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Preface to the Second Edition

Four years have passed since the first edition of this book. These years were
“fast time” in the development of new approaches in statistical inference
inspired by learning theory.

During this time, new function estimation methods have been created
where a high dimensionality of the unknown function does not always re-
quire a large number of cbservations in order to obtain a good estimate.
The new methods control generalization using capacity factors that do not
necessarily depend on dimensionality of the space.

These factors were known in the VC theory for many years. However,
the practical significance of capacity control has become clear only recently
after the appearance of support vector machines (SVM). In contrast to
classical methods of statistics where in order to control performance one
decreases the dimensionality of a feature space, the SVM dramatically in-
creases dimensionality and relies on the so-called large margin factor.

In the first edition of this book general learning theory including SVM
methods was introduced. At that time SVM methods of learning were brand
new, some of them were introduced for a first time. Now SVM margin
control methods represents one of the most important directions both in
theory and application of learning.

In the second edition of the bock three new chapters devoted to the
SVM methods were added. They include generalization of SVM method
for estimating real-valued functions, direct methods of learning based on
solving (using SVM) multidimensional integral equations, and extension of
the empirical risk minimization principle and its application to SVM.

The years since the first edition of the book have also changed the general



philosophy in our understanding the of nature of the induction problem.
After many successful experiments with SVM, researchers became more
determined in criticism of the classical philosophy of generalization based
on the principle of Oecam’s razor.

This intellectual determination also is a very important part of scientific
achievement. Note that the creation of the new methods of inference could
have happened in the early 1970: All the necessary elements of the theory
and the SVM algorithm were known. It took twenty-five years to reach this
intellectual determination.

Now the analysis of generalization from the pure theoretical issues be-
come a very practical subject, and this fact adds important details to a
genera) picture of the developing computer learning problem described in
the first edition of the book.

Red Bank, New Jersey Vladimir N. Vapnik
August 1999



Preface to the First Edition

Between 1960 and 1980 a revolution in statistics occurred: Fisher's
paradigm, introduced in the 1920s and 19305 was replaced by a new one.
This paradigm reflects a new answer to the fundamental question:

What must one know a priori about an unknown functional dependency
in order to estimate it on the basis of observations?

In Fisher's paradigm the answer was very restrictive—one must know
almost everything. Namely, one must know the desired dependency up to
the values of a finite number of parameters. Estimating the values of these
parameters was considered to be the problem of dependency estimation.

The new paradigm overcame the restriction of the old one. It was shown
that in order to estimate dependency from the data, it is sufficient to kuow
some general properties of the set of functions to which the unknown de-
pendency belongs.

Determining general conditions under which estimating the unknown
dependency is possible, describing the (inductive) principles that allow one
to find the best approximation to the unknown dependency, and finally
developing effective algorithms for implementing these principles are the
subjects of the new theory.

Four discoveries made in the 1960s led to the revolution:

(i) Discovery of regularization principles for solving ill-posed problems
by Tikhonov, Ivanov, and Phillips.

(ii) Discovery of nonparametric statistics by Parzen, Rosenblatt, and
Chentsov.



(iii) Discovery of the law of large numbers in functional space and its
relation to the learning processes by Vapnik and Chervonenkis.

(iv) Discovery of algorithmic complexity and its relation to inductive in-
ference by Kolmogorov, Solomonoff, and Chaitin.

These four discoveries also form a basis for any progress in studies of learn-
ing processes.

The problem of learning is so general that almost any question that
has been discussed in statistical science has its analog in learning theory.
Furthermore, some very important general results were first found in the
framework of learning theory and then reformulated in the terms of statis-
tics.

In particular, learning theory for the first time stressed the problem
of small sample statistics. It was shown that by taking into account the
size of the sample one can obtain better solutions to many problems of
function estimation than by using the methods based on classical statistical
techniques.

Small sample statistics in the framework of the new paradigm constitutes
an advanced subject of research both in statistical learning theory and in
theoretical and applied statistics. The rules of statistical inference devel-
oped in the framework of the new paradigm should not only satisfy the
existing asymptotic requirements but also guarantee that one does one’s
best in using the available restricted information. The result of this theory
is new methods of inference for various statistical problems.

To develop these metbods (which often contradict intuition), a compre-
hensive theory was built that includes:

(i) Concepts describing the necessary and sufficient conditions for con-
sistency of inference.

(i) Bounds describing the generalization ability of learning machines
based on these concepts.

(iii) Inductive inference for small sample sizes, based on these bounds.

(iv) Methods for implementing this new type of inference.

Two difficulties arise when one tries to study statistical learning theory:
a technical one and a conceptual one—to understand the proofs and to
understand the nature of the problem, its philosophy.

To overcome the technical difficulties one has to be patient and persistent
in following the details of the formal inferences.

To understand the nature of the problem, its spirit, and its philosophy,
one has to see tbe theory as a whole, not only as a collection of its different
parts. Understanding the nature of the problem is extremely important



because it leads to searching in the right direction for results and prevents
searching in wrong directions.

The goal of this book is to describe the nature of statistical learning
theory. I would like to show how abstract reasoning implies new algorithms.
To make the reasoning easier to follow, I made the book short.

I tried to describe things as simply as possible but without conceptual
simplifications. Therefore, the book contains neither details of the theory
nor proofs of the theorems (both details of the theory and proofs of the the-
orems can be found (partly) in my 1982 book Estimation of Dependencies
Based on Empirical Data (Springer) and (in full) in my book Statistical
Learning Theory (J. Wiley, 1998)). However, to describe the ideas with-
out simplifications I nseded to introduce new concepts (new mathematical
constructions) some of which are nontrivial.

The book contains an introduction, five chapters, inforinal reasoning and
comments on the chapters, and a conclysion.

The introduction describes the history of the study of the learning prob-
lem which is not as straightforward as one might think from reading the
main chapters.

Chapter 1 is devoted to the setting of the learning problem. Here the
general model of minimizing the risk functional from empirical data is in-
troduced.

Chapter 2 is prabably both the most important one for understanding
the new philosophy and the most difficult one for reading. In this cbapter,
the conceptual theory of learning processes is described. This includes the
concepts that allow construction of the necessary and sufficient conditions
for consistency of the learning processes.

Chapter 3 describes the nonasymptotic theory of bounds on the conver-
gence rate of the learning processes. The theory of bounds is based on the
concepts obtained from the conceptusl model of learning.

Chapter 4 is devoted to a theory of small sample sizes. Here we introduce
inductive principles for small sample sizes that can control the generaliza-
tion ability.

Chapter 5 describes, along with classical neural networks, a new type of
universa) learning machine that is constructed on the basis of small sample
sizes theory.

Comments on the chapters are devoted to describing the relations be-
tween classical research in mathematical statistics and research in learming
theory.

In the conclusion some apen problems of learning theory are discussed.

The book is intended for a wide range of readers: students, engineers, and
scientists of different backgrounds (statisticians, mathematicians, physi-
cists, computer scientists). Its understanding does not require knowledge
of special branches of mathematics. Nevertheless, it is not easy reading,
since the book does describe a (conceptual) forest even if it does not con-



sider the (mathematical) trees.

In writing this book I had one more goal in mind: I wanted to stress the
practical power of abstract reasoning. The point is that during the last few
years at different computer science conferences, I heard reiteration of the
following claim:

Compler theories do not work, simple algorithms do.

One of the goals of this book is to show that, at least in the problems
of statistical inference, this is not true. I would like to demonstrate that in
this area of science a good old principle is valid:

Nothing is more practical than a good theory.

The book is not a survey of the standard theory. It is an attempt to
promote a certain point of view not only on the problem of learning and
generalization but on theoretical and applied statistics as a whole.

It is my hope that the reader will find the book interesting and useful.
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Introduction:
Four Periods in the Research of the
Learning Problem

In the history of research of the learning problem one can extract four
periods that can be characterized by four bright events:

(i) Constructing the first learning machines,
(i) constructing the fundamentals of the theory,
(ili) constructing neural networks,

(iv) constructing the alternatives to neural networks.

In different periods, different subjects of research were considered to be im-
portant. Altogether this research forms a complicated (and contradictory)
picture of the exploration of the learning problem.

ROSENBLATT’S PERCEPTRON (THE 1960s)

More than thirty five years ago F. Rosenblatt suggested the first model of
a learning machine, called the perceptron; this is when the mathematical
analysis of learning processes truly began.! From tlie conceptual point of

'Note that discriminant analysis as proposed in tlie 1930s by Fisher actually
did not consider the problem of inductive inference (the problem of estimating the
discriminant rules using the examples). This happened later, after Rosenblatt’s
work. In the 1930s discriminant analysis was considered a prablem of construct-
ing a decision rule separating two categories of vectors using given probability
distribution functions for these categories of vectors.



2 Introduction: Four Periods in the Research of the Learning Problem

y = slgn [(w *x) - b]

(b)

(w*xj—b =0

FIGURE 0.1. (a) Model of a neuron. (b) Geometrically, a neuron defines two
regions in input space where it takes the values —1 and I. These regions are
separated by the hyperplane (w-z) - b = 0.

view, the idea of the perceptron was not new. It had been discussed in
the neurophysiologic literature for many years. Rosenblatt, however, did
something unusual. He described the model as a program for computers and
demonstrated with simple experiments that this model can he generalized.
The perceptron was constructed to solve pattern recognition problems; in
the simplest case this is the problem of constructing a rule for separating
data of two different categories using given examples.

The Perceptron Model

To construct such a rule the perceptron uses adaptive properties of the
simplest neuron model (Rosenblatt, 1962). Each neuron is described by
the McCulloch-Pitts model, according to which the neuron has n inputs
¢ = (z'...,7%) € X c R™ and one output y € {-1,1} (Fig. 0.1). The
output i connected with the inputs by the functional dependence

y = sign{(w - z) — b},
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where (u - v) is the inner product of two vectors, & is a threshold value, and
sign(u) = 1 if u > 0 and sign(u) = ~1if © < 0.

Geometrically speaking, the neurons divide the space X into two regions:
a region where the output y takes the value 1 and a region where the output
y takes the value —1. These two regions are separated by the hyperplane

(w-z)-b=0.

The vector w and the scalar b determine the position of the separating
hyperplane. During the learning process the perceptron chooses appropriate
coefficients of the neuron.

Rosenblatt considered a model that is a composition of several neurons:
He considered several levels of neurons, where outputs of neurons of the
previous level are inputs for neurons of the next level (the cutput of one
neuron can be input to several neurons). The last level contains only one
neuron. Therefore, the (elementary) perceptron has n inputs and one out-
put.

Geometrically speaking, the perceptron divides the space X into two
parts separated by a piecewise linear surface (Fig. 0.2). Choosing appro-
priate coefficients for all neurons of the net, the perceptron specifies two
regions in X space. These regions are separated by piecewise linear sur-
faces (not necessarily connected). Learning in this model means finding
appropriate coefficients for all neurons using given training data.

In the 1960s it was not clear how to choose the coefficients simultaneously
for all neurons of the perceptron (the solution came twenty five years later).
Therefore, Rosenblatt suggested the following scheme: to fix the coefficients
of all neurons, except for the last one, and during the training process to
try to find the coefficients of the last neuron. Geometrically speaking, he
suggested transforming the input space X into a new space Z (by choosing
appropriate coefficients of all neurons except for the last) and to use the
training data to construct a separating hyperplane in the space Z.

Following the traditional physiological concepts of learning with reward
and pumshment stimulus, Rosenblatt proposed a simple algorithm for it-
eratively finding the coefficients.

Let

(Ils yl)’ rrey (Ifsyf)

be the training data given in input space and let

(zls yl)s =y (Zts yt)

be the corresponding training data in Z (the vector z; is the transformed
z,;). At each time step k, let one element of the training data be fed into
the perceptron. Denote by w(k) the coefficient vector of the last neuron at
this time. The algorithm consists of the following:
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(b)

FIGURE 0.2. (a) The perceptron is a composition of several neurons. (b) Get
metrically, the perceptron defines two regions in input space where it takes tf
values —1 and i. These regions are separated by a piecewise linear surface.
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(i) If the next example of the training data zxy1,yx4; is classified cor-
rectly, i.e.,
Yk+1 (w(k) e 'Zk+l) > 0,

then the coefficient vector of the hyperplane is not changed,
w(k +1) = w(k).
(i) If, however, the next element is classified incorrectly, i.e.,
Y41 (wi(k) - 2ze41) <0,
then the vector of coefficients is changed according to the rule
w(k +1) = w(k) + Ys12k+1.
(iit) The initial vector w is zero:
w(l) = 0.

Using this rule the perceptron demonstrated generalization ability on sim-
ple examples.

Beginning the Analysis of Learning Processes

In 1962 Novikoff proved the first theorem about the perceptron (Novikoff,
1962). This theorem actually started learning theory. It asserts that if

(i) the norm of the training vectors z is bounded by some constant
R (|2l < R);

(ii) the training data can be separated with margin p:

sup miny;(z; -w) > p;
w 1

(iii) the training sequence is presented to the perceptron a sufficient num-
ber of times,

then after at most
R2
vs (5]
o
corrections the hyperplane that separates the training data will be con-
structed. ’

This theorem played an extremely important role in creating learning
theory. It somehow connected the cause of generalization ability with the
principle of minimizing the number of errors on the training set. As we
will see in the last chapter, the expression [R2/p?| describes an impor-
tant concept that for a wide class of learning machines allows control of
generalization ability.
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Applied and Theoretical Analysis of Learning Processes

Novikoff proved that the perceptron can separate training data. Using ex-
actly the same technique, one can prove that if the data are separable, then
after a finite number of corrections, the Perceptron separates any infinite
sequence of data (after the last correction the infinite tail of data will be
separated without error). Moreover, if one supplies the perceptron with the
following stopping rule:

perceptron stops the learning process if after the correction
number k (k=1,2,...), the next

_1+4+2lnk—Ingy

k= —In(l —¢)

elements of the training data do not change the decision rule
(they are recognized correctly),

then

(i) the perceptron will stop the learning process during the first

1+4lnZ -] 2
po LA o 2
—  —lIn(l-¢) p?

steps,

(ii) by the stopping moment it will have constructed a decislon rule that
with probability 1 — 5 has a probability of error on the test set less
than & (Aizerman, Braverman, and Rozonoer, 1964).

Because of these results many researchers thought that miniinizing the
error on the training set is the only cause of generalization (small proba-
bility of test errors). Therefore, the analysis of learning processes was split
into two branches, call them applied analysis of learning procesges and
theoretical analysis of learning processes.

The philosaphy of applied analysis of the learning process can be de-
scribed as follows:

To get a good generalization it is sufficient to choose the coeffi-
cients of the neuron that provide the minimal number of train-
ing errora. The principle of minimizing the number of training
errors is a self-evident inductive principle, and from the practi-
cal point of view does not need justification. The main goal of
applied analysis is to find methods for constructing the coeffi-
cients simultaneously for all neurons such that the separating
surface provides the minimal number of errors on the training
data.
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The philosophy of theoretical analysis of learning processes is different.

The principle of minimizing the number of training errors is not
self-evident and needs to be justified. It is possible that there
exists another inductive principle that provides a better level
of generalization ability. The main goal of theoretical analy-
sis of learning processes is to find the inductive principle with
the highest level of generalization ability and to construct algo-
rithms that realize this inductive principle.

This book shows that indeed the principle of minimizing the number
of training errors is not self-evident and that there exists another more
intelligent inductive principle that provides a better level of generalization
ability.

CONSTRUCTION OF THE FUNDAMENTALS OF THE
LEARNING THEORY (THE 1960-1970S)

As soon as the experiments with the perceptron became widely known,
other types of learning machines were suggested (such as the Madaline,
constructed by B. Widrow, or the learning matrices constructed by K.
Steinbuch; in fact, they started construction of special learning hardware).
However, in contrast to the perceptron, these machines were considered
from the very beginning as tools for solving real-life problems rather than
a general model of the learning phenomenon.

For solving real-life problems, many computer programs were also de-
veloped, including programs for constructing logical functions of different
types (e.g., decision trees, originally intended for expert systems ), or hid-
den Markov models (for speech recognition problems). These programs also
did not affect the study of the general learning phenomena.

The next step in constructing a general type of learning machine was
done in 1986 when the so-called back-propagation technique for finding the
weights simultaneously for many neurons was ueed. This method actually
inaugurated a new era in the history of learning machines. We will discuss
it in the next section. In this section we concentrate on the history of
developing the fundamentals of learning theory.

[n contrast to applied analysis, where during the time between construct-
ing the perceptron (1960) and implementing back-propagation technique
(1986) nothing extraordinary happened, these years were extremely fruijt-
ful for developing statistical learning theory.
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Theory of the Empirical Risk Minimization Principle

As early as 1968, a philosophy of statistical learning theory had been de-
veloped. The essential concepts of the emerging theory, VC entropy and
VC dimension, had been discovered and mtroduced for the set of indicator
functions (i.e., for the pattern recognition problem). Using these concepts,
the law of large numbers in functional space (necessary and sufficient con-
ditions for uniform convergence of the frequencies to their probabilities)
was found, its relation to learning processes was described, and the main
nonasymptotic bounds for the rate of convergence were obtained (Vapnik
and Chervonenkis, 1968); complete proofs were published by 1971 (Vapnik
and Chervonenkis, 1971). The obtained bounds made the introduction of
a novel inductive principle possible (structural risk minimization inductive
principle, 1974), completing the development of pattern recognition learn-
ing theory. The new paradigm for pattern recognition theory was summa-
rized in a monograph.?

Between 1976 and 1981, the results, originally obtained for the set of
indicator functions, were generalized for the set of real functions: the law
of large numbers (necessary and sufficient conditions for uniform conver-
gence of means to their expectations), the bounds on the rate of uniform
convergence botl for the set of totally bounded functions and for the set
of unbounded functions, and the structural risk minimization principle. In
1979 these Tesults were summarized in a monograph® describing the new
paradigm for the general problem of dependencies estimation.

Finally, in 1989 necessary and sufficient conditions for consistency? of the
empirlcal risk minimization inductive principle and maximum likelihood
method were found, completing the analysis of empirical risk minimization
inductive inference (Vapnik and Chervonenkis, 1989).

Building on thirty years of analysis of learning processes, in the 1990s
the synthesis of novel learning machines controlling generalization ability
began.

These results were inspired by the study of learning processes. They are
the main subject of the book.

2V. Vapnik and A. Chervonenkis, Theory of Pattern Recognition (in Russian),
Nauka, Moscow, 1974.
German translation: W.N. Wapnik, A.Ja. Tscherwonenkis, Theoric der Zei-
denerkennung, Akademia—Verlag, Berlin, 1979.
3V.N. Vapnik, Estimation of Dependencies Bosed on Empirical Data (in Rus-
sian}. Nauka, Moscow, 1979.
English translat\on Vladimir Vapnik, Estimation of Dependencies Based on
bot mpzncal Data, Springer, New York, 1982.
Convergence in probability to the best possible result. An exact definition of
consistency is given in Section 2.1.
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Theory of Solving Ill-Posed Problems

In the 1960s and 1970s, in various branches of mathematics, several ground-
breaking theories were developed that became very important for creating
a new philosophy. Below we list some of these theories. They also will be
discussed in the Comments on the chapters.

Let us start with the regularization theory for the solution of so-called
ill-posed problems.

In the early 1900s Hadamard observed that under some (very general)
circumstances the problem of solving (linear) operator equations

Af=F feF

(finding f € F that satisfies the equality), is ilk-posed; even if there exists
a unique solution to this equation, a small deviation on the right-hand side
of this equation (Fy instead of F', where ||F — Fs|| < é is arbitrarily smal))
can cause large deviations in the solutions (it can happen that ||fs — f|| is
\arge).

In this case if the right-hand side F of the equation is not exact (e.g., it
equals Fj, where Fj differs from F' by some level § of noise), the functions
fs that minimize the functional

R(f) = ||Af ~ Fsl”

do not guarautee a good approximation to the desired sojution even if §
tends to zero.

Hadamard thought that il)-posed problems are a pure mathematical phe-
nomenon and that al) real-life problems are “well-poged.” However, in the
second half of the century a number of very important real-life problems
were found to be ill-posed. In particular, i)-posed problems arise when
one tries to reverse the cause—effect relations: to find unknown causes from
known consequences. Even if the cause—effect relationship forms a one-to-
one mapping, the problem of inverting it can be ill-posed.

For our discussion it is important that one of nrain problems of statistics,
estimating the density function from the data, is ill-posed.

In the middle of the 1960s it was discovered that if instead of the func-
tional R(f) one minimizes another so-called regularized functional

R*(f) = [|Af = Fs|I> + v(8)),

where §(f) is some functional (that belongs to a special type of function-
als) and 4(9) is an appropriately chosen constant (depending on the leve)
of noise), then one obtains a sequence of solutions that converges to the de-
iired one as § tends to zero (Tikhonov, 1963), (Ivanov,1962), and (Phillips,
962).
Regularization theory was one of the first signs of the existence of intel-
ligent inference. It demonstrated that whereas the “self-evident” method
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of minimizing the functional R(f) does not work, the not “self-evident”
method of minimizing the functional R*(f) does.

The influence of the phllosophy created by the theory of solving il}-posed
problems is very deep. Both the regularization philosophy and the regu-
larization technique became widely disseminated in many areas of science,
including statistics. -

Nonparametric Methods of Density Estimation

In particular, the problem of density estimation from a rather wide set of
densities is ill-posed. Estimating densities from some narrow set of densi-
ties (say from a set of densitles determined by a finite number of param-
eters, i.e., from a so-called parametric set of densities) was the subject of
the classical paradigm, where a “self-evident” type of inference (the max-
imum likelihood method) was used. An extension of the set of densities
from which one has to estimate the desired one makes it impossible to
use the “sef-evident” type of inference. To estimate a density from the
wide (nonparametric) set requires a new type of inference that contains
regularization techniques. In the 19608 several such types of (nonparamet-
ric) algorithms were suggested (M. Rosenblatt, 1956), (Parzen, 1962), and
(Chentsov, 1963); in the middle of the 1970s the general way for creating
these kinds of algorithms on the basis of standard procedures for solving
ill-posed problems was found (Vapnik and Stefanyuk, 1978).

Nonparametric methods of density estimation gave rise to statistical al-
gorithms that overcame the shortcomings of the classical paradigm. Now
one could estimate fimctions from a wide set of functions.

Omne has to note, however, that these methods are intended for estimating
a function using large sample sizes.

The Idea of Algorithmic Complexity

Finally, in the 1960s one of the greatest ideas of statistics and informa-
tion theory was suggested: the idea of algorithmic complexity (Solomonoff,
1960), (Kolmogorov, 1965), and (Chaitin, 1966). Two fundamental ques-
tions that at first glance look different mspired this idea:

(i) What is the nature of inductive inference (Solomonoff)?
(ii) What ¢s the nature of randomness (Kolmogorov), (Chaitin)?

The answers to these questions proposed by Solomonoff, Kolmogorov,
and Chaitin started the information theory approach to the problem of
mference.

The idea of the randomness concept can be roughly described as follows:
A rather large string of data forms a random string if there are no algo-
rithms whose complexity is much less than £, the length of the string, that
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can generate this string. The complexity of an algorithm is described by the
length of the smallest program that embodies that algorithm. It was proved
that the concept of algorithmic complexity is universal (it is determined
up to an additive constant reflecting the type of computer). Moreover, it
was proved that if the description of the string cannot be compressed using
computers, then the string possesses all properties of a random sequence.

This implies the idea that if one can significantly compress the descrip-
tion of the given string, then the algorithm used describes intrinsic prop-
erties of the data.

In the 1970s, on the basis of these ideas, Rissanen suggested the mini-
mum description length (MDL) inductive inference for learning problems
(Rissanen, 1978).

In Chapter 4 we consider this principle.

All these new ideas are still being developed. However, they have shifted
the main understanding as to what can be done in the problem of depen-
dency estimation on the basis of a limited amount of empirical data.

NEURAL NETWORKS (THE 1980s)

Idea of Neural Networks

In 1986 several authors independently proposed a method for simultane-
ously constructing the vector coeflicients for all neurons of the Perceptron
using the so-called back-propagation method (LeCun, 1986), (Rumelhart,
Hinton, and Williams, 1986). The idea of this method is extremely sim-
ple. If instead of the McCulloch—Pitts model of the neuron one considers a
slightly modified model, where the discontinuous function sign {(w - z) — b}
is replaced by the continuous so-called sigmoid approximation (Fig. 0.3)

y=S{(w-z)~b)
(here S(u) is a monotonic function with the properties
S(—o0) =—1, §(+0) =1

e.g., S(u) = tanhu), then the composition of the new neurons is a con-
tinuous function that for any fixed z has a gradient with respect to all
coefficients of “all neurons, In 1986 the method for evaluating this gradi-
ent was found.® Using the evaluated gradient one can apply any gradient-
based teclinique for constructing a function that approximates the desired

®The back-propagation method was actually found in 1963 for solving some
control problems (Brison, Denham, and Dreyfuss, 1963) and was rediscovered for
Perceptrons.
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T

S (u)

FIGURE 0.3. The discontinuous function sign{1) = £1 is approximated by the
smooth function S(u).

function. Of course, gradient~based techniques only guarantee finding local
minima. Nevertheless, it looked as if ¢the main idea of applied analysis of
learning processes has been found and that the problem was in its imple-
mentation. -

Simplification of the Goals of Theoretical Analysis

The discovery of the back-propagation technique can be considered as the
second birth of the Perceptron. This birth, however, happened in a comn-
pletely different situation. Since 1960 powerful computers had appeared,
moreover, new branches of science had became involved in research on the
learning problem. This essentially changed the scale and the style of re-
search.

In spite of the fact that one cannot assert for sure that the generalization
properties of the Perceptron with many adjustable neurons is better than
the generalization properties of the Perceptron with only one adjustable
neuron and approximately the same number of free parameters, the scien-
tific community was much more enthusiastic about this new method due
to the scale of experiments. .

Rosenblatt’s first experiments were conducted for the problem of digit
recognition. To demonstrate the generalization ability of the perceptron,
Rosenblat¢ used training data consisting of several hundreds of vectors,
containing several dozen coordinates. In the 1980s and even now in the
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1990s the problem of digit recognition learning continues ¢o be important.
Today, in order to obtain good decision rules one uses tens (even hundreds)
of thousands of observations over vectors with several hundreds of coordi-
nates. This required special organization of the computational processes.
Therefore, in the 1980s researchers in artificial intelligence became the main
players in the computational learning game. Among artificial intelligence
researchers the hardliners had considerable influence. (It is precisely they
who declared ¢hat “Complex theories do not work; simple algorithms do.”)

Ar¢ificial intelligence hardliners approached the learning problem with
great experience in constructing “simple algorithms” for the problems where
theory is very complicated. A¢ the end of the 19605 computer natural lan-
guage translators were promised within a couple of years (even now this
extremely complicated problem is far from being solved); the next project
was constructing a general problem solver; after this came the project of
constructing an automatic controller of large systems, and so on. All of
these projects had little success. The next problem to be investigated was
creating a computational learning technology.

First the hardliners changed the terminology. In particular, the percep-
tron was renamed a neural network. Then it was declared a joint research
program with physiologist, and the study of the learning problem became
less general, more subject oriented. In the 1960s and 1970s the main goal of
research was finding the best way for inductive inference from small sample
sizes. In the 1980s the goal became constructing a model of generalization
that uses the brain.®

The attempt to introduce theory to the artificial intelligence community
was made in 1984 when the probably approximately correct (PAC) model
was suggested.” This model is defined by a particular case of the consis-
tency concept commonly used in statistics in which some requirements on
computational complexity were incorporated.®

In spite of the fact that almost all results in the PAC model were adopted
from statistical learning theory and constitute particular cases of one of its
four parts (namely, the theory of bounds), this model undoubtedly had the

) SO course it is very interesting to know how humans can learn. However, this
is not necessarily the best way for creating an artificial learning machine. 1¢ has
been noted that the study of birds flying was not very useful for constructing the
airplane. )

"L.G. Valiant, 1984, “A theory of learnability,” Commun. ACM 27(1 1), 1134~
1142.

84If the computatlonal requirement is removed from the definition then we
are Jeft with the notion of nonparametric inference in the sense of statistics, as
discussed in particular by Vapnik.” (L. Valiant, 1991, “A view of computatlonal
learning theory,” in ¢he book Computation and Cognition”, Society for Industrial
and Applied Mathematics, Philadelphia, p. 36.)
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merit of bringing the importance of statistical analysis to the attention of
the artificial intelligence community. This, however, was not sufficien¢ to
influence the development of new learning technologies.

Almost ten years have passed since the perceptron was born a second
time. From the conceptual point of view, its second birth was less impor-
tant than the first one. In spite of important achievements in some specific
applications using neural networks, the theoretical results obtained did not
contribute much to general learning theory. Also, no new interesting learn-
ing phenomena were found in experiments with neural nets. The so-called
overfitting phenomenon observed in experiments is actually a phenomenon
of “false structure” known in the theory for sclving M-posed problems.
From the theory of solving ll-posed problems, tools were adopted that
prevent overfitting — using regularization techniques in the algorithms.

Therefore, almost ten years of research in neural nets did not substan-
tially advance the understanding of the essence of learning processes.

RETURNING TO THE ORIGIN (THE 1990S)

In the last couple of years something has changed in relation to neural
networks.

More attention is now focused on the alternatives to neural nets, for ex-
ample, a great deal of effort has been devoted to the study of the radial basis
functions method (see the review in (Powell, 1992)). As in the 1960s, neu-
ral networks are called again multilayer perceptrons. The advanced parts
of statistical learning theory now attract more researchers. In particular
in the last few years both the structural risk minimization principle and
the minimum description length principle have become popular subjects of
analysis. The discussions on small sample size theory, in contrast to the
asymptotic one, became widespread.

It looks as if everything is returning to its fundamentals.

In addition, statistical learning theory now plays a more active role: After
the completion of the general analysis of learning processes, the research in
the area of the synthesis of optimal algorithms (which possess the highest
level of generalization ability for any number of observations) was started.
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These studies, however, do not belong to history vet. They are a subject
of today’s research activities.®

%This remark was was made in 1995. However, after the appearance of the
first edition of ¢his book important changes took place in the development of
new methods of computer learning.

In the Jast five years new ideas have appcared in learning methodology inspired
by statistical learning theory. In contrust to old ideas of constructing learning al-
gorithms that were inspired by a biological analogy to the learning process, the
new ideas were inspired by attempts to minimize theoretical bounds on the error
Tate obtained as a result of formal analysis of ¢he learning processcs. These ideas
(which often imply methods that contradict the old paradigm) result in algo-
rithms ¢hat have not only nice mathematical properties (such as uniqueness of
the solution, simple method of treating a large number of examples, and indepen-
dence of dimensianality of the input space) but also exibit excellen¢ performance:
They outperform the state-of-the-art solutions obtained by the old methods.

Now a new methodological situation in the learning problem has developed
where practical methods are the result of a deep theoretical analysis of the sta-
tistical bounds rather than the result of inventing new smart heuristics.

This fact has in inany respects changed the character of the learning problem.






Chapter 1
Setting of the Learning Problem

In this book we consider the learning problem as a problem of finding a
desired dependence using a limited number of observations.

1.1 FUNCTION ESTIMATION MODEL

We describe the general model of learning from examples through three
components {Fig.1.1): '

(i) A generator (G) of random vectors * € R", drawn independently
from a fixed but unknown probability distribution function F(z).

(il) A supervisor (S) who returns an output value y to every input vector
z, according to a conditional distrihution function! F(y|z), also fixed
but unknown.

(iii) A learning machine (LM) capable of implementing a set of functions
f(z,a), a € A, where A is a set of parameters.?

The problem of learning is that of choosing from the given set of functions
flz,@), a €A, the one that best approximates the supervisor’s response.

1’I_‘his is the general case, which includes the case where the supervisor uses a
ﬁm;:l;lon y = f(z)-
Note that the elements a € A are not necessarily vectors. They can be any
abstract parameters. Therefore, we in fact consider any set of functions.
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FIGURE 1.1. A model of learning from examples. During the learning process,
the learning machine observes the pairs (z,y) (the training set). After training,
the machine must on any given z return a value 3. The goal is to return a value
7 that is close to the supervisor’s response y.

The selection of the desired function is based on a training set of ¢ inde-
pendent and identically distributed (i.i.d.) observations drawn according to
F(z,y) = F(z)F(ylz):

(Ilayl)""a(zbyl)' (11)

1.2 THE PROBLEM OF RISK MINIMIZATION

In order to choose the best available approximation to the supervisor's
response, one measures the loss, or discrepancy, L{y, f(z, @)) between the
respouse y of the supervisor to a given input = and the response f(z, a)
provided by the learning machine. Consider the expected value of the loss,
given by the risk functional

R(a) = / L(y, f(z, a))dF(z.3). (1.2)

The goal is to find the function f(z,ap) that minimizes the risk functional
R(a) (over the class of functions f(z,a), a € A) in the situation where
the joint probability distribution function F(z,y) is unknown and the only
available information is contained in the training set (1.1).

1.3 THREE MAIN LEARNING PROBLEMS

This formulation of the learning problem is rather broad. It encompasses
many specific problems. Consider the main ones: the problems of pattern
recognition, regression estimation, and density estimation.
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1.8.1 Pattern Recognition

Let the supervisor’s output y take only two values y = {0,1} and let
f(z,0), a € A, be a set of indicator functions (functions which take only
two values: zero and one). Consider the following loss function:

L(y, f(z,a)) = { (1) ﬂg;ﬁz zg (1.3)

For this loss function, the functional (1.2) determines the probability of
different answers given by the supervisor and by the indicator function
f(z, ). We call the case of different answers a classification error.

The problem, therefore, is to find a function that minimizes the probabil-
ity of classification error when the probability measure F(z, y) is unknown,
but the data (1.1) are given.

1.3.2 Regression Estimalion

Let the supervisor’s answer y be a real value, and let f(z,a),a € A, be a
set of real functions that contains the regression function

f(z.00) = / y dF(ylz).

It is known that the regression function is the one that minimizes the
functional (1.2) with the following loss function:3

Ly, f(z,a)) = (y ~ f(z,@))*. (1.4)

Thus the problem of regression estimation is the problem of minimizing the
risk functional (1.2) with the loss function (1.4) in the situation where the
probability measure F(z,y) is unknown but the data (1.1) are given.

1.3.3 Density Estimation (Fisher-Wald Setting)

Finally, consider the problem of density estimation from the set of densities
p(z,a),a € A. For this problem we consider the following loss function:

L(p(z,a)) = —log p(z, ). (1.5)

31{ the regression function f(x) does not belong to f(z,a).a € A, then the
function f(z,an) minimizing the functional (1.2) with loss function (1.4) is the
closest to the regression in the metric Lo(F):

~

p(f(2), f(z,a0)) = \/_/’(f(z) - f(x, o0))?dF (z).
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It is known that the desired density minimizes the risk functional (1.2)
with the loas function (1.5). Thus, again, to estimate the density from the
data one has to minimize the risk functional under the condition that the
carresponding probability measure F(z) is unknown, but iid. data

3 PRETIY: 2N

are given.

1.4 THE GENERAL SETTING OF THE LEARNING
PROBLEM

The general setting of the learning problem can be described as follows.
Let the probability measure F(z) be defined on the space Z. Consider the
set of functions Q(z,a), a € A . The goal is to minimize the risk functional

R(o) = /Q(z,a)dF(z), a €A, (1.6)

where the probability measure F(z) is unknown, but an i.i.d. sample
LYy---32¢ (1'7)

is given.

The learning problems considered above are particular cases of this gen-
eral problem of minimizing the risk functional (1.6) on the basis of empirical
data (1.7), where z describes a pair (z,y) and Q(z,a) is the specific loss
function (e.g., one of (1.3), (1.4), or (1.5)). In the following we will de-
scribe the results obtained for the general statement of the problem. To
apply them to specific problems, one has to substitute the corresponding
loss functions in the formulas obtained.

1.5 THE EMPIRICAL RISK MINIMIZATION (ERM)
INDUCTIVE PRINCIPLE

In order to minimize the risk functional (1.6) with an unknown distribution
function F(z), the following inductive principle can be applied:

(1) The risk functional R(a) is replaced by the so-called empirical risk
Sfunctional

£
Rempl@) = 5 3 Q) (18

constructed on the basis of the training set (1.7).
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(ii) One approximates the function Q(z, @) that minimizes risk (1.6) by
the function Q(z, a¢) minimizing the empirical risk (1.8).

This principle is called the empirical risk minimization inductive principle
(ERM principle).

We say that an inductive principle defines a learning process if for any
given set of observations the learning machine chooses the approximation
using this inductive principle. In learning theory the ERM principle plays
a crucial role.

The ERM principle is quite general. The classical methods for the solu-
tion of & specific learning problem, such as the least-squares method in the
problem of regression estimation or the maximum likelihood (ML) method
in the problem of density estimation, are realizations of the ERM principle
for the specific loss functions considered above.

Indeed, by substituting the specific loss function (1.4) in (1.8) one obtains
the functional to be minimized

Sl -

é
Remp(@) = 5 3 (0 — flzi, @),
s=1

which forms the least-squares method, while by substituting the specific
loss function (1.5) in (1.8) one obtains the functional to be minimized

1 [4
Remp(e) = =5 ) _ Inplzi, ).
i=1

Minimizing this functional is equivalent to the ML method (the latter uses
a plus sign on the right-hand side).

1.6 THE FOUR PARTS OF LEARNING THEORY

Learning theory has to address the following four questions:

() What are (necessary and sufficient) conditions for consistency of a
learning process based on the ERM principle?

(if) How fast is the rate of convergence of the learning process?

(iliy How can one control the rate of convergence (the genernlization abil-
ity) of the learning process?

(iv) How can one construct algorithms that can control the generalization

abality?

The answers to these questions form the four parts of learning theory:
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(i) Theory of consistency of learning processes.

(ii) Nonasymptotic theory of the rate of convergence of learning pro-
cesses.

(iii) Theory of controlling the generalization ability of learning processes.
(iv) Theory of constructing learning algorithms.
Each of these four parts will be discussed in the following chapters.
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The setting of learning problems given in Chapter 1 reflects two major
requirements:

(i) To estimate the desired function from a wide set of functions.

(i) To estimate the desired function on the basis of a limited number of
examples.

The niethods developed in the framework of the classical paradigm (cre-
ated in the 1920s and 1930s) did not take into account these requirements.
Therefore, in the 1960s considerable effort was put into both the general-
lzation of classical results for wider sets of functions and the iniprovement
of existing techniques of statistical inference for smuall sample sizes. In the
following we will describe some of these efforts.

1.7 THE CLASSICAL PARADIGM OF SOLVING
LEARNING PROBLEMS

In the framework of the classical paradigm all models of function estimation
are based on the maximum likelihood method. It forms an inductive engine
In the classical paradigm.
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1.7.1 Density Estimation Problem (ML Method)

Let p(z,a),a € A, be a set of density functions wbere (in contrast to the
setting of the prohlem described in this chapter) the set A is necessarily
contained in R" (o is an n-dimensional vector). Let the unknown density
p(z, ap) belongs to this class. The problem is to estimate this density using
iid. data

ZTly---,L¢

(distributed according to this unknown density).

In the 1920s Fisher developed the ML method for estimating the un-
known parameters of the density (Fisher, 1952). He suggested approximat-
ing the unknown parameters by the values that maximize the functional

¢
L(a) = Zlnp(zi,a).
i=1

Under some conditions the ML method is consistent. In the next chapter
we use results on the law of large numbers in functional space to describe
the necessary and sufficient conditions for consistency of the ML method.
In the following we show how by using the ML method one can estimate a
desired function.

1.7.2 Pattern Recognition (Discriminant Analysis) Problem

Using the ML technique, Fisher considered a problem of pattern recognition
(he called it discriminant analysis). He proposed the following model:

There exist two categories of data distributed according to two dif-
ferent statistical laws p) (z,a*) and po(z, 8*) (densities, belonging to
parametric classes). Let the probability of occurrence of the first cat-
egory of data be ¢ and the probability of the second category be
1 — ¢,. The problem is to find a decision ruls that minimizes the
probability of error.

Knowing these two statistical laws and the value q;, one can immediately
construct such a ruls: The smallest probability of error is achieved by the
decision ruls that considers vector x as belonging to the first category if the
probability that this vector belongs to the first category is not less than the
probability that this vector belongs to the second category. This happens
if the following inequality holds:

api(z,a*) > (1— q1)pa(z, 8%).

One considers this ruls in the equivalent form

f(z) = sign {lnpl(x,a"’) —Inpo(z, ) +1n (Iq—lql)} , (1.9)
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called the discriminant function (rule), which assigns the value 1 for rep-
resentatives of the first category and tbe value —1 for representatives of
the second category. To find the discriminant rule one has to estimate two
densities: p(z,a) and p>(z, 3). In the classical paradigm one uses the ML
method to estimate the parameters o* and 8* of these densities.

1.7.8 Regression Estimation Model
Regression estimation in the classical paradigm is based on another modsl,

the so-callsd model of measuring a function with additive noise:

Suppose that an unknown function has the parametric form

fo(z) = f(z,20),

where ap € A is an unknown vector of parameters. Suppose also
that at any point z, one can measure the value of this function with
additive noise:

yi = f(zi,0) + &,

where the noise §; does not depend on z; and is distributed according
to & known density function p(€). The prablem is to estimate the
function f(z, ap) from the set f(z,o), o € A, using the data obtained
by measurements of the function f(z,ap) corrupted with additive
noise,

In this model, using the observations of pairs

(371, yl)! “res (27[, yl)

one can estimate the parameters oy of the unknown function f(z,a) by
the ML method, namely by maximizing the functional

£
Lia) =Y lnpy — f(zi0)).

(Recall that p(¢) is a known function and that £ = y — f(2,q).) Taking
the normal law

©=—=ew{-£}

= expy —=——

P oV2rn Pl 22

with zero mean and some fixed variance as a model of noise, one obtains

tbe least-squares method:

(4

L*( Z — f(z,0))? — £In(V/270).

i=1
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Maximizing L*(c) over parameters a is equivalent to minimizing the func-

tional
£

M(a) =Y (4 — f(zi, 0))?

=)

(the so-called least-squares functional).
Choosing other laws p(€), one can obtain other methods for parameter
estimation.

1.7.4 Narrowness of the ML Method

Thus, in the classical paradigm the solutions to all problems of dependency
estimation described in this chapter are based on the ML method. This
method, however, can fail in the simplest cases, Below we demonstrate
that using the ML method it is impossible to estimate the parameters of a
density that is a mixture of normal densities. To show this it is sufficient
to analyze the simplest case described in the following example.

Example. Using the ML method it is impossible to estimate a density
that is the simplest mixture of two normal densities

plz,a,0) = 1 ex {—(J:_a)z}—{— ! ex {_x_z}
T e U 202 [T P2

where the parameters (a, o) of only one density are unknown.
Indeed for any data z;, ..., z, and for auy given constant A, there exists
such a small o = g¢ that for @ = z; the likelihood will exceed A:

¢
L(a = z1,00) = Zlnp(x,;a =zy1,d0)

i=1
(4

> (govm) 5 oo {-5))

£ 2
_ _Inao—z%—iln2\/21r> A

i=2

4ln 1964 P. Huber extended the classical model of regression estimatlon by
Introducing the so-called robust regression estimation model. According to this
model, instead of an exact model of the noise p(£), one is given a set of density
functions (satisfying quite general condltions) to which this function belongs.
The problem is to construct, for the given parametric set of functlons and for the
given set of density functions, an estimator that possesses the minimax properties
(provides the best approximation for the worst density from the set). The solution
to this problem actually has the following form: Choose an appropriate density
function and then estimate the parameters using the ML method (Huber, 1964).
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From this inequality one concludes that the maximum of the likelihood
does not exist, and therefore the ML method does not provide a solution
to estimating the parameters a and o.

Thus, the ML method can be applied only to a very restrictive set of
desities.

1.8 NONPARAMETRIC METHODS OF DENSITY
ESTIMATION

In the beginning of the 1960s several authors suggested various new meth-
ods, so-called nonparametric methods, for density estimation. The goal of
these methods was to estimate a density from a rather wide set of functions
that is 1ot restricted to be a parametric set of functions (M. Rosenblatt,
1957), (Parzen, 1962), and (Chentsov, 1963).

1.8.1 Parzen’s Windows

Among these methods the Parzen windows method probably is the most
popular. According to this method, one first has to determine the so-called
kernel function. For simplicity we consider a simple kernel function:

1 2
K(z,7) = _nK(“ z ) z € R™,
Y Y

where K(u) is a symmetric unimodal density function.
Using this function one determines the estimator

=

¢
p(z) =5 > K(z,zi7).
g==)
In the 1970s a comprehensive asyniptotic theory for Parzen—type noupara-
metric density estimation was developed (Devroye, 1985). It includes the
following two important assertions:

(i) Parzen’s estimator is cousistent (in the various metrics) for estimating
a density from a very wide class of densities.

(ii) The asymptotic rate of convergence for Parzen’s estimator is optimal
for “smooth” densities.

The same results were obtained for other types of estimators.

Therefore, for both classical models (discriminant analysis and regression
estimation) using nonparametric inethods instead of parametric methods,
One can obtain a good approximation to the desired dependency if the
number of observations is sufficiently large.
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Experiments with nonparametric estimators, however, did not demon-
strate great advantages over old techniques. This indicates that nonpara-
metric methods, when applied to a limited numbers of observations, do not
possess their remarkable asymptotic properties.

1.8.2 The Problem of Densily Estimation Is Ill-Posed

Nonparametric statistics was developed as a number of recipes for density
estimation and regression estimation. To make the theory comprehensive
it was necessary to find a general principle for constructing and analyz-
ing various nonparametric algorithms. In 1978 such a principle was found
(Vapnik and Stefanyuk, 1978).

By definition a density p(z) (if it exists) is the solution of the integral

equation
T
| sy =r), (1.10)
— 00

where F(z) is a probability distribution function. (Recall that in the theory
of prabability one first determimes the probability distribution function, and
then only if the distribution function is absolutely continuous can one define
the density function.)

The general formulation of the density estimation problem can be de-
scribed as follows: In the given set of functions {p(t)}, find one that is a
solution to the Integral equation (1.10) far the case where the probabil-
Ity distribution function F(z) is unknown, but we are given the i.i.d. data
Zy,...,Z¢,... obtained according to the unknown distribution function.

Using these data one can construct a function that is very important in
statistics, the so-called empirlcal distribution function (Fig. 1.2)

[4
Filz) = 5 > 0(z — 2.,

i=]

where 6(u) is the step function that takes the value 1 if v > 0 and 0
otherwise.
The uniform convergence

sup|F(z) - Fe(a)| 2 0
T —00

of the empirical distribution function Fy(x) to the desired function F(z)
constitutes one of the most fundamental facts of theoretical statistics. We
will discuss this fact several times, in the comments on Chapter 2 and in
the comments on Chapter 3.

Thus, the general setting of the density estimation probism (coming from
tbe definition of a density) is the following:
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FIGURE 1.2. The empirical distribution function Fy(z) constructed from the
data z, ...,z approximates the probability distribution function F(r).

Solve the integral equation (1.10) in the case where the proba-
bility distribution function is unknown, but i.i.d. z,...,z,,...
data in accordance to this function are given.

Using these data one can construct the empirical distribution function
Fy(z). Therefore, one has to solve the integral equation (1.10) for the case
where instead of the exact right-hand side, one knows an approximation
that converges uniformly to the unknown function as the number of obser-
vations increases. :

Note that the problem of solving this integral equation in a wide class of
functions {p(¢)} is ill-posed. This brings us to two conclusions:

(i) Generally speaking, the estimation of a density is a hard (ill-posed)
computational problsm.

(ii) To solve this problem well one has to use regularization (i.e., not
“self-evident”) techniques.

It has been shown that all proposed nonparametric algorithms can -be ob-
tained using standard regularization techniques (with different types of
regularizers) and using the empirical distribution function instead of the
unknown one (Vapnik, 1979, 1988).
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1.9 MAIN PRINCIPLE FOR SOLVING PROBLEMS
USING .A RESTRICTED AMOUNT OF INFORMATION

We now formulate the main principle for solving problems using a restricted
amount of informmation:

When solving a given problem, try to avoid solving a more general prob-
lem as an intermediate step.

Although this principle is obvious, it is not easy to follow. For our prob-
lems of dependency estimation this principle means that to solve the prob-
lem of pattern recognition or regression estimation, one must try to find
the desired function “directly” (in the next section we will specify what
this means) rather than first estimating the densities and then using the
estimated densities to construct the desired function.

Note that estimation of densities is a umiversal problem of statistics
(knowing the densities one can solve various problems). Estimation of den-
sities in general is an ill-posed problem; therefore, it requires many of ob-
servations in order to be solved well. In contrast, the problems that we
really need to solve (decision rule estimation or regression estimation) are
quite particular ones; often they can be solved on the basis of a reasonable
number of observations.

To illustrate this idea let us consider the following situation. Suppose oue
wants to construct a decision rule separating two sets of vectors described
by two normal laws: N(p1, 1) and N(uz, £2). In order to construct the dis-
criminant rule (1.9), one has to estimate from the data two n~-dimensional
vectors, the means p) and us, and two 7 X n covariance matrices ), and
35. As a result one obtains a separating polynomial of degree two:

f(x) = sign {%(I —pu)TE (= ) - %(I— p2)TEF (- p2) - C},

C: lz_ll_.lnL

" |Z2] l-q’
containing n(n + 3)/2 coefficients. To construct a good discriminant rule
from the parameters of the unknown normal densities, one needs to estimate
the parameters of the covariance matrices with high accuracy, since the
discriminant function uses inverse covariance matrices (in general, the esti-
mation of a density is an ill-posed problem; for our parametric case it can
give ill-conditioned covariance matrices). To estimate the high-dimensional
covariance matrices well one needs an unpredictably large (depending on
the properties of the actual covariance matrices) number of observations.
Therefore, in high-dimensional spaces the general normal discriminant func-
tion (constructed from two different normal densities) seldom succeeds in
practice. In practice, the linear discriminant function that occurs when the
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two covariance matrices coincide is used, ¥y = ¥ip = X

f(z) = sign {(pz —p)TE e+ %(MTX“‘M) ~ %(MQTZ“ ‘p2) + 0 ¢ 31(11 }
(in this case one has to estimate only n parameters of the discriminant
function).

It is remarkable that Fisher suggested to use the linesr discriminant
function even if the two covariance matrices were different and proposed a
heuristic method for constructing such functions (Fisher, 1952).5

In Chapter 5 we solve a specific pattern recognition problem by con-
structing separating polynomials (up to degree 7) in high-dimensional (256)
space. This is accoinplished only by avoiding the solution of unnecessarily
general problems.

1.10 MODEL MINIMIZATION OF THE RISK BASED
ON EMPIRICAL DATA

In what follows we argue that the setting of learning problems given in this
chapter allows us not only to consider estimating problems in any given
set of functions, but also to implement the main principle for using small
samples: avoiding tlie solution of uunecessarily general problems.

1.10.1 Pattern Recognition

For the pattern recognition problem, the functional (1.2) evaluates the
probability of error for any function of the admissible set of functions. The
problem is to use the sample to find the function from the set of admissible
functions that minimizes the probability of error. This is exactly what we
want to obtain.

1.10.2 Regression Estimation

In regression estimation we minimize functional (1.2) with loss function
(1.4). This functional can be rewritten in the equivalent form

Ro) = /(y~f<x,a))2dp<x,y)

*In the 1960s the problem of constructing the best linear discriminant function
(In the case where a quadratic function is optimal) was solved (Andersen and
Bahadur, 1966). For solving real-Iife problems the linear discriminant functions
usually are used even if it is known that the optimal solution belongs to quadratic
discriminant functions.
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- / (f(z,a) - fol2))2dF(z) + / (y - fol@)PdF(z,y)(1.11)

where fy(z) is the regression function. Note that the second term in (1.11)
does not depend on the chosen function. Therefore, minimizing this func-
tional is equivalent to minimizing the functional

R*(a) = / (f(z,0) — fo(a))*dF(z).

The last functional equals the squared Ly(F) distance between a function
of the set of admissible functions and the regression. Therefore, we con-
sider the following problem: Using the sample, find in the admissible set of
functions the closest one to the regression (in metrics Ly(F)).

If one accepts the La(F) metrics, then the formulation of the regression
estimation problem (minimizing R(a)) is direct. (It does not require solving
a more general problem, for example, finding F(z,y)).)

1.10.3 Density Estimation
Finally, consider the functional

R(a) = — / In p(t, a)dF(2) = — / po(8) In p(t, a)dt.

Let us add to this functional a constant (a functional that does not depend
on the approximating functions)

c= / In po(£)dF(2),

where po(t) and F(t) are the desired density and its probability distribution
function. We obtain

R*(a) = —/lnp(t,a)dF(t) +/lnpg(t)dF(t)

. / In };(Dtig)pg(t)dt.

The expression on the right-hand side is the so-called Kullback-Leibler
distance that is used in statistics for measuring the distance between an
approximation of a density and the actual density. Therefore, we consider
the following problem: In the set of admissible densities find the closest
to the desired one in the Kullback-Leibler distance using a given sample.
If one accepts the Kuilback-Leibler distance, then tbe formulation of the
problem is direct.

The short form of the setting of all these problems is the general model
of minimizing the risk functional on the basis of empirical data.
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1.11 STOCHASTIC APPROXIMATION INFERENCE

To minimize the risk functional on the basis of empirical data, we con-
sidered in Chapter 1 the empirical risk minimization inductive principle.
Here we discuss another general inductive principle, the so-called stochas-
tic approximation method suggested in the 1950s by Robbins and Monroe
(Robbins and Monroe, 1951).

According to this principle, to minimize the functional

R@) = [ @z 0)aF ()
with respect to the parameters o using i.i.d. data
2y, o, 28
one uses the following iterative procedure:
olk+ 1) = a(k) — v grad,Q(z¢, (k)), k=1,2,...,¢, (1.12)

where the number of steps is equal to the number of observations. It was
proven that this method is consistent under very general conditions on the
gradient, grad ,Q(z, ) and the values ;.

