The CRC Press Series on

DISCRETE
MATHEMATICS
R

AND

[TS APPLICATIONS

Series Editor

Kenneth H. Rosen, Ph.D.

AT&T Beli Laboratories

Charles J. Colbourn and Jeffrey H. Dinitz,
The CRC Handbook of Combinatorial Designs

Steven Furino, Ying Miao, and Jianxing Yin,
Frames and Resolvable Designs: Uses, Constructions,
and Existence

Jacob E. Goodman and Joseph O'Rourke,
Handbook of Discrete and Computational Geometry

Charles C. Lindner and Christopher A. Rodgers
Design Theory

Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn,
and John S. Devitt,
Network Reliability: Experiments with A Symbolic
Algebra Environment

Alfred J. Menezes, Paul C. van Oorschot,
and Scott A. Vanstone,

Handbook of Applied Cryptography
Richard A. Mollin, Quadratics

Richard A. Mollin, Fundamental Number Theory
with Applications

Douglas R. Stinson, Cryptography: Theory and Practice

COMBINATORIAL
ALGORITHMS

Generation, Enumeration,
and Search

Donald L. Kreher

Department of Mathematical Sciences
Michigan Technological University

Douglas R. Stinson

Department of Combinatorics and Optimization

University of Waterloo

CRC Press
Boca Ratan London New York Washington, D.C.

Library of Congress Cataloging-in-Publication Data

Kreher, Donald L.
Combinatorial algorithms : generation, enumeration, and search /
Donald L. Kreher, Douglas R. Stinson.
p. cm. -- (CRC Press series on discrete mathematics and its
applications)
Includes bibliographical references and indexes.
ISBN 0-8493-3988-X (alk. paper)
1. Combinatorial analysis. 2. Algorithms. 1. Stinson, Douglas
R. (Douglas Robert), 1956~ . 11. Title. 111, Series.
QA164 K73 1998
511°.6—dc21 98-41243
Cip

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoled with permission, and sources are indicated. A wide variety of references are listed.
Reasonable efforts have been made to publish reltable data and information, but the author and the
publisher cannot assume responsibility for the validity of all materials or for the consequences of
their use.

Neither this book nor any part may be reproduced or transmitted tn any form or by any means,
electronic or mechanical, including photocopying, microfilming, and recording, or by any information
storage cr retricval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion,
for creating new works, or for resale. Specific permission must be obtained in writing from CRC
Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 Corporate Blvd., N.W., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
arc only used for identification and explanation, without intent to infringe.

© 1999 by CRC Press LLC

No claim to original U.S. Governiment works

Intemational Standard Book Number 0-8493-3988-X

Library of Congress Card Number 98-41243

Printed in the United States of America 1 2 34 56 7890
Printed on acid-free paper

Preface

Our objective in writing this book was to produce a general, introductory textbook
on the subject of combinatorial algorithms. Several textbooks on combinatorial
algorithms were written in the 1970s, and are now out-of-date. More recent books
on algorithms have either been general textbooks, or books on specialized topics,
such as graph algorithms to name one example. We felt that a new textbook
on combinatorial algorithms, that emphasizes the basic techniques of generation,
enumeration and search, would be very timely.

We have both taught courses on this subject, to undergraduate and graduate
students in mathematics and computer science, at Michigan Technological Uni-
versity and the University of Nebraska-Lincoln. We tried to design the book to be
flexible enough to be useful in a wide variety of approaches to the subject.

We have provided a reasonable amount of mathematical background where it
is needed, since an understanding of the algorithms is not possible without an
understanding of the underlying mathematics. We give informal descriptions of
the many algorithms in this book, along with more precise pseudo-code that can
easily be converted to working programs. C implementations of all the algorithms
are available for free downloading from the website

http://www.math.mtu.edu/ kreher/cages.html

There are also many examples in the book to illustrate the workings of the algo-
rithms.

The book is organized into eight chapters. Chapter 1 provides some back-
ground and notation for fundamental concepts that are used throughout the book.
Chapters 2 and 3 are concerned with the generation of elementary combinato-
rial objects such as subsets and permutations, to aame two examples. Chapter 4
presents the important combinatorial search technique called backtracking. It in-
cludes a discussion of pruning methods, and the maximum clique problem is stud-
ied in detail. Chapter S gives an overview of the relatively new area of heuristic
search algorithms, including hill-climbing, simulated annealing, tabu search and
genetic algorithms. In Chapter 6, we study several basic algorithms for permuta-
tion groups, and how they are applied in solving certain combinatorial enumera-
tion and search problems. Chapter 7 uses techniques from the previous chapter

PREFACE

to develop algorithms for testing isomorphism of combinatorial objects. Finally,
Chapter 8 discusses the technique of basis reduction, which is an important tech-
nique in solving certain combinatorial search problems.

There is probably more material in this book than can be covered in one
semester. We hope that it is possible to base several different types of courses
on this book. An introductory course suitable for undergraduvate students could
cover most of the material in Chapters 1-5. A second or graduate course could
concentrate on the more advanced material in Chapters 6-8. We hope that, aside
from its primary purpose as a textbook, researchers and practitioners in all areas
of combinatorial computing will find this book useful as a source of algorithms
for practical use.

We would like to thank the many people who provided encouragement while
we wrote this book, pointed out typos and errors, and gave us useful suggestions
on material to include and how various topics should be treated, In particular,
we would like to convey our thanks to Mark Chateauneuf, Charlie Colbourn, Bill
Kocay, Frangois Margot, Wendy Myrvold, David Olson, Partic Ostergard, Jamie
Radcliffe, Stanistaw Radziszowski and Mimi Williams.

Donald L. Kreher
Douglas R. Stinson

To our wives, Carol and Janet.

Contents

1 Structures and Algorithms
1.1 'What are combinatorial algorithms?

1.2 What are combinatorial structures?
1.2.1 Setsandlists
1.22 Graphs
123 Setsystems
1.3 What are combinatorial problems?
14 O-Notationc......,
1.5 Analysisofalgorithms
1.5.1 Average-case complexity
1.6 Complexityclasses
1.6.1 Reductions betweenproblems
1.7 Datastructures
1.7.1 Datastructuresforsets
172 Datastructuresforlists
1.7.3 Data structures for graphs and set systems . . .
1.8 Algorithm designtechniques
1.8.1 Greedyalgorithms
1.8.2 Dynamic programming
1.8.3 Divide-and-conquer
19 Notes oo,
Exercises

2 Generating Elementary Combinatorial Objects

2.1 Combinatorial generation
22 Subsets L. e
2.2.1 Lexicographicordering.
222 Graycodes
23 k-Blementsubsets
23.1 Lexicographicordering
232 Colexordering.................

2.3.3 Minimal change ordering

24 Permutations
24.1 Lexicographicordering
242 Minimal changeordering
25 Notes
Exercises

More Topics in Combinatorial Generation
3.1 Integerpartitions
3.1.1 Lexicographicordering
3.2 Set partitions, Bell and Stirling numbers
3.2.1 Restricted growth functions
3.22 Sdrling numbers of the firstkind
33 Labeledwrees
34 Catalanfamilies
34,1 Rankingandunranking.............
34,2 OtherCatalan families
35 Notes0 0t i i e e e e
Exercises it

Backtracking Algorithms
4.1 Imtroduction
4.2 A gemeral backtrack algorithm
43 Generatingallcliques
4.3.1 Average-caseanalysis
4.4 Estimating the size of a backtracktree
45 Exactcover,
46 Boundingfunctions
4.6.1 The knapsackproblem
4,6.2 The traveling salesman problem
4.6.3 The maximum clique problem
4.7 Branchandbound.
48 Notes
Exercises,.

Heuristic Search

5.1 Introduction to heuristic algorithms
5.1.1 Uniform graphpartition,

5.2 Design strategies for heuristic algorithms
52.1 Hill-climbing Vel
52.2 Simulatedannealing
523 Tabusearch
524 Geneticalgorithms

5.3 A steepest ascent algorithm for uniform graph partition

54 A hill-climbing algorithm for Steiner triple systems . .

CONTENTS

52
52
57
64

67
67
74
78
81
87
91
95
98
101
103
103

105
105
107
109
112
LIS
118
122
123
127
135
141
144
145

151
151
155
156
157
158
160
161
165
167

CONTENTS

5.4.1 [Implementationdetails 170

5.4.2 Computationalresults . ., 174

5.5 Two heuristic algorithms for the knapsack problem . . 175
5.5.1 A simulated annealing algorithm 175

5.52 Atabusearchalgoritm 178

5.6 A genetic algorithm for the traveling salesman problem 181
57 Notes i e 186
Exercises 189
6 Groups and Symmetry 191
6.1 Groups. e e 191
6.2 Permutationgroups 195
6.2.1 Basicalgorithms 199

622 Howtostoreagroup 201

6.2.3 Schreier-Sims algorithm . . , 203

6.2.4 Changingthebase 211

63 Orbitsofsubsets 213
6.3.1 Bumside'slemma 214

6.3.2 Computing orbit representatives 217

6.4 Cosetrepresentatives 223
6.5 Orbitsofk-tuples 224
6.6 Generating objects having automorphisms 226
6.6.1 Incidencematrices 227

6.7 NOES . . o v v v i e e e e e 232
Exercises 232
7 Computing Isomorphism 237
7.1 Imtroduction 237
7.2 Iovariants 238
7.3 Computing certificates 245
731 Trees i 245

732 Graphs 253

7.3.3 Pruning with automorphisms 264

7.4 Isomorphism of other structures 272
7.4.1 Using known automorphisms 272

742 SetSystemsot 272

75 Notes 275
Exercisesttt 275
8 Basis Reduction 277
8.1 Imroduction 277
8.2 Theoretical development 281
8.3 Areduced basis algorithm 291

8.4 Solving systems of integer equations 294

8.5 The Merkle-Hellman knapsack system 300
86 Notes i i e e 306
Exercises i i i i it e e e e e 307
Bibliography 311
Algorithm Index 319
Problem Index 323

Index 325

1

Structures and Algorithms

1.1

What are combinatorial algorithms?

In this book, we are primarily interested tn the study of algorithms to investigate
combinatorial structures. We will call such algorithms combinatorial algorithms,
and informally classify them according to their desired purpose, as follows.

generation Construct all the combinatorial structures of a particular type.

Examples of the combinatorial structures we might wish to generate include
subsets, permutations, partitions, trees and Catalan families. A generation
algorithm will list all the objects under consideration in a certain order, such
as a lexicographic order. It may be desirable to predetermine the position of
a given object in the generated list without generating the whole list. This
leads to the discussion of ranking, which is studied in Chapters 2 and 3.
The inverse operation of ranking is unranking and is also studied in these
two chapters.

enumeration Compute the number of different structures of a particutar type.

Every generation algorithm is also an enumeration algorithm, since each
object can be counted as it is generated. The converse is not true, however.
It is often easier to enumerate the number of combinatorial structures of a
particular type than it is to actually list them. For example, the number of
k-subsets of an n-element set is

(&)= wom

which is easily computed. On the other hand, listing all of the k-subsets is
more difficult.

There are many situations when two objects are different representations of
the “same” structure. This is formalized in the idea of isomorphism of struc-
tures. For example, if we permute the names of the vertices of a graph, the

2 Structures and Algorithms

resulting two graphs are isomorphic. Enumeration of the number of non-
isomorphic structures of a given type often involves algorithms for isomor-
phism testing, which is the main topic studied in Chapter 7. Algorithms for
testing isomorphism depend on various group-theoretic algorithms, which
are studied in Chapter 6.

search Find at least one example of a structure of a particular type (if it exists).
A typical example of a search problem is to find a clique of a specified size
in a given graph. Generating algorithms can sometimes be used to search
for a particular structure, but for many problems, this may not be an efficient
approach. Often, it is easier to find one example of a structure than it is lo
enumerate or generate all the structures of a specified type.

A variation of a search problem is an optimization problem, where we want
to find the optimal structure of a given type. Optimality will be defined
for a particular structure according to some specified measure of *‘profit”
or “cost”. For example, the maximum clique problem requires finding a
clique of largest size in a given graph. (The size of a clique is the number
of vertices it contains.)

Many interesting and important search and optimization problems belong
to the class of NP-hard problems, for which no efficient (i.e., polynomial-
time} algorithms are known (o exist. The maximum clique problem men-
tioned above falls into this class of problems. For NP-hard problems, we
will often use algorithms based on the idea of backtracking, which is the
topic of Chapter 4. An alternative approach is to try various types of heuris-
tic algorithms. This topic is discussed in Chapters 5 and 8.

1.2 What are combinatorial structures?

The structures we study in this book are those that can be described as collections
of k-element subsets, k-tuples, or permutations from a parent set. Given such a
structure, we may be interested in all of the substructures contained within it of a
particular or optimal type. On the other hand, we may wish to study all structures
of a given fotm. We introduce some of the types of combinatorial structures in
this section that will be used in later parts of the book.

1.2.1 Sets and lists

The basic building blocks of combinatorial structures are finite sets and lists. We
review some basic terminology and notation now.

A (finite) set is a finite collection of objects called the efements of the set. We
write the elements of a set in brace brackets. For example, if we write X =
{1,3, 7,9}, then we mean that X is a set that contains the elements 1,3,7 and 9.

What are combinatorial structurcs? 3

A set is an unordered structure, so {1,3,7,9} = {7,1,9, 3}, for example. Also,
the elements of a set are distinct. We write £ € X to indicate that z is an element
of the set X.

The cardinality (or size) of a set X, denoted | X |, is the number of elements in
X. For example, |{1,3,7,9}| = 4. For a nonnegative integer k, a k-set is a set of
cardinality k. The empty set is the (unigue) set that contains no elements. Itis a
0-set and is denoted by 0.

If X and Y are sets, then we say that X is a subset of Y if every element of X
is an element of Y. This is equivalent to the following condition:

z€EX=>zel.

If X is a subset of Y, then we write X C Y. A k-subset of Y is a subset of Y’
that has cardinality k.

A (finite) list is an ordered collection of objects which are called the items of the
list. We write the items of a list in order between square brackets. For example,
if we write X = {1,3,1,9], then we mean that X is the list that contains the
items 1, 3, 1 and 9 in that order. Since a set is an ordered structure, it follows that
[1,3,1,9] # [1,1,9,3], for example. Note that the items of a list need not be
distinct.

The length of a list X is the number of items (not necessarily distinct) in X . For
example, {1,3,1, 9] is a list of length 4. For a nonnegative integer n, an n-ruple
is a list of length n. The empty list is the (unique) list that contains no elements;
it is written as [|. If X is a list of length n, then the items in X are denoted
X0}, X[1],..., X[r — 1]. in order. We usually denote the first item in the list X
as X[0], as is done in the C programming language. Thus, if X = [1,3,1,9], then
X[0] =1, X[1] = 3, X|[2] = 1 and X[3] = 9. However, in some situations, we
may list the elements of X as X[1], X[2],.. ., X[r]. An alternative notation for a
list, that we will sometimes use, is to write the items in the list X in subscripted
form, as Xo, X1,...,Xn-1.

The Cartesian product (or cross product) of the sets X and Y, denoted by
X x Y, is the set of all ordered pairs whose first item is in X and whose second
item is in Y. Thus

XxY={zy)l:ze Xandy €Y}
For example, if X = {1,3,7,9} and ¥ = {0, 2, 4}, then
{1,3,7,9} x {0,2} = {[1,0],[1,2],[3,0],(3,2},[7,0],[7.2],[9,0],[9, 2]}

If X is a finite set of cardinality n, then a permutation of X is a list 7 of length
n such that every element of X accurs exactly once in the list . There are exactly
n! = n{n — 1) - - - 1 permutations of an n-set. For a positive integer k < n, a k-
permutation of X is a list 7 of length k such that every element of X occurs at
most once in the list 7. There are exactly

n!

Gop =D kD)

4 Structures and Algorithms

k-permutations of an n-set.

1.2.2 Graphs
We begin by defining the concept of a graph.

Definition 1.1: A graph consists of a finite set V of vertices and a finite
set £ of edges, such that each edge is a two element subset of vertices. It is
customary to write a graph as an ordered pair, (V, £).

A complete graph is a graph in which £ consists of all two element subsets of
V. If |V| = n, then the complete graph is denoted by K.

We will usually represent the vertices of a graph (V, £) by dots, and join two
vertices z and y by a line whenever {z,y} € £. A vertex z is incident with an
edge e if z € e. The degree of a vertex = € V, denoted by deg(z), is the number
of edges that are incident with the vertex z. A graph is regular of degree d if
every vertex has degree d. In Example 1.1 we present a graph that is regular of
degree three.

Example 1.1 A graph
Let V = {0,1,2,3,4,5,6,7}.and let £ = {{0,1}, {0,2}, {2, 3}, {1,3}. {0,4)}.
{1,5}.{2,6},{3,7}. {4,5), {4,6}, {6,7}, {5, 7}}. This graph is called the cube

and can be represented by the diagram in Figure 1.1, 0
0 2
Ny
4 6
5 7
N\
1 3
FIGURE 1.1

The cube and 2 Hamiltonian circuit.

One of the many interesting substructures that can occur in a graph is a Hamil-
tonian circuit. This is a closed path that passes through every vertex exactly once.
The list [0, 2,3, 7, 6,4, 5, 1] describes a Hamiltonian circuit in the graph in Fig-
ure 1.1. It is indicated by thick lines in the diagram. Note that different lists can

What are combinatorial structures? b

represent the same Hamiltonian circuit. In fact, there are 2n such lists, where n is
the number of vertices in the graph, since we can pick any of the n vertices as the
“starting point” and then traverse the circuit in two possible directions.

A graph (V,) is a weighted graph if there is a weight functionw : £ = R
associated with it. The weight of a substructure, such as a Hamiltonian circuit,
is defined to be the sum of the weights of its edges. Finding a smallest weight
Hamiltonian circuit in a weighted graph is called the Traveling Salesman prob-
lem and is discussed in Chapter 4.

Another example of a substructure in a graph is a clique. A cligue in a graph
G = (V,E)isasubset S C V such that {z,y} € Eforallz,y € S,z # y.
A clique that has the maximum size among all cliques of G is called a maximum
cligue. In Figure 1.1, every edge {z,y} determines a maximum clique of the
graph, since there are no cliques of size 3. Finding a maximum clique in a graph
is called the Maximum Clique problem and is discussed in Chapter 4.

1.2.3 Set systems

We next define a generalization of a graph called a set system.

Definition 1.2: A set system consists of a finite set X of points and a finite
set B of blocks, such that each block is a subset of X. We use the notation
(&, B) to denote a set system.

Observe that a graph is just a set system in which every block has cardinality
two. Another simple example of a set system is a partition of a set X. A partition
is a set system (X', B) in which AN B = Bforall A,B € B with A # B, and
U AeBA =X.

We now define another, more complicated, combinatorial structure, and then
formulate it as a special type of set system.

Definition 1.3: A Latin square of order n is an n by n array A, whose
entries are chosen from an n-element set Y, such that each symbol in } occurs
in exactly one cell in each row and in each column of A.

Example 1.2 A Latin square of order four
LetY = {1,2,3,4} and let

| O DD -
S I o
DNOf =]] O3
-] N W

6 Structures and Aigorithms

Suppose that A is a Latin square of order n on a symbol set). Label the n
rows of A with the n elements of), and likewise label the n columns of A with
the n elements of). Now define a set system (X', B) as follows:

X =Y x({1,2,3)},

and
B= {{(ylv 1), (y2! 2), (A[!h,yzl, 3)} ty,Y2 € y}
If we start with the Latin square of order four that was presented in Example
1.2, then we obtain the following set system (X, B):

X ={1,2,3,4} x {1,2,3}

({[1,1],[1,2], [1,3]}, {[1,1],[2, 2], [2, 3]},
{[1,1],[3,2],[3,3]}, {1, 1], [4,2], [4, 3]},

{[2,1],[1,2], 2, 3]}, {[2. 1], {2, 2], [1, 3]},
g {2 ILB.2L3). {121)14.2) 3,3, {

{[3,1],11,2],[3,3]}, {[3,1], 2,2], (4, 3}},
{[3,1},[3,2],[1,3]}, {{3,1],[4.2].[2,3}},
{[4,1],[1. 2], [4,3]}, {[4,1},[2, 2], [3, 3]},
L {[4.1),[3,2],12,3]}, {[4,1],[4,2],[1,3]} |

If we look at the blocks in this set system we see that every pair of the form

{(y1,%),(y2,7)}, where i # 7, occurs in exactly one block in B. This motivates
the following definition.

Definition 1.4: A transversal design TD(n) is a set system (X, B) for
which there exists a partition {4, A2, X3} of X’ such that the following prop-
erties are satisfied:

1. |X|=3n,and [X;| =nforl <{< 3,

2. Forevery B€ Bandfor1 <{ < 3,|BNnX;| =1.

3. Forevery z € A; and every y € Aj with i # j, there exists a unique
block B € B such that {z,y} C B.

If we chose the partition {Xy, X2, A3} of X = {1,2,3,4} x {1,2,3} so that
A = {{1,1],[2,1},[3. 1}, [4, 1]}
Xz = {[1,2},[2.2],[3,2], [4,2]},
and
A3 = {[1,3],(2,3],[3,3],[4, 3]},

then it is easy 0 check that the set system that we constructed above from the
Latin square of order four is a TD(4). In general, we can construct a TD(n)
from a Latin square of order n, and vice versa.

What are combinatorial problems? 7

1.3 What are combinatorial problems?

The combinatorial search problems we study are of various types, depending on
the nature of the desired answer. To illustrate the basic terminology we use, we
define four variants of the Knapsack problem.

Problem 1.1: Knapsack {(decision)
Instance: profits Do, P1, P2+ -+ -+Pn—1;
weights wp, W), Wa, ..., Wn-1;
capacity M;and '
target profit P
Question: does there exist an n-tuple (zp, . . ., Zn-1] € {0,1}" such that
n—1
S pzi>P
i=0

and
n—1

Zw.-z.- SM"

=0

Problem 1.1 is an example of a decision problem, in which a question is to be
answered “yes” or “no”. All that is required for an algorithm to “solve” a decision
problem is for the algorithm to provide the correct answer (“yes” or “no”) for any
problem instance.

Problem 1.2: Knapsack (search)
Instance: Profits po.p1, P2. - ;Pn-1:
weights wg, wy, W2, ..., Wn_1;
capacity M, and
larget profit P
Find: an n-tuple [zg, . . ., Zn-1] € {0, 1}™ such that
n-1
E pizi > P
=0

and
n—1
D wim <M
i=0
if such an n-tuple exists.

8 Structures and Algorithms

Problem 1.2 is an example of a search problem. 1t is exactly the same as
the corresponding decision problem, except that we are asked to find an n-tuple
[0, . .., Zn—1] in the case where the answer to the search problem is “yes”.

Problem 1.3: Knapsack {(optimal value)
Instance: profits po, D1, P2, .. \Pn—1;
weights wq, wy, Wa, ..., Wn-1;and
capacity M;
Find: the maximum value of
n—1
P= Zpizz
i=0
subject to
n—1
Z wiz; < M

i=0

and [zg,...,Zn—1] € {0,1}™

Problem 1.3 is called an optimal value problem. In this version of the problem,
there is no target profit specified in the problem instance. Instead, it is desired
to find the largest target profit, P, such that the decision problem will have the
answer “yes".

Problem 1.4: Knapsack {optimization)
Instance: profits po, P1, P21 ... Pn-1:
weights wo, W1, W, ...,Wn—1; and
capacity M
Find: an n-tuple [Tp, ..., %Tn—1] € {0, 1} such that
n—1
P=3 pi
=0
is maximized, subject to
n—1
Zw,-:c,- <M.

i=0

Problem 1.4 is an optimization problem. It is similar to the optimal value prob-
lem, except that it is required to find an n-tuple [0, ..., Zn—1) € {0,1}" which
yields the optimal profit.

In an optimization problem, we typically have several constraints that need to
be satisfied. An n-tuple that satisfies the constrainis is called a feasible solution.
In Problem 1.4, the condition) w;z; < M is the constraint that needs to be

O-Notation 9

satisfied: an n-wple [To, ..., Zn_1] € {0,1}" is feasible if) w;z; < M. Asso-
ciated with each feasible solution is an objective function, which is an integer or
real number that is typically thought of as a cost or profit. In Problem 1.4, we de-
fine the profit of a feasible n-tuple by the formula P = Y p;z;. The object of the
problem in this case is to find a feasible solution that attains the maximum pos-
sible profit. For some optimization problems the objective function is defined as
a cost measure, and it is desired (o find a feasible solution that incurs a minimum
cost.

1.4 O-Notation

In the next section, we will discuss the mathematical analysis of algorithms, This
will involve using a notation O(-) which is called O-notation. We give a formal
definition now.

Definition 1.5: Suppose f : Z*+ =5 Rand g : Z+ - R We say that f(n)
is O(g(n)) provided that there exist constants ¢ > 0 and ng > 0 such that
0< f(n) <cx g(n)foralln > ny.

In other words, f{n) is O(g(n)) provided that f{n) is bounded above by a
constant factor times g(n) for large enough n.

As a simple illustrative example, we show that the function 2r2 + 5n + 6 is
O(n?). Forall n > 1, it is the case that

212 + 5n + 6 < 2n? + 502 + 6n% = 13n2.

Hence, we can take ¢ = 13 and ng = 1, and the definition is satisfied.
Two related notations are 2-notation and ©-notation.

Definition 1.6: Suppose f : Z+ - Rand g : Zt — R We say that f(n)
is 2(g(n)) provided that there exist constants ¢ > 0 and ng > 0 such that
0 <cxg(n) < f(n) foralln > ny.

Definition 1.7: Suppose f : Z* 5 Rand g : Z+ - R We say that f(n)
is ©(g(n)) provided that there exist constants ¢,/ > 0 and ng > 0 such that
0<cexg(r) £ f(n) < x g(n) foralln > n,.

If f(n) is ©(g(n)), then we say that f and g have the same growsh rate.

Among the useful rules for working with these notations are the following sum
and product rules. We state these rules for O-notation; similar rules hold for Q-
and ©-notation.

10 Structures and Algorithms

THEOREM 1.1 Suppose that the two functions fi(n) and fa(n) are both
O(g(n)). Then the function fi(n) + fa(n) is O(g(n)).

THEOREM 1.2 Suppose that f\(n) is O(g1(n)) and f2(n) is O(ga(n)). Then
the function f,(n) f2(n) is O(g1(n) g1 (n)).

As examples of the use of these notations, we have that 2 is O(n?), n? is
(n?), and 2n? + 3n —sinn + 1/n is O(n3).

We now collect a few results on growth rates of functions that arise frequently
in algonithm analysis. The first of these results says that a polynomial of degree

d, in which the high-order coefficient is positive, has growth rate nd.

THEOREM 1.3 Suppose that ag > 0. Then the function ap + ayn + ... + agn®
is ©(n9).

The next result says that logarithmic growth does not depend on the base
to which logarithms are computed. It can be proved easily using the formula
log, n = log, & x log, n.

THEOREM 1.4 The function log, n is ©(log, n) foranya,b > 1.

The next result can be proved using Stirling’s formula. It gives the growth rate
of the factorial function in terms of exponential funcuons.

THEOREM 1.5 The function n! is ©(n"t1/2¢—7)

I
1.5 Analysis of algorithms

Most combinatorial problems are big — bigger than can be handled on most com-
puters — and hence the development of fast algorithms is very important. When
we design an algorithm to solve a particular problem, we want to know how much
resources (i.e., time and space) an implementation will consume. Mathematical
methods can often be used to predict the time and space required by an algo-
rithm, without actually implementing it in the form of a computer program. This
is important for several reasons. The most important is that we can save work by
not having to implement algorithms in order to test their suitability. The analysis
done ahead of time can compare several proposed algorithms, or compare new al-
gorithms to old algorithms. Then we can implement the best alternative, knowing
that the others will be inferior.

Analysis of algorithms 1

The analysis of an algorithm will describe how the running time of the algo-
rithm behaves as a function of the size of the input. We will illustrate the basic
ideas by looking at a simple sorting algorithm called INSERTIONSORT , which we
present as Algorithm 1.1. This algorithm sorts an array A = [A[0],..., A[n — 1]]
of n items in increasing order. To begin we see that an array with a single entry is
already sorted. Now suppose that the first i values of the array A are in the correct
order. The while loop finds the correct position j for Afi] and simultaneously
moves the entries A[j + 1}, A[j +2],..., A[i — 1] to make room for it. This puts
the first i + 1 values of the array in the correct order.

Algorithm 1.1: INSERTIONSORT (4,n)

fori+— lton -1
z + Afi]
ji-1
do while } > 0 and A[j} > =
d'){A[7'+1]+—A[j]
Jeg-1
Aj+1]+ =z

It is not difficult to perform a mathematical analysis of Algorithm 1.1. Within
any iteration of the while loop, a constant amount of time is spent, say ¢;. The
number of iterations of the while loop is at most ¢ — 1 (where ¢ is the index of
the for loop). The amount of time spent in iteration : of the for loop is bounded
above by ¢z + ¢1 (i — 1), where c; is the amount of time used within the for loop,
excluding the time spent in the while loop. Thus, the running time of the entire
algorithm s at most

T(n) = Z(c2 + Cl(i — 1)) = c2(n - 1) + 2.7.7'(_1;__1)...

i=2

Note that the running time of the algorithm can, in fact, be this bad. If the
array A happens to be initially sorted in decreasing order, then the while loop will
require ¢ — 1 iterations during iteration i of the for loop, forall¢,1 <t <n -1,
In this case, the running time will be T'(n), while for other permutations of the n
items in the array A, the running time will be less than T'(n).

The function T'(n) defined above is a quadratic in n, and hence, by Theorem
1.3, T(n) is ©(n?). The growth rate of an algorithm's running time is called
the complexity of the algorithm. For example, the above argument shows that
INSERTIONSORT has quadratic complexity.

The actual coefficients of the quadratic function T'(n) are determined by ¢; and
¢z, and these depend on the implementation of the algorithm (i.e., the program-
ming language that is used and the machine that the program is run on). In other

12 Structures and Algorithms

words, analysis will reveal the complexity of an algorithm, but it will not tell us
the exact running time.

Let us now consider how we can use a complexity analysis to compare two
algorithms. We have already said that the algorithm INSERTIONSORT has com-
plexity ©(n?). Suppose that we have another sorting algorithm with complex-
ity ©(n logn) (such algorithms do in fact exist; one example is the well-known
HEAPSORT algorithm). We can recognize that ©(n logn) is a lower growth rate
than ©(n?). What this means is that when n is large enough, HEAPSORT will be
faster than INSERTIONSORT .

How big is “large enough”? To answer this, we would require some more
specific knowledge about the constants. (Usually this would be obtained from
a particular implementation of the algorithm.) As an example, suppose that we
know that the running time of INSERTIONSORT is at least cn? for n > ng, and the
running time of HEAPSORT is atmost ¢'n log n forn > n;. Itis certainly the case
that ¢nlogn < en? if n > max{ng,ny,c/c’'}; so, we can identify a particular
value for n beyond which HEAPSORT wili run faster than INSERTIONSORT .

1.5.1 Average-case complexity

In the discussion of INSERTIONSORT , we determined the worst-case complexity,
by looking at the maximum running time of the algorithm, which we denoted
by the function T'(n). As mentioned above, this turns out to correspond to the
situation where the array A is sorted in decreasing order. Another alternative is
to consider average-case complexity. This would be determined by looking at the
amount of time the algorithm requires for each of the n! possible permutations of
n given items, and then computing the average of these n! quantities.

Suppose without loss of generality that the items to be sorted are the integers
0,1,...,n—1.Let A =[A[0],..., A[n — 1]] be a permutation of {0,...,n — 1},
and consider the number of iterations of the while loop that are required in it-
eration i of the for loop of Algorithm 1.1 (recall thati{ = 0,1,...,n — 1), It
is not hard 10 see that this quantity is in fact the number of elements among
A[0], ..., A[# — 1] which are greater than A[z]. If we denote this quantity by
N(A,1), then we have that

N(A,i)={j:0<j <i-1,A[j] > Alil}
for all permutations A4 and forall ¢, 0 < i < n — 1. Now, given a permutation A4,
the running time of Algorithm 1.1 is seen to be
n-1
3 (e + aN(4,5)
i=1

For fixed positions j < 4, let m(i, j) be the number of permutations A that
have A[j} > A[i]. It is obvious that exactly half of the n! permutations will have

Complexity classes 13

Alj] > A[#) (and half will have A[j] < A[i]). Hence, m(¢, j) = n!/2. Then the
average running time of Algorithm 1.1 over all n! permutations A is

%; ;(62 +alN(A,i) =c(n—1) + $ EA: > aN(4,9)

=1

n-1

=en—1)+ %ZZN(A,Q
Ti=l A
c n—1i-1
=am-1+53 > mi)
=l §=0

-1

e
=cn-1+ EIT n

n! 4

=1

e n—1
=cz(n—1)+—2£Zi
=1
an(n —1)

71 .

It follows that the average running time of Algorithm 1.1 is roughly half as long

as the maximum running time. The average-case complexity is quadratic, as was
the worst-case complexity.

1.6 Complexity classes

In general, we hope to find algorithms having polynomial complexity, i.e., ©(n?)
for some positive integer d. Algorithms with exponential complexity (i.e., ©(c")
for some ¢ > 1) will have a significantly higher growth rate and often become im-
practical for values of n that are not too large. There is a considerable amount of
theory that has been developed to iry to determine which problems can be solved
by algorithms having polynomial complexity. This has given rise to definitions of
various complexity classes. We will briefly discuss in an informal way some of
the basic concepts and terminology.

Much of the terminology refers to decision problems. A decision problem can
be described as a problem that requires a “yes” or “no” answer. The class P refers
to the set of ail decision problems for which polynomial-time algorithms exist. (P
stands for “polynomial”.)

There is a larger class of decision problems calied NP. These problems have
the property that, for any problem instance for which the answer is “yes”, there
exists a proof that the answer is “yes” that can be verified by a polynomial-time

14 Structures and Algorithms

algorithm. (NP stands for “non-deterministic polynomial”.) Note that we do not
stipulate that there is any efficient method to find the given proof; we require only
that a given hypothetical proof can be checked for validity by a polynomial-time
algorithm.

It is not too difficult to show that P C NP. It seems likely that NP is a much
larger class than P, but this is unproven at present.

Here is an example to illustrate the concepts defined above.

Problem 1.5: Vertex Coloring
Instance: A graph G = (V, £) and a positive integer k.
Question: Does there exist a function color : V — {0,...,k — 1} such

that color(u) # color(v) for all {u,v} € £7 (Such a function
is called a vertex k-coloring or k-coloring of G.)

Note that Problem 1.5 is phrased as a decision problem. An algorithm that
“solves” it is required only to give the correct answer “yes” or “no.” Let us first
observe that this problem is in the class NP. If the graph G does bave a k-coloring,
color, then color itself can serve as the desired proof. To verify that a given color
is in fact a k-coloring, it suffices to consider every edge of & and check to see if
the two endpoints have received different colors.

Although verifying that a given function color is a k-coloring is easy, it does
not seem so easy to find color in the first place. Even if we fix & = 3, then there
is no known polynomial-time algorithm for this problem. (On the other hand, if
& = 2, then the resulting problem is in the class P. A graph G has a 2-coloring if
and only if it is bipartite.)

In fact, Veertex Coloring is generally believed to be in the class NP\P. There
is further evidence to support this conjecture, beyond the fact that no one has
managed to find a polynomial-time algorithm to solve it. Problem 1.5 turns out to
be one of the so-called NP-complete problems.

The concept of NP-completeness is based on the idea of a palynomial trans-
formation, which we define now. Suppose D; and D are both decision prob-
lems. A polynomial transformation from Dy to D, is a polynomial-time algo-
rithm, TRANSFORM , which, when given any instance I of the problem D,, will
construct an instance TRANSFORM(T) of the problem D, in such a way that I is
a yes-instance of D, if and only if TRANSFORM({) is a yes-instance of D;. We
use the notation Dy x Dy to indicate that there is a polynomial transformation
from D; to Dg.

We give a very simple example of a polynomial transformation. An indepen-
dent set in a graph G = (V,£) is a subset S C V such that {z,y} € £ for
all z,y € S. The Maximum Independent Set and Maximum Clique decision
problems are defined in the obvious way, as follows.

Complexity classes 15

Problem 1.6: Maximum Independent Set (decision)
Instance; a graph G; and

an integer K
Question: does G have an independent set of size at least X'?

Problem 1.7: Maximum Cligue (decision)
Instance: a graph G; and

an integer K
Question: does G have a clique of size at least K'?

It is easy to show that Maximum Independent Set (decision) o
Maximum Clique (decision) . Let I = (G,K) be an instance of
Maximum Independent Set (decision) , where G = (V,£) is a graph and K
is an integer. The algorithm TRANSFORM constructs the instance I’ = (G¢, K')
of Maximum Clique {decision) , where G° = (V, F) is the graph in which the
edge set F is defined by the rule

{z.y} e F & (=9} €€,

forall z,y € V, z # y. Clearly G° can be constructed in time O(n?), where
n = |V|. Itis also easy to see that G¢ has a clique of size K if and only if G has
an independent set of size K. Thus the algorithm TRANSFORM is a polynomial
transformation.

Suppose we have a polynomial transformation TRANSFORM from D, to D,.
Further, suppose that we have a polynomial-time algorithm A to solve D2. Then
we can construct a polynomial-time algorithm B to solve D,, as follows. Given
any instance I of D, construct the instance J = TRANSFORM(I) of D2. Then
run the algorithm B on the instance J. Take the resulting answer to be the output
of the algorithin A on input I.

A decision problem D is said 10 be NP-complete provided that D € NP, and
for any problem D' € NP, D' oc D. It follows that if D € P (i.e., if there is a
polynomial-time algorithm for D), then there is a polynomial-time algorithm for
any problem in NP, and hence P = NP,

Over the years, many decision problems have been shown to be NP-complete.
Maximum Independent Set, Maximum Clique and Knapsack are all exam-
ples of NP-complete problems. We showed above that if any NP-complete prob-
lem can be solved in polynomial time, then they all can, However, it is generally
believed that no NP-complete problem can be solved in polynomial-time. For
such problems, this means that we will be forced to look at slower, exponential-
time algorithms, which we will do in later chapters.

16 Structures and Algorithms

1.6.1 Reductions between problems

The concept of an NP-complete problem is a very useful and powerful idea, but
NP-complete problems are, by definition, decision problems. The combinatorial
preblems of greatest practical interest tend to be search or optimization problems.
To classify these problems, we need to first introduce the idea of a Turing reduc-
tion, or more simply, reduction. Informally, a Turing reduction is a method of
using an algorithm A for one problem, say D,, as a “subroutine” to solve another
problem, say D,. Note that the two problems D; and D need not be decision
preblems. The algorithm A can be invoked one or many times, but the resulting
algorithm, say B, should have the property that A is polynomial-time if and only
if B is polynomial-time. Informally, a Turing reduction establishes that D, is no
more difficult to solve than D,. The existence of a Turing reduction is written
notationally as D; o« D. Note that a polynomial transformation provides a
particularly sirnple type of Turing reduction, i.e., D; o Dy implies D; ot Dj.

It is an interesting exercise to find Turing reductions between the different
flavors of the Knapsack problem. An easy example of a Turing reduction
is to show that Knapsack (decision) «t Knapsack (optimization). Sup-
pose that A is an algorithm that solves the Knapsack {optimization) prob-
lem, and et I = (po,...,Pn—1;Wo,...,Wn—1; M;P) be an instance of the
Knapsack {decision) problem. We construct an algorithm B as follows. De-
fine I' = (po,-..,Pn-1;:W0,...,Wn-1; M). Then run A on I’, obtaining an
optimal n-tuple, [zy, . .., Zy-1}, and compute

n—1
Q= ZP:‘:;-

i=0

The algorithm B returns the answer “yes” if 2 > P, and it returns the answer
“no™, otherwise.

The above example establishes the intuitively obvious fact that the optimization
version of the Knapsack problem is at least as difficult as the decision version. It
is more interesting (and more difficult) to find a converse reduction, i.e., to prove
that Knapsack (optimization) ocr Knapsack (decision). Here, we will prove
that Knapsack (search) «cy Knapsack (decision). This reduction is presented
as Algorithm 1.2. In this algorithm, the hypothetical algorithm A is assumed to
be an algorithm to solve the Knapsack (decision) problem.

Data structures 17

Algorithm 1.2: KNAPREDUCTION (Pg, ... ,Pn~1; W0, -.,Wn-1; M; P)

external A()
if A(po,--.,Pn_1;Wo,...,Wa~1; M; P} = “nc”
then return (*no”

(for i — n — 1 downto 0
ifA(po,...,p.-_l;wo..-.,w.-_l;M;P) = "no”
; + 1
else { do then { P+ P-p;
W(—W—w.-
elsez; + 0
‘l’etllrn([zo,...,z"_ll)

The analog of NP-complete problems among search and optimization prob-
lems are the NP-hard problems. A problem D; is NP-kard if there exists an
NP-complete prob-
lem D; such that Dy «y D,. As an example, since Knapsack (decision) «r
Knapsack (optimization) and Knapsack (decision) is NP-complete, it fol-
lows that Knapsack (optimization) is NP-hard. In general, optimization and
search versions of NP-complete decision problems are NP-hard. Note that an
NP-hard problem can be solved in polynomial time only if P = NP.

1.7 Data structures

A data structure is an implementation or machine representation of a mathemati-
cal structure. In combinatorial algorithms, the choice of data structure can greatly
affect the efficiency of an algorithm. In this section, we briefly discuss some use-
ful data structures that we will use in combinatorial algorithms in the remaining
chapters. More thorough discussions of data structures are given in the many
available textbooks on data structures and algorithms.

1.7.1 Data structures for sets

Many combinatorial problems involve the manipulation of one or more subsets
of a finite ground set X . To discuss the algorithms presented in this section, we
will assume that X = {0,...,n — 1} for some integer n = |X|. (Only minor
modifications would be required for ground sets not of this form.) Among the
operations that we want to perform on subsets of X are the following:

1. test membership of an elementz € X inasubset S C X;
2. insert and delete elements from a subset S;

18 Structures and Algorithms

3. compute intersections and unions of subsets;
4. compute cardinality of subsets; and
5. list the elements of a subset.

One obvious way to store a subset S C X is as a sorted array. That is, we
write § = [S[0], S[1],...], where S[0] < S[1] < We can keep track of the
value | S} in a separate auxiliary variable. Since |S] is kept up-to-date every time
an element is inserted or deleted from S, it is clear that no separate computation
is required to determine | $}. Thus |S| is computed in time O(1), i.e., in a constant
amount of time. Listing the elements of S can be done in time O(|S]). Testing
membership in S can be accomplished using a binary search, which takes time
O(log |S]) (the binary search algorithm is described in Section 1.8.3). For the
insertton or deletion of an element ¥, a binary or linear search, followed by a shift
of the elements later than y, will accomplish the task in time O(|:S]). Intersection
or union of two subsets S; and S, can be computed in time O(|S)] + |S2|) by a
simple merging algorithm.

If a subset is instead maintained as an unordered array, then it is easy to sce that
testing membership in a subset S requires time O(}S]), since a linear search will
be required. Computation of intersections and unions will also be less efficient.

There are other implementations of sets, based on balanced trees, in which
all the operations can be performed in time O(log | S|} (except for listing all the
elements of the set, which must take time £2(]S|)). One of the most popular data
structures to do this is the so-called red-black tree, which is discussed in various
textbooks,

All of the running times of the set operations in the implementations described
above depend on the sizes of the subsets involved, and not on the size of the
ground set. For many practical combinatorial algorithms, however, the ground set
may be relatively small, say | X| = n < 1000. For small ground sets, an efficient
alternative method is to represent subsets of X using a bit array.

Let S C X, and construct a bitarray B = [B[0)], ..., B[n—1]] in which B[i] =
1ifi € S, and Bfi] = 0if i ¢ S. This representation requires one bit for each
element in the ground set X . Bit arrays can be stored in the computer as unsigned
integers, and we can take advantage of the bit operations that are available in
programming languages such as C. (Note that we will not be performing any
arithmetic operations on the bit arrays.} This approach can often improve the
speed of the many algorithms,

Letm A n denote the “bitwise boolean and” and let m Vv n denote the
“bitwise boolean or” of the unsigned integers m and n. Let m < j denote the
shift left of the integer m by j bits, filling the rightmost bits with 0's. Similarly,
define m 3> § to be a shift right by j bits. Finally, we will use —m to denote the
bitwise complement of m.

Suppose 3 is the number of bits in an unsigned integer word. In general, this is
a machine-dependent quantity. Currently 8 = 32 on most machines, and 8 = 60
or 64 on a few special machines. Thus, 8 bit array representation of a subset

Data structures 19

S C X will actually be an array A of

[

unsigned integers. The elements of the array A are defined as follows:

u € S if and only if the jth bitof A[¢{]isal;

“[s
j=8-1-(umod g).

Recall that in a 3-bit integer, the Oth bit is the rightmost (least significant) bit,
and the (8 — 1)st bit is the leftmost (most significant) bit. If we think of A as
the concatenation of the bit strings A[0], A[1], etc., then this representation of S
has the effect that the bits (from left o right) of A correspond to the elements
0,1,...,7 — 1, in that order.

As an example, suppose thatn = 20, 8 = 8 and S = {1, 3,11, 16}. The bit
string representation of S is

where

and

01010000000100001000.
The elements of A (represented as bit strings) are as follows:

A[0] = 01010000
A[1] = 00010000
A[2] = 10000000.

Here, the element 16 € S corresponds to the seventh bit of A[2], since
16
= | —| = 2
’ l C j

j=8-1-(16mod 8) =7.

The seventh bit of A[2] is the high-order (leftmost) bit.

Of course, there are other reasonable representations of a set as an array of
integers. We have chosen this one since it seems fairly natural.

Now we look at how the various set operations would be implemented using
bit operations. First, we consider the SETINSERT operation, where we want
to replace S with $§ U {u} (note that 4 may or may not be in the set S before
this operation is performed). The following algorithm can be used to perform a
SETINSERT operation.

and

20 Structures and Algorithms

Algorithm 1.3;: SETINSERT (u, A)

J+B-1-(umodp)
i+ 5]

Alf] « Aff] v (1«)

The SETDELETE operation, S « S \ {u}, is accomplished with the following
algorithm.

Algorithm 1.4: SETDELETE (u, A)
jef-1—(umodpf)

i (3]
Alt] « Aff] A ~(1«j)

Testing membership in a set is also easy.

Algorithm 1.5: MEMBEROFSET (u, A)

jeB~1—(umodpg)
i |3

fAli] A (1<5)
then return (true)
else return (false)

Algorithms 1.3, 1.4, and 1.5 each use O(1) operations. The union of two sets can
be accomplished with the “bitwise boolean or” operation, V.

Algorithm 1.6: UNION (A, B)

global w
fori —Otow-—-1

do Cli] « A[i] v Bli]
return (C)

For intersection, we use the “bitwise boolean and” operation, A. Algorithm 1.7
computes the intersection of two sets.

Data structures 21

Algorithm 1.7: INTERSECTION (A, B)

global w
fori < 0tow — 1

do C[i] « A[i] A BJi]
return (C)

Algorithms 1.6 and 1.7 each use O(w) operations. To compute the cardinality
of a set S, we could run over all the elements of X and count which ones are
in S using Algorithm 1.5. This will require 2(n) operations. A more efficient
approach is 10 precompute an array look, whose ith entry is the number of 1 bits
in the unsigned integer with value 4, fori = 0,1,2,...,2% — 1. For example, if
a =4, then

look = (0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4].

