resoundingly in solving a variety of problems, and are
called Artificial Neural Networks (ANNs) . Basically, each such network consists
of numerous densely interconnected simple processing units (or neurons, that
is naturally capable of storing prior knowledge and making it available as and

Pattern recognition: evolulion of methodologies and data mining 13

when needed. It resembles the human brain in that it acquires knowledge
through a learning process and stores the same in a distributed fashion as
synaptic weights in the interconnections of the neurons. Numerous books are
available on the theory and applications of ANNs [23, 33, 34, 56, 57, and
a number of journals devoted exclusively to various aspects of this relatively
new and revolutionary information processing system are in circulation since
the early nineties.

Various categories of artificial neural networks (ANNs) have made their
appearance over the years, for example, Hopfield networks, Multi-Layer Per-
ceptrons (MLPs), Kohonen self-organizing feature maps (SOFM), Adaptive
Resonance Theory (ART) networks, Radial Basis Function (RBF) networks,
among others. Some of the tasks that ANNs can perform include supervised
pattern classification, clustering, function approximation and optimization. In
the context of pattern recognition, it has been established beyond doubt that
neural networks are natural classifiers having resistance to noise, tolerance to
distorted images or patterns (ability to generalize), superior ability to recognize
partially occluded or degraded images or to discriminate among overlapping
pattern classes or classes with highly nonlinear boundaries, or potential for
parallel processing.

ANNs can be viewed as weighted directed graphs in which neurons for
nodes and the inter-neuron connections as directed edges. They can be broadly
grouped into two categories on the basis of their architectures — feedforward
and feedback or recurrent networks. The former are characterized by graphs
with no loops, unlike the latter, which have loops on account of feedback
connections. Their adaptability stems from their capacity for learning from their
"environments”, There are three broad paradigms of learning — supervised,
unsupervised and reinforcement. Various learning algorithms are available in
each category. In supervised learning, adaptation is done on the basis of a
direct comparison of the network output with the correct or desired label. In
unsupervised learning, the network is designed to detect natural groupings in
the training set, and forms categories by optimization of some criterion for the
quality of clustering induced by the network. Reinforcement learning is looked
upon as a special type of supervised learning that tries to learn the input-
output relation by optimizing the so-called reinforcement signal. It makes
the network aware of the correctness of the decision, but not what the actual
decision is. MLPs that learn by backpropagation of error [57] have become
extremely popular for solving supervised PR problems, On the other hand,
the Kohonen SOFMs [33, 34] perform unsupervised classification. Learning

14 A. Pal and 5. K. Pal

vector quantization is a special case of SOFM learning, both being particular
instances of competitive learning, in which the input data is replaced by a
much smaller set of prototypes that are good representatives of structure in
the data for classifier design. Hectic research activity has been seen since the
eighties in the area of pattern recognition by ANNs, and a good overview can
be obtained from {44, 48, 50, 55, 59).

1.8 Use of genetic algorithms

Genetic algorithms (GAs) [12, 21, 22, 36, 49] are randomized search and opti-
mization techniques, inspired by the principle of survival of the fittest governing
evolution and selection in natural populations, and are therefore regulated by
the laws of genetics. They are capable of obtaining near-optimal solutions by
performing efficient, adaptive and robust search, and have parallelism as a ma-
jor ingredient. In order to approach an optimal solution to a computational
problem, a GA starts from a set of assumed solutions (likened to and called
chromosomes) and evolves different yet better sets of solutions over a sequence
of iterations, called generations. In each generation, the objective function
(a measure of fitness for survival) determines the suitability of each solution
and, on the basis of its values, some of them (called parent chromosomes)
are selected for reproduction. Genetic operators like selection/reproduction,
crossover and mutation are applied on these and new chromosomes (offsprings)
are generated. The number of copies (offsprings) reproduced by an individual
parent is expected to be directly proportional to its fitness value. Chromosomes
with higher fitness values thus tend to have greater representation in the next
generation. Ultimately, after many generations, only those chromosomes with
very high fitness values (corresponding to the optimal solution) proliferate.
Like many other scientific and technical fields of research and development,
most approaches for pattern recognition involve the solution of optimization
problems of one type of another, thereby making the output dependent on
appropriate selection of some parameters. For example, unsupervised classi-
fication by clustering involves the optimization of certain objective functions
depending upon some parameter values, and so does the induction of tree-
structured classifiers. Therefore GA becomes appropriate and a natural choice
for solving many of these problems robustly, and speedily with no fear of get-
ting trapped at local optima. Based on this realization, many researchers have
been concentrating on developing GA-based PR methods in the past decade,

Pattern recognition: evolution of methodologies and data mining 15

The book by Pal and Wang [49] gives an interesting cross-section of PR-related
problems that have been successfully solved by the application of GAs.

1.9 The hybrid approach and soft computing

Integration and further development, in the context of PR, of the aforesaid
approaches have been observed in recent years. Various hybrid methods have
been developed by taking into account the merits of the constituent technolo-
gies, Recently, a consolidated effort is being made to integrate mainly fuzzy
logic, artificial neural networks and genetic algorithms, for developing an ef-
ficient new paradigm called soft computing, that endows, to an information
processing system, the sort of flexibility that is required for handling real-life
ambiguous, imprecise situations. The objective is to develop computational
paradigms that provide reasonably good solutions at low cost under non-ideal
conditions, and bear close resemblance to human-like decision-making. The
salient features of each component have been highlighted in preceding sec-
tions. Obviously, a combination of two or more of these methodologies imparts
the benefits of each to the hybrid system, leading to more robust solutions.
It is no wonder, therefore, that rapid strides are being made in the hybridiza-
tion of methodologies in the context of pattern recognition. Among the var-
ious possibilities, neuro-fuzzy integration [10, 41, 44] is the most visible one.
Fig. 1.1 shows the integration of such fuzzy-neural networks with GAs and
Rough Sets. Here the layered network can accept input in fuzzy terms and
provides fuzzy output, thereby augmenting its application domain. GAs are
used to tune the input membership functions and output decision boundaries,
and to determine optimum network parameters. Rough set theory [51], which
is being considered as another new tool for handling uncertainty, is used for
extracting domain knowledge from training samples in the form of crude rules
and in encoding initial network parameters for its faster learning [4, 45, 46,
47]. A good idea of current developments in soft computing approaches to PR
can be obtained from recent issues of most PR journals, and also from [41, 44,
45, 46, 47, 49).

16 A. Pal and S.K. Pal

Incorporation of Domain Knowledge Using Rough Sets

b

h-1
SN o X B ¢
E i mpb—— K
l'; B3
MMWN] //m;y

GA Tuning
XX|000|XX

oznxx:lwo

J

Fig. 1.1 Integration of fuzzy neural networks with GAs and rough sets

1.10 Data mining and knowledge discovery

In recent years, the rapid advances being made in computer technology have
ensured that large sections of the world population have been able to gain
easy access to computers on account of falling costs worldwide, and their
use is now commonplace in all walks of life. Government agencies, scientific,
business and commercial organizations are routinely using computers not just
for computational purposes but also for storage, in massive databases, of the
immense volumes of data that they routinely generate, or require from other
sources. Large-scale computer networking has ensured that such data has
become accessible to more and more people. In other words, we are in the
midst of an information explosion, and there is urgent need for methodologies
that will help us bring some semblance of order into the phenomenal volumes
of data that can readily be accessed by us with a few clicks of the keys of our
computer keyboard. Traditional statistical data summarization and database
management techniques are just not adequate for handling data on this scale,
and for extracting intelligently, information or, rather, knowledge that may be
useful for exploring the domain in question or the phenomena responsible for
the data, and providing support to decision-making processes. This quest had
thrown up some new phrases, for example, data mining [61] and knowledge
discovery in databases (KDD), which are perhaps self-explanatory, but will
be briefly discussed in the next few paragraphs. Their relationship with the

Pattern recognition: evolution of methodologies and data mining 17

discipline of pattern recognition will also be examined.

The massive databases that we are talking about are generally character-
ized by the presence of not just numeric, but also textual, symbolic, pictorial
and aural data, They may contain redundancy, errors, imprecision, and so on.
KDD is aimed at discovering natural structures within such massive and often
heterogeneous data. Therefore PR plays a significant role in KDD process.
However, KDD is being visualized as not just being capable of knowledge dis-
covery using generalizations and magnifications of existing and new pattern
recognition algorithms, but also the adaptation of these algorithms to enable
them to process such data, the storage and accessing of the data, its prepro-
cessing and cleaning, interpretation, visualization and application of the results,
and the modeling and support of the overall human-machine interaction. What
really makes KDD feasible today and in the future is the rapidly falling cost
of computation, and the simultaneous increase in computational power, which
together make possible the routine implementation of sophisticated, robust and
efficient methodologies hitherto thought to be too computation-intensive to be
useful. A block diagram of KDD is given in Figure 1.2

Dats Mining (DM)
JPEECEEEEEEEREEE ./\—ﬁ
» Duls
Clesning
* Dondscsaiion Mochine | Mothematicas | KO"08¢
Preprocessed | Learning | Model Interpeataion
* Dimenslonality [7 kmmm-== ofDasta |=smme-—ec= Usetul
Deia » Classificatlon FrE o Knowledge Knowledge
o Clustering Extreeiioa
;:’: * Rule = Knowledge
® Data Generatlon Evaluation
Wrapping
AN 7k
N
ledge Y in Database (KDD}

Fig. 1.2 Block diagram for Knowledge Discovery in Databases (KDD)

Data mining is that part of knowledge discovery which deals with the pro-
cess of identifying valid, novel, potentially useful, and ultimately understand-
able patterns in data, and excludes the knowledge interpretation part of KDD.

18 A. Pal and S.K. Pal

Therefore, as it stands now, data mining can be viewed as applying PR and ma-
chine learning principles in the context of voluminous, possibly heterogeneous
data sets. Furthermore, soft computing-based (involving fuzzy sets, neural
networks, genetic algorithms and rough sets) PR methodologies and machine
learning techniques seem to hold great promise for data mining. The moti-
vation for this is provided by their ability to handle imprecision, vagueness,
uncertainty, approximate reasoning and partial truth and lead to tractability,
robustness and low-cost solutions. In this context, case-based reasoning [35)],
which is a novel Artificial Intelligence (Al) problem-solving paradigm, has a
significant role to play, as is evident from the recent book edited by Pal, Dillon
and Yeung [38]. Some of the challenges that researchers in this area are likely
to deal with, include those posed by massive data sets and high dimensicnality,
nonstandard and incomplete data, and overfitting. The focus is most likely to
be on aspects like user interaction, use of prior knowledge, assessment of sta-
tistical significance, learning from mixed media data, management of changing
data and knowledge, integration of tools, ways of making knowledge discovery
more understandable to humans by using rules, visualization, and so on.

1.11 Conclusions

We have discussed about the various approaches to PR that have emerged
so far over the past four decades or so. These range from the statistical,
the syntactic, the classification-tree-based, the fuzzy-set-theoretic, the connec-
tionist, the evolutionary-computation-based, to newly-emerged soft computing
(hybrid) techniques. Their relevance and salient features are highlighted. Fi-
nally, data mining and knowledge discovery in databases, which has recently
drawn the attention of researchers significantly, have been explained from the
view-point of PR. As it stands, soft computing methodologies, coupled with
case-based reasoning and the computational theory of perception (CTP) [71],
have great promise for efficient mining of large, heterogeneous data and so-
lution of real-life recognition problems, We believe the next decade will bear
testimony to this.

Pattern recognition: evolution of methodologies and data mining 19
References

[1) M. R. Anderberg, Cluster Analysis for Applications. New York: Aca-
demic Press, 1973.

[2] T. W. Anderson, An Introduction to Multivariate Statistical Analysis.
New York: Wiley, 2nd ed., 1984,

[3] E. Backer, Cluster Analysis by Optimal Decomposition of Induced
Fuzzy Sets. Delft, The Netherlands: Delft University Press, 1978.

[4] M. Banerjee, S. Mitra, and S. K. Pal, “Rough-fuzzy MLP: knowledge
encoding and classification," IEEE Transactions on Neural Networks,
vol, 9, pp. 1203-1216, 1998.

(5] R. Bellman, R. Kalaba, and L. A. Zadeh, “Abstraction and pattern
classification," Journal of Mathematical Analysis Applications, vol. 13,
pp. 1-7, 1966.

[6] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Functions,
New York: Plenum Press, 1981.

[7] J.C. Bezdek and S. K. Pal, eds., Fuzzy Models for Pattern Recognition:
Methods that Search for Structures in Data. New York: |EEE Press,
1992,

[8] J. C. Bezdek, J. Keller, R. Krisnapuram, and N. R. Pal, Fuzzy Mod-
els and Algorithms for Pattern Recognition and Image Processing.
Boston: Kluwer Academic, 1999,

[9] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifi-
cation and Regression Trees. Monterey, CA: Wadsworth and Brooks,
1984,

[10] H. Bunke and A. Kandel, eds., Neuro-fuzzy Pattern Recognition. Sin-
gapore: World Scientific, 2000,

[11] R. L. P. Chang and T. Pavlidis, “Fuzzy decision tree algorithms,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 7, pp. 28-35,
1977.

[12] L. Davis, ed., Handbook of Genetic Algorithms. New York: Van Nos-
trand Reinhold, 1991.

[13] P. A. Devijver and J. Kittler, Pattern Recognition: A Statistical Ap-
proach. London: Prentice-Hall, 1982.

[14] L. Devroye, L. Gyorfi, and G. Lugosi, A Probabilistic Theory of Pattern
Recognition. New York: Springer, 1996.

[15] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
New York: Wiley, 1973.

20

A. Pal and 5.K. Pal

[16] R. O. Duda, D. G. Stork, and P. E. Hart, Pattern Classification and
Scene Analysis. New York: John Wiley & Sons, second ed., 2000,

[17] J. C. Dunn, “A fuzzy relative of the ISODATA process and its use
in detecting compact well-separated clusters,” Journal of Cybernetics,
vol. 3, pp. 32-57, 1973

(18] R. A. Fisher, "The use of multiple measurements in taxonomic prob-
lems," Annals of Eugenics, vol. 7, pp. 179-188, 1936.

[19] K. S. Fu, Syntactic Pattern Recognition and Applications. Englewood
Cliffs, NJ: Prentice-Hall, 1982.

[20] K. Fukunaga, Introduction to Statistical Pattern Recognition. New
York: Morgan Kaufmann, 1990.

[21] E. S. Gelsema, ed., "Special issue on genetic algorithms," Pattern
Recognition Letters, vol. 16, no. 8, 1995,

[22] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989,

[23] S. Grossberg, ed., Neural Networks and Natural Intelligence. Cam-
bridge, Massachusetts: The MIT Press, 1988.

[24] D. J. Hand, Discrimination and Classification. Chichester: John Wiley,
1981.

[25] J. A. Hartigan, Clustering Algorithms. New York: Wiley, 1975.

[26] J. E. Hopcroft and J. D, Ullman, Introduction to Automata Theory,
Languages and Computation. Reading, MA: Addison-Wesley, 1979.

[27] A. K. Jain, R. P. W. Duin, and J. Mao, "Statistical pattern recogni-
tion: a review,” |EEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, pp. 1-37, 2000.

[28] A. K. Jain and R. Dubes, Algorithms for Clustering Data. Englewood
Cliffs, NJ: Prentice-Hall, 1988.

[29] C. Z. Janikow, "Fuzzy decision trees: issues and methods," [EEE
Transactions on Systems, Man and Cybernetics, Part B, vol. 28, pp. 1-
14, 1998.

[30] L. N. Kanal, "Patterns in pattern recognition:1968~1974," /EEE Trans-
actions on Information Theory, vol. IT-20, pp. 697-722, 1974,

[31] A. Kandel, Fuzzy Mathematical Techniques with Applications. Read-
ing, MA; Addison-Wesley, 1986.

[32] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic— Theory and
Applications. Englewood Cliffs, NJ: Prentice-Hall, 1995,

[33) T. Kohonen, Self-Organization and Associative Memory. 3rd ed.,

Pattern recognition: evolution of methodologies and data mining 21

Berlin: Springer, 1989. (First edition, 1984.)

[34] T. Kohonen, Self-organizing Maps. Berlin: Springer, 1995.

[35] J. L. Kolodner, Case-Based Reasoning. San Mateo, CA: Morgan Kauf-
mann, 1993.

[36] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:
The MIT Press, 1996.

[37) A. K. Nath, S. W. Liu, and T. T. Lee, "On some properties of linguistic
classifier,” Fuzzy Sets and Systems, vol. 17, pp. 297-311, 1985,

[38] S. K. Pal, T. S. Dillon, and D. S. Yeung, eds., Soft Computing in Case
Based Reasoning. London: Springer, 2001.

[39] S. K. Pal and D. Dutta Majumder, "Fuzzy sets and decision making
approaches in pattern recognition,” |EEE Transactions on Systems,
Man and Cybernetics, vol. 7, pp. 625-629, 1977.

[40] S. K. Pal and D. Dutta Majumder, Fuzzy Mathematical Approach to
Pattern Recognition. New York: Wiley (Halsted Press), 1986.

[41] S. K. Pal, A. Ghosh, and M. K. Kandu, eds., Soft Computing for Image
Processing. Heidelberg: Physica-Verlag, 2000.

[42] S. K. Pal and D. P. Mandal, “Linguistic recognition system based on
approximate reasoning,” Information Sciences, vol. 61, pp. 135-162,
1992.

[43] S. K. Pal and S. Mitra, “Fuzzy dynamic clustering algorithm," Pattern
Recognition Letters, vol. 11, pp. 525-535, 1990.

[44] S. K. Pal and S. Mitra, Neuro-Fuzzy Pattern Recognition: Methods in
Soft Computing. New York: John Wiley, 1999.

[45] S. K. Pal, W, Pedrycz, R. Swiniarski, and A, Skowron, eds., “Special
issue on Rough-Neuro Computing,” Neurocomputing, vol. 36, no. 124,
2001.

[46] S. K. Pal and A. Skowron, eds., Rough-Fuzzy Hybridization: A New
Trend in Decision Making. Singapore: Springer-Verlag, 1999.

[47] S. K. Pal and A. Skowron, eds., “Special issue on Rough Sets, Pattern
Recognition and Data Mining," Pattern Recognition Letters, 2001. (to
appear).

[48] S. K. Pal and P. K. Srimani, eds., “Special issue on Neural Networks:
theory and applications,” [EEE Computer, vol. 19, no. 3, 1996.

[49] S. K. Pal and P. P, Wang, eds., Genetic Algorithms for Pattern Recog-
nition. Boca Raton, FL: CRC Press, 1996.

[50] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks. Read-

22

A. Pal and S.K. Pal

ing, MA: Addison Wesley, 1989.

[51] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data.
Dordrecht: Kluwer Academic, 1991.

[62] W. Pedrycz, “Fuzzy sets in pattern recognition," Pattern Recognition,
vol. 23, pp. 121-146, 1990.

[583] J. R. Quinlan, “Induction of decision trees,” in Machine Learning,
pp. 81-106, Boston: Kluwer Academic, 1986.

[54] C. R. Rao, “The utilization of multiple measurements in problems of
biological classification," Journal of the Royal Statistical Society Series
B, vol. 10, pp. 159-203, 1948,

[55] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge:
Cambridge University Press, 1996.

[56] D. E. Rumelhart and J. L. McClelland, eds., Parallel Distributed Pro-
cessing: Explorations in the Microstructures of Cognition, vol. |, Cam-
bridge, Massachusetts: The MIT Press, 1986.

[57] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Process-
ing: Explorations in the Microstructures of Cognition (D. E. Rumelhart
and J. L. McClelland, eds.), vol. |, Cambridge, Massachusetts: The
MIT Press, 1986.

[58] E. H. Ruspini, “A new approach to clustering,” Information and Con-
trol, vol, 15, pp. 22-32, 1969,

[59] R. Schalkoff, Pattern Recognition: Statistical, Structural and Neural
Approaches. New York: John Wiley and Sons, 1992.

[60] G. S. Sebestyen, Decision-Making Processes in Pattern Recognition,
New York: McMillan, 1962,

[61) J. G. Shanahan, Soft Computing for Knowledge Discovery: Introducing
Cartesian Granule Features, Boston, MA: Kluwer Academic, 2000.

[62] J. Sklansky and G. N. Wassel, Pattern Classifiers and Trainable Ma-
chines. New York: Springer-Verlag, 1981.

[63] P. H. A. Sneath and R. Sokal, Numerical Taxonomy. San Fransisco:
Freeman, 1973,

[64] S. Theodoridis and K. Koutroumbas, Pattern Recognition. San Diego:
Academic Press, 1999,

[65] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles. New
York: Addison-Wesley, 1974,

[66] T.Y. Young and T. W. Calvert, Classification Estimation and Pattern
Recognition. New York: Elsevier, 1974.

Pattern recognition: evolution of methodologies and data mining 23

[67] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-
353, 1965.

[68] L. A. Zadeh, “Qutline of a new approach to the analysis of complex
systems and decision processes,” |EEE Transactions on Systems, Man
and Cybernetics, vol. 3, pp. 28-44, 1973.

[69] L. A. Zadeh, “The concept of a linguistic variable and its application
to approximate reasoning: Parts 1, 2 and 3," Information Sciences,
vol. 8, 8, 9, pp. 199-249, 301-357, 43-80, 1975.

[70] L. A. Zadeh, “Fuzzy sets and their application to pattern classification
and cluster analysis." Memo no. UCB/ERL M-607, University of
California, Berkeley, 1976.

[71] L. A. Zadeh, “A new direction in Al: toward a computational theory
of perceptions," Al Magazine, vol. 22, pp. 73-84, 2001.

Chapter 2

IMPERFECT SUPERVISION IN
STATISTICAL PATTERN
RECOGNITION

T. Krishnan

Curtin University of Technology
GPO Boz U1987
Perth 6845, AUSTRALIA
e-mail: krishnat@cs.curtin.edu.au
and
SQC & OR Unit
Indian Statistical Institute
Chennai 600 029, INDIA
e-mail: krishnant!@yahoo.com

Abstract

We consider the two-class statistical pattern recognition prob-
lem based on the multivariate normal model with a common co-
variance matrix leading to Fisher's linear discriminant function. We
consider mainly two situations of imperfect supervision, namely,
deterministic but error-prone, and stochastic. We work out the ef-
ficiency of learning in these situations vis a vis perfect supervision,
in terms of the number of sample units required to attain the same
learning efficiency as given by, say one perfectly supervised sample
unit, for various values of the multivariate normal parameters and
the imperfect supervision parameters.

25

26 T. Krishnan
2.1 Statistical pattern recognition

2.1.1 Supervised learning

We consider a p-dimensional continuous feature vector = and a two-class pat-
tern recognition problem. Suppose we denote the two classes by Cjy and € and
the class-conditional densities by f(x | 0) and f(x | 1) respectively. Then
the Bayes classification rule is the following:

Classify into Cq if log o + log f(x | 0) > log my + log f(x | 1);

Classify into Cy if logmg + log f{z | 0) < logm; +log f(zx | 1) 1)

where mg and m; (7g+m; = 1) are the prior probabilities of the classes Cy and
C respectively. However, in the absence of knowledge of m;, f(x | i), : = 0,1,
a sample-based formula needs to be developed, based on estimates of these
quantities. The development of such a sample-based formula is facilitated
by an initial sample, called iraining sample. If the elements of the training
sample are classified (presumed correctly) into one of the two classes, then
the problem of estimation (learning) is relatively easy and this situation is
called supervised learning, Even if the elements of the training sample are
not classified, learning is possible if the class-conditional densities belong to
certain families of distributions, such as multivariate normal (multinormal)
distributions; such learning is called unsupervised learning. There are basically
two approaches to this estimation—parametric and nonparametric. The reader
is referred to standard books such as Devijver and Kittler [13] Fukunaga [17],
McLachlan [36] and Watanabe [50], on the subject, for details of the parametric
approach and a description of other approaches. If a supervised training sample
is available and the supervisor classification is correct, then let us call the
situation perfectly supervised learning.

2.1.2 Unreliable supervision

However, in many applications of pattern recognition, classifying a training
sample is expensive and difficult and is subject to error; some examples of
this situation are remote sensing [4, 5, 6, 7] and medical diagnosis [28, 29,
47]. In a problem of remote sensing of crop discrimination using spectral data
from a satellite, the training sample may be visually classified by an analyzer-
interpreter who examines imagery film and uses such auxiliary information as
historical information, cropping practices, crop calendar models, ete. This pro-

Imperfect supervision in statistical pattern recognition 27

cedure is not foolproof and may lead to a certain amount of mislabeling. Lack
of adequate spectral separation between classes can also lead to mislabeling.
Further, the area corresponding to a training sample unit may have mixed crops
and the analyzer-interpreter may classify the unit into the majority-area crop by
a visual estimate. These classifications are prone to error and even ambiguity
of definition of class.

In a medical diagnosis situation, the expert may classify a doubtful case
in the training sample into the most probable type rather than reject it, in
view of paucity of samples and to satisfy conditions of deterministic initial
classification [2]. We call this type of deterministic and error-prone supervision
unreliable supervision. Moreover, in a medical diagnosis problem, the training
sample may be classified by experts on the basis of the same feature vector @
as the one used for learning and hence may be prone to error. In the first case,
the errors in supervision may be presumed to be independent of the feature
vector & and in the second dependent on . These two situations of unreliable
supervision are called random misallocation and nonrandom misallocation [6,
28, 29)] of training samples.

2.1.3 Stochastic supervision

In the foregoing situation, the supervisor classification is deterministic, that is,
each training sample unit is classified by the supervisor as belonging to one or
other of the classes, although prone to error. However, the supervisor may not
always be inclined to classify deterministically, because they may have used a
statistical mechanism to obtain their classification or that there is a genuine
doubt as to the class to which the sample unit belongs, which they may be in a
position to quantify. The first kind of situation may arise when the supervisor
uses a discriminant function or a diagnostic formula of the type arising from
standard supervised learning, on the basis of features which are different from
the ones for which the current formula is to be developed. One can see heuris-
tically that such a supervisor classification is useful as long as the relationship
between the features they use and the classes is 'stronger’ than the relationship
between the current features and the classes; for instance, in a medical diag-
nosis situation the 'stronger’ features may have been observed at the time of
autopsy and the 'weaker' features are the ones to be used for building a diag-
nostic formula on living patients. The second kind of situation may arise when
the information on which the supervisor bases their classification is ambiguous.
For instance, in a remote sensing application of crop discrimination, the pixel

28 T. Krishnan

concerned may correspond to an area of mixed cropping; the supervisor may
like to give a percentage distribution of crops rather than a single crop. In both
kinds of situations above, it seems sensible to use the supervisor's assessment in
the form of a (probability) distribution over the classes rather than a determin-
istic assessment. We call this stochastic supervision. We consider unreliable
supervision and stochastic supervision as two types of imperfect supervision.

2.1.4 Imperfect supervision

Starting with (perfectly) supervised learning, we moved on to a situation where
the supervision is imperfect. The question naturally arises as to whether learn-
ing can be done under imperfect supervision. A related and somewhat more
general question is whether learning can be done without supervision. The an-
swer to this question is: 'Yes, under certain circumstances'. In Section 2.3.1,
we discuss briefly this question of unsupervised learning, If it is possible to learn
without supervision, then it seems possible to learn with imperfect supervision,
at |east under those circumstances where unsupervised learning is possible. As
we noted earlier, unsupervised learning is possible for the two-group multinor-
mal case with a common covariance matrix and so we consider learning under
imperfect supervision for this case; in this article we consider mainly this case.

Thus at one end of the spectrum of learning schemes, there is (perfectly)
supervised learning and at the other end there is unsupervised learning. Imper-
fect supervision is in between. Considering unreliable supervision, most models
for supervision errors will lead to perfect supervision as one extreme case and
lack of supervision (we shall henceforth call it nonsupervision, for the sake of
convenience) as the other extreme. For instance, if we consider a two-class
situation (Cy and Cy) and a random misallocation model where the probability
of supervisor misallocation is a (not depending on the actual class or z), then
a = 0 is the case of perfect supervision and a = % is the case of nonsupervi-
sion. The second part of this statement can be heuristically seen to be true,
since in the case of supervisor allocation error being % the allocation is ‘purely
random' and is uninformative. We shall see this more formally subsequently.
Similarly, in the case of stochastic supervision, assigning equal probability to
all the classes will be nonsupervision and assigning probability 1 to the correct
class is (perfect) supervision.

In many situations, supervision is expensive, whereas obtaining an unsu-
pervised observation is relatively inexpensive. Since both types of supervision
provide information, it may be a useful idea to combine both types of train-

Imperfect supervision in statistical pattern recognition 29

ing samples. In a similar manner, it may be worthwhile combining stochastic
supervision with perfect supervision . However, in the literature, only the com-
bination of perfectly supervised and unsupervised learning schemes has been
considered in detail. We call this combined learning, although, strictly speak-
ing it can be applied to any combination of learning schemes.

2,1.5 Questions on imperfect supervision

Before proceeding to deal with learning problems under imperfect supervision, it
is first necessary to understand the consequences of imperfection in the case of
learning under a presumed perfect supervisor. Such investigations indeed need
an understanding of the mechanism of supervisor classification. Thus realistic
and tractable models for unreliable supervision and stochastic supervision are
first needed. In Section 2.4, we discuss these models. In Section 2.5, we discuss
the effects of supervisor misallocationon the allocation rules derived from the
assumption of perfect supervision. From these studies, it seems to follow
that supervisor imperfection cannot always be ignored and that a methodology
is required for learning under unreliable supervision. The case of stochastic
supervision cannot be dealt with by supervised learning methods and a different
methodology is needed for this case. In Section 2.6, we discuss learning under
unreliable supervision and in Section 2.7, we discuss learning with stochastic
supervision,

Evidently, a perfectly supervised training sample unit is more valuable for
learning than an imperfectly supervised unit. As pointed out already, perfect
labeling is very expensive. Since decisions may have to be made regarding the
design of supervision, it is necessary to know what the worth is of supervision
carried out according to a certain scheme. Thus the question arises as to how
much information is contained in a training sample obtained according to a
certain supervision scheme, relative to say, perfect supervision. That is, what
are the relative efficiencies of the various supervision schemes? To put it dif-
ferently, how many specimens are required for a certain imperfect supervision
scheme to obtain the same level of efficiency as a perfectly supervised scheme
with, say 100 specimens? The answer to this question depends on many fac-
tors. Firstly, it depends upon how the training sample is to be used for learning.
We shall mostly be concerned with parametric learning for the two-class multi-
normal case with a common covariance matrix. In that case, learning means
the estimation of the linear discriminant function. We shall, in general, be
dealing with mazimum likelihood estimates of the linear discriminant function

30 T. Krishnan

and efficiency in this context relates to the error rate of the estimated linear
discriminant function. Secondly, this efficiency depends upon the model for
imperfect supervision and the parameters in the model. Thirdly, the efficiency
depends upon the parameters of the models used for class-conditional distri-
butions as well as the mixture proportions of the classes. In Sections 2.6 and
2.7, we discuss the efficiencies of the various imperfect learning schemes under
various models, derive formulae for these efficiencies and present tables of nu-
merical values of these efficiencies for a reasonable range of parameter values.
These then give us an understanding of the use and implications of statistical
pattern recognition under imperfect supervision,

We must point out here that the terminclogy relating to imperfect supervi-
sion is not in a standardized form and different authors use different terms to
mean the same concept and sometimes use the same term to mean different
concepts, There is generally no confusion, except in a few situations like as
follows: In the article of Imai and Shimura [20), the term probabilistic labeling
is used in a way different from ours. They are considering an unsupervised
learning algorithm in which one of the steps is to allocate a specimen proba-
bilistically to a class. This allocation is not the supervisor allocation that we
are talking about. In this article, we have attempted to use a set of terms
consistently according to the formulation in the paragraphs above and have
also applied it to the work of other authors.

2.2 Preliminaries

2.2.1 Multivariate normal model and Fisher's linear discriminant
function

In the parametric approach, the class-conditional densities of the p-dimension-
al feature column vector &, f(z | 0) and f(x | 1) are modeled. We describe
here one of the basic models—the homoscedastic normal model— which has
been extensively studied and used, and about which this chapter is mostly
concerned. Here the class-conditional densities in the two classes are modeled
as muitinormal densities with a common (nonsingular) covariance matrix £ and
mean vectors gy and g, respectively:

; e 1 a5 ;
fla | 1) = 2" PR(E| " Reapl—2 (@ — p) Sz —)], i =1,0.

Imperfect supervision in statistical pattern recognition 31

Then it is easily seen that the Bayes classification rule (2.1) is obtained as
follows (see, for instance [3, 36]): Let

Bo =log B — J(pi T py — T g)
B = (py — po) L (2:2)
Alz) = B, + B'z.

Then

Classify into Cp if A(z) < 0;

Classify into Cy if A(x) > 0. (23)

This is the well-known Linear Discriminant Function. The class-conditional
error rate when the true class is Cy is

3{(r - 38%/)

where
A=log f1
o
and
A% = (py — o) (18 = o) (2.4)

the squared Mahalanobis distance between the two classes. Similarly, the class-
conditional error rate when the true class is 1 is

{—(A+ %aﬂ)/a}.

When the two classes have equal prior probabilities, the overall error rate is
‘I>(-%A).

If 71, 41, 4o, 2 are known, x can be assigned using the linear discriminant
function. However, generally my, g, 21, £ are unknown. Suppose a training
sample is available, which is of the form: (y1, 1), (Y2, 22),
vvvy (UnyTn) where y; indicates the class to which the sample unit belongs;
and

x5 | yj ~ Np(pey,,)

where the notation ~ means ‘distributed as' and the notation
M(pgj,ﬁ) means 'p-dimensional multinormal distribution with mean vector

32 T. Krishnan

p,,; and covariance matrix X', If (y;,x;), j =1,2,...,n is a random sample
from the mixture

2
> milNp(pi, B)
1=1

then the following formulae yield maximum likelihood estimates of the unknown
n

parameters, where n1; = ny; no =mn —n (see [3, 36]).
j=1

- % Z(mj =BT+ Z(%‘ —Tg)(x; — To)'| .

Upon substitution of these estimates in the linear discriminant function we get
Anderson's [3] estimated discriminant procedure to assign a new x. This is
supervised learning or learning with a teacher or supervisor,

The sample-based discriminant function is subject to sampling fluctuations
and is a random variable. Consequently, the error rates associated with the
sample-based discriminant function are also random variables. If we are inter-
ested in the performance of the sample-based discriminant function, then we
could study the sampling distribution of these error rates, especially the mean
value of the overall error rate. Such a study will investigate the performance
of the sampling and learning schemes rather than the sample-based particular
discriminant function and this performance will depend upon the size of the
training set and the parameters of the class-conditional distributions and the
class proportions. Given the parameters and the sample size, however, the er-
ror rate distributions and summary measures thereof will help understand the
efficiency of the particular sampling and learning procedures. A study of ef-
ficiencies of different types of learning procedures or supervision is the main
theme of this chapter.

Since the Bayes error rate is the best we can achieve, the overall error rate
of the sample-based linear discriminant function is larger than the Bayes error

Imperfect supervision in statistical pattern recognition 33

rate, In the case of a two-class p-variate normal with a common covariance
matrix with equal prior probabilities and where separate samples of the same
size are taken from each class, the overall error rate exceeds the Bayes error
rate of $(—3A) approximately by

~{8(58)/4H{pA + 4(p - DA™)

where ¢ refers to the standard normal density. The error of approximation is
of order O(n=2) (36, 42]. This formula will help determine, for this sampling
scheme and the learning scheme, what the required sample size n is in order
to attain a level of error rate as compared to the Bayes error rate. This
of course depends upon A {how well the two classes are separated) and the
dimension p of the feature vector. However, A is generally unknown and
hence its estimate has to be used. It is well known that estimates of error
rates of a discriminant function from the same data set as that from which
the discriminant function has been computed, lead to optimistically biased
estimates. Methods are available for bias-free estimates of error rates; leave-
one-out and such jackknife methods are popular in this context.

The method of estimation or learning gets more complicated if the data
are of the unsupervised kind. In our case of the multinormal model, maximum
likelihood estimation can be carried out by a fairly efficient algorithm called
the Expectation-Maximization (EM) algorithm (see [12, 38]).

2.2.2 \Logistic regression

It follows from Bayes theorem that A(x) as given in (2.2) is the posterior log

odds ratio of Class 1 with respect to Class 0 using observation . Thus
iy g TR

mo(z;)

where mi(z;) = Prob(y; = i|x;), i = 1,0. Given observations xy, x3,...,,,
the y; are conditionally independent binary random variables. Thus,

e +3'x;
e = Pty = i) - BT

1

Tl’g(:tj) = Prob(yj = OI:E;) = mﬁ.

(2.5)

34 T. Krishnan

This itself can be considered as a model instead of the more restrictive normal
model with 3,,3 as parameters. This is known as the logistic regression
model. Estimation of the parameters can be carried out by maximizing the
conditional likelihood

- YT (1-v3) _ exp[(By + B'x;)y;]
J];[1 ?rl(m.?) ﬂ'U) : 1—.[[1 + Exp(ﬁn +qu)'|

in terms of By,3. Such estimates are called logistic regression estimates.
The logistic regression is then used for assigning a new specimen in much the
same way as the linear discriminant function. Efron [15] has shown that the
information matrix of the estimates of 3, 3 by logistic regression is

I.p=mom (g aﬂ?—l) (2.6)

where I;,_, is the (p — 1)-dimensional identity matrix,
A (au 31)
a az

e [T,
! w1 exp(Az/2) + moexp{—(Azx/2)}

and

2.2.3 Efron's asymptotic relative efficiency

The asymptotic relative efficiency relevant to a situation is based on the error
rate of the Fisher's linear discriminant function. As we noticed earlier, the Bayes
rule is the one with the least error rate. The Asymplotic Error Rate (AER)
of a procedure or a learning scheme based on estimates 'g“ of vector

n

(60) from a sample size n is defined to be the limiting value (as n — o0)

&)

of the additional error rate (‘expected regret') of g" over the Bayes error

-

rate. This AER will naturally depend on the nature of the learning scheme,
the estimates used for the parameters and the actual values of the parameters.
We shall consider maximum likelihood estimators (MLE). For instance, the
AER of perfectly supervised and unsupervised schemes are different and the

Imperfect supervision in statistical pattern recognition 35

unsupervised procedure will have a larger AER. Again, for the same supervision
scheme, the AER of logistic regression estimates will be different from that of
the MLE. When several schemes less efficient than the supervised one are
considered, such as unsupervised, combination of supervised and unsupervised,
error-prone supervised or stochastically supervised, the (perfectly) supervised
scheme may be used as a basis of comparison. Moreover, the error rate is a
property of particular estimates and hence when we consider a certain learning
scheme, it is a random variable. Thus AER has to be considered in terms of
its average properties. This discussion leads us to the notion of Asymptotic
Relative Efficiency, which we define below.

Since error rates of discriminant rules based on 8,3 or its estimates are
invariant under linear transformations on @ and depend on g, i,, L only
through the Mahalanobis distance A between the two classes, defined in (2.4),
we assurne the canonical form for (pg,X) and (p,,X) to be (ey,Ip) and
(— ey, Ip), where e is the vector (1,0,...,0) and I, is the p x p identity
matrux This canonical form is obtamah[e by a linear transformation on .
Let (By, B)n denote the estimate of (8o, 3) based on a sample of n by a cer-
tain procedure and let ER(ﬁo, ﬁ) denote the error rate upon using (ﬁn,ﬁ) for
(8, B) in (2.2) and (2.3). Efron (15] shows that if

\/"[(5“) fj“)“] 141(0, M)

n[ER (g, B)n — ER(Bg, B)] -

A A 2) Y2
24(2-3) [’3“(3)"”"‘*(3) zf“'f*“'“ﬁ}

where —%+ means convergence in law or distribution, z = (21,22,...,2p) ~
Np4+1(0, M), ¢ is standard normal density, and O the (p + 1)-null vector.
The Asymptotic Error Rate (AER) of a procedure with estimates (3o, B)n is
then defined to be the expectation of the limit above, which is equal to

oL (A) 2) Ay
2—5 -2—-—E mog — E- moy + K mi +mez2 + ...+ Mpp

then

36 T. Krishnan

where ((mi5)) = M. This is denoted for convenience by AER(3,, 3). Then
the Asymptotic Relative Efficiency (ARE) of a procedure with (cg,c) with
respect to a procedure yielding estimate (bo, b) is

e Rl (27)

The computation of AER for a learning scheme needs the variance-covariance
matrix M, which is often computed for MLE by computing the information
matrix and inverting it. Efron [15] has computed the information matrix for
the perfectly supervised case. It is as follows:

0

Ir: =Toft 0 (1 + A‘a?l'oﬂ'z)_lxrp_l (28)
where
1+ %—2 —(mo — ?rl)-‘%-
H' =

—(mg — TI'])%- 14 2mgm; A2

2.2.4 Efficiency of logistic regression

As pointed out earlier, logistic regression and the linear discriminant function
are two parametric methods of obtaining a discriminant function. It was also
pointed out that the efficiency of a learning scheme depends on the estimators
used for the parameters. The multinormal mode! describes the feature vector
in terms of multinormal distributions in each class with a common covariance
matrix and obtains the linear discriminant function as functions of the param-
eters of these distributions and the prior probabilities. On the other hand, the
logistic model directly describes a model for the posterior probabilities in terms
of parameters of a linear regression. Both result in linear discriminant func-
tions. However, the estimation procedures of the parameters are different and
the two procedures use the data in different ways. Then the question arises
as to which of the two procedures is better. The logistic regression is a more
general model and hence is more robust than the normal model. However,
the logistic regression is not very efficient compared to the linear discriminant
function, in the sense of the above definition of ARE, when the multinormal
model actually holds. This is the theme of Efron [15]. Thus, when the validity
of the multinormal model is questionable it is safer to use the logistic regression

Imperfect supervision in statistical patlern recognition ar

and when the multinormal model is likely to be valid it is more efficient to use
the linear discriminant function.

Efron [15] derived a formula for the ARE of logistic regression relative to
normal discrimination. The actual values of ARE depend on the Mahalanobis
distance A between the two classes and the prior probabilities of the two classes,
7o, ™y (mg + w1 = 1). Efron's result is as follows: Let

A= [~ ,neij:fﬁffim
Q=(L3) [(ﬂ;if)% 1(722;:7:1)?2} (é)
Qy =1+ mmeA?

Q=(1,3) mf:g [i? j;] (il‘;)

Effi(A\ A) = Q1/Qs; and Eff, = Q2/Qq

q(A A) = Q3/Qq.
Then the relative efficiency of logistic regression to normal discrimination is

_ A AEMQ,A) + (p— DER(A,4)
Hsh4) = o, A)+ (p— 1) |

Thus Efficiency is a convex combination of asymptotic efficiency as p — oo and
when p = 1, The terms Eff, and Eff; can also be interpreted as the efficiency
for estimating the slope and intercept respectively of the discriminant function.
In Table 2.2.4, numerical values of these efficiencies as well as the weights
required to compute Eff, for any p are presented for a few parameter values.
Efron [15] has a table for more parameter values.

From this it is seen that the logistic regression is about one-half to two-
thirds as efficient as the normal discrimination when the normality assumptions
actually hold. The relative efficiency of logistic regression decreases as the

38 T. Krishnan

Table 2.1 Relative Efficiencies of Logistic Regression to Normal Discrimination

1
ormg A Eff, Effi g(AA) |
0.5 2 0899 0.899 1
0667 2 0879 0913 1.070
0.9 2 0.801 0804 1.697
0.5 3 0.641 0641 1

0.667 3 0618 0.662 1.023
0.9 3 0511 0667 1.225

0.5 4 0343 0343 1
0.667 4 0328 0.358 1.009
0.9 4 0.252 0416 1.094

two classes become more separated and as one of the classes becomes more
dominant in the mixture.

We follow the foregeing method of analysis for making comparisens between
various learning schemes. Moreover, logistic regression is also a useful tool for
such comparisons with other learning schemes as we shall see in the sequel.

2.3 Unsupervised learning

2.3.1 Unsupervised learning and mixture resolution

In many applications of pattern recognition, classifying a training sample is ex-
pensive and difficult, So one might want to use an unclassified training sample,
thereby attempt to learn without a supervisor. Such unsupervised learning is
possible only under certain circumstances. The problem of possibility of unsu-
pervised learning is related to the problem of identifiability of miztures [45,
46), which means that a mixture has a unique resolution in terms of elements of
F. Yakowitz [52] has shown that if F is a parametric family associated with an
unsupervised learning problem, then the problem has a solution if and only if 7
is identifiable. Thus it is meaningful to carry out unsupervised learning only if

Imperfect supervision in siatistical pattern recognition 39

the models for the class-conditional distributions for the feature vector belong
to an identifiable family. We shall be mostly concerned with the multinormal
distribution , in which case the identifiability property holds and it makes sense
to attempt to carry out unsupervised learning.

Books [16, 37, 39, 49] deal with the problem of mixture distributions.

2.3.2 Maximum likelihood estimation

Let us have an unsupervised training sample x1, 3, ...,x,. An algorithm for
estimating the parameters was given by Day [11] . The likelihood of the sample
is

T

L(m1, sy, o, E) = (2m) /22|72 [[(m1e1; + moeo;)
i=1

where
1 I
€y = e3'4"’{""2'(""3' = #i)!E 1(‘”:‘ — i)}
Further, let

U =Ty T Tokg

R =X+ momy(py — o) (1) — po)’-

Let 73, py, Mo, £ be reparameterized in terms of u, R, By, B; this clearly is
possible in view of the one-one nature of the relationship between the two
parameterizations. Day [11] derives the MLE to be

=) azi/n (2.9)
=1
. ;
R=- J_:Zl(mj ~z)(z; — &) (2.10)
o | = s
B=—o f_z (ffl "j‘_“l) - (2.11)
1 —momi(y — Ho) R (i) — fo)
Bo = log(71/70) — B (i, + o). (2.12)

Equations (2.9) and (2.10) are solved directly. However, (2.11)-(2.12)
and (2.13)-(2.15) below are interdependent. Using the expression (2.5) and

40 T. Krishnan

the expressions (2.11)—(2.12) along with (2.10), expressions for estimators for
Ty, My, Hg, & May be obtained, if required, as follows:

GXP(B{) + B’I)

?I'l.j =1- J’-'f'o_-,' = - —7 (2.13)
{1+ exp(By + 8 z)}

7= ; - (2.14)

= 21 T =10, (2.15)

pi T Z;;l ﬁu]

£ = R—#of(fiy — o) (R — fio)'-

These equations can be solved by standard iterative methods such as Newton-
Raphson method or Fisher's scoring method. However, an algorithm in the
lines of what we now call the EM algorithm is very effective and was already
suggested by Day [11]. Suppose we have initial values Bgq, B, for By, 3 re-
spectively. Substituting these in (2.13), (2.14) and (2.15) and using (2.11) and
(2.12) along with (2.10), we get revised estimates of B, and 3. This proce-
dure can be repeated until convergence. These together with the use of (2.10)
give the required MLE of the parameters my, iy, p1q, L as well as those of the
discriminant function coefficients 8, and 3. For details of the EM algorithm,
see [38].

2.3.3 Covariance matrix of MLE

Now let us derive the covariance matrix of these estimates and the ARE of
the unsupervised learning scheme. We follow O'Neill's [41] treatment. Let
{(x,y), €(x) and €(y|x) denote respectively the full log-likelihood of (z, y), the
marginal log-likelihood of & and the conditional log-likelihood of y|z. These
correspond to the (perfectly) supervised, unsupervised and logistic regression
learning schemes respectively. Let fi(x) and fo(x) respectively denote the
multinormal density with mean vector p; and g, and a common covariance

Imperfect supervision in statistical pattern recognition 41

matrix . Then

€z, y) = log{(my fi(z))? (mofolz)) ¥}
() = log{(m1 fi(x)) + (mofo(z))}
€(ylz) = log{m(z)¥mo(x)' ¥}

where 71(z) and mo(x) are as defined in (2.5) defining the logistic regression.
Let Ic,Iyc and ILp respectively denote the full, marginal and conditional
Fisher information matrices of 8y, 3 arising from these log-likelihoods; Fisher
information matrix is the matrix of expected values of second partial deriva-
tives of log-likelihood with respect to pairs of parameters, or equivalently, the
matrix of expected values of products of partial derivatives of log-likelihood
with respect to pairs of parameters. That is,

0% o6 ot
I'=(E(-55.55;) = ((E(%—j@;)}-

The inverse of this matrix gives the asymptotic covariance matrix of the pa-
rameters. It is easily seen that since f(x,y) = f(ylz)f(x) for density f, it
follows that

U=, y) = &) + E(y|z). (2.16)

While the covariance matrix of estimates of a subset of parameters is the
corresponding submatrix of the full covariance matrix and the full covariance
matrix is the inverse of the full information matrix, the information matrix of
a subset of parameters is not the inverse of the corresponding submatrix of
the covariance matrix—it is the corresponding submatrix of the inverse of the
entire covariance matrix. In order to invoke the formula (2.7) for ARE, we need
to compute the covariance matrix of the estimators of 8y, 3. Let A, B, C be
the information matrices of the parameters u, R, 8, 8 from the full, marginal
and conditional likelihoods respectively, where R is written as

Rf = (rllar'ﬂ?" T 721,722, - -y T2pr e vy ooy Tty Tp2, - '-trp;?)-
It follows from (2.16) that A = B 4+ C. Let A be partitioned as
An Al2)
A=
(A'n Az
corresponding to (u/, R') and (B,,3'). Let us use analogous notations for
conformal partitions of B, C and their inverses. Let us make a partition of

42 T. Krishnan

A" conformally as follows:
B Al 412
ATl = (A% Azz)
and B! similarly.

Since ¢(y|x) does not involve (u, R), C1,C12 and Cys are null matrices.
The asymptotic covariance matrices of 3, 3 for the supervised, unsupervised
and logistic regression learning schemes are respectively A%%, B?? and C3;,
with corresponding inverses being the Fisher information matrices of 84, 3. The
matrices C'11, C2, Cg; being null, the relation A = B + C easily gives rise
to the following, using a formula for inverse of partitioned matrices (see [43],
p. 33, for instance)

(AP) ! = Ay — Ap Al Ap,
= By + Cyz — ByyB' B2
= (B®)" + Cn.
This gives rise to the equation Iye = Ic — ILp. Thus the asymptotic

covariance matrix of estimates by, b of 8y, by the unsupervised method is
(Ic = I'Lg)™", of eo, ¢ by the supervised method is I .

2.3.4 Efficiency of unsupervised learning

Using the formulae (2.8) and (2.6) for I and I g respectively, we obtain
Eff, (A, A)

(1,=A/AYH (1, =A/AY + (p— 1)1 + mom 1 A?)
(1,=MA)(H - A)-1(1,-A/A) + (p - 1)1—:‘;;1{9%;3—1’375

(A, AEfFI (A, A) + (p — 1)Effoo (A, A)
a(MA)+(p-1)

where

(1, =A/AYH — A) 11, =A/A)[1 — ag(L + mor1A2)]

wAa) = 1 4 mom A2

Imperfect supervision in statistical paitern recognition 43

Table 2.2 Asymptotic Relative Efficiency of Unsupervised Learning

m A EM(MA) Bfig(hA) ghA)
05 2 0.100 0100 1
3 0360 0360 1
4 0655 0655 1
0.667 2 0085 0122 1.61
3 0338 0382 1.2
4 0642 0.672 1.15
0.9 2 0.058 0.199 5.82
0.254 0490 3.08
4 0.558 0.749 2,42

(1-=MA)H"Y1-A/A)
(1= AMA)H - A)-1(1-A/4)
Eff(X, A) = 1 = ap(1 + mom A?).

Effi(A,4) =

Thus the efficiency is a convex combination of Eff; and Effe, and this convex
combination can be computed by computing g. Eff; and Eff,, themselves are
of interest as intercept and slope efficiencies as well as for the limiting situations
of the dimension of the feature vector being 1 and co respectively.

A tabulation of these efficiencies for a useful range of parameter values is
given in Table 2.2. A more detailed table can be found in [41], p. 824.

From this table one can see that with increasing distance between the
classes, the efficiency of unsupervised learning increases. Again, with increasing
dominance of one class in the mixture, the efficiency of unsupervised learning
decreases. Further, if the two classes are not of equal proportion in the mixture,
then efficiency increases with increasing dimension of the feature vector, the
slope of the discriminant function being estimated with greater efficiency than
the intercept. Information available in an unsupervised sample in this range of
parameter values is about a fifth to two-thirds of that in a supervised sample,
Thus unsupervised learning will be profitable in situations where a large number
of unsupervised sample units can be generated inexpensively compared to a
supervised sample.

44 T. Krishnan

Some useful references for this topic are [11, 18, 35, 51)].

2.3.5 Combined learning

Let us have a supervised training sample (y1,;), (y2,@2),.- ., (Ym, Tm) to-
gether with an unsupervised sample @, 1, Zm12,...,Ts. An algorithm for
estimating the parameters analogous to the foregoing algorithm of Day [11] is
easy to devise.

The likelihood of the sample is

L(my, pys 0, Z) = @m) 2212 [(eleq; ™) J] (miers + moeny),

j=1 j=m41

giving rise to estimators very similar to the unsupervised case discussed above,
We first reparametrize as before. Then the estimators of y; are given by

-

i —_-1—-?(]_.,'

=y, 3=12,...,m

_ exp(By +B)
{1 +exp(By + B =)}

and the remaining formulae are the same as for unsupervised learning. The EM
algorithm for this case is also very similar to the unsupervised case. The only
difference is that the supervised observations continue to have the 7,; values
1 or 0 in each cycle of iteration.

In order to derive the efficiency of this combined learning scheme, let v be
“=%, the proportion of unsupervised observations. Then the likelihood is a
product of supervised and unsupervised likelihoods and the information matrix
is the weighted sum of the upsupervised and supervised information matrices,
leading to

, j=m+1,2,...,n

(L=YIc +vlve =Tec —vILg).
Then computations similar to the unsupervised case lead to
(L=AAYH (1, =)/A) + (p— 1)(1 + mym A?)
(L, =AA)H = 7A)~1(1,=MA) + (p— 1) il

_ 9N A B (A A) + (P~ DEff(A, A7)
Q(AIA!T) + (p = l)

Effp(Av Al 7) =

Imperfect supervision in statistical pattern recognition 45

Table 2.3 Asymptotic Relative Efficiency of Combined Learning (for equal proportions
of supervised and unsupervised samples)

71 A EM(N\A) Efio(hA) g(hA,05)
0.5 2 0.550 0.550 1
3 0.680 0.680 1
4 0828 0828 1
0.667 2 0.543 0561 115
3 0.669 0691 113
4 0821 0836 112
09 2 0573 0600 1.78
3 0.636 0.745 1.87
0.780 0874 2.03

where

(L —AA)H - yA)"1 (1, =A/A)'[1 = yap(1 + mom1 A%)]
1 +7T01‘f1A2

g\ A,q) =

with formulae for Eff; and Eff, obtained by replacing A by v A and ag by ~vap.
Using these formulae, the efficiency of combined learning for v = 0.5 has been
tabulated in Table 2.3. Indeed, the presence of supervised samples improves
the efficiency considerably.

Some useful references for this topic are [9, 10, 33, 34, 41, 47].

2.4 Models for imperfect supervision

2.4.1 Types of supervision models

In order to study various aspects of imperfect supervision such as its effect on
the conventional discriminant function, estimation of the discriminant function
coefficients, and consideration of efficiency of learning schemes, it is necessary
to understand how, in a given context, the supervision is carried out. In other
words, we have to be able to describe the mechanism by which the supervisor
allocates a training sample unit to a class and how mislabeling occurs, and, if

46 T. Krishnan

the supervision is stochastic, how the supervisor ascribes a probability distribu-
tion over classes to a training sample unit. In the statistical approach to pattern
recognition, this description has to be in terms of the probability distribution
of the label or in the case of stochastic supervision, the probability distribution
of the variable(s) denoting the supervisor assessment. Let us denote by y, the
class to which a training sample unit actually belongs and by z the class to
which the supervisor allocates the unit, In the case of deterministic supervi-
sion, z takes values over the set of classes, that is, 1,2,...,c. In the case of
stochastic supervision, z is c-vector valued, z = (2, 23,...,2.), z; denoting
the probability assigned by the supervisor for the training sample unit to belong
to class j; thus z;'s satisfy the condition that z; > 0 and 3°%_, z; = 1. Thus
when there are two classes, i.e,, ¢ = 2, 2 can be scalar-valued and 0 € 2 < 1,
representing the probability that the unit belongs to class 1, say. We review in
this section various models proposed and used in the literature, although we
use only a few of them in the sequel.

A statistical model for supervisor imperfection could be devised by con-
sidering observed z as realizations of a random variable Z and specifying a
probability model for Z. This probability distribution will usually depend upon
the class y to which the unit actually belongs. Thus it appears that we need
models for P(z|y). If the supervision mechanism is based on features totally
unassociated or uncorrelated with the feature vector z, then it may be rea-
sonable to model P(z|y) without taking into account z, that is, make z|y
statistically independent of . Such models are called random misallocation
models (in the case of deterministic supervision) and random stochastic su-
pervision models (in the case of stochastic supervision).

However, in practice, units belonging to the region of overlap between
classes have a greater tendency to be misallocated and in the case of stochas-
tic supervision, tend to get an uninformative distribution over classes. For
instance, a unit whose feature vector is ‘near’ the centroid of the wrong class
may have a larger chance of being misallocated compared to a unit whose fea-
ture vector is not so near the centroid of the wrong class, if the supervision
mechanism is positively associated with the feature vector z. In such cases,
the modeling of P(z]y) is not good enough. We have to model P(z|y,z).
Such models are called nonrandom misallocation models (in the case of de-
terministic supervision) and nonrandom stochastic supervision models (in the
case of stochastic supervision).

Imperfect supervision in statistical patlern recognition 47

2.4.2 Random misallocation models

Many studies on various aspects of unreliable supervision have used random
misallocation models, in view of its simplicity and as a first step in the under-
standing of the phenomenon of imperfect supervision, for example, (7, 8, 23,
24, 28, 31, 32, 40]. Further, it appears (see [6]) that random misallocation
is the least favorable from the efficiency point of view of the estimators and
hence is well worth studying . Although most of these authors have only used
the model for the case of two classes (¢ = 2), it is just as easily formulated
more generally, as follows. Here X denotes the random feature vector,
The model here is

aj=P(Z=ily=jX=x)=P(Z=iy=3), i,j=12...,c

c
Clearly, Zaﬁ = 1. Lugosi [31] called it binary memoryless channel model,

i=1
A particular case of this model where a certain symmetry over the classes is
achieved, thereby reducing the number of parameters to 1 is to make a;; = «
and a;; = =%, This model is very restrictive and unrealistic, but for the case

¢ =2, it does help in simplifying analysis and computations in order to get an
initial understanding of imperfect supervision.

2.4.3 Nonrandom misallocation models

A supervisor is more likely to misallocate a training sample unit if the unit
resembles units belonging to a wrong class. Thus, even if the supervisor al-
location mechanism does not depend upon the feature vector used, if there
is an association between this mechanism and the feature vector, the chances
of supervisor misallocation will be related to the feature vector. The more
similar the unit is to the wrong class, the greater are the chances of misallo-
cation. Thus it will be realistic to formulate a misallocation model in terms of
P(z|y,x). One such model is where the probability of misallocation increases
with the distance between x and the mean of the class y to which it actually
belongs.

A class of such models was formulated by Chhikara and McKeon in [6],
special cases of which include random misallocation models and a nonrandom
misallocation model earlier introduced by Lachenbruch [29].

Lugosi in [31] formulated and used other nonrandom misallocation models
which he called models with misprints in the training sequence and consequently

48 T. Krishnan

lying teacher models.

2.4.4 Random stochastic supervision models

Only two types of models and that too for the case of two classes have been
considered in the literature. These models are specified by the distribution of
Z: Observable variable indicating the supervisor's assessment of the probability
of a training sample unit belonging to class 1.

Distribution models for Z

Let g;(z) be density of Z in class i,

Beta model: (Krishnan and Nandy [25, 26]): This model assumes that the su-
pervisor's assessment follows beta distributions when the training unit belongs
to either class. For the sake of parsimony of parameter, a symmetric model is
assumed, whereby the parameters of the beta distributions are m,n and n, m.
The ‘randomness’ of the model will mean that Z is statistically independent
of the feature vector X. Various choices of m,n give a whole range from
completely unsupervised (m = n) to supervised (|m — n| — o) as seen in
Fig. 2.1(i). For m # n, the supervisor assessment is probabilistically more on
the correct side, the larger the [m — n| the more correct, approaching perfect
supervision as | — n| — 00. Thus the beta model may be a reasonable way
to describe stochastic supervision.

go(z) =2""t1-2)""!, O<z<1;

a)=2""11-2""', O0<z<l

Also, the difference |m — n| suitably normalized may be used as an indez of
supervision, the |arger the index, the better the supervision. Thus we define
supervision index to be |m — n|/v/m + n.

Logistic-normal model: ~ Titterington in [48] suggests an alternative to the
beta model above, which is just as flexible, but is easier to analyze than the
beta model. In this model, the logit of Z, that is, logarithm of the odds ratio,
namely, W = log T_Zz is modeled rather than Z itself. The sample space for W
is the real line and it is natural to assume that W is normally distributed with
different means and conveniently with a common variance in the two classes.
In the context of medical diagnosis Aitchison in [1] and Aitchison and Begg

Imperfect supervision in statistical patiern recognition 49

in [2] used this model. Thus the model is:

Z
1-2
Z
1-2

log |0 ~ N(=38,5?%)

log |1 ~ N(8,02).

The flexibility of these distributions is demonstrated in Fig. 2.1(ii) from [48],
where densities of different shapes produced by various of parameters choices
are presented. Figs. 2.1(iii), (iv) and (v) are also from [48], where the logistic-
normal parameters are chosen so that two moments—of order r; and ro—of
the beta are approximately equal to those of the logistic-normal, showing that
the logistic-normal family is as rich as the beta family.

An obvious extension of the beta model to the multi-class case is the Dirich-
let distribution. Let Z = (Z;, Zs,..., Z.) represent the stochastic supervisor's
probability assignment to a specimen, where Z; > 0, E;=1 Z;=1. Then the
Dirichlet model is

P(zy, 29, .., chi) = constant x z‘f‘“zg‘m s z:ﬂ»c.-‘
where my;, ma;, ..., me are parameters for class 7, i = 1,2,...,¢. Vari-

ous simplifications can be imposed on this such as certain types of sym-
metry in order to reduce the number of parameters. Similarly, the logistic-
normal model can be generalized by considering the (¢ — 1) log-odds-ratios
W; =log(Z;/Z:1), 1 =2,8,...,c and formulating a (¢ — 1)-dimensional nor-
mal distribution for (Wy, W, ..., W,|i). Simplifications can be made by the
assumption of a common covariance matrix for all these multinormal distribu-
tions and by assuming certain symmetric structures for the mean vectors of
these distributions.

2.5 Effect of imperfect supervision

The effect of initial sample misallocation has been studied both analytically and
by simulation techniques. A variety of criteria have been used in these studies.
Some of these are: (1) asymptotic distribution of discrimination boundaries;
(2) asymptotic mean and variance of the class-conditional and overall error
rates Hg, Ry, R defined as:

Ro=Pr{l(z) > 0|z € Co}; Ry =Pr{i(z)<0|zeC}

50 T. Krishnan
@) i
v T
o (o . th . |
)
*“/ ' 4 I
o8 hod i ey
; R ;
o [A‘f | * 1
oz} . _,,/ | .
L | L4
p et o 1 L 4
b — g g SR g
| /./ I r o ~]
cai- (=))7 it o - |
& e !
agr = 3 H i |
i Al v
ae 'r i - g]
J ; 4 |
oz} ;)
' S Y .
o b= mim ; et o Ve an,
02 04 af 08 1 0 02 44 06 0B I

(i) Cumulative probability curve of beta dis-

tribution for various parameter

values (ii)

Density functions of various logistic-normal

distributions (A) § = 0,6' = 1 (B) § =
0,0° = 3(C)é = 0,6 = 10 (D) § =
—1,02_—.1.

Fig. 2.1

and the overall error rate:

(i)

ey 7] -Itl EE ctlé
(iv)
(™ O

Deunsity functions of beta (A) and ce
sponding Jogistic-normal (B) for (iii) bet
3); r1 = 1,7y = 2 (iv) beta(l, 1); r
0.05, 72 = 0.10 (v) beta(5, 3); r1 = 0.05,
0.10.

Various density functions

R =moRo + mRy.

(3) asymptotic bias and efficiency of discriminant function estimates.
Under the random misallocation model, Lachenbruch [28] used Monte Carlo

Imperfect supervision in statistical pattern recognition 51

methods, McLachlan [32] used asymptotic expansions for misclassification prob-
abilities and Michalek and Tripathi [40] used Efron's ARE for the case of two-
class multinormal distributions with a common covariance matrix. If ag and
ajy, the class-conditional supervisor misclassification probability of elements in
class Cy, C; respectively, are small and equal, no appreciable increase in mis-
classification probabilities occurs. Let P; be the misclassification probability
of an element from class i, by the estimated discriminant function, i = 1,0.
Then,

A
P =(-75(1+a0—m)), Po= @(—%(Hal —ap)), if ag+ay <l

If ap = ay, these are the same as for perfect supervision. Michalek and
Tripathi [40] found that for 0 < A < 1.5,0 < ap < a; < 0.5, if A2 is the
distance between the misclassified populations, the real distance lies between

Aflaotan —1)* - A¥eo+on — 1)
1+ ag(l — ap)A2 1+ ai(l—a;)A?

and the distance between misclassified populations decreases as ¢y, a1 increase.
The effect of misclassification is to make the estimators of B, 3 biased, in-
crease error rates (owing to decreased distance), make maximum likelihood
estimates converge to false values and to decrease efficiency of the discrimi-
nant function. Lachenbruch [29] used a truncated model in which observations
closer to the mean of the ‘wrong' class had a larger chance of misallocation
and by means of Monte Carlo methods found that actual error rates were only
marginally affected, the apparent error rates drastically affected and A? greatly
inflated, Duda and Singleton [14] studied the case of binary independent ob-
servation vectors and showed that the linearly separable discriminant function
converges to the one under perfect supervision.

Lugosi [31] investigated the asymptotic behavior of the error probability
of the Bayes rule in the general case in the nonparametric set-up, and the
nearest neighbor classification rule for the two-class case using his models of
imperfect teachers. Lachenbruch [30] considered the effect of initial sample
misclassification on the quadratic discriminant function. We do not discuss
these here.

52 T. Krishnon
2.6 Learning with an unreliable supervisor

The statistical estimation problem in the case of learning with imperfect su-
pervision is the problem of resolution of a mixture, where the mixture model
includes the supervision variable as well. An efficient method of maximum
likelihood estimation for such problems is the EM algorithm, discussed for in-
stance in [38]. The EM algorithm has been worked out for the case of random
model with symmetric misallocation between groups in [23]. Often, a combi-
nation of supervision schemes is used, depending upon availability of various
types of supervisors. The EM algorithms for such situations are easily de-
veloped along lines in the references cited above, References [7, 19, 21, 22,
44] discuss various other methods of learning under imperfect supervision.
We now discuss the ARE of learning under an unreliable supervisor based
on the model with a constant « of supervisor misallocation of a training sample
unit, introduced in Section 2.4.2. We follow the treatment in [24]. We use
the same technique for working out efficiency formulae as in Section 2.3. De-
noting by z the supervisor's class and by y the actual class, and regarding the
observations (z;,x;), 7 =1,2,...,n as a random sample from the mixture

mofo(z, @) + ™1 fi(z, x)
where
fo(z,2) = fo(z)a*(1 —a)'~?
fi(z,@) = fi(z)e! (1 — @)
fo, f1 being multinormal densities of the feature vector x in the two classes.
Using the notations
§=logle/(l—a); w=1-2z2

we easily get by methods similar to those in Section 2.3
1
1- Enl—a r
1
1 + efotB'T+sw

log £(yz,)

The formulae for efficiency are obtained in a manner similar to those in Sec-
tion 2.3, with the additional complication due to the extra parameter §. We
give below expressions leading up to the efficiency formulae, which now depend

Imperfect supervision in statistical pattern recognition 53
on o also besides A and A. Quantities not defined here have the same meaning
as in Section 2.3.

e iy
(71, A) = dz, i=0,1,2
Ai(m, &) ,/:m T1eBE/T moe-Be2

ap = mo(l —a) + Ta; ay = mea + mi(l — @)
Po = mia/ao;p1 = mo(l — @)/ay
Fi = [Ai(po, A)/ao] + [Ai(p1, A)/a1], i=0,1,2
B; = [Ai(po, A)/ao] = [Ai(p1, A)/an], ©=0,1
D =a(l —a)x

[Fg + (ﬂ‘gﬂ‘lBgf(l — o1 Fo) Fy + (mom BoBi /(1 — mom1Fp))
F1 + (Tl'o?ﬁBoBl/(l - ﬂg’ﬂ'lFoJ) Fg - ('ng'ﬂ‘lB?/(l - Tro?'rlpu))

Using these formulae, we write Eff;, Effo and Eff, which have the same mean-

ing and use as before.

g\ A a)EFf (M A a) + (p— 1Effo (A, A, a)
g(MAa)+(p—1)

Eff, (A, A,0) =

where

Q(’\l A! Cl') = (13 _’\fﬁ)(H = D}—I(L —/\/ﬁ)’
x[1 — a(l = a)Fy(1 4+ mom A%)]/(1 + mem AZ).

(1,=A/AYH (1, -1/
(1, =A/A)(H - D)~(1,-A/A)

Effi(M A, a) =

Eff (X A, a) =1 — a1l — a)Fo(1 4+ mom A?).

Thus as before the efficiency is a convex combination of Eff; and Eff.,, with
the same interpretation.

If & = 0, then there is no supervision error and the efficiency is that of
perfect supervision. For cases in between, the efficiency is between 0 and 1

54 T. Krishnan

Table 2.4 Asymptotic Relative Efficiency of Unreliable Supervisor

my A o Effy(A\A) equivy Effoo(MA) equivy
0.5 2 0.01 0.933 0.07 0.933 0.07
3 001 (0.934 0.10 0.934 0.10
4 0.01 0.956 0.13 0.956 0.13
0.667 2 0.01 0.935 0.07 0.910 0.10
3 001 0.933 0.10 0.932 0.11
4 001 0.955 0.30 0.958 0.13
0.9 2 0.01 0.944 0.07 0.845 0.19
3 o001 0.921 0.11 0.927 0.13
4 001 0.942 0.13 0.964 0.14
0.5 2 020 0.347 0.73 0.347 0.73
3 0.20 0.518 0.75 0.518 0.75
4 0.20 0.737 0,77 0.737 0.77
0.667 2 0.20 0.339 0.72 0.353 0.74
3 0.20 0.502 0.75 0.533 0.76
4 0.20 0.726 0.77 0.748 0.77
0.9 2 020 0.342 0.75 0.370 0.79
3 020 0.438 0.76 0.606 0.77
4 020 0.660 0.77 0.805 0.78
0.5 2 050 0.109 1.00 0.109 1.00
3 0.50 0.359 1.00 0.359 1.00
4 0.50 0.657 1.00 0.657 1.00
0667 2 0.50 0.085 1.00 0.121 1.00
3 050 0.338 1.00 0.382 1.00
4 050 0.642 1.00 0.672 1.00
0.9 2 050 0.059 1.00 0.199 1.00
3 050 0.254 1.00 0.489 1.00
4 0.50 0.558 1.00 0.749 1.00

compared to perfect supervision. Thus, a certain proportion of supervision
error is equivalent to, in terms of efficiency, a certain proportion of samples
being unclassified, and so we can strike an equivalence between « of the error-

Imperfect supervision in statistical pattern recognition 55

prone model and =y, the proportion of unclassified observations in the combined
model which result in the same level of efficiency. A tabulation of efficiencies
for error-prone supervision along with equivalent - in combined model for a
useful range of parameter values is given in Table 2.4. A more detailed table
can be found in [24].

As a summary, for A in the range 2.5-4, the efficiency range for various
levels of & and their equivalent percent samples unclassified are as given in
Table 2.5.

Table 2.5 Summary of efficiency of Error-Prone and Combined Learning

Efficiency
a range (%) ¥
0.05 74-90 30-45
0.10 45-75 40-60
0.20 35-80 74-79
0.35 18-70 94-95
0.50 13-75 100

2.7 Learning with a stochastic supervisor

2.7.1 Beta model

The statistical estimation problem in the case of learning with a stochastic su-
pervisor is also a problem of resolution of a mixture, where the mixture model
includes the supervision variable as well. Again, an efficient method of maxi-
mum likelihood estimation for such problems is the EM algorithm, discussed for
instance in [38]. The EM algorithm has been worked out for the case of sym-
metric random beta model of stochastic supervision in [25], and for the logistic-
normal model of stochastic supervision in [48]. We do not discuss this here
but restrict our attention to efficiency issues. We follow the treatments in [26,
27].

To work out formulae for ARE of learning under stochastic supervision,
we use the same technique as in Section 2.3; the formulae are a little more
complicated because of the additional supervision error model parameters. De-

56 T. Krishnan

Fig. 2.2 Efliciency of beta supervisor for various parameter values.

noting by z the supervisor’s class and by y the actual class, and regarding the
observations (z;,z;), =1,2,...,n as a random sample from the mixture

mofolz,2) + 7y fi(z, x)
where

Jo(z,x) = folx)2™ (1 — z)"! /Beta(m,n)
fi(5,2) = fy(@)2" (1 = 2)"~/Beta(n,m)

Jo, f1 being multinormal densities of the feature vector = in the two classes,
Beta being the complete beta integral. Using the notation v = log[z/(1 — 2)|

Imperfect supervision in statistical pattern recognition 57
we easily get by methods similar to those in Section 2.3
log £(y|z, x) 4
x) = - .
g Llulz, 14+ e,@.,+ﬁ T+{n—m)v

We give below expressions leading up to the efficiency formulae, which now

depend on m,n also, besides A and A. Quantities not defined here have the
same meaning as in Section 2,3,
1
a;; = / (log z)i(log(1 — 2)) 2™} (1 —2)""'dz, j=0,1,2
0

ae _ %o ou _ aye

apn ang a

M = ((My5)) = oy ﬂac,;] agz __ 8
apo aOD any

=

Anp

D,; = exp(—A?/8)/V/2nBeta(m,n)x
1
/ vjzm+71—2[1 - z)m+n-2x
0

= zt exp(—22/2)
/:m 1271 (1 — z)™Lexp(Az/2) + moz™ (1 — z)»lexp(—Az/2)

dzdz,
3,§=0,1,2

d = My, /[(Maz — Do2) M1y — M%)

F= Dy + dD},

— Do +dDgy D1y
Dyg + dDoy D1y

Do +dD?1
Effy(m1, A, m,n)
g(my, A, m,n)Effy(7y, A, m,n) + (p — 1)Effc (71, A, m, n)
a q(m1, B,m,n) +(p— 1)
where

1’_‘\)H_ _1(11_/\ j
g(m, A,myn) = e £+1mfr']1A2 5

58 T. Krishnan

(4~ RIH L -2

Efrl("’rl'Arnlln) = (l‘_%)[H —‘F]_'l{l'_%)J

Effoo(m1, A, m,n) = 1 — Dgo(1 + mpm A?).

Thus as before efficiency is a convex combination of Eff; and Eff.,, with
the same interpretation.

A tabulation of these efficiencies for a useful range of parameter values is
given in Table 2.7.1. This table also gives the proportion v of unclassified ob-
servations in combined learning which will result in the same level of efficiency.
A more detailed table can be found in [26].

In Fig. 2.2 we present a chart of efficiencies for various parameter values.
If m = n, then the supervisor uses exactly the same formula for classifying
a training sample when it belongs to classes 0 and 1, and hence supervision
has no information; this is equivalent to the unsupervised case. When the
difference between m and n is large, there is plenty of information in the
supervision variable v and the limiting case of | m — n |— oo is the perfectly
supervised case. In Fig. 2.2 we use the supervision index as defined earlier,
rather than values of m and n. In terms of efficiency, a certain value of
supervision index in stochastic learning is equivalent to a certain value of a
for error-prone supervision, for given parameter values, For A in the range
2.5-4, the efficiency range for various values of the supervision index and the
equivalent « in the error-prone case are given in Table 2.7,

2.7.2 Logistic-normal supervisor

Titterington [48] works out the EM algorithm for this case. We present the
efficiency formulae and results here. In the case of random logistic-normal su-
pervisor, it is assumed that W = log(1%;) is normally distributed with means
—n and 7 in the two groups with a common variance o2 and independent of
the feature vector X. This makes the distribution of (W, X) multinormal in
the two groups with a common covariance matrix. The problem then is sim-
ply a problem of unsupervised learning with (p + 1)-dimensional multinormal
distributions with a common covariance matrix in the two groups and we can
simply invoke the formulae for unsupervised learning schemes with the modifi-
cation that the new Mahalanobis distance V is given by V? = A2 + 4%, where

52=4;'§3.

Imperfect supervision in statistical pattern recognition 59

o9

a7

oe

os

3 Y RN

—-- 13698
C i SERfy

o EOR M, s 2B, SELY o ®¥sbfly [—

o3

c1

Fig, 2.3 Efficiency of logistic-normal supervisor for various parameter values.

We present these efficiency values in Table 2.8 and Fig. 2.3 (where efficiency
is denoted by SEff). Results for the two models are similar although it is
difficult to strike a correspondence between the beta supervision parameters

60 T. Krishnan

Table 2.6 Asymptotic Relative Efficiency of Beta Supervisor

A=2 A=3 A=4
Eff Effo Eff, Effo Eff; Eff o
0.8980 0.8980 0.9194 0.9194 0.9536 0.9536
04762 0.4762 0.6094 0.6094 0.7852 0.7852
0.1016 0.1016 0.3590 0.3590 0.6570 0.6570
0.8972 0.8988 0.9171 0.9217 09518 0.9554
0.4694 0.4844 0.5972 0.6223 0.7762 0.7943
0.0847 0.1217 0.3375 0.3820 0.6422 0.6719
0.9086 0.8958 0.9097 09312 0.9400 0.9647
0.4927 0.5026 0.5475 0.6801 0.7222 0.8403
0.0595 0.1996 0.2537 0.4892 0.5580 0.7483

3
=
-
=

Ty
0.5

[FLR- N

0.667

0.9

W W W o

Lo = v e W1

Table 2.7 Summary of Efficiency for Stochastic and Error-Prone Supervision

equiv Efficiency
el o range (%)
1.67 0.01 90-95
1.42 0.05 74-90
0.40 0.20 35-80
0.30 0.35 18-70

0.00 0.5 13-75

and the logistic-normal supervision parameters. Clearly, efficiency increases
with increasing supervision (larger d or [m — n|) and with larger A, decreases
with 71 away from % Values given in these tables can be interpreted like in
the example below: From Table 2.8, we see that for A = 4, § = 3, m; = 0.667,
Eff is between 0.8630 and 0.8752; this means that in this case of stochastic
supervision, 100 sample units are needed to achieve the same level of efficiency

as 86 perfectly supervised samples.

Imperfect supervision in statistical pattern recognition 61

Table 2.8 Asymptotic Relative Efficiency of Logistic-Normal Supervisor

A=2 A=3 A=4
m 6 Effy Efi, Effy Effo Eff; Eff,
0.5 0 0.1008 0.1008 0.3594 0.3594 0.6589 0.6589
2 03072 03072 0.5467 05467 0.7716 0.7716
3 0.5467 0.5467 0.7201 0.7201 0.8652 0.8652
4 0.7716 0.7716 0.8652 0.8652 0.9376 0.9376
0.667 1 0.0989 0.1211 0.3572 0.3819 0.6561 0.6722
2 03051 0.3305 0.5441 0.5642 0.7690 0.7805
3 0.5441 0.5642 0.7174 0.7311 0.8630 0.8702
4 0.7690 0.7805 0.8630 0.8702 0.9362 0.9397
0.9 1 00798 0.1994 0.3120 0.4896 0.6134 0.7481
2 0.2624 0.4384 04976 0.6570 0.7334 0.8345
3 0.4976 0.6570 0.6781 0.7957 0.8364 0.9031
4 0.7334 0.8345 0.8364 0.9031 0.9199 0.9548
In general,

1. Efficiency increases with A.

2. Efficiency increases with better supervision (that is, for smaller proportion
of unsupervised samples, for smaller o, for larger supervision index of 4 or
[m —).

3. For w1 = 0.5, Eff; and Eff,, are the same; in the neighborhood of m; = 0.5,
the difference between Eff; and Eff,, is small and the dimension of the feature
vector is immaterial.

4. Unsymmetric groups, that is, m; near 0 or 1, need a larger p, that is, a
larger-dimensional feature vector to attain the same efficiency, other parameter
values remaining the same.

5. For fixed A, Eff; increases, but Eff., decreases as m; increases for better
supervision, and the other way around for worse supervision.

From these results, it is clear that imperfect supervision can also be used
for learning with appropriate models and techniques, albeit with less efficiency.
Its actual use will of course depend upon the choices of supervision available
and the cost of these supervisors. If an imperfect supervisor is available with
considerably lower cost than a perfect supervisor but who (which) is not terribly

62

T Krishnan

imperfect, then it seems worthwhile learning from them.

References

[1] J. Aitchison, The Statistical Analysis of Compositional Data. Lon-
don: Chapman and Hall, 1986.

[2] J. Aitchison and C.B. Begg, “Statistical diagnosis when the basic cases
are not classified with certainty,” Biometrika, vol. 63, pp. 1-12, 1976.

[3] T.W. Anderson, An Introduction to Multivariate Statistical Analy-
sis. New York: Wiley, 1984,

[4] R.S. Chhikara, “Effects of mixed (boundary) pixels on crop proportion
estimation,” Remote Sensing of Environment, vol. 14, pp. 207-218,
1984.

[5] R.S. Chhikara, “Error analysis of crop acreage estimation using satellite
data," Technometrics, vol, 28, pp. 73-80, 1986,

[6] R.S. Chhikara and J. McKeon, "Linear discriminant analysis with mis-
allocation in training samples,” Journal of the American Statistical
Association, vol, 79, pp. 899-906, 1984.

[7] C.B. Chittineni, “Learning with imperfectly labeled patterns,” Pattern
Recognition, vol, 12, pp. 271-281, 1980.

[8] C.B. Chittineni, “Estimation of probabilities of label imperfections and
correction of mislabels,” Patlern Recognition, vol, 13, pp. 257-268,
1981.

[9] D.B. Cooper, "When should a learning machine ask for help?" IEEE
Transactions on Information Theory, vol. 20, pp. 455-471, 1974,

[10] D.B. Cooper and J.H. Freeman, “On the asymptotic improvement
in the outcome of supervised learning provided by additional non-
supervised learning,” IEEE Transactions on Computers, vol. 19,
pp. 1055-1063, 1970.

(11] N.E. Day, “Estimating the components of a mixture of normal distri-
butions,” Biometrika, vol. 56, pp. 463-474, 1969.

[12] A.P. Dempster, N.M. Laird and D.B. Rubin, "Maximum [ikelihood
from incomplete data via the EM algorithm," Journal of the Royal
Statistical Society, vol. B 39, pp. 1-38, 1977.

[13] R.A. Devijver and J. Kittler, Pattern Recognition: A Statistical Ap-
proach. Englewood Cliffs, N.J.: Prentice-Hall, 1982.

(14] R.O. Duda and R.C. Singleton, “Training a threshold logic unit with

Imperfect supervision in stalistical pattern recognition 63

imperfectly classified patterns,” WESCON Convention, Los Angeles,
1964,

[15) B. Efron, "The efficiency of logistic regression compared to normal
discriminant analysis,”" Journal of the American Statistical Associa-
tion, vol. 70, pp. 892-898, 1975.

[16] B.S. Everitt and D.J. Hand, Finite Mizture Distributions. London:
Chapman & Hall, 1981.

[17] K. Fukunaga, Introduction to Statistical Pattern Recognition. New
York: Academic Press, 1972.

[18] S. Ganesalingam and G.J. McLachlan, "The efficiency of a linear dis-
criminant function based on unclassified initial samples,” Biometrika,
vol. 65, pp. 658-662, 1978.

[19] D.R. Gimlin and D.R. Farell, "A k-k error correcting procedure for
nonparametric imperfectly supervised learning,” [EEE Transactions
on Systems, Cybernetics and Man, vol. 4, pp. 304-306.

[20] T. Imai and M. Shimura, “Learning with probabilistic labeling,” Pat-
tern Recognition, vol. 8, 5-10, 1976.

[21] R.L. Kashyap, “Algorithms for pattern classification,”" in Adaptive
Learning and Pattern Recognition Systems: Theory and Applica-
tions, J.M. Mendel and K.S. Fu, Eds., New York: Academic, 1970,
pp. 81-113.

[22] R.L. Kashyap and C.C. Blaydon, "Recovery of functions from noisy
measurements taken at randomly selected points,” Proceedings of
IEEE, vol. 54, pp. 1127-1128, 1966,

[23] U.A. Katre and T. Krishnan, "Pattern recognition with imperfect su-
pervision,” Pattern Recognition, vol. 22, pp. 423-431, 1989.

[24] T. Krishnan, “Efficiency of learning with imperfect supervision,” Pat-
tern Recognition, vol. 21, pp. 183-188, 1988.

[25] T. Krishnan and S.C. Nandy, “Discriminant analysis with a stochastic
supervisor,” Pattern Recognition, vol. 20, pp. 379-384, 1987.

[26] T. Krishnan and S.C. Nandy, “Efficiency of discriminant analysis when
initial samples are classified stochastically,” Pattern Recognition, vol.
23, 529~537, 1990.

[27] T. Krishnan and S.C. Nandy, “Efficiency of logistic-normal supervi-
sion,” Pattern Recognition, vol. 23, pp. 1275-1279, 1990.

[28] P.A. Lachenbruch, “Discriminant analysis when initial samples are mis-
classified," Technometrics, vol. 8, 657-662, 1966.

[29] P.A. Lachenbruch, “Discriminant analysis when the initial samples are

64

T. Krishnan

misclassified H: Nonrandom misclassification models,” Technometrics,
vol. 16, pp. 419424, 1974.

[30] P.A. Lachenbruch, “Note on initial misclassification effects on the
quadratic discriminant function,” Technometrics, vol, 21, pp. 129-
132, 1979.

[31] G. Lugosi, "Learning with an unreliable teacher,” Pattern Recogni-
tion, vol. 25, pp. 79-88, 1992,

[32] G.J. Mclachlan, "Asymptotic results for discriminant analysis when
initial samples are misclassified," Technometrics, vol. 14, pp. 415~
422, 1972.

[33] G.J. MclLachlan, “Iterative reclassification procedure for constructing
an asymptotically optimum rule of allocation in discriminant analysis,”
Journal of the American Statistical Association, vol. 70, pp. 365~
369, 1975.

[34] G.J. McLachlan, “Estimating the linear discriminant function from ini-
tial samples containing a small number of unclassified observations,”
Journal of the American Statistical Association, vol. 72, pp. 403~
406, 1977 .

[35] G.J. McLachlan, "The classification and mixture maximum likelihood
approaches to cluster analysis," in Handbook of Statistics, Vol. 2,
P.R. Krishnaiah and L.N. Kanal, Eds. Amsterdam: North-Holland,
1982, pp. 199-208.

[36] G.J. McLachlan, Discriminant Analysis and Statistical Pattern Recog-
nition. New York: Wiley, 1992,

[37] G.J. McLachlan and K.E. Basford, Mizture Models: Inference and
Applications to Clustering, New York: Marcel Dekker, 1988.

[38] G.J. McLachlan and T. Krishnan, The EM Algorithm and Exten-
stons. New York: Wiley, 1977.

[39] G.J. MclLachlan and D. Peel, Finite Mizture Models. New York:
Wiley, 2000.

[40] J.E. Michalek and R.C. Tripathi, "The effect of errors in diagnosis and
measurement on the estimation of probability of an event,” Journal
of the American Statistical Association, vol. 75, pp. 154-160, 1980.

[41] T.J. O'Neill, “Normal discrimination with unclassified observations,”
Journal of the American Statistical Association, vol. 73, pp. 821-
826, 1978.

[42] M. Okamoto, “An asymptotic expansion for the distribution of the
linear discriminant function,” Annals of Mathematical Statistics, vol.

Imperfect supervision in statistical patlern recognition 65

34, pp. 1286-1301, 1963.

[43] C.R. Rao, Linear Statistical Inference and its Applications. New
York: Wiley, 1973.

[44] K. Shanmugam and A.M. Breipohl, "An error-correcting procedure for
learning with an imperfect teacher," IEEE Transactions on Systems,
Cybernetics and Man, vol. 1, pp. 223-229.

[45] H. Teicher, “Identifiability of mixtures,” Annals of Mathematical Statis-
tics, vol. 32, pp. 244-248, 1961.

[46] H. Teicher, "Identifiability of finite mixtures,” Annals of Mathematical
Statistics, vol. 34, pp. 1265-1269, 1963.

[47] D.M. Titterington, “"Updating a diagnostic system using unconfirmed
cases," Applied Statistics, vol. 25, pp. 238-247, 1976.

[48] D.M. Titterington, “An alternative stochastic supervisor in discrimi-
nant analysis," Pattern Recognition, vol. 22, pp. 91-95, 1989.

[49] D.M. Titterington, A.F.M. Smith and U.E. Makov, Statistical Analy-
sis of Finite Mizture Distributions. London: Wiley, 1985.

[50] S. Watanabe, Pattern Recognition: Human and Mechanical. New
York: Wiley, 1985.

[61] J.H. Wolfe, "A Monte Carlo study of the sampling distribution of the
likelihood ratio for mixtures of multinormal distributions,” Technical
Bulletin, STB 72-2, National Personnel & Training Research Labora-
tories, San Diego, 1971,

[52] S.J. Yakowitz, “Unsupervised learning and the identification of finite
mixtures,” IEEE Transactions on Information Theory, vol. 16, pp.
330-338, 1970.

Chapter 3

ADAPTIVE STOCHASTIC
ALGORITHMS FOR PATTERN
CLASSIFICATION

M. A. L. Thathachar and P. S. Sastry

Department of Electrical Engineering
Indian Institute of Seience
Bangalore 560012, INDIA

e-mail: {malt,sastry} Qee.iisc.ernet.in

Abstract

Adaptive stochastic algorithms for learning the decision rule
that maximizes the probability of correct classification are discussed
in this chapter. The class-conditional densities are assumed to be
unknown and only samples with noisy class labels are provided for
learning the decision rule. The algorithms are based on the concept
of Learning Automata (LA} which are adaptive devices for learning
the optimal action out of a given set of actions through repeated
interactions with a random environment. Each action corresponds
to the value of a parameter in the decision rule. A common payoff
game of LA and a 3-layer network of LA are considered for learning
the parameters of the optimum decision rule. Algorithms which
converge to the global optimum are also described. Modules of LA
which enable learning algorithms to run in parallel and consequently
improve the speed of learning almost linearly with the number of
units in the module, are discussed,

3.1 Introduction

In this chapter we address the problem of learning optimal decision rules for
classifying patterns. We discuss some adaptive stochastic algorithms for find-

67

68 M.A.L, Thathechar and P.S. Sastry

ing the decision rule that maximizes probability of correct classification. All
these algorithms are based on Learning Automata (LA) models [12]. The
LA algorithms that we consider are all essentially optimization algorithms for
finding a2 maximum or a minimum of a regression functional based on noisy
function measurements. Such an optimization is an important component of
all learning problems (for example, see the discussion in [8]). The LA algo-
rithms that we discuss here are useful both in pattern recognition (PR) [28,
30] and in learning concepts in the form of Boolean expressions [17, 18,
22].

In any pattern recognition (PR) problem, the objective is to classify any
given input pattern into one of finitely many classes (13, 7]. The nature of
input pattern as well as the classification labels to be output by the system
depend on the specific application. For example, in OCR applications, the input
pattern is a two-dimensional (grey-scale) image of a character symbol and the
output label (also called the class label or class) is the name (or some other
representation) of the character present in the image. In speech recognition
systems, the input pattern is a (sampled version of the) time-varying voltage
signal from a microphone and the output class label is the identity of the word
(or any other speech unit) that compose the speech utterance. In a fingerprint-
based identity verification system, input is the image of the fingerprint pattern
of a person (along with some other claim of identity such as a name) and the
output class label is binary specifying whether or not the person is who he
claims to be. While the first two examples represent multiclass problems, the
last example is a two class problem.

In this chapter, for simplicity of exposition, we will concentrate only on
the two-class problem. Any two-class technique can be extended to tackle
multi-class problems [7, 13, 30].

Any general PR system can be viewed as an implementation of a two-step
procedure: feature extraction and classification. In the first step, the system
extracts or determines some salient characteristics, called features, from the
input pattern. In most cases the features are real (or integer) numbers. Thus,
though the input pattern may be in some arbitrary representation (such as an
image), after feature extraction each pattern is represented by a vector of real
numbers, called the feature vector.® Now the classification step is to assign

*In some applications it may be desirable that not all features are numeric-valued. For
example, in concept learning problems in Al some of the features may be nonnumeric.
While it is possible to arbitrarily encode such features (e.g., color of an object) into

Adaptive stochastic algorithms for pattern classification 69

a class label to each feature vector. Since we are considering only 2-class
problems here, the classifier is a function that maps the set of feature vectors
to the set {0,1}. Any such function is called a decision rule. A good classifier
or a decision rule is one that maps a feature vector to a class label that most
often corresponds to the class that the pattern represented by the feature vector
belongs to.

The design of a PR system now involves two steps: design of a feature
extractor and design of a classifier. Feature extraction is very much problem-
specific. For example, the features that we would like to measure from a finger-
print image so as to be able to make the correct identification decision would,
in general, be different from those needed for correctly identifying a character
from the image of a printed page. However, after fixing the set of features, de-
sign of a classifier admits some general procedures. The techniques we discuss
in this chapter are all meant for designing the classifier. Hence we start with
formulating the problem of classifier design. For this, we shall be considering
the pattern recognition (PR) problem in the statistical framework [7]. That is,
we assume that the variations in the feature vectors corresponding to patterns
of one class can be captured in terms of probability distributions which can be
used for discriminating between feature vectors of different classes.

Let X be the feature space, that is, set of all feature vectors. |f we are using
n real-valued features then X would be R™, the n-dimensional rea! Euclidean
space. Let) = {0,1} be the set of possible outputs of our classifier. Every
classifier or decision rule is a function from X to). Let H be the set of all
possible classifiers or decision rules of interest. For a pattern or feature vector,
X € X, let y(X) denote its ‘true’ class label. It may be noted here that,
in general, y(X) would be a random variable. This is because the set of all
possible feature vectors obtained from all patterns of one class is not necessarily
disjoint with the set of feature vectors of the other class. Similar feature vectors
can come from patterns of different classes (with different probabilities) and
thus we can only talk about the probability of a feature vector belonging to
one class or the other. Also note that this is more due to the specific set of
features chosen in a given system than an inherent property of the underlying
pattern spaces. Forany h € H, h{X) denotes the class label assigned to X by
the classifier k. We can represent the goodness of the classifier h on pattern

some numbers, it may not be a satisfactory solution. The LA based algorithms that
we describe in this chapter would be useful in such applications also [18]. Due to space
limitations, we would not be discussing these aspects of the LA algorithma,

70 M.A L. Thathachar and P.5. Sastry

X using £(h{X),y(X)) where £(-,-) is called a loss function. A simple loss
function is given by: ¢(z,y) = 0 when z = y and ¢(z,y) = 1 when z # y.
This is called a 0-1 loss function. Since £(h(X), y(X)) denotes the loss suffered
by h on pattern X, an overall figure of merit for any classifier A can be given
by a functional, F(:), defined on H by

F(h) = E (1 - &h(X),y(X))), he™H (3.1)

where E denotes expectation with respect to the joint probability distribution
of X and y{X). A good classifier would have high value for F'. If we are using
the 0-1 loss function, ¥'(h) would be the probability that A(X) = y(X). That
is

F(h) = E Linx)=y(x)}
= Prob[h(X) = y(X)], (32)

where 14 represents the indicator function of event A. Thus a i which results in
the maximum value of F(h) would be a classifier with maximum probability of
correct classification, or, equivatently, minimum probability of misclassification.
Though F(h) gives the probability of correct classification with h, only when
we use 0-1 loss function, the definition of F(h) given by (3.1) is reasonable
for many other types of loss functions.! We will discuss some of these later on
in this section.

The next question is, how do we find a h to maximize F'(h)7 Define,
Qo(X) = Probly(X) = 0|X] and Q1(X) = 1 — Qo(X). These are called
posterior probabilities of classes. Define a classifier k by

h(X) =0 if Qo(X) > Q:(X)
MX) =1 if Qo(X) < Qu(X). (3.3)

It is easy to see that this h is optimal in the sense that it would maximize F'
given by (3.2) and thus would obtain minimum probability of misclassification.
Let fo(X) denote the probability density function of feature vectors belonging
to class 0 and similarly fi(X). These are called class-conditional densities.

'In (3.1), we have implicitly assumed that 0 < €(+,-) < 1, which is true for the 0-1 loss
function. In general, If the loss function used does not satisfy this restriction, F' as
defined would not be the proper criterion to maximize., However, this general structure
is applicable for any reasonable loss function. For example, if the loss function is positive
but is not necessarily bounded above by unity, we could attempt to minimize expected
value of loss funetion.

Adaptive stochastic algorithms for pattern classification 71

Define py = Prob[y(X) = 0) and p; = 1 — py. These are referred to as
prior probabilities. Since these are unconditional probabilities, po denotes the
probability that a random pattern belongs to class 0 and thus indicates the
fraction of the total number of patterns that are in class 0. Now, using Bayes
theorem of conditional probabilities, we have Qo(X) = fo(X)po and similarly
for Q1. Define gg(X) = fo(X)po — f1(X)p1. Now we can rewrite (3.3) as

h(X)=0 if ga(X)>0
hMX) =1 otherwise. (3.4)

The classifier given by (3.3) or equivalently by (3.4) is called the Bayes op-
timal classifier. In a real problem it would be very difficult to actually derive the
Bayes optimal classifier because we do not know the class conditional densities
or posterior probabilities. The main reason for this is that we generally have no
information about the statistics of pattern classes (under the chosen feature
vector representation). However, what we have are some examples or the so
called training samples. A training sample is a set {(Xy,71),.., (X, ¥m)}
where each X; € X is a feature vector obtained from some pattern and y; is
the class label of that pattern. It may be noted here that the y; is not obtained
using some special classifier function on X;. (If we have available such a func-
tion, we do not need to build a PR system for the problem!). It is obtained
through a teacher (usually a human expert) classifying the example patterns.
For example, in OCR application, we take some known characters (so that we
can assign the ;) and then obtain the corresponding feature vectors (X;) by
applying our feature extraction programs. Hence, depending on the selected
set of features, the training sample may be noisy in the sense that two arbi-
trarily close X; may have different y; as labels. In addition, in complicated PR
problems the human expert acting as the teacher may himself make mistakes
occasionally, thus introducing additional noise. Now the problem of classifier
design is to build a procedure that infers or learns ‘optimal’ decision rules for
classification using only these training samples.

One approach to this problem is to assume that the form of the class-
conditional probability density functions is known. For example we can assume
that these are multidimensional Gaussians with unknown mean vectors and
covariance matrices. Then, using some statistical estimation techniques, the
unknown parameters of these density functions can be estimated from the given
training samples [7]. Once the class-conditional densities and prior probabilities
are estimated, we can use the estimated quantities in the function gg and the

T2 M.A.L. Thathachar and P.S. Sastry

resulting classifier given by (3.4) would be an approximation to the Bayes
classifier. This is a method that is often employed in many applications though
there are some problems with this approach. The class of density functions
that can be efficiently estimated is somewhat restricted. In addition, it is
often difficult to relate errors in density estimation to probability of error in
classification, which is a more important performance measure,

In cases where we cannot easily guess even the form of the density function
or when it is difficult to do efficient density estimation for any other reason,
we need an alternative method. A popular approach is to use what is known
as a discriminant function. Here we consider a family of classifiers given by

hMX)=0 if g(W,X)>0
h(X) =1 otherwise. (3.5)

where g(W, X) is called a discriminant function which is parameterized by a
parameter vector W. By choosing different values for W we get different
classifiers in this family. Since each classifier h in this family is specified by
a value of parameter vector W, we can denote the decision made on X by a
generic classifier in this family by h(W, X) which is same as A(X) in (3.5).
The design of a classifier in this approach proceeds as follows. We first fix a
form for the discriminant function g parameterized by a suitable W. Then we
obtain the optimal classifier in the family given by (3.5) by searching for an
optimal W with respect to some criterion.

Many choices are possible for the form of a discriminant function. If the
feature vector has n components given by X = (x,...,z,) then we can
choose W = (wg,wy,...,w,) and use a linear discriminant function given by
g(W, X) = wo + 3., wiz;. Another choice is to use a neural network as a
discriminant function when X would be input to the neural network and W
would correspond to all the weights in the network.

Now the next question is to specify the criterion function used to define our
‘optimal’ classifier. The obvious choice would be to use the figure of merit F
defined by (3.1). Since each classifier /i in our case is specified by the parameter
vector W, we can think of F' as a function of W as

F(W) = E (1 - (W, X),y(X))), (3.6)

£ being a suitable loss function.
Obtaining the optimal parameter vector, say, W*, that maximizes F' defined
by (3.6) is not a standard optimization problem, Recall that E in (3.6) denotes

Adaptive stochastic algorithms for pattern classification 73

expectation with respect to the unknown probability distributions of the feature
vectors of different classes. Hence given a W we cannot even calculate #(W)!
We have to somehow use the given training samples to solve this optimization
problem. One way of doing this is to approximate the F' in (3.6) by

~ 1 T
FW) = =3 (1= (h(W, X2), %)), (3.7)
i=1
where {(Xi,v:),1 = 1,...,m} is the set of training samples. If we can assume

that the training samples are obtained in an independent and identically dis-
tributed (i.i.d.) manner and if the discriminant function g used in computing
h{W, X) and the loss function ¢ are well-behaved, then, using results from
statistical learning theory [33], it can be shown that for large m, the maximizer
of F would be close to the maximizer of F*. The requirement that training
samples are i.id. is a formalization of our intuitive notion that the training
samples should be representative of the kind of patterns that our PR system
is likely to encounter in practice, The conditions on g and £ needed to use
the results of statistical learning theory are also fairly mild. Hence learning
an optimal W by maximizing the function defined by (3.7) is a very popular
method used in designing pattern classifiers.

There is another (but essentially equivalent) way of finding W that maxi-
mizes F given by (3.6). Suppose we have an infinite sequence of i.i.d. samples
{(Xi,%),i =1,2,...}. Then we can find maximizer of ' given by (3.6) using
only observed values of £(X;, ;) through stochastic approximation type algo-
rithms [4, 9]. However, in practice we have only a finite number of training
samples. We can construct an infinite sequence out of this by uniformly sam-
pling from the finite training set. In such a case, using stochastic approximation
algorithms amounts to maximizing I given by (3.7) [32].

The next question that needs to be addressed is: what kind of optimization
algorithms would be suitable for finding the optimal parameter vector, W*?
A simple technique which is used often is a gradient ascent algorithm using
the gradient of the criterion function with respect to W.* This would be an
iterative algorithm to estimate the optimal parameter vector, W*. Let W (k)

tA crucial question here is whether the criterion function is differentiable with respect
to W. We shall be considering this issue shortly.

74 M.A.L. Thathachar and P.S. Sastry

denote this estimate at iteration k. Then the algorithm is specified by
W(k+1) = W(k) + n VwFW(k))

=W + 1= VwlhWE, X)) (38)

i=]1

where Vy F and V£ are gradients of the criterion function F' and loss func-
tion £ with respect to W respectively, and they are evaluated at the arguments
shown. Here 7 is the step size for the optimization algorithm. The above is a
simple deterministic algorithm that can find a local maximum of the criterion
function F.

As mentioned earlier, we could have also used a stochastic approximation-
based algorithm. One such algorithm is

Wik+1) = W(k) + n, Vwt(h(W(k), X(k)),y(k)) (3.9)

where, now, (X (k},y(k)) is the random example at iteration k. This is a
stochastic algorithm because now W(k + 1) depends on the random example
at iteration k. The step size 7, satisfies 7, > 0, 37, = co and 3 n? < oo.
This algorithm is called Robbins-Munro algorithm and there are many similar
methods which are useful in finding a maximizer of F' based on observed values
of é(h(W, X),y) on random (i.i.d.) samples (X,v) [4, 9].

To use either of the algorithms given by (3.8) and (3.9), we need F' and
hence ¢ to be differentiable. However, if we use the 0-1 loss function mentioned
earlier, then ¢ is not differentiable. We could use other loss functions such as
£(a, b) = (a — b)2. However, in addition to ¢ being differentiable we also need
h(W, X) to be differentiable with respect to W. Since h represents a decision
rule and hence is binary-valued, it would not be differentiable. Hence to use
such gradient-based techniques, normally one uses a loss function given by
€(a,b) = (a — b)? and defines the criterion function as F(W) = = 3 (1 -
€(R(W, X;),v:)) where k is a continuous function of W. If we choose h to
be a continuous function with range {0, 1}, then the maximizer of this criterion
function (using /.i.d. samples) can be shown to be a least mean square estimate
of the posterior probability. That is, if W™ is the (global) maximum of this
F, then h(W, X) would be a good estimate of Q(X) defined earlier. This
is the approach that is followed in most neural network based algorithms for
designing pattern classifiers,

However, the above method of obtaining W™ using a squared loss function
and continuous . does not give us a classifier that minimizes the probability

Adaptive stochastic algorithms for pattern classification 75

of misclassification [25]. As explained earlier, the maximizer of F defined
by (3.6) (or its approximation, F given by (3.7)) with a 0-1 loss function would
correspond to a classifier with minimum probability of misclassification. From
the viewpoint of the users of a PR system, often probability of misclassification
is a3 more meaningful performance measure. If we want to obtain classifiers
with minimum probability of misclassification, then we need to have techniques
for maximizing F' {given by (3.6) with 0-1 loss function) without needing to
calculate or estimate the gradient.

Such an alternative approach for optimization is provided by the Learning
Automata models. These algorithms maintain, at each instant %, a probability
distribution, say, p(k) over the parameter space. The parameter vector at
instant k, W (k), is a random realization of this distribution, The (noisy) value
of the criterion function at this parameter value is then obtained and is used to
update p(k) into p(k + 1) by employing a learning algorithm. The objective
of the learning algorithm is to make the process converge to a distribution that
chooses the optimal parameter vector with arbitrarily high probability. Thus,
here the search is over the space of probability distributions. The random
choice of W (k) from p(k) allows sufficient exploration of the parameter space.
Unlike stochastic approximations or other gradient descent methods, here we
do not need to explicitly estimate any gradient information. In the rest of
this chapter we present a few such learning algorithms for pattern classification
using learning automata.

3.2 Learning automata

In this section we briefly explain Learning Automata (LA) models. The reader
is referred to [12] for more details.

A Learning Automaton is an adaptive decision making device that learns
the optimal action out of a set of actions through repeated interactions with a
random environment. At each instant the automaton chooses an action, from
its set of actions, at random based on its current action probability distribu-
tion. In response, it receives a stochastic reinforcement signal, also called the
reaction from the environment which is a random evaluation of the automa-
ton's action by the environment. The optimal action for the automaton is the
one that elicits highest expected value of reinforcement from the environment.
However, the automaton has no knowledge of the probability distributions using
which the environment generates the reinforcement and hence of expected val-

76 M.A.L. Thathachar and P.S. Sastry

ues of reinforcement for different actions. The automaton uses the stochastic
reinforcement received from the environment to modify its action probability
distribution through a learning algorithm. The objective of the learning algo-
rithm is to converge to an action probability distribution that assigns a prob-
ability arbitrarily close to unity for the optimal action. Fig. 3.1 shows a block
diagram of LA. Based on the cardinality of the action set two kinds of learning
automata are distinguished: Finite Action set Learning Automata (FALA) and
Continuous Action set Learning Automata (CALA).

Environment

3

Action Reaction

[Learning Aulomatm

Fig. 3.1 A Learning Automaton in a random Environment

3.2.1 Finite action set learning automata

In a FALA the number of actions available is finite. Let A = {ay,...,a,},7 <
oo, be the set of actions available. The automaton maintains a probability
distribution over the action set. At each instant, k, the automaton chooses
an action ay € A, at random, based on its current action probability distri-
bution, p(k) € R, k = 0,1,.... Thus, p(k) = [pi(k)...p.(k)]T € R, with
pi(k) = Probla(k) = a;],Vk. (It may be noted here that p(k) belongs to an
r-dimensional simplex because 3 ._, pi(k) = 1, Vk). For this choice of action
the automaton receives from the environment a random reaction or reinforce-
ment, G(k). We have g(k) € R C [0,1], Vk, where R is the set of possible
reactions from the environment. If R = {0, 1} then the environment is called
P-model; if R = [0, 1] then it is called S-model; and if R = [3,,...,3¢} then
it is called Q-model. In all cases, higher values of the reinforcement signal
are assumed more desirable. Let F; be the distribution from which B(k) is
drawn when a(k) = a;, 1 <1i < r. Let d; denote the expected value of 3(k)
given a(k) = o, (i.e., the expected value of F;). Then d; is called the reward

Adaptive stochastic algorithms for pattern classification 77

probability® associated with action a;, 1 < i < r. Define the index m by
m = maxi{di}. Then the action a,, is called the optimal action.

In the above discussion, we have implicitly assumed that the distributions
F; and hence d;,1 <1 < r, are not time varying and thus the identity of the
optimal action is also not time varying. In this case the environment is said to
be stationary. If the distribution of the random reaction from the environment
for a given choice of action is time-varying then the environment is said to be
nonstationary. In this section we consider only stationary environments. In the
next two sections where LA systems are used for pattern classification we will
be considering some nonstationary environments.

The learning automaton has no knowledge of the distributions F; or of the
reward probabilities. The objective for the automaton is to identify the optimal
action; that is, to evolve to a state where the optimal action is chosen with
probability arbitrarily close to unity. This is to be achieved through a learning
algorithm that updates, at each instant k, the action probability distribution
p(k) into p(k 4+ 1) using the most recent interaction with the environment,
namely, the pair (a(k), 3(k)). Thus if T' represents the learning algorithm,
then, p(k + 1) = T(p(k), a(k), (k). We are interested in algorithms that
make pm (k) converge to a value close to unity in some sense,

Definition 3.1 A learning algorithm is said to be e-optimal if given any
€ > 0, we can choose parameters of the learning algorithm such that with
probability greater than 1 — ¢,

Lim inf

We will be discussing e-optimal learning algorithms here. We can charac-
terize e-optimality in an alternative way that captures the connection between
learning and optimization. Define average reward at k, G(k), by

G(k) = E[B(k)|p(k)]
=D dipi(k). (3.10)

$This name has its origin in P-model environments where d; is the probability of getting
a reward (i.e., f=1) with action ;.

78 M.A.L. Thathachar and P.S. Sastry

Definition 3.2 A learning algorithm is said to be e-optimal if, given any
e > 0, it is possible to choose parameters of the algorithm so that

bim inf pok) > dy, — €

It is easily seen that the two definitions are equivalent. Thus, the objective
of the learning scheme is to maximize the expected value of the reinforcement
received from the environment. In the remaining part of this section we present
some learning algorithms which are used later on.

3.2.1.1 Linear reward inaction (Lr—1) algorithm

This is one of the most popular algorithms used with LA models. This was
originally described in mathematical psychology literature [5] but was later
independently rediscovered and introduced with proper emphasis in [24].

Let the automaton choose action «; at time k. Then p(k) is updated as:

p(k +1) = p(k) + Me; — p(k))B(k) (3.11)

where 0 < A < 1 is the step size parameter and e; is a unit probability vector
with i** component unity and all others zero. To get an intuitive understand-
ing of the algorithm, consider a P-model environment. When 8(k) = 1, (i.e.,
a reward from the environment), we move p(k) a little towards e; when a;
is the chosen action, thus incrementing the probability of choosing that ac-
tion and decrementing all others. When B(k) = 0, (i.e., a penalty from the
environment), the probabilities are left unchanged. Hence the name of the
algorithm.

Lp—1 is known to be e-optimal in all stationary random environments [12].
Lp_; is very simple to implement and it results in decentralized learning in
systems consisting of many automata [21]. However, in such cases it can find
only local maxima (see the next section) and it may converge rather slowly.

3.2.1.2 Pursuit algorithm

This belongs to the class of estimator algorithms [16, 29] that were originally
proposed to improve the speed of convergence. This algorithm typically con-
verges about 10 to 50 times faster than Lp_;.

Adaptive stochastic algorithms for patiern classification 79

This improvement in speed is bought at the expense of additional compu-
tation and memory requirements. Here, the automaton maintains, in addition
to the action probabilities, two more vectors, Z(k) = [Z,(k),. .., Z.(k)]T and
B(k) = [Bi(k),...,B.(k)]T. Zi(k) and Bj(k) represent, respectively, the
number of times action ¢; is chosen till k and the total amount of reinforce-
ment obtained with o till k, 1 < i < r. Then, a natural estimate of the
reward probability of i*® action, d;, is J,-(k) = Bi(k)/Z;(k), which is used in
the algorithm to update the action probabilities. The algorithm is specified
below.

Let a(k) = o; and let G(k) be the reinforcement at k. Then,

Bi(k) = Bi(k — 1) + 8(k)
Zi(k) = Zi(k—1)+1 (3.12)

Bj(k) = By(k—1)Vj #

Z;i(k) = Z;(k — 1), Vi #1, (3.13)
1(k) = Zi0) 1.o,r

d,‘() = m, 1=
Let the random index H be defined by

dgr(k) = max {d:(k)}
Then,
p(k+ 1) = p(k) + Alex — p(k)) (3.14)

where A (0 < A < 1) is the step-size parameter and ey is the unit probability
vector with H*" component unity and all others zero. By the definition of the
random index H, ay is the current estimated best action and (3.14) biases
p(k+1) more in favor of that action. Since the index H keeps changing as the
estimation proceeds, the algorithm keeps pursuing the current estimated best
action. A special feature of the algorithm is that the actual reinforcement, 3(k)
does not appear in the updating of p(k). Hence G(k) can take values in any
bounded set unlike the case of Lp_; where 3(k) has to be in [0,1] to ensure
that p(k + 1) is a probability vector (see (3.11)). The pursuit algorithm and
the other estimator algorithms are e-optimal in all stationary environments.

80 M.A.L. Thathachar and P.S. Sastry

3.2.2 Continuous action set learning automata

So far we have considered the LA model where the set of actions is finite.
Here we consider LA whose action set is the entire real line. To motivate
the model, consider the problem of finding the maximum of a function f :
R — R, given that we have access only to noisy function values at any chosen
point. We can think of f as the probability of misclassification with a single
parameter discriminant function. To use the LA model for this problem, we can
discretize the domain of f into finitely many intervals and take one point from
each interval to form the action set of the automaton [30] (see Section 3.3.2
below). We can supply the noisy function value (normalized if necessary) as
the reinforcement. This can solve the optimization problem but only at a level
of resolution which may be poor based on the coarseness of the discretization.
Also, if we employ too fine a level of discretization, the resulting LA will have
too many actions and the convergence rate will be poor,

A more satisfying solution would be to employ an LA model where the
action set can be continuous. Such a model, called Continuous Action Set
Learning Automaton(CALA) will be discussed in this subsection.

The action set of CALA is the real line. The action probability distribution
at k is N(u(k),o(k)), the normal distribution with mean pu(k) and standard
deviation o(k). At each instant, the CALA updates its action probability dis-
tribution (based on its interaction with the environment) by updating u(k) and
o(k), which is analogous to updating the action probabilities by the FALA, As
before, let a(k) € R be the action chosen at k& and let 4(k) be the reinforce-
ment at k. Here, instead of reward probabilities for various actions, we now
have a reward function, f: R — R, defined by

f(z) = E[B(k) | a(k) = l.

We shall denote the reinforcement in response to action z as 3, and thus
flz) = EB,.

The objective for CALA is to learn value of x at which f attains a maxi-
mum. That is, we want the action probability distribution, N(u(k),o(k)) to
converge to N(x,,0) where z, is a maximum of f. However, we do not let
o{k) to converge to zero to ensure that the algorithm does not get stuck at a
nonoptimal point. So, we use another parameter, oy > 0, and keep the objec-
tive of learning as o (k) converging to oy and p(k) converging to a maximum of
f. By choosing o sufficiently small, asymptotically CALA will choose actions
sufficiently close to the maximum with probability sufficiently close to unity.

Adaptive stochastic algorithms for pattern classification 81

The learning algorithm for CALA is described below. Since the updating
given for o(k) does not automatically guarantee that o(k) > oy, we always
use a projected version of o(k), denoted by ¢(o(k)), while choosing actions.
Also, CALA interacts with the environment through choice of two actions at
each instant.

At each instant k, CALA chooses an xz(k) € R at random from the normal
distribution N(u(k), ¢(o(k))) where ¢ is the function specified below. Then
it gets the reinforcement from the environment for the two actions: u{k) and
z(k). Let these reinforcements be 3, and 3,. Then the distribution is updated
as follows:

(B = B,) (z(k) — p(k))
(o (k)) ¢(o(k))

olk+1) = o(k) + 2z =B [((rtk) = u(k)J)z = 1]

p(k+1) = p(k) + A

do(k)) #lo(k))
+AM{Clo¢ — o(k)]} (3.15)
where
¢lo) =aefor o < 0y
=g for o> 0y (3.16)
and

e) is the step size parameter for learning (0 < A < 1),
e C is a large positive constant, and
e o, is the lower bound on standard deviation as explained earlier.

As explained at the beginning of this subsection, this CALA can be used as
an optimization technique without discretizing the parameter space. It is similar
to stochastic approximation algorithms {4, 9] though here the randomness in
choosing the next parameter value makes the algorithm explore better search
directions. For this algorithm it is proved that with arbitrarily large probability,
(k) will converge close to a maximum of f(-) and ¢(co(k)) will converge close
to gy, if we choose A and o, sufficiently small [19, 20].

82 M.A.L. Thathachar and P.S. Sastry
3.3 A common payoff game of automata for pattern classification

In this section and the next we will present several learning automata algorithms
for pattern classification. Recall from Section 3.1 that we pose the pattern
classification problem as follows. Let g(W, X), where X is the feature vector
and W is the parameter vector, be the discriminant function. We classify
a pattern using the classification rule given by (3.5). The form of g(-,-) is
assumed known (chosen by the designer). The optimal value for the parameter
vector is to be determined by making use of a set of (possibly noisy) i.i.d.
samples patterns which are preclassified. We call these samples the training
set. We are interested in learning W that maximizes

F(W) =F I{y(X}:h(W,X)} (3.17)

where E denotes expectation with respect to the joint distribution of X and
y(X), and h is a classifier (which is completely specified by the parameter vector
W) as defined in (3.5). As explained in Section 3.1, F(W) is the probability
of correct classification with classifier W, F' is defined over ™ if there are n
parameters and we are interested in finding a W that globally maximizes F.

Recall, from Section 3.1, that the relevant probability distributions are un-
known and hence the expectation in (3.17) cannot be evaluated. We need to
find the maximizer of F' using only a training set of patterns that are available.
The training set consists of pairs (X, y(X)) where X is a feature vector and
7(X) is the class label for X as given in the training set. Now define

F'(W) = E Iig(x)=h(w,X)} (3.18)

Given the set of training patterns, we can evaluate Iigx)=n(w,x)) for any
classifier W and any sample pattern X. This is what we can use for finding a
maximizer of . Since the samples are i.i.d., F'(W) will be the probability of
correct classification with classifier W (that is, it will be same as F(W)) if the
training set is noise free, that is, if y(X) = §(X) VX. When there is noise, that
is, if there are random mistakes in the classification of training samples, then the
class label given for a training pattern X, #(X), would not be same as y(X).
(Now, the random variable §(X) is such that §(X) = y(X) with probability p
and (X)) = 1—y(X) with probability 1— p where p is the probability of correct
classification by the teacher). In this case, the /(W) defined by (3.18) will only
give the probability that the classification of a random pattern by the system
(that is, by the classifier W) agrees with that of the (noisy) teacher. But we

Adaptive stochastic algorithms for pattern classification 83

want to actually maximize the probability of correct classification, F(W). Let
p be the probability of correct classification by the (noisy) teacher (which is
assumed to be independent of the class to which the pattern belongs). Then,

F(W) = pE Iigoxy=nw,x)} + (1 = p)E (1 = Lig(xy=h(w,x)})
= (2p - 1)E Iig(xy=nw.x)} +(1-p) (3.19)

Thus, as long as p > 0.5, ﬁ‘(-) and F(-) have the same maxima and hence
it is sufficient to maximize F.

In the above we have assumed a uniform classification noise. That is,
the probability of the teacher correctly classifying a training set pattern is the
same for all patterns. Some of the automata algorithms discussed here can
also handle the more general case where the probability of teacher correctly
classifying X is p(X), as long as p(X) > 0.5, VX, for certain classes of
discriminant functions [11].

3.3.1 Common payoff game of LA

As briefly outlined in Section 3.2.2, a single automaton is sufficient for learning
the optimal value of one parameter. But for multidimensional optimization
problems we need a system consisting of as many automata as there are pa-
rameters. Here we consider the case where these automata are involved in a
cooperative game,

Let Ay,...,An be the automata involved in an N-player game. Each
play of the game consists of each of the automata players choosing an action
and then getting the payoffs (reinforcement) from the environment for this
choice of actions by the team. The game we consider is a common payoff
game and hence all players get the same payoff. Let p;(k),...,pn(k) be
the action probability distributions of the N automata. Then, at each instant
k, each of the automata, A;, chooses an action, a*(k), independently and
at random according to pi(k)., 1 < ¢ € N. This set of N actions is input
to the environment which responds with a random payoff, 3(k) which forms
the commen reinforcement to all automata. The objective for the team is to
maximize the expected payoff,

If Aj,...,An have all finite action sets then we call the expected value
of the common reinforcement or payoff for a specific choice of actions by the
team, as the reward probability for that choice of actions. In this case we can
represent the reward probabilities as a hyper-matrix D = [d;, . ;] of dimension

84 M.A.L. Thathachar and P.S. Sastry

™1 X ... X7TpN, Where
dj,..;v = EIB(K) | &'(k) =@}, 1< i< N| (3.20)

Here {af,...,al } is the set of actions of automaton, 4;, 1 <i < N. D
is called the reward probability matrix of the game and it is unknown to the
automata. The automata are to evolve to the optimal set of actions through
multiple interactions with the environment and updating of their action prob-
ability vectors using a learning algorithm. For this case of a game of finite
action set automata, the action oy, is the optimal action of automaton A;,
1<i<N,if

dml...mu = ma*x{djle} (3.21)

where the maximum is over all possible values of the indices. It may be
noted here that for any single automaton in the team, the environment is
non-stationary. This is because the reinforcement to any automaton depends
also on the choice of actions by the other automata.

We can consider common payoff game played by CALA also. Then the
action set of each automaten is the real line. Now the expected value of
reinforcement for a specific choice of actions by the team can be represented
by the function

d(ey,...,zn) = E[Bk) |a'(k) = 2z;, 1Si<N] (3.22)

Here, d(:,...,") is a function from R" to R, and we are considering a maxi-
mization problem over N-dimensional real Euclidean space. The objective for
the automata team again is to find a maximum of d using a learning algorithm.
It may be noted again that the automata have no knowledge of the function d
and all they get from the environment is the common reinforcement, 3 (whose
expected value for a given choice of actions equals the value of function d at
the corresponding parameter values).

