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Preface

The aim of this book is to provide an overview of statistical methods that are im-
portant in the analysis of epidemiologic data, the emphasis being on nonregression
techniques. The book is intended as a classroom text for students enrolled in an epi-
demiology or biostatistics program, and as a reference for established researchers.
The choice and organization of material is based on my experience teaching bio-
statistics to epidemiology graduate students at the University of Alberta. In that set-
ting I emphasize the importance of exploring data using nonregression methods prior
to undertaking a more elaborate regression analysis. It is my conviction that most of
what there is to learn from epidemiologic data can usually be uncovered using non-
regression techniques.

I assume that readers have a background in introductory statistics, at least to the
stage of simple linear regression. Except for the Appendices, the level of mathemat-
ics used in the book is restricted to basic algebra, although admittedly some of the
formulas are rather complicated expressions. The concept of confounding, which is
central to epidemiology, is discussed at length early in the book. To the extent permit-
ted by the scope of the book, derivations of formulas are provided and relationships
among statistical methods are identified. In particular, the correspondence between
odds ratio methods based on the binomial model, and hazard ratio methods based
on the Poisson model are emphasized (Breslow and Day, 1980, 1987). Historically,
odds ratio methods were developed primarily for the analysis of case-control data.
Students often find the case-control design unintuitive, and this can adversely affect
their understanding of the odds ratio methods. Here, I adopt the somewhat uncon-
ventional approach of introducing odds ratio methods in the setting of closed cohort
studies. Later in the book, it is shown how these same techniques can be adapted
to the case-control design, as well as to the analysis of censored survival data. One
of the attractive features of statistics is that different theoretical approaches often
lead to nearly identical numerical results. I have attempted to demonstrate this phe-
nomenon empirically by analyzing the same data sets using a variety of statistical
techniques.

I wish to express my indebtedness to Allan Donner, Sander Greenland, John Hsieh,
David Streiner, and Stephen Walter, who generously provided comments on a draft
manuscript. I am especially grateful to Sander Greenland for his advice on the topic
of confounding, and to John Hsieh who introduced me to life table theory when I was

Xi



Xii PREFACE

a student. The reviewers did not have the opportunity to read the final manuscript
and so I alone am responsible for whatever shortcomings there may be in the book.
I also wish to acknowledge the professionalism and commitment demonstrated by
Steve Quigley and Lisa Van Horn of John Wiley & Sons. I am most interested in
receiving your comments, which can be sent by e-mail using a link at the website
www.stephennewman.com.

Prior to entering medicine and then epidemiology, I was deeply interested in a
particularly elegant branch of theoretical mathematics called Galois theory. While
studying the historical roots of the topic, I encountered a monograph having a preface
that begins with the sentence “I wrote this book for myself.” (Hadlock, 1978). After
this remarkable admission, the author goes on to explain that he wanted to construct
his own path through Galois theory, approaching the subject as an enquirer rather
than an expert. Not being formally trained as a mathematical statistician, I embarked
upon the writing of this book with a similar sense of discovery. The learning process
was sometimes arduous, but it was always deeply rewarding. Even though I wrote
this book partly “for myself,” it is my hope that others will find it useful.

STEPHEN C. NEWMAN
Edmonton, Alberta, Canada
May 2001
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CHAPTER1

Introduction

In this chapter some background material from the theory of probability and statis-
tics is presented that will be useful throughout the book. Such fundamental concepts
as probability function, random variable, mean, and variance are defined, and sev-
eral of the distributions that are important in the analysis of epidemiologic data are
described. The Central Limit Theorem and normal approximations are discussed,
and the maximum likelihood and weighted least squares methods of parameter es-
timation are outlined. The chapter concludes with a discussion of different types of
random sampling. The presentation of material in this chapter is informal, the aim
being to give an overview of some key ideas rather than provide a rigorous mathe-
matical treatment. Readers interested in more complete expositions of the theoretical
aspects of probability and statistics are referred to Cox and Hinkley (1974), Silvey
(1975), Casella and Berger (1990), and Hogg and Craig (1994). References for the
theory of probability and statistics in a health-related context are Armitage and Berry
(1994), Rosner (1995), and Lachin (2000). For the theory of sampling, the reader is
referred to Kish (1965) and Cochran (1977).

1.1 PROBABILITY

1.1.1 Probability Functions and Random Variables

Probability theory is concerned with mathematical models that describe phenomena
having an element of uncertainty. Problems amenable to the methods of probabil-
ity theory range from the elementary, such as the chance of randomly selecting an
ace from a well-shuffled deck of cards, to the exceedingly complex, such as pre-
dicting the weather. Epidemiologic studies typically involve the collection, analysis,
and interpretation of health-related data where uncertainty plays a role. For example,
consider a survey in which blood sugar is measured in a random sample of the pop-
ulation. The aims of the survey might be to estimate the average blood sugar in the
population and to estimate the proportion of the population with diabetes (elevated
blood sugar). Uncertainty arises because there is no guarantee that the resulting esti-
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2 INTRODUCTION

mates will equal the true population values (unless the entire population is enrolled
in the survey).

Associated with each probability model is a random variable, which we denote by
a capital letter such as X. We can think of X as representing a potential data point for
a proposed study. Once the study has been conducted, we have actual data points that
will be referred to as realizations (outcomes) of X. An arbitrary realization of X will
be denoted by a small letter such as X. In what follows we assume that realizations
are in the form of numbers so that, in the above survey, diabetes status would have
to be coded numerically—for example, 1 for present and O for absent. The set of all
possible realizations of X will be referred to as the sample space of X. For blood
sugar the sample space is the set of all nonnegative numbers, and for diabetes status
(with the above coding scheme) the sample space is {0, 1}. In this book we assume
that all sample spaces are either continuous, as in the case of blood sugar, or discrete,
as in the case of diabetes status. We say that X is continuous or discrete in accordance
with the sample space of the probability model.

There are several mathematically equivalent ways of characterizing a probabil-
ity model. In the discrete case, interest is mainly in the probability mass function,
denoted by P(X = X), whereas in the continuous case the focus is usually on the
probability density function, denoted by f (X). There are important differences be-
tween the probability mass function and the probability density function, but for
present purposes it is sufficient to view them simply as formulas that can be used to
calculate probabilities. In order to simplify the exposition we use the term probability
function to refer to both these constructs, allowing the context to make the distinc-
tion clear. Examples of probability functions are given in Section 1.1.2. The notation
P (X = X) has the potential to be confusing because both X and X are “variables.”
We read P(X = X) as the probability that the discrete random variable X has the
realization X. For simplicity it is often convenient to ignore the distinction between
X and X. In particular, we will frequently use X in formulas where, strictly speaking,
X should be used instead.

The correspondence between a random variable and its associated probability
function is an important concept in probability theory, but it needs to be empha-
sized that it is the probability function which is the more fundamental notion. In a
sense, the random variable represents little more than a convenient notation for re-
ferring to the probability function. However, random variable notation is extremely
powerful, making it possible to express in a succinct manner probability statements
that would be cumbersome otherwise. A further advantage is that it may be possi-
ble to specify a random variable of interest even when the corresponding probability
function is too difficult to describe explicitly. In what follows we will use several
expressions synonymously when describing random variables. For example, when
referring to the random variable associated with a binomial probability function we
will variously say that the random variable “has a binomial distribution,” “is binomi-
ally distributed,” or simply “is binomial.”

We now outline a few of the key definitions and results from introductory proba-
bility theory. For simplicity we focus on discrete random variables, keeping in mind
that equivalent statements can be made for the continuous case. One of the defining



PROBABILITY 3

properties of a probability function is the identity

ZP(X:X):I (1.1)
X

where here, and in what follows, the summation is over all elements in the sample
space of X. Next we define two fundamental quantities that will be referred to re-
peatedly throughout the book. The mean of X, sometimes called the expected value
of X, is defined to be

E(X) = Zx P(X = X) (1.2)
X

and the variance of X is defined to be

var(X) = Y [x — E(X)PP(X = x). (1.3)
X

It is important to note that when the mean and variance exist, they are constants,
not random variables. In most applications the mean and variance are unknown and
must be estimated from study data. In what follows, whenever we refer to the mean
or variance of a random variable it is being assumed that these quantities exist—that
is, are finite constants.

Example 1.1 Consider the probability function given in Table 1.1. Evidently
(1.1) is satisfied. The sample space of X is {0, 1, 2}, and the mean and variance of X
are

E(X) = (0 x .20) + (1 x .50) + (2 x .30) = 1.1
and
var(X) = [(0 — 1.1)2.20] + [(1 — 1.1)2.50] + [(2 — 1.1)%.30] = .49.

Transformations can be used to derive new random variables from an existing
random variable. Again we emphasize that what is meant by such a statement is that
we can derive new probability functions from an existing probability function. When
the probability function at hand has a known formula it is possible, in theory, to write
down an explicit formula for the transformed probability function. In practice, this

TABLE 1.1 Probability Function of X

X P(X =x)
0 .20
1 .50
2 .30
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TABLE 1.2 Probability Function of Y

y PY=y)
5 20
7 .50
9 30

may lead to a very complicated expression, which is one of the reasons for relying
on random variable notation.

Example 1.2 With X as in Example 1.1, consider the random variable Y =
2X 4+ 5. The sample space of Y is obtained by applying the transformation to the
sample space of X, which gives {5, 7, 9}. The values of P(Y = X) are derived as
follows: P(Y =7) = P2X +5=7) = P(X = 1) = .50. The probability function
of Y is given in Table 1.2.

The mean and variance of Y are
E(Y) = (5 x .20) + (7 x .50) + (9 x .30) = 7.2
and
var(Y) = [(5 — 7.2)%.20] + [(7 — 7.2)2.50] + [(9 — 7.2)>.30] = 1.96.

Comparing Examples 1.1 and 1.2 we note that X and Y have the same probability
values but different sample spaces.

Consider a random variable which has as its only outcome the constant g, that
is, the sample space is {g}. It is immediate from (1.2) and (1.3) that the mean and
variance of the random variable are B8 and 0, respectively. Identifying the random
variable with the constant 8, and allowing a slight abuse of notation, we can write
E(B8) = B and var(B8) = 0. Let X be a random variable, let « and 8 be arbitrary
constants, and consider the random variable « X + 8. Using (1.2) and (1.3) it can be
shown that

E@X+8)=aEX)+8 (1.4)
and
var(a X + B) = o var(X). (1.5)

Applying these results to Examples 1.1 and 1.2 we find, as before, that E(Y) =
2(1.1) +5 =7.2 and var(Y) = 4(.49) = 1.96.

Example 1.3 Let X be an arbitrary random variable with mean p and variance
o2, where o > 0, and consider the random variable (X — )/o. With @ = 1/0 and
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B = —plo in (1.4) and (1.5), it follows that

E(X_“):o

o

and

X—u
var( ): 1.
o

In many applications it is necessary to consider several related random variables.
For example, in a health survey we might be interested in age, weight, and blood
pressure. A probability function characterizing two or more random variables simul-
taneously is referred to as their joint probability function. For simplicity we discuss
the case of two discrete random variables, X and Y. The joint probability function of
the pair of random variables (X, Y) is denoted by P(X = X, Y = y). For the present
discussion we assume that the sample space of the joint probability function is the
set of pairs {(X, Y)}, where X is in the sample space of X and Y is in the sample space
of Y. Analogous to (1.1), the identity

ZZP(X:X,Y:y):l (1.6)
Xy

must be satisfied. In the joint distribution of X and Y, the two random variables are
considered as a unit. In order to isolate the distribution of X, we “sum over” Y to
obtain what is referred to as the marginal probability function of X,

P(X=x)=)> P(XX=x.Y=Yy).
y

Similarly, the marginal probability function of Y is

PY=y)=) P(X=x,Y=y).
X

From a joint probability function we are to able obtain marginal probability func-
tions, but the process does not necessarily work in reverse. We say that X and Y are
independent random variables if P(X = X, Y =y) = P(X = X) P(Y = y), that s,
if the joint probability function is the product of the marginal probability functions.
Other than the case of independence, it is not generally possible to reconstruct a joint
probability function in this way.

Example 1.4 Table 1.3 is an example of a joint probability function and its as-
sociated marginal probability functions. For example, P(X =1, Y = 3) = .30. The
marginal probability function of X is obtained by summing over Y, for example,

PX=D)=PX=1LY=1)+PX=1Y=2+P(X=1Y =3)=.50.
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TABLE 1.3 Joint Probability Function of X and Y

PIX=x,Y=Y)
y
X 1 2 3 P(X =Xx)
0 .02 .06 12 .20
1 .05 15 .30 .50
2 .03 .09 18 .30
PY=Yy) .10 .30 .60 1

Itis readily verified that X and Y are independent, for example, P(X =1,Y =2) =
AS5=P(X=1)P(Y =2).

Now consider Table 1.4, where the marginal probability functions of X and Y are
the same as in Table 1.3 but where, as is easily verified, X and Y are not independent.

We now present generalizations of (1.4) and (1.5). Let Xj, X, ..., Xp be arbi-
trary random variables, let o1, a2, . .., an, B be arbitrary constants, and consider the
random variable Zinzl aj Xj + B. It can be shown that

n n
E(ZaiXi+,8)=ZaiE(Xi)+ﬂ (1.7)
i=1 i=1
and, if the Xj are independent, that
n n
Vzlr(Zai Xi +,3) = of var(Xp). (1.8)
i=l1 i=l1

In the case of two independent random variables X; and Xj,

E(Xi + X2) = E(Xy) + E(Xy)
E(X; — X2) = E(Xy) — E(X2)

TABLE 1.4 Joint Probability Function of X and Y

PIX=x,Y=Y)
y
X 1 2 3 P(X =x)
0 .01 .05 14 .20
1 .06 18 .26 .50
2 .03 .07 .20 .30

PY=Yy) .10 .30 .60 1
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and
var(X; 4+ Xp) = var(X; — Xp) = var(Xy) + var(Xy). (1.9)

If X1, Xz, ..., Xp are independent and all have the same distribution, we say the
X are a sample from that distribution and that the sample size is n. Unless stated oth-
erwise, it will be assumed that all samples are simple random samples (Section 1.3).
With the distribution left unspecified, denote the mean and variance of X; by © and
o2, respectively. The sample mean is defined to be

—_ 1
X=—>3"Xi.
n i3
Setting i = 1/nand 8 = 0in (1.7) and (1.8), we have

EX)=pn (1.10)

and

2
var(X) = ‘% (1.11)

1.1.2 Some Probability Functions

We now consider some of the key probability functions that will be of importance in
this book.

Normal (Gaussian)

For reasons that will become clear after we have discussed the Central Limit The-
orem, the most important distribution is undoubtedly the normal distribution. The
normal probability function is

_ _ 2
f (@, o) = (2 1) ]

1
ex
o2 p[ 202

where the sample space is all numbers and exp stands for exponentiation to the
base e. We denote the corresponding normal random variable by Z. A normal distri-
bution is completely characterized by the parameters i and o > 0. It can be shown
that the mean and variance of Z are u and o2, respectively.

When 1 = 0 and 0 = 1 we say that Z has the standard normal distribution. For
0 < y < 1, let z, denote that point which cuts off the upper y-tail probability of the
standard normal distribution; that is, P(Z > z,) = y. For example, Z 25 = 1.96. In
some statistics books the notation z,, is used to denote the lower y-tail. An important
property of the normal distribution is that, for arbitrary constants « and g > 0,
(Z—a)/p is also normally distributed. In particular this is true for (Z — ) /o which,
in view of Example 1.3, is therefore standard normal. This explains why statistics
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books only need to provide values of z, for the standard normal distribution rather
than a series of tables for different values of © and o.

Another important property of the normal distribution is that it is additive. Let
Zy, 2y, ..., Zy be independent normal random variables and suppose that Z; has
mean uj and variance 0i2 (i = 1,2,...,n). Then the random variable Zin=1 Zi is
also normally distributed and, from (1.7) and (1.8), it has mean Zinzl Wi and variance

n 2
2o 07

Chi-Square
The formula for the chi-square probability function is complicated and will not be
presented here. The sample space of the distribution is all nonnegative numbers.
A chi-square distribution is characterized completely by a single positive integer r,
which is referred to as the degrees of freedom. For brevity we write x(zr) to indicate
that a random variable has a chi-square distribution with r degrees of freedom. The
mean and variance of the chi-square distribution with r degrees of freedom are r and
2r, respectively.

The importance of the chi-square distribution stems from its connection with the
normal distribution. Specifically, if Z is standard normal, then 72 the transformation
of Z obtained by squaring, is X(21)- More generally, if Z is normal with mean w

and variance o2 then, as remarked above, (Z — w)/o is standard normal and so
(Z —w/o]? = (Z — w?/o?is X(2)- In practice, most chi-square distributions
with 1 degree of freedom originate as the square of a standard normal distribution.
This explains why the usual notation for a chi-square random variable is X2, or
sometimes x2.

Like the normal distribution, the chi-square distribution has an additive property.
Let X%, X%, ey X% be independent chi-square random variables and suppose that
Xi2 has rj degrees of freedom (i = 1,2,...,n). Then Zinzl Xi2 is chi-square with
Zin: 1 Ii degrees of freedom. As a special case of this result, let Zy, Z5, ..., Zn be
independent normal random variables, where Z;j has mean puj and variance ai2 (i =

1,2,...,n). Then (Z; — /Li)z/O'iz is X(Zl) for all i, and so

n )
xzzz(z'af“') (1.12)
I= |

is X(zn)~

Binomial
The binomial probability function is

P(A=alr) = <;>na(1 —m)-2

where the sample space is the (finite) set of integers {0, 1,2,...,r}. A binomial
distribution is completely characterized by the parameters 7 and r which, for conve-
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nience, we usually write as (i, ). Recall that, for 0 < a < r, the binomial coefficient

is defined to be
r _ r!
a/  al(r-—a)

where r! =r (r —1)--- 2. 1. We adopt the usual convention that 0! = 1. The
binomial coefficient (;) equals the number of ways of choosing a items out of r
without regard to order of selection. For example, the number of possible bridge
hands is (%) = 6.35 x 10'!. It can be shown that

r

Z <;>”a(1 —m) P =r+0-m] =1

a=0

and so (1.1) is satisfied. The mean and variance of A are 1 and 7 (1 — )r, respec-
tively; that is,

r
E(A) = Za(;)yra(l L S

a=0

and

r

var(A) = Z(a — nr)2<;>na(1 —m) =7 - 7)r.

a=0

Like the normal and chi-square distributions, the binomial distribution is additive.
Let Aj, Ap, ..., Ap be independent binomial random variables and suppose that A;
has parameters 7j = 7 and rj (i = 1,2,...,n). Then Zinzl A is binomial with
parameters 7 and Y |, ri. A similar result does not hold when the 7; are not all
equal.

The binomial distribution is important in epidemiology because many epidemio-
logic studies are concerned with counted (discrete) outcomes. For instance, the bi-
nomial distribution can be used to analyze data from a study in which a group of r
individuals is followed over a defined period of time and the number of outcomes of
interest, denoted by a, is counted. In this context the outcome of interest could be,
for example, recovery from an illness, survival to the end of follow-up, or death from
some cause. For the binomial distribution to be applicable, two conditions need to
be satisfied: The probability of an outcome must be the same for each subject, and
subjects must behave independently; that is, the outcome for each subject must be
unrelated to the outcome for any other subject. In an epidemiologic study the first
condition is unlikely to be satisfied across the entire group of subjects. In this case,
one strategy is to form subgroups of subjects having similar characteristics so that,
to a greater or lesser extent, there is uniformity of risk within each subgroup. Then
the binomial distribution can be applied to each subgroup separately. As an example
where the second condition would not be satisfied, consider a study of influenza in a
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classroom of students. Since influenza is contagious, the risk of illness in one student
is not independent of the risk in others. In studies of noninfectious diseases, such as
cancer, stroke, and so on, the independence assumption is usually satisfied.

Poisson

The Poisson probability function is

—v,d
d!

P(D =dp) = ° (1.13)

where the sample space is the (infinite) set of nonnegative integers {0, 1,2, ...}. A
Poisson distribution is completely characterized by the parameter v, which is equal
to both the mean and variance of the distribution, that is,

)=v

o0 efvvd
E(D) = d
and

—v.,d

v
d!

)=».

Similar to the other distributions considered above, the Poisson distribution has
an additive property. Let Dy, D>, ..., Dy be independent Poisson random variables,
where D; has the parameter v (i = 1,2,...,n). Then Zinzl D; is Poisson with
parameter Y |, vj.

Like the binomial distribution, the Poisson distribution can be used to analyze data
from a study in which a group of individuals is followed over a defined period of time
and the number of outcomes of interest, denoted by d, is counted. In epidemiologic
studies where the Poisson distribution is applicable, it is not the number of subjects
that is important but rather the collective observation time experienced by the group
as a whole. For the Poisson distribution to be valid, the probability that an outcome
will occur at any time point must be “small.” Expressed another way, the outcome
must be a “rare” event.

As might be guessed from the above remarks, there is a connection between the
binomial and Poisson distributions. In fact the Poisson distribution can be derived as
a limiting case of the binomial distribution. Let D be Poisson with mean v, and let
A1, Az, ..., A, ... be an infinite sequence of binomial random variables, where A
has parameters (77, I'i ). Suppose that the sequence satisfies the following conditions:
wiri = v for all i, and the limiting value of 7rj equals 0. Under these circumstances
the sequence of binomial random variables “converges” to D; that is, as i gets larger
the distribution of A;j gets closer to that of D. This theoretical result explains why
the Poisson distribution is often used to model rare events. It also suggests that the
Poisson distribution with parameter v can be used to approximate the binomial dis-
tribution with parameters (i, I'), provided v = v and 7 is “small.”

var(D) = i(d — v)z(e
d=0
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TABLE 1.5 Binomial and Poisson Probability Functions (%)

Binomial

T=.2 T=.1 T = .01 Poisson
X r=10 r=20 r =200 v=2
0 10.74 12.16 13.40 13.53
1 26.84 27.02 27.07 27.07
2 30.20 28.52 27.20 27.07
3 20.13 19.01 18.14 18.04
4 8.81 8.98 9.02 9.02
5 2.64 3.19 3.57 3.61
6 .55 .89 1.17 1.20
7 .08 .20 33 .34
8 .01 .04 .08 .09
9 < .01 .01 .02 .02
10 < .01 < .01 < .01 < .01

Example 1.5 Table 1.5 gives three binomial distributions with parameters
(.2,10), (.1, 20), and (.01, 200), so that in each case the mean is 2. Also shown
is the Poisson distribution with a mean of 2. The sample spaces have been truncated
at 10. As can be seen, as m becomes smaller the Poisson distribution provides a
progressively better approximation to the binomial distribution.

1.1.3 Central Limit Theorem and Normal Approximations

Let Xi, X2, ..., X, be a sample from an arbitrary distribution and denote the com-
mon mean and variance by p and o2. Tt was shown in (1.10) and (1.11) that X has
mean E(X) = p and variance var(X) = o%/n. So, from Example 1.3, the random
variable »/n (X— 1) /o has mean 0 and variance 1. If the X; are normal then, from the
properties of the normal distribution, «/N(X — ) /o is standard normal. The Central
Limit Theorem is a remarkable result from probability theory which states that, even
when the X; are not normal, v/N(X — ) /o is “approximately” standard normal, pro-
vided n is sufficiently “large.” We note that the Xj are not required to be continuous
random variables. Probability statements such as this, which become more accurate
as N increases, are said to hold asymptotically. Accordingly, the Central Limit Theo-
rem states that ./N(X — 1) /o is asymptotically standard normal.

Let A be binomial with parameters (;r, n) and let A, Ay, ..., An be a sample
from the binomial distribution with parameters (s, 1). Similarly, let D be Poisson
with parameter v, where we assume that v = n, an integer, and let Dy, D5, ..., Dy be

a sample from the Poisson distribution with parameter 1. From the additive properties
of binomial and Poisson distributions, A has the same distribution as Zin:l A, and
D has the same distribution as >, Dj. It follows from the Central Limit Theorem
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that, provided n is large, A and D will be asymptotically normal. We illustrate this
phenomenon below with a series of graphs.

Let Dy, Da, ..., Dy be independent Poisson random variables, where Dj has the
parameter vj (i = 1,2, ..., n). From the arguments leading to (1.12) and the Central
Limit Theorem, it follows that

n 2
(Di —wi)
x2=) =1 (1.14)
is approximately x(zn). More generally, let Xj, Xs, ..., Xn be independent random
variables where X; has mean u; and variance oi2 (i =1,2,...,n). If each X; is
approximately normal then
n 2
2 (Xi — i)
X*=>3 = (1.15)
i=1 9

is approximately X(zn)~

Example 1.6 Table 1.6(a) gives the exact and approximate values of the lower
and upper tail probabilities of the binomial distribution with parameters (.3, 10). In
statistics the term “exact” means that an actual probability function is being used to
perform calculations, as opposed to a normal approximation. The mean and variance
of the binomial distribution are .3(10) = 3 and .3(.7)(10) = 2.1. The approximate
values were calculated using the following approach. The normal approximation to
P(A < 2|.3), for example, equals the area under the standard normal curve to the left
of [(2+.5)-3]/ V2.1, and the normal approximation to P(A > 2.3) equals the area
under the standard normal curve to the right of [(2 — .5) — 3]/+/2.1. The continuity
correction factors %.5 have been included because the normal distribution, which is
continuous, is being used to approximate a binomial distribution, which is discrete
(Breslow and Day, 1980, §4.3). As can be seen from Table 1.6(a), the exact and
approximate values show quite good agreement. Table 1.6(b) gives the results for the

TABLE 1.6(a) Exact and Approximate Tail Probabilities (%) for the Binomial Distribution
with Parameters (.3,10)

P(A<al.3) P(A>al.3)
a Exact Approximate Exact Approximate
2 38.28 36.50 85.07 84.97
4 84.97 84.97 35.04 36.50
6 98.94 99.21 4.73 422
8 99.99 99.99 .16 .10
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TABLE 1.6(b) Exact and Approximate Tail Probabilities (%) for the Binomial Distribution
with Parameters (.3,100)

P(A <al.3) P(A>al.3)
a Exact Approximate Exact Approximate
20 1.65 1.91 99.11 98.90
25 16.31 16.31 88.64 88.50
30 54.91 54.34 53.77 54.34
35 88.39 88.50 16.29 16.31
40 98.75 98.90 2.10 1.91

binomial distribution with parameters (.3,100), which shows even better agreement
due to the larger sample size.

Arguments were presented above which show that binomial and Poisson distribu-
tions are approximately normal when the sample size is large. The obvious question
is, How large is “large”? We approach this matter empirically and present a sample
size criterion that is useful in practice. The following remarks refer to Figures 1.1(a)—
1.8(a), which show graphs of selected binomial and Poisson distributions. The points
in the sample space have been plotted on the horizontal axis, with the correspond-
ing probabilities plotted on the vertical axis. Magnitudes have not been indicated on
the axes since, for the moment, we are concerned only with the shapes of distribu-
tions. The horizontal axes are labeled with the term “count,” which stands for the
number of binomial or Poisson outcomes. Distributions with the symmetric, bell-
shaped appearance of the normal distribution have a satisfactory normal approxima-
tion.

The binomial and Poisson distributions have sample spaces consisting of con-
secutive integers, and so the distance between neighboring points is always 1.
Consequently the graphs could have been presented in the form of histograms (bar
charts). Instead they are shown as step functions so as to facilitate later comparisons
with the remaining graphs in the same figures. Since the base of each step has a
length of 1, the area of the rectangle corresponding to that step equals the probability
associated with that point in the sample space. Consequently, summing across the
entire sample space, the area under each step function equals 1, as required by (1.1).
Some of the distributions considered here have tails with little associated probability
(area). This is obviously true for the Poisson distributions, where the sample space
is infinite and extreme tail probabilities are small. The graphs have been truncated at
the extremes of the distributions corresponding to tail probabilities of 1%.

The binomial parameters used to create Figures 1.1(a)-1.5(a) are (.3,10), (.5,10),
(.03,100), (.05,100), and (.1,100), respectively, and so the means are 3, 5, and 10.
The Poisson parameters used to create Figures 1.6(a)—1.8(a) are 3, 5, and 10, which
are also the means of the distributions. As can be seen, for both the binomial and
Poisson distributions, a rough guideline is that the normal approximation should be
satisfactory provided the mean of the distribution is greater than or equal to 5.
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FIGURE 1.1(b) Odds transformation of binomial distribution with parameters (.3, 10)
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FIGURE 1.1(¢c) Log-odds transformation of binomial distribution with parameters (.3, 10)



Probability

Count

FIGURE 1.2(a) Binomial distribution with parameters (.5, 10)
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FIGURE 1.2(¢) Log-odds transformation of binomial distribution with parameters (.5, 10)
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FIGURE 1.8(a) Poisson distribution with parameter 10
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FIGURE 1.8(b) Log transformation of Poisson distribution with parameter 10

1.2 PARAMETER ESTIMATION

In the preceding section we discussed the properties of distributions in general, and
those of the normal, chi-square, binomial, and Poisson distributions in particular.
These distributions and others are characterized by parameters that, in practice, are
usually unknown. This raises the question of how to estimate such parameters from
study data.

In certain applications the method of estimation seems intuitively clear. For ex-
ample, suppose we are interested in estimating the probability that a coin will land
heads. A “study” to investigate this question is straightforward and involves tossing
the coin r times and counting the number of heads, a quantity that will be denoted
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by a. The question of how large r should be is answered in Chapter 14. The pro-
portion of tosses landing heads a/r tells us something about the coin, but in order
to probe more deeply we require a probability model, the obvious choice being the
binomial distribution. Accordingly, let A be a binomial random variable with param-
eters (7, '), where 7 denotes the unknown probability that the coin will land heads.
Even though the parameter 7 can never be known with certainty, it can be estimated
from study data. From the binomial model, an estimate is given by the random vari-
able A/r which, in the present study, has the realization a/r. We denote A/r by &
and refer to 7 as a (point) estimate of 7. In some of the statistics literature, 7 is
called an estimator of , the term estimate being reserved for the realization a/r. In
keeping with our convention of intentionally ignoring the distinction between ran-
dom variables and realizations, we use estimate to refer to both quantities.

The theory of binomial distributions provides insight into the properties of 7 as
an estimate of 7. Since A has mean E(A) = zr and variance var(A) = 7 (1 —m)r, it
follows that 7 has mean E(#) = E(A)/r = 7 and variance var(#) = var(A)/r? =
(1 — m)/r. In the context of the coin-tossing study, these properties of 7 have the
following interpretations: Over the course of many replications of the study, each
based on r tosses, the realizations of 7 will be tend to be near 7; and when r is
large there will be little dispersion of the realizations on either side of 7. The latter
interpretation is consistent with our intuition that 7 will be estimated more accurately
when there are many tosses of the coin.

With the above example as motivation, we now consider the general problem of
parameter estimation. For simplicity we frame the discussion in terms of a discrete
random variable, but the same ideas apply to the continuous case. Suppose that we
wish to study a feature of a population which is governed by a probability function
P (X = x|0), where the parameter & embodies the characteristic of interest. For ex-
ample, in a population health survey, X could be the serum cholesterol of a randomly
chosen individual and 6 might be the average serum cholesterol in the population.
Let X1, X2, ..., Xp be a sample of size n from the probability function P(X = X|6).
A (point) estimate of 6, denoted by 6, is a random variable that is expressed in terms
of the Xj and that satisfies certain properties, as discussed below. In the preceding
example, the survey could be conducted by sampling n individuals at random from
the population and measuring their serum cholesterol. For 6 we might consider using
X = (Zin: 1 Xi)/n, the average serum cholesterol in the sample.

There is considerable latitude when specifying the properties that 6 should be
required to satisfy, but in order for a theory of estimation to be meaningful the prop-
erties must be chosen so that is, in some sense, informative about 6. The first
property we would like 6 to have is that it should result in realizations that are “near”
6. This is impossible to guarantee in any given study, but over the course of many
replications of the study we would like this property to hold “on average.” Accord-
ingly, we require the mean of 6 to be 6, that is, E(§) = 6. When this property is
satisfied we say that 6 is an unbiased estimate of 6, otherwise 0 is said to be biased.
The second property we would like 6 to have is that it should make as efficient use of
the data as possible. In statistics, notions related to efficiency are generally expressed
in terms of the variance. That is, all other things being equal, the smaller the variance
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the greater the efficiency. Accordingly, for a given sample size, we require var(9) to
be as small as possible.

In the coin-tossing study the parameter was 6 = w. We can reformulate the earlier
probability model by letting Ay, Ay, ..., An be independent binomial random vari-
ables, each having parameters (7, 1). Setting A = (3., A))/n we have # = A,
and so E(A) = 7 and var(A) = 7(1 — ) /N. Suppose that instead of ‘A we de-
cide to use A; as an estimate of m; that is, we ignore all but the first toss of the
coin. Since E(A;) = m, both ‘A and A; are unbiased estimates of 7. However,
var(A;) = (1 — ) and so, provided n > 1, var(A;) > var(A). This means that A
is more efficient than A;. Based on the above criteria we would choose A over A; as
an estimate of 7.

The decision to choose A in preference to A; was based on a comparison of
variances. This raises the question of whether there is another unbiased estimate of
7 with a variance that is even smaller than 7 (1 — ) /n. We return now to the general
case of an arbitrary probability function P(X = X|60). For many of the probability
functions encountered in epidemiology it can be shown that there is a number b(6)
such that, for any unbiased estimate é, the inequality var(é) > b(#) is satisfied.
Consequently, b(6) is at least as small as the variance of any unbiased estimate of 6.
There is no guarantee that for given 8 and P (X = X|6) there actually is an unbiased
estimate with a variance this small; but, if we can find one, we clearly will have
satisfied the requirement that the estimate has the smallest variance possible.

For the binomial distribution, it turns out that b(wr) = 7 (1 — 7)/n, and so
b(z) = var(7). Consequently 7 is an unbiased estimate of 7z with the smallest vari-
ance possible (among unbiased estimates). For the binomial distribution, intuition
suggests that 7 ought to provide a reasonable estimate of 7, and it turns out that 7
has precisely the properties we require. However, such ad hoc methods of defining
an estimate cannot always be relied upon, especially when the probability model is
complex. We now consider two widely used methods of estimation which ensure that
the estimate has desirable properties, provided asymptotic conditions are satisfied.

1.2.1 Maximum Likelihood

The maximum likelihood method is based on a concept that is intuitively appealing
and, at first glance, deceptively straightforward. Like many profound ideas, its ap-
parent simplicity belies a remarkable depth. Let X;, Xy, ..., X, be a sample from
the probability function P(X = X|6) and consider the observations (realizations)
X1, X2, ..., Xn. Since the X| are independent, the (joint) probability of these obser-
vations is the product of the individual probability elements, that is,

n
[TPXi =xi16) = P(Xi = x110) P(X2 = %[) --- P(Xn = Xnl6). ~ (1.16)
i=1

Ordinarily we are inclined to think of (1.16) as a function of the X;. From this
perspective, (1.16) can be used to calculate the probability of the observations pro-
vided the value of 6 is known. The maximum likelihood method turns this argument
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around and views (1.16) as a function of 8. Once the data have been collected, values
of the Xj can be substituted into (1.16), making it a function of 6 alone. When viewed
this way we denote (1.16) by L (0) and refer to it as the likelihood. For any value of
0, L(0) equals the probability of the observations Xp, X2, ..., Xn. We can graph L (0)
as a function of 6 to get a visual image of this relationship. The value of 6 which is
most in accord with the observations, that is, makes them most “likely,” is the one
which maximizes L (9) as a function of 6. We refer to this value of 6 as the maximum
likelihood estimate and denote it by 6.

Example 1.7 Let A;, Ay, A3, A4, As be a sample from the binomial distribu-
tion with parameters (i, 1), and consider the observations a; = 0, ap = 1, a3 = 0,
a4 = 0, and a5 = 0. The likelihood is

5
L) =]r*0-m'"* =z -m)".
i=1

From the graph of L (r), shown in Figure 1.9, it appears that 7 is somewhere in the
neighborhood of .2. Trial and error with larger and smaller values of 7 confirms that
in fact 7 = .2.

The above graphical method of finding a maximum likelihood estimate is feasible
only in the simplest of cases. In more complex situations, in particular when there
are several parameters to estimate simultaneously, numerical methods are required,
such as those described in Appendix B. When there is a single parameter, the maxi-
mum likelihood estimate 6 can usually be found by solving the maximum likelihood
equation,

L'(0) =0 (1.17)
where L'(0) is the derivative of L (0) with respect to 6.
0.10
0.08
0.06

L(m)
0.04 1

0.02 1

0.00-

0.0 0.2 0.4 0.6 08 1.0

n

FIGURE 1.9 Likelihood for Example 1.7
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Example 1.8 We now generalize Example 1.7. Let A, Ao, ..., Ar be a sample
from the binomial distribution with parameters (77, 1), and denote the observations
by aj, &, ..., &. The likelihood is

r
L(m) :l—[na‘ (1 —n)l_a" =n31 —m) 2 (1.18)
i=1

where @ = Y| _, & . From the form of the likelihood we see that is not the individual
g which are important but rather their sum a. Accordingly we might just as well
have based the likelihood on Zirzl Aj, which is binomial with parameters (7, r). In
this case the likelihood is

L(n) = (;>na(l — ) A, (1.19)

As far as maximizing (1.19) with respect to 7 is concerned, the binomial coef-
ficient is irrelevant and so (1.18) and (1.19) are equivalent from the likelihood per-
spective. It is straightforward to show that the maximum likelihood equation (1.17)
simplifies to @ — 71 = 0 and so the maximum likelihood estimate of 7 is 7 = a/r.

Maximum likelihood estimates have very attractive asymptotic properties. Specif-
ically, if 6 is the maximum likelihood estimate of 6 then  is asymptotically normal
with mean 6 and variance b(9), where the latter is the lower bound described earlier.
As a result, 6 satisfies, in an asymptotic sense, the two properties that were pro-
posed above as being desirable features of an estimate—unbiasedness and minimum
variance. In addition to parameter estimates, the maximum likelihood approach also
provides methods of confidence interval estimation and hypothesis testing. As dis-
cussed in Appendix B, included among the latter are the Wald, score, and likelihood
ratio tests.

It seems that the maximum likelihood method has much to offer; however, there
are two potential problems. First, the maximum likelihood equation may be very
complicated and this can make calculating 6 difficult in practice. This is especially
true when several parameters must be estimated simultaneously. Fortunately, statis-
tical packages are available for many standard analyses and modern computers are
capable of handling the computational burden. The second problem is that the desir-
able properties of maximum likelihood estimates are guaranteed to hold only when
the sample size is “large.”

1.2.2 Weighted Least Squares

In the coin-tossing study discussed above, we considered a sample Aj, Ag, ..., Ap
from a binomial distribution with parameters (i, 1). Since E(A;j) = 7 we can denote
A by 7j, and in place of A = (Z,n 1 A )/n write 7 = (Zln | T )/n In this way we
can express the estimate of 77 as an average of estimates, one for each i. More gen-
erally, suppose that 91 92, .. Qn are independent unbiased estlmates of a parameter
0, that is, E(G.) = 6 for all i. We do not assume that the 9. necessarily have the
same distribution; in particular, we do not require that the variances var(éi) = oiz be
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equal. We seek a method of combining the individual estimates 6 of 6 into an overall
estimate 6 which has the desirable properties outlined earlier. (Using the symbol 6
for both the weighted least squares and maximum likelihood estimates is a matter of
convenience and is not meant to imply any connection between the two estimates.)
For constants wj > 0, consider the sum

— Z wi (G — 6)? (1.20)

|—1

where W = Y[, wj. We refer to the wj as weights and to an expression such (1.20)
as a weighted average. It is the relative, not the absolute, magnitude of each wj that is
important in a weighted average. In particular, we can replace wj with w] = wj/W
and obtain a weighted average in which the weights sum to 1. In this way, means
(1.2) and variances (1.3) can be viewed as weighted averages.

Expressmn (1.20) is a measure of the overall welghted “distance” between the
6 and 6. The weighted least squares method defines 6 to be that quantity which
minimizes (1.20). It can be shown that the weighted least squares estimate of 6 is

éZW > wib, (1.21)

which is seen to be a weighted average of the éi . Since each éi is an unbiased estimate
of 9, it follows from (1.7) that

. 1 & n
EO) = ZwiE(Qi) =6.

So 6 is also an unbiased estimate of 0, and this is true regardless of the choice
of weights. Not all weighting schemes are equally efficient in the sense of keeping
the variance Var(é) to a minimum. The variance O’iz is a measure of the amount of
information contained in the estimate 6;. It seems reasonable that relatively greater
weight should be given to those 6; for which oi2 is correspondingly small. It turns out
that the weights wj = 1 /cri2 are optimal in the following sense: The corresponding
weighted least squares estimate has minimum variance among all weighted averages
of the 6; (although not necessarily among estimates in general). Setting wj = 1/ ‘7i2’
it follows from (1.8) that

n

var(f) = Z var(6y) = vlv (1.22)

Note that up to this point the entire discussion has been based on means and
variances. In particular, nothing has been assumed about distributions or sample size.
It seems that the weighted least squares method has much to recommend it. Unlike
the maximum likelihood approach, the calculations are straightforward, and sample
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size does not seem to be an issue. However, a major consideration is that we need
to know the variances Ui2 prior to using the weighted least squares approach, and in
practice this information is almost never available. Therefore it is usually necessary
to estimate the ai2 from study data, in which case the weights are random variables
rather than constants. So instead of (1.21) and (1.22) we have instead

R LU
6 = & ;wiei (1.23)
and
e~ A 1
var(d) = — (1.24)
W

where 0j = 1/62 and W = >, Wi. When the o2 are estimated from large samples
the desirable properties of (1.21) and (1.22) described above carry over to (1.23) and
(1.24), that is, 6 is asymptotically unbiased with minimum variance.

1.3 RANDOM SAMPLING

The methods of parameter (point) estimation described in the preceding section, as
well as the methods of confidence interval estimation and hypothesis testing to be
discussed in subsequent chapters, are based on the assumption that study subjects
are selected using random sampling. If subjects are a nonrandom sample, the above
methods do not apply. For example, if patients are enrolled in a study of mortality
by preferentially selecting those with a better prognosis, the mortality estimates that
result will not reflect the experience of the typical patient in the general population.
In this section we discuss two types of random sampling that are important in epi-
demiologic studies: simple random sampling and stratified random sampling. For
illustrative purposes we consider a prevalence study (survey) designed to estimate
the proportion of the population who have a given disease at a particular time point.
This proportion is referred to as the (point) prevalence rate (of the disease), and an
individual who has the disease is referred to as a case (of the disease). The binomial
distribution can be used to analyze data from a prevalence study. Accordingly, we
denote the prevalence rate by 7.

1.3.1 Simple Random Sampling

Simple random sampling, the least complicated type of random sampling, is widely
used in epidemiologic studies. The cardinal feature of a simple random sample is
that all individuals in the population have an equal probability of being selected. For
example, a simple random sample would be obtained by randomly selecting names
from a census list, making sure that each individual has the same chance of being
chosen. Suppose that r individuals are sampled for the prevalence study and that
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a of them are cases. The simple random sample estimate of the prevalence rate is
7srs = @/1, which has the variance var(7gs) = (1 —w)/r.

1.3.2 Stratified Random Sampling

Suppose that the prevalence rate increases with age. Simple random sampling en-
sures that, on average, the sample will have the same age distribution as the popula-
tion. However, in a given prevalence study it is possible for a particular age group to
be underrepresented or even absent from a simple random sample. Stratified random
sampling avoids this difficulty by permitting the investigator to specify the propor-
tion of the total sample that will come from each age group (stratum). For stratified
random sampling to be possible it is necessary to know in advance the number of in-
dividuals in the population in each stratum. For example, stratification by age could
be based on a census list, provided information on age is available. Once the strata
have been created, a simple random sample is drawn from each stratum, resulting in
a stratified random sample.

Suppose there are n strata. For the ith stratum we make the following definitions:
N;i is the number of individuals in the population, 7 is the prevalence rate, I is
the number of subjects in the simple random sample, and g; is the number of cases
among the r; subjects (i = 1,2,...,n).Let N = Zin=1 Nj,a= Zin=1 g and

n
r=Zri. (1.25)
i=1

For a stratified random sample, along with the N;, the rj must also be known prior
to data collection. We return shortly to the issue of how to determine the rj, given an
overall sample size of r. For the moment we require only that the r; satisfy the con-
straint (1.25). Since a simple random sample is chosen in each stratum, an estimate
of 7 is #j = & /ri, which has the variance var(7j) = 7j (1 — 7;)/r;. The stratified
random sample estimate of the prevalence rate is

R = é(%)n. (1.26)

which is seen to be a weighted average of the 77j. Since E(7j) = 7, it follows from
(1.7) that

n
. Ni
B = ) ()m =7
i=1
and so 7T is unbiased. Applying (1.8) to (1.26) gives
n
. Ni\2[ i (1 — i)
var(fgr) = Z(W) [T} (1.27)

i=l1
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We now consider the issue of determining the ri. There are a number of approaches
that can be followed, each of which places particular conditions on the r;. For ex-
ample, according to the method of optimal allocation, the rj are chosen so that
var(7Tg) is minimized. It can be shown that, based on this criterion,

r-:( Ni v/7i (1 — 7i) >r
' YL NiVmd =)/

As can be seen from (1.28), in order to determine the r; it is necessary to know, or
at least have reasonable estimates of, the mj. Since this is one of the purposes of the
prevalence study, it is therefore necessary to rely on findings from earlier prevalence
studies or, when such studies are not available, have access to informed opinion.

Stratified random sampling should be considered only if it is known, or at least
strongly suspected, that the j vary across strata. Suppose that, unknown to the in-
vestigator, the 7rj are all equal, so that r; = 7 for all i. It follows from (1.28) that
ri = (Nij/N)r and hence, from (1.27), that var(7gy) = (1 — 7r)/r. This means that
the variance obtained by optimal allocation, which is the smallest variance possible
under stratified random sampling, equals the variance that would have been obtained
from simple random sampling. Consequently, when there is a possibility that the 7;
are all equal, stratified random sampling should be avoided since the effort involved
in stratification will not be rewarded by a reduction in variance.

Simple random sampling and stratified random sampling are conceptually and
computationally straightforward. There are more complex methods of random sam-
pling such as multistage sampling and cluster sampling. Furthermore, the various
methods can be combined to produce even more elaborate sampling strategies. It will
come as no surprise that as the method of sampling becomes more complicated so
does the corresponding data analysis. In practice, most epidemiologic studies use rel-
atively straightforward sampling procedures. Aside from prevalence studies, which
may require complex sampling, the typical epidemiologic study is usually based on
simple random sampling or perhaps stratified random sampling, but generally noth-
ing more elaborate.

Most of the procedures in standard statistical packages, such as SAS (1987) and
SPSS (1993), assume that data have been collected using simple random sampling or
stratified random sampling. For more complicated sampling designs it is necessary to
use a statistical package such as SUDAAN (Shah et al., 1996), which is specifically
designed to analyze complex survey data. STATA (1999) is a statistical package that
has capabilities similar to SAS and SPSS, but with the added feature of being able
to analyze data collected using complex sampling. For the remainder of the book it
will be assumed that data have been collected using simple random sampling unless
stated otherwise.

(1.28)
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CHAPTER?2

Measurement Issues in Epidemiology

Unlike laboratory research where experimental conditions can usually be carefully
controlled, epidemiologic studies must often contend with circumstances over which
the investigator may have little influence. This reality has important implications for
the manner in which epidemiologic data are collected, analyzed, and interpreted.
This chapter provides an overview of some of the measurement issues that are im-
portant in epidemiologic research, an appreciation of which provides a useful per-
spective on the statistical methods to be discussed in later chapters. There are many
references that can be consulted for additional material on measurement issues and
study design in epidemiology; in particular, the reader is referred to Rothman and
Greenland (1998).

2.1 SYSTEMATIC AND RANDOM ERROR

Virtually any study involving data collection is subject to error, and epidemiologic
studies are no exception. The error that occurs in epidemiologic studies is broadly of
two types: random and systematic.

Random Error

The defining characteristic of random error is that it is due to “chance” and, as such,
is unpredictable. Suppose that a study is conducted on two occasions using identical
methods. It is possible for the first replicate to lead to a correct inference about the
study hypothesis, and for the second replicate to result in an incorrect inference as a
result of random error. For example, consider a study that involves tossing a coin 100
times where the aim is to test the hypothesis that the coin is “fair”—that is, has an
equal chance of landing heads or tails. Suppose that unknown to the investigator the
coin is indeed fair. In the first replicate, imagine that there are 50 heads and 50 tails,
leading to the correct inference that the coin is fair. Now suppose that in the second
replicate there are 99 heads and 1 tail, leading to the incorrect inference that the coin
is unfair. The erroneous conclusion in the second replicate is due to random error,
and this occurs despite the fact that precisely the same study methods were used both
times.

31
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Since the coin is fair, based on the binomial model, the probability of observing
the data in the second replicate is (1;090)(1 /2)2(1/2)! = 7.89 x 10~2%°, an exceed-
ingly small number. Although unlikely, this outcome is possible. The only way to
completely eliminate random error in the study is to toss the coin an “infinite” num-
ber of times, an obvious impossibility. However, as intuition suggests, tossing the
coin a “large” number of times can reduce the probability of random error. Epidemi-
ologic studies are generally based on measurements performed on subjects randomly
sampled from a “population.” A population can be any well-defined group of indi-
viduals, such as the residents of a city, individuals living in the catchment area of a
hospital, workers in a manufacturing plant, or patients attending a medical clinic, just
to give a few examples. The process of random sampling from a population intro-
duces random error. In theory, such random error could be eliminated by recruiting
the entire population into the study. Usually populations of interest are so large or
otherwise inaccessible as to make this option a practical impossibility. As a result,
random error must be addressed in virtually all epidemiologic studies. Much of the
remainder of this book is devoted to methods for analyzing data in the presence of
random error.

An epidemiologic study is usually designed with a particular hypothesis in mind,
typically having to do with a purported association between a predictor variable and
an outcome of interest. For example, in an occupational epidemiologic study it might
be hypothesized that exposure to a certain chemical increases the risk of cancer.
The classical approach to examining the truth of such a hypothesis is to define the
corresponding “null” hypothesis that no association is present. The null hypothesis
is then tested using inferential statistical methods and either rejected or not. In the
present example, the null hypothesis would be that the chemical is not associated
with the risk of cancer. Rejecting the null hypothesis would lead to the inference that
the chemical is in fact associated with this risk.

The null hypothesis is either true or not, but due to random error the truth of the
matter can never be known with certainty based on statistical methods. The inference
drawn from a hypothesis test can be wrong in two ways. If the null hypothesis is
rejected when it is true, a type I error has occurred; and if the null hypothesis is not
rejected when it is false, there has been a type II error. The probability of a type I
error will be denoted by «, and the probability of a type II error will be denoted by 8.
In a given application the values of « and 8 are determined by the nature of the study
and, as such, are under the control of the investigator. It is desirable to keep « and B
to a minimum, but it is not possible to reduce either of them to 0. For a given sample
size there is a tradeoff between type I error and type II error, in the sense that « can
be reduced by increasing £, and conversely (Chapter 14).

Systematic Error

The cardinal feature of systematic error, and the characteristic that distinguishes it
from random error, is that it is reproducible. For the most part, systematic error oc-
curs as a result of problems having to do with study methodology. If these problems
are left unattended and if identical methods are used to replicate the study, the same
systematic errors will occur. As can be imagined, there are an almost endless number
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of possibilities for systematic error in an epidemiologic study. For example, the study
sample could be chosen improperly, the questionnaire could be invalid, the statistical
analysis could be faulty, and so on. Certain epidemiologic designs are, by their very
nature, more prone to systematic error than others. Case-control studies, discussed
briefly in Chapter 11, are usually considered to be particularly problematic in this
regard due to the reliance on retrospective data collection. With careful attention to
study methods it is possible minimize systematic error, at least those sources of sys-
tematic error that come to the attention of the investigator. In this chapter we focus
on two types of systematic error which are particularly important in epidemiologic
studies, namely, confounding and misclassification.

Ordinarily the findings from an epidemiologic study are presented in terms of a
parameter estimate based on a probability model. In the coin-tossing example the
focus would typically be on the parameter = from a binomial distribution, where
7 is the (unknown) probability of the coin landing heads. When systematic error is
present, the parameter estimate will usually be biased in the sense of Section 1.2, and
so it may either over- or underestimate the true parameter value. Epidemiology has
borrowed the term “bias” from the statistical literature, using it as a synonym for sys-
tematic error. So when an epidemiologic study is subject to systematic error we say
that the parameter estimate is biased or, rather more loosely, that the study is biased.

2.2 MEASURES OF EFFECT

In this book we will mostly be concerned with analyzing data from studies in which
groups of individuals are compared, the aim being to determine whether a given ex-
posure is related to the occurrence of a particular disease. Here “exposure” and “dis-
ease” are used in a generic sense. The term exposure can refer to any characteristic
that we wish to investigate as potentially having a health-related impact. Examples
are: contact with a toxic substance, treatment with an innovative medical therapy,
having a family history of illness, engaging in a certain lifestyle practice, and be-
longing to a particular sociodemographic group. Likewise, the term disease can refer
to the occurrence of any health-related outcome we wish to consider. Examples are:
onset of illness, recovery following surgery, and death from a specific cause. In the
epidemiologic literature, “risk” is sometimes used synonymously with probability, a
convention that tends to equate the term with the probability parameter of a binomial
model. Here we use the term risk more generally to connote the propensity toward
a particular outcome, whether or not that tendency is modeled using the binomial
distribution.

2.2.1 Closed Cohort Study

There are many types of cohort studies, but the common theme is that a group of
individuals, collectively termed the cohort, is followed over time and monitored for
the occurrence of an outcome of interest. For example, a cohort of breast cancer
patients might be followed for 5 years, with death from this disease as the study
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endpoint. In this example, the cohort is a single sample which is not being contrasted
with any comparison group. As another example, suppose that a group of workers
in a chemical fabrication plant is followed for 20 years to determine if their risk of
leukemia is greater than that in the general population. In this case, the workers are
being compared to the population at large.

A reality of cohort studies is that subjects may cease to be under observation
prior to either developing the disease or reaching the end of the planned period of
follow-up. When this occurs we say that the subject has become “unobservable.”
This can occur for a variety of reasons, such as the subject being lost to follow-up by
the investigator, the subject deciding to withdraw from the study, or the investigator
eliminating the subject from further observation due to the development of an inter-
current condition which conflicts with the aims of the study. Whatever the reasons,
these occurrences pose a methodological challenge to the conduct of a cohort study.
For the remainder of this chapter we restrict attention to the least complicated type of
cohort study, namely, one in which all subjects have the same maximum observation
time and all subjects not developing the disease remain observable throughout the
study. A study with this design will be referred to as a closed cohort study.

In a closed cohort study, subjects either develop the disease or not, and all those
not developing it necessarily have the same length of follow-up, namely, the maxi-
mum observation time. For example, suppose that a cohort of 1000 otherwise healthy
middle-aged males are monitored routinely for 5 years to determine which of them
develops hypertension (high blood pressure). In order for the cohort to be closed, it is
necessary that all those who do not develop hypertension remain under observation
for the full 5 years. Once a subject develops hypertension, follow-up for that indi-
vidual ceases. In a closed cohort study involving a single sample, the parameter of
interest is usually the binomial probability of developing disease. In some of the epi-
demiologic literature on closed cohort studies, the probability of disease is referred
to as the incidence proportion or the cumulative incidence, but we will avoid this
terminology. In most cohort studies, at least a few subjects become unobservable for
reasons such as those given above, and so closed cohort studies are rarely encoun-
tered in practice. However, the closed cohort design offers a convenient vehicle for
introducing a number of ideas that are also important in the context of cohort studies
conducted under less restrictive conditions.

Consider a closed cohort study in which the exposure is dichotomous and suppose
that at the start of follow-up there are r; subjects in the exposed cohort (E = 1) and
o subjects in the unexposed cohort (E = 2). At the end of the period of follow-up
each subject will have either developed the disease (D = 1) or not (D = 2). Some-
one who develops the disease will be referred to as a case, otherwise as a noncase.
The development of disease in the exposed and unexposed cohorts will be modeled
using binomial random variables A| and A, with parameters (71, r1) and (2, r2),
respectively. As discussed in Section 1.2.1, we assume that subjects behave inde-
pendently with respect to developing the disease. Tables 2.1(a) and 2.1(b) show the
observed counts and expected values for the study, respectively. We do not refer to
the entries in Table 2.1(b) as expected counts, for reasons that will be explained in
Section 4.1.
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TABLE 2.1(a) Observed Counts:

Closed Cohort Study
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TABLE 2.1(b) Expected Values:

Closed Cohort Study
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2.2.2 Risk Difference, Risk Ratio, and Odds Ratio

When an exposure is related to the risk of disease we say that the exposure has an
“effect.” We now define several measures of effect which quantify the magnitude of
the association between exposure and disease in a closed cohort study.

The risk difference, defined by RD = 7| — 17, is an intuitively appealing measure
of effect. Since w1 = w2 + RD, the risk difference measures change on an additive
scale. If RD > 0, exposure is associated with an increase in the probability of disease;
if RD < 0, exposure is associated with a decrease in the probability of disease; and
if RD = 0, exposure is not associated with the disease.

The risk ratio, defined by RR = m1 /73, is another intuitively appealing measure
of effect. In some of the epidemiologic literature the risk ratio is referred to as the
relative risk, but this terminology will not be used in this book. Since w1 = RRm,
the risk ratio measures change on a multiplicative scale. Note that RR is undefined
when mp = 0, a situation that is theoretically possible but of little interest from an
epidemiologic point of view. If RR > 1, exposure is associated with an increase in
the probability of disease; if RR < 1, exposure is associated with a decrease in the
probability of disease; and if RR = 1, exposure is not associated with the disease. A
measure of effect that has both additive and multiplicative features is (7] —m2) /7 =
RR — 1, which is referred to as the excess relative risk (Preston, 2000). A related
measure of effectis (71 —m2)/m1 = 1 — (1/RR), which is called the attributable risk
percent (Cole and MacMahon, 1971). These measures of effect are closely related to
the risk ratio and will not be considered further.

For a given probability m # 1, the odds w is defined to be

T

w = .
1—m
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Solving for 7 gives

w

T=—
1+ w

and so probability and odds are equivalent ways of expressing the same information.
Although appearing to be somewhat out of place in the context of health-related
studies, odds terminology is well established in the setting of games of chance. As
an example, the probability of picking an ace at random from a deck of cards is
m = 4/52 = 1/13. The odds is therefore ® = (4/52)/(48/52) = 1/12, which
can be written as 1:12 and read as “l to 12.” Despite their nominal equivalence,
probability and odds differ in a major respect: 7 must lie in the interval between 0O
and 1, whereas w can be any nonnegative number. An important characteristic of the
odds is that it satisfies a reciprocal property: If w = 7 /(1 — ) is the odds of a given
outcome, then (1 —)/[1 — (1 —m)] = 1/w is the odds of the opposite outcome. For
example, the odds of not picking an ace is (48/52)/(4/52) = 12, that is, “12to 1.”

Returning to the discussion of closed cohort studies, let w; = m1/(1 — 1) and
wy = m /(1 — my) be the odds of disease for the exposed and unexposed cohorts,
respectively. The odds ratio is defined to be

]_
or= @ _ml-m) Q2.1
wy (1l —m)

Since w1 = ORwy, the odds ratio is similar to the risk ratio in that change is mea-
sured on a multiplicative scale. However, with the odds ratio the scale is calibrated
in terms of odds rather than in terms of probability. If OR > 1, exposure is associ-
ated with an increase in the odds of disease; if OR < 1, exposure is associated with
a decrease in the odds of disease; and if OR = 1, exposure is not associated with
the disease. It is easily demonstrated that w; > w2, w1 < wy, | = w; are equiva-
lent to 7y > mp, M < ma, M = My, respectively, and so statements made in terms
of odds are readily translated into corresponding statements about probabilities, and
conversely.

When the disease is “rare,” 1 — 711 and 1 — 7 are close to 1 and so, from (2.1),
OR is approximately equal to RR. In some of the older epidemiologic literature the
odds ratio was viewed as little more than an approximation to the risk ratio. More
recently, some authors have argued against using the odds ratio as a measure of effect
in clinical studies on the grounds that it cannot substitute for the clinically more
meaningful risk difference and risk ratio (Sinclair and Bracken, 1994). In this book
we regard the odds ratio as a measure of effect worthy of consideration in its own
right and not merely as a less desirable alternative to the risk ratio. As will be seen
shortly, the odds ratio has a number of attractive measurement properties that are not
shared by either the risk difference or the risk ratio.

2.2.3 Choosing a Measure of Effect

We now consider which, if any, of the risk difference, risk ratio, or odds ratio is the
most desirable measure of effect for closed cohort studies. One of the most con-
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tentious issues revolves around the utility of RD and RR as measures of etiology
(causation) on the one hand, and measures of population (public health) impact on
the other. This is best illustrated with some examples. First, suppose that the probabil-
ity of developing the disease is small, whether or not there is exposure; for example,
w1 = .0003 and m, = .0001. Then RD = .0002, and so exposure is associated with
a small increase in the probability of disease. Unless a large segment of the popula-
tion has been exposed, the impact of the disease will be small and so, from a public
health perspective, this particular exposure is not of major concern. On the other
hand, RR = 3 and according to usual epidemiologic practice this is large enough
to warrant further investigation of the exposure as a possible cause of the disease.
Now suppose that m;1 = .06 and 7y = .05, so that RD = .01 and RR = 1.2. In
this example, the risk difference will be of public health importance unless expo-
sure is especially infrequent, while the risk ratio is of relatively little interest from an
etiologic point of view.

The above arguments have been expressed in terms of the risk difference and risk
ratio, but are in essence a debate over the merits of measuring effect on an additive
as opposed to a multiplicative scale. This issue has generated a protracted debate
in the epidemiologic literature, with some authors preferring additive models (Roth-
man, 1974; Berry, 1980) and others preferring the multiplicative approach (Walter
and Holford, 1978). Statistical methods have been proposed for deciding whether
an additive or multiplicative model provides a better fit to study data. One approach
is to compare likelihoods based on best-fitting additive and multiplicative models
(Berry, 1980; Gardner and Munford, 1980; Walker and Rothman, 1982). An alterna-
tive method is to fit a general model that has additive and multiplicative models as
special cases and then decide whether one or the other, or perhaps some intermediate
model, fits the data best (Thomas, 1981; Guerrero and Johnson, 1982; Breslow and
Storer, 1985; Moolgavkar and Venzon, 1987).