Let mask be the unsigned integer whose rightmost a bits are all 1's, and whose
remaining 3 — a bits are 0s. For example, when a = 4 and 8 = 32, we have

mask = 000---01111 = 15.
28

Then the number of 1 bits in an unsigned integer can be computed by using the
“bitwise boolean and™ and *right shift” operators to obtain small chunks of ¢ bits.
The numerical value of each chunk of « bits can be used to index the array look
and thus obtain the number of 1 bits in the given chunk. The resulting algorithm
is as follows.

Algorithm 1.8: SETORDER (4)

global a, w, look, mask

ans « 0
fori «0tow -1
z « Afi]
do while 2z £ 0
d {ans « ans + look[z A mask]
T+ (z>a)

return {ans)

There is of course a space-time tradeoff with this approach. The algorithm runs
faster as ar becomes larger, but an increase in the size of a gives an exponential
increase in the size of the array look. We usually use o = 8 as a convenient
compromise.

22 Structures and Algorithms

1.7.2 Data structures for lists

Recall that a list consists of a sequence of items given in a specific order. In this
book, we will always use an array to store the elements of a list. Note that if we
have a list of distinct items, and the order of the items in the list is irrelevant for
our intended application, then we can think of the list as being a set, and use any
of the data structures in the previous section to implement it.

An alternative data structure that can be used to store a set is a linked list. These
are described in most textbooks on data structures.

1.7.3 Data structures for graphs and set systems

There are several convenient data structures for storing graphs. The most popular
are the following:

1. alist (or set) of edges;
2. an incidence matrix;

3. an adjacency matrix; or
4. an adjacency list.

We illustrate the different methods for the graph that was presented in Fig-
ure I.1. The original description of this graph presented the set of edges explicitly.
This is the first of the four representations.

The next representation is as an incidence matrix. The incidence matrix of a
graph G = (V, &) is the V| by |€] matrix whose [z, e]-entryisalif x € e,and 0,
otherwise. e € £. Every column of this matrix contains exactly two 1’s, and the
sum of the entries in row z is equal to the degree of vertex z.

The adjacency matrix of a graph G = (V,) is the |V| by |V| matrix whose
[z,y]-entryis a1 if {z,y} € £, and 0, otherwise.

An adjacency list of a graph G = (V,) is a list A of |V} items, corresponding
the vertices x € V. Each item A[z] is itself a list, consisting of the vertices
incident with vertex z. Usually, the order of the items within each list A[z] is
irrelevant. Hence each A{z] can be represented as a set, if desired. If this is done,
then A is a list of sets.

In Figure 1.2, these representations are illustrated for the graph presented in
Figure 1.1.

An incidence matrix is also a suitable data structure for an arbitrary set system,
(X, A). The columns of the incidence matrix will be labeled by the blocks of the
set systemn, and a column 4 will contain |A] 1's, for each block 4 € A. Of course,
a set system can also be stored as a list of blocks. However, adjacency matrices
and adjacency lists do not have obvious analogs for set systems.

Algorithm design techniques 23

0F 02 04 13 15 23 26 37 45 46 57 67
0j1 1.1 0 0 O 0 O O O O O
141 o0 ¢ 1 1 ¢ 0 0O O O O O
2,0 1.0 0 0 1 1 0 ©6 0 0 0
3fj0o 0 0 1 0 1 0 1 0 0 O O
410 ¢ 1 0 0 6 0 0 1 1 0 O
5/6 ¢ 0 0 1 0 0 O 1 G 1 O
60 o0 0 0 0 0O 1 0 0 1 O 1
716 0 0 0 0 O O 1 0 O 1 1

012 3 45 6 7
0{6 1101000
1/ 001 0100
2110010010
3161 1006001
4(1 0 0 0 01 1 0O
5/01 001001
6/0 01 01001
710 0 01 0 1 10

({1,2,4},{0,3,5}, {0,3,6},(1,2,7},{1,5,6},{1,4,7},{2,4,7},{3,5,6}]

FIGURE 1.2
The incidence matrix, adjacency matrix and adjacency list for the cube.

1.8 Algorithm design techniques

It is often useful to classify algorithms by the design techniques. In this section,
we describe three popular and useful design techniques for combinatorial algo-
rithms.

1.8.1 Greedy algorithms

Many optimization problems can be solved by a greedy strategy. Greedy algo-
rithms do not, in general, always find optimal solutions, but they are easy to apply
and may succeed in finding solutions that are reasonably close to being optimal
solutions. For some very special problems, it can be proved that greedy algo-
rithms will always find an optimal solution.

The idea of a greedy algorithm is to build up a particular feasible solution by

24 Structures and Algorithms

improving the objective function, or some other measure, as much as possible
during each stage of the algorithm. This can be done, for example, when a feasible
solution is defined as a list of items chosen from an underlying set. A feasible
solution is constructed step by step, making sure at each stage that none of the
constraints are violated. At the end of the algorithm, we should have constructed
a feasible solution, which may or may not be optimal.

As a simple illustration, consider the Maximum Clique (optimization) prob-
lem, in which we are required to find a clique of maximum size in a graph. Sup-
pose we are given a graph G = (V,E), where V = {0,...,n — 1}. A greedy
algorithm could construct a clique S by initializing S to be the empty set. Then
each vertex z is considered in turn. We insert the vertex z into S if and only if
SU{=z} is also a clique. At the end of the algorithm, a clique has been constructed.

The clique constructed by the greedy algorithm might turn out to be a maxi-
mum clique, or it could be much smaller than optimal, depending on the order
in which the vertices of the graph are considered in the algorithm. This illus-
trates a common feature of greedy algorithms: since only one feasible solution
is constructed in the course of the algorithm, the initial ordering of the items un-
der consideration may have a drastic effect on the outcome of the algorithm. In
the Maximum Clique (optimization) problem, for example, it might be a good
strategy to first reorder the vertices in decreasing order of their degrees. This is
reasonable because we might expect that vertices of large degree are more likely
to occur in large cliques (note that the size of any clique containing a vertex «
cannot exceed the degree of z).

It is usually fairly easy to devise greedy algorithms for combinatorial optimiza-
tion problems. Even though the outcome of a greedy algorithm may not be very
close to an optimal solution, greedy algorithms are still useful since they can
provide nontrivial bounds on optimal solutions. We will see examples of this in
Chapter 4.

1.8.2 Dynamic programming

Another method of solving optimization problems is dynamic programming. It
requires being able to express or compute the optimal solution to a given problem
instance [in terms of optimal solutions to smaller instances of the same problem.
This is called a problem decomposition. The optimal solutions to all the relevant
smaller problem instances are then computed and stored in tabular form. The
smallest instances are solved first, and at the end of the algorithm, the optimal
solution to the original instance [is obtained. Dynamic programming can thus be
thought of as a “bottom-up” design strategy.

We give a simple illustration of a dynamic programming algorithm using the
Knapsack (optimal value) problem, which was defined in Problem 1.3. Sup-
pose we are given a problem instance I = Po,--- 1 Pr—1;wp, ...,wn-1; M),
For0 <m < M and 0 < j < n — 1, define P[j,m] to be the optimal solu-
tion to the Knapsack (optimal value) problem for the instance (py, . . . , pj; wo,

Algorithm design techniques 25

-onsWjs m)
The basis of the dynamic programming algorithm is the following recurrence
relation for the values P[j, m]:

Plj - 1,m] iffj>landw; >m
max{P[j —1,m], P[j — l,m —w;] +p;} ifj>1landw; <m
0 ifj=0andwy >m
Po ifj=0andwy <m.

Plj,m] =

Note that the recurrence relation is based on considertng two possible cases for
P[j, m] that can arise, depending on whetherz; =0orz; = 1.

The dynamic programming algorithm proceeds to compute the following table
of values:

P[0,0] Pl0,]] -~ P[o,M]
P[1,0] P11} .. P[L,M]

P[n—:1,0] P[n—:l,l] P[n—:l,M]

The elements in the Oth row are computed first, then the elements in the first
row are computed, etc. The value Pln — 1, M] is the solution to the problem
instance I. Note that each entry in the table is computed in time O(1) using
the recurrence relation, and hence the running time of the algorithm is O(nM).
A particularly interesting aspect of this algorithm is that the running time grows
linearly as a function of n, even though the optimal solution is computed as the
maximum profit attained by one of 2" possible n-tuples. However, the running
time also is a linear function of M, and thus the algorithm will not be practical if
M is 100 large.

1.8.3 Divide-and-conquer

The divide-and-conquer design strategy also utilizes a problem decomposition.
In general, a solution to a problem instance f should be obtained by “‘combining™
in some way solutions to one or more smaller instances of the same problem.
Divide-and-conquer algorithms are often implemented as recursive algorithms.

Many familiar algorithms employ the divide-and-conquer method. One exam-
ple is a binary search algorithm which can be used to determine if a desired item
occurs in a sorted list. Suppose X = [X[0], X[1],..., X [r — 1]] is a list of inte-
gers, where X[0] < X[1] < :-- < X[n — 1], and we are given an integery. Il y
is an item in the list X, then we want to find the index 1 such that X[i] = y, and
if y is not an element in the list, then we should report that fact.

In the BINARYSEARCH algorithm, we compare the integer ¥ to the item in the
midpoint of the list X. If y is less than this item, then we can restrict the search
to the first half of the list, while if y is greater than this item, then we can restrict
the search to the second half of the list. (If this item has the value y, then the

26 Structures and Algorithms

search is successful and we're done.} This is easily implemented as a recursive
algorithm, Algorithm 1.9. To get started, we invoke Algorithm 1.9 with lo = 0
and ht = n - 1.

Algorithm 1.9: BINARYSEARCH (X, y, lo, hs)

iflo > hi

then return (y does not occur in the list X)

mid ¢ |leghi]

if X[mid] =y

then return (mid)

if X[mid] < y

else then BINARYSEARCH(X,y, mid + 1, hi)

else BINARYSEARCH(X, y, lo, mid ~ 1)

else

Performing a binary search of a sorted list of length n involves testing the mid-
point of the list, and then recursively performing a binary search of a list of size
< n /2. The complexity of the algorithm can be shown to be O(log n). Note that
other divide-and-conquer algorithms may require solving more than one smaller
problem in order to solve the original problem.

1.9 Notes

Section 1.1

There are quite a number of books on combinatorial algorithms, but many of them
were written in the 1970s and are somewhat out of date. The following books are
good general references for material and techriques on combinatorial algorithms
that we discuss in this book: Even [28), Hu [44], Kuéera [61], Reingold, Niev-
ergelt and Deo [90], Stanton and White [101], Wells [111], and Wilf [80] and Wilf
[114].

Section 1.2

There are many general textbooks on combinatorics, as well as textbooks on cer-
1ain types of combinatorial structures. Good general textbooks include Brualdi
[14], Cameron [16], van Lint and Wilson [67], Roberts [92]), Straight [105] and
Tucker [107]. Some good textbooks on graph theory are Bondy and Murty (7],
and West [112]. Good references for material on combinatorial designs are Col-
bourn and Dinitz [20], Lindner and Rodger [66], and Wallis {169].

Exercises 27

Section 1.3

Some recommended books on combinatorial optimization problems include
Nemhauser and Wolsey (79] and Papadimitriou and Steiglitz {83].

Section 1.5

A good book discussing the analysis of algorithms is Purdom and Brown [84].

Section 1.6

Garey and Johnson [31] provides a very readable treatment of NP-completeness
and related topics. See also the book by Papadimitriou |82].

Section 1.7

Data structures and algorithms are discussed in numerous textbooks. Cormen,
Leiserson and Rivest [22] is a good general reference. Other recommended books
include Baase [3], Kozen [56], Mehlhorn [72], Sedgewick [97] and Wilf | 113].

Section 1.8

Textbooks that emphasize algorithm design techniques include Brassard and Brat-
ley [9] and Stinson [103].

Exercises

1.1 Enumerate all the Hamiltonian circuits of the graph in Example 1.1.
1.2 Describe the transversal design (X, B) given below as a Latin square.

X =1{1,2,3,4,5,6,7,8,9}

X ={1,8,9}
Xa = {2,3,4}
X3z = {5,6,7}

{3.5,8},{3,7,9},{4,6,9},{4,7.8}
1.3 For all positive integers n, give a construction for a TD(n).
1.4 Prove Theorem 1.].
1.5 Prove Theorem 1.2.
1.6 Prove Theorem 1.3.
1.7 Prove Theorem 1.4,
1.8 Assuming Stirling’s formula, which states that

V2rn e TRTT (g)" << V2rne (g)n,
prove Theorem 1.5,

B— {{1,2,7},{1,3,6},{1,4,5},{2,5,9},{2,6,8},}

28

1.12

1.13

1.14

1.15

1.16

Structures and Algorithms

For all permutations A of {0,1,2,3} and for 1 < i < 3, compute N{A, 1), as it is
defined in Section 1.5.1.

Prove that the problem Maximum Independent Set {decision} is in the class
NP.

Prove that Knapsack (optimal value} o Knapsack (decision) using a
binary search technique. Then prove that Knapsack (optimization) ot
Knapsack {decision).

Let A C {0,...,31} denote the subset of all the prime numbers in this interval.
Use the algorithm SETORDER with & = 4 and w = 8 to compute |A|.

Let G be the graph on vertex set {0, 1,. .., 9} consisting of the following 15 edges:
{01}{12}{23}{34}{04}{05}{16}{27} {38} {49} {56} {67} {78} {89} {59}.
Give the incidence matrix and adjacency matrix for this graph, which is called the

Petersen graph.

Describe an optimization version of the Vertex Coloring problem. Construct a
greedy algorithm for this problem, and determine the result when the algorithm is
run on the Petersen graph from the previous exercise.

Use a dynamic programming algorithm to solve the following instance of the
Knapsack (optimal value) problem:

profits 1,2,3,5,7,10;
weights 2,3,5,8, 3 16;
capacity 30.

Then, using the table of values P[4, m], solve the Knapsack {optimization) prob-
lem for the same problem instance.

The algorithm MERGESORT , given below, is a divide-and-conquer algorithm that
will sort the array

= [X[O],X[l],...,X[n - 1]]

in increasing order. Give a worst-case analysis of the running time T(n) for this
algocithm.

Hint: suppose n = 2¢ and let T'(n) be the running time of MERGESORT . Show
that T(n) < c f(n) where c is a constant and £ satisfies the following recurrence
relation.

o= (O 1 122

Then show that f(r) is O(nlogn).

Exercises

MERGESORT (n,X)

ifn=1

then return

ifn=2

if X[0] > X|[t]
T + X[0]

then § then {x[()] “ X[1)

else ¢

.

X1 T

(m + |n/2]

fori —0tom — 1
do Afi] « X[3]
fort —«mton—1
do B[i] « X[l
MERGESORT(m, A)
MERGESORT(n — m, B)
te«0
;0
fork «Qton-—1
if A[i] < Bl[j]
X[k « Afi]
dod P L
else {{f [k] « Blj]
jeg+1

29

2

Generating Elementary Combinatorial Objects

2.1 Combinatorial generation

Often it is necessary (o find nice algorithms to solve problems such as generating
all the subsets of a given set S of size r, say. Related problems include generating
all the permutations of S, or all the k-subsets of S.

Among the generation algorithms we will study are those that generate the
desired objects in a lexicographic order, and the so-called minimal change algo-
rithms, in which each object is generated from the previous one by performing a
very small change. Both of these types of sequential generation are often accom-
plished by means of a successor algorithm, which is used to find the next object
following a given one, with respect to a given ordering.

As well as sequential generation, we will be interested in ranking and unrank-
ing algorithms. A ranking algorithm determines the position (or rank) of a combi-
natorial object among all the objects (with respect to a given order); an vnranking
algorithm finds the object having a specified rank. Thus, ranking and unranking
can be considered as inverse operations.

Here are slightly more forrnal mathematical descriptions of these concepts.
Suppose that § is a finite set and N = |$]. A ranking function will be a bijection

rank: 8§ = {0,...,N-1}.
A rank function defines a total ordering on the elements of &, by the obvious rule
8 < t & rank{s) < rank(t).

Conversely, there is a unique rank function associated with any total ordering
definedon S.

If rank is a ranking function defined on S, then there is a unique unranking
function associated with the function rank. This function unrank is also a bijec-
tion,

unrank : {0,...,N -1} > S.

32 Generating Elementary Combinatorial Objects

unrank is the inverse function of the function rank, i.e., we have
rank(s) = ¢ & unrank(i) = s,

foralls € Sandalli € {0,...,N - 1}.

Efficient ranking and unranking algorithms have several potential uses. We
mention a couple now. One application is the generation of random objects from
a specified set S. This can be done easily by generating a random integer i €
{0,...,N — 1}, where N = |S5|, and then unranking i. This algorithm ensures
that every element of S is chosen with equal probability 1//V, assuming that the
random number generator being used is unbiased. For an example of the use of
such an algorithm, see Algorithm 4.20.

Another use of ranking and unranking algorithms is in storing combinatorial
objects in the compuler. Instead of storing a combinatorial structure, which could
be quite complicated, an alternative would be to simply store its rank, which of
course is just an integer. If the structure is needed at any time, then it can be
recovered by using the unranking algorithm.

Given a ranking function, rank, defined on S, the successor function, which we
name successor, satisfies the following rule:

successor(s) = t & rank(t) = rank(s) + 1.

Thus, successor(s) is the next element following s in the total ordering. We will
use the convention that successor(s) is undefined if rank(s) = N — 1 (i.e., if s is
the last (fargest) element in),

The function successor can easily be constructed from the functions rank and
unrank, according to the following formula;

unrank(rank(s) + 1) ifrank(s) < N —1

successor(s) = { undefined if rank(s) = N - 1.

However, for a given set S under consideration, it may be that there is a more
efficient way to construct a successor function.

Once we have constructed a successor function, it is a simple matter to generate
all the elements in §. We would do this by beginning with the first element of S,
and applying the function successor N — 1 times.

2.2 Subsets
2.2.1 Lexicographic ordering

Suppose that 7 is a positive integer, and $ = {1,...,n}. Define S to consist of
the 2™ subsets of $ = {1,...,n}. We begin by describing how to generate the
subsets in S in lexicographic order.

Subsets 33

Given a subset T' C S, let us define the characteristic vector of T to be the
n-tuple

X(T) = [xn—l)-‘ 'er]v

where
g1 ifn—ieT
Tl 0 ifn—igT.
This method of labeling the coordinates z,,_;, . - -, Zg is convenient for the pur-

poses of the algorithms we are going to describe. It is essentially the same method
that we used in Section 1.7.1, except that here we are taking the base set to be
{1,...,n}.

Next, define the lexicographic ordering on the set of subsets of S to be that
induced by the lexicographic ordering of the characteristic vectors. If we think
of these characteristic vectors as being the binary representations of the integers
from 0 to 2" — 1, then this ordering corresponds to the usual ordering of the
integers. With respect to this ordering, the rank of a subset T', denoted rank(T’),
is just the integer whose binary representation is x(T"). That is,

n-1
rank(T) = Z z42%.

=0

We illustrate by taking n = 3, and tabulating the eight subsets of S = {1,2,3}:

T x(T) = [z2, 71, 70] rank(T)
[}

[0,0,0] 0

(3) 0,0,1] 1
{2} 0,1,0] 2
{2,3) [0,1,1] 3
(1) [£,0,0] 4
{1,3} [1,0,1] 5
{1,2} [1,1,0] 6
{1,2,3} (1,1,1] 7

We now present ranking and unranking algorithms for lexicographic generation
of subsets. These are very simple. As mentioned above, ranking a subset 77 C
{1,...,n} consists of computing the integer whose binary representation is x(T').
Unranking an integer r, where 0 < r < 2" — 1, requires the computation of the
subset T" having rank r. These algorithms are described below without reference
to the characteristic vectors x(T°).

34 Generating Elementary Combinatorial Objects

Algorithm 2.1: SUBSETLEXRANK (n,T)

r«0
fori—1lton

do {lf‘lGT

then r < r 4 2n—4
retarn (7)

Algorithm 2.2: SUBSETLEXUNRANK (n,7)

T«0
for ¢ « n downto 1

ifrmod2=1
do { thenT « T v {d}

As an example, suppose thatn = 8 and T = {1, 3,4,6}. Then Algorithm 2.1
computes

rank(T) = 27 + 25 + 24 + 22
=128+ 32+ 16 + 4
= 180.

Conversely, if we run Algorithm 2.2 with n = 8 and r = 180, then we obtain the
following:

i r rmod2 T

8 180 0]

7 90 0)]

6 45 1 {6}

5 22 0 {6}

4 11 1 {4,6}

3 5 1 {3,4,6}
2 2 0 {3,4,6}
11 1 {1,3,4,6).

This example illustrates that ranking and unranking are inverse operations,
since the subset {1,3,4,6} has rank 180 and unranking 180 produces the set
{1,3,4,6}.

We have assumed in this section that our base set is S = {1,...,n}. What
would we do if we wanted to rank and unrank the subsets of some other n-element
set, say S'? We could of course design algorithms for ranking and unranking

Subsets 35

subsets of S’, but a different approach is usually more convenient. It suffices to
construct a bijection ¢ : S — S. Now we can rank any subset X C S’ using a
rank function for subsets of S, from the following formula:

rank(X) = rank(¢(X)).
Similarly, we can unrank r to a subset of S, using the following formula;
rank(r) = ¢~ (unrank(r)).

In the formula above, ¢! is the inverse function of ¢, i.., $(X) = Y if and only
if¢~1(Y) =X, where X C S'andY C S.

For example if we want to rank and unrank subsets of $* = {0,...,n — 1},
then we can use the bijections ¢ and ¢~! defined by the following formulas:

o(X)={i+1l:ie X}

and
o~ (Y)=(i-1:i€Y}.

2.2.2 Gray codes

The lexicographic ordering defined above makes ranking and unranking very sim-
ple, but the ordering is not well suited to the sequential generation of all 2™ subsets
of an n-set. This is because subsets that are consecutive with respect to the or-
dering can be very “different.” For example, in the case n = 3 considered above,
rank({2,3}) = 3 and rank({1}) = 4. Hence, we have two consecutive subsets
that are in fact complements of each other (so they are as different as they could
possibly be).

Given two subsets 7,7 C S, we define the symmetric difference of T} and
T, denoted T} AT:, to be

AT, = (Ti\Tz) U (To\Th).
The distance between T} and T3 is defined to be
dist(T,, T2) = |1 AT,|.

Alternatively, dist(7,T3) is equal to the number of coordinates in which x(7})
and x(T,) have different entries, which is called the Hamming distance between
the vectors x{T1) and x(T%). The relevance of the distance between two subsets
is that it represents the number of elements that need to be added to and/or deleted
from one subset in order to obtain the other.

If we are going to generate all 27 subsets sequentially, it might be desirable to
do so in such a way that any two consecutive subsets have distance one (the small-
est possible). This means that any subset can be obtained from the previous one

36 Generating Elementary Combinatorial Objects

by either deleting a single element or adding a single element. Such an ordering
of the 2" subsets of an n-set will be called a minimal change ordering.
As an example in the case n = 3, the ordering

9,{3}.{2,3},{2},{1,2},{1,2,3}, (1,3}, {1}

is a minimal change ordering.

The characteristic vectors of the subsets in a minimal change ordering form a
structure that is known as a Gray code. Thus, a Gray code is an ordering of the
2" binary vectors of length » in such a way that any (wo consecutive vectors have
Hamming distance equal to one.

From the minimal change ordering presented above, the following Gray code
is obtained:

000,001,011,010,110,111, 101, 100.

There is another way (o formulate the concept of minimal change coverings or
Gray codes. Consider the n-dimensional unit cube, whose 2" vertices are labeled
by the 2™ binary vectors. The edges of this cube join vertices having Hamming
distance equal to one. Thus, a Gray code is nothing more than a Hamiltonian path
in the n-dimensional uni¢ cube, i.e., a method traversing the edges of the cube so
that each vertex is visited exactly once. Examples are given in Figure 2.1.

There has been a considerable amount of study done on different constructions
for Gray codes. We will look at a particularly nice class of Gray codes called the
binary reflected Gray codes. G™ will denote the binary reflected Gray code for
the 2™ binary n-tuples, and it will be written as a list of 2™ vectors, as follows:

= (65,65 -, G5 4]
The codes G™ are defined recursively. The first one, G!, is defined to be
=[0,1].
Given G"~1, the Gray code G” is defined (o be

[OGs ! ;l:ll 1? Gzn—-l 11"')1G3_l]'
Equivalently, we have that

G = OG"‘ ifo<i<am! -1
165}, . if2n-l<i<on -

The code G” is constructed from G™ ! in two steps. First, we take a copy of
G"~! with a “0” prepended to each vector. Then we take a copy of G*~!
reverse order, with a *1” prepended to each vector. The fact that the second copy
of G*! is in reverse order is the reason for the name “reflected.”

The next two Gray codes produced by this recipe are

= [00,01,11,10]

~1l=1

Subsets
0
|
00 10
01 11
010 110
000 100
001 101
011 11
0010 0110 0100 11 1110
0000
0001
0011 o111 0101 1101 1111
FIGURE 2.1

The evolution of the binary reflected Gray code.

1010

1011

37

1000

1001

38 Generating Elementary Combinatorial Objects

and
G? = [000,001, 011,010,110, 111, 101, 100].

Figure 2.1 depicts the binary reflected Gray codes G, .. ., G*%.
Our first result is to prove that any G™ is a Gray code. Since the codes G™ are
defined recursively, it is most natural to prove the result by induction on n.

THEOREM 2.1 For any integer n > 1, G" is a Gray code.

PROOF The proof 1s by induction on n. For n = 1, the result is easily seen to
be true. As an induction hypothesis, suppose that G*~! is a Gray code, for some
integer n'> 2. We will prove that G™ is a Gray code.

First, it is clear that G® contains all 2® binary n-tuples. By induction, the 27!
n-tuples that begin with “0” are contained in the first half of G®, and the 27!
n-tuples that begin with “1” are contained in the second half of G™.

It remains to verify the minimal change property. Consider two consecutive n-
tuples in G™, say G} and GJ', ; . There are in fact three cases to consider, depending
on the value of 1.

First, if 0 < i < 2"~! ~ 2, then G} and GJ, ; are formed from (wo consecutive
{n — 1)-tuples in G*~! by prepending a “0” to each of them. Therefore, by
induction, G} and G}, have Hamming distance equal to 1.

The second case is 2”71 < ¢ < 2" — 2. This is similar to the first case. This
time, G?* and G}, , are formed from two consecutive (n — 1)-tuples in G*~! by
prepending a “1” to each of them. Therefore, by induction, G} and G}, , have
Hamming distance equal to 1.

The final case is 1 = 2"~! — 1. GJ,_,_, and G}._, are both formed from

aa_1_» by prepending a “0” and a “1” respectively. Therefore, GZ._,_, and
G3._: have Hamming distance equal to 1. (Note that this last case works out
precisely because of the fact that the second copy of G*~! in G" is in reverse
order.)

By induction on =, the result is true for all integers n > 1. i

We now present Algorithm 2.3, which computes the successor function for
the binary reflected gray Code G®. Suppose that the binary vector A =
[@n—1,...,0a0] represents the set T C {1,...,n}. Thena; = 1ifn—-i €T
and a; = 0 otherwise. Let w(A) denote the Hamming weight of A (i.e., the
number of *“17s in the vector A); note that w(A4} = |T|.

Algorithm 2.3 works as follows. If w(A) is even, then the last bit of A (namely,
ag) is flipped; if w(A) is odd, then we find the first “1”" from the right, and flip the
next bit (to the left). The last vector in G®, which has no successor, is [1,0,...,0].
This corresponds to the set {1}.

Algorithm 2.3 is described in terms of the set . It could alternatively be pre-
sented in terms of the binary vector A, if desired. The operation “A”, which
denotes the symmetric difference of two sets, was defined earlier.

Subsets 39

Algorithm 2.3: GRAYCODESUCCESSOR (n,T)

if |T| is even
then U + TA{n}

(j+n

while j # Tandj > 0
doje—j3-—-1

else {if; =1
then return (“undefined”)

U+TA{7-1}

Lretum (%))

The following theorem can be proved by induction on n.

THEOREM 2.2 Algorithm 2.3 computes the function successor for the Gray
code G™.

We now proceed to develop ranking and unranking algorithms for the binary
reflected Gray code. These algorithms depend on certain relationships between
the binary representations of the integers 7 = 0, .. ., 2" — 1 and the corresponding
vectors G?. Let us begin by tabulating these in the case n = 3:

v binary representation of r G2
0 000 000
1 001 001
2 010 011
3 o1 010
4 100 110
5 101 111
6 110 101
7 111 100

For an integer r such that 0 < r < 2™ — 1, suppose that its binary representation
is written as

bpbn_1...b1bo.
In other words, n
r=Y b2,
t=0

and b, = 0 since r < 2" —~ 1. Also, suppose we write the vector G* in the form
G! = ap-1...4100,

as in Algorithm 2.3.
The relations in the next lemma will form the basis of the ranking and unrank-
ing algorithms.

40 Generating Elementary Combinatorial Objects

LEMMA 2.3 Suppose that n > 1 is an integer, 0 < r < 2" — 1, and suppose
that b, ...,boand an_1,...,ap are as defined above. Then

Q; = (b_, + bj+l) mod 2 (2.1)
and
n-1
b= a;mod2, (2.2)
i=J

forj=0,1,...,.n =1L

PROOF We begin by proving that Equation (2.1) is true foralln > 1 and j =
0,1,...,n — 1. The proof is by induction on n. The induction can be staried with
n = 1, where Equation (2.1) can be verified easily.

For some integer ¢ > 2 assume that Equation (2.1) is true forn = i — 1 and
0<j<i—2 Wenowconsidern =itand0 < j <i— 1. Let r be an integer
such that 0 < r < 2° — 1, We divide the proof into two cases, depending on the
value of 7,

The first case is when 0 < r < 2% — 1, In this case, we have b;_; = 0 and
a;—1 = 0. For 0 < j < i — 2, Equation (2.1) is true by induction. For j = i — 1,
we have

bi—1 +b; =0 mod 2

and ¢;—; = 0, so Equation (2.1) is true here as well.
Now, we proceed to the second case, 2°~! < r < 2¢ — 1. In this case, we have
that Qi = l.b,‘_[= 1,

Gyl = nz... 0100,
and the binary representationof 28 — 1 —r is

0(1 = bu=z).-.. (1 - bo).
Since Equation (2.1) is true forn = ¢ — 1 by induction, we have

a; = (1-5;)+ (1 =bj31) mod 2
forj=0,1...,i — 2. Since
(1 —b;) + (1~ bj41) = (bj + bj31) mod 2,
Equation (2.1) is true forn = iand j = 0,1...,i — 2. Forj = ¢ — 1, we have
bi_1 +b;=1mod 2

and a;—, = 1, so Equation (2.1) is true here as well.

By induction, Equation (2.1) is true for j = 0,1,...,n —~ 1, for all integers
n>l

Subsets 4}

To complete the proof, we show that, for any n > 1, the truth of Equation (2.1)
forj =0,1,...,n -1 implies the truth of Equation (2.2) forj = 0,1,...,n— 1.
This is an easy computation:

n—1 n—1%
Za; = Z(b.- + biy1) mod 2
i=j i=j
= (b + b,) mod 2
= b,' mod 2,
since b, = 0. i

The relations in Lemma 2.3 give rise to the ranking and unranking algorithms
for the binary reflected Gray code which are presented as Algorithms 2.4 and 2.5.
We provide brief explanations.

First, consider unranking, In iteration ¢ of the for loop of Algorithm 2.5, b cor-
responds to b;4; and b’ corresponds to b;. The algorithm successively computes
br-1,-..,bg, which are the bits in the binary representation of r. Recalling that
a; = b; + bi3; mod 2, we see that

n—ie€T@a=1abb.

Now we look at ranking. In iteration i of the for loop of Algorithm 2.4, b
corresponds to b;. Initially, b = 0 (corresponding to b, = 0). Since

b; = biy; + a; mod 2,
we can update b during each iteration of the for loop by checkingifn —¢ € T

(sincea; = 1ifn —i € Tanda; =0ifn — i & T). Whenever b = 1, we add 2°
to r, since b = b, is just bit 1 in the binary representation of r.

Algorithm 2.4: GRAYCODERANK (n,T)

re«0
be0
for i «— n — 1 downto 0
ifn—ieT
thenb ¢ 1-0>
ifb=1
then r « r 4 2¢
retumn (r)

do

42 Generating Elementary Combinatorial Objects

Algorithm 2.5: GRAYCODEUNRANK (n,r)

T«4§
¥+«0
fori « n — 1downto0
be (7]
ifo#Y
do{ thenT «TU {n -1}
V+>b
rer—bos
return (T')

Let’s work out a couple of examples to illustrate Algorithms 2.4 and 2.5. Sup-
posethat n = 8and T = {1,2,3,4,5,7,8}. We first use Algorithm 2.4 to
compute rank(T).

i 2 n—i€eT? b r

7 128 yes 1 128
6 64 yes 0 128
5 32 yes 1 160
4 16 yes 0 160
3 8 yes 1 168
2 4 no 1 172
1 2 yes 0 172
0 1 yes 1 173

Thus, rank(T) = 173. The inverse algorithm, Algorithm 2.5, can be used to
compute unrank(173). It executes as follows:

¥ or i 2 b T

0 173 7 128 1 m

1 45 6 64 0 {1,2}

0 45 5 32 1 {1,2,3}

1 13 4 16 0 {1,2,3,4)
0 13 3 8 1 {1,2,3,4,5)
1 5 2 4 1 {1,2,3,4,5)
1 1 1 2 0 {1,2,3,4,57}
0 1 0 1 1 {1,2,3,4,578)

Hence, vnrank(173) = {1,2, 3,4, 5, 7,8}.

k-Element subsets 43

2.3 k-Element subsets
2.3.1 Lexicographic ordering

Suppose that n is a positive integer, and S = {1,...,n}. Define S to consist
of the (}) k-element subsets of S. We begin by describing how to generate the
subsets in & in lexicographic order,

A k-element subset T C S can be written in a natural way as a list

T = [t]yt'lr'-‘stk])

where
t <ty <o < ¥ty

The lexicographic ordering on § is induced by the lexicographic ordering on the

sequences 7 (T € 8).
We illustrate with a small example. Let n = 5 and & = 3. The lexicographic
ordering of the ten 3-element subsets T C (1,...,5} is as follows:

T T rank(T")
1,23V [15,2,3]
{1,2,4} | [1,2,4]
{1,2,5} } [1,2,5)
{1,3,4} | [1,3,4]
{1,3,5} | [1,3,5)
{1,4,5} | [1,4,5]
(23,4} | [2.3,4]
{2,3,5} | [2,3,5)
{2.4,5) | [2,4,5]
{3,4,5} | [3,4,5]

It is fairly straightforward to describe a successor algorithm for S. This algo-
rithm is presented in Algorithm 2.6.

CRTIDUL BN =

Algorithm 2.6: XKSUBSETLEXSUCCESSOR (?, k,n)

T

te—k

while (: > 1) and (t; = n — k + 1)
doie—i—-1

ifi=0

then return {“undefined”)

forj «—itok
else dou; —ti+1+j5—1

return (27)

44 Generating Elementary Combinatorial Objects

To construct a ranking algorithm, we need to count the number of k-element
subsets preceding a given set T in this ordering. Suppose that ¢, is an integer such
that 1 < ¢; < n. Itis easy to see that there are exactly (" ") subsets X € S such

that z; = #;, where X = [z1,...,2x). More generally, for any i < k integers
t1,...,tisuchthat 1 < ¢ < -+ < t. < n, there are exactly (" ~%) subsets
X € Ssuchthatz, =¢4, .. .and

Now, suppose that T € S, and 7‘ = [tl, t2,...,tk] is defined as above. The
k-element subsets X preceding T in lexicographic order are the following:

e Thesubsets X with1 < x; < ¢ — 1.
e Thesubsets X withx, =t andt) +1 <z, <t — 1.
e The subsets X withxy =), 22 = ¢z, andt; +1 <23 <it3-1,

e ¢tc.

e Thesubsets X withzy =), 20 =8a,....2x—1 = tgyand tg_1 +1 < 13 <
i — 1.

From these facts, we can write down a formula for rank(T"), where 7 =
[te,t2,. .., tk]. We get the following formula, where we define ¢ = O for conve-
nience:

ti—1
rank(T) = z z ()
=l j=$;_1+1

This formula immediately yields a ranking algorithm, which we present as Al-
gorithm 2.7.

Algorithm 2.7: KSUBSETLEXRANK (T, k, 1)

re0
tg 0
fori — 1tok
ift,i +1<¢t;~-1
do for;j «—ti_y+1tog; — 1
then{ dor «r+(777)

return (r)

Now we unravel Algorithm 2.7 to obtain an unranking algorithm. Suppose that
0 <r < (}) - 1, and suppose that T = unrank(r) with T = [¢;,...,%]. The
smallest element in T, ¢;, can be determined by the observation that

t1=z¢>:zl(::l-) r<2()

k-Element subsets 45

Having determined ¢,, we can compute ¢, in a similar way:

z—1 . H-1 . x .
n-j n-=2 n-=7
= <r- .
tr=ze 3 (k—2)_r Z(k—-l)<_z (k—Z)
j=tit+1 i=1 J=ti+1
The pattern continues, and the entire algorithm is presented as Algorithm 2.8,

Algorithm 2.8: KSUBSETLEXUNRANK (7, k,n)

ze1
fori < ltok
while (3% <r

do r‘_r_(r’::::
do Tez+1

t; «— 7

z+zx+1

return (?)

2.3.2 Co-lex ordering

There is a useful alternative to the lexicographic ordering for k-element subsets of
an n-set. The ordering is called the co-lfex ordering, and it is defined as follows,
A k-element subset T C S is written as a list

? = [tlvt'Z)"')tk]r

where
tl >t2 > "'>tk.

The co-lex ordering is induced by the lexicographic ordering on the sequences T

(T € S).
We illustrate the co-lex ordering when n = 5 and k = 3. The co-lex ordering
of the ten 3-element subsets of {1,...,5} is as follows:

~
)

rank(T)

-
-
-

-
-
-

-
-

-
-
-

-

mmmuy-cn.hh.aw
Aﬁawymmwmm
QO N b= DD b b DD e el

-
-
-

-
-
-

-
- -
-
-

e St Sl Gt Stid el S P bt S|
O IO N =D

-
-

w
Ayt gt gt emgant S gt g S gt S|

ey iy [, e, o, i, b, (o, b e
o:ton-dtorb—lwn—-b—lh-l
uauwywwwmm
LT Ot O O Qi D

P p— Py pr— — (— p— iy pr— g

-

46 Generating Elementary Combinatorial Objects

1t is straightforward to find a successor algorithm for the co-lex ordering. This
is left as an exercise.

We proceed to develop ranking and unranking algorithms, which are much sim-
pler in the co-lex ordering than in the lexicographic ordering. Suppose that ¢, is
an integer such that 1 < ¢, < n. Itis easy to see that there are exactly (')
subsets X € S suchthatz, < t,, where ? = [z1,...,2)]. More generally, for
any 7 < kintegers ¢;,...,¢; suchthatl < ¢ < ... < t; < n, there are exactly

k:.f:,) subsets X € Ssuchthatzy =4¢,,..., 2;-1 = t;j—; and x; < t;.

Now, suppose that T € S, and T = [t1,82,...,t] is defined as above. The

k-element subsets X preceding T in lexicographic order are the following:

e The subsets X withz, < t3.

e The subsets X withz, = t; and 23 < 5.

e The subsets X withz; = 81,2z, = 13, and 23 < {3,

e etc.

e Thesubsets X withz; =#,, 23 =22, ..., Ty =tp—y and x; < by

These facts permit us to state a formula for the rank of a subser T, where T =
Ity,ta, ..., t&]:

L1
k = : .
rank{T") ;(k+1—i)
It is interesting to observe that this formula does not depend on the value of n.

The ranking algorithm presented in Algorithm 2.9 is an immediate consequence
of the formula presented above,

Algorithm 2.9: KSUBSETCOLEXRANK (T, k)

r+0
fori+—1tok

dor -7+ (,fj_ﬂ,
return (r)

The unranking algorithm for co-lex ordering is presented as Algorithm 2.10.

k-Element subsets 47

Algorithm 2.10: KSUBSETCOLEXUNRANK (r, k,n)

T éen
fori—1tok
while (, T) >r
dox ¢+ z-1
do

tie—z+1
Ll (k+§—i}
return (‘1_“)

Our final observation in this section is a relationship between the co-lex or-
dering and the lexicographic ordering. Given a k-element subset T C {1,...,n},
define

T'={n+1-i:i€T}.

Suppose we take k = 3 and n = 5, and recall the lexicographic ordering:

{1,2,3} {1,2,4) {1,2,5} {1,3,4)
{1,3,5} {1.4,5} {2,3,4} {2,3,5}
{2,4,5} {3,4,5}

Now, replace every set T by T”:

{3,4,5} {2,4,5} {1,4,5} {2,3,5}
{1,3,5} {1,2,5} {2,3,4} {1,3,4}
{1,2,4} {1,2,3)

The result is just the reverse of the co-lex ordering! The property which we have
observed in this example can be proved to hold in general, as stated in the follow-
ing theorem. The proof is left as an exercise.

THEOREM 24 Let & consist of all k-element subsets of the n-set S =
{1,...,n). Suppose that rank\ denotes rank in the lexicographic ordering and
rankc denotes rank in the co-lex ordering. Then, for any k-set T C S, we have

rank, (T) + ranke (77) = (:) -1,

whereT' = {n+1-i:i€T}

Theorem 2.4 provides an alternative method of computation of lexicographic
rank. Given 7', we would first compute 7", then find the co-lex rank of T”, and
finally subtract the result from (}) — 1. This would, in general, be more efficient
than Algorithm 2.7. A similar strategy could be employed to do unranking, too.

48 Generating Elementary Combinatorial Objects

2.3.3 Minimal change ordering

It is easy to see that if T} and T are two k-element subsets of § = {1,...,n},
and Ty # T, then dist(T1,T2) > 2. Hence, if Sp denotes the set of all ()
k-element subsets of S, then a minimal change ordering on S¢ will be one in
which any two consecutive subsets have distance two. In this section, we study a
minimal change ordering called the revolving door ordering. The revolving door
ordering for S will be written as a list A™* of (7) k-clement sets, as follows:

(2)-1

The revolving door algorithm is motivated by Pascal’s identity for binomial

coefficients:
ny (n-1 + n—1
k] T \k-1 kK }
n

This identity can be proved by observing that the set of all (k) k-element subsets
of S can be partitioned into two disjoint subcollections: the ('k'___}) k-element
subsets that contain the element n, and the (";’) k-element subsets that do not
contain the element n.

The definition of A™* follows a similar recursive pattern. Given A®~1*=1 and
An~LE the list A™* s defined as follows:

Ak = [AS"‘,A{"",...,A""‘] :

A = [AS“”‘, AR AT Vinh L AT U R

This recursive definition can be applied whenever 1 < k < n — 1. The lists A™°
and A™™ are given as initial conditions to start the recursion. They are as follows:
A0 = (9]

and
A™® = [{1,...,n}].

This construction is very reminiscent of the method used to construct the binary
reflected Gray codes in Section 2.2.2. Similar features include the construction
of a list by gluing two smaller lists together, and the reversed order of the second
list.

Let’s construct some of the small lists A™* before proceeding further.

A =[{1},{2}]

A% = [{1},{2},{3}]

A*? =[{1,2},{2,3},{1,3}]
A = {1}, {2}, {3}, {4}]

k-Element subsets 49

A2 = [{1,2},{2,3).{1,3}, (3,4}, (2,4}, {1,4}]
A2 =11,2,3}, (1,3,4},(2,3,4},{1,2,4}]
ASt =[{1}, {2}, {3}, {4}, (5}]
A>? =[{1,2},{2,3},{1,3},{3,4}, (2,4}, {1,4}, {4, 5}, (3,5}, {2, 5}, (1,5}]
A>3 =[{1,2,3},{1,3,4},{2,3,4},{1,2,4},{1,4,5},
{2,4,5}, {3,4,5},{1,3,5},{2,3,5},{1,2,5}]
A% =[(1,2,3,4},{1,2,4,5},{2,3,4,5},{1,3,4,5},(1,2,3,5}]

Our first task is to prove that A™* is a minimal change ordering of SF. As one
would expect, the proof will be by induction on n, similar to the proof of Theorem
2.1. Induction will automatically ensure that the minimal change property holds
within the two sublists that are pasted together to form A™¥. The tricky part is
to prove that the minimal change property holds at the transition between the two
sublists. In order to handle this part of the proof, we need to know what the last
subset is in any A™*.

From the lists computed above, it appears that

Aa’;_l ={1,....k—1,n}, (2.3)
for any integer k such that 1 < k£ < n. If we can prove that Equation (2.3) holds
for all relevant k and n, then we will be in good shape. It also seems natural to
try to prove that Equation (2.3} is valid by induction on n. However, we quickly
encounter another snag if we do this, since the last set in the list A™# is described
in terms of the first set in the list An=1:4-1,

This forces us to also obtain a description of the first set in any list A™* . Again,
we can guess a formula by inspection:

ADE = (1,...,k}, (2.4)
for any integer k such that1 < k < n.
We begin by proving that Equations (2.3) and (2.4) are valid.
LEMMA 2.5 Suppose that 1 < k < n. Then Equations (2.3) and (2.4) hold.
PROOF The proof is by induction on n. Forn = 1, we must have ¥ = 1 and
Ay = {1}.

Thus both equations hold forn = 1.

As an induction hypothesis, suppose that Equations (2.3) and (2.4) hold when
n=j—1,forall ksuchthatl < k < j — 1, where j > 2is an integer.

Now, we consider n = j,and let 1 € k < j. If & = j, then we recall that
A} = {1,...,5} by definition. Hence, Equations (2.3) and (2.4) hold for k = j.

50 Generating Elementary Combinatorial Objects

Thus, we may assume that 1 < k£ < j — 1. First, we consider A',’;"". By
definition,
AYE = AjTME
By induction, therefore, we have
A* = {1,... k).

We turn to A

-1 By definition, we have
&

Moy =AU),

Hence, by induction, we have
Af{")_l ={1,...,k—1,j},

as desired.
By induction on n, the proof is complete. |

We are now in a position {0 prove our main result.

THEOREM 2.6 For any integers k andn suchthat 1 < k < n, A™* is a minimal
change ordering of S;.

PROOF The proof will be induction on n. Forn = 1, we have ¥ = 1 and
the result is true. As an induction hypothesis, suppose that A®~** is a minimal
change ordering for all £ suchthat1 < k& < n — 1, where n > 2 is an integer. We
will prove that A™* js a minimal change ordering for all &£ suchthat 1 < k& < n.

It is trivial that A™* is a minimal change ordering for k£ € {1,n} (since there is
only one set in the list in these two cases). Hence, we may assume that 2 < & <
n -1

Consider two consecutive sets in A™*, say A™* and A7, |. There are three
cases to consider, depending on the value of 7.

First, if 0 <i < (";l) — 2, then A7 and A" are two consecutive k-element
sets in A*~1% Therefore, by induction, A7* and A% have distance equal to
two.