Inspired by NovikofF’s theorem, Ya.Z. Tsypkin and M. A. Aizerman started
discussions on consistency of learning processes in 1963 at the seminars of
the Moscow Institute of Control Science. Two general inductive principles
that ensure consistency of learning processes were under investigation:

(i) principle of stochastic approximation, and
(if) principle of empirical risk minimization.

Both inductive principles were applied to the general problem of mini-
mizing the risk functional (1.6) using empirical data. As a result, by 1971
two different types of general Jearning theories had been created:

(i) The general asymptotic learning theory for stochastic approrimation
inductive inference®( Aizerman, Braverman, and Rozonoer, 1965), (Tsyp-
kin, 1971, 1973).

(ii) The general nonasymptotic theory of pattern recognition for ERM in-
ductive inference (Vapnik and Chervonenkis, 1968, 1971, 1974). (By
1979 this theory had been generalized for any problem of minimiza-
tion of the risk on the basis of empirical data (Vapnik, 1979).)

®In 1967 this theory was also suggested by S. Amari (Amari, 1967).
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The stochastic approximation principle is, however, too wasteful: It uses
one element of the training data per step (see (1.12)}). To make it 1ore
economical, one uses the training data many fimes (using many epochs).
In this case the following question arises immediately:

When does one have to stop the training process?

Two answers are possibJe:

(1) When for any element of the training data the gradient is so small
that the Jearning process cannot be continued.

(i) When the learning process is not saturated but satisfies some stopping
criterion.,

It is easy to see that in the first case the stochastic approximation method is
just a special way of minimizing the empirical risk. The second case consti-
tutes a regularization method of minimizing the risk functional.” Therefore,
in the “nonwasteful regimes” the stochastic approximation method can be
explained as either inductive properties of the ERM method or inductive
properties of the regularization method.

To complete the discussion on classical inductive inferences it is neces-
sary to consider Bayesian inference. In order to use this inference one must
possess additional a prior: infonnation complementary to the set of para-
metric functions containing the desired one. Namely, one must know the
distribution function that describes the probability for any function from
the admissible set of functions to be the desired one. Therefore, Bayesian
inference is based on using strong ¢ priort information (it requires that the
desired function belong to the set of functions of the learning machine). In
this sense it does not define a general method for inference. We will discuss
this inference later in the comiments on Chapter 4.

Thus, along with the ERM inductive principle one can use other induective
principles. However, the ERM principle (compared to other ones) looks
mote robust (it uses empirical data better, it does not depend on a prior:
infarmation, and there are clear ways to implement it).

Therefore, in the analysis of learning processes, the key problem became
that of exploring the ERM principle.

"The regularizing property of the stopping criterion in iterative procedures of
salving ill-posed prohlems was observed in the 1950s even before the regulariza-
tion theory for solving ill-posed problems was developed.



Chapter 2

Consistency of Learning Processes

The goal of this part of the theory is to describe the conceptual model
for learning processes that are based on tbe empirical risk minimization
mductive principle. This part of the theory has to explain when a learning
machine that minimizes empirical risk can achieve a smal] value of actual
risk (can generalize) and when it cannot. In other words, the goal of this
part is to describe necessary and sufficient conditions for the consistency
of learning processes that minimize the empirical risk.
The following question arises: .

Why do we need an asymptotic theory (consistency is an asymptotic con-
cept) if the goal is to construct algorithms for learning from a limited num-
ber of observations?

The answer is as follows:

To construct any theory one has to use some concepts in terms of which
the theory is developed. It is extremely important to use concepts that
describe necessary and sufficient conditions for consistency. This guarantees
that the constructed theory is genera] and cannot be improved from the
conceptual point of view.

The most important issue in this chapter is the concept of the VC entropy
of a set of functions in terms of which the necessary and sufficient conditions
for consistency of learning processes are described.

Using this concept we will obtain in the next chapter the quantitative
characteristics on the rate of the learning process that we will use later for
constructing learning algorithms.
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FIGURE 2.1. The learning process is consistent if both the expected risks R{a/)
and the empirical risks Remp(a¢) converge to the minimal possibie value of the
rigk, infaea R(a).

2.1 THE CLASSICAL DEFINITION OF CONSISTENCY
AND THE CONCEPT OF NONTRIVIAL CONSISTENCY

Let Q(z,a;) be a function that minimizes the empirical risk functional

2
Remp = % ZQ(ziaa)
t=<1

for a given set of i.i.d. observations z),...,z,.

Definition. We say that the principle (method) of ERM is consistent
for the set of functions Q(z,a),a € A, and for the probability distribution
funetion F(z) if the following two sequences converge in probability to the
same limit (see the schematic Fig.2.1):

R(ag) > inf R(a), (2.1)
Romp(cte) ti.o inf R(a). (2.2)

In other words, the ERM method is consistent if it provides a sequence of
functions Q(z,ay), £ =1,2,..., for which both expected risk and empirical
risk converge to the minimal possible value of risk. Equation (2.1) ssserts
that the values of achieved risks converge to the best possible, while (2.2)
asserts that one can estimate on the basis of the values of empirical risk
the minimal possible value of the risk.

The goal of this chapter is to describe conditions of consistency for the
ERM method. We would like to obtain these conditions in terms of general
characteristics of the set of functions and the probability measure.
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FIGURE 2.2. A case of trivial consistency. The ERM method is inconsistent
on the set of functions Q(z,a),a € A, and consistent on the set of functions

{6(2)) UQ(%0), a € A.

Uniortunately, for the classical definition of consistency given above, ob-
taining such conditions is impossible, since this definition includes cases of
trivial consistency.

What is a triviel case of consistency?

Suppose we have established that for some set of functions Q(z,0), a €
A, the ERM method is not consistent. Consider an extended set of func-
tions that includes this set of functions and one additional function, ¢(z).
Suppose that the additional function satisfies the inequality

;’211’\ Q(z,a) > ¢(2), Va.

It is clear (Fig. 2.2) that for the extended set of functions (containing ¢(z))
the ERM method will be consistent. Indeed, for any distribution function
and for any number of observations, the minimum of the empirical risk
will be attained on the function ¢(z) that also gives the minimum of the
expected risk.

This example shows that there exist trivial cases of comnsistency that
depend on whether the given set of functions contains a minorizing function.

Therefore, any theory of consistency that uses the classical definition
must determine whether a case of trivial consistency is possible. That means
that the theory should take into account the specific functions in the given
set.
In order to create a theory of consistency of the ERM method that
would not depend on the properties of the elements of the set of functions,
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hut would depend only on the general properties (capacity) of this set of
functions, we need to adjust the definition of consistency to exclude the
trivial consistency cases.

Definition. We say that the ERM method is nontrivially consistent
for the set of functions @(z,a). @ € A, and the probability distribution
function F(z) if for any nonempty subset A(c), ¢ € (—00., 00}, of this set of
functions defined as

Ale) = {a: /Q(z,a)dF(z) >c, 0 €A}

the convergence

. P .
iy Remel®) 0 R 2

is valid.

In other words, the ERM is nontrivially consistent if it provides conver-
gence (2.3) for the subset of functions that remain after the functions with
the smallest values of the risks are excluded from this set.

Note that in the classical definition of consistency described in the pre-
vious section one uses two conditions, (2.1) and (2.2). In the definition of
nontrivial consistency one uses only one condition, (2.3). It can be shown
that condition (2.1) will be satisfied automatically under the condition of
nontrivial consistency.

In this chapter we will study conditions for nontrivial consistency, which
for simplicity we will call consistency.

2.2 THE KEY THEOREM OF LEARNING THEORY

The key theorein of learning theory is the following (Vapnik and Chervo-
nenkis, 1989):

Theorem 2.1. Let Q(z, a), o € A, be a set of functions that satisfy the
condition

A< / Q(z,0)dF(z) <B (A<R(a) <B).

Then for the ERM principle to be consistent, it is necessary and sufficient
that the empirical risk Remp(a) converge uniformly to the actual risk R(a)
over the set Q(z,a), a € A, in the following sense:

llim P{sup (R(a) — Remp(a)) > €} =0, Ve> 0. (2.4)
—oa a€A
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We call this type of uniform convergence uniform one-sided convergence.’
In other words, according to the key theorem, consistency of the ERM
principle is equivalent to existence of uniforni one-sided convergence (2.4).

From the conceptual point of view this theorem is extremely important
because it asserts that the conditions for consistency of the ERM principle
are necessarily (and sufficiently) determined by the “worst” (in sense (2.4))
function of the set of functions Q(z,a), a € A. In other words, according
to this theorem any analysis of the ERM principle must be a “worst case
analysis.”?

2.2.1 Remark on the ML Method

As has been shown in Chapter 1, the ERM principle encompasses the ML
method. However, for the ML method we define another concept of non-
trivial consistency.

Definition. We say that the ML method is nontrivially co:sistent if
for any density p(z,aq), from the given set of densities p(z,a) € A, the
convergence in probability

2
L o1 P .
nf > ;21 (- log p(z;, ) — 3'25\ / (—logp(z, @) p(z, ap)dz

is valid, where x,, ..., Z; is an i.i.d. sample obtained according to the density
po(z).

In other words, we define the ML method to be nontrivially consistent
if it is consistent for estimating any density from the admissible set of
densities.

For the ML method the following key theorem is tTue (Vapuik and Cher-
vonenkis, 1989):

Theorem 2.2. For the ML method to be nontrivially consistent on the
set of densities
O<a<plz,a)<A<oo, a€A,

'In contrast to the so-called uniform two-sided convergence defined by the
€quation
lim P{sup|R(a) — Remp(a)| >¢) =0, Ve > 0.
£— 00 a€A

The following fact confirms the importance of this theorem. Toward the end
of the 1980s and ther beginning of the 1990s several alternative approaches to
!eaming theory were attempted based on the idea that statistical learning theory
15 a theory of “worst-case analysis.”. In these approaches authors expressed a
hope to develop a learning theory for “real-case analysis.” According to the key
theorem, this type of theory for the ERM principle is impossible.
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it 18 necessary aend sufficient that uniform one-sided convergence take place
for the set of risk functions

Q(z,a) = —Inp(z,a), a€A,

with respect to some (any) probabilily density p(z,00), a0 € A.

2.3 NECESSARY AND SUFFICIENT CONDITIONS
FOR UNIFORM TWO-SIDED CONVERGENCE

The key theorem of learning theory replaced the problem of consistency

of the ERM method with the problem of uniform convergence (2.4). To

investigate the necessary and sufficient conditions for uniform convergence,

one considers two stochastic processes that are called empirical processes.
Consider the sequence of random variables

0=1,2,.... (2.5)

Y ¥

[4
/ Qz,0)dF(z) — 5 3 Qe 0)

&' =sup
acA =1

We call this sequence of random variables that depend both on the proba-
bility measure F(z) and on the set of functions Q(z,a), & € A, a two-sided
empirical process. The problem is to describe conditions under which this
empirical process converges in probability to zero. The convergence in prob-
ability of the process (2.5) means that the equality

¢
/Q(z,a)dF(z) - % ZQ(zi,a) > E} =0, Ve>0, (2.6)

lim P < sup
2—00 aEA
holds true.

Along with the empirical process £¢, we consider the one-sided empirical
process given by the sequence of random variables

1 £
g = sup (/Q(zaa)dF(z) -7 gQ(zﬁa)) , =12, (27)

+

where we set
u ifu>0,

(u)+ = { 0 otherwise.

The problem is to describe conditions under which the sequence of random
variables £€§ converges in probability to zero. Convergence in probability of
the process (2.7) means that the equality

?
elirgoP {3‘-6.?\ (/ Q(a)dF(z) — % ;Q(z,-,a)) > 5} =0, Ve >0, (2.8)



2.3. Uniform Two-Sided Convergence 41

holds true. According to the key theorem, the uniform one-sided conver-
gence (2.8) is a necessary and sufficient condition for consistency of the
ERM method.

We will see that conditions for uniform two-sided convergence play an
important role in constructing conditions of uniform one-sided convergence.

2.3.1 Remark on the Law of Large Numbers and Its
Generalization

Note that if the set of functions Q(z,a), @ € A, contains only one element,
then the sequence of random variables ¢£ defined in (2.5) always converges
in probability to zero. This fact constitutes the main law of statistics, tbe
law of large numbers:

The sequence of the means of random variables ¢¢ converges to zero
as the (number of observations) £ increases.

It is easy to generalize the law of large numbers for the case where a set of
functions has a finite number of elements:

The sequence of random variables £ converges in probability to zero
if the set of functions Q(z,a), a € A, conteins a finite number N of
elements.

This case can be interpreted as the law of large numbers in an N-dimensional
vector space (to each function in the set corresponds one coordinate; the
law of large numbers in a vector space asserts convergence in probability
simultaneously for all coordinates).

The problem arises when the set of functions Q(z,a), o € A, has an
infinite number of elements. In contrast to the cases with a finite number
of elements the sequence of random variables £¢ for a set with an infinite
number of elements does not necessarily converge to zero. The problem is

this;

To describe the properties of the set of functions Q(z,a), a € A,
and probability measure F(z) under which the sequence of random
variables £ converges in probability to zero.

In this case one says that the law of large numbers in the functional space
(space of functions Q(z, ), a € A) takes place or that there exists uniform
(two-sided) convergence of the means to their expectation over a given set
of functions.

Thus, the problem of the existence of the law of large numbers in func-
tional space (uniform two-sided convergence of the means to their proba-
bilities) can be considered as a generalization of the classical law of targe
numbers,



42 2. Congistency of Learning Processes

Note that in classical statistics the problem of the existence of uniform
one-sided convergence was not considered; it became important due to the
key theorem pointing the way for analysis of the problem of consistency of
the ERM inductive principle.

Necessary and sufficient conditions for both uniform one-sided conver-
gence and uniform two-sided convergence are obtained on the basis of a
concept that is called the entropy of the set of functions Q(z,0),a € A, on
a sample of size L.

For simplicity we will introduce this concept in two steps: first for the set
of indicator functions (which take only the two values 0 and 1) and then
for the set of real bounded functions.

2.3.2 Entropy of the Set of Indicator Functions

Let Q(z,a), a € A, be a set of indicator functions. Consider a sample
Zyy-r.y2¢.

Let us characterize the diversity of the set of functions Q(z,a),o € A, on
the given set of data by the quantity N4(z1,...,z) that evaluates how
many different separations of the given sample can be done using functions
from the set of indicator functions.

Let us write this in a more formal way. Consider the set of /-dimensional
binary vectors

q@) = (Q(21.0),...,Q(ze,2)), a €A,

that oue obtains when o takes various values from A. Then geometri-
cally speaking, NA(z),..,2) is the number of different vertices of the £
dimensional cube that can be obtained on the basis of the sample z;,..., z¢
and the set of functions Q(z,a) € A (Fig. 2.3).

Let us call the value

HA2q,...,20) =In N2y, ..., z¢)

the random entropy. The random entropy describes the diversity of the set
of functions on the given data. H(z,,...,2¢) is a random variable, since
it was constructed using the i.i.d. data. Now we consider the expectation
of the random entropy over the joint distribution function F(zy,...,2¢):

HM¢) = ElnNMz,. .., 2).

We call this quantity the entropy of the set of indicator functions Q(z, ),
a € A, on samples of size £. It depends on the set of functions Q(z,a),
@ € A, the probability measure, and the number of observatious ¢, and it
describes the expected diversity of the given set of indicator functions an
a sample of size £.
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Q (2 2)

AN

Q(z2. @)

Q (Z], (1)

FIGURE 2.3. The set of ¢-dimensional binary vectors g{a), « € A, is a subset of
the set of vertices of the ¢-dimensional unit cube.

2.8.8 Entropy of the Set of Real Functions

Now we generalize the definition of the entropy of the set of indicator
functions on samples of size £.

Definition. Let A < @Q(2,0) < B, a € A, be a set of bounded loss

functions. Using this set of functions and the training set zy, ..., z¢ one can
construct the following set of /-dimensional vectors:
Q(a) = (Q(Zlaa)"“)Q(zf’a))y o€ A (29)

This set of vectors belongs to the f-dimensional cube (Fig. 2.4) and has
a finite minimal e-net in the metric C (or in the metric L;).? Let N =
NA(g;2y,. .., z2) be the number of elements of the minimal e-net of this set

3The set of vectors g{a), a € A, has a minimal e-net g(a1),. . ., glan) if
(i) There exist N = N%(g; 21,...,2:) vectors g{an),- - -,g({an) such that for

any vector g(a”), &" € A, one can find among these N vectors one g{a,)
that is e-close to g{a") (in a given metric). For the metric C that means

oc(g(a’), glay)) = max, @z, &™) — Q(z:,07)| L €.

(ii) N is the minimum number of vectors that possess this property.



44 2. Consistency of Learning Processes

Q (2 )u)v

q (@), ceA

Q(z, 1)

Q(zy, @)

FIGURE 2.4. Tbe set of ¢/-dimensional vectors g(a), «« € A, belong to an
{-dimensional cube.

of vectors q(a), a € A.

Note that N4 (€5 215 - - ., 2¢) is a random variable, since it was constructed
using random vectors zj,...,2¢. The logarithm of the random value
NMe 21,...,20),

HMes 21,00 2) = IMNAg; 214 - - ., 24),

is called the random VC entropy of the set of functions A < Q(z,a) < B
on the sample z,,..., 2;. The expectation of the random VC entropy

HAe;0) = EHMe3 21, .., 24)

is called the VC entropy® of the set of functions A < Q(z,a) < B, a € A,
on samples of size £. Here the expectation is taken with respect to the
product measure F(2y,...,2)-

Note that the given definition of the entropy of a set of real functions is
a generalization of the definition of the entropy given for a set of indicator

“The VC entropy differs from classical metrical e-entropy
H(e) = In N (¢)
in the following respect: N () is the cardinality of the minimal e-net of the set of

functions @(z,a),a € A, while the VC entropy is the expectation of the diversity
of the set of functions on samples of size £.
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functions. Indeed, for a set of indicator functions the minimal &-net for
£ < 1 does not depend on £ and is a subset of the vertices of the unit cube.
Therefore, for € < 1,

NMeszi,. .y 20) = NMzy, o ),
HMe 21y .0 20) = HM21,- . 22),
HAe,0) = HM9).
Below we will formulate the theory for the set of bounded real functions.

The obtained general results are, of course, valid for the set of indicator
functions.

2.8.4 Conditions for Uniform Two-Sided Convergence

Under some (technical) conditions of measurability on the set of functions
Q(z,a),a € A, the following theorem is true.

Theorem 2.3, For uniform two-sided convergence (2.6) it is necessary

and sufficient that the equality
Ale, ¢
Jim %—) =0, Ve>0, (2.10)

be valid.

In other words, the ratio of the VC entropy to the number of observations
should decrease to zero with increasing numbers of observations.

Corollary. Under some conditions of measurability on the set of indica-
tor functions Q(z,a), a € A, necessary and sufficient condition for uniform
two-sided convergence is

HA(®)

lim —~ =0
—_— 7 !

which is a particular case of equality (2.10).

This condition for uniform two-sided convergence was obtained in 1968
(Vapnik and Chervonenkis 1968, 1971). The generalization of this result for
bounded sets of functions (Theorem 2.3) was found in 1981 (Vapnik and
Chervonenkis 1981).

2.4 NECESSARY AND SUFFICIENT CONDITIONS
FOR UNIFORM ONE-SIDED CONVERGENCE

Uniform two-sided convergence can be described as follows

w7 { up (R(@) ~ Ram(@) > e]or [sg!p (Remle) ~ Rla)) > e] } = 0.
(2.11)
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The condition (2.11) includes uniform one-sided convergence and therefore
forms a sufficient condition for consistency of the ERM method. Note,
however, that when solving learning problems we face an asymmetrical
situation: We require consistency in mintmizing the empirical risk, but we
do not care about consistency with respect to mazimizing the empirical
risk. So for consistency of the ERM method the second condition on the
left-hand side of (2.11) can be violated.

The next theorem describes a condition under which there exists consis-
tency in minimizing the empirical risk but not necessarily in maximizing
the empirical risk (Vapnik and Chervonenkis, 1989).

Consider the set of bounded real functions Q(z,a), @ € A, together with
a new set of functions @*(z,a*),a" € A*, satisfying some conditions of
measurability as well as the following conditions: For any function from
Q(z,a), a € A, there exists a function in Q*(z,a*), a* € A*, such that
(Fig. 2.5)
Q(z,a) - Q*(z,a*) >0, Vz,

/(Q(Z,Ot) —Q*(z,0"))dF(z) < 6. (2.12)

Q (2, @)

\/\/\/\/—Q' (z, @%)

NN

—i
2

FIGURE 2.5. For any function Q(z,a), a € A, one considers a function
Q*(z,a*), a* € A", such that Q*(z,a*) does not exceed Q(z,a) and is close
to it.
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Theorem 2.4. In order for uniform one-sided convergence of empirical
means to their expectations to hold for the set of totally bounded functions
Q(z,a), & € A (2.8}, it is necessary and sufficient that for any positive 6, 7,
and £ theve exist a set of functions Q*(z,a*),a" € A*, satisfying (2.12)
such that the following holds for the e-entropy of the set Q*(z,a),a™ € A™,
on samples of size £:

. HN(e,0)
lim ———— <

Jim — n. (2.13)

In other words, for uniform one-sided convergence on the set of bounded
functions Q(z,a), a € A, it is necessary and sufficient that there exist
another set of functions @*(z,a*), a* € A*, that is close (in the sense of
(2.12)) to Q(2, @), a € A, such that for this'new set of functions, condition
(2.13) is valid. Note that condition (2.13) is weaker than condition (2.10)
in Theorem 2.3.

According to the key theorem, this is necessary and sufficient for consis-
tency of the ERM method.

2.5 THEORY OF NONFALSIFIABILITY

From the formal point of view, Theorems 2.1, 2.3, and 2.4 give a conceptual
model of learning based on the ERM inductive principle. However, both
to prove Theorem 2.4 and to understand the nature of the FRM principle
more deeply we have to answer the following questions:

What happens if the condition of Theorem 2.4 is not valid?
Why is the ERM method not consistent in this cose?

Below, we show that if there exists an g4 such that

. H A(50: 4 )
Jm, T 70
then the learning machine with functions Q(z,a), a € A, is faced with
& situation that in the philosophy of science corresponds to a so-called
lonfalsifiable theory.
Before we describe the formal part of the theory, let us remind the reader
what the idea of nonfalsifiability is.

2.5.1 Kant’s Problem of Demarcation and Popper’s Theory of
Nonfalsifiability

Since the era of ancient philosophy, two models of reasoning have been
accepted:

() deductive, which means moving from general to particular, and



48 2. Consistency of Learning Processes

(ii) inductive, which means mévhg from particular to general.

A model in which a system of axioms and inference rules is defined by
means of which various corollaries (consequences) are obtained is ideal for
the deductive approach. The deductive approach should guarantee that we
obtain true consequences from ¢rue premises.

The inductive approach to reasoning consists in the formation of gen-
eral judgments from particular assertions. However, the general judgments
obtained from true particular assertions are not always true. Nevertheless,.
it is assumed that there exist such cases of inductive inference for which’
generalization assertions are justified.

The demarcation problem, originally proposed by Kant, is a central ques-
tion of inductive theory:

What is the difference between the cases with a justified inductive step
and those for which the inductive step is not justified?

The demarcation problem is usually discussed in terms of the philaso-
phy of natural science. All theories in the natural sciences are the result
of generalizations of observed real facts, and therefore theories are built
using inductive inference. In the history of the natural sciences, there have
been both true theories that reflect reality (say chemistry) and false ones
(say alchemy) that do not reflect reality. Sometimes it takes many years of
experiments to prove that a theory is false.

The question is the following:

Is there a formal way to distinguish true theories from false theories?

Let us assume that meteorology is a true theory and astrology a false
one. What is the formal difference between them?

(i) Is it in the complexity of their models?
(ii) Is it in the predictive ability of their models?
(iif) Is it in their use of mathematics?
(iv) Is it in the level of formality of inference?
None of the above gives a clear advantage to either of these two theories.

(i) The complexity of astrological models is no less than the complexity
of the meteorological models.

(ii) Both theories fail in some of their predictions.
(iif) Astrologers solve differential equations for restoration of the posi-

tions of the planets that are no simpler than the basic equatxons in
meteorology. .
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(iv) Finally, in both theories, inference has the same level of formaliza-
tion. It contains two parts: the formal description of reality and the
informal interpretation of it.

In the 1930s, K. Popper suggested his famous criterion for demarcation
between true and false theories (Popper, 1968). According to Popper, a
necessary condition for justifiability of a theory is the feasibility of its fal-
sification. By the falsification of a theory, Popper means the existence of
a collection of particular assertions that cannot be explained by the given
theory although they fall into its domain. If the given theory can be falsified
it satisfies the necessary conditions of a scientific theory.

Let us come back to our example. Both meteorology and astrology make
weather forecasts. Consider the following assertion:

Once, in New Jersey, in July, there was a tropical rainstorm and then
snowfall.

Suppose that according to the theory of meteorology, this is impossible.
Then this assertion falsifies the theory because if such a situation really
should happen (note that nobody can guarantee with probability one that
this is impossible5), the theory will not be able to explain it. In this case
the theory of meteorology satisfies the necessary conditions to be viewed
as a scientific theory.

Suppose that this assertion can be explained by the theory of astrology.
(There are many elements in the starry sky, and they can be used to create
an explanation.) In this case, this assertion does not falsify the theory. If
there is no example that can falsify the theory of astrology, then astrology,
according to Popper, should be considered a nonscientific theory.

In the next section we deacribe the theorems of nonfalsifiability. We show
that if for some set of functions conditions of uniform convergence do not
Lold, the situation of nonfalsifiability will arise.

2.6 THEOREMS ON NONFALSIFIABILITY

In the following, we show that if uniform two-sided convergence does not
ulﬂre Place, then the method of minimizing the empirical risk is nonfalsifi-
ADle,

\_H___

o "Recall Laplace’s calculations of conditional probability that the sun has risen
a otrow given that it has risen every day up to this day. It will rise for sure
’('U”dl}l_g to the models that we use and in which we believe. However with
pm%’ab‘lhty one we can assert only that the sun has risen every day up to now
iring the thousands of years of recorded history-
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2.6.1 Case of Complete (Popper’s) Nonfalsifiability

To give a clear explanation of why this happens, let us start with the
simplest case. Recall that according to the definition of VC entropy the
following expressions are valid for a set of indicator functions:

HMO) = EmN(2),...,20) and NMa,...,2¢) <28

Suppose now that for the VC entropy of the set of indicator functions
Q(z,a), a € A, the following equality is true:

A
lim 29 =In2.
£—00 ?

It can be shown that the ratio of the entropy to the number of obser-
vations HA(£)/¢ monotonically decreases as the number of observations ¢
increases.® Therefore, if the limit of the ratio of the entropy to the number
of observations tends to In2, then for any finite number £ the equality

A

) =In2

£

holds true.
This means that for almost all samples zy,..., 2 (i.e., all but a set of

measure zero) the equality

NA(zy, ... 2) = 2¢

is valid.
In other words, the set of functions of the learning machine is such that
almost any sample z),...,z; (of arbitrary size £) can be separated in all

possible ways by functions of this set. This implies that the minitnum of the
empirical risk for this machine equals zero. We call this learning machine
nonfalsifiable because it can give a general explanation (function) for almost
any data (Fig. 2.6).

Note that the minimum value of the empirical risk is equal to zero inde-
pendent of the value of the expected risk.

2.6.2 Theorem on Partial Nonfalsifiability

In the case where the entropy of the set of indicator functions over the
number of observations tends to a nonzero limit, the following theorem
shows that there exists some subspace of the original space Z2* € Z where
the learning machine is nonfalsifiable (Vapnik and Chervonenkis, 1989).

6This assertion is analogous to the assertion that a value of relative (with
respect to the number of observations) information cannot increase with the
nurnber of observations.
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Qh

0 Zy 2, Z3 Zy.p 2.y Z z

FIGURE 2.6. A learning machine with the set of funetions Q(z,a), a € A,
is nonfalsifiable if for almost all samples z,...,zs given by the generator of
examples, and for any possible labels 8y, ..., §; for these z, the machine contains
a function Q(z, &) that provides equalities §, = Q(z,,2), 1 =1,... ¢
Theorem 2.5. For the set of indicator functions Q(z,a), a € A, let the
convergence
HA @
lim ©

f—00 £

=¢>0

be valid.
Then there exists a subset Z* of the set Z for which the probability mea-
sure 18

P(Z*) = a(c) #0
such that for the intersection of almost any training set
Z21y---y 22

with the set Z*,
23,28 = (21, ..., 20) N 2%,

and for any given sequence of binary values
b1,..., 0k, 6i € (0,1},
there erists a function Q(z,a) for which the equalities
6 = Q(z},a%), i=1,2,...,k,
hold true.

Thus, if the conditions for uniform two-sided convergence fail, then there

exists some subspace of the input space where the learning machine is
nonfalsifiable (Fig. 2.7).
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FIGURE 2.7. A learning machine with the set of functions @(z,a), @ € A| is
partially nonfalsifiable if there exists a region Z* C Z with nonzero measure such
that for almost all samples zi,. .., z¢ given by the generator of examples and for
any labels 8;,....6; for these 2, the machine contains a function @(z,a™) that
provides equalities §, = Q(z,a) for all z, belonging to the region Z™.

2.6.8 Theorem on Potential Nonfalsifiability
Now let us consider the set of uniformly bounded real functions
Q(z,2)| < C, a€A.

For this set of functions a more sophisticated model of nonfalsifiability is
valid. So we give the following definition of nonfalsifiability:

Definition. We say that a learning machine that has an admissible set
of real functions Q(z, ), @ € A, is potentially nonfalsifiable for a generator
of inputs with a distribution F(x) if there exist two functions’

Pi(z) 2 o(z)
such that:
(i) There exists a positive constant ¢ for which the equality

f(% (z) — o(2))dF(z) =c>0

holds true (this equality shows that two functions %o(z) and #n(z)
are essentially different).

"These two functions do not necessarily belong to the set Q(z,2), a € A.
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(ii) For almost any sample
Zyy---y2¢,

any sequence of binary values
6(1),...,6(¢), 6() € {0,1},

and any ¢ > 0, one can find a function Q(z,*) in the set of functions
Q(z,0), a € A, for which the inequalities

1siy(2:) — Qlzi, ) < €
hold true.

In this definition of noufalsifiability we use two essentially different func-
tions 7;(z) and 1o (2) to generate the values y; of the function for the given
vectors z;. To make these values arbitrary, one can switch these two func-
tions using the arbitrary rule &(z). The set of functions Q(z,0), a € A,
forms a potentially nonfalsifiable machine for input vectors generated ac-
cording to the distribution function F(z) if for almost any sequence of pairs
(®s(:)(2), 2;) obtained on the basis of random vectors 2; and this switching
rule (), one can find in this set a function Q(z,a") that describes these
pairs with high accuracy (Fig. 2.8).

Note that this definition of nonfalsifiability generalizes Popper’s concept:

(1) In the simplest example considered in Section 2.6.1, for the set of indi-
cator functions Q(z,a), a € A, we use this cancept of nonfalsifiability
where 1(z) =1 and 9o(z) = 0,

(ii) in Theorem 2.5 we can use the functions

1 if ze 2%, 0 if ze2Z*,
d)l(z):{Q(z) " 2 ¢ 27, %(Z):{Q(z) it 2§ 2

where Q(z) is some indjcator function.

On the basis of this concept of potential nonfalsifiability, we formulate
the following general theorem, which holds for an arbitrary set of uniformly
bounded functions (including the sets of indicator functions) (Vapnik and
Chervonenkis, 1989).

Theorem 2.6. Suppose that for the set of uniformly bounded real func-

tions Q(z,cx), a € A, there exists an eg such that the convergence

. HA(ED,E) *
m P o

i3 valid.
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0 z, 3, 2.4 2,.,3, %

FIGURE 2.8. A learning machine with the set of functions Q(z,a), a € A, is
potentially nonfulsifiable if for any £ > 0 there exist two essentially different func-
tions 41 (z) and io(z) such that for almost all samples zi,...,2 given by the
generator of examples, and for any values u;,...,us constricted on the basis
of these curves using the rule u; = 5(,,y(2i), where 6(z) ¢ {0,1} is an arbi-
trary binary function, the machine contaims a function @(z,a*) that satisfies the
inequalities |15z )(z:) — Q(zi,0*)| < g, 4 =1,... L
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Then the learning machine with this set of functions is potentially non-
falsifiable.

Thus, if the conditions of Theorem 2.4 fail (in this case, of course, the
conditions of Theorem 2.3 will also fail), then the learning machine is non-
falsifiable. This is the main reason why the ERM principle may be incon-
sistent.

Before continuing with the description of statistical learning theory, let
me remark how amazing Popper’s idea was. In the 1930s Popper suggested
a general concept determining the generalization ability (in a very wide
philosophical sense) that in the 1990s turned out to be one of the most
crucial concepts for the analysis of consistency of the ERM inductive prin-
ciple.

2.7 THREE MILESTONES IN LEARNING THEORY

Below we again consider the set of indicator functions Q(z,a),a € A {i.e.,
we consider the problem of pattern recognition). As mentioned above, in
the case of indicator functions @(z,a), @ € A, the minimal £-net of the
vectors g(a), a € A (see Section 2.3.3), does not depend on ¢ if € < 1. The
number of elements in the minimal -net

NMz, ..., z0) = NMe; zy,. .., 20)

is equal to the number of different separations of the data z;,...,2; by
functions of the set Q(z, ), € A.
For this set of functions the VC entropy also does not depend on &:

HA£) = EmN™z),...,2)

3

wliere expectation is taken over (2i,...,2).
Consider two new concepts that are constructed on the basis of the values
of NA(z, ..., z):

(i) The annealed VC entropy
HA (&) =In ENA(z,..., 22);

(i1) The growth function
GAMe) =1In sup Nz,...,z).

Zlyeeey2y

These concepts are defined in such a way that for any £ the inequalities

HME) < HiW(8) <GP (8
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are valid.

On the basis of these functions the main milestones of learning theory
are constructed.

In Section 2.3.4 we introduced the equation

lim '

=00 2

=0

describing a sufficient condition for cansistency of the ERM principle (the
necessary and sufficient conditions are given by a slightly different con-
struction (2.13)). This equatlon is the first milestone in learning theory:
We require thet any machine minimizing the empirlcal risk should satisfy
it.

However, this equatlon says nothing about the rate of convergence of the
obtained risks R(a;) to the minimal one R(ap). It is possible to construct
examples where the ERM principle Is conslstent, but where the risks have
an arbitrarlly slow asymptotic rate of convergence.

The question is this:

Under what conditions is the asymptotic rate of convergence fast?

We say that the asymptotic rate of convergence is fast if for any ¢ > £,
the exponential bound

P{R(al) - R(ao) > 5} < e-cs’l

holds true, where ¢ > 0 is some constant.
As it turns out, the equation

A
limg%@:o

200

is a sufficient condition for a fast rate of convergence.? This equation is the
second milestone of learning theory: It guarantees a fast asymptotic rate of
convergerce.

Thus far, we have considered two equations: one that describes a neces-
sary and sufficient condition for the consistency of the ERM method, and
one that describes a sufficient condition for a fast rate of convergence of
the ERM method. Both equatlons are valid for a given probability measure
F(z) on the observations (both the VC entropy HA(£) and the VC annealed
entropy HZ2. . (£) are constructed using this measure). However, our goal is
to construct a learning machine capable of solving many different problems
(for many different probability measures).

The question is this:

“The necessity of this condition for a fast rate of convergence is an open
question.
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Under what conditions 15 the ERM principle consistent and simultane-
ously provides a fast rate of convergence, independent of the probability
measure?

The following equation descrlbes necessary and sufficient conditions for
consistency of ERM for any probability measure:
GA(f)

§ =0.
Pl Y 0

It is also the case that if this condition holds true, then the rate of conver-
gence is fast.

This equation is the third milestone in learning theory. It describes a
necessary and sufficient condition under which a learning machine that
Implements the ERM principle has a high asymptotic rate of convergence
independent of the probability measure (i.e., independent of the problem
that has to be solved).

These milestones form the foundation for constructing both distribution-
independent bounds for the rate of convergence of learning machines and
rigorous distribution-dependent bounds, which we will consider in Chapter
3.






Informal Reasoning and
Comments — 2

In the Introduction as well as in Chapter 1 we discussed the emplrical
risk minimization method and the methods of density estimation; however,
we will not use them for constructing learning algorithms. In Chapter 4
we introduce another inductive inference, which we use in Chapter 5 for
constructing learning algorithms. On the other hand, in Section 1.11 we
introduced the stochastic approximation inductive principle, which we did
not consider as very important in spite of the fact that some learning
procedures (e.g., in neural networks) are based on this principle.
The following questions arise:

Why are the ERM principle and the methods of density estimation so
important?

Why did we spend 30 much time describing the necessary and sufficient
conditions for consistency of the ERM principle?

In these comments we will try to show that in some sense these two
approaches to the problem of function estimation, one based on density
estimation methods and the other based on the ERM method, reflect two
quite general ideas of statistical inference.

To show this we formulate the general problem of statistics as a problem
of estimating the unknown probability measure using the data. We will
distinguish between two modes of estimation of probability measures, the
so-called strong mode estimation and the so-called weak mode estimation.
We show that methods providing strong mode estimations are based on
the density estimation approach, while the methods providing weak mode
estimation are based on the ERM approach.
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The weak mode estimation of probability measures forms one of the most
mmportant problems in the foundations of statistics, the so-called general
Glivenko—Cantelli probleni. The results described in Chapter 2 provide a
complete solution to this problem.

2.8 THE BASIC PROBLEMS OF PROBABILITY
THEORY AND STATISTICS

In the 1930s Kolmogorov introduced an axiomatization of probability the-
ory (Kolmogorov, 1933), and since this time probability theory has becomne
a purely mathematical (i.e., deductive) discipline: Any analysis in this the-
ory can be done on the basis of formal inference from the given axioms.
This has allowed the development of a deep analysis of both probability
theory and statistics.

2.8.1 Azioms of Probability Theory

According to Kolmogorov’s axiomatization of probability theory, to every
random experiment there corresponds a set Z of elementary events z that
defines all possible outcomes of the experiment (the elementary events).
On the set Z of elementary events, a system {A} of subsets A ¢ Z, which
are called events, is defined. Considered as an event, the set Z determines
a situation corresponding to a sure event (an event that always occurs). It
is assumed that the set A contains the empty set @, the event that never
occurs.

For the elements of {A} the operations union, complement, and inter-
section are defined. On the set Z a o-algebra F of events {A} is defined.?
The set F of subsets of Z is called a g-algebra of events A € F if

(1) Ze F;
(i) if A € F, then A € F,
(ifi) if A, € F, then |2, 4, € F.

Example. Let us describe a model of the randon1 experiments that
are relevant to the following situation: Somebody throws two dice, say
red and black, and observes the result of the experiment. The space
of elementary events Z of this experiment can be described by pairs
of integers, where the first number describes the points on the red

90ne can read about g-algebras in any advanced textbook on probability
tbeory. (See, for example, A.N. Schiryaev, Probability, Springer, New York, p.
577.) This concept makes it possible to use the formal tools developed in measure
theory for constructing the foundations of probability theory.
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FIGURE 2.9. The space of elementary events for a two-dice throw. Tbe events
A10 and Ar>b are Indicated.

die and the second number describes the points on the black one. An
event in this experiment can be any subset of this set of elementary
events. For example, it can be the subset A |y of elementary events for
which the sum of points on the two dice is equal to 10, or it can be
the subset of elementary events A,.; where the red die has a larger
number of points than the black one, etc. (Fig. 2.9).

The pair (Z,F) consisting of the set Z and the o-algebra F of events
A € F is an idealization of the qualitative aspect of random experiments.

The gquentitative aspect of experiments is determined by a probability
measure P(A) defined on the elements A of the set F. The function P(A)
defined on the elements A € F is called a countably additive probability
Mmeasure on F or, for simplicity, a probability measure, provided that

@) P(A) >0
() P(Zy=1;
(i) P(U2, Ar) =300, P(A) if A;, A; € F,andA, NA; =0, Vi, j.

We say that a probabilistic model of an experiment is determined if the
Probability space defined by the triple (Z, F, P) is determined.

Example. In our experiment let us consider a symmetrical die, where
all elementary events are equally probable (have probability 1/36).
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Then the probabilities of all events are defined. (The event A ¢ has
probability 3/36, the event A, has probability 15/36.)

In probability theory and in the theory of statistics the concept of inde-
pendent trials'® plays a crucial role.
Consider an experiment containing ¢ distinct trials with probability space
(Z,F, Py and let
2y,..., 2 (2.14)

be the results of these trials. For an experiment with ¢ trials the model
(Z*, F¢, P*) can be considered where Z¢ is a space of all possible outcomes
(2.14), F! is a o-algebra on Z¢ that contains the sets Ay, x - -+ x Ay,, and
P! is a probability measure defined on the elements of the o-algebra F..

We say that the sequence (2.14) is a sequence of ¢ independent trials if
for any Ay, ,..., Ax, € F, the equality

¢
Pz € Ay,;... 20 € Ap} = HP{z,— € A}

1=1

is valid.
Let (2.14) be the result of £ independent trials with the model (Z, F, P).
Consider the random variable v(zy, ..., z¢; A) defined for a fixed event A €

F by the value
n
ve(A) = v{z1,...,2e; A) = TA,
where n 4 is the number of elements of the set z, ..., z; belonging to event
A. The random variable v4(A) is called the frequency of occurrence of an

event A in a series of £ independent, random trials.

In terms of these concepts we can formulate the basic problems of prob-
ability theory and the theory of statistics.

The basic problem of probability theory

Given a model (Z, F, P) and an event A*, estimate the distribution
(or some of its characteristics) of the frequency of occurrence of the
event A* in a series of ¢ independent random trials. Formally, this
amounts to finding the distribution function

F(§ A%, 8) = Plog(A7) < £} (2.15)

(or some functionals depending on this function).

"The concept of independent trials actually is the one that makes probability
theory different from measire theory. Without the concept of independent trials
the axioms of probability theory define a model from measure theory.
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Example. In our example with two dice it can be the following prob-
lem. What is the probability that the frequency of event Ajp (sum of
points equals 10) will be less than £ if one throws the dice ¢ times?

In the theory of statistics one faces the inverse problem.
The basic problem of the theory of statistics

Given a qualitative model of random experiments (Z,F) and given
the i.i.d. data

Zlyeeny Zey ey

which occurred according to an unknown probability measure P, es-
timate the probability measure P defined on all subsets A € F (or
some functionals depending on this function).

Example. Let our two dice now be asymmetrical and somehow con-
nected to each other (say connected by a thread). The problem is.
given the results of ¢ trials (¢ pairs), to estimate the probability mea-
sure for all events (subsets) A € F.

In this book we consider a set of elementary events Z C R" where the
o-algebra F is defined to contain all Borel sets!! on Z.

2.9 TWO MODES OF ESTIMATING A PROBABILITY
MEASURE

One can define two modes of estimating a probability measure: A strong
mode and A weak mode.

Definition:
(i) We say that the estimator
E(A) = Ee(2,...,26A), AEF,

estimates probability measure P in tlie strong mode if

sup |P(A) — £(A)| <= 0. (2.16)
AEF €—o0

(i) We say that the estimator £¢( A) estiinates the probability measure
P in the weak mode determined by soine subset F* C F if

sup |P(A) — Eg(A)| = 0, (2.17)
A€F~ £—o0

'We consider the minimal o-algebra that contains all open parallelepipeds.
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Qlz, o)
P(Q(z a) > iB)

FIGURE 2.10. The Lebesgue integral defined in (2.18) is the limit of a sum of
products, where the factor P {Q(z,a) > iB/m} is the (probability) measure of
the set {z : Q(2,a) > iB/m}, and the factor B/m is the height of a slice.

where the subset 7* (of the set F) does not necessarily form a o-
algebra.

For our reasoning it is important that if one can estimate the probability
measure in one of these modes (with respect to a special set F* described
below for the weak mode), then one can minimize the risk functional in a
given set of functions.

Indeed, consider the case of bounded risk functions 0 < Q(z, «) < B. Let
us rewrite the risk functional in an equivalent form, using the definition of
the Lebesgue integral (Fig. 2.10):

R(a):/Q(z,a)dP(z)="}i_rpooi%P{Q(z,a) > %} (2.18)
=1

If the estimator £,(A) approximates P(A) well in the strong mode, i.e.,
approximates uniformly well the probability of any event A (including the
events A7 | = {Q(z,a) > iB/m}), then the functional

m

R*(a) = n!i_x'nooz gs, {Q(z,a) > %} (2.19)

i=1
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constructed on the basis of the probability measure £¢(A) estimated from
the data approximates uniformly well (for any o) the risk functional R(a).
Therefore, it can be used for choosing the function that minimizes risk. The
empirical risk functional R,(x) considered in Chapters 1 and 2 corresponds
to the case where estimator £,(A) in (2.19) evaluates the frequency of event
A from the given data.

Note, bowever, that to approximate (2.18) by (2.19) on the given set of
funetions Q(z,a), a € A, one does not need uniform approximation of P
on all events A of the g-algebra, one needs uniform approximation only on
the events

. iB
4= {aww> 2}

(only these events enter in the evaluation of the risk (2.18)). Therefore, to
find the function providing the minimum of the risk functional, the weak
mode approximation of the probability measure with respect to the set of
events

{Q(z,a) >%}, a €A,

is suffictent.

Thus, in order to find the function that minimizes risk (2.18) with un-
known probability measure P{A} one can minimize the functional (2.19),
where instead of P{A} an approximation £¢{ A} that converges to P{A} in
any mode (with respect to events 4} ,a € A, i=1,...,m, for the weak
mode) is used.

2.10 STRONG MODE ESTIMATION OF

PROBABILITY MEASURES AND THE DENSITY
ESTIMATION PROBLEM

Unfortunately, there is no estimator that can estimate an arbitrary proba-
bility measure in the strong mode. One can estimate a probability measure
if for this measure there exists a density function (Radon-Nikodym deriva-

tive). Let us assume that a density function p(z) exists, and let pg(z) be an
approximation to this density function. Consider an estimator

Eo(A) = / pe(2)dz.
A
According to Scheffe’s theorem, for this estimator the bound

sup IP(A) = £u(4)] < 3 [ () ~ peoldz
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is valid, i.e., the strong mode distance between the approximation of the
probability measure and the actual measure is bounded by the L, distance
between the approximation of the density and the actual density.

Thus, to estiinate the probability measure in the strong mode, it is suffi-
cient to estimate a density function. In Section 1.8 we stressed that estimat-
ing a density function from the data forms an ill-posed problem. Therefore,
generally speaking, one cannot guarantee a good approximation using a
fixed number of observations.

Fortunately, as we saw above, to estimate the function that minimizes the
risk functional one does not necessarily need to approximate the density.
It is sufficient to approxinmate the probability measure in the weak mode,
where the set of events F* depends on the admissible set of functions
Q(z.a), a € A: 1t must contain the events

{Q(z,a)>%}, a€l, i=1I,...,m.

The “smaller” the set of admissible events considered, the “smaller” the set
of events F* that must be taken into account for the weak approximation,
and therefore (as we will see) minimizing the risk on a smaller set of func-
tions requires fewer observations. In Chapter 3 we will describe bounds on
the rate of uniform convergence that depend on the capacity of the set of
admissible events.

2.11 THE GLIVENKO-CANTELL! THEOREM AND
1TS GENERALIZATION

In the 19308 Glivenko and Cantelli proved a theorem that can be considered
as the most important result in the foundation of statistics. They proved
that any probability distribution function of one random variable £,

F(z)= Pig <2},

can be approximated arbitrarily well by the empirical distribution function

4
Folz) = 3 30z ~ =),
1=1

where z), ..., z¢ are 1.i.d. data obtained according to an unknown density!?
(Fig. 1.2). More precisely, the Glivenko-Cantelli theorem asserts that for
any € > 0 the equality

lim P{sup|F(z) — F¢(z)] > €} =0
t—o” U,

12The generalization for n > 1 variables was obtained later.
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(convergence in probability'?) holds true.
Let us formulate the Glivenko—-Cantelli theorem in a different form. Con-
sider the set of events

A, ={z:2<z}, z€ (—o0,00) (2.20)

(the set of rays on the line pointing to —oc). For any event A, of this set
of events one can evaluate its probability

P(A,) = / dF(3) = F(2). (2.21)
-
Using an ii.d. sample of size £ one can also estimate the frequency of

accurrence of the event A, in independent trials:

v(A:) = "= = Fe(2). (2.22)

In these terms, the Glivenko—Cantelli theorem asserts weak mode conver-
gence of estimator (2.22) to probability measure (2.21) with respect to the
set of of events (2.20) (weak, because only a subset of all events is consid-
ered).

To justify the ERM inductive principle for various sets of indicator func-
tions (for the pattern recognition problem), we constructed in this chapter a
general theory of uniform convergence of frequencies to probabilities on ar-
bitrary sets of events. This theory completed the analysis of the weak mode
approximation of probability measures that was started by the Glivenko—
Cantelli theory for a particular set of events (2.20).

The generalization of these results to the uniform convergence of means
to their mathematical expectations over sets of functions that was obtained
in 1981 actually started research on the general type of empirical processes.

2.12 MATHEMATICAL THEORY OF INDUCTION

Ifl spite of significant results obtained in the foundation of theoretical statis-
tics, the inain conceptual problem of learning theory remained unsolved for
More than twenty years (from 1968 to 1989):

Does the uniform convergence of means to their expectations form a nec-
€ssary and sufficient condition for consistency of the ERM inductive prin-
«iple, or is this condition only sufficient? In the latter case, might there
tTist another less restrictive sufficient condition?

1
) 3Acbually, a stronger mode of convergence holds true, the so-called canvergence
"almost surely.”
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The answer was not obvious. Indeed, uniform convergence constitutes a
global property of the set of functions, while one could have expected that
consistency of the ERM principle is determined by local properties of a
subset of the set of functions close to the desired one.

Usting the concept of nontrivial consistency we showed in 1989 that con-
sistency is a global property of the admissible set of functions, determined
by one-sided uniform convergence (Vapnik and Chervonenkis, 1989). We
found necessary and sufficient conditions for one sided convergence.

The proof of these conditions is based on a new circle of ideas — ideas
on nonfalsifiability that appear in philosophical discussions on inductive
inference. In these discussions, however, induction was not considered as a
part of statistical inference. Induction was considered as a tool for inference
in more general frameworks than the framework of statistical models.



Chapter 3

Bounds on the Rate of
Convergence of Learning Processes

In this chapter we consider bounds on the rate of uniform convergence.
We consider upper hounds (there exist lower bounds as well (Vapnik and
Chervonenkis, 1974); however, they are not as important for controlling
the learning processes as the upper bounds).

Using two different capacity concepts described in Chapter 2 (the an-
nealed entropy function and the growth function) we describe two types of
hounds on the rate of convergence:

(1) Distribution-dependent bounds (based on the annealed entropy func-
tion), and

(i) distribution-independent bounds (based on the growth function).

These bounds, however, are nonconstructive, since theory does not give
explicit methods to evaluate the annealed entropy function or the growth
function.

Therefore, we introduce a new characteristic of the capacity of a set
of functions (the VC dimension of a set of functions), which is a scalar
value that can be evaluated for any set of functions accessible to a learning
machine.

On the basis of the VC dimension concept we obtain

(i) Constructive distribution-independent bounds.

Writing these bounds in equivalent form, we find the bounds on the risk
achieved by a learning machine (i.e., we estimate the generalization ability
of a learning machine). In Chapter 4 we will use these bounds to control
the generalization ebility of learning machines.
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3.1 THE BASIC INEQUALITIES

We start the description of the results of the theory of bounds with the case
where Q(z,a), a € A, is a set of indicator functions and then generalize
the results for sets of real functions.

Let Q(z,a),a € A, be a set of indicator functions, HA(#) the corre-
sponding VC entropy, HA (£) the annealed entropy and G*(¢) the growth
function (see Section 2.7).

The following two hounds on the rate of uniform convergence form the
basic inequalities in the theory of bounds (Vapnik and Chervonenkis, 1968,
1971), (Vapnik, 1979, 1996).

Theorem 3.1. The following inequality holds true:

P{sup > E}
a€A
< dexp {( 3“2(22) 52) Z}. (3.1)

Theorem 3.2. The following inequality holds true:

P{ JQz,0)dF ()~ 1 T, Qzi,a) }
ack V1 Qz,0)dF (2)

< 4exp{( “";(22) %) Z} . (3.2)

The bounds are nontrivial (i.e., for any £ > 0 the right-hand side tends
to zero when the number of observations £ goes to infinity) if

ann (2) 0 .

4
/Q(z,a)dF(z) - % ZQ(Z.-,Q)

e—oc

{Recall that in Section 2.7 we called this condition the second milestone of
learning theory.)

To discuss the difference hetween these two bounds let us recall tbat for
any indicator function Q(z,a) the risk functional

Rla) = f Q(z,0)dF(2)

describes the probability of event {z : Q(z,a) = 1}, while the empirical
functional Remp(a) describes the frequency of this event.
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Theorem 3.1 estimates the rate of uniform convergence with respect to
the norm of the deviation hetween probability and frequency. It is clear
that maximal difference more likely occurs for the events with maximal
variance. For this Bernoulli case the variance is equal to

o = VR@)(1 - Rla)),

and therefore the maximum of the variance is achieved for the events with
probahility R(a*) ~ 1. In other words, the largest deviations are associated
with functions that possess large risk.

In Section 3.3, using the hound on the rate of convergence, we will obtain
a bound on the risk where the confidence interval is determined by the rate
of uniform convergence, i.e., by the function with risk R{a*) = 5‘ (the
“worst” function in the set).