3.3.2 Pattern classification with finite action set LA

As explained earlier, for learning the optimal classifier, we need to learn the
optimal value of the parameter vector, W = [wy,...,wny] € RV, Let w; €
Vi C R. In any specific problem, knowledge of the parametric form chosen
for the discriminant function and knowledge of the region in the feature space
where the classes cluster, is to be utilized for deciding on the sets V*. Since

Adaptive stochastic algorithms for pattern classification 85

actions of automata are parameter values and each automaton is capable of
learning its optimal action, we need a team of N automata for learning optimal
values of N parameters. In this section we are concerned with FALA and each
automaton can have only finitely many actions. Hence we need to discretize
the sets V* to come up with action sets for the automata. Partition each of
the sets V* into finitely many intervals V;, 1 < 7 < r;. Choose one point,
v;-. from each interval VJ-', 1<j<r,1<i<N. Let the N automata in
the team be denoted by A;,..., Ax. The action set of i*"" automaton will be
{vi,..., v} }. Thus the actions of i*! automaton are the possible values for
the #*" parameter, which are finitely many due to the process of discretization.

Now consider the following common payoff game played by these N au-
tomata. At each instant k, each automaton A; chooses an action a*{(k) in-
dependently and at random according to its action probabilities, p; (k). Since
actions of automata are possible values for parameters, this results in the choice
of a specific parameter vector, say W (k) by the automata team. The environ-
ment classifies the next sample pattern using this parameter vector, and the
correctness or otherwise of this classification is supplied to the team as the
commeon reinforcement, (k). Specifically

Blk) =1 if h(W(k), X(k)) =y(X(k))
=0 otherwise (3.23)

where X (k) is the sample pattern at k.

It is easy to see from (3.18) and (3.23) that the expected value of the
common payoff to the team at k is equal to F(W(k)) where W (k) is the
parameter vector chosen by the team at k. Now it follows from (3.19), (3.20),
(3.21) and (3.23) that the optimal set of actions for the team (corresponding
to the maximum element in the reward matrix) is the optimal parameter vector
that maximizes the probability of correct classification. Now what we need is a
learning algorithm for the team which will make each automaton in the team
converge to its optimal action. We will see below that each of the algorithms
for a single automaton specified in Section 3.2 can easily be adapted to the
team problem.

Before proceeding further, it should be noted that this method (in the best
case) would only converge to the classifier that is optimal from among the
finitely many classifiers in the set 1’[?‘;1 V*, This can only be an approxi-
mation to the optimal classifier due to the inherent loss of resolution in the
process of discretization. While this approximation can be improved by finer

86 M.A.L. Thathacher and P.S. Sasiry

discretization, it can result in a large number of actions for each automaton
and consequently, slow rate of convergence. One can also improve the precision
in the learnt classifier by progressively finer discretization. That is, we can first
learn a rough interval for the parameter and then can choose the V* set as
this interval and further subdivide it and so on. However, the method is most
effective in practice mainly in two cases: when there is sufficient knowledge
available regarding the unknown parameters so as to make the sets V* small
enough intervals or when it is sufficient to learn the parameter values to a small
degree of precision. Since we impose no restrictions on the form of the dis-
criminant function g(-,-), we may be able to choose the discriminant function
5o as to have some knowledge of the sets V%, In Section 3.3.3 we will employ
a team of CALA for solving this problem where no discretization of parameter
ranges would be necessary.

3.3.21 Lp_y algorithm for the team

The Linear Reward Inaction algorithm presented in Section 3.2.1.1 is directly
applicable to the automata team. Each automaton in the team uses the rein-
forcement that is supplied to it to update its action probabilities using (3.11).
This will be a decentralized learning technique for the team. No automaton
needs to know the actions selected by other automata or their action proba-
bilities. In fact each automaton is not even aware that it is part of a team
because it is updating its action probabilities as if it were interacting alone
with the environment. However, since the reinforcement supplied by the en-
vironment depends also on the actions selected by others, each automaton
experiences a non-stationary environment.

In a common payoff game, if each automaton uses an Lg_; algorithm
with sufficiently small step size, then the team will converge with arbitrarily
high probability to a set of actions that is a mode of the reward matrix. The
concept of a mode is defined below.

Definition 3.3 The set of actions, a}‘, 1 <i < N, is called a mode of the
reward matrix if the following inequalities hold simultaneously.

djyoin 2 max {degs...in}

diviin 2 max {diyt..in}

v

d_‘."Ju-J'N mia:x {d'jl-»-jn—l t} (3‘24)

Adaptive stochastic algorithms for pattern classification 87

where the maximum is over all possible values for the index, t. |

The mode is a Nash equilibrium in the common payoff game. In our case,
from the point of view of optimization, it amounts to a local maximum. If
the reward matrix of the game is unimodal then the automata team using
the L. algorithm will converge to the optimal classifier. For example, if
the class conditional densities are normal and if the discriminant function is
linear, then the game matrix would be unimodal, Another example where the
automata team with Lp_; algorithm is similarly effective is that of learning
simple conjunctive concepts [17, 22]. However, in general, with this algorithm
the team can converge only to a local maximum of F'(-) defined by (3.17) and,
depending on the specific application, it may or may not be acceptable [21].

3.3.2.2 Pursuit algorithm for the team

We can adopt the Pursuit Algorithm presented in Section 3.2.1.2 for the au-
tomata team problem. However, if each automaton simply uses its reinforce-
ment to estimate its effective reward probabilities, the algorithm will not work
because each automaton experiences a nonstationary environment. We need to
keep an estimated reward probability matrix from which each automaton can
derive a quantity which is analogous to the d; used in the pursuit algorithm in
Section 3.2.1.2. The complete algorithm is given below. We use hypermatri-
ces B and Z for updating the estimated reward probability matrix. The vector
E' here serves for automaton A; the same purpose as the vector d for the
algorithm in Section 3.2.1.2.

Let oi(k), the action chosen by i*h automaton at k, be of , 1 <i < N,
and let B(k) be the reinforcement. Then

B;, ..in(k) = Bj, ..jn(k—1) + B(K)
Z.h ---.inr(k) = Z_fn ..-J‘N(k =) 4] (3.25)

Bil . (k) = Bl'a ---iN(k = 1)! V(iy .. 'iN) + (jl ‘e JN)
Zi, .in(k) = Ziy g (k=1), ¥(iy ...in) # (1 .. dn), (3.26)

I = Bi, ..in(K) . g
ds; iu(k) = m, V(tg cas zN)

88 M.A.L. Thathachar and P.8. Sastry

In the above equations the indices i, range over 1 to r,, 1 < s < N. For
1 <i < N, update the vectors E* by

Ei= max d . 1<t<r;.
? ln,léﬂéf\r,s#i { 4 S o El..;_l...lN}! = = ¥

Let the random indices H{i), 1 <{i < N be defined by
By (k) = max (E(k)}
Then, the action probabilities are updated as:
pi(k+ 1) = pi(k) + AMenpy —pilk)), 1<i<N, (3.27)

where A is the step size parameter (0 < A < 1) and ey is the unit vector
with H(i)** component unity and all others zero.

It is proved in [30, 31] that the automata team employing this algorithm
converges to the optimal set of actions even if the game matrix is not unimodal.
Thus the automata team with pursuit algorithm learns the globally optimal
classifier,

As is easy to see, this algorithm is not decentralized unlike the Lp_; al-
gorithm, To maintain the estimated reward probability matrix, we need to
know the actions chosen by all the automata at that instant. The algorithm is
computationally not very intensive. Only one element of the estimated reward
probability matrix changes at each instant and hence one can make obvious
computational simplifications while updating the vectors £%. However, as the
dimensionality of the problem increases, the memory overhead becomes severe
due to the need to store the estimated reward probability matrix. However, this
algorithm will make the team converge to the maximum element in the reward
probability matrix in any general game with common payoff and thus ensure
convergence to the global maximizer of probability of correct classification.

3.3.3 Pattern classification with CALA

We use a team of N continuous action set learning automata, Ay,..., Ay, for
learning an N-dimensional parameter vector. The actions of the automata will
be possible values for the parameters. Since the action set of a CALA is the
real line, we need not discretize the parameter space. Each automaton will be
using a normal distribution for the action probability distribution as described
in Section 3.2.2. The N automata will independently choose actions resulting
in the choice of a parameter vector by the team, As in the previous section,

Adaptive stochastic algorithms for pattern classification 89

we classify the next sample pattern with the classifier specified by the chosen
parameter vector and supply a 1/0 reinforcement to the team depending on
whether the classification agrees with that of the teacher or not. Each of the
automata use the algorithm described in Section 3.2.2 to update the action
probability distribution. This is once again a completely decentralized learning
scheme for the team. For the algorithm described by (3.15) in Section 3.2.2,
at each instant the automaton needs to interact with the environment twice.
The same situation holds for the team also and thus we classify each pattern
with two different parameter vectors to supply the two reinforcement signals
needed.

It is proved that the team will converge (with arbitrarily large probability) to
a parameter vector that is arbitrarily close to a local maximum of the function
F(-) defined by (3.17) [19, 20].

3.3.4 Simulations

In this section we present results obtained with the automata team models
presented earlier on some pattern classification problems, We present results
with the Pursuit algorithm and with CALA. For the pursuit algorithm, we need
to discretize the parameters and the algorithm finds the global maximum. In
the case of CALA, convergence to only local maxima is assured but we need
not discretize the parameters. As will be seen below, by proper choice of initial
variance in the CALA algorithm we can obtain very good performance.

We present simulation results on only one problem. More details on empir-
ical performance of these algorithms can be found in [23, 30]. Let f;(X),i =
0,1 denote the two class conditional densities. The prior probabilities of the
two classes are assumed equal.

Example 3.1 The class conditional densities for the two classes are given
by Gaussian distributions:

90 M.A.L. Thathachar and P,S. Sastry

Jo(X) = N(m,, %)
where m; = [2.0, 2.0]T
1.0 —-0.25
1= [~0.25 1.0 }
fi(X) = N(mgy, ;)
where mjy = [4.0 , 4.0]7

5, - [15 4].25]

-0.25 1.5

For this problem, a quadratic discriminant function is considered. The
form of the discriminant function is

g(W, X)

2
= [mIz 4z — (m2 +1) (:Bo - (H,,:n)ua)] 1_..1,“-1

2 2
- [1-'1 - (5«"0 + _i_[5(1+nT 7)] — [332 —m (:‘co + —ﬂ(l+,,? 3 H

where W = (m, zq, a) is the parameter vector and X = (z),x3) is the
feature vector. This is a parabola described by three parameters m, g and
a. A sketch of this parabola is shown in Fig. 3.2. This form of the equation
chosen for the parabola makes it easier to visualize the parabola in terms of
the three parameters. As mentioned earlier, in our method we can choose
any form for the discriminant function, With the specific form chosen, it
is easier to guess the ranges of the parameters based on some knowledge of
where in the feature space the two classes cluster. It would be considerably
more difficult to guess the parameter ranges if we had chosen a general
quadratic expression for our discriminant function. It may be noted that
the discriminant function is nonlinear in its parameters.

The parameters of the optimal discriminant function for this problem
are: m = 1.0 g = 3.0 a = 10.0. A sketch of the optimal discriminant
function is shown in Fig. 3.3.

a

Adaptive stochastic algorithms for pattern classification 91

X,

2a

Xg x|

Fig. 3.2 The form of the discriminant function used in Example 3.1. It is a parabola
specified by three parameters m,zo and a.

'
'
X2
L]
]
4
Class-2
3 O
? Parabolic
Discriminant
' Funciion
Class: 1
L 1 2 F] f s [1 s
X,

Fig. 3.3 Claas conditional densities and the form of the Optimal discriminant function
in Example 3.1.

92 M.A.L. Thathacher and P.S. Sastry

3.3.4.1 Learning automata team with pursuit algorithm

For the simulation, 300 samples of each class are generated. At each instant
one of the patterns from this set is selected at random and given to the learning
system. The learning parameter, A, was set at 0.1. A team of three automata
was used. The ranges for the parameters, m, =, and a were taken to be [0.5,
1.5], [2, 6] and (1, 10] respectively. The range of each parameter was discretized
into five levels. In seven out of ten experiments the team converged to the
optimal parameters. In the other three runs, only one of the three automata
converged to a wrong action, The average number of iterations needed for
convergence was 1970,

3342 CALA team

We used a team of three continuous action set learning automata (CALA).
As earlier, 300 sample patterns are generated from each class. Also a test set
consisting of 100 samples is generated from the two classes. In this problem it
is difficult to analytically compute the minimum probability of misclassification.
The number of misclassifications on the generated test set of patterns, with the
parameter values set to those values corresponding to the optimal discriminant
function (mentioned above), was found to be 11 (out of a total of 100 test
patterns). The results of the simulations are provided in Table 3.1, for 3
different initial values. As can be seen from the results presented, with the
initial values of the parameters the probability of misclassification is between
30% and 40%. However, after learning, the probability of misclassification is
close to the best expected. Also, it may be noted that the team converges to a
classifier whose probability of correct classification is close to global maximum,
from many different starting points.

Table 3.1 Results obtained with CALA team on Example 3.1.

Initial Values Final Value
b | ud | ud | ob | 03 | o8 | % Error | # Iterations | % Error
1 104/ 6 6 6 4 32 3700 11
5 12 | 6 6 4 45 6400 12
al2l12]6|6]4 42 3400 T12

Adaptive stochastic algorithms for pattern classification 93

3.4 Three layer network consisting of teams of automata for pat-
tern classification

In the previous section we have considered a common payoff game of automata
and showed how it can be utilized for pattern classification. There we have
assumed that the designer has decided on a parametric representation for the
discriminant function, g(W, X)). The algorithm itself is independent of what
this function is or how it is represented. For example, we could have represented
it as an artificial neural network with parameters being the weights and then
the algorithm would be converging to the ‘optimal’ set of weights. By making
a specific choice for the discriminant function, we can configure the automata
team more intelligently and this is illustrated in this section. We will only be
considering teams of finite action learning automata here though the method
can be extended to include CALA. The material in this section follows [14, 27,
28].

In a two-class PR problem, we are interested in finding a surface that appro-
priately divides the feature space which may be assumed to be a compact subset
of RN, Such a surface is well approximated by a piecewise linear function [10]
and can be implemented using linear threshold units in a three-layer feedfor-
ward network. In this network the first |ayer units learn hyperplanes, Units in
the second layer perform the AND operation on the outputs of some selected
first layer units and thus learn convex sets with piecewise linear boundaries.
The final layer performs an OR operation on the outputs of the second layer
units. Thus this network, with appropriate choice of the internal parameters of
the units and connections, can represent any subset of the feature space that
is expressed as a union of convex sets with piecewise linear boundaries. The
network structure is chosen because any compact subset of RV with piecewise
linear boundary can be expressed as a union of such convex sets. We now
describe how we can configure such a network with each unit being a team of
automata,

Let the first layer consist of M units and let the second layer have L
units. That means we can learn utmost M distinct hyperplanes and L distinct
convex pieces. The final layer consists of a single unit, As before let X (k) =
[z1(k),...,zNn(k)]T € RV be the feature vector.

Denote by U;, 1 < i < M, the units in the first layer each of which should
learn a N-dimensional hyperplane. A hyperplane in R can be represented
by (N + 1) parameters, namely, the normal vector and the distance from the

94 M.A.L. Thathachar and P.S. Sastry

origin to the hyperplane. Hence we will represent each unit, U;, 1 <1< M,
by an (N + 1)-member team of automata, A;;, 0 < j < N. The actions
of automaton A;; are the possible values of the j*! parameter of the i** hy-
perplane being learnt. Since we are using finite action set automata herel,
as in Section 3.3.2, we discretize the ranges of parameters for making up the
action sets of automata. Let A;; be the set of actions of automaton A;; whose
elements will be denoted by a;js, 1 < s<7;, 0<j <N, 1<i< M. Let
pij(k) be the action probability vector of A;; with components p;;, and

Probla;(k) = aizs] = pijs(k)

where a;; (k) is the action chosen by the automaton A;; at time k. The output
of unit U; at k is y;(k) where

yilk) =1 if Y au(k)a;(k) >0
J
= 0 otherwise (3.28)

where X (k) = [z1(k)...zn(k)] is the feature vector of the sample pattern at
iteration &.

Let V; be the i*® second layer unit that has connections with n(i) first
layer units, 1 <7 < L. The n(z) first layer units that are connected to V; are
prefixed. Thus V; can learn a convex set bounded by utmost n(z) hyperplanes.
The unit V; is composed of a team of n(7) automata By;, 1 < j < n(i), each
of which has two actions: 0 and 1. The action probability distribution of B;;
at & can be represented by a single real number g;;(k) where

pJ’Ob[Zl‘j(k) = l] =1- PfOb[Z;’j(k) = 0] = q;'j{k)

where z;;(k) is the action selected by B;; at k. Let a;(k) be the output of
V; at instant k. a;(k) is the AND of the outputs of all those first layer units
which are connected to V; and are activated, i.e., z;;(£) = 1. More formally,

a;(k) = 1ify;(k) =1V 4, 1 <j < n(i), such that 2;;(k) =1
=0 otherwise. (3.29)
% We could also use a team of CALA for each unit in the first layer, We use a FALA

team here to demonstrate (in Section 3.4.2) how one can introduce a perturbation term
to Lp- type algorithms so as to converge to the global optimum.

Adaptive stochastic algorithms for pattern classification 95

The third layer contains only one unit whose output is a boolean OR of all
the outputs of the second layer units. Since here we want to learn a union of
convex sets, no learning is needed in the third layer.

This network of automata functions as follows. At each instant k, all the
automata in all the first and second layer units choose an action at random
based on their current action probability vector. That is, in each U;, each of
the automata A;; chooses an action a;;(k) from the set fi,-j at random based
on the probability vector p;j(k). This results in a specific parameter vector
and hence a specific hyperplane being chosen by each U;. Then, based on
the next pattern vector, X(k), each unit U; calculates its output y;(k) using
equation (3.28). In each second layer unit V;, all the n(i) automata B;; choose
an action z;;{k) at random based on the probability ¢;;(k). Using these z;;(k)
and the outputs of first layer units, each V; would calculate its output a;(k)
using (3.29). Using the outputs of the second layer units, the unit in the final
layer will calculate its output which is 1 if any a;i(k) is 1; and O otherwise.
Let Y (k) denote the output of the final layer unit which is also the output
of the network. Y (k) = 1 denotes that the pattern is classified as Class-1
and Y(k) = 0 denotes that the pattern is Class-0. For this classification, the
environment supplies a reinforcement 3(k) as

Bk) =1 ifY (k) =g(X(k))
=0 otherwise (3.30)
where §(X (k)) is the classification supplied for the current pattern X (k) in the
training set. A(k) is supplied as the common reinforcement to all the automata
in all the units and then all the automata update their action probability vectors
using the Lp_s algorithm as below.
For each 1,7, 0 < 7 < N, 1 < ¢ < M, the probability vectors p;; are
updated as

pija(k + 1) = pij!(k) + /\ﬁ(k)(l 2 pijg(k)) lf Of,'j(k) = aijs
= pijs (k) (1 — AB(K)) otherwise (3.31)

For each 4,7, 1 < j < n(i), 1 <1 < L, the probabilities ¢;; are updated as

qij(k + 1) = gij(k) + MB(k)(1 — qi;(k)) if 2;(k) =1,
= qij(k)(1 - AB(k)) otherwise (3.32)

Let P(k) denote the internal state of the network. This includes the action
probabilities of all the automata in all the units. That is, it includes all p;; and

96 M.A.L. Thathachar and P.S. Sastry

all g;;. Define

f(p) = E[B(k) | P(k) = p] (3.33)

For this network of teams of automata, the learning algorithm given by (3.31)
and (3.32) will make P(k) converge to a local maximum of f(-). Thus the
action probabilities of all the automata will converge to values that would
(locally) maximize the expected value of the reinforcement.

It is clear from the earlier discussion in Section 3.3 and from (3.30), that
maximizing the expected reinforcement will result in maximizing the probability
of correct classification. Thus this network will learn a classifier which locally
maximizes the probability of correct classification.

3.4.1 Simulations

We consider two examples here to illustrate the three layer network presented
above. The first one is an artificial problem while the second one is on a real
data set. For the first one we consider a problem where the region in the
feature space in which the optimal decision is Class 0, is a convex set with
linear boundaries. Once again we consider only 2-dimensional feature vectors
because it is easier to visualize the problem. Both these examples are from [28].

Example 3.2 The feature vectors from the environment arrive uniformly
from the set [0, 1] x [0, 1]. The discriminant function to be learnt is shown in
Fig. 3.4. Referring to the figure, the optimal decision in region A is Class 0
and that in region B is Class 1. In region A,

Prob[X € Class 0] = 1 — Prob[X € Class 1] = 0.9,
and in region B
Prob[X € Class 0] = 1 — Prob[X € Class 1] = 0.1.
The discriminant function to be learnt is
[2z1 — z3 > O] AND [—z; + 222 > (]

where X = (z; x2)7 is the feature vector.

Since we need to learn only one convex set, the network is made up
of two first-layer units, I/; and Uz, and one fixed second-layer unit. The
second-layer unit performs AND operation on the outputs of the first-layer

Adaptive stochastic algarithms for pattern classification 97

X
(0,1) (1/2,1) (1,1)
B
A (1,1/2)
B
(0,0) 1,0 X

Fig. 3.4 The class regions in Example 3.2

units. Fach first-layer unit has two automata. We used two rather than
three because the hyperplanes to be learnt pass through origin. Each of the
automata have four actions which are the possible values of the parameters
to represent the hyperplanes. All four automata have the same action set
given by {-2 -1 1 2}, In this problem, there are two sets of choices of actions
by the four automata (or parameter vectors) given by (-1, 2, 2, -1) and (2, -1,
-1, 2) at which the global optimum is attained. The learning parameter, A,
is fixed at 0.005 for all automata. The initial action probability distribution
is uniform. That is, initial probability of each of the four actions is 0.25. The
number of samples generated is 500 and at each instant one pattern chosen
randomly from this set is presented to the network. Twenty simulation
runs were conducted and the network converged to one of the two sets of
optimal actions in every run. The average number of iterations needed
for the probability of the optimal action to be greater than 0.98 for each
automaton, is 10,922 steps. (Since the computations per iteration are very
simple, the actual time taken is only a few seconds on a PC). O

98 M.A.L. Thathachar and P.S. Sastry

Example 3.3 In this example, a 2-Class version of the Iris data [7] was
considered. The data was obtained from the machine learning databases
maintained at University of California, Irvine. This is a 3-class 4-feature
problem. The three classes are [ris setosa, Iris versicolor and Iris virginica.
Of these, I. setosa is linearly separable from the other two. Since we are
considering only 2-Class problems here, I. setosa was ignored and the prob-
lem was reduced to that of classifying I. versicolor and I. wirginica. The
data used was 50 samples of each class with the correct classification.

The network consisted of 9 first layer units and 3 second layer units.
Each first layer unit has 5 automata (since this is a 4-feature problem).
Each automaton had 9 actions which were {-4,-3,-2,-1,0,1,2,3,4}. Uniform
initial conditions were used. The learning parameters were 0.005 in the first
layer and 0.002 in the second layer.

In this problem we do not know which are the optimal actions of the
automata and hence we have to measure the performance based on the
classification error on the data after learning.

For a comparison of the performance achieved by the automata network,
we also simulated a standard feedforward neural network where we used
backpropagation with momentum term (BPM) for the learning algorithm.
The network has four input nodes (to take in the feature vector) and one
output node. We tried two and three hidden layers. For the two hidden
layer network we used 9 and 3 units in the hidden layers. For the three
hidden layer network we used 8 nodes in each hidden layer. Initial weights
for the network were generated randomly. In the learning algorithm the
learning parameter for the momentum term was set at 0.9 and various
values of the learning parameter for the gradient term were considered and
the best results are reported here.

Simulations were conducted for perfect data (0% noise) and noisy cases.
Noise was introduced by changing the known classification of the feature
vector at each instant by a fixed probability. Noise levels of 20% and 40%
were considered. With 40% noise, each sample has a probability of 0.4 of
being misclassified.

The results obtained are summarized in Table 3.2. These are averages
over 10 runs. The error reported in the table for the backpropagation al-

Adaptive stochastic algorithms for pattern classification 99

gorithm is the root mean square error while that for the automata network
is the probability of misclassification. While they cannot be directly com-
pared, the performance was about the same at the values reported.

Table 3.2 Simulation Results for IRIS data. The entry in the fourth column refers to
RMS error for BPM and probability of misclassification for Lr_;.

Algorithm | Structure | Noise(%) | Error Steps
BPM 931 0 2.0 66,600
BPM 931 20 - No Convergence
BPM 931 40 - No Convergence
BPM 8881 0 2.0 65,800
BPM 8881 20 - No Convergence
BPM 8881 40 - No Convergence
Lp_r 931 0 0.1 78,000
Lp-r 931 20 0.1 143,000
Lp-; 931 40 0.15 200,000

The results show that in the noise-free case, the backpropagation with
momentum converges about 20% faster. However, this algorithm fails to
converge even when only 20% noise is added. The learning automata net-
work continues to converge even with 40% noise and there is only slight
degradation of performance with noise.

a

3.4.2 A globally convergent algorithm for the network of au-
tomata

in the three-layer network of automata considered above, all automata use the
Ly~ algorithm (cf. (3.31) and (3.32)). As stated earlier, one can establish
only local convergence result for this algorithm. In this subsection we present
a modified algorithm which leads to convergence to the global maximum.
One class of algorithms for automata team that result in convergence to
global maximum are the estimator algorithms. As stated in Section 3.3.2.2,
these algorithms have a large memory overhead. Here, we follow another

100 M.A.L. Thathachar and P,S, Sastry

approach, similar to the simulated annealing type algorithms for global opti-
mization [1, 6], and impose a random perturbation in the update equations.
However, unlike in simulated annealing type algorithms, here we keep the vari-
ance of perturbations constant and thus our algorithm would be similar to
constant heat bath type algorithms. Since a FALA learning algorithm updates
the action probabilities, introducing a random term directly in the updating
equations is difficult due to two reasons. Firstly, it is not easy to ensure that
the resulting vector after the updating remains a probability vector. Secondly,
the resulting diffusion would be on a manifold rather than the entire space
thus making the analysis difficult. To overcome such difficulties, the learning
automaton is parameterized here, The automaton will now have an internal
state vector, u, of real numbers, which is not necessarily a probability vector,
The probabilities of various actions are calculated based on the value of u using
a probability generating function, g(:,-). The value of g(u,q;) will give the
probability with which the i** action is chosen by the automaton when the
state vector is u. Such learning automata are referred to as Parameterized
Learning Automata (PLA) [14]. The probability generating function that we
use is given by

exp(u;)

v =g(u, ;) = m (3.34)

where u = (u;...u,)" is the state vector and p = (p; ...p,)T is the action
probability vector.

We will now give the complete learning algorithm for the network of au-
tomata following the same notation that was used earlier. Thus p;;, is the
probability of s'" action, a,j,, of automaton A,; which is the j*" automaton in
U;, the it" first layer unit and so on. The functioning of the network is same
as before. However, the learning algorithm now updates the internal state of
each automaton and the actual action probabilities are calculated using the
probability generating function. Suppose u;; is the state vector of automaton
A;; and has components u;;5. Similarly, v;; is the state vector of automa-
ton Bj; and it has components v;;0 and v;51. Let g;(-,-) be the probability
generating function for automaton A;; and let g;(-,) be the probability gene-
rating function for automaton B;;. As indicated by (3.34), the various action
probabilities. pi;s and g;; are now given by

Pijs = gij(uij,aijs) = S:tx;)x(;i‘u:j,} (3 35)
=i]) = o) :
% = 9 \Vi = expluiji)texp(vio)

Adaptive stochastic algorithms for patlern classification 101

The algorithm given below specifies how the various state vectors should be
updated. Unlike in (3.31) and (3.32), there is a single updating equation for
ali the components of the state vector. (k) is the reinforcement obtained at
k, which is calculated as before by (3.30).

Foreach i,7,0<j <N, 1<i< M, the state vectors u;; are updated as

dlng;;
Uijs

Uija{k + 1) = wiz4 (k) + AB(k) 3 + AR/ (u354(K)) + /Asi(k) (3.36)

For each 4,7, 1 < j < n(i), 1 <i < L, the state vectors v;; are updated as
Jln g;;

Vijs (k + 1) = Ugj,(k) +)\,G(k) Bv,'j,

+ AR (uiga(K)) + VAsig (k) (3.37)

where
i) The functions g;;(-,-) and its partial derivatives are evaluated at
9ij

(ug(k), aij (K)),

the current state vector and the current action of A;;. Similarly, the functions
Gi;(-,+) and its partial derivatives are evaluated at (vy;(k), z;;(k)).
(i) R'(-) is the derivative of A(-) which is defined by

h(z) = —K(z — L1)** for z > L,
=0 for |z|< Ly
=-K(z+ L)% for < -L, (3.38)

where K and L; are real numbers and n is an integer all of which are param-
eters of the algorithm.

(iii) {si;(k)} is a sequence of i.i.d. random variables (which also are indepen-
dent of all the action probabilities, actions chosen etc.) with zero mean and
variance g2, o is a parameter of the algorithm.

In the updating equations given by (3.36) and (3.37), the A/(-) term on
the right hand side (rhs) is essentially a projection term which ensures that
the algorithm exhibits bounded behavior; and the s;; term on the rhs adds a
random walk to the updating. The 3(k) term on rhs is essentially the same
updating as the L given earlier. To see this, it may be noted that

u; P Qg = 1 — Diis
g':j (uijs aijs) [8uijs (1) a‘ljs) Pij

Ui, Q454 = —Piig 339
gij(uij'aijs) [8?‘“3'8'(] a‘lj) p‘J ()

102 M.A.L. Thathachar and P.S, Sastry

For this algorithm it is proved [27] that a continuous-time interpolated
version of the state of the network, U, given by the states of all automata,
converges to a solution of the Langevin equation given by

dU = VH(U) + cdW (3.40)
where
H(U) = E[B | U]+ Y _ h(uis)

and W is the standard Brownian motion process of appropriate dimension,
As is well-known, the solutions of the Langevin equation concentrate on the
global maximum of H as ¢ tends to zero. By the nature of the function h(-),
this means the algorithm will converge to a state that globally maximizes the
expected value of the reinforcement if the global maximum state vector is such
that each component is less than L in magnitude. Otherwise it will find a
global maximum of H (which can be shown to be in a bounded region) and the
expected value of reinforcement at this point would be greater than or equal to
that inside the bounded region allowed for the algorithm. For more discussion
and precise statement of this convergence result, the reader is referred to [27].

Simulations with the global algorithm

Here we briefly give results of simulations with this algorithm on one example
considered earlier in Section 3.4.1, namely, Example 3.2.

In that example, we have seen that the global maximum is attained at
two parameter vectors (-1,2,2,-1) and (2,-1,-1,2). One of the local maxima in
that problem is given by (1,1,1,1). We have seen that the Lr_; algorithm
converges to the global maximum when started with uniform initial conditions,
that is, equal initial probabilities to all actions in all automata. Here we pick
the initial conditions such that the effective probability of the parameter vector
corresponding to the local maximum is greater than 0.98 and the rest of the
probability is distributed among the other parameter vectors. With this much
of bias, the Lr_; algorithm always converged to the local maximum.

We tried the globally convergent algorithm presented above with these
initial conditions. The parameters in the h(:) function are set as L;=3.0,
K=1.0, and n=2, The learning parameter is set at 0.05. The value for ¢ is
initially 10 and was reduced as

o(k+1) = 0.9990(k), 0< k < 5000.

Adaptive stochastic algorithms for pattern classification 103

and was kept constant thereafter. (Here o(k) is the value of o used at iteration
k).

As earlier the training set had 500 samples. Twenty simulations were done
and each time the algorithm converged to one of the two global maxima. The
average number of iterations needed for convergence was 33,425. This, of
course, does not compare favorably with the time taken by Lr_;. In this
algorithm, the computation time per iteration is also more than that of Lg_;.
The extra time seems to be mainly due to the fact that the action probabilities
are to be computed at each instant and not directly stored. The extra terms
in the algorithm (the term for bounding the algorithm and the random term)
do not seem to slow down the algorithm much. A different choice of the
probability generating function may result in a faster algorithm, However,
the higher computational effort and slower rates of convergence appear to be
the price to be paid for convergence to global maximum in all annealing type
algorithms.

3.5 Modules of learning automata

All the LA algorithms discussed so far in this chapter are essentially sequential
in the sense that only one action is applied to the environment at a time
and a single reaction or reinforcement elicited. (Though we use two actions
at each instant in the CALA algorithm, the purpose there is to compare the
reinforcement obtained for the randomly selected action with that obtained
for the ‘average' action). This sequential nature of the algorithm is one of
the main reasons for slow rate of convergence of all LA algorithms. Hence
one approach towards increasing speed of convergence is to use several LA in
parallel in place of one LA and employ appropriate algorithms combining their
operation. This essentially amounts to choosing several random actions at
each instant, eliciting corresponding reinforcements from the environment and
then combining all these reinforcements while updating the action probabilities.
This strategy of choosing several actions at each time instant is feasible only in
certain applications. It is, however, well suited for pattern classification. Here,
as seen in the earlier sections, actions of automata are possible values for the
parameter vector. Thus in the sequential algorithms discussed so far, we are
obtaining a stochastic evaluation of only one classifier at each instant using
the next pattern from the training set. In a parallel algorithm we would be
evaluating several classifiers at each instant using the same training example.

104 M.A.L. Thathachar and P.S. Sastry

Since the reinforcement from the environment is stochastic, a decision based on
several responses would have less expected error in comparison with a decision
based on a single response. The increments to the action probabilities effected
by the learning algorithm would thus be more accurate and facilitate faster
convergence. Such parallelization of LA learning algorithms is possible through
the so called modules of LA {26]. In this section we briefly describe such
modules of learning automata.

We first consider the parallel version of the Ly_; algorithm using a module
of LA. Such a module of LA has the following structure.

e The action probability distribution is common to all LA members of
the module.

e Each member of the module selects an action based on the common
action probability distribution, independent of other members.

e The updating depends on actions selected by all members of the mod-
ule, as well as the payoffs obtained by these actions.

Environment
aft| aRla g 4! B
LA 1 T
H LA2 §
f LAn [~ :
: Module!

Fig. 3.5 Module of Learning Automata

Adaptive stochastic algorithms for pattern classification 105

The set up is shown in Fig. 3.5. (This figure may be compared with

Fig. 3.1). It uses a module of n identical LA, with the common action set o 2
{ay,az,...,a,}. Each of them selects an action (independent of others) based
on the common action probability distribution p(k [p1)y p2(k), ..., pr(K)].
a'(k) is the action selected by the ith module member at instant k, 8*(k) de-
notes the corresponding payoff;

a(k) & [a}(k),a%(k),...,a" (k)]
denotes the action vector at k and

B(k) £ (B (k), B(K), ..., B" (k)]

denotes the corresponding payoff vector. It is assumed that 8*(k) € [0,1] V4, k
The outputs of the environment are fed to a fuser that merges them suitably and
supplies the required quantities to all the LA for updating the action probability
distribution. The fuser at every instant computes

s Total payoff to & at k : gi(k) 2 7, A7 (k) {as(k)=a)-
o Total payoff at k : g(k) & 0, F(k) = £i, aik).

A € (0,1] is the learning parameter for the algorithm and the quantity P A
is the normalized value of the learning parameter. I4 is the indicator function
of even A which takes values 1 or 0. The actual algorithm is stated below.

pilk + 1) = pi(k) + X (qi(k) — q(k)pi(k)) Vie {1,2,...,r} (3.41)

At any instant k, the expected fraction of choices of e is p;(k). The quantity
gi(k)/q(k) could be considered as a figure of merit of the performance of a;,
and the update term could be regarded as moving pi(k) towards g;(k)/q(k).

The main advantage of the parallel algorithm (3 41) is that speed and accu-
racy can be independently controlled. Here, A = |s the accuracy parameter
which is chosen small enough to ensure, with a htgh probability, that the au-
tomaton converges to the optimal action. After choosing A, n can be chosen
large enough to get the required speed of convergence.

A common payoff game with several modules of LA can now be envisaged
with one module replacing one LA. As in the case of common payoff game of
a team of single LA considered earlier, one can show that for a common payoff
game with unimodal reward matrix, the parallel version of the Lp_; algorithm
is e-optimal [26]. The speed of convergence can be increased by increasing n,

106 M.A.L. Thathachar and P.S. Sastry

the number of automata in each module, These results can be extended to
networks of LA also and, in particular, to the three-layer network considered in
Section 3.4.

To illustrate the improvement in speed of convergence through the use of
parallel algorithms, we consider the iris data problem presented earlier (Exam-
ple 3.3). We use the same data and the same 3-layer network structure used in
Section 3.4.1 for Example 3.3, The results are presented in Fig. 3.6. We show
the results obtained with no noise and when the training samples are corrupted
by 10% classification noise. Modules with sizes 1,2 and 4 are used. Module
with size 1 would correspond to the earlier algorithm. The figure shows the
fractional error in classification averaged over ten runs as a function of the
number of iterations. The algorithm was run in two phases; learning phase and
the error computation phase. During the learning phase no error computation
is performed, A sample pattern is chosen at random, and its classification is al-
tered with probability 0.1 in the noisy case, Otherwise the given classification
itself is maintained. The network of modules classifies the pattern using its
internal action probability vectors and based on the payoffs obtained by each
module, the probability vectors are updated. The error computation phase was
performed once every 250 iterations, The probability vectors were not updated
during this phase. A separate test set of 100 sample patterns was presented
sequentially to the network. This was repeated over ten cycles and the frac-
tion of patterns classified wrongly was computed. Repeated presentations are
meant to average out the stochastic classification effects of the network to
yield realistic error estimates. As in the learning phase, classification of the
input pattern is altered with probability 0.1 in the noisy case.

The figures indicate the faster speed of convergence for the larger module
sizes, with learning parameters chosen such that the limiting values of the
error are approximately same for the noise free and noisy cases respectively.
The chosen values for the limiting errors in the noise free and noisy cases were
0.1 and 0.2 respectively. The values of (Xl,-.ig]. the learning parameters used
in the first and second layer units respectively, are (0.005,0.002).

The basic idea behind the parallelization of LA algorithms is applicable for
a large class of stochastic adaptive algorithms including CALA. More detailed
discussion of these issues can be found in [26].

Adaptive stochastic algorithms for pattern classification 107

0.55 T T T T T

Iris Data E

LA Network (n=1,2,4) R

0.25-

y . =
(t"l“ vy ‘)'I'J\ s T

Vb
ot | f".llj.h‘.‘..

0.2

Fractional Classification Error
et
("] -
o
T
.r."f‘
“o
=3
a
i
3
o
1]
o
*
z
=)
8
£

0.151 y
0.1
r
0'050 2 4 6 8 10 12
Iterations (k) x 10"

Fig. 3.6 Learning curves for classification of lris data using modules of LA in a 3-layer
network

3.6 Discussion

In this chapter, we have considered algorithms based on teams of learning
automata for pattern classification. In all the algorithms, some parametric
representation was chosen for the discriminant function and the objective was
to learn the optimal values of parameters from the given set of preclassified
training samples.

All the algorithms presented here can tackle only 2-class problems, The
simplest method to solve an N-Class problem using 2-Class PR algorithms is
to learn N 2-Class classifiers, each for distinguishing one class from the rest.
Thus we make IV training sets (each for a 2-class problem) from the given
training set and successively learn the N classifiers. More detailed discussion
of this issue can be found in (7, 30].

The criterion of aptimality considered is maximizing probability of correct
classification, As mentioned in Section 3.1, algorithms that minimize mean

108 M.A.L. Thathachar and P.S. Sastry

square error do not necessarily maximize probability of correct classification.
The problem is to find a classifier, h, that maximizes F'(-) given by {3.1) with
a 0-1 loss function. Since the underlying probability distributions are unknown,
this is a hard optimization problem. Given a classifier h and a random training
sample (X, y), we can calculate ¢(h(X),y); but we cannot calculate F(h).
Hence we have to solve a regression problem. However, there are two additional
complications here. Even if) is parameterized by a real vector, £(h(X), y) may
not be differentiable. Hence algorithms (like stochastic approximations) that
rely on estimating the gradient information by perturbation methods, are not
likely to be robust. In addition, we may choose the structure of the classifier in
such a way that it is not easy to define a gradient (e.g., the three layer network
of Section 3.4). The main strength of automata based algorithms (and other
reinforcement learning methods) is that they do not explicitly estimate the
gradient.

The essence of LA based methods is the following. Let H be the space
of classifiers chosen. Then we construct an Automata system such that when
each of the automata chooses an action from its action set, this tuple of actions
corresponds to a unique classifier, say h, from H. Then we give 1 —£(h(X),y)
(which, for the 0-1 loss function, is simply correctness or otherwise of classifying
the next training pattern with L) as the reinforcement. Since the automata
algorithms guarantee to maximize expected reinforcement, with i.i.d. samples
the system will converge to an i that maximizes F(-) given by (3.1). The
automata system is such that its state, represented by the action probability
distributions of all automata, defines a probability distribution over H. It is this
probability distribution that is effectively updated at each instant. Thus the
automata techniques would be useful even in cases where H is not isomorphic
to an Euclidean space (or when there is no simple algebraic structure on H).

In the simplest case, if the classifier structure is a discriminant function de-
termined by N real valued parameters then the actions of automata are possible
values of the parameters and we employ a cooperating team of N automata
involved in a common-payoff game. If we use the traditional (finite action
set) learning automata then we have to discretize the parameter space, which
may result in loss of precision. However, from the results obtained on the Iris
data, it is easy to see that the automata algorithm, even with discretization of
parameters, performs at a level comparable to other techniques such as feed-
forward neural nets in noise-free cases and outperforms such techniques when
noise is present. We have also presented algorithms based on the recent model
of continuous action set learning automata (CALA) where no discretization of

Adaptive stochastic algorithms for pattern classification 109

parameters is needed.

The interesting feature of the automata models is that the actions of au-
tomata can be interpreted in many different ways leading to rich possibilities
for representing classifiers. In the algorithms presented in Section 3.3, the ac-
tions of all automata are values of real-valued parameters. The discriminant
functions (functions mapping RN to R) can be nonlinear in parameters also
(as illustrated in the examples) since the form of the discriminant function
does not affect the algorithm. In Section 3.4, another structure of automata
was used to represent unions of convex sets, Here the actions of first |evel
automata are real values denoting parameters to represent hyperplanes. The
actions of second level automata are boolean decisions regarding which hyper-
planes to pick to make convex sets. Here the discriminant function is essentially
a boolean expression whose literals are simple linear inequalities. It is easy to
see that a network structure like this will also be useful in learning decision
tree classifiers. Another example of this flexibility is that the same models
discussed in Section 3.3 can be used for concept learning where the features
may be nonnumeric and the discriminant function is a logic expression [17, 18,
22].

All the automata algorithms presented here implement a probabilistic search
over the space of classifiers. All the action probabilities of all the automata
together determine a probability distribution over H. At each iteration an
h € H is chosen (by each of the automata choosing an action) which is a
random realization of this probability distribution. Then the reinforcement
obtained is used, in effect, to tune this probability distribution over H. This
allows for a type of randomness in the search that helps the algorithms to
generally converge to good parameter values even in presence of local optima.
The three layer automata network delivers good performance on the Iris data
even under 40% classification noise. The CALA algorithm also achieves good
performance (see simulation results in Section 3.3.4) though theoretically only
convergence to local maxima is assured. In the CALA algorithm, this is achieved
by choosing a higher value of the initial variance for the action probability
distribution which gives an initial randomness to the search process to explore
the parameter space better,

We have also presented algorithms where convergence to global maximum
is assured. The Pursuit algorithm allows a team of finite action set automata to
converge to the global maximum of the reward matrix. However, this algorithm
has a large memory overhead to estimate the reward matrix. One can trade
such memory overhead for time overhead using a simulated annealing type

110 M.A.L. Thathachar and P.S. Sastry

algorithm. We presented automata algorithms that use a biased random walk
in updating the action probability distributions (cf. Section 3.4.2) and here
the automata team converges to the global maximum with a large probability.
A similar modification is possible for the CALA algorithm also so that it can
converge to the global maximum.

One of the main drawbacks of the LA based approach to pattern classifica-
tion is the slow rate of convergence of automata algorithms. We have briefly
indicated how we can increase speed of learning using the so called modules
of LA. For many automata algorithms the speed of learning increases almost
linearly with the number of units in the module.

There are other automata models that have been used for pattern classifi-
cation. In all the models considered in this chapter, the actions of automata
are possible values for the parameters. It is possible to envisage an alternative
set-up where the actions of the automata are the class labels. However, in such
a case, we need to allow for the pattern vector to be somehow input to the
automata system. Hence we need to extend the automaton model to include
an additional input which we shall call context. In the traditional model of
learning automata (whether with finite action set or continuous action set),
the automaton does not take any input other than the reinforcement feedback
from the environment. Within this framework we talk of the optimal action of
the automaton without reference to any context. For example, when actions of
automata are possible values of parameters, it makes sense to ask which is the
optimal action. However, when actions of automaton are class labels, one can
talk of the optimal action only in the context of a pattern vector that is input.
Here with different context inputs, different actions may be optimal and hence
we should view the objective of the automaton as learning to associate the right
action with each context. Such a problem has been called associative reinforce-
ment learning and automata models with provision for a context input, called
Generalized Learning Automata(GLA), are studied by many researchers [2, 3,
14, 34]. In contrast, the automaton considered in this chapter may be thought
of as a model for nonassociative reinforcement learning. In a GLA, the action
probabilities for various actions would also depend on the current context vector
input. Thus, if X is the context input then the probability of GLA taking action
y is given by g(X, W, y) where g(-,-,-) is the action probability function of the
GLA and W is a set of internal parameters. The learning algorithm updates
the parameters W based on the reinforcement and the objective is to maximize
the reinforcement over all context vectors. On account of the provision of the
context input into the GLA, these automata can be connected together to form

Adaptive stochastic algorithms for pattern classification 111

a network where outputs of some automata can form part of context input to
other automata [14, 34]. There are learning algorithms for GLA that guarantee
convergence to local as well as global maxima of the reinforcement function {14,
15]. These automata networks can be used for pattern classification very much
like the models discussed in this chapter. All the automata algorithms appear
to be particularly well-suited in situations with noisy features and also where
class labels of training samples are noisy.

Acknowledgements

Some of the material in this chapter is reproduced from [30, 28, 23, 26] with
permission from Indian Academy of Sciences and Institute of Electrical and
Electronics Engineers (IEEE).

References

[1] F. Aluffi-Pentini, V. Parisi, and F. Zirilli, “Global optimization and
stochastic differential equations,” Journal of Optimization Theory and
Applications, vol. 47, pp. 1-26, 1985.

[2] A. G. Barto and P. Anandan, "Pattern-recognizing stochastic learn-
ing automata,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 15, pp. 360-374, 1985,

[3] A. G. Barto, “Learning by statistical cooperation of self-interested
neuron-like computing elements,” COINS Tech. Rept. 81-11, Univ.
of Massachusetts, Amherst, MA, Apr. 1985,

[4] B. Bharath and V. S. Borkar, "Stochastic approximation algorithms:
Overview and recent trends,” Sadhana, vol. 24, pp. 425~-452, 1999,

[5] R. R. Bush and F, Mosteller, Stochastic Models for Learning. New
York: John Wiley and Sons, 1958.

[6] T. Chiang, C. Hwang, and S. Sheu, "Diffusion for global optimization
in ™" SIAM Journal of Control and Optimization, vol. 25, pp. 737-
753, 1987,

[7] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
New York: Wiley, 1973,

[8] D. L. Haussler, “Decision theoretic generalization of the PAC model for
neural net and learning applications," Information and Computation,

112

M.A.L. Thathachar and P.S. Sastry

vol. 100, pp. 78-150, 1992.
[9] H. J. Kushner and G. G. Yin, Stochastic Approximation Algorithms
and Applications. New York: Springer-Verlag, 1997.

[10] R. P. Lippmann, “An introduction to computing with neural nets,"
IEEE ASSP Magazine, pp. 4-22, Apr. 1987.

[11] G. D. Nagendra, PAC Learning with Noisy Samples. ME thesis, Dept.
of Electrical Engineering, Indian Institute of Science, Bangalore, India,
Jan. 1997,

[12] K. S. Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction. Englewood Cliffs: Prentice Hall, 1989.

[13] N. J. Nilsson, Learning Machines. New York: McGraw Hill, 1965.

[14] V. V. Phansalkar, Learning Automata Algorithms for Connectionist
systems - local and global convergence. PhD thesis, Dept. of Electrical
Engineering, Indian Institute of Science, 1991.

(15] V. V. Phansalkar and M. A. L. Thathachar, “Local and global opti-
mization algorithms for generalized learning automata,” Neural Com-
putation, vol. 7, pp. 950-973, 1995.

[16] K. Rajaraman and P. S. Sastry, "Finite time analysis of pursuit al-
gorithm for learning automata,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 26, pp. 590-599, 1996,

[17] K. Rajaraman and P. S. Sastry, “A parallel stochastic algorithm for
learning logic expressions under noise,” Journal of the Indian Institute
of Science, vol. 77, pp. 15-45, 1996.

[18] K. Rajaraman and P. S. Sastry, “Stochastic optimization over contin-
uous and discrete variables with applications to concept learning under
noise," IEEE Transactions on Systems, Man and Cybernetics, Part A,
vol. 29, pp. 542-553, 1999.

[19] G. Santharam, Distributed Learning with Connectionist Models for Op-
timization and Control, PhD thesis, Dept. of Electrical Engineering,
Indian Institute of Science, Bangalore, India, May 1994.

[20] G. Santharam, P. S. Sastry, and M. A. L. Thathachar, “Continuous
action set learning automata for stochastic optimization,” Journal of
the Franklin Institute, vol. 331, pp. 607-628, 1994,

[21] P. S. Sastry, V. V. Phansalkar, and M. A. L. Thathachar, "Decen-
tralized learning of Nash equilibria in multi-person stochastic games
with incomplete information,” [EEE Transactions on Systems, Man
and Cybernetics, vol. 24, pp. 769-777, May 1994,

[22] P. S. Sastry, K. Rajaram, and S. R. Ranjan, “Learning optimal con-

Adaptive stochastic algorithms for pattern classification 113

junctive concepts using stochastic automata,” /EEE Transactions on
Systems, Man and Cybernetics, vol. 23, pp. 1175-1184, 1993,

[23] P. S. Sastry and M. A, L. Thathachar, “Learning automata algorithms
for pattern classification,” Sadhana, vol. 24, pp. 261-292, 1999.

[24] 1. J. Shapiro and K. S. Narendra, "Use of stochastic automata for
parameter self optimization with multi-modal performance criteria,”
IEEE Transactions on Systems Science and Cybernetics, vol. , pp. 352—
360, 1969.

[25] J. Sklansky and G. N. Wassel, Pattern Classification and Trainable
Machines. New York: Springer-Verlag, 1981.

[26] M. A. L. Thathachar and M. T. Arvind, "Parallel algorithms for mod-
ules of learning automata," /EEE Transactions on Systems, Man and
Cybernetics, vol. 28, pp. 24-33, 1998.

[27] M. A. L. Thathachar and V. V. Phansalkar, “Learning the global max-
imum with parameterized learning automata,”" /EEE Transactions on
Neural Networks, vol. 6, pp. 398-406, Mar. 1995.

[28] M. A. L. Thathachar and V. V. Phansalkar, “Convergence of teams
and hierarchies of learning automata in connectionist systems," /EEE
Transactions on Systems, Man and Cybernetics, vol. 25, pp. 1459-
1469, 1995.

[29] M. A. L. Thathachar and P. S. Sastry, “A new approach to the design
of reinforcement schemes for learning automata," /EEE Transactions
on Systems, Man and Cybernetics, vol. 15, pp. 168-175, Jan. 1985.

[30] M. A. L. Thathachar and P. S. Sastry, “Learning optimal discriminant
functions through a cooperative game of automata,” /EEE Transac-
tions on Systems, Man and Cybernetics, vol. 17, pp. 73-85, 1987.

[31] M. A. L. Thathachar and P. S. Sastry, “Learning automata in stochas-
tic games with incomplete information,” in Systems and Signal Pro-
cessing (R.N.Madan, N.Vishwanathan, and R.L.Kashyap, eds.), (New
Delhi), pp. 417-434, Oxford and IBH, 1991.

[32] V. N. Vapnik, Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1997.

[33] V. N. Vapnik, “An overview of statistical learning theory,” /EEE Trans-
actions on Neural Networks, vol. 10, pp. 988-999, Sept. 1999.

[34] R. J. Williams, "Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, pp. 229~
256, 1992.

Chapter 4

UNSUPERVISED
CLASSIFICATION: SOME
BAYESIAN APPROACHES

A. Pal

Applied Statistics Unit
Indian Statistical Institute
Calcutta, INDIA
e-mail: pamita@isical.ac.in

Abstract

The utility of established methodology like clustering in the
area of unsupervised classification is well-documented and well-
acknowledged. However, if the problem of unsupervised classifica-
tion is formulated as the statistical problem of resolution of finite
mixtures of probability densities, then several Bayesian approaches
become immediately relevant. Some of the more significant of
these methodologies are surveyed here.

4.1 Introduction

It is a well-known fact that the ability of humans for recognizing patterns
is mainly learnt from past experiences, though the procedure by which the
human brain accomplishes this, is too complicated to be understood. Thus
learning is an indispensable component of pattern recognizers, both human
and mechanical. In the case of pattern recognition by machine, the equivalent
of " past experiences” is a set of samples, called training or learning samples,
from the pattern classes in question. The information contained in the training
samples provides the basis for learning in pattern recognition systems. In some

115

116 A. Pal

cases, learning is done with the help of a teacher, that is, an external agency
of some sort that provides the correct labels or classification of the training
samples provided for building the classifier. The training samples in such cases
become representatives of the classes they belong to, and can be processed in a
suitable manner so that the class-specific information they carry may be distilled
from them. This is referred to as supervised pattern recognition. References [9,
8, 10, 33, 36, 37] are a few of the many books in which detailed information
on this is available.

On the other hand, if no teacher is available for a pattern classification task,
that is, the training samples are not labeled, then we have a case of unsuper-
vised pattern recognition. This is true for many pattern recognition problems
where it is difficult or expensive, perhaps even impossible, to obtain a reliable
teacher for labeling the training samples correctly. In such cases, learning es-
sentially means discovery of the natural groupings inherent in the training set.
The most popular computational technique applicable to unsupervised classi-
fication is cluster analysis, for which there is no dearth of literature [2, 4, 5,
16, 18, 30].

Mixtures of probability distributions, particularly normal distributions, have
been used widely as models in numerous practical problems where data can be
visualized as arising from one of two or more populations mixed in varying pro-
portions. In fact, they serve as very powerful and flexible tools for probabilistic
modeling in a wide variety of problems. Titterington, Smith and Makov [35]
give a comprehensive list of applications of such models, apart from discussing
various aspects of their statistical analysis. It is not difficult to visualize the
appropriateness of mixtures of probability distributions as models in the case
of unsupervised classification. When an unsupervised classification problem
is formulated in terms of a mixture model, issues of primary concern are the
identifiability of the mixture, the determination of the number of components
in case it is not known a priori, the estimation of the unknown parameters,
and the goodness of the resulting fit.

The pattern recognition community has been aware of this approach for a
long time, and has been quick to adopt techniques being developed by statis-
ticians for analyzing mixture models. This area has been witnessing steady
and significant research for the past few decades. McLachlan and Basford [19]
give a detailed account of the progress made in this field till the mid-nineteen-
eighties, beginning with the work of Karl Pearson in 1894 [22], in which he
used the method of moments to estimate the parameters of the mixture of
two univariate distributions with unequal variances. Pearson's work served to

Unsupervised classification: some Bayesian approaches 117

demonstrate the degree of difficulty involved in solving the problem of resolu-
tion of a finite mixture of distributions. Later, it was established by quite a few
researchers that the method of moments is decidedly inferior to the method
of maximum likelihood estimation for this particular problem. McLachlan and
Basford [19] have highlighted the use of mixture models, fitted by the maxi-
mum likelihood approach, as a means of effective clustering of data in a variety
of situations. Among other methods of estimation, they have also discussed
the application of the Expectation Maximization (EM) algorithm, first formal-
ized by Dempster, Laird and Rubin [6], for obtaining the maximum likelihood
estimates of the parameters of a mixture model. This issue has also been dis-
cussed at length in a later book by McLachlan and Krishnan [20], which also
gives a broad overview of the EM algorithm and its more efficient extensions.
It was not long before Bayesian statisticians got involved with the problem
of analysis of finite mixtures. Research in this area gained momentum after
Markov Chain Monte Carlo (MCMC) methods (see the Appendix) gained popu-
larity in the nineteen-eighties. Among the significant efforts in this area are the
approaches suggested by Phillips and Smith [23] based on the jump-diffusion
methodology of Grenander and Miller [15], by Richardson and Green using the
reversible jump methodology of Green [14], by Robert [28] on the basis of
Bayes factors, and by Stephens [31] through the construction of appropriate
continuous-time Markov birth-death processes. This chapter tries to provide
an overview of these approaches with a view to making serious practitioners of
pattern recognition aware of salient features of the more significant Bayesian
techniques that are available for performing unsupervised classification.

4.2 Finite mixtures of probability distributions

Finite mixtures of probability distributions are typically used to model data
where each (p-variate) observation o from a set =y, xy,...,z, is assumed to
have arisen from one of k(> 2) groups, each group being modeled by a density
from some parametric family

F = {7(19): 0 € 8},

118 A. Pal

8 being a g-variate parameter vector. That is, a finite mixture is represented
as

9(z|p) = me(a:le % (4.1)
i=]
where
m20,i=12...,k and Y m =1
and
¢ = (01v62:"'10k!ﬂ)’

m being the k-variate vector (w1, m2,...,m)’. The density of each group,
f(=2]8;), is referred to as a component of the mixture and my,my, ..., Ty are

called the mizing parameters.

4.2.1 Identifiability of finite mixtures

An important issue that has to be addressed in the context of estimation of
the parameters ¢ is their identifiabilty. In general, the parametric family F
of probability density functions is said to be identifiable if distinct values of ¢
determine distinct members of the family. This can be interpreted as follows
in the case where g(z|@) defines a class of finite mixture densities according
to (4.1). A class of finite mixtures is said to be identifiable for ¢ € ® if for
any two members

k
o(zl¢) = Y mif(x[6:) (4.2)
i=1
and
n
9(z|e™) = Effs‘f(mws'); (4.3)
i=1
then

g(xlep) = g(x|@”)

Unsupervised classification: some Bayesian approaches 119

if and only if k = k* and we can permute the component labels so that
mo=m" and f(x|6;) = f(=]6:"), i=1,2,...,k

where = implies equality of the densities for almost all x: relative to the underly-
ing measure on IRP appropriate for g(|-). Titterington, Smith and Makov (35]
provide a comprehensive account of the notion of identifiabilty of mixtures,
with numerous examples and literature survey.

4.3 Bayesian approaches for mixture decomposition

As mentioned in Section 4.1, while classical statistical techniques like maximum
likelihood estimation, did succeed in solving the problem of mixture decompo-
sition, Bayesian statistics provided many more methodologies for attacking the
same problem. This is largely due to the fact that in the last few years, Markov
Chain Monte Carlo (MCMC) simulation techniques have made feasible the
routine Bayesian analysis of many complex problems in higher dimensions. They
have been applied successfully to the problem of estimation of parameters of
mixture models. In the next few paragraphs, we shall be taking a closer look
at some of more significant steps taken in this direction.

4.3.1 Use of jump-diffusion sampling

Phillips and Smith [23] have formulated the problem of decomposition of mix-
tures as a model choice problem. They have showed how the jump-diffusion
methodology developed by Grenander and Miller [15] can be exploited to en-
able routine simulation-based analysis of general model choice problems, that
is, problems involving the comparison of models of possibly different dimen-
sions, when the essential difficulty is that of computing the high-dimensional
integrals needed for calculating the normalization constants for posterior distri-
butions under each model specification. Model uncertainty is accounted for by
introducing a joint prior probability distribution over the set of possible models
as well as the model parameters. Inference can be made by simulating realiza-
tions from the resulting posterior distribution using an iterative jump-diffusion
sampling algorithm. The essential feature of this approach is that discrete
transitions, or jumps, can be made between the models and, within a fixed
model, the conditional posterior appropriate for that model is sampled. Model
comparison or choice can then be based on the (simulated approximation to

120 A. Pal

the marginal posterior distribution over the set of models, Details are provided
in the Appendix.

4.3.1.1 Mixture decomposition as a model choice problem

Phillips and Smith [23] have formulated the problem of identifying the number
of components in a univariate mixture distribution, together with the estimation
of the parameters of the components densities, as a model choice problem (dis-
cussed in the following section), and suggest the application of jump-diffusion
sampling proposed by Grenander and Miller {15] for solving it.

4,3.1.2 The model choice problem

Suppose we want to make inference on an unknown model which is assumed
to come from a specified class of parametric models { Mg, M1, Ma,...} so
that the overall parameter space can be written as a countable collection of
subspaces,

Q= O

Cze

k=0

where 6y, a subspace of R™¥), denotes the n(k)-dimensional parameter space
corresponding to the model M.

Let @ € O, and x denote the model parameters and the observed data
vector. Then the joint probability density r for both the model label and the
model parameters can be written in the form

(8, k|z) = %’* exp{Li(Blz) + Pc(6)}6x(0), 0 €0,k =0,1, -
where §x(0) = 1 if 8 € © and zero otherwise. Here 7y is the prior probability
for the model My, so that 377 mx = 1, and we assume that 7 > 0 for
all k. The function L (8|z) is the conditional loglikelihood for @ given a and
the model My and P,(8) is the conditional log-prior for 8 given the model
M. For simplicity, we assume that both functions are identically zero on the
subspace @ — Oy,

ie., Ly(Blx) = Pu(8) = 0 for 8 ¢ O

Unsupervised classification: some Bayesian approaches 121

The normalization constant Z is given by

Z=Y m f exp{Li(8lx) + Py(6)}d6) = 3 muZs, say

k

The marginal posterior densities have the following form

m(0lz) =) mk exp{Ls(8lz) + Pr(8)}6x(6)/Z
=Y mZimi(0]2)/Z, 8 ecoO

where 7 (8|x) is the restriction of m{8]x) to @y, and
r(k]a:) = wka/Z, k= 0, 1. i
Hence, the density m has distribution u given by

= Efrkzk,uk(dﬂ)/z = Zpkﬂ'k(da)m say ,

where p,.(6) is the distribution with density mx(6|z).

4,3.1.3 Jump-diffusion sampling

Phillips and Smith [23] have shown how to construct an appropriate probability
density over the joint sample space of the models and the parameters for the
problem of decomposition of mixtures, where the model M;, corresponds to a
mixture with k components, k = 1,2,.... As these densities are not amenable
to analytic or numerical analysis in general, they propose the use of MCMC with
target density 7(8, k|x), denoted for the sake of brevity, by n(8, k). A Markov
process {6, k}() in continuous time ¢ is constructed, which produces samples
from the target density m(@, k). This stochastic process is generated from a
jump component which makes discrete transitions between models at random
times, and a diffusion component which samples values for the model-specific
parameters between the jumps. Under appropriate conditions, the stationary
distribution of {8,k}*) has density 7, so that pseudo-samples from m may
be produced by taking evenly-spaced states from a realization of the process,
and ergodic averages may be used to estimate expectations, with respect to
w, of integrable functions of (8,k). This particular MCMC methodology was
proposed by Grenander and Miller [15], and is described briefly in the Appendix.

122 A. Pal

4.3.2 Bayesian estimation by Gibbs sampling

Robert [28] has proposed methodology for the estimation of parameters of
finite mixture models based on Gibbs sampling. He has assumed, with little
loss of generality, that the distributions f(x|@) forming the functional basis,
are all from the same exponential family

f(2}8) = h(z)expld'z — 8], (4.4)
8 being a real-valued vector. This family allows a conjugate prior for 6;
m(Bly,A) oc exp|8'y — Ay, (4.5)

where y is a real-valued vector of constants of the same length as @, and A is
a scalar constant, A conjugate prior for 7 = (my, mwg,...,7) is the Dirichlet
distribution D(a,az2,...,ax) which has density

7Py, ma, . mR) & ?r‘l’“l?rg‘“‘l .H?r‘,:"_l,

where 7y 4+ 73 + ...+ mx = 1. The Dirichlet distribution is a generalization of
the beta distribution.

The posterior distribution of ¢ = (&1, 7g,..., 7, 081,02,...,0%) can be
written as
I?I'l,?l'z,.,.,?Tk,el,sz,...,ekiﬁ:l,mg,...,wk]
k n k (4 6)
o 7P(my,ma, ., mi) [w(Bilwi M) [] (Z :rr;f(m_,—lﬂ.-)) :
i=1 i=1 i=1

where [a|b] denotes the conditional distribution of a given b, Note that in (4.6),
each component parameter 8; is assigned a distinct prior via unique constants
y; and J; in (4.5),

Equation (4.6) involves k™ terms of the form

k
LI 7ot (Bily; + nas, As + ma),
i=l1
where ny +ng+, . .+ni = n and &; denotes the average of n; of the n observa-
tions {a;}. While the posterior expectation of (my,73,..., 7k, 81,02,...,60k)
can be written in closed form, the computing time required to evaluate the k,,
terms of (4.6) is far too large for the direct Bayesian approach to be imple-
mented, even for problems that are only moderately large. However, Bayesian

Unsupervised classification: some Bayesian approaches 123

estimation of mixtures can be performed straightforwardly using Gibbs sam-
pling. The methodology is described for a general exponential family setting,
in the next few paragraphs.

Consider a sample &y, @3, .. ., @5, from the mixture probability density g(zx),
given by (4.1), assuming f(x|:) is from the exponential family, as in (4.4). It
is passible to rewrite & ~ g(x) under the hierarchical structure

T~ f(mlol)s

where z is an integer identifying the component generating observation r,
taking value ¢ with prior probability m;, 1 < i < k. The components of (4.1)
may not be meaningful; it is a feature of many Gibbs implementations that
artificial random variables are introduced to create conditional distributions

that are convenient for sampling. The vector 2 = (z1,22,...,25)" is the
missing data part of the sample where, for i = 1,2,...,n, z; = j if the ith
observation is from the jth class, j = 1,2,...,k. Had the missing data been

available, it would have been much easier to estimate the mixture model. From
(4.1),

izl;z2r-"sa’ﬂlzlsz’h"wzﬂ] = H f(mjlel)‘ H f(zjlek) (47)

Jizz=1 Jizi=k
which implies that
[FII T2y00s lﬂkvalsaﬁi LR lgklzlimzl ey By 21y 225000y zﬂ]
o wirEMTlgaakna=l | goatha=l (4.8)

x w(01|yy + &1, A+). w(01|yy + ReEr, Ak +),
where now
ng = ZI(Zj = 1') and nE; = z xj,
J jrizg=i

and I(') is the indicator function taking the value 1 when its argument is
true, and O otherwise. This conditional decomposition implies that the con-
jugate structure is preserved for a given allocation/missing data structure

21,22,...,25n and thus, conditional on z,29,..., 25, the simulation is indeed
possible

In the implementation of Gibbs sampling described below, samples for the
missing data z; and the parameters =, 8,,05,...,0; are alternately gener-

ated, producing a missing-data chain and a parameter chain, both of which
are Markov. The finite-state structure of the missing-data chain allows many

124 A. Pal

convergence results to be easily established for it, and transferred automatically
to the parameter chain.

4.3.2.1 Gibbs sampling implementation

Once a missing data structure is imposed as in (4.7) above, the direct imple-
mentation of Gibbs sampling is to run successive simulations from (4.8) for the
parameters of the model, and from [21,22,..., 2,0, 21, 2, ...,2,] for the
missing data. The simulation is straightforward if conjugate prior distributions
are used for the parameters:

Algorithm 1
Step 1. Simulate
0; ~ m(Oly; +ni®i, A+), (1=1,2,...,k)
and
(1, 2y o0y x) ~ D(ay +ny, a0+ ng,...,cp + ng).
Step 2. Simulate, for 7 =1,2,...,n,

k
{zjlmj‘an.?rz,....m,&l.ﬂg,..,,Bk] = Zp,;jf(zj=z‘),

=1

with

mif(x;|6:) -
iy = v =42 00 k):
= mll)

Step 3. Update n; and &, 1 =1,2,...,%.
This algorithm is a special case of the data augmentation algorithm of Tanner

and Wong [32]. Robert [28] discusses the application of this approach to a
mixture of normal densities, as well as other implementation-related issues.

4.3.3 Application of reversible jump Markov Chain Monte Carlo
methods

Richardson and Green [25} proposed a fully Bayesian analysis of mixture mod-
els on the basis of the reversible jump Markov Chain Monte Carlo methods
presented by Green in an earlier work [14]. These methods are capable of

Unsupervised classification: some Bayesian approaches 125

Jjumping between the parameter subspaces corresponding to different numbers
of components in the mixture. A sample from the full joint distribution is
thereby generated, and this can be used for a thorough presentation of many
aspects of the posterior distribution. The number of components and the mix-
ture component parameters are modeled jointly, and inference about them is
based upon their posterior probabilities.

A hierarchical model is assumed within a Bayesian framework, the unknown
parameters k, ¢ are regarded as drawn from appropriate prior distributions, and
the joint distribution of all variables is written in general as

P(kn“a’-»ehe‘l‘- . ,Bk,X)

= p(k)p('rrlk)p(zhr, k)p(elm 62\ e Bklzl ™, k)p(XIBh 82t clalaly 3k1 2z, ™, k)?
(4.9)

where X = (@1,@2,...,®n), 2 = (21,2%2,...,2n), zi being the group (or

class) label for the ith observation, treated as a latent allocation variable, with

Plig=1] = mg j=1,2 w03k
and
x|z ~ f(:62,)

independently for ¢ = 1,2,...,k. In (4.9), it is natural to impose further
conditional independencies, so that

p(61,0y,...,0k|2, 7, k) = p(61,0,...,0|k)
and
p(X101,0,,...,0k,2,m k) = p(X|61,0,,...,60k 2).
These simplify the joint distribution (4.9) to
plk,m, 2,81,0,,...,0;,z)
= p(k)p(w|k)p(z|m, k)p(61,8,,...,0kk)p(x|6,0,,...,0k 2),

which is the Bayesian hierarchical model, For complete flexibility, an extra layer
is added to the hierarchy, and the priors for k, and 84,83, ..., 8 are allowed
to depend on hyperparameters A, & and n respectively, drawn from independent

126 A. Pal

hyperpriors. The joint distribution of all variables is then expressed as

p(,\,ﬁ,n,k,w,zﬁ;,ﬂz, " ..,Ok,X)
= p(A)p(&)p(n)p(kiN)p(w|k, d)p(z|m, k)p(61,8,,...,0klk,) (4.10)

XP(X!91)92|'-~‘9ksz)‘

The reversible jump MCMC methodology of Green [14] (see Appendix) is
readily applicable to this model. Richardson and Green have presented the
corresponding approach for the case of a mixture of normal distributions, and
discussed many implementation-related issues like sensitivity to prior distribu-
tions of parameters, and so on.

4.3.4 Application of Markov birth-death processes

Stephens [31) has proposed an MCMC method for the Bayesian analysis of
a finite mixture with an unknown number of components, as an alternative
to the reversible jump approach of Richardson and Green [25]. His approach
treats the parameters of the model as a marked point process and extends
methods suggested by Ripley [26] to create a Markov birth-death process with
an appropriate stationary distribution. Each point of the marked point process
represents a component of the mixture. The MCMC scheme allows the number
of components to vary by permitting new components to be "born", and exist-
ing components to "die". These births and deaths occur in continuous time,
and the relative rates at which they occur determine the stationary distribution
of the process. Stephens formalizes the relationship between these rates and
the stationary distribution, and uses this to construct an easily simulated pro-
cess, in which births occur at a constant rate from the prior, and deaths occur
at a rate which is very low for components that are critical in explaining the
data, and very high for components which do not help explain the data. The
accept-reject mechanism of reversible jump is thus replaced by a mechanism
which allows both "good" and "bad" births to occur, but reverses bad births
very quickly through a very quick death. The method has been illustrated by
fitting mixtures of normal (and t) distributions to univariate and bivariate data.

Unsupervised classification: some Bayesian approaches 127

4.3.4.1 Model

The following finite mixture model is assumed, which is a special case of (4.1):

&
g(@lg,n) = > mif(x|6i,m), (4.11)
i=]
where k is possibly unknown but finite, n is a (possibly vector) common pa-
rameter which is common to all components, other quantities having the same
significance as in earlier sections. Here too, a missing data formulation of the
model is made, and each observation is assumed to arise from a specific but
unknown component z; of the mixture. The model (4.11) can be written in
terms of the missing data 21,2y, ...,2,, assumed to be realizations of inde-
pendent and identically distributed discrete random variables Zy,2,,..., 2,
with probability mass function

Pr(Z; =il¢yn) = m, (=1,2,...,mi=1,2,...,k).

Conditional on the Z;'s, 1,2y, ..., ®, are assumed to be independent obser-
vations from the densities

p[zjlzj =i,¢,m) = f(zjlai'ﬁ'}'

A hierarchical model is assumed for the prior on the parameters (k, ¢, 1)
with (m1,81),(72,02),...,(7k,8x) being exchangeable. Specifically, it is as-
sumed that the prior distribution for (k, @) given hyperparameters w, and com-
mon component parameters 7, has density r(k, ¢|w,) with respect to an un-
derlying symmetric measure defined in [31]. To ensure exchangeability, it is
required that for any k, =(:) is invariant under relabeling of the compenents,
in that

r(k, (w1, m2,...,7k),(01,82,...,0k))
= r(ks('ﬂ'euwep-' '1ﬂc3)s(ee|;eeg‘”'988b))

for all permutations ey, eg,...,e; of 1,2,..., k.

(4.12)

4.3.4.2 Constructing Markov chains by simulating point processes

As mentioned earlier, each component of the mixture is viewed as a point in
parameter space, and the theory of simulation from point processes is adapted
to construct a Markov chain that has the posterior distribution of the param-
eters as its stationary distribution. Since, for given k, the prior distribution of

128 A. Pal

¢ does not depend on the labeling of the components, and the likelihood

T

Lk,g,n) = []lmif(il01,m) +mif(@il02,0) + ...+ 71 f(@:l0k,)]

i=1

is also invariant under permutations of the component labels, the posterior
distribution

p(ki ¢lml‘m2s e ,m,.,w.f}} 2.6 L(k‘ ¢!"7}T(k| ¢)

will be similarly invariant. Fixing w and 17 we can thus ignore the labeling of the
components and can consider any set of k& parameter values {(m,01), (7k, O%),
ooy (i, Bk)} as a set of k points in [0, 1] x ©, with the constraint that my +
a4+ ...+ T = 1. The posterior distribution can thus be seen as a point
process on [0,1] x ©. Equivalently, it can be looked upon as a marked point
process in ©, with each point 8; having an associated mark 7; € [0,1], the
marks being constrained to sum to unity. This permits the use of realizations
of a continuous-time Markov birth-death process with stationary distribution
plk, plxy, x2,. .., 20, w,) 3s approximately random samples from the latter,
keeping w and 7 fixed. The procedure for this is described in the following
paragraphs. Stephens has also described how to do this when w and 7 are
allowed to vary,

Let Q) denote the parameter space for the mixture model with k com-
ponents, ignoring the labeling of the components, and let Q@ = Ug>10%.
y = {(71,01),(72,03),...,(7k,0k)} € Qu will be used to represent the pa-
rameters of the mixture model represented by (4.11) keeping 7 fixed, so that we
may write (7, 8;) € y fori = 1,2,..., k. Given w and 7, the invariance of L(-)
and r(-) under permutation of the component labels, permits the definition of
L(y) and r(y) in an obvious manner. Births and deaths on {2 are defined as
follows:

Births. If at time ¢, the process is at y = {(my,8y),(72,82),..., (7x, 8)} €
Q%, and a birth is said to occur at (m,8) € [0, 1] x ©, then the process jumps
to

yu (?r,9)
= {(m (1 =x),81), (ma(1 = 7),82),...,(wx(1 = 7),8k),(m,0)} € Qiey1-

Deaths. If at time ¢ the process is at y = {(m,01), (72,02),...,(7x,0k)} €

Unsupervised classification: some Bayesian approaches 129

Q4 and a death is said to occur at (73, 8;) € y, then the process jumps to

y\(fr.-,B,-}
= {(755001)s- - (B2 01), (T2, B51)s -y (7252, 04)) € Qi

Thus a birth increases the number of components by one, while a death de-
creases the number of components by one. The definitions above ensure that
births and deaths are inverse operations to each other, and the constraint
M1+ me + ...+ 7 = 1 remains satisfied after a birth or death. With births
and deaths so defined, let us consider the following continuous-time Markov
birth-death process:

When the process is at y € £, let births and deaths occur as independent
Poisson processes as follows:

Births: Births occur at overall rate 3(y), and when a birth occurs, it does so
at a point (7, 8) € [0,1] x ©, chosen according to density b(y; (, 8))
with respect to the product measure U' x v, where U is the uniform
(Lebesgue) measure on [0, 1].

Deaths: When the process is at y = {(m1,601), (72,82),..., (7, 0i)}, each
point (7;,8;) dies independently of the others as a Poisson process
with rate

8;(y) = d(y\(r;,8;); (m,0))

for some d: §2 x ([0,1] x ©®) — IR*. The overall death rate is given
by 6(y) = 3=, 6;(v).

The time to the next birth/death event is then exponentially distributed with
mean 1/(A(y)-+d(y)), and it will be a birth with probability F(y)/(B(v)+d(y)).
and a death of component j with probability 6;(y)/(8(y) + 6(y)). Conditions
are imposed on b(-) and d(-) to ensure that the birth-death process does not
jump to regions with "zero" density. Stephens also gives algorithms that im-
plement this theory for the case where w and n are kept fixed, as well as for
the case where they are allowed to vary,

4.3.5 Testing for number of components using Bayes factors

Raftery (24] has proposed ways of utilizing MCMC output (simulations) from
the posterior of the mixture model (4.1) for the testing of hypotheses about the
number of components, using Bayes factors. He discusses this as a special case

130 A. Pal

of the more general problem of model selection. The Bayes factor comparing
two competing models is the ratio of marginal likelihoods under the two models,
the marginal likelihood of a model being the probability of the data with all the
model parameters integrated out. He proposes two estimators, the Laplace-
Metropolis estimator and the Candidate's estimator, for this purpose. He has
also provided a review of methods for estimating the marginal likelihood of
a model from posterjor simulation output, like the harmonic mean estimators
and other importance-sampling and related estimators,

4.35.1 The Bayes factor

The standard Bayesian solution to the hypothesis testing problem is to represent
both the null and alternative hypotheses as parametric probability models, and
to compute the Bayes factor for one against the other. The Bayes factor Byg
for a model M; against another model My, given data x, is the ratio of
posterior to prior odds, namely,

P(x|M;)

By = PlalMo)’ (4.13)

the ratio of the marginal likelihoods. In (4.13),
P(z|M;) = / P(x|0:, M;)P(6:| My)d6y, (4.14)

where 8;, is the vector of parameters of model M;, and P(0|M;) is the prior
density, i =0, 1,

The model selection problem (of which the problem of determination of the
number of components in 2 mixture is a special case) arises when one initially
considers several models, and wishes to select one of them that is most probable
in light of the data. A Bayesian solution to this problem is to choose the model
with the highest posterior probability. The marginal likelihoods yield posterior
probabilities of all the models, as follows. If k& models, M;, Ma,..., My, are
being considered, then by the Bayes theorem, the posterior probability of AM;
is

P(x|M;)P(M;)
k

S P(z|M;)P(M;)

i=1

P(th‘:) = (4'15)

Unsupervised classification: some Bayesian approaches 131

4.35.2 Marginal likelihood estimation by importance sampling

The marginal likelihood P(x|M;) being the key quantity needed for Bayesian
model selection and related problems, Raftery [24] has outlined several estima-
tors based on importance sampling and related concepts, that are constructed
with a sample {6(‘),t = 1,...,T} from the posterior distribution of the pa-
rameter 8 of the model. Such a sample can be generated by direct analytic
simulation, MCMC, and so on.

Let L(8) be the likelihood and m(8) be the prior. Then the marginal
likelihood is

P(z) = f L(6)n(8)de.

Let
1 T
xlln = =3 x(@“),
Tt:l

where x(-) is a function and {8{!!} is a sample of size T from the probability
distribution density h(8)/ [h(¢)de, h being a positive function,

Importance sampling can be used to evaluate P(x) as follows. suppose
that we can sample from a density proportional to the positive function g(8),
say, the density cg(8), where ¢! = [g(8)d6. Then

P(z) = f L(6)r(8)d8 (4.16)
- / L(6) [()] cq(8)de.

cg(0)

Given a sample {89t =1,... ,T'} from the density cg(8), then, as suggested
by (4.17), a simulation-consistent estimator of P(z) is

_ Ly LeWn(6%)
T cg(6®)

Ln
cg

Y

P(z)

9
If ¢ cannot be found analytically, it remains only to estimate it from the
MCMC output. A simulation-consistent estimator of ¢ is é = ||n/g||g. This

132 A. Pal

yields the general importance-sampling estimator of P(a) with importance-
sampling function g(:}, namely,

L

”;”j

Here g is a positive function. If it is normalized to be a probability density,
then (4.17) becomes Prs = ||Lm/g||,. Raftery [24] considers several special
cases,

»

P = (4.17]

4.3.5.3 Marginal likelihood estimation by maximum likelihood

(1) The Laplace-Metropolis estimator The Laplace method for approxi-
mating integrals is based on a Taylor series expansion of the real-valued
function f(u) of the d-dimensional vector u, and yields the approxi-
mation

f Ef Wy » (2m) /% A1} exp{f(u*)},

where u* is the value of u at which f attains its maximum, and A
is the negative of the inverse Hessian (second-derivative matrix) of f
evaluated at u*. When applied to (4.17), it yields

pla) = (2m)%/2| 0|3 P((0) P(8), (4.18)

where @ is the posterior mode of h(8) = log{ P(z|0)P(8)}, ¥ is the
negative of the inverse Hessian of k(@) evaluated at @ = 6, and d is
the dimension of 8. Thus the Laplace method requires @ and . The
simplest method of estimating @ is from posterior simulation output.
The matrix ¥ is the asymptotic posterior covariance matrix, so it
seems natural to approximate it by the estimated posterior covariance
matrix from the posterior simulation output.
(2) Candidate’s estimator From the Bayes theorem it follows that

_ P(6)
which is also related to the " Candidate's formula" of Besag [3]. Hence
the name of the estimator based on it. Typically, P(=|@) and P(6)
can be calculated directly. If P(@|z) is also available in closed form,

Unsupervised classification: some Bayesian approaches 133

then (4.19) permits the computation of P(x) analytically without in-
tegration. However, this is not usually the case, but (4.19) can still be
used if one has a sample from the posterior P(8]z), in which case one
can simply estimate it from the posterior sample using nonparamet-
ric density estimation techniques. An important consideration is the
choice of 8. Though (4.19) holds for all values of @, the most precise
estimate of P(8|x) would usually result from using the posterior mode
or a value very close to it.

(3) The data-augmentation estimator MCMC methods often involve the
introduction of latent data 2z such that, when z is known, then the
"complete data likelihood" P(a,z|8) has a simple form. Rosenkranz
[29] has shown that for calculating marginal likelihoods, it can be
decidedly advantageous to integrate over the latent data directly, par-
ticularly if there are conditional independence properties that may
be exploited to reduce the dimensionality of the integrals involved.
Raftery [24] has discussed a few strategies for doing this.

4.4 Discussion

Problems of unsupervised pattern classification are most often solved by means
the myriad clustering techniques that are available, and generally, for every such
problem, it is possible to find a few that are quite successful at doing what they
are expected to do. However, the PR community has also long been aware of
the fact that within a probabilistic framework, it is possible to formulate the
same problem as that of estimation of the parameters of a finite identifiable
mixture of probability densities. Maximum likelihood selutions to many spe-
cialized forms of this problem have been around for quite some time. However,
in the fast couple of decades, Bayesian statistics has been witnessing vigorous
research activity in general, and in the area of decomposition of mixtures, in
particular. This is mainly because the Bayesian community discovered that
computational problems, thought to be intractable till then, could easily be
solved by simulation-based approaches collectively referred to as Markov chain
Monte Carlo methods. The problem of estimation of parameters of mixtures of
probability densities, could also be attacked in various ways, using this general
idea. In this chapter, a survey of some of the significant efforts in this direction
has been provided, with a view to demonstrating their utility in the context of
unsupervised classification.

134 A. Pal
References

{1] Y. Amit, U. Grenander, and M. I. Miller, "Ergodic properties of jump-
diffusion processes," Tech. Rep. 361, Department of Statistics, Uni-
versity of Chicago, 1993.

[2) M. R. Anderberg, Cluster Analysis for Applications. New York: Aca-
demic Press, 1973.

[3] J. E. Besag, "A candidate's formula: a curious result in Bayesian
prediction,” Biometrika, vol. 76, p. 183, 1989.

[4] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Functions.
New York: Plenum Press, 1981.

[5] J. C. Bezdek, J. Keller, R. Krishnapuram, and N. R. Pal, Fuzzy Mod-
els and Algorithms for Pattern Recognition and Image Processing.
Boston: Kluwer Academic, 1999.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm (with discussion)," Journal
of the Royal Statistical Society, Series B, vol. 39, pp. 1-38, 1977.

[7] L. Devroye, Non-Uniform Random Variate Generation. New York:
Springer, 1986.

(8] R. O. Duda, D. G. Stork, and P. E. Hart, Pattern Classification and
Scene Analysis. New York: John Wiley & Sons, second ed., 2000.

[9] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
New York: Wiley, 1973.

[10] K. Fukunaga, Introduction to Statistical Pattern Recognition. Aca-
demic Press, 1990.

[11] A, E. Gelfand and A. F. M. Smith, “Sampling-based approaches to
calculating marginal densities," Journal of the American Statistical
Association, vol. 85, pp. 398-409, 1990.

[12] A. Gelman and D. B. Rubin, "Inference from iterative simulation using
multiple sequences," Statistical Science, vol. 7, pp. 457-472, 1992.

[13) S. Geman and D. Geman, "“Stochastic relaxation, Gibbs distributions
and the bayesian restoration of images," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 6, pp. 721-741, 1984,

[14] P. J. Green, “Reversible jump Markov chain Monte Carlo computation
and bayesian model determination,” Biometrika, vol. 82, pp. 711-732,
1995.

[15] U. Grenander and M. |. Miller, "Representations of knowledge in com-
plex systems," Journal of the Royal Statistical Society, Series B, vol. 56,

Unsupervised classification; some Bayesian approaches 135

pp. 549-603, 1994.

[16] J. A. Hartigan, Clustering Algorithms. New York: Wiley, 1975.

[17] W. K. Hastings, “Monte Carlo sampling methods using Markov chains,
and their applications,”" Biometrika, vol. 57, pp. 97-109, 1970.

[18] A. K. Jain and R. Dubes, Algorithms for Clustering Data. Englewood
Cliffs, NJ: Prentice-Hall, 1988,

[19] G. J. Mclachlan and K. E. Basford, Mixture Models: Inference and
Applications to Clustering. New York: Marcel Dekker, 1988.

[20] G. J. McLachlan and T. Krishnan, The EM Algorithm and its Exten-
sions. New York: Wiley, 1997.

[21] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, “Equations of state calculations by fast computing ma-
chines," Journal of Chemical Physics, vol. 21, pp. 1087-1092, 1953,

[22] K. Pearson, “Contribution to the mathematical theory of evolution,”
Philosophical Transactions of the Royal Society, Series A, vol, 185,
pp. 71-110, 1894.

[23] D. B. Phillips and A. Smith, “Bayesian model comparison via jump
diffusions,” in Markov Chain Monte Carlo in Practice (W. R. Gilks,
S. Richardson, and D. J. Spiegelhalter, eds.), Boca Raton, FL: Chap-
man and Hall/CRC, 1996.

[24] A. E. Raftery, “Hypothesis testing and model selection,” in Markov
Chain Monte Carlo in Practice (W. R. Gilks, S. Richardson, and D. J.
Spiegelhalter, eds.), Boca Raton, FL: Chapman and Hall/CRC, 1996.

[25] S. Richardson and P. J. Green, “On Bayesian analysis of mixtures with
an unknown number of components (with discussion),” Journal of the
Royal Statistical Society, Series B, vol. 59, pp. 731-792, 1997.

[26] B. D. Ripley, Stochastic Simulation. New York: Wiley, 1987.

[27] G. O. Roberts and A. F. M. Smith, “Simple conditions for the conver-
gence of the Gibbs sampler and the Metropolis/Hastings algorithm,”
Stochastic Processes and their Applications, vol. 49, pp. 207-216,
1994.

[28] C. P. Robert, “Mixtures of distributions: inference and estimation,” in
Markov Chain Monte Carlo in Practice (W. R. Gilks, S. Richardson, and
D. J. Spiegelhalter, eds.), Boca Raton, FL: Chapman and Hall/CRC,
1996.

[29] G. Rosenkranz, "The Bayes factor for model evaluation in a hierar-
chical Poisson model for area counts”, Ph.D. thesis, Department of
Biostatistics, University of Washington, 1992,

136

A. Pal

[30] P. H. A. Sneath and R. Sokal, Numerical Taxonomy. San Fransisco:
Freeman, 1973.

[31) M. Stephens, “Bayesian analysis of mixture models with an unknown
number of components—an alternative to reversible jump methods,"
Annals of Statistics, vol. 28, no. 1, pp. 40-74, 2000.

[32] M. Tanner and W. Wong, “The calculation of posterior distributions
by data augmentation (with discussion),” Journal of the American
Statistical Association, vol. 82, pp. 528-550, 1987.

[33] S. Theodoridis and K. Koutroumbas, Pattern Recognition. San Diego:
Academic Press, 1999.

[34] L. Tierney, “Markov chains for exploring posterior distributions," Tech.
Rep.. School of Statistics, University of Minnesota, Minneapolis, MN,
1991,

[35] A. F. M. Smith, D. M. Titterington and U. E. Makov, Statistical
Analysis of Finite Mixture Distributions. New York: Wiley, 1985.

[36] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles. New
York: Addison—Wesley, 1974.

[37) T. Y. Young and T. W. Calvert, Classification Estimation and Pattern
Recognition. New York: Elsevier, 1974.

Unsuperwuised classification: some Bayesian approaches 137
Appendix

Markov Chain Monte Carlo (MCMC) methods

The general idea behind Markov Chain Monte Carlo (MCMC) methods
is as follows:

Let #(z) be a probability density. If zi,29,23,...,%, are randomly drawn
realizations from m, then

[@m@yiz ~ WS

However, if direct sampling from 7 is not possible, then one can still produce
samples which are random in the limit, using the following idea. Form a Markov
chain X, with equivalent state space to z, which has 7 as its unique equilibrium
distribution. If this chain is run for a sufficiently long time, realizations from
the sample path of the chain can be used as approximately random samples
from 7, enabling Monte Carlo methods to be applied.

The Gibbs sampler [13], the Metropolis-Hastings algorithm [17] and the
jump-diffusion algorithm [15, 23] are instances of MCMC methods and are
described in the following sections.

Two fundamental theorems that are most relevant to MCMC theory, and
respectively state conditions for the existence of a unique equilibrium distri-
bution, and the convergence of empirical averages to their expectations, are
stated below.

Theorem 4.1 If X, has invariant distribution =, and is irreducible and ape-
riodic, then m is the unique equilibrium distribution, that is,

F t —
lim [|P(z,) ~ ()| = 0, vz,
where || - || denotes the total variational distance.

Theorem 4.2 If X; has invariant distribution w, and is irreducible and ape-
riodic, and P(z,:) is absolutely continuous with respect to =, then for any
real-valued absolutely-integrable function f

%i_{(){i) —4/)’(9)7&"(9)({9 almost surely,
i=1

for all values of Xq.

138 A. Pal

The relevance of the above two asymptotic results is clear: the first thearem
may be exploited to produce an (approximate) independent sample from 7 (the
successive X, being correlated, however). The second theorem ensures that
the ergodic average of a function of interest over realizations from a particular
chain provides a strongly consistent estimator of its expectation.

A Markov chain is essentially defined then by its transition kernel P, and
in the following sections we consider some particular forms of P for which the
above theory can be shown to hold, and which lead to conceptually appealing
algorithms for sampling.

The Gibbs sampler

The Gibbs sampler was originally developed for discrete problems in image anal-
ysis by Geman and Geman [13]. Gelfand and Smith [11] extended the algorithm
to a continuous setting, and demonstrated how it could be used to solve gen-
eral Bayesian inference problems. In fact, the Gibbs sampler is a generalized
Metropolis algorithm where the probability of accepting the candidate state is
always unity [12],

Let X, = (X1, Xe2,.+.,Xtn). Then Xy, is obtained from X, by
successively drawing random variates from the full conditional distributions of
7 in the following way:

o generate X1 from 7(X|X; 5,5 > 1).
e generate XH-I,t‘ from ?T(XngH.LJ‘,j < 1', Xg‘j,j > 3).
o generate Xyt n from w(Xn|X41,5,7 < n).

This defines a Markov chain with transition kernel P given by

T

P(z,y) = H?f(ydyj,j <%y 2 1)

i=1

Provided each of the conditional distributions is well-defined so that P is well-
defined, it is not difficult to see that m is a stationary distribution for P. For

Unsupervised classification: some Bayesian approaches 139

any measurable set A,

/P(:c,A):r(:c)dm = f (Ap(m,y)dy) m(z)dz
= /A (/p(z:, y)ar(a:)dz) dy

=fA (/ﬁﬁ(wlw-i <4zj,] > i)?f(w)dr) dy
= /AI:_I (f mT(yily;, J < i,25,7 > z')'.'r(:c)da:) dy

= /A [7wl 5 < i)y

izl

= j; m(y)dy
= m(4),

making use of the following equality:
/F(yilyjsj‘ <f zj,5 > i)w(z)d‘r
= fﬂ(‘yf!y:"j <4,xj,J > Yn(zs,j > 1)dTiyr ... dTa

= /“(yh:rj‘j > ily;,J < i)dTiy1 ... dzy
= m(yily;j, J <1).

Roberts and Smith [27] provide a sufficient condition for P to be well-defined,
namely, that 7 be lower semi-continuous at 0. This condition is satisfied if, for
each z such that m(z) > 0 there exists an open neighborhood N, C ©, with
x € Nz, and an € > 0, such that

m(y) >e>0 Vye N,.

Further sufficient conditions ensuring irreducibility and aperiodicity of P
are that [m(z)dx; is locally bounded for each i, and that © is connected.
For most applications, it is straightforward to check whether these conditions
are satisfied, and provided they hold, it follows that the Markov chain X has
unique equilibrium distribution .

140 A. Pal

The implementation of the Gibbs sampler relies crucially on the facility to
generate realizations from each of the full conditional distributions of 7. In more
complex problems, sophisticated techniques for random-number generation will
be required [7, 26).

The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm [21, 17] forms the Markov chain {X;,t =
1,2,...} in the following way. Let g(z,y) be an arbitrary proposal density, or
probability transition function, so that

fq(a:,y)dy = 1 Vz.

The sampled state for X, is obtained from the realization X; = x by drawing
a candidate state y at random with probability density given by ¢(z,y). The
proposed new state is accepted with probability a(z,y), and otherwise rejected
in favor of the previous state, that is, =, where the acceptance probability « is
defined by

a(z,y) = {min (: Hotew ’1) if m(z)q(z,y) >0,
. if w(x)q(z,y) =0.

This produces a Markov chain with transition probability kernel P given by

P(z,dy) = p(z,y)dy + r(z)dz(dy),
where

_ [alzy)a(zy)if z#y,
Pl@,y) = {D otherwise.

"z) = 1— [p(z,3)dy,

and &, denotes point mass at .

Note that if the proposal density is symmetric in its arguments, that is,
q(z,y) = q(y,z) Vz then the acceptance probability only involves the ratic
of the target densities at the new and old states. This corresponds to the
original version of the Metropolis algorithm [21]. Note also that the density

Unsupervised classification: some Bayesian approaches 141

7 is needed only upto proportionality. |t is easy to see that 7 satisfies the
reversibility condition

m(z)p(z,y) = min(r(y)q(y,z), n(z)gq(z,y)) = m¥)p(y,z),

and it therefore follows that 7 is a stationary distribution for P [34]. For any
measurable set A,

/ P(z, Ayr(z)dz = / (fA p(:r:,y)dy) n(z)dr + f r(z)6,(A)n(z)dz

=L (/p(m,y)ﬂ(:c}d:r) dy + /r(z)fr(:r)dx
= /A (f p(y,n:)fr(y)dx) dy + / r(z)m(z)dz

- f (1= r@))nluddy + f r(2)n(z)dz
A A

= / m(y)dy
A
= w(A).

Using the results of Roberts and Smith [27], it is straightforward to check
the irreducibility and aperiodicity of P. This is because if g is irreducible and
g{z,y) = 0= q(y,x) =0, then P is irreducible, and if ¢ is aperiodic then so is
P. In practice, it is not difficult to find suitable choices of ¢ satisfying these two
conditions, and subject to this it follows that the Markov chain X; has unique
equilibrium distribution, as required. An excellent discussion of the merits of
prospective proposal densities can be found in the [34]. Some possible choices
of g are described below.

Random-walk chains: Let f be a density on ©, and suppose that g is
defined by

q9(z,y) = flz—y)

so that the candidate state y is obtained by incrementing the current state z
with a random variate generated from f. If f is spherically symmetric about
the origin, then g is symmetric since

9(z,y) = flz —y) = f(lz—yl) = flly —z|) = fly — 2) = q(y,),

so that this is a version of the Metropolis algorithm. If f is positive on &, or
if f is positive on a neighborhood of the origin and © is open and connected,

142 A. Pal

then ¢ is irreducible and aperiodic. Possible choices of f: a normal distribution
with mean zero, a t-distribution with mean zero, etc.

Independence chains: When ¢ is chosen to produce candidate states
not depending on the current state, that is, g(z,y) = q(y), then the chain
generated is called an independence chain. if ¢ is such that it assigns positive
probability to each measurable set A for which w(A) > 0, then g will be
irreducible and aperiodic as well, so that both theorems apply.

Jump-diffusion sampling
The jump component

Suppose that at time ¢ the process is in state (8, k). The probability of jumping
out of model A is specified through a jump intensity q((@, k), (3, h)), where
1 € ©p and h # k.Informally, ¢((8,k), (3, h))dt can be thought of as the
probability density of jumping from (8, k) to (1, k) in an infinitesimal interval
of time dt. Let T(8,k) denote the set of all (1, h) which can be reached
from (8, k) in a single jump. This is called the jump set of (8,k). Often it is
convenient to choose T (8, k) such that

T(6,k) C ©p_1UBky,

that is, from model M one can jump to model My _; or Mj4; only. Regu-
larity conditions given by Grenander and Miller {15) require that 7 (8, k) must
be chosen so that jumps are always local, that is, for some suitably defined
metric D and constant B,

D((6,k), (¥, h)) = D((4,h),(6,k)) < B,

for all states (1), h) in T(6,k). Also the jump sets are required to be reversible,
that is,

if (4, h) € T(8,k) then (8,k) € T (1, h)).

To decide when to jump, the marginal jump intensity, namely,
r0K) = 3 [(w.h) € T6,R)a((0,), (¥, M)do
h

must be calculated. The marginal probability of jumping out of model My in
time interval (¢,t + dt) is then (8, k)dt, which generally does not depend on

Unsupervised classification: some Bayesian approaches 143

(6, k). Jump times ty,t3,... can be sampled by generating unit exponential
random variables ey, eg, ..., and setting ¢; to be such that

t;
/ (0,) ©)dt > e, (4.20)
ti—1

where tg = 0. In practice, the algorithm is implemented in discrete time-steps
of size A.

If a jump must be made at time ¢ (that is, if ¢ = ¢; for some 1), then the
new state (1), h) must be selected according to the transition kernel

_ 4((8,k), (¥, h))
Q(8,k), (¥, k) = ek (¥,h) € T(8,k).

Informally, Q((8, k), (14, k)) is the conditional probability density of jumping
from (8, k) to ¢ € Oy, given that a jump out of model 7 must be made
immediately. Jump intensity ¢((8, k), (¥, k)) must be chosen so that a balance
condition is satisfied, to ensure that the stationary distribution of the process
in 7(8, k) [15]. Grenander and Miller [15] and Amit et al. [1] have proposed
two strategies that ensure this; these are briefly described below:

Gibbs jump dynamics: Under this choice of dynamics, the process jumps
from one subspace to another with transition intensity given by

q((8,k), (,h)) = Cmyexp{Ln(¥) + Pa(3)},

for (3, h) € T(8,k), where constant C' can be chosen arbitrarily, though its
choice affects the frequency of jumps.

Metropolis jump dynamics: Under this choice of dynamics, the process jumps
from one subspace to another with transition intensity g((@, k), (¢, h)) given
by

q((8,k), (¢, h)) = min(l,exp[Ln(vp) — Li(@)])mn exp[Pr(¥)],

for (1,h) € T(8,k). This process may be simulated as follows. Jump times
are calculated from (4.20) using a modified jump intensity

q((6, k), (¥, k) = CrmnexplPa(¥)].

At each jump time, a candidate state (4, h) is generated from the prior re-
stricted to 7 (8, k), that is, with density proportional to), exp[Px(%)], and
accepted with probability

min(1, exp{La () — Lk(8))),

144 A. Pal

else reject this point and set (), h) equal to the current point (8,k). This is
just the Metropolis-Hastings algorithm.

Moving between jumps: the diffusion component

At times between jumps, that is, for t;_; <t < t;, ¢ = 1,2,..., the process
follows a Langevin diffusion in the subspace to which the process jumped at
the previous jump time. Within the fixed subspace By, this is given by

dt [d
de' = T [E{Lk(e) + Pk(G})] g+ W), 0 € O,

where W'E;'L) is standard Brownian motion in n(k) dimensions. This can be

approximated, using a discrete time-step A\, by
Ad
08 =)4 2= [(Lu(89) + Pu(8W))] + VB,

where sz(}k] is vector of n(k) independent standard normal variates.

Reversible jump Markov chain Monte Carlo methods

The Markov chain Monte Carle methods discussed so far have been restricted
to problems of Bayesian computation where the joint distribution of all vari-
ables has a density with respect to some fixed standard underlying measure,
Therefore they cannot be applied to problems like Bayesian model determi-
nation, in which the dimensionality of the parameter vector is typically not
fixed. Green [14] proposed a new framework for the construction of reversible
Markov chain samplers that jump between parameter subspaces of differing
dimensionality, which is flexible and entirely constructive,

Let there be a countable collection of candidate models { My, k € K},
where model My has a vector 8%) of unknown parameters, assumed to lie
in JR™, and the dimension n; may vary from model to model. We observe
data . A natural hierarchical structure is expressed by modeling the joint
distribution of (k, 8%} z) as

o(k, 8% 2) = p(k)p(8® |k)p(x|k, 8F)),

that is, the product of model probability, prior and likelihood. For convenience,
the pair (Jc.B“‘}) is abbreviated as y. For given k, y lies in G = K x IR™*,
Generally, y varies over C = UgexCg.

Unsupervised classification: some Bayesian approaches 145

In a typical application with multiple parameter subspaces {Cy} of different
dimensionality, it becomes necessary to devise different types of move between
the subspaces. These are combined to form a hybrid sampler, by random choice
between available moves at each transition, in order to traverse freely across
the combined parameter space C, Attention is restricted to Markov chains in
which detailed balance® is attained within each move type.

When the current state is & a move of type m is proposed that takes the
state to dy’ with probability g (y, dy’). This is a sub-probability measure on
m and ¢/, thatis, 3, gm(x,C) < co and, with probability 1 —= 3" gm(=,C),
no change to the present state is proposed. Not all moves m are available from
each starting states y, so that for each y, gm(z,C) = 0 for some m. The
proposed move is not automatically accepted. The probability of acceptance
is am(y,¥'). It has been shown that, for detailed balance, e, (y,y’) must
satisfy

m(dy")gm(y', dy) }
" m(dy)gm(y, dy’) J

where 7 is the density of g, provided the dimension-matching assumption holds,
namely, that 7(dy)gm(y,dy’) has a finite density fi(y,y’) with respect to a
symmetric measure (,,, on C x C.

om(py') = min{l

*In MCMC simulation from a target density =, a Markov transition kernel P(z,dz') is
said to satisfy detailed balance if

[[rteP@ds) = [[wda'P(e' o)
AJB BJA
for ell appropriate A, B,

Chapter 5
SHAPE IN IMAGES

K. V. Mardia

Department of Statistics

University of Leeds
Leeds LS2 9JT, UK
e-mail: k.v.mardia@leeds, ac.uk

Abstract

The Bayes theorem is a vehicle for incorporating prior knowledge
in updating the degree of belief in light of data, For example, the
state of tomorrow's weather can be predicted using belief or likeli-
hood of tomorrow's weather given today's weather data, We give
a brief review of the recent advances in the area with emphasis
on high level Bayesian image analysis where shape is an impor-
tant element of prior modeling. It has been gradually recognized
that knowledge based algorithms based on Bayesian Analysis are
more widely applicable and reliable than ad hoc algorithms. Ad-
vantages include the use of explicit and realistic statistical models
making it easier to understand the working behind such algorithms
and allowing confidence statements to be made about conclusions.
These systems are not necessarily as time consuming as might be
expected. However, more care is required in using the knowledge
effectively for a given specific problem; this is very much an art
rather than a science.

147

148 K. V. Mardia
5.1 High-level Bayesian image analysis

Since the early 1980s, statistical approaches to image analysis using the Bayesian
paradigm Bayesian image analysis have proved to be very successful. Initially,
the methodology was primarily developed for low-level image analysis (see, for
example, [32]) but is increasingly used for high-level tasks.

To use the Bayesian framework one requires a prior model which represents
our initfal knowledge about the objects in a particular scene, and a likelihood
or noise model for an image which is the joint probability distribution of the
grey levels in the image, dependent on the objects in the scene. By using
the Bayes Theorem one derives the posterior distribution of the objects in the
scene, which can be used for inference. Examples of the tasks of interest
include segmentation of the scene into object and background, and object
recognition. The computational work involved is generally intense because of
the large amount of data in each image.

An appropriate method for high-level Bayesian image analysis is the use of
deformable templates, pioneered by Grenander and his colleagues [20, 21]. Our
description follows the common theme of [35, 37, 42]. We assume that we are
dealing with applications where we have prior knowledge on the compaosition of
the scene and we can formulate parsimonious geometric descriptions for objects
in the images. For example, in medical imaging we can expect to know a priori
the main subject of the image, e.g., a heart or a brain. Consider our prior
knowledge about the objects under study to be represented by a parameterized
ideal prototype or template Sp. Note that S could be a template of a single
object or many objects in a scene. A probability distribution is assigned to
the parameters with density (or probability function) #(S5), which models the
allowed variations S of Sy. Hence, S is a random vector representing all possible
templates with associated density #({S). Here S is a function of a finite number
of parameters, say 6;,...,8,.

In addition to the prior model we require an image model. Let the observed
image [be the matrix of grey levels z;, where 1 = (11,12} € {1,...,7} %
{1,...,c} are the r x ¢ pixel locations. The image model or likelihood is the
joint probability density function (p.d.f.) (or probability function for discrete
data) of the grey levels given the parameterized objects S, written as L{I|S).
The likelihood expresses the dependence of the observed image on the deformed
template. It is often convenient to generate an intermediate synthetic image
but we will not need it here (see [37]).

By the Bayes theorem, the posterior density 7{S|I) of the deformed tem-

Shape in Images 149

plate S given the observed image I is
m(S|) x L(I]S)x(8S). (5.1)

An estimate of the true scene can be obtained from the posterior mode (the
maximum a posteriori or MAP estimate) or the posterior mean. The poste-
rior mode is found either by a global search, gradient descent (which is often
impracticable due to the large number of parameters) or by techniques such
as simulated annealing [15]) or iterated conditional modes (ICM) [6]. Alter-
natively, Markov chain Monte Carlo (MCMC) algorithms (see, for example, [7,
16]) provide techniques for simulating from a density. In Section 5.3 we will
give a specific example of the MCMC technique. The latter technique has the
advantage that it allows a study of the whole posterior density itself, and so
credibility or confidence regions can be easily obtained. For more information
on MCMC methods, please refer to the appendix of Chapter 3.,6.

5.2 Prior models for objects

The key to the successful inclusion of prior knowledge in high-level Bayesian im-
age analysis is through specification of the prior distribution. Many approaches
have been proposed, including methods based on outlines, landmarks and ge-
ometric parameters. The prior can be specified either through a model with
known parameters or with parameters estimated from training data.

5.2.1 Geometric parameter approach

One approach is to consider a geometric template for S consisting of parametric
components, e.g., line segments, circles, ellipses, arcs. Examples include a circle
of random radius to represent the central disc of galaxies [50)]; simple geometric
shapes for facial features such as eyes and mouths [48, 49]; circular templates
to represent pellets in an image, where the number of pellets is unknown [5].
In these models, distributions are specified for the geometrical parameters,
and the hierarchical approach of Phillips and Smith [48, 49] provides a simple
method. Often templates are defined by both global and local parameters.
The global parameters represent the object on a coarse scale and the local
parameters give a more detailed description on a fine scale. The idea of a
hierarchical model for templates is to specify the marginal distribution of the
global parameters and a conditional distribution for the local parameters given

150 K. V. Manrdia

the global values. This hierarchical division of parameters can be extended to
give a complete description of the local dependence structure between variables.
Hence, conditionally, each parameter depends only on variables in the levels
immediately above and below it.

In general, we assume that templates can be summarized by a small number
of parameters 8 = (6y,...,0,) say, where variation in @ will produce a wide
range of deformations of the template. By explicitly assigning a prior distri-
bution to 8, we can quantify the relative probability of different deformations.
The prior can be based on training data which need not be a large data-set.
By simulation, we can check the possible shapes that could arise.

For example, consider the mouth template of Phillips and Smith [48, 49].
They use marginal normal distributions for (z,y) (location), 6 (rotation), b
(half the width) and conditional normal distributions for a | b (height given
halfwidth), ¢ | a (depth given height) and d | a (curvature of parabola given
height). Here x,y,6 and b are global, a is intermediate, and ¢ and d are local.

In more complicated image scenes where several templates are required, the
organization of the templates can be considered at a higher level of hierarchy.
For example, there may be nesting relationships between the templates, which
are subject to constraints. For example, with human face templates there are
global constraints such as the requirement that the eyes, mouth and nose must
be strictly contained within the head boundary but this is deterministic not
stochastic. We now discuss a specific example relating to a mushroom but it
could be the iris of an eye in medical context.

5.2.2 Mushroom template model and its prior densities

For simplicity, we regard a mushroom as a circle [39]. A simple two dimensional
template for a circle requires center (61,62) and log-radius #3. This is also a
small component of the eye template. Here we have three parameters.

8 = (6,,063,03). (5.2)

Next we discuss the prior distribution for 8. For an image F of size N x N,
say, it is simplest to take (6,0,) to be uniformly distributed over the square
0 <8, < N, 0< 8z < N so that the density of (§;,02) is simply 1/N2.
Suppose the radius r has prior mean p with variance 02, Since r > 0, it is
preferable to model 83 = logr by a normal distribution N{log p,0?/u?) since

Shape in Images 151

approximately
var(f3) = (dlogr/dr)Z_, var(r) = o /p® (5.3)

That is, 83 has a lognormal distribution. Then the joint probability density
function of 8 is

2
m(8) = Cexp{—é%ﬁ(l?g —log)2},0 < 81,02 < N,03>0. (5.4)

Note that the model can be viewed as hierarchical in the sense that we can
write it as

P(61,62)P(05]6,,02) (5.5)

so that the "global" parameters (the location @;,63) are followed by the "lo-
cal" parameter (the log-radius 83). This hierarchy is not very relevant here
since 83 is independent of §; and #3, but in general it is helpful to describe
location, scale and orientation as global parameters and other parameters as
local deformations.

5.2.3 Landmarks: shape distributions and point distribution mod-
els

Consider a single object in IR? with k landmarks. One approach to specifying
the template is to work with the landmarks directly. Denote the coordinates
of the landmarks in IR? as X, a 2k x 1 vector. The configuration can be
parameterized as an overall location (z.,y.) (e.g., centroid), a scale 3 (e.g.,
length between the baseline landmarks 1 and 2), a rotation I" (e.g., the rota-
tion of the baseline) and some suitable shape coordinates, such as Procrustes
tangent coordinates, shape PC scores or Bookstein coordinates UZ. A shape
distribution could be chosen as a prior model together with more vague priors
for location, scale and rotation.

A principal component {(PC)-based prior model for object recognition was
suggested by Cootes et al. [10). The model has proved very successful in a
variety of medical and engineering applications. As well as a prior for shape
one also needs to introduce vague priors for location, rotation and scale, and
an independence model is often reasonable.

A measure for shape difference could also be used in a prior density such as
the full Procrustes distance dp(S, Sp), where S is the observed template and

152 K. V. Mardia

Sy is the ideal template, Suitable prior models could then be suggested based
on such distances or costs (energies).
The Gibbs distribution has a probability density function of the form

7(8) = 7 exp(~ 5 Eune(5, 50)) (5.6)

and has been used widely in image analysis. Simple expressions for Fy;¢(S, So)
will be of particular interest. The term E;,..(S, Sg) is called the internal energy
function and Z is the integrating constant or partition function. For example,
we could take E;,(S,Sg) = 2xsin? p(S, Sq) and so

m(S) o exp(~rdi(S, Sa)), (5.7)

which is the shape distribution corresponding to the complex Watson distribu-
tion [11].

5.2.4 Graphical templates

Amit and Kong (3, 4] and Amit [1] use a graphical template method which
is based on comparisons between triangles in an image and a template. Cost
functions are given for matching triangles in the deformed template to triangles
in the observed template and the total cost gives a measure of discrepancy. The
cost functions involve hard constraints limiting the range in which the observed
angles can deviate from the template angles and soft constraints penalizing the
deviations from template angles.

The procedure had been implemented into a fast algorithm which finds an
optimal match in an image in polynomial time, provided the template graph is
decomposable (see [1, 2}).

5.2.5 Thin-plate splines

The thin-plate spline can be used in a prior model. The pair of thin-plate splines
transformation from the ideal template Sp to a deformed version S has an
energy function associated with it, namely, the total minimum bending energy
J(®). Thus if Bine(S,So) = J(®), then a prior distribution of the deformation
could be obtained using the Gibbs distribution, This would inhibit landmark
changes that require a large bending energy. If S is an affine transformation of
Sg, then the total bending energy is zero. This prior was suggested by Mardia
et al. [42). and further applications were given by Mardia and Hainsworth [40].

Shape in Images 153

5.2.6 Outlines
5.2.6.1 Edges

in modeling the outline of an object, Grenander and co-workers specify a series
of points around the outline connected by straight-line segments. In their
method, variability in the template is introduced by pre-multiplying the line
segment by random scale-rotation matrices. Let us assume that the outline
is described by the parameters 87 = {07,017}, where 6; denotes a vector of
similarity parameters (i.e., location, size and rotation) whereas ; denotes say
k landmarks of the outlines. For #;, we can construct a prior with center-of-
gravity parameters, a scale parameter and a rotation by an angle o. Conditional
on 6y, we can construct a prior distribution of 8, (see Chapter 11 of [11].

Another general approach is given by Miller et al. [47]. The model has
been applied successfully to images of mitochondria. This model with circulant
symmetry has also been studied by Kent et al. [30], who consider additional
constraints to make {f,} invariant under the similarity transformations. They
also explore the eigenstructure of the circulant covariance matrix [30].

5.2.6.2 The snake

The snake [29] in its simplest form is a spline with a penalty on the mean
curvature. Snakes are used for fitting a curve to an image when there is no
underlying template, with the aim that the resulting estimated curve is smooth.
Let the outline be f(t) € C,t € [0,1], f(0) = f(1). The penalty in the snake
can be written as

1 1
—2log P(t) f a(t)|f"(t)|*dt + / BRI f ()t (5.8)
0 0
where a(t) and ((t) denote the degree of stiffness and elasticity at £, re-

spectively. Fort; = j/k,j =0,1,...,k, denote f(t;) = u;+iv;. We find that
the right-hand side of (5.8) can be written approximately for large k as [39]

{z (st + ujor = 202 + S B, (w41 — uj-)"’} (5.9)

+ {Z a;(vj41 +vj-1 — 21?3;}2 + Eﬁj(v”l e ‘b’j]z} . (5.10)

Thus {u;} and {v;} also form a separable Markov Random Field of order 2.

154 K. V. Mardia

5.2.6.3 Semi-landmarks

Bookstein [8, 9] has introduced the shape analysis of outlines based on semi-
landmarks, which are allowed to slip around an outline, This approach appears
promising for the shape analysis of curved outlines.

Alternatively, one may be interested in shape analysis of the outlines and,
for example, in differences in average shape between groups. Bookstein (9]
has investigated the shape of the corpus callosum in the midsagittal sections
of MR scans of the brain in control subjects and schizophrenic patients. An
important practical aspect of the work is how to sample the points — one needs
to achieve a balance between coarse sampling of landmarks where information
might be lost and over-fine sampling of landmarks where power can be lost.

5.2.6.4 Polar prior for outlines

A prior for star-shaped objects is given by Mardia and Qian [44]. An example
of a star-shaped object suitable for such analysis is the outline of a leaf. Let
an object be represented by a set of vertices

{90(1)1 by s !gu{k)} == CD.

Its template Sg can represent a number of different types of objects, say ¢. A
translated, scaled, rotated version of co with shift y, scale p and rotation 8, is
given by {sg°(1),...,s9°(k)} and can be described in polar coordinates by

$9°(j) = p+uo+pR°(j)(cos{0(7)+6},sin{6(;)+6})" , j = 1,... .k, (5.11)

where po + R%(5)(cos 8(3),sin 8(3))" is the expression for g°(j). Therefore we
can write the prior probability for the orientation or pose of the object as

w(slc®) = w(w, p, Olpq, RO), (5.12)

where R® = {R%(1),...,R°(k)}T. Here the parameters consist of y, p and 6.
A deformation can be incorporated (see [37]).

5.3 Inference

Inference about a scene in an image is made through the posterior distribution
S. The full range of Bayesian statistical inference tools can be used and, as
stated in Section 5.1, the maximum of the posterior density (the MAP estimate)
is frequently used, as well as the posterior mean. There may be alternative

Shape in Images 155

occasions when particular template parameters are of great interest, in which
case one would maximize the appropriate marginal posterior densities [49].

Example 5.1 Consider the circular mushroom template. As in [35], de-
note the circle template by S(#) with parameters § = (0, 82,63) which
segments the image into two regions: inside S and outside S. Suppose the
image is subject to observational noise. A simple model is

T = Vg + € if %ES; T = V1 + g if t¢3, (513)

where z; € IR denotes the grey level at the ith pixel in an N x N grid,
and we suppose that the ¢; are independent normally distributed. The
parameters (g, 72) and (v1,72) summarize the mean and variance of the
intensities inside the circle and in the background, respectively. Hence the
likelihood of the image is

L(a:le)ocexp{ - 22 ~vo)? ~ 2 = (zi—v1}2}. (5.14)
igs

More realistic models might include autocorrelation between the errors or
an allowance for blurring, or both.
By the Bayes Theorem the posterior density of S given the data z is

n(flz) o« L(z|8)n(8). (5.15)

Hence we get

i€ES €S

1 1 *
m(Blz) o exp{ o2 Z(mi —vg)? - 272 (zi —v1)? - '2‘;;‘—9(93 = IOE#JQ}

(5.16)
with support 0 < 01,02 < N, —o0 <83 < oc.
a

One possible estimate of & = (8, 605,63) is given by the posterior mean.
One way to calculate the posterior mean is by a simulation method which does
not depend on the complicated normalizing constant in x(f|z). For discrete
values of 6,82 and 83, a grid search is an alternative approach. A popu-
lar technique is a Markov chain Monte Carlo (MCMC) procedure using the
Metropolis-Hastings algorithm {25, 46]. This procedure generates a Markov

156 K. V. Mardia

chain whose equilibrium distribution is the posterior distribution of 6|z. For
simplicity, we write m(0|z) as w(@) for this discussion, and choose an arbitrary
initial estimate of #, Then at each iteration, generate 8,0, a new set of values
from

N(O1a,diag(o?,03,03)), (5.17)

say, with density
1 3
9(Onewlboia) < exp § =5 3 " (Onows = botai)/a3 ¢, (5.18)
j=1

where 0,14 denotes the value of 8 at the previous iteration. This distribution is
called the proposal distribution and its parameters 0%, 0% and 0% are changed
iteratively to approximately match the variance of the posterior distribution,
Calculate the Hastings ratio

p= W(gnawlm)g(guld lgnew)/{#(ﬂo]d)g(enewiguld)}r (519)

where now 7(@new|z) is the posterior density. Here the proposal density is
symmetric, 9(foid|fuew) = g(Onewlfora), 50 that p = m(Bhew|2)/7(Ocialz).
We accept § = 0,0, with probability min(1, p) otherwise we keep 8 = 514,
te, if p > 1, we take @ = 0., Whereas if p < 1, we perform a further
randomization by drawing a random sample from uniform (0,1), and accept
0 = Onew With probability p. Typically, a burn-in period is allowed in initial
simulations and the average is taken of a subset of the remaining simulations.
For the algorithm to work in practice, we need suitable choices for o; so
that the proposal density will roughly approximate the posterior distribution.
Also we need to judge when convergence has taken place (see [7, 16, 19].
Above we have updated all components of 8 at once. Alternatively, it is
possible to update the components of @ one at a time using individual proposal
densities g;(Onew,j|0o1d,5): i€ Onew,j ~ N(foia,5,2). Hence we change only
one component of § at a time in turn to complete a sweep. For this example,

P = W(Bncw,j'Ajrm)g(aold.j|Aj)/{ﬂ'(9c|ld,j!Ajvx)g(anuw.thj)}s [520)

where A; = {Onewk, k < J;001d,k,k > 5},5 = 1,2,3. Then we select 0; =
Opnew, ; With probability min(1,p;).

Shape in Images 157

5.4 Multiple objects and occlusions

Most of the work described above has been in terms of one template. In this
section, Sy will denote a collection of different types of objects with S as
their deformed observed version of §;. Working with a fixed known number
of objects is a straightforward adaptation of the one-object case. However,
more difficult is the situation where an unknown number of objects are in
the scene. The parameter space is then a mixture of discrete and continuous
components and suitable techniques based on the Bayesian framework have
been proposed by Grenander and Miller [22], Baddeley and van Lieshout (5]
(using spatial birth—death processes) and Green [19] (using reversible jump
MCMC methodology).

By suitably specifying the prior model and including penalty terms in the
likelihood, issues such as overlap of objects or non-allowable neighboring objects
could be built into the procedure. For example, Grenander and Miller [22] and
Miller et al. [47] have built-in penalties to prevent overlapping of mitochondria
on micrograph images. Mardia et al. [39) have provided an integrated approach
for an unknown number of occluded multiple objects of different types following
Baddeley and van Lieshout [5] and van Lieshout [54], which we now describe.

Suppose in the image I with grey levels + = {z;,i € I}, there are n
objects ¢y, ..., ¢, (n is unknown) which are any combination of ¢ specific types
(01,...,04), e.g., ¢ = 3 for circle, ellipse, square. As before, each object ¢;
depends on a finite number of real parameters such as size, shape and location.
Let U denote the space of all possible objects so that a point u € U represents
an object R(u) C I. Thusc= {e1,...,en} ek € U,k =1,...,n, is an object
configuration. For simplicity, let us assume that the likelihood of z given c is
given by

L(zlc) = H (@9), (5.21)

where f(z;|()(i)) is a known probability density function for the grey level
z; given »(9)(i), the population mean grey level at pixel i, and the object
configuration ¢. Here we are assuming that x; are conditionally independent
given c. Let the silhouette formed by the n objects in the configuration be
S(c) = Up, R(ck). Furthermore, for simplicity, assume that () (i) = v if
i € S(c) and vy if i ¢ S(c). Thus vy and v, are foreground and background
signal values as before, and we assume equal variances in the foreground and
background. Van Lieshout [54] has shown that various well-known techniques

158 K. V. Mardia

from image analysis can be derived from this formulation, and we give some
examples.