The second case is (*;') < i < (}) — 2. This is similar to the first case.
This time, A?'k and A:‘fl are formed from two consecutive (k — 1)-element sets
in A®~1%¥=1 by inserting the new element n into each of them. Therefore, by
induction, A]"* and A7;% have distance equal to two.

The final case is i = ("7 ') — 1. We have

n-1,k

n,k -
A1 T ACT) -
= {l,...,k— l,n - l},

k-Element subsets 51

by Lemma 2.5. Also,
AE’,."l) = Al SOVRLY
={1,...,k-2,n—1,n},
by Lemma 2.5. Therefore A",:'E »n . and AT (,‘) have distance equal to two.

By induction, the proof is complete. |

Ranking and unranking turn out to be quite simple in the revolving door
ordering. As before, we will write a subset T in increasing order as =
[t1st2,- .., tk], where ¢ < t2 < --- < tx. The following formula holds:

k t:

;zl:(—l)*-‘(i‘) if k is even
i k—i t; . .
iél(—l) (2) -1 ifkisodd.

The ranking algorithm presented in Algorithm 2.11 is an immediate conse-
quence of the formula given above.

Algorithm 2.11: KSUBSETREVDOORRANK (T, k)

ifk =0 mod 2
thenr < 0
elser « —1

s«1

fori — kdowntol

do {r(—r+s(';.")

S+ —5
return (7)

The corresponding unranking algorithm is displayed in Algorithm 2.12.

Algorithm 2.12: KSUBSETREVDOORUNRANK (r, k, nn)

Z+n

for i + k downto 1

while (3) > r
dozr+zx—1

t,+—z+1

T+ (":'l)—r—l

retum(?)

do

52 Generating Elementary Combinatorial Objects

Finally, we present a successor algorithm for the revolving door ordering, in
Algorithm 2.13. In this algorithm, the successor of the last k-subset is the first
one. In other words, we think of the list A™* as being ordered cyclicly, and
therefore we define

successor({1,...,k—1,n}) = {1,...,k}.

Note that this is also a minimal change.
Algorithm 2.13 begins by defining tx4+,; to be n + 1. This means that we do not
have to handle the situation 7 = k as a special case.

Algorithm 2.13: KSUBSETREVDOORSUCCESSOR (7’, k,n)

tiqr &= n+1
j+1
while (j < k) and (t; = j)
doj+j+1
ifk Z 7 mod2
ifj=1
l then tlt-*— t:—_jl
else { 77
se {tj_g 2 -1
ift;pr #¢t+1
ti-1 4
else then {tj(—-tj+1

iy +
else {t_,- -

24 Permutations
2.4.1 Lexicographic ordering

We now look at the generation of all n! permutations of the set {1,...,n}. A
permutation is a bijection from a set to itself. One way to represent a permutation
7 :{1,...,n} = {1,...,n} is by listing its values, as follows:

[x[1},-..,=(n]].

We call this the list representation of the permutation 7. Saying that 7 is a permu-
tation is equivalent to saying that each element in {1, ...,n} occurs exactly once
in this list.

Permutations 53

First, we will look at the lexicographic ordering of permutations. The lexico-
graphic ordering is defined in terms of the list representation. As an example,
when = = 3, the lexicographic ordering of the six permutations of {1,2,3} is as
follows:

[1,2,3].(1,3,2],[2,1,3),(2,3,1],[3,1,2],[3, 2,1].

We begin by describing an algorithm for generating permutations in lexico-
graphic order. This generation algorithm depends on a successor algorithm that
finds the permutation that immediately follows a given permutation (in lexico-
graphic order). In Algorithm 2.14, 7 is a permutation of {1,...,n} given in list
representation.

Algorithm 2.14 has four steps. In the first while loop, we find Z such that

alil <wfi+ 1] >wfE+2] > > a[n]

Note that by setting #[0] to 0, we ensure that the while loop terminates with 0 <
i <n—1.If1 =0, then
T=[nn-1,...,1]

1s the last permutation lexicographically and has no successor. Otherwise, we
proceed to the second while loop, where we find the integer j such that =[j] >
wl¢] and n[k] < «[i] for j < k < n (i.e, j is the position of the last element
among 7[i +1],.. ., n[n] that is greater than x[i]). The third step is to interchange
[t} and x[5]. and the fourth step is to reverse the sublist

[[i +1],...,=[n]].

Algorithm 2.14: PERMLEXSUCCESSOR (n,)

x[0] « 0
te—n-—1
while r[i + 1] < #[i]
doi+~1~1
ifi=0
then return (“undefined™)
jen
while 7[j] < =[i]
doj+j3-1
t + wlj)
w[j] + wld]
w[i) ¢
forh+—i+1lton
do p{h] « =[A]
forhe—i+1lton
dow[h] + pln +i+1- A
return (x)

54 Generating Elementary Combinatorial Objects

As an example, suppose thatn = 7 and
= [3,6,2,7,5,4,1].
Then, after the first while loop, we have ¢ = 3, since
2<7>5>4>1.

After the second while loop, we have j = 6since 4 > 2 and 1 < 2. In the third
step, we interchange 3 and g, producing

[3,6,4,7,5,2,1].

Finally, we reverse the sublist
[7) Sa 2a 1]1

producing the permutation
{3,6,4,1,2,5,7],

which is the successor of 7.

It is now easy to generate all n! permutations of {1, ...,n}. We can begin with
the permutation [1, 2, . . ., n] (which is the first permutation lexicographically) and
invoke Algorithm 2.14 a total of n! — 1 times.

We next turn to ranking and unranking permutations in lexicographic order. In
the lexicographic ordering of permutations of {1, .. .,n}, we first have the (n—1}!
permutations that begin with a “1”, followed by the (n — 1)! permutations that
begin with a “2", etc. Hence, if 7 is a permutation of {1,...,n}, itis clear that

(7[1] — 1) (rn = 1! < rank(x) < @[l] (n —1)! - 1.

Let 7’ denote the rank of = within the group of (n — 1)! permutations that begin
with 7[i]. Then 7 is the rank of [x[2],...,#{n]} when it is considered as a per-
mutation of {1,...,n}\{r[1]}. If we decrease every element of [7[2], ..., 7{n]]
that is greater than #[1] by one, then we obtain a permutation n' of {1,...,n -1}
that also has rank 7',

This observation leads to a recursive formula for lexicographic rank of permu-
tations of {1,...,n}. Forn > 1, we have

rank(m,n) = (n[1] — 1) (n = 1)! + rank(x’,n — 1},

where

pa _ f wfi+1]-1 ifxfi+1)> 1]
””‘{ wli +1] if i + 1) < #[1].

Initial conditions for this recurrence relation are given by

rank([1],1) = 0.

Permutations 55

We work out a small example to illustrate:
rank([2,4,1,3],4) = 6 + rank(]3,1,2],3)
=6 + 4 + rank([1,2],2)
=6+ 4+ 0+ rank([1],1)
=6+44+0+0
= 10.

Itis easy to convert this recursive formula into a non-recursive algorithm, which
we present as Algorithm 2.15.

Algorithm 2.15: PERMLEXRANK (n, 7)

re0
pe =
forj+—1ton
r &1+ (pli] - 1) {n -)
do fori—j+1lton
3o J i elil > olj]
then p[i] + pf:] - 1

return (r)

Now suppose we want to unrank the integer r, where 0 < r < n! — 1. Unrank-
ing can be done fairly easily if we first determine the factorial representation of
7, by expressing r in the form

n-1
r=3 (di-i,
=1

where 0 < d; < ifori = 1,...,n — 1. (We leave it as an exercise to prove
that any non-negative integer r such that 0 < r < n! — 1 has a unique factorial
representation of this form.)

Suppose that 7 = unrank{r) in the lexicographic ordering. It is easy to see that

77[1] =dn-1 +1.

Thus the first element of 7 is determined immediately from the factorial represen-
tation of 7. Now, denote

r' =1‘—dn_| '(ﬂ,— 1)',

and suppose that 7' = unrank(r'), where 7’ is a permutation of {1,...,n — 1}.
(This could be done recursively, for example.) Suppose we increment by one all
elements of 7’ that are greater than d,,_;. Finally, define

xli} = »'[i + 1]

56 Generating Elementary Combinatorial Objects

for 2 < i < n. Then it will be the case that 7 = unrank(r).
As an example, suppose that 7 = 4 and r = 10. The factorial representation of
ris
1-3'4+2-2140-1L
Hence, #[1] = d3 + 1 = 2. Now, compute ' = r — 6 = 4. It can be verified
that #’ = unrank(4) = [3,1,2]. Then we increment the first and third elements
by one, so ' = {4, 1, 3]. Hence, we obtain

unrank(10) = [2,4,1,3].

Algorithm 2.16 is a non-recutsive implementation of this unranking algorithm.
In this atgorithm, we use a function mod which performs modular reduction ac-
cording to the following rule:

mod(z,m)=r&z=rmodmand0<r <m-1.

Algorithm 2.16: PERMLEXUNRANK (%, 71)

n] « 1
forj < lton-1
1]
d+ modgr}!.1+l!.t
rer—d-j
do dFln—Jjl+d+1
fort —n—-j+1ton
d {ifﬂ'[i] >d
then r[i] + =i] + 1

return ()

We illustrate Algorithm 2.16 by recomputing unrank{10)}. Initially, we set

n[4] = 1.
When j = 1, we compute

_ mod(10,2)
=—==
n[3] = 1 and 7{4] = 2.

d 0,

When j = 2, we have

mod(10, 6)
d=—5 =%
r= 10"‘2'2=6)

and
#[2] = 3.

Permutations 57

Finally, when 7 = 3, we have

_ mod(6,24)
= =
r=6-1-6=0,
n[l] = 2,7[2] = 4 and n{4] = 3.

d 1,

Hence, we obtain
unrank(10) = [2,4, 1, 3],

as before.

24.2 Minimal change ordering

First we need to give some thought as to what a minimal change would be in the
context of permutations. It is certainly the case that any two distinct permutations
7 and 7' of {1,...,n} must differ in at least two positions. Further, if = and
7' differ in exactly two positions, then one can be obtained from the other by a
single rransposition (i.e., by exchanging the elements in the two given positions).
It may even happen that the two positions are adjacent; so, we in fact transpose
two adjacent elements in order to transform 7 into . This is equivalent to saying
that there exists an integer ¢, 1 < ¢ < n — 1, such that

wj+1] ifj=4
Tljl=< wj-1] ifj=¢+1

w[j) ifj#£é1+ 1L

This is in fact the definition we will take for a minimal change for permutations.
The Trotter-Johnson algorithm is a nice example of a minimal change algo-

rithm for generating the n! permutations. It can be most easily described recur-
sively. Suppose we have a listing of the (n — 1)! permutations of {1,...,n — 1}
in minimal change order, say

T = [mg,m, .. oy Wn-1)t-1)

Form a new list by repeating each permutation in the list T*~! n times. Now
insert the element n into each of the n copies of each permutation 7;, as follows.
If ¢ is even, then we first insert element n after the element in position n — 1,
then after the element in position n — 2, etc., and finally preceding the element in
position 1. If ¢ is odd, then we proceed in the opposite order, inserting element n
into the n copies of ; from the beginning to the end of .

We illustrate the procedure for n = 1,2, 3 and 4. We begin with n = 1, where

we have
T = [1].

Next, we obtain
T2 =([1,2},[2,1]]

58 Generating Elementary Combinatorial Objects

The next list, T3, would be produced by taking three copies of each permutation
in T2, and inserting the element 3 as follows:

W
D N DO bt et
el =N NN

This gives the following:
T2 =1[1,2,3], [1,3,2], [3,1,2], [3,2,1], [2,3,1], [2, 1, 3]]-

To do the next case (n = 4), we would repeat each permutation in T2 four
times, and insert the element 4 as follows:

1 2 3 4
1 2 4 3
1 4 2 3
4 1 2 3
4 1 3 2
1 4 3 2
1 3 4 2
1 3 2 4
3 1 2 4
3 1 4 2
3 41 2
4 3 1 2
4 3 2 1
3 4 2 1
3 2 4 1
3 2 1 4
2 3 1 4
2 3 41
2 4 3 1
4 2 3 1
4 2 1 3
2 41 3
2 1 43
2 1 3 4

Permutations 59

This yields T*:

T4 =[1,2,3,4], {1,2,4,3], (1,4,2,3], [4,1,2, 3],
[4,1,3,2], [1,4,3,2], [1,3,4,2], [1,3,2,4],
[3,1,2,4], [3,1,4,2], [3,4,1,2], [4,3,1,2],
[4,3,2,1], [3,4,2,1], [3,2,4,1], [3,2,1,4],
12,3,1,4}, [2,3,4,1], [2,4,3,1), [4,2,3,1],
[4,2,1,3}, [2,4,1,3), [2,1,4,3], [2, 1, 3,4]].

We now develop ranking and unranking algorithms for the Trotter-Johnson or-
dering. Let’s look first at ranking. Suppose

r = [x[1],...,x[n]],
where 7[k] = n. Define a permutation of #' of {1,...,n — 1} as follows:
w' ={n(l},...,w[k = 1], x[k + 1],...,x[n]].

Observe that m was constructed from 7' by inserting the element nn. Since each
permutation in T"~! was replicated n times in the construction of T", we see that

nrank(m’') < rank(w) < nrank(z’) +n - 1.

The exact rank of 7 is determined from the position of 7’ into which the element
1 was inserted (there are in fact two cases, depending on whether rank{#’) is even
or odd).

In this way, we obtain the following recursive formula for rank:

rank{x) = nrank(#') + ¢,

where
el - k ifrank{n',n — 1) is even
1 k-1 ifrank(n’,n— 1) is odd.

As an example, we compute rank([3,4,2,1]). We have n = 4, £ = 2 and
7' = [3,2,1]. Now, rank([3, 2, 1]) = 3 could be computed recursively, using the
same method. Since 3 is odd, we see that

rank([3,4,2,1) =4x3+2-1=13.

This recursive formula can be modified to produce a non-recursive algorithm
for computing rank, which we present as Algorithm 2.17.

60 Generating Elementary Combinatorial Objects

Algorithm 2.17: TROTTERJOHNSONRANK (7)

r«0
forj «2ton
(k1
11
while n[z] # 5
if nfs] < j
do ¢ do thenk — k+1
i+l
ifr =0mod 2
thenr — jr+j -k
| elser « jr+k—1
return (r)

Now we study unranking. We again approach the problem recursively, using
essentially the same approach that we did for ranking. Suppose we are given n,
and 0 < r < n! — 1. Define

Suppose that the permutation 7’ of {1,...,n — 1} has rank »'. Then compute
k = r—nr'. Finally, insert n into 7’ in position £+1 if #* is odd: and into position
n—kif r' is even. (When we insert the new element n into a given position of *,
the element in that position, and all elements to the right, are shifted one position
to the right.)

As an example, suppose we want to unrank r = 13 when n = 4. We first
compute ' = 3. The permutation of {1,2, 3} that has rank 3 is 7' = {3,2,1].
Now, k = 13 — 4 x 3 = 1. Since r' = 3 is odd, we insert the element 4 into 7’ in
position 2. Thus we obtain 7 = [3,4,2,1].

Algorithm 2.18 is a non-recursive unranking algorithm that is based on this
method.

Now we develop a successor algorithm. This is somewhat more complicated.
Suppose we are given m, a permutation of {1,..., n}, and we want to compute
the successor of 7 in the list T, Suppose that #[k] = 7, and let 7’ be constructed
as we did in our discussion of unranking, by deleting the element n from #. There
are essentially four cases that arise:

Permutations 61

Alporithm 2.18: TROTTERJOHNSONUNRANK (n,T)

1] « 1
T2 «0
forj « 2ton
'1'1 «— I_Ln"'_IJ
k T —]"I‘Q
if r; is even
fort — j — ldowntoj - &
do T then { do i+ 1]'4— w[i]
wlj —k + j
fori « j—ldownto k + 1
else { donli + 1] « =i
nlk+ 1] « 7;

\1’2 “—rn
return (7)

1. Suppose that rank{z") is even and k # 1. Then the successor of 7 is con-
structed by interchanging =[k] and 7[k — 1].

2. Suppose that rank(#') is odd and k& # n. Then the successor of x is con-
structed by interchanging #[k] and #[k + 1].

3. Suppose that rank{z') is even and k = 1. Suppose that the successor of 7’
(in the list T"~1) is constructed by interchanging #'[j] and =’[j + 1). Then
the successor of 7 is constructed by interchanging =[j + 1] and #[; + 2].
(Note that #'[j] = #[j + 1] and #'[§ + 1]} = #{j + 2].)

4. Suppose that rank(n’) is odd and £ = n. Suppose that the successor of
7" in T?~! is constructed by interchanging #'[j] and #’[j + 1]. Then the
successor of 7 is constructed by interchanging 7[j] and =[j + 1]. (Note that
n'[j] = x5l and #'[j + 1] = =} + 1].)

Observe that cases 1 and 2 occur most of the time. (Ia fact, if = is chosen at
random from the set of all permutations of {1,...,n}, then the probability that
one of case 1 or case 2 occurs is (n — 1)/n.) The pair of elements of = to be
interchanged is computed immediately in these two cases. Cases 3 and 4 require
determining the successor of 7’ recursively, within the list T*~!. The successor
of n* is formed by interchanging two adjacent elements, say z and y. Then the
successor of 7 is also constructed by interchanging z and y.

The above four cases assume that rank(#*) is known. We would prefer to find
an algorithm to compute successors that does not require a rank computation.
However, we never need to know the precise value of rank(7') — we just need
to know whether it is even or odd. 1t turns out that we can compute the parity of
rank(z') fairly easily.)

62 Generating Elementary Combinatorial Objects

A permutation 7 of {1,...,n} is called an even permutation if « can be trans-
formed into the permutation (1,2, ...,n] by performing an even number of in-
terchanges of two elements (recall that this operation is called a transposition).
A permutation is an odd permuiation, otherwise. For example, the permuta-
tion # = [5,1,3,4,2] is an even permutation since it can be transformed into
(1,2,3,4, 5] by first interchanging the elements 5 and 1, and then interchanging
the elements 5 and 2. 1t can be shown that exactly half of the n! permutations of
an n-set are even permutations.

Each permutation 7; € T™ is obtained from the previous one, m;_1, by a single
transposition. Also, the permutation having rank 0 is the identity permutation,
which is an even permutation. Thus, the parity of a permutation 7 (i.e., even or
odd) is the same as the parity of rank().

There are some relatively easy ways to compute the parity of a permutation 7
of {1,...,n}. One way is to count the number of N of ordered pairs (i, j) such
that #[i] > #[j] (where 1 < i < j < n). Then the parity of 7 is the same as the
parity of N. A straightforward computation of N requires time ©(n?2).

Another, more efficient, approach is to represent 7 by a directed graph which
we name D,. A directed graph consists of a set of vertices V and a set £ of
directed edges or arcs. Each arc e € £ is an ordered pair (1, v), where u,v € V.
If u = v, then the arc (u, v} is a loop.

The directed graph D, is defined to have vertex set V = {1,...,n} and arc
set £ = {(3,7[i]) : 1 < i < n}. The grapb D, consists of a union of disjoint
directed circuits. (Note that some of these circuits may be of size 1. These are
loops in Dy, which occur whenever [i] = i.) If D, contains exactly ¢ directed
circuits, then it can be shown that the parity of «r is the same as the parity of n —c.
This method of computing parity has complexity ©(n); so, it is more efficient
computationally, at least for large n.

Algorithm 2.19 computes the parity of a permutation using this method.

We are now in a position to present a successor algorithm. Algorithm 2.20 is
based on the four cases enumerated above. It is implemented in a non-recursive
manner, however.

We illustrate Algorithm 2.20 by computing successor([4, 3,1, 2]). Here, we
have n = 4. Initially, st = 0, p = [4,3,1,2], done = true and m = 4,
We next compute d = 1, p = (3,1,2] and PERMPARITY(3,(3,1,2]) = 0.
Therefore we set m = 2 and st = 1, and execute the outer while loop again,
In the second iteration of the whileloop, we getd = 1, p = [1,2], and
PERMPARITY(2,(1,2]) = 0. Hence, we set m = 1 and st = 2, and execute
the outer while loop again. In the third iteration of the while loop, we getd = 2,
p = [1], and PERMPARITY(1,[1]) = 0. Hence, we interchange w[4] and x[3], and
successor([4,3,1,2]) = [4,3,2,1].

Permutations

Algorithm 2.19: PERMPARITY (n,7)

fori — ltondoafi] + 0

c+0
forj—1ton
ifalj] =0
ce—c+1
afj] «1
do then {z + j

while #[i] # j do {;[: l[z}

return ((n — ¢) mod 2)

Algorithm 2.20: TROTTERJOHNSONSUCCESSOR (n,)

external PERMPARITY()

ste0

for i + 1 ton do pfi] « [i]

done « false

men

while m > 1 and not done

(d + 1

while p[d] # mdod «~ d+1

fori « dtom — 1do p[i] + p[i +1]

par «— PERMPARITY(m — 1, p)

if par =1

ifd=m
thenm «m -1

temp « w[st + d]
nist +d] & w[st +d + 1j
n[st +d + 1] « temp
done « true

(ifd =1

méem-—1

then {st —st+1

else ¢ temp « m{st + d]

else nist +d] « w[st +d - 1]

n[st +d — 1] + temp

done « true

then
do ¢

ifm=1)
then return (“undefined™)

64

Generating Elementary Combinatorial Objects

25

Notes

Section 2.1

Several books which contain information on combinatorial generation include
Bogart {6}, Cameron [16], Nijenhuis and Wilf {80}, Reingold, Nievergelt and
Deo [90], Stanton and White [101], Tucker [107], Wells [111]. Wilf (114] and
Williamson [115].

Section 2.2

The topic of Gray codes has been an active research area, particularly in the last
10 years. Good starting poeints for learning more about this area are Savage {94]
and Wilf [114, Chapters 1 and 2].

Section 2.3
The revolving door algorithm is due to Nijenhuis and Wilf; see {80, 114].

Section 2.4
The Trotter-Johnson algorithm was described independently in {106] and {50].

Exercises

2.1

22
23
24
2.5
26
2.7

28
29

2.10

Let S = {2,3,5,7,11,13}. Determine the rank of the subset {3, 7,13} among the
subsets of S in lexicographic order, and verify that

unrank(rank({3, 7,13})) = {3,7,13}.

’

Find all possible Gray codes for n = 4.
Prove Theorem 2.2,

Find the successor and the rank of the binary vector 01010110 in the Gray code G8.
What three-clement set has rank equal to 1000 in co-lex order?

Find a successor algorithm for the co-lex ordering of k-subsets of an n-element set.
What is the rank of {3, 6, 7,9} considered as a 4-subset of {0, ..., 12}, in lexico-
graphic, co-lex and revolving door order? What is its successor in each of these
orders?

Prove Theorem 2.4.

Suppose 1 < k < n, and we delete all vectors in the binary reflected Gray code G™
that do not correspond to subsets of cardinality k. Prove that the vectors that remain
comprise a minimal change ordering for the k-element subsets of an n-set (in fact,
it is precisely the revolving door ordering).

Another way to order the subsets of an n-element set is to order them first in in-
creasing size, and then in lexicographic order for each fixed size. For example,

Exercises 65

2.11

212

2.43

214

when n = 3, this ordering for the subsets of S = {1, 2,3} is:

8,{1}, {2}, {3}, {1,.2}.{1,3},{2,3}, {1,2,3}.
Develop unranking, ranking and successor algorithms for the subsets with respect
to this ordering.
Find the rank and successor of the permutation [2, 4,6, 7, 5, 3, 1] in lexicographic
and Trotier-Johnson order.
A derangement is a permutation [n{1], 7[2], .. . , #[n]] of the set {1, 2, 3, ..., n} such
that w[s] # 4, forall{ = 1,2,...,n. Let D, denote the number of derangements
of an n-element set. Prove the recurrence relation D, = (n — 1){Dp_1 + Da-2).
Then, use this recurrence relation to develop an algorithm to generate all the de-
rangements.
A muliiset is a set with (possibly) repcated elements. A k-muitiset is one that con-
tains k elements (counting repetitions). Thus, for example, {1,2,3,1,1,3} is a
6-multiset. The k-multisets of an n-set can be ordered lexicographically, by sort-
ing the elements in each multiset in non-decreasing order and storing the result as
a list of length k. Develop uncanking, ranking and successor algorithms for the
k-multisets of an n-set.
k-permutations were defined in Section 1.2.1. Assuming that & < n, develop a
minimal change algorithm to generate the k-permutations of an n-set with a minimal
change algorithm. At each step, this algorithm should change exactly one element.

3

More Topics in Combinatorial Generation

3.1 Integer partitions

Let m be a positive integer. A partition of m is a representation of m as a sum of
positive integers, say m = a; + ...+ a,. The summands a3, .. ., a, are called
the parts of the partition, and their order is ignored. The notation P(imn) is used
to denote the number of partitions of m; P(m) is called a partition number.

The first few partition numbers are P(1) = 1, P(2) = 2, P(3) = 3, P(4) = 5,
P(5) = 7 and P(6) = 11. As an example, we list the 11 different partitions of
the integer 6:

6

5+1

4+2

4+1+1

3+3

3+241
341+1+1
24+2+2
2+2+1+1
24+1+1+1+1
1+14+1+14+1+1

Although partitions have been studied by mathematicians for hundreds of years
and many interesting results are known, there is no known formula for the values
P(m). The growth rate of P{m) is known however; it can be shown that P(m)
is® (ew\/ZmIS/m)'

A partition ™ = @) +. . . +ay, is said to be in standard form ifa; > a3 > ... >
an. (Note that the 11 partitions of 6 given above are all in standard form.) We
will sometimes write a partition in standard form as a list, i.e., [a1,a3,...,an],
particularly in algorithms.

68 More Topics in Combinatorial Generation

Our first algorithm, Algorithm 3.1, is a simple rccursive algorithm that can be
used to generate all the partitions of m in standard form.

Algorithm 3.1: GENPARTITIONS (m)

procedure RECPARTITION(m, B, N)
ifm=0
then output ([a,,...,an])
for i «+ 1 to min(B,m)
else { {aN+1 — 1
RECPARTITION{m — #,i, N 4+ 1)

main
RECPARTITION{m, m,0)

In the procedure RECPARTITION , the values for @y, . .. ,ay have been chosen
already. The parameter B is an upper bound on the size of the next part to be
chosen, and m will be the sum of the values a4, 2n42, ... (Which have not
been chosen yet). Thus ay1 can take on any value between 1 and B. If we
define a4 to have the value 1, then 7 becomes an upper bound on the values
of the remaining parts (since we are constructing the partition in standard form).
Also, the value of m will be decreased by 4, and N is increased by one, when the
procedure RECPARTITION is called recursively. Algorithm 3.) simply calis the
procedure RECPARTITION with B = m and N = 0in order to get things started.

The Ferrers-Young diagram of a partition is formed by first writing the partition
in standard form, say m = a; + ...+ a,, and then constructing an array of dots,
say, where the ¢th row contains a; dots (¥ < z < n) and the rows of dots are all
left-justified.

For exarmple, the partition 7 = 4 + 2 + 1 has the following Ferrers-Young
diagram:

L] [X)
[]

D=

Suppose we have a Ferrers-Young diagram D, and we construct the diagram D*
in which the rows of D become the columns of D*. Then D" is called the con-
Jjugate diagram of D, and the corresponding partitions are called conjugate par-
titions.

For example, the conjugate of the diagram D displayed above is the following:

e &6 o
* o

®

L J

D* =

Hence, the two partitions 7 =4+ 2+ 1and 7 =3 + 2 4+ 1 + 1 are conjugates.

Integer partitions 69

Suppose we consider the set P(m) of all partitions of m. It is easy to see that
the operation of conjugation is a bijection of P(m) to itself. Further,if n < m
is a positive integer, then the operation of conjugation is a bijection of the set of
partitions of m having n parts with the set of partitions of m in which the largest
part has size n. Hence, we have the following fundamental result.

THEOREM 3.1 The number of partitions of m having n parts is the same as the
number of partitions of m in which the largest part has size n.

Since conjugation is such an important operation in the study of integer par-
titions, it seems useful to describe an algorithm to compute the conjugate of a
partition given in standard form. This is done in Algorithm 3.2.

Algorithm 3.2: CONJPARTITION ([61,...,a4))

fori «— 1toa,
dob; « 1

n' « a

forj«— 2ton
do fori «— ltoa;

dob; «b;+1

retarn ([b1,...,5,])

We will use the notation P(m,n) to denote the number of partitions of m
having n parts. Clearly P(m, 1) = P(m,m) = 1 for all integers m > 1. It will
be convenient to define P(m,0) = 0 forall m > 1, and P(0,0) = 1.

It is obvious that the following equation holds:

= Z P(m,n). (3.1)
n=1

No general formula for P(m, r) is known. However, for any fixed value of n, it
is possible to compute a formula for P(m,n). For example, it is easy to prove

that m
P(m.,2) = [EJ .
With a bit more work, it can also be shown that
2
Pm,3) = |21 4] .

In general, it is known that P(m, n) is ©(m"™~") for any fixed integer m.
It is straightforward to generate all the partitions of m in which the largest part
has size n. Algorithm 3.3 in fact does this.

70 More Topics in Combinatorial Generation

Algorithm 3.3: GENPARTITIONS2 (m, r)

procedure RECPARTITION(m, B, N)
ifm=20
then output ([a;,. .. ,an])
for i « 1to min(B,m)
else do {aN.H —i
RECPARTITION(m — ,i, N + 1)

main
a] ¢« n
RECPARTITION(m — n,n,1)

The recursive procedure RECPARTITION is the same as in Algorithm 3.1. The
only difference is in how we invoke this procedure. Now we set the first (largest)
part to have size n, and then generate all partiions of m — = in which all parts
have size at most n.

Now, suppose that we want to generate all the partitions of m into n parts.
Algorithm 3.4 does this by using Algorithm 3.3 to generate the partitions of m
in which the largest part has size n, and then conjugating each partition that is
produced, using Algorithm 3.2. (Alternatively, it is not difficult to construct a
recursive algorithm to generate the desired partitions directly. This is left as an
exercise for the reader.)

Algorithm 3.4: GENPARTITIONS3 (m,n)

external CONJPARTITION()
procedure RECPARTITION2(m, B, N)
fm=0
{[bl, ..+, bnr] = CONIPARTITION([a1,, - ., @y])
output ([b;,...,bn])
for i « 1to min{B,m}
else do anNy) &)
RECPARTITION2(m — i,i, N + 1)

main
2 ¢ n
RECPARTITION2(m — 0,1, 1)

We next look at some interesting relations involving the numbers P(m,n). In
the proofs of the next results, we will use the notation P(m, n) to denote the set
of all partitions of m having n parts (so |P(m, n)] = P(m,n)). Here is one basic
result involving the numbers P(m, n).

Integer partitions 71

THEOREM 3.2 For positive integers m,n withm > n,
P(m,n)=P(m -1,n~1) + P(m - n,n).

PROOF The idea of the proof is to show that P(m — 1,n — 1) is equal to the
number of partitions in P(m, n) having at least one part of size 1; and P(m—n, n)
is equal to the number of partitions in P{m,n) having no part of size 1. This is
done by defining two mappings

¢ :P{mn)oPm-1Ln-1)

and
¢3 : P(m,n) = P(m —n,n),

as follows:
¢l([a’lr"-ran}) = [als"'van—llv and
d2(lar,...,an)) = a1 - 1,... 8, ~ 1].

In the above, partitions are in standard form.

Clearly ¢, is a bijection between the set of partitions in P(m,n) having at
least one part of size 1 and P(m — 1,n — 1). It is also easy to see that ¢ is a
bijection between the set of partitions in P(m,n) having no parts of size 1 and
P{m — n,n). This completes the proof.

Note that Theorem 3.2 holds when m = n since P(m, m) =1 and
Pm-1m-1)+PO,m)=1+0=1.
Similarly, when » = 1 and 1 > 1, we have P(m, 1) = 1 and
Pm-100+Pm-1,1)=0+1=1.
Another relation that can be proved easily is the following,
THEOREM 3.3
P(m,n) = i P{m — n,i).

=1

PROOF Forl < i < n, we show that P(m —n, 1) is equal to the number of parti-
tions in P(m, n) in which there are n — § parts equal to 1. This is done as follows.
First, define P (1, n); to consist of all the partitions in P(m, n) having exactly
n — i parts equal 10 1. Observe that a partition in standard form, [a,,...,ay], is
in the set P(m, n); if and only if

ai>landgiyg =... =8 =1

72 More Topics in Combinatorial Generation

For 1 <t £ n, we define a mapping
éi : P(m,n); = P(m — n,i},
as follows:
¢¢([a1,.. ,a,,]) = [01 - 1, Y 1].
It is easy to see that each ¢; is a bijection, and the result follows.]

The recurrence given in Theorem 3.2 provides a convenient method of comput-
ing the value of P(m,n) without generating all the relevant partitions. The idea
is to compute ail the values P(i, j) such that 1 <4 < mand 1 < j < min{i, n},
in order, using this recurrence relation. This is done in Algorithm 3.5.

Algorithm 3.5: ENUMPARTITIONS (m,n)

P(0,0) + 1
forie—ltom
do P(¢,0) «+ 0
fori+—1ltom
for j + 1to min{¢,n}

do ifi<2j
do { then P(i,j) « P(i-1,7-1)
eISCP(t,J) ‘_P(i_ lrj'—l)'l'P(i'_j’J)

return (P)

Algorithm 3.5 allows P(m,n) to be determined by computing ®{mn} addi-
tions of integers. Notice that this bottom-up method is much more efficient than
the top-down approach of computing the numbers P(m,n) recursively. The al-
gorithmic design technique being applied is dynamic programming, which was
discussed in Section 1.8.2. Table 3.1 records thé values of P(m,n) and P(m),
forl<n<m<15

Algorithm 3.5 can easily be adapted to compute P(m). This method of com-
puting P(m) will require ©(m?) additions of integers. We now describe a method
in which the number of additions is reduced to ©(m3/2). The method makes use
of the following recursive formula for P(m) that was first discovered by Euler.

THEOREM 3.4
Pem= Y (P (m- 3"”2‘3')

{3>1:3j2—j<2m}

+ Y (e (m - &1) :
{5>1:3j3+ji<2m} 2

Integer partitions

TABLE 3.1
A table of partition numbers
P(m,n)

m|Pm)|n=1 2 3 4 5 6

1 1 1

2 2] i

3 3 1 1 1

4 5 1 2 1 I

S 7 1 2 2 1 1

6 11 1 3 3 2 1 1

7 15 1 3 4 3 2 1

8 22 t 4 5§ 5 3 2

9 30 1 4 7 6 5 3
10 42 1 5 8 9 7 5
1t 55 1 5 10 1 10 7
12 75 1 6 12 15 13 1l
13 97 1 6 14 18 18 14
14 128 1 7 16 23 23 2
15 164 1 7 19 27 30 26
16 212 1 8 21 4 37 35
17 267 1 8 24 39 47 4
18 340 1 9 27 47 57 58
19 423 1 9 30 54 70 7
20 530 1 10 33 64 8 90
23 653 1 10 37 72 100 110
22 807 1 I1 40 84 119 136
23 984 1 11 4 94 141 163
24 1204 t 12 48 108 164 199
25 1455 1 12 52 120 192 235
26 1761 1 13 56 136 221 282
27 1 2112 [13 61 150 255 331
28 | 2534 1 14 65 169 291 39
29 | 3015 1 14 70 185 333 454
30 | 3590 I 15 75 206 377 532

74 More Topics in Combinatorial Generation

Theorem 3.4 allows P(m) to be computed as a sum of ©(m'/2) smaller values
P(j). If we compute all the values P(1),..., P{m) by this method, the total
number of additions performed is @(m3/?). Algorithm 3.6 does this in such a
way that no multiplications need to be performed (except for multiplication by
the constant 3).

Algorithm 3.6: ENUMPARTITIONS2 (m)

P(1) + 1
fori « 2tom
[sign + 1
sum + 0
w1
j1
Wweew+J
whilew < m
(if sign = 1
then sum « sum + P(i — w)
else sum « sum — P(i — w)
ifw <1
if sign =1
doJ then then sum « sum + P(i — ')
else sum + sum — P(i — w')
ww+3i+1
jeg+t
Wwew+g
| sign +— —sign
| P(3) ¢ sum
return (P)

3.1.1 Lexicographic ordering

In this section, we develop ranking, unranking and successor algorithms for
P(m,n), based on a modified lexicographic ordering. Given a partition m =
a1 + ...+ 6, in P{m,n) is said to be in reverse standard formifa, < ... < a,.
We will use the lexicographic ordering of P{m, n), where the partitions are writ-
ten in reverse standard form as lists of length n. We will call this the rsf-lex
ordering, for short.

Integer partitions 75

As an example, we (abulate the nine partitions in P{10, 4) in rsf-lex order:

standard form reverse standard form

ARN] [1,1,1,7]
6,2,1, 1] [1,1,2,6]
5,3,1,1) [1,1,3,5]
4,4,2, 1] 1,1,4,4)
5,2,2,1] [1,2,2,5]
[4,3,2,1] [1,2,3,4]
3,3,3,1] (1,3,3,3]
[4,2,2,2] 2,2,2,4]
3,3,2,2] [2,2,3,3]

It can be shown that Algorithm 3.4 generates the partitions in P(m, n) in rsf-lex
order.

We will first develop a successor algorithm for P(m, n) in rsf-lex order. Ob-
serve that the last partition in rsf-lex order is characterized by the property that all
of its parts are equal to [2] or [2]. This is equivalent to saying thata; < an+1
when the partition is written in standard form. (In the example above, the partition
[3,3,2, 2] is the last partition, since a; = 3,64 =2and3 <2+ 1)

If we are given a partition m = a; + ...+ a, in standard form and it is not the
last partitton in rsf-lex order, then we define 7 to be the smallest integer such that
a1 > a; + 1. Note that 2 < i < n. Then the partition

m=q +...+ a4

is the last partition in P(m’,¢ — 1) in rsf-lex order.

The successor of the partition m = @, + ... + a4 is then computed as follows.
We find the first partition in P(m' — 1,4 — 1) (in rsf-lex order) having 2;_, >
a¢ + 1. This is easily seen to be

m=al+...+6a._,,

where

ay=...=a;_,=a+1

and
ai=m'-({i-2)(a;+1)~-1.

Now we replace the parts @,,...,@:_; by a},...,ai_,. Finally, we increase the
value of a; by one.

Algorithm 3.7 is based on the ideas discussed above. As an example, we com-
pute the successor of the partition [5,5, 4,2, 1] in P(17,5). The value i defined
above is computed tobe ¢ = 4. Sinceas = 2andm' = 545+ 4 = 14, we
have that @} = 7 and @), = a} = 3. The successor of the partition [5, 5,4, 2, 1] is
therefore [7,3,3,3,1].

76 More Topics in Combinatorial Generation

Algorithm 3.7: PARTITIONLEXSUCCESSOR (sn, 7, [a1,...,a,])

ie2
whilei <namda; <a;+1
doi+—1i+1
ifi=(n+1)
then return (“undefined”)
(a; —a; + 1
de -1
for j + i — 1 downto 2
else ¢ 4o {d1—d+a_,--—a,-
2; +— a;
g —a+d
| return ([ay,.- ..

)]

Our ranking and unranking algorithms are based on the proof of Theorem 3.2.
In this proof, P(m,n) is partitioned into two sets. The first set consists of all
partitions in P(m,n) that contain at least one part equal to 1, and the second
set consists of all partitions in P(m,n) that do not contain a part equal to 1.
Notice that all the partitions in the first set will precede all the partitions in the
second set in rsf-lex order. A partition in the first set will have rank between 0
and P(m — 1,n — 1) — 1, and a partition in the first set will have rank between
P(m —1,n—-1)and P(m,r) - 1.

In general, the function rank can be described by means of a simple recursive
formula that is suggested by the two bijections ¢1 and ¢2 used in the proof of
Theorem 3.2, The formula is as follows:

_ Jrank([a,,...,an-1]) ifae, =1
rank([ar,.. ., an]) = {rank([a’l, @D+ Pm-1n-1) ifa, > 1,

where @} = a; — 1,1 < i < n. This formula is easily iterated, and can be
converted into a non-recursive algorithm. The result is presented as Algorithm
3.8. Note that the first step in this algorithm is to first precompute and store all
the partition numbers P(i,) with § < m and j < n, using Algorithm 3.5. Then
these numbers will be available for use throughout the algorithm.

Integer partitions 77

Algorithm 3.8: PARTITIONLEXRANK (m,n,[a1,...,an])

external ENUMPARTITIONS()

ENUMPARTITIONS(n, m)
fori +— 1ton

do b; « a;
re0
while m > 0
(if b, =1
then {m(—m—l
ne—n-1
doJ fori—1lton
else de b,' —b -1
rer+Pim-1n-1)
mem-n

To illustrate, we evaluate rank[5, 5, 4, 2, 1) using Algorithm 3.8, Initially, we
haver = 0,m = 17, n = 5 and [b, b2, ba, bg, bs] = (5,5,4,2, 1]. In the various
iterations of the while loop, the following computations are done:

o bs =1, sowesetn = 16 andn = 4,
s by > 1, so we set [by,b,b3,b4) = [4,4,3,1], r = P(15,3) = 19, and
m =12,

e by=1,sowesetm =1landn = 3.

e by > 1, s0 we set [by,be,b3] = [3,3,2], r = 19 + P(10,2) = 24, and
m=8§8.

o by > 1,soweset[by, by, b3] = [2,2,1],r = 244+ P(7,2) =27, andm = 5.

e by=1sowesetmm =4andn =2,

by > 1,50 we set [by, be) = [1,1],7 = 27 + P(3,1) = 28,and m = 2.
s bo=1sowesetm=1andn=1.
o by =1, sowesetm =0andn = 0.

Thus, the result is that rank([5, 5, 4, 2, 1]} = 28.

The behavior of the unranking function can be analyzed in 2 similar manner,
and an algorithm developed to implement it. We present such an algorithm as
Algorithm 3.9.

78 More Topics in Combinatorial Generation

Algorithm 3.9: PARTITIONLEXUNRANK (m,n,7)

external ENUMPARTITIONS()
ENUMPARTITIONS(n, m)}
fori—1ton
doa; «+ 0
while m > 0
(ifr < P(m—1,n—1)
an —ayp +1
then {m+ m—1
n+n-1
fori—1ton
doa; —a;+1
re—r—Pim-1,n-1)

dow

else

me—m—n
return ([as, - Gn])

3.2 Set partitions, Bell and Stirling numbers

In the last section, we discussed partitions of integers. Equivalently, we could
have defined P(m) to be the number of ways of partitioning a collection of m
identical elements into non-empty subsets. In this section, we consider partitions
of a set of m distinct elements into non-empty subsets. (Recall that a partition of
a set was defined in Section 1.2.3.)

For a posilive integer m, let S(m) denote the set of all partitions of {1,...,m}
into non-empty subsets, For positive integers m and n with n < m, let S(m, n)
denote the set of all partitions of {1,...,m} into exactly n non-empty subsets.
The Bell number, B(m), is defined to be B(m) = |S(m)|, and the Stirling num-
ber of the second kind, S(m,n), is defined to be S{(m,n) = |S{m, n)|. Itis clear
from the definitions that

B(m) =) _ S(m,n).
n=1

The first few Bell numbers are B(1) = 1, B(2) = 2, B(3) = 5, B(4) = 15
and B(5) = 52. As an example, we tabulate the 15 ways to partition the set
{1,2, 3,4} into non-empty subsets,

{11}, {2}, {3}, {9}} {{1.2}.{3}.{4}}
{{1,4},{2}.{3}} ({23}, {1} {4}} ({2

EE; h{2}{4}}
{3,411}, {2}} {{1.2},(3.4}} E}i,
{1

{1}, {3}}
h{2,4}}
4}, {3}}
:3,4}}

14},{2,3}} {{2,2,3}, {4}}
51,3, 4},{2}} {{2.3,4}.{1}}

NN W

3
*

Set partitions, Belf and Stirling numbers 79

From this we see that 5(4,4) = 1, $(4,3) =6, 5(4,2) = 7and S(4,1) = 1.

The first result we prove in this section is an explicit formula for S(m,n). The
proof will make use of a result known as the principle of inclusion-exclusion. We
state the following without proof.

THEOREM 3.5 (Principle of inclusion-exclusion) Suppose that X is a finite set,
and X,..., X, C X. Forany I C {1,...,n}, define

x,:Ux...
i€]
Then
= Y (-pMixg|

IC{1,...n}

0

f==1

Now, suppose X denotes the set of all functions f : {1,...,m} — {1,...,n}.
For 1 < i < n, let X; consist of all functions f € X such that f(j} # ¢ forall j,
1 € 7 £ m. ki is easy to see that

X1l = (n - I)™

forany I C {1,...,n}, where x; is as defined above. Also, there are exactly (;‘)
choices for I C {1,...,n} with {I| = j. Thus, applying Theorem 3.5, we se¢
that

lx\gx‘ < J_E::o(-l)f (Ha-im
= 5::](-1)""' (’;‘)Jm

where, in the last line, we replace j by n — 7 and make use of the fact that (n
(3)-
b
Since a function f € X\ U, X; if and only if it is a surjective function, we
have proved the following resuit.

7} =

-3

THEOREM 3.6 There are exactly

B ()

=1

surjective functions f : {1,...,m} = {1,...,n}.

80 More Topics in Combinatorial Generation

How does this result relate to Stirling numbers? Suppose f : {1,...,m} —
{1,...,n} is a surjective function. Then it is clear that

(1), 7)

is a partition in S{m, n). Further, there are exacily n! functions f that give rise in
this way o any given partition in S(m, n). Thus we obtain the following formula
for S(m,n).

THEOREM 3.7 For positive integers m and n withm > n,

n

S(m,n) = Z 1)""()

The numbers S(m, n} also satisfy a simple recurrence relation, which we state
and prove now.

THEOREM 3.8 For positive integers n and m withn > m,
Simyn)=nSm-1,n)+S(m-1,n-1).
PROOF We will define a bijection
¢:(Sm-1Lnr)x{l,...,.n})US(m —1,n—-1) > S(m,n).
Suppose that {4;,...,4,} € S(rn — 1,n) and 1 < ¢ < n. Then define
O({A1, ..., An},i) = {A1,..., A1, A, U {m}, Agsr, .. -, An).
Further, suppose that {A,,..., Ar,_1} € S{m - 1,n — 1). Then define
S({A1,..., An_1)) = (AL,..., Anet, (M} }.
It is clear that ¢ is the desired bijection, and the result follows. |
Note that, in order for Theorem 3.8 10 be valid, we need to define initial condi-
tions as follows:

S(m,m+1)=0 forallm>0
S{(m,0) =0 forallm > 1,and
$(0,0) = 1.

Likewise, the Bell numbers satisfy a recurrence relation. Note that in the fol-
lowing theorem, we define B(0) = 1 as an initial condition.

Set partitions, Bell and Stirling numbers 81

THEOREM 3.9 For any integer m > 1, we have that

B =3 (™) 30

=0
where B(0) = 1.