To obtain a smaller confidence interval one can try to comstruct the
bound on the risk using a bound for another type of uniform convergence,
namely, the uniform relative convergence

P{su (@) — Remp{a)| > 5} < ®(e,4,),

aen VR = Rla))

where the deviation is normalized by the variance. The supremum on the
uniform relative convergence can be achieved on any function Q(z,a) in-
cluding one that has a small risk.

Technically, however, it is difficult to estimate well the right-hand side
for this hound. One can ohtain a good bound for simpler cases, where
instead of normalization by the variance one considers normalization by
the function \/R(a). This function is close to the variance when R(a) is
reasoniably small (this is exactly the case that we are interested in). To
obtain hetter coefficients for the bound one considers the difference rather
than the modulus of the difference in the nunierator. This case of relative
uniform convergence is considered in Theorem 3.2.

In Section 3.4 we will demonstrate that the upper bound on the risk
obtained using Theorem 3.2 is 1nuch better than the upper bound on the
risk obtained on the basis of Theorem 3.1.

The bounds obtained in Theorenis 3.1 and 3.2 are dis¢ribution—dependent:
They are valid for a given distribution function F(z) on the observations
(the distribution was used in constructing the annealed entropy function
H.(9).

To construct distribution independent bounds it is sufficient to note that
for any distribution function F(z) the growth function is not less than the
annealed entropy

Hln(0) < GMO).

Therefore, for any distribution function F(z), the following inequalities hold



72 3. Bounds on the Rate of Convergence of Learning Processes

d {i‘éﬁ g }
< dexp { (GAEM) —52) e} , (3.3)

P sza)sz)—lzl_ z,,a)>5
ach \/fQ (2, a)dF(z)

cam{(C0- ).

These inequalities are nontrivial if

frue:

[4
[aeaire -3 ¥ e

A
lim G
£—00 V4

(Recall that in Section 2.7 we called this equation the third milestone in
learning theory).

=0, (3.5)

It is important to note that conditions (3.5) are necessary and sufficient
for distribution—free uniform convergence (3.3). In particular,

if condition (8.5) is violated, then there exist probability measures F(z)
on Z for which uniform convergence
> E} =0

3.2 GENERALIZATION FOR THE SET OF REAL
FUNCTIONS

hm P{sup /Q(z a)dF(z)— > EQ(Z.,a)

does not take place.

There are several ways to generalize the results obtained for the set of
indicator functions to the set of real functions. Below we consider the sim-
plest and most effective (it gives better bounds and is valid for the set of
unbounded real functions) (Vapnik 1979, 1996).

Let Q(z,a), a € A, now he a set of real functions, with

A= lanf Q(z,a) < Q(z,a) <supQ(z,a) =

(here A can he —oo and/or B can be +oc). We denote the open interval
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ﬂl
1 .....
1(Q (z)0) ~B)
ﬂ b - — - - - = B - e m - Q—-—
'r/ \_/ \Q(z,a):aEA
0 f

FIGURE 3.1. The indicator of level 3 for the function Q(z, c) shows for which z
the function @(z, a) exceeds § and for which it does not. The function Q{z,a)
can be described by the set of all its indicators.

(A, B) by B. Let us construct a set of indicators (Fig. 3.1) of the set of real
functions Q(z,a), a € A:

{z,0,8) = 0{Q(z,0) - 8}, a€A, BEB.

For a given function Q(z, a*) and for a given 3* the indicator I(z,a*, 8*)
indicates by 1 the region z € Z where Q(z,a”) > * and indicates by 0 the
region z € Z where Q(2,a") < 3*.

In the case where Q(z,a), a € A, are indicator functions, the set of
indicators I(z, o, 3), a € A, 8 € (0,1), coincides with this set Q(z,a),a €
A

For any given set of real functions Q(z,a), @ € A, we will extend the
results of the previous section by considering the corresponding set of in-
dicators I{z,a,8), a€ A, g € B.

Let HMB(8) the VC entropy for the set of indicators, HA:5(¢) the an-

Ann

nealed entropy for the set, and G*5(¢) the growth function.

Using these concepts we obtain the basic inequalities for the set of real
functions as generalizations of inequalities (3.1) and (3.2). In our general-
ization we distinguish three cases:

(1) Totally bounded functions Q(z,a), a € A.
(if) Totally bounded nonnegative functions Q(z,a), @ € A.

(iii) Nonnegative (not necessarily bounded) functions Q(z,a), a € A.

Below we consider the bounds for all three cases.
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(1) Let A < Q(z,a) < B, a € A, be a set of totally bounded functions.
Then the following inequality holds true:
S }

P{sup
aEA
H35(20) e .
546Xp{(T — (m) Z}A (3.6)

(if) Let 0 < Q(z,a@) < B, a € A, be a set of totally bounded nonnegative
functions. Then the following inequality holds true:

, {Sup JQz.a)F() ~ L Q) 5}
€A

\/fQ(z,a)dF(z)

§4am{(H$?%) f%)du (3.7)

These inequalities are direct generalizations of the inequalities obtained
in Theorents 3.1 and 3.2 for the set of indicator functions. They coincide
with inequalities (3.1) and (3.2) when Q(z,a) € {0,1}.

(itit) Let 0 < Q(z,a), a € A be a set of functions such that for some
P > 2 the pth normalized moments' of the random variables £, = Q(z,a)
exist:

[3
[ @tzeiri) - 53>t

mp(a) = fQP(z,a)dF(z),

Then the following bound holds true:

4
P{mgiggfggyi:igfﬁ%ﬁfg>a@k}
a€

{/f @ (z,0)dF(2)
< 4exp {(-——'E@ %) L’} , (3.8)

where
1/p-1 p=1 ,
The bounds (3.6), (3.7), and (3.8) are nontrivial if
6—‘00 )

'We consider p > 2 only to simplify the formulas. Analogous results hold true
for p > 1 (Vapnik, 1979, 1996).
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3.3 THE MAIN DISTRIBUTION—INDEPENDENT
BOUNDS

The bounds (3.6), (3.7), and (3.8) were distribution-dependent: The right-
hand sides of the bounds use the annealed entropy H2A:5(#) that is con-
structed on the basis of the distribution function F(z). To obtain distribution-
independent bounds one replaces the annealed entropy HA:5(7) on the
right-hand sides of bounds (3.6), (3.7), (3.8) with the growth function
GAB(¢). Since for any distribution function the growth function GA+B(¢)
is not smaller than the annealed entropy HA;2(¢), the new bound will be
truly independent of the distribution function F(z).

Therefore, one can obtain the following distribution-independent bounds
on the rate of various types of uniform convergence:

(1) For the set of totally bounded functions —~o0 < 4 < Q(z,0) < B <

(x}’
1< !
P{Zlé;: fQ(z,a)dF(z)-Z;Q(z,-,a)\ >E} |
AB 2
< 4exp { (G 2(2[) ~ B _E_A),‘,) Z}. (3.10)

(1) For the set of nonnegative totally bounded functions 0 < Q(z,a) <

B <,

ploup JOEMFGE) - 45, Qe

aeA \/J @z, 0)dF(2)

coom{(5E YN i

(iii) For the set of nonnegative real functions 0 < @Q(z, &) whose pth nor-
malized moment exists for some p > 2,

Pl up JQU2FE) — § ¥, Q)
a€h {/ S @#(z,2)F (2)

S4exp{(&i(2—e)~%2)f}. 3.12)

These inequalities are nontrivial if
AB
lim a0
€—o00 V4

‘Using these inequalities one can establish bounds on the generalization
ability of different learning machines.

=0. (3.13)
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3.4 BOUNDS ON THE GENERALIZATION ABILITY
OF LEARNING MACHINES

To describe the generalization ability of learning machines that implement
the ERM principle one has to answer two questions:

(A) What actual risk R(a,) is provided by the function Q(z,a¢) that
achieves minimal empirical sk Remp(ae)?

(B) How close is this risk to the minimal possible inf, R(a), a € A, for
the given set of functions?

Answers to both questions can be obtained using the bounds described
above. Below we describe distribution-independent bounds on the general-
ization ability of learning machines that implement sets of totally bounded
functions, totally bounded nonnegative functions, and arbitrary sets of non-
negative functions. These bounds are another form of writing the bounds
given in the previous section.

To describe these bounds we use the notation

GME(20) — In (1/4)

Note that the bounds are nontrivial when £ < 1.

£ (3.14)

Case 1. The set of totally bounded functions

Let A < Q(z,0) < B, a € A, be a set of totally bounded functions.
Then:

(A) The following inequalities hold with probability at least 1 ~ 1 simul-
taneously for all functions of Q(z,a), o € A (including the function
that minimizes the empirical risk):

R(a) < Remp(a) + (B ; 4) VE, (3.15)

Remp(a) - (B ; A) \/(-‘:- < R(a)

(These bounds are equivalent to the bound on the rate of uniform
convergence (3.10).)

(B) The following inequality holds with probability at least 1 —2n for the
function Q(z,a,) that minimizes the empirical risk:

R{ar) — inf R(a) < (B - 4) '2’7 + @;—A)\/E. (3.16)
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Case 2. The set of totally bounded nonnegative functions
Let 0 < Q(z,0) < B, a € A, be a set of nonttegative bounded functions.
Then:

(A) The following inequality holds with probahility at least 1 —7 simulta-
neously for all functions Q(z,a) < B, a € A (including the function
that minimizes the empirical risk):

R(@) £ Remp(a) + %f (1 +4/1+ ﬂz‘—‘*a—)) : (3.17)

(This bound is equivalent to the bound on the rate of uniform con-
vergence (3.11).)

(B) The following inequality holds with probability of at least 1 — 27 for
the function Q(z, a;) that minimizes the empirical risk

. —Innp B¢ 4
R(ae)—;relgR(a)sB % +7(1+ 1+z]. (3.18)

Case 3. The set of unbounded nonnegative functions

Finally, consider the set of unbounded nonnegative functions 0 < Q(z, a),
acA

It is easy to show (by comstructing examples) that without additional
information about the set of unbounded functions and/or probability mea-
sures it is impossible to obtain any inequalities describing the generalization
ability of learning machines. Below we assume the following information:
We are given a pair (p, 7) such that the inequality

- (JQr(za)dF(z)
ZZR [ Q0. )dF () <1< (3.19)

holds true,? where p > 1.

The main result of the theory of learning machines with unbounded sets
of functions is the following assertion, which for simplicity we will describe
for the case p > 2 (the results for the case p > 1 can be found in (Vapnik,
1979, 1996)):

2This inequality describes some general properties of the distribution functions
of tlie random variables £, = Q(z, a) generated by F(z). It describes the “tails of
the distributions” (the probability of large values for tle random varlables £,).
If the Inequality (3.19) with p > 2 holds, then the distributions have so-called
“light tails” (large values of £» do not occur very often). In this case a fast rate
of convergence is possible. If, however, the inequality (3.19) holds only for p < 2
(large values £, occur rather often), then the rate of convergence will be slow (it
will be arbitrarily slow i p is sufficlently close to one).
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(A) With probability at least 1 — n the inequality

Remp (01) ,
(1-atw)rvE)

1 /p—-1\""
@) = {3 (p~2)
holds true simultaneously for all functions satisfying (3.19), where

(u)4 = max(u,0). (This bound is a corollary of the bound on the
rate of uniform convergence (3.12) and constraint (3.19).)

R(a) < (3.20)

where

(B) With probability at least 1 — 27 the inequality

R(w;) ~ infaep R(a) ra(p)vV€ 1
oA Rl@) S (1 -m(p)\/E)+ +0 ( é,) (3.21)

holds for the function Q(z, ;) that minimizes the empirical risk.

The inequalities (3.15), (3.17), and (3.20) bound the risks for all functions
in the set Q(z,a), a € A, including the function Q(z,a,) that minimizes
the empirical risk. The inequalities (3.16), (3.18), and (3.21) evaluate how
close the risk obtained using the ERM principle is to the smallest possible
risk.

Note that if £ < 1, then bound (3.17) obtained from the rate of uniform
relative deviation is much better than bound (3.15) obtained from the rate
of uniform convergence: For a small value of empirical risk the bound (3.17)
has a confidence interval whose order of magnitude is £, but not /€, as in
bound (3.15).

3.5 THE STRUCTURE OF THE GROWTH FUNCTION

The bounds on the generalization ability of learning machines presented
above are to be thought of as conceptual rather than constructive. To make
them constructive one has to find a way to evaluate the annealed entropy
HAB(¢)y and/or the growth function GA(¢) for the given set of functions
Q(z,a), a € A.

‘We will find constructive bounds by using the concept of VC dimension of
the set of functions Q(z,a), a € A (abbreviation for Vapnik—Chervonenkis
dimension).

The remarkable connection between the concept of VC dimension and
the growth function was discovered in 1968 (Vapnik and Chervonenkis,
1968, 1971).
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Theorem 3.3. Any growth function either satisfies the equality
G (¢) =¢n2
or is bounded by the inequality
MO < b (m% + 1) ,
where h is an integer such that when ¢ = h,
GMh) = hin2,
GMh+1) < (h+1)In2.

In other words, the growth function is either linear or is bounded by a

logarithmic function. (The growth function cannot, for example, be of the
form GA(¢) = cV? (Fig. 3.2).)

Definition. We will say that the VC dimension of the set of indicator
functions Q(z,a),a € A is infinite if the growth function for this set of
functions is linear.

We will say that the VC dimension of the set of indicator functions
Q(z,a),a € A, is finite and equals h if the corresponding growth function
is bounded by a logarithmic function with coefficient h.

Since the inequalities

HAO) _ Hbald) (GO _ hOnf+1)

? S ¢ S T4 ST 4 (€> h)
G* e A Zin 2
o\
s b (In (¢/b) + 1)
0 ¥ "

FIGURE 3.2. The growth function is either linear or bounded by a logarithmic
function. It cannot, for example, behave like the dashed line.
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are valid, the finiteness of the VC dimension of the set of indicator functions
implemented by a learning machine is a sufficient condition for consistency
of the ERM method independent of the probability measure. Moreover, a
finite VC dimension implies a fast rate of convergence.

Finiteness of the VC dimension is also a necessary and sufficient condition
for distribution-independent consistency of ERM learning machines. The
following assertion holds true (Vapnik and Chervonenkis, 1974):

If uniform convergence of the frequencies to their probabilities over some
set of events (set of indicator functions) is valid for any distribution func-
tion F(z), then the VC dimension of the set of functions is finite,

3.6 THE VC DIMENSION OF A SET OF FUNCTIONS

Below we give an equivalent definition of the VC dimension for sets of indi-
cator functions and then generalize this definition for sets of real functions.
These definitions stress the method of evaluating the VC dimension.

The VC dimension of a set of indicator functions (Vapnik and
Chervonenkis, 1968, 1971)

The VC dimension of a set of indicator functions Q(z,a), a € A, is
the maximum number h of vectors z,...,2z, that can be separated into
two classes in all 2" possible ways using functions of the set® (i.e., the
maximum number of vectors that can be shattered by the set of functions).
If for any n there exists a set of n vectors that can be shattered by the set
Q(z,a), a € A, then the VC dimension is equal to infinity.

The VC dimension of a set of real functions (Vapnik, 1979)

Let A < Q(z,a) < B, a € A, be a set of real functions bounded by
constants A and B (A can be —oo and B can be ).

Let us consider along with the set of real functions Q(z,a), a € A, the
set of indicators (Fig. 3.1)

I(z,a,B) = 8{Q(z,a) — 8}, @ € A, B € (A, B), (3.22)
where 6(z) is the step function
0 ifz<0,
8(z) ={ 1 ifz>0.

The VC dimension of a set of real functions Q(z,a), a € A, is defined
to be the VC dimension of the set of corresponding indicators (3.22) with
parameters o € A and 8 € (A, B).

3Any indicator function separates a given set of vectors into two subsets: the
subset of vectors for which this indicator function takes the value 0 and the subset
of vectors for which this indicator function takes the value 1.
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FIGURE 3.3. The VC dimension of the lines in the plane is equal to 3, since they

can shatter three vectors, but not four: The vectors z3, za cannot be separated
by a line from the vectors 21, z3.

Example 1,

(i) The VC dimension of the set of linear indicator functions

Qza) =20 {2 apzp + ao}
p=)

in n-dimensional coordinate space Z = (z),...,2,) is equal to h =
n + 1, since by using functions of this set one can shatter at most
n + 1 vectors (Fig. 3.3).

(1) The VC dimension of the set of linear functions
n
Q(Zsa) = zapzp+a01 gy ... Oy € (——00,00),
p=1

in n-dimensional coordinate space Z = (zy,...,7n) is equal to h =
n+1, because the VC dimension of the corresponding linear indicator

functions is equal to n + 1. (Note: Using ap — 3 instead of ag does
not change the set of indicator functions.)

Note that for the set of linear functions the VC dimension equals the num-
ber of free parameters ap, ay,...,ay,. In the general case this is not true.

Example 2,
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(i) The VC dimensjon of the set of functions

f(z,a) =8(sinaz), a€ R,
is infinite: The pomts on the line
21 =101 ..,z =10""¢

can be shattered by functious from this set.

Indeed, to separate these data into two classes determined by the
sequernce
byy-..40¢, 8, € {0.1},

it is sufficient to choose the value of the parameter a to be

¢

a=T (2(1 ~ 5:)10* + 1) .
=1

This example reflects the fact that by choosing an appropnate co-

efficient @ one can for any number of appropriately chosen points

approximate values of any function bounded by (-1,+1) (Fig. 3.4 )

using sin ax.

In Chapter 5 we will consider a set of functions for which the VC dimension
is much less than the number of parameters.

Thus, generally speaking, the VC dimension of a set of functions does

not coincide with the number of parameters. It can be either larger than

v

ATV

FIGURE 3 4. Using a high-frequency function sin(az), one can approximate well
the value of any function —1 < f(z) <1 at £ appropriately chosen points,
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the number of parameters (as in Example 2) or smaller than the number
of parameters (we will use sets of functions of this type in Chapter 5 for
constructing a new type of learning machine).

In the next section we will see that the VC dimension of the set of
functions (rather than number of parameters) is responsible for the gener-
alization ability of learning machines. This opens remarkable opportunities
to overcome the “curse of dimensionality”: to generalize well on the basis of
a set of functions containing a huge number of parameters but possessing
a small VC dimension.

3.7 CONSTRUCTIVE DISTRIBUTION-INDEPENDENT
BOUNDS

In this section we will present the bounds on the risk functional that in
Chapter 4 we use for constructing the methods for controlling the general-
ization ability of learning machines.

Consider sets of functions that possess a finite VC dimension h. In this
case Theorem 3.3 states that the bound

GMOy<h (m % + 1) , £>h, (3.23)

holds. Therefore, in all inequalities of Section 3.3 the following constructive
expression can be used:

4h (In % +1) — In(n/4)

£ =
14

(3.24)

We also will consider the case where the set of loss functions Q(z, @), a €
A, contains a finite number N of elements. For this case one can use the
expression

InN —1
g ¥ —Inn
14

Thus, the following constructive bounds hold true, where in the case of
the finite VC dimension one uses the expression for £ given in (3.24), and
in the case of a finite number of functions in the set one uses the expression
for £ given in (3.25).

£= (3.25)

Case 1. The set of totally bounded functions

ThLet A < Q(z,0) < B, a € A, be a set of totally bounded functions.
en;

(A) _The following inequalities hold with probability at least 1 — simulta-
neously for all functions Q(z,a), a € A (including the function that
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minimizes the empirical risk):

R(@) < Remp(e) + E-AVE, (3.26)

R(0) 2 Remple) - C- A VE.

(B) The following inequality holds with probability at least 1 — 27 for the
function Q(z, a,) that minimizes the empirical risk:

. “lnn  (B-4)
_ < - ) .
R(az) - inf R(a) < (B~ AN/ —5 + VE.  (3.27)
Case 2. The set of totally bounded nonnegative functions

Let 0 < Q(z,a) < B, a € A, be a set of nonnegative bounded functions.
Then

(A) The following inequality holds with probability at least 1 — 1) simuita-
neously for all functions Q(z,a) < B,a € A (including the function
that minimizes the empirical risk):

R(@) < Remp(a) + %é (1 +4/1+ %‘g@ ’ . (3.28)

(B) The following inequality holds with probability at least 1 — 25 for the
function Q(z, a;) that minimizes the empirical risk:

. —Ilnn BE / 4 )
R(ae) — tiIElf/; R(o)<B 27 + TN (1 +4/1+ raR (3.29)

Case 3. The set of unbounded nonnegative functions

Finally, consider the set of unbounded nonnegative functions 0 < Q(z, a),
a € A.

(A) With probability at least 1 — 7 the inequality
Remp(a)

1—

)

w- (G2

holds true simultaneously for all functions satisfying (3.19), where
(u)+ = max(u, 0).

(3.30)

R(a) <
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(B) With probability at least 1 — 21 the inequality

R(as) — infaea R(0) Ta(pVE ofl
infaen R(a) = (1 — 'ra,(p)\/f)Jr * (3)

(3.31)

holds for the function Q(z, ay) that minimizes the empirical risk.

These bounds cannot be significantly improved.?

3.8 THE PROBLEM OF CONSTRUCTING RIGOROUS
(DISTRIBUTION—-DEPENDENT) BOUNDS

To construct rigorous bounds on the risk one has to take into account infor-
mation about the probability measure. Let Py be the set of all probability
measures on Z¢ and let P C P, be a subset of the set Py. We say that one
has a priori information about the unknown probability messure F(z) if
one knows a set of measures P that contains F(z).

Consider the following generalization of the growth function:

GA(8) = In sup EpN™(2), ..., z).
Fep

For the extreme case where P = Py, the generalized growth function
GA(#) coincides with the growth function GA(¢) because the measure that
assigns probability one on 2y,. .., z is contained in P. For another extreme
case where P contains only one function F(z), the generalized growth func-
tion coincides with the annealed VC entropy.

Rigorous bounds for the risk can be derived in terms of the generalised
growth function. They have the same functional form as the distribution-
independent bounds (3.15), (3.17), and (3.21) but a different expression for
£. The new expression for £ is

£ 49%@@); an/d

However, these bounds are nonconstructive because no general methods
have yet been found to evaluate the generalized growth function (in contrast
to the original growth function, where constructive bounds were obtained
on the basjs of the VC dimension of the set of functions).

—_———

“There exist lower bounds on the rate of uniform convergence where the order
of magnltude is close to the order of magnitude obtained for the upper bounds
(/21/2 in the lower bounds instead of 1/(h/Z)In(£/h) in the upper bounds; see
(Vapnik and Chervonenkis, 1974) for lower bounds).
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To find rigorous constructive bounds one has to find a way of evaluating
the Generalized Growth function for different sets P of probability mea-
sures. The main problem here is to find a subset P different from Py for
which the generalized growth function can be evaluated on the basis of
some constructive concepts (much as the growth function was evaluated
using the VC dimension of the set of functions).



Informal Reasoning and
Comments — 3

A particular case of the bounds obtained in this chapter was already under
investigation in classical statistics. These bounds are known as Kolmogorov-
Smirnov distributions, widely used in both applied and theoretical statis-
tics.

The bounds obtained in learning theory are different from the dassical
ones in two respects:

(i) They arc more general (they are valid for any set of indicator func-
tions with finite VC dimension).

(ii) They are valid for a finite number of observations (the classical bounds
are asymptotic.)

3.9 KOLMOGOROV—SMIRNOV DISTRIBUTIONS

As 500n as the Glivenko-Cantelli theorem became known, Kolmogorov ob-
tained asymptotically exact estimates on the rate of uniform convergence of
the empirical distribution function to the actual one (Kolmogorov, 1933).
He proved that if the distribution function for a scalar random variable
F(z) is continuous and if ¢ is sufficiently large, then for any ¢ > 0 the
following equality holds:

P{snzlplF(z) — F(z)| > E} = 22(—1)k'lexp{—252k2£}. (3-32)
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This equality describes one of the main statistical laws, according to which
the distribution of the random variable

&e = S‘:NF(Z) — Fy(2)]

does not depend on the distribution function F(z) and has the form of
(3.32).

Simultaneously, Smirnov found the distribution function for one-sided de-
viations of the empirical distribution function from the actual one (Smirnov,
1933). He proved that for continuous F(z) and sufficiently large ¢ the fol-
lowing equalities hold asymptotically:

P {sup(F(z) - Fy(2)) > 6} = exp{-2¢2¢},

P {sgp(Fe(z) - F(z.)) > e} = exp{~2e°¢}.
The random variables
= VE|F(z) - Fyz)],
& = VI(F(z) — Fo(x))

are called the Kolmogorov—Smirnov statistics.

When the Glivenko—Cantelli theorem was peneralized for multidimen-
sional distribution functions,® it was proved that for any £ > 0 there exists
a sufficiently large ¢y such that for ¢ > £, the inequality

{sup |[F(Z) — Fy(Z)] >e} < 2exp{—ac’f}

holds true, where a is any constant smaller than 2.
The results obtained in learning theory generalize the results of Kol-
mogorov and Smirnov in two directions:

(i} The obtained bounds are valid for any set of events (not only for sets
of rays, as in the Glivenko—Cantelli case).

(i) The obtained bounds are valid for any £ (not only asymptotically for
sufficiently large ¢).

>For an n-dimensional vector space Z the distribution function of the random
vectors z = (z',...,2") is determined as follows:

F(2)=P{' < 2,...,2" < Z.}.

The empirical distribution functmn F¢(z) estimates the frequency of (accurrence
of) the event A, = {z! <2',...,2" <z.}.
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3.10 RACING FOR THE CONSTANT

Note that the results obtained in learning theory have the form of inequali-
ties, rather than equalities as obtained for a particular case by Kolmogorov
and Smirnov. For this particular case it is possible to evaluate how close
to the exact values the obtained general bounds are.
Let Q(z,a), a € A, be the set of indicator functions with VC dimension
h. Let us rewrite the bound (3.3) in the form
> }

P{m;p
< 4exp {—_(0,62 - M) E} y (3.33)

£
where the coeflicient a equals one. In the Glivenko—Cantelli case (for which
the Kolmogorov—Smirnov bounds are valid) we actually consider a set of
indicator functions Q(z,a) = 8(z — a). (For these indicator functions

[4
[aadre) - 30,0

F(a)= /9(z —a)dF(z),

¢
Fila) = %Eﬂ(z,— —a),

where 21, .. ., z; are i.i.d. data.) Note that for this set of indicator functions
the VC dimension is equal to one: Using indicators of rays (with one direc-
tion) one can shatter only one point. Therefore, for a sufficiently large ¢,
the second term in parentheses of the exponent on the right-hand side of
(3.33) is arbitrarily small, and the bound is determined by the first term in
the exponent. This term in the general formula coincides with the (main)
term in the Kolmogorov—Smirnov formulas up to a constant: Instead of
a = 1 Kolmogorov-Smirnov bounds have constant® a = 2.

In 1988 Devroye found a way to obtain a nonasymptotic bound with the
constant ¢ = 2 (Devroye, 1988). However, in the exponent of the right-hand
side of this bound the second term is

h(In£2/h + 1)
¢

%In the first result obtained in 1968 the constant was a = 1 /8 (Vapnik and
Chervonenkis, 1968, 1971); then in 1979 it was improved to a = 1/4 (Vapnik,
1979). 1n 1991 L. Bottou showed me a proof with a = 1. This bound also was
Obtained by J.M. Parrondo and C. Van den Broeck (Parrondo and Van den
Broeck, 1993).
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instead of
h(In2¢/h + 1)
R

For the case that is important in practice, namely, where

(3.34)

—Innp <h(lnh-—1),

the bound with coefficient a = 1 and term (3.34) described in this chapter
is better.

3.11 BOUNDS ON EMPIRICAL PROCESSES

The bounds obtained for the set of real functions are generalizations of the
bounds obtained for the set of indicator functions. These generalizations
were cbtained on the basis of a generalized concept of VC dimension that
was constructed for the set of real functions.

There exist, however, several ways to construct a generalization of the
VC dimension concept for sets of real functions that allow us to derive the
corresponding bounds.

One of these generalizations is based on the concept of a VC subgraph
introduced by Dudley (Dudley, 1978) (in the AI literature, this concept
was renanled pseudo-dimension). Using the VC subgraph concept Dudley
obtained a bound on the metric ¢-entropy for the set of bounded real func-
tions. On the basis of this bound, Pollard derived a bound for the rate
of uniform convergence of the means to their expectation (Pollard, 1984).
This bound was used by Haussler for learning machines.”

Note that the VC dimension concept for the set of real functions de-
scribed in this chapter forms a slightly stronger requirement on the capac-
ity of the set of functions than Dudley’s VC subgraph. On the other hand,
using the VC dimension concept one obtains more attractive bounds:

(1) They have a form that has a clear physical sense (they depend on the
ratio £/h).

(ii) More importantly, using this concept one can obtain bounds on uni-
form relative convergence for sets of bounded functions as well as for
sets of unbounded functions. The rate of uniform convergence (or uni-
form relative convergence) of the empirical risks to actual risks for
the unbounded set of loss functions is the basis for an analysis of the
regression problem.

’D. Haussler (1992), “Decision theoretic generalization of the PAC model for
neural net and other appllcatlons,” Inform. Comp. 100 (1) pp. 78-150.
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The bounds for uniform relative convergence have no analogy in classical
statistics. They were derived for the first time in learning theory to obtain
rigorous bounds on the risk.






Chapter 4

Controlling the Generalization
Ability of Learning Processes

The theory for controlling the generalization ability of learning machines
is devoted to constructing an inductive principle for minimizing the risk
functional using a small sample of training instances.

The sample size £ is considered to be small if the ratio £/h (ratio of the
number of training patterns to the VC dimension of functions of a learning
machine) is smell, say £/h < 20.

To construct sinall sample size methods we use both the bounds for the
generalization ability of learning machines with sets of totally bounded
nonnegative functions,

R(Q@) < Remp(al) + 'BQ_g (1 + 1 + iR_e;i._ZZ) I (41)

and the bounds for the generalization ability of learning machines with sets
of unbounded functions,

Remp(al)
Rl < 77—, (4.2)
(o)
1 /p-1 pl
a(p) = 3 (p_—_i) )
. wher
o £ = QLﬂl—_’“_"

4
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if the set of functions Q(z,,), 1,...,N, contains N elements, and

h(In 2t +1) —In(n/4)

£E=4 7

if the set of functions Q(z,a), o € A, contains an infinite number of ele-
ments and has a finite VC dimension k. Each bound is valid with probability
at least 1 — 7.

4.1 STRUCTURAL RISK MINIMIZATION (SRM)
INDUCTIVE PRINCIPLE

The ERM principle is intended for dealing with large sample sizes. It can
be justified by considering the inequality (4.1) or the inequality (4.2).

When £/h is large, € is small. Therefore, the second summand on the
right-hand side of inequality (4.1) (the second sunimand in the denominator
of (4.2)) becomes small. The actual risk is then close to the value of the
empirical risk. In this case, a small value of the empirical risk guarantees
a small value of the (expected) risk.

However, if £/h is small, a small Rey(ar) does not guarantee a small
value of the actual risk. In this case, to minimize the actual risk R(«) one
has to minimize the right-hand side of inequality (4.1) (or (4.2)) simultane-
ously over both terms. Note, however, that the first term in inequality (4.1)
depends on a specific function of the set of functions, while the second term
depends on the VC dimension of the whole set of functions. To minimize
the right-hand side of the bound of risk, (4.1) (or (4.2)), simultaneously
over both terms, one has to make the VC dimension a controlling variable.

The following general principle, which is called the structural risk mini-
mization (SRM) inductive principle, is intended to minimize the risk func-
tional with respect to both terms, the empirical risk, and the confidence
interval (Vapnik and Chervonenkis, 1974).

Let the set S of functions Q(2,a), a € A, be provided with a structure
consisting of nested subsets of functions Sy = {Q(z, @), a € Ay}, such that
(Fig. 4.1)

SScSyc---C8S,, -, (4.3)

where the elements of the structure satisfy the following two properties:

(i) The VC dimension hy of each set Sy of functions is finite.! Therefore,

1However, the VC dimension of the set S can be infinite.
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FIGURE 4.1. A structure on the set of functions is determined by the nested
subsets of functions.

(i) Any element Sy of the structure contains either

a set of totally bounded functions,
0 < Q(z,a) < By, a€ Ay,

or a set of functions satisfying the inequality

p @ (0)F)?

S S TQaydFE) ~ 0 P7E 44

for some pair (p, 7x).

We call this structure an admissible structure.

For a given set of observations z;,.. ., z; the SRM principle chooses the
function Q(z, ef) minimizing the empirical risk in the subset Sy for which
the guaranteed risk (determined by the right-hand side of inequality (4.1) or
by the right-hand side of inequality (4.2) depending on the circumstances)
is minimal.

The SRM principle defines a trade-off between the quality of the approzi-
mation of the given data and the complexity of the approximating function.
As the subset index n increases, the minima of the empirical risks decrease.
However, the term responsible for the confidence interval (the second sum-
mand in inequality (4.1) or the multiplier in inequality (4.2) (Fig. 4.2))
increases. The SRM principle takes both factors into account by choosing
the subset S, for which minimizing the empirical risk yields the best bound
on the actual risk.
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Bound on the risk

Confidence interval

Empirical risk

h

FIGURE 4.2. The bound on the risk is the sum of the empirical risk and the
confidence interval. The empirical risk decreases with the index of the element of
the structure, while the confidence interval increases. The smallest bound of the
risk is achieved on some appropriate element of the structure.
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4.2 ASYMPTOTIC ANALYSIS OF THE RATE OF
CONVERGENCE

Denote by S* the set of functions
[» 9]
= U Si.
k=1

Suppose that the set of functions S* is everywhere dense? in S (recall
S = {Q(z,a), a € A}) with respect to the metric

p(Q(Z,Q]),Q(Z,a2)) = /1@(2,0:1) - Q(z’a2)1dF(2)'

For asymptotic analysis of the SRM principle one considers a law deter-
mining, for any given £, the number

n = n(f) (4.5)

of the element S, of the structure (4.3) in which we will minimize the
empirical risk. The following theorem holds true.

Theorem 4.1. The SRM method provides approzimations Q(z,a, (2))

for which the sequence of risks R(a ﬂ(l)) converges to the smallest risk

Rlao) = 1ot [ @z, 0)F (@)

with asymptotic rate of convergence®

hoeyInf
V(&) =rn@y + Tree (22 (4.6)

>The set of functions R(z, B), € B, is everywhere dense in the set
Q(z,0), a € A, in the metric p(Q, R) if for any £ > 0 and for any Q(z,@")
one can find a hunction R(z, 8") such that the inequality
P(Q(z,07), R(2, 7)) <&

holds true.
_ We say that the random variables £, £= 1,2, ..., converge to the value £
with asymptotic rate V(£) ¥f there exists a constant C such that

V3l - &l = C
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if the law n = n(€) is such that

T2 hnpIn?
lim @9 7" 0, (4.7)

€—o0 ¢
where

(i) Tn = By, if one considers a structure with totally bounded functions
Q(z,a) < By in subsets S, and

(i) T,, = T, if one considers a sitructure with elements satisfying the
equality (4.4);

Tn(z) i the rate of approzimation

ra= inf / Q(z,0)dF(z) - inf / Q(z,0)dF(z). (4.8)

To provide the best rate of convergence one has to know the rate of
approzimation rn for the chosen structure. The problem of estimating r;,
for different structures on sets of functions s the subject of classical function
approximation theory. We will discuss this problem in the next section. If
one knows the rate of approximation r,, one can a prior: find the law n =
n(¢) that provides the best asymptotic rate of convergence by minimizing
the right-hand side of equality (4.6).

Example. Let Q(z,0),a € A, be a set of functions satisfying the in-
equality (4.4) for p > 2 with 7. < 7* < 00. Consider a structure for which
1 = hy. Let the asymptotic rate of approximation be described by the law

-

(This law describes the main classical results in approximation theory;
see the next section.) Then the asymptotic rate of convergence reaches its

maximum value if
i U
[ ZeF1
)=

where (a] is the integer part of a. The asymptotic rate of convergence is

vey= (5 ) . (19)
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4.3 THE PROBLEM OF FUNCTION APPROXIMATION
IN LEARNING THEORY

The attractive properties of the asymptotic theory of the rate of conver-
gence described in Theorem 4.1 are that one can a priori (before the learn.
ing process begins) find the law n = n(¢) that provides the best (asymp-
totic) rate of convergence, and that one can a priori estimate the value of
the asymptotic rate of convergence.? The rate depends on the construction
of the admissible structure (on the sequence of pairs (h, Tn), n=1,2,..)
and also depends on the rate of approximation 7,, n=1,2,... .

On the basis on this information one can evaluate the rate of conver-
gence by minimizing (4.6). Note that in equation (4.6), the second term,
which is responsible for the stochastic behavior of the learning processes,
is determined by nonasymptotic bounds on the risk (see (4.1) and (4.2)).
The first term (which describes the deterministic component of the learning
processes) usually only has an asymptotic bound, however.

Classical approximation theory studies connections between the smooth-
ness properties of functions and the rate of appraximation of the function
by the structure with elements S, containing polynomisls (algebraic or
trigonometric) of degree n, or expansions in otbar series with n terms. Usu-
ally, smoothness of an unknown function is characterized by the number s
of existing derivatives. Typical results of the asymptotic rate of approxi-
mation have the form

Ta=n" %, (4.10)
where N is the dimepsionality of the input space (Lorentz, 1966). Note that
this implies that a high asymptotic rate of convergence® in high-dimensional
spaces can be guaranteed only for very smooth functions.

I learning theory we would like to find the rate of approximation in the
following case:

(1) Q(z2,a), a € A, is a set of high-dimensional functions.

(1) The elements Sy of the structure are not necessarily linear manifolds.
(They can be any set of functions with finite VC dimension.)

Furthermore, we are interested in the cases where the rate of approxi-
mation is high.

Therefore, in learning theory we face the problein of describing the cases
for which a high rate of approximation is possible. This requires describ-
ing different sets of “smooth” functions and structures for these sets that
provide the bound 0(7!;7) for v, (i.e., fast rate of convergence).

:’Note, however, that a high asymptotic rate of convergence does not neces-
sarily refiect a high rate of convergence on a limited sample size.
SLet the rate of convergence be considered high if r, < n V3,
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In 1989 Cybenko proved that using a superposition of sigmoid functions
(neurons) one can approximate any smooth function (Cybenko, 1989).

In 1992-1993 Jones, Barron, and Breiman described a structure on dif-
ferent sets of functions that has a fast rate of approximation (Jones, 1992},
(Barron, 1993), and (Breiman, 1993).

They considered the following concept of smooth functions. Let {f(z)}
be a set of functions and let {f(w)} be the set of their Fourier transforms.

Let us characterize the smoothness of the function f(z) by the quantity

/ledlf(w)ldw =Cy(f) <00, d2=0. (4.11)

In terms of this concept the following theorent for the rate of approximation
Ty holds true:

Theorem 4.2. (Jones, Barron, and Breiman) Let the set of functions
f(x) satisfy (4.11). Then the rate of approzimation of the desired functions
by the best function of the elements of the structure is bounded by 0(7';;)
if one of the following holds:

(i) The set of functions {f(x)} is determined by (4.11) with d = 0, and
the elements S, of the structure contain the functions

flz,a,w,v) = ia,— sin [(z - w;) +v,], (4.12)

1=]
where o, and v, are arbitrary values and w; are arbitrary vectors
(Jones, 1992}).

(i1) The set of functions {f(x)} is determined by equation (4.11) with
d =1, and the elements S,, of the structure contain the functions

flz,a,w,v) = ia,—S [(z - wi) + 2], (4.13)

=]

where a; and v; are arbitrary values, w, are arbifrary vectors, and
S(u) is a sigmoid function (a monotonically increasing function such
that lim,_,_ o, S(u) = =1, lim,_ ., S(u) =1)

(Barron, 1993).

(iii) The set of functions {f(x)} is determined by (4.11) with d = 2, and
the elements S, of the structure contain the functions

f@oawv) =) ol(z-w)+oily,  |uls =max(0, u), (4.14)

=1

where a, and v; are arbitrary values and w, are arbitrary vectors
(Breiman, 1993).
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In spite of the fact that in this theorem the concept of smoothness is dif-
ferent from the number of bounded derivatives, one can observe a simjlar
plienomenon bare as in the classical case: To keep a high rate of convergence
for a space with increasing dimensionality, one has to increase the smooth-
ness of the functions simultaneously as the dimensionality of the space is
increased. Using constraint (4.11) one attains it automatically. Girosi and
Anzellotti (Girosi and Anzellotti, 1993) observed that the set of functions
satisfying (4.11) with d = 1 and d = 2 can be rewritten as

1 1
flz) = Ea Mz), flz)= ez Mz),

where A(z) is any function whose Fourier transform js integrable, and *
stands for the convolution operator. In these forms it hecomes more appar-
ent that due to more rapid fall-off of the terms 1/|z|™ T, functions satisfying
{(4.11) become more and more constrained as the dimensionality increases.
The same phenomenon is also clear in the results of Mhasker (Mhaskar,
1992), who proved that the rate of convergence of approximation of func-
tions with s continuous derivatives by the structure (4.13) is O(n /"),

Therefore, if the desired function is not very smooth, one cannot guaran-
tee a higlr asymptotic rate of convergence of the functions to the unknown
function.

In Section 4.5 we describe a2 new model of learning that is based on the
idea of local approximation of the desired function (instead of global, as
considered ahove). We consider the approximation of the desired function
in some neighborhood of the point of interest, where the radius of the
neighborhood can decrease with increasing number of observations.

The rate of local approximation can be higher than the rate of global
approximatjon, and this effect provides a better generalization ability of
the learning machine.

4.4 EXAMPLES OF STRUCTURES FOR NEURAL
NETS

The general principle of SRM can be implemented inr many different ways.
Here we consider three different examples of structures built for the set of
functions implemented by a neural etwork.

1. A structure given by the architecture of the neural network

. Consider an ensemble of fully connected feed-forward neural networks
in which the number of units in one of the lidden layers is monotonijcally
Increased. The sets of implementable functions define a structure as the
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FIGURE 4.3. A structure determined by the number of hidden units.

pumber of hidden units is increased (Fig. 4.3).
2. A structure given by the learning procedure

Consider the set of functions S = {f(z,w), w € W}, implementable by a
neural net of fixed architecture. The parameters {w} are the weights of the
neural network. A structure is introduced through S, = {f(z,w), |jw|| <
Cp} and Cy < C2 < -+ < Cp. Under very general conditions on the set
of loss functions, the minimization of the empirical risk within the element
Sy of the structure is achieved through the minimization of

1 {4
Blw, ) = 5 D Ly, flae, w)) + plwl?
=1

with appropriately chosen Lagrange multipliers v1 > 2 > --+ > 7,. The
well-known “weight decay” procedure refers to the minimization of this
functional.

3. A structure given by preprocessing

Consider a neural net with fixed architecture. The input representation is
modified by a transformation z = K(z, 8), where the parameter 8 controls
the degree of degeneracy introduced by this transformation {8 could, for
instance, be the width of a smoothing kernel).

A structure is introduced in the set of functions S = { f(K(z,B8),w), w €
W} through 8 > Cp, and Cy > C2 > ... > Ch.

To implement the SRM principle using these structures, one has to know
(estimate) the VC dimension of any element Si of the structure, and has
to be able for any Sk to find the function that minimizes the empirical risk.
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.
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FIGURE 4.4. Examples of vicinity functions: (a) shows a hard-threshold vicinity
function and (b) shows a soft-threshold vicinity function.

4.5 THE PROBLEM OF LOCAL FUNCTION
ESTIMATION

Let us consider a model of local risk minimization (in the neighborhood
of a given point zp) on the basis of empirical data. Consider a nonnega-
tive function K (z, zp; ) that embodies the concept of neighborhood. This
function depends on the point xy and a “locality” parameter 8 € (0,00)
and satisfies two conditions:

0< K(z,z0;8) < 1,
K(:Bo,.’l?o;ﬂ) = 1. (415)
For example, both the “hard threshold” vicinity function (Fig. 4.4(a))

1 if {|z — x| < "21,

Ki(z, 20 5) ::{ 0 otherwise, (4.16)
and the “soft threshold” vicinity function (Fig. 4.4(b))
Ka3(z, zo; B) ___exp{_(I‘Txo)f} (4.17)
meet these conditions.
Let us define a value
K(zp,8) = /K(:c,:cg;ﬁ)dF(:c). (4.18)

For the set of functions f(z,a), a € A, let us consider the set of loss
functions Q(z,a) = L(y, f(x,a)), a € A. Our goal is to minimize the local
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r1sk functional

Rl fiag) = [ Ly foa) T D dr @) @)

over both the set of functions f(z,a), a € A, and different vicinities of
the point z¢ (defined by parameter §) in situations where the probability
measure F(z,y) is unknown, but we are given the independent identically
distributed examples
(xlsyl)s L] a(xbyf)'

Note that the problem of local risk minimization on the basis of empirical
data is a generalization of the problem of global risk minimization. (In the
last problem we have to minirnize the functional (4.19) with K(z, zq; 8) =
1)

For the problem of local risk minimijzation one can generalize the bound
obtained for the problem of global risk minimization: With probability 1 -7
simultaneously for all bounded functions A < L(y, f(z,a) < B, a € A, and
all functions 0 < K(z,zo,3) <1, 8 € (0,00), the inequality

R(a, B;z0) < % Zf:l L(yufgxn a))K(z,z6; 8) + (B — A)E(4, hy)
(% Y| K(zi,20; ) - E(¢, hﬁ))+

—1
£(t.h) = \/h(ln(zt’/h 4;7 1) m,/z’
holds true, where hy is the VC dimension of the set of functions

Ly, f(z,a))K(z,20; B), a € A, B € (0,00)

and hg is the VC dimension of the set of functions K (z, 24, 3) (Vapnik and
Bottou, 1993).

Now using the SRM principle one can minimize the right-hand side of
the inequality over three parameters: the value of empirical risk, the VC
dimension hky, and the value of the vicinity 8 (VC dimension hg).

bl

The local risk minimization approach has an advantage when on the basis
of the given structure on the set of functions it is impossible to approximate
well the desired function using a given number of observations. However, it
may be possible to provide a reasonable local approzimation to the desired
function at any point of interest (Fig. 4.5).

4.6 THE MINIMUM DESCRIPTION LENGTH (MDL)
AND SRM PRINCIPLES

Along with the SRM inductive principle, which is based on the statisti-
cal analysis of the rate of convergence of empirical- processes, there ex-
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FIGURE 4.5. Using linear functions one can estimate an unknown smooth func-
tion in the vicinity of any point of interest.

ists another principle of inductive inference for small sample sizes, the so-
called minimum description length (MDL) principle, which is based on an
infarmation-theoretic analysis of the randomness concept. In this section
we consider the MDL principle and point out the connections between the
SRM and the MDL principles for the pattern recognition problem.

In 1965 Kolmogorov defined a random string using the concept of algo-
rithmic complexity.

He defined the algorithmic complexity of an object to be the length of
the shortest binary contputer program that describes this object, and he
proved that the value of the algorithmic complexity, up to an additive con-
stant, does not depend on the type of compnter. Therefore, it is a universal
characteristic of the object.

The main idea of Kolmogorov is this:

Consider the string describing an object to be random if the algorithmic
complezity of the object is high — that is, if the string that describes the
object cannot be compressed significantly.

»Ten years after the concept of algorithmic complexity was introduced,
Rissanen suggested using Kolmogorov's concept as the main tool of ip-
(lu.ctwe inference of learning machines; he suggested the so-called MDL
vrinciple® (Rissanen, 1978)).

——
*The use of the algorithmic complexity as a general inductive principle



106 4. Controlling the Generalization Ability of Learning Processes

4.6.1 The MDL Principle

Suppose that we are given a training set of pairs
(wla-’cl)a L ,(wl,xl)

(pairs drawn randomly and independently according to some unknown
probability measure). Consider two strings: the binary string

Wiger.  We (4.20)

and the string of vectors
Ty,s..,Tp. (4.21)

The question is,
Given (4.21) is the string (4.20) a random object?

To answer this question let us analyze the algorithmic complexity of
the string {4.20) in the spint of Solomonoff-Kolmogorov’s ideas. Since the
W, .. .,wp are binary valued, the string (4.20) is described by ¢ bits.

To determine the complexity of this string let us try to compress its
description. Since training pairs were drawn randomly and independently,
the value w; may depend only on vector z; but not on vector z;, 1 # j (of
course, only if the dependency exists).

Consider the following model: Suppose that we are given some fixed
codebook C, with N < 2¢ different tables 7}, i = 1,...,N. Any table T,
describes some function”’ from z to w.

Let us try to find the table T in the codebook Cj; that describes the
string (4.20) in the best possible way, namely, the table that on the given
string (4.21) returns the binary string

Wi Wp (4.22)

for which the Hamming distance between string (4.20) and string (4.22) is
yrinimal (i.e., the number of errors in decoding string {4.20) by this table
T is minimal).

Suppose we found a perfect table T, for which the Hamming distance
between the generated string (4.22) and string (4.20) is zero. This table
decodes the string (4.20).

was considered by Solomonoff even before Kolmogorov suggested his model
of randomness. Therefore, the principle of descriptive complexity is called the
Solomonoff~Kolmogorov principle. However, only starting with Rissanen’s work
was this principle considered as a tool for inference in learning theory.
“Formally speakng, to get tables of finlte length in codebook, the Input vector
2 has to be discrete. However, as we will see, the number of levels in quantization
will not affect the bounds on generalization ability. Therefore, one can consider
any degree of quantization, even giving tables with an Infinite number of entries.
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Since the codebook Cy is fixed, to describe the string (4.20) it is sufficient
to give the number o of table T, in the codebook. The minimal number of
bits to describe the number of any one of the N tables is [lg, N, where [ A]
is the minimal integer that is not smaller than A. Therefore, in this case
to describe string (4.20) we need [1gy N| (rather than #) bits. Thus using
a codebook with a perfect decoding table, we can compress the description
length of string (4.20) by a factor

x(r,) = 1M, (4.23)

Let us call K(T) the coefficient of compression for the strng (4.20).

Consider now the general case: The codeboock Cp does not contain the
perfect table. Let the smallest Hamming distance between the strings (gen-
erated string (4.22) and desired string (4.20)) be d > 0. Without loss of
geuerality we can assume that d < ¢/2. (Otherwise, instead of the smallest
distance one could look for the largest Hamming distance and during de-
coding change one to zero and vice versa. This will cost one extra bit in the
coding scheme). This means that to describe the string one has to make d
corrections to the results given by the chosen table in the codebook.

For fixed d there are C¢ different possible corrections to the string of
length ¢. To specify one of them (i.e., to specify one of the C§ variants) one
needs [lg, C§] bits.

Therefore, to describe the string (4.20) we need [lg, N| bits to define
the mumber of the table, and [lg, C§] bits to describe the corrections. We
also need [lg,d] + Ay bits to specify the number of corrections d, where
Ay <2lgylgad, d> 2. Altogether, we need [lgy N|+[1g, CE1+[lgy d]+Aq
bits for describing the string (4.20). This number should be compared to
¢, the number of bits needed to describe the arbitrary binary string (4.20).
Therefore, the coefficient of compression is

K(T) - I-ng N-| + ﬂgQ Cgf] + H-Ide—l +Ad. (424)

If the coefficient of compression K(T) is small, then according to the
Solomonoff-Kolmogorov idea, the string is not random and somehow de-
Pends on the input vectors z. In this case, the decoding table T somehow
approximates the unknown functional relation between z and w.

4.6.2 Bounds for the MDL Principle

The important question is the following:

Does the compression coefficient K (T') determine the probability of test
error in classification (decoding) vectors & by the table T'?

The answer is yes.



To prove this, let us compare the result obtained for the MDI, principle
to that obtained for tbe ERM principle in the simplest model (the learning
machine with a finite set of functions).

In the beginning of this section we considered the bound (4.1) for the gen-
eralization ability of a learning machine for the pattern recognition prob-
lem. For the particular case where the learning machine has a finite number
N of functions, we obtained that with probability at least 1 — 7, the in-
equality

R(TS) < Romp(Ti) + 20720 (1 it %) (429)

holds true simultaneously for all N functions in the given set of functions
(for all N tables in tlie given codebook). Let us transform the right-hand
side of this inequality using the concept of the conipression coefficient, and

the fact that p
Remp(Tl.) = z

Note that for d < £/2 and £ > 6 the inequality

d InN-lny 2d
g Hny=mniay <
A’ ( + Hmzv-m;)

<9 (nnN] + [In Cf} + (lgadl +8a 1“7") (4.26)

is valid (one can easily check it). Now let us rewrite the right-hand side of
inequality (4.26) in terms of the compression coefficient (4.24):

2 (1n2“g2w]“; e, €71, “gz‘”;A“ - 1_.;_1;) <2 (Km— l-“f—”)

Since inequality {4.25) holds true with probability at least 1 — 5 and in-
equality (4.26) holds with probability 1, the inrequality

R(T) < 2 (K(T,) n2 - 1"7”) (a.27)

liolds with probability at least 1 — 7.

4.6.3 The SRM and MDL Principles

Now suppose that we are given M codebooks that have the following struc-
ture: Codebook 1 contaius a small number of tables, codebook 2 contaiis
these tables and some more tables, and so on.



In this case one can use a more sophisticated decoding scheme to describe
string (4.20): First, describe the number m of the codebook (this requires
Mlgam] + Am, Am < 2[lgzlgom] bits) and then, using this codebook,
describe the string (which as shown above takes [1g;, N+ g, C¢14-Ng, d]+
Ay bits).

The total length of the description in this case is not less than {Ing N+
[Iny C#1 + Mgy d] + Ag+ llggm] + A, and the compression coefficient is

Ngo N1+ Ngo CF + Ngad] + Ag+(lgam] + A,
7 .

K(T) =

For this case an inequality analogous to inequality (4.27) holds. Therefore,
the probability of error for the table that was used for compressing the
description of string (4-20) is bounded by inequality (4.27).

