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PREFACE

This text is an introduction to pattern recognition, meant to be used by
undergraduate and graduate students in Computer Science as well as in
related fields in science and technology. The only prerequisite for using
this book is a one semester course in discrete mathematics and knowledge
of the basic preliminaries of calculus, linear algebra and probability theory.
Since most of the topics covered in this text are accompanied by
algorithms and applications which involve a considerable amount of
computations, we expect the students to be familiar with at least one
programming language. This is eventually a necessity, because to solve
any nontrivial problem in pattern recognition,® one should be able to
program a specific algorithm and run it on a digital computer.

A student who takes a course in pattern recognition is usually
motivated by one of the following reasons:

1. The need to fulfill the requirements of a degree program in
computer science or engineering.

2. A desire to expand one’s horizons of knowledge in a subject which
has become tremendously important and useful in recent years.

3. The possibility of successfully adapting the studied algorithms for
solving real-world problems in various fields.

Although the book is primarily intended for use by students who
qualify for classes (2) and (3), it is also written to be at least partially
favored by students who belong to class (1).

The purpose of this manuscript is to present the student with the
classical topics in pattern recognition, and illustrate the theory by solving
practical problems with emphasis on obtaining intuitive understanding of
both the application and the appropriate algorithm. Above all this text is
meant to provide the student with sufficient knowledge for relatively
independent work in the field. An accumulated teaching experience in
Computer Science and Applied Mathematics shows that intuitive
understanding of algorithms by the student is almost always a guarantee
for the student to successfully repeat, apply and modify these algorithms
later.

Xi



Xii PREFACE

The first chapter is introductory in nature. It concentrates on the
importance and usefulness of pattern recognition in a modern world by
discussing real applications from the disciplines of computer science,
engineering, biology, medicine, psychology and other related sciences. In
the second chapter we discuss the concept of decision functions
emphasizing the principal function of a pattern recognition system:
providing decisions related to the class membership of incoming patterns.
Prior to the remaining chapters which may be read in a non-sequential
order, it is recommended that the student masters the first two chapters as
well as Chapter 3 in which we introduce the concept of clustering.

A review of the probabilistic approach to pattern recognition is given
in Chapter 4. In Chapter 5 we discuss the problem of feature selection and
feature extraction. The interaction between fuzzy logic and pattern
classification is presented in Chapter 6. Syntactic pattern recognition is
introduced in Chapter 7 and the use of neural networks for pattern
classification is presented in Chapter 8.

Even though the material in this volume may be considered to be
classical in nature, novel topics such as fuzzy pattern recognition and
pattern recognition via neural networks, which are essentials in any
modern text on pattern recognition, present a major portion of this text.
However, courses in fuzzy logic and neural networks are not prerequisites,
since proper introductions to these subjects are given in this book as well.

The content of this text was successfully tested and modified through
the many classes taught by both of us in both Computer Science and
Electrical Engineering since the late 1970’s.

Completing this text would not have been possible without the
encouragement and support of Professor Horst Bunke, Dean of the Institut
fur Informatick und Angewandte Mathematik, Universitat Bern,
Switzerland, Professor Michael Kovac, Dean of the College of
Engineering at the University of South Florida and Professor Uri Shaked,
Dean of the Faculty of Engineering at Tel-Aviv University. Finally, we
would like to give special thanks to Mrs. Judy Hyde from the College of
Engineering at the University of South Florida for her enormous help
during the final stages of preparing the manuscript.

Menahem Friedman
Abraham Kandel
Tampa, December 1997




1 InTRODUCTION

1.1 BASIC CONCEPTS IN PATTERN RECOGNITION

Pattern recognition is characteristic to all living organisms. However,
different creatures recognize differently. If a human would recognize
another human by sight, by voice or by handwriting, a dog may recognize
a human or other animal by smell thirty yards away which most humans
are incapable of doing. Yet most dogs are unimpressed by looking at the
mirror since they do not actually recognize another dog over there. A
blind person would recognize various items just by touching them. But
recognition is not restricted to objects that can be identified using
biological senses. In a conversation we can suddenly identify an old
argument that we heard years ago. All of these examples are classified as
recognition.

The object which is inspected for the “recognition” process is called a
pattern. Usually we refer to a pattern as a description of an object which
we want to recognize. In this text we are interested in spatial patterns like
humans, apples, fingerprints, electrocardiograms or chromosomes. In
most cases a pattern recognition problem is a problem of discriminating
between different populations. For example we may be interested among
a thousand humans to discriminate between four different types: (a) tall
and thin (b) tall and fat (c) short and thin (d) short and fat. We thus want
to classify each person in one of four populations. The recognition process
thus tumns into classification. To determine which class the person
belongs to, we must first find which features are goingto determine this
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classification. The age of the person is clearly not a feature in this case.
A reasonable choice of course is the pair of numbers (height, weight) and
we thus perform a feature selection for this particular problem. Getting
these measurements is called feature extraction.

At times feature selection may be an easy task while feature extraction
is too costly. In this case we may look for an alternative way of selecting
features or go ahead and extract the features of the original selection. It is
not recommended to start compromising and choose less adequate features
which are easier to extract. Suppose for example that a certain medical
test, very expensive, is necessary to determine (together with other tests)
whether a patient has some severe disease. No competent doctor would
even consider dropping that test in order to ‘simplify’ the feature
extraction.

Forecasting the weather is based upon inspecting a weather map. The
map itself is raw input data on which we perform preprocessing. The
features to look for are usually known to the professional due to vast
experience. The preprocessing here includes extracting these features and
identify noise. For an expert, one glance at a weather map is enough to
produce a reasonable weather forecast. The expert knows what features to
look for and if extracting them is not complicated, forecasting is
straightforward. In general we may insert the knowledge acquired by
experts in this field into an expert system that will replace the expert and
will (almost) always provide a good weather forecast.

Medical diagnosis is another example of a pattern recognition problem
where feature selection is a very delicate process since quite often human
life is in stake. The features are usually some test results like blood
pressure or blood sugar rate, or symptoms like ‘coughing at night’ or not
having feeling in the forefinger’. Features of a completely different nature
are ‘no heart problem in the family’ or ‘the patient had already this
disease’. An appropriate feature extraction in medical diagnosis rely first
on the objective test results and then on the patient’s ability to provide an
accurate description of the symptoms and ‘related facts’ in his family
history. It is more than relevant for example for a person who is treated
for hearing loss, to mention whether there are deaf people in his family.

In designing a pattern recognition system, i.e. a system that will be
able to obtain an unknown incoming pattern and classify it in one (or
more) of several given classes, we clearly want to employ all the available
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related information that was previously accumulated. We assume that
some sample patterns with known classification are available. These
patterns with their typical attributes form a training set which provides
relevant information how to associate between input data and decision
making. By using the training set the pattern recognition system may learn
various types of information like statistical parameters, relevant features,
etc.

The dominant concept in pattern recognition is that of clustering. A
cluster consists of a number of similar objects (patterns) which are
grouped together. We may consider a cluster of points in the n-
dimensional space, a cluster of stars which seem to be grouped together or
a cluster of people in the community whose annual income is under
$20,000 per year. If we consider a cluster of people with ‘low’ income we
take a further step and define a fuzzy cluster. Clustering given input data
is a major subject in pattern recognition. It consists of dividing the data
into clusters and establishing the cluster centers and cluster boundaries.
An a priori knowledge of the number of clusters and their approximate
locations definitely simplifies our task. We then carry a supervised
learning process. If the data is of no known characteristic we obtain an
unsupervised learning process.

Given input data it can be clustered in several ways. For example let
the input consist of all the schools in town. If we cluster them
geographically we get one set of clusters. If on the other hand we find
similarity between schools only if the number of their students is similar,
we obtain a different set of clusters. If we consider the attribute ‘quality’
we obtain a third set of clusters and this last partition is even ambiguous
since people measure ‘quality’ differently.

1.2 CLASSIFIERS

The final goal in pattern recognition is classification of a pattern. From
the original information that we obtain about the pattern we first identify
the relevant features and then use a feature extractor to measure them.
These measurements are then passed to a classifier which performs the
actual classification, i.e., determines at which of the existing classes to
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classify the pattern. If the pattern is for example ‘noise’ it is rejected by
the classifier.

In this section we assume the existence of natural grouping, i.e. we
have some a priori knowledge about the classes and the data. For example
we may know the exact or approximate number of the classes and the
correct classification of some given patterns which are called the training
patterns. Usually, it is this type of information and the type of the features
that may suggest which classifier to apply for a given application.

Decision Functions

When the number of classes is known and when the training patterns are
such that there is geometrical separation between the classes we can often
use a set of decision functions to classify an unknown pattern. Consider

for example a case where two classes C, and C, exist in R" and a
hyperplane d(x) =0 which separates between their patterns can be found.
Then we can use the decision function d(x) as a linear classifier and
classify each new pattern by

d(x)>0=>x¢e(
(1.2.1)
d(x)<0=>x€e(,

The hyperplane d(x)=0 is called a decision boundary. If a set of

hyperplanes can separate between m given classes in R", these classes are

linearly separable. Quite often a set of classes cannot be discriminated by
linear decision functions. In this case we can either use generalized
decision functions (nonlinear) in the original pattern space, i.e. use a
nonlinear classifier or transform the problem to a space of a much higher
dimension where classification is carried using linear boundaries.

Minimum-Distance Classifiers
If the training patterns seem to form clusters we often use classifiers which

use distance functions for classification. If each class is represented by a
single prototype called the cluster center, we can use a minimum-distance
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classifier to classify a new pattern. A similar modified classifier is used if
every class consists of several clusters. The nearest-neighbor classifier
classifies a new pattern by measuring its distances from the training
patterns and choosing the class to which the nearest neighbor belongs.

Sometimes the a priori information is the exact or approximate
number of classes ¢. Each training pattern is in one of these classes but its
specific classification is not known. In this case we use algorithms to
determine the cluster (class) centers by minimizing some performance
index. These centers are found iteratively and then a new pattern is
classified using a minimum-distance classifier. One such algorithm is
c-Means where the exact number of classes is known. A more ambiguous
situation is assumed by the ISODATA algorithm. We only have a desired
number k of clusters and the final number of classes which is determined
by the algorithm cannot be much higher or much lower than k.

Statistical Approach

Many times the training patterns of various classes overlap for example
when they are originated by some statistical distributions. In this case a
statistical approach is appropriate, particularly when the various
distribution functions of the classes are known. A statistical classifier
must also evaluate the risk associated with every classification which
measures the probability of misclassification. The Bayes classifier based
on Bayes formula from probability theory minimizes the total expected
risk. To use Bayes classifier one must know a priori the pattern
distribution function for each class. If these distributions are not known
they must be approximated using the training patterns. Sometimes the
functional form of these distributions is known and one must only estimate
its parameters. However, in some applications even the distribution’s
form is unknown and must (approximately) be found. To do so we may
for example perform functional approximation using expansions by
orthogonal functions.

Fuzzy Classifiers

Quite often classification is performed with some degree of uncertainty.
Either the classification outcome itself may be in doubt, or the classified
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pattern x may belong in some degree to more than one class. Fore
example a person 5’8" tall does not fully belong to the class ‘tall’, yet at
the same time he cannot be fully accepted in the class ‘short’ (provided
that only these two classes exist). We thus naturally introduce fuzzy
classification where a pattern is a member of every class with some grade
of membership between O and 1. In this text we are mainly interested in
fuzzy classification using equivalence relations and in fuzzy clustering.
The crisp c-Means algorithm is generalized and replaced by the fuzzy c-
Means and after the cluster centers are determined, each incoming pattern
is given a final set of grades of membership which determine the degrees
of its classification in the various clusters.

Syntactic Approach

Unlike the previous approaches, the syntactic pattern recognition utilizes
the structure of the patterns. Instead of carrying an analysis based strictly
on quantitative characteristics of the pattern, we emphasize the
interrelationships between the primitives, the components which compare
the pattern. Typical patterns which are subject to syntactic pattern
recognition research are therefore characters, fingerprints, chromosomes,
etc. The analogy between the structure of some patterns and the syntax of
a language which has a solid theoretical basis is very attractive. By
introducing the concept of a formal grammar and language we are able to
design syntax classifiers that can classify a given pattern which is now
presented as a string of symbols. In general, given a specific class, a
grammar whose language consists of patterns in this class is designed. For
an unknown new pattern a syntax classifier analyzes the pattern (a string)
in a process called parsing and determines whether or not that string
belongs to the language (class).

Neural Nets

The neural net approach assumes as other apporaches before that a set of
training patterns and their correct classifications is given.  The
architecture of the net which includes input layer, output layer and hidden
layers may be very complex. It is characterized by a set of weights and
activation function which determine how any information (input signal) is
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being transmitted to the output layer. The neural net is trained by training
patterns and adjusts the weights until the correct classifications are
obtained. It is then used to classify arbitrary unknown patterns. There are
several popular neural net classifiers, from the simple perceptron to the
more advanced backpropagation classifier.

Pattern recognition and classification have been used for numerous
applications. A detailed list is given below:

1. Scientific Applications:

(a) Astronomy: telescope resolution improvements and atmospheric
degradation removal.

(b) Geology—planetary exploration: crater counts, color analysis,
robotics, topography, atmospheric measurements and analysis,
landing site and related evaluations, and terrestrial geologic feature
analysis and charting.

(c) Geology—cartography and geodesy: mosaicing, surface model
fitting, and maps (making and alteration).

(d) Bubble chamber tracking and electron microscope crystallography.

(e) Satellite data analysis.

(f) Sensing for life and date analysis on remote planets.

2. Life and Behavioral Sciences:
(a) Anthropology.
(b) Archeology.
(c) Entomology.
(d) Biology and botany: microbiology, ecology, and zoology.
(e) Psychology: sociological aspects and criminological aspects.
(f) Cybernetics.
(g) Information management systems.
(h) Education.
(i) Communication.

3. Industrial Applications:
(a) Character recognition.
(b) Image controlled machines (process control).
(c) Signature analysis.
(d) Speech analysis.
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(e) Photographic recognition.

(f) Mineral exploration (subsurface analysis).

(g) Internal flow detection (X-ray and sonic).

(h) Commercial photograph enhancement.

(1) Multimedia and animation.

() Electronic toys design.

(k) Automated cytology.

4. Medical Applications:

(a) Microscopic examination and biomedical data: blood cell counting
and blood tests, cancer cell identification and tests, neuron
measurements, chromosome Kkaryotyping, bone composition
analysis, automated focusing and positioning, and brain-tissue
studies.

(b) Radioisotope examination.

(c) X-ray examination and tomography: blood vessel thickness
measurements, heart size measurements, breast cancer detection,
intracranial blood vessel constriction detection, dental charting and
analysis, bone structure analysis, pulmonary disease diagnosis, and
skeletal structure analysis.

(d) Electrocardiogram and vectorcardiogram analysis.

(e) Electroencephalogram tracing and neurobiological signal process-
ing.

(f) Drug interaction.

(g) Chromosome properties for genetic studies.

5. Agricultural Applications:

(a) Crop analysis.

(b) Soil evaluation.

(c) Process control.

(d) Earth-resource photography.

Governmental Applications:

(a) Weather prediction: cloud tracking and water temperature
measurements.

(b) Public systems: traffic analysis and control, urban growth
determination, smog detection and measurement, and air traffic
radar data reduction.

(c) Earth-resource data and remote sensing.
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7. Some Specific Military Applications:
(a) Aerial photography and remote sensing.
(b) Sonor detection and classification.
(c) ATR: Automatic Target Recognition.

1.3 DATA MINING AND KNOWLEDGE DISCOVERY

Even though this text represents only the fundamental entities in the
field of pattern recognition, we feel that it will not be complete without
devoting a small section to the subject of data mining and knowledge
discovery, in which classification plays a major role.

Throughout the text when we talk about classification, what we have
in mind is the process assigning an item to its “natural group”. In a more
concrete sense, the objective of clustering is to sort a data set into
categories such that the degree of “natural association” is high among
members of the same category and low between members of different
categories. In many cases, however, classification means finding the
categeries themselves from a given set of unclassified data. In essence this
is what knowledge discovery and data mining is all about. When
acquiring knowledge from data, the problem at times may be in the data
itself, which may have limited breadth or coverage. @ While the
development of databases has provided us with an effective tool for
storage and lookup of large data sets, the issues related to knowledge
discovery in these data glut, depends heavily on the field of pattern
classification, since the notion of finding useful patterns (which in essence
are just nuggets of knowledge) from raw data is the essence of information
harvesting, which this text is all about.

Knowledge discovery (KD) and data mining (DM) systems draw upon
methods and techniques from the field of pattern recognition, as well as
related topics in database systems, artificial intelligence, machine learning,
statistics, and expert systems, where the unifying goal is extracting
knowledge from large volumes of data.

In their edited volume “Advances in Knowledge Discovery and Data
Mining”, Fayyad et.al. provide us with the following statement:
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Knowledge discovery in databases (KDD) is the
non-binial process of identifying valid, novel,
potentially useful, and ultimately understandable
patterns in data.

They use the notion of inferestingness to denote the overall measure of
pattern value, combining validity, novelty, usefulness, and simplicity. The
data mining step in the knowledge discovery process is therefore
concerned with means by which patterns are extracted (as well as
enumerated) from the raw data. In essence, the knowledge discovery
process itself involves the evaluation and interpretation of the different
patterns in order to provide decision-making with additional information
on what constitutes knowledge and what does got. We should keep in
mind, however, that in the context of knowledge discovery, description
(finding human-interpretable patterns describing the data) tends to be more
important than prediction (using some variables in the database in order to
predict unknown other variables of interest), which is in contrast to pattern
recognition, where prediction is usually the major goal of the analysis
process.

One particular approach which we would like to mention is that of
extracting fuzzy rules from raw data, which allows relationships in the raw
data to be modelled by Fuzzy IF-THEN rules that are easy to validate and
understand.  Because fuzzy logic allows us to express nonlinear
relationships by simple sets of qualitative IF-THEN rules, we can easily
capture the essence of data behavior. Capturing that behavior, which is in
essence knowledge discovery, in the form of Fuzzy IF-THEN rules, rather
than by neural networks or surface approximation, provide us with a set of
fuzzy rules which are easy to verify, validate, understand, explain and
extend. This is a powerful framework not only for capturing the behavior
of high dimensional data sets but also for explaining the behavior of the
data sets, especially in non-stationary cases as well as in those cases where
missing and noisy data is an acute pattern or when complex relationships
exist between fields representing the data in a database. With the increase
awareness of the advantages of representing classifiers in the form of sets
of fuzzy IF-THEN rules, extracting fuzzy rules from raw data, with or
without neural networks (for adaptive learning) will result in efficient and
robust algorithms, especially for high dimensional and noisy data.
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2 DECISION FUNCTIONS

The main task of a pattern recognition system is to provide decisions based
on given samples, by which incoming patterns can be classified. In this
chapter we introduce the first approach - using decision functions.

2.1 BASIC CONCEPTS

We start with a simple example. Let C, and C, be two pattern classes,
samples of which are shown in Fig. 2.1.1. Each sample pattern is a vector
x=(x,x,)" in the x,—x, plane, denoted by either o (xeC,) or
o(xe(C,).

m  Figure 2.1.1 Linear decision function; two pattern classes.
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The two populations can be clearly separated by a straight line. Let
d(x) =0 be such aline. Then, its coefficients given by

d(x)=wx +w,x, +w, =0 (2.1.1)

can be rearranged such that d(x)>0 for all x e C; and d(x) <O for all
x € C,. For any incoming x known a priori to belong to either C, or C,,
we can calculate d(x) and decide that x € C, if d(x)>0 and x € C, if
d(x)<0. Thus, d(x) is alinear decision function of C,.

This particular example can be easily extended to the case of two
pattern classes C;,C, in the n-dimensional Ewclidean vector space R".
Assume the classes to be geometrically separated by the hyperplane

d(x)=wx, +w,x, +...+wx, +w =wlx+w, =0 (2.1.2)

where w, = (w;,w,,...,w,)" is the weight vector, such that

d(x)>0, for xe(

(2.1.3)
d(x)<0, for xeC,
Then, for an arbitrary incoming x at C, U C,, we can decide
d(x)>0, = xe(
(2.1.4)

d(x)>0, => xe(,

Usually, x and w, of Eq. (2.1.2) are replaced by the augmented pattern
and weight vectors x =(x1,x2,...,xn,1)7 and w=(w,w,,..., n+1)T for
which one gets

d(x)=w'x (2.1.5)
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A decision function may not be linear. In Fig. 2.1.2 the two pattern classes
are separated by the circumference d(x)=1-x’—x, =0. Since d(x)>0
for all xe C, and d(x) <0 for all xe C,,d(x) is a nonlinear decision
function of C;. The membership of an incoming x in either C, or C,
will be decided by using Eq. (2.1.4).

X2

o O/N(XHJ
Ci1
o} o0 0 Xi
o o0
O
O

m  Figure 2.1.2 Nonlinear decision function; two pattern classes.

In general there are m pattern classes {CI,CZ,...,CM} in R" and a
decision function is defined as follows.

m  Definition 2.1.1 Let C,,C,,...,C, be m pattern classes in R". If a
surface d(x)=0, x e R" separates between some C, and the remaining

C, j#i,ie.

d(x)>0, xeC
(2.1.6)
d(x)<0, xeC;, j#i
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then d(x) will be called a decision function of C,.

Naturally, the domain of definition for d(x) must include the union of
G.G,....C,.

For the sake of simplicity, pattern classes would be often denoted in
figures by the boundaries of the regions where the given sample patterns

fall.

m  Example 2.1.1 Let C, and C, be the pattern classes of Fig. 2.1.3.
The parabola x —x, =0 is a decision function of C,. Usually, the
number of legitimate decision functions is infinife. In this particular case,
d’(x) = x, — x, is also a possible decision function.

X2

C2 (1 N )

/A X1
d(x)=x: -xz/ < Ci

m  Figure 2.1.3 A decision function for Example 2.1.1.

A

m  Example 2.1.2 Let C,C,,C, be the pattern classes of Fig. 2.1.4.

The parabola d,(x)=1-x] —x, =0 is a decision function for C,, while
d,(x)=06x,+7x,—21 is a decision function of C,. Unlike in the
previous example, a linear decision function for C; does not exist.
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X2
3
Cs
1
N 35 xi
ot
d1(x)=0

m  Figure 2.1.4 Decision functions for Example 2.1.2.

Throughout the next section we shall discuss various cases where the
given pattern classes are linearly separable, i.e. where linear decision
functions that separate between the pattern classes may be found.

PROBLEMS

1. Two possible linear decision functions for C, and C, are
d(x)=2-x, and d,(x)=3-x,. Which one is a better choice?

Explain.
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d1(x)=0
X2
@ d1(x)=0
Cz )\ x1
2] 3] N_/
x+y

2. let x,y €C, and let z= (vector sum) belong to C,. Are C
and C, linearly separable? Explain.
3. Repeat and solve problem 2 for
(a) z=2x~-y

(b)) z=x-y

2.2 LINEAR DECISION FUNCTIONS

Given m pattern classes C,C,,...,C, in R" we distinguish between two

m

cases.

I. Absolute separation

If each pattern class C, has a linear decision function d,(x), i.e.

>0, xeC

—w! v —
d(x)=w;x= { <0, otherwise 2.2.0)
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for 1<i<m, where w, is the weight vector associated with d,(x), then

absolute separation exist between C,,C,,...,C, or {C,} I, are absolutely

separable. In other words {C,} ", are absolutely separable if each C, is

linearly separated from the remaining pattern classes.

m Example 2.2.1 Consider the pattern classes C,,C,,C, in Fig. 2.2.1.
The straight lines d,(x)=2-x,=0, d,(x)=—-x,+x,—2=0 and
d,(x)=x,+x,—4=0 provide decision functions for C,C,,C,
respectively , i.e. C,C, and C, are absolutely separable.

o

\ )
(0,4)
c, C3

0.2) -
T d1(x)=0

-
-2,0) °N ,0) Xy
+ /= \d N

dz(x)=o d3(x)=0

m  Figure 2.2.1. Absolute separation.

Given absolutely separable pattern classes {C,} ., how do we classify

an incoming pattern x ? Let us consider the previous example. For each
y € C, three fragments of knowledge are available, namely, d,(y)>0,

d,(y)<0 and d,(y) <0. Without further information, it is reasonable to
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classify x as a member of C if d,(x)>0, d,(x)<0 and d,(x)<0.
This leads to the following definition.

m Definition 2.2.1 (decision region): Let the pattern classes {C,} 7, be

absolutely separable by the linear decision functions
d,(x),d,(x),...,d (x) respectively. Then the vector sets

D,.={x|d,.(x)>(); d,(x)<0, j;ei}, 1<i<m (2.2.2)
are called the decision regions of C,C,,...,C_ respectively.

Note that each pattern class C,, i1s a subset of its associated decision
region D, and that decision regions depend directly on the particular choice

of decision functions.

m  Example 2.2.2 The decision regions associated with the previous
example are the shaded are as in Fig. 2.2.2.

—
D2 Ds
| ; d1(x)=0
oD
+/ - =N+
d2(x)=0 } } } Fds(x):O

s Figure 2.2.2. Decision regions for Example 2.2.1.
' 3
It should be noted that while pattern classes are usually bounded, their
associated decision regions may not be.
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m  Example 2.2.3 The pattern classes C,,C,,C;,C, in Fig. 2.2.3 are
such that no linear decision function exists for C,. However, any three of
the four classes are absolutely separable.

(e
) (@
)

m  Figure 2.2.3 A case with no absolute separation.

II. Pairwise separation

In the absence of absolute separation, partial separation between
pattern classes, can still occur if each pair of them can be separated by a
linear decision function. In this case the pattern classes are said to be
pairwise separable. Each pair of classes C; and C; are associated with a

linear decision function dg such that

d;(x)>0 forall xeC

(2.2.3)
d;(x)<0 forall xeC;
Consequently, for all x € C, we have
d;(x)>0 forall j#i (2.2.4)

Also, forall i and j: d;(x)=-d;(x).
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Since, Eq. (2.2.4) provides the maximum possible knowledge about C,,

associated with the particular decision function set {d,.j(x)} Z'j=1, it

suggests a natural procedure for classifying incoming patterns. A pattern
x will belong to C,, if and only if Eq. (2.2.4) holds.

m Example 2.24 Let C,C, and C, be the pattern classes shown in
Fig. 2.2.4. The linear decision functions d,,(x)=x, =5, dy,(x)=—x,+3
and d,(x)=x,—2x, +2 separate between the pairs (C,C,), (C,,C,) and
(G, C,) respectively. Therefore C,C, and C, are pairwise separable.

(0,3) /\ - 523(x)=o
+

o
1
(01)

(-2,0 (5,0) 1

m  Figure 2.2.4 Pairwise separation.
' 3

Decision regions in the case of pairwise separation are defined as follows.
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m  Definition 2.2.2  (decision region). Let the pattern classes
C.,GC,,...,C  be pairwise separable by the linear decision functions

{d,.j (x)} .1~ Then the vector sets

D, = {x1d,(x)>0, j2i}, 1<i<m (22.5)

are called the decision regions of C,C,,...,C, respectively.

m  Example 2.2.5 The decision regions of C,,C,,C, in the previous
example are shown in Fig. 2.25. In order to get D, we take
d, (x)=-d,(x), and to obtain D, we use d; (x)=-d;(x) and

dy,(x)=—d,(x).

d12(x)=0
X2 - |+
N
%\\x d13(x)=0
\N
Sy /\ + d23(x)=0
P D1
L1
/)ﬂ D2 X1

m  Figure 2.2.5 Decision regions for Example 2.2.5.

A
In both cases, i.e. absolute separation and pairwise separation, the union of
the decision regions is usually not the whole space. Thus, an incoming
pattern x may not be classified as a member of any of the existing pattern
classes. For obvious reasons the ambiguous region is larger in the case of
absolute separation, than in the case of pairwise separation.
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A common particular case of pairwise separation occurs when linear
functions d,(x), d,(x),...,d, (x) suchthatforall xe C,, 1<i<m

d,(x)>d,(x) forall j#i (2.2.6)

exist. It is easily seen that by defining d;(x)=d,(x)-d,(x) for
1<i, j<m, we obtain a case of pairwise separation. However, the union

of the decision regions is now the whole space, i.e. no ambiguous region
exists. Indeed, for any incoming pattern x we can find i for which

d(x)=max[d;(x)], 1< j<m 2.1

and then classify x as a member of C,. If the maximum is achieved for
several i's we choose (for example) the smallest.

If Eq. (2.2.6) holds, there is a simple geometric interpretation to the
empty ambiguous region: The straight lines d,,(x), dy(x), d;;(x),

intersect at one point. Indeed, if d,(x)—-d,(x)=0 and d,(x)—-d;(x)=0
then clearly d,(x)—d,(x)=0 as well.

PROBLEMS

1. Sketch an example of three pattern classes where no pair is linearly
separable.

2. The samples of the pattern classes C; and C, are located within unit

circles centered at (1,0) and (4,0) respectively. Choose a linear
decision function, if in addition, it is known that any incoming pattern

x =(x;,x,)" which belongs to C,, must satisfy x, <2.5.
Explain.
3. Let C,G,,...,C, be a pattern classes ‘represented’ by the vertices of a

convex polygon. Show that {C,.} i, are absolutely separable.
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4. Let C, be a pattern class whose patterns are inside a unit circle
centered at (1,0). The patterns of a second class C, are located inside
a unit circle centered at (4,0) except for a single pattern y which is
located elsewhere. Sketch the forbidden region for y if C, and C, are
linearly separable.

x2
Y
R x1
_/
C1 C2

S. Let di(x)=x,—-1, d,(x)=x,-2 and d,(x)=x,—x,—1 denote
decision functions associated with three given pattern classes C;,C,
and C,; respectively. Sketch the decision regions in the following
cases.

(a) Absolute separation
(b) Pairwise separation with d(x) =d,(x)—d,(x).

In case (a) compare the decision regions to those of Example 2.2.2.

6. Consider the problem where each pattern class consists of a single
pattern.

(a) Are three pattern classes absolutely separable? What is the
exception?

(b) Sketch a nontrivial example of four pattern classes which is not
absolutely separable.

(c) Can you sketch a five-class problem where absolute separation
occurs for every four classes but not for the complete problem?
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2.3 GENERALIZED DECISION FUNCTIONS

Classes which do not share a single pattern may always be separated.
However, decision boundaries which separate between classes, may not
always be linear (see Fig. 2.1.2). The complexity of these boundaries may
sometimes request the use of highly nonlinear surfaces. A popular
approach to generalize the concept of linear decision functions is to
consider a generalized decision function defined as

d(x) =w fi(x) +...+0 wy fy(X) +wy,, (2.3.1)

where f,(x), 1<i<N are scalar functions of the pattern x, xeR".
Introducing f,,,(x)=1 we get

N+l

d(x)= gwif[(x) =w'x’ (2.3.2)
where
w, fi(x)
_ W, . fz(x)
w = M)ZN s X = fN:(x) (233)
Wy it fN+1(x)

The representation of d(x) by Egs. (2.3.2) and (2.3.3) implies that any
decision function defined by Eq. (2.3.1) can be treated as linear, provided

that we first transform all the original patterns x into x by calculating
fi(x), 1<i< N for every individual x. Although d(x) is linear in the

(N+1) — dimensional space whose dimension N+1 is usually
considerably greater than n, it certainly maintains its nonlinearity
characteristics in R".
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As expected, the most commonly used generalized decision function is
d(x) for which f,(x), 1<i< N are polynomials. If these functions are

all linear in R", then d(x) can be rewritten as
dx)=w) x (2.3.4)

where w” is a new weight vector, which can be calculated from the
original w and the original linear f,(x), 1<i<N in Eq. (2.3.1). The

expression in Eq. (2.3.4) is identical to that in Eq. (2.1.2) from the
previous section.

Let us now consider quadratic decision functions. For 2-dimensional
patterns (i.e. n=2), the most general decision function is

d(x) = wx} + WX, X, + WxZ + WX, + WX, + W, (2.3.5)

. * T
ie. w=(w,w,,..,w)" and x =(x,xx,,x,%,x,,1)". For patterns

x € R" the most general quadratic decision function is given by

n n—1 n n
_ 2
d(x)= E{wiixi +2 X wxx + wa,.x,. Wi (2.3.6)

i=l  j=i+l
The number of terms at the right-hand side of Eq. (2.3.6) is

n(n—1) = (n+1)(n+2) (2.3.7)
2

[I=N+1=n+

This is the total number of weights which are the free parameters of the
problem. If for example n=3, the vector x  is 10-dimensional. For
n=10 we already have a considerably large N =65.

In the case of polynomial decision functions of order m, a typical
fi(x) in Eq. (2.3.1) is given by

f,-(x):x’,”l‘ xi”zz I (2.3.8)
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where 1<i,i,,...,i, <n and ¢, 1<i<m is 0 or 1. It is clearly a

polynomial with a degree between 0 and m. To avoid repetitions we
request [, <i, < ... <, .

@ Theorem 2.3.1. Let d"(x) denote the most general polynomial
decision function of order m . Then

d"(x)=%, Y... ¥ wiliz_'_imxilxiz...xim+d’""(x) (2.3.9)

h =1 =4 L]

where d°(x)=w,,, .

The proof using mathematical induction is straightforward.

m Example2.3.1 Let n=3 and m=2. Then

303

2

d'(x)=% X Wi, X X, T WX WoX, + WiX, + W,
=1 =i

_ 2 2 2
S WX EWRXX, TW3RX X T WXy WX, X3+ Wi Xy

WX+ WX, WX, W,

m Example2.3.2 Let n=2 and m=3. Then

2 2 2
rx=Y ¥ ¥ Wi % X X, +d*(x)

=l iy=ip iy=i

_ 3 2 2 3 2
S WX WX X, Wi XX, + Won X, +d 7 (X)

where
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2 2
2 1
d*(x)= 21 2 Wi % X, +d (%)
0=l i=j

. 2 2
= WX E WX, F WX, Fwx twx, + W,
A

The number of terms needed to represent a general quadratic decision

(n+1) (n+2)

function is where n is the original patterns space’s

dimension. It can be shown, that in the case of order m, this number is

_(n+ _(n+m)!.
M(””")"(nmm]" " (23.10)

and it clearly increases fast as a function of » and m. For practical
purposes it is not always necessary to apply all the terms in Eq. (2.3.9). If
in Example 2.3.2 one can construct an appropriate cubic decision function
which does not include quadratic or linear elements, one then needs to
consider only four coefficients, namely wy;;, W15, Wiap, Wass -

The commonly used quadratic decision function can be easily represented
as the general n— dimensional quadratic surface

dx)=x"Ax+x"b+c (2.3.11)
where the matrix A =(a,.j), the vector b =(b1,...,b,,)T and ¢, depend on

the weights w,,w,,w, of Eq. (2.3.6). If A is positive definite, the decision

i g
function is a hyperellipsoid with axes in the directions of the eigenvectors
of A. In the particular case where A is the identity matrix of order n, the
decision function is simply the n-—dimensional hypersphere. If A is
negative definite the decision function describes a hyperhyperboloid.
Thus, it is only A which determines the shape and characteristics of the
decision function.
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PROBLEMS

1. Consider a 3-D pattern space and cubic polynomial decision functions.
How many terms are needed to represent a decision function if only
cubic and linear functions are assumed.

2. Present the general 4-th order polynomial decision function for a 2-D
pattern space.

3. Calculate M(n,m) of Eq. (2.3.10) for 1<n,m<5.
4. Let R’ be the original pattern space and let the decision function
associated with the pattern classes C; and C, be
d(x)=2x! +x} +x,x, +4x, —2x, +1
for which d(x)>0 if xeC, and d(x)<0 if xe_,.

(a) Rewrite d(x) in the form of Eq. (2.3.11).

(b) Determine the class of each of the following pattern vectors:
(1,1,1), (1,10,0), (0,1/2,0).

2.4 GEOMETRICAL DISCUSSION

Since linear decision functions play a significant role in pattern
recognition, it is essential to provide a complete geometrical interpretation
of their properties. Such an interpretation which includes the concepts of
hyperplanes and dichotomies is given below.

2.4.1 Hyperplanes

Let R" be the original patterns’ space and consider a two-class or a
multiclass problem. A linear decision function which separates one class
from another, is determined by an equation such as

d(x)=wx +wx,+...+w,x, +w,, =0 (2.4.1)
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which defines a linear decision boundary. The linear decision function
itself, is the left-hand side of Eq. (2.4.1). For n=2, the linear decision
boundary is a straight line. It is a plane for n=3 and a hyperplane for
n>3. The vector form of Eq. (2.4.1) is

d(x)=wix +w,_, =0 (2.4.2)

where x = (x,,%,,...,x,)" and w, = (w,w,,...,w ).

m  Figure 2.4.1 Basic properties of hyperplane.

Consider now the hyperplane H of Eq. (2.4.2) as shown in Fig. 2.4.1.
Let n be a unit normal vector at some point P of H, pointing to its

positive side. Let y —OP and let x :O_Q denote any arbitrary point on
the hyperplane. Then, the equation of the hyperplane can be rewritten as

T _) T
n - -QP=n -(x—-y)=0 (2.4.3)
or as

n'x=-n'y (2.4.4)
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To compare with Eq. (2.4.2) we normalize the previous equation and
divide it by

“Wo“ =Wl +wi+.. +wH)"?

to get

T
WX w

Tl

"“’0" o "“’0" (2.4.3)

Since Egs. (2.4.4) and (2.4.5) represent the same hyperplane and since n
and w, /”w(,” are unit vectors, we must have either n=w/ ”w(,” or

n=-w, /"wO". But n was chosen to point to the positive side of the

hyperplane, implying

we(y+n)+w,_, >0 (2.4.6)

n+l

and since wjy+w_,, =0 we get w n>0. Therefore

no Mo
”Wo“ (2.4.7)
and consequently, by virtue of Egs. (2.4.4) and (2.4.5)

-w

A+l

n'y=
“Wo“ (2.4.8)

The quantity 'nT y' measures the normal distance D), between the origin

and the hyperplane H . Thus

"Wo" (2.4.9)
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The distance between an arbitrary point R, associated to a vector z, from
the hyperplane, is

D, =|n"(y-2)| = |n"(z-)| (2.4.10)
and by applying Egs. (2.4.7) and (2.4.8) we get

T
Wo

o7

T
wO z+ wn+1

ol

In the particular case w,, =0, the hyperplane H passes through the

D =

z

(2.4.11)

origin, since D, =0.

m Example 2.4.1 Consider the decision boundary

3x,+4x,-5=0

in R*. Here ”Wo” =(3*+4%)"* =5 and the normal unit vector pointing at

T
the positive side of the straight line is n=w, /”w(,” = [%, %] . The
distance of a pattern located at (1,2) from the decision boundary is

3+8-5
5

(34 12) -5

5

\=1.2

a Example 2.4.2 Consider a two-class pattern classification of a
given 3-D pattern set, using the plane

2%, —x,+2x;,-7=0
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as a linear decision boundary. If patterns whose normal distance from the
plane is less than 0.01 are excluded, one should eliminate all the patterns
(3,2, ,) for which

2y, =y, +2y, -7

[

:»2y1—y2+2y3—7 <0.01
3

If a pattern is located at (0.51,0,3), it is excluded since

0.01

’2~0.51—0+2~3—7 (_0.02<
3

2.4.2 Dichotomies

A common numerical approach to estimate the discriminatory potential of
decision functions is to consider the number of possible classifications of a
given set of patterns using these decision functions. Each two-class
classification of a given set of patterns is called a dichotomy. Clearly,
several decision functions may provide the same dichotomy. Each
dichotomy is represented by an ordered pair of its pattern classes (C,C,)

and is therefore counted twice. A dichotomy obtained by a linear decision
boundary is a linear dichotomy.

= Example 2.4.3 Consider a three 2-D pattern set {x,,x,,x,} and

assume that the patterns are not located on one straight line (Fig. 2.4.2).
Using linear decision boundaries, all the possible eight two-class
groupings are attainable. Each of the four decision boundaries yields two
two-class classifications of the set. For example, line 3 produces
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m  Figure 2.4.2 Linear dichotomies for thre¢ patterns.

({x,,x3},{x2 D and ({xz},{x,,x3 }) Thus, we have a total of eight linear

dichotomies.

A
If all the possible two-class groupings, using linear decision boundaries,
were available, the total number of the dichotomies for a given m — pattern
set would have been

R R B

However, this is not the case. Even in the previous example, if the three
patterns are located on a single straight line, the number of dichotomies
drops to six as can be easily seen. In the next 2-D example, no straight
line passes through three patterns, yet certain two-class classifications
using linear decision boundaries are not feasible.

m Example 2.4.4 Consider four regularly distributed patterns {xi}?=1,

i.e. each three patterns are not located on a single straight line (Fig. 2.4.3).
Clearly, a linear decision boundary which separates between x, and

{x,,xz,x3}, does not exist. The total number of linear dichotomies is 14.
Each straight line in Fig. 2.4.3 provides two dichotomies.