PROOF Suppose that 1 < i < m. Then there are exactly (T_‘ll) different sets
Y C {l,...,m — 1} suchthat |Y| = i — 1. Given Y and ¢, there are exactly
B(m — i) partitions in S(m) in which Y U {3} is one of the sets in the partition.
Thus we have

B(m) = i (’:‘_' 11) B(m ~ i)

where, in the last line, we replace ¢ by m — i and make use of the fact that
(m-‘-lx) = (m'—l)-
m—1— 3

Any one of Theorems 3.7, 3.8 or 3.9 can be vsed to compute the relevant Stir-
ling or Bell numbers. As an example, we present an algorithm to compute a
Stirling number that is based on Theorem 3.8. Algorithm 3.10 uses the same
dynamic programming strategy that was employed in Algorithm 3.5.

Algorithm 3.10: STIRLINGNUMBERS2 (m,n)

S(0,0) + 1
fori+—1tom

do S(1,0) « 0
fori + Qtom

do S(i,i +1) + 0
fori—ltom

a {forj + 1to min{i,n}

do S(i,j) + j S ~1,7) + SG— 4.5 - 1)

return (S)

We close this section by presenting a table of Stirling and Bell numbers; see
Table 3.2.

3.2.1 Restricted growth functions

In this subsection, we develop algorithms for generating set partitions in lexico-
graphic order, as well as ranking and unranking algorithms. The first order of

82 More Topics in Combinatorial Generation

TABLE 3.2
A table of Stirling numbers of the second kind
S(m,n)
m| B(m)| n=1 2 3 4 5 6 7 8 9 10
1 1 1
2 2 1 1
3 5 1 3 1
4 15 1 7 6 1
5 52 1 15 25 10 1
6 203 1 31 90 65 15 1
7 877 1 63 301 350 140 21 1
8 4140 1 127 966 1701 1050 266 28 1
9| 21147 1 255 3025 7770 6951 2646 462 36 1
10 | 115975 1 511 9330 34105 42525 22827 5880 750 45 I

business is to decide how lexicographic ordering should be defined. lt is both
natural and convenient to consider a different representation of a set partition that
is called a restricted growth function. Let m > 1. Define R{m) to consist of all
functions f : {1,...,m} = Z* which satisfy the following conditions:

=1 (3.2)
F6) S max{f(1),..., fG- 1)} +1, f2<i<m. (33)

A function f € R(m) is called a restricted growth function of length m. We will
represent a function f € R(m) as the m-tuple {f(1),..., f(m)]. Thus, we will
think of R (m) as being a set of m-tuples of positive integers.

For any integer m > 1, there is a simple bijection between the two sets S(m)
and R(m). These bijections are described as Algorithms 3.11 and 3.12. Algo-
rithm 3.11 takes as input {A;, ..., A, }, which is a partition of {1,...,m}, and
constructs the corresponding function [by, .. .,bm] € R(m). Algorithm 3.12 re-
verses the process.

Set partitions, Bell and Stirling numbers 83

Algorithm 3.11: SETPARTTORGF (m,n,{A),...,As})

forj—1tom
dofj «~0

j+1

i+ 1

fori —1ton

(while f; #0
dojej+1
hel

do ¢ while j € A,
doh—h+1

foreach g € A,
do f, « ¢

return (lfls"'rfm])

Algorithm 3.12: RGFTOSETPART (m,n, [f1,..., fm])

n+1
forj+—1itom
iffj >n

do { thenni—-jj
fori+—lton

dOAg (—0
forj+— 1ltom

do Ag; + Ay U {5}
mmm({Alr'“aAn})

As an example, we tabulate the 15 restricted growth functions of length four and
the corresponding 15 partitions of {1, 2,3, 4}. Note that the 4-tuples in R(m) are
listed in lexicographic order.

RGF partition RGF partition
(1,1,1,1] {{1,2,3,4}} (1,1,1,2] {{1,2,3}.{4}}
(1,1,2,1] {{1,2,4},{3}} 1,1,2,2) {{1,2},{3,4}}
,1,2,3] {{1,2},{3},{4}} |(1.2,1,1] {{1,3,4},{2}}
[1 2,1, 2] {{113}1{2?4}} [1’2’1’3] {{1’3}, {2}7{4}}
(1,2,2,1] {{1,4},{2,3}} [1,2,2,2] {{1},{2,3,4}}
(1,2,2,3] {{1},{2,3},{4}} |{1.2,3,1] {{1,4}.{2},{3}}
[1,2,3.2) {{1).{2.4}.{3})} [(1,23,3] {{1}.{2} {3.4}}
[1,2,3,4] {{1},{2},{3},{4}}

Since we have a bijection between the two sets S{m) and R(m}, they have the
same cardinality, and thus the following result holds.

84 More Topics in Combinatorial Generation

THEOREM 3.10 There are precisely B(m) restricted growth functions of length
m, for any integerm > 1.

The next algorithm, Algorithm 3.13, generates the functions in R{m) in lex-
icographic order. Here is a bit of explanation as to how the algorithm works.
[£I1],.- ., f[m]] is the “current” RGF. The auxiliary array [fmaz{1], .. ., fmaz[m]]
is defined as follows:

o { 1+max(f():1<i<io1}) if2gi<m
frmaslil = { o ' ifi = 1.

For 2 < i £ m, fmaz[t] denotes the maximum value that can be assigned to f[:]
(given values for f[1],..., f[f — 1]) without violating the RGF condition.

Initially, we begin with the RGF [1,...,1]. Atany point in the algorithm, we
find the first position from the right such that fm,;[i] # f[Z]. The value of f[i]
can be increased by 1, and then we set f[j] = 1forall j suchthati+1 < j < m.
Finally, the auxiliary array is updated.

This process is iterated until we reach the terminating condition, which is that
fmazli] = f[¢] forall i such that 2 < ¢ < m. The last RGF in lexicographic order
is[1,2,...,m].

Algorithm 3.13: GENERATERGF (m)

fori+ l1tom
fEl <1
do {fmnz[i] 2
done + false
while not done
(output ([f(1),..., f(m)])
jem+1
repeat
je5-1
until £[j] # fraaslj]
ifi>1
do £13) + £13] +1
forie—j+1ltem
fli] +1
do if f7] = Fmazls]
then frmaz[i] & fmazli] +1
else fimaz[i] & fmazli]
else done + true

then

\

Now we develop ranking and unranking algorithms for restricted growth func-
tions. In order to accomplish this, we first consider a generalization of this con-
cept, which we define as follows. Let m > 1 and 5 > 0 be integers. Define

Set partitions, Bell and Stirling numbers 85

R(m, 7) to consist of all functions f : {1,...,m} = Z* which satisfy the fol-
lowing conditions:

f)<ji+1
f@) < max{f(1),..., f(E-1),j} +1, if2<i<m.

A function f € R(m,j) is called a j-restricted growth function (or j-RGF) of
length m. Note that the case j = 0 coincides with our earlier definition, i.e.,
R(m, j) = R(m).

The idea of j-RGF is useful because of the following simple fact, which we
state without proof.

LEMMA 3.11 Suppose that 1 <t < m, and [f[1},..., flm —i]] € R(m - i).
Denote j = max{f[1],..., fim—i]}. Then[f[1],..., f[m]] € R(mn) if and only
iflflm—i+1],..., flm] € R(m,j).

Now, suppose that we define d; ; = [R(¢,7)| foré > 1 and j > 0. Then
Lemma 3.11 asserts that the number of ways of completing the “partial” RGF
(namely, [f[1],..., f[m —i]]) to an RGF (namely, [f[1],.. ., f[m]]) is d, ;, where
j is the largest value among f[1],. .., f[m - i].

We will make use of the following recurrence relation for the values d; ;.

THEOREM 3.12 For all positive integers i and j, it holds that
di; =jdia; +di_1j41-

Note that, in order for Theorem 3.12 to be valid, we should define initial con-
ditions as follows:

do; =1

forall j > 0.

Theorem 3.12 leads to a convenient method of computing the values d; ;, by
applying the same dynamic programming strategy as was used in Algorithm 3.10.
Algorithm 3.14 uses this technique to determine the numbers d; ; for all ¢, j such
that ¢ + § < m. Notice that the last value computed is dy, ¢ = B(m); thus this
algorithm provides another method of computing Bell numbers.

Algorithm 3.14: GENERALIZEDRGF (1)

forj <~ 0tom
dody; « 1
fori+~ltom
do {forj4—0tom—i
dod;; « jdiy; +di_1jn
return (d)

86 More Topics in Combinatorial Generation

TABLE 3.3
The number of j-restricted growth functions of length ¢
di,j
ilji=0 1 2 3 4 5 6
i} 1 1 T 1 1 1 1
1 1 2 3 4 5 6
2 2 5 10 17 26
3 s 15 31 M
4 15 52 151
5 52 203
6 203

To illustrate, we tabulate the values d; ; for all ¢, 7 such that i + ;7 < 6; see
Table 3.3.

Once we have computed the values d; ; for all Z, 7 such that 1 + j < m, it
is a simple matter to rank or unrank. Both of these tasks are accomplished by
traversing an RGF from left to right. Consider first the algorithm for ranking
an RGF say f, which is presented as Algorithm 3.15. The rank, denoted r, is
initialized to be 0. During the ith iteration of the for loop, we are looking at the
partial RGF [f[1],..., f[¢]]. and j = max{f[1],..., f[i — 1]}- Thus it must be
the case that 1 < f[i] < j + 1. For any given value of f[i] such that1 < f[i] < 7,
there are dp,_; ; ways to complete the partial RGF to a complete RGE. Thus we
add the quantity (f[i]—1) d,—,,; to 7, and the value of j is updated, in preparation
for the next iteration of the loop.

Algorithm 3.15: RANKRGF (m, [f[1],-. ., f[m]])

external GENERALIZEDRGF()
d «— GENERALIZEDRGF(m)
re0
j+1
fori —« 2tom

do {77+ M- Dinos

J « max{j, f[i]}

return (r)

As an example, we compute rank([1, 2, 2, 1]} using Algorithm 3.15. Initially,
r < 0. Wheni = 2, ris changed to d2,; = 5. When i = 3, r is changed to
5 +d, 2 = 8. r is not changed when i = 4, so rank([1,2,2,1]) = 8.

Unranking is only a bit more complicated. The algorithm is presented as Algo-
rithm 3.16. Here the rank r is given, and we are constructing the RGF, f. As in
Algorithm 3.15, the value j; = max{f[1],.. ., fli — 1]} during the ith iteration of

Set partitions, Bell and Stirling numbers 87

the for loop. At this point, we have to determine the correct value of f|i] (where
1< fl§] €7 +1).Ifr > jdm_;;, then it follows that f[{] = 7 + 1. In this case,
7 is updated and we subtract the quantity jd,,_; ; fromr. If r < jdp,_;;, then

it follows that
g _ r
fi)= ldm—i.jJ +h

and the value of r is updated appropriately.

Algorithm 3.16: UNRANKRGF (m,r)

external GENERALIZEDRGF()

d + GENERALIZEDRGF(m)
j+1
MM+t
fori + 2tom
fjdm_i; <r
flilej+1
then {ré&r —j dm—i,j
jei+1
clse {f[t] — lzms) +1
r r mod dm—;,;

return ((£(1],..., fim]])

do

As an example, suppose we use Algarithm 3.16 to unrank the value r = 8 when
m = 4. First, we set f[1] «— 1. Wheni = 2, wehave 1 x d3) = 5 < §, s0
F2l —2,r+3andj «+ 2. Wheni=3,wehave 2 x d; 2 =6 > 3, s0 f[3] «
|3} +1=2andr « 0. Wheni = 4, f[4] 1. Thus, unrank(8) = [1,2,2,1].

3.2.2 Stirling numbers of the first kind

Recall that a permutation 7 on a set X is a bijection from X to X. For example,

is a permutationon X = {1,2,3,4,5,6,7,8,9,10,11}. Observe that the bottom
row of this table is a permutation in the sense of Section 2.4, and in a computer we
usually store the bottom row [11, 2,4, 1, 6, 5, 8,9, 7, 10, 3] as an array to represent
7. Although this is simple, an even simpler notation is often used, which is called
cycle notation. The cycle notation for 7 is

* = (1,11, 3,4)(2)(5,6)(7, 8,9)(10).

88 More Topics in Combinatorial Generation

To see how this notation works, we draw the directed graph on vertex set X in
which the arcs are {z, w(z)), for each z € X. (This representation of a permu-
tation was introduced in Section 2.4.2.) For the above example, we obtain the

following:
1 11 s 7
1,0 0 >Q
4 3 2 4 9 10

The resulting graph is always a union of directed circuits. A sequence of vertices
enclosed between parentheses in the cycle notation for the permutation 7 is called
a cycle of 7. In the above example, the cycles are

(0,3,4,1), (2, (56), (7,8,9), and (10).

For positive integers m and n with n < m, let II(sn,n) denote the set of

all permutations of {1,...,m} containing exactly n cycles. Then the Stirling
number of the first kind, s(mm,n), is defined 10 be

s(m,n) = (-1)"""|1I(m, n)|-
It is clear that m
ml =" js(m,n)j,
n=1l
since m! is the total number of permutations on a set of size m.
As an example, we tabulate the 24 permutations of {1, 2, 3,4}, classified ac-
cording to the number of cycles they contain. There is one permutation having

four cycles; so, we see that I1(4,4) = {(1)(2)(3)(4}}. There are six permutations
having three cycles:

_ [(12)3)(4), (13)(2)(4), (14)(2)(3),
nw 9 ={ (e, (o, miee |

There are eleven permutations having two cycles:

(12)(34), (13)(24), (14)(23),
(123)(4), (132)(4), (124)(3),
(142)(3), (134)(2), (143)(2),
(1)(234), (1)(243)

Finally, there are six permutations having one cycle:

_((1234), (1243), (1324),
H(“'I)‘{ (1342), (1423), (1432) }

Hence, s(4,1) = —6,3(4,2) = 11,5(4,3) = ~6and 5(4,4) = 1.
We state without proof the following complicated explicit formula for Stirling
numbers of the first kind.

1(4,2) =

Set partitions, Bell and Stirling numbers 89

THEOREM 3.13 For positive integers m and n withm > n,

dmﬂo=iilqv(m‘l+k)(%"‘")am—n+k¢y

paed m—-n+k/\m-n-k

Note that this formula also involves Stirling numbers of the second kind, which
can in turn be computed using Theorem 3.7. Thus, the computation of a Stirling
number of the first kind using Theorem 3.13 involves a double sum of praducts
of binomial coefficients. It is therefore much more efficient to use the following
recurrence relation, which is similar to Theorem 3.8, to compute these numbers,

THEOREM 3.14 For positive integers n and m withm > n,

s(m,n) =s(m—-1,n-1) — (m - 1)s(m — 1,n).

The initial conditions for the above recurrence relation are as follows:
sim,m+1)=0 forallm >0
8{m,0) =0 forallm > 1, and

5(0,0) = 1.

Algorithm 3.17 is a dynamic programming algorithm which computes Stirling
numbers of the first kind using Theorem 3.14.

Algorithm 3.17: STIRLINGNUMBERS] (m,n)

5{(0,0) « 1
fori <« ltom

do s(:,0) « 0
fori+~0Otom

dos(i,i+ 1)« 0
fori < ltom

4 {forj + 1to min{i,n}

dos(i,j) « s(i — 5,7 - 1) — (i — 1)s(i — L,j)

return (s)

We present in Table 3.4 a table of Stirling numbers of the first kind.

Stirling numbers of the first and second kind are related by an interesting or-
thogonality refation, as stated in the following theorem. (A proof will be outlined
in the Exercises.)

%0 More Topics in Combinatorial Generation

TABLE 3.4
A table of Stirling numbers of the first kind
s(m,n)
m n=1 2 3 4 5 6 7 8 9 10
l 1
2 -1 I
3 2 3 1
4 -6 11 -6 1
5 24 -50 35 -10 1
6 -120 274 -225 85 -15 1
7 720 -1764 1624 -735 175 -21 1
8 -5040 13068 -13132 6769 -1960 322 28 1
9 40320 -109584 118124 -67284 22449 -4536 546 -36 1
10 | -362880 1026576 -1172700 723680 -269325 63273 -9450 870 -45 |

THEOREM 3.15 For positive integers n and m withm 2> n,

3 S(m, k)s(k,n) = i s(m, k)S(k,n) = binn,
k=n k=n

where

5mn={ 1 ifm=n

0 otherwise.

Theorem 3.15 can be stated in an equivalent form involving matrices. First, for
positive integers i and j, define S(3,j) = s(i,5) = 0if i < j. Now, for a fixed
positive integer n, define the two n2 by n matrices S and s, where the (%, j) entry
of S is S(i,7) and the (%, j) entry of s is s(¢,7). Then we have the following
corollary to Theorem 3.15.

COROLLARY 3.16 For a positive integer n, define the n by n matrices S and s
as above. Then 8 = s,

As an example, suppose n = 4. Then Corollary 3.16 asserts that the following
matrix equation holds:

[I
N WO
D=OO
-0 OO0

{

-

b
D= OO
- O O
(= = B e B
QO =O
o =00
[e R]

Labeled trees 9}

3.3 Labeled trees

A tree is a connected graph without circuits. A famous theorem of Cayley states
that there are exactly n™~2 different labeled trees on a given set of n vertices,
say V = {1,...,n}. (Two trees (V,£,) and (V,&,) are said to be different if
& # &2)

Suppose we denote by T (n) the set of all trees on vertex set V. There is a nice
proof of Cayley's theorem that is accomplished by exhibiting a bijection between
the two sets 7(n) and V"2 (i.e., the set of all (n ~ 2)-tuples of vertices). Since
|[V*—2| = n"~2, this proves the desired result. This bijection is known as the
Priifer correspondence .

The Priifer correspondence is actually described as an algorithm. Given a tree
T = (V,£) € T(n), we will construct a 1 — 1 function

Priifer : T(n) —» V"2
and the inverse function
InvPriifer : V"2 o T(n).

These are presented in Algorithms 3.18 and 3.19.

Algorithm 3.18: PRUFER (£,n)

fori < 1ton
dod[i]] « 0
for each {z,y} € £
d {d[:c] dfz]+1
dly] « dly] +1
fori — 1ton—2
(z «n
while d[z] # 1
doz+z-1

yen
while {z,y} ¢ £

do S doy+—y-1
Lli] «y

dlz] « d[z] - 1
dly] + dly] - 1

£ « E\{{z.4}}
return (L = [L[l], cee ,L[n - 2]])

The list L that is returned by Algorithm 3.18 is defined to be Priifer(T’). Let’s
see how this list is constructed. Since (V,£) is a tree on n vertices, it can be

92 More Topics in Combinatorial Generation

shown that £ consists of n — 1 edges, and V has at least two vertices of degree
one. During the ith iteration of the for loop, we have a tree on 7 + 1 — ¢ vertices
(which therefore contains n — 7 edges). We find the largest vertex of degree one,
which is denoted by z. Then we find the (unique) vertex such that {z,y} € £. We
define L[i] to be y, and delete the edge {z,y} from the tree. Since z had degree
equal to one, we have reduced the number of vertices in the tree by one. At the
end of the algorithm (i.e., after iteration n — 2) there will remain two vertices and
the edge joining them.

An important property of the list L is that the number of occurrences of a vertex
z in the list L is equal to deg(z) — 1.

Algorithm 3.19: INVPRUFER (L, n)

E«0
Lin—-1]«1
fori—1ton
dodfi)] + 1
fori — 1ton —2
do d[L[i]] « d[L[é]} + 1
fori«— lton-1
(£ —n
while diz] # 1
dorez—1

do { y « L[i]
d[z] « d[z] -1
dly] « dly] - 1
(£ = Eu{{z.y}}

return (£)

It wrns out that Algorithm 3.19 adds edges to £ in the same order that Algo-
rithm 3.18 removes them. Algorithm 3.19 begins by computing the vertex degrees
from the list L, as described above. In the ith iteration of the for loop, z is de-
termined as the current largest vertex of degree one. Then y is obtained, since
¥ = L[i], and the edge {z,y} is included in the tree being constructed. Clearly
this is the same edge that was deleted during iteration i of Algorithm 3.18.

We need to consider the “last” edge, i.c., the edge that remains at the termina-
tion of Algorithm 3.18. This edge is in fact {1,z}, forsome 2 < z < n. It can
be shown that z is the maximum vertex of degree one when Algorithm 3.18 ter-
minates. By setting L[n — 1] « 1 at the beginning of Algorithm 3.19, we ensure
that we add this same edge {1,z} to the tree in iteration n — 1 of the for loop.

This discussion establishes that Priifer(T") = L if and only if InvPrifer(L) =
T. Thus the two functions are inverses of each other, and hence they are in fact
bijections of the two sets.

Labeled trees 93

Let’s do an example to illustrate. Consider the following tree Ty onn = 8

vertices.;
1 2 3 4
>l

5 6 7 8
When given the edge sel of Tg as input, Algorithm 3.18 executes as follows:

vertexdegrees | ¢ | z | L[i] = y | edge deleted
1,2,1,2,1,3,,3 | 1|7 | 8 {7,8]
1,2,1,2,1,3,0,2 |2 | 5 6 {5,6}
1,2,1,2,0,2,0,2 | 3 | 3 8 (3,8}
1,2,0,2,0,2,0,1 [4 | 8| 4 {4,8)
1,2,0,1,0,2,0,0 (5[4 | 6 {4,6}
1,2,0,0,0,1,0,0|6 | 6| 2 {2,6}
1,1,0,0,0,0,0,0

Thus Priifer(T3) = [8,6,8,4,6,2]. At the end of Algorithm 3.18, the edge re-
maining is {1,2}. The reader can check that, when we execute Algorithm 3.19
with input L = [8,6, 8, 4, 6, 2], the same values of the variables are computed!

We can extend the Priifer correspondence very easily to obtain ranking and
unranking functions for 7(n). In order to accomplish this, it suffices to describe
bijections between V™2 and {0, ...,n"~2 — 1}, which is straightforward to do.
These bijections are presented in Algorithms 3.20 and 3.21.

Algorithm 3,20: PRUFERTORANK (L, r)

re0
pe1
fori « n — 2downto 1
do {r —r+p(Lf]-1)
pepn
return ()

Algorithm 3.21: RANKTOPRUFER (r, L)

for i « n ~ 2 downto 1
L[t] & mod(r,n) + 1
do r e lr—L"|i|+1J

return (L)

In the example above, we would obtain rank(T) = 253673. As another ex-
ample, the 16 labeled trees on four vertices, and their ranks, are listed in Table
35.

94 More Topics in Combinatorial Generation

TABLE 3.5
The labeled trees on four vertices and thejr ranks
T Priifer(T} rank(T) T Prifer(T) rank(T)
-1 2 1 2
(1,1) 0 ; (1,2) 1
3 4 3 4
1 2 1 2
YaRNEE
3 4 3 4
1 2 1 2
l l (2,1) 4 ; I (2,2) 5
3 4 3 4
1 2 1 2
I/I (2,3) 6 >4 (2,4) 7
3 4 4
1 2 1 7
——m—et)
(3,1) 8 E (3,2) 9
JL3'—'4 4
1 2 1 2
' : 3,3) 10 f (3,4) 11
4 4
1 2 T 2
O
S (4,1) 12 (4,2) 13
4 ‘T_JM
1 2 1 2
l I (4,3) 14 (4,4) 15
4 a4

Catalan families 95

TABLE 3.6
The Catalan families C,, for 1 < n < 4
n Cn C'\
1101 1
2 | 0011 0101 2
3 | 000111 001011 001101 010011 010101 5
4 [oo001111 00010111 (0011011 00011101 00100111 | 14
00101011 00101101 00110011 00110101 01000111
01001011 0©1001101 01010011 01010101
R

34 Catalan families

The Catalan numbers are a sequence of numbers which arise naturally in many
different combinatorial enumeration problems. In this section, we discuss ranking
and unranking of objects that are enumerated by Catalan numbers.

We begin by presenting one way — out of many — to define Catalan numbers.
Let n be a positive integer, and leta = [a,, @z, - - -, @2n—1, 02a] € (Z2)*™. We say
that the sequence e is a totally balanced sequence if the following two properties
are satisfied:

1. acontainsn Osand n Is, and
2. forany i, 1 < i < 2n, it holds that

{j:1<j<ie;=0}21{j:1<j<iai=1}.

Let C,, denote the set of all totally balanced sequences in (Z3)?". We will refer
to C,, as a Caralan family of order n. The Catalan number C,, is defined to be
Cn = |Cy|. To illustrate, we list all the sequences in the Catalan families C,,, for
1 < n <4, n Table 3.6.

The first few Catalan numbers are), = 1, Cp = 2, C3 = 5, Cy = 14,
Cy = 42, Cs = 132, Cy = 429, C3y = 1430, Cyp = 4862 and C1o = 16796.
It turns out that there is a very simple formula for the Catalan numbers, which is
stated in the following theorem.

THEOREM 3.17 For any integer n > 1, the Catalan number C,, is
1 2n
Cn = n+1 (n) ’
In the remainder of this section, we will give a nice proof of this result. The
approach we use is based on a pictorial interpretation of the sequences in (Z3)2".

Let ¢ € (Z3)>™. We will describe a graphical representation of a in terms
of a path in the (z,y)-plane. We begin at the origin, (0,0), and process the 2n

96 More Tapics in Combinatorial Generation

clements a,, . .., 624, constructing a path P = P{a) as we go along. When we
are situated at the point (z, y), we will process the term a,. If @, = 0, then we
extend the path P by adding the point (z + 1,y + 1) to P; if a; = 1, then we
add the point (z + 1,y — 1) to P. A pseudocode description of this algorithm is
presented as Algorithm 3.22. In this algorithm, any binary sequence a € {Z,)?"
is converted to a path P beginning at the origin, which is represented as a set of
2n + 1 points:

P= {(0!0)1 (11 yl)"") (2n - 1ay2n—l), (277-; 'y2n—1)}-

Algorithm 3.22: SEQUENCETOPATH (n, [a;,...,82x])

P« {(0,0)}
y+0
forz « lLto2n
ifa, =0
theny «~y+1
elsey +-y-1
P+ PU{(z,y)}
return (P)

do

The path P thus constructed can be thought of as a mountain range of width
2n. If a € C,, then the mountain range P begins and ends at sea level (i.e.,
y = 0). The totally balanced condition means that y-coordinates of the points
in P are all greater than or equal to zero. Stated a bit more descriptively, the
elevation of P never drops below sea level! Conversely, any mountain range of
this type comresponds to a unique sequence in C,,.

As an example, the totally balanced sequence a = 00101101 corresponds to
the following mountain range:

Catalan families 97

It is easy to see that the total number of mountain ranges from (0, 0) to (2n,0)
is (2:) This is because any such mountain range corresponds to a sequence of
n Osand n ls, and there are (") binary sequences of length 2n that contain
exactly n Os. Thus, we have that

2
Cp, = (:) ~ the number of mountain ranges that drop below sea level.

Clearly we can compute C,, if we can obtain a formula for the number of mountain
ranges that drop below sea level.

Suppose that P is a mountain range from (0, 0) to (2n, 0) that drops below sea
level at some point. Recall that P is comprised of a set of points:

P= {(0,0],(1,1{1),...,(271 - 17y2"—1)v(2n’0)}'

Let X be the first point in P with y-coordinate less than zero; then X = (zo, —1)
for some zg, where 1 < 29 < 2n — 1. Now, define a2 new mountain range P*, as
follows:

P ={{z,y) € P:zp <z <2n}U{(-2-2,y):1 <z <zo—1,(z,y) € P}.

P* can be described geometrically by saying that the initial portion of P, from
(0,0) to X, is reflected in the line y = —1. Therefore P* is a mountain range
from (0, —2) to (2n,0).

As an example, we show the mountain range P corresponding to the sequence
a = (101100011, and the reflected mountain range P*.

<+ P

A moment’s reflection shows that the mapping P +— P* defines a bijection
from the set of mountain ranges from (0, 0) to (2n, 0) that drop below sea level to
the set of all mountain ranges from (0, —2) to (2n, 0). Now, it is easy to show that
a mountain range from (0, —2) to (2n, 0) corresponds to a binary string of length
2n that containsn + 1 Osand n — 1 Is. (This is because the gain in elevation is

98 More Topics in Combinatorial Generation

equal to 2 and hence we need two more Os than 1s.) Therefore there are precisely
(,2) mountain ranges P*. Thus we have shown that

nt1
- (271) (2n) 1 (Zn),
n n+1 n+l\n

and Theorem 3.17 is proved.

34.1 Ranking and unranking

In this section we provide ranking and unranking algorithms for the lexicographic
ordering of the Catalan families. The algorithms are most easily described in
terms of the mountain ranges we introduced in the previous section. Let n be a
positive integer, and let (z,%) € Z x Z, where 0 < £ < 2n. Define M,.(z,y) to
be the set of all mountain ranges from (z,) to {2n,0) that do not drop below sea
level, and denote My (z,¥) = ([M,(z,¥)]-

It is clear that M,(0,0) = C,, and M,(z,y) = 0ify < 0. As well,
M,.(z,y) = 0if z + y > 2n, since any mountain range that passes through
(z,y) cannot reach sea level before the point (z + y,0). Finally, it is easy to see
that M. (z,y) = 0if x + y is odd (this is because = + y is even for any point
(z,y) on a mountain range that includes the point (2n,0)). The following result
provides a formula for M,{z, y) for the remaining (non-trivial) cases. It is proved
using the same reflection idea that we used to prove Theorem 3.17.

LEMMA 3.18 Let n be a positive integer. Suppose that 0 < x < 2n, y > 0,
z+yisevenandz +y < 2n. Then

2n-zx 2n -z
Mu(z,y) = (n_m) - (n—l—m)'
2 2

Suppose we are given a sequence a € C,,, and we want to compute the rank
of a. Note that 0 < rank(a) < Cp, — 1. Let P = P(a) be the corresponding
mountain range P € M, (0,0), which can be constructed using Algorithm 3.22.
We are going to compute rank{a) by following P from left to right and using a
type of binary search technique.

At any given time in the algorithm, we will be looking at a point (z—1,y) € P,
and we will have an upper and lower bound on rank(a), say

lo < rank(e) < Ai,

where
hi—lo+1=M.(z-1,y).

(Initially, we set lo « 0 and hi +— Cy, — 1.) Let X be the next point on P. Then

X_ (-"’o!l"'l) ifa==0
=\ (@y-1 ife:=1

Catalan families 929

Let P’ denote the initial portion of P, from (0, 0} to (z — 1,y) and let P" denote
the remaining part of P, from X to (2n,0). There are exactly M, (z,y + 1)
mountain ranges in My, (z, ¥ +1), and M, (z, y—1) mountain ranges in M, (z, y—
1). Iuis easy to verify the following relation:

Mp(z — 1,y) = Ma(2,y + 1) + Mpu(z,y - 1). (3.4)

Among the mountain ranges in M, (0, 0) with initial portion P, the My, (z,y+1)
lexicographically least of them have (z,y + 1) as their next point. This allows us
to update either ki or lo. If a, = 0, then As + hi — M (z,y —1),and ifa, = 1,
then lo + lo + M, (z,y + 1). Thus the interval [lo, ki), in which rank(a) must
be found, is replaced by one of two possible complementary subintervals:

[lo,hs — Mp(z,y —1)] or [lo + Mu(z,y + 1), ki).
This is reminiscent of a binary search. Note that
lo+ Mp(z,y+1)=hi - M, (z,y—1)+1
since
Mp(z,y + 1)+ Mp(z,y- 1) =Mp(z,y-1)=hi —lo + 1.

Unranking is almost identical. The only difference is that we use the value of
the given rank r to compute the terms a, and to replace an interval [lo, hi] by an
appropriate subinterval. Howeuver, it turns out that we do not actually need to keep
track of the value A¢ in the ranking and unranking algorithms. This simplifies the
algorithms a bit.

The algorithms are presented as Algorithms 3.23 and 3.24. We will assume
the existence of a procedure M(n, x, y) which computes the function M, (z,y).
The procedure M could either use the formula developed in Lemma 3.18, or pre-
compute all values M,,(x,y) with 2 + y < 2n using the recurrence relation from
Equation (3.4).

Algorithm 3.23: CATALANRANK (n,[a;,...,a2.])

external M()
ye0
lo«0
forr —lto2n-1
ifa: =0
theny « y+1
else {lo+— lo + M{(n,z,y +1)

yey-—-1
retorn (lo)

100 More Topics in Combinatorial Generation

¥

5 1

4 5 1

3 14 4 1

2 28 9 3 1

1 42 14 5 2 1

0| 42 14 5 2 1 1
z=0 1 2 3 4 5 6 7 8 9 10

FIGURE 3.1
Values of Ms(z,y).

Algorithm 3.24: CATALANUNRANK (n, 1)

external M()
ye0

o0

forx « 1to2n

(m «— M(n,2,y +1)
ifr<lo+m-1
yey+1
do ¢ then {a., «0
loe—lo+m
else {y¢—y—1
a; 1
return ([0.],...,0.2“])

To illustrate Algorithms 3.23 and 3.24, we will do an example with n = 5.
For future reference, we precompute the non-zero values Ms(z,y), which are
recorded in Figure 3.1. Note that the diagonals of this figure can be computed in
the same fashion as the rows in Pascal’s triangle, in view of the similarity of the
recurrence in Equation (3.4) to Pascal’s identity,

O =CoD)+ 7Y

Suppose we are given the sequence 6 = 0010110101 € Cs. Then rank(a)

Catalan families 10!

would be computed as follows.

x a; y lo

0 00

1 0 10

2 0 20

3 1 1 lbb+0+M:(3,3)=14
4 0 2 14

5 1 1 loe 144+ M5(5,3)=18
6 1 0 lo+« 18+ Ms(6,2) =21
7 0 1 21

8§ 1 0 loe 21+ Ms(8,2)=22
9 0 1 22

10 1 0

Therefore rank(0010110101) = 22.
We reverse the process by computing unrank(22):

m z y lo [
0 00

Ms(1,1)=42 1 1 0 0
Ms(2,2)=28 2 2 0 0
M;3,3)=14 3 1 lo—0+14=14 1
Ms(4,2)=9 4 2 14 0
M;(5,3) = 5 1 lo~14+4=18 1
Ms(6,2)=3 6 0 lo+18+3=21 1
Ms(7,1) = 7T 1 21 0
M;(8,2) = 8 0 lo«214+1=22 1
Ms(9,1) = 9 1 22 0
M5(10,2)=0 10 0 lo+2240=22 1

Hence, unrank(22) = 0010110101.

3.4.2 Other Catalan families

We defined Catalan families as totally balanced sequences. There are many other
families which have the same cardinality, and which therefore could equally well
be taken as a definition of Catalan families. These include triangulations of poly-
gons, rooted plane binary trees, rooted plane bushes, and non-crossing hand-
shakes, to name a few examples. If we have an explicit bijection between C,
and any other Catalan family, then our ranking and unranking algorithms can be
used to rank and unrank the objects in the given family, We illustrate this with a
particular type of Catalan family.

Let n be a positive integer. A 2 by n standard tableau is an arrangement of
the integers 1,...,2n in a 2 by n array, such that the entries across any row or

102 More Topics in Combinatorial Generation

down any column are increasing. Let Tab(n) denote the set of all 2 x n standard
tableaux. As an example, we present the tableaux in Tab(3):

123 1/2(4] |112]5]| [1|3}4] |1[3}5
5|6 3|5]6 3416 2]5]6 2/41]6

1t is pot difficult to find a bijection ¢ : Tab(n)} — C,. The existence of such a
bijection will show that [Tab(n)| = C,. The definition of the function ¢ is very
simple. Suppose that T € Tab(n), and denote the entries of T by T3, j],: = 1,2,
1 € 7 < n. Then define ¢(T) = [a,, ..., azn], where

o = 0 if ¢ is in the first row of T
*7T 1 1 ifiisinthesecond rowof T.

Algorithm 3.25 performs this operation.

Algorithm 3.25: TABLEAUTOSEQUENCE (n,T)

fori—1to2
do for j 4—1ton‘
doagj; ;) «i—1
return ([a,,...,az,))

It is quite easy to show that ¢(T') € C,, for all T € Tab(n). To show that
¢ is a bijection (i.e., that it is one-to-one and onto), it is sufficient (o find the
inverse function ¢~! : C,, —» Tab(n). The function ' can be computed using
Algorithm 3.26.

Algorithm 3.26: SEQUENCETOTABLEAU (n,[ay,. .., 2,))

cl] « 0
2«0
fori « 1to2n
réea;+1
do {clr] «cr] +1
Tir,c[r]] « ¢
return (T')

We leave it to the reader to prove that ¢! (¢(T)) = T forall T € Tab(n); and
#(¢~1(a)) = aforall a € Cy,. This will prove that ¢ and ¢~ are both bijections.
Now, if we want to compute the rank of a tableau T € Tab(n), we simply
compute ¢(T') using Algorithm 3.25, and then compute the rank of ¢(T") using
Algorithm 3.23. If we want 0 unrank r to a tableau, we first use Algorithm 3.24
to unrank t to a sequence, say a, and then compute ¢~ (a) using Algorithm 3.26,

Notes 103

3.5 Notes

Section 3.1

The swdy of partitions is one of the oldest and richest parts of combinatorics,
and has been a topic of interest to mathematicians for over 300 years. There are
many sources of information on partitions, for example, Andrews [2], Goulden
and Jackson [37], and the article by Gessel and Stanley [32] in the Handbook of
Combinatorics [38]. A more algorithmic approach can be found in [90, 101, 115].

Section 3.2

Many of the references for the previous section also contain information on Bell
and Stirling numbers. The ranking and unranking algorithms using restricted
growth functions are based on the treatment of Stanton and White [101].

Section 3.3

Many textbooks discuss the Priifer correspondence; two examples are Stanton and
White [101] and Williamson [115].

Section 3.4

For an entertaining treatment of Catalan numbers, see Conway and Guy (21].
Stanley [100] presents an extensive list of different Catalan families. The ranking
and unranking algorithms are algorithms of our own design.

Exercises
3.1 Prove that m
P(m,2) = I-?J
and m? 4 4
P(m,3) = T .

3.2 Develop a recursive algorithm that directly generates all partitions of m into n parts.

3.3 [tis known that the number of partitions of m into odd parts is equal to the number
of partitions of m into unequal parts. Develop recursive algorithms to generate all
partitions of m of these two types, and run your algorithms for m = 10 to generatc
all such partitions,

3.4 Find the successor and rank of the partition (8, 6, 6,4, 3,1].

3.5 Find the partition in P (15, 5) having rank 18.

3.6 Prove that S(m,2) = 2™ — 1 for all integers m > 1.

3.7 Prove that S(m,m — 1) = m(m — 1)/2 for all integers m > 1.

14

3.8
39
3.10
3.11
3.12

3.13

3.14
3.15
3.16
317

318

3.19

More Topics in Combinatorial Generation

Prove Theorem 3.12.

Find the rank of the partition {{1, 3, 5}, {2}, {4}}.
Find the partition of {1,...,6} that has rank 153.
Prove Theorem 3.14.

Use Theorem 3.8 10 prove that

iS(m,n)z(z—1)---(z—n+1)=z"'.

Use Theorem 3.14 to prove that
m

Zs(m,n)z" =z{z—1) --{z—m+1).
n=0

Use Exercises 3.12 and 3.13 to prove Theorem 3.15.

Find the tree on eight vertices having rank 126998.

Prove Lemma 3.18.

Prove that
n—1

Ca=)_ CiCn_i,
i=0
where we define Co = 0.
Prove that the number of ways of triangulating a polygon with n + 2 sides is equal
0 Cy.
Compute the mountain range in Ce having rank 99.

4

Backtracking Algorithms

4.1 Introduction

A backtracking algorithm is a recursive method of building up feasible solutions
0 a combinatorial optimization problem one step at a time (recall that basic ter-
minology relating to optimization problems was introduced in Section 1.3). A
backtracking algorithm is an exhaustive search; that is, all feasible solutions are
considered and it will thus always find the optimal solution. Pruning methods can
be used to avoid considering some feasible solutions that are not optimal.

To illustrate the basic principles of backtracking, we consider the
Knapsack (optimization) problem, which was presented as Problem 1.4. Re-
call that a problem instance consists of a list of profits, P = [pg, ..., Pn-1]; a list
of weights, W = [wy,...,wn_1]; and a capacity, M. It is required to find the
maximum value of }_ p;z; subject to Y w;z, < M and z; € {0,1} forall:i. An
n-tuple [Zg, X1, %2, ..., Tn—1] of Os and Is is a feasible solution if 3_ w;z; < M.

One naive way to solve this problem is to try all 27 possible n-tuples of Os
and 1s. We can build up an n-tuple one coordinate at a time by first choosing a
value for zg, then choosing a value for z;, etc. Backtracking provides a'simple
method for generating all possible n-tuples. After each n-tuple is generated it is
checked for feasibility. If it is feasible, then its profit is compared to the current
best solution found to that point. The current best solution is updated whenever a
better feasible solution is found.

We will denote by X = [zo,%1,...,Tn_1] the current n-tuple being con-
structed, and CurP will denote its profit. OptX will denote the current opti-
mal solution and OptP is its profit. A recursive backtracking algorithm for the
Knapsack (optimization) problem is presented now.

106 Backtracking Algorithms

Algorithim 4.1;: KNAPSACK] (¢)

global X, OptP, OptX
ift=n

(n-1
if Z wiz; <M
=0 n-1

then CurP « Y pizq

=0
then ¢ it CurP > OptP
OptP « CurP
then {Oth « [z0,...,ZTn-1]

\

':Bg «1
KNAPSACKL(€ + 1)
Ty & "

| KNAPSACK1{Z + 1)

else <

Note that Algorithm 4.1 is invoked initially with ¢ = 0.

The recursive calls to Algorithm 4.1 produce a binary tree called the state space
tree for the given problem instance. When n = 3, this tree is given in Figure 4.1,
A backtrack search performs a depth-first traversal of the state space tree.

[

[1,0] [0,1] [0,0]

[1,1,1] [1,1,0] [L,0,1} [1,0,0] [0,1,1] [0,1,0] [0,0,1} [0,0,0]

FIGURE 4.1
State space tree whenn = 3.

Algorithm 4.1 generates the 27 binary n-tuples in reverse lexicographic order.
It takes time ©(n) to check each solution, and so the asymptotic running time
for this algorithm is ©(n2™). Of course this approach is impractical for n > 40,
say. Notice that not all n-wples of 0s and 1s are feasible, and a fairly simple
modification to the backtracking algorithm would take this into account. This and

A general backtrack algorithm 107

other improvements will be considered in the remaining sections of this chapter.

4.2 A general backtrack algorithm

We now present a general backtrack algorithm. For many combinatorial opti-
mization problems of interest, the (optimal) solution can be represented as a list
X = [zg,21,-..] in which each z; is chosen from a finite possibility set, P;.
The x;s are defined one at a time, in order, as the state space tree is traversed.
Hence, the backtrack algorithm considers all members of Py x Py x «-- x P;
foreach: = 0,1,2,.... The length of the list X is the same as the depth of the
corresponding node in the state space tree.

Given a partial solution X = [zg,Z;,...,Z¢—1]}, the constraints for the opti-
mization problem will restrict the possible values for x, to a subset C¢ C Py that
we call a choice set. The computation of the set C; is referred to as pruning. If
y € Py \ Ct, then nodes in the subtree with root node [2g, Z1,. .., Z7—1,¥] will
not be considered by the backtracking algorithm. Thus we say that this subtree
has been “pruned” from the original state space tree. The general backtracking
algorithm with pruning is presented as Algorithm 4.2,

Algorithm 4.2: BACKTRACK (£)

global X,C, (£=0,1,...)

comment: X = [z0,%,...]

if [z, 21, ..., x¢-1] is a feasible solution
then process it

Compute C;

foreachz € C;

do Xy 2
BACKTRACK{{ + 1)

The first step of the algorithm is to identify if the current partial solution, X, is
indeed a feasible solution. The operation “process it” could mean several things,
e.g., save X for future use; print it out; or check to see if it is better than the
best solution found so far (according to an optimality measure), as was done in
Algorithm 4.1.

The second step is to construct the choice set C; for the current value of X. The
third step is to assign every possible value in C; in turn as the next coordinate, z,
calling the algorithm recursively each time an assignment is made.

In many problems, it may be the case that no feasible solution can possibly be
extended. For example, in the Knapsack (optimization) problem, a feasible so-
lution is an n-tuple, where n is specified in the problem instance. In this situation,

i08 Backiracking Algorithms

the choice set would be defined to be empty, so that no recursive calls would be
made at that point. An alternative method, which accomplishes the same thing,
would be to use an if-then-else construct, as was done in Algorithm 4.1.

In Algorithm 4.1, no pruning is performed. We could think of this algorithm as
being an application of Algorithm 4.2 with C¢ = {1, 0}. In order for backtracking
10 have practical value, we need efficient ways of reducing the size of the choice
sets C¢. That is, we would like to eliminate branches of the search tree that cannot
lead to solutions, without actually traversing them.

For the Knapsack (optimization} problem, one simple method of pruning is
to observe that we must have

-1
Zw,-x; <M
i=0
for any partial solution [zg, Z1,...,2¢—1]. In other words, we can check partial
solutions to see if the feasibility condition is satisfied. Consequently, if £ <n —1

and we set
-1

CurlW = Ew,-z.-,
i=0
Cr = {1,0} if CurW +w, < M;
t {0} otherwise.
Applying these ideas, using Algorithm 4.2 as a template, we obtain Algorithm 4.3,
which is invoked with £ = CurW = 0.

then we have

Algorithm 4.3: KNAPSACK?2 (£, CurW)
global X, OptX, OptP,C, (£=0,1,..)

ifé=n
n=—1
if Zpsx.- > OptP
i=0
then n-t
then OptP «— gp,-x.‘
Oth +— [xo, e ,In_]]
ift=n
then C; «— @

then C; + {1,0}
else Cy + {0}
for each z € C;

d I+ T
® | KNAPSACK2(E + 1, CurW + weTe)

if CurW +we < M
else

Generating all cliques 109

FIGURE 4.2
A graph with four maximal cliques.

4.3 Generating all cliques

Recall from Section 1.2 that a clique in an undirected graph G = (V, £) is a subset
of vertices § C V such that {z,y} € £ forall z,y € S. We consider the empty
set to be a clique, and {z} is a clique for any £ € V. A clique is a maximal
cligue if it is not a subset of a larger clique. For example, in the graph given in
Figure 4.2, the cliques are {}, {0, 1}, {0, 6}, {1,2}. {1, 5}, {1,6}, {2,4}. {2,3},
{3,4}.{0,1,6},{1,5,6} and {1, 3, 4}. The maximal cliques are {0, 1,6}, {1, 2},
{1,5,6} and {1, 3,4}. As another example, the graph given in Figure 4.3 has 90
maximal cliques, one of which is {0,9, 14}.

Many combinatorial search problems can be reduced to finding (maximal)
cliques in an appropriately chosen graph. Here is an example to illus-
trate. There are (g) unordered pairs that can be formed from a 6-element set
X = {0,1,2,3,4,5}. Suppose we number them in lexicographic order, i.e.,
0,1,...,14. The graph given in Figure 4.3 contains an edge xy if and only if the
patrs corresponding to the vertices z and y are disjoint. A maximal clique in this
graph is just a partition of X into disjoint pairs. (This partition is in fact a perfect
matching of the elements of X.)

The problem that we will study in this section is the gcneration of all the
cliques, without repetition, in a given graph. See Problem 4.1.