Consider a closed cohort study where w1 = .6 and mp = .2, so that w; = 1.5
and wp = .25. Based on these parameters we have the following interpretations:
Exposure increases the probability of disease by an increment RD = .4; exposure
increases the probability of disease by a factor RR = 3; and exposure increases the
odds of disease by a factor OR = 6. This simple example illustrates that the risk
difference, risk ratio, and odds ratio are three very different ways of measuring the
effect of exposure on the risk of disease. It also illustrates that the risk difference
and risk ratio have a straightforward and intuitive interpretation, a feature that is not
shared by the odds ratio. Even if w; = 1.5 and wy = .25 are rewritten as “15 to 10”
and “1 to 4,” these quantities remain less intuitive than 77 = .6 and 7y = .2. It seems
that, from the perspective of ease of interpretation, the risk difference and risk ratio
have a distinct advantage over the odds ratio.

Suppose we redefine exposure status so that subjects who were exposed according
to the original definition are relabeled as unexposed, and conversely. Denoting the
resulting measures of effect with a prime /, we have RD' = mp — 71, RR' = my /71,
and OR" = [m(1 —m1)]/[71(1 —m2)]. It follows that RD' = —RD, RR' = 1/RR, and
OR' = 1/OR, and so each of the measures of effect is transformed into a reciprocal
quantity on either the additive or multiplicative scale. Now suppose that we redefine
disease status so that subjects who were cases according to the original definition are
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relabeled as noncases, and conversely. Denoting the resulting measures of effect with
adouble prime ”, we have RD” = (1 —m1) — (1 —m2), RR” = (1 —m1) /(1 —m3), and
OR" = [(1 — 71)72]/[(1 — 72)71]. It follows that RD” = —RD and OR” = 1/OR,
but RR” # 1/RR. The failure of the risk ratio to demonstrate a reciprocal property
when disease status is redefined is a distinct shortcoming of this measure of effect.
For example, in a randomized controlled trial let “exposure” be active treatment (as
compared to placebo) and let “disease” be death from a given cause. With 71 = .01
and mp = .02, RR = .01/.02 = .5 and so treatment leads to an impressive decrease
in the probability of dying. Looked at another way, RR” = .99/.98 = 1.01 and so
treatment results in only a modest improvement in the probability of surviving.

Since 0 < m; < 1, there are constraints placed on the values of RD and RR.
Specifically, for a given value of w2, RD and RR must satisfy the inequalities 0 <
m +RD < 1and 0 < RRmy < 1; or equivalently, —7m» < RD < (1 — mp) and
0 < RR < (1/m). In the case of a single 2 x 2 table, such as being considered
here, these constraints do not pose a problem. However, when several tables are
being analyzed and an overall measure of effect is being estimated, these constraints
have greater implications. First, there is the added complexity of finding an overall
measure that satisfies the constraints in each table. Second, and more importantly,
the constraint imposed by one of the tables may severely limit the range of possible
values for the measure of effect in other tables. The odds ratio has the attractive
property of not being subject to this problem. Solving (2.1) for r; gives

ORm)

=" 2.2)
ORmy 4 (1 — mp)

T
Since 0 < mp < 1 and OR > 0, it follows that 0 < w1 < 1 for any values of OR and
1o for which the denominator of (2.2) is nonzero. Figures 2.1(a) and 2.1(b), which
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FIGURE 2.1(a) o as a function of 7, with OR = 2
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FIGURE 2.1(b) 7 as a function of 7y, with OR = 5

are based on (2.2), show graphs of 7y as a function of 7w, for OR = 2 and OR = 5.
As can be seen, the curves are concave downward in shape. By contrast, for given
values of RD and RR, the graphs of 71 = 7 + RD and w1 = RRm, (not shown) are
both linear; the former has a slope of 1 and an intercept of RD, while the latter has a
slope of RR and an intercept of 0.

When choosing a measure of effect for a closed cohort study, it is useful to
consider the properties discussed above—that is, whether the measure of effect is
additive or multiplicative, intuitively appealing, exhibits reciprocal properties, and
imposes restrictions on the range of parameter values. However, a more fundamental
consideration is whether the measure of effect is consistent with the underlying
mechanism of the disease process. For example, if it is known that a set of exposures
exert their influence in an additive rather than a multiplicative fashion, it would
be appropriate to select the risk difference as a measure of effect in preference to
the risk ratio or odds ratio. Unfortunately, in most applications there is insufficient
substantive knowledge to help decide such intricate questions. It might be hoped that
epidemiologic data could be used to determine whether a set of exposures is oper-
ating additively, multiplicatively, or in some other manner. However, the behavior
of risk factors at the population level, which is the arena in which epidemiologic
research operates, may not accurately reflect the underlying disease process (Siemi-
atycki and Thomas, 1981; Thompson, 1991).

Walter (2000) has demonstrated that models based on the risk difference, risk
ratio, and odds ratio tend to produce similar findings, a phenomenon that will be il-
lustrated later in this book. Currently, in most epidemiologic studies, some form of
multiplicative model is used. Perhaps the main reason for this emphasis is a practical
consideration: In most epidemiologic research the outcome variable is categorical
(discrete) and the majority of statistical methods, along with most of the statistical
packages available to analyze such data, are based on the multiplicative approach
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(Thomas, 2000). In particular, the majority of regression techniques that are widely
used in epidemiology, such as logistic regression and Cox regression, are multiplica-
tive in nature. For this reason the focus of this book will be on techniques that are
defined in multiplicative terms.

2.3 CONFOUNDING

One of the defining features of epidemiology as a field of inquiry is the concern
(some might say preoccupation) over a particular type of systematic error known as
confounding. In many epidemiologic studies the aim is to isolate the causal effect of
a particular exposure on the development of a given disease. When there are factors
that have the potential to result in a spurious increase or decrease in the observed
effect, the possibility of confounding must be considered. Early definitions of con-
founding were based on the concept of collapsibility, an approach which has consid-
erable intuitive appeal. The current and widely accepted definition of confounding
rests on counterfactual arguments that, by contrast, are rather abstract. As will be
shown, the collapsibility and counterfactual definitions of confounding have certain
features in common. We will develop some preliminary insights into confounding
using the collapsibility approach and then proceed to a definition of confounding
based on counterfactual arguments (Greenland et al., 1999).

2.3.1 Counterfactuals, Causality, and Risk Factors

The concept of causality has an important place in discussions of confounding (Pearl,
2000, Chapter 6). The idea of what it means for something to “cause” something else
is a topic that has engaged philosophers for centuries. Holland (1986) and Greenland
et al. (1999) review some of the issues related to causality in the context of inferen-
tial statistics. A helpful way of thinking about causality is based on the concept of
counterfactuals. Consider the statement “smoking causes lung cancer,” which could
be given the literal interpretation that everyone who smokes develops this type of
tumor. As is well known, there are many people who smoke but do not develop
lung cancer and, conversely, there are people who develop lung cancer and yet have
never smoked. So there is nothing inevitable about the association between smoking
and lung cancer, in either direction. One way of expressing a belief that smoking is
causally related to lung cancer is as follows: We imagine that corresponding to an
individual who smokes there is an imaginary individual who is identical in all re-
spects, except for being a nonsmoker. We then assert that the risk of lung cancer in
the person who smokes is greater than the risk in the imaginary nonsmoker. This type
of argument is termed counterfactual (counter to fact) because we are comparing an
individual who is a known smoker with the “same” individual minus the history of
smoking.

Epidemiologists are usually uncomfortable making claims about causality, gener-
ally preferring to discuss whether an exposure and disease are associated or related.
The term “risk factor” imparts a sense of causality and at the same time is appropri-
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ately conservative for an epidemiologic discussion. So instead of referring to smok-
ing as a cause of lung cancer, it would be usual in an epidemiologic context to say
that smoking is a risk factor for this disease. The term risk factor is also used for
any condition that forms part of a causal chain connecting an exposure of interest
to a given disease. For example, a diet deficient in calcium can lead to osteoporo-
sis, and this can in turn result in hip fractures. We consider both calcium deficiency
and osteoporosis to be risk factors for hip fractures. Sometimes the definition of what
constitutes a risk factor is broadened to include characteristics that are closely associ-
ated with a causal agent but not necessarily causal themselves. In this sense, carrying
a lighter can be considered to be a risk factor for lung cancer. We will restrict our
use of the term risk factor to those characteristics that have a meaningful etiologic
connection with the disease in question.

2.3.2 The Concept of Confounding

The type of problem posed by confounding is best illustrated by an example. Imagine
a closed cohort study investigating alcohol consumption as a possible risk factor for
lung cancer. The exposed cohort consists of a group of individuals who consume
alcohol (drinkers) and the unexposed cohort is a group who do not (nondrinkers).
Setting aside the obvious logistical difficulties involved in conducting such a study,
suppose that at the end of the period of follow-up the proportion of drinkers who
develop lung cancer is greater than the corresponding proportion of nondrinkers.
This might be regarded as evidence that alcohol is a risk factor for lung cancer,
but before drawing this conclusion we must consider the well-known association
between drinking and smoking. Specifically, since smoking is a known cause of lung
cancer, and smoking and drinking are lifestyle habits that are often associated, there
is the possibility that drinking may only appear to be a risk factor for lung cancer
because of the intermediate role played by smoking.

These ideas are captured visually in Figure 2.2(a), which is referred to as a causal
diagram. In the diagram we use E, D and F to denote drinking (exposure), lung
cancer (disease) and smoking (intermediate factor), respectively. The unidirectional
solid arrow between smoking and lung cancer indicates a known causal relationship,
the bidirectional solid arrow between drinking and smoking stands for a known non-
causal association, and the unidirectional dashed arrow between drinking and lung

Drinking (E)
|
|
Smoking (F) |
|

M

Lung cancer (D)

FIGURE 2.2(a) Causa diagram for drinking as arisk factor for lung cancer



42 MEASUREMENT ISSUES IN EPIDEMIOLOGY

cancer represents an association that results from smoking acting as an intermediate
factor.

A quantitative approach to examining whether smoking results in a spurious as-
sociation between drinking and lung cancer involves stratifying (dividing) the cohort
into smokers and nonsmokers, and then reanalyzing the datawithin strata. Stratifica-
tion ensures that the subjects in each stratum are identical with respect to smoking
status. So if the association between drinking and lung cancer is mediated through
smoking, this association will vanish within each of the strata. In a sense, stratifying
by smoking status breaks the connection between drinking and lung cancer in each
stratum by blocking the route through smoking. In fact, drinking is not a risk factor
for lung cancer and so, random error aside, within each smoking stratum the pro-
portion of drinkers who develop lung cancer will be the same as the proportion of
nondrinkers. So after accounting (controlling, adjusting) for smoking we conclude
that drinking is not arisk factor for this disease. In the crude (unstratified) analysis,
drinking appears to be a risk factor for lung cancer due to what we will later refer
to as confounding by smoking. The essential feature of smoking which enablesit to
produce confounding isthat it is associated with both drinking and lung cancer.

Now imagine a closed cohort study investigating calcium deficiency (E) asarisk
factor for hip fractures (D). We have already noted that calcium deficiency leads to
osteoporosis (F) and that both calcium deficiency and osteoporosis cause hip frac-
tures. These associations are depicted in Figure 2.2(b). By analogy with the previous
example it is tempting to regard osteoporosis as a source of confounding. However,
the situation is different here in that osteoporosis is a step in the causal pathway
between calcium deficiency and hip fractures. Consequently, osteoporosis does not
induce a spurious risk relationship between calcium deficiency and hip fractures but
rather helps to explain areal causal connection. For this reason we do not consider
osteoporosis to be a source of confounding.

As with any mathematical construct, the manner in which confounding is opera-
tionalized for the purposes of data analysisis a matter of definition; and, as we will
see, different definitions are possible. The process of arriving at a definition of con-
founding is an inductive one, with concrete examples examined for essential features
which can then be given a more general formulation. The preceding hypothetical
studies illustrate some of the key attributes that should be included as part of a def-
inition of confounding, and these requirements will be adhered to as we explore the

/ Calcium deficiency (E)

Hip fractures (D)

Osteoporosis (F)

FIGURE 2.2(b) Causal diagram for calcium deficiency as arisk factor for hip fractures
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concept further. Specifically, for a variable F to be a source of confounding (con-
founder) we require that F satisfy the following conditions. F must be arisk factor
for the disease, and F must be associated with the exposure. To these two conditions
we add the requirement that ' must not be part of the causal pathway between the
exposure and the disease.

2.3.3 Some Hypothetical Examples of Closed Cohort Studies

Asiillustrated in the preceding section, stratification plays an important role in the
analysis of epidemiologic data, especialy in connection with confounding. In this
section we examine a series of hypothetical closed cohort studiesin order to develop
asense of how therisk difference, risk ratio, and odds ratio behavein crude and strat-
ified 2x 2 tables. Thiswill motivate an analysisthat will be useful in the discussion of
confounding. In an actual cohort study, subjects are randomly sampled from a popu-
lation, a process that introduces random error. For the remainder of this chapter it is
convenient to avoid issues related to random error by assuming that the entire pop-
ulation has been recruited into the cohort and that, for each individual, the outcome
with respect to developing the disease is predetermined (although unknown to the
investigator). In this way we replace the earlier probabilistic (stochastic) approach
with one that is deterministic. Strictly speaking, we should now refer to 1 and n2
in Table 2.1(b) as proportions rather than probabilities because there is no longer a
stochastic context. However, for simplicity of exposition we will retain the earlier
terminology. In what follows, we continue to make reference to the population, but
will now equate it with the cohort at the start of follow-up.

Tables 2.2(a)-2.2(e) give examples of closed cohort studies in which there are
three variables: exposure (E), disease (D), and a stratifying variable, (F). We use
E =1, D = 1, and F = 1 to denote the presence of an attribute and use £ =
2, D = 2,and F = 2 to indicate its absence. Here, as elsewhere in the book, a
dot e denotes summation over all values of an index. We refer to the tables with the

TABLE 2.2(a) Hypothetical Closed Cohort Study: F IsNot a Risk Factor for the Disease
and F |s Not Associated with Exposure

F=1 F=2 F=e
D E E E
1 2 1 2 1 2
1| 70 | 40 140 | 80 210 | 120
2| 30 | 60 60 | 120 90 | 180
100 100 200 200 300 300
RD .30 .30 .30
RR 18 18 18

OR 35 35 35
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TABLE 2.2(b) Hypothetical Closed Cohort Study: F |s Not a Risk Factor for the Disease
and F Is Not Associated with Exposure

F=1 F=2 F=oe

D E E E

1 2 1 2 1 2

1 70 | 40 160 | 80 230 | 120

2| 30 | 60 40 | 120 70 | 180

100 100 200 200 300 300
RD .30 40 37
RR 18 20 19
OR 3.5 6.0 4.9

TABLE 2.2(c) Hypothetical Closed Cohort Study: F Is Not a Risk Factor for the Disease
and F |s Associated with Exposure

F=1 F=2 F=e

D E E E

1 2 1 2 1 2

1, 70 | 80 160 | 40 230 | 120

2| 30 | 120 40 | 60 70 | 180

100 200 200 100 300 300
RD .30 40 37
RR 18 20 1.9
OR 3.5 6.0 4.9

TABLE 2.2(d) Hypothetical Closed Cohort Study: F IsaRisk Factor for the Disease and
F s Not Associated with Exposure

F=1 F=2 F=e

D E E E

1 2 1 2 1 2

1] 9 | 60 80 | 20 170 | 80

2| 10 | 40 120 | 180 130 | 220

100 100 200 200 300 300
RD .30 .30 .30
RR 15 4.0 21
OR 6.0 6.0 3.6
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TABLE 2.2(e) Hypothetical Closed Cohort Study: F |saRisk Factor for the Disease and
F |s Associated with Exposure

F=1 F=2 F=e
D E E E
1 2 1 2 1 2
1| 9 | 120 30 | 10 120 | 130
2| 10 | 80 170 | 90 180 | 170
100 200 200 100 300 300
RD .30 .05 —-.03
RR 15 15 .92
OR 6.0 16 .87

TABLE 2.2(f) Hypothetical Closed Cohort Study: F IsaRisk Factor for the Disease and F
Is Associated with Exposure

F=1 F=2 F=3 F=oe
D E E E E
1 2 1 2 1 2 1 2
1]140| 50 120 | 20 70 | 90 330 | 160
2 | 60 | 50 180 | 180 30 | 210 270 | 440
200 100 300 200 100 300 600 600
RD .20 .30 40 .28
RR 14 4.0 2.3 21
OR 2.3 6.0 54 3.4

headings “F = 1” and “F = 2” as the stratum-specific tables and refer to the table
with the heading “F = o as the crude table. The crude table is obtained from the
stratum-specific tables by collapsing over F—that is, summing over strataon a cell-
by-cell basis. The interpretation of the subheadings of the tables will become clear
shortly.

In Table 2.2(a), for each measure of effect, the stratum-specific values are equal
to each other and to the crude value. In fact, the entriesin stratum 2 are, cell by cell,
double those in stratum 1. There would seem to be little reason to retain stratification
when analyzing the datain Table 2.2(a). In Tables 2.2(b) and 2.2(c), for each measure
of effect, the stratum-specific values increase from stratum 1 to stratum 2. Observe
that each of the crude measures of effect falls between the corresponding stratum-
specific values.

When some or al of the stratum-specific values of a measure of effect differ
(across strata of F) we describe this phenomenon using any of the following syn-
onymous expressions: The measure of effect is heterogeneous (across strata of F),
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F isan effect modifier (of the measure of effect), and there is an interaction between
E and F. These expressionswill be used interchangeably in subsequent discussions.
Note that the decision as to whether a measure of effect is heterogeneous is based
exclusively on the stratum-specific values and does not involve the crude value. For
each of the measures of effect under consideration, when E and F are dichotomous,
it can be shown that F is an effect modifier of the E—D association if and only if
E is an effect modifier of the F—D association. This means that effect modification
is a symmetric relationship between E and F. See Section 2.5.6 for a demonstra-
tion of this result for the risk ratio. When heterogeneity is absent—that is, when all
the stratum-specific values of the measure of effect are equal—we say there is ho-
mogeneity. In Table 2.2(d) there is effect modification of the risk ratio, but not the
risk difference or odds ratio. This illustrates that the decision as to whether effect
modification is present depends on the measure of effect under consideration.

Surprisingly, it is possible for a crude measure of effect to be either greater or less
than any of the stratum-specific values, aphenomenon referred to as Simpson’s para-
dox (Simpson, 1951). In Table 2.2(e), al three measures of effect exhibit Simpson’s
paradox. Here the crude values not only lie outside the range of the stratum-specific
values but, in each instance, point to the opposite risk relationship. The oddsratio in
Table 2.2(d) also exhibits Simpson’s paradox, a finding that is al the more striking
given that there is no effect modification.

2.4 COLLAPSIBILITY APPROACH TO CONFOUNDING

2.4.1 Averageability and Strict Collapsibility in Closed Cohort Studies

In this section we carry out an analysis of therisk difference, risk ratio, and oddsratio
in stratified 2 x 2 tables, where the stratifying variable F has J > 2 categories. The
results of this analysis provide insight into the empirical findings in Tables 2.2(a)-
2.2(e), in particular the reason for Simpson’s paradox. For a given measure of effect,
let M denote the crude value, let 1 ; denote the jth stratum-specific value (j =
1,2,...,J), and let pmin and pumax be the minimum and maximum values of the
w;. We are particularly interested in determining conditions that ensure that zimin <
M < umax; that is, conditions that guarantee that Simpson’s paradox will not be
present.

M is said to be averageable (for a given stratification) if it can be expressed as
a weighted average of the . ;, for some set of weights. We now show that M is
averageableif and only if umin < M < umax- A corollary isthat if M isaverageable,
then Simpson’s paradox is not present. Suppose that M is averageable and let

1 J
M= D wik)
=

wherethe w; areweightsand W = Zle w;.Sinceu; > umin for each j, it follows
that
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J
M > % Z W min = Mmin-
j=1

Likewise, M < pmax and SO pumin < M < pmax- Conversely, suppose that pmin <
M < umax. We need to consider two cases. If M equals one of the stratum-specific
values, say ., let w; = 1 and set the remaining weights equal to 0. Otherwise, M
fallsstrictly between two of the stratum-specific values, say 1 ; and 1 j1.1. Inthiscase
let w; bethe (unique) solutionto M = wpu; + (1 — wj)pj+1, et wjrg =1 —wy,
and set the remaining weights equal to 0. In either case, M can be expressed as a
weighted average of the u;; that is, M is averageable.

M is said to be strictly collapsible (for a given stratification) if M = p; for all
j, that is, if the crude and stratum-specific values are all equal (Whittemore, 1978;
Ducharme and LePage, 1986; Greenland and Mickey, 1988). For example, the odds
ratio in Table 2.2(a) is strictly collapsible, but not the odds ratio in Table 2.2(d).
Note that if M is dtrictly collapsible, then, by definition, the . ; are homogeneous.
Denoting the common stratum-specific value by w, strict collapsibility means that
M = pand pu; = pforal j. Wenow show that M isstrictly collapsibleif and only
if M isaverageable and the . ; are homogeneous. For arbitrary weights w;, let

1 J
M:W;wj,uj—i—A

where A is, by definition, the difference between M and the weighted average of
the ;. Suppose that M is strictly collapsible. Then M = pand w; = p for dl j.
It followsthat w = u + A and so A = O; that is, M is averageable. Conversely,
suppose that M is averageable with weights w; and suppose that p.; = w for all j.
Then

1 ]
M:W;wj,uz,u

and so M isdtrictly collapsible.

With respect to ensuring that Simpson’s paradox does not occur, the above re-
sults suggest that we search for conditions that are sufficient to guarantee that the
risk difference, risk ratio, and risk difference are averageable. Such conditions have
been reported by Kupper et al. (1981) for the case of two strata. Tables 2.3(a) and

TABLE 2.3(a) Observed Countsin
the jth Stratum: Closed Cohort Study

D E

1 2
1 apj az;j
2 by by;
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TABLE 2.3(b) Expected Valuesin
the jth Stratum: Closed Cohort Study

D E
1 2

1 ﬂljrlj 712jr2j

2| A—myjpry; | A—mjry;

rlj }’Zj

2.3(b) give the observed counts and “expected values” for the jth stratum of a set of
J (2 x 2) tables. Since we have assumed a deterministic model, the observed count
and expected value for each cell are merely different ways of referring to the same
quantity, but the alternative notation and terminology are convenient.

By definition, w1j = aij/rij and T2j = az;/rzj, and so

Define

and

J J
ae=Y ay = Y my;
j=1 j=1
J J
ae =Y azy = Y wyr,
=1 j=1

J J
bie = Zblj = Z(l — T1j)r1;
=1 =1

J J
bre = szj = Z(l — 2;)r2j. (2.3
=1 =1
Ny
PL = e
T2
P2l = s

Then p1; is the proportion of the exposed cohort in the jth stratum at the start of
follow-up and p»; isthe corresponding proportion for the unexposed cohort. In other
words, the p1; and p»; give the distribution of F in the exposed and unexposed
cohorts, respectively. By definition,

J
dle rij
= > (—]> T =) P1j7ij (2.4)

I'le j=1 Tle j=1
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and

J J
aZo 72]
=25, ) 7a = 2 paimer
= =

49

(2.5)

Since Y 7_y p1j = Land Y7_; p2; = 1, m1 is aweighted average of the 7r1; and,

likewise, o is aweighted average of the ;.

2.4.2 Risk Difference

The risk difference for the jth stratum is defined to be §; = m1; —

from (2.4) and (2.5) that

J J
RD =" pijmij — le2j772j
j:

=1
J
= Z l/(7T2j +8 ) — ZpZﬂTZ/
j=1 j=1
J
ZZ 1]5 +Z(P1;7T21 P2]772])
Jj=1 Jj=1
If
J J
Y pimej =) p2jm2;
=1 =
then

J
RD = Zpljaj
j=1

.. 1t follows

(2.6)

2.7)

(2.8)

Inthiscase, RD is averageable with weights p; ;. Each of the following conditionsis

sufficient to ensure that (2.7) istrue:

(i) mp; = mp foradl j.
(il) P1j = P2j for all ]

That is, if either condition (i) or condition (ii) is satisfied then RD is averageable.
Condition (i) says that in the unexposed population the probability of disease isthe
same across strata of F. In other words, F' is not arisk factor for the disease in the
unexposed population. Note that if the 7o; are al equal, their common value s 72,
as can be seen from (2.5). Condition (ii) says that F has the same distribution in
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the exposed and unexposed populations. In other words, F is not associated with
exposure in the population. Note that conditions (i) and (ii) refer to the cohort at the
start of follow-up.

2.4.3 Risk Ratio

Therisk ratio for the jth stratum isdefinedtobe p; = 71, /m2;. It followsfrom (2.4)
that 71 = ij':l p1jmejp; and so

J
> i=1P1j72jpj

RR = 7
D j—1P2jm2j
J J
=1 P2 Xj—1 P1jT2jp; v
T N (29)
Zj:lpzﬂ'[zj Zj:lplﬂfzj
If
J J
Zpljﬂzj = szjnzj (2.10)
j=1 j=1
then
J
| p1iTaip;
RR = M (2.11)

- .
> j=1P1jT2;

Inthis case, RR is averageable with weights p1;m,;. Note that (2.10) isidentical to
(2.7) and so conditions (i) and (ii) above, as well as the ensuing discussion, apply to
therisk ratio.

2.4.4 Odds Ratio

The odds and odds ratio for the jth stratum are defined to be wy; = m1;/(1 — 7)),
wp; = m2j /(1 — m2)), and 0; = wij/w2;. It follows that mj = w1j(1—mj) =
Ojw2; (1 —my;) and m2j = w2; (1 — m2;), and so, from (2.4) and (2.5),

J J
1 o Zj:lpljnlj . Z]:lplj(l—f[lj)a)zjej
l-m Y pyQ-m)  Yjgpyd-my)
and
DM o J (1 A
T2 j=1P2j72j > i1 p2j(1—moj)w;

1-m2 Z]J':1P2j(1_772j) ij':lp2j(1_772j)
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Therefore

[Z,J-—lplj(l—ﬂlj)wzjej]/[Z]J-_lplj(l—ﬂlj)]

OR =
[Z,J-=1 p2j(1— ﬂzj)wzj] / [ij-zl p2j(1— ﬂzj)]

[Z;=1P1j(1_771j)0)2j:|/[ij'zlplj(l_ﬂlj)]
[Z,Llpzj(l—ﬂzj)wzj‘]/[ij»zlpzj(l—ﬂzj)]

Y71 p1j (L= m1))2;6;
X . .
Zj:l p1j (1 — m1j)wz;

(2.12)

YTy p1j(L— w1 e B Y o1 p2j (1= m2))e,
Y 1 p1j(1— 7)) Y I_1p2j(1—m2))

(2.13)

then

ij'zl p1j(1—m1j)w2;0;

OR = 7 .
> =1 P1j (1= mj)an;

Inthis case, OR is averageable with weights p1; (1 — 1 j)wy; . Identity (2.13) can be
written as

Y1 p1j (L= w1 a; B Y01 p2j(1— w2
1-m - 1—mo ’

(2.14)

Each of the following conditions is sufficient to ensure that (2.14) is true:

(i) mpj =m2 for dl j.
(i) p1j(l—my;)  p2j(1—m2;)
1-m - 1—mo

for dl j.

Condition (i) is sufficient because the nr2; are all equal if and only if the wy; are all
equal. Since p1; = r1j/rie, 1 — m1j = byj/r1j, and 1 — w1 = b1e/r1., it follows
that

p1j(L—m) _ by
1-m  bie
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and likewise

p2j(1 —m2j) _ b2

1—m boe
Thus condition (iii) is equivaent to

b1

b .
(i) - = bﬁforan i

le 2e

Condition (iii") saysthat F is nor associated with exposure in those members of
the population who do not develop the disease. This rather unusual condition can
only be established once the study has been completed. Indeed, the condition may be
satisfied at one point during the course of follow-up and not at another. If the disease
is rare in each stratum—that is, if 7r1; and mp; are small for @l j—then condition
(iii) is approximately the same as condition (ii).

2.4.5 A Peculiar Property of the Odds Ratio

It was noted in connection with Table 2.2(d) that the decision as to whether there
is homogeneity depends on the measure of effect under consideration. When homo-
geneity is present we denote the common values of §;, p;, and 6; by 8, p, and 6,
respectively. Suppose that both the risk difference and risk ratio are homogeneous,
that is, §; = § and p; = p forall j. Then§ = my; — mp; = pma; — m2; and sO
mp; =8/(p—1) forall j. Thereforethew; areall equal and consequently condition
(i) issatisfied; that is, F is not arisk factor (Rothman and Greenland, 1998, Chapter
18). A similar conclusion is reached if the starting point is the risk ratio and odds
ratio, but not if we start with the risk difference and odds ratio. The explanation for
the latter finding is that when §; = § and 6; = 6 for al j, a quadratic equation re-
sults, making possible more than one value of rp;. Thisisillustrated by Table 2.2(d),
where both the risk difference and odds ratio are homogeneous despite the fact that
F isarisk factor. For the remainder of this chapter, when effect modificationisbeing
examined and F isarisk factor, it will be assumed that each of the measures of effect
is being considered separately and in turn.

Suppose that F is arisk factor for the disease and that F is not associated with
the exposure. For the moment we also assume that F is not an effect modifier of the
risk difference. Since F isnot associated with exposure, condition (ii) is satisfied and
S0 RD is averageable. Since F is not an effect modifier of the risk difference, the §;
are homogeneous. It follows from aresult at the beginning of Section 2.4.1 that RD
is strictly collapsible with RD = §. Similarly, if F is not an effect modifier of the
risk ratio, then RR = p. However, unlike the risk difference and risk ratio, condition
(ii) does not ensure that the odds ratio is averageable. Therefore, even if F isarisk
factor for the disease, F is not associated with exposure, and F is not an effect
modifier, it may still betruethat OR # 6. Thisexplainswhy in Table 2.2(d) the odds
ratio exhibits Simpson’s paradox while the risk difference does not. This peculiar
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property of the odds ratio has been a source of confusion and debate surrounding an
appropriate definition of confounding (Grayson, 1987; Greenland et al., 1989).

To formalize the preceding remarks on the odds retio, suppose that the o are not
al equal (F isarisk factor for the disease), p1; = p2; for @l j (F isnot associated
with exposure), and 6; = 6 for al j (F isnot an effect modifier of the oddsratio). It
follows from the first line of (2.12) that

[ij-zlplj(l—ﬂlj)wzj']/[Zleplj(l—ﬂlj)]

OR =0
[ij-zl p1;j(1— 772j)0)2j] / [ij:l p1j(1— ﬁz;)]

(2.15)

About the only obvious condition that ensures that OR = 0 ism1; = mo; for
al j.Inthiscase §; = 1for al j, and hence OR = 6 = 1. In Appendix A we
show that, when the p;; are all equal, if 6 > 1thenl < OR < 6, andif 6 < 1
then & < OR < 1. Similar inequalities have been demonstrated in the context of
matched-pairs case-control studies (Siegel and Greenhouse, 1973; Armitage, 1975),
and more general results are available for the logistic regression model (Gail et al.,
1984; Gail, 1986; Neuhaus et al., 1991).

2.4.6 Averageability in the Hypothetical Examples of Closed Cohort Studies

We showed at the beginning of Section 2.4.1 that if ameasure of effect isaverageable,
then it is not subject to Simpson’s paradox. Thisislogically equivalent to saying that
if Simpson’s paradox is present, then the measure of effect is not averageable. For
the risk difference and risk ratio, not being averageable means that both conditions
(i) and (ii) must fail, and for the odds ratio it means that both conditions (i) and
(iii) must fail. For Tables 2.2(a)-2.2(e), Simpson’s paradox is exhibited by the risk
difference and risk ratio in Table 2.2(e), and by the odds ratio in Tables 2.2(d) and
2.2(e). We now examine these findingsin light of conditions (i)—(iii).

Tables 2.2(a)-2.2(€) have only two strataand so condition (i) becomes 1 = 722,
whichisthesameasay1/r21 = az/r22. Since p11+ p12 = 1 = poa1+ p22, condition
(if) simplifiesto p11 = p21, Which can be expressed as r11/r1e = r21/12.- From
Section 2.4.4, condition (iii) isequivalent to b11/b1, = b21/b2e. AScan be seen from
Table 2.4, either condition (i) or condition (ii) is satisfied by all the tables except for
Table 2.2(e), and either condition (i) or condition (iii) is satisfied by al the tables
except for Tables 2.2(d) and 2.2(€). These findings are consistent with the presence
of Simpson’s paradox in these same tables.

2.4.7 Collapsibility Definition of Confounding in Closed Cohort Studies

We are now in a position to describe and critique the collapsibility definition of
confounding (Yanagawa, 1979; Kupper et al., 1981; Kleinbaum et al., 1982, Chap-
ter 13; Schlesselman, 1982, §2.10; Yanagawa, 1984; Boivin and Wacholder, 1985;
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TABLE 2.4 Averageability in the Hypothetical Closed Cohort Studies

Condition (i) Condition (ii) Condition (iii)
Table ax/ra1  ax/ra r11/r1e  721/72e b11/b1e  b21/b2e
2.2(a) 40 .40 .33 .33 .33 .33
2.2(b) 40 40 33 33 43 33
2.2(c) 40 .40 .33 .67 43 .67
2.2(d) 60 10 33 33 .08 18
2.2(e) 60 10 33 67 06 A7

Grayson, 1987). We simplify the discussion by assuming that, aside from E and D,
F isthe only other variable under consideration and hence the only potential con-
founder. When there are several potential confounders, the decision as to whether
agiven variable is a confounder depends on the other risk factors under considera-
tion (Fisher and Patil, 1974). The more general case of several confounders will be
considered in Section 2.5.3.

According to the collapsibility definition of confounding, F isaconfounder (of a
measure of effect) if both of the following conditions are satisfied:

(a) The measure of effect is homogeneous across strata of F.

(b) The common stratum-specific value of the measure of effect does nor equal
the crude value.

When F is a confounder, the common stratum-specific value that is guaranteed
by condition (@) is taken to be the “overall” measure of effect for the cohort, and the
crude value is said to be confounded (by F). For example, in Table 2.2(d), F isa
confounder of the odds ratio but not the risk difference. So, the overall risk differ-
ence for the cohort is RD = § = .30 and the overall oddsratiois® = 6.0. In Table
2.2(e), F is aconfounder of the risk ratio and so the overall risk ratio is p = 1.5.
These examples show that, according to the collapsibility definition, the presence or
absence of confounding depends on the measure of effect under consideration. The
collapsibility definition of confounding has the attractive feature that it is possible, in
theory, to base decisions about confounding entirely on study data. Here we set aside
the important issue of random error, which may make the decision about effect mod-
ification uncertain, especially when the sample size is small. Thistopic is discussed
at length in subsequent chapters.

For a given measure of effect, suppose that F is not an effect modifier; that is,
suppose the measure of effect is homogeneous (across strata of F). Since condition
(8) is then satisfied, it follows that F is a confounder if and only if the measure of
effect isnot strictly collapsible. In Section 2.4.1 we showed that a measure of effect
is strictly collapsible if and only if it is homogeneous and averageable. Since the
measure of effect is assumed to be homogeneous, F is a confounder if and only if
the measure of effect is nor averageable. In Section 2.4.2 and 2.4.3 we described
sufficient conditions for the risk difference and risk ratio to be averageable; that is,



COUNTERFACTUAL APPROACH TO CONFOUNDING 55

either F isnot arisk factor for the disease in the unexposed population or F is not
associated with exposure in the population. It follows that if the risk difference and
risk ratio are not averageable, then F must be a risk factor for the disease in the
unexposed population and F must be associated with exposure in the population.
So, given that F isnot an effect modifier, the following are necessary conditions for
F to be a confounder of the risk difference and the risk ratio:

1. F isarisk factor for the disease in the unexposed population.
2. F isassociated with exposure in the population.

Analogous arguments apply to the odds ratio: Given that F is not an effect mod-
ifier, the following are necessary conditions for F to be a confounder of the odds
ratio:

1. F isarisk factor for the disease in the unexposed population.
3. F isassociated with exposure among those who do not develop the disease.

At the close of Section 2.3.2 we specified two properties that we felt should form
part of any definition of a confounder. In fact, these two properties are basically con-
ditions 1 and 2 above. So, for studies analyzed using the risk difference or the risk
ratio, the collapsibility definition of confounding meets our essential requirements.
However, a difficulty arises with studies analyzed using the odds ratio. The problem
isthat, according to the collapsibility definition, aconfounder of the oddsratio hasto
satisfy conditions 1 and 3, but not necessarily condition 2. This meansthat avariable
can be a confounder of the odds ratio even when it is not associated with the expo-
sure. Thisis aserious shortcoming of the collapsibility definition of confounding. In
asense, the problem lies not so much with the collapsibility approach but rather with
the peculiar property of the odds ratio alluded to in Section 2.4.5 and illustrated in
Table 2.2(d). However, we wish to use the odds ratio as a measure of effect and so
thereis no recourse but to search for an aternative definition of confounding.

2.5 COUNTERFACTUAL APPROACH TO CONFOUNDING

2.5.1 Counterfactual Definition of Confounding in Closed Cohort Studies

In Section 2.3.1 we introduced the idea of counterfactual arguments in discussions
of causality. The counterfactual approach is well established in the field of philoso-
phy but has only recently been exploited in statistics and epidemiology (Rubin,1974;
Holland, 1986; Holland and Rubin, 1988). Below we present a definition of con-
founding using counterfactuals (Greenland et al., 1999). The following discussion
can be expressed in terms of an arbitrary parameter and an arbitrary measure of
effect, but for concreteness we focus on the probability of disease and therisk differ-
ence. Continuing with the notation used above, let 771 be the probability of diseasein
the exposed cohort, | et 772 the corresponding probability in the unexposed cohort, and
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let RD = w1 — 7o be the risk difference. Consider a closed cohort study where the
aim isto determine whether a given exposure is arisk factor for a particular disease.
To this end, the exposed and unexposed cohorts are followed over a period of time
and the risk difference is estimated. The reason for including the unexposed cohort
in the study is to have a comparison group for the exposed cohort. Not surprisingly,
the manner in which the unexposed cohort is chosen is crucial to the success of the
cohort study.

For each member of the exposed cohort we can imagine an individual, referred
to as the counterfactual unexposed individual, who exhibits the risk relationship be-
tween exposure and disease that would have been observed in the exposed individual
had that person not been exposed. By bringing together the group of counterfactual
unexposed individuals, one for each member of the exposed cohort, we obtain what
will be referred to as the counterfactual unexposed cohort. The counterfactual unex-
posed cohort is an imaginary group of individuals, but if such a cohort were available
it would constitute the ideal comparison group. Let 7z denote the probability of dis-
ease in the counterfactual unexposed cohort and let RD* = w1 — mj be the risk
difference comparing the exposed cohort to the counterfactual unexposed cohort. In
order not to confuse comparison groups, we will refer to the unexposed cohort as the
actual unexposed cohort.

Under ideal circumstances the probability of disease in the actual and counter-
factual unexposed cohorts would be equal—that is, 72 = 7y —in which case we
would have RD = RD*. According to the counterfactual definition, confounding is
present when 2 # 7. Inthis case the risk difference (and other measures of effect)
are said to be confounded. In order for confounding to be absent, it is not necessary
that the actual unexposed cohort be even remotely similar to the counterfactual un-
exposed cohort, only that the identity 7> = 7" is satisfied. For example, a group of
females could serve as the actual unexposed cohort in a study of all-cause mortality
in prostate cancer patients. The risk difference would be unconfounded provided the
probability of death in this comparison group happened to be equal to the probability
of death in the counterfactual unexposed cohort. Thisillustratesa crucial point about
the counterfactual definition of confounding: It is based on features of the population
at the aggregate level, making no reference to processes at the level of theindividual .
This distinction is important when interpreting epidemiologic findings with respect
toindividual risk (Greenland, 1987; Greenland and Robins, 1988; Robins and Green-
land, 1989a, 1989b, 1991).

The counterfactual definition of confounding is a useful construct but has the
obvious drawback that the counterfactual unexposed cohort is imaginary. However,
under certain circumstances the counterfactual unexposed cohort can be reasonably
approximated. For example, consider a randomized controlled trial with a crossover
designinwhich anew analgesicis compared to placebo in patients with chronic pain.
According to this design, subjects are randomly assigned to receive either analgesic
(exposure) or placebo, and after an initial period of observation they are switched
(crossed-over) to the other treatment. Suppose that the analgesic is short-acting so
that there are no carry-over effects for subjects who receive this medication first. In
this case, the counterfactual unexposed cohort is closely approximated by the entire
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study cohort when it is on placebo. As another example, suppose that a group of
workersin achemical fabricating plant is accidentally exposed to a toxic substance.
Due to the accidental nature of the exposure it may be reasonable to assume that
the exposed workers do not differ in any systematic way from those who were not
involved in the accident. If so, arandom sample of unexposed workerswould provide
a satisfactory approximation to the counterfactual unexposed cohort.

In most epidemiologic studies the actual unexposed cohort does not compare as
closely to the counterfactual unexposed cohort as in the above examples. Moreover,
in certain instances it is difficult to imagine that a counterfactual unexposed cohort
could even exist. For example, suppose that we wish to study the impact of eth-
nic background on the development of disease. Since ethnic background is closaly
related to genetics, socioeconomic status, and other fundamental characteristics of
theindividual, it is amost impossible to conceive of a counterfactual unexposed co-
hort. Despite these limitations, the counterfactual approach to confounding provides
auseful framework for organizing our thinking about causality and risk.

2.5.2 A Model of Population Risk

We now consider a model of population risk due to Greenland and Robins (1986).
Suppose that in the exposed and (actual) unexposed cohorts there are four types of
individuals as shown in Table 2.5. By definition, exposure has no effect on those who
are “doomed” or “immune,” and exposure is either “causative” or “preventive” in
those who are ““susceptible.” The distributions of the exposed and unexposed cohorts
according to each of the four types are given in Table 2.5, where, by definition,
p1+ p2+ p3+ pa = 21and g1 + g2 + g3 + g4 = 1. In the exposed cohort, only
type 1 and type 2 subjectswill develop the disease, and so the probability of diseaseis
1 = p1+ p2. Inthe unexposed cohort the corresponding probability isw2 = g1+4g3.
SORD = (p1+ p2) — (91 + g3)-

In the counterfactual unexposed cohort the probability of diseaseis 7y = p1 +
p3 and so RD* = (p1 + p2) — (p1 + p3) = p2 — p3. By definition, RD will be
unconfounded only if ; = m, that is, p1 + p3 = q1 + g3, in which case RD =
RD* = p, — p3. Note that for the identity p1 + p3 = g1 + ¢3 to be satisfied it is not
necessary that theindividual identities p; = g1 and p3 = g3 hold. All that is needed
for confounding to be absent is that the net effects be the same in the subcohorts
consisting of type 1 and type 3 subjects. This demonstrates the point made earlier

TABLE 2.5 Distribution of Exposed and Unexposed Cohorts According to Type of
Outcome

Type Description Exposed Unexposed
1 Exposure has no effect (doomed) P1 q1
2 Exposureis causative (susceptible) P2 q2
3 Exposureis preventive (susceptible) 3 q3
4 Exposure has no effect (immune) D4 q4
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that confounding is determined at the population level rather than at the level of
individuals.

2.5.3 Counterfactual Definition of a Confounder

As intuition suggests, in order for a measure of effect to be confounded according
to the counterfactual definition, the exposed and unexposed cohorts must differ on
risk factors for the disease. A variable that is, in whole or in part, “responsible” for
confounding is said to be a confounder (of the measure of effect). Note that accord-
ing to the counterfactual approach, the fundamental concept is confounding, and that
confounders are defined secondarily as variables responsible for this phenomenon.
Thisisto be contrasted with the collapsibility definition that first defines confounders
and, when these have been identified, declares confounding to be present. Aswas ob-
served in the previous section, the counterfactual definition of confounding is based
on measurements taken at the population level. These usually represent the net ef-
fects of many interrelated variables, some of which may play arolein confounding.
An important part of the analysis of epidemiologic data involves identifying from
among the possibly long list of risk factors those which might be confounders.

Below we discuss the relatively simple case of a single confounder, but in prac-
tice there will usually be many such variables to consider. To get a sense of how
complicated the interrelationships can be, consider a cohort study investigating
hypercholesterolemia (elevated serum cholesterol) as a risk factor for myocardial
infarction (heart attack). Myocardial infarction most often results from atheroscle-
rosis (hardening of the arteries). Established risk factors that would typically be
considered in such a study are age, sex, family history, hypertension (high blood
pressure), and smoking. A number of associations among these risk factors need to
be taken into account: Hypertension and hyperchol esterolemiatend to increase with
age; smoking is related to sex and age; hypercholesterolemiaand atherosclerosis are
familial; hypercholesterolemia can cause atherosclerosis, which can in turn lead to
hypertension; hypertension can damage blood vessels and thereby provide a site for
atherosclerosis to develop.

In order to tease out the specific effect, if any, that hypercholesterolemia might
have on the risk of myocardial infarction, it is necessary to take account of poten-
tial confounding by the other variables mentioned above. As can be imagined, this
presents a formidable challenge, in terms of both statistical analysis and pathophys-
iologic interpretation. Furthermore, the preceding discussion refers only to known
risk factors. There may be unknown risk factors that should be considered but that,
dueto the current state of scientific knowledge, are not included in the study. This ex-
ample also points out that according to the counterfactual approach (and in contrast to
the collapsibility approach) a decision about confounding is virtually never decided
solely on the basis of study data. Instead, all availableinformationis utilized—in par-
ticular, whatever is known about the underlying disease process and the population
being studied (Greenland and Neutra, 1980; Robins and Morgenstern, 1987).
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We now formalize the counterfactual definition of a confounder. Let R be the
complete set of risk factors for the disease, both known and unknown, and let S be
a subset of R that does not include E, the exposure of interest. The stratification
that results from cross-classifying according to all variablesin S will be referred to
as stratifying by S, and the resulting strata will be referred to as the strata of S. For
example, let S = {F1, F2}, where Fy isage group (five levels) and F» issex. Thenthe
strata of S are the 10 age group-—sex categories obtained by cross-classifying F; and
F». Within each stratum of S weform the 2 x 2 tabl e obtained by cross-classifying by
the exposure of interest and the disease. Associated with the actual exposed cohort
in each stratum is a corresponding counterfactual unexposed cohort. We say thereis
no residual confounding in the strata of S if each stratum is unconfounded; that is,
within each stratum the probability of disease in the actual unexposed cohort equals
the probability of disease in the counterfactual unexposed cohort.

Suppose that we have constructed the causal diagram relating the risk factorsin
R and the exposure E to the disease. Based on the “back-door” criterion, the causal
diagram can be used to determine whether, after stratifying by S, there is residual
confounding in the strata of S (Pearl, 1993, 1995, 2000, Chapter 3). When there is
no residual confounding we say that S is sufficient to control confounding, or simply
that S is sufficient. When S is sufficient but no proper subset of S is sufficient, S
is said to be minimally sufficient. A minimally sufficient set can be determined by
sequentialy deleting variables from a sufficient set until no more variables can be
dropped without destroying the sufficiency. Depending on the choices made at each
step, this process may lead to more than one minimally sufficient set of confounders.
This shows that whether we view arisk factor as a confounder depends on the other
risk factors under consideration.

It is possible for a minimally sufficient set of confounders to be empty, meaning
that the crude measure of effect is unconfounded. A valuable and surprising lesson to
be learned from causal diagramsis that confounding can be introduced by enlarging
asufficient set of confounders (Greenland and Robins, 1986; Greenland et al., 1999).
The explanation for this seeming paradox is that, as has been observed, confound-
ing is a phenomenon that is determined by net effects at the population level. Just
as stratification can prevent confounding by severing the connections between vari-
ables that were responsible for a spurious causal relationship, it is equally true that
stratification can create confounding by interfering with the paths between variables
that were responsible for preventing confounding.

Causal diagrams have the potential drawback of requiring detailed information
on the possibly complex interrelationships among risk factors, both known and un-
known. However, even if a causal diagram is based on incomplete knowledge, it can
be useful for organizing what is known about established and suspected risk factors.
In Section 2.5.6 it isdemonstrated that for an unknown confounder to produce signif-
icant biasit must be highly prevalent in the unexposed popul ation, closely associated
with the exposure, and a major risk factor for the disease. It is always possible that
such an important risk factor might as yet be unknown, especially when adisease is
only beginning to be studied, but for well-researched diseases this seems less likely.
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Nevertheless, the impact of an unknown confounder must be kept in mind and so
causal diagrams should be interpreted with an appropriate degree of caution.

We now specialize to the simple case of a single potential confounder F. The
situation with multiple potential confounders is partially subsumed by the present
discussion if we consider F to be formed by stratifying on a set of potential con-
founders. We make the crucial assumption that F is not affected by the exposure
being studied. An instance where this assumption would fail isin the study of hyper-
cholesterolemia and myocardial infarction presented earlier, with F taken to be hy-
pertension. As was remarked above, hyperchol esterolemia can lead to hypertension,
which isarisk factor for myocardial infarction. When risk factors are affected by the
exposure under consideration, the analysis of confounding and causality becomes
much more complicated, requiring considerations beyond the scope of the present
discussion (Rosenbaum, 1984b; Robins, 1989; Robins and Greenland, 1992; Robins
et al., 1992; Weinberg, 1993; Robins, 1998; Keiding, 1999). With F assumed to be
unaffected by exposure, it follows that F cannot be on the causal pathway between
exposure and disease. Recall that this is one of the conditions that was specified in
Section 2.3.2 as arequirement for a proper definition of a confounder.

Let nfj denote the counterfactual probability of disease in the jth stratum and
let p7 i denote the proportion of the counterfactual unexposed cohort in that stratum
(j=1,2,...,J). Consistent with (2.4), it follows that

J
* * *
T = ZPlj”lj-
j=1

We now assume that there is no residual confounding in the strata of F; that is,
ny; = mp; for al j. This assumption is related to the assumption of strong ignor-
ability (Rosenbaum and Rubin, 1983; Rosenbaum, 19844). According to Holland
(1989), thisis perhaps the most important type of assumption that is made in discus-
sions of causal inference in nonrandomized studies. It was assumed above that F is
not affected by E. Thisimpliesthat if the exposed cohort had in fact been unexposed,
thedistribution of  would be unchanged; that is, p] ;=P for al j. Consequently,

J
) = Zpljfrzj. (2.16)
j=1

From (2.4) and (2.16), the criterion for no confounding, 7 = m2, can be ex-
pressed as

J J
> pijmaj = pajma (2.17)
= i=1

(Wickramaratne and Holford, 1987; Holland, 1989). Identity (2.17) is the same as
identities (2.7) and (2.10), which were shown to be sufficient to guarantee average-
ability of therisk difference and risk ratio. Consequently, either condition (i) or con-
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dition (ii) issufficient for 77 = 7> to betrue. So, provided F isnot affected by £ and
assuming that there is no residua confounding within strata of F', the following are
necessary conditions for F to be a confounder according to the counterfactual defi-
nition of confounding (Miettinen and Cook, 1981; Rothman and Greenland, 1998):

1. F isarisk factor for the disease in the unexposed popul ation.
2. F isassociated with exposure in the popul ation.

These are the same necessary conditions for F to be a confounder of the risk dif-
ference and risk ratio that were obtained using the collapsibility definition of con-
founding. An important observation is that (2.16) was derived without specifying a
particular measure of effect. This means that conditions 1 and 2 above are applicable
to the odds ratio as well asthe risk difference and risk ratio. This avoids the problem
related to the oddsratio that was identified as aflaw in the collapsibility definition of
confounding.

We return to an examination of confounding and effect modification in the hy-
pothetical cohort studies considered earlier. Based on criterion (2.17), it is readily
verified that F is a confounder (according to the counterfactual definition) in Table
2.2(e) but not in Table 2.2(d). We observe that in Table 2.2(d), F is an effect mod-
ifier of the risk ratio but not an effect modifier of the risk difference or odds ratio.
On the other hand, in Table 2.2(e), F is an effect modifier of the risk difference and
the odds ratio but not an effect modifier of the risk ratio. This shows that confound-
ing (according to the counterfactual definition) and effect modification are distinct
characteristics that can occur in the presence or absence of one other.

When there are only two strata, (2.17) simplifiesto

P11721 + p12722 = p21m21 + p22m. (2.18)

Substituting p12 = 1 — p11 and p22 = 1 — p21 in (2.18) and rearranging terms leads
to (721 — m22)(p11 — p21) = 0. Thisidentity istrueif and only if either o1 = 722
or p11 = p21. The latter identities are precisely conditions (i) and (ii), respectively.
So, when there are only two strata, (2.17) implies and is implied by conditions (i)
and (ii). In other words, conditions 1 and 2 completely characterize a dichotomous
confounder. In Table 2.2(f), F isarisk factor for the disease and F is associated with
exposure, and yet (2.17) is satisfied:
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Thisillustrates that, when F has three or more strata, even if both conditions 1 and

2 are satisfied, F may not be a confounder. Therefore, when there are three or more
strata, conditions 1 and 2 are necessary but not sufficient for confounding.
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2.5.4 Standardized Measures of Effect

For the following discussion, the number of subjectsin the exposed cohort who de-
velop disease will be denoted by O, a quantity we refer to as the observed count. So
we have O = a1, = m1r1.. From (2.4) and p1;ri1e = r1j, it followsthat

J J
0= (Z Plj”lj) Ile = Zﬂljrlj. (2.19)
j=1 j=1

Based on the probability of disease in the actua unexposed cohort, the number of
subjectsin the exposed cohort expected to devel op disease in the absence of exposure
is cE = mori., @ quantity we refer to as the crude expected count. From (2.5) it
follows that

J
cE = (Z pzjnzj) Tle-
j=1

Since r1 = O/r1, and o = cE/r1., the risk difference, risk ratio, and odds ratio
can be expressed as

O —cE
¢cRD =m1—m2 =
I'le
0
cRR="% -2
T2 cE
and
cOR — m1(l—m2)  O(rie —cE)

mo(l—m1)  cE(rie — O)

which we refer to as the crude measures of effect.

Based on the probability of disease in the counterfactual unexposed cohort, the
number of subjectsin the exposed cohort expected to devel op disease in the absence
of exposure is sE = m{r1., @ quantity we refer to as the standardized expected
count. It follows that the criterion for no confounding, 7> = 5, can be expressed as
cE = sE. Assumethat F isthe only potential confounder and that F' is not affected
by exposure. Also assume that there is no residual confounding in the strata of F.
From (2.16) and pyjr1, = r1; it followsthat

J J
sE = (Z pljnzj) e = Z]szrlj. (2.20)
=1 =1

Note that sE can be estimated from study data.
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The standardized measures of effect are defined to be

. O —sE
SRD =m — 7] =
Fle
T 0
SRR:—*:—
Ty sE
and
m1(l—m O(rie — SE
op . A=) _ OG1 —sE)

Notethat sRD was denoted by RD* in previous sections. When F isnot aconfounder,

cE = sE and so the crude and standardized measures of effect are equal. When F

is a confounder, the standardized measures of effect can be thought of as overall

measures of effect for the cohort after controlling for confounding dueto F.
Itisreadily verified that

J J J
i LT — Qi T2
SRD:ZJ_:L J" Ly Z]—l J" L) :Zplj(sj (2.21)
I'le ‘
j=1
Slamyn Sl pumie
SRR: /J::L il = 171 J S (222)
D j=172jT1j 21 P1jm2;
and
J J
=1 P17 )\ 1= 2 j1 P1jm2)
(Z,Pﬂ)<1szn>
SOR = ; r
(ijl Plj”2j) (1 - Zj:1P1jJT1j>
_ [Z]J’:l p1j(1— nlj)wzjéj] [Zle p1j(1— nzj)] 229

[Zj:l p1j(1— ﬂz;)wzj] [Zle p1j(1— Jflj)]

The second equality in (2.23) follows from identities established in Section 2.4.4.
When therisk difference, risk ratio, and odds ratio are homogeneous, it follows from
(2.21)—(2.23) that sRD = §, sRR = p, and

[Zle p1j(1— ﬂlj)wzj] / [ij-zl p1j(1— ﬂlj)]

sOR =0 .
[Zle p1j(1— 772j)w2j:| / I:Z]J'=1 p1;(1— 772;)]

Condition (i) is sufficient to ensure that sOR = 6; but in general, sOR # 6.
In an actual study the stratum-specific values of a measure of effect may be nu-
merically close but are virtually never exactly equal. Onceit is determined that (after
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accounting for random error) there is no effect modification, the stratum-specific es-
timates can be combined to create what is referred to as a summarized or summary
measure of effect. Usually this takes the form of a weighted average of stratum-
specific estimates where the weights are chosen in a manner that reflects the amount
of information contributed by each stratum. Numerous examples of this approach to
combining stratum-specific measures of effect will be encountered in later chapters.
A summarized measure of effect may be interpreted as an estimate of the common
stratum-specific value of the measure of effect. Since we have used a determinis-
tic approach here, the interpretation of Tables 2.2(a)-2.2(f) is that there is no ef-
fect modification only if stratum-specific values are precisely equal. Accordingly, in
Tables 2.2(a)-2.2(f), when there is no effect modification (in this sense) we take the
summarized value to be the common stratum-specific value. For example, in Table
2.2(d) the summary oddsratio is 6.0.

When reporting the results of a study, a decision must be made as to which of the
crude, standardized, summarized, and stratum-specific values should be presented.
Table 2.6(a) offers some guidelines in this regard with respect to the risk difference
and risk ratio, and Table 2.6(b) does the same for the odds ratio. Here we assume
that summarization is carried out by forming a weighted average of stratum-specific
values. When there is no confounding, the crude value should be reported because it
represents the overall measure of effect for the cohort. On the other hand, when con-
founding is present, the crude value is, by definition, a biased estimate of the overall
measure of effect and so the standardized value should be reported instead. When
there is no effect modification, the summarized value should be reported because
it represents the common stratum-specific value of the measure of effect. However,
when effect modification is present, the stratum-specific values should be given in-
dividually because the pattern across strata may be of epidemiologic interest.

Under certain conditions there will be equalities among the crude, standardized,
summarized, and stratum-specific values of a measure of effect. When there is no
effect modification, the summarized measure of effect equals the common stratum-

TABLE 2.6(a) Guidelinesfor Reporting Risk Difference and Risk Ratio Results

Effect modification
Confounding No Yes
No crude = summarized crude and stratum-specific
Yes standardized = summarized standardized and stratum-specific

TABLE 2.6(b) Guidelinesfor Reporting Odds Ratio Results

Effect modification

Confounding No Yes

No crude and summarized crude and stratum-specific
Yes standardized and summarized standardized and stratum-specific
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specific value. When there is no confounding, the crude and standardized values of
a measure of effect are equal (by definition). Also, when there is no confounding,
identity (2.17) is satisfied and therefore so are (2.7) and (2.10). In this case the risk
difference and risk ratio are averageable. If, in addition, there is no effect modifi-
cation, these measures of effect are strictly collapsible. This justifies the equdlity in
the upper left cell of Table 2.6(a). The equality in the lower left cell follows from re-
marks made in connection with (2.21) and (2.22). In general, the preceding equalities
do not hold for the odds ratio and so they have not beenincluded in Table 2.6(b). This
means that when there is no effect modification, two values of the odds ratio should
be reported—the crude and summarized values when there is no confounding, and
the standardized and summarized values when confounding is present.

We now illustrate some of the above considerations with specific examples. From
Table 2.2(c) we have O = 230, cE = (120/300)300 = 120, and

80 40

Since cE = sE there is no confounding and so the crude value of each measure of

effect should be reported. For each measure of effect there is effect modification and

so the stratum-specific values should be given individually rather than summarized.
Now consider Table 2.2(d), where O = 170, ¢E = (80/300)300 = 80, and

60 20

Since cE = sE there is no confounding and so the crude value of each measure of
effect should be reported. For the risk ratio, effect modification is present and so the
stratum-specific values should be given separately. For the risk difference, there is
no effect modification and, consistent with Table 2.6(a), the crude and summarized
values are equal. For the odds ratio, effect modification is absent. Consistent with
Table 2.6(b), the crude value, OR = 3.6, does not equal the summarized value,
6 = 6.0, and so both should be reported. We view the crude odds ratio as the overall
odds ratio for the cohort, and we regard the summarized odds ratio as the common
value of the stratum-specific odds ratios.

Thefact that two odds ratios are needed to characterize the exposure-disease rel a-
tionship in Table 2.2(d) creates frustrating difficulties with respect to interpretation,
as we now illustrate. Suppose that the strata have been formed by categorizing sub-
jects according to sex. So for males and femal es considered separately the oddsratio
is6 = 6.0, whereas for the population as awhole it is OR = 3.6. This means that,
despite effect modification being absent, there is no single answer to the question
“What is the odds ratio for the exposure-disease relationship?” Intuitively it is diffi-
cult to accept the idea that even though the odds ratios for males and females are the
same, this common value is nevertheless different from the odds ratio for males and
females combined. Furthermore, there is the frustration that the difference cannot be
blamed on confounding.
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As has been noted previously, the source of the difficulty is that condition (ii) is
not sufficient to ensure that the odds ratio is averageable. This drawback of the odds
ratio has led Greenland (1987) to argue that this measure of effect is epidemiologi-
cally meaningful only insofar asit approximatestherisk ratio or hazard ratio (defined
in Chapter 8). Asnoted in Section 2.2.2, the odds ratio is approximately equal to the
risk ratio when the disease is rare, and so using the odds ratio is justified when this
condition is met. Alternatively, the failure of the odds ratio to be averageable can be
acknowledged and the necessity of having to report two odds ratios accepted as an
idiosyncrasy of this measure of effect.