Thus, for d < £/2 and £ > 6 we have proved the following theorem:

Theorem 4.3. If on a given structure of codebooks one compresses by
a factor K(T) the description of string (4.20) using a table T, then with
probability at least 1 — 1) one can assert that the probability committing an
error by the table T is bounded by

R(T) < 2 (K(T) n2 - ll‘t,’l) . £>6. (4.28)

Note liow powerful the concept of the compression coefficient is: To ob-
tain a bound on the probability of error, we actually need only information
about this coefficient.® We do not need such details as

(i) How ntany examples we used,
(ii) how the structure of the codebooks was organized,
(iii) which codebook was used,
(iv) how many tables were in the codebook,
(v) how many training errors were made using this table.

Nevertheless, the bound (4.28) is not much worse than the bound on the
risk (4.25) obtained on the basis of the theory of uniform convergence.
The latter has a more sophisticated structure and uses information about
the number of functions (tables) in the sets, the number of errors on the
training set, and the number of elements of the training set.

8The second term, — In7/¢, on the right-hand side is actually foolproof: For
reasonable 7 and ¢ it is negligible compared to the first term, but it prevents one
from considering too small i and/or too small £.



Note also that the bound (4.28) cannot be improved more than by factor
2: It is easy to show that in the case where there exists a perfect table in
the codebook, the equality can be achieved with factor 1.

This theorem justifies the MDL principle: To minimize the probability
of error one has to minimize the coefficient of compression.

4.6.4 A Weak Point of the MDL Principle

There exists, however, a weak point in the MDL principle.

Recall that the MDL principle uses a codebook with a finite number of
tables. Therefore, to deal with a set of functions determined by a continuous
range of parameters, one must make a finite number of tables.

This can be done in many ways. The problem is this:

What is a “smart” codebook for the given set of functions?

In other words, how, for a given set of functions, can one construct a
codebook with a small number of tables, but with good approximation
ability?

A “smart” quantization could significantly reduce the number of tables
in the codebook. This affects the compression coefficient. Unfortunately,
finding a “smart” quantization is an extremely hard problem. This is the
weak point of the MDL principle.

In the next chapter we will consider a normalized set of linear functions
in a very high dimensional space (in our experiments we use linear functions
in N =~ 10'3 dimensional space). We will show that the VC dimension £
of the subset of functions with bounded norm depends on the value of the
bound. It can be a small (in our experiments h ~ 10? to 10®). One can
guarantee that if a function from this set separates a training set of size ¢
without error, then the probability of test error, is proportional to kln#/¢.

The problem for the MDL approach to this set of indicator functions is
how to construct a codebook with =~ #* tables (but not with = ¢V tables)
that approximates this set of linear functions well.

The MDL principle works well when the problem of constructing rea-
sonable codebooks has an obvious solution. But even in this case, it is not
better than the SRM principle. Recall that the bound for the MDL princi-
ple (which cannot be improved using only the concept of the compression
coefficient) was obtained by roughening the bound for the SRM principle.
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Attempts to improve performance in various areas of computational math-
enatics and statistics have essentially led to the same idea that we call the
structural risk minjimization inductive principle.

First this idea appeared in the methods for solving ill-posed problems:

(i) Methods of quasi-solutions (Ivanov, 1962),
(if) methods of regularization (Tikhonov, 1963)).
It then appeared in the method for nonparametric dsnsity estimation:
(i) Parzen windows (Parzen, 1962),
(ii) projection methods (Chentsov, 1963),

(iii) conditional maximum likelihood method (the method of sieves (Grenan-
der, 1981)),

(iv) maximum penalized likelihood method (Tapia and Thompson, 1978)),
etc.

The idea then appeared in methods for regression estjmation:
(i) Ridge regression (Hoer] and Kennard, 1970),
(ii) model selection (see review in (Miller, 1990)).

Finally, it appeared in regularization techniques for both pattern recogni-
tion and regression estimation algorithms (Poggio and Girosi, 1990).
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Of course, there were a nuniber of attempts to justify the idea of searching
for a solution using a structure on the admissible set of functions. However,
in the framework of the classical approach justifications were obtained only
for specific problems and only for the asymptotic case.

In the inodel of risk minimization from empirical data, the SRM principle
provides capacity (VC dimension) control,.and it can be justified for a finite
number of observations.

4.7 METHODS FOR SOLVING ILL-POSED PROBLEMS

In 1962 Ivanov suggested an idea for finding a guasi-solution of the linear

operator equation
Af=F, feM, (4.29)

in order to solve ill-posed problems. (The linear operator A maps elements
of the metric space M C E; with metric pg, to elements of the metric
space N C E, with metric pg,.) He suggested considering a set of nested
convex compact subsets

My C My C-oo C Myy--, (4.30)
Ij Mi=M, (4.31)
=1
and for any subset M; to find a function f; € M, minimizing the distance
p=pE,(Af, F).
Ivanov proved that under some general conditions the sequence of solutions
Siveeoifine

converges to the desired one.

The quasi-solution method was suggested at the same time as Tikhonov
proposed his regularization techmnique; in fact, the two are equivalent. In
the regularization technique, one introduces a nonnegative semicontinuous
(from below) functional Q(f) that possesses the following properties:

(i) The domain of the functional coincides with M (the domain to which
the solution of (4.29) belongs).

(ii) The region for which the inequality
M, ={f:Q(f) <d;}, d,>0,

holds forms a compactum in the metric of space E\.
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(ii) The solution of (4.29) belongs to sonie M,

Q(fy <d* <oo.

Tikhonov suggested finding a sequence of functions f., minimizing the func-
tionals

O (f) = Pl (Af, F) +Y(f)

for different . He proved that f., converges to the desired solution as ~
converges to 0.

Tikhonov also suggested using the regularization technique even in the
case where the right-hand side of the operator equation is given only within
some S-accuracy:

pE':(Fs Fﬁ) <é.

In this case, in minimizing the functionals

&*(f) = pr,(Af, Fs) +v(6)2f) (4.32)

one obtains a sequence fs of solutions converging (in the metric of E;) to
the desired one fp as § — 0 if

lim () = 0,

.6
gl_% v(8)
In both methods the formal convergence proofs do not explicitly contain
“capacity control.” Essential, however, was the fact that any subset M, in
Ivanov’s scheme and any subset M = {f : Q(f) < ¢} in Tikhonov's scheme
is compact. That means it has a bounded capacity (a metric e-entropy).
Therefore, both schemes implement an SRM principle: First define a
structure on the set of admissible functions such that any element of the
structure has a finite capacity, increasing with the number of the element.
Then, on any element of the structure, the function providing the best
approximation of the right-hand side of the equation is found. The sequence
of the obtained solutions converges to the desired one.

0.

4.8 STOCHASTIC ILL-POSED PROBLEMS AND THE
PROBLEM OF DENSITY ESTIMATION

In 1978 we generalized the theory of regularization to stochastic ill-posed
problems (Vapnik and Stefanyuk, 1978). We considered a problem of solv-
ing the operator equation (4.29) in the case where the right-hand side is
unknown, but we are given a sequence of approximations Fi possessing the
following properties:
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(i) Each of these approximations Fs is a random function.’

(i) The sequence of approximations converges in probability (in the met-
ric of the space Ej3) to the unknown function F as é converges to zero.

In other words, the sequence of random functions Fs has the property

P{pg,(F, F5) > 6};—_—:}0, Ye > 0.

Using Tikhonov's regularization technique one can obtain, on the basis of
random functions Fj, a sequence of approximations fs; to the solution of
(4.29).

We proved that for any ¢ > 0 there exists yo = ~o(€) such that for any
() < 7o the functions minimizing functional (4.32) satisfy the inequality

P{pe,(f, f5) > €} < 2P {p, (F, F5) > v(8)} . (4.33)

In other words, we connected the distribution of the random deviation
of the approximations from the exact right-hand side (in the E3 metric)
with the distribution of the deviations of the solutions obtained by the
regularization method from the desired one (in the E; metric).

In particular, this theorem gave us an opportunity to find a general
method for constructing various density estimation methods.

As mentioned in Section 1.8, density estimation requires us to solve the
integral equation

/_ " (bt = F(z),

where F(z) is an unknown probability distribution function, using i.i.d.
data Zy,...,Zp,....
Let us construct the empirical distribution function

[4
Fio) =33 0~z
i=1

which is a random approximation to F(z), since it was constructed using
random data Zp, ..., Zg.

In Section 3.9 we found that the differences sup, |F(z) — Fp(z)| are de-
scribed by the Kolmogorov—Smirnov bound. Using this bound we obtain

P {sup |F(z) — Fe(z)| > e} <272

°A random function is one that is defined by a realization of some random
event. For a definition of random functions see any advanced textbook in proba-
bility theory, for example, A.N. Schiryaev, Probability, Springer, New York.
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Therefore, if one minimizes the regularized functional

R(p) = o, ( / by, Fm)) +79p), (4.34)

o<

then according to inequality (4.38) one obtains the estimates py(t), whose
deviation from the desired solution can be described as follows:

P{pg,(p,pe) > €} < 2exp{—2efy;}.

Therefore, the conditions for consistency of the obtained estimators are
0,
Ry
g —> 00, (4.35)
£— o0

Thus, minimizing functionals of type (4.34) under the constraint (4.35)
gives consistent estimators. Using various norms E; and various function-
als Q}(p) one can obtain various types of density estimators (including all
classical estimators!®). For our reasoning it is important that all nonpara-
ntetric density estimators implement the SRM principle. By choosing the
functional Q(p), one defines a structure on the set of admissible solutions
(the nested set of functions M, = {p : }(p) < ¢} determined by constant c);
using the law v, one determines the appropriate element of the structure.

In Chapter 7 using this approach we will construct direct method of the
density, the conditional density, and the conditional probability estimation.

4.9 THE PROBLEM OF POLYNOMIAL
APPROXIMATION OF THE REGRESSION

The problem of constructing a polynomial approximation of regression,
which was very popular in the 1970s, played an important role in under-
standing the problems that arose in small sample size statistics.

'%By the way, one can obtain all classical estimators if one approximates an
unknown distribution function F(z) by the the empirical distribution function
Fy(z). The empirical distribution function, however, is not the best approxima-
tion to the distribution function, since, according to definition, the distribution
function should be an absolutely continuous one, while the empirical distribu-
tion function is discontinuous. Using absolutely continuous approximations {e.g.,
a polygon in the one-dimensional case) one can obtain estimators that in addi-
tion to nice asymptotic properties (shared by the classical estimators) possess
some useful properties from the point of view of limited numbers of observations
{Vapnik, 1988).
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Consider for simplicity the problem of estimating a one-dimensional re-
gression by polynomials. Let the regression f(z) be 8 smooth function.
Suppose that we are given a finite number of measurements of this func-
tion corrupted with additive noise

h=flz)+&, i=1,...,¢,

(in different settings of the problem, different types of information about the
unknown noise are used; in this model of measuring with noise we suppose
that the value of noise £, does not depend on z,, and that the point of
measurement 7, is chosen randomly according to an unknown probability
distribution F(x}).

The problem is to find the polynomial that is the closest (say in the Lo( F)
metric) to the unknown regression function f(z). In contrast to the classical
regression problem described in Section 1.7.3, the set of functions in which
one has to approximate the regression is now rather wide (polynomial of
any degree), and the number of observations is fixed.

Solving this probletn taught statisticians a lesson in understanding the
nature of the small sample size problem. First the simplified version of this
problem was considered: The case where the regression itself is a polynomial
(but the degree of the polynomial is unknown) and the model of noise is
described by a normal density with zero mean. For this particular problem
the classical asymptotic approach was used: On the basis of the technique of
testing hypotheses, the degree of the regression polynomial was estimated
and then the coefficients of the polynomial were estimated. Experiments,
however, showed that for small sample sizes this idea was wrong: Even if
one knows the actual degree of the regression polynomial, one often has to
choose a smaller degree for the approximation, depending on the available
number of observations.

Therefore, several ideas for estimating the degree of the approximating
polvnomial were suggested, including (Akaike, 1970), and (Schwartz, 1978)
(see (Miller, 1990)). These methods, however, were justified only in asymp-
totic cases.

4.10 THE PROBLEM OF CAPACITY CONTROL

4.10.1 Choosing the Degree of the Polynomial

Choosing the appropriate degree p of the polynomial in the regression prob-
lem can be considered on the basis of the SRM principle, where the set of
polynomials is provided with the simplest structure: The first element of
the structure contains polynomials of degree one:

fi(z,a) = a1z + 0o, a=(o,00) € R
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the second element contains polynomials of degree two:
fo(z,0) = 2”4 vz + 09, @ = (@, 00,0) € R%;

and so on.
To choose the polynomial of the best degree, one can winimize the fol-
lowing functional (the righthand side of bound (3.30)):

LY~ fmlme0))?
bl
(1-cVEe),
hm(ln % + 1) — 1n7;/4
g )
where k,, is the VC dimension of the set of the loss functions

Q(z,a) = (y - fm(z’a))Q) ac Aa

and ¢ is a constant determining the “tails of distributions” (see Sections
3.4 and 3.7).
One can show that the VC dimension h of the set of real functions

Q(z, a) = F(,g(z)a)l)) a€A,

where F'(u) is any fixed monotonic function, does not exceed eh™, where
e < 9.34 and h* is the VC dimension of the set of indicators

R(a,m) = (4.36)

Er=4

I{z,c,8) = 0(9(z,a) — 8), a €A, B€R.
Therefore, for our loss functions the VC dimension is bounded as follows:
hm <e(m+1).

To find the best approximating polynomial, one has to choose both the
degree m of the polynomial and the coefficients & minimizing functional'!
(4.36).

4.10.2 Choosing the Best Sparse Algebraic Polynomial

Let, us now introduce another structure on the set of algebraic polynomi-
als: Let the first element of the structure contain polynomials P (z, o) =
a1z9, a € R! (of arbitrary degree d), with one nonzero term; let the sec-
ond element contain polynomials Py(z,a) = a;3% 4 ayx?2, o € R?, with

"'We used this functional (with constant ¢ = 1, and & = [m{Iné/m + 1) —
Inn|/¢, where n = £7'/2) in several benchmark studies for choosing the degree of
the best approximating polynomial. For small sample sizes the results obtained
were often better than ones based on the classical suggestions.
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two nonzero terms; and so on. The problem is to choose the best sparse
polynomial P, (z) to approximate a smooth regression function.

To do this, one has to estimate the VC dimension of the set of loss
functions

Q(z,0) = (y — Pn(z,0))?,

where P, (z,c), a € R™, is a set of polynomials of arbitrary degree that
contain m terms. Consider the case of one variable x.

The VC dimension k for this set of loss functions can be bounded by
2h™, where k™ is the VC dimension of the indicators

I(y,z) = 8(y ~ Pu(z,0)— ), acR™ BER"

Karpinski and Werther showed that the VC dimension h* of this set of
indicators is bounded as follows:

Im<h<4dm+3

(Karpinski and Werther, 1989). Therefore, our set of loss functions has VC
dimensjon less than e(4m + 3). This estimate can be used for finding the
sparse algebraic polynomial that minimizes the functional (4.36).

4.10.8 Sitructures on the Set of Trigonometric Polynomials

Consider now structures on the set of trigonometric polynomials. First we
consider a structure that is determined by the degree of the polynomials.!?
The VC dimension of the set of our loss function with trigonometric poly-
nomials of degree m is less than A = 4m + 2. Therefore, to choose the best
trigonometric approximation one can minimize the functiona) (4.36). For
this structure there is no difference between algebraic and trigonometric
polynomials,

The difference appears when one constructs a structure of sparse trigono-
metric polynomials. In contrast to the sparse algebraic polynomials, where
any element of the structure has finite VC dimension, the VC dimension
of any element of the structure on the sparse trigonometric polynomials is
infinite.

This follows from the fact that the VC dimension of the set of indicator
functions

f(z,a) =8(sinaz), acR', zc(01),

is infinite (see Example 2, Section 3.6).

12 Trigonometric polynomials of degree m have the form

f(z)= Z(auc sin kx + by cos kz) + ao.
k=1
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4.10.4 The Problem of Feature Selection

The problem of choosing sparse polynomials plays an extremely important
role in learning theory, since the generalization of this problem is a problem
of feature selection (feature construction) using empirical data.

As was demonstrated in the examples, the above problem of feature selec-
tion (the terms in the sparse polynomials can be considered as the features)
is quite delicate. To avoid the effect encountered for sparse trigonometric
polynomials, one needs to construct a priori a structure containing ele-
ments with bounded VC dimension and then choose decision rules from the
functions of this structure.

Constructing a structure for learning algorithms that select (construct)
features and control capacity is usnally & hard combinatorial problem.

In the 1980s in applied statistics, several attempts were made to find
reliable methods of selecting nonlinear functions that control capacity. In
particular, statisticians started to study the problem of function estimation
in the following sets of the functions:

m
y= ajK(z,w;) +ao,
j=1

where K(z,w) is a symmetric function with respect to vectors z and w,
Wy, .., Wm are unknown vectors, and o, ..., @y, are unknown scalars (Fried-
man and Stuetzle, 1981), (Breiman, Friedman, Olshen, and Stone, 1984)
(in contrast to approaches developed in the 1970s for estimating linear in
parameters functions (Miller, 1990)). In these classes of functions choosing
the functions K (z, w;), j = 1,...,m, can be interpreted as feature selection.

As we will see in the next chapter, for the sets of functions of this type, it
is possible to effectively control both factors responsible for generalization
ability — the value of the empirical risk and the VC dimension.

4.11 THE PROBLEM OF CAPACITY CONTROL AND
BAYESIAN INFERENCE

4.11.1 The Bayestan Approach in Learning Theory

In the classical paradigm of function estimation, an important place belongs
to the Bayesian approach (Berger, 1985).

According to Bayes’s formula two events 4 and B are connected by the
equality

P(B|A)P(A)
P =
(i) - 5

One uses this formula to modify the ML models of function estimation
discussed in the comments on Chapter 1.
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Cousider, for simplicity, the problem of regression estimation from mea-
surements corrupted by additive noise

Yi = f(zv QO) +§z-

In order to estimate the regression by the ML, method, one has to know a
parametric set of functions f(z,a),a € A C R™, that contain the regression
f(z,c0), and one has to know a model of noise P(£).

In the Bayesian approach, one has to possess additional information:
One has to know the a priori density function P(a) that for any function
from the parametric set of functions f(z,a). a € A, defines the probability
for it to be the regression. If f(z,aq) is the regression function, then the
probability of the training data

|Y»X] = (ylszl)a »(yl»Il)

equals
£

P([Y, X}lew) = [ [ P(sn — (i, 0)).
i=1
Having seen tlie data, one can a posteriori estimate the probability that

parameter « defines the regression:

P([Y, X]la)P(a)
PV, X))

One can use this expression to choose an approximation to the regression
function.

Let us consider the simplest way: We choose the approximation f(z,a*)
such that it yields the maximum conditional probability.' Finding a* that
maximizes this probability is equivalent to maximizing the following fune-
tional:

Plally, X]) = (4.37)

£
&(a) = ZlnP(y.- — f(z,,0)) +1n P(a). (4.38)

13 Another estimator constructed on the basis of the a posteriori probability

go(zllY, X]) = / f(z,0) P(a[Y, X])da

possesses the following remarkable property: It minimizes the average quadratic
deviation from the admissible regression functions

R©) = [(4(2,0) ~ $(allY; X)) P(Y, Xl|e) P}z (|, X]) de
To find this estimator in explicit form one has to conduct integration analytically

(numerical integration is impossible due to the high dimensionality of «). Unfor-
tunately, analytic integration of this expression is mostly an unsolvable problem.
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Lot us for simplicity consider the case where the noise is distributed ac-
cording to the normal law

PE) = \—/51—;;6*1){—%}»

Then from (4.37) one obtains the functional

. 1< , 20°
(@) = 5 Y (1 ~ flen,a))* - o P(a), (4.39)

=1

which has to be minimized with respect to « in order to find the approxima-
tion function. The first terin of this functional is the value of the empirical
risk, and the second term can be interpreted as a regularization term with
the explicit form of the regularization parameter.

Therefore, the Bayesian approach brings us to the same scheme that is
used in SRM or MDL inference.

The goal of these comments is, however, to describe a difference between
the Bayesian approach and SRM or MDL.

4.11.2 Discussion of the Bayesian Approach and Capacity
Control Methods

The only (but significant) shortcoming of the Bayesian approach is that it
18 restricted to the case where the set of functions of the learning machine
coincides with the set of problems that the machine has to solve. Strictly
speaking, it cannot be applied in a situation where the set of admissible
problems differs froni the set of admissible functions of the learning ma-
chine. For example, it cannot be applied to the problem of approximation
of the regression. function by polynomials if the regression function is not
polynomial, since the a priori probability P(a) for any function from the
admissible set of polynomials to be the regression is equal to zero. There-
fore, the a posteriori probability (4.37) for any admissible function of the
learning machine is zero. To use the Bayesian approach one must possess
the following strong a priori information:

(i) The given set of functions of the learning machine coincides with the
set of problems to be solved.

(i) The a priori distribution on the set of problems is described by the
given expression Pa).}*

.

Y4This part of the a prior: information is not as important as the first one.
Oile can prove that with increasing numbers of observations the influence of an
inaccurate description of P(a) is decreased.
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In contrast to the Bayesian method, the capacity (complexity) control
methods SRM or MDL use weak (qualitative) @ prior? information about
reality: They use a structure on the admissible set of functions (the set of
functions is ordered according to an idea of usefulness of the functions);
this a priori information does not include any quantitative description of
reality. Therefore, using these approaches, one can approximate a set of
functions that is different from the admissible set of functions of the learn-
ing machine.

Thus, inductive inference in the Bayesian approach is based (along with
training data) on given strong (quantitative) a priori information about
reality, while inductive inference in the SRM or MDL approaches is based
(along with training data) on weak (qualitative) a priori information about
reality, but uses capacity (complexity) control.

In discussions with advocates of the Bayesian formalism, who use this
formalism in the case where the set of problems to be solved and the set of
admissible functions of the machine do not coincide, one hears the following
claim:

The Bayesian approach also works in general situations.

The fact that the Bayesian formalism sometimes works in general situa-
tions (where the functions implemented by the machine do not necessarily
coincide with those being approximated) has the following explanation.
Bayesian inference has an outward form of capacity control. It has two
stages: an informal stage, where one chooses a function describing (quan-
titative) a priori information P{c) for the problem at hand, and a formal
stage, where one finds the solution by niinimizing the functional (4.38). By
choosing the distribution P(c) one controls capacity.

Therefore, in the general situation the Bayesian formalism realizes a
human-machine procedure for solving the problem at hand, where capacity
control is implemented by a human choice of the regularizer In P(a).

In contrast to Bayesian inference, SRM and MDL inference are -pure ma-
chine niethods for solving problems. For any ¢ they use the same structure
on the set of admissible functions and the same formal mechanisms for
capacity control.



Chapter 5
Methods of Pattern Recognition

To implement the SRM inductive principle in learning algorithms one has
to minimize the risk in a given set of functions by controlling two factors:
the value of the empirical risk and the value of the confidence interval.
Developing such methods is the goal of the theory of constructing learn-
ing algorithms.
In this chapter we describe learning algorithms for pattern recognition
and consider their generalizations for the regression estimation problem.

5.1 WHY CAN LEARNING MACHINES GENERALIZE?

The generalization ability of learning machines is based on the factors de-
scribed in the theory for controlling the generalization ability of learning
processes. According to this theory, to guarantee a high level of generaliza-
tion ability of the learning process one has to construct a structure

SicSc---CcS
on the set of loss functions S = {Q(z,a), o € A} and then choose both an
appropriate element Sy of the structure and a function Q(z,af) € Sk in

this element that minimizes the corresponding bounds, for example, bound
(@.1). The bound (4.1) can be rewritten in the simple form

R(a}) < Rampl0}) +3(;) (5.1)
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where the first term is the empirical risk and the second terin is the confi-
dence interval.

There are two constructive approaches to 1ninimizing the right-hand side
of inequality (5.1).

In the first approach, during the design of the learning machine one
determines a set of admissible functions with some VC dimension k*. For
a given amount ¢ of training data, the value h* determines the confidence
interval ®(-%) for the machine. Choosing an appropriate element of the
structure is therefore a problem of designing the machine for a specific
amount of data.

During the learning process this machine minimizes the first term of the
bound (5.1) (the numher of errors on the training set).

If for a given amount of training data one designs too complex a machine,
the confidence interval <I>(ﬁ) will he large. In this case even if one could
minimize the empirical risk down to zero, the number of errors on the test
set could still be large. This phenomenon is called overfitting.

To avoid overfitting (to get a sinall confidence interval) one has to con-
struct machines with sinall VC dimension. On the other hand, if the set of
functions has a small VC dimension, then it is difficult to approximate the
training data (to get a small value for the first term in inequality (5.1)).
To obtain a small approximation error and simultaneously keep a small
confidence interval one has to choose the arclitecture of the machine to
reflect @ priori knowledge about the problem at hand.

Thus, to solve the problemn at hand by these types of machines, one first
has to find the appropriate architecture of the learning machine (which is
a result of the trade off between overfitting and poor approximation) and
second, find in this macliine the function that minimizes the number of
errors on the training data. This approach to minimizing the right-hand
side of inequality (5.1) can be described as follows:

Keep the confidence interval fized (by choosing an appropriale construc-
tion of machine) and minimize the empirical risk.

The second approach to the problem of minimizing the right-hand side
of inequality (5-1) can be described as follows:

Keep the value of the empirical risk fized (say equal to zero) and minimize
the confidence interval.

Below we consider two different types of learning machines that imple-
ment these two approaches:

(i) neura] networks (which implement the first approach), and
(i) support vector machines (which implement the second approach).

Both types of learning machines are generalizations of the learning ma-
chines with a set of linear iudicator functions constructed in the 1960s.
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5.2 SIGMOID APPROXIMATION OF INDICATOR
FUNCTIONS

Consider the problem of minimizing the empirical risk on the set of linear
indicator functions

flz,w) =sign{(w-2z)}, w€R", (5.2)

where (v - =) denotes an inner product between vectors w and z. Let

(Ilayl)s vy (It)yl)

be a training set, where z, is a vector, and y; € {},—1}, j=1,...,%
Tlie goal is to find the vector of parameters wq (weights) that minimize
the empirical risk functional

[4
Remp() = 3 (33 — Sz, w)® (53)

=1

If the training set is separable without error (i.e., the empirical risk can
become zero), then there exists a finite-step procedure that allows us to
find such a vector wy, for example the procedure that Rosenblatt proposed
for the perceptron (see the Introduction).

The problem arises when the training set cannot be separated without
errors. In this case the problem of separating the training data with the
smallest number of errors is NP-complete. Moreover, one cannot apply reg-
ular gradient-based procedures to find a local minimum of functional (5.3),
since for this functional the gradient is either equal to zero or undefimed.

Therefore, the idea was proposed to approximate the indicator functions
(5.2) by the so-called sigmoid functions (see Fig. 0.3 )

flz,w)=S{(w- )}, (5.4)
where S(u) is a smooth monatonic function such that
S(—00) = —1, S(+00) =1,

for example,
exp(u) — exp(-u)

S(u) =tanhu = oxp(a) T exp(Cn)’

For the set of sigmoid functions, the empirical risk functional

L
£

Remp(w) = 3 315 — S{(w- )}’

=1
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is smooth in w. It has gradient

l [

£
grady, Remp(w) =~ 2 = S((w - z,))| S{(w - z5)}e],

and therefore it can be minimized using standard gradient-based methods,
for example, the gradient descent method:

Wnew = Wold — ‘Y(')gradRemp(wo]d)s

where v(-) = y(n) > 0 is 2 value that depends on the iteration number n.
For convergence of the gradient descent method to local minima it is suffi-
cient that the values of the gradient be bounded and that the coefficients
v(n) satisfy the following conditions:

S =ce,  $9%m) <o
n=1

n=1

Thus, the idea is to use the sigmoid approximation at the stage of esti-
mating the coefficients, and use the threshold functions (with the obtained
coefficients) for the last neuron at the stage of recoguition.

5.3 NEURAL NETWORKS

In this section we consider classical neural networks, which implement the
first strategy: Keep the confidence interval fixed and minimize the empirical
risk.

This idea is used to estimate the weights of all neurons of a multilayer
perceptron (neural network). Instead of linear indicator functions (single
neurons) in the networks one considers a set of sigmoid functions.

The method for calculating the gradient of the empirical risk for the sig-
moid approximation of neural networks, called the back-propagation method,
was proposed in 1986 (Rumelhart, Hinton, and Williams, 1986), (LeCun,
1986). Using this gradient, one can iteratively modify the coefficients (weights)
of a neural net on the basis of standard gradient-based procedures.

5.3.1 The Back-Propagation Method

To describe the back-propagation method we use the following notation
(Fig. 5.1):

(i) The neural net contains m + 1 layers: the first layer z(0) describes
the input vector z = (z!,...,z"). We denote the input vector by

=(x;(o),...,z;‘(o)), i=1,...,4,
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FIGURE 5.1. A neural network is a combination of several levels of sigmoid
elements. The outputs of one layer form the inputs for the next layer.
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and the image of the input vector z,(0) on the kth layer by
z,(k) = (z} (k) ..., aP*(k)), i=1,...,¢,

where we denote by n) the dimensionality of the vectors z;(k), i =
1,...,¢(ng, k=1,...,m— 1 can be any number, but n,, =1).

(ii) Layer k—1 is connected with layer k through the (ny x ny._ ;) matrix
w(k)

zi(k) = S{w(k)zi(k ~ 1)}, k=12,...,m, i=1,...,¢ (5.5)
where S{w(k)z;(k —1)} defines the sigmoid function of the vector
ui(k) = w(k)zi(k — 1) = (u] (k),...,ui* (k)
as the vector coordinates transformed by the sigmoid:

S(uy(k)) = (S(ug (k). - -, S(ui* (K)))-

The goal is to minimize the functional

[4
I(w(),...,wim)) =Y _(yi — z:(m))? (5.6)

i=1

under conditions (5.5).

This optimization problem is solved by using the standard technique of
Lagrange multipliers for equality type constraints. We will minimize the
Lagrange function

L(W,X,B)

1 () £ m
= 3 2 —za(m)® ~ 37 " (bu(k) - [ma(k) = S{wik)zilk — D],
=1 i=1 k=1
where b;(k) > 0 are Lagrange multipliers corresponding to the constraints
(5.5) that describe the connections between vectors z;(k — 1) and vectors
Ii(k).
It is known that
VL(W,X,B)=0

is a necessary condition for a local minimum of the performance function

(5.6) under the constraints (5.5) (the gradient with respect to all parame-

ters from b;(k), zi(k), w(k), i=1,...,¢ k=1,...,m, is equal to zero).
This condition can be split into three subconditions:

AL(W. X, B)

(3) S =0 Vi k
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.. OL(W,X,B)
N C)
... OLW X, B)
(u.l) W
The solution of these equations determines a stationary point (Wy, Xo, Bo)
that includes the desired inatrices of weights Wy = (w®(1),...,w%m)). Let
us rewrite these three subconditions in explicit form
(i) The first subcondition

The first subcondition gives a set of equations:
x,(k) = S{w(k)zi(k—1)}, i=1,....¢ k=1,...,m,

with initial conditions

=0 Vi, k,

-0 Yu(k).

Ii(O) =Ix;,
the equation of the so-called forward dynamics.

(i1) The second subcondition

We consider the second subconditions for two cases: The case k = m-
(for the last layer) and the case k # m (for hidden layers).

For the last Jayer we obtain
b(m) =2y, —xi(m)), i=1,...,¢L
For the general case (hidden layers) we obtain
bi(k) = wl (k + 1)VS {w(k + 1)z;(k)} bi(k + 1),
i=1,....8 k=1,....m—1,

where VS{w(k +1)z,(k)} is a diagonal nyyy X npyy matrix with
diagonal elements S’(u,), where wu, is the rth coordinate of the
(nk+1-dimensional) vector w(k+ 1)z,(k). This equation describes the
backward dynamics.

(ili) The third subcondition
Unfortunately, the third subcondition does not give a direct method
for computing the matrices of weights w(k), k= 1,...,m. Therefore,
to estimate the weights, one uses steepest gradient descent:

oL(W, X, B)

, k=1,...,m.

In explicit form this equation is

é
w(k) — wik) = ¥() Y bu(K)VS {w(k)z,(k — )} w(k)z] (k—1),

i=1
k=12,...,m.
This equation describes the rule for weight update.
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5.8.2 The Back-Propagation Algorithm
Therefore, the back-propagation algorithm contains three elements:
(i) Forward pass:
zi(k) = S{w(k)z,(k — 1)}, 1=1,...,¢ k=1,...,m,
with the boundary conditions

I,(O):Ii, 121,,£

(I1) Backward pass:
bi(k) = wT (k +1)VS {w(k + 1)z, (k)} bi(k + 1),
i1=1,...,¢ k=1,....m—1,

with the boundary conditions
b(m) = 2(y — z(m)), i=1,...,L

(iit) Weight update for weight matrices w(k), k=1,2,...,m:

é
w(k) — w(k) —v(:) Y b(K)VS {w(k)a.(k — 1)} w(k)z] (k —1).

i=1

Using the back-propagation technique one can achieve a local minimum for
the empirical risk functional.

5.3.3 Neural Networks for the Regression Estimation Problem

To adapt neural networks for solving the regression estimation problem, it
is sufficient to use in the last layer a linear function instead of a sigmoid
one. This bnplies only the following changes in the equations described
above:

z;(m) = w(m)z,(im —1),

VS{w(m),z;(m—1)} =1, i=1,..,¢

5.3.4 Remarks on the Back-Propagation Method
The main problems with the neural net approach are:

(i) The empirical risk functional has many Jocal minima. Standard opti-
mization procedures guarantee convergence to one of them. The qual-
ity of the obtained solution depends on mmany factors, in particular
on the initialization of weight matrices w(k), k=1,...,m.

The choice of initialization parameters to achieve a “small” local min-
imum is based on heuristics.
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(if) The convergence of the gradient-based method is rather slow. There
are several heuristics to speedup the rate of convergence.

(iit) The sigmoid function has a scaling factor that affects the quality
of the approximation. The choice of the scaling factor is a trade-off
between the quality of approximation and the rate of convergence.
There are empirical recommendations for choosing the scaling factor.

Therefore. neural networks are not well-controlled learning machines, Nev-
crtheless, in many practical applications, neural networks demonstrate good
results.

5.4 THE OPTIMAL SEPARATING HYPERPLANE

Below we consider a new type of universal learning machine that imple-
ments the second strategy: Keep the value of the empirical risk fixed and
minimize the confidence interval.

As in the case of neural networks, we start by considering linear deci-
sion rules (the separating hyperplanes). However, in contrast to previous
considerations, we use a special type of hyperplane, the so-called optimal
separating hyperplanes (Vapnik and Chervonenkis, 1974), (Vapnik, 1979).
First we consider the optimal separating hyperplane for the case where the
training data are linearly separable. Then, in Section 5.5.1 we generalize the
idea of optimal separating hyperplanes to the case of nonseparable data.
Using a technique for constructing optimal hyperplanes, we describe a new
type of universal learning machine, the support vector machine. Finally,
we construct the support vector machine for solving regression estimation
problems.

5.4.1 The Optimal Hyperplane

Suppose the training data
(1, 1)y (zesye), z€ R, ye{+1, -1},
can be separated by a hyperplane
(w-z)-b=0. (5.7)

We say that this set of vectors is separated hy the optimal hyperplane (or
the maximal margin hyperplane) if it is separated without error and the
distance between the closest vector to the hyperplane is maximal (Fig.
5.2).

" To describe the separating hyperplane let us use the following form:

(w-z;)—b>1 ify;=1,
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FIGURE 5.2. The optimal separating hyperplane is the one that separates the
data with maximal margjn.

(w-z)—b< -1 ify; =-1.
In the following we use a compact notation for these inequalities:
Villw-z,)— b >1, i=1,...,4 (5.8)

It is easy to check that the optimal hyperplane is the one that satisfies the
conditions (5.8) and minimizes

$(w) = [lwl*. (5.9)

(The minimization is taken witb respect to both the vector w and the scalar

b.)

5.4.2 A-Margin Separating Hyperplanes
We call a hyperplane
(w*z)—b=0, Juw'|=1
a A-margin separating hyperplane if it classifies vectors z as follows:

(1 i@ z)-b2A,
Sl -1 if(wrex) —b < —A.

It is easy to check that the optimal hyperplane defined in canonical
form (5.8) is the A-margin separating hyperplane with A = 1/[w*|. The
following theorem is true.

Theorem 5.1. Let vectors £ € X belong to a sphere of radius R. Then
the set of A-margin separating hyperplones has VC dimension h bounded
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by the inequality
(%))
h<min| |—]|,n ] +1.
(&

In Section 3.5 we stated that the VC dimension of the set of separat-
ing hyperplanes is equal to n + 1, where n is the dimension of the space.
However, the VC dimension of the A-margin separating hyperplanes can
be less.!

Corollary. With probability 1 —n one can assert that the probability that
a test ezample will not be separated corvectly by the A-margin hyperplane

has the bound
m £ im
< — —_ —_—
Pe,m,-_e+2(1+ 1+££)’

where
h(ln%+1)—Ing/4

e v
m 15 the number of training examples thal are not separated corvectly by
this A-margin hyperplane, and h is the bound of the VC dimension given
in Theorem 5.1.

£=4

On the basis of this theorem one can construct the SRM method where
in order to obtain a good generalization one chooses the appropriate value
of A.

5.5 CONSTRUCTING THE OPTIMAL HYPERPLANE

To construct the optimal hyperpiane one has to separate the vectors x; of
the training set
(yl,l:l), LR (yt, :B[)
belonging to two different classes y € {—1,1} using the hyperplane with
the smaliest norm of coefficients.
To find this hyperplane one has to solve the following quadratic program-
ming probiem: Mininiize the functional

1
(w) = E(w -w) (5.10)
under the constraints of inequality type

wl(zs-w)—b)>1, i=1,2,...,¢ (5.11)

In Section 5.7 we describe a separating hyperplane in 10'®-dimensional space
with relatively small estimate of the VC dimension (=2 103).
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The solution to this optimization problem is given by the saddle point of
the Lagrange functional (Lagrangian):

3
Lwba) = 3w w)~ Yadi@ w)-bu-1}, (1)

where the , are Lagrange niultipliers. The Lagrangian has to be minimized
with respect to w and & and maximized with respect to a; > 0.

At the saddle point, the solutions wy, by, and a® should satisfy the
conditions

OL(wo, by, 0% 0
ob -

aL(wD) bD)ao)

——F = =0.
ow

Rewriting these equations in explicit form, one obtains the following prop-
erties of the optimal hyperplane:

(1) The coefficients a? for the optimal hyperplane should satisfy the con-
straints

()
Safui=0, 20, i=1,..,¢ (5.13)
i=1

(first equation).

(ii) The Optimal hyperplane (vector wyg) is a linear combination of the
vectors of the training set.

‘
wy = Zy,a?:r,, a? >0, i=1,...,¢ (5.14)
i=1

(second equation).

(iii) Moreover, only the so-called support vectors can have nonzero coefli-
cients a? in the expansion of wy. The support vectors are the vectors
for which in inequality (5.11) equality is achieved. Therefore, we ob-
tain

wg = 2 vielz,, a? >0. (5.15)

support vectors

This fact follows from the classical Kithn—Tucker thecrem, according
to which necessary and sufficient conditions for the optimal hyper-
plane are that the separating hyperplane satisfy the conditions

al{[(z - wo) — bolyi ~1} =0, i=1,...,4 (5.16)
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Putting the expression for wyg into the Lagrangian and taking into account
the Kithn—Tucker conditions, one obtains the functional

4 4
1
W(a) = E i — 5 E a0y Y5 (x4 - T5). (5.17)
)

=1

It remains to maximize this functional in the nonnegative quadrant

@; 20, 1=1,..°¢ (5.18)
under the constraint .
Za‘-y, =0. (519)
i=1

According to (5.15), the Lagrange multipliers and support vectors deter-
mine the optimal hyperplane. Thus, to construct the optimal hyperplane
one has to solve a simple quadratic programming problem: Maximize the
quadratic form (5.17) under constraints? (5.18) and (5.19).

Let ap = (a8, .. ,a?) be a solution to this quadratic optimization prob-
lem. Then the norm of the vector wp corresponding to the Optimal hyper-
plane equals

[wo[? = 2W (ap) = Z afaf(zi - 2;)yy;-

support vectors

The separating rule, based on the optimal hyperplane, is the following
indicator function

Sf(z) = sign ( z yiod(z, z) — bo) , (5.20)

support vectors

where x, are the support vectors, a¥ are the corresponding Lagrange coef-

ficients, and by is the constant (threshold)

bo= 3 [(wo -2 (1)) + (o - 2" (-1},

wlere we denote by z*(1) some (any) support vector belonging to the first
class and we denote by z*(—1) a support vector belonging to the second
class (Vapnik and Chervonenkis, 1974), (Vapnik, 1979).

2This quadratic programming problem is simple because it has simple con-
straints. For the solution of this problem, one can use special methods that are
fast and applicable for the case with a large number of support vectors (= 10*
support vectors) {More and Toraldo, 1991). Note that in the training data the
support vectors constitute only a small part of the training vectors (in our ex-
periments 3% to 5%)-
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5.5.1 Generalization for the Nonseparable Case

To construct the optimal-type hyperplane in the case when the data are
linearly nonseparable, we introduce nonnegative variables £ > 0 and a
function

£
F&)=) ¢
i=]

with parameter o > 0.

Let us minimize the functional F,(¢) subject to constraints
vi((w-z,) - b) > 1§, i=12...,¢ (5.21)

and one more constraint,
(w-w) <A™2, (5.22)

For sufficiently small ¢ > 0 the solution to this optimization problem
defines a hyperplane that minimizes the number of training errors under
the condition that the parameters of this hyperplane belong to the subset
(5.22) (to the element of the structure

Sp={(w-z)—b: (w-w) <A"?}

determined by the constant ¢, = 1/Delta™?).

For computational reasons, however, we consider the case ¢ = 1. This
case corresponds to the smallest o > 0 that is still computationally simple.
We call this hyperplane the A-margin separating hyperplane.

1. Constructing A-margin separating hyperplanes. One can show
(using the technique described above) that the A-margin hyperplane is
determined by the vector

4
1
w= Cr Eaiyizu

i=1

where the parameters a,, 2 = 1,...,£, and C* are the solutions to the
following convex optimization problem:
Maximize the functional

¢ ¢
¢ l o
W(a, C*) = Za, ayen 2 i, Yiys (i - Ty) — A2

=1 i,7=1

subject to constraints

{4
D=0, C*20,
=1
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0<a; <1, i=1,...,L

2. Constructing soft-margin separating hyperplanes. To simplify
computations one can introduce the following (slightly modified) concept
of the soft-margin optimal hyperplane (Cortes and Vapnik, 1995). The
soft-margin hyperplane (also called the generalized optimal hyperplane) is
determined by the vector w that minimizes the functional

()
¢(w’£) = %(w 'w)+ c (E&)

=1

(here C is a given value) subject to constraint (5.21).

The technique of solution of this quadratic optimization problem is al-
most equivalent to the technique used in the separable case: To find the
coefficients of the generalized optimal hyperplane

4
w = 2 Y124,

1=1

one has to find the parameters a;, ¢ = 1,...,¢, that maximize the same
quadratic form as in the separable case

4

¢

1

W(a) = E -5
1=1

Yy i (Ti - 25)
1,7=1

under slightly different constraints:

0<a,<C, i=1,...,¢,

()
2 ay, =0,

i=1

As in the separable case, only some of the coefficients a;, 1 =1, ... ¢, differ
from zero. They determine the support vectors.

Note that if the coefficient C in the functional &(w,£) is equal to the
optimal value of the parameter C* for minimization of the functional Fy(¢),

C=cC*,

then the solutions to both optimization problems (defined by the functional
Fy(¢) and by the functional &(w,£)) coincide.
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Optimal hyperplane in the feature space

® 00O O O Inputspace

FIGURE 5.3. The SV machine maps the input space into a high-dimensional
feature space and then constructs an Optimal hyperplane in the feature space.

5.6 SUPPORT VECTOR (SV) MACHINES

The support vector (SV) machine implements the following idea: It maps
the input vectors z into a high-dimensional feature space Z through some
nonlinear mapping, chosen a priors. In this space, an optimal separating
hyperplane is constructed (Fig. 5.3).

Example. To construct a decision surface corresponding to a polyno-
mial of degree two, one can create a feature space Z that has N = "(L;Q
coordinates of the form

zr=z,...,2"=2", n coordinates,

M =(zh)?, . 2 =(2")?, 1 coordinates,

N n, n—1 n(n—1)

2t g2 N =gt >— coordinates,

where z = (z',...,2"). The separating hyperplane constructed in this
space is a second degree polynomial in the input space. To construct poly-
nowials of degree d <« n in n-dimensional space one needs more than
a7 (n/d)? features.

Two problems arise in the above approach: one conceptual and one tech-
nical.

(i) How does one find a separating hyperplane that will generalize well?
(The conceptual problem)
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The dimensionality of the feature space will be hnge, and a hyperplane
that separates the training data will not necessarily generalize well.?

(i) How does one treat computationally such high-dimensional spaces?
(The technical problem)

To construct a polynomial of degree 4 or 5 in a 200-dimensional space
it is necessary to construct hyperplanes in a billion-dimensional fea-
ture space. How can this “curse of dimensionality” be overcome?

5.6.1 Generalization in High-Dimensional Space

The conceptual part of this problem can be solved by constructing both the
A-margin separating hyperplane and soft margin separating hyperplane.
According to Theorem 5.1 the VC dimension of the set of A-margin
separating hyperplanes with large A is small. Therefore, according to the
corollary to Theorem 5.1 the generalization ability of the constructed hy-
perplane is high.
For the maximal margin hyperplane the following theorem holds true.

Theorem 5.2. If training sets containing ¢ examples are separated by
the marimal margin hyperplanes, then the ezpectation (over training sets)
of the probability of test error is bounded by the expectation of the minimum
of three values: the ratio m /¢, where m is the number of support vectors,
the ratio [R*|w|?]/¢, where R is the radius of the sphere containing the
data and |w|~? 4s the value of the margin, and the ratio n/{, where n is the
dimensionality of the input space:

_{m [Rw|?] n
- = ]. H.2
EP.ror < E min ( ¢ 7 (5.23)

Equation (5.23) gives three reasons why optimal hyperplanes can gener-
alize:
1. Because the expectation of the data compression is large?.

3Recall Fisher’s concern about the small amount of data for constructing a
quadratic discriminant function in classical discriminant analysis (Section 1.9).

4One can compare the result of this theorem to the result of analysis of the
following compression scheme. To construct the optimal separating hyperplane
one needs only to specify among the training data the support vectors and their
classification. This requires = [lg, m} bits to specify the number m of support
vectors, [Ig; C*) bits to specify the support vectors, and [lg, Ci2' | bits to specify
m, representatives of the first class among the support vectors. Therefore, for
m < £ and my = m/2 the compression coefficient, is

P m(lg; 4/m + 1)
7 .

According to Theorem 4.3 the probability of error for the general compression
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2. Because the expectation of the margin is large.

3. Because the input space is small.

Classical approaches ignore the first two reasons for generalization and
rely on the third one. In support vector machines we ignore the dimension-
ality factor and rely on the first two factors.

5.6.2 Conuvolution of the Inner Product

However, even if the optimal hyperplane generalizes well and can theoreti-
cally be found, the technical problem of how to treat the high-dimensional
feature space remains.

In 1992 it was observed (Boser, Guyon, and Vapnik, 1992) that for con-
structing the optimal separating hyperplane in the feature space Z one
does not need to constder the feature space in explicit form. One has only
to be able to calculate the inner products between support vectors and the
vectors of the feature space ((5.17) and (5.20)).

Consider a general expression for the inner product in Hilbert space®

(2, 2) = K(z,z,),

where z is the image in feature space of the vector z in input space.

According to Hilbert-Schmidt theary, K(z,z;) can be any symmetric
function satisfying the following general conditions (Courant and Hilbert,
1953):

Theorem 5.3. (Mercer) To guarantee that the symmetric function K(u,v)
from Lo has an expansion

K(u,v) =Y axve(u)yu(v) (5.24)

k:l

with positive coefficients ax > 0 (i.e., K(u,v) describes an inner product
in some feature space), it is necessary and sufficient that the condition

// K (u,v)9(u)g(v)dudv > 0

scheme is proportional to K. From Theorem 5.2 it follows that EPerror < Em/L.

Therefore, the bound obtained for the SV machine is much better than the
bound cbtained for the general compression scheme even if the random value m
in (5.23) is always the smallest one.

This idea was used in 1964 by Aizerman, Braverman, and Rozonoer in their
analysis of the convergence properties of the method of potential functions (Aiz-
erman, Braverman, and Rozonoer, 1964, 1970). It happened at the same time
(1965) as the method of the optimal hyperplane was developed (Vapnik and
Chervonenkis 1965). However, combining these two ideas, which lead to the SV
machines, was done only in 1992. .
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be valid for all g £ 0 for which

/gQ(u)du < 00.

5.6.3 Constructing SV Machines

The convolution of the inner product allows the construction of decision
functions that are nonlinear in the input space,

f(x) = sign 2 Vi K (x4, ) — b) , (5.25)

upport vectors

and that are equivalent to linear decision functions in the high-dimensional
feature space ¢ (x), ..., ¥n(z) (K(z4,x) is a convolution of the inner prod-
uct for this feature space).

To find the coefficients a; in the separable case (analogously in the non-
separable case) it is sufficient to find the maximum of the functional

2 2
1
W(a) = Za,- -3 Za;ajy,-yjl((z,-,zj) (6.26)
i=1 %2
subject to the constraints
2
Zaty,=0, a, >0, 1=12_...,¢C (5.27)

=1

This functional coincides with the functional for finding the optimal hy-
perplane, except for the form of the inner products: Instead of inner prod-
ucts (z, - x;) in (5.17), we now use the convolution of the inner products
K(z,,z,).

The learning machines that construct decision functions of the type
(5.25) are called support vector (SV) Machines. (With this name we stress
the idea of expanding the solution on support vectors. In SV machines the
complexity of the construction depends on the number of support vectors
rather than on the dimensionality of the feature space.) The scheme of SV
Mmachines is shown in Figure 5.4,

5.6.4 Ezamples of SV Machines

Using different functions for convolution of the inner products K(z, r;), one
can construct learning machines with different types of nonlinear decision
Sgrjfaces in input space. Below, we consider three types of learning machines:

(i) polynomial learning machines,
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Decision rule

N
Y=Sign(2)}'|ail:(xi 0) -
=

Weights y oy, ... .y Oy

Nonlinear transformation
based on support vectors

Input vector x = ( %, ..., x")

FIGURE 5.4. The two-layer SV machine is a compact realization of an opt
hyperplane in the high-dimensional feature space Z.
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(i) radial basis functions machines, and
(iii) two layer neural networks.

For simplicity we consider here the regime where the training vectors are
separated without error.

Note that the support vector machines implement the SRM principle.
Indeed, let

¥(z) = (Ya(z), ..., PN ()

be a feature space and w = (wy.- .., wy) be a vector of weights determining
a hyperplane in this space. Cousider a structure on the set of hyperplanes
with eleinents Sy containing the functions satisfying the conditions

R?wl? <k,

where R is the radius of the smallest sphere that contains the vectors ¥(z),
and |w| is the norm of the weights (we use canonical hyperplanes in feature
space with respect to the vectors z = ¥(z,), where z; are the elements of
the training data).

According to Theorem 5.1 (now applied in the feature space), k gives an
estimate of the VC dimension of the set of functions Si.

The SV machine separates without error the training data

yt[(‘y(m‘i)'w)'_b]?_ l- y1:{+1a _1}s i:1a2a"'s£!

and has minimal norm |w|.
In other words, the SV machine separates the training data using func-
tions from the element S; with the smallest estimate of the VC dimension,
Recall that in the feature space the equality

‘wO‘Q ZataJK(I(!IJ yv,y_) Za (5.28)

holds true. To control the generalization ability of the macliine (to min-
imize the probability of test errors) one has to construct the separating
hyperplane that minimizes the functional

R?Jwy|?

Q(R!wO!e) = ¢

(5.29)

With prohability 1 — 7 the hyperplane that separates data without error
has the following bound on the test error

h(ln % +1) - Inn/4

524 2 ’
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where h is the VC dimension of the set of hyperplanes. We approximate the
VC dimension h of the maximal margin hyperplanes by heg; = R%wo|?. To
estimate this functional it is sufficient to estimate jwo|? (say by expression
(5.28)) and estimate R? by finding

R*=R}(K) = minmax [K (25, 2;) + K (a,0) — 2K (z:,0)].  (5.30)

Polynomial learning machine
To construct polynomial decision rules of degree d, one can use the fol-
lowing function for convolution of the inner product:

K(z,z)=[(z-2)+1]% (5.31)

This symmetric function satisfies the conditions of Theorem 5.3, and there-
fore it. describes a convolution of the inner product in the feature space that
contains all products x; - z, - Zx up to degree d. Using the technique de-
scribed, one constructs a decision function of the form

f(Iaa) = sign ( Z ylail(ri $T) + l]d - b) ’

support vectors

which is a factorization of d-dimensional polynomials in n-dimensional in-
put space.

In spite of the very high dimensionality of the feature space (polynomials
of degree d in n-dimensional input space have O(n?) free parameters) the
estimate of the VC dimension of the subset of polynomials that solve real- .
life problems can be low.

As described above, to estimate the VC dimension of the element of
the structure from which the decision function is chosen, one has only to
estimate the radius R of the smallest sphere that contains the training data,
and the norm of weights in feature space (Theorem 5.1).

Note that both the radius R = R(d) and the norm of weights in the
feature space depend on the degree of the polynomial.

This gives the opportunity to choose the best degree of the polynomial
for the given data.