42 CHAPTER 2 DECISION FUNCTIONS

m Figure 2.4.3 Linear dichotomies for four regularly distributed 2-D

patterns.
A

m  Definition 2.4.1 An m—pattern set in R" is said to be regularly
distributed, if none of its (n+1)—pattern subsets is located on a

hyperplane in R".
The following result is given without a proof.

w Theorem 2.4.1 Given a regularly distributed m — pattern set in R",
the number of its linear dichotomies is

2§(mi—1), m>n
D(m,n) =
2" , m<n (2.4.13)

In the particular case m =n+1, both expressions for D(m,n) are identical.
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If nonlinear decision functions and boundaries are considered, we can
still maintain the use of linear dichotomies, except that their total may
increase significantly. For example, consider five 2-D patterns regularly

2
distributed, with a total of 2 (5 ;1]=22 linear dichotomies. If we
i=0
decide to use general quadratic decision functions, the dimensionality of
the patterns increases from 2 to 5 (the number of the non-constant terms in
Eq. (2.3.5)) and the number of linear dichotomies - from 22 to

D(5,5)=2°=32.

A large number of applicable dichotomies, increases our chances to obtain
solutions to pattern classification problems, using decision functions.

Let us consider a regularly distributed m — pattern set and generalized
decision functions which transform the original n— dimensional patterns
into N —dimensional ones. The number of linear dichotomies that can be
obtained is D(m,N), compared with the total number of two-class

groupings which is 2" . Thus, the probability for a random dichotomy (i.e.

a random two-class grouping of the pattern set) to be linearly
implementable is

N
2—(m—1)2 [ml—l} m>N
D(m,N =0
p(m,N>=%=
1 . m<N (2.4.14)

Consequently, if the number of patterns does not exceed the new
dimensionality of the pattern space, each two disjoint pattern classes
whose union is the whole pattern set, are linearly separable in the
N - dimensional space.

m  Example 2.4.5 Consider the four 2-D patterns in Fig. 2.4.4. There is
no way that the classes {xl,x3}, {xz,x4} will be linearly separated.

However, by using quadratic decision functions and boundaries, we get
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N=5 and since m=4<5 linear separation in R’ is possible. In the
original space, we simply use a quadratic parabola.

x1

m Figure 2.4.4 A 2-D problem linearly separable only in R’.

'y
If we substitute m =2(N +1) in Eq. (2.4.14), we get
N 2N+1
PN+, M= 3 (N ogremn 22 g )
i=0 ! 2 2 o

Thus, if the number of the given patterns does not exceed 2(N +1), there
is probability of at least 0.5 to find an (N +1)— parameter generalized

decision function that will separate a given two-class groupings of the
given pattern set. Denote a =m/(N +1). The fact that

lim p(a(N+1),N)=1, 0<a<?2 (2.4.16)

N—>yoo

motivates one to define the dichotomization capacity of generalized
decision functions defined by (N +1) parameters as 2(N+1). For

example, the dichotomization capacity of a general quadratic surface in
R" is (n+1) (n+2) as follows from Eq. (2.3.7).
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PROBLEMS

1. Consider the linear decision boundary x, +x, —x, +x, — 2=0 in R*.

(a) Find the normal distance from the origin to the given hyperplane.

(b) Obtain the normal unit vector to the hyperplane which points to its
positive side.

(c) Given a set of patterns, obtain a rule which eliminates all the
patterns that are on the negative side of the hyperplane and are
located at a distance of at least 10 from it.

2. Find all the linear dichotomies for a four-pattern set in R*, where three
patterns are known to be on a straight line.

3. Repeat and solve problem 2 for a five-pattern set where three patterns
are located on a straight line and the remaining two - on a second
straight line - parallel to the first.

4. Obtain a table for D(m,n) of Eq. (2.4.13), for 1<m,n<5.

5. Given a seven-pattern set in R’ is it always possible to separate each
couple of disjoint subsets of three and four patterns using a quadratic
decision function?

2.5 ORTHOGONAL FUNCTIONS

This section is a brief introduction to systems of orthogonal functions in
one and several variables. Orthogonal systems are often used in
constructing decision functions, approximating probability decision
functions, and play an important role in designing pattern recognition
systems.

2.5.1 Univariate Functions

We assume that u(x),v(x) are real-valued integrable functions of one
variable, defined over the interval a<x<b, denoted I=[a,b]. The
function w(x) denotes a nonnegative integrable function over I for which
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f w(x)dx >0

4

m  Definition 2.5.1 The integral

b
(u,v)= L u(x)v(x)dx

is called the inner product of u(x),v(x) over I.

m  Definition 2.5.2 The nonnegative number
172
(u’u)l/z _ (_[b uz(x)dx)

is called the norm of u(x) over I.

(2.5.1)

(2.5.2)

(2.5.3)

m  Definition 2.5.3 The functions u(x), v(x)are said to be orthogonal

over I with respect to the weight function w(x), if

[" wuvxde =0

(2.5.4)

m Definition 2.5.4 A set of integrable functions u (x), u,(x),...,u, (x)

defined over I is said to be an orthogonal system over I with respect to

w(x), if

[ woou,ou, (0dx=A8, , 1i,j<m

Ty

(2.5.5)
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where A, #0 are constants and 5,.j is Kronecker’s delta function defined

as
S, ={ . (2.5.6)
If A =1 forall i, the setis an orthonormal system.

Definition 2.5.4 Is not restricted to finite sets. The extension to the
infinite case is straightforward.

m Definition 2.5.5 A set of integrable functions u,(x), u,(x),...,u, (x)
over I, is said to be linearly independent if the relation

i (x) + cuy(x) +. .+ cu, (x)=0, a<x<b (2.5.7)
holds if and only if ¢, =¢, ... =¢, =0.

The following result is a direct consequence of Definitions 2.5.4 and 2.5.5
m  Theorem 2.5.1. An orthogonal system is linearly independent.

Proof.

Let u(x), u,(x),..., u,(x) be orthogonal over I with respect to w(x)

such that Eq. (2.5.7) is satisfied for some ¢,,c,,...,c Multiplying this

m*

equation by w(x)u;(x) and integrating over I provides

m b _
]z:; [ ew(x)u(x)u;(x)dx=0 2.58)
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and by virtue of Eq. (2.5.5) we get

cA =0 (2.5.9)

Since A, #0 we must have ¢, =0 which completes the proof.

m Example 2.5.1 The functions {lI, cos(mx), sin(mx)}, m>1 are

orthogonal over the interval [0, 27] with respect to w(x)=1. The proof

is left as an exercise for the reader.
' N

An orthogonal system can be easily replaced by an orthonormal one. We
simply define

. 1
 (x) = JA (%) (2.5.10)
The new functions are clearly orthogonal to each other and also

I: w(x)u: (x)u: (X)dx= =1

(2.5.11)

1 1
Jaat

s Definition 2.5.6 Let f(x) be a piecewise continuous function and

{u, (%), uy(x),.. } a system of functions, defined over the same domain. If

lli_)rg u(x)=f(x), f iscontinuousat x
(2.5.12)
lim u, (x) =% [f(x+) + f(x_)], f hasa jumpat x
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the sequence {u,.(x)} is said to approximate f(x) arbitrarily closely in the

mean.

m Definition 2.5.7 A system of functions § defined over a domain D
is called complete, if for any given piecewise continuous function over D,

a sequence {ui(x)} whose elements are finite linear combinations of the
elements of § can be found, such that {u,.(x)} approximates f(x)

arbitrarily closely in the mean.

s Example 2.5.2 The system of Example 2.5.1 is known to be complete
over the interval [0, 27].

A

One should note that a complete system of functions may not be an
orthogonal system.

2.5.2 Multivariate Functions

In this subsection we will present a simple mechanism for constructing a
complete orthogonal systems of multivariate functions.

Let {ul(x),uz(x),...} be a complete orthogonal system over the interval

[a,b] with respect to a weight function w(x). The next result relates to
2-D systems.
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m Theorem 2.5.2 The system of functions
{ ()}, 1<, (2.5.13)

defined over the rectangle a <x,,x, <b is a complete orthogonal system
over this rectangle with respect to the 2-D weight function

W (x) = w® (x,,1,) = w(x,) w(x,) (2.5.14)

The proof of orthogonality is simple. Indeed, let v, (x,,x,),v,(x,x,)
denote arbitrary 2-D functions defined as

Vi (0) = v, (%, %,) = u; (x)Ju; (x,)
(2.5.15)
vi (%) = v (x,%,) =up (x)u;(x,)

Then

b b @)
L L w7 (X, X, v, (X, X, v, (X, X, )dx,dx,
:.[: .[: w(x, ) w(x u; (x)u; (X, Dy (x)u - (x, )dx,dx,

= (J: w(x)u, (x)uy(x, )dxl) (J: w(x, u; (x)u (X, )dxz)
=3, 0

The result vanishes unless i =1, j= j° which consequently implies (Eq.

(2.5.15)) k=1. This completes the proof of the orthogonality of the new
system. Showing completeness is beyond the scope of this book and is
omitted.

The extension of the scheme defined by Egs. (2.5.13) and (2.5.14) to the
n —dimensional case is straightforward. We define a system of functions

{ui, (x)u;, (x,)....u; (x")}, 1<i,6,,...,0, (2.5.16)
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with an attached weight function
w™ (x) = w(x,)w(x,)... w(x,) (2.5.17)

and choose any one to one correspondence between the vectors
(iyiy,...1)", 1<isiy,...,7, and the positive integers. Let k and [

correspond to (i,i,,...i,)" and (i/,i,,...i)" rtespectively. Then, it is easily
seen that the functions

Vv, (%)= U, (x, )u,.2 (X,)...u, (x,)
(2.5.18)
v (x) =u, (xl)u,.; (X%,)...u; (x,)

satisfy
.[: .[: ,[j) w™ (x)v, (x)v,(x)dx = §, (2.5.19)

where dx =dxdx,...dx, and the integration is carried over the
n— dimensional hypercube

a<x;<bh, 1<i<n (2.5.20)
The system defined by Eq. (2.5.16) is also complete.

= Example 2.5.3 Starting with the system given in Example 2.5.1 we
get the 2-D system which includes the functions 1, cos(mx,), sin(mx,),

cos(mx,), cos(mx,) ,cos(nx,) cos(mx,) , sin(nx,) sin(mx), sin(mx,) ,
cos(nx,) sin(mx,) sin(nx,) for arbitrary m,n2>1"
7'y

Several systems of orthogonal polynomial functions are commonly used in
pattern recognition. The most popular are the Legendre, Laguerre and
Hermite polynomials.
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Legendre Polynomials
The Legendre polynomials p,(x), n =0 defined by
po(x)=1 p(x)=x (2.5.21)
and the recursive equation
np,(x)—2n—Dxp,_(x)+(n—Dp, ,(x)=0, n=2 (2.5.22)

are orthogonal over the interval [—1, 1] with the weight function w(x)=1.

Laguerre Polynomials
The Laguerre polynomials L (x), n=0 defined by

Li(x)=1, L(x)=—x+1 (2.5.23)
and the recursive equation

L(x)-(2n—-1-x)L_,(x)+(mr—1’L,_,(x)=0, n>2 (2.5.24)

are orthogonal over the semi-infinite interval [O,oo) with respect to the

weight function ™, i.e.

J, € LI (e =3, (2.5.25)

a Example 2.4.4 By substituting n =2 in Eq. (2.5.24) we get
L,(x)= (3= x)L(x) + Ly(x) = 0

i.e.
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L(x)=@-x)(1-x)-1=x>—4x+2
For n=3 we have
Ly(x)= (5= x)Ly(x) + 4L (x) =0

i.e.
L(x)=(5-x)(x*—4x+2)—4(—x+1)=—x"+9x> —18x +6
')

m  Example 2.5.5 The 2-D orthogonal Laguerre polynomials of order
<2 are:

1, —x,+1, X2=4x,+2, —x,+1, (=x, +D)(~x,+1), x/ —4x, +2

and they are orthogonal over the semi-infinite rectangle
0<x, <o, 0Zx, <o withrespect to the weight function

wP(x,x,)=e e = M

Hermite Polynomials

The third frequently used orthogonal system is the Hermite system defined
by

Hy(x)=1, H(x)=2x (2.5.26)
and the recursive equation
H(x)-2xH _(x)+2(n—-1)H _,(x)=0, n=2 (2.5.27

These functions form a complete orthogonal system over the infinite

. . . _ 2
interval (—eo,c0) with respect to the weight function e™* .
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The complete orthogonal systems introduced in this subsection are
often used for representing or approximating generalized decision
functions. The ability to approximate a given function by a finite linear
combination of orthogonal functions, follows from the completeness of the
orthogonal system to which these functions belong. While an infinite
number of functions may be necessary to fully represent the given
function, only a small number of these functions are usually needed to
approximate it within a given tolerance.

PROBLEMS

1. The system {1, cos(mx), sin(mx)} ~_; is orthogonal over the interval

[0, 2] with respect to the weight function w(x) =1. Normalize the

system, i.e. multiply its functions by appropriate coefficients to get an
orthonormal system.

2. Find all the 2-D Legendre orthogonal functions of order <3.
3. Find all the 4-D Hermite orthogonal functions of order <3 .

4. Given a 1-D orthogonal system, write a procedure to obtain a 1-D
orthonormal system with respect to w(x)=1.

5. Repeat and solve problem 4 for an n —dimensional orthogonal system
which was initiated by a 1-D system using Eq. (2.5.18).




3 CLASSIFICATION BY
DISTANCE FUNCTIONS
AND CLUSTERING

3.1 INTRODUCTION

If a pattern is simulated by a vector in R", then the statement ‘x and y
are similar’ simply means that the two vectors are ‘close’, i.e. that the
distance between them is ‘small.’ Thus, if ¢, and C, are classes of
patterns such that patterns at each class are ‘all similar to each other,” we
may expect the patterns to be distributed for example as in Fig. 3.1.1 but
not as in Fig. 3.1.2.

m Figure3.1.1  Two classes — each consisting of ‘similar’ patterns.
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Still, an appropriate classification problem may be geometrically
represented as in Fig. 3.1.2. Suppose for example that every incoming
pattern is represented by an ordered pair of numbers x =(x;,x,) such that

0<x, £0.75 and that there are only two types of patterns, classified as
follows:

o=x—-x,~1=>xe(
(3.1.1)
o=x+x,~1=>xeC,

Such a case is illustrated in Fig. 3.1.2.

X1

m  Figure 3.1.2  Classes with non-similar patterns.

While in Fig. 3.1.1 each class clusters around a single vector - the cluster
center, each of the classes in Fig. 3.1.2 includes patterns which are not

similar to each other in R*>. For example, the patterns xV =(02,-0.7)
and x® =(0.71,—025) will certainly be classified in C, since they yield
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(a,0,)=(09,-05) and (0.96, 0.47) respectively. Yet, the distance

between the patterns in R’
¢ - x| = ((02-0.71)>+(-0.7+0.25)*)"* = 0.68

is not small at all.

If a pattern classification problem is of the type portrayed in Fig. 3.1.1,
i.e. if each class is a cluster and can be represented by a single prototype or
typical value, the classification can be performed simply by measuring the
distances of an incoming pattern from all the prototypes. If however, the
existing classes do not cluster around single prototypes, the classification
problem becomes significantly more difficult. For example, consider the
single incoming pattern x and the two existing pattern classes in Fig.
3.1.3.

C1

m Figure3.1.3 A complex decision making problem.

Although we may be tempted to classify x in C, since

min"x — y” < min"x — y"
yeC, yeCy

we cannot rule out the opposite choice, since for example the average
distance from x to C, is shorter than from x to C,. However, unless we

have a priori information for example such as in Eq. (3.1.1), classification
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in a case as illustrated in Fig. 3.1.3 can be complex and possesses a
substantial degree of uncertainty.

In this chapter the proximity of an incoming pattern to the patterns of
all the existing classes, will serve as a sole measure in determining its
pattern class. Since each pattern classification requires that a minimum
distance is obtained, we will refer to this approach as minimum-distance
classification procedure. Such procedures are expected to perform
efficiently as long as each pattern class can be represented by a single
prototype or by several prototypes around which the patterns cluster.

3.2 MINIMUM-DISTANCE CLASSIFICATION

We will first discuss the simple case, where the patterns of each class are
very close to each other. In this case, each class can be represented by a
single prototype.

3.2.1 Single Prototypes

Let C,,...,C, denote m pattern classes in R", represented by the single
prototype vectors y,,...,y, respectively. The distances between an
incoming pattern x and the prototype vectors are

D =lx—y|=(x-y)"(x-y))", 1<i<m (3.2.1)

and a minimum-distance classifier will classify x at C, (or to yj) for

which D, is minimurm, i.e.

D, =minfx—y|, 1<i<m (3.2.2)

If the minimum is achieved by several j’s, x is classified at the first Cj

(for example) for which a minimum is found, or not classified at all.
Minimizing D} is equivalent to minimizing D, but is more convenient.
Indeed
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D} =(x-y) (x—y)=x"x-2x"y,+y"y,

and since the constant x'x can be removed, we should only minimize
T T . ..
—2x"y,+y"y, or instead maximize

2x"y ~y"y,, 1<i<m (3.2.3)

Thus, we can define
T L ] 324
d(x)=x yi_Eyi y,, 1<i<m (3.2.49)

as decision functions and apply the classifier

xeC iff d(x)>d;(x),j#i (3.2.5)

The decision functions are linear, i.e.

d(x)=w/x,1<i<m (3.2.6)

where x is the augmented vector (x,,x,,...,X,, )" and
W, = (W, Wy oW, W) » 1<i<m are determined by

in’ i,

Y =i> Yigree s Vi) 5 15i<m as

3.2.7
W, =—ty 'y, 1<i<m

iin+l T 2

In the case of two pattern classes the decision boundary associated with the
minimum-distance classification is
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1 1
dlz(x) :dl(X)—dz(X) :xT()ﬁ _yz) _Eylryl +Ey27y2 =0 (328)

This is a hyperplane in normal direction to the vector y,—y,. By
substituting x =(y, +y,)/2 in Eq. (3.2.8) we get

1 T 1 T 1 T
d,(X)=—+Y) O =)y ¥ +75.5,=0
2 2 2

The decision boundary is therefore the hyperplane which is perpendicular
to the vector connecting the two prototypes and bisects it (Fig. 3.2.1).

a Figure 3.2.1 Minimum-distance classification - two single prototypes.

If more than two classes exist, the decision boundaries are no longer
hyperplanes but piecewise linear.

= Example 3.2.1 Consider a three-class single-prototype classification
problem in R® with prototypes y,,y, and y, representing the classes
C.,C, and C,.
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s Figure 3.2.2  Piecewise linear boundaries - three prototypes.

The decision boundaries for y,,y, and y, are the piecewise linear curves
AOE, AOD and EOD respectively. Unless a pattern is located on a
decision boundary, it is uniquely classified in one of the existing classes.

[N

3.2.2 Multiprototypes

We will now discuss the case where each class consists of several clusters.
Each cluster is represented by a single prototype-the cluster’s center, and
therefore each class is characterized by a finite number of prototypes. For
example, a two-class problem where C, has the prototypes y, and y, and

the second class C, consists of three prototypes y,,y, and y, is
illustrated in Fig. 3.2.3.

In the case of multiprototypes, the minimum-distance classification
represented in the previous subsection, can be implemented as follows.
Let C,,...,C, denote the various classes of a multiclass-multiprototype

problem, and let C, include the prototypes y”, y,...,y"™ for 1<i<m.

The distance of an incoming pattern z from C, is defined as
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m  Figure 3.2.3  Two-class case; multiprototypes.

D, = min

1<j<n;

7 — YE”H (3.2.9)

As previously discussed, D, can be found by maximizing
2y =Ly yP for 1<j<n. Let the maximum occur for
J = j(i,z). Then the decision functions for this particular z are

d.(z)=z2"(p ")y Y4 1<i<m (3.2.10)

and z is classified in C, if and only if

a’,.(z)>a’j(z) , forall j#i 3.2.11)

= Example 3.2.2 Consider a three-class problem in R*> where each
class is represented by its prototypes as follows:

G 1,0, (LD
C, : (0,),(3))
G : (1,2), (0,0), (-1

Given the incoming pattern z = (1,-1) we get
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jL =1,y =107
j@=1,y/* =01"
jG2)=2,y/%7 =00

and the decision functions are

d,(x) = (x,x,)(1,00" —=(1,0)(1,0)" =x, -1

d,(x) = (x,%,)O,D" = (0,)(0,)" =x, -1
d,(x) = (%,%,)(0,0)" —(0,0(0,00" =0

and the decision boundaries are

dlz(X) :a’l(x) —dz(x) =x—-x=0
dy(x)=d,(x)—d,(x) =x, —%:0

dy (x) = dy(x)— d, (x) :%_Jﬁ =0

1 3
Since d,(z) =5 d,(z) = - d,(2) =0 we classify y € C; (Fig. 3.2.4).

X2

da1(x)
1)
.Y§ d12(x)
ya(a). ¥ ‘o . ¥R
e ! d23(x)
Vy1(1) x1
n]

m Figure 3.2.4 Minimum-distance classification;
three-class-multiprototypes.
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As previously stated in Example 3.2.1, the minimum-distance classifier
using single or several prototypes, classifies every incoming pattern in one
of the existing classes, i.e. there are no indeterminate regions. This is an
immediate consequence of the specific linear boundaries imposed by the
minimum-distance approach.

A classifying algorithm based on the minimum-distance approach, for a
multiclass (MC) multiprototype (MP) problem, is given next.

Algorithm 3.2.1.

(A minimum-distance classifier: MC-MP). Given a set of classes and

prototypes in R" this algorithm uniquely classifies an arbitrary incoming

pattern using the minimum-distance approach with Euclidean norms.

Input: n— the problem’s dimension.
m— the number of classes.

n, — number of prototypes for the i —th class for 1<i<m.

{yP},1< j<n — the prototypes of the i-th class for
, : p. yp
1<i<n

X — an incoming pattern
Output: k— the number of class into which x is classified.

Step 1. For i=1,2,...,m find j(i,x) which yields

y 1 s ik . . .
X7y _E(yl_(/(z, DYy max{xr % —%(y,-‘”)ry,“”}

1<j<n;

Step 2. Find k& which satisfies
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xTy,E’ ) (ykj‘ )T ) _max{xryu) (y(J ))T (J )}
where j, = j(i,x) and stop.

A subroutine MCMP which incorporates algorithm 3.2.1 is given in
the appendix.

3.2.3 Nearest-Neighbor Classification (NN)

Consider the case of m classes {Ci} i and a set of N sample patterns

{ yi} Y, whose classification is a priori known. et x denote an arbitrary
incoming pattern. The nearest neighbor classification approach classifies

x in the pattern class of its nearest neighbor in the set { yi} oy, if

(3.2.12)

le~3,[= minfx-y]

1<isN
then x € C;. This scheme which is basically another type of minimum-

distance classification, can be modified by considering the k nearest
neighbors to x and using a majority-rule type classifier.

» Example 3.2.3 Consider a two-class problem in R®. Assume the
following patterns to have a priori known classification as follows:

(1,1),(2,3),(2,),(2,2) e C
(4,0),3,-1,3,HeC,

Using NN classification we see that the nearest neighbor to x =(2.2,0) is
(2,1), and consequently x e C;. If we classify by the three nearest
neighbors, we find them to be (2,1) (3,1), (3,—1). Since two out of three
patterns are in C, sois x. This is a simple case which demonstrates how
two classifiers based almost on the same principle may lead to different
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results. The reason is of course that the particular x is located at a region
for which classification is not at all clear and unique.
A

The next algorithm is based on the nearest neighbor classification
approach.

Algorithm 3.2.2.
(A minimum-distance (MD) nearest neighbor (NN) classifier: MD-NN).

Input: n— the problem’s dimension.
N — the number of pre-classified patterns.
m— the number of pattern classes.

(x;,J;), 1<i< N—N ordered pairs, where x, is the i —th
pre-classified pattern and j, — its class
number (1< j, <mfor all i).

k — the order of NN classifier (i.e. the k closest neighbors
to the incoming patterns are considered).

X — an incoming pattern

Output: [— the number of class into which x is classified.

Step 1. Set
S :{(xi’ji)} iN=1

Step 2. Find (y, j,) € S which satisfies
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ly - x| =min lz~x|, z.pes

Step 3. If k=1 set [=j, and stop; else initialize an

m — dimensional vector IC:
IC(E)=0, i # Jos IC(j) =1

and set S = S—{(y,jo)}-

Step 4. For i, =1,2,...,k—1 do steps 5-6.
Step 5. Find (y, j,) €S such that
”y—x”: min |z—-x||, (z,j)es
Step 6. Set IC(j,) = IC(j,)+1 and S =S—{(y, )}
Step 7. Set I =max{IC(i)}, 1<i<m and stop.

A subroutine MDNN which incorporates algorithm 3.2.2 is given in
the appendix.

PROBLEMS

1. Consider a four-class single-prototype problem in R*, with prototypes
1D, (-1,-1), (-=1,1) and (0,0). Sketch the four decision regions
using the minimum-distance approach.

2. What are the decision regions in problem 1 if instead of four classes
we consider two classes C, and C, just that (1,1), (0,0) are in C, and
(-1,-1), (=L in G,.
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3.

In view of problems 1 and 2, derive a general conclusion with regard
to single-prototype and multiprototype problems.

Let the patterns (0,3), (0,2), (0,1), (0,0), (-1,0), (-2,0) in R®
belong to C,, and (1,3) (L1), (1,0), (0,-1) belong to C,. Denote by
k— NN a classifier based on the minimum-distance approach and the

majority rule, applied to the k nearest neighbors of an incoming
pattern.

(a) Classify the pattern (1,4) using 1- NN, 3— NN and 5— NN
schemes.

(b) Explain the results.

Consider a two-class classification problem where a 1— NN classifier
is applied over sample patterns of a set § :{yl, Yo, ¥, Whose

classification in known. Let x be an incoming pattern. Is it
reasonable to add x to S and apply the new set for further
classification?

Demonstrate your answer!

Consider a two-class classification problem where the patterns of C,
and C, are equally likely to occur and let their regions R, and R, be
such that for arbitrary x,,x, € R, and y,, y, € R, the inequalities

e —xa <l =l Iy = val < - v

always hold. Let {zi} Y, denote sample patterns for which a k— NN

classification is applied for incoming patterns. Compare the error
probabilities of 1 — NN and k— NN classifications.
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3.3 CLUSTERS AND CLUSTERING

Determining the prototypes or cluster centers, is a major task in designing
classifiers which are based on the minimum-distance approach. Given
initial data (i.e. patterns), we will analyze several approaches for clustering
it. Prior to introducing pattern-clustering algorithms, we must define some
measure of similarity between patterns, by which we decide whether or not
two patterns x and y are members of the same cluster. A similarity

measure O (x,y) is usually defined, so that the principle

limd (x,y)=0 as x > y (3.3.1)

holds. This is the case for example, if the patterns are in R" and if we
define

o(x,y)= ”x —y” (3.3.2)
If x is a pattern which is expected to be normally distributed, the
similarity is often defined as

5(_1:,#):“1:—#“(: (333)
where p is the population mean, C - its covariance matrix, and

||x—ll”C=(x—ll)TC_l(x—ll) 3.3.4)
is the Mahalanobis distance.

Once a measure of similarity is chosen, the next step is obtaining
clustering procedure that will create the clusters and assign each given
pattern to its cluster. Although a clustering algorithm may be completely
based on heuristic ideas, i.e. rules of thumb, intuition etc., it usually
includes optimizing some performance index. Such an index for patterns

in R", is for example

=% 3 |x-uf (3.3.5)

i=1 xeC;

where C,, 1<i<m denote the various clusters and p, 1 <i<m are the
clusters centers - usually defined as the arithmetic means, i.e.
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(i)

; (3.3.6)

M__z

K= x

1
N, %

.
T

()

where x ;

, I<j< N, are all the patterns in C,. Unconditional
minimization of I is definitely not our objective. Otherwise we can
simply define each pattern as a new cluster and get (N1 +N2+...+Nm)
clusters with I=0. Clearly, one would like two patterns x and y for

which ux— yu is less than some given threshold, to belong to the same

cluster. At the same time it would be desirable to also decrease I.
Another performance index is given by

, = 1 2
r=y [F x’gci”x—y” ] (3.3.7)

i=1 i

Again, this is a quantity which we would like to minimize under certain
constraints. If squares of distances between x and y of different clusters

are considered instead, the goal is then to maximize the performance index,
subjected to appropriate constraints.

3.3.1 Threshold Order-Dependent Clustering Algorithm

In this subsection we present an exceptionally simple clustering algorithm
and demonstrate both its applicability and limitations. Let us consider a

set of sample patterns in R"
S={x,, %5, xy} (3.3.8)

which need to be clustered, i.e. we search for cluster centers around which
the data clusters. The measure of similarity is the Euclidean norm, and
some threshold quantity ¢ which determines whether two patterns are
assigned the same cluster, is prefixed.
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Processing the data starts at x; and progresses through x,,x,,... until
it ends at x, . Initially there are no clusters and we choose y, = x; as the

first cluster center. If ||x2— y1||<t we assign x, to the first cluster.
Otherwise a new cluster centered at y, = x, is introduced. Assume that
the clusters centered at y,,y,,...,y, already exist and include the patterns
X, X,,...,x, (obviously k<I). The next pattern to be processed is x,,,.
If

|

x,,, cannot belong to any of the existing clusters and a new cluster

X -y |2t 1< i<k (3.3.9)

centered at y,,, = x,,, is created. Otherwise, we find j, between 1 and k

considering only those j’s that satisfy ”.\c,+1 -y j"< t, and assign x,,, to

for which
(3.3.10)

X~ Y ”

513, | =min]

yjo'

m Example 3.3.1 Consider six patterns in R? as shown in Fig. 3.3.1. Let
the threshold for similarity (defined by the Euclidean norm) be 1.5.
Following the Threshold Order-Dependent (TOD) algorithm, we define x,

as the first cluster center, i.e. y, = x, =(L1)". Since ”.\c2 —x1|| =515
we get y, = x, =(2,3) . The next pattern x, satisfies ”J\c3 - y1|| =1<15 and
||x3 - y2|| =2>15. Consequently, x, belongs to the cluster centered at y,.

The distances of x, from y, and y, are V13 and 2 respectively, i.e.
¥y, =x,=(4,3). The remaining patterns x, and x,, are equally close to
y, and y,. Since both distances are V2 (< 1.5), the patterns are assigned
to the former cluster around y,.
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Z1

m Figure3.3.1 Clustering six ordered patterns.
A

The TOD algorithm is not only simple and explicit (non-iterative) but
also requests processing each pattern only once. Its disadvantages are
being dependent on the threshold ¢, and even more - on the patterns’

order.

m  Example 3.3.2 Consider the previous example with the patterns
reordered as in Fig. 3.3.2.

X6 X3 1

m Figure3.3.2  Classifying the reordered patterns.
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The number of the clusters remains three, but the patterns’ distribution
among the clusters is different.
L)

Usually in order to obtain meaningful clustering of the given data
using TOD, extensive experimentation is essential, using several
thresholds and various arrangements of the data. However, this leads to
additional computations which spoils the main attractive feature of the
algorithm.

3.3.2 The Max-Min Distance Method

The Max-Min Distance (MMD) method is another clustering procedure
based on the Euclidean norm concept. This algorithm first determines all
the cluster centers. Consider the data set given by Eq. (3.3.8) and assume
that at least two clusters are expected to exist. We prefix a threshold value
t (see below) which at each step determines whether a new cluster should
be created.

Let y,,¥,,..., ¥, be the existing cluster centers. Denote the arithmetic

mean of the distances between the centers by a and let b be the data point
most likely to be chosen as the center of a new cluster. If the quantity

1<i<k (3.3.11)

§= rnin”b -y

’

is less than fa then no new cluster center is created, and this part of the
process terminates. Otherwise we choose y,., =b and continue. After all
the cluster centers have been found each remaining sample is assigned to
its nearest cluster center. Finally, the cluster centers are adjusted so that
each center is the arithmetic mean of the cluster’s samples. The complete
algorithm based on the max-min distance method is given next.
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Algorithm 3.3.1.

(A maximum-minimum clustering procedure: MMD). Given a set of
samples in R", whose distribution suggests the existence of at least two

clusters, this algorithm determines all the reasonable cluster centers (based
on some threshold parameter) and classifies the samples using a minimum
distance classifier.

Input: n— the problem’s dimension.

m— the number of samples.

X ={x,}, 1<i<m—the given samples in R".

t— a threshold value which determines whether a new
cluster should be created.

Output: k — the number of cluster centers found.
{y;}, 1< j <k —the cluster centers.

{mj}, 1 < j <k —the cluster sizes.
{l;}, 1<i<m;—the indices of the original samples which

belong to the j—th cluster, 1< <k.
Stepl. Sety =x, y,=x,, h=1, L,=j, where
i | =maxle -l
Set k=2, a= m (arithmetic mean), where 1<, j <k,

i#jand X'=X-{y,5}.

Step 2.  Find j, 1< j, <k and x;, € X’ such that

d :”x,.0 —yjoll =max min ||x; —yj”

xex 1Sj<k
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Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

If d <ta (no more clusters) go to Step 4; otherwise go to Step
3.

Set ke—k+1, y,,, =%, =iy, X'« X' —{y,,,} and go to
Step 2.

Set m; =1, 1<j<k.

Foreach x, € X’ find j:1< j <k for which

X — .”:min
”’ Y 1< j<k

X; —yj||

andset m; «~m;+1 and [, ;=i.
For 1< j<k replace y; by (x, +x, +...+x, )/m,.

m:

For 1< j <k output yj,mj,{lij} ,1 and stop.

A subroutine MMD which incorporates algorithm 3.3.1 is
given in the appendix.

m  Example 3.3.3 Consider the data set in Fig. 3.3.3 with the threshold
parameter ¢t =0.7. This is a 2-dimensional problem in the z, —z, plane.

By definition y, = x; and y, = x,,. The max-min distance search provides

x; which satisfies

3ﬁ:||x7—y1||:maxmin||xi—yj ,i#LIL 1< <2
L 7




76 CHAPTER 3 DISTANCE FUNCTIONS

Here a:||y1—y2||:6, ta=042 and 3v2>042 ie. y;=x,. The next
implementation of the max-min distance search yields x,(orx,), for
which

22
X6 X7 Xs
.
X5
X10 X114
X1
. .
B x X9 71
X2

m  Figure 3.3.3  Clustering using max-min distance method.

V5 =], - y|=max minfx, - y | i #1117, 1< j<3
! J

Now a=(6+3v2+312)/3=4828, ta=3380 and v/5<3380, .. the
process terminates with three clusters. Any other arbitrary remaining
sample is assigned to its nearest cluster center. The final clusters are
therefore:
C = {xl,xz,x3,x4} , G = {x“,x9,x10} , G= {xwxs’xe’xs}
and the final cluster centers:
_(01 T _[E é]T _[l E]T
yl_ ’) ’y2_ 3’3 ’y3_ 434
4

While the MMD algorithm requires more computations than the TOD
procedure, the result using MMD depends only on the first sample x,. If
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we apply the TOD scheme, the outcome will depend on the complete
ordering of the samples.

The common feature of the TOD and the MMD algorithms is that both
procedures are almost completely heuristic and are highly motivated by
intuition. The next algorithm although partially heuristic, already includes
the process of minimizing a performance index.

3.3.3 c-Means Iterative Algorithm (CMI)

Given a data set X :{xl,xz,...,xm} we assume. the existence of ¢

clusters whose centers are initially approximated by y*,y3",...,y. The

process of finding the final values of the cluster centers is iterative. At
each step all the patterns are classified and each center is adjusted using a
minimizing scheme of an associated performance index which replaces the
cluster center by the arithmetic mean of the cluster’s samples. The process
terminates when there is no difference between two consecutive iterations.

Algorithm 3.3.2.

(A c-Means iterative procedure: CMI). Given samples in R" which
presumably group around c¢ clusters and initial approximations to the
cluster centers, this algorithm calculates the centers iteratively, minimizing
at each iteration a set of performance indices.

Input: n— the problem’s dimension.
m— the number of samples.

c¢— the number of clusters.
X ={x,};, 1<i<m— the given samples in R".
N — maximum number of iterations allowed.
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Output: {¥,;}, 1= j<c— the final cluster centers.
{m;}, 1< j<c—the cluster sizes.
{;}, 1<i<m; —the indices of the original samples which
belong to the j cluster, 1< j<c.
it — the number of iterations needed for convergence.
Step 1. Initialization: set Yo=X,, 1<j<c and it=0.
Step 2.  Classify {x;]7, about the cluster centers {y,}’., using the
minimum distance classifier. For 1< j<c¢ denote by {x, e
the samples which cluster around y , .
Step3. For 1<j<c obtain y, which minimizes the performance
index
my 2 "
[@=2le—=x,] »z€R (3.3.12)
Basic calculus implies
Yj :(Z}xlq ]/mj (3.3.13)
i.e. y; is the arithmetic mean of {x, V. Set it «—it+1.
Step4. If

Y=Y, 1Sj<c (3.3.14)

output y,,m;,{x, 12, 1< j<c; it and stop. Otherwise, if

it>N output ‘number of iterations exceeded’; else set
Yo=Y, and go to Step 2.
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A general optimal choice of ¢ and y,, as well as practical sufficient

conditions for convergence of this algorithm are not known, except in
obvious cases such as samples that are spread among disjoint cells which
are sufficiently apart from each other.

A subroutine CMI which incorporates the ¢ —means algorithm is given
in the appendix.

m  Example 3.3.4 Consider the samples in Fig. 3.3.4. Assume c¢=2.
The initial approximations for the two cluster centers are y,, = x, = (2,3)"
and y,, =x, =(1,2)". The samples in the first cluster are x,,x,,X,X,,x,
while x,,x, belong to the second one. The first iteration provides the new
cluster centers y, =(34,18)", y, =(10,15)". Since convergence is not

obtained, the samples are again classified with respect to the new cluster
centers. Now x,,X,,x, are in the first cluster and x,x,,x,,x, are in the

second. The cluster centers are adjusted to y, =(4.333,1.333)",
y,=(1520)". The next classification yields the same partition of the
samples, i.e. the same y, and y, and the process terminates after three

iterations.

Z2
X1
.
X2 X5
. . 4
X4
. . .
X3 X6 X7 Z1

m Figure3.3.4  Applying c—means algorithm with ¢=2.
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In the next example more iterations are needed for convergence.

m  Example 3.3.5 Consider the samples shown in Fig. 3.3.5 with the
assumption ¢=4. Convergence is obtained after nine iterations and the

cluster centers are y, =x,, y, = X5, y, =X, and y, =(1.333,1.222)",

6 [ z2
4 k 3
X3 X8 X2 X7
X12, X8 _X11

‘ . X4 X10 , z
-6 -4 -2 e 2 4 6

X

%

m Figure 3.3.5  Applying the ¢ —means algorithm with ¢=4.

The next algorithm is most commonly used in many applications. Like
the ¢—means it determines the cluster centers iteratively as arithmetic
means of their samples. In addition it incorporates several heuristic
procedures which have been successfully implemented in an extensive
number of applications. The user of this algorithm - ISODATA (Iterative
Self-Organizing Analysis Techniques) must have a clear idea about the
desired number of clusters. The final number of clusters will not exceed
twice this value, or decrease below one half of this number.




3.4 THE ISODATA ALGORITHM 81

3.4 THE ISODATA ALGORITHM

Consider the samples X :{x,,xz,...,xm} with ¢ initial cluster centers

Yis¥aes Yoo
Algorithm 3.4.1.

(A general comprehensive iterative clustering algorithm: ISODATA)

Input: n— the problem’s dimension.

m— the number of the given samples.
X ={x,}, 1<i<m— the m samplesin R".

Y={y}, Z={z,},1<i<c—- two identical sequences

which contain the initial
cluster centers.

k— the desired number of clusters.

m, — minimum allowed size of a cluster.
o , —standard deviation threshold (for splitting).

A — splitting fraction: 0 <A <1.
d,— lumping threshold.

I— maximum number of pairs of clusters which may be
lumped simultaneously.

€¢— agiven tolerance.

N— maximum number of iterations allowed.

S, L—vectors of size N. Initially
S(@)=L3GE=2, 1<i<N

After the i—th iteration, set S(i)=0 or L(i) =0 if splitting
or lumping starts respectively. If splitting or lumping is
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completed  successfully, set S(i)=1lor L@)=1
respectively.

NC — indicates a change in the set of cluster centers during
the classification: Step 2 - Step 4.

Output: Y ={y,}, 1< j <c— thefinal cluster centers.
it — the number of iterations needed for convergence.

Stepl. Setir=0; S@=L3G=2, 1<i<N.

Step2. Setc’'=c¢, z;=y;, 1<j<cand NC=1.