It is instructive to apply the above methods to data from the University Group
Diabetes Program (1970), a study that was quite controversial when first published.
Rothman and Greenland (1998, Chapter 15) analyzed these data using an approach
that is dightly different from what follows. The UGDP study was a randomized
controlled trial comparing tolbutamide (a blood sugar-lowering drug) to placebo in
patients with diabetes. Long-standing diabetes can cause cardiovascular complica-
tions, and this increases the risk of such potentially fatal conditions as myocardial
infarction (heart attack), stroke, and renal failure. Tolbutamide helps to normalize
blood sugar and would therefore be expected to reduce mortality in diabetic patients.
Table 2.7 gives data from the UGDP study stratified by age at enrollment, with death
from al causes as the study endpoint. The following analysis is based on the risk
difference.

Since cRD = .045 it appears that, contrary to expectation, tolbutamide increases
mortality. Note also that Simpson’s paradox is present. As will be discussed in Sec-
tion 2.5.5, randomization is expected to produce treatment arms with similar patient
characteristics. But this can only be guaranteed over the course of many replications
of astudy, not in any particular instance. From Table 2.7, p1> = 98/204 = .48 and
p22 = 85/205 = .41. So the proportion of subjectsin the 55+ age group is greater
in the tolbutamide arm than in the placebo arm. Thisraisesthe possibility that the ex-
cess mortality observed in patients receiving tol butamide might be a consequence of
their being older. Since age is associated with exposure (type of treatment) and also
increases mortality risk, age meets the two necessary conditions to be a confounder.

TABLE 2.7 UGDP Study Data

Age <55 Age 55+ All ages

Survival Tolbutamide Tolbutamide Tolbutamide

yes  no yes no yes no

dead 8 5 22 16 30 21

alive 98 | 115 76 69 174 | 184

106 120 98 85 204 205
RD .034 .036 .045
RR 1.81 1.19 144

OR 1.88 1.25 151
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Before employing the techniques developed above, we need to verify two as-
sumptions, namely, that age is not in the causal pathway between tolbutamide and
all-cause mortality, and there is no residual confounding in each of the age-specific
strata. Since tolbutamide does not cause aging, the first assumption is clearly sat-
isfied. There is evidence in the UGDP data (hot shown) that variables other than
age were distributed unequally in the two treatment arms. However, for the sake of
illustration we assume that there is no residual confounding in each stratum. Then
0 = 30, cE = (21/205)204 = 20.90, and sE = (5/120)106 + (16/85)98 = 22.86.
The difference between cE and sE is not large, but there is enough of a dispar-
ity to suggest that age is a confounder. On these grounds we take sRD = (30 —
22.86)/204 = .035 to be the overall risk difference as opposed to the somewhat
larger cRD = (30 — 20.90) /204 = .045. So, even after accounting for age, tolbu-
tamide still appears to increase mortality risk in diabetic patients.

At the beginning of this chapter we introduced the concept of confounding as a
type of systematic error. The confounding in the UGDP data has its origins in the
uneven manner in which randomization allocated subjects to the tolbutamide and
placebo arms. The apparent conflict in terminology between confounding (system-
atic error) and randomization (random error) isresolved onceit is realized that con-
founding isaproperty of allocation (Greenland, 1990). Therefore, given (conditional
on) the observed alocation in the UGDP studly, it is appropriate to consider ageas a
source of confounding.

2.6 METHODS TO CONTROL CONFOUNDING

Confounding is of concern in virtually every epidemiologic study. The methods that
are commonly used to control (adjust for) confounding are randomization, stratifica-
tion, restriction, matching, and regression.

Of al the methods used to control confounding, randomization comes the clos-
est to satisfying the counterfactual ideal. Randomization is the defining feature of
randomized controlled trials, but it israrely, if ever, used in other types of epidemio-
logic studies. Consider arandomized controlled trial in which a new (experimental)
treatment is compared to a conventional (control) treatment. As in any epidemio-
logic study, subjects must meet certain eligibility criteria before being enrolled in
the study. Randomization is carried out by randomly assigning subjects to either the
experimental or control arms. As a result of randomization, the treatment and con-
trol arms will “on average” have identical distributions (balance) with respect to all
confounders, both known and unknown. This last property, the ability to control un-
known confounders, is an important feature of randomization that is not shared by
other methods used to control confounding.

The phrase “on average” is an important caveat. Unfortunately, randomization
does not guarantee balance in any particular randomized controlled trial, asisillus-
trated by the UGDP study. In a randomized controlled trial it is usual to check if
randomization “worked” by comparing the distribution of known risk factorsin the
two treatment arms. As intuition suggests, the larger the sample size the greater the
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chance that the treatment arms will be balanced (Greenland, 1990). In the ideal sit-
uation where randomization has resulted in perfect balance (for both known and
unknown confounders), the control arm is equivalent to the counterfactual unex-
posed cohort. When the treatment arms are not balanced on important confounders,
methods such as stratification and regression should be employed to control con-
founding.

Asmight be imagined from earlier discussions, stratification is one of the corner-
stones of epidemiologic data analysis. After stratification by a sufficient set of con-
founders, the subjects in each stratum have the same confounder values and so there
is no longer a pathway from exposure to disease through the confounders. Methods
based on stratification will be considered throughout the remainder of the book. A
drawback of stratification is that it can result in tables with small or even zero cell
counts, especialy when alarge number of confounders have to be controlled simul-
taneoudly. Nevertheless, stratification is almost always used in the exploratory stages
of an epidemiologic data analysis.

When there are many confounders to control, and especially when some of them
are continuous variables, the question arises as to how strata should be created. One
approach is based on the propensity score (Rosenbaum and Rubin, 1983; Joffe and
Rosenbaum, 1999). The propensity scoreisafunction defined in terms of known risk
factors (other than the exposure of interest) which gives the probability that an indi-
vidua belongs to the exposed population. If strata are created by grouping together
individuals with the same propensity score, the exposed and unexposed subjects in
each stratum will be balanced on known risk factors (Rosenbaum and Rubin, 1983;
Rosenbaum, 1995, Chapter 9). The propensity score can be estimated from study
data using, for example, logistic regression (Rosenbaum and Rubin, 1984; Rosen-
baum and Rubin, 1985).

Restriction is another method used to control confounding. According to this ap-
proach, only those subjects who have a given value of the confounder are eligible
for the study. This mechanism acts to control confounding in much the same way as
stratification. For example, if smoking is a confounder, then restricting the study to
nonsmokers prevents this variable from providing a pathway between exposure and
disease. A drawback of restriction is that study findings will have a correspondingly
limited generalizability.

Matching is seldom used in cohort studies but, as discussed in Chapter 11, has an
important role in case-control studies. In a matched-pairs cohort study each exposed
subject is matched to an unexposed subject on values of the matching variables. For
example, matching might be based on age, sex, socioeconomic status, and medical
history. As aresult of matching, the distribution of matching variablesisthe samein
the exposed and unexposed cohorts, and consequently these variables are eliminated
as sources of confounding.

Regression techniques control confounding by including confounders as indepen-
dent variables in the regression equation. When outcomes are measured on a con-
tinuous scale, methods such as linear regression and analysis of variance are used.
Often, an epidemiologic study is concerned with categorical (discrete) outcomes.
The regression methods that are most widely used in epidemiology for the analysis
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of categorical outcomes are logistic regression for case-control data and Cox regres-
sion for censored survival data, both of which are discussed in Chapter 15.

In an epidemiologic study it is not unusual for data to be collected on a wide
range of variables, some of which may not be well understood asrisk factors. Ashas
been pointed out, the counterfactual definition of confounding relies heavily on an
understanding of causal relationships as they exist in the population. When detailed
knowledge on causation is lacking, there is little recourse but to rely on study data
for cluesto potential confounding. A problem with this approach isthat the data may
not accurately reflect the situation in the population as a result of random and sys-
tematic errors. A number of different strategies have been proposed for identifying
confounders based on study data. To agreater or lesser extent, these methodsinvolve
a comparison of crude and summarized measures of effect, which isto say they are
based on the collapsibility approach to confounding. Mickey and Greenland (1989)
and Maldonado and Greenland (1993) eval uate a number of data-based strategies for
confounder selection and offer guidelines for their use. According to one such strat-
egy, avariable is designated a confounder if the relative increase or decrease in the
adjusted compared to the crude measure of effect exceeds some fairly small magni-
tude such as 10%. Another strategy involves making this decision on the basis of a
formal statistical test where the cutoff for the p-valueis set at arelatively large value
such as .20. According to both strategies, the ideaisto set arelatively low threshold
for treating a variable as a confounder. The former strategy will be used (in a some-
what informal manner) when commenting on the numerical examples presented in
this book.

2.7 BIAS DUE TO AN UNKNOWN CONFOUNDER

In this section we investigate the extent to which the risk ratio can be biased due
to an unknown confounder. We assume that E is the exposure of interest and that
F is the unknown confounder. Tables 2.8(a) and 2.8(b) give the observed counts
for a closed cohort study after stratification by F and E, respectively. In order to
distinguish risk ratios arising from the two tables, we use subscripted notation such
as pep|F=1 = (a11/r11)/(az1/r21).

From (2.4) and p11 + p12 = 1, we have

71 = p11711 + p12712

11711
= ﬂlz[p +@1- Pll)]
12

= m2lpu1prpiE=1 + (1 — p11)]

= m12[1+ (prpjE=1 — D p11l.

Likewise, from (2.5) and p21 + p22 = 1, we have

T2 = p21721 + p22722
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TABLE 2.8(a) Observed Counts: Closed

Cohort Study Stratified by F
F=1 F=2
D E E
1 2 1 2
1) a1 | an a2 | a2
2| b1 | b b12 | b2
ri1 a1 re 2

TABLE 2.8(b) Observed Counts; Closed

Cohort Study Stratified by E
E=1 E=2
D F F
1 2 1 2
1| a1 | a2 azy | a2
2| b1 | b12 by | b2
i ri2 1 T2

TABLE 2.8(¢c) Observed Counts:

Closed Cohort Study
F E
1 2
1 r r21
2 r12 r22
rle r2e

21721
= ﬂzz[p— +@Q- PZl)]
w22
= 2| p21prpiE=2 + (1 — p21)]
= mp2[1+ (prpjE=2 — D p21l.

With RRgp = m1/m2 and pepjr=2 = m12/m22 it follows that

1+ (prpiE=1 — D p11
RRED = pED|F=2 [ | .

1+ (prpjE=2 — Dp21
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We now assume that the risk ratio for the E-D relationship is homogeneous
across strata of F, that is, pepjr=1 = pep|F=2 (= pED). Since

ai/ri1
PED|F=1 =
az/rzn
and
ai2/riz
PED|F=2 = ———
az/r

it followsthat prp|r=1 = prp|E=2 (= pFrp) and, consequently, that

1+ (orp — Dpur
RRgp = pED |:

14+ (orp — Dp21

(Cornfield et al., 1959; Schlesselman, 1978; Simon, 1980; Gastwirth et al., 2000).
From Table 2.8(c), which can be derived from either Table 2.8(a) or 2.8(b), the risk
ratio for the E-F relationship is RRgr = p11/p21. Note that p11 is the prevalence
rate of the confounder in the exposed population, and p»1 isthe corresponding preva-
lence rate in the unexposed population. Writing p11 = p21RRgr, we have

1+ (orp — 1)P21RREF] (2.24)

RRgp = pED [
14+ (prp — Dp2a

According to terminology introduced earlier, RRgp is the crude risk ratio for the
E-D relationship and pgp is the summary risk ratio. Since F is a confounder but
not an effect modifier, Table 2.6(a) specifies that pgp should be reported for the
study. When F is an unknown confounder, RRep will be reported instead. In most
applications, F will be positively associated with both D and E, that is, prp > 1and
RRgr > 1. Consequently RRgp/ pep, Which isameasure of the bias dueto F being
an unknown confounder, will usually be greater than 1.

Table 2.9 gives values of RRgp/pep for selected values of p21, RRer, and ppp.
As can be seen, provided the unknown confounder has alow prevalence in the unex-
posed population, isnot closely associated with exposure, and isnot amajor risk fac-

TABLE 2.9 RRgp/pgp for Selected Values of py1, RRgr, and prp

PFD

p21 RREF 2 5 10

.01 2 1.01 1.04 1.08
.01 5 1.04 1.15 1.33
.05 2 1.05 1.17 1.31
.05 5 1.19 1.67 2.24
.10 2 1.09 1.29 1.47
.10 5 1.36 2.14 2.89
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tor for the disease, the degree of bias will be relatively small. Analogous arguments
can be used to determine the bias due to an unknown confounder of the odds ratio in
acase-control study (Greenland, 1996a; Rothman and Greenland, 1998, Chapter 19).

2.8 MISCLASSIFICATION

In addition to confounding, there are other important types of systematic error that
can arise in epidemiologic studies, one of which is misclassification. Misclassifi-
cation, which can be either random or systematic, is said to have occurred when
subjects are assigned incorrectly to exposure-disease categories. For example, due
to chance coding errors, a case might be labeled incorrectly as a noncase (random
misclassification). On the other hand, a subject who is actually free of disease might
deliberately misrepresent symptoms and be diagnosed incorrectly as having an ill-
ness (systematic misclassification). In what follows we discuss only systematic mis-
classification.

Consider a closed cohort study in which the assessment of disease status, but not
the measurement of exposure, is prone to misclassification. We assume that each
subject has a“true” disease state that is unknown to the investigator. The true disease
state of each subject could be determined by appealing to a “gold standard,” but this
is not part of the study (otherwise there would be no misclassification). Table 2.1(a)
will be used to represent the true cross-classification of subjects in the study.

Let a1 be the proportion of the exposed cohort who truly devel op the disease and
are diagnosed correctly as having the disease, and let 81 be the proportion of the ex-
posed cohort who truly do not devel op the disease and are diagnosed correctly as not
having the disease. We refer to oy and 81 as the sensitivity and specificity of diagno-
sis for the exposed cohort, respectively. Table 2.10(a) gives the cross-classification
of the r1 exposed subjects in terms of observed (misclassified) and true disease sta-
tus. For example, of the a1 subjects who are exposed and truly develop the disease,
a1ay are diagnosed correctly as having the disease and (1 — «1)a; are misclassified.
A corresponding interpretation appliesto 11 and (1 — B1)b1. In asimilar manner
we define a2 and B, the sensitivity and specificity of diagnosis for the unexposed
cohort, and derive Table 2.10(b). From the far right columns of Tables 2.10(a) and
2.10(b) we obtain Table 2.11, which gives the observed counts for the cohort study
in the presence of misclassification.

TABLE 2.10(a) Observed and True Counts: Exposed Cohort

Observed True
D=1 D=2
D=1 a1ay 1-B0by | @1a1 + (1 — B1)bs
D=2 | (1-apa B1b1 (1—ay)ay + B1b1

ay by r1
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TABLE 2.10(b) Observed and True Counts: Unexposed

Cohort
Observed True
D=1 D=2
D=1 024 (1= B2)ba | azap+ (1— B2)b2
D=2 | 1-apa B2b2 (1 —ap)az + B2b2
a by r2

TABLE 2.11 Observed Counts; Closed Cohort
Study

D E
1 2

1| ajayg + (1= B1)b1 | agag + (1— B2)b2
2| —-apag+pi1byr | A—ag)az + Pobr

1 r2

Misclassification is said to be nondifferential when the sensitivities and specifici-
ties do not depend on exposure status—that is, when «1 = a2 (= @) and 1 = B2
(= B). When these conditions are not satisfied, the term differential misclassification
is used. In the nondifferential case, the observed oddsratio is

s _ laear + (A= Pbll(1 — a)az + pbal
[waz + (1 = B)b2l[(1 — a)ar + Bb1]’

OR

Expanding the numerator and denominator of OR*, factoring out «8a2b1, and noting
that w1 = a1/b1 and wp = az /b2, we find that

or* = OR+to+¥ (2.25)
1+ ¢OR+
where
Q-1 -p5
¢ = T
v = Q- a)w1 n 1-pBw2 (2.26)

B o
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and

b
orR = 272
azxbq

isthe true odds ratio.
Supposethat OR > 1andthat 0 < ¢ < 1and0 < B8 < 1. Since¢ > 0 and
¥ > 0, itfollowsthat (14 ¢ + ) < (1 + ¢OR + ). So, from (2.25), we have

OR+ ¢+

OR* <
1+o+ ¢

< OR. (2.27)

Using (2.25) it isreadily demonstrated that OR* > 1if and only if ¢ < 1, the latter
inequality being equivalent to @ + 8 > 1. A diagnostic process that is so prone to
misclassification that « + 8 < 1lisunlikely to be used in an epidemiol ogic study. So,
in practice, we usually have OR* > 1. This can be combined with (2.27) to give 1 <
OR* < OR. Likewise, when OR < 1 wefind that OR < OR* < 1. This shows that,
provided @ + 8 > 1, nondifferential misclassification biases the observed odds ratio
toward the “null”—that is, toward 1 (Copeland et a., 1977). When misclassification
isdifferential, no such genera statement can be made about the direction of bias.

As before, let 2 be the probability that a subject in the unexposed cohort truly
develops the disease. Then wy = 72/(1 — 72) and wg = ORw2 = ORmwa/(1 — 72).
Substituting in (2.26), we have

[@-wOR  (1-p) o
1//—[ B * o }<1—ﬂ2>

TABLE 2.12 Values of OR*/OR for Selected Values of «, 8, w2, and OR

OR
o B o 2 5 10
95 95 25 92 83 76
.90 95 25 .90 78 67
95 .90 25 86 75 67
.90 .90 25 84 .70 59
95 95 10 83 73 68
.90 95 10 82 .70 63
95 .90 10 75 60 53
.90 .90 10 74 57 50
95 95 .05 75 59 54
.90 95 .05 74 58 51
95 .90 .05 66 46 39

.90 .90 .05 .66 45 37




SCOPE OF THIS BOOK 75

and so OR* isafunction of «, 8, 2, and OR. Table 2.12 gives values of OR*/OR
for selected values of «, B8, 72, and OR. As can be seen, even when the sensitivity
and specificity are quite high, nondifferential misclassification can lead to severe
underestimation of the true odds ratio, especially when the probability of diseasein
the unexposed population is small.

A similar analysis can be carried out for case-control studies, except that it is
exposure rather than disease which is assumed to be prone to misclassification. When
the exposure variable is polychotomous—that is, has more than two categories—the
observed odds ratios may be biased away from the null or may even have values on
the other side of the null (Dosemeci et a., 1990; Birkett, 1992). Misclassification can
also affect confounding variables. When this occurs, odds ratios may be biased avay
from the null, spurious heterogeneity may appear, and true heterogeneity may be
masked (Greenland, 1980; Brenner, 1993). Under these conditions the usual methods
to control confounding are not effective (Greenland, 1980; Greenland and Robins,
1985a).

2.9 SCOPE OF THIS BOOK

We conclude this chapter with afew remarks on the scope of this book and the role
of statistics in epidemiology. There is no question that statisticians have had, and
continueto have, an enormousimpact on epidemiology asafield of scientificinquiry.
Probability models have been used to clarify fundamental methodologic issues, and
innovative statistical techniques have been developed to accommodate features of
epidemiologic study designs. Examples of the latter are logistic regression for case-
control studies and Cox regression for cohort studies, but these are just two of many
achievements that could be cited.

This book ismostly concerned with the technical aspects of statistical methods as
applied to epidemiologic data. However, there are deeper issues that need to be con-
sidered when examining the role of statistics in epidemiology. We began this chap-
ter with the observation that there are two types of error in epidemiologic studies,
namely, random and systematic. Much of the effort expended in an epidemiologic
study is devoted to ensuring that systematic error is kept to a minimum. In the ideal
situation where this type of error has been eliminated, only random error remains.
Under these circumstances, inferential statistical methods, such as hypothesis tests
and confidence intervals, are appropriate. Outside of the specialized setting of ran-
domized controlled trials it is difficult to ensure that systematic error, in particular
confounding, has been satisfactorily addressed. This raisesimportant issues about the
role of inferential statistical methods in epidemiologic research (Greenland, 1990).

In this book we survey a number of nonregression methods that have been devel-
oped to analyze data from epidemiologic studies. With the increasing availability of
sophisticated statistical packagesit is now easy to fit complicated regression models
and produce masses of computer output. However, it is well to remember that elab-
orate statistical methods cannot compensate for a badly designed study and poorly
collected data (Freedman, 1999). An advantage of nonregression techniques is that
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they bring the investigator into close contact with datain away that regression meth-
ods typically do not. In addition, nonregression techniques are often conceptually
more accessible than their regression counterparts, a feature that is helpful when ex-
plaining the results of a data anaysisto those with alimited background in statistical
methods. One of the aims of this book isto identify aselect number of nonregression
techniques that are computationally convenient and which can be used to explore
epidemiologic data prior to a more elaborate regression analysis.
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CHAPTER33

Binomial Methods for Single Sample
Closed Cohort Data

In Chapter 2 a number of measurement issues that are important in epidemiology
were discussed. For expository purposes a deterministic approach was used, thereby
eliminating the need to consider random error. We now return to the stochastic setting
and describe methods for analyzing data from a closed cohort study. Recall from
Section 2.2.1 that in a closed cohort study, subjects either develop the disease or do
not, and those not developing it necessarily have the same length of follow-up. This is
the least complicated cohort design, but it nevertheless provides a convenient vehicle
for presenting some basic methods of data analysis. In this chapter we consider only
a single sample—that is, one where the cohort is considered in its entirety, with no
comparisons made across exposure categories. For example, the following methods
could be used to analyze data from a cohort study in which a group of cancer patients
is followed for 5 years with the aim of estimating the 5-year mortality rate. The
methods to be described are based on the binomial distribution,

P(A=alr) = (;)na(l — ) a

where 7 is the probability of developing the disease, I is the number of individuals
in the cohort, and a is the number of cases that occur during the course of follow-up.

3.1 EXACT METHODS

As remarked in Section 1.1.3, in statistics the term “exact” means that an actual
probability function is being used to perform calculations, as opposed to a normal
approximation. The advantage of exact methods is that they do not rely on asymp-
totic properties and hence are valid regardless of sample size. The drawback, as will
soon become clear, is that exact methods can be computationally intensive, especially
when the sample size is large. Fortunately, this is precisely the situation where a nor-
mal approximation is appropriate, and so between the two approaches it is usually
possible to perform a satisfactory data analysis.

77
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3.1.1 Hypothesis Test

Suppose that we wish to test the null hypothesis Hy : m = mp, where g is a given
value of the probability parameter. If Hy is rejected, we conclude that 7 does not
equal mp. To properly interpret this finding it is necessary to have an explicit al-
ternative hypothesis H;. For example, it may be that there are only two possible
values of 7, namely, 7o and 7. In this case the alternative hypothesis is necessarily
H; : m = ;. If we believe that v cannot be less than 7rg we are led to consider the
one-sided alternative hypothesis H; : # > mg. Before proceeding with a one-sided
test it is important to ensure that the one-sided assumption is valid. For example, in a
randomized controlled trial of a new drug compared to usual therapy, it may be safe
to assume that the innovative drug is at least as beneficial as standard treatment. The
two-sided alternative hypothesis corresponding to Hy : 7 = mp is Hy : @ # 7.
Ordinarily it is difficult to justify a one-sided alternative hypothesis, and so in most
applications a two-sided test is used. Except for portions of this chapter, in this book
we consider only two-sided tests. In particular, all chi-square tests are two-sided.

To test Hyp : 7 = 79 we need to decide whether the observed outcome is likely or
unlikely under the assumption that g is the true value of . With a as the outcome,
the lower and upper tail probabilities for the binomial distribution with parameters
(70, 1) are defined to be

a
P(A<alm) =) (;)ng(l — o) ™

x=0
! r
=1 Z ( >n0X(1—n0)'—X (3.1)
X=a+1 X
and
" /r
P(A>alm) =) ( )nox(l — )"
X=a X
a—1 r
=1- Z (X>nox(1 — 1) X (3.2)
x=0
respectively.

Let Pmin be the smaller of P(A < a|mg) and P(A > a|mg). Then Ppin is the
probability of observing an outcome at least as “extreme” as a at that end of the
distribution. For a one-sided alternative hypothesis, Pmin is defined to be the p-value
of the test. To compute the two-sided p-value we need a method of determining
a corresponding probability at the “other end” of the distribution. The two-sided
p-value is defined to be the sum of these two probabilities. One possibility is to
define the second probability to be the largest tail probability at the other end of the
distribution which does not exceed Pmin. We refer to this approach as the cumulative
method. An alternative is to define the second probability to be equal to Ppin, in
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which case the two-sided p-value is simply 2 X Pmin. We refer to this approach
as the doubling method. Evidently the doubling method produces a two-sided p-
value at least as large as the one obtained using the cumulative approach. When the
distribution is approximately symmetrical, the two methods produce similar results.
For the binomial distribution this will be the case when 7 is near .5. There does
not appear to be a consensus as to whether the cumulative method or the doubling
method is the best approach to calculating two-sided p-values (Yates, 1984).

In order to make a decision about whether or not to reject Hp, we need to select a
value for «, the probability of a type I error (Section 2.1). According to the classical
approach to hypothesis testing, when the p-value is less than «, the null hypothesis
is rejected. An undesirable practice is to simply report a hypothesis test as either
“statistically significant” or “not statistically significant,” according to whether the p-
value is less than « or not, respectively. A more informative way of presenting results
is to give the actual p-value. This avoids confusion when the value of o has not been
made explicit, and it gives the reader the option of interpreting the hypothesis test
according to other choices of «. In this book we avoid any reference to “statistical
significance,” preferring instead to comment on the “evidence” provided by a p-value
(relative to a given «). For descriptive purposes we adopt the current convention of
setting @ = .05. So, for example, when the p-value is “much smaller” than .05 we
comment on this finding by saying that the data provide “little evidence” for Hy.

Referring to the hypothesis test based on (3.1) and (3.2) as “exact” is apt to leave
the impression that, when the null hypothesis is true and « = .05, over the course of
many replications of the study the null hypothesis will be rejected 5% of the time. In
most applications, an exact hypothesis test based on a discrete distribution will reject
the null hypothesis less frequently than is indicated by the nominal value of «. The
reason is that the tail probabilities of a discrete distribution do not assume all possible
values between 0 and 1. Borrowing an example from Yates (1984), consider a study
in which a coin is tossed 10 times. Under the null hypothesis that the coin is fair,
the study can be modeled using the binomial distribution with parameters (.5, 10).
In this case, P(A > 8|.5) = 5.5% and P(A > 9].5) = 1.1%. It follows that, based
on a one-sided test with o« = .05, the null hypothesis will be rejected 1.1%, not 5%,
of the time. For this reason, exact tests are said to be conservative.

In the examples presented in this book we routinely use more decimal places than
would ordinarily be justified by the sample size under consideration. The reason is
that we often wish to compare findings based on several statistical techniques, and in
many instances the results are so close in value that a large number of decimal places
is needed in order to demonstrate a difference. Most of the calculations in this book
were performed on a computer. In many of the examples, one or more intermediate
steps have been included rather than just the final answer. The numbers in the inter-
mediate steps have necessarily been rounded and so may not lead to precisely the
final answer given in the example.

Example 3.1 Leta =2 andr = 10, and consider Hg : 79 = .4. The binomial
distribution with parameters (.4, 10) is given in Table 3.1. Since P(A < 2|.4) = .167
and P(A > 2].4) = .954, it follows that ppin, = .167. At the other end of the
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TABLE 3.1 Probability Function (%) for the Binomial
Distribution with Parameters (.4, 10)

a P(A=al4) P(A <al.4) P(A > al.4)
0 .60 .60 100
1 4.03 4.64 99.40
2 12.09 16.73 95.36
3 21.50 38.23 83.27
4 25.08 63.31 61.77
5 20.07 83.38 36.69
6 11.15 94.52 16.62
7 4.25 98.77 5.48
8 1.06 99.83 1.23
9 .16 99.99 17

10 .01 100 .01

distribution the largest tail probability not exceeding Ppmin is P(A > 6].4) = .166.
So the two-sided p-value based on the cumulative method is p = .167+.166 = .334.
According to the doubling approach the two-sided p-value is also p = 2(.167) =
.334. In view of these results there is little evidence to reject Hy.

3.1.2 A Critique of p-values and Hypothesis Tests

A “small” p-value means that, under the assumption that Hy is true, an outcome as
extreme as, or more extreme than, the one that was observed is unlikely. We interpret
such a finding as evidence against Hy, but this is not the same as saying that evidence
has been found in favor of Hj. The reason for making this distinction is that the p-
value is defined exclusively in terms of Hp and so does not explicitly contrast Hp with
H;. Intuitively it seems that a decision about whether an outcome should be regarded
as likely or unlikely ought to depend on a direct comparison with other possible
outcomes. This comparative feature is missing from the p-value. For this reason and
others, the p-value is considered by some authors to be a poor measure of “evidence”
(Goodman and Royall, 1988; Goodman, 1993; Schervish, 1996). An approach that
avoids this problem is to base inferential procedures on the likelihood ratio. This
quantity is defined to be the quotient of the likelihood of the observed data under
the assumption that Hy is true, divided by the corresponding likelihood under the
assumption that Hy is true (Edwards, 1972; Clayton and Hills, 1993; Royall, 1997).
Likelihood ratio methods involve considerations beyond the scope of this book and
so, except for likelihood ratio tests, this approach to statistical inference will not be
considered further.

From the epidemiologic perspective, another problem with the classical use of
p-values is that they are traditionally geared toward all-or-nothing decisions: Based
on the magnitude of the p-value and the agreed-upon «, Hy is either rejected or not.
In epidemiology this approach to data analysis is usually unwarranted because the
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findings from a single epidemiologic study are rarely, if ever, definitive. Rather, the
advancement of knowledge based on epidemiologic research tends to be cumulative,
with each additional study contributing incrementally to our understanding. Not in-
frequently, epidemiologic studies produce conflicting results, making the evaluation
of research findings that much more challenging. Given these uncertainties, in epi-
demiology we are usually interested not only in whether the true value of a parameter
is equal to some hypothesized value but, more importantly, what is the range of plau-
sible values for the parameter. Confidence intervals provide this kind of information.
In recent years the epidemiologic literature has become critical of p-values and has
placed increasingly greater emphasis on the use of confidence intervals (Rothman,
1978; Gardner and Altman, 1986; Poole, 1987). Despite these concerns, hypothesis
tests and p-values are in common use in the analysis of epidemiologic data, and so
they are given due consideration in this book.

3.1.3 Confidence Interval

Let o be the probability of a type I error and consider a given method of testing
the null hypothesis Hy : # = m. A (1 — @) x 100% confidence interval for &
is defined to be the set of all parameter values g such that Hy is not rejected. In
other words, the confidence interval is the set of all 7o that are consistent with the
study data (for a given choice of «). Note that according to this definition, different
methods of testing the null hypothesis, such as exact and asymptotic methods, will
usually lead to somewhat different confidence intervals. The process of obtaining a
confidence interval in this manner is referred to as inverting the hypothesis test. In
Example 3.1 the “data” consist of a = 2 and r = 10. Based on the doubling method,
the exact test of Hy : o = .4 resulted in a two-sided p-value of .334. By definition,
4 is in the exact (1 — ) x 100% confidence interval for w when the null hypothesis
Hop : m = .4 is not rejected, and this occurs when the p-value is greater than o—that
is, when o < .334.

A (1 — a) x 100% confidence interval for & will be denoted by [z, 7]. We refer
to 7 and 7 as the lower and upper bounds of the confidence interval, respectively.
In keeping with established mathematical notation, square brackets are used to in-
dicate that the confidence interval contains all possible values of the parameter that
are greater than or equal to 7 and less than or equal to 7. It is sometimes said (in-
correctly) that 1 — « is the probability that 7 is in [, 7]. This manner of speaking
suggests that the confidence interval is fixed and that, for a given study, 7 is a ran-
dom quantity which is either in the confidence interval or not. In fact, precisely the
opposite is true. Both & and 7 are random variables and so [, 7] is actually a ran-
dom interval. This explains why a confidence interval is sometimes referred to as
an interval estimate. An appropriate interpretation of [, 7] is as follows: Over the
course of many replications of the study, (1 —«) x 100% of the “realizations” of the
confidence interval will contain .

An exact (1 — o) x 100% confidence interval for 7 is obtained by solving the
equations
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r
—P(Azam =) C()zx(l — )X

X=a
a—1 r
=1- ;0 (X)zx(l — ) (3.3)
and
Y _pA<am) = Xa: (r)ﬁx(l — ) X
2
X=0
r r
1 ( )ﬁx(l N (3.4)
x;rl X

for = and 7. Since there is only one unknown in each equation, the solutions can be
found by trial and error. If a = 0, which sometimes happens when the probability of
disease is low, we definexr = Oand 7@ = 1 —al/" (Louis, 1981; Jovanovic, 1998). In
StatXact (1998, §12.3), a statistical package designed to perform exact calculations,
the upper bound is defined to be @ = 1—(a/2)!/". Since an exact confidence interval
is obtained by inverting an exact test, when the distribution is discrete, the resulting
exact confidence interval will be conservative—that is, wider than is indicated by the
nominal value of « (Armitage and Berry, 1994, p.123).

Example 3.2 Leta=2andr = 10. From

1
1
025=1-— Z <)?>£X(1 — )l0=x

x=0

=1-[a-m"+102(1 -]

and

025 = 22: <10>ﬁx(1 —77)l0=x
T X

x=0

=1 -4 1071 -7 + 4572(1 — )%
a 95% confidence interval for 7 is [.025, .556]. Note that the confidence interval
includes y = .4, a finding that is consistent with the results of Example 3.1.
3.2 ASYMPTOTIC METHODS

When r is large the calculations required by exact methods can be prohibitive. Under
these conditions an asymptotic approach based on a normal approximation provides
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a practical alternative. Sometimes, by transforming a random variable the normal
approximation can be improved. We first discuss methods where no transformation
is involved and then consider the odds and log-odds transformations.

3.2.1 No Transformation

Point Estimate
The maximum likelihood estimates of 7 and var(7) are

N a
T=-
r

and

a(l—7) ar—a)
r o3

var(m) =

Confidence Interval

As defined in Section 1.1.2, for 0 < y < 1, z, is the number that cuts off the
upper y-tail probability of the standard normal distribution. That is, P(Z > z,) =
y where Z is standard normal. According to (3.3), we need to solve the equation
P(A > a|m) = «/2 for . This equation can be written in the equivalent form,

a—mr

A—mr
P — >
(\/z(l —-or ~ Jz(d—-mor

o

From Section 1.1.3 the random variable Z = (A — zr)//x (1 — m)r is asymptot-
ically standard normal. It follows that, when r is large, (3.5) is approximately the
same probability statement as

= Zy/2- 3.6)
z(l—mr / (
An analogous argument leads to
a-mr z 3.7)
A —or & '

We can combine (3.6) and (3.7) into the single identity

(a—nr)?

_ 2
A0 —or )

where, for the moment, we treat 7 as a continuous variable. This is a second-degree
polynomial in w which can be solved using the “quadratic formula” to give the
(1 — a) x 100% confidence interval
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—u =+ VU2 — 4ty

[z.7]= T

where
_ 2
t=r [r+(za/2) ]

U= —r [2a+ (Za/z)z]

v=a’
This will be referred to as the implicit method of estimating the confidence interval
since w and 7 are present in the variance terms of (3.6) and (3.7). An alternative
approach, which we refer to as the explicit method, is to replace = and 7 in the
variance terms with the point estimate 7 = a/r. This gives

a—mr
Y =2y
a(l—m)r
and
a—mr
= —Zy2
7(l—m)r

or, equivalently,

and

In a more compact notation we can write

. [l —7)
[z.7T]l=mtzp — (3-8)

A potential problem with the explicit method is that one or both of the bounds may
fall outside the range of O to 1. As illustrated below, this is especially likely to occur
when 7 is close to O or 1, and r is small.

Continuity corrections were included in the calculations in Example 1.6, and in a
similar fashion they could have been incorporated into the above asymptotic formu-
las. The question of whether continuity corrections should be used has been debated
at length in the statistical literature with no clear resolution of the issue (Grizzle,
1967; Mantel and Greenhouse, 1968; Conover, 1974). When sample sizes are mod-
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erately large, the effect of a continuity correction is usually negligible. In order to
simplify formulas, continuity corrections will not be used in this book.

Hypothesis Test

Under the null hypothesis Hy : @ = mp, the maximum likelihood estimates of the
mean and variance of 7 are Eg(7) = mg and varg () = mo(1 — 7g)/r. A subscript
0 has been added to the notation to indicate that calculations are being performed
under the null hypothesis. A test of Hy is

2 @ —m)?  (@a—mor)?

~ mo(l —mo)/r mo(l — mo)r

df=1). (3.9)

The notation in (3.9) is meant to indicate that X2 is asymptotically chi-square with 1
degree of freedom. This convention will be adhered to throughout the book because
virtually all random variables denoted by the X? notation are asymptotically, rather
than exactly, chi-square.

3.2.2 Odds and Log-Odds Transformations

Point Estimate

Recall from Section 2.2.2 that for 7 # 1 the odds is defined to be w = 7 /(1 — ).
For 0 < m < 1, we define the log-odds to be log(w) = log[w/(1 — m)]. In this
book the only logarithm considered is the logarithm to the base €. The maximum
likelihood estimates of w and log(w) are

7 a
D = = 3.10
T 7T r_a (3.10)
and
log(w) =1 i 1 a (3.11)
0 =1lo =1lo . .
gl S\1-# \r—a
If either a or r — a equals 0, we replace (3.10) and (3.11) with
. a+.5
0= —-—
r—a+.5

and

A a+.5

Haldane (1955) and Anscombe (1956) showed that log(®) is less biased when .5 is
added to a and r — a, whether they are O or not. This practice does not appear to be
in widespread use and so it will not be followed here.

Figures 1.1(b)-1.5(b) and Figures 1.1(c)-1.5(c) show graphs of the distributions
of @ and log(), respectively, corresponding to the binomial distributions in Figures
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1.1(a)-1.5(a). Evidently, & can be highly skewed, especially when r is small. On the
other hand, log(®) is relatively symmetric, but no more so than the untransformed
distribution. On the basis of these findings, there seems to be little incentive to con-
sider either the odds or log-odds transformations in preference to the untransformed
distribution when analyzing single sample binomial data. As will be demonstrated
in Chapter 4, the log-odds ratio transformation has an important role to play when
analyzing data using odds ratio methods.

Confidence Interval
The maximum likelihood estimate of var[log(®)] is

A “ 1 1
Var[log(a))] = m = 5 + r — a. (312)

If either a or r — a equals 0, we replace (3.12) with

1
a~|—.5+r—a+.5'

var[log(®)] =

Gart and Zweifel (1967) showed that var[log(®)] is less biased when .5 is added to
a and r — a, whether they are 0 or not. Similar to the situation with log(®), this
convention does not appear to be widely accepted and so it will not be adopted in
this book. A (1 — &) x 100% confidence interval for log(w) is

Zy)2

[log(w), log(@)] = |:10g (1 — )} el (3.13)

To obtain [z, ] we first exponentiate (3.13) to get [w, ], and then use

w

= 3.14
big o (3.14)
and
T ® (3.15)
T=— .
14+

to determine & and 7. Since the exponential function is nonnegative, it follows from
(3.13) that w and @ are always nonnegative, and hence that & and 7 are always
between 0 and 1.

Hypothesis Test
Under the null hypothesis Hp : # = mp, the maximum likelihood estimates of the
mean and variance of log(@) are Eg[log(®)] = log[mo/(1 —mo)] and varg[log(®)] =
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1/[mo(1 — mo)r]. A test of Hy is

N 2
X2 = |:10g< " ) ~log <L)} to(1 —mo)r]  (df=1). (3.16)
1—7 1 —mo

Example 3.3 Leta = 10 and r = 50. From (3.8) and (3.13), 95% confidence
intervals are

.7 = 24196,/ 28 _ 089, 311
50
and
[log(w). log@)] = lo <—2> L1508 —693. (3.17)
glw), fogle)] =108 | 3 2860 Lo T

Exponentiating (3.17) results in [w, @] = [.125, .500], and applying (3.14) and (3.15)
gives [z, 7] = [.111, .333].

An approach to determining whether a method of estimation is likely to produce
satisfactory results is to perform a simulation study, also called a Monte-Carlo study.
This proceeds by programming a random number generator to create a large number
of replicates of a hypothetical study. From these “data,” results based on different
methods of estimation are compared to quantities that were used to program the
random number generator. In most simulation studies, exact methods tend to perform
better than asymptotic methods, especially when the sample size in each replicate is
small. Consequently it is useful to compare asymptotic and exact estimates as in the
following examples, with exact results used as the benchmark.

Example 3.4 Table 3.2 gives 95% confidence intervals for &, where, in each
case, 7 = .2. When a = 10, the implicit and log-odds methods perform quite well
compared to the exact approach. To a lesser extent this is true fora = 2 and a = 5.
The explicit method does not compare as favorably, especially for a = 2, where the
lower bound is a negative number.

TABLE 3.2 95% Confidence Intervals (%) for

a=2 a=>5 a=10

r=10 r=25 r =50
Method T T T T T T
Exact 2.52 55.61 6.83 40.70 10.03 33.72
Implicit (3.6, 3.7) 5.67 50.98 8.86 39.13 11.24 33.04
Explicit (3.8) —4.79 44.79 4.32 35.68 8.91 31.09

Log-odds (3.13) 5.04 54.07 8.58 39.98 11.11 33.33
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TABLE 3.3 p-Values for Hypothesis Tests of Hy : m = .4

a=2 a=>5 a=10

Method r=10 r =25 r =50
Exact (cumulative) 334 .043 .004
No-transformation (3.9) .197 .041 .004
Log-odds (3.16) 129 .016 <.001

Example 3.5 Table 3.3 gives p-values for hypothesis tests of Hy : 7 = 4,
where, in each case, # = .2. With the exact p-value based on the cumulative method
as the benchmark, the no-transformation method performs somewhat better than the
log-odds approach.

Example 3.6 In Chapter 4, data are presented from a closed cohort study in
which 192 female breast cancer patients were followed for up to 5 years with death
from breast cancer as the endpoint of interest. There were a = 54 deaths and so
7 = 54/192 = .281. The 95% confidence interval based on the implicit method is
[.222, .349].
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CHAPTER4

Odds Ratio Methods for Unstratified
Closed Cohort Data

In Chapter 2 we compared the measurement properties of the odds ratio, risk ratio
and risk difference. None of these measures of effect was found to be superior to
the other two in every respect. In this chapter we discuss odds ratio methods for
analyzing data from a closed cohort study (Section 2.2.1). The reason for giving
precedence to the odds ratio is that there is a wider range of statistical techniques
available for this measure of effect than for either the risk ratio or risk difference.
Thus the initial focus on the odds ratio reflects an organizational approach and is
not meant to imply that the odds ratio is somehow “better” than the risk ratio or
risk difference for analyzing closed cohort data. However, compared to the risk ratio
and risk difference, it is true that methods based on the odds ratio are more readily
applied to other epidemiologic study designs. As shown in Chapter 9, odds ratio
methods for closed cohort studies can be used to analyze censored survival data; and,
as discussed in Chapter 11, these same techniques can be adapted to the case-control
setting.

For the most part, the material in this chapter has been organized according to
whether methods are exact or asymptotic on the one hand, and unconditional or
conditional on the other. This produces four broad categories: exact unconditional,
asymptotic unconditional, exact conditional, and asymptotic conditional. Not all
odds ratio methods fit neatly into this scheme, but the classification is useful. Within
each of the categories we focus primarily on three topics: point estimation, (con-
fidence) interval estimation, and hypothesis testing. For certain categories some of
these topics will not be covered because the corresponding methods are not in wide
use or their exposition requires a level of mathematical sophistication beyond the
scope of this book. Exact unconditional methods will not be considered at all for
several reasons: They can be intensely computational; they offer few, if any, advan-
tages over the other techniques to be described; and they are rarely, if ever, used in
practice. In Sections 4.1-4.5 we discuss odds ratio methods for tables in which the
exposure is dichotomous, and in Section 4.6 we consider the case of a polychoto-
mous exposure variable. General references for this chapter and the next are Breslow
and Day (1980), Fleiss (1981), Sahai and Khurshid (1996), and Lachin (2000).

89
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41 ASYMPTOTIC UNCONDITIONAL METHODS
FORA SINGLE 2 x 2TABLE

The methods of this section are referred to as unconditional, a term that will be
understood once the conditional approach has been introduced in Section 4.2. Table
4.1, which is similar to Table 2.1(a), gives the observed counts for a closed cohort
study in which exposure is dichotomous. We assume either that the cohort is a simple
random sample that has been split into exposed and unexposed cohorts or that the
exposed and unexposed cohorts are distinct simple random samples. In either case
we treat r; and ro as known constants.

We refer to r; and rp as the column marginal totals, and we refer to m; and
m; as the row marginal totals. Taken together these four quantities are termed the
marginal totals. As in Section 2.2.1, we assume that the development of disease in
the exposed and unexposed cohorts is governed by binomial random variables A; and
A, with parameters (771, '1) and (72, I'2), respectively. As discussed in Section 2.2.1,
it is assumed that subjects behave independently with respect to the development
of disease. It follows that A; and A, are independent, and so their joint probability
function is the product of the individual probability functions,

P(A = a1, Ay = ap|m1, m2)

M a — ry a _
= (a )7‘[11(1 — )T % <a2>7122(1 — )27, 4.1

1
Recall from Section 2.2 that w; = w1 /(1 — 1), w2 = w2 /(1 — 72),

w; w1l —m)

OR= — = ———
wy m(l —mp)
and
ORy 42)
TnqT=---—. .
'TORn + (1—-m)

In order to make the role of OR explicit, we substitute (4.2) in (4.1), which reparam-
eterizes the joint probability function in terms of OR and 7,

TABLE 4.1 Observed Counts:

Closed Cohort Study
Disease Exposure
yes no
yes a| a my

no by b, my
r r r
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P(A; =ai, A, = &|OR, m2)

- emro=) [omra=)
a ap ORmy + (1 — m2) ORm; 4 (1 — mp)

M\ _a rh—a
1— 27, 4.3
X (a2>n2 (1 —m2) 4.3)

Following Section 1.2.1, we view (4.3) as a likelihood that is a function of the pa-
rameters OR and 5.

Point Estimate
The unconditional maximum likelihood equations are

OR, 7ior
a = —— Ru7taf _ (4.4)
ORym + (1 — )
and
OR,7or .
Rl e, (4.5)

m; = —=— =
OR,2 + (1 — 72)

where él\?u denotes the unconditional maximum likelihood estimate of OR. This is a
system of two equations in the two unknowns OR,; and 7>, which can be solved to
give

— o ml-m) ab
OR, = — == = = 4.6)
Ml —a)  ab

and
A =)
) '

The estimates of 71, w1, and w> which appear in (4.6) are given by

. OR, 72 ay
A= —— — = —
ORy2 4+ (1 — 713) r
. | ap
w] = — = —
1—7‘[1 b1
and
. m a
= — = —
1—7‘[2 b2
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If any of a;, &, by, or by equals 0, we replace (4.6) with

~  (@+.5bm+.5
OR. = (@ +.5)(b; +.5)°

Other approaches to the problem of zero cells are available (Walter, 1987). It can be
shown that (/)\Ru is less biased when .5 is added to all the interior cells, whether they
are zero or not (Walter, 1985). However, as in Chapter 3, this practice will not be
followed here.

Log-Odds Ratio Transformation
The log-odds ratio log(OR) plays an important role in the analysis of data from
closed cohort studies. It can be shown that the unconditional maximum likelihood
estlmate of log(OR) is log(ORu) For convenience of notation we sometimes write
log OR, instead of log(ORu) According to the observations made in Section 3.2.2, @
can be rather skewed, while lo g(®) is generally more or less symmetric. It is therefore
not surprising that OR, = & /&> can also be quite skewed and that log(ORu) =
log(@1) — log(@y) is usually relatively symmetric. We illustrate this with examples.
Consider the binomial distributions with parameters (71,r;) = (.4,10) and
(m2,1r2) = (.2,25). Then OR, = [a1(25 — &)]/[a(10 — a;)] and log(OR,) =
log[a; (25 — a)] — log[ax (10 — a;)]. The sample space of (/)\Ru extends from
9.34 x 10™* to 1071, but the distribution is extremely skewed with odds ratios
less than or equal to 12.25 accounting for 95.6% of the probability. Figure 4.1(a)
shows the distribution of OR, after truncation on the right at 12.25. As in Figure
1, magnitudes are not shown on the axes because we are primarily concerned with
the shapes of distributions. The data points for Figure 4.1(a) were constructed by
dividing the truncated sample space into 10 equally spaced intervals and then sum-
ming the probability elements within each interval. The distribution of log(ORu)
is shown in Figure 4.1(b). The horizontal axis has been truncated on the left and

Probability

]

Odds ratio
FIGURE 4.1(a) Distribution of odds ratio for binomial distributions with parameters (.4, 10) and (.2, 25)
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Probability

I

Log—odds ratio

FIGURE 4.1(b) Distribution of log-odds ratio for binomial distributions with parameters (.4, 10) and
(2,25)

on the right, in both instances corresponding to a tail probability of 1%. As can
be seen, log(ORu) is far more symmetric than OR, and so, with respect to normal
approximations, it is preferable to base calculations on log(ORu) rather than OR..
Figures 4.2(a) and 4.2(b) show the distributions of ORu and log(ORu) based on
binomial distributions with parameters (771, r1) = (.4, 25) and (72, r2) = (.2, 50).
Even though both binomial distributions have a mean of 10, OR; is quite skewed,
while log((/)\Ru) is relatively symmetric. Based on empirical evidence such as this,
log(C/)\Ru) should be reasonably symmetric provided the means of the component
binomial distributions are 5 or more, while much larger means are required to ensure
that OR,, is symmetric.

Probability

L_‘

Qdds ratio

FIGURE 4.2(a) Distribution of odds ratio for binomial distributions with parameters (.4, 25) and (.2, 50)



94 ODDS RATIO METHODS FOR UNSTRATIFIED CLOSED COHORT DATA

Probahility

_

Log—odds ratio

FIGURE 4.2(b) Distribution of log-odds ratio for binomial distributions with parameters (.4, 25) and
(.2,50)

Confidence Interval .
The maximum likelihood estimate of var(log OR,) is
Ao OR) = — + — + — + @7
var(lo = — 4+ —+ —+ —. .
& a a b b

Note that var(log 6Ru), like 6Ru, is expressed entirely in terms of the interior cell
entries of the 2 x 2 table. A (1 — @) x 100% confidence interval for log(OR) is

_ _ 1 1 1 1
log OR . log OR, | = log(OR,) + b — 4 —
[log OR,. log OR,] = log(OR,) Za/2\/al t =t th

which can be exponentiated to give a confidence interval for OR,

[OR,, OR] = OR, exp (iza/z\/ai]+i+i+i).

a b] b2

If any of a;, &, by, or by equals 0, we replace (4.7) with

1 1 1 1

var(log OR,) = .
varogORy) = T+ -5 575 T 1 5

The convention of adding .5 when there are zero cells applies to 6Ru and
var(log OR,), but not to the other formulas discussed in this section.

Pearson’s Test of Association
Pearson’s test of association does not have any particular connection to the odds ratio,
being equally applicable to analyses based on the risk ratio and risk difference. It is
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introduced here as a matter of convenience. We say there is no association between
exposure and disease when the probability of disease is the same in the exposed
and unexposed cohorts, that is, 71 = m>. Under the hypothesis of no association
Ho : m1 = m2, the expected counts are defined to be

A rm A ramp

el = — @ = —
r r

A rymp ~ 1117

fi=12 f=22
r r

Using the term “expected” in this context is potentially confusing because these
quantities are not expected values (constants). This is because my, the number of
cases, is unknown until the study has been completed, and hence is a random vari-
able. It would be preferable to refer to the expected counts as “fitted counts under
the hypothesis of no association”; however, the term “expected counts” is well es-
tablished by convention. Note that the expected count for a given interior cell is
calculated by multiplying together the corresponding marginal totals and then divid-
ing by r. It is easily shown that the observed and expected marginal totals agree—for
example, a1 + a = m; = & + &—and so the expected counts can be displayed as
in Table 4.2.

Large differences between observed and expected counts provide evidence that
the hypothesis of no association may be false. This idea is embodied in Pearson’s
test of association,

a—-8)2 @-&? ;-1 O-1H)?>
ng(lA1)+(2A82)+(1A1)+(2A2)
€ ) f1 fz

@df=1. @438

Observe the similarity in form to (1.14) and (1.15). The normal approximation un-
derlying Pearson’s test should be satisfactory provided all the expected counts are
greater than or equal to 5. According to Yates (1984), this “rule of 5” originated with
Fisher (1925). From a; + & = & + & it follows that (a; — €)% = (& — &)°.
There are similar identities for the other rows and columns, and this allows (4.8) to
be expressed in any of the following equivalent forms:

TABLE 4.2 Expected Counts:

Closed Cohort Study
Disease Exposure
yes no
yes é & m;
no fAl fAz my

r 5} r
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1 1 1 1
X2 =(a —é)2<7+7+7+7) (4.9)
A CRCRE
ajb, — apby)?
XIZ): (arby — agby)r 4.10)
Firompmp

and

_ A2 _AN2
Xzzr_[(al &y, @-&) } @i

Prm & &

Wald and Likelihood Ratio Tests of Association

Since 71 = 7y is equivalent to OR = 1, which in turn is equivalent to log(OR) = 0,
the hypothesis of no association can be expressed as Hp : log(OR) = 0. Under Hg
an estimate of var(log G\Ru) is

~ 1 1 1 1
varg(logORy) = = + — + = + =
& € 57) f 2

- rirompmy

which is obtained from (4.7) by replacing the observed with expected counts. The
Wald test and likelihood ratio tests of association are

_ 1 1 1 1\!
X5, = (log ORy)? <é—+A—+T+ )
1

& fi f
_ (log é\Ru)r2;Ir2mlm2 Wdf= 1)
and
X12r =2 |:a1 log <2—;) + & log <2) + by log (%) + by log (%)} ar=1

4.12)

respectively. As X approaches 0, the limiting value of Xlog(X) is 0. If any of the
observed counts is 0, the corresponding term in X12r is assigned a value of 0.
Provided the sample size is large, and sometimes even when it is not so large,
Wald, score, and likelihood ratio tests (which can be shown to be asymptotically
equivalent) tend to produce similar findings. When there is a meaningful difference
among test results the question arises as to which of the tests is to be preferred.
Based on asymptotic properties, likelihood ratio tests are generally the first choice,
followed by score tests and then Wald tests (Kalbfleisch and Prentice, 1980, p. 48;
Lachin, 2000, p. 482). Problems can arise with Wald tests when the variance is not
estimated under the null hypothesis (Mantel, 1987). A major disparity among test
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TABLE 4.3 Observed Counts:
Antibody—-Diarrhea

Diarrhea Antibody

low  high
yes 12 7 19
no 2 9 11
14 16 30

results may be an indication that the sample size is too small for the asymptotic
approach and that exact methods should be considered.

Example4.1 (Antibody-Diarrhea) Table 4.3 gives a portion of the data from a
cohort study conducted in Bangladesh which investigated whether antibodies present
in breast milk protect infants from diarrhea due to cholera (Glass et al., 1983). These
data have been analyzed by Rothman (1986, p. 169).

We first analyze the exposed and unexposed cohorts separately using the methods
of Chapter 3. The estimates 7; = 12/14 = .86 and 7, = 7/16 = .44 suggest that
low antibody level increases the risk of diarrhea. Exact 95% confidence intervals for
71 and mp are [.57, .98] and [.20, .70], respectively. The degree of overlap in the
confidence intervals suggests that 71 and > may be equal, but this impression needs
to be formally evaluated using a test of association.

The odds ratio estimate is (/)\Ru = (12 x 9)/(7 x 2) = 7.71, and so once again
it appears that low antibody level increases the risk of diarrhea. To be technically
correct we should express this observation by saying that low antibody level seems
to increase the odds of developing diarrhea. From

. —~ 1 1 1 1

var(logOR,) = o + 7 + 5 + 0= .84
the 95% confidence interval for log(OR) is log(7.71) + 1.964/.84 = [.25,3.84].
Exponentiating, the 95% confidence interval for OR s [1.28, 46.37]. With a sample
size as small as the one in this study, it is not surprising that the confidence interval
is extremely wide. Our impression is that OR may be larger than 1, but how much
larger is difficult to say. The expected counts, shown in Table 4.4, are all greater

TABLE 4.4 Expected Counts:
Antibody—-Diarrhea

Diarrhea Antibody

low high
yes 8.87 | 10.13 | 19
no 5.13 5.87 | 11

14 16 30
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than 5. The Pearson, Wald, and likelihood ratio tests are similar in value and provide
considerable evidence that low antibody level is associated with the development of
diarrhea,

(12—-887)?% (7—-10.13)2 (2-5.13)2 (9—-5.87)2

X2 =
P 8.87 10.13 5.13 5.87
=5.66 (p=.02)
= (log7.71)? ! +— ! + ! + LY 7.24 ( 01)
= (0] _— _ _— = /. = .
g 887 11013 513 587 P
and
X2 =2|121o 12 +71o ! +21o 2 +91lo 9
e = £\587 1013 513 E\587

= 6.02 (p = .01).

Example 4.2 (Receptor Level-Breast Cancer) The data for this example were
kindly provided by the Northern Alberta Breast Cancer Registry. This is a population-
based registry that collects information on all cases of breast cancer treated in the
northern half of the province of Alberta, Canada. After initial treatment, patients
are reviewed on an annual basis, or more frequently if necessary. When an annual
follow-up appointment is missed, an attempt is made to obtain current informa-
tion on the patient by corresponding with the patient and the treating physicians.
When this fails, a search is made of provincial and national vital statistics records
to determine if the patient has died and, if so, of what cause. Due to the intensive
methods that are used to ensure follow-up of registrants, it is reasonable to assume
that patients who are not known to have died are still alive.

The cohort for this example was assembled by selecting a random sample of 199
female breast cancer patients who registered during 1985. Entry into the cohort was
restricted to women with either stage I, II, or III disease, thereby excluding cases
of disseminated cancer (stage IV). It has been well documented that breast cancer
mortality increases as stage of disease becomes more advanced. Another predictor of
survival from breast cancer is the amount of estrogen receptor that is present in breast
tissue. Published reports show that patients with higher levels of estrogen receptor
generally have a better prognosis. Receptor level is measured on a continuous scale,
but for the present analysis this variable has been dichotomized into low and high
levels using a conventional cutoff value.

For this example the maximum length of follow-up was taken to be 5 years and
the endpoint was defined to be death from breast cancer. Of the 199 subjects in
the cohort, seven died of a cause other than breast cancer. These individuals were
dropped from the analysis, leaving a cohort of 192 subjects. Summarily dropping
subjects in this manner is methodologically incorrect, but for purposes of illustration
this issue will be ignored. Methods for analyzing cohort data when there are losses
to follow-up are presented in later chapters.
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TABLE 4.5(a) Observed Counts:
Receptor Level-Breast Cancer

Survival ~ Receptor Level

low high
dead 23 31 54
alive 25 113 138

48 144 192

Table 4.5(a) gives the breast cancer data with receptor level as the exposure vari-
able. The estimates 71 = 23/48 = .479 and 1, = 31/144 = .215 suggest that low
receptor level increases the mortality risk from breast cancer. Based on the explicit
method, the 95% confidence intervals for 71 and 75 are [.338, .620] and [.148, .282],
respectively. The confidence intervals are far from overlapping which suggests that
1 and mp are likely unequahThe odds ratio estimate is OR; = (23 x 113)/(31 x
25) = 3.35. From var(log OR,) = .125, the 95% confidence interval for OR is
[1.68, 6.70]. The confidence interval is not especially narrow but does suggest that
receptor level is meaningfully associated with breast cancer mortality.

At this point it is appropriate to consider the potential impact of misclassification
on the odds ratio estimate. Let &, &), b}, and b} denote what would have been the
observed counts in the absence of misclassification. From Tables 2.11 and 4.5(a), the
following linear equations must be satisfied:

ara) + (1 — Bb) =23
Olzaé + (1 - ,32)b/2 =31
(1 —ap)a) + pib) =25
(1 —a)d, + poby =113

where «1and a» are the sensitivities, and 81 and B, are the specificities (Section 2.6).
One potential source of misclassification is that Registry staff may have failed to
identify all the deaths in the cohort. For purposes of illustration we set «; = oy =
.90; that is, we assume that only 90% of deaths were ascertained. It seems unlikely
that someone who survived would have been recorded as having died, and so we set
B1 = B2 = .99. The above equations become

(.90a}) + (.01b}) =23
(.90a}) + (.01b5) = 31
(.10a)) + (.99b)) = 25
(.10a}) 4 (.99b)) = 113
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TABLE 4.5(b) Observed Counts after Adjusting for
Misclassification: Receptor Level-Breast Cancer

Survival Receptor Level
low high
dead 25.30 33.21 58.51
alive 22.70 110.79 133.49
48 144 192

which have the solutions given in Table 4.5(b). After accounting for misclassifica-
tion, the estimated odds ratio is C/)\R:Jl = (25.30 x 110.79)/(33.21 x 22.70) = 3.72,
which is only slightly larger than the estimate based on the (possibly) misclassified
data. This shows that misclassification is unlikely to be a major source of bias in the
present study.

Returning to an analysis of the data in Table 4.5(a), the expected counts, given
in Table 4.6, are all much greater than 5. The Pearson, Wald, and likelihood ratio
tests are similar in value and provide considerable evidence that low receptor level is
associated with an increased risk of dying of breast cancer,

2 _ (23 —13.52 (31 —40.5)%2 (25—34.5% (113 — 103.5)2
P 13.5 40.5 34.5 103.5
=1240 (p < .001)

X2 = (log3.35)% : + : + : + Ly
w = 082 13.5 ' 405 ' 345 ' 103.5

=10.66 (p=.001).

23 31 25 113
X2 =2|23log [ = ) +31log ( —— ) +251og (== ) + 1131og | ———
I [ o8 <13.5> +ollog (40.5) +2>log (34.5) + 1158 (103.5)]

=11.68 (p=.001).

TABLE 4.6 Expected Counts: Receptor
Level-Breast Cancer

Survival Receptor Level
low high
dead 13.5 40.5 54
alive 34.5 103.5 138

48 144 192
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4.2 EXACT CONDITIONAL METHODSFOR A SINGLE 2 x 2 TABLE

The methods presented in the preceding section are computationally convenient but
have the drawback of being valid only under asymptotic conditions. Provided bino-
mial means are 5 or more, the asymptotic methods are likely to produce reasonable
results; but when the sample size is very small, the asymptotic approach cannot be
relied upon. In this case there is little alternative other than to resort to exact calcu-
lations, despite the inevitable increase in computational burden. EGRET (1999) has
procedures for calculating the exact confidence interval and hypothesis test presented
below.