5.4.1 Classical Hough transform

Let the noise be independent and identically (i.1.d.) normal for each pixel.
Consider a single parameterized object u in image I. Consider the hypotheses
Hy : v(i) = vy if there is an object w in I versus Hy : (i) = vy if there is no
object in I. The log-likelihood ratio statistic for this problem is found to be
proportional to

S @, uel, (5.22)

e R(u)

which is the 'sum of votes' (sum of grey levels) from all pixels belonging to
the object u. This is the classical Hough transform (see, for example, [5,
54]). Usually, the objects are parameterized such as the line z cos§ +ysinf =
p. A parameterized circle used before for the mushroom is another well-known
example, This formulation allows various extensions, such as multiple objects
and a different form of noise density.

5.4.2 Morphological operations

Let us assume that each pixel in a binary image with background value 0 and
foreground value 1, is independently distributed with probability function

(=) i ¢ S(e),
9(zilv) = { 1, if i € S(e),

so only background pixels are changed and 0 < v < 1 is the probability of
flipping a background pixel to 1. Let X be the set of pixels with value 1. It is
found that a maximum likelihood estimator (MLE) ¢ of the objects ¢ is

é={uel:R(u)C X}, (5.23)

which is a generalized erosion operator of mathematical morphology (see [51]).
Other solutions are subsets of this solution. In particular, for U = I < IR? and
R(u) =u+ R, where R is a fixed subset of I, then

t={u:(u+R)C X}=XOR, (5.24)

Shape in Images 159

which is the classical erosion operator of X by R. Thus, the classical erosion
operator is the maximum likelihood estimation under a simple noise model,
The corresponding silhouette is the opening of X by R.

Similarly, by exchanging foreground and background, we obtain a similar
result for the dilation and in this case the corresponding silhouette is the closing
of X by R,

The Hough transform and morphology examples are two instances where
one can unify well-known results of image analysis in a single statistical frame-
work.

5.4.3 A Markovian object process

To constrain the number of objects IV as well as overlap between objects, we
can use an object process with the following prior density:

w(N =n)r(er,e2,...,en|N =n)
= Z7Yn)lexp {-mn — 12 Lopney d(ex,er)} s

where Z is the partition function, v, and -y, are two parameters where vy,n
describes the potential for the presence of each object, and y,d(cx, ¢;) is the
interaction potential between neighboring pairs ¢, and ¢;. Note that if v, = 0,
then we see that there are no restrictions on occlusions and N is Poisson with
mean exp(—y;). So larger v, leads to fewer objects on an average and larger
v implies limited occlusions. The sum is over all pairs of neighboring objects
cg ~ ¢, wWith k < [, i.e., for fixed k, only neighbors of ¢, contribute to the
sum. For more details see [5, 39].

(5.25)

5.5 Warping and image averaging

5.5.1 Warping

Images can be deformed using mapping between image domains and this pro-
cess is called image warping. Warping or morphing of images is commonplace
in the television and cinema industry, although more serious applications such
as medical image registration and image averaging also benefit from the tech-
nique.

Definition 5.1 Consider an image f(t) defined on a region D; € R?
and deformed to f(®(t)), where ®(t) € D; € IR?, For example, a set of

160 K. V. Mardia

landmarks Ty could be located in the original image and then deformed to
new positions 7. We call f(®(t)) the warped image. o

A practical approach to warping is to use the inverse deformation from D; to
D to look up the corresponding grey levels from the region Dy. Consider a
pixel location ¢t € D,. The deformation ®(¢) is computed from the deformed
region [y to the original plane D;. Then the new grey level at { is assigned
as the grey level f(®(t)) (in practice, the pixel closest to location ®(t)).

The advantage of using the reverse deformation is that if the original image
is defined on a regular |attice, then the warped image is still defined on a regular
lattice. An alternative approach is to map from D) to Dg resulting in a irregular
non-square lattice for D, and then linear interpolation is used to obtain the
final image on a regular lattice [40).

Examples of warping include data fusion for medical imaging. For example,
we may wish to combine information from an X-ray image (which has anatom-
ical information) and a nuclear medicine image (which shows functional infor-
mation). Mardia and Little [43] deform an X-ray image to a nuclear medicine
image. For other statistical work see [26, 28].

Glasbey and Mardia [17] have given a review of the subject. Glasbey and
Mardia [18] formulate the choice of warping functions statistically as maximum
penalized likelihood, where the likelihood measures the similarity between im-
ages after warping and the penalty is a measure of distortion of a warping. The
paper addresses two issues simultaneously, of how to choose the warping func-
tion and how to assess the alignment. A new, Fourier-von Mises image model
is identified, with phase differences between Fourier-transformed images having
von Mises distributions. Also, new null-set distortion criteria are proposed, with
each criterion uniquely minimized by a particular set of polynomial functions.
A conjugate gradient algorithm is used to estimate the warping function, which
is numerically approximated by a piecewise bilinear function. The method is
motivated by, and used to solve, three applied problems: to register a remotely-
sensed image with a map, to align microscope images obtained using different
optics, and to discriminate between species of fish from photographic images.
It also updates references since the review of Glasbey and Mardia [17].

5.5.2 Image averaging

We can use the warping approach to construct an average from several images
of objects [33] .

Shape in [mages 161

Definition 5.2 Consider a random sample of images fi,..., fu contain-
ing landmark configuration Xi,...,X,, from a population mean image f
with a population mean configuration y. We wish to estimate p and f
up to arbitrary Euclidean similarity transformations. The shape of u can
be estimated by the full Procrustes mean of the landmark configurations
Xi,...,Xn. Let ®} be the deformation obtained from the estimated mean
shape (] to the ¢th configuration. The average image has the grey level at
pixel location ¢ given by

ft) == 3 £l 1), (5.26)

i=1

Galton [13, 14] obtained averaged pictures of faces using photographic tech-
niques over a century ago and the technique was called composite photography.
He was interested in the typical average face of groups of people, such as crim-
inals and tuberculosis patients. He believed that faces contained information
that could be used in many applications, e.g., the susceptibility of people to
particular diseases. Another early example is the average photograph of 12
American mathematicians obtained by Raphael Pumpelly taken in 1884 [53].
Shapes of landmark configurations from photographs of the faces of individ-
uals are currently being used for forensic identification (see, for example, [36,
39)].

5.6 Discussion

Over the last decade, statistical algorithms have emerged for image analysis
which are widely applicable and reliable. There is also an advantage in us-
ing explicit stochastic models so that we have a better understanding of the
working behind the algorithms and we can make confidence statements about
conclusions.

We have treated here only one aspect where statistics has an impact on
image analysis. Another area is where the aim is not only object recognition
but knowledge representation of objects, such as the creation of anatomical
atlases of the brain. In such cases deformable templates and associated prob-
abilities distributions can be used to describe normal subjects and patients.
Grenander and his colleagues are playing a key réle in this area. Their recent

162 K. V. Mardia

work in brain mapping has been extended to higher dimensional manifolds,
i.e., landmarks (dimension 0) to sulci (lines of dimension 1), cortex and re-
lated surfaces (dimension 2), volumes and sub-volumes (dimension 3) (see, for
example, [22]). Another important area of image analysis is the use of scale
space techniques (e.g, [56]). For example, cores have been used for image reg-
istration (e.g., [12]). The core is formed by stacking medial transforms of an
image at various scales, Other methods incorporating multiscale methods in-
clude deformable templates in scale space (e.g., [55]}. Further aspects of shape
including scale space ideas can be found in the volume edited by Ying-Lie et
al. [57) and in the book by Dryden and Mardia [11].

There are various other developments in statistical image analysis where
shape is important, including image sequences and robust vision (see, for ex-
ample, [42, 48], Further examples can be seen in the edited volumes {34, 37,
38, 41, 45).

For a recent collection of papers in deformable models in medical image
analysis, see [52]; for an excellent review of general deformable templates,
see [27]. Grenander and Miller [23] describe the state of the art in computa-
tional anatomy. Hallinan et al. [24] provide many innovative ideas on pattern
analysis as applied to the face in particular. Zhu [58] has developed statistical
models for shape primitives in particular.

To sum up, image analysis continues to provide new and challenging sta-
tistical methodology, and shape analysis often plays a vital réle.

References

[1] Amit, Y. (1997). Graphical shape templates for automatic anatomy
detection with applications to MRI scans. IEEE Transactions on
Medical Imaging, 16:28-40,

[2] Amit, Y. and Geman, D. (1996). Shape quantization and recognition
with randomized trees. Technical report, Department of Statistics,
University of Chicage.

[3] Amit, Y. and Kong, A. (1993). Graphical templates for image match-
ing. Technical Report 373, Department of Statistics, University of
Chicago.

[4] Amit, Y. and Kong, A. (1996). Graphical templates for model reg-
istration. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18:225-236.

Shape in Images 163

[5] Baddeley, A. J. and van Lieshout, M. N. M. (1993). Stochastic ge-
ometry models in high-level vision. In Mardia, K. V. and Kanji, G. K.,
editors, Statistics and Images: Vol 1, pages 231-256. Carfax, Ox-
ford.

[6] Besag, J. E. (1986). On the statistical analysis of dirty pictures
(with discussion). Journal of the Royal Statistical Society, Series
B, 48:259-302.

(7] Besag, J., Green, P.J., Higdon, D. and Mengersen, K. (1995), Bayesian
computation and stochastic systems (with discussion). Statistical Sci-
ence, 10:3-66.

[8] Bookstein, F. L. (1996). Applying landmark methods to biological out-
line data. In Mardia, K. V., Gill, C. A. and Dryden, |. L., editors, Pro-
ceedings in Image Fusion and Shape Variability Technigues, pages
59-70, Leeds. University of Leeds Press.

[9] Bookstein, F. L. (1996). Landmark methods for forms without land-
marks: morphometrics of group differences in outline shape. Medical
Image Analysis, 1:225-243.

[10] Cootes, T. F., Taylor, C. J., Cooper, D. H. and Graham, J. (1992).
Training models of shape from sets of examples, In Hogg, D. C. and
Boyle, R. D., editors, British Machine Vision Conference, pages 9-
18, Berlin. Springer-Verlag.

[11] Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis.
Wiley, Chichester.

[12] Fritsch, D. S., Pizer, S. M., Chaney, E. L., Lui, A., Raghavan, S. and
Shah, T. (1994). Cores for image registration. In Proceedings of SPIE
Medical Imaging ‘94, volume 2167, pages 128-142.

[13] Galton, F. (1878). Composite portraits. Journal of the Anthropolog-
tcal Institute of Great Britain and Ireland, 8:132-142.

(14] Galton, F. (1883). Enquiries into Human Faculty and Development.
Dent, London.

[15] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distri-
butions and the Bayesian restoration of images. IEEE Transactions
of Pattern Analysis and Machine Intelligence, 6:721-741.

[16] Gilks, W. R., Richardson, S. and Spiegelhalter, D. J., editors (1996).
Markov Chain Monte Carlo in Practice. Chapman and Hall, London.

[17] Glasbey, C. A, and Mardia, K. V. (1998). A review of image warping
methods. Journal of Applied Statistics. 25:155-171,

164

K. V. Mardia

[18] Glasbey, C. A. and Mardia, K. V. (2001). A penalized likelihood ap-
proach to image warping. Journal of the Royal Statistical Society,
Series B (with discussion).

[19]) Green, P. J. (1995). Reversible jump Markov chain Monte Carlo com-
putation and Bayesian medel determination. Biometrika, 82:711-732.

[20] Grenander, U. (1994). General Pattern Theory. Clarendon Press,
Oxford.

[21] Grenander, U. and Keenan, D. M. (1993). Towards automated image
understanding. In Mardia, K. V. and Kanji, G. K., editors, Statistics
and Images: Vol. 1, pages 89-103. Carfax, Oxford.

[22] Grenander, U. and Miller, M. I. (1994). Representations of knowledge
in complex systems (with discussion). Journal of the Royal Statistical
Society, Series B, 56:549-603,

[23] Grenander, U. and Miller, M. |. (1998). Computational anatomy: an
emerging discipline. Quarterly of Applied Mathemalics, 56:617-604.

[24] Hallinan, P. W., Gordon, G. G., Yuille, A. L., Giblin, P. and Mumford,
D. (1999). Two- and Three-Dimensional Patterns of the Face. A.K.
Peters, Mass.

[25] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov
chains and their applications. Biometrika, 57:97-109.

[26] Hurn, M. A, Mardia, K. V., Hainsworth, T. J., Kirkbride, J. and Berry,
E. (1996). Bayesian fused classification of medical images. [EEE
Transactions on Medical Imaging. 15:850-858.

[27] Jain, A. K., Zhong, Y. Dubuisson-Jolly, M. P. (1998). Deformable
template models: A review. Signal Processing, 71:109-129.

[28] Johnson, V. E., Bowsher, J. E., Jaszczak, R. J. and Turking, T. G.
(1995). Analysis and reconstruction of medical images using prior
information. In Gastonis, C., Hodges, J. S., Kass, R. E. and Singpur-
walla, N. D., editors, Case Studies in Bayesian Statistics Vol. 11,
pages 149-218. Springer-Verlag, Berlin .

[29] Kass, M., Witkin, A. and Terzopoulos, D. (1988). Snakes: active
contour models. International Journal of Computer Vision, 1:321-
331

[30] Kent, J. T., Anderson, C. R. and Dryden, I. L. (1995). Deformations
with circulant symmetry. Technical Report STAT95/17, University of
Leeds.

[31] Mardia, K. V. (1989a). Discussion to ‘A survey of the statistical theory

Shape in Images 165

of shape' by D.G. Kendall. Statistical Science, 4:108-111.

[32] Mardia, K. V. (1989). Markov models and Bayesian methods in image
analysis. Journal of Applied Statistics, 16:125-130.

[33] Mardia, K. V. (1993). Discussion to papers on 'Gibbs sampler and
other MCMC methods'. Journal of the Royal Statistical Society,
Series B, 55:83-84.

[34] Mardia, K. V., editor (1994). Statistics and Images: Vol. 2. Carfax,
Oxford.

[35] Mardia, K. V. (1997). Bayesian image analysis. Journal of Theoreti-
cal Medicine. 1:63-77.

[36] Mardia, K. V., Coombes, A., Kirkbride, J., Linney, A. and Bowie,
J. L. (1996a) On statistical problems with face identification from
photographs. Journal of Applied Statistics, 23:655-675.

[37] Mardia, K. V. and Gill, C. A., editors (1995). Current Issues in
Statistical Shape Analysis. Proceedings of the Leeds Annual Statistics
Research Workshop, Leeds. University of Leeds Press.

(38] Mardia, K. V., Gill, C. A. and Aykroyd, R. G., editors (1997). The
Art and Science of Bayesian Image Analysis. Proceedings of the
Leeds Annual Statistics Research Workshop, Leeds. University of Leeds
Press.

[39] Mardia, K. V., Gill, C. A. and Dryden, I. L., editors (1996). Im-
age Fusion and Shape Variability. Proceedings of the Leeds Annual
Statistics Research Workshop, Leeds. University of Leeds Press.

[40] Mardia, K. V. and Hainsworth, T. J. (1993). Image warping and
Bayesian reconstruction with grey-level templates. In Mardia, K. V.
and Kanji, G. K., editors, Statistics and Images: Vol. 1, pages 257-
280. Carfax, Oxford.

[41] Mardia, K. V. and Kanji, G. K., editors (1993). Statistics and Images:
Vol. 1, Oxford. Carfax, Oxford.

[42] Mardia, K. V., Kent, J. T. and Walder, A. N. (1991). Statistical
shape models in image analysis. In Keramidas, E. M., editor, Com-
puter Science and Statistics: Proceedings of the 23rd INTERFACE
symposiutn, pages 550-557. Interface Foundation, Fairfax Station.

[43] Mardia, K. V. and Little, J. L. (1994). Image warping using derivative
information. In Bookstein, F. L., Duncan, J. S., Lange, N. and Wil-
son, D. C., editors, Mathematical Methods in Medical Imaging III,
Proceedings, Vol. 2299, pages 16-31. SPIE, Washington.

[44) Mardia, K. V. and Qian, W. (1995). Bayesian method for compact

166 K. V. Mardia

object recognition from noisy images. In Titterington, D. M., editor,
Complex Stochastic Systems in Science and Engineering, pages 155-
165. Clarendon Press, Oxford.

[45] Mardia, K. V., Qian, W., Shah, D. and De Souza, K. (1996c). De-
formable template recognition of multiple occluded objects. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19:1036-
1042,

|46) Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H.
and Teller, E. (1953). Equations of state calculations by fast comput-
ing machines. Journal of Chemical Physics, 21:1087-1092.

[47] Miller, M. 1., Joshi, S., Maffit, D. R., McNally, J. G. and Grenander,
U. (1994). Membranes, mitochondria and amoebae: shape models. In
Mardia, K. V., editor, Statistics and Images: Vol. 2, pages 141-163,
Carfax, Oxford.

[48] Phillips, D. B. and Smith, A. F. M, (1993). Dynamic image analysis
using Bayesian shape and texture models. In Mardia, K. V. and Kanji,
G. K., editors, Statistics and Images: Vol 1, pages 209-322. Carfax,
Oxford.

[49] Phillips, D. B. and Smith, A. F. M. (1994). Bayesian faces via hi-
erarchical template modeling. Journal of the American Statistical
Association, 89:1151-1163.

[50] Ripley, B. D. and Sutherland, A. |. (1990). Finding spiral structures in
galaxies. Philosophical Transactions of the Royal Society of London,
Series A, 332:477-485.

[61] Serra, J. (1982). Image Analysis and Mathematical Morphology.
Academic Press, London.

[52] Singh, A., Goldgof, D. and Terzopoulos, D., editors (1998). De-
formable Models in Medical Image Analysis. |IEEE Computing Soci-
ety, Los Alamitos, CA.

[53] Stigler, S. M. (1984). Can you identify these mathematicians? Math-
ematical Intelligence, 6:72.

[54] van Lieshout, M. N. M. (1995). Stochastic geometry models in image
analysis and spatial statistics. CWI Tract 108, Amsterdam.

[55] Wilson, A, (1995). Statistical Models for Shape Deformations. PhD
thesis, Duke University, Durham.

[56] Witkin, A, (1983), Scale-space filtering. In Bundy, A., editor, Pro-
ceedings of the Eighth International Joint Conference on Artificial
Intelligence, Karlsruhe, Germany, pages 1019-1022. Kaufman, Los

Shape in Images 167

Altos .

[57] Ying-Lie, O., Toet, A., Foster, D., Heijmans, H. J. A. M. and Meer,
P., editors (1994). Proceedings of the NATO Conference on Shape
in Pictures. Springer-Verlag, Berlin.

(58] Zhu, S. C. (1999). Embedding Gestalt laws in Markov random fields - a
theory for shape modeling and perceptual organization. I[EEE Trans-
actions on Pattern Analysis and Machine [ntelligence, 21:1170-
1187.

Chapter 6

DECISION TREES FOR
CLASSIFICATION : A REVIEW
AND SOME NEW RESULTS

R. Kothari and M. Dong

Artificial Neural Systems Laboratory
Department of Electrical & Computer Engineering
& Computer Science
University of Cincinnati
Cincinnati, OH 45221-0030, U.5.A.
e-mail: {rkothari,mdong} @ececs.uc.edu

Abstract

Decision trees represent a simple and powerful method of in-
duction from labeled examples. Due to the fact that larger decision
trees produce poorer test performance, considerable amount of re-
search has been directed towards preducing decision trees of small
size and depth. From this perspective, we present an overview of
decision tree induction algorithms and approaches and propose a
novel method of look-ahead based decision tree construction,

Introduction

Top-down induction of decision trees is a simple and powerful method of in-
ferring classification rules from a set of labeled examples [27]. Each node of
the tree implements a decision rule that splits the examples into two or more
partitions. New nodes are created to handle each of the partitions and a node is
considered terminal or a leaf node based on a stopping criterion. This standard

169

170 R. Kothari and M. Dong

approach to decision tree construction thus corresponds to a top-down greedy
algorithm that makes locally optimal decisions at each node.

There are two advantages that decision trees have over many other methods
of classification methods. The first is that the sequence of decisions made from
the root node to the eventual labeling of a test input is easy to follow. This
gives them an intuitive appeal that other methods of classification such as feed-
forward neural networks lack [33]*. The second is the ease with which they
can be extended to non-numeric domains where the attributes are categorical
rather than numerical.

One of the challenges in decision tree induction is to develop algorithms that
produce decision trees of small size and depth. In part, smaller decision trees
lead to lesser computational expense in determining the class of a test example.
More significantly however, larger decision trees lead to poorer generalization
(test) performance [1]. Motivated by these considerations, a large number
of approaches have been proposed towards producing smaller decision trees.
Broadly these may be classified into three categories,

(C1) The first category includes those efforts which suggest different criteria
to partition the examples at each node. Some examples of the different
node splitting criteria include entropy or its variants [27], the chi-
square statistic [15, 22], the G statistic [22], and the GINI index of
diversity [1]. Despite these efforts, there appears to be no single node
splitting that performs the best in all cases [2, 23]; nonetheless there
is little doubt that random splitting performs the worst.

(C2) The second category is based on pruning a decision tree either during
the construction of the tree or after the tree has been constructed. In
either case, the idea is to remove branches will little statistical validity
based on some criteria (9, 24, 28, 37].

(C3) The third category of efforts towards producing smaller decision trees is
motivated by the fact that a locally optimum decision at a node may
produce incorrectly classified instances that require a large number of
additional nodes for classification. The so-called lock-ahead methods
attempt to establish a decision at a node by analyzing the classifiability
of examples resulting from the split [7, 25, 30, 35].

Our goal here is to review a sampling of the different algorithms in each

*Of course, there are several advantages that feed-forward neural networks enjoy over
decision trees, primary among them being that of scalability.

Decision trees for classification 171

of the three categories mentioned above. A graph-theory—oriented review of
decision tree induction algorithms has also been done [34]. Finally, we suggest
a new approach to constructing decision trees which utilizes look-ahead to
produce smaller decision trees.

6.2 The different node splitting criteria

Prior to reviewing the different node splitting criteria we introduce some nota-
tion used throughout this Chapter. We assume there are a total of C classes
denoted by @ = {w),ws,...,wec}. On the basis of some (possibly noisy) ex-
amples of input-output observations the goal is to construct a decision tree
which upon construction can “reliably” assign a test input to a specific class.

At a particular node in the tree, let there be N training examples represented
by,

(z®), M), (2@, @), ..., (M), M)

where, 2(*) is a vector of n attributes and y) € Q is the class label corre-
sponding to the input z(¥. Of these N examples, N, belong to class wy,
Sk Nk = N. The decision rule at the node splits these examples into V
partitions, or V child nodes, each of which has N{*) examples. In a par-
ticular partition, the number of examples of class wy is denoted by Nj ().
, N = N,

There are two primary variants of the different node splitting criteria for
decision tree induction; those that use a single attribute to split the examples
and those that use all the attributes to split the examples. When based on a
single attribute, the partition boundary is orthogonal to the chosen attribute,
Typically, when all the attributes are used, the partition is based on a linear
discriminant, i.e., the partitioning is achieved using a hyperplane though higher-
order parameterizations are possible. In the following, we present some of the
more commonly used node splitting criteria.

6.2.1 Information gain based node splitting

Partitioning on the basis of information gain (or its variants) is perhaps the most
commonly used node splitting criteria. It also forms the basis of the popular
ID3 algorithm [27] and is based on choosing the attribute that results in the
largest decrease in entropy. More specifically the information gain resulting

172 R. Kothari and M. Dong

from splitting the examples bases on attribute z; can be written as,

e =[5 (5)1e(3)]

B (8 (38)] o

v=1

The first term in (6.1) is the entropy at the parent node and the second term
is the weighted entropy of the child nodes. The difference thus reflects the
decrease in entropy or the information gained from the use of attribute ;.
The attribute chosen is the one that results in the largest information gain.

Though very popular, one difficulty that arises is that the information gain
criterion as defined above favors a large number of partitions (V). To discour-
age a large number of partitions a factor based on the entropy of the size of
the splits was proposed in C4.5 [29]. More specifically,

g= EV: (QN(J) log (N;}) (6.2)

v=1]

G(z;)/g can then be used.

A closely related node splitting criteria is the G statistic which is propor-
tional to NG(-) which gives the approximate number of bits by which a split
would compress the data.

6.2,2 Chi-squared statistic based node splitting

The chi-squared statistic (x*) based partitioning is based on comparing the
obtained values of the frequency of a class because of the split to the a prioré
frequency of the class [15, 22]. More specifically,

{v) ﬂ))z

c Vv
-y) 9

k=1v=1

where, N,E”) = (N")/N)N,. denotes the a priori frequency. Clearly, a larger
value of x? indicates that the split is more homogeneous, i.e., has a greater
frequency of instances from a particular class, The attribute chosen is the one
with the largest value of x2. The G statistic mentioned above approximates
the x? distribution.

Decision trees for classification 173

6.2.3 GINI index of diversity based node splitting
The GINI index of diversity is based on

V(’U}Q C Nk2
Diz;) = & LSy N VT TN (6.4)
k=1v=1 k=1

Typically we would like a node to be “pure’, i.e., have instances of a single
class. Similar to the decrease in entropy (or gain in informaticn) used in the
information gain based node splitting methods, here the decrease in “impurity”
as given by (6.4) is used. The attribute chosen is the one which results in the
largest decrease in impurity.

6.2.4 Discriminant based node splitting

The decision rule used in the above approaches uses a single attribute, [t Is also
possible to use a decision rule based on all the attributes. Typically, when all
the attributes are used, the partition is based on a linear discriminant, i.e., the
partitioning is achieved using a hyperplane. Higher-order parameterizations of
the discriminant are also possible, though one should be aware of the decrease
in the number of examples available as one moves further down the decision
tree. The task then simply becomes that of finding the parameters of the
discriminant that result in the most number of correct classifications at each
node. The resulting tree in this case of course is binary, i.e., each node has a
left child and a right child corresponding to the two sides of a hyperplane.

Several additional criteria for node splitting have also been proposed (for
example, the exact probability metric based on Fisher's Exact Test [19], the
orthogonality metric based splitting [8],the Kolmogorov-Smirnov distance and
test based splitting (32] and several others for single attribute based partition-
ing). Additionally, more complex decision rules have also been suggested for use
at each node (for example, the use of a neural network at each internal node [10,
13]). As mentioned before, there appears to be no single node splitting that
performs the best in all cases [2, 23]. On an average, any of the criteria dis-
cussed above are good candidates for node splitting. Indeed, it is unlikely that
decision trees generated on the basis of a superior node splitting criteria are
likely to be significantly smaller or more accurate. In part, this arises due to
greedy, local and irreversible nature of the decisions made at each node. A
sequence of locally optimal decision does not guarantee an optimal or close to
optimal result.

174 R. Kothari and M. Dong
6.3 Pruning

The size of the overall tree strongly influences the generalization performance
obtained from the tree based classifier [1]. Pruning' is the removal of sub-trees
of the tree that have little statistical validity [9, 24, 28, 37] thereby obtaining
a tree with smaller size. Of course, there is ne guarantee that pruning will
improve the (some conditions appear in [16]).

In general, pruning is done after a tree has been constructed. However,
an implicit form of pruning may be based on a using a stopping criteria which
prevents the creation of a child sub-tree at a given node. Typically, a node
is prevented from splitting further depending on the return indicated by these
criteria; for example, the node is stopped from splitting further when the infor-
mation gain falls below a threshold. Of course, preventing further expansion of
the node is based on a criteria that also utilizes local information in the sense
that it is hard to estimate what would happen a few levels below the node
being investigated for pruning. A variation of the above two themes is when
construction of the tree is interlaced with pruning [11].

The more popular pruning methods are based on removing a node (sub-tree)
after the tree has been constructed. Of course, sequentially removing nodes is
not without its drawbacks. In particular, there is considerable computational
difficulty in evaluating higher order removals (i.e., at each step the “least
useful" node is removed; this corresponds to a greedy strategy which may
not be the most optimal). We present some of the popular post-construction
pruning approaches below. In general the approaches are based on estimating
the sensitivity of a sub-tree to some measure (the error rate for example) and
removing those sub-trees which have minimal impact on the measure.

6.3.1 Error complexity based pruning

One popular method of pruning is the so-called error complexity based prun-
ing [1]. It is based on,

R-R
Eer == T (6'5}

tThe generalization or prediction error can be shown to be composed of the squared
bias plus the variance. In that context, pruning introduces an additional bias with the
expectation that the variance would reduce by a larger amount.

Decision trees for classification 175

where, R denotes the error rate (probability of error) of the unpruned tree, Ris
the error rate after a node is removed, and L is the number of leaf nodes in the
sub-tree of the node being evaluated for pruning. The error rate is computed
based on a set of instances independent of the set used for constructing the
treet, FE, is computed for each non-terminal node and the node with the
smallest error complexity measure is removed.

6.3.2 Minimum error based pruning

The minimum error based pruning [26] is based on the following equation for
computing the expected error rate,

_N-N,+C-1
- N+C

where, IV is the number of instances at a given node, and Nj are the number of
instances of the dominant class. The expected error rate of the unpruned tree
is computed by computing the expected error rate using (6.6) for each branch
weighted by the number of instances in that branch. The expected error rate
if a node is pruned (i.e., all its children are removed) is then computed based
on the instances at that node. If the expected error rate with pruning is lower
than without, the children below the node are pruned and the node is made
into a terminal node.

There are several other heuristic methods of pruning that have been sug-
gested. The critical value method [24] for example, uses a threshold on the
values obtained during node splitting to remove sub-trees. The reduced error
method of pruning [28] is based on using an independent dataset and observing
the number of errors at each non-terminal node when a node is retained and
when the child sub-tree is removed. The child sub-tree corresponding to the
node which resuits in the largest decrease in the number of misclassifications
is removed. Other methods based on minimal description length [31] can also
be used.

While pruning can, in many cases, improve the generalization accuracy,
there remain two significant drawbacks associated with it. First, most pruning
algorithms have poor time complexities (often O(N3) of O(N?) or higher).

Eme (6.6)

fWhen the amount of data is limited, one has to resort to creating an independent
set based on resubstitution based sampling of the data to create the data used for
evaluation. However, the error rate is underestimated in such a case is underestimated
and corrections need to be applied.

176 It. Kothari and M. Dong

Second, pruning is itself based on a greedy strategy and as such cannot guar-
antee the optimality of the solution or the vicinity of a solution to the optimal
one.

6.4 Look-ahead

The use of look-ahead in decision tree induction is to examine the examples
in each partition resulting from a node split. Due to the local nature of the
decision made at each node, it is entirely possible that a split produces partitions
that require a large number of additional nodes for classification. The central
question in look-ahead is: What criteria is used to implement the look-ahead
policy? In the approaches proposed thus far, look-ahead uses the same criteria
as that used in the greedy algorithm to split the node. For example, when
a linear discriminant is used to split a node, then the look-ahead is based on
using a linear discriminant in each of the resulting partitions to evaluate the
classifiability of the partitions. In general, the look-ahead can be a z-step
look-ahead where z is an integer > 0. z = 0 corresponds to a purely greedy
algorithm with no look-ahead and a “very large" value of z corresponds to an
exhaustive search.

Strangely, mixed results are reported (ranging from look-ahead makes no
difference to look-ahead produces larger trees [25]). There are fewer reports of
look-ahead being generally beneficial to the goal of generating smaller decision
trees [35].

6.5 Other issues in decision tree construction

As with all empirical approaches, appropriate validation of decision trees is
important prior to use in any application. For proper validation any of the
methods based on sampling without replacement (such as cross-validation [36] ,
hold-out methods) or sampling with replacement (such as bootstrap [5, 6])
can be used [18]. Some analysis of the sample size sufficient for decision tree
induction based on pruning has also been done [17].

Many of the open problems in pattern recognition such as that of missing
data also affect decision tree construction, Within the context of decision tree
construction however the modal method is claimed to provide reasonable results
[27]. This method replaces the missing value of an attribute in an instance by

Decision trees for classification 177

the most commonly occurring value of that attribute amongst the examples
at that node of the same class. Related to the issue of missing data is that
of don't care data. The distinction between missing and don't care data is
that the former is relevant to the class of training examples while latter is
irrelevant [4].

6.6 A new look-ahead criterion: some new results

In this section, we propose a novel look-ahead criterion and present some results
obtained with it. In part, we believe that poor results in prior research with
look-ahead is due to the criterion and the mechanism in which look-ahead is
implemented. Consider for example, Fig. 6.1 which shows examples of two
classes in a specific partition resulting from the decision rule made at a node.
Look-ahead with a linear discriminant would predict poor classifiability if a
1-step look-ahead is used even though in this case a 2-step look-ahead would
have resulted in a vastly different conclusion. In general of course, when a
z-step look-ahead is used, it is entirely possible that a (z + 1)-step look-ahead
would result in substantially different results,

Our approach to look-ahead is based on the notion of texture that is com-
monly used in image processing [14]. To clarify, consider a 2-class classification
problem where each instance has n attributes (variables) and a single variable
represents the class label. It is possible to visualize a surface in (n + 1) di-
mensions {n input variables and 1 variable for the class label). For example,
the data shown in Fig. 6.1 can be visualized in 3-dimensions where two of the
dimensions represent x; and x2 and the third dimension represents the class
label. This third dimension is 1 for one class and 0 for the other class. When
instances of different classes are interlaced the surface is rough (moving rapidly
between 0 and 1). Homogeneous regions of instances of the same class cor-
respond to constant (smooth) patches of the surface. Clearly a rough surface
corresponds to a situation in which classification would be considerably diffi-
cult. The smoothness of the class-label surface thus directly corresponds to the
classifiability of the instances and can be used in evaluating the classifiability
of the examples resulting in each partition resulting from a node split, When
compared to present methods of look-ahead the proposed method is superior
in that it directly tries the obtain the classifiability from the structure and dis-
tribution of the data and does not require an arbitrary choice of the number of
look-ahead steps.

178 R. Kothari and M. Dong

08 = = T T T T T T T
O Class 1
x Class 2
08 J
L] x
x =
oTr = X % ‘l
x x - s * .
x =
LOEF a o © 0O
co oeo 4
a
O 0 o (4] %
65~ E
k* X ox x i
x XEK oy
x
x KK %
0.4" .
ﬂ'a S T ET—— . i -1 = 1 i i]

o1 o2 03 04 85 o8 o7 0.8 0.8 1

Fig. 6.1 A l-step lock-ahead with a linear discriminant would predict poor classifia-
bility. Substantially different results are obtained if a 2-step look-ahead is used in this
case

The basis of obtaining the classifiability for look-ahead is to find a class
co-occurrence matrix. More specifically, for each of the partitions, we find a
matrix A of dimension C x C (recall that C is the number of classes). An
element of A, say, A;Z], represents the number of instances of class wy, that
occur within a circular neighborhood of radius » of an instance of class w;,
t.e.,

N(V} (u}

AP=3 Z Fa®,20m) (6.7)

=1 m=1

where, (" and 2(™ are instances of class w; class wy respectively in the pth
partition, and f(-) is an indicator function which is 1 if || z() — 2(™) ||< 7,
The overall class co-occurrence matrix is simply,

Vv
A=) A® (6.8)
v=1

Decision trees for classification 179

In the preferred case A would become strongly diagonal. With increasing
confusion A becomes less and less diagonally dominant. The classifiability can
then be expressed as,

C c C
L=) Au-) > Ay (6.9)

i=1 i=1 j=1
F#i
Assuming a linear discriminant is used as the decision rule at each node, the
algorithm for for decision tree induction can then be based on maximizing,

J=C+AL (6.10)

where, G is similar to that defined in (6.1) with the exception that since a
linear discriminant is proposed, G is not a function of a particular attribute. A
in (6.10) is a Lagrange parameter and controls the relative weighting between
the information gained {number of instances correctly classified) and the clas-
sifiability of the incorrectly classified instances. A = 0 implies no look-ahead in
which case the proposed method simply uses information gain.

Since the objective function J in (6.10) is not continuous with respect to the
parameters of the linear discriminant, the maximization and the identification of
the discriminant has to be done using techniques other than gradient descent.
We have found Genetic Algorithms [12, 21] to provide good results. However,
some experimentation may be required to get an appropriate value of A and 7.

We present some results obtained with the proposed texture based look-
ahead decision tree construction algorithm. In each case, the genetic algorithm
was run for 600 generations and the population size was 300. The first result is
based on a simple 2 class classification problem and allows for easy visualization.
The top panel Fig. 6.2 shows the sequence of decisions made with A =0, i.e.,
no look-ahead. The sequence of decision are identified within parentheses in
the panel; for example “(1)" implies that it was the first hyperplane established,
i.e., at the root node. The bottom panel of Fig. 6.2 shows the sequence of
decisions with A = 3 and r = 0.5. It is clear that the use of the proposed
texture based look-ahead results in a smaller decision tree. Indeed, for the case
with no look-ahead the information gain at the root node was 0.3113 while
with look-ahead the information gain was only 0.2543 for the choice that was
made. This smaller information gain however was a better choice due to the
structure and classifiability of the remaining instances and is demonstrated in
Fig. 6.2.

180 R. Kothari and M. Dong

Fig. 6.2 Results obtained with a 2 class classification problem. The top panel is without
the use of look-ahead (i.e., & greedy strategy, A = 0 in (6.10)). The bottom panel is with
look-ahead and A =3

For the second simulation we used the glass classification problem [20].
There are a total of 10 attributes (such as refractive index, weight percentages
of Sodium, Magnesium, Aluminum, Silicon, Potassium, Calcium, Barium, Iron
and an "ID" attribute). The ID attribute was ignored and a 2 class classification
problem was created. The class label denotes whether the glass can be used
for “windows" (buildings, vehicles etc.) or not. There are a total of 214
instances (163 window glass and 51 non-window glass) and there are no missing
attributes. As before, we ran the simulations with no look-ahead (A = 0) and
with look-ahead (A = 1 and r = 3). In each case we constructed the decision
tree to provide 100% accuracy on the training dataset. When no look-ahead is
used the total number of nodes obtained were 15 with 8 leaf nodes. With look-
ahead the total number of nodes were 9 with 5 leaf nodes. For comparison,
ID3 produces 21 nodes with 11 leaves. Though ID3 also uses information
gain, it uses a single attribute for the decisions at each node. In contrast,
the result without look-ahead in our case is based on a linear discriminant at

Decision trees for classification 181

each decision node. Clearly, the proposed look-ahead based methods produces
results considerably superior to that obtained without look-ahead when either
a linear discriminant is used at a node or when single attribute based decision
is implemented at each node.

6.7 Conclusions

Decision trees represent a simple and powerful method of induction from labeled
examples. We reviewed some of the more popular node splitting criteria, exam-
ined the issue of pruning as well as look-ahead for constructing decision trees.
While, the discussion here was restricted to crisp decision trees, many of the
concepts presented here have also migrated to fuzzy decision tree induction (3,
38].

Generating a decision tree with the minimum number of leaves is NP-
hard [37]. However, we believe that look-ahead is the most promising and the
least studied of approaches aimed at producing decision trees of small size and
depth. Towards that we also presented a novel look-ahead algorithm which is
based on examining the jaint distribution of the instances of difference classes.

Acknowledgment

Part of this work was done when Dr. Kothari was on a sabbatical leave from
the University of Cincinnati,

References

(1] L. Breiman, J. H. Friedman, J. A. Olshen, and C. J. Stone. Classifica-
tion and Regression Trees. Wadsworth International Group, Belmont,
CA, 1984,

[2] W. Buntine and T. Niblett. A further comparison of splitting rules for
decision-tree induction., Machine Learning, 8:75-85, 1989,

[3] K. J. Cios and L. M. Sztandera. Continuous ID3 algorithm with fuzzy
entropy measures, In Proceedings of IEEE International Conference
on Fuzzy Systems, pages 469-476, 1992,

[4] N. Diamantidis and E. A. Giakoumakis. Don’t care values in induction.
Artificial Intelligence, 8:505-514, 1996.

182

R. Kothari and M. Dong

[5] B. Efron. Bootstrap methods: Another look at the jackknife. Annals
of Statistics, 7:1-26, 1979,

[6] B. Efron and T. J. Tibshirani. An Introduction to the Bootstrap.
Chapman and Hall, New York, NY, 1993.

[7] J.F. Elder. Heuristic search for model structure. In D. Fischer and H-J.
Lenz, editors, Learning from Data; Artificial Intelligence and Statistics
V, Lecture Notes in Statistics, volume 112, pages 131-142. Springer-
Verlag, Berlin, 1995,

[8] U. M. Fayyad and K. B. Irani. The attribute selection problem in de-
cision tree generation. In Proc. 10" National Conference on Artificial
Intelfigence, pages 104-110. MIT Press, Cambridge, Massachusetts,
1992,

[S] J. Fiirnkranz. Pruning algorithms for rule learning. Machine Learning,
27:139-172, 1997.

[10] S. Gelfand and H. Guo. Tree Classifiers With Multilayer Perceptron
Feature Extraction. PhD thesis, School of Electrical Engineering, Pur-
due University, West Lafayette, 1991.

[11] S. B. Gelfand, C. S. Ravishankar, and E. J. Delp. An iterative growing
and pruning algorithm for classification tree design. |EEE Transactions
on Pattern Analysis and Machine Intelligence, 13:163-174, 1991.

[12] D. Goldberg. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley, Reading, Massachusetts, 1989.

[13] M. Golea and M. Marchand. A growth algorithm for neural networks.
Europhysics Letters, 12(3):205-210, 1990.

[14] R. M. Haralick and L. G. Shapiro. Computer and Robot Vision.
Addison-Wesley, Reading, Massachusetts, 1992.

[15] A. Hart. Experience in the use of inductive system in knowledge engi-
neering. In M. Bramer, editor, Research and Developments in Expert
Systems, Cambridge, 1984. Cambridge University Press.

[16] H. Kim and G. J. Koehler. An investigation on the conditions of
pruning an induced decision tree. European Journal of Operational
Research, 77:82-95, 1994.

[17] H. Kim and G. J. Koehler. Theory and practice of decision tree
induction. Omega, International Journal of Management Science,
23(6):637-652, 1995,

[18] R. Kothari. Prediction error: The bias/variance decomposition, meth-
ods of minimization, and estimation. In M. L. Padgett, N. Karayiannis,

Decision trees for classification 183

and L. Zadeh, editors, Handbook of Applied Computational Intelli-
gence. CRC Press, Boca Raton, FL, 2000.

[19] J. K. Martin. An exact probability metric for decision tree splitting
and stopping. Machine Learning, 28:257-291, 1997.

[20] C. J. Merz and P. M. Murphy. UCI repository of machine learning
databases. Technical report, Department of Information and Computer
Science, University of California at lrvine, [http:// wwwi.ics.uci.edu/
“mlearn/MLRepository.html], 1996.

[21] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, New York, 1994,

[22] J. Mingers. Expert systems - experiments with rule induction. Journal
of the Operational Research Society, 38:39-47, 1987,

[23] J. Mingers. An empirical comparison of selection measures for decision-
tree induction. Machine Learning, 3:319-342, 1989.

[24] J. Mingers. An empirical comparison of pruning methods for decision-
tree induction. Machine Learning, 4:227-243, 1989,

[25] S. K. Murthy and S. Salzberg. Lookahead and pathology in decision
tree induction. In Proc. 14" International Conference on Artificial
Intelligence, pages 1025-1031, San Mateo, California, 1995, Morgan
Kaufman.

[26] T. Niblett and | Bratko. Learning decision rules in noisy domains. In
M, A. Bramer, editor, Research and development in Expert Systems
Ill, pages 25-34. Cambridge University Press, Cambridge, 1986.

[27] J. R. Quinlan, Induction of decision trees. Machine Learning, 1:81-
106, 1986,

[28] J. R. Quinlan. Simplifying decision trees. Internation Journal of Man-
Machine Studies, 27:221-234, 1987,

[29] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kauf-
mann, San Mateo, California, 1993.

[30] J. R. Quinlan and R. M. Cameron-Jones. Oversearching and layered
search in empirical learning. In Proc. 14'® International Conference on
Artificial Intelligence, pages 1019-1024, San Mateo, California, 1995.
Morgan Kaufman.

[31] J. Rissanen. Modeling by shortest data description. Automatica,
14:465-471, 1978,

[32] E. Rounds. A combined non-parametric approach to feature selection
and binary decision tree design. Pattern Recognition, 12:313-317,
1980.

184

R, Kothar:i and M. Dong

[33] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning inter-
nal representations by back-propagating errors. Nature, 332:533-536,
1986.

[34] S. R. Safavian and D. Landgrebe. A survey of decision tree classifier
methodology. /EEE Transactions on Systems, Man and Cybernetics,
21:660-674, 1991.

[35] U. K. Sarkar, P. P. Chakrabarti, S. Ghose, and S. C. DeSarkar. Improv-
ing greedy algorithms by look-ahead search. Journal of Algorithms,
16:1-23, 1994,

[36] M. Stone. Cross-validatory choice and assessment of statistical pre-
dictions. Journal of the Royal Statistical Society, 36:111-147, 1974,

[37] X. Wang, B. Chen, G. Qian, and F. Ye. On the optimization of fuzzy
decision trees. Fuzzy Sets and Systems, 112:117-125, 2000.

{38) L. X. Wang and J. M. Mendel. Generating fuzzy rules by learning
from examples. /IEEE Transactions on Systems, Man and Cybernetics,
22:1414-1427, 1992,

Chapter 7

SYNTACTIC PATTERN
RECOGNITION

A. K. Majumdar and A. K. Ray

Department of Computer Science and Engineering

Indian Institute of Technology
Kharagpur, INDIA
e-mail: {akmy,akray} @ece.iitkgp.ernet.in

Abstract

In syntactic pattern analysis, the design of a pattern classifier
involves inference of a set of generative grammars for each class
of pattern. The inferred string grammar defines a class of patterns
represented by the strings in that language. In this article, we have
presented a number of techniques for grammatical inference. A
procedure involving an automated inference of nonrecursive pattern
grammar using formal power series theoretic technique has been
described.

In any practical system, the strings belonging to a particular
pattern class are always liable to be corrupted with noise. Error-
correcting inference schemes have been suggested where the imper-
fectly formed strings in a particular pattern class are accepted by
the inferred automata. The importance of high-dimensional pat-
tern grammars in describing complex patterns has been highlighted
and some important grammars have been described. Stochastic
grammars and fuzzy grammars as generators of imprecisely defined
strings have also been adequately described.

185

186 A. K. Majumdar and A. K. Ray
7.1 Introduction

The problem of pattern recognition was first related to formal linguistic tech-
niques by Narasimhan (40] when he suggested "--. recognition presupposes
the capability to analyze and articulate the structural aspects of input pictures.
It is only on the basis of such articulated description that it is possible to ac-
quire general problem solving behavior concerned with pattern discrimination”.
There exists an inherent structure inside a pattern and along with this structure
there also exist interrelationships among the primitive elements which form a
pattern. The limitations of decision theoretic pattern classification techniques
lie in their incapability to articulate these interrelationships among the pattern
substructures. This has led to the era of structural or syntactic pattern recog-
nition. The interrelationships among pattern elements, called primitives, and
the articulated description of a pattern in terms of such relations provide the
basis for a structural or linguistic approach to pattern recognition. In syntac-
tic pattern recognition, each pattern is characterized by a string of primitives
and the classification of a pattern in this approach is based on the analysis of
the string with respect to the grammar defining that pattern class. In struc-
tural approach the problem of abstraction and generalization is essentially the
problem of selection of appropriate primitives, characterizing a pattern using
these primitives and inferring a generative grammar from a finite set of sample
pattern strings. Fu [18], and Gonzalez and Thomason [25] provide excellent
accounts and introduce fundamental concepts on structural aspects of pattern
classification. The syntactic approach to pattern recognition involves a set of
processes, namely,

s selection and extraction of a set of appropriate primitives

e analysis of pattern description by identification of the inter-relationship
among the primitives

e recognition of the allowable structures defining the inter-relationship
between the pattern primitives

A typical block diagram of a syntactic pattern recognition system is shown in
Fig. 7.1.

TEST
PATTERN

SAMPLE

PATTERN

PRIMITIVE SYNTACTIC
IDENTIFICATION - ANALYSIS
& PATTERN
(PARSER)
REPRESENTATION
L

PRIMITIVE INFERENCE

SELECTION & OF

PATTERN ol GENERATIVE

REPRESENTATION GRAMMAR

Fig- 7.1 Syntactic pattern recoghition

CLASSIFIED O/P
—e

AND
PATTERN DESCRIPTION

wouboras weapnd npaoiufy

i81

188 A. K. Majumdar and A. K. Ray
7.2 Primitive selection strategies

As mentioned earlier, segmentation of patterns poses the first major problem
in syntactic pattern recognition. A pattern may be described by a string of
sub-patterns or primitives, which may easily be identified. If each sub-pattern
is complex in structure, each of these may again be described in terms of
even simpler sub-patterns, which are again easily identifiable. The problem of
primitive selection is a fundamental one and various approaches are available,
which may be grouped as

(1) general methods based on boundary tracing

(2) general methods emphasizing segmentation of the pattern in several
regions

(3) knowledge-based segmentation techniques

o

o
A
Y
&

g

Fig. 7.2 Directional code

One of the most frequently used schemes of boundary descriptions is the
chain code method of Freeman [17]. Under this approach, a rectangular grid
is overlaid on a two-dimensional pattern and straight line segments are used
to connect the adjacent grid points covering the pattern. Let us consider a

Syntactic pattern recognition 189

a a

Fig. 7.3 Freeman code for a closed pattern

sequence of n points {p;|i = 1,2,...,n} which describe a closed curve. Here
the point p; is a neighbor of p;_;(mod n). The Freeman chain code con-
tains n vectors p;p;—1 and each of these vectors is represented by an integer
m=0,1,...,7 as shown in Fig. 7.2. The angle subtended by a vector with the
horizontal line is $m. Each line segment is assigned an octal digit according
to its slope and the pattern is represented by a chain of octal digits. This
type of representation yields patterns composed of a string of symbolic valued
primitives. Fig. 7.3 shows the Freeman chain code of a closed pattern. Apart
from its simplicity, Freeman's method has other advantages too. The coded
patterns may be rotated through 45° simply by adding an octal digit to every
digit in the chain. This method may be used for coding any arbitrary two-
dimensional figure composed of straight lines or curved segments and has been
widely used in character or line drawing recognition applications. The major
limitation of this procedure is that the patterns need adequate preprocessing
in order to ensure proper representation. Some alternative chain code repre-
sentations have also been suggested which preserve the shape of the pattern,
yet perform considerable data reduction. Some of these are

e property-encoding applications in boundary tracing of binary pictures [51]
e object recognition using a two-dimensional polar transformation [7]

190 A. K. Majumdar and A. K. Ray

e vertex chain codes [8]

The vertex chain code is invariant under translation and rotation and is usually
invariant to mirror transform as well. Here the chain code is extracted for a
pattern of any shape which is composed of a finite number of cells. These cells
may be triangular, rectangular or hexagonal in shape.

Identification of structural interrelationships

Once a satisfactory solution to the primitive selection and extraction problem
is available, the next step is the identification of structural relationships among
the extracted pattern primitives. A pattern may be described as a string or a
sentence of primitives. First-order logic may be used for describing the primitive
interrelationships where a pattern is described by certain predicates, and objects
occurring in the pattern may be defined using the same predicates. When the
patterns are represented as strings of primitives they may be considered as
sentences of regular, context-free or context-sensitive languages. Thus suitable
grammars may be defined for generating pattern languages by specifying a set of
production rules which generate the sentences in the said pattern language. The
corresponding computing machines, known as automata, have the capability of
recognizing whether a string of primitives belongs to a specific pattern class.

7.3 Formal linguistic model: basic definitions and concepts

In this section, we present the basic definitions and results from formal lan-
guage and automata theory which are used in the study of grammatical in-
ference. Most of the material in this section may be found in Gonzalez and
Thomason [25], Fu and Booth [20], and Hopcroft and Ullman [26].

An alphabet V is a finite set of symbols called letters. A sentence X over
an alphabet V is a string of finite length, formed with zero or more letters
from V, where the same letters may occur a number of times, The length of
X, denoted by |X|, is the number of symbols used to form X. The empty
sentence consisting of no symbol is denoted by A, such that AZ = ZA\ = Z.
The set of all sentences over an alphabet V' including A, is denoted by V*. The
positive closure of V is denoted by V', such that V*+ = V* — A. A language
is a finite or countably infinite set of sentences over an alphabet.

Definition 7.1 A phrase-structure grammar embodying a set of rules of

Syntactic pattern recognition 191

syntax is defined formally as a 4-tuple
G = (VNvVTv-P|S)1

where Vi is a finite set of nonterminals, Vi is a finite set of terminals,
VWUVp =V and VN Vp = 0. Here P is a set of production rules
of the form o — [where « is a sentence in V* containing at least one
nonterminal, (is a sentence in V* and S € Vi is the starting symbol. ™

Henceforth nonterminals will be denoted by capital letters (such as A, B, etc.);
terminals by lower-case letters (such as a, b, ¢, ete.); strings of terminal symbols
by z,y, 2z, etc.; and mixed strings of terminal and nonterminal by lower-case
Greek letters like o, 8. It may be observed here that a grammar can generate
the sentences of a language which represents a pattern class. The set of
patterns, represented as strings of primitive symbols and belonging to a pattern
class, form a language.

Definition 7.2 The language generated by G, denoted by L(G), may be
defined as the set

L(G) = {w e VIS 3 w},
||

where the notation S % w" means that the string is derived from the starting
symbol S by application of one or more production rules in P. L(G) so formed
is a subset of V" and the string w is formed by concatenating the terminal
symbols in Vp in the grammar. The string w is called a sentence over the
alphabet V. Starting with the non-terminal S, w is obtained by using a finite
number of production rules in P. We will next define different types of phrase-
structure grammars as follows.

Definition 7.3 Let G be a phrase-structure grammar with productions of
the form a — 3; then we may define the following types of grammars:

(1) If there is no additional restriction on the productions, the resulting
grammar is an unrestricted (type 0) grammar.

(2) G is termed a context-sensitive grammar (type 1) if its productions
are of the form a;Aas — a1 fas where ogog € V*, 8 € V' and
A € V. Here the nonterminal A may be rewritten as § only when

192 A. K. Majumdar and A. K. Ray

A appears in the context of substrings a; and a,. It may be noted
here that |a| < |3|, where |a| and |g| are the lengths of @ and S.

(3) If a € Viy and # € V' then G is a context-free (type 2) grammar,
provided each production rule is of the form A — 3. Here the
nonterminal A may be replaced by a string # regardless of the
context in which A appears as in the production A — 3.

(4) If the productions arc of the form A — aBor A — a,for A, B € Vy
and a € Vip, then G is a regular (type 3) grammar.

It is easy to note that the context-free grammar is a special case of context-
sensitive grammar while the regular grammar is a special case of context-free
grammar, Thus a language generated by type n grammar may as well be gen-
erated by a type n — 1 grammar. The reverse, however, is not true, Thus a
language is classified by the class of the most restricted grammar which gener-
atesit. The increased power of a context-free grammar over a regular grammar,
as a generator of languages, is inherent in a property known as self-embedding.
A context-free grammar supports a set of self-embedded nonterminal symbols.
A nonterminal symbol A is self-embedded if the grammar supports a produc-
tion rule of the form A — aAB, where o, 3 € V*. Regular and context-free
grammars find wide applications in syntactic pattern analysis and henceforth
we will be interested only in these two classes of grammars and their corre-
sponding automata. A grammar G partitions the set V* into two disjoint
subsets L(G) and L(G), where

L(G) = V¢* - L(G).

Here Z(G) is known as the complementary language to L(G). A very important
lemma characterizing context-free and regular languages is the pumping lemma
which states that for a sufficiently long string w in a context-free language L
of the form

w = ulwlugwgu;;clcg 7& /\‘

the word uj wyuswhug belongs to L for every i > 0. The corresponding results
in the regular language may be stated as follows. For a sufficiently long string
w with w = uywyug, wy # A, the string ujwiug also belongs to the regular
language for every i > 0. Just as grammars were defined as generators of
pattern languages, the corresponding computing machines known as automata

Syntactic patiern recognition 193

can recognize if a string belongs to a specific language of pattern classes.
We will restrict our discussion only to finite-state automaton and pushdown
automaton as recognizers of regular and context-free languages.

Definition 7.4 A nondeterministic finite-state automaton is a computing
system specified as a quintuple

(QI VTp 5! 40, F)r

where @ is a finite set of states, Vi is a finite input alphabet, & is a mapping
Q x Vp — 29, the collection of all subsets of Q. o € Q is the starting state
and F € Q is the set of final states. |

To recognize a string z € Vp*, each symbol of the string is scanned from
the left-most symbol to the right across the tape. The string Is said to be
recognized by the automaton, if starting from an initial state g, the machine
follows a sequence of states to halt in one of the final states in F' when all of
z is scanned. The sequencing is completely guided by the §-mapping. If there
exists a state-input combination (g,a) for which &(g,a) = ¢, then the finite
state automaton does not accept the string.

If, for each state-input combination, there exists a unique next state spec-
ified by the §-mapping, the automaton operates deterministically since it is
not forced to choose the next state from among several possibilities. Such au-
tomata are known as completely specified deterministic finite state automata.
The interrelationship between a finite automata and a regular grammar may
be stated as follows.

Lemma 7.1 A /anguage is said to be regular if and only if it is accepted by
a finite state automaton.

This means a finite state automaton accepts only those strings which are gen-
erated by a regular grammar, Just as finite state automata are recognizers
of regular languages, computing devices which can recognize context-free lan-
guages are called pushdown automata,

Definition 7.5 A pushdown automaton (PDA) may formally be defined
as a seven-tuple

ap = (@, Vr,6,90, 20, F, 2),

104 A. K. Majumdar and A. K, Ray

where @, Vr, go and F are as defined earlier, Z is a finite pushdown list
alphabet, § is a mapping, such that for every current-state current-input
symbol and top-of-the-stack symbol, the automaton assumes a specific next
state and writes a string on the top of the stack, i.e., §: @x(VpUANxZ —
Q x Vp*; Zp is the initial pushdown list symbol.]

Here the automaton, starting in the state gg, scans the string 2 € V*p
with Zy the initial pushdown list symbol on top of the stack. A pushdown
automaton thus utilizes a pushdown stack on which the automaton can write
a string, including a null symbol at every state transition. A string « € Vp* is
said to be accepted by the pushdown automaton if and only if the automaton,
after scanning the entire string, either reaches one of the final states in F or,
alternatively, the automaton leaves the stack empty after the entire string is
scanned.

7.4 High-dimensional pattern grammars

The string representation of patterns is quite adequate for structurally simpler
forms of patterns. The classical string grammars are, however, weak in handling
structurally complex pattern classes. This is because the only relationship
supported by string grammars is the concatenation relationship between the
pattern primitives. Here each primitive element is attached only with two other
primitive elements — one to its right and the other to its left. Such a simple
structure thus may not be sufficient for characterizing more complex patterns,
which may require better connectivity relationship for their description. An
appropriate extension of string grammars has been suggested in the form of
high-dimensional grammars. These grammars are more powerful generators of
languages and are capable of generating complex patterns like chromosome
patterns, nuclear bubble chamber photographs.

A picture description grammar, proposed by Shaw [50], is a context-free
generator of a picture description language (PDL), in which a primitive is an
n-dimensional pattern with two distinct connecting points. Here the primitive
elements may be of arbitrary shapes and they may be connected only at a
specified point on the shape primitive. The PDL have been used to describe
nuclear bubble chamber photography.

Ledley et al. [32] had described a syntactic approach for chromosome clas-
sification using a set of primitives which sufficiently describe telocentric and

Syntactic pattern recognition 195

submedian chromosomes. They had derived a context-free grammar for gene-
rating the strings belonging to these two classes of chromosomes.

More general forms of grammars capable of generating more complicated
pattern structures have also been proposed. These include tree, web, plex and
shape grammars.

In tree grammars, a tree with a finite set of nodes corresponding to the
pattern primitives is specified by a set of relations between each node and
its neighbors, which describe the relationship of pattern primitives with other
pattern substructures. Tree grammars have been applied to syntactic pattern
recognition by researchers for pattern description and classification. Some ap-
plications of tree grammar include

(1) fingerprint classification by Moayer and Fu [38]
(2) analysis of bubble chamber photograph by Fu and Bhargava [19]

Relational graphs as direct generators of trees have also been used for describ-
ing patterns. An interesting class of tree grammars, known as tree adjoining
grammars, was proposed by Joshi et al. [29). Such grammars generate context-
sensitive languages utilizing two composition operations, namely,

(1) adjoining operation
(2) substitution operation

The concept of tree adjoining grammar has been extended by Aizawa and
Nakamura [1) to generate a set of quadtrees representing a class of digital
images. Quadtrees have been used for representing complex binary patterns and
such representations have been found to be effective for feature extraction and
pattern characterization. The quadtree adjoining grammar yields a compact
description of a set of patterns, provided the patterns may be represented by
initial quadtrees and by using a few adjoining operations.

The syntactic technique has also been used for picture generation. This may
be performed by growing the picture by adding modular primitive shape units
in bits and pieces until the desired picture is generated completely. Random-
context picture grammar has been utilized by Ewert and Van der Walt [12],
who performed successive refinements on the pattern by using a set of rewriting
rules in specific picture grammar. The introduction of geometric context in
this grammar has enriched the generation of picture utilizing random-context
picture grammar. An attributed grammar, consisting of a syntactic part with
a relational attribute coupled with a set of semantic rules, has also been used
for pictorial pattern recognition. Array grammars have been proposed as a

196 A. K. Magumdar and A. K. Ray

generalization of string grammars, where the rewriting rules involve replacement
of a 2-D subarray by another subarray. Array grammars and array automata
have been described comprehensively by Milgram and Rosenfeld [37].

Webs, which are undirected labelled graphs, have been used for syntactic
pattern description [44]. In a string grammar, each primitive symbol is concate-
nated with only two other primitive elements, one to the right and the other
to the left of the element. A class of grammars was suggested by Feder [13],
in which a set of primitive elements having multiple connectivity structure may
be used. These grammars are known as plex grammars. Plex grammars use
primitive structures called n-attaching point entity (NAPE). Each attaching
point entity is nothing but a shape primitive having a set of attaching points at
which another set of shape primitives may be joined. A set of identifiers asso-
ciated with each NAPE has been used for pattern generation. The n-attaching
point entities are primitive elements in which there are n specified points on
the primitive elements at which other point elements may be connected. Thus
this class of grammars possesses more generating capabilities compared to the
string grammars, These grammars have been used for generating the com-
plex structures of organic compounds like rubber molecules, where the chain
of C — H structure repeats to form complex organic compounds.

7.5 Structural recognition of imprecise patterns

In many practical applications, uncertainty exists in the process of classification,
where some of the patterns may occur more frequently than others and certain
variations or distortions in the pattern may be more likely than others. In such
cases, probabilistic measures are employed in the process of classification. In
such grammars, known as stochastic grammars, probabilities are assigned to
the production in the generative grammar in such a way that the a priori
likelihoods of the classes and the individual strings in a class are reflected in
the productions.

When the imprecision in the pattern strings is more due to vagueness and in-
exact description rather than randomness, fuzzy grammars have been proposed
for syntactic analysis. In fuzzy grammars, each production rule is associated
with a fuzzy membership grade.

As in the case of the decision theoretic approach, the formal linguistic
method can also be extended to fuzzy or stochastic syntactic models, by which
fuzzy or probabilistic aspects may introduced into the linguistic model.

Syntactic pattern recognition 197

Thus in all such cases, it is important to construct a recognizer which can
recognize imprecisely-defined strings of patterns. |t may be noted that ordinary
automata cannot recognize such strings and hence the need of recognizers of
fuzzy or stochastic languages. Here we will primarily discuss the methodology
for inferring a fuzzy grammar and a similar procedure may be used for stochastic
grammar inference as well.

7.5.1 Stochastic grammars for pattern representation

In many practical situations, certain amount of uncertainty in the form of noise
and variations in the pattern measurements exist. There exist non-stochastic
approaches to error correcting grammars, which have been discussed in earlier
sections, with the implicit assumption that all the patterns under consideration
are equally likely to occur, Alternatively, there are situations, where certain
patterns may occur more frequently than others and there exist probabilistic
measures for the occurrence of each pattern. Stochastic grammars and au-
tomata have been used to tackle such problems where probabilistic measures
are employed in the classification process, In stochastic grammars, probabili-
ties are assigned to each of the productions in the generative grammars in such
a way that the a priort likelihoods of the classes and also the individual sen-
tences In each class are properly reflected in the probabilistic grammar. Fu [18],
Fu and Huang [21], and Gonzalez and Thomason [25] provide background for
stochastic grammars and automata. Once the stochastic syntactic description
of the string corresponding to the input pattern is complete, it is assigned a
probability with respect to each of the generative grammar classes. Various
methods of estimation of production probabilities and the use of stochastic
syntactic analysis for regular and context-free classes of generative grammars
for pattern classification have been reported, for instance, by Gonzalez and
Thomason [25)], and Maryanski and Booth [36].

7.5.2 Fuzzy syntactic model

Since the introduction of fuzzy set theory by Zadeh [58], various models of
fuzzy automata have been studied in the literature. Fuzzy models are applied
in cases where the imprecision in the pattern description arises from an intrinsic
ambiguity (imprecise definition), rather than an associated randomness in the
environment, Once a set of generative grammars is inferred using a finitely
large set of training patterns, the assessment of the overall efficiency of the

198 A. K. Majumdar and A. K. Ray

inferred grammar or automata in correctly classifying the patterns not included
in the training set, is done in the generalization phase.

7.5.3 Fuzzy automata and languages

The theory of fuzzy languages and their role in describing pattern classes have
received importance during the last three decades. As an extension to the
crisp language recognition theory, where a machine computes the characteristic
functions of the language, the recognition of fuzzy languages may be viewed
as a problem where the machine computes the fuzzy membership functions of
the strings of the language. Each string in a fuzzy language has a membership
grade associated with it, which denotes the class membership of the string in
that language. The membership function of a string in a language may be
computed by a set of state configurations, such that the state transitions and
the final state configuration for a given input string is uniquely associated with
the membership function of the string. Lee and Zadeh [33] have applied the
fuzzy set theory to formal languages. Various models of fuzzy programs and
fuzzy automata have been proposed by Santos [47]. These models include the
max-min, max-product and probabilistic automata.

The properties of fuzzy automata have been investigated by Mizumoto et
al. [39]. These concepts are based on the notion of fuzzy sets of type 2,
Although ordinary fuzzy automata and finite automata are special cases of
fuzzy-fuzzy automata, the power of fuzzy-fuzzy automata as an acceptor is the
same as that of fuzzy automata.

The notion of a regular fuzzy expression and its use in recursive generation
of the family of fuzzy languages have been shown by Santos [48], Kandel and
Lee [30], Thomason and Marinos [55], among others. Wee and Fu [57] have
proposed fuzzy automata as models of a learning system. The learning behavior
of the unsupervised system is reflected by the presence of a non-stationary fuzzy
transition matrix.

Some of the major applications of fuzzy syntactic analysis are handwritten
English script recognition by DePalma and Yau [10], recognition of handwritten
characters by Kickert and Koppelaar [31], and Stallings [53], and identification
of skeletal maturity from X-rays by Pathak and Pal [42].

[t may be mentioned that although various types of fuzzy grammars and
fuzzy automata have been developed by Santos [47], Kandel and Lee [30],
Thomason and Marinos [55) and others, the problem of fuzzy grammatical
inference needs more investigation.

Syntactic pattern recognition 199

The definitions of formal language theory may be generalized for fuzzy
grammars by associating a membership grade to each of its productions. As
in the case of crisp grammars, regular fuzzy grammars generate regular fuzzy
languages. We now present the preliminary notions related to formal fuzzy
language and fuzzy automata briefly.

Definition 7.6 A fuzzy language L over an alphabet V7 is defined to be a
fuzzy subset of V*, such that a sentence z € Vp* has a membership grade
t41,{z), which denotes the degree of membership of L. Here 0 < p;(z) < 1.

|

Definition 7.7 A fuzzy regular grammar may be formally defined as a
four-tuple

(Vr,Vn, Sy, P)

where the starting symbol Sy is a fuzzy subset of Vi, the set of nontermi-
nals; Vi is a set of terminals and P is a finite set of production rules of the
form

AL 4B

or
f

A—a,
where A, B € Viy, a € Vr and 0 < # < 1 determines the grade of member-
ship corresponding to the production rule. [|

Definition 7.8 A fuzzy regular language is a fuzzy subset of Vp* such
that the membership grade of a string z € Vp* in the fuzzy language can
be determined by applying the production rules of a fuzzy regular grammar,
as defined above. |

The membership grade, p;(z), in a fuzzy regular language L, of a string
z € Vr* may be computed as follows:

Let ¢ = z125... 2., and let the starting symbol §; € Viy have a member-
ship grade p,(S;). The string z may be derived as follows:

8 é
S; Brrocar = ... L T1... T,

200 A. K. Majumdar and A. K. Ray

where a;1(Vp U V)*. The membership of the string x in the fuzzy regular
language L then becomes

po(e) = max [min(d;, ... 6,)],
t.J

where the max operator is applied over all possible derivations of =, utilizing
the fuzzy regular grammar production rules. If no such derivation exits then
pp(z) = 0.

Example 7.1 Let

Vr = (a,b,¢),

Vn = (51,852,853, 84, S5, 5),
S = {(0.9,5,),(0.2, S2)}
P: S 25 a8

S; — bSs
Sy 24, 4S5
S 22 48,
Sy LS c

Ss —s bSs
8 2% 585,
8 X4 58,

Sg == b

Then, for the string abbe € Vi, we have pp(abbe) = 0.9. This may
be observed from the derivation of abbe from the starting symbol S; with
membership grade p{S;) = 0.9. A possible derivation is

81 L-a8, b8 2 abbSs 2 abbe.
a

As in the case of a crisp language and automaton, the acceptor of fuzzy
regular language is a fuzzy finite automaton (FFA), which is formally defined
below.

Syntactic patlern recognition 201

Definition 7.9 A fuzzy finite automaton (FFA) M is defined as
M= (Q! VTIHF F!n)s

where

Q= {q1,...,q.} is & nonempty finite set of internal states,

Vr is the input alphabet,

II is an n-dimensional fuzzy row vector known as initial state designator,

i.e.,
I = (Mg, ..., g,)',

and 0 < I < 1,

1 = (g,+-++17M4s) is a n-dimensional column vector called the final-state
designator, 0 < N <1,

F(z), for z € Vp, is a fuzzy transition matrix such that for g,,q; € Q, the
(,7)th element of F(z) is equal to fa(gi,, g;), where the function

fm i QxVrxQ—[0,1]
is the fuzzy state transition function. [|

For gi,q; € Q and = € Vp, fm(gi,z,q;) is the grade of transition from state
qi to state g; when the input is z. For an input string z = z123...Zp, the
grade of transition from {gi,,...,qi, }. where g, € Q, can be defined by an
m-ary fuzzy relation. For the computation of fys over Vr* we may use

fM(QinI)qim) = maxnﬁn{fM(qinIliqin)!‘ . ':fM(Qirm_.z!Im:Qirm)}l

where, gi1,...,qi, , €Q.
The membership grade of the string z, accepted by the fuzzy automaton
M, is

z) =max min |II i1y Ly Qi]
pmiz) o [a FM(Giys 2003)M,,
It is obvious that a fuzzy language contains a large number of sentences with
membership function values ranging from 0 to 1. In the syntactic description
of patterns, we would be only interested in those strings whose membership
grades are more than a certain threshold, say A\. The set of strings accepted

202 A. K. Majumdar and A. K. Ray

by M with threshold) is defined as
LM, N = {zjppylz) > A, z € Vp')

As in the case of crisp regular grammars and automata, for every fuzzy regular
language L there exists a fuzzy finite automata M such that for each x € Vp*,
pp(z) = pp(z), and vice versa.

Some interesting properties of fuzzy regular languages are briefly stated
below.

(1) The union of two fuzzy regular languages Ly and L; is a fuzzy regular
language with

#p (%) = max [P'Ll (17):#1,2(3}]

for all x € Vip*.
(2) The intersection of two fuzzy regular languages L and Ly is a fuzzy
regular language with

pp(x) =min [py (@), pig, ()]

for all z € V™.
(3) L = L, o Ly(concatenation) is a fuzzy regular language with

pr(zy) = min[pp, (), 15,)]

for all =,y € Vip*.

7.5.4 Fuzzy context-free languages

A fuzzy context-free grammar G has productions
ALa

where @ € (Vp|JVn)", 0 € 8 < 1. As in the case of a crisp context-free
grammar, the strings generated by a fuzzy context-free grammar are accepted
by a fuzzy pushdown automaton (FPDA), which is defined as follows.

Definition 7.10 A fuzzy pushdown automaton (FPDA) is defined as

M= (Q'VTrranif!n}

Syntactic pattern recognition 203

where @ = {q1,...,qn} is a nonempty finite set of internal states, Vr is the
input alphabet, I' is a list. of stack symbols, IT is the initial state designator,
n is the final state designator, and f is the fuzzy transition map

f(q1a|z!(j!zl)“'lzf) =91

where 0 < @ < 1. The transition mapping identifies the possibility of
transition from state g, with input e and top-of-stack symbol z to a new
state § and in the process the automaton writes z),..., 2. on to the stack,
with z; at the top. ' | |

For every fuzzy context-free language L, there exists a fuzzy pushdown au-
tomaton M such that pp(z) = pp(z), Yo € Vr*. Thus a fuzzy pushdown
automaton acts as a parser for the fuzzy context-free grammar.

7.6 Grammatical inference

In syntactic pattern recognition, the problem of grammatical inference is one
of central importance. This approach is based on the underlying assumption of
the existence of at least one grammar characterizing each pattern class. The
identification and extraction of the grammar characterizing each pattern class
form the core problem in the design of a syntactic pattern classifier.

The problem of grammatical inference involves the development of algo-
rithms to derive grammars using a set of sample patterns which are rep-
resentatives of a pattern class under study. This may thus be viewed as
a learning procedure using a finitely large and growing set of training pat-
terns. In syntactic pattern classification, the strings belonging to a particu-
lar pattern class may be considered to form sentences belonging to the lan-
guage corresponding to the pattern class, A machine is said to recognize
a pattern class if for every string belonging to that pattern class, the ma-
chine decides that it is a member of the language and for any string not
in the pattern class, it either rejects or loops for ever. For details on the
origin of grammatical inference and subsequent developments, one may re-
fer to the works of Chomsky [9], Chomsky and Miller [9], Solomonoff [52],
Feldman [14], Feldman et al [15], Gold [22], Horning [27], Pao [43], Fu
and Booth [20], Biermann and Feldman [3], Gonzalez and Thomason [23,
25], Gonzalez et al. [24), Fu [21], Huang and Fu [28], Richetin and Verna-
dat [45), Tsai and Fu [56], Lu and Fu [35], and so on.

204 A. K. Majumdar and A. K. Ray

Inferring an appropriate grammar or the corresponding automaton using a
set of samples belonging to different pattern classes, is a vital and indispensable
aspect of syntactic pattern recognition. Out of these pattern strings there are
strings which surely belong to a certain language characterizing a pattern class.
Such a set of strings R* is termed a positive sample of a language L(G). A
complementary set of strings R, which surely do not belong to L(G), is a

negative sample of a language L(G), i.e., R~ C L(G).

Definition 7.11 A sample of a language L{G) is a subset of R = RTUR™.
|

Normally in inference problems, we will have situations where R U R~ has
finitely many elements. However, if the positive sample set is allowed to grow
such that R+ = L(G) then R* is said to be complete. Similarly if we have a
large set of negative samples, i.e., if R~ is allowed to grow such that R~ =
m. then R~ is called complete. The sample set R is complete if R =
(L(G), L(G)). While inferring a grammar it is essential that each production
rule of the grammar must be utilized in generating at least one string in the
language. A positive sample R™ of L(G) is structurally complete if each
production rule in G is used to generate at least one string in R+,

For generating a positive sample set Rt = {zy,...,z,} we may have
a canonical regular grammar, G, = (Vye, Vp, P,5) with Vp consisting of
all the terminal symbols of R*; P is a set of rewriting rules of the form
Ay — aApp, Ap and A;_ — ay,, where each Ay, represents a nonterminal
Ain € Vxon, each a;, is a terminal ie., ai;n € Vp, and § € Vye is the
starting symbol. The set of non-terminals V¢ of the canonical grammar will
be quite large and may be partitioned into a set of blocks to form a non-terminal
set Vyp of a derived grammar
Gp = (Vyp, Vr, Pp, B) where B is the starting symbol corresponding to the
block containing S in G, and Pp is a set of rewriting rules of Gp. The set of
rewriting rules Pp may be given as follows:

(1) Pp contains a rewriting rule of the form A; — aA; if and only if there
exist Z,,Z, € Vyc such that Z, — azs, Z, € Aj;

(2) Pp contains a rewriting rule of the form A; — a if and only if there
exists Z, € Vye such that Z, — a, Z, € A;.

Definition 7.12 Let R* € Vr* be a positive sample set and let Z € Vy*
be a string such that Zw € R* for w € Vp*. For any positive integer k,

Syntactic pattern recognition 205

the k-tail of the string Z with respect to R* is defined as the set
H(Z,R* k),
where
H(Z,R*, k) = {w|Zw € R*, [w| < 1}.
B

Definition 7.13 The formal derivative of a set of strings A with respect
to the symbol a € Vr is defined as

D, A = {z|ax € A}.
|

The formal derivative of any string with respect to A results in the same
string.

Definition 7.14 The canonical derivative finite-state grammar G¢op as-
sociated with the positive sample set R* = {Xj,..., X} is defined as

Gep = {Vn, V7, P, S},
such that the following conditions hold:

(1) v = {Uj,...,U,} be the distinct derivatives of R* not equal to A
and Uy = DyR*;

(2 Uy =5

(3) Vr is formed by the set of all distinct symbols in R*, and Vy is
identical to u;

(4) P is as follows:
u; — an if and only if D, U; = Uj for Ug‘Uj € Vy and a € Vp,
and
V. = a if and only if A € D,U; for U; € Vy and a € Vo,

Having defined the basic elements of formal language theory, we next extend
these concepts to the problem of inferring a grammar which generates (or, al-
ternately, constructing an automaton which will accept) the patterns belonging
to a certain class.

206 A. K. Majumdar and A. K. Ray

In the light of the discussion, and the definitions and results presented in
the previous paragraphs, we will now formulate the process of grammatical
inference. Given any string = from a sample of the language L(G) generated
by a grammar G, there exists a finite number of ways by which @ can be
generated by G. Moreover, a finite sample set may be associated with an
infinite number of languages. Thus it is not possible to uniquely derive a
grammar that generates a given sample. A grammar may be inferred which
describes the strings in S* along with a number of strings similar to those
contained in §*. Since a finitely large number of grammars may generate the
same positive sample, a number of admissible grammars are first enumerated
in the process of inference.

Definition 7.15 A class of grammars G is said to be admissible if G is
denumerable and if for any w € Vi, it is decidable whether w € L(G) for
any G € G. [|

It may be observed that any finite set of strings can be described by at least
one finite-state grammar (Fu and Booth [20]). The problem of inference is
thus to identify at least one grammar out of the admissible set of grammars
that satisfies the criterion that L(G) > St and § < L=(G).

While inferring a finite-state grammar using a finite sample, it is assumed
that the positive sample set is structurally complete. Different techniques have
been proposed for selecting one or more grammars from the admissible class of
grammars. Fu and Booth [20], Gonzalez and Thomason [25), Biermann and
Feldman [4], and Horning [27] provide excellent accounts of the various facets
of grammatical inference. We now briefly describe different techniques and
approaches adopted for inference of regular and context free grammar. Several
heuristic approaches to the grammatical inference problem have been proposed
which are not presented as solutions to well-posed problems.

7.6.1 Supervised inference strategies

In this section, we present some standard techniques for grammatical inference
that are based on supervised construction of grammars or automata using a
set of positive sample strings.

The technique proposed by Chomsky and Miller [9] involves a four-step
procedure where a regular grammar is inferred from a positive sample string
with the help of a teacher. In this technique, all the cycles and sub-cycles of

Synlactic paiiern recognition 207

R* are detected with the aid of a teacher and two sets of strings Ryt and R+
are formed, where the first set Ryt contains the strings of R* in which no
cycles are formed, while the second set R, contains the set of strings having
one or more cycles, i.e., Rot UR.* = R*,

Let us now discuss the procedure for identifying a cycle in a valid sample
set. Given a string = in a language L, we first identify all the substrings
in z. For example, if £ = abea is a valid string in L, its substrings are
{a,b,c,a,ab,be, ca, abe, bea}. Each of the above substrings is deleted, one at
a time, from the string abea, and the supervisor confirms whether the resultant
string after deletion, is a valid string in the language or not. Thus the resultant
strings after deletion of the substrings from z are

{bca, aca, aba, abe, ca, aa, ab, a,a}.

The next step is the confirmation by the supervisor, which of the resultant
strings are valid strings in the language. Suppose bea is a valid string in L. Then
the supervisor next checks if the strings {aabca, aaabea, aaaabea, . . .,a™bea}
are all valid strings in L. If all of them are in L(G), there exists a cycle in a
and we may denote this cycle by (a)bca. There may exist cycles of any length
in a sample set. In case we have cycles of length greater than one, there is a
possibility that there may exist subcycles in the same strings. Thus, suppose
there is a cycle in be. Then one should check if there is any subcycle in b or c.
Once the cycles and subcycles are detected in the strings of the positive sample
set, and the two sets of strings Ro® and R, " are formed, a set of productions
is next formed using the string in RF. The resulting set of productions is
augmented so that the augmented set of production rules can generate the
strings in Rp™. The regular grammar thus inferred is minimized using standard
techniques.

This method was generalized by Solomonoff [52] for context-free grammars.
The method depends on the determination of all the cycles in a language.
Solomonoff’s assertion was that there always exists at least one finite set of
strings with their cycle markers such that this finite set can generate the entire
language. The basic cycle forms can be converted to the conventional form of
a context-free grammar,

One of the problems with these methods is that a large and highly redundant
grammar would result from the inference procedures. The other limitation of
these methods is that the supervisor needs to check a large sample set, for the
detection of cycles in the sample set. The computational complexity of these

208 A. K. Majumdar and A. K. Ray

methods thus becomes prohibitively large.

7.6.2 Unsupervised inference strategies

An unsupervised strategy for inferencing has been proposed by Feldman [14]
which is based on the detection of iterative regularity. In this method, the
resulting grammar is inferred without the aid of any supervisor and the method
employs only a positive sample set. The strategy employed here involves,
in the first step, generation of a canonical grammar that generates only the
given sample set. The sample strings are taken one after another in order of
decreasing length, with the longest string first in the queue. Given a structurally
complete set S, an admissible class of ordered finite-state grammars Gg can
be defined such that

gF = '{Gl!' "?GC}!

where G; is the jth derived grammar obtained from the canonical grammar
G.. The number of non-terminals of G; is always less than or equal to that
of Gj for i < j. It is important here to note that any such procedure would
be practically viable only if the number of such admissible grammars can be
reduced. Inference methods based on formal derivatives and k-tail methods
have been proposed which reduce the number of admissible grammars. The
computational complexity in the case of inference procedures based on formal
derivatives becomes large for strings of large length and thus they are not
considered to be very useful. However, the k-tail method has been observed to
perform better. This method, suggested by Bierman and Feldman [5], infers
a finite state automaton directly from the sample set R*. This procedure
also identifies the iterative regularity in the strings of Rt. In the proposed
algorithm, k-tail of string z € Vip*, is defined as a set h(z, R*, k) where
h(z, R* k) = {w|zw € R*, |w| < k}, k being a positive integer. The
length of the string w € V¢~ is less than or equal to k, which is an adjustable
parameter. The set of states of the inferred automaton is obtained as sets of
symbols which are the k-tails of sub-strings w € Vp*. For each a € Vi*, the
state transition function § is given as,

8(g,a) = {a’ € Qlg* = h(z,a, R*,k)},

where ¢ = h(z, R* k) and the initial state is g, = h(\, RT,k). The set
of final states contains those sets having the empty string A in their k-tail

Syntactic patlern recognition 209

representation and is given as
F= {Q]h(z: R+9k) = A}

The inferred non-deterministic automaton is next converted to a deterministic
minimal automaton by standard techniques. The major problem in k-tail meth-
ods is that the nature of the string accepted by the automaton depends on the
value of k, and the size of the language accepted by the automaton decreases
with an increase in k. If m is the length of the largest string in R™, then the
automaton with k > m will accept only those strings in R*, while if k = 0,
the automaton accepts V" including the string A. For values of & < m, the
automaton may accept string from R™ as well.

7.6.3 Enumerative inference strategies

The enumerative approach to grammatical inference involves enumeration of
all the possible candidate grammars and subsequently the appropriate grammar
is searched. This makes use of a ‘goodness measure', by optimizing which the
best grammars may be inferred. Gold [22] proposed the idea of identification
by enumeration. Horning [27] had reported the computer implementation of
the enumeration method based on a Bayesian approach. He used the con-
cept of grammatical covering to eliminate a large class of grammars. The
class of grammars is visualized as being organized in a tree structure where
a grammar G with n nonterminals represents a node on the tree and each
grammar G’ with n+ 1 nonterminals which is covered by G is associated with
a node branching downwards. A node, with all its children, is eliminated if
the grammar corresponding to it fails to generate the given sample set. Horn-
ing's method yields an effective grammar that converges and tolerates noise
of known distribution. The procedure is computationally expensive since the
procedure involves enumeration and rejection of a large number of grammars
which are not deductively acceptable. Biermann and Feldman [4] had pointed
out that for m terminals and n non-terminals there are approximately 2nm{n+1)
possible grammars. However, pruning techniques may be used for selecting the
set of admissible grammars. Pao [43] utilized pruning techniques based on
the notion of grammatical coverage for inference using enumeration, First, a
finite-state machine Mj, that can accept only the strings that belong to Rt is
constructed. An ordered lattice of automata is next formed by merging states
of Mp such that My is the lowest point in the lattice whereas the highest point
is the universal acceptor. The nodes at higher levels are obtained by merging

210 A, K. Majumdar and A. K. Ray

the nodes in the adjacent lower level. It has been shown that My essentially
represents the canonical grammar whereas other nodes in the {attice are as-
sociated with derived grammars. In this method, a systematic approach of
organizing the admissible grammars has been suggested.

7.6.4 An inference strategy based on formal power series

We describe a formal power series theoretic technique for inferring a gram-
mar. The algorithm is suitable for inferring fuzzy as well as crisp grammars.
With appropriate extension stochastic grammars may as well be inferred using
this strategy. In syntactic pattern classification, a set of predicates describes
the structural relationship among primitives defined in their arguments. These
propositions, which are binary-valued in predicate calculus, find an extension
in the fuzzy domain with a multiplicity of values in the interval [0, 1] for fuzzy
patterns. The membership grades of the strings of pattern primitives are eval-
uated based upon the relative frequency of occurrence of the string sequence
in the sample,

As has been already mentioned, the inference of a regular grammar is based
on the assumption that each string in the sample set has a grade of fuzzy
membership in the corresponding language, that is to be estimated a priori.
This membership may be {0,1} for crisp patterns and [0, 1] for fuzzy patterns.

The inferred finite-state automaton assigns a membership grade to each of
its productions and estimates the membership grades of the initial state and
the set of final states of the automaton. The problem of construction of min-
imal automata, involving the development of algorithms capable of deriving
automata from a set of sample sentences, has received paramount attention in
recent times. Many investigations (2, 4, 6, 14, 20, 30, 38, 57] have been re-
ported in literature on the automated inference of regular and context-sensitive
grammars in deterministic and non-deterministic domains. Stochastic language
and automata have also been proposed for systems operated in non-ideal en-
vironments [16, 19].

The theory of formal power series was first related to formal language theory
by Schutzenberger [49], and the concept was later extended by Biswas [6],
Eilenberg [11], Fliess [16], and Salomaa and Soittola [46].

The formal power-series representation yields a minimal automaton. In the
next section some of the preliminary concepts of formal power series are intro-
duced. These results are used in |ater sections to derive a minimal automaton
from the given sample strings. Finally, an application of the proposed interface

Syntactic pattern recognition 211
technique to character recognition is shown.

7.6.4.1 Preliminaries of formal power series

In this section, some of the definitions and results of the theory of formal power
series are introduced. Most of the definitions and results in this section can be
found in [6, 11, 16, 46, 49].

Definition 7.16 A monoid M = (;*) is an algebraic structure consisting
of a set m and the binary operation * such that the following conditions
are satisfied:

(1) For all a,b,c € m, a* (bx¢c) = (a*b) *¢, i.e, * is an associative
binary operation
(2) There exists an e € m such that, foralla € m, exa=a*e = a.

| |
A monoid is commutative if it also satisfies the law
(3) Foralla,bem,axb="bxa.

Here we will consider the free monoid Vo* generated by the words over an
alphabet Vp, including the empty word.

A set of m x m square matrices, where the (3, j)th element a;; of each
matrix belongs to the semiring A, constitutes a semiring denoted by A™*™,
where the usual rules of addition and multiplication of square matrices can be
extended in an obvious manner,

It may be noted that modules are special cases of semimodules.

Definition 7.17 Let D = (C,+,) be an A-semimodule and be a non-
empty subset of C. Then U = (O, +) is a subsemimodule of D if for all
dl,dzeéMdG,bEO,adl+bd2€é. i

The subsemimodule generated by O is the smallest of all subsemimodules of
D containing O.

Hereafter, we will use the same notation for the algebraic structure and the
corresponding underlying set. For example, the same letter A will represent
the semiring A and the underlying set.

Definition 7.18 Let M be a monoid and A be a semiring. The mapping
r of M into A is called a formal power series and r is written as a formal

212 A. K. Majumdar and A, K. Ray

sum

r= Y (r,wuw (7.1)

weM
]

The values of (r,w) € A are also referred to as the coefficients of the series.
We will consider here the free monoid Vir™ generated by words over an alphabet
Vr and r will be a series with non-commuting variables in V.

The collection of all formal power series 7, as defined above, is denoted
by A((M)). Given any language L C Vp*, the language may be uniquely
associated with a formal power series r belonging to A((Vr*)).

The elements of the support of r, r € A((Vp")), are the words w € V¢*
such that (r,w) # 0, and hence supp(r) may be considered as a language over
the alphabet Vp*.

For the purpose of inference of regular grammars, we would require a
recognizable series. A series r of A((M)) is termed A-recognizable, i.e.,
r € AT ((M)), if and only if

r=(r,\)A + Z plp, wiw
wEM

where p : M — A™*™ m £ 1, is a representation. Next we state the
Schutzenberger theorem, which provides a convenient characterization of rec-
ognizable power series.

Theorem 7.1 Ifr € A™¢((M)), then there exist a row vector «, 3 represen-
tation i, and a column vector {3 such that

r=Y (a{pw)B)w (7.2)
we M
Conversely, any series 3, - a(c(pw)B)w belongs to A™((M)).

Theorem 7.2 (Kleene-Schutzenberger theorem) For a free monoid Vp*, the
families of A™¢((V*r)) and A ((V*1)) coincide.

The rational power series as described, however, can be characterized by its
Hankel matrix, defined below.

Definition 7.19 The Hankel matrix of 7 (a series of A{(Vr*))) is a doubly
infinite matrix H(r), whose rows and columns are indexed by the words of

Syniactic paltern recognition 213

Vr* and whose elements with indices u (row index) and v (column index)
are equal to (7, uv). [|

We next observe that if we appropriately define addition of functions in A"
and multiplication of functions in AYT™ by an element a € A, then AV’
becomes an A-semimodule. We define addition of f; and f; for any fi, fo €
AYT" as

(fi + f2)u = fi(u) + fa(u), Vu € Vr’ (7.3)

It may be noted that fi(u) € A for i = 1,2,...,n. Hence fi(u) + fa(u)
corresponds to addition of elements in A. Then (fi+f2)AY”" is a commutative
moneid with respect to the addition of functions as defined here. Similarly, af,
fora€ A and f € A((Vp*)) can be defined as

(af)(u) = a- f(u) Vu € Vp* (7.4)

Hence AY7" is an A-semimodule.
We next introduce a new operation where, for any w € Vr* and F € AY7",
we define the function

wF(v) = F(vw), Yv € Vr* and wF € A"’ (7.5)

It can be shown that the operator transforming F' into wF is linear. If we
consider the function F, corresponding to the vth column of H(r), then from
(7.3) and (7.5) we have

(wFy)(u) = Fy(uw) = (r,uwv) Yu € Vp* (7.6)
This results in
(wFy)(u) = Fyy(u) Yu € Vp* (7.7)

Thus the operation of premultiplication of F, by w results in a new function
F,,u that corresponds to the wuth column of H(r).

In the case of inference of crisp grammars, we will be concerned only with
semiring A. Our aim is to construct the minimal automaton, crisp or fuzzy,
that will accept sentences in R* of a crisp or fuzzy language as discussed in
the next section.

214 A. K. Majumdar and A. K. Ray

7.6.4.2 Construction of a minimal automaton

To construct a fuzzy automaton from a set of sentences belonging to a positive
sample set of a fuzzy language, the Hankel matrix is formed using all possible
factorizations of each of the strings w;. As observed in the previous section,
the Hankel matrix is formed by the words of V*, with each element equal to
(r,uv), where u and v € Vp* correspond to the row and column indices of
H(r). The closed interval [0, 1] forms a commutative semiring with respect to
max and min operations.

(1) The interval [0, 1] is a commutative monoid with the identity element
0 with respect to max operation (x). This can be proved from the
following equations:

(a) a*(bxc) = (axb)*cVa,b,ce[0,1],
(b) (ax0)=(0xa)=a,
(c) (ax*b) = (bxa).
(2) Theinterval [0,1] is a commutative monoid with identity 1 with respect
to min (-) as the binary operation, as shown below.

(3) a-(b-c) = (a-b)-cVa,bce[0,1],
(b) (a-1)=(1-a)=a,
(c) (a-b) =(b-a).
(3) The max-min operation is distributive, which can be verified from the
conditions
a-(bxe)=(a-b)x(a-c),
ax(b-c)=(axb) (axc).

These equations can be verified by considering the following set of
ordered inequalities:

a>b>c a>c>b

b>a>c¢c b>e>aq,
c>a>b, e>b>a.

(4) (¢:0)=(0-a)=0.

The interval [0,1] thus forms a semiring with respect to max and min oper-
ations and will henceforth be called a fuzzy semiring. In fact, excluding the
complementation properties, the interval [0, 1] satisfies all of De Morgan's laws

Syntactic pattern recognition 215

with respect to max and min operations. It may be pointed out here that
the boolean {0,1} also forms a semiring with respect to binary AND and OR
operations. Now given the fuzzy column vectors (hy,...,h,) (i.e., h; € A®,
where A is a fuzzy semiring), a fuzzy column h is said to belong to the fuzzy
A-subsemimodule generated by the set of generators {ky,...,hn} if there ex-
ists a set of parameters 6;,...,68,, where not all §; = 0 and § € [0, 1], such
that

h = max [min(8;, ha), min(83, ka), .. ., min(8y,, ha)) . (7.8)

In this case, we say that h is dependent on {h, ..., hn}. If nosuch §;, (6; #0)
exists, h is said to be independent of {h;,...,h,}. It may be pointed out
here that since the interval [0, 1] does not form a field with respect to max and
min operations, the concept of rank of a vector space, which is very useful in
determining the independent basis of a vector space, is not applicable in the
present context. In the next section we present an algorithm for identifying a
set of independent columns of H ().

In view of the above observation regarding independent columns, the fol-
lowing corollary holds.

Corollary. If A is a fuzzy semiring, then r € A ((Vr*)) if there are finitely
many independent columns of H(r).

Assuming now that H(r) has finitely many independent columns and r €
AT ((Vr*)), by Theorems 7.1 and 7.2, r may be expressed as

r= Y (a(pw)B)w (7.9)

weVp*

where o is a row vector, £ is a column vector, u is a representation, and
w € Vp®,

Since H(r) has finitely many independent columns, let {F,,,...,Fy, }
constitute a minimal set of independent columns of H(r) associated with
{v1,...,vm} where v; € Vp* | fori=1,...,m are the strings associated with
these columns.

Since F,,..., F,,, constitute a finite set of independent columns of H (r),
zF,,, z € Vr, must be linearly dependent on {F,,,...,F, }, where zF,,
should be interpreted as in (7.7). Hence zF,, may be represented as

oFy = (pz);iF,; forz e Vr,

Ji=1

216 A. K. Majumdar and A. K. Ray

where @ : Vp* — A™¥™ We must now establish that p is a representation.
Assuming that the above equation holds for £ = w; and = = we,

(wywse) Fy, (v) = F,, (uwws)
=) " (pwa) ji(Fo) (vwn)
= (pw)ji Y _(pwr)jkFu, (v)
= > (pwrpwe)kiFy, (v).

This equation is valid for z = wjwy. Since it is valid for z € Vi, it also holds
forany x € Vp*. Thus to construct u, we need to consider the dependencies of
zF,, fori=1,...,mand x € Vp, on {F,,,..., F,, }. Once y is constructed,
a and /3 can be constructed as follows. Since r belongs to a finitely-generated
subsemimodule of A((Vr"*)), there exist elements {3,,...,5,,} € A such that
r =Y B;F,,, where F,, is now treated as a function in AY7". Then

(row) = 3" BF,, (w)
=Y Bi(wF,)
=3B (pw)iFu (N
= [Py (N Fu,(N) ... By, (N Y pwlBy, .-, 8,07,

where T" stands for matrix transposition.
Considering & = [Fy(A)...Fn(N)] and 8 = (B, , 8,7, (rw) =

3 Alpw)B. Here a corresponds to the entries in F,,..., [, for the row
in H labeled by A € V3*. Also, 3, corresponds to the coefficients of F, in
the expansion of Fy in terms of (Fy,,..., Fy,.).

It may be noted at this point that « and 8 correspond to the initial and
final states, respectively, of fuzzy automaton M. Once «, 8 and p are deter-
mined, the desired fuzzy automaton that recognizes the strings in Rt can be
constructed.

M:: {Hg(‘?l!"'!Qﬂ'l)lF!n}

can now be defined with I1 = o, n = 3, and f(qr,x, qx) = [(2)]ki, © € V.
Thus the steps required to construct the fuzzy automaton that accepts only
the strings in Rt (a positive sample set of strings) of a fuzzy language are as
follows:

(1) Construct the fuzzy Hankel matrix H(r).

Syntactic pattern recognition 217

(2) Identify a complete set of independent columns of H (r).
(3) Obtain the fuzzy vectors «, 8 and the fuzzy matrices u(x;), Vx; € V.
(4) Construct the fuzzy automaton.

It should be noted here that while inferring a grammar from a positive set Rt
of samples of finite length, any column corresponding to a word v, v € Vp*,
that is not a factorization of any strings w; € R* will be identically zero. The
same situation arises in the case of the rows of H(r) corresponding to a word
u that is not a factorization of w;. Thus the Hankel matrix essentially reduces
to the form

H(r) = [I:I(r) 0]

0 0

where the zeros are infinite matrices and H (7) is a finite submatrix of H(r).
In the case of recursive production of the strings with cycles, the inference
procedure deals with a Hankel matrix of the form

H(r) =[Hy(r) Ha(r) 0],

where H(r) is a finite submatrix and contains all the relevant information.
The problem of identification of a set of independent columns of H(r) thus
reduces to identifying the set of independent columns of H(r), which will
henceforth be designated as H{r) only.

7.6.4.3 Identification of the set of independent fuzzy column vectors

We have just defined the dependence of a column vector h on (hy,-+ ,hy),
the set of generators of the finite fuzzy Hankel matrix H (7). Here we present
an algorithm that checks whether i belongs to the subsemimodule ' generated
by this set of generators and also identifies its coefficients 4;. The jth element
of the vector h; will be denoted by h;;. Now given the set of fuzzy column
vectors hy,...,hy of dimension M, a set of row vectors S(i) is formed, for
t=1,...,M, as

S@) = {jl5 € (1,...,N), h; < hyi}.

In the following procedure, in order to identify 6;, 7 = 1,..., N, we examine
the dependencies of h; on {hq, hy,... . hy} fori=1,..., M. When h; can be
expressed in terms of h,, k= 1,..., N, the coefficients of hj; will be denoted

218 A. K. Mejumdar and A. K, Ray

b}' (gj". i.e.,

N
hi = Z Jj;hj«;‘
i=1

Each such equation identifies a range of admissible value of 4;;. To identify
such constraints on §;;, note that for k € §(i),

Fl,' > hj" = 45 € [0, 1]‘
and, for k € S(3),
ﬁ,‘ < h,j;' = (SJ',‘ € [0, 1] (710)

If #[S(i)] = 1, then d;; has a single value, i.e., d;; = hi.

On the other hand, if #[S(¢)] > 1 forany i € {1,...,M} and j € S(3),
then the maximum value that d;; can have is §;; pax = Ry Let d5i, and &4,
denote the minimum and maximum admissible values of §;; as dictated by
(7.10). Now let

0 =, ma (85),

and

O = Inin,, (850).
When (7.8) is satisfied, §; must belong to [d;.,4;,]. Let us select a §; €
[6u,8;0] and suppose 1; = {ili € {1,..., M}}. We now present the condition
of dependence of /i on the set of fuzzy column vectors in the following theorem.

Theorem 7.3 A fuzzy column vector b is dependent on (hy, ..., hy), a set
of fuzzy column vectors, if and only if

Rl\’RzV...VRN:—{l,...,M}.

The following corollary immediately follows from Theorem 7.3.

Corollary. A fuzzy column vector A € A™ is independent of a set of
fuzzy column vectors {hy,..., hy} with h; € A", if #[S(i)] = 1 for any
ie{l,...,M}.

Now, if a set of column vectors g,, i = 1,...,n, is given, a complete set
of independent fuzzy vectors f;,i = 1,...,L, can be selected such that the
subsemimodule generated by (fi,....fs) contains g;'s.

Syntactic pattern recognition 219

7.6.4.4 Application

We now describe an application to the automated inference of fuzzy grammar
in character recognition. Each of the classes of alphabetic characters belenging
to a language has been coded in the form of a string over Vpr = {a,b,¢c,d}.
Linguistic analysis is carried out for only a small zone of the pattern where the
structural dissimilarity among training patterns representing different pattern
classes is maximum. For structural analysis these zones are represented by
strings of pattern primitives. All the strings of a particular pattern class are
next associated with a generative grammar that is not known a priori. The
grammar corresponding to each class of patterns is next constructed using
the inference procedure described above, It may be noted at this point that
the positive sample set R*L(G), (L(G) is the language corresponding to a
pattern class whose grammar is G) must be structurally complete with respect
to G. Otherwise if a new string not hitherto included in R is accepted by the
automaton, the set R is enhanced to include it and the fuzzy Hankel matrix
is modified accordingly. The repetition of this procedure continues until the
sample set R* is complete. We now consider a positive sample set

R* = {0.8ab, 0.8aabb, 0.3ab, 0.2bc, 0.9abbc}.

Once the set of independent column vectors is extracted, the next step is to
find the matrices u(z),z € V. For finding the matrices u(z), € V, initially
the expression zF has to be completed for £ = a,b,cand i =1,...,7, The
matrices u(a), p(b) and u(c) are as follows:

A ab b abe be ¢ abbe bbc aabb abb bb

A [0803.20.9 0 8 0 0]
a {0 0803009 0 8 0
ab (80009300 0 0 0
abc |3 000000 0 0 0 0
be |2 000000 0 0 0 0
abb |0 00009 0 0 0 0 O
abbc |9 0 00000 0 0 0 0
aa |0 000000 O O 0 .8
acb [0 0.8 0000 0 0 0 0O
aabb [8 0 0 0 0 0 0 0 0 O O]

220 A. K. Majumdar and A. K. Ray

S; Sy S3 S4 S5 S¢ S7

Sy (0 000 0 0 0
S (0 03 0 1 0 .8
Sz |0 000 O 0O O
wa)=S5,10 0 0 0 0 O O
Ss (0 0 00 0 .8 0
S0 000 O 0 O
S;lo o000 0 0 0]

S50 00 0 0 0 0]
S310 00 0 0 0 0
S0 00 1 0 0 0
pd)=S:{0 00 0 0 0 0
Ss001 0 0 0 0
S¢|0 00 0 0 0 1
St 00 0 0 0 0

S\ 52 Ss 34 Ss SG ST

S fo
Sy
Sy
p(e) = Sa
Sy
Ss
Sy

c oc o oo oo o
cC oo o OoOoCco

o oo o oo

oo o ~OoO o

The &;'s can be computed from the relationship
a=F(A),...,Fn()),

where the vector corresponds to the entries in the set of independent columns
Fy, ..., F,, for the row in H(r) labeled by A. Thus

a=[009 02 0 0 0 0]

Syntactic pattern recognition 221

and
B=[10000 00

because F} is an independent column. Once «, 8, u(a), p(b), and u(c) have
been determined, the fuzzy automaton can be constructed as per the method
already described. The fuzzy automaton that accepts the strings is shown in
Fig. 7.4.

Fig. 7.4 Inferred fuzzy automaton

7.7 Recogpnition of ill-formed patterns: error-correcting grammars

We have so far discussed syntactic procedures for analysis of perfect or imprecisely-
formed pattern strings. However, in many practical applications, patterns are
ill-formed and distorted. Various error-correcting grammars have been pro-
posed for analyzing such non-ideal patterns. Three types of errors, namely,
substitution, deletion and insertion, have been considered.

222 A. K. Majumdar and A, K. Ray

7.7.1 Error-correcting procedure

In any syntactic pattern recognition problem, a grammar G describes a class
of patterns represented by strings in L{G). The corresponding automaton
will accept only those strings which are perfectly formed. An imperfectly-
formed string belonging to a pattern class, caused by either a deformation or
by noise, will be rejected by the automaton., An error-correcting scheme has
been suggested for processing such erroneous strings. A pattern grammar is
first inferred from a set of training samples belonging to a particular pattern
class. A noisy input string which is rejected by the corresponding automaton is
fed to an error-correcting process, which attempts to transform the noisy string
into an error-free string so that it may be accepted by the inferred automaton.

The error-correcting procedure uses a discriminant function which indicates
the distance between two pattern strings. The computation of the discriminant
function may have to be preceded by an adequate stretching operation when
the length of the given string is smaller than the length of the sample strings
belonging to a particular pattern class. Given a fuzzy regular automaton Mj,
inferred from a set Ry of training samples from the kth pattern class, and a
set of test strings, this approach uses the procedure STRETCH to recursively
modify M} when a test pattern, even after stretching, is not accepted by M.
The error correcting procedure is given below:

Step 1. Get a new test pattern string X.
Set i =1.
If X is not accepted by M go to step 2, else repeat Step 1.
Step 2. Stretch X to X; with respect to the training sample Yix of the kth
pattern class using STRETCH.
Step 3. Compute d(X;, Yix).
If d(X;, Yii) < threshold go to Step 4, else go to step 5.
Step 4. If My accepts X; go to step 1, else go to Step 5.
Step 5. Seti=1+ 1.
If i <N go to Step 2, else go to Step 6.
Step 6. Compute Disc (X, Y:) = min [d(X1, Yik),....d(Xn, YNk)].
If Dise(X,Yy) < Threshold go to Step 7, else go to Step 8.
Step 7. Modify M with R, = R, U {X}. Go to Step 1.
Step 8. The pattern X does not belong to class k. Go to Step 1.

Any new string of a particular pattern class which is not accepted by the au-
tomaton will first be fed to the error-correcting procedure and, if necessary, the

Syntactic patlern recognition 223

inferred grammar corresponding to the said language will be modified accord-
ingly by including the error-corrected string in the language.

7.17.2 Error correction based on similarity enhancement

This error-correcting procedure is based on a similarity criterion using discrim-
inant function, indicating the distance between two pattern strings. Before
defining the distance between two strings, we denote the distance between two
terminal alphabets (i.e., pattern primitives) a; and aj, by |a;—a;l, ai,a; € Vr.
The discriminant function between two strings X and Y € V1" of equal length
N gives a measure of the distance between the two strings and is given by

¥ [& i
d{X, Y) = ﬁ [Z(X:‘ = Ys)z]

where X;,Y; € Vp are the ith terminals of the strings X and Y respectively.
In order to apply this definition of the discriminant function for strings of un-
equal length, we first elongate the string having smaller length by the following
stretching procedure. If X; and X; are two strings of lengths p and ¢ respec-
tively (p < gq) corresponding to ith and jth pattern classes, and if X;* = X j’“,
where X;* denotes the kth primitive of X, then we insert X,-"“H at (k+1)th
position in the ith string also, i.e., after insertion, X;*** = X;¥*1, The above
operation produces a stretched string and those of the sample strings of the
same pattern class are minimized. The proposed stretching procedure results
in similarity intensification of a set of samples from a particular pattern class.
The algorithm for stretching a string is given below.

The process of stretching may continue until the lengths of the two strings
become equal, or may terminate at any intermediate stage, if no such matching
is possible. Once the stretching procedure is over, the discriminant function
between the two strings is computed.

In case the two strings remain unequal even after stretching, the discrim-
inant function is computed after appending the worst-case primitives to the
string with smaller length. Thus for two strings X; and X; belonging to the
ith and jth pattern classes with lengths p and g (¢ > p), (g—p) primitives may
have to be appended to the string of length p when X; cannot be stretched at
all with respect to X;. The worst-case primitives to be appended always result
in maximum distance between the two strings.

Consider the fuzzy automaton that accepts R* as shown in Fig. 7.4. When

224 A. K. Majumdar and A. K. Ray

a new noisy string 0.5cbce belonging to the same pattern class is fed to the
automaton, it is initially rejected by the automaton. After sufficient error
correction it is again fed to the inference procedure and the inferred fuzzy
automaton is next modified accordingly. The modified fuzzy automaton is
shown in Fig. 7.5, Another string cbe, after stretching operation, is transformed
into a string cbbe and is directly accepted by the modified automaton.

Fig. 7.5 [Error-corrected fuzzy automaton

7.7.3 Error-correcting tree grammar

Lu and Fu [35] have proposed an error-correcting parser which utilizes the
following tree editing operations:

e insertion of a labelled node in between two nodes in a tree

e insertion of a node to the left of one node and to the right of it
e deletion of a node which has a maximum of one successor node
e label substitution of a leaf node

Zhang and Shasha [59] were the first to report an algorithm for computing
distances between two strings in pelynomial time. In a related work, Qommen

Syntactic patlern recognition 225

and Kashyap [41] have investigated a similarity measure between two trees. A
major direction of research involves inferring a tree automaton which recognizes
a class of patterns belonging to a specific tree language. For this purpose, it is
important to compute the distance between an unknown pattern represented
by a tree and a given tree automaton.

References

[1] K. Aizawa and A. Nakamura, “Quadtree adjoining grammar," Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, vol. 13,
pp. 573-588, 1999.

[2] J. Baldwin and S. Zhou, “A fuzzy relational inference language,” Tech.
Rep. EM/FS/32, University of Bristol, Bristol, UK, 1982.

[3] A. W, Biermann and J. A. Feldman, "On the synthesis of finite-state
acceptors,” Stanford Artificial intelligence Project Memo no. AlIM-
114, Stanford University, Stanford, CA, 1970,

(4] A. W. Biermann and J. A. Feldman, "“A survey of results in gram-
matical inference,” International Conference on Frontiers of Pattern
Recognition, Honolulu, Hawaii, 1971,

[5] A. W, Biermann and J. A. Feldman, “On the synthesis of finite state
machine from samples of their behaviour,” IEEE Transactions on Com-
puters, vol. 21, pp. 592-597, 1972.

[6] P. Biswas, A fuzzy hybrid model for pattern classification with applica-
tion to recognition of handprinted Devanagari. PhD thesis, Jawaharlal
Nehru University, New Delhi, 1980.

[7] A. Blumenkraans, “Two-dimensional object recognition using a two-
dimensional polar transform", Pattern Recognition, vol. 24, pp. 879-
890, 1991.

[8] E. Bribiesca, “A new chain code,” Pattern Recognition, vol. 32, pp. 235—
251, 1999.

[9] W. Chomsky, Syntactic Structures. The Hague, The Netherlands:
Monton, 1957.

[10] G. F. DePalma and S. S. Yau, " Fractionally fuzzy grammars with appli-
cation to pattern recognition”, in Fuzzy Sets and their Applications to
Cognitive and Decision Processes (L. A. Zadeh, K. S. Fu, K. Tanaka
and M. Shimura, eds.), pp. 329-352, New York: Academic Press,
1975.

226

A. K. Majumdar and A. K. Ray

(11} S. Eilenberg, Automata, Languages and Machines, vol. A. New York:
Academic, 1974.

[12] S. Ewert and A. van der Walt, "Generating pictures using random
permitting context," International journal of Pattern Recognition and
Artificial Intelligence, vol. 13, pp. 339-355, 1999,

[13] J. Feder, "Plex languages,”" Information Sciences, vol. 3, pp. 225-241,
1971.

[14] J. Feldman, "First thoughts on grammatical inference.” Artificial In-
telligence Memo no. 55, Computer Science Dept., Stanford University,
Stanford, CA, 1967.

(15] J. A. Feldman, J. Gips, J. J. Horning and S. Reder, " Grammatical
complexity and inference”, Tech. Rep. no. CS-TR-69-125, Computer
Science Dept., Stanford University, Stanford, CA, 1969,

[16] M. Fliess, “Sur divers produits de series formellers,” Bull. Soc. Math.,
France, vol. 102, pp. 181-191, 1974,

[17] H. Freeman, "On the encoding of arbitrary geometric configurations,”
IEEE Transactions on Electronic Computers, vol. EC-10, pp. 260-268,
1961,

(18] K. S. Fu, Syntactic Pattern Recognition and Applications. Englewood
Cliffs, NJ: Prentice-Hall, 1582.

[19] K. S. Fu and B. K. Bhargava, “Tree systems for syntactic pattern
recognition," [EEE Trapnsactions on Computers, vol. C-22, no. 12,
pp. 1087-1099, 1973.

[20] K. S. Fuand T. L. Booth, “"Grammatical inference : introduction and
survey, part | and part Il IEEE Transactions on Systems, Man and
Cybernetics, vol. 95-11, no. 5, pp. 409-423, 1975.

[21] K. S. Fu and T. Huang, "Stochastic grammars and languages”, /n-
ternational Journal of Computer and Information Sciences, vol. 1,
pp. 135-170, 1972.

[22] E. M. Gold, "Language identification in the limit," Information and
Control, vol, 10, pp. 447-474, 1967,

[23] R. C. Gonzalez and M. G. Thomason, “On the inference of tree gram-
mars for syntactic pattern recognition”, Proceedings of the IEEE In-
ternational Conference on Systems, Man and Cybernetics, Dallas, TX,
1974.

[24] R, C. Gonzalez, J. J. Edwards and M. G. Thomason, " An algorithm
for the inference of tree grammars”, International Journal of Computer

Syntactic pattern recognition 227

and Information Sciences, vol. 5, pp. 145-164, 1976.

[25] R. C. Gonzalez and M. G. Thomason, Syntactic Pattern Recognition.
Reading, MA: Addison-Wesley, 1978.

[26] J. E. Hopcroft and J. D. Ullman, Formal Languages and their Relation
to Automata, Reading, MA: Addison-Wesley, 1969.

[27] J. Horning, “A study of grammatical inference,” Tech. Rep. CS-139,
Computer Science Dept., Stanford University, Stanford, CA, 1969.

[28] K. S. Fu and T. Huang, “Stochastic grammars and languages," In-
ternational Journal of Computer and Information Sciences, vol. 1,
pp. 135-170, 1972.

[29) A. K. Joshi and Y. Schabes, "Tree adjoining grammars,” in Beyond
Words: Handbook of Formal Languages (G. Rozenberg and A. Salo-
maa, eds.), vol. 3, pp. 69-123, Berlin: Springer-Verlag, 1997.

[30] A. Kandel and S. Lee, Fuzzy Switching and Automata: Theory and
Applications. New York: Crase Russak, 1979.

[31] W. J. M. Kickert and H. Koppelaar, "Application of fuzzy set theory
to syntactic pattern recognition of handwritten capitals”, IEEE Trans-
actions on Systems, Man and Cybernetics, vol. SMC-6, pp. 148-151,
1976.

[32] R. S. Ledley et al., "FIDAC: Film input to digital automatic computer
and associated syntax-directed pattern-recognition programming sys-
tem,” in Optical and Electro-optical Information Processing (J. T.
Tippet, D. Beckowitz, L. Clapp, C. Koester and A. Vanderburgh, Jr.,
eds.), pp. 591-613, Cambridge, MA: MIT Press, 1965.

[33] E. T. Lee and L. A. Zadeh, "Note on fuzzy languages,” Information
Sciences, vol. 1, pp. 421434, 1969.

[34] P. Lopez, “Extended partial parsing for lexicalized tree grammars”, in
Proceedings of the Sixth International Workshop on Parsing Technolo-
gies (IWPT 2000), pp. 159-170, Trento, Italy, 2000.

[35] H. R. Lu and K. S. Fu, "A general approach to inference of context-
free programmed grammars", [EEE Transactions on Systems, Man and
Cybernetics, vol. 14, pp. 191-202, 1984.

[36] F. J. Maryanski and T. L. Booth, “Inference of finite-state probabilistic
grammars," |EEE Transactions on Computers, vol, C-26, pp. 521-536,
1977.

[37] D. L. Milgram and A. Rosenfeld, “Array automata and array gram-
mars,” in Proceedings of the IFIP Congress, pp- 166-173, North Hol-
land, 1971,

228

A. K. Magumdar and A. K. Ray

[38] B. Moayer and K. S. Fu, A tree system approach to finger print pat-
tern recognition,” IEEE Transactions on Computer, vol. C-25, pp. 262-
274, 1976.

[39] M. Mizumoto, J. Toyoda and K. Tanaka, “Seme considerations on
fuzzy automata", Journal of Computer and System Sciences, vol, 3,
pp. 409-422, 1969.

[40] R. Narasimhan, "A linguistic approach to pattern recognition”, Tech.
Rep. no. 121, Department of Computer Science, University of lllinois
at Urbana-Champaign. Urbana, IL, 1962.

(41] B. J. Oommen and R. L. Kashyap, "Optimal and information theoretic
syntactic pattern recognition for traditional errors”, in Advances in
Structural and Syntactic Pattern Recognition, (P. Perner, P, Wang,
and A. Rosenfeld, eds.), New York: Springer, pp. 11-20, 1996.

[42] A. Pathak and S. K. Pal, "Fuzzy grammars in syntactic recognition
of skeletal maturity from X-rays", IEEE Transactions on Systems,
Man and Cybernetics, vol. 16, pp. 657-667, 1984.

[43] T. Pao, "A solution of the syntactical induction inference problem for
a nontrivial subset of context free languages,” Tech. Rep. no. 69-16,
Moore School of Electrical engineering, University of Pennsylvania,
Philadelphia, 1969.

[44] J. L. Pfaltz, “Web grammar and picture description," Computer Graph-
ics and Image Processing, vol. 1, pp. 193-220, 1972.

[45] M. Richetin and F. Vernadat, “Efficient regular grammatical inference
for pattern recognition,” Pattern Recognition, vol. 17, pp. 245-250,
1984.

[46] A. Salomaa and M. Soittola, Automata Theoretic Aspects of Formal
Power Series. New York: Springer-Verlag, 1978.

[47] E. S. Santos, "Fuzzy automata and languages,” US-Japan Seminar on
Fuzzy Sets and their applications, Berkeley, 1974.

[48] E. S. Santos, "Regular fuzzy expressions”, in Fuzzy Automata and
Decision Processes (M.M. Gupta, G. N. Saridis and B. R. Gaines,
eds.), New York: North-Holland, pp. 169-176, 1977.

[49] M. P. Schutzenberger, "On definition of a family of automata,” Infor-
mation and Control, vol, 4, pp. 245-270, 1961.

[50] A. C. Shaw, "The formal picture description scheme as a basis for
picture processing systems," Information and Control, vol. 14, pp. 9-
52, 1969.

Syntactic pattern recognition 229

[51] G. S. Sidhu and R. T. Boute, “Property encoding applications in bi-
nary picture encoding and boundary following," IEEE Transactions on
Computers, vol. C-21, pp. 1206-1216, 1972.

[52] R. J. Solomonoff, "A new method for discovering the grammars of
phrase structure languages ," Information Processing, New York: UN-
ESCO, 1959,

[53] W. Stallings, “Approaches to Chinese character recognition”, Pattern
Recognition, vol. 8, pp. 87-98, 1976.

[54] M. G. Thomason, " Syntactic pattern recognition: stochastic languages",
in Handbook of Pattern Recognition and Image Processing, (T. Y.
Young and K. S. Fu, eds.), Orlando, FL: Academic Press, pp. 119-
142, 1986.

[55] M.G.Thomason and P. Marinos, “Deterministic acceptors of regular
and fuzzy languages,” |EEE Transactions on Systems, Man and Cy-
bernetics, vol. SMC-4, pp. 228-230, 1974.

[56] W. H. Tsai and K. S. Fu, " Subgraph error-correcting isomorphisms for
syntactic pattern recognition,”" /EEE Transactions on Systems, Man
and Cybernetics, vol. 13, pp. 48-62, 1983.

[57] W. Wee and K. S. Fu, "A formulation of fuzzy automata and its
application as a model of learning systems," IEEE Transactions on
Systems, Man and Cybernetics, vol. 5, pp. 215-223, 1969.

[58] L. A. Zadeh, "Fuzzy sets,” Information and Control, vol. 8, pp. 338
353, 1965.

[59] K. Zhang and D. Shasha, "Simple fast algorithms for the editing dis-
tance between trees and related problems,” SIAM Journal of Comput-
ing, vol. 18, pp. 1245-1262, 1989.

Chapter 8

FUZZY SETS AS A LOGIC
CANVAS FOR PATTERN
RECOGNITION

W. Pedrycz* and N. Pizzif

* University of Alberta
Department of Electrical and Computer Engineering
Edmonton, AB, T6G 2G7, CANADA
e-mail: pedrycz@ee.ualberta.ca

T National Research Council Canada

Institute for Biodiagnostics
Winnipeg, MB, R3B 1Y6, CANADA
e-mail; Nicolino. Pizzi@nre.ca

Abstract

Imprecision and uncertainty are hallmarks of many pattern recog-
nition problems. Although often impervious to crisp reasoning
methods, these problems may be open to approximate ones. For
this reason, the field has become a fertile and active domain with
which to exercise fuzzy set-based modes of reasoning. For example,
fuzzy sets support and enhance the design of logic-driven learning
methods by: (i) formalizing prior domain knowledge; (ii) promot-
ing hierarchical and modular architectures that exploit the most
appropriate level of information granulation; (iii) providing an intu-
itive mapping between information couched in imprecise linguistic
terminology and a well-defined contextual space. We focus this

231

232 W. Pedrycz and N. Pizzi

investigation on fuzzy set-based generalizations of logic processors
and Petri nets as well as the role fuzzy sets may play in context-
based partially supervised modes of clustering.

8.1 Introduction: fuzzy sets and pattern recognition

Pattern recognition, with its underlying philosophy, fundamental methodology,
and suite of advanced algorithms, has established itself as a mature, well-
developed, information technology. Pattern recognition is a heterogeneous area
exploiting a diversity of processing paradigms such as probability, statistics,
neural networks and fuzzy sets. Fuzzy sets entered the pattern recognition
arena quite early, for example, [2, 20] and they have a |ot to offer in this domain
especially as its research agenda is in line with the key pursuits of pattern
recognition. Not attempting in any way to be exhaustive in the coverage of
thearea [7, 8, 14, 19, 23] (a somewhat futile task) we simply wish to emphasize

the main trends, as summarized below:

e Fuzzy sets contribute to pattern recognition as a vehicle formalizing
any prior domain knowledge about the classification environment. This
facilitates decisions about the classifiers structure, enhances learning
methods (by avoiding cumbersome learning from scratch), and sup-
ports the design of logic-driven, transparent classifier architectures
that are easier to train and easier to comprehend. In other words,
fuzzy sets act a conceptual canvas for logic-based and designer/user-
oriented classifiers.