Use the existing cluster centers an8l the minimum-distance
principle to classify the samples, i.e.

xeC, ifffe-y,|sl-y], 1sisc, iz; (3.4.1)
for all x € X, where C; is the cluster centered at y, with m;
samples {x; }7;.

Step 3.  Each cluster center with fewer than m; samples is discarded.
Its elements are distributed among the remaining clusters and
weset c¢—c—1.

Step 4. For 1< j<c update the existing cluster centers by

L3,
yj mj 5 L (342)
If c=c¢" and 2||yj ——zj||<£ set NC=0.
i=l

Step 5. For 1<j<c calculate the average distance of x, , 1sism,

from y;:
d=L% “x _
IS e s Y (3.4.3)
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Step 6.

Step 7.

Step 8.

Calculate the global average distance d of all the m samples
from their respective cluster centers, i.e.

:—2’” d; (3.4.4)

m j=1

This is the end of an iteration. Set if «ir+1.

If it=N goto Step 13. Otherwise

() If c< F—Zﬂ} go to Step 8 (splitting a cluster).

(b) If [k;1]< ¢ <2k and it is odd, go to Step 8.
(c) If ¢ 22k go to Step 10 (lumping clusters).

d) It [kz 1]<c< 2k and it is even, go to Step 10.

Trying to split. Set S(ir)=0. For every cluster denote the
cluster center and the cluster samples by

@ (2 (n) :
y (y] ’yj L ’yJ ) ISJS'C (3.4.5)

(1) (2) (n)) :
x,kj (x,k ,x,U e )C,‘L IS] <c, lSkSmj (346)

respectively. Calculate the standard deviation vectors

T
o, (a“> ... 0'(.")) L 1<j<e (3.4.7)

)

where

m
2’ (x(o <.>)
lk] y]

o = =l ,1<j<c, 1<i<n (3.4.8)
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Step 9.

Step 10.

Each ¢! is the standard deviation of the j-—th cluster

population along the i—th coordinate. Denote

6?"’ = max O'i.i), 1<i<n (clearly i, dependson j).

For j:1<j<c if 6§i°) <0, do not split the j—th cluster;

otherwise split it, provided that at least one of the relations

|kl
N S (3.4.9)

d;j>d and m; 2 2m; (3.4.10)

holds. Splitting the j—th cluster is done as follows. The
cluster center y, is deleted while two new cluster centers

m (ip—1)

Y =0,y Y0 qglo Yot o) (34.11)

]

¥ = (30 y 6D @ A e o) (34.12)

are created, and we set ¢ <—c+1. Thus, y, is splitted along

the i,—thcoordinate. The splitting is controlled by the
parameter A which ensures a noticeable but not dramatic
change in the cluster centers arrangement. If splitting occurred,
set S(it) =1 and go to Step 2. Otherwise:

1. Ifi>1, L@GE-1)=0 and NC=0 go to Step 12.

2. Ifit>1, L@Er—1)=0 and NC=1 goto Step 2.

3. Ifir>1, L(it—1)#0 continue.

4. If it=1 continue.

Lumping. Set L(it)=0. If ¢<2, S@t)=0 and NC=0, go
to Step 12. If ¢<2 S@it)=0 and NC =1, go to Step 2. If
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Step 11.

Step 12.

Step 13.

c<?2 and S(it)=2, go to Step 2; otherwise calculate all the
distances between arbitrary two cluster centers, i.e.

J<i<e—1,i+1<j<c (3.4.13)

dij:”yi_yj

Rearrange {d;;} as a monotonic increasing sequence and denote
by I’ the number of d,"s which do not exceed d,. Consider

now the first /" =min(/,/’) numbers of this sequence which
satisfy

d.<d  <..sd, 6 <d, 3.4.14)
If I"=0 no lumping occurs: if S(it)=2 go to Step 2 and if
S(it)=0 goto Step 12. If I #0 set L(it)=1 and continue.

The lumping starts with the pair of cluster centers (i, j,) and
terminates with (i.,j.). Each two cluster centers are lumped
together and if a given pair (i, j,) is such that either the i —th
or the j —th cluster center had already been lumped, this pair
is ignored. The lumping is done by replacing the i —th and the
J, —th cluster centers by

_my, tmy; 3.4.15)

Y =
m, +m;

i.e. by their center of gravity based on their current populations.
Since y, and y, are deleted we also set ¢ <—c—1. When the

lumping is completed go to Step 2.

Output {y,}, 1<j<c; it and stop.

Output y,, 1<j<c; ‘number of iterations exceeded” and stop.
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It is needless to say that a successful implementation of ISODATA on
general pattern set, requires extensive experimentation in order to obtain
the appropriate values for parameters such as o, 4,d,. The next

example for which ISODATA is applied, is given in detail.

m  Example 3.4.1 Consider the samples (+) given in Fig. 3.4.1, and
choose ¢=5, k=3, my=2, 0,=15, 1 =05, d,=25, =2, N=10,
Y ={(0.0),4.)",(7,2)".(2.3)".(35"}.

8 x2
6_
a4l o+ =
2+ ° y .
x L L IX1
P 2 4 6 8

m Figure34.1 ISODATA - No. of desired clusters = 3.

Stepl. ir=0, SG)=L3UE)=2,1<i<10.
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Step 2.  Clustering is performed, using Eq. (3.4.1):
G C, C, C, C,

00" @n" 3y’ 23" @5
o’ 6y 12" e’ 39
an’ 62" 63"

o’

Step 3. Since m; 2 m, =2 no cluster center is deleted at this point.

Step 4.  Updating the cluster centers by replacing them with the clusters
arithmetic means yields

¥ ={0.5.0.5Y,(4.667,1.333) . (6.667.2),(1.53.5] .(2.55 }

Step 5.  Using Eq. (3.4.3) we get for each cluster the average distance
of its samples from the cluster center:

d1=0.707,d, = 0.654,d, = 0.863,d4 = 0.707, d s = 0.500

Step 6.  The global average is
d =(4d: +3d, +3ds +2d4 +2d5 )/ 14 =0.700

and a full iteration is completed, i.e. it =1.

Step7. Since it<N=10 and 2= [k—;l]< c<2k=6 we go to Step 8
and try splitting.

Step 8.  Set S(1)=0. We calculate the standard deviation vectors

0.500 0471 0.471 » 0.500 0.500
o, = , 0, = , O, = ,0, = ,0, =
[0.500 ] [0.471 ] [0.816 ] [0.500 ] [0.000 ]
Step9. Clearly 0’ <0, =1.5 for arbitrary ,j and we conclude that

there is no splitting. Since it =1 we continue to Step 10.
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Step 10. Set L(1)=0. Since ¢>2 lumping is possible. We first
calculate d; (Table 3.4.1) using Eq. (3.4.13).

m Table3.4.1 Calculating d.

i g2 3 4 5

f—

4.249 6.346 3.162 4.924

2 2.108 3.837 4.259
3 5380 5.134
4 1.803

Since d,=2.5 we get I'=2 and ['=min(l,1)=2. Since I' #0 we set
L(1)=1. By virtue of

dys <dy <d,

we first lump the cluster centers 4,5 and then 2,3.

Step 11. Cluster centers 4 and 5 are lumped and replaced by

_2p42y, (200
Yoo =7 Tlaas

Cluster centers 2 and 3 are lumped and replaced by

_3y2+3y3 3 5.667
You = 6 1667

The number of cluster centers is reduced to ¢=3. We go to
Step 2.




3.4 THE ISODATA ALGORITHM 89

Step 2.  Cluster the samples around y, =(05,05)", ¥, = (5.667,1667)"
and y, =(2425)":
Cl C?. C3
00" @) 237
0" 6y’ asf
an’ 62" @5
on’ an’ 357"
.27
6.2)"

Step 3.  No cluster center is deleted.

Step4.  Cluster centers are updated but remain the same.
Step 5.  The new averages are d:=0.707, d,=1.287 , ds =1.070

Step 6.  The new global average is d =1.059. Set ir=2.

Step 7.  Since [E—;—l} <c¢ <2k and it is even we go to Step 10.

Step 10. Since all d,.j, 1<i<2, i+1<;j<3 are greater than d,, there

is no lumping. We also have S§(2)=2 and therefore go to Step
2. (Sofar S(1)=0, L()=1, S2)=2, L(2)=0).

Steps 2-6. No change; Set it =3.

Step 7.  Since [%] <c¢<2k and it is odd, we go to Step 8.
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Step 8.  Set S(3)=0. The standard deviation vectors are
(0.5] (1.106] (0.707]
61 = s 0'2 = s 0'5 =
0.5 0.745 0.829
Step9. Since 0’ <o, =15 for all i,j there is no splitting. But
L(2) =0 and therefore we go to Step 12.

Step 12. The final cluster centers are (* in Fig. 3.4.1)
05 5.667 2.00
W= » Yo = s Y3 =
05 1.667 4.25
and the number of iterations is ir =2.

A change in the problem’s parameters may well result in a different
arrangement of the cluster centers.

a Example 3.4.2 In the previous example make the following changes:
c=3, k=3, 06,=08, d,=1, Y={0,0), (41, 35)"}. After the
first iteration two cluster centers are splitted and the new set of cluster
centers (modified by Eq. (3.4.2)) is

Y ={(0.505)", (6667,2)" ,(2.55)", (4.667,1333)", (1535)" |

After the second iteration no lumping occurs and after the third iteration
there is no splitting. The clustering thus terminates with 5 cluster centers.
'

It should be noted that using ISODATA with inappropriate parameters
may lead to oscillations. For example, a wrong choice of 4,0,,d, may

cause an infinite sequence of alternate splitting and lumping. This
anomaly is likely to happen whenever 2A0,<d,. Indeed, consider a
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splitting where the distance between the new cluster centers is 2)»0'?“

(Egs. (3.4.11-12)). If we assume O'j-i") ~0, and in addition, that
modifying the new centers using Eq. (3.4.2) causes a minor change in their
locations, then unless

200, > d, (3.4.16)

lumping which brings us to the initial state, must occur.

s Example 3.4.3 In Example 3.4.1 make the following changes:
c,=08, d,=2. Splitting and lumping occur alternatively and the

system oscillates between
Y, = {(0.5,0.5)7, (4.667,1.333) , (6.667,2) , (2.5,5), (1.5,3.5)7}
after each splitting, and
Y, ={0.50.57 . (4.667,1.333Y . (6.667.2) , (2.4.25) }

after each lumping.
A

In the next example we cluster 100 samples using several different sets
of cluster centers.

s Example 3.44 Consider the samples in Fig. 3.4.2. The prefixed
parameters are: n=2, m=100, k=4, my=6, c,=105, d,=1.5,
/=1, N=20, €=10"° and A = 0.5. Two sets of initial cluster centers
are taken:

2 1 6
(a) y, = » Y= » Ya =

1 5 1

2 5 8
By y=| |, y.=| |, %=

3 3 8
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Only the first initial set is based on preliminary observation of the samples.
The second set is a pure random choice. In either case only seven
iterations are needed for convergence. The final cluster centers are

1.57 1.17 7.93 5.85 458
W= s Yo = » Y= » Y4 = y Ys=

1.40 5.37 2.06 4.93 1.31
and the associated clusters have 41, 23, 7, 9 and 20 samples respectively.

Other choices of initial cluster centers, may converge to different cluster
centers or oscillate. The initial cluster centers of (a) are denoted by m, and
the final cluster centers are denoted by A.

8 X2

6 .

al .

2 . .3 . 4
e Lo

n n'. .-..

0 ' B X1

0 2 4 6 8 10

m Figure 3.4.2 ISODATA applied on 100 samples.
'

The version of ISODATA given here is relatively simple. A more
advanced procedure should include the option of deleting patterns which
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represent noise and the option of constantly tuning parameters such as &,

d,, A, m,, i.e. re-initialization whenever necessary.

PROBLEMS

1. Use the TOD algorithm with the Euclidean norm as a measure of
similarity to cluster the patterns

s = {007, (L0.Y. @1, 653Y 447,067, 05), (2.2 .G6.3) }

given a threshold parameter (a) r=12 (b)r=2.1 (¢c) t=423.

2. Solve problem 1 after exchanging the locations of (0,0)” and (2,2)".

T T .
3. For xz(xl,xz,...,xn) and y=(y1,y2,...,y,,) in R" define a
measure of similarity

5(x,y):rlnax|x,.—y,.| (3.4.17)
and use it instead of the Euclidean norm to solve problem 1.

4. (a) Modify the TOD algorithm as follows: Replace y; in Egs. (3.3.9-
10) by y, — the updated arithmetic mean of the samples in the j—th

cluster.

(b) Use the modified algorithm to cluster the samples (1,0)", (1,1)7,
(00)", B, (52)", 33)" ., (53)", (24)", 35)", (14)", (0.3)",
(2,0)". Use the threshold parameter t=1.2.

(c) Use the original TOD algorithm to cluster the same data and the
same threshold parameter.
5. Apply the MMD method to cluster the data of problem 4, using
t=12.

6. Repeat and solve problem 5, using the similarity measure defined by
Eq. (3.4.17).
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7. (a) Using TOD or MMD obtain a sufficient condition for two
measures of similarity & (x,y)and 4,(x,y) to provide identical sets of

cluster centers for arbitrary data.

(b) In view of part (a) discuss the particular case

8, (x,y)=|x -], 8,(x,y)=max|x, -y

8. Apply the CMI algorithm to cluster the samples (*') in Fig. 3.4.3.
Assume four clusters.

X2
5 'y
qr ® [
[ 3 [ [
® ®
1e
. - - - x1

-1 1 3 5

-1 [ ] [

m Figure 3.4.3  Clustering 16 samples using CML

9. Solve Problem 8 using the MMD method with x, = (3,0)" for
(a) t=1.2 (b) t=1.8. Compare with the results of Problem 8.

10. Use a random number generator to provide random numbers
v, s;, 1<i <100 within the interval [-11]. Define the sample patterns

x, =(x,,x,)" , 1<i<100 as
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x, =04+(0.6r)", x,=05+(0.7s), 1<i<30

x, =0.6+(0.5r)", x,=03+(08s,)’, 31<i<58
(3.4.18)

x,=02+(0.6r)*, x,=08+(04s,)’, 59<i<82

x, =0.7+(0.5r) , x,=0.7+(05s,)", 83<i<100

and apply ISODATA to cluster them using c=4, k=4, m,=35,
c,=01, d,=02, I=1, A =0.5. Solve the problem with two
choices of initial cluster centers:

(@) y, =(04,0.5)", y,=(0603)", y,=(02,08)", y,=(0.7,0.7)"

(b) = (O’O)T y Yo = (I’O)T’ Y= (I’I)T’ Yo= (091)T
11. Solve Problem 10 using a single initial cluster center y, = (0.5,0.5)" .
12. Solve Problem 10 using m, =10,15.

13. (a) Solve Problem 10 after replacing all the powers in Eq. (3.4.18)
from 3 to 5.

(b) Compare the results with those of Problem 10.

3.5 CLUSTERING AND PATTERN RECOGNITION

The results of a clustering process are usually applied in pattern
recognition for two objectives:

1. Obtaining features which are related to the geometric structure of the
given sample patterns.
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2. Designing decision functions for future classification in a pattern
recognition problem.

3.5.1 Evaluating the Clustering Results

When the pattern space is 4-dimensional or of higher dimensionality,
getting a visual representation of the samples and the cluster centers is
impossible. In this case the only way to interpret the numerical results is
to use information such as the distances between the cluster centers, the
number of samples in each cluster and the standard deviation vectors of
the various clusters.  These quantities are usually sufficient for
determining the general structure and features of the given samples as may
be seen from the next example.

m Example 3.5.1 Consider a set of 200 samples which is clustered
using ISODATA. The samples are in R*, so that no graphic illustration is
possible. The a priori knowledge is that the number of expected clusters
{C.}, is between five and seven and that ‘noise samples’ may occur. Let
the outcome of the clustering consist of seven final cluster centers whose
pairwise distances and associated populations are given in Table 3.5.1.

m Table 3.5.1 Populations and distances between cluster centers.
mig i j: 12 3 4 5 6 7
40 1 35 56 37 251 173 78
23 2 48 S8 263 145 60
48 3 50 240 127 63
18 4 222 138 49
26 5 336 224
3 6 151
42 7

The other useful information are the seven 4 - dimensional standard
deviation vectors, given in Table 3.5.2.
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m Table 3.5.2 The standard deviation vectors.

i Oy Ox, Ox, Oy,
12 15 21 08
L3 14 12 14
20 13 17 11
09 11 22 17
03 04 23 06
25 42 17 23
22 19 11 35

N N R W N =

The final number of clusters is in agreement with our preliminary
expectation (based upon sample-related knowledge). However, the cluster
C; has only three samples and a standard deviation vector with relatively

large components. This indicates that these samples are likely to be noise
samples and the whole cluster should be deleted. The remaining clusters
are too populated to be treated as ‘noise clusters.” Table 3.5.2 illustrates
that C,, 1<i<5 have standard deviation vectors with relatively small

components and should not be splitted. The vector associated with C, has

larger components and further investigation may indicate that splitting is
desirable. Since none of the pairwise distances is small, no lumping is
necessary.

Other features are easily obtained from the tables:

1. G, G, C are major clusters while C,, C,, Cs are minors.

2.  The clusters C,—C, and C, form a group of clusters which are
relatively close to each other, while C is far from all of them.

However, we may not consider defining one large cluster which
includes C,, 1<i<4 and C, since it contradicts the assumption of

having ‘about’ 5-7 clusters.
3. The domain of C, is ‘close’ to a sphere (since o, , 1<i<4 are
almost identical).
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3.5.2 Clustering as Unsupervised Learning

The clustering of given data of unknown characteristics is a problem in
unsupervised pattern recognition. Originally, we have a set of sample
patterns with no information to indicate the number and locations of
classes in this set. The unsupervised learning problem related to these
patterns can be defined as determining the various classes to which the
given patterns belong. This can be done for example by using clustering
algorithms. Naturally, the conclusions derived by these algorithms will
have to be backed by intuition and a significant quantity of
experimentation. Implementation of such algorithms on the given samples
provides cluster centers and cluster domains for the data. Once
determined, the cluster domains regarded as ‘classes,” can be applied to
obtain decision functions using various training algorithms.  An
alternative approach is to design a minimum-distance classifier based on
the cluster centers which were already established in the preliminary
unsupervised learning, and use it for future classification. The efficiency
and applicability of such classifier depends on the reliability of the cluster
centers and cluster domains obtained at the initial phase.




4 CLASSIFICATION USING
STATISTICAL APPROACH

4.1 INTRODUCTION

In this chapter we will present a statistical approach to the problem of
pattern classification. It is mainly based on Bayes formula from
probability theory and assumes that all the relevant probability values are
known. We open our discussion with a simple example. Given a quantity
of pencils we are asked to classify them into two categories: C; - pencils

made of lead, C, - pencils made of graphite. The a priori probabilities of
a random pencil to belong to C, and C, are p(C;) and p(C,) respectively.

If all the pencils share the same color and if we may not perform any
chemical tests on the pencils, then the only way to classify the next pencil
would be using the following decision rule:

If p(C))> p(C,)then pencil in C,
(4.1.1)
If p(C,)> p(C,) then pencilinC,
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One should realize that if for example p(C,)> p(C,) then all the pencils
will be classified of C,; although some of them obviously belong to C,.
The decision rule given by Eq. (4.1.1) could be accepted whenever
p(C)>> p(C,) or p(C,)>>p(C,). However, if for example
p(C))=0.51 and p(C,)=0.49 the error probability of this rule is 0.49,
i.e. an average of 49 out of 100 pencils are misclassified.

We now assume that each pencil is either ‘yellow’ or ‘white’ and let
this value be assigned to an associated logic variable x. Let p(xIC'i)
denote the conditional probability distribution of x, if the pencil is already
known to be in C,. Then, the probability that the pencil is in C,, provided

that x occurred (‘yellow’ or ‘white’) can be calculated by Bayes formula
as

p(ci|x):££_C_M’ i=12

o) (4.1.2)

where
2
p(x) = gp(C,» p(x1C) 4.1.3)

is the a priori probability distribution of x. Thus, by observing the
pencils color, i.e. by knowing the value of x and consequently the

numbers p(xC), i=12 we obtain the a posteriori probability p(Clx),
which is the probability of the next pencil to belong to C; once its color is

known.
Motivated by Eq. (4.1.2) we may now propose a new decision rule for
classification, namely

If p(Clx)> p(C,|x) then pencil in C,
4.1.4)

If p(C,Ix)> p(C,|x) then pencil in C,
Which of the two classifiers should we use? Naturally, the second one,
given by Eq. (4.1.4) and known as the Bayes classifier has the advantage

that our decision is based on additional information, namely the color of
the pencil and its conditional probability distributions. However, an
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objective choice can be made only by comparing the two error
probabilities. Thus, one must find whether the average error probability
associated with Bayes classifier, does not exceed the error probability of

the previous classifier (Eq. (4.1.1)) given by min{p(C’,. )} , 1<i<2. The
question is therefore, whether the inequality

p(Y)-min {p(C; 1Y)} + p(W)-min { p(C, W)} <min{p(C))}  (4.1.5)

always holds (Y and W denote ‘yellow’ and ‘white’ respectively).

m Lemma4.1.1 Forall real a,b,c,d the inequality
min{a,b} + min{c,d} <min{a+c,b+d}

holds.

Proof.

Since a >min{a, b} and c¢>min{c,d} we have a+c¢=>min {a,b}+

min{c,d}. Similarly b+d > min{a,b}+ min{c,d} which completes the
proof.
a

m  Corollary 4.1.1 Bayes classifier is superior to the a priori probability
classifier.

Proof.

By using Eq. (4.1.2) and Lemma 4.1.1., the left-hand side of Eq. (4.1.5)
can be rewritten as
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min { P(C))p(Y|C)}+ min{p(C) p(W|C))} <min{ p(C)IP(Y|C)+ pW|C)])

and since p(Y 1C,)+pW1C)=1, 1<i<2, Eq. (4.1.5) holds.

u}
1 2 1
s Example4.1.1 Let P(Cx)zg, p(Cz):g, p(Y1C))= 3
4 2 1
wic)==, p(YIC'z):g, p(W|C2)=§. Then
11 22 23
Y)=p(C)p(Y1C)+ p(Cp(Y 1 C)==-=+=-2 =22
P(r)= PGP 1C)+ p(CIP( 1C) =55+ 55 ==
14 21 22
W)= p(C)pW1C,)+ p(C,)p(WIC,)==—+=- ===
P( ) P( 1)P( 1) P( )( ) 3533 45

By using Bayes formula we get

p(C)pY1C)_(1/3)-(1/5) _ 3

P(GIY)=" p(¥)  (23/45) 23
_pCpWiC)_(1/3).(4/5)
p(GIW)=~ pIEW) (22/45) -1

and consequently p(C,1Y)=1-p(C,1Y)=20/23 and p(C,IW)=
1— p(C,1W)=5/11. Bayes classifier therefore classifies a yellow pencil in
C, (graphite) with an error probability 3/23 and a white pencil in C,
(lead) with an error probability 5/11. The total error probability is (Eq.
4.1.5))

2.3.2.5 13 1_win(pc))
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Our next step is to replace the discrete logic variable by a continuous
observation x which is meaningful for both pattern classes C, and C,. In

other words, a feature which is meaningful for both C, and C, is
represented by a continuous random variable x whose conditional
probabilities are denoted by p(xI1C,) and p(x1C,). The equations

derived for the discrete Bayes model, i.e. Egs. (4.1.2 - 4), hold here as
well. The error probability e, of the continuous Bayes classifier satisfies

(assuming —co < x < o)
e, = |7, p(x)-min(p(C, 10)}dx =" min(p(x) p(C, | x} dx
= [~ min{ p(x1 C) p(C)} dx < min([_, p(x1C) p(C,)dx}

= gisr%{P(C,-)f: p(x1C)dx} = min{( p(C,)} (4.1.6)

i.e. the continuous Bayes classifier outperforms the a priori probability
classifier.

s Example 4.1.2 Consider the previous example, but instead of two
colors we assume all the pencils to be yellow of various shade varying
from O to 2. The conditional probability distributions p(x|1C;) and

p(x1C,) of the shade x are given in Fig. 4.1.1.

probability

-t

p(xIC1)
p(xIC2)

X

m Figure4.1.1  Conditional probabilities.
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2—x

l 2+x
372

= 5 and consequently
the a posteriori probabilities

G e GIG) o

(2+x] C24+x ] p(Czlx)— (2+x] :2+x
6

6
which are shown in Fig. 4.1.2 and present the Bayes classifier in this case.

Using Eq. (4.1.3) we get p(x)= +§§

p(Clx)=

probabliity

1 p(Czlx)

p{C1lx) X
2

m Figure4.1.2  Bayes classifier: a posteriori probabilities.

The simplified classifier based only on the a priori probabilities can be
portrayed by two parallel straight lines (Fig. 4.1.3) which imply that
classification does not depend on x: each incoming pencil is classified in
G,.
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probabllity

2/3 p(C2)
13 P(C1)
X

m Figure 4.1.3  Simplified classifier: a priori probabilities.
PROBLEMS

1. In Example 4.1.1 take the same a priori probabilities but assume
1 e s
P(X|Ci):'2‘ for x=Y,W and 1<i<2. Is the classification
improved by using Bayes classifier? Why?

2

3’
and assume that each pencil is either yellow (Y), white (W) or red (R)
with conditional probabilities given by

Y W R
C, 3/5 34 1/4
C, 3/5 1/4 3/4

2. Let C, and C, be as in Example 4.1.1 with p(C, )—%, p(C,)==

Construct the discrete Bayes classifier for this case.
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1 1
3. In Example 4.1.2 assume p(C,)= > p(C,)= > and let x (the shade

of yellow) vary between O and 7, having the conditional probability

)= sinx and p(xlCz)zz(—n_—x).

7.L_2

distributions p(xIC,

(a) Construct the continuous Bayes classifier.
(b) For what values of x the pencil is classified in C,?

(c) Why is Bayes classifier useful in this particular case?

1
4. Solve parts (a) and (b) of problem 3 if p(C,)= 3 and p(C,)= %

4.2 A GENERAL BAYES CLASSIFIER

We will now extend and generalize the ideas introduced in the previous
section. Let us consider a finite set of pattern classes {C,,C,,...,C, } and

a feature vector x in R". Each component of this vector is a meaningful
scalar feature of C,, 1<i<m. The feature vector is a vector random

variable with given conditional probability distributions p(x1C)),
1<i<m. If we denote by p(C,) the a priori probability of an incoming
pattern to belong to C,, then the a posteriori probability of this pattern

with an attached feature vector x to belong to C, is given by Bayes
formula as

C)plxIC, :
p(C, Ix)=%—)’ Isism 4.2.1)

where

p(x)= ép(c,» )p(x1C,) 4.2.2)

is the probability distribution of x .
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Throughout Section 4.1 we classified an incoming pattern by using
either the a priori probability classifier or the Bayes classifier. In both
cases, the pattern was classified either in class C, or in class C,. Let us

consider again two pattern classes and a particular feature vector x for
which

p(C 1 x)~ p(C, | x)

In this case one could decide to take a third option: not to classify x . For
example, if a ‘loss’ (or ‘penalty’) is attached to each misclassification, it
could be rewarding to choose the following strategy:

If p(C |x)~p(C,1x) do not classify.
Otherwise: If p(C lx)> p(C,|x) choose C, .
If p(Clx)<p(C,lx) choose C,.

Thus, for each feature vector x we take one of three possible actions.

In general, a finite set of actions {al,az,...,ak} is attached to a given
set of pattern classes {CI,CZ,...,Cm} with a feature vector x. For each
possible action a;, 1<i < ktaken for an incoming pattern, we denote by
I(a;1C;) the loss for choosing a, when x is known to be in C,. For
example, let k=m+1 and define

a; A choose C;, 1<i<m

a, A donot classify

A possible table of losses is
l(aiICj)zl A< j<m,i#]j
l(a,1C)=0 ,1<i<m
l(a, 1C)=1/2 ,1<i<m

This table clearly suggests that a decision not to classify is less costly than
a misclassification.
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For a given feature vector x, we will define the conditional risk
associated with the particular action a; as

r(a, 1 x) = i}z(ai 1C,)p(C; 1 x) 4.2.3)

We also define a decision rule as a function a(x) which assigns one of
k
i=

actions {ai} , to any given feature vector x. Obviously, we are

interested in a decision rule which will minimize the foral risk

R= [, r(a(x)l x)p(x)dx (4.2.4)

where dx =dxdx,...dx,. This is achieved by applying the general Bayes
decision rule which can be stated as follows:

Given a feature vector x , define
a(x) =ay,, (4.2.5)
where

ey =min{r(a, | X)}, 1< j<k (4.2.6)

No decision rule can outperform Bayes decision rule, since r(a(x)lx) of
Eq. (4.2.4) is minimized for each individual x while p(x) is a prefixed

function. The minimum risk associated with Bayes decision rule is called
Bayes risk.

m  Example 4.2.1 Consider a 2-class problem with
p(C)=2/3, p(C,)=1/3; a scalar feature x and three possible actions

a,,a,,a, defined as: a, — choose C,, a, — choose C,, a, — do not classify.
Let the loss matrix (i.e. the values I(a,1C;)) be




4.2 A GENERAL BAYES CLASSIFIER 109

a 4, a4,
¢ 0 1 14
C, 1 0 1/4

and let the conditional probability distributions of x be

pxic)y = 22%

, p(xlCZ):% ; 0<x<2

The probability distribution of x is therefore

o2 2ox 1 1 5o
PO=3 75773 57 ¢

and consequently

p(Clx)= (5 3 ) 5_ox
6
5) )
_\3/\2)_ 1
P(C10) = GaEE
6

This leads to conditional risks
1
R(x)=r(a10) =0 p(CI0+1. p(Glx) = ——
4—-2x
5-2x

nL(x)=r(a,lx)=1. p(Clx)+0. p(C,lx) =
1 1 1
n(x) =r(a;lx) = 1 p(Clx) +Z. p(CGilx) = 1
Bayes decision rule assigns to each x the action with the minimum

conditional risk. The conditional risks are sketched in Fig. 4.2.1 and the
optimal decision rule is therefore
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risk

ra(x)
r1{x)

1/4

r3(x)

05 1.5 11/6 2

m Figure 4.2.1 Conditional risks.

0<x<05 = actiong, = chooseC(,
0.5<x<11/6 =>actiona, = do not classify
11/6<x<2 =actiona, = chooseC,

In this particular case the action ‘do not classify’ is optimal whenever x is
between 1/2 and 11/6. Considering the probability distribution of x, this
strategy should occur for approximately 60% of the incoming patterns.
Finally, the minimum total risk is given by

[ min{r (0.5, (), A }pG)dx = [ 5 (x)p(x)dx
1

o npedc+ [ (pGds =+ 4L _ 0236
P g B S T T a1

If instead of using Bayes classifier we choose to take a, for all x, the total
risk is

1
j: (0 p(0)dx = > 0236




4.2 A GENERAL BAYES CLASSIFIER 111

m Example 4.2.2 In the previous example, assume that /(a,|C;) and
l(a,| C,) are free parameters, o and f respectively, while the remaining

data is the same. In order for the Bayes decision rule to force classification
for any given x, we must have

ap(Clx)+ B p(C,lx) = min{r, (x),r,(x)}

In the particular case o = 8 this happens (Fig. 4.2.1) only if a > %

)

A simple case study is a 2-class classification problem with two
actions: @, — choose C; and a,— choose C,. Denote i(a;|1C;) by [,

and consider the conditional risks

r(alx)=1,p(Clx)+1,p(C,lx)

r(a,lx)=1L,p(Clx)+1,p(C,lx)

Given a pattern with an associated feature vector x, we take action g,
only if r(a,lx) <r(a,lx), i.e.

L,p(Clx)+1,p(Clx) <L, p(Clx)+1, p(C,lx)

which implies
(L, =1 p(Clx)> (I, - 1,) p(C,lx)

By applying Eq. (4.2.1) we get
(L =4 p(C) p(xIC) > (4, = L,) p(C,) p(xIC,)

Naturally, one expects the loss in the case of a misclassification to be
greater than the loss associated with a correct decision, i.e. [, >/, and

l, >1,,. Therefore
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p(x1G) > (L, —4,) p(C,)
p(xICy) (b —hy) p(C) (4.2.7)

S, (%) =

The conditional probability distribution p(xIC)) is often called the
likelihood function of C, with respect to x and s,,(x) is the likelihood
ratio. Thus, Bayes decision rule classifies a given pattern x in C
provided that the likelihood ratio calculated at x exceeds the threshold
value

_ (L, = 1,)p(C,)

Uy —1L)p(C) (4.2.8)

Otherwise, x is classified in C,. If s,(x) = A any arbitrary decision may
be taken.

m Example 4.2.3 Consider a 2-class problem with p(C1)=%,

3 . ,
p(CG) = g; a scalar feature x and the two actions a, and a, defined as

in Example 4.2.1. If the loss matrix is

4 a4
C 1/4 1
C, 1/2 1/8

the threshold value of Eq. (4.2.8) is
= U2-1/8) . (3/5) 3

(1-1/4). (2/15) 4

Let the likelihood functions of C;,C, be

2

2—
x, p(xICZ)zi;c—; 0<x<2

p(xlC) =

Then, the likelihood ratio given by Eq. (4.2.7) is
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and a pattern will be classified in C, if and only if

4(2—2)(?) >2
3x 4

This inequality holds for —2.9735< x <1.1957, but since a relevant x
must satisfy 0<x<2 we get that the pattern is in C; for all x:

0<x<L1957.
A

In the next example we treat a problem with a feature vector x in R”.

s Example 4.2.4 Consider a classification for which p(C)=1/3,

p(C,)=2/3 with a feature vector x =(x,,x,)", 0<x,x,<1. Let the
conditional probabilities be

p(xIC)=4xx,, p(xIC,)=x,+x,; 0<x,,x, <1

(Note that the integrals of p(xIC;), 1<i<2 over the unit square, must be

equal to 1). Assume the actions and the loss matrix of Example 4.2.3.
Then, a, is fired if and only if

() = anx, (1/2-1/8) . (2/3) _

x+x,  (1-1/4).(1/3)
i.e. whenever 4x,x, > x, +x,. This inequality is valid only if x is inside
the shaded area in Fig. 4.3.2 which is the area bounded by the hyperbola
1/x, +1/x, =4 and the straight lines x;, =1, x, =1.
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X2

(0.1) (1/3,1)

(1/%1)+{1/x2)=4 (1,1/3)
X1

(1,0)

» Figure 4.2.2 Decision region of C.

' 3
At the end of this section we will consider an 7 — dimensional

multiclass problem with the unit matrix as a loss matrix, and obtain the
Bayes decision rule as an implementation of the decision functions

d;(x) = p(x1C) p(C,)
as in Eq. (2.2.6)

In most applications [; is taken as O if the decision is correct (i.e.

i=j)and as 1 for an incorrect decision (i.e. i # j). Let the action a; be
‘assigning x to C,’ forall 1<i<m. Then
r(a,1%) = 31,p(C, 1 x) =[1/ p(0IL L, p(C)) p(x 1 C))
j= j=

_ | PCIp(x1C)

(4.2.9)
p(x)
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forall 1<i<m, and x is classified by Bayes rule in C,, if

| PCpxIC) p(CHp(x1C))
p(x) p(x)

forall j#1,i.e.if

p(G)p(xI1C) > p(C)) p(xIC;) (4.2.10)

for all j#i. Clearly, this is Eq. (2.2.6) implemented in its general form
(i.e. not necessarily for linear decision function) for

d.(x)= p(C)p(xIC) , 1<i<m (4.2.11)

In the next section we will discuss in detail a particular case, when the
conditional probabilities p(x|C;) are multivariate normal.

PROBLEMS

1. In a single feature 2-class problem with actions of Example 4.2.1, let
p(C)=1/4, p(C,)=3/4. Calculate Bayes risk for the loss matrix

a a4, &
c 0 1 14
C, 1 0 12

and conditional probabilities

pxIC)=1, p(xIC)=2(1-x); 0<x<1

2. Repeat and solve Problem 1 for a loss matrix
a a, a
C, /4 3/4 12
C, 3/4 1/4 1)2
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and conditional probabilities

p(xIC)=2x, p(xICz)zg—xz; 0<x<1

. Consider a 2-feature 2-class classification with the actions a,,a,,a, as

1 2
previously defined in Example 4.2.1. Assume P(C)) = 3 P(C)= E’

a loss matrix

¢ 14 1 13
c, 1 1/2 2/3
and conditional probabilities

p(xIC)=x+x,, p(xIC,)=2x,; 0<x,,x, <1

Construct the Bayes decision rule and obtain the Bayes risk.

. In Problem 3 take I(a,|C)) =1(a,;|C,) = ¢ while the remaining data is
unchanged. What is the minimum ¢ for what a, is never fired. What
is Bayes risk for this o ?

. For a one dimensional 2-class problem let p(C))= p(C,)=1/2.
Assume two actions as in Example 4.2.3 with a loss matrix

a a4
C, 1/4 1/2
c, 1 1/3

and likelihood functions

2

3x X
p(x|C1)=—8— , p(x|C2)=3x(1—5); 0<x<2

Find the likelihood ratio s;,(x), the associated threshold value and the
values of x for which an incoming pattern will be classified in C,.
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6. Replace the loss matrix in Problem 5 by

a a,
G 1/4 B
C, o 1/3

(a) Present the Bayes decision rule.

(b) Calculate the Bayes risk R(a, ) and find nonnegative a,f for
which R(e, ) is minimum.

7. For a one dimensional 2-class problem with two actions a,,a, (as in

Example 4.2.3) we have p(C))=3/5, p(C,)=2/5; conditional
probabilities

p(xIC)=e",0<x<eo

172 , 0<x<1
p(x1C,)=
e 2D /2 , 1< x<eo
and a loss matrix
a 4
C 14 1
c, 1 1/4

(a) Find the likelihood ratio s;,(x) and it s associated threshold value.

(b) Calculate the Bayes risk.

(c) Using the Bayes classifier, how often (%) a pattern is classified in
C?
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4.3 NORMALLY DISTRIBUTED PATTERNS

The multivariate normal density function has received considerable
attention due to:

(a) Its capability to portray a suitable model for many applications. (b)
Being mathematically tractable.

4.3.1 The Univariate Normal Distribution

The scalar normal distribution function given by

_ 1 ew
p(x)—mcexr)[ 757 1, <x< 4.3.1)

is characterized by two parameters, its mean

p=Blxl= [ ap(x)ds (*32)

and variance

o’ :E[(X—,u)z]z_[:(x—u)zp(x)dx 4.3.3)

and is frequently denoted by N(u,0’). Simple calculation shows that
normally distributed patterns cluster about the mean f in a way that
approximately 68.3% of them fall within the interval [p-o,u+0],
95.5% within [ —20, 1t +20] and 99.75 within [y —30, u+30].

4.3.2 The Multivariate Normal Distribution

A generalization of the univariate normal distribution in R" is given by
the multivariate normal distribution function, defined as
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1 T - n
exp[—a(x—- w'Cl(x-p)], xe R (4.3.4)

(x) ——1__
p (2”)1112 I C |1/2

where i is a given vector in R” and C - an nxn symmetric positive
definite matrix, with inverse C~' and determinant 1C|. Under these
conditions it can be shown that p(x) is a multivariate probability
distribution function with mean i and covariance matrix C , i.e.

K = Efx]= [, xp(x)dx 4.3.5)

C = E[(x — )(x — 1) 1= oo (x ~ )(x — ) p(x)dx  (43.6)

where dx =dx,dx,...dx,. The elements of U are
U, = J n xip(x)dx (437)

while those of C are

Oy = [ (% = H;)(x; =) p(x)dx (4.3.8)

m Example 4.3.1 Consider the bivariate normal distribution with its

parameters
0 20
‘uL = C =
0 01

/2 0
Cc'= ,1C1=2
0 1

In this case
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and the distribution function is

1 x! x)
X -_
w2 P74 2

p(x) =

The first element of K is

2 2
S T

1 - poo
L, 2—2;7_2_L° L.,xl exp [ 4 2 ]dxlfix2

and since x; is an odd function we get U, =0 and similarly 1, =0, i.e.
fg=0. Once p is known the covariance matrix of p(x) can be
calculated. In particular

2 2
XX

1 = e
0, = 272 J_w J_m x; exP[_ 4 2 ] dx,dx,

2

1 X 1 . x>
:ﬁj“” exp [—i]dxz. \/—Z_;Lo x} exp [—Tl]dxl

The first integral clearly equals to 1. By using integration by parts, the
second integral is replaced by

1 X!
———2x,exp| ——
Jaz p[ 4]

) +Lr 2ex _m dx
A P 4 1

The first part obviously vanishes and by substituting ¢ = L, the second

N3

part becomes
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% _E 2exp(—§] dt = 2':\/—;_77; _E exp(—%] dt] =2

Therefore, o,, =2 as expected.