Problem 4.1: All Cliques
Instance: agraph ¢ = (V,£)
Find: all the cliques of G without repetition,

To generate all of the cliques of a graph G by backtracking, we need to define
what a partial solution is and give a method to compute the choice sets C;. The first
part is easy: a sequence X = [zg, L1, ...,Z¢-1] Of vertices is a partial solution if
and only if {Zo,%1,...,T¢-1} is a clique. Now, denote S;_) = {zo,...,z¢_1}
and Cy = V. Then the choice set C; is given by

Ce={veV\S,_;:{v,z) € foreachz € S;_,}

1io Backtracking Algorithms

FIGURE 4.3
The graph of non-intersecting pairs from a 6-element set.

={veCia\{ze—}: {v,2e1} €&}

Unfortunately, if a clique has size k, then an algorithm based on the above choice
function will generate it k! times, once for each possible ordering of its vertices.
To avoid this duplication of work, we arbitrarily place a total ordering *'<” on the
vertices V, and list them according to this ordering. That is, we think of V as an
ordered list, i.e., we write ¥V = [tg, ¥1,92, ..., Un—1], Where vg < v; < --- <

Un-1.
Then, we redefine C; as follows:

Ce = {veCey: {‘U,:L‘[_l} €fandu > x4y}

These choice functions can be more efficiently computed if we dcfine, for each
vertex v € V, the auxiliary sets

A, ={ueV:{yv}ef} (4.1)
and
B, ={ueV:u>uv} (4.2)

These can be precomputed before the backtracking algorithm begins. Now, we
have

Ce = Ag,,NByy_, NCeo1. (4.3)
Suppose we also define
Nl = Nl—l n Azt-li

where Ng = V. Then X = [zo,...,Z¢—1] is a maximal clique if and only if
N; = @. The backtrack algorithm, Algorithm 4.4, generates each clique exactly
once, and identifies the maximal cliques on the fiy.

Generating all cliques 1t

In Example 4.1, we illustrate the application of Algorithm 4.4 on a small graph.
This graph contains five maximal cliques (which are marked with a star), and 21
cliques in total.

Example 4.1 Finding all the cliques in a graph

0 v Ay B,

6) 0 1,36 1,2.3,456
1 0,2,4,5 2,3,4,56
2 1,3,4,5 3,4,56

5 2 3 0,26 4,56
4 1,2 5,6

4 3 5 1,2 6
6 0,3
[
[0] (1] 2] [3] (4] 3] 6]

A NIVANEVAIN

[0,1)* [0,3] [0,6] [1,2] [1,4] [1,5} [2,3]* {2,4] [2,5] [3,6]

[0,3,6)* [1,2,4}* [1,2,5]

Maximal cliques are indicated with a *. il

112 Backtracking Algorithms

Algorithm 4.4: ALLCLIQUES ()

global X,C, (£=0,1,...,n-1)
comment: cvery X generated by the algorithm is a clique
ifé=0
then output ([|}
else ontput ([zp,...,2s—1])
itZ=0
then N; + V
else N[— A’-’t—l n Nf—l
itN, =0
then {xo,...,%,_1} is a maximal clique
ift=0
then C(+«V
elseC; — A, ,NB;,_, NECo_q
for each z € C;
d Tr &%
® \ALLCLIQUES(£ + 1)

4.3.1 Average-case analysis

In this section, we determine the average-case complexity of Algorithm 4.4.

Let n be a positive integer, and let G(n) denate the set of all graphs on vertex
set V = {0,...,n — 1}. There are a3 graphs in G(n), becausc any unordcred
pair {z,y} C V can either be included as an edge or left out.

For a graph G € G(n)}, define c{G) 1o be the number of cliques in the graph
G. When Algorithm 4.4 is run on the graph G, the number of nodes in the state
space tree is precisely c{G). The running time of Algorithm 4.4 is easily secn
to be O(n ¢(G)). Of course, this running time depends on the particular graph
G, and so can vary greatly. For example, if G is the graph containing no edges,
then ¢{G) = n + 1, because the only cliques have size zero or one. At the other
extreme, ¢(K,) = 2" because any subset of vertices in a complete graph is a
clique. It is because of this variation that we will do an average-case analysis.

We will be looking at the average value of ¢(G), where the average is computed
over all graphs in G{(n). Thus we dcfine

Bn) = —== 3 ().

2(3) geg(n)
We now obtain an explicit formula for (n). Suppose G € G(n) and W C V.
Define the indicator function

(G W) ={ (1) ifWisi:et.:lique in G

Generating all cliques 13

Then we have that

c(G) = Y x(G,W),

wev
and hence

&(n) = (l,) >) xte.w
2'3/ cegimy WCV

iﬂ) 3 Y xGwW).

2G) ve GeG(n)

For a given subset of vertices W C ¥V, W is a clique of a graph G if and only if the
(1) pairs of vertices in W are all edges of G. There arc (}) — (%!) remaining
possiblc cdges, and so it follows that there are exactly

2(2)-("7")
graphs G € G(n) in which W is a clique. Hence we have that
3 x(G,w) =20-(7)
geg(n)

Thus, we obtain the following expression for &(n):

T 2()-(9),

2(’ wcy

Now, for any integer k& such that 0 < k < n, there are precisely (:) subsets of
vertices W C V with |W| = k. Hence, we have the following formula.

2()2()2() ®
3 (:)2-(-:‘).

k=0

&{n) =

W tabulate some values of ¢(n} in Table 4.1.
Having derived an explicit formula for (n), it is natural to ask how &(n) be-
haves as a function of n. Since ©(n) is cxpressed as a sum, this will require some

further analysis.
n k
= 2= (2) ;
«=(3)

Define
n
E(n) = Ztk.
k=0

then

114 Backtracking Algorithms

TABLE 4.1
Average number of nodes in the state space tree for Algorithm 4.4

)| n En) | n En)
70| 10 52110 321948
35| 20 351|120 496385
56 30 1342 [130 744800
85| 40 3863 | 140 1091392
123 | 50 9316 | 150 1566330
172 | 60 19898 | 160 2206835
234 | 70 38876 | 170 3058400
31.1| 80 70916 | 180 4176150
406 | 90 122485 | 190 5626373
100 202314 | 200 7488221

'O 00 =~ O L GO b0 3

Consider the ratio of successive terms in the sequence tg,t1,. .., %. Straightfor-
ward (but messy!) algebra shows that

g, _n- k+1
tp—1 - k2k-1
Hence, we see that ¢, > #;_, ifand only if n > k — 1 4 k2*~1. Since the

function f(k) = k — 1 + k2%~ is a strictly increasing function of k, it follows
that the sequence [to, . .. ,L,] is unimodular, i.e., there exists an index £ such that

to< ...ty Stp 2t 2.0 2t
Then it is obvious that
En) < (n+1)t,.
Now, we obtain an upper bound on the vatue ¢. First, observe that

n logyn

f(logyn) =log,n -1+ 5

When n > 4, we have that log, n > 2, and hence

fllogon)>n+1>n,

The inequality f(log, n) > n implies that £z < t;_; when & > log, n. This
establishes that £ < log, nifn > 4.
Now, we consider the term ¢4:

— {"Yo-(3) n ¢ logy n
e (2)e-0 < (1) <ntz i

Thus we have shown that &(n) < (n + 1)n'°%2™ for n > 4. From this, it follows
that &(n) is O(n'°82™+1), and the average-case running time of Algorithm 4.4 is
O(nlos2 n+2),

Estimating the size of a backtrack trec 1S5

4.4 [Estimating the size of a backtrack tree

In this scction, we present an algorithmic method to estimate the number of nodes
in a state space tree T for a backtracking algorithm. The algorithm will provide
a quick way of getting a rough estimate on the number |T'| of nodes in T with-
out running the entire backtracking algorithm. It is therefore a useful method to
predict how long a big backtrack search might take to finish.

To motivate the algorithm, we ficst consider a special case. Suppose n is a
positive integer, and ¢, ¢y, ..., Cn—; are also positive integers. Suppose that T
is a tree of dcpth n in which every node of depth i has ¢; children, for 0 <
i < n = 1. Equivalently, for 0 < ¢ < n — 1 and for any partial solution X =
lzg,...,Tim1], there are ¢; choices for x;. The leaf nodes in T would correspond
to solutions [z, ..., Zn—]. In this particular tree, it is easy to sce that, for cach
¢ =0,1,...,n, the number nodes at depth 7 is ¢gc; : - - €¢;— . Thus, the number of
nodes in T is given by thc following equation:

|T| =1+ co+coct +cocica + -+ + cpe1Ca - Cny. (4.4)

In general, a state space trec T' will not have such a regular structure. We will
obtain an estimate of the number of nodes in T by probing a random path through
T from the root node to a leat node. As we follow this path, we compute a
quantity analogous to Equation (4.4), in which the ¢;s are replaced by the number
of choices available at the nodes in the given path. The algorithm is presented as
Algorithm 4.5.

For any given state space tree T, Algorithm 4.5 will return a value N = N(P)
which depends on the path P that is probed. The value N (P} is an estimate of
|7’]. 1t may be larger or smaller than |T|. (We can increase the accuracy of the
estimate by running the algorithm several times, and computing the average of
the values N (P) over the various runs. In this way, we would expect to obtain a
more accurate estimate of |T'|.) We will now show that the expected value of N
is in fact equal to |T).

Define the following function on the nodes of T":

S([zo,...,z,_11)={1 if=0
|Cg_| ([Io, ey Ig..z])‘ . S([xo, ey ze_zl) if Z 1.
Thus, if X is the root node, then S(X) = 1. Further, if there are ¢ choices avail-

able at a given node X, then S(Y) = ¢ S(X) for all children ¥ of X. Observe
that, if P is the path probed in Algorithm 4.5, then

N(P) =) S(Y).

YeP

116

Backiracking Algorithms

Algorithm 4.5: ESTIMATEBACKTRACK ()

global N,m,C;, (£=0,1,...)
procedure PROBE(?)
Compute C; for the node [2g, ..., Ts—1]
C & |C¢|

fc#0

m e me
then NeN+m
¢ + arandom element of C;
PROBE({ + 1)
main

N1l

m« 1

PROBE(D)

return (N)

In Example 4.2, we present a small tree and the S-values at each node. In this
tree, there are six leaf nodes. The corresponding six paths from the root node to a
leaf node have values N (P} = 7,15, 15,9,9 and 9, and the paths are chosen with
probabilities 1/6, 1/8, 1/8, 1/6, 1/6 and 1/6, respectively. Example 4.2 shows
that the expected value of N(P) is 10, which is equal to the number of nodes in

the tree.

Example 4.2 A siate space tree

Estimating the size of a backirack tree 117

We now state and prove the main theorem of this section.

THEOREM 4.1 For any given state space tree T, let P be the path probed by
Algorithm 4.5. If N = N(P) is the value returned by Algorithm 4.5, then the
expected value of N is |T|.

PROOF For any leaf node X = [2q,...,2¢—;] € T, there is a uniquc path, say
P(X), from the root node to X. We will dcnote the nodes in the path P(X)
by Xo = [] (the root node), X, = [zo], ..., X¢ = X = [zo,...,Z¢-1]- The
probahility that X is chosen in Algorithm 4.5 when £ = 0is 1/]Co(X)|- Then,
thc probability that X3 is chosen when £ = 1 is 1/|C;(X,)|. In general, the
probability that X is chosen, given that Xy, ..., X;_ havc already been chosen,
is 1/|C;—1{X;—1)]. Therefore, the probability that P{X') is the path chosen in
Algorithm 4.5 is

1) 1)) 1 _ 1
[Co(Xa)| 1Ci(X1)] 7 [Cemr(Xe—1)| S(X)’

Now we can proceed to compute the expected value of V. An expected value is
actually a weighted average. In this case, we are computing the weighted average
of the values of N(P(X)), over all leaf nodes X, where the path P{X) is chosen
with probability 1/S(X). Let £L(T') denote the set of leaf nodes in the tree 7. The
desired weighted average, which we denote by N, is computed as follows:

N= Y (prob(P(X)-N(P(X))= 3 S—(IX—) 3 s

XeL(T) X€e€L(T) YeP(X)

We can interchange the order of the two summations in the above, obtaining

_— S(Y)
V= 2 ccoienn SE)

YeT \{X€L(T):YeP(X)}
Now, forany Y € T, let’s evaluate the inner sum,

S(Y)

X (4.5)

{XEL(T):YeP(X)}

For any non-leaf node Y in the tree, it is clear from the definition of the function
S that

1 1
5(Y) {Z:Zistgl:ildof}’} (2)
Iterating this equation, we see that
1 1
S(Y) 5(xy

{X:X is aleaf node that is a descendantof Y}

118 Backtracking Algorithms

This is equivalent to saying that
) oo
{XeL(T):YeP(X)} S() S(Y)

Note that this equation also holds if Y is a leaf node. Hence, for any node Y in
the tree, the sum in Equation (4.5) has the value 1. Thus

N=>"1=1(T],

YeT

which is the result we wanted to prove. 1

4.5 Exact cover

In this section, we study a problem similar to All Cliques that is called
Exact Cover .

Problem 4.2: Exact Cover

Instance: a collection S of subsets of the set R = {0,...,n — 1}
Question: Does S contains an exact cover of R? (In other words, does
there exist a subcollection S’ = {S;,,S5z,,...,59,_,}1 C S
such that every clement of R is contained in cxactly onc mem-
ber of S'7)

L

Let § = {S0,51,52,...,5m-1} be the collection of subsets of R in an in-
stance of Problem 4.2. Observe that a solution to this problem is a list of subsets
from & whose members partition R. Instead of storing the chosen subscts, we
will keep track of them using an array X = [zo,Z),...,2z¢—1] of their indices.
Thus, for example, 3 = 22 will mean that the set Sy; € & was chosen as the
third set in the (partial) solution represented by the array X.

Let G be the graph with vertex set V = {0,1,2,...,m — 1} in which two ver-
tices 1 and j are adjacent if and only if S; N S; = @. Then the partial solutions for
Exact Cover are precisely the cliques in the graph G. We can use Algorithm 4.4
to generate all the cliques in G. Furthermore, we can check each maximal clique
to sce if it corresponds 10 a partition of R, and thus solve Problem 4.2.

In order to use Algorithm 4.4, we first impose an ordering on the members of
S. Although any ordering can be used, it is beneficial to order the subsets of R in

|
decreasing lexicographic order, which we denote by <. This ordering is chosen
because it is useful for pruning.

Exact cover 119

We now describe how our choice sets can be determined. First, we define

Co=V
and

C;=A;,_,NB;,_,NC;_,,
where

A ={yeV:5,n8S; =8},
and

lex

B,={yeV:S, S S.}

forz =0,1,2,...,m— 1. If the sets C, are used as choice sets, then the resulting
backtracking algorithm is the same as Algorithm 4.4 for solving All Cliques
(see Equations 4.1, 4.2 and 4.3). However, we can take advantage of the structure
of the set system (R, &) to further prune the search, as follows. Recall that we
assumed that the sets in S are sorted in decreasing lexicographic order, so

lex lex lex

So>85 > > 8Sn-1.

Then the largest sets with respect to this ordering will all contain 0. The next
bunch will not contain 0 but will contain 1; the next bunch will contain 2 but
neither 1 nor @, and so on. Thus, the ordering of these sets defines an ordered
partition

H= [HO’Hh---yHn—I]

of {0,1,2,...,m — 1}, in which we have
H,={zxeV:5n/{0,...,i} = {i}},

fort =0,1,...,n— 1.
Now, suppose X = [zg,x1,...,2,—1] is a partial solution that we wish to
extend, if possible. If X is not itself a solution, then the set

Uy =R\ (Us)

=0

is not the empty set. In this casc, let r be the smallest integer in U,. If it is
possible to extend X 10 a solution, say [z, Z1,...,Te-1,Z¢, - - -], then it must be
the case that z; € H,. We can use this observation to facilitate further pruning,
by defining the (improved) choice set C; as follows:

Co=CinH,.

120 Backtracking Algorithms

In order to implement these modiftcations, we proceed as follows. First, before
running the backtrack algorithm, we sort S as described above. This can be done
in O log m) set operations. Then the sets A; and B, and the partition #,
can be constructed easily with one pass through S. The time to construct them is
O{m?) set operations. The rcsulting algorithm is presented as Algorithm 4.6. An
cxample, including the state space tree that results when this algorithm is run, is
given in Example 4.3.

Algorithm 4.6: EXACTCOVER (n, S)

globalt X.C, (€=0,1,..)
procedure EXACTCOVERBT(¢,7')

ife=0
then U + {0,...,n—1}
r+ 0
U + Usy \S:M—l
else rée7

whiler ¢ Ugandr < n
dor +—r+1

ifr=n
then output ([zo,...,z,—1])
if{=0

then C) « {0,1,...,m - 1}
else C; — A:n_l nBT(—l nc;—l
Ct FC;nHr
foreachz € C;

do Iy
EXACTCOVERBT(¢ + 1,7)

main

m + |S|
sort § in decreasing lexicographic order
fori — Q0tom —1

do A; « {j:5:nS; =0}

fori — Otom -1

doB; + {i+1,i+2,....m—1}
fori—QOton —1

do H; + {j:5,n{0,...,i} = {i}}
H,+ 0
ExXACTCOVERBT(0,0)

Exact cover 121

Example 4.3 An instance of Exact Cover

j S; rank(S;) A;NB;

0 {0,1,3} 104 {10,11,12}

1 {0,1,5} 98 {12}

2 {0,2,4} 84 {7,8,9,10,11,12}
3 {0,2,5} 82 {8,9,10,11,12}
4 {0,3,6} 73 {5,6,7,8,9,10,11, 12}
5 {1,2,4) 52 0

6 {1,2,6} 49 (11,12}

7 {1,3,5} 49 8

8 {1,4,6} 37)

9 {1} 32 {10,11,12}
10 {2,5,6} 19 p

11 {3,4,5} 14 0
12 {3,4,6} 13)
i| o0] 1 t2 | 3 |45/6]
H:[{0,1,2,3,4} [{5,6,7,8,9} | {10} [(11,12} [|0 [O]
/[]\
o] 11 {2 (3] [4]

AN

0,101 (2,7] [2,9] [3,8] [3,9] [4.5] [4.9]

|

[3,9,12]

solution

122 Backtracking Algorithms

4.6 Bounding functions

A more sophisticated method of pruning is to use a bounding function. We require
a few preliminary definitions, which will apply to any backtracking algorithm for
a maximization problem. Let profit(X) denote the profit for any feasible solution
X. For a partial feasible solution, say X = [zg, 1, ...,Z¢-1]. define P(X) to
be the maximum profit of any feasible solution which is a descendant of X in
the state space tree. In other words, P(X) is the maximum value of profit(X’)
taken over all feasible solutions X' = [z{,x},...,Z,_,] such that z; = z{ for
0 < i < £ - 1. It follows from the definition that, if X = [], then P(X) is the
optimal profit of the given problem instance.

In general, P(X) can be computed exactly only by traversing the subtree with
root node X . In order to avoid doing this, if possible, we wilt employ a bounding
function. A bounding function is a real-valued function B, defined on the set of
nodes in the state space tree, satisfying the following condition:

For any feasible partial solution X, B(X) > P(X).

This property says that B{X) is an upper bound on the profit of any feasible
solution that is a descendant of X in the state space tree. (For a minimization
problem, the definition is the same, except that the inequality is reversed.)

Once a bounding function B{X) has been specified, it can be used to prune
the state tree, as follows. Suppose that at some stage of the backtracking algo-
rithm, we have a current partial solution X = [zg,T),...,2s—1], and OptP is the
current optimal profit. If it happens that B{X) < OptP, then we have that

P(X) < B(X) < OptP.

This means that no descendants of X in the state space tree can improve the
current optimal profit. Hence we can prune this entire subtree, i.e., we can define
Ce 10 be the empty set.

It is helpful to think of B{X') as an approximation to P(X). We want a bound-
ing funcuon to be:

I. easy to compute, and
2. close to P(X).

These two properties work against each other. For example, P(X) is itself a
bounding function, but is too difficult to compute. Finding bounding functions
which satisfy both of the above properties can be a challcnging task, and we will
describe some nice examptles of useful bounding functions later in this chapter.

A general backtracking algorithm incorporating a bounding function is pre-
sented as Algorithm 4.7. In this algorithm, B is any specified bounding function,
and the function profit computes the profit for a feasible solution X

Bounding functions 123

Algorithm 4.7: BOUNDING ({)

external P(), B()
global X, OptP, OptX,C, (£=10,1,..))

if [0, ..., Z¢_1] is a feasible solution
P « profit([zo, ..., Te—1])
if P> OptP

s {OptP P
OptX « [Zo,...,Z¢_1]
Compuic C,
B « B([xo, ..., Ze-1])
for each z € C;
if B < OptP then return

do {xy &z

BOUNDING({ + 1)

I1 is very important to note that we check to see if the pruning condition, B <
OptP, is true every timc we consider another elemenl € C¢. This is because the
value of OptP can increase as the algorithm progresses, and so we check to see
if we can prune every time we are preparing to choose a ncw valuc for z,.

4.6.1 The knapsack problem

We now show how to define a useful bounding function for the Knapsack
(optimization) problem. First, we consider a related problem called the
Rational Knapsack problem, which we present as Problem 4.3.

Problem 4.3: Rational Knapsack

Instance: profits Po. P1.P2. .- - Dn~ts
weights wg, wn, Wy, ..., Wnp_1; and
capacity M

Find: the maximum value of

n-—1t
Z DiT;
i=0

subject 10

n-1
Z wir; <M
=0

where z; is rational and 0 < z; < 1 forall :.

It is straightforward to see that Algorithm 4.8, which uses a greedy strategy,
returns the optimal profit for Rational Knapsack .

124 Backtracking Algorithms

Algorithm 4.8: RKNAP (po, p1, . . . s Pn—1,W0, Wiy oy Wnoy, M)

permutc the indiccs so that po/wy > py /wy > Pre—1/Wn-1
10
Pe0
W0
forj « Oton -1
doz; «0
while W < M and: < n

[ifW+w,-5M
z; 1
W<—W+w,-
then Pe Pty
do < te1+1
z, & (M - W) /w;
else WeM
P(—-P-l-:l:,'p,'
t+—1+1

We use RKNAP to define a bounding function for the Knapsack
(optimization) problem as follows. Given a (feasible) partial solution X =
[0, 21, ..., Z¢-1], define

£-) -
B(X) = ZP.‘x,- + RKNAP(ps, ..., Dny Wiy« .., W, M — Z w,‘.‘L‘j)
=0 i—0
-1
=" pizi + RKNAP(pr, . ., Py Wes .., e, M — Cur W)
i=0

Thus, B(X) is equal to the surn of:
1. the profit obtained from objccts 0,1,...,¢ — 1,
plus
2. the profit from the remaining objects, using the remaining capacity

M - CurW,

but allowing rational z;s.

If we restricted each z; to be O or 1 in part 2 above, then we would obtain P{X).
Allowing the z,s with £ < i < n to be rational may yield a higher profit; so
B(X) > P(X) and B is indeed a bounding function. It is also easy to compute,
and thus may be useful for pruning.

Bounding functions 125

Suppose we want to solve an instance of the Knapsack {(optimization) prob-
lem. It will be useful to sort the objects in non-decreasing order of profit/ weight
ahead of time, before we begin the backtracking algorithm. Then, when we wish
to evaluate our bounding function, the first step of Algorithm 4.8 will be unnec-
essary, and consequently RKNAP will run faster. Thus, we will assume that

P Pt P
wg ~ wy — T Wp—1

Thc improved algorithm is given as Algorithm 4.9.

Algorithm 4.9: KNAPSACK3 (¢, CurW)

external RKNAP()
global X, OptX, OptP,C; (£=0,1,...)

fi=n
n-=1
if z piz; > OptP
=0
then n-l
then J OPP Zo piTs
OptX « [z0,...,Tn_1]
ift{=n
thenCy + §

i€ CurW +we < M
else then C; + {1,0}
else C; « {0}
t—1
B« Zp,-z.- + RKNAP(pg, - ..y Py Wi, - - <y Wn, M ~ CurW)
=
for ea‘ch €
if B < OptFP then return
do T — 2T
KNAPSACK3({ + 1, Cur W + wyxy)

Example 4.4 An instance of the Knapsack (Optimization) problem

Suppose we have five objects, having weights [1, 12, 8, 7, 9; profits 23, 24,15,
13 and 16 (respectively); and capacity M = 26. Note that the objects are already
arranged in decreasing order of profit/weight. We draw in Figure 4.4 the space
tree traversed in the course of the backirack algorithm KNAPSACK3 . Al each
node, we record the current values of X, B(X) and CurW .

126 Backtracking Algorithms

X =]

B = 52625
X =y CurW =0
B = 52.625
CurW =23

X = [0]
B =50.14 < 51
CurW =9

X =11,1j
B = 52.625
CurW =23

X =[1,0]
B = 51
CurW =11

X =[1,1,0]
B = 52.57
CurW =23

X =[1,0,1]
B =51
CurW =19

X =[1,1,0,0, -]
B =52.33
CurW =23

X = [1’07 1: 1, '-]
B =51
CurW =26

X =11,0,1,1,0]
X =1,1,0,0,0] P = 51> OptP,
P = 47,50 set OptP = 47 so set OptP = 51
CurW =23 CurW =26

FIGURE 4.4
The state space tree traversed by KNAPSACK3.

Bounding functions 127

TABLE 4.2
Size of state space trees for Algorithms 4.1, 4.3, and 4.9, on random instances with n

weights

n | Algonthm4.1 | Algonthm 4.3 | Algorithm 4.9

8 SI1 332 52

8 511 312 78

8 511 333 72

8 511 321 74

8 511 313 57
12 8191 4598 109
12 819] 4737 93
12 8191 5079 164
12 8191 4988 195
12 8191 4620 87
16 131071 73639 192
16 131071 72302 58
16 131071 76512 168
16 131071 78716 601
16 131071 78510 392
20 2097151 1173522 299
20 2097151 1164523 104
20 2097151 1257745 416
20 2097151 1152046 118
20 2097151 1166086 480
24 33554431 19491410 693
24 33554431 18953093 180
24 33554431 17853054 278
24 33554431 19814875 559
24 33554431 18705548 755

To compare the amount of pruning provided by Algorithms 4.1, 4.3, and 4.9,
we give experimental data in Table 4.2. For each n = §,12,16, 20, and 24,
five instances of Problem 1.4 were generated by randomly selecting n integer
weights wg,w),...,wa—) between 0 and 1000000. In an attempt to generate
“hard” instances of Problem 1.4, we defined, for each? = 0,1,...,n — 1, the
profit p; = 2 w; e, wherc € was chosen at random in the interval (.9, 1.1). Hence
the profit of each object is within 10% of twice its weight. The capacity M was
chosen 1o be half the sum of the weights.

Certainly the bounding function has a dramatic effect on thc running time of
the algorithm in these random problem instances.

4.6.2 The traveling salesman problem

In the traveling salesman problem, a salesman must visit n cities and return home,
doing so in such a way that the cost of the trip is minimized. More precisely, the
Traveling Salesman problem is defined as follows:

128 Backtracking Algorithms

Problem 4.4: Traveling Satesman

Instance: a complete graph on n vertices, G = (V, E):
a cost function, cost : E - Z7+
Find: a Hamiltonian circuit X of G such that
cost(X) = Z cost(e)
ecE(X)

is minimized. (Recall that a Hamiltonian circuit in a graph G
is a circuit that passes through each vertex of G exactly once.)

Let V = {0,1,...,n — 1} be the vertices of the graph G. For convenience, we
will definc cost{z,y) = cost({z,y}) if & # y, and cost(z,y) = 0 if x = y.

Any Hamiltonian circuit X can be represented as a permutation of V, say X =
(@0, .. ., Tn-1]. Without loss of generality, we can regard X as starting and cnding
at vertex 0; so, we can define z9 = 0. For example, the circuit

25103462
would be represented by the 7-tuple
[0,3,4,6,2,5,1] orby [0,1,5,2,6,3,4]

Algorithm 4.10 is a basic backlrack algorithm for the Traveling Salesman
problem. To speed up Algorithm 4.10, we will construct some bounding func-
tions. The Traveling Salesman problem is a minimization problem; so, a
bounding function, Bound{X), must provide a lower bound on the cost of any
Hamilionian circuit that is an extension of the partial solution X. Suppose
X = [zo0,%),...,Z¢-1] is a partial solution. Then £ < n — 1, and X represents
the path 2o zy --- z4_, of length £ — 1. Define

y = V\ {zo,xl,...,zg_l}.

Observe that, if [zg,...,Zn—)] is a feasible solution that is an extension of X,
then

Y= {I[,...,I".q}.

Bounding functions 129

Algorithm 4.10: TSPt ()
globalC, (¢=0,1,...,n—-1)

ift=n
C « cost{[zg,...,Zn_1])
itC < OptC
then then {OptC «C
OptX [zo,...,Zn-1]
ife=0
then C; « {0)
iffi=1

else then C; + {1,...,n -1}
else C; « Ci_, \ {I(-]}
foreach x € C;

T+~
do {TSPI(€+1)

Forz € Vand W C V (wherc W # 9), define
b(z, W) = min{cost(z,y) : y € W}.

We now prove an inequality that will lead to a bounding function.

THEOREM 4.2 Let X' = [zq,...,Zn_1] be the minimum cost Hamiltonian cir-

cuit that extends [zg, 71, . ., £4—1], where £ < n — L. Then it holds that
-1
cost{X') > ZCOSt(zi,x,-H) +b(zs—), V) + z b(y, Y U {z0}).
i=0 yeY

PROOF Define z,, = z¢ for convenicnce; then we have

n—1|

cost(X') = zcost(:r,',a:,ur]).
=0

First, the sum

-1
Z COSt(Z,‘, Tip)
i=0

reprcsents the sum of the costs of the edges already chosen in X . Next, we have

cost(2e—1, xe} 2 b{ze-1,)),
because z, €). Finally, for¢ < i < n — 1, we have

cost(z;, Tit1) 2 b(zi, YU {zo}),

130 Backtracking Algorithms

because 2,41 € YU {xo} for€ < i < n—1. Since ¥ = {z¢,...25-,}, the
result follows. |

Let X = [2o,21,...,Ze—1]- If £ < n — 1, then define

e-1
MINCOSTBOUND(X) = Zcost(x.-,:t.-H Y+ bz,)+ Z b(y, YU {z0}),
=0 yey

whereas if £ = n, then define

-1
MINCOSTBOUND(X) = 3 _ ¢ost(z,, Ti41) + OSt(Zn—1, To)-

=0

Theorem 4.2 establishes that MINCOSTBOUND is a bounding function. It is
straightforward to describe an algorithm to compute MINCOSTBOUND in O(n?)
time.

Another bounding function can be achicved using reduced matrices, which we
will now study. A matrix M of integers is said to be reduced if the following three
properties are satisfied:

1. all entries of M are non-negative;
2. every row of M contains at Jeast one entry equal to 0;
3. every column of M contains at Icast one entry equal to 0.

Suppose M is an m by m matrix in which all the entries are non-negative.
Algorithm 4.1 transforms M into a reduced matrix, and computes a quantity
val = REDUCE(M) which we call the value of the matrix M.

The following result shows the relevance of reduced matrices to the
Traveling Salesman problem.

THEOQOREM 4.3 Suppose cost is a cost function for the complete graph G on m
vertices. Define M to be the m by m masrix in which M([i, j] = cost(4, 7). Then
any Hamiltonian circuit in G has cost at least REDUCE(M).

Bounding functions 131

Algorithm 4.11: REDUCE (M)

comment: M is an m by m matrix
val < 0
fori: —0tom —1
[min « M[i,0]
forj+—1ltom-1
do {it‘M[i,j] < min
then min +— Mz, j]
forj +~0Otom -1
do M[i,j] + M[i, 7] — min
| val « val + min
forj+—0Otomn—-1
(min + M0, j]
fori — ltom -1
do {ifM[i,j] < min
then min + M[i, j]
fori —0tom -1
do M[i,j] « M[i, j] — min
val — val + min
return (val)

do ¢

do ¢

Before giving a proof of this theorem, we present an exarnple to illustrate it.

Example 4.5 An illustration of Theorem 4.3
Suppose

is the cost matrix for a graph G. Reducing M, using Algorithm 4.11, we see that
REDUCE(M) = 18. On the other hand, it is not difficult to check the costs of the
three possible Hamiltonian circuits:

the circuit0O123hascost3+2+6+8 =19
thecircuit0132hascost3+7+6+5 =21
the ciccuit 0213 hascost 5 +2+ 7+ 8 = 22

Hence the minimum-cost Hamiltonian circuit has cost 19, and indeed,

19 > REDUCE(M) = 18.

132 Backtracking Algorithms

This example shows that REDUCE(M) is indeed only a lower bound on the cost
of any Hamiltonian circuit; 1t need not give the cxact value of thc minimum-cost
circuit. 0

PROOF (of Theorem 4.3) Let X = [zq,Z),...,Tn-1) be any Hamiltonian cir-
cuit of G. Define z,, = z¢. Then

cost(X) = M[zp,z:1| + M[:r.,:fz] + -+ Mlzp-1,zal]
This sum uses exactly one cell from each row and column of M. Define
ri = min{M[:,j]:0<j<n-1}
and
¢; = min{M[i,j]-ri:0<i<n-1},

for0 <i<n-1and0 < j < n -1l Observe that

n—1

n-1
REDUCE(M) =) ri+) _c,.
i=0 =0

Clearly, wc have
Tzy + Caipy < M[I,',.‘I:H.l],

forall 7, 0 < 7 < n — 1. Hence, summing over i, we see that
REDUCE(M) < cost(X),

and the resuit follows. |

We now use the idea of reduced matrices to define a bounding function. We
need a way to determine a lower bound on the cost of any Hamiltonian circuit that
is the completion of a given partial solution. Suppose we have a partial solution

X = [107:':1’-- . yIl—l])

where £ < n—1. As mentioned previously, X represents the path zo y -+~ zo—;.
Perform the following operations on the cost matrix M

I.ife<n

then M{z,_,,0] = o0;
2. delete rows zg, T1,..., Z¢—2 of M; and
3. delete columns 21, ..., rs—; of M.

Bounding functions 133

Call the resulting matrix M'{X). Observe that M'(X) is an (n — £ + 1) by
(n — £ + 1) matrix. Now, we define our bounding function by the following
formula:

REDUCEBOUND(X) = REDUCE(M'(X)) + M{zo,)]+ - - - + M[z¢-2,z¢-,]}

That is, REDUCEBOUND(X) is the sum of the costs of the edges in the partial
solution X, and the value of the matrix M'(X).

To show that this formula is indeed a bounding function, we need to prove that
REDUCE{M'(X)) is a lower bound on the sum of the costs of any completion of
X 1o a Hamiltonian circuit. We argue informally that this is the case.

Consider the effects of opcrations |, 2, and 3. Operation 1 rules out using
the edge {ze—1,20} if £ < n, because using this edge would close the circuit
prematurely. Operation 2 rules out using edges leaving vertices xg,x1,...,Zs—2
and operation 3 rules out using edges entering vertices z3,...,Z¢—1. Anyn — ¢
edges which provide a completion of X to a Hamiltonian circuit will thus hit
M’'(X) exactly once in every row and column. It can be shown that the sum of
the costs of these edges must be no less than the value of M‘(X), in a manner
similar to the proof of Theorem 4.3.

We now give a detailed description of the resulting bounding function.

Algorithm 4,12: REDUCEBOUND (X))

external cost(), REDUCE()
global M,V

comment: X = [2o,...,Zm-1]
if m = n then return (cost(X))

M'[0,0] + oo
j«1
M'[0,j] « Mlzm_1,¥]
foreachy € V\ {zg,71,...,Zm_1} do {j(—j+1
i1
M'[4,0) &« Mz, zo
foreachz € V\ {zq,z,,...,Zm—~ } do {“_[“!1 []
i1
foreachz € V\ {xq,z1,...,Zm-1}
J+1
M'[i, Mz,
do { foreachy € V\ {x0,%1,-..,Zm-1} do {j JlleT [£,9]
ie—i+1

ans +— REDUCE(M")
fori—1tom -1

do ans + ans + M[z;_;,z:)
return (ans)

134 Backtracking Algorithms

TABLE 4.3

Size of state space trees for Algorithms 4.10 and 4.13, on random instances of the
Traveling Salesman problem with n vertices. Algorithm 4.13 is applied with
bounding functions MiNEDGEBOUND and REDUCEBOUND

n | Optimal Algorithm 4.10 Algorithm 4.13
Cost MINEDGEBOUND | REDUCEBOUND
5 137 65 a5 18
10 160 986,410 5,199 1,287
15 234 || 236,975.164,805 1,538,773 53,486
20 173 ~ 33107 64.259,127 1,326,640

The value of an n by n matrix is computed in time O(n?) by Algorithm 4.11.
Hence REDUCEBOUND(X) can also be computed in time O(n?). Algorithm 4.13
is a backtracking algorithm for the Traveling Salesman problem that incorpo-
rates an arbitrary bounding function.

To compare the effect of the two bounding functions MINEDGEBOUND and
REDUCEBOUND described in this section, we generated random instances of
the Traveling Salesman problem on 5, 10, 15, and 20 vertices. The edge costs
were randomly chosen integers between 0 and 100. In Table 4.3 we report the
number of nodes in the state space trees when Algorithm 4.13 is used with these
two bounding functions.

Algorithm 4.13: TSP2 ({)

external B()
gobalC; (€=0,1,...,n~1)
fé=n
C + cost([zp, ..., Tn-1])
if C < OptC
OptC + C
then 3 OptX « [zos. ., Zao]
ifé =0 then C; + {0}
elseif { =1 thenC, + {1,...,n -1}
else Cy Cei_1 \ {Iz_l}
B+ B([Io, .. .,21_1])
for each z € C,
if B > OptC
then return
Te I
TSP2(£ + 1)

then

Bounding functions 135

3 s
L 6
.

4

FIGURE 4.5
A graph with maximum clique {1, 2, 3, 4}.

4.6.3 The maximum clique problem

Recall that a maximum clique in a graph G is a clique of largest cardinality. For
example, the maximal cliques in the graph in Figure 4.5 are {1, 2, 3,4}, {3, 4,6}.
{3,5},and {4, 7}. The clique {1,2, 3,4} is the only maximum clique. In general,
a graph may have more than one maximum clique. The problem of finding a
maximum clique in a graph G is known as the Maximum Clique problem. A
decision version of this problem was introduced in Section 1.6 as Problem 1.7.
The optimization version of the problem is defined as follows.

Problem 4.5: Maximum Clique
Instance: Agraph G = (V,€)
Find: a maximum clique of G.

This problem has been shown to be NP-complete, but in spite of its inherent
difficulty, many algorithms have been developed that perform well in practice.

In Section 4.3 we developed Algorithm 4.4 for generating all the cliques in a
graph G = (V,£). This algonthm can easily be modified to find a maximum
clique; see Algorithm 4.14. Note that we no longer need to maintain the sets Ny;
we simply check to see if each clique constructed is larger than any previously
constructed clique.

We now turn to the development of bounding functions for this problem. First
we require a definition. Suppose G = (V, £) is a graph, and W C V. The induced
subgraph G[W] has vertex set W, and edge set

{{v,v} € €: {u,v} CW}.

Now, at a typical point in Algorithm 4.14, we have the partial solution (i.e., clique)
X = [zo,z1,...,Z¢—1). Suppose X' = [zo,Z1,%2,-..,2;] is a clique which
extends the partial solution X, where j > £ — 1. Then {z,,...,7;} mustbe a
clique in the induced subgraph G[C,]. Thus, we can obtain a bounding function

136 Backtracking Algorithms

by placing an upper bound on the size of a maximum cligue in G[C¢). If the size
of a maximum clique in G[C¢] is denoted by mc(#), and mc(£) < ub(¢), then

B(X) = £ + ub()

is a bounding function.

Algorithm 4.14: MAXCLIQUEI ()

global 4,,B;,C, (£=0/1,...,n—1)
if £ > OptSize

then {OptSize ~€{+1

OptCligue « [xg,...,Z¢—1]

ifé=0

thenC, + V

elseCe & Az, ,NB;,_, NCi1
for each z € C;

do {1t -2

MAXCLIQUEI(f + 1)

main
OptSize + 0
MAXCLIQUEL(0)
output { OptCligue)

We can use this idea to obtain scveral different bounding functions. The sim-
plest of them is to observe that

me(8) < [Col.

This gives rise to the bounding function presented in Algorithm 4.15, which we
call the size bound.

Algorithm 4.15: SIZEBOUND (X)

global C,
comment: X = [zo,...,24_1]

return (€ + |Cy|)

Other, more sophisticated, methods of obtaining bounding functions use the
idea of vertex coloring (see Problem 1.5}. Recall that, if G = (V,£) is a graph
and k is a positive integer, then a (vertex) k-coloring of G is a function

color: V — {0,...,k -1}

such that color(z) # color(y) forall {z,y} € £. The relevance of vertex coloring
to the Maximum Clique problem is stated in the following simple lemma.

Bounding functions 137

LEMMA 4.4 Let G be a graph, and suppose that G has a vertex k-coloring. Then
the maximum clique in G has size ar most k.

PROOF If vertices & and y receive the same color, then they cannot both be in
the same clique.

Even though finding a vertex k-coloring in which k is minimized is NP-hard, it
1s not difficult to find k-colorings for values of k that are larger than the minimum.
One easy way (o do this is to color the vertices by a greedy strategy (recall that
greedy algorithms were introduced in Section 1.8.1). In a greedy algorithm, the
vertices are processed in order, each vertex receiving the first available color. Al-
gorithm 4.16 presents such an algorithm. In Algorithm 4.16, we assume that the
vertex set is writtenas V = {0, ...,n — 1}. The algorithm constructs a k-coloring
for some positive integer k, and returns that value of k. The actual k-coloring is
stored as a {global) array, color. In the process of constructing this coloring,
the algorithm constructs an array of sets called ColorCluss, which is defined as
follows:

ColorClass[h] = {i € V : color{i] = h}

for0 < h< k-1

Algorithm 4.16: GREEDYCOLOR (G = (V,£))

global color
comment: V = {0,...,n — 1}
k«0
fori+ Oton—1
he<0
while & < k and A; N ColorClass[h] #Bdoh « h + 1
. k+—k+1
do (ifh=k then ColorCluss[h] + @
ColorClass[h] « ColorClass[h] U {7}
color[i] + A
return (k)

There are several ways in which Algorithm 4.16 can be incorporated into a
bounding function. One way is to find an initial greedy coloring of the graph
before the backiracking algorithm begins. Suppose that this coloring is denoted
color and it uses k colors. For each induced subgraph G[C,], the function color,
restricted to the vertices in C,, defines a coloring of G[C;] which may use fewer
than k colors. The number of colors in this induced coloring yields an upper
bound on the size of a maximum clique in G[C¢]. The resulting bounding function,
which we call the sampling bound, is presented in Algorithm 4.17.

138 Backtracking Algorithms

Algorithm 4.17: SAMPLINGBOUND (X)

global C,, color
comment: X = [xp,...,Z,-]

return (£ + |{color[z] : z € C¢})

Another way to use the greedy coloring algorithm in a bounding function is
1o apply Algorithm 4.16 to the induced subgraph G[C¢] every time we want to
compute the bounding function. The resulting bounding function is called the
greedy bound and it is presented in Algorithm 4.18.

Algorithm 4.18: GREEDYBOUND (X)

external GREEDYCOLOR()
global C,

comment: X = [zg,...,T¢-1]
k « GREEDYCOLOR(G[C,])
return (¢ + k)

Any of the three bounding functions discussed above (or any other bounding
function, for that matter) can be incorporated into our backtracking algorithm as
the function B(X'). Algorithm 4.19 is the result.

As was done in other algorithms incorporating bounding functions, wc check
to see if the condition M < OptSize is truc in every iteration of the loop. This
is because the value of OptSize can increase as the algorithm progresses, and so
we check to see if we can prune every time we are preparing (o add a new node to
the clique being considered.

In Table 4.4 we list the number of nodes in the state space tree, for graphs of
various sizes, when Algorithm 4.19 is run using the different bounding functions
we have discussed. We also list the number of edges, and the size of the maximum
cliques in these graphs. The graphs we used were generated at random from the
class G(n) defined in Section 4.3.1. There are several ways to do this. One nice
method uses ranking and unranking algorithms we developed in Chapter 2. Note
that the function Randominteger(a, b) generates a random integer in the interval
[a,b]. Algorithm 4.20 constructs a random graph in the class G(n).

Bounding functions 139

Algorithm 4.19: MAXCLIQUE2 ()

external B()
global Ag,B(,Cl (f = 0, 1,. A 1)
if £ > OptSize

OptSize + ¢
then {OptClique [zo,. . Te-1]

fé=0
thenC; + V
elseCe — Az, ,NB;,_,NCqy
M « B([zq,...,ze-1])
foreachz € (;
if M < OptSize
then return
Tg — X
MAXCLIQUE2(€ + 1)
main
OptSize « 0
MaXCLIQUE2(()
output (OptClique)

Algorithm 4.20: GENERATERANDOMGRAPH (n)

Randominteger()
external ¢ SUBSETLEXUNRANK()
KSUBSETLEXUNRANK()

r + Randominteger(0, 92(3) - 1)
T + SUBSETLEXUNRANK((}),)
E«0D
foreach; €T

do {z,y} + KSUBSETLEXUNRANK(j, 2, n)
E+Euf{z-1y-1}
return (G = ({0,...,n — 1},&))

The only aspect of Algorithm 4,20 that might require explanation is the last
line, where we add the edge {z — 1,y — 1} to £. This is because the algorithm

KSUBSETLEXUNRANK returns a 2-subset of {1,...,n}, whereas we want a 2-
subset of {0, ...,n — 1}. Thus we subtract one from z and ¥ to create the edge to
be included in £,

Notice that the expected (i.e., average) sizes of state space trees when no prun-
ing was done were denoted in Section 4.3.1 by &n), and some values of ¢(n)

140 Backtracking Algorithms

TABLE 4.4
Size of state space trees for Algorithm 4.19 on random graphs with edge density .5
number of vertices S0 100 150 200 250
number of edges 607 2535 5602 9925 15566
size of maximum clique 7 9 10 11 11
bounding function
none 3687 | 257145 | 1659016 | 7588328 | 26182672
size bound 3204 57225 350310 | 1434006 5008767
sampling bound 2268 | 44072 | 266246 | 1182514 | 4093535
greedy bound 430 5734 22599 91671 290788
TABLE 4.5
Size of state space trees for Algorithm 4.19 on random graphs with edge density .75
number of vertices 25 50 75 100 125
number of edges 236 959 2045 3720 5780
size of maximum clique 11 14 15 17 18
bounding function
none 25570 | 2083770 | 12385596 | 186543706 | 1414266577
size bound 1840 91663 426279 5370268 35108264
sampling bound 794 37218 195567 2225982 15615755
greedy bound 91 2843 10476 70404 413421

were presented in Table 4.1. It is interesting to compare these values to the exper-
imental results obtained in Table 4.4.