Fuzzy sets promote a notion of partial membership to a class. This
is in accordance with many classification tasks where class assignment
may not be binary.

By emphasizing the role of information granulation, fuzzy sets promote
a hierarchical and modular approach to pattern recognition, which be-
comes indispensable when handling complex classification problems in
a modular fashion. In particular, this manifests itself in the form of hi-
erarchical architectures with a clearly delineated knowledge-based layer
and gives rise to the hierarchy of low-end, more specialized local classi-
fiers located at the lower end. The role of the upper layer of the overall
hierarchy (which is implemented with the aid of fuzzy sets and fuzzy
logic) is to schedule activities of the classifiers at the lower end and

Fuzzy sets as a logic canvas for pattern recognition 233

summarize the findings there and eventually repair some discrepancies.
The modularization of the classifier has strong evidence in practice. In
general, one may develop individual, local classifiers that cope with
regions in the feature space that are different as to the separability
level of the patterns belonging to different classes. We have to deal
with regions of the feature space where classes are well separated as
well as regions where the classes overlap. In the first instance, a linear
classifier may be a good option. On the other hand, a nearest neighbor
classifier is a good option for the regions where the classes overlap.

e Traditionally, pattern recognition technigues are divided into two main
groups: supervised and unsupervised classification schemes. While
generally useful, this simplified taxonomy is often not in rapport with
real-world classification scenarios. Quite often we may encounter sit-
uations that fall in-between these two fundamental scenarios. For
instance, there could be a mixture of labeled and unlabeled patterns.
This calls for unsupervised learning (clustering) that comes with a cer-
tain level of partial supervision.

The objective of this study is to investigate the role of fuzzy sets in pat-
tern recognition along the main points highlighted above. In particular, we
discuss several topologies in which the logic-based facet is inherent due to the
incorporation of fuzzy sets. The focus will be logic-oriented classifiers (built
around a basic architecture of a logic processor) and fuzzy Petri nets. Next,
we analyze various aspects of designing interactions between the modes of un-
supervised and supervised learning by showing how domain knowledge about
class membership can be reconciled with the internal structure of the data.
To be more specific, this type of essential interaction is devised in the setting
of the well-known FCM-like clustering methods [3, 6]. As a prerequisite to
fuzzy set-based computing, we adhere to triangular norms and co-norms (i-
and s-norms), viewed as basic models of logic operators on fuzzy sets and
relations.

8.2 Fuzzy set-based transparent topologies of the pattern clas-
sifier

Neural networks [16] occupy a significant niche in pattern recognition mainly
in the capacity of nonlinear classifiers. While capable of carrying out various

234 W. Pedrycz and N. Pizzi

learning schemes, neural networks are inherently " black-box" architectures.
This has two important implications: meaningful interpretations of the net-
work's structure are difficult to derive; any prior knowledge we may possess
about the classification problem, which would reduce the total learning effort,
is difficult to directly "download” onto the network (the common practice is
to "learn from scratch”). A solution to the problem would be to construct
networks that are similar to neural networks in terms of their learning abilities
while at the same time composed of easily interpretable processing elements,
To this end, a logic-oriented processing style is definitely an asset. Bearing
this in mind, [11] proposed two general classes of fuzzy AND and OR neurons.
They serve as generalizations of standard AND and OR digital gates. The AND
neuron is a static n-input single output processing element y = AND(x; w)
constructed with the use of fuzzy set operators (f- and s-norms),

v = T (@ow) (8.1)
Here w = (wy,wa,...,Wy)’ denotes a weight vector (connections) of the
neuron. In light of the boundary conditions of the triangular norms, we obtain

e If w; = 1, then the corresponding input has no impact on the output.
Moreover, the monotonicity property holds: higher values of w; reduce
the impact of ; on the output of the neuron.

o If the elements of w assume values equal to O or 1, then the AND
neuron becomes a standard AND gate. The OR neuron, denoted as
y = OR(x; w) is described in the form

H = ‘_§1 {xitw‘i) (8.2)
As with AND neurons, the same general properties hold; the boundary condi-
tions are somewhat complementary: the higher the connection value, the more
evident the impact of the associated input on the output.

The fundamental Shannon's expansion theorem [17] states that any Boolean
function can be represented as a sum of minterms (or equivalently, a product
of maxterms). The realization is a two-layer digital network: the first layer has
AND gates (realizing the required minterms); the second consists of OR gates
that carry out OR-operations on the minterms.

Fuzzy neurons operate in an environment of continuous variables. An anal-
ogy of the Shannon theorem (and the resulting topology of the network) can

Fuzzy sets as a logic canvas for pattern recognition 235

T T T TR R PR L T T
»
.

.
.
.
1
.
.
.
]
.
.
.
.

T I

Fig. 8.1 Logic processor (LP): a general topology; the inputs involve both direct and
complemented inputs

be realized in the form illustrated in Fig. 8.1. Here, AND neurons form a se-
ries of generalized minterms. The OR neurons serve as generalized maxterms.
This network approzimates experimental continuous data in a logic-oriented
manner, In contrast, note that the sum of minterms represents Boolean data,
The connections of the neurons equip the network with the required parametric
flexibility. Alluding to the nature of approximation accomplished here, we will
refer to the network as a logic processor (LP). The logic-based nature of the
LP is crucial to a broad class of pattern classifiers. Fig. 8.2 portrays a common
situation encountered in pattern classification. Patterns belonging to the same
class (say, w) occupy several groups (regions). For the sake of discussion, we
consider only two features over which we define several fuzzy sets (granular
landmarks) and through which we "sense”" the patterns. The AND neurons
build (combine) the fuzzy sets defined for individual variables. Structurally,
these neurons develop fuzzy relations, regions where the patterns are concen-
trated. Then all these regions are aggregated using a single OR neuron. The
connections help capture the details of the regions (AND neuron) and contri-
bution of each region to the classification decision (OR neuron). In this setting,
one may refer to radial basis function (RBF) neural networks that resemble the
above logic structure yet the latter do not carry any strong logic connotation.
The relationship between the components of the networks coming from these
two groups is summarized in Table 8.2.

8.2.1 Fuzzy generalization of the Petri net

Let us briefly recall the basic concept of a Petri net. A Petri net is a finite
graph with two types of nodes, known as places, P, and transitions, 7. More

236 W. Pedrycz and N. Pizzi

E
Fealure space / :
.]
.""-\-__‘_“_#//,___‘ ']
A _\\f {3
- Y
S i ===
- e N PN S
\ -
I Ay
N~ 7 AND OR

Fig. 8.2 LP as a fundamental logic-driven classification structure

formally, the net can be viewed as a triplet (P, T, F') where,

PNT =10
PUT =120
FC(PxT)U(T x P) (8.3)

domain(#) U codomain(F) = PUT

In (8.4), F is the flow relation, The elements of I” are the arcs of the Petri net.
Each place comes equipped with some tokens that form a marking of the Petri
net. The flow of tokens in the net occurs through firings of the transitions;
once all input places of a given transition have a nonzero number of tokens,
this transition fires. Subsequently, the tokens are allocated to the output places
of the transition. Simultaneously, the number of tokens at the input places is
reduced. The effect of firing the transitions is binary: the transition either fires
or does not fire.

An important generalization of the generic model of the Petri net is to
relax the Boolean character of the firing process of the transition. Instead
of subscribing to the firing-no firing dichotomy, we propose to view the firing
mechanism as a gradual process with a continuum of possible numeric values
of the firing strength (intensity) of a given transition. Subsequently, the flow

Fuzzy sets as a logic canvas for patlern recognition 237

Table 8.1 Logic processor and RBF neural networks: a comparative analysis

RBF Neural
Network

Logic Processor

AND neurons; form the fuzzy
relations of features in the
feature space. Identify separate
concentrations of pattern regions
belonging to a given class. Learn
neuron connections in order to
model the details of these regions.

RBF (receptive fields) are used to
identify regions in the feature space
that are homogeneous in terms of
patterns belonging to the class of
interest. RBF may assume various
functional forms (e.g., Gaussians)
and could be adjusted by modifying
its parameters {usually modal

value and spread).

OR neurons: summarize the separate
concentrations of pattern regions.
Use connections to model impact of
pattern regions on final classifi-
cation decision. Some regions
(outputs of AND neurons) need to be
discounted, especially if they are

A linear summation: the outputs of
the RBFs (activation levels of these
fields) are processed through a
weighted sum where the weights are
used to cope with the impact of the
receptive fields on the final
classification outcome.

heterogeneous and include patterns
belonging to other classes.

of tokens can also take this continuum into consideration. Evidently, such
a model is in rapport with a broad class of real-world phenomena including
pattern classification, The generalization of the net along this line calls for a
series of pertinent realization details. In what follows, we propose a construct
whose functioning adheres as much as possible to the logic fabric delivered by
fuzzy sets. In this case, a sound solution is to adopt the ideas of fuzzy logic as
the most direct way of implementation of such networks.

8.2.1.1 The architecture of the fuzzy Petri net

Cast in the framework of pattern classification, the topology of the fuzzy Petri
net is portrayed in Fig. 8.3. As it will be shown further on, this setting correlates
well with the classification activities encountered in any process of pattern

238 W. Pedrycz and N, Pizzi

Fig. 83 A general three-layer topology of the fuzzy Petri net

recognition.
The network constructed in this manner comprises three layers:

e An input layer composed of n input places;
e A transition layer composed of hidden transitions;
e An output layer consisting of m output places.

The input place is marked by the value of the feature (we assume that the
range of the values of each feature is in the unit interval). These marking levels
are processed by the transitions of the network whose levels of firing depend on
the parameters associated with each transition such as their threshold values
and the weights (connections) of the incoming features. Subsequently, each
output place corresponds to a class of patterns distinguished in the problem.
The marking of this output place reflects a level of membership of the pattern
in the corresponding class. The detailed formulas of the transitions and output
places rely on the logic operations encountered in the theary of fuzzy sets.
The i*h transition (more precisely, its activation level z;) is governed by the
expression

z = ;;I"l [w,'jS(Tij - zj)l (84)

where

® w;; is a weight (connection) between transition i and input place j;

Puzzy sets as a logic canves for pattern recognition 239

e r;; is a marking level threshold for input place j and transition ¢;
e z; is the marking level of input place j;
e T denotes a t-norm and s denotes an s-norm.

The implication operator, —, is expressed in the form
a—b = sup{c€e(0,1] |atc < b} (8.5)

where a and b are the arguments of the implication operator confined to the
unit interval, Note that the implication is induced by a certain t-norm, In the
case of two-valued logic, (8.5) returns the same truth values as the commonly-
known implication operator, namely,

bifa>b
a—b= { 1 otherwise (86)
_foifa=1, b=0
~ | 1 otherwise

Output place j (more precisely, its marking y;) summarizes the levels of evi-
dence produced by the transition layer and performs a nonlinear mapping of the
weighted sum of the activation levels of these transitions, z;, and the associated
connections v,

hidden
Yi =f(Z Ujizi) (8.7)
i=1

where f is a nonlinear monotonically increasing mapping from R to [0,1]. The
role of the connections of the output places is to modulate the impact exhibited
by the firing of the individual transitions on the accumulation of the tokens at
the output places (viz.,, the membership value of the respective class). The
negative values of the connections have an inhibitory effect, that is, the value
of the class membership gets reduced. Owing to the type of aggregation op-
erations used in the realization of the transitions, their interpretation sheds
light on the way in which the individual features of the problem are treated.
In essence, the transition produces some higher level, synthetic features out of
those originally encountered in the problem and represented in the form of the
input places. The weight (connection) expresses a global contribution of feature
J to transition ¢: the lower the value of w;;, the more significant the contribu-
tion of the feature to the formation of the synthetic aggregate feature formed
at the transition level. The connection itself is weighted uniformly regardless

240 W. Pedrycz and N. Pizzi

of the numeric values it assumes, The more selective (refined) aggregation
mechanism is used when considering threshold values. Referring to (8.4), one
finds that the thresholding operation returns 1 if z; exceeds the value of the
threshold 7;;. In other words, depending on this level of the threshold, the level
of marking of the input place becomes "masked" and the threshold operation
returns 1. For the lower values of the marking, such levels are processed by
the implication operation and contribute to the overall level of the firing of the
transition.

One should emphasize that the generalization of the Petri net proposed here
is in full agreement with the two-valued generic version of the net commonly
encountered in the literature. Consider, for instance, a single transition (tran-
sition node). Let all its connections and thresholds be restricted to {0,1}.
Similarly, the marking of the input places is also quantified in a binary way.
Then the following observations are valid:

e Only those input places are relevant to the functioning of transition
i for which the corresponding connections are set to 0 and whose
thresholds are equal to 1. Denote a family of these places by P.

e The firing level of transition 1 is described by

% = o Vg %) (8.8)

It becomes apparent that the firing level is equal to 1 if and only if the marking
of all input places in P assumes the value 1; the above expression for the
transition is an and-combination of the marking levels of the places in P,

jeP (8.9)

(Let us recall that any t-norm can be used to model the and operation; more-
over all t-norms are equivalent when operating on the 0-1 truth-values). Fuzzy
Petri nets deliver another resource-based insight into the way in which pattern
classifiers function. The role of resources is assumed by the features, Input
places relate to fuzzy sets defined in the feature space. The higher the mark-
ing (satisfaction) of the input places, the higher the transition level, which
translates into the output place's firing level (class assignment).

Fuzzy sets as a logic canvas for paltern recagnition 241

Input Layer Transition Layer Output Layer
~ 1 p Y
{T‘ \1/ \
6“3) “’u \:n\ \)
"""-._—/ e

Fig. 84 Optimization in the fuzzy Petri net; a section of the net outlines all notation
being used in the learning algorithm

8.2.1.2 The learning procedure

Learning in the fuzzy Petri net is parametric in nature, meaning that it focuses
on changes (updates) of the parameters (connections and thresholds) of the
net, its structure is unchanged. These updates are carried out in such a way
that a predefined performance index is minimized. To concentrate on the
detailed derivation of the learning formulas, it is advantageous to view a fully
annotated portion of the network as illustrated in Fig. 8.4. The performance
index to be minimized is viewed as a standard sum of squared errors. The
errors are expressed as differences between the levels of marking of the output
places of the network and their target values. The considered on-line learning
assumes that the modifications to the parameters of the transitions and output
places occur after presenting an individual pair of the training sets, say marking
of the input places (denoted by =) and the target values (namely, the required
marking of the output places) expressed by t. Then the performance index for
the input-output pair is

Q=" (tx—w)? (8.10)
k=1

The connection updates are governed by the standard gradient-based method
param(iter + 1) = paramf(iter) — aVparam@ (8.11)

where Vparam@ is a gradient of the performance index @ taken with re-
spect to the parameters of the fuzzy Petri net. The iterative character of the
learning scheme is underlined by the parameter vector regarded as a function of
successive learning epochs. The learning intensity is controlled by the positive
learning rate, «. In the above scheme, the vector of parameters, param, is
used to encapsulate the elements of the structure to be optimized. A com-
plete description of the update mechanism will be described below. With the

242 W. Pedrycz and N. Pizzi

quadratic performance index ((8.10)) in mind, the following holds:

Vparam@ = —QZ(% ~¥x)Vparamyx (8.12)
k=1

Refer to Fig. 8.4 for the following derivations. The nonlinear function associated
with the output place ((8.7)) is a standard sigmoid nonlinearity

1
W (8.13)
For the connections of the output places we obtain
6yk
— =y(l - 8.14
Boa; Ykl — yx)21 (8.14)
where k =1,2,.-- ;mand i = 1,2,-- , hidden. Observe that the derivative

of the sigmoidal function is equal to yx(1 — yx). Similarly, the updates of the
threshold levels of the transitions of the net are expressed in the form

By _ Oyx Oui

81‘1‘1' - 32,‘ 8?“,‘1‘ (8-15)
where 1 = 1,2,--. ,n. We then obtain
14;
-53;—’: = yi(1 = vi)vk (8.16)
and
8y a
&f‘: = Aar—ij(wu + (riy — x3) — wij(ri; — z5))
8 .
= A(l R Wij)aT(rij — .'I‘,'j) (8.17)

ij
where the new expression, denoted by A, is defined by taking the t-norm
over all the arguments except j, as follows:

A —— Z[‘w@js(f;j — .’81)] (8.18)

1#1

The calculations of the derivative of the implication operation can be completed
once we confine ourselves to some specific realization of the t-norm that is

Fuzzy sets as a logic canvas for pattern recognition 243

involved in its induction. For the product (being a particular example of the
t-norm), the detailed result reads as

a d rﬂ- if rij > x;
—_— i e — i 8.10
Ori; (rij = ;) or; {1 ’ otherwise (8.19)
_ b :-fi- if ?"‘j > Ty
0 otherwise

The derivatives of the connections of the transitions (transition nodes) are
obtained in a similar way

Oyx _ Oyr Oz

B . 8.20

aw;j 62{ 8w,—_,' (2)
where k = 1,2,--- ,m, i = 1,2,--- ,hidden, and j = 1,2,:-- ,n. Subse-
quently,

9z 8
dwy; Ew—-j(wﬁ + (rig = m3) — wii(rij — 24))

= A(1— (ri; > ;) (8.21)

There are two aspects of further optimization of the fuzzy Petri nets that
need to be raised in the context of their learning:

e The number of transition layer nodes. The optimization of the num-
ber of the transition nodes of the fuzzy Petri net falls under the cate-
gory of structural optimization that cannot be handled by the gradient-
based mechanisms of the parametric learning. By increasing the num-
ber of these nodes, we enhance the mapping properties of the net,
as each transition can be fine-tuned to fully reflect the boundaries be-
tween the classes. Too many of these transitions, however, could easily
develop a memorization effect that is well known in neural networks.

e The choice of t and s-norms. This leads us to a semi-parametric
optimization of the fuzzy Petri net. The choice of these norms does not
impact upon the net architecture but in this optimization we cannot
resort to gradient-based learning. A prudent strategy would be to
confine oneself to a family of t and s-norms that can be systematically
exploited.

Table 8.2 summarizes the main features of the fuzzy Petri nets and contrasts
these with the structures with which the proposed constructs have a lot in

244 W. Pedrycz and N. Pizn

common, namely, Petri nets and neural networks. Fuzzy Petri nets combine
the advantages of both neural networks in terms of their learning abilities with
the glass box-style processing (and architectures) of Petri nets.

Table 8.2 A comparative analysis of fuzzy Petri nets, Petri nets, and neural networks

Learning Knowledge
Representation

Petri From nonexistent to Transparent representation of
Nets significantly limited knowledge arising as a result of
{depending on the mapping a given problem
type of Petri nets). (specification) onto the net
structure, Well-defined
semantics of transitions and

places.
Fuzzy Significant learning Transparent representation of
Petri abilities (parametric knowledge (glass box
Nets optimization of the processing style). Problem (its
net connections). specification) is mapped
Structural directly onto the topology of

optimization can be the fuzzy Petri net. Fuzzy sets
exercised through a deliver an essential feature of
variable number of continuity required to cope

the transitions with continuous phenomena
utilized in the net. encountered in many problems.

Neural High learning Limited (black box style of

Networks abilities and a vast processing) mainly due to the
number of learning highly distributed topologies of
algorithms. Learning the networks and homogeneous
scheme properties processing elements (neurons)

are well-known used throughout the overall
(advantages and network. As a result, one has
disadvantages). to provide additional

interpretation mechanisms for
these networks.

Fuzzy sets as a logic canvas for pattern recognition 245
8.3 Supervised, unsupervised, and hybrid modes of learning

Supervised and unsupervised models of learning are commonly used taxonomies
of pattern classifiers. Classifiers constructed in supervised learning mode exploit
knowledge about membership of patterns to classes. In this way, the main task
is to design a nonlinear mapping that discriminates between patterns belonging
to different categories so that a classification error assumes a minimal value.
The other criterion concerns an efficiency of learning/design of the classifier,
which has to be high in case of large data sets. Obviously, a Bayesian classifier
is a reference point for all constructs. Both neural networks and fuzzy set archi-
tectures along with their hybrids [10, 13, 15, 18] are commonly exploited here.
Unsupervised learning assumes that we have a collection of patterns that do not
carry labels (class assignment) and these need to be discovered in the process of
learning or self-organization. Unsupervised learning models include well-known
neural network architectures such as self-organizing maps [9] and the family of
ART algorithms [4]. Fuzzy sets offer a wide family of FCM clustering methods
and have been successfully exploited in a number of different applications [1, 5,
15]. In general, there are numerous clustering algorithms that differ in terms of
their underlying optimization criteria, methods of handling data, and a format
of results being produced (dendrograms, partition matrices, etc.). In particu-
lar, we are interested in objective function-based clustering where a structure
in the given data set is determined (discovered) by minimizing a certain per-
formance index (objective function), Our anticipation is that the minimized
objective function relates with the optimal structure discovered in the analyzed
data sets. The form of the objective function (Q) is usually given in advance
and does not change during the optimization process. The results of clustering
are represented in the form of a partition matrix, U. Partition matrices store
details regarding class membership of the respective patterns (data). Each row
of the matrix corresponds to the respective class (group) identified in the data
set. Fuzzy clustering gives rise to the rows that contain membership functions
of the fuzzy sets. In the case of clustering we get characteristic functions of
sets determined in the entire data set.

While the above taxonomy is sound, the reality of classification problems
calls for an array of learning modes, Consider a handful of examples making
this point evident and justifying a continuum of models of hybrid supervised-
unsupervised learning:

e While most of the patterns in the mixture are not labeled, there is a

246 W. Pedrycz and N. Pizzi

fraction of selected patterns with labels attached. These patterns can
serve as "anchor" points guiding a formation of the overall structure
in the data. The situations leading to such mixtures are specific to the
problems where there is a substantial cost of classifying the patterns,
the job of class assignment is tedious and, finally, the data set is
huge. For instance, a collection of handwritten characters falls under
this category. The size of the data set is evidently very large (as the
characters are readily available). The labeling of all of them is not
feasible. Yet a portion of the data set can be manually inspected and
the patterns labeled.

e The labeling may not be fully reliable. This could be a result of errors
made by the individual making class assignment, complexity of the
classification problem, a lack of sharp class boundaries. This yields
patterns whose membership to some classes may be questionable and
therefore need to be treated as such in the construction of the classifier.

An example of a preprocessing strategy that compensates for the possible im-
precision of class labels is fuzzy class label adjustment [15]; using training vec-
tors, robust measures of location and dispersion are computed for each class
center. Based on distances from these centers, fuzzy sets are constructed that
determine the degree to which each input vector belongs to each class. These
membership values are then used to adjust class labels for the training vectors.

The aspect of partial supervision can manifest itself through various ways of
utilizing domain knowledge about the problem or incorporating the preferences
of the designer as to structure determination cast in a certain setting (context).

In what follows, we discuss two examples of clustering algorithms that fall
under this category. The first one, called context-based clustering, is concerned
with clustering guided by some context variable (more precisely, a fuzzy set
defined therein). The second one deals with clustering in the presence of some
auxiliary pattern labeling (where we are concerned with a "reconciliation” of
these labels with the structure in the data set itself).

As we will be working with the FCM method and view it as a starting point,
it is instructive to set up necessary notation. For the data set X, consisting
of N records, of dimensionality n, in which we are seeking c clusters (groups),
the respective partition matrix is comprised of N columns and ¢ rows. If we
are interested in determining Boolean clusters, then the entries of U are 0-1
values. For fuzzy clusters, the entries of the partition matrix assume values in
the unit interval; the ik*® entry u;; denotes a degree of membership of pattern

Fuzzy sets as a logic canvas for pattern recognition 247

k to the cluster i, In addition to the partition matrix, the clustering algorithm
returns a set of prototypes— centroids describing the clusters in terms of single
representatives.

The optimization problem is governed by the objective function

¢ N
Q=2 ultlor — ul? (8.22)

The partition matrix, U, satisfies a number of extra conditions; these properties
are captured by restricting the optimization to the class of partition matrices
U, say, U € U and is usually referred to as the Fuzzy c-Means algorithm
(FCM) [3] The partition matrix U satisfies a number of extra conditions; these
properties are captured by restricting the optimization to the class of partition
matrices U, say, U € U,

c N
U= {u;,, €011 > uin=1 and 0< Y uix < N} (8.23)

i=1 k=1

where i = 1,2,-- ,c. The other elements of the clustering method are:

e Prototypes (centroids) of the clusters are representatives of the deter-
mined groups of elements (data);

¢ The distance function, || - ||, describes the distance between the indi-
vidual patterns and the prototypes;

e The fuzzification coefficient, m > 1, controls the level of fuzziness
assigned to the clusters. By default, we assume that m is equal to 2.

In spite of differences resulting from the way in which the optimization task is
formulated at the level of the objective function, the underlying idea remains
the same: we intend to reveal a general structure in the data set.

8.3.1 Context-based fuzzy clustering

The essence of context-based clustering [12] is to search for structure within
the data while making the search more focused by applying a context. More
profoundly, our intent is to concentrate on a search of structure with a cer-
tain variable (classification variable) in mind. One should stress that generic
clustering is relation-driven, meaning that all variables play the same role in
the overall design of the clusters. In the variable of interest, we distinguish a
number of so-called contexts. The context itself is an information granule [21,

248 W. Pedrycz and N. Pizzi

Fig. 8.5 An example of the tagging (logic filtering) effect provided by a linguistic context
A; note that some groups of data present in the original data set have been “filtered out”
by the use of the fuzzy set in the context variable

22] (captured by fuzzy sets) that is defined in one or several attributes whereby
the search is focused for structure in the data. In other words, the formulation

e "Reveal a structure in data X",
is reformulated as,
e "Reveal a structure in data X in context A",

where A denotes an information granule of interest (context of clustering). For
jnstance, a task may be formulated as,

e "Reveal a structure in X for context equal to high temperature”,

with high temperature being a fuzzy set defined in the context space. The
context space (variable) alludes to the continuous classification variable.

Note that the selected information granule (context) directly impacts upon
the resulting data to be examined. As a matter of fact, the context can be
regarded as a window (or a focal point) of the clustering pursuit. On a technical
side, the introduced linguistic context [21] provides us with a certain tagging
of the data. Fig. 8.5 illustrates this phenomenon.

The conditioning aspect (context sensitivity) of the clustering mechanism
is introduced into the algorithm by taking into consideration the conditioning
variable (context) assuming the values fi, f2,-+,fn on the corresponding
patterns. More specifically, fi describes a level of involvement of zy, in the as-
sumed context, fi = A(xy). The way in which fi can be associated with or al-
located among the computed membership values of xy, say, Wik, Usk, - - » Ucks

Fuzzy sets as a logic canvas for paitern recognition 249

Fuzzy set of context
(A)

’

data sct (\/‘
Y\
‘k :".f-\,{ }

Fig. 8.6 From context fuzzy set to the labeling of data to be clustered (shadowed column
in the data set consists of membership values of the context fuzzy set A)

Wi

can be realized in the form,

‘e
> = fi (8.24)
i=1
that holds for all data points, k = 1,2,---, N. The way in which the fuzzy set
of context, A, is obtained will be discussed in a subsequent section. However,
Fig. 8.6 highlights the way we proceed from data to clusters and the corre-
sponding labeling by the membership values of the context variable. It is worth
noting that the finite support of A "eliminates” some data points (for which
the membership values are equal to zero) thus leaving only a certain subset of
the original data to be used for further clustering. Bearing this in mind, we
modify the requirements for the partition matrices and define the family,

c N
U(A) = {u,-,, €[0,1]| Y usk = fi Vkand 0< ¥ w <N w} (8.25)

=1 k=1

Note that the standard normalization condition where the membership values
sum up to 1 is replaced by the involvement (conditioning) constraint. The
optimization problem may now reformulated accordingly,

min @, (8.26)

Uyuy g, e

subject to
U e U(A). (8.27)

250 W. Pedrycz and N. Pizan

Let us proceed with deriving a complete solution to this optimization problem.
Essentially, it may be divided into two separate subproblems:

e Optimization of the partition matrix U;
e Optimization of the prototypes.

As these tasks may be handled independently of each other, we start with the
partition matrix. Moreover, we notice that each column of U can be optimized
independently, so let us fix the index of the data point, k. Rather than being
subject to (8.27), (8.26) is now subject to the constraint

> ik = fi. (8.28)
=1

In other words, having fixed the data index, we must solve N independent
optimization problems. To make the notation more concise, we introduce the
notation d; for the distance between the pattern and prototype,

df = |lzx — vil[*. (8.29)

As the above is an example of optimization with constraints, we can easily
convert this into unconstrained optimization by using the technique of Lagrange
multipliers. The overall algorithm is summarized as the following sequence
of steps (where the fuzzification parameter m (> 1) affects the form of the
membership functions describing the clusters):

Given the number of clusters, ¢, select the distance function, || - ||, termi-
nation criterion, e (> 0), and initialize partition matrix U € U{(A). Select the
value of the fuzzification parameter, m (> 1) (the default is m = 2.0).

(1) Calculate centers (prototypes) of the clusters

N N
v,:Zu:}:mk/Zuf; (t=1,2,-+-,¢).
k=1 k=1

(2) Update the partition matrix to

* fk
Uik = —3

- (lexzsd)™

=1

1:=1,2,"' vc:j=1!21"' |N

(3) Compare U’ to U. If termination criterion |[U’ — U|| < e is satisfied
then stop, else return to step (1) with U equal to U’.

Fuzzy sets as a logic canvas for pattern recognition 251

Result: partition matrix and prototypes.

8.3.2 Clustering with partial supervision: reconciling structural
and labeling information

In the simplest case, we envision a situation where there is a set of labeled
data (patterns), yet their labeling may not be perfect (as being completed by an
imperfect teacher). Bearing this in mind, we want to confront this labeling with
the "hidden” structure in the data and reconcile it with this inherent structure.
Another interesting situation occurs when an expert provides a granulation of
a concept or a variable formulated in terms of fuzzy sets or relations and we
intend to confront (reconcile) it with the data. In any case, we anticipate that
the linguistic labels should have enough experimental justification behind them
and in this way make them more sound. This reconciliation is an example
of building constructs on the basis of knowledge (coming here in the form
of fuzzy sets) and an array of numeric data. Another version would involve
labeling coming from some other clustering mechanisms and presenting results
of clustering carried out for the data.

The algorithmic aspects can be laid down in many ways. Incorporation of
the labeling information is reflected in the augmented objective function

& N e N
Q=D uikllzk —vil® +a) > (uik — fue) "billwe — wil* (8.30)
i=lk=1 i=lk=1
The first term is the objective function, (8.22), used by the original FCM
method; the second term reflects the domain knowledge introduced in the form
of the given partition matrix F = ((fu)), ¢ = 1,2,...,¢, k = 1,2,...,N.
The vector b = [by] that assumes values in the unit interval, helps control a
balance between the structural aspects coming from the clustering itself and
the class membership coming from the external source. In addition, the weight,
set to 1, excludes the corresponding data point as not being externally labeled.
Put it differently: higher entries of b stipulate a higher level of confidence
associated to the labeling coming from the external source (say, expert). And
conversely, lower entries of b discount the labeling (class assignment) as not
being reliable enough. The weight coefficient (a) plays a similar role as the
previous vector but it operates at the global level and does not distinguish
between the individual patterns,
As a simple illustrative example, consider two-dimensional data shown in

252 W. Pedrycz and N. Pizz

Fig. 8.7 The set of two-dimensional patterns used in the experiment

Fig. 8.7. The auxiliary partition matrix F' is shown in Table 8.3 as well. The
size of this matrix stipulates the partition of the data into ¢ = 2 clusters,
Moreover, b = 1. So we assume that the extra labeling works equally well with
all the patterns. The fuzzification factor, m, was set to 2.

Table 8.3 Two-dimensional data with additional labeling represented by the auxiliary
partition matrix F'.

Pattern F

(1.00 2,30) (1.00 0.00)
(1.70 1.90) (0.90 0.10)
(2.30 1.60) (0.40 0.60)
(2.50 1.70) (0.30 0.70)
(1.80 2.30) (0.80 0.20)
(6.80 9.10) (0.05 0.95)
(7.70 8.20) (0.10 0.90)
(9.10 7.20) (0.00 1.00)
(10.10 12.50) (0.00 1.00)
(11.20 9.60) (0.40 0.60)

For different values of o we obtain a set of results reported in terms of
the partition matrices (Table 8.4(i)) and the prototypes (Table 8.4(ii)) of the

Fuzzy sels as a logic canvas for pattern recognition 253
clusters. For & = 0.0, there is no impact on the clustering process coming from
the auxiliary partition matrix, F'. In this case, as expected, there are two clearly
delineated clusters; note that the entries of the partition matrix are close to 1
or 0. When increasing the values of «, the partition matrix modifies its entries
according to the values of F. For high values of a (in this case, a = 6.0), the
impact of ' becomes profound and the patterns tend to follow the values in
F irrespective of their location in the feature space,

Table 8.4 Partition matrices (i) and prototypes (ii) of clusters for selected values of a.

a=0.0

a= 05

a=1.5

a==6.0

(i) Partition
Matrices
0.99214 0.00786
0.99964 0.00036
0.99690 0.00310
0.99524 0.00476
0.99896 0.00104
0.06400 0.93600
0.03883 0.96117
0.05055 0.94945
0.05899 0.94101
0.03386 0.96614

0.89927 0.10073
0.95400 0.04600
0.90990 0.09011
0.88993 0.11008
0.90923 0.09077
0.09262 0.90738
0.16894 0.83106
0.19630 0.80370
0.15370 0.84630
0.21306 0.78694

0.82237 0.17764
0.91487 0.08513
0.83770 0.16230
0.80308 0.19692
0.83477 0.16524
0.11661 0.88340
0.27259 0.72741
0.31157 0.68843
0.23210 0.76790
0.35742 0.64258

0.75163 0.24837
0.87906 0.12094
0.76872 0.23128
0.71878 0.28123
0.76308 0.23692
0.14568 0.85432
0.37803 0.62197
0.42259 0.57741
0.30100 0.69900
0.48977 0.51023

(ii) Cluster
Prototypes

1.87844 1.97932

2.57500 2.62513

8.99748 9.30629
8.40672 9.06494

2.11223 2.20003
3,25580 3.24709

8.77845 9.27113
7.84665 8.66043

8.4 Conclusions

We have presented a motivation for the use of fuzzy sets as a logic canvas
for pattern recognition problems possessing imprecise or vague information.
Fuzzy set-based logic processors and Petri nets are natural extensions of their
crisp binary counterparts. The former carry much stronger logic connotations

254 W. Pedrycz and N. Pizzi

than architectures such as radial basis function neural networks. The latter
possess learning characteristics similar to neural networks without a reduction
in the knowledge representation capabilities of the binary Petri net. Finally,
context-based partially supervised extensions to the fuzzy c-means clustering
algorithm were also presented. By adjusting the optimization function to take
into account a fuzzy set-based context, confidence (as determined by an exter-
nal source such as a domain expert) of assigned class labels may be exploited
to more accurately determine the intrinsic structure of data.

Acknowledgment

Support from the Natural Science and Engineering Research Council of Canada
(NSERC) is gratefully acknowledged.

References

[1] E. Backer, Computer Assisted Reasoning in Cluster Analysis. Engle-
wood Cliffs, NJ: Prentice Hall, 1995.

[2] R. E. Bellman, R. Kalaba, and L. A. Zadeh, “Abstraction and pat-
tern recognition," Journal of Mathematical Analysis and Applications,
vol. 13, pp. 1-7, 1966.

[3] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Al-
gorithms. New York: Plenum Press, 1981.

[4] S. Grossberg, "Adaptive pattern classification and universal recoding
1. parallel development and coding of neural feature detectors,” Bio-
logical Cybernetics, vol. 23, pp. 121-134, 1976.

[5] F. Hoppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy Cluster
Analysis. New York: Wiley, 1999,

[6] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. London:
Wiley, 1988.

[7] A. Kandel, Fuzzy Mathematical Techniques with Applications. New
York: Addison-Wesley, 1986.

[8] G. J. Klir and T. A. Folger, Fuzzy sets, Uncertainty, and Information.
Englewood Cliffs: Prentice Hall, 1988.

[9] T. Kohonen, Self-Organization and Associative Memory. New York:
Springer-Verlag, 1989.

Fuzzy sets as a logic canvas for pattern recognition 255

[10] S. K. Pal and S. Mitra, Neuro-Fuzzy Pattern Recognition. New York:
Wiley, 1999.

[11] W. Pedrycz and A. Rocha, “Fuzzy-set based models of neurons and
knowledge-based networks,” |EEE Transactions on Fuzzy Systems,
vol, 1, pp. 254-266, 1993,

[12] W. Pedrycz, "Conditional fuzzy c-means," Pattern Recognition Let-
ters, vol. 17, pp. 625-632, 1996.

[13] W. Pedrycz, “Conditional fuzzy clustering in the design of radial basis
function neural networks,” [EEE Transactions on Neural Networks,
vol, 9, pp. 601-612, 1998,

[14] W. Pedrycz and F. Gomide, An Introduction to Fuzzy Sets. Cambridge:
MIT Press, 1998.

[15] N. Pizzi, “Bleeding predisposition assessments in tonsillectomy /adenoid /-
ectomy patients using fuzzy interquartile encoded neural networks.”
Artif. Intell. Med. (in press).

[16] B. Ripley, Pattern Recognition and Neural Networks. Cambridge:
Cambridge University Press, 1996.

[17] C. Shannon, “A symbolic analysis of relay and switching circuits,”
Transactions of the American Institute of Electrical Engineers, vol. 57,
Pp. 713-723, 1938.

[18] H. Takagi and |. Hayashi, "NN-driven fuzzy reasoning," International
Journal of Approximate Reasoning, vol. 5, pp. 191-212, 1991.

[19] T. Terano, K. Asai, and M. Sugeno, Fuzzy Systems Theory and Its
Applications. Boston: Academic Press, 1992,

[20] L. Zadeh, K. Fu, K. Tanaka, and M. Shimura, Fuzzy Sets and Their
Applications to Cognitive and Decision Processes. London: Academic
Press, 1975.

[21] L. A. Zadeh, “Fuzzy sets and information granularity,” in Advances
in Fuzzy Set Theory and Applications (M. Gupta, R. K. Ragade, and
R. R. Yager, eds.), pp. 3-18, Amsterdam: North Holland, 1979.

[22] L. A. Zadeh, “Toward a theory of fuzzy information granulation and
its centrality in human reasoning and fuzzy logic,” Fuzzy Sets and
Systems, vol. 90, pp. 111-117, 1997.

[23] H. J. Zimmermann, Fuzzy Set Theory and Its Applications. Boston:
Kluwer, 1991.

Chapter 9

FUZZY PATTERN RECOGNITION
BY FUZZY INTEGRALS AND
FUZZY RULES

M. Grabisch

Laboratoire d’Informatique de Paris VI
UPMC
8, rue du Capitaine Scoti
75015 Paris, FRANCE
e-mail: michel.grabisch@lip6.fr

Abstract

We give an overview of the application of fuzzy rules and fuzzy
integrals in classification, presenting the general methodology and
illustrating it by giving real applications. Fuzzy rules have been
most of the time devoted to fuzzy control, using the so-called
"Mamdani rules”. Here we present a broader view of the topic
in the framework of possibility theory. It is seen that uncertainty
rules are the best-suited ones for modeling human knowledge in
pattern recognition. On the other hand, fuzzy integrals, by as-
signing weights to groups of attributes, permit to define non linear
classifiers, with powerful performances.

9.1 Introduction

Since the introduction by Zadeh of the concept of fuzzy sets in 1965 [35], and
later of the concept of possibility measure in 1978 [36], that is, a non-additive
representation of uncertainty, many methods in pattern recognition have been

257

258 M. Grabisch

proposed, based on these two seminal ideas. We should cite in this respect the
pioneering work of Ruspini [30], who gave the basis of fuzzy clustering in 1969,
an area which has known an important development later due to the work of
Bezdek [3].

It would be a difficult task to cite here all important contributions to the
field of pattern recognition done by researchers in fuzzy logic (but the reader
can consult the edited volume of Bezdek and Pal [4] for a selected collection of
papers on this topic), and we will limit ourself in this chapter to the presentation
of only two methodologies, which are representative of the two seminal ideas of
Zadeh cited above. The first one is based on fuzzy sets, as a means to model
imprecise concepts, and uses fuzzy rules to represent the classes of interest,
The second one is based on non-additive representations of uncertainty, namely
fuzzy measures [32], which are yet more general than possibility (and also
probability) measures.

The approaches described here are based on the work done by the authar,
Related works will be also indicated. In the sequel, A,V denote min and max
respectively.

9.2 Classification by fuzzy rules

9.2.1 Fuzzy rules

The following exposition is based on possibility theory (see [8] for basic defini-
tions). The typology of fuzzy rules we use below is based on [9].

9.2.1.1 Fuzzy logic implications

We call multivalued implication any operation I from [0,1] to [0,1] which
extends the material implication of classical binary logic, i.e.,

100,0) =1 1(0,1) = 1 (9.1)
1(1,0) =0 I(1,1) = L. (9.2)

The material implication can be written as

I(a,b) = ~a Vb (9.3)

Pattern recognition by fuzzy integrals and fuzzy rules 259

The first way to extend [on [0, 1] is to replace usual binary operations by their
corresponding fuzzy operations, i.¢.,

I{a,b) = n(a)Lb

where L is a t-conorm and n a strong negation (i.e., strictly decreasing, invo-
lutive, and such that n(0) = 1). These implications are called S-implications
since S often denotes t-conorms. Examples of S-implications are those of
Kleene-Dienes, Reichenbach and tLukasiewicz, defined by

Ixp(a,b) =(1—a)Vb (9.9)
Ip(a,b) =1—a+ab (9.5)
Ij(a,b)=(1—a+Dd)AL (9.6)

The second way of considering an implication is related to sets. We say that
p — ¢ if in all worlds where p is true, then g is true, i.e.,

PcaQ

where P (resp. Q) denotes the set of worlds where p (resp. g) is true. But
inclusion is a particular order relation, and in lattice theory, residuated opera-
tions are defined for lattices having a structure of semi-group. Using a t-norm
T for the semi-group operation, we can define

I{a,b) = sup{c € [0,1]jaTec < b}.

These implications are called residuated implications or R-implications. Exam-
ples of R-implications are those of Lukasiewicz and Gédel, the last one being
defined by

1, ifa<b
b, otherwise.

Iofa,t) = {

Using these implications, two types of rules can be defined [9]:

Uncertainty rules (or uncertainty-qualifying rules) = They have the following
semantical interpretation:

The more X is A, the more certain Y is B

i.e., pa(z) < C(B), where C(B) is the certainty degree of having B
when the input is z, and p 4 is the membership function of the fuzzy
set A. It can be shown that S-implications are suitable for this case.

260 M. Grabisch

Gradual rules (see [10]) (or truth-qualifying rules) — They have semantically
the following meaning:

The more = is A, the more y is B

where A, B are fuzzy sets with membership functions g4, . This
kind of rule expresses a relation between = and y in the sense that as
X goes closer to A, Y is constrained to go closer to B. This constraint
can be expressed by p4(z) < pg(y). The least specific solution (i.e.,
leading to the greatest possibility distribution) is the Gaine-Rescher
implication defined by

1, ifa<b
0, otherwise

mﬂmms{

since, if (z,y) is such that A(z) < B(y), then I(A(z),B(y)) =1
and 0 otherwise. In fact, all R-implications are suitable for modeling
gradual rules.

9.2.2 The generalized modus ponens

The classical modus ponens is the following reasoning process:

p — q (rule)
p (fact)

g (conclusion)
The extension to fuzzy sets becomes;

X eA—Y € B (rule)
X € A (fact)

Y € B’ (conclusion)

The conclusion B’ is computed as follows. We consider the rule as a condi-
tional possibility distribution 7y x(z,y) = I(A(z), B(y)), and the possibility
distribution of y after inference is obtained by the combination/projection prin-
ciple [9]

Ty (y) = pg(y) = Sgp(ﬂm(&”) A7yx(z,9)).

Pattern recognition by fuzzy integrals and fuzzy rules 261

In the case of a precise input g (i.e., a distribution reduced to a single value),
the above expression reduces to:

Ty (y) = I(palzo), pp(y)).

Let us now consider the case of several parallel rules Ry, ..., R;. Each rule
R; is expressed by a possibility distribution 7% (z,y). It is known from [9]
that inferred possibility distributions have to be aggregated by a minimum
operator. Moreover, it is better (z.e., more informative) to aggregate all the
rules in one single rule before performing the inference, than aggregating the
inferred result of each rule, thus:

sgp wx(z) A /\n{.ix(m,y) S/\Sllp(?‘l’x(ﬂ:)/\ﬂ'{,ix(x,y)).
j i "

9.2.3 Classification by fuzzy rules

Let Cy,...,C,, be a set of classes, which can be described by a set of features
or attributes X;, i = 1,...,n, t.e., a given pattern to classify is an element
z = (21,...,2,) of Xy x - x X,,, where z; is the value taken by attribute 1

for this pattern. In the sequel, X; will indicate either the attribute (or variable)
itself or its set of values, while z; indicate possible values of X;. Fuzzy rules
can be used in two different respects:

e gradual rules express relations between variables, and can be used
to compute approximately the value of an attribute which could be
difficult or costly to obtain or compute in an exact mathematical way.
Such situations often occur, when it is sufficient to have a rough
approximation of the value of an attribute for classification. More
specifically, let X; be such an attribute, whose value depends on vari-

ables Zy,...,Z,, which could be attributes among Xi,...,X,, or
additional variables. Instead of giving an explicit model of the form
z; = f(21,...,2,), with f being a deterministic function, the model

is given under a set of gradual rules of the form:

The more Z; is Ay and ... and the more Z,, is Ap,
the more X; is B;

where A;, ..., Ay, By are fuzzy sets on the respective universes. This
kind of rule expresses a constraint between X; and Z),...,2,: as

262

M. Grabisch

Zy, ..., 2y go nearer the core of the fuzzy sets A;,..., A,, the value
of X, is constrained to go nearer the core of B;. A gradual equivalence
(i.e., a gradual rule p — g together with its converse —=p — —g)
can be used as well if necessary. In this case, there will be similar
constraints on the negations of B;.

Note that the result of a gradual rule is a fuzzy set, even if the input
is crisp. Depending on the application, one should decide to keep
the result in the form of a fuzzy set, and to forward it in subsequent
layers of the reasoning, or to extract from it the most representative
or plausible value. We avoid here the term “defuzzification”, which
is so often associated with the center of gravity method. If such a
method can be justified in the domain of fuzzy control (where fuzzy
rules are Mamdani-type rules, not belonging to the taxonomy given
in Section 9.2.1.1), it has no meaning in the context of possibility
theory, where the representative value should be of maximal degree of
possibility.

See an example of application of gradual rules in classification in [2].
uncertainty rules express relations between variables and classes, More
specifically, let us introduce a new variable Y defined on the set of
classes {C},...,Cm}, which we can call the classification variable. A
classification rule will have the form:

The more X, is Ay, and ...and the more X,, is Ay,
the more certain Y is B

where Ay, ..., A, are fuzzy sets expressing fuzzy domains of values for
attributes, and B is the possibility distribution on classes, i.e., B(C})
expresses to which degree it is possible that C; is the right class when
the pattern matches perfectly the fuzzy sets A;,..., A,.

In practice, several such rules will be used in parallel. It is to be noted
that, since the aggregation of rules is made in a conjunctive way, if
one of the rules concludes that the possibility degree of class C; is 0,
then no other rule can "save" this conclusion, i.e., the class C; will be
considered as impossible.

So basically, the classification is performed by a set of uncertainty rules, with

possibly some additional gradual rules to compute some attributes, The result
of the inference is thus a possibility distribution 7y indicating the possibility
degree for each class. If ny(C;) = 0, then the rule has inferred that the

Pattern recognition by fuzzy integrals and fuzzy rules 263

observed object cannot belong to class C;. If my(C;) = 1, then it is totally
possible (but not certain) that the object belongs to class C;. The question is
now how to exploit this possibility distribution in order to draw a conclusion
on the class of the pattern in consideration.

Recall that a possibility distribution 7 induces a possibility measure II de-
fined by IT(A) = sup,c 4 7(z) and a necessity measure N(A) = 1 — II(4).
Then:

e if there is a unique class C; such that 7y (C;) = 1, class C; is the
most certain class since N(C;) > 0 and N(C;) = 0 for all j # 1.

o if several C; are such that my(C;) = 1, we cannot decide between
these classes, which are the most certain: the rule base has not enough
knowledge to discriminate, However, if the classes with possibility
degree equal to 1 correspond to a meaningful subset of classes, then the
certainty of this subset is strictly positive. If my (C;) = 1 everywhere,
then there is total uncertainty about the class.

e if there is no class C; such that 7y (C;) = 1, then no class matches
the pattern perfectly. It means that the pattern could belong to a class
which is not included into the initial set of classes. It could also mean
that there is some contradiction in the rule base.

Further processing can be done, but it depends strongly on the application:
see the example below with satellite images.

It is important to stress here the advantage of possibility theory over proba-
bilistic methods for the representation of uncertainty. The forced normalization
of probability measures prevents them from distinguishing between equicer-
tainty and low certainty due to the presence of an unknown class.

This methodology has been successfully applied by the author on target
classification [2], face recognition [13], and in satellite image analysis (unpub-
lished). It is to be noted that in every case, no automatic learning method
was used to derive the rules, but only expert knowledge. The following ex-
ample, borrowed from the satellite image analysis application, illustrates this.
The problem is concerned with the recognition of various natural and artificial
zones on an image (decametric image). The expert in the field is able to tell
the following:

e water appears as regions of almost uniform texture. The grey level can
be black (pure water) to middle grey (turbid water)

264 M. Grabisch

e forests form regions which are slightly more textured than water, and
are generally dark (but less dark than pure water)

e fields on a small scale present almost no texture, The grey level varies
from dark to light grey

e urban zones are highly textured and are bright.

From this expertise, the following attributes seem to be relevant:

e mean of grey levels on a 3x3 window, denoted Moy ;
e variance of the grey levels on a 3x3 window, denoted Var ;
e "busyness' type Il on a 3x3 window, denoted Busy2.

The busyness index has been proposed by Dondes and Rosenfeld [7, 29]. The
type |l busyness is defined as follows, Considering a 3 x 3 window:

a b ¢
d e f
g h i

we compute the 12 absolute differences dap, dbe, Ode, Oefy Oghs Onis Oad, Odg, Obes
OenyOcf,05i, avec bgp = |a — b|, and similarly for the other quantities. The
type Il busyness index corresponds to the median of these 12 differences:

By = med(6ap: Obe, Ode, e sy Oghy Oniy Oady Odg; Opes ety Ocgy O i)

Using these three attributes, we have built a fuzzy rule base, containing 7
fuzzy rules, all of the uncertainty type, with Kleene-Dienes implication. We
give some examples of this rule base.

e Fuzzy rule 1

IF (Moy is VERY DARK) AND (Busy2 is LOW),
THEN it is almost surely WATER

The fuzzy sets concerning this rule are shown below. The possibility
distribution over the classes is represented by vertical strokes.

i
|
{
Moy Busy2 ol
2535 8 12 ¢

water Forest
fields urban Zone|

Pattern recognition by fuzzy integrals and fuzzy rules 265

o Fuzzy rule 5

IF (8ig is HIGH),
THEN it can be neither FIELD nor WATER

The fuzzy sets and possibility distribution concerning this rule are
shown below.

e e e e e

j t.

T

water forest
[fields urben mnoj

As explained above, the resuit of inference is a possibility distribution over the
4 classes, The final decision is taken as follows. For each pixel p, we first
assign the class of highest possibility degree. Then, we compute the difference
Aj9(p) between the class of maximal possibility degree and the second highest
possibility degree. This gives the quality of the decision (the higher Ajq(p) is,
the better the quality), which is 0 if the 2 best classes have equal possibility
degree. Considering a window around p, we compute the average of decisions
in the window, weighted by the quality of the decision, If the average is 0 for
each class, then the pixel is classified into the INDETERMINATE class.

Experimental results on various images show that this method, although
without learning procedure, largely outperforms classical approaches such as
neural nets, clustering and nearest prototype, and also fuzzy integrals, presented
hereafter.

9.2.4 Other approaches based on fuzzy rules

Many authors have proposed fuzzy rule based approaches for classification,
but to the knowledge of the author, all these approaches are more or less
based on Mamdani-type rule or similar (e.g., Sugeno rules), i.e., rules where
the implication is, in fact, a conjunction, namely the minimum operator for
Mamdani's rules, and the product operator for Sugeno's rule. For this reason,
let us call them “conjunctive rules”, This type of rule, although widely used,
cannot be called properly a rule in the logical sense of the term, but it performs
a smooth interpolation between fuzzy domains. In this respect, conjunctive

266 M. Grabisch

rules can be viewed as a means to “fill in" the holes in a partial description
of the relation between attributes and classes, given under the form of (fuzzy)
examples. For this reason, these methods often lack the concise form of the rule
base which can be obtained with the previous approach: for example, the rule
base in [2] contains only 19 rules for a 4-class and 16-attribute problem, and
the above example uses 7 rules. On the other hand, some methods based on
conjunctive rules use nearly as many rules as learning samples in the database!

In fact, most of the work devoted to the learning of fuzzy rules is concerned
rather with the modeling of a continuous function (e.g., for prediction) than
classification (see the monograph of Glorennec [14] for a thorough survey of
this topic), and are not completely appropriate. Few methods are available
for constructing fuzzy rules from learning data that include the structure of
the fuzzy rule base. Such a complete method, including a detailed analysis of
performance, has been proposed by Mandal et al. [24, 25].

9.3 Classification by fuzzy integrals

9.3.1 Background on fuzzy measures and integrals

Let X be a finite index set X = {1,...,n}.

Definition 9.1 A fuzzy measure yu defined on X is a set function yu :
P(X) — [0,1] satisfying the following axioms:

(i) 1@ =0, u(X)=1.
(i) AC B = u(4) < u(B)

P(X) indicates the power set of X, i.e., the set of all subsets of X. |

A fuzzy measure on X needs 2" coefficients to be defined, which are the values
of u for all the different subsets of X.

Fuzzy integrals are integrals of a real function with respect to a fuzzy
measure, by analogy with Lebesgue integral which is defined with respect to
an ordinary (i.e., additive) measure, There are several definitions of fuzzy
integrals, among which the most representative ones are those of Sugeno [32]
and Chogquet [6].

Pattern recognition by fuzzy integrals and fuzzy rules 267

Definition 9.2 Let u be a fuzzy measure on X. The discrete Choquet
integral of a function f : X — R* with respect to u is defined by

Culf(z1)s- .0\ flzn)) = Z(f(l'(a)) = f(@6-1)))e(Aw), (9.7)
i=1

where ;) indicates that the indices have been permuted so that 0 <

flzqy) <+ £ flzm) < 1. Also Ay := {z@),-. ., 2(n)}, and f(z(o)) = 0.
|

Definition 9.3 The discrete Sugeno integral of a function f: X — [0, 1]
with respect to u is defined by

n

Su(f(@1)y. - fl@n)) =\ (Flzw) A (Aw)), (9.8)

i=1
with the same notation as before. []

Choquet integral coincides with Lebesgue integral when the measure is additive,
but this is not the case for the Sugeno integral.

9.3.2 Classification by fuzzy integral
9.3.2.1 General methodology

As before, let Cy, ..., C,, be a set of given classes, and let patterns be described
by a n-dimensional vector 7 = [z; ---z,]. We have n sensors (or sources),
one for each feature (attribute), which provide for an unknown sample z° a
degree of confidence in the statement “z° belongs to class C;", for all C;. We
denote by ¢(z°) the confidence degree delivered by source i (i.e., feature i)
of z° belonging to C;.

The second step is then to combine all the partial confidence degrees in a
consensus-like manner, by a fuzzy integral. It can be shown that fuzzy inte-
grals constitute a vast family of aggregation operators including many widely
used operators (minimum, maximum, order statistic, weighted sum, ordered
weighted sum, etc.) suitable for this kind of aggregation [15]. In particular,
fuzzy integrals are able to model some kind of interaction between features:
this is the main motivation of the methodology (more on this in Section 9.3.4).
Thus the global confidence degree in the statement “z° belongs to C;" is given

268 M. Grabisch

by:
0, (Cy;2°) = Cla (¢1(2°), .., #(2°)) (9.9)

(or similarly with the Sugeno integral). Finally, =° is put into the class of
highest confidence degree. Here, the fuzzy measures u/ (one per class) are
defined on the set of attributes (or sensors), and express the importance of the
sensors and groups of sensors for the classification. For example, u?({X1})
expresses the relative importance of attribute 1 for distinguishing class j from
the others, while u? ({ X, X2}) expresses the relative importance of attributes
1 and 2 taken together for the same task. The precise way of how to interpret
this will be given in Section 9.3.4.

The above presentation is very general and allows many methods to be
used. However, it is interesting to embed this methodology in the fuzzy pattern
matching methodology, a fundamental approach for classification in possibility
theory, which is the counterpart of the Bayesian approach in probability theory.
Due to its importance, we devote the next paragraph to the presentation of this
methodology, its connection with fuzzy integral, and the Bayesian approach,

9.3.2.2 The fuzzy pattern matching approach

As for the section on fuzzy rules, we assume some familiarity of the reader
with possibility theory (see [8] for this topic, and [12] for fuzzy pattern match-
ing). Following previous notation, X; denotes the universe of the ith attribute.
Each class C; is modeled by a collection of fuzzy sets C_}, S o ,C_;‘ defined on
Xi,..., X, respectively, expressing the set of typical values taken by the at-
tribute for the considered class. An observed datum z is modeled by a possibility

distribution w.(zy,...,), representing the distribution of possible locations
of the (unknown) true value of = in x!_, X;. If attributes are considered to be
non-interactive, then 7 (zy,...,z,) = Al mi(2). Now the possibility and

necessity degrees that datum x matches class C; with respect to attribute i is
given by
l_[,ri(C;-) ;= sup (C;(:c,) Ami(zi))

TiEX,

Jinf (G V (1= ().

Nﬂl(C;:):

The first quantity represents the degree of overlapping between typical values of
the class and possible value of the datum, while the second one is an inclusion
degree of the set of possible values of z; into C; If 2 is a precise datum, =

Pattern recognition by fuzzy integrals and fuzzy rules 269

reduces to a point, and the two above quantities collapse into Cj(x;), which
corresponds to ¢ (z°).

The next step is the aggregation of these matching degrees, according to the
way the class C; is built. If, for example, the class is built by the conjunction
of the attributes, i.e., z € C; if (x; € C}) and (z3 € C?) and -+ and

(zn € C7), then it can be shown that, by letting C; = C; X x CF,

HR(CJ') = /\ I, (C_;)

i=1

Nx(Cy) = /\ Nxi(G5).

Similarly, if the class is built by a disjunction of the attributes, a weighted
conjunction, or a weighted disjunction, the above result still holds, replacing
the minimum by a maximum, a weighted minimum or a weighted maximum
respectively. More generally, if we consider that Cj is built by a Sugeno integral
with respect to a given fuzzy measure u, a construction which encompasses all
previous cases*, I1(C;) and N, (Cj) are also obtained by the (same) Sugeno
integral. More specifically:

Proposition 1 Let u be a fuzzy measure, and consider that class C is ex-
pressed by a Sugeno integral, i.e., C(z1,...,2n) = Vie, [CW(z3y) A u(Ap)).
Then, the possibility and necessity degrees that a datum z belongs to class C;

are given by

H,(C) = Sp(nm (Cl)a LR Hrn(cm))
Ni(C) = Su(Ng (CY),. .., N, (C™)).

For a proof, see [18].

This method can be viewed also under the Bayesian point of view. Let
p(z|Cy), j = 1,...,m be the probability densities of classes, and p(;|C;), i =
1,...,n, 3 =1,...,m, the marginal densities of each attribute. The Bayesian
inference approach is to minimize the risk (or some error cost function), which
amounts, in the case of standard costs, to assigning x to the class maximizing

=Sugeno integrals, as shown by Marichal [26], represent a wide class of Boolean polyno-
mials, i.e., polynomials formed uniquely by a combination of V and A.

270 M. Grabisch

the following discriminating function:
®(C;lz) = p(z|C;) P(C;).

where P(C;) is the a prior: probability of class C;. If the attributes are
statistically independent, the above formula becomes :

&(Cjlz) = [[pla:]C5)P(C;). (9.10)
i=1
If the classes have equal a priori probability, formulae (9.8) and (9.10) are
similar: in probability theory and in the case of independence, the product
operator takes place of the aggregation operator.

9.3.3 Learning of fuzzy measures

We give now some insights on the identification of the fusion operator, that is,
the fuzzy integral, using training data. We suppose that the q!r} have already
been obtained by some parametric or non-parametric classical probability den-
sity estimation method, after suitable normalization: possibilistic histograms
(that is, transformations of probability density functions into possibility distri-
butions, see [11]), Parzen windows, Gaussian densities, ete.

The identification of the fusion operator reduces to the identification (or
learning) of the fuzzy measures p, that is, m(2" — 2) coefficients. Several
approaches have been tried here, corresponding to different criteria. We restrict
ourselves to the most interesting, and state them in the two-class case (m = 2)
for the sake of simplicity. We suppose to have { = I} + 5 training samples
labeled 27,23,....a] for class C;, j = 1,2. The criteria are the following:

e the squared error (or quadratic) criterion, z.e., minimize the quadratic
error between expected output and actual output of the classifier. This
takes the following form :

Iy
J = (8,:(C1iz}) — &,a(Criz}) — 1)2
k=1
iy
+ 3 (8,2(Cas22) — B (Cr;22) — 1)2.
k=i
It can be shown that this reduces to a quadratic program with 2(2"—2)
variables and 2n{2"~! — 1) constraints in the case of Choquet integral

Pattern recognition by fuzzy integrals and fuzzy rules 271

(see full details in [19, 20]).

e the generalized quadratic criterion, which is obtained by replacing the
term @1 — P2 by ¥[®,: — P ,2] in the above, ¥ being any increasing
function from [—1,1] to [—1,1]. ¥ is typically a sigmoid type func-
tion U(¢t) = (1 — e Kt)/(1 + e~ K%), K > 0. With suitable values
of K, differences between good and bad classifications are enhanced.
This is no more a quadratic program, but a constrained least mean
squares problem, which can also be solved with standard optimization
algorithms when the Choquet integral is used. In fact, this optimiza-
tion problem requires huge memory and CPU time to be solved, and
happens to be rather ill-conditioned since the matrix of constraints
is sparse. For these reasons, the author has looked towards heuristic
algorithms better adapted to the peculiar structure of the problem and
less greedy [16]. A satisfying algorithm has been found (called here-
after HLMS) which, although suboptimal, reduces the computing time
by a factor of 200.

9.3.3.1 Performance

We give some experimental results of classification performed on real and sim-
ulated data. We have tested the Choquet integral with the quadratic criterion
minimized with the Lemke method (QUAD), the generalized quadratic criterion
minimized by a constrained least square algorithms (CLMS), and by our algo-
rithm (HLMS), and compared with classical methods. Table 9.1 (top) gives the
results obtained on the Iris data of Fisher (3 classes, 4 attributes, 150 data),
and on the cancer data (2 classes, 9 attributes, 286 data), which are highly
non-Gaussian. The results by classical methods come from a paper of Weiss
and Kapouleas [34]. The good performance of HLMS on the difficult cancer
data is to be noted.

The bottom part of the table gives another series of results, obtained on
simulated data (3 classes, 4 non-Gaussian attributes, 9000 data, one attribute
is the sum of two others). These results show that if the Choquet integral-
based classifier is not always the best one, it is nevertheless always among the
best ones.

In [27], an experiment has been conducted on a problem of bank customer
segmentation (classification). In the first step, we have performed a classifi-
cation on a file of 3068 customers, described by 12 qualitative attributes, and
shared among 7 classes. Classical methods in this context are linear regression,

272 M. Grabisch

Table 9.1 Classification rates on various data sets

Method iris (%) | cancer (%) I
linear 98.0 70.6
quadratic 97.3 65.6
nearest neighbor 96.0 65.3
Bayes independent | 93.3 71.8
Bayes quadratic 84.0 65.6
neural net 96.7 71.5
PVM rule 96.0 77.1
QUAD 96.7 68.5
CLMS 96.0 72.9
HLMS 95.3 77.4
l Method Classification rate (%) I
Bayes linear 82.6
linear pseudo-inverse 84.4
cluster 86.9
adaptive nearest neighbor 87.8
Bayes quadratic 90.3
k nearest neighbor 90.4
tree 96.2
CLMS 90.7
HLMS 89.2

sequential scores, and polytomic scores. The problem happened to be very
difficult, since no method (including fuzzy integrals), was able to go beyond
50% of correct classification (see Table 9.2, top). However, in many cases, the
quantities ®,,; (C;; x) were very near for two classes, showing that the decision
of the classifier was not clear-cut. In the second step, we have taken into ac-
count the "second choice”, considering that the classification was also correct
when the second choice gave the correct class, provided the gap between the
two greatest @,,;(C;;z) was below some threshold (here 0.05). Performing
this way, the classification rate climbed to 65%. We have tried to apply the

Paltern recognition by fuzzy integrals and fuzzy rules 273

Table 9.2 Segmentation of customers

File 1
Methods Classification rateJ
Regression 45 %
Sequential scores 46.4 %
Fuzzy integral (HLMS) 471 %
Polytomic scores 50 %
Polytomic scores (2nd choice) 54%
Fuzzy integral (HLMS) (2nd choice) 65 %

File 2
Methods Classification rate
Regression 29.9 %
Sequential scores 27.9 %
Fuzzy integral (HLMS) 31.1 %
Polytomic scores 322 %
Polytomic scores (2nd choix) 36%
Fuzzy integral (HLMS) (2nd choix) 50 %

same approach to classical methods, but without good results, since there were
very few cases where first and second choices were very near. Even taking sys-
tematically the two first choices, the rate obtained was at best 54%. A second
experiment was performed on a second file of 3123 customers, described by 8
qualitative attributes, and shared among 7 classes. The results corroborate the
fact that the classifier based on the fuzzy integral, when allowing the second
choice in case of doubt, largely outperforms the other methods.

This fact is again an evidence of the advantage of dealing with possibility
distributions' rather than probability distributions as explained in Section 9.2.3.

tStrictly speaking, ®,1(Cjix) is a possibility distribution only if a Sugeno integral is
used. Nevertheless, there is no normalization of & such as 30, € ,;(C;iz) = 1.

274 M. Grabisch

9.3.4 Importance and interaction of attributes

As said before, the fuzzy measures u? contain all the information about the
importance of all individual attributes (or features) and all groups of attributes
for distinguishing class C; from the others. Let us drop index j for simplicity,
and denote by X = {1,...,n} the set of attributes, and by X,,..., X, the
corresponding axes. We can reasonably state the following.

e a feature 1 is important if the values of u(A) are high whenever i € A.
Clearly, it is not enough to look solely at the value of u({i}), but also
at u({i,7}), u({i, 4,k}) etc. But it seems very difficult to extract from
these coefficients the contribution of i alone.

o if u({1}) and pu({2}) are high (say 0.7), and p({1,2}) is not very
different (say 0.75), then clearly the importance of features 1, 2 taken
together is much the same as 1 or 2 taken separately, and we have
no interest in considering them both. We will speak here of negative
synergy or redundancy. On the contrary, if u({1}) and p({2}) have
low values (say, 0.1) and p({1,2}) is large (say, 0.6), then although
features 1 and 2 are unimportant when considered separately, they be-
come very important when taken together. We speak then of positive
synergy, or complementarity. Of course, as above we must consider
the value of all coefficients u(A) with {1,2} C A, to see the effect of
adding either ¢, j or {%,7} to a coalition.

Based on these ideas, it is possible to compute a global importance index and
an interaction index. We define them in the next section.
9.3.4.1 Shapley value and interaction index of a fuzzy measure

Definition 9.4 Let u be a fuzzy measure on X. The importance index or
Shapley index of element ¢ with respect to u is defined by:

vi= Y (pK Ui) - p(K)), (9.11)
KCX\i
with v, = (”_kn',l)!k! = (,._1.)“, |K| indicating the cardinality of K, and
k
0! = 1 as usual. The Shapley value of y is the vector v = [v; -« - v,].]

This definition has been proposed by Shapley on an axiomatic basis in coop-
erative game theory [31], and possesses all suitable properties for representing

Pattern recognition by fuzzy integrals and fuzzy rules 275

importance of indices. In particular, the Shapley value has the property that
Soio1vi = L. It is convenient to scale these indices by a factor n, so that an
importance index greater than 1 indicates a feature more important than the
average.

Definition 9.5 The interaction index between two elements ¢ and j with
respect to a fuzzy measure u is defined by:

Li= Y & (KU {i5}) — p(KUi) — p(KUj) +p(K)), (9.12)
KCX\{i.3}

. _ (n=k=2)k! _ 1
with gk = (-0 In;?)(n_l}- |

It is easy to show that the maximum value of I;; is 1, reached by the fuzzy
measure 4 defined by u(K U1,5) = 1 for every K C X, and 0 otherwise.
Similarly, the minimum value of I;; is -1, reached by u defined by u(K Ui) =
u(KUj) =1 for any K € X and 0 otherwise. This definition has been
proposed by Murofushi and Soneda [28], by using concepts of multiattribute
utility theory, and is very similar to the Shapley value. In fact, Grabisch has
shown that both can be embedded into a general interaction index, defined for
any coalition [17]. A positive (resp. negative) value of the index corresponds to
a positive (resp. negative) synergy. Let us apply these indices to the iris data
set. Figs. 9.1 and 9.2 give the histograms of every feature for every class, as
well as projections of the data set on some pairs of features. In these figures,
samples of class 1 (resp 2, 3) are represented by squares (resp. triangles,
circles).

Tables 9.3 give importance index and interaction indices computed from
the result of learning by HLMS (classification rate is 95.3%). We can see that
the Shapley value reflects the importance of features which can be assessed
by examining the histograms and projection figures. Clearly, X; and X, are
not able to discriminate among the classes, especially for classes 2 and 3. In
contrast, X3 and X4 taken together are almost sufficient.

The interaction index values are not always so easy to interpret. However,
note that X; and X3 are complementary for class 1: the projection figure on
these two axes shows effectively that they are almost sufficient for distinguishing
class 1 from the others, although X; or X, alone were not. In contrast,
these two features taken together are not more useful than X; or Xy for
classes 2 and 3 (redundancy). The fact that I;4 for class 2 is strongly negative
can be explained as follows. Looking at the projection figure on X7, X4, we

276 M. Grabisch

Table 9.3 Indexes of importance and interaction for the iris data set

index of importance v; (scaled)

feature | class 1 1 class 2 | class 3

1 0.759 | 0.670 | 0.416
2 0.875 | 0.804 | 0.368
3 1.190 | 1.481 1.377
4 1.176 | 1.045 | 1.839

index of interaction Ij;

features | class 1 | class 2 | class 3

1,2 0.128 | -0.159 | -0.065
1,3 0.051 | 0.281 | 0.052
1.4 0.0564 | -0.257 | 0.010
2,3 -0.009 | 0.114 | 0.002
2,4 -0,007 | 0.036 | 0.059
34 -0.051 | 0.132 | -0.238

can see that X; (horizontal axis) brings no better information than X, for
discriminating class 2 from the others, so that the combination {X;, X4} is
redundant. Concerning X3 and X, the examination of the projection figure
shows that they are rather complementary for classes 2 and 3. Although I3y is
positive for class 2 as expected, it is strongly negative for class 3.

0.3.,5 Related work

To our knowledge, the fuzzy integral has been first applied to classification in
the beginning of the nineties, independently by Tahani and Keller [33], and
by Grabisch and Sugeno [21, 22]. Later, much work has been done in image
processing and character recognition (see [23] for a thorough survey on this
topic, with a detailed bibliography; see also the work of Arbuckle et al. [1]).
Also, we mention the use of fuzzy integrals as a means to combine the output
of several classifiers (see, e.g., Cho [5]).

Pattern recognition by fuzzy integrals and fuzzy rules

R <
o1 1 i
11 .8 i
i1 & S
L =
i1 =7. R
r i -
L= R o =
w POy dmglp s
sr fob e 3
| & e & .
7l
iX
GarmiE”
e
o

277

Fig. 9.2 Projections of the iris data (from left to right: on features 1 and 2, 1 and 4, 3

and 4 resp.)

References

[1] T. Arbuckle, E. Lange, T. lwamoto, N. Otsu, and K. Kyuma. Fuzzy
information fusion in a face recognition system. Int. J. of Uncertainty,

278

M. Grabisch

Fuzziness and Knowledge-Based Systems, 3(3):217-246, 1995.

[2] A. Ayoun and M. Grabisch. Tracks real-time classification based on
fuzzy rules. Int, J. of Intelligent Systems, 12:865-876, 1997.

[3] J.C. Bezdek. Pattern recognition with fuzzy objective function algo-
rithms. New York: Plenum Press, 1981,

[4] J.C. Bezdek and S.K. Pal (eds). Fuzzy Models for Pattern Recognition.
New York: |[EEE Press, 1992.

[5] S.B. Cho. Combining multiple neural networks by fuzzy integral for
robust classification. /EEE Tr. on Systems, Man and Cybernetics,
25(2):380-384, 1995,

[6] G.Choquet. Theory of capacities. Annales de /'Institut Fourier, 5:131-
205, 1953,

[7) P.A. Dondes and A. Rosenfeld. Pixel classification based on gray level
and local busyness. IEEE Tr. on Pattern Analysis and Machine Intel-
ligence, 4(1):79-84, 1982.

(8] D. Dubois and H. Prade. Possibility Theory. New York: Plenum Press,
1988.

[9] D. Dubois and H. Prade. Fuzzy sets in approximate reasoning, part
1. inference with possibility distributions. Fuzzy Sets and Systems,
40:143-202, 1991.

[10] D. Dubois and H. Prade. Gradual inference rules in approximate rea-
soning. Information Sciences, 61:103-122, 1992.

[11) D. Dubois, H. Prade, and S. Sandri. On possibility/probability trans-
formations. In R. Lowen and M. Roubens, editors, Fuzzy Logic, State
of the Art. New York: Kluwer Academic, 1993,

[12] D. Dubois, H. Prade, and C. Testemale. Weighted fuzzy pattern
matching. Fuzzy Sets & Systems, 28;313-331, 1988,

[13] J. Figue, M. Grabisch, and M.-P. Charbonnel. A method for still image
interpretation relying on a multi-algorithms fusion scheme, application
to human face characterization. Fuzzy Sets and Systems, 103:317-
337, 1999,

[14) P.Y. Glorennec. Algorithmes d'apprentissage pour systémes d'inférence
floue. Hermes, 1999,

[15] M. Grabisch. Fuzzy integral in multicriteria decision making. Fuzzy
Sets & Systems, 69:279-298, 1995,

[16] M. Grabisch. A new algorithm for identifying fuzzy measures and its
application to pattern recognition. In Int. Joint Conf. of the 4th IEEE

Pattern recognition by fuzzy integrals and fuzzy rules 279

Int. Conf. on Fuzzy Systems and the 2nd Int. Fuzzy Engineering
Symposium, pages 145-150, Yokohama, Japan, March 1995.

[17] M. Grabisch. k-order additive discrete fuzzy measures and their rep-
resentation. Fuzzy Sets and Systems, 92:167-189, 1997.

[18] M. Grabisch. Fuzzy integral for classification and feature extraction. In
M. Grabisch, T. Murofushi, and M. Sugeno, editors, Fuzzy Measures
and Integrals — Theory and Applications, pages 415-434. Heidel-
berg:Physica Verlag, 2000.

[19] M. Grabisch, H.T. Nguyen, and E.A. Walker. Fundamentals of Un-
certainty Calculi, with Applications to Fuzzy Inference. New York:
Kluwer Academic, 1995.

[20] M. Grabisch and J.M. Nicolas. Classification by fuzzy integral —
performance and tests. Fuzzy Sets & Systems, Special Issue on Pattern
Recognition, 65:255-271, 1994.

[21] M. Grabisch and M. Sugeno. Fuzzy integral with respect to dual mea-
sures and its application to multi-attribute pattern recognition. In 6th
Fuzzy Systems Symposium, pages 205-209, Tokyo, Japan, September
1990. in japanese.

[22] M. Grabisch and M. Sugeno. Multi-attribute classification using fuzzy
integral. In 1st IEEE Int. Conf. on Fuzzy Systems, pages 47-54, San
Diego, CA, March 1992.

[23] J.M. Keller, P.D. Gader, and A.K. Hocaoglu. Fuzzy integrals in im-
age processing and recognition. In M. Grabisch, T. Murofushi, and
M. Sugeno, editors, Fuzzy Measures and Integrals — Theory and Ap-
plications, pages 435-466. Heidelberg: Physica Verlag, 2000.

[24] D.P. Mandal, C.A. Murthy, and S.K. Pal. Formulation of a multivalued
recognition system. [EEE Tr. on Systems, Man and Cybernetics,
22:607-620, 1992,

[25] D.P. Mandal, C.A. Murthy, and S.K. Pal. Theoretical performance of
a multivalued recognition system. |EEE Tr. on Systems, Man and
Cybernetics, 24(7):1001-1021, 1994,

[26] J.L. Marichal. An axiomatic approach of the discrete Sugeno integral
as a tool to aggregate interacting criteria in a qualitative framework.
IEEE Tr. on Fuzzy Systems, to appear.

[27] O. Metellus and M. Grabisch. Une approche de la classification par
filtrage flou — méthodologie et performances sur un probléme de seg-
mentation clientéle. In Proc. Rencontres Francophones sur la Logique
Floue et ses Applications (LFA), pages 215-220, Paris, France, Novem-

ber 1995.

280

M. Grabisch

[28] T. Murofushi and S. Soneda. Techniques for reading fuzzy measures
(I1): interaction index. In 9th Fuzzy System Symposium, pages 693-
696, Sapporo, Japan, May 1993. In Japanese.

[29] T.R. Reed and J.M. Hans du Buf. A review of recent texture seg-
mentation and feature extraction techniques. Image Understanding,
57(3):359-372, 1993.

[30] E. H. Ruspini. A new approach to clustering. Inform. Control,
15(1):22-32, 1969.

[31] L.S. Shapley. A value for n-person games. In H.W. Kuhn and AW.
Tucker, editors, Contributions to the Theory of Games, Vol. I, num-
ber 28 in Annals of Mathematics Studies, pages 307-317. Princeton,
NJ: Princeton University Press, 1953.

[32] M. Sugeno. Theory of fuzzy integrals and its applications. PhD thesis,
Tokyo Institute of Technology, 1974.

[33] H. Tahani and J.M. Keller. Information fusion in computer vision
using the fuzzy integral. /EEE Tr. on Systems, Man, and Cybernetics,
20(3):733-741, 1990,

[34] S.M. Weiss and |. Kapouleas. An empirical comparison of pattern
recognition, neural nets, and machine learning classification methods.
In 11th IJCAI, pages 781-787, 1989,

[35] L.A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

[36] L.A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy
Sets & Systems, 1:3-28, 1978.

Chapter 10

NEURAL NETWORK BASED
PATTERN RECOGNITION

V. David Sanchez A.

Advanced Computational Intelligent Systems
Pasadena, CA 91116-6130, U.S.A.
e-mail: vdavidsanchez@earthlink.net

Abstract

Connections between traditional methods and neural networks
for pattern recognition are presented. For this purpose basic prin-
ciples of statistics and nattern recognition are described as well as
some of the most advanced neural network architectures and as-
sociated learning methods. To concretize the comparative assess-
ment problem statements of key pattern recognition applications
are introduced including the ones for classification, clustering, and
regression.

10.1 Introduction

Pattern recognition has been an area of research for a few decades, pattern
recognition solutions have been developed for different science and engineering
fields. On the other hand, the use of neural networks in pattern recognition
tasks has been actively pursued in recent years. An introductory presentation
of pattern recognition and its subject of study can be found in [14, 15, 24,
32, 50, 71, 72]. Key relationships between the areas of neural networks and
pattern recognition are summarized in [3, 21, 42, 51, 56, 62, 68]. Connections
of neural networks to statistics are described in [9, 10, 34, 48]. Treatments of
statistical pattern recognition include [12, 18, 40, 47, 77]. Pattern recognition
using fuzzy and genetic algorithms can be found, e.g., in [54, 55].

281

282 V. David Sanchez A.

This chapter describes some key pattern recognition problems and neu-
ral network solutions. The relationship to other more conventional pattern
recognition methods will be emphasized. This chapter is subdivided as follows.
Section 10.2 describes the essence of pattern recognition. Section 10.3 presents
advanced neural network architectures and their associated learning methods.
Section 10.4 examines applications of neural pattern recognition. Finally, the
conclusions are stated in Section 10.5.

10.2 The essence of pattern recognition

Pattern recognition is a well-defined field of research that investigates the anal-
ysis and design of systems capable of recognizing patterns in sensory data, no-
tably in visual and sound data. A long-standing, unsolved goal has been the
orientation-, location-, and scale-independent recognition of complex patterns.
This area has been traditionally subdivided in statistical pattern recognition
and syntactical pattern recognition. Statistical pattern recognition includes
studies in discriminant analysis, feature extraction, and cluster analysis among
others. Syntactical pattern recognition includes grammatical inference and
parsing among others.

Areas of application for pattern recognition algorithms include image anal-
ysis, data mining, bioinformatics, optical character recognition, speech pro-
cessing, man (medical) and machine diagnostics, financial trading, knowledge
engineering, person identification, industrial inspection, among several others.
More specific pattern recognition applications include fingerprint identification,
handwriting recognition, X-ray image classification, DNA sequence analysis,
internet search, stock option purchase decision support, target recognition,
among many others.

10.2,1 Statistical pattern recognition

We first introduce some topics in probability theory and the Bayes rule to
discuss the case of discriminant analysis from a statistical pattern recognition
perspective. This provides a concrete example for the statistical approach of
pattern recognition.

Mara] metarrk Bosad pattert it cgristion i

10211 Toplcs dn probability theory and the Bayes ride

Given two events £ and I in 2 sarmple space & the conditional probability of
E given & i defined by:

Py - S

Given an event E and a parfition F, ¢ = 1, -+ 'nof &, the eventy I being
mutually exclusive, the averaging rule is defined as folloves:

(.

P(E) =Y P(EIF)- PIF) (10:2)
=l
Finafly, for-a given event E and a partition I ¢ = 1,--- 0 of § sccording
o the Bayes rule:
PprE) = PR P(R) (o4
Y P(EIR) P(E)
=1

Interprasing the Bayes rule In an emvicorment whers 3 model is refined
by @ new deta occurrence, the rola sllows to compute the posterior insdel
probabilities given the prior model prebabilities and the new dats ecourrence,
The posterier mede! probabilities are propartional to the likebheod, iz, the
prebability of the dats guen the model, thmes thy pries model probabifities.

212 The case of discriminant analysls

Discriminant analysis identifies boundaries betwesn groups of cbjects. The
ehjects can then be classified inte a number of criterion groupis or classes
Oy, § = 1+ o, Qualitative labels, the classif tabels, are attached to
the chjects and constitute the criterion variables i discriminant analyss. The
cljects are measured on varlables with quantitative values, ealied predictor
variobles gathersd in the predictor vector i which are related to the ohject’s
‘mesmbership in vae criterion group. Regardiess of group membership, all chjects
are measured on the same sot of predictor veriables. A function called the
discriminant function is usad to classfy a given oblect, e, ¥ € RY, into a

284 V. David Sanchez A.

criterion group or class C;. The discriminant function combines in a weighted
form the values of all predictor variables,

From the introduction above, the determining parameters of the discrimi-
nant function are the weights of the predictor variables and the cutoff values
for assigning objects into different criterion groups. Given data with a prior
knowledge of the correct object-class assignment, called training data, the dis-
criminant function is designed in such a way as to minimize classification errors
while predicting the class membership of an object using the discriminant func-
tion. These errors can be visualized using the confusion matrix C™*™ which
tabulates the predicted versus the actual objects' group membership. C[i][5],
i,j =1,.+- ,m states the number of objects which were predictively assigned
to class ¢ using the discriminant function when they are actually members of
class j. If r is the total number of correct classifications and w the total
number of incorrect classifications then:

T

= ZC[z’][i] (10.4)
w=Y" Y Clij] (10.5)
i=0 j=0,j3i

Two different approaches to classification either use data model assump-
tions or directly learn the conditional model. The first approach is called gen-
erative, the latter is called discriminative. Following a generative approach and
using the Bayes rule defined in (10.3) the posterior probabilities P(C}|#) can
be determined from the likelihood and prior probabilities. The expected loss of
making a decision, i.e., assigning an object ¥ to class C; is defined by:

1
1=Y" Li; - P(Cj|%) (10.6)

i=1
where L;; are costs associated with making the decision of assignment to class
i when j is the true class. According to the initial premise this expected
loss needs to be minimized. Representatives of the generative approach to
classification include mixture models and Hidden Markov Models (see, e.g., [46]
and [61] respectively). Representatives of the discriminative approach include,
but are not restricted to linear classifiers, nearest neighbor algorithms, and

neural networks which will be analyzed later in the discussion.

Neural network based pattern recognition 285

10.2.2 Syntactic pattern recognition

A highly introductory treatment of syntactical pattern recognition is included
here mainly to establish the difference in character to the widely studied subfield
of statistical pattern recognition. The basic principles of syntactical pattern
recognition are included in {17, 20, 58]. Chapter 7 of this book also describes
in detail various aspects of syntactic pattern recognition. The basis of this
approach is to directly relate the structure of patterns to formal language
syntax. Patterns are built in a hierarchical way from subpatterns, ..., all the way
down to primitives, i.e., the language alphabet. The rules for building patterns
from primitives are dictated by the language grammar. Since the language
grammar needs to be inferred from training sets, this approach requires a lot
of computational power. Also, its conceptual basis does not explain how to
detect primitives in noisy environments.

10.3 Advanced neural network architectures

A significant number of neural network architectures have been proposed in the
literature for pattern recognition tasks, see e.g., [26, 27, 28, 78]. To concretize
our discussion one representative neural network architecture for supervised
learning and one for unsupervised learning will be reviewed.

10.3.1 Supervised learning

In this section, for the purpose of a concrete presentation, we concisely review
RBF (Radial Basis Function) networks and their associated learning methods.

10.3.1.1 RBF networks

RBF networks were_introduced in [4, 49, 60] and in references cited therein.
Extensions were presented among others in [8, 19, 29, 33, 52, 59, 57, 64, 65,
66]. RBF networks possess three layers: one input, one hidden, and one output
layer. The hidden layer contains neurons realizing basis functions. The output
layer contains one neuron for the approximation of functions f : R™ — R. The
approximation function g,, realized by a network architecture with m hidden
units has the form in (10.7). The weights w;, ¢ = 1,--- ,m are parameters
weighting the connections between each of the hidden neurons and the output
neuron.

286 V. David Sanchez A.

Table 10.1 Examples of RBF nonlinearities

Function name | Function expression ¢(r,c) =
(e=constant)

linear T

cubic r3

thin plate spline 2. logr

Gaussian exp(— ’é;)

multiquadric (r® 4 c?)x1/2

The basis functions ¢, : R® — R realized in the individual hidden units
are parameterized scalar functions, which are built using a given nonlinearity
¢ : R — R. To parameterize this function the centers Z; and the widths oy for
i=1,---,m are used, see (10.8). Examples of nonlinearities for RBF networks
are summarized in Table 10.1, one of the most commonly used is the Gaussian
nonlinearity.

gm(®) = > wi - (%, 0, &) (10.7)
i=1
¢i(%,04,F) = ¢(|E - Zll,00), 1<i<m (10.8)

10.3.1.2 Learning methods

In a line of study, learning methods for RBF networks have been systemati-
cally developed. A learning method for weight determination was presented
in [63]. A novel learning method for the automatic design of RBF networks for
regression applications was introduced in [64]). Both of these methods handle
noise-free and noisy data, A new robust learning method for RBF networks
which handles outliers in the data as well was introduced in [65]. Further
advances were presented in a special issue on RBF networks in [66].

To gain some insight here, the most basic learning method for weight deter-
mination is outlined. For the RBF networks realizing g,, in (10.7), fixed values
for m, %,05,4 = 1,--- ,m, and a given training data set Tr = {(Z,%),7 =
1,--+ N}, the learning method needs to solve the optimization problem in
(10.9) determining the weight vector 1 = (wy, - ,w,)7. This leads to the

Neural network based pattern recognition 287

solution of a linear equation system or more specifically, of a linear least-squares
problem and to the maximization of the memorization capability for a fixed
number of hidden units m. The actual learning goal, i.e., the optimization
of the generalization capability, is dependent on m (model complexity) and,
in practical settings, is based on a given test data set Te = {(Zk,yx), k =
L,---,M}, as

mﬁiln eTr,

where

2
N m
err = % > (yi - w ‘f’j(fi)) (10.9)

i=1 j=1

Recently, kernel methods and support vector machines (SVM) have become
very popular for classification and regression, in particular when using RBF
networks. Details on support vector algorithms and learning can be found in [11,
70, 74]. We will discuss the main aspects of the corresponding learning methods
when we present neural network solutions to these pattern recognition tasks.

10.3.2 Unsupervised learning

In this section, for the purpose of a concrete presentation, we concisely review
SOM (Self-Organizing Map) networks and their associated learning methods.

10.3.2.1 SOM networks

SOM networks have been extensively studied, e.g., in [35, 36, 38, 53]. Exten-
sions of more flexible map structures are included in [5, 45], of hierarchical ap-
proaches and speed-up in [39, 43], for closely related topographic models see [2,
16]. The neurons of a SOM network are allocated on a discrete lattice. Given
an input &, only the neuron which best represents the input together with its
neighbors, is allowed to learn, thus realizing competitive learning and ordered
representations within the lattice. Each neuron i of the lattice is represented
by a reference vector 7;, typically a two-dimensional vector. For a given input
¥ the winner of the competition is the neuron i(£) whose reference vector 75
is the nearest to & according to:

i(%) = argmin ||# — 7|2 (10.10)

288 V. David Sanchez A.

10.3.2.2 Learning methods

The basic learning method for SOM networks is described in the following
iterative updating scheme for the reference vectors:

T3t 4+ 1) = 75(t) + kiz) 5 () [& — 75(2)] (10.11)

k is a neighborhood kernel function which decreases with time and the distance
to the origin. It is a scalar function of a two-dimensional argument. This
function is used to control the influence of adaptation, in decreasing manner
with the distance to the reference vector of the winning unit according to:

ki (t) = k((lre — 751,) (10.12)

10.4 Neural pattern recognition

Three key pattern recognition applications are discussed: classification, clus-
tering, and regression. For each of them, the problem is formally stated first. A
neural network solution to the problem is then described making use of the neu-
ral networks previously reviewed in this chapter and discussing its relationship
to more conventional pattern recognition methods.

10.4.1 Classification
10.4.1.1 Problem statement

To make things easier to present, a two-class classification problem is defined
and their solution described. Given a set of labeled patterns consisting of
the patterns, which are vectors ; € R™,i = 1,--- , N, and their respective
class labels y; € {—1,+1},i = 1,--- , N the classification problem consists in
finding a decision function f : R® — {—1, 41} which accurately labels a given
pattern £ with the corresponding class label y = f(Z).

The given vector & can either be or not be in the original training set
{(Z,y:),i = 1,---,N}. Typically, the probability distribution of the given
training set on R™ x {—1,+1} is unknown and a parameterized discriminant

Neural network based pattern recognition 289

function d : R® — R is used according to: f(&) = sgn(d(p,<)), where 7
represents the set of parameters, sgn is the 'sign' function.

10.4.1.2 Neural network s;fution

As previously stated, we present an RBF network solution with an associated
SVM learning method. The structural risk minimization principle was intro-
duced in [73] providing a bound for the risk function R in terms of the empirical
risk R.. The latter is computed using the given training data, the number of
training data points IV, and the VC-dimension h of the set of functions {f,}
used (o needed to parameterize the function) when attempting to minimize
the risk to find the optimal decision function for a classification problem. The
bound is stated in (10.13), Ya with probability > 1 — #:

R(a) < Ru(a) + ¥(N,n, h) (10.13)
Y(N, .) = Jh(log e +A:) —log(3) (10.14)

For dichotomous classification (two-class problems) we use the decision
function sgn(f(Z)), ¢f. (10.15) and the RBF kernels given in (10.16).

f@) =b+> i o K(F,) (10.15)
i=1
K (&, 35) = e~ 5t - (10.16)

where {(Z¢,),k = 1,--+, N} is the given training data set. The bias b, the
number of support vectors m, the support vectors themselves Z; and associated
Yi, 8 = 1,--- ,m as well as the Lagrangian multipliers o:; need to be determined.
To achieve this, the kernel learning method maximizes the Lagrangian objective
function in (10.17) subject to the conditions in (10.18) Vi =1,-+- ,m.

™moom

1 - —
W(a) = Zai e ‘2‘ zzct,-ajy.ryjf{(x.-,mj) (10.17)
i=1 i=1 j=1
0 S (&9

Y ay=0 (10.18)

290 V. David Sanchez A.

The bias b of the decision function is computed using (10.19):

1 - K 3
b______g_.{‘rnax Zyj-aj‘K(:L‘;‘.Ij) +

ilyi=—1 =l

'fy--—-!—

min ZyJ aj K(:c,,a:_,)} (10.19)

where o] are the optimal values previously determined. To diminish the effect
of noise soft constraints are incorporated according to: 0 < a; < C to trade-
off the memorization and generalization capability of the RBF network making
use of a test data set. This neural network solution to the posed classification
problem can be interpreted as a linear maximal classifier in a higher dimensional
space than the original, called feature space, after mapping the original data

through a nonlinear function ¢(£) implicitly defined by the inner product:
K(&, 73) = ¢(&i) - ¢(5) (10.20)

The relationship to more conventional pattern recognition techniques like a
linear classifier whose decision function is given by sgn(f(Z)), see (10.21),
becomes transparent when using this framework. In the case of a linear classifier
trained with separable data, the separating hyperplane satisfies:

f@=b+d-£=0 (10.21)

where @ is a normal to the separating hyperplane. Two hyperplanes H, and
H_ are defined by b+ - % > 1,Vy; = +1 and b+ - F; < —1,Vy; = —1
respectively. These conditions can be unified in (10.22). The margin, i.e.,
the distance between hyperplane H; and H_, is given by 2/||%W||. To find a
solution the maximum margin is determined by minimizing ||||* subject to

the constraints in (10.22).
yi-(b+w-F)-1>20V¥i=1,--- N (10.22)

This problem can be shown to be equivalent to maximizing the Lagrangian,
dual objective function in (10.23) subject to the conditions in (10.18).

W(a) = Z i En ;0 Yy Ty - T (10.23)
i=1 =1 =1

Mll—'

Neural network based pattern recognition 291

The similarity with the problem formulation for the neural network solution
using a SVM classifier, cf (10.17) is remarkable. The scalar product &; - £ in
(10.23) is replaced by K(#;, ;) in (10.17) confirming that the neural network
solution is a linear maximal classifier in the feature space. Formally m = N
(size of training data set), but the solution typically contains some values
a; = 0 leading to m < N, where m is the actual number of supporting
vectors.

10.4.2 Clustering
10.4.2.1 Problem statement

Given a set of points {Z; € RP,i = 1,-+ ,n} the goal of clustering is to
determine a set of clusters C; each of them represented by its prototype {Z; €
RP,j =1,.-+ ,m} such that the distances between points of the same cluster
are minimized and the distances between clusters are maximized.

This corresponds to central clustering as opposed to pairwise clustering.
This will make things easier to present. In pairwise clustering pairwise distances
are given {d; ; € R,i,j = 1,.++,n}. The goal of clustering stated needs to
be further specified, e.g., in relation to the distance measures used. Table 10.2
and Table 10.3 show commonly used distance measures within and between

clusters. || - || is the Euclidian norm, m; is the number of points belonging to
cluster j = 1,-++ ,m, and the centroid &; of a cluster is given by:
> &
- #,eC;
G = ——— (10.24)
Ty

The result of clustering is an element of the set of assignment matrices M
which is a Boolean representation of data partitionings:

Mum ={ M e {0,1}"™ S " M;;=1i=1-,n} (10.25)

=1

M; ; = 1 and M;; = 0 indicate that the data point &; belongs and does not
belong to cluster C; respectively.

202 V. David Sanchez A.

Table 10.2 Distance Measures within Clusters

Expression Description
ﬁlj ﬂlj
> > NIF — &l
d; = ELE! average distance

__1';%-(?1’13'—1)

> lIE &l
— i=]

d; = centroid distance
my
™y
D min | — Z|
dj == nearest neighbor distance
m,
Table 10.3 Distance Measures between Clusters
Expression Description
dc,c, = min _||Z; — Zi|| | single linkage distance
I #2,€C5,3€0 |
de, 0, = max ||&; — k|| | complete linkage distance
: 2.€Cy,E,€C)
Ty g
> & =l
i=1 k=1 : .
de,c, = ——= average linkage distance
i i
de, e, =16 — &l centroid linkage distance

10.4.2.2 Neural network solution

A neural network solution for clustering using the SOM network is presented and
discussed in relation to a more conventional technique. For that purpose the
criterion functions for the SOM network and the k-means clustering technique
are compared. Additional material including specific treatment of clustering
when using a SOM network was reported in [41, 76]. Other neural network
approaches for clustering include the use of competitive networks as in [6]. More
conventional pattern recognition algorithms for data clustering include methods
based on mixed models proposed in [46], the k-means and ISODATA algorithms

Neural network based pattern recognition 293

introduced in [44] and [22] respectively, as well as others studied, e.g., in [1,
25, 31].

The criterion function used in k-means clustering for a given data set
{Z;,t =1,--. ,n} is defined in (10.26) where ¢ are the centroid vectors of the
clusters Cj,l=1,--+ ,m.

E=Y" 3" |&-al? (10.26)

‘=l i‘u‘(ECJ

On the other hand, the criterion function for the SOM network [37] is given in
(10.27) for the case of a discrete data set and a fixed neighborhood kernel k. n
and m are the size of the data set and the number of neurons respectively. 7
is the reference vector associated to neuron ! = 1,--- , m of the SOM network
and i(Z;) is the index of the neuron whose reference vector is the closest to ;.

m T
E= szi(f,).j”f: - 7il[? (10.27)
=1 t=1
From (10.26) and (10.27) we can observe that if the kernel function were
to become non-zero only for the index of the neuron whose reference vector is
the closest to &, then the SOM clustering would reduce to the conventional &-
means clustering. Otherwise, the reference vectors 7 associated to the neurons
of the SOM network differ from the centroids & and are generated by local
averaging of all data set vectors, their weighting is determined making use of
the neighborhood kernel function k.

10.4.3 Regression

10.4.3.1 Problem statement

The linear multivariate regression case is described for convenience of presen-
tation. The purpose of regression analysis can be summarized as to determine
whether and which kind of a quantitative relationship (expressed by a regression
equation) exists between two vector variables: the criterion variable £ € R™ and
the predictor variable 7 € R™ as well as to assess the prediction accuracy of the
regression equation. Under zero-mean Gaussian noise 77 € R™ ~ N (0,V),V
is its covariance matrix, the data model is defined by the following regression
equation: 7= b+ A&+, where b € R™ and A € R™*" represents a linear
transformation.

294 V. David Sanchez A.

In the case of a scalar predictor variable y € R the matrix A becomes a row
vector @ and the decision function from the data model without considering
the noise component becomes f(£) = b+ w - & where b € R and || - ||
represents the scalar product. As in the classification case, a training data set
{(#i,v:),i =1, -+, N} is given to generate a solution, the difference is that
y; are real-valued. In the case of a nonlinear transformation f : R® — R
the data model becomes more complex and neural networks offer an efficient
solution for that purpose.

10.4.3.2 Neural network solution

We present an RBF network solution with an associated SVM learning method.
This regression solution is based on statistical learning theory similar to the
neural network solution for classification. Additional, more specific regression-
related material can be found, e.g., in [13, 69, 75]. Theoretical foundations
were reported in [67]. For regression the decision function is given in (10.28).

F@=b+) % (o~ B) K(&,3) (10.28)
i=1
For an e-insensitive loss function:
[0, |z|<e
L(z) = { o, el (10.29)

a quadratic optimization problem needs to be solved: the dual objective func-
tion to be minimized is given in (10.30) subject to the conditions in (10.31)
Yi=1-,m

W, B) = Zy,(a, ﬁ)~eZ(m+ﬂ)

Z“t Bi)(aj — B)K (i, %5) (10.30)
j:

L0,

o
A wl-—-

0<a

C,

> = ||Ma

(10.31)

|.|.
uMa |

The bias b is typically determined by averaging individual values which are
gained from the Karush-Kuhn-Tucker conditions leading to b = y; — 0+ &; % ¢,

Neural network based pattern recognition 295

see e.g., [7], where:
m
W= yila] - B])F (10.32)
i=1

af and] are the optimal values previously determined. Similar quadratic op-
timization problems are generated when instead of the e-insensitive loss func-
tion quadratic or robust loss functions [23, 30] are utilized. A robust learning
method for RBF regression networks was introduced in [65). In the case of
regression, the relationship between this neural network solution and a more
conventional pattern recognition approach like linear regression shows again the
close connection: The linear regressor's decision function is given in (10.33).
The optimization problem consists in the maximization of the functional given
in (10.34) subject to the constraints in (10.31) as before, and the solution w
is given in (10.35), whereas b is determined as in the case of the RBF network
solution.

f@ =b+w. (10.33)

m

W@ B) = 3 wilei—Bi) =€) (@ +By)-
i=1
-3 Z > (e = Bi)(ay — B, - 75 (10.34)

2
@ = (af - B})z; (10.35)

10.5 Conclusions

The explicit relationship between neural networks and more conventional meth-
ods for pattern recognition was discussed. RBF and SOM networks were re-
viewed for developing prototypical solutions to supervised and unsupervised
learning problems respectively. Some of the most relevant pattern recognition
tasks including classification, clustering, and regression were covered in-depth
together with neural network solutions to show the concrete and deep relation-
ship between pattern recognition and neural networks.

206

V. David Sanchez A.

References

[1] M.R. Anderberg. Cluster Analysis for Applications. New York: Aca-
demic Press 1973.

[2] C.M. Bishop, M. Svensen, and C.K.I. Williams. Developments of the
Generative Topographic Mapping. Neurocomputing 21 (1998), 203-
224,

[3] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford: Ox-
ford University Press 1999.

[4] D.S. Broomhead and D. Lowe. Muiltivariable functional interpolation
and adaptive networks. Complex Systems 2 (1998), 321-355.

[5] J. Bruske and G. Sommer. Dynamic cell structure learns perfectly
topology preserving map. Neural Computation 7 (1995), 845-865.

(6] J. Buhmann and H. Kiihnel. Complexity optimized data clustering by
competitive neural networks. Neural Computation 5 (1993), 75-88.

[7] C. Campbell. An introduction to kernel methods. In R.J. Howlett
and L.C. Jain (Eds.): Radial Basis Function Networks: Design and
Applications, Heidelberg: Physica-Verlag 2000, 155-192.

[8] S. Chen, C.F.N. Cowan, and P.M. Grant. Orthogonal least squares
learning algorithm for radial basis function networks. |EEE Transac-
tions on Neural Networks 2 (1991), 302-309.

[9] B. Cheng and D.M. Titterington, Neural Networks: A review from a
statistical perspective. Statistical Science 9 (1994), 2-54.

[10] V. Cherkassky, J.H. Friedman, H. Wechsler (Eds.). From Statistics
to Neural Networks: Theory and Pattern Recognition Applications.
Berlin: Springer 1994,

[11] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vec-
tor Machines and Other Kernel-Based Learning Methods. New York:
Cambridge University Press 2000.

[12] P.A. Devijver and J. Kittler. Pattern Recognition: A Statistical Ap-
proach. London: Prentice-Hall 1982.

[13] H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, and V. Vapnik.
Support vector regression machines. in M. Mozer, M. Jordan, and T.
Petsche (Eds.): Advances in Neural Information Processing Systems
9, Cambridge, MA: The MIT Press 1997, 155-161.

[14] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis.
New York: John Wiley & Sons 1973.

[15] R.O. Duda, P.E. Hart, and D.E. Stork. Pattern Classification. New

Neural network based pattern recaognition 297

York: John Wiley & Sons, 2nd Edition, 2000.

[16] B. Fritzke. Growing cell structures - A self-organizing network for un-
supervised and supervised learning. Neural Networks 7 (1994), 1441-
1460.

[17] K.S. Fu. Syntactic Pattern Recognition and Applications. Englewood
Cliffs, NJ: Prentice-Hall 1982.

[18] K. Fukunaga. /Introduction to Statistical Pattern Recognition, 2nd
Edition. New York: Morgan Kaufmann 1990,

[19] F. Girosi. Some extensions of radial basis functions and their ap-
plications in artificial intelligence. Computers and Mathematics with
Applications 24 (1992), 61-80.

[20] R. Gonzalez and M. Thomason. Syntactic Pattern Recognition An
Introduction. Reading, MA: Addison-Wesley 1978,

[21] I. Guyon and P.S.P. Wang (Eds.). Advances in Pattern Recognition
Systems using Neural Network Technologies. Singapore: World Scien-
tific 1994,

[22] D.J. Hall and G.B. Ball. ISODATA: A novel method of data analy-
sis and pattern classification, Stanford Research Institute, Technical
Report 1965.

[23] F.R. Hampel, E.M. Rochetti, P.J. Rousseeuw, and W.A. Stahel. Ro-
bust Statistics. New York: John Wiley & Sons 1986,

[24] D.J. Hand. Discrimination and Classification. Chichester: John Wiley
& Sons 1981.

[25] J. Hartigan. Clustering Algorithms. New York: John Wiley & Sons
1975,

[26] S. Haykin. Neural Networks: A Comprehensive Foundation. New
York: MacMillan 1994,

[27] R. Hecht-Nielsen. Neurocomputing. Reading, MA: Addison-Wesley
1990.

(28] J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of
Neural Computation. Reading, MA: Addison-Wesley 1991,

[29] R.J. Howlett and L.C. Jain (Eds.). Radial Basis Function Networks:
Design and Applications. Heidelberg: Physica-Verlag 2000.

[30] P.J. Huber. Robust Statistics. New York: John Wiley & Sons 1981.

[31] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data, Englewood
Cliffs: Prentice-Hall 1988,

[32] M. James. Pattern Recognition. New York: John Wiley & Sons 1988,

[33] P.A. Jokinen. A nonlinear network model for continuous learning.

208

V. David Sanchez A.

Neurocomputing 3 (1991), 157-176.

[34] JW. Kay and D.M. Titterington (Eds.). Statistics and Neural Net-
works — Advances at the Interface. Oxford: Oxford University Press
1999.

[35] T. Kohonen. Self-organized formation of topologically correct feature
maps. Biological Cybernetics 43 (1982), 59-69.

[36] T. Kohonen. The Self-Organizing Map. Proceedings of the IEEE 78
(1990), 1464-1480.

[37] T. Kohonen. The self-organizing maps: Optimization approaches, In
T. Kohonen, K. Mikisara, O. Simula, and J. Kangas (Eds.). Artificial
Neural Networks, Amsterdam: Elsevier Science 1991, 981-990.

[38] T. Kohonen, T.S. Huang (Ed.), and M.R. Schroeder (Ed.). Self-
Organizing Maps. Berlin: Springer-Verlag, 3rd Edition, 2000.

[39] P. Koikkalainen. Fast deterministic self-organizing maps. in F. Soulie
and P. Gallinari (Eds.): Proceedings of ICANN'95, Paris, France, vol.
Il, 63-68.

[40] P.R. Krishnaiah and L.N. Kanal (Eds.). Handbook of Statistics 2:
Classification, Pattern Recognition and Reduction of Dimensionality.
Amsterdam: North-Holland 1982.

[41] J. Lampinen and E. Oja. Clustering properties of hierarchical self-
organizing maps. Journal of Mathematical Imaging and Vision 2
(1992), 261-272.

[42] C.G. Looney. Pattern Recognition Using Neural Networks: Theory and
Algorithms for Engineers and Scientists. Oxford: Oxford University
Press 1997.

[43] S.P. Luttrell. Hierarchical vector quantization. |EE Proceedings 136
(1989), 405-413,

[44] J. MacQueen. Some methods for classification and analysis of multi-
variate observations, in Proceedings of the 5th Berkeley Symposium
on Mathematical Statistics and Probability 1967, 281-297.

[45] T. Martinetz and K. Schulten. Topology representing networks. Neural
Networks 7 (1994), 507-522.

[46] G.J. McLachlan and K.E. Basford. Mixture Models. New York: Marcel
Dekker 1988.

[47] G.J. McLachlan, Discriminant Analysis and Statistical Pattern Recog-
nition. New York: John Wiley & Sons 1992.

[48] D. Michie, D.J. Spiegelhalter, and C.C. Taylor (Eds.). Machine Learn-

Neural network based patlern recognition 299

ing, Neural and Statistical Classification. New York: Ellis Horwood
1994,

[49] J. Moody and C.J. Darken. Fast learning in networks of locally-tuned
processing units. Neural Computation 1 (1989)1, 281-294.

[50] H. Niemann. Pattern Analysis and Understanding, Second Edition.
Berlin: Springer-Verlag 1989.

[51] A. Nigrin. Neural Networks for Pattern Recognition, Cambridge, MA:
The MIT Press 1993.

[52] P. Niyogi and F. Girosi. On the relationship between generalization
error, hypothesis complexity, and sample complexity for radial basis
functions. Neural Computation 8 (1996), 819-842.

[53] E. Oja and S. Kaski (Eds.). Kohonen Maps. Amsterdam: Elsevier
Science 1999.

[54] S.K. Pal and P.P. Wang. Genetic Algorithms for Pattern Recognition.
Boca Raton: CRC Press 1996.

[55] S.K. Pal and S. Mitra. Neuro-Fuzzy Pattern Recognition: Methods in
Soft Computing. New York: John Wiley & Sons 1999.

[56] Y.-H. Pao. Adaptive Pattern Recognition and Neural Networks. Read-
ing. MA: Addison-Wesley 1989.

[57] J. Park and |.W. Sandberg. Approximation and radial-basis-function
networks. Neural Computation 5 (1993), 305-316.

[58] T. Pavlidis. Structural Pattern Recognition. Berlin: Springer-Verlag
1977.

[59] J. Platt. A resource-allocation network for function interpolation.
Neural Computation 3 (1991), 213-225.

[60] T. Poggio and F. Girosi. Networks for approximation and learning.
Proceedings of the |IEEE 78 (1990) 9, 1481-1497.

[61] L.R. Rabiner. A tutorial on hidden Markov models and selected ap-
plications in speech recognition. Proceedings of the [EEE 77 (1989),
257-286,

[62] B.D. Ripley. Pattern Recognition and Neural Networks. New York:
Cambridge University Press 1996.

[63] V. David Sanchez A., On the Design of a Class of Neural Networks,
Journal of Network and Computer Applications 19 (1996), 111-118.

[64] V.D. Sanchez A., Advances towards the automatic design of RBF net-
works. International Journal of Knowledge-Based Intelligent Engineer-
ing Systems, 1 (1997), 168-174.

[65] V. David Sinchez A., New Robust Learning Method. International

300

V. David Sanchez A.

Journal of Smart Engineering System Design 1 (1998), 223-233.

[66] V.D. Sinchez A., Special Issue on RBF Networks. Neurocomputing
10 (1998) 1-3 and 20 (1998) 1-3.

[67] J. Shawe-Taylor, S. Ben-David, P. Koiran, and R. Schapire. Special
Issue on Theoretical Analysis of Real-Valued Function Classes. Neu-
rocomputing 29 (1999) 1-3,

[68] R.J. Schalkoff. Pattern Recognition: Statistical, Structural, and Neu-
ral Approaches. New York: John Wiley & Sons 1992,

[69] B. Schoelkopf, P. Bartlett, A.J. Smola, and R. Williamson, Shrink-
ing the tube: A new support vector regression algorithm=2E in M.S.
Kearns, S.A. Solla, and D.A. Cohn (Eds.): Advances in Neural Infor-
mation Processing Systems 11, Cambridge, MA: The MIT Press 1999,
330-336.

[70] B. Schoelkopf, C.J.C. Burges, and A.J. Smola (Eds.). Advances in
Kernel Methods — Support Vector Learning, Cambridge, MA: The
MIT Press 1999.

[71] S. Theodoridis and K. Koutroumbas. Pattern Recognition. San Diego,
CA: Academic Press 1998.

[72] C.W. Therrien. Decision, Estimation, and Classification: An Intro-
duction to Pattern Recognition and Related Topics. New York: John
Wiley & Sons 1989.

[73] V. Vapnik. Estimation of Dependencies Based on Empirical Data (in
Russian). English Translation: New York: Springer-Verlag 1982,

[74] V. Vapnik. The Nature of Statistical Learning. New York: Springer-
Verlag 1995.

[75] V. Vapnik, S.E. Golowich, and A. Smola. Support vector method for
function approximation, regression estimation, and signal processing.
in M, Mozer, M, Jordan, and T. Petsche (Eds.): Advances in Neural
Information Processing Systems 9, Cambridge, MA: The MIT Press
1997, 281-287.

[76] J. Vesanto and E. Alhoniemi. Clustering of the Self-Organizing Map.
IEEE Transactions on Neural Networks 11 (2000), 586-600.

[77] A. Webb. Statistical Pattern Recognition. Oxford: Oxford University
Press 1999,

[78] M. Zurada. Introduction to Artificial Neural Systems. Boston, MA:
PWS Publishing 1992.

Chapter 11

PATTERN CLASSIFICATION
BASED ON QUANTUM NEURAL
NETWORKS: A CASE STUDY

N. B. Karayiannis*, R. Kretzschmar' and H. Richner'!

* Department of Electrical and Computer Engineering
University of Houston
Houston, Tezas 772044793, U.S.A.
e-mail: Karayiannis@UH . EDU

tSignal and Information Processing Laboratory

Swiss Federal Institute of Technology (ETH)
Zurich, SWITZERLAND
e-mail: kretzsch@isi.ee.ethz. ch

W Institute for Atmospheric Science

Swiss Federal Institute of Technology (ETH)
Zurich, SWITZERLAND

e-mail: richner@atmos.umnw.ethz. ch

Abstract

This chapter presents the development, testing and evalua-
tion of pattern classifiers designed using quantum neural networks
(QNNs) to remove bird-contaminated wind profiler data. QNNs are
trainable feedforward neural networks inherently capable of captur-
ing and quantifying uncertainty in the training data. In this appli-
cation, the pattern classifiers were developed by training QNNs to
identify and remove bird-contaminated data recorded by a 1290-
MHz wind profiler using a set of input features computed from

301

302 N. B. Karayiannis, R. Kretzschmar and H. Richner

the wind profiler measurements. A series of experiments were de-
signed to evaluate several sets of features extracted from wind
profiler data, compare various QNNs and traditional feedforward
neural networks (FFNNs) of different sizes, and rate the criteria
employed for identifying birds in wind profiler data based on the
outputs of the trained neural networks. This experimental study in-
dicates that QNN-based pattern classifiers can remove up to 90% of
bird-contaminated wind profiler data, ‘while QNNs are strong com-
petitors to traditional FFNNs for real-world pattern classification
applications,

11.1 Introduction

Feedforward neural networks (FFNNs) have been a natural choice as trainable
pattern classifiers because of their function approximation capability and gener-
alization ability [1]. The function approximation capability allows them to form
arbitrary nonlinear discriminant surfaces while the generalization ability allows
them to respond consistently to data they were not trained with. FFNNs are
trained to implement a desired input-output mapping from the sample informa-
tion provided by the training data. As a result, they may be unable to recognize
the structure inherent in the feature space which they are not explicitly trained
to recognize. One of the major disadvantages of FFNNs is their inability to
correctly assign class membership to data samples belonging to regions of the
feature space where there is overlapping between classes. The reason for this
is that FFNNs use sharp decision boundaries to partition the feature space.
As a result, the outputs of trained FFNNs cannot generally be interpreted as
membership values. This motivated the development of neuro-fuzzy systems
by merging neural modeling with fuzzy-theoretic concepts [4, 5, 6, 7, 12, 13,
14, 15].

A theoretical study on the capacity of conventional FFNNs to deal with
uncertainty led to the development of inherently fuzzy feedforward neural net-
works, known as quantum neural networks (QNNs) [5, 14, 15]. Conventional
FFNNs and QNNs satisfy the requirements for universal function approxima-
tors [10]. In addition to their function approximation capabilities, QNNs have
also been shown to be capable of representing and quantifying the uncertainty
inherent in the training data. More specifically, QNNs can identify overlapping
between classes due to their capacity of approximating any arbitrary member-
ship profile up to any degree of accuracy. This chapter describes the application

Pattern classification based on quantum NNS 303

of QNNs in the classification and removal of bird-contaminated data recorded
by a 1290-MHz wind profiler [8, 9]. This is a nontrivial real-world problem that
provides a reliable basis for testing the capabilities of QNNs and comparing
their performance with that of conventional FFNNs.

11.2 Quantum neural networks

QNNs are decision-making and inferencing tools, which are capable of obtain-
ing an approximate classification for uncertain data without any restricting
assumptions such as the availability of a priori information in the form of a
"desired” membership profile, limited number of classes of data, convexity of
the classes, and so on [5, 14, 15]. QNNs are designed to achieve this goal
through multi-level partitioning of the feature space. The capacity of QNNs
for autonomously forming multi-level partitions of the feature space arises from
their ability to create graded internal representations of the sample information
provided by the training data. The sample information is encoded into graded
internal representations by choosing multi-level activation functions for the hid-
den units, instead of the conventional sigmoid activation functions. If all the
activation functions of the hidden units have the ability to form 'graded' par-
titions, then these partitions can be 'collapsed-in' or ‘spread-out’ as required,
using a suitable learning algorithm.

1 , : . : . :

0.8-

0.6¢ 1

g(x)

0.47

0.2

S % 4 2 o0 2 4 6 8
X

Fig. 11.1 Example of a multi-leve] activation function

304 N. B. Karayiannis, H. Kretzschmar and H. Richner

11.2.1 QNN models

Consider a QNN consisting of n; inputs, one layer of ny, multi-level hidden units,
and n, output units. The output units can be linear or sigmoidal. Let w;; be the
synaptic weight connecting the ith output unit to the jth hidden unit. Let the
synaptic weight connecting the jth hidden unit to the £th input be v;,. Suppose
the data set X contains the feature vectors xx = [Z1x Tok --. Tk
1 < k < M. Then the input to the jth hidden unit from the kth feature
vector Xy is hjx = Y pegVje ek, With 2ok = 1,Vk. Suppose a multi-level
hidden unit has n, discrete quantum levels. Then its activation function can
be written as a superposition of n, sigmoid functions, each shifted by 8", i.¢.,

Ty

Zga(ﬁh z—0), (11.1)

where gqo(-) is a sigmoid function, 3, is a slope factor, and {§"} define the
jump-positions in the activation function. A typical example of a sigmoid
function is the logistic function go(z) = 1/(1 + exp(—=z)), which was used
in this work. Figs. 11.1 shows a multi-level activation function formed as the
superposition of five logistic functions with jump-positions at —86,—-6,0,3,6
and a slope factor 3;, = b each. The step widths of the multi-level activation
function, called the quantum intervals, are determined by the jump-positions
{67}. Therefore, the response of the jth multi-level hidden unit to the kth
feature vector xj. can be written as

Ta T

R = —Zh v = —Zga(ﬁr.(h:k - 67)). (11.2)

{fns=1and 6} =0, Vj, then each multi-level activation function reduces to
the sigmoid function go(-). In such a case, hjx = go(B), hj k) and the QNN
model under consideration, denoted here as QNN n;~n;(n,)}-n,, reduces to
a conventional FFNN, which is denoted as FFNN n;—n;(1)-n,. The input to
the ith output unit from the kth feature vector xj is §;x = Z} 2o Wij hj ks
with hg_k = 1,Vk. Therefore, the response of the ith output unit to the kth
feature vector can be written as #; , = f(%i,x), where f(z) = go(B, x) if the
unit is sigmoidal and f(x) = x if the unit is linear.

Pattern classification based on quantum NNS 305

11.2.2 A gradient descent learning algorithm for QNNs

Letyi = [y1k v2k - y,,mk]T be the desired output vector for the kth feature
vector Xk and also let §x = [§1,k G2k *** Tn,k]” be the actual output vector.
A gradient-descent-based algorithm for learning the synaptic weights of the
QNN can be derived by minimizing the error function

=3 Z (Wi ke — Bik)? (11.3)

i=1

sequentially for k = 1,2,..., M. The synaptic weight w;; connecting the ith
output unit to the jth hidden unit can be updated as [14, 15]

Wijk — Wij k-1 = & €7 hjk, (11.4)

where wy; k1 and wi;x are the values of w;; before and after the adaptation
for the kth input, « is the learning rate, and

€0k = F'(Gik) Wik — Dix) (11.5)

with f(Zix) = B, ik (1 = Gix) if the ith output unit is sigmoidal and
f'(Tix) = 1 if the ith output unit is linear. The synaptic weight v;¢ con-
necting the jth hidden unit to the ¢th input can be updated as [14, 15]

Vitk — Vit k-1 = Q@ ﬁh E?J: Te ks (11.6)

where vj¢ k1 and vj¢ x are the values of vj¢ before and after the adaptation,
and

(Eh_,kl—)Zeikwﬁ (11.7)

If ny = 1 and 6} = 0, V3, then (11.7) gives
e =Ryk (1= i) Y e7)wi, (11.8)

with fzjrk = go(Bp hjx), and the algorithm described above reduces to the
well-known error backpropagation algorithm, which was developed for training
conventional FFNNs,

The quantum intervals can be estimated by minimizing the class-conditional
variances at the outputs of the hidden units. The variance of the output of the

306 N. B. Karayiannis, R. Kretzschmar and H. Richner

jth hidden unit for the mth class C,, is given by

Y ((Rica) = hix)? (11.9)

VXJcECm

where (hjc,.) = (1/|Cml) 2 xx€Con k. and |Cyn| denotes the cardinality of
Cem. The adaptation of the parameters {67} is based on the minimization of
the objective function formed by summing a2 over all the classes and all the
hidden units, i.e.,

~2 Z Z =3 Z Z > ((hyen) — hii)?. (11.10)

i=lm=1 i=l m=1¥x,eC,,

The update equation for {67} can be derived as [14, 15]

Mr"’? Z Y ((hiea) = hsn) (W) = Vi), (1111)

m=1V¥xeCr

where (Vo) = (1/|Cml) Luxeee,, Yik a0 Vi = hj e (1= k5).

The QNN is trained according to the algorithm described above in a se-
quence of adaptation cycles. Each adaptation cycle involves the adaptation of
all the internal parameters of the network, that is, the synaptic weights and
the locations {6} of the shifted and superimposed sigmoid functions of the
hidden units. Since the criterion employed for updating the parameters {67} is
based on all the input vectors from the training set, {67} are updated after the
presentation of all the inputs to the network and the corresponding adaptation
of the synaptic weights.