To make a local polynomial approximation in the neighborhood of a point
of interest zo, let us consider the hard-threshold neighborhood function
(4.16). According to the theory of lacal algorithins, one chooses a ball with
radius Rg around point o in which ¢4 elements of the training set fall, and
then using only these training data, one constructs the decision function
that minimizes the probability of errors in the chosen neighborhood. The
solution to this problem is a radius Rg that minimizes the functionsl

R%|u)0|2

.32
- (5.32)

B(Rp,wo,lp) =
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(the parameter Jwo| depends on the chosen radius as well). This functional
describes a trade-off between the chosen radius Rg, the value of the mini-
mum of the norm |wp|, and the number of traiming vectors £z that fall into
radius Rg.

Radial basis function machines
Classical radial basis function (RBF) machines use the following set of
deciston rules:

N
f(z) =sign (Z a; K, (|z — ) - b) , (5.33)

i=1

where K, (|z — z;|) depends on the distance {r — z;] between two vectors.
For the theory of RBF machines see (Micchelli, 1986), (Powell, 1992).
The function K., (|z — ;) is for any fixed 7 a nonnegative monotonic
function; it tends to zero as z goes to infinity. The most popular function
of this type is
Ko () - 7)) = exp{ vz — z.f2}. (5.34)

To construct the decision rule (5.33) one has to estimate
(1) The value of the parameter 7,
(ii) the number N of the centers z;,
(iii) the vectors x;, describing the centers,
(iv) the value of the parameters a,.

In the classical RBF method the first three steps (determining the param-
etersy, N, and vectors (centers) z;, 1 = 1,..., N) are based on heuristics,
and only the fourth step (after finding these parameters) is determined by
minimizing the empirical risk functional.

The radial function can be chosen as a function for the convolution of
the inner product for an SV machine. In this case, the SV machine will
construct a function from the set (5.33). One can show (Aizerman, Braver-
man, and Rozonoer, 1964, 1970) that radial functions (5.34) satisfy the
condition of Theorem 3.3.

In contrast to classical RBF methods, in the SV technique all four types
of parameters are chosen to minimize the bound on the probability of test
error by controlling the parameters R, wp in the functional (5.29). By min-
imizing the functional (5.29) one determines

(1) N, the number of support vectors,
gn) T,, (the pre-images of ) support vectors;

(iii) a, = o4y, the coefficients of expansion, and
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(iv) 7, the width parameter of the kernel function.

Two-layer neural networks
Finally, one can define two-layer neural networks by choosing kernels:

K(z,z;) = Slv(z - z,) + ¢],

where S(u) is a sigmoid function. In contrast to kernels for polynomial
machines or for radial basis fimction machines that always satisfy Mercer
conditions, the sigmoid kernel tanh(vu + ¢), |u| < 1, satisfies Mercer con-
ditions only for some values of the parameters v, ¢. For these values of the
parameters one can construct SV machines implementing the rules

N

f(z, ) = sign {Z aiS(v(z-z)+ o) + b} )
i=1

Using the technique described above. the following are found antomatically:

(i) the architecture of the two layer machine, determining the number
N of hidden units (the number of support vectors),

(i1) the vectors of the weights w, = z; in the neurons of the first (hidden)
layer (the support vectors), and

(iii) the vector of weights for the second layer (values of ).

5.7 EXPERIMENTS WITH SV MACHINES

In the following we will present two types of experiments constructing the
decision rules in the pattern recognition problem:$

(1) Experiments in the plane with artificial data that can he visualized,
and

(ii) experiments with real-life data.

5.7.1 FEzample in the Plane
To demonstrate the SV technique we first give an artificial example (Fig.

5The experiments were conducted in the Adaptive System Research Depart-
ment, AT&T Bell Laboratories.
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FIGURE 5.5. Two classes of vectors are represented in the picture by black and
white balls. The decision boundaries were constructed using an inner preduct of
polynomial type with d = 2. 1n the pictures the examples cannot be separated
without errors; the errors are indicated by crosses and the support vectors by
double cirdles.

5.5).

The two classes of vectors are represented in the picture by black and
white balls. The decision boundaries were constructed using an inner prod-
uct of polynomial type with d = 2. In the pictures the examples cannot
be separated without errors; the errors are indicated by crosses and the
support vectors by double circles.

Notice that in both examples the number of support vectors is small
relative to the number of training data and that the nnmber of training
errors is minimal for polynomials of degree two.

5.7.2 Handuwritten Digit Recognition

Since the first experiments of Rosenblatt, the interest in the problem of
learning to recognize handwritten digits has remained strong. In the fol-
lowing we describe results of experiments on learning the recognition of
handwritten digits nsing different SV machines. We also compare these re-
sults to results obtained by other classifiers. In these experiments, the U.S.
Postal Service database (LeCun et al., 1990) was used. It contains 7,300
training patterns and 2,000 test patterns collected from real-life zip codes.
The resolution of the database is 16 x 16 pixels; therefore, the dimension-
ality of the input space is 256. Figure 5.6 gives examples from this data
base.
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FIGURE 5.6. Examples of patterns (with labels) from the U.S, Postal Service
database. '
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Classifier Raw error% |
Human performance 2.5
Decision tree, C4.5 16.2
Best two-layer neural network 5.9
Five-layer network (LeNet 1) || 5.1

TABLE 5.1. Human performance and performance of the various learning ma-
chines in solving the problem of digit recognition on U.S. Postal Service dats.

Table 5.1 describes the performance of various classifiers, solving this
problem?

For constructing the decision rules three types of SV machines were
used:?

(i) A polynomial machine with convolution function

(z- )\
K(m)mz)z(_ﬁ_) y d=1,...,7.

(ii) A radial basis function machine with convolution function

K(z,z;) =exp {—%}.

(iii) A two-layer neural network machine with convolution function

K(z,z,) = tanh (%’5%) - c) .

All machines constructed ten classifiers, each one separating one class from
the rest. The ten-class classification was done by choosing the class with
the largest classifier output value.

The results of these experiments are given in Table 5.2. For different types
of SV machines, Table 5.2 shows the best parameters for the machines (col-
umn 2), the average (over one classifier) of the numher of support vectors,
and the performance of the machine.

"The result of human performance was reported by J. Bromley and E.
Sackinger; the result of C4.5 was obtained by C. Cortes; the result for the two-
layer neural net was obtained by B. Scholkopf: the results for the special purpose
neural network architecture with five layers (LeNet 1), was obtalned by Y. LeCun
el cA

5The results were obtalned by C. Burges, C. Cortes, and B. Schélkopf.
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Type of Parameters Number of | Raw
SV classifier of classifier | support vectors | error
Polynomials d=3 274 4.0

RBF classifiers || 0% =0.3 291 4.1
Neural network || 6=2, c=1 | 254 4.2

TABLE 5.2. Results of digit recognition experiments with various SV machines
using the U.S. Postal Service database. The number of support vectors means
the average per classifier,

Poly | RBF | NN [ Common

total # of sup.vect. 1677 | 1727 | 1611 1377
% of common sup. vect. 82 80 85 100

TABLE 5.3. Total number (in ten classifiers) of support vectors for various SV
machines and percentage of common support vectors.

Note that for this problem, all types of SV machines demonstrate ap-
proximately the same performance. Tliis performance is better than the
performance of any other type of learning machine solving the digit recog-
nition problem by constructing the entire decision rule on the basis of the
U.S. Postal Service database.®

In these experiments one important singularity was observed: Different
types of SV machines use approximately the same set of support vectors.
The percentage of common support vectors for three different classifiers
excecded 80%.

Table 5.3 describes the total number of different support vectors for ten
classifiers of different machines: polynomial machine (Poly), radial basis
function machine (RBF), and Neural Network machine (NN). It shows also
the number of common support vectors for all machines.

%Note that using the local approximation approach described in Section 4.5
(which does not construct the entire decision rule but approximates the decision
rule of any point of interest) one can obtain a better result: 3.3% error rate (L.
Bottou and V. Vapnik, 1992).

The best result for this database, 2.7, was obtained by P. Simard, Y. LeCun.
and J. Denker without using any learning methods. They suggested a special
method of elastic matching with 7200 templates using a smart concept of distance
(so-called tangent distance) that takes into account invariance with respect to
small translations, rotations, distortions, and so on (P. Simard, Y. LeCun, and
J. Denker, 1993).
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Poly | RBF | NN
Poly | 100 | 84 | 94
RBF | 87 | 100 | 88
NN || 91 | 82 | 100

TABLE 5.4. Percentage of common (total) support vectors for two SV machines.

Table 5.4 describes the percentage of support vectors of the classifier
given in the colunms contained in the support vectors of the classifier given
in the rows.

This fact, if it holds true for a wide class of real-life problems, is very
important.

5.7.8 Some Important Details

In this subsection we give some important, details on solving the digit recog-
nition problem using a polynomial SV machine.

The training data are not linearly separable. The total number of mis-
classifications on the training set for linear rules is equal to 340 (= 5%
errors). For second degree polynomial classifiers the total number of mis-
classifications on the training set is down to four. These four mis-classified
examples (with desired labels) are shown in Fig. 5.7. Starting with polyno-
mials of degree three, the training data are separable.

Table 5.5 describes the results of experiments using decision polynomials
(ten polynomials, one per classifier in one experiment) of various degrees.
The number of support vectors shown in the table is & mean value per
classifier.

Note that the mimber of support vectors increases slowly with the degree
of the polynomials. The seventh degree polynomial has ouly 50% more
support vectors than the third degree polynomial.?®

'%The relatively high number of support vectors for the linear separator is due
to nonseparability: The number 282 includes both support vectors and misclas-

4 8 5

FIGURE 5.7. Labeled examples of training errors for the second degree polyno-

- mals,
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degree of || dimensionality of | support | raw
polynomial feature space vectors | error
1 256 282 8.9
2 = 33000 227 4.7
3 ~1x 108 274 4.0
4 ~ 1 x 109 321 4.2
5 =~ 1 x 1012 374 4.3
6 ~1x 10 377 4.5
7 ~ 1 x 10" 422 4.5

TABLE 5.5. Results of experiments with polynomials of different degrees.

The dimensionality of the feature space for a seventh degree polyno-
mial is, however, 10'° times larger than the dimensionality of the feature
space for a third degree polynomial classifier. Note that the performance
does not change siguificantly with increasing dimensionality of the space
— indicating no overfitting problems.

To choose the degree of the best polynomials for one specific classifier we
estimate the VC dimension (using the estimate (R?A2) for all constructed
polynomials (from degree two up to degree seven) and choose the one with
the smallest estimrate of the VC dimension. In this way we found the ten
best classifiers (with different degrees of polynomials) for the ten two-class
problems. These estimates are shown in Figure 5.8, where for all ten two-
class decision rules the estimated VC dimension is plotted versus the degree
of the polynomials. The question is this:

Do the polynomials with the smallest estimate of the VC dimension pro-
vide the best classifier?

To answer this question we constructed Table 5.6, which describes the
performance of the classifiers for each degree of polynomial.

Each row describes one two-class classifier separating one digit (stated in
the first column) from all the other digits.

The remaining columns contain:

deg.: the degree of the polynomial as chosen (from two up to seven)
by the described procedure,

dim.: the dimensionality of the corresponding feature space, which is
also the maximum possible VC dimension for linear classifiers in that
space,

hest.: the VC dimension estimate for the chosen polynomial (which is
much smaller than the numher of free parameters),

sified data.
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FIGURE 5.8. The estimate of the VC dimension of the best element of the struc-
ture (defined on the set of canonical hyperplanes in the corresponding feature
sp#te) versus the degree of the polynomial for various two-class digit recognition

. Problems (denoted digit versus the rest).
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Chosen classifier Number of test errors
Digit [deg. | dim. [heee [ 12 3 [ 4 [ 5 [6] 7
0 3 | ~108 | 530 (36|14 |[1f] 11 | 11 [12] 17
1 7 | ~10®] 101 17[15] 14 | 11| 10 |10
2 3 | ~10% | 842 | 53|32 (28] 26 | 28 | 27| 32
3 3 | ~108 [ 157 [ 57|25 [[22]] 22 | 22 |22 23
4 4 | ~109] 962} 50]32] 32 [[30]] 30 |29] 33
5 3 | ~10% [ 1090 [ 87 { 20 24 | 24 | 26| 28
6 4 | ~10° | 626 23|12 | 12 17 [ 17] 19
7 5 | ~102] 530 25|15] 12 | 10 13| 14
8 4 | ~10° | 1445 || 71| 33 | 28 28 |32 34
9 5 [ ~102 122651 [18] 15 | 11 12| 15

TABLE 5.6. Experiments on choosing the best degree of polynomial.

Number of test errors: the numher of test errors, using the constructed
polynomial of corresponding degree; the hoxes show the number of
errors for the chosen polynomial.

Thus, Table 5.5 shows that for the SV polynomial machine there are no
overfitting problems with increasing degree of polynomials, while Table 5.6
shows that even in situations where the difference between the best and
the worst solutions is small (for polynomials starting from degree two up
to degree seven), the theory gives a method for approximating the best
solutions (finding the best degree of the polynomial).

Note also that Table 5.6 demonstrates that the problem is essentially
nonlinear. The difference in the number of errors between the hest polyno-
mial classifier and the linear classifier can be as much as a factor of four
(for digit 9).

5.8 REMARKS ON SV MACHINES

The quality of any learning machine is characterized by three main com-
ponents:

(i) How universal is the learning machine?
How rich is the set of functions that it can approximate?

(ii) How well can the machine generulize?
How close is the upper bound on the error rate that this machine
achieves (implementing a given set of functions and a given structure
on this set of functions) to the smallest possible?
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(i) How fast does the learning process for this machine converge?
How many operations does it take to find the decision rule, using a
given number of observations?

We address these in turn below.

(i) SV machines implement the sets of functions

N
f(z,a,w) = sign (Z a; K(z,w;) — b) , (5.35)
1=1
where N is any integer (N < ¢), a4, 1 = 1,..., N, are any scalars, and
w,, + = 1,..., N, are any vectors. The kernel K(z,w) can be any symmetric

function satisfying the conditions of Theorem 5.3.

As was demonstrated, the best guaranteed risk for these sets of functions
is achieved when the vectors of weights wy,...,wy are equal to somne of
the vectors = from the training data (support vectors).

Using the set of functions

fleawy=" Y wakK(zw)-b
support vectors

with convolutions of polynomial, radial basis function, or neural network
iype. one can approximate a continuous function to any degree of accuracy.

Note that for the SV machine one does not need to construct the archi-
tecture of the machine by choosing a priori the mumber N (as is necessary
in classical neural networks or in classical radial basis function machines).

Furthermore, by changing only the function K{(z,w) in the SV machine
one can change the type of learmng machine (the type of approximating
functions).

(ii) SV machines minimize the upper bound on the error rate for the
structure given on a set of functions in a feature space. For the best solution
it is pecessary that the vectors w; in (5.35) coincide with some vectors of
the training data (support vectors.)! SV machines find the functions from
the set (5.35) that separate the training data and belong to the subset with
the smallest bound of the VC dimension. (In the more general case they
minimize the bound of the risk (5.1).)

(i1). Finally, to find the desired function, the SV machine has to maxi-
mize a nonpositive quadratic form in the nonnegative quadrant. This prob-
lem is a particular case of a special quadratic programming problem: to
maximize a nonpositive quadratic form Q(z) with bounded constraints

o <2 <h, i=1,... n

""This assertion is a direct corollary of the necessity of the Kiihn—Tucker con-
dmons for solving the quadratic optimization problem described in Section 5.4.
Tiie 1Kuhn —Tucker condltions are necessary and sufficient for the solution of this
problem
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where z*, 1 = 1,...,n, are the coordinates of the vector z, and a,, b,
are given constants. For this specific quadratic programming problem fast
algorithms exist,

5.9 SVM AND LOGISTIC REGRESSION

5.9.1 Logistic Regression

Often it is important not only to construct a decision rule but also to
find a function that for any given input vector z defines the probability
P{y = 1|z} that the vector z belongs to the first class. This problem is
more general than the problem of constructing a decision rule with good
performance. Knowing the conditional probability function one can con-
struct the Bayesian (optimal) decision rule

Below we consider the following (parametric) problem of estimating the
conditional probability.'? Suppose that the logarithm of the ratio of the
following two probabilities is a function f(z,wp) from a given parametric

set f(z,w), weWw
Ply=1z} \_ ¢/,
n (k) = e

From this equation it follows that the conditional probability function
P{y = 1|z} has the following form:

ef(I‘wﬂ)

P{y =1z} = 15 TG

(5.36)
The function (5.36) is called logistic regression.
Our goal is given data

(yla‘rl)a e 'a(yl’:rl)

to estimate the parameters wg of the logistic regression.'3 First we show
that the minimum of the functional

Rae(w) = Byln (1 + e v/0) (5.37)

**The more general nonparametric setting of this problem we discuss in
Chapter7.

'*Note that (5.36) is a form of sigmoid function considered in Section 5.2.
Therefore a one-layer neural network with sigmoid function (5.36) is often con-
sidered as an estimate of the logistic regression.
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(Ey is expectation over y for a fixed value of ) defines the desired param-
eters.
Indeed, the necessary condition for a rinimum is

ORz(w) _ [0 yi@w}]|
P —[6waln(1+e ) =0.

L)
Taking the derivative over w and using expression (5.36) we obtain

OR(w) _ & —y i)
S0 _awE”l“(He )

— fo(z, w)e=T (=) o, (z,w)

) ( L+efim) ) Ply=tisht (m) P{y=—1iz}

—fo(z, w)e" f@w) el (x,wo) fi(z,w)el @) 1
- 1 + e—f(aw) ( 1 + ef(=wo) ) + 1 4+ ef(z,w) ( 1 + ef(=wo) )
This expression is equal to zero when w = wo. That is, the minimum of
the functional (5.37) defines the parameters of the logistic regression.

Below we assunie that the desired logistic regression is a linear function
f(z,w) = (z-wo) +b
whose parameters wo and b we will estimate by minimizing the functional

R(w) = Ey 2 In (1 + e—ﬂ(“‘w)“l) (5.38)

using observations
(yl!xl)a ey (yl)Il)-

To minimize the functional (5.38) we use the structural risk minimization
method with the structure defined as follows:

(w-w) <

We consider this minimization problenr in the following form: Minimize the
functional

! ¢
Remp(w, b) = %(w, w)+C) In (1 +e ¥ KW-HM) ) (5.39)

1=1

One can show that the minimuni of (5.39) defines the following approxi-
mation to the logistic regression:

exp {2;, yi[Cal(z,, z) + bo]}
L+exp {TL, ilCal(z,,2) + 9]}

P{y=1lz} = (5.40)
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where the coefficients o) and b are the solution of the equations

o exp{-3l2 ;s Cay;(z;,7:) + B}
R eXP{—inZﬁ=1 Coyyj(zy,2:) + b]})

iy’ exp{~[T;-1 Coyy;(zs,z:) + b} _
=71+ exp{-u[T; o, Cojy;(z;, zi) + b}

Indeed, a necessary condition for the point (wp, bp) to minimize the func-
tional (5.39) is

¢
OR(w,b) exp{—yi[(w, z:) + 8]}
3 w = _ C $T; = 0,
TR A P e = A e N
£
dR(w,b) exp{—yil(w, z,) + b]}
—— | b =—C ; =0. (541
o [w ; 1+exp{—y(w,z)+8}| (54D
Wo 40D
Using the notation
exp{—y:[(wo, z:) + bo]} 0
= Q; s 5.42
1 +exp{-yi[(wo,Z:) + bo]} * &4
we can rewrite expressions (5.41) as follows:
¢
wo = c Z yta?Iﬁ
=1
¢
i=)
Putting expressions (5.43) and back into (5.37) we obtain the approxima-

tion (5.40).
Note that from (5.42) and (5.43) we have

0<a’<1.
That is, this solution is not sparse.

To find the logistic regression one can rewrite the functional (5.39) (using
expression (5.43)) in the equivalent form

Remp(aa b)

Hj=1 =1 =1

] ) ¢
1
=3 Z 00595y, (2., T5) +C Zln (1 + exp{—yi[z Yiy505(Ti, 25) + b]}) :

Since this functional is convex with respect to the parameters o and b, one
can use the gradient descent method to find its minimum.
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5.9.2 The Risk Function for SVM

Let us introduce the following notation
z=(w-z) +b

Using this notation we can rewrite the rigk functional for the logistic re-
gression as follows

Q(2) = In(1 4+ e7¥).
Consider the loss function

Q)= (l-2),, (5.44)

where ¢; is some constant (in constructing the SVM we used ¢; = 1) and
(a)+ = max(0, a) (the linear spline function with one node, for more about
spline approximations see Section 6.3) .

Figure 5.9 shows this loss function with ¢; = 0.8 (the hold lines) and the
logistic loss (dashed curve).
It is easy to see that the SVM minimize the following functional:

¢
Remp(,0) = 50 0) + C 3 (A= pif(w-z) +8), . (5:5)
i=1
Indeed, denote by the £; the expression
£ = (1 - y;[(‘w . It) + b])_|_ s

which is equivalent to the inequality

yl(w-z,)+b >1-¢. (5.46)

[)]

) -3 -2 —1 0 1 2 3 4
FYGURE 5.9. The logistic loss function (dashed line) and its approximation by a
linear spline with one node (bold line).
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Now we can rewrite our optimization problem (5.45) as follows: Minimize
the functional

é
R{w, b) = %(w W) +C Y & (5.47)
i=1

subject to constraints (5.46) and constraints
& >0

This problem coincides with one that was suggested in Section 5.5.1 for
constructing the optimal separating byperplane for the nonseparable case.

5.9.8 The SVM, Approximation of the Logistic Regression

One can construct better SVM approximations to the logistic loss function
using linear spline functions with n > 1 nodes.

Suppose we are given the following spline approximation to the logistic
loss:

F(z) =Y eelar — 2)1,
k=1

where
z=y((w-z) +1),

ar, k=1,...,n are nodes of the spline and ¢, > 0, k = 1,...,n. are coef-
ficients of the spline. (Since the logistic loss function is convex monotonic
function, one can approximate it with any degree of accuracy using a linear
spline with nonnegative coefficients cx.)

Figure 5.10 shows an approximation of the logistic loss (dashed curve)
by (a) spline function with two nodes and (b) by spline function with three
nodes (bold lines).

Let us minimize the functional
1 V4 1
R(w, b) = E(w -w) + C;;,ck(ak — 24

which is our approximation to the functional (5.38).
Set

(ak - zi)+ = (a‘k - yt[(w : It') + b])+ = 55» éf,k >0 k= 1,..,n, i= 1’“"£

Using this notation we can rewrite our problem as follows:
Minimize the functional

£ n
R(w,b) = lw-w) + 03 Y et

=1 k=1
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-4 -3 -2 1 0 1 2 3 4

FIGURE 5.10. The logistic loss function (dashed line) and its approximations:
(2) by a linear spline with two nodes and (b) by a linear spline with three nodes
(bold lines).
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subject to the constraints
y’-[(w - xt) + bl > ax — gfa i= 1a ey f) k= 1,..,m,

and constraints
£ >0,i=1,...,6 k=1,...,n

As before, to solve this quadratic optimization problem in the dual space
we construct the Lagrangian

£ n £ n
L— %(w-w)w YN NS AR (wezi) +b—ar+£8)— Z Z Efrf.
t=1 k=1 =1 k=1 =1 k=1

Taking the minimum over w, b, and £¥ we obtain

[4 n
w = Z Zﬁf) YiZi (5.48)
i=1 = [
£ n
3 (Z ﬁf‘) yi = 0, (5.49)
i=1 \ik=I

0< B <Cex, k=1,..,n (5.50)

Substituting the expression for w back into the Lagrangian and taking into
account (5.49) we obtain the functional

w(B) = Z (Z Al Glc) -5 Z (Z ﬁ") (kg, ﬁf) yeys(zi-z5), (5.51)

=1 c J=1

where ay,...,a, are nodes in our spline approximation to the logistic loss
function.

To find the parameters 4},..., 87", i = 1,..., £ that specify the expansion
(5.48) of the optimal vector w we have to maximize the functional (5.51)
suhject to constraints (5.49) and (5.50).

We also can find the parameter b from the Kuhn-Tucker conditions

ﬁf{yi[(wrl)"'b]_a’k +§f}=0a 1 =1a"'a£a k= 1a"‘an

Using these parameters one can construct the linear function

I(x) = Zy, (Zﬁ ) (zj-z)+b (5.52)
=1
that defines the approximation

exp {E§=1 yi (ke ﬁf) (z;-2) + b}
(1 +exp {ijl y; (Zk-rB)) (25 2) + b})

P{y =1z} = (5.53)
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to the logistic regression (5.36). As before, to define the vector w in the
exponent of the logistic regression we need only calculate the inner prod-
ucts between two vectors z. Therefore, using kernels K(z,z;) satisfying
the Mercer condition one can construct an approximation to the logistic
regression of the form

exp {2521 ¥ (Chas ﬁf) K(zjz)+ b}
L+ exp {5, 4 (They B5) K(25,2) +5})

where the coefficients ﬁ;‘ are the solution of the following quadratic opti-
mization problem: Maximize the functional

w(B) = -Z (Zﬁkak) - E (Eﬁ,) (iﬁ;‘) viys K (z,, 75),

i=1 i,5=1 k=1
(5.54)

P{y:1t1}=(

snhject to constraints

Ej: (i ﬁf‘) yi =0,

k=
0< 5 <Cex, k=1,...,n

Note that a larger number of nodes is used in the approximation of
the logistic loss, a larger number of support vectors will he used for the
constructing corresponding hyperplane. With increasing accuracy of ap-
proximation (numher of nodes) the SVM,, loses sparsity.

However, with increasing n in the SVM,, one cannot guarantee a bet-
ter performance for the solution ohtained using a given sample size. The
prohlem of estimating well the logistic regression is more general than the
problem of estimating a good decision rule, and therefore, in order to he
solved well it requires more data for its solution.

Our experiments did not show an advantage of logistic regression or
SVM,, compared to SVM,.

5.10 ENSEMBLE OF THE SVM

In 1996 Y. Freund and R. Schapire proposed the AdaBoost algorithm for
comhining several weak rules'? (features) in one linear decision rule that
can perform much better than any weak rule.

Later it was shown that in fact, AdaBoost minimizes {using a greedy op-
timization procedure) some functional whose minimum defines the logistic

14That is, indicator functions that classify test data at least slightly better than
random guess.
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regression (Friedman, Hestie, and Tibshirany (1998)). Also, it was shown

that the optimal hyperplane constructed on top of the weak (indicator)

rules chosen by the AdaBoost often outperforms the AdaBoost solution.
Therefore, in the AdaBoost algorithm we distingnish two parts:

1. The choice of N appropriate features from a given set of indicator
features.

2. The construction of a separating hyperplane using the chosen fea-
tures.

In this section we introduce a two-stage method for constructing an en-
semhle of SVMs. In the first stage, using given training data, we find N
indicator functions (features), which on the one hand are SVM solutions
of the given pattern recognition problem, and on the another hand are
the result of greedy minimization of the same functional that minimizes
AdaBoost algorithm.

In the secoud stage using training data we construct on top of the features
obtained the SVM decision rules. Therefore, we will construct N different
SVM solutions of the same pattern recognition problen: and then combine
them ito one decision rule.

5.10.1 The AdaBoost Method

In Section 5.9.1 we introduced the risk functional (5.37) whose minimum
defined parameters of the logistic regression. Below we consider another
risk functional

R(a) = Ee ¥/ (@) (5.55)

defined on a set of functions f(z, a) that contain the function

P(y =1lz)

Ply= 1) %)

1
f(i!:, ﬂg) = 5 In
It is easy to see that the function f(z,ap) provides the minimum to func-
tional (5.55).
Indeed, equation (5.56) is equivalent to the equations

p2f(z,e0) ef (@an)
P(y = III) = 1+ e2f(::,ao) = e-—f(I,ﬂ()) + ef(z.oo) ’
1 —J(z,00)
Ply=-1jz) = € (5.57)

1 + e2f(z.00) = e J=a) + ef(z00}”

Since

E(em¥@ |z} = P(y = 1jz)e™7®) + Ply = -1{z)e/ =),
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we have
OE (=¥ =)z
= —Ply = —H@a) | Py = —1))ef(2:0) .
s (1= Uz)e™ I 4 P(y = 1)l =), (5.58)

At the point ag the derivative (5.58) is equal to zero as soon as (5.57) takes
place.

Let us instead of (5.55) use the empirical risk functional

V4
Remp(@) = Y _ eI (z0), (5.59)

i=)

which we minimize iteratively, using the following greedy optimization pro-
cedure.
Greedy optimization procedure:

1. We minimize functional (5.59) iteratively constructing on the kth
iteration a function of the form

k
f(z, Br) = Zdr¢r(x)y dy =1,
=1

where ¢,(z), r = 1,..., N, belong to a given (maybe infinite) set of
indicator functions, k is the number of iteration, and Sy = (dy, ..., dx)
is a k-dimensional vector.

On the first iteration we choose the feature ¢, (z) that minimizes the
nuniber of training errors.

2. Suppose that at the kth iteration we achieved the following value
of the empirical risk:

4
Remp(ﬁk) = E e'—!/l'fk(il‘i,ﬂ,,)‘
=1

At the next (k + 1) iteration we continue to minimize the empirical
risk functional in the set of one-parameter functions

f(az, ﬁ(k+1)) = f(z,Bk) + d(k+1)¢(k+x)(-’5)- (550)

For function (5.60) we obtain the following value of the empirical risk

[4 [4
Remp(ﬁ(k+1)) — Z e~ U@ Bri1) Z cf+le—d(k+l)ﬂl¢(k+l)(z‘)‘
=1 i=1
(5.61)
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where we have set
S NCWNY

Suppose that for the (k + 1)st iteration we have chosen the indicator
function ¢)1y(z) (later we will define how to choose this function).
Then in order to minimize the empirical risk (5.61) we have to choose
the following value of the parameter:

k+1
&

1
dikt1) = 5in Gk (5.62)

where we set \
+1 +1
ch = Y o,

T
{i: piop4n(2)=1)

Ck—l—l — E cl_C+l )
{#: ity (z)=-1}
This follows from the facts that 4,¢ (x41)(z,) € {1,—1} and that at the

optimal point d; 1) the derivative over d of the empirical functional
(5.61) must be equal to zero

4
6% 3wl By b (5]
i=1

[4
= = Ty G (@ )e WbenE) = 0. (5.63)

t=1

3. To choose the appropriate function ¢4yy(z) for the (k + 1)st
iteration, note that after the kth iteration, according to (5.63), the
equality

4 4
=Y clyitr(a)e B ) = N By (z,) = 0.

i=1 =1

holds true.
Suppose that coefficients 5 +* are normalized to 1:
k+1
P20 A S

CoXLdt

This does not change the result. However, normalization allows us to
propose a nice statistical interpretation of equation (5.63): Normal-
ized coefficients ¢**!) i =1,...,¢ can be considered as a probability
measure assigned on the given training data for the (k + 1)th itera-
tion and indicator function function ¢x(z) as the worst solution for
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our training data assign with this probability measure (for this prob-
ability measure the rule ¢x(z) has a 50% error rate). That is, after
every iteration, the algorithm assigns to a given training set a new
probability measure that is the most difficult for the last weak rule.

Therefore, for the next, (k + 1)st, iteration we choose the function
®(x+1)(z) that minimizes the error rate for the assigned probability
measure. That is, we choose the function ¢(k+,)(:c) that minimizes
the functional

4
R(#)=— Y cfyip(z). (5.64)
i=1

4. The indicator function

N
(z) = sign (E dm(z)) : (5.65)

k=1

obtained as result of the greedy minimization procedure described, is
the AdaBoost decision rule.

5.10.2 The Ensemble of SVMs

Let us use the greedy optimization idea described above for constructing
the ensemble of SVMs. We start with the case where weak features are
linear decision rules

ox(z) = sign{(z - wy) + by }.

Our goal is to find N optimal hyperplanes that in greedy fashion minimize
the functional

4 N
R(w,b) =Y exp{—y; Y _ dysignl(z, - wi) + bxl} (5.66)

i=1 k=1
and then using these linear decision rules as the features construct the
desired ensamble.

Constructing the features. To construct N features we need to specify
in the general scheme descrihed in the previous section only the method
for minimizing the functional (5.64) in the set of lmear decision functions:

¢x(z) = sign{(wy - ) + b}

(defined by the optimal hyperplane).
As before, we replace this problem with the folowing problem: Minimize
the functional

¢
R(wy) = %(wk - W) +CZC§§£‘, cl =1, (5.67)

i=)
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subject to constraints
Yo((we - 3)+0e) >1—¢5, gF>o0. (5.68)

The only difference in the problem of constructing this hyperplane com-
pared to the problem of constructing the soft-margin hyperplane described
in Section 5.5.1 is that in the case of the soft-margin hyperplane all coef-
ficients cf were equal to 1. Now the second term in (5.67) is a weighted
sum.

We solve this optimization problem using the same technique with La-
grange multipliers. We obtain the following solution:

[4
. § : k
Wi = Yiry Ty,
=)

where the coefficients of maximize the functional

W(a) = Za, —-= Z 00y, y;(; - T5) (5.69)

x_7—1

subject to the constraints

0<a; <Cck (5.70)
and the constraint .

Y yauck =o0. (5.71)

=1

The coefficient by can be defined from Kuhn-Tucker conditions
oy(yi(we - &) + by —1—¢F) =0

Therefore, the difference in decision rules is defined by the coefficients cf
These coefficients are calculated iteratively as it was described in the greedy
optimization procedure (Section 5.10.1):

D = exp{-yi Y drdr(2.)} = cFexp{-—pdedi(an)},  (5.72)

r=1

where

dy = 11 L pduan=1© c’" (5.73)
Z{x Wy (z.)=—1}

Remark. Note that if the training data are separable, then the denomi-
nator of equation (5.73) is equal to zero, and therefore, according to (5.72).



5.10. Ensemble of the SVM 169

cF=0,1=1,...¢ for all £ > 1. That is, the set of features has only one
decision rule. To prevent this situation one can choose a sufficiently small
value of C (large regularization parameter). If, however, for sufficiently
small C the training data are still separable, then the obtamed hyperplane
has a good generalization ability.

The choice of the constant C plays an important role in constructing an
ensemble of SVMs.

Constructing the decision rule. To obtain the decision rule one con-
structs the optimal hyperplane in N-dimensional binary space

z= (¢1($), [EER] ¢N(‘T))

Using the given set of training data one obtaines the new set of training
data

(y1,21,) - -- (Ye, 2e) (5.74)
(z: = (¢1(z:), ..., #n(z.)), based on which one constructs the optimal hy-
perplane.

Ensemble of SVMs As before we can use kernels to obtain features
nsing general type of SVMs. We can use features of the form

¢
¢x(z) = sign (Z yxaiK(z)xz’))

=1

where the coefficients o; are solution of the following optimization problem:
Maximize the functional
¢ 1<
W(a) = EQ{ — 5 a,ajy,yjK(z, 'ATj)
i=1 i,5=1

subject to the constraints
0< oy < Ccfc

and the constraint .
E y,—a,c:-‘ = (.
=1

Using obtained N features ¢r(z), £k = 1,..., N that define a binary
space Z one construcs the training set (5.74). On the basis of this training
set using a kernel K*(z,2,) defined in Z space one constructs the SVM
solution

é
T(l‘) = sign (nyﬁiK,(z(I)a Z(Ii))) .

=1






Informal Reasoning and
Comments — 5

5.11 THE ART OF ENGINEERING VERSUS FORMAL
INFERENCE

The existence of neural networks can be considered a challenge for theo-
reticians.

From the formal point of view one cannot guarantee that neural networks
generalize well, since according to theory, in order to control generalization
ability one should control two factors: the value of the empirical risk and the
value of the confidence interval. Neural networks, however, cannot control
either of the two.

Indeed, to minimize the empirical risk, a neural network must minimize a
functional that has many local minima. Theory offers no constructive way
to prevent ending up with unacceptable local minima. In order to control
the confidence interval one has first to construct a structure on the set of
functions that the neural network implements and then to control capacity
using this structure. There are no accurate methods to do this for neural
networks.

Therefore, from the formal point of view it seems that there should be
no question as to what type of machine should be used for solving real-life
problems.

The reality, however, is Dot so straightforward. The designers of neural
networks compensate the mathematical shortcomings with the high art
‘of engineering. Namely, they incorporate various heliristic algorithms that
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make it possible to attain reasonably local minina using a reasonable small
number of calculations.

Moreover, for given problems they create special network architectures
that both have an appropriate capacity and contain “useful” functions for
solving the problem. Using these heuristics, neural networks demonstrate
surprisingly good results.

In Chapter 5, describing the best results for solving the digit recognition
problem using the U.S. Postal Service database by constructing an entire
(not local) decision rule, we gave two figures:

5.1% error rate for the neural network LeNet 1 (designed by Y. Le-
Cun),

4.0% error rate for a polynomial SV machine.
We also mentioned the two best results:
3.3% error rate for the local learning approach, and the record

2.7% error rate for tangent distance miatching to templates given by
the training set.

In 1993, responding to the community’s need for benchmarking, the
U.S. National Institute of Standards and Technology (NIST) provided a
database of handwritten characters contalning 60,000 training images and
10,000 test data, where characters are described as vectors in 20 x 20 = 400
pixel space.

For this database a special neural network (LeNet 4) was designed. The
following is how the article reporting the benchmark studies (Léon Bottou
et al, 1994) describes the construction of LeNet 4:

“For quite a long time. LeNet 1 was considered the state of
the art. The local learning classifier, the SV classifier, aud tan-
gent distance classifier were developed to improve upon LeNet
1 — and they succeeded in that. However, they in turn mo-
tivated a search for an improved neural network architecture.
This search was guided in part by estimates of the capacity of
various learning machines, derived from measurements of the
training and test error (on the large NIST database) as a func-
tion of the nuniber of training examples.1® We discovered that
more capacity was needed. Through a series of experinients in
architecture, combined with an analysis of the characteristics
of recognition errors, LeNet 4 was crafted.”

18y, Vapuik, E. Levin, and Y. LeCun (1994) “Measuring the VC dimension of
a learning machine,” Neural Computation, 6(5), pp. 851-876.
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In these benchmarks, two learning machines that construct entire deci-
sion rules,

(i) LeNet 4,
(ii) Polynomial SV machine (polynomial of degree four),

provided the same performance: 1.1% test error.'®

The local learning approach and tangent distance matching to 60,000
templates also gave the same performance: 1.1% test error.

Recall that for a smali (U.S. Postal Service) database the best result (by
far) was obtained by the tangent distance matching method which uses a
priori information about the problem (incorporated in the concept of tan-
gent distance). As the number of examples increases to 60,000 the advan-
tage of a priort knowledge decreased. The advantage of the local learning
approach also decreased with the inereasing number of observations.

LeNet 4, crafted for the NIST database demionstrated remarkable in-
provement in performance comparing to LeNet 1 (which has 1.7% test
errors for the NIST databasel?).

The standard polynomial SV machine also did a good job. We continue
the quotation (Léon Bottou, et al, 1994):

“The SV machine has excellent accuracy, which is most remark-
able, because unlike the other high performance classifiers it
does not include knowledge about the geometry of the problem.
In fact this classifier would do just as weli if the image pixel
were encrypted, e.g., by a fixed ranndom permutation.”

However, the performance achieved by these learning machines is not
the record for the NIST database. Using madels of characters (the same
that was used for constructing the tangent distace) and 60,000 examples
of training data, H. Drucker, R. Schapire, and P. Simard generated more
than 1,000,000 examples, which they nsed to train three LeNet 4 neural
networks, combined in the special “boosting scheme” (Drucker, Schapire,
and Simard, 1993) which achieved a 0.7% error rate.

Now the SV machines have a challenge — to cover this gap (between
L.I% to 0.7%). Probably the use of ouly brute force SV machines and
60,000 training examples will not be sufficient to cover the gap. Probably
one has to incorporate some a priori information about the problem at
hand.

'®Unfortunately, one cannot compare these results to the results described in
Chapter 5. The digits from the NIST database are “easier” for recognition than
the ones from the U.S. Postal Service database.

17Note that LeNet 4 has an advantage for a large 60,000 training examples
(NIST) database. For a small (U.S. Postal Service) database containing 7,000
#raining examples, the network with smaller capacity, LeNet 1, is better.
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There are several ways to do this. The simplest one is use the same
1,000,000 examples (constructed from the 60,000 NIST prototypes). How-
ever, it is more interesting to find a way for directly incorporating the
invariants that were used for generating the new examples. For example,
for polynomial machines one can incorporate a priori information about in-
variance by using the convolution of an inner product in the form (z7 Az*)3,
where z and z* are input vectors and A is a symmetric positive definite
matrix reflecting the invariants of the models.!8

One can also incorporate another (geometrical) type of e priori infor-
mation using only features (monomial) z;x,z; formed by pixels that are
close each to other (this reflects our understanding of the geometry of the
problem — important features are formed by pixels that are connected to
each other, rather than pixels far from each other). This essentially reduces
(by a factor of millions) the dimensionality of feature space.

Thus, although the theoretical foundations of support vector machines
look more solid than those of neural networks, the practical advantages of
the new type of learning machines still needs to be proved.!?

5.12 WISDOM OF STATISTICAL MODELS

In this chapter we introduced the support vector machines, which realize
the structural risk minimization inductive principle by:

(1) Mapping the input vector into a high-dimensional feature space using
a nonlinear transformation.

(ii) Constructing in this space a structure on the set of linear decision
rules according to the increasing norm of weights of canonical hyper-
planes.

(it} Choosing the best element of the structure and the best function
within this element in order to minimize the bound on error proba-
bility.

18, Scholkopf considered an intermediate way: He constructed an SV machine,
generated new examples by transforming the SV images (translating them in the
four princlpal directions), and retrained on the support vectors and the new
examples. This Improves the performance from 4.0% to 3.2% for the U.S. Postal
Service database and from 1.1% to 0.8% for the NIST database.

%Iy connection with heuristics incorporated in neural networks let me recall
the following remark by R. Feynman: “We must make it clear from the beginning
that if a thing is not a science, it is not necessarily bad. For example, love is not
science. So, if something is said not to be a science it does not mean that there
is something wrong with it; it just means that it is not a sclence.” The Feynman
Lectures on Physics, Addison-Wesley, 3-1, 1975.



5.12. Wisdom of Statistical Models 175

The implementation of this scheme in the algorithms described in this
chapter, however, contained one violation of the SRM principle. To define
the structure on the set of linear fimctions we use the set of canonical
hyperplanes constructed with respect to vectors z from the training data.
According to the SRM principle, the structure has to be defined a priori
before the training data appear.

The attempt to implement the SRM principle in toto brings us to a new
statement of the learning problem that forms a new type of inference. For
simplicity we consider this model for the pattern recognition problem.

Let the learning machine that implements a set of functions linear in
feature space be given ¢ + k vectors

Ty -5 otk (5.75)

drawn randomly and independently according to some distribution fune-
tion.

Suppose now that these ¢ + k vectors are randomly divided into two
subsets: the subset

Ty,...,T¢

for which the string

Wiy lYes Y € {“17+1},

describing classification of these vectors is given (the training set), and the
subset

Te1y -y Lotk

for which the classification string should be found by the machine (test
set). The goal of the machine is to find the rule that gives the string with
the minimal number of errors on the given test set.

In contrast to the model of function estimation considered in this book,
this model looks for the rule that minimizes the number of errors on the
given test set rather than for the rule minimizing the probability of error
on the admissible test set. We call this problem the estimation of the values
of the function at given points. For the problem of estimating the values of
a function at given points the SV machines will realize the SRM principle
in toto if one defines the canonical hyperplanes with respect to all £ + k
vectors (5.78). (One can consider the data (5.78) as a prior: information.
A posteriori imformation is any information about separating this set into
two subsets.)

Estimating the values of a function at given points has both a solution
and a method of solution that differ from those based on estimating an
unknown function.
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Consider, for example, the five-digit zipcode recognition problem.2’ The
existing technology based on estimating functions suggests recognizing the
five digits ), .., x5 of the zipcode independently: First one uses the rules
constructed during the learning procedures to recognize digit z), then one
uses the same rules to recognize digit x3, and so on.

The technology of estimating the values of a function suggests recognizing
all five digits jointly: The recognition of one digit, say z,, depends not only
on the training data and vector xy, but also on vectors za,...,Z5. In this
technology one uses the rules that are in a special way adapted to solving a
given specific task. One can prove that this technology gives more accurate
solutions.?!

1t should be noted that for the first time this new view of the learning
problem was found due to attempts to justify a structure defined on the
set. of canonical hyperplanes for the SRM principle.

5.13 WHAT CAN ONE LEARN FROM DIGIT
RECOGNITION EXPERIMENTS?

Three observations should be discussed in connection with the experiments
described in this chapter:

(i) The structure constructed in the feature space reflects real-life prob-
lems well.

(i1) The quality of decision rules obtained does not strongly depend on
the type of SV machine (polynomial machine, RBF machine, two-
Iayer NN). It does, however, strongly depend on the accuracy of the
VC dimension {capacity) control.

(iii) Different types of machines use the same elements of training data as
support vectors.

20For simpHcity we do not consider the segmentation problem. We suppose
that all five digits of a zipcode are segmented.

2Note that the local learning approach described in Section 4.5 can he consid-
ered as an intermediate model between function estimation and estimation of the
values of a function at points of interest. Recall that for a small (Postal Service)
database the local learning approach gave significantly better results (3.3% error
rate) than the best result based on the entire function estimation approach (5.1%
obtained by LeNet 1, and 4.0% cbtained by the polynomial SV machine).
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5.13.1 Influence of the Type of Structures and Accuracy of
Capacity Control

The classical approach to estimating multidimensional functional depen-
dencies is based on the following belief:

Real-life problems are such that there exists a small number of “strong
Seatures,” simple functions of which (say linear combinations) approximate
well the unknown function. Therefore, it is necessary to carefully choose a
low-dimensional feature space and then to use reqular statistical technigues
to construct an approrimation.

This approach stresses, that one should be careful at the stage of feature
selection (this is an informal operation) and then use routine statistical
techniques.

The new technique is based on a different be lief:

Real-life problems are such that there exist a large number of “weak fea-
tures” whose “smart” linear combination approrimates the unknown depen-
dency well. Therefore, it is not very important what kind of “weak feature”
one uses, i is more important to form “smart” linear combinations.

This approach stresses, that one should choose any reasonable “weak
feature space” (this is an informal operation), but be careful at the point of
making “smart” linear combinations. From the perspective of SV machines,
“smart” linear combinations correspond to the capacity control method.

This belief in the structure of real-life problems has been expressed many
times both by theoreticians and by experimenters.

In 1940, Church made a claim that is known as the Turing~Church
Thesis: 22

All (sufficiently complez) computers compute the same family of func-
tions.

In our specific case we discuss the even stronger belief that linear func-
tions in various feature spaces associated with different convolutions of the
inner product approximate the same set of functions if they possess the
same capacity.

Church made his claim on the basis of pure theoretical analysis. However,
as soon as computer experiments became widespread, researchers unex-
pectedly faced a situation that could be described in the spirit of Church’s
claim.

In the 19705 and 1980s a considerable amount of experimental research
was conducted in solving various operator equations that formed ill-posed

~ **Note that the thesis does not reflect some proved fact. It reflects the belief
in*the existence of some law that is hard to prove (or formulate in exact terms).
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problems, in particular, in density estimation. A common observation was
that the choice of the type of regularizers Q(f) in (4.32) (determining a
type of structure) is not as important as choosing the correct regularization
constant, y(6) (determining capacity control).
In particular, in density estimation using the Parzen window
11 (z-1z
p(z) = 227—“1{( - ),

=1

a common observation was the following: If the number of observations
is not “very small,” the type of kernel function K (%) in the egtimator is
not as important as the value of the constant . (Recall that the kernel
K(u) in Parzen’s estimator is determined by the functional Q(f), and v is
determined by the regularization constant.)

The same was observed in the regression estimation problem, where one
tries to use expansions in different series to estimate the regression function:
If the number of observations is not “very small,” the type of series used is
not as important as the number of terms in the approximation. All these
observations were done solving low-dimensional (mostly one-dimensional)
problems.

In the experiments described we observed the same phenomena in very
high-dimensional space.

5.13.2 SRM Principle and the Problem of Feature
Construction

The “smart” linear combination of the large number of features used in the
SV machine has an important structure; The set of support vectors. We
can describe this structure as follows: Along with the set of weak features
(weak feature space) there exists a set of complex features associated with
support vectors. Let us denote this space by

u=(K(z,zv),...,K(z,zn)) € U,

where
Z1,-++,IN

are the support vectors. In the space of complex features U, we constructed
a linear decision rule. Note that in the bound obtained in Theorem 5.2
the expectation of the number of complex features plays the role of the
dimensionality of the problem. Therefore, one can describe the difference
between the support vector approach and the classical approach in the
following way:

To perform the classical approach well requires the human selection (con-
struction) of a relatively small number of “smart features,” while the sup-
port vector approach selects (constructs) a small number of “smart features”
automatically.
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Note that the SV machines construct the optimal hyperplane in the
space Z (space of weak features) but not in the space of complex features.
It is easy, however, to find the coeflicients that provide optimality for the
hyperplane in the space U (after the complex features are chosen). More-
over, one can construct in the U space a new SV machine (using the same
training data). Therefore, ane can construct a two- (or several-) layer SV
machine. In other words, one can suggest a multistage selection of “smart
features.” As we remarked in Section 4.10, the problem of feature selection
is, however, quite delicate (recall the difference between constructing sparse
algebraic polynomials and sparse trigonometric polynomials).

5.13.8 Is the Set of Support Vectors a Robust Characteristic of
the Data?

In our experiments we observed an important phenomenon: Different types
of SV machines optimal in parameters use almost the same support vectors.
There exists a small subset of the training data (in our experiments less
than 3% to 5% of the data) that for the problem of constructing the best
decision rule is equivalent to the complete set of training data, and this
subset of the training data is almost the same for different types of optimal
SV machines (polynomial machine with the best degree of polynomials,
RBF machine with the best parameter v, and NN machine with the best
parameter b).

The important question is whether this is true for a wide set of real-
life problems. There exists indirect theoretical evidence that this is quite
possible. One can show that if a majority vote scheme, based on various
support vector machines, does not improve performance, then the percent-
age of common support vectors of these machines must be high.

It is too early to discuss the properties of SV machines: The analysis of
these properties has now just started.”® Therefore, I would like to finish

33 After this book had been completed, C. Burges demonstrated that one can
approximate tbe obtained decision rule

N
f(z) = sign {E a K(z,z:) + ao}

i=1

by the much simpler decision rules

M
f*(z) = sign {ZI@K(E,R)-I-.BO}, M <N,

=1

using the so-called generalized support vectors Ti,...,Ty (a specially con-
. sructed set of vectors).
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these comments with the following remark.
The SV machine is a very suitable object for theoretical analysis. It
uuifies various conceptual models:

(i) The SRM model. (That is how the SV machine initially was obtained.
Theorem 5.1.)

(ii) The data compression model. (The bound in Theorem 5.2 can be
described in terms of the compression coefficient.)

(iti) A universal model for constructing complex features. (The convolu-
tion of the inner product in Hilbert space can be considered as a
standard method for feature coustruction.)

(iv) A model of real-life data. (A small set of support vectors might be suf-
ficient to characterize the whole training set for different machines.)

In a few years it will be clear whether such unification of models reflects
some intrinsic properties of learning mechanisms or whether it is the next
cul-de-sac.?4

To obtain approximately the same performance for the digit recognition prob-
lem, described in Section 5.7, it was sufficient to use an approximation based on
M = 11 generalized support vectars per classifier instead of N == 270 (initially
obtained) support vectors per classifier.

This means that for support vector machines there exists a regular way o
synthesize tbe decision rules possessing optimal complexity.

Four years have passed since tbis remark was made in 1995. Since tben we
have had a lot of evidence, including experimental evidence (see, for example.
Sectlon 5.7) tbat the SV metbod is a general approach to various problems of
function estimation in higl-dimensional spaces.



Chapter 6
Methods of Function Estimation

In this chapter we generalize results obtained for estimating indicator func-
tion {for the pattern recognition problem) to the problem of estimating
real-valued functions (regressions). We introduce a new type of loss func-
tion (the so-called £-insensitive loss function) that makes our estimates not
only robust but also sparse. As we will see, in this and in the next chapter,
the sparsity of the solution is very important for estimating dependencies
in high-dimensional spaces using a large number of data.

6.1 e-INSENSITIVE LOSS FUNCTIONS

In Chapter 1, Section 1.7, to describe the problem of estimation of the
supervisor rule F(y|z) in the class of real-valued functions { f(z,a),a € A}
we considered a quadratic loss function

Ly, f(z,a)) = (y ~ f(z,))". (6.1)

Under conditions where y is the result of measuring a regression function
with normal additive uoise £ the ERM principle provides (for this loss
function) an efficient (best unbiased) estimator of the regression f(, o).
It is known, however, that if additive noise is generated by other distri-
butions, better approximations to the regression (for the ERM principle)
ﬁive estimators based on other loss functions (associated with these distri-
utions)

L(y’ f(a:,a)) = L(‘y“ f(.‘l?,a)l) (6'2)
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(L(¢) = — In p(&) for the symmetric density function p(£)).

In 1964, Huber developed a theory that allows finding the best strategy
for choosing the loss function using only general information about the
model of the noise. In particular, he showed that if one knows ouly that the
density describing the noise is 2 symmetric function, then the best minimax
strategy for regression approximation (the best L, approximation for the
worst possible model of noise p(z)) provides the loss function

Ly, f(a:,a)) = ‘y - f(a:,a)]. (63)

Minimizing the empirical risk with respect to this loss function is called
the least modulus method. It belongs to the so-called robust regression fam-
ily. This, however, is an extreme case where one has minimal information
about the unknown density. Huber also consider the model based on mix-
ture of some fixed noise (below we consider the normal noise) with an
arbitrary noise that is described by a symmetric continuous density func-
tion. He showed that the optiinal (minimax strategy) for this type of noise
is achieved when one uses the following loss function:

c

trah < { = f@a) =G for ly— f(z,a) > ¢,
Ly~ /(. >|>—{ - Jmal s a2 e (o

The constant ¢ is defined by the proportion of the mixture.