The edge density of a graph is the ratio of the number of its edges to (3} {which
1s the total possible number of edges). The random graphs generated by Algo-
rithm 4.20 will have edge density approximately .5. To obtain a random graph
with a given edge density 4, 0 < & < 1, Algorithm 4.21 can be used. In this algo-
rithm the function Random(a, b) generates a random real number in the interval
[a,b]. Table 4.5 presents data similar to Table 4.4, but for randomly generated
graphs with edge density approximately .75,

Algorithin 4.21: GENERATERANDOMGRAPH?2 (n, §)

external Random()

forz+ Oton —2
fory+—z+1ton—1
r + Random(0, 1}
do S ifr>1-4
thenf —~ EUf{z-1,y-1}
retorn (G = ({0,...,n — 1}, &)

do

Branch and bound 141

Tables 4.4 and 4.5 show that the size of the state space tree decreases signifi-
cantly as better bounding functions are employed. Of course, the optimal choice
for a bounding function depends on both the time required 1o compute the bound-
ing function, and on the amount by which the size of the state space tree is re-
duced. The relative computation times for the different bounding functions can
depend heavily on the implementation. However, we can make a couple of ob-
servations on the complexity of these computations. First, when given as input a
graph having n vertices, the greedy coloring algorithm takes time O{rn?). There-
fore the greedy bound is computed in time O(|C¢|?). The size bound and sampling
bound, on the other hand, can be computed in time O{|C|) using standard algo-
rithms. Hence, there is a tradeoff, because the more effective greedy bound has
a slower computation time. In general, the greedy bound will result in a faster
algorithm for “large enough” graphs. The crossover point, however, will depend
on the implementation and is best determined by experimentation.

4.7 Branch and bound

Another way in which we can take advantage of a bounding function is a method
called branch and bound. The usual implementation of backtracking is to exam-
ine each of the choices z; € C; in some predetermined order, calling the algorithm
recursively for each choice. A better strategy is to use a bounding function to de-
termine the order in which the recursive calls are made. A branch and bound
algorithm for a general maximization problem is presented as Algorithm 4.22.

We illustrate the branch and bound technique using the Traveling Salesman
problem. Suppose X = [2q, Z1, Z2,. . ., T¢—1] is a partial solution for an instance
of the Traveling Salesman problem, and £ < n — 1. Then there are (n ~
1) — (£ — 1) = n — £ choices for ;. Consider the node in the state space tree
corresponding to the partial solution X. Algorithm 4.13 would look at the n — £
children of X in increasing order of z;. There is no particular reason to proceed
in this order.

142 Backtracking Algorithms

Algorithm 4.22: BRANCHANDBOUND (¢)

external B(), profit()
globalC; (£=0,1,..)
if [zo, ... ,Z¢-1] is a solution
P « profit([zo, . .., Z¢-1])
if P > OptP
then then {OptP «P
OptX + [zy,...,Te-1]
Compute C;
count +— 0
foreachz € C;
T T
neztchoice[count] « z
nextbound(count] + B([zo, ..., Ts-1,2])
count & count + 1
Sort neztchoice and nextbound
so that neztbound is in decreasing order
forz « 0 to count — 1
if nezthound[i] < OptP
then return
z¢ + nextchoicel[i]
BRANCHANDBOUND(Z + 1)

do

do

In a branch and bound algorithm, for the Traveling Salesman problem we
will calculate B(X') for each of the n — £ children X’ of X before we make any
recursive calls from this node, Then, we will make recursive calls in increasing.
order of the n — £ values of B(X') that we computed (since it is a minimiza-
tion problem). We hope that an optimal solution is most likely to be found in
the branch of the state space tree where the bounding function is smallest. The
remaining branches of the state space tree can then possibly be pruned without
having to traverse them.

The resulting algorithm is presented as Algorithm 4.23. Other than the modifi-
cation to the order in which recursive calls are made, Algorithm 4.23 is unchanged
from the previous algorithm, Algorithm 4.13,

Branch and bound

TABLE 4.6

143

Size of state space trees for Algorithms 4.13 and 4.23, on random instances with n
vertices. Algorithms 4.13 and 4.23 are shown with both bounding functions

MINEDPGEBOUND and REDUCEBOUND

n Algorithm 4.13 Ailgorithm 4.23
MINEDGEBOUND | REDUCEBOUND || MINEDGEBOUND | REDUCEBOUND

5 45 18 25 9
10 5,199 1,287 490 102
15 1,538,773 53,486 128,167 5,078
20 64,259,127 1,326,640 6,105,089 39,035
Algorithm 4.23: TSP3 (¥)

external Sort(), cost()

globalC, (£=0,1,...,n-1)

ifé=n

C + cost([xa,...,2n-1])

ifC < OptC
then
the {OptC ~C

if£=0 thenC; {0}

else O +— Cor \ {z¢1}
count +)
foreachz € C;
T T
d nextchoice[count] « x
o
count &« count +1
Sort nextchoice and nextbound
so that neztbound is in increasing order
for i « 0 to count — 1 ’
if nextbound[i] > OptP
then return
z¢ + neztchoice(i]
TSP3(£+ 1)

do

elseif{ =1 thenC; + {1,...,n—1}

Oth — [:l:o, cen ,In_ll

neztbound[count] « B([zo,...,Z¢—1,2Z])

To evaluate the effect of the two bounding functions in a branch and bound
algorithm, we used the same random instances as we did in Section 4.6.2. In
Table 4.6 we report the number of nodes in the state space trees when Algo-
rithms 4.13 and 4.23 are used, for both of the bounding functions.

144 Backtracking Algorithms

4.8 Notes
Section 4.1

Backtracking algorithms are described in several textbooks and monographs, for
example Brassard and Bratley [9], Goldberg [36], Horowitz and Sahni [43], Pur-
dom and Brown [84], Reingold, Nievergelt and Deo [90] and Stinson [103].

Section 4.3.1

The average-case analysis of Algorithm 4.4 is due to Wilf; see [113, Section 5.6].
An example of an average-case analysis of a backtracking algorithm for a different
problem {the Satisfiability problem) can be found in [84, Section 4.3].

Section 4.4

For a thorough treatment of the estimation of backtrack trees, sec Purdom and
Brown [84, Section 11.10].

Section 4.5

An earlier version of Algorithm 4.6 was developed and used by Frenz and Kreher
in [30] to enumerate inequivalent cyclic Steiner triplc systems.

Wells discusses the Exact Cover problem in [111, Section 6.4]. He devel-
ops an algorithm which he then uses to construct Steiner triple systems. This is
followed by a couple of additional refinements to the algorithm. If the subsets in
& are restricted to each having exactly 3 elements, then the problem is known as
Exact Cover by 3-sets. Exact Cover by 3-sets was shown to be NP-complete
by Karp in [51] (see also |31]).

Section 4.6.1

The bounding function we usc for the Knapsack {optimization) problem is
described 1n Horowitz and Sahni [43, Section 8.2]. The instances that are refcrred
to in Table 4.2 can be found in the web pages at the following URL.:

http://www.math.mtu.edu/ "kreher/cages/Data.html

Section 4.6.2

An overview of bounding functions for the Traveling Salesman problecm can be
found in [63, Chapter 10). The mcthod of reduced matrices is described in several
places, for example, in Horowitz and Sahni [43, Section 8.3]. The instances that
are referred to in Tables 4.3 and 4.6 can be found in the web pages at the following
URL:

http://www.math.mtu.edu/ "kreher/cages/Data.html

Exercises 145

Section 4.6.3

The monograph [49] edited by Johnson and Trick is a recent work devoted to
three fundamental NP-hard problems, namely, the Maximum Clique problem,
the Vertex Coloring problem, and the Satisfiability problem.

The 1973 branch and bound technique of Bron and Kerbosch [13], used in their
algorithm CACM457, is the basis for most of the recent maximum cligue algo-
rithms. Among these, the most notable are the algorithms by Balas and Yu [5]
and Babel [4]). The 1986 Balas-Yu Algorithm uses a greedy colering and maxi-
mally trtangulated induced subgraphs to achieve tighter bounds on the maximum
clique size. This algorithm was one of the fastest until 1990, when Babel {4] in-
troduced an algorithm that uses the DSATUR coloring method of Brelaz [10]. In
[998, Myrvold, Prsa and Walker [78] dcveloped a promising method for testing
maximum clique algorithms when the number of vertices becomes prohibitively
large.

The instances of the Maximum Cligue problem that are referred to in Tables
4.4 and 4.5 can be found in the web pages at the following URL:

http://www.math.mtu.edu/ kreher/cages/Data.html

Exercises

4.1 Define choice sets and describe backtracking algorithms for the following problems:

(a) Find all ways of placing n mutually non-attacking queens ont an n by n chess
board.

{b) Find all sclf-avoiding walks of length n. (A self-avoiding walk is described
by a sequence of edges in the Euclidean plane. beginning at the origin, such
that each of thc edges is a vertical or horizontal line segment of length onc,
and such that ao point in the plane is visitcd more than once. There arc
precisely three such walks of length one, 12 walks of length two, and 36
walks of length threc.}

(c) Find all k-vertex colorings of a graph G.

4.2 Find a formula for the number of nodes in the state space tree that results when
Algorithm 4.10 is run on an instance of the Traveling Salesman problem having
n vertices,

4.3 Determine the complexity of Algorithm 4.8, with and without the assumption that
the objects are sorted according to their profit / weight ratios.

4.4 Use
Algorithm 4.9 to solve the following instances of the Knapsack (optimization)
problem.

146 Backtracking Algorithms

(a) Profits 122 2 144133 52 172169 50 11 87 127 31 10 132 59
Weights 63 1 71 73 24 79 82 23 6 43 66 17 5 65 29
Capacity 323

{b) Profits 143 440 120 146 266 574 386 512 106 418 376 124 48 535 55
Weights 72 202 56 73 144277 182 240 54 192183 67 23 244 29
Capacity 1019

{c) Profus 818 460267 75 621 280 555 214 721 427 78 754 704 44 371
Weights 380 213 138 35 321 138 280 118 361 223 37 389 387 23 191
Capacity 1617

4.5 In Algonihm 4.4 and Algorithm 4.14, the vertices are processed according to the
prespecified ordering “<”, always extending a clique with vertices that appear later
in the ordering than the vertices already chosen. This trick allows each clique to
be generated only once. However, the ordering defined on the vertices can greatly
affect the point in the backtrack algorithm when the maximum clique(s) are discov-
ered. Similarly, the speedup provided by pruning using a bounding function may
depend strongly on the ordering of the vertices.

There are several natural ways to define the ordering on the vertices. In general,
the best choice depends on the graph under consideration. Some of the possible
orderings are as follows:

(a) random, in which the vertices are arbiirarily ordered,

(b) increasing, in which the vertices are sorted from lowest to highest degree;

(c) decreasing, in which the vertices are sorted from highest to lowest degree;
and

{d) induced, in which a minimum degree vertex is placed last in the list. This
vertex is then deleted from the graph and the vertex of minimal degree in the
new graph is placed next-to-last, and so on.

Investigate the effect of the vertex ordering on Algorithm 4.19, for each of the
bounding functions described, using the graphs considered in Tables 4.4 and 4.5
as sample graphs.

4.6 Show that Algorithm 4.8 always produces an optimal solution for the
Rational Knapsack problem. Hint: Supposc that Algorithm 4.8 generates the so-
lation X = [z¢,...,Zn-1], withprofit P = 37 o pix.. Let Y = [yo, ..., yn—1]
be any optimal solution with profit @ = 3.7, pii. Since ¥ is optima) we must
have P < Q. Show that P = Q.

4.7 Use Algorithm 4.13 to solve the instance of the Traveling Salesman prablem on
the vertex set V = {0,1,2, ..., 9} in which the cost of the edge {z, y} is given by
the [z, ¥] entry of the matrix given below.

Exercises 147

4.8

49

0 1 2 3 4 S5 6 7 8 9

0 22 0 72 56 17 57 13 38 63
22 0 95 29 84 75 39 19 26 12

0 9 0 8 78 70 39 99 21 12
72 29 8 0 95 90 82 33 60 76
56 8 78 95 0 39 93 35 2 39
17 75 70 90 39 0 36 81 98 25
57 39 39 82 93 3% 0 28 47 88
13 19 99 33 35 81 28 O 78 13
3 26 21 60 2 98 47 78 0 72
63 12 12 76 59 25 88 13 72 O

For the Traveling Salesman problcm discussed in Section 4.6.2 a Hamiltonian
circuit was represented as a permutation

(=2 - B SR I S PR & =]

X = [O,xl,l‘z, e ,1:,...1}
of the vertices V starting at 0. This circuit is also represented by
X' = [0, Tn-1,Tn-2y... 1-"71]-

Thus Algorithms 4.10 and 4.13 will consider every Hamiltonian circuit twice. De-
velop a pruning method so that every Hamiltonian circuit is examined only once
and incorporate it into an algorithm for solving the Traveling Salesman problem.
Compare your new algorithm to Algorithms 4.10 and 4.13 by running it on the data
given in Exercise 4.7 and computing the number of nodes in the corresponding state
space trees.
Usc Algorithm 4.19 to find a maximum clique in each of the graphs G = (¥, £)
where V = {0,1,2,...,9,a,b,¢,d} and
(a)

{{0) 2}1 {0)7}’ {O,G}, {07 b}‘) {11 3}' {11 B}) {179}) {l'la}) {176}) {27 3}}
£ =

{270}‘ {27 d}' {276}7 {3’ 4}' {3’ 6}’ {41 8}‘ {5‘ 7}’ {57 a}’ {576}’ {6’ C}
{6,¢},{7.8},{7.@},{7,¢}, {8,8}, {9,a}, {a,c}, {c.d}, {c,e}, {e, f}

()]
{0,1},{0,2},{0,7}, {0,8}, {0,9}. {0,a}, {0,e},{1,4}, {1,7}, {1,8})
{1,9}, {1,0.}, {lvb}v {l,c}, {l,e}’ {2v3}r {2v5}1 {2,6), {2, 7}’ {2v8}
£ = 4 {20}{2,8},{3,4},{3,5},{3,6}, {3,a}, {3, f}, {4,5), {4,6},{4,8)

{4‘ 9}, {47a}’ {4‘ e}‘ {5, 6}, {5’ 8}7 {5’ 9}’ {57 b}’ {57d}’ {5’ e}) {5’ f} ’
{6, £}.{7.8},{7,a}.{7,c}. {7, ¢}, {7, f}. {8, b}, {8, c}, {8, ¢}. {8, f}
{grd}’ {9,8}, {n,c}, {a,d}, {a1e}1 {bvc}r {b,c}’ {b, f}r {C,d}, {evf} J

©
({0,2}, {(l,3}, {0,4}, {0, 5}, {0,6}, {0, 7}, {0, 8}, {0, 9}, {¢,e}, {0, c} W
{0.d}. {0,e},{1,5}, {1.6},{1,7},{1,8}.{2,9},{1,a},{1,P}, {1, ¢}
{lxd}| {lve},{L 1 {2x5}) {st}v {217}1 {218}v {2’0'}' {va}r {218}
{2,7},{3,4}.13,5}.{3,6},{3,7}, {3,8},{3,2}, {3.¢}, {3, 4}, {3, ¢}
£=1413,1},{4,6},{4,8},{4,9}. (4,0}, {4, c}. {4,e},{4, [}, {5.6}.{5,7} »

{5'9}7 {5,0}, {5vb}: {5,¢},{5,¢}, {5, f}: {61 7}, {ﬁx 8}, {6,9}, {6: a}

{6,0},{6,d},{6,¢}.{6, f},{7,8},{7,9}, {7.8}, {7, c}, {7,d},{7. ¢}

{7, 1}, 18,9}, {81 a}, {8,6}, {8, 1}, {98}, {9, c}, {g'd}x {9, f}, {avc}
;{a’d}: {a,e}, {ax !}) {byc}’ {b)d}v {bre}r {b)f}, {C,d}, {Cre}, {dx f} J

148 Backtracking Algorithms

4.10 Given a graph G, define the chromaric number of G to be
x(G) = min{k : G has a vertex k-coloring},
and define the cfique number of G 10 be
w(G) = max{k : G has a cliquc of size k}.

Theorem 4.4 shows that w(G) < x(G).
(a) Show that strict inequality can hold in Theorem 4.4. That is, find a graph G
such that w(G) < x(G).
(b) Show that for any integer d > 0 there is a graph G with x(G) — w(G) > d.

4.11 An edge-decomposition of the complete graph K into triangles is called a Steiner
triple system of order n (or, STS(n)). More formally, an STS(n) is a pair (P, B)
in which P is an n-element set of points, B is a collection of n{n — 1)/6 3-
element subsets of P called triples (or blocks); and cvery pair of points is contained
in exactly one triple.

(a) Write a backtracking algorithm to find all STS(n) (on a given set ol n ver-
tices), and use your algorithm to determine the number of different STS(7).

(b) Define a graph G = (V, &), where V consists of the (}) 3-subsets of an
n-set, and two vertices are adjacent if and only if the intersection of the
corresponding subsets has cardinality at most one. Show that an STS(n) is
equivalent to a (maximum) clique in G having size n(n — 1)/6.

{c) Using any of the clique-finding algorithms described in this chapter, deter-
mine the number of different STS(7).

412 Ifz,y € {0,1}", then recall that dist(, y) denotes the Hamming distance between
x and y. A non-linear code of length n and minimum distance d is a subset C C
{0, 1}" such that dist(z,y) > d for al} z, y € C. Denote by A(r,d) the maximum
number of ri-tuples in length » non-linear code of minimum distance d.

(a) Use a backtracking algorithm to compute A(n,4) forn < 8.

(b) Project: Determine the values of A(9, 4) and A(10, 4) (these valucs are more
difficult to obtain; they are 20 and 40, respectively).

(c) Research problem: Detcrmine the value of A(11,4) (the exact value of
A(11, 4) is unknown, but it is known that 72 < A(11,4) < 79).

4.13 A Latin sguare on the n-clement set Y = 1,2,..., 2 is said 10 be a reduced Latin
square if the elements in the first row and in the first column occur in the natural or-
der 1,2, ..., n. Write a backtracking program to determine the number of reduced
Latin squares of order o. Run your algorithm for n = 2, 3,4 and 5.

4.14 The girth of a graph is the size of the smallest circuit it contaips. An (r, g)-cage is
an r-regular graph of minimum order having girth g. Let f(r, g) denote the number
of vertices in an (r, g)-cage.

(a) Prove that
S oMo fg = 2h 41
fng) 2\ s ihoe 222 ifg=2h.

Show that f(3,5) = 10.
Hint: the Petersen graph, presented in Exercise 1.13, is a (3, 5)-cage.

{(b) Develop a backtracking algorithm to search for (r, g)-cages. Construct a
(3, 5)-cage using your algorithm.

{¢) Find some other examples of cages using your algorithm. (For example, it is
known that £{3,6) = 14 and f(3,7) = 24.)

Exercises 149

4.15 The Minimum Spanning Tree problem consists of a complete graph K, with a
cost function defined on its edges. The problem is to find a set of n — 1 edges that
form a tree (i.e., which do not contain a circuit) such that the sum of their costs is
minimized. It is well known that this problem can be solved by a greedy algorithm,
which considers the edges in increasing order of cost, adding each edge to the tree
being constructed if and only if it does not create a circuit.

Suppose that [zo,...,Z¢-1] is a partial solution for the Traveling Salesman
problem. Describe a bounding function based on the idea of computing the mini-
mum spanning tree in the subgraph induced by the vertices in the set

{0,....,2 = 1}\{71,...,z¢-2)}.

5

Heuristic Search

5.1 Introduction to heuristic algorithms

Suppose we are trying to solve an optimization problem. We have already dis-
cussed backtracking algorithms in Chapter 4, which generate all possible solu-
tions in a certain lexicographic order. Backtracking algonthms are useful both for
finding one (optimal) solution and for counting or enumerating ail (optimal) solu-
tions to a given problem. If all we want is one optimal solution, then backtracking
may not be an efficient approach. For example, much time may be spent before
even one optimal solution is found. Further, in order to verify that a given solution
is indeed optimal, it may be necessary to examine a large part of the state space
tree, even if pruning is used. There are also many situations where it is sufficient
to find a feasible solution that is “close to” optimal, and thus exploring the entire
state space tree may not be necessary.

If we do not require the generation of solutions in a precise lexicographic order,
then it may be faster to proceed through the state space tree in some different
way. This may lead to a more efficient algorithm to find an optimal or near-
optimal solution. One often inconvenient feature of backtracking is that it is often
necessary to “back up” several levels when a partial solution cannot be further
extended. This can waste a lot of time, and hence a different method of exploring
the state space tree might be preferable.

The term heuristic algorithm is used to describe an algorithm (usually a ran-
domized algorithm) that tries to find a certain combinatorial structure or solve an
optimization problem by the use of heuristics. The Oxford Reference Dictionary
defines the adjective heuristic as “serving or helping to find out or discover; pro-
ceeding by trial and error”. In the context of a heuristic algorithm, a heuristic
will be a method of performing a minor modification, or a sequence of modifica-
tions, of a given solution or partial solution in order to obtain a different solution
or partial solution. The actual modifications that are done wil involve a neigh-
borhood search. A heuristic algorithm will consist of iteratively applying one or

152 Heuristic Search

morc heuristics, in accordance with a certain design strategy.

In order to make these concepts more precise, let’s consider a generic com-
binatortal optimization problem (recall that basic terminofogy for optimization
problems was defined in Section 1.3). Solutions are chosen from a specificd finite
set, &', which we call a universe. An element X € X is said to be a feasible
solution if certain constraints are satisfied. The constraints might be written in the
form g;(X) > Oforall j,1 < j < m, where g, ..., ¢, arc integer-valued func-
tions. An optimal solution is a fcasible solution X for which the profit, denoted
P(X), is as large as possiblc. Problem 5.1 will be our “gencric” optimization
problem.

Problem 5.1: Generic Optimization
Instance: a finite set X,
an objective function P:X — Zand
feasibility functions g; : X - Z,1<j<m
Find: the maximum value of P{X)
subjectto X € X and g;{(X} 2 0forl < j<m.

The first step in constructing a heuristic is defining a ncighborhood function.
Formally, a neighborhood funcrion is a function

N:x = 2%,

In plain language, the neighborhood of any element in X consists of a certain
subset of clements of X. We will generally define a neighborhood of an element
X to consist of certain elements that are “similar” or “close 10™ X in some sense.
Note that a neighborhood N{X) may contain elements Y that are not feasible.
Also, we usually do not carc if X € N(X) or not.

Let’s present some typical examples of neighborhood functions. First, suppose
that X = {0,1}" (i.e., X consists of ail binary n-tuples). Thcn we might definc

Nago(X) ={Y € X : dist(X,Y) < do}

where dg is some positive integer, and dist(-, -} represents the Hamining distance
between two n-tuples. Obscrve that, in this case, we can easily compute the size
of any neighborhood to be

e =3 (7).

i=0

As a second example, suppose that X’ consists of all permutations of the set
{1,...,n}. Given two permutations & = [ay,...,an] and 8 = [§),...,5,],
supposc we dcfine the distance between a and 3 to be

dist(a, B) = |{i: ai # G }.

Introduction to heuristic algorithms 153

(Essentially, this is the same as thec Hamming distance between two vectors.) As
we did in the previous example, we could define

Ny (X) ={Y € X : dist(X,Y) < dp},

where dp is some positive integer.

We note a couple of facts about this neighborhood function. First, N; (X) =
X, since it is impossible for two permutations to differ in exactly one position.
However, two permutations can differ in exactly two positions. Given a, we can
pick any two positions 7 and k, and define 3 as follows:

ai ifi# gk
Bi=< ar ifi=j
a; ifi=k.

Thus, when dy = 2, we see that

et} = 1+ ().

It is an interesting exercise to compute |Ng, (X}| for dp > 3.

Once a neighborhood function is defined, we can imagine different ways in
which we can try to find a feasiblc solution in the neighborhood of a givcen fea-
sible solution X. One obvious approach is to perform an exhaustive search of
the neighborhood, trying to find the “best” feasible solution in that netghborhood.
However, many hcuristic algorithms are instead based on a randomized neighbor-
hood search, which is usually faster than an exhaustive search.

More formally, suppose that N is a neighborhood function. A nreighborhood
search based on N will be an algorithm (possibly a randomized algorithm) in
which the input is a feasible solution X € X, and the output is either a feasible
solution Y € N{X)\{X}, or Fail. Since N(X) may contain elements Y that
are not feasible, the neighborhood search must ensure that an element Y € X
that is produced as output is indeed feasible. This may be done by checking the
feasibility functions g;, or by some other (faster) method., if applicable. Note
that there are different reasons why a neighborhood search might return the value
Fail. One reason might be that there are no feasible solutions in N{X)\{X }. But
it could also be that the neighborhood search looks at only one random element
of N{X). In this case, if the search is performed again with the same input X, it
might succeed.

The following list enumncrates some possible neighborhood search strategies:

1. Find a feasible solution ¥ € N{(X) such that P(Y} is maximized (return
Fail if there are no feasible solutions in N(X)\{X}).

2. Find a feasible solution Y € N(X) such that P(Y) is maximized. If
P(Y) > P(X). then return Y, otherwise return Fasl. This search mecthod is
called sreepest ascent.

154 Heuristic Search

3. Find any feasible solutionin Y’ € N(X).

4. Find any feasible solution in Y € N(X). If P(Y) > P(X), then rewrn Y,
otherwise retarn Fasl.

Strategies 1 and 2 would probably be implemented as exhaustive searches, while
strategies 3 and 4 are more likely to be implemented as random searches.

Now, having specified a neighborhood search strategy, based on a given neigh-
borhood function, N, we can proceed to define a heuristc, hn. The most common
way to define hy is simply to perform the given neighborhood search. However,
it may be more convenient in some sitmations to define the heuristic as a sequence
of j neighborhood searches (for some positive integer 7), say

[X0=X,X1,...,Y=Xj],

where each X is obtained from X;_; by applying the neighborhood search.

Finally, the heuristic will be incorporated into a heuristic algorithm. We will
discuss several popular design strategies for heuristic algorithms in Section 5.2.
However, most of these algorithms have a similar basic structure, as presented in
Algorithm 5.1, a “generic” heuristic search algorithm.

Algorithm 5.1: GENERICHEURISTICSEARCH (€pmaz)

external N(}, An(), P()
ce0
Select a feasible solution X € A
Xoest + X
while ¢ < ¢y02
Y « hn(X)
itY # Fail
XY
then {if P(X) > P{Xpeat)
then Xpeoe — X
ce—c+1
return (Xpest)

do

Algorithm 5.1 uses a given neighborhood function N and a heuristic ky based
on N. The parameter Cmar is uscd to specify the number of iterations of hy
that are performed in the algorithm. The variable ¢ keeps track of the number of
iterations of ky, and X p.¢ records the best feasible solution found *'so far” as the
algorithm progresses,

The algorithm begins with an initial feasible solution, X, which must be found
by some specified method. Often, X will be taken to be a trivial solution which
is far from optimal. In any given iteration of the algorithm, the heuristic hy is
applied and c is increased by one. If hy does not fail, then X is updated, and

Introduction to heuristic algorithms 155

Xbear s updated if X achicves a higher profit than X pcs. After Cne. itcrations,
the algorithm terminates, returning the feasible solution X ..

5.1.1 Uniform graph partition

In this section, we illustrate the concepts described above with a problem known
as the Uniform Graph Partition problem, which we present as Problem 5.2.

Problem 5.2: Uniform Graph Partition
Instance: a complete graph on 2n vertices, G = (V, E);
a cost function, cost : E = Z* U {0}

Find: the minimum value of

([, X)) = z cost{u, v)
{u,v} €&
u€ Xy,v € &)

subject 1o ¥V = Xy U X and |Xp| = | Xy | = n.

We define some useful notation for this problem. Recall that a weighted graph
is a graph G = (V, £). together with a cost function

cost : £ — Z1t U {0}.

For convenience, we denote cost({u,v}) by cost(u,v) for an edge {u,v}. If
{u,v} ¢ £, then we define cost(u, v) = 0. We will usually store the cost function
as a matrix whose [u, v]-entry is cost(u, v). This matrix is often referred to as a
cost matrix; see Figure 5.1 for an example.

The cost of the partition [{0, 2,5, 7}, {1, 3,4,6}] in this weighted graph is

cost(2, 1) + cost(2,4) + cost(2,6) + cost(5,3) =8+ 7+2+ 4 =21.

We can choose the universe X to be the set of all partitions [Xg, X1] of V with
|Xs] = |X1]. Define the neighborhood of N([Xy, X1]) of the partition [Xp, X)]
to be the set of all partitions that can be obtained from [Xp, X;] by exchanging a
vertex of Xy with a vertex of X;. For example, the neighborhood of the partition
[X0, X1] = [{0,2,5,7},{1,3,4,6}] in the weighted graph given in Figure 5.1 is

[{1,2,5,7},{0,3,4,6}],[{3,2,5,7},{1,0,4,6}],
[{4,2.5.7}.{1.3,0.6}].[{6.2.5,7}.{1,3.4,0}).
[{0.1,5,7),{2,3,4,6}],[{0.3.5,7). {1,2,4,6}].
) 1H0,4,5,7).{1.3.2,6}], [{0.6.5, 7). {1.3.4.2}].

N({%o, 41]) = 5 [{0,2,1,7%,%5,3,4,6}],[{0, 2.3, 7%, }1,5,4,6%}, (
[{0,2,4,7},{1,3,5,6}},[{0,2,6,7},(1,3,4,5}],

[{0,2,5,1}, {7.3,4,6}}, [{0,2,5,3}. (1,7.4,6}],

[[(0.2.5,4}, (1,3,7.6)1.1{0,2.5.6), {1,3,4.7)]

156 Heuristic Scarch

o5 1 cost =

NOWODODE©OOOo
DOVO N0 S Ol
CONONNO O DN
SO PR OCOOOOlw
OO OQO©INO|In
C OO OO XL:
oo Qo N Qo
OO OOOON

SNk wN~O

FIGURE 5.1
A weighted graph.

The gain (i.c., change in cost) obtained from exchanging u € Xy withv € X)
18

G[xo,,n] (u,v)
= C(Ao, 1) - A\ {v} U {v}, X1\ {v} U {u})

= Z cost{u,y) + z cost(z,y) — Z cost{v,y) — Z cost{z,u).

yEA, € Xo YyE TEXy

Note that the gain can be negative, zero or positive.

Given a partition [Xp, X\], one simple neighborhood search is to find the parti-
tion [Vo, 1], where Vo = (X \ {u}) U {v}. 01 = (X1 \{#})U{x} andu € Xp
and v € X} are chosen so that the gain of exchanging u € Ay withv € A is
positive and maximum. If this is not possible, the output is Fail. Note that this
neighborhood search is an example of stccpest ascent,

For example, suppose we are given the weighted graph in Figure 5.1, and the
partition

[{0,2,5,7},{1,3,4,6}].

Then the partition [{0,3, 5,7}, {1, 2,4, 6}] would be returned, since exchanging
2 and 3 givces the largest gain. See Table 5.1.

5.2 Design strategies for heuristic algorithms

In this section, we introduce the main design strategies for heuristic algorithms,
i.e., the means by which we design a neighborhood search and incorporate it into
a heuristic search algorithm,

Design strategies for heuristic algorithms 157

TABLE 5.1
The gain of exchanging u with v in the partition [X, X;].

[Xe, Y1) = [{0,2,5,7}.{1,3,4,6}] C([Xs, 1]} =21

U v [yo,yl] G[xn,xljﬂv) C([yo,yll)
0 1 [{1,2,5,7},{0,3,4,6) —27 48
0 3 [{2,3,5,7},{0,1,4,6} -24 45
0 4 [{2,4,5,7},{0,1,3,6} -34 55
0 6 {{2,5,6,7),{0,1,3,4} -32 53
2 1 [{0,1,5,7},{2, 34,6} -16 37
2 3 [{0,3,5,7},{1,2,4,6} +3 18
2 4 {0,4,5,7},{1,2,3,6} =21 42
2 6 [{0,56,7),{1,2,3,4) -9 30
5 1 {0,1,2,7},{3.4,5,6} -12 33
5 3 [{0,2,3,7},{1,4,5,6} -17 38
5 4 {0,2,4,7},{1,3,5,6} -19 40
5 6 {0,2,6,7},{1,3,4,5} -17 38
7 1 [{0,1,2,5},(3,4,6,7} ~10 31
7 3 [{0,2,3,5},{1,4,6,7} -7 28
7 4 [{0,2,4,5},{1,3,6,7} -17 38
7 6 [{0,2,5,6},{1,3,4,7) —15 36

There is a tradeoff that must be considered in any heuristic algorithm. If we
usc “large™ neighborhoods, then we would expect that any given neighborhood is
more likely to contain a good solution than if we use “small” neighborhoods. But,
particularly in the case of an exhaustive neighborhood search, we pay a penalty
in computation time if the neighborhoods are too large. We will later see other
tradeoffs that arise in the design of particular types of heuristic algorithms.

5.2.1 Hill-climbing

The conceptually simplest design strategy is hill-climbing. When hiil-climbing,
we require that P(Y') > P(X) for any Y € N(X) returned as the output of the
neighborhood search. If the neighborhood search does not find any such Y, it
must return Feil. Thus, we are attempting to proceed toward an optimal solution
by finding a sequence of feasible solutions, each of which is better than the pre-
vious one. The analogy of climbing a hill is used here to suggest that the fastest
way to the top of a hill is to climb continually upward (of course. this may or may
not be true in practice!). If the neighborhood search strategy is exhaustive, then
we are using the steepest ascent idea that we described earlier.

We present a “generic” hill-climbing algorithm as Algorithm 5.2,

158 Heuristic Search

Algorithm 5.2: GENERICHILLCLIMBING {Cpmaz)

external N(), An(), P()

comment: if iy returns a feasible solution Y, then P(Y) > P(X)
Select a feasible solution X € X
Xbest X
searching < true
while searching
Y « hn(X)
itY # Fail
XY
then ¢ if P(X) > P(Xypesr)
then Xbe,.g ~ X

else searching « false

return (X peo)

do

We will give some nice examples of hill-chmbing algorithms in Sections 5.3
and 5.4. However, it is probably not surprising that the hill-climbing strategy is
often too restrictive 10 be successful. The reason is that if P(Y) < P(X) for
all feasible solutions Y € N(X), then a hill-climbing algorithm will get stuck
whenever it reaches X. Such an element X is called a locally optimal soluiion,
and in a typical combinatonal optimization problem, therc may be many locally
optimal solutions that are not optimal solutions. Hence, it is desirable to develop
design strategies for heuristic search algorithms that will not get stuck every time
a locally optimal solution is encountered. Strategies of this type are discussed in
the rest of this section.

5.2.2 Simulated annealing

One popular method of escaping from locally optimal solutions is based on an
analogy with a method of cooling metal which is known as “annealing”. The
corrcsponding algorithmic paradigm is thercfore called simulated annealing. In
simulated annealing, we use a randomized neighborhood search stratcgy. If
hn(X) = Y is feasible and P(Y) > P{X), then X is replaced by Y, as in
hill-climbing. However, if An(X) = Y is feasible and P(Y') < P(X}, then we
are sometimes allowed to replace X with Y. A downward move of this type will
be permitted with a certain probability. This allows the-algorithm to escape from
locally optimal solutions.

Associated with a simulated annealing algorithin is a variable T called the tem-
perature. T is initialized to be a value Tp > 0. During the course of the algorithm
the value of T is decreased according to a specified cooling schedule. At any
point in the algorithm, the probability of replacing X with Y = hy(X), given

Design strategies for heuristic algonithms 159

that P(X) > P(Y), is
PV =P(X)/T

This is accomplished by generating a random number r € [0, 1] and replacing the
feasible solution X with Y if

r < ePYV)=POOYT.

It remains to specify a cooling schedule. Usually, T is decreased after each
iteration, according to a formula T + aT, where 0 < a < 1 is some constant
(usually a is close to 1, e.g., & = .999).

Initially, the probability of allowing a downward move, namely
eP}=PIX)VT will be relatively large. However, as T decreases, this proba-
bility also decreases. Thus, as we get closer to the optimal solution, downward
moves are permitted with smaller probability.

We present a straightforward generic simulated annealing algorithm in Al-
gorithm 5.3. The variable ¢ keeps track of the total number of iterations,
and the algorithm terminates when Cp,,5 iterations have been performed. The
vartable X, records the best solution as the algorithm progresses. Finally,
Random(0, 1) denotes a random real number chosen in the interval (0, 1).

Algorithm 5.3: GENERICSIMULATEDANNEALING (¢mqz, To, @)

external N(), an (), Random(), P{)

c+ 0
T Tg
Select a feasible solution X € X
Xpest — X
while ¢ < emar
(Y + hny(X)
ifY # Foil
(if P(Y) > P(X)
XY
J then { if P(X) > P(Xpest)
do then < then Xy, — X
r « Random(0, 1)
else { if r < e(PY)-P(XOYT
then X + Y

.

c—c+1
T «aT
return (Xbe:t)

160 Heuristic Search

5.2.3 Tabu search

Tabu search can he thought of as a variation on the theme of steepest ascent. The
basic idea is to replace an element X with the clement Y € N(X)}\{Y} such
that Y is fcasible and P{Y"} is maximum among all such feasible clements. This
usually involves an exhaustive search of N(X).

It might happen that P(Y') < P(X); so, we can escape from a locally optimal
solution X by this method. However, having replaccd X by Y in this case, it
is then highly likely that the next step would be 10 replace Y by X. This is
clearly not desirable, since the algorithm would enter an infinite loop from which
it cannot escape. Hence, we need to find a way to avoid this situation and other
similar problems such as cycling (i.e., a sequence of moves suchas X =+ Y —
Z — X). This is accomplished by means of a tabu list which we name TabuList.

Suppose we define a function change(X,Y") which specifics the changes that
arc made 1o a feasible solution X in order to obtain a feasible solution Y. Having
made a given change at a certain point in the algorithm, we do not want to perform
any operations that will “undo” this change (at least until some time has passed).
Thus, after any move X — Y, change(Y, X) is designated as a forbidden change
and is added to the list TabuList. Changes that arc on the TabuList remain
forbidden for some specified lifetime, L. The parameter L is a fixed positive
integer (e.g., L = 10 is a typical choice).

As an example, suppose that X = {0,1}", and

N(X) = {Y € X : dist(X,Y) = 1}.

The neighborhood of X consists of all binary n-tuples in which exactly one entry
of X is changed. Hence,

INCX\X| = n.

Suppose we define
change(X,Y)=is z;, # y:

whencver dist(X,Y) = 1. Hence, if an entry ¢ of a feasible solution is changed
(from 0 to 1 or from 1 to 0), it cannot be changed back again for at least L it-
erations of the algorithm. From this, it is easily seen that any cycle of moves
X =Y = .- = X has length at least 2L.

We can also observe that N(X) will contain n — L vectors that arise from a
non-tabu change. Thus we have another example of a tradcoff that needs to be
considered when the algorithm is designed. We want L to be “big” in order to
eliminate cycling, but if L becomes too big, then there will not be very many
allowable moves at any given point in the algorithm. This may make it difficult to
find good (optimal or near-optimal) solutions.

TabuList will be implemented as a list where TabuList[c] = A if A is the
change that is designated as forbidden at iteration ¢ of the algorithm. Now, the

Design strategies for heuristic algorithms 1t

heuristic hy is defined as

Y € N(X),

Y is feasible,

change(X,Y) & {TabuList[d] : ¢ — L <d<c-1},
and P(Y') is maximum among all such feasible clcment:

hn(X) =Y, where

Algorithm 5.4 is a generic tabu search that is abtained by implementing the heuri:
tic hy as we have described it above. If, at any time in the algorithm, there ai
no feasible points in N(X) that are not forbidden, then the algorithm terminate
at that point,

Algorithm 5.4: GENERICTABUSEARCH (Craz, L)

external N(), change(), P()

c+1
Select a feasiblc solution X € X
Xbes! « X
while ¢ < ¢pesz
(N « N(X\{TabuList[d] : c-L<d<ec—1}
foreachY e N

d {il'Y is infeasible

then N « N\{Y}
itN=0
do % then exit
find Y € N such that P(Y') is maximum

TabuList[c] « change(Y, X)
XY
lfP(X) > P(Xbcst)

then Xp.,: +— X
lc+c+1
return (Xpes:)

5.24 Genetic algorithms

In a hill-climbing, simulated annealing or tabu search algorithm, we begin wit
an initial feasible solution and proceed to construct from it a sequence of feasibli
solutions by applying a heuristic, which is in tarn based on a neighborhood searcl
technique. In a generic algorithm, we begin with an initial population of feasiblk
solutions. Then feasible solutions from this initial population are mated (i.e.
recombined in pairs) to produce children. After the children are obtained, some
types of mutahon are allowed to occur (usually mutation is a heuristic based on :
neighborhood search). This produces the next generation of the population. The
process can be iterated for as many generations as desired.

162 Heuristic Search

A genetic algorithm must specify how children are produced. A common ap-
proach is to take two feasible solutions W and X from the population (“parents”),
and use a recombination operation to generate two children, ¥ and Z, which “in-
herit” properties of the two pareuts.

One simple rccombination operation is called crossover. Suppose that we have
an optimization problem in which the universe X = {0,1}", and the two parents
are W = [w,...,wp] and X = [z,...,2,]. Choose a crossover point j €
{1,...,n} at random. Then define ¥’ = [y;,...,yn] and Z = [zy,...,2,] as
follows:

_fJw if1<i<;
y“{ z; ifj+1<i<n

and
= ; il1<i<y
*Tlw ifj+l<i<n,

In other words, Y is formed from the first 7 entries of W and the last n — j entrics
of X, and Z is formed from the first j entries of X and the last n — j entries of
w.

As an example, suppose that
W =11,1,0,1,1,0,1,0,0,1]

and

X =0,0,0,1,0,0,0,1,0,1],
and the crossover point § = 3 is chosen. Then the two children of W and X are
Y =1{1,1,0,1,0,0,0,1,0,1]

and

Z=11,0,0,1,1,0,1,0,0,1].

It is more complicated to think of a crossover operation in the case where &’
consists of a set of permutations, say all permutations of {1,...,n}. The trick we
used above will not work in general, since the children of two permutations need
not be a permutation. A method called partially matched crossover is instead
often used. The method is described in terms of two crossover points, j and k,
where 1 € § < k& < n. The algorithm is presented in Algorithm 5.5. It takes as
input two parents, a and 3, and produces as output two children, ¥ and 6. The
elements a, §, v and § are all permutations.

Design strategies for beuristic algorithms 163

Algorithm 5.5: PARTIALLYMATCHEDCROSSOVER (n,a, 3, J, k)
T+a
dep
fori — jok
{ifal 76 ﬂi
(find symbol o, in 7y, say v = oy
find symbol 3; in vy, say v, = 5;
Y B
do Vs & @y
then find symbol a; in 8, say 6, = ¢
find symbol f; in 6, say §, = 5;
Jr ~ ,Bi
. L&, — Oy
return (v, 4)

In Algorithm 5.5, ¥ and § are formed from « and 3 by performing a sequence
of transposition of symbols within & and 3. First, the two symbols a; and §; are
transposed within o and 3; then the same thing is done with a; 43 and 3,4, etc.

We illustrate with an example. Suppose that

a=[3,1,4,7,6,52,8 ad [3=[86,4,37125]

Suppose that the two crossover points arc 7 = 3 and & = 6. Then we will perform
the following sequence of transpositions of symbols: 4 « 4,7 & 3,6 ¢ 7 and
5 © 1. The first interchange has no effect. After the second interchange, we have

v=17,1,4,3,6,5,2,8 and 6=18,6,4,7,3,1,2,5]
Afier the third interchange, we have

v=106,1,4,3,7,5,2,8] and 6=1[8,7,4,6,3,1,2,3].
Finally, after the fourth intcrchange, we have the two children,

v=106,54,3,7,1,28 and ¢6=[8,7,4,6,3,5,21].

In general, even if we have a recombination operation where the children are
always elements of the universe X', there is no guarantee that the children wilt be
feasible solutions for the optimization problem under consideration. Hence, some
method needs to be used to ensure that a stable population of feasible solutions
is maintained from one generation to the next. This can sometimcs be done by
tailoring the recombination operation to the problem at hand, Another approach
is to redefine the optimization problem in such a way that all elements in the
universe are considered to be feasible solutions. This is done by incorporating the

164 Heuristic Search

conslraints into the objective function in such a way that an element that violates
one or more of the constraints will have a low profit.

The actual mating can be done in various ways. One method is 10 randomly
partition all the feasible solutions in the population into pairs. A madification is
to require that “better” parents produce more children than “poor” parents (where
fitness could be measured by the objective function, or by some other method).

We now present a generic genetic algorithm in Algorithm 5.6. The algorithm
incorporates a heuristic Ay based on a neighborhood function N, and a recombi-

nation operation
rec: X x X 2 A XA,

which produces two children from two parents. We will assume that the children
produced from two feasiblc parents by the function rec are feasible solutions.
The parameter popsize will denote the population size, and ¢;q, Will denote the
number of generations of the population constructed by the algorithm,

Algorithm 5.6: GENERICGENETICALGORITHM (popsize, Cyas)

external N(), hn(), rec(), P()
c+1
Select an initial population P consisting of popsize feasible solutions
Let Xpeq be the element in P having maximum profit
foreach X € P
do X + hN(X)
while ¢ < €02
(Construct a pairing of the elements in P
QP
for each pair W, X in the pairing
(Y, Z) « rec(W, X)
Y « hny(Y)
Z « hy(Z)
Q« Qu(Y, Z}
Let the population Pconsist of the best popsize members of Q
Let Y be the element in P having maximum profit
if P(Y) > P(Xbeat)
then Xy, « Y
[ce—c+1
return (-Xbest)

do
do ¢

A steepest ascent algorithm for uniform graph partition 165

5.3 A steepest ascent algorithm for uniform graph partition

In this section, we develop a steepest ascent hill-climbing algorithm for
Uniform Graph Partition , Problem 5.2. Recall from Scction 5.1.1 that an in-
stance is given by a weighted graph on 2n vertices, which we stare in the form
of a 2n by 2n cost matrix, M. A feasible solution is a partition [Xp, A7] of the
vertices such that [Xg| = |A]| and the objective is to minimize the value

C({*%, X)) = z cost(u,v).
{u,v} €&
uc Xo,v € X

The neighborhood of [Xp, A1] is the set of all partitions of the vertices that can be
obtaincd by exchanging an element £ € Xp with an element y € X;. The gain
resulting from exchanging u € Ap withv € X) is denoted by G, x,]{1, v).

Algorithm 5.7 selects a random initial partition [Xg, X}] by randomly choosing
Xo to be a subset of n vertices and defining A to be the complerent of Ay.

Algorithm 5.7: SELECTPARTITION ()

external Randominteger(), SUBSETLEXUNRANK()
7 « Randomlnteger(0, (>*} — 1)

Xp « SUBSETLEXUNRANK(2n,7)

X] «V \ Xg
return ([Xp, X)])

Another way to select a random partition of this type is to first generate an array
A of 2n random numbers and an array B of length 2n whaose ith entry is initially
i. We then sort the array A. Whenever two entries A[i] and A[7] are interchanged,
then we also interchange B(i] and B(j]. Finally,

Xo = {B[0], B[1], B[2),..., Bln - 1]}

and
X ={B[n],Bln+1),BIn+2],...,B[2n — 1]}

is a random partition.
The hevristic is presented as Algorithm 5.8. This is simply a steepest ascent
neighborhood search.

166 Heuristic Search

Algorithm 8.8: ASCEND ([&p, X))

external G()
global Fail
g+ 0
foreachi € A,
for each j € A
t + Gy, x,1(3, 7)

ift>g
4o § do i
then { y < J
gt
ifg>0

g
1 & Uiz
then { ot fase !
return ([Vo, V1))
Fail « true
return ([Xo,/l’l])

else

Using Algorithms 5.7 and 5.8, it is a simple matter to construct Algorithm 5.9,
Note that, once the flag Fail is set to have the valuc true by the heuristic (Algo-
rithm 5.8), then the search has reached a local minimum and no further improve-
ment can be achieved. At this point the search is terminated.