The asymptotic unconditional methods described above involve two parameters,
OR and 7,. We are primarily interested in OR, but based on the unconditional ap-
proach it is necessary to estimate both OR and ;. In a sense, we are using data to
estimate m that could be better utilized estimating OR. For this reason, 3 is referred
to as a nuisance parameter. We now describe exact conditional methods for analyzing
2 x 2 tables. These techniques have the desirable feature of eliminating the nuisance
parameter 5 so that only OR, the parameter of interest, remains to be estimated.
It was pointed out above that my, the total number of cases, is a random variable.
The conditional approach proceeds by assuming that mj is a known constant. This is
certainly true when the study has been completed, but the same can be said for all of
the interior cell counts and marginal totals. When the random variable m is treated
as a known constant, we say that we have conditioned on m;. An informal justifica-
tion for the conditional assumption is that, from the point of view of comparing risk
across cohorts, it is not the absolute numbers of cases in the exposed and unexposed
cohorts that are important but rather their relative magnitudes. From this perspec-
tive, the total number of cases gives little information about the parameter of interest
and so we are free to treat m; as if it had been fixed by study design (Yates, 1984;
Clayton and Hills, 1993, §13.3). More formal arguments for adopting the conditional
approach have been provided (Yates, 1984; Little, 1989; Greenland, 1991).

Since ry and r, are constants, once we have conditioned on my, it follows that
My is also a known constant. With all of the marginal totals fixed, knowledge of any
one of the four interior cell counts determines the remaining three. We refer to a
particular choice of interior cell as the index cell. With the upper left cell taken to be
the index cell we can display the table of observed counts as in Table 4.7. The choice
of which interior cell to use as the index cell is a matter of convenience and does not
affect inferences made using the conditional approach.

TABLE 4.7 Observed Counts with Fixed Marginal
Totals: Closed Cohort Study

Disease Exposure
yes no

yes ap my —a; my

no rg—ap fh—mp +a my

M I r
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Hypergeometric Distribution

Once we have conditioned on my, the random variables A; and A, are no longer
independent. Specifically, we have the constraint A; + Ay = my, and so A is com-
pletely determined by A; (and vice versa). As a result of conditioning on m; we
have gone from two independent binomial random variables to a single random vari-
able corresponding to the index cell. We continue to denote the random variable in
question by Aj, allowing the context to make clear which probability model is being
considered. As shown in Appendix C, conditioning on m; results in a (noncentral)
hypergeometric distribution. The probability function is

P(A| = a|OR) = é(;)(mlri al>0Ral 4.13)

where

-5 Jow

Viewed as a hypergeometric random variable, A; has the sample space {l,| + 1,
..., u}, where | = max(0,r; — mp) and u = min(r;, m;). Here max and min mean
that | is the maximum of 0 and r{ — My, and U is the minimum of r; and m;. Since
ri—my = —ry)—(—my) =mj—ry,| is sometimes written as max(0, m; —r»).
Evidently, | > 0 and u < ry, and so the hypergeometric sample space of A; is
contained in the binomial sample space. For a given set of marginal totals, the hyper-
geometric distribution is completely determined by the parameter OR. Therefore, by
conditioning on M; we have eliminated the nuisance parameter 772. The numerator
of (4.13) gives the distribution its basic shape, and the denominator C ensures that
(1.1) is satisfied. From (1.2) and (1.3), the hypergeometric mean and variance are

u
E(A||OR) = é 3 x<rx‘> <mlr2_ X>ORX (4.14)

x=|

and

u
var(A; |OR) = éz X — E(A1|OR)]2<rX1)<m 2 >ORX. (4.15)

x=| 1=X

Unfortunately, (4.13), (4.14), and (4.15) do not usually simplify to less complicated
expressions. An instance where simplification does occur is when OR = 1. In this
case we say that A| has a central hypergeometric distribution. For the central hyper-
geometric distribution,

r ry
z rilra!mp!mp!
PO(A] — a]) — (al)(rpl al) — 1-12 1 2 (416)
(im,) ail(my —ap! (ry—ap)! (ra—my +ap)!r!
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rm
e = Eo(A)) = % (4.17)

and

rirompmy

vy = varg(Ar) =

Since My is now being treated as a constant, € and vg are the exact mean and variance
rather than just estimates. However, for the sake of uniformity of notation, we will
denote these quantities by € and vy in what follows. Observe that, other than r!, the
denominator of the final expression in (4.16) is the product of factorials defined in
terms of the interior cells of Table 4.7. A convenient method of tabulating a central
hypergeometric probability function is to form each of the possible 2 x 2 tables and
calculate probability elements using (4.16).

Confidence Interval

Since the hypergeometric distribution involves the single parameter OR, the approach
to exact interval estimation and hypothesis testing is a straightforward adaptation of
the techniques described for the binomial distribution in Sections 3.1.1 and 3.1.2. An
exact (1 —a) x 100% confidence interval for OR s obtained by solving the equations

o . 1 u r r X
> =PAIzalOR) == > (x)(ml _X)@g

~c x=a

B 13! ry «
“1 2 X () )

¢ x=l

and

| R

. == 1 al I &) — x
=P(Ar = al0R) = = > (x)(ml _X)(ORa

x=I

-4 Xu: <r1>< 2 )(ﬁc)x
B 6CX:{:I.]-FI X m; — X

for OR, and OR., where C. and C. stand for C with OR. and OR. substituted for
OR respectively.

Fisher’s Exact Test

It is possible to test hypotheses of the form Hy: OR = ORy for an arbitrary choice
of ORy but, in practice, interest is mainly in the hypothesis of no association Hy :
OR = 1. The exact test of association based on the central hypergeometric distribu-
tion is referred to as Fisher’s (exact) test (Fisher, 1936; §21.02). The tail probabilities
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Po(Ar > ay) =§;% B XIZ:I: %

and

SR - [ R ([}

x=l (I’TI:II) x=aj+1 (I'lell)

Calculation of the two-sided p-value using either the cumulative or doubling method
follows precisely the steps described for the binomial distribution in Section 3.1.1.
Recall the discussion in Chapter 3 regarding the conservative nature of an exact test
when the distribution is discrete. This conservatism, which is a feature of Fisher’s
test, is more pronounced when the sample size is small. This is precisely the condi-
tion under which an asymptotic test, such as Pearson’s test, becomes invalid. These
issues have led to a protracted debate regarding the relative merits of these two tests
when the sample size is small. Currently, Fisher’s test appears to be regarded more
favorably (Yates, 1984; Little, 1989).

Example 4.3 (Hypothetical Data) Data from a hypothetical cohort study are
given in Table 4.8. For these data, | = 1 and u = 3. Note that 0, which is an element
of the binomial sample space of Aj, cannot be an element of the hypergeometric
sample space since that would force the lower right cell count to be —1.

The central hypergeometric probability function is given in Table 4.9. The mean
and variance are & = 1.80 and vy = .36.

The noncentral hypergeometric probability function corresponding to Table 4.8 is

1/3 2
P(A; = a|OR) = c <a1> (3 - al)ORal

where

3 2
C= Z (X)(3 _X>ORX = 30R+ 60R* 4+ OR’.

x=1

TABLE 4.8 Observed Counts:
Hypothetical Cohort Study

Disease Exposure
yes no
yes 2 1 3
no 1 1 2

3 2 5
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TABLE 4.9 Central Hypergeometric Probability
Function: Hypothetical Cohort Study

a Po(Ar = ap)
31213121

1 TS 3
11212100 5!
31213121

2 e g
21011 115!
31213121

3 3100002150

The exact conditional 95% confidence interval for ORis [.013, 234.5], which is ob-
tained by solving the equations

> 6(0R.)% + (OR))*
025= 2 P =XIOR) = 350 T 6(OR ) + (OR)’
and
2 _ 30R. + 6(OR.)?
025 = P(A; = x|O = —— —— —
2 PO =XIOR) = 6 OR 2 + OR '
for OR. and OR...

Example 4.4 (Antibody-Diarrhea) For the data in Table 4.3, = 3 and u = 14.
The central hypergeometric distribution is given in Table 4.10.

The exact conditional 95% confidence interval for OR is [1.05, 86.94] which is
quite wide and just misses containing 1. The p-value for Fisher’s test based on the

TABLE 4.10 Central Hypergeometric Probability
Function (%): Antibody—Diarrhea

ap Py(Ar=a) Py(Ar<za) Py(Aza)

3 <.01 <.01 100

4 .03 .03 99.99
5 44 47 99.97
6 3.08 3.55 99.53
7 11.43 14.98 96.45
8 24.01 38.99 85.02
9 29.35 68.34 61.01
10 20.96 89.31 31.66
11 8.58 97.88 10.69
12 1.91 99.79 2.12
13 21 99.99 21

14 .01 100 .01
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TABLE 4.11 Central Hypergeometric Probability
Function (%): Receptor Level-Breast Cancer

ap Py(Ar=a1) Py(Ar=za) Py(Ar=a)

<.01 <.01 100

4 .01 .02 99.99

5 .07 .09 99.98
11 9.91 23.13 86.78
12 12.88 36.01 76.87
13 14.54 50.55 63.99
14 14.33 64.88 49.45
15 12.37 77.25 35.12
16 9.39 86.64 22.75
22 13 99.94 .19
23 .04 99.98 .06
24 .01 99.99 .02

cumulative method is Py(A; > 12)+ Py(A; < 5) = .026, and based on the doubling
method is 2 x Py(A; > 12) = .042. For these data, there is a noticeable difference
between the cumulative and doubling results, but in either case we infer that low
antibody level is associated with an increased risk of diarrhea. A comparison of the
preceding results with those of Example 4.1 illustrates that exact confidence intervals
tend to be wider than asymptotic ones, and exact p-values are generally larger than
their asymptotic counterparts.

Example 4.5 (Receptor Level-Breast Cancer) For Table 4.5(a),| = 0 and u =
48. The central hypergeometric distribution is given, in part, in Table 4.11.

The exact conditional 95% confidence interval for ORis [1.58, 7.07], and the p-
value for Fisher’s test based on the cumulative method is Py(A; > 23) 4+ Py(A; <
4) = .08%. The remark made in Example 4.4 about exact results being conserva-
tive holds here (except for Pearson’s test), as may be seen from a comparison with
Example 4.2. However, when the sample size is large, the differences between exact
and asymptotic findings are often of little practical importance, as is the case here.

4.3 ASYMPTOTIC CONDITIONAL METHODS
FORA SINGLE 2 x 2TABLE

The exact conditional methods described in the preceding section have the desirable
feature of eliminating the nuisance parameter 1, but there is the drawback that they
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involve extensive calculations. Asymptotic conditional methods make it possible to
reduce the computational burden, at least in the case of the test of association.

Point Estimate
For the asymptotic conditional analysis we consider (4.13) to be a likelihood that is
a function of the parameter OR. The conditional maximum likelihood equation is

. ~ _1 u r ) =~ . x
ai = E(AIIOR) = EZX<X><ml _X>(om (4.19)

x=I

A u r 1) =~ . x
c= Xzz; <X><m1 —X>(ORC)

and é\RC denotes the conditional maximum likelihood estimate of OR. Equation
(4.19) is usually a polynomial of high degree, but it can be solved for the single
unknown OR. by trial and error. It can be shown that for a given 2 x 2 table, OR. is
closer to 1 than ORu (Mantel and Hankey, 1975).

where

Confidence Interval

We present two methods of interval estimation, one implicit and the other explicit.
As in the binomial case discussed in Section 3.2.1, the difference between the two
approaches is that the explicit method specifies a particular point estimate of the vari-
ance, while the implicit method does not. Analogous to (3.6) and (3.7), an implicit
(1 — @) x 100% confidence interval for OR is obtained by solving the equations

— E(A1IOR.)

J/Var(A[OR,)

and
—EAR) _
V/var(A;|OR.)

for OR, and OR. (Mantel, 1977). The mean and variance terms in (4.20) and (4.21)
are defined by (4.14) and (4.15), and the equations are solved by trial and error.
These may be equations of high degree with multiple solutions. The bounds for the
confidence interval are defined to be those solutions which give the widest confidence
interval—that is, the one which is most conservative.

By definition, 6RC satisfies the equation a; = E(A; |(/)\Rc). It follows from (4.15)
that an estimate of var(A;|OR) is

. =\ 1 & 21 &) = . x
= var(Ai|OR,) = E;x—al) (X)(ml _X><ORC> : (4.22)

421
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As shown in Appendix C, an estimate of var(log (S\Rc) is

var(log OR,) = (4.23)

S| =

(Birch, 1964). The reciprocal relationship in (4.23) between the estimated variance
of the log-odds ratio and the estimated variance of the index cell count is an example
of a phenomenon that will appear in other contexts. An explicit (1 — «) x 100%
confidence interval for ORis obtained by exponentiating

[log OR,, log OR.] = log(OR.) £ 22
NG

Mantel-Haenszel Test of Association

The mean and variance of the central hypergeometric distribution are given by (4.17)
and (4.18). Perhaps the most widely used test of association in epidemiology, espe-
cially in its stratified form (Section 5.2), is due to Mantel and Haenszel (1959)

X2 _ (& _él)2

mh —

df=1). 4.24)

It is readily shown that sznh can be expressed as

» (b —ab)ir — 1)
mh = Pp—_ (4.25)

X

and so, from (4.10), we have
2 r—1\.,»
Xin = — Xp. (4.26)

This shows that sznh < Xz, and so the Mantel-Haenszel test is conservative
compared to Pearson’s test, in the sense that the p-value for sznh is always larger
than the p-value for Xg. Evidently, when r is large the difference between Xlznh and
XIZ) will be negligible. It follows from (4.11) and (4.26) that

_ _ A2 A2
X2 = (r 1) (ar - é) N (a2 - &) . @27)
my € 5}

Example4.6 (Hypothetical Data) For the hypothetical data, the odds ratio es-
timate is OR; = 1.73, which is obtained by solving
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_ S XRG2JOR* 30R. + 12(0R)* +3(OR)?
Y3 O)GE)OR)X  30R +6(0R)2+ (OR)3

Since 6\Ru = 2.0, C)\Rc is closer to 1 than é\Ru.

Example 4.7 (Antibody-Diarrhea) ~For the antibody—diarrhea data, the odds ra-
tio estimate is OR. = 7.17, which is obtained by solving

5 x(5) (1925 (ORY”
- 14 14/ 16 \, A :
x=3 ( X ) (19—x) (ORC)X
The implicit 95% confidence interval for ORis [1.34, 36.21]. From

14 2(14 16 X
. _3(x—=12) (7.7
b = var(A[7.17) = Lxs () o) =125

3 () (1%,) 717"

we have var(log 6RC) = 1/1.25 = .80. Exponentiating log(7.17) £ 1.96+4/.80 =
[.21, 3.73], the explicit 95% confidence interval for ORis [1.24, 41.52]. The Mantel—
Haenszel test is

(12 — 8.87)2
X2, =" =547 (p=.02).
mh 1.79 ( p )
Example 4.8 (Receptor Level-Breast Cancer) The odds ratio estimate is OR. =
3.33, the implicit and explicit 95% confidence intervals for OR are [1.68, 6.60] and
[1.67, 6.63], respectively, and Xlznh = 12.34 (p < .001).

4.4 CORNFIELD’SAPPROXIMATION

As in the previous section, let A; denote a hypergeometric random variable with
parameter OR. Cornfield (1956) describes a normal approximation to the exact dis-
tribution of A;. The mean of the approximation will be denoted by E*(A;|OR) or
a’f, and the variance will be denoted by v*. For a given value of OR, the Cornfield
approximation to E(A[|OR), the exact hypergeometric mean of Ay, is defined to be
the value of @ which solves the equation

OR — aj(ra —m +aj)
(my —ap)(r; —ay)

(4.28)

and also satisfies | < af < u, where, as before, | = max(0,r; — mp) and U =
min(ry, My). Since we are considering a normal approximation, @} is not required
to be a nonnegative integer. It is easily verified that as aj varies between | and u,
ORranges over all nonnegative numbers. Conversely, for any value of OR, there is a
corresponding value of aj between | and u which satisfies (4.28). For a given value
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of OR, we can view (4.28) as a second-degree polynomial in the unknown aj. For
OR # 1, the quadratic formula gives the solution

vV — 2 _
af = Y VY T2 V;)’( ixz (4.29)

where

X=0R-1
y =—[(Mm; +r;)OR—my + 2]

z = ORmyr;

(Fleiss, 1979). When the quadratic formula is used to solve an equation, there is the
choice of a positive or negative root. A justification for choosing the negative root in
(4.29) is given in Appendix D. When OR = 1, the above approach fails since X = 0
in the denominator. In this case, (4.28) can be solved directly to give

riym

af=——=6. (4.30)

Once aj‘ has been determined, the remaining cell entries are defined as in Table 4.12,
thereby ensuring that the estimated counts agree with the original marginal totals.

The Cornfield approximation to var(A;|OR), the exact hypergeometric variance
of A1, is defined to be

* ! + ! + ! + ! B (4.31)
vV =\ —<¢ . .
ay mp—af ry—ay ry—m+ay

Note that, in contrast to (4.7), there is an exponent —1 in (4.31). This is another
example of the reciprocal relationship referred to in connection with (4.23). When
OR =1, (4.31) simplifies to

rirompnmy

ES
Vn =
0 r3

4.32)

TABLE 4.12 Estimated Counts Based on
Cornfield’s Approximation: Closed Cohort Study

Disease Exposure
yes no

yes af m; —af my

no ry—af ro—mp+ay | m

r 5} r
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Note the similarity between (4.32) and (4.18). From (4.30) and (4.32), a test of Hy :
OR = 1 based on Cornfield’s approximation is X?> = (a; — ai‘)z/ vg, which is
identical to Xg (4.10) and almost identical to Xr2nh (4.25).

Analogous to (4.20) and (4.21), an implicit (1 — &) x 100% confidence interval
for aj is found by solving the equations

1 1 1 1
a—a) [—+ + + =Zy 4.33
@ _1)\/6_1’1‘ m —aj ri—ay rn—-m+aj 2 @339

and

1 n 1 n 1
m—a; r—a; r—m+aj

_ 1
(ay —ay) =+ =—Zypn  (434)
1
for aj and &} (Cornfield, 1956; Gart, 1971). Equations (4.33) and (4.34) are fourth-
degree polynomials in @, and @;, and may have more than one set of solutions. The
solutions that fall within the bounds | and u and give the widest confidence interval
are the ones that are chosen. Once the estimates g’f and 5’1‘ have been determined, the

estimates OR* and OR'" are obtained using

R — ay(rz —m; +ay)
- (mp—ap@r;—ay)

and

oR" — éi‘(rz: my +§_T) .
(m —ap(r —ay)

Example 4.9 (Antibody-Diarrhea) The solutions to

1 1 1 1
(12-ap) [~ + w + 3= 1%
aj 19-—-af l4-a] aj—-3

and

1 1 1 1
(12-ay), = + = * = T = =—1.96
a, 19-a 14-a a-3

are QT = 9.44 and é’f = 13.39, and the 95% confidence interval for OR is
[1.39, 40.65].

Example 4.10 (Receptor Level-Breast Cancer) From aj = 17.49 and @) =
28.36, the 95% confidence interval for ORis [1.69, 6.67].
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TABLE 4.13 Summary of Antibody—Diarrhea Results

Result AU EC AC CF

OrR 7.71 — 7.17 —
[OR, OR] [1.28, 46.37] [1.05, 86.94] [1.24,41.52]2 [1.39, 40.65]
Association p-value 01P .03¢ .02 —
aExplicit

Pwald

CCumulative

TABLE 4.14 Summary of Receptor Level-Breast Cancer Results

Result AU EC AC CF
OR 3.35 — 3.33 —
[OR, OR] [1.68, 6.70] [1.58,7.07] [1.67, 6.63]2 [1.69, 6.67]
Association p-value .001P <.001 <.001 —
aExplicit

Pwald

45 SUMMARY OF EXAMPLES AND RECOMMENDATIONS

Table 4.13 summarizes the results of the antibody—diarrhea analyses based on the
asymptotic unconditional (AU), exact conditional (EC), asymptotic conditional
(AC), and Cornfield (CF) methods. Despite the small sample size involved, the four
methods give reasonably similar results and lead to the conclusion that low antibody
level is associated with an increased risk of diarrhea.

Table 4.14 summarizes the results of the receptor level-breast cancer analyses.
For these data the four approaches produce results that are, for practical purposes,
identical.

Walter (1987) and Walter and Cook (1991) recommend using the estimate
log(ORu) with .5 added to all cells, in preference to log(ORc) Research on interval
estimation reveals that, of the approximate techniques studied, Cornfield’s method is
the most accurate (Gart and Thomas, 1972; Brown, 1981; Gart and Thomas, 1982).
In practice, as long as the sample size is reasonably large, the asymptotic methods
generally give similar results. When there is concern that the sample size may be too
small for an asymptotic analysis, exact methods should be used.

46 ASYMPTOTIC METHODSFOR A SINGLE 2 x I TABLE

To this point we have considered only dichotomous exposure variables. When there
are several exposure categories (polychotomous) it is of interest to search for dose—
response relationships and other patterns in the data, options that do not exist when
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exposure is dichotomous. In this section we describe asymptotic unconditional and
asymptotic conditional methods for the analysis 2 x | tables, where | > 2.

The manner in which exposure categories are defined in a given study depends
on a number of considerations—in particular, whether the exposure variable is con-
tinuous, discrete, or ordinal. An ordinal variable is one that is qualitative and where
there is an implicit ordering of categories. For example, arthritis pain might be rated
as mild, moderate, or severe. Stage of breast cancer is also ordinal, even though in-
tegers are used to designate the different stages. Discrete and ordinal variables are
automatically in categorized form. In certain settings it may be reasonable to regard
a discrete variable with many categories as continuous. For example, the number of
cigarettes smoked per day is, strictly speaking, discrete, but in many applications it
would be treated as a continuous variable.

When the exposure variable is continuous, categories can be created by selecting
cutpoints to partition the range of exposures. To the extent possible, it is desirable
to have categories that are consistent with the published literature. For instance, in
Example 4.2, the continuous variable receptor level was dichotomized using a con-
ventional cutpoint. The sample size of the study and the distribution of the exposure
variable in the data also have implications for the choice of cutpoints, and hence for
the number and width of categories. In particular, if a predetermined set of cutpoints
results in categories that have few or even no subjects, it may be necessary to collapse
over categories so as to avoid sparse data problems. When categories are created, it is
implicitly assumed that, within each category, the association between exposure and
disease is relatively uniform. This assumption may be violated when the categories
are made too wide. It sometimes happens that neither substantive knowledge nor
study data suggest a method of creating categories, making the choice of cutpoints
somewhat arbitrary. In this situation, one option is to use percentiles as cutpoints. For
example, quartiles can be formed using the 25th, 50th, and 75th percentiles. This re-
sults in four ordered categories consisting of the same (or nearly the same) numbers
of subjects.

The data layout for the case of | > 2 exposure categories is given in Table 4.15. It
is usual to order the categories from low to high exposure so that i = 1 corresponds
to the lowest exposure. Thus the orientation of categories in Table 4.15 is the opposite
of the 2 x 2 case. We model the i th exposure category using the binomial distribution
with parameters (7, ri) (i = 1,2, ..., 1). The odds for the i th exposure category is

TABLE 4.15 Observed Counts: Closed Cohort Study

Disease Exposure category
1 2 . i e |

yes al a2 e a| e al m]

no by b, s bj s by my

r ry ri r r
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wi = /(1 — ;). Withi = 1 as the reference category, the odds ratio is
OR — md—m)
mi(l — )

Point Estimates, Confidence Intervals, and Pearson and Mantel-Haenszel Tests of
Association
The unconditional maximum likelihood estimates of wj and OR; are @j = a; /b; and

—~ ib
ORy = 21

ap bi

where we note that (/)T?ul = 1. A confidence interval for OR; can be estimated using
(4.7). We say there is no association between exposure and disease if 71 = mp =
-+- = 1. The expected counts for the i th exposure category are

. Fim rim

g =

—— and ﬁ:—.
r r

It is readily verified that & = a, = m;. It is possible to test each pair of categories
for association using any of the tests for 2 x 2 tables described above. This involves
('2) = | (I —1)/2 separate tests and, if | is at all large, several of the tests may provide
evidence for association even when it is absent, purely on the basis of chance (type |
error). For example, with | = 10 there would be 45 hypothesis tests. Witho = .05 =
1/20, even if there is no association between exposure and disease, on average, at
least two of the 45 tests would provide evidence in favor of association. This is an
example of the problem of multiple comparisons, an issue that has received quite a
lot of attention in the epidemiologic literature (Rothman and Greenland, 1998). An
approach that avoids this difficulty is to perform tests of association which consider
all | exposure categories simultaneously, as we now describe.
The Pearson test of association for a 2 x | table is

| A2 €72
(@& —8&) (b — fi)
x2=§: . df =1 —1). 435
o i=1|: 3 + 7 } ( ) (4.35)

Note that there are | — 1 degrees of freedom. Using earlier arguments it can be shown
that

| A2
X2 = <r_) Z% d=1-1. (4.36)

m /i3

Conditioning on the total number of cases m; results in the multidimensional hyper-
geometric distribution (Appendix E). The Mantel-Haenszel test of association for a
2 x | table is
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1\ < C_Aa)2
X2, = (rmz );(a‘ éa) d=1-1. (4.37)

Observe that (4.35), (4.36), and (4.37) are generalizations of (4.8), (4.11), and (4.27),
respectively. From (4.36) and (4.37), we have

r—1
e (5%

just as in the dichotomous case. When the null hypothesis is rejected by either of
the above tests, the interpretation is that overall there is evidence for an association
between exposure and disease. This does not mean that each of the pairwise tests
necessarily has a small p-value. Indeed, it is possible for the pairwise tests to indi-
vidually provide little evidence for association and yet for the simultaneous test to
indicate that an association is present.

Test for Linear Trend

The Pearson and Mantel-Haenszel tests of association are designed to detect whether
the probability of disease differs across exposure categories. These are rather non-
specific tests in that they fail to take into account patterns that may exist in the data.
We now describe a test designed to detect linear trend. In order to apply this test, it
is necessary to assign an exposure level (dose, score) to each category. For a con-
tinuous exposure variable, a reasonable approach is to define the exposure level for
each category to be the midpoint of the corresponding cutpoints. As an illustration,
for age groups 65-69, 70-74, and 75-79, the midpoints are 67.5, 72.5, and 77.5. A
problem arises when there is an open-ended category since, in this case, the midpoint
is undefined. For example, there is no obvious way of defining a midpoint for an age
group such as 80+. An alternative that avoids this problem is to define the exposure
level for each category to be the mean or median exposure based on study data.

When the exposure variable is ordinal, the assignment of exposure levels is more
complicated. For example, in the breast cancer study described in Example 4.2, there
are three stages of disease: Stage I is less serious than stage II, which in turn is
less serious than stage III. However, it is not clear how exposure levels should be
assigned. In a case like this, it is usual to simply define the exposure levels to be
the consecutive integers 1, 2, and 3. Defining exposure levels in this way implicitly
assumes that the “distance” between stage I and stage II is the same as that between
stage II and stage III. An assumption such as this ultimately depends on some notion
of “severity” of disease, and therefore needs to be justified.

Let § be the exposure level for the ith category with ) < § < --- < 5. The
wj are unknown parameters, but we can imagine the scatter plot of log(wj) against
s ( =1,2,...,1). Let log(&) = & + ﬁs be the “best-fitting” straight line for
these points, where o and § are constants. We are interested in testing the hypothesis
Ho : B = 0. When 8 # 0 we say there is a linear trend in the log-odds, in which case
the best-fitting straight line has a nonzero slope. As shown in Appendix E, the score
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test of Hp : B = 0, which will be referred to as the test for linear trend (in log-odds),
is

v <r _ 1> [Xis@ - é)]22 e )
™yl se - (Tlse) /e

(Cochran, 1954; Armitage, 1955). Large values of th provide evidence in favor of
a linear trend. Although th has been presented in terms of log-odds, it can be inter-
preted as a test for linear trend in probabilities, odds, or odds ratios. Accordingly, we
can examine study data for the presence of linear trend using any of the correspond-
ing category-specific parameter estimates.

It is important to appreciate that if Hy is rejected—that is, if it is decided that a
linear trend is present—it does not follow that the log-odds is a linear function of
exposure (Rothman, 1986, p. 347; Maclure and Greenland, 1992). Instead the much
more limited inference can be drawn that the “linear component” of the functional
relationship relating log-odds to exposure has a nonzero slope. In many applications,
especially when toxic exposures are being considered, it is reasonable to assume that,
as exposure increases, there will be a corresponding increase in the risk of disease.
However, more complicated risk relationships are possible. For example, the risk of
having a stroke is elevated when blood pressure is either too high or too low. Conse-
quently the functional relationship between blood pressure and stroke has something
of a J-shape. The best-fitting straight line to such a curve has a positive slope and
so the hypothesis of no linear trend would be rejected, even though the underlying
functional relationship is far from linear.

Example4.11 (Stage—Breast Cancer) Table 4.16 gives the observed counts for
the breast cancer data introduced in Example 4.2, but now with stage of disease as
the exposure variable.

A useful place to begin the analysis is to compare stages II and III to stage I using
2 x 2 methods. Table 4.17 gives odds ratio estimates and 95% confidence intervals,
with stage I as the reference category. As can be seen, there is an increasing trend in
odds ratios across stages I, I, and III (where OR; = 1).

The expected counts, given in Table 4.18, are all greater than 5. The Pearson and
Mantel-Haenszel tests are X3 = 38.55 (p < .001) and X7, = 38.35 (p < .001),

TABLE 4.16 Observed Counts:
Stage—Breast Cancer

Survival Stage
I O 1

dead 7 126 |21 | 54

alive 60 | 70 | 8 138
67 96 29 192
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TABLE 4.17 Odds Ratio Estimates and 95% Confidence
Intervals: Stage—Breast Cancer

Stage ORyi ORji OR,;
I 3.18 1.29 7.85
III 22.50 7.27 69.62

TABLE 4.18 Expected Counts:
Stage—Breast Cancer

Survival Stage
1 2 3

dead 18.84 | 27.00 | 8.16 54
alive 48.16 | 69.00 | 20.84 | 138
67 96 29 192

both of which provide considerable evidence for an association between stage of
disease and breast cancer mortality. Setting S| = 1, S = 2, and S3 = 3, the test for
linear trend is

x2 o (21 (24.69y° =33.90 (p < .001)
t 138 200.25 — (97.31)2/54

which is consistent with the observation made above. For the sake of illustration,
suppose that the “severity” of stage III compared to stage II is regarded as three times
the “severity” of stage II compared to stage 1. For example, this determination might
be based on an assessment of quality of life or projected mortality. With §; = 1,
s = 2, and 3 = 5, the test for linear trend is th = 38.32 (p < .001), a finding that
is close to the earlier result.
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CHAPTERS

Odds Ratio Methods for Stratified
Closed Cohort Data

In most epidemiologic studies it is necessary to consider confounding and effect
modification, and usually this involves some form of stratified analysis. In this chap-
ter we discuss odds ratio methods for closed cohort studies in which there is stratifi-
cation. The asymptotic unconditional and asymptotic conditional methods presented
here are generalizations of those given in Chapter 4. Exact conditional methods are
not discussed because they involve especially detailed computations. Appendix B
gives the derivations of many of the asymptotic unconditional formulas that appear
in this chapter and in Chapters 6 and 7.

51 ASYMPTOTIC UNCONDITIONAL METHODS
FOR J (2 x 2) TABLES

Asymptotic methods require large sample sizes to be valid. The asymptotic uncon-
ditional techniques presented in this section work best when there are relatively few
strata, and within each stratum the number of subjects in each exposure category is
large (Breslow, 1981). These conditions, which will be referred to as the large-strata
conditions, ensure that a large amount of data is available to estimate relatively few
parameters, a situation that is conducive to the asymptotic unconditional approach.

Suppose that the data have been stratified into J strata and consider the case of a
dichotomous exposure variable. We suppose that in the jth stratum the development
of disease in the exposed and unexposed cohorts is governed by binomial random
variables Ajj and Ayj with parameters (1j,rj) and (m2j, 2j), respectively (j =
1,2,...,J). As in Section 4.1, we assume that subjects behave independently with
respect to the development of disease. For the jth stratum, the data layout is given in
Table 5.1 and the odds ratio is

oRr: — T —mj)
YT mi =)

119
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TABLE 5.1 Observed Counts:
Closed Cohort Study

Disease  Exposure
yes  no

yes ajj A my;j

no bij | byj | myj

rlj I’zj l'j

Each of the J tables can be analyzed separately using the methods of Chapter 4. The

stratum-specific estimate are

N ajj A j
I’U rZJ
—~ mj(l—7mj)  aijhyj

ORyj =

(1 — /1) ajbyj

and

1+1+1+1
aij @& by by’

var(log é\Ruj )

It may be difficult to synthesize the results of such an analysis when there are many
strata and the odds ratio estimates are heterogeneous. The situation is greatly sim-
plified when there is homogeneity, in which case the common stratum-specific odds
ratio will be denoted by OR. (In Chapter 2 we used the notation 6.) Much of this
chapter is based on the homogeneity assumption. In order to avoid having to state
this assumption repeatedly, we regard homogeneity as being present unless stated
otherwise. In particular, reference to OR will automatically imply that homogeneity
is being assumed and that OR; = OR for all j. Under homogeneity we have from

(4.2) that

_ ORm3j
- ORmj + (1 — m2j)

7'[1j

Point Estimates and Fitted Counts
The unconditional maximum likelihood equations are

2‘]:& . _2‘]: 6\Ruﬁ’2jr1j
Y OR.f2j + (1 — 72))

j=i =i

and
_ 6Ruﬁ2jr1j
ORy2j + (1 — 2j)

myj + mjrj (j=12,...,9

5.1)

(5.2)

(5.3)
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where (/)\Ru denotes the unconditional maximum likelihood estimate of OR. In the
terminology of Section 2.5.4, OR,isa summary estimate of OR. Equations (5.2) and
(5.3) are a system of J + 1 equations in the J + 1 unknowns ORu and Mj(] =
1,2,...,J3). When J > 2 it is not possible to solve for ORu and 717 explicitly as
was the case for J = 2. Below we describe two methods for solving these equations
which are tailored to the odds ratio setting. More general numerical methods for
solving multidimensional systems of equations are described in Appendix B. Once
6Ru and 72j have been estimated, we have from (5.1) that

. OR,
Rlj = =—=— L (5.4)
ORym2j + (1 — m2j)
The fitted counts for the jth stratum are defined to be
élj Zﬁ’ljl’lj é—2j :7%2jr2j
brj = —mprij by =(1—72)ra;. (5.5)

Using (5.4) and (5.5) we can rewrite the maximum likelihood equations as
J J
Zalj =Zé.1j (5.6)
i=1 i=1

and
mu:é]j—i-ézj (j=1,2,...,J). 6.7

These equations exhibit what will be referred to as the “observed equals fitted” for-
mat. Clearly, a1j + byj = ryj = & + b1J and &j + byj = ryj = &j + sz,
and so the observed and fitted column marginal totals agree. From (5.5) and (5.7),
ajj+aj =myj =aj+&;jandbyj+by; =myj = b“ +b2j,andso the observed
and fitted row marginal totals also agree. Therefore the table of fitted counts can be
displayed as in Table 5.2. Note the similarity to Table 4.7 where, unlike the present
analysis, we conditioned on the marginal totals.
A remarkable result is that (5.3) can be expressed as

~ arj(raj —myj +aij)
OR, = i ]
(myj —arj)(ryj —arj)

(5.8)

TABLE 5.2 Fitted Counts: Closed Cohort Study

Disease Exposure
yes no

yes éll my —é]j my;

no rij _élj f2j —myj +é1j my

I’1j rzj I’j
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(Gart, 1971, 1972; Breslow, 1976). Identity (5.8), which has an obvious similarity
to (4.28), establishes a connection between the asymptotic unconditional methods of
this section and the asymptotic conditional methods to be discussed in Section 5.2.
We now turn to the problem of solving the maximum likelihood equations. As in
Section 4.4, we treat (5.8) as a second-degree polynomial in the unknown &;j and

use the quadratic formula to obtain
—Yj — /Y] —4xzj

a i = 5.9
1] 7% ( )
where

x:GRu—l

yj = —[(my; +r1j)6Ru_m1j +r2j]

Zj =6\Rum1]'r1]'.

Then (5.6) can be expressed as

J

Z = Z(yj+,/yj-2—4xzj).

j=1 J—l

This is an equation in the single unknown 6Ru which can be solved by trial and error.
Once OR; has been determined, X, yj, and z;j can be calculated, which leads to the
estimates &;j and &) = myj — &ij.

An alternative approach to solving the maximum likelihood equations is based
on an ingenious idea of Clayton (1982) that will reappear in Section 10.3.1. Rewrite

(5.2) as
ay — ORutajr
P OR A + (1= 72))

T
e

j=1

|
M

1 ORyf12j + (1 — #2j)

|:alj(1 — M) — 6Rub1jﬁ2j:|

<l

N J N
_ a1 (1 = 12)) ~OR Y = b1 72 (5.10)
— OR,72j + (1 — 7)) 21 ORuizj + (1 — 72j)

and solve for the 6\Ru preceding the second summation to obtain

J A J N
(1 — #i Dyifr:
:§ & = 7)) ] K (5.11)
Ruﬂzj + (1 =mj) /{5 ORuizj + (1 — 72j)
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With &;j given by (5.9), we have 2j = (myj — &;j)/r2j. This can be substituted
in the right-hand side of (5.11), which results in an equation in the single unknown
ORy. The solution to this equation can be obtained using an iterative approach. The
first step in the iteration is to select an initial value for OR,, which we denote by

(/)\Rl(ll). This is substituted in the right-hand side of (5.11), and the calculations are
performed to get an updated value (/)\Rflz). Then 6\Rl(12) is substituted in the right-
hand side of (5.11) to get the next updated value G\RS), and so on. This process is

repeated until the desired accuracy is achieved. The initial value ORf1 Vs arbitrary,
but the crude estimate of the odds ratio (4.6) is a reasonable choice.

Confidence Interval
Let

-1
. 1 1 1 1
b=+ += _ (5.12)
alj & by by
and let \7u = Zle ;. An estimate of var(log 6Ru) is

—~ 1
var(log OR,) = v (5.13)

u
and a (1 — o) x 100% confidence interval for OR is obtained by exponentiating

Zy)2

Vu

[log OR,. log OR,] = log(OR,) +

(Gart, 1962).

Wald and Likelihood Ratio Tests of Association

We say there is no association between exposure and disease if 71j = moj for all j.
This is equivalent to OR;j = 1 for all j, and when homogeneity is present this can be
succinctly expressed as OR = 1 or log(OR) = 0. For the jth stratum, the expected
counts are

N F1jmy; N F2jMyj

Gij=— ©j=—"
i j

N rljmzj ~ rzjmzj

fij =—— fj = ——.
rj rj

Let
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and let Vo, = ZJJ: 1 Yoj. Under the hypothesis of no association Hy : log(OR) = 0,
an estimate of var(log 6Ru) is

- ~ 1
varg(logOR)) = —.
VOu

The Wald and likelihood ratio tests of association are

X2 = (logOR)*Vou  (df=1) (5.14)

a by
>+b1jlog< }J)
(S)) f1j

J
ajj D j
Xﬁ:zZ[aljlog<é1;>+azj 10g<A j

j=1

and

+ byj log (?)] df=1) (5.15)

2j

respectively. An advantage of the likelihood ratio test over the Wald test is that (5.15)
does not require an estimate of the odds ratio and thus avoids the necessity of having
to solve the maximum likelihood equations.

Wald, Score, and Likelihood Ratio Tests of Homogeneity

All that has been said to this point is predicated on the homogeneity assumption,
the validity of which should be assessed before proceeding with any of the above
calculations. As was observed many years ago by Mantel and Haenszel (1959), in
an epidemiologic study it is unrealistic to assume that stratum-specific odds ratios
are ever going to be precisely equal. In practice, there are too many factors affecting
the association between exposure and disease for homogeneity to be strictly true.
From this perspective, the homogeneity assumption is merely a convenient fiction
that is adopted in order to simplify the analysis and interpretation of data. A prag-
matic approach to the assessment of homogeneity involves the following steps: Ex-
amine stratum-specific estimates and their confidence intervals in order to develop
a sense of whether there are meaningful differences across strata (after accounting
for random error); perform a formal test of homogeneity; and then synthesize this
information along with substantive knowledge of the relationship between exposure
and disease, taking into account the aims of the study. In particular, even if a formal
statistical test provides evidence that heterogeneity is present, it may be decided in
the interests of simplicity to proceed on the basis of homogeneity and summarize
across strata rather than retain stratum-specific estimates.

The Wald, score, and likelihood ratio tests of homogeneity are

J
Xz =) 9j(logOR,j —logOR)*  (df=J —1) (5.16)
=i
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J A 2
(arj —aij)
X2 = .§ 1: ’vij‘ @=J-1 (5.17)
J:

J
bij
Xh—ZZ[aljlog( )—f—ajlog( )—}-b“log(b )
j=1 1j

+ Iy log (EZi )} df=J-1 (5.18)

2]

and

respectively (Liang and Self, 1985; Rothman and Greenland, 1998, p. 275; Lachin,
2000, §4.6.2). Note that there are J — 1 degrees of freedom as opposed to the single
degree of freedom for the tests of association. Arguing as in Section 4.1, it is readily
demonstrated that (a1j — & )2 = (a i —&j )2, with similar identities for other rows
and columns. It follows from (5.12) that (5.17) can be written as

XﬁZZ[(a” alj) (aZjA—éZj) (blj_blj) (sz—sz) ]

i=1 a | Qj bij j byj j

The likelihood ratio tests, (5.15) and (5.18), have a similar appearance because in
each case a comparison is being made between observed and fitted counts. In (5.15)
the fitted (expected) counts are estimated under the hypothesis of no association,
and in (5.18) they are estimated under the hypothesis of homogeneity. We can think
of (5.15) and (5.18), along with the other tests of association and homogeneity, as
tests of “goodness of fit” in which observed values are compared to fitted values,
where the latter are based on a particular model. When the model fits the data well,
the observed and fitted values will be close in value, the test of goodness of fit will
result in a large p-value, and the model (hypothesis) will not be rejected. This type
of reasoning is particularly important in the regression setting when a succession of
increasingly complicated models are fitted to data and a decision needs to made as
to which model fits the data best.

Test for Linear Trend

The test for linear trend in J (2 x 2) tables has many similarities to the test for
linear trend in a single 2 x | table (4.38). Let sj be the exposure level for the jth
stratum with S| < $ < --- < s3. Consider the scatter plot of log(OR;) against Sj
(j=1,2,...,J) and let log(ér?j) =a —i—,ésj be the best-fitting straight line, where
« and B are constants. Note that as opposed to the 2 x | situation, where we were
interested in testing for a linear trend in log-odds across exposure categories, here
we are concerned with a linear trend in log-odds ratios across strata. Linear trend is
said to be present if B # 0. The score test of Hp : = 0, which will be referred to
as the test for linear trend (in log-odds ratios), is
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o [ si@ij - éu‘)]z

= (df=1) (5.19)
t 2

J N J N A

E jzlsjzvj—<g J-:lSjvj) /v.

where ¥j is given by (5.12) (Breslow and Day, 1980, p. 142). Although th has been
presented in terms of log-odds ratios, it has an equivalent interpretation as a test for
linear trend in odds ratios. Evidence for the presence of linear trend is also evidence
that the stratum-specific odds ratios are unequal—that is, are heterogeneous. In this
book we will usually interpret the test for linear trend (5.19) in this more limited
sense—that is, as a test of homogeneity which has 1 degree of freedom.

Example 5.1 (Receptor Level-Breast Cancer) Table 5.3 gives the breast cancer
data discussed in Example 4.2 after stratifying by stage. The purpose of stratifying
is twofold: to determine whether stage is a confounder of the association between
receptor level and breast cancer survival, and to investigate whether it is an effect
modifier of this association. We first consider the issue of confounding using the
methods of Chapter 2, where we take E and F to be receptor level and stage, respec-
tively. Stage is an overwhelmingly important predictor of survival in breast cancer
patients, irrespective of receptor level, and so condition 1 of Section 2.5.3 is satisfied.
There is more limited evidence in the oncology literature that stage is associated with
receptor level, and so condition 2 may or may not be satisfied. For the moment as-
sume that condition 2 does not hold. This means that stage fails one of the necessary
requirements to be a confounder of the association between receptor level and breast
cancer survival. From Example 4.2 the crude odds ratio estimate of the association
between receptor level and breast cancer survival is OR;, = 3.35, and the 95% con-
fidence interval for OR is [1.69, 6.70]. Following the discussion surrounding Table
2.6(b), we take (/)\Ru = 3.35 to be an estimate of the overall odds ratio for the cohort.

Despite the above remarks, there are reasons to believe that stage is in fact a con-
founder. Consider Table 5.4, which gives the stratum-specific analysis of the breast
cancer data according to stage of disease. The values of 75 are quite different, a find-
ing that is consistent with the remarks made above in connection with condition 1.
However, based on these data it seems that p1j # pzj for stages I and III, which
means that condition 2 may be satisfied after all. According to this reasoning, stage

TABLE 5.3 Observed Counts: Receptor Level-Breast Cancer

Stage 1 Stage 11 Stage III
Survival Receptor level Receptor level Receptor level
low  high low  high low  high
dead 2 5 7 9 17 26 12 9 21
alive 10 50 60 13 57 70 2 6 8

12 55 67 22 74 96 14 15 29
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TABLE 5.4 Odds Ratio Estimates and 95% Confidence Intervals: Receptor Level-Breast
Cancer

Stage ORyj OR,;j ORyj 72 Pij P2j
1 2.00 34 11.80 .09 25 38
II 2.32 .85 6.36 23 46 51
I 4.00 65 24.66 .60 29 .10

satisfies the necessary conditions to be a confounder. From Tables 4.5(a) and 5.3,
CE = (31/144)48 = 10.33 and sE = (5/55)12 + (17/74)22 + (9/15)14 = 14.54.
CE is substantially smaller than SE, and so we have additional evidence that stage
may be a confounder. For the sake of illustration we assume for the rest of the ex-
ample that stage is indeed a confounder. Accordingly we take sOR = [23(48 —
14.54)1/[14.54(48 — 23)] = 2.12 to be an estimate of the overall odds ratio for
the cohort. Note that this estimate makes no assumptions regarding homogeneity, an
issue we now consider.

Before applying the stratified methods of this section, it is helpful to examine the
strata separately using the techniques of Chapter 4. As can be seen from Table 5.4,
there is little difference between the odds ratio estimates for stages I and II, but the
estimate for stage III is noticeably larger, a finding that points to heterogeneity. In
addition, there is something of an increasing trend in the odds ratio estimates, also
suggesting heterogeneity. However, the 95% confidence intervals overlap to a con-
siderable extent. In particular, each confidence interval contains the odds ratio esti-
mates for the other two strata, a finding that is consistent with homogeneity. Overall,
the evidence is mostly in favor of homogeneity. Assume for the moment that the in-
creasing trend in odds ratio estimates is “real”—that is, not due to random error. The
interpretation is that the odds ratio for the association between receptor level and
breast cancer mortality increases as stage becomes more advanced. It is important
not to make the mistake of interpreting this finding as an indication that the mortality
risk from breast cancer increases with stage. Table 5.4 is concerned with odds ratios
relating receptor level and breast cancer mortality, not with odds ratios relating stage
and breast cancer mortality. .

The maximum likelihood estimates are OR, = 2.51, 71 = .086, 72y = .226,
and 73 = .639, and the fitted counts are given in Table 5.5. Note that (5.8) is

TABLE 5.5 Fitted Counts Under Homogeneity: Receptor Level-Breast Cancer

Stage 1 Stage II Stage III
Survival  Receptor level Receptor level Receptor level
low high low high low high
dead 2.28 4.72 7 9.29 | 16.71 | 26 1142 | 958 | 21
alive 9.72 | 50.28 | 60 12.71 | 57.29 | 70 2.58 5.42 8

12 55 67 22 74 96 14 15 29
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TABLE 5.6 Expected Counts: Receptor Level-Breast Cancer

Stage [ Stage II Stage III
Survival  Receptor level Receptor level Receptor level
low high low high low high
dead 1.25 5.75 7 596 | 20.04 | 26 10.14 | 10.86 | 21
alive 10.75 | 49.25 | 60 16.04 | 53.96 | 70 386 | 4.14 8
12 55 67 22 74 96 14 15 29

satlsﬁed in each stratum, for example, (2.29 x 50.29)/(4.72 x 9.72) = 2.51. From
Vo = 1.29 +3.79 + 1.31 = 6.40 and var(logORu) 1/6.40 = .156, the 95%
confidence interval for ORis [1.16, 5.44], which we observe does not contain 1.

The expected counts are given in Table 5.6. From Vou = 922 +3.35 4 1.45 =
5.72, the Wald and likelihood ratio tests of association are Xv2v = (log2.5 D2(5.72) =
4.83 (p = .03) and X12r = 5.64 (p = .02). The interpretation is that, after adjusting
for the confounding effects of stage, receptor level is associated with breast cancer
survival.

On a cell-by-cell basis the observed and fitted counts are close in value and so
the homogeneity model appears to fit the data well. The Wald, score, and likelihood
ratio tests of homogeneity are

(5.16) = 1.29(.693 — .919)% + 3.79(.842 — .919)* + 1.31(1.39 — .919)?
=374 (p=.83)
(2-228)% (9-9.292% (12— 11.42)2
5.17) = =341 (p=.84
.17 120 379 1.31 (P )

and (5.18) = .351 (p = .84), each of which provides considerable evidence in favor
of homogeneity. Setting S = 1, S = 2, and S3 = 3, the test for linear trend is

2 _ (.863)2
b 28.24 — (12.81)2/6.40

=.286 (p =.59)

which is also consistent with homogeneity.

Based on the stratum-specific confidence intervals, the tests of homogeneity, and
the test for linear trend, it is reasonable to conclude that there is a common stratum-
specific odds ratio. From the overall confidence interval and the tests of association,
we infer that this odds ratio is not equal to 1. So we take (/)\I-'\’u = 2.51 to be an estimate
of the common stratum-specific odds ratio. In view of the discussion surrounding
Table 2.6(b), the summary estimate (OF\’u 2.51) and the standardized estimate
(SOR 2.12) characterize different features of the cohort. In practice, only summary
estimates are reported in the literature.
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52 ASYMPTOTIC CONDITIONAL METHODSFOR J (2 x 2) TABLES

We now turn our attention to methods based on the asymptotic conditional approach.
The techniques discussed in this section work well under the same large-strata con-
ditions considered in the previous section. In addition, these methods are also valid
when, within each stratum, the number of subjects in each exposure category is small,
provided there are a large number of strata (Breslow, 1981). These will be referred
to as the sparse-strata conditions. The presence of a large number of strata ensures
that, even though stratum-specific sample sizes may be small, the overall sample
size for the study is large. As a consequence of conditioning on the marginal totals,
the stratum-specific nuisance parameters m2j are eliminated and so, just as in the
asymptotic unconditional case, there is a large amount of data available to estimate
OR. For the remainder of this chapter the examples are based on data of the large-
strata type. In Chapter 6 we consider a particular application in which sparse-strata,
but not large-strata, conditions are satisfied. In that setting it is demonstrated that
asymptotic unconditional methods may produce biased estimates.

Let Ajj denote the hypergeometric random variable for the jth stratum. From
(4.13) the probability function is

where
1= 2 (V) )o

. =S VAU TS
and where |j = max(0, rij — myj) and uj = min(ryj, m;j). From (4.14) and (4.15)
the mean and variance of A are

1 (1 ]

E(A;|OR) = C—jX;x(X)(m” _X>OR‘ (5.21)

and

uj _ _
vj = var(A;j|OR) = Ci Z[X — E(Ay |OR)]2<r)1(J><m r.21 X)oRX. (5.22)

] x=|j 1] -

Point Estimates and Fitted Counts
The conditional maximum likelihood equation is

J

J
Y aij =Y E(A;jIOR) (5.23)
i=1

j=1
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where

TRy — LS (MY ) GRox
- L

x=l;

« S (Y \Groy
=32 () )

x=lj

and where 6RC denotes the conditional maximum likelihood estimate of OR (Birch,
1964; Gart, 1970). Unlike the unconditional maximum lik/e\lihood equations, which
involve J + 1 unknowns, (5.23) has the single unknown OR., making it feasible to
find a solution by trial and error. Once OR; has been estimated, the fitted count for
the index cell of the jth table is defined to be

a1j = E(Aj|OR.). (5.24)

The rest of the fitted counts are calculated along the lines of Table 4.7, thereby en-
suring that the observed and fitted marginal totals agree. In view of (5.24) we can
rewrite (5.23) as Z]]: janj = Z]]: | &1. This equation is formally the same as (5.6)
except that the &;j are based on (5.24) rather than (5.9).

Confidence Interval
Analogous to (4.20) and (4.21), an implicit (1 — «) x 100% confidence interval for
ORis obtained by solving the equations

> & - Yj- E(AIOR)
JI0 var(Ayj1OR,)

Zy)2

and
Yo @ — Y- E(AjIOR.)
JI, var(Ay[OR.)

for OR, and OR. (Mantel, 1977). Although these are complicated expressions, they
are amenable to the trial and error approach. Given the estimate OR., from (5.22) an
estimate of var(A;j|OR) is

1 i i\,
b= > (x4 ,—)Z(r;‘><mlrjz‘_ X) (OR.)" (5.25)

i x=lj

= —Zy/2

where we note from (5.24) that &;j = E(Aj |6RC). Let V, = Zle j. As shown
in Appendix C, an estimate of var(log 6\Rc) is

—_—

var(log OR,) = (5.26)

Ve
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and a (1 — o) x 100% confidence interval for OR is obtained by exponentiating

[log OR, log OR.] = log(OR.) + Zaj2

(Birch, 1964).

A first impression is that V. and V, are quite dissimilar due to the difference
between (5.12) and (5.25). However, the Cornfield approximation to (5.25), given by
the stratum-specific version of (4.31), provides a bridge between (5.12) and (5.25)
and hence between \7u and \7C. Also, (4.28) and (5.8) provide a connection between
the fitted counts based on the asymptotic unconditional and asymptotic conditional
methods.

Mantel-Haenszel Test of Association
When OR = 1 it follows from (4.17) and (4.18) that (5.21) and (5.22) simplify to

r{imai
&y =1 (5.27)
r
and
o Fpjr2jmyjmyj
toj = ——1—L, (5.28)
e —1

The Mantel-Haenszel test of association is

Y e - e) .
j=191] j=1"%1] _ (alo_elo)
Z]]:I Doj 00e

(Mantel and Haenszel, 1959). With | j and uj defined as above, let R = min(&;, —|,,
Ue — &j6). Mantel and Fleiss (1980) show that the normal approximation underlying
the Mantel-Haenszel test should be satisfactory provided R > 5. A more straight-
forward criterion given by Rothman and Greenland (1998, p. 275) requires that the
summed observed counts, 8j,, &, 61., and 62., and the summed expected counts,
B1e, &, fle, and fa., should all be greater than or equal to 5. This shows that it is
the overall counts, not stratum-specific counts, which determine the validity of the
normal approximation.

XZ

mh =

@ =1 (5.29)

Example 5.2 (Receptor Level-Breast Cancer) The asymptotic conditional esti-
mate of the odds ratio is 6Rc = 2.47. Table 5.7 gives the corresponding fitted counts.
Unlike the asymptotic unconditional case, an identity of the form (5.8) is not nec-
essarily saLi\sﬁed. For example, (2.29 x 50.29)/(4.71 x 9.71) = 2.52, which does
not equal OR, = 2.47. Comparing Tables 5.5 and 5.7, the fitted counts based on the
asymptotic unconditional and asymptotic conditional methods are nearly identical.
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TABLE 5.7 Fitted Counts Under Homogeneity: Receptor Level-Breast Cancer

Stage [ Stage II Stage III
Survival  Receptor level Receptor level Receptor level
low high low high low high
dead 2.29 4.71 7 9.27 | 16.73 | 26 1144 | 956 | 21
alive 9.71 | 50.29 | 60 12.73 | 57.27 | 70 2.56 5.44 8
12 55 67 22 74 96 14 15 29

The implicit 95% confidence interval for ORis [1.15, 5.28]. From Ve = 1.3243.84+
1.35 = 6.52 and var(log (S\RC) =1/6.52 = .153, the explicit 95% confidence inter-
val for ORis [1.15, 5.32]. The Mantel-Haenszel test is th = (23—-17.35)2/5.82 =
5.49 (p = .02). Since R = min(17.35 — 6,43 — 17.35) = 11.35, the normal approx-
imation is satisfactory. The interpretation of these results is virtually the same as for
Example 5.1.

53 MANTEL-HAENSZEL ESTIMATE OF THE ODDSRATIO

Both the asymptotic unconditional and asymptotic conditional methods of estimating
OR involve extensive calculations. We now discuss an alternative method of point
estimation which is computationally straightforward and which produces excellent
results under both large-strata and sparse-strata conditions. The celebrated Mantel—
Haenszel estimate of OR s

J
~ 2i=iR R

ORyh = 3 = (5.30)
Zj:l Sj S
where
aiibn;
Rj = 1j 12
rj
and
Sj _ azjb”'

rj

(Mantel and Haenszel, 1959). Rewriting (5.30) as ORmn = (3}_; §iORyj)/S..

we see that Ole1 is a weighted average of stratum-specific odds ratio estimates.
It can be shown that §; = l/varo(ORu j) and so the weights entering into ORmh
are the reciprocals of stratum-specific variance estimates which are calculated under
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the hzgothesis of no association. There is an interesting connection between X12nh
and ORyp. It is readily demonstrated that a;j — é i = Rj‘\— Sj and hence that
aje — €1 = Ry — S. It follows that X2, = 0 if and only if ORyp = 1.

The Robins—Breslow—Greenland (RBG) estimate of var(log ORyy) is

r(log ORmy) = 10— 4 et Yo | Ve (5.31)
T = .
Ve = SR T 2(RO(S) | 2(S)2
where
T = aijbyj(arj + byj)
] r_z
J
U — ajbij(arj +b2j)
] = r2
i
arjbyj(azj +bij)
Vj = o
i
W, = ajbij(aj + b))

2
i
(Robins, Breslow, and Greenland, 1986; Robins, Greenland, and Breslow, 1986;
Phillips and Holland, 1987). An important property of this estimate is that it is valid
under both large-strata and sparse-strata conditions. A (1 — «) x 100% confidence
interval for ORis obtained by exponentiating

[log OR . 10g ORup | = 10g(ORmn) % Za/2y/ Var(log ORmn) -

When there is only one stratum, (5.31) simplifies to (4.7). Sato (1990) gives another
estimate of var(log (/)T?mh) which is applicable in both large-strata and sparse-strata
settings.

Prior_to (5.31) becoming available, the test-based method of estimating
var(log ORyp) was commonly used. This approach lacks a sound theoretical ba-
sis but has the attraction of computational simplicity. The test-based method can be
adapted to a variety of settings using arguments similar to what follows. It will have
become apparent by now that tests of association developed using different theoreti-
cal approaches, such as X?,V, Xlzr, and sznh, tend to have similar values. If we had an
estimate of var(log 6\Rmh) other than (5.31), we would expect the corresponding test
of association to be close in value to sznh. That is, we would have the approximate

equality sznh = (log 6Rnh)2 /varg(log C/)\Rmh). The test-based approach “solves” this
equation for varg(log ORyp,) and defines the estimate of var(log ORyy) to be

(log ORppn)?

vato(log ORmp) = v
mh
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(Miettinen, 1976). The subscript 0 is needed because the variance is being estimated
under the null hypothesis Hy : OR = 1. Strictly speaking, the test-based approach
is valid only when OR = 1, but in practice this method produces satisfactory results
for a broad range of ggds ratios (Halperin, 1977; Miettinen, 1977). In what follows,
the notation var(log ORyp,) will be used only to denote the RBG estirll\ate. .

The Breslow—Day test of homogeneity is calculated by replacing OR, with ORyp
in (5.9) and (5.12). The resulting estimates, denoted by 4, jmh and 0] j mh, are substi-
tuted in (5.17) to obtain

J A A
2 5o @ —&an)® @~ Alemn)’
b =2 -

— — df=3-1 (5.32)
i=1 Ujmh Vemh

(Breslow and Day, 1980, p. 142; Breslow, 1226). The second term in (5.32), which
is due to Tarone (1985), corrects for using ORmh in place of the more efficient es-
timate OR,. Since OR, is defined so as to satisfy aj, = &j, (5.6), it follows that
the correction term will be small when (/)\Rmh is close to (/)\Ru, as is often the case in
practice. Liang and Self (1985) and Liang (1987) describe tests of homogeneity for
the sparse-strata setting, but the formulas are complicated and will not be presented
here.

Example 5.3 (Receptor Level-Breast Cancer) The Mantel-Haenszel odds ra-
tio estimate is ORyp = 9.32/3.67 = 2.54, the RBG variance estimate is

6.37 2.55+2.95 1.12

20322 T 2032367 26672 159

var(log ORpp) =

and the 95% confidence interval for OR is [1.16, 5.55]. The Breslow—Day test of
homogeneity is ng = .341 (p = .84), which includes the correction term .001. The

test-based estimate is varg(log 6Rmh) = (log 2.54)2/5.49 = .158, which is almost
identical to the RBG estimate.