To construct an SVM for real-valued functions we use a new type of loss
functions, the so-called s-insensitive loss functions

L{y, f(z,a)) = L(ly — f(z,2|), (6.5)
where we set

_ 0, if ‘y - f(maa)‘ S &
ly — f(z,a) = { [y — f(z,a)| — e, otherwise.

These loss functions describe the s-insensitive model: The loss is equal
to O if the discrepancy between the predicted and the observed values is
less than . It coincides with Huber’s loss functions when £ = 0 and is close
to loss function (6.4) when ¢ is small

Below we consider three loss functions:

(6.6)

1. The linear e-insensitive loss function
Ly - f(z,a)) = ly — f(z; @)l (6.7)
(it coincides with the robust loss function (6.3) if € = 0).
2, The quadratic &-insensitive loss function
Ly~ f(z,0)) = [y — f(z, I (6.8)
(it coincides with the quadratic loss function (6.1) if € = 0).
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FIGURE 6.1. e-insensitive linear loss function and Huber’s loss functlon.
3. The Huber loss function

_ _[ dy—fza) - ¢ for|y—f(z,0) > e
Ly f(:c,a)l)—{ o= fma) - § o e

Using the same technique one can consider any convex loss function
L{u). However, the above three are special: They lead to the same simple
optimization task that we used for the pattern recognition problem.

6.2 SVM FOR ESTIMATING REGRESSION
FUNCTION

The support vector approximation to regression takes place if:
(i) One estimates the regression in the set of linear functions

f(z,a) = (w-z)+b.

(i) One defines the problem of regression estimation as the problem of
risk minimization with respect to an e-insensitive (¢ > 0) loss function
(6.8).

(ili) One minimizes the risk using the SRM principle, where elements of
the structure S, are defined by the inequality

(w-w) < cp. (6.10)

1. Solution for a given element of the structure. Suppose we are
given tratning data

(i), .., (e ve)-
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Then the problem of finding the w, and b, that minimize the empirical risk

Rernp w,b) = Z ‘yz (w-z,)— b,

z—l

under constraint (6.10) is equivalent to the problent of finding the pair w, b
that minimizes the quantity defined by slack variables &;, &, i = 1,...,4,

F(¢.e )—Zfz +25, (6.11)

i=t
under the constraints
yi—-(w-x,)-b < e+¢&, i=1,...,4
S A S e
&L 2> 0, i=1,...,¢,

and comnstraitit (6.10).

As before. to solve the optitnization problem with constraints of inequal-
ity type one has to find a saddle point of the Lagrange functional

¢ ¢
L("”)é‘,g;a‘aaacﬂ,'y&'y‘) = 2(€:+€‘L) 'Zat [yi = (w " l‘,‘,) - b+ £+ &.]
=1 =1
¢
~Y ot w-z)+b—pte+£] ——(cn (w-w))
i=l1
¢
=D (HE + ) (6.13)
=1
(minjmum with respect to elements w, b, £}, and &7 and maximum with
respect to Lagrange multipliers C* > 0, af > 0, a; > 0, v} > 0, and
Y% >20,i=1,...,8).
Minimization with respect to w, b, and &7, £, implies the following three
conditjons:

w= Za L (6.14)

za: =Zai, (6.15)

=1 1=1
0<al<I1, i=1,...,¢,
0<a, <1, i=1,...,4 (6.16)
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Putting (6.14) anud (6.15) into (6.13) one obtains that for the solution of
this optimization problem, one has to find the maximum of the convex
functional

£ é
W(a,a*,C*) = —Y (al + ) + Y (o} — o)
g=1 i=1

1
2C*

£ . C*
Y (af — a(a) — o) 2j) — 5 (6.17)

1=1

subject to constraints (6.15), (6.16), and the coustraint
c*>o.

As in pattern recognition, here only some of the parameters in expansion
(6.14),

*
of —a;
1 T N

ﬂ!.: Cc+ 221,-“92,

differ from zero. They define the support vectors of the problem.

2. The basic solution. One can reduce the convex optimization prob-
len: of finding the vector w to a quadratic optimization problem if instead of
ninimizing the functional (6.11), subject to constraints (6.12) and (6.10),
one 1inimizes

[4 [4
B(w, £, 8) = é(w-w)w(ze: +Za)
i=1 i=1

(with given value C) subject to constraiuts (6.12). In this case to find the
desired vector

[4
w= Z(a: - al)xl\

i=1
one has to find coefficients @}, a,, i = 1,..., ¢, that maximize the quadratic
form

[4 [4 [4
W(e,a') = —e) (af+as) + Y, wlaf—an) — ; Y (af—ai)(al—a,)(xiz,)
=1 i=)

1,3=1
(6.18)
subject to the constraints

[4 4
Za: = Zau
=1

=1

0<a!<C, i=1,...,¢
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0§ai SC‘ i=1‘...‘f.
As in the pattern recognition case, the solutions to these two optimization
problems coincide if C = C*.
One can show that for any i = 1,.. ., £ the equality
al Xxa; =0

holds true. Therefore, for the particular case where e = 1— § (6 is small)
and y; € {—1,1} these optimization problems coincide with those described
for pattern recognition.

To derive the bound on the generalization of the SVM, suppose that
the distribution F(z,y) = F(y|z)F(z) is such that for any fixed w, b the
corresponding distribution of the random variable |y — (w - z) — bl has a
“light tail* (see Section 3.4):

(Ely — (w-2) —b).”
sup <7
w,d E“y-— (w 'I)'—biz

Then according to equation (3.30) one can assert that the solution we, b,
of the optimization problem provides a risk (with respect to the chosen loss
function) such that with prohability at least 1 — n the bound

Remp (wt\ bt) — £
(1 - a(p)T\/f)+

-G

hn (ln 2 1) ~ In{n/4)
7 .
Here h,, is the VC dimension of the set of functions

p>2

R(’U)g‘b[) <e+

holds true, where

and

E=4

Sn={]y—(w-x)—b|5: (w'w)scn}'

6.2.1 SV Machine with Convolved Inner Product

Using the same argument with mapping input vectors into high-dimensional
space that was considered for the pattern recognition case in Chapter 5 one
can construct the best approximation of the form

f(z0,8) = Zﬁ,x (z,v:) + b, (6.19)

=1
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where 3;, i =1,., N, are scalars, v;, 1 = 1,..., N, are vectors, and K(-,-)
is a given function satisfying Mercer's conditions.

1. Solution for a given element of the structure, Using the convex
optimization approach one evaluates coeflicients 8;, i =1,..., ¢, in (6.19)
a8 al —a

ﬂ":_‘C'T" ‘i=1,...,£,

where o}, ¢4, C are parameters that maximize the function
; ;
W= —eZ(af + o) + Zy;(a;‘ — o)
t=1 =1

1 & cn C*
—gaw 2 (o] —e)(e) — o))K (3, 35) - T

=1

subject to the constraint
£ I3
et =3 a
=1 g=1
and to the constraints
OSG:SL 0<a,<1 i=1,...,¢

0<a; <1, i=1,...,4,

and
Cc*>0.

2. The basic solution. Using the quadratic optimization approach one
evaluates the vector w (5.48) with coordinates

ﬂ,-:af-—a,—, ?::1‘...,2,
where o}, o; are parameters that maximize the function
¢ ¢ 1<
W= e (al+a) + 3 uilal—o) — 5 3 (of—a)(e5 —a))K(a.-3))
=1 =1 t,7=1
subject to the constraint
¢ ¢

Sai=Ya

=1 =1
and to the constraints

0<e;,<C, i=1,...,4
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0<a,<C, i=1,...,°0

By controlling the two parameters C and ¢ in the quadratic optimization
approach one can control the generalization ability, even of the SVM in a
high-dimensional space.

6.2.2 Solution for Nonlinear Loss Functions

Along with linear loss functions one can obtain the solution for convex loss
functions L(£}), L(&,).

In general, when L(£) is a concave function, one can find the solution
using the corresponding optimization technique. However, for a quadratic
loss function L(£) = £2 or Huber’s loss function one can obtain a solution
using a simple quadratic optimization technique.

1.Quadratic loss function. To find the solutiou (coeflicients of expan-
sion ¢}, a, of the hyperplane on support vectors) one has to maximize the
quadratic form

é [4
W, o) = - eilas +af) + Y vilef — )
=1 =1
1 & 1 < 1<
-3 Y (af — )l — o)) K(zi, 35) + e S (ap)? + 52(0‘)2
i, j=1 i=1 =1

subject to the constraints

é [4
E ol = E a;
i=1 t=1

When £ = 0 and
K(In IJ) = Cov{f(zi)’ f(zj)}

is the covariance function of stochastic processes with

the obtained solution coincides with the so-called kreiging method devel-
oped in geostatistics (see Matheron, 1987).
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2. Solution for.the Huber loss function. Lastly, consider the SVM
for the Huber loss function

Fle) = { gl -5 for ¢ < e

1¢? for €] > ¢.
For this loss function, to find the desired function

[4

¢(@) =) (of —a,)K(zixz)+b

=1

one has to find the coefficients o}, ; that maxiinize the quadratic form

é
W(a,a*) =) w(ai — o)

t=1

[4 [4 ¢
_% 3 (@f — )@ - @)K (2, 35) + é ;(a;)z + é;(ai)z

t,73=1

subject to the constraints

(2 ¢
¥
E a; = E Oy,
=1 i=1

0<ea;<C, i=1,...,¢

When ¢ = € < 1, the solution obtained for the Huber loss function is
close to the solution obtained for the s-insensitive loss function. However,
the expansion of the solution for the e-insensitive loss function uses fewer
suppeort vectors.

3. Spline approximation of the loss functions. If F(£) is a concave
function that is symmetric with respect to zero then one can approximate
it to any degree of accuracy using linear splines

F(f):ch(f—ak)+, 0<ay=€e<ayp<--+<ay.
k=1

In this case using the same technique that was used in pattern recognition
for SVM logistic regression approximation one can obtain the sohition on
fhe basis of the quadratic optimization technique.
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6.2.3 Linear Optimization Method

As in the pattern recognition case one can simplify the optimization prob-
lem even more by reducing it to a linear optimization task. Suppose we are
given data

(¥i,2s)y-- - (Te, Te)-

Let us approximate functions using functions from the set

¢
y(@) = ) BiK(z:,) + b,

=1

where f3; is some real value, z; is a vector from a training set, and K (z;, z) is
a kernel function. We call the vectors from the training set that correspond
to nonzero f3; the support vectors. Let us rewrite §3; in the form

ﬂz =a: - Qy,

where af >0, a; > 0.
One can use as an approximation the function that minimizes the func-

tional . . . .
W, &)=Y a,+) ol +CY &+CY ¢
2=} =1 =1

=1

subject to the constraints

¢
vi— ) (0] — 0)K(zi,2;)—b<e— ¢,

=1

¢
D (o) —o)K(@,z) +b-y, <e—&.
jzl

The solution to this problem requires only linear optimization techniques.

6.3 CONSTRUCTING KERNELS FOR ESTIMATING
REAL-VALUED FUNCTIONS

To construct different types of SVM one has to choose different kernels
K (z, z,) satisfying Mercer's condition.

In particular, one can use the same kernels that were used for approxi-
mation of indicator functions:
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(i) kernels generating polynomials

K(z,z;) = [(z x z*) + 1%,

(it) kernels generating radial basis functions
K(z,z:) = K(lz — zil),

for example
K(jz — z:]) = exp {—|z — z:[*},

(iii) kernels generating two-layer neural networks

K(z,z;) = S(v(z * z5) + ©).

On the basis of these kernels one can obtain the approximation

’
fz a0y =) BiK(z,z:) +b (6.20)

=1

using the optimization techniques described above.

These kernels imply approximating functions f(z, ) that were used in
the pattern recognition problem under discrimination sign; namely, we con-
sidered functions sign(f(z, a)|.

However, the problem of approximation of real-valued functions is more
delicate than the approximation of indicator functions (the absence of
sign{-} in front of function f(z,) significantly changes the problem of
approximation).

Various real-valued function estimation problems need various sets of
approximating functions. Therefore, it is important to construct special
kernels that reflect special properties of approximating functions.

To construct such kernels we will use two main techniques:

(i) constructing kernels for approximating one-dimensional functions,
and

(d) composition of multidimensional kernels using one-dimensional ker-
nels.

6.3.1 Kernels Generating Expansion on
Orthogonal Polynomials

To construct kernels that generate expansion of one-dimensional functions
4h the first N terms of the orthonormal polynomials Pi(z),4 = 1,...,N
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(Chebyshev, Legendre, Hermite polynomials, etc.), one can use the Christoffel-
Darboux forinula
(2)Pa(y) — Pu(z)Payi(y)

Kn(z,y) = gpk (@) Puly) = o 2O . :

Knlzz) = 3 PE(z) = an[Pliay (@)Pa(e) - P& Pana(@)],  (621)
k=1
where a,, is a constant that depends on the type of polynomial and the
number n of elements in the orthonormal basis.
It is clear, however, that with increasing n the kernels K (z,y) approach
the é&-function. However, we can inodify the generating kernels to reproduce
a regularized function. Counsider the kernel

K(z,y) = Y rula)di(y), (6.22)

1=1

where 7, converges to zero as i increases. This kernel defines a regularized
expansion on polynotnials.

We can choose valies r; such that they improve the convergence prop-
erties of the series (6.22). For exainple, we can choose r; = ¢*, 0 < g < 1.

Example. Consider the (one-dimensional) Hermite polynomials

Hi(z) = px Pe(z)e™ ™, (6.23)

Px) = (—1)"612 (E‘i_)ke_zn

and pj are normalization constants.
For these polynoniials one can obtain the kernels

where

K(z,y) = Zqu,-(z)H,-(y)

=0
2,2
_ ! exp{2xyq _(e=v)a } (6.24)
e g 1+q 1-—g¢

(Mikhlin (1964)). From (6.24) one can see that the closer g is to one, the
closer the kernel K(x,y) is to the é-function.

To construct our kernels we do not even need to use orthonormal bases.
In the next section, to construct kernels for spline approximations we will
use linearly independent bases that are not orthogonal.

Such generality (any linearly independent system with any smoothing
parameters) opens wide opportunities to construct kernels for SVMs.
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6.3.2 Constructing Multidimensional Kernels

Our goal, however, is to construct kernels for approximating multidimen-
sional functions defined on the vector space X C R where all coordinates
of the vector £ = (z',...,z") are defined on the same finite or infinite
interval 1.

Suppose now that for any coordinate z* the complete orthonormal basis
by, (z*), i=1,2,...,is given. Consider the set of basis functions

bq,z; ..... a',,( ) b,,l ( l)big (12) Tt btn (In) (625)

in n-dimensional space. These functions are constructed from the coordi-
natewise basis functions by direct multiplication (temsor products) of the
basis functions, where all indices iy take all possible integer values from 0
to co. It is known that the set of functions (6.25) is a complete orthonormal
basis in X C R™.

Now let us consider the more general situation where a (finite or infi-
nite) set of coordinatewise basis functions is not necessarily orthonormal.
Consider as a basis of n dimensional space tlic tensor products of the co-
ordinatewise basis.

For this structure of multidimensional spaces the following theorem is
true.

Theorem 6.1. Let a multidimensional set of functions be defined by the
basis functions that are tensor products of the coordinatewise basis func-
tions. Then the kernel that defines the inner product in the n-dimensional
basis is the product of one-dimensional kernels.

Continyation of example. Now let us construct a kernel for the reg-
nlarized expansion on n-dimensional Hermite polynomials. In the exam-
ple discussed above we constructed a kernel for one-dimensional Hermite
polynomials. According to Theorem 6.1 if we consider as a basis of n-
dimensional space the tensor product of one-dimensional basis functions,
then tlie kernel for generating the n-dimensional expansion is the product
of n one-dimensional kernels

2I1y1q (Ii _ y£)2q2
(z,y) = ;[:[1 p{ T e =
1 2Azxy)g |z -y’
- ) - 6.2
(1—q2)"/2&p{ 1+¢ 1—¢? (6.26)

Thus, we have obtained a kernel for constructing semilocal approximations
K(z,y) = Cexp{2(z »y)8} exp {—|z — yl*s*}, b,0>0, (6.27)

where the factor containing the inner product of two vectors defines a
“global” appraoximation, since the Gaussian defines the vicinity of approx-
imation,
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6.4 KERNELS GENERATING SPLINES

Below we introduce the kernels that can be used to construct a spline ap-
proximation of high-dimensional functions, We will construct splines with
both a fixed number of nodes and with an infinite number of nodes. In all
cases the computational complexity of the solution depends on the num-
ber of support vectors that one needs to approximate the desired function
with ¢-accuracy, rather than on the dimensionality of the space or on the
number of nodes.

6.4.1 Spline of Order d With a Finite Number of Nodes

Let us start with describing the kernel for the approximation of one-dimensional
functions on the interval [0, a] by splines of order d > 0 with m nodes,

a
(tl»---ytm)» tb=—, 1=1,...,m.
m
By definition, spline approximations have the form

d m
Hz)=) ata™+ ) afz— ;)4 (6.28)
r=0

=1
Consider the following mapping of the one-dimensional variable z into
an (m + d + I)-dimensional vector u:

r—u= (I,I,...‘Id,(I_tl)i)'-')(I - tm)i)‘

Y

|0 &y ) &y I

FIGURE 6.2. Using an expansion on the functions 1,z,(x — £1)4,..(z — tm)+
one can construct a piecewise linear approximation of a function. Analogously an
expansion on the functions 1,z, ...,x%, (¢ - £1)%,...(Z —tm)%) provides piecew
polynomial approximation.
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where we set
0 if z < tk,

)

(z tk)"' { (z— tk)d if > 1.

Since spline approximation (6.28) can be considered as the inner product
of two vectors,

f(z) = (axwu)

(where @ = (ap,...,@m+d)), one can define the kernel that generates the
inner product in feature space as follows:

d m
K(z,2;) = (% u) = Z "zl + Z(z ~ )% (3 — 1:)4. (6.29)

r=0 i=1

Using the generating kernel (6.29) the SVM constructs the function

¢
f(x,8) =) BiK(z,z;) +b,

t=1
that is, a spline of order d defined on m nodes.

To construct kernels gererating splines in n-dimensional spaces note that
n~-dimensional splines are defined as an expansion on the basis functions
that are tensor products of one-dimensional basis functions. Therefore, ac-
cording to Theorem 6.1, kernels generating n-dimensional splines are the
product of n one-dimensional kernels:

K(z,z.) = [ K (¥, F),
k=1

where we have set 2 = (z',...,zF).

6.4.2 Kernels Generating Splines With an Infinite Number of
Nodes

In applications of SVMs the number of nodes does not play an important
role (more important are the values of ¢;). Tberefore, to simplify the cal-
culation, we use splines with an infinite number of nodes defined on the
interval (0,a), 0 < a < o0, as the expansion

d a
flz) = Ealz‘ +/ a(t)(x — t),dt,
i=0

0

where a;, ¢ = 0,...,d, are an unknown values and a(t) is an ynknown
function that defines the expansion. One can consider this expansion as
an iuner product. Therefore, one can construct the following kernel for
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generating splines of order d with an infinite number of nodes and then use
the following inner product in this space:

a d
K(z, z;} = / (z; — t)f‘,_(:c, - t)_‘f_dt + E "]
0

r=0
(ziAZ:) d
= (z, ~ )z — t)%dt + Y a%a]
r=0
(zyn2,)
/ wi(u+ |z, — 2,)) du+21
r=1
N o
Z 5 d (zJ Az =z, — i+ Zz’z , (6.30)

where we set min(z, z,) = (z Az,). In particular, for a linear spline (d = 1)
we have

1 (z, AN z,)3
5‘1‘3 —_ I,‘(IJ' A Ii)2 + %
Again the kernel for n-dimensional splines with an infinite number of nodes
is the product of n kernels for one-dimensional splines.

On the basis of this kernel one can construct a spline approximation
(using the techniques described in the previous section) that has the form

K]_(Ij,l‘z) =1+ l‘jl‘z +

[4
(x.8) =) BK(z,x.).
1=1

6.5 KERNELS GENERATING FOURIER EXPANSIONS

An important role in signal processing belongs to Fourier expansions. In
this section we construct kernels for Fourier expansions in multidimensional
spaces. As before, we start with the one-dimensional case.

Suppose we would like to analyze a one-dimensional signal in terms of
Fourier series expansions.

Let us map the input variable x into the (2N + 1)-dimensional vector

u = (1/V2,sinz,...,sin Nz, cosz,..., cos Nx).

Then for any fixed x the Fourier expansion can be considered as the inner
product in this (2N 4 1)-dimensional feature space

N

2 43" (ag sinkx + b] cos kx) . (6.31)

f(z) = (axu) = 7
k=1
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Therefore, the inner product of two vectors in this space has the form

N

+ E(Sin kzsin kz, + coskx cos kz;).
k=1

1
Kn(z,z,) = 2

After ohvious transformations and taking into account the Dirichlet func-
tion we obtain

. (2N+1
1 sin (z - z;
Kn(z,:) = 5 E“S’“‘x EPRI s
sin ===

To define the signal in terms of the Fourier expansion, the SVM uses the
representation

[4
f(z,8) =Y BKn(z,z.).

=1

Again, to construct the SVM for the d-dimensional vector space r =
(=!,...,x™), it is sufficient to use the generating kernel that is the product
of one-dimensional kernels

K(z,z;) = ]_n__[ K(zF, zb).

6.5.1 Kernels for Regularized Fourier Expansions

It is known, however, that Fourier expansions do not possess good approxi-

mation properties. Therefore, below we introduce two regularizing kernels,

which we use for approximation of multidimensional functions with SVMs.
Consider the following regularized Fourier expansion:

flz)= \% +Y q*(arcoskz + bysinkz), 0<g<1,
k=1

where ag, by are coefficients of the Fourier expansion. This expansion dif-
fers from expansion (6.31) by factors ¢* that provide regularization. The
corresponding kernel for this regularizing expansion is

K(z;,z;) = % + Y ¢¥(coskz; coskz, +sinkz, sin kx;)
k=1
—3+i k cosk(z; — ;) = 1-¢° (6.32)
=3t kE T ) = etz -z v )

(For the last equality see Gradshtein and Ryzhik (1980).) Another type of
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regularization was ohtained using the following regularization of the Fourier
expansion:
a). coskz 4 by sin kx

o0
Qo
f<z)_\/§+g 1+72k2 )

where ay, by are coefficients of the Fourier expansion. For this type of reg-
ularized Fourier expansion we have the following kernel:

cos kx; cos kz ; + sin kz; sin kzx

1 o0
K(xiszj) = 5 +2

P 1+ y2k?
x Chr—|:t.—:tzl
= E;ish; , 0< [z, —zj| < 2n. (6.33)

(For last equality see Gradshtein and Ryzhik (1980).)

Again the kernel for a multidimensional Fourier expansion is the product
of the kernels for one-dimensional Fourier expansions.

6.6 THE SUPPORT VECTOR ANOVA
DECOMPOSITION (SVAD) FOR FUNCTION
APPROXIMATION AND REGRESSION ESTIMATION

The kernels defined in the previous sections can be used both for approx-
imating multidimensional functions and for estimating multidimensional
regression. However, they can define too rich a set of functions. Therefore,
to control generalization one needs to make a structure on this set of func-
tions, in order to choose the function from an appropriate element of the
structure. Note also that when the dimensionality of the input space is large
(say 100), the values of an n-dimensional kernel (which is the product of n

N W
T
1
w

[= Y
{\—'
{
o -t
T
}
o -,
|
)

g=1/2 q=2/3 q=3/4

FIGURE 6.3. Kernels for a strong mode of regularization with various 4.
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one-dimensional kernels) can have order of magnitude ¢”. These values are
inappropriate for both cases ¢ > 1 and ¢ < 1.

Classical statistics considered the following structure on the set of multi-
dimensional functions from L, the so-called ANOVA decomposition (acronym
for “analysis of variances”).

Suppose that an n-dimensional function f(z) = f(z!,...,z") is defined
on the set J x I x --. x I, where I is a finite or infinite interval.

The ANOVA decomposition of the function f(z) is an expansion

f@, ...,z = Fo+ Fy(zl, ..., 2™+ Fa(zh,....2") +...+ Fu(z!,...,2"™),

where
FO = Ca

n

Fi@h...2h) = Y guleb),

1<k<n

Fz(Il,...,l‘n) = 2 ¢khk:(xk1,1k°),

1<ki<ka<n

F(z!,...,2") = 2 ¢k1,,_qk,(zk1,zk°,...,:c"'),
1<ki<ka<...ke<n

Fo(z?,...,2"%) = ¢k, k(2. ).
The classical approach to the ANOVA decompositions has a problem
with exponential explosion of the number of summands with increasing
order of approximation. In support vector techniques we do not have this

problem. To construct the kernel for the ANOVA decomposition of order p
using a sum of products of one-dimensional kernels K(z*,z%), i=1,...,n,

Ky(z,z,) = S K(z™,22) x ... x K(z*,z}7),

1<i1<ig <+ <1pSn

TTT VT T 7

O ANWANON®
T ' T T T 17 1
| I |
CaupwhIoaN®
T T T T T 171

CaupWh IO ®

N

-1 ) -1 1 -1 1
y=15 y=12 y=39/4

FIGURE 6.4. Kernels for a weak mode of regularization with varlous -.
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one can introduce a recurrent procedure for computing K,(z,z,), p =
1,...,n.

Let us define .
K*(z,z,) =)  K*(z',z}).
=1
One can easily check that the following recurrent procedure defines the
kernels Ky(z,z,), p=1,...,7:

Ko(xlz'r) = 1»
K\(z,z,) = 2 K(z*zt) = Kz 2,),
1<i<n
Kyz.z,)= ) K" ap)K(@" 22)
1<ua<ig<n :

- % [Ki(z,2,) K (z,2,) — K*(z,2,)],

Ki(z,z,) = E Ki(z" ) Ky (22, 22) K (2, 12)

1< <wp<ks<n
1
=3 [K2(z,z,) K (2, 2,) — Ki(z,2,)K*(z,2.) + K3(z, 1,)] -

In the general case we have!
1 +1
K,(z,z,) = - 1" K, (x,z,)K3(z, z,).
(2, 2,) p;( p—s(2,2.)K* (2, 27)

Using such kernels and the SVM with L, loss functions one can obtain
an approximation of any order.

6.7 SVM FOR SOLVING LINEAR OPERATOR

EQUATIONS

In this section we use the SVM for solving linear operator equations
Af(t) = F(z), (6.34)

where the operator A realizes a one-to-one mapping from a Hilbert space

E,| into a Hilbert space E».

1«A new method for constructing artificial neural networks” Interim Technical
Report ONR Contract N0O0014-94-C-0186 Data Item A002. May 1, 1995. Prepared
by C. Burges and V. Vapnik.
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We will solve equations in the situation where instead of a function F(x)
on the right-hand side of (6.34) we are given measurements of this function
(generally with errors)

(Il,Fl),...,(x[,Fg). (635)

It is necessary to estimate the solution of equation (6.34) from the data
(6.35).

Below we will show that the support vector technique realizes the clas-
sical ideas of solving ill-posed problems where the choice of the kernel is
equivalent to the choice of the regularization functional. Using this tech-
nique one can solve operator equations in high-dimensional spaces.

6.7.1 The Support Vector Method

In the next chapter we discuss the regularization method of solving operator
equations, where in order to solve operator equation (6.34) one minimizes
the functional

Ry(f,F) = 0*(Af, F) + A W(),
where the solution belongs to some compact W(f) < C (C is an unknown

constant). When one solves operator equation (6.34) using data (6.35) one
considers the functional

Ry(J,F z2L<Af(t les = F.) +7(Pf * Pf)

with soine loss function L(Af - F) and regularizer of the form
W(f) = (Pf * Pf)

defined by some nongenerating operator P. Let

‘pl(t)a Teey Lp'n(t)y ey
D P TR W
be eigenfunctions and ejgenvalues of the self-conjugate operator P* P:

P*Pyp; = X\,

Consider the solution of equation (6.34) as the expansion

Putting this expansion into the functional R, (f, F'), we obtain

Ry(f.F)= 3 2 A{E\A_m W a: — Fi +72wk
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Writting
t
¢x(t) = %,

we can rewrite our problem in a familiar form: Minimize the functional

R, (w, 2L<|A<w»=<1><t W=z, — Fil) + v(w +w)

in the set of functions

Ew,d), (w * ®(1)), (6.36)
where we have set
w= (Wy,...,WN,...),
B(t) = (p1(t),.--, 0N (1)s-- ). (6.37)

The operator A maps the set of functions (6.36) into the set of functions
F(z,w)= Af(t,w) Ew Ap,.(t) 2w,¢, = (w*¥(z)), (6.38)

linear in another feature space

U(z) = (1(2), - YN (2),--),
where
Ye(z) = A, (1)

To find the solution of equation (6.34) in a set of functions f(¢,w) (to
find the vector coefficients 1) one can minimize the functional

£
=C S (|F(zi,w) - Fi|e)* + (wxw), k=1,2,

in the space of functions F(z,w) (that is, in the image space) and then
use the parameters w to define the solution (6.36) (in preimage space). To
realize this idea we use along with the kernel function the so-called cross-
kernel function. Let us define the generating kernel in the image space

K(zy,2) = Y yu(T)n(z;) (6.39)

r=1

(here we suppose that the right-hand side converges for any fixed z; and
z;) and the cross-kernel function

K(zit) =Y r(2:)¢r(2) (6.40)

r=1
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(here we also suppose that the operator A is such that the right-hand side
converges for any fixed = and t).

Note that in the case considered the problem of finding the solution to
the operator equation (finding the corresponding vector of coefficients w)
is equivalent to the problem of finding the vector w for the linear regression
function (6.38) in the image space using measurements (6.35).

Let us solve this regression problem using the quadratic optimization
support vector technique. That is, using the kernel (6.39) one finds both the
support vectors z,, i = 1,..., N, and the corresponding coefficients o — a;
that define the vector w for the support vector regression approximation

N
w=Y (af —a;)¥(z;)

=1

(to do this it is sufficient to use the standard quadratic optimization support
vector technique). Since the same coefficients w define the approximation
to the solution of the operator equation, one can put these coefficients in
expression (6.36), obtaining

N

fha,a®) =Y (0] — o) (U(z:) * B(t)) = Da a)K(zs, t).

=1

That is, we find the solution to our prohlem of solving the operator equation
using the cross-kernel function as an expansion on support vectors.

Thus, in order to solve a linear operator equation using the support
vector method one must:

1. Define the corresponding regression prohlem in image space.

2. Construct the kernel function K(x;,z,) for solving the regression
problem using the support vector method.

3. Caonstruct the corresponding cross-kernel function K(z;,t).

4. Using the kernel function K(x;,x;) solve the regression prohlem by
the support vector method (i.e., find the support vectors zi, ¢ =
1,..., N, and the corresponding coefficients §; = af—a,, i =1,..., N).

5. Using these support vectors and the corresponding coefficients define
the solution

N
F@) =3 8K iz, 1) (6.41)

In these five steps the first three steps (constructing the regression, the
constructing the kernel in image space, and constructing the corresponding
cross-kernel function) refiect the singularity of the problem at hand (they
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depend on the operator A). The last two steps {solving the regression prob-
lem by an SVM and constructing the solution to the desired problem) are
routine.

The main problem with solving an operator equation using the support
vector technique is for a given operator equation to obtain both the explicit
expression for the kernel function in image space and an explicit expression
for the corresponding cross-kernel function. For many prohlems such as the
density estimation prohlem or the problem of solving Radon equation such
fonctions are easy to find.

6.8 FUNCTION APPROXIMATION USING THE SVM

Consider examples of solving the function approximation prohlem using
the SVM. With the required level of accuracy £ we approximate one- and
two-dimensional functions defined on a uniform lattice z, = ia/¢ hy its
values

(yl axl)a =eey (yl»zt)‘

Our goal is to demonstrate that the number of support vectors that are used
to construct the SV approximation depends on the required accuracy £: The
less accurate the approximation, the fewer support vectors are needed.

In this section, to approximate real-valued functions we use linear splines
with the infinite number of nodes.

First we describe experiments for approximating the one-dimensional
sitnc fonction

sin(z — 10)
= - a’ 2
Sy = TE (6.42)
defined on 100 uniform lattice points on the interval 0 < z < 200.
Then we approximate the two-dimensional sinc function
sin v/(z — 10)2 4 (y — 10)?
fzy) = V@174 - 10 (6.43)

\/(1: —10)2 + (y - 10)2
defined on the uniform lattice points on 0 <x < 20, 0 <y < 20.

To construct the one-dimensional linear spline approximation we use the
kernel defined in Section 6.3:

2, (@A)

1
K](:c,zi):1+xiz+§[a:—zzl(x/\z,-) 3

We obtain an approximation of the form

N
y=3 (af - a)K1(z, %) + b,

=1
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where the coefficients a, a; are the result of solving a quadratic optimiza-
tion problem.

Figure 6.5 shows the approximation of the function (6.42) with different
levels of accuracy. The black dots on the figures indicate the support vec-
tors; the circles are nonsupport vectors. One can see that with a decrease in
the required accuracy of the approximation, the number of support vectors
decreases.

To approximate the two-dimensional sine function (6.43) we used the
kernel

K(I, Y Tgy yi) = K(xax'x)K(yayt)
N3
= (1 + zz; + élz - x| (Azi)? + M) X
(y Aye)®
3 y

which is defined by multiplication of the two one-dimensional kernels.
We obtain an approximation in the form

1
X (1 +yy: + §Iy - villy Aw)? +

N
v=3 (o] - a)K(z,2:)K(y,y.) +,

=1

where the coefficients a*, a are defined by solving the same quadratic op-
timization problem as in the one-dimensional case.

Figure 6.6 shows the approximations to the two-dimensional sinc func-
tion with the required accuracy ¢ = 0.03 conducted using lattices with
different numbers of grid points: 400 in figure a, 2025 in figure b, and 7921
in figure c. One can see that changing the number of grid points by a factor
of 20 increases the number of support vectors by less than a factor of 2:
153 SV in approximation a, 234 SV in approximation b, and 285 SV in
approximation c.

6.8.1 Why Does the Value of e Control the Number of Support
Vectors?

The following model describes a mechanism for choosing the support vec-
tors for function approximation using the SV machine with an £-insensitive
loss function. This mechanism explains why the choice of &£ controls the
number of support vectors.

Suppose one would like to approximate a function f(r) with accuracy &,
that is, to describe the function f(z) by another function f*(z) such that
the function f(z) is situated in the e-tube of f*(z). To construct such a
function let us take an elastic e-tube (a tube that tends to be flat) and put
the function f(z) into the e-tube. Since the elastic tube tends to become
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FIGURE 6.5. Approximations with different levels of accuracy require different
numbers of support vectors: 39 8V for ¢ = 0.01 (figure a), 14 SV for £ = 0.05
(figure b), 10 8V for £ = 0.1 {figure ¢) and 6 SV for £ = 0.2 (figure d).
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FIGURE 6.6. Approximations to the two-dimensional sinc function defined on
lattices containing different numbers of grid points with the same accuracy
€ = 0.03 do not require large differences in the number of support vectors: 153
SV (grey squares) for the approximation constructed using 400 grid points (figure
a), 234 SV for the approximation constructed using 2025 grid points, and 285 SV
for the approximation constructed using 7921 grid points (figure c).



208 6. Methods of Function Estimation

flat, it will touch some points of the function f(z). Let us fasten the tube
at these points. Then the axis of the tube defines an £-approximation f*(z)
of the function f(z), and the coordinates of the points where the e-tube
touches the function f(z) define the support vectors. The kernel K(z,,z,)
describes the law of elasticity.

Indeed, since the function f(z) is in the e-tube, there are 1o points of the
function with distance of 1more than ¢ to axis. Therefore, the axis describes
thie required approximation.

To prove that touching points define the support vectors it is sufficient
to note that we obtained our approximation by solving am optimization
problem defined in Section 6.2 for which the Kuhn-Tucker conditions hold.
By definition, the support vectors are those for which in the Kuhne-Tucker
condition the Lagrange multipliers are different from zero, and hence the
second nultiplier must be zero. This multiplier defines the border points
in an optimization problem of inequality type, i.e., coordinates where the
function f(z) touches the s-tube. The wider the e-tube, the fewer touching
points there are.

This model is valid for the function approximation problem in a space
of arbitrary dimmension. It explams why with increasing e-insensitivity the
number of support vectors decreases.

Figure 6.7 shows the £-tube approximation that corresponds to the case
of approximating the one-dimensional sinc function with accuracy ¢ = 0.2.
Compare this figure to Figure 6.5d.

6.9 SVM FOR REGRESSION ESTIMATION

We start this section with simple examples of regression estimation tasks
where regressions are defined by ome- and two-dimensional sinc functions.
Then we consider estimating multidimensional linear regression functions

FIGURE 6.7. Tbe e-tube model of function approximatjon
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using the SVM. We construct a linear regression task that is extremely
favorable for a feature selection method and compare results obtained for
the forward feature selection method with results obtained by the SVM.
Then we compare the support vector tegression method with mew nonlin-
ear techniques for three multidimensional artificial problems suggested by
J. Friedman and one multidimensional real-life (Boston housing) problem
(these problems are usually used im benchmark studies of different regres-
sion estimation methods).

6.9.1 Problem of Data Smoothing
Let the set of data
(1, 21), -+ (yer o)
be defined by the one-dimensional sine function on the interval [—10,10];

the values y, are corrupted by noise with normal distribution

w="o= 46, Bg=0, B =0t

The problem is to estimate the regression function

sinz

r

from 100 such observations on a uniform lattice on the interval [—10, 10].
Figures 6.8 and 6.9 show the results of SV regression estimation exper-
iments from data corrupted by different levels of noise. The rectangles in
the figure indicate thie support vectors. The approximations were obtained
using linear splines with an infimite number of nodes.
Figures 6.10, 6.11, and 6.12 show approximations of the two-dimensional

regression function
sin /z? + 32
defined on a uniform lattice on the square [—5, 5] X [-5, §]. The approxima-

tions where obtained using two dimensional linear splines with an infinite
mumber of notes.

6.9.2 Estimation of Linear Regression Functions

Below we describe experiments with SVMs in estimating limear regression
functions (Drucker et al. (1997)).

We compare the SVM to two different methods for estimating the linear
regression function, namely the ordinary least-squares method (OLS) and
the forward stepwise feature selection (FSFS) method.
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o =0.05, £=0.075, c= 1,15 5V/100 total

1.2 T T —T T T T T

Support vectors o

- Estimated function —-
Nonsupport vectors + |
Onglnal function —

08|

0.6

‘0 8 8 4 -2 0 2 4 8 8 10

1.4 T T T T T T T [ — T “
121 b

FIGURE 6.8. The regression function and its approximations obtained from the
data with diflerent levels of noise and different values ¢ (¢ = 0.05 and € = 0.075
in part (a); ¢ = 0.2 and € = 0.3 in part (b)). Note that the approximations were
constructed using approximately the same number of support vectors (15 in part
(a) and 14 in part (b)).
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o=0.5, £ =0.75, ¢ =1, 14 SVA0O0 total

2 | E— T T T T T T
Support vectors .
Estimated function -—---
° Nonsupport vectors +
181 - Origmal function ™

-1.5 S| 1 —_— L —_— 1 —_— 1 1
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®

FIGURE 6.9. The regression function and its approximations obtained from the
data with the same level of noise 0 = 0.5 and different values of £ (¢ = 0.25 in
part (a} and £ = 0.15 in part (b)}). Note that different values of € imply a different
number of support vectors in the approximating function (14 in part (a) and 81
in part (b)).
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o =0.1, £=0.15, 107 5V/400 total

Estimated lunction ----

(@)

Support vectors <

FIGURE 6.10. The approximation to the regression (part (a)) and 107 support
vectors (part (b)) obtained from a data set of size 400 with noise ¢ = 0.1 and
£=0.15.
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o =0.1, £=0.25, 159 5V/3969 total

Estimated function -----

Support vectors ¢

FIGURE 6.11. The approximation to the regression (part (a)) and 159 support
vectors (part (b)) obtained from a data set of size 3969 with the same noise
g =0.1 and £ = 0.25,
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o =01, £=0.15, 649 5V/3989 total

Estimated function ----

(@
Support vectors <

1.5F

(b)

FIGURE 6.12. The approximation to the regression (part (a}) and 649 support
vectors (part (b)) obtained from a data set of size 3969 with the same noise
og=01ande¢=015.
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Recall that the OLS method is a method that estimates the coeflicients
of a linear regression function by minimizing the functional

[4
R(@) = S (w - (a*z))%

The FSFS method is a method that first chooses one coordinate of the
vector that gives the best appraximation to the data. Then it fixes this
coordinate and adds a second coordinate such that these two define the
best approximation to the data, and so on. One uses some technique to
choose the appropriate number of coordinates.

We consider the problem of linear regression estimation from the data

(v1,21),-.-,(¥e, Ze),

in the 30-dimensional vector space z = (z(1),...,z(30) where the regres-
sion function depends only on three coordinates,

30
y(z) = 2:1:9) +z2 ¢ :I:?) + 02:1:“‘),
i—4

and the data are obtained as measurements of this function at randomly
chosen points z. The measurements are taken with additive noise

y=yZ) + &

that is independent of z;.

Table 6.1 describes the results of experiments of estimating this regres-
sion function by the above three methods for different signal-to-noise ratios,
different models of noise, and 60 observations. The data in the table are an
average of 100 experiments. The table shows that for large noise (small
SNR) the support vector regression gives results that are close to (favorable
for this model) the FSF'S method that are significantly better than the OLS
method.

SNR | Normal | Laplacian | Uniform

OLS | FSFS | SV | OLS | FSFS [ SV | OLS | FSFS | SV

0.8 45.8 28.0 | 20.3 | 40.8 245 | 25.4 | 39.7 | 241 | 28.1

1.2 20,0 12.8 | 149 | 181 11.0 | 125 | 17.6 11.7 | 12.8

2.5 4.6 3.1139 4.2 25132 41 281 3.6

5.0 12| 07713 10| 0.60 | 0.52 10| 062 (1.0

TABLE 6.1. Comparison results for ordinary least-squares (OLS), forward step
feature selection (FSFS), and support vector (SV) methods.
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The experiments with the model

30
k
y,:zzf )+€z

=1

demonstrated the advantage of the SV technique for all levels of signal-to-
noise ratio defined in Table 6.1.

6.9.8 Estimation Nonlinear Regression Functions

For these regression estimation experiments we chose regression functions
suggested by J. Friedman that were used in many benchmark studies:

1. Friedman’s target function #1 is a function of 10 nominal varialles
y=10 sin(ﬂ':l:(’):l:m) + 20(:1:(3) —0.5)2 +10z® 4 529 + £. (6.44)

However, it depends on only 5 variables. In this model tlie 10 vari-
ables are uniformly distributed in (0,1], and the noise is normal with
parameters N (0, 1).

2. Friedman'’s target function #2,

y = \/(z(l))2 + 2@z — 1/(z(Dz@))2,

has four independent variables uniformly distributed in the following
region
0 <z™M <100,

407 < z? < 560,
0<z® < 1,
1<z™ <11, (6.45)
The noise is adjusted for a 3:1 signal-to-noise ratio.

3. Friedman’s target function # 3 also has four independent. variables

y = tan (0 ] + f,

(6.46)

that are uniformly distributed in the same region (6.45). The noise
was adjusted for a 3:1 signal-to-noise ratio.

Below we compare the advanced regression techniques called bagging (L.
Brieman, 1996) and AdaBoost? that construct different types of committee

*The AdaBoost algorithm was proposed for the pattern recognition problem
see Section 5.10). It was adapted for regression estimation by H. Drucker (1997).
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T Bagging | Boosting | SV
Friedman +#1 2.2 1.65 0.67
Friedman #2 11,463 11,684 | 5,402
Friedinan #3 || 0.0312 0.0218 | 0.026 |

TABLE 6.2. Comparison of Bagging and Boosted regression trees with SVM
regression for three artificial data sets.

machine by combining given in the comments to Chapter 13) with the
support vector regression machine.

The experiments were conducted using the same format as in (Drucker,
1997, Drucker et al. 1997).

Table 6.2 shows results of experiments for estimating Friedman’s func-
tions using bagging, hoosting, and polynomial (d = 2) SVMs. The exper-
iments were conducted using 240 training examples. Table 6.2 shows an
average (over 10 runs) of the model error (mean squared deviation between
the true target function and obtained approximation).

Table 6.3 shows performance obtained for the Boston housing data set
where 506 examples of 13-dimensional real-life data where used as follows:
401 random chosen examples as the training set, 80 as the validation set,
and 25 as test set. Table 6.3 shows results of averaging over 100 runs, The
SV machine constructed polynoniials (mostly of degree 4 and 5) chosen on
the basis of the validation set. For the Boston housing data the performance
index is the mean squared error between the predicted and actual values y
on the test set.

| Bagging | Boosting | SV
12.4 107 [72

TABLE 6.3. Performance of different methods for the Boston housing data.






Informal Reasoning and
Comments — 6

6.10 LOSS FUNCTIONS FOR THE REGRESSION
ESTIMATION PROBLEM

The methods for estimating functional dependencies based on empirical
data have a long history. They were begun by great mathematicians: Gauss
(1777-1855) and Laplace (1749-1827), who suggested two different methods
for estimating dependencies from results of measurements in astronomy and
physics.

Gauss proposed the least-squares method (LSM), while Laplace proposed
the least modulo method (LMM). Since that time the question has raisen
as to which method is better. In the nineteenth century and beginning of
the twentieth century preference was given to the least-squares method:
The solution with this metbod for linear functions has a closed form. Also,
it was proven that among linear and unbiased estimates the LSM is the
best.

Later, in the second part of the twentieth century, it was noted that in
many situations the set of linear and unbiase estimates is too narrow to be
sure that the best estimate in this set is really good (it is quite possible
that the whole set contains only “bad” estimators).

In the 1920s R. Fisher discovered the maximum likelihood (ML) method
and introduced the model of measurements with additive noise. According
to this nodel the measurement of a function f(z,cp) at any point z* is
corrupted by the additive noise {described by the known symmetric density



220 Informal Reasoning and Comments — 6

po(€); ¢ is uncorrelated with z*)
y, = f(I,QO) + E

Since
E =¥ - f(z)al))a
to estimate the parameter ap of density pp(£) (the unknown function f(z, aq))

from the data
Ty,..., T¢

using maximum likelihood one has to maximize the functional

Re(a) = ):mp(y f(zi,@)).

In 1953 L. Le Cam defined conditions under which the MI, method is con-
sistent. He found some sufficient conditions on uniform convergence (over
the set of o € A) under which the empirical functional R,(a) converges to
the functional

R(a) = / Inp(y — £(z,))dP(y, 2)

(they are a particular case of the necessary and sufficient conditions con-
stdered in Chapter 2); this immediately implies that the following assertion

holds true; oy — f )
y— fz, 0 p
- [n(B=Tag) —fo

That is, the ML solutions are consistent in the Kulbac-Leibler distance. It
is also in the set of unbiased estimators (not necessary linear) that the LM
method has the smallest variance (the unbiased estimate with the smallest
variance is called effective).

This implies that if the noise is described by Gaussian (normal) law, then
the LSM gives the best solution, If, however, the noise is defined by the

Laplacian law
p(z,A) = ! exp _
2A A

then the best solution defines the least modulo estimate. From these results
it also follows that the loss function for the best (effective) estimate is
defined by the distribution of noise.

In practice (even if the additive 1nodel of measurements is valid), the
form of noise is usually unknown. In the 1960s Tukey demonstrated that
in real-life situations the form of noise is far from both the Gaussian and
the Laplacian laws.

Therefore, it became important to create the best strategy for estimating
functions in real-life situations (when the form of noise is unknown). Such
a strategy was suggested by P. Huber, who created the concept of robust
estimators.
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6.11 LOSS FUNCTIONS FOR ROBUST ESTIMATORS

Consider the following situation. Suppose our goal is to estimate the ex-
pectation m of the random variable £ using i.i.d. data

Eb---,fl-

Suppose also that the corresponding unknown density pg(é — mp) is a
smooth function, is symmetric with respect to the position mg, and pos-
sesses a second moment.

It is knowa that in this situation the maximum likelihood estimator

m = M(&y, ..., €|pa)
that maximizes ¢
L(m) = E lnpo(éi — m)
=t

is an effective estimator. This means that among all possible unbiased
estimators? this estimator achieves the smallest variance, or in other words,
estimator M(£;, ..., €| po) minimizes the functional

V(M) = / (M(Ex,- .., &2) — m)Pdpo(€s —m) - dp(€r —m).  (6.47)

Suppose now that although the density pp(£ —m) is unknown, it is known
that it belongs to some admissible set of densities pp(§ — m) € P. How
do we choose an estimator in this situation? Let the unknown density be
Po(€ — m). However, we construct an estimator that is optimal for density
p1{€—m) € P, ie., we define the estimator M(£;,...,£¢p1) that maximizes
the functional

£
Li(m) =Y Inpy(& ~ m). (6.48)
i=1

The quality of this estimator now depends on two densities, the actual one
po(€ — m) and the one used for constructing estimator (11.8):

V(po,p1) = /(M(ﬁl,---,lepl) — m)2dpg(€x — m)- - - dpo(&e — m).

Huber proved that for a wide get of admissible densities P there exists a
saddle point of the functional V(pg,p1). That is, for any admissible set of

3The estimator M(£,.. ., &) is called unbiased if
EM(&,...,&) =m.
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denstties there exists such a density p. (€ — m) that the inequalities

V(p, pr) <V(p,, pr) <V{pr, p) (649)

hold true for any function p(§ — m) € P.

Inequalities (11.9) assert that for any admissible set of densitics there
exists the minimax density, the so-called robust density, which in the worst
scenario guarantees the smallest loss.

Using the robust density one constructs the so-called robust regression es-
timator. Namely, tbe robust regression estimator is the one that minimizes
tbe functional

¢
Rp(w) = —Eln (¥ — f(z:, @)

=1

Below we formulate the Huber theorem that is a foundastion of the theory
of robust estimation.
Constder the class H of densities formed by mixtures

p(§) = (1 — €)g(€) + eh(£)

of a certain fixed density g(£) and an arbitrary density h(£), where both
densities are symmetric with respect to the origin. The weights in the mix-
ture are 1 —e and € respectively. For the class of these densities the following
theorem is valid.

Theorem. (Huber) Let —1ln g(£€) be a twice continuously differentiable
Sunction. Then the class H possesses the following robust density:

(1 = €)g(bo) exp{—c(bo — £)}, for £ <&,
pr(€) = § (1-€g(8), for€o <€ <&, (6.50)
(1 —e)g(lr) exp{—c(§ —&1)}, for & =6,

where & and £, are endpoints of the interval €y, £1] on which the monotone
(due to converity of —Ing(€)) function

_ding(§) _ _g'®)
3 9(¢)

i3 bounded in absolute value by a constant ¢ determined by the normalization

condition ;
1=(1-¢ (/e a(€)dE + 9(éo) 19(51)) .

0

This theorem allows us to construct various robust densities. In particu-
lar, if we choose for g(£) the normal density

9() = \/—QI—ﬁzexp {—2%}
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and consider the class H of densities

1-¢ 2
p(§) = 7,—2—7r—aexp {—%5} + €h(¢),

then according to the theorem, the density

Lot exp —”};— Llgly  for [£] > ca,
pre)=4 7712 }

2 (6.51)
ﬁ;exp —55—5} for |¢| < co,

will be robust in the class, where ¢ is determined from the normalization
condition

1:1—6 /:caexp{_g_?}d{+3ﬂc_i} -

270 co
The loss function derived from this robust density is

el — & for ¢ > ¢,

L) = - Inp(€) = { E T e (6.52)
: <e

It smoothly combines two functions: quadratic and linear. In one extreme
case (when ¢ tends to infinity) it defines the least-squares method; in the
other extreme case (when ¢ tends to zero), it defines the least modulo
method. In the general case, the loss functions for robust regression are
combinations of two functions one of which is f(u) = |u| and the other is
much less sensitive to deviations of u (the derivative of the nonlinear part
of the function f(u) is less than the derivative of the linear part).

6.12 SUPPORT VECTOR REGRESSION MACHINE

Our construction of SVMs for the regression problem is based on the &-
insensitive loss function. This loss funiction has the same structure as robust
loss functions: It combines two functions one of which is f(u) = |u| and the
constant function?: f(u) = const (we considered case const = 0).

The £-insensitivity implies some new properties of the SVM solutions,
namely the sparsity of solutions. By changing (increasing) the value of &
one controls {increases) the sparsity of the SVM solutions.

However, the difference between the robust approach and SVM approach
reflects also the fact that the loss function for the SVM regression is more

4Formally it does not belong to the family of Huber’s robust estimators, since
the uniform distribution function does not possess a smooth derivative.
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complicated than the loss function for robust regression. For linear func-
tions it has the form®

£
L(@)= Fw,w)+ Y i~ (w2,
=1

where (w,w) is the regularization functional and 1/C is the regulariza-
tion parameter (we will discuss the regularization techniques in the next
chapter).

The addition of the regularization term into the functional dramatically
changes the situation: On one hand it connected SVM regression to regu-
larization technigues intyoduced for solving ill-posed problems, and on the
other hand it increases the number of free parameters.

Now, in order to estimate the regression function we have to specify three
free parameters: the value of e-insensitivity, the regularization parameter
C, and the kerne] parameter (the order of the polynomial for polynomial
kernels, the width parameter for radial basis kernels, the order of the spline
for spline generating kernels, and so on).

In the next chapter we show that using some general ideas developed
in classical statistics and general principles for solving ill-posed problems
developed in the theory of ill-posed problems we will be able not only to
specify how these parameters should be connected, in order to provide op-
timal estimates, but also to describe effective algorithms for evaluating the
best possible parameters for solving the main problem of statistical learning
theory: estimating density functions, conditional probability (this is more
general solution to the pattern recognition problem than was described
before), and regression functions. The £-insensitive estimators will play a
crucial part in these algorithms.