The multivariate normal distribution is determined by » +%n(n +1)

parameters which are 1, 1<i<n and 0, 1<i,j<n ; i<j. Patterns

which are known to be normally distributed create a cluster with center at
y . The shape of this cluster is determined by the covariance matrix C .

Since C is symmetric positive definite matrix, sois C ™ and the equation
(x — )" C'(x - ) =const

is a hyperellipsoid. Thus, the points in R" with constant probability
density are hyperellipsoids whose principal axes are determined by the
eigenvectors of C and their lengths - by its eigenvalues.

4.3.3 A Multiclass Multivariate Normal Distribution Problem

Consider a multiclass pattern recognition problem with pattern classes
C.,C,,...,C, in R", associated with conditional probability distributions

1 1 T vl n
P(X|C,-)=(2_ﬂ)TzIC—_|1/TeXP[—§(x—#i) ¢ (x_:ui):"xER (4.3.9)

for all 1<i<m. We assume an identity loss matrix and consequently get
the decision functions of Eq. (4.2.11) implemented as in Eq. (2.2.6). For
all practical purposes one can use ln[d,.(x)], 1<i<m instead of d,(x),

1<i<m. Indeed, In(r) is a monotonic increasing function of ¢, i.e.

d,(x)>d;(x) if andonlyif In[d,(x)> ln[dj(x)] (4.3.10)
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Since p(xIC,;) and therefore d.(x) includes an exponential function in its
expression, it is convenient to redefine the decision functions as

d,(x) =1 p(xIC) p(C)] = In| p(xIC)| +In(p(C)) , 1Si<m  (43.11)
By substituting the right-hand side of Eq. (4.3.9) in Eq. (4.3.11) we get

4,) == SIn@m) = In1C, 1= (x — )€ (x — )+ n(p(C))

and since the i—independent constant (—%ln(2rc)) can be removed, the

decision functions may be taken as

1 T fv-
d(x)=—>InIC,| +1n(p(C,-))—%(x—u,-) C(x—n,) (4.3.12)

Thus, if the loss matrix is the identity matrix and the patterns are
normally distributed, no decision functions will produce better results than
the quadratic surfaces given by Eq. (4.3.12).

Quite frequently all the covariance matrices C; are equal, i.e.
C.=C,1<i<m

and by removing the new i-—independent terms one can simplify the
decision functions and get

i 1 .
d,(x)=In(p(C))+x"C ‘u,-—gu?C W 1<i<m (4.3.13)

i.e., linear decision functions (hyperplanes). If we further assume that all
the components of x are independent, i.e. 6, =0, j#k and that O'f =1,
1<j<n then C is the identity matrix of order n» and if also
p(C)=1/m, 1<i<m we can remove the constant In(l1/m) from Egqg.
(4.3.13) and get

1 .
d,-(x):xTui__i,uf,ui,lSlSm (43.14)
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which is identical to Eq. (3.2.4) that was derived for classification using
the minimum-distance classifier in the case of single prototypes.

The decision boundaries obtained from Eq. (4.3.13) are

d;(x)=d,(x)~d (%) =1In(p(C))) = In(p(C,) +x"C”' (L, - 1,)
—%qu“u,.+%qu‘luj JA<i,j<m (4.3.15)

i.e. hyperplanes. If the covariance matrices C, are not the same, the
decision boundaries are quadratic surfaces.

m Example 4.3.2 Consider a 2-D 3-class normal distribution problem
with covariance matrices

oo ol !
el

and p(C)) = p(C,)=1/4, p(C,)=1/2. Thus,

mean vectors

1 1 1 1
IC=IC,1=2 , Il l=51nlC,1=—1n2 5 IC;l=1, ~lnlC;l=0
1 0 1 0
Cl—l _ C2—1 _ , C3_1 _
0 12 0 1

and the decision functions obtained by Eq. (4.3.12) are
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I I Poo ) x-l
d(x)=——In2-In4—-—(x, —1,x,)
2 2 0 1/2), *

1 2 1 2
= —2.51n2—§ (x,—1) +5)c2

1 2 1 2
d,(x)= —2.51n2—§ x; +§()c2 )]

1 1 0Y x—2
d,(x)=-In2——(x, - 2,x, - 2)
2 0 1)\ x,—2

= —ln2—%[(x1 ~2)> +(x, —2)]

The decision boundaries are the straight line

X 1
a9 =) =5 o
between C, and C,, and the parabolas
x; 7-3In2
diy(¥) =d,(x) =dy(¥) === 2x, —x +———=0
x; 7-3In2
(%) =dy(¥) —dy(x) === 2%, = x, +——— =0

between C;, C, and between C,, C, respectively.

4.3.4 Error Probabilities

We will now discuss the error probability associated with the Bayes
classifier for normally distributed patterns.

Consider a 2-class pattern recognition problem where the patterns of
both classes share the same covariance matrix. Let the multivariate
normal densities be
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1 1 T -1 .
p(JC'QFWCXP[—E(x—#J c (x—.“i)il’13132 (4.3.16)

As previously stated we can simplify the discussion and replace the
likelihood ratio s,,(x) by

t,,(x) = In[ 5, ()] = In| p(x1 )]~ In[ px1 C,)] (43.17)

By virtue of Eq. (4.3.16) we obtain

1 T e T vl
tu(x)za(x—.uz) C ‘(x—uz)—%(x—ul) C(x-1)  (43.18)

and since C™' is symmetric this leads to

1
B (¥) =X7C (thy = ) = (b + 1) C7 (14— 1) (4.3.19)

A commonly used 2x2 loss matrix is
Sy 8 01
L (4.3.20)
S S22 10

for which the threshold value of Eq. (4.2.8) is

l — P(Cz)
w(C) (4.3.21)

Thus, in order to get minimum probability for misclassification one should
classify x € C; if and only if
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LCI)} (4.3.22)

t,(x)> ln[ (C)

and classify x € C, otherwise. Since x is normally distributed and since
t,(x) is a linear combination of the components of x, it must also be
normally distributed. The expected value of #,,(x) with respect to C, is
(Eq. (4.3.9))

1 1 T -1
E1(t12(x)) :.u1C_ (x, _.uz)_i(.ul +,l12) C (H—u,)

1 _ -
=—(u, —pu)c! — =1t
2(.”1 :uz) (H, :uz) f12(x) (4.323)

The scalar

Dlz = (:ul - :uz)TC_l(.ul - :uz) (4’3'24)

is called the Mahalanobis distance between the distributions p(xIC;) and
p(x1C,)

By definition, the variance of ¢, (x) with respectto C, is

Vit,) =Elt, -t 12 )] (4.3.25)

2
From Egs. (4.3.19) and (4.3.23) we get

— 1 1 _
fp— 1= [x" _5(.”1 + :uz)T _5(.”1 - :uz)T]C 1(:u1 - U,)
=(x- :ul)TC‘l(.ul —Hi,) (4.3.26)

which implies

El(ty - T) 1= E (@, — 11,)" €7 (x - ) (x" — T )C (i, — )] (4.3.27)
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By virtue of Eq. (4.3.6) we therefore have
El[(tlz - t_lz)z] =(p - ﬂz)TC—ICC—l (M, — /flz)
=, — 1) C7' (1, — ) = Dy (4.3.28)
Thus, f,(x), xe€C, is distributed normally with mean Dy and

variance D,,. Similarly, #,,(x), x € C, has a normal distribution with

D .
mean ——212— and variance D,,. Consequently

|- (t, + D, /2)
t, >0 C)=———=1[ exp|——2—21"7 |4t
p(t, 2) \/EDl—z ja P|: 2D, 12

where

erf (x) = \/—;_n_f"" exp(-t*/2) dt

The error probability to misclassify an arbitrary x is

(4.3.29)

(4.3.30)

4.3.31)
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p(error) = p(C)pl(t;,(x) < 0l C)1+ p(C,) pl(t,,(x) > 01 C)]

ay— D,y /2 a+D,/2
= p(C)erf| === |+ p(C,)| 1 —erf| 2——2L= (4.3.32)
[ JDs, ] 2{ [ JDy, ﬂ

where

o, = h{i;%] (4.3.33)

In the particular case p(C,)=p(C,)= % we get o, =0, i.e.
1
pterron) = Herr (B f2)+1-enr (D /2]

which yields

1 - 4.3.34
p(error):ﬁj\/u_u/z Cxp(—t2/2)dt ( )

The quantity D,, is the Mahalanobis distance between the distributions
p(x1C)) and p(xIC,). When this distance increases the error probability
decreases, and converges to zero if D;, — 0.

PROBLEMS

1. Consider a 2-D 2-class classification problem, where the patterns of
either class are normally distributed with the same covariance matrix
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The mean vectors of classes C, and C, are

ol

respectively and p(C,) = p(C,)=1/2. Get the decision boundary
between the two classes.

2. Find the decision boundaries for the following 2-D 3-class
classification problem with normally distributed patterns:

1 0] 2 o] [1 0
C1: ’sz ’Clz
[o 1 [o 1 0 2]
1 0 0
.u'lz[ ]uuz: ’“3:[ ]
0 -1 0

1
p(C)) = p(C,) = p(C,) =3

3. Find the error probability of the Bayes classifier applied for Problem 1.

4. In Problem 1 choose p(C))=0o, p(C,)=1-o and draw the error
probability as a function of c.

5. Consider a 2-D 2-class classification problem with normally
distributed patterns. Assume that the vector patterns 0,007, (1,0)",
07, D" belong to C, and (-1,0)", (0,17, (-1,-1)7, (-2,-2)"
to C,. Approximate U,, C,, i=12 using only these classified

patterns and use the results to obtain the decision boundary between
the classes.
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4.4 ESTIMATION OF PROBABILITY DENSITY

FUNCTIONS

The most important task in implementing a statistical approach for solving
pattern classification problems is estimating the density functions

p(x|C,.), 1<i<m. We will first show how to use the maximum entropy

principle to obtain the form of probability density functions.
4.4.1 Form of the Density Function

The principle of maximum entropy states that in the case where a
probability density function of a random variable is not known, the
function which maximizes the entropy of this variable subject to known
specified constraints is an appropriate choice. Any other choice would
show a bias to some information obtained from the given data. The
maximum entropy solution is easily derived when the constraints are given
in the form of averages associated with the probability density function.
Given a probability density function p(x), the associated entropy is

E =—[ p(x)In[ p(x)1dx (4.4.1)

and we assume the constraints
[fx)px)dx=a, , 0<i<M (4.42)

where f,(x)=1 and o, =1. We wish to obtain p(x) which satisfies Eq.

(4.4.2) while minimizing the entropy E of Eq. (4.4.1). This is done using
Lagrange multipliers. Define

E=E+ i&[fﬁ(x)p(x)dx -] (4.4.3)

x
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where the constants A,, 0<i<M are yet to be determined. By virtue of
Eq. (4.4.1) we get

M M
E =—[p(x)[n[p(x)]- XA f,(x)ldx - Y. A, (4.4.4)
x i=0 i=0
The partial derivative of E, with respect to p(x) is

JE,
d[p(x)]

= [ln[p(x)]—io&ﬁ(x) +1]dx (4.4.5)

and to obtain the maximum entropy solution the integrand must vanish,
ie.

p(x)= eXp[i& f.(x)-1] (4.4.6)

We still have freedom of choosing A,, a <i <m and these coefficients are

chosen so that Eq. (4.4.2) holds. Once the form of the probability density
function is known, we may turn and perform the next step: estimating the
parameters of this density.

n Example 4.4.1 Consider a random variable x which is characterized
by

a<x<b, Tp(x)dle
0
By virtue of Eq. (4.4.6) we obtain
b
p(x)=exp(A,—1) , [exp(d,—Ddx=1

and therefore
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5 , a<x<b
p(x)=1""1
0 , otherwise
»
m  Example 4.4.2 Assume that the a priori information about x is
x20, [p(x)dx=1, [xp(x)dx=p
0 0
Using Eq. (4.4.6) we obtain
p(x)=exp(A, —1+ A x)
and in order to satisfy the two constraints the density function must be
/u)exp(=x/u) , x20
p(x)= ,
0 , otherwise
»

4.4.2 Estimating the Mean Vector and Covariance Matrix

Consider a pattern population with probability density function p(x). The
mean vector of this population is given by

p=E(x)=[xp(x)dx (4.4.7)

If the patterns are in R", then is a vector with n components
p p

(U,-..,1,). Let {x,}Y, denote the given patterns. An approximate to L
is simply

p=2x (4.4.8)
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The covariance matrix C =(c;) , 1< j,k <n satisfies

Cu = T T(xj - au'j)(xk - nu'k)p(xj’xk )dxjdxk (4.4.9)

We can also rewrite C as

C =E[(x~u)(x-w)']
=E[xx" —2xu" +uu’]
— Elxx"]—pu” (4.4.10)

and use the new expression to approximate C as
C= iix xI —uu”
N &Xr THA (4.4.11)

Both estimates for p and for C can be conveniently used in a recursive

manner. Let N be the current number of sample patterns and assume on
additional incoming pattern. Denote by u(N), C(N) the current mean

vector and covariance matrix. Then

N+l

1
N+H)=—— )
H ) N+1.§fx'

1 N+1
= X. +Xx
N+1[1§1 i N+l]

1
1 4.4.12
= +1(Nu(N)+ Xy.r) ( )

where (1) = x,. This recursive expression updates the mean vector.
In the case of the covariance matrix we obtain
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N+1

C(N+1) -1 Sxx! —u(N+DHu" (N +1)
N+1:3

T N+1

i=1

N
! [Zx,.xf + Xy Xun ]—u(N +DHu" (N +1)

1
:—N—H<NC<N)+Nu<N)uT<N)+x~+1xZ+l)

1
(N +1)?

(NU(N) + x5y JNUT(N) + x5,,) (4.4.13)

To start the calculation of C(N) we use the relation
C()y=xx —uu' (1)
to obtain C(1)=0.

m Example 4.4.3 Consider the sample patterns

OESOREEOREEY

To start the recursive procedure we set

0 00
.u'(l)_xl_[()] J Clz[o 0]

and then, using Eqs. (4.4.12-13), obtain

172 23 3/4
2)= , 3) = , 4) = ,
HQ) [0] e [1/3] () [3/4]
C(2)2[1/4 o], C(3):{2/9 1/9]’ C(4):[3/16 3/16]
0 0 119 2/9 3/16 11716

o
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4.4.3 Estimation by Functional Approximation

If the form of the density function is not known we may estimate it directly
using functional approximation.
Let p(x) denote the probability density function p(xI1C) and

consider an approximate p(x) given by
p(x)=Y.a0,(x) (4.4.14)
i=l1
where {¢.(x)}", are specified basis functions. We wish to minimize

E = [w(x)|[p(x) - B(x)]*dx (4.4.15)

or
2
E= jw(x)[p(x)—Zaiq)i(x)} dx (4.4.16)
* i=1
where w(x) is a specified weight function. Solving the system
oE

provides a set of linear equations

il

Y a, [w(x)p,(x)¢,(x)dx = [w(x)p,(x) p(x)dx, 1<i<m (4.4.18)

~.

The right-hand sides of these equations are simply the expected values of
w(x)¢,(x), 1<i<m. If {x,}}, are given samples which belong to C,
these expected values can be estimated as

1
[W()g,(x) p(x)dx = ﬁéwm 0,0x,) (4.4.19)
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We thus replace the system given by Eq. (4.4.18) by
m 1 XN .
2.4, [ w(x)p; (X)¢,(x)dx = ﬁZw(xk )$:(x,), 1<ism (4.4.20)
j k=1

J= x

In the particular case where ¢,(x), 1<i<k are orthogonal with respect to
w(x), we have

, J#EI

[w(x),(x)¢,(x)dx = {g A (4.4.21)
and consequently

1 N
a; = N—AHEW(xk )9:(x,) (4.4.22)

The expression given by Eq. (4.4.22) provides an easy way to obtain
a,(N +1) from a,(N). Indeed

N+1

1
ai(N+1)———(N+1) A Ew(xk)qz-(xk)

1
= (N—H)—A,.[NA"ai(N) + WXy, ), (X)) (4.4.23)
In decision making problems, since the terms w(x;) in Eq. (4.4.22) are
independent of i and are therefore common to all the coefficients, they
can usually be eliminated from the process, without violating the
discriminatory characteristics of the coefficients. We may usually
therefore, for such problems, apply a simpler relation

1 N
a, = 'ﬁ%‘%(%) (4.4.24)
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i.e. relate to the orthogonal basis functions, as if they were orthonormal
and simplifying the computations.

Since p(x) is not known, one may not be able to decide how large m
should be. Usually we start with a prefixed m and experiment with the
training set to determine whether p(x) is an acceptable approximate to

p(x). If the classification performance of p(x) is poor, we increase m

until we reach a ‘saturation’ state, i.e. until adding new terms has no effect
on the classification quality of p(x). It can be shown that in general

p(x) approaches p(x) as m — o0 and N = .

=  Example 4.4.4 Consider the two-class classification problem given in
Fig. 4.4.1

X2
C2
3+ [e]
2+ o
1+\0 o0 o
3 -2 -1 X1
L 1 2 3
14
C1 12
-3

m  Figure 4.4.1 Bayes classification using functional approximation.

Assuming that the entire domain of the patterns is the whole plane, one
is tempted to use the Hermite polynomials which are orthogonal over the
interval (—oo, ). The first two polynomials are H,(x)=1, H,(x) = 2x.
If four basis functions are considered we may choose
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¢,(x)=H,(x)H,(x,) =1
¢,(x)=H,(x)H,(x,) =2x,
¢;(%) = Hy(x)H,(x,) = 2x,
¢,(x) = H,(x)H,(x,) = 4xx,

We may treat the functions as if they were orthonormal and obtain

1 &
a® :72(;) (x,‘c”) , 1<1<2

(3]

where g, are the coefficients associated with class [, N; — the number of

patterns in class [, and x.” are the patterns in class [. Thus

a§1’=1(1+1+1+1)=1 , agl’zl(—2—4—4—6)=—4
4 4
4 = (2 2 4-d)= af’:%(4+8+16+24):13
al‘2>=é(1+1+1+1+1)=1, a? = (2+4+4+4+6) 4
a® = (2+2+2+4+6) 3.2, al? = (4+8+12+16+24)—128

and consequently
p(x1C)=1—8x —6x, +52x,x,

p(x1C)=1+8x +6.4x, +51.2xx,
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The decision functions are
dl (x)= .b'(x I Cl)p(Cl)
dz(x) = .b'(x I Cz)p(cz)

and by assuming p(C,) = p(C,)=1/2 we get

d,(x)= % —4x, —3x, +26x,x,

d,(x)= % +4x, +3.2x, +25.6x,x,

The decision boundary is therefore

d,(x) =d,(x)—d,(x) =—8x, —6.2x, + 0.4x,x, =0

PROBLEMS

1. Use the maximum entropy principle to obtain the probability density
function if the information

—co< x< oo, Tp(x)dx:l, ]:xp(x)dxzu, o_|':x2p(x)dx:c}'2

is a priori known.

2. Given the sample patterns
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Use Eqgs. (4.4.12-13) to estimate p(i), C(i), 1<i<4.

3. Apply the method of functional approximation to get estimates of
p(x|C,) and p(x|C2) where

Cl = {(LO)T ’ (1’ 1)T ’ (2’1)T ’ (3’O)T ’ (4’ 1)T}
C2 = {(—1’O)T s (_2’ O)T ) (_2’_ 1)T ) (_3’1)T s (_3’ 2)T}

Use the first three 2-D Hermite polynomials and Eq. (4.4.24) to obtain
the coefficients.

4. Repeat problem 3 but use the first four Hermite polynomials.

5. Repeat problems 3 and 4 using Hermite orthonormal functions.
Replace H, (x) by

exp(—x’/2)

NN

H,(x)= H,(x)

but still use Eq. (4.4.24).




5 FEATURE SELECTION

5.1 INTRODUCTION

Any pattern which can be classified in some category must possess a
number of fearures. The first step in the process of classification is to
consider the problem, what features to select and how to extract (measure)
them. This problem could be complicated since sometimes the important
features are not easily measured, while sometimes economic
considerations forbid their measurement.

As an example, consider the problem of oil prospecting. This is
clearly a two-class classification problem since any given location is either
positive or negative for oil. In order to classify an arbitrary location there
is a foolproof procedure: one should start drilling oil wells until either oil
is found in significant quantities, or there are already enough dry wells in
this location to declare it oil-free. Although by doing so we are measuring
the most significant features of the location, it is quite clear that this
procedure is economically impractical, unless time and money do not
count — which usually is not the case.

Instead, we must consider other features which provide less
information but are economically reasonable and practical. For example,
we detonate dynamite at several points on the surface at the specific
location. The features that we measure are some seismic events obtained
from the low frequency reflection waves caused by the explosions. Using
these features, a map of the earth’s inner crust is obtained and each
location is classified as having or lacking a potential of having oil.
Obviously, a more conclusive map would be desired but as one finds, a
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trade-off between feature selection and classification performance is a
constraint which exists here and in many other pattern recognition
problems where economical considerations must be considered.

Three types of features may be considered:
1. Physical features
2. Structural features

3. Mathematical features

Physical and structural features are easily detected by sensory organs and
are therefore commonly used by humans (and animals) for pattern
recognition. Color and weight for example are considered physical
features while geometrical properties are structural features. In this
chapter we only discuss mathematical features which are for example
correlation coefficients, eigenvalues of covariance matrices and other
mathematical invariants. In automatic pattern recognition, physical and
structural features are used mainly for image processing and they are
problem oriented. For example, to identify crops by aerial photographs
one should definitely use color as a prime feature. On the other hand, in
order to identify a setup of missiles or airplanes, the use of structural
features is needed. However, it is impossible to develop general
guidelines how to select physical or structural features.

Mathematical pattern preprocessing consists of two tasks: clustering
transformation and feature selection. A central problem is the
development of decision functions from given sets of patterns so that these
functions will partition the measurement space into regions, each of which
contains the sample patterns of a single pattern class. This brings the
concept of clustering transformation which operates on the measurement
space and clusters the points representing the patterns of that class. A
clustering transformation is expected to maximize the interset distance
which is the mean square distance between patterns that belong to
different classes, and at the same time to minimize the intraset distance
which is the mean square distance between patterns that belong to the
same class. In the process of selecting the most effective features, the
dimensionality of the vectors representing the patterns may be reduced.
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The maximization or the minimization of some criterion function dictates
the optimum feature selection. Another approach is to attach the feature
selection to the performance of the classification procedure, for example to
the probability of correct classification. If the feature distribution is
known for each class we may perform feature selection by entropy
minimization or by maximizing a divergence function which measures the
dissimilarity between classes. If the feature distribution for each class is
unknown we use nonparametric feature selection based on direct estimate
of the error probability.

5.2 DISTANCE MEASURES

In processing pattern samples, distance measures play a significant role
and are applied in designing a feature extraction procedure. We open this
section with the definitions of point-to-point, point-to-set and set-to-set
distances in an n-dimensional Euclidean space.

m Definition 5.2.1 For arbitrary patterns x =(x,x,,...,x,)" and
Y=, Ys»---»¥,)" in R", the quantity
u v
d(x,y) =[§(x,~ =) } (5.2.1)

is called the distance (point-to-point distance) between x and y. It is
also denoted by llx — yll (norm).

Let C={x®,x®,...,x™} denote a class of patterns in R".

m Definition 5.2.2 Given an arbitrary pattern x = (x,,x,,...,x,)" in R",
the distance of x from C (point-to-set distance) is the mean square
distance between x and x, 1<i <m, and is denoted by

1< A
d*(x,0)=—.d*(x,x")
min
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1 m n 12
== X0 —x) (5.2.2)

miza =1

For arbitrary x¥) € C we thus have

dz(x(j),C—{x(j)}):"l_z i(xif) —x)? (5.23)

m—1izj k=

and since d(x”, x?)=0 we obtain also

6, c-f0P=—=3% S -0y (5.2.4)

m—1ia k=
The intraset distance associated with C is defined next.

= Definition 5.2.3 The mean of d(x?,C—{x"}) over C is called the

intraset distance of C and is denoted by

DXC) = %g dZ(x(j), C— {x(j)})

m(m—l) j=1 =l k=l B (525)

= Example 5.2.1 Consider the class C={(0,0)7,(1,0)",(-1,0)",(1,)7}

in R?. Here

2 2 2 2
& (x0, c-{x0}) = +3(1 1) 1333
2 2 2
dz(x(z),c_{x(z)})zl_izi_l_zz

3
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P+22+(2%+1%)
~[x°)=

d*(x®,c-{x® 3 =3333
P+1)+ 12+ +1
d*(x?,c-{x*®})= ( ) 3 ( ) _ 2667
ie.,
) 1333+2+3333+2.667
D*(C) = =2333

4
A

By conveniently rearranging the elements in the triple summation of
Eq. (5.2.5) we will now express the intraset distance D*(C) in terms of
the variances of the components of the given patterns. Indeed,

DC)=—"-% [—lz—i i(xi"’—xi"’)z]

m—1ia [m” o i3
n 1 m m 1 \2 2 m m X . 1 m m .
=3 |52 SN -5 3 a0 2 Y ()’
m-1lia |m* i3 ia m® o =1 m° =1 =

We now denote

and obtain
m & 1 m ) 1 m—ﬁ
D)= 3 | L3 () 26 27+ L8 () }
m—lia | mia m A

I
o
3
1=
—
~
~
R‘H/__\
-~
™~
| I

(5.2.6)

3
|
[y

i
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since obviously x(') = x,(j ) and (xk’)) = (x(’)) for arbitrary i and j. The

unbiased variance of x{”, 1<i<m is given by

_ (M) _ )2
m— 1,21' "= 0

=————[m(x 7)? —2m(x! x0)? +m(x(‘)) ]
m—

__m_ x ™) — (O
" -]

Therefore,
2 AN L2
Diey=20, (527)

i.e., the intraset distance of a pattern class C is twice the sum of the

variances of the single components of the patterns.

m Example 5.2.2 In the previous example the means of the components

are i, =M, =025 providing the unbiased variances o] =(44/48),

o} =(12/48) and

pC)=2/ 212 5333
48 48

as expected.

We finally define the interset distance.
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» Definition 5.2.4 For arbitrary pattern classes
C :{x“),x(z),...,x("“)} and C, :{y(”,y(z),...,y('"“}, the interset
distance (set-to-set distance) between C, and C, is the mean square
distance between a pattern in C|, and a pattern in C,. It is denoted by

my

DC,C)=——3,

( O} <1>) (5.2.8)

my
j=1

mm, i

5.3 CLUSTERING TRANSFORMATIONS

Consider a pattem x=(x,,x,,...,x,)" in R". The measurements
x, , 1<i<n which represent the sample and by which one is supposed

to classify the pattern are usually not equally important. Clearly,
measurements of less importance should be assigned smaller weights. The
process of feature weighting can be carried through a linear transformation
which will operate on initially scattered patterns in such a way that the
transformed pattern points will be highly clustered in the new space.

Consider arbitrary patterns x,y in R" and a weight matrix

Wi Wi Wy,
Wn Wy Wy,

W=| | : (5.3.1)

w wnz...w

nl nn
Using W to transform the given patterns we get
x'=Wx , y'=Wy

and the distance between the patterns in the new space is

dx’,y)= [2 (x, =y }
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2 172
:{i [2 w,.j(xj—yj)} } (5.3.2)

= | =l

We now assume only scale-factor transformation where each
coordinate is simply multiplied by an associated factor. In this case
w,; =0 if i # j and the matrix W is diagonal. Instead of Eq. (5.3.2) we

obtain

n 172
d<x:y'>:[z Wiz, )2} (533)

i=1
where w;, is the i —th feature weight.
Consider the following problem: Given a pattern class

C={x®,x®,...x™} in R", find a scale-factor transformation that will

minimize the intraset distance of the new pattern class in the new space.
It is easily seen that the class C” of the transformed pattern satisfies

DX(C)=23(w,0,)’ (53.4)

where O f is the unbiased variance associated with the i —th component in

the original space (throughout the calculations in the previous section we
simply replace each x” by w,x”). To minimize the right-hand side of

not

Eq. (5.3.4) we must add a single constraint on the numbers w,,, 1<i<n.

Case 1. Assume the constraint

(5.3.5)

-
=
I

i
—_

H

Minimizing D*(C’) is equivalent to minimizing the expression (Lagrange
multipliers procedure)
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A= 2§(wﬁ0ﬁ )2 ~a[§ w;, — 1] (5.3.6)
since Eq. (5.3.5) holds. Thus
—é)é“—:4w,.,.0'i2—a:0 , 1<i<n (5.3.7)
which yields
wy, = 4(;2 , 1<i<n (5.3.8)

4
o=~
20-72 (5.3.9
i=1
and
W = 1
i~ _n (5.3.10)
o2Y o2
1 E 1

m Example 5.3.1 Consider the pattern class in Example 5.2.1. By
Example 5.2.2 0] =(44/48) and 0. =(12/48). To minimize D*(C") we
apply Eq. (5.3.10) and choose

_ 1 ~0.214
(44748)[(48] 44) + (48/12)]

Wi

w, =1-w,;, =0.786

The intraset distance in the new space is
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2[(w,0,)* + (w,,0,)°1=0.393

The intraset distance in the original space is

2(0} +07)=2.333
A
This example demonstrates how a clustering transformation is
designed. We use a feature weighting process, where the feature with a
larger variance is assigned a smaller weight, since the associated

measurement is clearly less reliable or less important.

Case 2. Again we assume that W is a scale-factor transformation subject
to the constraint

gwﬂ:l (5.3.11)

Here, minimizing D*(C’) is equivalent to minimizing

B=2i}::(wi,0,»)2*ﬂ(lljwﬁ —1] (5.3.12)
under the constraint of Eq. (5.3.11). Therefore,
a—awl%=4w,-,-6,~2—ﬂ£[iwj,», Isi<n (5.3.13)
and consequently
w=YP icicn (5.3.14)
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Since Eq. (5.3.11) holds we obtain

n (2/n)
B :4[Ho'i] (53.15)

and the feature-weighing process is given by
1 (n (/) (5.3.16)
w, =— o
i O-i [!;I[ i ]

i.e., w, is inversely proportional to the standard deviation of the i—th

i

measurement.

m  Example 5.3.2 Using the pattern class of Example 5.2.1 we obtain

,4 {
o, = —4=O.957 , 0, = 2=O.5
48 48

w, =0723 , w,, =1384
and
2[(w,0,)* +(w,,0,)*1=1.915

Clearly the clustering transformation of Example 5.3.1 yields better
clustering

' )

So far we obtained a clustering transformation W under given
constraints, that minimized the intraset distance in the new space. We will
now define a second transformation in the new space that will clarify
which components have smaller variances and will thus enable us to
proceed with the feature selection. This transformation is given by

x" = Ax’ (5.3.17)
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and A will be chosen so that the covariance matrix of the pattern class in
the space X” ={x”} will be diagonal. In order to keep the distances in
X’={x’} unchanged A will be chosen as an orthonormal matrix.
Denote by C,C’,C” the covariance matrices associated with the pattern
class in the spaces X ={x}, X’, X" respectively. Let the corresponding

means of the pattern class be g, yt” and p” respectively. Then

p=wp , x'-p'=Wx-p
and
C'= E{(x' - u)(x"- 1))
= E{W(x - p)(x —p)"' W’
=WCcw’
where E denotes the expectation operator. Similarly
C"=ACA
and since A is chosen orthonormal
C"=ACA™
i.e., C” and C’ are similar. To obtain a diagonal C”

Al ={el,e;,....el}

we choose

(5.3.18)

(5.3.19)

(5.3.20)

(5.3.21)

(5.3.22)

where e/, 1<i<n are the normalized eigenvectors of C’ which

define an orthonormal set. Consequently
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A
2, 0
o= (5.3.23)
0
A

n

where {Ak};' are the eigenvalves of C” and can be shown to satisfy
A, =0, 1<k<n (5.3.24)

Thus, the transformation A converts the covariance matrix C’ into a
diagonal matrix whose entries are the unbiased sample variances. The
measurements corresponding to small variances are more reliable and
should be considered as more important features.

However, to obtain the eigenvectors of C’ from those of C is not
simple. Instead we reverse the order of steps. We choose an orthonormal
matrix A whose rows are the eigenvectors of the covariance matrix C. It
converts C into a diagonal matrix C’. We then construct a diagonal
matrix W which minimizes the intraset distance in space X” under some
given constraint.

5.4 FEATURE SELECTION BY ENTROPY
MINIMIZATION

The concept of entropy introduces a statistical measure of uncertainty. For
a given set of patterns, a good measure of intraset dispersion is the
population entropy

T =-E,[In(p)] (5.4.1)

where p is the probability density associated with the given patterns. In
this section we will use the entropy as a criterion in designing an optimal
feature selection process. Features which decrease the uncertainty of a
situation are more meaningful than others. Since entropy measures
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uncertainty, an appropriate feature selection tool should choose those
features which minimize the entropy of the given pattern classes. Clearly,
this is equivalent to minimizing the dispersion of the given pattern
populations and the process should therefore have clustering properties.
Consider M pattern classes C,,...,C,, whose populations are

determined by the probabilities {p(x1C,)}Y,. The entropies of
these populations are given by

T,=— [ p(x1C)In[p(x1C,)] dx (54.2)

where integration is performed over the whole pattern space.
We will now assume that the given densities are normal probability
density functions, i.e.

p(x1C)=N(;, C) (5.4.3)

where . and C, are the mean and covariance matrix of the i-th
population. We also assume C, =C.

The basic idea now is to determine a linear transformation matrix A
which transforms the given pattern vectors to new vectors with lower
dimension. The transformation is

y=Ax (5.4.4)

where A is determined by minimizing the entropies of the given pattern
classes. The vectors x are n-dimensional, the image vectors y are m-
dimensional where m < n and A = A(m X n). The rows of A are m feature

vectors {ai}l'", which are chosen so that the entropy of the image pattern
vectors will be minimized.
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m Theorem 5.4.1

Given M pattern classes which are characterized by normal distribution
density functions with identical covariance matrices, the entropies 7},

1<i<M are minimized by
A=| : (5.4.5)

where {ai}l'" are the normalized eigenvectors associated with the m
smallest eigenvalues of the matrix C.

The proof of this theorem is beyond the scope of this book.

m  Example 5.4.1 Consider two classes C|, C, given as (Fig. 5.4.1):
C,={-107, 10", ()7, 2,0)" }
C,={-20)", 117, (-3.0)", (-2-1)" }

The estimates for the mean vectors p,, i, are given by

§=
' N, 2

where N; are the numbers of patterns in C;, i.e.

The estimates for the covariance matrices are
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J
Ci = ZxrxiT- —:u'i:uiT , =12
N,‘ =t 7y
which yield
05 025
¢:=C (0.25 0.5 ]
. 1 3 .
The eigenvalues of C are A4 :Z, A, = R The normalized

corresponding eigenvectors are (for example)

1 T
=, -1
e ,—2(, )
1 T
=— (1,1
e, ,—2(,)

respectively. Let us decide to decrease the dimensionality by 1 and choose
for example e, to define A:

A=z -142)

The image patterns obtained by Eq. (5.4.4) are

C, C,
1/42 2
/42 —2

0 ~3/2
V2 —3/2

and the clustering effect is obvious.
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m Figure 5.4.1 Original patterns in R%.
A

5.5 FEATURE SELECTION USING FUNCTIONAL
APPROXIMATION

Assume that the features of a given pattern class can be characterized by a
function f{x) whose values are determined for the observed data. Then, the
feature selection problem becomes a problem of functional approximation.
Given the training patterns x, x», ..., Xy and the associated values of the
feature function: f(x,), 1<i<n, we search for an approximate f(x) to
flx) such that a given performance criterion is optimized. In this section
we consider a method of functional expansion and a method of stochastic
approximation to approximate feature functions.

Function expansion
Let Cy, ..., Cyr be M pattern classes where

Cc=1{x,}, 1<k<N, (5.5.1)
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and let fi(x) be associated feature functions. In the process of determining
approximates f;(x) to the unknown feature functions, an agreeable
performance criterion is that for each i: 1<i<M, the error sum

E = éwi(xik)[ﬁ(xik)_ﬁ(xik)]z (5.5.2)

where w; is a given associated weight function, is minimized. Each
approximate f,(x) is expressed as a linear combination of basis functions,

ie.
ﬁ(x)=§;ci,.¢i,- (x)=€79,(x) (553)
where
¢; =(CyisCiar-rCiy)) (5.5.4)
and
¢i<x)=(¢,-,(xi¢,-2<x),...,¢m,. @) (5:3.5)

and n(<N,) is the number of basis functions which are chosen to

approximate the feature function of the i-th pattern class. The choice n;=N;
means that the number of basis functions equals the number of training
patterns in the i-th class and in this case the error some E; is reduced to
Zero.

To minimize E; one must solve the system

oE,
—, j=12,...,n
dc / '

(5.5.6)

i
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for i=1, 2, ..., M. Once @,(x) are chosen and c; computed the

approximate feature functions are obtained by Eq. (5.5.3). Simple algebra
replaces Eq. (5.5.6) by

Ac,=b, , 1<i<m (5.5.7)

where A; is an n; X n; positive definite symmetric matrix (consequently A,.‘1
exists) with entries

(A), = Sm(x,)0, (6,)0, (x,) (5538)

N 5.5.9
by = Som (5,0, ()5, >

By virtue of Eq. (5.5.7) we obtain
c,=A'b, , 1<i<m (5.5.10)

The process may be simplified if ¢; are chosen to be orthogonal with

respect to the factors w;(x;). Then A; is a diagonal matrix and we simply
get

2

w
Ci =" n (5.5.11)
W, (xil)d’; (xil)

i(xil )¢u (xil )fz (xu )

—
1l
—

=1

—

If furthermore ¢U are orthonormal with respect to w;, then

C; = gwi(xil)d’ij(xﬂ )fi(xil) (5.5.12)
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The advantage of this approach is that if for a given n;, the error sum E; is
not small enough, we may obtain a higher order approximation by taking
an additional term ¢, , 19, , .,(¥) Where ¢, ,,(x) is another orthonormal

function. The previously determined c,,c,,,...,c, remain the same, and

we just calculate the additional ¢, , ,,.

m  Example 5.5.1 Consider the pattern classes

G G
x;, = (0,0 X, =(2,2)
x,=(-2,0)" X, =(=2,2)"
X3 :(_2’__4)T X :(330)T
x14 = (1’_ 1) 4

whose features are characterized by some unknown feature
functions f,(x), f,(x) respectively. The values of these functions

at the training patterns are known and given by

Si(x)=-3 fo(xy) =2
fi(xp)=—4 fo(xy) =1
fi(xy)=-2 fo(xy3) =3
filx,)=-1

and based upon this information it is desired to approximate f,(x) by
fi(x) for i = 1,2. To simplify the computation we choose w; = 1, i=1,2.
The choice n, =2, ¢,(x) =x,, ¢,(x)=x, for i=12 yields
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9 7 17 0

A] = 5 A2 =
7 17 0 8
11 11

bl = , b2 =
9 6

and consequently
31 1 21

&7

3
612:2—6’ €y ‘ﬁ’ sz—z

267
Thus, the approximate feature functions are

- 21 3
x, ., f(x) :ﬁxl +=x,

- 31 1
X)=—x+—
£i(x) 26 4

26
The error sums are
E ~196, E, ~83

and are not particularly small. This suggests introducing an additional
basis function, for example

0,=1, 1<i<2; w=1

Adding a constant basis function is essential since f,(x,,)=-3 while
x;; = (0,0). We now obtain
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9 7 -3 17 0 3

A=|7 17 -5|, A=|0 8 4
3 -5 4 3 4 3
11 11

b=| 9 |, b,=| 6
~10

and finally get

¢, =079, ¢,=-0565, c¢,;=-2.613
¢, =0.250, ¢, =-0.375, c,;=2.250

The approximate feature functions are now

fi(x)=—-2.613+ 0.790x, — 0.565x,
f>(x)=2.250 + 0.250x, — 0.375x,

and the reduced error sums are

E ~026, E,=0 (since n,=N,=3)

Stochastic approximation

Sometimes the observed values of the feature functions fi(x) at the given
training patterns are random variables which are characterized by
unknown probability density functions. In this case the error criterion that
should be used is: minimize the quantities

E= [wOlf,(x)- () p(x1C)dx, 1<i<M (5.5.13)

xeC;
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We express each ﬁ (x) as alinear combination of basis functions, i.e.
F@)=Yc,0,(x), 1<i<M (5.5.14)
A

where n, <N, forall 1<i< M. The minimization procedure implies

oF, &
=2 .[ [fi(x)_kz_lcik ik(x)]q)ij(x)p(xlci)d‘t:() (5.5.15)

aCij xeC;
forall 1<i<M and 1< j<n. Since Eq. (5.5.15) includes the unknown

probability density function p(x1C,) a method of stochastic

approximation should be applied. The Robbins-Mouro algorithm provides
the recursive procedure

&, (e+1)= ¢, () + o, [£,(x, )~ 32, (€) 8, (x, 1 9, (x,) (55.16)

i
=1

-~

Where k denotes the k-th iteration and ¢, , k =1,2... are positive numbers
which satisfy

2o, =, gaf <o (5.5.17)

The quality of the coefficients c,(k) improve as k increases and if c,.(j(’)

denote the exact solution, then

pmb[lkgg ¢, (k) = c,-‘,«‘”] =1 (5.5.18)
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PROBLEMS

1. Given the pattern class C, ={x,}, with

1 1 2 0
=01, x,={1|, x;={1}|, x,=|1
1 1 0 1
obtain the intraset distance of C;,.
2. Let C, ={yj}j.:1 where

3 2 4

YW= 20, y»,=|2 ) y;=|5

0 1 -1

Calculate the interset distance between C, and C, of problem 1.