54 WEIGHTED LEAST SQUARESMETHODSFOR J (2 x 2) TABLES

Weighted least squares (WLS) methods for odds ratio analysis were introduced by
Woolf (1955) and extended to the regression setting by Grizzle et al. (1969). Similar
to the asymptotic unconditional methods, these techniques perform well under large-
strata, but not sparse-strata, conditions. Following Section 1.2.2, define the weight
for the jth stratum to be

A 1 (1 N 1 N 1 N 1)‘1
Wiy =m —— = —_— —_— P _—
'™ Gar(log ORyj) ajj  aj by by

and let W = Zle wj. The WLS estimate of log(OR) is defined to be the weighted
average of the log(é\Ru i)
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_ 1< _
10g(ORs) = — Y i} log(ORy). (5.33)
\le j=1
An estimate of OR is obtained by exponentiating (5.33),

_ 1< _
ORjs = exp (\M Z W log(ORuj)> .

s j=1

From (1.25) an estimate of var(log (/JT?ls) is

- —~ 1
var(log OR;) = — (5.34)

Is
and a (1 — o) x 100% confidence interval for 6?215 is obtained by exponentiating
Zy/2

Wi

[log OR,,, log OR] = log(OR) =+ (5.35)

Let W()ls = \70u, where \70u was defined in Section 5.1 in conjunction with the Wald
test. The WLS test of association is

X2 = (logORy)*Wpis  (df = 1) (5.36)

and the test of homogeneity is
J —_— —_—
Xp = _jlogOR,j —logORy)*  (df =J —1). (5.37)
i=1

Note the similarity of (5.34), (5.36), and (5.37) to the asymptotic unconditional for-
mulas (5.13), (5.14), and (5.16), respectively. The difference is that the weighted
least squares formulas are based on observed counts, whereas the asymptotic uncon-
ditional formulas use fitted counts.

Example5.4 (Receptor Level-Breast Cancer) From W]S = 1.22 + 3.78 +
1.16 = 6.16 and
(1.22 x .693) + (3.78 x .842) + (1.16 x 1.39)

1og(ORys) = e = 915

the WLS estimate of the odds ratio is 6T?15 = exp(.915) = 2.50. From var(log 6??15) =
1/6.16 = .162, the 95% confidence interval for OR is [1.13, 5.50]. The test of as-
sociation is X2 = (log2.50)%(5.72) = 4.79 (p = .03), where Woi; = 5.72 comes
from Example 5.1. The test of homogeneity is

X2 = 1.22(.693 — .915)% + 3.78(.842 — .915)% + 1.16(1.39 — .915)?
= 338 (p = .84).
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55 INTERPRETATION UNDER HETEROGENEITY

When homogeneity is present, one of the issues facing the data analyst is how to sum-
marize stratum-specific estimates. The asymptotic unconditional, asymptotic condi-
tional, Mantel-Haenszel, and weighted least squares methods provide four somewhat
different answers to this question. The Mantel-Haenszel and weighted least squares
estimates are weighted averages of stratum-specific odds ratio and log-odds ratio es-
timates, respectively, where the weights are reciprocals of estimated variances. As
was pointed out in Section 1.2.1, this approach to weighting is highly efficient in the
sense of ensuring that overall variance is kept to a minimum. The asymptotic uncon-
ditional and asymptotic conditional estimates are based on the maximum likelihood
method and are therefore also optimal under asymptotic conditions.

When there is heterogeneity (interaction, effect modification) the situation is
much different. In the first place, the fact that the stratum-specific odds ratios vary
across strata says something about the relationship between exposure and disease
which would be lost if the data were to be summarized. This provides a rationale
for retaining the stratum-specific estimates and interpreting, to the extent possible,
whatever patterns may be present. When there are many strata and no meaningful
patterns are evident, it can be confusing as well as inconvenient to have to deal with
many odds ratio estimates. In this situation it is useful to have a method of estimating
an overall odds ratio.

If the stratifying variable is not a confounder, the crude odds ratio estimate serves
this purpose. When confounding is present, the standardized estimate described in
Section 2.5.4 can be used. An alternative is to estimate the overall odds ratio using a
weighted average of stratum-specific estimates (Miettinen, 1972a). However, unlike
the situation with ORy, and ORys, when there is heterogeneity the weights are chosen
so as to reflect the distribution of the stratifying variable in the underlying population,
as opposed to being defined in terms of inverse variances. When heterogeneity is
present, summary estimates of the odds ratio, such as 6\Ru, (/)\RC, 6T?mh, and (/)I\?ls, do
not estimate an epidemiologically meaningful parameter (Greenland, 1982). On the
other hand, population weights can be used to form a weighted average when there
is homogeneity, but this would not be optimal for variance estimation.

When heterogeneity is present, stratum-specific estimates of the odds ratio may
be arrayed on both sides of 1, a phenomenon referred to as qualitative interaction
(Peto, 1982; Gail and Simon, 1985). In this situation, exposure will appear to be
detrimental in some strata and beneficial in others. As a consequence, the weighted
average may be close to 1 even though stratum-specific estimates might be much
larger or smaller. An appropriate interpretation of such a weighted average is that it
represents a “net” measure of effect.

Similar issues arise when testing for association, as can be illustrated with the
Mantel-Haenszel test X2, . Rewriting the numerator of (5.29) as Zf: (@) — &),
consider

. ajbij\ ~
aij — & =< 2: ”)(ORuj - .

J
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Under homogeneity, each of the (6Ru i — 1) will tend to be near (OR — 1). So the
differences (ajj — & j) will tend to have the same sign: positive when OR > 1, and
negative when OR < 1. When there is qualitative interaction, Zf:l (arj — €rj) will
be a sum of positive and negative terms. We can interpret this quantity as the “net”
difference between observed and expected counts. Even when some of the terms
are quite large in absolute value, sznh may be small as a result of cancellation of
positive and negative terms. In this case, sznh could have a large p-value and so the
hypothesis of no association might not be rejected. Under these circumstances we can
still interpret sznh as a test of association, provided we consider the null hypothesis
to be one of no “net” association between exposure and disease.

Suppose that a test of association is performed and that it is not known whether
homogeneity is present or not. If the p-value is small, we infer that exposure is
associated with disease, in either absolute or net terms. However, if the p-value is
large, there are two cases to consider: If homogeneity is present, then there is no
association between exposure and disease; but if heterogeneity is present, all that can
be said is that there is no net association. In the latter case, there may be important
associations in certain of the strata which were not detected by the overall test. For
this reason it is prudent to establish that there is homogeneity before performing a
test of association. At a minimum, stratum-specific odds ratio estimates should be
examined to determine whether the majority of them are on one side of 1 or the
other.

56 SUMMARY OF 2 x 2EXAMPLESAND RECOMMENDATIONS

Table 5.8 summarizes the results of the receptor level-breast cancer analyses based
on the asymptotic unconditional (AU), asymptotic conditional (AC), Mantel-
Haenszel (MH), and weighted least squares (WLS) methods. These findings are
typical of data satisfying large-strata conditions, in that all four approaches give
quite similar results. In terms of computational ease, the Mantel-Haenszel and
weighted least squares methods are by far the most convenient.

TABLE 5.8 Summary of Receptor Level-Breast Cancer Results

Result AU AC MH WLS
OR 251 2.47 2.54 2.50
[OR, OR] [1.16, 5.44] [1.15,5.32]2 [1.16, 5.55]P [1.13,5.50]
Association p-value .02¢ .02 — .03
Homogeneity p-value .84d — .84 .84
Trend p-value .59 — — —
2Explicit

bRBG

CX12r

dLikelihood ratio
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There has been considerable theoretical research on the statistical properties of
odds ratio methods, and this provides some guidance as to their applicability in dif-
ferent settings. Under large-strata conditions, ORu ORC ORmh, and OF21s all have
desirable asymptotic properties (Gart, 1962; Andersen, 1210, Hauck, 1979; Tarone
et al., 1983) and perform well in finite samples, although ORys can be biased (Hauck
et al., 1982; Hauck, 1984; Donner and Hauck, 1986). Under sparse-strata conditions,
(/)\I-'\’C and 6Rmh continue to have attractive asymptotic and finite sample properties
(Breslow, 1981; Hauck and Donner, 1988), but the same is no longer true of ORu
and OR1S (Lubin, 1981; Davis, 1985). ORm1 is asymptotically efficient only when
OR = 1 (Tarone et al., 1983), but nevertheless perfgrms well for values of OR likely
to be seen in practice. The preceding features of ORyp, along with its ease of com-
putation, make it a very desirable choice among available estimates. This is the con-
clusion of Hauck (1987, 1989) after an extensive review of the literature.

X12nh is optimal for detecting association when there is homogeneity (Gart and
Tarone, 1983). The test for linear trend th is locally optimal against alternatives
that can be expressed as smooth, monotonic functions of exposure (Tarone and Gart,
1980). The local property of th means that it is not sensitive to model misspecifi-
cation of the exposure—disease relationship. Each of the tests of homogeneity con-
sidered above has low power to detect heterogeneity, especially under sparse-strata
conditions (Greenland, 1983; Liang and Self, 1985; Jones et al., 1989; Paul and Don-
ner, 1989; Paul and Donner, 1992).

The weighted least squares methods perform well under large-strata conditions
and should be considered on grounds of computational ease. (/)\Rmh, var(log 6Rmh),
and Xﬁlh, which we refer to subsequently as the MH-RBG methods, are also com-
putationally straightforward and have the advantage of producing excellent results
under both large-strata and sparse-strata conditions. For the asymptotic analysis of
closed cohort data based on the odds ratio, the MH-RBG methods are recommended.
When the overall sample size is small, these methods may not perform well, making
it necessary to resort to exact calculations.

57 ASYMPTOTIC METHODSFOR J (2 x I) TABLES
In this section we consider methods for analyzing stratified data when the exposure

variable is polychotomous. The data layout for the jth stratum is given in Table 5.9.
We say there is no association between exposure and disease if 1) = mpj = --- =

TABLE 5.9 Observed Counts: Closed Cohort Study

Disease Exposure category
1 2 e i et |

yes alj azj a”- a|j mlj
no blj sz bij blj My
rlj r2j rij rlj rj
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mj for all j. The expected counts for the ith exposure category in the jth stratum
are

. Fijmij A Tijmy;j
&j =1 and fij ==
rj rj
With i = 1 as the reference category, let C/)T?mhi denote the Mantel-Haenszel odds

ratio estimate comparing the ith exposure category to the first category.

The Mantel-Haenszel test of association sznh has a generalization to the J(2 x |)
setting, but the formula involves matrix algebra (Appendix E). Peto and Pike (1973)
give a computationally convenient approximation to Xﬁlh,

| A2
NN o Lk LU Y S (5.38)

i=1 glo

where

Si=\r—1)%" :
j

It can be shown that Xgp < Xr2nh and so Xgp is conservative compared to anh (Peto

and Pike, 1973; Crowley and Breslow, 1975). Although Xgp was not discussed in
Section 5.2, it is still valid when | = 2. However, there is no need to rely on such an
approximation since Xﬁlh is readily calculated. Let § be the exposure level for the
i th category with 5] < < --- < 5. For each |, define

J
Uj=> s@j— &
j:l
and
| | , | 2
Vj=(—rj_1) gaej—<;sei) /&

Uj and Vj correspond to the numerator and denominator of (4.38), and so they can
be used to test for linear trend in the jth stratum. An overall test for linear trend is

_U)?

L]

X2 df=1) (5.40)

(Mantel, 1963; Birch, 1965; Breslow and Day, 1980, p. 149). As shown in Appendix
E, a conservative approximation to (5.40) is



140 ODDS RATIO METHODS FOR STRATIFIED CLOSED COHORT DATA

TABLE 5.10 Observed Counts: Stage—Breast Cancer

Low receptor level High receptor level
Survival Stage Stage
I O 1 I O 1
dead 219 | 12|23 511719 | 31

alive 10 [ 13| 2 | 25 50 | 57| 6 | 113
12 22 14 48 55 74 15 144

2
I:Zilzl S (alo - éo)]
= a=1 (5.41)

Zilzl Sizgi° - (Zilzl Sgi')z /gn

2
t

that is, (5.41) < (5.40) (Peto and Pike, 1973; Crowley and Breslow, 1975).

Example 5.5 (Stage-Breast Cancer) Table 5.10 gives the observed counts cor-
responding to Table 4.16 after stratifying by receptor level. Arguing along the lines
of Example 5.1, a rationale can be given for treating receptor level as a confounder
of the association between stage of disease and breast cancer survival.

Table 5.11 gives the Mantel-Haenszel odds ratio estimates and the RBG 95%
confidence intervals, with stage I as the reference category and with adjustment for
receptor level. The adjusted results of Table 5.11 are close to the crude results of
Table 4.17. According to the collapsibility approach to confounding discussed in

TABLE 5.11 Mantel-Haenszel Estimates and RBG 95%
Confidence Intervals: Stage—Breast Cancer

Stage 6T:\)mhi OR i ﬁmhi
11 3.11 1.25 7.71
111 18.96 6.00 59.89

TABLE 5.12 Expected Counts: Stage—Breast Cancer

Low receptor level High receptor level
Survival Stage Stage
1 11 111 I i I
dead 575 | 1054 | 6.71 | 23 11.84 | 1593 | 3.23 31

alive 6.25 | 11.46 | 729 | 25 43.16 | 58.07 | 11.77 | 113

12 22 14 48 55 74 15 144
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Section 2.5.5, it appears that receptor level is unlikely to be an important confounder.
There is a clear trend in odds ratio estimates in Table 5.11 (where 6Rmh 1= 1).

The expected counts are given in Table 5.12. The Mantel-Haenszel test is sznh =
30.82 (p < .001) and the Peto—Pike approximation is

2 (71—17.592% (26 —26.47)%2 (21 —9.94)2
PP 1241 18.20 6.12

=29.04 (p < .001).

Setting 5 = 1, S = 2, and 3 = 3, the test for linear trend is (5.40)
(21.65)%/16.62 = 28.20 (p < .001) and the approximation is

(21.65)2

(5.41) =
140.28 — (67.17)2/36.73

=26.86 (p < .001).

As is often the case in practice, Xgp is only slightly less than sznh, and (5.41) is only
slightly less than (5.40).
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CHAPTERG6

Risk Ratio Methods for
Closed Cohort Data

Risk ratio methods for analyzing closed cohort data have many similarities to the
odds ratio methods of Chapters 4 and 5. An important difference is that there is no
conditional distribution that has the risk ratio as its parameter. However, risk ratio
methods based on asymptotic unconditional, Mantel-Haenszel, and weighted least
squares methods are available for the analysis of closed cohort data. As in the odds
ratio setting, asymptotic unconditional and weighted least squares methods work
well under large-strata, but not sparse-strata, conditions. In the absence of condi-
tional techniques, and aside from exact methods which will not be discussed here,
the Mantel-Haenszel methods are the only ones in wide use that are designed for the
sparse-strata setting.

6.1 ASYMPTOTIC UNCONDITIONAL METHODS
FOR A SINGLE 2 x 2 TABLE

The observed counts for the unstratified analysis are given in Table 4.1. Making the
substitution w1 = RRuy, the joint probability function (4.1) can be reparameterized
to obtain a likelihood that is a function of the parameters RR and 5. This leads to
the unconditional maximum likelihood equations,

ap = F/Q\Rﬁzrl
and

a; — RRTAQH a — J%zrz

—— —— =0
1 — RRm, 1 —m

where RR denotes the unconditional maximum likelihood estimate of RR. The solu-
tions are
—~ 7 air
RR=_1_-22 (6.1)
Y 9) aly
143
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and

a

Ty =
r

where 71 = a;/r;. The unconditional maximum likelihood estimate of var(log Ii\R)
is

l—-m 1—-m

var(log RR) = — _
il Y510
b b
. (6.2)
apr l

and a (I — o) x 100% confidence interval for RRis obtained by exponentiating

=5 = by o))
[log RR, log RR] = 1og(RR) + z, ar tan

If either a; or &, equals 0, we replace (6.1) and (6.2) with

BR— (ar + .95)r
(& + .5)ry
and

b +.5 b+ .5
(@ +.5)r; (a4 .5)ry°

var(log RR) =

Since 71 = 77 is equivalent to log(RR) = 0, the hypothesis of no association can be
expressed as Hp : log(RR) = 0. Under Hy an estimate of var(log RR) is

Fato (log RR) f| . f rmp
var, 0 = — -— = .
otiog éri  &rp  riram

The Wald test of association is

X2 — (log RR)?r ram;

df =1
w rmo ( )

and the likelihood ratio test of association is precisely (4.12).

Example 6.1 (Receptor Level-Breast Cancer) The data for this example are
taken from Table 4.5(a). The estimate of the risk ratio is RR = 2.23, var(log ﬁl\?) =
.048, and the 95% confidence interval for RRis [1.45, 3.42]. The Wald test of asso-
ciation is X%, = 9.02 (p = .003) and, from Example 4.2, the likelihood ratio test of
association is X12r = 11.68 (p = .001). The interpretation of these findings follows
along the lines of Example 4.2.
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6.2 ASYMPTOTIC UNCONDITIONAL METHODS
FOR J (2 x 2) TABLES

We now consider asymptotic unconditional methods for stratified 2 x 2 tables. For
the jth stratum, the data layout is given in Table 5.1 and the risk ratio is RRj =
mij/mj(j =1,2,..., ). Each of the J tables can be analyzed separately using the
methods of the preceding section. The stratum-specific estimates are

A ajj A A

Ty = =
RR - T _ AN
i =z o= o
T2j azjrlj

and
_ = bij b
var(log RRj) = —— + ——

ajjlj azjl’zj'
When there is homogeneity the common stratum-specific risk ratio is denoted by RR.

Point Estimates and Fitted Counts
The unconditional maximum likelihood equations are

J PRA
Zmzo (6.3)
&1 RRyj

and

— RRjr1 n aj — M2l
1 — RRy; 1 — 1

-0 (j=1,2,...,J). (6.4)

This is a system of J + 1 equations in the J 4+ 1 unknowns RR and 7> i (=
1,2, ..., J). Asolution to these equations can be obtained using the general methods
described in Appendix B. Unlike the situation for the odds ratio in Section 5.1, there
is no guarantee that the 77 j which solve (6.3) and (6.4) will necessarily satisfy the
constraints 0 < 72 < 1. When the constramts are not satisfied, alternate methods
must be used to maximize the likelihood. Once RR and 75 j have been estimated, we
have 711} = RRT[QJ. The fitted counts &y j, &j, blj , and sz are defined as in (5.5).
We can rewrite the maximum likelihood equations as

J
Za”_a” =
— 1—7711
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and

ajj —é.lj Aj —é.zj
l—ﬁ'li l—f{zj

=0 (j=12,..9

which shows that they do not have the “observed equals fitted” format. By definition,
aij + by j = r1j and &j + by j = I2j, and so the observed and expected column
marginal totals agree. Unlike the situation for the odds ratio in Section 5.1, the same
cannot be said for the row marginal totals.

Confidence Interval
Let

N A -1
. by Dy
b= = J T J
apjrij Dl

and let V = Zle ¥j. An estimate of var(log RR) is
Var(log RR) = -
var(log ==
V
and a (1 — «) x 100% confidence interval for RR is obtained by exponentiating

[log RR, log RR] = log(RR) =+ 22

YV
(Tarone et al., 1983; Gart, 1985).

Wald and Likelihood Ratio Tests of Association

Let
f £\
A 1j 2j Fjr2jmyj
doj = [ 4 2 _ Mijfojmi;
C1jlij 2jl2; rjmaj

and let \70 = Zle voj. Under the hypothesis of no association Hy : log(RR) = 0,

an estimate of var(log RR) is

—~ 1
\72Tr0(10 RR) = =
g Vi

The Wald test of association is
X2 = (logRR?>Vy  (df =1)

and the likelihood ratio test of association is precisely (5.15).
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TABLE 6.1 Risk Ratio Estimates and 95% Confidence
Intervals: Receptor Level-Breast Cancer

Stage RR; RR; RR;
1 1.83 .40 8.35

II 1.78 93 342
I 1.43 .90 2.27

Likelihood Ratio Test of Homogeneity
The likelihood ratio test of homogeneity is

Xh_2Z|:a”10g( )—l—azjlog( )+b1110g(b )~|—b2,10g<b2>:|
i=l1 le b2J

@f=J-1

which is identical in form to (5.18) but which uses fitted counts based on the risk
ratio.

Example 6.2 (Receptor Level-Breast Cancer) The data for this example are
taken from Table 5.3. Table 6.1 gives a stratum-specific analysis according to stage
of disease using the methods of the preceding section. The 95% confidence intervals
are fairly wide and each one contains the risk ratio estimates for the other two strata,
which suggests the presence of homogeneity. It is interesting that, unlike Table 5.4
where the odds ratio estimates have an increasing trend, the risk ratio estimates show
a decreasing trend.

The maximum likelihood estimates are RR = 1.56, 71 = .095, 7y = .242,
and 713 = .558, and the fitted counts are given in Table 6.2. Note that the observed
and fitted row marginal totals do not agree. Comparing the fitted counts in Tables
5.5 and 6.2 to the observed counts in Table 5.3, there seems to be little to choose
between the odds ratio and risk ratio models in terms of goodness of fit. From V=
1.54+48.49+15.78 = 25.81 and var(log F/Q\R) = 1/25.81 = .039, the 95% confidence
interval for RRis [1.06, 2.29].

TABLE 6.2 Fitted Counts Under Homogeneity: Receptor Level-Breast Cancer

Stage 1 Stage II Stage III
Survival  Receptor level Receptor level Receptor level
low high low high low high
dead 1.78 5.23 7.01 8.28 | 17.87 | 26.15 12.18 | 8.38 | 20.56
alive | 10.22 | 49.77 | 59.99 13.72 | 56.13 | 69.85 1.82 | 6.62 | 8.44

12 55 67 22 74 96 14 15 29




148 RISK RATIO METHODS FOR CLOSED COHORT DATA

With \70 = 1.15 4 6.30 + 19.01 = 26.46, the Wald test of association is X‘Z)v =
(log 1.56)2(26.46) = 5.20 (p = .02). From Example 5.1, the likelihood ratio test
of association is X12r = 5.64 (p = .02). The likelihood ratio test of homogeneity is
Xﬁ = .325 (p = .85), and so there is considerable evidence in favor of homogeneity.

Recalling the results of Example 5.1, it seems that the data in Table 5.3 are ho-
mogeneous with respect to both the odds ratio and the risk ratio. This conclusion
contradicts the observation made in Section 2.4.5 that at most one of these mea-
sures of effect can be homogeneous when the stratifying variable is a risk factor for
the disease. As pointed out in Section 5.6, tests of homogeneity generally have low
power and, as such, may fail to detect heterogeneity even when it is present. So an
explanation for the preceding contradictory finding is that one or both of the odds
ratio and risk ratio are in fact heterogeneous, but this was not detected by the tests of
homogeneity.

6.3 MANTEL-HAENSZEL ESTIMATE OF THE RISK RATIO

Over the years the Mantel-Haenszel estimate of the odds ratio has proven to be so
useful that analogous estimates of other measures of effect have been developed.
These more recent estimates are also referred to as Mantel-Haenszel estimates. The
Mantel-Haenszel estimate of the risk ratio is

3
= 2R R

RRuh = Zjlzl S - (6.5)
where
R = %
and
s =20

ri

(Rothman and Boice, 1979, p. 12; Nurmineg,\ 1981; Tarone, 1981). Greenland and
Robins (1985b) give an estimate of var(log RRyn) which is valid under both large-
strata and sparse-strata conditions,

— Te
var(log RRpp) = —— (6.6)
s R.S
where
riif2iMyjg —agjdil;
Tj:1121 1 —&ij&ily

2
r
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A (1 — o) x 100% confidence interval for RR is obtained by exponentiating

[log RR ;.. log RRun | = 10g(RRun) £ Zy )24/ Var(log RRuh) -
When there is only one stratum, (6.5) and (6.6) simplify to (6.1) and (6.2).

AExampIeG.B (Receptor Level—Brez/l-s\t Cancer) Based on the above methods,
RRun = 14.79/9.14 = 1.62, var(log RRyn) = 5.40/(14.79 x 9.14) = .040, and
a 95% confidence interval for RRis [1.09, 2.39].

6.4 WEIGHTED LEAST SQUARESMETHODSFOR J (2 x 2) TABLES

For the weighted least squares methods, the weight for the jth stratum is defined to
be

b = 1 _( blj + b2J >_1
DT Gar(ogRR)  \aijrij | ajrog)

The risk ratio formulas are the same as (5.33)—(5.37) except that wj is defined as
above and RR replaces OR.

Example 6.4 (Receptor Level-Breast Cancer) From \/A\IlS = 1.67 + 9.01 +
17.75 = 28.43 and

(1.67 x .606) + (9.01 x .577) 4+ (17.75 x .357)

IOg(@ls) = 28.43

= .441

the WLS estimate of the risk ratio is Ifil\?ls = exp(.441) = 1.55. From
var(log RRy) = 1/28.43 = .035

the 95% confidence interval for RRis [1.08, 2.25]. The test of association is X12S =

(log 1.55)2(26.46) = 5.15 (p = .02), where W01s = 26.46 comes from Example
6.2. The test of homogeneity is

X2 = 1.67(.606—.441)>+9.01(.577—.441)>+17.75(.357—.441)> = 337 (p = .84).

TABLE 6.3 Summary of Receptor Level-Breast Cancer Results

Result AU MH WLS
RR 1.56 1.62 1.55
[RR RR] [1.06, 2.29] [1.09,2.39] [1.08, 2.25]
Association p-value 028 — .02
Homogeneity p-value .85 — .84

awald
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6.5 SUMMARY OF EXAMPLES AND RECOMMENDATIONS

Table 6.3 summarizes the results of the stratified receptor level-breast cancer anal-
yses based on the asymptotic unconditional (AU), Mantel-Haenszel (MH), and
weighted least squares (WLS) methods. All three methods produce similar results.
Less theoretical research has been done on the statistical properties of the risk ratio
than on the odds ratio, but the evidence is that Ifil\?’ ﬁ\Rmh, and ﬁl\?ls have proper-
ties that are broadly similar to their odds ratio counterparts (Tarone et al., 1983;
Greenland and Robins, 1985b). When large-strata conditions are satisfied, f@ls has
a clear advantage over RR in terms of computational ease. RRuh can be used under
large-strata conditions and it is the only one of the three estimates that is valid under
sparse-strata conditions (Walker, 1985). However, ﬁ\Rmh can be inefficient and so its
use should be restricted to the sparse-strata setting (Greenland and Robins, 1985b).



Biostatistical Methods in Epidemiology. Stephen C. Newman
Copyright © 2001 John Wiley & Sons, Inc.
ISBN: 0-471-36914-4

CHAPTER7

Risk Difference Methods for
Closed Cohort Data

Risk difference methods for analyzing closed cohort data are similar to those based
on the risk ratio. In fact, the preceding chapter and the present one have so much
in common that it is possible to use language here that is almost identical to that of
Chapter 6.

71 ASYMPTOTIC UNCONDITIONAL METHODSFOR A SINGLE
2x 2TABLE

The observed counts for the unstratified analysis are given in Table 4.1. Making the
substitution 71 = m, + RD, the joint probability function (4.1) can be reparameter-
ized to obtain a likelihood that is a function of the parameters RD and ;. This leads
to the unconditional maximum likelihood equations,

a = (7, + RD)r

and

ai — (i, + RD)ry & —Ify 0
(72 +RD)(1 = #2 —RD) ~ #a(1 — )

where RD denotes the unconditional maximum likelihood estimate of RD. The solu-
tions are

= . A a @
RD=#7—1=— — — (7.1)
I )
and
A Q
Ty = —
r
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where 771 = a;/r;. The unconditional maximum likelihood estimate of Var(ﬁl\D) is

Tl -7 (1l — 7
1( 1)+ 2( 2)
r )
aib ab
B et (7.2)

3 3
r ry

var(RD) =

and a (1 — o) x 100% confidence interval for RD is

o~ aiby  ab
[RD, RD] = RD + 2, |- + 22
noon

Note that (7.2) is precisely the variance estimate that results from applying (1.9) to
the random variable 77| — 715. Since 7y = 75 is equivalent to RD = 0, the hypothesis
of no association can be expressed as Hp : RD = 0. Under Hyp an estimate of Var(@)
is
Tt (RD) — e13f1 n 623f2 _mmy

ry ry rirar

The Wald test of association is

2 _ (RD)2rror
Y mim

ajb, — apby)?r
— (@b —ab)r (df = 1).
rirompm;
and the likelihood ratio test of association is precisely (4.12). Note that X%, is identi-
cal to X3 (4.10).

Example 7.1 (Receptor Level-Breast Cancer) The data for this example are
taken from Table 4.5(a). The estimate of the risk difference is RD = .264, \7é\r(§l\3) =
(.0798)2, and the 95% confidence interval for RD is [.107, .420]. The Wald test of
association is X\zV = 12.40 (p < .001) and, from Example 4.2, the likelihood ratio
test of association is X12r = 11.68 (p = .001).

7.2 ASYMPTOTIC UNCONDITIONAL METHODS
FOR J (2 x 2) TABLES

We now consider asymptotic unconditional methods for stratified 2 x 2 tables. For
the jth stratum, the data layout is given in Table 5.1 and the risk difference is RDj =
mj —mj (j =1,2,...,J). Each of the J tables can be analyzed separately using
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the methods of the preceding section. The stratum-specific estimates are

o aj N A
mj = — mj = —
rij rj
~ R R aij aj
RDj =mj —mj = — — —
j Mj
and
= aijbrj  ajhy;
var(RDj) = % %
rij r5;

When there is homogeneity the common stratum-specific value of the risk difference
is denoted by RD.

Point Estimates and Fitted Counts
The unconditional maximum likelihood equations are

XJ: aij — (f2j + RD)ry

(2] + RD)(1 — 72 —RD)

(7.3)
i=1

and

aij — (mj +§|5)r1j &j — Mjlj
(f2j + RD)(1 — 2 —RD) ~ 72j (1 — 72j)

(G=1,2,....). (14

This is a system of J + 1 equations in the J + 1 unknowns RD and mj (j =
1,2,...,J). Asolution to these equations can be obtained using the general methods
described in Appendix B.

As was the case for the risk ratio in Section 6.2, there is no guarantee that the
bi%3 j which solve (7.3) and (7.4) will necessarily satisfy the constraints 0 < T i <L
When the constraints are not satisfied, alternate methods must be used to maximize
the likelihood. Once RD and 72j have been estimated, we have 7] = 2j + RD.
The fitted counts 4; i» & i 61 j» and 62 j are defined as in (5.5). We can rewrite the
maximum likelihood equations as

J A
AR
j=1 ﬁl] (1 - 7%1])

and

a1 — & 2j—&j (i=1,2,...,9)
A =71y Ay — Aaj) Y

which shows that they do not have the “observed equals fitted” format.
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Confidence Interval
Let

. Loy -
. ajbij  &jhy;j
vj = <T T3
rlj rzj
and let V = Zle ¥j. An estimate of Var(F/Zb) is
7@ (FD) = —
var = —=
V

and a (1 — @) x 100% confidence interval for RD is

Zy)2

\Y,

[RD,RD] = RD +

Wald and Likelihood Ratio Tests of Association
Let

o oAy -1
L (&ifi | &y _ Nijhjrj
iE e ) T m
rlj r2j 1ji2]

and let \70 = Zle voj. Under the hypothesis of no association Hyp : RD = 0, an

estimate of Var(F/Q\D) is

L~ 1
varg(RD) = —.
0

The Wald test of association is
X2 =RD)Vp  (df=1)
and the likelihood ratio test of association is precisely (5.15).

Likelihood Ratio Test of Homogeneity
The likelihood ratio test of homogeneity is

al. az. bl. b2
Xﬁ = ZZ |:a1j log(élj ) + & log(ézj ) + by log (ﬁ) + byj log (621 )i|

j=1
df=J-1

which is identical in form to (5.18) but which uses fitted counts based on the risk
difference.
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TABLE 7.1 Risk Difference Estimates and 95%
Confidence Intervals: Receptor Level-Breast Cancer

Stage RD i RD; RD;
I .076 —.148 .300

II 179 —.047 406
111 257 —.051 565

TABLE 7.2 Fitted Counts Under Homogeneity: Receptor Level-Breast Cancer

Stage 1 Stage 11 Stage III
Survival ~ Receptor level Receptor level Receptor level
low high low high low high
dead 294 | 4.61 7.55 8.68 | 17.24 | 2592 1144 | 9.84 | 21.28
alive 9.06 | 50.39 | 59.45 13.32 | 56.76 | 70.08 2.56 516 | 7.72
12 55 67 22 74 96 14 15 29

Example 7.2 (Receptor Level-Breast Cancer) The data for this example are
taken from Table 5.3. Table 7.1 gives a stratum-specific analysis according to stage
of disease using the methods of the preceding section. The 95% confidence intervals
are fairly wide and each one contains the risk difference estimates for the other two
strata, which suggests the presence of homogeneity.

The maximum likelihood estimates are RD = .161, 771 = .084, 7y = .233, and
7p3 = .656, and the fitted counts are given in Table 7.2. Note that the observed and
fitted row marginal totals do not agree. Comparing the fitted counts in Tables 5.5, 6.2,
and 7.2 to the observed counts in Table 5.3, there seems to be little to choose between
the odds ratio, risk ratio, and risk difference models in terms of goodness of fit. From
V = 59.47 + 75.35 + 38.90 = 173.72 and var(RD) = 1/173.72 = (.0759)?, the
95% confidence interval for RD is [.013, .310].

With \70 = 105.29+85.87+36.25 = 227.41, the Wald test of association is X‘zV =
(.161)2(227.41) = 5.92 (p = .01). From Example 5.1, the likelihood ratio test of
association is X12r = 5.64 (p = .02). The likelihood ratio test of homogeneity is
Xﬁ = .856 (p = .65), and so there is considerable evidence in favor of homogeneity.

7.3 MANTEL-HAENSZEL ESTIMATE OF THE RISK DIFFERENCE

The Mantel-Haenszel estimate of the risk difference is

— Z]]:l R] - Z]]:l S] _ R. - a
= 3 =
Zj:l Tj T

(7.5)
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where
aijl
R, = 2ul2i
rj
Qjl
s = 210
rj
and
il
T, = (Ul

(Greenland and Robins, 1985b). It is easily shown that
. 1 S~
RDph = T ;T,— RD;

and so ﬁf)mh is a weighted average of stratum-specific risk difference estimates.
Sato (1989) gives an estimate of var(RDp) which is valid under both large-strata
and sparse-strata conditions,

(RDmnUs) + Vs

var (RDh) = T2 (7.6)
where
rfjae) —ra;an) +rijraj ) —rj/2
i= 2
]
and
aribyi +axibyi
Vj= 1j02j + &2j 11'

2r

A (1 — a) x 100% confidence interval for RD is

[RD,n. RDmn | = RDpn + Zy )24/ var(RDpp) -

When there is only one stratum, (7.5) and (7.6) simplify to (7.1) and (7.2).
Example 7.3 (Receptor Level-Breast Cancer) Based on the above methods,

RDmh = (14.79 — 9.14)/34.05 = .166
var(RDpmp) = [.166(1.12) + 6.49]/(34.05)% = (.0759)?

and a 95% confidence interval for RD is [.0171, .315].
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7.4 WEIGHTED LEAST SQUARESMETHODSFOR J (2 x 2) TABLES

For the weighted least squares methods, the weight for the jth stratum is defined to

be
1 aib aib 1
N 1jM1j Dj2j
Wj=_——=_~ Jg J + Jg ! .
Var(RDj) ri]- réi

The risk difference formulas are the same as (5.33)—(5.37) except that W; is defined
as above and RD replaces log(OR).

Example 7.4 (Receptor Level-Breast Cancer) From Wi, = 76.47 + 74.74 +
40.41 = 191.62, the WLS estimate of the risk difference is

(7647 x .076) + (7474 x 179) + (4041 x 257
RD), = 047> 076) + € 191X62 )+ @041 X 257) _ 15y

From @(@15) = 1/191.62 = (.0722)2, the 95% confidence interval for RD is
[.013, .296]. The test of association is X2 = (.154)2(227.41) = 5.42 (p = .02),

where Woj, = 227.41 comes from Example 7.2. The test of homogeneity is

X2 = 76.47(.076 — .154)% + 74.74(.179 — .154)*
+40.41(.257 — .154)> = .946 (p = .62).

7.5 SUMMARY OF EXAMPLES AND RECOMMENDATIONS

Table 7.3 summarizes the results of the stratified receptor level-breast cancer anal-
yses based on the asymptotic unconditional (AU), Mantel-Haenszel (MH), and
weighted least squares (WLS) methods. All three methods produce similar results.
The properties of RD RDmh, and RD1S are similar to those of RR, RRmh, and RR1s as
described in Section 6.5 (Greenland and Robins, 1985b), and so the corresponding
recommendations are made.

TABLE 7.3 Summary of Receptor Level-Breast Cancer Results

Result AU MH WLS
RD 161 .166 154
[RD, RD] [.013, .310] [.017, .315] [.013, .296]
Association p-value 012 — .02
Homogeneity p-value .65 — .62

awald
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CHAPTER S8

Survival Analysis

In Chapters 3-7, methods were presented for analyzing data from closed cohort stud-
ies. As described in Section 2.2.1, the key features of the closed cohort design are
that all subjects have the same maximum observation time and no subjects become
unobservable, for example, due to being lost to follow-up or withdrawing from the
study. These assumptions are very restrictive and rarely satisfied in practice. More
general methods for analyzing cohort data are available, which are referred to col-
lectively as survival analysis. In this chapter we discuss some of the fundamental
ideas in survival analysis such as censoring, survival functions, hazard functions,
the proportional hazards assumption, and competing risks. A counterfactual defini-
tion of confounding in open cohort studies is given in Appendix G. There are many
books that can be consulted for additional material on survival analysis, including
Kalbfleisch and Prentice (1980), Lawless (1982), Cox and Oakes (1984), Lee (1992),
Collett (1994), Marubini and Valsecchi (1995), Parmar and Machin (1995), Klein-
baum (1996), Klein and Moeschberger (1997), and Hosmer and Lemeshow (1999).

8.1 OPEN COHORT STUDIES AND CENSORING

Cohort studies are usually designed with a specific endpoint in mind. For the sake
of concreteness we take the endpoint to be a particular disease. During the course of
follow-up a subject either develops the disease or not. If the disease occurs, follow-up
ceases for that individual as far as the cohort study is concerned. For that subject the
length of follow-up is defined to be the time from the beginning of follow-up until
the onset of disease, regardless of what happens subsequently. If the disease does
not develop, follow-up continues until the subject becomes unobservable or reaches
the termination date (end) of the study, whichever comes first. In this case, length of
follow-up is defined to be the time from the beginning of follow-up until either of
the preceding two events. We refer to a cohort study in which subjects have different
maximum observation times as an open cohort study.

Consider an open cohort study conducted during a given (calendar) time period
[0, T1], where 7 is the termination date of the study. Let t” be a fixed time such
that 79 < ' < 71. Suppose that subjects are recruited into the study on an ongoing

159
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basis throughout [7g, '] and that follow-up begins immediately after recruitment.
This method of accrual is referred to as staggered entry because not all members of
the cohort are placed under observation at the same time. As a result of staggered
entry, subjects inevitably have different maximum observation times. For example,
someone recruited at time 7y will have a maximum observation time of t; — tg, while
an individual recruited at time 7’ will have a maximum observation time of 7; — 7’.
Even if no subjects become unobservable, staggered entry and varying maximum
observation times will result in subjects having different lengths of follow-up.

For historical reasons it is usual in the survival analysis literature to refer to the
study endpoint as “death” and to the length of follow-up for a given subject as the
“survival” time. These and related conventions are adopted irrespective of whether
the study has a mortality endpoint or not. So, for example, when we speak of a subject
surviving to the end of the study we mean that, for this individual, the endpoint of
interest did not occur. For a given subject, let t denote the survival time and define
an indicator variable as follows: § = 1 if the subject dies, and § = 0 otherwise.
When § = 0 we say that t is a censored survival time, and when § = 1 that t
is uncensored. In this way, the outcome for each subject is made dichotomous—
that is, censored or not. Survival data on each subject can be compactly written in
vector form (t, §), which we refer to as an observation. We say that an observation is
censored or uncensored according to whether § = 0 or § = 1, respectively.

Figure 8.1(a) depicts an open cohort study involving six subjects in which the
maximum observation time is 10 years. The horizontal axis is calendar time and, in
the above notation, 79 = 0, v/ = 5, and 7; = 10. The line for each subject, which
we refer to as a follow-up line, stretches between the calendar time points that the
individual was under observation. A solid dot indicates that the subject died, and a
circle means that the subject was censored. So, subject 1 entered at the beginning
of recruitment, was followed for 10 years, and exited the study alive. Subject 2 also

6 ©
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FIGURE 8.1(a) Follow-up times for censored survival data.
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entered at the beginning of recruitment but died after 3 years of follow-up. Subject 6
was enrolled at the 1-year point, was followed for 5 years, and exited the study alive.
Figure 8.1(a) involves two types of “time”: calendar time on the horizontal axis and
survival time as depicted by the follow-up lines. If it can be assumed that such fac-
tors as recruitment and outcome are independent of calendar time, it is appropriate to
“collapse” over the calendar time dimension. This results in Figure 8.1(b) in which
all follow-up lines have been given the same starting point. Note that now the hori-
zontal axis is labeled survival time.

Cohort data may contain information on several endpoints of interest. For ex-
ample, as part of an ongoing follow-up of a group of patients with coronary artery
disease, information might be collected on such endpoints as nonfatal myocardial
infarction (heart attack), whether revascularization surgery was performed, and fatal
myocardial infarction. The same individual could generate the observation (2.5, 1)
when nonfatal myocardial infarction is the endpoint, (4.0, 1) when revasculariza-
tion is the endpoint, and (6.0, 0) when fatal myocardial infarction is the endpoint.
The interpretation is that this person had a nonfatal myocardial infarction 2.5 years
into follow-up, underwent revascularization surgery 1.5 years later, and exited the
database alive 2 years after that. The important point is that each choice of endpoint
leads to a different definition of survival time and, by virtue of that, to a different
cohort study.

According to the above definition of censoring, all subjects who do not develop
the disease are lumped together as censored observations. However, the causes of
censoring, in particular the reasons for becoming unobservable, may differ among
subjects in ways that are important to the interpretation of study findings. For ex-
ample, consider a cohort of patients with a particular type of cancer who have been
treated with an innovative therapy and who are now being followed for death due to
that disease. A subject who is censored as a result of being struck dead by lightning
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FIGURE 8.1(b) Survival times for censored survival data.
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presumably had a mortality risk from cancer that was no different from any other
randomly selected member of the cohort. This type of censoring is said to be unin-
formative because a knowledge of the censoring mechanism does not tell us anything
about the risk of experiencing the endpoint of interest. When censoring is uninfor-
mative, individuals censored at a given point during follow-up are a random sample
of the members of the cohort surviving to that time point (Clayton and Hills, 1993,
§7.5).

Now consider a subject who is censored as a result of being lost to follow-up after
moving out of the study area. Suppose the reason this person decided to move was
a dramatic remission of disease. Had this person remained in the study, there is a
less than average chance that death from cancer would have occurred during follow-
up. This type of censoring is said to be informative because a knowledge of the
censoring mechanism tells us something about the risk of experiencing the endpoint
of interest. When censoring is informative, individuals censored at a given point
during follow-up are a nonrandom sample of the members of the cohort surviving to
that time point, and this can lead to biased risk estimates. In the present example, the
type of censoring described would result in the mortality risk being overestimated by
the study. Consider a comparative study in which informative censoring takes place
in both the exposed and unexposed cohorts. In most situations it is reasonable to
assume that the risk estimates for both cohorts will be biased in the same direction.
Consequently, when the risk estimates are combined into a measure of effect, the
biases will tend to cancel each other out, to a greater or lesser extent. This means that
informative censoring is usually of greater concern when the data are being analyzed
in absolute rather than relative terms.

In a particular study, the endpoint might be quite narrowly defined—for example,
death from a specific cause, onset of a certain illness, or recovery following a partic-
ular type of treatment. In each instance, only the specified endpoint is of interest and
all other exits from the cohort are treated as censored observations. For example, con-
sider a cohort study of breast cancer patients where the endpoint is death from this
disease. In this setting, any reason for a subject becoming unobservable—in partic-
ular, death from a cause other than breast cancer—results in a censored observation.
In a sense, the survival analysis is conducted as if death from breast cancer is the
only possible cause of death and that, if followed long enough, all subjects would
eventually die of this disease. Although such an assumption is usually unrealistic, it
offers certain conceptual advantages. In particular, when cohorts are being compared
in the same study or across studies, observed mortality differences will be specific to
the endpoint of interest and not obscured (confounded) by extraneous factors related
to censoring.

The methods of analyzing censored survival data presented in this book are all
based on the assumption that censoring is uninformative, an assumption that may
not be satisfied in practice. When censoring is informative, this must be considered
at some point in the survival analysis. One approach is to model the censoring mecha-
nism as part of the survival analysis in an effort to account for informative censoring.
This requires information on the reasons for censoring and usually this degree of
detail is unavailable. A practical alternative is to perform the survival analysis under
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the assumption that censoring is uninformative and then use qualitative arguments
based on what may be known or suspected about the censoring mechanism to decide
whether a parameter estimate is significantly biased.

8.2 SURVIVAL FUNCTIONSAND HAZARD FUNCTIONS

In the statistical theory of survival analysis, survival time is regarded as a continuous
random variable that we denote by T. Accordingly, the survival time t discussed in
the preceding section is a realization of T. As with any continuous random variable,
T has an associated probability function f (t). In survival analysis it is generally
more convenient to characterize T in terms of two other functions, namely, the sur-
vival function S(t) and the hazard function h(t). The survival function is defined to
be S(t) = P(T > t); that is, S(t) equals the probability of surviving until (at least)
time t. Suppose that the sample space of T is [0, T], where 7 is the maximum survival
time possible according to the study design. For example, T = 5 in a cohort study
of cancer patients in which the maximum length of observation is set at 5 years. By
definition, S(0) = 1, which means that the entire cohort is alive at t = 0. As intuition
suggests, S(t) is a nonincreasing function of t, so that t; < t; implies S(t;) > S(tp).
The graph of S(t) provides a convenient method of depicting the survival experience
of the cohort over the course of follow-up.

Let t be an arbitrary but fixed time and let ¢ be a small positive number. The
interval [t, t 4 ¢) is the set of survival times greater than or equal to t and strictly less
than t + ¢. The probability of dying in [t, t 4+ &) is S(t) — S(t + €), a quantity that
approaches 0 as & approaches 0. Now consider

S(t) — S(t +¢)
€

8.1

which is the probability “per unit time” of dying in [t, t + ¢). As shown in Appendix
F, as ¢ approaches 0, (8.1) has a limiting value equal to f (t). This shows that, for
a given time t, f(t) has the rather unusual units of “per unit time.” For instance,
if survival time is measured in years, the units are “per year,” which is sometimes
written as year—!. With t and & as before, the conditional probability of dying in
[t,t + &), given survival to t, is

S(t) — St + &)
S(t)

and the conditional probability per unit time of dying in [t, t 4 ¢), given survival to
t,is

Qs(t) =

Q) _ St — St +e)

e S(t)e (8.2)

As discussed in Appendix F, as ¢ approaches 0, (8.2) has a limiting value that we
denote by h(t). For a given time t we refer to h(t) as the hazard at time t. When con-
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sidered in its entirety, we refer to h(t) as the hazard function. In life table theory the
hazard function is sometimes termed the force of mortality, and in the epidemiologic
literature it is often referred to as the incidence density. Like f (t), h(t) also has the
units “per unit time.” It follows from the definition of h(t) that the product h(t)e is
approximately equal to Qg (t), with the approximation improving as & gets smaller.
We will see in Chapter 9 that the hazard function is closely related to the death rate,
a measure of mortality risk that is widely used in demography and epidemiology.
Since T is a continuous random variable, the probability of dying at any given
time is O. It is only when we consider the probability of dying in an interval of time
that a nonzero probability is obtained. For this reason we sometimes refer to f (t)
and h(t) as “instantaneous” probabilities. We can characterize S(t), f (), and h(t) as
follows: S(t) is the probability that an individual alive at time O will survive to time
t; f(t) is the instantaneous probability per unit time that an individual alive at time
0 will die at time t; and h(t) is the instantaneous probability per unit time that an
individual alive at time t will die “in the next instant.” In Appendix F we show that
S(t), f(t), and h(t) are mathematically equivalent in the sense that each of them can
be expressed in terms of the others. A useful identity relating the three functions is

@
h(t) = 0" (8.3)

Consider an open cohort study involving r subjects and denote the observations by
(1, 61), ..., &, 38i), ..., (tr, 6r). Suppose that the observations are a sample from
the distribution of T. Consequently each subject has the survival function S(t), the
probability function f(t), and the hazard function h(t). We seek an expression for
the unconditional likelihood of the observations under the assumption that censoring
is uninformative. If subject i survives to tj, the corresponding term in the likelihood
is S(tj), while if subject i dies at tj the term is f (t;). Making use of J;j, we can write
the contribution of subject i to the likelihood as

s s e [ FAOTT s
S(t) f ()% = S(t) st | = St)h(t) (8.4)
|

where the last equality follows from (8.3). Therefore the likelihood is

r
L= ]—[ St)h(t)d. (8.5)

i=1

Example 8.1 (Canadian Females, 1990-1992) In this example we consider the
ordinary life table cohort for Canadian females in 1990-1992. As explained in Chap-
ter 15, this is a hypothetical cohort based on cross-sectional data in which a group of
newborns is followed until the last subject dies. For the moment we treat the example
as if it represents findings from an actual cohort study in which a large group of new-
borns has been followed until death. Figures 8.2(a)-8.2(c) are smooth curves that
were created by interpolating published Statistics Canada ordinary life table func-
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tions. The data used by Statistics Canada to create the ordinary life table consist of
census counts for mid-1991, numbers of births during 1990-1992, and numbers of
deaths from all causes during 1990-1992.

Note that Figures 8.2(a) and 8.2(b) have been truncated at age 100, and Figure
8.2(c) at age 70. In Figure 8.2(a), the survival function is nonincreasing and ulti-
mately decreases to O at the upper limit of life length. Although somewhat difficult
to appreciate from the graph, there is a sharp drop in the survival curve in the first
year of life due to perinatal and other causes of death following the newborn period.
After that there is a very gradual decline until late middle age, and then a precipi-
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FIGURE 8.2(c) Hazard function for Canadian females, 1990-1992

tous drop as old age approaches. In Figure 8.2(b), the probability function reflects
these same phenomena in that there is a steep slope in the first year of life, a gentle
increase throughout late middle age, and then a large peak in the curve in the senior
years. The area under the curve between any two ages equals the (unconditional)
probability of dying in that age interval. This explains why so much of the area is
concentrated at older ages. The curve declines rapidly as 100 is approached because
very few members of the cohort survive long enough to die at such an old age. In
Figure 8.2(c), the hazard function demonstrates the same patterns observed in the
survival function and probability function. In particular, we note the rapid increase
in the hazard function as extreme old age approaches. This shows that for someone
who has lived to be very old, the risk of dying in the next instant gets progressively
greater as time passes.

8.3 HAZARD RATIO

Despite the mathematical equivalence of the probability function, survival function,
and hazard function, the conditional nature of the hazard function makes it conve-
nient for comparing mortality risk across cohorts. This is because a comparison at a
given time point based on the hazard function involves only those individuals who
have survived to that point. By contrast, the probability function and the survival
function are unconditional and thus reflect the mortality experience of subjects who
died prior to the time of interest, along with those who have survived. For this reason,
survival models are often defined in terms of hazard functions.

Consider two cohorts, one of which is exposed and the other unexposed. Denote
the corresponding survival functions by S (t) and $(t), and the hazard functions by
h;(t) and hy(t), respectively. The ratio of hazard functions hy(t)/h;(t) is central to
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modern survival analysis. Of particular importance is the situation where hy (t)/hy(t)
is constant—that is, independent of t. In this case we write

_ hy (t)
ha (1)

HR (8.6)

and refer to HR as the hazard ratio. In the epidemiologic literature the hazard ratio
is sometimes referred to as the incidence density ratio. When (8.6) holds we say that
h; (t) and hy(t) satisfy the proportional hazards assumption, or that they are propor-
tional. When the proportional hazards assumption is satisfied, the parameter HR is a
convenient measure of effect for an open cohort study in much the same way that RD,
RR, and OR serve in this capacity for a closed cohort study. It is clear from (8.6) that,
similar to the risk ratio and odds ratio, the hazard ratio is a multiplicative measure
of effect. For example, suppose that HR = 3. Then, at every time point, a subject
in the exposed cohort has a hazard that is three times as great as the hazard facing a
member of the unexposed cohort. It is important to appreciate that the proportional
hazards assumption specifies that the ratio of the hazard functions is constant, not
the individual hazard functions. In fact, let hy(t) > 0 have an arbitrary functional
form and, for a given constant ¥y > 0, define hy(t) = rhy(t). Then h;(t) and hy(t)
are proportional and ¥ is the hazard ratio. In Appendix F it is demonstrated that the
proportional hazards assumption is equivalent to

Sit) = [SOHIMR (8.7)

Most of the methods for analyzing censored survival data that are presented in this
book are based on the proportional hazards assumption. As a result, much of the
discussion focuses on the hazard ratio. However, it should be remembered that the
hazard ratio is a relative measure of effect and, by virtue of that, tells us nothing about
absolute risk. Therefore, as part of a survival analysis it is important to examine
survival curves in their entirety in order to gain a more complete appreciation of
mortality risks.

84 COMPETING RISKS

When vital statistics mortality data are being coded, it is usual to identify a single
entity as “the” cause of death. Suppose that all causes of death have been grouped
into K mutually exclusive “causes” (k = 1,2,..., K). Consider a cohort study
of mortality where, along with survival time T, the cause of death of each subject
is recorded. We can imagine that, under given study conditions, each subject has
a set of “potential” survival times (Ty, ..., Tk, ..., Tk), one for each cause (Gail,
1975). If death is due to cause Kk, the observed survival time is Tk. In this case no
physical meaning is attached to the remaining potential survival times (Prentice et
al., 1978). Associated with each cause K is a hazard function, denoted by hk(t),
which has the following definition: hK(t) is the instantaneous probability per unit
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time that an individual alive at time t will die in the next instant of cause K, in the
presence of other causes of death.

The phrase “in the presence of other causes of death” is included in the definition
because the risk of dying of cause k may be related to other causes. For example,
suppose that two of the causes of death are myocardial infarction and stroke. These
two conditions have a number of risk factors in common, and so the risk of dying of
one of them may be related to the risk of dying of the other. Since an individual can
die of only one cause, the K causes are said to be competing risks. In the statistics
literature, hK(t) is referred to as the crude hazard function for cause k (Chiang, 1968,
Chapter 11; Elandt-Johnson and Johnson, 1980, Chapter 9; Tsiatis, 1998). This use
of the term crude differs from our previous usage and refers only to the fact that com-
peting risks are present. Since causes of death are mutually exclusive and exhaustive,
the cause-specific hazard functions satisfy the fundamental identity

K
h(t) = Z hK(t). (8.8)
k=1

In Section 8.1 it was remarked that the usual approach to survival analysis is un-
realistic because only one endpoint is permitted. The competing risks model offers
an alternative approach to analyzing survival data in that several endpoints (risks)
can be accommodated simultaneously. In the breast cancer example, consider the
following five endpoints: death from breast cancer, death from any other cancer,
death from any noncancer cause, withdrawal from the study, and any other reason
for becoming unobservable. In this way, competing risks analysis is able to take ex-
plicit account of causes of death other than breast cancer, thereby providing a more
realistic model of the survival experience of the cohort. Unfortunately, procedures
for competing risks analysis are not included as part of standard statistical pack-
ages.

The censoring and competing risks approaches to survival analysis can be recon-
ciled when the risks are “independent.” Deciding whether the independence assump-
tion is satisfied requires substantive knowledge of the competing risks and is not an
issue that can be resolved using statistical methods (Prentice et al., 1978; Prentice
and Kalbfleisch, 1988). For example, consider the following three causes of death:
motor vehicle accidents, myocardial infarction, and stroke. Although a myocardial
infarction or a stroke might cause a driver to have a motor vehicle accident, and a
motor vehicle accident might precipitate a myocardial infarction or a stroke, for the
most part, deaths due to motor vehicle accidents and these two circulatory condi-
tions can be viewed as independent mortality risks. On the other hand, myocardial
infarction and stroke share a number of risk factors and are therefore not indepen-
dent.

When the independence assumption is satisfied, hK(t) depends only on cause K.
In this case we drop the phrase “in the presence of other causes of death” from
the earlier interpretation and refer to hk(t) as the net hazard function for cause k
(Chiang, 1968, Chapter 11; Elandt-Johnson and Johnson, 1980, Chapter 9; Tsiatis,
1998). Consider a cohort study in which subjects either reach the endpoint of interest
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or are censored. This type of study can be given a competing risks interpretation
by defining two risks: Risk 1 is the endpoint of interest and risk 2 is censoring.
According to this model, censoring is uninformative precisely when the risks are
independent. When there is independence, survival and censoring in the cohort are
governed by the net hazard functions h!(t) and h?(t), respectively.
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CHAPTERO

Kaplan—Meier and Actuarial Methods
for Censored Survival Data

In this chapter we describe the Kaplan—Meier and actuarial methods of estimating a
survival function from censored survival data. An important feature of these meth-
ods is that, aside from uninformative censoring, they are based on relatively few
assumptions. In the case of the Kaplan—-Meier method, nothing is assumed about
the functional form of either the survival curve or the hazard function. An approach
to comparing survival curves is presented which is based on the stratified odds ratio
techniques of Chapter 5. The MH-RBG methods are shown to be especially useful in
this regard. References for this chapter are those given at the beginning of Chapter 8.

9.1 KAPLAN-MEIER SURVIVAL CURVE

Consider an open cohort study involving r subjects and let the observations be
(t1, 81, ..., (i, 8i), ..., (t, 8;). We assume that tj > O for all i, which ensures that
each member of the cohort is followed for at least a small amount of time. In this
chapter, uncensored survival times—that is, those at which a death occurs—will be
referred to as death times. Suppose that among the r survival times there are J death
times: 71 < .-+ < 7j < -+ < 73. Let 79 = 0 and denote the maximum survival time
by t341, that is, 7311 = max(ty, tp, ..., ty). The Kaplan—-Meier approach to cen-
sored survival data begins by partitioning the period of follow-up into J 4 1 intervals
using the death times as cutpoints: [1o, 71), [T1, T2), ..., [T}, Tj+1)s - -+, [TI-1, TI),
[z3, T3+1], where we note that the last interval contains 7341. We refer to [z}, 7j+1)
as the jth interval. In many applications there will be considerable censoring at
7341 due to subjects surviving to the end of the study. If 754 is a death time, then
73 = 1341 and the last interval shrinks to the single point 7. Let aj be the number
of deaths at tj and let Cj be the number of censored observations in the jth interval
(j =0,1,...,J). By definition, ay = 0.

The group of subjects “at risk” at tj, also referred to as the jth risk set, consists of
those individuals with a survival time greater than or equalto tj (j =0,1,..., J).
So the jthrisk set consists of three types of individuals: those who survive beyond tj,
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those who are censored at 7j, and those who die at j. Defining the first two groups
of subjects to be at risk at 7j is reasonable since, if death occurs, it will happen some
time after 7j. However, including subjects who die at 7j in the risk set is not intuitive.
This convention has its origins in the theoretical development of the Kaplan—Meier
method, which can be viewed as a limiting case of the actuarial method discussed
below. Indeed, another name for the Kaplan—Meier approach to censored survival
data is the product-limit method. Loosely speaking, the jth risk set consists of all
subjects who are alive “just prior to” 7j. Let rj denote the number of subjects in
the jthrisk set (j = 0,1, ..., J), and denote by r 34 the number of subjects who
survive to 7341. Note that cj includes the r 34| subjects who survive to the end of
the study. We need to separate this group of individuals from those who are censored
for other reasons. Define C; as follows: C/J- =¢jfor j < J,and Cj = ¢y —riq1.
Since subjects exit the cohort only by death or censoring, it follows that

rj+1=rj —aj —C 9.1

(j=0,1,...,J). Therefore,

J J J
ro—ryt1 = Z(fj —Tljy1) = Zaj +ZC’,- =a, +C,
j=0 j=0 j=0

and sorjy; =rg— a, — C,. This identity says that the number of subjects surviving
to the end of the study equals the number who started minus those who died or were
censored prior to Tj4 .

We now derive an estimate of S(t) based on the above partition and certain condi-
tional probabilities. For brevity we denote S(tj) by Sj so that, in particular, § = 1.
For j > 0, consider the interval [t j — & 1) + ¢€), where ¢ is a positive number that
is small enough to ensure that the interval does not contain any death times other
than 7 or any censoring times. For j = 0, we use the interval [tp, 7o + &) and make
some obvious modifications to the following arguments. Let p; denote the condi-
tional probability of surviving to 7j 4 ¢, given survivalto tj —e (j =0, 1, ..., J).
That is, pj is the conditional probability of surviving to just after zj, given survival
to just prior to j. Let g; = 1 — pj be the corresponding conditional probability of
dying. Since there are I'j subjects at risk at 7j — &, and @j of them die prior to 7j + ¢,
the binomial estimates are

A aj
dj = — 9.2)
rj
and
R n I —aq;j
Pj=1-Qj = —— 9.3)
rj
(j =0,1,...,J). These estimates are valid regardless of how small we take ¢. In

the limit, as ¢ goes to 0, [tj — &, Tj + ¢) shrinks to the single point 7j, in keeping
with the product-limit approach. Since ay = 0, it follows that o = 0 and Py = 1.
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The probability of surviving from tq to 77 is p;. For those who survive to 7y, the
conditional probability of surviving to 12 is P, and so the probability of surviving
from 79 to 72 is S = p; P2. Likewise, the probability of surviving from 7y to 73 is
S = P1 P2 P3. Proceeding in this way we obtain the probability §j = p;p2--- pj of
surviving from 7o to T;j (j =1,2,...,J). The Kaplan—-Meier estimate of Sjis

Sj=pip2---Pj 94)

(j =1,2,...,3). We define & =1and §J+1 = §;. Since there are no deaths in
the jth interval other than at tj, é(t) equals éj for all t in the interval, and so the
graph of S(t)is a step function.

When the Kaplan—Meier estimate of the survival function is graphed as a function
of time, it will be referred to as the Kaplan—Meier survival curve. A schematic rep-
resentation of a Kaplan—-Meier survival curve is shown in Figure 9.1. Note that each
of the line segments making up the steps includes the left endpoint (indicated by a
solid dot) but not the right endpoint (indicated by a circle), except for the final line
segment that includes both endpoints. This is consistent with the way intervals were
defined. Most software packages join the steps with vertical lines to enhance visual
appearance. If t34 is a death time, the final line segment shrinks to a single point.