®In the maim part of this chapter we used an equivalent form of this functional.



Chapter 7

Direct Methods in Statistical
Learning Theory

In this chapter we introduce a new approach to the main problems of
statistical learning theory: pattern recognition, regression estimation, and
density estimation.

We introduce the so-called direct approach, which requires solving op-
erator equations that define the desired functions. The solutions of these
equations are based on solving stochastic ill-posed problems. To solve them
effectively we combine ideas that were originated within three different
branches of mathernatics: the theory of ill-posed problems, classical non-
parametric statistics, and statistical learning theory. The results obtained
in the first two branches were not considered in the main part of the book
(they were only briefly discussed in the informal reasoning and comments
to the chapters).

In this chapter we introduce the necessary results from these branches
and combine corresponding techniques to obtain a new type of algorithms.
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7.1 PROBLEM OF ESTIMATING DENSITIES,
CONDITIONAL PROBABILITIES, AND CONDITIONAL
DENSITIES

7.1.1 Problem of Density Estimation: Direct Setting

We start this chapter with the problem of density estimation. Let £ be a
random variable. The probability of a randormn event

F(z) = P{§ < z}

we call a probability distribution function of the randomn variable €. A ran-
dom vector £ is a generalization of the notion of a random variable. The
function

F(z) = P{£ < z},

where the inequality is interpreted coordinatewise, is called a probabilsty
distribution function of the random vector £. We say that the random vari-
able ¢ (random vector £) has a density if there exists a nonnegative function
p(z) such that for all = the equality

Z
F(z) = / p(x’)dz’
is valid.

The function p(z) is called a probability density of the random variable
(random vector). So, by definition, to estimate a probability density from
the data we need to obtain a solution of the integral equation?

/z p(z’,a)ds’ = F{x) (7.1)

—00

on a given set of densities p(z,a), @ € A, under the condition that the
distribution function F(z) is unknown and a random independent sample

Ty,...,Ze (7.2)

obtained in accordance with F(x) is given.

"When 1 = (1:1, ...,a") is a vectar, this notation defines coordinatewise inte-
gration

z 2! z"
/ p(z,a)dz;E/ / p(xl,...,z";a)dz’...dzn.
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One can construct approximations to the distribution function F(z) us-
ing data (7.2), for example, the so-called empirical distribution function
(7.2):

é
Fo(z) = %Eﬂ(z - 3,), (7.3)

where we define for the vector 2 u the step function

B(u) = 1 all coordinates of the vector u are positive,
| 0 otherwise.

In the next section we wil]l show that the empirical distribution function
Fe(z) is a good approximation to the actual distribution function F(z).

Thus, the problem of density estimation is to find an approximation to
the solution of the integral equation (7.1) if the probability distribution
function is unknown; however, an approximation to this function can be
defined.

We call this setting of the density estimation problem the direct setting
because it is based on the definition of a density. In the following sections we
shall discuss the problem of solving integral equations with an approximate
right-hand side and approximate operator, but now we turn to the direct
setting of the problem of estimating the conditional probability P(w|z) that
defines the probability of class w given the vector z.

7.1.2 Problem of Conditional Probability Estimation

Congider pairs (w, x), where z is a vector and w is a scalar that takes on
only k values {0,1,...,k~ 1}. According to the definition, the conditional
probability P(w|x) is the solution of the integral equation

/;I P(w|z")dF(z') = F(w,z), (7.4)

where F(z) is a distribution function of random vectors =, and F(w,z) is
the joint distribution function of pairs (w, z). Indeed, since dF(z) = p(z)dz
(we suppose that the density does exist) and

P(w]e’) = ”;“Zj)),

the solution of (7.4) defines the conditional probability.
The problem of estimating the conditional probability in the set of func-
tions P,(w|z), a € A, is to obtain an approximation to the solution of the

Including scalars as one-dimensional vectors.
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integral equation (7.4) when both distribution functions F(z) and F(w, x)
are unknown but the data

(wlaIl)a EERRY (wla $[)

are given. As in the case of density estimation, we can approximate the
unknown distribution functions F(z) and F(w,z) by the empirical distri-
bution function (7.3) and the function

F(w,z) = 20 z — 1,)6(w, x),

where

1 if the vector z belongs to the class w,
(w,z) = .
0 otherwise.

Thus, the problem is to obtain an approximation to the solution of the
integral equation (7.4) in the set of functions P,(w|z), a € A, when
the probability distribution functions F(z) and F(w, z) are unknown, but
approximations Fy(z) and Fe(w, z) are given.

Note that estimation of the conditional probability function P(w|z) is
a stronger solution to the pattern recognition problem than the one con-
sidered in Chapter 1. In Chapter 1, the goal was to find the best decision
rule from the given set of decision rules; it did not matter whether this set
did or did not contain a good approximation to the supervisor’s decision
rule. In this statement the goal is to find the best approximation to the
supervisor’s decision rule (which is the conditional probability function ac-
cording to the statemnent of the problem. See Chapter 1). Of course, if the
approximation of the supervisor’s operator P(w|z) is known, then one can
easily construct the optimal decision rule. For the case where w € {0,1}
and the a priori probabilities of the classes are equal it has the form

Flz) =8 (P(w ~ 1z) — %) .

This is the so-called Bayes rule; it assigns the vector x to the class 1 if the
probability that this vector belongs to the first class is larger than 3 and
assigns 0 otherwise. However, the knowledge of the conditional probability
not only gives the best solution to the pattern recognition problem but also
provides an estimate of the error probability for any specific vector z.

7.1.8 Problem of Conditional Density Estimation

Finally, consider the problem of conditional density estimation. In the pair
(y,x), let the variable y be scalar and let 2 be a vector. Consider the
equality
y T
/ / p(y'|z")dF(z')dy’ = F(y, z), (7.5)
-0 J—oo
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where F(z) is a probability distribution function that has a density and
F(y,z) is the joint probability distribution function® defined on the pairs
(y, 7).

As before, we are looking for an approximation to the conditional density
p(y|z) by solving the integral equation (7.5) on the given set of functions
when both distribution functions F(z) and F(y,z) are unknown and the
random i.i.d. pairs

(yhzl))'"a(ylaml) (76)

are given. As before, we can approximate F(z) by the empirical distribu-
tion function (7.3) and the distribution function F(y,2) by the empirical
distribution function

(4
Fuly,2) = 3 36~ 38l - 21).

Thus, our problem is to obtain an approximation to the solution of the
integral equation (7.5) in the set of functions p,(y|z),a € A, when the
probability distribution functions are unknown but we can construct the
approximations Fy(z) and F,(y,z) using data (7.6).

Note that the conditional density p(y|z) contains much more information
about the behavior of the random value y for a given x than the regression
function. The regression function can be easily obtained from the condi-
tional density. According to its definition the regression function is

r(x) = / yp(y|z)dy.

7.2 THE PROBLEM OF SOLVING AN
APPROXIMATELY DETERMINED INTEGRAL
EQUATION

All three problems of estimating stochastic dependencies can be described
in the following general way. It is necessary to solve a linear operator equa-
tion

Af=F, feF, (7.7)

where some functions that form the equation are unknown, but data are
given. Using these data the approximations to the unknown functions can
be obtained.

% Actually, the solution of this equation is the definition of conditional den-
sity. Suppose that p(z) and p(y,z) are the densities corresponding to probability
distribution functions F(z) and F(y, z). Then equality (7.5) is equivalent to the
equality p(y|z)p(z) = p(y z).



230 7. Estimating Densities and Conditional Probabilities

A difference exists between the problem of density estimation and the
problems of conditional probability and conditional density estimation. In
the problem of density estimation, instead of the right-hand side of the
equation we are given its approximation. We would like to obtain an ap-
proximation to the solution of equation (7.7) from the relationship

Af=F, felF.

In the problemns of conditional praobability and conditional density estima-
tion, not only is the right-hand side of the equation (7.7) known approi-
madtely, but also the operator A known approximately (on the left-hand side
of integra] equations (7.4) and (7.5), instead of the distribution functions
we use their approximations). So our problem is to obtain an approximation
to the solution of equation (7.7) from the relationship

Alf%Fla fefa

where A, is an approximation of the operator A.

There is good news and bad news about solving these prablems. The good
news is that the empirical distribution function forms a good approximation
to the unknown distribution function. In the next section we show that as
the number of observations tends to infinity, the empirical distribution
function converges to the desired one at the fast rate 1/vZ. In the one-
dimensional case, there is known an asymptotically exact description of the
rate of convergence for different metrics determining different definitions of
a distance between empirical and true distribution functions.

In particular, for the one-dimensional case the Kolmogorov-Smirnov dis-

- tribution of distances (in the uniform metric C) between approximations
and the desired function is known. In the multidimensional case one can
calculate any quantile of this distribution [Paramasamy, 1992|.

The bad news is that the problem of solving operator equation (7.7)
belongs to the so-called ill-posed problems. In Section 7.4 we shall define the
concept of “ill-posed” problems and describe the difficulties that arise when
one needs to solve ill-posed problems. We will describe the 1nain results of
the classical theory for solving ill-posed problems and its generalizations to
the case of stochastic ill-posed problems. The theory of solving stochastic
ill-posed problems will be used for solving our integral equations.

7.3 GLIVENKO-CANTELLI THEOREM

As we mention in the 1930s Glivenko and Cantelli proved one of the most
important theorems in statistics. They proved that when the number of
observations tends to infinity, the empirical distribution function Fp(z)
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converges to the actual distribution function F(z). This theorem plays an
important part in the foundations of theoretical statistics.

Theorem. (Glivenko-Cantelli). The convergence

sup |F(z) — Fy(z)| —f .0 O
.o

tokes place.

In this formulation, the Glivenko-Cantelli thcorem asserts the conver-
gence in probability? (in the uniform metric) of the empirical distribution
function Fy(zx) to the actual distribution function F(x).

One can formulate this theorem in terms of uniform convergence de-
scribed in Chapter 2. Indeed, consider the following set of events:

e(a) =0a~—1z), aeA. (7.8)

For any fixed o it defines the set of x that are less than a. Now, let a
probability measure be defined on the set of z. Then the expectation

R{a) = E(c - 1)

as a function of a defines a probability distribution function, while the
empirical functional

3
Rlo)= 73 0(a~3), ack)

calculated from i.i.d. data x4, ..., z, defines an empirical distribution func-
tion. Therefore, in fact, the Glivenko-Cantelli theory is the theory of uni-
form convergence for a specific set of events (7.8 ) defined in R’.

In the n-dimensional case where a = (a!,...,a") and z = (z',...,z")
the Glivenko-Cantelli theorem describes the uniform convergence of the
frequencies to their probabilities over the following sets of events:

e(a) = II 6(zF - o*), oeR" (7.9

k=1

In Chapter 3 we analyzed the conditions for uniform convergence over any
given set of events {not necessarily defined by (7.9)). Therefore, the theory
of uniform convergence developed in statistical learning theory includes the
Glivenko-Cantelli theory as a particular case.

“The convergence almost surely takes place as well.
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7.3.1 Kolmogorov-Smirnov Distribution

As soon as the Glivenko-Cantelli theorern had been proved, the problemn of
the rate of convergence of Fy(z) to F(x) emerged.

Investigations of the rate of convergence of Fy(z) to F(x) for the one-
dimensional continuous functions F(x) resulted in the establishment of the
following important statistical law:

Kolmogorov-Smirnov distribution. The random variable

£ = VEsup | F(z) - Fo(z)|

has the following limiting probability distribution (Kolmogorov):

Jim P{VI sup | F(x) - Fe(x)] > e} = 2’2(-1)k—'e-2€’k’ . (7.10)

The random variables

& = \/Zs;lp ( F(z) - Fe(z)),

& = Visup ( Fy(z) - F(2)),
T
have the following limiting probability distrihutions (Smirnov):

Jim P{VZ sup ( F(z)— Fyz)) > €} = e~ %",

Jim P{VZ sup ( Fe(z) - F(x)) > e} = g2, (7.11)

As we mentioned in the previous section, the Glivenko-Cantelli theory
(originally developed for the one-dimensional case) is a particular case of
the statistical learning theory. In Chapter 3 we described bounds on uniform
convergence that are valid for any specific £ and set of events in a space of
arbitrary dimension.

In particular, this theory can be applied to the set of events (7.9). Since
the VC dimension of this set defined in R™ is equal to n (the dimensionality
of the space), we can obtain a hound for uniform convergence over the set
of events (7.9) as well. Therefore, using results from statistical learning
theory one can obtain nonasymptotic bounds of inequality type.

There exists, however, something in the analysis of uniform convergence
of events (7.9) that was not obtained in statistical learning theory for gen-
eral types of events. For the set of events (7.9) there exists an exact de-
scription of the rate of uniform convergence that does not depend on the
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prohability measure (universal distribution). This exact distribution was
obtained by Kolmogorov and Smirnov (for sufficiently large #) for the one-
dimensional case. For the multidimensional case this type of distribution is
unknown. However, it is known that such a distribution does exist.>.

In Section 7.5 we will see how important it is for our estimation problem
to have universal equality-type characteristics of this distribution. In spite
of the fact that for the multidimensional case and/or for a finite number of
observations the analytical expression for this distribution is unknown, one
can easily create a table that for any number of observations £ and for any
reasonable dimension n (say n < 100) defines any quantile of this distribu-
tion. In sections 7.8, 7.9, and 7.10 we will estimate optimal parameters of
our algorithms using such a table.

7.4 ILL-POSED PROBLEMS
Let the operator equation
Af(t) = F(z) (7.12)

be defined by the continuous operator A that maps in a one-to-one manner
the elements f of the metric space E| into elements F of the metric space
E;.

We say that the solution of the operator equation (7.12) is stable if a
small variation in the right-hand side F(z) € F(z,a) results in a small
change in the solution; i.e., if for any £ > 0 there exists &(¢) such that the
inequality

pE\(f(t)al)) f(t)a2)) <e

is valid as long as the inequality
pEQ(F(xaal)a F(Ia 02)) S 6(5)
holds.
We say that the problem of solving the operator equation (7.12) is well-
posed in the Hadamard sense if the solution of the equation
e eTists,
e is unique, and

e is stable.

®It is interesting to describe sets of events that possess a universally (indepen-
dent of probability measure) exact distribution of the rate of uniforrn convergence.
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The problem of solving an operator equation 18 considered #l-posed if the
solution of this equation violates at least one of the above-mentioned re-
quirements. Below we consider ill-posed problems for which the solution
of the operator equation exists, is unique, but is not stable. We consider
ill-posed problems defined by the Fredholm integral equation of type 1:

fK(t,:c)f(t)dt = F(z).

However, all the results obtained will also be valid for equations defined by
any other linear continuous operator.
Thus, consider Fredholm’s integral equation of type 1,

f K(t,2)f@)dt = F(), (7.13)

defined by the kernel K(i,z), which is continuous almost everywhere on
a<t<b a< z<b This kernel maps the set of functions {f(¢)}
continuous on [a,b] onto the set of functions {F(z)} also continuous on
[a, b]-

It is easy to show that the problem of solving equation (7.13) is an ill-
posed one. For this purpose we note that the continuous function G, ()
that is formed by means of the kernel K(t, ),

Gu(z)= /b K(t, z)sin vtdt

possesses the property
lim G,(x)= 0.
V—00

Consider the integral equation

b
/ K(t,z)f*(t)dt = F(z) + G, (z).

Since the Fredholm equation is linear, the solution of this equation has the
form
fr(t) = f(t) + sin v,

where f(t) is the solution of equation (7.13). For sufficiently large v, the
right hand side of this equation differs from the right hand side of (7.13)
only by the small amount G,{x), while its solution differs by the amount
sin V1.

Note that our equations (7.1), (7.4), and (7.5) also belong to the Fred-
holm equation of type 1. One can rewrite themn as follows:

/]‘9(.1: — 2')p(z")dz' = F(z')
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/0(1: — 2')P(w|2')dF (') = F(w, ),
1

/ f,"(y —¥)8(z — 2|2’ )dF (z')dy = F(y,z)

Recall that for simplicity we suppose that 2 (pairs (z, ¥)) belongs to the
unit cube I.

7.5 THREE METHODS OF SOLVING ILL-POSED
PROBLEMS

In the 1960s three methods of solving ill-posed problems were proposed.
All of them are based on introducing the so-called regularization functional

(f).
The regularization functional Q(f) is a semicontinuous, positive func-
tional for which (f) <e¢, ¢ > 0, is a compactum (in the space of functios
f)- It is defined on the set of functions f € F, the domain of solution of
the equations.
Below, to impose uniqueness of the solution we consider regularization
functionals possessing the following properties:

1. Q(f) is a nonnegative convex functional. That is, for any 0 < A <1
the inequality

QA+ (= N f2) S AUH) +(T-NQUf), fh, f2€F,
is valid.
2. The following equality holds:
Q) = 0.

3. For each fixed f the function
r(v) = A~ f)

is a strictly increasing function of ~.

On the basis of the regularization functional the following three methods
were proposed:

1. Tikhonov’s Variation Method (Method T) [Tikhonov, 1963).
Minimize the functional
Wr(f) = [|Af — Fii%, + vQ(f),
where v > 0 is some predefined constant.
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2. Phillips Residual Method (Method P) [Phillips, 1962].

Minimize the functional

We(f) =Q(f),

subject to the constraint

HASf— Flig: < 1
where i > 0 is some predefined constant.
3. Ivanov’s Quasi-Solution Method (Method 1) [Ivanov, 1962).

Minimize the functional
Wi(f) = llAf - Fllg,
subject to the constraint
Q(f) <C,
where C > 0 is some predefined constant.

It was shown (Vasin, (1970)) that these methods are equivalent in the
sense that if one of the methods (say Method T) for a given value of the
parameter (say *) produces a solution f*, then there exist corresponding
values of parameters of the other two methods that produce the same
solution.

7.5.1 The Residual Principle

Al three methods for solving ill-posed problems contain one free parameter
(parameter +y for Method T, parameter o for Method P, and parameter C
for Method I). The choice of the appropriate value of the parameter is
crucial for obtaining a good solution of an ill-posed problem.

In the theory of solving ill-posed problems there exists a general principle
for choosing such a parameter, the so-called residual principle [Morozov,
1983).

Suppose that we know the accuracy of approximation of the right-hand
side F of equation (7.12) by a function Fj, that is we know the value ¢ for
which the following equality holds:

|F — Fsllg, = .

Then the residual principle suggests that we choose a parameter (v, for
Method T or C; for Method 1) that produces the solution fs satisfying the
equality

[|Afs — Fsilg, = 0 (7.14)
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(for Method P one chooses the solution that exactly satisfies the constraint
(7.14) with a).

Usually, it is not easy to obtain an accurate estimate of the discrepancy
between the exact right-hand side and a given approximation.

Fortunately, it is not the case for our problems of estimating the density,
conditional probability, and conditional density. For these problems there
exist accurate estimates of the value ¢ = ¢, which depends on the number
of examples £ and the dimensionality of the space n.

Note that common to all our three problems is the fact that the right-
hand sides of the equations are probability distribution functions. In our
solution, instead of actual distribution functions we use empirical distri-
bution functions. As we discuss in Section 7.3, for any fixed number of
observations £ and any fixed dimensionality n of the space there exists a
universal distribution of discrepancy

£= \/Esgp |F(z) — Fe(z)I.

Let us take an appropriate quantile g* of this distribution (say 50% quan-
tile) and choose

ag= 0= i— (7.15)

v

In the following we will choose solutions that satisfy the residual principle
with constant (7.15).

7.6 MAIN ASSERTIONS OF THE THEORY OF
ILL-POSED PROBLEMS

In this section we will describe the main theorem for the Tikhonov method.
Since all methods are equivalent, analogous assertions are valid for the two
other methods.

7.6.1 Deterministic 1ll-Posed Problems
Suppose that instead of the exact right hand side of the operator equation

Af=F
we are given approximations Fs such that
|IFs — Flig. < 6. (7.16)

Our goal is to specify the relationship between the value & > 0 and the
regularization parameter ys > 0 in such a way that the solution of our
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regularization method converges to the desired one as soon as 8 converges
to zero.

The following theorem establishes these relations [Tikhonov and Arsenin
1977].

Theorem 7.1 Let Ey and E> be metric spaces, and suppose for F € Eo
there ezists a solution f € E, of equation (7.12). Let instead of an exact
right-hand side F of equation (7.12), approzimations Fs € E; be given such
that pg,(F, Fs) < 6. Suppose the values of the parameter v(b) are chosen
in such a manner that

(&) — 0 for 6 — 0,

52
im — . 7.17
A @y ST < (7.17)
Then the elements f; (8) minimizing the functionals Wr(f) on Er converge
to the ezact solution f asé — 0.
In a Hilbert space the following theorem is valid.
Theorem 7.2. Let Ey be a Hilbert space and Q(f) = ||f||*. Then for
) satisfying the relations
(@) — 0 for § — 0,

62
im — = 7.
Py 210)) 0, (7.18)

the functions f; @) minimizing the functional
Wi(f) = pE,(A S, FsYFAUS) (7.19)

converge ag & — 0 to the exact solution f in the metric of the space E,.

7.6.2 Stochastic Ill-Posed Problem

Consider now the situation where instead of the right-hand side of the
equation
Af=F (7.20)

we are given a sequence of random functions Fy that converge in probability
to F. That is, we are given a sequence I, ..., Fg, ... for which the following
equation holds true:

lljm P{pg,(Fe, F) > €} =0, Ve>D0.
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Our goal is to use the sequence Fy, ..., Fy, ... to find a sequence of solutions
of equation (7.20) that converge in probability to the true solution. We
call this problem the stochastic iil-posed problem, since we are solving our
equation using random functions Fy(x).

To solve these stochastic ill-posed problems we use Method T. For any
F¢ we minimize the functional

Wr(f) = g, (Af, Fo) + % f),
finding the sequence fi,..., fe,.... Below we consider the case where
ve— 0 as f— oo.

Under these conditions the fallowing theorems describing the relation-
ship between the distributions of two random variables, the random vari-
able pg, (F, F¢) and the random variable pg, (f, f¢) hold true {Vapnik and
Stefuyuk, 1978].

Theorem 7.3. For any positive numbers € and u there exists a positive
number n(e, i) such that for all £ > n(e, 1) the inequality

P{pg,(fe. f) > €} < P{og,(Fe, F) > /yeis} (1.21)
i3 satisfied.

For the case wbere F) is a Hilbert space the following theorem holds
true.

Theorem 7.4. Let E, be a Hilbert space, A in (7.20) be a linear operator,
and

W) =il = (£, ).

Then for any positive € there exists a number n(e) such that for all £ > n(e)
the inequality

P(llfe— fII? > &} <2P{pk, (F. F) > 50)

is satisfied.

These theorems are generalizations of Theorem 7.1 and Theorem 7.2 for
the stochastic case.

Corollary. From Theorems 7.3 and 7.4 it follows that if approxima-
tions F; of the right-hand side of the operator equation (7.20) converge in
probability to the true function F(z) in the metric of space F; with the
rate

PE, (F(I))FZ(I)) < 1‘([),
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then the sequence of the solutions to equation (7.20) converges in proba-
bility to the desired one if

lim 1(—Q=

€— o0 ﬁ

and ¢ converges to zero with £ — oo.

0

7.7 NONPARAMETRIC METHODS OF DENSITY
ESTIMATION

7.7.1 Consistency of the Solution of the Density Estimation

Problem

Consider now our integral equation
L
/ f(£')dz' = F(z).
- 00

Let us solve this equation using empirical distribution functions Fy, ..., Fy, ...
instead of the actual distribution function. For different £ we minimized the
functional

Wr(f) = ok, (Af, Fe) + % f),

where we chose the metric pg,(Af, F¢) such that
PE(Af, Fe)l < sup|(Af)x — Fe(z)l. (7.22)

Suppose that
fl)~--)f€,---

is a sequence of the solutions obtained.
Then according to Theorem 7.3; for any ¢ and any p the inequality

Plog,(fe,f) > €} < P{Slip |Fe(z) — F(z)| > ven}

holds true for sufficiently large £.
Since the VC dimension of the set of events (7.9) is bounded (equal to
the dimensionality of the space) for sufficiently large £, the inequality

P{sup [Fy(z)— F(z)| > €} < Cexp{—e°£}

holds true (see bounds (3.3) and (3.23)). Therefore, there exists an £(¢, y)
such that for £ > £(e, i) the inequality

P{pg,(fe, f) > €} < Cexp{—yept} (7.23)
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is satisfied.
If f(x) € L,, it then follows from Theorem 7.4 and from the VC hound
that for sufficiently large £, the inequality

P{/(fe(-”ﬂ) — flz))2dz > &} < Cexp{—yept} (7.24)

holds.
Inequalities (7.23) and (7.24) imply that the solution f; converges in
probability to the desired one (in the metric pg, (fe, f)) if

Y& ——00 U,

¢
- . 7.25
lnf’n ] ( )

(In this case the right-hand sides of equations (7.23) and (7.24) converge
to zero.)

One can also show (using the Borel-Cantelll lemma) that solutions con-
verge with probability one if

Y ——co 0,

£y — 40 0.

Note that this assertion is true for any regularization functional Q( f) and
for any metric pg, (f, fe) satisfying (7.22). Choosing specific functionals
Q(f) and a specific metric pg, (F, F¢) satisfying the condition

pE,(F, F¢) < sup|Fy (z) — Fa(z)|,

one constructs a specific estimator of the density.

7.7.2 The Parzen’s Estimators
Let us specify the metric pg, (F, Fp) and such functionals ©(f) for which
Method T minimizing the functional

W(f) = p3(Af, Fe) + 78 f) (7.26)

produces Parzen’s estimators.
Consider Lo metrics in the set of functions F,

PEQ(F! Fl) = \/‘ (F(I) - F[(I))zd.’l:,
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and the regularization functional.

Qf) = /: ( /j; R(z—z)f(z)dz)zd;

Here R(z — x) is the kernel that defined the linear operator

Bf= R(z — z) f(z)dz.

- 00

In particular, if R(2 — z) = §(z — x), the operator

Bf= f 5(z — ) f(z)dz = [P (z)

defines the pth derivative of the function f(z).

For these elements we have the functional

Wr(f)

- /:: (/; f(t)dt—Fg(a:))zdz +W/j; (/_i R(z—:c)f(:c)da:)2dz.

Below we show that the estimator f, that minimizes this functional is

the Parzen’s estimator

é
Julz)= 3 32 Cy(z — ),

=]

where the kernel function G.,(u) is defined by the kernel function R(u).

Indeed, let us denote by f(w) the Fourier transform of the function f(¢)
and by R(w) the Fourier transform of the function R(x). Then one can

evaluate the Fourier transform for the function F(x),

Fw) = %/‘w F(z)e~™%dx

L e L f(t)dt = %

:ﬂ*m

and for the function Fp(z),

o ¢
_ 1 e 1 (™1 mive
= —— L — - _ (17 d
Fo(w) 271_/: Fe(x)e dx = | 7 E O(x— x,)e r

1=1
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g):

=1
Note that the Fourier transform for the convolution of two functions is
equal to the product of the Fourier transforms of these two functions. In
our case this means that

3 [ (R@)x e

—I(AJI’

= — (/ R(z—2)f(z)dz )e'“‘”dz = R(w)f(w).

Lastly, reca.ll that according to Parseval’s equality the L, norm of any
function f(z) is equal (within the constant 1/27) to the L2 norm of its
Fourier transform f(w) (here f(w) is the Fourier transform of the function
{(z)). Therefore, one can rewrite (7.27) in the form

_@_1_2_____ + [ R) ),

Ly

Wr(f) =

This functional is quadratic with respect to f(w).
Therefore, the condition for its minimum is

felw) 1

w?

Ee"‘”’ + v RW)R(—w) f(w) = 0. (7.28)

Solving this equation with respect to fz(w), one obtains

0= (s ) 50
fl(“-’)" 1+7IUQR(U)R(_U))£3=16 .

Let us introduce the notation

1
1 + yew? R(w) R(—w)

e (w) =
and

Gy (2) = / Gy, (W) du.

-—00
To obtain an approximation to the density one has to evaluate the inverse
Fourier transform

Co . 00 1 £ s -
fe(z) = / fl(w)eWId‘”:/ g+ (W) (Z Ze w J) e dw
0 oo =
1 4 o0 1 £
DY IR S
j=1 I =

The last expression is the Parzen’s estimator with kernel function G, (u).
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7.8 SVM SOLUTION OF THE DENSITY
ESTIMATION PROBLEM

Now we consider another solution of the operator equation (the density
estimation problem)

/I p(2')dz' = F(x)

—00
with approximation Fp(z) on the right-hand side instead of F(x).
We will solve this problem using Methed P, where we consider the dis-
tance between F(x) and Fy(z) defined by the uniform metric

PE,(F(z), Fg(z)) = sup |F(z) — Fy(z)) (7.29)

and the regularization functional

Qf)=HNu (7.30)
defined by a norm of some reproducing kernel Hilbert space (RKHS).

To define the RKHS one has to define a symmetric positive definite kernel
K(z,y) and an inner product (f, g)x in Hilbert space H such that

(f(I)a K(:B, y))H = f(y) Vf €H (731)

(the reproducing property). Note that any symmetric positive definite func-
tion K(z,y) has an expansion

K(z,y) =Y Mhu(z)d:(v), (7.32)

=1

where A, and ¢,(z) are eigenvalues and eigenfunctions of the operator

Df= / K (2, %) f(4)dy.

Consider the set of functions
f(zy0) =) cdi(a), (7.33)
i=1

for which we introduce the inner product

*

PR LY
cle

A;

1 ?

The kernel (7.32), inner product (7.34), and set (7.33) define an RKHS.

[T

(7.34)

(flz,c), f(z,™)n =

M

i
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Indeed,
(f(z), K(z,9)y = (E ci6,(2), K(z, y))
H

i=1

- (anai(x),ZA,-an(zwy)) =y AN _ g
=1 H 22=1 B
For functions from an RKHS the functional (7.30) has the form

1=1

o 2
AN=3 3 (7.35)

i=1

where \; is the ith eigenvalue of the kernel K (z,y). Therefore, the choice
of the kernel defines smoothness requirements to the solution.

To solve the density estimation problem we use Method P with the func-
tional defined by (7.30) and uniform metric (7.29). We choose the value of
the parameter ¢ = g, in the constraint to satisfy residual principle (7.14).
Therefore, we minimize the functional

Q) =N

subject to the constraints

= 0y.

x
sup |Fe(a) — [ faas!
r ~0o0
However, for computational reasons we consider the constraints defined
only at the points z; of the training set
T

Fy(z) - f(z"dz'

-0

max
1
z=x,

We look for a solutjon of our equation in the form

4
fzy =Y B.K(zi,7), (7.36)

i=1

where K(z,,7) is the same kernel that defines the RKHS. Taking into
account (7.31) and (7.36) we rewrite functional (7.30) as follows:

QN =N

¢ [4
= (Z BiK (z,2;), Z B:K(z, Ii))
H

i=1 =1

£ £
=58 Bi(K(z,7.), K(z,2,))n

=1 =l
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£
= Y BiBiK(zs,75). (7.37)

2,5=1

To obtain the last equation we used the reproducing property (7.31).
Therefore, to solve our equation we minimize the functional

£
W(B) =Qf, £y =Y BB K(z,,15) (7.38)

2,7=1

subject to the constraints

£ z
max | Fyp(z) — 2,33/ K(z,,z')dz’ =0gq 1<i<4 (7.39)
2 = 0

=7,

where the largest diviation defines the equality (the residual principle).
This optimization problem is closely related to the SV regression problem
with an g¢-insensitive zone. It can be solved using the SVM technique (see
Chapter 6).
To obtain the solution in the form of a mixture of densities we choose a
nonnegative kernel K (z,z,) satisfying the following conditions, which we
call the condition K:

1. The kernel has the form

Ko(z) = o)k (* ;Ii) , (7.40)

a(’y)/K (I ;I‘)dx =1, K(0)=1, (7.41)

where a(7y) is the normalization constant.

2. The value of the parameter -y affects the eigenvalues Ay (%)...., Ax(¥) . ..
defined by the kernel. We consider such kernels for which the ratios
Ak+1(7)/Ak(7), k= 1,2,..., decrease when 7 increases. Examples of
such functions are

-,
~

Koz = aesp (- |2 ) 0<p<2  (14)

Also, to obtain the solution in the form of a mixture of densities we add

. two more constraints:

£
=0, Y A=L (7.43)
=1
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Note that our target functional also depends on the parameter :

£
Wo(8) =) = T 818Ky (i, 3)). (7.44)

i,3=21

We call the value of the parameter y admissible if for this value there
exists solution of our optimization problem (the solution satisfies residual
principle (7.14)).

The admissible set

Ymin < Y2 < Ymax

is not empty, since for Parzen’s method (which also has form (7.36)) such
a value does exist. Recall that the value v, in the kernel determines the
smoothness requirements on the solution: The larger the <, the smaller the
ratio Ag41/ Ak, and therefore functional (7.35) imposes stronger smoothness
Tequirements.

For any admissible v the SVM technique provides the unique solution
with some number of elements in the mixture. We choose the solution
corresponding to an admissible «, that minimizes the functional (7.44) over
botl coefficients 3, and parameter . This choice of parameter controls the
accuracy of the solution. By choosing a large admissible v, we achieve
another goal: We increase the smoothness requirements to the solution
satisfying (7.14) and we select the solution with a small number of mixture
elements® (a small number of support vectors; see Section 6.7). One can
coutinue to increase sparsity (by increasing g, in (7.14)), trading sparsity
for the accuracy of the solution.

7.8.1 The SVM Density Estimate: Summary

The SVM solutjon of the density estimation equation using Method P im-
plements the following ideas:

1. The target functional in the optimization problem is defined by the
nonn of RKHS with kernel (depending on one parameter) that allows
effective cantrol of the smoothness properties of the solution.

®Nate that we have two different descriptions of the same functional: descrip-
tjon (7.35) in a space of functions ¢x(x) and description (7.44) in kernels K (z, x;).
From (7.35) it follows that in increasing v we require more strong filtration of
the “high-frequency components” of the expansion in the space ¢x. It Is known
that one can estimate densities In a high-dimensional space using a small number
of observations only if the target density is smooth (can be described by “low-
frequency functions”}. Therefore, in high-dimensional space the most accurate
solution often corresponds to the largest admissible . Also, in our experiments
we observed that within the admissible set the difference in accuracy obtained
for solutions with different v is not significant.
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2. The solution of the equation is chosen in the form of an expansion
(with nonnegative weights) on the same kernel function that defines
the RKHS.

3. The distance pg,(Afe, Fy) defining the optimization constraints is
given by the uniform metric (which allows effective nse of the residual
principle).

4. The solution satisfies the residual principle with the value of residual
(depending only on the dimensionality and the number of observa-
tlons) obtained from a Xalmogorov-Smirnov type distribution.

5. The admissible parameter + of the kernel is chosen to control accuracy
of the solution and/or sparsity of the solution.

7.8.2 Comparison of the Parzen’s and the SVM methods

Note that two estimators, the Parzen’s estimator

£
fr(z) = ; ) Gy(z,z) (7.45)

221

and the SVM estimator

4
fsvm(z) =) 8K, (7, 2.),
=1

have the same structure. In the case where
Gy(z,x,) = K,(z,2,)

and

o=

Bi=

the SVM estimator coincides with the Parzen’s estimator. The solution
(7.45), however, is not necessarily the solution of our optimization prob-
lem. Nevertheless, one can show that the less smooth the SVM admissible
solution is, the closer it is to Parzen’s solution. Indeed, the smaller is +y in

the kernel function a(y)K (E,;_z-l), the better the functional

£
W(B) = aly) Y 82 (7.46)

2:=]

approximates our target functional (7.38).
" Parzen's type estimator is the solution for the smallest admissible ~ of
the following optimization problem: Minimize (over 3) functional (7.46)
(instead of functional (7.38)) subject to constraints (7.39) and (7.43).
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Therefore, Parzen’s estimator is the less sparse admissible SVM solution
of this (modified) optimization problem.

Below we compare solutions obtained by Parzen’s method to the solu-
tion obtained by the SVM method for different admiseible values of the
parameter . We estimated a density in the two-dimensional case defined
by a mixture of two Laplacians;

p(a,9) = 5 (exp{= (= 1) +Iy = 19} + expi=(lo +1j2 +ly +1))).

In both metbode we used the same Gauseian kernels

1 (z -2+ (y - ¥)?
omy? P {— 242 }

and defined the best parameter ~ using the residual principle with o, =
g/Viand g=1.2.

In both cases the density was estimated from 200 observations. The ac-
curacy of approximation was measured in the L, metric

Ag= /Ipt(x, y) — p(z,y)|dzdy.

We conducted 100 such trials and constructed a distribution over the ob-
tained values ¢ for these trials. This distribution is presented by boxplots.
The horizontal lines of the boxplot indicate 5%, 25%, 50%, 75%, and 95%
quantiles of the error distribution.

Figures 7.1 and 7.2 demonstrate the trade-off between accuracy and spar-
sity. Figure 7.1a displays the distribution of the L, error, and Figure 7.1b
displays the distribution of the number of terms for the Parzen’s method,
and for the SVM method with 4 = 0.9, 44 = 1.1, for the largest admis-
sible ~;. Figure 7.2a displays the distribution of the L, error, and Figure
7.2b displays the distribution of the number of terms, where instead of the
optimal o, = ¢/ V2 in (9) we use g = mg/VZ withm =1, 1.5, 2.1.

G, (z,y;7',¢) = Ky(z, 452’ ,¢f) =

7.9 CONDITIONAL PROBABILITY ESTIMATION

In this section to estimate conditional probability, we generalize the SVM
denshty estimation method described in the previous section. Using the
same ideas we solve the equation

Z
| pekrdr@) = Fw,2) (747
when the probability distribution functions F'(r) and F(z,y) are unknown,
but data

(U)] 3 1'1), —eey (wli l'[)
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FIGURE 7.1. (a) A boxplot of the L, error for the SVM method with ¢ = ymax,
ve = 1.1,y = 0.9, and Parzen’s method (the same result as SVM with v¢ = Ymin ).
(b) A boxplot of the distribution on the number of terms for the corresponding
cases.
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FIGURE 7.2. (a) A baxplot of the L; error for the SVM method with ve = Ymax
where we use 0, = mq/V¢€ with m = 1,1.5,2.3. (b) A boxplot of tlie distribution
of the number of terms for the corresponding cases.
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are given.

Below we first describe conditions under which one can obtain solutions
of equations with both the right-hand side and the operator approximately
defined, and then we describe the SVM method for conditional probability
estimation.

7.9.1 Approximately Defined Operator

Congider the problen of solving the operator equation
Af=F

under the conditjon that (random) approximations are given not only for
the function on the right-hand side of the equation but for the operator
as well. We assume that instead of the exact operator A we are given
a sequence of approximations Ag, £ = 1,2,... defined by a sequence of
random continuous operators that converge in probability (below we will
specify the definition of closeness of two operators) to the operator A.

As before, we consider the problem of solving the aperator equation by
Method T, that is, by minimizing the functional

W(f) = pg,(Acf, Fe) + 16 f).
We measure the closeness of operator A and operator A¢ by the distance

pry(Adf Af)

) (7.48)

||Ae— Al| = sgp

The following theorem is true {Stefanyuk, 1986).

Theorem 7.5. For any ¢ > 0 and any constants C1,Cy > 0 there erists
a value 7o > 0 such that for any v4 < 4o the inequality

Plpg,(fe. f) > €}

< P{pg,(Fe, F) > Cr\ e} + P{l|Ae — Al| > Cov/ue} (7.49)
holds true.

Corollary. Fron this theorem it follows that if the approximations Fy(z)
of the right-hand side of the operator equation converge in probability
to the true function F(r) in the metric of the space E; with the rate of
convergence r(£), and the approximations A; converge in probability to the
true operator A in the metric defined in (7.48) with the rate of convergence
r4(£), then there exists a function

To(f) = max {r(e)i rA(g)} {00 0
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such that the sequence of solutions to the equation converges in probability
to the desired one if
To(?)

—_— — .0 0

Ve

and -y, converges to zero with £ — oo.

Let z belongs to some bounded support |z| < C*. The following theorem
holds true.

Theorem 7.6 If the functional () satisfies the condition

2
() > € (suplyia)| + sup () (7.50)

and the metric in Es sotisfies the condition
pE,(Afe, Af) < sup I(Afe)z— (Af)], (7.51)

then estimation of conditional probability using Method T is consistent.

That is, if the regularization is sufficiently strong comparing to the metric
PE, (- ), then the method of estimating a conditional density by solving the
approximately defined integral equation is consistent.

Indeed, consider the difference

(4@ - 4n@I= | [ srdEE) - Fe

= |f(z)(Fe(z) — F(z)) - ‘[‘I f (@) (Fe(z') — F(z'))dz

< sup | (DIFu(z) = F@) +sup )@ [ 1Fula) = (o)l

Taking into account (7.51), (7.50), and the fact that vectors z belong to
the bounded support we have,

1 Aef — Afle

< (sup |f(z)|+C" sup | f'(x)|) sup | Fe(z)— F(z)] < QY2(f) sup |Fy(z)~F(z)].
A I I 4
(7.52)
From this inequality and the definition of the norm of the operator we have

| Aef — Aflle,
Q2(f)

According to Theorem 7.5 the solution f, of the operator equation ob-
tained on the basis of the regularization method possesses the following

||A¢— Al = sup < sup|Fy(x) — F(x)|. (7.53)
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properties: For any € > 0, Cy > 0, Cy > 0 there exists o such that for
any vz < 7o the inequality

P{pE, (fo. f) > €}

< P{pg,(Fe, F) > Cr/ue} + P{l|Ae — Al| > Ca/Ae}
< P{sgp |Fyo(x) — F(x)]) > C1 72} + P{sup|Fe(x) — F(z)|) > Ca/7e)}

holds true. Therefore, taking into account the bounds for uniform con-
vergence over the set of events (7.9) with VC dimension n, we obtain for
sufficiently large £ the inequality (see hounde (3.3) and (3.23))

P{pE) (fl!f) > 6}
< P{s:p |Fe(z) — F(z)]) > C1 A2} + P{sgp |Fe(z) — F(@))) > C2v/ 72}

< C (exp{—elCr} +exp{—7C2}) .

From this inequality we find that conditions (7.50) and (7.51) imply con-
vergence in probability and convergence almost surely to the desired one.

7.9.2 SVM Method for Conditional Probability Estimation

Now we generalize the method obtained for solving density estimation equa-
tion to solving the conditional prohability equation

/_m p(wle)dF(z') = F(w,z) = p(w)F(zh), (7.54)

where we use the empirical distribution functions Fy(x) and Fg(z|w) instead
of the actual distribution functions F(z) and F(r|w).

In our solution we follow the steps described in Section 7.8.

1. We use Method P with the target functional as a norm in RKHS
defined by a kernel K, (z,z’) satisfying conditions X (See Section 7.8):

AN = On

2, We are looking for the solution in the form

£
Ju(x) = p(wlz) = pw) > fi K (x, =) (7.55)

2=

with nonnegative coefficients 3.
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Therefore, we have to minimize the functional

£
W.(8) = U = BiBKy(z;,1,)

i,7=1

(see Section 7.8).
3. We define optimization constraints from the equality

sup |(Aef)x — Fe(w,z)| = 0" p(w),

which for our equations has the form

x £ £
sup | [ () Y- g 2)d | 5 3 6(e = 2,)| = plu) Plalu)

3=1 i=1

= o*p(w).

After obvious calculations we obtain the optimization constraints

] ¢
S\ip Zﬂ,—%ZK,,(:rJ,:r,-)O(x— z;) — Fo(r|w)| = o”.

=1 =1

For computational reasons we check this equality only at the points of the
training set. In other words, we replace this equality with the equality

I} [
1 .
mg.x Zﬂz? Z Ky(zj2.)8(zp — z;) — Fi(zplw)| = 0%, p=1,...,L
=1 j=1
Note that the following equality is valid

/ ” pwle)dF(z) = plw).

=00

Substituting ocur expression (7.55) for p(w|r) into the integral we obtain

OO0 e
/ ZﬂiK'y(xa mz)dF(:E) =1.
=00 g

Putting F:(r) into the integral instead of F(r), we obtain one more con-

straint:
¢ 1 ¢
Zﬂi 7 Z K.,(:cj,zz-_)_ =1
=1 =1
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4. Let the number of vectors belonging to class w be £(w). Then for the
residual principle we use

o% = Ul(w) = _q_

Ve

where ¢ is the appropriate quantile for the Kolmogorov-Smirnov type dis-
tribution. We also estimate

2(w)
e 3

the probability of the appearance of vectors of class w.
5. We choose a v fromn the admissible set

p(w) =

“Ymin < Y S “Ymax

to contral the accuracy of our solution (by minimizing W, (3)) or/and the
sparsity of the solution (by choosing a large ~).

7.9.8 The SVM Conditional Probability Estimate: Summary
The SVM conditional probability estimate is

L(w) £
plu|z) = == > Ky(z,z)f, B0,

=1
where coefficients 8, minimize the functional
¢
W, (8) = Zﬁzﬁqu(Ijin)
=1

subject to the constraints

£ £
1 .
max Zﬁ,z Y Ky (x5,2)8(x, — z,) = Fe(zplw)| = o%, p=1,...,¢,
=1

2==1

and the constraints

B 20,
[4 1 £
Zﬂz (z ZK‘Y(EJ'!:’:'!) =1
=1 7=1

We choose ~ from the admissible set

“Ymin <% < Ymax

to control the properties of our solution (accuracy and/or sparsity) mini-
mizing W, (3) and/or choosing a large admissible ~.
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7.10 ESTIMATION OF CONDITIONAL DENSITY AND
REGRESSION

To estimate the conditional density function using Method P we solve the
integral equation

i ’ / " pyln)dF(z)dy = F(z,y) (7.56)

in the situation where the probability distribution functions F(y,z) and
F(z) are unknown but data

(1'1,3}1), erny (zti ?Jt)

are given.
To solve this equation using the approximations

Fy(z) = ~20(z z;),

£
Fily,z) = 3300 - 1)8(z — 2.,
1=1

we follow exactly the same steps that we used for solving the equations for
density estimation and conditional probability estimation. (See Sections
7.8, 7.9)

1. We choose as a regularization functional the norm of the function in

RKHS
) = (f(z.9), Az y))u
defined by the kernel
K((l‘, y);(xly y’)) = K’Y(I, l',')K.,(y, ?Jz')

satisfying the conditions K.
2. We loaok for a solution in the form

[ 4
plulz) =Y B Ky (z, 7)Ko(y 1), Bi 20. (7.57)
=1

Therefore, our target functional is

£
W,(8) = f) = Z Bif5 K (25, %:) Ky (35, 43) (7.58)

1,j=1

(see Section 7.8).
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3. We obtain our optimization constraints using the uniform metric

PE,(Atfa Fl) = SIUE ‘(Alf)(may) - Ft(l’,y)l = 0.

For our equality we have

ZM (', 2) Ky, 15)d Zm - z;)
[.1. ety

—Fi(z,y)| = ou.

After simple calculations we obtain the constraint

sup

sup = gy

Z& S Ko (25,0082 - ) [ Kty - e

_1~1

For computational reasons we check this constraint only at the training
vectors

mwiZﬂz ZK (25, 2.)8(xp ~ ;) / Koy, )4y = Felepy)| = o0,

(7.59)
p=1,...,¢4

Note that that the following equality holds true:

/Z /:, p(yl)dF(x)dy =

Putting expression (7.57) for p(y|z) into the integral we obtain

00 oo £
/_ / Y BiKy (e, 2:) Ky (Y, i)y dF ()

00 ;i)

/ Zﬁ, (z,z,)dF(z) = 1.

00 3=

Usjng Fy(z) instead of F(z) we obtain

4 £
> (% ZﬁJ'K'Y(miazj)) =1 (7.60)
=1

[ |

4. We use the residual principle with

U[=%
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obtained from a Xolmogorov-Smirnov type distribution and choose an ad-
missible .

5. To control the properties of the solution (accuracy and/or sparsity)
we choose an admissible parameter v that minimizes the target functional
and /or that is large.

Therefore, we approximate the conditional density function in the form
(7.57), where the coefficients 3, are obtained from the solution of the follow-
ing optimization problem: Minimize functional (5.58) subject to constraints
(7.59) and constraint (5.60). Choose «y from the admissible set to control
the desired properties of the solution.

To estimate the regression function

rz) = / up(yle)dy (7.61)

recall that the kernel K., (y,y,) {8 a symmetric (density) function the inte-
gral of which is equal to 1. For such a function we have

/ K, (v, v1)dy = . (7.62)

Therefore, from (7.57), (7.61), and (7.62) we obtain the following regression
function:

¢
T(l‘) = Zyl.ﬁle(mamz)-
=1
It is interesting to compare this expressioll with Nadaraya-Watson re-
gression

d K, (z,,r) )
r = | =11, 7.63
@ =2 (z;, Ky (. x) (765

wlhere the expression in the parentheses is defined by the Parzen’s estimate
of density (it is the ratio of the ith term of the Parzen’s density estimate
to the estimate of density).

The SVM regression is smooth and has sparse representation.

7.11 REMARKS

7.11.1 Remark 1. One can use a good estimate of the unknown
density.

In constructing our algorithms for estimating densities. conditional proba-
bilities, and conditional densities we use the empirical distribution function
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Fy(z) as an approximation of the actual distribution function F(x). From
Fy(r) we obtained an approximation of the density function

[4
plx) =5 D6z —2)
i=1

as a sum of §-functions. In fact, this approximation of the density was used
to obtain the corresponding constraints.

One can use, however, better approximations of the density, based on the
(sparse) SVM estimate described in Section 7.8. Using this approximation
of the density function one can obtain constraints different (perhaps more
accurate) from those used. In Chapter 8 we will introduce a new principle
of risk minimijzation that reflects this idea.

7.11.2 Remark 2. One can use both labeled (training) and
unlabeled (test) data.

To estimate the conditional probability function and the conditiona density
function one can use both elements of training data

(wy,11), ..., (we, ze) (7.64)

and elements of unlabeled (test) data

Since according to our learning model, vectors r from the training and the
test sets have the same distribution F(z) generated by generator G (see
Chapter 1), one can use the joint set

L ] -
xls"'smeamls"'amk

to estimate the distribution F(z) (or density function p(z)). To estimate
the distribution function F(r|w) one uses the subset of vectors z from
(7.64) corresponding to w = w*.

7.11.8 Remark 3. Method for obtaining sparse solutions of the
'illl-posed problems.

T};e method used for density, conditional probability, and conditional den-
sity estimation is quite general. It can be applied for obtaining sparse so-
lutions of ather operator equations.

To obtain the sparse solution one has:

e Choose the regularizer as a norm in RKHS.

e Choose Lo, metric in Fs,
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e Use the residual principle.

o Choose the appropriate value v from the admissible set.



Informal Reasoning and
Comments — 7

7.12 THREE ELEMENTS OF A SCIENTIFIC THEORY

According to Xant any theory should contain three elements:
1. Setting the problem,
2. Resolution of the problem, and
3. Proofs.

At first glance, this remark looks obvious. However, it has a deep meaning.
The crux of this remark is the idea that these three elements of theory in
some sense are independent and equally important.

1. The precise setting of the problem provides a general point of view
on the problem and its relation to other problems.

2. The resolution of the problem comes not from deep theoretical anal-
ysis of tbe setting of the problem but rather precedes this analysis.

3. Proofs are constructed not for searching for the solution of the prob-
lem but for justification of the solution that has already been sng-
gested.

The first two elements of the theory refiect the understanding of the essence
of the problem of interest, its philosophy. The proofs make the general
(philosophical) model a scientific theory.
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7.12.1 Problem of Density Estimation

In analyzing the development of the theory of density estimation one can see
how profound Kant’s remark is. Classical density estimation theories, both
parametric and nonparametric, contained only two elements: resolution of
the problem and proofs. They did not contain the setting of the problem.

In the parametric case Fisher suggested the maximum likelihood method
(resolution of the problem), and later it was proved by Le Cam (1953),
Ibragimov and Hasminski (1981) and others that under some (not very
wide, see the example in Section 1.7.4) condijtjons the maximum likelihood
method is consistent.

The same happened with nonparametric resolutions of the problem. First
the methods were proposed: The histogram method (Rosenblatt 1956),
Parzen’s method (Parzen 1962), projection method (Chentsov 1963) and
so on followed by proofs of their consistency. In contrast to parametric
methods the nonparametric methods are consistent under very wide con-
ditions.

The absence of the general setting of the problem inade the density es-
timation methods Jook like a list of recipes. It also seems to have made
heuristic efforts look like the only possible approach to iimprove the meth-
ods. These created a huge collection of heuristic corrections to nonpara-
metric methods for practical applications.

The attempt to suggest the general setting of the density estimation
problem was made in 1978 (Vapnik and Stefanyuk (1978)), where the den-
sity estimation problem was derived directly from the definition of the
density, considered as a problem of solving an integral equation with un-
known right-hand side but given data. This general (since it follows from
the definition of the density) setting immediately connected density esti-
mation theory with the fundamental theory: the theory of solving ill-posed
problem.

7.12.2 Theory of Ill-Posed Problems

The theory of ill-posed problems was originally developed for solving in-
verse mathematica] physics problems. Later, however, the genera] nature
of this theory was discovered. It was demonstrated that one has to take
into account the statements of this theory every time one faces an inverse
problem, i.e., when one tries to derive the unknown causes from known
consequences. In particular, the results of the theory of ill-posed problems
are important for statistical inverse problems, which include the problems
of density estimation, conditional probability estimation, and conditional
density estimation.

The existence of jll-posed problems was discovered by Hadamard (1902).
Hadamard thought that ill-posed problems are pure mathematical phe-
nomena and that res)-life problems are well-posed. Soon, however, it was
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discovered that there exist important real-life problems that are ill-posed.