11.3 Wind profilers

Wind profilers are vertical pulsed Doppler radar systems developed for measur-
ing the three-dimensional wind field. Wind profilers are used for the general
study of wind fields, research, and airport needs. The height coverage of a wind
profiler strongly depends on the frequency used. A 1290-MHz wind profiler,
such as that used for this study, covers a height range from about 100 m to
5000 m above ground level. Reliable winds can be obtained with a time reso-
lution of 10 minutes to 60 minutes and a height resolution of 30 m to 1500 m.
The total height range of the wind profiler is divided into sections, called range
gates, that define the vertical resolution of the wind profiler. The pulse length

Pattern classification based on quantum NNS 307

limits the widths of the range gates. A pulse length of 400 ns corresponds
to a vertical resolution of 60 m, while a pulse length of 2800 ns corresponds
to 400 m. The operational mode corresponding to a 400 ns pulse is usually
referred to as the low mode while the operational mode corresponding to a
2800 ns pulse is referred to as the high mode. For larger pulse lengths more
power can be emitted and greater detection heights can be reached,

11.3.1 The bird removal problem

Erroneous wind profiler data can occur due to ground clutter, inhomogeneous
wind fields, precipitation, heavy storms, external electromagnetic noise, and
moving objects hitting beams or side lobes (e.g., migrating birds, traffic or
trees moved by winds). When the wind profiler operates at a frequency of
1290 MHz, corresponding to a wavelength of 23,5 cm, birds can be considered
as approximate Rayleigh scatterers with strong reflectivity due to their high
water content [17]. According to several observations, migrating birds can
affect data recorded by wind profilers operating in the 1000 MHz range [8,
11, 16, 17]. In presence of birds, the true atmospheric wind echoes are being
distorted by the bird signals to an extent that only the birds’ speed can be seen
in the wind profiler data,

Bird contamination occurs during more than 160 nights per year in Central
Europe. This leads to a contamination of about 10% of the annual half-hourly
or hourly wind data [8].

11.3.2 Wind profiler data acquisition and processing

All wind data used in this project were recorded by a Radian LAP{*)-3000 wind
profiler at the site of Payerne, Switzerland. Bird contamination was verified
by simultaneous measurements made during periods of heavy migration by the
wind profiler and an Inframetrics LORIS IRTV-445L infrared system, operated
by the Swiss Ornithological Institute at Sempach. The infrared system has a
beamwidth of 1.4° and can detect birds up to about 3000 m above ground
level. Fig. 11.2 shows a schematic beam configuration of the wind profiler and
the infrared system employed in this project. Note that for all experiments
in this study the wind profiler and the infrared were operated using a fixed
beam direction. Only data from birds appearing in both observing systems
were classified as bird data. Because birds typically migrate at night [2] and
usually avoid rain (2, 17], measurements that contain virtually no birds were

308 N. B. Karayiennis, R. Kretzschmar and H. Richner

P

Fig. 11.2 Schematic beam configuration of the wind profiler and the infrared system
employed for this study

recorded during day time and during rain events,

Processing of the wind profiler data begins with a over 128 pulses combined
with DC removal, which is applied to increase the signal-to-noise ratio (SNR)
and reduce the amount of data for the fast Fourier transform (FFT) which
follows. After transforming the averaged time-domain data into the frequency
domain data by FFT, a spectral averaging is done. The spectral average is
usually calculated over about 50 spectra. In the next processing stage, the
averaged noise level is calculated and ground clutter is removed, Ground clutter
can be described as radar echo of objects in rest (e.g., trees, houses) and
appears in the spectral data as symmetric zero-velocity peaks. Data processing
is completed by the selection of the most significant peak and the calculation
of several characteristic features (e.g., moments) of the most significant peak.
Usually the most significant spectral peak is selected to be that with the highest
power density. In operational mode, moments are calculated every 30 seconds.
Using two pulse lengths for five beam directions, a full cycle where all directions
and pulse lengths are alternately measured takes 5 minutes. Six or twelve cycles
are averaged to produce half-hourly or hourly winds, respectively.

Pattern classification based on quantum NNS 309

Neural
Contaminated
= » network Ouipid
spectral data classifier value [-
. Threshold Unconlanina!ed.

decision spectral data

identifies and removes single spectra by thresholding the response of a neural network
trained to classify single spectra contaminated by birds

11.4 Formulation of the bird removal problem

Bird removal was attempted in this approach by rejecting time-averaged spec-
tra. In such a case, all wind information contained in the rejected time period
is lost. The amount of data lost through this process can be minimized by
decreasing the averaging time. In this study, bird removal was accomplished by
identifying and eliminating bird-contaminated single spectra, that is, spectra
obtained by FFT after time-domain averaging over one-second intervals. The
single spectra contaminated by migrating birds were identified in this study by
thresholding the response of a neural network trained to separate birds from
true wind data. All experiments were performed on a single beam direction of
the wind profiler in an attempt to verify whether this formulation can provide
the basis for developing a system operating on several beam directions. Fol-
lowing the removal of bird-contaminated single spectra, the remaining spectra
can be averaged to obtain uncontaminated hourly or half-hourly winds. The
bird removal approach is described by the block diagram shown in Fig. 11.3.
The removal of bird-contaminated spectra must deal effectively with un-
certainty caused by ambiguous data samples that could correspond to birds or
true winds. There are cases where a spectrum can not be identified by human
experts to be exclusively caused by birds, precipitation, or turbulence. The
existence of ambiguous data samples can be attributed to weather conditions
and the observational tools employed for data recording and processing. Since
the beamwidth of the infrared system (1.4°) is narrower than the beamwidth of
the wind profiler (6°) (see Fig. 11.2), only data from birds crossing the infrared
beam were selected to represent the class "birds.” Moreover, only situations
where virtually no bird was present in the air were selected to represent the
class "no birds." Finally, the training set did not include birds traversing the
wind profiler beam at other locations or birds being caught in side lobes.

310 N. B. Karayiannis, R. Kretzschmar and H. Richner

11.4.1 Input Feature Selection

This study relied on a set of 14 potential input features, which was composed
based on the results of previous studies [3, 8]. The 14 input features can be
divided into the following groups:

Moments: The moments calculated from the spectral data produced by the
wind profiler include the radar signal power, the spectral width, the skewness
and kurtosis of the most significant peak. The frequency limits vy and v of
the integrals involved in the calculation of the moments were determined by
the intersection of the noise level of the spectra and the envelope of the most
significant peak.

¢ Radar signal power:
P=— (11.12)

where Np is the number of spectral points within the spectrum, My =
f:‘ S'(v) dv is the area below the most significant peak, with S’(v)
obtained in terms of the spectral power density S(v) and the noise
level Py as S'(v) = S(v) — Pn.

e Spectral width:

Wi \/Min f (v — M) §'(v) dv, (11.13)

where My = - [v §'(v) dv is the first moment of the most sig-
nificant peak.

e Skewness:
S = m Ea(u - M2 S (v) dv. (11.14)
» Kurtosis:
K= Wlwg /’ (v = My)* S'(v) dv — 3. (11.15)

The higher moments, skewness and kurtosis, are measures of the asymmetry
and flatness of a spectral distribution (i.e., of a spectral peak) relative to the
Gaussian distribution.

Pattern classification based on quantum NNS 311

Additional Echo Signal Features: The additional echo signal features
extracted from the wind profiler data include the signal-to-noise ratio (SNR)
and the height,

e Signal-to-noise ratio:

P
SNR= 5=, (11.16)

where P is the radar signal power and Py is the noise level.
e Height:

H = Hy + ng Sg, (11.17)

where Hyg is the first gate height, ng the gate number, and Sg is the
vertical gate spacing.

Averaged Signal Power Variances: This set of features contains the
signal power variances averaged in time and height.

e Time-averaged signal power variance:

N 2
(,-V‘;ZIP(t)l)
t=1

(Pear)T = 1— e ! (11.18)
w0 PH()
t=1
where the time average was taken over Np = 5 samples.
e Height-averaged signal power variance;
Nu 2
(,—J; > IP(h)I)
(Poar)y = 1— = : (11.19)

Ny
e 2P0
h=1

where the height average was taken over Ny = 5 samples.

Relative Features: This set of features contains the relative signal power
differences in time and height.

312 N. B. Karayiannis, R. Kretzschmar and H. Richner
e Time-relative signal power difference;
Ny
1 2
¥ 2 PAt)
t=1

P‘Z
o Height-relative signal power difference:

(Paigr)r = -1 (11.20)

Ny
w7 2 PA(h)
(Pair)n = —"'—_}31-2—-— -1. (11.21)
Time Averages of Higher Moments: This set of features contains the
time averages of the skewness and kurtosis.

e Time-averaged skewness:

X
(S)r = 5= ; S(t). (11.22)
e Time-averaged kurtosis:
(K)p = — f: K(t). (11.23)
Nr (=1

Profiler-dependent Features: This set contains two features that describe
the operating mode of the wind profiler, namely, the vertical gate width W,
which is determined by the radiated signal pulse length, and the vertical gate
spacing Sg, which is often set to be the same as the vertical gate width,

11.4.2 Training, testing and validation sets

The neural networks were trained and tested using a normalized version of
the input features, produced by replacing each feature sample z by 7 = (z —
p.)/oz, where pu, and o, denote the mean and standard deviation of this
feature calculated over 120000 single spectra representing all cases (i.e., birds,
rain, and clear air). Since there were only two classes of interest for this study,
namely “birds" and “no birds," classification was performed by neural networks
with only one output unit. The output value 1 was defined to represent the
class "birds" and the output value O represented the class "no birds." A neural
network classifier with a sigmoidal output unit produces continuous output

Pattern classification based on quantum NNS 313

values between 0 and 1. Thus, a final cut-off threshold has to be chosen to
determine whether a bird is present or not (see Fig. 11.3).

The independent data sets composed for this project can be divided into
three groups:

e Training set: Data used for training the neural networks.

e Validation set: Data used to select the best network size and to prevent
overtraining.

e Testing set: Data set used to evaluate and to compare the performance
of the different classifiers.

Table 11.1 shows the composition of the data sets used in the experiments. All
neural networks were trained on the training set, which consisted of clear air,
rain and bird-contaminated data recorded in both modes of the wind profiler.
The bird-contaminated data were 10% of the total amount of data included
in the training set while over 25% of the total amount of data in the training
set were data recorded in rain. These percentages indicate that the bird-
contaminated and rain data were clearly over-represented in the training set
with respect to their annual distribution. The validation set originated from the
same data source as the training set. In fact, both training and validation sets
were formed from this data source by randomly selecting individual samples.
The testing set contained data that originated from independent sources and
was divided in three subsets. In contrast to the other data sets, the testing set 1
represents a collection of four independent data sets, namely clear air in high
and low mode and rain in high and low mode. The testing set 2 represents
a random selection of 200 individual birds identified by the infrared during a
migration period. The testing set 3 represents two 200-second periods of wind
profiler measurements recorded in high mode and low mode during a migration
event. The number of samples included in the testing set 3 differ for the two
modes because the high mode covers fewer range gates than the low mode.

11.5 Experimental results

This study began with a preliminary evaluation of various feature sets and
neural networks trained to identify birds from wind profiler data recorded in
high mode and low mode. Over 600 FFNNs and QNNs of different sizes were
trained using the five sets of features summarized in Table 11.2. The feature
set “14" includes all features described in Section 11.4, The feature set “10m"

314 N. B. Karayiannis, R, Kretzschmar and H. Richner

Table 11.1 Composition of the training, validation and testing data sets. All velues
shown represent the number of wind profiler samples, except for the values corresponding
to the "Testing Set 2" which represent the number of observed birds

High Mode Low Mode
Air Rain | Birds Air Rain | Birds
Training Set 2500 1000 375 2500 1000 375
Validation Set | 2500 1000 375 2500 1000 375

Testing Set 1 | 38000 | 21000 36000 | 21500
Testing Set 2 100 100
Testing Set 3 2200 3000

does not include any higher moments, while the set "10t" does not contain
any time-averaged features. The feature set "6" consists of the radar signal
power, the spectral width, and all profiler-dependent parameters. The feature
set "5” contains the spectral moments or features that are directly related to
the shape of the most significant peak.

The neural networks tested in these experiments were trained by gradient
descent for 800 or 2000 adaptation cycles. In case of overtraining, the training
process was terminated based on the performance of the trained networks on
the validation set. The weights of all networks trained in these experiments were
updated using a learning rate o = 0.07 with momentum equal to 0.05. The
quantum levels of the QNNs were determined by updating the jump-positions
using a learning rate 7 = 0.02. The slope values 3, of the sigmoid functions
were set equal to the number n, of quantum levels in order to achieve a clear
and equally scaled separation of the superimposed sigmoids.

The best QNNs and FFNNs trained in these experiments produced similar
classification rates when tested on the validation and testing sets. However,
there were significant performance differences in the ability of trained QNNs
and FFNNs to handle ambiguous data. These performance differences can be
made clear by visualizing the responses of the trained neural networks in three
or two dimensions.

Pattern classification based on quantum NNS 315

Table 11.2 Composition of the input feature sets utilized for training the neural net-
works

Set Name
Features 14 10m 10t 6 5
P ° ° °]
Ws ® ° # ° .
S ° ° °
K © ® °
SNR ° ° . . °
H ® ® ® .
(Pyar)T . o
(PVB:)H . - ®
(Paw)T . .
(Paist) o . . .
(S)r .
(K)r e
Sa ® ' ° °
We ° ° ° ®

11.5.1 Bird visualization

Fig. 11.4 allows the visualization of the classification results produced by the
trained QNN 5-2(5)-1 on the low-mode data included in the testing set 3.
According to the notation followed in this chapter, the QNN 5-2(5)-1 is a
QNN with five inputs, two 5-level hidden units and one output unit. Note
that the number of inputs (5 in this case) also reveals the set of features used
for training. For example, the QNN 5-2(5)-1 was trained using the features
included in the feature set “5." In the three-dimensional (3-D) visualization
shown in Fig. 11.4(a), the axis toward the right is the time in seconds while
the axis toward the left is the number of gates (i.e., height). Note that in low
mode, 10 gates correspond to 600 m above ground level. The axis perpendicular
to the time-gate plane is the network output, The gray surface shown in
Fig. 11.4(a) represents the network output as a function of time and height.
In this particular case, there is a clear distinction between the two classes

316 N. B. Karajpannis, R, Kretzschmar and H. Richner

|
(-9 i
2 20 ® i
z: ‘ .a é . i
_': t .' _}
1
L=
oL '__ - J
U S 160 150 200
Seronds
‘:L‘J

Fig. 11.4 Bird visualization produced by the QNN 5-2(5)-1 on low-mode data: (&)
Three-dimensional visualization of the outputs of the QNN 5-2(5)-1. (b) Twe-
dimensional bird visualization produced by thresholding the outputs of the QNN 5-
2(5)-1 (threshold value: § =0.2)

“birds" (corresponding to network output 1) and “no birds" (corresponding to
network output 0). The responses of the trained neural networks can also be
visualized in two dimensions after thresholding. Thresholding was performed
individually on each sample (i.¢., each time-height point of Fig. 11.4) based on
the response of the trained neural networks to the input features representing
this sample. The threshold value was selected to guarantee the elimination of
the largest possible amount of bird-contaminated data, while producing reliable
bird visualizations. Fig. 11.4(b) allows the two-dimensional (2-D) visualization
of the outputs of the QNN 5-2(5)-1 produced by thresholding its response.
The outputs of the neural network exceeding a certain threshold value 6 (0.2
in this particular case) are shown in black color.

Pattern classification based on quantum NNS 317

According to the visualization procedure outlined above, birds appear as
spikes in Fig. 11.4(a) and as patches in Fig. 11.4(b). A bird traversing the
wind profiler is expected to produce a smooth pattern with respect to the time
axis. Thus, the ability of trained neural networks to handle ambiguous data
can be evaluated using as a criterion the smoothness and compactness of the
bird-patches. The appearance of bird-patches looking “rough” or “random”
reveals that the trained neural network is not capable of effectively dealing with
ambiguous data. On the other hand, a neural network capable of handling
ambiguous data not involved in its training is expected to produce smooth and
compact bird-patches.

The visualization of birds was used to evaluate the feature sets used for
classification and the performance of the neural networks trained in these ex-
periments. Because it appeared to be more difficult to find appropriate thresh-
olds for high mode than for low mode, the evaluation was initially restricted to
high mode. The visualization of birds was evaluated on 200 seconds of bird-
contaminated data recorded in high mode during a heavy migration period
(i.e., the high-mode data of the testing set 3). The experiments indicated that
the neural networks trained using any time-averaged or height-averaged input
features (such as those included in the feature sets “14," “10m," and “10t")
tend to smear out birds and produce “blurred” visualization results. A typical
example of such a visualization is shown in Fig. 11.5(a), which was produced
by the FFNN 14-14(1)-1. The higher moments (skewness and kurtosis) seem
to be essential for an accurate detection of birds, as indicated by the poor vi-
sualization produced by the neural networks using the feature sets “10m" and
"6" that do not include these features. This is clear from Fig. 11.5(b), which
shows the 2-D visualization produced by the FFNN 6-3(1)-1. Fig. 11.5(b) is
a typical example of an "unreliable” visualization. The best visualization of
birds in high mode was produced by neural networks trained using the feature
set “5." Fig. 11.5(c) shows the 2-D visualizations of birds in high mode pro-
duced by the FFNN 5-3(1)-1, which exhibited the best performance among
all the FFNNs trained in these experiments (including the FFNN 5-2(1)-1).
The QNN 5-2(3)~1 and QNN 5-2(5)-1 produced the best visualization re-
sults in high mode among all the neural networks tested in these experiments.
Fig. 11.5(d) shows the 2-D visualization produced by the QNN 5-2(5)-1,
which achieved slightly higher classification rates on the validation set than
the QNN 5-2(3)~1. Moreover, the QNN 5-2(5)-1 produced rounder and more
compact bird-patches than those produced by the FFNN 5-3(1)-1 as indicated
by comparing Figs. 11.5(d) and 11.5(c). It is also remarkable that there were

318 N. B. Karayiannis, H. Kretzschmar and H, Richner

significant performance differences among the FFNN 5-2(1)-1, the QNN 5-
2(3)~1, and the QNN 5-2(5)~1, which were all trained using the same features
and contained the same number of hidden units. Given that the FFNN 5-2(1)-
1 can be considered as a QNN with a single quantum level per hidden unit, the
superior performance of the QNN 5-2(3)-1 and the QNN 5-2(5)-1 can only
be attributed to the fact that the QNNs consisted of multi-level hidden units
whose jump-positions were specifically updated to capture the structure of the
feature space,

25 ¥ L " 1 25F
520k g 20F
E g
= 15F g 15 -
Z L} = [
9 10} g 10} N,
I) S s | '
[y
0 0 e % .
200 250 300 350 400 200 250 300 50 400
Seconds Seconds
(a) (b)
25 T " 5 25 -
o 20 L 20f
g : -
= 15F ' =] 157 L
~ 10 ‘ “ 10 ‘
@ = @]
= . } = .)
w5 { 1 o 5r .
. i 1 I
. . s 0 , ;
200 2560 d00 350 400 200 250 300 50 400
Seconds Seconds
(c) (d)

Fig. 11.5 Two-dimensional visualization of the outputs produced on high-mode data
by: (a) the FFNN 14-14(1)-1 (threshold value: # = 0.99), (b) the FFNN 6-3(1)-1
(threshold value: 8 = 0.99), (c) the FFNN 5-3(1)-1 (threshold value: 8 = 0.99), and (d)
the QNN 5-2(5)~1 (threshold value: 8 = 0.91)

Pattern classification based on quantum NNS 319

Table 11.3 Detection and visualization of birds produced on the high-mode data in-
cluded in the testing set 3 by thresholding the responses of the best FFNNs and QNNs

Network | Size 0 Bird Bird
Data [%] | Visualization
FFNN 5-3(1)-1 | 0.99 19.0 Average
0.97-0.93 | 22.5-24.9 | Average
FFNN 5-2(1)-1 | 0.99 7.5 Too few birds
0.97-0.95 | 22.6-22.4 | Average
QNN 5-2(3)-1 | 0.99 16.4 Good
0.97-0.95 | 16.7-17.3 | Very Good
QNN 5-2(5)-1 | 0.99-0.97 | 17.6-18.1 | Good
0.95-0.91 | 18.3-18.7 | Very Good

11.5.2 Detecting birds in high mode

This evaluation began by selecting the trained neural networks that produced
the best visualization of birds. Based on the previous evaluation of the feature
sets, only networks trained using the feature set “5" were evaluated in this
set of experiments. Table 11.3 shows the percentage of spectra removed due
to the detection of single birds for different threshold values and the evalua-
tion of the corresponding visualization of birds in high mode. Decreasing the
threshold values increased the percentage of single spectra removed due to
their classification as bird-contaminated. On the other hand, the visualization
of birds became increasingly blurred as the threshold values decreased. The
FFNN 5-3(5)-1, which produced the best visualization among all the FFNNs
when tested with a threshold value of § = 0.99, removed 19% of single spec-
tra as bird-contaminated. The QNN 5-2(3)-1 and QNN 5-2(5)-1 produced
the best visualization among all the trained neural networks when tested with
threshold values 0.97-0.95 and 0.95-0.91, respectively. Compared with the
QNN 5-2(3)-1, the QNN 5-2(5)-1 removed a higher percentage of single
spectra. The two QNNs that exhibited the best overall performance in high
mode were also tested in terms of their performance on the high-mode data
included in the testing set 1. Note that this particular set contains virtually no
bird-contaminated data. The results of these experiments are summarized in

320 N. B. Karayiannis, K. Kretzschmar and H. Richner

Table 11.4 Bird detection and classification rates produced on the high-mode data of
the testing set 1 by thresholding the responses of the two neural networks that led to
the best bird visualization in high mode

Network | Size o Bird HM (%]
Data [%]| | Clear Air Rain
QNN | 52(3)-1 | 0.97 | 16.7 96.78 99.92
0.95 | 17.3 96,73 99.92
QNN 5-2(5)-1 | 0.95 | 18.3 96.72 99.92
0.91 | 187 96.67 99.91

Table 11.4. The two QNNs performed equally well on high-mode data recorded
in rain but the QNN 5-2(3)-1 outperformed slightly the QNN 5-2(5)~1 on the
high-mode data recorded in clear air. Table 11.4 indicates that both QNNs
classified correctly almost all high-mode data recorded in rain and classified
incorrectly about 3% of the high-mode data recorded in clear air.

11.5.3 Detecting birds in low mode

The detection of birds in low-mode data focused on the FFNN and QNN
that achieved the best detection and visualization in high mode, namely the
FFNN 5-3(1)-1 and the QNN 5-2(5)-1. Table 11,5 summarizes the percentage
of single spectra selected for removal by the two networks tested with different
thresholds on 200 seconds of wind profiler measurements during a migration
period (i.e., the low-mode data of the testing set 3). Table 11.5 also shows the
classification rates achieved by the two neural networks on the low-mode data
included in the testing set 1, which contained virtually no bird-contaminated
data. The evaluation of the two neural networks listed in Table 11.5 indicated
that the best overall performance was achieved when the FFNN 5-3(1)-1 and
the QNN 5-2(5)-1 were both tested with a threshold value of # = 0.2. Testing
the networks with a threshold value of & = 0.1 resulted in the identification
of almost the same amount of bird-contaminated data but led to inferior vi-
sualization. Both neural networks achieved very high classification rates on
low-mode data recorded in clear air regardless of the threshold value used for
classification. However, the performance of both neural networks on low-mode
data recorded in rain was significantly lower.

Pattern classification based on quantum NNS 321

Table 11.5 Percentage of bird-contaminated data and classification rates produced on
the low-mode data included in the testing set 1 by thresholding the responses of the best
FFNN and QNN

Network | Size ¢ | Bird LM (%]
Data [%] | Clear Air Rain
FFNN | 53(1)-1 | 0.1 | 7.5 99.00 68.06
0.2 6.8 99.23 70.91
QNN 52(5)-1 0.1 | 89 97.61 65.92
0.2] 6.7 99.30 71.62

11.5.4 The amount of bird-contaminated data

The ability of the QNN 5-2(5)-1 to reliably detect bird-contaminated spectra
was evaluated by testing its performance on the testing set 2, which contained
200 birds observed by the infrared in high mode and low mode. The thresholds
used were # = 0.91 and 6 = 0.2 for high-mode and low-mode data, respectively.
The QNN 5-2(5)-1 identified 97% of the birds observed by the infrared, which
indicates that it is a reliable tool for detecting bird-contaminated wind profiler
data. In an attempt to evaluate the system under a “worst case scenario,” the
QNN 5-2(5)-1 classifier was tested on bird-contaminated data recorded during
a night of heavy migration. The data recorded in both high and low mode
were examined in 30-minute intervals for bird contamination at all gate ranges
(é.e., heights). The highest percentage of bird-contaminated data found in all
30-minute intervals at all heights was 76%. Note that this percentage refers
to a single 30-minute interval and does not represent the average amount of
bird-contaminated data. According to the evaluation on the testing tests, the
QNN 5-2(5)~1 was capable of removing almost all bird-contaminated spectra
while hardly affecting the data containing pure wind measurements. The wind
profiler used for data acquisition and preprocessing computed single spectra
every two seconds. This implies that the wind profiler would average about
900 single spectra every 30 minutes if none of the spectra was removed as bird-
contaminated. In the worst case scenario, where the QNN 5-2(5)-1 removed
almost 76% of bird-contaminated spectra, the wind profiler was allowed to
average almost 200 single spectra in a time interval of 30 minutes. Averaging
200 single spectra every half hour is estimated to produce acceptable half-hourly

322 N. B. Karayiannis, R. Kretzschmar and H. Richner

Table 11.6 Classification rates produced on the testing set 1 by thresholding the re-
sponse of the QNN 5-2(5)-1 trained on the bird-enriched training set

Network | Size 6 Clear Air [%] Rain [%]
HM | LM | HM LM
QNN | 5-2(5)-1 | HM: 0.3 | 92.25 | 98.83 | 95.76 | 82.20
LM: 0.4 | 96.84 | 98.93 | 96.59 | 93.74

winds for most situations encountered in practice.
The overall classification rate reached by the QNN 5-2(5)-1 can be raised
above 90% by applying the following procedure:

e check for birds in the high mode;
o if there is a bird detected in high mode, then check for birds in low
mode.

This procedure can be justified by the fact that the high mode of a wind profiler
covers larger volumes than the low mode, while the high mode is generally more
sensitive to birds [3]. As a result, it is not necessary to check for birds in low
mode if there is no bird detected in the high mode. Given that birds usually
avoid rain [2], the overall classification rate is not likely to be affected by the
rather low classification rates on low-mode data recorded in rain. Even during
periods of heavy migration, the QNN 5-2(5)-1 appeared to be able to produce
a sufficient amount of clear air data for a reliable averaging. This implies that
the system can be used to refine wind measurements recorded by the wind
profiler even in periods of heavy migration.

11.5.5 Dealing with several weather conditions

The previous experiments indicated that the performance of all trained neu-
ral networks (including the QNN 5-2(5)-1) was relatively low for high-mode
data recorded in clear air and low-mode data recorded in rain. It was hypoth-
esized that the low performance of the QNN 5-2(5)-1 classifier is mainly due
to a non-representative training set. This hypothesis was tested by expanding
the training set and the validation set using a portion of the data from test-
ing set 1. More specifically, the expanded training and validation sets included
additional high-mode data recorded in clear air and low-mode data recorded in

Pattern classification based on quantum NNS 323

25 - : -
E 20
g 15 "
Z)
it &
o 5F
0 , ‘ ‘ [}
200 250 300 350 400
Seconds
(a)
30 = - J
. ®
) [|
20 [) E
E . .o]
= @
3 10 “ E
- 4
¢ |
0 T 1
0 50 100 150 200
Seconds
(b)

Fig. 11.6 Bird visualization produced by QNN 5-2(5)-1 trained using the bird-enriched
training and validation sets on (a) high-mode data and (b) low-mode data

rain. The QNN 5-2(5)-1 trained using the expanded training and validation
sets performed well on bird-free data but failed to detect bird-contaminated
spectra. This experimental outcome can be attributed to the fact that the ex-
pansion of both training and validation sets by 2500 bird-free spectra resulted
in a reduced representation of bird-contaminated data in both sets. This was
remedied by increasing the amount of bird-contaminated data in the training
set and the validation set four times. Retraining the QNN 5-2(5)-1 using the
bird-enriched training and validation sets resulted in a slight degradation of
its performance on high-mode data recorded in clear air but improved signif-
icantly its performance on low-mode data recorded in rain (see Table 11.6).
Figs. 11.6(a) and 11.6(b) show the 2-D bird visualization produced by testing
the retrained QNN 5-2(5)-1 on high-mode and low-mode data, respectively.

324 N. B. Karayianms, l. Kretzschmar and H. Richner

Table 11.7 Classification rates produced on the testing set 1 by thresholding the re-
sponse of the QNN 63-3(5)-1 trained using the “6s” set of features on the bird-enriched
training set

Network | Size 0 Clear Air [%] | Rain [%]

HM | LM | HM | LM
QNN 65-3(5)-1 | HM: 0.6 | 94.95 | 99.41 | 98.75 | 97.41
LM: 0.4 | 86.64 | 99.04 | 92.80 | 93.82

11.5.6 Improving the set of input features

The experiments indicated that the trained neural networks achieved their best
performance when tested with different thresholds on high-mode and low-mode
data. This experimental outcome indicates that bird detection is significantly
affected by the operating mode of the wind profiler. Nevertheless, the feature
set "5" that led to the best classifiers contains no features yielding information
about the operating mode of the wind profiler. This observation motivated the
use of the feature set "6s," which was constructed by adding to the feature
set "5" the vertical gate width Wg, a quantity that depends heavily on the
operating mode of the wind profiler. The feature set "6s" was utilized for
training and testing a variety of neural networks on the bird-enriched training
and validation sets described in the previous section. Table 11.7 summarizes
the performance of the QNN 6s-3(5)~1, which achieved the best performance
among the neural networks tested in these experiments using the feature set
“6s." More specifically, Table 11.7 shows the classification rates obtained by
testing the QNN 6s-3(5)-1 on the low-mode and high-mode data from the test-
ing set 1. The QNN 6s-3(5)-1 outperformed the QNN 5-2(5)-1 when tested
with appropriate thresholds on high-mode and low-mode data from the test-
ing set 1. Figs. 11.7(a) and 11.7(b) show the 2-D bird visualization produced
by the QNN 6s-3(5)-1 on wind profiler data from testing set 3 recorded in
high mode and low mode, respectively. Comparison of Figs. 11.6 and 11.7
indicates that the QNN 6s-3(5)-1 produced comparable visualization of birds
in high mode than the QNN 5-2(5)-1. In conclusion, an accurate detection of
bird-contaminated data can be accomplished by utilizing the feature set "6s"
and using well-balanced training and validation sets that represent all relevant
weather conditions.

Pattern classification based on quantum NNS 325

25
5 20f
g
é 15F ;
o 105 ¥
g sy |
) { ¥ !
200 250 300 as0 400
Seconds
(a)
30 £ - n
I - ® ‘
2 oo]
B0 g © B
; ol .
2 10} Ll]
& ’
. . |
1] 50 100 150 200
Seconds
(b)

Fig. 11,7 Bird visualization produced by the QNN 6s-3(5)-1 trained using the “6s” set
of features on (a) high-mode data and (b) low-mode data

11.6 Conclusions

This chapter presented the development, testing and evaluation of an auto-
mated bird removal system relying on QNNs. The study involved the selection
of the best set of input features, the selection of the most reliable neural net-
work models and sizes, and the criteria employed for identifying birds in wind
profiler data recorded in high mode and low mode. It also focused on the se-
lection of representative training, validation and testing sets and also evaluated
the effect of weather conditions on the performance of the system.

The experimental study indicated that the most reliable feature set involved
features directly related to the shape of the corresponding spectral peak and
the vertical gate width of the wind profiler. In general, feature sets that did
not include the skewness and kurtosis failed to produce reliable classification

326 N. B. Karayiannis, R. Kretzschmar and H. Richner

results. On the other hand, all feature sets including time or height averaged
features tended to smear out the visualization of birds, with a negative impact
on bird detection. The experiments revealed that the error rates on the training
and validation sets are not reliable performance indicators for this particular
application. The most reliable criterion for bird removal was found to be
the visualization of birds in two dimensions, which can be used to assess the
ability of trained neural networks to handle ambiguous data. The experiments
indicated that bird visualization and detection in high mode and low mode
required different thresholds, The best among the FFNNs and QNNs tested
in this study achieved comparable classification on the training and validation
sets, However, the best QNNs produced bird visualization results that were
superior to those produced by the best FFNNs. Compared to FFNNSs, the best
among the QNNs tested in the experiments were found to be more reliable
in detecting bird-contaminated data. These performance differences can be
attributed to the inherent ability of QNNs to detect the presence of uncertainty
in the training set and quantify the existing uncertainty by approximating any
membership profile from sample data. The price to be paid for this performance
gain is the extra computational effort for updating the jump-positions of the
multi-level hidden units.

Acknowledgments

The authors express their gratitude to Dominique Ruffieux from MeteoSwiss,
Switzerland, Felix Liechti, Thomas Steuri and Bruno Bruderer from the Swiss
Ornithological Institute at Sempach, Switzerland, and Thomas Griesser from
the Institute for Atmospheric Science at the ETH, Zurich, Switzerland.

References

[1] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford Uni-
versity Press, Oxford, 1995.

[2] B. Bruderer, “The study of bird migration by radar, part 2: Major
achievements,” Naturwissenschaften 82, 45-54 (1997).

[3] S. Haykin and C. Deng, “Classification of radar clutter using neural
networks," IEEE Transactions on Neural Networks 2, 589-600 (1991).

[4] H. Ishibuchi and H. Tanaka, “"Approximate pattern classification using

Pattern classification based on quantum NNS 327

neural networks," in Fuzzy Logic: State of the Art, R. Lowern and M.
Roubens, Eds., Kluwer Academic, Dordrecht, The Netherlands, 1993.

[5] N. B. Karayiannis and G. Purushothaman, “Fuzzy pattern classifica-
tion using feed-forward neural networks with multilevel hidden units,"
Proceedings of IEEE International Conference on Neural Networks,
Orlando, FL, June 28-July 2, 1994, pp. 1577-1582.

[6] N. Kasabov and R. Kozma, (Eds), Neuro-Fuzzy Techniques for Intel-
ligent Information Processing, Springer-Verlag, Heidelberg, 1999,

[7] R. Kozma et al, “Adaptive neuro-fuzzy signal processing system using
structural learning with forgetting," Intelligent Automation and Soft
Computing 1, 389-404 (1995).

[8] R. Kretzschmar, The Effect of Migrating Birds on 1290-MHz Wind
Profiler Data, Semester Thesis, |nstitute for Atmospheric Science (LAP-
ETH), ETH Zurich, Switzerland, April 1997.

(9] R. Kretzschmar, Quantum Neurofuzzy Bird Removal Algorithm (NEU-
ROBRA) for 1290-MHz Wind Profiler Data, Master's Thesis, Institute
for Atmospheric Science (LAPETH), ETH Zurich, Switzerland, August
1998,

[10] M. Leshno et al, “Multilayer feedforward networks with a nonpolyno-
mial activation function can approximate any function," Neural Net-
works 6, 861-867 (1993).

[11] P. A. Miller et al, “The extent of bird contamination in the hourly winds
measured by the NOAA profiler network: Results before and after
implementation of the new bird contamination quality control check,”
First Symposium on Integrated Observing Systems, Long Beach, CA,
February 2-7, 1997, pp. 138-144.

[12] S. K. Pal and S. Mitra, “Multilayer Perceptron, fuzzy sets, and classi-
fication," IEEE Transactions on Neural Networks 3, 683-697 (1992).

[13] S. K. Pal and S. Mitra, Neuro-Fuzzy Pattern Recognition, Wiley, New
York, 1999.

[14] G. Purushothaman and N. B. Karayiannis, “Quantum neural networks
(QNNSs): Inherently fuzzy feedforward neural networks," [EEE Trans-
actions on Neural Networks 8, 679-693 (1997).

[15] G. Purushothaman and N. B. Karayiannis, “Feed-forward neural ar-
chitectures for membership estimation and fuzzy classification,” In-
ternational Journal of Smart Engineering System Design 1, 163-185
(1998).

[16] J. M. Warnock et al, “Multiple frequency profiler studies of echoes

328 N. B. Karayianms, R. Kretzachmar and H. Richner

observed during bird migration," Proceedings of the 27th Conference
on Radar Meteorology, Vail, CO, October 9-13, 1995, pp. 284-286.
[17] J. M. Wilczak et al, "Contamination of wind profiler data by migrat-
ing birds: Characteristics of corrupted data and potential solutions,"
Journal of Atmospheric and Oceanic Technology 12, 449-467 (1995).

Chapter 12

NETWORKS OF SPIKING
NEURONS IN DATA MINING

K. Cios and D. M. Sala

Department of Bioengineering
University of Toledo
Toledo, OH 43606-3390, U.S.A.
e-mail: kcios@eng. uloledo. edu

Abstract

The spiking neuron model, in spite of being a more realistic
representation of the biological neuron, has not been widely used
as a part of data mining tools for knowledge discovery that are
based on artificial neural networks. This has been mainly on ac-
count of its complexity and the lack of learning rules and methods
for adapting it to solving real problems. Spiking neurons have been
used for finding clusters in data, without the usual requirement of
specifying a priori the number of clusters, for finding associations
in the data, and for solving some graph optimization problems.
This has been made possible by the introduction of a new tem-
poral correlation learning rule. Having solved graph optimization
problems by networks of spiking neurons, we have highlighted the
great potential and applicability of the approach to data mining.

329

330 K. Cios and D.M. Sala
12.1 Introduction

Artificial neural networks are one of the most widely used data mining tools
in the process of knowledge discovery. The vast majority of them use average
firing rate model of a neuron. On the other hand, the spiking neuron model
that closely resembles its biological counterpart is usually used only for mod-
eling purposes. This is due partly to its complexity as well as lack of learning
rules and methods for using them in networks of spiking neurons for solving
real problems. In this chapter, we describe how spiking neurons can be used for
finding clusters in data, without the usual requirement of specifying a priori the
number of clusters, for finding associations in the data, and for solving some
graph optimization problems. We made it possible by introducing new tem-
poral correlation learning rule that is explained in the chapter. Since artificial
neural networks are usually represented in the form of a graph, the relation-
ship between the two has been explored by some researchers, for example for
solving the traveling salesman problem [8]. More recently, Bose and Liang [1]
overviewed networks that use average firing rate neuron model and graph the-
ory. With the rising interest in networks of spiking neurons, which take into
consideration timing information, the relationship between graphs and neural
networks can be seen from a different perspective, which we present in the
chapter. We solve some graph optimization problems by using networks of
spiking neurons. The results show their great potential and applicability to
data mining. Below the building blocks of networks of spiking neurons are
introduced.

12.1.1 Spiking neuron model

We use the integrate-and-fire spiking neuron model, described by the following
differential equation defining the transmembrane potential [9):
dE ;

= —E + R(IPV™ + I5%%), (12.1)
where E' is the transmembrane potential, [°¥" is the synaptic current input,
I¢%t s the external current input, { = RC is the membrane time constant,
and R and C are, respectively, the resistance and capacitance of the mem-
brane. Whenever the membrane potential E surpasses the threshold, the
neuron fires. The interaction between neurons is described by postsynaptic
potentials (PSPs). For each synapse between neurons i and j the postsynaptic

Networks of spiking neurons in data mining 331

potential is described by a defta function (other more complex functions can
be considered) [13}:

pspij(t) = Ko(t — Atij), (12.2)

where At;; is the propagation time and K is a scaling factor. We assume that
a synapse is activated whenever a spike generated by the pre-synaptic neuron
reaches it. The total synaptic input of a neuron is obtained by summing up all
postsynaptic potentials:

LV (t) = Z,wy; - pspis(t), (12.3)

where w;; represents the strength (weight) of the synapse between neurons i
and 3.

12.1.2 Synaptic learning rule for spiking neurons

Let us consider neuron j that receives input from n synapses with efficacies,
or weights, wi;(t) (1 < ¢ < n). The relative timing between pre- and post-
synaptic spikes induces the change of w;;(t). The quantity describing the time
correlation between pre- and post-synaptic spikes is given by the correlation
coefficient, defined below, that is also illustrated in Fig. 12.1 [14]:

2

Ceorr = (14 y) exp(=k - 1) —, (12.4)

corr

where t;; is the time elapsed between the firing of neuron 4 and the firing of
neuron 7, ¥ < 1 is the maximum value for the decay and k = In(1+1/y) is a
scalar that assures that the zero crossing of c .- takes place at t.qrr, Which is
the time window for positive correlation. Whenever a postsynaptic neuron fires,
the connection weights of all pre-synaptic neurons that excited it are modified

according to the formula:

wij + o ccarr(tij)
B, (wij + a - ceorr(tij))’

wij = (12.5)
where w;;(t) is the synaptic weight from neuron i to j, a is the learning rate
(a small quantity), ccorr is the correlation value, We will refer to this rule as
the temporal correlation rule. If the correlation value is positive, the synaptic
strength increases and if it is negative it decreases. This type of dependence
is supported by biological experiments [10, 11]. The rule is competitive as
some neurons firing within a time interval are rewarded and other neurons are

332 K. Cios and D.M. Sala

056-

(=3

TOHY l‘ [ma)

Fig. 12.1 Correlation value ¢ccorr for tegrr = 3 ms and y = 0.5

penalized. Although the formula also works for negative ¢;;, the utilization
of the rule is time-order dependent. For neurons which are pre- and post-
synaptically connected to each other, the order of spiking is essential as one
connection will strengthen and the other weaken depending on which neuron
fired first.

12.2 Graph algorithms

As mentioned above, artificial neural networks are usually represented in the
form of a graph. Since networks of spiking neurons take timing information
into consideration, the relationship can be seen in a different perspective. To
that end, we introduce several optimization problems that are representable by
graphs and whose solutions involve finding paths of a specific type. The spiking
neuron model is the same as described above and the learning is performed by
modifying the synaptic strength, w;; according to our temporal correlation rule,

given by (12.5).

12.2.1 Shortest path through a graph

The shortest path problem is one of the most commonly encountered problems
among all classes of network optimization problems. Examples include trans-
portation, communications, and production applications. Simply stated, the

Networks of spiking neurons in data mining 333

shortest path problem deals with finding the shortest route between a source
and a destination in a network [4, 6]. Suppose that a transportation company
has to deliver a package from one location to another in the shortest time.
Assuming that the time depends only on the distance, the problem can be
approached by representing the highway network as a graph. The nodes repre-
sent highway intersections and edges represent the interconnecting highways,
as shown in Fig. 12.2. The solution to the problem is the shortest path through
the graph from source to destination. The graph in Fig. 12.2 can be interpreted
as a neural network where each circle represents a neuron node and each edge
(we consider only positive edges) represents a connection between two neuron

Fig. 12.2 Highway network represented as a graph. Node 1 is the source node and Node
g is the destination node

nodes [14]. A neuron node consists of a pair of excitatory-inhibitory neurons
arranged in such a way that each firing of the excitatory neuron activates the
paired inhibitory neuron, which in turn inhibits the excitatory neuron for a pe-
riod of time that is longer than the longest path in a given graph. With this
arrangement each neuron node, henceforth called neuron, will fire only once. In
the following we assume that a synapse is activated whenever a spike generated
by the pre-synaptic neuron reaches it. The value shown on each edge repre-
sents the delay, t;;, between the firing of neuron ¢ and the time the synapse
between neurons i and j is activated. Initially, the weights of all synapses are
equal and sufficiently large so that a single postsynaptic potential can evoke a
spike in the postsynaptic neuron. Learning is done in cycles according to the

334 K. Cios and DM, Sala

following equation:
wij(t =+ 1) = u;ij{t) + - ccorr(tij)- (126)

This equation is the same as (12.5) but without normalization. A cycle starts by
initiating a spike in the input neuron, in our example the leftmost neuron, and
ends when all the neurons in the network have fired. After a number of cycles,
which depends on the value of the learning rate, some connections become
stronger, up to the saturation value M, while other connections decrease and
disappear altogether. Redrawing the network as shown in Fig. 12.3 we observe
that the resultant network represents the initial network in which only the
shortest paths from the input neuron to all other neurons have survived, Further
examination shows that each neuron has only one entry that has survived. It

Fig, 12,3 The resulting network: only the surviving connections are shown; the under-
lined values represent the times of firings of the neurons

is possible that for some neurons more than one entry survived which is an
indication of the existence of muitiple solutions or alternative routes. During
the learning process, whenever a PSP arrives at a synapse that synapse is
activated and learning takes place. The first synapse activated is the one that
determines the firing of the postsynaptic neuron. If a synapse is activated within
a time interval .45, calculated backwards from the time of firing of the post-
synaptic neuron, its weight increases, otherwise it decreases. For a small t.opr
only the first activated synapse will be rewarded and the remaining ones will be
penalized. If the learning rate is close to the value of one then the shortest path
can be obtained in one cycle. In general, one starts with a large value of the

Networks of spiking neurons in data mining 335

correlation time, tcor-, Which is decreased as the learning progresses. By doing
so we obtain additicnal information regarding the evolution of the weights. Let
us consider nade 3, shown in Fig. 12.2; it has three input edges of lengths 5,
3 and 4. The evolution of the corresponding synapses in the network is shown
in Fig. 12.4. We notice that the edge labeled 3 is the one corresponding to
the shortest path to neuron 3, while the path through the edge labeled 5 is the
next shortest. The path through the edge labeled 4 is the longest. Thus, more

M= 2r -
1.8
18}

i i i N . i i
0 20 40 B0 B0 100 120 140 160 180
cycies

Fig. 124 Input weights evolution of neuron 3; toorr starts at 3 ms and exponentially
decays to zero

information is found by looking at the evolution of teo-, Which starts at 3 ms
and decays exponentially towards zero. This type of analysis may be useful for
large networks where the shortest path, next to the shortest path, etc., can
provide additional useful information. In the above example we imposed the
direction of the routes to simplify the explanation but in fact any route can be
traveled in either direction. To account for this we just add arcs in the opposite
directions with the same values. The algorithm would proceed in the same way
using the new graph. It is worth mentioning that if the graph has cycles it does
not influence the performance of the algorithm.

12,2.2 Minimal spanning tree

Another example of network optimization problem is the minimal spanning tree
[12, 15). For example, a phone company has to provide new service to five new

336 K. Cios and D.M. Sala

customers. Due to costs of installation, the company is interested in finding the
minimum cable length necessary to connect the new customers. We consider
the same graph in Fig. 12.2 as the possible layout of the cable network, where
neuron 1 represents the exchange office providing the service. The edges of
the graph represent all possible connections between any two locations and
their values the necessary cable length. The minimal spanning tree of the
graph gives the solution to this problem. Again, we associate with the graph a
network of spiking neurons [3]. The nodes are the neurons and the edges are
the connections between the neurons with propagation times given by the edge
values, with their strengths being initially set to a large value. The algorithm
works in steps. At each step we stimulate a neuron, or a group of neurons,
and determine the neuron that is closest by using the same method as in the
shortest path algorithm. The additional requirement is that any neuron that
fires, except the ones stimulated at the beginning, inhibits all other neurons.
For instance initially we start by stimulating neuron 1, since it represents the
exchange office, and find the next neuron to fire. In our example neuron 2
is the closest and thus it fires first, inhibiting all other neurons. Repeating
this step for a number of cycles the strength of the connection from neuron
1 to neuron 2 increases gradually to the maximum value, and the reversed
connection between the two neurons gradually decreases to 0, which means
that there is no connection. The next step involves stimulating neurons 1 and
2 (found at the previous step) together and finding the neuron that fires first.
In our example it is neuron 5, Repeating this step for a number of cycles the
strength of the connection from neuron 2 to neuron 5 increases gradually to
the maximum value. The connection from neuron 1 and those from neuron 5
to neurons 2 and 1 decrease to 0. At each step we start by stimulating the
neurons found at the previous step and determine the neuron that is closest to
any of them. The process stops after a number of steps equal to the number of
neurons. Fig. 12.5 shows the strengthened connections at each step together
with those from previous steps. It is easy to see that the surviving edges in the
final network represent the minimal spanning tree.

12.3 Clustering
Suppose that we are interested in finding how the nodes of a given graph

cluster together based on their edge distances. Let us consider the graph
shown in Fig. 12.2, and associate with it a neural network in the same way

Networks of spiking neurons in data mining 337

(h)

Fig, 12.5 Finding the closest neuron at each step. At step (h) the process stops and
the result is the minimal spanning treec

338 K. Cios and D.M. Sala

we did for the minimal spanning tree. This time we change the stimulation
procedure. Learning is cyclical. Each cycle consists in direct stimulation, in
random order, of all neurons. At each step the closest neuron, i.e., the one that
fired first after the stimulated neuron, increases its connection strength with
the stimulated neuron. Thus they start to cluster together. After a number of
cycles the connection strengths between the closest neurons become saturated
while the connection strengths between neurons farther apart decrease to zero.
The shortest edges saturate the fastest and the process continues until each
neuron is clustered with at least one other neuron. In our example it resulted
in three clusters as shown in Fig. 12.6(a), where only the surviving edges are
shown. The connections between neurons are bidirectional and the arrows
on the surviving edges show the direction of the association. The algorithm
emulates the single linkage clustering method or nearest neighbor algorithm [2,
6]. In general, in hierarchical clustering methods, like the single linkage, one
starts with calculating minimal distance between all elements. The elements
that correspond to the minimal distance are then clustered together. Next,
the procedure is repeated with the elements clustered previously treated as
one element. The distance from this new element to any other element is the
minimum distance between the elements of the cluster and that element, In
our network the clustering is done simultaneously for all the elements. It is easy

Fig. 12.6 (a) Final network showing clustering of neurons. The clustering process re-
sults in tree clusters; (b) The shortest edges between the clusters, shown as dotted lines,
complete the minimal spanning tree

to notice that the surviving edges in the clustered network form a subset of the
minimal spanning tree. To obtain the minimal spanning tree one needs to add
one more phase, in which the obtained clusters play the role of single neurons.
The temporal correlation learning rule still applies. Now, however, instead of

Networks of spiking neurons in data mining 339

choosing a single neuron we select an entire cluster. This means that all the
neurons within that cluster are activated simultaneously at the beginning of
a learning cycle. The rest of the process continues in exactly the same way
as for the original clustering phase described above. Thus, as our network
has clustered into three clusters, at each step we activate simultaneously the
neurons of a cluster. The neurons from the remaining clusters will be activated,
in the order of their connection delays, and the strength of connections will be
medified according to the temporal correlation learning rule. Repeating the
cycle for a number of times we obtain the minimal spanning tree shown in
Fig. 12.6(b) where the connections between the clusters are drawn with dotted
lines. We can check that the result is the same as the previous one.

Table 12.1 Project's activities and durations

Activity Immediate Duration
Predecessors

A - 10
B - 1
C - 5
D A 9
E A 8
F A 10
G D 3
H D 4
I B,G 5
J CE 7
K B,G 4
L CE 3
M FHIJ 8

340 K. Cios and D.M. Sala
12.4 Critical path method

Problems encountered in many areas require careful planning and scheduling.
In order to make a problem, or a project, tractable usually it is divided into
a small set of sub-projects called activities. The activities are inter-related so
that some activities cannot start until some other activities are completed. An
example of such a project is given in Table 12,1. It lists activities along with
their inter-relationships and duration.

The project can be represented as a graph, or project network. The project
network describes the sequence of activities necessary for completion of the
project. A directed arc represents each activity, while nodes represent events.
An event is completed only when all activities directed to it have been com-
pleted. The representation given in Fig. 12.7 is used, where each edge is labeled
by the corresponding activity and its duration [5]. Nodes S and T represent
the start and finish of the project, respectively. The goal is to determine the
earliest time in which the project can be completed. The solution is given
by the critical path, the longest path in the network from start to finish. In
order to determine the critical path let us consider a neural network of spiking
neurons associated with the graph shown in Fig. 12.7. The nodes represent
neurons and the edges represent the connections. The edge values represent
propagation delays of spikes from one neuron to another. We assume that
the modification of the membrane potential of a neuron caused by arrival of

Fig, 12.7 Project network; § - starting of the project and T - end of the project

Networks of spiking neurons in date mining 341

a spike is the same, and that the membrane time constant is sufficiently large
so that during the time between two subsequent spikes the potential change is
insignificant. We also assume that the number of spikes necessary to activate
a neuron is equal to the number of input connections. Now let us suppose that
in the network previously described we stimulate neuron S at time ¢t = 0. After
a delay of 10 time units neuron 1 fires. The next neuron to fire is neuron 4.
At time ¢ = 5 neuron 4 is stimulated by the spike emitted by S, but this stim-
ulation is not sufficient to activate it, because it requires two spikes. Neuron
4 is activated and fires only when the spike from neuron 1 arrives at ¢t = 18.
Similarly, we can analyze events at other neurons. Neuron 5 needs five spikes
and fires after t = 27, and the output neuron T fires after ¢ = 35, which is
also the earliest time in which the project can be completed. Thus, we can
interpret firing of each neuron as representing the time when the corresponding
event is completed. Although we have determined the completion time of the
events, we also want to determine the critical path, the path for which a delay
of any event included in the path, delays the entire project. For this we employ
the learning rule described by (12.5). The arrival of an input spike within ¢cory
to the time of firing of the neuron increases its weight, otherwise it decreases

Fig. 12.8 The resulting network; only the surviving connections are shown; the under-
lined values represent the completion time

it. Learning is done in cycles with each cycle consisting of stimulating neuron
S and waiting until neuron T fires. Narrowing t.o, as the learning proceeds,

342 K. Cios and D.M. Sala

assures that only the neuron that sent the last spike before firing remains con-
nected. The resulting network is shown in Fig. 12.8. The path connecting S
to T represents the critical path. S—1—2—3—5—T, or it can be described
in terms of activities: A —D — G —1— M. We have also obtained information
about the completion time for all events, even if they are not critical events
like event 4. Fig. 12.9 shows the evolution of the weights for neuron 5 during
learning.

Fig. 12.9 Neuron number 5 evoiution of weights during learning

12.5 The longest common subsequence

The last problem we consider is determination of the longest common subse-
quence. Given two sequences X = {z,23,...Zm} and Y = {y1,¥2,...¥n}
we want to find the common subsequence of maximal length. In this section
we show how this problem can be solved using a neural network of spiking
neurons and the results of the previous section. First we build an m xn, two-
dimensional network in such a way that every neuron is connected with all the
neurons below and to the right of it. Fig. 12.10 shows the architecture of a 4x4
network with the connection showed only for the upper leftmost neuron. Each
column is labeled in order with the elements of X, and each row is labeled
in order with the elements of Y. The determination of the longest common

Networks of spiking neurons in data mining 343

X) # b X,
7 P
y1 J B e J _’.
| A — L NN,
O e S N
A N\ -
v\) Nam ™ AL T Y
Yi‘ AAN L \.'._ h» N/
IS i .I'\
y O N0 T) T
il \\\
\ “ L
\\ . ."__ _
Y O O 0

Fig. 12.10 Network layout

subsequence is done in two phases. In the first phase we determine all common
subsequences of length greater than or equal to 2. This is done by firing, in
order, the neurons corresponding to one of the sequences. Let us start with
sequence Y. At each time step we fire the neurons in a row that have the same
column label as the row. First, we fire the neurons corresponding to A in the
first row of the network (see Fig. 12.11) and then the neurons corresponding
to B in the second row; we continue until we finish all the rows. During this
pracess the connection strength between two linked neurons that have both
fired will increase while the connection between two linked neurons in which
only one has fired will diminish, according to the temporal learning rule. The
result is shown in Fig. 12.11, where only the surviving connections are shown.
The gray-shaded neurons are the ones that have fired. Starting from any
linked neuron that fired, and following its links we get a common subsequence
of the initial sequences. The problem becomes then one of finding the max-
imal subsequence. In phase 2 we solve this problem by using the approach
explained above for solving the critical path problem. We assume that all sur-
viving connections have the same propagation delay (i.e., in the equivalent
graph all edges are equal). The resulting network from phase 1 will have a
number of input neurons, i.e., neurons that have no inputs, and a number of
output neurons, i.e., the neurons that have no outputs. In our example there
are three input neurons and two output neurons. We start by stimulating all
input neurons and proceed in the same way as explained in the critical path
method. The last output neuron to fire belongs to the longest path in the net-

344 K. Cios and D.M. Sala

Fig. 12,11 Phase 1 surviving connections

work and following its surviving links gives us the longest subsequence, which
is shown in Fig. 12.12. In our example the maximal length is 4 and the solution
is not unique. In fact two output neurons (the black ones) fire at the same
time meaning that both are part of a maximal length sequence. This is shown
by the fact that there are more surviving paths in the network., The solution
can be any of the following sequences: BCAB, BDAB and BCBA.

12.6 Conclusions

In the chapter we presented new findings in design and applications of artificial
neural networks that use a biologically-inspired spiking neuron model. The
used model is a point neuron with the interaction between neurons described by
post-synaptic potentials. The synaptic plasticity is achieved by using a temporal
correlation learning rule, specified as a function of time difference between the
firings of pre- and post-synaptic neurons. By considering temporal coding,
that represents distances on a given spatial configuration, we have shown how
to associate graphs with networks of spiking neurons. By using the temporal
correlation learning rule we solved the shortest path algorithm, clustering based

Networks of spiking neurons in data mining 345

B 1] C A B A
A ~ |“_ 'd)
B [4 g { ?
(+ \ " .\L . (.’_'__ »
\ . _
| I‘ ﬁ -
E () \ A \
\\ A
o % \ O
3)
v O w0 e
B (@9

Fig. 12.12 Phase 2 surviving connections

on the nearest neighbor, the minimal spanning tree, and found the longest
common subsequence of two sequences. The examples show that a network of
spiking neurons emulates several graph algorithms. We showed how by using
the temporal correlation rule certain associations between neurons in a network
of spiking neurons can be implemented. Networks of spiking neurons, along
with the temporal correlation rule, have a great potential for data mining,
in particular in domains where very little is known about the data since the
network can find the clustering structure on its own. As such it can serve as
an unsupervised learning tool to be used before a supervised learning method
is subsequently used on the data.

References

[1] Bose, N. K. and Liang, P. (1996) Neural Network Fundamentals with
Graphs, Algorithms, and Applications, McGraw-Hill, New-York.

[2] Cios, K.J., Pedrycz, W., and Swiniarski, R.W. (1998) Data mining.
Methods for knowledge discovery, Kluwer, Boston.

[3] Cios, K.J. and Sala, D.M. (2000) “Advances in applications of spiking
neuron networks”, SPIE AeroSense 14th Int. Symposium, Orlando,

346

K. Cios and D.M. Sala

April, in print

[4] Chartrand, G. and Oellerman, O.R. (1993) Applied and Algorithmic
Graph Theory, McGraw-Hill, New-York.

[5] Evans, J.R. and Minieka, E. (1992) Optimization Algorithms for Net-
works and Graphs, 2nd edition, Marcel Dekker, New-York.

[6] Even, S. (1979) Graph Algorithms, Computer Science Press, Po-
tomac, MD.

[7] Everitt, B.S. (1993) Cluster Analysis, 3rd edition, Edward Arnold,
London.

(8] Hopfield, J.J. and Tank, D.W. (1985) “Neural computations of deci-
sions in optimization problems”, Biological Cybernetics, 52, pp. 141-
152.

[9] Kuhn, R. and Hemmen, J.L. (1995) "Temporal Association”, Models
of Neural Networks I, eds. E. Domany, J.L. van Hemmen, and K.
Schulten, Springer Verlag, Berlin, pp. 201-218.

[10] Markram, H., Lubke, J., Forster, M., and Sakman, B. (1997) “Reg-
ulation of Synaptic Efficacy by Coincidence of postsynaptic APs and
EPSPs", Science, 275, pp 213-215,

[11] Markram, H. and Tsodyks, M. (1996) "Redistribution of synaptic effi-
cacy between neocortical pyramidal neurons’, Nature, 382, pp. 807-
810.

[12] Minieka, E. (1978) Optimization Algorithms for Networks and Graphs,
Marcel Dekker, New-York..

[13] Sala, D.M., Cios, K.J. (1998) “Self-Organization in Networks of Spik-
ing Neurons", Australian Journal of Intelligent Information Pro-
cessing Systems, 5, No 3, pp. 161-170.

[14] Sala, D.M., Cios, K.J. (1999) “Solving Graph Algorithms with Net-
works of Spiking Neurons”, IJEEE Trans. on Neural Networks, 10,
No 4, pp. 953-957.

[15] Taha, H.A. (1992) Operations Research, 5th edition, Macmillan, New-
York.

Chapter 13

GENETIC ALGORITHMS,
PATTERN CLASSIFICATION AND
NEURAL NETWORKS DESIGN

S. Bandyopadhyay, C. A. Murthy and S. K. Pal

Machine Intelligence Unit

Indian Statistical Institute
208 B. T. Road, Calcutta - 700 085, INDIA

e-mail: {sanghami,murthy, sankar} Q@uww.isical.ac.in
Abstract

Basic principles of genetic algorithms (GAs) along with the char-
acteristic features and application domains are explained. The
searching capability of GAs is exploited for modeling the class
boundaries for pattern recognition problems. This is preceded by a
discussion on the relevance of GAs to pattern recognition problems
along with some attempts made in the related areas. Various clas-
sifiers using fixed string length GAs, variable string length GAs and
GAs with chromosome differentiation are described. The superior-
ity of these classifiers over the Bayes classifier (with assumption of
multivariate normal distribution), k-NN rule and multilayer percep-
tron is demonstrated for both speech and remotely sensed image
data. Based on an analogy between the classification principles of
a multilayer perceptron (MLP) and the genetic classifier, a scheme
for the automatic determination of the MLP architecture is pre-
sented and some experimental results are provided. Some of the
results reported here are taken from the existing literature. An
extensive bibliography is also provided.

347

348 8. Bandyopadhyay, C. A. Murthy and S. K. Pal
13.1 Introduction

Genetic algorithms [14, 47] are randomized search and optimization techniques
guided by the principles of evolution and natural genetics. The term was first
mentioned by Bagley in 1967 [3], when he devised a genetic algorithm based
game playing program using some commonly used operators. He found that the
GA was insensitive to the game non-linearity, and performed well over a range of
environments, |t was then with the pioneering work of Holland in 1975 [32] that
GAs were firmly established as an effective search and optimization strategy.

GAs mimic some of the processes observed in natural evolution, which
include operations like selection, crossover and mutation. They perform multi-
modal search in complex landscapes and provide near optimal solutions for ob-
jective or fitness function of an optimization problem. They are efficient, adap-
tive and robust search processes, with a large amount of implicit parallelism [23,
32]. Genetic algorithms are gradually finding widespread applications during
the past decade in solving problems requiring efficient and effective search,
in business, scientific and engineering circles [20, 21, 61, 64]. Some of the
applications of GAs, so far being made, include pattern classification and fea-
ture selection [21, 28, 61, 66, 75|, image processing and recognition [1, 2,
31, 54, 72, 76), rule generation and classifier systems [11, 34, 35, 36, 37,
39], case based reasoning [58], neural network design [12, 27, 38, 44, 48,
53, 70, 71, 80], scheduling problems [16, 17], control systems [73, 74], VLSI
design [79], path planning [15, 63], the traveling salesman problem [25, 40,
52], graph coloring [18], and numerical optimization [41, 46]. Moreover, sev-
eral researchers are actively engaged in developing enhanced and more effective
genetic operators and models, and analyzing their performance for different ap-
plications, Some such attempts are described below.

The issue of convergence of GAs to the globally optimal solution has been
pursued in [9], where GAs are modeled as Markov chains having a finite number
of states. A state is represented by a population together with a potential
string. Irrespective of the choice of initial population, GAs have been proved
to converge to the optimal string for infinite number of iterations, provided
the conventional mutation operation is incorporated. Murthy et al. [50] have
provided a stopping criterion, called e-optimal stopping time, for the elitist
model of the GAs. Subsequently, they have derived the e-optimal stopping
time for GAs with elitism under a 'practically valid assumption’.

An attempt to incorporate the ancestors influence into the fitness of individ-
ual chromosomes has been made in [19]. This is based on the observations in

Genetic algorithms, pattern classification and neural networks design 349

nature where an individual is not an independent entity, but is highly influenced
by the environment. Ghosh et al. [22] have incorporated the concept of aging
of individuals for measuring their suitability for participation in genetic opera-
tions, by combining both the functional value and the age of an individual for
computing its effective fitness. Results have shown that this scheme provides
enhanced performance and maintains more diversity in the population.

Bhandari et al. [10] have proposed a new mutation operator known as di-
rected mutation which follows from the concept of induced mutation in biolog-
ical systems [49]. This operation uses the information acquired in the previous
generations rather than probabilistic decision rules. In certain environments,
directed mutation will deterministically introduce a new point in the popula-
tion. The new point is directed (guided) by the solutions obtained earlier, and
therefore the technique is called directed mutation.

In [53], Pal and Bhandari incorporated GAs to find out the optimal set of
weights (biases) in a layered network. Weighted mean square error over the
training examples has been used as the fitness measure. They introduced a
new concept of selection, called non-linear selection, which enhances genetic
homogeneity of the population and speeds up searching. Implementation re-
sults on both linearly separable and non-linearly separable pattern sets are also
reported.

An attempt has also been made for evolving architectures of Hopfield type
optimum neural networks for extracting object regions from gray images using
GAs [56], where each binary chromosome represents a network architecture.
The presence (or absence) of connectivity between neurons is represented by
1 (or 0). The proposed GA based technique has been able to evolve network
architectures whose connectivity is about two-third of the requirement of the
corresponding fixed fully connected ones in order to produce comparable seg-
mented output. The optimized networks have been found to be more noise
independent. Other attempts for evolving the architecture of neural networks
using GAs can be found in [8, 67, 80].

Many tasks involved in the process of recognizing a pattern need appropriate
parameter selection and efficient search in complex and large spaces in order
to attain optimal solutions. This makes the process not only computationally
intensive, but also leads to a possibility of losing the exact solution. Therefore,
the application of GAs for solving certain problems of pattern recognition,
that require optimization of computation requirements, and robust, fast and
close approximate solution, seems appropriate and natural. Additionally, the
existence of the proof of convergence of GAs to the global optimal solution as

350 8. Bandyopadhyay, C. A. Murthy and S. K. Pal

the number of iterations goes to infinity [9], further strengthens the theoretical
basis of its use in search problems. Significance of GAs to pattern recognition
and image processing problems is adequately demonstrated in [21, 57, 60,
61]. Some of the investigations are mentioned below.

A method for determining the optimal enhancement operator for both bi-
modal and multimodal images is described by Pal et al. in [54]. The algorithm
does not need iterative visual interaction and prior knowledge of image statistics
for this purpose. The fuzziness measures are used as fitness function.

Selection of a subset of principal components for classification using GAs
is made in [62]. Since the search space depends on the product of the number
of classes and the number of original features, this selection process by con-
ventional means may be computationally very expensive. Results on two data
sets with small and large cardinalates are presented.

Murthy and Chowdhury [51] have used GAs for finding optimal clusters,
without the need for searching all possible clusters. The experimental results
show that the GA based scheme may improve the final output of the K-means
algorithm [78], where an improvement is possible. Another attempt for using
GAs for clustering has been made in (45], where the cluster centers are encoded
in the chromosome, and the distance metric is optimized.

Another hybridization of the k-means algorithm with GAs (called, GKA)
for partitional clustering is reported in [42], where the superiority of GKA over
other algorithms is demonstrated. The GKA is applied for codebook design that
are used in image and speech coding. A class of representation schemes, called
Voronoi Networks, has also been proposed in [42] and a new heuristic learning
algorithm for them, called supervised K-means algorithm, is formulated.

One of the important and natural applications of GAs for supervised pattern
classification is to search and appropriately place a number of surfaces in the
feature space such that the decision boundary of a given data set is closely ap-
proximated. Attempts in this direction can be found in (4, 77]. In [77], Srikanth
et al, described a genetic algorithmic approach to pattern classification, both
crisp and fuzzy, where clusters in pattern space are approximated by ellipsoids.
A variable number of ellipsoids is searched for, which collectively classify a set
of objects by minimizing a criteria based on the number of misclassified points
and the fuzzy distance of a pattern from the surface of the ellipsoid. In [4], the
searching capability of GAs are exploited for approximating the class boundaries
using a number of hyperplanes. Extensive experimental results and theoretical
analyses of the resulting classifiers are provided.

Genelic algorithms, pattern classification and neural networks design 351

The present chapter provides, in this direction, some key features of the
results of investigation that has been carried out in Machine Intelligence Unit of
Indian Statistical Institute, Calcutta, under the project Soft Computing in Pat-
tern Recognition. This includes the GA-classifier (where the decision boundary
is approximated by a fixed number of hyperplanes), the VGA-classifier (where
variable string length GAs are used to approximate the decision boundary by a
variable number of hyperplanes) and the VGACD-classifier (where the concept
of chromosome differentiation is incorporated in designing the genetic clas-
sifiers), along with some of their real life applications. Some of the results
are taken from the existing literature. A distinguishing feature of the above
approach is that the boundaries need to be generated explicitly for making de-
cisions. This is unlike the conventional methods or the multilayered perceptron
(MLP) based approaches [30, 43, 68, 69], where the generation of boundaries
is a consequence of the respective decision making processes. In a part of the
article, we have shown how the principle of VGA-classifier can be used for de-
scribing a methodology for determining the architecture along with the weights
of MLP, with each neuron executing the hard limiting function. Comparative
performance with other related methods is also provided.

13.2 Overview of genetic algorithms

GAs are modeled on the principles of natural genetic systems, where the genetic
information of each individual or potential solution is encoded in structures
called chromosomes. They use some domain or problem dependent knowledge
for directing the search in more promising areas; this is known as the fitness
function, Each individual or chromosome has an associated fitness function,
which indicates its degree of goodness with respect to the solution it represents,
Various biologically inspired operators like selection, crossover and mutation are
applied on the chromosomes to yield potentially better solutions.

Since a GA works simultaneously on a set of coded solutions it has very
little chance of getting stuck at a local optimum when used as an optimization
technique. Again, the search space need not be continuous, and no auxiliary
information, like derivative of the optimizing function, is required. Moreover,
the resolution of the possible search space is increased by operating on coded
(possible) solutions and not on the solutions themselves.

To solve an optimization problem, GAs start with the chromosomal rep-
resentation of a parameter set. The parameter set is to be coded as a finite

352 S. Bandyopadhyaey, C. A. Murthy and S. K. Pal

length string over an alphabet of finite length., Usually, the chromosomes are
strings of 0's and 1's, A set of such chromosomes in a generation is called a
population, the size of which may be constant or may vary from one generation
to another. A common practice is to choose the initial population randomly.

The fitness/objective function associated with a chromosome is chosen
depending on the problem to be solved, in such a way that the strings (possible
solutions) representing good points in the search space have high fitness values.
This is the only information (also known as the payoff information) that GAs
use while searching for possible solutions.

Subsequently, the selection/reproduction process copies individual strings
(called parent chromosomes) into a tentative new population (known as mating
pool) for genetic operations. The number of copies that an individual receives
for the next generation is usually taken to be directly proportional to its fitness
value; thereby mimicking the natural selection procedure to some extent. This
scheme is commonly called the proportional selection scheme. A commonly
used strategy known as the elitist selection [26] is adopted in GAs, thereby
providing an elitist GA (EGA), where the best chromosome of the current
generation in retained in the next generation.

The other two frequently used genetic operators applied on the population
of chromosomes are crossover and mutation. The main purpose of crossover
is to exchange information between randomly selected parent chromosomes by
recombining parts of their corresponding strings. It recombines genetic material
of two parent chromosomes to produce offspring for the next generation. Single
point crossover is one of the most commaonly used schemes.

The main aim of mutation is to introduce genetic diversity into the popula-
tion. Sometimes, it helps to regain the information lost in earlier generations.
In case of binary representation it negates the bit value and is known as bit
mutation. Like natural genetic systems, mutation in GAs is usually performed
occasionally. Here a random bit position of a randomly selected string is re-
placed by another character from the alphabet.

The cycle of selection, crossover and mutation is repeated a number of
times till one of the following occurs:

(1) the average fitness value of a population becomes more or less constant
over a specified number of generations,

(2) a desired objective function value is attained by at least one string in
the population,

(3) the number of generations (or iterations) is greater than some thresh-

old value.

Genetic algorithms, pattern classification and neural networks design 353
13.3 Description of the genetic classifiers

13.3.1 GA-classifier: GA-based classifier using fixed number of
hyperplanes

The GA-classifier [55] attempts to place H hyperplanes in the feature space
appropriately such that the number of misclassified training points is minimized.
From elementary geometry, the equation of a hyperplane in N-dimensional

space (X; — Xg —++. — X) is given by

Bizy+ By s+ ...+ Bz, =d, (13.1)
where 8, = cosay_;sinay_g_y)...8inay_,. Here a, is the angle that the
projection of the unit normal in the (X; — X — -+« — X, ,) space makes with
the X,,, axis. Since a, = 0, the N tuple < a;,as,...,an_1,d > specifies a

hyperplane uniquely in N dimensional space. An appropriate binary encoding
is adopted for these N parameters corresponding to a hyperplane. For details
the reader may refer to [55).

Thus, if by and by bits are used to represent an angle and the perpendicular
distance variable respectively, then each chromosome is of a fixed length of
l=H((N—1)%by +b2), where H denotes the number of hyperplanes, These
are initially generated randomly for a population of size Pop.

Using the parameters of the hyperplanes encoded in a chromosome, the
region in which each training pattern point lies is determined based on equa-
tion (13.1). A region is said to provide the demarcation for class ¢, if among the
points that lie in this region, majority belong to class i. Other points that lie in
this region are considered to be misclassified. The misclassifications associated
with all the regions (for these H hyperplanes) are summed up to provide the
total misclassification, miss, for the string. Its fitness is defined as (n—muss),
where n is the size of the training data set.

After computing the fitness, the genetic operators of selection, crossover
and mutation are applied [23] to generate a new population of chromosomes.
Elitism is incorporated in the process for preserving the best candidate found
so far, Fitness computation followed by genetic operations are executed for a
fixed number of generations, at the end of which the best chromosome provides
the set of hyperplanes constituting the final decision boundary. The flowchart

354 S. Bandyopadhyay, C. A. Murthy and S. K. Pal

for the GA-classifier is given in Fig. 13.1.

Start

Population Initialization

For each chromosome (encoding a decision

boundary), compute miss and fit = n - miss
Mark a chromosome with maximum fitness

value =fit ,, . Gen=Gen +1

Gen <= max_gen ?

Output decision

Selection, Crossover, boundary encoded in
Mutation, Elitism marked chromosome

]

Fig. 13.1 Flowchart for the GA-classifier

13.3.2 Determination of optimal H: VGA-classifier

Since it is very difficult to estimate a proper value of H, the GA-classifier
often suffers from the problem of overfitting of the data set, resulting from
a conservative estimate of H. This also leads to the presence of redundant
hyperplanes in the final decision boundary. In order to overcome this limitation,

Genetic algorithms, pattern classification and neural networks design 355

the concept of variable string lengths in GAs [24], encoding the parameters of
a variable number of hyperplanes, is incorporated in the GA-classifier, thereby
providing the VIGA-classifier [5).

In the VGA-classifier, the chromosomes are represented by strings of 1, 0
and # (don't care), encoding the parameters of variable number of hyperplanes.
Let Hpyqax represent the maximum number of hyperplanes that may be required
to model the decision boundary of a given data set. It is specified a priori.
Fitness Computation
For each string ¢ encoding H; hyperplanes, the number of misclassified points
miass, is found as in the case for GA-classifier. If n is the size of the training
data, then the fitness of the ith string, fit;, is defined as

fit; = (n —miss;) — aH;,

where a = y— and H; is the number of hyperplanes encoded in the string.
A string with zero hyperplane is defined to have zero fitness. Maximization
of the fitness function ensures the minimization of, primarily, the number of
misclassified points and then the number of hyperplanes.

Genetic Operators

Since the strings have variable length, the crossover and mutation operators
are defined afresh as follows.

Crossover: Two strings, 7 and j, having lengths l; and I; respectively are
selected from the mating pool. Let I; < [;. Then string i is padded with #s
so as to make the two lengths equal. Conventional crossover like single point
crossover, two point crossover [23] is now performed over these two strings
with probability .. The following two cases may now arise:

1) All the hyperplanes in the offspring are complete. (A hyperplane in a string
is called complete if all the bits corresponding to it are either defined (i.e., Os
and 1s) or #s. Otherwise it is incomplete.)

2) Some hyperplanes are incomplete,

In the second case let u = number of defined bits (either 0 or 1) and ¢ =
total number of bits per hyperplane. Then, for each incomplete hyperplane,
all the #s are set to defined bits (either 0 or 1 randomly) with probability
¥. In case this is not permitted, all the defined bits are set to #. Thus
each hyperplane in the string becomes complete, Subsequently, the string is
rearranged so that all the #s are pushed to the end.

Mutation: In order to introduce greater flexibility in the method, the muta-
tion operator is defined in such a way that it can both increase and decrease

356 S. Bandyopadhyay, C. A. Murthy and 5. K. Pal

the string length. For this, the strings are padded with #s such that the re-
sultant length becomes equal to ... Now for each defined bit position, it
is determined whether conventional mutation [23] can be applied or not with
probability p,,. Otherwise, the position is set to # with probability s, .
Each undefined position is set to a defined bit (randomly chosen) according to
another mutation probability 4., .

Note that mutation may result in some incomplete hyperplanes, and these
are handled in a manner, as done for crossover operation. Also, mutation
may yield strings having all #s indicating that no hyperplanes are encoded in
it. Consequently, this string will have fitness = 0 and will be automatically
eliminated during selection.

13.3.3 Incorporation of chromosome differentiation: VGACD-classifier

In this section, we investigate the effect of incorporating chromosome dis-
crimination [7] on the performance of the said GA-classifier. In conventional
genetic algorithms, since no restriction is placed upon the selection of mating
pair for crossover operation, often chromosomes with similar characteristics are
mated. Therefore, no significant new information is gained out of this process
and the result is wastage of computational resources. In VGACD (variable
string length GA with chromosome differentiation) classifier, we try to alle-
viate this problem by distinguishing the chromosomes into two categories, M
and F (determined by two additional bits called class bits), and therefore two
populations. These two populations are initially generated in such a way that
they are maximally apart. Crossover is restricted only between individuals from
these two populations. Since, as a result of this process, we allow crossover
only between dissimilar individuals, a higher level of diversity is likely to be
introduced and subsequently maintained in the system. This will, in turn, re-
sult in faster information interchange between the chromosomes, and therefore,
faster convergence of the algorithm. Interestingly, an analogy of this concept
of chromosome differentiation exists in natural genetic systems, in the widely
witnessed phenomenon of male and female sexes.

As mentioned above, two additional bits called class bits are used to dis-
tinguish the chromosomes into 2 classes, M and F. If the class bits contain
either 01 or 10, the corresponding chromosome is called an M chromosome,
and if it contains 00, the corresponding chromosome is called an F chromo-
some. These bits are not allowed to assume the value 11. (This is in analogy
with the X and Y chromosomes in natural genetic systems, where XY or YX

Genetic algorithms, pattern classification and neural networks design 357

indicates male while XX indicates female.) The remaining bits are called data
bits, which may be either 1, 0 or # (don't care). The data bits encode the
parameters of H; hyperplanes, where 1 < H; < H,,,z. The structure of a
chromosome in VGACD is shown in Fig. 13.2. Two separate populations, one

2 l
i EEXT

class data bits
bits

00 - F class bits
01, 10 - M class bits

Fig. 13.2 Structure of a chromosome in GACD

containing the M chromosomes (M population) and the other containing the F
chromosomes (F population), are maintained over the generations. The sizes
of these two populations, p,, and p; respectively, may vary. Let p,, + ps = p,
where p is fixed (equivalent to the population size of conventional GA). Ini-
tially we consider p,, = py = §. The M population is first generated in such
a way that the first two chromosomes encode the parameters of 1 and H,ax
hyperplanes respectively. The remaining chromosomes encode the parameters
of H; hyperplanes where 1 < H; < H,,,.. For these chromosomes, one of
the two class bits, chosen randomly, is initialized to 0 and the other to 1. The
data bits of the F chromosomes are initially generated in such a way that the
hamming distance between the M and F populations (in terms of the data
bits) is maximum. The hamming distance between two chromosomes ¢; and
cg, denoted by h(c;, c2), is defined as the number of bit positions in which the
two chromosomes differ. Hamming distance between two populations, P; and
P,, denoted by h(Py, P), is defined as follows :

WPy, P) =33 hieie;), Ve € P Vej € Py
i

The computation of fitness in the VGACD-classifier is done in a manner similar
to that of the VGA-classifier. Restricted mating takes place during crossover,
where one parent is selected from the M population and the other from the
F one. Ignoring the class bits, crossover is performed between the M and F

358 S. Bandyopadhyaey, C. A. Murthy and S. K. Pal

parents as in the VGA-classifier. Subsequently, each parent contributes one
class bit to the offspring. Since the F parent can only contribute a 0 (its class
bits being 00), the class of the child is primarily determined by the M parent
which can contribute a 1 (yielding an M child) or a 0 (yielding an F child)
depending upon the bit position (among the two class bits) of the M parent
chosen. This process is performed for both the offspring whereby either two M
or two F or one M and one F offspring will be generated. These are put in the
respective populations. Mutation is performed as in VGA-classifier, with the
class bits being kept outside the purview of this operator.

13.3.4 Theoretical studies of the genetic classifiers

Theoretical analyses of the above mentioned GA based classifiers show that for
infinitely large number of iterations it will provide the minimum misclassification
error during training; at the same time the number of hyperplanes required to
model the decision boundary appropriately for providing the minimum number
of misclassified points will also be the minimum.

It is known from the literature that Bayes classifier [78] is the best pos-
sible classifier if the class conditional densities and the a priori probabilities
are known. No classifier can provide better performance than Bayes classifier
under such conditions. In practice, it is difficult to use Bayes classifier be-
cause the class conditional densities and the a priori probabilities may not be
known. Hence new classifiers are devised and their performances are compared
to that of the Bayes classifier. The desirable property of any classifier is that
its performance should approximate or approach that of the Bayes classifier
under limiting conditions. There are many ways in which the performance of
a classifier is compared to that of the Bayes classifier. One such way is to
investigate the behavior of the error rate (defined as the ratio of the number
of misclassified points to the size of the data set) as the size of the training
data goes to infinity, and check whether the limiting error rate is equal to the
Bayes error probability. Such an investigation [6] establishes that this is true
for the aforesaid genetic classifiers when the number of iterations goes to in-
finity. In other words, the decision boundary provided by the genetic classifiers
approaches the Bayes decision boundary as the number of training data points
and the number of iterations approaches infinity.

Genetic algorithms, pattern classification and neural networks design 359

13.3.5 Experimental results

This section has two parts. In the first part, some experimental results are
presented for the genetic classifiers on a Vowel data set. This includes a de-
scription of the data set, variation of the recognition scores of the GA-classifier
during testing for different values of H, performance of the VGA-classifier and
VGACD-classifier, and their comparison to the Bayes maximum likelihood clas-
sifier and k-NN rule. In the second part, the above genetic classifiers are used
for pixel classification of a SPOT satellite image of a part of the city of Calcutta
for locating different landcover regions.

For the GA based classifiers the numbers of bits used to represent an angle
and the perpendicular distance are 8 and 16 respectively. Roulette wheel selec-
tion is adopted to implement the proportional selection strategy. Single point
crossover is applied with a fixed crossover probability (u.) value of 0.8. The
mutation operation is performed on a bit by bit basis for a varying mutation
probability value (4,,) in the range [0.015,0.333]. The form of the variation of
1., with the number of generations is shown in Fig. 13.3. The range is divided

0.333

0.015

Generations

Fig. 13.3 Variation of mutation probability with the number of generations

into eight equispaced values. p,, is slowly decreased in steps from 0.333 to
0.015, and then increased again. This ensures that initially, a random search is
performed through the feature space. The randomness is gradually decreased
with the passing of generations so that now the algorithm performs a detailed
search in the vicinity of promising solutions obtained so far. In spite of this, the
algorithm may still get stuck at a local optimum. This problem is overcome by

360 S. Bandyopadhyay, C. A, Murthy and S. K. Pal

increasing the mutation probability to a high value, thereby making the search
more random once again. 100 and 200 iterations are executed with each value
of u,, for the GA-classifier and the variable string length GA-based classifiers
respectively. (Note that since the search space is larger for the latter, they are
allowed more time to execute.) The fixed length genetic classifier is terminated
if the population contains at least one string with no misclassified points, while
the variable length ones are terminated if the number of hyperplanes is reduced
to one in addition to zero misclassified points for at least one string, Otherwise,
the algorithms are executed for the prespecified number of generations.

13.3.5.1 Results on Vowel data

Vowel data consists of 871 Indian Telugu vowel sounds [59]. These were ut-
tered in a consonant-vowel-consonant context by three male speakers in the
age group of 30-35 years. The data set has three features Fy, F; and Fj,
corresponding to the first, second and third vowel formant frequencies, and six
classes {8, a,i,u,e,0}. Fig, 13.4 shows the distribution of the six classes in
the F} — Fy plane. (It is known [59] that these two features are more impor-
tant in characterizing the classes than F3.) Note that the boundaries of the
classes are seen to be very ill-defined and overlapping. The scores provided
here are the average values obtained over five different runs of the algorithms.
Table 13.1 presents the test recognition scores of the GA-classifier for different
values of H. The scores are found to improve with the value of H upto H =7
which provides the maximum score. Low values of H viz., 2 and 3 are seen
to provide quite low recognition scores indicating that they are insufficient for
modeling the overlapping class boundaries appropriately. Even H = 4 is not
a proper choice since in this case one class is not recognized at all (class a).
Interestingly, although it was found that the recognition scores during training
of the GA-classifier consistently improved with the increase of H from 2 to
8, a decrease in the test recognition score is observed from H =7 to H =
8. The reason for this is that as H is increased upto a certain point (from 2
to 7), the GA-classifier is able to surround the data points more easily during
training thereby providing improved scores. However increasing H beyond a
certain point (in this case 7) results in overfitting of the training data points at
the cost of reduced generalization capability. Therefore, although the training
scores improve even further, the recognition scores during testing get degraded.

Table 13.2 shows the number of hyperplanes Hyg4 and Hygacp as deter-
mined automatically by the VGA-classifier and VGACD-classifier respectively,

Genetic algorithms, pattern classification and neural networks design 361

900

800

700 |

600

300

200 L L | | 1 L i
600 900 1200 1500 1800 2100 2400 2700
Bin Hz

Fig. 13.4 Vowel data in the Fy — F; plane

for modeling the class boundaries of Vowel. Two different values of H,az,
namely, 6 and 10, are used for this purpose. The overall recognition scores
obtained during testing of the variable string length GA classifiers along with
their comparison with those of the corresponding fixed length version (i.e.,
GA-classifier with H = 6 and 10) are also shown. The purpose of this exercise
is to compare the performance of the asexual and sexual versions of the genetic
classifiers, as well as the fixed and variable length ones, starting with the same
number of hyperplanes, i.e., Hy,ax for VGA-classifier and VGACD-classifier,
and H for GA-classifier.

It is found from Table 13,2 that the VGACD-classifier consistently outper-
forms the other two classifiers, indicating the significant advantage of incorpo-
rating the concept of chromosome differentiation. Moreover, it is also able to
considerably reduce the number of hyperplanes. The VGA-classifier is unable
to eliminate any hyperplane when it is initiated with H,,, = 6. Interestingly,
although its recognition score on the test data set is found to be higher than
that of the GA-classifier for Hy,.. = 10 (where finally six hyperplanes are
utilized), this is not the case for H,,,, = 6. This may be due to the fact

362 S. Bandyopadhyay, C. A. Murthy and S. K. Pal

Table 13,1 Variation of overall recognition scores (%) during testing with H for Vowel
data with perc = 10

Number of hyperplanes | Overall recognition score
8 74.56

74.68

71.99

71.37

69.21

57.50

53.30

B O WY =]

Table 13.2 Hyga and the comparative overall recognition scores (%) during testing
(when 10% of the data set is used for training and the remaining 90% for testing)

Hos VGA-classifier VGACD-classifier Score for GA-classifier
Hvga | Score(%) | Hvgacp | Score (%) | when H = Hpaa(%)
6 6 71.19 3 77.09 71.99
10 6 73.66 4 78.49 69.21

that with ten hyperplanes the VGA-classifier has more flexibility of placing a
smaller number of hyperplanes appropriately than in the case when H,,,, = 6.
Therefore on termination of the algorithm after a fixed number of generations,
the former is able to better approximate the decision boundary than the lat-
ter. However it may be noted that the recognition scores of the VGA-classifier
would have improved further if more iteration of the classifier are executed.
The superior results for the VGACD-classifier demonstrates that incorporation
of the concept of chromosome differentiation increases the rate of convergence
of the algorithm, thereby providing betters results earlier.

Regarding the time taken for training of the classifiers, the variable length
genetic classifiers are found to take longer than the GA-classifier. As is men-
tioned earlier, this is because the search space is larger for the former (where

Genetic algorithms, pattern classification and neural networks design 363

the number of hyperplanes varies in the range [1,H,,4.]) than for GA-classifier
(where the number of hyperplanes is fixed).

For the purpose of comparing the performance of the genetic classifiers, we
have used Bayes maximum likelihood classifier (which is well known for discrim-
inating overlapping classes), and k-NN classifier and the multilayer perceptron
(both of which are well known for discriminating non-overlapping, non-linear
regions by generating piecewise linear boundaries). Recognition scores on the
90% test data when the remaining 10% of the data set was used for training
were 77.73%, 70.35% and 68.48% for Bayes maximum likelihood classifier (with
assumption of normal distribution, and estimation of the covariance matrices
and a priori probabilities from the training data set), k-NN rule (for k=y/n)
and MLP (with two hidden layers and twenty hidden nodes per layer) respec-
tively. As can be found from comparison with the results in Table 13,2, the
performance of Bayes maximum likelihood classifier and the VGACD-classifier
are comparable. Note that earlier findings [59] indicated that Bayes maximum
likelihood classifier performs very well for this data. This is followed by the score
of the VGA-classifier for Hypar = 10. MLP is found to perform the poorest
for this data, Detailed results considering other parameters are provided in [5,
55).

13.3.5.2 Pixel classification of SPOT image

In this section, the utility of the genetic classifiers for classification of pixels
for partitioning different landcover regions in satellite images is investigated.
Satellite images usually have a large number of classes with overlapping and
non-linear class boundaries, Fig. 135 shows, as a typical example, the com-
plexity in scatter plot of 932 points belonging to seven classes which are taken
from the SPOT image of a part of the city of Calcutta. Therefore, for appro-
priate modeling of such non-linear and overlapping class boundaries, the utility
of an efficient search technique like GAs is evident. Moreover, it is desirable
that the search technique does not need to assume any particular distribution
of the data set and/or class a priori probabilities.

The SPOT image considered in this experiment has three bands. These
are;
Band 1 - green band of wavelength 0.50 - 0.59 pxm,
Band 2 - red band of wavelength 0.61 - 0.68 um, and
Band 3 - near infra red band of wavelength 0.79 - 0.89 um.
The training set comprises 932 points belonging to seven classes, with three

364 5. Bandyopadhyay, C. A. Murthy and S. K. Pal

Band 2 Band 3

Fig. 13.5 Scatter plot for the training points in Calcutia image

features corresponding to the above mentioned bands. The seven classes are
turbid water (TW), pond water (PW), concrete (Concr.), vegetation (Veg),
habitation (Hab), open space (OS) and roads (including bridges) (B/R). Some
important landcovers of Calcutta can be identified, from a knowledge about
the area, more easily in Band 3 of the image (Fig. 13.6 shows the image with
75% stretching to make it more prominent). These are the following: The
prominent black stretch across the figure is the river Hooghly. Portions of a
bridge (referred to as the second bridge), which was under construction when
the picture was taken, protrude into the Hooghly near its bend around the
center of the image. There are two distinct black, elongated patches below the
river, on the left side of the image. These are water bodies, the one to the left
being Garden Reach lake and the one to the right being Khidirpore dockyard.

Just to the right of these water bodies, there is a very thin line, starting from
the right bank of the river, and going to the bottom edge of the picture. This
is a canal called the Talis nala. Above the Talis nala, on the right side of the
picture, there is a triangular patch, the race course. On the top, right hand
side of the image, there is a thin line, stretching from the top edge, and ending
on the middle, left edge. This is the Beleghata canal with a road by its side.
There are several roads on the right side of the image, near the middle and top
portions. These are not very obvious from the images. A bridge cuts the river
near the top of the image. This is called the Rabindra Setu.

Fig. 13.6 Band 3 of the Calcutta image with 76% stretching

366 S. Bandyopadhyay, C. A, Murthy and S. K. Pal

Issue of Large Value of H: In view of the complexity of the data sets, high
values of H like 15 and 20 for the GA based classifiers were considered. Since
the maximum number of regions provided by H hyperplanes is equal to 2, the
aforesaid high values of H make the number of regions (= 29) also very large.
This leads to a practical limitation of the method. However, an important
point that needs to be taken into consideration is that the possible number of
regions can never be larger than the number of points n in the training data
set. Also, n << 2 for large H. Thus we need to consider at most n regions
while tackling this problem. In fact, the number of regions for this problem
was found to be considerably less than n as well.

Results: Figs. 13.7(a)-(f) provide, as an illustration, the results obtained by
the VGACD-classifier, VGA-classifier, Bayes maximum likelihood classifier, and
k-NN rule (for k=1, 3, and y/n), for partitioning the 512 x 512 image, by
zooming a characteristic portion of the image containing the race course (a
triangular structure). Here 80% of the design set is used for training.

As seen from the figures, although all the classifiers (with the exception
of k=1 for k-NN rule) are able to identify the race course, only the VGACD-
classifier and the VGA-classifier are able to identify a triangular lighter outline
(which is an open space, corresponding to the tracks) within the race course
properly. The performance of k-NN rule is found to gradually improve with
the value of k, being the best for k=y/n. On inspection of the full classified
images it was found that the Bayes maximum likelihood classifier tends to
over estimate the roads in the image. On the other hand, the VGA-classifier
tends to confuse between the classes bridges and roads (B/R) and pond water
(PW). It was revealed on investigation that a large amount of overlap exists
between the classes Concr and B/R on one hand (in fact, the latter class has
been extracted from the former), and PW and B/R on the other hand. These
problems were not evident for the case of the VGACD-classifier.

13.4 Determination of MLP architecture

This section describes a scheme for the determination of the architecture as well
as the connection weights of an MLP based on the results of the VGA-classifier.
An MLP with hard limiting neurons is described first followed by establishing the
analogy between its classification principles and those of the genetic classifier.
Subsequently, the architecture determination method is presented followed by
presentation of the experimental results.

Genetic algorithms, pattern classification and neural networks design 367

Fig. 13.7 Classified SPOT image of Calcutta (zooming the race course, represented
by ‘R’ on the first figure, only) using (2) VGACD-classifier, Hpox =15, final value
of H=13, (b} VGA-classifier, Hynax =15, final value of H=10, (c) Bayes maximum
likelihood classifier. (d) k-NN rule, k = 1, (e) k-NN rule, k = 3, (f) k-NN rule, k = /n.
Training set = 80% of design set

368 S. Bandyopadhyay, C. A. Murthy and S. K. Pal

In this context it must be mentioned that there are several approaches for
determining the MLP architecture and connection weights (13, 44, 53]. In [53],
the connection weights for a given MLP architecture are determined using GAs,
where the weights are encoded in the chromosomes. The weighted error is
taken as the fitness of a string. This method, therefore, totally eliminates the
necessity of using back propagation (BP) algorithm for training. In [44], parallel
genetic algorithm is used for evolving the topology and weights of feedforward
artificial neural networks. Here both the connectivity and the weights are
encoded in the chromosomes. Additionally, the granularity i.e., the number
of bits used for encoding the weights is also encoded as a parameter of the
problem. This method, thus, utilizes variable string lengths for topology and
weight determination. Another method based on the construction of Voronoi
diagrams over the set of training patterns is described in [13], where the number
of layers, number of neurons in each layer and the connection weights are
automatically determined. Pruning a network of a large size is another approach
towards determination of proper network architecture. A detailed survey can
be found in [65].

13.4.1 Multilayer perceptrons

A Multilayer Perceptron (MLP) consists of several layers of simple neurons with
full connectivity existing between neurons of adjacent layers. The neurons in
the input layer serve the purpose of fanning out the input values to the neurons
of layer 1. Let w;? represent the connections weight on the link from the ith

neuron in layer [—1 to the jth neuron in layer [. Let 9'(1-:) represent the threshold

(0

of the jth neuron in layer . The total input, z;

in layer [is given by

, received by the jth neuron

20 = 340 o 4 0, (13.2)
where y}“” is the output of the ith neuron in layer { — 1. For the input layer
32 = z;, (13.3)

where x; is the ith component of the input vector. For the other layers

v = 7(=), (13.4)

Genetic algorithms, pattern classification and neural networks design 369

Several functional forms like threshold logic, hard limiter and sigmoid, can be
used for f(-).

There are several algorithms for training the network in order to learn the
connection weights and the thresholds from a given training data set. Back-
propagation (BP) is one such learning algorithm, where the least mean square
error of the network output is computed, and this is propagated in a top down
manner (i.e., from the output side) in order to update the weights. The error
is computed as the difference between the actual and the desired output when
a known input pattern is presented to the network. A gradient descent method
along the error surface is used in BP.

13.4.2 Analogy between multilayer perceptron and VGA-classifier

It is known in the literature [43] that Multilayered Perceptron (MLP) with
hard limiting nonlinearities approximates the decision boundaries by piecewise
linear surfaces. The parameters of these surfaces are encoded in the connection
weights and threshold biases of the network. Similarly, the VGA-classifier also
generates decision boundaries by appropriately fitting a number of hyperplanes
in the feature space. The parameters are encoded in the chromosomes. Thus
a clear analogy exists between these two models.

Both the methods start from an initial randomly generated state (the set
of initial random weights in MLP). Both of them iterate over a number of
generations while attempting to decrease the classification error in the process.

The obvious advantage of the GA based method over that of the MLP
is that the former performs concurrent search for a number of sets of hyper-
planes, each representing a different classification in the feature space. On
the other hand, the MLP deals with only one such set. Thus it has a greater
chance of getting stuck at a local optimum, which the genetic classifier can
overcome. Moreover, the VGA-classifier does not assume any fixed value of the
number of hyperplanes, while MLP assumes a fixed number of hidden nodes
and layers. This results in the problem of over fitting with an associated loss
of generalization capability for MLP. In this context one must note that since
the VGA-classifier has to be terminated after finitely many iterations, and the
size of the data set is also finite, it may not always end up with the optimal
number of hyperplanes. Consequently, the problem of overfitting exists for
ViGA-classifier also, although it is comparatively reduced.

370 S. Bandyopadhyey, C. A. Murthy and S. K. Pal

13.4.3 Deriving the MLP architecture

In this section we describe how the principle of fitting a number of hyperplanes
using GA, for approximating the class boundaries, can be exploited in deter-
mining the appropriate architecture of MLP. Since our aim is to model the
equation of hyperplanes, we use the hard limiting function in the neurons of
the MLP, defined as

_[H+lifx>0
f(I)_{—l if v <0,
13.4.3.1 Terminology

Let us assume that the VGA-classifier provides Hy 4 hyperplanes, designated

by

{Hyplr Hyp2s T sHypHVGA}s
r regions, designated by

{RI:R% :Rr}’:

and k classes, designated by

{01302}- . -,Ck}-

Note that more than one region may be labeled with a particular class, indi-
cating that r > k.

Let R! be the region representing class C), and let it be a union of
regions given by

R'=Rj;UR; U...R; | 1S g3y de, S5

Generalizing the above, let R (i =1,2,...,k) be the region representing class
C;, and let it be a union of r; regions given by

R1=Rj=UR3;U”.URJ:‘, 1Sj§,j;,.-.1ji‘.<r-

Genetic algorithms, pattern classification and neural networks design 37

Note that each R* is disjoint, i.e.,

RNRIi=¢ i#j i,j=12...,k.

13.4.3.2 Network construction algorithm

The network construction algorithm (NCA) is a four step process where the
number of neurons, their connection weights and the threshold values are de-
termined. It guarantees that the total number of hidden layers (excluding the
input and output layers) will be at most two. {In this context, Kolmogorov's
Mapping Neural Network Existence Theorem must be mentioned, The theo-
rem states that any continuous function can be implemented exactly by a three
layer, including input and output |ayers, feedforward neural network. The proof
can be found in [29]. However, nothing has been stated about the selection of
connection weights and the neuronal functions.)

The output of the VGA-classifier is the parameters of the Hyega hyper-
planes, These are obtained as follows :

a}! Q‘%,---, a}V—l’ d!
a? ai,..., a%_q, d&°
a{'lvam’ aéfvaa" - aﬁch.a, dHvaa

Step 1: Allocate N neurons in the input layer, /ayer 0, where N is the
dimensionality of the input vector. The neurons in this layer simply transmit
the value in the input links to all the output links.

Step 2: Allocate Hyga neurons in fayer 1. Each neuron is connected to the N
neurons of fayer 0. Let the equation of the ith hyperplane (i = 1,2,..., Hvea)
be

iz +chra+ ...+ ey ~d =0,

372 5. Bandyopadhyay, C. A, Murthy and 8. K. Pal

where from (13.1) we may write

i el
C‘IV = CO0S§ Ct_{v_l)

Cn_y = cosa“;V_QSina‘jv_l

i R R F
Cly_q = cosy_gsinajy_,sinajy

i — ik gl i % 1

(&1 = Cosaqpsinay ...58May 4
— 5l i i i
= slIl ﬂ‘!l e8I CI'N_I

since ay = 0.
Then the corresponding weights on the links to the ith neuron in layer 1
from those in /ayer 0 are

and

0} = —d',

since the bias term is added to the weighted sum of the inputs to the neurons.
Step 3: Allocate r neurons in layer 2 corresponding to the regions. If the
ith region R, (i = 1,2,...,r) lies on the positive side of the jth hyperplane
Hyp; (j =1,2,...,Hyga), then

Otherwise

and

67 = —(Hyea — 0.5).

Note that the neurons in this layer effectively serve the AND function, such that
the output is high (41) if and only if all the inputs are high (+1). Otherwise,
the output is low (-1).

Genetic algorithms, pattern classification and neural networks design 373

Step 4: Allocate k neurons in /ayer 3 (output layer), corresponding to the &
classes. The task of these neurons is to combine all the distinct regions that
actually correspond to a single class. Let the ith class (i = 1,2,...,k) be a
combination of r; regions. That is,

R{———R}-i URJ-E U...UR.: .
1 2 L'}
Then the ith neuron of layer 3, (1 = 1,2,...,k), is connected to neurons
3t 3% ... g% of layer 2 and,
wh=1 je{ - dn}

whereas

wli =0 §¢{i.da.. 95}

and

93 =r; — 0.5.
Note that the neurons in this layer effectively serve the OR function, such that
the output is high (+1) if at least one of the inputs is high (+1). Otherwise,
the output is low (-1). For any given point, at most one output neuron,
corresponding to its class, will be high. Also, none of the output neurons will
be high if an unknown pattern, lying in a region with unknown classification
(.e., there were no training points in the region), becomes an input to the
network.

13.4.3.3 Post-processing step

The network obtained from the application of NCA may be further optimized
in terms of the links and neurons in the output layer. A neuron in layer 3 that
has an input connection from only one neuron in /ayer 2 may be eliminated
completely. Mathematically, let for some i, 1 <i < k,

w;f‘j =1if5=74
=0 otherwise,

374 S. Bandyopadhyay, C. A. Murthy and S. K. Pal

then neuron ¢ of layer 3 is eliminated and is replaced by neuron j of Jayer 2. Its
output then becomes the output of the network. Note that this step produces
a network where a neuron in layer i is connected to a neuron in layer i + 2.

In the extreme case, when all the neurons in the output layer (layer 3) get
their inputs from exactly one neuron in layer 2, the output layer can be totally
eliminated, and layer 2 becomes the output layer. This reduces the number of
layers from three to two. This will be the case when » = k, i.e., a class is
associated with exactly one region formed by the Hy ¢4 hyperplanes.

13.4.4 Implementation

The effectiveness of the network construction algorithm (NCA) has been demon-
strated on a number of real life and artificial data sets [8]. Here we provide
the results corresponding to the Vowe! data only. The parameters for the
VGA-classifier are kept the same as mentioned earlier. The recognition scores
provided here are the average values obtained over five different runs of the
algorithm. H,,,. is set to 10, so a = 0.1.

The MLP is executed using both hard limiters and the sigmoid function in
the neurons. The sigmoid function is defined as

1

) ==

The learning rate and momentum factor are fixed at 0.8 and 0.2 respectively.
Online weight updating, i.e., updating after each training data input, is per-
formed for a maximum of 3000 iterations.

The performance of VGA-classifier and consequently that of the MLP de-
rived using NCA (i.e., where the architecture and the connection weights have
been determined using NCA) is compared with that of a conventional MLP
having the same architecture as provided by NCA, but trained using the back
propagation (BP) algorithm with the neurons executing the sigmoid function.
For the purpose of comparison, we have also considered here three more typ-
ical architectures for the conventional MLP having two hidden layers with 5,
10 and 20 nodes in each layer respectively. Table 13.3 summarizes the results
obtained. The MLP architecture is denoted by Arch, in the tables.

The number of hyperplanes (Hy ¢ 4) and regions () obtained by the VGA-
classifier starting from H,,o. = 10 are 6 and 7 respectively. These are used to
select the MLP architectures as shown in columns 8-9 and 10-11. Note that
the recognition scores mentioned in columns 10 and 11 for MLP (derived using

Genetic algorithms, pattern classification and neural networks design 375

NCA) are the same as those obtained for the corresponding VGA-classifier.
From the table it is found that the MLP derived using NCA provides a superior
performance than the MLPs trained with BP. The overall recognition score
during testing for Vowel is found to increase with the increase in the number
of nodes in the hidden layers (columns 5, 7 and 9) since the classes are highly
overlapping.

Note that the Arch. values of the MLPs mentioned in columns 8-9 and
10-11 of the tables are the ones obtained without the application of the post-
processing step. These values are put in order to clearly represent the mapping
from VGA-classifier to MLP, in terms of the number of hyperplanes and regions,
although the post-processing task could have reduced the size of the network
while keeping the performance unchanged. In this case the architecture became
3:6:2:6 after post-processing.

13.5 Discussion and conclusions

This article dealt with the development of several pattern classifiers, along
with their theoretical and practical aspects, using both conventional genetic
algorithms and some of their modifications/enhancements. The search and
optimization capability of genetic algorithms has been exploited for the place-
ment of an appropriate number of surfaces in the feature space, such that the
associated number of misclassified points is minimized. The classifiers store
the parameters of the surfaces constituting the final decision boundary, and
the region-class associations. These are later used for determining the region
and hence the class of an unknown pattern. Various versions of the genetic
classifier e.g., GA-classifier using fixed number of surfaces, VGA-classifier us-
ing variable number of surfaces, GACD-classiffer incorporating the concept of
chromosome differentiation, have been formulated. Some theoretical results
have been provided.

The effectiveness of these genetic classifiers and their comparison with
Bayes maximum likelihood classifier (which is well known for discriminating
overlapping classes), k-NN rule and MLP (both of which are well known for dis-
criminating non-overlapping, non-convex regions by generating piecewise linear
boundaries) are demonstrated on a speech data Vowel. The way of incorpo-
rating the concept of variable string length in VGA-classifier is also compared
with that of Srikanth et al. [77] in a part of the experiment. Besides these,
the problem of pixel classification from satellite images for partitioning various

Table 13.3 Classwise and overall recognition scores (%) for Vowel

Class MLP
SIGMQID Hard Limiter
Arch.=3:5:5:6 | Arch.=3:10:10:6 | Arch.=3:20:20:6 | Arch.=3:6:7:6 | Arch.=3:6:7:6
Train | Test | Train | Test Train | Test Train | Test | Train | Test
85.71 12.30 | 87.51 47.69 100.00 | 47.23 85.71 6.15 10.30 8.21
a 75.00 | 43.20 | 100.00 | 16.04 100.00 | 27.62 87.50 | 13.58 } 100.00 | 91.35
1 100.00 | 69.67 | 100.00 | 79.35 100.00 | 80.58 100.00 | 78.70 | 94.11 | 84.51
u 86.67 80.14 | 100.00 | 77.94 100.00 | 83.29 100.00 | 81.91 | 73.33 66.91
e 80.00 | 68.44 | 94.98 | 90.37 100.00 | 87.30 80,00 | 59.35 | 89.99 | 85.56
o 88.89 77.16 | 94.44 54.93 94.44 51.70 T7.78 43.21 | 83.33 75.92
Overall | 87.05 | 65.26 | 95.82 | 67.55 08.82 | 68.48 @8.23 56.36 | 80.00 | 73.66

92¢

o4 3 5 pun fyampy v o ‘Aofiypodofipung g

Genetic algorithms, pattern classification and neural networks design 377

landcover types with ill-defined boundaries is considered as another real life
application.

As an interesting real-life application of the VGA-classifier, as attempt to
determine the architecture of MLP (with hard limiting neurons) automatically
has been described. The superiority of the MLP derived by this method vis-a-vis
a few randomly selected ones is demonstrated experimentally, An important
area of further research in this direction would be to utilize the genetically
derived MLP as the initial architecture, and then attempt to refine it further
using methods similar to cascade correlation algorithm. Moreover, the said
analogy will augment the application domain of the VGA-classifier to those
areas where MLP has widespread use.

In this article, binary representation of chromosomes in linear form has been
used, primarily because it is well studied in the literature, and it maximizes
the number of schemata sampled by each member of the population; thereby
making the implicit parallelism of GAs to be used to the fullest. However,
in many practical situations, this may not be a natural choice. Thus, other
kinds of representation, like floating point, tree, matrix representation [33,
47] may be studied.

A modification of the fitness function by incorporating the information on
relative position of the boundary from the training data may constitute an-
other part of further investigation. The classification methodology presented
here considers only the total number of misclassified points as the optimizing
criterion. It does not take the classwise recognition scores into account. This
may sometimes lead to an undesirable situation where the overall recognition
score is high, but some classes are totally ignored. In order to tackle this, an
investigation may be undertaken where the classwise weighted scores constitute
the fitness criterion of the chromosomes. The weighting factor may take some
a priori class information, like the class probabilities, into account.

In GACD, the chromosomes have been differentiated into two classes and
a form of restricted mating has been applied. As a part of future work, the
effect of differentiating the chromosomes into more than two categories may be
investigated. An investigation also needs to be performed for the selection of
appropriate kinds of surfaces (i.e., linear, higher order) for modeling the class
boundaries.

378 8. Bandyopadhyay, C. A. Murthy and S. K. Pal
References

[1] A.S. Abutaleb and M. Kamel, "A genetic algorithm for the estimation
of ridges in fingerprints," [EEE Trans. on Image Processing, vol. 8,
pp. 1134-1139, 1999.

[2] C. A. Ankenbrandt, B. P, Buckles, and F, E, Petry, “Scene recognition
using genetic algorithms with semantic nets,” Pattern Recog. Lett.,
vol. 11, pp. 285-293, 1990.

[3] J. D. Bagley, The Behaviour of Adaptive Systems which Employ Ge-
netic and Correlation Algorithms. PhD thesis, University of Michigan,
Ann Arbor, 1967.

[4) S. Bandyopadhyay, Pattern Classification Using Genetic Algorithms.
PhD thesis, Machine Intelligence Unit, Indian Statistical Institute, Cal-
cutta, India, 1998,

[5] S. Bandyopadhyay, C. A. Murthy, and S. K. Pal, “Pattern classification
using genetic algorithms: Determination of H," Pattern Recog. Lett.,
vol. 19, no. 13, pp. 1171-1181, 1998.

[6] S. Bandyopadhyay, C. A. Murthy, and S. K. Pal, “Theoretical per-
formance of genetic pattern classifier,” J. Franklin Institute, vol. 336,
pp. 387-422, 1999

[7] S. Bandyopadhyay, S. K. Pal, and U. Maulik, "“Incorporating chro-
mosome differentiation in genetic algorithms,” Inform. Sci., vol. 104,
no. 3/4, pp. 293-319, 1998.

[8] S. Bandyopadhyay and S. K. Pal, “Relation between VGA-classifier
and MLP: Determination of network architecture,” Fundamenta Infor-
maticae, vol. 37, pp. 177-196, 1999,

[9] D. Bhandari, C. A. Murthy, and S. K. Pal, "Genetic algorithm with
elitist model and its convergence,” Int. J. Pattern Recog. Art. Intell.,
vol. 10, pp. 731-747, 1996.

[10] D. Bhandari, N. R. Pal, and S. K. Pal, “Directed mutation in genetic
algorithms," Inform. Sci., vol. 79, pp. 251-270, 1994,

[11] L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems
and genetic algorithms," Art. Intell., vol. 40, pp. 235-282, 1989,

[12] S. Bornholdt and D. Graudenz, “General asymmetric neural networks
and structure design by genetic algorithms," Neural Networks, vol. 5,
pp. 327-334, 1992

[13] N. K. Bose and A. K. Garga, “Neural network design using voronoi
diagrams," IEEE Trans. Neural Networks, vol. 4, pp. 778-787, 1993,

Genetic algorithms, pattern classification and neural networks design 379

[14] B. P. Buckles and F. E. Petry, eds., Genetic Algorithms. Los Alamitos:
IEEE Computer Society Press, 1994.

[15] T. Cleghorn, P. Baffes, and L. Wang, “Robot path planning using a
genetic algorithm," in Proc. SOAR, (Houston), pp. 81-87, 1988.

[16] F. A. Cleveland and S. F. Smith, “Using genetic algorithms to schedule
flow shop releases," in Proc. 3rd Int. Conf. Genetic Algorithms (J. D.
Schaffer, ed.), pp. 160-169, San Mateo: Morgan Kaufmann, 1989.

[17] L. Davis, “Job shop scheduling with genetic algorithms," in Proc. Ist
Int. Conf. Genetic Algorithms (J. J. Grefenstette, ed.), pp. 136-140,
Hillsdale: Lawrence Erlbaum Associates, 1985,

[18] L. Davis, ed., Handbook of Genetic Algorithms. New York: Van Nos-
trand Reinhold, 1991.

[19] S. De, A. Ghosh, and S. K. Pal, “Fitness evaluation in genetic algo-
rithms with ancestors' influence,” in Genetic Algorithms for Pattern
Recognition (S. K. Pal and P. P. Wang, eds.), pp. 1-23, Boca Raton:
CRC Press, 1996.

[20] L. J. Eshelman, ed., Proc. 6th Int. Conf. Genetic Algorithms. San
Mateo: Morgan Kaufmann, 1995.

[21] E.S. Gelsema, ed., Special Issue on Genetic Algorithms, Pattern Recog-
nition Letters, vol, 16, no. 8. Elsevier Sciences, Inc., 1995,

[22] A. Ghosh, S. Tsutsui, and H. Tanaka, “Genetic search with aging
of individuals," Int. J. Knowledge-based Intell. Eng. Syst., vol. 1,
pp. 86-103, 1997.

[23] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. New York: Addison-Wesley, 1989.

[24] D. E. Goldberg, K. Deb, and B. Korb, “Messy genetic algorithms: Mo-
tivation, analysis, and first results," Complex Systs., vol. 3, pp. 493~
530, 1989.

[25] J. J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht, “Genetic
algorithms for the traveling salesman problem,” in Proc. 1st Int. Conf.
Genetic Algorithms (J. J. Grefenstette, ed.), pp. 160-168, Hillsdale:
Lawrence Erlbaum Associates, 1985.

[26] J. J. Grefenstette, "Optimization of control parameters for genetic
algorithms,” /EEE Trans. Syst., Man, Cybern., vol. 16, pp. 122-128,
1986.

[27] S. A. Harp and T, Samad, "Genetic synthesis of neural network archi-
tecture,” in Handbook of Genetic Algorithms (L. Davis, ed.), pp. 202

380

S. Bandyopadhyay, C. A. Murthy and S. K. Pal

— 221, New York: Van Nostrand Reinhold, 1991.

[28] A. Haydar, M. Demirekler, and M. K. Yurtseven, “Feature selection
using genetic algorithm and its application to speaker verification,"
Electronics Letters, vol, 34, pp, 1457-1459, 1998.

[29] R. Hecht-Nielsen, “Kolmogorov's mapping neural network existence
theorem,” in Proc. Ist IEEE Int. Conf. Neural Networks, vol. 3, (San
Diego), pp. 11-14, 1987.

[30] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of
Neural Computation. New York: Addison-Wesley, 1991.

[31] A. Hill and C. J. Taylor, “Model-based image interpretation using ge-
netic algorithms,” Image and Vision Comput., vol. 10, pp. 295-300,
1992,

[32] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor: The University of Michigan Press, 1975.

[33] H. V. Hove and A. Verschoren, “Genetic algorithms and recognition
problems." in Genetic Algorithms for Pattern Recognition (S. K. Pal
and P. P. Wang, eds.), pp. 145-166, Boca Raton: CRC Press, 1996.

[34] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Acquisition
of fuzzy classification knowledge using genetic algorithms," in Proc.
3rd IEEE Int. Conf. Fuzzy Systs., (Orlando), pp. 1963-1968, 1994,

[35] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting
fuzzy if-then rules for classification problems using genetic algorithms,"
IEEE Trans, Fuzzy Systs., vol. 3, pp. 260-270, 1995,

[36] H. Ishibuchi, T. Murata, and H. Tanaka, “Construction of fuzzy classi-
fication systems with linguistic if-then rules using genetic algorithms,”
in Genetic Algorithms for Pattern Recognition (S. K. Pal and P. P.
Wang, eds.), pp. 227-251, Boca Raton: CRC Press, 1996.

[37] H. Ishibuchi, M. Nii, and T. Murata, “Linguistic rule extraction from
neural networks and genetic algorithm based rule selection,” in Proc.
IEEE Int. Conf. Neural Networks, (Houston), pp. 2390-2395, 1997.

[38] K. lzumi, K. Watanabe, T. Shimokawa, and K. Kiguchi, “Facial image
recognition system using an RBF neural network optimally constructed
by GA," in Proc. Sixth International Conference on Soft Computing,
IIZUKA,, pp. 119-124, 2000.

[39] C. J. Janikow, “A genetic algorithm method for optimizing the fuzzy
component of a fuzzy decision tree,”" in Genetic Algorithms for Pattern
Recognition (S. K. Pal and P. P. Wang, eds.), pp. 253-281, Boca
Raton: CRC Press, 1996.

Genetic algorithms, pattern classification and neural networks design 381

[40] P. Jog, J. Y. Suh, and D. V. Gucht, "The effects of population size,
heuristic crossover and local improvement on a genetic algorithm for
the traveling salesman problem,” in Proc. 3rd Int. Conf. Genetic
Algorithms (J. D. Schaffer, ed.), pp. 110-115, San Mateo: Morgan
Kaufmann, 1989,

[41] N. Koga, D. Tominaga, and M. Okamoto, “Fast numerical optimiza-
tion technique based on parallel genetic algorithm,” in Proc. Sixth In-
ternational Conference on Soft Computing, {ZUKA,, pp. 87-92, 2000,

[42] K. Krishna, Hybrid Evolutionary Algorithms for Supervised and Unsu-
pervised Learning. PhD thesis, Department of Electrical Engineering,
Indian Institute of Science, Bangalore, India, 1998.

[43] R. P. Lippmann, “An introduction to computing with neural nets,"
IEEE ASSP Magazine, vol. 4, no. 2, pp. 4-22, 1987,

[44] V. Maniezzo, “Genetic evolution of the topology and weight distri-
bution of neural networks,” [EEE Trans. Neural Networks, vol. 5,
pp. 39-53, 1994,

[45] U. Maulik and S. Bandyopadhyay, “Genetic algorithm based clustering
technique," Pattern Recog., vol. 33, pp. 1455-1465, 2000.

[46] Z. Michalewicz and C. Z. Janikow, “Genetic algorithms for numerical
optimization,” Statistics and Computing, vol. 1, pp. 75-91, 1991,

[47] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. New York: Springer-Verlag, 1992.

[48] D. J. Montana and L. Davis, “Training feedforward neural networks
using genetic algorithms," in Proc. 11th Int. Joint Conf. Art. Intell.
(N. S. Sridharan, ed.), pp. 762-767, San Mateo: Morgan Kaufmann,
1989,

[49] H. J. Muller, ed., Studies in Genetics - Selected Papers. Bloomington:
Indiana University Press, 1962.

[50] C. A. Murthy, D. Bhandari, and S. K. Pal, “Optimal stopping time
for genetic algorithms with elitist model," Fundamenta Informaticae,
vol. 35, pp. 4-22, 1998.

[51] C. A. Murthy and N. Chowdhury, “In search of optimal clusters using
genetic algorithms,”" Pattern Recog. Lett., vol. 17, pp. 825-832, 1996.

[52] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A study of permutation
crossover operators on the traveling salesman problem,” in Proc. 2nd
Int. Conf. Genetic Algorithms, pp. 224-230, Hillsdale; Lawrence
Erlbaum Associates, 1987,

382

S. Bandyopadhyay, C. A. Murthy and S. K. Pal

[53] S. K. Pal and D. Bhandari, “Selection of optimal set of weights in
a layered network using genetic algorithms," Inform. Sci., vol. 80,
pp. 213-234, 1904,

[54] S. K. Pal, D. Bhandari, and M. K. Kundu, “Genetic algorithms for
optimal image enhancement,” Pattern Recog. Lett., vol. 15, pp. 261~
271, 1994,

[55] S. K. Pal, S. Bandyopadhyay, and C. A. Murthy, "Genetic algorithms
for generation of class boundaries,” IEEE Trans. Syst., Man, Cybern.,
vol. 28, no. 6, pp. 816-828, 1998.

[66] S. K. Pal, S. De, and A. Ghosh, “Designing Hopfield type networks
using genetic algorithms and its comparison with simulated annealing,”
Int. J. Pattern Recog. Art. Intell., vol. 11, pp. 447-461, 1997,

[57] S. K. Pal, A. Ghosh, and M. K. Kundu, eds., Soft Computing for Image
Processing. Heidelberg: Physica Verlag, 1999.

[58] S. K. Pal, T.S. Dillon, and D. S. Yeung, eds., Soft Computing in Case
Based Reasoning. London: Springer, 2001.

[59] S. K. Pal and D. Dutta Majumder, “Fuzzy sets and decision making
approaches in vowel and speaker recognition," IEEE Trans. Syst., Man,
Cybern., vol, SMC-7, pp. 626-629, 1977.

[60] S. K. Pal and S. Mitra, Neuro-fuzzy Pattern Recognition: Methods in
Soft Computing. New York: John Wiley, 1999,

[61] S. K. Pal and P. P. Wang, eds., Genetic Algorithms for Pattern Recog-
nition. Boca Raton: CRC Press, 1996.

[62] M. Prakash and M. N. Murty, “A genetic approach for selection of
(near-) optimal subsets of principal components for discrimination,”
Pattern Recog. Lett., vol. 16, pp. 781-787, 1995.

[63] D. K. Pratihar, “"Optimal/near optimal gait generation of a six-legged
robot — A GA-fuzzy approach,” in Proc. Sixth International Conference
on Soft Computing, IZUKA,, pp. 93-98, 2000.

[64] Proc. Sixth International Conference on Soft Computing, IZUKA
2000, (Fukuoka, Japan), October, 2000.

[65] R. Reed, “Pruning algorithms — a survey," IEEE Trans. Neural Net-
works, vol. 4, pp. 740-747, 1993.

[66] F. C. Rhee and Y. J. Lee, “Unsupervised feature selection using a
fuzzy-genetic algorithm," in Proc. IEEE Intl. Conf. Fuzzy Systems,
111, 1999,

[67] S. G. Romaniuk, “Learning to learn with evolutionary growth percep-

Genetic algorithms, pattern classification and neural networks design 383

trons," in Genetic Algorithms for Pattern Recognition (S. K. Pal and
P. P. Wang, eds.), pp. 179-211, Boca Raton: CRC Press, 1996.

[68] D. E. Rumelhart, J. McClelland, and the PDP Research Group, Parallel
Distributed Processing: Explorations in the Microstructure of Cogni-
tion, vol. 1. Cambridge: MIT Press, 1986.