An estimate of var( éj ) is given by “Greenwood’s formula,”

Gi

var(§) = (§)%)
(S) = (§)) 2B,

9.5)

and a (1 — @) x 100% confidence interval for éj is

[S;. Sl = SEFMNATED)

Survival probability

Time

FIGURE 9.1 Schematic Kaplan—-Meier survival curve
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(j = 1,2,...,J) (Greenwood, 1926). The normal apprO)Eimation can be im-
proved by using the log—minus-log transformation log(—log Sj). This leads to the
Kalbfleisch—Prentice estimate,

J A

Y & i
var[log(—log Sj)] = E —
ST EAN T 00 8 )2 sJ « B

(j=12,...,) (AKalbﬂeisch and Prentice, 1980, p. 15). A (1 — ) x 100% confi-
dence interval for Sj is obtained from

[log(—log S;). log(—log Sj)] = log(—log §) za/z\/vAarnog(— log SH1 (9.6)

by inverting the log—minus-log transformation, as illustrated in Example 9.1. Note
the F sign in (9.6) rather than the usual =+ sign.
It is of interest to examine the estimates Sj and var(S;) under the assumption that

there is no censoring except at tj1—that is, assuming C =0(j=0,1,...,J).
With this assumption, (9.1) s1mp11ﬁes torjy =rj —a (J =01, J) From
this identity, as well as (9.3)—(9.5), po = 1, and §o = 0, it follows that

§ = P+ bj = Pobr -+ B

and

i A i A
— & i ) i
var(S) = (§)? — = (§) ~
A T L i;piri

. 1 1

=(5 — = =s-2<—_—>

&2 (1) - (o

ZL_SJ) 9.8)

fo

Identities (9.7) and (9.8) show that when there is no censoring except at T34, the
Kaplan—-Meier and Greenwood estimates simplify to estimates based on the bino-
mial distribution. The numerator of éj in (9.7) is rj41 because, in the absence of
censoring, the risk set at 7j is the same as the group of survivors to tj.
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TABLE 9.1 Survival Times: Stage—Receptor Level-Breast Cancer

Receptor
Stage level ro Survival times
I Low 12 50* 51 51* 53*%(2) 54*(2) 55* 56 56* 57* 60*
I High 57 10 34 34* 47(2) 49*(2) 50*(7) 51%(6) 52*(5) 53*(6) 54*(5)
55%(2) 56*(2) 57*(5) 58*(5) 59*(4) 60*(3)
II Low 23 4* 9 13 21 29(2) 40 46 49*(2) 52*(2) 53* 54* 55%(2) 56*
57 57* 58%(2) 59* 60*
II High 75 11 16 21 23(2) 24 33(2) 36(2) 36* 37 45 46 49*(2) 50*(6)
51%(4) 52*(5) 53*(5) 54*(4) 55%(4) 56*(6) 57*(4) 58(2)
58%(8) 59*(5) 60*(6)
1 Low 15 912 14 15 15% 17 21 22 23(2) 31 34 35 53* 60*
I High 17 7% 9 17 21* 22(2) 34(2) 41 49* 52* 55 56* 58%(2) 59*(2)

Example 9.1 (Receptor Level-Stage—Breast Cancer) The data in Table 9.1 are
based on the cohort of 199 breast cancer patients described in Example 4.2. Recall
that these individuals are a random sample of patients registered on the Northern Al-
berta Breast Cancer Registry during 1985. For the present example this cohort was
followed to the end of 1989. Therefore the maximum observation times range be-
tween 4 and 5 years depending on the date of registration. Survival time was defined
to be the length of time from registration until death from breast cancer or censor-
ing. Survival times were first calculated to the nearest day and then rounded up to
the nearest month to ensure that at least a few subjects had the same survival time.
So the maximum survival time is 60 months. As discussed in Example 4.2, Registry
patients receive regular checkups and their vital status is monitored on an ongoing
basis. It is therefore reasonable to assume that members of the cohort were alive at
the end of 1989 in the absence of information to the contrary. Therefore the rea-
sons for censoring in this cohort are death from a cause other than breast cancer and
exiting the study alive at the end of 1989.

For present purposes, we interpret the survival times as continuous, so that, for
example, t = 50 is to be read as t = 50.0. The asterisks in Table 9.1 denote censored
survival times and so 50* means that the subject was censored at t = 50, while 51
indicates that the subject died (of breast cancer) at t = 51. Strictly speaking, we
should refer to the entries in Table 9.1 as observations since, for example, 50* and 51
are actually shorthand for (50, 0) and (51, 1). In Table 9.1, numbers in parentheses
denote the multiplicity of survival times, so that 53*(2) represents two survival times
of 53*. Note that when death and censoring take place at the same time, the censoring
time has been recorded to the right of the death time. This convention is adopted
since, when there is a tie, the (unobserved) death time for the censored individual
(when it occurs), will be larger than the (observed) censoring time.
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TABLE 9.2 Kaplan—Meier Estimates and Kalbfleisch—Prentice 95% Confidence Intervals:

Breast Cancer

j Tj a I bj S Sj Sj
0 0 0 199 1.0 1.0 — —
1 9 3 197 985 985 954 .995
2 10 1 194 995 980 947 992
3 11 1 193 995 975 .940 .989
4 12 1 192 995 970 .933 .986
5 13 1 191 995 964 927 983
6 14 1 190 995 959 .920 979
7 15 1 189 995 954 914 976
8 16 1 187 995 949 908 972
9 17 2 186 989 .939 .895 .965
10 21 3 184 984 924 877 .953
11 22 3 180 983 908 858 941
12 23 4 177 977 .888 .835 925
13 24 1 173 994 883 .829 .920
14 29 2 172 988 872 817 912
15 31 1 170 .994 .867 811 .908
16 33 2 169 088 857 .800 .899
17 34 4 167 976 .836 177 881
18 35 1 162 .994 831 71 877
19 36 2 161 988 821 760 .868
20 37 1 158 994 816 154 .863
21 40 1 157 .994 811 748 .859
22 41 1 156 994 .805 743 854
23 45 1 155 994 .800 137 .850
24 46 2 154 987 790 726 841
25 47 2 152 987 779 714 831
26 51 1 129 992 173 708 .826
27 55 1 77 987 763 .695 818
28 56 1 67 985 752 .680 810
29 57 1 55 982 738 .662 .800
30 58 2 43 953 704 615 776

Table 9.2 gives the Kaplan—-Meier estimates of the survival probabilities as well
as the Kalbfleisch—Prentice 95% confidence intervals. The first step in creating Table
9.2 was to list the death times in increasing order and then count the number of
deaths at each death time. The first death time is 71 = 9 and the number of deaths
is aj = 3. In total, there were 30 distinct death times and 49 deaths in the cohort.
The next step was to determine the number of subjects in each risk set using (9.1).
For this purpose, the survival times were listed in increasing order and (9.1) was
applied in a recursive fashion, starting with j = 0. To illustrate, for ] = 0 the
interval is [0, 9.0), ro = 199, ay = 0, and CE) =2.Sor; =199 -0—-2 = 197.
Observe that the two subjects with censoring times prior to the first death time make
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no contribution to the Kaplan—Meier calculations, and so the effective size of the
cohortisr; = 197.

To calculate the 95% confidence interval for éj using the Kalbfleisch-Prentice
method it is necessary to invert the log—minus-log transformation. This is illustrated
for S,. From S = .980 and

22: 015 .005
— 985(197) 1995(194)

= (.010)?

we have var[log(— log $)] = (.010)2/[log(.980)]% = (.495)% and log(—log $) =
log[—10g(.980)] —1.96(.495) = —4.87. To invert the log—minus-log transformation,
the exp—minus-exp transformation is applied to obtain S, = exp[— exp(—4.87)] =
.992. Based on Greenwood’s formula, the upper 95% confidence bound for S is
Si = 1.002. The Kalbfleisch—Prentice approach has the attractive property that the
upper and lower bounds are always between 0 and 1.

Figure 9.2 shows the Kaplan—Meier survival curve and Kalbfleisch—Prentice 95%
confidence intervals for the breast cancer cohort. Strictly speaking, the endpoints of
the confidence intervals should be plotted only for the death times rather than joined
as they have been here. An appropriate alternative is to estimate what is referred to as
a confidence band (Marubini and Valsecchi, 1995, §3.4.2; Hosmer and Lemeshow,
1999, §2.3). A confidence band places simultaneous upper and lower bounds on the
entire survival curve, but there is the drawback that the computations are somewhat
involved. Confidence bands tend to be wider than joined confidence intervals.

There were seven deaths in the cohort from causes other than breast cancer,
and these were treated as censored observations. The question as to whether these
deaths might somehow be related to breast cancer needs to be decided on substan-
tive grounds. This decision has implications for whether censoring is deemed to be

Survival probability

0.6 1

0.5

Time

FIGURE 9.2 Kaplan-Meier survival curve and Kalbfleisch—Prentice 95% confidence intervals: Breast
cancer cohort
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informative or uninformative. Even if we assume that censoring is uninformative,
it would be incorrect to interpret éj as an estimate of the probability of not dying
of breast cancer before 7. In light of remarks made at the end of Section 8.1, the
correct interpretation adds the caveat that breast cancer is assumed to be the only
cause of death. This is a convenient fiction when cohorts are being compared, but
in reality, competing risks are virtually always present. As a result, when evaluating
the findings of a survival analysis it is crucial to consider the possible effects of
informative censoring and competing risks.

9.2 ODDSRATIO METHODSFOR CENSORED SURVIVAL DATA

Usually one of the aims of a survival analysis is to determine whether a given ex-
posure is related to survival. One approach is to stratify the cohort according to
exposure categories and compare the resulting Kaplan—Meier survival curves. For
simplicity, suppose that exposure is dichotomous and that, at every death time, the
survival curve for the exposed cohort lies below that for the unexposed cohort. A
finding such as this suggests that exposure is associated with a decrease in survival.
The question then arises as to how the observed difference in survival should be mea-
sured. One possibility is to pick a particular follow-up time and use methods based
on the binomial distribution. For example, in the oncology literature 5-year survival
probabilities are often used to compare outcomes following treatment. This approach
has the attraction of simplicity but suffers from the drawback that, except for a single
time point, the information in the survival curves is largely wasted. In this section we
describe an alternative approach which uses the entire survival curve. The key idea
is that death times are used to “stratify” the data, which are then analyzed using the
odds ratio methods of Chapter 5 (Breslow, 1975, 1979).

9.2.1 Methodsfor J (2 x 2) Tables

Suppose that exposure is dichotomous. Let S (t) and hy(t) be the survival function
and hazard function for the exposed cohort, and let S (t) and h;(t) be the corre-
sponding functions for the unexposed cohort. Let the death times for the exposed
and unexposed cohorts taken together be 71 < --- < 7j < --- < 73. For each 7} we
form a 2 x 2 table as depicted in Table 9.3. For the exposed cohort, a; j is the number
of deaths at rj and ryj is the number of subjects at risk. We define a;j and r>j in an
analogous manner for the unexposed cohort and derive the remaining table entries
by addition or subtraction. As before, we refer to the rj subjects at risk at zj as the
jthrisk set.

In Appendix F it is demonstrated that the odds ratio and risk ratio associated with
Table 9.3 are approximately equal to hy (tj)/ ha(tj). If we treat the set of death times
as a stratifying variable, we can adapt the methods of Chapters 5 and 6 to the analysis
of censored survival data. In practice, the number of deaths at each death time may
be relatively small. Often only one of the cohorts has a death at tj, in which case
either a;j or aj is 0. On the other hand, when there are many deaths, rj and ry;j
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TABLE 9.3 Observed Counts: Open

Cohort Study
Survival Exposure
yes no
dead ayj Q] myj

alive rlj —alj rzj —azj mzj

rlj I’2j rj

may be small toward the end of follow-up. For these reasons we adopt methods that
are suited to sparse-strata conditions, namely, the asymptotic conditional and MH-
RBG methods. Since asymptotic conditional methods are not available for the risk
ratio, we do not consider this measure of effect in what follows.

We now make the crucial assumption that the hazard functions, hy(t) and hy(t),
are proportional. As a result, hi(zj)/hx(rj) = HRfor all j. Since we are treating
the set of death times as a stratifying variable, the proportional hazards assumption
is equivalent to the hazard ratio being homogeneous over “time.” This means that we
can apply the odds ratio methods developed in Chapter 5 under the assumption of ho-
mogeneity. In what follows we use odds ratio notation and terminology to frame the
discussion, allowing the corresponding hazard ratio interpretation to be understood.
In particular, OF?C and ORm}1 will be viewed as estimates of HR, and X3 SpWwill be re-
garded as a test of Hp : HR = 1 (Mantel, 1966). In the survival analysis setting, the
Mantel-Haenszel test is usually referred to as the logrank test (Peto, 1972; Peto and
Peto, 1972). We adopt this terminology but will continue to use the notation anh.
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FIGURE 9.3(a) Kaplan—Meier survival curves: Breast cancer cohort stratified by receptor level
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TABLE 9.4 0Odds Ratio Analysis: Receptor Level-Breast Cancer

j 7 ajj aj rj rj 8 00
1 9 2 1 49 148 746 555
2 10 0 1 47 147 242 184
3 11 0 1 47 146 244 184
4 12 1 0 47 145 245 185
5 13 1 0 46 145 241 183
6 14 1 0 45 145 237 181
7 15 1 0 44 145 233 179
8 16 0 1 42 145 225 174
9 17 1 1 42 144 452 348
10 21 2 1 41 143 668 514
11 22 1 2 39 141 650 503
12 23 2 2 38 139 .859 .663
13 24 0 1 36 137 208 .165
14 29 2 0 36 136 419 329
15 31 1 0 34 136 .200 .160
16 33 0 2 33 136 391 312
17 34 1 3 33 134 790 .623
18 35 1 0 32 130 .198 159
19 36 0 2 31 130 .385 309
20 37 0 1 31 127 .196 158
21 40 1 0 31 126 197 158
22 41 0 1 30 126 192 155
23 45 0 1 30 125 .194 156
24 46 1 1 30 124 .390 312
25 47 0 2 29 123 382 307
26 51 1 0 26 103 202 161
27 55 0 1 15 62 195 157
28 56 1 0 12 55 179 147
29 57 1 0 9 46 .164 137
30 58 0 2 6 37 279 234
Total — 22 27 — — 10.20 7.99

Example 9.2 (Receptor Level-Breast Cancer) Figure 9.3(a) shows the Kaplan—
Meier survival curves for the breast cancer cohort after stratifying by receptor level.
It appears that subjects with low receptor level are at greater mortality risk than those
with high receptor level. Table 9.4 gives the elements needed to calculate the logrank
test. Each row of Table 9.4 corresponds to a 2 x 2 table of the form of Table 9.3. To
illustrate, for | = 1 the table is
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Survival Receptor level
low  high

dead 2 1 3

alive 47 147 | 194
49 148 197

Note that due to stratification, a;j +apj and r'1j +rzj from Table 9.4 equal aj and r |
from Table 9.2. The logrank test is Xﬁlh =(22- 10.20)2/7.99 = 1743 (p < .001),
which provides considerable evidence that survival differs according to receptor level
status.

Table 9.5 gives point estimates and 95% confidence intervals for OR based on the
asymptotic conditional, MH-RBG, and asymptotic unconditional approaches. Even
though there are only a few deaths at each death time, the risk sets are relatively large
and thus large-strata conditions are satisfied. For this reason the asymptotic uncon-
ditional estimates have been included. As can be seen, the three methods produce
virtually identical results.

9.2.2 Assessment of the Proportional Hazar ds Assumption

Graphical Method

We now turn to the problem of determining whether the proportional hazards as-
sumption is satisfied. Following Section 9.1, we use the notation §j = S (zj)
and Sj = S(rj). From (8.7) the proportional hazards assumption is equivalent
to S (t) = [S(t)]"R, which in turn is equivalent to

logl— log S ()] — log[— log S (t)] = log(HR). 9.9)

Accordingly we can assess the proportional hazards assumption by graphing
log(— log élj) and log(— log S j) together as functions of time and determining
whether the curves are separated by a more or less constant vertical distance. If
so, this is an indication that (9.9) is satisfied. Since the logarithmic function is
undefined at 0, we only consider values of 7} such that 10g(§1 j) and log(éz j) are
nonzero. Although somewhat subjective, the graphical method is computationally
straightforward and tends to be quite revealing.

TABLE 9.5 0dds Ratio Estimates and 95% Confidence
Intervals: Receptor Level-Breast Cancer

Method OR OR OR
Asymptotic conditional 3.15 1.79 5.56
MH-RBG 3.19 1.80 5.65

Asymptotic unconditional 3.18 1.80 5.64
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FIGURE 9.3(b) Log-minus-log curves: Breast cancer cohort stratified by receptor level

Example 9.3 (Receptor Level-Breast Cancer) Figure 9.3(b) is obtained di-
rectly from Figure 9.3(a) by applying the log—minus-log transformation. The dis-
tance between the curves is essentially constant throughout the period of follow-up,
which supports the validity of the proportional hazards assumption.

Test for Linear Trend

As remarked above, the proportional hazards assumption is equivalent to the hazard
ratio being homogeneous over time. In theory, this assumption could be assessed us-
ing, for example, the Breslow—Day test of homogeneity (5.32). It was pointed out
in Section 5.6 that tests of homogeneity generally have low power, especially under
sparse-strata conditions. An alternative is to evaluate homogeneity using a test for
linear trend. This approach is best suited to the situation where there is a progres-
sive increase or decrease in the log-odds ratios, as manifested by a corresponding
widening or narrowing of the distance between the log—minus-log curves. The test
for linear trend (5.19) can be adapted to the asymptotic conditional setting with time
taken to be the stratifying variable (Breslow, 1984b). According to this approach,
OR. is estimated using (5.23) and then &;j and vj are estimated using (5.24) and
(5.25). The exposure level for the jth stratum is defined to be 5j = j.

Example 9.4 (Receptor Level-Breast Cancer) With C/)\F\’C = 3.15, the test for
linear trend is

) (=21.31)2

X = = .585 (p = .44
Y73390.2 — (176.49)2/11.92 (P )

which provides virtually no evidence against the proportional hazards assumption.
This finding is consistent with our empirical assessment of Figure 9.3(b).
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TABLE 9.6 Survival Times: Histologic Grade—Ovarian Cancer

Grade ro Survival time

Low 15 28 89 175 195 309 377* 393* 421* 447* 462 709* 744* 770*
1106* 1206*

High 20 34 88 137 199 280 291 299* 300* 309 351 358 369(2) 370

375 382 392 429* 451 1119*

Example 9.5 (Histologic Grade—Ovarian Cancer) Table 9.6 gives data from a
cohort study of women with stage II or stage IIIA ovarian cancer, where the endpoint
is progression of disease (Fleming et al., 1980). Survival time is measured in days
and histologic grade is an indicator of the malignant potential of the tumor. These
data have been analyzed by Breslow (1984b). The last death in the cohort is at day
462, after which the Kaplan—Meier survival curves remain horizontal until the end
of follow-up—day 1206 (low grade) and day 1119 (high grade). In Figure 9.4(a)
the Kaplan—Meier survival curves have been truncated at day 500. Until day 350 the
two cohorts have almost identical survival, but then subjects with high-grade tumors
experience much faster progression of disease. Table 9.7 gives point estimates and
95% confidence intervals for OR based on the asymptotic conditional, MH-RBG,
and asymptotic unconditional approaches. The different methods produce similar
results. The logrank test is sznh = (16 — 10.67)2/5.11 = 5.57 (p = .02), and so
there is evidence of a mortality difference between the two cohorts.

From the log-minus-log plots in Figure 9.4(b) it is clear that the proportional
hazards assumption is not satisfied. With OR; = 3.09, the test for linear trend is

) (26.92)2

573 (p=.02)

U7 6653 — (46.56)2/4.02
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FIGURE 9.4(a) Kaplan—Meier survival curves: Ovarian cancer cohort stratified by grade
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TABLE 9.7 0Odds Ratio Estimates and 95% Confidence
Intervals: Histologic Grade—Ovarian Cancer

Method OR OR OR
Asymptotic conditional 3.09 1.16 8.21
MH-RBG 2.83 1.11 7.25
Asymptotic unconditional 3.32 1.20 9.16
High grade

Low grade

Log—minus—Ilog
|

0 100 200 300 400 500
Time

FIGURE 9.4(b) Log-minus-log curves: Ovarian cancer cohort stratified by grade

which is consistent with the graphical assessment. The Breslow—Day test of homo-
geneity is ng = 23.80 (p = .20, df = 19), which includes the correction term of
.094. Despite the large magnitude of ng, with 19 degrees of freedom the p-value is
also large. This illustrates that a test for linear trend may be able to detect heterogene-
ity across exposure categories that would be missed by a test of homogeneity. Since
we have established that heterogeneity is present, the summary odds ratio estimates
in Table 9.7 no longer have a meaningful epidemiologic interpretation (Section 5.5).

9.23 Methodsfor J (2 x I) Tables

We now consider the analysis of censored survival data when the exposure variable
is polychotomous. As in the dichotomous case, we begin by identifying the death
times 7 for all exposure categories combined. Let & be the number of deaths in the
ith exposure category at 7j and let rjj be the corresponding number of subjects at
risk (i =1,2,...,1;] =1,2,..., ). The data layout is given in Table 9.8.

It was pointed out in Section 5.7 that the logrank test xr2nh for the J (2 x I) setting
satisfies the inequality Xgp < X2 where Xgp is given by (5.38). When censoring

mh’
patterns do not differ greatly across exposure categories (subcohorts), Xf)p provides
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TABLE 9.8 Observed Counts: Open Cohort Study

Survival Exposure category
1 2 i |
dead aj Q| aj ay j myj
alive ryj—at | rej—aj | - | fj—&j | - | fj—aj | M

1j F2j fij Fj rj

a good approximation to th (Crowley and Breslow, 1975). Peto and Peto (1972)
consider

| a2
xgezzw df=1-1 (9.10)

i=l °

for the analysis of censored survival data. Confusingly, (9.10) is sometimes referred
to as the logrank test. Since there must be at least one death per stratum, mj > 1
and hence §jj < &j g where @jj is given by (5.39). It follows that §is < &, and
consequently that X7, < Xgp. Evidently, Xge will be close in value to Xgp when the
m;j are small—that 1s when there are few deaths at each death time. In summary,
we have the inequalities X3, < X2, < X3,

Consider

Z'Iz S(aio_éo)
X2 = [ = ] df=1). ©.11)

Zi|:1 Széo - (Zilz] Séi.)z /é..

As shown in Appendix E, (9.11) < (5.41). It was pointed out in Section 5.7 that
(5.41) < (5.40). So we have the inequalities (9.11) < (5.41) < (5.40). As illus-
trated in the following example, for censored survival data, X2 and (9.11) are usu-
ally sufficiently accurate approximations to X> o, and (5.40) for practlcal purposes.

Example 9.6 (Stage-Breast Cancer) Figure 9.5(a) shows the Kaplan—Meier
survival curves for the breast cancer cohort stratified by stage. There is a clear
pattern of increasing mortality for women with more advanced disease. The log—
minus-log plots, shown in Figure 9.5(b), are generally supportive of the proportional
hazards assumption, although proportionality for stage I is perhaps questionable.
Table 9.9 gives the Mantel-Haenszel odds ratio estimates and RBG 95% confi-
dence intervals with stage I taken as the reference category (where ORmhl 1).
Note that the confidence intervals do not contain 1 and that there is only a small
degree of overlap. The tests of association are X2 = 52.05, X2 = 52.44, and

th = 52.97 (p < .001), and the tests for trend are (9.11) = 38. 03 (5 41) = 38.31,
and (5.40) = 38.62 (p < .001).



186

Survival probability

KAPLAN-MEIER AND ACTUARIAL METHODS FOR CENSORED SURVIVAL DATA

Stage |
0 — g :
h_l_l --L‘_---L___
‘l_l L"l.,__1
0.8 R P
e Stage I -
|
0.6 1 |
_____ 1
| Stagelll
0.4 ————
0.2-
0 12 24 36 48 60

Time

FIGURE 9.5(a) Kaplan—Meier survival curves: Breast cancer cohort stratified by stage
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FIGURE 9.5(b) Log-minus-log curves: Breast cancer cohort stratified by stage

TABLE 9.9 Mantel-Haenszel Odds Ratio Estimates and
RBG 95% Confidence Intervals: Stage—Breast Cancer

Stage ORuhi OR i ORmpi

II 2.89 1.17 7.14
III 14.53 5.42 38.95
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9.24 Adjustment for Confounding

To this point, receptor level and stage have been analyzed separately as risk factors
for breast cancer mortality. In Section 5.1 we gave arguments both for and against
treating stage as a confounder of the risk relationship between receptor level and
breast cancer survival. Similar reasoning applies here, with certain modifications in
keeping with the definition of confounding in an open cohort study as outlined in
Appendix G. If stage is not a confounder, any of the crude estimates in Table 9.5 can
be used as an estimate of the overall hazard ratio. Here we use the term “crude” in
the sense of not having been adjusted for stage. The fact that we have “adjusted” for
time is implicit in our remarks.

If we regard stage as a confounder, we are led to consider Table 9.10, which
gives stage-specific and stage-adjusted odds ratio estimates. The stage-specific es-
timates were calculated by stratifying by time for each stage separately, and the
stage-adjusted estimates were obtained by stratifying jointly by these variables. It
is noteworthy that the asymptotic unconditional estimates continue to be close to the
asymptotic conditional and Mantel-Haenszel estimates despite the fact that sample
sizes are sometimes relatively small. In particular, for stage III, there are only 15
and 17 individuals in the low and high receptor level categories, respectively. With
stage taken to be a confounder, and assuming that there is homogeneity across stage,
any of the adjusted estimates in Table 9.10 can be used as an estimate of the overall
hazard ratio. We note that the adjusted estimates are smaller than the crude estimates
in Table 9.5, suggesting that stage may be an important confounder.

In Table 9.10 the estimated odds ratios for stage III are substantially larger than
the estimates for stages I and II. This suggests that the above homogeneity assump-
tion may not be valid and that stage is an effect modifier of the association between
receptor level and breast cancer mortality. This observation should be assessed for-
mally using a test of homogeneity. In general it would be desirable to have a range
of techniques that can be applied when the data have been stratified by two or more
variables in addition to time. Such methods are available, but the formulas are cum-
bersome and will not be presented here. In Chapter 10, methods are described for
analyzing censored survival data using the Poisson distribution. The Poisson for-
mulas are much less complicated than those based on the odds ratio approach, and
stratification by two confounders is readily handled.

In the preceding analysis we treated stage as a confounder of the risk relationship
between receptor level and breast cancer survival. A corresponding analysis consid-

TABLE 9.10 Odds Ratio Estimates Stratified by Stage: Receptor Level-Breast Cancer

Stage
Method I II 11 Adjusted
Asymptotic conditional 2.26 2.09 3.02 2.44
Mantel-Haenszel 2.27 2.10 3.20 2.53

Asymptotic unconditional 2.31 2.11 3.26 2.52
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TABLE 9.11 Mantel-Haenszel Odds Ratio Estimates
Stratified by Receptor Level: Stage—Breast Cancer

Receptor level

Stage Low High Adjusted
I 2.51 3.00 2.83
1 20.13 10.77 14.24

ers receptor level to be a confounder of the risk relationship between stage and breast
cancer survival. Table 9.11 gives receptor level-specific and receptor level-adjusted
Mantel-Haenszel odds ratio estimates with stage I as the reference category. There
is evidence of heterogeneity across receptor level categories. The adjusted estimates
of Table 9.11 are close in value to the crude estimates of Table 9.9, suggesting that
receptor level may not be a confounder.

In addition to stratifying separately by stage and receptor level, it is of interest
to stratify by these variables jointly, which results in six receptor level-stage cate-
gories. Table 9.12 gives the resulting Mantel-Haenszel odds ratio estimates where
the high receptor level-stage I category has been chosen as the reference category.
For stages I and II there is roughly a doubling of the estimates as we move from
high to low receptor level, but for stage III the estimate approximately triples. This
suggests that there may be an interaction between receptor level and stage. Figure
9.6 shows the six Kaplan—Meier survival curves corresponding to this stratification,
where the curves are labeled as follows: (stage, receptor level). The appearance is a
bit confusing due to crossing-over of curves, especially for stage I subjects. Overall
the pattern is broadly consistent with the estimates in Table 9.12.

9.2.5 Recommendations

In addition to the research cited in Section 5.6 in connection with closed cohort stud-
ies, there is further research on the use of odds ratio methods for analyzing censored
survival data (Peto, 1972; Peto and Peto, 1972; Lininger et al., 1979; Bernstein et al.,
1981; Crowley et al., 1982; Robins et al., 1986). Following Chapter 5, we recom-
mend the MH-RBG methods for the analysis of censored survival data. The validity
of the odds ratio approach rests on the proportional hazards assumption, which can

TABLE 9.12 Mantel-Haenszel Odds Ratio Estimates:
High Receptor Level-Stage I as Reference Category

Receptor level

Stage High Low
I 1.0 227
I 3.00 6.35

111 10.77 32.55
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FIGURE 9.6 Kaplan—Meier survival curves: Breast cancer cohort stratified by stage and receptor level

be assessed using either the test for linear trend or the less objective, but possibly
more informative, graphical method.

9.3 ACTUARIAL METHOD

In some cohort studies, exact death times and censoring times are not available. This
is often the case with large surveillance systems such as cancer registries, where
patient visits are scheduled on a routine basis. For those individuals who die or are
censored between appointments, all that may be known is that they survived to the
last follow-up time. In this case we say that the survival times are interval-censored
and that the data are grouped. The actuarial method is a classical approach to the
analysis of interval-censored survival data which has its roots in life table analysis.
The actuarial method differs from the Kaplan—-Meier method in that intervals are
determined by the investigator rather than based on observed death times. Let 7y = 0,
let 7341 be the maximum observation time, and let 7] < 73 < - -+ < 73 be J interme-
diate time points. The actuarial approach begins by partitioning the period of follow-
up into J + 1 intervals: [1o, 1), [71, T2), . .., [T}, Tj+1), .-, [Ta—1, T2), [T3, Ta41].
As before, we refer to [7j, Tj41) as the jthinterval. Let aj and c; be the numbers of
deaths and censored observations in the jth interval, respectively (j =0, 1, ..., J).
With interval-censored data we have no knowledge of the precise death times or cen-
soring times, but this does not affect the counts aj and ¢;. Although the definitions
of @j and cj are formally the same as those used in the Kaplan—Meier setting, a
difference here is that deaths in the jth interval are permitted to occur throughout
the interval rather than only at tj. A further difference is that @ is not necessar-
ily equal to 0. The jth risk set is defined to be the group of subjects surviving to
at least T (J =0,1,...,J). We adopt the convention that subjects who die at Tj



190 KAPLAN-MEIER AND ACTUARIAL METHODS FOR CENSORED SURVIVAL DATA

are included in the risk set. Let rj denote the number of subjects in the jth risk set
(j =0,1,...,J), and denote by r 34 the number of subjects who survive to 7341.
As before, we define C’j =cjforj < JandcCj=cCy—ryqq.

In order to estimate the survival curve it is necessary to make certain assumptions
about its functional form and the distribution of censoring times. Specifically, we as-
sume that S(t) is a continuous function that is linear on each of the intervals. In other
words, the graph of S(t) is a series of line segments that meet at values correspond-
ing to the endpoints of intervals. We also assume that censoring for reasons other
than survival to 34 takes place uniformly throughout each interval. Consequently,
all censoring, except that due to survival to 7341, occurs on average at the midpoint
of each interval. Let pj denote the conditional probability of surviving to 7j1, given
survival to 7j, and let j = 1 — pj be the corresponding conditional probability of
dying (j =0,1,...,J).

The actuarial approach to estimating the survival function proceeds along the lines
of the Kaplan—Meier method. The denominator of §j is rj, and the numerator is
defined to be the total number of deaths in the jth interval. The latter quantity is
the sum of the a; observed deaths plus the number of unobserved deaths among the
¢/ censored subjects. With the preceding assumptions about the survival curve and

]
censoring patterns, the number of unobserved deaths is estimated to be (§; / 2)C/j .So

an estimate of qj is §; = [aj + (j /2)C’j 1/rj, which can be solved for §j to give
g = —) 9.12)
V= ED |
(j =0,1,...,J). The denominator rj — (C’j /2) will be denoted by rJf and referred
to as the “effective” sample size. This terminology is appropriate since r’ can be
thought of as the number of subjects who would need to be at risk in the absence
of censoring in order to give the estimate (9.12). Note that rJf may not be an integer.
With pj = 1 — §j, we have the estimates

A

Sj = PoPi--- Pj-1 9.13)
R = G
@(§) =&)Y =
izo Pifi
and
& g
var[log(—log §))] = ———— n
ST gs, ; pir

(j =1,2..., 3+ 1). A graph of the actuarial survival curve is obtained by plotting
the §j and then joining these points by straight line segments.

Example 9.7 (Receptor Level-Breast Cancer) Table 9.13 gives the actuarial
analysis of the breast cancer data after stratifying by receptor level. The period of
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TABLE 9.13 Actuarial Analysis: Receptor Level-Breast Cancer

I R % ] Bj Si Si 5
0 0 5 199 2 198.0 975 1.0 — —
1 12 17 192 2 191.0 911 975 940 .989
2 24 11 173 1 172.5 936 .888 .835 925
3 36 10 161 1 160.5 938 .831 71 877
4 48 6 150 132 84.0 929 780 15 .832
5 60 — 12 — — — 124 .648 186

follow-up has been divided into 12-month blocks, and the 95% confidence intervals
were estimated using the Kalbfleisch—Prentice method. Figure 9.7 shows the graph
of the actuarial survival curve and the 95% confidence intervals. Not surprisingly,
Figures 9.7 and 9.2 are similar.

Survival probability
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0 12 24 36 48 60
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FIGURE 9.7 Actuarial survival curve and Kalbfleisch—Prentice 95% confidence intervals: Breast cancer
cohort
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CHAPTER 10

Poisson Methods for Censored
Survival Data

The Kaplan—Meier method is based on relatively few assumptions; in particular,
nothing is specified regarding the functional form of either the survival function or
the hazard function. Censoring is assumed to be uninformative, but this is a feature
of virtually all of the commonly used methods of survival analysis. Since so little
structure is imposed, it is appropriate to view a Kaplan—Meier survival curve as a
type of scatter plot of censored survival data. The appearance of a Kaplan—-Meier
curve can be used to form ideas about the nature of the underlying survival function
and hazard function, in much the same way as a scatter plot is used as a visual aid in
linear regression.

Despite these advantages, there are difficulties with the Kaplan—-Meier approach.
Kaplan—Meier curves are not designed to “smooth” the data while accounting for
random variation in the way that a linear regression line is fitted to points in a scatter
plot. As a result, Kaplan—Meier survival curves can be erratic in appearance and
sensitive to small changes in survival times and censoring patterns, especially when
the number of deaths is small. The Kaplan—Meier survival curves for the six receptor
level-stage strata shown in Figure 9.6 are relatively well-behaved, but it is easy to
imagine how complicated such a graph might otherwise be.

In this chapter we describe parametric methods of survival analysis based on the
Weibull, exponential, and Poisson distributions. The computations required by the
exponential and Poisson models are relatively straightforward, and the results are
readily interpreted. However, this convenience is gained at the expense of having to
make strong assumptions about the functional form of the hazard function, a decision
that needs to be justified in any application.

10.1 POISSON METHODSFOR SINGLE SAMPLE SURVIVAL DATA

In theory, a hazard function can have almost any functional form. The estimated
hazard function for Canadian females in 1990-1992 shown in Figure 8.2(c) has quite
a complicated shape. This is to be expected because the cohort was followed over

193



194 POISSON METHODS FOR CENSORED SURVIVAL DATA

the entire life cycle and, as is well known, mortality risk is highly dependent on age.
There may be a degree of systematic or random error in Figure 8.2(c), but Statistics
Canada vital statistics data are very reliable and the sample size is so large that the
complicated appearance must be accepted as a realistic depiction of the underlying
hazard function. In practice, most cohort studies have a relatively small sample size
and a fairly short period of follow-up. This means that the period of observation will
usually be too short for the hazard function to exhibit much variation over time, and
the sample size will be too small for it to be possible to discern subtle changes in
the hazard function, even if they should be present. As a consequence, it is usually
appropriate in epidemiologic studies to model the hazard function using relatively
uncomplicated functional forms. Two of the most widely used are the Weibull and
exponential distributions (Kalbfleisch and Prentice, 1980; Lawless, 1982; Cox and
Oakes, 1984; Lee, 1992; Collett, 1994; Klein and Moeschberger, 1997).

10.1.1 Weibull and Exponential Distributions

The Weibull distribution has the survival function S(t) = exp[—(At)*] and hazard
function h(t) = aA(At)*~!. Here A and o are parameters satisfying the conditions
A > 0and o > 0. We refer to A as the rate parameter and to « as the shape parameter.
Figure 10.1(a) shows graphs of the hazard function for A = 1 and @ = .5, 1, L.5,
and 3. Setting A = 1 reflects the choice of time units but does not influence the
basic shapes of the curves. When @ = 1, h(t) is constant; when o < 1, h(t) is a
decreasing function of time; and when « > 1, h(t) is increasing. The corresponding
survival curves are shown in Figure 10.1(b). The Weibull distribution is applicable to
a range of situations commonly encountered in epidemiology. For example, consider
a cohort of surgical patients who are being monitored after having just undergone
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FIGURE 10.1(a) Weibull hazard functions for selected values of «, with A = 1
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FIGURE 10.1(b) Weibull survival functions for selected values of «, with A = 1

major surgery. Suppose that for the first few days after surgery the mortality risk is
high, but after that it gradually declines. In this case a Weibull distribution with o < 1
would be appropriate. As another example, consider a cohort of cancer patients who
are undergoing long-term follow-up after entering remission. Suppose that for the
first few years the risk of relapse is relatively low, but as time progresses more and
more patients have a recurrence. In this case, a Weibull distribution with ¢ > 1
would be a reasonable choice. The ovarian cancer cohort with high-grade disease in
Figure 9.4(a) exhibits the latter type of survival experience.

Consider an open cohort study of r subjects and, in the notation of Section 8.1, let
(ti, 8i) be the observation for the ith subject (i = 1,2, ..., r). Maximum likelihood
methods can be used to estimate A and « from these data but, except when o = 1,
closed-form expressions are not available. When o« = 1 the Weibull distribution
simplifies to the exponential distribution, in which case S(t) = e *! and h(t) =
A. The exponential distribution rests on the assumption that the hazard function is
constant over the entire period of follow-up. This assumption is evidently a very
strong one and will often be unrealistic. However, when the sample size is small and
the period of follow-up is relatively short, the exponential distribution provides a
useful approach to analyzing censored survival data. The attraction of the exponential
distribution is that the parameter A is easily estimated, as shown below. Since the
exponential hazard function has the same value at any point during follow-up, the
exponential distribution is said to be “memoryless.”

Let d denote the number of deaths in the cohort. This represents a change of no-
tation from Chapter 9 where we used the symbol a. We adopt this convention as a
way of distinguishing the formulas based on the exponential and Poisson distribu-
tions from those based on the binomial approach. It follows immediately from the



196 POISSON METHODS FOR CENSORED SURVIVAL DATA

definition of & that d = Zir:l 3i. By definition, the ith subject was under observa-
tion for t; time units. Therefore the total amount of time that the entire cohort was
under observation is N = Y _; ti, which we refer to as the amount of person-time.
For example, when time is measured in years or months, N is said to be the number
of person-years or person-months, respectively. Observe that because n is defined
to be a sum across all cohort members, the contributions of individual subjects are
effectively lost. Consequently, 1 person followed for n years, and n individuals fol-
lowed for 1 year, will both result in n person-years of observation. This is related to
the memoryless property mentioned above.

Consider the exponential distribution with parameter A. For subject i, S(tj) =
e~ and h(tj) = A, and so from (8.5) the unconditional likelihood is

r
LW = ]_[ e Mipdi — gmd, 10.1)
i=1

From (10.1), the maximum likelihood estimates of A, var(i) and S(t) = e * are
A=

d
n
var(h) = % = (10.2)

>
S

and
S(t) = exp(—Ait).

For example, based on Figure 8.1(b), A = 2/35 = .057, var(A) = 2/(35)% =
(.040)2, and é(t) = exp(—.057t). In Chapter 12 it is pointed out that the term “rate”
is used throughout epidemiology to denote a variety of different types of parameters.
To the extent that established conventions permit, we will restrict the use of this term
to parameters that have an interpretation as follows: number of events of a given type,
divided by the corresponding amount of person-time. The rate parameter A satisfies
this condition and so, in the exponential context, A will be referred to as a hazard
rate.

It is important not to confuse rates with probabilities. One major difference be-
tween these two quantities is that a rate has the units “per unit time” whereas a
probability does not have any units. The absolute magnitude of a rate depends on the
particular units of time chosen. Suppose that d = 5 (persons) and h = 1 person-year,
in which case A = 5 “per year.” This would more often be expressed as 5 “deaths
per person-year” or 5 “deaths per person per year.” Since 1 person-year is the same
as .01 person-centuries, it is equally true that A = 500 “per century.” So a rate can be
made arbitrarily large or small in absolute terms by a suitable choice of time units,
while a probability is always between O and 1.
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10.1.2 Assessment of the Exponential Assumption

Graphical Assessment

The validity of the exponential assumption can be assessed graphically by plotting
the estimated exponential survival curve St) = exp(—it) and the Kaplan—Meier
survival curve and deciding subjectively whether the latter appears to be exponential
in appearance. In a sense we are using the Kaplan—Meier curve as the “observed” sur-
vival curve and determining whether the “fitted”” survival curve from the exponential
model is adequate.

Cox—Qakes Test of Exponentiality
The graphical method is usually quite revealing but can be criticized for lacking
objectivity. Cox and Oakes (1984, p. 43) describe a test of exponentiality based on
the Weibull distribution. The concept is similar to that used to develop the test for
linear trend in Section 4.6. Under Hp : @ = 1, the Weibull distribution simplifies to
the exponential distribution, and in this case the estimate of A is ):0 = d/n. We can
think of the i th subject as being equivalent to a cohort with a sample size of 1. From
this perspective, §j is the number of observed deaths, t; is the amount of person-time,
and & = Xotl is the expected number of deaths under the null hypothesis. Note that
ZI 1 Aot| = Aon =d. Let S(t) = exp[— (At)“] be the “best-fitting” Weibull
surv1va1 curve for the observations (tj, §;) and let § = log(Aotj). The score test of
Ho : @ = 1, which will be referred as the Cox—Oakes test of exponentiality, is

[d+Y0_ s6—&)]
d+ Y58 - (Xse) /e

X2 = df=1).

Large values of X », provide evidence against the exponential assumption. It is im-
portant to apprec1ate that not rejecting Hp is not the same as saying that survival is
exponential. The correct interpretation is as follows: Given that we have decided to
fit the data using a Weibull model, not rejecting Hp means there is no reason not
to choose the exponential model (which is a particular type of Weibull model). This
means that there should be grounds for considering a Weibull model in the first place,
an issue that can be addressed by examining the Kaplan—Meier curve and making a
subjective judgment.

Example 10.1 (Breast Cancer) The data for this example are taken from Table
9.1. For the cohort of breast cancer patients, d = 49 and n = 9471. Based on the
exponential model, A =49 /9471 = 5.17 x1073 (deaths per person-month); and
for the Wiebull model, A =801 x 1073 and & = 1.49. Figure 10.2(a) shows the
exponential and Kaplan—Meier survival curves for these data. There are few deaths in
the first 12 months of follow-up, and this causes the Kaplan—Meier curve to plateau
before beginning a gradual decline. Other than this, the exponential model provides
a reasonably good fit to the Kaplan—Meier survival curve. Figure 10.2(b) shows the
Weibull and Kaplan—Meier survival curves. The Weibull model fits the data slightly
better than the exponential model, especially during the first 12 months.
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FIGURE 10.2(b) Weibull and Kaplan—Meier survival curves: Breast cancer cohort

The Cox—Oakes test of exponentiality is XCZ0 = 5.84 (p = .02), which pro-
vides moderate evidence that the exponential assumption may not be satisfied. De-
spite this finding, it might be argued that the exponential model provides a fit that
is “good enough” for practical purposes. This is the difference between “statistical
significance” and what is referred to in the medical literature as “clinical signifi-
cance” (Sackett et al., 1985). In the present case it needs to be decided on substan-
tive grounds whether the low mortality risk during the first 12 months is a meaningful
finding (clinically significant) or can be ignored. Since it is reasonable that mortality
risk might be low around the time of registration—for example, as a result of re-
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FIGURE 10.3(a) Exponential and Kaplan—-Meier survival curves: Ovarian cancer cohort, high grade
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FIGURE 10.3(b) Weibull and Kaplan—Meier survival curves: Ovarian cancer cohort, high grade

cent treatment for breast cancer—an argument can be made for adopting the Weibull
model.

Example 10.2 (Ovarian Cancer: High Grade) The data for this example are
taken from Table 9.6, where we restrict the analysis to high-grade tumors. In Fig-
ure 9.4(a), there is relatively low mortality until about day 350, after which there is a
sharp drop in survival. Based on the exponential model, A = 16,6902 = 2.32x 1073
(deaths per person-day); and for the Weibull model, % = 2.30 x 103 and & = 1.58.
Figures 10.3(a) and 10.3(b) compare the exponential and Weibull survival curves,
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FIGURE 10.4(a) Exponential and Kaplan—Meier survival curves: Ovarian cancer cohort, high grade,
recoded data

respectively, to the Kaplan—-Meier survival curve. Note that, as opposed to Figure
9.4(a), the horizontal axis is not truncated at day 500. As can be seen, the exponen-
tial model does not fit the data at all well, while the Weibull model provides only
a slight improvement. Perhaps surprisingly, the Cox—Oakes test of exponentiality is
Xgo = 3.65 (p = .06), and so there is little evidence that the exponential assumption
is not satisfied. The explanation for this finding is that the family of Weibull models
provides such a poor fit in general that the exponential model cannot be rejected as a
possibility.

The last death in this cohort occurred at day 451, yet follow-up continued for
one individual until day 1196, thus creating a long tail on the right. For illustrative
purposes the data were reanalyzed under the assumption that follow-up ended at day
500. So the survival time t = 1196 was recoded to t = 500. With this revision to the
data, for the exponential model, A= 16/6283 = 2.55 x 1073; and for the Wiebull
model, & = 2.67 x 1073 and @ = 2.55. The resulting Kaplan—Meier, exponential,
and Weibull survival curves are shown in Figures 10.4(a) and 10.4(b). For these
hypothetical data the Weibull model provides a fairly good fit. The Cox—Oakes test
of exponentiality is Xgo = 7.20 (p = .01), which suggests that the much larger p-
value in the earlier analysis was due to the poor fit of the best-fitting Weibull model.

Consider a cohort with hazard function h(t) and survival function S(t), and con-
sider an exposure variable with K categories. Suppose that the cohort is stratified
according to exposure category at the start of follow-up and that hy(t) is the hazard
function for the kth subcohort (k = 1,2, ..., K). Denote by pk the proportion of
the overall cohort in the kth subcohort at the start of follow-up. As demonstrated in
Appendix G,

>R S (hk(®)

h(t) =
YR RS

(10.3)
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Therefore, at each follow-up time the overall hazard is a weighted average of stratum-
specific hazards, where the weights are functions of time. As observed by Vaupel and
Yashin (1985), the fact that the weights are time-dependent can lead to surprising
consequences. This is illustrated for the case of two strata. Assume that the stratum-
specific survival functions are exponential with hazard rates A1 and X,. Since p; +
p2 = 1, (10.3) becomes

pie My + (1 — ppe ™'y
pre M1t + (1 — ppet

h(t) = (10.4)
This shows that even though the stratum-specific hazard functions are exponential,
the overall hazard function is not. However, when A; and XA, are sufficiently small
(death is a rare event), e *1' and € *2! will be close to 1 and so h(t) will be approxi-
mately equal to piA1 + (1 — p1)Az, a constant. We illustrate these observations using
a graphical approach. For this discussion we assume, without loss of generality, that
the entire period of follow-up is a single time unit so that 0 <t < 1. It can be shown
that (10.4) is a strictly decreasing function of time, and so h(t) has a maximum value
when t = 0; that is, h(0) = piA; + (1 — p1)A2. Since we are primarily interested
in the shape of (10.4), it is sufficient to consider h(t)/h(0). We further specialize by
setting p; = .5 and A; = 2A; so that (10.4) has the single parameter A;. Figure 10.5
shows graphs of h(t)/h(0) for A, = .1, 1, and 10. As can be seen, for A, = .1 the
curve is virtually a horizontal line (constant), but this is not true for A = 1 and 10.

10.1.3 Poisson Distribution

Consider a cohort in which survival time follows an exponential distribution with
hazard rate A. As before, let (i, 3j) be the observation for the ith subject (i =
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1,2,...,r). In most applications, both d = Zir=1 S and n = Zirzl tj are ran-
dom variables. This is because, at the start of follow-up, it is usually not known how
many deaths there will be in the cohort and how much person-time will be expe-
rienced. Let t/ be the maximum observation time for the ith subject as determined
by the study design. For example, in a study with staggered entry as described in
Section 8.1, t/ is the time from the beginning of follow-up of the ith subject until
the end of the study. Since each t/ is a known constant, so is ' = Y {_, t/. From
i < ti’ it follows that n < n’. We now make two crucial assumptions: Death is a rare
event, and there is little censoring except possibly due to survival to the end of the
study. Under these conditions, n is approximately equal to N’ and so n can be treated
as a constant. To illustrate with a simple example, consider a closed cohort study in
which 1000 subjects are followed for up to 10 years with death from any cause as
the endpoint. Suppose that there are only five deaths in the cohort, in which case n
satisfies 9950 < n < 10,000. Even if all deaths occur just after the start of follow-up,
n will still be close to N’ = 10,000. With n assumed to be constant, it can be shown
that d is a Poisson random variable with parameter v = An (Chiang, 1980, §8.2;
Grimmett and Stirzaker, 1982, §6.8). The fact that d is Poisson is not unreasonable
because, as noted in Section 1.1.2, the Poisson distribution is used to model counts of
rare events. Berry (1983) and Breslow and Day (1987, §4.2) provide more detailed
arguments which justify treating d as a Poisson random variable.
Recall from Section 1.1.2 that the Poisson probability function is

—vvd
d!

P(D =dJv) = € (10.5)



POISSON METHODS FOR SINGLE SAMPLE SURVIVAL DATA 203

and that E(D) = var(D) = v. In view of the above remarks we now reparameterize
(10.5) by setting v = AN to obtain

e_)‘”()»n)d

P(D =dp) = —

(10.6)
With this parameterization we say that D is a Poisson random variable with param-
eters (A, n).

As pointed out in Example 1.8, when specifying the likelihood it is appropriate to
ignore terms that do not involve the parameter of interest. Accordingly, the likelihood
based on (10.6) is

L(x) = e M3,

This is the same as (10.1), the likelihood for the exponential distribution (Holford,
1980). It follows that the maximum likelihood estimates of A and Var():) based on
(10.6) are the same as those derived using the exponential approach; that is, A=d /n
and var(A) = d/n2. Accordingly, it does not matter whether we treat A as an expo-
nential or a Poisson parameter. For the remainder of this chapter we focus on the
Poisson interpretation. As will be seen, the resulting formulas exhibit a striking re-
semblance to those based on the binomial and hypergeometric distributions presented
in Chapters 3-5 (Breslow and Day, 1980, 1987). Consequently, many of the remarks
that are relevant to the Poisson approach have essentially been covered in earlier dis-
cussions. This makes it possible to describe what follows more briefly than would
otherwise be the case.

10.1.4 Exact Methodsfor a Single Sample

Hypothesis Test
To perform an exact test of the hypothesis Hy : A = Ao we define lower and upper
tail probabilities as follows:

X
P(D < d|xg) = exp(—ion) Z ()“On) (10.7)
x=0
and
o n)X
P(D > d|ig) = 1 — exp(—Agn) Z (10.8)

x=0

The two-sided p-value is calculated using either the cumulative or doubling method
as described in Section 3.1 for the binomial distribution.

Example10.3 Letd = 2 and n = 10, and consider Hy : Ao = .4. The Poisson
distribution with parameters (.4, 10) is shown in Table 10.1 for d < 12. Based on the
doubling method the p-value is p = 2(.238) = .476.
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TABLE 10.1 Probability Function (%) for the Poisson Distribution

with Parameters (.4, 10).

d P(D =d|.4) P(D <d|.4) P(D > d|.4)
0 1.83 1.83 100
1 7.33 9.16 98.17
2 14.65 23.81 90.84
3 19.54 43.35 76.19
4 19.54 62.88 56.65
5 15.63 78.51 37.12
6 10.42 88.93 21.49
7 5.95 94.89 11.07
8 2.98 97.86 5.11
9 1.32 99.19 2.14
10 53 99.72 81
11 .19 99.91 .28
12 .06 99.97 .09
Confidence Interval

A (1 — o) x 100% confidence interval for A is obtained by solving the equations

o (_n)x
E:P(D>d|k)—l—exp( ,\n)z .
and
d X
o — — (An)
5= P(D < d|A) = exp(—An) XEZO '
for A and A.

Example10.4 Letd =2 and n = 10. From
(10)»)X

025 =1 —exp(— 10)2

x=0
=1 —exp(—=100)(1 + 104)

and

(10)0X

.025 = exp(—10%) Z
X=0

— exp(—100)(1 + 10% + 50%2)
a 95% confidence interval for A is [.024, .723].

(10.9)

(10.10)
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10.1.5 Asymptotic Methodsfor a Single Sample

Confidence Interval
Applying arguments used in the binomial case to (10.9) and (10.10), an implicit
(1 — o) x 100% confidence interval for A is obtained by solving the equation

(d — xn)? )
- (Za/2)
using the quadratic formula. The result is
—  —b++b?—4ac
A= ——F
2a
where
a=n’
b=—n[2d+ (z)’]
c=d.

An explicit (1 — o) x 100% confidence interval for A is

(10.11)

[A,X]:%iz"/z‘/a:9<1i@>.

n n Jd
Hypothesis Test

Under the null hypothesis Hp : A = Xo, the maximum likelihood estimates of the
mean and variance of A are Eq(X) = Ag and varg(A) = Ag/N. A test of Hy is

o G2 _ d—ion)?

ro/n on df=1). (10.12)

Example10.5 Table 10.2 gives 95% confidence intervals for A where, in each
case, A = .2. The performance of the methods is similar to what was observed in
Table 3.2. The implicit method produces results that are reasonably close to the exact

TABLE 10.2 95% Confidence Intervals (%) for A

n=10 n=25 n=>50
Method A A A X A A
Exact 2.42 72.25 6.49 46.68 9.59 36.78
Implicit 5.48 72.93 8.54 46.82 10.86 36.82

Explicit =7.72 47.72 2.47 37.53 7.60 32.40
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TABLE 10.3 p-Values for Hypothesis Tests of

Hy: A= 4

d=2 d=5 d=10
Method n=10 n=25 n=>50
Exact? 453 116 .019
Asymptotic 317 114 .025
4Cumulative

method for d = 5 and d = 10, while the explicit method leaves something to be
desired, especially for d = 2.

Example10.6 Table 10.3 gives p-values for hypothesis tests of Hy : A = .4
where, in each case, A = .2. The asymptotic and exact p-values are reasonably close
in value.

Example 10.7 (Breast Cancer) From Example 10.1, the estimated death rate
for the entire breast cancer cohort is A = 49/9471 = 5.17 x 1073 (deaths per
person-month). Based on the implicit method, the 95% confidence interval for A is
[3.91, 6.84] x 1073

10.2 POISSON METHODSFOR UNSTRATIFIED SURVIVAL DATA

In this section we present methods for comparing cohorts across two or more cate-
gories of exposure. The techniques to be described correspond closely to the odds
ratio methods of Chapter 4, and so it is possible to omit certain details that were
covered as part of that discussion.

10.2.1 Asymptotic (Unconditional) Methodsfor a Single1 x 2 Table

Consider Table 4.1, which gives the crude 2 x 2 table for a closed cohort study. Since
b; =r; —a; and by = ry — &, we might have used Table 10.4 as an alternative
method of presenting the data.

When Poisson methods are used to analyze data from an open cohort study, the
data can be presented as in Table 10.5. The correspondence between Table 10.4 and
Table 10.5 is evident and continues the theme of drawing a parallel between the
binomial and Poisson distributions. We will refer to Table 10.5 as a 1 x 2 table.

Suppose that survival in the exposed and unexposed cohorts is governed by Pois-
son random variables D and D, with parameters (A1, Ny) and (A, Ny), respectively.
The random variables D and D, are assumed to be independent, and so their joint
probability function is the product of the individual probability functions,

exp(—ain)(hinp)d y exp(—A2M) (Aamp)®
d;! dy! '

P(D; =di, Dy = dy|A1, A2) =
(10.13)
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TABLE 10.4 Observed
Counts: Closed Cohort
Study

Exposure
yes  no

r 5} r

TABLE 10.5 Observed
Counts and Person-Time:
Censored Survival Data

Exposure
yes  no
person-time Ny n, n

Since the hazard functions, A1 and A;, are both constants, the proportional hazards
assumption is satisfied. Denote the hazard ratio by HR = A;/A;. In order to make
the role of HR explicit, we substitute .; = HRA; in (10.13), which reparameterizes
the joint probability function in terms of HR and A;:

exp(—HR2N ) (HRAN )
d;!

| SXP(=3aM) (o) ®
dh!

P(D; =di, D2 = h|HR 1) =

(10.14)

We view (10.14) as a likelihood which is a function of the parameters HR and X,.

Point Estimate
The unconditional maximum likelihood equations are

d] = I—TRizn]

and
m= |:|\R5L2n1 + 5»2”2.

An important result demonstrated below is that the unconditional and conditional
maximum likelihood estimates of HR are identical. So there is no need to add a
subscript u to the notation for the hazard ratio estimate. This also explains the use
of parentheses in the title of this and subsequent sections dealing with asymptotic
methods. Solving the above equations gives
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—~ A _ diny

HR= — = —= (10.15)
Ao dany
and
~ d
Ay = =
ny

where A = d; /Ny. If either d; or d equals 0, we replace (10.15) with

F'\R _ (dl + .5)n2.
(dy 4+ .5)n;

Log-Hazard Ratio Transformation

The log-hazard ratio log(HR) is the counterpart in open cohort studies to the log-
odds ratio in closed cohort studies. The maximum likelihood estimate of log(HR)
is log(IqT?). In view of the results of Section 4.1 on the odds ratio, it will come
as no surprise that the distribution of HR can be quite skewed, while the distribu-
tion of log(lq\R) is generally relatively symmetric. Since HR = (di/dr)(ny/ny) and
log(I:I\R) = log(d;/dz) + log(ny/ny), the basic shapes of the distributions of HR
and log(I:rR) do not depend on the constants n; and ny. Accordingly, the follow-
ing illustration is presented in terms of Poisson random variables rather than hazard
rate estimates. Let D; and D, be Poisson random variables with parameters v; = 2
and vy = 4, respectively. The random variable D;/D, has a range stretching from
.020 to 49. The distribution is highly skewed, with outcomes less than or equal to
5 representing 99.3% of the probability. Figure 10.6(a), which was constructed in a
manner similar to Figure 4.1(a), shows the graph of D;/D; after truncation on the
right at 5. Even though truncation has removed an extremely long tail, the graph is

Probability

T ——

Ratio

FIGURE 10.6(a) Distribution of ratio of Poisson random variables with parameters 2 and 4
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FIGURE 10.6(b) Distribution of log-ratio of Poisson random variables with parameters 2 and 4

still very skewed. Figure 10.6(b) shows the graph of log(D;/D>), which is seen to
be relatively symmetric. This is a general finding and supports the use of log(HR) in
preference to HR when calculations are based on a normal approximation.

Confidence Interval .
The maximum likelihood estimate of var(log HR) is

— —~ 1 1
var(logHR) = a + N (10.16)
1 2]

and a (1 — o) x 100% confidence interval for HR is obtained by exponentiating
_ . 1 1
[log HR, log HR] = log(HR) £ 42, [ — + — .
d o
If either d; or d; equals 0, we replace (10.16) with

1
d1+.5+d2+.5'

var(log HR) =

Wald and Likelihood Ratio Tests of Association
We say there is no association between exposure and survival if 1 = A;. Under the
hypothesis of no association Hy : A1 = A3, the expected counts are

. nm . nom
& =— and & = —

where we note that & + & = m. Since A = A; is equivalent to log(HR) = 0,
the hypothesis of no association can be written as Ho : log(HR) = 0. Under Ho an
estimate of var(log HR) is
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2

— ~ 1 1 n
varg(log HR) = é_l + g = nmom’

The Wald and likelihood ratio tests of association are

,  (log HR)2n;nom
=

d d
X =2[d1 log (e_i> + d; log (é)} @df = 1)

Example 10.8 (Receptor Level-Breast Cancer) The data for this example are
taken from Table 9.1. Table 10.6 gives observed and expected counts and person-
months for the breast cancer cohort according to receptor level. The graphs of the
corresponding Kaplan—Meier and exponential survival curves are shown in Figure
10.7. The exponential model provides a reasonable fit to the data during the latter
part of follow-up, but does not perform quite as well early on, especially for the low
receptor level cohort. The Cox—Oakes tests of exponentiality for the low and high
receptor level cohorts are X2, = 2.31 (p = .13) and X2, = 4.44 (p = .04), respec-
tively. These results are a bit surprising since, from Figure 10.7, the low receptor level
cohort is the one that appears to exhibit the greatest departure from exponentiality.

The stratum-specific hazard rate estimates are A 1 = 10.74 x 1073 and ):2 =
3.64 x 1073, which suggests that having low receptor level increases mortality from
breast cancer. Based on the implicit approach, the 95% confidence intervals for A
and A, are [7.09, 16.26] x 10~3 and [2.50, 5.29] x 1073, respectively. The confidence
intervals do not overlap, suggesting that A; and A, are unequal. The estimate of the
hazard ratio is HR = (22 x 7422) /(27 x 2049) = 2.95, the 95% confidence interval
for HR is [1.68, 5.18], and the Wald and likelihood ratio tests of association are
X2 =9.73 (p = .002) and X = 13.11 (p < .001). These results are similar to
the findings in Example 9.2, which was based on the much more complicated odds
ratio approach. It is interesting that the expected counts are nearly identical for the
Poisson and odds ratio methods.

df =1

and

respectively.