Algorithm 5.9: UGP (Cmez)

external SELECTPARTITION(), ASCEND()
global Fasl
A = [Xg, A1] < SELECTPARTITION()
ce1
while ¢ < chaz

[Vo, Y] < ASCEND(X)

if not Fail

Xo — Yo
d th
o en{(.t,l(_y1

else return
c+—c+1

To test the algorithm, we generated a random cost matrix for the complete graph
on 50 vertices. The edge costs were chosen in the range [0,99]. We performed
100 runs of Algorithm 5.9. The number of iterations varied from a minimum of

A hill-ctimbing algorithm for Steiner triple systems 167

7 to a maximum of 17, with an average of 11.4. The minimum best cost that was
found in the 100 runs was 28103 and the maximum was 28766. The average was
28303.81.

54 A hill-climbing algorithm for Steiner triple systems

In this section, we present Stinson’s algorithm, which is a hill-climbing algorithm
for constructing Steiner triple systems. We will begin with some deftnitions and
discussion of these objects, before proceeding to the algorithm.

A Steiner triple system is a set system (V, B) in which every block has size
three, and every pair of points from V is contained in a unique block. If |V| = v,
then we denote such a system as an STS(v).

An example of an STS(7) is
vV =1{123,4,5,6,7}
{1,214}7 {2731 5}1 {314:6}7
B =< {4,5,7},{1,5,6}, {2,6,7},

{1,3,7}
An example of an STS(9) is

VY ={1,2,3,4,5,6,7,8,9}

{1,2,3}, {1,4,7}, {1,5,9},
{1,6,8}, {4,5,6}, {2,5,8),
{2,6,7}, {2,4,9}, {7,8,9},
{3,6,9}, {3,4,8}, {3,5,7)

Here are two fundamental properties of Steiner triple systems, which can be
proved by elementary counting.

B=

LEMMA 5.1 Let (V,B) be an STS(v). Then every point in V occurs in exactly
r = (v — 1)/2 blocks, and |B| = v{v - 1) /6.

PROOF To see thatr = (v~ 1)/2, it suffices to observe that a point T must occur
with each of the other » — 1 points in a block, and z occurs with two other points
in each of the r blocks in which it occurs.

Let b = [B|. To see that b = v(v — 1)/6, abserve that 35 = ruv, since each
block contains three points and each of the v points occurs in 7 blocks. The result
follows. |

Clearly, the numbers r and b defined above must both be integers if an STS(v)
is to exist. From this it follows that v = 1 or 3 mod 6 is a pecessary condition

168 Heuristic Search

for the existence of an STS{v). It was in fact proved over 100 years ago that
an STS(v) exists if and only if ¥ = 1 or 3 mod 6. Thus the simple necessary
condition for existence turns out to be sufficient. The proof of sufficiency is con-
structive, and leads to an efficient method of constructing (at least) one STS(v) of
every admissible order v.

It is also known that the number of non-isomorphic STS{v) on a specified point
set ¥V grows exponentially quickly. One nice feature about the hill-climbing algo-
rithm we are going to describe is that it is very fast, and it is an effective method
of constructing apparently random STS(v).

In order to use a hill-climbing approach, we formulate the problem as an op-
timization problem. We first need a definition. A partial Steiner triple system is
a set system (V, B) in which every block has sizc three, and cvery pair of points
from V is contained in at most one block. Such a set system is denoted PSTS(v),
where v = |V|. The size of a PSTS(v) is the number of blocks it contains. It is
easy (o sec that any PSTS(v) has size at most v(v — 1)/6; and a PSTS(v) of size
v{v ~ 1)/6 1s in fact an STS(v).

We now present the problem of constructing an STS(v) in the form of a com-
binatorial optimization problem,

Problem 5.3: Construct Steiner Triple System

Instance: a posttive integer v = 1 or 3 mod 6;
afiniteset V,|V|=v;
Find: the maximum valuc of |B|

subject to (V, B) is a PSTS(v).

Given v and V, we will define our universe, X, to consist of all scis of blocks
B such that (V, B) is a PSTS(v). Therefore any set 8 € X is a feasible solution.
An optimal solution is any feasible solution having size v(v — 1)/6.

Instead of explicitly defining a neighborhood function, we instead proceed di-
rectly to the description of the heuristic, SWITCH , to be used in the hill-climbing
algorithm. The heuristic SWITCH will transform any PSTS(v) into a different
PSTS(®), such that the size either remains the same or is increased by one. This
is done by a randomized search strategy, which we describe now.

Let (V,B) be any PSTS(v). A point z € V is called a live point if rz <
(v — 1)/2, where r is the number of blocks in 5 that contain the point z. A pair
of distinct points, {z,y}, is called a live pair if therc is no block B € B such that
{z.y} C B.

Now, if (V, B) has size less than v(v — 1)/6, then there must exist a live point,
say . If z is a live point, then there must exist at least two poiats y,z € V
(y # 2), such that the pairs {z,y} and {z, z} are both live pairs. (This is because
rz < (v — 3)/2, and hence 2 has occurred in a block with at most v — 3 other
points.)

A hill-climbing algorithm for Steiner triplc systems 169

Herc is the description of the heuristic SWITCH .

Algorithm 5.10: SWITCH ()

global NumBlocks

let z be any live point

let y, z be points such that {x, ¥} and {z, z} are live pairs

if {y, 2} is a livc pair

then {B «Bu{{z,y,z}}

NumBlocks + NumBlocks + 1

else { tet {w,y, 2} € B be the block containing the pair {y, z}

B « BU {{z,, 2\ {{w,3,2})

The heuristic SWITCH constructs a candidate block, {z, y, 2}, such that either
two or three of the pairs contained in it are live pairs. If all three pairs are live,
then we can simply add the new block {z, y, z} to the system, increasing the size
by one. If only two of thc three pairs are live, then we add the new black {z,y, 2},
and remove another block {w, y, z} (the unique block containing the pair {y, z}),
so the size stays the samc.

Herc now is the hill-climbing algorithm, which keeps applying the heuris-
tic SWITCH until a Steiner triple systcm is finally constructed. The vartable
NumBlocks records the size of the PSTS(v) during the course of the algorithm.

Algorithm 5.11: STINSON’SALGORITHM (v)

global NumBlocks

NumBlocks «+ 0

Ve {l,...,v}

Be+#§

while NumBlocks < v(v — 1)/6
do SWITCH

output (V, B)

There is of course no guarantee that the algorithm will ever terminatc. But if
the choices made by the heuristic SWITCH are random, it seems in practice that
the algorithm always terminates successfully by constructing an STS(v), and it
usually runs very quickly.

We illustrate the execution of the algorithm by constructing an STS(9), which
has 12 blocks. This is an actual run performed by a computer program with
randomly generated choices made in the heuristic SWITCH .

170 Heurijstic Search

T ¥y z w NumBlocks
2 1 9 1
9 4 7 2
6 7 8 3
1 7 3 4
3 9 6 5
7 5 2 6
6 1 2 9

4 8 5§ 7
2 3 4 8
8 1 9 9
6 5 4 8

9 5 2 7

7 2 5 9

9 5 2 7

5 7 3 1

38 1 9

9 8 1 3

2 8 7 6

6 8 7 2

1 7 3 5

7 5 2 9

3 8 5 10
5 9 1 8

2 9 8 11
8 1 4 12

The blocks of the STS(9) are as follows:

{1,2,6}, {1,3,7}, {1,4,8},
{1,5,9},{2,3,4}, {2,5,7},
{2,8,9}, {3,5,8}, {3,6,9},
{4,5,6}, {4,7,9}, {6,7,8}

B =

5.4.1 Implementation details

When we implement the algorithm, it is advantageous to maintain a table (or
array) of all the live points. This table does not need to be ordered. When a point
ceases to live, the last point in the table can be moved to occupy its place. If a
dead point becomes live, it is added to the end of the table. In order to make these
updating operations efficient (and to eliminate the need for linear searches of this
table), we also maintain an indexing array, which keeps track of the position of
every element in the first table.

In a similar fashion, we will maintain for each live point x a table of all the
points y such that {z,y} is a live pair. Also, for each such table, we have an

A hill-climbing algorithm for Steiner triple systems 7

indexing array.

Thus we will have two arrays of length v, which we call LivePoints and
IndezLivePoints, and a variable NumLivePoints. We have three further arrays
which we call LivePairs, IndexLivePairs and NumLivePairs. Each element of
LivePairs and IndezLivePairs is an array of length v,

We need one more array, which we name Other. For each pair of distinct points
{z,y}, this array keeps track of the “other point” in a block containing x and y.
More formally, for any PSTS(v), say (V,B), and for any z,y € V (z # y), we
define Other(z,y] = z if and only if {z,y, z} € B (and Other[z, y] is undefined
if z,y is a live pair).

With the use of the array Other, it is unnecessary to explicitly keep track of
the block set B during the course of the algorithm. At the end of the algorithm,
it is straightforward to computer B from Other. This is done by the procedure
CONSTRUCTBLOCKS, as shown in Algorithm 5.12.

Algorithm 5.12;: CONSTRUCTBLOCKS (v, Other)

B+ @
forre1toy
fory+—x+1tov
z « Other(z,y]
do (ifz>y
then B + BU {{z,y,2}}

do

return BB

An initialization of the arrays is performed at the beginning of the hill-climbing
algorithm, as follows.

Algorithm 5.13: INITIALIZE (v)

NumLivePoints,
global LivePoints|z], IndezLivePoints[z],xz = 1,2, idots, v
NumLivePairs[z],z = 1,2,...,v

LivePairs(z,y), Other[z,yl, 2 =1,2,...,0,y=1,2,...,v

NumLivePoints + v
forc+—1tov
[LivePoints[1] « =
IndezLivePoints[z] « z
NumLivePairs|z] + v -1
fory «—1tov -1

do LivePairs[z,y] « (y+x—1) (mod v) +1
forye1tov

do {IndezLivePairs[a:,y] —({y—-z) (modyv)
| Other[z,y] + 0

do ¢

172 Heuristic Search

It will be necessary to perform “insert” and “delete” operations on these arrays.
Thus we define procedures INSERTPAIR and DELETEPAIR, as follows.

Algorithm 5.14: INSERTPAIR (z,y)

NumlLivePoints,
bal LivePoints[z), IndezLivePoints[z],z = 1,2,...,v
glo NumLivePairs[z],z = 1,2,...,v

LivePairs[z,y],z = 1,2,...,v,y = 1,2,...,v
if NumLivePairs[z] = 0
NumlLivePoints +— NumLivePoints + 1
then { LivePoints[NumLivePoints] « x
IndexzLivePoints|z] «— NumlLivePoints
NumlLivePairs|z) + NumLivePairs[z] + 1
posn «— NumLivePairs(z]
LivePairs([z, posn] + y
IndezLivePairs(z,y| + posn

Algorithm 5.15: DELETEPAIR (z,y)

NumLivePoints,
global LivePoints(z), IndezLivePoints|z],z = 1,2,...,v
NumLivePairs[z],z = 1,2,...,v

LivePairs[z,y), 2 = 1,2,...,0,4y=1,2,...,v
posn « IndezLivePairs(z,y]
num — NumlLivePairs|z)
z + LivePairs(x, num]
LivePgirs[z, posn] + z
IndezLivePairs|z, 2] + posn
LivePagirs[z, num] « 0
IndezLivePairs[z,y] + 0
NumLivePairs(z] « NumLivePairs[z] — 1
if NumLivePairs[z] = 0
(posn + IndexLivePoints{x]
z + LivePoints[NumLivePoints]
LivePoints[posn) « z
then { IndezLivePoints[z] + posn
LivePoints[NumLivePoints] + 0
IndezLivePoints[z] « 0
| NumLivePoints + NumLivePoints — 1

These two procedures are used in two higher-level procedures called
ADDBLOCK and EXCHANGEBLOCK.

A hill-climbing algorithm for Steiner triple systems 173

Algorithm 5.16;: ADDBLOCK (r,y, 2)

external DELETEPAIR()

global Other{z,y], 2 =1,2,..., 0,y =1,2,...,v
Other[z,y] + z

Other(y,z) + z

Other(z,z] « y

Other{z,z] « y

Other[y,z] <z

Other|z,y] «+ =

DELETEPAIR(z, y)

DELETEPAIR(y, 2)

DELETEPAIR(z, z)

DELETEPAIR(z, I)

DELETEPAIR(y, 2)

DELETEPAIR(z, y)

Algorithm 5.17: EXCHANGEBLOCK (z,y, z, w)

external DELEYEPAIR(), INSERTPAIR()

global Other[z,yl,z =1,2,...,v,y =L1,2,...,v
Other[z,y] + 2

Other[y, z] + z

Otherlz, 2] + y

Other{z,z] + y

Otherly, z] + =

Other[z,y] « =

Other[w,y] « 0

Otherly,w] « 0

Other[w,z] + 0

Other(z,w] + 0

INSERTPAIR(w, y)

INSERTPAIR(y, w)

INSERTPAIR(w, 2)

INSERTPAIR(z, w)

DELETEPAIR(z, y)

DELETEPAIR(y, 1)
DELETEPAIR(Z, z)
DELEYEPAIR(z,)

Now, we present a more detailed version of the heuristic SWITCH , in which
we include the necessary updating for these arrays.

174 Heuristic Search

Algorithm 5.18: REVISEDSWITCH ()

external ADDBLOCK(), EXCHANGEBLOCK()

NumLivePoints,

global {LivePoints[z], NumlLivePairs[z],z = 1,2,...,v
LivePairs{z,y], Other(z,y],z = 1,2,...,v,y = 1,2,...,v

Iet r be a random integer, 1 < r < NumLivePoints

z + LivePoints[r]

let s, ¢ be random integers, 1 < s < t < NumLivePasrs|z)

y + LivePairs|z, s

z + LivePairs[z,]

if Otherl[y,z] =0

then ADDBLOCK (2, y, 2)
NumbBlocks +- NumBlocks + 1

e {0 Otherly, z]
5 \ ExCHANGEBLOCK(z, ¥, z, w)

Here now is the final version of Stinson’s algorithm.

Algorithm 5.19: REVISEDSTINSON’SALGORITHM (v)

external CONSTRUCTBLOCKS(), REVISEDSWITCH()
global NumBlocks Other|z,y],z =1,2,...,v,y=1,2,...,v
NumBlocks + 0
INITIALIZE(v)
while NumBlocks < v(v — 1)/6
do REVISEDSWITCH()
B + CONSTRUCTBLOCKS(v, Other)
output (V, B)

5.4.2 Computational resulis

For cach v € {31,61,...,301}, we performed ten runs of Algorithm 5.19. In
each run of the algorithm, we computed the number of iterations required. This
information is sumimarized below.

Two heuristic algorithms for the knapsack problem 175

v b avg. # iterations avg. # i:erations glg._#bite:ations

No
31 155 551.8 3.56 706
61 610 2276.9 3.73 .582
91 1365 5396.6 3.95 .547
121 2420 9882.0 4.08 .523
151 3775 15594.8 4.13 501
181 5430 23755.5 4.37 .508
211 7385 32286.6 4.37 491
241 9640 42702.5 4.43 483
271 12195 55071.5 4.52 480
301 15050 68398.9 4.54 472

From this data, it appears that the average number of iterations per block con-
structed grows very slowly as v increases. In fact, this data is consistent with the
hypothesis that the average number of iterations is O(bIn b).

5.5 Two heuristic algorithms for the knapsack problem

In this section, we develop simulated annealing and tabu search algorithms for
the Knapsack (optimization) problem. Recall that an instance is defined by
profits po, . . . , Pn—1. Weights wg, . .., Wn—1, and a capacity, M. The universe is
X = {0,1}". Ann-tuple X = [2¢,...,2n-1] € X is feasible if

n—1
w(X) = Zz,-w; < M,

=0
and the objective is to maximize

n—1

P(X) = ziﬂipi«

i=0
5.5.1 A simulated annealing algorithm
Suppose we define our neighborhood function to be
N(X)}=N;(X) ={YV € {0,1}" : dist(X,Y) = 1}.

That is, the neighborhood of X consists of all binary n-tuples in which exacty
one entry of X has been changed.

176 Heuristic Search

We can generate a random Y = [y, ...,yn—1] € N{X) by choosing a random
integer 7 suchthat 0 < 7 < n — 1, and then defining

Cifidt
y;={ z; ifi#j

1-— X, ift = }
Clearly we have that

_J w(X)+w, ifr;=0
wl¥) = { w(X) —w; ifz; =1

A similar formula relates P(Y) to P(X).

Suppose that X is feasible. Then we see that Y is feasible whenever z, = 1,
or whenever z; = 0 and w(X) -+ w, £ M. The heuristic Ay fails if z; = 0 and
w(X)4+w; > M.

Now suppose that Y = hn(X) is feasible. If £, = 0 (so g; = 1). then P(Y) >
P(X) and X will always be replaced by Y in a simulated annealing algorithm. If
z; = 1(so y; = 0), then P(Y) < P(X). In this case, P(Y) — P(X} = —p;; so,
X will be replaced by Y with probability e=?i/T,

Finally, it is sufficient to begin with the trivial feasible solution [0, .. ., U]. With
these observations, the simulated annealing algorithm for Knapsack problem is
casily adapted from our generic simulated annealing algorithm, Algorithm 5.3.

Given a problem instance, it remains to determine suitable values for 75, ¢maz
and c. This is basically a matter of experimentation. We lock at a specific (synall)
problem instance to iliustrate.

Suppose we have n = 13, and profits, weights and capacity as specified in
Table 5.2.

An exhaustive search, such as a backtracking algorithm, can be used to find the
optimal solution, which is

X =11,0,1,0,1,0,1,1,1,0,0,0,0,1,1],

yielding an optimal profit of 1458. We will investigate how close to this optimal
solution the simulated annealing algorithm will get with various choices of the
parameters.

Two heuristic algorithms for the knapsack problem 177

TABLE 5.2
An instance of the Knapsack problem with 15 items.

profits 135 139 149 150 156 163 173 184
192 201 210 214 221 229 240
weights 70 73 77 80 82 87 90 94
98 106 110 113 115 118 120
capacity | 750

Algorithm 5,20: KNAPSACKSIMULATEDANNEALING (Cmoz, 10,)

external P(), Random()
¢ce0
T « To
X « [20y..-3Zn-1]=1(0,...,0]
CurW «+ 0
Xoeat +— X
while ¢ < ¢por
{lcl 7 be a random integer between 0 and n — 1
Y& X
¥, 1-2;
if (y; = 1) and (CurW +w, > M)
then Y « Fuil

ifY # Fail
'ifyj =1
XY
do ﬁ CurW « CurW + w;
then ¢ 46P(X) > P(Xpest)
then ¢ then Xpeqr +— X

r < Random(0,1)
ifr <e /T

clse th X &Y
L N\ CurW « CurW - w;

c+—c+1
| T & nT
return (X y..)

It is generally a good idea to begin with an initial temperature Ty which allows
downward moves with a fairly high probability. We chose Tp = 1000, so the
probability of accepting a downward move at the beginning of the algorithm is at
least .787 = e~ 24%/To_and at most .874 = e~ !35/To. A Slow cooling schedulc
seemed to be most effective in this algorithm, and we chose a = 0.999,0.9995
and 0.9999 to test the algorithm. We also varied the number of iterations, letting

178 Heuristic Search

TABLE 5.3
Summary data for the knapsack simulated annealing algorithm.
a Cmaz profits found
minimum maximum average
0.999 1000 1441 1454 1446.8
0.999 5000 1448 1456 1452.1
0.999 | 20000 1448 1456 1450.9
0.9995 | 1000 1445 1455 1448.4
0.9995 | 5000 1450 1458 1454.6
0.9995 | 20000 1452 1458 1453.9
0.9999 | 1000 1445 1455 1449.6
0.9999 | 5000 1450 1458 1454.3
0.9999 | 20000 1453 1458 1456.1

Cmez = 1000, 5000 and 20000. For each choice of parameters, we performed 10
runs of the algorithm, and the best profits found are summarized in Table 5.3.

There were no optimal solutions found when o = 0.999, three optimal solu-
tions were found (out of 30 runs) when a = 0.9995, and five optimal solutions
were found (out of 30 runs) when a = 0.9999.

5.5.2 A tabu search algorithm

In developing a tabu search algorithm for the Knapsack problem, the main issue
is the design of the heuristic. We will use the same neighborhood as we did in the
simulated annealing algorithm. Thus, a “change” consists of choosing an index 1,
and replacing z; by 1 — ;. These values of £ will be stored in the TabulList.

The tabu search algorithm will use an exhaustive search of the neighborhood to
find the “best” way to update a feasible solution X, as opposed to the randomized
search strategy employed in the simulated annealing algoritbm. This could be
done by attemnpting to change a coordinate x; from 0 to 1 in such a way that the
profit is improved as much as possiblc, as suggested in the generic tabu search
algorithm (Algonthm 5.4). However, it turns out that it is better to look at the
profit/ weight ratios of the items (as was done in Section 4.6.1), rather than just
their profits. Thus, the neighborhood search strategy can be described informally
as follows:

1. Suppose there exists at least one index ¢ where z; = 0, such that { is not on
the current TabuList and such that z, can be changed to 1 without exceed-
ing the capacity M. Among all such i, choose the one such that p; /w; is
maximum, and change ; from 0 to 1.

2. Suppose there exists no i satisfying the conditions above. Then consider all
i such that z; = 1 and ¢ is not on the current TabuList. Among these values
of i, choose the one such that p; /w; is minimum, and change «; from 1 to
0.

Two heuristic algorithms for the knapsack problem 179

The idea is that we want to add items having high profit/weight ratios to the
knapsack, and delete items having low profit/ weight ratios. Note that wc can
express the above search proccdure more succinctly by saying that we wish to
maximize the quantity (—1)*'p;/w; over all indices ¢ not on the TebuList.

The heuristic described above is deterministic, A convenient way to introduce
randomness into the tabu search algorithm is to begin with a random initial fea-
sible solution. For example, we could select a random sequence of values of 1,
setting z; to be 1 as long as the total weight of the knapsack does not exceed
the capacity. This randomization allows us to run the algorithm several times
on a given problem instance, which should increase the probability of finding an
optimal or near-optimal solution.

Therc are two other decisions to be made. One is how long the lifetime L should
be. Of course, it is a simple matter to run the algorithm with various values of L
and determine the best choice by experimentation. The other issue is how many
iterations we should allow the algorithm to run. Many tabu search algorithms
turn out to be rather insensitive to the number of iterations of the heuristic that
are performed, i.e., the best feasible solutions tend to be found very early in the
search. Thus we can take ¢p,4, t0 be quite small (much smaller than in a simulated
annealing algorithm), and hence perform a larger number of trials of the algorithm
in a given amount of time. We found ¢,,,; = 200 10 be sufficient for the problem
instances we considered. The resulting algorithm is presented as Algorithm 5.21.

We first tried our algorithm on the instance with 15 items that we presented in
Table 5.2. We tested values of L ranging from 1 to 8. The data obtained from 25
runs of the tabu search algorithm for each value of L are presented in Table 5.4.

It can be secn that, for this problem instance, a short lifetime is sufficient to
allow the optimal solution to be found very easily. In fact, as L increases, the
performance of the algorithm gradually degrades.

We also ran the algorithm on the larger instance with 2 = 24 items that is
presented in Table 5.5.

This problem instance has optimal solution

X =[,10,1,1,1,0,0,0,1,1,0,1,0,0,1,0,0,0,0,0, 1,1, 1],

yielding a profit of 13549094. The results of the tabu search algorithm, when run
on this problem instance, are presented in Table 5.6.

In this larger problem instance, the algorithm performs better as L is increased.
Among the values of L that were tested, L = 8 appears to be the best choice.

180

TABLE 54

Heuristic Search

Summary datia for the knapsack tabu search algorithm (15 items).

L profits found (in 23 runs) # optimal solutions found
minimum maximum average
1 1458 1458 1438.0 25
2 1458 1458 1458.0 25
3 1452 1458 1456.8 16
4 1448 1458 1455.6 14
5 1452 1458 1456.6 16
6 1446 1458 1455.1 11
7 1446 1458 1455.1 12
8 1444 1458 1452.1 5

external P()
c+1

CurW «) zw;

Xbut — X

while ¢ < ¢ynaz

(N « {0,...,n~—

for j + starttoc

foreachi ¢ N

iftN=10
do { then exit
TabulList[c] + i
e~ 1-—ux
ifz, =1

then Xp.: ¢ X
e c+ 1
return (Xbe:!)

1}

start + max{0,c—~ L}

-1

Select a random feasible solution X = [zp, ..

do N « N\{ TabuList[j]}

then CurW « CurW + wy
else CurW « CurW —w,
if P(X) > P(Xpest)

Algorithm 5.21: KNAPSACKTABUSEARCH (Cmaz, L)

.y xn—l] € {0, 1}"

if (z; = 0) and (CurW + w; > M)
do {l then N « N\{i?

find i € N such that (—1)%ip, /w; is maximum

A genetic algorithm for the traveling salesman problem

181

TABLE 5.5
An instance of the Knapsack problem with 24 items.
profits 825594 1677009 1676628 1523970 943972 97426
69666 1296457 1678693 1902996 1844992 049289
1252836 1319836 953277 2067538 675367 853655
1826027 65731 901489 577243 466257 36926
weights 382745 799601 909247 729069 467902 44328
34610 698150 823460 903959 853665 551830
610856 670702 488960 951111 323046 446298
931161 31385 496951 264724 224916 169684
capacity | 6404180

TABLE 5.6

Summary data for the knapsack tabu search algorithm (24 items).

L profits found (in 25 runs) # optimal solutions found
minimum maximum average
1 | 13079298 13466838 13388643.5 0
2 | 13084476 13500943 13415747.5 0
3)1 13245597 13500943 13456205.2 0
4) 13264009 13500943 13446933.8 0
5 | 13358351 13500943 13458145.8 0
6 | 13148978 13549094 13427333.6 1
7) 13116665 13549094 134629024 4
8 | 13346220 13549094 13497932.2 7
O

5.6 A genetic algorithm for the traveling salesman problem

In this section, we develop a genetic algorithm for the Traveling Salesman
problem, Problem 4.4, Recall that an instance is given by an n by n cost ma-
trix M. A feasible solution is a Hamiltonian circuit

ZoZ1Z2 - Tn-1%0

in the underlying graph I(,. and the objective is 10 minimize

n—2

C(X) =" M[zi,zipa] + Mlza_1, %0].

=0

We represent the circuit £gz1Z2 - - - T,—1 Zo as a permutation

X = [:IOaxl)" . ,x'l—l.]

of {0,...,n — 1}. There are 2n permutations that represent a given Hamiltonian
circuit. Since we are assuming that the underlying graph is complete, every per-

182 Heuristic Search

FIGURE 5.2
Ilustration of a 2-opt move.

mutation of the n vertices represents a feasible solution, and so the universe X
consists of all n! permutations of {0,...,n — 1}.

In order to design a genetic algorithm, we need recombination and mutation
operations, and a method 10 select an initial population. We first describe a mu-
tation operation, which will be a heuristic consisting of a sequence of steepest
ascent neighborhood searches.

Given a Hamiltonian circuit X, we can “cut” two edges, say {x:,Zi+1}
and {z,,Z;4+1}, and then re-attach the ends of the two resulting paths to cre-
ate a new Hamiltonian circuit, which we denote X;;. More precisely, given
X = {z0,Z1y.-.,2n—1) € X and indices 0 < i < j < n — 1 such that the
distance from z; to x5 around the circuit X is at least two, then we construct the
Hamiltonian circuit

Xi; = [xo, 21, 2y THT) Ti1y e s Tik by T, T2, -0 7xn-l]-

This operation is called a 2-opt move and is illustrated in Figure 5.2.
The gain in applying a 2-opt move is the decrease in cost. This is denoted by

G(X,i,j) = C(X) - C(X3;)

= Mlzi,zi1] + M[z;,2541] = M1, 250] - Mz, 25].

The gain can be negative, zero, or positive.

We define our neighborhood function N(X) to be the set of all Y € X that
can be obtained from X by a 2-opt move. Our mutatior heuristic consists of a
sequence of 2-opt moves. Using a steepest ascent strategy, we iteratively apply
2-opt moves until no pair of edges can be found that yield a positive gain. The
mutation heuristic is presented as Algorithm 5.22.

A genetic algorithm for the traveling salesman problem 183

Algorithm 5.22: STEEPESTASCENTTWOOPT (X)

external G()

done + false

while not done

[done « true

go+ 0

for: —0ton-—1
forje—i+2ton-1

g + G(X,1,5)
do { do ifg> g0
do go+— g
do io(-’i
Jo+ 7
ifgo >0
X « X'o.jo

done + false

do{

Algorithm 5.23 selects the initial population

P= [POaPla---propaizc—l]

by first randomly generating popsize permutations, each of which is improved to
a local minimum by applying Algorithm 5.22.

Algorithm 5.23; SELECT (popsize)

Randominteger(),
external ¢ PERMLEXUNRANK(},
STEEPESTASCENTTWOOPT()
for i « 0 to popsize — 1
r = RandomInteger(0,n! — 1)
do < P; « PERMLEXUNRANK(n,r)
STEEPESTASCENTTWOOPT(P,)
return ([PO, Pl! .o propoizc—l])

Next, we present two recombination operations, Algorithm 5.24 and Algo-
rithm 5.25. For both of them, a random length A is chosen, and then a random
substring

S =[S0, S1s---, Sac1l

of length h is chosen from one of the parents by selecting a starting location j.
The string length A should not be too “short” nor too “long”. If it is too short then

184 Heuristic Search

the recombination has little effect, and if it is 100 long, then the variation gets lost.
We typically choose h so that 10 < & < n/2.

In Algorithm 5.24, we apply Algorithm 5.5 with parameters 3, and k = h +
j mod n. Then each of the two resulting children are improved to local minima
by applying Algornithm 5.22.

In Algorithm 5.25, the string S is first copied over to the beginning of a new
child. The child is complcted to a feasible solution by appending the nodes of the
other parent that are not in S in thc order in which they appear. The resulting child
is then improved to a local minimum by applying Algorithm 5.22. This is then
repeated, with the roles of the two parents reversed, to generate a sccond child.

In Tables 5.7 and 5.8, we compare these two recombination operations when
used in a genetic algorithm. Thc genetic algorithm is given as Algorithm 5.26,
where REC is either of the two recombination operations MKSREC or PMREC.
The tables summarize the output of Algorithm 5.26 when it is run on three random
instances on 50 vertices. These instances were generated by randomly choosing
integer values in the interval [0, 99] for the entries of a symmetric cost matrix M.
The optimal cost of a Hamiltonian circuit was computed by an exhaustive branch
and bound algorithm, as described in Section 4.7. We chose popsize = 8, 16 and
32, and cynqez = 50,100 and 200. For each choice of parameters, we performed
10 runs of the algorithm, and the best costs obtained are summarized in Tables 5.7
and 5.8. The last column of these tables gives the number of times a Hamiltonian
circuit achieving the optimal cost was found. Tables 5.7 and 5.8 suggest that the
recombination operation MGKREC performs better than PMREC .

Algorithm 5.24: PMREC (A4, B)

RandomlInteger(),

external { PARTIALLYMATCHEDCROSSOVER(),
STEEPESTASCENTTWOQOPT()

h « Randominteger(10, 3)

j ¢« Randominteger(0,n ~ 1)

(C, D) « PARTIALLYMATCHEDCROSSOVER(A, B, j, (h + j) mod n)

STEEPESTASCENTTWOOPT(C)

STEEPESTASCENTTWOOPT(D)

return (C, D)

A genetic algorithm for the traveling salesman problem

185

Algorithm 5.25: MGKREC (A, B)

external Randominteger(), STEEPESTASCENTTWOOPT()

h « Randominteger(10, 5
j « Randominteger(0,n — 1)
T9
; B D{i] « B[(i + j) mod n]
fori — Otoh —1do {T « TU {Dli}
forj <« Oton —1
doif A[j] ¢ T
then {DM A Al
1141
STEEPESTASCENTTWOOPT(D)
j « Random({0,n — 1)
Te0
. _ C[i] « A[G + 7) mod n]
fori < Otoh - 1do {T « TU{Cli]}
forj «0ton-1
doif B[j| ¢ T
Cli] « BJj]
then {i i+l
STEEPESTASCENTTWOOQPT(C)
return (C, D)

Algorithm 5.26: GENETICTSP (popsize, Cmaz)

external SELECT(), REC()

ce1

[Po, - - - Ppopsize—1] & SELECT(popssze)

Sort Py, Py, ..., Ppapsize in increasing order of cost
Xbcst & PO

BestCost « C(Pp)

while ¢ < ¢maz

(for i « O to popsize/2 — 1

CurCost « C(Fp)
if CurCost < BestCost
Xoest & Po
then {BestCost & CurCost
[cc+1
return (xbcgt)

do ¢

do (Ppopuze+2i: Ppopat'ze+2i+1) « Rec(P»;,-, P2i+l)
Sort Po, P, ..., Pa.popsize~1 in increasing order of cost

186 Heuristic Search

TABLE 5.7
GENETICTSP data with recombination operation PMREC.
cost found
M n | Opt. Cost | popsize | Cmae | min max avg { No. Opt. found
M50a | 50 185 8 50 [192 214 200.50

100 | 191 219 200.00
200 | 190 203 196.60
l6 50 187 207 193.20
100 | 187 206 193.20
200 | 187 200 193.70
32 50 205 194.70
100 | 186 199 190.70
200 | 188 200 192.40
M50b | 50 158 8 50 163 184 17540
100 | 163 195 173.70
200 [160 191 177.30
16 50 159 176 167

100 | 163 184 171.50
200 | 161 189 172.10
32 50 16l 173 167.60
100 | 163 178 169.40
200 { 159 178 166.70
M50c | 50 155 8 50 162 181 169.40
100 | 159 186 169.50
200 | 159 187 169.30
16 50 155 1711 161.30
100 | IS5 182 166.10
200 | 157 182 167.70
32 50 155 170 161.60
100 | 158 167 161.40
200 | 157 180 162.50

OOHO—'—OOOOOOOOOOOOOOOOO&OOO

5.7 Notes

Section 5.1

A few books that survey heuristic search techniques are Aarts and Lenstra {1),
Rayward-Smith ef a/ [87] and Reeves [89}.

Section 5.1.1

The Uniform Graph Partition problem is discussed in many books, for example,
[1], [871. [89), and [83].

Section 5.2.1

Hill-climbing techniques were first used in the 1950°s and 1960’s when edge ex-
change algorithms such as 2-opt were introduced for the Traveling Salesman

Notes 187

TABLE 5.8
GENETICTSP with recombination operation MGKREC.
cost found
M n | Opt. Cost | popsize | Cmar | Min max avg | No. Opt. found
MS50a | 50 185 8 50 186 196 191.70

100 [186 199 190.30
200 | 186 194 189.20
16 S0 | 186 192 189.20
100 | 185 192 187.00
200 | 185 192 187.60
32 50 [186 192 188.10
100 | 185 190 187.30
200 | 185 190 187.30
M50b | 50 158 8 50 | 160 171 165.30
100 | 159 166 161.60
200 | 159 170 162.00
16 30 158 le4 161.20
100 | 158 162 159.80
200 | 159 163 160.70
32 50 158 165 160.70
100 | 159 163 160.30
200 [158 160 158.90
M50c | 50 155 8 50 156 168 160.50
100 | 155 167 160.70
200 | 1S5 162 157.30
16 50 155 162 157.50
100 [155 159 156.30
200 | 155 159 155.70
32 50 155 159 156.10
100 | 155 158 (55.40
200 [155 156 155.10

WOON®ANNBDOINO —O—=—=0O0QOl——=O|—= WO OO0

problem; see Croes [24], Lin [65] and Reiter and Sherman [91]. There have been
successes in various other applications, for example graph partitioning [52] and
scheduling [81]. A good introductory discussion of hill-climbing can be found
in [83].

Section 5.2.2

In 1953, Metropolis et al [75] developed an algorithm to simulate the cooling
of material in a heat bath, a process known as annealing. Three decades later,
Kirkpatrick et al [53] and Cerny [17] observed that this type of simulation could
be applied to optimization problems. Interesting surveys on simulated annealing
can be found in the books [89], [87] and [1]. A theoretical study can be found in
the book by Van Laarhoven and Aarts [108].

Section 5.2.3
Tabu search was originally formulated by Glover [34], and a detailed account

188 Heuristic Search

is given by Glover and Laguna in [35]. Similar ideas were also developed by
Hanscn [39]. Sce Hertz and de Werra [40] for a discussion of successful applica-
tions.

Section 5.2.4

Genetic algorithms were developed in the late 60’s and early 70's by Holland
and his colleagues at the University of Michigan for game playing and pattern
recognition in artificial intelligence systems. The first systematic treatment is
contained in Holland’s book [41]. The method we discuss is called genetic local
search and was first described by Miihlenbein, Gorges-Shcleuter and Krdmer in
[77]: see also Miihlenbein’s paper in {1].

Section 5.3

Stecpest ascent algorithms arc also referved to as local optimization. A stecpest
ascent algorithm for the Uniform Graph Partition problem can be found in [83],
and a variation that uses multiple exchanges can be found in [1). Johnson ez al
(48] compare steepest ascent with simulated annealing for this problem.

The instance of the Uniform Graph Partition problem that is referred to at
the end of this scction can be found in the web pages at the following URL:

http://www.math.mtu.edu/ "kreher/cages/Data.html

Section 5.4

The first successful application of a hill-climbing algorithm to the construction of
combinatorial structures appears in Dinitz and Stinson [25]. The algorithm in this
section was first presented in |102]. Gibbons presents an overview of heuristic
algorithms for the construction of combinatorial designs in [33].

Heuristic algorithms for the construction of good error-correcting codes and
covering codes have also been studied extensively. El Gamal et al [27] were
the first to successfully use simulated annealing for this purpose. Honkala and
Ostergard |42] is a good survey on this topic.

Section 5.6

Early attempts 1o use genetic algorithms to solve the Traveling Salesman prob-
lem can be found in Brady [8], Miihlenbein, Gorges-Shcleuter and Kriimer [76]
and Jog, Suh and Gucht [47].

The PARTIALLYMATCHENDCROSSOVER algorithm, which is used in the re-
combination operation Algorithm 5.24, is from (87]. The crossover method used
in Algorithm 5.24 is from [77]. A discussion that suggests that Algorithm 5.24 is
not suitable for the Traveling Salesman problem is contained in [85] and [86].

The cost matrices M50a, M50b, M50c that are referred to in Tables 5.7 and 5.8
can be found in the web page at the following URL:

http://www.math.mtu.edu/ kreher/cages/Data.html

Exercises 189

Exercises

5.1

5.2

5.3

5.4

5.5

5.6

5.7

58

Determine the sizes of the following neighborhoods in the associated optimization
problems:

{(a) an exchange neighborhood for the Uniform Graph Partition problem.

{(b) a 2-opt neighborhood for the Traveling Salesman problem.

(c) a neighborhood Ng,{X) for a problem in which the universe consists of

permutations of an n-set.
(d) a neighborhood N4, (X} for a problem in which the universe consists of alt
(0, 1)-vectors of length 5 having weight w.

Find an instance of the Uniform Graph Partition problem, together with a feasible
solution [X71, Xa] such that [X), A%] is a local optimum (with respect to the operation
of exchanging one vertex of X} with one vertex of X?2), but a better feasible solution
can be found by exchanging two vertices of X, with two vertices of A>.
For sparse graphs, it has been shown that Algorithm 5.9 does not perform very well
when solving the Uniform Graph Partition problem. Develop and implement

(a) asimulated annealing algorithm,

(b) a tabu search algorithm, and

{c) a genelic algorithm
for solving the Uniform Graph Partition problem, assuming that the underlying
graph is a sparse graph. Compare the effectiveness of your algorithms by running
thein on random sparse graphs. Do they perform better than Algorithm 5.9? (Note:
one convenient way (o gencrate a random sparse graph is to use Algorithm 4.21 with
a small value of 4.)
Develop a hill-climbing algorithm to construct a transversal design TD(n), as de-
fined in Section 1.2.3. (Hint: design a heuristic similar to that used in the algorithm
for constructing Steiner triple systems.) Test your algorithm for various values of n.
Develop a hill-climbing algorithm to embed an STS(w) in an STS(v). In other
words, an STS(w} is given, say (i, A), and we wish to construct an STS{v), say
(V,B),inwhichd CVand AC B.
Develop

(a) a hill-climbing algorithm,

(b) a simulated annealing algorithm,

(c) a tabu search algorithm, and

(d) agenelic algorithm
for the Maximum Clique problem. Use your algorithms to try to find maximum
cliques in each of the graphs G = (V, £) given in Exercise 4.9.
Run Algorithm 5.26 on the instance of the Traveling Salesman problem given in
Exercise 4.7.
Run Algorithms 5.20 and 5.21 on the instances of the Knapsack (optimization)
problem given in Exercise 4.4.

190

59

5.10

Heuristic Search

Develop

(a) a hill-climbing algorithm, and

(b) a genetic algorithm
for the Knapsack (optimization) problem. Test your algorithms with the instances
given in Tables 5.2 and 5.5. How do your algorithms compare with the results of
Algorithms 5.20 and 5.21 given in tables 5.3, 5.4 and 5.67
The recombination operations, Algorithms 5.24 and Algorithms 5.25, chose a ran-
dom substring

S= [SO,SI,- "1Sh—l]

to crossover from a parent
X = [z0,21,...,20a-1]

to a child. Define the “average cost” of S to be the quantity
Lo Mlsi-1,8i]

h-1)
The lower the average cost, the more “fit” the substring is. A substring has “good
fitness” if

¢(X)

avgcost(S) < =

Modify the recombination operation to randomly choose the substring S among
those that have good fitness. Perform experiments to see if this technique improves
the performance of Algorithm 5.26.

avgeost(S) =

6

Groups and Symmetry

6.1 Groups

The theory of finite groups can often be helpful in counting the number of certain
configurations and in determining when two representations are equivalent or not.
A binary operation + on aset G is a function from G x G — G. If H is a subset
of G, then H is closed under * if and only if hy xhy € H forall by, hy € H. That
is, * is also a binary operation on H. The binary operation * on G is associative
if
(91*g2) 93 = g1 * (g2 * g3)

forall g1, 92,93 € G.

Definition 6.1: A group is a set G of elements together with an associative
binary operation * defined on G such that:

1. there is an element I € G satisfying g + I = g, forall g € G| and

2. foreach g € G there is an element g~! € G'suchthatg=! x g = 1.

The element I is called the identity and given g € G, the element g~! is called
g inverse of g.

Example 6.1 Some examples of groups

1. Z,, the integers under addition modulo n.

2. The m by m matrices with non-zero determinant under matrix multiplica-
tion.

192 Groups and Symmetry

3. Thematri:c: [(1)] a_[‘ }b_[: 01],6
d=[_i 0] []f [‘0],9=[_01 (1)]

where ¢ = v/ =1, under matrix multiplication.

i
|
-, o
ol
e

Examples 6.1.2 and 6.1.3 show that the binary operation need not be commu-
tative, (In example 6.1.3 ¢cd = ¢ but dc = e.) The identity element I is unique,
forif ¢ + I' = g, then multiplying on the left by g~} shows that I' = I. Also, we
observe that

grg i =gxlxg

=g+(g"*g)rg
=(g+g) *(grg7").

-1

-1

Thusgxg ' =L

The binary operation * is usually called mulfiplication and is denoted by
Jjuxtaposition. That is, if g, h are elements of the group, then gh denotes
g * h. Onc method of presenting a group is to give the multiplication table. If
G ={g1,92,.--,9n} is a group, then the multiplication table for G is the n by n
array whose [{, j] entry is the product g;g;. For example, the multiplication table
for the group in Example 6.1.3 is

I a b ¢ d e f g
I(I a b ¢c d e f g
ala b ¢ ¥ e f g d
bib ¢ I @ f g d e
clc I a b g d e f
did g f e I ¢c b a
ele d g f a I ¢ b
flf e d g b al ¢
g9lg f e ¢c ¢ b a 1}

If the identity I in a group G is chosen to be g1, the first group element, then it
is casy to see that the multiplication table for a group is a reduced Latin square.
(See Exercise 4.13.) The converse is not true, since a reduced Latin square need
not be associative. If M is the multiplication table for the set of elements G =
{g1,92,.--.9n} then M is the multiplication table of a group with g, = I if and
only if

Groups 193

{. M is areduced Latin square; and
2. M[M|gi,g;], 9x] = M|g:, M|[g;, g«]]. for all choices of g;, g; and gi.

A group can be represented in the computer by simply storing the multiplication
table. This is often a good method when the group is small and there is no direct
way to compute the product of elements. A method for storing a group that is, in
general, more efficient is given in Section 6.2.2.

Definition 6.2: A subgroup H of a group G is a subset of G that is itself a
group (with the same multiplication that was provided for G).

For cxample, the subset of elements {I,a, b, c} of the group in Example 6.1.3
form a subgroup. This is easy to see by checking the upper left hand corner of the
above multiplication table.

If G is finite, then we denote the number of elements of G by }G|. This is
called the order of G. The groups of interest to combinatorialists are almost
always finite.

THEOREM 6.1 If H is a non-empty subset of the finite group G, then H is a
subgroup of G if and only if H is closed (under the multiplication of G).

PROOF If H = {I}, there is nothing to prove. Suppose hihy € H for all
hy,hy € Hyandleth € H, h # 1. Then

h" =hhh.--h€ H.
N e’
n limes

The sequence of elements A!, h? h3,... cannot all be distinct since the number
of elements in H is finite. Thus some 2™ = A" where k = n —m > 0. Then
hnh* = pmpé = R ™ = 4 Thus h* = Tand A ' = 4~ !, Thus H isa
subgroup. The converse is obvious. |

Let H be a subgroup of the finite group G. The left coset containing the element
gofGis
gH = {gh: h € H}.

THEOREM 6.2 (LAGRANGE)

1. IfH isasubgroup of the finite group G, then G can be written as the disjoint
union of left cosets. That is

C=qHUgaHU-- U9 H

forsome g1.92,---,9r € G.

194 Groups and Symmetry

2. If H is a subgroup of the finite group G, then |H| divides |G|.

PROOF Let H be a subgroup of the finite group G. If g is a fixed element of G,
then the mapping £ — gz is a one to one mapping from H to gH, since g has an
inverse. Hence |gH | = |H| for all g € G. Thus part (2) follows from the proof of
part (1).

Suppose g1 H N g: H # B, for some gy, g2 € G. Then there exists ky, he € H,
so that gy hy = goha. Thus,

01 = gehahyl
Hence, for any h € H we have
grh = gahoh'h
= ga(hahy ') € g2H.

Consequently g, H C g2 H, and therefore, because they have the same cardinality,
a1 H = g, H. Thus left cosets are either identical or disjoint.

Also, forany g € G, g € gH since I € H. Therefore G is the union of disjoint
left cosets. |

One way to choose the g; in part (1) of Theorem 6.2 is to first select g, arbi-
trarily, and then for eachi = 2,3, ... to select any
9i+1 €EG\(HUgHU --- UgH)

until
G\ (@HUgHU --- UgH)

1s empty.