[69] D. E. Rumelhart, J. McClelland, and the PDP Research Group, Parallel
Distributed Processing, vol, 2, Cambridge: MIT Press, 1986,

[70] S. Saha and J. P. Christensen, "“Genetic design of sparse feedforward
neural networks,” Inform. Sci., vol. 79, pp. 191-200, 1994,

[71] J. D. Schaffer, R. A. Caruana, and L. J, Eshelman, “Using genetic
search to exploit the emergent behavior of neural networks,” Physica
D, vol. 42, pp. 244-248, 1990.

[72] G. Seetharaman, A. Narasimahan, and L. Stor, “Image segmentation
with genetic algorithms: A formulation and implementation,” in Proc.
SPIE Conf. Stochastics and Neural Methods in Signal Processing and
Computer Vision, vol. 1569, (San Diego), 1991.

[73] T. L. Seng, M. B. Khalid, and R. Yusof, “Tuning of a neuro-fuzzy
controller by a genetic algorithm," IEEE Trans. on Systs., Man and
Cyberns., Part B, vol. 29, pp. 226-236, 1999.

[74] S. C. Shin and S. B. Park, “GA-based predictive control for nonlinear
processes,” Electronics Letters, vol. 34, pp. 1980-1981, 1998.

[75] W. Siedlecki and J. Sklansky, “A note on genetic algorithms for large-
scale feature selection,” Pattern Recog. Lett., vol. 10, pp. 335-347,
1989.

[76] J. Silva, P. Simoni, and K. Bharadwaj, "A hierarchical approach to
multiple-point correspondences in stereo vision using a genetic algo-
rithm search," in Proc. Sixth International Conference on Soft Com-
puting, H1ZUKA,, pp. 125-132, 2000,

[77] R. Srikanth, R. George, N. Warsi, D. Prabhu, F. E. Petry, and B, P.
Buckles, “A variable-length genetic algorithm for clustering and clas-
sification,” Pattern Recog. Lett., vol. 16, pp. 789-800, 1995,

[78] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles. Read-
ing: Addison-Wesley, 1974,

[79] B. W. Wah, A. leumwananonthachai, and Y. Li, “Generalization of
heuristics learned in genetics-based learning," in Genetic Algorithms
for Pattern Recognition (S. K. Pal and P. P. Wang, eds.), pp. 87-126,
Boca Raton: CRC Press, 1996,

384 8. Bandyopadhyay, C. A. Murthy and S. K. Pal

[80] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and
neural networks: Optimizing connections and connectivity,” Paralle!
Computing, vol. 14, pp. 347-361, 1990.

Chapter 14

ROUGH SETS IN PATTERN
RECOGNITION

A. Skowron* and R. Swiniarski™

* Institute of Mathematics, Warsaw University
Banacha 2, 02-095 Warsaw, POLAND
e-mail: skowron@mimuw,edu.pl

+San Diego State University
Department of Mathematical and Computer Sciences
5500 Campanile Drive, San Diego, California 92182-7720, U.S.A.
e-mail: rswiniar@saturn.sdsu.edu

Abstract

We present applications of rough set methods for feature selec-
tion, feature extraction, discovery of patterns and their applications
for decomposition of large data tables as well as the relationship of
rough sets with association rules. Boolean reasoning is crucial for
all the discussed methods. We also discuss briefly potential appli-
cations of some extensions of the classical rough set approach.

14.1 Basic rough set approach

In recent years we have witnessed a rapid growth of interest in rough set
theory and its applications, worldwide. The theory has been followed by the
development of several software systems that implement rough set operations,
in particular for solving knowledge discovery and data mining tasks. Rough
sets are applied in domains such as, medicine, finance, telecommunication,

385

386 A. Skowron and R. Swiniarski

vibration analysis, conflict resolution, intelligent agents, pattern recognition,
control theory, signal analysis, process industry, and marketing.

We start by presenting the basic notions of classical rough set approach [41]
introduced to deal with imprecise or vague concepts.

14.1.1 Information systems

A data set can be represented by a table where each row represents, for instance,
an object, a case, or an event. Every column represents an attribute, or an
observation, or a property that can be measured for each object; it can also be
supplied by a human expert or user. This table is called an information system,
More formally, it is a pair 4 = (U, A) where U is a non-empty finite set of
objects called the universe and A is a non-empty finite set of attributes such
thata: U — V, for every a € A. The set V, is called the value set of a. By
Infp(z) = {(a,a(z)) : a € B} we denote the information signature of x with
respect to B, where BC A and z € U.

14.1.2 Decision systems

In many cases the target of the classification, that is, the family of concepts
to be approximated, is represented by an additional attribute called decision.
Information systems of this kind are called decision systems. A decision system
is any system of the form A = (U, A, d), where d & A is the decision attribute
and A is a set of conditional attributes or simply conditions.

Let A = (U, A,d) be given and let V4 = {v1,...,vg)}. Decision d
determines a partition {X1,...,X,(4)} of the universe U, where X; = {z €
U : d(z) =wv} for 1 <k <r(d). The set X, is called the i-th decision class
of A. By X4(u) we denote the decision class {z € U : d(z) = d(u)}, for any
uel.

One can generalize the above definition to a case of decision systems of
the form A = (U, A, D) where the sets D = {d,,...dy} of decision attributes
and A are assumed to be disjoint. Formally this system can be treated as the
decision system A = (U, A,dp) where dp(z) = (d1(z), ..., dk(z)) for z € U.

The decision tables can be identified with training samples known in ma-
chine learning and used to induce concept approximations in the process known
as supervised learning [29].

Rough set approach allows a precise definition of the notion of concept
approximation. It is based [43] on the indiscernibility relation between objects

Rough sets in pattern recognition 387

defining a partition (or covering) of the universe U of objects. The indiscerni-
bility of objects follows from the fact that they are perceived by means of values
of avallable attributes. Hence some objects having the same (or similar) values
of attributes are indiscernible.

14.1.3 Indiscernibility relation

Let A = (U, A) be an information system. Then, with any B C A, an equiva-
lence relation TN D 4(B) is associated as follows:

IND4(B) = {(z,2') € U? : Va € B a(z) = a(z')}.

IND4(B) (or, IND(B), for short) is called the B-indiscernibility relation,
and its classes are denoted by [z]g. By X/B we denote the partition of U
defined by the indiscernibility relation /N D(B).

Now we will discuss what sets of objects can be expressed (defined) by
formulae constructed by means of attributes and their values. The simplest
formulae, called descriptors, are of the form a = v where 2 € A and v € V.
One can consider generalized descriptors of the form a € S where S C V. The
descriptors can be combined into more complex formulae using propositional
connectives. The meaning ||¢||.4 in A of formula ¢ is defined inductively by

(1) if @ is of the form a = v then ||p||l4 = {z €U : a(z) =v};
(2) leAad'lla=llellanlle’lla lleVe'lla=llellaUllella I-ella=
U - el 4-

The above definition can be easily extended to generalized descriptors.

Any set of objects X C U definable in A by some formula ¢ (i.e., X=||¢|.4)
is referred to as a crisp (exact) set. Otherwise, the set is rough (inexact,
vague). Vague concepts may be approximated only by crisp concepts; these
approximations are defined now [43].

14.1.4 Lower and upper approximation of sets, boundary regions

Let A = (U, A) be an information system and let B C A and X C U. We can
approximate X using only the information contained in B by constructing the
B-lower and B-upper approximations of X, denoted BX and BX respectively,
where BX = {z: [z]p C X} and BX = {z: [z]p N X # 0}.

388 A, Skowron and H. Swindarski

The lower approximation corresponds to certain rules while the upper ap-
proximation to possible rules (rules with confidence greater than 0) for X.
The B-lower approximation of X is the set of all objects which can be with
certainty classified to X using attributes from B. The set U — BX is called
the B-outside region of X and consists of those objects which can be classi-
fied with certainty as not belonging to X, using attributes from B. The set
BNp(X) = BX — BX, called the B-boundary region of X, thus consists
of those objects that cannot be unambiguously classified into X on the ba-
sis of the attributes from B. A set is said to be rough (respectively crisp)
if the boundary region is non-empty (respectively empty), Consequently each
rough set has boundary-line cases, i.e., objects which cannot be classified with
certainty either as members of the set or of its complement. Obviously crisp
sets have no boundary-line elements at all. This means that boundary-line
cases cannot be properly classified by employing the available knowledge. The
size of the boundary region can be used as a measure of the quality of set
approximation (in U).

It can be easily seen that the lower and upper approximations of a set are,
respectively, the interior and the closure of the set in the topology generated
by the indiscernibility relation,

One can consider weaker indiscernibility relations defined by tolerance re-
lations defining coverings of the universe of objects by tolerance (similarity)
classes. An extension of rough set approach based on tolerance relations has
been used for pattern extraction and concept approximation (see, e.g., [32,
37, 65, 71}).

14.1.5 Quality measures of concept approximation and measures
of inclusion and closeness of concepts

We now present some examples of measures of quality approximation as well
as of inclusion and closeness (approximate equivalence). These notions are
instrumental in evaluating the strength of rules and closeness of concepts as
well as being applicable in determining plausible reasoning schemes [47, 54].
An important role is also played by entropy measures (see, e.g., [13]).

Let us consider first an example of a measure of the quality of approxima-
tion.

Accuracy of approrimation, A rough set X can be characterized numerically

Rough sets in pattern recognition 389
by the following coefficient

_ |1B(X)|
uB(X) = |B(X)|’

called the accuracy of approximation, where |X| denotes the cardinality of
X # @ and B is a set of attributes. Obviously, 0 < ag(X) < 1. Ifap(X) =1,
X is crisp with respect to B (X is ezact with respect to B), and otherwise, if
ag(X) <1, X is rough with respect to B (X is vague with respect to B).

Rough membership function. In classical set theory either an element belongs
to a set or it does not. The corresponding membership function is the charac-
teristic function of the set, i.e., the function takes values 1 and 0, respectively.
In the case of rough sets the notion of membership is different. The rough
membership function quantifies the degree of relative overlap between the set
X and the equivalence class to which z belongs. It is defined as follows:

|[z]s N X|
l[z]B]

The rough membership function can be interpreted as a frequency-based es-
timate of Pr(y € X | u), the conditional probability that object y belongs
to set X, given the information signature u = I'nfp(x) of object = with re-
spect to attributes B. The value u%(z) measures the degree of inclusion of
{yeU:Infp(z)=Infp(y)} in X.

pE(2): U —[0,1] and pR(z) =

Positive region and its measure. If Xy,..., X, () are decision classes of .4,
then the set BX; U... U BX, 4 is called the B-positive region of A and is
denoted by POSg(d). The number |[POSp(d)|/|U| measures a degree of in-
clusion of the partition defined by attributes from B into the partition defined
by the decision.

Dependencies in a degree. Another important issue in data analysis is discov-
ering dependencies among attributes. Intuitively, a set of attributes D depends
totally on a set of attributes C, denoted C' = D, if all values of attributes from
D are uniquely determined by values of attributes from C. In other words, D
depends totally on C, if there exists a functional dependency between values
of D and C. Dependency can be formally defined as follows.

Let D and C be subsets of A. We will say that D depends on C'in a degree

390 A. Skowron and R. Swiniarski

k (0 <k <1),denoted C = D, if

|POSc(D)|
k=~(C,D) = ———,
(0]
where POS¢(D) = POSc(dp).
Obviously,
_ ICX)|
NGD) = 3, S
XeU/D

If Kk =1 we say that D depends totally on C, and if £ < 1, we say that D
depends partially (to a degree k) on C. v(C, D) describes the closeness of the
partition U/D and its approximation with respect to conditions from C.

The coefficient k expresses the ratio of all elements of the universe which
can be properly classified to blocks of the partition U/D by employing at-
tributes C. It will be called the degree of the dependency.

Inclusion and closeness in a degree. Instead of classical exact set inclusion,
inclusion in a degree is often used in the process of deriving knowledge from
data. A well-known measure of inclusion of two non-empty sets X, Y C U is
|X NY|/|X| [2, 47); their closeness can be defined by

min (|X N Y|/|1X],|X nY|/|Y)).

14.2 Searching for knowledge

In this section, we discuss the problem of concept approximations. We point
out that it is also the main goal of strategies searching for knowledge. Next
we present selected methods based on rough sets and Boolean reasoning for
concept approximation,

14.2.1 Concept approximation

Searching for concept approximations is a basic task in pattern recognition or
machine learning. It is also crucial to knowledge discovery [14] and, in particu-
lar, to scientific discovery [24, 77]. For example, scientific discovery [77)] uses,
as a main source of power, relatively general knowledge, including knowledge to
search combinatorial spaces. Hence, it is important to discover efficient search-
ing strategies. This includes the processes of inducing the relevant features and

Rough sets in patlern recognition 391

functions over which these strategies are constructed as well as the structure
of searching strategy induced from such constructs. The goal of knowledge
discovery [24, 62] is to find knowledge that is novel, plausible and understand-
able, Certainly, these soft concepts should be induced up to a sufficient degree,
i.e., their approximations should be induced to specify the main constraints in
searching for knowledge. In this sense, concept approximation is the basic step
not only for machine learning or for pattern extraction but also for knowledge
discovery and scientific discovery. Certainly, in the latter cases the inducing
processes of concept approximations are much more complex and searching for
such approximations creates a challenge for researchers,

Qualitative process representation, qualitative reasoning, spatial reasoning,
perception and measurement instruments, collaboration and communication,
embodied agents are only some of the potential research directions mentioned
in [62] as important for scientific reasoning and discovery. The topics mentioned
above are very much in the scope of computing with words [78, 79] and granular
computing (see e.g., [54, 67]). A rough set extension called rough mereology
(see, e.g., [46, 50, 51]) has been proposed as a tool for approximate reasoning
to deal with such problems [56, 67]. Schemes of reasoning in rough mereology
approXimating soft patterns seem to be crucial for making progress in knowledge
discovery. In particular, this approach has been used to build a calculus on
information granules [54, 67] as a foundation for computing with words. Among
the issues related to knowledge discovery using the approach discussed there,
are generalized soft association rules, synthesis of interfaces between sources
exchanging concepts and using different languages, and problems in spatial
reasoning.

Let us now return to the discussion on inducing concept approximation
by using rough set approach. First we recall the definition of a generalized
approximation space, introduced in [65]. This definition helps to explain a
general approach offered by rough sets for concept approximations.

Definition 14.1 A parameterized approximation space is a system
ASys = (U, Iy,vs)
where
e U is a non-empty set of objects,

e [4 : U — P(U) is an uncertainty function and P (U) denotes the
power set of U,

392 A. Skowron and R. Swiniarski

e vg: P(U) x P(U)— [0,1] is a rough inclusion function,
o # and § are sets of parameters,

The uncertainty function defines for every object z, a set of objects, called
the neighborhood of z, consisting of objects indistinguishable with z or similar
to z. The parameters (from #) of the uncertainty function are used to search
for relevant neighborhoods with respect to the task to be solved, e.g., concept
description,

A constructive definition of the uncertainty function can be based on the
assumption that some metrics (distances) are given on attribute values. For
example, if for some attribute @ € A a metric 6, : Vo x Vo — [0,00) is
given, where V, is the set of all values of an attribute a then one can define
the following uncertainty function;

y € Il= (z) if and only if 6, (a(z),a(y)) < fa(a(z),a(y)),

where f, : V, x V, — [0,00) is a given threshold function.

A set X C U is definable in AS4 g if it is a union of some values of the
uncertainty function.

The rough inclusion function defines a degree of inclusion between two
subsets of U [50, 65]. The parameters (from $) of the rough inclusion function
are used to search for relevant inclusion degrees with respect to the task to be
solved, e.g., concept description.

For a parameterized approximation space ASy g = (U, Ig,vg) and any
subset X C U the lower and the upper approximations are defined by

LOW (A.S#'Q,X) = {:1' elU :03(1# (z),X)= 1},

UPP (ASy 4, X) ={z € U :vg(Ig(z),X) > 0}, respectively.

Any generalized approximation space consists of a family of approximation
spaces creating the search space for data models. Any approximation space
in this family is distinguished by some parameters. Searching strategies for
optimal (sub-optimal) parameters are basic rough set tools in searching for
data models and knowledge.

There are two main types of parameters. The first type is used to define
object sets called neighborhoods, while the second type measures the inclusion
or closeness of neighborhoods.

The basic assumption of the classical rough set approach, shared with other
approaches like machine learning, pattern recognition or statistics, is that ob-

Hough sets in paitern recognition 393

jects are perceived by means of some features, (e.g., formulae being the results
of measurement of the form attribute = value called descriptors). Hence, some
objects can be indiscernible (indistinguishable) or similar to each other. The
sets of indiscernible or similar objects expressible by some formulae are called
neighborhoods. In the simplest case, the family of all neighborhoods creates a
partition of the universe. In more general cases, it defines a covering. Formulae
defining the neighborhoods are basic building blocks from which the approx-
imate descriptions of other sets (decision classes or concepts) are induced.
Usually, like in machine learning, the specification of concepts is incomplete,
e.g., given by examples and counterexamples. Having incomplete specification
of concepts, one can induce only approximate description of concepts by means
of formulae defining the neighborhoods. Hence it follows that it will be useful
to have parameterized formulae (e.g., in the simplest case a > pAb < g where
a, b are attributes and p, g are parameters) so that by tuning their parameters
one can select formulae being relevant for inducing concept approximation. A
formula is relevant for concept description if it defines a large neighborhood
still included to a sufficient degree in approximated concept. In the simplest
case the formulae defining neighborhoods are conjunctions of descriptors. Pa-
rameters to be tuned can be of different types, like the number of conjunction
connectives in the formula, or the interval boundaries in case of discretization
of real-valued attributes. In more general cases, these formulae can express the
results of measurement or perception of observed objects and represent com-
plex information granules. Among such granules can be decision algorithms
labeled by feature value vectors (describing an actual situation in which algo-
rithm should be performed), clusters of such granules defined by their similarity,
or hierarchical structures of such granules (see, e.g., [67]). These complex gran-
ules become more and more important for qualitative reasoning, in particular
for spatial reasoning [55].

Assuming that a partition (covering) of objects has been fixed, the set
approximations are induced by tuning of parameters specifying the degree of
set inclusion,

In this way concept approximations are induced from data using rough set
approach.

14.2.2 Discernibility and Boolean reasoning

We have pointed out that rough set approach has been introduced by Pawlak [43]
to deal with vague or imprecise concepts. More generally, it is an approach

394 A. Skowron and R. Swiniarski

for deriving knowledge from data and for reasoning about knowledge derived
from data. Searching for knowledge is usually guided by some constraints [24].
A wide class of such constraints can be expressed using rough set setting or
its generalizations (like rough mereology [46], or granular computing [54]).
Knowledge derived from data by rough set approach consists of different con-
structs. Among them are basic for rough set approach constructs, called
reducts, different kinds of rules (like decision rules or association rules) de-
pendencies, patterns (templates) or classifiers. The reducts are of special im-
portance because all other constructs can be derived from different kinds of
reducts using rough set approach. Searching strategies for reducts are based
on Boolean (propositional) reasoning [5] because constraints (e.g., related to
discernibility of objects) are expressible by propositional formulae. Moreover,
using Boolean reasoning data models with the minimum description length [29,
58] can be induced because they correspond to some constructs of Boolean
functions called prime implicants (or their approximations). Searching for
knowledge can be performed in the language close to data or in a language with
more abstract concepts what is closely related to problems of feature selection
and feature extraction in Machine Learning or Pattern Recognition [29]. Let us
also mention that data models derived from data by using rough set approach
are controlled using statistical test procedures (for more details see, e.g., [12,
13]).

In this chapter, we present examples showing how the general scheme out-
lined above is used for deriving knowledge.

At this point, a brief discussion on Boolean reasoning is presented, as most
methods discussed later are based on generation of reducts using Boolean
reasoning.

14.2.3 Boolean reasoning

The combination of rough set approach with Boolean Reasoning [5] has created
a powerful methodology allowing to formulate and efficiently solve searching
problems for different kinds of reducts and their approximations.

The idea of Boolean reasoning is based on the construction, for a given
problem P, of a corresponding Boolean function fp with the following property:
the solutions for the problem P can be recovered from prime implicants of fp.
An implicant of a Boolean function f is any conjunction of literals (variables
or their negations) such that if the values of these literals are true under an
arbitrary valuation v of variables, then the value of the function f under v is

Rough sets in pattern recognition 395

also true. A prime implicant is a minimal implicant.

Searching strategies for data models under a given partition of objects
are based, using rough set approach, on discernibility and Boolean reasoning
(see, e.g., [32, 37, 50, 51, 66, 71, 72]). This process also covers the tuning
of parameters like thresholds that are used to extract relevant partition (or
covering), to measure the degree of inclusion (or closeness) of sets, or the
parameters measuring the quality of approximation.

It is necessary to deal with Boolean functions of large size to solve real-
life problems. However, a successful methodology based on the discernibility
of objects and Boolean reasoning has been developed for the computation of
many constructs important for applications, like reducts and their approxima-
tions, decision rules, association rules, discretization of real-valued attributes,
symbolic value grouping, searching for new features defined by oblique hy-
perplanes or higher-order surfaces, pattern extraction from data as well as
conflict resolution or negotiation. Reducts are also basic tools for the ex-
traction, from data, of functional dependencies or functional dependencies
in a degree (for references see the papers and bibliography in [39, 50, 51,
66)).

Most of the problems related to generation of the constructs mentioned
above are of high computational complexity (i.e., they are NP-complete or
NP-hard). This alsc shows that most of the problems related to, e.g., feature
selection, pattern extraction from data have intrinsically high computational
complexity. However, using methodology developed on the basis on discerni-
bility and Boolean reasoning, it was possible to discover efficient heuristics that
return suboptimal solutions to the problems,

The reported results of experiments on many data sets are very promis-
ing. They show a very high quality of solutions (expressed in terms of the
classification quality of unseen objects and the time needed for solution con-
struction) generated by the heuristics, in comparison with other methods re-
ported in literature. Moreover, for large data sets the decomposition meth-
ods based on patterns called templates have been developed (see, e.g., [36,
37]) as well as a method to deal with large relational databases (see, e.g., [33]).
The first one is based on the decomposition of large data into regular sub-
domains which are of size feasible for the methods developed. We will discuss
this method later. The second (see, e.g., [33]) has shown that Boolean reason-
ing methodology can be extended to large relational data bases. The main idea
is based on the observation that relevant Boolean variables, for a very large
formula (corresponding to analyzed relational data base), can be discovered

396 A. Skowron and R. Swinierski

by analyzing some statistical information. This statistical information can be
efficiently extracted from large data bases.

Another interesting statistical approach is based on different sampling strate-
gies. Samples are analyzed using the developed strategies, and stable constructs
for a sufficiently large number of samples are considered as relevant for the
whole table. This approach has been successfully used for generating different
kinds of so-called dynamic reducts (see, e.g., [4]). It has been used, for ex-
ample, for the generation of dynamic decision rules. Experiments on different
data sets have proved that these methods are promising for large data sets.

Our approach is strongly related to propositional reasoning [61] and fur-
ther advancement in propositional reasoning will result in more progress in the
development of the methods discussed. It is important to note that the method-
ology allows construction of heuristics having a very important approximation
property, which can be formulated as follows:

Expressions, (i.e., implicants) generated by heuristics close to prime implicants,
define approximate solutions for the problem [61].

In the sequel, we will discuss in greater detail different kinds of reducts and

their applications for deriving different forms of knowledge from data.

14.2.4 Reducts in information systems and decision systems

We start from reducts of information systems. Given an information sys-
tem A = (U, A), a reduct is a minimal set of attributes B C A such that
IND 4(B) = IND 4(A). In other words, a reduct is a minimal set of attributes
from A that preserves the original classification defined by the set A of at-
tributes. Finding a minimal reduct is NP-hard [63]; one can also show that for
any m there exists an information system with m attributes having an exponen-
tial number of reducts. There exist fortunately good heuristics that compute
sufficiently many reducts in an acceptable time.

Let A be an information system with n objects. The discernibility matrix
of A is a symmetric n x n matrix with entries c;; as given below. Each entry
consists of the set of attributes upon which objects ; and z; differ.

cij ={a € Ala(z;) # a(z;)} for 4, =1,.,n
A discernibility function f 4 for an information system .4 is a Boolean function

of m Boolean variables a3, ..., a}, (corresponding to the attributes ay,...,a,)
defined by

Rough sets in pattern recognition 397

falatyvan) = A{V el 11 <5 <i<n,cy #0},

where c¢}; = {a* | a € ¢;;}. In the sequel we will write a; instead of a}.

The discernibility function f4 describes constraints which should be sat-
isfied if one wishes to preserve discernibility between all pairs of discernible
objects from A, It requires retention of at least one attribute from each
non-empty entry of the discernibility matrix, i.e., corresponding to any pair
of discernible objects. One can show [63] that the sets of all minimal sets
of attributes preserving discernibility between objects, i.e., reducts correspond
to prime implicants of the discernibility function f4. The intersection of all
reducts is the so-called core.

In general, the decision is not constant on the indiscernibility classes. Let
A = (U,A,d) be a decision system. The generalized decision in A is the
function 84 : U — P(Vy) defined by

8a(z) = {i | 32" € U 2’ IND(A) z and d(z') = i}.

A decision system A is called consistent (deterministic), if |4(z)| = 1 for any
x € U, otherwise A is inconsistent (non-deterministic). Any set consisting
of all objects with the same generalized decision value is called the generalized
decision class.

It is easy to see that a decision system A is consistent if and only if
POS 4(d) = U. Moreover, if 8g = 85/, then POSp(d) = POSp/(d) for any
pair of non-empty sets B, B’ C A. Hence the definition of a decision-relative
reduct:

Definition 14.2 A subset B C A is a relative reduct if it is a minimal set
such that POS4(d) = POSg(d). =

Decision-relative reducts may be found from a discernibility matrix: M%(A4) =
(c&;) assuming c; = ei; — {d} if (|8a(z)| = 1 or |9a(z;)| = 1) and Ba(z:) #
dalzj) cfj = (), otherwise. The matrix M%(A) is called the decision-relative
discernibility matrix of A. Construction of the decision-relative discernibility
function from this matrix follows the construction of the discernibility func-
tion from the discernibility matrix. One can show [63] that the set of prime
implicants of fg,(A) defines the set of all decision—relative reducts of A.

In some applications, instead of reducts we prefer to use their approxi-
mations called a-reducts, where o € [0,1] is a real parameter. For a given

398 A. Skowron and R. Swiniarski

information system A = (U, A), the set of attributes B C A is called a-reduct
if B has nonempty intersection with at least 100a% of nonempty sets ¢; ; of
the discernibility matrix of A,

14.2.5 Reducts and Boolean reasoning: examples of applications

We will present examples showing how rough set methods, in combination with
Boolean reasoning, can be used for solving several KDD problems. A crucial
component of our approach are rough set constructs called reducts. They are
(prime) implicants of suitably chosen Boolean functions expressing discernibility
conditions which should be preserved during reduction,

14.2.6 Feature selection

Selection of relevant features is an important problem and has been extensively
studied in machine learning and pattern recognition (see, e.g., [29]). It is also
a very active research area in the rough set community.

One of the first ideas [43] was to consider the core of the reduct set of the
information system A as the source of relevant features. One can observe that
relevant feature sets (in a sense used by the machine learning community) can
be interpreted in most cases as the decision—relative reducts of decision systems
obtained by adding appropriately constructed decisions to a given information
system.

Another approach is related to dynamic reducts (for references see, e.g., [49]).
The attributes are considered relevant if they belong to dynamic reducts with
a sufficiently high stability coefficient, i.e., they appear with sufficiently high
frequency in random samples of a given information system. Several experi-
ments [49] show that the set of decision rules based on such attributes is much
smaller than the set of all decision rules. At the same time, the quality of
classification of new objects increases or does not change if one only considers
rules constructed over such relevant features.

The idea of attribute reduction can be generalized by introducing a concept
of significance of attributes which enables the evaluation of attributes not only
in the two-valued scale dispensable~indispensable but also in the multi-valued
case by assigning to an attribute a real number from the interval [0,1] that
expresses the importance of an attribute in the information table, Significance
of an attribute can be evaluated by measuring the effect of removal of the
attribute from an information table.

Rough sets in pattern recognition 399

Let C and D be sets of condition and decision attributes, respectively, and
let @ € C be a condition attribute, It was shown previously that the number
7(C, D) expresses the degree of dependency between attributes C and D, or
the accuracy of the approximation of U/D by C. It may be now checked how
the coefficient 4(C, D) changes when attribute a is removed. In other words,
what is the difference between v(C, D) and v((C — {a}, D)? The difference
is normalized and the significance of attribute a is defined by

(v(C,D) —~(C — {a}, D))

“eoe) = +(C, D)
=1- ‘T(C— {a}!D)
G, D)

Coefficient o¢, p(a) can be understood as a classification error which occurs
when attribute a is dropped. The significance coefficient can be extended to
sets of attributes as follows:

C,D) —~(C - B,D
oiom(®) = (AODL=7(C = B.D)

(¢ - B,D)
YC.D)

Another possibility is to consider as relevant the features that come from
approximate reducts of sufficiently high quality.

Any subset B of C can be treated as an approzimate reduct of C and the
number

=1

_ @D ~1(BD) _, B,D)
weoB) =@y ey

is called an error of reduct approzimation. It expresses how exactly the set
of attributes B approximates the set of condition attributes C with respect to
determining D.

Several other methods of reduct approximation based on measures differ-
ent from positive region have been developed. All experiments confirm the
hypothesis that by tuning the level of approximation the classification quality
of new objects may be increased in most cases. It is important to note that it
is once again possible to use Boolean reasoning to compute the different types
of reducts and to extract from them relevant approximations.

400 A, Skowron and R. Swiniarski

14.2.7 Feature extraction

Non-categorical attributes must be discretized in a preprocessing step. The
discretization step determines how coarsely we want to view the world. Dis-
cretization is a step that is not specific to the rough set approach. A majority
of rule or tree induction algorithms require it in order to perform well. The
search for appropriate cut-off points can be reduced to finding some minimal
Boolean expressions called prime implicants.

Discretization can be treated as a search for coarser partitions of the uni-
verse still relevant for inducing concept description of high quality, We will also
show that this basic problem can be reduced to the computation of basic con-
structs of rough sets, namely, reducts, of some systems. Hence it follows that
we can estimate the computational complexity of the discretization problems.
Moreover, heuristics for computing reducts and prime implicants can be used
here. The general heuristics can be modified to more optimal ones using know-
ledge about the problem, e.g., natural order of the set of reals. Discretization
is only an illustrative example of many other problems with the same property.

The rough set community has been committed to the construction of ef-
ficient algorithms for (new) feature extraction. Rough set methods combined
with Boolean reasoning [5] lead to several successful approaches to feature
extraction. The most successful methods are:

e discretization techniques,
o methods of partitioning of nominal attribute value sets, and
e combinations of the above methods.

Search for new features expressed by multi-modal formulae can be men-
tioned in this context. Structural objects can be interpreted as models (so-
called Kripke models) of such formulae and the problem of searching for relevant
features reduces to construction of multi-modal formulae expressing properties
of the structural objects, discerning objects or sets of objects [38]. For more
details, the reader is referred to the bibliography in [50].

The reported results show that discretization problems and symbolic value
partition problems are of high computational complexity (i.e., NP-complete or
NP-hard), which clearly justifies the importance of designing efficient heuristics.
The idea of discretization is illustrated with a simple example.

Example 14.2.1 Let us consider a (consistent) decision system (see Ta-
ble 14.1(a)) with two conditional attributes a and b and seven objects

Rough sets in pattern recognition 401

Table 14.1 The discretization process: (a) The original decision system A. (b) The
P-discretization of 4, where P = {(a,0.9), (a, 1.5), (5,0.75), (b, 1.5)}

Ala b d AP | aF | WP || d
u | 0.8 |2 1 w [0 |2 1
up | 1 05 (0 g 1 0 0
ug [1.3 |3 0 ug |1 2 0
we |14l 1|7 |w |2 |1 |1
ug | 1.4 | 2 0 Ug 1 2 0
ug | 1.6 | 3 1 ug | 2 |2 1
Uy 131 1 uy 1 1 1
(a) (b)

%1,..., 7. The values of the attributes of these objects and the values
of the decision d are presented in Table 14.1.
The sets of possible values of a and b are defined by:

Va=10,2); V5 =[0,4).
The sets of values of a and b for objects from U are respectively given by:
a(U) = {0.8,1,1.3,1.4,1.6} and
b(U) = {0.5,1,2,3}
8]

A discretization process produces a partition of the value sets of the con-
ditional attributes into intervals. The partition is done so that a consistent
decision system is obtained from a given consistent decision system by a sub-
stitution of the original value of any object in .A by the (unique) name of the
interval(s) in which it is contained. In this way, the size of the value sets of
the attributes may be reduced. If a given decision system is not consistent one
can transform it to the consistent decision system by taking the generalized
decision instead of the original one. Next, it is possible to apply the above
method. It will return cuts with the following property: regions bounded by
them consist of objects with the same generalized decision. Certainly, one can
consider also soft (impure) cuts and induce the relevant cuts on their basis
(see the bibliography in [49]).

402 A. Skowron and R. Swiniarski

Example 14.2.2 The following intervals are obtained in our example sys-
tem:

[0.8,1); [1,1.3); [1.3,1.4); [1.4,1.6) for a);

[0.5,1); (1,2); [2,3) for b).

The idea of cuts can be introduced now. Cuts are pairs (a,c) where ¢ €
V,. Our considerations are restricted to cuts defined by the middle points
of the above intervals. In our example the following cuts are obtained:

(a,0.9); (a,1.15); (a,1.35); (a,1.5);
(b,0.75); (b,1.5); (b,2.5).

Any cut defines a new conditional attribute with binary values. For
example, the attribute corresponding to the cut (a,1.2) is equal to 0 if
a(z) < 1.2; otherwise it is equal to 1. O

Any set P of cuts defines a new conditional attribute ap for any a. Given
a partition of the value set of a by cuts from P put the unique names for the
elements of this partition.

Example 14.2.3 Let
P = {(a,0.9), (a, 1.5}, (b,0.75), (b, 1.5)}

be the set of cuts. These cuts glue together the values of a smaller then 0.9,
all the values in interval [0.9,1.5) and all the values in interval [1.5,4). A
similar construction can be repeated for b. The values of the new attributes
ap and bp are shown in Table 14.1 (b). o

The next natural step is to construct a set of cuts with a minimal number
of elements. This may be done using Boolean reasoning.

Let A= (U, A,d) be a decision system where U = {z1,23,...,z.},A =
{a,...,ax} and d : U — {1,...,r}. We assume V, = [l,,r,) C R to
be a real interval for any ¢ € A and A to be a consistent decision system.
Any pair (a,c) where a € A and ¢ € R will be called a cut on V,. Let
P, = {[c§,cf), [c},c5),- .., [ck et 1)} be a partition of V, (for a € A) into
subintervals for some integer k4, where I, = cf < ¢f < ¢ < ... < ¢, <
ch 4y =Taand Vo= [cf,cf)Ulef,c8)U...Ulef, et 41)- It follows that any
partition P, is uniquely defined and is often identified with the set of cuts

{(G,C?), (at dzl)g ey (a, Ciu)} CAxR

Rough sets in pattern recognition 403

Given A = (U, A,d) any set of cuts P = |J,c 4 Pa defines a new decision
system AP = (U, AP, d) called P-discretization of A, where AP = {a¥ :a €
A} and oF (z) =i ¢ a(z) € [¢¢,¢¢,y) for z € U and i € {0, ...k, }.

Two sets of cuts P’ and P are equivalent, written P’=, P, if and only if
AP = AP'. The equivalence relation =4 has a finite number of equivalence
classes. Equivalent families of partitions will not be discerned in the sequel.

The set of cuts P is called A-consistent if 84 = 9,p, where 34 and 8,p
are generalized decisions of A and AF, respectively. An A-consistent set of
cuts P¥" is A-irreducible if P is not A-consistent for any P C P". The
A-consistent set of cuts P°P* is A-optimal if card (P°?*) < card (P) for any
A-consistent set of cuts P.

It can be shown that the decision problem of checking whether, for a given
decision system .4 and an integer k, there exists an irreducible set of cuts P in
A such that card (P) < k is N P-complete. The problem of searching for an
optimal set of cuts P in a given decision system A is N P-hard.

Despite these complexity bounds it is possible to devise efficient heuristics
that return semi-minimal sets of cuts. The simplest heuristic is based on John-
son's strategy. The strategy is first to look for a cut discerning a maximal
number of object pairs and then to eliminate all already discerned object pairs.
This procedure is repeated until all object pairs to be discerned are discerned.
It is interesting to note that this heuristics can be realized by computing the
minimal relative reduct of the corresponding decision system. The “MD heuris-
tic" is analogous to Johnson's approximation algorithm. It may be formulated
as follows:

ALGORITHM: MD-heuristics(A semi-optimal family of partitions)

Step 1. Construct table A* = (U*, A*) from A= (U, A,d) where U* is the
set of pairs (z,y) of objects to be discerned by d and A* consists of
attribute ¢* for any cut ¢ and c¢* is defined by ¢*(z,y) = 1 if and only
if ¢ discerns x and y (i.e., z,y are in different half-spaces defined by
c); set B= A*;

Step 2. Choose a column from B with the maximal number of occurrences of
1's;

Step 3. Delete from B the column chosen in Step 2 and all rows marked with
1 in this column;

Step 4. If B is non-empty then go to Step 2, else Stop.

This algorithm searches for a cut which discerns the largest number of pairs

404 A. Skowron and R. Swiniarski

of objects (MD-heuristic). Then the cut ¢ is moved from A” to the resulting
set of cuts P; and all pairs of objects discerned by c are removed from U*.
The algorithm continues until U* becomes empty.

Let n be the number of objects and let k be the number of attributes of
decision system 4. The following inequalities hold:

card(A*) < (n—-1)k

and

woonn=1)
card (U*) < —

It is easy to observe that for any cut ¢ € A*, O(n?) steps are required in order
to find the number of all pairs of objects discerned by c¢. A straightforward
realization of this algorithm therefore requires O(kn?) of memory space and
O(kn3) steps in order to determine one cut. This approach is clearly impracti-
cal, However, it is possible to observe that in the process of searching for the
set of pairs of objects discerned by currently analyzed cut from an increasing
sequence of cuts, one can use information about such set of pairs of objects
computed for the previously considered cut. The MD-heuristic using this obser-
vation [31] determines the best cut (for a given attribute) in O(kn) steps using
O(kn) space only. This heuristic is reported to be very efficient with respect
to the time necessary for decision rules generation as well as with respect to
the quality of unseen object classification.

Let us observe that in the considered case of discretization the new features
are of the form a € V, where V' C V,, and V, is the set of the values of attribute
@.

We report some results of experiments on data sets using this heuristic. We
would like to comment, for example, on the result of classification received by
application of this heuristic to Shuttle data (Table 14.3). The result concerning
classification quality is the same as the best result reported in [28] but the
time is of an order better than that of the best result from [28]. In the table,
we also present the results of experiments with heuristic searching for features
defined by oblique hyperplanes. This heuristic has been developed using genetic
algorithms to tune the position of a hyperplane to the optimal one [31]. In
this way one can implement propositional reasoning using some background
knowledge about the problem.

In our experiments we have chosen several data tables with real value at-
tributes from the U.C. Irvine repository. For some tables, taking into account

Rough sets in pattern recognition

Table 14.2 Data tables stored in the UC Irvine Repository

405

Names No. of | Train. | Test. | Best
class table | table | results
Australian 2 690x14 | CV5 | 85.65%
Glass 7 214x9 | CV5 | 69.62%
Heart 2 270x13 | CV5 | 82.59%
Iris 3 150x4 CV5 | 96.00%
Vehicle 4 846x19 | CV5 | 69.86%
Diabetes 2 768x8 | CV5 | 76.04%
SatImage 6 4436x36 | 2000 | 90.06%
Shuttle 6 43500x7 | 14500 | 99.99%

Table 14.3 Results of experiments on Machine Learning data

Data Diagonal cuts | Hyperplanes
tables #cuts | quality | #cuts | quality
Australian | 18 | 79.71% | 16 | 82.46%
Glass 14+1 | 67.89% | 12 | 70.06%
Heart 11+1 | 79.25% | 11x1 | 80.37%
Iris 72 | 92.70% | 6+2 | 96.7%
Vehicle 25 59.70% | 20£2 | 64.42%
Diabetes 20 74.24% 19 76.08%
SatImage 47 81.73% 43 | 82.90%
Shuttle 15 99.99% 15 99.99%

the small number of objects, we have adopted the approach based on five-fold
cross-validation (CV —5). The results obtained (Table 14.3) can be compared
with those reported in {11, 28] (Table 14.2). For predicting decisions on new
cases we apply only decision rules generated either by the decision tree (using
hyperplanes) or by rules generated in parallel with discretization.

For some tables the classification quality of our algorithm is better than
that of the C4.5 or naive-Bayes induction algorithms [57) even when used with
different discretization methods [7, 11, 28].

406 A. Skowron and R. Swiniarski

Comparing this method with the other methods reported in [28], we can
conclude that the algorithms discussed have the shortest run-time and a good
overall classification quality. (In many cases our results were the best in com-
parison to many other methods reported in literature).

We would like to stress that the induction of the minimal number of relevant
cuts is equivalent to the computation of the minimal reduct of decision system
constructed from the system A* discussed above [31]. This, in turn, as we
have shown, is equivalent to the problem of computation of minimal prime
implicants of Boolean functions. This is only an illustration of a wide class of
basic problems of machine learning, pattern recognition and KDD which can
be reduced to problems of relevant reduct computation.

Our next illustrative example concerns symbolic (nominal, qualitative) at-
tribute value grouping. We also present some experimental results of heuristics
based on the developed methods in case of mixed nominal and numeric at-
tributes.

In case of symbolic value attribute (i.e., without pre-assumed order on
values of given attributes) the problem of searching for new features of the
form a € V is, in a sense, from a practical point of view, more complicated
than that for real-valued attributes. However, it is possible to develop efficient
heuristics for this case using Boolean reasoning.

Let 4 = (U, A, d) be a decision table. Any function P, : V, — {1,...,m.}
(where m, < |V4|) is called a partition of V,. The rank of P,, is the value
rank (P,,) = |Pa, (Va,)|. The family of partitions {P,}acn is consistent
with B (B-consistent) if and only if the condition [(u,u') ¢ IND(B) and
d(u) # d(u') implies J,¢p such that [Py(a(u)) # Pa(a(u'))]] holds for any
(u,u') € U. It means that if two objects u,u’ are discerned by B and 4,
then they must be discerned by partition attributes defined by {F,},.5. We
consider the following optimization problem:

Symbolic value partition problem. Given a decision table A = (U, A, d)
and a set of attributes B C A, search for the minimal B-consistent family of
partitions, (i.e., such a B-consistent family {P.} . that

Z rank (P,)

ael

is minimal).
To discern between pairs of objects we will use new binary features a?’ (for
v # v') defined by a? (z,y) = 1 if and only if a(z) = v # v’ = a(y). One can

Rough sets in pattern recognition 407

apply the Johnson heuristic for the new matrix with these attributes to search
for minimal set of new attributes that discerns all pairs of objects from different
decision classes. After extraction of these sets, we construct for each attribute
a; a graph [y, = (V,, E,), where E,, is defined as the set of all new attributes
(propositional variables) found for the attribute a. Any vertex coloring of I’y
defines a partition of V. The colorability problem is solvable in polynomial
time for k = 2, but remains NP-complete for all k > 3. As for discretization,
one can apply some efficient heuristic searching for optimal partition.

Let us consider an example of decision table presented in Fig. 14.1 and
(a reduced form) of its discernibility matrix (Fig. 14.1). From the Boolean
function f4 with Boolean variables of the form ay?, one can find the shortest
prime implicant:

b b b b b
a2 Aa AaZl Aalt AbP AbE AbE AbE AbL

which can be represented by graphs (see Fig. 14.2).

A a b d

uy ay by 0

ug ai b 0

ug as by 0

Uq as by 0

us ay b 1 |=

ug | az | b2 1

uy as by 1

ug a4 b 1

ug as by 1

uo | az bs 1
M(A) | w1 ug U3 Ug
us bs} b2 ag}, byl | adl, by
us aal, b | a3l “by? 232, byt
ur ag! a3}, byt | byl a%2
us aa}, by} | adl agl, b2 | agl, by}
us ag}, by. | ag}, by? | aaz, b3 [by
U0 agi, byl | agl, b? [by ag?, by:

Fig. 14.1 The decision table and the discernibility matrix

We can color vertices of these graphs as shown in Fig. 14.2. The colors

408 A. Skowron and R. Swiniarski

z N a’™ [b [d
S W 2 1 [1 [0
e s)2 |2)0
4 1 2 1

2 |1 |1]

Fig. 14.2 Coloring of attribute value graphs and the reduced table

correspond to the partitions

Pa(a'i) =-pa("13)= 1;
Py (a2) = Pa(a4) = 2;
Py (b1) = Po(b2) = P (b5) = 1,
B, (bs) = Py (ba) = 2.

At the same time one can construct the new decision table (Fig. 14.2).

One can extend the presented approach (see e.g., [32]) to the case when
in a given decision system nominal as well as numeric attributes appear. The
received heuristics are of very good quality. Experiments for classification meth-
ods (see [32]) have been carried over decision systems using two techniques
called “train-and-test” and "n-fold-cross-validation"”. In Table 14.4, we present
some results of experiments obtained by testing the proposed methods — MD
(using only discretization based on MD-heuristic with Johnson approximation
strategy [31, 66]) and MD-G (using discretization and symbolic value group-
ing [37, 66]) — for classification quality on some data tables from the “UC Irvine
repository”. The results reported in [15] are summarized in columns fabeled by
S-ID3 and C4.5 in Table 14.4. Let us note that the heuristics MD and MD-G
are also very efficient with respect to time-complexity.

In the case of real-valued attributes, one can search for features in the
feature set that contains the characteristic functions of half-spaces determined
by hyperplanes or parts of spaces defined by more complex surfaces in the
multi-dimensional spaces. Genetic algorithms have been applied in searching for
semi-optimal hyperplanes [31]. The results reported show substantial increase
in the quality of classification of unseen objects but at the price of increased
time needed for searching for the semi-optimal hyperplane.

Rough sets in pattern recognition 409

Table 14.4 Quality comparison of various decision tree methods. Abbreviations; MD:
MD-heuristic; MD-G: MD-heuristic with symbolic value partition

Names of Classification accuracies

Tables S-ID3 | C4.5 | MD | MD-G
Australian | 78.26 | 85.36 | 83.69 | 84.49
Breast (L) | 62.07 | 71.00 | 69.95 | 69.95
Diabetes | 66.23 | 70.84 | 71.09 | 76.17
Glass 62.79 | 65.89 | 66,41 | 69.79
Heart 7778 | 77.04 | 77.04 | 81.11
Iris 96.67 | 94.67 | 95.33 | 96.67
Lympho | 73.33 | 77.01 | 71.93 | 82.02
Monk-1 81.25 | 75.70 | 100 93.05
Monk-2 69.91 | 65.00 | 99.07 | 99.07
Monk-3 90,28 | 97.20 | 93.51 | 94.00

Soybean 100 | 95.56 | 100 100
TicTacToe | 84.38 | 84.02 | 97.7 | 97.70

| Average | 78.58 | 79.94 | 85.48 | 87.00

14.2.8 Decision rules

Reducts serve the purpose of inducing minimal decision rules. Any such rule
contains the minimal number of descriptors in the conditional part so that their
conjunction defines the largest subset of a generalized decision class (decision
class, if the decision table is deterministic). Hence, information included in the
conditional part of any minimal rule is sufficient for prediction of the general-
ized decision value for all objects satisfying this part. The conditional parts of
minimal rules define largest object sets relevant for generalized decision class
approximation. It turns out that the conditional parts of minimal rules can
be computed (by using Boolean reasoning) as reducts relative to objects or
local reducts (see e.g., [4, 64]). Once the reducts have been computed, the
conditional parts of rules are easily constructed by laying the reducts over the
original decision system and reading off the values. In the discussed case the
generalized decision value is preserved during the reduction. One can consider
stronger constraints which should be preserved. For example, in [69] the con-

410 A. Skowron and R. Swiniarski

straints are described by probability distributions corresponding to information
signatures of objects. Again the same methodology can be used to compute
the reducts corresponding to these constraints.

The main challenge in inducing rules from decision systems lies in deter-
mining which attributes should be included in the conditional part of the rule.
Using the strategy outlined above, first the minimal rules are computed. Their
conditional parts describe largest object sets (definable by conjunctions of de-
scriptors) with the same generalized decision value in a given decision system.
Hence, they create the largest sets still relevant for defining the decision classes
(or sets of decision classes when the decision system is inconsistent). Although
such minimal decision rules can be computed, this approach can result in a
set of rules of unsatisfactory classification quality. Such detailed rules will be
overfit and they will classify unseen cases poorly. Shorter rules should rather be
synthesized, Although they will not be perfect on the known cases there is a
good chance that they will be of high quality when classifying new cases. They
can be constructed by computing approximations of the reducts mentioned
above. Approximations of reducts received by dropping some descriptors from
the conditional parts of minimal rules define larger sets, not purely included
in decision classes but included to a satisfactory degree. It means that these
shorter descriptions can be more relevant for decision class (concept) approxi-
mation than the exact reducts. Hence, e.g., one can expect that if, by dropping
the descriptor from the conditional part we receive the description of the object
set almost included in the approximated decision class, then this descriptor is
a good candidate for dropping.

Several other strategies have been implemented. Methods of boundary
region thinning [83] are based, e.g., on the idea that sets of objects, included
in decision classes to a satisfactory degree, can be treated as parts of the lower
approximations of decision classes. Hence the lower approximations of decision
classes are enlarged and decision rules generated for them are usually stronger,
(e.g., they are supported by more examples). The degree of inclusion is tuned
experimentally to achieve, e.g., high classification quality of new cases. One
can also adopt an idea of dynamic reducts for decision rule generation.

For estimation of the quality of approximation of decision classes, global
measures based on the positive region [64] or entropy [13] are used. When
a set of rules has been induced from a decision system containing a set of
training examples, they can be used to classify new objects. However, to
resolve conflict between different decision rules recognizing new objects one
should develop strategies for resolving conflicts between them when they are

Rough sets in pattern recognition 411

voting for different decisions (see the bibliography in [50] and [51]). Recently,
it has been shown that rough set methods can be used to learn from data the
strategy for conflict-resolution between decision rules when they are classifying
new objects, contrary to existing methods that use some fixed strategies [74).

14.2.9 a-reducts and association rules

In this section we discuss a relationship between association rules [2] and ap-
proximations of reducts being basic constructs of rough sets [34, 64, 66].

We consider formulae called templates as being conjunction of descriptors.
The templates will be denoted by T, P, Q and descriptors by D with or
without subscripts, By support 4(T) is denoted the cardinality of ||T|| 4 and
by confidences(P — Q) is denoted the number

support 4(P A Q)/support 4(P).

The reduct approximations mentioned above are descriptions of the abject
sets matched by templates. They describe these sets in an approximate sense
expressed by coefficients called support and confidence.

There are two main steps in many association rule generation methods
developed for a given information system .4 and parameters of support s and
confidence ¢:

(1) Extraction from data of as many as possible templates T = D; A
D,... A Dy, such that support 4(T) = s and support 4(T A D) < s for
any descriptor D different from descriptors of T (i.e., generation of
maximal templates among those supported by more than s objects);

(2) Searching for a partition T = P A Q for any generated template T
satisfying the following conditions:

(a) support4(P) < M
(b) P has the shortest length among templates satisfying the previous
condition.

The second step can be solved using rough set methods and Boolean
reasoning approach. Let T = D; A D3 A ... A D, be a template with
support 4(T) > s. For a given confidence threshold ¢ € (0;1) the decom-
position T = P A Q is called c-irreducible if confidence 4(P — Q) > ¢ and for

412 A. Skowron and R. Swiniarski

any decomposition T = P’ A Q' such that P’ is a sub-template of P, we have
confidence 4 (P’ — Q') < e

Now we are going to explain why and how the problem of searching for
c-irreducible association rules from the given template is equivalent to the
problem of searching for local a-reducts (for some a) from a decision table.
The last problem is a well-known one in rough set theory.

Let us define a new decision table Ay = (U, A|t,d) from the original
information system .A and the template T by

(1) Alr = {ap,,ap,,--+ap,,} is a set of attributes corresponding to the
descriptors of T such that

ap il 1 if the object u satisfies D;,
PRI 0 otherwise.

(2) the decision attribute d determines if the object satisfies template T,
i.e.,

d(u) = 1 if the object u satisfies T,
] 0 otherwise.

The following facts [34, 66] describe the relationship between association
rules and approximations of reducts:
For the given information table A = (U, A), the template T, the set of

descriptors P, the implication (AD.-EP Di — Ap,¢p DJ-) is

(1) a 100%-irreducible association rule from T' if and only if P is a reduct
in Al'r

(2) a c-irreducible association rule from T if and only if P is an a-reduct
of Alr, where o = 1 — (£ —1)/(2 — 1), n is the total number of
objects from U and s = support 4(T).

One can show that the problem of searching for the shortest a-reducts is
NP-hard [34]. From the above facts it follows that extracting association rules
from data is strongly related to extraction from the data reduct approxima-
tions [34], being basic constructs of rough sets.

The following example illustrates the main idea of our method. Let us
consider the information system A presented in Table 14.5 with 18 objects and
0 attributes,

413

Rough sets in patiern recognition

Table 14.5 The example of information table .4 and template T supported by 10 objects

and the new decision table A|r constructed from .4 and template T

-] dla|la o o | a
Sl-|2(3|8({3(|3|8(|5(2({2({3|4(3383(3|2
4
da IS NPy) NI EE A I e SIS I I I I e il
(=3 L L R Rl Ll Ll L N L] (=] —
g
gl @ o e agla
Siolg|81318[3]%(3(318(3(3]8|3|8|8/3|2
o
gljelele|~|=l=lelolz|olole|alolololo __00111000111 e o
=
w bl 10 =3 Sl bl [Bl - Ll] = i
FRIZIRIR %R |2 (R |3B|R = |32 122 | o
__1111000111 (=1 -
N el el = s R R e R (s R R (s N R C d el O ﬁ‘
Sl e foa Jou fou [s Jou [ou fou fem [fow fou e Jou o |eu o
([P S NS N Y PN P Y Y N (=] -
«a
P Rl Bl O Bl RSB N B) Bl B Rl R R B B T] i
=]
ol (=Y (=R 1= (=8 LR (=Y B0 (=1 (= =1 (=] (=3 (=1 (= (=0 (=} [~} B M= [~ o l=lal=|=|=|~]|~ -
o
| =|ct| | v o] @ -] =
Lol Bl -4 - =l@m e D) T S
|3 F1 513 5| 3| 51 3| 2| 5| 5] 5] 5| 5| 5| | B E
R Y o I I 0 B I B I e o]] fed]) e Bt
< (R[22 2)7 222 2 =) 2 2 A 2 =) 2] 22

Assume the template

1)

1) Afag =0) A (as =

0)A(az=2)A(aq =

T=(a1

414 A. Skouron and R. Swiniarski

has been extracted from the information table 4. We have
support(T) = 10 and length(T) = 5.

The new decision table so constructed, A|r, is presented in Table 14.5. The
discernibility function for A|r is of the following form:
f(Dlr -D'zs -D:h D4s Dﬁ)
= (DQV.D.;VD5)/\(D1 VD3VD4)/\(D2VD3VD4)
/\(Dl V Dy Vv Dg v Dy) A (D V D3V Ds)
ANDaV DaVv Ds)A(Dsv DgV Ds)A(DyV Ds)
After simplification we obtain six reducts corresponding to the prime implicants:
f(D11D2| D3, Dy, DS) = (DS A Ds)V (Dy A Ds) V(D) A Dy A D3) v (D]_ Y

Dy AD4)V (D1 ADgADs)V(Dy ADsA Dy) for the decision table A|x. Thus,
we have found from T six association rules with (100%)-confidence.

DiADs — Di ADa ADy
DiyADs — Dy ANDaADs
M(A|T) | uz,us, uq,us, us Dy ADzADs — Dy ADsg
U10, Ui3, U5, W16, U1T DyADyANDy — DaA Dy
uy Dy v Dy V Dy Dy ADy A Ds — Da A Dy
us DyVv Dav Dy = 100 — | DiADaADy— Dz A Ds
Ug Dy Vv Dav Dy
wy DyVDavDsV Dy DiADy — DsADyN Dy
Uil DV Ds Vv Dsg = 0% — Dy AD3s — D3 ADq A Dg
uje D2V D3V Dy DiyADy — DaAD3 ADsg
14 D3V DgV Dy Dy ADs — Dz ADs AD,
18 Dy v Ds Dz ADs — Dy ADg A Ds
DaoADg — Dy ADyADy
D3nDy — D1 ADa ADs

Table 14.6 The simplified version of discernibility matrix M(.A|t) and association rules

If ¢ = 90% it means tha} we would like to find a-reducts for the decision
table A|r, where a = 1 — 5:—11 = 0.86. Hence we would like to search for a

set of descriptors that covers at least [(n— s)(a)] = [8-0.86] = 7 elements
of the discernibility matrix M(A|r). One can see that the following sets of
descriptors: {Dl,Dg}. {D[,Dg}. {Dl‘Dd}. {Dl.Da}. {DstS}- {D2s DB}-

Rough sets in pattern recognition 415

{D3, D4} have nonempty intersection with exactly 7 members of the discerni-
bility matrix M{A|1).

In Table 14.6 we present all association rules corresponding to those sets.
Heuristics searching for a-reducts are discussed, e.g., in [34].

14.2.10 Decomposition of large data tables

Several methods based on rough sets have been developed to deal with large
data tables, e.g., to generate strong decision rules for them. We will discuss
ane of the methods based on decomposition of tables by using patterns, called
templates, describing regular sub-domains of the universe (e.g., they describe
large number of customers having large number of common features).

Long templates with large support are preferred in many data mining tasks.
Several quality functions can be used to compare templates, For example, they
can be defined by

quality’, (T) = support o(T) + length(T)
and
quality%(T) = support 4(T) x length(T).

Problems of high quality templates generation (by using different optimization
criteria) are of high computational complexity. However, efficient heuristics
have been developed for solving them (see, e.g., [2, 37, 81]).

Templates extracted from data are used to decompose large data tables.
In consequence, the decision tree is built with internal nodes labeled by the
templates extracted from data, and outgoing edges are labeled by 0 (false)
and 1 (true). Any leaf is labeled by a subtable (subdomain) consisting of all
objects from the original table matching all templates or their complements
appearing on the path from the root of the tree to the leaf. The process of
decomposition is continued until the size of subtables attached to leaves is
feasible for existing algorithms (e.g., decision rules for them can be generated
efficiently) based on rough set methods. The reported experiments are showing
that such decomposition returns interesting patterns of regular subdomains of
large data tables (for references see {36, 37, 50, 51]).

It is also possible to search for patterns that are almost included in the
decision classes, i.e., default rules [30]. For a presentation of generating default
rules see the bibliography in [50, 51].

416 A. Skowron and R. Swiniarski
14.3 Hybrid methods

Several methods based on hybridization of rough set methods with other soft
computing methods for pattern recognition have been reported (see, e.g., [3,
39, 73, 74, 75]). In the sequel, we discuss two of them briefly.

14.3.1 Rough sets as a front-end of neural network-based texture
classifiers

The article (73] describes an application of the rough sets approach to feature
selection and reduction as a front-end of neural network-based texture image
recognition. The methods applied include singular value decomposition for
feature extraction, principal components analysis for feature projection and
reduction, and rough set-based methods for feature selection and reduction.
For texture classification the feedforward backpropagation neural networks were
applied. Numerical experiments show the ability of rough sets to select reduced
set of pattern features (minimizing the pattern size), while providing better
generalization of the neural network-based texture classifiers.

14.3.2 Neuro-wavelet classifiers for EEG signals based on rough
set methods

EEG is one of the most important sources of information in therapy of epilepsy.
Several researchers tried to address the issue of decision support for such a
data. In [74, 75], a tool for noise-resistant classification of EEG signals has
been presented. The experiments reported are related to data connected to
dissemination of different kinds of epilepsy. By identifying relevant features in
the signal, an automatic system that gives diagnostic support to a physician is
provided. A novel and reliable classifier architecture has been proposed through
the application of wavelets, frequential analysis, rough sets and dynamic scal-
ing in connection with simple neural networks. Experiments prove that the
proposed method provides extended robustness and generalization abilities as
well as the possibility to direct interpretation of the results obtained.

Rough sets in pattern recognition 417
14.4 Conclusions

Substantial progress has been made in the development of rough set methods
(like methods for extraction from data rules, partial or total dependencies,
methods for elimination of redundant data, methods dealing with missing data,
dynamic data and others) and reported, e.g., in [8, 9, 10, 17, 18, 25, 30, 31, 39,
50, 51, 53, 85]. New methods for extracting patterns from data (see e.g., [21,
22, 30, 36, 45]), decomposition of decision systems (see e.g., [36]) as well as a
new methodalogy for data mining in distributed and multi-agent systems (see,
e.g., [50]) have been reported. Recently, rough set based methods have been
proposed for data mining in very large relational data bases.

There are numerous areas of successful applications of rough set software
systems (see [51] and www page
http://www.idi.ntnu.no/"aleks/rosetta/ for the ROSETTA system).
Many interesting case studies are reported (for references see e.g., [39, 50,
51] and also the bibliographies in the books [9, 17, 21, 76, 85], in particular).

We have mentioned some generalizations of the rough set approach, like
the rough merealogical approach (see, e.g., [46, 54]). Rough mereology has
been developed as a tool for synthesis of objects satisfying a given specification
to a satisfactory degree. Applications of rough mereology in areas like granular
computing, spatial reasoning and data mining in distributed environment have
recently been reported.

Several other generalizations of rough sets have been investigated and some
of them have been used for real life data analysis (see, e.g., [6, 16, 23, 26, 40,
41, 49, 60, 83]).

Finally, we would like to point out that the algebraic and logical aspects of
rough sets have been intensively studied since the beginning of rough set theory.
The reader interested in that topic is referred to the bibliography in [50].

Acknowledgment

This work has been supported by the Wallenberg Foundation, by the ESPRIT-
CRIT 2 project #20288, and by grant 8 T11C 025 19 from the State Committee
for Scientific Research (KBN) of the Republic of Poland.

418 A. Skowron and R. Swiniarski
References

[1] Agotnes, T., Komorowski, J., Loken, T. (1999) “Taming large rule
models in rough set approaches” Proceedings of the 3rd European Con-
ference of Principles and Practice of Knowledge Discovery in Databases,
September 15-18, 1999, Prague, Czech Republic, Lecture Notes in Ar-
tificial Intelligence 1704, Springer-Verlag, Berlin, 193.

[2] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkano, A.
(1996) “Fast discovery of association rules”, In: Fayyad, U. M., Piatetsky-
Shapiro, G., Smyth P., Uthurusamy R. (Eds.), Advances in Knowledge
Discovery and Data Mining, The AAAIl Press/The MIT Press, Menlo
Park, CA, 307.

[3] Banerjee, M., Mitra, S., and Pal, S.K. (1998) “Rough-fuzzy MLP:
knowledge encoding and classification," [EEE Transactions on Neural
Networks, 9, 1203.

[4] Bazan, J.G. (1998) “A comparison of dynamic and non-dynamic rough
set methods for extracting laws from decision system” In: Polkowski,
L., Skowron, A, (Eds.) Rough Sets in Knowledge Discovery 1:
Methodology and Applications, Physica-Verlag, Heidelberg, 321.

[5] Brown, F.M. (1990) Boolean Reasoning, Kluwer Academic Publishers,
Dordrecht.

[6] Cattaneo, G. (1998)" Abstract approximation spaces for rough theo-
ries”, In: Polkowski, L., Skowron, A. (Eds.) Rough Sets in Knowledge
Discovery 1: Methodology and Applications, Physica—Verlag, Heidel-
berg, 59.

[7] Chmielewski, M.R., Grzymala-Busse, J.W. (1994) “Global discretiza-
tion of attributes as preprocessing for machine learning”, Proceedings
of the Third International Workshop on Rough Sets and Soft Com-
puting (RSSC'04), San Jose State University, San Jose, California,
USA, November 10-12, 294,

[8] Cios, J., Pedrycz, W., Swiniarski, R.W. (1998) Data Mining in Know-
ledge Discovery, Kluwer Academic Publishers, Dordrecht.

[9] Czyzewski, A. (1998) "Soft processing of audio signals”, In:
Polkowski, L., Skowron, A, (Eds.) Rough Sets in Knowledge Discov-
ery 2: Applications, Case Studies and Software Systems, Physica=
Verlag, Heidelberg, 147.

[10] Deogun, J., Raghavan, V., Sarkar, A., Sever, H, (1997) "Data mining:
trends in research and development”, In: Lin, T.Y., Cercone, N. (Eds.)

Rough sets in pattern recognition 419

Rough Sets and Data Mining. Analysis of Imprecise Data, Kluwer
Academic Publishers, Boston, 9.

[11] Dougherty, J., Kohavi, R., Sahami, M. (1995) “Supervised and un-
supervised discretization of continuous features” Proceedings of the
Twelfth International Conference on Machine Learning, Morgan
Kaufmann, San Francisco, CA.

[12] Diintsch, I., Gediga, G. (1997) “Statistical evaluation of rough set
dependency analysis”" International Journal of Human-Computer
Studies 46, 589.

[13] Diintsch, I., Gediga, G. (2000) “Rough set data analysis”, Encyclope-
dia of Computer Science and Technology, Marcel Dekker, New York
(to appear).

[14] Fayyad, U., Piatetsky—Shapiro, G. (Eds.) (1996) Advances in Know-
ledge Discovery and Data Mining, MIT/AAAI Press, Menlo Park.

[15] Friedman, J., Kohavi, R., Yun, Y. (1996) “Lazy decision trees", Pro-
ceedings of AAAI-96, T17.

[16] Greco, S., Matarazzo, B., Slowifiski, R. (1998) “Rough approximation
of a preference relation in a pairwise comparison table”, In: Polkowski,
L., Skowron, A. (Eds.) Rough Sets in Knowledge Discovery 2: Ap-
plications, Case Studies and Software Systems, Physica—Verlag, Hei-
delberg, 13.

[17] Grzymala—-Busse, J.W. (1998) “Applications of the rule induction sys-
tem LERS", In: Polkowski, L., Skowron, A. (Eds.) Rough Sets in
Knowledge Discovery 1: Methodology and Applications, Physica—
Verlag, Heidelberg, 366.

[18] Huber, P.J. (1981) Robust Statistics, Wiley, New York.

[19] Komorowski, J., Zytkow, J. (Eds.) (1997) Proceedings of the First
European Symposium on Principles of Data Mining and Knowledge
Discovery (PKDD'97). June 25-27, Trondheim, Norway, Lecture
Notes in Artificial Intelligence 1263, Springer-Verlag, Berlin.

[20] Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A, (1999) “Rough
sets: A tutorial”, In: S. K. Pal and A. Skowron (Eds.), Rough-Fuzzy
Hybridization: A New Trend in Decision-Making,

Springer—Verlag, Singapore, 3.

[21] Kowalczyk, W. (1998) “Rough data modeling, A new technique for
analyzing data”, In: Polkowski, L., Skowron, A. (Eds.) Rough Sets
in Knowledge Discovery 1: Methodology and Applications, Physica-
Verlag, Heidelberg, 400.

420

A. Skowron and R. Swiniarski

[22] Krawiec, K., Slowiriski, R., Vanderpooten, D. (1998) "“Learning deci-
sion rules from similarity based rough approximations”, In: In: Polkowski,
L., Skowron, A. (Eds.) Rough Sets in Knowledge Discovery 2: Ap-
plications, Case Studies and Software Systems, Physica~Verlag, Hei-
delberg, 37.

[23] Kryszkiewicz, M. (1997) "Generation of rules from incomplete infor-
mation systems”, In: Komorowski, J., Zytkow, J. (Eds.) (1997) Pro-
ceedings of the First European Symposium on Principles of Data
Mining and Knowledge Discovery (PKDD'97). June 25-27, Trond-
heim, Norway, Lecture Notes in Artificial Intelligence 1263, Springer—
Verlag, Berlin, 156,

[24] Langley, P., Simon, H.A., Bradshaw, G.L., Zytkow, J.M. (1987) Sci-
entific Discovery, Computational Ezplorations of the Creative Pro-
cesses, The MIT Press, Cambridge, Massachusetts.

[25] Lin, T.Y., Cercone, N. (Eds.) (1997) Rough Sets and Data Mining.
Analysis of Imprecise Data, Kluwer Academic Publishers, Boston.

[26] Lin, T.Y. (1998) “Granular computing on binary relations I, II", In:
Polkowski, L., Skowron, A. (Eds.) Rough Sets in Knowledge Discov-
ery 1: Methodology and Applications, Physica—Verlag, Heidelberg,
107,

[27] Marek, V.M., Truszczyriski, M. (1999) “Contributions to the theory of
rough sets”, Fundamenta Informaticae 39, 389.

[28] Michie, D., Spiegelhalter, D.J., Taylor, C.C. (Eds.) (1994) Machine
Learning, Neural and Statistical Classification, Ellis Horwood, New
York.

[29] Mitchell, T. M. (1997) Machine Learning, McGraw-Hill, Portland.

[30] Mollestad, T., Komorowski, J. (1998) “A rough set framework for
propositional default rules data mining", In: S. K. Pal and A. Skowron
(Eds.), Rough—Fuzzy Hybridization: A New Trend in Decision Mak-
ing, Springer—Verlag, Singapore.

[31] Nguyen, H.S. (1997) Discretization of real value attributes: Boolean
reasoning approach, Ph.D. Dissertation, Warsaw University.

[32] Nguyen, H. S., Nguyen, S. H. (1998) "Pattern extraction from data”,
Fundamenta Informaticae 34, 129.

[33] Nguyen, H. S. (1999) “Efficient SQL~learning method for data mining
in large data bases", Proceedings of the Sizteenth International Joint
Conference on Artificial Intelligence (1JCAI'99), 806.

Rough sets in pattern recognition 421

[34] Nguyen, H.S., Nguyen, S. H. (1999) “Rough sets and association rule
generation”, Fundamenta Informaticae 40, (4), 383.

[35] Nguyen H. S., Nguyen, S. H., Skowron A. (1999), "Decomposition
of Task Specification", Proceedings of the 11th International Sym-
posium on Foundations of Intelligent Systems, June 1999, Warsaw,
Poland, Lecture Notes in Computer Science 1609, Springer-Verlag,
Berlin, 310.

[36) Nguyen, S. H., Skowron, A., Synak, P. (1998) “Discovery of data
patterns with applications to decomposition and classification prob-
lems”, In: Polkowski, L., Skowron, A. (Eds.) Rough Sets in Know-
ledge Discovery 2: Applications, Case Studies and Software Sys-
tems, Physica—Verlag, Heidelberg, 55.

[37] Nguyen, S, H. (2000) Data regularity analysis and applications in
data mining, Ph.D. Dissertation, Warsaw University.

[38] Orlowska, E. (Ed.) (1998) Incomplete Information, Rough Set Anal-
ysis, Physica—Verlag, Heidelberg.

[39] Pal, S.K., Skowron, A. (Eds.) (1999) Rough-Fuzzy Hybridization: A
New Trend in Decision Making, Springer-Verlag, Singapore.

[40] Paun, G., Polkowski, L., Skowron, A. (1996) “Parallel communicating
grammar systems with negotiations”, Fundamenta Informaticae 28,
(3-4), 315.

[41] Pawlak, Z. (1981) "Information systems—theoretical foundations”, In-
formation Systems 6, 205.

[42] Pawlak, Z. (1982) “Rough sets”, International Journal of Computer
and Information Sciences 11, 341.

[43] Pawlak, Z. (1991) Rough Sets-Theoretical Aspects of Reasoning about
Data, Kluwer Academic Publishers, Dordrecht.

[44] Pawlak, Z., Skowron, A. (1999) “Rough set rudiments”, Bulletin of
the International Rough Set Society, 3, 181.

[45] Piasta, Z., Lenarcik, A. (1998) “Rule induction with probabilistic rough
classifiers", Machine Learning (to appear).

[46] Polkowski, L., Skowron, A. (1996) “Rough mereology: A new parad-
igm for approximate reasoning”, International Journal of Approzi-
mate Reasoning 15, 333,

[47] Polkowski, L., Skowron, A. (1996) “Adaptive decision—making by sys-
tems of cooperative intelligent agents organized on rough mereological
principles”, Journal of the Intelligent Automaton and Soft Comput-

ing 2, 121.

422

A. Skowron and R. Swiniarski

[48] Polkowski, L., Skowron, A. (1998) "Towards adaptive calculus of gran-
ules”, Proceedings of the FUZZ-IEEE’98 International Conference,
Anchorage, Alaska, USA, May 5-9, 111.

[49] Polkowski, L., Skowron, A. (1998) "Rough sets: A perspective”, In:
Polkowski, L., Skowron, A. (Eds.) Rough Sets in Knowledge Discov-
ery 1: Methodology and Applications, Physica-Verlag, Heidelberg,
31.

[50] Polkowski, L., Skowron, A. (Eds.) (1998) Rough Sets in Knowledge
Discovery 1: Methodology and Applications, Physica—Verlag, Heidel-
berg.

[51] Polkowski, L., Skowron, A. (Eds.) (1998) Rough Sets in Knowledge
Discovery 2: Applications, Case Studies and Software Systems,
Physica-Verlag, Heidelberg.

[52] Polkowski, L., Skowron, A. (1998) Rough mereological foundations
for design, analysis, synthesis, and control in distributive systems,
Information Sciences 104, 129.

[53] Polkowski, L., Skowron, A. (Eds.) (1998) Proceedings of the First
International Conference on Rough Sets and Soft Computing
(RSCTC'98). Warszawa, Poland, June 22-27, Lecture Notes in Arti-
ficial Intelligence 1424 Springer-Verlag, Berlin.

[54] Polkowski, L., Skowron, A. (1999) “Towards adaptive calculus of gran-
ules”, In: Zadeh, L.A., Kacprzyk, J. (Eds.) (1999) Computing with
Words in Information/Intelligent Systems 1-2, Physica—Verlag, Hei-
delberg, 1, 201.

[65] Polkowski, L., Skowron, A. (2000) Rough mereology in information
systems. A case study: Qualitative spatial reasoning. In: Polkowski,
L., Tsumoto, S., Lin, T.Y. (Eds.) (2000) Rough Sets: New Develop-
ments, Physica-Verlag, Heidelberg (in print).

[56] Polkowski, L., Tsumoto, S., Lin, T.Y. (Eds.) (2000) Rough Sets: New
Developments, Physica-Verlag, Heidelberg (in print).

[57] Quinlan, J.R. (1993) C4.5. Programs for Machine Learning, Morgan
Kaufmann, San Mateo, CA.

[58] Rissanen, J.J. (1978) “Modeling by shortest data description" Auto-
matica 14, 465,

[59] Roddick J.F., Spiliopoulou, M. (1999) “A bibliography of temporal,
spatial, and temporal data mining research”, Newsletter of the Special
Interest Group (SIG) on Knowledge Discovery & Data Mining 1,

34.

Rough sets in pattern recognition 423

[60] Ras, Z.W. (1996) “Cooperative knowledge~based systems”, Journal

of the Intelligent Automaton and Soft Computing 2, 193.

[61] Selman, B., Kautz, H., McAllester, D. (1997) “Ten challenges in

[62]

[63]

[64]

(65]

[66]

(67]

[68]

[69]

propositional reasoning and search”, Proceedings of the Fifteenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI'97) 1,
Nagoya, Aichi, Japan, 50.

Shrager, J., Langley, P. (1990) “Computational Approaches to Sci-
entific Discovery”, In: Shrager, J., Langley, P. (Eds.), Computa-
tional Models of Scientific Discovery and Theory Formation, Mor-
gan Kaufmann, San Mateo, 1.

Skowron, A., Rauszer, C. (1992) “The discernibility matrices and func-
tions in information systems”, In: Slowiriski, R. (Ed.) Intelligent De-
cision Support — Handbook of Applications and Advances of the
Rough Sets Theory, Kluwer Academic Publishers, Dordrecht, 331.
Skowron, A. (1995) “Synthesis of adaptive decision systems from ex-
perimental data”, In: A. Aamodt, J. Komorowski (eds), Proceed-
ings of the Fifth Scandinavian Conference on Artificial Intelligence
(SCAI'95), May 1995, Trondheim, Norway, I0S Press, Amsterdam,
220.

Skowron, A., Stepaniuk, J. (1996) “Tolerance approximation spaces”,
Fundamenta Informaticae 27, 245.

Skowron, A., Nguyen, H.S. (1999)" Boolean reasoning scheme with
some applications in data mining”, Proceedings of the 3-rd European
Conference on Principles and Practice of Knowledge Discovery in
Databases, September 1999, Prague Czech Republic, Lecture Notes
in Computer Science 1704, 107.

Skowron, A., Stepaniuk, J., Tsumoto, S. (1999) “Information Gran-
ules for spatial reasoning”, Bulletin of the International Rough Set
Society 3, 147.

Stepaniuk, J. (1998) “Approximation spaces, reducts and representa-
tives", In: Polkowski, L., Skowron, A. (Eds.) Rough Sets in Know-
ledge Discovery 2: Applications, Case Studies and Software Sys-
tems, Physica-Verlag, Heidelberg, 109.

Slezak, D. (1998) “Approximate reducts in decision tables”, In: Pro-
ceedings of the Sizth International Conference, Information Pro-
cessing and Management of Uncertainty in Knowledge-Based Sys-
tems (IPMU'96) 3, July 1-5, Granada, Spain, 1159.

424

A. Skouron and R, Swiniarsk:

[70] Slowinski, R. (Ed.) (1992) Intelligent Decision Support-Handbook
of Applications and Advances of the Rough Sets Theory, Kluwer
Academic Publishers, Dordrecht.

[71] Slowinski, R., Vanderpooten, D, (1997) “Similarity relation as a basis
for rough approximations”, In: P. Wang (Ed.): Advances in Machine
Intelligence & Soft Computing, Bookwrights, Raleigh NC, 17,

[72] Slowinski, R., Vanderpooten, D. (1999) “A generalized definition of
rough approximations based on similarity", IEEE Transactions on
Data and Knowledge Engineering (to appear).

[73] Swiniarski, R., Hargis, L. (2001) Rough sets as a front-end of neural
networks texture classifiers, Neurocomputing 36, 85.

[74] Szczuka, M. (2000) Symbolic and neural network methods for clas-
sifiers construction, Ph.D. Dissertation, Warsaw University.

[75] Szczuka, M., Wojdyllo, P. (2001) “Neuro-wavelet classifiers for EEG
signals based on rough set methods", Neurocomputing 36, 103.

[76] Tsumoto, S. (1998) “Modeling diagnostic rules based on rough sets”,
In: Polkowski, L., Skowron, A. (Eds.) (1998) Proceedings of the
First International Conference on Rough Sets and Soft Comput-
ing (RSCTC'98). Warszawa, Poland, June 22-27, Lecture Notes in
Artificial Intelligence 1424, Springer-Verlag, Berlin, 475.

[77] Valdz-Prez, R.E. (1999) “Discovery tools for science apps.”, Commu-
nications of the ACM 42, 37,

(78] Zadeh, L.A. (1996) “Fuzzy logic = computing with words", IEEE
Transactions on Fuzzy Systems 4, 103,

[79] Zadeh, L.A. (1997) “Toward a theory of fuzzy information granulation
and its certainty in human reasoning and fuzzy logic", Fuzzy Sets and
Systems 90, 111.

[80] Zadeh, L.A., Kacprzyk, J. (Eds.) (1999) Computing with Words in
Information/Intelligent Systems 1-2. Physica-Verlag, Heidelberg.

[81] Zaki, M.J., Parthasarathy, S. , Ogihara, M., Li, W. (1997) “New par-
allel algorithms for fast discovery of association rules’, Data Mining
and Knowledge Discovery : An International Journal, special issue
on Scalable High—Performance Computing for KDD 1, 343.

[82] Zhong, N., Skowron, A., Ohsuga, S. (Eds.) (1999) Proceedings of
the 7-th International Workshop on Rough Sets, Fuzzy Sets, Data
Mining, and Granular-Soft Computing (RSFDGrC'99) Yamaguchi,
November 9-11, 1999, Lecture Notes in Artificial Intelligence 1711,

Rough sets in pattern recognition 425

Springer-Verlag, Berlin.

[83] Ziarko, W. (1993) “Variable precision rough set model”, Journal of
Computer and System Sciences 46, 39,

[84] Ziarko, W. (Ed.) (1994) Rough Sets, Fuzzy Sets and Knowledge
Discovery (RSKD'93), Workshops in Computing, Springer-Verlag &
British Computer Society, London, Berlin.

[85] Ziarko, W, (1998) “Rough sets as a methodology for data mining”, In:
L. Polkowski A, Skowron (Eds.), Rough Sets in Knowledge Discovery
1: Methods and Applications, Physica=Verlag, Heidelberg, 554.

Chapter 15

COMBINING CLASSIFIERS: SOFT
COMPUTING SOLUTIONS

L. |. Kuncheva

School of Informatics
University of Wales, Bangor
Bangor, Gwynedd, LL57 1UT, UK
e-mail: l.i.kuncheva@bangor.ac.uk

Abstract

Classifier combination is now an established pattern recognition
subdiscipline. Despite the strong aspiration for theoretical studies,
classifier combination relies mainly on heuristic and empirical so-
lutions. Assuming that "soft computing” encompasses neural net-
works, evolutionary computation, and fuzzy sets, we explain how
each of the three components can be used in classifier combination,

15.1 Introduction

Let D = {Dy,Ds,..., DL} be a set of classifiers (we shall also call D a team
or ensemble), and let 2 = {wy,... ,w.} be a set of class labels. Each classifier
gets as its input a feature vector X = [z1,...,2,)7, x € R"™ and assigns it
to a class label from , i.e., D; : R* — Q. Alternatively, we may define the
classifier output to be a c-dimensional vector with supports to the classes, i.e.,

D;(x) = [di1 (%), ..., dio(x)]7. (15.1)

427

428 L. I. Kuncheva

Without loss of generality we can restrict d; j(x) within the interval (g, 1],
i=1,...,L,j=1,...,¢ and call the classifier outputs "soft labels" (see [7]).
Thus, d; j(x) is the degree of "support” given by classifier D; to the hypothesis
that x comes from class w; (most often d; ;(x) is an estimate of the posterior
probability P(w;|x)). Combining classifiers means to find a class label for x
based on the L classifier outputs D) (x),..., Dy(x). Again, instead of a single
label, we can find a vector with ¢ final degrees of support for the classes as a
soft class label for , denoted

D(x) = [y (%), -0y ()] (15.2)

If a crisp class label of x is needed, we can use the maximum membership rule;
Assign x to class w, if and only if,

pe(x) = py(x), Ve =1,... ¢ (15.3)

Ties are resolved arbitrarily.

We assume that a labeled data set Z is available, Z = {z1,...,2n}.
z; € R*, which is used to design the classifier combination system: both the
individual classifiers and the combiner.

Classifier combination aims at a higher accuracy than that of a single mem-
ber of the team D. In the past few years, a lot of work has been done towards
developing a rigorous theoretical background of classifier combination. Yet,
the useful heuristics are a step ahead the theory, and collective effort is being
devoted to understanding and explaining why these heuristics work so well.

Classifier combination is called different names in the literature as shown in
Table 15.1. It is therefore important to recognize the pressing need for tidying
up the shelf by grouping and arranging the existing solutions in a taxonomy.

This chapter surveys soft computing methods in classifier combination, We
shall assume that soft computing covers neural and evolutionary computation,
and fuzzy sets, Section 15.2 explains classifier combination, Section 15.3
identifies the place of the three components of soft computing within classifier
combination tools and techniques, and Section 15.4 offers a concluding remark.

15.2 Classifier combination

15.2.1 Four approaches

Table 15.2 shows four approaches to designing a classifier combination system.

Combining classifiers: soft computing solutions 429

Table 15.1 Classifier combination “aliases” in the literature

1 | combination of multiple classifiers [42, 54, 61, 72, 73];
2 | classifier fusion [9, 16, 25, 28, 41];
3 | mixture of experts [39, 38, 40, 58];
4 | committees of neural networks [8, 21J;
5 | consensus aggregation [6, 5, 57);
6 | voting pool of classifiers [3];
7 | dynamic classifier selection [72];
8 | composite classifier systems [18];
9 | classifier ensembles [21, 22, 62];
10 | bagging, boosting, arcing, wagging [62];
11 | modular systems [62];
12 | collective recognition (2, 60]
13 | stacked generalization [71];
14 | divide-and-conquer classifiers [13];
15 | pandemonium system of reflective agents [64];
16 | change-glasses approach to classifier selection [45], etc.

Approach A. We assume that Dy,..., Dy, are given (trained in advance),
and the problem is to pick a combination scheme and train it if necessary.

Approach B. Any pattern classifier can be used as a team member. Thus,
D can be homogeneous, i.e., formed using identical classifier models (e.g.,
multilayer perceptron (MLP) neural networks) with different structure, param-
eters, initialization protocols, efc. Alternatively, a heterogeneous D can be
designed, as for example in [72].

Approach C. Sometimes it is suitable to build each D; on an individual
subset of features (subspace of R"). This is useful when n is large (e.g., a
few hundred), and groups of features come from different sources or different
data pre-processing. Examples can be found in image and speaker recognition,
etc. [12, 43].

Approach D. Many authors are of the opinion that training set alteration
is the most powerful of the four approaches as it can lead to a team of diverse
classifiers [19, 66] whereas none of the other three approaches is suited for that.
Diversity among the classifiers in D means that the individual classifiers (D;'s)

430 L. I. Kuncheva

misclassify different objects, having at the same time high individual accuracy.
This property alone can guarantee a good potential of the team even with the
simplest combination schemes. Exploiting this idea, several methods have been
proposed to select training subsets of the data set Z.

Table 15.2 Four approaches to designing a classifier combination system

(1) Partition the data randomly into L parts and use a different part to
train each classifier.

(2) Boosting: start with a classifier Dy on the whole of Z, filter out "dif-
ficult” objects and build D on them. Continue with the cascade until
Dy is built (e.g.,[21]).

(3) Bagging: design bootstrap samples by resampling from Z with a uni-
form distribution and train one D; on each sample [10].

(4) Adaptive resampling: design bootstrap samples by resampling from Z
with a non-uniform distribution. Update the distribution with respect
to previous successes. Thus, more “difficult” data points will appear
more often in the subsequent training samples [4, 10, 19].

Combining classifiers: soft computing solutions 431

Any integration of the four approaches can be applied too. For now, soft
computing methods have been used in the context of approaches A, B and C.

15.2.2 Combination paradigms

There are generally two types of combinations: classifler selection and clas-
sifier fusion as named in [72]. The presumption in classifier selection is that
each classifier is “an expert” in some local area of the feature space. When a
feature vector x € R™ is submitted for classification, the classifier responsible
for the vicinity of x is given the highest credit to label x. We can nominate
exactly one classifier to make the decision, as in [60], or more than one “local
expert", asin [1, 39, 67]. Classifier fusion assumes that all classifiers are trained
over the whole feature space, and are thereby considered as competitive rather
than complementary [57, 73].*

Fusion and selection are often merged. Instead of nominating one “expert”
we can nominate a small group of them. We can then take their judgements
and weight them by the level of expertise they have on x. Thus, the classifier
with the highest individual accuracy could be made the “leading expert” in
the team. When many classifiers become involved, the scheme is shifted from
classifier selection towards classifier fusion. This suggests that we rarely use
the two strategies in their pure forms.

Two major types of multiple classifier outputs are

(1) A set of class labels (votes), si,...sL,
Di(x) = s; € Q. (15.4)

For example, let ¢ =3, L = 5. The output can be

[ws][w2][wz][wr][wa]

(2) A matrix of soft labels, called the decision profile [52]

*In [682], classifier fusion is named ensemble approach and classifier selection is named
modular approach.

432 L. 1. Kuncheva

Output of classifier D;(x)

-du(}} J g0 | i)

DP(x) =| Q;,L(x) A dig(x)] dio(x) | (15.5)

| dza(x) f des). duo()]

Support from classifiers D; ... Dy, for class w;\

Some fusion methods calculate the support for class w; using only the jth
column of DP(x), regardless of what the support for the other classes is.
Fusion methods that use the D P class-by-class will be called class-conscious
(CC) fusion methods [52]. We refer to the alternative group as class-indifferent
(CI) fusion metheds, i.e., methods that use the whole of the decision profile
in calculating each u;(x). Notice the difference between the two groups. The
former use the context of the D P, 1.e., recognizing that a column corresponds
to a class, but disregard a part of the information. Class-indifferent methods
use the whole D P but disregard its context.

The diagram in Fig. 15.1 depicts one possible grouping of classifier combi-
nation methods, The methods are placed in boxes at the leaves of the tree with
a few corresponding references. Some of the methods will be described later
while others are mentioned only for completeness. Among the class-conscious
methods, the weighted linear combination is one of the most popular aggrega-
tion formulae. The support for class w; is calculated as the weighted average
of the supports given by the L classifiers. Based on how the coefficients are ob-
tained, we can distinguish between fixed-coefficient models and data-dependent
coefficient models where the coefficients are recalculated for every input x. It is
interesting to observe that data-dependent coefficients can be so designed that
the combination paradigm (starting off as a classifier fusion model) turns into
a classifier selection model. For example, a linear classifier fusion model with
data-dependent coefficients, so that only one coefficient is 1 and the remaining
coefficients are Os, is, in fact, selecting the classifier corresponding te the 1, to
label x.

Combining classifiers: soft computing solutions 433
Type of output
Class labels I »
Plurality (30] / \
Majority [3, 35]
e subi ol B Class-indifferent
Unanlmity Class-consclous
Naive Bayes [73 Brute force {311
BKS [35] Stacked
Wemecke [69, 70] Generalization [71]
Dempeter-Shafer (61]
ko stodels Nonlinesr modela Rrdee sthiiatics
Produst Msximum
Geometric mean Minimem
Fuzzy integral Median
(5, 16, 17, 25, 67, 68) OWA [48
Neural networks (25, 34]
Fixed weighis Dala-dependsnt welghts
16, 14, 15]
[33,31,32)
[54. 83, 67)
Soft weights Crisp welghta
Minture of expers Classifier seleciion
(39, 38, 40, 58] (50, 69, 72],
Type of ouiput
Cluas label Decinon peofile
Purlity
Mu’w Clawseimdiflarent
Muive Bayes Brute force
Bxs Clast-onacious Cotached gawralizasiont
Waemecks Decivion lemplibes
Linear (Welghisd average) Nonlinear Orcered wisintles
Product Misimum
Probubillaic produc Mutimum
Fined weighis Dt a-deperdeni Geametric mean Median
:- ':u Purzy integral (OWA)
Basesd on individual Duanpater-Shafer
NN
Sofl
Trained waights
©WA) i Somipgissia
/“"-—.__-

Fig. 15.1 One possible grouping of classifier combination methods

434 L. I. Kuncheva
15.3 Soft computing in classifier combination

15.3.1 Neural networks

Neural networks (NNs) are the most popular choice for the individual classi-
fiers in the team (approach B). Most of the studies on combining classifiers
appears in the neural network literature, e.g., the journals IEEE Transactions
on Neural Networks, Neural Networks, Neural Computation, Communication
Science. This choice, initially made by intuition, has now been justified theo-
retically. The classification error can be decomposed by algebraic manipulation
into two terms: bias and variance with respect to individual classifier outputs
(refer to [62]). Ideally, both terms should be small which is hardly possible for
a single classifier model. Simple classifiers such as linear discriminant analy-
sis have low variance and high bias. This means that these models are not
very sensitive to small changes in the training data set (the calculation of the
discriminant functions will not be much affected by small alterations in the
training data) but at the same time are unable to reach low error rates. Con-
versely, neural networks have been shown to be ultimately versatile, i.e., they
can approximate any classification boundary with arbitrary precision. The price
to pay for the low error rate is that neural classifiers may overtrain. Thus,
neural classifiers have low bias (any classification boundary can be modeled)
and high variance (small changes in the data set might lead to a very different
neural network). Assume that we combine classifiers of the same bias and the
same variance V' by averaging the classifier outputs, e.g.,

(%) =% T dii().

k=1,L

Then the combination bias will be the same as that of the individual classifiers
but the variance can be smaller than V/, thereby reducing the error of the
combination.

If D consists of identical classifiers, then no improvement will be gained by
the combination as the variance of the team estimate will be V. If D consists
of statistically independent classifiers, then the combination variance is % and
the error is subsequently reduced. Even better team can be constituted if the
classifiers are negatively dependent, i.e., they misclassify different objects. To
be able to construct diverse classifiers of high accuracy, we need a versatile
model. Neural networks are therefore an ideal choice for individual members of
the team. The high variance should not be a concern as there are combination

Combining classifiers: soft computing solutions 435

mechanisms that will reduce it.

Typically, MLP and radial basis function (RBF) networks are used but
variants thereof are also considered [59]. Training of the individual neural
classifiers may precede the design of the combination or be carried out with
regard to the team performance. Some authors consider training an exces-
sive amount of NONS and subsequently selecting the members of D {23, 24,
26]. If approach D is adopted, neural classifiers are trained on the subse-
quently generated training sets. Drucker {20] compares experimentally neural
networks and classification trees (another classifier model found to be very
suitable for classifier ensembles) and finds NONS to be superior.

Neural networks can be used as a class-indifferent (brute force or stacked
generalization [71]) model and also as a class-conscious model for classifier
combination (approach A) [34].

In summary, NONS are undoubtedly the most important intercept between
soft computing and classifier combination.

15.3.2 Evolutionary computation

Evolutionary computation and mainly genetic algorithms (GAs) have been used
at different stages of the design of classifier combination systems.

Approach A (Tuning the combiner): Genetic algorithms have been used to
find a set of weights for combination through weighted sum [15, 54]. Lam and
Suen [54)] discuss GAs for finding L weights, one per classifier. Binary encoding
of the weights is used with 10-bit representation of each weight. Similarly,
Cho [15] uses a GA to find a matrix of L x ¢ weights, one per classifier-class
pair. Thus, g;(x), ¢ = 1,...,c are obtained by c different linear combinations.
Each weight is encoded by 8 bits. There are many publications on finding
combination weights, both heuristic and more rigorous, e.g., [6, 14, 33, 31, 32,
65, 67]. Whether GAs lead to better results is unknown.

Approach B (Tuning the classifier models): All studies in this category use
neural networks as individual members of the team. The neural networks are
evolved by GAs with respect to both weights and structure. A standard GA,
although evolving a population of networks, will converge to a single solution.
That is, the last generation is likely to consist of exact clones or very close
relatives, meaning almost identical D;s. Despite being highly accurate, these
classifiers will hardly form a successful team because nothing can be gained
from combining exact replicas of the same classifier. Therefore, a mechanism
preserving diversity should be incorporated into the GA. One such option is

436 L. I. Kuncheva

niching.

Benediktsson et al. [5] apply a real-valued GA to train the network weights
and a binary-coded GA for pruning weights off a trained network. The networks
are evolved with respect to their individual classification performance, and the
diversity of the population is enforced by special genetic operators: extinction
and immigration. Friedrich [23, 24] evolves a population of neural networks
and then selects a subset whose members are maximally negatively correlated.
While in [5, 23, 24] a standard MLP is considered, Opitz and Shavlik [59] pro-
pose an evolutionary algorithm called ADDEMUP for knowledge-based neural
networks (KBNNs). Each such network can be translated into sets of if-then
rules.! The GA evolves a population of KBNNs to be the team D. To maintain
diversity, the fitness function of chromosome S; (a single KBNN) is taken to
be of the form

Fitness(S;) = Accuracy(S;) + A Diversity(S;). (15.6)

The measure of diversity [44] is generally an estimate of the deviation of the
output of the ith KBNN from the average of the team. The more diverse the
ensemble, the higher the gain in classification accuracy. The parameter A > 0
controls the balance between the two criteria. As a rule of thumb, the authors
of [59] recommend to set A to 0.1 and vary it by about 10% depending on
the current accuracy-diversity dynamics. If the accuracy of the team is not
decreasing over a number of generations but diversity decreases, then diversity
is underemphasized and so A is increased. If the accuracy starts decreasing
and diversity is not decreasing, then diversity is overemphasized and so A is
decreased.

A problem with this group of methods is that the chromosomes correspond
to the individual D;'s, and the fitness is not directly related to the overall
classification accuracy of the team. It is possible to encode D as a single
chromosome and evolve a population of teams. The search space, however,
might become too large and the GA will demand a lot of computing resources
and expert effort for tuning.

Approach C (Selecting feature subsets): One of the main uses of GAs in
pattern recognition has been for selection of a subset of features. The aim is
to have a space of dimensionality ¢ < n, so that the classifier on R* is no worse
than the classifier on 2" (using all features). This problem is notoriously diffi-
cult and its optimal solution is guaranteed only if all feature subsets are checked

tNo fuzzy systems connotation has been given by the authors.

Combining classifiers: soft computing solutions 437

(exhaustive enumeration). GAs are a natural option for feature selection [11,
63]. A feature selection GA for multiple classifier systems is proposed in [46].
A population of classifiers is evolved aiming at high individual accuracy. The
binary chromosome S; encodes a feature subset, and the respective classifier
D; is built using only this subset. The team D is then selected as the best
group of L from the population. Again, the group aspiration criterion is not
taken into account when the individual chromosomes (classifiers) are evalu-
ated by their fitness. The diversity preserving adjustment in this model is that
the best team is identified at each generation, and the chromosomes in it are
retained for the next generation, regardless of their individual fitness. To over-
come the “individualistic" approach, the whole team D is evolved in [53]. Two
GA versions are proposed: Version 1, where D;s use disjoint subsets of features
and Version 2, where the subsets of features may overlap. In Version 1, the
chromosome has n genes, one for each feature. The values of each gene are in
the set {0,1,...,L}. Avaluei € {1,...,L} at position j means that (only)
D; uses feature x;, and a value 0 means that feature z; is not used by any
classifier in this team.

Example 15.1 Let n =10, and L = 3. A possible chromosome is

2I2IE]E]RIE]E]] 0

This chromosome represents a team D where D) uses a 2-dimensional
feature vector x = [z3,210]7, D, uses a 5-dimensional feature vector x =
[£1,22, %4, 25, 27)7, D3 uses a 2-dimensional feature vector x = [zg,z3s)7,
and feature g is not used, a

Version 2 GA allows for 2% values of each gene, accounting for all possible
combinations of D; (or none) that might share feature z;.

There is an apparent analogy between the problem of evolving one member
of the team and the whole team on the one hand, and the Michigan and
Pittsburgh approaches for evolving fuzzy if-then systems on the other hand [51].
Within the Michigan approach, the chromosome represents one if-then rule,
whereas within the Pittsburgh approach, the chromosome represents the whole
fuzzy if-then system. The preferences in the literature are not clear-cut, so
both approaches are used.

Approach D (Selecting training sets): The reason why this most promising
approach has not been explored so far could be that if the data set Z is large,
the same will be the chromosome, and the GA will be unacceptably slow.

438 L. I. Kuncheva

Knowing the advantages of approach D, subset selection by GAs seems worth
trying (see [47, 49]).

15.3.3 Fuzzy sets

Fuzzy set theory has been used predominantly at the combination stage (Ap-
proach A). Detailed below are several fuzzy combination schemes (cf. [51]).

15.3.3.1 Simple fuzzy aggregation connectives

These combination designs belong to the class-conscious group because each
1;(x) is calculated using only the ith column of the decision profile DP(x).
We use the L-place operators minimum, maximum, average and product as
the function F in

() = F (g, dig®)), i=1,...,c (15.7)
Example 15.2 Let ¢ = 3 and L = 5. Assume that for a certain x,

[0.10.50.4]
0.0 0.0 1.0
DP(x)= |0.40.30.4
0.20.70.1
0.10.80.2 |

Applying each of the operators columnwise, we obtain as the final soft class
labels

Minimum = [0.0, 0.0, 0.1]7;
Maximum = [0.4, 0.8, 1.0]7;
Average =[0.16, 0.46, 0.42 7,
Product = {0.0, 0.0, 0.0032)7,

If hardened, minimum, maximum, and product will label x in class w3,
whereas the average will put x in class ws, O

15.3.3.2 More sophisticated aggregation connectives

Many such aggregation operations are available in the fuzzy set literature [9],
Ordered Weighted Averaging (OWA) operators can also be applied as F [48].
The OWA coefficients are not associated with a particular classifier D; but

Combining classifiers: soft computing solutions 439

with the places in the ordered outputs. The operation of OWA combination is
shown in Fig. 15.2

OWA operators for combining classifiers,

(1) Pick L OWA coefficients such that

L
b=[by,...,00]T, Y bi=1

i=1

(2) For k=1,...,6
(a) Sort d;x(x),i =1,...,L in descending order, so that
ay = max d; x(x), and ap = mind;(x).

(b) Calculate the support for class w

L
(%) =Y bas.
i=1

Fig. 15.2 OWA operators for combining classifiers

OWA prevents crediting one particular "expert” with the highest compe-
tence across R™, as it would be the case if we assigned fixed weights to the
classifiers. If the favorite expert (classifier) has received the credit because of
overfitting the training data, then by praising it, we can face poor generaliza-
tion. Thus, classifier fusion by OWA seems more robust than the weighted
average, where the coefficients are derived on the basis of classifier perfor-
mance. [t is worth noticing that the fuzzy integral for classifier fusion takes
this idea further so that OWA aggregation is a special case of it. OWA can
model various operations as shown in Table 15.3. We can either pick the set
of OWA coefficients or calculate them from Z by minimizing the classification
error of D.

Verikas et al. [67] consider aggregation by Zimmermann and Zysno's com-
pensatory operator

-

L 1—y L
ps(x)=(l'[{dk.a(x)1‘"*) (1-1'[[1-4.,-(:-:)1“*) . (158)
k=1 k=1

440 L. I. Kuncheva

Table 15.3 Special cases of OWA operators

Minimum [0,0,...,1]7,

Maximum [1,0;:2 507,

Median [0,...0,1,0,. (}IT for odd L,
|0 ...0 1 l G]T for even L,
1 1 2 2
!4_?2

Average Biosss b0,
Competition jury | [0, 715, ..., t55,0]7.
where wg,k = 1,...,L are coefficients of global “competence” (across the

whole R"), Zk 1w;, = L, and v € [0,1] is the compensation parameter.
Verikas et al. [67) propose also aggregation by BADD defuzzificationt

Y de)P
.ug()()— Ef=1[wk{x}]5 ' t—l...‘,c, (159)

where § is a parameter, and wy(x) are data-dependent weights calculated to
express the “expertise” of classifier Dy for the input x.

15.3.3.3 Fuzzy integral

Fuzzy integral can also be used as an aggregation connective [27, 29] and has
been applied to classifier combination [5, 16, 17, 25, 68, 67].

We use a fuzzy measure to take into account the importance of any subset
of classifiers from D with respect to a given w;. Let P(D) be the power set of

talthough used in a slightly different context

Combining classifiers: soft computing solutions 441

D. A fuzzy measure on D is the set function
g:P(D)— [0,1], (15.10)
such that

(1) 9(@) =0, g(D)=1;
(2) For any A and B, subsets of D, A C B = g(A) < g(B).

g is called a A-fuzzy measure if for any A and B, subsets of D, such that
ANB =10,

9(AU B) = g(A) + g(B) + Ag(A)g(B), A€ (—1,00). (15.11)

Two basic types of fuzzy integrals have been proposed: Sugeno type and
Choquet type. Let H be a fuzzy set on D. The Sugeno fuzzy integral with
respect to a fuzzy measure g is obtained by

Ag! = max{min(a, g(Ha))}, (15.12)
where H, is the a-cut of H.

Example 15.3 Let L = 3, and let the fuzzy measure g be defined as
follows:

Subset | Dy | Dy | D3 | Dy,Dy | Dy,D3 | D2, D3 | Dy, Dy, D3
2 Joslollo4| o4 0.5 0.8 1

Let H = [0.1,0.7,0.5]7 be a fuzzy set on D accounting for the support
for class w; by Dy, Dy, and Djs, respectively (the ith row of DP(x)). The
a-cuts of H are

o = 0, Hg = {DI,D;}, Dg};
a = 0.1, Hy; = {D1, D3, D3};
a = 0.5, Hys = {Dg, D3};

a =07, HU.T = {D2};

a = 1, Hu e @

442 L. I. Kuncheva
Then

wi(x) = AT
= max{min(0, 1), min(0.1, 1), min(0.5, 0.8),
min(0.7,0.1), min(1, 0)} (15.13)
= max{0,0.1,0.5,0.1, 0}
= 0.5.

a

The fuzzy measure g can be calculated from a set of L values ¢?, called fuzzy
densities, representing the individual importance of Dy,..., Dy, respectively.
We can find a A-fuzzy measure which is consistent with these densities. The
value of A is obtained as the unique real root greater than —1 of the polynomial

L
A+ 1= +A¢), A#0. (15.14)

§=1

The operation of fuzzy integral as a classifier combiner is shown in Fig, 15.3,

The support for w;, p;(x), can be thought of as a “compromise” between
the competence (represented by the fuzzy measure g) and the evidence (rep-
resented by the i-th row of the decision profile DP(x). Notice that the fuzzy
measure vector [g(1),...,9(L)]T might be different for each class, and is also
specific for the current x. Two fuzzy measure vectors will be the same only if
the ordering of the classifier support is the same. The algorithm in Fig. 15.3
calculates a Sugeno fuzzy integral. For the Choquet fuzzy integral with the
same A-fuzzy measure, the last formula should be replaced by

L
Pe(X) = diy k(%) + 3 (i k(%) — di (%)) 905 — 1)

7=2

15.3.3.4 Decision templates

The idea of the decision template model is to “remember” the most typical
decision profile for each class, called the decision template, DT, for that class,
and then compare it with the current decision profile DP(x). The closest match
will label x. Fig. 15.4 describes the training and Fig. 15.5, the operation of the
decision templates model. The similarity between DT}, i = 1,...,c on the one

Combining classifiers: soft computing solutions 443

Fuzzy integral for classifier fusion

(1) Fix the L fuzzy densities g*,...,g%, e.g., by setting g7 to the
estimated probability of correct classification of D;.

(2) Calculate A > —1 from (15.14).

(3) For a given x sort the kth column of DP(x) to obtain [d;, x(x),
dig k(X), - .., diy k(X)]7, di, k(x) being the highest degree of sup-
port, and d;, x(x), the lowest.

(4) Sort the fuzzy densities correspondingly, i.e., g*,...,g't and set
g(1) = g".

(5) For t =2 to L, calculate recursively

g(t) = g" +g(t —1) + Aghg(t — 1).
(6) Calculate the final degree of support for class wy by

ie(x) = max {min{d;, k(x), 9(6)}}

Fig. 15.3 Fuzzy integral for classifier fusion

hand, and DP(x) on the other hand, is calculated through Euclidean distance
between the two.

Decision templates (training)

(1) Fori=1,...,¢, calculate the mean of the decision profiles D P(z;)
of all members of w; from the data set Z. Cell the mean a decision
template DT;

DT,-=-;r— S DP(z), (15.15)

i BjEuwy
=EZ

where N; is the number of elements of Z from w;.
(2) Return DTy, ..., DT..

Fig. 15.4 Training of the decision templates method

444 L. 1. Kuncheva

Decision templates (operation)

(1) Given the input x € R", construct DP(x) as in (15.5).
(2) Calculate the squared Euclidean distance between DP(x) and
each DT}, i=1,...,¢e

[

L
dg(DP(x),DT;) = Y Y (di;(x) - dti(k,5))?, (15.16)
j=1 k=1
where dt;(k,7) is the k, j-th entry in decision template DT} (an
L x ¢ matrix).
(3) Calculate the components of the soft label of x by

pi(x) =1~ 7—de(DP(x), DT). (15.17)

Fig. 15.5 Operation of the decision templates method

Example 164 Let c=3 and L =2, and

0604 0307
DIy = |0802| and DIo = [0406]. (15.18)
0.5 0.5 0.109

Assume that for an input x, the following decision profile has been
obtained:

0.30.7
DP(x)= |0.60.4|. (15.19)
0.5 0.5
Then the soft label of x is
Ji(x) = 0.96, po(x)=0.93. (15.20)

Combining classifiers: soft computing solutions 445

As both DP(x) and DT; are fuzzy sets on D x §2, any measure of similarity
between fuzzy sets can be used.

Ishibuchi et al. [36, 37] propose voting schemes over a set of fuzzy if-
then rules or systems of fuzzy if-then rules. Lu and Yamaoka [56] apply fuzzy
inference to design the combiner.

Fuzzy set theory offers a great choice of combination ideas but these have
not been explored in conjunction with approach D. Many authors argue that the
combination scheme is not as relevant for the final accuracy as is the diversity of
the classifiers. Knowing that fuzzy combinations are capable of improving the
accuracy beyond that of the majority vote or the averaging model, integration
of fuzzy combination with approach D seems very promising.

15.4 Conclusions

This chapter explains classifier combination and some soft computing para-
digms within it. The three components attributed to the term "soft comput-
ing": neural networks, evolutionary computing and fuzzy sets are considered
separately. The purpose was to explain the techniques and methods used, not
to advocate a particular example. Brief comments on each soft computing com-
ponent are offered in the respective subsections. It goes without saying that
all soft computing methods cited in this study have been compared experimen-
tally against some rival methods and have been found to be better. However,
since there is no accepted standard or “ultimate test”, the superiority of some
techniques over others cannot be empirically proven. This is the beauty and
the curse of the heuristic methods such as these explained here, and the final
choice is left to the experience and the intuition of the designer. Sorting and
grouping the methods, as done here, might help with the choice, and so might
the somewhat contradictory guideline: keep it simple and accurate.

References

[1] E. Alpaydin and M. I. Jordan. Local linear perceptrons for classifica-
tion, /EEE Transactions on Neural Networks, 7:788-792, 1996.

[2] Y. L. Barabash. Collective Statistical Decisions in Recognition. Radio
i Sviaz', Moscow, 1983. (In Russian).

[3] R. Battiti and A.M. Colla. Democracy in neural nets: voting schemes

446

L. I. Kuncheva

for classification. Neural Networks, 7:691-707, 1994,

(4] E. Bauer and R. Kohavi, An empirical comparison of voting classifica-
tion algorithms: Bagging, boosting, and variants. Machine Learning,
36:105-142, 1999,

[5] J.A. Benediktsson, J.R. Sveinsson, J. |. Ingimundarson, H. Sigurdsson,
and O.K. Ersoy. Multistage classifiers optimized by neural networks
and genetic algorithms, Nonlinear Analysis, Theory, Methods & Ap-
plications, 30:1323-1334, 1997,

(6] J.A. Benediktsson and P.H. Swain. Consensus theoretic classifica-
tion methods. IEEE Transactions on Systems, Man and Cybernetics,
22:688-704, 1992.

[7] J.C. Bezdek, J.M Keller, R. Krishnapuram, and N.R. Pal. Fuzzy Mod-
els and Algorithms for Pattern Recognition and Image Processing.
Kluwer Academic Publishers, Boston, 1999,

(8] C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon
Press, Oxford, 1995.

[9] I. Bloch. Information combination operators for data fusion: a compar-
ative review with classification, /EEE Transactions on Systems, Man
and Cybernetics - Part A: Systems and Humans, 26:52-67, 1996.

[10] L. Brieman. Combining predictors. In A.J.C. Sharkey, editor, Com-
bining Artificial Neural Nets, pages 31-50. Springer-Verlag, London,
1999.

[11] E.Il. Chang and R.P. Lippmann. Using genetic algorithms to improve
pattern classification performance. volume 3 of Neural Information
Processing Systems, pages 797-803, San Mateo, CA, 1991. Morgan
Kaufmann, San Mateo, CA.

[12] K. Chen, L. Wang, and H. Chi. Methods of combining multiple classi-
fiers with different features and their applications to text-independent
speaker identification. International Journal of Pattern Recognition
and Artificial Intelligence, 11:417—445, 1997.

[13] C.-C. Chiang and H.-C. Fu. A divide-and-conquer methodology for
modular supervised neural network design. In |EEE International Con-
ference on Neural Networks, pages 119-124, Orlando, Florida, 1994.

[14] C.C. Chibelushi, F. Deravi, and J.5.D. Mason. Adaptive classifier inte-
gration for robust pattern recognition. |EEE Transactions on Systems,
Man and Cybernetics, Part B: Cybernetics, 29:902-907, 1999.

[15] S-B. Cho. Pattern recognition with neural networks combined by
genetic algorithm. Fuzzy Sets and Systems, 103:339-347, 1999.

Combining classifiera; soft computing solutions 447

[16] S.-B. Cho and J.H. Kim. Combining multiple neural networks by fuzzy
integral and robust classification. |EEE Transactions on Systems, Man
and Cybernetics, 25:380-384, 1995,

[17] S.B. Cho and J.H. Kim. Multiple network fusion using fuzzy logic.
|EEE Transactions on Neural Networks, 6:497-501, 1995,

[18] B.V. Dasarathy and B.V. Sheela, A composite classifier system design:
concepts and methodology. Proceedings of IEEE, 67:708-713, 1978,

[19] T.G. Dietterich. Ensemble methods in machine learning. In Multiple
Classifier Systems, Cagliari, Italy, 2000,

[20] H. Drucker. Boosting using neural networks. In A.J.C. Sharkey, edi-
tor, Combining Artificial Neural Nets, pages 51-78, Springer-Verlag,
London, 1999,

[21] H. Drucker, C. Cortes, L.D. Jackel, Y. LeCun, and V. Vapnik. Boost-
ing and other ensemble methods. Neural Computation, 6:1289-1301,
1994,

[22] E. Filippi, M. Costa, and E. Pasero. Multy-layer perceptron ensembles
for increased performance and fault-tolerance in pattern recognition
tasks. In IEEE International Conference on Neural Networks, pages
2901-2906, Orlando, Florida, 1994,

[23] C.M. Friedrich. Ensembles of evolutionary created artificial neural net-
works. In Proc. 5th Int. Workshop Fuzzy-Neuro Systems'98 (FN5'98),
pages 250-256, Munich, Germany, 1998.

[24] C.M. Friedrich. Ensembles of evolutionary created artificial neural net-
works and nearest neighbour classifiers. In Proc. 3rd On-line Confer-
ence on Soft Computing in Engineering Design and Manufacturing
(WSC3), pages 288298, 1998.

[25] P.D. Gader, M.A, Mohamed, and J.M, Keller. Fusion of handwritten
word classifiers. Pattern Recognition Letters, 17:577-584, 1996,

[26] G. Giacinto and F. Roli. Design of effective neural network ensem-
bles for image classification processes, Image Vision and Computing
Journal, 2000. (to appear).

[27] M. Grabisch. On equivalence classes of fuzzy connectives - the case of
fuzzy integrals. /EEE Transactions on Fuzzy Systems, 3:96-109, 1995,

[28] M. Grabisch and F. Dispot. A comparison of some for fuzzy classifi-
cation on real data. In 2nd International Conference on Fuzzy Logic
and Neural Networks, pages 659-662, lizuka, Japan, 1992,

[29] M. Grabisch and M. Sugeno. Multi-attribute classification using fuzzy

448

L. I. Kuncheva

integral. In IEEE International Conference on Fuzzy Systems, pages
47-54, San Diego, California, 1992,

[30] L.K. Hansen and P. Salamon, Neural network ensembles. /EEE Trans-
actions on Pattern Analysis and Machine Intelligence, 12:993-1001,
1990.

[31] S. Hashem. Optimal linear combinations of neural networks, Neural
Networks, 10:599-614, 1997,

[32] S. Hashem. Treating harmful collinearity in neural network ensembles,
In A.J.C. Sharkey, editor, Combining Artificial Neural Nets, pages 101-
125, Springer-Verlag, London, 1999,

[33] S. Hashem, B. Schmeiser, and Y. Yih, Optimal linear combinations
of neural networks: an overview. In IEEE International Conference on
Neural Networks, pages 1507-1512, Orlando, Florida, 1994.

[34] Y.S. Huang and C.Y. Suen. A method of combining multiple classifiers
- a neural network approach. In 12th International Conference on
Pattern Recognition, pages 473-475, Jerusalem, Israel, 1994,

[35] Y.S. Huang and C.Y. Suen. A method of combining multiple ex-
perts for the recognition of unconstrained handwritten numerals. |EEE
Transactions on Pattern Analysis and Machine Intelligence, 17:90-93,
1995.

[36] H. Ishibuchi, T. Morisawa, and T. Nakashima. Voting schemes for
fuzzy rule-based classification systems. In Proceedings of FUZZ/ IEEE,
1996.

[37] H. Ishibuchi, T. Nakashima, and T. Morisawa. Voting in fuzzy rule-
based systems for pattern classification problems. Fuzzy Sets and
Systems, 103:223-238, 1999,

[38] R.A. Jacobs. Methods for combining experts' probability assessments.
Neural Computation, 7:867-888, 1995.

[39] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive
mixtures of local experts. Neural Computation, 3:79-87, 1991.

[40] M.I. Jordan and L. Xu. Convergence results for the EM approach
to mixtures of experts architectures, Neural Networks, 8:1409-1431,
1995.

[41] J.M. Keller, P. Gader, H. Tahani, J.-H. Chiang, and M. Mohamed.
Advances in fuzzy integration for pattern recognition. Fuzzy Sets and
Systems, 65:273-283, 1994.

[42] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On combining classi-
fiers. JEEE Transactions on Pattern Analysis and Machine Intelligence,

Combining classifiers: soft computing solutions 449

20:226-239, 1998,

[43] J. Kittler, A. Hojjatoleslami, and T. Windeatt. Strategies for combin-
ing classifiers employing shared and distinct representations. Pattern
Recognition Letters, 18:1373-1377, 1997.

[44] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation
and active learning. In G. Tesauro, D.S. Touretzky, and T.K. Leen,
editors, Advances in Neural Information Processing Systems, volume 7,
pages 231-238. MIT Press, Cambridge, MA, 1995,

[45] L.I. Kuncheva. Change-glasses approach in pattern recognition. Pat-
tern Recognition Letters, 14:619-623, 1993.

[46] L.l. Kuncheva. Genetic algorithm for feature selection for parallel clas-
sifiers. Information Processing Letters, 46:163-168, 1993,

[47] L.I. Kuncheva. Editing for the k-nearest neighbors rule by a genetic
algorithm. Pattern Recognition Letters, 16:809-814, 1995,

{48] L.I. Kuncheva. An application of OWA operators to the aggregation
of multiple classification decisions. In R. R. Yager and J. Kacprzyk,
editors, The Ordered Weighted Averaging operators. Theory and Ap-
plications, pages 330-343. Kluwer Academic Publishers, Boston, 1997.

[49] L.I. Kuncheva. Fitness functions in editing &-NN reference set by ge-
netic algorithms. Pattern Recognition, 30:1041-1049, 1997.

{50] L.I. Kuncheva. Clustering-and-selection model for classifier combina-
tion. In Proc. Knowledge-Based Intelligent Engineering Systems and
Allied Technologies, Brighton, UK, 2000.

[51] L.I. Kuncheva. Fuzzy Classifier Design. Studies in Fuzziness and Soft
Computing. Springer-Verlag, Heidelberg, 2000.

[52] L.I. Kuncheva, J.C. Bezdek, and R.P.W. Duin. Decision templates
for multiple classifier fusion: an experimental comparison. Pattern
Recognition, 1999. (accepted).

{53] L.I Kuncheva and L.C. Jain. Designing classifier fusion systems by
genetic algorithms. /EEE Transactions on Evolutionary Computation,
2000. (accepted).

[54) L. Lam and C.Y. Suen. Optimal combination of pattern classifiers.
Pattern Recognition Letters, 16:945-954, 1995,

[55] L.Lam and C.Y. Suen. Application of majority voting to pattern recog-
nition: An analysis of its behavior and performance. /EEE Transactions
on Systems, Man and Cybernetics, 27:553-568, 1997.

[56] Y. Lu and F. Yamaoka. Fuzzy integration of classification results.
Pattern Recognition, 30:1877-1891, 1997,

450

L. I. Kuncheva

[67] K-C. Ng and B. Abramson. Consensus diagnosis: A simulation study.
IEEE Transactions on Systems, Man, and Cybernetics, 22:916-928,
1992.

[58] S.J. Nowlan and G.E. Hinton. Evaluation of adaptive mixtures of com-
peting experts. In R.P. Lippmann, J.E. Moody, and D.S. Touretzky,
editors, Advances in Neural Information Processing Systems Volume
3, pages 774-780, 1991.

[59] D. Opitz and J. Shavlik. A genetic algorithm approach for creating
neural network ensembles. In A.J.C. Sharkey, editor, Combining Arti-
ficial Neural Nets, pages 79-99. Springer-Verlag, London, 1999,

[60] L.A. Rastrigin and R.H. Erenstein. Method of Collective Recognition.
Energoizdat, Moscow, 1981. (In Russian).

[61] G. Rogova. Combining the results of several neural network classifiers.
Neural Networks, 7:777-781, 1994,

[62] A.J.C. Sharkey, editor. Combining Artificial Neural Nets. Ensemble
and Modular Multi-Net Systems. Springer-Verlag, London, 1999,

[63] W. Siedlecki and J. Sklansky. A note on genetic algorithms for large-
scale feature selection. Pattern Recognition Letters, 10:335-347, 1989.

[64] F. Smieja. The pandemonium system of reflective agents. IEEE Trans-
actions on Neural Networks, 7:97-106, 1996,

[65] V. Tresp and M. Taniguchi. Combining estimators using non-constant
weighting functions. In G. Tesauro, D.S. Touretzky, and T.K. Leen,
editors, Advances in Neural Information Processing Systems Volume
7. Cambridge, MA, 1995. MIT Press.

[66] K. Tumer and J. Ghosh. Error correlation and error reduction in en-
semble classifiers. Connection Science, 8:385-404, 1996.

[67] A. Verikas, A. Lipnickas, K. Malmqvist, M. Bacauskiene, and A. Gel-
zinis. Soft combination of neural classifiers: A comparative study.
Pattern Recognition Letters, 20:429-444, 1999,

[68] D. Wang, J. M. Keller, C.A. Carson, K.K. McAdoo-Edwards, and CW.
Bailey. Use of fuzzy-logic-inspired features to improve bacterial recog-
nition through classifier fusion. IEEE Transactions on Systems, Man
and Cybernetics, 28B:583-591, 1998.

[69] K.-D. Wernecke. On classification strategies in medical diagnostics
(with special preference to mixed models). In H.H. Bock, editor, Clas-
sification and Related Methods of Data Analysis, pages 299-306. El-
sevier Science, Amsterdam, 1988.

Combining classifiers: soft computing solutions 451

[70] K.-D. Wernecke. A coupling procedure for discrimination of mixed
data. Biometrics, 48:497-506, 1992.

[71] D.H. Wolpert. Stacked generalization. Neural Networks, 5:241-260,
1992.

[72] K. Woods, W.P. Kegelmeyer, and K. Bowyer. Combination of mul-
tiple classifiers using local accuracy estimates. |EEE Transactions on
Pattern Analysis and Machine Intelligence, 19:405-410, 1997.

[73] L. Xu, A. Krzyzak, and C.Y. Suen. Methods of combining multi-
ple classifiers and their application to handwriting recognition. JEEE
Transactions on Systems, Man and Cybernetics, 22:418-435, 1992.