TABLE 10.6 Observed and Expected
Counts and Person-Months: Receptor
Level-Breast Cancer

Receptor level
low high

observed 22 27 49
expected 10.60 | 38.40 49

person-months 2049 7422 9471
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FIGURE 10.7 Exponential and Kaplan-Meier survival curves: Breast cancer cohort stratified by recep-
tor level

Example 10.9 (Receptor Level-Breast Cancer: Stage III) Table 10.7 corre-
sponds to Table 10.6 except that now attention is restricted to subjects with stage
11 disease. The estimated hazard ratio is HR = 2.55 and the 95% confidence in-
terval for HR is [1.04, 6.24]. Note that the lower bound of the confidence interval
is only slightly larger than 1. The Wald and likelihood ratio tests of association are
X?N =4.09 (p = .04) and Xlzr = 4.32 (p = .04). So there is moderate evidence for
an association between receptor level and survival in the stage III cohort.

10.2.2 Exact Conditional Methodsfor aSinglel x 2 Table

Conditional Poisson Distribution

In the unconditional case, D1 and D, are independent Poisson random variables with
parameters vy = ANy and vy = AzNy. According to the conditional approach, we
assume that the total number of deaths mis a known constant. As a result, D; and D>
satisfy the constraint Dy + D, = m and are no longer independent. We choose the

TABLE 10.7 Observed and Expected
Counts and Person-Months: Receptor
Level-Breast Cancer (Stage III)

Receptor level

low high
observed 12 8 20
expected 741 | 12.59 20

person-months 384 653 1037
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left cell of Table 10.2 to be the index cell for the conditional analysis and continue to
denote the corresponding random variable by D. As shown in Appendix C, D has
the probability function

P(D; = di|HR) = (;r:)ndl (1 — )M (10.17)

where

V1 . HRn;
vi+v2  HRnp+m’

T = (10.18)
So Dj is binomial with parameters (77, m). Observe that by conditioning on m, the

nuisance parameter A, has been eliminated, leaving HR as the only unknown param-
eter in (10.17). Solving (10.18) for HR yields

7n
HR = ﬁ (10.19)
The binomial mean and variance of D; are
E(D;HR) = 7m = % (10.20)
and
var(Dy|HR) = (1 — 7ym = —Jainam (10.21)
(HRny + my)?

Confidence Interval
From (3.3) and (3.4), an exact (1 — a) x 100% confidence interval for 7 is obtained
by solving the equations

o zdm =Y (M) — ™
7 =POizdim =) [, )r"0-o

X=d1

and

2 PD<d——dl m—Xl T)m=X
S =POi=dm=) (, )J70-D

x=0

for 7 and 7. A confidence interval for HR results after transforming 7 and 7 using
(10.19).

Exact Test of Association
From (10.18), Hp : HR = 1 is equivalent to Hy : 7 = mg, where 7y = nj/n. From
(3.1) and (3.2), an exact test of association is based on the tail probabilities
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and

P(Di < difm) =)

d;
m _
< )716((1 — )™ %
X
x=0

_ 4 m X o m—x
P(D1 > dilm) = ) ()1 —m)™ ™,

X:d]

Example 10.10 (Receptor Level-Breast Cancer: Stage III) From

and

| R

N[ R

20
=) (2())1*(1 —m)»
X

X=12

12
=y (2())#(1 i
x=0 X
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the 95% confidence interval for 7 is [.361, .809]. Applying (10.19), the 95% con-

fidence interval for HR is [.959, 7.19]. Under Hy :

HR = 1, we have mg

384/1037 = .370. Table 10.8 gives a portion of the probability function for the
binomial distribution with parameters (.370, 20). Based on the doubling method,
the p-value for the exact test of association is p = 2(.031) = .062. Observe that
the exact results provide less evidence for an association between receptor level and
breast cancer survival than the asymptotic results of Example 10.9. In this case it is
prudent to rely on the exact findings.

TABLE 10.8 Probability Function (%) for the Binomial Distribution with

Parameters (.370, 20)

d P(D; = d|.370) P(D; < d|.370) P(D; > d|.370)
2 63 75 99.88
3 2.23 2.98 99.25
4 5.57 8.55 97.02
11 4.69 96.90 7.80
12 2.07 98.97 3.10
13 75 99.72 1.03
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10.2.3 Asymptotic (Conditional) Methodsfor a Single1 x 2 Table

Point Estimate
The conditional maximum likelihood equation is

o~ Far m
di = E(Dy|AR) = — . (10.22)
HRn; +ny
So the asymptotic conditional estimate of HRis
~ diny
HR= —=
dny
which is the same as (10.15), the asymptotic unconditional estimate.
Confidence Interval .
From (10.21) an estimate of var(D;|HR) is
. ITRnanm ( 1 n 1 )1 (10.23)
v = ——"7J1= I - . .
(HRn1 —+ n2)2 dl d2

As shown in Appendix C, an asymptotic conditional estimate of var(log Iq\R) is

1 1

\Ta\r(logl-/i\R): =3 3
1 b

S| =

which is the same as (10.16), the asymptotic unconditional estimate (Tarone et al.,
1983).

Mantel-Haenszel Test of Association for Person-Time Data
Under the hypothesis of no association Hy : HR = 1, it follows from (10.22) and
(10.23) that

n nim
e =—
n
and
n ninom
Vo) = 5
n

Following Rothman and Greenland (1998, p. 274) we refer to

(di — &)2
o

X2 =

2= @ =1

as the Mantel-Haenszel test of association for person-time data (Oleinick and Man-
tel, 1970). This lengthy title will be shortened to the Mantel-Haenszel test when
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there is no possibility of confusion with the corresponding test for the odds ratio.

Setting
A nom
e2 —_— n

it is readily demonstrated that

(d; — &)? N (th — &)

X2 =
Pt & &

The normal approximation underlying the Mantel-Haenszel test should be satisfac-
tory provided &, and &, are greater than or equal to 5 (Rothman and Greenland, 1998,
p- 239).

Example 10.11 (Receptor Level-Breast Cancer: Stage I[II) The Mantel-Haenszel
testis X3, = (12 — 7.41)%/4.66 = 4.53 (p = .03).

10.2.4 Asymptotic Methodsfor aSinglel x I Table

The data layout for the case of | > 2 exposure categories is given in Table 10.9.
We model the ith exposure category using the Poisson distribution with parameters
(A, n) (i =1,2,...,1). Withi = 1 as the reference category, the hazard ratio for
the i th exposure category is HRy = A /A;.

The maximum likelihood estimate of HR; is

o~ din1
AR = - —
R dlni

where we note that HR; = 1. A confidence interval for HR; can be estimated using
(10.16). We say there is no association between exposure and disease if A| = Ay =
-+ = A1. The expected count for the i th exposure category is

~ nim

n

It is readily verified that & = d, = m. Conditioning on the total number of cases m
results in the multinomial distribution (Appendix E). The Mantel-Haenszel test for
al x| tableis

TABLE 10.9 Observed Counts and Person-Time:
Censored Survival Data

Exposure category
1 2 i e

deaths ‘dl‘d2‘---‘di‘---‘d|‘m

person-time Ny N --- N .-~ NN
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TABLE 10.10 Observed and Expected Counts
and Person-Months: Stage—Breast Cancer

Stage
I I I
observed 6 23 20 49

expected 18.82 | 24.82 | 5.37 49

person-months 3637 4797 1037 9471

| A2
X2 = Zu df=1-1) (10.24)

i=1
(Breslow and Day, 1987, p. 96).

Let 5 be the exposure level for the i th category withs; < S < --- < §y. Consider
the scatter plot of log():i) against§ (i = 1,2,...,1) and let log():i) =& + fBs be
the best-fitting straight line for these points, where o and § are constants. As shown
in Appendix E, the score test of Hp : § = 0, which will be referred to as the test for
linear trend (in log-hazards), is

2
5 [Zilzls(di _é)]
X2 = (df = 1) (10.25)

Slge - (Tisa) e

(Armitage, 1966; Clayton, 1982; Breslow and Day, 1987, p. 96). Although th has
been presented in terms of log-hazards, it has an equivalent interpretation as a test
for linear trend in hazards or hazard ratios.

Example 10.12 (Stage—Breast Cancer) Table 10.10 gives the observed and ex-
pected counts and person-months for the breast cancer cohort according to stage of
disease. Figure 10.8 shows the graphs of the Kaplan—-Meier and exponential survival
curves. The fit for stage III is less than might be desired, but overall the exponential
(Poisson) model performs reasonably well.

Table 10.11 gives the hazard ratio estimates and 95% confidence intervals with
stage I taken as the reference category. An increasing trend across stage is evi-
dent (where ﬁl\?l = 1), but the confidence intervals exhibit substantial overlap.

TABLE 10.11 Hazard Ratio Estimates and 95%
Confidence Intervals: Stage—Breast Cancer

Stage HR HR HR

1T 291 1.18 7.14
I 11.69 4.70 29.11




POISSON METHODS FOR UNSTRATIFIED SURVIVAL DATA 217
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FIGURE 10.8 Exponential and Kaplan—Meier survival curves: Breast cancer cohort stratified by stage

The Mantel-Haenszel test provides considerable evidence for an association between
stage and survival:

(6 —18.82)2 (23 —24.82)2 (20 —5.37)2
18.82 24.82 5.37

X% = =48.78 (p < .001).
Setting S| = 1, S = 2, and S3 = 3, the test for linear trend is

2’ (27.45)2
YT 166.4 — (84.55)2/49

= 36.78 (p < .001).

These results are similar to those of Example 9.6, where the analysis was based on
odds ratio methods.

10.25 Assessment of the Poisson-Exponential Assumption

We now present a method of assessing the Poisson-exponential assumption which is
based on the Mantel-Haenszel test of association for 1 x | tables. The key idea is
that the period of follow-up is partitioned into time periods that are used to stratify
the data. This is reminiscent of the odds ratio analysis of censored survival data in
Chapter 9, where death times were used for a similar purpose. Suppose that survival
during the i th time period is exponential with hazardrate A; (i = 1,2, ..., 1). We say
there is no association between “time period” and survival if A = Ay = ... = A|. If
the hypothesis of no association is not rejected, we conclude that there is a common
hazard rate across time periods; that is, there is overall exponentiality. It is convenient
to give the remaining details of the method using a specific example rather than
provide a description in complete generality.
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Example 10.13 (Breast Cancer) Consider Figure 10.2(a), which shows the
Kaplan—Meier survival curve for the entire breast cancer cohort. To create a par-
tition of the period of follow-up we inspect the Kaplan—Meier survival curve and
determine, on an empirical basis, a series of time periods where survival seems to
be exponential and where the individual hazard rates may be unequal. Evidently this
introduces an element of subjectivity into the procedure. There is a plateau in the
survival curve until just prior to 12 months, after which there is a gradual decline.
Based on this observation we partition the 60-month period of follow-up into the
two time periods, [0, 12) and [12, 60].

For the first time period, denote the number of deaths, number of person-months,
and hazard rate by d;, ny, and A;; for the second time period, the corresponding
notation is dp, Ny, and A>. The number of person-months in each time period is
calculated as follows. Let tj be the survival time for the ith subject. If tj < 12, this
individual contributes tj person-months to Ny and 0 person-months to n,. If tj > 12,
the contribution is 12 person-months to Ny and tj — 12 person-months to nNy. With
these definitions, d; + d, = d and ny + N, = n. From Table 10.12,

5 (5—1223)2 (44 —36.77)?
- =5.69 (p=.02
pt 12.23 + 36.77 (P )

which provides moderate evidence that A1 and A, are unequal. We note from Ex-
ample 10.1 that the Cox—Oakes test of exponentiality gives an almost identical re-
sult. As discussed in Example 10.1, when there is reason to reject the assumption
of overall exponentiality, a decision must be made as to whether there is a practical
advantage to considering a more complicated parametric model.

10.3 POISSON METHODSFOR STRATIFIED SURVIVAL DATA

In this section we present methods for comparing cohorts across two or more cate-
gories of exposure when the data are stratified. The techniques to be described cor-
respond closely to the odds ratio methods of Chapter 5, which were subsequently
adapted to the analysis of censored survival data in Chapter 9. In order to avoid con-
fusion with Chapter 9, where | was used to index death times, we let K index the
stratifying variable. In the odds ratio setting we distinguished between large-strata
and sparse-strata conditions. A corresponding contrast is made here, except that now
the distinction rests on the number of deaths in each stratum (Greenland and Robins,

TABLE 10.12 Stratification by Time Period: Breast

Cancer
Time period di n; A x 103 §
[0, 12) 5 2363 2.12 12.23

[12, 60] 44 7108 6.19 36.77
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1985b). References for this section are Clayton (1982), Breslow (1984a), Greenland
and Robins (1985b), and Breslow and Day (1987).

10.3.1 Asymptotic (Unconditional) Methodsfor K (1 x 2) Tables

‘We now consider the case of a dichotomous exposure variable with the data stratified
into K strata. Suppose that, in the kth stratum, the development of disease in the
exposed and unexposed cohorts is governed by Poisson random variables Dk and
Dok with parameters (A1k, Nik) and (Aok, Nzk), respectively (K = 1,2, ..., K). For
the kth stratum, the data layout is given in Table 10.13, where the hazard ratio is
HRx = A1k/Xok. When the hazard ratios are homogeneous we denote the common
stratum-specific value by HR.

Point Estimates and Fitted Counts
The unconditional maximum likelihood equations are

K K
Z = RiakNik (10.26)
—1 k=1
and
mi = HRakN ik + Aaknok k=1,2,...,K). (10.27)
Solving (10.27) for Ay gives
Y Mk (10.28)
2k — ———— .
HRNk + Nok

which can be substituted in (10.26) to yield

o~

K K
Y =) o HRM1k (10.29)
k=1

- H RNk + Mok

This is an equation in the single unknown I-/H\-'\’, which can be solved by trial and error.
Alternatively we can use an iterative procedure due to Clayton (1982). Rewriting
(10.29) as

TABLE 10.13 Observed
Counts and Person-Time:
Censored Survival Data

Exposure
yes  no

deaths mk

person-time Nk Mok Nk
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i <d1k _ I:I\Rmknlk )
k=1 HRN ik + nok
_ XK: diknak — HRdakn ik
= HRn+nok
K K
dikn _ thkn
= Z /\li —HR _ 2k M1k
=1 HRnk + nok = HRn i + ok

and solving for the HR preceding the second summation, we have

K K
dikn dokn
3 /Z Gk (10.30)

The iterative process begins by substituting AR = 1 in the right-hand side of
(10.30) and performing the calculations to get an updated value AR?. Then AR is
substituted in the right-hand side of (10.30) to get the next updated value H\R(S), and
so on. This process is repeated until the desired accuracy is obtained. The algorithm
is very efficient, and typically only three or four iterations are required to obtain an
accurate estimate of HR. From )Aqk = ITR):zk and (10.28) we obtain the fitted counts

AR

dik = A1kNik

and
azk = izknzk-
Confidence Interval
Let
0 < ! + ! >_1 (10.31)
k= | = - .
dik  dox

and let V = ZkK: | Uk. As shown in Appendix C, an estimate of var(log Iqh) is
var(log HR) !
var(log ==
\Y,

and a (1 — o) x 100% confidence interval for HR is obtained by exponentiating

[log HR, log HR] = log(HR) % 22

W

(Tarone et al., 1983).
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Tests of Association, Homogeneity, and Trend
The hypothesis of no association is Hp : log(HR) = 0 and, for the kth stratum, the
expected counts are

MMk

N Mok Mk
ek = =

and &k = .
Nk Nk

Let

R 1 1\ niknakmk
ok = | —+— =
ek  6ex ng

and let Vy = ZkK: | Dok- Under Hp an estimate of var(log Iql\?) is

]
varo(log AR) = —.
g %

The Wald and likelihood ratio tests of association are

X2 = (logHR?2Vy  (df =1)

K
dik dok
X2 =2 [d klo < )+dklo (—ﬂ (df=1)
I kg; 1 4 P 2 g &

respectively. The likelihood ratio test of homogeneity is

K
d d
x§=22[d1klog (d—“‘> + dh log <d—2k>} df =K —1).
k=1

1k 2k

and

Let 5 be the exposure level for the kth stratum withs; < S < -+ - < sk . Consider
the scatter plot of log(ﬁ\Rk) against ¢ (k =1, 2, ..., K) and let log(lq\Rk) = &—H@Sk
be the “best-fitting straight line” for these points, where « and 8 are constants. The
score test of Hp : B = 0, which we refer to as the test for linear trend (in log-hazard
ratios), is

K )
5 [Zk:1 S (dik — dlk)]
t = 2
lele Siﬁk - (ZII((zl skf’k) /ﬁ-
where 7y is given by (10.31) (Breslow, 1984a). Although th has been presented in

terms of log-hazard ratios, it has an equivalent interpretation as a test for linear trend
in hazards ratios.

d=1 (10.32)

Example 10.14 (Receptor Level-Breast Cancer) In this example we extend the
analysis of Example 10.8 by stratifying by stage of disease. Table 10.14 gives the ob-
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TABLE 10.14 Observed, Expected, and Fitted Counts, and Person-Months: Receptor
Level-Breast Cancer

Stage 1 Stage 11 Stage 111
Receptor level Receptor level Receptor level
low  high low  high low  high
observed 2 4 6 8 15 23 12 8 20
expected 1.07 | 4.93 6 4.87 | 18.13 | 23 741 | 1259 20
fitted 1.97 | 4.03 6 8.65 | 1435 23 11.38 | 8.62 20

person-months 650 2987 3637 1015 3782 4797 384 653 1037

served, expected, and fitted counts as well as the person-months, stratified by stage.
We note that the observed and fitted counts are quite close in value, and so the model
based on homogeneity appears to provide a reasonably good fit to the data. Table
10.15 gives the stage-specific analysis based on the methods described above for
1 x 2 tables. There is considerable overlap among the confidence intervals and no
apparent trend across strata. With AR = 1, the first few iterations based on (10.30)
are AR = 2.263, AR = 2.245, and AR™ = 2.246, and so we take AR = 2.25.
This estimate is quite close to the stage-adjusted estimates in Table 9.10 based on the
odds ratio approach. From V = 1.32 + 5.40 4+ 4.90 = 11.62, the 95% confidence
interval for HRis [1.26, 3.99]. The Wald and likelihood ratio tests of association are
X2 = (10g2.25)%(9.38) = 6.14 (p = .01) and X2 = 7.41 (p = .01). The likeli-
hood ratio test of homogeneity is Xﬁ =.158 (p = .92). Settings; = 1,S = 2, and
S3 = 3, the test for linear trend is

) (.584)2
b 67.05 — (26.83)2/11.62

= .067 (p = .80).

10.3.2 Asymptotic (Conditional) Methodsfor K (1 x 2) Tables

We now consider asymptotic conditional methods for analyzing K (1 x 2) tables.
From (10.20) and (10.21) the binomial mean and variance of Dk are

HRNjxmg
E(Dik|HR) = m (10.33)

and

TABLE 10.15 Hazard Ratio Estimates and 95%
Confidence Intervals: Receptor Level-Breast Cancer

Stage HR HR HR
1 2.30 42 12.54
1I 1.99 .84 4.69

111 2.55 1.04 6.24
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HRNknokmMg

var(Dik|HR) = ——MM—.
(PR (HRN i + Nok)?

(10.34)

The conditional maximum likelihood equation is

K K
Y dik=) E(DiIHAR) =
k=1 k=1 k:

which is the same as the unconditional maximum likelihood equation (10.29). It
follows that the asymptotic conditional estimate of HR is identical to the asymptotic
unconditional estimate. When HR = 1, (10.33) and (10.34) simplify to

K I:|T?n1kmk

" |:|T?n1k + Nok

. NikMk
€k =—"
Nk
and
N N1kN2KMk
Vok = T (1035)

k

The Mantel-Haenszel test of association for person-time data is

X2 (dll - élo)2

h= @ =1

Oe

(Shore et al., 1976; Breslow, 1984a; Breslow and Day, 1987, p. 108). The normal
approximation underlying the Mantel-Haenszel test should be satisfactory provided
€le, 60, dl., and dz. are all greater than or equal to 5 (Rothman and Greenland,
1998, p. 274). A test of homogeneity is

K
(dik — d
Z tk “‘) df=K—1 (10.36)
k=1
(Breslow, 1984a; Breslow and Day, 1987, p. 112).

Example 10.15 (Receptor Level-Breast Cancer) The Mantel-Haenszel test is
= (22 — 13.34)2/9.38 = 7.99 (p = .01), and the test of homogeneity is

2 _ 2-197% (8—18.65% (12—11.38)2
h =132 5.40 4.90

=158 (p = .92).

10.3.3 Mantel-Haenszel Estimate of the Hazard Ratio

The Mantel-Haenszel estimate of the hazard ratio is

ARmp = — (10.37)
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where
diknok
Re= ——
Nk
and
S — thkNik
Nk

(Rothman and Boice, 1979). Interestingly, with HRD = 1, the ﬁr/sl iteration of
(10.30) produces the Mantel-Haenszel estimate, that is, HR® = HRun (Tarcllle,
1981; Clayton, 1982). Greenland and Robins (1985b) give an estimate of var(log HRup)
which is valid under both large-strata and sparse-strata conditions:

var(log HRpn) = e

(R)(S)

where Dok is given by (10.35). A (1 — @) x 100% confidence interval for HR is
obtained by exponentiating

[log HR ., log HRun | = 1og(HRmh) + Zy/2/ Var(log HRuh).-

Exar‘rlgle 10.16 (Receptor Level-Breast Cancer) The Mantel-Haenszel esti-
mate is HRyp = 15.51/6.85 = 2.26. From var(log HRyn) = 9.38/(15.51 x 6.85) =
(.297)2, the 95% confidence interval for HR s [1.26, 4.05].

10.3.4 Weighted Least Squares Methodsfor K (1 x 2) Tables

For the weighted least squares methods, the weight for the kth stratum is defined to
be

A 1 ( Lo >—1
Wk = ————— = JE— N .
KT AlogHRo  \dik | dx

The hazard ratio formulas are the same as (5.33)—(5.37) except that wy is defined as
above and HR replaces OR.

Example 10.17 (Receptor Level-Breast Cancer) From

_ 1.33 % .832) + (5.22 x .687) -+ (4.80 x .936
log(ARy) = (22X 832 + 11X35 )+ (@80x.936) _ g9

the WLS estimate of the hazard ratio is Iq\Rls = exp(.809) = 2.25. From var(log I-/H\?ls)
=1/11.35 = (.297)2, the 95% confidence interval for HR is [1.26, 4.02]. The test
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of association is X125 = (log 2.25)2(9.38) = 6.15 (p = .01), and the test of homo-
geneity is

X2 = 1.33(.832—.809)%+5.22(.687—.809)*+4.80(.936—.809)* = .157 (p = .92).

10.3.5 Standardized Hazard Ratio

Following Section 2.5.4, the observed and standardized expected counts are defined
to be

K
O=d.=) ki
k=1
and
SE = A2kNik

k=1

and the standardized hazard ratio is defined to be

K
HR — O 2 koi AikNik

SE YK aaknik

Note the similarity between (10.38) and the first equality in (2.22).

(10.38)

10.3.6 Summary of Examplesand Recommendations

Table 10.16 summarizes the results of the receptor level-breast cancer analyses
based on the asymptotic unconditional (AU), asymptotic conditional (AC), Mantel—
Haenszel (MH), and weighted least squares (WLS) methods. Recall that the AU
and AC methods are identical, the nominal distinction serving only to represent the
organization of material in this chapter. As can be seen, the various methods produce
remarkably similar results.

TABLE 10.16 Summary of Receptor Level-Breast Cancer Results

Result AU AC MH WLS
HR 225 — 226 225
[HR, HR] [1.26, 3.99] — [1.26, 4.05] [1.26,4.02]
Association p-value 0128 .01 — .01
Homogeneity p-value 92b 92 — 92
Trend p-value .80 — — —
axlzr

b ikelihood ratio
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Recommendations for the analysis of censored survival data based on the Pois-
son distribution are similar to those made in Section 5.6 for the analysis of closed
cohort data using odds ratio methods. A difference is that in the Poisson setting we
do not need to distinguish between asymptotic unconditional and asymptotic condi-
tional estimates. HRmh, var(log HRmh) and Xg are easily calculated and have good
asymptotic properties (Tarone et al., 1983; Walker, 1985; Greenland and Robins,
1985b). These methods are recommended for the analysis of censored survival data,
provided the Poisson-exponential assumption is satisfied and asymptotic conditions
are met.

10.3.7 Methodsfor K (1 x I) Tables

We now consider methods for analyzing stratified data when the exposure variable is
polychotomous. The data layout for the kth stratum is given in Table 10.17. We say
there is no association between exposure and disease if Ajx = dox = --- = Ak for
all k. The expected count for the ith exposure category in the Kth stratum is

NjkMk
Nk '

&k =

With i = 1 as the reference category, let I:rRmhi denote the Mantel-Haenszel hazard
ratio estimate comparing the i th exposure category to the first category.

The Mantel-Haenszel test th has a generalization to the K (1 x I) setting, but
the formula involves matrix algebra (Appendix E; Breslow and Day, 1987, p. 113).
As shown in Appendix E, a conservative approximation to Xpt is

I A )2
Xoe=) e —8 gy 1y, (10.39)
i=1 b

that is, X(2)e < th (Clayton, 1982). Let § be the exposure level for the ith category
withs; < S < --- < 5). For each k define

|
Uk =) s (dik— &K
i=1

TABLE 10.17 Observed Counts and Person-Time:
Censored Survival Data

Exposure category
1 2 .. i .. I

deaths ‘ dik ‘ dhk ‘ ‘ dik ‘ ‘ dik ‘ My

person-time N  MNox -+ Njk -+ Nk Nk
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and

U.)?
X2 = W) df =1). (10.40)
Ve
A conservative approximation to (10.40) is
2
) I:Z::l S (dio - éo)]
= dafr=1). (10.41)

Y se.- (Dlisa.) /e

As illustrated in the following example, for censored survival data, X(z)e and (10.41)
are usually sufficiently accurate approximations to th and (10.40) for practical pur-
poses. There is an obvious similarity between (10.39) and (9.10) and between (10.41)
and (9.11). We note, however, that for (9.10) and (9.11) the stratifying variable is
“time.”

Example 10.18 (Stage—Breast Cancer) In this example we extend the analysis
of Example 10.12 by stratifying by receptor level. The observed and expected counts

and person-months are given in Table 10.18. Table 10.19 gives the Mantel-Haenszel

TABLE 10.18 Observed and Expected Counts and Person-Months: Stage—Breast Cancer

Low receptor level High receptor level
Stage Stage
I I I I I 11
observed 2 8 12 22 4 15 8 27
expected 6.98 | 1090 | 4.12 22 10.87 | 13.76 | 2.38 27
person-months 650 1015 384 2049 2987 3782 653 7422

TABLE 10.19 Mantel-Haenszel Hazard Ratio Estimates
and Greenland—Robins 95% Confidence Intervals:
Stage—Breast Cancer

Stage HRumhi HR i HRphi

II 2.82 1.15 6.92
I 9.66 3.67 25.46
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hazard ratio estimates and Greenland—Robins 95% confidence intervals, with stage
I as the reference category and with adjustment for receptor level. The adjusted es-
timates in Table 10.19 are close to the crude estimates in Table 10.11, suggesting
that receptor level may not be an important confounder. The tests of association are
X3 =36.89 (p < .001) and

(6—17.85% (23 —24.66)2 (20 — 6.50)2
X2 = =36.03 .001).
oe 1785 7 2466 T 650 (p<.00D)

Setting S = 1, s = 2, and s3 = 1, the tests for linear trend are (10.40) =
(25.35)2/21.30 = 30.16 (p < .001) and

(25.35)2

(10.41) =
174.96 — (86.65)2/49

—=29.58 (p < .001).
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CHAPTER 11

Odds Ratio Methods for
Case-Control Data

11.1 JUSTIFICATION OF THE ODDS RATIO APPROACH

Cohort studies have a design that is intuitively appealing in that subjects are fol-
lowed forward in time from exposure to the onset of disease, a temporal relationship
that parallels causal mechanisms. In case-control studies, subjects with the disease
(cases) and subjects who do not have the disease (controls) are sampled, and a history
of exposure is determined retrospectively. It is sometimes said that in a case-control
study, subjects are followed “backwards” in time from disease onset to exposure. The
case-control design was developed in order to provide a method of studying diseases
that are so rare that a cohort study would not be feasible. Due in large part to its
retrospective nature, the case-control design is generally regarded as being method-
ologically complex (Austin et al., 1994). A few examples of the challenges inherent
in the case-control design are described below. References for further reading on
case-control studies are Schlesselman (1982) and Rothman and Greenland (1998).

11.1.1 Methodologic Issuesin Case-Control Studies

In order for the results of a case-control study to be generalizable to the population
as a whole, it is necessary for the sample of cases to be representative of individuals
in the population who develop the disease, and likewise it is necessary for the sample
of controls to be representative of those who do not. The point in the disease process
when cases are sampled has implications for the validity of study findings. Accord-
ingly, we distinguish between cases who are newly diagnosed (incident) and those
who currently have the disease regardless of when onset occurred (prevalent). Con-
sider a case-control study of an exposure that, unknown to the investigator, causes a
particularly lethal form of the disease. If cases are recruited into the study at any time
after the disease has developed, it is possible that individuals who would have been
enrolled in the study if they had been contacted early in the course of their illness
will be unable to participate due to debility or death. This means that the sample of
cases will have fewer subjects with a history of the exposure of interest than there

229
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would have been if recruitment had been initiated immediately after diagnosis. As
a result, the relationship between exposure and disease will appear weaker (biased
toward the null) in the study data compared to the population. For this reason it is
desirable to base case-control studies on incident rather than prevalent cases.

Collecting exposure data retrospectively is another of the methodologic chal-
lenges associated with the case-control design. It is easy to imagine that when ex-
posure has occurred in the remote past, it may be difficult to ensure that details re-
garding exposure history (onset, duration, intensity, etc.) will be recalled accurately.
Another problem is that individuals who develop the disease may be inclined to re-
flect on why this has occurred and, in particular, to search for past exposures that may
have led to illness. Due to this aspect of human nature, cases are likely to provide a
more complete exposure history than controls. In this situation the relationship be-
tween exposure and disease will appear stronger (biased away from the null) in the
study data compared to the population.

In previous chapters we showed that it is possible to estimate epidemiologically
meaningful parameters from cohort data. The case-control and cohort designs are
so different it is reasonable to ask whether a useful measure of effect can be esti-
mated from case-control data. There are a number of case-control study designs, two
of which are described below. For the moment we assume that data have been col-
lected on My cases and M, controls using simple random sampling. Analogous to the
closed cohort setting, we model outcomes using binomial distributions with param-
eters (¢1, mp) and (¢2, My), where ¢; is the probability that a case has a history of
exposure, and ¢, is the corresponding probability for controls. The expected values
for the case-control study are given in Table 11.1. The odds ratio for the case-control
study is

R — ¢1/(1 — 1) _ d1(1 — ¢)
0/ —¢2)  d2(1 — 1)

(11.1)

where the asterisk is a reminder that the study has a case-control design. The inter-
mediate equality in (11.1) is shown to emphasize that the odds are defined “across
the rows” of Table 11.1. The interpretation of OR* is quite different from the corre-
sponding odds ratio from a closed cohort study: OR* is the factor by which the odds
of exposure increases or decreases when there is a history of disease. In fact we are
primarily interested in estimating the factor by which the odds of disease increases

TABLE 11.1 Expected Values:
Case-Control Study

Disease Exposure
yes no

case $1my (I—=¢pmy | My

control drmy (I —¢gp)my | my
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TABLE 11.2 Observed Counts:
Oral Contraceptives—Myocardial

Infarction
Myocardial Oral
infarction  contraceptive
yes no
case 29 205 234

control 135 1607 | 1742
164 1812 1976

or decreases when there is a history of exposure. At this point it seems that OR* is of
little or no epidemiologic interest.

Example11.1 (Oral Contraceptives—Myocardial Infarction) Table 11.2 gives
data from a case-control study investigating oral contraceptives as a risk factor for
myocardial infarction (Shapiro et al., 1979). These data have been analyzed by Sch-
lesselman (1982, p. 186). At the time this study was conducted, oral contraceptives
contained relatively large amounts of estrogen, a female hormone that tends to ele-
vate serum lipids and raise blood pressure, thereby increasing the risk of myocardial
infarction (heart attack). For these data, 29/234 = 12.3% of cases have a history of
exposure compared to 135/1742 = 7.75% of controls. The fact that oral contracep-
tive use is more common in cases than controls suggests that this medication may
be associated with myocardial infarction. The estimated odds ratio is OR" = 1.68,
which has the interpretation that a history of oral contraceptive use is more likely
in women who have had a myocardial infarction than in those who have remained
well. This finding is of some interest, but it is not yet clear whether these data can
be used to estimate the increase in the risk of myocardial infarction associated with
using oral contraceptives.

11.1.2 Case-Control Study Nested in a Closed Cohort Study

Consider a closed cohort study in which the exposure is dichotomous, as depicted
in Tables 2.1(a) and 2.1(b). We now describe a case-control design that is said to be
nested in the closed cohort study. The cases for the case-control study are a simple
random sample of subjects in the cohort study who develop the disease, and the con-
trols are a simple random sample of subjects who remain well. Denote the sampling
fractions for the cases and controls by y; and y», respectively, where 0 < y; < 1 and
0 < y» < 1. So, for example, the number of cases is y1mj. Since the cohort study
is closed, all subjects who do not develop the disease remain under observation until
the end of the period of follow-up. It is convenient to sample the controls at that time
point in order to avoid the problem of selecting someone to be a control early in the
study, only to have that person become a case later on. The expected values for the
nested case-control study are given in Table 11.3.
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TABLE 11.3 Expected Values: Case-Control
Study Nested in a Closed Cohort Study

Disease Exposure
yes no

case Y17 Y1722 yimp

control | yo(1 —mpry | yo(l —m)r2 | 2mMm

The odds ratio for the nested case-control study is

OR* — (y1mir)/(yimara) _ m (1 —m)
[y2(1 —mpr1l/[y2(1 —m2)rz]  mo(l —mp)

which is precisely the odds ratio (2.1) for the closed cohort study. If we ignore the
case-control design and treat Table 11.3 as if the “data” had been collected using a
closed cohort design, the odds ratio is unchanged:

_ )/l —monl _ widdl = m)
(nmar)/[y2(1 —m)ra]  m(l — )

This means that we can use the odds ratio methods developed in Chapters 4 and 5
to analyze data from a case-control study that is nested in a closed cohort study. In
Section 2.2.2 we observed that, if the disease is rare, the odds ratio and risk ratio
from a closed cohort are approximately equal. In this situation, data from a nested
case-control study can be used to estimate the risk ratio for the closed cohort study.

The above argument is often put forward as a justification for using odds ratio
methods to analyze case-control data. The problem with this rationale is that the
above study design is seldom used in practice. In particular, if a closed cohort study
has been completed, it would be wasteful to analyze only a portion of the data using
the nested approach. However, nesting a case-control study in a closed cohort study
can be efficient when the disease is especially rare. In most cohort studies, detailed
information on exposure and other variables is collected from all subjects at the time
of enrollment into the cohort. When the disease is rare, only a few of these individuals
will eventually develop the disease. Beyond a certain point, data on subjects who do
not develop the disease contributes little to the substance of the study. For a rare
disease, an alternative is to collect a minimum of information from each subject at
the time of enrollment, conduct a nested case-control study with a small sampling
fraction for controls, and then administer extensive questionnaires only to subjects
in the case and control samples (Mantel, 1973; Langholz and Goldstein, 1996).

11.1.3 Case-Control Study Nested in an Open Cohort Study

Most case-control studies are conducted over a specific (calendar) time period, with
incident cases and controls sampled from a well-defined population. For example,
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cases might be identified through a population-based registry such as a cancer reg-
istry, from the employment records of a large workforce, or through a network of
medical clinics serving a defined catchment area. Controls are usually sampled from
the population on an ongoing basis during the course of the study. We refer to such
a case-control study as having an incidence design. We can think of the underlying
population as the cohort in an open cohort study which is conducted over the time
period of the case-control study (Rothman and Greenland, 1998, Chapter 7). Thus
the cohort for the study consists of all individuals living in the population at the be-
ginning of the time period as well as those entering the population through birth and
in-migration. Censoring is permitted as a result of out-migration, death, and survival
to the end of the time period without developing the disease of interest. In this way
an incidence case-control study can be viewed as “nested” in an open cohort study
conducted on the underlying population over a defined time period. The open cohort
study considered here differs from the one described in Section 8.1 in that calendar
time is retained as a time dimension. So the open cohort study we are discussing
corresponds to Figure 8.1(a) rather than Figure 8.1(b). Since there is constant move-
ment in and out of the population, the term “dynamic” cohort is sometimes used as
an alternative to open cohort.

The hazard function occupied a central place in our earlier discussion of sur-
vival analysis. In that context the hazard function was expressed in terms of a single
“time” variable that measured duration from the beginning of follow-up. A hazard
function can be defined for an entire population, but now we must consider two time
dimensions—calendar time and age. We define the hazard function for the popula-
tion as follows: r (X, t) is the instantaneous probability per unit time that a member
of the population who is free of disease at age X and at time t will develop the dis-
ease in the next instant. For a given time t we can take the average of r (X, t) across
all ages X to get an overall hazard function for the population at time t, a quantity
we denote by r (t). We interpret r (1) as the instantaneous probability per unit time
that a randomly selected member of the population who is free of disease at time t
will develop the disease in the next instant. In a similar fashion we can define hazard
functions r(t) and r,(t), which are specific to those with and without a history of
exposure, respectively. Let Nq(t) be the number of individuals in the population at
time t with a history of exposure who are free of disease. Similarly, let Na(t) be the
number of individuals in the population at time t without a history of exposure who
are free of disease. So, at time t, there are N (t) + N, (t) individuals in the population
“at risk” of disease.

We now invoke the stationary population assumption (Keyfitz, 1977). The nature
of the stationary population assumption varies somewhat depending on the context,
but in general it requires that specified features of the population be independent of
(calendar) time. In the present setting, the stationary population assumption is taken
to mean that ri(t), ro(t), Ni(t), and Ny (t) are each independent of t. We denote
the constant values of these functions by R;, Ry, Ny, and Ny, respectively. Suppose
that the case-control study begins at time ty and continues until a later time ty + A.
Ordinarily A is no more than, say, 2 or 3 years, which is usually not enough time
for the population to undergo a significant shift in demographic composition or a
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major change in the relationship between exposure and disease. Therefore it may be
reasonable to regard a population as being approximately stationary for the duration
of a case-control study. However, when the history of exposure goes back many
years, the stationary population assumption is harder to justify.

As discussed in Appendix G, when there is no confounding, the population pa-
rameter of epidemiologic interest is Rj /Ry, which we refer to as the ratio of hazard
rates. Suppose that the hazard functions in the exposed and unexposed populations
which give rise to R; and R, satisfy the proportional hazards assumption, and denote
the hazard ratio by HR. In Appendix G we show that, although R;/R, does not gen-
erally equal HR, in practice, R; /R, and HR will be very close in value. In light of
results described below, this provides a link between the methods used for incidence
case-control studies and those described for open cohort studies in Chapters 8—10.

During the time period from tj to ty + A, the number of person-years experienced
by cohort members with a history of exposure who are at risk of disease is NjA.
It follows that the (expected) number of incident cases among these individuals is
R; N1 A. Likewise, the number of incident cases among cohort members without a
history of exposure who are at risk of disease is RyN>A. Let y; and y» be the case
and control sampling fractions, respectively, where 0 < y; < land 0 < y» < 1.
Then the (expected) numbers of exposed and unexposed cases are y; Ry NjA and
y1 ReN2 A. This gives the top row of Table 11.4. Since the population is stationary, at
any time t there are N; 4+ N subjects in the population who do not have the disease
and are therefore eligible to be controls. For simplicity, we assume that all controls
are sampled at the end of the cohort study in order to avoid the previously noted
complication of a control selected early in the study becoming a case later on. This
gives the second row of Table 11.4.

Therefore the odds ratio for the incidence case-control study is

_ RINIA)/(nReN2A)  (RI/R)(NI/N2) — Ri
(2N1)/(y2N2) Ni/N2 R

OR* (11.2)

(Miettinen, 1976). Note that nowhere in this derivation have we assumed that the
disease is rare (Greenland and Thomas, 1982). From (11.2) we see that it is the odds
for the cases (R;N;1)/(RxN>) that contains the crucial information about the ratio
of hazard rates. The purpose of dividing by the odds for controls is to eliminate the
factor Ni/N,. If we ignore the case-control design and treat Table 11.4 as if the
“data” had been collected using a closed cohort design, the odds ratio is unchanged:

TABLE 11.4 Expected Values: Case-Control Study
Nested in an Open Cohort Study

Disease Exposure
yes no

case YIRINTA | y1RN2A | y1(RiNyT + RoNp) A

control >Ny >Ny y2(Ny + Np)
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or— WRINIA)/(aND _ Ri (11.3)

M ReN2A)/(12N2)  Re

The fact that OR = R;/R; leads to the following strategy for analyzing data from
an incidence case-control study: Treat the data as if collected using a closed cohort
design, use odds ratio methods for closed cohort studies to analyze the data, and in-
terpret the results in terms of the ratio of hazard rates in the population. In practice it
is usual to retain odds ratio terminology and let the interpretation in terms of the ratio
of hazard rates remain implicit. It should be emphasized that the preceding strategy
does not extend to analyses based on either the risk ratio or the risk difference. This
accounts for the popularity of odds ratio methods in the analysis of case-control data.
As mentioned earlier, when the proportional hazards assumption is satisfied, R} /Ry
is generally very close in value to HR, and so from (11.3) we have the approximate
equality OR = HR In practice it is usual to identify the odds ratio from an incidence
case-control study with the hazard ratio in the population. In Appendix G it is pointed
out that under the stationary population assumption the counterfactual definition of
confounding in an open cohort study can be adapted to the case-control setting.

The strategy presented above for analyzing data from an incidence case-control
study does not extend to the standardized measures of effect that were discussed in
Section 2.5.4. The reason is that the formulas presented there use marginal totals
rather than only interior cell counts. However, it is possible to define a standardized
measure of effect for the incidence case-control design. We return for the moment to
the deterministic model of Chapter 2. In the notation of Table 5.1 the observed count
is O = a;, and the standardized expected count is defined to be

S — Zazjb“

j=1

(Miettinen, 1972b; Greenland, 1982). From a stratified version of Table 11.4 and
assuming that the same sampling fractions are used in each stratum, we have

J J
O=ZV1R11N1JA=V1AZR11N11
=1 =1

and

J
(¥1 R2j Naj A)(J/leJ)
sk = V1A Ryi Ny
JZ:‘: Y2 Noj JZ_II S

The standardized hazard ratio for an incidence case-control study is defined to be
O X RN
£y j=1 RejNij

which has an obvious similarity to (2.22) and (10.38).

sHR =
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TABLE 11.5(a) Observed Counts: Oral Contraceptives—Myocardial Infarction

25-34 35-44 45-49
Disease oC oC oC

yes  no yes  no yes  no
case 13 14 27 10 | 98 | 108 6 93 99
control | 95 | 614 | 709 35 | 692 | 727 5 301 | 306

108 628 736 45 790 835 11 394 405

TABLE 11.5(b) Asymptotic Unconditional Odds Ratio
Estimates and 95% Confidence Intervals: Oral
Contraceptives—Myocardial Infarction

Age group ORyj OR,j ORyj
2534 6.00 2.74 13.16
35-44 2.02 97 4.20
45-49 3.88 1.16 13.02

Example 11.2 (Oral Contraceptives—Myocardial Infarction) The case-control
study considered in Example 11.1 has an incidence design, and so we are free to ap-
ply the methods of Chapters 4 and 5. Our earlier misgivings about the interpretation
of the odds ratio appear to have been unfounded. Provided there is no confounding,
we can interpret OR, = 1.68 as a crude estimate of the hazard ratio. However, con-
founding by age is a distinct possibility because this variable is a major risk factor
for myocardial infarction and is also associated with oral contraceptive use. Table
11.5(a) gives the case-control data stratified by age group, and Table 11.5(b) gives
the age-specific asymptotic unconditional analysis. The Mantel-Haenszel estimate
of the odds ratio is ORmn = 3.34, which is quite a bit larger than the crude esti-
mate. Based on the RBG estimate of var(ORyp), the 95% confidence interval for
ORis [2.07, 5.38]. The Mantel-Haenszel test is Xﬁlh = 27.21 (p < .001) and the
Breslow—Day test of homogeneity is X%d = 4.09 (p = .13), which includes the cor-
rection term of .00015. If we accept that age is a confounder, 6Rmh = 3.34 can be
interpreted as a summary estimate of the hazard ratio.

11.2 ODDSRATIO METHODSFOR MATCHED-PAIRS
CASE-CONTROL DATA

When few cases are available for a case-control study, selecting controls using simple
random sampling may be inefficient, especially when there are multiple confounders.
For example, consider an incidence case-control study in which 50 cases are avail-
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able and where the confounders are age (4), sex (2), socioeconomic status (3), and
past medical history (2). The numbers in parentheses are the number of categories
corresponding to each variable. After cross-classifying the confounders, there are
4 x 2 x 3 x 2 = 48 categories, almost as many as the number of cases. Suppose
that the cases are thinly distributed across categories. A simple random sample of
controls might have no subjects in several of the strata, even if the control sample is
relatively large. When this occurs, strata in which there are cases but no controls are
effectively dropped from the odds ratio analysis.

A way to avoid the problem of wasted cases is to match controls to cases based
on the confounder profile of cases. In the preceding example, consider an incident
case with a particular age, sex, socioeconomic status, and past medical history. With
a matched design, one or more controls with the same confounder profile would be
sampled from the population and linked (matched) to the case to create a matched
set. We can think of the population from which the controls are selected as having
been stratified according to confounder categories, thereby making the controls a
stratified random sample. The distinguishing feature of the matched case-control de-
sign is that stratification is incorporated into the study at the sampling stage rather
than at the time of data analysis. As a result of matching, cases and controls nec-
essarily have the same distribution with respect to the matching variables, and so
the matching variables are eliminated as sources of confounding. Unfortunately, this
also means that the matching variables cannot be examined as risk factors in the data
analysis (although they can still be assessed for effect modification). When matching
is included as part of a case-control study, an already complicated design is made
that much more complex. As an illustration of the problems that can result, consider
that a matching variable that is not a confounder in the population can be turned into
a confounder “in the data” as a result of matching (Rothman and Greenland, 1998,
Chapter 10).

Matching brings a potential improvement in efficiency in the sense that the vari-
ance of the odds ratio estimate may be reduced compared to simple random sampling
of cases and controls. However, whether the anticipated gain in efficiency is realized
depends on a number of considerations: the exposure—disease—confounder associ-
ations (Kupper et al., 1981; Thomas and Greenland, 1983, 1985), the way matched
sets are formed (Brookmeyer et al., 1986), and the relative costs associated with gath-
ering information on cases and controls (Miettinen, 1969; Walter, 1980a; Thompson
et al., 1982). One of the determinants of the success of a matched case-control study
is the feasibility of finding controls with the desired confounder profiles. Methods are
available for estimating the expected number of matches (McKinlay, 1974; Walter,
1980b). For further reading on matching see, for example, Anderson et al. (1980),
Breslow and Day (1987), and Rothman and Greenland (1998).

When each case is matched to a single control, the case-control study is said to
have a matched-pairs design. Pair-matching can be thought of as an extreme form
of stratification in which each stratum consists of a single case and a single control.
In keeping with the notation of Chapter 5, we denote the number of matched-pairs
by J. If J is sufficiently large the sparse-strata conditions discussed in Section 5.2
are satisfied and so asymptotic conditional and MH-RBG methods can be used to
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TABLE 11.6 Configurations: Matched-Pairs
Case-Control Study

fan f(1.0
Disease  Exposure Disease  Exposure
yes  no yes  no
case 1 0 1 case 1 0 1
control 1 0 1 control 0 1 1
2 0 2 1 1 2
fo.1) f0.0)
Disease  Exposure Disease  Exposure
yes  no yes  no
case 0 1 1 case 0 1 1
control 1 0 1 control 0 1 1
1 1 2 0 2 2

analyze the data. The formulas given in Chapter 5 can be applied directly, but the
matched-pairs design results in certain simplifications, as demonstrated below.

Corresponding to each matched pair, there is a 2 x 2 table of the form of Table
5.1 with m;j = myj = 1. Since each case and each control is either exposed or un-
exposed, there are four possible configurations as shown in Table 11.6. For example,
the upper right configuration corresponds to a matched pair in which the case has
a history of exposure but the control does not. We refer to this configuration as be-
ing of type (1, 0) and denote the number of matched-pairs having this configuration
by f(1,0). Similar definitions apply to the remaining configurations. The configura-
tions of type (1, 0) and (0, 1) are said to be discordant because the members of each
matched pair have different exposure histories. The configurations of type (1, 1) and
(0, 0) are referred to as concordant. The configurations are depicted more compactly
in Table 11.7, and the numbers of configurations are given in Table 11.8. Since there
are J strata (matched pairs), we have J = f(;.1) + 1,00 + f0,1) + f0,0)-

TABLE 11.7 Configurations: Matched-Pairs Case-Control Study

(m=0,1)
fam fo.m
Disease Exposure Disease Exposure
yes no yes no
case 1 0 1 case 0 1 1
control m l-m |1 control m l—-m |1

1+m 1-m 2 m 2—-m 2
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TABLE 11.8 Observed Numbers
of Configurations: Matched-Pairs
Case-Control Study

Case Control
exposed  unexposed

exposed fa.n f(1,0)

unexposed fo,1) f0.0

11.2.1 Asymptotic Conditional Analysis
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In this section we apply the asymptotic conditional methods of Section 5.2 to the
matched-pairs design (Miettinen, 1970). We assume in what follows that the odds
ratio is homogeneous across strata. For a configuration of type (1,1), denote the mean
(5.21) and variance (5.22) of the corresponding hypergeometric distribution by E(j 1)

and V(1,1, and likewise for the other configurations. We then have

OR OR
E - V, -~
1= orR+1 O = OR¥ 1)?
OR OR
Bov=torr7 Von= (OR+ 1)2
E((),()) =0 V((),()) =0.

(11.4)

It is not surprising that E(; 0y = E(o,1) and V(1,0) = V(0,1) because hypergeometric
means and variances are determined by marginal totals, and the discordant pairs have
the same marginal totals. From (11.4), the left-hand side of the conditional maximum

likelihood equation (5.23) is

ale

fa.n + fa0

and the right-hand side is

[f<1,1)|§<1,1)] + [f(l,O) E(I,O):I + I:f(O,])E(O,l)] + [f(0,0) E(O,O)]

[fa.0 + fo.)] OR:

. OR. + 1

So the conditional maximum likelihood equation is

[fay x 1]+ [fao x 1]+ [fon x 0] + [fo0 x 0]
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[fa.0) + fo.n] OR:

f = —— 11.5
(1,0) O= 1 1 (11.5)
which can be solved for 6\Rc to give
~ f
OR, = 100
fo.n

(Kraus, 1960). In Appendix H we show that, if the unconditional maximum likeli-

hood approach is used, the estimate is é\Ru = [ fa.0)/fo, 1)]2 (Andersen, 1973, p. 69;
Breslow, 1981). This demonstrates that unconditional methods can lead to bias when
applied in the sparse-strata setting. From (5.25) and (11.4),

V. = [f(1,1)0(1,1)] + I:f(l,O)\A/(l,O)jI + [f(o,l)\7<o,1)] + [f(0,0>\7(0,0)]

[fo.o + fon]OR _ fu.0 fou
(OR: + 1)? fa.o + fon

So, from (5.26), an estimate of var(log (/)\&) is

1

var(logOR.) =
fa.o  fon

and a (1 — o) x 100% confidence for OR is obtained by exponentiating

i 1 1
10g|: (1’0)]:|:Za/2 —t+ .
fo.n fa.o  fon

From (11.4), under the hypothesis of no association Hyp : OR = 1, the expected
counts and variance estimates are

&1y =1 vo1,1) =0

R 1 R 1
€1,0 = 5 V0(1,0) = 2
N 1 . 1
€o,1) = 5 V0(0,1) = 2
€000 =0 vo(0,0) = 0.

It follows that

A 1 1
& =[fan x 1]+ |:f(1,0) X §i| + |:f(0,1) X 5} +[f0.0) x 0]

fa,0 + fon
2

fa,n +
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and

1 1
f)o. = [f(l,l) X 0] + |:f(1,0) X Z] + |:f((),1) X Z:| =+ [f((),o) X 0]

_ fao+ fon
———

So the Mantel-Haenszel test of association (5.29) is

2
fa,0 — fon]

X2 _ [fao ~ fon] df = 1).
™ a0+ fo

An important observation is that the formulas for (/)\RC, var(log (/)\Rc), and anh use
data from discordant pairs only. This means that information collected from concor-
dant pairs, which may represent much of the effort going into the study, is ignored.
Estimates of the odds ratio have been developed which make use of data on concor-
dant as well as discordant pairs (Liang and Zeger, 1988; Kalish, 1990). Since all the
data are used, the variance of the resulting odds ratio estimate is reduced compared
to 6\RC. However, this gain in efficiency comes at the cost of introducing a degree of
bias into the odds ratio estimate.

Suppose that the pair-matching is broken and that we collapse the data into a
single 2 x 2 table. From Table 11.8 the number of cases with a history of exposure
is f1,1y + f(1,0), the number of controls with a history of exposure is f1,1y + f(0,1),
and so on. The resulting crude table is given in Table 11.9. Note that the sum over
all interior cells in Table 11.9 is 2J, the number of subjects in the study. The crude
asymptotic unconditional estimate of the odds ratio is

or_ Lfan+ fao][foo + foo]

~[fon + foo][fan + fon]

It can be shown that OR is biased toward the null compared to the stratified esti-
mate OR, (Siegel and Greenhouse, 1973; Armitage, 1975; Breslow and Day, 1980,
§7.6). An illustration is provided in Example 13.3. This is another manifestation of

TABLE 11.9 Observed Counts after Breaking
Matches: Matched-Pairs Case-Control Study

Disease Exposure
yes no

case fa,n + fa0 | fo.n+ fo0 | I

control f(l,l) + f(O,l) f(l,O) + f(()’()) J
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the inequalities relating OR and 6 that were discussed in Section 2.4.5, where OR
and 6 now represent the crude and pair-matched odds ratios, respectively. To trans-
late the results of Section 2.4.5 into the present context, the roles of E and D must
be reversed, so that 71} and 72j become probabilities of exposure. Note that for the
matched-pairs design, p1j = P2j = 1/J and so (2.15) simplifies accordingly. Liang
(1987) describes a test of homogeneity which is applicable to the matched-pairs de-
sign.

11.2.2 Mantel-Haenszel and Robins-Breslow—Greenland Estimates

To derive the Mantel-Haenszel estimate of the odds ratio and the RBG variance
estimate for matched-pairs case-control data, we argue as in the preceding section
and obtain

fa,0) fo.1 fa,0
= —’ = —’ T. = —’
Re 2 S 2 2

It follows that

~ f
ORup = —==
fo.n
and
— ~ 1
var(logORyh) = (11.6)

fao  fon

These are precisely the estimates based on the asymptotic conditional approach.

11.2.3 Conditional Methods for Discordant Pairs

The asymptotic conditional, Mantel-Haenszel, and RBG estimates considered above
are based exclusively on discordant pairs. Another method of analyzing matched-
pairs case-control data begins by conditioning on the observed number of discordant
pairs f(1.0) + f(0,1) (Miettinen, 1970). For a given discordant pair, either the case or
the control has a history of exposure. Let IT denote the probability that in a discordant
pair it is the case who has been exposed. From (5.20) and in the notation of (11.4),
the hypergeometric probabilities are P19y = OR/(OR+1) and P(o,1) = 1/(OR+1).
Therefore

. P(l,()) _ OR
Pa,0) + Po,y  OR+1

(11.7)
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and so

I
OR= ——. (11.8)
1-1I
Therefore the odds ratio we wish to estimate is equal to the odds from a binomial
distribution with parameters (IT,r), where r = f(; 0y + fo,1). With a = f(1,0) we
have the estimate

. a f
fo?2_ (1,0)
r fa,0+ fon
and so
- f f
OR=—— =10

-1 fon
It follows from (3.12) that an estimate of var(log (S\R) is

1 1

var(logOR) = — = + :
g na -ty fao  fon

From (11.7), OR = 1 is equivalent to I1p = 1/2. Based on (3.9), a test of association
is

,  {1—1/2%  [fae - fon]’

L= = df =1)
1/(4r) fa,00 + fo.n

which is referred to as McNemar’s test (McNemar, 1947). It is of note that the
above formulas are identical to those based on the asymptotic conditional, Mantel—
Haenszel, and RBG methods. A feature of the present approach is that it is amenable
to exact binomial calculations, an option that is useful when the number of discordant
pairs is small.

Example 11.3 (Estrogen-Endometrial Cancer) Table 11.10 gives data from a

matched-pairs case-control study investigating estrogen use as a risk factor for en-

TABLE 11.10 Observed Counts of Matched-Pairs:
Estrogen—Endometrial Cancer

Case Control
exposed unexposed

exposed 12 43

unexposed 7 121
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TABLE 11.11 Observed Counts
after Breaking Matches:
Estrogen—Endometrial Cancer

Cancer Estrogen
yes no
case 55 128 183

control 19 164 183

dometrial cancer (Antunes et al., 1979). These data have been analyzed by Schlessel-
man (1982, p. 209). The point estimate is OR =43 /7 = 6.14, the variance estimate
is var(log éT?) = (1/43) + (1/7) = .166, and the 95% confidence interval for OR is
[2.76, 13.66]. The test of association is X = (43—7)2/(43+7) = 25.92 (p < .001).
So there is considerable evidence that estrogen use is associated with an increased
risk of endometrial cancer. Based on (3.3) and (3.4), with a = 43 and r = 50, the
exact 95% confidence interval for IT is [.733, .942]. Transforming using (11.8), the
exact 95% confidence interval for ORis [2.74, 16.18], which is somewhat wider than
the asymptotic interval. If the pair-matching is broken, we obtain Table 11.11, from
which OR = 3.71. The crude estimate of the odds ratio is much smaller than the
matched estimate, suggesting that the matching variables are important confounders.

11.3 ODDSRATIO METHODSFOR (1: M) MATCHED
CASE-CONTROL DATA

The matched-pairs design for case-control studies can be generalized to (1 : M)
matching in which each case is matched to exactly M controls, where M > 1. Cor-
responding to Tables 11.7 and 11.8, with (1 : M) matching we have Tables 11.12
and 11.13. In this notation there are f, gy + f(1,m) concordant matched sets.

TABLE 11.12 Configurations: (1 : M) Matched Case-Control Study (m=0,1,2,..., M)

fa.m) fo.m)
Disease Exposure Disease Exposure
yes no yes no
case 1 0 1 case 0 1 1
control m M —m M control m M—m M

14+m M—m M+1 m M+1-m M+1
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TABLE 11.13 Observed Numbers of Configurations: (1 : M)
Matched Case-Control Study

Case Number of exposed controls
0 1 . m .. M
exposed f(l,O) f(l,l) f(l,m) f(l,M)
unexposed f(o’o) f(O,l) cee f(o’m) s f(()’ M)

11.3.1 Asymptotic Conditional Analysis

The asymptotic conditional formulas for (1 : M) matching given below are due to
Miettinen (1969, 1970); see Appendix H for derivations. The conditional maximum
likelihood equation is

[fa.m=n + fom]m
E f = OR E
.m=D RcmlmORC+M+1—

An estimate of var(log 6&) is

@(logé\Rc) = —

C

where

~ XM: fa,m— 1)+f(0m)]m(M+1—m)
= (MOR. + M + 1 — m)2

The Mantel-Haenszel test of association is

M M 2
fa.m=n + fo.m]m
mh_<2f(],m_l)_z[<mm; m] )/
M=

1 m=1

[fa.m-1 + fom]mM +1 - m)
(M +1)?2

Mz

m=1

11.3.2 Mantel-Haenszel and Robins-Breslow—Greenland Estimates

For (1 : M) matched case-control data, the Mantel-Haenszel odds ratio estimate is

R _ Zn'\L1 fam-ny(M +1—-m)

ORuh =
S > fomm
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and the RBG variance estimate is

Te Ue + Ve W,
1 O
varlogORm) = 325 + 3Ry T2
where
1
Ry = — VS 2_: fam—n(M+1-—m)

M
1
= f m
S M+1m§:l (0,m)

.« = m mZhi:l famn(M+1—m)(M+2—m)
Ve = (M+ )2 Z fo.mm(M —m)
1 M
T M1 mZ::l fom-pMm—-DHM+1-m)
1

M7 )2 Z fo,mm(m+1).

Note that the f(o,0) + f(1,m) concordant matched sets do not contribute terms to the
above formulas. The methods of Sections 11.3.1 and 11.3.2 are generalizations of
the matched-pairs techniques presented earlier, in that when M = 1 the (1 : M)
formulas simplify to the corresponding matched-pairs formulas.

When the number of cases is small, matching several controls to each case pro-
vides a way of increasing the sample size of the study and thereby reducing random
error. The relative efficiency of (1 : M) matching compared to pair-matching equals
2M/(M + 1) (Ury, 1975; Breslow and Day, 1980, p. 169; Walter, 1980a). As M gets
larger, this quantity increases toward a limiting value of 2, but the rate of increase
diminishes rapidly once M exceeds 5. So there is a ceiling beyond which little is to
be gained from recruiting additional controls into a matched case-control study. In
practice it would be unusual to match more than four or five controls to each case.