3. Let C denote a class of patterns in R*. The variances of the single
components satisfy o’ <1/8, 1<i<3 and o} S% . What can be

said about the intraset distance of C.

4. Given class C, of problem 1 obtain a scale-factor transformation

x’=Wx that would minimize the intraset distance in the new space
under the constraint

(@) 2w, =1
() [Tw, =1

5. Let Cbe aclass of four patterns given by

i) =) o) =L
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Reduce the dimensionality of x,, 1<i<4 to one by using the
minimum entropy transformation given by Eq. (5.4.5)

6. Repeat problem 5 in the case of
c={0,0, 1,57,(5.07,(6,6) }
and observe the formation of a cluster.

7. Consider the two pattern classes C; = {x,.j }Jn=1 , 1<i<2:
¢ ={o.n", 1,07, @07}
¢, ={0,2)", (1L,-3)", (-<1,-3)", (=2,-2)" }

whose features are characterized by unknown feature functions
fi(x) and f,(x) respectively. The values of the feature functions at
the given training patterns are

SHi(x)=-5 f2(xy) =1

fi(x,,)=-8 So(x) =2

f1(x13):—6 fz(x23):O
fo(xy) =—1

Approximate f(x), 1<i<2 by fi(x), 1<i<?2 using three basis
functions: 1, x;, x,. In the minimization procedure assume weight
functions w,(x)=1, 1<i<2.







O FUZzZY CLASSIFICATION
AND PATTERN
RECOGNITION

6.1 FUZZY SETS THEORY

In this section we present the basic principles of Fuzzy Sets Theory (FST).
Advanced techniques in pattern recognition using this theory are treated in
Sections 2-35.

Uncertainty

Several mathematical disciplines deal with the principles of uncertainty.
For example, stochastic uncertainty deals with issues related to the future
occurrence of a certain event. The event itself is defined precisely but the
uncertainty involved is qualified by a degree of probability that this
particular certain event will occur.

Another kind of uncertainty is related to lexical uncertainty which
deals with the imprecision and ambiguity that is inherent in human
languages. Researchers in the field of psycholinguistics investigate the
way humans evaluate concepts and derive decisions in these complex
structures, usually related to subjective categories. Analysis of this kind of
uncertainty usually results in a perceived probability rather than the
mathematically defined mobility. The third kind of uncertainty, which is
the main topic of this section, is the theory of fuzzy sets. This theory




168 CHAPTER 6 FUZ2Y CLASSIFICATION

assists us in updating linguistic uncertainty in an adequate fashion. The
main feature of any fuzzy system in the linguistic variable which is closely
related to the concept of a fuzzy event; mainly, an event which is not
certain but has a grade of membership associated with it. Thus, now we
can have a transformation from a linguistic variable to a Linguistic
Mathematical Description (LMD).

Since 1965, when Lotfi A. Zadeh published his controversial paper on
fuzziness and also coined its name, a large number of methods using fuzzy
sets have been developed. It should be emphasized that these methods are
not based on “sloppy” mathematics or “fuzzy” mathematics, but are
descriptions of precise mathematical handling of fuzzy and uncertain
events, data, and concepts. Fuzzy techniques mimic human decision-
making and evaluation processes. Therefore, a good defuzzification
technique is required in transforming the results of Approximated
Reasoning (AR) to deterministic action.

6.1.1 Fuzzy Sets

Fuzzy set theory, introduced by Lotfi A. Zadeh in 1965, is a generalization
of crisp set theory.

A fuzzy set consists of objects and their respective grades of
membership in the set. The grade of membership of an object in the fuzzy
set is given by a subjectively defined membership function. The value of
the grade of membership of an object can range from O to 1 where the
value of 1 denotes full membership, and the closer the value is to 0, the
weaker is the object’s membership in the fuzzy set.

The single most important feature of fuzzy set theory is the ability to
express in numerical format the amount of imprecision and ambiguity in
human thinking and decision-making. The encoding and processing of
fuzzy data, improve knowledge, and ambiguous procedures are relatively
easy and intuitive, since in fuzzy set theory, the truth of any statement is a
matter of degree.

Essentially, fuzziness is a type of imprecision that stems from a
grouping of elements into classes that do not have sharply defined
boundaries. Such classes - called fuzzy sets - arise, for example, whenever
we describe ambiguity, vagueness, and ambivalence in mathematical
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models of empirical phenomena. Since certain aspects of reality always
escape such models, the strictly binary (and even the ternary) approach to
the treatment of physical phenomena is not always adequate to describe
systems in the real world; and the attributes of the system variables often
emerge from an elusive fuzziness, a readjustment to context, or an effect
of human imprecision. In many cases, however, even if the model is
precise, fuzziness may be a concomitant of complexity. Systems of high
carnality are rampant in real life and their computer simulations require
some kind of mathematical formulation to deal with the imprecise
descriptions.

The theory of fuzzy sets has as one of its aims the development of a
methodology for the formulation and solution of problems that are too
complex or too ill-defined to be susceptible of analysis by conventional
techniques.

Intuitively, a fuzzy set is a class that admits the possibility of partial
membership in it.

m  Definition 6.1.1 Let X ={x}denote a space of objects. Then a fuzzy
set A is a set of ordered pairs

A={x x,(x)}, xe X (6.1.1)

where x,(x), a number in the interval [0,1] is the grade of membership of
x in A. The grades 1 and O represent respectively, full membership and
nonmembership in a fuzzy set. We assume that an exact comparison is
possible for the truths of any two inexact statements “xe€ A” and “ye A,”
and that the exact relation so obtained satisfies the minimal consistency
requirements of transitivity and reflexivity; the ordering x > y means “x
is at least as true as y” with x < ydenoting “x is not truer than y.”

The grades of membership reflect an “ordering” of the objects in the
universe; it is interesting to note that the grade-of-membership value
X,(x)of an object x in A can be interpreted as the degree of
compatibility of the predicate associated with A and the object x. It is
also possible to interpret y,(x)as the degree of possibility that xis the
value of a parameter fuzzily restricted by A .

If X ={x,,x,,...,x,} is finite we often express it as
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X=Yx=x+x+...+x,
i=1

where the plus sign (+) plays the role of “union” rather than the arithmetic
sign. We extend this notation to a fuzzy set A and express it as

A=Y 2, x, = 2, %+ 20,0 %, 4+ 4 1, (x,)/%, (6.1.2)
i=1
If A is infinite we use the notation
A= [, () (6.1.3)
X

m  Example 6.1.1 Let the universe X be the interval [0, 120], with x
interpreted as age. A fuzzy set A of X labeled old may be defined by a
grade of membership function such as

0 ,  0<x<40

-1

Xa(x)= {H[x—m]‘z} (6.1.4)
5 , 40<x<120

The support of A which is the set of points in X at which x,(x) >0 is the

interval (40, 120]. The height of A which is supremum of Y ,(x) over X is

effectively 1. The crossover point where the grade of membership gets the
value 0.5 is 45. The membership function of old is illustrated in Fig.
6.1.1.
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1.0}
0.8
0.6
0.4
0.2
0.0

—T—T T 7

membership at ’old’

0 20 40 60 80 100 120
age

m Figure 6.1.1  Membership function of old (Eq. 6.1.4).
Basic Set-Theoretic Operations for Fuzzy Sets

Among the basic operations that can be performed on fuzzy sets are the
following:

m  Definition 6.1.2 The complement of a fuzzy set A denoted by A, is
defined by

A =.[X [1- x4 (X))/x

The operation of complementation is equivalent to negation.

m  Definition 6.1.3 The union of fuzzy sets A and B denoted by AU B,
is defined by

AUB=[ X, OV W) x

where v is the symbol for max.
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The union corresponds to the connective OR. Thus, if A and B are labels
of fuzzy sets, then A OR Bis expressed asAuU B.

m  Definition 6.1.4 The intersection of fuzzy sets A and B denoted by
AN B, is defined by

AnB=[ L, ) Az, 0]
where A is the symbol for min.

The intersection corresponds to the connective AND. Hence
A AND Bis interpreted as AN B.

Comment: It should be pointed out that v and A are not the only
operators used as interpretations of the union and intersection,
respectively. In particular, when AND is identified with A (i.e., min), it
represents a “hard” AND in the sense that no trade-off is allowed between
its operands. By contrast, an AND that is interpreted in terms of the
arithmetic product of the operands, acts as a “soft” AND. Which of these
or other possible interpretations is more appropriate depends on the
applications in which OR and AND are used.

m  Definition 6.1.5 The product of fuzzy sets A and B denoted by AB,
is defined by

AB={ x,(x) - xp ®)/x
Also, A”, where « is any positive number, is defined by
A% =[ [, () /x

Two operations that are defined as special cases of A are useful in the
representation of linguistic hedges. The operation of concentration
denoted by CON (A), is defined by
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CON (A) = A?

The concentration is an interpretation of VERY. Thus, if A is alabel of a
fuzzy set, then VERY A corresponds to CON(A). The operation of

dilation denoted by DIL (A), is expressed by
DIL (4) = A*

If A is alabel of a fuzzy set, the APPROXIMATELY A is interpreted as
DIL (A).

If w is any nonnegative real number such that w-height (A)<1, we
define

wAzfx w-x, (x)/x

m  Example 6.1.2 Consider the universe of discourse X =1+2+...+8
and the fuzzy sets

A=08/3 +1/5 +0.6/6
B=0.7/3 +1/4 +0.5/6

Then

AUuB=08/3+1/4 +1/5+ 0.6/6
ANB=07/3 + 05/6

A=1/1+1/2+02/3+1/4 +04/6 +1/7 + 1/8
AB=056/3 + 03/6

A*=0.64/3 + 1/5 + 0.36/6

05A=0.4/3 + 0.5/5 + 0.3/6

CON(B)=0.49/3 + 1/4 + 0.25/6
DIL(A)=0.89/3 + 1/5 + 0.77/6
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o -Cuts
When we want to exhibit an element xe X that typically belongs to a

fuzzy set A, we may demand that its membership value be greater than
some threshold o.e [0,1]. The ordinary set of such elements is the o.-

cut A, of A, ie.
A, ={x|xe X and y,(x) 2t} (6.1.5)

The strong o-cut is defined as

Ay ={x|xe X and yx,(x)> 0} (6.1.6)
Consequently
X 4(x) = sup minfar, x, (x)] (6.1.7)
O<a<l
where
1 iff xe A,
X, ()= {0 otherwise (6.1.8)

It is easily seen that the relations
(AUB),=A,UB,,(AnB),=A,NB,

hold. However, for oo # 0.5 we obtain

This result stems from the fact that usually, there are elements that belong
neither to A, norto(A),, i..

A, UA), =X
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The level fuzzy sets of a fuzzy set A are defined as the fuzzy sets
A,,0<a <1 such that

A, ={(x, x,(0), xe A} (6.1.9)

The strong level fuzzy sets are defined as

Ay ={(x, x,(x)), xe A} (6.1.10)
By virtue of Eq. (6.1.9) we easily obtain
1
A =JoA, =Y A, (6.1.11)
0 o
where the integral (or sum) is the union of 4, with o ranging from O to
1.

m  Example 6.1.3 Consider the fuzzy set

A=0.1/2+0.3/4+0.5/7+09/8+1/9

Then, A can be rewritten as

A=0.1/2+0.1/4+0.1/7+0.1/8 +0.1/9
+ 03/4 + 0.3/7 + 0.3/8 + 0.3/9

+ 0.5/7 + 0.5/8 + 0.5/9

+ 09/8 + 0.9/9

+ 1.0/9

or
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A=0.1(1/2 + 14+ 1/7 + 1/8 + 1/9)
+03 (/4 +1/7 +1/8 + 1/9)

+0.5 (1/7 + 1/8 + 1/9)

+ 0.9 (1/8 + 1/9)

+ 1.0 (1/9)
ie.

A=0.14,, +0.34,, +0.54,, + 0.94,, +1.04, ,

6.1.2 The Extension Principle

One of the basic ideas of fuzzy set theory, which provides a general
extension of nonfuzzy mathematical concepts to fuzzy environments, is
the extension principle. This is a basic identity that allows the domain of
the definition of a mapping or a relation to be extended from points in X
to fuzzy subsets of X .

More specifically, suppose that f is a mapping from X to Y and A is
a fuzzy subset of X expressed as

A=y /x+ ...+, /x,.
The extension principle asserts that

f(A):f(Z1/x1 + "'+Zn/'xn )Exl/f(x1)+ ---+Zn/f(xn)

Thus the image of Aunder fcan be deduced from the knowledge of the
images of x,,...,x, under f.

If we have an n-ary function f, which is a mapping from the Cartesian
product X,x X,X...xX, to a universe Y such that y= f(x,...,x,), and
A ,...,A , are n fuzzy setsin X ,X,,..., X, respectively, characterized by

a set of membership functions {y, (x,)} . then the extension principle

allows us to induce from the fuzzy sets{A.}", a fuzzy set F on Y such
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that

2r(9)= supmin[y, (4 Xs (x,)]
Xiser X,
y=f(x,...,x,)

2 =0 if (=0

s Example 6.1.4 Let X =1+2...+7 and let small be a fuzzy subset on
X defined as

small =1/1 + 1/2 + 0.8/3 + 0.5/4

Let f be the operation of squaring. Then

f(small)=1/1 + 1/4 + 0.8/9 + 0.5/16

m Example 6.1.5 Let X, =X,=1+2+...+7 and let
A, = approximately2=0.6/1 + 1/2 + 0.8/3
A, = approximtely4=0.8/3 + 1/4 + 0.7/5
Then
A XA =06/3+0.6/4+0.6/5+0.8/6+1/8+0.8/9+0.7/10+0.8/12+0.7/15

A

6.1.3 Fuzzy Relations

m  Definition 6.1.6 Let X denote a cartesian product of n universes of
discourse X,,...,X,. An arbitrary fuzzy subset R of X given by
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R= [xelx,..ox )(x,...,x,) (6.1.12)

Xx..xX,
is called a fuzzy relation.
Common examples of (binary) fuzzy relations are: much greater than,

resembles, is relevant to and is close to. For example, if
X, =X, = (—o0, o) the relation is close to may be defined by

iscloseto= |e ﬂ"c‘—xz'/(xl, x,)
X+X,

where o is same scale factor. Similarly, if
X, =X,=1+2+3+4

the relation much greater than may be defined by the relation matrix

R 1 2 3 4
1 0 04 0.8 1
2 0 0 0.4 0.8
3 0 0 0 0.4
4 0 0 0 0

in which the (i, j) entry is y.(x,x,) for the i-th value of x, and the j-th
value of x,.

The fuzzy relation “x is much greater than y” in N (the natural
numbers) may be defined subjectively by a membership function such as

Z(xy)={0 Lo xmy=0
, [1+10(x—y)"] , x—y>0
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m  Definition 6.1.7 Let A and B denote binary fuzzy relations in a
cartesian product of a universe X by itself. The composition of A and B,
denoted by Bo A, is a fuzzy relation in X*, whose membership function is

XBDA(XJ )’) = Sl&p[min[XA(va)’XB(vl )’)]] ) V,x,ye X (6113)

s Example6.1.6 Let X =1+2+3+4 and let R denote the fuzzy
relation much greater than, previously defined. Then

Xrer(L D) = XRuR(z’ 2)= Xrer(3:3) = X Ror 4,4=0
XR.,R(L 2) = xRuR(z’ 3) :xR.,R(?’, 4) =0
Xror( 3) = Xz (2, 4) = Xz (1, 4) =04

o

A particular important type of fuzzy relation is a similarity relation
which is essentially a generalization of the concept of an equivalence
relation.

Similarity Relations

m  Definition 6.1.8 A fuzzy similarity relation S, is a fuzzy relation in
XxX that is reflexive, symmetric and transitive, i.e.

(@) x;(x, x)=1forall xe X (reflexivity).
(b) x,(x, ¥)=xs(y x)forallx, ye X (symmetry).

(c) Xs(x: 2) 2 max[min(y(x, ), X5(¥, 2))] for all x,ze X
yeX

A fuzzy relation that satisfies requirements (a) and (b) of definition
6.1.8, is called a fuzzy tolerance relation. If R is fuzzy tolerance relation
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in Xz, where X is a finite universe of size n, R can be represented by a
symmetric matrix.

R=(r), 1<i,j<n

)

where r,.j=1, 1<i<nand =T 1<, j<n.

m Theorem 6.1.1 [Kandel 1982]

Let a fuzzy tolerance relation be represented by a matrix R of size n and
define

RP®=RoR; R¥=R""oR k23

Then, by performing at the most (n—1) compositions, we obtain a matrix
R = R*, k <n with elements r;, 1<i,j<n such that

’

r,2r

‘2r, 1<ij<n

4 3 /’ 4 . .
r Zgzg[mm(r}k,r;q) , 1<i,j<n

i.e. R’ represents a fuzzy similarity relation.

m  Example 6.1.7 Consider a fuzzy tolerance relation given by the
matrix

1 06 03 08
R 06 1 01 04
103 01 1 05

08 04 05 1

Since r,, =0.1 and min(r,,, ,;)=0.4>0.1 R is not a similarity relation.
The composition of R by itself provides
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I 06 05 0.8
06 1 04 0.6
05 04 1 05
08 06 05 1

R?”=RoR=

for which r? =04 and min(-®,7?)=0.5>0.4. Thus, R’> is also

not a similarity relation. An additional composition yields

I 06 05 038
06 1 05 06
05 05 1 05
0.8 06 05 038

RO =

which already represents a fuzzy similarity relation.

6.2 FUZZY AND CRISP CLASSIFICATIONS

The classification methods discussed in Chapter 3 have one thing in
common: an arbitrary pattern is classified in a unigue cluster or not
classified at all. For example, consider a two class classification problem
where the classes are ‘apples’ and ‘pears.’” If each incoming pattern is
either an apple or a pear it will be classified accordingly. If the pattern is a
watermelon it will not be classified. If the pattern is a pear which also
resembles an apple it could be mistaken for an apple and classified as
such. However, once classified, the incoming pattern is seen as either an
apple or a pear. This is the main feature of a crisp classification, where
each pattern belongs to a single class. The union of the disjoint classes
produces the whole universe of patterns.

m Example 6.2.1 Tn R®> we classifiy a set of patterns using the
following rule for arbitrary incoming sample x = (x,,x,)" :
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xeC, iff x+x <l
xeC, iff (x,—3) +(x,-3) <1 (6.2.1)
x is not classified, otherwise

Since x cannot belong to C, and C, simultaneously, this is clearly a crisp
classification. For example, consider the patterns

0.0, 25,3.57.3,57,(0.5,0.57,(3,3.5 }
By applying Eq. (6.2.1) we obtain

(0, 0)", (05, 05" eC,
(25,357, 3,35 €C,

while the pattern (3, 5) is not classified.
Ao

The next example is a classification problem where the different
categories are defined by linguistic descriptors.

m  Example 6.2.2 Consider a classification problem where we classify
people according to height. We define three classes - ‘tall’, ‘medium’ and
‘short.” If these classes are observed as fuzzy sets, then each person is
classified in each class with some grade of membership. If a person x is
for example is 5’ 9” tall, he may be classified simultaneously as

x1is 0.3 'tall'
x is 0.6 ' medium'
xis 0.1 'short'

Consequently x belongs to every class. If x is 6°7” he may be classified
as

xis 0.9 'tall'
x1is 0.1 ' medium'

i.e. x belongs to ‘tall’ and to ‘medium’ but not to ‘short’.
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Example 6.2.2 is a simple case of ‘fuzzy classification’ where each
pattern may belong at the same time to each of the existing classes with
various grades of membership. Usually it is reasonable to require that the
sum of the membership values is 1. A general fuzzy classification
problem can be represented by a pattern space X and a fuzzy
m— partition of X by fuzzy sets C,,C,,...,C, . Each pattern x, € X is a

member of C; with grade of membership 4; such that

2y =1 (6.2.2)

If for arbitrary x ;EX we have a unique §,(j) for which
Hiyipys =15 1y = 0,0 # 6,()) (6.2.3)

we obtain the particular case of crisp classification and crisp m — partition
of X.

m  Example 6.2.3 Consider the sets of heights

X ={x,x%,x%,x,x}={6"1,55",4°2” 5°10”, 6’8"}
and let C,C,,C, denote the fuzzy sets ‘tall’, ‘medium’ and ‘short’
respectively. A possible fuzzy 3-partition of X by C, 1<i<3 is given in
Table 6.2.1.

m Table 6.2.1 Membership values in fuzzy classification.

X X, X, X, X
C, 060 020 000 035 095
C, 035 045 010 045 0.05
C, 005 035 090 020 0.0
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If only crisp classification is considered, a reasonable 3-partition of X is

m Table 6.2.2 A crisp classification of X .

cC, 1. 0 0 0 1
c, 01 0 1 0
c, 0 0 1 0 0

L)

A fuzzy classification clearly provides more information about the
given data than a crisp classification. We will now discuss two popular
approaches for representing fuzzy classification.

6.3 CLASSIFICATION BY EQUIVALENT RELATIONS

Let R denote an equivalent relation defined over a pattern space X, i.e.
for arbitrary x,y,ze€ X

1. (x,x)€ R (reflexivity).
2. If (x,y)€ R then (y,x) € R (symmetry).
3. If (x,y)e R and (y,z) € R then (x,z) € R (transitivity).

Let X be aunion of a finite number of equivalent classes, i.e.

X:gq;qﬂq=®;ﬁj (6.3.1)

Then for arbitrary x,ye X

(x,y)e R if x,ye C, for somei

(6.3.2)
(x,y)¢ R if xeC,, ye C,,i#]
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If the rule for classification is “x and y are in the same class if and
only if (x,y)eR” then the classes obtained C,...,C, form an

m—partition of X, i.e. present X as a union of disjoint non-empty
subsets.

s Example 6.3.1 Let X ={x.}/,={2,4,6,9,11,12,17} and consider the

relation

(x,y)eR iff x=y mod(5) (6.3.3)

We define the relation matrix A, = (alj) , 1<i,j<7 by

1, (x[,xj)eR
i 0, (x,x,)¢ R (6.3.4)
and obtain
2 4 6 9 11 12 17
21 0 0 0 O 1 1]
410 1 0 1 O O O
6|0 0 1 0 1 0 O
A, = 9/0 1 0 1 0 0 O
1110 0 1 0 1 O O
1211 0 0 0 O 1 1
171 0 0 0 0 1 1]

Since arbitrary patterns x, and x; are classified in the same class if and

only if x; =x; mod(5) we obtain

C =12, 12,17}, ¢,=1{4, 9}, c,=1s, 11}
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If the relation R is not an equivalent relation, the classification rule

x and y are in the same class iff (x,y)€ R (6.3.5)

would usually produce inconsistencies. For example, if (x,y)eR,
(y,z) € R then x,y,z belong to the same class, but if (x,z) R (i.e. R is
not transitive) then x and z must belong to different classes!

If R is at least reflexive and symmetric, i.e. a folerance relation, we
apply the following result previously stated (Section 6.1) to obtain an
equivalent relation from R:

Let R denote a tolerance relation over a pattern space of size n. Then

by performing at most n—1 max-min compositions of R with itself, we
obtain an equivalent relation R’ with relation matrix A, = (a;) such that

a,; <aj; forall i, j (6.3.6)

If R is only a tolerance relation, we first perform the appropriate
number of compositions of R with itself to obtain R’ (which is a

modified R) and then apply Eq. (6.3.5) for R’ to classify the patterns of
X.

» Example 6.3.2 Let X ={3, 5, 8, 14, 18}, i.c. n=5 and consider the
relation

(x,y) €ER iﬁ‘lx—-ylS4

with the relation matrix
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11 0 0 0]
1 1100
A,=10 1 100
0001 1
0 0 0 1 1]

Clearly, R is atolerance relation but not transitive. For example
(3,5€R, (58¢€R, (3,8¢«R
The composition relation Ro R has the relation matrix

App=(by), 1<i,j<n

where
by = max{min(ay, a,)}, 1<i,j<n (6.3.7)
i.e.
1 1 1 0 O]
1 1100
Arr=11 1 1 0 0
0 0 0 1 1
00 0 1 1]

The new matrix defines an equivalent relation and the equivalent classes
are

¢ =1{3 58}, ¢c,={14, 18}
Replacing R with R”= Ro R enables us to classify 3, 5 and 8 in the same

class although the distance between 3 and 8 exceeds (slightly) 4.
A
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Classification Using Fuzzy Relations

Theorem 6.3.1 can be applied in the case of a fuzzy tolerance relation as
well. Let R, and R} denote a fuzzy tolerance relation and its associated
fuzzy equivalent relation respectively. Then, by using « —cuts we obtain

crisp equivalent relations, i.e. crisp classifications of the pattern space.
Usually, the number of classes increases with « .

m  Example 6.3.3 Consider six patterns and a fuzzy tolerance relation
R, given by the matrix

1 02 08 09 03 05
02 1 07 05 0.1 0.6
08 07 1 08 02 05
09 05 08 1 06 02
03 01 02 06 1 09
05 06 05 02 09 1

Since g, =0.2<min(a,4,a,)=0.5, R, 1is not transitive. Two

s
compositions are needed to obtain a fuzzy equivalent relation with matrix

1 07 0.8 09 06 06 ]
07 1 07 07 06 0.6
08 07 1 08 06 06
77109 07 08 1 0.6 06
06 06 06 06 1 09
06 06 06 06 09 1

The various o —cuts of R; are obtained for «=1,0.9,0.8,0.7,0.6. Each
matrix denoted by AR} (a) presents a different classification. In this

particular example we obtain five possible classifications. Let x,,
1<i<6 denote the given patterns. An arbitrary classification is
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represented by {C CM,...,Cm(mmjL where C, ., 1<i<m(a) are disjoint

la?
classes and

m(a)

U Cio :{xl’xz’-“’xs}
i=1
The matrices AR} () and their associated classifications are

AR’f =

SO - O OO
O — O O OO
—_ o O O O O

=leloll ol e
=l el oo =
OO O —= O O

CG,= {xl}’ G, = {xz} , Gy = {x3} , Gy = {x4} » G5, = {xs}’ Cs1 = {x6}

100100
010000
001000

A4 ON=11 0 01 0 0
00001 1
00001 1

Cios = {x17x4}’ Cooo = {xz}’ Cioo = {x3} s Choo= {xs’xs}

1 01 10O
010000
101100
Ay (08)= 101100
0 0 0 0 1 1
_O 000 1 1 ]
Cios= {x17x3’x4}’ Coos = {xz}’ Cips = {x:s’xs}
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111100
111100
111100
A OD=10 1 11 0 0
00001 1
0000 1 1
Cor= {xl’x2’x3’x4} » Coor = {xs’xs}
11111 1]
111111
111111
A 0=t 1 111
111111
11111 1]

C'1,0.6 = {xl’xz,x3ax4,x5,x6}

A

Thus, classification based on a fuzzy relation is not unique but depends
on the choice of «. Still, if a is prefixed the classification is completely
deterministic and can be regarded as a crisp one. The equivalent relation
defined by AR} (a) is the a— defuzzified relation. The two extreme cases

are obtained for =0 and a=1. If =0, all the patterns are classified
in the same class. The finest classification occurs when a=1: each
pattern has its own class. In general the optimal choice of « is problem
dependent.

m  Example 6.3.4 An interesting problem that was treated via fuzzy
relations is the following [Kandel 1975, 1979]: Ten different hurricanes
were photographed ten times each. An expert not familiar with the dates
of the pictures got a well mixed package of a hundred pictures and
determined their resemblance to one another. The result was a similarity
relation matrix (r;) 1<i,j<100. After carrying several compositions

between the matrix and itself a modified equivalent similarity relation was
obtained. The o —cut of a=0.65 provided the original partition of
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photographs (i.e. the original ten sets of the ten hurricanes) with 95%
success.

o
It should again be noted that although classification via a fuzzy relation
generally provides several solutions, i.e. all the o - cuts of the similarity
matrix, we obtain a crisp classification for any prefixed o . Thus, the

terminology ‘fuzzy classification’ refers in this case to the uncertainty
associated with arbitrary choices of o .

The next approach to fuzzy classification does not provide several
crisp classifications. Instead, the pattern space is represented as a union of
fuzzy clusters.

PROBLEMS

1. Consider the pattern space X :{1.0, 1.8,1.2,2.1,1.4, 2.3, 0.9} and the
relation R defined over X by (x,y)e R iff | x—yl<0.3,x,ye X

(a) Calculate the relation matrix A, .

(b) Is R an equivalent relation over X ?

(c) If R is not an equivalent relation, use max-min compositions of R
with itself to obtain an equivalent relation R’.

(d) Calculate A, and classify the patterns of X with respect to R’.

2. A fuzzy tolerance relation R, over a pattern space of five patterns is

given by the matrix

1 01 06 03 09]
01 1 08 07 05
AR, =06 08 1 03 02
03 07 03 1 08
109 05 02 08 1
(a) Show that R, is not a fuzzy equivalent relation.

(b) Use max-min compositions to obtain such a relation R} .

(c) Find the various a.—cuts of R;.
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3. (a) Find the matrix of the general fuzzy tolerance relation over a
pattern space with three patterns.
(b) Obtain necessary and sufficient conditions for this matrix to
represent a fuzzy equivalent relation.
(¢) What are the o —cuts associated with this matrix?

6.4 FUZZY CLUSTERING

Consider a pattern space X ={xl,x2,...,xm} where x;, 1<i<m are

vectors in R”, i.e. each pattern is characterized by n features. Clustering
the patterns means partitioning X into ¢ clusters C,,C,,...,C, such that

Uc=x (6.4.1)
i=1

CNC, =9, i#j,1<i,j<c (6.4.2)
BcCcX (6.4.3)

The requirement given by Eq. (6.4.3) excludes empty clusters and the
trivial case ¢=1 where the whole pattern space is regarded as a single
cluster. Another trivial case is obtained if ¢ =m i.e. each single pattern is
a cluster by itself. Since it is reasonable to exclude this possibility as well,
we request 1<c<m. A partitioning of X which satisfies the
requirements given by Egs. (6.4.1) through (6.4.3) defines a crisp
classification of the pattern space X where each pattern x,, 1<i<m

belongs fully to a unique cluster (class).
Prior to defining ‘fuzzy clustering” we will represent the crisp model of
clustering using characteristic functions % , 1<i<c defined by

1, X € C,

X (X)) ={ (6.4.9)

0, xgC

These functions which obtain the values O or 1 according to whether a
given pattern is a member of a particular cluster, satisfy
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max[xc (x)]=11< j<m (6.4.5)
Y xe(x)=1,1<j<m (6.4.6)
i=1
minlyc, (%,), %c, (x)]1=0, 1< j<m (6.4.7)
0<dxe(x)<m,l<i<c (6.4.8)
j=l

The first three equations (Eq. (6.4.5) through Eq. (6.4.7)) follows from
the crisp classification request that an arbitrary pattern of X must fully
belong to a unique cluster. The fourth equation (Eq. (6.4.8)) excludes the
possibility of empty clusters and the case in which the whole universe is a
single cluster.

An arbitrary crisp classification of X is completely determined by the
numbers x; =X (x;), 1<i<c, 1<j<m, ie. by the cxm matrix

A = (xu ) The set of all matrices of the crisp partitions with ¢ clusters is

Pc :{AL IXij € {011}1 2%@;‘ :1 ’ O< ZIXU < m} (649)
1= =

Using mathematical induction one can show that the total number of
partitions in P, if the clusters are not labeled, is

1| i .m
N(m, c):z{g(—l)c (ic)’ } (6.4.10)

If we seek to cluster X using ¢ clusters, the immediate question is
which of the N(m,c) partitions should be chosen. In Chapter 3 we

suggested minimizing an appropriate performance index. However,
carrying the minimization process over the complete set P, is impractical,

since N(m,c) increases rapidly with m and c¢. Even for a moderate
classification problem, for example m =30, ¢ =3 we already obtain
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_l[ 30_(3) 30 (3)] BPSE
N(30,3)—3! 3 5 27+ 1 ~3.4-10

The ¢—means algorithm introduced in Chapter 3, is an iterative procedure
which instead of minimizing a single global performance index, minimizes
¢ local performance indices. Each performance index is the total variance
of a cluster’s members with respect to its new unknown center. The
minimization process defines a new cluster center - arithmetic mean of all
the patterns which were classified in this particular cluster. The number of
iterations needed for convergence is usually relatively low.

The ‘crisp’ ¢—means algorithm for clustering can be generalized to
include fuzzy clustering where each pattern may belong to several clusters.

m  Definition 6.4.1 Given a pattern space X :{xl,xz,...,xm} let
51,52,...,EC denote ¢ fuzzy sets over X, and let x, denote the grade of

membership of x; in (j’,.. If

1,1<j<m (6.4.11)

I

0<Y z,<m, 1<i<c (6.4.12)
=

[
Zi
=1

the set 51,52,..., (1 is called a ¢ —fuzzy partition of X .

A typical fuzzy partition is given in Example 6.2.3.

The set of all fuzzy partitions having ¢ sets is given by
p={am el § n-10<S <m gany

where A, =(y;), 1<i<c, 1<j<m. Asin the case of a crisp partition, it

is required that no (j‘,. is empty and that ¢ > 1.
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In order to introduce fuzzy clustering (classification) we must first
define a grade of membership of an arbitrary pattern x in a given cluster

C, centered at y,. Let d; denote the Euclidean distance ”xj— y,.”

between x; and y; i.e.
dij=”xj—y,.”, 1<i<c, 1<j<m (6.4.14)

The membership value x, in C; is defined by

-1

2/ B~1)
X = 2{—1] ,1<i<c,1<j<m (6.4.15)

k=1 d,q.

where >1 is a tuning parameter which controls the degree of fuzziness
in the clustering process, provided that d,; #0 forall 1<k<c. If d, =0

for some { and j we define
2i =1 Xy =0, k#i (6.4.16)

Thus, the membership values always satisfy Eq. (6.4.11) and unless a
pattern coincides with one of cluster centers, it maintains a positive
membership value in every cluster.

A fuzzy clustering process is defined as the process of finding cluster
centets y,,¥,,...,¥, which minimize the fuzzy performance index

C

i 2 n .
I, :ngg{xg”zi—xj” ; Z,ER", 1<i<c (6.4.17)
Clearly, %, include the unknowns z;, 1<i<c and the problem is

generally a complex nonlinear problem. We bypass this difficulty by
using an iterative scheme, the fuzzy c¢—means algorithm which updates
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Z,, 1<i<c using the already known last iteration’s membership values.

Updating z; is done by minimizing ¢ local performance indices, namely
- i 2 .
LO=3, Xz — x| . 1<is<c (6.4.18)
Jj=

This algorithm is similar to the ‘crisp’ ¢ —means algorithm (CMI) given in
Chapter 3. The updating of the center of an arbitrary fuzzy cluster (: is
therefore given by

m (k)
(k+) _ 2 j=lxij xf

i T~ Lk 6.4.19
> ( )

i

k)

where ;" denotes the membership value of x; in (j'i after the k—th

iteration. As in the crisp case there is no guarantee that the final cluster
centers are indeed the optimal solution, i.e. the solution which minimizes
1, of Eq. (6.4.17).

6.4.1 Fuzzy c — Means Iterative Algorithm (FCMI)
[Similar to Bezdek 1981]

Given a pattern space X :{xl,xz,...,xm} we assume the existence of ¢

fuzzy clusters, whose centers are unknown and are given the initial values
YiosYaps---» Yo - At €ach iteration, the patterns’ membership values in the

various clusters are obtained. The cluster centers are then updated by
minimizing the performance indices I, (i) of Eq. (6.4.18). The process

terminates when the difference between two consecutive iterations does
not exceed a given tolerance.

Algorithm 6.4.1.
(A fuzzy ¢—Means iterative clustering procedure: FCMI).

Input: n— the patterns’ dimension.

m— the number of patterns.
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Output:

Step 1.

Step 2.

Step 3.

Step 4.

c¢— the number of clusters.
X= {xi}, 1<i<m- the given patterns in R"
Y, ={y,}, 1<i<c- the initial ¢ cluster centers.

N — maximum number of iterations allowed.
€— agiven tolerance.
B- a tuning parameter which controls the degree of

fuzziness in the process.

Y= {yi}, 1<i<c— the final cluster centers.
(x;), 1<i<c, 1< j<m - the final matrix of membership

values.
it — the number of iterations performed.

Initialization: set k=0 and y® =y, 1<i<c.

For 1<i<c¢ and 1< j<m calculate
© _|ly _ o®
i =,

For 1<i<c and 1< j<m calculate

2/(B-1
. d(k) (B-1
(k) 2
part d(k)

If d; =0 for some I=1, set x) =1 and x;” =0 for all

-1

i#l,. For 1<i<c update the cluster centers, using Eq.
(6.4.19).
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Step 5. If

: y
[Zl |y - y,-‘“||2} < (6.4.20)

(k+1 . . _ A (k) . . .
set y, =y P1<i<c; x,=x;, 1<i<c, 1<j<m;

it=k+1; output y;, y, for 1<i<c, 1<j<m it and stop.

Otherwise continue.

Step6. If k=N output ‘no convergence’ and stop. Otherwise, set
k < k+1 and go to Step 2.

A subroutine FCMI based on Algorithm 6.4.1, is given in the appendix.

m  Example 6.4.1 Consider a 2-D fuzzy classification problem with five
patterns, distributed as shown in Fig. 6.4.1. The patterns are x, = (0,0)7,

x, =07, x, =D, x, =3,3)",x,=(4,2)".

X2 .X3

m Figure 6.4.1 A 2-D S-pattern fuzzy classification problem.
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It is assumed that the patterns cluster around two centers, initially
approximated by y,=(0,0)" and y, =(3,2)". To apply the FCMI

algorithm we prefix N=10, € =5.10" and B=2. The first iteration

®

consists of calculating d;” and x|

Table 6.4.1.

. The pairs (d\”, ") are given in

m Table6.4.1  Calculating (d.”, x.”).

X X, X, Xy Xs

y®  (0.000,1.000)" (1.000,0.909)" (1.414,0.714)7 (4.243,0.053)" (4.472,0.048)"
¥ (3.606,0.000)" (3.162,0.091)7 (2.236,0.286)" (1.000,0.947)" (1.000,0.952)”

The next step is updating the cluster centers. Using Eq. (6.4.19) we obtain
y® =(0.390,0.689)" and y{” =(3.048,2.251)". The error, i.e. the left
hand-side of Eq. (6.4.20), is ¢ =0.832>¢=0.005 and the iterative

process continues. The next four iterations are given in detail in Table
6.4.2.

Since e, <& the fuzzy clustering terminates and y, y{” are

considered the final cluster centers - obtained after five iterations. The
membership values of x; in the clusters C, and C, (centered at y*, y$”

respectively) are given in Table 6.4.3.

If defuzzification, i.e. unique Cclassification for arbitrary x, is

requested, then Table 6.4.3 would be replaced by Table 6.4.4 which
consists of values which are either 1 or O.
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m  Table 6.4.2

X X, X3 X4 X5

y® (0.792,0.958)"  (0.499,0.978)"  (0.685,0.925)" (3.486,0.044)" (3.841,0.062)"

yO (3.789,0.042)"  (3.294,0.022)" (2.399,0.075)”  (0.751,0.956)"  (0.985,0.938)"
y@ =(0.440,0.728Y’, yiP = (3.293,2.381), =0.284

y@ (0.850,0.958)"  (0.517,0.979)"  (0.623,0.949)"  (3.423,0.038)"  (3.781,0.043)"

y® (4.063,0.042)"  (3.570,0.021)" (2.676,0.051)7  (0.685,0.962)"  (0.803,0.957)"
y& = (0.417,0.718Y, ¥ = (3.3282.396),  €;=0.046

y@ (08300961 Y (0.503,0.981)7  (0.648,0.946)"  (3.447,0.038)"  (3.806,0.040)"

y® (4.101,0.039)7  (3.609,0.019)7  (2.715,0.054)"  (0.687,0.962)"  (0.780,0.960)"
y ¥ = (0.412,0715)", yiP = (3.333,2.398Y, e,=0.008

y@ (08260961 Y (0.501,0981)"  (0.653,0.945)" (3.452,0.038)"  (3.811,0.040)”

yi» (4.106,0.039)”  (3.614,0.019)"  (2.720,0.055)"  (0.688,0.962)"  (0.777,0.960)"
V= (0.411,0.715), ¥ =(3.333,2.399)7,  e5=0.001

Calculating (4, y®

)and y*H 1<k <4,

m Table 6.4.3

C, 0961 0981 0.946 0.038 0.040
C, 0.039 0019 0.054 0.962 0.960

Membership values of x,, 1<i<5.