In 1943 A.N. Tikhonov in proving a lemma about an inverse operator,
described the nature of well-posed problems and therefore discovered meth-
ods for the regularization of ill-posed problems. It took twenty years more
before Phillips (1962), Ivanov (1962), and Tikhonov (1963) came to the
same constructive regularization idea, described, however, in a slightly dif-
ferent form. The important message of regularization theory was the fact
that in the problem of solving operator equations

Af(t) = F(z)

that define an ill-posed problem, the obvious resolution to the problem,
minimizing the functional

R(f) = lAf - FIP?,

does not lead to good solutions. Instead, one should use tlie nonobvious
resolution that suggests that one minimize the ”corrupted” (regularized)
functional

R(f) = |Af — FII* + vQ(f).

At the beginning of the 1960s this idea was not obvious. The fact that now
everybody accepts this idea as natural is evidence of the deep influence of
regularization theory on the different branches of mathematicel science and
in particular on statistics.

7.13 STOCHASTIC ILL-POSED PROBLEMS

To construct a general theory of density estimation it was necessary to
generalize the theory of solving ill-posed problem for the stochastic case.

The generalization of the theory of solving ill-posed problems introduced
for the deterministic case to stochastic ill-posed problems is very straight-
forward. Using tbe same regularization techniques that were suggested for
solving deterministic ill-posed problems and the saine key arguments based
on the lemma about inverse operators we generalized the main theorems
on the regularization method (V. Vapnik and A. Stefanyuk, 1978) to a
stochastic mode]. Later, A. Stefanyuk (1986) generalized this result for the
cpse of an approximately defined operator,

The fact that the main problem of statistics — estimating functions from
a more or Jess wide set of functions — is ill-posed was known to every-
body. Nevertheless, the analysis of methods of solving the main statistical
problems, in particular density estimation, was never considered from the
formal point of view of regularization theory.”

7One possible explanation is that the theory of nonparametric methods for
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Instead, in the tradition of statistics there was first the suggestion of
some method for solving the problem, proving its nice properties, and then
introducing some heuristic corrections to make this method useful for prac-
tical tasks (especially for multidimensjonal problems).

Attempts to derive new estimators from the point of view of solving
stochastic ill-posed problems was started with the analysis of the vari-
ous known algorithms for the density estimation problem (Aidu and Vap-
nik,1989). It was observed that almost all classical algorithms (such as
Parzen’s method and the projection method) can be obtained on the ba-
sis of the standard regularization methed of solving stochastic ill-posed
problems under the condition tbat one chooses the empirical distribution
function as an approximation to the unknown distribution function.

The attempt to construct a new algorithm at that time was inspired by
the idea of constructing, a better approximation to the unknown distribu-
tion function based on the available data. Using this idea we constructed a
new estimators that justify many heuristic suggestions for estimating one
dimensional density functions.

In the 1980s the problem of nonparametric method density estimation
was very popular among both theoretists and practitioners in statistics.
The main problem was to find the law for choice of the optima] width
parameter for Parzen’s method. Asymptotic principles that connected the
value of the width with information about smootbness properties of the
actual density, properties of the kerne], and the number of observations
were found.

However, for practitioners these results were insufficient for two reasons,
first because they are valid only for sufficiently large data sets and second
because the estimate of one free parameter was based on some unknown
parameter (the smootbness parameter, say, by the number of derivatives
possessed by the unknown density).

Therefore, practitioners developed their own methods for estimating the
width parameter. Amang these methods the leave-one-out estimate became’
one of the most used. There is a vast literature devoted to experimental
analysis width of the parameter.

At the end of the 1980s the residual method for estimating the regular-
ization parameter (width parameter) was proposed (Vapnik 1988). It was
shown that this method is almost optimal (Vapnik et al., 1992). Also, in
experiments with a wide set of one-dimensional densities it was shown that
this method of choice of the width parameter outperforms many theoretical
and heuristic approaches (Markovich, 1989).

density estimation had begun (in the 1950s) before the regularization methods
for solving ill-posed problems were discovered. In the late 1960s and in the 1970s
when the theory of ill-posed problems attracted the attention of many researchers
in different branches of mathematics, the paradigm in the analysis of the density
estimation problem had alredy been developed.
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Unfortunately, most of the results in density estimation are devoted to
the one-dimensional case, while the main applied interest in the density
estimation problem is in the multidimensional case. For this case special
methods were developed.

The most popular of these, the Gaussian mixture model method, turned
out to be inconsistent (see Section 1.7.4). Nevertheless, this methed is used
for most high-dimensional (say 50-dimensional) problems of density esti-
mation (for example in speech recognition).

It is known, however, that even to construct good two-dimensional den-
sity estimators one has to use new ideas.

The real challenge, however, is to find a good estimator for multidimen-
sional densities defined on bounded support.

In this chapter we proposed a new method for multidimensional density
estimation. It combines ideas from three different branches of mathemat-
ics: the theory of solving integral equations using the residual principle, the
universal Kolmogorov-Smirnov distribution, which allows one to estimate
the parameter for the residual principle, and the SVM technique from sta-
tistical learning theory, which was developed to approximate functions in
high-dimensional spaces.

Two out of three of these ideas have been checked for solving one-
dimensional density estimation problems (Vapnik 1988, Aidu and Vapnik,
1989, Vapnik et al. 1992, Markovich 1989).

The third idea, to use as the regularized functional a norm in RKHS
and measure discrepancy in the L norm, is the direct result of the SVM
method for function approximation using e-insensitive loss function, de-
scribed for the first time in the first edition of this book. It was partly
checked for estimating one dimensional density functions.

The density estimation method described in this chapter was analyzed
by Sayan Mukherjee. His experiments with estimating a density in one-,
two-, and six-dimensional spaces demonstrated high accuracy and good
sparsity of solutions obtained. T'wo of these experiments are presented in
this book.

Direct solutions of the conditional probability and the conditional density
estimation problems described in this chapter are a straightforward gener-
alization of the direct density estimation method. These methods have not
been checked experimentally.






Chapter 8

The Vicinal Risk Minimization
Principle and the SVMs

In this clitapter we introduce a new principle for minimizing the expected
risk called the vicinal risk minimization (VRM) principle.! We use this
principle for solving our main problems: pattern recognition, regression
estimation, and density estimation.

We minimize the vicinal risk functional using the SVM technique and
obtain solutions iit the form of expansions on kernels that are different for
different training points.

8.1 THE VICINAL RISK MINIMIZATION PRINCIPLE

Consider again our standard setting of the function estimation problem: In
a set of functions f(r,a),a € A, minimize the functional

R@) = [ Ly~ ftz,0)aP(z,) (8.1)

where L(u) is a given loss function if the probability measure P(z,y) is
unknown but data
(yl,Il),n-,(yf,Ie) (8'2)

'With this name we would Jike to stress that our goal is to minimize the risk in
vicinities = € v{x,) of the training vectors x, i = 1,..., ¢, where (as we belleve)
most of points £ € v(zy) keep the same (or almost the same) value % as the
training vector x,, rather than to minimize the empirical risk functional defined
only by the training vectors.
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are given.
In the first chapters of the book in order to solve this problem we consid-
ered the empirica) risk minimization principle, which suggested minjmizing

the functional .

Remp(@) = 3 3 L3, = f(@1,) (®3)

=1

instead of the functional (8.1).
Later we introduced the structural risk minimization principle, where we
defined a structure on a set of functions f(zx,a),a € A,

S, C---C8,,

and then we minimized functional (8.3) on the appropriately chosen element
S of this structure.

Now we consider a new basic functional instead of the empirical risk
functional (8.3) and use this functional in the structural risk minimization
scheme.

Note that introduction of the empirical risk functional reflects the fol-
lowing reasoning: Our goal is to minimize the expected risk (8.1) when the
probability measure is unknown. Let us estimate the density function from
the data and then use this estimate $(z,y) in functional (8.1) to obtain the
target functional

Rr(a) = / (Lly — £ (@,0))p(z,y)dzdy. (8.4)

When we estimate the unknown density by the sum of é-functions

£
Hz,y) = %; 3" 8z — z)8(y — i)
=1

we obtaln the empirical risk functional.

If we believe that both the density function and the target function
are smooth, then the empirical risk functional probably is not the best
approximation of the expected risk functional. The question arises as to
whether there exists a better approximation of the risk functional that
reflects the fo]lowing two assumptions:

1. The unknown density function is smooth in a vicinity of any point
z;.

2. The function minimizing the risk functional is also smooth and sym-
metric in vicinity any point ;.

Below we introduce a new target functional which we will use instead of the
emplrical risk functional. To introduce this functional we construct (using
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data) vicinity functions v(2;) of the vectors z; for all training vectors and
then using these vicinity functions we construct the target functional. As in
Section 4.5 we distinguish between two concepts of vicinity functions, hard
vicinity and soft vicinity functions. Below we first introduce the concept
of hard vicinity function and then consider soft vicinity function. One can
also use other concepts of vicinity functions which are more appropriate
for problems at hand.

8.1.1 Hard Vicinity Function

1. For any z4, i = 1,..., £ we define a measurable subset v(z,) of the set
X € R* (the vicinity of point z;) with volume v;.

We define the vicinity of this point as the set of points that are r,-close
to z; = (z},...,z) (r; depends on the point z,)

v(z,) = {z: [z —zlle <1},

where ||z — z;||£ is a metric in space E. For example, it can be the
Iy, the l3, or the [, metric: [, metric defines the vicinity as a set

v(z) ={z: ih“ak —zf| <7},
k=1

{; metric defines the vicinity as the ball of radius , with center at
point z;

o) ={z: Y |lz—z*<r},
k=1

while {, metric defines a cube of size 2r; with a center at the point
(] n
z = (2, I7)

oz ={r:zF—r;<zF < X+ 7, VE=1,...,n).

2. The vicinities of different training vectors have no common points.

3. We approximate the unknown density function p(z) in the vicinities
of vector z, as follows. All £ vicinities of the training data have an
equal probability measure

P(z € v(z;)) = 1/L.
The distribution of the vectors within the vicinity is uniform,
(elo(,)) = =
p(zlv(z;)) = e

where v, is the volume of vicinity v(z;).
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FIGURE 8.1. Vicinity of points in different metrics: (a) in the !; metric, (b) in
the I3 metric, and (c) in the /o metric.
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Figure 8.1 shows the vicinity of points in different metrics: (a) in the [,
metric, (b) in the I» metric, and (¢) in the {,, metric.

Consider the following functional, which we call the vicinal risk functional

¢
Vie) = %ZL (y,- _ L f(z, a)da:) : (8.5)
i=1 Vi Ju(z,)

In order to find an approximation to the function that minimizes risk
functional (8.1) we are looking for the function that minimizes functional
(8.5). Minimizing functional (8.5) instead of functional (8.1) we call the
vicinal risk minimization (VRM) principle (method). Note that when v, —
0 the vicinal risk functional converges to the empirical risk functional.

Since the volumes of vicinities can be different for different trafhing
points, by introducing this functional we expect that the function mini-
mizing it have different smoothness properties in the vicinities of different
points.

In a sense the VRM method combines two different estimating methods:
the empirical risk minimization method and l-nearest neighbor method.

8.1.2 Soft Vicinity Function

In our definition of the vicinal method we used paraneters x, and r, ob-
tained from the training data to construct a uniform distribution function
that is used in cquations for VRM.

However, one can use these parameters to construct other distribution
functions p(z|r;, r,) wbere they define the parameters of position and width
(for example, one can use the normal distribution function p(z|z;,7;) =
N(zi,d,)). For soft vicinity functions all points of the space can belong to
a vicinity of the vector =,. However, they have different measures.
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A soft vicinity function defines the following (general) form of VRM

I 4
Via) = 3 YLy — Ef(z. )
=1

= %gL (yi —/f(r, G)P(Ilrnri)df)

In Section 8.3.1 we define a VRM method based on hard vicinity func-
tions and based on soft vicinity functions.

8.2 VRM METHOD FOR THE PATTERN
RECOGNITION PROBLEM

In this section we apply the VRM method to the two class {—1,1} pattern
Tecognition problem. Consider the set of indicator functions

y = g(z,a) = sign[f(z, a)}, (8.6)

where f(z,0),a € A, is a set of real-valued functions. In previous chapters
we did not pay attention on the structure (8.6) of the indicator function. In
order to find the function from f(z, a),« € A, that minimizes the risk func-
tional, we minimized the empirical functional (8.3) with the loss function

ly — f(z,a}|.
Now taking into account the structure (8.6) of indicator functions we
consider another loss function

L{y, f(z,0) = 8(—yf(z, o)), (8.7)

which defines the risk functional
R@) = [0y @)ldP.) (8.8)

where 8(u) is a step function.
To minimize this functional the VRM method suggests minimizing the
functional

1 £
Vie)= 138 [—y.; [ 1z ptalas r,->dx] . (8.9)
=1

For the hard vicinity function we obtain

£
V{a) = %;0 [ly- )f(z,a)dx] .

Yy [TEN
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As in Chapter 5 we reduce this problem to the following optimization
problem: Minimize the functional

£
W(f)=CY_ &+ (8.10)

=1

subject to the constraints
w [ Ha.aplalesr)ds 216, (8.11)

where Q(f) is some regularization functional that we specify below.
Suppose that our set of functions is defined as follows: We map input
vectors z into feature vectors z and in the feature space construct a hyper-

plane
(w,2) +6=0

that separates data
(yly zl)l sy (yllzl)l

which are images in the feature space of our training data (8.2). (Let a
kernel K(z,z’) defines the inner product in the feature space.)

Our goal is to find the function f(z,a) satisfying the constraints

w [ fa,cplalz,ryde > 1-& (8.12)
whose image in the feature space is a linear function
I(z) = (w",2) + b
that minimizes the functional
]
W(w) = (w,w)+C Y _&. (8.13)
=1

We will solve this problem using the SVM technique and call the solution
the vicinal SVM solution (VSV). Note that for linear functions in the input
space

f(z,a) = (w,z) + b, a €A,

and for vicinities where z; is the center of mass,
Iy = E,,(I‘)I

the VSV solution coincides witb the SVM solution. Indeed, since the target
functional in the both cases is the same and

/[(w,:z:) + blp(z)z,,ri)dx = (w,z:) + b,
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the problems coincide.

The difference between ERM and VRM can appear in two cases, if the
point z; is not the center of mass of the vicinity v(z;) or if we consider
nonlinear functions.

Let us (using the kernel K(z,z’)) introduce two new kernels: the one-
vicinal kernel

L(z,2:) = Byayk(z,2') = / K(z, D)@z r)de  (8.14)
and the two-vicinal kernel

M(I,;. Ij) = Ev(a:,)Ev(zJ)K(xi I’)

= [ [ Ko piale,rapt@le r)dsds' (8.15)
The following theorem is true.

Theorem 8.1. The vicinal support vector solution (VSV) has the form

£
fz) =Y BiL(z,x:)+b, (8.16)

=1

where to define coefficients 3; one has to mazimize the functional

¢ )

1

W(p) = Zﬁz‘ 3 E Yi¥; B By M(zs, T 5) (8.17)
=1 2,5=1
subject to the constraints
)

S upi=0, (8.18)

i=1
0<B<C (8.19)

PROOF. Let us map input vectors z into feature vectors z. Consider
samples of N points

Tiysooos Ty, 1=1,...,4,

taken from tbe vicinities of points z;, i = 1,...,£. Let the images of these
points in feature space be

Ziyy -y Zins i=1,...,£.
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Consider the problem of constrncting the following vicinal optimal hy-
perplane in a feature space: Minimize the functional

3
W) = L (w.u)+ C Y6 (8.20)
=1

subject to the constraints

N
by Sl z) +8 2 1~ . (3.21)
k=1

Note that the equivalent expression for (8.21) in the input space is

N
%’ ;f(.r,-k,a) >1-6. (8.22)

As N — 0o, expression (8.22) converges to (8.12). Therefore, the solution
of the optimization problem defined by (8.20) and (8.21) converges to the
solution of the optimization problem defined by (8.13) and (8.12).

To minimize (8.20) under constraints (8.21) we intreduce the Lagrangian

3
i=

[4 N [4
L(w) = %(w,w)wza—zﬂz[(yz{,— S w,z,)+B)—1+&]+ Y né
=1 k=1

1 =1

(8.23)

The solution of our optimization problem is defined by the saddle point

of the Lagrangian that minimizes the functional over b, &, and w and
maximizes it over 3 and 7). As the result of minimization we obtain

[4
S wp =0, (8.24)
=1 ¢
and
[4 1 N
w = mzlﬁ,—ﬁ ; Ziy (8.26)

Putting (8.26) in the expression for the hyperplane we obtain

é N
()= (0,2 b= S B Yz 7) +b (8.27)
=1 k=1

Putting expression (8.26) back into the Lagrangian we obtain

N N
We) = L5, 5 3 Bb kz_;% () (62

1,j=1
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Since (z,2') = K(x,x’), we can rewrite expressions (8.27) and (8.28) in the
form

=1

[ N
[@) =Y whgs Y K(z,50) 4+ (8.20)
k=1

where the coefficients 3; maximize the functional

" ¢ L& LAY
B)= Z,Bi"' 3 E yiﬂjﬁiﬁjﬁ ZT\/— E K(zy,,2;,,)
=1 k=1 m=1

3,7=1

subject to constraints (8.24) and (8.25). Increasing N, we obtain

N
i 1
Jim_— ; K(z,34,) = L(z,75),

N N
. 1 1
Jim kg v mg K (4, 35,,) = M(3,55)

Therefore, the VSV solution is

£

(@) =Y whLiz,z)+b, (8.30)

=1
where to define the coefficients 3, one has to maximize the functional
1
W) =3 B3 D hibiby Mz, z5) (8.31)
=1 $1=1

subject to the constraints
)
> uh =0,
=1

0</<C

8.3 EXAMPLES OF VICINAL KERNELS

In this section we give example of pairs of vicinity and kernel K(z,v)
that allow us to construct in the analytic form both the one-vicinal kernel
L(z,x,) and the two-vicinal kernel M(z,, z,). In Section 8.3.1 we introduce
these kernels for hard vicinity functions and in Section 8.3.2 for soft vicinity
functions.
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8.3.1 Hard Vicinity Functions

We define the vicinities of points z;, 1 = 1,...,¢, using the [, metric:
17 ~ ZolJoo = sup |a* — 2, (8.32)
1<k<n
where z = (z',...,z") is a vector in R".
We define size of the vicinity of the vectors z;, i = 1,...,¢ from tbe

training data
1, Z1)y - oy (Y2, %e)

using the following algorithm:

1. Define the triangle matrx
A= laill, >3,

of the pairwise distances (in the metric ) of the vectors from the
training set.

2 Define the smallest element of the matrix A (say a;;).

3. Assign the value
dt = Kaqy
to element x; and the value

dj = Kay;

to element z,.

Here & < 1/2 is the parameter that controls the size of vicinities
(usually it is reasonable to chooge the maximal possible size € = 1/2).

4 Choose the next smallest element a,,z0f the matrix A. If one of the
vectors (say zn,) was already assigned some value d,,, then assign the
value

dy = Ky s
to another vector x,, otherwise assign this value to both vectors.
5 Continue this process until values d have been assigned to all vectors.
Using the value d, we define both the vicinity of the point z;,
v(z;) = {=x :a:f —di<zF < :z:,f‘ +dy, Vk=1,..,n}

and the volume
v = (2d;)"

of the vicinity.
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Let us introduce the notation

U(If)={zk:zf—d¢ SIkSIfﬁ-dﬁ-},

Now we calculate both the one- and two-vicinal kernels for the Laplacian-
type kernel

K(z,:z’)=exp{_“ JC'“h} Hexp{ (1’)’°4}

We obtain the one-vicinal kernel

1 s—2\ .,
Ltz = g | T {*T}‘”

L] k _ (.Nk
- st DL oo { = = f e

k=1

After elementary calculations we obtain

Kk ok _ 1 Jg* = (@)¥) Nk
et =g [ e { T )

%{2—exp{ tzoeh ) exp {12 it ok — ok < d,
& e {255} exp {4} —exp {-4£}) if [z — 2% > di.

The n-dimensional two-vicinal kernel is the product of one-dimensional

kernels
n

M(I‘R;IJ) = HMk(zi ’ _1
k—

To calculate M¥*(zk, J) we distinguish two cases: the case where 4 # J
(say i > j) and the case where i = j. For the case i # j we obtain (taking
into account that different vicinities have no common points)

1 z* — (z)¥)
ki k .k _ [ S S
M¥(xf, xf) = _4d,-dj ./u(z‘!‘) /v(z;) exp{ x dr’ dx

2o [ ()1 () - 8)
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For the case i = j we obtain

1 / / { lzk—(l“)"l} /
exp ¢ — dr'dz
4612 v(zk) Ju(zk) A

2 ‘ (Ik = (I/)k)} ’
= d ——Fd
4d3 1)(4:‘") I-/a:,-d, exp{ A *

_ A (e{%}_l_z_"i).

Mk(zf)zf) =

252 A
Therefore, we have
ME(zf, 3k
JxF - 2% 4 a a d
B T:IAT%;e{ _A—L} ( {ZL} e{ —Al}) (e{f} —6{_7‘1}) ifis#y,
A’ (e{%L _%) ifi=j
247 a -
Note that when J
a0

we obtain the classical SVM solution
L(z,z,) — K(z,z,),

M(I‘, .’L‘j) — K(.’L‘{,.’L‘j).

Figure 8.2 shows the one-vicinal kernel obtained from the Laplacian with
parameter A = (.25 for different values of vicinities: (a) d = 0.02, (b)
d = 0.5, and (c) d = 1. Note that the larger the vicinity of the point z,,
the smoother the kernel approximate' function in this vicinity.

!
-2 0 2 -2 0 0

() (b) {©)

FIGURE 8.2. One-viclnal kernel obtained from Laplacian with A = 0.25 for
different values of vicinities (a) d = 0.02, (b) d = 0.5, and (c) d = 1.
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8.8.2 Soft Vicinity Functions

To construct one- and two-vicinal kernels for the Gaussian-type kernel

K(z,7) = exp{_%}

one has make the following:
1. To define the distance between two points in the l5-metric.

2. To define the values d; for all points z, of the training data using
the same algorithm that we used in the previous section.

3. To define soft vicinity functions by the normal law with parameters
x; and d;.

4. To calculate the one- and to vicinal functions

_ N2 )2
L'(-’L',I'i)=m/exp{—%}exp{_(z/zd;t)t}dzj

M(Ij!z‘i)

sc’)2 @ —x)  (z-g5)” /
(27()(d,+dj) / / { 242 ngj }‘M”

OO S A R Gt
B AR B e ) &

8.4 NONSYMMETRIC VICINITIES

In the previous section, in order to obtain analytic expressions for vicinal
kernels, we considered symmetric vicinities. This type of vicinities reflects
the most simple information about problem at hand. Now our goal is to
define vicinities that allow us to construct vicinal kernels reflecting some
local invariants.

Below we consider the example of constructing such kernels for the digit
recognition problem. However the main idea introduced in this example
can be used for various function estimation problems.

it is known that any small continuous hnear transformation of two di-
mensional images z; can be described by six functions (Lie derivatives)
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T; s k=1,...,6 such that transformed image is

8
T=1I; + E z; ktk,
k=1

where ), k = 1,...,6 are reasonable small values. Therefore different small
linear transformations of image x; are defined by six Lie denivatives of z;
and different small vectors t = (¢4,...,ts), say |{t| < c.

Let us introduce the following vicinity of z;

6
v (Z,) = {a: P =2, 4+ E-’”Zktk: It) < c} .

k=1

This vicinity is not necessarily symmetric. Note that if we will be able to
construct one- and two-vicinal kernels

[-"L(I; Zz) = EUL(J‘)K(.’L',.’B/),

ML(IHIJ') = EvL(z.)EUL(zJ)K(I;I/))
then the VSV solution

3
fu(z,0) =) monLo(z,2.)

2=1

will take into account invariants with respect to small Lie transformations.
Of course it ig not easy to obtain vicinal kernels in analytic form. However
one can approximate these kernels by the sum

L1(z,3:) = ZEU(Ik(i ))K(I 7') = N ZE(I Tk(s))

k_

N N
1 1
ML(Izs Ij) = J—V— Z 2 v(a:k(a:,))Ev(a:m(z,))K(z zl) =
Ic=1 m=1
N N
2 2 M(zi(z.), 2m(T5),
k=1
where Tx(z;), k = 1,..., N are virtual examples obtained from z; using

small Lie transformation and v(zx(z,)) is symmetric vicinity for &-th virtual
example zx(z;) obtained from z,.

In other words, one can use the union of symmetric vicinities of vir-
tual examples (obtained from example z;) to approximate a non-symmetric
vicinity of example z;.
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Note that in order to obtain the state of the art performance in the digit
recognition problem several authors (Y. LeCun et al. (1998), P. Simmard et
al. (1998), and B. Scholkopf et al. (1996)) used virtual examples to increase
the number of training examples.

In the SVM approach B. Scholkopf et al. considered the solution as ex-
pansion on the extended set of the training data

£ N
f(z,0) =Y %Y ouxK(z, ar(zs), (8.33)

=1 k=1

where extended set included both the training data and the virtual exam-
ples obtained from the training data using Lie transformation.

In the simplified vicinal approach, where the coefficient k that controls
the vicinities v(z;) is so small that

L(z,z,) = K(z,7,), we obtain another expansion

£ N
(o) = 3wy 3 Kz u(@)), (8.34)
=1 k=1

where 1,(z;) is the the kth virtual example obtained from the vector z; of
the training data.

The difference between solutions f(z,a) and f*(z,a) can be described
as follows:

In f(z,a) one uses the following information: new (virtual) examples
belong to the same class as example z;.

In f*(z,«) one uses the following information: new (virtual) examples
2T the same example as z;.

The idea of constructing nonsymmetric vicinities as a union of symmetric
vicinities can be used even in the case when one can not construct virtual
examples. One can consider as examples from the same union a (small)
cluster of examples belonging to the same class.

8.5 GENERALIZATION FOR ESTIMATION
REAL-VALUED FUNCTIONS

In Chapter 6 to estimate a real-valued function from a given set of functions
we used e-insensitive loss functions

L{y, f(z,0)) = L(ly — f(z,a)|e).
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For this functional we constructed the empirical risk functional

[
Remp(@) = 3 37 Llly - F(z.a)o). (8.35)
=1

Now instead of functional (8.34) we will use the vicinal risk functional

[4
Vi) = 3 S Lu - [ fz.olptaledddal). (330
i=1

We can rewrite the problem of minimizing (8.34) in the following form:
Minimize the functional

£
q’(ﬁi) = Z L(gt)) & >0 (8'37)
=1

subject to the constraints

Ys —-/f(-’E, ayp(zlx,, d)dr > —¢ — &,

v [ @ cplalz, d)iz e+ & (8.38)
However, we would like to minintize the reglarized functional
£
B(f) = CY_L(&) +f) (8.39)
=1

instead of (8.35), where we specify the functional Q(f) below.

Suppose (as in Section 8.2) that our set of functions is defined as follows:
We map input vectors z into feature vectors 2, and in feature space we
construct a linear function

I(2) =(w,z) +b
that approximates the data

(ylazl)a" ')(3”323))

which are the image of our training data (8.2) in feature space. Let the
kernel K(x,x’) defines the inner product in feature space.

We would like to define the function that satisfies constraints (8.36) and
minimizes the functional

[4
®=CY &+ (ww).
=1
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Consider the case where L(u) = |u)..
The following theorem holds true.

Theorem 8.2. The vicinal support vector solution has the form

[4
fl@y="Y (B~ B)L(z, ) +b

i=1]
where to define coefficients 3; and 3* one has to mazimize the functional

W(8)

¢
= e S BAB A BB Y B 5 3 (B BBy~ B M., ;)
=1 i=] =1 1,j=1
subject to the constraints

[4 [4
Yo8.=) 58,
=1 =1

0 S ﬁi S Ca

0< ;<G

where the vicinal kernels L{z,2;) and M(x;,z;) are defined by equations
(8.14) and (8.15).

The proof of this theorem is identical to the proof of Theorem 8&.1.

One can prove analogous theorems for different loss functions I(u) =
L(Jy — f(z,a)|.). In particular, for the case where L = (y — f(z,a))? one
obtains the solution in closed form.

Theorem 8.3 The VSV solution for the loss function
L= (y— f(z,a))?
18

f(x)y=Y"T (M + é]) L,

where
YT = (y1)--- )yl)

is a 1 X £ matriz of the values y of observations,
M = || M(zi,z,)|)

18 an £ X ¢ matriz whose elements are defined by the two-vicinal kernels,
L =1Lz, 31), ..., Lz, 2|

is an ¢ x 1 matriz whose elements are defined by the one-vicinal kernels
L£(z,%), i =1,...,£, and I is the £ x { identily matriz.
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8.6 ESTIMATING DENSITY AND CONDITIONAL
DENSITY

8.6.1 FEstimating a Density Function

In Chapter 7 when we used Method P for solving the density estimation
problem we reduced it to the following optimization problem: Minimize the
functional

Q) = (£, N (8.40)
subject to the constraints

Fiw)- [ f(z')dx'i =0 (8.41)

sup
I

However, for computational reasons we checked this constraint only for
the £ points defined by the data of observations

FZ(I) - /I f(z')da:' =gy, 1=1,...,¢ (8.42)

T=T;

max
)

We also considered the solution as an expansion on the kernel (that defines
RKHS)

¢
flz)= 2 BiKy(x,25),
i=1

[4
Y =1, pgxo0. (8.43)

Now let us look for a solution in the form
) 1 )
*(z) = B— K. (z,2\dz' = L Lo (T, ). 8.44
F@=3 0y | Kol =) Bl@e). (B4

For such solution we obtain (taking into account the reproducing prop-
erties of the kernel K(z,z’)) the following optimization problem:
Minimize the functional

[ 4
W(B) =Q(f.f) = Y BiBiMy(x:i,z5) (8.45)

6,3=1
subject to constraints (8.41) and the constrsints

max =0y 1<i<¥ (8.46)

[4 T
R =30 [ £y
FETI L

I=zI,
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where L,(x;,z') and M, (x;,z,) are functions defined by equations (8.14)
and (8.15), and « is a parameter of the width of the kernel

ot
K (z,2') = a(y) K (I f ) .
As in Chapter 7 we choose 7y from the admissible set to obtain the minimum
(8-43) or/and sparse solution.

This estimator of the density function has an expansion on different
kernels depending on v(z,).

8.6.2 Estimating a Conditional Probability Function

To use the VSV solution for conditional probability estimation we consider
the analogous form of expansion as for the density estimation problem

Hw)
plule) = —= Y BiLy(z,zs). (8.47)
i=1

Repeating the same reasoning as before, one shows that to find the coeffi-
cients (J; one needs to minimize the functional

£
W‘y(ﬁ) = EBLBJM'y(Ijaz%) (8.48)

j=1

subject to the constraints

~
LY

max Zﬁ,l EE-,(IJ,I,;)O(IP — ;) — Fe(zp|w)| = 0 1<p<g!?

4

i=1 =1

(8.49)
and the constraints

I 4 I 4
S8 (% 3 Ly(zm) | =1, (8.50)
=1 F=1

B. > 0. (8.51)
We choose v from the admissible set
7min _<_ 7 S 'anax (852)

to control properties of the solution {accuracy and/or sparsity) minimizing
W.,(8) and/or choosing large admissible ~.
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8.6.3 Estimating a Conditional Density Function

To estimate the conditional density function we repeat tbe same reasoning.
We use the expansion

¢
plylz) = Zﬁtﬁ'r(“:’zi)f('y(y’yi), Bi > 0. (8.53)

=1

To find the coefficients §8; we minimize the functional

[ 4
W’y(ﬁ) = z ﬁzﬁjM‘y(Ijazi)Kv(yja %) (8"54)

y,3=1

subject to the constraints

I 4 I 4
1 v
mz?-x Zﬁzz EL'.,(ZJ-,Z,-W(IP - IJ)/ K‘y(y’a yf)dy' ~ Fe(zp, yp) =0¢,
=] j=1 o0

(8.55)
p=1,...,¢
and the constraints
£ 1 /4
3 7 2 Bila(nTs) | =1, (8.56)
i=1 i=1
B > 0. (8.57)

To control the properties of the solution (accuracy and/or sparsity) we
choose an admissible parameter v that minimizes the target functional
and/or that is large.

Remark. When estimating density, conditional probability, and the con-
ditional density function we looked for a solution

]
f(zi ﬁ) = Zﬁil:'y(za zi)
i=1
that bas the following singularities:
8.>0, i=1,...,¢,
E‘Y(sti) = Ev(::.)K‘y(IsI’)a
M.Y(Iizj) = Ev(a:.)Eu(zJ)K‘y(Ia I’),

where

Ki(az) = al)k (222
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with a normalization parameter a(v) (see Section 7.8).

Since parameters f; are nonnegative it is reasonable to construct solu-
tions based on kernels K(z,z’) that have light tails or have finite support.
In particular, one can use the kernel defined by the normal law

_ 2
Ka(z,2) = lejr.wexp{—uT’;)—}.

For this kernels we have

(z ~ 2 } (8.58)

Lo(z,7') = [2n(y* +d%)] ¥ exp {—m

_ 2 21~ % (z -7)?
M, (z;5,1.) = [277('7 +d+ dj)] exp {—m} . (8.59)
1 T4

As a kernel K, (z, z,) defined on finite support one can consider B,-spline

B n __ 1 = (*l)j cntl ’ 1 PAIRY
n<z\z)~;]_§(n+m Tz =)+ (=157

It is known that starting with n = 2 a B,,-spline can be approximated by
a Gaussian function

AP / 6 6(2: *:z’)z
Bn(z,x ) ~ m exp {*W} . (860)

Therefore, for one- and two-vicinal kernels constructed on the basis of kernel
function defined by a B,-spline one has either to calculate them directly
or use the approximation (8.60) and expressions (5.58) and (5.59).

8.6.4 Estimating a Regression Function
To estimate the regression function
) = [uniule)dy (8.61)

recall that the kernel K. (y,y,) is a symmetric (density) function the inte-
gral of which is equal to 1. For such a function we have

/ YK, (v, %)dy = y;. (8.62)

Therefore, from (8.51), (8.56), and (7.57) we obtain the following regression
function:

4
T(Z) = zyiﬁi[r‘y(x, xl)

i=1






Informal Reasoning and
Comments — 8

The inductive principle introduced in this chapter is brand new. There
remains work to properly analyze it, but the first results are good.

Sayan Mukherjee used this principle for solving the density estimation
problem based on the VSV solution (so far in low-dimensional spaces).
He demonstrated its advantages by comparing it to existing approaches,
especially in the case where the sample size is small.

Ideas that are close to this one have appeared in the nonparametric
density estimation literature. In particular, many discussions have taken
place in order to modernize the Parzen’s methods of density estimation.
Researchers have created methods that use different values of the width at
different points. It appeared that the width of the kernel at a given point
should be somehow connected to the size of the vicinity of this point.

However, the realizations of this idea were too straightforward: It was
proposed to choose the width of the kernel proportional to the value d, of
the vicinity of the corresponding point x;. In other words, it was proposed
to use the kernel a(y)K (%) This suggestion, however, created the fol-
lowing problem: When the value of the vicinity decreases, the new kernel
converges to the é-function

r —Z;

Jim a(diy)K ( e ) = 6(z — z,).

In the 1980s, in constructing density estimators from various solutions of
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an integral equation we observed that classical methods such as Parzen’s
method or the projection method are defined by different conditions for
solving this integral equation with the same approximation on the right-
hand side — the empirical distribution function. The idea of using a dis-
continuous function to approximate a continuous function in the problem
of solving the integral equation that defines the derivative of the (given)
right-hand side is probably not the best.

Using in the same equations the continuous approximation to the distri-
bution function, we obtain nonclassical estimators. In particular, using a
continuous piecewise linear (polygonal) approximation we obtained (in the
one-dimensional case) a Parzen’s-type estimator with a new kernel defined
as follows (Vapnik, 1988):

a Tit1 T~ 2z
gnew(x§xi,$i+1)'7) = L))/ K( )dz,
Zi

RETEE y

where z;, .4, are elements of the variation series of the sample and K, (u)
is the Parzen kernel.
This kernel converges to Parzen’s kernels when (z;4; — z;) — 0,

. r—-z
lim gnew(x; Ii)zi+l)7) = a’('}')K( Py ) -

(Tyy1—x,)—0

After the introduction of SVM methods, the (sparse) kernel approxima-
tion began to play an important role in solving various function estimation
problems. As in Parzen’s density estimation method, the SVM methods
use the same kernel (with different values of coefficients of expansions and
different support vectors). Of course, the question arises as to whether it is
possible to construct different kernels for different. support vectors. Using
the VRM principle we obtain kernels of a new type in all the problems
considered in this book.

The VRM principle was actually introduced as an attempt to understand
the nature of the solutions that use different widths of kernel.



Chapter 9

Conclusion: What Is Important in
Learning Theory?

9.1 WHAT IS IMPORTANT IN THE SETTING OF THE
PROBLEM?

In the beginning of this book we postulated (without any discussion) that
learning is a problem of function estimation on the basis of empirical data.
To solve this problem we used a classical inductive principle ~ the ERM
principle. Later, however, we introduced a new principle — the SRM princi-
ple. Nevertheless, the general understanding of the problem remains based
on the statistics of large samples: The goal is to derive the rule that pos-
sesses the lowest risk. The goal of obtaining the “lowest risk” reflects the
philosophy of large sample size statistics: The rule with low risk is good
because if we use this rule for a large test set, with high probability the
means of losses will be small.

Mostly, however, we face another situation. We are simultaneously given
training data (pairs (z,,%;)) and test data (vectors x}), and the goal is to
use the learning machine with a set of functions f(z, a), a € A, to find the
y; for the given test data. In other words, we face the problem of estimating
the values of the unknown function at given points.

Why should the problem of estimating the values of an unknown function
at given points of interest be solved in two stages: First estimating the func-
tion and second estimating the values of the function using the estimated
function? In this two-stage scheme one actually tries to solve a relatively
simple problem (estimating the values of a function at given points of in-
terest) by first solving (as an intermediate problem) a much more difficult
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one (estimating the function). Recall that estimating a function requires
estimating the values of the function at all (infinite) points of the domain
where the function is defined including the points of interest. Why should
one first estimate the values of the function at all points of the domain to
estimate the values of the function at the points of interest?

It can happen that one does not have enough information (training data)
to estimate the function well, but one does have enough data to estimate
the values of the function at a given finite number of points of interest.

Moreover, in human life, decision-making problems play an important
role. For learning machines these can be formulated as follows: Given the
training data

(Il,yl), sy (x[: yl)’
the machine with functions f(z, ), « € A, has to find among the test data

* *
Ty v Tps

the one z? that belongs to the first class with highest probability (decision
making problem in the pattern recognition form.)! To solve this problem
one does not even need to estimate the values of the function at all given
points; therefore it can be solved in situations where one does not have
enough information (not enough training data) to estimate the value of a
function at given points.

The key to the solution of these problems is the following observation,
which for simplicity we will describe for the pattern recognition prohlem.

The learning machine (with a set of indicator functions Q(z,a), o € A)
is simultaneously given two strings: the string of £ + k vectors z from the
training and the test sets, and the string of £ values y from the training
set. In pattern classification the goal of the machine is to define the string
containing & values y for the test data.

For the problem of estimating the values of a function at the given points
the set of functions implemented by the learning machine can be factorized
into a finite set of equivalence classes. (Two indicator functions fall in the
same equivalence class if they coincide on the string zy,...,Zesr). These
equivalence classes can be characterized by their cardinality (how many
functions they contain).

The cardinality of equivalence classes is a concept that makes the theory
of estimating the function at the given points differ from the theory of
estimating the function. This concept (as well as the theory of estimating
the function at given points) was considered in the 1970s (Vapnik, 1979).
For the set of linear functions it was found that the bound on generalization
ability, in the sense of minimizing the number of errors only on the given

'Or to find one that with the most probability possesses the largest value of
y- (decision-making in regression forin).
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Approximating
function

Induction

Values of the
function at points
of jnterest

Transduction

FIGURE 9.1. Different types of inference. Induction, deriving the function from
the given data. Deduction, deriving the values of the given function for points
of interest. Transduction, deriving the values of the unknown function for points
of interest from the given data. The classical scheme suggests deriving S the
values of the unknown function for points of interest in two steps: first using
the inductive step, and then using the deduction step, rather than obtaining the
direct so]ution in one step.

test data (along with the factors considered in this book), depends also
on a new factor, the cardinality of equivalence classes. Therefore, since to
minimize a risk one can minimize the obtained bound over a larger number
of factors, one can find a lower minimum. Now the problem is to construct
a general theory for estimating a function at the given points. This brings
us to a new concept of learning.

Classical philosophy usually considers two types of inference: deduction,
describing the movement from general to particular, and induction, describ-
ing the movement from particular to general.

The model of estimating the value of a function at a given point of
interest describes a new concept of inference: moving from particular to
particular. We call this type of inference transductive inference. (Fig. 9.1)

Note that this concept of inference appears when one would like to get
the best result from a restricted amount of information. The main idea in
this case was described in Section 1.9 as follows:

If you are limited to a restricted amount of information, do not solve the
particular problem you need by solving a more general problem.

We used this idea for constructing a direct method of estimating the
functions. Now we would like to continue developing this idea: Do not
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solve the problem of estimating the values of a function at given points by
estimating the entire function, and do not solve a decision-making problem
by estimating the values of a function at a given points, etc.

The problem of estimating the values of a function at a given point
addresses a question that has been discussed in philosophy for more than
2000 years:

What is the basis of human intelligence: knowledge of laws (Tules) or the
culture of direct access to the truth (intuition, adhoc inference)?

There are several different models embracing the statements of the learn-
ing problem, but from the conceptual point of view none can compare to
the problem of estimating the values of the function at given points. This
model can provide the strongest contribution to the 2000 years of discus-
sions about the essence of human reason.

9.2 WHAT IS IMPORTANT IN THE THEORY OF
CONSISTENCY OF LEARNING PROCESSES?

The theory of consistency of learning processes is well devaloped. It answers
almost all questions toward understanding the conceptusl model of learning
processes realizing the ERM principle. The only remaining open question is
that of necessary and sufficient conditions for a fast rate of convergence. In
Chapter 2 we considered the sufficient condition described using annealed
entropy

o Hla(®) _

&—o00 f 0

for the pattern recognition case. It also can be shown that the conditions

Hﬁnn (5; Z)

lim —=———— =0

€—o00 £ ?

Ve > 0,

in terms of the annealed entropy H. (£;£) = InEN’(g;z2,,...,2;) define
sufficient conditions for fast convergence in the case of regression estima-
tion.

The following question remains:

Do these equalities form the necessary conditions as well? If not, what
are necessary and sufficient conditions?

Why is it important to find a concept that describes necessary and suf-
ficient conditions for a fast rate of convergence?

As was demonstrated, this concept plays a key role in the theory of
bounds. In our constructions we used the annealed entropy for finding both
(noncounstructive) distribution-independent bounds and (nonconstructive)
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distribution-dependent bounds. On the basis of annealed entropy, we con-
structed both the growth function and the generalized growth function.
Proving necessity of annealed entropy for a fast rate of convergence would
amount to showing that this js the best possible construction for deriving
bounds on the generalization ability of learning machines. If necessary and
sufficient conditions are described by another function, the constructions
can be reconsidered.

9.3 WHAT IS IMPORTANT IN THE THEORY OF
BOUNDS?

The theory of bounds contains two parts: the theory of noenconstructive
bounds, which are obtained on the basis of the concepts of the growth
function and the generalized growth function, and the theory of construc-
tive bounds, where the main problem js estimating these functions using
some constructive concept.

The main problem in the theory of bounds ig in the second part. One
has to introduce some constructive concept by means of which one can
estimate the growth function or the generalized growth function. In 1968
we introduced the concept of the VC dimension and found the bound for
the growth function (Vapnik and Chervonenkis, 1968, 1971). We proved
that the value NA(#) is either 2¢ or polynomial bounded,?

A ef\*
N (Z]_,...,Z[)S(-E .

Note that the polynomial on the right-hand side depends on one free pa-
rameter h. This bound (which depends on one capacity parameter) cannot
be improved (there exist examples where equality is achieved).

The challenge is to find refined concepts containing more than one pa-
rameter (say two parameters) that describe some properties of capacity
(and the set of distribution functions F(z) € P), by means of which one
can obtain better bounds.?

This is a very important question, and the answer would have immediate
impact on the bounds of the generalization ability of learning machines.

In 1972 this bound was also published by Sauer (Sauer, 1972).

Recall the MDL bound: Even such a refined concept as the coefficient of
compression provides a worse bound than one based on three (actually rough)
concepts such as the value of the empirical rigk, the number of observations, and
the number of functions in a set.
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9.4 WHAT IS IMPORTANT IN THE THEORY FOR
CONTROLLING THE GENERALIZATION ABILITY OF
LEARNING MACHINES?

The most important problem in the theory for controlling the generaliza-
tion ability of learning machines is finding a new inductive principle for
small sample sizes. In the mid-1970s, several techniques were suggested to
improve the classical methods of function estimation. Among these are the
various rules for choosing the degree of a polynomial in the polynomial
regression problem, various regularization techniques for multidimensional
regression estimation, and the regularization method for solving ill-posed
problems. All these techniques are based on the same idea: to provide the
set of functions with a structure and then to minimize the risk on the el-
ements of the structure. In the 1970s the crucijal role of capacity control
was discovered. We call this general idea SRM to stress the importance of
minimizing the risk in the element of the structures.

In SRM, one tries to control simultaneously two parameters: the value
of the empirical risk and the capacity of the element of the structure.

In the 1970s the MDL principle was proposed. Using this principle, one
can control the coefficient of compression.

The most important question is this:

Does there erist a new inductive principle for estimating dependency from
small sample sizes?

In studies of inductive principles it is crucial to find new concepts that
affect the bounds of the risk, and which therefore can be used in mini-
mizing these bounds. To use an additional concept, we mtroduced a new
statement of the learning problem: the local risk minimization problem.
In this statement, in the framework of the SRM principle, one can control
three parameters: empirical risk, capacity, and locality.

In the problem of estimating the values of a function at the given points
one can use an additional concept: the cardinality of equivalence classes.
This aids in controlling the generalization ability: By minimizing the bound
over four parameters, one can get smaller minima than by minimizing the
bound over fewer parameters. The problem is to find a new concept that
can affect the upper bound of the risk. This will immediately lead to a new
learning procedure, and even to a new type of reasoning (as in the case of
transductive inference).

Finally, it is important to find new structures on the set of functions. It
is interesting to find structures with elements containing functions that are
described by large numbers of parameters, but nevertheless have low VC
dimension. We have found only one such structure, and this brought us to
SV machines. New structures of this kind will probably result in new types
of learning machines.
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9.5 WHAT IS IMPORTANT IN THE THEORY FOR
CONSTRUCTING LEARNING ALGORITHMS?

The algorithms for learning should be well controlled. This means that one
has to control two main parameters responsible for generalization ability:
the value of the empirical risk and the VC dimension of the smallest element
of the structure that contains the chosen function.

The SV technique can be considered as an effective tool for control-
ling these two parameters if structures are defined on the sets of linear
functions in some high-dimensional feature space. This technique is not
restricted only to the sets of indicator functions (for solving pattern recog-
nition problems). At the end of Chapter 5 we described the generalization
of the SV methed for solving regression problems. In the framework of
this generalization, using a special convolution function one can construct
high-dimensional spline functions belonging to the subset of splines with
a chosen VC dimension. Using different convolution functions for the in-
ner product one can also construct different types of functions nonlinear in
input space.*

Moreover, the SV technique goes beyond the framework of learning the-
ory. It admits a general point of view as a new type of parameterization of
sets of functions.

The matter is that in solving the function estimation problems in both
computational statistics (say pattern recognition, regression, density esti-
mation) and in computational mathematics (say, obtaining approximations
to the solution to multidimensional (operator) equations of different types)
the first step is describing (parameterizing) a set of functions in which one
is looking for a solution.

In the first half of this century the main idea of parameterization (after
the Weierstrass theorem) was polynomial series expansion. However, even
in the one-dimensional case sometimes one needs a few dozen terms for
accurate function approximation. To treat such a series for solving many
problems the accuracy of existing computers can be insufficient.

Therefore, in the middle of the 1950s a new type of function parameter-
ization was suggested, the so-called spline functions (piecewise polynomial
functions). This type of parameterization allowed us to get an accurate

‘Note once more that advanced estimation techniques in statistics developed
in the 1980s such as projection pursuit regression, MARS, hinging hyperplanes,
etc in fact consider some special approximations in the sets of functions

v="3 a;K{(z w,)} +b,

=1

where o, ..., an are scalars and wy, ..., wy are Vectors.
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solution for most one-dimensional (sometimes two-dimensional) problems.
However, it often fails in, say, the four-dimensional case.

The SV parameterization of functions can be used in high-dimensional
space (recall that for this parameterization the complexity of approximation
depends on the number of support vectors rather than on the dimensional-
ity of the space). By controlling the “capacity” of the set of functions one
can control the “smoothness” properties of the approximation.

Thbis type of parameterization sbould be taken into account whenever
one considers multidimensional problems of function estimation (function
approximation).

Currently we have experience only in using the SV technique for solving
pattern recognition problems. However, theoretically there is no obstacle to
obtain using this technique the same high level of accuracy in solving depen-
dency estimation problems that arise in different areas of statistics (such as
Tegression estimation, density estimation, conditional density estimation)
and computational mathematics (such as solving some multidimensional
linear operator equations).

One can consider the SV technique as a new type of parameterization of
multidimensional functions that in many cases allows us to overcome the
curse of dimensionality.®

9.6 WHAT IS THE MOST IMPORTANT?

The learning problem belongs to the problems of natural science: There ex-
ists a pbenomenon for which one has to construct 2 model. In the attempts
to coustruct this model, theoreticians can choose one of two different po-
sitions depending on which part of Hegel’s formula (describing the general
philosophy of nature) they prefer:

Whatever is real is rational, and whatever is rational is real®

The interpretation of the first part of this formula can be as follows.
Somebody (say an experimenter) knows a model that describes reality,
and the problem of tbe tbeoretician is to prove that this model is rational
(he should define as well what it means to be rational). For example, if
somebody believes and can convince the theoretician that neural networks

5See footnote on page 170.

5In Hegel’s original assertion, the meaning of the words “real” and “rational”
does not coincide with the common meaning of these words. Nevertheless, ac-
cording to a remark of B. Russell, the identification of the real and the rational
in & common sense leads to the belief that “whatever is, is right.” Russell did not
accept this idea (see B. Russell, A History of Western Philosophy). However, we
do interpret Hegel's formula as: “Whatever exists is right, and whatever right is
exists.”
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are good models of real brains, then the goal of the theoretician is to prove
that this model is rational.

Suppose that the theoretician considers the model to be “rational” if it
possesses some remarkable asymptotic properties. In this case, the theo-
retician succeeds if he or she proves (as has been done) that the learning
process in neural networks asymptotically converges to local extrems and
that a sufficiently large neural network can approximate well any smooth
function. The conceptual part of such a theory will be complete if one can
prove that the achieved local extremum is close to the global one.

The second position is a heavier burden for the theoretician: The theo-
retician has to define what a rational model is, then has to find this model,
and finally, the must convince the experimenters to prove that this model
is real (describes reality).

Probably, a rational model is one that not only has remarkable asymp-
totic properties but also possesses some remarkable properties in dealing
with a given finite number of observations.” In this case, the small sample
size philosophy is a useful tool for constructing rational models.

The rational models can be so unusual that one needs to overcome prej-
udices of common sense in order to find them. For example, we saw that
the generalization ability of learning machines depends on the VC dimen-
sion of the set of functions, rather than on the number of parameters that
define the functions within a given set. Therefore, one can construct high-
degree polynomials in high-dimensional input space with good generaliza-
tion ability. Without the theory for controlling the generalization alility
this opportunity would not be clear, Now the experimenters have to an-
swer the question: Does generalization, as performed by real brains, include
mechanisms similar to the technology of support vectors?®

That is why the role of theory in studies of learning processes can be
more constructive than in many other branches of natural science.

This, however, depends on the choice of the general position in studies
of learning phenomena. The choice of the position refiects the belief of
which in this specific area of natural science is the main discoverer of truth:
experiment or theory.

"Maybe it has to possess additional properties. Which?

8The idea that the generalization, the definition of the importance of the
observed facts, and storage of the important facts, are different aspects of the
same hrain mechanjsm is very attractive.
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Remarks on References

One of the greatest mathematicians of the century, A.N. Kolmogorov, once
noted that an important difference between mathematical sciences and his-
torical sciences is that facts once found in mathematics hold forever, while
the facts found in history are reconsidered by every generation of historians.

In statistical learning theory as in mathematics the importance of results
obtained depends on new facts about learning phenomena, whatever they
reveal, rather than a new description of already known facts. Therefore, 1
tried to refer to the works that reflect the following sequence of the main
events in developing the statistical learning theory described in this book:

1958-1962.
1962-1964.
1958-1963.
1962-1963.

1960-1965.

1968-1971.

Constructing the perceptron.
Proving the first theorems on learning processes.
Discovery of nonparametric statistics.

Discovery of the methods for solving ill-posed prob-
lems.

Discovery of the algorithmic complexity concept and
its relation to inductive inference.

Discovery of the law of large numbers for the space
of indicator functions and its relation to the pattern
recognition problem.
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1965-1973. Creation of a general asymptotic learning theory for
stochastic approximation inductive inference.

1965-1972. Creation of a general nonasymptotic theory of pattern
recognition for the ERM principle.

1974. Formulation of the SRM principle.
1978. Formulation of the MDL principle.

1974-1979.  Creation of the general nonasymptotic learning theory
based on both the ERM and SRM principles.

1981. Generalization of the law of large numbers for the space
of real-valued functions.

1986. Construction of NN based on the back-propagation
method.
1989. Discovery of necessary and sufficient conditions for con-

sistency of the ERM principle and the ML method.

1989-1993. Discovery of the universality of function approximation
by a sequence of superpositions of sigmoid functions.

1992-1995. Constructing the SV machines.
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