Even when the study design calls for (1 : M) matching, it may not be possible
to match precisely M controls to each case. This can occur, for example, as a con-
sequence of especially stringent matching criteria or because the population from
which to sample controls is small. The (1 : M) methods can be generalized further
to accommodate variable numbers of controls, but the formulas are even more un-
wieldy. In this situation it is more convenient to apply the sparse-strata methods of
Chapter 5 directly, just as they would be employed in any other stratified analysis.
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TABLE 11.14 Observed Numbers of
Configurations: Estrogen—Endometrial Cancer

Case Number of exposed controls
0 1 2 3 4

exposed 1 1101010 | 2 | 33

unexposed | 0 1 1 1 0 3

Example 11.4 (Estrogen-Endometrial Cancer) The (1:4) matched case-control
data given in Table 11.14 are taken from a study of estrogen use as a risk factor for
endometrial cancer (Mack et al., 1976). These data have been analyzed by Breslow
and Day (1987, p. 175). The conditional maximum likelihood equation is

— 2 22 33 40
31=ORC[A + — + — + — ]
OR.+4 20R.+3 30R.+2 40R.+1

which has the solution ()TR’C = 9.76. From

V. — 976 ( 8 n 66 n 66 n 40 )
T [9.76 + 412~ [2(9.76) + 31>  [3(9.76) + 21>  [4(9.76) + 1]?

=2.58

the asymptotic conditional variance estimate is var(log 6\RC) = 1/2.58 = .387
and the 95% confidence interval for OR is [2.88, 33.03]. By contrast, the Mantel-
Haenszel odds ratio estimate is (/)\Rmh = 12.80/1.20 = 10.67, the RBG variance
estimate is

IS 8.80 40 + 4.00 80
oGy — 448
var(1ogORmh) 2(12.80)2 T 2(12.80)(1.20) T 2(1.20)2

TABLE 11.15 Observed Counts
after Breaking Matches:
Estrogen—Endometrial Cancer

Cancer Estrogen
yes no
case 33 3 36

control 35 1 36
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and the 95% confidence interval for ORis [2.87, 39.60]. The Mantel-Haenszel test of
association is X2, = (31.00 — 19.40)%/7.20 = 18.69 (p < .001). If the matching is
broken, we obtain Table 11.15, from which OR = .314. This estimate is not even on
the same side of 1 as the matched estimates, suggesting that the matching variables
are important confounders.
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CHAPTER 12

Standardized Rates and
Age—Period—Cohort Analysis

The analysis of death rates over time and across geographic regions has an important
place in the surveillance of disease trends. When crude death rates are compared, it is
necessary to account for whatever differences there may be in the age distributions of
the populations; otherwise, spurious conclusions may be reached. In this chapter we
describe age standardization, a classical approach to adjusting for differences in age
and other demographic variables. When age-specific death rates are examined over
time, there is usually a mixing of effects due to (time) period and (birth) cohort. Age—
period—cohort analysis attempts to disentangle the influences of these three time-
related variables on the pattern of death rates. Graphical and multivariate methods of
age—period—cohort analysis are briefly described and their properties are discussed.

12.1 POPULATION RATES

In Section 10.1.2 we defined a rate to be a parameter that can be interpreted as the
number of events in a cohort divided by the corresponding amount of person-time.
The term rate is used throughout epidemiology to denote a variety of different in-
dices, not all of which conform to this usage. Following are a few examples of the
use of this term:

Number of cases dying of the disease
Case fatality rate = ymng

Number of cases

) Number of existing cases at a given time point
Point prevalence rate =

Population at time point

Annual death rate — Number of deaths during a calendar year

Midyear population

.. Number of incident cases during a calendar year
Annual incidence rate = .

Midyear population

249
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For both the case fatality rate and the point prevalence rate, the numerator counts
events occurring to subjects in the denominator; that is, the numerator is “contained
in” the denominator. Accordingly, these quotients should be thought of as probabil-
ities or proportions, not as rates. At first glance it seems that the annual death rate
ought to have a similar interpretation. However, those individuals who die during
the first half of the year are not counted in the midyear population, and so the an-
nual death rate is not a probability. As discussed below, under certain conditions
the midyear population can be viewed as an estimate of the number of person-years
experienced by the population, and so the annual death rate can be interpreted as a
rate in the above sense of the term. Similar remarks apply to the annual incidence
rate.

Usually population rates are based on data for a given calendar year and therefore
are referred to as annual rates. Unless stated otherwise, all rates will be annual rates.
As in Section 11.1.3 we consider the population to be an open cohort. Let D be the
number of events occurring in the population during the year, such as the number of
deaths from a specific cause or the number of incident cases of a particular disease.
If we assume that the event is rare, we can treat D as a Poisson random variable.
Following Section 11.1.3, let r (t) be the population hazard function and let N(t) be
the number of individuals in the population at time t who are at risk of the event.
Given that we are considering the population over a single year, it is reasonable to
invoke the stationary population assumption. Accordingly, we assume that N (t) and
r (t) are independent of t and denote their constant values by N and R, respectively.
It follows that the number of person-years experienced by the population during the
year is N. So D is Poisson with parameters (R, N). We can now apply the methods
of Section 10.1 for the Poisson analysis of a single sample. In particular we have the
estimates R = D /N and var( R) =D /N?Z. It is shown below that this same approach
can be applied to comparative studies.

The data needed to estimate R depends on the event under consideration. If R is
the death rate for all causes, then D is the annual number of deaths. In this case, the
entire population is at risk and so N is the (number of individuals in the) midyear
population. When the event of interest is more narrowly defined, some modification
is necessary. For example, if R is the death rate for a particular age group, the pre-
ceding approach can be used, except that now both D and N are restricted to the
age group in question. This results in what is referred to as an age-specific death
rate. Now suppose that R is the incidence rate for a certain disease. Let | denote
the annual number of incident cases in the population as determined, for example,
by a disease registry. Those members of the population who have already developed
the disease—that is, the prevalent cases—are not included in the population at risk.
Let P denote the number of prevalent cases at midyear and, as before, let N be the
midyear population. Then R=1I /(N — P) is an estimate of the annual incidence
rate. For most diseases, P will be small compared to N, and so for practical purposes
it is sufficient to use the approximation R=I /N.

For the remainder of this chapter we frame the discussion in terms of annual
death rates for all causes, but the concepts carry over immediately to cause-specific
death rates and incidence rates. Most of the discussion will be expressed in terms of
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estimates rather than parameters. For convenience we drop the caret ~ from notation
except for variance estimates.

12.2 DIRECTLY STANDARDIZED DEATH RATE

The following discussion is presented in terms of a given population that we refer to
as population A. Following the notation of Chapter 9, partition the life span into
K + 1 age groups: [Xo, X1), [X1, X2), ..., [Xk, Xk1), - - -, [XK =1, XK, [XK, XK 411,
where Xo = 0 and Xk 1 is the upper limit of the life span. We refer to [Xk, Xk+1)
as the kth age group. For this age group, let Dy be the annual number of deaths in
population A and let Ngk be the midyear population. Evidently, the total number of
deaths in population A over the course of the year is Dy = Zlf:o Dak and the total
midyear population is Ng = ZL(:O Nak. We refer to Ry = Dg/Ng as the crude death
rate and to Rgx = Dak/Nak as the age-specific death rate for the kth age group. Itis
readily demonstrated that

Ra = XK: <Nik> Rak (12.1)
B k=0 Na .

and so the crude death rate is a weighted average of the age-specific death rates,
where the weights Nak/Na are determined by the age distribution of the population.

We now consider methods for comparing death rates in population A to those in
another population, which we refer to as population B. The crude rate ratio compar-
ing population .4 to population B is defined to be

CRR= &
Ro

We are also interested in the age-specific rate ratios Rgk/Rpk. As shown in the fol-
lowing example, crude and age-specific ratios can sometimes lead to contradictory
findings.

Example 12.1 (Hypothetical Data) Table 12.1 gives hypothetical data for two
populations in which there are only two age groups: young and old. The crude
death rates are Ry = .003 and R, = .005, and so the crude rate ratio is CRR =
.003/.005 = .6. However, for both the young and old age groups, the age-specific

TABLE 12.1 Crude and Age-Specific Death Rates for Populations .A and B

Population A Population B
Age group Dak Nak Rak Dpk Npk Rok Rate ratio
Young 18 9,000 .002 2 2,000 .001 2
Old 12 1,000 .012 48 8,000 .006 2

Crude 30 10,000 .003 50 10,000 .005 .6
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rate ratios are Rak/Rpk = 2. Depending on whether we rely on the crude rate ratio
or the age-specific rate ratios, we are led to different conclusions about the mortality
risk in population .4 compared to population B.

The paradoxical findings in Example 12.1 arise because the two populations have
such different age distributions. For each population, the death rate in the older age
group is six times that in the younger age group. However, most of population B
is old and so overall there are more deaths in this population than in population A.
As a result the crude death rate is larger in population 5 than in population A. Since
the deaths rates vary according to age group, and the age distributions are different,
it is appropriate to view age as a confounder of the association between “place of
residence” and mortality risk. We seek a method of comparing overall death rates
across populations which controls for the confounding effects of age.

An approach to the problem is suggested by the form of (12.1) where the age-
specific death rates in the population and the age distribution of the population ap-
pear separately. Specifically, we replace the actual age distribution of the population
with the age distribution of a reference population, which we refer to as the standard
population. In Chapter 13 we discuss briefly the issue of how to select an appropriate
standard population for a given application. Suppose that S is such a standard lPopula—

tion where Ng is the number of individuals in the kth age group and Ng = Nk .-
The directly standardized death rate for population A4 is defined to be
Ras = (— Rak- (12.2)
k=0 NS

Ras) is a weighted average of age-specific death rates, where the weights are given by
the age distribution of the standard population. From (1.8) an estimate of var(Rgs))
is

_ K /N&\?
var(Rys) = Z (W) var(Rak)

k=0 S

= 12.3
Z(NS> Na? (123)

The estimate given by (12.3) may be unreliable when the number of deaths in each
age group is small. Dobson et al. (1991) give a method of estimating the variance
which is suited to such circumstances.

For direct standardization, all that we need to know about the standard population
is its age distribution. So it is not necessary to actually specify the number of indi-
viduals in each age group. Indeed, the standard population need not exist as a real
population and may simply be a particular choice of weights. It is usual to regard
Racs) as the crude death rate for population A that would have been observed if the
age distribution in population .A had been the same as that in the standard population.
In at least one instance the directly standardized death rate has a clear interpretation.
Suppose that we take population A to be the standard population. Then (12.2) and
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(12.3) simplify to Raa) = Ra and var(Raa)) = Da/ Ng. So directly standardizing a
population to itself results in the crude estimates for that population.

The standardized rate ratio for population .A compared to population B is defined
to be the ratio of standardized death rates,

_ Raes) _ ZkK:O Rak Nsk
Roo  Ykeo RokNe

We can think of SRR as an age-adjusted counterpart to CRR. In most applications
the age-specific rate ratios exhibit considerable heterogeneity. Suppose, for purposes
of illustration, that there is homogeneity with Rak/Rok = v for all k, for some
constant . It follows immediately from (12.4) that SRR = . Note that this result is
independent of the choice of standard population. In Example 12.1 the age-specific
rate ratios are both equal to v = 2 and so SRR = 2. An estimate of var(log SRR) is

var(Ra(s) N var(Rps)
(Rags))? (Rues)?

and a (1 — o) x 100% confidence interval for SSRis obtained by exponentiating

[log SRR, log SRR] = 10g(SRR) = Z4/2+/var(log SRR)

SRR

(12.4)

var(log SRR) =

(Rothman and Greenland, 1998, p. 263). Other methods of estimating a confidence
interval for SRR are available (Flanders, 1984).

Direct standardization is most often used to compare a population with itself over
time, or to compare several distinct populations at a given time point. The following
example illustrates how direct standardization can be used to analyze data from a
large cohort study. In practice, a cohort study is more likely to be analyzed using
the methods of the next section. However, for illustrative purposes the example is
provided.

Example 12.2 (Schizophrenia) Table 12.2(a) gives data from a cohort study of
mortality in 2122 males who received treatment for schizophrenia in the province
of Alberta, Canada at some time during 19761985 (Newman and Bland, 1991).
Subjects were identified through clinic records and followed until the end of 1985
using record linkage to the Statistics Canada Mortality Database, a national vital
statistics registry. For the present analysis the endpoint was taken to be death from
any cause. This study is an example of what is termed a retrospective cohort study
because subjects were identified using archival records and followed forward as a
cohort to a recent time point. Also given in Table 12.2(a) are the numbers of deaths
and census counts for Alberta males in 1981. The 1981 population was chosen as the
standard population since 1981 is the midpoint of the period of follow-up. In Tables
12.2(a) and 12.2(b) we use conventional demographic notation for age groups. For
example, 1019 stands for the age group [10.0, 20.0).

In this example we regard the census counts as estimates of person-years in a
stationary population. As can be seen from Table 12.2(a), the distribution of person-
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TABLE 12.2(a) Death and Census Data: Schizophrenia Cohort and Alberta, Males, 1981

Cohort Alberta
Person-years Population
Age group Deaths N (%) Deaths N (%)
10-19 2 285.1 2.3 267 201,825 21.1
20-29 55 4,179.1 33.9 421 263,175 27.5
30-39 32 3,291.2 26.7 306 176,140 18.4
40-49 21 1,994.7 16.2 431 114,715 12.0
50-59 27 1,498.9 12.2 836 93,315 9.7
60-69 19 763.5 6.2 1,364 60,835 6.4
70-79 25 254.4 2.1 1,861 34,250 3.6
80+ 9 46.7 04 1,797 12,990 1.4
Total 190 12,313.5 100 7,283 957,245 100

TABLE 12.2(b) Death Rates and Rate Ratios: Schizophrenia
Cohort and Alberta, Males, 1981

Rate x 103
Age group Cohort Alberta Rate ratio
10-19 7.02 1.32 5.30
20-29 13.16 1.60 8.23
30-39 9.72 1.74 5.60
40-49 10.53 3.76 2.80
50-59 18.01 8.96 2.01
60-69 24.88 22.42 1.11
70-79 98.28 54.34 1.81
80+ 192.93 138.34 1.39
Crude 1543 7.61 2.03

years is different in the cohort compared to the Alberta population. However, other
than the youngest age group, the differences are not great. Table 12.2(b) gives the
age-specific death rates for the two study groups. We observe that the age-specific
rate ratios show considerable heterogeneity, with values ranging from 1.11 to 8.23.
For the remainder of the example we denote the cohort by A, the Alberta population
by B, and let the Alberta population be the standard population S, that is, S = B.
The crude death rates are Ry = 15.43 x 1073 (per year) and R, = Rs = 7.61
%1073, and so the crude rate ratio is CRR = 15.43/7.61 = 2.03. By comparison,
Ra) = 17.62 x 1073 and Ros) = Rb, and so the standardized rate ratio is SRR =
17.62/7.61 = 2.32. Due to the similarity of the person-years distributions noted
above, the crude and standardized rate ratios are close in value. From



STANDARDIZED MORTALITY RATIO 255

(.00173)2  (.0000892)2
(.0176)2 (.00761)2

var(log SRR) = = (.0992)°

the 95% confidence interval for the standardized rate ratio is [1.91, 2.81].

12.3 STANDARDIZED MORTALITY RATIO

Direct standardization is frequently used to compare national populations and, less
often, to compare a cohort to a standard population. To apply direct standardization in
the latter setting it is necessary to have estimates of the age-specific death rates in the
cohort, as was illustrated in Example 12.2. In practice, even when the total number
of deaths in the cohort is reasonably large, there may be few, or even no, deaths in
some of the age groups. In the latter situation the method of direct standardization
effectively drops those age groups from the analysis, thereby wasting information.
‘We now describe indirect standardization, a method that is based on the total number
of deaths in the cohort.

Define age groups for the cohort using the notation of the preceding section, ex-
cept that now let Xk 41 represent the age at which follow-up ends. Let D5 denote the
total number of deaths in the cohort and let Ngx be the number of person-years ex-
perienced by the cohort during the kth age group. As before, S denotes the standard
population. For direct standardization, all that we need to know about the standard
population is its age distribution. By contrast, for indirect standardization we require
the age-specific death rates. For the kth age group, denote the age-specific death rate
in the standard population by Ry« = Dg/Nsc. The “expected” number of deaths in
the cohort is defined to be

K
E, = Z R Nak
k=0

(Veth, 2000). It is sometimes said that Ej is the number of deaths that would have
been observed in the cohort if the age-specific death rates in the cohort had been
equal to the age-specific death rates in the standard population. However, this inter-
pretation is incorrect (Berry, 1983). Assume for the sake of discussion that Rgx > Rg
for all k. If Ry had been equal to R, the observed number of deaths in the kth age
group would not have equaled Rg Nak. This is because a reduction in mortality in the
cohort would have led to an increase in the number of person-years. So Nak under-
estimates the number of person-years that the cohort would have experienced in the
kth age group, and consequently RgNak underestimates the number of deaths that
would have been observed.

The standardized mortality ratio is defined to be the ratio of “observed” to “ex-
pected” numbers of deaths,

Da _ Yoo RakNak

MRy = =2 = .
Ea YKo RaNak

(12.5)
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Reversing the roles of A and S in (12.2) gives Rya = ZIE:O(Nak /Na) R =
Ea/Na. Since Ra@ = Da/Na, it follows that SRy = Rgaa)/Rs@a). This shows
that the standardized mortality ratio is a special case of the standardized rate ratio
(Miettinen, 1972b). It is important to appreciate that, for the standardized mortal-
ity ratio, the weights come from the cohort, not the so-called standard population
(Miettinen, 1972a). For this reason we sometimes use the notation SMRg(5) instead
of SMR;. The indirectly standardized death rate is defined to be SMIR; x R, but in
practice it is usually the standardized mortality ratio which is of primary interest.

When analyzing cohort data using the above methods, it is tempting to compare
standardized mortality ratios across subcohorts. For example, in the study outlined
in Example 12.2 a cohort of female patients with schizophrenia was also followed.
Denote the male and female cohorts by A and B3, respectively, and consider SMRg(a)
and SMRgp,) for some choice of standard population. The notation makes it clear
that, strictly speaking, it is inappropriate to compare the standardized mortality ra-
tios because they are based on different weighting schemes. To further illustrate the
problems that can arise when standardized mortality ratios are compared inappropri-
ately, suppose that Rax/Rpk = ¢ for all k, for some constant . Using (12.5) it is
readily demonstrated that

SMRy(a) _ (ZE:O Rok Nak) / (lefzo R Nak)
MRy, (Zl}fzo Rok ka) / (fo:o Ry ka)

(12.6)

and so SMRga)/SMRg) does not necessarily equal the common age-specific rate
ratio . This is in contrast to the corresponding result for the standardized rate ratio.
When the cohorts have the same person-years distributions, a condition that is often
approximately satisfied in practice, then SMRga)/SMRgp) = 9.

In most applications the age-specific death rates in the standard population and the
person-years distribution in the cohort are known with considerable precision, at least
compared to the number of deaths in the cohort. For this reason it is appropriate to
treat the expected number of deaths in the cohort as a constant. From this perspective,
both SMR; = Da/Ej and Ry = Da/Nj are formally equal to the quotient of a
Poisson random variable and a constant. As a result, the methods of Section 10.1 can
be adapted to the analysis of standardized mortality ratios (Breslow and Day, 1985;
Breslow and Day, 1987, Chapter 2; Clayton and Hills, 1993, §15.6). For example,
from (10.2), an estimate of var(SMIRy) is

Da  SVR

var(SVIRy) = @ = E

(12.7)

From (10.11), a (1 — @) x 100% confidence interval for SVIRy is

== Zy)2
SMR,, SM =SM 1+ .
SR, SVIR.] Ra( ﬁ)
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The hypothesis of no mortality difference between the cohort and the standard pop-
ulation can be tested using (10.12):

Da — Ea)?
x2=% df = 1).
a

When E; < 5, exact methods should be used. From (10.7) and (10.8), an exact test
of the hypothesis of no mortality difference is based on the tail probabilities

E X
exp( Ea>2( 2

and

Da—1 X
1 — exp(—Ea) Z (Ea)

Corresponding to (10.9) and (10.10), an exact (1 — «) x 100% confidence interval
for SMRy is obtained by solving the equations

D=l (QVIR, x Ea)*
E—l—exp( S\/IRaan)Z(Raixa)

and

SM E
E_exp( VIR, x Ea)Z(Raixa)

for SMR, and SMR..

In what follows we consider the cohort and standard population to be the “ex-
posed” and “unexposed” cohorts of Section 10.3, respectively. With age as the
stratifying variable, the standardized mortality ratio (12.5) is seen to be a type of
standardized hazard ratio (10.38). The Mantel-Haenszel estimate of the hazard ratio
(10.37) is I-/|\Rmh = R,/S. Let Nk = Nak + Ng so that, in the notation of this
chapter, R, = ZkK=0(Dak N«)/Nk and S, = ZE:O(DSK Nak)/Nk. Assume that Ngk
is small compared to Nk for all k, as is usually the case in practice. Then N is
approximately equal to Ng, and so, to an approximation, R, = ZkK:o Dak = Dg
and § = ZkK:O(Dsk/Nsk) Nak = Ea. Hence Iq\Rmh = SMR;. Other Poisson meth-
ods discussed in Section 10.3 are readily adapted to the present setting. As part
of the analysis it is important that homogeneity be assessed. In most applications
where the standardized mortality ratio is likely to be used, there will be considerable
heterogeneity, as illustrated by the rate ratios in Table 12.2(b).
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Example 12.3 (Schizophrenia) For the schizophrenia cohort, Dy = 190 and
Ea = 71.10, and so SMR, = 2.67. From var(SMRy) = 190/(71.11)> = .038, the
95% confidence interval for the standardized mortality ratio is [2.29, 3.05]. Based
on the methods of Chapter 10, I:I\Rmh = 2.67, the test of homogeneity is Xﬁ =
111.3 (p < .001), and the test for linear trend is th = 82.49 (p < .001). The
absence of homogeneity is not surprising because the sample sizes are so large that
even a small amount of heterogeneity can be detected. Restricting the above methods
to a single age group, the standardized mortality ratio becomes an age-specific rate
ratio. For the 10-19 age group, D = 2 and E; = .376, and so the asymptotic
approach is not suitable. Based on exact methods, a 95% confidence interval for the
age-specific rate ratio is [.644, 19.21] and, based on the doubling method, the p-value
for the exact test of the hypothesis of no mortality difference is p = .11.

124 AGE-PERIOD-COHORT ANALYSIS

Virtually all causes of death vary by age, and so the analysis of time trends in death
rates often begins with an assessment of age-specific rates. Table 12.3 gives age-
specific death rates for all causes of death in the Canadian female population for
selected age groups and selected years. These data were taken from official Statistics
Canada publications. In Figure 12.1(a) the rates for each age-group are graphed as a
function of time. Each curve corresponds to a column of Table 12.3. The layered ap-
pearance of the curves is consistent with the well known fact that all-cause mortality
increases with age. In Figure 12.1(b) the rates for each year (period) are graphed as a
function of age. In this case, each curve corresponds to a row of Table 12.3. The fan-
shaped appearance of the curves suggests that mortality decreased over successive
time periods.

Under the assumption that there has been no net demographic change in the pop-
ulation due to in- and out-migration, each of the diagonals in Table 12.3 can be given
a cohort interpretation. For example, those individuals in the 30 to 34-year age group
in 1950 who survived for a decade became the 40 to 44-year age group in 1960, and
so on. In Figure 12.1(c), rates are again graphed as a function of age, but now each
curve corresponds to a diagonal of Table 12.3 (not all of which have been graphed).

TABLE 12.3 Age-Specific Death Rates for All Causes
(per 100,000): Canada, Females

Age group
Year 30-34 4044 50-54 60-64 70-74
1950 1.4 3.2 6.6 16.1 42.8
1960 0.9 2.1 53 134 35.1
1970 0.9 2.1 4.9 11.2 29.4
1980 0.7 1.6 4.2 9.8 24.9

1990 0.6 1.2 34 8.4 21.5
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FIGURE 12.1(a) Age-specific death rates (per 100,000) by age group: Canada, females, all causes

Each curve is labeled according to the year in which the cohort was in the 30 to
34-year age group. The appearance of the curves suggests that mortality decreased
across successive cohorts.

The findings in Figures 12.1(a)-12.1(c) described above are referred to as age,
period, and cohort effects, respectively. The existence of an age effect is unquestion-
able, but the issue is not so obvious for period and cohort effects. By definition, a
period effect has an impact on an entire population at a given time point. For ex-
ample, a period effect might result from an outbreak of a new strain of influenza.
By contrast, a cohort effect exerts its influence on particular members of the popula-
tion who then carry the consequences forward in time. For example, a cohort effect
might be observed following a public health program designed to reduce adolescent
smoking. The preceding examples are fairly straightforward, but even here it may
be difficult to separate period from cohort effects. For instance, the smoking cessa-
tion campaign might result in an abrupt, but short-lived, decrease in the number of
smokers in the general population, and so there may be a period as well as a cohort
effect. These observations raise questions about the correct interpretation of Figures
12.1(a)-12.1(c), especially with respect to the relative contributions of period and
cohort effects.

It might be hoped that the problem could be resolved with the aid of a multivariate
model that has terms for age, period, and cohort effects (Clayton and Schifflers, 1987;
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FIGURE 12.1(b) Age-specific death rates (per 100,000) by time period: Canada, females, all causes

Holford, 1991, 1998). Following Section 11.1.3, let r (X, t) be the hazard function in
the population for all-cause mortality, where X is age and t is time. Let X = 0 and
t = 0 correspond to a convenient baseline. The curves in Figures 12.1(b) and 12.1(c)
have a more or less exponential shape and so it is reasonable to define r (X, t) =
exp(u + aX + wt), where u, o, and 7 are constants. Corresponding to Table 12.3,
assume that time is measured in decades. For a given age X, the ratio of the hazard at
timet 4 1 to that at time t isr (X, t + 1) /r (X, t) = €", which we interpret as a period
effect. That is, with each successive decade the age-specific hazard increases by a
factor €, where the increase is the same at every age X. By definition, an individual
alive at age X and time t was born at time Yy = t — X. Substitutingt = X + y in
r(x,t) we can express the hazard function in terms of X and Yy, that is, r (X, y) =
explu + (¢ + m)X 4+ my]. For a given age X, the ratio of the hazard for the cohort
born at time Y + 1 to that born at time y is r (X, Yy + 1)/r (X, y) = €. In this case
we interpret € as a cohort effect. These calculations show that when period and
cohort effects are considered together, a period effect can manifest as a cohort effect,
and conversely. This problem cannot be resolved by considering more complicated
mathematical models. The difficulty lies in the fact that, due to the identity y = t —X,
age, period, and cohort effects are inextricably intertwined, a phenomenon referred
to as the identifiability problem.
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FIGURE 12.1(c) Age-specific death rates (per 100,000) by birth cohort: Canada, females, all causes

In order to separate out age, period, and cohort effects—that is, solve the iden-
tifiability problem—it is necessary to incorporate an additional equation into the
age—period—cohort model. The choice of equation rests on substantive knowledge
and is therefore not a statistical issue. For example, if we know from other sources
that the log-age effect is twice the log-period effect, we could substitute the equation
o = 2 into the model. However, it is unusual for such information to be available
and so, unfortunately, age—period—cohort models cannot be relied upon to tease apart
the three time-related effects on mortality.
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CHAPTER 13

Life Tables

Standardization is a computationally convenient method of analyzing mortality data,
but there is the drawback of having to select a standard population. Suppose that it is
desired to assess temporal changes in annual death rates in a given population over
the past few decades, up to and including the current year. In this instance a suitable
choice of standard population would be the current census population. The resulting
standardized death rates could then be interpreted as the (crude) death rates that
would have been observed in the past if earlier age distributions had been the same as
that in the current population. A useful feature of this choice of standard population
is that the standardized death rate for the current year is the actual crude death rate.
When the aim is to compare regions of a country, an appropriate standard would
be the national census population. In practice it is usually not difficult to identify a
suitable standard population for a given study. However, problems can arise when the
analysis needs to be updated—for example, when more recent data become available.
In this case, the earlier choice of standard population may no longer be suitable and,
as a result, the entire collection of standardized rates will need to be recalculated.

In this chapter we present the life table approach to analyzing cross-sectional mor-
tality and morbidity data. An attractive feature of life table methods is that they do
not require a standard population. In addition, life table methods produce a number of
summary indices (in particular, the life expectancy at birth) which have considerable
intuitive appeal. These advantages come at the expense of increased computational
complexity and, more importantly, the need to make strong assumptions about future
trends in mortality and morbidity.

Life tables have a long history in actuarial science and other areas where demo-
graphic projections are made. There is a close connection between life tables and
survival analysis in that both theories are expressed in terms of the follow-up of a co-
hort and both rely on such concepts as the survival function and hazard function. A
practical difference is that the methods of survival analysis are usually applied to data
collected by following a relatively small cohort over a short period of time, whereas
life table methods are generally used to analyze cross-sectional data from a large
population. In this chapter we discuss a number of types of life tables, including the
ordinary, multiple decrement, and cause-deleted life tables. The ordinary life table is
concerned with deaths from all causes and is the one routinely published by govern-
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ment agencies. References for life table theory are Keyfitz (1977), Elandt-Johnson
and Johnson (1980), and Chiang (1984).

13.1 ORDINARY LIFE TABLE

Following Section 11.1.3, we define the all-causes hazard function for the popula-
tion as follows: I (X, t) is the instantaneous probability per unit time that an individual
alive at age X and at time t will die in the next instant. In the demographic and actu-
arial literature, this hazard function is sometimes referred to as the force of mortality.
Consider the (birth) cohort of individuals born into the population at some fixed time
to. When this cohort reaches age X, the time will be ty + X and so the hazard for the
cohort will be rg(X) = r (X, to+X). We refer to rq(X) as the diagonal hazard function.
Here we assume that in- and out-migration in the population have no net effect on
mortality in the cohort. This approach is similar to the analysis of death rates “along
the diagonal” that was presented in Section 12.4. The diagonal approach to demo-
graphic rates is of conceptual interest but has a practical limitation: In order to follow
a cohort into old age it is necessary to base the analysis on a group of individuals that
was born many decades ago.

An alternative is to use data collected at a recent time point. The cross-sectional
hazard function at time ty is defined to be ro(X) = r(X, tp). Recall from Section
11.1.3 that the stationary population assumption requires that features of the popula-
tion be independent of time. We can give r.(X) an interpretation as the hazard func-
tion of a cohort by assuming that the population is stationary with respect to mortality
after time ty. With this assumption, r (X, tp) = r (X, tp + X) and so r.(X) = rq(X);
that is, the cross-sectional and diagonal hazard functions are equal. In this case we
denote the common value of the hazard function by r (X). The obvious problem with
the cross-sectional approach is that we are forced to assume that the population will
be stationary over the life span of the birth cohort, a period that may be in excess
of 100 years. Over the short term, as in a case-control study, the stationary popu-
lation assumption may be justified, but this is no longer true when the time frame
is decades long. Nevertheless, most life table methods are based on cross-sectional
data and rely on the stationary population assumption. The usual approach in life
table analysis is to perform calculations under the stationary population assumption
and then interpret the results in the context of projected mortality trends. This can
be accomplished either using qualitative arguments or based on a formal sensitivity
analysis in which a range of future mortality scenarios are modeled. For example, if
mortality is predicted to decline, life expectancies based on cross-sectional data will
need to be adjusted upward.

Having made the stationary population assumption, we now equate the (birth)
cohort born in the population at time ty to a hypothetical cohort defined to have the
hazard function r (X). This hypothetical cohort is the foundation of the ordinary life
table (OLT) and we refer to it as the OLT cohort. Since the mortality experience of
any cohort is governed entirely by its hazard function, the OLT cohort is equivalent to
the population cohort in terms of mortality. We use the OLT cohort as a convenient
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vehicle for describing the projected mortality experience of the population cohort
under the stationary population assumption. Since the hazard function r (X) is defined
cross-sectionally, the OLT approach allows us to express observations about cross-
sectional mortality in longitudinal terms. However, it must be emphasized that this
is simply a convenient form of expression and is only meaningful to the extent that
the stationary population assumption is valid.

Following the notation of Section 12.2, partition the life span into J + 1 age
groups: [Xo, X1), [X1, X2), ..., [Xj, Xj+1), ..., [X3-1, X3), [X3, Xg41]. As before,
Xo = 0 and X341 is the upper limit of the life span. We refer to [Xj, Xj41) as the jth
age group and denote its length by nj = Xj41 — Xj. In some applications, 1-year age
groups are used, resulting in what is termed a complete ordinary life table. When the
age groups are wider, the ordinary life table is said to be abridged. In the examples to
follow we consider the partition based on ages 0, 1, 5, 10, ..., 80, 85, Xj9, where the
age groups between 5 and 85 are all 5 years long and X9 is left unspecified. The age
groups resulting from this partition can be written as follows: <1, 14, 5-9, 10-14,
..., 80-84, 85+. It must be emphasized that we consider age to be a continuous
variable and so, for example, X3 = 10 is to be interpreted as X3 = 10.0. Recall
from Chapter 12 that the notation 10-14 is an alternate way of writing [10.0,15.0).
Consequently the width of the age group 10-14 is 15.0—10.0 = 5.0, not 14—10 = 4.

Table 13.1 gives a description of the main OLT functions. Observe that r (t) is
now considered to be the hazard function for the OLT cohort. The number of in-
dividuals in the OLT birth cohort, referred to as the radix, is denoted by I(0). The
magnitude of | (0) is unrelated to the number of births in the population. Usually | (0)
is defined to be some large number such as 100,000, but this is arbitrary. S(X) equals
the probability that a member of the OLT cohort will survive to age X. It follows
that the expected number of survivors to age X is [ (X) = 1(0)S(x). For brevity we
drop the reference to “expected” in the terminology for | (X) and the other life table
functions denoting counts. Based on the results in Appendix F and what follows in
this section, it can be shown that all the OLT functions can be expressed in terms of
r(x) and | (0).

TABLE 13.1 Ordinary Life Table Functions (j =0, 1, ..., J)

Function Description
r(x) Hazard function at age X
S(x) Probability of surviving to age X
of Conditional probability of dying in [Xj, Xj 1)
P Conditional probability of surviving [Xj, Xj41)
1(x) Number of survivors to age X
d Number of deaths in [Xj, Xj41)
Lj Number of person-years during [Xj, Xj41)
T(x) Number of person-years after age X

e(x) Life expectancy at age X
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For a given calendar year, let Dj denote the number of deaths in the population
in the jth age group and let Nj denote the number of individuals in the midyear
population (j =0, 1, ..., J). The corresponding annual death rate in the population
is defined to be Rj = Dj/Nj. As in Chapter 12, we drop the caret ~ from notation
and, for example, write Rj instead of FAQJ'. From Table 13.1, dj is the number of
deaths in the OLT cohort in the jth age group and L j is the corresponding number
of person-years. Therefore the OLT death rate for this age group is dj/Lj. Since
r (Xx) is a continuous function, it is not amenable to calculations based on routinely
collected data. For purposes of estimating OLT functions we equate the population
and OLT age-specific death rates. That is, for each age group we define

Dj _ di
j=—=—. (13.1)

Nj L
Identity (13.1) is the fundamental step in the construction of the ordinary life table
from cross-sectional data. In order to proceed it is necessary to make an assumption
about the functional form of | (X) on each of the age groups, except for the last. The
OLT functions for the last age group exhibit special features that apply regardless
of the functional form of | (X). We consider two possible functional forms for | (x),
namely, exponential and linear. Assuming that | (X) is exponential on each age group
(except for the last), we have from Section 10.1.2 that

aj =1 —exp(-NjR)) (13.2)

(j=0,1,..., 3 —1). Now suppose that | (X) is linear on each age group. Using the
results of Appendix F, it can be shown that in general, L j equals the area under the
graph of | (X) between X and Xj 1. Since | (Xj11) = (Xj) —dj =1(xj) —qjl(xj) =
(I = gjpl(x)), it follows that

) + 11X 40)]1n;

B 2

_ Ixp) + (=gl (xjIn;
N 2
12 = agj)n;

=

Lj

(13.3)

From (13.1), (13.3), and dj = qjl (X;), we find that

o il () _ 2
P2 —gpnjl2 T 2 —aqjn;

which can be solved for (j to give

njR;

=TT ORI (13.4)

g
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TABLE 13.2 Steps in the Construction of an Ordinary
Life Table (j =0, 1,...,J)

Step Ordinary Life Table Function
(132)or (13.4) j#1J
1 j=13
2 pj =1-4q
[(xj) =1(0) po p1 -+~ Pj—1
4 dj =qj 1(xj)
5 L=
R
J
6 T(xj) =Y Li
i=]
T(x))
7 eXj) =
(Xj [(x})

(j =0,1,..., 3 — 1). For the last age group, 03 = 1 regardless of the functional
form of | (X) since there are no survivors past age Xj+1. Table 13.2 summarizes the
steps involved in constructing an ordinary life table. The derivation of | (X;) in step 3
uses an argument identical to that leading to (9.4) and (9.13). In step 5, the identity
L; = dj/R; follows directly from (13.1). Since T (X;) is the number of person-years
that will be lived after age Xj, e(Xj) = T(Xj)/I(X]) is the average number of years
that will be lived by those who survive to age Xj; that is, €(Xj) is the life expectancy
at age Xj. For the last age group, | (X3) = dj and Ty = Lj = d3/Ry. It follows that
e(x3) = 1/Rj regardless of the functional form of | (X).

When njR; is small, which is usually the case, (13.2) and (13.4) are both approx-
imately equal to njR;. So it generally makes little practical difference whether the
exponential or linear assumption is used in the construction of the ordinary life table.
This also explains why the common mistake of treating Rj as a probability rarely
leads to serious difficulties.

The OLT cohort will experience | (0) deaths because follow-up continues until all
members of the cohort are dead. The corresponding number of person-years is T (0).
Therefore the crude death rate for the OLT cohort is 1(0)/ T (0) = 1/e(0). Since

dj =1(xj) =1 (Xj41) and | (X341) = 0, we have
J J
Lxp) =D 10g) =141 =) dh. (13.5)

i=j i=j

This is a formal statement of the fact that all members of the OLT cohort who survive
to age Xj will eventually die. Since dj = RjL;j it follows from (13.5) that 1(0) =

Z]J:o RjL j. By definition, T (0) = Z]J:O L and so the crude death rate for the OLT
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cohort is

J
_ 2j=oLiR
— ==
Zj:ol-j

This is a directly standardized death rate for the cross-sectional population, where
standardization is according to the person-years distribution in the OLT cohort.

The ordinary life table can be used to calculate a variety of mortality indices.
As an example, for ages X' < x”, the probability of surviving to X”, given survival
to X/, is 1(X”)/1(X"). Perhaps the most informative mortality index available from
the ordinary life table is e(0), the life expectancy at birth. The virtue of e(0) as a
mortality index is that it summarizes the survival experience of the OLT cohort over
the entire life span. Also of interest is | (65)/1(0), the probability at birth of surviving
to age 65. Evidently the choice of age 65 in this definition is arbitrary.

Roit

Example 13.1 (Ordinary Life Table: Canada, Males, 1991) Table 13.3 gives
the numbers of deaths from all causes, (malignant) neoplasms (140-208), circulatory
diseases (390-459), and injuries (ES800-E999), as well as the census population for
Canadian males in 1991. The numbers in parentheses are the rubrics according to
the ninth revision of the International Classification of Diseases published by the
World Health Organization. The data were obtained from official Statistics Canada

TABLE 13.3 Death and Census Counts: Canada, Males, 1991

k
D]

X Dj Neoplasms Circulatory Injuries N;j

0 1,432 5 20 38 201,600

1 298 29 18 106 774,165
5 197 36 5 91 978,220
10 253 32 10 145 962,925
15 913 50 22 704 958,405
20 1,256 65 33 1,018 985,220
25 1,502 114 59 1,002 1,182,575
30 1,683 152 121 930 1,237,685
35 1,849 230 240 806 1,133,670
40 2,248 462 475 665 1,042,180
45 2,904 846 785 550 824,200
50 3,712 1,311 1,227 444 663,285
55 5,765 2,321 1,955 404 608,085
60 9,073 3,661 3,284 411 571,940
65 12,553 4,786 4,827 367 492,505
70 14,144 4,810 5,753 337 358,950
75 16,081 4,653 6,936 357 252,530
80 14,004 3,414 6,179 330 140,130

85 15,557 2,692 7,176 441 86,305
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TABLE 13.4 Ordinary Life Table: Canada, Males, 1991

X o Pj |(Xj) dj Lj T(x)) e(Xj)

0 .00708 99292 100,000 708 99,646 7,433,920 74.34

1 .00154 99846 99,292 153 396,863 7,334,273 73.87

5 .00101 99899 99,139 100 495,448 6,937,410 69.98
10 .00131 .99869 99,040 130 494,873 6,441,963 65.04
15 .00475 99525 98,910 470 493,373 5,947,089 60.13
20 .00635 99365 98,440 625 490,634 5,453,716 55.40
25 .00633 .99367 97,814 619 487,523 4,963,082 50.74
30 .00678 99322 97,195 659 484,328 4,475,559 46.05
35 .00812 99188 96,536 784 480,722 3,991,231 41.34
40 .01073 .98927 95,752 1,027 476,194 3,510,509 36.66
45 01746 98254 94,725 1,654 469,490 3,034,315 32.03
50 .02760 97240 93,071 2,568 458,934 2,564,825 27.56
55 .04631 95369 90,503 4,191 442,036 2,105,891 23.27
60 07629 92371 86,312 6,585 415,097 1,663,856 19.28
65 11981 .88019 79,727 9,552 374,755 1,248,759 15.66
70 17935 .82065 70,175 12,586 319,411 874,004 12.45
75 27467 72533 57,589 15,818 248,401 554,593 9.63
80 .39979 .60021 41,771 16,700 167,106 306,193 7.33
85 1.0000 0 25,071 25,071 139,087 139,087 5.55

publications. Table 13.4 gives the abridged ordinary life table based on the linear
assumption. Under the stationary population assumption, a male born in Canada in
1991 has a life expectancy at birth of 74.34 years, and 79.73% of the birth cohort
will survive to age 65.

The ordinary life table in the above example is based on the assumption that the
Canadian male population will be stationary over the next 100 years or so. Based
on historical evidence this assumption will almost certainly prove to be false. If past
trends continue, there will be improvements in survival and so the predicted life ex-
pectancy, €(0) = 74.34, is a conservative estimate. A sensitivity analysis provides
insight into the potential impact of declining death rates. Suppose that by the time
the population birth cohort reaches the jth age group the death rate will have de-
creased from Rj in 1991 to ¢} Rj, where 0 < ¢ < 1. To examine the mortality
implications, we construct an ordinary life table as above, but with ¢j R; in place of
R;. Exploring different death rate scenarios provides a range of possibilities for the
survival experience of the population cohort. For example, suppose that the ¢j are
all equal with common value ¢. For Canadian males in 1991, with ¢ = .9, .8, and
.7, the life expectancies at birth are 75.65, 77.15 and 78.89, respectively.

Example 13.2 (Schizophrenia) Table 12.2(b) gives age-specific death rates (by
10-year age groups starting at age 10) for the schizophrenia cohort discussed in Ex-
ample 12.2. It is possible to construct an ordinary life table starting at age 10 using
these death rates, but due to the small numbers of deaths the OLT functions would
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not be reliable. An alternative is to set the ¢ defined above equal to the rate ratios in
Table 12.2(b). Based on the ordinary life table for Canadian males in 1981, the life
expectancy at age 15 is 58.06. After scaling the 1981 death rates using the ¢|, the life
expectancy decreases to 44.75. The interpretation is that schizophrenia developing at
age 15 reduces life expectancy (at age 15) by 13.31 years.

13.2 MULTIPLE DECREMENT LIFE TABLE

The ordinary life table provides a method of analyzing mortality for all causes of
death combined, but gives no information on the contributions of specific causes
of death to overall mortality. A multiple decrement life table (MDLT) describes the
mortality experience of the group of individuals in the OLT cohort who are “due
to die” of a particular cause of death. This approach makes it possible to examine
specific causes of death in relation to overall mortality. The multiple decrement life
table is an example of a competing risks model.

Suppose that all the causes of death have been grouped into K mutually exclu-
sive “causes” (k = 1, 2, ..., K). Following Section 8.4 we define the crude hazard
function for cause k as follows: rK(x, t) is the instantaneous probability per unit time
that an individual alive at age X and at calendar time t will die of cause K in the
next instant “in the presence of other causes of death.” Since the causes of death are
mutually exclusive and exhaustive, it follows from (8.8) that

K
rx,t) = Zrk(x,t). (13.6)
k=1

We now assume that the population is stationary for each of the causes of death.
Arguing as in the preceding section it can be shown that, for each cause of death, the
cause-specific cross-sectional and diagonal hazard functions are equal. Denoting the
common cause-specific hazard function by rk(x), it follows from (13.6) that

K
rex) =Yy r. (13.7)
k=1

Since each member of the OLT cohort must die of one of the causes of death, we
can, in theory, divide the OLT cohort into subcohorts consisting of individuals due to
die of each of the causes. The multiple decrement life table for cause k describes the
mortality experience of the subcohort of the OLT cohort due to die of cause K. For
brevity we refer to this group of individuals as the MDLT cohort (for cause k).
Table 13.5 gives a description of the main MDLT functions. Other than q}‘ the
functions have an interpretation analogous to their counterparts in Table 13.1. For
example, |X(x) is the number of individuals in the MDLT cohort surviving to age X,
and €(x) is their life expectancy. The unique feature of q}‘ = d}( /1(Xj) is that the

denominator is | (Xj) rather than | K(x i) So q'j‘ depends on the survival experience of
the entire cohort and is therefore termed a crude conditional probability.
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TABLE 13.5 Multiple Decrement Life Table Functions for Cause k(j =0, 1,..., J)

Function Description
dk
gk=—L Crude conditional probability of dying in [X;, Xj 1)
J (xj)
dlj( Number of deaths in [Xj, Xj11)
Ik(X) Number of survivors to age X
LIJ-( Number of person-years during [X;, Xj41)
Tk(x) Number of person-years after age X
ek(x) Life expectancy at age X

For a given calendar year, let DE‘ denote the number of deaths in the population in
the jth age group that are due to cause kK (j =0, 1, ..., J). The crude cause-specific
death rate in the population for this age group is defined to be RE‘ = DIJ-‘ /Nj. We use
the term crude because there are competing causes of death in the population, and
this has an impact on the number of deaths that are due to cause K. In this sense, the
term “‘cause-specific” is something of a misnomer (Clayton and Hills, 1993, §7.4).
Since the causes of death are mutually exclusive and exhaustive, it follows that for
each age group we have Dj = ZL(: 1 D'j‘. Therefore

which is the discrete counterpart to (13.7). From Table 13.5, d¥ is the number of
deaths in the MDLT cohort in the jth age group. Recall that Lj is the number of
person-years in the OLT cohort for this age group. So the crude MDLT death rate
for the jth age group is d;-‘ /L. Analogous to the approach taken with the ordinary
life table, we equate the population and MDLT crude death rates for each age group.
That is, for each age group we define

g (13.8)

From qj = dj /I (x}) and g = d¥/I(x;), it follows that

k k
a _ g
— = —. (13.9)
q; d
From (13.1) and (13.8) we have
df D]
- == (13.10)
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DK
_(Pi).,
_(DJ)qJ

(j =0,1,...,J). As in the construction of the ordinary life table we need to make
an assumption about the functional form of | k(X). As explained below, it is conve-
nient to assume that 1¥(x) is linear on each age group. Therefore, for each age group
other than the last, we define

Combining (13.9) and (13.10) gives

=

q

_ 0RO + x40

k
L > 13.11)
(j =0,1,...,3 —1). Since X341 is unspecified, nj cannot be calculated and so
(13.11) does not apply to the last age group. For this age group we define
Dk
LK = (—J)LJ. (13.12)
D,

All members of the MDLT cohort for cause kK who survive to age Xj will eventually
die of this cause, and so, corresponding to (13.5), we have

J
o) = df (13.13)

i=j

TABLE 13.6 Steps in the Construction of the Multiple
Decrement Life Table for Cause kK (j =0, 1, ..., J)

Step MDLT function
DX
1 qk ==L qgi
2 dk=gk10x))
J
3 Kxj) =Y df
i=j
(13.11) | #J
4 Lk =
' olasay j=3
J
5 Thxj) =Y LF
i=j
-|-k Xi
6 e(xj) = %))

IK(xj)
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Table 13.6 summarizes the steps involved in the construction of the multiple decre-
ment life table for cause k.
It follows immediately from the definitions that

K
Lxj) =Y 1%x))
k=1

and
K
Lixj) =Y LKx;)).
k=1

The latter identity is satisfied with the linear assumption but not with the exponen-
tial assumption, which explains the choice of functional form made above. These
and other identities relating OLT and MDLT functions show that the collection of
multiple decrement life tables, one for each cause of death, can be viewed as a strati-
fication of the ordinary life table. Perhaps the most informative mortality index avail-
able from the multiple decrement life table for cause k is €¢(0), the life expectancy
at birth for an individual due to die of cause k. Also of interest is 1¥(0) /1(0), the
probability at birth of eventually dying of cause k.

Example 13.3 (Multiple Decrement Life Table for Neoplasms: Canada, Males,
1991) Table 13.7 gives the multiple decrement life table for neoplasms for Cana-

TABLE 13.7 Multiple Decrement Life Table for Neoplasms: Canada, Males, 1991

X qu( |k(Xj) dlj( LIJ-( Tk(Xj) ek(xj)

0 .00002 27,167 2 27,166 1,990,557 73.27

1 .00015 27,164 15 108,628 1,963,392 72.28

5 .00018 27,150 18 135,702 1,854,764 68.32
10 .00017 27,131 16 135,615 1,719,062 63.36
15 .00026 27,115 26 135,510 1,583,446 58.40
20 .00033 27,089 32 135,365 1,447,937 53.45
25 .00048 27,057 47 135,166 1,312,572 48.51
30 .00061 27,010 59 134,900 1,177,406 43.59
35 .00101 26,950 98 134,508 1,042,506 38.68
40 .00220 26,853 211 133,736 907,998 33.81
45 .00509 26,642 482 132,003 774,262 29.06
50 .00975 26,160 907 128,531 642,259 24.55
55 01864 25,253 1,687 122,045 513,728 20.34
60 .03078 23,565 2,657 111,185 391,683 16.62
65 04568 20,908 3,642 95,438 280,498 13.42
70 .06099 17,267 4,280 75,633 185,060 10.72
75 07948 12,986 4,577 53,490 109,428 8.43
80 09746 8,410 4,071 31,870 55,938 6.65

85 17304 4,338 4,338 24,068 24,068 5.55




274 LIFE TABLES

dian males in 1991, which is based on the data in Table 13.3. Under the stationary
population assumption, 27.17% of males born in Canada in 1991 will die of a neo-
plasm, and for an individual due to die of this cause, the life expectancy at birth is
73.27 years.

13.3 CAUSE-DELETED LIFE TABLE

Having examined overall and cause-specific mortality using ordinary and multiple
decrement life tables, it is natural to inquire what would be the effect on mortality of
eliminating a particular cause of death, say cause k. We denote by r *K(x, t) the hazard
function for the population under the assumption that cause K has been eliminated
(deleted). In this notation, ek stands for “all causes except cause K.” It is tempting
to conclude from (13.6) that r*K(x, t) = r(x,t) — rk(x, t). However, this identity
does not hold without making further assumptions. Following the example of Section
8.4, suppose that myocardial infarction (K = 1) and stroke (k = 2) are two of the
causes of death under consideration. Since these two circulatory conditions have a
number of risk factors in common, interventions designed to reduce the risk of one
will concomitantly reduce the risk of the other. Therefore relox,t) < r(x,t) —
rl(x,t) and re2(x, t) < r(x,t) —r2(x,t).

However, if the K causes of death are independent, the crude hazard functions be-
come net hazard functions and, as a result, the identity rekx, t) =rx, t) —rkix, t)
is satisfied. In practice it is often difficult to guarantee that causes of death are strictly
independent. Grouping together conditions that affect a given body system helps to
ensure that this is at least approximately true. For example, rather than consider my-
ocardial infarction and stroke to be individual causes of death, they could be com-
bined under the broader heading of circulatory conditions. For the remainder of this
section it will be assumed that causes of death are independent. Under the stationary
population assumption we define the cause-deleted hazard function to be

r*Kx) = rx) —rkx).

Letting Dj‘k =D - D'j‘ we define the cause-deleted death rate for the jth age group
tobe Rtk = DI¥/Nj(j =0,1,2,..., ).

The cause-deleted life table (for cause K) is constructed using precisely the meth-
ods described above for the ordinary life table, except that R*K is used in place of
R;. In general we use a superscript K to designate the resulting cause-deleted life
table (CDLT) functions. By definition, 1(0) = 1°¥(0). We can think of the CDLT
cohort as the OLT cohort after cause k has been eliminated. This way of thinking
about the CDLT cohort leads to a number of useful mortality indices. If cause k were
to be eliminated, the life expectancy at birth in the OLT cohort would increase to
e'k(O), and the number of survivors to age 65 would increase to |°k(65). Therefore
the gain in life expectancy at birth would be €*¥(0) — e(0) and, since 1*K(0) = 1(0),
the increase in the probability of surviving to age 65 would be [I*K(65) —1(65)1/1(0).

We now examine the effect of eliminating cause K on the group of individuals
who are due to die of that cause, namely, the MDLT cohort (for cause k). Once cause
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k has been eliminated, these individuals will die of some other cause, and at an age
that is necessarily greater than what would have been the age of death from cause K.
Consider the 1*K(65) — I (65) additional survivors to age 65 in the OLT cohort after
eliminating cause k. Since causes of death are independent, eliminating cause Kk has
no impact on individuals due to die of causes other than cause k. Consequently, all
[*K(65) — 1 (65) additional survivors to age 65 must come from the MDLT cohort. It
follows that, after cause K has been eliminated, the probability that a member of the
MDLT cohort will survive to age 65 increases to

1%(65) + [1°%(65) —1(65)] _ 1X(65) | [I°K(65) —1(65)]
1k(0) 1K) 1%(0)

Therefore, as a result of eliminating cause K, the probability that a member of the
MDLT cohort will survive to age 65 increases by an amount

I°K(65) — 1(65)
1k(0)

Now consider the T'k(O) —T(0) = I(O)[e’k(O) — e(0)] additional person-years
experienced by the OLT cohort as a result of eliminating cause K. Arguing as above,
all of these person-years must be generated by individuals in the MDLT cohort. It
follows that, once cause K has been eliminated, the life expectancy at birth for a
member of the MDLT cohort increases to

1(0)[e*X(0) — e(0)]
1k(0)

k *K(0) —
Twnw%am>am:§@+

Therefore, after eliminating cause K, the life expectancy at birth for a member of the
MDLT cohort will increase by an amount

1(0)[e*X(0) — e(0)]
1X(0)

(Greville, 1948; Newman, 1986).

Example 13.4 Table 13.8 gives the summary mortality indices described above
for circulatory diseases, neoplasms, and injuries for Canadian males in 1991. Circu-
latory diseases account for 40.09% of deaths compared to only 5.73% for injuries.
However, the life expectancy (at birth) for those due to die of circulatory disease is
77.70 years compared to only 52.21 years for those due to die of injuries. We see that
although injuries account for relatively few deaths compared to circulatory diseases,
the loss in life expectancy is substantial as a result of death at a relatively young age.
Note that the life expectancy of those due to die of circulatory disease is greater than
the OLT life expectancy of 74.34 years. This shows that circulatory diseases usually
do not result in premature mortality compared to other causes of death. Eliminating
circulatory diseases as a cause of death would increase overall life expectancy by
6.06 years and would increase the life expectancy of those due to die of this cause by
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TABLE 13.8 Summary Indices of Mortality: Canada, Males, 1991

Summary index Circulatory Neoplasms Injuries
%)

—— x 100% 40.09 27.17 5.73
1(0)

ek(O) 77.70 73.27 52.21
e'k(O) —e(0) 6.06 3.87 1.69
1°K(65) — 1(65

# x 100% 13.03 21.78 55.50

1%(0)
1(0) [€*(0) —
O e O = O] 15.12 14.25 2951
1X(0)

15.12 years, a considerable gain in longevity. On the other hand, eliminating injuries
as a cause of death would increase overall life expectancy by a less impressive 1.69
years due to the relatively small number of deaths due to this cause. However, for
those due to die of an injury, the gain in life expectancy would be a substantial 29.51
years, an increase that is almost double that for circulatory diseases.

134 ANALYSISOF MORBIDITY USING LIFE TABLES

The life table methods described above are concerned with mortality. However, there
are many diseases—for example, arthritis and asthma—which are highly prevalent
and which result in considerable morbidity, but which rarely cause death. The impact
of conditions such as these on the population will be overlooked if the focus is exclu-
sively on mortality. The public heath importance of morbidity has emerged in recent
years as it has come to be realized that increasing the length of life does not neces-
sarily translate into a corresponding increase in the quality of life. In this section we
show how life table methods can be used to describe morbidity in a population.

13.4.1 Lifetime Probability of Developing a Disease

It follows from (13.8) and (13.13) that d¥ = R¥Lj and 1X(0) = Y"j_, R¥L . There-
fore the lifetime probability of dying of cause K is

k J

'ﬂ:LZRij. (13.14)
1) ~10) =

We now extend (13.14) to the analysis of morbidity and derive an estimate of the life-

time probability of developing a given disease. Specifically, we construct an ordinary

life table where “death” consists of either developing the disease or dying of some

other cause, and we construct a multiple decrement life table where “death from
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1
Alive without
the disease

3
Dead from
another disease

4
Dead from
the disease

Alive with
the disease

FIGURE 13.1 Liveand dead states for the lifetime probability of developing a disease

cause k” is defined to be the development of the disease. The following arguments
are related to those of Zdeb (1977).

Consider Figure 13.1, which depicts two live states (alive with the disease and
alive without the disease) and two dead states (dead from the disease and dead from
some other disease). The arrows indicate the possible transitions among the states.
For the jth age group, RI%, RI®, R&, and R#* denote the incidence and death rates
in the population under the stationary population assumption. For example, lez is
the incidence rate for an individual in the population who is at risk of developing
the disease. We assume that at birth all members of the OLT cohort are free of the
disease (state 1). Thereafter, an individua either remainsin state 1 or movesto state
2 or state 3. From state 2 it is possible to move to state 3 or state 4. Note that there
is no arrow going from state 2 back to state 1, and so once the disease developsit is
regarded as being present for life.

We need to estimate lez, Rj13, and RJ-Z3. For the jth age group, let Dj12 be the (an-
nual) number of transitions in the population from state 1 to state 2, with analogous
definitions for Dj13 and Dj23. Let le be the number of individuals in the midyear

population in state 1, with a corresponding definition for N?. Then R{? = D12/N,
le3 = Dj13/N-1, and Rj23 = Dj23/Nj2. In what follows let k denote the disease un-
der consideration. For the jth age group, let I]k be the (annual) number of incident
casesin the population and let ij be the number of prevalent cases at midyear. Then
DI = I¥, N = Nj — Pf, and N? = PF, and s0
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1k

RI2_ I
Nj — Pf

R = D13/(Nj - Pk) and R = D23/Pk Deaths not due to the disease under con-

sderatlon can occur Whether or not the dlsease is present, and so D = D3+ D%,
We now assume that, in each age group, individuals with and without the disease
have the same death rate for other causes of death, that is, RI®* = R It follows
from the preceding identities that

and hence that

We are now able to construct the ordinary and multiple decrement life tables needed
to estimate the lifetime probability of developing the disease. In order to distinguish
the following life table functions from those in previous sections, a superscript *
is added to the notation. For the jth age group, the “overall” and ““cause-specific”
hazard rates are defined to be RY = lez + R]-13 and RE‘* = lez, respectively, that is,

B D3k
Rf=—1 4+ L (13.15)
PN - Pf NJ

and
|k

R 1 13.16
T (13.16)

The lifetime probability of developing the disease is given by

|'<*(0) 1 J n

In practice, estimates of the number of prevalent cases are difficult to obtain. As
illustrated in the example below, unless the disease is especialy prevaent, little bias
is introduced by ignoring prevalence and setting Pk = 0. In this case, R* and R"*
simplify to

k ok
1%+ D!

- = 13.17
=% (13.17)
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and
| K
ke )
R = Ny (13.18)
More elaborate multistate model are available in which individuals move among
various states of health, disease, and death (Chiang, 1968, 1980; Keiding, 1991).

Example 13.5 (Breast Cancer: Canada, Females, 1991) Data on the number of
deaths due to breast cancer, the number of incident cases of breast cancer, and the
census population for Canadian females in 1991 were obtained from official Statis-
tics Canada publications. Data kindly provided by the Northern Alberta Breast Can-
cer Registry were used to estimate the number of prevalent cases of breast cancer in
Canadian femalesin 1991. Under the stationary popul ation assumption and based on
(13.15) and (13.16), 10.92% of females born in Canada in 1991 will develop breast
cancer and 4.06% of them will die of this disease. So 4.06/10.92 = 37.18% of the
birth cohort who develop breast cancer will eventually succumb to this malignancy.
Based on (13.17) and (13.18), the lifetime probability of developing breast cancer
is 10.78%. Breast cancer is one of the more prevalent cancers due to its compara-
tively large incidence rate and relatively good survival. These findings suggest that
it will usually be satisfactory to ignore prevalent cases when estimating the lifetime
probability of developing cancer.

13.4.2 Disability-FreeLife Expectancy

Let 7rj be the proportion of the population in the j th age group who, at a given time
point, have a particular disabling condition, and let L be the person-years lived by
the OLT cohort asdescribedin Section13.1 (j =0, 1, ..., J). Inpractice, 7j would
usually be estimated from a population health survey. To an approximation, 7rj L j is
the number of person-yearsthat the OLT cohort will livein adisabled state during the
jth age group. Therefore the total number of person-years of disability that will be
experienced by the OLT cohort after age X is Zf]: jmiLi.lt followsthat the average
number of yearsthat a member of the OLT cohort will be free of disability after age
Xj IS

T(Xj)—ZiJZJ- miLj

e’(Xj): |(XJ)

J

1
=eXj) — W;m Li

which is referred to as the disability-free life expectancy at age x; (Sullivan, 1971,
Newman, 1988). As in the preceding section, a multistate life table could be em-
ployed to obtain more sophisticated estimates; however, the data necessary for such
an approach are usually unavailable.
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TABLE 13.9 Age-Specific Prevalence Rates of Dementia: Canada, Males, 1994, and
Ordinary Life Table Functions: Canada, Males, 1991

X; T I (x i) Lj T

65 .0087 79,727 374,755 1,248,759
70 .0293 70,175 319,411 874,004
75 .0792 57,589 248,401 5