X, X, X,

Xy

X5

m Table 6.4.4

Hardening the results of Table 6.4.3.

X X, X, X,

c 1 1t 1 0
c, 0 0 0 1

Xs

0
1
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6.4.2 Defuzzifying the Fuzzy Partition

In many applications the fuzzy partition of the given patterns must be
further processed to obtain a crisp partition. If the nature of the problem is
such that a crisp classification should be the final output, a defuzzification

procedure must follow the fuzzy -classification.
approaches for defuzzification are usually considered.

(a) Maximum membership classifier

For an arbitrary sample x; let i,(j) satisfy

Xip(pj = Max(¥y)

1<i<c
The modified membership values of x; are defined by
Lo =hx; =0, 1Si<c, izi(}))
(b) Nearest center classifier

For an arbitrary sample x, let i (j) satisfy

d. . . =min d;:

6N T sise Y

Define

lf'lm.,:l; 2;=0,1<i<c, i#i())

Two equivalent

(6.4.21)

(6.4.22)

(6.4.23)

(6.4.24)

As mentioned above, the two approaches are equivalent, i.e.
i,(j)=1(j) forall j. This follows directly from the next result.
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Lemma 6.4.1.
For arbitrary i,k: 1<i,k<c, iZzkand j: 1<j<m
X <Xy Uf d;<d, (6.4.25)

Proof.

By virtue of Eq. (6.4.15) we have

2y _[4da (6.4.26)
X |4

ij
where a =2/(f-1)>0. Consequently, Eq. (6.4.25) must hold.

6.4.3 Fuzzy Clustering and Fuzzy Similarity

Consider a general classification problem whose solution is represented by
a c¢— partition of a pattern space X , given by

c={c,c,,....C.} (6.4.27)

If arbitrary patterns x and y belong to the same class C,, one may

correctly state that the features by which the patterns of X are classified,
are similar for x and y. In other words, if x,ye C, then x and y are
similar. They may not be similar in every respect, but they are expected to
show similarity with regard to each feature which participates in the
classification process.

In the case of fuzzy classification this is not true, i.e. x and y may

belong to the same fuzzy cluster C, without being similar to each other.

For example if x and y belong to CN‘i with membership values 0.9 and 0.2

respectively, then there is no similarity between the two patterns. If on the
other hand, the membership values are 0.9 and 0.75 respectively, the
statement ‘x and y are similar’ is certainly true. One could be tempted to
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observe x and y as similar patterns if and only if a fuzzy cluster E‘i can

be found such that the membership values of x and y in E‘i are high. The

following example, however, suggests that this approach is sometimes
wrong.

=  Example 6.4.2 Consider a fuzzy partition of humans where the only
classes are ‘tall’ and ‘short’. Let X consist of four persons: x,= 3’9", x,=

6’10”, x,=5’8” and x,= 5’4”. Reasonable membership values are given
in Table 6.4.5.

m  Table 6.4.5 Membership values in ‘tall’ and ‘short’.

X X, X3 X4

‘tall' 0.10 0.85 0.48 0.37
'short’ 090 0.15 0.52 0.63

By applying the previous concept for determining similarity, since no
two persons obtain high membership values in the same cluster, no two
persons are similar. However, x, and x, are similar (both have medium

height) and this is reflected by the fact that both have ‘close’ membership
values in both ‘tall’ and ‘short’. Thus any definition of fuzzy similarity
must be in agreement with the fact that the persons x, and x, are similar.

Let a fuzzy classification problem yield the ¢ —fuzzy partition
¢={¢.¢,..c} (6.4.28)
of a given pattern space X = {xl,xz,...,xm}.

m  Definition 6.4.2 For arbitrary x, x, € X , the quantity

Sy = kz:;min(xki’ij )Ekz:; (Zki A ij) (6.4.29)
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is called the fuzzy similarity between x, and x;. The matrix
§=(s,), 1<i,j<m (6.4.30)

is the fuzzy similarity relation of the fuzzy classification.

s  Example 6.4.3 Consider the fuzzy classification in Example 6.4.2.
Based on Table 6.4.5 and Eqs. (6.4.11) and (6.4.29) we obtain s, =1,

1<i<4 and

1 025 062 0.73
025 1 063 052
062 063 1 089
073 052 089 1

S =

and the two persons mostly similar to one another are x, and x,.
A

It should be also noted that by using Eq. (6.4.29) to define fuzzy
similarity, we guarantee that the similarity between an arbitrary pattern and

itself is always 1. The alternative approach for defining similarity would
be

s;_:max{min(}(ki,}(kj)} (6.4.31)

1<k<ce

and would lead to absurdity. For example, the similarity between x, and
itself using Eq. (6.4.31) is 0.52!

6.4.4 Measuring the Fuzziness in a ¢ — Fuzzy Partition

Consider an arbitrary pattern x; in a ¢—fuzzy partition of a given pattern

space. Let x, and %, denote the membership values of x; in the fuzzy

clusters CN‘,. and CN‘k respectively. The quantity
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m) = minly,, 7, } (6.4.32)

is called the unshared membership which x; possesses in both CN‘,. and

C,. A single number which is commonly used to measure the hardness of

a given c¢— fuzzy partition is

H,(C)= %f—) (6.4.33)

where C is the given c—fuzzy partition and M is the cxm matrix of
membership values, i.e.

M=0;), 1<i<c, 1<j<m (6.4.34)

Alternatively, the number F, (5 )=1—H . (5 ) measures the fuzziness of

the partition. The matrix MM is clearly a ¢Xc¢ matrix and in the

particular case of a crisp partition, it is a diagonal matrix with trace m, i.e.
H.=1. Another extreme case is when each pattern has the same

: ) . 1 i i )
membership value in each cluster, i.e. Xi=—> 1<i<c, 1£j<m. This
C

is a case of total ambiguity. We have

111
r_mip1 oL

MM™ =1 ; (6.4.35)
111

and consequently H, :[—’%-c Im =l. The case of a general c—fuzzy
C C

partition is considered next.
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s Theorem 6.4.1 For an arbitrary pattern space and a c¢-—fuzzy
partition, the hardness defined by Eq. (6.4.33) satisfies

Lem @) (6.4.36)
Proof.
Let MM" =(a;), 1<i,j<c. Then
a; = gxi (6.4.37)
and

eMM)=Y ¥ 2=3% 3 1 (6.4.38)

=1 k=l k=1 =1

Since 0< y, <1 we have y3 <y, and therefore

g Xi Sg X =1 (6.4.39)

Consequently, by virtue of Eqgs. (6.4.38-39), tr(MM T) <m which implies
H (C)<1.

To show the second part of the theorem we apply the Cauchy-Schartz
inequality to obtain

2 2
lz[gx:'k] = [gx,'k '1] < Z;Xiiglzzchzi

or
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l < i 2
oo & (6.4.40)
By substituting in Eq. (6.4.38) we get
m
r(m®)=2 (6.4.41)
C
and the proof of Eq. (6.4.36) is concluded.
o
A direct consequence of Theorem 6.4.1 is
= 1
0<F.(C)<1-- (6.4.42)

C

i.e. the maximum fuzziness in an arbitrary ¢ —fuzzy partition is 1-1/c. If

c=1 there is no fuzziness since each pattern fully belongs to the only

existing cluster.

PROBLEMS

1. Show the validity of Eq. (6.4.10) in the case ¢ =2.

2. Show the validity of Eq. (6.4.19).

3. Obtain the physical meaning of § in Eq. (6.4.15).

4, Consider a 3-class fuzzy classification problem where the final cluster

centers are

=20 ,y,=@44", y,=(-10"
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(a) Calculate the membership values of the following patterns in the
fuzzy clusters: x, =(,D", x,=(,-1)", x,=(1,3)". Use the
expression given in Eq. (6.4.15) with (i) =15 (ii) f=2.5

(iii) B =10

(b) Discuss the results of (a).

5. Use FCMI to obtain fuzzy classification of the samples in Fig. 6.4.2,
using N=20, =2, e=10". Assume ¢ =3 and start with the initial
cluster centers

le :(3’2)T ’y20 =(0,4)T s y3 =( _I’O)T

(1,9
[
('2!3)
[

-1,2) (1,2)
[ ] [ ] o]

21 @1
o] [ ] [

("1 !0) (1 !0)

m Figure 6.4.2  Fuzzy classification, ¢ =3.
6. Repeat and solve problem 5 using (a) B=15 (b) f=4.

7. Four patients are associated with two diseases (categories). From each
patient we obtain test results which are in some way connected with
these diseases: blood sugar rate (S) and cholesterol level (C).
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10.

S 160 180 155 230
C 300 130 270 180

Classify the patients in the two fuzzy clusters whose initial centers are
chosen as y,, = (150, 250, ¥, = (200, 150) . Use a fuzzy tuning
parameter 3 =1.5, tolerance € =0.0001 and allow 50 iterations.

Solve problem 7 with 3=2 while keeping the remaining input data
unchanged.

Solve problem 7 using the initial cluster centers

(@) y10=(10,l) Y=, 2)

(d) y,= (102) Y= (71)

without changing the remaining input data.

Six person - denoted by {x}61 are classified into two categories

according to their blood pressure (B.P.) and pulse. The given
measurements are

lowBP. 65 70 100 95 83 85
highB.P. 110 130 138 140 113 127
pulse 63 75 77 88 70 90

The initial cluster centers are y,, = (80,120,70), y,, =(100,150,90)" .
Use £=0.1 and find the cluster centers for (a) B=15 (b) B=2 (¢)
B=2.5. In each case allow 20 iterations. Explain the results of case

(©).
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11. We seek fuzzy classification for the data given in Fig. 6.4.3, assuming
two or three categories. Use B=2,€£=0.001, allow 50 iterations and

classify in the following cases:
@) ¢=2, y,=10), y,,=2,2).

(b) ¢=3, ¥ :(laO)T, Y :(3’O)T » Yo :(2’2)T~

4 X2
30 [ ]
2 [ .
1e [ ]
X1
1 2 3 4

m Figure 6.4.3  Fuzzy classification using ¢=2,3.

12. Use the performance index criteria to determine which of the
classifications performed in the previous problem is better.

13.(a) In problem 11 harden the classifications and obtain crisp c-
partitions of the data.

(b) Perform the hardening using a threshold value ¢ = 0.6, i.e. a pattern
x; is classified if and only if max(y;), 1<i<c exceeds ¢.

Otherwise it is considered ‘noise’ and deleted.

14. Calculate the fuzzy similarity relation matrix for both classifications of
problem 11.
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6.5 FUZZY PATTERN RECOGNITION

A crisp pattern recognition system consists of ¢ well defined categories
into which incoming unknown patterns are classified. It is expected that
two similar patterns i.e. two patterns with similar features, will belong to
the same class. In this section we will extend these principles to obtain
fuzzy pattern recognition systems.

We first introduce the concept of fuzzy typical pattern which is

presented as a fuzzy set A over the pattern space X .

m  Example 6.5.1 Let X denote all the simple four-sided polygons in
R® and let A be the fuzzy set ‘rectangle’ defined as follows: each xe X

4 ~
with angles «,, 1<i<4 (which must satisfy > a=2r) belongs to A

i=1

with grade of membership
4 27
T
x(x):{HZ[(xi—E]} (6.5.1)
i=1

The fuzzy typical pattern ‘rectangle’ is thus represented by A.

6.5.1 Single Sample Identification

Consider ¢ fuzzy typical patterns represented by fuzzy sets 51, 52 ., C,
over a pattern space X. Let x denote an incoming pattern in X. The
maximum membership principle states that x will be assigned to 5,. which

satisfies

X, () =max{ys (0} 6.5.2)
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If this is fulfilled by several i’s, we may decide that x belongs to (Nfio
where i, is the smallest i which satisfies Eq. (6.5.2). Another option is to

carry further tests on x, which may lead to a reasonable unique choice.

m  Example 6.5.2 Let X be the set of all real numbers and consider the
fuzzy sets C,, 1<i<3 in Fig. 6.5.1.

X )

X1 X2

m Figure 6.5.1  The maximum membership principle.

Using Eq. (6.5.2) we obtain x, € CN‘1 and x, € CN‘3
Ao

It should be noted that assigning xe X to an arbitrary 5,. simply

expresses the fact that x resembles CN‘,. more than any other fuzzy typical
pattern.

In the next example we classify an arbitrary triangle.

m Example 6.5.3 Let X denote the set of all the triangles in a plane.
Five fuzzy typical patterns are considered: right, right and isosceles,
equilateral, isosceles and ‘all other’ triangles. The corresponding fuzzy

sets are denoted by R, RI, E, T O respectively. The grades of
membership of an arbitrary triangle x with angles &, 8,7 given in an
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increasing order, in R , I~?I, E , 1 , O are defined by
_,_lr-%
Xk(x)—l_ 90
-90 -45 |o-45

P e N I A

RI 90 45 45

()1 max ly—60| [B-60| |60

E 60 60 60 (6.5.3)

¥~ (x)=1-min ﬂ_a, il

I a+B y+B

xa(x):l—max{xﬁ(x), Xp (), X (), Xi(x)j
and if any of the right-hand sides of Eq. (6.5.3) is negative, the

corresponding membership is defined as 0. Consider an incoming pattern
which is the triangle x =(27°,58°,95°) . The membership values of x in

the five fuzzy sets are

5
= (x)=1-—=0944
R 90

(x)=1 LB /3=0752
~ xX)=1-—+—+— =4U.
ki 90 45 45

35233

x (x)=1-maxy—,—,—»>=0417
60 60 60

31 37
Xy (0=1- min< —,——% = 0.758
85 153

x50 =1~ max{0.944,0.752,0.417,0.758} = 0.056

Using Eq. (6.5.2), the triangle mostly resembles a right triangle.
x=(5°35°140") we obtain x;(x)=0.444, y. (x)=0444, y.(x)=

If
0,
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X (x)=0.4, x;(x)=0.556 and the triangle has a maximum membership

value in the fuzzy set of ‘all other’ triangles.
)

Let us now assume that the incoming pattern instead of being a crisp

vector in X, is given as fuzzy set A over X. This could occur for
example if the new pattern is determined by several observations whose
distribution can be represented by a fuzzy set. We are interested in

obtaining a fuzzy set Ei which is most resembled by A. The degree of

similarity between two fuzzy sets A and B over a pattern space X is
most frequently defined by one of the expressions:

5,(A,B)=min[(AeB), (A® B)] (6.5.4)

5,(A,B)=(1/2)[(AeB)+ (A® B)] (6.5.5)

where Ae B and A ® B are the inner and outer products of A and B, ie.

Ao B = maxminly; (0, x; (0], xe X} (6.5.6)
A® B =min{max[y, (), x;(0], xe x} (6.5.7)

and
A®B=1-A®B (6.5.8)

m Example 6.5.4 Consider the pattern space X :{xi °, and the fuzzy

sets

Z:{l/xl ) l/xz; O/x3 , O/x4; O/x5; O/xs}
B={0/x5 0/x,5 Vx5 Vx5 1/xg5 1/}
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The inner and outer products of A and B are AeB=0 and A®B=1
respectively. Consequently A®B=0 and

(R, B)=s(3,5)=0

ie. A and B are completely dissimilar by either approach
Ao

In the particular case A =B one should expect full similarity between
the two fuzzy sets. To obtain that we require

max ¥;(x)=1, miny;(x)=0
for arbitrary fuzzy set A. Then, A =B leads to
AeB=maxy;(x)=1, A® B=miny,(x)=0
ie. s (E,E)z sz(ﬁ, E): 1.
We will now denote either s, (Z,E) or s, (E,E) by S(Z,E)

m Definition 6.5.1 Let ¢ sample patterns be represented by the fuzzy
sets CX,C C and let an arbitrary new pattern be represented by a

fuzzy set A. Then the pattern A is said to most resemble C,. , if

s(A.€.)= max[s(4,C)) (6.5.9)

<jsc

m Example 6.5.5 Let a and 52 be the fuzzy sets A, B of the previous

example respectively and consider an incoming pattern which is
represented by the fuzzy set

E={09/x,; 02/x,; 08/x,; 09/x,; 09/x;; 0.8/x,}
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Then s,(E,f‘l):O.Z, sl(E,E'z):OB and therefore E most resembles 6'2
if s, 1s used. If s, is applied, we obtain SZ(E,E‘l):O.SS, $, (E,C‘z): 0.85
and again E most resembles 5,.

Ao

An incoming pattern represented by a fuzzy set is called a fuzzy
pattern.

s Example 6.5.6 Let C, and E‘z over X: —eo< x <o represent fuzzy
typical patterns with Gaussian membership functions given by (Fig. 6.5.2)

Xz () =expl~(x—p)*[07], 1<i<2 (6.5.10)

Clearly C~'1 . 6'2 =X (xy)= Xz, (x,) and the unique x, must satisfy

2 2
Xo—H | _[Xo—H,
o, o,

TR TR P

s Figure 6.5.2  Patterns with Gaussian membership functions.
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If u, <u, then (x,—u,)/o, =(u, —x,)/ o, and consequently

2
X, :M , XE- (xo) :expl:— [M] :| (6511)
0,+0, ‘ 0,t0,

The outer product of 51 and C, is zero and thus 51 @ C, =1 leading to

o, +0,

5 (51:52): min{l, xéi (xo)}: Cxp{—[#l —H, ] :|

32(51’52): [1+Xgi (xp)] 72
A

and an unknown incoming fuzzy

c
i=1

Given ¢ known fuzzy patterns {5,}

pattern A, the criteria given by Eq. (6.5.9) for obtaining the known pattern

which A most closely resembles is called the maximum approaching
degree principle [Dong, 1987].

Previously we discussed mainly fuzzy pattern recognition problems
where only a single feature was considered. A multi-feature problem is
more realistic. For example, we may want to identify a hurricane not only
by its intensity, but to consider also additional features as the number of
casualties. The general multi-feature fuzzy pattern recognition problem is
discussed next.

6.5.2 A Multi-Feature Pattern Recognition Problem

Let X denote a universe of m sample patterns x,,x,,...,x, each

m

characterized by n features, i.e.

X, = (XX X)) 5 1<i<m (6.5.12)

ey Min
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By implementing a fuzzy classification approach (given the number of
desired classes—c) we obtain a c—fuzzy partition, which using a
hardening procedure can be then replaced by a crisp classification. The
final clusters are C|,C,,...,C, and they satisfies

x=UC;CNC,=D,i#j (6.5.13)
i=1

A pattern recognition scheme will classify an arbitrary incoming pattern
X, = (Xg1» Xgp-- s Xg,) in one of the classes C,, 1<i<c¢ according to a
prechosen approach. Three of the popular approaches are the following:

1. Nearest neighbor classifier

If x, satisfies

Jxto ~ x,]= min

1<j<m

xo—xj" , x,€C, (6.5.14)

then x, is classified in C, .

2. Nearest cluster classifier

Let y,,y,,...,y, denote the centers of the ¢ fuzzy clusters generated
during the fuzzy classification process. If
by~ 3.1 = minfe, | 6519
<j<e ’

then x, is classified in C,.

3. Weighted maximum approaching degree

Let each known sample pattern be characterized by n features and
represented by an n— dimensional fuzzy vector set. If ¢ known patterns
are considered, they are given by
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5':(51'1’5,'2’---,5,-,,)T, 1<i<c (6.5.16)

where {C‘,.j}'];l are non-interactive fuzzy sets which represent the n

features of the i —th pattern respectively. Let
A=A, . A) (6.5.17)

represent a new incoming pattern. Since in general some features are more
significant in determining similarity (consider for example medical
diagnosis where some symptoms are more significant than others in
determining the patient’s prognosis), we define the approaching degree

between A and C, by
s(A,C, gi [s(A,C))], 1<i<c (6.5.18)

where w;, 1< j<n are appropriate weights which indicate the relative

significance of the various features and satisfy

n
ZW,-:

Jj=1

As in the case of a single feature, A most closely resembles E‘i if

s(4,C,) = max(s(4,C))] (6.5.19)

If instead of a fuzzy incoming pattern we have a crisp feature vector
x =(x,,%,,....x,)", Eq. (6.5.18) is replaced by

Xe(0)aX wixs (x;), 1<i<c (6.5.20)
j=1 Y

and x most closely resembles C, for which

Xz (x):ggcx[x@ ] (6.5.21)
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s  Example 6.5.7 Consider a two-feature problem with two known
patterns 51 and C,, where each feature is represented by a fuzzy set with
Gaussian membership function. Thus

C=(CCo) . 25, ()= expl-(t— 1) */2] (6.5.22)

for 1<i<2 and —oco<t<oo, Let Z:(ZI,ZZ) denote a new pattern for
which

X0 =expl-(-p)?fo?] 1<i<2 (65.23)

and we seek a known pattern which most closely resembles A. The
known patterns as well as the new pattern are derived from table 6.5.1.

s Table 6.5.1 Input to Example 6.5.7.

The inner products Z,. oC ;i are

A eC,=0980,A4 eC, =0895, A,eC,,=0928,A,eC,,=0980

and A®C s=1forall { and j. Assume that the two features are not

equally important and that w;, =0.7, w, =0.3. If the measure of similarity
is given by s, then

5,(A,C,)=0.7(A ¢C,)+0.3(A, »C,,) =0.964
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5,(A,C,)=0.7(A, ¢C,)+0.3(4,¢C,,) =0.921
Therefore, A most closely resembles the first known pattern 5,

)

The next example is medical in nature. An arbitrary patient is
characterized by ‘medical features’ and accordingly classified in one of
several risk groups.

s Example 6.5.8 Three features which have a significant effect on a
patient’s state of health are the rates of blood sugar, cholesterol and
smoking of the patient. We assume that the rates of blood sugar and
cholesterol are each represented by three fuzzy sets - ‘high’ (H), ‘normal’
(N) and ‘low’ (L). The rate of smoking may be ‘low’ (L) or ‘high’ (H).
The geometrical representations of these fuzzy sets are given in Fig. 6.5.3
(blood sugar), Fig. 6.5.4 (cholesterol) and Fig. 6.5.5 (smoking).

membership

low normal
high

BSR
100 200 300

m Figure 6.5.3  Fuzzy set representation of blood sugar rate (BSR).
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membership

low normal high

CR

100 200 300 400 500

m Figure 6.5.4  Fuzzy set representation of cholesterol (CR).

membership

low high

SR

m  Figure 6.5.5  Fuzzy set representation of smoking (SR).
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The number of known patterns is 3-3-2 =18 and they are classified by
Table 6.5.2 in six risk groups: very risky (VR), risky (R), relatively
risky(RR), relatively safe (RS), safe (S) and very safe (VS).

m  Table 6.5.2 Assigning new patients to risk groups.

risk group blood sugar cholesterol smoking
R L L L
VS
R
RS
VS
RR
RR
S
VR
R
RS
VR
RR
RS

RR

oo Z 0 @m Z2 oom =2z ©oom 2z o omZ oo Z
oL T Z Z2 Z o 0 m I oD Z 2Z 2z oo
I o @ oo @ & o I o &t &0t

VR

The classification of new patterns is based on medical experience and
indicates for example that high blood sugar is considered in general more
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risky than high cholesterol. The weights that we assign to the features are
also based on medical experience. They are:

w(blood sugar) = 0.45, w(cholesteroi) =0.30, w(smoking) = 0.25

Consider now a patient with BSR=130, CR=150, SR=25 (see Figs.
6.5.4-6). The patient is denoted in short by x (=(130,150,25)"). Using
Eq. (6.5.21) we obtain y (x), 1<i<18 where (Table 6.5.2)

C=(LLL, C,=(NLLY,..., Cy=(HHH)"
These numbers are given in Table 6.5.3.

m Table 6.5.3 Membership values of the pattern x in 5,..

blood sugar cholesterol smoking x (x)

i

1 L L L 0.15
2 N L L 0.33
3 H L L 0.22
4 L N L 0.11
5 N N L 0.29
6 H N L 0.18
7 L H L 0

8 N H L 0.18
9 H H L 0.07
10 L L H 0.28
11 N L H 0.46
12 H L H 0.34
13 L N H 0.24
14 N N H 0.42
15 H N H 0.31
16 L H H 0.13
17 N H H 0.31
18 H H H 0.19

For example:

Xz, (x)=045- 1512,1 (130)+0.30- )(512,2 (150)+0.25- 95512,3 (25)
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where y; (130), 1<i<3 are the membership values of the new patient
12,i

at ‘high blood sugar rate’, ‘low cholesterol rate’ and ‘high smoking rate’
respectively. From Table 6.5.3 we obtain that the new patient most closely

resembles E’“, i.e. the patient is assigned to the group ‘relatively safe’

(RS). The second best choice is 6’14 but the patient is still assigned to RS,

a result which indicates the consistency of the previous knowledge used to
provide the input parameters.

)

PROBLEMS

1. Obtain the smallest grade of membership in ‘rectangle’ for arbitrary
four-sided polygon. Use Eq. (6.5.1).

2. Use Eq. (6.5.3) to classify the following triangles: (i) (20°,109°,51°)7
(i) (38°,58°,84°)7 (iii) (40°,60°,80°)"

3. Use Eq. (6.5.3) to classify the triangle (30°,30° +,120° —x)” as a
function of  (given in degrees), where 0 <o < 45.

4. (a) For the following fuzzy sets A and B obtain AeB and A®B:

A={0.2/x,; 0.5/x,; 0.1/x,; 0.6/x,; 0.3/x;0.4/x,}
B ={0.4/x; 0.7/x,; 0.05/x,; 0.7/x,; 0.15/x,;0.3/x,}

(b) Calculate s,(A,B) and s,(A,B).

5. (a) For fuzzy typical patterns 6’1 and 52 represented by Gaussian
membership functions, show the validity of Eq. (6.5.11).

(b) Show C, @ C, =0 for arbitrary Gaussian patterns C, and C,.
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6. Assume four known fuzzy patterns which are A, B, C, D. Each pattern
is characterized by two features: color, and weight. The fuzzy sets
which represent the features are shown in Figs. 6.5.6-7 respectively.
They are triangulars for A, B, C, and Gaussian for D. The unit for
color is normalized to a non-dimensional unit while the unit for weight
is 1 Ib. The assumed weights are w(color) =0.55, w(weight)=0.45.

Classify a new crisp pattern x = (0.65,8.5)".

membership

calour

02 04 06 08 1.0 1.2

s Figure 6.5.6  Representation of the patterns in terms of color.

membership

; welght (Ib)
2 4 6 8 10 12 14

s Figure 6.5.7  Representation of the patterns in terms of weight.

7. Solve Problem 6 if the new pattern’s features are fuzzy sets given by
the dashed triangles in Figs. 6.5.6-7.




[ SYNTACTIC PATTERN
RECOGNITION

7.1 INTRODUCTION

Ideally we would have liked a solution to a pattern recognition problem to
consist of the following stages:

1. Find a feature vector x.

2. Train a system using a set of training patterns whose classification is
a priori known.

3. Classify unknown incoming patterns.

Unfortunately, for most practical problems this approach is not feasible.
The reason is that usually, a pattern contains some relational information
from which it is difficult and sometime impossible to derive an appropriate
feature vector. Therefore, the analytical approaches which process the
patterns only on a quantitative basis but ignore the interrelationships
between the components of the patterns quite often fail.

The premise of syntactic pattern recognition is that the structure of the
pattern, so far ignored, is now the most important element in the
recognition process. This structure is used for two purposes:

(a) Describing the pattern (b) Classifying the pattern. A general scheme
of a syntactic pattern recognition system is shown in Fig. 7.1.1.
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CS(1) CS(2) |..... CS(n)

New Structural Structural Final
pattern analysis

— e -
B parser classification

m  Figure 7.1.1 Classification using syntactic pattern recognition.

We consider n different classes and each of them is associated with a
specific ‘structure’: Class Structure (CS), which is typical only to patterns
in this class. Each unknown pattern is processed to obtain its structural
analysis. Then starts the process of ‘structural parsing’ in which the
pattern structure is compared with the existing CS(1),...,CS(n). If a match
occurs with CS(i), the pattern is classified in class i. Otherwise it is
rejected.

Most techniques in syntactic pattern recognition are based on
transforming complex patterns using hierarchical decomposition into
simpler subpatterns, just as a sentence in a natural language may be
decomposed into words (and then into letters). This process of
decomposing may continue several times until we obtain the pattern
primitives which are not being decomposed. For example, the picture A
consists of a triangle B and a rectangle C, while each of them may be
decomposed to its edges.

f Picture A
c b
A B 8 ¢
a d
Triangle B Rectangle C
edge edge edge edge edge edge edge

a b ¢ d e f g
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The tree decomposition indicates the similarity between the structure of a
sentence and the structural description of a pattern. Thus, patterns are
designed by using primitives and later subpatterns, just as sentences are
constructed using letters and words.

A pattern’s structural description is obtained by a specific language.
The collection of the rules which determine the process of composing
primitives into patterns is the language grammar.

For an unknown pattern we first find and identify all its primitives
and then start syntax analysis called parsing which will finally determine
whether the pattern is a legitimate member (sentence) of the class
(language). The similarity between structural description of a pattern and
the structure of a paragraph, sentence and words-obeying a set of rules
(grammar) suggests the introducing of the basic concepts of a formal
language, based on a formal grammar.

7.2 PRELIMINARIES

The following definitions present basic concepts which play a major role
in the study of formal language theory.

m  Definition 7.2.1 An alphabet is a finite set of symbols
V={x.x,....%,} (7.2.1)

and a sentence over V is a finite string of ordered symbols (from left to
right) from V.

m Example 7.2.1 If the alphabet is V ={a,b,c}, valid sentences are:
‘abb’, ‘abba’, ‘aaa’ and also the empty sentence which has no symbols.
A

The length of a sentence s is the number of its symbols and is denoted
by |s|. The null sentence is denoted by & and satisfies |¢|=0.
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m  Definition 7.2.2 For arbitrary strings s, = x,x,...x,, and s, = y,¥,...y,
the concatenation of s; and s, denoted by s, o s, is the sentence

8§, =808, =X X3...X, V... Y, (7.2.2)

with length Is3|=m+n. A particular case is the concatenation of two

symbols x,y which provides the sentence xy.
Given an alphabet V , we denote by

VoVo..oV=V" (7.2.3)
\_—,—_—/

(n—1) times

the set of all sentences with n symbols over V. The set

Cs

v =vuUviuviu..=Uv* (7.2.4)

k=1

1]

denotes all the nonempty sentences over V. The set
Vi=elUJv?t (7.2.5)

is called the closure of V.

m Example 7.2.2 If V ={a} then

V*={a,a*dal....a"...}
where
ad'=a;a"=a""oa,n>2 (7.2.6)
and

* 2.3
V' ={¢,a,aa,...,a’...}
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» Definition 7.2.3 An arbitrary subset L of V' is called a language

= Example 7.2.3 Let V={0,1}. Then

L, ={001,110,111,0,¢}
is a finite language while
L, ={ss=1"0%1",n>1, 1< m<10}

is an infinite language.

A
m  Definition 7.2.4 For arbitrary languages L, and L,, the set
LoL = {s|s =s,5,,5€ L and s, e Ll} (7.2.7)
is called the concatenation of L, and L,. The set
L} ={s|s=s,s,...5,, n>0and s, e L, } (7.2.8)

is called the iterate of L.

it

Clearly, L oL, and L are also languages.

»  Example 7.2.4 Consider the alphabet V ={a,b} and the languages

L, ={aa,ab,bb}, L, ={a,b}
Then
L oL, ={alaba,b*a,a’h,ab’h’}

The language L is obviously infinite. Its elements for n <2 are
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fe.a?.ab,b*,a* a’b,a’b? aba’ abab,ab’ b*a* b ab.b* }

»

m Definition 7.2.5 For arbitrary strings s,7 € V", s is called a substring
of ¢ if
t=usv (7.2.9)

for some strings u,veV .

Since u and/or v may be the null string, each string s is also a
substring of itself.

m  Example 7.2.5 For V={a,b} the string s=abab is a substring of
t = aaabab . In this particular case v=¢ (Eq. (7.2.9)).
A

As in natural languages, a thorough study of a formal language theory
must concentrate on grammars and their properties.

Grammars

A grammar is defined as a four-entity substance

G ={V;,Vy.P,5} (7.2.10)

The entities are:

1. A set of terminal symbols, often called primitives which is denoted by
V; and is a subset of the alphabet V.

2. A set of nonterminal symbols, often called variables which are used as
intermediate quantities in the process of generating an arbitrary
outcome. The outcome is always composed of terminal symbols, i.e.
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of constants, contrary to the nonterminal symbols which are variables.
This set is denoted by V,,. The sets V,. and V,, must satisfy

V,NV, =2, V,Uv, =V (7.2.11)

3. A set of production rules, often called productions or rewriting rules.
This set is denoted by P and coupled with V., provides the structure

of the given grammar.

4. A starting symbol (root) denoted by S, where Se 'V, .

The following example taken from the natural language English, will help
to clarify the roles of the four entities of a grammar in generating an
outcome, i.e. a legitimate sentence.

m  Example 7.2.6 Consider the simple sentence “the baby walks.” A
tree structure given in Fig. 7.2.1 describes the generation of this sentence.
All the symbols in Fig. 7.2.1 are included of course in the given alphabet.

<sentence>
<noun phrase> <verb phrase>
<artlcle> <noun> <Intransitive verb>
the baby walks

s Figure7.2.1 A tree structure for generating “the baby walks.”
Specifically we have

"the', 'baby', 'walks' e V;
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while

< sentence >, < noun phrase >, < verb phrase > € V),

<article >, <noun>, < intransitiveverb> € V,

The specific production rules which are used in this example are

I. < sentence >— < noun phrase > < verb phrase >
II. < noun phrase > — < article >< noun >
III. < verbphrase >— < intransitive verb >

IV. <article > —the
V. < noun >—>baby

VI. < intransitive verb >— walks

We start with a tree’s root which is the abstract concept < sentence >.
As previously requested, <sentence> is an element in V, . Next we

apply production I and using substitution obtain the next level of the tree.
productions II and III are applied next and provide the 3-rd level of the
tree. Finally, productions IV through VI are substituted and the sentence
“the baby walks” which consists only of primitives is obtained.

A

In view of the previous example we may now furnish a general
definition of a formal language.

m  Definition 7.2.6 The formal language generated by a grammar
G:{VT,VN,P,S} is a set of strings over V, denoted by L(G), which
satisfy the requirements:

1. Each string is composed only of primitives.

2. Each string can be derived from § via substitution of productions from
P.

Usually the set of productions P is restricted to include only the elements

A—B (7.2.12)

where
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Ae(V, UV -v; (7.2.13)
and

Be(V,Uv,y (7.2.14)

i.e. the set of productions is a set mappings A — B, where A consists of
at least one element of V, i.e. at least one nonterminal and B is an

arbitrary ordered arrangement of terminals and nonterminals.

It must be remembered that either side of an arbitrary production is a
sentence in the sense of Definition 7.2.1 and that each level of a tree
structure of a sentence in L(G) is a nonterminal sentence (except for the

bottom level which is the terminal sentence itself).

m  Example 7.2.7 Consider the grammar G = {VT,VN ,P,S } where

V.={a,b}, V,={S}, P={S— aSh,S — ab}

If the first production is applied consecutively (n—1) times we obtain

S — aSh— aaShb —...— a"'Sp™*

and by substituting S — ab the final outcome is a"b". It is easily seen
that the language L(G) consists only of the sentences ‘a"b"’, n>1

A grammar can be used in one of two modes:

1. Generative: The grammar is applied to generate a string of primitives
via productions from P. This string is a sentence in the language
L(G).

2. Analytic: Given a sentence in the general sense of Definition 7.2.1,
and the specifications of G, check:

L Is the sentence in L(G), i.e. can it be generated using G ?
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IL. The sentence’s structure if it is indeed in L(G).

As previously stated (Definition 7.2.3) a language is a subset L of V.
If only terminal symbols are considered, a general language is a subset L

of V, . If the number of elements in L, denoted by |L| is finite, L is said

to be finite. Clearly, many languages are infinite since V; is infinite. The
number of all languages given V, is not even denumerable. In fact the

number of all languages is (\) (i.e. the set of all languages is equivalent to
the set of all real numbers). By introducing a grammar G, we select a
unique formal language L(G) which through the imposed set of

productions P, can be used for practical applications in pattern
recognition.

PROBLEMS

1. For the alphabet V ={0,1} find all the sentences with less than four
symbols.

2. For a general alphabet V, obtain necessary and sufficient conditions
for two arbitrary strings s and ¢ of lengths 3 and 2 respectively to
satisfy sot=tos.

3. Let V={a,b,c}, L, ={a,b,ab,bc}, L,={a,b}. Find the union and
intersection of the concatenations L, oL, and L,oL,.

4. Consider the grammar G ={V,,V,,P,S,} where
Vi ={a,b}, Vy :{SI’SZ}
and
P={S, — S8,ab, S, > S,ba, S, > a,S, —>b)
What is the formal language L(G)?

5. Consider the grammar G = {VT Vi, P, S } where
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Vi{a,b,c}, vy ={s}
and

P={S—>aSh?, S—>a, S— bc}

Which of the following sentences are legitimate, i.e. belong to L(G):
(@) abecb® (i) a’b* (iii) ach® (@v) cb (v) a’b®

7.3 GRAMMAR TYPES

Throughout this chapter the following notation will be used:
1. Nonterminals will be denoted by capital letters (possibly indexed, for
example S, ).

2. Terminals will be denoted by lower-case letters (possibly indexed, for
example q, ).

3. Mixed strings, i.e. strings consisting of terminals and nonterminals,
will be represented by lower-case Greek letters (i.e. o, ).

A general production is given by
o, — P, (7.3.1)

where a string ¢, is replaced by the string B,. Four types of grammars
are considered:

1. An UnRestricted Grammar (UR) has no restriction on its productions.
Each production is given by Eq. (7.3.1) where o, € V* and B, e V".

2. A Context Sensitive Grammar (CS) allows only productions (originally
given by Eq. (7.3.1)) of the form
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oA B — af},p (7.3.2)
where

a,BeV’, AeV,, B,eV —¢ (7.3.3)

Any of the strings a, 8 may equal € and since A4, is a single symbol and
|ﬁ2| >1, we obtain

oA, B < |oB, (7.3.4)

(or |a1|s|ﬁ2| in Eq. (7.3.1)). By Eq. (7.3.2) the nonterminal A, can be
replaced by the string f3,, only when A, appears in the context oA, f.
This grammar is therefore context sensitive.
3. A Context Free Grammar (CF) has productions of the form

A - B, (7.3.5)
where A €V, and B,eV ' —¢e. Considering the general form of

productions we get

1=|or,| < |B,] (713.6)

This grammar allows the replacement of a nonterminal A, independently
of its context, and is therefore a context free grammar.
4. A Finite State Grammar (FS) has productions of the form
A —>a (7.3.7)
or
A, > aB, (7.3.8)

where A,B, €V, and ae€V,. An alternative FS grammar is obtained if
Eq. (7.3.8) is replaced by

A — By (7.3.9)
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However, given the productions set P, only one of the forms given by
Eqgs. (7.3.8) and (7.3.9) is allowed.

= Example7.3.1 Let G={V,,V,,P,S} where

V. ={a,b,c}, Vy,={S,A B}

(a) An unrestricted grammar is obtained if the set of productions is for
example

P:S —>abA
A—>c
S —>cB
B —aA
B—oe¢

(b) A context sensitive grammar is obtained if for example

P:S — aBbc
S —ab
aB — aAc
Ac — abc
Bb — Acb

(c) A context free grammar is obtained from the productions set

P:S > adAc
S > bB
S — AB
A—aB
A->c
B—-b
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(d) A finite state grammar is obtained if for example

P:S—>dA
S —>bB

A—>e
A>a
B—b
B—oc¢

It should be noted that the production A —e is allowed only in an
unrestricted grammar.

Graphical Representation of an FS Grammar

The FS grammars have several properties which account for their
popularity. One of the important features of these grammars, is their
simple graphical representation. A graph of a finite state grammar is
designed as follows:

1. The graph’s nodes include all the nonterminals in V,, and an additional

terminal node T which is not in the alphabet V.
2. Each production of the type A — aA; is represented by an edge

labeled a, and directed from A, to Aj.