Chapter 16

AUTOMATED GENERATION OF
QUALITATIVE
REPRESENTATIONS OF
COMPLEX OBJECTS BY HYBRID
SOFT-COMPUTING METHODS

E. H. Ruspini* and |. S. Zwir!

* Artificial Intelligence Center
SRI International
Menlo Park, California, U.S.A.
e-mail: ruspini@az. sri.com

t Department of Informatics
School of Science

University of Buenos Aires
Buenos Aires, ARGENTINA
e-mail: zwir@dc.uba.ar

Abstract

A soft-computing based approach for the generation of repre-
sentations of complex objects by identification of significant qual-
itative features and by automatic recognition of significant rela-
tionships between those features, is described. Fuzzy clustering
techniques that explore object descriptions or large data samples
seeking to find structures that match approximately certain proto-
typical or paradigmatic structures are presented for this purpose.
Posing the related clustering problem as a large-scale optimiza-
tion problem, evolutionary computation techniques are employed
to isolate extensive structures. A local Pareto-optimal methodol-
ogy intended to discover all structures that are non-dominated in
a Pareto-optimal sense, is used in this context. The output of this
process is then organized and related in terms of approximate rela-

453

454 E. H. Ruspini and [. S. Zwir

tions. These relations are, once again, identified by their proximity,
according to a user-defined similarity, to certain paradigmatic, or
"interesting" relations, also provided by the user. The methodol-
ogy is illustrated through examples of its application to economic
time-series analysis.

16.1 Introduction

The increased availability of databases containing representations of complex
objects such as time series, biological molecules, metabolic pathways, or orga-
nizational plans, permits access to vast amounts of data about the real-world
systems where these objects may be found, observed, or developed, The under-
lying object representations employed in these databases, however, are typically
based on computational convenience considerations. Often, these representa-
tions are also closely linked to the measurement techniques and devices em-
ployed to observe those objects. Users of these repositories, on the other hand,
are concerned with structural and functional properties of the represented ob-
jects and systems that shed light on the nature and behavior of the underlying
systems. While such properties are related to their computational represen-
tation, they are not readily derivable from them. In fact, in many situations,
the computational representation methods hinder rather than facilitate under-
standing of either individual objects or of the full database as an ensemble of
related structures. This lack of a clear connection between data representa-
tions developed for computational convenience and those characteristics that
are deemed to be interesting by the intended users of the data repositories
limits their accessibility and usefulness.

A good example of this situation is given by representations of complex bio-
logical molecules as arrays of atoms positions and characteristics, which do not
readily permit the visualization of important characteristics such as surface fea-
tures or structural patterns. This approach to the description of biomolecules,
while promoting computational efficiency and representational accuracy, hin-
ders search and retrieval in terms of structural and functional properties deemed
to be important by molecular biologists. Another example is provided by rep-
resentation of economical or financial time series as long sequences of real
numbers, which conceals rather than reveals important temporal features such
as trends or non-stationary patterns.

This undesirable situation may also be traced to an undesirable tendency to

Generation of qualitative representations by soft computing 455

overemphasize accuracy and precision at the expense of understandability. This
emphasis on computational efficiency and representational accuracy leads to the
paradoxical situation where the measurement-based data models thus provided
obfuscate comprehension of the systems being modeled. This situation is one
more instance—involving in this case data-based models—of the undesirable
practice of attempting to understand complex systems through models having
a comparable level of complexity. Under these circumstances, those models,
however precise and accurate, detract from the very purpose, leading, in the
first place, to the initial measurement of variables related to the object structure
and characteristics.

To use a term recently employed by Zadeh [16] to discuss the causes of this
type of problem, the data repositories are concerned with measurements rather
than with “perceptions.” The emphasis on representation of model parameters
linked, more or less directly, to measurements also results in search tools and
structures (e.g., indexes) that do not permit retrieval of contents according to
criterja that match the needs of their users. The accessibility and usefulness of
these databases might be, however, considerably increased by the development
of automated tools for the description of objects in terms of structures of inter-
est to users (e.g., surface “pockets” having certain characteristics in biological
molecules) and by the concomitant indexing of digital libraries on the basis of
those structures.

In this work, we present results of research concerned with the identification
of qualitative or “approximate” structures in data representations of complex
data objects. Our primary goal is to uncover portions of those objects that
approximately match one of a set of models that have been pre-specified by
experts as being of particular interest to them. In a time-series database, these
models might include structures such as uptrends, downtrends, and various
oscillatory patterns. These models of interesting structures are qualitative in
the sense that they measure the degree (in a [0,1] scale) by which a portion of
the object being described (i.e., a set of time-series values corresponding to an
interval) matches an instantiation (i.e., specific parameterization) of the ap-
proximate model. These studies are part of a |arger program of research aimed
also at the description of approximate interesting relations between interest-
ing structures (e.g., “a long downtrend preceded by a few months a sharp
uptrend”), producing hypertext representations and indexes based on those
representations, and, ultimately, processing the full database of qualitative rep-
resentations seeking to uncover important knowledge about the systems being
represented (i.e., “data mining").

456 E. H. Ruspini and [. 8. Zwir

1 L L i L
1912 1914 1916 1918 1920 1922

Fig. 16.1 Monthly averages of closing values of the Dow-Jones Industrial Average index
(DJIA) between 1912 and 1922

16.2 Problem

We are concerned with the problem of discovering interesting qualitative struc-
tures in complex data objects and the associated problem of determining inter-
esting relations between them. It is assumed that the notion of interestingness,
which is problem-dependent, is formally defined by means of a family of pa-
rameterized models M = {M,} and by a set of relations between them that
are provided beforehand by domain experts.

The models contained in the collection A are approximate or qualitative in
the sense that they measure the degree of matching between substructures—
corresponding to a subset of the dataset representing the object—and prototyp-
ical instances of the interesting feature. In a time-series, for example, uptrends
are usually defined by a function that measures, on a [0,1] scale, the degree by
which series values in a subinterval of the temporal span of the series match a
prespecified definition of uptrend. Typically, the degree of matching is defined
by means of a measure Q(F, M) assigning to each instantiated model M and

Generation of qualitalive representations by soft computing 457

to every subset F' of the dataset, a value between 0 and 1. The functionals
Q defining the degree of matching are typically derived from expert knowledge
about the underlying real-world systems.

Similarly, interesting relations, such as follows or closely follows, are mod-
eled by approximate-relation models, which are [0,1]-functions of pairs of struc-
tures defining the degree by which those structures are in the desired relation-
ship.

Our preferred approach to the characterization of qualitative features re-
lies on application of fuzzy-logic concepts and techniques to define degree of
matching by means of logical expressions containing fuzzy predicates. These ex-
pressions, essentially the conjunction of predicates that any candidate structure
F satisfy to some degree, readily lead to the required measure of explanatory
quality (i.e., to a measure of the extent by which the structure F' meets the
elastic constraints of a fuzzy model A). Alternative characterizations rely on
extensions to the fuzzy domain of statistical measures, such as least-square
approximation error, that measure the degree by which a dataset satisfies a
hypothesis. Measures of quality of matching may also be obtained applying
learning techniques, such as neural-network methods, to a training set of typical
examples of the structure being modeled.

Discovery of interesting features, in our treatment, is formulated as a gener-
alized clustering problem where the clusters correspond to subsets of data that
match, to acceptable degrees, the definitions provided by the model collection
M. This form of clustering, however, differs from the customary interpretation
of this family of unsupervised pattern-recognition procedures in a number of
respects.

In first place, our treatment is not based on a common interpretation of
clusters as subsets of the dataset where each pair of points in the subset is close
or "similar" {on the basis of pre-specified notions of distance or similarity). We
seek, more generally, cohesive subsets in the sense that the subset, as a whole,
exhibits certain relationships and meets certain constraints specified in the
collection of interesting models M. For example, an uptrend is not simply
a subset of similar (time, value) pairs but, rather, a collection of such tuples
satisfying the constraints specified by the uptrend model.

Our methodology, following the original ideas of Ruspini [13], is based on
the formulation of the clustering problem as a continuous-variable optimization
problem defined over the space of fuzzy partitions of a dataset, In this early
formulation, the emphasis was placed on the determination of the clustering
as a whole, i.e., of an exhaustive, disjoint, fuzzy partition of the data set into

458 E. H. Ruspini and . §. Zwir

interesting structures, The notion of interesting structure was based upon an
existing notion of similarity or resemblance, that is, subsets were interesting (or
were “clusters”) if their members were all similar to each other and dissimilar
from points in other clusters.

This view of the clustering problem as the determination of optimal fuzzy
partitions of a data set has conceptual as well as methodological advances.
At the conceptual level, the space of fuzzy partitions—being richer in descrip-
tive power than the more restricted set of conventional partitions—permits a
better characterization of the relations between points and clusters [14] while
providing also a better correspondence between the metric structure defined in
the data set (i.e., the given similarity structure) and related notions of resem-
blance defined in the classification space. From a methodological viewpoint,
the clustering problem, previously thought of as the domain of discrete mathe-
matics, may now be treated by a number of optimization techniques based on
continuous-variable analysis. Extensions of this idea are the bases for numerous
generalized clustering methods [5].

Our approach to the generation of qualitative descriptions of complex ob-
jects is based on generalizations of this idea. Recognizing first that not every
structure in the object might be interesting, we do not require that the cluster-
ing partition be exhaustive, This generalization permits us to shift the attention
from the determination of an optimizing partition or clustering to that of the
solution of a family of related optimization problems concerned with the se-
quential isolation of individual clusters. (Our optimization process is actually
based on the determination of multiple, locally-optimal, solutions of functionals
defining individual cluster quality.) In this regard, our approach is conceptually
similar to the classification methods known as possibilistic clustering [10]. This
reformulation of the problem also provides the ability to determine overlapping
clusters while removing the requirement for prior knowledge of their number.

Our methods are also noteworthy in that they rely on a variety of definitions
of cluster (provided by the family M of interesting features). A key contribu-
tion, extended in our approach, permitting the application of various notions
of paradigmatic cluster was made by Bezdek [3], who introduced a number
of prototype-based methods in his generalization of classification algorithms
of Ball and Hall [2]. These methods are based on the summarization of the
dataset by a number of prototypes that, initially, corresponded to the centroid
of each cluster. This concept of prototype was later extended by considering
other forms of paradigmatic structures, such as line segments or ellipsoids [4].

In summary, our methodology is primarily based on formulation of the

Generation of qualitative representations by soft computing 459

qualitative-feature identification problem as that of finding parameterized mod-
els M, and subsets F' of the dataset representing the object being described
such that some functional Q(F, M,)—measuring the degree of matching be-
tween model and subset—is optimized. Formulation of the qualitative de-
scription problem, however, in such a manner would result, however, in the
generation of many structures with small extent (e.g., two successive time-
series values will always be an uptrend, a downtrend, or a stationary period)
as it easier to explain (or model-match) smaller data subsets than those that
constitute a significant portion of the dataset. For this reason, any successful
methodology should also consider additional criteria based on the size of the
substructure being explained. Other considerations might also lead to the def-
inition of additional criteria to be satisfied by the clusters such as requirements
intended to forbid the selective choice of data points satisfying some condition
while arbitrarily ignoring others that do not meet that criterion (e.g., pick-
ing selected time-series values that lie along a line while ignoring intermediate
values that fall outside it).

A possible approach to the treatment of the resulting multiobjective op-
timization problems, which is close in spirit to minimum description-length
methods [12], is based on the aggregation of the various objectives into a
global measure of cluster quality. (Note, however, that our approach is based
on.measures of quality of description rather than on information-theoretic mea-
sures of model parsimoniousness.) This methodology was applied recently by
Thranberend and Ruspini [15] to discover linear clusters in econometric time
series.

A basic problem with this formulation however, is that it is inflexible,
context-independent, and involves weighting of objectives. Clearly, in many
applications, it might be desirable to relax somewhat requirements of explana-
tory quality (i.e., the degree by which a subset matches a parameterized model)
for large subsets while making them more stringent for smaller substructures.
In the treatment presented in this work, we have approached this problem using
a two-step method based first on identification of potentially interesting fea-
tures, followed by a process of summarization intended to retain only selected
features that summarize a subset of similar explanations.

The first step of this process is based on a multiobjective optimization
(Pareto optimality), which considers all applicable criteria, seeking to identify
the effective frontier of the problem, i.e., the set of all structures where it is
necessary to consider tradeoffs between objectives. In our approach, this effec-
tive frontier is actually a collection of local multiobjective optima in the sense

460 E. H. Ruspini and I. S. Zwir

that its members are not dominated by other structures in their neighborhood.
In our terminology, a solution (F, M) is non-dominated if there does not exist
another model M’ and a neighboring set ' (in some suitable topology defined
in the power set of the dataset representing the object being studied) such that
the values of all classification quality objectives are equal or larger for (¥, M')
than for (£, M), while one or more of those functionals have actually larger
values for (F’, M') than they do for (F, M).

In our experiments with the description of financial time series, we have
employed two objective functionals, @ and S, measuring the degree of model
matching and the feature size, respectively. These objectives are conflicting
in the sense that, typically, good explanations tend to explain smaller subsets,
while those describing larger structures have lower values of the matching qual-
ity functional Q. If the degree of matching Q(F, M) between the model M
and a subset F' (in our case, the values of a time series on a subinterval of its
temporal span) is sufficiently high, and so is the extent (or cardinality) S(F)
of F, and if (F, M) is non locally dominated, then (F, M) is incorporated as
a potential component of the qualitative description.

The second step is based on heuristics for the summarization, by a repre-
sentative prototype, of similar solutions (i.e., same model, close subsets) of the
multiobjective optimization problem solved in the first step. More generally,
the summarization process may be thought of as the discovery of interesting
relations within the effective frontier on the basis of notions of importance of
relations (of which solution similarity is but one example) provided, once again,
by domain experts.

16.3 Approach

The process of generating qualitative descriptions of complex objects is com-
posed of two sequential steps. The first step consists of the Pareto (or vector)
optimization of multiple functionals characterizing various aspects of the ade-
quacy of the generated features. The set of solutions of this problem, or Pareto
optimal frontier, is then organized and summarized along relations deemed to
be important by domain experts.

Generation of qualilative representations by soft computing 461

(LI I [Ty il g T

(b) Uptrend (12/1917-10/1919)

(c) Uptrend (5/1921-10/1922)

Fig. 16.2 Examples of uptrends identified by our optimization-based approach

16.3.1 Generating the effective frontier

In developing our approach to the generation of qualitative descriptions, we
sought to attain the maximum possible flexibility in the definition of the approximate-
model families characterizing both interesting structures and important rela-
tions between them. These minimal assumptions on the definition of interesting
structures limit the application of insights derived from the model structure to

462

Fig. 16.3 Examples of downtrend intervals determined by our optimization-based ap-
proach

facilitate solution of the related optimization problems. While such exercises
are possible in some instances, as is the case—to some extent—when em-
ploying functionals based on measures of functional approximation (i.e., least-
squares approximation errors), the cost of such minimal assumptions about
model structure is, in general, that of the considerable computational effort
associated with extensive searches in high-dimensional optimization spaces. In

E. H. Ruspini and I. S. Zwir

i [Try [T Vel Ven e

(a) Downtrend (2/1914-1/1915)

I i M.
wiE wia [Ty wis = 1

(b) Downtrend (11/1916-2/1918)

Veia e wie e [iCT]

(¢) Downtrend (10/1919-2/1921)

Generation of qualitative representetions by soft compuling 463

e e e)
(] [T e e 1e3a]

(a) H&S (10/1911-1/1915)

L] e s W Tako [

(b) H&S (12/1914-2/1918)

(L] W Ve wis] vama

(c) H&S (12/1917-8/1921)

Fig. 16.4 Examples of head and shoulders (H&8) determined by our optimization-based
approach

this regard, however, it is important to note that each object in the database
must only be described once. Even in cases when it is desired to produce new
descriptions based on a richer family of models, the required effort is generally
limited to the discovery of instances of the new structures,

Seeking to develop a general methodology capable of solving the optimiza-
tion problems associated with the generation of qualitative descriptions, we

464 E. II. Ruspini and [, 8. Zwir

sought techniques based on the application of evolutionary-computation [1].
Past applications of genetic-algorithm (GA) techniques to the solution of op-
timization problems have been limited primarily to the minimization or max-
imization of single objectives. The typical GA approach to the treatment of
multiple-objective optimization problems has been based on the introduction of
weighted linear combinations of objective and penalty functions. (This aggrega-
tion approach was employed in earlier investigations on qualitative-description
generation [15].) We have earlier commented on some of the problems associ-
ated with the lack of context dependence handicapping this type of treatment.
In addition, it has also been found experimentally that the solutions of these
aggregated-objective problems are very sensitive to small changes in the penalty
function coefficients and in the weighting factors determining the relative im-
portance of each of the aggregated objectives.

The results reported in this work were produced by application of a dif-
ferent approach to multiobjective optimization. Instead of combining mul-
tiple objectives into a single measure of descriptive-feature quality, we seek
instead features that are not locally dominated, i.e., that are locally opti-
mal in the sense that there are no neighboring solutions (in some topol-
ogy defined on the set of all subsets F' of the dataset) that are at least
equal in all objectives and strictly superior in at least one of them (i.e.,
improvement of one objective results in a lower value for another). Solu-
tions in this set, called the local Pareto-optimal frontier, cannot be improved
by considering neighboring solutions as, necessarily, improvement in values
of one functional requires lowering the value of another. Our algorithm is
based on the niched Pareto method of Horn, Nafpliotis, and Goldberg [7, 8,
9] to solve multiobjective optimization problems and to generate the effec-
tive frontier of the optimization problem, A significant feature of this method
is its reliance on restricted competition (“niches”) between chromosomes to
determine all non-dominated solutions of the multiobjective optimization prob-
lem. Another key characteristic of this type of method is the use of binary
tournaments, known as Pareto domination tournaments, to determine the
dominance status of two competitors A and B selected from the current chro-
mosome population. Rather than comparing the selected competitors directly,
a sample of the population is chosen to conduct a competitive tournament
between members of the sample and each of the selected competitors. If one
of the competitors is dominated by a member of the sample while the other
competitor is not dominated at all, the nondominated individual wins the tour-

Generation of qualitative representations by soft computing 465

++

++

-] i o SR L " L L L " L . o
0 5 10 15 20 25 30 35 40 45 50

(a) Interval space

L] + + + &
0.9r 1
+
08 4 4
+ +
0.7 1
O.B[+ 1
™
05 + + e
+
04r R
0.3r " " + 4
M - -
+
0 & N : . " L s
85 0.7 0.75 08 0.85 08 0.95 1

{b) Objective space

Fig. 16.5 Visualizing the effective frontier

466 E. H. Ruspini and 1. S. Zwir

nament. If both or neither are dominated, then fitness-sharing considerations
are employed to determine the winner (whichever has the lower niche count).
The sample size is used to control Pareto selection pressure in a manner sim-
ilar to that employed to regulate tournament size in normal (single-objective)
tournament selection.

16.3.2 Models

We have sought the maximum possible generality in the definition of interesting
structures by relying on fuzzy-logic expressions that specify the requirements
to be met by a good fit between model and substructure, These expressions
employ fuzzy predicates (e.g., large peak) to define an elastic constraint
that measures the extent of compliance of any candidate structure with the
constraint. In this formulation, a model is equivalent to a collection of elastic
constraints, Z.e., to the conjunction of the fuzzy predicates defining each of
the constraints in the collection. Employing the truth-combination formulas of
fuzzy logic, it is possible, therefore, to measure, on a [0,1] scale, the quality of
fitness of a substructure of the object being described to the model in question
(with 1 being a perfect match and 0 corresponding to a very poor fit).

In our time series application we have used, for example, the following
definition of uptrend:

Uptrend(interval) |=(V peaks in interval
peak < next-peak),
A
(Y valleys in interval

valley = next-valley),

where =< stands for the fuzzy predicate approximately lower or equal.
This expression states that, in an uptrend, every peak is (approximately) lower
than or equal to its successor and every valley is (approximately) lower than or
equal its successor. The ground predicate approximately lower or equal
is modeled, using standard conventions, by a trapezoidal function having a soft
discontinuity at 0. This formula permits to compute, by application of the
combination formulae of fuzzy logic, the degree by which the values in any

time interval, satisfy the definition of financial uptrend.

Generation of qualitative representations by soft computing 467

In addition to its generality, this logic-based approach is noteworthy because
of its ability to produce clear, explicit, descriptions of the conditions that must
be met to qualify a structure as being explained by a model. These logical
expressions are also found to be, in practice, easy to modify or correct whenever
the solutions produced by a qualitative-description effort do not correspond to
the intuitive notion that is being modeled, the logical expression may be readily
analyzed and corrected.

16.3.3 Experimental optimization resuits

We applied our GA-based multiobjective optimization approach to the identi-
fication of significant technical-analysis [11] patterns in financial time series.
Our extension of the niched Pareto optimization method of Horn, Napfliotis,
and Goldberg was applied to time series of monthly averages of closing prices of
various financial commodities and indexes. We present results of efforts for the
selection of three types of technical analysis patterns: uptrends, downtrends,
and heads and shoulders (H&S). In this particular application, a solution is a
crisp interval that meets, to some significant extent, the logic-based definition
of those patterns.

In particular, we illustrate results of the application of our GA approach to
the monthly averages of closing values of the Dow-Jones Industrial Average
index (DJIA) between 1912 and 1922 (Fig. 16.1).

In this particular problem we considered two conflicting objectives, each
measuring the extent by which time-series values in a crisp time interval, meet
explicit criteria for qualitative-feature quality. The first objective—quality of
fit— measures the extent to which the time-series values correspond to a fi-
nancial uptrend, downtrend, or H&S interval. The second objective—eztent—
measures, through a simple linear functional, the length of the interval being
explained.

Pair of numbers representing an interval of time were coded as GA chromo-
somes. A population of size 200 was modified by the GA over a total period of
600 generations. Cross-over probabilities were chosen in the [0.7, 0.9] range,
while the mutation probability was 0.1. The niche size (i.e., the proportion of
the population where the sharing function is applied) varied from 1% to 10%
of the maximum value encoded as an interval end in the chromosomes. The
niche size allows the distribution of the population over different solutions in
the search space (i.e., it prevents all chromosomes from converging to a few so-
lutions). For computational simplicity, niche counts are calculated on the partly

468 E. H. Ruspini and I. S. Zuir

filled next-generation population rather than on the current population [9].

In our experiments we employed a tournament size between 4 and 20 to
control the selection pressure. In this regard, it is important to note that our
evaluations have showed that the niched Pareto algorithm is somewhat sensitive
to the selection pressure and to the sharing pressure applied. Small values of
the tournament size (close to 1-2% of the population size) result in too many
dominated individuals (2.e., a very fuzzy front) while higher values (more than
20%) result in premature convergence to a small portion of the front [6]. Finally,
a small percentage of random individuals were introduced in each generation to
make the GA more sensible to new zones [6). These individuals were assigned
to zones not represented till then by any of the features that we sought to
identify.

Uptrends were defined, as previously detailed, by means of fuzzy-logic ex-
pressions based on comparison of the values of successive peaks and valleys
(i.e., local maxima and minima) in the time series. Examples of uptrends iden-
tified by our optimization-based approach are shown in Fig. 16.2. Examples of
downtrend intervals determined by our optimization-based approach are shown
in Fig. 16.3.

Finally, Fig. 16.4 shows examples of a more complex structure—head &
shoulders— that were also identified by our approach. Qualitative head &
Shoulder models (H&S) are more complex than those characterizing uptrends
and downtrends.

16.3.4 Describing the effective frontier

The niched Pareto GA produces a set of nondominated solutions of the mul-
tiobjective optimization problem. The set of such solutions—corresponding to
various qualitative features of the object being described—may then be sum-
marized and related according to several criteria.

The first type of relations that may be employed to enhance a description
consisting solely of the Pareto-optimal frontier, are domain-specific relations
deemed to be important by domain experts. In our financial time-series appli-
cation, we have considered two such relations: temporal inclusion (i.e., interval
I is a subset of interval I'), and temporal succession (i.e., interval I temporally
follows interva! I').

In addition to this relation, examination of the effective frontier indicates
that many non-dominated solutions are themselves similar in the sense that,
while being different from a crisp viewpoint, they represent—by means of the

Generation of qualitative representations by soft computing 469

same explanatory model— similar intervals (i.e., intervals having similar end
points). This observation immediately suggests the application of clustering
procedures to the effective frontier to produce a more compact and under-
standable description of the salient structures of the time series.

To better understand the nature of the similarity between members of the
effective frontier, the solutions of a typical optimization exercise, corresponding
to a single model of interesting structure, are plotted in the solution state (i, I),
where i is the leftmost point of the interval and I is its rightmost point. The
proximity of solutions in this space suggests the application of similarity-based
clustering techniques to group neighboring solutions and to summarize the
effective frontier by simple specification of cluster prototypes.

Fig. 16.5(b) which plots values of the two objective functionals employed to
determine the effective frontier suggests another mechanism to further simplify
the description of the effective frontier. (In Fig. 16.5(b), low values of the
quality index @ and the extent index S correspond, because of the particular
definition used in our experiments, to better or more desirable solutions.) This
additional simplification is based on the observation that certain solutions of
the optimization problem—while not being dominated by their neighbors—are,
in fact, dominated by other, similar solutions and may then be eliminated from
consideration.

Fig. 16.5(a) is also useful for visualizing relations of temporal inclusion in
the effective frontier. Note that, since it is true that, for any interval [3,],
i < I, all points on the effective frontier lie above the diagonal ¢ = I, with
larger intervals lying close to the upper-left hand corner of the diagram and
singletons lying on the diagonal ¢ = I. Solutions related by an inclusion relation
are easily visualized because they lie on the same perpendicular to the diagonal
1= I. Indexes measuring the separation between two different perpendiculars
to that diagonal may be employed to define notions of approximate inclusion.

Our summarization algorithm aims to produce compact representations of
the Pareto-optimal frontier by summarization of its significant characteristics
and description of important relations between features. In our time-series
application, this process involved the following steps: (1) organization of ef-
fective frontier, on the basis of the notion of approximate inclusion, as interval
hierarchies (trees), (2) exclusion of solutions of the multiobjective optimiza-
tion problem that are dominated by similar solutions (fuzzy domination), (3)
grouping of similar solutions (clustering) and summarization of those clusters

470 E. H. Ruspini and I. 8. Zwir

T 1]
s k=
|

7.7z =3z s
teug ma e

f<=2
— t

T —

HiAS| pss)
DE7 Ll

€ en

(b} Summary of downtrends in the
effective raniier

{c) Summarizing interesting epochs (all models)

Fig. 16.6 Describing the frontier

by prototypes, (4) merging of remaining similar intervals having close values of
the objective functional Q.

Fig. 16.6 illustrates this summarization and hierarchical interrelation pro-
cess. Fig. 16.6(a) shows an initial organization of all solutions in the effective
frontier as a tree showing temporal inclusion relationships. Non-shaded boxes
indicate solutions that are later eliminated by our description algorithm (be-

| 21911 10192 |

Fig. 16.7 Summarizing interesting epochs in the DJIA (1911-1522)

Suynduiod yfoe Bq suonppuasaadas anyonjork fo uonynisuay

v

472 E. H. Ruspini and . 5. Zwir

cause of poor quality) or summarized by replacement with prototypes of clusters
of similar solutions. The outcome of these actions, combined with the merging
close intersecting intervals (indicated also by a non-shaded box), is shown in
Fig. 16.6(b). Fig. 16.6(c) shows the results of the application of these summa-
rization and interrelation operations to the output of a GA optimization process
seeking structures matching all definitions of interesting feature (z.e., uptrends,
downtrends, and head & shoulders (H&S)). The same results are also shown in
Fig. 16.7 employing, in this case, illustrations of the actual time-series epochs,
rather than values of the end points of the corresponding intervals.

16.4 Conclusions

In this chapter, we have described soft-computing based approaches for the
generation of representations of complex objects by identification of significant
qualitative features (called “perceptions” by Zadeh) and by automatic recog-
nition of significant relationships between those features. The objectives of
this representation are both the annotation of complex objects in terms of fea-
tures meaningful to database users and the eventual analysis of the underlying
systems by knowledge-discovery techniques that operate on the qualitative rep-
resentations of the objects rather than on the original data. We have presented,
for this purpose, a group of novel fuzzy clustering techniques that explore object
descriptions or large data samples seeking to find structures that match ap-
proximately certain prototypical or paradigmatic structures. Posing the related
clustering problem as a large-scale optimization problem, evolutionary compu-
tation techniques have been employed to isolate structures that are extensive,
in the sense that they describe significant portions of the data sample, that
they are interesting, in the sense that they have a good degree of matching
with prototypical examples, and that may also satisfy other desirable condi-
tions. Our approach relies on a local Pareto-optimal methodology intended to
discover all structures that are non-dominated in a Pareto-optimal sense. The
algorithm employed to solve the underlying multiobjective optimization prob-
lem is a generalization of the niched Pareto method of Horn, Napfliotis, and
Goldberg. The output of this process is then organized and related in terms
of approximate relations. These relations are, once again, identified by their
proximity, according to a user-defined similarity, to certain paradigmatic, or
"interesting” relations, also provided by the user. The methodology to extract
qualitative features and to relate such features through approximate relations

Generation of qualitative representations by soft computing 473

of user interest is illustrated through examples of its application to economic
time-series analysis.

References

[1] T. Back, D. Fogel, and Z. Michalewicz, eds., Handbook of Evolution-
ary Computation. Institute of Physics Publishing and Oxford University
Press, 1997.

[2] G.Ball and D. Hall, “Clustering technique for summarizing multivariate
data," Behavioural Sciences, vol. 12, pp. 153-155, 1967.

[3] J. C. Bezdek, Fuzzy Mathematics in Pattern Classification. PhD thesis,
Cornell University, 1973.

[4] J. C. Bezdek, “Fuzzy clustering,” in Handbook of Fuzzy Computation
(E. H. Ruspini, P. P. Bonissone, and W. Pedrycz, eds.), ch. F6.2,
Institute of Physics Press, 1998,

[5] J. C. Bezdek and S. K. Pal, eds., Fuzzy Models for Pattern Recognition:
Methods that Search for Structures in Data. |EEE Press, 1992.

[6] C. Fonseca and P. Fleming, “Multiobjective genetic algorithms made
easy: Selection, sharing and mating restriction,” in Proc. First IEE/IEEE
Intl. Conf. on Genetic Algorithms in Engineering Systems, pp. 44-52,
1995,

[7] C. Fonseca and P. J. Fleming, "Multiobjective optimization,” in Hand-
book of Evolutionary Computation (T. Bick, D. Fogel, and Z. Michalewicz,
eds.), Institute of Physics Publishing and Oxford University Press,
1997.

[8] J. Horn, “Multicriterion decision making," in Handbook of Evolution-
ary Computation (T. Back, D. Fogel, and Z. Michalewicz, eds.), Insti-
tute of Physics Publishing and Oxford University Press, 1997.

[9] J. Horn, N. Nafpliotis, and D. Goldberg, “A niched pareto genetic
algorithm for multiobjective optimization,” in Proc. First IEEE Conf.
on Evolutionary Computation, pp. 82-87, 1994,

[10] R. Krishnapuram and J. Keller, “A possibilistic approach to clustering,"
IEEE Transactions on Fuzzy Systems, pp. 98-110, 1993,

[11] M. J. Pring, Technical Analysis Explained : The Successful Investor's
Guide to Spotting Investment Trends and Turning Points. McGraw-
Hill, 5th ed., 1891.

[12] J. Rissanen, Stochastic Complexity in Statistical Inquiry. World Sci-

entific, 1989,

474 E. H. Ruspini and I. 8. Zwir

[13] E. H. Ruspini, "A new approach to clustering,” Information and Con-
trol, vol. 15, pp. 22-32, 1969.

[14] E. H. Ruspini, “A theory of fuzzy clustering,” in Proc. 1978 IEEE Intl.
Conf. on Decision and Control, |EEE Press, 1978.

[15] K. Thranberend and E. H. Ruspini, “Subtractive optimization methods
for hierarchical fuzzy clustering,”" in Proc. 1996 Conference Interna-
tional Fuzzy Systems Association, 1996.

[16] L. A. Zadeh, “From computing with numbers to computing with words—
from manipulation of measurements to manipulation of perceptions,”
IEEE Transactions on Circuits and Systems, vol. 45, pp. 105-119,
1999.

Chapter 17

NEURO-FUZZY MODELS FOR
FEATURE SELECTION AND
CLASSIFICATION

R. K. De and S. K. Pal

Machine Intelligence Unit,

Indian Statistical Institute,
Calcutta 700085, INDIA
e-mail: {rajat,senkar} @isical.ac.in

Abstract

The chapter describes neuro-fuzzy models for feature selection
and classification. Feature selection is performed under both super-
vised and unsupervised learning. The task of classification is done
using a knowledge-based system under supervised learning. The
methodology for feature selection involves minimization of fuzzy
feature evaluation indices, defined in terms of membership func-
tions, in connectionist framework. For the unsupervised method,
the algorithm does not need to know the number of clusters a
priori. The methodology for designing a knowledge-based system
involves development of a technique for generating an appropri-
ate architecture of a neural network in terms of hidden nodes and
links. The effectiveness of these systems, along with comparisons,
is adequately demonstrated on various real life applications.

17.1 Introduction

Feature selection or extraction is a process of selecting a mapping of the form
x' = f(x) by which a sample x = (zy,%2,...,Z,) in an n-dimensional mea-

475

476 R. K. De and 8. K. Pal

surement space (R") is transformed into a point x’ = (z,%5,...,2.,) in an
n'-dimensional (n' < n) feature space (R™'). The problem of feature selection
(extraction) deals with choosing (generating) some ;s (called z)s) from the
measurement space to constitute the feature space. The main objective of
these processes is to retain the optimum salient characteristics necessary for
the recognition process, and to reduce the dimensionality of the measurement
space so that effective and easily computable algorithms can be devised for
efficient categorization.

After the feature space is obtained, the next task of a pattern recognition
system is classification. Classification can be viewed as a two-fold task, con-
sisting of learning the invariant and common properties (features) of a set of
samples characterizing a class, and of deciding that a new sample is a possible
member of the class by noting that it has the features common to those of the
set of samples.

Incorporation of fuzzy set theory enables one to deal with uncertainties
in the different tasks of a pattern recognition system — arising from defi-
ciency (in terms of, e.g., vagueness, incompleteness) in information — in an
efficient manner. Artificial neural networks (ANNs), being fault tolerant,
adaptive, generalizable, and being suited to massive parallelism, are widely
used in learning and optimization tasks. In the last few years, numerous
attempts have been made to integrate the merits of fuzzy set theory and
ANNSs, under the heading ‘neuro-fuzzy computing’, with an aim of making
the systems more intelligent [10]. The theories of fuzzy sets, neural networks
and neuro-fuzzy computing constitute, among others, some important tools
of a new paradigm of research called 'soft computing' [6, 25, 26, 29, 31,
32].

The present chapter, in this regard, has two parts. The first describes
neuro-fuzzy systems that were recently developed for feature selection under
both supervised and unsupervised learning. The methodology involves con-
nectionist minimization of fuzzy feature evaluation indices which are defined
based on the membership functions, The lower the value of the indices, higher
is the compactness of individual classes/clusters and separation between var-
ious classes/clusters. For the supervised method, the membership function
denotes the degree of belongingness of a pattern to a class, whereas that for
the unsupervised method provides the degree of similarity between two pat-
terns in both the original and transformed feature spaces. A set of weighting
coefficients corresponding to the features is introduced which provides flexible

Neuro-fuzzy models for feature selection and classification 477

modeling of the class/cluster structures and reflects the individual importance
of the features after minimization of the indices. For the unsupervised method
the transformed space is obtained through this set of weighting coefficients.
Both algorithms consider interdependence of the original features.

In another part, we have provided the design of a neuro-fuzzy knowledge-
based system for pattern classification, where a new idea of knowledge encod-
ing among the connection weights of neural networks, particularly of a fuzzy
multilayer perceptron (MLP) [28], is described. The methodology involves de-
velopment of a technique for generating an appropriate architecture of the fuzzy
MLP in terms of hidden nodes and links. The model is capable of handling
input in numerical, linguistic and set forms, and can tackle uncertainty due to
overlapping classes.

The effectiveness of the algorithms along with comparisons is demonstrated
extensively on various real life problems. Here we include the results on two data
sets concerning classification of speech (vowel) sounds [25] and Iris flowers [10].
The outcome of these methods is adequately justified using &NN classifier,
scatter plots and various graphical analysis. The readers may refer to [9, 19,
24] for other results.

17.2 A brief review

Here we provide a brief review of literature on connectionist approaches for
feature selection and neuro-fuzzy knowledge-based systems for classification.
Note that in the area of pattern recognition, neuro-fuzzy approaches have been
adopted mostly for designing classification/clustering methodologies. Compar-
atively, the problem of feature selection has not been addressed much.

17.2.1 Feature selection

Some of the attempts made for feature selection in connectionist framework
are mainly based on multilayer feedforward networks [5, 8, 13, 34, 35]. These
methods adopt supervised learning scheme,

Battiti 3] has investigated an application of mutual information criterion
to evaluate a set of candidate features and to select an informative subset
to be used as input data for a neural network classifier. Mutual information,
being a measure of arbitrary dependencies between random variables, is used for
assessing the "information content” of features in complex classification tasks.

478 R. K. De and S. K. Pal

The fact that mutual information is independent of the coordinates chosen
permits a robust estimation. In addition, the use of mutual information for tasks
characterized by high input dimensionality requires suitable approximations to
reduce its computation time. An algorithm is described based on a “greedy"
selection of the features. It takes the mutual information with respect to the
output class as well as the already-selected features into account.

Setino et al. [36] have demonstrated how a three-layer feedforward neural
network can be used to select the input attributes that are most important
for discriminating classes in a given set of input patterns. The algorithm is
based on network pruning. By adding a penalty term to the error function of
the network, redundant network connections can be distinguished from those
relevant ones, by their small weights, when the network training process is over.
A simple criterion to remove an attribute, based on the accuracy rate of the
network, is developed. The network is trained after removal of an attribute,
and the selection process is repeated until no attribute meets the criterion for
removal.

The MLP-based method of De et al. (8] is developed on the idea that the
absence of an important feature is likely to influence the output of a trained
MLP significantly. On the other hand, for a less important feature, the output
is not expected to change much with the variation of its value. First of all,
an MLP is trained with a data set. Then the patterns with only one features
absent (i.e., by setting the corresponding feature value to zero) are presented
to the network, and the outputs are noted. The deviation of an output vector
from the one generated by the corresponding original data point is computed.
A feature is considered more important if the average deviation, computed over
the entire data set, for that feature is more.

Laar and Heskes [14] have presented an algorithm that performs input
(feature) selection based on an ensemble of neural networks. Initially, the
algorithm considers an ensemble of neural networks with all the features. Then
it starts eliminating one after another until all the features are removed. Finally,
the optimal ensemble is determined.

The method of Castellano et al. (7] performs a backward selection of fea-
tures by successively removing input nodes in a network trained with the com-
plete set of input features. Input nodes are removed, along with their connec-
tions, and the remaining weights are adjusted in such a way that the overall
input-output behavior learnt by the network is kept approximately unchanged.
A simple criterion to select input nodes to be removed is developed,

Bauer Jr. et al. [4] have presented a method of feature selection using

Neuro-fuzzy models for feature selection and classification 479

an MLP, which is based on a signal-to-noise (SNR) saliency measure. The
measure determines the saliency of a feature by comparing it to that of an
injected noisy feature. The method is applied on breast cancer diagnosis, the
US Congressional voting records and the Pima Indians Diabetes problems.

17.2.2 Knowledge-based systems

Generally, ANNs consider a fixed topology of neurons connected by links in a
pre-defined manner. These connection weights are usually initialized by small
random values. Knowledge-based networks [11, 38] constitute a special class
of ANN that consider crude domain knowledge to generate the initial network
architecture which is later refined in the presence of training data. This process
helps in reducing the searching space and time while the network traces the
optimal solution. Growing of links and/or pruning of nodes is also done in order
to generate the optimal network architecture.

Several attempts, based on neuro-fuzzy approach, to the design of knowledge-
based systems have been reported. Masuoka et al. [18] have used knowledge in
the form of membership functions and fuzzy rules (in And-Or form), extracted
from experts, to build and preweigh the structured neural network which is then
tuned using selected learning data. This neural model consists of the input
variable membership net, the rule net, and the output variable net. Modified
fuzzy rules, extracted from the trained neural network using pruning, are then
evaluated and unsuitable rules corrected using relearning.

Machado and Rocha [16] have used a connectionist knowledge base in-
volving fuzzy numbers at the input layer, fuzzy And at the hidden layers and
fuzzy Or at the output layer, The input data, in symbolic or numeric forms, is
converted to possibility degrees. The hidden layers chunk input evidences into
clusters of information for representing regular patterns of the environment.
The output layer computes the degree of possibility of each hypothesis. The
initial network architecture is generated using knowledge graphs elicited from
experts by the application of the knowledge acquisition technique of [15]. The
experts express their knowledge about each hypothesis of the problem domain
by selecting an appropriate set of evidences and building an acyclic weighted
And-Or graph to describe how these may be combined to support decision
making. Inference, inquiry and explanation are possible during consultation.

Pedrycz and Rocha [33] have used basic aggregation neurons (And/Or)
and referential processing units (matching, dominance and inclusion neurons)
to design knowledge-based networks. The inhibitory and excitatory charac-

480 R. K. De and 8. K. Pal

teristics are captured by embodying direct and complemented input signals.
Applications in decision-making, diagnostic and control problems are outlined,
employing fully supervised learning. Another related approach by Hirota and
Pedrycz [12] has incorporated fuzzy clustering for developing the geometric
constructs |eading to the design of knowledge-based networks. Its applications
to classification problems are also described.

Recently, the theory of rough sets has been used to develop knowledge-
based neural networks [1]. Crude domain knowledge in the form of logical rules
is generated from the data set using rough set theory, and is encoded among the
connection weights. This helps one to automatically generate an appropriate
network architecture in terms of hidden nodes and links. The method models
arbitrary decision regions with multiple object representatives, Later Mitra
et al. [20] have provided a method of hybridizing the various tools of soft
computing— fuzzy sets, rough sets, neural networks and genetic algorithms—
in order to develop modular networks for the purpose of classification and rule
generation.,

17.3 Neuro-fuzzy methods for feature selection

In this section we describe two recently-developed neuro-fuzzy feature selection
methods [2, 9, 22, 24] under both supervised and unsupervised learning. The
methodologies involve formulation of fuzzy feature evaluation indices followed
by their minimization using connectionist models,

17.3.1 Supervised feature selection

Let us consider an n-dimensional feature space () containing x1,Ts,T3,...,
Ti, ... Ty features (components). Let there be M classes Cy,Cy,...,Chy.

Fuzzy feature evaluation index

The feature evaluation index for a subset (§1x) containing few of these n fea-
tures is defined as

Hj(x)
E= ! 17.1
; x;;k E HU:’(KJ S ()

k' £k

Neuro-fuzzy models for feature selection and classification 481

where x is constituted by the features of 2, only.

Hy(x) = pg, (%) x (1 = pg, (%)) (17.2)

and
Hiao (9) = 30,09 X (1= s, ()] + gl (%) x (1= i, (). (17.9)

ke, (x) and pg,, (x) are the membership values of the pattern x in classes Ci
and Cy respectively. ay is the normalizing constant for class C which takes
care of the effect of the relative size of the classes.

Note that, Hj, is zero (minimum) if uo, =1 or 0, and is 0.25 (maximum)
if pe, = 0.5. On the other hand, Hyy is zero (minimum) when pe, = pg,, =
1 or 0, and is 0.5 (maximum) for pe, =1, pg,, =0 or vice-versa.

Therefore, the term —<f:— is minimum if po, = 1 and pg,, = 0 for

Y Hiw

Kk
all k' # k i.e., if the ambiguity in the belongingness of a pattern x to classes
Ci and Cys VK’ 3 k is minimum (the pattern belongs to only one class). It is
maximum when po, = 0.5 for all k. In other words, the value of E decreases as
the belongingness of the patterns increases for only one class (i.e., compactness
of individual classes increases) and at the same time decreases for other classes
(i.e., separation between classes increases). E increases when the patterns
tend to lie at the boundaries between classes (i.e., 4 — 0.5). Our objective is,
therefore, to select those features for which the value of E is minimum.

Note that the factor oy, corresponding to the class Cy, is introduced for
normalizing the effect of the size of the classes. In the present investigation,
we have chosen ap = 1 — P, where Py is a priori probability for class Cy.
However, other expressions like ay = TC'lI[or a = 'FI'I could also have been
used.

The membership (pc, (x)) of a pattern x to a class Cy is defined with a
multi-dimensional w-function [30] which is given by

He, (%) =1-2d}(x), 0<di(x)< 3,
=2[1 - di(%)]?, § < di(x) <1, (17.4)

=0, otherwise.

di(x) is the distance of the pattern x from my. (the center of class Cy). It

482 R. K. De and 8. K. Pal

can be defined as

1

w17
di(x) = [Zwi-"‘ (mi5zme)] ,wi €[0,1], (17.5)
i
where
Af“‘ = 2)112%-?: [I.’Ei - m;;;l]‘ (176)
and

2w
Mg = XﬁCk

Equations (17.4)-(17.7) are such that the membership pg, (x) of a pattern x
is 1 if it is located at the mean of Cy, and 0.5 if it is on the boundary (i.e.,
ambiguous region).

The membership values (1) of the sample points of a class are dependent
on w;. The values of w; (< 1) make the function of (17.4) flattened along the
axis of z;. The lower the value of w;, the higher is the extent of flattening. In
the extreme case, when w; = 0, dy = 0 and uc, =1 for all the patterns.

In pattern recognition literature, the weight w; (defined by (17.5)) can be
viewed to reflect the relative importance of the feature z; in measuring the sim-
ilarity (in terms of distance) of a pattern to a class. |t is such that the higher the
value of w;, the greater is the importance of z; in characterizing/discriminating
a class/between classes. w; = 1(0) indicates most (least) importance of z;.

Therefore, the compactness of the individual classes and the separation
between the classes, as measured by E (given by (17.1)), is essentially a func-
tion of w (= [wy,ws,...w,]), if we consider all the n features together. The
problem of feature selection/ranking thus reduces to finding a set of w;s for
which E becomes minimum; w;s indicate the relative importance of z;5 in
characterizing/discriminating classes. The task of minimization has been per-
formed using gradient descent technique in a connectionist framework. A new
connectionist model is developed for this purpose. This is described below.

(17.7)

Connectionist model

The network (Fig. 17.1) consists of two layers, namely, input and output. The
input layer represents the set of all n features and the output layer corresponds
to the pattern classes. Input nodes accept activations corresponding to the

Neuro-fuzzy models for feature selection and classification 483

Fig. 17.1 A schematic diagram of the neural network model for supervised feature
selection. Black circles represent the auxiliary nodes, and white circles represent input
and output nodes. Small triangles attached to the output nodes represent the modulatory
connections from the respective auxiliary nodes

feature values of the input patterns. The output nodes produce the mem-
bership values of the input patterns corresponding to the respective pattern
classes. With each output node, an auxiliary node is connected which controls
the activation of the output node through modulatory links. An output node
can be activated from the input layer only when the corresponding auxiliary
node remains active. Input nodes are connected to the auxiliary nodes through
feedback links. The weight of the feedback link from the auxiliary node, con-
nected to the kth output node (corresponding to the class Ci), to the ith input
node (corresponding to the feature z;) is equated to —my;. The weight of the
feedforward link from the ith input node to the kth output node provides the
degree of importance of the feature z;, and is given by

Wi = (o). (17.8)
Aki

During training, the patterns are presented at the input layer and the mem-
bership values are computed at the output layer. The feature evaluation index
for these membership values is computed (using (17.1)) and the values of w;s
are updated in order to minimize this index. Note that, Ax;s and myys are
directly computed from the training set and kept fixed during updating of w;s.
The auxiliary nodes are activated (i.e., activation values are equated to unity)

484 R. K. De and S. K. Pal

one at a time, while the others are made inactive (i.e., the activation values
are kept fixed at 0). Thus, during training, at a time only one output node is
allowed to get activated. For details concerning the operation of the network,
refer to the Appendix.

The training phase of the network takes care of the task of minimization
of E (defined by (17.1)) with respect to w which is performed using simple
gradient-descent technique. The change in w; (Aw;) is computed as

OF
= —p—,Yi .
Awi ??awt 3 V2, (17 g)
where 7 is the learning rate. The term 2Z is computed using various node

activations and link weights of the network. For computation of 3‘3;5 one may
refer to Appendix 17.6.

Algorithm for learning w

o Calculate the mean vectors (my) of all the classes from the data set.
Set the weight of the feedback link from the auxiliary node corre-
sponding to the class Cj, to the input node i as —my; (for all i and
k).

o Get the values of r4s (in (17.5)) and Ag;s (in (17.6)) from the data
set, and initialize the weight of the feedforward link from ith input
node to kth output {for all values of i and k) node.

e For each input pattern :

— Present the pattern vector to the input layer of the network.

— Activate only one auxiliary node at a time.
Whenever an auxiliary node is activated, it sends the feedback to
the input layer. The input nodes, in turn, send the resultant ac-
tivations to the output nodes. The activation of the output node
(connected to the active auxiliary node) provides the member-
ship value of the input pattern to the corresponding class. Thus,
the membership values of the input pattern corresponding to all
the classes are computed by sequentially activating the auxiliary
nodes one at a time.

— Compute the desired change in weights of the feedforward links
to be made using the updating rule given in (17.9).

Neuro-fuzzy models for feature selection and classification 485

e Compute total change in w; for each i, over the entire set of patterns.
Update w; (for all i) with the average value of Aw;.

e Repeat the entire process until convergence, i.e., the change in E
becomes less than certain predefined small quantity.

After the training phase is over i.e., after convergence, F'(w) attains a local
minimum. In that case, the weights of the feedforward links indicate the order
of importance of the features. Note that, the method considers the effect
of interdependencies of the features unlike those in [9, 21, 23]. A detailed
theoretical analysis, concerning the convergence of E and validation of the
ordering of features, is described in [9].

17.3.2 Unsupervised feature selection

Neuro-fuzzy unsupervised feature selection methodology, as in the case of su-
pervised algorithm (Section 17.3.1), also involves a formulation of a fuzzy fea-
ture evaluation index and then its minimization in a connectionist framework,
The membership function for the realization of this index is defined in terms
of distance meastre and weighting coefficients.

Fuzzy feature evaluation index

Let, p,gq be the degree that both the pth and qth patterns belong to the same
cluster in the n-dimensional original feature space, and ul. be that in the
n'-dimensional (n’ < n) transformed feature space. u values determine how
similar a pair of patterns are in the respective features spaces. That is, u may
be interpreted as the membership value of a pair of patterns belonging to the
fuzzy set “"similar". Let, s be the number of samples on which the feature
evaluation index is computed.

The feature evaluation index for a set (2) of transformed features is defined

as

2 1
S D ;;,,5[“5’*(1 = Hpg) + Hpg(1 =)] (17.10)

It has the following characteristics:

(i) For puS, < 0.5 as pl, — 0, E decreases. For u9, > 0.5 as pl, — 1, E
decreases. In both the cases, the contribution of the pair of patterns to the
evaluation index E becomes minimum (= 0) when uS, = pZ. = 0or 1. (ii) For

486 R. K. De and 5. K. Pal

B9, < 0.5as pl, — 1, E increases. For uQ, > 0.5 as u], — 0, E increases. In
both the cases, the contribution of the pair of patterns to £ becomes maximum
(=0.5) when uQ =0and pul =1, or uQ, = 1and ul, = 0. (iii) If g, = 0.5,
the contribution of the pair of patterns to ' becomes constant (= 0.25), i.e.,
independent of 7,
Characteristics (i) and (ii) can be verified as follows. From (17.10) we have
OF 1
— = —(1-2u9). (17.11)
oul, s(s-1) 2

For ug < 0.5, 531‘_‘% > 0. This signifies that E decreases (increases) with
decrease (increase) in ul.. For u$, > 0.5, 8—?;‘3-— < 0. This implies that E
decreases (increases) Wlth increase (decrease) in ul . Since ‘”H}l € (0,1, E
decreases (increases) as *“m —+ 0 (1) in the former case, and p,, — 1 (0) in
the latter. &

Therefore, the feature evaluation index decreases as the membership value
representing the degree of belonging of pth and gth patterns to the same cluster
in the transformed feature space tends to either 0 (when u® < 0.5) or 1 (when
p@ > 0.5). In other words, the feature evaluation index decreases as the
decision on the similarity between a pair of patterns (i.e., whether they lie in
the same cluster or not) becomes more and more crisp. This means, if the
intercluster/intracluster distances in the transformed space increase/decrease,
the feature evaluation index of the corresponding set of features decreases.
Therefore, our objective is to select those features for which the evaluation
index becomes minimum; thereby optimizing the decision on the similarity of
a pair of patterns with respect to their belonging to a cluster.

The membership function u,, in a feature space, satisfying the character-
istics of E (given by (17.10)), may be defined as

d .
=175 if dpg < D, (17.12)

=0, otherwise.

dyq is a distance measure which provides similarity (in terms of proximity)
between the pth and gth patterns in the feature space. The higher the value of
dpq. the lower is the similarity between pth and gth patterns, and vice versa.
D is a parameter which reflects the minimum separation between a pair of
patterns belonging to two different clusters. When dp,, = 0 and dp; = D, we
have p,, = 1 and 0, respectively. If dp, = 2, pu,, = 0.5. That is, when
the distance between the patterns is just half the value of D, the difficulty in

Neuro-fuzzy models for feature selection and classification 487

making a decision, whether both the patterns are in the same cluster or not,
becomes maximum; thereby making the situation most ambiguous.
The term D (in (17.12)) may be expressed as

D = Bdmaz, (17.13)

where dp,q. is the maximum separation between a pair of patterns in the entire
feature space, and 0 < 3 < 1 is a user defined constant. [determines the
degree of flattening of the membership function (17.12). The higher the value
of B, more will be the degree, and vice-versa.

The distance d,,, (in (17.12)) can be defined in many ways. Considering
Euclidean distance, we have

dpg = [Zw?(xm' —zg)]},

= [iW?xfli. 35 = (B = Eells (17.14)

where w; € [0, 1] represents weighting coefficient corresponding to ith feature.
The terms z,; and x4 are values of ith feature (in the corresponding feature
space) of pth and qth patterns, respectively. dy,q. is defined as

dmaz = [Z(l‘mam' - mminiﬁ]%: (17.15)

where Zyaz; and Tyini are the maximum and minimum values of the ith
feature in the corresponding feature space.

As in Section 17.3.1, the membership value p,,, is dependent on w;. The
values of w; (< 1) make p,, in (17.12) flattened along the axis of dpg. The
lower the value of w;, the higher is extent of flattening. In the extreme case,
when w; =0, Vi, dp; = 0 and Bpg = 1 for all pair of patterns, i.e., all the
patterns lie on the same point making them indiscriminable.

The weight w; (in (17.14)) reflects the relative importance of the feature
x; in measuring the similarity (in terms of distance) of a pair of patterns. The
higher the value of w;, the more is the importance of z; in characterizing a
cluster or discriminating various clusters. w; = 1(0) indicates most (least)
importance of z;.

Note that, one may define p,,, in a different way satisfying the above men-
tioned characteristics. The computation of p,, in (17.12) does not require the
information on class label of the patterns.

488 R. K. De and S. K. Pal

Fig. 17.2 A schematic diagram of the neural network model for unsupervised feature
selection

As mentioned earlier, our objective is to minimize the evaluation index
E (defined by (17.10)) which involves the terms 1@ and uT. The computation
of uT requires (17.12)~(17.15), while 1© needs these equations with w; =
1, Vi. Therefore, E is a function of w, if we consider ranking of n features in
a set. The problem of feature selection/ranking thus reduces to finding a set of
w;s for which E becomes minimum; w;s indicating the relative importance of
z;'s. The task of minimization is performed using gradient-descent technique in
a connectionist framework under unsupervised mode. This is described below.

Connectionist model

The network (Fig. 17.2) consists of an input, a hidden and an output layer. The
input layer consists of a pair of nodes corresponding to each feature, i.e., the
number of nodes in the input layer is 2n, for n-dimensional (original) feature
space. The hidden layer consists of n number of nodes which compute the
part x? of (17.14) for each pair of patterns. The output layer consists of two
nodes. One of them computes 1€, and the other u”. The feature evaluation
index E (defined by (17.44)) is computed from these p-values off the network.

Input nodes receive activations corresponding to feature values of each
pair of patterns. A jth node in the hidden layer is connected only to an ith
and (i + n)th input nodes via connection weights +1 and —1, respectively,

Neuro-fuzzy models for feature selection and classification 489

where 3,4 = 1,2,...,n and j = i. The output node computing x-values is
connected to a jth node in the hidden layer via connection weight W; (= w?),
whereas that computing 1©-values is connected to all the nodes in the hidden
layer via connection weights +1 each.

During learning, each pair of patterns are presented at the input layer and
the evaluation index is computed. The weights W;s are updated using gradient-
descent technique in order to minimize the index E. Note that, d,,4. is directly
computed from the unlabeled training set. The values of d,,,, and 3 are stored
in both the output nodes for the computation of D). The readers may refer to
the Appendix for details concerning the operation of the network.

As mentioned before, the task of minimization of E (defined by (17.10))
with respect to W is performed using gradient-descent technique, where the
change in Wy (AW;) is computed as

AW = _ﬂ:!’f; Y3, (17.16)

where n is the learning rate, The term 9‘%?- as in Section 17.3.1, is com-
puted using various node activations and link weights of the network (see the
Appendix).

Algorithm for learning W

e Calculate dinex from the unlabeled training set and store it in both the
output nodes. Store 3 (user specified) in both the output nodes.

e Initialize W; with small random values in [0, 1].

e Repeat until convergence, i.e., until the value of £ becomes less than
or equal to certain predefined small quantity, or the number of itera-
tions attains certain predefined value:

— For each pair of patterns:

% Present the pattern pair to the input layer.
* Compute AW; for each j using the updating rule in (17.16).

— Update W; for each j with AW; averaged over all the patterns.

As in the case of neuro-fuzzy supervised feature selection method (Sec-
tion 17.3.1), E(W), after convergence, attains a local minimum. Then the
weights (W; = w?) of the links connecting hidden nodes and the output node
computing uT-values, indicate the order of importance of the features. Note

490 R. K. De and 8. K. Pal

that this unsupervised method performs the task of feature selection without
clustering the feature space explicitly and does not need to know the number
of clusters present in the feature space.

17.4 Neuro-fuzzy knowledge-based classification

In this section, we describe a methodology [19] for encoding a priori initial
domain knowledge in a connectionist model, particularly in a fuzzy MLP [28],
under supervised learning. The concept is based on the fact that if a classi-
fier is initially provided with some knowledge from the data set, the resulting
searching space is reduced thereby leading to a more efficient |learning. The
architecture of the network may become simpler due to the inherent reduction
of the redundancy among the connection weights. The network topology is
then refined using the training data.

17.4.1 Input representation

An n-dimensional pattern X; = [Xi1,Xia, - . - , Xin] iS represented as a 3n-dimensional
vector [27]

X = [#mw(x“)(xi)r#madium{xu)(xi),#high(x,l}(xi)- e H“‘high{xm}(xi)] ’

(17.17)
where p values indicate the membership functions of the corresponding linguis-
tic m-sets (as in (17.4)) (25, 28] along each feature axis. The input can be in
numeric, linguistic or set form and can have modifiers very, more or less (mol),
or not, attached to it as described in [27]. We ensure that any feature value
along the jth axis for pattern x; is assigned membership value combinations
in the corresponding 3-dimensional linguistic space of (17.17) in such a way
that at least one of 15y,) (X1)) Hmedium(ay,) (X1) OF high(a;) (Xi) is greater
than 0.5. This heuristic ensures that each pattern point belongs positively to
at least one of the linguistic sets low, medium or high along each feature axis.

17.4.2 Output representation

Consider an M-class problem domain such that we have M nodes in the output
layer. The desired output (d) € [0, 1]) of the kth output node for the ith input
pattern is defined as [25]

Neuro-fuzzy models for feature selection and classification 491

die = pe(xi) = (17.18)

1
—,
1+ (3)
where p,(x;) is the membership value of the ith pattern in class Ck, zk is
the weighted distance of the training pattern x; from Cj, and the positive
constants fy and f. are the denominational and exponential fuzzy generators
controlling the amount of fuzziness in this class-membership set. They influ-
ence the amount of overlapping among the output classes. Note that, here we
have used a (non-linguistic) definition of the output nodes which indicates the
degree of belongingness of a pattern to a class. However, this definition may
be suitably modified in other application areas to include linguistic definitions.

17.4.3 Knowledge encoding

Let an interval [z;,,z;,] denote the range of feature z; covered by class
Ck. Then we denote the membership value of the interval as u([z;,,z;,])
(= p(between zj, and z;,)) and compute it as [27]

p(between z;, and z;,) = {u(greater than z;,) * p(less than sz)}ﬁ‘

(17.19)
where
p(greater than z,) = {u(z;,)}, if 25, < Corops (17.20)
= {u(z;,)}?, otherwise, '
and
u(less than z;,) = {(z5)}, if 25 2 Cprops (17.21)

= {pu(z;,)}?, otherwise.

Here cprop denotes c;,, ¢;,, and c;, for each of the corresponding three over-
lapping fuzzy sets low, medium and high as in [28]. The output membership
for the corresponding class Cy, is found using (17.18). Note that, for the com-
putation of z; [25] of (17.18), z;; is replaced by the mean of the interval
[z4,,24,] of the jth feature,

We have also considered the intervals in which a class is not included. The
complement of the interval [z;,,z;,] of the feature z; is the region where
the class Cj does not lie and is defined as [z;,,z;,]° (where S° denotes the

492 . K. De and 5. K. Pal

complement of). The linguistic membership values for [z, ,x;,]° is denoted
by p([zj,,25,]%) (= u(not between x;, and x;,)) and is calculated as

p(not between zj, and z;,) = max{u(less than x;,), u(greater than z;,)},
(17.22)
since, not between xj, and z;, = less than x; OR greater than zj,.
Let the linguistic membership values for class Cy, in the interval |z;,, z;,].
as calculated by (17.19)-(17.21), be {u,([z;,,z;,]), £ = L, M, H}. Similarly
for the complement of the interval, using (17.22), we have

{ﬂL([Ih) x.lec)a s ([, xiz]c)! -”H([J’J': ' T5,]%))

A fuzzy MLP [28] with only one hidden layer is considered, taking two hidden
nodes corresponding to [z;,,x;,] and its complement respectively. Links are
introduced between the input nodes and the corresponding nodes in the hidden
layer

if and only if pa([zj,, z5]) or pa((2),24,]%) 2 0.5 V3,

where A € {L, M, H}. The weight w,(c? i Detween k,_th node of the hidden
layer (the hidden node corresponding to the interval [z;,,2;,] for class Ci) and
Fnth (m € {L, M, H}) node of the input layer corresponding to feature z; is

wﬁ?,jm =p+¢€ (17.23)

where py, is the a priori probability of class Cy and € is a small random number.
This hidden node is designated as positive node. A second hidden node kq,
is considered for the complement case and is termed as negative node. lts
connection weights are initialized as

)
W,

i =(l=p) +e (17.24)

The small random number € makes the weights asymmetric. Thus for an M-
class problem, we have 2M nodes in the hidden layer. In our algorithm we
have considered the following two cases:

e All connections between these 2M{ hidden nodes and all nodes in the
input layer are possible. The other weights are initially set as small
random numbers. We call this as model AN,

e Only those selected connection weights initialized by (17.19)—(17.24)
are allowed. This is called model SN.

Neuro-fuzzy models for feature selection and classification 453

[t is to be mentioned that the method described above can suitably handle
convex pattern classes only. In the case of concave classes we consider multiple
intervals for a feature z; corresponding to the various convex partitions that
may be generated to approximate the given concave decision region. This also
holds for the complement of the region in z; in which a particular class Cj
is not included. Hence, in such cases we introduce hidden nodes, positive
and negative, for each of the intervals with connections being established by
(17.23) and (17.24). In this connection, it is to be noted that a concave class
may also be subdivided into several convex regions as in [17].

Let there be (kpos + kneg) hidden nodes, where kpo, = > ka, and kneg =

ap
Zka". generated for class Ci such that ks > 1 and kney > 1. Now

Qp
connections are established between kth output node (for class Ci) and only

the corresponding (kpos + kneg) hidden nodes, We assume that if any feature
value (for class Cy) is outside some interval «, the total input received by the
corresponding hidden node k, is zero and therefore this produces an output
'um = 0.5 due to the sigmoid nonlinearity.

The connection weight w(” between the kth output node and the k,th
hidden node is calculated from a series of equations using activation values.
For an interval a as input for class Cy, the expression for output v,?} of the
kth output node is

@ = oMol + 3 05ul)), (17.25)
T#o

where f(-) is the sigmoid function. The hidden nodes k, correspond to the
intervals not represented by the convex partition a. Thus for a particular class
Ci. we have as many equations as the number of intervals (including not) used
for approximating any concave and/or convex decision region C. Thereby, we
can uniquely compute each of the connection weights w&’q Va (corresponding
to each hidden node k, and class Cy, pair).

The network architecture, so encoded, is then refined by backpropagation
training using the input pattern set under supervised learning. In case of model
AN, all the link weights are trained. In case of model SN, only the selected link
weights are trained, while the other connections are kept clamped at zero. If
the network achieves satisfactory performance, the classifier design is complete.
Otherwise, we resort to link pruning or node growing which are described in [19].

494 R. K. De and S. K. Pal

17.5 Results

The effectiveness of these methodologies along with comparisons has been
demonstrated extensively on various real-life pattern recognition problems. Here
we provide the results on two data sets— vowel [25] and Iris [10]. For detailed
results on the other data sets, one may refer to [9, 19, 24).

The vowel data consists of a set of 871 Indian Telugu vowel sounds. These
were uttered in a consonant-vowel-consonant context by three male speakers in
the age group of 30 to 35 years. The data set has three features, F;, F; and F3
corresponding to the first, second and third vowel formant frequencies obtained
through spectrum analysis of the speech data. Fig. 13.4 shows the overlapping
nature of the six vowel classes (viz., 8, a, i, u, e, 0) in the F} — F, plane (for
ease of depiction). The details of the data and its extraction procedure are
available in [25]. This vowel data is being extensively used for the past three
decades in the area of pattern recognition.

Anderson'’s Iris data [10] set contains three classes, i.e., three varieties of
Iris flowers, namely, Iris setosa (IS), Iris versicolor (IV) and Iris virginica
(IVir), consisting of 50 samples each. Each sample has four features, namely,
Sepal Length (SL), Sepal Width (SW), Petal Length (PL) and Petal Width
(PW). Iris data has been used in many research investigations related to pattern
recognition and has become a sort of benchmark data,

17.5.1 On neuro-fuzzy feature selection

Tables 17.1 and 17.2 provide the degrees of importance (w) of individual fea-
tures, corresponding to the vowel and Iris data. For the supervised method,
the values of 7 in (17.5) are so chosen that the membership values of all the
patterns of a class are at least 0.5 for that class. For 6-class vowel data the
values of), were found to be 28.8, 78.5, 21.4, 74.0, 20.4 and 47.8 correspond-
ing to its different classes. Similarly, these values are 71.7, 241.3 and 193.9 for
3-class Iris data. For the unsupervised method the value of 3 is set as 0.16 for
vowel data and 0.3 for Iris data.

It is interesting to note from these tables that the order of importance
obtained by both the supervised and unsupervised methods is the same for these
two data sets. For vowel data, the order of importance of individual features is
F; > Fy > F; which is the same as obtained by some earlier investigations [21,
23]. (¢ > y means feature z is more important than y.) For Iris data, PL
and PW are found to be the best two features. This is also in conformity with

Neuro-fuzzy models for feature selection and classification 495

Table 17.1 Importance of different features of vowel data.

w-values and Rank

Feature Supervised Unsupervised
w Rank w Rank
F 0,257358 2 0.590065 2
Fy 0.437536 1 0.896044
F3 0.154319 3 0.120944 3

Table 17.2 Importance of different features of Iris data.

w-values and Rank

Feature Supervised Unsupervised
w Rank w Rank
SL 0.203230 4 0.058414 4

SW 0.302529 3 0.194421 3
PL 0.422186 1 0.965575 1
PW 0.402027 2 0.603508 2

some earlier investigation [37]. In order to establish these results, we consider
scatter plots and k-NN classifier. Here, results are given only on Iris data. It
is again evident from Figs. 17.3-17.8 and the results of the &-NN classifier [9,
24] that {PL, PW} is the best feature pair. Between PL and PW, it is
difficult to find the edge of one over the other.

17.5.2 On neuro-fuzzy knowledge-based classification

Here we demonstrate the effectiveness of the neuro-fuzzy knowledge-based
mode| on the vowel data. The variables f;4 and f. of (17.18) were set at
5.0 [28]. The entire data set has been divided into training set and test set.
Table 17.3 shows the results obtained with vowel data. Since all the classes
in the feature space are convex, we use two hidden nodes for each of the
classes, Hence we require a total of 12 hidden nodes for this data set. The
results demonstrate that model AN gives acceptably good performance in just

496

Fig. 17.3 Scatter plot SL — SW of Iris data. Here '.’, '+’ and ‘0’ represent classes Iris

R. K. Deand S. K. Pal

35+

251

wa

setosa, Itis versicolor and Iris virginica, respectively

Fig. 17.4 Scatter plot SL — PL of Iris data. Here'.", '+ and ‘o’ represent classes Iris

feal
o o)
L (TRETo
i 1’)“" Oc‘g
o
5 of § ’.9
PPt
LR ol S
P 10
+ “‘a
3r -
2 N
et
1
A 3 4 5 [7

setosa, Iris versicolor and fris virginice, respectively

200 epochs whereas model SN cannot do so due to fewer links. Since the vowel
classes are overlapping and need more information for their proper partitioning,
model SN could not perform well as compared to model AN. For details on the

comparative results, one may refer to [19].

Neuro-fuzzy models for feature selection and classification 497

25 +
o [+] o
g6 om]
[=2] o
o oo o
2| oo o o of
a oo o
SO0 O o0
(4] -
. »]
16k LR R R
L [R
E W
L)
. -
it had L B El
0.5)
1 2 3 4 &] T L]

Fig. 17.5 Scatter plot SL — PW of Iris data. Here '., '+' and ‘o’ represent classes Iris
setosa, Iris versicolor and Iris virginica, respectively

8 T — T —
n o
o n o
e
6l o <! a o
“a ooB °°o
“E
5
' o. i!!"‘
T4 .. ‘o!t
$.
. .
I e
3 L]
2r .
AT
L.
1
s 3
1] os 1 1.5 2 26 3 35 & 45
5w

Fig. 17.6 Scatter plot SW —~ PL of Iris data. Here *.", ‘+' and ‘o’ represent classes Iris
setosa, Iris versicolor and Iris virginice, respectively

17.6 Conclusions and Discussion

We have shown here how neuro-fuzzy integration can be exploited for develop-
ing methodologies for feature selection and classification. Various connectionist

498 R. K. De and 5. K. Pal

5 T T T —_—r —r T
[+ (=] a
a 000 0
o o o
o 00 o
o B0 o
aog
cooooe
+
0 e
l.j- . * LLE A2

Gooo

Oedsd s

E a8 abes
LA LN

e

i o rEE 44

Fig. 17.7 Scatter plot SW — PW of Iris data. Here *.’, '+’ and ‘o’ represent classes Iris
setosa, Iris versicolor and [ris virginica, respectively

o a
"m ooe [+]
oo [
=22 ads) a
2 fves] e o
o a
oo Wes o
o e
+t+ @ [
1.5 LA =)
 ae 9
E . e
Her n
* -
1 EXE N
0S8F
0 . . .
[] 1 2 3 4 5 8 7]

Fig. 17.8 Scatter plot PL — PW of Iris data. Here ‘", ‘+' and ‘o’ represent classes Iris
setosa, [ris versicolor and [ris virginica, respectively

models have been designed. Feature selection algorithms assume interdepen-
dencies of the features. The unsupervised model does not need to know the
number of clusters. The incorporation of fuzziness at various levels of the
knowledge-based networks helps in modeling uncertainty in both input repre-

Neuro-fuzzy models for feature selection and classification 499

Table 17.3 Classification performance of knowledge-based models on vowel data

Model | Class Score(%)
Training | Testing

7] 42.86 27.69
a 87.5 86.42
AN i 94.12 87.74
u 100.0 82.35
e 90.0 69.52
o 100.0 93.83
Overall 90.59 78.63

(7] 0.0 0.0
a 62.5 58.02
SN i 94.12 87.74
u 100.0 82.35
e 85.0 68.45
0 94.44 93.21
Overall | 82.35 73.79

sentation and output decision.

Individual feature ranking, as obtained by the neuro-fuzzy feature selection
methods, conforms well to those obtained using other methods [21, 23, 37].
This ranking is also validated with respect to classification performance/clustering
ability (using k-NN classifier and fuzzy c-means clustering algorithm), and
class/cluster structures (using scatter plots) [9, 24]. The knowledge-based sys-
tem learns faster than other related models, and provides superior recognition
score.

References

[1] M. Banerjee, S. Mitra, and S. K. Pal, “"Rough fuzzy MLP: Knowledge
encoding and classification," IEEE Trans. on Neural Networks, vol. 9,
pp. 1203-1216, 1998.

[2] J. Basak, R. K. De, and S. K. Pal, “Unsupervised feature selection

500

R. K. De and S. K. Pal

using neuro-fuzzy approach,” Pattern Recognition Letters, vol. 19,
pp. 097-1006, 1998.

[3] R. Battiti, “Using mutual information for selecting features in super-
vised neural net learning," IEEE Trans. on Neural Networks, vol. 5,
pp. 537-550, 1994,

[4] K. W, Bauer, Jr., S. G. Alsing, and K, A. Greene, “Feature screen-
ing using signal-to-noise ratios," Neurocomputing, vol. 31, pp. 29-44,
2000.

[5) L. M. Belue and K. W. Bauer, Jr., "Determining input features for
multilayer perceptrons,” Neurocomputing, vol. 7, pp. 111-121, 1995,

[6] J. C. Bezdek and S. K. Pal, eds., Fuzzy Models for Pattern Recognition:
Methods that Search for Structures in Data. New York: |EEE Press,
1992,

[7] G. Castellano and A. M. Fanelli, “Variable selection using neural-
network models," Neurocomputing, vol. 31, pp. 1-13, 2000.

[8] R. K. De, N. R. Pal, and S. K. Pal, “Feature analysis : Neural net-
work and fuzzy set theoretic approaches," Pattern Recognition, vol. 30,
pp. 1579-1590, 1997.

[9] R K. De, J. Basak, and S. K. Pal, "Neuro-fuzzy feature evaluation
with theoretical analysis," Neural Networks, vol. 12, pp. 1420-1455,
1999,

[10] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems," Annals of Eugenics, vol. 7, pp. 179-188, 1936.

[11] L. M. Fu, “Knowledge-based connectionism for revising domain the-
ories,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 23,
pp. 173-182, 1993.

[12] K. Hirota and W, Pedrycz, “Knowledge-based networks in classification
problems," Fuzzy Sets and Systems, vol. 59, pp. 271-279, 1993.

[13] A. Kowalczyk and H. L. Ferra, "Developing higher-order neural net-
works with empirically selected units," /EEE Trans. on Neural Net-
works, vol. 5, pp. 698-711, 1994.

[14] P.van de Laar and T. Heskes, “Input selection based on an ensemble,"
Neurocomputing, vol. 34, pp. 227-238, 1995.

[15] B. F. Leao and A. F. Rocha, “Proposed methodology for knowledge
acquisition: A study on congenital heart disease diagnosis,” Methods
of Information in Medicine, vol, 29, pp. 30-40, 1990,

[16] R. J. Machado and A. F. Rocha, "A hybrid architecture for connec-
tionist expert systems,” in Intelligent Hybrid Systems (A. Kandel and

Neuro-fuzzy models for feature selection and classification 501

G. Langholz, eds.), Boca Raton: CRC Press, 1992.

[17] D. P. Mandal, C. A. Murthy, and S. K. Pal, "Determining the shape
of a pattern class from sampled points in R2," International Journal
of General Systems, vol. 20, pp. 307-339, 1992.

[18] R. Masuoka, N. Watanabe, A. Kawamura, Y. Owada, and K. Asakawa,
"Neurofuzzy system — fuzzy inference using a structured neural net-
work," in Proceedings of the 1990 International Conference on Fuzzy
Logic and Neural Networks, lizuka, (Japan), pp. 173-177, 1990,

[19] S. Mitra, R. K. De, and S. K. Pal, "Knowledge-based fuzzy MLP for
classification and rule generation,” IEEE Trans. on Neural Networks,
vol. 8, pp. 1338-1350, 1997,

[20] S. Mitra, P. Mitra, and S. K. Pal, "Evolutionary modular design of
rough knowledge-based network using fuzzy attributes," Neurocom-
puting, vol. 36, pp. 45-66, 2001.

[21] S. K. Pal, “Fuzzy set theoretic measures for automatic feature evalu-
ation: I, Information Sciences, vol, 64, pp. 165-179, 1992,

[22) S. K. Pal, J. Basak, and R. K. De, "Fuzzy feature evaluation index
and connectionist realization," Information Sciences, vol. 105, pp. 173~
188, 1998.

[23] S. K. Pal and B. Chakraborty, "Fuzzy set theoretic measures for auto-
matic feature evaluation," [EEE Trans. on Systems, Man, and Cyber-
netics, vol. 16, pp. 754-760, 1986.

[24] S. K. Pal, R. K. De, and J. Basak, "Unsupervised feature evaluation:
A neuro-fuzzy approach,” [EEE Trans. on Neural Networks, vol. 11,
pp. 366-376, 2000.

[25] S. K. Pal and D. Dutta Majumder, Fuzzy Mathematical Approach to
Pattern Recognition. New York: John Wiley (Halsted Press), 1986.

[26] S. K. Pal, A. Ghosh, and M. K. Kundu, eds., Soft Computing for Image
Processing. Heidelberg: Physica Verlag, 2000,

[27] S. K. Pal and D. P. Mandal, “Linguistic recognition system based on
approximate reasoning,” Information Sciences, vol. 61, pp. 135-161,
1992,

[28] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets and classi-
fication," IEEE Trans. on Neural Network, vol. 3, pp. 683-697, 1992,

[29] S. K. Pal and S. Mitra, Neuro-fuzzy Pattern Recognition: Methods in
Soft Computing. New York: John Wiley, 1999,

[30] S. K. Pal and P. K. Pramanik, “Fuzzy measures in determining seed

502

R. K. De and S. K. Pal

points in clustering," Pattern Recognition Letters, vol. 4, pp. 159-164,
1986.

[31] S. K. Pal and A. Skowron, eds., Rough Fuzzy Hybridization: A New
Trend in Decision-Making. Singapore: Springer Verlag, 1999.

[32] S. K. Paland P. P. Wang, eds., Genetic Algorithms for Pattern Recog-
nition. Boca Raton: CRC Press, 1996.

[33] W. Pedrycz and A. F. Rocha, “Fuzzy-set based models of neurons and
knowledge-based networks," IEEE Trans. on Fuzzy Systems, vol. 1,
pp. 254-266, 1993.

[34] K. L. Priddy, S. K. Rogers, D. W. Ruck, G. L. Tarr, and M. Kabrisky,
"Bayesian selection of important features for feedforward neural net-
works," Neurocomputing, vol. 5, pp. 91-103, 1993.

[35] D. W. Ruck, S. K. Rogers, and M. Kabrisky, “Feature selection using a
multilayer perceptron,” Journal of Neural Network Computing, vol. 20,
pp. 40-48, 1990,

(36] R. Setino and H. Liu, “Neural-network feature selector," [EEE Trans.
on Neural Networks, vol. 8, pp. 654-662, 1997.

[37] J. M. Steppe and K. W. Bauer, Jr., “Improved feature screening in
feedforward neural networks," Neurocomputing, vol. 13, pp. 47-58,
1996, pp. 40-48, Fall 1990.

[38] G. G. Towell and J. W. Shavlik, “Knowledge-based artificial neural
networks," Artificial Intelligence, vol. 70, pp. 119-165, 1994.

Neuro-fuzzy models for feature selection and classification 503
Appendix

Operation of the Supervised Neural Network Model for Feature
Selection

When the kth auxiliary node of the network is activated, input node i has an
activation value

wik = (i)™, (17.26)

where I is the total activation received by the ith input node for the pattern
x, when the auxiliary node k is active. ;. is given by

Lk = oy — my. (17.27)

x; is the external input (value of the ith feature for the pattern x) and —my;
is the feedback activation from the kth auxiliary node to the ith input node.
The activation value of the kth output node is given by

vk = 9(yk), (17.28)

where g(), the activation function of each output node, is a m-function as
given in (17.4). yi, the total activation received by the kth output node for
the pattern x, is given by

Ye = (Z Uik X (%%)2) ’ . (17.29)

Note that yi is the same as di (in (17.5)) for the given input pattern x, and
v is equal to the membership value of the input pattern x in class Cy.

The expression for E(w) (from (17.1)), in terms of the output node acti-
vations, is given by

V(1 — i)
B(w) = : w0
k' #k

The training phase of the network takes care of the task of minimization of
E(w) with respect to w which is performed using simple gradient-descent
technique. The change in w; (Aw;) is computed as

Rupp= —n%‘f},w, (17.31)

504 R, K. De and 8. K. Pal

where 77 is the learning rate.
For the computation of 2£., the following expressions are used.

D) — | [[1 - 200)G + [1 - 20) 5], (17.32)
2l = (1 - 2w 3%, (17.33)

Ouk = —4dy (x) 2 0 < di(x) < 4,

= —d4[1 — di(x)] 2552 1 < di(x) < 1, (17.34)
=0, otherwise,
and
ad R e
s = (e Yo Ty, (17.35)
Alternately, we can also express F as a function of Wy;, where Wy, = (ﬁ,‘_)rk‘

and then minimize £ with respect to Wy;. In this case, during training phase,
the values of Wy;s can be updated using the same gradient-descent technique.
After training, the degree of importance of ith feature can be computed as

ol

Operation of the unsupervised neural network model for feature
selection

When pth and gth patterns are presented to the input layer, the activation
produced by ith (1 <4 < 2n) input node is

o0 = () (17.36)

where

u&u) = Tpi, for 1 <i<n and
(0)

; (17.37)
Uiy = Zgiy for 1 <4< n

represent the total activations received by ith and (i + n)th (1 < i < n)
input node, respectively. The total activation received by jth hidden node
(connecting ith and (i 4+ n)th, 1 <@ < n, input nodes) is given by

u}” =1x v?’} + (1) xv® | for1<i<n, (17.38)

i+n?

Neuro-fuzzy models for feature selection and classification 505
and the activation produced by it is
o = w{)?. (17.39)

The total activation received by the output node which computes ;7 -values,
is

EW ¥, (17.40)

and that received by the other output node which computes x@-values, is

2 1
£09 o (17.41)
7
Therefore, ug?) and ug) represent d2, as given by (17.14) where 0 < w; < 1
and w; = 1, Vi, reSpectiver The activations, vm and um, of the output

nodes represent ,uap,]r and ,u for pth and gth pattern pair, respectively. Thus,

)4

=1- —’b— if (uP)} <D, (17.42)
=0, otherwise,

and
=1- @9 if W)} <D, (17.43)
=0, otherwise.

The evaluation index (which is computed off the network), in terms of these
activations, is then written (from (1?.10)) a

P #p
The task of minimization of E(W) with respect to W is performed using

gradient-descent technique, where the change in W; (AW;) is computed as

& V. (17.45)

a
AWj = —T}a—ﬁ?,
2

Here 7 is the learning rate.

506 R. K. De and S, K. Pal

For computation of correspondlng to a pair of patterns, the following
expressions are used.

OE(W) 1 (2] v

oW, = [1 S] S (17.46)
avs))" (2)

W = __D_‘L if (up’)} < D, (17.47)

=0, otherwase,

and
@

i (17.48)

ow; Vi

Chapter 18

ADAPTIVE SEGMENTATION
TECHNIQUES FOR
HYPERSPECTRAL IMAGERY

H. Kwon, S. Z. Der and N. M. Nasrabadi

U. S. Army Research Laboratory
Adelphi, MD 20783-1197, U.S.A

e-mail: heesung_kwon@yahoo.com
{sder,nnasraba} @arl.army.mil

Abstract

The authors have presented a supervised and an unsupervised
segmentation algorithm that adapt to the local characteristics of
hyperspectral imagery. Both use an iterative methed in which the
images are first coarsely segmented, followed by more refined seg-
mentation in successive iterations. Local adaptation is satisfacto-
rily incorporated into the successive iterations using local feature
extraction and the segmentation results of the previous iteration.
A modified cost function, that incorporates a spatial smoothness
term into a spectral distance measure, is used in both algorithms.
In the supervised technique, the quadtree-based segmentation used
is effective in representing the underlying spectral structure of the
hyperspectral images, resulting in lower computational cost. In the
unsupervised technique, the iterative use of a local spectral dis-
similarity measure provides a set of values that can discriminate
among different materials. The unsupervised approach proves to
be superior to other unsupervised algorithms, particularly for com-
plex hyperspectral scenes containing mixtures of a large number of
different materials.

507

508 H. Kwon, 8. Z. Der and N. M. Nasrabadi
18.1 Introduction

As the demand for digital battlefield technologies grows, automatic target
recognition (ATR) techniques have been increasingly used. ATR systems of-
ten consist of two main algorithmic components — target segmentation (or
detection) and identification. Since target identification depends on preceding
segmentation results, overall performance relies on segmentation performance.
Hyperspectral remote sensing techniques have been widely applied in military
applications (e.g., ATR), environmental monitoring, atmospheric and space
applications.

Segmentation of hyperspectral imagery is based on discrimination between
materials according to the spectral signature in thermal emission [2, 14, 16]
or solar reflection [5, 9]. A hyperspectral image region filled with the same
material type tends to show strong spectral similarity, while different mate-
rials exhibit differences in spectral reflectivity, especially in certain regions of
the spectrum [9]. The local spatial relationships of the neighboring pixels in
hyperspectral images also play an important role in segmentation when they
are effectively combined with the spectral information. Accordingly, hyperspec-
tral (or multispectral} segmentation algorithms that simultaneously utilize both
spectral and spatial characteristics of objects, achieved better segmentation or
detection performance [1, 3, 7, 8, 9, 17].

Adaptive statistical classifiers that maximize the a posteriori probability
density, given the distribution of classes, have been frequently used to effectively
detect the spectral differences [1] and the intensity differences in single-band
images [10]. The techniques iteratively estimate the parameters (mean and co-
variance) of the class-conditional densities to adapt to the local characteristics
of the image, under the assumption that each class has a different Gaussian
distribution. However, the computational cost of these methods becomes very
high as the image size and spectral dimensionality increase. This limits their
practical use for hyperspectral applications. There is also no guarantee that the
spectral distribution of each class follows a Gaussian distribution. Therefore,
there has been a strong demand for an effective technique that can provide
both improved segmentation performance and less computational cost.

We introduce an adaptive segmentation technique for hyperspectral im-
agery based on an iterative method, in which segmentation at a given itera-
tion depends closely on the segmentation results at the previous iteration [11,
12], The hyperspectral images are first coarsely segmented and then the seg-
mentation is successively refined using recursive local feature extraction based

Adaptive segmentation techniques for hyperspectral imagery 509

on either quadtree decomposition or a sliding window-based method [8). Dur-
ing the segmentation process, each cluster center (mean vector that serves as a
spectral template for a material type) is recursively updated over a local image
region based on the segmentation results of the previous iteration. Local adap-
tation is desirable because spectral differences in illumination or atmospheric
attenuation as well as material variation can cause pixels of the same mate-
rial type to display different spectral signatures. The method does not require
knowledge of the probability distribution of each material type, and substan-
tially reduces the computational cost because its decision logic is much simpler.
Quadtree decomposition has been frequently used to represent the underlying
structure of the various forms of digital data [13]. In the quadtree decomposi-
tion, the hyperspectral images are adaptively decomposed into the multiscaled
subregions in which the spectral data are approximately homogeneous. A local
feature vector (i.e., a material centroid) and its corresponding cost function
for each material type (e.g., the target and the vegetation) are recursively esti-
mated and updated over the decomposed regions, so that increasingly accurate
segmentation results are achieved as decomposition proceeds. In the sliding
window-based method, for each pixel the feature vector of each material type
is estimated over the sliding window that is centered on the corresponding in-
put pixel, whose size is reduced progressively during the segmentation process.
Since the sliding window-based technique is a pixel-based approach, it provides
better segmentation performance than the quadtree-based method, at the ex-
pense of higher computational cost. However, the computational cost of the
sliding window-based method is still much less than that of adaptive statistical
classifiers. The cost function of both methods consists of a spatial constraint
term and the Euclidean distance between each pixel spectrum and the material
centroid, The spatial constraint term is used to penalize pixels that are classi-
fied differently from their neighbors in the previous iteration, providing spatial
continuity throughout the segmentation process.

We also introduce an unsupervised segmentation technique, in which the
spectral characteristics of material types do not need to be known a priori.
The unsupervised technique is designed to apply to hyperspectral scenes with
a large number of different material types.

510 H. Kwon, S. Z. Der and N. M. Nasrabadi
18.2 Hyperspectral imaging system

In the hyperspectral imaging system that we deal with, the image of a tactical
scene that contains military targets and background vegetation is first taken
by an imaging spectrometer at a spectral range of 460 to 1000 nm with a step
size of 10 or 20 nm. The imaging spectrometer then splits the light reflected
from the scene according to frequency bands, and produces 55/28 spatially
registered image bands, as shown in Fig. 18.1. We call this collection of bands,
in order of decreasing spectral band frequencies, a hyperspectral cube (see
Fig. 18.2). Two or four different polarizations are used for each spectral band,
doubling or quadrupling the number of images per band. Accordingly, each
image in the hyperspectral cube corresponds to one specific frequency band in
the whole spectral range. Using the spectral band values along the spectral
domain for each pixel in the scene, one can form a spectral band-value curve.
Fig. 18.3 shows an example of the spectral band-value curve along with its
band information.

18.3 Segmentation of hyperspectral imagery

In this section, we briefly describe two frequently used segmentation techniques
for hyperspectral imagery, which are a template-matching technique and a
statistical classifier.

18.3.1 Template-matching technique

The template-matching technique is based on a spectral distance measure be-
tween a prototype vector (i.e., a template) of each material type and an input
pattern. This simple method has low computational cost because each pixel
spectrum is considered independently of its neighbors. The prototype vector
f; is created by calculating the mean of a set of sample patterns that be-
longs to the corresponding material type. It is then used as a template for the
minimum-distance classification. A cost function C; for material 1 is estimated
for each input pattern, and the corresponding input pattern is classified into
the material with the lowest cost function. The cost function C; is defined as

Ci = |z - fill, (18.1)

Adaptive segmentation techniques for hyperspectral imagery 511

Hyperspecral
cube

460 nm

460 nm

Lisht from Imaging == .
Ol;g X lt‘ll’nl spectior e
YPESPEs meter
seene

1000 nim

Fig. 18,1 Hyperspectral imaging system

where || - || represents the Euclidean norm, and z represents the input vector.
Fig. 18.5 shows a two-class template-matching example for the hyperspectral
images.

Since the mean vector uses the global mean, and thus does not adjust to
spatial variation of the spectral signature of each material type, the template-
matching technique generally produces unsatisfactory segmentation performance.
Improvements can be made by incorporating a local adaptation process, in
which the prototype vector is gradually updated over a local region whose

size is reduced during the segmentation process. The adaptive technique is
introduced in Section 18.4.

512 H. Kwon, 8. Z. Der and N. M. Nasrabadi

18.3.2 Statistical classifiers

A statistical classifier is based on a probabilistic approach, in which an input
pattern is classified to a particular material type with the minimum classification
errors [4]. By the Bayes theorem, the a posteriori probability density p(m;|z),
the probability of the input pattern i relative to the material type m;, can be
expressed as

p(my|z) o< plx|msi)P(m;) 1=1,2,..- K, (18.2)

where p(z|m;) represents the conditional probability of the input pattern given
the distribution of the material type m;, P(m;) represents the a priori density,
and K represents the number of different material types. A statistical classi-
fier that classifies the input pattern into the material type with the maximum
p(m;|z) is called a Bayes classifier. In the Bayes classifier, both the distribution
of each material type and P(m;) must be known a priori. In most practical
applications, the conditional probability is obtained under the assumption that
each material type has a different Gaussian distribution. Accordingly, the con-
ditional probability associated with the input vector can be easily calculated by
identifying the mean and covariance of the corresponding material type. The
statistical approach based on the Bayes classifier is usually superior to the non-
adaptive template-matching technique in terms of segmentation performance,
while it requires much higher computational cost.

18.4 Adaptive segmentation based on iterative local feature ex-
traction

18.4.1 Initial segmentation

The template-matching technique based on a minimum-distance classifier (9]
is used to obtain an initial segmentation. For each material type, we first
create 3 representative spectral band-value curve (a mean curve) by averaging
the spectral band-value curves of the training pixels for that material. The
spectral band-value curves are obtained from several square windows manually
extracted from the images, as shown in Fig. 18.2. Several training hyperspectral
cubes are used in this process. The spectral band-value curves are normalized
by their means to reduce variation in the pixel curves caused by differences
in illumination. For each material, we create a prototype feature vector from
its representative curve by selecting and concatenating only the spectral band

Adaptive segmentation techniques for hyperspectral imagery 513

A Y

b

P i e
e

—mmmm = el o A=
e 1 UL,

Hyperspectral image cube

Fig. 18.2 Creation of the spectral band-value curves for the target and the vegetation
regions in a hyperspectral cube

areas that give substantial discrimination among different materials. Use of
the prototype feature vectors created from the selected band areas further
reduces the computational cost without affecting segmentation performance.
Fig. 18.4 shows the representative spectral band-value curves used for the
target and the vegetation materials, and the prototype feature vectors inside
the box areas. Using the prototype feature vectors, we perform segmentation
for the hyperspectral cubes. For each pixel in the scene, its corresponding
spectral band-value curve is tested against the prototype feature vectors of
different materials. Each pixel in the scene is classified as the particular material
that gives minimum distance between that material's feature vector and its
corresponding test curve.

514 H. Kwon, 8. Z. Der and N. M. Nasrabadi

250 F T T n,l - . =y
Visible bands | Nearinfrared bands
Blue Green Red ‘
. |
5 '.
& .'
B H
i 100 :
mr E]
1] S S ol : 1 i N
’ © 2 Band Numbafr “ %
460 nm 750 nm 1000 nm

Fig. 18.3 An example of the spectral band-value curve, along with band information

18.4.2 Quadtree-based segmentation

The quadtree-based segmentation technique is based on quadtree decomposi-
tion and the use of a modified minimum-distance classifier on the nodes of a
quadtree structure. The nonadaptive method described in Section 18.4.1 pro-
vides the prototype feature vectors that serve as the initial feature vectors of
the materials (i.e., the initial centroids of the target and vegetation regions),
and the classification results serve as the initial segmentation. The algorithm
recursively decomposes the hyperspectral images until they are divided into
multiscaled rectangular regions in which the spectral band-value curves are
similar to one another. The typical quadtree structure for a hyperspectral cube
is shown in Fig. 18.6. Each time a node X™ is decomposed into four equal
quadrants, X*~!, i=1,2,3,4, the algorithm updates the local feature vec-
tor of each material type and re-estimates the corresponding cost function for
each quadrant. The above process is repeated until the decomposition process
ends. The cost function consists of (i) a Euclidean distance term, measured

Adaptive segmentation techniques for hyperspectral imagery 515

Prototype vectors Hyperspectral

cube L

Object A --- :-‘_-’- -
~ oo TaR A
o
] I.
- LI} :
J % o

I]
I
Object A \ -
! \ ~ Object B

Template N

matching | TTNA

/\/\f‘\‘/\ / Input pattern

Object B
Fig. 18.4 Two-class template-matching example

between the feature vector of each material type and the input vector and
(i) a spatial similarity term. The spectral band values of the selected band
areas are averaged for each material to form the feature vector. The spatial
constraint term is used to impose a spatial smoothness constraint on the pixel
classification. The cost function for material 7 at pixel location ¢ of the node
X™is

Ch = llze = f2ll +) Vn(a), (18.3)
N

where || - || represents the Euclidean norm, z. and fi represent the input
vector at pixel location ¢ and the feature vector of material j in the corre-
sponding node, respectively, and Yy V() represents the spatial constraint
term. V(z) is defined as

—a ifwg=jandgeN

Vn(e) = {+a if wg # j and g € N,

516 H. Kwon, 5. Z. Der and N. M. Nasrabad:

where o represents a positive value, w, represents segmentation of the pixel
at location g, and N represents the neighborhood of the pixel at ¢. If the
neighboring pixel was classified as material j in the previous segmentation for
the parent of the current node, the cost function decreases by a; otherwise it
increases by . The feature vector fJ is the result of averaging the correspond-
ing spectral-band values of the pixels of material j within the corresponding
block. For each pixel in the corresponding node, the cost function for each
material type is calculated, and the corresponding pixel is classified into the
material with the lowest cost function. As the decomposition process proceeds,
the feature vector gradually adapts to the local spectral contents of the local
region. The decomposition and segmentation process stops if the number of
pixels that are classified differently from the classification in the parent node is
lower than a threshold, or the predefined smallest size of the block is reached.
Fig. 18.7 shows how the algorithm works. Fig. 18.8 shows the performance
improvement of the quadtree-based method over the nonadaptive method [9]
obtained on our data set. The target area is decomposed into small blocks
because of the spectral difference from the neighboring vegetation area.

18.4.3 Sliding window-based segmentation

A sliding window-based segmentation method is an adaptive segmentation
technique that iteratively extract a local feature over the local region; the
algorithm is a modified version of the previous adaptive algorithm based on
the statistical classifiers [1, 10]. The algorithm is designed to provide better
segmentation performance. The algorithm is designed to provide better seg-
mentation performance than that of quadtree decomposition, mainly due to
its pixel-based approach, at the expense of higher computational cost. Like
the quadtree decomposition method, the initial feature vectors and the clas-
sification results are obtained from the nonadaptive method described in Sec-
tion 18.4.1,

For each pixel, the window-based algorithm iteratively updates the local
feature vector of each material type and measures the corresponding cost func-
tion for classification. It uses the same cost function as that of quadtree
decomposition. The cost function for material j at the pixel location c is

C = llze— £l +_ Vn(a), (18.4)
N

where z.. and f7 represent the input vector and the feature vector of the mate-

Adaptive segmentation techniques for hyperspectral imagery 517

100 r T T

Veggé‘iﬂ'?l'} -

n
o

o

Normmalized mean

R
(=]

0 10 20 40 50

Spectral baSEds

Fig. 18.5 The normalized representative spectral band-value curves for the target and
vegetation regions. The prototype feature vectors inside the box areas give substantial
band-value difference

rial j over the corresponding sliding window, respectively, and 3"\, Viv(z) rep-
resents the same spatial constraint term as that of the quadtree-based method.
For each pixel, the feature vector of each material is estimated over a sliding
window that is centered on the corresponding input pixel, whose size is reduced
progressively to adapt to the local details. The feature vector f7 is obtained by
averaging the spectral-band values of the pixels of material j within the sliding
window, as shown in Fig. 18.9. The method alternates between updating the
local feature vector f7 and obtaining the segmentation @. Fig. 18.10 shows
how the window-based algorithm works. At the initial segmentation, the size
of the sliding window is the same as the size of the whole image, so the mate-
rial feature vectors are globally identical. The iterative classification proceeds
for a fixed window size, during which the cost functions and the correspond-
ing segmentation are repeatedly re-estimated at each iteration. The iteration
stops if the number of pixels that are classified differently than in the previous
iteration is lower than a threshold, or the predefined maximum number of it-

518 H. Kwon, 8. Z. Der and N. M. Nasrabadi

Hyperspectral cube

/

fisl e

N
A /
@ : Leaf node
/\\ Parent node
1
[X N J
(11 1] 2800 0000 314

Fig. 18.6 The quadtree data structure of a hyperspectral cube

erations is reached. After the segmentation stabilizes, the size of the sliding
window decreases by a factor of two and the feature vector of each type of
material for the corresponding window is re-estimated for each pixel according
to the local pixels in each image. Thus, each pixel has a different set of feature
vectors during every cycle except the first. The same iterative procedure as
that of the initial segmentation is applied. If the stop criterion is met, the
sliding window size is further reduced. This adaptive process continues until
the size of the sliding window reaches its smallest size. Fig. 18.11 shows the
performance improvement of the window-based method over the nonadaptive
method [9] obtained on our data set. The window-based method more accu-
rately segments the target (an HMMWYV) area due to its ability to exploit the

Adaptive segmentation techniques for hyperspectral imagery 519

Nonadaptive initial segmentation

A

w for a root node xm

Decompose x™ into four
aqual quadrams, xm-1
wd Ietq—l

]

I 1
' |
| 1
! 1
! i
' |
! |
¥ |
I |
! I
! Foreach xm-! ' m=m-—1)
1

| :
| |
! 1
i |
| |
i I
I]
¥ 1
! |
| 1

obtain new feature vectors

Y

Given feature vectors obtain
new segmentation w7/

24

¢
L

a%,la tree decom sition Y
a ptwe segmentatio

process wn=t converged
or q=max. of

?

Fig. 18.7 The quadtree-based adaptive segmentation algorithm

local details.

18.4.4 Simulation results

We used three tactical hyperspectral cubes as training data to obtain the ini-
tial feature vectors for the target and the vegetation in the initial segmentation
process. The band areas used to create the prototype feature vectors from the
spectral band-value curves were from the 11th band through the 39th band; a
total of 29 bands out of 55 bands were used. The size of the tactical scene
to be segmented was 640x480. The smallest block size of the quadtree de-
composition used was 40x30. For the window-based method, we used the

520 H. Kwen, S. Z, Der and N. M. Nasrabadi

e e e s s LR e R R e SEes s aE e T s
CCMe N e S R e e ZEE L
Y EEiE i e E e
] 1
FIEE S
! !
5 i 2 2
T e =
e F “EH
by sy b
1 B 5L D .
SEz=ss: -
'= E
} =SESEE
1 s il
2 e T _'] s &2 ++'

()

I'ig. 18.8 Segmentation results: (2) 32nd band image from cube 1 (target is inside
the dotted box area), (b) quadtree structure of cube 1, (¢) nonadaptive method, and
(d) quadtree-based method. Note that the entire target area belongs to the smallest
decomposed blocks

variable-size sliding windows for estimating the local feature vectors, and the
smallest sliding-window size was 40x30. The parameter « for the spatial con-
straint term used for both methods was 5. The four neighboring pixels were
used to impose the spatial constraint. The stopping threshold was 1% of the
total number of pixels in the image. The maximum number of iterations for
each sliding window size was 5 in the window-based method. We satisfac-
torily segmented more than 10 hyperspectral cubes using both methods, and
they provided much improved segmentation performance over the nonadap-
tive method for all the cubes tested. The quantitative performance results
for both methods are presented in Table 18.1 for the four cubes that con-
tain small targets; the two adaptive methods showed dramatic improvement
over the nonadaptive method since they are suitable for the detection of small

Adaptive segmentation technigues for hyperspeciral imagery 521

Sliding window Collect spectral-band values
\ "- =3 \\
i N Nx

e Averaging

Feature vector f

Fig. 18.9 Feature vector estimation based on variable-size sliding window

targets due to their powerful local adaptivity. The window-based method pro-
vided better segmentation performance than that of quadtree decomposition
mainly due to its pixel-based approach at the expense of higher computational
cost. Figs. 18.8 and 18.11 show the segmentation results of the nonadaptive
method [9] and the corresponding adaptive segmentation method on one of the
cubes. Both adaptive methods provide a better segmentation of the target.
For cube 2 in Table 18.1, the nonadaptive method barely recognizes the target
area, while the adaptive methods capture almost the entire target area. The
average running time of the quadtree-based and window-based algorithm was
about 10 and 30 minutes, respectively, on a Sun Sparc-20 machine, while the
adaptive statistical technique took a lot more time to complete. However, the
major improvements of the window-based algorithm were made in the early
iterations with relatively large window sizes before the smallest window was
used, as can be seen in Table 18,1. Accordingly, we can further reduce the
running time of the window-based algorithm and maintain reasonable segmen-
tation performance by increasing the smallest window size (e.g., it took less
than 15 minutes when the smallest window size was 160x120),

522 H. Kwon, 8, Z. Der and N, M, Nasrabadi

Nonadaptive initial
segmentation

- |-

A

i A
Given w
obtain new feature vector
Reduce
window size
Given feature vector by a factor of 2

. LA)
obtain new segmentation w

N

w converged
or reached maximum
iteration ?

1

_Small_esh No
window size?

Yes

Y

Stop

Fig. 18.10 The sliding window-based adaptive segmentation algorithm

18.5 Adaptive unsupervised segmentation

18.5.1 Introduction

Most previous segmentation algorithms (such as, minimum-distance classifiers
based on a template-matching technique [9, 8], adaptive statistical classifiers [1,
10]) were based on supervised methods, which require the a priori knowledge
of the spectral characteristics for each material type. As the applications of
hyperspectral remote sensing techniques increase, more material types tend to
be included in complex hyperspectral scenes. Accordingly, it is often difficult

Adaptive segmentation technigues for hyperspectral imagery 523

(&) Original hyperspectral image

-

(b) Non-adaptive method

(c) Adaptive method

Fig. 18.11 Performance comparison between the nonadaptive method and the window-
based adaptive method using test cube. Target is inside the dotted box area in the
original image

or impractical to obtain a priori knowledge of the spectral characteristics for
all the material types. This difficulty suggests the use of unsupervised segmen-
tation techniques, where spectral features are obtained and processed without
using the a priori knowledge of the spectral characteristics. Recently, an un-

524 H. Kwon, 8. Z. Der and N, M. Nasrabadi

Table 18.1 The segmentation performance of the nonadaptive method and the two
adaptive methods for the target region. Each segmentation result for the sliding window-
based method was obtained using the corresponding sliding window ranged from 640 x
480 through 40 x 30. As the sliding window size decreases, segmentation performance
increases

Cube 1 | Cube 2 | Cube 3 | Cube 4

Nonadaptive
method (%) 45.26 3.85 72.89 | 54.95
quadtree-based
method (%) 76.84 82.88 93.11 80.01

75.00 19.23 79.11 62.61
Window 80.53 71.43 89.78 72.79
based 81.05 92.31 95.56 77.93
method (%) 81.32 96.15 96.89 82.88
81.53 98.35 97.78 83.78

supervised segmentation algorithm, which used VQ-based initial segmentation
and the subsequent iterative maximum a posteriori (MAP) estimation, was
developed for hyperspectral imagery with a relatively small number of spectral
bands [15]. However, the computational cost of the above method becomes
very high as the image size and spectral dimensionality increase, The prac-
tical use of the unsupervised segmentation algorithm based on a probabilistic
approach is limited for hyperspectral applications with high spectral dimension-
ality.

18.5.2 Unsupervised segmentation based on a spectral dissimi-
larity measure

An effective unsupervised texture segmentation technique based on a dissimilar-
ity measure using local Gabor coefficients was used in [6]. We present an adap-
tive unsupervised segmentation algorithm that provides a suitable dissimilar-
ity measure for segmenting hyperspectral images, with reduced computational
complexity and improved segmentation performance. The algorithm discrim-
inates among material types using an iterative spectral dissimilarity measure

Adaptive segmentation techniques for hyperspectral imagery 525

of the local spectral difference between materials. The algorithm consists of
(i) the initial segmentation based on a fixed spectral dissimilarity measure and
the k-means algorithm, and (ii) the subsequent adaptive segmentation based
on the iterative spectral dissimilarity measure over a local region whose size is
reduced progressively.

I/ Local window

® . .
™ ® L] L]
.
L]
.
£ .
. o] . Center pixel
. [o|e]e]
° " /
. . _
[]
- . e
o .
* .. . e *

Fig. 18.12 Randomly selected pixels and neighboring pixels

In the initial segmentation, for each pixel in the hyperspectral image, a
relatively large fixed size local window is placed around the pixel. Note that
each pixel corresponds to a spectral band-value vector in the spectral domain.
The spectral dissimilarity d; associated with pixel location i is defined as

_ >ien IS — Sl

d; N,

(18.5)
where || - || represents the Euclidean norm, B represents a set of randomly
selected pixels and the neighboring pixels within the local window, as shown in
Fig. 18.12, S; and S; represent the corresponding spectral band-value vectors
of the pixel at ¢ and j, respectively, and N; represents the number of pixels
selected (the randomly selected pixels and neighboring pixels) to estimate d;.
After the spectral dissimilarity of every pixel is obtained, a spectral dissimilarity
matrix D is formed. Each element of the matrix represents the degree of the
local spectral difference between the corresponding pixel and its neighboring
and randomly selected pixels within the local window. The spectral dissimi-
larity matrix provides a set of spectral-feature values quite suitable for initial

526 H. Kwon, S. Z. Der and N. M. Nasrabadi

clustering of the pixels, as shown in Fig. 18.13(b); the pixels within the same
material type tend to have similar values, while the values differ between dif-
ferent material types. Initial segmentation is then performed by applying the
k-means algorithm to the matrix. Fig. 18.13(c) shows the initial segmentation
results.

(d)

Fig. 18.13 Unsupervised segmentation results: (a) one of original hyperspectral images
taken at 740 nm, (b) spectral feature (spectral dissimilarity matrix) for initial segmenta-
Lion associated with the hyperspectral images to be segmented, (c) initial segmentation
results using k-means on the spectral dissimilarity matrix, and (d) segmentation results
corresponding to the smallest sliding window

A subsequent adaptive segmentation technique iteratively updates the local
spectral dissimilarity d; in a local window and measures the corresponding cost
function for classification of each pixel. The size of the window is progressively
reduced during the segmentation process; the window size starts from half of

Adaptive segmentation techniques for hyperspectral fmagery 527

that used in the initial segmentation. As the window size is reduced, each
element of the dissimilarity matrix gradually represents the corresponding local
spectral characteristics; therefore, increasingly accurate segmentation results
are obtained. The cost function consists of (i) the local spectral difference
term relative to the current pixel spectrum, and (ii) a spectral similarity term,
The spectral similarity term imposes a spatial smoothness constraint during
the segmentation process. The cost function for material k at pixel location i
is
>, (df

—d;
CcF = mF_l +) V(i) (18.6)
N

where d}‘ and N* represent the corresponding spectral dissimilarity of the pixel
at 7 and the number of pixels in the region classified as material k, respectively,
and 3, Viv () represents the spatial constraint term. Vi(i) is defined as

~a fwg=kand ge N
+a ifwg#kandgeN,

Vi) = {

where o represents a positive value, w, represents segmentation of the pixel
at location ¢, and N represents the neighborhood of the pixel at i. If the
neighboring pixel was classified as material k in the segmentation of the previous
iteration, the cost function decreases by a, otherwise it increases by a.

The cost function represents the average local spectral difference between
the pixel to be classified and the pixels in the local region classified as material
k. For each material type, the corresponding cost function is estimated, and
the pixel is then classified as the material with the lowest cost function; this
process assigns the input pixel into the material type with the most similar
spectral characteristics. Local adaptation of the proposed algorithm is obtained
by updating the cost function for each material type in the local region that
is defined by a sliding window whose size is progressively reduced by a factor
of two. The iterative classification proceeds for a fixed window size, during
which the cost functions and the corresponding segmentation are repeatedly
re-estimated at each iteration. The iteration stops if the number of pixels
that are classified differently than in the previous iteration is lower than a
threshold, or the predefined maximum number of iterations is reached. After
the segmentation stabilizes, the size of the sliding window is decreased by a
factor of two. This adaptive process continues until the size of the sliding
window reaches its smallest size.

528 H. Kwon, 8. Z. Der and N. M. Nasrabadi

18.5.3 Simulation results

Five-level segmentation is used when applying the k-means algorithm to the
initial segmentation results. 80 randomly selected pixels and four neighboring
pixels of the corresponding input pixel in a local sliding window were used
to estimate local spectral dissimilarity. The smallest sliding-window size was
40x30. The parameter o for the spatial constraint term used was 5. Several
hyperspectral images were segmented satisfactorily in an unsupervised manner,
showing superiority over existing unsupervised techniques. Fig. 18.13 shows the
material segmentation performed by the algorithm; note that the small airplane
is clearly distinguished from the road.

18.6 Conclusions

We have presented a supervised and an unsupervised segmentation algorithm
that adapt to the local characteristics of hyperspectral imagery. Both algo-
rithms used an iterative method in which the hyperspectral images were first
coarsely segmented and then the segmentation is refined in successive itera-
tions. Local adaptation was satisfactorily incorporated into the successive iter-
ations using local feature extraction and the segmentation results of the previ-
ous iteration. A modified cost function, that incorporated a spatial smoothness
term into a spectral distance (or difference) measure, was used in both algo-
rithms.

In the supervised technique, the quadtree-based segmentation proved to
be an effective method to represent the underlying spectral structure of the
hyperspectral images, providing less computational cost. Better segmenta-
tion performance was obtained by sliding window-based segmentation, mainly
because of the pixel-based local adaptation, at the expense of higher compu-
tational cost. However, the sliding window-based segmentation technique still
had much lower computational cost than adaptive statistical classifiers. The
choice between the two methods depends on the size and dimensionality of the
imagery used.

In the unsupervised technique, the iterative use of a local spectral dissim-
ilarity measure provided a set of values that can discriminate among different
materials. The unsupervised segmentation technique proved to be superior
to other unsupervised algorithms especially when a large number of different
materials are mixed in complex hyperspectral scenes.

Adaptive segmentation technigues for hyperspectral imagery 529

References

[1] E. L. Ashton, “Detection of subpixel anomalies in multispectral infrared
imagery using an adaptive Bayesian classifier,” IEEE Transactions on
Image Processing, vol. 36, pp. 506-517, 1998,

[2] J. Cheung, D. Ferries, and L. Kurz, “On classification of multispec-
tral infrared data," IEEE Transactions on Image Processing, vol. 6,
pp. 1456-1460, 1997.

[3] J. O. Eklundh, H. Yamamoto, and A. Rosenfeld, “A relaxation method
for multispectral pixel classification," IEEE Transactions of Pattern
Analysis and Machine Intelligence, vol. 1, pp. 72-75, 1980.

[4] R. C. Gonzalez and R. E. Woods, Digital Image Processing. New York:
Addison Wesley, 1993,

[5] M. Gottlieb, L. Denes, B. Kaminsky, P. Metes, and N. Gupta, “Hyper-
spectral and polarization imaging using an atof imager," in Proceed-
ings of the 3rd Annual ARL Fedlab Symposium, (College Park, MD),
pp. 23-27, Feb. 1999.

[6] T.Hofmann, J. Puzicha, and J. M. Buhmann, “An optimized approach
to unsupervised hierarchical texture segmentation,” in Proceedings of
IEEE International Conference on Image Processing, (Santa Barbara,
CA), 1997.

[7] R. L. Kettig and D. A. Landgrebe, “Classification of multispectral
image data by extraction and classification of homogeneous objects,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 14, pp. 19~
26, 1976.

[8] H. Kwon, S. Z. Der, and N. M. Nasrabadi, “An adaptive hierarchi-
cal segmentation based on quadtree decomposition for hyperspectral
imagery,” in Proceedings of IEEE Conference on Image Processing,
(Vancouver, Canada), 2000.

[9] H. Kwon, S. Z. Der, N. M. Nasrabadi, and H. Moon, “Use of hy-
perspectral imagery in material classification in outdoor scenes,” in
Proceedings of the SPIE, vol. 3804, (Denver, CO), pp. 104-115, 1999

[10] T. N. Pappas, “An adaptive clustering algorithm for image segmenta-
tion," IEEE Transactions on Signal Processing, vol. 40, pp. 901-914,
1992,

[11] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, "Scene labeling by
relaxation operation,” [|EEE Transactions on Systems, Man and Cy-
bernetics, vol. 6, pp. 420-433, 1976.

530

H. Kwon, 8. Z. Der and N. M. Nasrabadi

[12] A. Rosenfeld, “[terative methods in image analysis," Pattern Recogni-
tion, vol. 10, pp. 181-187, 1978,

[13] H. Samet, “The quadtree and related hierarchical data structure,”
ACM Computing Surveys, vol. 16, pp. 188-260, 1984,

[14] C. R. Schwartz, M. T. Eismann, and J. N, Cederquist, “Thermal
multispectral detection of military vehicles in vegetated and desert
background," in Proceedings of the SPIE, vol. 2742, (Orlando, FL),
pp. 286-297, Apr. 1996.

[15] Y. Tatsuya and D. Gingras, "Unsupervised multispectral image clas-
sification using MRF models and VQ method,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 37, pp. 1173-1176, 1999,

[16] B. Thai and G. Healey, “Invariant subpixel material identification in
hyperspectral imagery," in Proceedings of the DARPA Image Under-
standing Workshop, pp. 809-814, 1998.

[17] T. Watanabe, H. Suzuki, and R. Yokoyama, “Improved contextual
classifiers of multispectral image data,” EICE Transactions on Funda-
mentals of Electrical Communication and Computer Science, vol. 7T,
pp. 1445-1450, 1994.

Chapter 19

PATTERN RECOGNITION ISSUES
IN SPEECH PROCESSING

B. Yegnanarayana and C. Chandra Sekhar

Department of Computer Science and Engineering
Indian Institute of Technology, Madras
Chennai-600036, INDIA
e-mail: yegna@iitm.ernet.in

Abstract

The authors have discussed the issues involved in the process-
ing of the speech signal for performing pattern recognition tasks
normally required for speech processing, They describe some of the
currently available pattern recognition models used in the context
of speech. Some challenging problems are also addressed.

19.1 Introduction

Speech is used primarily as a mode of communication for exchange of messages
or information among human beings. Since we are endowed with both speech
production and perception mechanisms, we do not realize the sophistication of
the pattern generation process of the speech production mechanism and of the
pattern perception mechanism of the auditory processing system. We begin
to realize this sophistication, and our lack of understanding of it, when we try
to replace a human being by a machine for generation of speech and/or for
recognition of speech.

Speech signal carries with it information about the intended message, be-
sides the characteristics and the state of the speaker, and also the character-
istics of the language. Moreover, the signal is usually modified or corrupted

531

532 B, Yegnanarayana and C. Chandra Sekhar

by the environment, and the characteristics of the channel (telephone, mi-
crophone, cellular phone) used for transmission and recording of the signal.
It appears as though the speech production process, including the language
involved, is well matched with the speech perception process. Adequate redun-
dancy is incorporated in the signal to take care of the likely degradations due
to environmental conditions and channel effects.

The pattern recognition tasks that a human being performs in the context
of speech are summarized in Table 19.1. The objective in this chapter is to
discuss the issues involved in processing the speech signal for these tasks, and
describe some of the currently available pattern recognition models used in the
context of speech.

It is useful to understand why the speech tasks listed in Table 19.1 qualify
to be pattern recognition tasks, Typically, in any pattern recognition task the
samples used to capture the common pattern characteristics are not repeated.
However, the pattern is still present in a new sample, and is recognized by our
natural pattern recognition processing mechanism. In fact, the main difference
between human and machine intelligence comes from the fact that human
beings perceive everything as a pattern, whereas for a machine everything
is data [7, 24]. Even in a routine data consisting of integer numbers (like
telephone numbers, bank account numbers, car numbers), human beings tend
to perceive a pattern. Recalling the data is also normally from a stored pattern.
If there is no pattern, then it is difficult for a human being to remember and
reproduce the data later, Thus, storage and recall operations in human beings
and machines are performed by different mechanisms. The pattern nature
in storage and recall automatically gives robustness and fault tolerance for
the human system, Moreover, typically far fewer patterns than the expected
capacity of the human memory system are stored.

Functionally also human beings and machines differ in the sense that hu-
man beings understand patterns, whereas machines can be said to recognize
patterns in data. In other words, human beings can get the whole object in the
data even though there is no clear identification of subpatterns in the data. For
example, consider the name of a person written in handwritten cursive script.
Even though the individual pattern for each letter may not be evident, the name
is understood due to the visual hints provided in the written script. Likewise,
speech is understood even though the patterns corresponding to the individual
sounds may be distorted, sometimes to unrecognizable extents [3]. Another
major characteristic of human pattern processing mechanism is its ability to

Pattern recognition issues in speech processing 533

continuously learn from examples, which is not understood well enough to
implement it in an algorithmic fashion in a machine.

Table 19.1 Pattern recognition tasks in the context of speech. The objectives, types
and methods for each task are glven in the table

Task Type Objective Issues Method
Speech | Isolated Match Medium size Dynamic
recogni- | word templates of vocabulary; Time
tion recognition | different All words Warping
lengths to are important;
determine Begin-end
the word detection
Connected | Determine Small size Two-level
word the number vocabulary; dynamic
recognition | of words All words program-
and the are important; ming
actual words Absence of word
in a sequence boundaries
of words
Keyword Determine if Detection of Hidden
spotting a particular unknown words; | Markov
keyword occurs | Rejection of Models
in the given out-of-set (HMM)
speech utterances
Continuous | Determine Choice of HMMs;
speech the text subword units; Neural
recognition | corresponding Contextual networks;
to the given effects; Hybrid
speech Pronunciation models
dictionary
Dialogue Understand Dialogue Stochastic
speech ill-formed modeling; language
recognition | sentences Machine model
learning of adaptation
dialogue

534 B. Yegnanarayana and C. Chandra Sekhar

Human beings are capable of making mental patterns in their biological
neural network from an input data, given in the form of numbers, text, picture,
sounds, etc., using their sensory mechanisms of vision, sound, touch, smell and
taste. The patterns are also formed from a temporal sequence of data as in
the case of speech and video. Human beings have the ability to recall the
stored patterns even when the information is noisy or partial or mixed with
information pertaining to other patterns.

Methods for solving pattern recognition tasks generally assume a sequen-
tial model for pattern recognition process, consisting of pattern environment,
sensors to collect data from the environment, feature extraction from data and
pattern association/storage/classification/grouping using the features {10, 11,
14]. The simplest solution to a pattern recognition problem is to use template
matching, where the data of the test pattern is matched point by point with
the corresponding data in the reference pattern. Obviously, this can work only
for simple and highly restricted pattern recognition tasks. At the next level of
complexity, one can assume a deterministic model for the pattern generation
process, and derive the parameters of the model from a given pattern in order
to represent the information in the pattern. Matching the test and referance
patterns is done at the parametric level. This works well when the model of
the pattern generation process is known with reasonable accuracy. One could
also assume a stochastic model for the pattern generation process, and derive
the parameters of the model from a large set of training patterns. Matching
the test and reference patterns can be performed by several statistical methods
such as likelihood ratio, variance weighted distance and Bayesian classification.
Other approaches for pattern recognition tasks depend on extracting features
from parameters or data. These features may be specific for the task. A
pattern is described In terms of features, and pattern matching is done using
descriptions in terms of these features. Another method based on descriptions
is called syntactic pattern recognition, in which a pattern is expressed in terms
of primitives suitable for the classes of patterns under study, Pattern match-
ing is performed by matching the descriptions of the patterns in terms of the
primitives. Methods based on the knowledge of the pattern generating source
have also been explored for pattern recognition tasks, These knowledge-based
systems express the knowledge in the form of rules for generating and per-
ceiving the patterns. Different approaches commonly used for general pattern
recognition tasks are summarized in Table 19.2.

The main difficulty in each of the aforesaid pattern recognition techniques
is that of choosing an appropriate model for the pattern generating process,

Pattern recognition issues in speech processing 535

and then estimating the parameters of the model in the case of a model-
based approach, or extraction of features from the data/parameters in the
case of feature-based methods, or selecting appropriate primitives in the case
of syntactic pattern recognition, or deriving rules in the case of a knowledge-
based approach. The pattern recognition is all the more difficult when the test
patterns are noisy or distorted versions of the patterns used in the training
process, The ultimate goal is to impart to a machine the pattern recognition
capabilities similar to those of human beings. This goal is difficult to achieve
using many of the conventional methods, because, as mentioned earlier, these
methods assume a sequential model for the pattern recognition process [1, 5,
20]. On the other hand, the human pattern recognition process is an integrated
process involving the use of biological neural processing even from the stage
of sensing the environment, Thus the neural processing takes place directly
on the data for feature extraction, selective attention and pattern matching,
Moreover, the large size (in terms of number of neurons and interconnections)
of the biological neural network and the inherently different mechanism of
processing may be contributing to our abilities of pattern recognition in spite
of variability and noise, and also to our abilities to deal with the temporal
patterns as well as with the so called stability-plasticity dilemma [24].