3. Each production of the type A, — a is represented by an edge labeled
a, and directed from A, to T'.

s Example 7.3.2 Consider a finite state grammar G:{VT,VN,P,SI},
where

V. ={a,b,c}, V,={S,A B}

and
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P:S—>aA
S > bB
A—cB
B—>a
A—>c

The directed graph which represents this grammar is

m Figure7.3.1 A graphical representation of an FS grammar
A

In the case of an FS grammar, the problem of recognizing whether an
arbitrary sentence belongs to the language L(G) is answered by the next

result.
m Theorem 7.3.1

For a given finite state grammar G, an arbitrary string x = x,x,...x,, x; €

V; is in L(G) if and only if there exists at least one path (xl,xz,...,x
from S to T.

n
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Proof:
(a) If (x,,x,,...,x,) be a path from § to T, then there are (n—1)
productions

S > x4

A = x,A,

An—Z - xn—lAn-l

and another production

An—l - 'xn

By substitution we obtain x,x,...x, € L(G).

(b) The opposite part of the theorem is left as an exercise for the reader.
m]

7.4 THE SYNTACTIC PATTERN RECOGNITION
PROBLEM

We may now use the concepts introduced in the previous section to
establish the connection between grammars, formal languages and pattern
recognition. Consider a 2—class pattern recognition problem. Let the
patterns of these classes, C, and C,, be composed of features from a set

V;. These features are the terminals from Section 7.2. Thus, each pattern

may be regarded as a sentence since it is composed of terminals. Let G
be a grammar such that its language L(G) consists only of patterns

(sentences) which belong to C,. Then, any incoming pattern can be
classified in C, if it belongs to L(G). Otherwise, it will be classified at
G,.
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= Example 7.4.1 Consider a CF grammar G ={V,.,V,,, P, S} where

v, ={a.b}, V,={5,4)

and the production set is

P:S —>aSh
S—ob

The language L(G) consists of the strings {b;a"b"“, nZl}. If a
2 —class classification problem is such that C, includes only the patterns
{b;a"b"“, n> 1} while C, includes only the patterns {a"b", n2 1}, we can
classify an incoming pattern x using the following rule:
xeC iff xe L(G)

(74.1)
x € C, iff otherwise

The procedure which has to answer the question whether or not a given
string is grammatically correct is called parsing.

Generally we deal with m classers {C,}., and associated languages
{L}", formed by grammars {G,},. An incoming pattern x is
decomposed and is classified in C; if it is a sentence in L,. The pattern

may be assigned to several classes if the languages are not disjoint but may
also be rejected if does not belong to any L, , 1<i<n and represents for
example ‘noise’.

A most important subject regarding this process is syntactic pattern
description.

7.5 SELECTING PRIMITIVES

The selection of primitives by which the patterns of interest are going
to be described, depends upon the type of data and the associated
application. The important requirements are that the primitives provide
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reasonable description of the patterns with respect to their structural
relations and that they can also be easily recognized by nonsyntactic
methods, since their own structural formation is not important.

m  Example 7.5.1 Consider the problem of separating between all
rectangles and all the other four sided polygons. We select the primitives

a: 0% horizontal edge
b:  90° vertical edge
¢: 180° horizontal edge
d: 270° vertical edge

and the set of all the triangles will be represented by the string abed. If we
want to distinguish between rectangles of different sizes we select as
primitives edges ao, bo, co, do of length 1 pointing at the same directions.
The set of all rectangles is

L={ayby cydy ; n,m=1273,..}
Constructing a Pattern Grammar

Once a set of primitives has been chosen for the pattern, we need to design
a grammar whose language will describe the training patterns. As much as
it would be desirable to obtain such a grammar automatically from the
string of primitives which describe the patterns, it is usually the user who
constructs an appropriate grammar based on personal knowledge and
experience.

m  Example 7.5.2 Consider the language
L={a"b"c" ; 1£n<3}
which may represent for example the set of all equilateral triangles with

one horizontal side and side length 1,2,3 provided that a,b,c are the
following primitives:
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a: 0 horizontal unit length
b: 120° unit length
¢: 240° unit length

This language can be obtained using the following finite state grammar
G=(;,V,, P, S). The terminals and nonterminals are taken as

V. ={a, b, c}
Vv={S,A,B,C,D,E,F,G,H,1,J,K}

and the production rules (P) are set as:

S > aA C > bl H - bK
S —>aC D — bF I—>c¢

A—>aB F—->bJ J—ocl
A—aD E->bG K-l
B — aFE G > bH

The triangle a’b*c* for example is obtained by using the productions

S —aA
A—aD
D — bF
F—>b]
J—>cl
I->c

)

Finding a grammar for a language is a problem that usually does not have
a unique solution. In the case of Example 7.5.2 we may use also a context

free grammar G(V;,V,,, P, S) where
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V; ={a, b, c}
V,={S,A B,C,D,E,F)
and

S - dAF A — aBF D —=>bC
P={A5b B — aEF C—b
A—aDF E->bD F—¢

Clearly, this is a more attractive solution.

In the next famous example [Ledley 1965] a context free grammar
describes submedian and telocentric chromosome patterns (Fig. 7.5.1).

m  Example 7.5.3 Designing a grammar for chromosomes.

bebabcha

babcbabdbabcbabd

(@) (b)
m  Figure 7.5.1 Chromosomes: (a) submedian (b) telocentric

The grammar has two starting symbols

S, =<submedian chromosome), S, :<telocentric chromosome>

and its sets of terminals and nonterminals are
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Vy = {(submedian chromosome), (telocentric chromosome),
(arm pair), (left part), (right part), (arm), (side), <bottom>}
The production rules (P) are as follows:

<submedian chromosome> - <arm pair><arm pair>

<telocentric chromosome)—-)(bottom)(arrn pair>

(arm pair)~> (side)(arm pair)
(arm pair) —> {arm pair)(side)
<arrn pair> - <arrn><right part>
<arm pair> - <left part><arm>
(tef part) - (arm)c
(right part) —> c(arm)
<bottom> - b<bottom>
(bottom)) ~» (bottom )b
<bottom> —e
(side) — b(side)
<side> - side>b
<side> —b
<side> —>d
(um) = )
<arm> - arm>b
(arm) > a

The arrows at Fig. 7.5.1 indicate the starting primitive and the direction of
the chromosome’s string.




248 CHAPTER 7 SYNTACTIC PATTERN RECOGNITION

PROBLEMS

1. In Example 7.5.2 obtain the triangle a’b’c’ using the finite state
grammar.

2. In Example 7.5.2 obtain the triangle a’b’c® using the context free
grammar.

3. Obtain the submedian chromosome, using the productions set of rules
in Example 7.5.3.

4. Obtain the telocentric chromosome, using the productions set of rules
in Example 7.5.3.

7.6 SYNTAX ANALYSIS FOR RECOGNITION

Once a grammar is designed we want to construct a pattern recognition
system that will recognize the patterns generated by the grammar. As
previously stated a straightforward approach is to construct a specific
grammar for each class of patterns. Let L, G,, 1<i<m be the language

and grammar associated with the calsses C;,, 1<i<m respectively. Letx

be an incoming unknown pattern given as a string. The recognition
problem is finding L(G,) such that

xe L(G) (7.6.1)

The process of determining L(G,) is syntax analysis or parsing. Apart

from giving an answer to the classification problem, syntax analysis also
provides the tree associated with x. The process itself can be described as
follows: Given a sentence x and a grammar G construct a triangle with top
vertex S and bottom side x (Fig. 7.6.1) inside which we fill the derivations

tree.
S

Tree of
derivations

X

s Figure 7.6.1 Parsing x.
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If we succeed and get x at the bottom of the tree then xe L(G). The tree

can be found either by starting from the top S-‘top-down’ parsing or by
starting from the bottom x-‘bottom-up’ parsing.

The parsing process can be very slow if all the possible trees are
considered. Very seldom we are in a position where only one choice is
available at every step. Usually, we have several choices and must find a
way to ignore those choices that will eventually lead to nowhere.

Top Down Parsing

Consider a grammar G with
V, ={a,b,c,d,e} , V, ={S, A, B}

and productions

S—oA B—oa
S—>AdS B-b
A—>BeA B-oc
A—>B

and let x=adbec a given sentence. To parse x top-down, we start from

S and choose (the only correct choice as can be easily deduced) the
production § — AdS. At the next tree level we must choose
A— B and § > A otherwise we end with sentences which are not x.

The next step must be B—>a and A— BeA. This follows from
B—b and A —> B. The final step is B — C. The different steps of the
parsing are shown in Fig. 7.6.2.
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N S N
AR /1N RN
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) ] | |
@ z|1 dB/el\A
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a d beB B
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m Figure 7.6.2 Top-down parsing.

There are several tests that can be helpful in avoiding wrong choices
while performing the parsing. One test is the following: a nonterminal
will create a terminal sequence with at least one terminal in it. Thus, if the
number of the symbols still left to be analyzed is greater than the number
of terminals left in the sentence, this parsing is incorrect.

Another useful test is the following: Let a denote the current leftmost
symbol of the parsed sentence x which needs to be obtained and let A be
the current leftmost nonterminal. If A is to be replaced by one of its
productions, we need to select only those productions which start with a.
To implement this test we must construct a binary matrix which for each
nonterminal A determines all the terminals and nonterminals {or}, such

that a production A — ... exists.

» Example7.6.1 Let G={V,,V,,P,S} where V,={ab,c},
V, ={S, A}and
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p- S—>Ac A—> Ab
T |S—>a A—>c¢

The matrix associated with the previously mentioned test is

S O U

A
1
1

n @9
S = Q
o O O
—_ O O

Bottom-Up Parsing

Consider the example previously analyzed for the top-down parsing. The
following procedure outlines the basics of bottom-up parsing. At each
step we denote by s the final set of end nodes of the tree. A subset of s’
which is a set of leaves (end nodes) of a subtree of the current derivation
tree is called a phrase. The leftmost phrase is called the handle of s’.
From Fig. 7.6.2 (5) we obtain the sentence adbec with phrases a,b,c, bec,
adbec. The handle here is a. The bottom-up parsing process starts with
the final sentence s, and repeats the following steps:

1. Find the handle of s,.

2. Delete the handle, subject to the productions set and obtain s, .

In the case given by Fig. 7.6.2 we obtain

s, = adbec ss = AdBeA
s, = Bdbec se = AdA

s, = Adbec s, = AdS

s, = AdBec s =9

s, = AdBeB

In bottom-up left-to-right parsing, there can be at each step many
strings that can be replaced by nonterminals, thus forcing us to try many
possibilities. Some grammars called LR(k) [Knuth 1965] grammars enable
the parsing process to be deterministic, provided that it is always possible
to look k symbols beyond the current one.




252 CHAPTER 7 SYNTACTIC PATTERN RECOGNITION

PROBLEMS

1. Use top-down parsing to determine whether the string a’b’c’ belongs
to L={a"p"c" ; 1<n <3} with the context free grammar of Example
7.5.2.

2. Using the grammar and language of problem 1, use bottom-up parsing
for x=a’bh’c’ and obtain the starting symbol S.

3. Obtain the tree associated with the submedian chromosome, using the
productions set of rules in Example 7.5.3.

7.7 STOCHASTIC LANGUAGES

Due to measurement noise and some ambiguity regarding the
characteristics of the pattern classes, it is necessary to consider a stochastic
model of grammar and stochastic languages.

m  Definiton 7.7.1 A stochastic grammar is a set

G ={V,,V,,P,0,S}

where V., V,,, P, S are defined as before and Q is a set of probabilities
associated with the given productions.

m Example 7.7.1 Let V, ={a,b},V, ={S} and
SLash

(P.O)=1
SSab

i.e. the first production has an associated probability p and the second
(1- p). By applying the first and the second productions alternatively we




7.7 STOCHASTIC LANGUAGES 253

obtain a sentence x =a’h’ whose probability is p(x)= p(1— p). If x can
be obtained in several ways, its probability is adjusted accordingly.

m Definition 7.7.2 A stochastic language L(G,) is a language
generated by a stochastic grammar.

In order for the set Q to be consistent we must have

Ypx)=1 (7.7.1)

xeL,
Assume that a xe L_ is generated from S by

R Py P,
S=>o0=>0,..=>0,=x (7.17.2)

where o,@,,...,0, are intermediate strings and ¢,,, is obtained from ¢,

using a production rule P,

i+1

with an associated probability p, = p(P).
Then, the probability to obtain x is

p(x) = p(R)p(P|R)-- p(R|B,P,,.... P, ) (7.7.3)

H

If always p(P|P,.P,.....RB,)=p(P), the production P is called

unrestricted. The knowledge of the production probabilities reduces the
time consuming of the parsing process for stochastic languages.

For more on syntactic pattern recognition the reader is referred to the
excellent book by King Sun Fu (1982).







8 NEURAL NETS
AND PATTERN
CLASSIFICATION

8.1 INTRODUCTION TO NEURAL NETWORKS

An artificial neural network is an information-processing system which
performs similarly to biological neural networks. These networks were
designed as mathematical models of human cognition or neural biology.
The basis to these models are the following assumptions:

1. Information processing occurs at a large number of simple elements

called neurons.

Signals are transmitted between neurons along connection links.

Each connection link is assigned a weight which multiplies the

transmitted signal.

4. Each neuron applies an activation function on its net input (which is
the sum of the weighted input signals) to obtain its output signal.

w

An arbitrary neural network is characterized by

1. The connection links between the neurons which determine the
architecture of the network.
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2. The method for determining the weights, called the learning
algorithm.
3. The activation which is usually a nonlinear function.

The Neural Net (NN) consists of a large number of neurons, also called
cells, nodes or units. Each neuron is connected to other neurons by
directed links with their associated weights. The weights represent
information related to some given problem which the neural net is
expected to solve. Typical problems which may be solved by neural nets
are pattern classification, storing or recalling patterns and optimal control
problems. After absorbing the inputs, each neuron produces its activation
as an output signal to other neurons. Each neuron sends a single signal to
several neurons at the same time.

= Example 8.1.1 Fig. 8.1.1 illustrates a single neuron Y which receives
inputs from other neurons X, X,,X,. If the weights on the connection

links between X, 1<i<3 and Y are w,, 1<i<3 respectively, the total
input to Y is A

y_in=wx +w,x, +wyx, 8.1.1)

where x,, 1<i<3 are the assumed activations of X,, 1<i<3
respectively.

m Figure 8.1.1 A simple neuron with three input connections.
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The neuron Y activates its input y_in using its activation function
f(x) and sends a signal y= f(y_in) to the neurons Z, and Z, (Fig.
8.1.2). The signals received by Z, and Z, are yv, and yv, respectively.
The neurons X,, 1<i<3 are the input units, while Z,, 1<i<2 are the
output units. The intermediate neuron Y is called a hidden unit.

m Figure8.1.2 A simple neural network
)

It is usually most convenient to visualize the neurons as units arranged
in layers. Within each layer, all the neurons (usually) have the same
activation and the same pattern of interconnection. For example, if a
neuron in layer A has a connection link to a neuron in layer B, then each
neuron in A is connected to each neuron in B. The arrangement of the
layers and the patterns of the interconnections between layers and inside a
single layer is called the architecture (this is somewhat a broader
definition than the previous one) of the net.

Single-Layer Net

A single-layer net has one layer of weights. The net consists of n
input neurons X;, 1<i<n and m output neurons Y,, 1<j<m. Each

X, is connected to each Y; with an associated weight w,. Two arbitrary
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input neurons or output neurons are not connected. The single layer net is
illustrated in Fig. 8.1.3.

m Figure 8.1.3 A general single-layer net.

A Multilayer Net

A multilayer neural net with n layers consists of one layer of input units,
one layer of output units and (n—1) hidden layers. Thus, there are (n+1)
layers of neurons but only n layers of weights. The first includes the
weights associated with the connection links between the input layer and
the first hidden layer. These weights are v; in Fig. 8.1.4 which illustrates

the case n=2. The last layer of weights (w,) is associated with the

connection links between the last hidden layer and the output layer. The
remaining (n—2) layers of weights are each associated with the
connection links between the corresponding two consecutive hidden
layers.
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Gy

m Figure8.1.4 A two-layer neural network.

The method of setting the weights (fraining) is a significant feature of
the neural net. In general, the appropriate process for training the neural
net is strongly related to the type of problem that needs to be solved.

Supervised Training

In most cases we have a sequence of input vectors each associated with a
corresponding target output vector. The weights are adjusted to obtain
these output vectors. This process is called supervised training and is
frequently used in pattern classification. Some of the simplest neural nets
are designed so that they can be applied to perform pattern classification.
Each output unit is identified with a single class. If the pattern belongs to
this category the unit receives a signal of 1. Otherwise it receives —1.

Unsupervised Training

Other neural nets are designed to perform unsupervised training. There
are no training patterns which represent typical pattern of each class. The
neural net is provided a sequence of input vectors but no target output
vectors are available. The net adjusts the weights so that input vectors
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which are ‘very close’ to each other will be assigned to the same output
unit.

Activation Functions

The activation function is naturally application-dependent. Several types
are most commonly used.

1. Identity function:
S =x, all x (8.1.2)

The identity function is usually associated with input units and transfers
the whole signal.

2. Binary step function:

f(x)={}) K ;‘33 (8.1.3)

This activation function replaces the input x by a binary result. It is 1 if
x exceeds or equals a given threshold 8 and 0 otherwise.

3. Bipolar step function:

ro={5 %29 (8.1.4)

The activation is 1 if x exceeds or equals a given threshold 8 and -1
otherwise.

4. Binary sigmoid:

|
A 1+exp(—0 x) >0 (8.1.5)
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These activations (Fig. 8.1.5) are particularly useful in neural nets which
are trained by backpropogation where the values of f(x), f'(x) are both

evaluated for each x. Since

Fx)= i f::ﬁffi))] s=0 - f)] (8.1.6)

The evaluation of f’(x) adds almost no cost once f(x) has been
calculated.

1(x)

m Figure 8.1.5  Binary Sigmoid, o =1.
5. Bipolar Sigmoid:

1-exp(-0 x)
1+exp(o x)

Flx)=
(8.1.7)
£l(x)= % 1+ folli- £

Net Input

Let the matrix W =(w;) consists of the weights associated with the
connection links between the units X,,X,..., X and the units Y},Y,...,Y,
(Fig. 8.1.3). The net input to unit ¥, is
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i (8.1.8)

where the vector x=(x,Xx,,...,x,)" consists of the outputs of
X,X,....,X, and w; is the j—th column of W. A bias b, can be
included by adding the component 1 to x and a component b, to w,.
Then

y_in;=x"-w,=b.+Y, xw, (8.1.9)

i=l1
where

x’ =(Lx,x,,...,X,)
(8.1.10)
Wi =B W0, Wy)

H ”j

A single neuron with a bias is shown in Fig. 8.1.6.

m Figure8.1.6 A neuron with a bias.
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8.2 THE McCULLOCH-PITTS NEURON

The McCulloch-Pitts (MP) neuron is the earliest suggested artificial
neuron which illustrates several important features common to many
neural nets. It is characterized by the following rules:

Rule 1. The neurons are connected by directed weighted paths.

Rule 2. Each activation is binary, i.e. equals 1 (the neuron fires) or O (the
neuron does not fire).

Rule 3. A connection is excitatory if its associated weight is positive.
Otherwise it is inhibitory. All excitatory connections into an
arbitrary neuron must have the same weights.

Rule 4. Each neuron has a fixed threshold @ such that the neuron fires if
and only if its net input is greater than 8.

Rule 5. Each threshold is prefixed so that any nonzero inhibitory input
will prevent the neuron from firing.

Rule 6. It takes a signal a single time step to pass a connection link.

s  Example 8.2.1 Consider the neuron Y in Fig. 8.2.1. The connections
between X, X, and Y are excitatory. By Rule 3 these connections must

have the same weight (each weight is 2). Let x,, 1<i<3 denote the
activations of X;, 1<i<3 respectively. Then by Rule 5, the threshold 8
of Y must satisfy

2x,+2x, — X, <0 (8.2.1)

whenever x, 20. Thus, Y will not fire upon receiving a negative signal
from X,. The maximum value of the left-hand side of Eq. (8.2.1) is then
3, obtained if x;, =1, x,=1 and x;=1. If the threshold’s value is

restricted to integers we must choose 8 =4. If x, =0 there is no signal
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from x; and if x, =1 and x, =1 the net input to Y is 4 and the neuron

will fire.

The activation of Y at time ¢ is determined by the activations of X,

1<i<3 at time r—1 (Rule 6). This activation is always 0 except in the
case x; =x, =1, x,=0.

m  Figure 8.2.1 A McCulloch-Pitts neuron.

Architecture of the MP Neuron

An MP neuron is generally connected to » wunits via excitatory
connections - each associated with a weight w >0 and to m units through
inhibitory connections - each associated to a negative weight —v (Fig.
8.2.2).
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m Figure 8.2.2  Architecture of the MP neuron.

The activation of Y is

. N 1 s y_ln >0 8272
sooim={y - (822)

where y_in is the total input to Y and 0 is the threshold of the neuron.

Clearly 8 must be chosen so that Y will not fire even if it obtains a single
negative signal, i.e. even when a single x,, n+1<i<n+m equals 1.

Therefore, 6 must satisfy
nw-—-v<0 (8.2.3)
If 6 also satisfies

k-Dw<6<kw (8.2.4)

Y will fire if it receives at least k& excitatory inputs but no inhibitory ones.
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8.3 SIMPLE APPLICATIONS OF THE MP NEURON

For simple MP neurons the values of the weights and threshold can be
determined by direct analysis. The following examples present MP
neurons which model single logic functions. These neurons can be later
used as designing elements to obtain an arbitrary phenomenon that can be
represented as a logic function.

AND

Let x,, x, denote two inputs which may be ‘true’ (1) or ‘false’ (0). The
‘AND’ function operating on x, and x, yields the result y whose truth

table is given in Table 8.3.1 which provides the four training (input,
output) pairs. The MP neuron which models the function ‘AND’ is
illustrated in Fig. 8.3.1.

m Table 8.3.1 Truth table for ‘AND’.

Xy Xy Y
1 1 1
1 0 0
0 1 0
0 0 0

In order to prevent Y from firing unless x, =x, =1 its threshold 6

must be greater than 1 and if only integer values are considered we must
have 6=2.

m Figure 8.3.1  MP neuron for ‘AND’.
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OR

The truth table of ‘OR’ is given in Table 8.3.2.

m Table 8.3.2 Truth table for ‘OR’.

X, Xy >y
1 1 1
1 0 1
0 1 1
0 0 0

The MP neuron which functions like ‘OR’ is illustrated in Fig. 8.3.2.
The threshold of Y is obviously 8=1.

m Figure 8.3.2 MP neuron for ‘OR’.
AND NOT

The truth table of ‘AND NOT’ ie. [x, AND(NOT x,)] is given in Table
8.3.3.

m Table 8.3.3 Truth table for ‘AND NOT".

X Xy Yy
1 1 0
1 0 1
0 1 0
0 0 0
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The MP neuron which functions like ‘AND NOT’ must have one
inhibitory connection so that if x, =x, =1, ¥ will not fire! Such a neuron
is shown in Fig. 8.3.3. Its threshold is 8=1. The weights and the
threshold are not determined uniquely. For example let w, —v be the
weights along (X,,Y) and (X,,Y) respectively and let 8 denote an

appropriate threshold of Y. Then, the four requirements of Table 8.3.3
yield:

w—v < 0
w 2> 0
v < B (8.3.1)
0 < 06
respectively. For the particular choice v=1 we obtain
w-l<0<w
(8.3.2)
0<806
and if only integer values are considered we have
0<6=w (8.3.3)

The choice w =80 =1 is given in Fig. 8.3.3.

m Figure 8.3.3  MP neuron for ‘AND NOT".
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PROBLEMS

1. Obtain an MP neural net for ‘XOR’ using the relation

x, XOR x, =[x, AND (NOT) x, |OR [x, AND (NOT x,)|  (8.3.4)

2. If a cold stimulus is applied to a person’s skin for a very short time, the
person will perceive heat. If the stimulus, however, lasts for a longer
period of time, the person perceives cold. By using discrete time steps,
a simple McCulloch-Pitts neural net which models this phenomenon
can be designed. We first assume that if the cold stimulus is applied
for one time step, heat is perceived and if it is applied for two time
steps cold is perceived.

We now assign two neurons X, and X, to receive heat and cold
signals respectively. If x; and x, are the activations of X, and X,
respectively, then

(x,,x,)=(1,0) if heat is applied
(x,,x,) =(0,1) if cold is applied

The input (x,,x,)=(0,0) is also possible. It occurs if a cold stimulus
is applied for one time step and then removed.

Let Y, and Y, with activations y, and y, respectively denote neurons

which are perceptors for heat and cold respectively. Construct a neural
net which will provide only the first perception of either heat or cold.
Design first ‘cold is perceived’ followed by ‘heat is perceived’.

The final net should consist of the following features:

(a) A hot stimulus at time (#—1) is detected as perception of heat at
time ¢ .
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(b) Two consecutive cold stimulus at times (r—2) and (¢r—1) are
detected as perception of cold at time ¢ .

(¢) A cold stimulus at time (¢r—3) which is removed (i.e.
x(t—-2)=x,(t—2)=0) at time (t—2) cause the net to detect
perception of heat at time ¢ .

8.4 ELEMENTARY NEURAL NETS FOR PATTERN
CLASSIFICATION

An important application of neural nets is solving pattern classification
problems. We will discuss several approaches, most of which assume a
simple single-layer neural net. However, real-world problems often
request the use of multilayer nets.

We open this section by introducing simple neural nets which are
capable of performing pattern classification problems.

Preliminaries; A Simple Model

The basic architecture of a single-layer neural net which performs
classification, is different from the McCulloch-Pitts architecture. It
produces the net shown in Fig. 8.4.1. This neural network classifies

arbitrary vectors x = (x,,x,,...,x,)" in R" and assumes membership in a
single class. The net is composed of n input neurons X,, 1<i<n (one

input unit for each component of x and a single output neuron Y). In
addition there is a ‘bias’ unit denoted by B which adds a bias b to the net
input of Y. Let x,1<i<n denote the activations of X, 1<i<n

respectively. Then, the total net input into Y is

net:b'f'i W, X, (841)

i=1
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m Figure8.4.1 A general single-layer neural net for pattern
classification.

Consider a bipolar activation function to Y, i.e.

1 ,net=0
flnety={ ’}1‘; -0 (8.4.2)

If Ys activation is 1, the output unit fires and the pattern x belongs to
class C. If the activation is —1, Y does not fire and x does not belong to
C. Thus

b+2n: wx,20=>xeC

i=1

(8.4.3)
b+3 wx <0= xe C

i=1
By introducing bias to the model illustrated in Fig. 8.4.1 we eliminate the
necessity of assigning a threshold 6 to Y. Instead we adjust the bias b
and a threshold 6 is equivalent to a bias (b—0) and a vanishing

threshold.

s Example 8.4.1 In the case n=2 we classify an incoming pattern
x=(x,x,)" in C if and only if the pattern is on the positive side of the
straight line

b+wx, +w,x, =0 (8.4.4)
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which separates between C and the rest of the universe.

If two classes C,, C, exist such that for every incoming pattern

b+i wx, 20=>xe(

i=1

(8.4.5)

b+i wx, <0=>xe(C,

i=l

then the neural net of Fig. (8.4.1) models and solves a two-class
classification problem. The straight line given by Eq. (8.4.4) or in general,
the hyperplane

b+ S wx, =0
21 X, (8.4.6)

is the familiar decision boundary which separates between two decision
regions. The response of Y is +1 if x is in the positive decision region
and —1 if x is in the negative decision region. Thus, to each x we assign
a sign (+) or (-) according to the decision region in which x is a member.

m Example 8.4.2 The OR logic function is modeled by two input units
X,, X, and a single output unit 7 (target) with activations x,x,,?
respectively. If bipolar activation is applied we obtain the following table
which consists of four training patterns and four required responses of the
output neuron 7':

m Table 8.4.1 Truth table of OR using bipolar activation.

X x>t
1 1 1
1 -1 1
-1 I 1
-1 -1 -1
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The requirements of Table 8.4.1 are illustrated in Fig. 8.4.2.

X2

(-1,0) X1

- 0-1) 4

m Figure8.4.2  The logic function OR.

Each of the training patterns is marked by its target value. There are
infinite number of possible separation lines. One of them, for example, is
I+x+x,=0ie. w=w,=1 and b=1. We cannot choose w, =w, =1
and b=-1 since (1,1) for example must be on the positive side of the
separation line.

A more mathematical approach for obtaining a separation line is to
observe the net which models OR with its free parameters w;,w,,b (Fig.
8.4.3).

m Figure 8.4.3  The neural net of OR.
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By substituting the four training patterns and the desired responses we get

@) :b+w +w, 20

-1 :b+w,—-w, 20
(-LD) : b=w, +w, 20 (8.4.7)

-,-1):b-—w—-w,<0

The system of inequalities given by Eq. (8.4.7) has an infinite number of
solutions. One of them is w, =w,=b=1 which satisfies the four

inequalities. On the other hand there is no solution for which w, and w,

have different signs. Indeed, if w, = k*>0 and w, =—I 2 <0 the third

inequality of Eq. (8.4.7) implies b >k”+I*> which contradicts the fourth

one which yields b<k®>-1>. If w,=—k* <0 and w, =[">0 the second

inequality implies b >k’ +1> which contradicts the fourth inequality by
which b <> —k*.

A

So far we emphasized the possibility of using single-layer neural nets

to solve pattern classification problems, and presented a simple neural net

which models such problems. The next step is to provide learning rules
for this net. This topic will be discussed in the remainder of this chapter.

PROBLEMS
1. Obtain a truth table of XOR using bipolar activations, and show that it
does not provide a linearly separable classification problem.

2. Prove algebraically that a single-layer neural net which models XOR
does not exist.
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8.5 HEBB NET

A simple learning rule for a neural net is Hebb rule which can be
formulated as follows.

Hebb learning rule

If two interconnected neurons fire at the same time, the weight associated
with their connection link should be increased.

A stronger form of learning is obtained if the weight is increased also
in the case when both neurons do not fire at the same time. We thus get

The extended Hebb rule

If two interconnected neurons fire or do not fire at the same time, the
weight associated with their connection link is increased.

A single-layer which is trained using the extended Hebb rule is called
a Hebb net. 1If we apply bipolar activations, a possible formulation to the
extended Hebb rule for a Hebb net is

w;(new) =w,(old)+x,y (8.5.1)

where x; is the activation of an input unit X,, y— the activation of an
output unit ¥ and w; is the weight associated with the connection link
between X, and Y. In order to include bias we add the connection link

between Y and an input unit B with constant activation 1, which is
associated with the weight b .

The right-hand side of Eq. (8.5.1) implies that should X, (or B) and
Y fire and not fire alternately, the associated weight must be decreased.
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The simplest form of using Hebb learning rule is to pass once through the
training set and adjust the weights accordingly.

s Example 8.5.1 To obtain a separation line for the logic function
AND one should find w;, w, and b such that the truth table (Table 8.5.1).

s Table 8.5.1 Truth table for AND using bipolar activations.

X x, >t
1 1 1
1 -1 0
-1 1 0
-1 -1 0
will be obtained by a neural net. Consider the initial values
w, =w, =b =0 and denote

Aw, =w,(new)—w,(old)=xt, 1<i<2
(8.5.2)
Ab =b(new)—b(old) =t

The four ‘extended patterns’, namely

x, = (LL])

x, =(1,-11)
x,=(=LL1)
x, =(-1,-1])

enter the neural net and w,, 1<i<2 and b are adjusted using Eq. (8.5.2).
The process is described in Table 8.5.2.

s Table 8.5.2  Hebb rule applied to AND, using bipolar activations.

Input Target Weight Changes Weights
x x 1 t Aw, Aw, Ab w, w, b
1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 -1 1 -1 0 2 0
-1 1 1 -1 1 -1 -1 1 1 -1
-1 -1 1 -1 1 1 -1 2 2 -2
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The final separation line is 2x, +2x,-2=0 (Fig. 8.5.1). The decision

boundaries suggested by the system at the interim stages are illustrated in
Figs. (8.5.2) through (8.5.4). In this case the fourth training pattern is not
needed and the decision boundary after the first three training patterns is
already final.

X2

X1

2x1+2x2-2=0

m Figure 8.5.1  Getting a separation line for AND.

X2

X1

X1+Xx24+1=0

m Figure8.5.2  Decision boundary after first training pattern.
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m Figure 8.5.3

m Figure 8.5.4

X2

2x2=0 X1

Decision boundary after second training pattern.

X2
+

x1+X2-1=0

X1

Decision boundary after third training pattern.

o

The Hebb learning rule is limited and does not always provide a linear

separator even if there is one.

In the next example, the use of binary

activations prevents the neural net from learning some of the patterns.
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m  Example 8.5.2 Consider a neural net which is assembled to model
AND, using binary activations. The associated truth table is given in
Table 8.3.1 and by applying Hebb rule and the initial conditions
w, =w, =b=0 we obtain

m Table 8.5.2 Hebb rule applied unsuccessfully to AND using
binary activations.

Input Target Weight Changes Weights
x  x 1 t Aw, Aw, Ab w, w, b
1 1 1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 1 1 1
0 1 1 0 0 0 0 1 1 1
0 0 1 0 0 0 0 1 1 1

Clearly, if the target ¢ is O, no learning occurs.
Ao

In the next example the Hebb net is applied to classify letters - represented
by pixel matrices.

m  Example 8.5.3 Consider a pattern classification problem where each
pattern is either the letter ‘M’ or the letter ‘L’ represented by 5x5 pixel
matrices (Fig. 8.5.5).

X - - - X X

X X X X X

X X . X X

X X X

X . . . X X X X X X
Pattern ‘M’ Pattern ‘L’

m  Figure 8.5.5 Representation of ‘M’ and ‘L’ by pixels.
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An arbitrary pattern is represented by a 25-component vector. The pixels
‘x” and ‘." are represented by the values 1 and —1 respectively and each
vector is obtained by concatenating the rows of the corresponding pixel
matrix starting at the top. The Hebb net consists of 25 input units and an
output unit. There is no need to include here a bias unit.

The patterns ‘M’ and ‘L’ are therefore

‘M’=(1—1—1—11,11—111,1—11—11,1—1—1—11,1—1—1—11)T
L= =1 =111 =1=1=1=1,1-1=1-1-1,1-1-1-1-1,111107

and the desired outputs are 1 for ‘M’ and -1 for ‘L’. If we start with
w, =0,1<i<25 and feed the system with the pattern ‘M’ and t =1, we

obtain that the weight change vector Aw, = (Aw,,,Aw,,,...,Aw, ) equals

to ‘M’. As we start with homogeneous initial conditions, the new weight
vector is also ‘M’. Since ¢ =—1 (no response) for the training pattern ‘L’,
the second weight change vector is ‘—L’ and the final weight vector is

Wf =M’-‘L’=(00002,02022,00202,00002,0 -2 -2 —20)T

The net input into the output unit when ‘M’ is fed into the system is
WJ,T ‘M’=20>0 and the response is 1. If ‘L’ enters the system, the net

input is WfT ‘L =-20<0 and the response is —1 as desired. If an

incoming pattern, given as a 25-component vector, includes noise or some
wrong measurements it may still be classified as ‘M’ or ‘L’ provided that
the noise and the errors in measurements are significantly small. For
example, the pattern in Fig. 8.5.6 is similar to ‘M’. Its representation as a
25-component vector is
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X

X X X X
X - X

X . X

X - . . X

m Figure 8.5.6 A pattern which resembles M.
‘M’=(1 -1 -1-1-1,11 =111, -1 —-11 ~11,1 =1 =1 —=11,1 -1 -1 —11)T

and WJ,T ‘M’=16, i.e. the pattern definitely produces a positive response

and therefore classified in the M-class.
a

We now return and discuss the limitations of the Hebb net. In
Example 8.5.2, using the Hebb rule with binary activations, prevented the
learning of three out of four training patterns. Consequently, the Hebb
neural net could not provide a linear separator for the AND logic function,
although such a separator exists (Example 8.5.1). However, even if the
Hebb net learns all the patterns and even if a linear separator exists, there
is no guarantee that the final weights will indeed provide an appropriate
separator.

PROBLEMS
1. Consider 3-D four bipolar training patterns and outputs given by

Input Target
XX X t
-1 -1 1 1
1 -1 -1 -1
1 -1 1 -1
-1 1 1 -1
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Assume vanishing initial conditions w, =w, =w, =b =0.

(a) Show that the final set of weights using the Hebb net provides the
decision boundary —2x, —2=0.

(b) Does this plane correctly classify all the patterns?

(c) Does a linear separator exist for this problem?
2. Repeat Example 8.5.3 for the letters ‘D’ and ‘O’.

3. Explain the difference between the performance of the Hebb nets for
Example 8.5.3 and problem 2.

8.6 THE PERCEPTRON

The limitations of the Hebb rule are not shared by another learning
procedure which was also implemented in the earliest neural nets - the
perceptron. Furthermore, sufficient conditions for the convergence of its
iterative process exist.

The basic perceptron consists of three layers of neurons: a layer of
sensory units S,, 1<i<m; alayer of associative units X,, 1<i<n and a

layer of response units Y;, 1< j<k. The case of a single response unit is

illustrated in Fig. 8.6.1. Each of the associative units is randomly
connected to the sensory units with connection links over which the
weights are prefixed. The sensory units transfer the stimuli from the
measurement devices to the associative units and since no learning occurs
at this stage, we may observe the associative units as input units and just
consider the second and third layers (Fig. 8.6.2). We also assume a bias
associative unit B. The activations x;, 1<i<n of the associative units

are binary or bipolar, while that of ¥ is 1,0or—1. The net input of the
response unit Y is
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y_in=3 wx +b (8.6.1)

m Figure 8.6.1 A perceptron model.

m Figure 8.6.2  Associative and response units.

and its activation is defined by

1 , y_in>0

fly_in)=< 0 , -0<y_in<0 (8.6.2)
-1 , y_in<-0
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Thus, the perceptron’s output is 1 if the response unit’s activation exceeds
a given threshold 8. If the net input falls within a band of width 8
around zero, the activation is set to zero. Otherwise it equals —1. The
target is always +1 or —1. Ifitis 1, an error occurs whenever f(y_in) is

either —1 or O and the weights associated with the connection links
between the associative units and the response unit, will be adjusted by the
perceptron learning rule.

The purpose of introducing the threshold 8 is to be able to decisively
distinguish between a positive and a negative response. This threshold
determines a neutral zone between the two choices, and cannot be
included in the bias b. Indeed, a positive response occurs if

En: wx,+b—0>0 (8.6.3)

i=1

while a negative one yields

zn: wx, +b+0 <0 (8.6.4)
i=l
Clearly, we cannot replace b and 6 by a single parameter (b—8) in Eq.
(8.6.3) since in Eq. (8.6.4) that single parameter should be b+0#b—-6.

For each pattern we calculate the response unit’s activation f(y_in).
If it is not equal to the target ¢ the weights are adjusted by

w,(new) = w,(old) + oux, (8.6.5)

where o« is a correction coefficient between 0 and 1 which can be
observed as the learning rate of the perceptor. If, however, f(y_in)=t

the weights are unchanged and the next pattern is tested. Each iteration
consists of a complete sweep over the set of training patterns. The process

stops if throughout an iteration no adjusting of w,, 1<i<n occurs, i.e. if
all the training patterns provide the desired targets.

The complete perceptron algorithm is given next.
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Algorithm 8.6.1.

Input:

Output:

Step 1.

Step 2.

Step 3.

Step 4.

Step S.

(An algorithm for a basic perceptron: PERC)

m — the number of training patterns.
n— the number of associative units.
60— the perceptron threshold.

o.— the perceptron learning rate.

{x;}}-1— The activations of the i - th pattern, 1<i<m.

t,, 1< i< m—The correct targets of the training patterns.

W, 1< j <n— The initial weights.
b, — The initial bias.

w;, 1< j<n— the final weights.
b —the final bias.
Set it = 0 and wj.o =w,, 1< j<n, by =b,
Set ichange =0 and for 1<i<m do Steps 3-5.
Calculate

y_in= Y wx; +hb,

j=1 '
Set
1 , y_in>6
y=4 0 , —-0<y_in<0

-1 , y_in<-0

Updating the weights and bias:
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If y+t, set
ichange =1
W, =w,+atx;, 1< j<n
b=b,+at

and then w;, <~ w,,1< j<n and b, < b.
Otherwise continue.

Step 6. If w,=w,, 1<j<n; b=b, and ichange=0, output
‘learning is successfully completed’, it (no. of iterations)
and stop. Otherwise, if w,=w},, 1<j<n; b=h; and
ichange =1, output ‘learning cannot be completed for all
training patterns’ and stop; otherwise set it < it +1;

w;, < w;, 1<j<n and go to Step 2.

by, by < b; w,,

A subroutine PERC which incorporates Algorithm 8.6.1 is given in the
appendix.

m  Example 8.6.1 Consider the logic function OR where the input is
binary and the targets are bipolar, i.e.

X, Xy, > f
1 1 1
1 0 1
0 1 1
0 0 -1

Choose 6=0.3, o =1 and w,, =w,, =h, =0. The first iteration provides
Table 8.6.1 which has a ‘Net’ column for y_in and an ‘Output’ column
for f(y_in).
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m Table 8.6.1 The first perceptron iteration for OR.

Input Net Output Target Weight Changes Weights
X x 1 Aw, Aw, Ab W, w, b
1 1 1 0 0 1 1 1 1 1 1 1
1 0 1 2 1 1 0 0 0 1 1 1
0 1 1 2 1 1 0 0 0 1 1 1
0 0 1 1 1 -1 0 0 -1 1 1 0

At the end of this iteration or cycle we get the weights w; =w, =1 and the
bias »=0 which yield a temporary decision band between the straight
lines x;, +x,—-03=0 and x, +x,+0.3=0 (Fig. 8.6.3). In order for the
decision band to provide correct results for all of the training patterns, the
patterns with positive targets must fall on the positive side of the band, i.e.
must satisfy x, +x,—0.3>0, while the patterns with negative targets
should fall on the negative side, i.e. satisfy x, +x,+0.3<0. The

threshold is therefore a parameter which indicates the desired extent of the
decision band as a separating zone between the two classes of patterns. In
this example the training input pattern (0,0) falls within the decision band
and the process is not terminated. This can be also concluded by
comparing the initial and final weights and bias:

(W, w,,b) = (1,L,0) # (0,0,0) = (Wip, Wy by)

x2

(11
+

\X1 +x2-0.3=0

N[

+ x1

X1+X2+0.3=0

n Figure 8.6.3 Decision boundary after first cycle.
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The results of the next cycles are given below.

Cycle 2:

8]
1

OO = =R

0
1
0

Cycle 3:

oov—tv—t_k
o»—AOHS‘

Cycle 4:

oov—tv—t_k
ov—tov—ts‘

Cycle 5:

OO»—A»—A_R
O'—‘O’—‘Nk

S U G Y

S U GHIG Gy

Net

S NN

Net

S = O =

Net

S O =N

Output
1

1
1
0

Output

o = O

Output

S O =

Target

-1

Target

-1

Target

-1

Target

-1

Aw, Aw, Ab
0 0 0
0 0 0
0 0 0
0 0 -1
Aw, Aw, Ab

0 0 0
1 0 1
0 0 0
0 0 -1
Aw; Aw, Ab
0 0 0
0 0 0
0 1 1
0 0 -1
Aw, Aw, Ab
0 0 0
0 0 0
0 0 0
0 0 0

ORI RS S

=

NN NN

=

NN NN

w, b
1 0
1 0
1 0
1 -1
w, b
1 -1
1 0
1 0
1 -1
w, b
1 -1
1 -1
2 0
2 -1
w, b
2 -1
2 -1
2 -1
2 -1
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Since all the training patterns produce outputs which are identical to
their corresponding targets the process ends successfully after five cycles.
The final weights are w, =w, =2 and the final bias is b=-1. The

training patterns and the final separation band are illustrated in Fig. 8.6.4.

X2

(11)
+

\

_ N x1

A\

m Figure 8.6.4 A final separation band for OR.

We will next prove a convergence theorem for the perceptron
learning rule.

Consider a set X of input training vectors x,, 1<i<m with
associated target values ¢,, 1<i<m respectively, such that ¢, is either 1

or —1, and with an activation function y = f (y_in) such that

1 , y_in>0
0 , -0<y_in<0
-1 , y_in<-6

y =
Let the new weights be updated (if y #¢ ) by
w(new)=w(old)+oatx

If y = ¢ the weights remain the same.
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m Theorem 8.6.1

If a vector w* for which
fxl-w®=t, , 1<i<m (8.6.6)

exists, the perceptron learning rule will converge to a weight vector w **
which satisfies

f(xl-w**y=¢ | 1<i<m (8.6.7)

in a finite number of iterations.

The finite weight vector which provides correct responds, is generally
not unique.

Proof.

Define

T ={x 11, =1} , T ={x 11, =-1} (8.6.8)

For the sake of simplicity we assume =1, 8 =0. Consequently, the
existence of w* guarantees (6 =0)

xTw*>0 , xeT?
(8.6.9)
xT -w*<0 , xeT"
Let T=T*U(-T"). Then
xT-w*>0 , xeT (8.6.10)

If an arbitrary response is incorrect (i.e., <0) for the current weight vector
w, the updating is performed (& =1) by
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w(new)=w(old)+ x (8.6.11)
where x is the training vector which provided the incorrect response.

Let w, denote an initial weight vector and denote by y, the first

training vector with an incorrect response, i.e., it is the first x,, 1<i<m

for which y; -w, <0 (if y, does not exist the process terminates and

w**=w_ ). Toupdate w, we define
W, =w,+ ¥,
and take y, as the first training vector which satisfies y; -w, <0. If y,

does not exist the process terminates and w**=w,. To update w, we
choose

W,=w ty, =w,ty,ty
At every step of the process we have
W, =wo+ 2, (8.6.12)
and we will show that k cannot increase indefinitely. Let
a=min[x; - w¥] (8.6.13)
Clearly a >0 and consequently by Eq. (8.6.12)

k-1
W, WE=w -WwE+Y Yy - wk>wo-w*+ka (8.6.14)
i=0

If w,-w*+ka is always negative, k is bounded and the process for
obtaining w** is finite. Assume k in contrast to be such that
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wg W *+ka is already positive. By combining Eq. (8.6.14) and the

Cauchy-Schartz inequality we get

(wo - W *+ka)® < (wy - w*)* <|w, ||2||w *||2

which leads to

T % 1ka)
|| k”2>(w0 w*+ a)

e

ie.,
We =W+ Yy > Vi Wi SO

and therefore,

e A e o o
This implies

bl <ol +lol o 1<k
and we finally obtain

il <[wol + kb

where

b=max||xi||2 , 1<i<m

w, ||2 > Ak® for some A>0. However, for arbitrary k

(8.6.15)

(8.6.16)

(8.6.17)

(8.6.18)

Obviously, Egs. (8.6.15) and (8.6.17) lead to contradiction if & increases

indefinitely. They also provide an upper bound for k given by
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(we -w* +ka)®
=

If we assume (without a real loss of generality) w, =0 we get

< |wo| +kb (8.6.19)

Hw

2
a

k<

(8.6.20)

which concludes the proof. o

Clearly, the bound of Eq. (8.6.20) is not exactly practical since w *
(and therefore, a) is unknown. If a #1 we obtain a similar proof and for
w, =0, Eq. (8.6.20) still holds. The validity of the proof for 8 >0 is also
straightforward. The restriction that the number of training vectors m is
finite can be lifted if 0< p < ||x|| <g<o forall xe X. If X includes
training vectors whose norms are very large or very small, the perceptron
learning rule may require an extensive number of iterations to converge.

The perceptron learning rule performs better than the Hebb rule as can
be seen from the next example.

m  Example 8.6.2 Consider the 3-D four training patterns and targets

given by
X, x, X, )
- -1 | 1
-1 -1 -1
-1 | -1
- 1 1 -1

Here the Hebb rule, starting with w, =0, 1<i<3; b =0, yields the final
weights wy=-2, w,=w,=0, b=-2 which do not provide an
appropriate linear separator. If x” -w >0 is considered a positive target

and x"-w<0- a negative one, the first three patterns are properly
classified but not the fourth.
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If we treat the same problem using the perceptron learning rule with
0=03, =1 we obtain after two iterations w,=w,=-2, w,=0,
b=-2.

)
PROBLEMS

1. Use the perceptron learning rule for the AND operator, using bipolar
patterns and targets, homogeneous initial conditions, 8 =0.2 and

a=1.

2. Use the 3-D patterns and targets given by

=
3‘
&

-

S = D
SO =1 O
NV —= OO
N

to train a neural net using the perceptron rule. Assume
6 =0.1 and o =0.5.

8.7 ADALINE

The ADALINE (ADAptive Linear NEuron) usually uses bipolar
activations and targets. It is a single neuron which receives its input from
several input units including one (a bias unit) which provides a constant
signal 1. The ADALINE’s architecture is shown in Fig. 8.7.1.
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m Figure 8.7.1  The architecture of a single ADALINE

If several ADALINESs receive their inputs from the same units, they may
create a single-layer net. However, if the outputs of several ADALINEs
are the inputs for others, we obtain a multilayer net-MADALINE (Many
ADAptive Linear NEurons). The training of the ADALINE is done using
the delta rule and its general design is given next.

Algorithm 8.7.1

(An algorithm for a single ADALINE: ADAL)

Input: m — the number of training patterns.
n —the number of associate units.
o —the ADALINE learning rate.

{x;},5, — the activations of the i-th pattern,
1<i<m

t, 1<i<m - the correct targets of the training

patterns.

W, 1< j <n —the initial weights.

b, —the initial bias.

€ —agiven tolerance for determining convergence.

N — maximum number of iterations allowed.
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Output: w;, 1< j <n —the final weights.

b — the final bias.
it —number of iterations.

Step 1. Setit=0, wy=w,, 1<j<n; b, =b,.
Step 2. For i =1,...,m do Steps 3-4.
Step 3. Compute the net input to the output unit:

. * L *
y_in=by+ Y, w,ox;
j=1

Step 4. Update the weights and bias using the delta rule:

w,=w,tolt, —y_imx;, 1<j<n

b=h, +o(t,— y_in)

*

andset w, «w,; ,1<j<n ; by «b

Step 5. Calculate E: the maximum weight (or bias) change in
Steps 2-4; it =it +1

Step 6. If E<e output {w,;}’,, b, it and stop; otherwise if it =N
output ‘maximum number of iterations exceeded’ and stop;

otherwise go to Step 2.

If the targets are bipolar we apply in Step 3 an activation function which
receives y_in and provides a step function:

.| 1, y_in20
f(y_m)—{_l, y_in<0

which replaces y_in in Step 4.
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The delta rule applied in Algorithm 8.7.1 is a consequence of trying to
reduce the squared error of an arbitrary training pattern. This error is
E=(t-y_in)* where t is the desired output. To minimize it we apply
the method of steepest descent, i.e. following the opposite direction of the
error’s gradient. The error is obviously a function of the current weights
Wi, 1< j<n and.the bias b, and since we have

oE .
3, - AU y-inx (8.7.1)
)
we obtain
w;(new) = w (old) +a(t — y_in)x, (8.7.2)

where o is some prefixed learning rate.

m Example 8.7.1 Consider the OR function using bipolar patterns and

targets:
x, x, 4
1 1 1
1 -1 1
-1 1 1
-1 -1 -1

The total squared error for given weights and bias w,, w,, b is
E=(w+w,+b=1)>+(w —w, +b-1)
+(w +w, +b=1)"+(—w —w, +b+1)’

and its minimum is attained by choosing w, =w, =b=0.5 i.e., the linear
separator is 0.5x, +0.5x, +0.5=0
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8.8 BACKPROPAGATION NEURAL NET AND ITS
APPLICATIONS

The limitations of single-layer neural networks inspired the interest in
multilayer neural networks and the discovery of a general method for
training such networks — the backpropagation method. It consists of
applying the steepest descent method to minimize the error produced by
the neural net’s output.

The architecture of a multilayer neural network with a single hidden
layer is illustrated in Fig. 8.8.1. It has input units {X,}., (and a bias);

hidden units {Zj}’j:1 (and a bias); output units {Y¥,};_,. The weights

associated with the connections between the input and the hidden units are
Vs 0<i<n, 1< j<I and those between the hidden and the output units

are wy, ; 0<j<Il, 15k<m .

* Figure 8.8.1 A multilayer neural net with a single hidden layer.
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Backpropagation Method

The training of a network using backpropagation consists of three stages:
(a) feedforward the input training pattern throughout the neural network;
(b) backpropagation analysis of the error; (c) updating the weights.
Without loss of generality, we will consider and discuss the single hidden
layer case of Fig. 8.8.1.

The feedforward is performed as follows: each input unit receives a
signal and transfers it via its connections and weights to all the hidden
units. Each Z; computes its activation and transfers its own signal to all

the output units. Finally, each Y, computes its activation y,. The set

{y. }r_, is the network response (or output) of the given input.

The backpropagation analysis of the error is the training stage. Each
¥, is compared with its associated target value. This provides the error

for that pattern with the unit ¥, . Next, a quantity of &, which divides this

error back to the units of the previous layer, is computed. In the case of
Fig. 8.8.1, these are the hidden units. After obtaining {9, } ;_, we compute

similar quantities {6/} |, which are associated with {Z,} °_, .

Once determined, the numbers {9, } i, , {5;}1].=, are used to adjust all
the weights simultaneously. The weight w, (from Z; toY, ) is adjusted
using &, and the activation z; while v, (from X, to Z,) is adjusted by 6
and the activation x; .

The backpropagation procedure is performed on all the training
patterns and if the maximum weight adjustment is less than a given
tolerance, the process is completed. The standard training algorithm for
the backpropagation neural network with a single hidden layer is given
next.

Algorithm 8.8.1 (Training by backpropagation).

Input: A set of M training patterns xP =", xP)7T
1< p<Mwith targets %) = ({7,

initial weights vWho<i<n, 1<j<I and

b

(Y, 1< p<M;

e by
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Output:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

wﬁz), 0<j<l, 1<k<m; a tolerance €>0; a maximum

allowed number of iterations N and a learning rate o.

Final weights for the neural network - v, and w, .

Set v,.j=v.(.°)' 0<i<n, 1<l and wjkzwg.z);

g 2

0<j<l 1<k <m. Setit=0 (current number of iterations).

For 1< p<M do Steps 3-4 (feedforward) and Steps 5-7
(backpropagation of the error).

For each hidden unit Z, , 1< j <[ calculate the total weighted

input from input layer:

n
zPin, =v; Y, v, M 1<j<l

i=1

and use the activation function f{x), to get the output signals
obtained from the hidden units:

V= f (W), 1< j<i

For each output unit ¥, , 1<k <m calculate the total weighted
input from the hidden layer:

!
Py — (r)
yPin, =wy, +21 w2z, 1<k<m
]:

and use the activation function f (x), to get the output signals

¥y = f(yPin,), 1Sk <m

Calculate the error terms (steepest descent method).
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Step 6.

Step 7.

Step 8.

8 = (" =y 'YW im), 1<k <m
the weight correction terms
Aw, = aSk(”)zj ; 1< j<I, 1<k<m
and the bias correction terms
Awy, =8P | 1<k <m
For each hidden unit sum its delta inputs from the output layer:

8in; =3, 5Pw, , 1< <1
k=

and its backward error term
8 =8in, f'(z_in)), 1< j<I
Then, obtain the weight correction terms
Av, :aS;(”)xi ;1<i<n, 1<l

and the bias correction term

ij(—W_;k+Aij; 0<j<l, 1<k<m

Set it «it+1 and
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(p) )\ 2
' "'yl(cl))

1l
Mz
Mz

k=1

-]
I
—

If i#t<Nande>e go to Step 2; otherwise, if

it<Nande<eg,outputv,,w, ,it and stop; else if ir>N

ij ?
output ‘no convergence’ and stop.

For most problems, using a single hidden layer is sufficient. Sometimes,
however, a problem is better treated by using two or more hidden layers.
The associated algorithms are basically similar to algorithm 8.8.1.

Mathematical Background

The backpropagation procedure is based on a popular minimization
process—the steepest descent method. The learning rules of algorithm

8.8.1 are obtained as follows. For arbitrary input pattern x =(x,,...,x, )

and target ¢ =(t1, ...,t. )", the error to be minimized is (the factor Y2 is
chosen for convenience)

1

E==Y (t-y) (8.8.1)
2 k=t
where
e =fy_in,) (8.8.2)
and
I
Y i =wo + X, WLz, (8.8.3)

j=t

Let I, J, K denote fixed values in the sets {0,1,...,n},{0,1,..., 1}, {1, 2,..., m}
respectively. To apply the steepest descent method we obtain the
derivatives
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L = 22 = == 3 (ring) 20

anK aij aij
=—(tx —ye) f _ing)z, =— 6842, (8.8.4)
and
oE m d m , ooy i
:_Z (tk_yk) Vs :_Z (tk_yk)f (y_lnk)_(—ylk)
av” k=1 av” k=1 av,,
:_i 5kM — _i 5kw,kai
k=1 av” k=1 d ]

:_21 O, WJKf’ (Z—inl)xl =—5_injf' (z~in1)x1
k=
=-=6, x, (8.8.5)

and update the weights using the correction terms

L
Aij:—a d ; 0<j<I,1<k<m
oW,
(8.8.6)
L
Avil.z—aﬁ— ; 0<i<n , 1<
' dv;

where o is some prefixed learning rate.
Activation Function

Due to its role in the design of a neural network the activation function f{x)
is expected to be monotonic nondecreasing and to belong to C'(— oo, o).
Usually, it is also expected to saturate, i.e.
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lim f (x)=A <o

x—pe0

(8.8.7)
l1mf() > —o°

x—>—co

Finally, from computational point of view, it is desirable to apply an
activation such that f (x)and f(x) are easily computed. Typical

activation functions are the previously defined binary and the bipolar
sigmoid functions and tanh(x).

Initialization

Choosing appropriate initial values for the various weights may determine
the speed of the learning process and whether we reach a global or local
minimum of the error (a typical problem when applying the steepest
descent method). Since updating the weights involve values of activations
and their derivatives, it is preferable that these values should not vanish.
Consequently it is usually advisable to choose initial weights which are not
too large. For example, one could choose the initial weights randomly
within the range (- 0.5, 0.5).

A modification to this trivial choice is the Nguyen-Widrow
initialization. The iritial weights and biases from the hidden layer to the
output layer are chosen randomly, say between —0.5 to 0.5. As to the
initial weights over the connections between the input and the hidden
layers, they are determined using the following procedure. Define a scale
factor

g=07%1 (8.8.8)

where »n and [ are the numbers of the units at the input and hidden layers

respectively. We first choose v, randomly between —0.5 and 0.5 and
denote them by v; ), Letv denote the vector of the weights from the
input units to the hidden unit Z,, ie. v®=0",...,v)". We now

update v ) and use
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as the final initial weights between X, and Z,. The initial biases v,; are
taken randomly between — 3 and f3 .

The Nguyen-Widrow initialization procedure is based on the activation
function tanh(x) but is also effective for the similarly behaving bipolar

sigmoid function.

s  Example 8.8.1 Consider a neural network with two input units, three
hidden units and a single output unit, i.e. n =2,/ =3 and m = 1. This
network is supposed to operate as the ‘XOR’ function. Four training
patterns which are 2-D vectors (n = 2) are the inputs. The outputs are four
scalars (m = 1). If a binary representation is considered, the patterns are

1,1, (,0),(0,1),(0,0), with targets 0, 1, 1, O respectively and the
activation function is the binary sigmoid. For a bipolar representation the
input patterns are (1,1), (1, =1), (1,1, (=1,—1) with targets -1, 1, 1,
—1 respectively and the activation function is the bipolar sigmoid.

The initial weights chosen randomly between —0.5 and 0.5 are:

v = 0.396, v, =-0.030, v, =-0.401

v, =—0.066, v,=-0.046, v,= 0414

v, =—0.017, v, = 0220, v,= 0231
and

W =0.118, wy, =—0.173, wy, =0.204, w,, =—0.271

The training of the network continues until the total squared error is
sufficiently small, i.e.

3 35 O -f <e

k=1

=
—_
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For a tolerance €=0.05 and learning rate ¢x =0.1 we obtain the following
results:

(a) Binary representation: 15342 iterations are needed for convergence
and the final outputs are:

yW=0.112, y?=0870, y¥=0.899, y* =0.102

(b) Bipolar representation: 823 iterations are needed for convergence and
the final outputs are:

yW=-0.883, y¥=0910, y¥=0.895, y*¥=-0.869

)
The next example demonstrates some advantage of using the Nguyen-
Widrow initialization process.

= Example 8.8.2 Consider the previous example with
€=0.0land 0 =0.15. Applying standard (ST) and Nguyen-Widrow
(NW) initializations provide the following results.

(a) Binary representation:

Type of Initialization No. of iterations
ST 12971
NW 6883

(b) Bipolar representation:

Type of Initialization No. of iterations
ST 1534
Nw 1246
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For fixed initial values of the weights and a given tolerance € >0, the

speed by which the backpropagation network trains itself, depends on the
learning-rate o .

In the next example we obtain the number of iterations needed for
convergence, I(), for the ‘XOR’ function. The weights are chosen

randomly.

* Example 8.8.3 Consider Example 8.8.1 (¢=0.05). Fig. 882

illustrates the speed of convergence as a function of o in the case of
bipolar representation.

1700 r |(a)
1400

1100

800 -

o
s L s i " 1 " 4
508.01 0.06 0.11 0.16 0.21

* Figure 8.8.2 I(a) for the “XOR’ function-bipolar representation.

A reasonable choice for ‘optimal’ « is between 0.1 and 0.15.
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Updating Weights Using Momentum

In order to speed up the convergence of a backpropagation network, it is
sometimes recommended to derive the weights at step (#+1), using not
only the weights at step ¢ but also those at step (—1). The updating is
performed by
Av, (t+1)=ad x, + L A, t)
(8.8.9)
Aw, t+1)=0b,z, +psw, (t)

where
Avlj (t)zvi]. (t)—vij ( —1)

Awg (t):ij (t)_wjk (t ~1)

(8.8.10)

and U , the momentum coefficient is between 0 and 1.

This modified updating may allow reasonably large weights adjustments
and reduces the likelihood to obtain a local minimum rather than a global
one while training the network.

Batch Updating

Sometimes it is more efficient to accumulate the weight adjustments for
several patterns and then perform a single adjustment using the average of
the various correction terms. A possible disadvantage is that this
procedure may have a smoothing effect on the correction terms and
consequently may lead to a local minimum.

Updating the Learning Rate
In many applications each weight may have its own learning rate.

Moreover, if the weight change is in the same direction for several steps,
its associated learning rate should be increased. On the other hand, if the
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weight change sign alternates, the associated learning rate should be
decreased.

m  Example 8.8.4 Consider Example 8.8.1 with bipolar representation.
Let €=0.01 and ® =0.1. The standard implementation of Algorithm

8.8.1 converges after 2081 iterations. By using the momentum procedure
with y =1 the number of iterations is reduced to 30.

A

PROBLEMS

1. Consider the XOR function with bipolar training patterns and targets
and a backpropagation network with two input units, four hidden units
and a single output unit. For tolerance € =0.01 and random initial

weights between —0.5 and 0.5, find the number of iterations needed for
convergence for a learning rate (a) 0.05 (b) 0.10 (c) 0.15 (d) 0.50.
Use the same initial weights for all the cases.

2. Repeat and solve problem 1 in the case of binary representation.

3. (a) Repeat and solve problem 1 in the case of five hidden units.

(b) Repeat part (a) using the Nguyen-Widrow modification.

4. Repeat and solve problem 1, using the momentum procedure with
1©=0.2,04,0.6,08.

5. (a) Repeat and solve problem 1, using the nonsaturating activation
function

In(l+x), x>0
—ln(l—x), x<0

f(x)={

(b) Repeat part (a) using the momentum procedure with
p P p
$©=0.2,04,0.6,08.
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6. Consider the following set of 6 input patterns

V=(1,2,-1,3,5,4,0)
x®=(2,0,6,0,1,2,3)"
x9=(52,1,0,3,3,7)
x%=(0,0,0,1,0,1,2)
x%=(,2,3,4,56,1)
x® =(-1,-2,3,1,0,5,2)"

with associated targets

(=011, P =(-1,1,1, P=0,-1,-1)
(D =(-1,-1,-1Y, 9 =(-1,1,-1, t©@=(-1,-1,1)

Train the system using 7 input units, 3 output units and 3, 6, 9 hidden
units, given a tolerance £ =0.01, a learmning rate o=0.1 and a
momentum parameter (4 =0.5. The initial weights are chosen
randomly between —0.5 and 0.5.
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subroutine mcmp (y,n,m,np,npm, X, sumax, jmax, k)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCce

c This subroutine is a minimum-distance classifier.

c

C INPUT:

c

c n - dimension of the given patterns.

c

le m - number of classes.

c

le npm - maximum number of sample patterns in a class.

c

c np - a m - dimensional vector. np(i) is the number of

c patterns in class 1i.

c

c y - the given patterns. vy(i,j,k) 1s the k-th component
c of the j-th pattern in the i-th class.

c

c X - an incoming n - dimensional pattern.

c

C OUTPUT:

c

c k - the number of class at which x is classified.

c

c jmax - an m - dimensional vector. jmax(i) is the number of
c the closest pattern in class i to the pattern x.
c

le sumax - an m - dimensional vector. sumax (i) is

c

c max [x(T) *y-0.5*y (T) *y]

c

c where T stands for 'transpose' and y is arbitrary
c pattern in class 1i.

c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeceece

dimension y(m,npm,n),np(m),jmax(m),sumax(m),x(n)

do i=1,m

sum0=-1.e10
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeceeee
c
le It is assumed that no 'sum' is less than -1.el0.
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceeccccceccceece
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30=0

do j=1,np(i)

sum=0.

do k=1,n

sum=sum+x (k) *y(1i,3,k)~.5*y(1,3,k)*y(1,73,k)
enddo

if (sum.gt.sumQ) then
jo=3

sumQ=sum

endif

enddo

jmax(i)=30
sumax (i) =sum0

enddo

k=1

sum=sumax (1)

do i=2,m

if (sumax(i).gt.sum) then
sum=sumax (i)

k=1

endif

enddo

return

end
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subroutine mdnn(y,n,m,np,nc, iout,ic,x,k,1)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceCCCecececcecccccccecee

This subroutine is a minimum-distance nearest - neighbor
classifier.

INPUT:

n - dimension of the given patterns.

m - number of classes.
np - number of given preclassified patterns.
k - the order of the classifier.

y - the given patterns. y(i,Jj) is the j-th component
of the i-th pattern.

nc - an np - dimensional vector. nc(i) is the class number
the i-th pattern.

X - an incoming n - dimensional pattern.

ic - an m - dimensional vector with components all 0's.
iout - an np - dimensional vector with components all 1's.
OUTPUT:

1 - the number of class at which x is classified.

ic - an m - dimensional vector. ic(i) is the number of the
nearest neighbors (among k) in class 1i.

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c iout - an np - dimensional vector. iout(i) is 0 if the i-th
c pattern is one of the nearest neighbors. Otherwise
le iout (i)=1.
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCecceecececcceececceeecececcecece

dimension y(np,n),nc(np),x(n),ic(m), iout (np)

sum0=1.el0
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeccceecececeeeeeccecee
c

c It is assumed that no 'sum' is greater than 1.elO.
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCECCCCCCeececceececececeece
50=0
do i=1,np

sum=0
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do j=1,n

sum=sum+ (y(1,3)-x(j) ) **2
enddo

if (sum.lt.sumQ) then
j0=1

sumO=sum

endif

enddo

if (k.eq.l) then
1=nc(j0)

return

endif

iout (50)=0

ic{nc(30))=1

do i0=1,k-~1

sum0=1.e10

50=0

do i=1,np

if (iout(i).eqg.l) then
sum=0

do j=1,n
sum=sum+ (y (i, 3)-x(3)) **2
enddo

if (sum.lt.sumQ) then
j0=1i
sumO=sum
endif
endif
enddo
iout (j0)=
ic(nc(30)
enddo

1=0

do i=1,m
if (ic(i).gt.l) then
l=ic (i)

endif

enddo

return

end

0
y=ic(nc(j0))+1
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subroutine mmd(x,y,mc,lc,iout,n,m,t, k)

CCCCCeeeeeeeceeeeeceeceeecececeecececeececeececceceeeccececececcececcececcecceecececcecccecececce

a0 0000000000

This subroutine is a max-min distance clustering procedure.
INPUT:

n - dimension of the given patterns.

m - number of patterns.

X - the given patterns. x(i,j) is the j-th component
of the i-th pattern.

t - a threshold value which determines whether a new cluster
should be created. The smaller t is the more clusters
are likely to be created.

iout - an m - dimensional vector with components all 1's.

OUTPUT:

k - the number of cluster centers found. It is at least 2.

y - the k cluster centers. y(i,j) is the j-th component of
the i-th cluster.

mc - a k - dimensional vector. mc(i) is the number of
patterns in the i-th cluster.
lc - a matrix (m x m). lc(i,j) is the original pattern

number of the i-th element in class j.

iout - an m - dimensional vector. iout(i) is 0 for all 1i.

CCCcCceeceeeeeceeeeceeecececeecececeeecececeececeeeccececececececcecececececceececcecececcceccecceccec

dimension x(m,n),y(m,n),mc(m),lc(m,m), iout (m)
do i=1,n
y(1l,i)y=x(1,1)

enddo

le(1l,1)=1

sum0=0

30=0

do i=2,m

sum=dist (x,y,m,n, i, 1)
if (sum.gt.sum0) then
sum0=sum

FO0=1

endif

enddo

iout (1)=0
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iout (30)=0

do i=1,n
y(2,1)=x(j0,1)
enddo

k=2

lc(1,2)=30

sum=dist(y,y,m,n,1,2)

a=sqgrt (sum)
20 sum0=0

50=0

i0=0

do j=1,m

if (iout(j) .eqg.l) then

sum00=1.e10
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeccceeceeccccccecceeccee
le

] It is assumed that no 'sum' 1s greater than 1.el0.
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcececceecececececececceccecce
i00=0
do i=1,k

sum=dist(x,y,m,n,Jj, 1)
if (sum.lt.sum00) then
sum00=sum

100=1

endif

enddo

if (sum00.gt.sum0) then
sumO0=sum00

J0=3

10=100

endif

endif

enddo

1f (sgrt(suml).1lt.(t*a)) go to 10
k=k+1

do i=1,n

y(k,i)=x(j0,1)

enddo
1c(l,k)=30
iout (j0)=0
a0=0

do i=1,k-1
do j=i+1,k

sum=dist (y,y,m,n,i,J)
a0=al+sqgrt (sum)

enddo

enddo

a=(2.*a0)/ (k*(k-1))
go to 20
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10 do i=1,k

mc{i)=1

enddo

do i=1,m

if (iout(i).eg.l) then

sum0=1.el0
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeceee
c

c It is assumed that no 'sum' is greater than 1.el0.
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCececceceecceceecece
30=0
do j=1,k

sum=dist (x,y,m,n,i,J)

if {(sum.lt.sum0) then

sum0=sum

jo=j

endif

enddo

mc(j0)=mc(j0)+1

le{mc(jo0),Jjo0)=1

endif

enddo

do j=1,k

do 1=1,n

sum=0

do i=1,mc(3)

sum=sum+x{lc(i,j),1)

enddo

y{j,1)=sum/mc(J)

enddo

enddo

return

end

function dist(x,y,m,n,1i,Jj)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCccececee
c

le This function calculates the squared distance between two
c n - dimensional vectors x{(i) and y(3)
c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecececeeccecececeececececeeccececece
dimension x(m,n),y{m,n)
dist=0
do k=1,n
dist=dist+(x(i,k)-y (3, k))**2
enddo
return
end
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subroutine cmi(x,y,yn,mc,lc,m,n,c,it0, it)

CCCCCCcceeeeeeeceeceeececeeeececeeceeececeecececeeececeececececeeecceceeccececeeececcececececccececce

N0 O0O0O00000000Q0

Assuming ¢ cluster centers around which the given samples
cluster this subroutine calculates these centers
iteratively, minimizing at each iteration a set of
performance indices. Once the centers are modified, the
patterns are reclassified using min - distance principle.

The procedure terminates only when the cluster centers do
not change.

INPUT:

n - dimension of the given patterns.
m -~ number of patterns.

¢ - the number of clusters

X - the given patterns. x(i,3j) is the j-th component
of the i-th pattern.

it0 - maximum number of iterations allowed.
OUTPUT:

y - the final ¢ cluster centers. y(i,j) is the j-th
component of the i-th cluster.

mc - a k - dimensional vector. mc(i) is the number of
patterns in the i-th cluster.

lc - a matrix (m x ¢). lc(i,j) is the original pattern
number of the i-th element in class j.

it - the number of iterations needed for convegence. If
the procedure does not converge, it=it0 and the clustex
centers are those calculated at the last iteration.

CCCCCCCCCCCCCCCCCeeeeeeeeeeeeeeececdccCcCeCCCCCCCCCCCCCCCCCCCCCCeee

10

integer c

dimension x(m,n),y(c,n),yn(c,n),mc(c),lc(m,c)

it=0

do i=1

do j=1
y(i,J)

enddo

enddo

do i=1,c

, C
Fpey
=X

(i,3)




APPENDIX 319

mc(1)=0

enddo

do i=1,m

sum0=1.el0

j0=0

do j=1,c

sum=dist (x,y,m,n,c,1i,3)

if (sum.lt.sum0) then

sum0=sum

30=3

endif

enddo

mc(j0)=mc(j0)+1

lc(mec(3j0),j0)=1

enddo

do i=1,c

do 1=1,n

yn(i,1)=0

do j=1,mc(1)

vyn(i,l)=yn(i,1)+x(1lc(j,1).,1)

enddo

yn(i,l)=yn(i,1)/mc(1i)

enddo

enddo

it=it+1

sum=0

do i=1,c¢

sum=sum+distl(y,yn,n,c,1i)

enddo

if (sum.lt.l.e-6) then

return

endif

if (it.eq.it0) go to 20

do i=1,c¢

do j=1,n

y(i,3)=yn(i,3)

enddo

enddo

go to 10
20 write (*,*) 'too many iterations'

return

end

function dist(x,y,m,n,c,1i,3)
folelololelolef ol olelolof ol olel ol ol ol olet el oleTolofol olelololel olotel olel ol oot ololol ol ol el ololot ol ofef ol olot ol olel ol ol oleT of olole:
c

c This function calculates the squared distance between the
c i-th pattern and the j-th cluster center.
c

CCCCCCCCECCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeea
integer ¢
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dimension x(m,n),y(c,n)
dist=0

do k=1,n
dist=dist+(x(i,k)-y(3, k))**2
enddo

return

end

function distl(y,yn,n,c,i)

CCcCeeeceeeeececeeeececeeeccecereeecececeeececeeecececeecceceecccececeeccececcecceccececccecececccececcece

C
C
C
C

This function calculates the squared distance between the
new and the old i-th cluster centers.

CCCCCceeeceeeeceeeececeeceeceecceeeececeececececececeececeeccecececcecceececcececececcececcecceccece

integer c

dimension y(c,n),yn{(c,n)
distl=0

do k=1,n
distl=distl+(y(i,k)-yn(i,k))**2
enddo

return

end
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subroutine fcmi(x,y,ch,yn,m,n,c,d,be,it0,1it, eps)
folelolololololololelol ol olel ol olet olet ololel ol olel ol ol ol ofel ol olol ol ol ool ol el ol ol ool ol oT ol ol el ol alel ol alef ol oTol ol ololeT ol oToTe:

The fuzzy c-Means algorithm

Assuming ¢ cluster centers around which the given samples
cluster this subroutine performs fuzzy clustering around
these centers iteratively, minimizing at each iteration a
set of performance indices. Once the centers are modified,
the patterns are reclassified using min - distance
principle, i.e. the patterns grades of membership are
adjusted.

The procedure terminates only when the change in the
cluster centers do is less than a given tolerance.

INPUT:

n - dimension of the given patterns.
m - number of patterns.

c - the number of clusters

the given patterns. x(i,3j) is the j-th component
of the i-th pattern.

v - the initial cluster centers.

1t0 - maximum number of iterations allowed.
eps - a given tolerance

QUTPUT :

yn - the final ¢ cluster centers. y(i,j) is the j-th
component of the i-th cluster.

ch - the final grades of membership. ch(i,j) is the
grade of membership of the j-th pattern at the
i-th class.

it - the number of iterations needed for convegence. If
the procedure does not converge, it=it0 and the cluster
centers are those calculated at the last iteration.

[eRNoRNoNNeRNo RN o RO RNO NN o NN o o RN o NN RN BN O RN o NN o NN o N0 BN o BN o NN o NN o NN o o BN o BN o NN o BEo RN o RN o BN o RN o B o NN o NN o B o N o B o N o I 0 B o B ¢ BN 0
»w
]
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integer ¢
dimension x(m,n),y(c,n),yn(c,n),ch(c,m),d(c,m)
bel=2./(be-1.)




322

APPENDIX

10

20

30

it=0

continue

do i=1,c

do j=1,m
d(i,j)=sqgrt(dist{x,y,m,n,c,1i,3))
enddo

enddo

do j=1,m

do i=1,c

ch(i,j)=0.

do 1=1,c

if (abs(d(l,3j)).lt.1.e-6) go to 20
ch(i,j)=ch(i,j)+(d(i,J)/d(1,3))**bel
enddo

ch(i,j)=1./ch(i, )

enddo

go to 30

continue

do k=1,c

ch(k,j)=0

enddo

ch(l,j)=1

continue

enddo

do i=1,c

do 1=1,n

yn(i,1l)=0

temp=0

do j=1,m
yn(i,l)=yn(i,l)+ch(i,Jj)*x(3,1)
temp=temp+ch(i, Jj)

enddo
yn(i,l)=yn(i,l)/temp

enddo

enddo

it=1t+1

sum=0

do i=1,c
sum=sum+distl(y,yn,n,c, i)
enddo

if (sgrt(sum).lt.eps) then
return

endif

if (it.eq.it0) go to 40

do i=1,c

do j=1,n

y{i,3)=yn(i,3J)

enddo

enddo

go to 10
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40 write (*,*) 'too many iterations'
return
end
function dist(x,y,m,n,c,1i,3)

CCCCCCCCCCecereeceeeceececeeeeceeececeecceceeeccecceeecceeccecececececcececececcecceccececcec
C

c This function calculates the squared distance between the
c i-th pattern and the j-th cluster center.
c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCeeceCCeeccececcec
integer c
dimension x(m,n),y(c,n)
dist=0
do k=1,n
dist=dist+(x(7,k)-y(i,k))**2
enddo
return
end’
function distl(y,yn,n,c,1i)

CCCCcCcCccCCceceeeceeceeeceeeceeecceeceececeeecceccececececececcececcecececcececcecccececceccececccececcecce
C

c This function calculates the squared distance between the
c new and the old i-th cluster centers.
c

leIelelololololotol ol olololol ol ololol ol ol olol ol ol olo o oT olololel ol ololololoT ol ololef el ol ol ol ololel el oT oI ol ol ol oleloT o] ol ol olo]o]o)
integer c
dimension y(c,n),yn(c,n)
distl1=0
do k=1,n
distl=distl+(y (i, k)-yn(i, k))**2
enddo
return
end
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subroutine perc(x,t,w0,w,ws,m,n,b0,b,tr,al,iter,it, eps)
fololololololololololof ol olo{oTo ol ololol ololel olet el olel ol ot olof el oloTolololot olo] ol ololot ol oloT ololot olo ot oleloT ol ool ol ol o)

This subroutine incorporates the principle of the
principle of the perceptron.

INPUT
m - number of training patterns.
n - number of associative units.

tr - the perceptron threshold.

al - the learning rate.

X - activations ; x(i,j) - j-th activation of i-th pattern.
t - correct targets ; t(i) - target of i-th pattern.

w0 - initial weights ; w0(j) - weight of j-th unit.

b0 - initial bias.

iter - maximum allowed number of iterations.

eps - a given tolerance.
OuUTPUT
w - final weights ; w(j) - final weight of j-th unit.

b - final bias.

it - number of iterations needed.

noocoocaocaoaaococaoaaocoocoocaoccaco0cOo00o00C00000000a0

folelololololotplolet olololololololol olet ol olelolofololol ol ol ololelolet ol ot ololol ololoTololol ololol ololol olol el olof ol olof o o)
dimension x(m,n),w0(n),w(n),t(m),ws(n)
it=0
bs=b0
do j=1,n
ws (3)=w0(J)
enddo

20 ich=0
do i=1,m
vin=b0
do j=1,n
vin=yin+w0 (J) *x(1i,3)
enddo
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if (yin.gt.tr) then

v=1

elseif (yin.lt.(-tr)) then

y=-1

else

v=0

endif

if (abs{y-t(i)).gt.l.e-6) then
ich=1

b=b0+al*t (i)

do j=1,n
w(j)=wO(3j)+al*t(i)*x(1i,3)

enddo

b0=b

do j=1,n

wO(J)=w(3)

enddo

endif

enddo

err=(b-bs) **2

do j=1,n

err=err+{(w(j)-ws(j))**2

enddo

if (err.lt.eps.and.ich.eq.0) then
write (*,*) 'learning completed', it
go to 10

elseif (err.lt.eps.and.ich.eqg.l) then
write (*,*) 'learning cannot be completed'
go to 10

endif

it=it+1

b0=b

bs=b

do j=1,n

wl (j)=w(3j)

ws (J)=w(J)

enddo

if (it.ge.iter) then

write (*,*) 'too many iterations’
go to 10

else

go to 20

endif

continue

return

end
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