19.2 Nature of speech signal

Speech is a result of excitation of a time-varying vocal tract system by a
time-varying excitation source [4, 19]. The vocal tract system, including the
coupling of the nasal tract, can be accurately described in terms of positions of
the articulators such as tongue, lips, jaw and velum. Generally, the vocal tract
system is approximately described in terms of the acoustic features such as the
frequencies of the resonances (formants) and anti-resonances (anti-formants)
of the system. These features are easier to extract from the signal than the
articulatory parameters. The excitation of the vocal tract system consists of
broadly three categories: (1) voiced source (the quasi-periodic excitation due
to the vibrating vocal cords), (2) unvoiced source (the turbulent flow of air at
a narrow constriction created in the vocal tract during production), and (3)
plosive source (the abrupt release of the pressure built up behind a closure in the
vocal tract system). The voiced source is characterized by the periodicity (pitch
period) and the change of the pitch period with time (intonation). In general,
the short-time characteristics of the speech signal are represented by the short-

536 B. Yegnanarayana and C. Chandra Sekhar

time (10-20 ms) spectral features of the vocal tract system as well as the nature
of excitation in the short-time segment. These are called segmental features.
Suprasegmental features of speech are represented by intonation, the durations
of different sound units, and the coarticulation reflecting the dependence of
characteristics of one sound unit on the neighboring sound units during speech
production. Different features commonly used in speech tasks are given in
Table 19.3.

Fig. 19.1 shows the speech signal waveform, the short-time (ST) spectrum
and the linear prediction (LP) spectrum for voiced and unvoiced segments. The
envelope of the short-time spectrum indicated by the LP spectrum shows peaks
corresponding to the resonances of the vocal tract system for the segment. The
resonance characteristics are determined by the shape of the vocal tract, which
in turn depends on the sound unit being produced.

The time variation of the vocal tract system is indicated by the dark bandsin
the wideband spectrogram of the utterance of a sentence shown in Fig. 19.2.
This figure also shows the amplitude variation of the speech signal and the
pitch contour. The pitch contour gives an indication of the intonation pattern
of the speech. Thus several suprasegmental features can be seen in the plots
of Fig. 19.2.

Speech is a sequence of sound units corresponding to a linguistic message.
The meaningful sound units or phonetic units are different for different lan-
guages. It is generally difficult to relate the basic sound units to the text
symbols used for a language. In some languages there may be good correspon-
dence of the phonetic units to the written text as in most Indian languages. In
fact the alphabet in these languages can be approximately related to the basic
sound units. Typical sound units for an Indian language are shown in Fig. 19.3,
In fact, phonemes, the sound units in English (see Fig. 19.4) are difficult to
associate with the string of 26 text symbols of the English alphabet. The
objective in speech recognition is to determine the sound units by processing
speech.

The main problem is in processing the speech signal in a manner similar
to the human auditory mechanism, in order to extract features relevant to
a particular task. The problem is further complicated by the fact that the
message is conveyed not only through the segmental features but also by the
suprasegmental features. It is our lack of understanding of these segmental
and suprasegmental features and the methods of extraction of these features
that makes speech recognition tasks extremely difficult for implementation by

Pattern recognition issues in speech processing 537

4000 — 100 ¥ :
_— LP SPECTRUM
m e
1000} - : o HHEH--EEH L AR, - (¥ hewe -
| Ih
i 40 ’ ;
-1000 ' .
_ : ST SPECTRUM
-20000 10 20 30 2']0 1 2 3 4
(a) VOICED SEGMENT
200 N 3 100 L i H
______ ~ LP SPECTRUM
ac \
i : , y . STSPECTRUM
0 10 20 K] 0 1 2 3 4
TIME in ms FREQUENCY in kHz
(b) UNVOICED SEGMENT

Fig. 19.1 Speech signal waveform, short-time (ST) spectrum and linear prediction (LP)
spectrum for {a) voiced speech segment and (b) unvoiced speech segment

machines [6, 19].

Speech processing is a pattern recognition problem, since the signal wave-
form and the parameters/features derived from it are different in values each
time. However, the same pattern information is conveyed, resulting in our iden-
tification of different sound units and the message contained in the sequence of
these units, It is difficult to articulate the pattern information precisely. More-
over, the features relevant to a pattern are usually hidden at deep levels and
hence are difficult to extract from the signal. There is also an in-built robust-
ness in these features, and hence pattern recognition from speech is possible
even when the signal is degraded by additive noise and channel effects such as
in telephone speech.

538 B. Yegnanarayana and C. Chandra Sekhar

Fig. 19.2 Suprasegmental features for the phrase /talaippu cheydihal/. {a) speech signal
waveform, (b) wideband spectrogram, (c) energy contour (top) and pitch contour

Another major issue related to pattern recognition in speech is the selec-
tive processing of human auditory mechanism. All the speech signal or the
parameters/features extracted from it are not equally important. In fact, a few
acoustic hints are captured, and the message is inferred from the sequence of
these hints, This is analogous to our reading the message from a cursive script.

Pattern recognition issues in speech processing 539

Thus the main issue is to determine suitable hints for each pattern recogni-
tion task, and extract the features relevant for those hints from the speech
signal. Obviously, any uniform representation of information in speech will not
be adequate, although that is the first step in all the existing speech pattern
recognition applications.

19.3 Feature extraction in speech

Parameter and feature extraction is the first step in any pattern recognition
task involving speech. However, in most cases, the features to be extracted
are dictated by the production and perception of speech, rather than by the
requirements of a task. For example, in speech recognition it may be necessary
to distinguish even closely related sound units such as /t/ and /th/, or /p/ and
/b/. In speaker recognition, one needs to identify the characteristics unique
for a given speaker ignoring the speech-related features. In voice disorder
identification, it is necessary to determine the peculiarities of the new voice
source, ignoring the characteristics of the normal voice source. If the issues
relevant to the given pattern recognition tasks are not addressed at the feature
extraction stage, then one may end up in the familiar curse of dimensionality
problem. That is, additional irrelevant data/features may seriously limit the
performance of the pattern recognition task.

Another major problem in speech processing is that, even in cases where
we know what the relevant features are, processing of speech is dictated by the
available methods for feature extraction, and also by the methods for measures
of similarity or dissimilarity. For example, we know that articulatory parameters
are very useful for robust speech recognition. However, since they are not
unique, and are also difficult to determine from the speech signal, usually
parameters such as formants and magnitude of the spectral envelope are used
for many pattern recognition tasks. Different methods are used for extraction
of segmental and suprasegmental features. There are several methods such as
weighted cepstral distance and Itakura distance for measuring the similarity of
the feature values [19, 23].

The most difficult part of speech processing is to determine the long term
features and extract them for pattern recognition. It is also difficult to match
the long term pattern features, such as the features in a sequence of instants
of excitation or the features in formant contours.

Most speech systems use parameters or features derived from short-time

540 B. Yegnanarayana and C. Chandra Sekhar

spectrum of speech. A segment of 20 ms is normally considered as an analysis
frame, and such frames are considered once every 10 ms. The envelope of
the short-time spectrum (see Fig. 19.1) represents the frequency response of
the shape of the vocal tract system in that analysis frame. The information
in the envelope is represented using log energy in different frequency bands of
the spectrum. The bands are chosen according to nonlinear frequency scale,
called mel-scale, which is based on perceptual criterion. The short-time spectral
information is also represented using mel-scale cepstral coefficients, which are
discrete inverse Fourier Transform (FT) coefficients of the log spectral band
energies. Normally about 15 to 20 mel-scale cepstral coefficients are found to
be adequate to represent useful spectral envelope information [19].

Linear Prediction (LP) technique is also used for analysis of a frame to
determine the parameters of an all-pole model of the vocal tract system for that
frame [13]. The parameters are called Linear Prediction Coefficients (LPCs).
Typically 10 to 14 LPCs are used for each frame of the speech signal sampled at
10 kHz. One can derive the short-time spectral envelope from the LPCs which
approximates the peaks of the envelope better than the valleys. However,
usually the LP spectrum is approximated by the cepstral coefficients derived
using the inverse FT of the log magnitude LP spectrum. About 15 to 20 LP
cepstral coefficients are used for a frame of data.

Typically, each frame of speech data is represented by a feature vector con-
sisting of mel-scale cepstral coefficients or LP cepstral coefficients. Thus only
the spectral envelope information is extracted and represented in the feature
vector. Most of the source information available in the LP residual and also
the suprasegmental information available in the prosodic features are ignored
when deriving the information about the sound units in the speech signal. The
short-time analysis produces a feature vector for every 10 ms for further pro-
cessing. |t is these feature vectors that are used in almost all the pattern
recognition tasks in speech including speech recognition, speaker recognition,
voice disorder identification and word spotting.

We will focus our discussion here on pattern recognition tasks in speech
recognition. A sequence of feature vectors corresponds to a meaningful sound
unit of a language. It is not easy to establish the relation between the sequence
of feature vectors and the sound unit uniquely, due to the partial nature of the
speech information in the vector and also due to variability in the derived
feature vectors for the same sound unit in different contexts at different times
for different speakers. In fact, if the sound units are close to the linguistic
information, then it is easy to express a given text as a sequence of these

Pattern recognition issues in speech processing 541

sound units. But it is difficult to determine these units by processing the speech
signal through the feature vectors. On the other hand, if the sound units are
identified with the distinct groups/clusters (derived using Vector Quantization
(VQ) techniques [19]) of feature vectors, then it is difficult to express the
language text in terms of these units. In other words, it is difficult to create a
pronunciation dictionary for words or sequence of words in a text in terms of
the sound units. Thus the major challenges for pattern recognition in speech
are signal-to-symbol transformation and symbol-to-text conversion.

Another important issue is similarity/distortion measure. Even if one were
to associate a sound unit with a feature vector or a cluster of feature vectors or
a sequence of feature vectors, one has to still match the feature vectors derived
from a test utterance with the typical vector(s) or typical sequence of vectors
stored as reference. A standard approach for matching two feature vectors is
using Euclidean distance, although better measures based on perceptual criteria
are more useful [19]. Currently, the most commonly used distance measure is
the weighted cepstral distance [23].

In the next section we will discuss some of the pattern recognition models
used in the context of speech recognition.

19.4 Pattern recognition models for speech recognition

The speech recognition problem we want to consider is the following: Given
a speech signal, determine the text (sequence of symbols) corresponding to
the signal. As mentioned earlier, the choice of symbols determines the com-
plexity at the signal-to-symbol transformation level or at the symbol-to-text
conversion level. If W is the sequence of words corresponding to the text of
a speech utterance, represented as a sequence Y of observation symbols, then
the following two formulations are available for the speech recognition problem:
Mazimum a posteriori probability (MAP) estimate formulation: Determine
the word sequence that maximizes the probability P(W|Y'), which is given
according to Bayes rule, as

PWY) = _—-——-—-P(Y'g(’}),};(w)

where P(Y') is the probability of the observation symbol sequence, and P(W)
is the probability of the word sequence for the given language. The term

542 B. Yegnanarayana and C. Chandra Sekhar

P(W) also represents the language model. The term P(Y|W) denotes the
probability of the observation sequence Y produced by the model of the given
word sequence W, and it is also called the likelihood function.

Mazimum likelihood formulation: If the language model is not available or
not used, then the speech recognition problem can be posed as a maximum
likelihood estimation problem, where the objective is to determine the word
sequence (W) whose model is most likely to produce the observed symbol
sequence (V).

The observation symbol sequence is derived from the speech signal. The
sequence of feature vectors can be considered as an observation symbol se-
quence. In such a case the size of the symbol set is infinity due to continuous
nature of the component values of the feature vector. On the other hand, if
the feature vectors are identified with one of the distinct groups or clusters
obtained by vector quantization of the feature vectors, then the observation
symbols are discrete and finite. In the former case the probabilities of the
observation symbols are described in terms of a continuous probability density
function.

The pattern recognition models for speech recognition tasks vary depending
on the nature and complexity of the tasks. We will discuss some of the common
models in this section.

(a) Template Matching

For isolated and connected word recognition, the pattern recognition
model uses Dynamic Time Warping (DTW) algorithm, which in turn
is based on dynamic programming approach. In these cases the speach
utterance for each word is stored as a sequence of feature vectors. The
sequence of feature vectors derived from a test utterance is matched
with each of the reference word templates using the DTW algorithm.
The DTW algorithm takes into account the variability due to com-
pression and expansion of different segments of speech. The reference
word that gives the |east distance is marked as the recognized word,
Isolated word recognition is limited to medium size vocabulary of about
30-300 words, The main issues in this task are determination of begin
and end detection of speech utterance of a word, the constraints on the
warping path, and the speaker dependency of the reference templates
of the words. Since all words are equally important, the performance
of the task will be poor if the words are confusable.

For connected word recognition a two-level dynamic programming al-

(b)

(c)

Pattern recognition issues in speech processing 543

gorithm is used to obtain a match for the number of words in the
utterance and also for the actual words, Since there are no constraints
on the sequence of words produced (for example, the connected digit
recognition task), all the words in the sequence are important. To limit
the complexity of search, the vocabulary is limited to the range of 10
to 30 words. The main issue in this task is the variability of the words
at the boundaries due to coarticulation, besides the issue of begin-end
detection and speaker variability.

Statistical Methods

Statistical distributions of the speech feature vectors are more useful
for other pattern recognition tasks such as speaker recognition than
for speech recognition. The reason is that the knowledge of the se-
quence of feature vectors is not available in these distributions. The
probability distribution of spectral feature vectors for each speaker rep-
resents characteristics unique for that speaker. A distribution model
of the feature vectors is derived from each speaker's data. These mod-
els are used in speaker recognition task by identifying the model that
best describes the set of feature vectors derived from the test data.
Gaussian Mixture Models (GMM) have been successfully used in these
tasks [18]. More recently, alternatives to GMM in the form of mod-
els have also been shown to capture the speaker-specific distributions
well [12, 25].

The main problem in these approaches for speaker recognition is that
the same feature vectors, which are useful for representing speech in-
formation, are used for representing speaker information also. There
is no effort in determining features that are specific to speaker char-
acteristics.

Hidden Markov Models

Statistical methods for speech recognition involve determining the
probability distributions of the feature vectors for each class of the
sound units, and determining the sound unit class for each frame based
on the maximum a posterior: probability of the observed feature vec-
tor for the frame. In the training data, the feature vectors associated
with each class of sound units are expected to have distinct proba-
bility distribution, but due to significant overlap of these distributions
among different classes, the speech recognition accuracy based purely
on the statistical distributions is poor.

On the other hand, if it is possible to take into account the know-

544

B. Yegnanarayana and C. Chandra Sekhar

ledge of the sequence of feature vectors, then the stochastic model
is expected to perform better, Markov models are stochastic models
consisting of states and state transitions, and are intended to capture
the sequence information. In these models each feature vector is as-
sociated with a state, and the transition from one state to another is
captured in the transitional probabilities of the state transition diagram
of the Markov model. A separate model is derived for each word, and
the probabilities of the states and state transitions are derived using
the feature vectors of the training data.

In general, the feature vector is the observation symbol, as it is derived
from the short-time analysis of the speech signal. It may be difficult to
associate a unique state with each feature vector. It is likely that the
feature vector belonging to a state may have a probability distribution.
In such a case, a given feature vector may belong to more than one
state with nonzero probability. The non-uniqueness in the association
of states to observation symbols led to the concept of Hidden Markov
Models (HMM), where the observed sequence of feature vectors may
correspond to more than one state sequence with nonzero probabil-
ity. Since the actual state sequence is not explicit, but hidden in the
observation sequence of symbols, the resulting models are called Hid-
den Markov Models. These models are also called doubly stochastic
models, as opposed to the stochastic models of the simple Markov
Models.

For isolated word speech recognition, one HMM is built for each word
using large amount of training data corresponding to several utterances
of each word. The recognition is based on the maximum likelihood
estimate of the HMM model generating the given observation sequence
of the test word. |n order to implement this method, the structure
of the HMM in terms of states and observation symbols have to be
decided a priori, based on the knowledge of the speech production and
some preliminary studies.

For task-specific large vocabulary continuous speech recognition, it is
necessary to define a set of subword units, and express each word in
the vocabulary as a sequence of these subword units. During training,
the speech data and the corresponding sequence of subword units are
used to derive the HMM for each unit. The sentences of the task are
represented using a network model consisting of permitted sequences of
words for the task. Each word in turn has a pronunciation dictionary in

Pattern recognition issues in speech processing 545

terms of the subword units. Thus any legal sentence corresponds to a
sequence of subword units constrained by the grammar in the network.
In the recognition stage the sequence of feature vectors (symbols) is
derived from the input speech data. The sequence of subword units and
the corresponding text that gives maximum likelihood estimation for
the observed symbol sequence is marked as the recognized utterance.
There are several design choices in the HMM-based large vocabulary
speech recognition. The most important one is the choice of the
subword units. If the units are closer to the text, then it is easier
to derive the pronunciation dictionary for the words, but it is difficult
to identify the units in the speech signal. On the other hand, if the
units are derived based on the characteristics of the feature vectors
derived from speech signal, then it is difficult to build the pronunciation
dictionary for the words. Moreover, if a large number of subword
units are used, then it may be difficult to build HMM models for all
the units, due to inadequate training data for each unit. If only a
small number of subword units are used, then there will be significant
overlap of the feature vectors among the subword units. The second
major issue is the design choices for the HMM, namely the number
of states, constraints on the state transitions and the distribution of
feature vectors for each state. Typically phoneme-like units are chosen
as subword units, which are about 50 for English language. Each unit
is represented as a 3-state left-right HMM, and each state is described
in terms of a Gaussian Mixture Model (GMM) of the feature vectors,
Most HMM-based speech recognition systems are speaker-dependent,
as the feature vectors and their distributions are derived from the
speech data of an individual speaker. One of the main research issues
is to adapt the systems for a new speaker with minimum additional
training. Another major issue is the vulnerability of the feature vectors
for degradations in the input speech. In fact, most speech recogni-
tion systems are not robust against noise and other degradation in
the input speech, A third issue is the ill-formed nature of the speech
utterances. The input speech normally may not exactly correspond to
a legal sentence of the language due to casual nature of speaking in a
dialogue mode. The language model built into the recognition system
corresponds to syntactically driven utterances, Finally, it is not clear
how to use the significant additional knowledge available in the input
speech in the form of prosody (intonation and duration) within the

B. Yegnanarayana and C. Chandra Sekhar

HMM frame work to improve the performance of the speech recogni-
tion system, and also how to make the system robust.
(d) Neural Network Models for Recognition of Subword Units

When the number of subword units is large, the available speech data
for training each class is small, and the feature space for each class
is complex, then one may consider exploiting the possibility of us-
ing the properties of neural network models for classification of these
units. A Consonant-Vowel (CV) utterance typically forms a production
unit (syllable) in speech, and hence attempts have been reported for
recognition of CV utterances [8]. Since these are dynamic sounds, the
spectral pattern changes with time. Each utterance of a CV unit is
represented as a temporal sequence of spectral feature vectors. Each
spectral vector corresponding to a fixed 10 ms segment may be repre-
sented by, say, 16 log spectral coefficients on a mel-frequency scale, or
using the corresponding mel-scale cepstral coefficients. The number
of spectral vectors per CV utterance generally varies. A fixed duration
in the range 50-200 ms segment of CV, enclosing the vowel onset, the
transition to vowel and some steady part of the vowel, can be used to
represent a CV unit. The CV units are thus temporal sequence pat-
terns, and hence static pattern recognition networks like MultiLayer
Feed Forward Neural Networks (MLFFNN) are not suitable for recog-
nition of these units. Moreover the discrimination among these CV
units is low due to domination of the vowel part.

An obvious method to perform the sequence recognition is to view the
temporal sequence of the spectral vectors as a two-dimensional spec-
tral input pattern for a MLFFNN. The conventional backpropagation
learning can then be used to train the network. A better approach to
CV recognition is through Time Delay Neural Networks (TDNN) [21].
TDNN is a MLFFNN with its input consisting of the delayed input
frames of data. The input to the intermediate hidden layers also con-
sists of the delayed outputs of the preceding layer. Multiple copies
of the TDNN are aligned with adjacent spectral vectors, For each
TDNN, each unit in a layer is connected to all the units in the layer
below it. Multiple copies of the TDNN enable the entire history of
the network activity to be present at the same time. This allows the
use of the backpropagation learning algorithm to train the network.
The TDNN was able to discriminate three classes /b/, /d/, /g/ with
an accuracy of 98.5%. Considering the fact that the data for each

Pattern recognition issues in speech processing 547

class has significant variation due to contextual effect, this result is
impressive.

Extension of this network model for large number of CV classes requires
modular approach, where it is necessary to distinguish the group of
the CV classes first before the individual classes can be identified [21].
Moreover, because of the large size of the network, training of the
network will be slow. It will also be difficult to collect sufficient train-
ing data to obtain good generalization performance from such a large
network.

For the development of a recognition system for large number of CV
units, we consider as an illustration, the recognition of the Stop-
Consonant-Vowel (SCV) utterances in Indian languages [2]. In partic-
ular, we consider the SCV units of the Indian language, Hindi. These
are highly confusable set of sound units due to close similarity in the
production of some of these sound units, such as /ta/ and /tha/. The
80 SCV units can be organized into different set of subgroups using cri-
teria guided by the phonetic description of these classes. Accordingly
one set, called the Manner Of Articulation (MOA) set, is based on the
four different manners of articulation, The second set, called the Place
Of Articulation (POA) set, is based on the four different places of ar-
ticulation and the third set, called the vowel set, is based on the five
different vowels, Separate Feed Forward Neural Networks (FFNNs),
called subnets, can be trained to discriminate the units within each
subgroup of each set. A modular network is developed for each set
by simply collecting the best output from all the subnets within the
set for a given test input. It is found that the POA set gives a better
performance (35.1%) than the other two sets of grouping (29.1% for
the MOA set and 30.1% for the vowel set).

It is possible to improve the classification accuracy significantly by
properly combining the evidence available at the output of the sub-
nets. Confusability among the classes can be resolved to some extent
by using the acoustic-phonetic knowledge of the classes. This know-
ledge can be incorporated as constraints to be met by the classes. For
the Constraint Satisfaction Model (CSM), a feedback neural network
is used with one unit for each of the 80 SCV classes. There are three
different feedback networks, one for each of the three grouping criteria.
Since the SCV classes within a subgroup compete among themselves
during training of a subnet, excitatory connections are provided be-

548

(e)

B. Yegnanarayana and C. Chandra Sekhar

tween the units of the classes in a subgroup. The connections between
units across the subgroups are made inhibitory.

The weight on the connection between a pair of units is determined
based on the similarity between the classes represented by the units.
The similarity between two SCV classes is determined from the know-
ledge of speech production, and also from the confusability between
them as indicated from the outputs of the subnets.

The feedback networks for different grouping criteria interact with each
other through a pool of units, called instance pool [15]. There are as
many units in the instance pool as the number of SCV classes. Each
unit in the instance pool has a bidirectional excitatory connection with
the corresponding unit in the feedback networks. Units within the
instance pool compete with one another and hence are connected by
a fixed negative weight.

The three feedback networks along with the instance pool constitute
the CSM reflecting the known speech production knowledge of the
SCVs as well as the knowledge derived from the subnets. The con-
straint satisfaction model is initialized suitably, and then allowed to
relax until a stable state is reached for a given input, using a deter-
ministic relaxation method [9]. The outputs of the units in the instance
pool can be interpreted to determine the class of the input pattern.
The overall performance of the CSM for all 80 SCV classes is 65.6% as
compared to the best performance of 35.1% for the modular network.
Thus a properly designed neural network architecture can significantly
improve the classification performance of such difficult pattern recog-
nition tasks.

Hybrid HMM and Neural Network Models for Speech Recognition
Hybrid models are proposed [16] to take the advantage of the sequence
modeling capability of the HMM and the pattern classification (a pos-
teriori probability estimation) capability of the neural networks. In
one such system a MLFFNN is trained for classification of the HMM
states, and the outputs are interpreted as a posterior: probabilities for
a contextual window of the sequence of feature vectors. Typically the
input to the MLFFNN consists of feature vectors for nine consecutive
frames, i.e., four left and four right contexts for each frame. The
network thus will have several thousands of parameters or weights to
be trained. About 60-70 context-dependent acoustic phones or sound
units are used for the classification task.

Pattern recognition issues in speech processing 549

The HMM in this case is only a single state HMM for each phone, and
the density per phone is estimated from the trained MLFFNN. The
HMM state classification thus reduces to phonetic classification. Each
phonetic HMM state is represented by a single probability distribution
function, i.e., a single output of the MLFFNN. It was found that the
performance of the recognition system could be improved significantly
by the use of emission probabilities generated by MLFFNN, rather than
by a standard discrete or Gaussian mixture system [17].

19.5 Challenges in pattern recognition tasks in speech

In this chapter we have discussed the pattern recognition tasks in speech and
some of the currently available approaches for these tasks. In order to appreci-
ate the issues in these pattern recognition tasks better, we have discussed the
nature of the speech signal with reference to speech production mechanism.
The parameters and for features are extracted from the speech signal using cur-
rently available signal processing techniques. Most of the techniques attempt
to extract and represent the short-time spectral envelope of a speech segment.
The pattern recognition models used for various tasks show the predominance
of statistical approaches. In particular, HMM has been the most successful
model for speech recognition tasks.

There are many challenging issues that need to be addressed in order to
develop practical speech systems, such as for speaker recognition, speech recog-
nition, word spotting and dialogue systems. Some of these issues are briefly
discussed in this concluding section.

(1) Temporal nature of speech features
Most speech and speaker information is conveyed in the temporal fea-
tures such as , , , ete. It is not clear how to develop pattern matching
techniques for such temporal features. This is probably the biggest
challenge in speech pattern recognition tasks.

(2) Selective nature of features for specific tasks
Generally speech and speaker characteristics are available in specific
segmental and suprasegmental features. It is difficult to isolate these
characteristics in the speech signal. Uniform representation of entire
speech information is likely to produce the same kind of problem as in
the other pattern recognition tasks, namely the curse of dimensional-

550

®3)

(4)

(5)

(6)

B. Yegnanarayana and C. Chandra Sekhar

ity of pattern space. Too much of information is detrimental to the
performance of a pattern recognition task.

Choice of subword units

For most speech recognition tasks the choice of the basic sound units
is difficult because the characteristics of the units vary significantly,
especially due to context. In fact human beings seem to perceive the
units mostly by context dictated by production, perception and lan-
guage constraints. Identification of these units in the speech signal is a
major challenge in speech recognition. This can easily be appreciated
when we realize the difficulty in identifying individual characters in a
casually written cursive script.

Robustness

Since the performance of a speech system depends on matching the
features in the test utterance with those collected during training, the
performance of the system degrades if the feature vectors are signifi-
cantly different during testing and training. Feature vectors extracted
from the speech signal are affected by the environmental conditions,
such as noise and channel characteristics, It is important to determine
features which are robust against such degradations. Suprasegmental
features such as intonation and duration are robust, but we do not
know how to use them in speech and speaker recognition systems.
Even temporal features such as epoch sequence and formant contours
are also robust, but at present there are no good pattern recognition
models that take advantage of these features,

Speech recognition in natural dialogue

Most speech production in a dialogue mode consists of many ill-formed
sentences and also several non-speech utterances. Human beings have
a remarkable ability of filtering out the irrelevant portions, and interpret
the ill-formed utterances as normal meaningful sentences. It appears
impossible to model this dialogue situation of human communication.
Until we succeed in this modeling, it becomes very difficult to use
speech systems in practical environments.

Speech translation from one language to another

It is interesting to note that translation by human beings is easier at the
speech level than at the text level. The reason is that speech contains
much more information in the form of segmental and suprasegmental
information, whereas most of the current systems seem to rely only
on the spectral information. Also human beings use their perceptual

7

Pattern recognition issues in speech processing 551

mechanism and contextual knowledge to interpret the speech signal
directly, and thus overcome the deficiencies due to ill-formedness of
the utterances and degradation in the speech signal.

Limitations of current pattern recognition approaches

Most of the current approaches assume a sequential model of pattern
recognition task, namely, sensing, preprocessing, feature extraction,
matching and decision making. On the other hand, the biological neu-
ral network seems to act from the signal level itself, thus enabling the
human pattern recognition process to be robust and graceful against
degradations. The biological system also seems to use selective atten-
tion for isolating the relevant features, and a delayed decision approach
using soft decisions at each stage.

Thus more of soft-computing tools such as neural networks, fuzzy logic, and

[1]

[2]

13
[4]
5]
[6]
[7]
(8]

evolutionary computation, besides the signal processing and statistical models,
are needed to develop the sophisticated pattern recognition models for speech
systems to make the systems useful in practice.

References

J.C.Bezdek, "A review of probabilistic, fuzzy and neural models for
pattern recognition", in Fuzzy Logic and Neural Network Handbook
(C.H.Chen, Ed.), McGraw-Hill, pp.2.1-2.33, 1996.

C.Chandra Sekhar, Neural Network Models for Recognition of Stop
Consonant-Vowel (SCV) Segments in Continuous Speech, Ph.D.
thesis, L.I.T., Madras, April 1996.

F.S.Cooper, “Acoustics in human communication: Evolving ideas about
the nature of speech”, J. Acoust. Soc. Amer., vol.68, pp.18-21, 1980.
J.R.Deller, J.G.Proakis and J.H.L.Hansen, Discrete Time Processing
of Speech Signals, New York: Macmillan, 1993.

P.A.Devijver and J.Kittler, Pattern Recognition - A Statistical Ap-
proach, New Jersey: Prentice Hall Inc., 1982,

J.L.Flanagan, Speech Analysis, Synthesis and Perception, 2nd ed.,
New York: Springer-Verlag, 1972.

M.Greenberger, Computers and the World of the Future, Cambridge:
MIT Press, 1962.

J.Harrington, “Acoustic cues for automatic recognition of English con-

552 B. Yegnanarayana and C. Chandra Sekhar

sonants”, in Aspects of Speech Technology (M.A.Jack and J.Laver,
eds.), Edinburgh: Edinburgh University Press, pp.69-143, 1988.

[9] S.Haykin, Neural Networks: A Comprehensive Foundation, New Jer-
sey: Prentice-Hall International, 1999.

[10] A.K.Jain, R.P.W.Duin and J.Mao, "Statistical pattern recognition: A
review', IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol.22, pp.4-37, Jan. 2000.

[11] L.Kanal, “Patterns in pattern recognition: 1968-1974", IEEE Trans.
on Inform. Theory, vol.20, pp.697-722, 1974,

[12] S.P.Kishore and B.Yegnanarayana, "Speaker verification: Minimizing
channel effects using auto-associative neural network models”, in Pro-
ceedings of International Conference on Acoustics, Speech and Sig-
nal Processing, Turkey, pp.1101-1104, June 6-9, 2000.

[13] J.Makhoul, “Linear prediction: A tutorial review", in Proceedings of
the IEEE, vol.63, pp.561-580, 1975.

[14] J.Mantas, "Methodologies in pattern recognition and image analysis:
A brief survey", Pattern Recognition, vol.20, pp.1-6, 1987.

[15] J.L.McClelland and D.E.Rumelhart, Ezplorations in Parallel Distributed
Processing, Cambridge MA: MIT press, 1988.

[16] N.Morgan and H.Bourlard, "Continuous speech recognition - An in-
troduction to the hybrid HMM /connectionist approach”, IEEE Signal
Processing Magazine, vol, 12, pp.24-42, 1995,

[17] N.Morgan and H.Bourlard, “Hybrid connectionist models for continu-
ous speech recognition”, in Autematic Speech and Speaker Recogni-
tion, C.H.Lee, F.K.Soong and K.K.Paliwal (Eds.), Kluwer Academic
Publishers, pp.259-284, 1996.

[18] NIST, “Speaker recognition workshop notebook”, in Proceedings of
NIST 2000 Speaker Recognition Workshop, University of Maryland,
USA, June 26-27, 2000,

[19] L.Rabiner and B.H.Juang, Fundamentals of Speech Recognition, New
Jersey: Prentice-Hall, 1993.

[20] R.Schalkoff, Pattern Recognition: Statistical, Structural and Neural
Approaches, New York: John Wiley and Sons, 1992.

[21] A.Waibel, "Modular construction of time-delay neural networks for
speech recognition", Neural Computation, vol.1, pp.39-46, 1989.

[22] A.Waibel, T.Hanazawa, G.Hinton, K.Shikano and K.J.Lang, "Phoneme
recognition using time-delay neural networks", IEEE Transactions on

Pattern recognition issues in speech processing 553

Acoustics, Speech and Signal Processing, vol.37, pp.328-339, 1989,

[23] B.Yegnanarayana and D.Raj Reddy, “A distance measure based on the
derivative of linear prediction phase spectrum"”, in Proceedings of In-
ternational Conference on Acoustics, Speech and Signal Processing,
pp.T44-747, 1979.

[24] B.Yegnanarayana, Artificial Neural Networks, New Delhi: Prentice-
Hall of India, 1999.

[25] B.Yegnanarayana, S.P.Kishore and A.V.N.S.Anjani, "Neural network
models for capturing probability distribution of training data", in Pro-
ceedings of Fourth International Conference on Cognitive and Neu-
ral Systems, Boston, p.6(A), May 25-27, 2000.

554

Table 19.1(contd.) Pattern recognition tasks in the context of speech. The objec-

B. Yegnanarayana and C, Chandra Sekhar

tives, types and methods for each task are given in the table

Task Type Objective Issues Method
Speaker | Speaker Identify a Extraction of Statistical
recogni- | identifi- person by speaker specific | methods;
tion cation matching the features; Neural
speech data Score normali- | network
with models zation; methods
of different Trade-off
speakers between false
Speaker Verify a claim acceptance and
verifi- by matching false rejection
cation the speech data
with the model
of a speaker
Speaker Mark the regions
tracking where the data
of a speaker is
present in the
the given speech
Spoken Language | Determine the Capturing the | Statistical
language | identifi- language of statistical methods;
identifi- cation the given speech | distributions Neural
cation by matching of basic sound | network
with models of units of a methods
different language
languages
Voice Determine the Acoustic Signal
disorder type of voice analysis of processing
identifi- disorder from source methods
cation speech parameters
Audio- Person authen- Determination | Multimedia
video tication using of interactive signal
inter- biometrics multimedia processing
action that involves features; methods
inputs in the Combining
form of speech the evidence
and video

Pattern recognition issues in speech processing

Table 19.2 Methods/models for solving general pattern recognition tasks
Approach Representation | Method Comments
Template Data level Match the data Suitable for simple
matching of a test pattern and restricted

point by point tasks
with the data in
the reference
pattern
Feature level Match the Works well when
descriptions of features are
patterns in terms | dictated by the
of features task
Deterministic Match the Works well when
model parameters of the | the source of
models with the pattern generation
test pattern process is known
Statistical Probability Match the A large set of
method distribution patterns by training patterns is
of features statistical required to derive
methods parameters of models
Syntactic Primitives Match the It may be difficult
method suitable for descriptions of to extract primitives
classes patterns in terms | from the data
of primitives
Knowledge- | Rules Verify validity It may be difficult
based of rules for a to derive rules and
method the test pattern thresholds from data
Neural Weights of Match the test Suitable for
network connections pattern with the | fixed length
method among nodes features of patterns
classes captured
in the weights
Soft Knowledge in Uncertainty-based | Identifying the
computing | the form of pattern matching | types of
method probabilistic, uncertainties
fuzzy and relevant for a
rough task is
uncertainties important

555

556

B. Yegnanarayana and C. Chandra Sekhar

Table 19.3 Features commonly used for speech tasks

Segmental System Vocal tract parameters,
features features Nasal tract parameters,
Articulatory shape
Source Voicing, Pitch period,
features Instants of significant
excitation, Glottal
shape
Spectral Short-time spectral
features envelope, Formants,
Anti-formants, Mel-
frequency coefficients
Temporal | Pitch period, Instants of
features significant excitation,

. Glottal pulse shape
Static Spectral and temporal
features features
Dynamic Formant changes,
features Spectral changes,

Time-frequency
representations
Suprasegmental | Prosodic Intonation, Duration,
features features Intensity
Parameter | Spectrum contour,
contour Formant contour,
features Instants with strengths
of excitation
Long-term | Modulation spectrum

features

Pattern recognition tssues in speech processing

Characters representing vowel sounds

Short vowels| /a/a) | Mg)| V@) [e/t | fokay
Long vowels) /ec/{am { 4:/68)| Ar/A) | /0/08)) Jou/(a)
Diphthongs fRy faah

557

Characters representing Consonant-Yowel (CV) combinations with vowel /a/(%)

Manner of articulation

Unvoiced | Voiced Nasals Smivom131 Fricatives]
Place of ‘ J ' . _
articulation Unaspirated) Aspitated |Unaspirated | Aspirated
Velar | Aa/(®) | /kha/(®)| /ga/(7) |/gha/(T) /kna/(F) /hal(8)
Palatal | /cha/(z)| /chha/(B)| fja/(3) |/ha/(z)|/chna/(3)|| /ya/(x) ||/sha/(m)
Alveolar |/Ta/(z) |/Tha/(3) |/Da/3) yDha/(3) fl‘na/(w)| fral(x) |Yshha/(s)
Dental |ha/(7) |Ahafe) |Ada/3) [dhat/(e)| ma(m) || Aaf@) |[/sadF)
Bilabial |/pa/(m) |/phaf) |/ba/F) Ybha/(w)(|/ma/(w) || Nal3) -

Fig. 19.3 Typical sound units in an Indian language

558

B. Yegnanarayana and C. Chandra Sekhar

PR
- i i Wy
vgfs [CONSONANTS
/| - AR

/ / P 8 \-\\

/ / ‘ '. nsl a / \ \ M
FMONT MD BACK DIPHTHONGS | NASALS m{s | WHISPER AFFRICATES
To ATV T R / N

11 VOICED UNVOXCED | -
| 4 4
T T I R T
| g ! |
o oo wm | 0 8 1 \
| |
¥ (40 (EY) '._ \
SEMIVOWELS F?’lm\
/\.‘
Y /
WS oSS VOCE) UNVOICED
w(®) f(R) YY) f®
i i dmm O
1@ 1(8)

s/ (5
Fig. 19.4 Sound units (phonemes) in English [19]

Chapter 20

WRITING SPEED AND WRITING
SEQUENCE INVARIANT ON-LINE
HANDWRITING RECOGNITION

S.-H. Cha and S. N. Srihari

Centre of Exzcellence for Document Analysis and Recognition

State University of New York at Buffalo
Amherst, New York 14228, U.5.A
e-mail: {scha,srihari} @cedar.buffalo.edu

Abstract

On-line handwriting recognition is a useful application of pat-
tern recognition. Despite its success, most existing systems would
not recognize a character if it were written In a different writing
sequence from the conventional writing system taught in school.
We identify some cases where existing recognizers fail and present
preprocessing techniques to overcome these cases. Due to the pre-
processing, we make the recognizer invariant to writing speed and
writing sequence. We utilize the stroke direction sequence string
as a stepping stone and various string manipulation operators pave
a way for a writing speed and writing sequence invariant on-line
handwritten character recognition system. The presented tech-
niques allow more robustness to noise to the recognizer as well as
more freedom in writing to writers.

20.1 Introduction

The on-line handwritten character recognition problem is a character classifica-
tion problem where spatio-temporal patterns are produced by a digitizer or an

559

560 S8.-H. Cha and S. N. Srihari

instrumented stylus that captures information about the pen-tip, generally, its
position, velocity, or acceleration as a function of time. The inputs are usually
the two-dimensional coordinates of successive points of the writing as a function
of time that are stored in order, i.e., the order of strokes made by the writer is
readily available [11]. Not surprisingly, it has received a great deal of attention
because of its convenience to users compared to keyboards and has found many
commercial applications such as PDAs (Personal Digital Assistants). (See [7,
11, 13] for a comprehensive and detailed survey on successful techniques and
applications of on-line handwriting recognition).

Characters were originally created and have been developed to be visual
symbols that serve as a means of communication among humans. Unlike
speech, characters are not temporal patterns. On-line handwritten character
recognition, however, utilizes temporal signals such as stroke sequence to rec-
ognize the character. This causes some drawbacks. Spatially same characters
can be written very differently in terms of temporal data. Moreover, most on-
line handwriting recognizers require the writers to use the same writing system
taught in school. For this reason, we present preprocessing techniques to allow
recognizers to be invariant to writing speed and writing sequence.

One writing system taught today is Modern Vertical introduced by A. N.
Palmer in 1923 [1]. There are many other different writing systems, such as,
Round Hand, Spencerian, Modern American and Commercial. People of differ-
ent ages, ethnicity, education backgrounds and handedness may use different
writing systems. An on-line handwritten character recognizer trained with a
particular writing system would not recognize characters written in other writ-
ing systems or in different order of stroke sequences although they look exactly
the same in terms of shape. The different writing systems can be handled by
collecting a substantially large number of specimens provided by many writ-
ers [14]. This chapter deals with handwritten characters with various styles
allowing breaks and different writing sequences, and suggests a solution.

Another important motivation for this study is the unnatural feel of the
electronic on-line input devices. The input patterns for the on-line handwritten
character recognition are generated by a mouse on a mouse pad or a special
electronic pen on an electronic surface such as a digitizer combined with a
liquid crystal display. Users or writers may not produce their handwriting using
the electronic devices as naturally as using the pen and paper. The unnatural
and unfamiliar input devices may result in unnatural handwriting. This fact
necessitates the recognizer to be more robust to unnaturally written text, i.e.,
a recognizer with various invariant properties.

Speed and sequence invariant on-line handwriting recognition 561

20.1.1 Desirable invariance properties

In seeking to achieve an optimal representation for a particular pattern classi-
fication, we confront the problem of invariance such as orientation, size, rate,
with respect to characteristics deformation and discrete symmetry in the clas-
sification problems in scene analysis [6]. The desirable invariance properties
in the context of on-line handwritten character recognition are with respect to
noise [7], distortions [9], baseline drift [2], slant [3], script size [7], break [15],
etc. Nouboud and Plamondon used data smoothing, signal filtering, dehooking
and break corrections [7, 10].

One of the most desirable invariance properties in on-line handwriting recog-
nition is writing speed invariant property [10, 12], It is very essential because
spatially same characters can be written temporally in a different way. Thus,
a recognizer trained with temporal information fails to recognize handwrit-
ing if it is written at different speeds unless it is invariant to writing speed.
This problem of writing speed invariant on-line handwriting recognition is
usually tackled using chain-code [10] or stroke direction sequence strings [4,
5]. We present a procedure that converts non-uniform writing speed and ac-
celeration data into uniform speed and acceleration data.

We assume that the on-line handwritten character input signals are normal-
ized using conventional techniques, such as, position and size normalizations,
deskewing, and base-line drift correction. In this chapter, we focus on writing
speed and writing sequence invariance where most of the previously devel-
oped on-line handwritten character recognition systems fail. First, the stroke
sequence string representation of given input signals bestows writing speed
invariance to the recognizer. Detailed stroke sequence string extraction algo-
rithms can be found in our earlier works [4, 5]. Next, this stroke sequence
string representation paves a way for the writing sequence invariance property
by using several string manipulation operators, e.g., concatenation, reverse and
ring operations. The idea of concatenation was also considered by Plamondon
and Nouboud for the case of no constraint on the writing, the system being
able to recognize any character defined by the user [10]. We introduce more
string manipulation techniques to reduce further the constraints in writing.

20.1.2 Organization

The forthcoming sections are constructed as follows. In Section 20.2, we first
illustrate how one can write spatially same characters temporally differently

562 5.-H. Cha and 8. N. Srihari

because of writing speed and acceleration. Next, we introduce a stroke direc-
tion sequence string [4, 5] representation of on-line input patterns and finally
show that it is a writing speed normalized representation. Section 20.3 deals
with writing sequence invariance. A number of string manipulation operators
such as concatenation, reverse, ring, and sub-string removal are introduced.
Section 20.4 discusses the character recognizer after preprocessing, and Sec-
tion 20.5 concludes this work.

20.2 Writing speed invariance

In this section, we give an example of how spatially same characters can be
written differently in terms of writing speed and acceleration. Next, we intro-
duce a stroke direction sequence string |4, 5] representation of on-line input
patterns and finally show that it is a writing speed normalized representation.
Several subjects were asked to copy a digit “2” image as shown in Fig. 20.1 (a)

o 7

(a) original digit “2” image (b} reproduced on-line 2"

Fig. 20.1 Sample digit image “2"

to produce the on-line data as in Fig. 20.1 (b) and everyone writes differently
in terms of writing speed and time. Fig. 20.2 illustrates the case of various
temporal writing sequence inputs for the spatially same character shape. Some
write fast and some write slowly as in Fig. 20.2 (a) and (b), respectively.
Fig. 20.2 (c) presents X — Y graphs where a subject writes “2" in non-uniform
writing speed and non-uniform acceleration, Although their spatial patterns
are exactly the same, their temporal data are different due to different veloc-
ities, v(t) = [(45{2)2 + (24)2)1/2, and different accelerations, a(t) = 244,
See Fig. 20.3 for velocity and acceleration graphs corresponding to XY-graphs
in Fig. 20.2. In this section, we present a method for normalizing the differ-
ent temporal data into uniform writing speed data using the stroke direction
sequence string.

Speed and sequence invariant on-line handwriting recognition 563

i A L i L L N i i
o 20 40 60 RO 100 120 140 |60 0 P 60 B0 100 120 140 16D
1 i

(a) slow writing X and ¥ position graphs

L] T T
140 : 2T — 166G azyt —
120 by 140 ‘]
100 . 120 -
- =
" 1 100]
i L L '} ' ' 1 1 L L 1 L '
o Fit] 40 13 0 100 120 140 160 o 0 40 60 0 00 10 140 160
&

(b) fast writing X and Y position graphs

L} T T T L} L} L} L L T
140 13" —— 0y ——
1o - 4] g
1o = - -
&0 r B 4
40 4 - _
L L L 'l A L L i L L 1 L L 1
0 20 40] 80 100 120 (40 160 o 0 40 60 80 100 10 140 160

(¢} non-uniform writing speed X and Y position graphs

Fig. 20.2 Various on-line XY-graphs for spatially same character “2”

20.2.1 Stroke sequence string

A string is a sequence of symbols drawn from the alphabet £. We will use the
following notations and symbols throughout the rest of this chapter.

Sy =(81,1,81,2,""* 1 S1,)
32 = (32.h32,21 e 132‘111)

564

S.-H. Cha and S. N. Srthart

H N T T ¥ L] ":—lv" T | |’ [L) T L L ¥ ']‘ll" J
{1 ‘{
0 b
s - -
15 -
= [0 HMWMM(W-WJU;\% :
10 = B e =
-10 - -1
sk 4
-5 Ex
a i L L L i i i 1 1
] 20 40 B0 00 1200 140 160 0 20 40 60 &0 100 120 140 160
1 1
(a) v(t) and a(t) for Fig. 20.2 (a)
2 T L Ll T ";2\." L i Is ¥ — 1] T .:23‘ L] |
1 -
20 -4
j -
. 15 = o 0 _
10 = £ .
10 -
L] -
15 .
ot 1 1 1 L L i o Ao | A 1 i L L
] 20 40 BD 100 120 40 160 a 0 40 60 80 100 120 40 160
[} !
(b) v(t) and a(t) for Fig. 20.2 (b)
T »:3"- L] 'S [LF T Li T T ":3." A
[V -
s - -4
1. |
- ys .
.0 b 4
A8 b o
1 i i 1 i i L 1 1 1 L
0 20 40 RO 100 120 140 160 0 20 a0 60 &0 100 120 140 160
I 1

Fig. 20.3 Velocity and acceleration graphs for graphs in Fig. 20.2

(¢) v(t) and a(t) for Fig. 20.2 (c)

S and S, are strings, and n; and ny denote the length of each string. Each
symbol in the string, s., has two index labels where the first index, = indicates

Speed and sequence invariant on-line handwriting recognition 565

the string to which it belongs and the second index, y indicates the location of
the symbol in the string (1 < y < n,).

In the stroke direction sequence string, symbol values are angular degrees.
Stroke directions are quantized into r directional values as shown in Fig. 20.4,
e.g., (Freeman style chain-code scheme has r = 8 directional values). We

Fig, 20.4 Strokes with 8-directions and 7 pixel length

chose r = 8 because the approximate length of 7 for diagonal arrows can be
achieved by moving 5 pixels to the right and 5 to the north; the exact distance
is 7.071 as shown in Fig. 20.4. An alternative choice is r = 12. This gives the
approximate length for the 1 o'clock direction by moving 4 pixels to the right
and 7 pixels to the north; the exact distance is 8.062. Although the length
error is smaller than the previous case, it has the angle error. The exact angle
between the 0 stroke and 1 stroke is 29.74° whereas the desired one is 30°.
As shown in Fig. 20.5, a character image can be represented by a piecewise
linear stroke sequence string. The string of arrows is called a Stroke Direction
Sequence String, or an SDSS, in short, and an SDSS is an angular type string.
We define the abstract data type of a SDSS as follows:
Definition 1: Stroke Direction Sequence String
struct SDSS {

int start_z, start_y; // coordinate of start point

int end_z, end.y; // coordinate of end point

int *sds; // Stroke direction sequence list

nt num-of_chain; // total stroke number

},.

566 S.-H. Cha and 8. N. Srthari

”N
Iwu, x‘
T 1 PR 4

(a) X (b) Y
SRSS(X) = (SDSS(X1) = [1 / T/ =N\ L N I) +(SDSS(X2) = [\ /)
SDSS(Y) = (SDSS(V\) = |2/ 2/ 2/ 7/ b 7 7)) +(SDSS(Ya) = [— —))

Fig. 20.5 Sample stroke direction gequence strings

As a character may have more than one contiguous stroke, contiguous
strokes are represented in a pair of parentheses, e.g., a capital letter "A",
X = (X)) + (X2); a given character (letter) consists of a sequence of one or
more SDSS's.

We obtain stroke directional sequence strings from the movements of a
mouse or a pen-based device. To do so requires that we convert the normalized
and deskewed mouse position vector that is a non-uniform length direction
string into the SDSS that is a string of uniform length (7-pixel long) directions.

input vector = {(0,0), (0, 14), (3, 15), (5,19), (12,19)}
(0,0),(0,14) = — — (20.1)
(0,14),(3,15) + (3,15),(5,19) =\, (20.2)
(5,19),(12,19) = |
SDSS = — =\ |

When the mouse moves fast, it creates only a few mouse positions and more
strokes are filled in between these positions. Such a case is depicted in (20.1).
When the mouse moves slowly, on the other hands, it creates many tiny strokes,
These tiny strokes are merged into fewer 7-pixel long strokes as in (20.2). In
all, geometrically best-fitting strokes are selected to create an SDSS from the
size-normalized and deskewed mouse movement vector.

SDSS is generated on the basis of not temporal data but sequential and

Speed and sequence inveriant on-line handwriting recognition 567

spatial data. Thus all three cases in Fig. 20.2 (a), (b) and (c) have the same
or similar SDSS as follows:

(/777NN W === NI/ /=== NN\ L

20.2.2 String to temporal X-Y signals

An SDSS can be plotted back into the X — Y position graphs. The length of
the string is the time spent to draw the character. All three cases in Fig. 20.2
have the same normalized graphs as given in Fig. 20.6 (a). The velocity and
acceleration are uniform 7 and 0, respectively.

140 T T T T T T T T
[
120 = ks
100 = 1
Eal
80 F -
60 -
40 [l Il i L 1 | A 1 1 L L | A 1 'l 1
0 5 1 15 0 25 0 35 40 o b] 10 15 0 28 33 40

(a) writing speed normalized X and Y position graphs

o r - 5
10
5
| ol
o 1 i 1 L i 1 1] i i 1 = | 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 3o 35

(b) writing speed normalized velocity and acceleration graphs

Fig. 20.6 Normalized temporal writing sequences for Fig, 20.2 character “2"

568 S.-H. Cha and 5. N. Srihari

20.3 Writing sequence invariance

Once a character is represented in (a) string(s), several string manipulation
operators, e.g., concatenation, reverse and ring operations allow us to handle
the problem of writing sequence invariance. Although a break correction for

(a) (b)

ﬁ)

Fig. 20.7 Sample Characters “1" (a) a break in the middle (b) written backward

Chinese characters by a stroke merging technique exists in the literature [15],
many on-line handwritten character recognizers would not recognize a character
if it were written in a different order of drawing or if there exists a break in the
middle as shown in Fig. 20.7.

20.3.1 String concatenate and reverse manipulation

This problem of awkward handwriting can be diminished by string operations:
concat and reverse. Concat operation will concatenate two strings whose end
points are near. Reverse operation will reverse the order of the elements as
well as complement each string element. One or several breaks may occur in
drawing a single line, curve or circle. This must be considered as a single string
rather than multiple strings. To obviate this inadequacy, the concat operation
is necessary. The reverse operation is also needed because people may write a
letter in the reverse order.

This section demonstrates the step-by-step procedure with an example in
Fig. 20.8. Fig. 20.8 (a) shows a handwritten character “X" in a very unnatural
way of s; — 83 — 83 — 84. This is an example where most previous on-line
character recognizers fail. We wish to manipulate the strings to make them
as in Fig. 20.8 (b). As mentioned earlier, we assume that the sample image is
size-, position- and slant-corrected, smoothed and deskewed.

Speed and sequence invariant on-line handwriting recognition 569
S S2
S (a) S4

Fig. 20.8 Various writing sequences (a) Unnatural writing sequence for “X" (b) Normal
writing sequence for “X”

S’ S

(b)

Let s be a reversed writing sequence string of s and (s, s,) be a con-
catenated string of s, and s, strings. First, the step 3 generates all possible

(s1,82)(83,84), (51, 82)(54,53)

s1 (s1,83) (82, 84), (s1,53)(s4, 52) =

s2 | 1 | (s1,54)(s3,82), (s1,54)(s2,93) | 2 (31‘{2)<{3;3_—4) 3

s (32,31)(3 5), (52, 9)(s4,5) | (51’3_3)(8_2‘3_4) -

) | (@@)nn) @ a)en) | VWD)

(83,51)(s4, 2)' (83,52)(54,51)
(81,52)(53,%3) (1, 2)(52,53) 95%
(83,84)(s1,52) (s1,83)(S2, 54) 87%

3, (81,53)(s2, 1) 4 (52, $1)(s1, 83) 30% 5 (s1,54)(52, 83)
(82, 84)(s1,53) (%2, 83)(s1,54) 20% class “X"
(s1,84)(s2, 53) (81,52)(s3, 8a) 19%

(82, 83) (51, 54) (s3,84)(s1,82) 5

Fig. 20.9 Overview of character recognizer with string concat and reverse capability

strings by the concat and reverse operations. s, and sz are concatenated be-
cause the position of the terminal element of s, is very close to that of the
starting element of s;. (s3,$4) becomes one string by first reversing s4 and
then concatenating s3 and §3. There are 12 possible ways to generate a new
set of strings without considering the order.

570 S.-H. Cha and S, N. Srihari

Second, in the step 2,, we eliminate all elements in the new set of strings
which violate the top-down and left-to-right sequence rule. For example, all
elements containing a string (s4,83) are eliminated because (sq4, s3) is right-
to-left sequence string. To deduce whether the string violates the rule, scan
the string and add the corresponding values in (20.3).

T -2-3-1
— = | =1-2 2 (20.3)
&N 13 2

If the summed value is greater or equal to (), we accept the string. Otherwise,
the string violates the rule and we reject the string. After this filtration, only
three strings are left.

Since the order of strings was not considered, we generate all possible order
of strings for each element. The resulting elements are produced by the step
2. Al sequence of strings are candidates for the recognizer. In step 4 a
recognizer takes each candidate and returns its confidence with its class. The
resulting set is the ordered list of elements with confidence.

Finally, in step 2 the element with the highest confidence is chosen. The
output sequence, (s1,84) — (82, $3) is the writing sequence of Fig. 20.8 (b).

20.3.2 Ring operator

S 1 S i S 2 S Im
S ZU S
(a) (b) (€) d)

Fig. 20.10 Various ways of drawing “0O"

Concatenate and reverse string manipulation operators are insufficient to
solve the writing sequence invariance problem. One exceptional case is a stroke
sequence that forms a ring as depicted. in Fig. 20.10. We wish Figs. 20.10 (b),
(c) and (d) to have the same writing sequence as Fig. 20.10 (a). This requires
a special treatment called, a ring operator. When (a) stroke(s) form(s) a

Speed and sequence invariant on-line handwriting recognition 571

ring, 1.e, when the start and end points coincide, a new string starts from the
topmost point of the string.

Algorithm 1 shows the procedure to achieve the normalized ring that is
drawn counter-clockwise from the top.

Algorithm 1 Ring Normalization
1 top = 0;
for 85,1 t0 85,0
if(so.i € {TI/I '\\})
top=i+ 1
get s, starting from 85,top
if (a\feragg of First quarter of s, ~\)

’
8, = 8,.

~N O U e W

For the example of Fig. 20.10 (c), let s; = (7, —,\., 1) and 52 = (|, \,, =, /
). Then a new ring string is formed, s, = (s1, %) = (/, =, \u, L/, — N\ 1)
Now scan the s, to find the top (= 2nd position of the string). Next, a new ring
string, s:, is generated starting from the top: s:, ={—=\, L/).
Since the string is a clockwise sequence ring, reverse s, to get the final string.
As a result, we have a normalized ring s, = (., |, \, =, /4 1,"\,, —). Other
writing sequences in Figs. 20.10 (b) and (d) are handled similarly.

20.3.3 Sub-string removal

Another example that most on-line character recognizers fail at according to
our tests is a double or multiple overwritten strokes case. As illustrated in

S2

St

S ——

() (b)

Fig. 20.11 Double stroke

Fig. 20.11, one first writes s; and then overwrites s; with s2 expecting that
the readers recognize it as “I". Clearly, the spatial information is “I1" but
the temporal information is very messy. The aforementioned concatenation

572 S.-H, Cha and S. N. Srihari

technique cannot handle this problem. In this section, we present a sub-string
removal technique to overcome this issue,

First, check whether both start and end points of a string are laid on another
string. If so, they are subjected to the sub-string removal procedure. We use
the approximate string matching algorithm that computes the edit distance to
identify the sub-string occurrence in the longer string with small errors. Since
string element type is angular, we use the edit distance defined in [5]. If the
edit distance is within a small threshold, we remove the smaller string.

20.4 Recognizer

Once on-line handwritten character patterns are well pre-processed by the tech-
niques described in the previous sections, we are ready to classify the pattern
into its class. Numerous methods are available for on-line handwritten char-
acter recognition and enumerated in a few exhaustive survey papers (11, 7,
13].

The problem of on-line handwritten character recognition can be formalized
by defining a distance between characters and finding the nearest neighbor in
the reference set. To recognize an unknown on-line handwritten character, one
measures the edit distances between the input string and reference strings (10,
8, 4, 5]. Next, the class of an input string is determined by votes on k-nearest
neighbors. As a stroke sequence signifies the shape of the individual letters, a
letter ‘3" is distinguished from a letter "b" by its different stroke sequences.

20.5 Conclusions

In this chapter, we considered the on-line handwritten character recognition
problem. We identified several cases where previously developed recognition
systems fail. The problem occurs when a character is written in a different
writing sequence from the conventional writing system taught in school, The
stroke direction sequence string representation is a means to an end in an
attempt to solve this problem. Once on-line handwritten character signal data
are converted into an SDSS, various string manipulation operations are adapted
to cater to a writing speed and writing sequence invariant on-line handwritten
character recognition problem. They are concatenation, reverse, ring, and sub-
string removal,

Speed and sequence invariant on-line handwriting recognition 573

The proposed preprocessing is not yet a blanket approach for all writing
sequences of a handwritten character. It is indeed quite easy to make up a
writing sequence that would confuse a recognizer with high degree of writing
sequence invariance. Examples are given in Fig. 20.12. The objective of writing

S1
Sz[* s)/"\
Sa2
S3 S S
Ss
S3
(a) (b)

Fig. 20.12 Another hard case: (a) a digit “9" (b) “O"

sequence invariance is not to recognize a character that is intentionally written
awkwardly. In all, the presented techniques allow more robustness to noise to
the recognizer as well as more freedom in writing to writers.

Acknowledgments

We would like to thank all graduate students in the pattern recognition class of
the fall semester of 1999, Students provided their on-line handwriting samples
and most students successfully implemented the online character recognition
system with the concatenation and reverse string manipulation capability as a
part of homework assignment during the semester,

References

[1] R. R. Bradford and R. B. Bradford. Introduction to Handwriting Ex-
amination and ldentification. Nelson-Hall Publishers: Chicago, 1992.

[2] M K. Brown and S. Ganapathy. Preprocessing techniques for cursive
script word recognition. Pattern Recognition, 16(5):447-458, 1983.

[3] D J. Burr. Designing a handwriting reader. /EEE Transactions on
Pattern Analysis and Machine Intelligence, 5:554-559, 1983,

[4] S-H Cha, Y-C Shin, and S. N. Srihari. Approximate character string
matching algorithm. In Proceedings of Fifth International Conference
on Document Analysis and Recognition, pages 53-56. |EEE Computer

574

S.-H. Cha and 8. N. Srihart

Society, September 1999,

[5] S-H Cha, Y-C Shin, and S. N. Srihari. Approximate string matching
for stroke direction and pressure sequences. In Proceedings of SPIE,
Document Recognition and Retrieval VI, volume 3967, pages 2-10,
January 2000.

{6] R. O. Duda, D. G. Stork, and P. E. Hart. Pattern Classification and
Scene Analysis. John Wiley & Sons, Inc., New York, 2nd edition, 2000.

[7] F. Nouboud and R. Plamondon. On-line recognition of handprinted
characters, survey and beta tests. Pattern Recognition, 23(9):1031~
1044, 1990.

[8] M. Parizeau, N. Ghazzali and Hebert. Optimizing the cost matrix
for approximating string matching using genetic algorithms. Pattern
Recognition, 31(4):431-440, 1998.

[9] I. Pavlidis, R. Singh, and N. Papanikolopoulos, On-line handwritten
note recognition method using shape metamorphosis. In International
Conference on Document Analysis and Recognition, pages 914-918.
IEEE, 1997,

[10] R. Plamondon and F. Nouboud. On-line character recognition system
using string comparison processor. In Proceedings of International
Conference on Pattern Recognition, pages 460-463, |EEE, June 1990.

[11] R. Plamondon and S. N. Srihari. On-line and off-line handwriting
recognition: A comprehensive survey. /EEE Transactions on Pattern
Analysis and Machine Intelligence, 22(1):63-84, 2000.

[12] C.Y. Suen, M. Berthod, and S. Mori. Automatic recognition of hand-
printed characters - the state of the art. In Proceedings of the IEEE,
volume 68, pages 469487, April 1980.

[13] C. C. Tappert, C. Y. Suen, and T. Wakahara. The state of the art in
on-line handwriting recognition. |EEE Transactions on Pattern Analy-
sis and Machine Intelligence, 12(8):787-808, 1990.

[14] J. R. Ward and T. Kuklinski. A model for variability effects in hand-
printing with implications for the design of handwriting character recog-
nition systems. IEEE Transactions on Systems, Man & Cybernetics,
18:438-451, 1988.

[15] P. J. Ye, H. Hugli, and F. Pellandini. Techniques for on-line Chinese
character recognition with reduced writing constraints. In Proceedings
of 7th ICPR, pages 1043-1045. |EEE CS Press, 1984.

Chapter 21

TONGUE DIAGNOSIS BASED ON
BIOMETRIC PATTERN
RECOGNITION TECHNOLOGY

K. Wang*, D. Zhang**, N. Li* and B. Pang*

* Biometrics Research Center
Department of Computer Science and Engineering
Harbin Institute of Technology
Harbin, CHINA
e-mail: {wkq,pb} @biometrics.hit.edu.cn

+ Biometrics Research Center
Department of Computing
Hong Kong Polytechnic University
Kowloon, HONG KONG
e-mail: esdzhang@comp.polyu.edu.hk

Abstract

In this chapter, we present, as an aid to medical diagnosis, an
automated system based on biometric pattern recognition technol-
ogy, that performs the valuable diagnostic functions of the tongue
diagnosis technique of Traditional Chinese Medicine (TCM). De-
tails of tongue image capturing and database design are discussed,
followed by a description of the segmentation approach we have
adopted for tongue images. The feature extraction methods used
by us for tongue diagnosis, as well as the classification procedure
for tongue images, are also highlighted.

575

576 K. Wang, D. Zhang, N. Li and B. Pang
21.1 Introduction

Tongue diagnosis is one of the important diagnostic methods in Traditional
Chinese Medicine (TCM), which has been practised in China for thousands
of years. As in the ancient times, even now, many doctors can determine
the characteristics of clinical manifestation by observing the tongue and hence
suggest treatment for these patients. For a greater understanding of tongue
diagnosis, which is a special diagnostic technique in TCM, let us take a look
at the principles of diagnosis in TCM.

21.1.1 Salient features of TCM

The TCM diagnostics include examining the patient and collecting data related
to health. Based on the theories of TCM, these data are sorted out, analyzed,
and synthesized to determine the characteristics of clinical manifestation. As
a result, we can identify the diseases and syndromes, and provide a basis for
the treatment and prevention of diseases [1, 2, 7, 8, 9, 15, 16, 17, 18, 36, 37,
40, 41, 7].

During their medical practice, Chinese physicians from ancient times accu-
mulated rich experience in diagnosis, which formed a comprehensive diagnos-
tic system for TCM based on, e.g., four diagnostic techniques (observation,
auscultation and olfaction, interrogation and palpation) and syndrome differ-
entiation. Recently, with the development of biometric technology, modern
scientific approaches have been applied to conducting the four diagnostic tech-
niques and syndrome differentiation, preserving the distinctive features of the
original approaches.

According to the theories of TCM, the human body is an organic whole,
The local disorder on the outside of a body can influence systems within it.
Also, an internal disease can manifest itself on the exterior of the body, This
means that the external manifestations can provide clues to the nature of the
internal disease, Therefore, when making a diagnosis by TCM, internal patho-
logical changes of a patient are detected mainly by means of the patient's self-
sensation and external manifestations, which are known by physicians through
their sensory organs. In Grand Discussion on the Correspondence of Yin
and Yang, a chapter of Plain Questions [38], it is said: " To know the interior
according to the exterior would ensure the correct diagnosis." This means that
external changes can reflect the internal disease, It is pointed out more clearly
in Speculation from Egterior (a chapter of Spirit Pivot [42]): " The obvious

Tongue diagnosis by biometric pattern recognition 577

manifestation cannot be hidden because it does not leave yin and yang. The
correct diagnosis can be made by observing and pulse feeling comprehensively.
So the interior corresponding to the exterior is just like the shade always ac-
companying the figure. Physician can speculate the interior according to the
external changes, as well as the exterior according to internal changes.” Such an
approach to clinical diagnosis, based on "knowing the interior by the exterior"
still plays an important role in TCM clinical practice.

The diagnostic approach of " knowing the interior by the exterior" includes
four diagnostic techniques: observation, auscultation and olfaction, interroga-
tion and palpation. Each method has unique clinical functions and cannot be
replaced by another. They must be simultaneously applied to ensure correct
diagnosis.

The history of TCM dates back to thousands of years ago. Internal Classic
is an important classical treatise on TCM. It summarizes the medical theories
and medical experiences of Chinese people from the Spring and Autumn Pe-
riods, and the Warring States Period to the Qin and Han Dynasties. In the
context of diagnostic methods, there are a lot of records about the four diag-
nostic methods including observation, listening and smelling, questioning and
palpation, in the book. Classic on Medical Problems, written in the Three
States Period, specially stressed the importance of pulse-reading in the diag-
nostic methods. From the Tang Dynasty to the Jing and Yuan Dynasties,
syndrome differentiation developed even further. In the Ming and Qing Dy-
nasties, the development of diagnostics was mainly in four aspects, i.e., tongue
inspection, questioning, palpation and the syndrome differentiation.

In recent decades, much research on the modernization of the four exam-
ining methods has been conducted comprehensively by means of acoustics,
optics, magnetics, electricity, chemistry, physics and biomedical engineering,
and some progress has been made.

Tongue observation is also termed tongue inspection. [t is the method
of observing the changes in the tongue body and tongue coating to analyze
diseases. It is also a main component of observation. There are many records
of tongue observation and the theories in Internal Classic. After that, a lot of
medical works like Treatise on Cold-Attack, Classic of Viscera, A Thousand
Gold Worthy Prescriptions, An Official’s Secret Prescriptions recorded this
method. Records of Golden Mirror was followed by a monograph of tongue
examination during the Yuan Dynasty. Since then, many monographs have been
published on the subject. Based on the experiences accumulated in medical
practice for a long time, this unique method of clinical examination is effective

578 K. Wang, D. Zhang, N. Li and B. Pang

even today.

21.1.2 Why tongue inspection?

Changes in the appearance of the tongue reflect inner visceral changes. Actu-
ally, the tongue is the orifice of the heart. Its stretching and retracting are the
action of tendons, and reflect the function of the liver. The red small particles
on the tip of the tongue are projections made up of heart ¢i and genuine-fire of
life-gate, The white soft prickle-like hairs on the tongue surface are produced
by lung g¢i with genuine-fire. The tongue fur (coating) is made up of steaming
stomach ¢i. So, we can know the visceral conditions by observing the tongue [4,
12, 13, 14].

The tongue body and coating have their unique significance in diagnosis.
The tongue body exhibits the condition of five zang-viscera, while the tongue
coating shows that of six fu-viscera. By observing the tongue body, we can
ascertain the deficiency or excess of genuine-gi and the severity of disease, In
addition, we can judge the cold or heat of evils and the location of disease by
inspecting tongue coating. Both tongue body and coating can reflect disease
in the different aspects.

Among the four examination techniques, tongue observation is thought to
be more reliable than others. There are three reasons:

(1) The tongue can be directly observed by the examiner's eyes, unlike the
pulse which is covered by skin and hence can only be palpated, that
is, felt indirectly and hence, not too distinctly

(2) The tongue is connected to the viscera internally and to the meridians
externally, so both normal and morbid conditions show on tongue

(3) When evil enters the inner body, every change it produces will be
embodied in tongue. Changes in inner conditions will be exhibited
clearly by the changes in moisture and in the thickness of the coating

Thus changes in the tongue can reflect the conditions of genuine gi and evils,

and the course of the disease. The significance of observing the tongue can be
summarized as follows:

A : To judge the exuberance or decline of the genuine gi: The

exuberance or decline of visceral gz and blood shows itself in the tongue.

For example, a red and moist tongue signifies exuberance of ¢i and

blood while a pale tongue is a sign of deficiency of both gi and blood.

A white, thin and moist coating indicates an exuberant stomach ¢i,

Tongue diegnosis by biometric patiern recognition 579

while no coating is due to the decline of stomach ¢i, or impairment of
stomach yin.

B : To distinguish the nature of disease: Evils of different nature
will produce different types of change in tongue. An absence of prickle
on tongue surface together with a white and moist coating, or a bluish-
black tongue without prickle, is due to cold evil. On the other hand,
a red and dry tongue with yellow coating, or a red prickle tongue with
yellow, thick and greasy coating, is due to warm or heat evil. A greasy
or putrid coating indicates food retention. Blue maculae or spots on
the tongue suggest blood stasis.

C: To detect the location of disease: In exogenous diseases, a
thicker coating signifies a deeper location of disease. As an exam-
ple, a thin coating suggests that the disease is in its initial stage, and
it is an exterior syndrome; while a thick coating suggests that the evils
have entered the interior of the body, and it is an interior syndrome.
A crimson tongue means that disease is very deep and is critical.

D : To infer the course of disease: Changes in the tongue usually
follow changes in genuine gi and evils, and disease location. We can
infer the course of the disease by observing the tongue, especially
in exogenous febrile diseases. For instance, the turning of coating
from white to yellow, and from yellow to black is usually due to the
transferring of evils from exterior to interior, or from cold to heat. It
shows the deterioration of disease. If a moist coating turns dry, it is
usually due to loss of body fluid resulting from heat. A change from
dry to moist implies recovery of body fluid. The change of coating
from thick to thin is a sign of improvement or cure.

However, it should be pointed out that sometimes the tongue is only slightly
changed in some severe cases, or abnormal changes in the tongue are seen in
normal people. So, tongue observation should only be used in combination
with other examination techniques.

21.1.3 Relationship between tongue and viscera

The tongue is believed to be the sprout of the heart, which is the supreme
monarch of all internal organs. So disease of viscera can influence not only the
heart, but also the tongue.

The tongue is also called the out-show of the spleen, which dominates
transportation and transformation. Therefore, the tongue is closely related to

580 K. Wang, D. Zhang, N. Li and B. Pang

splenic function. Tongue coating has special relation with stomach ¢i. Zhang
Xugu said: "In healthy body, there is a little thin coating like grass roots. It is
the embodiment of stomach gi activity."

Meridians such as the three yang and three yin meridians of the foot,
and the Taiyang and Shaoyang Meridians of the hand, are connected to the
tongue. Shen Douyuan said: "All ¢i of meridians flow up to the tongue. So
we can know the deficiency or excess, cold or heat of viscera and meridians by
observing tongue.”

Viscera have their representative areas on tongue surface because of their
close relationship with the tongue. Although the ancient statements on this
were different, the most popular one was from the Bihua's Medical Mirror;
"The tip of tongue belongs to the heart, the middle to the spleen and stomach,
the bilateral margins to the liver and gallbladder, the root to the kidney".
Another way of expressing this is that tip corresponds to upper-jiao, the middle
to the middle-jiao and the root to the lower-jiao, as shown in Fig. 21.1.

21.1.4 Main features of tongue diagnosis

Tongue diagnosis includes observing tongue body (texture) and tongue coating.
Tongue texture is the main body of tongue made up of muscles and blood
vessels. Tongue coating is the fur-like material on its upper surface. The
normal tongue is characterized by a medium size, soft texture (neither tough
nor tender), free movement, pink color, a thin and even white coating with
moderate moistness. It is usually called "pink tongue with white and thin
coating.”

Observations on tongue coating and tongue texture have their own applica-
tion areas, respectively. The observation of tongue texture is more important,
Generally speaking, observation of tongue texture mainly probes the visceral
conditions, while observation of tongue coating inspects the nature and loca-
tion of disease and the clarity or turbidity of stomach ¢i. If the changes are
only in tongue coating, the illness is mild. When changes develop from tongue
coating to tongue texture, it indicates a worsening of disease. Changes in
tongue texture are embodied in abnormal changes of the vitality, color, shape
and movement of tongue body. On the basis of tongue analysis, we can ap-
ply biometric pattern recognition technology to TCM diagnosis. In fact, we
have been developing an automated tongue diagnosis System, where a tongue
image is captured by camera and its features are automatically extracted and
analyzed for TCM diagnosis (see Fig. 21.2).

Tongue diagnosis by biometric pattern recognition 581

Fig. 21.1 Division of tongue surface

Our basic idea is to use image processing and pattern recognition tech-
nology for dealing with tongue images. Firstly, we use our capturing tool to
get tongue images corresponding to different diseases and set up a large-scale
database sorted by disease. Then, a tongue image is segmented by using an
appropriate processing technology, and features are extracted from the corre-
sponding disease. After analyzing the features, the disease can be diagnosed
by biometric pattern recognition technology proposed by us.

Although tongue diagnosis is an ancient and much-used procedure, there are
no quantitative measures and standards for tongue features. Physicians have
been determining disease by only his or her experience alone. Obviously this
traditional method is not scientific. The significance of our work lies in the use
of modern approaches to emulate age-old Chinese diagnostic techniques. We

onguo gl [irage | [Femtre

; >

Fig. 21.2 The flowchart of a biometric tongue diagnosis system

have been developing a biometric biometric pattern recognition tongue diagno-

582 K. Wang, D. Zhang, N. Li and B, Pang

sis system which can capture tongue images, extract features and diagnose the
disease (see Fig. 21.2). It is important to use such a system in early diagnosis
and health care. Two key issues, namely, tongue image acquisition and tongue
classification, are discussed in the following sections. The latter determines
whether a tongue is healthy, and if not, which disease it signifies. It involves
two operations: feature extraction and feature matching. To implement such
a system, these problems should be solved beforehand.

21.2 Tongue image capturing

From traditional Chinese medicine theory, color and luster are important fea-
tures of the tongue. Therefore, undistorted color acquisition is crucial. There
are two ways of obtaining high-quality tongue images. One is via a closed box,
as shown in Figure 21.3, which can avoid the influence of uneven illumination
but is less user-acceptable. Now we have designed such a device and manu-
factured a prototype to be applied to our further research (see Fig. 21.3). The
other is to use a high intensity white light, which can overwhelm the natural
light to guarantee comparatively steady illumination. In both cases, a high
quality camera is used to grab the tongue image. Then, the image is digitized
and passed to the computer for further processing.

It is necessary to build a tongue image database with enough labeled sam-
ples. The recognition results of tongue diagnosis system will ultimately depend
on these samples. The following steps are recommended:

(1) Set up a database with over 10,000 samples, including raw images of
lingual surface and hypoglottis, and the extracted features of tongue.
These samples should be obtained from persons of different sex, age,
and disease in terms of predefined proportion. A tongue image database
on such a scale should be good enough to build an automated tongue
diagnosis system.

(2) Build classified index of the tongue database in terms of sex, age,
disease, symptoms and features.

(3) Select different types of tongue images in terms of the category of
disease and evaluate their input qualities and representative samples.

Thousands of tongue images have been obtained by us from the hospitals,
which are classified by different diseases. Table 21.1 provides a summary of
partial tongue images that we have obtained.

Tongue diagnosis by biometric pattern recognition 583
21.3 Segmentation of tongue images

Before tongue diagnosis is done, the exact portion of the image corresponding
to the tongue must be extracted from the true-color tongue image captured
by a camera with a resolution of 640x480. However, general pixel-based edge
detectors fail to segment the tongue because of the complexity of the image
and discontinuity of the tongue's edge.

As an efficient image segmentation technique, active contours (snakes)
were originally proposed by Kass [10]. They advocate that the presence of
an edge depends not only on the gradient at a specific point but also on
the spatial distribution. Snakes incorporate this global view of edge detec-
tion by assessing continuity and curvature, combined with the local image
gradient. The principal advantage over other edge-detecting techniques is
the integration of image data, an initial estimated location, desired contour
properties and knowledge-based constraints. Our technique uses an en-

Light Source

7

Tongue Siipibeiive e 16|

Camere

Fig. 21.3 The tongue capturing system

ergy minimization framework. Snakes are curves defined within an image
domain, which can move under the influence of internal forces coming from
within the curve itself and external forces computed from the image data.
However, due to the shrinking nature near strong features (that generates
large external strength) and the sensitivity to initial positions, many efforts
on initialization, modification and combination of active contour with differ-
ent techniques are conducted to improve the behaviors of snakes [3, 5, 11,
39).

In the following section, we present a new active contour, which we call
Time-adaptive Snakes, by introducing temporal variables into the parameters
of internal forces. The coarse edge can be obtained quickly in the beginning,
and refined according to a pre-designed template near the true edge, which

584 K. Wang,). Zhang, N. Li and B. Pang

is implemented by dynamically changing the trade-off between internal and
external forces. It is clear that this method can guarantee an accurate contour
which is crucial to TCM.

21.3.1 Time adaptive snakes (TAS)

A traditional snake is a curve v(s) = [x(s),y(s)], s € [0, 1], that moves through
the spatial domain of an image to minimize the energy functional

1
Bunake = | (@ @F + B@ () + Eenu(s)ds, (21.)

where a(s) and [3(s) are weighting parameters that control the snake's tension
and rigidity, respectively, and 2'(s) and v”(s) denote the first and second
derivatives of u(s) with respect to s. The first-order term makes the snake
act like a membrane and the second-order term makes it act like a thin plate.
The external energy function F..; is derived from the image so that it takes
on its smaller values at the features of interest, such as boundaries. The final
solution is a snake that minimizes (21.1). Thus, a snake can be regarded as a
mathematical energy-minimizing curve or as a physical chain structure driven
by forces that come from a user interface.

Apparently, the two regularization parameters, which are often set constant

Table 21.1 A summary of partial tongue images in our database

Disease Number | Disease Number
Health 2500 Ileus 135
Appendicitis 150 Gall-stone 165
Bladder tumor 120 Cholecyst polyps 34
Intestines perforation 86 Cholecystitis 65
Peritonitis 150 Liver cancer 46
Hypertension 245 Marrow cancer 35
Gastricism 145 Pancreas disease 122
Lung cancer 87 Emphysema 79
Leucocythemia 56 Lung-heart disease 86
Hepatocirrhosis 54 Coronary heart disease 76
Hepatitis 78 Thyroiditis 66

Tongue diagnosis by biometric pattern recognition 585

(that is position jnvariable), can significantly influence the solution to (21.1),
Setting o >> (3 emphasizes regularization, yielding strongly model-driven so-
lutions which are robust to noise, but imprecise. In contrast, setting 3 >> &
enables the snakes to effectively capture boundary discontinuity, but it also
makes them sensitive to noise. Therefore, constant values of a and 3 will not
work.

To solve this problem, we introduce a temporal variable into «, 3 and the
control parameter of external energy <y to produce a new class of snakes which
we call time-adaptive snakes. Time-adaptive snakes are series of parameterized
curves that minimize the following energy functional:

1
Eunate = | 5@, 01V/(6)F +B(s, 6" (%) +2(6,t) + Bese(v(s))ds,

° (21.2)
Thus, we can impose a dynamic control upon the curves according to different
requirements, by changing the associated weights of the three terms. For
example, when trying to find the boundary of an object within the image domain
we can use a typical external energy, Eez¢(z,y) = —[VI(z,y)[? designed to
lead an active contour toward step edges, where I(z,y) is a gray-level image.
At the beginning, we usually want the snake to quickly approach the desired
features (a step edge) with little regard to shape properties ~ continuity and
smoothness. In order to do it well, v(s,t) >> a(s,t),5(s,t) can be set.
On the contrary, we are able to refine the boundary, according to a priori
shape information, by setting internal weighting parameters to large values
after approximate location of edge.

21.3.2 Combined models for tongue segmentation

There are three genres [6] of contour detection:

o Classic pizel orientated image processing, such as threshold, gradient-
based segmentation and edge filters

o Active contours like snakes which rely on local image information

e Deformable templates which use global image information

Our approach is to combine all three methods together. First, we construct a
deformable template of the tongue; then, we let a snake approach the tongue's
boundary freely; finally, we refine the contour by forcing the snake to deform
according to the template.

586 K. Wang, D. Zhang, N. Li and B, Pang

Deformable templates

We propose a double-parabola deformable template of the tongue. The two
parabolas describe the top and the bottom curves of the tongue, respectively
(see Fig. 21.4). They are formulated by the equations: y = az? + bz + ¢
or y = Az where A is the vector of coefficients and can be calculated using
three input points that are not on the same line. The deformable template

Fig. 21.4 A template for the tongue

tries to minimize its energy, called template energy. The definition of the
energies and the order in which the parameters of the deformable template are
changed is crucial for the final result of the energy reduction. We apply the
deformable template of the tongue to initialize, in order to improve the shape of
the tongue snake model, incorporating the global shape knowledge embodied
in the deformable template.

TAS for tongue segmentation

Time-adaptive snakes (TAS) can be regarded as a physically-based energy min-
imizing splines that move under the influence of internal forces, predefined
template forces and image forces computed from the image data.

The traditional internal energy is a weighted sum of first-order and second-
order derivatives of the curve vector. The first-order term makes the snake

Tongue diagnosis by biometric pattern recognition 587

act like a membrane and the second-order term makes it act like a thin plate.
These cause a shrinking closed and open curves to a point without the support
of external forces. Modification of the continuity and curvature constraints can
remove this unwanted contraction force and take the template constraints into
account. To implement these properties we divide the internal energy term
into two parts: horizontal forces and vertical forces.

Using a discrete contour which is a set of points #(n) = [#(n),#(n)], n €
{1,2..- N}, where N is the number of points, the horizontal forces are rep-
resented by the continuity term

Ehint(v(n)) = a(n, t)|z(n = 1) + z(n + 1) — 2z(n)|. (21.3)

The horizontal internal forces ensure that contour points are evenly spaced
horizontally.

The vertical forces are developed from the deformable template defined
earlier (Fig. 21.4). Unlike the original smoothing forces [10] which have a
potential linearizing effect, the template-based energy combined with the hori-
zontal internal forces, causes the contour to take a specific shape. In the case
of a parabola formalized by [Z(n),5(n)] forn =1,2,--- , N,

#Hn+1) = §(n)) = (§(n) - §(n — 1)) = 204%, (21.4)

where « is the coefficient of the quadratic term in the template equation, and
A is the increment along z-axis. Thus, the vertical forces can be defined as

Ey.int(v(n)) = B(n,t)[Cy(n) — 2047, (21.5)

where ['y(n) = y(n + 1) + y(n — 1) — 2y(n). Then the internal forces can be
calculated by

Eint = 0)_y Ehint(v(n)) + Eyins(v(n)), (21.6)

that pulls each node on the contour towards its estimated position. The image
energy is computed from the image intensity gradient magnitudes, G, of all
points and normalized by

Eimage,n = (Gmafn.n—C-‘..)/(sz,n = Gmin,n)) (210?)

where Gnin,n and Gpaz,n are the minimum and maximum in the neighborhood
of point n.

588 K. Wang, D. Zhang, N. L1 and B, Pang

Thus, a combined model is obtained by incorporating all three forces into
the energy formulation. A combined model has remarkable advantages — the
deformable template acts like an interactive user who, having global information
about possible shapes, controls and corrects the shape of the snake while it
moves toward local minimum. However, in using constant-driven techniques,
there is inevitable difficulty in parameter determination. When the driving force
is too high the contour will be driven over the feature of interest, while when too
low, it may cause the contour to become entrapped in a weak local minimum.
In order to avoid this, we advocate the use of time-adaptive weights that
keeps changing during the processing. For example, we can set the parameter
of template force f(s,t) = sin(wt +), where w and 6 can be evaluated
differently according to specific applications.

21.3.3 Segmentation results

To demonstrate the performance, the new technique is compared with a con-
ventional single Kass snake [10] using preprocessed tongue images. We use the
red channel of the original image as the tested image which can be regarded
as gray-level image, since red is the dominating color in tongue domain.

The image functional used in the tests was the edge-based Fimage(v) =
|VI(v)|. In order to increase the capture range of snake at the beginning and
locate precise edges, we introduce a time-varying parameter into the image
functional formula as follows:

Eimage(v) = =V (Gory(v) * [(w))}, (21.8)

where Gy is a two-dimensional Gaussian function with time-varying standard
deviation that takes relative large values to blur the image so as to enlarge the
capture range of snake and becomes smaller as the snake approaches the true
edge, to sharpen the image. () can be any linear or nonlinear monotone
incremental function. Another advantage of using G,y is to make the algo-
rithm more robust in the presence of noise by preventing the snake from getting
trapped at local minima.

The parameter ((n,t) in (21.5) is the weight of template forces. In the
test, we make it position-independent and a Gaussian function with respect to
the temporal variable: 8(t) = G, ,.(t).

Fig. 21.5 (a) shows the Kass snake result with 3 = 0.2, ~ = 1.0 and
a >> f,v; Fig. 21.5 (b) shows the Kass snake result with § = 0.8, other
parameters remaining the same. Fig. 21.5 (c) shows the TAS result using

Tongue diagnosis by biomelric pattern recognition 589

B(t) = G, u(t) with ¢ = 0.1, = 0.85. (Template and initial position of
snake in green color; final result of snake in red color). It can be seen from

(u) (b)

Fig. 21.5 (a) (b) Kass snakes with different parameter values, and (c) TAS snake

Fig. 21.5 that the performance of the TAS snake is superior to the traditional
Kass approaches because the former can more precisely describe the edge of
tongue which is crucial to tongue diagnosis in TCM,

Note that many other image preprocessing techniques can be used to im-
prove the performance of the snake algorithm further, such as median filtering,
morphological filtering and color space transformation.

590 K. Wang, D, Zhang, N. Li and B. Pang
21.4 Tongue feature extraction

We have two feature extraction approaches, namely, expert knowledge-based
feature extraction, and statistical method. Various features, with the guidance
of Traditional Chinese Medicine experts, can be extracted from the tongue,
including geometrical features, color and lustre features, tongue coating, and
lingual vena. Efficient and accurate extraction of these features is the key to
the accuracy of tongue diagnosis.

According to famous tongue diagnosis expert, Prof. Li Naiming, there are
many features, as listed below:

e Tongue Color: pale, pink, red, crimson, purple, bluish purple, dark
purple, blue, and so on

Tongue coating: thinness and white, white, thickness and white,
thinness and yellow, yellow, gray, black, exfoliation and nothing
Tongue visible material: speckle and spot, streak, knurl, excres-
cence, ulcer, tooth print, tumor, blue print, tongue body fat or emaci-
ated, and so on

Tongue vena: diameter, circuity, exaggeration, and branch
Tongue vena color; pink, dark red, red, purple, crimson.
Changed part: tip, margins, root, middle

Fig. 21.6 Examples of statistical features

The statistical approach does not utilize experts' experience but is promising.
For example, we can get statistical features such as mean, variance, energy and

Tongue diagnosis by biometric pattern recognition 591

so on, as shown in Fig. 21.6.

According to our experiment, there are some features which are good for
tongue diagnosis. The following section summarizes the detection and appli-
cation of these features.

21.4.1 The detection of glistening points

The moistness of tongue body is an important pathological feature, which
is represented by percentage of glistening points in the tongue image. The
glistening points are much brighter in the image, and their gray value is more
than a threshold. For example, the gray value of glistening points is more than
200 in many cases. The black points are glistening points in the image, shown
as Fig. 21.7. We define

-

Fig. 21.7 (a) original image (b) The black peints are glistening points

nRflzPnt

nTt Pl '
where, RflazPent is the ratio of glistening points to the total tongue area in
image, nRflzPnt is the number of glistening points, nT't{ Pzl is the total
number of pixels in the tongue body.

RflzPent = (21.9)

21.4.2 WMean of chroma

The color feature of tongue body and coating is crucial for diagnosis. For
example, healthy people have a pink tongue body with a thin, white coating,
while a person suffering from pancreatitis has a blue or light blue or purple

592 K. Wang, D. Zhang, N. Li and B. Pang

tongue body. As a result of illumination and other environmental factors, it is
not quite robust to use RGB color space to represent the color of tongue body
and coating. Therefore HIS color space is employed and especially chroma
(hue) is important. Fig. 21.8 shows the hue distribution curve of tongue body
of health people, and of people suffering from pancreatitis.

Averl is the statistical mean of (tongue body) hue of healthy people while
Aver2 is one of pancreatitis patients in Fig. 21.8. According to our experiment
Averl is 11 and Aver2 is 150,

N
S HueValy. (21.10)
k=1

HueAver =

£
N

Py T

Aver} Averl Hue

Fig. 21.8 The distribution of mean of chroma

21.4.3 Chroma variance

Mean of chroma can correctly reflect the distribution of some simple cases. For
example, if there is little coating and petechia on the surface of tongue, then
one color is dominant. When there is a thick coating or obvious petechia on
the tongue surface, then the mean of chroma cannot reflect the color distribu-
tion of tongue surface correctly, as can be seen from Fig. 21.8. According to
Fig. 21.9, when there is coating on the tongue surface, the chroma distribution
is obviously bimodal. Here chroma variance is a better indicator of the distri-
bution. Therefore, we can infer that there is coating and obvious petechia on

Tongue diagnosis by biomelric pattern recognition 593

Fig. 21.9 (=) Original image and (b) The Histogram of red color

the tongue surface when chroma variance exceeds a threshold.

N
i} .
HueVari = -N—LE-I(HueVaIk — HueAver)?. (21.11)

Chroma based clustering analysis

When chroma variance is much higher (more than ThresHV'), there may be
several cases:

(1) Presence of tongue coating

(2) Presence of a large area of petechia, the color being close to that of
tongue body

(3) Presence of a small area of petechia, the color being much different
from that of the tongue body

Therefore the correct answer cannot be obtained by just the chroma variance
of the tongue surface. For example, the first and third cases above are in-
distinguishable. For solving this problem, chroma-based clustering analysis is
employed. Considering the difference of mean and variance of chroma before
and after clustering, the following analysis is done:

(1) Calculate the chroma Variance HueVari

(2) If HueVari < ThresHV then there is no obvious disease on surface
of tongue

(3) Else use c-means clustering algorithm to classify the pixels of tongue
surface into two classes and calculate their mean and variance respec-
tively, HueAverl, HueAver2, HueVaril and HueV ari2

594 K. Wang, D. Zhang, N. Li and B. Pang

(4) ¥ {HueAverl—HueAver2] < ThresHAD and (HueVaril+HueVari2) >
clHueVari then there is a little petechia; else, there is coating on sur-
face of tongue.

Experimental results obtained on applying chroma based e-means clustering
algorithm to tongue images are shown in Fig. 21.10, where (a) original image;
(b) tongue coating area; (c) tongue body area and (d) chroma distribution are
shown.

21.5 Tongue classification

Classification involves assigning a tongue pattern to a certain category accord-
ing to its formation. According to the Traditional Chinese Medicine theory,
the entire tongue can be artificially divided into several non-overlapping re-
gions which correspond to different organs respectively. Therefore, the feature
matching process should be carried out region by region. In our system, some
common diseases can be diagnosed correctly, as shown in Fig. 21.11. Feature

J

Fig. 21.10 Experimental results of clustering

matching is actually a classification procedure, so the various classification
approaches based on statistical pattern classification, neural networks, belief
networks and fuzzy theory can be applied to tongue image matching. The issue

Tongue diagnosis by biomelric patlern recognition 595
of feature matching of tongue image can be further described as follows:

(1) Development of efficient approaches for disease feature matching based
on statistical pattern classification, neural networks, belief networks
and fuzzy theory

(2) Comparison of performances of various approaches for disease match-
ing

(3) Investigation of the effect of the different identification functions on
identification results, based on the different approaches for tongue
feature matching

Fig. 21.11 An example of diagnosis by biometric TCM system

21.6 Conclusions

Tongue diagnosis is one of the most widely used diagnostic procedures in TCM,
and has significant clinical applications. Tongue diagnosis can not only detect
pathological changes and the positions of the changes, but also find what
modern medical equipment cannot do, namely, the degrees of the pathological
changes and the functions of the viscera. It can also propose the treatment
in time. In the modern world, there is an ever-growing need to develop such
an automated tongue diagnosis system based on pattern recognition, that fully
exploits the utility of tongue diagnosis as a clinical diagnostic aid. As a first at-
tempt in medical diagnosis, we apply biometric technology to tongue diagnosis.

596

K. Wang, D. Zhang, N. Li and B. Pang

The effectiveness of our proposed methods is demonstrated in the chapter,

References

[1] D. Bensky and R. Barolet. Chinese Herbal Medicine: Formulas and
Strategies. Eastland Press, Seattle, Washington, 1993,

[2] D. Bensky and R. Barolet. Chinese Herbal Medicine: Materia Medica
(Revised Edition). Eastland Press, Seattle, Washington, 1993,

{3] L.D. Cohen. On active contour models and balloons. CVGIP: Image
Understanding, vol. 53, pp. 211-218, 1991.

[4] T.T. Den and Z. Q. Guo. Diagnostics of Traditional Chinese Medicine.
Shanghai Science and Technology Press, Shanghai, 1984.

[5] S.R. Gunn and M.S. Nixon. A robust snake implementation: A dual
active contour. /EEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, pp. 63-68, 1997.

[6] S. Horbelt and J.L. Dugelay. Active contours for lipreading-combining
snakes with templates, 15th GRETSI Symposium on Signal and Image
Processing, pages 18-22, September 1995.

[7] S.L. Huang. Research on Pulse of TCM. People's Health Press, 1995.

[8] Isselbacher, Harrison’s Principles of Internal Medicine (13th Ed.).
McGraw-Hill, New York, 1994,

[9] Jones and Robert. Acupuncture Techniques. North Atlantic Books,
Berkeley, 1996.

[10] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour
modeis. Procedings of the First International Conference en Computer
Vision, pages 259-269, 1987.

[11] K.F. Lai and R.T. Chin. On regularization, formulation and initializa-
tion of the active contour models (snakes), pp.542-545. Asian Conf.
on Computer Vision, 1993.

[12] N.M. Li. lllustration of Tongue Pictures of Yu-syndrome. Heilongjiang
Sceince and Technology Press, Heilongjiang, 1990.

[13] N.M. Li. The Great Integrated of Chinese Tongue Diagnosis. Aca-
demic Press, Beijing, 1994.

[14) N.M. Li and Y. F. Wang. Diagnosis by Observing Tongue. Hei-
longjiang Sceince and Technology Press, Heilongjiang, 1987.
Paradigm Publisher.

[15] Z.X. Long. Diagnostics of Traditional Chinese Medicine. Academic

Tongue diagnosis by biometric pattern recognition 597

Press, Beijing, 1998.

[16] Macciocoa and Giovanni. Foundations of Chinese Medicine. Churchill
Livingston, New York, 1989,

[17] Macciocoa and Giovanni. The Practice of Chinese Medicine. Churchill
Livingston, New York, 1989.

[18] Macciocoa. Tongue Diagnosis in Chinese Medicine. Eastland Press,
1995.

[19] The study of qualitative and quantitative analysis for Chinese medical
tongue diagnosis using high resolution color ccd. www.ccmp.gov.tw/
4e/ 86-052e.htm.

[20] Traditional Chinese medicine. http://www.healthy.net/ CLINIC/ ther-
apy/ Chinmed/ Index.asp.

[21] The Journal of Chinese Medicine. http://www.pavilion.co.uk/ jem.

[22] Chinese medicine - the new world of holistic health. http://detox.ji2.net/
chronicho/ chinese-medi-cine.phtm.

[23] Medicine and acupuncture in Canada. http://www.medicinechinese.com/.

[24] Birmingham Center for Chinese medicine. http://www.bcem.freeserve.co.uk/.

[25] Chinese traditional medicine. http://www.libraries.wayne.edu/ shiff-
man/ altmed/ china/ chin...

[26] Traditional Chinese medicine. http://loki.stockton.edu/ gilmorew/
consorti/ 2peasia.htm,

[27] Traditional Chinese medicine correspondence programs. http://www.bta.net.cn/
tem/ tem/ chinatcm.-htm.

[28] Traditional Chinese medicine. http://reference.cd-rom-directory.com/
cdrom-2.cdprodl/ 010.

[29] Yahoo! Health Traditional Medicine Chinese. http://asia.yahoo.com/
Health/ Traditional-Medicine/ Chinese.

[30] Traditional Chinese medicine. http://www.iospress.nl/ html/ tem.html.

[31] Institute of traditional Chinese medicine. http://www.mitcm.org/.

[32] Traditional Chinese medicine. http://www.tradedaily.com/ tem/ big.htm.

[33] Traditional Chinese medicine. http://www.scn.org/ fremont/ acu/
chinese-med. html.

[34] Shanghai university of traditional Chinese medicine. http://www.csc.edu.cn/
foreign-stu/ shang-hai/ shzyyl/ shzyy.htm.

[35] Chinese traditional medicine. http://www.chalmers.com.au/ China-
House/ Pc/ book3.html.

[36] D. Molony. The American Association of Oriental Medicine's Com-
plete Guide to Chinese Herbal Medicine. 1998.

598

K. Wang, D. Zhang, N. Li and B. Pang

[37] Rui and Chun Ji. Acupuncture Case Histories from China. Eastland
Press, Seattle, 1988,

[38] B. Wang. Plain Question in Internal Classic. People Health Press,
Beijing, 1979.

[39] C.Y. Xu and J.L. Prince. Snakes, shapes, and gradient vector flow.
IEEE Trans. on Image Processing, vol. 7, pp. 359-369, 1998,

[40] X.Yang and S.G. Cheng. Hand Diagnosis with Shape and Color. Tian
Jin Science and Technology Press, Tian Jin, 1998,

[41] H. H. Yin and B. N. Zhang. Elementary Theory of Traditional Chinese
Medicine. Shanghai Science and Technology Press, Shanghai, 1984.

[42] Y.G. Zhang. Spirit Pivo in Internal Classic. Science and Technology
Health Press, Shanghai, 1958,

Index

1-step look-ahead, 177

2-step look-ahead, 177

a-cut, 439

e-optimal learning algorithm, 77
e-optimal stopping time, 346
A-fuzzy measure, 439, 440

a posteriori probability, 6, 510
a priori probability, 6
abstraction, 11
activation function, 302
active contours, 583, 585
adaptation cycles, 304
adaptive resampling, 428
adaptive segmentation, 506
admissible grammar, 205
aggregation, 436
aggregation connective, 438
ambiguous data, 312, 315, 324
AND neuron, 232, 233
ANNs, 13, 474
anti-formants, 535
artificial neural networks
(see also neural networks), 13, 474
asymptotic error rate, 34
definition, 35
logistic regression, 34

asymptotic relative efficiency, 34, 35
definition, 35
logistic regression, 37
formula for, 37
of intercept, 37, 38
of slope, 37, 38
autoassociative neural networks
{AANNSs), 547
automata
common payoff game of, 92
network of, 98
team of, 92
automatic target recognition, 506
auxiliary node, 481
average reward, 77

backpropagation of error, 14, 98, 303,
550

BADD defuzzification, 438

bagging, 428

Bayes classification rule, 26, 31, 34

Bayes classifier, 5, 6, 71, 510

Bayes error rate, 32-34

Bayes factor, 130

Bayes theorem, 71, 148, 155, 281, 510

Bayesian image analysis, 148

Bayesian model, 125

600

biometric pattern recognition, 580, 581
bird contamination, 305

bird detection, 324

bird removal, 307

bird removal system, 323

bird visualization, 324
bird-contaminated spectra, 319
Bookstein coordinates, 151
boosting, 428

Brownian metion, 101
busyness index, 262

canonical regular grammar, 204
case-based reasoning, 17
cepstral coefficients, 544
LP, 544
mel-scale, 544, 550
character recognition, 559
chi-square statistic, 170, 172
child nodes, 171
Choquet integral
discrete, 265
fuzzy, 441
chromosome, 434, 435
differentiation, 354
class label, 69
class-conditional densities, 26, 30, 32
class-conditional distributions, 30
from an identifiable family, 38
class-conditional error rate, 31
sampling distribution of, 49
class-cenditional variance, 303
class-conscious (CC) fusion methods,
430
class-indifferent (Cl) fusion methods,
430
classical binary logic, 256
classical modus penens, 258
classifiability, 176, 177, 179
classification error, 432, 437

Index

classification trees, G, 433
classifier, 69, 70
minimum distance, 7
modified minimum-distance, 512
classifier combination, 426
classifier fusion, 429
by OWA, 437
cluster analysis, 7, 116
clustering, 4, 7, 116, 289, 456
possibilistic, 456
with neural networks, 290
co-occurrence matrix, 178
combined learning, 28, 29, 44, 45, 54,
58
common payoff game, 81, 83
compensation parameter, 438
competence, 441
competitive learning, 14
complementarity, 272
computational theory of
perception (CTP), 18
computing with words, 389
concat (concatenation) operator, 568
concept approximation, 384, 389
concept description, 390
conditional attributes, 384
conjunctive rules, 263
connected word recognition, 546
consonant-vowel (CV) utterance, 550
constraint satisfaction model (CSM),
551
context sensitivity, 246
context space, 246
context-based clustering, 245
context-free grammar, 192
context-sensitive grammar, 191
continuous action set learning
automata (CALA), 76, 80, 88
continuous speech recognition, 548
covariance matrix

Index

asymptotic
supervised, 42
unsupervised, 42
of MLE, 36
with unsupervised learning, 40
asymptotic, 41
crisp (exact) set, 385
crisp class label, 426
crisp decision trees, 181
cross-validation, 176
curse of dimensionality, 543

data mining, 17
decametric image, 261
decision attributes, 384
decision rule, 69, 169
minimal, 406
decision templates, 441
decision tree
induction, 170, 179
node splitting criteria for, 171
based on look-ahead, 176
look-ahead methods for, 170
pruning, 170, 174
critical value method, 175
error-complexity based, 174
generalization accuracy, 174
heuristic methods of, 175
minimal description length
based, 175
minimum error based, 175
stopping criteria for, 174
top-down induction of, 169
validation of, 176
deformable templates, 148, 585-588
density estimators, 7
diffusion, 99
Dirichlet distribution, 122
discriminant analysis, 281
discriminant function, 72, 86

601

dissimilarity measure, 522

doubly stochastic models, 548

dynamic time warping (DTW)
algorithm, 546

edges in an image, 153
edit distance, 572
effective frontier, 457
efficiency
logistic regression, 37
stochastic supervision, 57
unreliable learning, 52
unsupervised learning, 42, 43
EM algorithm, 33, 40
beta supervisor, 55
combined learning, 44
learning from stochastic supervisor,
55
learning from unreliable supervisor,
52
logistic-normal supervisor, 55
stochastic supervision
logistic-normal model, 58
unsupervised learning, 40
ensemble of classifiers, 425
entropy, 170, 172
enumerative grammatical inference, 208
epoch sequence, 553, 554
erroneols wind profiler data, 305
error complexity based pruning, 174
error function, 303
error of reduct approximation, 397
error rate, 30, 32, 35
distribution, 32
overall, 31-33
sampling distribution, 49
error-correcting grammar, 220
error-correcting tree grammar, 224
estimator algorithms, 99
evidence, 441

602

evolutionary computation, 433
exact probability metric, 173
extinction, 434

FCM clustering, 12, 243, 245
feature evaluation index, 478, 483
feature extraction, 4, 543, 590
feature matching, 594
feature selection, 4, 473
feature space, 3, 69
features, 3, 4, 434, 590
feedback networks, 552
feedforward networks, 93
feedforward neural networks (FFNNs),
300
finite action set learning
automata (FALA), 76
finite mixtures, 117
identifiability of, 118
finite-state automaton, 193
Fisher separability criterion, 5
fitness, 435
fitness function, 434
fixed spectral dissimilarity measure, 523
formal derivative of a set of strings, 204
formal language, 8, 190
alphabet of, 190
formal power series, 211
grammatical inference, 209
Hankel matrix of, 212
formant contours, 553, 554
formants, 535, 543
Fourier transform
discrete inverse, 544
fast, 306
Freeman chain code, 188
function appreximation, 300
fuser, 104
fuzzy c-means algorithm, 12, 243, 245
fuzzy class label adjustment, 244

Index

fuzzy clustering, 12, 256

fuzzy decision tree induction, 181

fuzzy densities, 440

fuzzy DYNOC algorithm, 12

fuzzy feedforward neural networks, 300

fuzzy finite automaton, 200

fuzzy grammar, 9, 196, 198

fuzzy integral, 437, 438

fuzzy ISODATA algorithm, 12

fuzzy language, 198

fuzzy measures, 256, 264

fuzzy multilayer perceptron, 475

fuzzy neurons, 232

fuzzy pattern matching, 266

fuzzy Petri net, 235, 238
optimization of, 241

fuzzy pushdown automaton, 202

fuzzy regular grammar, 199

fuzzy rules, 256

fuzzy sets, 10, 230, 255

GA-classifier, 351
Gaussian mixture models, 547
gene, 435
generalization, 11, 170, 300, 437
generalized descriptors, 385
genetic algorithms (GAs), 14, 179, 346,
433
geometric template for objects in an
image, 149
Gibbs distribution, 152
internal energy function of, 152
Gibbs sampling, 122, 138
GINI index of diversity, 170, 173
glass classification problem, 180
gradient ascent algorithm, 73
gradient descent, 303, 312, 482, 487
gradual rules, 258, 259
grammatical inference, 9, 203
granular computing, 389

Index

graph theory, 330

greedy algorithm, 170

ground clutter, 306

group aspiration criterion, 435
G statistic, 170, 172

Hankel matrix, 212
Hastings ratio, 156
height-averaged signal power variance,
309
height-relative signal power difference,
310
hidden Markov models, 548
hierarchical Bayesian model, 125
histogram estimators, 7
hold-out methods, 176
homoscedastic normal model, 28-30,
32, 33,36
asymptotic error rate, 51
compared to logistic regression, 36
equal mixture proportions, 33
Hough transform, 158
hyperspectral cube, 508
hyperspectral image, 506
hyperspectral imaging system, 508
hyperspectral remote sensing, 506

ID3 algorithm, 10, 171
identifiability of mixtures
multinormal family, 39

relation to unsupervised learning, 38

image averaging, 160
definition of, 161

image capturing, 582

image model, 148
Fourier-von Mises, 160

image morphing, 159

image segmentation, 583, 585

image warping, 159

imaging spectrometer, 508

603

immigration, 434
imperfect supervision, 28
models, 29, 30
relation to resolution of mixture, 52
imperfect teacher, 249
importance index, 272
importance sampling, 131
indicator function, 178
indiscernibility relation, 384, 385
information gain, 179
information granules, 246, 389
information matrix
Fisher, 41
logistic regression estimates, 34
of subset of parameters, 41
perfect supervision, 36
information system, 384
instance pool, 552
interaction index, 272, 273
interestingness, 454
Iris data, 492
isolated word recognition, 546, 548
Itakura distance, 543
iterated conditional modes (ICM)
algorithm, 149

jump-diffusion sampling, 119, 142
jump-positions, 302

kernel estimators, 7
Kleene-Schutzenberger theorem, 212
k-means algorithm, 523, 526
k-nearest neighbor rules, 7
knowledge discovery in

databases (KDD), 17
knowledge-based approaches, 12
knowledge-based networks, 434, 477
Kolmogorov-Smirnov distance, 173
k-tail of a string, 204
kurtosis, 308

604

labeling, 244
landmarks, 151
sampling of, 154
Langevin equation, 101
language, 191
learning, 3, 115, 239
by backpropagation of error, 14, 98,
303, 550
from stochastic supervisor, 55
learning algorithm, 95, 98
learning automata, 75
modules of, 103
learning automata models, 75
learning epochs, 239
learning intensity, 239
learning rate, 303, 312
learning samples, 115
learning vector quantization, 14
linear discriminant, 5, 6, 171, 179
linear discriminant analysis, 432
linear discriminant function, 29-32, 34,
36
compared to logistic regression, 36
linear prediction, 544
linear prediction (LP) spectrum, 535
linear prediction coefficients, 544
linear reward inaction (Lpr-r)
algorithm, 78, 86
linguistic sets
w-sets, 488
low, medium or high, 488
logic processor, 233
logistic function, 302
logistic regression, 34, 36
estimates, 34
in unsupervised MLE, 40
non-efficiency, 36
robustness, 36
tool in ARE of other schemes, 38
look-ahead, 176

Index

1-step, 177
2-step, 177
z-step, 177
criteria, 177
texture-based, 177, 179
less function, 70, 74
LP cepstral coefficients, 544

Mahalanobis distance, 31, 35, 58
dependence of ARE on, 37
MAP estimate, 149, 154
marginal likelihood
Candidate's estimator, 132
data-augmentation estimator, 133
estimation of, 131, 132
Laplace-Metropolis estimator, 132
marked point process, 126, 128
Markov birth-death processes, 126
Markov Chain Monte Carlo (MCMC)
methods, 117, 137, 149, 155
Gibbs sampling, 138
jump-diffusion sampling, 117, 118,
142
Metropolis-Hastings algorithm, 140
reversible jump sampling, 117, 124,
144
Markov chains, 346
Markov models, 547
Markov Random Field, 153
Markovian object process, 159
mathematical morphology
generalized erosion operator of, 158
maximum a posteriori probability
(MAP) estimate, 545
maximum likelihood estimation, 29,
32-34, 545, 548
logistic regression, 34
unsupervised learning, 39
maximum likelihood estimator (MLE),
158, 548

Index

maximum membership rule, 426

maxterms, 232

measures of quality approximation, 386

medical diagnosis, 26, 27

medical imaging
data fusion for, 160

mel-scale, 543
cepstral coefficients, 544, 550

membership function, 484

Metropolis-Hastings algorithm, 140,
155

minimal decision rules, 406

minimal reduct, 394

minimum distance classifier, 7
modified, 512

minimum error based pruning, 175

minterms, 232

misclassification effect, 51

mislabeling, 27-29
models for, 45

mixture models, 39, 116, 117
analysis of, 116

mixture of labeled-unlabeled patterns,
243

mixture proporticns, 26, 30, 32

mixtures of probability distributions,
116

MLP architecture, 368

modal method, 176

model choice problem, 120

modifiers of fuzzy sets, 488

modules of learning automata, 103

multi-dimensional 7-function, 479

multi-level activation functions, 301

multi-level partitioning of the feature
space, 301

multilayer feed forward neural networks
(MLFFNNs), 550

multilayer perceptron (MLP), 366, 427

multivalued implication, 256

605

multivariate normal distribution, 26
mutual information, 475

Nash equilibrium, 86
negative synergy, 272
network construction algorithm, 369
netwerk of automata, 98
network optimization
by minimal spanning tree, 333
neural networks, 231, 432, 549
neural pattern recognition, 279, 286,
287
neuro-fuzzy computing, 474
neurons, 13
niched Pareto optimization, 462
niches between chromosomes, 462
niching, 434
node splitting
based on linear discriminant, 173
based on chi-squared statistic, 172
node splitting criteria, 170
exact probability metric, 173
GINI index of diversity, 173
information gain, 171
Kolmogorov-Smirnov distance, 173
orthogonality metric, 173
noise model for an image, 148
noen-stationary environment, 86
nonlinear frequency scale, 543
nonrandom mislabeling, 27
nonstationary environment, 77, 87
nonsupervision, 28, 29

object configuration, 157

OR neuron, 232, 233

ordered weighted averaging (OWA),
436

orthogonality metric, 173

overtraining, 312

606

parameterized approximation space,
389
parameterized learning automata
(PLA), 99
Pareto (or vector) optimization, 458
Pareto optimal frontier, 458, 462, 467
Pareto optimality, 457
parsing, 9
partition matrix, 244
pattern grammar, 8
pattern recognition, 2
biometric, 580
KB approach, 12
supervised, 4, 116
unsupervised, 4, 116
perfect supervision, 26, 28, 29
basis, 35
performance index, 243
Petri net, 233
phonemes, 536
phonetic units, 535
phrase-structure grammar, 190, 548
production or syntactical rules of, 8
picture description grammar, 194
pitch contour, 535, 553
pitch period, 535
pixel classification, 361
plex grammar, 196
plosive source, 535
positive region, 387
positive synergy, 272
possibilistic clustering, 456
possibility measure, 255
postsynaptic potential, 329
primitive selection, 188
primitives, 8
prior model
for an image, 148
for objects in an image, 149
probabilistic supervision, 30

Indez

probability distributions
finite mixtures of, 117
mixtures of, 116
probability of correct classification, 82
probability of misclassification, 70, 75,
92
Procrustes distance, 151
production rules, 8
pronunciation, 548
proportional selection scheme, 350
prosody, 540
pruning, 10
pulse length, 304
pursuit algerithm, 78, 87, 91
pushdown automaton, 193

quadratic performance index, 240
quadtree decompaosition, 507, 512, 514
quadtree-based segmentation, 512, 526
quantum intervals, 302

quantum levels, 302, 312

quantum neural networks (QNNs), 300

radar signal power, 308
radial basis function (RBF) networks,
233, 283, 433
learning methods, 284
random mislabeling, 27
model for, 28
range gates, 304
Rayleigh scatterers, 305
reducts of information systems, 394
redundancy, 272
regression, 291
with neural networks, 292
regular grammar, 192
reinforcement learning, 14
reinforcement signal, 14, 75, 76
remote sensing, 26, 27
residuated implications, 257

Index

reverse operator, 568
reversible jump sampling, 144
reward function, 80
reward matrix, 87
reward probability, 77, 83
estimated, 88
R-implications, 257
ring operator, 570
Robbins-Munro algorithm, 74
rough membership function, 387
rough mereology, 389
rough sets, 15
lower approximation of, 386
upper approximation of, 386

sample of a language, 203

Schutzenberger thecrem, 211

segmental features, 535, 536

segmentation of hyperspectral imagery,
506

self-organizing map networks, 285
learning methods, 286

semi-landmarks, 154

Shannon's expansion theorem, 232

Shapley index, 272

short-time (ST) spectrum, 535, 543

short-time spectral envelope, 544

sigmoid activation functions, 301

sigmoid function, 302

sigmoid nonlinearity, 240

signal-to-noise ratio, 309

signal-to-symbol transformation, 545

silhouette of objects in an image, 157

S-implications, 2567

simulated annealing, 149

single point crossover, 350

single spectra, 307

skewness, 308

sliding window, 515

607

sliding window-based segmentation,
514, 526
snakes, 153, 583-585, 588
time-adaptive, 583, 585, 586
soft class label, 426, 436
soft computing, 15, 426, 474, 555
spatial similarity, 513
speaker recognition, 543, 544, 553
spectral average, 306
spectral band-value curve, 510
spectral dissimilarity matrix, 523
spectral dissimilarity measure
iterative, 522
local, 526
spectral distance, 508
spectral envelope, 543
spectral signature, 506
spectral width, 308
speech, 534
speech recognition, 544, 553
statistical methods for, 547
speech signal, 529
waveform, 535
spiking neuron
model, 328
synaptic learning rule for, 329
SPOT image, 361
stationary environment, 77
statistical classifier, 510
statistical pattern recognition, 280
stochastic approximation, 73
stochastic grammar, 9, 196, 197
stochastic supervision, 28, 29
ARE, 55
of beta model, 60
of logistic-normal model, 59, 61
models
beta model, 48
Dirichlet model, 49
logistic-normal model, 48, 58

Gus

multi-logit normal model, 49
nonrandom stochastic
supervision models, 46
random, 46
probability distribution over labels,
46
supervision index, 48, 58
stop-consonant-vowe| (SCV), 551
stopping criteria, 170
stroke direction sequence string, 562,
565
stroke sequence string, 561
strong negation, 257
sub-string removal, 572
subset of features, 427
subword units, 548
Sugeno integral
discrete, 265
fuzzy, 439, 441
supervised grammatical inference, 206

supervised learning, 13, 26, 29, 32, 243

supervised pattern recognition, 4, 116

supervision efficiency, 30

supervision error models, 28

supervision models, 46

supervisor efficiency, 29

support, 430

support vector machines, 285

suprasegmental features, 535, 536

syllable, 550

symbol-to-text conversion, 545

synaptic weight, 303

syntactic pattern recognition, 283
block diagram, 186

syntactical rules, 8

syntax analysis, 9

target identification, 506
target segmentation, 506
t-conorm, 257

Indexz

teacher, 3, 116
team of automata, 92
CALA, 91
FALA, 93
team of classifiers, 425
template, 148
deformable, 148, 586-588
deformed, 149
global parameters of, 149, 151
graphical, 152
local parameters of, 149, 151
template for an object, 154
template-matching technique, 508
temporal features, 554
testing set, 311
thin-plate splines, 152
time delay neural networks (TDNNs),
550
time-adaptive snakes, 583, 585, 586
time-averaged kurtosis, 310
time-averaged signal power variance,
309
time-averaged skewness, 310
time-domain averaging, 306
time-relative signal power difference,
310
tongue diagnosis, 576, 590
features for, 590
tongue inspection, 577, 578
tangue observation, 577, 578
top-down induction, 169
traditional Chinese medicine (TCM),
576
training samples, 3, 71, 73, 115, 428
labels of, 116
training set, 82, 311, 427
transmembrane potential, 328
tree
leaf nede of, 170
root node of, 170

terminal node of, 170
tree adjoining grammar, 1905
tree based classifier, 174
tree grammar, 194
tree induction, 10

uncertainty, 474
uncertainty rules, 257, 260
unreliable supervision, 27-29
ARE, 52
models
binary memoryless, 47
consequently lying teacher, 48
nonrandom misallocation, 46,
47
random misallocation, 46, 47
unreliable supervisor
ARE, 54
unsupervised efficiency
of intercept, 43
of slope, 43
unsupervised grammatical inference,
207
unsupervised learning, 13, 26, 28, 30,
33, 39, 243
MLE, 40
possibility, 38
unsupervised pattern recognition, 4,
116
unsupervised segmentation, 521, 522,
526
unvoiced source, 535

validation of decision trees, 176
vafidation set, 311

value set, 384

variable string lengths, 353
varying mutation probability, 357
vector quantization, 544

vertical gate spacing, 310

Indez

609

vertical gate width, 310

vertical resolution, 304
VGA-classifier, 353
VGACD-classifier, 354

visualization, 317

vocal tract system, 534

voice disorder identification, 543, 544
voiced source, 535

vowel data, 492

warped image, 160
definition of, 160
Watson distribution, 152
weighted cepstral distance, 543
weighting coefficient, 485
wind field, 304
wind profilers, 304
window estimators, 7
word spotting, 544, 553

z-step look-ahead, 177
Zysno's compensatory operator, 437

About the Editors

Sankar K. Pal is a Professor and Distinguished Scientist at the
Indian Statistical Institute, Calcutta. He is also the Founding
Head of Machine Intelligence Unit. He received the M. Tech.
and Ph.D. degrees in Radic physics and Electronice in 1974 and
1979 respectively, from the University of Calcutta. In 1982 he
received another Ph.D, in Electrical Engineering along with DIC
from Imperial College, University of London. He worked at the
University of California, Berkeley and the University of Maryland,
College Park during 1986-87 as a Fulbright Post-docteral Visiting
Fellow; at the NASA Johnson Space Center, Houston, Texas during 1990-92 and 1994 as
8 Guest Investigator under the NRC-NASA Senior Research Associateship program; and
at the Hong Kong Polytechnic University, Hong Kong in 1999 as a Visiting Professor. He
served as a Distinguished Visitor of IEEE Compiter Society (USA) for the Asia-Pacific
Region during 1997-99,

Prof. Pal is a Fellow of the IEEE, USA, Third World Academy of Sciences, Italy, and
all the four National Academies for Science/Engineering in India. His research interests
includes Pattern Recognition, Image Processing, Data Mining, Soft Computing, Neural
Neta, Genetic Algorithms, and Fuzzy Systems. He is a co-author /co-editor of seven books
including Fuzzy Mathematical Approach to Pattern Recognition, John Wiley (Halsted),
N.Y., 1086, Neuro-Fuzzy Pattern Recognition : Methods in Soft Computing, John Wiley,
N.Y. 1999; and has about three hundred research publications.

He has received the 1990 S, 5. Bhatnagar Prize (which is the most coveted award for
a scientist in India), 1998 Jawacharlal Nehru Fellowship, 1998 Vikram Sarabhai Research
Award, 1993 NASA Tech Brief Award, 1994 IEEE Trans. Neural Networks Outstanding
Paper Award, 1995 NASA Patent Application Award, 1997 IETE - Rem Lal Wadhwa
Gold Medal, 1998 Om Bhasin Foundation Award, 1999 G. D. Birla Award for Scien-
tific Research, the 2000 Khwarizmi International Award (1st winner) from the Islamic
Republic of Iran, and the 2001 Syed Husain Zaheer Medal from Indian National Science
Academy.

Prof. Pal is an Asscciate Editor, IEEE Trans. Neural Networks (1994-98), Pat-
tern Recognition Letters, Int. J. Pattern Recognition and Artificial Intelligence, Neu-
rocomputing, Applied Intelligence, Information Sciences, Fuzzy Sets and Systems, and
Fundamenta Informaticae; a Member, Erecutive Advisory Editorial Board, IEEE Trans.
Fuzzy Systems, Int. Journal on Image and Graphics, and Int. Journal of Approximate
Reasoning; and a Guest Editor of many journals including the IEEE Computer.

611

612

Irusge

= Aualysis

About the editors

Amita Pal (Pathak) obtained her Master of Science degree
in Statistics from the University of Caleutta in 1981. She was
awarded a Ph.D. degree by the Indian Statistical Institute in 1993,
In 1994, she joined as a lecturer in the Applied Statistics Unit of
the Indian Statistical Institute, where she is currently an Asso-
ciate Professor. She visited the Department of Mathematics of
the Imperial College of Science, Technology and Medicine, Lon-
don asa UNDP fellow in 1994. Her research interests are mainly in
the areas of Pattern Recognition, Machine Learning and Bayesian