The set T = {g1,g2,- - -, gr} constructed in Theorem 6.2 is called a system of
left coset representatives or a left transversal of H in G. For example, T = {1,d}
is a transversal of the subgroup H = {I,a,b,c} of group G in Example 6.1.3.
Indeed,

THUdH=1{l,a,b,c} Ud;{l,a,b,c}
= {1,e,b,c} U {d, g, f.e}
= {I,e,b,c,d,¢, f, g}
=G.
If A, B C Sym(X), then define
AB = {ab:a€ AbeE A).

In particular if T is a left transversal of the subgroup H in G, then G = TH.
Continuing with the above example we see that

G = {I,d}{l,a, b, c}’

Permutation groups 195

6.2 Permutation groups

In Section 3.2.2, we introduced the concept of permutations as functions on a
set of points, and also their representation in cycle notation. If the set of points
is understood, then the convention when studying permutation groups is to not
write the cycles of length one. (Cycles of length one are called fixed points.) For
example, the fixed points of the permutation

7 = (0,3,4,1)(2)(5,6)(7,8,9)(10)
are 2 and 10, and we write
7= (0,3,4,1)(5,6X7,8,9),

where it is understood that r is a permutation on the set V = {0,1,2,...,10}.
Multiplication of permutations o and 8 is defined by funcrion composition.
That is, we define

(aB)(z) = a(B(z)).

For example, if on the set X' = {0,1,2, 3,4}, we have
a = (1,2,3)(0,4)
and
B =124,
then
aff = (0,4,2)(1,3).
It is easy to see that the composition of two permutations is again a permutation.

Consequently we have:

THEOREM 6.3 Let X be a non-empty set and let Sym(X) be the set of all per-
mutations on X . Under the operation of composition of functions, Sym(X) is a
group. If |X| = n, then Sym(X) has n! elements.

The group Sym(X’) of all permutations on the set X is called the symmetric
group on X. A permutation group on X is a subgroup of Sym(X). For example,
the set

{I’ (0’ 11 2)(3) 4)1 (01 2) 1)1 (37 4)’ (0’ 11 2)) (01 21 1)(3a 4)}

is a permutation group on X = {0,1,2,3,4}. Note that we use I to denote
(0)(1)(2)(3)(4), the identity permutation.

196 Groups and Symimetry

Permutation groups are the most important groups in the study of set systems.
The reason for this is that the set of permutations that preserve a set system D is a
permutation group called the automorphism group of the set system. It is denoted

by Aut(D).

Definition 6.3: If {u,v} is an edge of the graph G = (V,£) and is a
permutation of V, then define

a({u,v}) = {a(u), a(v)}.

A permutation ¢ of V is an automorphism of the graph G = (V, £) if
a({u,v}) € € whenever {u,v} € £.
The automorphism group of a graph G = (V, £) denoted by Aut(G) is the set

of all permutations on V that are automorphisms of G. Thus Aut(G) consists
of the permutations of V that fix, as a set, the edges £ of G.

Example 6.2 The automorphism group of a graph.
Consider the graph G = (V, £) where

Y ={0,1,2,3,4,5}, and
&= {{0)4}r{0’5}’ {1’2}’{113}r{2’3}v {3’4}1 {4’5}}’

The automorphism group of G is

_{ 1,(1,2),(0,5),(0,5)(1,2), (0,2)(1, 5)(3,4),
Aut(G) ‘{ (0,1)(2.5)(3,4), (0,1, 5,2)(3,4), (0,2, 5, 1)(3,4) }

In Example 6.2 the automorphism group was computed by inspection. In gen-
eral, to compute Aut(G), one could use Algorithm 2.14 to run over all permuta-
tions of V and check each one to see if it was an automorphism. This however

Permutation groups 197

is an O(n!) algorithm and is consequently impractical when 7 is large. (Here
n = |V|.} Instead a much more efficient algorithm is often used. This algo-
rithm is described in Chapter 7 and uses many of the algorithms described in this
chapter.

THEOREM 6.4 The automorphism group of a graph is a group under the oper-
ation of function composition.

PROOF Let G = (V,£) be a graph and let Aut(G) be the set of all permutations
that fix £ as a set. Certainly I € Aut(G) and so Aut(G) # 0. Leta,8 €
Aut(G), and suppose {u,v} € £. Then B({u,v}) € £ and thus (a8)({u,v}) =
a{f({u,v})) € £. Consequently, af € Aut(G). Therefore, by Theorem 6.1,
Aut(G) is a group. i

FIGURE 6.1
The graph of the pentagon.

In Example 6.3 we give a second example of the automorphism group of a
graph. The subgroups of this automorphism group are also displayed.

Example 6.3 The automorphism group of the pentagon and its subgroups.
If P denotes the pentagon in Figure 6.1, then

I=(0)(1)(2)(3)(4), (0,1,2,3,4),
(0,2,4,1,3), (0,3,1,4,2),
Aut(P) = ¢ (0,4,3,2,1), (0)(1,4)(2,3),
(0,2)(1)(3,9), (0,4)(1,3)(2),
(0, D(2,4)(3), (0,3)(1,2)(4)

Aut(P) has 8 subgroups, namely, Aut(P), Cs, Ho, H,, H,, H3, H,, and {I},

198 Groups and Symmetry

where:

Cs=1{1,(0,1,2,3,4),(0,2,4,1, 3),(0,3,1,4,2),(0,4,3,2,1)}
H0={I’ (0)(114)(213)}
H1={Ir (01 2)(1)(314)}
H2={Ir (Ov 4)(1v3)(2)}
H3={I7 (0) 1)(214)(3)}
H4={I! (01 3)(1,2)(4)}

The concept of the automorphism group of a graph is easily generalized to an
arbitrary set system.

Definition 6.4: If B is a block of the set system & = (X, B) anda is a
permutation of A, then we define

a{B) = {afz) : £ € B).
A permutation « of X is an gutomorphism of the set system S = (X, B) if

a(B) € B whenever B € B.

The automorphism group of a set system S = (X, B), denoted Aut(S), is
the set of all permutations on X" that are automorphisms of S. Thus Aut(S)
consists of the permutations of X’ that fix, as a set, the blocks B of S.

Example 6.4 The automorphism group of a set system.
The set system & = (X', B) where
X = {0,1,2,3,4,5}
B = {{0,1,2}, {4,5,6},{0,4},{1,5}, {2,6}}

has automorphism group

I,(1,2)(4,5),(0,1,2)(3,4,5),(0,1)(3,4),
(0,2,1)(3, 5,4), (0,2)(3,5),(0,3)(1,4)(2,5),
(0,3)(1,5)(2,4),(0,4,2,3,1,5),
(0,4)(1,3)(2,5),(0,5,1,3,2,4), (0,5)(1,4)(2,3)

Aut(S) =

Permutation groups 199

In Example 6.4 the automorphism group could have been computed by using
Algorithm 2.14 10 run over all permutations of X. Each permutation would be
examined to see if it is an automorphism. A more efficient method is described in
Section 7.4.2. It uses several of the algorithms described in this chapter.

In a manner similar to Theorem 6.4 we can establish Theorem 6.5. We leave
the proof as an exercise.

THEOREM 6.5 The automorphism group of a set system is a group under the
operation of function composition,

6.2.1 Basic algorithms

The basic operations that we need to perform on permutations are multiplication,
inversion, and conversion between cycle notation and array notation.
An algorithm to multiply permutations is:

Algorithm 6.1: MULT (n, a, 5,7)

fori < QOton —1
do 7o[i] « afB[i]]

fori —Qton —1
do v[i] « mo[i]

The auxiliary permutation wp was used in Algorithm 6.1 to allow calculations of
the form MULT(g, h, g) and MULT(g, k, h). Without the temporary permutation
in some programming languages such as “C” the inputs « and 8 would be changed
before the calculation is finished, and an incorrect output y would be obtained.

The identity for this multiplication is the identity function which we denote by
L So I{x) = z forall z € X. The inverse of a permutation « is the permutation
B such that fa = I. A procedure to compute a~! is:

Algorithm 6.2: INV (n,a,)

fori —Oton —1

do Bafi]} « i

It is easy to see that MULT and INV take O(=) time.

It is useful to have programs that can switch between cycle notation and array
notation. Algorithm 6.3 parses the string C, which represents the permutation =
in cycle notation, and generates the array A, which is the array representation of
. Algorithm 6.4 does the reverse.

200

Groups and Symmetry

1«0

do {

then {

then <

Algorithm 6.3: CYCLETOARRAY (n,C)

fori < Oton -1
do Afi] « i

Set £ to he the length of the string C
whilei < ¢
(if C[i] = «(”

(i i+1
it Clz] € {0,1,2,...,9})
Get the number z starting at position
then (z ¢z
Increment ¢ to the position after z

\
if C[i] - U’ »

(i i+1

if C[i] € {0,1,2,...,9}

Get the number y starting at position ¢
Alz] v

Increment 7 to the position after y
Ty

then

\

then {

if C[l] =L u.)”
Alz] « 2
ie—i+1

dow

(i Pli]

then 4

Algorithm 6.4: ARRAYTOCYCLE (n, A)

fori —0Oton—1
do P[i] « true

C « the empty string

fori «0ton -1

(Append “(” to C

Appendito C

P[i] + false

j+1

while P[A[7]]
Append “,” 0o C
i« Al
Appendj o C
P[j] « false

return (C)

| Append “)” to C

Permutation groups 201

6.2.2 How to store a group

When searching for a particular set system, it is often advantageous to assume
that the set system has certain automorphisms. These automorphisms generate a
permutation group. To use a permutation group effectively we must be able to

I. efficiently store the group;

2. test if a given permutation is in the group; and

3. be able to run over ali the elements in the group without repetition.

To illustrate the various methods for storing a group in a computer consider the
group G of automorphisms of the graph in Figure 6.2. The 48 elements of G are

given in Table 6.1. The group G is also generated by taking all possible products
of the permutations

a=(0,1,3,7,6,4)(2,5)

and
B =1(0,1,3,2)(4,5,7,6).
0 2
4 6
5 7
1 3
FIGURE 6.2
The graph of the cube.
Definition 6.5: A group is said to be generated by the eclements
ag,ay,...,a, if every element g of the group can be written as a finite product
g = ailaiz te a'.m
where for each j, 1 < i; < r. The elements a;, az, . .., ¢, are called genera-
tors for the group G.

Suppose we choose to store all of the group elements as a sorted list of permu-
tations, say in the lexicographic order discussed in Section 2.4, Then we observe
the following:

202 Groups and Symmetry

TABLE 6.1
Automorphisms of the graph in Figure 6.2

(OX1Y(D(3XANS)EXT)

(OX(1)(2,4)(3,5%(6)(T)

(0)(1,2)X(3X4)(5.6)(7)

(0X(1,2,4)3,6,5)(7) (0)(1,4X2(3.6)(5)X7) (0)(1,4,2)(3,5.6X7)
(0.1)(2,3%4,5)(6,7) 0.1(2,5(3.4)6,7) (0.1,3,2)4,5,7.6)
(0,),3,7,6,4%2.5) (0,1,5,4)(2,3,7,6) (0,1,5.7,6,2)(3,4)
(0.2)(1,3)(4,6)(5,7) (0,2,6,4X1,3,7.5) (0.2,3,1)(4.6,7.5)
(0,2,6,7,5,)(3.4) 0.2)(1,6034X5.7) (0,2,3,7,5.4)(1,6)
O3)(DE.7X5)N6) (0,3,501X2,7.4X6) (0.3)(1,2)(4.7X5.6)
(0.3,6,5)(1,2,7.4) (0,3,6)1,7.4)2)(5) (0,3,5,6X1,7.4.2)
(0,4)(1,6)(2,53.,7) (0.4,5,7,3,2)(1,6) (04)(1,5)2,6)3,7)
(0.4.6,2)(1,5.7.3) (0,4,6,7,3,1X2.5) (0,4,5,1%(2,6,7.3)
(0.5,3,6)(1,7.2,4) (05,6)(1,7,23X4) (0,5)(1,4X2,7)(3.6)
(0,5.6,311,4,7.2) (05.3)(1X24,7)(6) (0.5)(1)(2,N3K4)6)
(0,6,3,5(1.4,2,7) (0,6.3X14,D2X5) (0,6)(1,7)(24)3.5)
O6X1L.T2AMND(G) (065)1.2,N3)4) (0.6,53)1,2,4.7)
(0,7)(1,6X2,5)(3,4) (0,7)(1,6)2,3)4,5) (0,7X(1.5%2.6)3.4)
(0,7)(1,5.4,6,2,3) (0,7(1,3)2.5)4.6) (0,7X(13,26,4,5

Generators for this group are:
a =(0,1,3,7,6,4)(2,5);
and

ﬁ = (oa 1,3, 2)(4) 5, 716)‘

1. we store |G| elements, in the worst case this is n!;

2. we can test if a given permutation is in G by doing a binary search and
comparison of permutations, which in the worst case is O(log n!)O(n) =
O(n?logn); and

3. we can easily run through the elements of the group, generating each in
O(1) time.

On the other hand if we simply store the generators, then to run through elements
of the group or to see if a given permutation is in the group one must generate
all products in the generators of length one, length two, length three and so forth
crossing out duplicates when they arise until no more elements can be generated.
For example, in the group G of automorphisms of the cube, we see that

aaaaafff = afaa.

Algorithm 6.5 uses this simple method of generating a group G from a set of
generators I

Permutation groups

203

Algorithm 6.5: SIMPLEGEN (n,I')

external MuLT()

G4
New « {1}
while New # 0
(G « GU New
Last «+ New
New « 0
foreachge Tl
for each h € Last

do {MULT(n,g, h, f)
do
\

do ¢

if f¢ G
then New + New U {f}

The fact that the same group element can arise from many different products of
generators makes this method of running through the group elements inefficient.
Hence, although just storing the generators is economical, all other operations
we wish to perform on the group are difficult and costly. We will consider an

alternative method in the next section.

6.2.3 Schreier-Sims algorithm

Let G be a permutation group on X = {0,1,2,3,...,n — 1} and set
Go = {g € G : ¢(0) =0}
G ={9€Go:9(1) =1}
Gy ={9€G,:9(2)=2}

Gooy = {9 € G i gln—1) =n — 1} = {1},
It is not difficult to show that Gg, G\, . .., Gy are subgroups and that
G2Go2G12G22 - 2Gn ={I}.

Let
orb(0) = {g(0) : g € G},

the orbit of 0 under G. Then |orb{0}] = ng for some integer ng, 0 < ngy < n.

Write
orb(O) = {-'50,1, X0,39 -+ ,IO‘M}

and for each i, 1 < i < ny, choose some hg ; € G such that k¢ ;(0) = zo,;. Set

Uo = {ho1,h0.2s- - -1 hono}-

204 Groups and Symmetry

Example 6.5
Let G be the permutation group on X = {0,1,...,7} that is displayed in Ta-
ble 6.1. Then

Go = {I, (0)(1)(2,4)(3,5)(6)(7), (0)(1, 2)(3)(4)(5,6)(7), }
7 10)(1,2,4)(3,6,5)(7), (0)(1,4)(2)(3,6)(5)(7), (0)(1, 4, 2)(3, 5,6)(7)

and
orb(0) = {0,1,2,3,4,5,6,7}.
Thus, we can choose, for example,

1,(0,1,3,7,6,4}(2,5),(0,2,6,4)(1,3,7,5),(0,3,6)(1,7,4)(2)(5),
Up = { (0)4a 6,7,3, 1)(2)5)': (01 5,3, 6)(1': 7,2, 4)1 (Ov 6, 3)(17 4, 7)(2)(5)1
(0,7)(1,6)(2,5)(3,4)

I

THEOREM 6.6 Let G, Uy and Go be as defined above. Then U is a left
transversal of Go in G.

PROOF Let g € G. Then g(0) = =z for some i, 1 < i < ng. We have
ho,i € Up and hg ;(0) = z¢,;. Hence,

(hg.i9)0) = hgi(g(0)) = hgi(z0,:) = 0.
Thus hy ,l g = g’ € Gy for some ¢'. Therefore g = hg g’ € UpGo.
Suppose h # k', h,h' € Up. Then h(0) # A'(0). If hGo N K'Gy # O, then
hg = h'g’ for some g, ¢’ € Gy and
h(0) = h(g(0)) = (hg)(0) = (h'g")(0) = (R'(¢'(0))) = A'(0),

which is a contradiction. So hGq N h'Go = 0. |

Similarly we definefori =1,2,...,n — 1:
orb(i) = {g(i) : g € Gim1} = {Zi1, Tizs- -, Tiini)
and
Us = (B, hizs- - Bimo}s

where h; ;(i) = zi,;. A proof, similar to that of Theorem 6.6, gives the following
theorem.

Permutation groups 205

THEOREM 6.7 Let G,U; and G; be as defined above. Then for all i =
1,2,...,n =1 U, is aleft transversal of G; in G;_;.

The data structure
G = [Uo Uy, . ..\ Up_s] (6.1)

is called the Schreier-Sims representation of the group G.
Applying Theorems 6.2, 6.6 and 6.7, it is easy to see that ¢ € G can be uniquely
written as

9 = hoiohis P2y - Ract,in_ -

If we can efficiently construct the sets 4, 0 < i < n — 1, then a simple backtrack-
ing procedure can be used to run through the elements of the group G. By this
method, presented as Algorithm 6.6, we can generate each element of G in O(n?)
time. The variable DoneFEarly is a globally defined flag, which, when set true,
terminates running through the group early. For example, it may be the case that
only the first group element satisfying a certain property is needed. The procedure
USE (g) is a procedure that specifies what is to be done with g, and is passed as
an argument to RUN . For example, g could be printed, stored, or applied to some
combinatorial object. Typically USE (g) also sets the flag DoneEarly when early
termination is desired.

Algorithm 6.6: RUN (=, G, USE())

external MULT()
global DoneEarly

procedure RUNBACKTRACK(n, £, G, g, USE())
if DoneEarly
then return
ifte=n
then USE(n, g)
foreach h c U,
else { do {MULT(n1 grha fl) -
RUNBACKTRACK(n, £ + 1,G, fr, USE()}

main
RUNBACKTRACK (0, G, 1, USE())

One application of Algorithm 6.6 is to list the elements of the group without
repetition. This is done by specifying that procedure USE simply prints its argu-
ment. See Algorithm 6.7.

206 Groups and Symmetry

Algorithm 6.7: LIST (n, G)

external ARRAYTOCYCLE(), RUN(}
global DoneEarly

procedure LISTUSE(n, g)
output ARRAYTOCYCLE(n, ¢)

main
DoneEarly « false
RuN(n,G, LISTUSE())

It is also an easy matter to test membership of a permutation g in the group G,
once the sets I; have been constructed. The following process will terminate with
1 and f satisfying the following condition.

(f~'gXz) =z forallz < iand (f~'g)(t) = j }

6.2
but there is no h € U; such that h(3) = j. (6:2)

Step 0. Set go = g, the permutation we wish to test, and set £ = g(0). If there is
an hg € Up such that ho(0) = z, then {h; gy)(0) = 0. Consequently if
go € G, then h.g]go € Gq and so we set

fo=1ho
and
= fo_lg = hﬁ'lg
and proceed to check if g; € Gg; otherwise ¢ = 0 and we stop.

Step1. To check if gy € Gp we set z = g1(1). If there is an by € U such
that 4;(1) = x, then (h{'g,)(1) = 1. Consequently if g; € G, then
hl‘lgl € () and so we set

hH = foha
and
g2=f"g=hi'm
and proceed to check if g2 € Gy; otherwise ¢ = 1 and we stop.

Step 2. To check if g € G; we set £ = ¢,(2). If there is an hy € Uy such
that h2(2) = z, then (h; 'g,)(2) = 2. Consequently if g2 € G, then
h;'g2 € G5 and so we set

fa= fiks
and
B=fle=hlg,
and proceed to check if g3 € Gy; otherwise i = 2 and we stop.

Permutation groups 207

Step 3. ... proceed as above to check if g; € G;_,.

Since f;!g fixes the points 0,1,...,1, either this process will terminate with
fi2,g = Iin whichcase g = fa_1 = hohy+--hn-y € G, or the process will
terminate early. If the latter happens, then f = f; and ¢ will satisfy Condition 6.2.
Example 6.6 illustrates this process with the automorphism group of the cube.

Example 6.6
In Table 6.1 we list the automorphisms of the cube which is displayed in Fig-
ure 6.2. The Schreier-Sims representation

G = [Up,Uy,... U
of this group is given in Example 6.7. The computations to test if the permutation
g=(0,6)(1,7)(2,4)(3,5) € G,
i.e., to see if it 1s an automorphism of the cube, are given in the table below.

i gi hi fi

0 | (0,6)(1,7)(2,4)(3,5) | 0,6,3)(1,4,7)(2)(5) | (0,6,3)(1,4,7)(2)(5)
1 1(0)(1,4,2)(3,5,6)(7) | (0)(1,4,2)(3,5,6)(7) | (0,6)(1,7)(2,4)(3,5)
2 I
3

| (0,6)(1,7)(2,4)(3,5)
I I (0,6)(1,7)(2,4)(3,5)

n_1 I I (0,6)(1,7)(2,4)(3,5)

Thus ¢ € G and thus it is an automorphism of the cube. (In fact, g occurs in
column three of Table 6.1.)
Now we will check if

g = (07112$ 3’4)(576) 7)
is in the group G.
i l g: ! hi f fi

0| (0,1,2,3,4)(5,6,7) | (0,1,3,7,6,4)(2,5) | (0,1,3,7,6,4)(2, 5)
1 |(0)(1,5,7,2)(4)(3,6) | Thereisno h;

Thus, ¢ ¢ G. 1

This process is implemented in Algorithm 6.8. It returns the smallest i such that
there is an f € G satisfying the Condition 6.2 and replaces g with this f. Notice
that g is replaced by the current f; at each stage, since it is no longer needed in

208 Groups and Syminetry

subsequent tests. Thus in fact there is no need for the actual f;s, and they do not
appear in Algorithm 6.8.

-

Algorithm 6.8: TEST (n,9,G = [Up, ..., Un-1))

external INV(), MULT()
fori < QOton —1
rre gli]
if thereisan h € U suchthat h(?) = z
lNV(n, h, 7T2)
MULT(n, 72, g,73)
forj «—0ton-1
do g[j] « m3(j]
_ else return (%)
return (n)

do 4 then

If 4 1s returned, then the process performed ¢ + 1 < n steps and cach step
consisted of a permutation product, an inverse and a copy. These each take time
O(n). Thus it is clear that TEST runs in O(n?) time. We now need a procedure
to construct the sets U;, for0 < 0 < n, givenasetT = {a;,m,...,a,} of
generators for G. In order to construct these sets, we consider the subgroups Hy,
for1 < ¢ < r, where Hy is generated by ay, ..., Ifthe sets U;, 0 < ¢ < n,
have been constructed for the subgroup H,_,, then these sets can be updated 10
correspond to H, by entering g = a; in the appropriatc place and, then, adjusting
the U;s to achieve closure. Thus we first apply TEST to g. As explained carlier,
TEST returns the smallest i such that there is an f € G satisfying (f~1g)(z) = =
forall & < i and (f ~'a)(Z) = j, but there is no h € U; such that k(z) = j. Also,
TEST replaces g by f~'a,. If i = n, then we are done; otherwise, this ncw g
belongs in U;. Now we need 10 make sure that each product of the form

UgU2 * - Ui—19U§41 . - Un,

where u; € U;, is in the group represented by the U;s. That is, this element
must cause TEST to return . If it does not return n, then it needs to be entered
in the U;s. Theorem 6.8 shows that it suffices to only consider products of the
form a¢h where h € Uy, for j < i. This updating is performed recursively by
Algorithm 6.9.

Permutation groups 209

Algorithm 6.9: GEN (n,I)

external MULT(), TEST()

procedure ENTER(n 9,G [Ug, coaUnaa])
i & TEST(n,9,G = [Uo,-..,Un-1])
ifi=n
then return
elsell; — U; U {g} (*)

forj—iton—-1

for each k1 € U,
do { do {MULT(nihigi_f) (**)
ENTER(n, f,G = [uo, ce. ,u,._ll)
main
fori « Oton — 1
dou,- — {I}
foreacha €T’
do ENTER(n o,G = [Up,- .., Un-1])
return (G = [Un, ..., Un-1])

THEOREM 6.8 Let G be a permusation groupon X = {0,1,...,n — 1} with
Schreier-Sims representation G = [Uo,th, ..., Us_1]. and let g € Sym(X) be
an arbitrary permutation. Then Procedure ENTER of Algorithm 6.9 correctly
updates G to one that represents the group generated by G and g.

PROOF Lot G' = [US,U],..., U _,] be the updated data structure that results
when ENTER is run with parameters G and g. To show that G’ represents the
group generated by GG and g we need only show that

G = Ul U _

is a group, since it is clear that G C G’ and every element in G’ is a product of
elements in G U {g}.
To see that G’ is a group, let
G =UU,, U

n—1-

Then G,_, = Uy,,_, = {I} and so G,_, is a group. Suppose G, is a group for
some i, 0 < 1 < n— 1. We will show that

o1 = Ui_,G;
is a group. Let x1, 22 € G)_,, and write

T = h191

210 Groups and Symmetry

and
T2 = h2g2)
where by, hy € U]_, and g,, g» € G.. First, observe that
grha(j) =7
forj =0,1,2,...,1i— 1. Hence, because of line {*+) of Procedure ENTER , there
is an hy € U{_, such that h3(i) = g1 hy(3). So, h3 ' g1hs = g3 for some g3 € G}
and we have
112 = hagrhage
= h1hsh3'91h202
= h1h3g3g:
= hihaga,
where g4 = gag2 € Gj. Again, we see from line (**) that there must be an
he € U!_, such that hy(i) = hyh3(i) and so, k7 h1h3 = g5 for some g5 € G..
Consequently
Z1ZT2 = hihage
= h4h4_]h1h394
= hag9s94
= hyge € u.-_lG",- = G;-l'
Thus, 122 € Gj_,, and so by Theorem 6.1, G;_, is a group. Therefore, by
induction, G’ is a group forall ¢ = 0,1,2,...,n — 1. In particular, G' = G} isa
group.

Each U; contains at most n — ¢ permutations; so, there are at most (n + 1)n/2
permutations in
n-1
U w.

=0
Consequently, in Algorithm 6.9, Tine (*) of ENTER is executed at most O(n?)
times. Following each execution of line (*) there are

i
Z [24]
3=0
recursive calls to ENTER . Hence, there are in total O(n?) calls to ENTER . Each
such call is preceded by a multiplication on line () and followed by a call to
TEST at the start of ENTER . The multiplication is an O(n) operation and TEST
is O(n?) . Thus Procedure ENTER requires at most O(n®) elementary operations.

Permutation groups 211

Exampfe 6.7
Applying Algorithm 6.9 to the generators

a = (01 1,3,7,6, 4)(21 5)
and
ﬁ = (07 1-; 31 2)(4,57 71 6)

of the automorphism group of the cube, we obtain:

[(0)(1)(2)(3)(4)(5)(6)(7))
(Oa 11 37 71 67 4)(2! 5)
(0,2,6,4)(1,3,7,5)
(0,3,6)(1,7,4)(2)(5)
(0,476)7131 1)(215) ’
(0,5,3,6)(1,7,2,4)
(0,6,3)(1,4,7)(2)(5)

L(0,7)(1,6)(2,5)(3,4)

U = ¢

U (0)(1,2)(3)(4)(5,6)(7)

(0)(1, 4,2)(3,5,6)(7)

{ (0)(1)(2)(3)(4)(5)(6)(7) }

[OO)@E@E)6E))
th = { (0)(1)(2,4)(3, 5)(6)(7) } > and

Us = Uy = - = Ur = {(0)(1)(2)3)(9)(5)(6)(7)}

Observe that (U] - |Uh | - [U42) = (8)(3)(2) = 48, the order of the group. 0

6.24 Changing the base

In Section 6.3 we describe a backtracking algorithm that computes the subset with
least rank in the orbit of a subset under a given group. This algorithm requires a
slight modification to the Schreier-Sims representation and two of the procedures
in Section 6.2.3. These new procedures will also be used in Section 7.3.3.

Let 8 be a permutationon {0,1,2,...,n — 1}, called the base, and define

Go = {9 € G : 9(B(0)) = B(0)}
and

G = {g € Gi_1 : 9(B(3)) = Bl§)}

212 Groups and Symmetry

for: = 1,2,...,n — 1. Then arguments similar 10 those in Section 6.2.3 will
show that
G2Go2G12--2Ga = {1}

are again subgroups. Hence we can choose sets Up, U1, .. .,Un—y of left coset
representatives so that

G = LloG’o.
and
Gi—1 = UG;

fori = 1,2,...,n — 1. Furthermore, if f € G, and f(8(i)) = B{i) for{ =
0,1,...,¢ then there is a unique g € U, such that g(€) = f(¢). Consequently,
we modify that data structure 10 include the base 3. That is

é = (ﬂ; [HOyul) v aun—ll)*

The Procedures TEST and ENTER need to be modified to take into account the
base 3. This we do mn Algorithms 6.10 and 6.11.

Algorithm 6.10: TEST2 (n,9,G = (8; [Uo,-- . ,Un—1]))

external MULT(), INV()
fori < Oton—1
[z « g[Bi]]
if there is an h € U; such that h[8[i]] = =
INV(TI., h, 71'2)
MULT(n, 73, g, 73)
forj < Oton—1
do g[5] « m3[y]
| else return (%)
return (n)

do | then

Algorithm 6.11: ENTER2 (n,¢,G = (8; [Uo, - . . \Un—-1]))

external TEST2(), MULT()

i« TEST2(n,q,G = (B;[Uo,Un_1}))
ifi=n
then return
else U; + U; U {g} (*)
forj < Otoi
for each k € U;
do{ o {MULT(n,y, h, f) (xx)
ENTER2(n, f,G = (8 [Uo, .- -, Un_1]))

Orbits of subsets 213

To change the base 8 of G = (B;[Uo, - .. ,Un—1]) to a new base ' we can
simply construct an identity group H with respect to new base 3' and use ENTER2
1o enter the members of U U --- U U, into H = (8';[L4, ..., U, _,]). This task
is accomplished by Algorithm 6.12.

Algorithm 6.12: CHANGEBASE (n,G = (8;[Uo, . . .,Un_1]), B)

external ENTER2()
forj « Qton-1
do U] « ({1}

H e (850U, Up_y))
forj «0ton -1
d for each g € UY;
{ do ENTER2(n, g, H = (#'; [Us,. .., U,_]))

Ge—H

6.3 Orbits of subsets

If G is a permutation group on X and S C X, then we define the image of S
under g to be

9(S) = {9(z) : z € S}.
Thus G also permutes the subsets of X'. The family of subsets
G(S) =1{9(S):9€G)

is called the orbit of S under G. If a set syslem has G as an automorphism group,
then the set of blocks of the set system are a union of orbits under G. Thus the
generation of the orbits of subsets is crucial in determining set systems with a
given automorphism group.

If § C X, then the stabilizer of S in G is

Gs = {g€ G:g(5) =S}
It is easy to show that G's is indeed a subgroup of G.

LEMMA 6.9 Let G be a permutation group on X and let S C X. Then
Gl =1G(S)| - |Gsl.

214 Groups and Symmetry

PROOF Write G(S) = {5),8,,...,8,} and for each i choose a g; € G such
that g;(S) = S;. Suppose g e G. 'Ihen 9(S) = S; foraunique 3,0 < j < n. Set
h= g,-‘lg. Then k(S) = g7 Y9(S) = g;'(S } = S. Soh € Gs. Consequently
every clement g of G can be uniquely written as ¢ = g;h where 1 < j < n and
h € Gs. Therefore, |G| = n - |G| = |G(S)] - |Gs|. as claimed.

Example 6.8
In Table 6.1 we list the members of the automorphism group G of the graph of
the cube. If S = {1,2,7}, then

_ [1,(1,2)(5,6),(0,5,6)(1,7,2), (0,5)(2,7),
Gs‘{(o,s)(l,n,(o,s 5)(1,2,7) }

and

-
P

21417}1 {01316}1
1,4,7},{0,5,6} |~

6.3.1 Burnside’s lemma

Although our main purposc for introducing Lemma 6.9 is to prove Theorem 6.10,
it is also useful for other tasks. For example, let G be the automorphism group
of the complete graph Ky; then |G| = n!, since G is the symmetric group on
the vertices of K,,. But G can also be thought of as a permutation group on
the (’2'} edges X of K,. If S is a (spanning) subgraph of Ky, then the edges
of S are a subset of the edges X’ and the vertices of S are the vertices of K,.
The stabilizer Gs of S in G is the set of permutations of the vertices of K,
that leave S unchanged. That is G is Aut(S), the automorphism group of S.
Hence applying Lemma 6.9 we see that there ate n!/]Aut(S)| isomorphic copies
of S in K. Therc are for example 6!/10 = 72 ways to label the pentagon with
6 labels since the automorphism group of the pentagon in Kg has 10 elements.
In Ky there would be 8!/(10 - 3!); the three additional isolated points can be
permuted independently of the pentagon. There is a unigue Steiner triple system
of order 7 and its automorphism group in S7 has order 168. There are therefore
9!/(168 - 2!) = 1080 ways to choose a Steiner triple system of order 7 in a set of
9 points. Such calculations are useful for determining the feasibility of a search
or for checking results,

We now use Lemma 6.9 to establish the beautiful and uscful theorem of Frobe-
nius, Cauchy and Burnside that counts the number of orbits. First, if ¢ € G, let
xx{g) denote the number of k-element subsets fixed by g,

xx(9) = |{S C X :|S| = kand g(5) = S}|.

Orbits of subsets 215

THEOREM 6.10 Let G be a permutation group on X. Then the number of orbits
of k-element subsets of X under G is

Ny = IG| > xa9).

9€G

PROOF Define an array whose rows are labeled by the elements of G and whose
columns are labeled by the k-element subsets of A'. The [g, S]-entry of the array
isalif g(S) = S and is 0 otherwise. Thus the sum of the entries of row g is
precisely x«(g) and the sum of the entries in column S is |Gs|. Hence

dYoxe= 3, IGs| (6.3)
9€G SCX,|S|=k

Now partition the k-element subsets into the Ni orbits Oh,0,, ..., Opn, under
@G. Choose a fixed representative S; € O; foreach = 1,2,..., Ni. Then for all
S € 0, |Gs| = |Gs;| and the right-hand side of Equation 6.3 may be rewritten
and Lemma 6.9 can be applied.

Y xal9) = Zlas.l IG(S)

geG =1
N
=3 (Gl
=1
= Ni|G).
This establishes the result. |

In order to present an algorithm for computing the number of orbits of k-
subsets, we define the type of a permutation g by

type(g) = [t1,12,...,ta),

where ¢, is the number of cycles of length £ in the cycle decomposition of g. We
can compute type(g) in time O(n) with Procedure TYPE given in Algorithm 6.13,
Notice the similarity of this procedure and Algorithm 6.4.

If S is a k-element subset fixed by g, then S is a union of cycles of g. Suppose
type(g) = [t1,22,...,¢,) and S uses c¢ cycles of length £, £ = 1,2,...,n. Then

(&4 S tl’
n
k= Z ice,
=1
and the number of such fixed subsets is

(%)

£=1

216 Groups and Symmetry

Using this information, Algorithm 6.13 computes the number N, of orbits of k-
clement subsets for each k = 0,1,2,...,|X]. The procedure RECPARTITION
used in this algorithm is a modification of Algorithm 3.3.

Algorithm 6.13: NORB (1, G)

external RUN()
global DoneEarly

procedure TYPE(n, g,T)
fori «—Qton -1

do {P[t] +~ true

TE+1] =0
fori—0ton—1
(if P(i}
(£« 1
jei
while Plg[;]]
do | thenJ £=£+1
do {j « glj]
P[j] « false
{ |7l « T+ 1

procedure RECPARTITION(n, k, m, B, N)
ifm=20
fori < 1toi <ndocff] 0
for: « 1toi < N doc[Vali]] + [Va[i]] +1
prod « 1
fori « 1toi < ndo V3[k] « Vi|k] + prod
for ¢ < min(B,N)toi
else { do {Vg[N +1)«i

then

RECPARTITION(r, k,m — 1,1, N + 1)

procedure NORBUSE(n, g)
TYPE(n, 9, V1)
fork—0tok<n

do Va[l] «+ &
RECPARTITION(n, k, k, k,0)

main

DoneEarly « false

fork « OtondoV3[k] « 0
RUN(n, G, NORBUSE())

for k « 0ton do N[k] + V3[k]/|G]|

Orbits of subsets 217

Example 6.9 The number of non-isomorphic graphs on four vertices
To count the number of graphs on four vertices, Theorem 6.10 (or Algo-
rithm 6.13) can be used as follows. Let G = Sym({1,2,3,4}) and label the
edges of K, as in Figure 6.3.
Then each permutation of the vertices induces a permutation of the cdges. For
example,
9=(1,2,3) > (a,b,c)(de, f).

Thus, for instance, x2(g) = 0 and xa(g) = 2. That is, g fixes no subgraphs with
two edges and it fixes two subgraphs with three edges. We tabulate this informa-
tion in Table 6.2 for all elements of G. The last row of Table 6.2 gives N, the
number of non-isomorphic subgraphs of K4 with k edges, fork =0,1,2,...,6.

0
a b
FIGURE 6.3 1 e 2

Edge labeling of 4.

6.3.2 Computing orbit representatives

Now that we know how to determine the number of orbits of &-element subsets
of X under a permutation group G, we will proceed to compute the orbits them-
selves. It suffices to have an algorithm that will find one representative of each
orbit. The actual orbits can then be constructed by running through alt the ele-
ments of &, applying them to the orbit representatives, and removing duplicates.
First, we compute the number N, of orbits of k-element subsets under G. Sup-
pose R is a set of orbit representatives for the orbits of k-element subsets of X
under the permutation group G. Then |R| = Ny. Let

S={AU{z}: Ac Randzx € X\ A} (6.4)

Then S contains at least one representative from each orbit of (k+ 1)-clement sub-
sets under G and |S| < (|X| — &~ 1}Ni. We need only collapse S down to Ny 4,
elements. The rest of this section will discuss Algorithms 6.14 and 6.16, which
are two methods for carrying out this collapsing. Both Algorithm 6.14 and 6.16
maintain S as a list in lexicographic order, as computed by Algorithm 2.1. (Any
ranking algorithm can be used.) Four operations are allowed on this list:

218 Groups and Symmetry

TABLE 6.2
Numbers of non-isomorphic subgraphs in K.

9 Xo X3 X2 X3 X4 X5 Xse

OO = @QOO@ED [1 6 15 20 1 6 1
O3 = @G | 1 2 3 4 3 2 1
(0)(1,2)(3) = (a,b)(c)(d)(e, f) 1 2 3 4 3 2 1
0)(1,2,3) ~ (a,bc)d, fe) 1 0 0 2 ¢ 0 1
(0)(1,3,2) +— (a,c,b}(d,e,f) 1 0 0 2 0 0 1
(0)(1,3)(2) = (a,c)(b)(d, f)(e) 1 2 3 4 3 2 1
©1)(2)3) » (bdee) | 1 2 3 4 3 2 1
(0,1)(2,3) = (a)(b,e)(c,d)(f) 1 2 3 4 3 2 1
(0,1,2)(3) +~— (a,d,b)(c,e,f) 1 0 0 2 0 0 1
(0,1,2,3) — (a,d, f,c){be) 1 ¢ 1 0 1 0 1
(0,1,3,2) - (a,e, f,b){(c,d) 1 ¢ 1. 0 1 o0 1
0,1,3}(2) = (a,e,c)(b,d, f) 1 ¢ 0 2 0 0 1
(0,2,13(3) = (a,0,d)(c f,€) i1 ¢ 0 2 0 0 1
(0,2,3,1) — (a,b,f,e)(c,d) 1 0 1 0 1 0 1
023 = @d®Ne |1 2 3 14 3 2 1
(0,2,3}(1) +— (a,d,e)(b, f,c) 1 0 0 2 0 o0 1
(0,2)(1,3) — (a, £)()(c,d)(e) 1 2 3 4 3 2 1
(0,2,3,3) +— (a,f)(bd,e,c) 1 0 1 0 1 0 1
{0,3,2,1) — {a,c, f,d)(be) 1 0 1 o0 1 0 1
{0,3,1)(2) +~— (a,c,e)(d, f,d) 1 0 0 2 0 0 1
{0,3,2)(1) »— (e,e,d)(b,c, f) 1 0 0 2 0 o 1
0,3)(1)(2) — (a,e)(b, f)(c)(d) 1 2 3 4 3 2 1
(0,3,1,2) — (e, f){b,ce,d) 1 ¢ 1 0 1 o0 1
0.3(12) = @HbeQ@d | 1 2 3 4 3 2 1
Sum 24 24 48 72 48 24 24

Sum/[G] 1 1 2 3 2 1 1

1. LISTINSERT(S, A) which inserts A into the list S.
2. LISTDELETE(S, A) which deletes the set A from the list S.

3. PREDECESSOR(S, A) which returns the set B € S which precedes 4 in
lexicographic order. If there is no such set, then “undefined” is returned.

4. MAXIMUM(S) which returns the last set A € S in lexicographic order.

We must also be able to test membership of a set in the list. A balanced binary
tree can be used to implement this list data structure so that these operations can
be processed in O(log |S]) time.

Algorithm 6.14 repeatediy applies the elements of G to the members of S. If
g € G and A is on the list S, then the rank of g(A) is computed. If it is less
than the rank of A, then A is deleted from S and g(A) is inserted. The list either
has the same number of elements or has one fewer than before. This process
is repeated until |S| = Np4;. To run through the elements of G we modify
Algorithm 6.6, obtaining the procedure RUNREPBACKTRACK. Each call from

Orbits of subsets 219

maia to this procedure will run through the elements of G at most once.

Algorithm 6.14: ORBREPS] (R,S)

external MAXIMUM(}, PREDECESSOR(),
SUBSETLEXRANK(), LISTINSERT(}, MULT()
global DoneEarly

procedure ORBREPBACKTRACK(n, ¢, G,g,8, N)
if DoneFarly then return
if{ =n then A + MAXIMUM(S)
while A is defined
(C +~ PREDECESSOR(S, A)
if SUBSETLEXRANK(g(A)) < SUBSETLEXRANK(A)
LISTDELETE(S, A}
if A is notin the list S

do ¢ then | then LISTINSERT(S, A)
if|S) = N
{DoneEnrly +— true
th
return
A+« C

for each h € U4

else ¢ . [MULT(n,g,h, f¢) -
ORBREPBACKTRACK(n, ¢ + 1,4, f, S, N)

main
for each A on the list R
do {foreachz €EA\A
do LISTINSERT(S, A U {z})
DoneFEearly « false
while |S| > Ny
do ORBREPBACKTRACK(n,0,G, 1, S, Neyr)

For Algorithm 6.16, we require the concept of a minimum orbit rcprescntative.
If G is a permutation group on X’ and A C X, then there is a unique S € G{A)
that has smallest rank in lexicographic order. This subset we call the minimum
orbit representative for the orbit G(A). First we study how to compute the mini-
mum orbit representative in the orbit G(A) when we are only given A and G.

Example 6.10

In Table 6.1, we list the members of the automorphism group G of the graph of
the cube. The orbit G(A) of A = {1,2,7} under G is computed in Example 6.8.
The minimum representative for this orbit is § = {0, 3, 6}. 0

220 Groups and Symmetry

Recall, from Section 2.3, that to each k-subset § C X, we can associate the
k-tuple
[50,81,82,..., 8k_1]
where 39 < 8, < s < -+ < $g—y and § = {sg,51,52,...,8k—1}. The
lexicographic ordering on the &-subsets is induced from the natural lexicographic
ordering on the k-tuples. Thus, to compute the minimum orbit representative
G(A) we must choose g, 51, . . . , Sk so that the following properties are satisfied:

1. S0 < 81 <8<~ < 8k-1s
2. h(A) = {s0,31,82,-..,5¢—1} for some h € G; and
3. [s0,81,892,...,9%—1] is smallest in lexicographic order.

We will use the backiracking methods of Chapter 4 to search for the minimum
orbit representative and we will prune this search with the autornorphisms in the

group G.
Suppose that sg, 31, ..., 3,—1 have been selected and we must choose a value
for 3;. Then there is a permutation A € G and elements a9, a1,...,8.-| € A

such that A(a;) = s;,¢ = 0,1,..., €~ 1. To ensure that property 3 is satisfied we
need to select
z € h(A)\ {s0,51,...,8¢-1}
and g € G such that
9{s:) = s;
fort =0,1,...,¢ — 1 and such that

m = g(z)

is as small as possible. Once this selection is made, then we set s; equal to m
and continue the search. There are, of course, several such elements z. and to
examine each one requires a backtracking algorithm. To reduce the computation
in selecting g, we can change the base 3 of the Schreier-Sims representation

G = (B;[Uo, U, . .\ Uns])

of the group G so that (i) = s, fori = 0,1,...,£ — 1 and 8{f) = z. The
remaining entries of 3 can be chosen arbitrarily so that 3 is a permutation. Now
there is a g € G satisfying

9(s:) = s
fori =0,1,...,£—1and

m = g(z)
if and only if there is a ¢' € U, such that m = g'(z). Hence, we need only

consider g € U;. Furthermore, having chosen g € Uy, if C; is the set of possible
choices for z, then the set of choices for the z that determines ;.. is

Cey1 = 9(C) \ {m}.

Orbits of subsets

224

These observations, together with the techniques described in Chapter 4, lead to
the backtracking algorithm, Algorithm 6.15.

do ¢

Algorithm 6.15: MINREP (n,G, A)
procedure MINREPBT(n, &, G, £)

external CHANGEBASE()
global CD,C. yooe ,Cn—l
m e n

for each z € C¢

(1«0

while r < £and s, # OptS[ridor « 7 +1
ifr < ¢and s, > OptSjr] then return
fori « Oto ¢~ 1do B[i] + s;

Bl€) « z

10

for each y ¢ {s0,51,...,8¢-1,z} do {

CHANGEBASE(n, G,)
Choose g € U such that g{z] is smallest
if g[z] <m
4

m + glz]

g m

fk=E+1

Rt

i—i+1

Bli] « y

then ¢ then {ifi # k and s; < OptSli]

fori —«0tok—1

them 1" 4o OptSli] - s

main
k+0

for eachi € Adeo {

Co — A
MINREPBT(n, k,G,0)
retarn ({OptSfi]: i =0,1,2,...,k—1})

else J Ctv1 & 9(Co) \ {m}
| MINREPBT(n,k,G,£ + 1)

OptSlk] 1
k+k+1

while i < k and 5; = OptSfi]doi + i +1

Now that we can compute minimum orbit representatives, the set S given in
Equation 6.4 can be collapsed by first replacing each set B € S by the minimum
orbit representative in G(B), and then deleting duplicates. The computation time

222 Groups and Symmetry

required for this method can be reduced if we change the base of the group. Given
A € R, lete = X\ A. Then each of the sets AU {z}, where 2 € ¢, must be
examined for inclusion in A. However, once AU {z} has been examined, then no
set in the orbit G(A U {z}) need be considered. In particular, if the base 8 of G

is defined so that
{ﬂ[olyﬂ[l]P' 1ﬁ[k - 1]} = Aa

and

Blk] = z,

where k = [A|, then AU {g[x]} € G{AU {z}) for all g € Us. Hence, the set
of points {g{z) : g € U} can be deleted from c. Another observation that helps
to reduce the computation time is to note that if R is a set of minimum represen-
tatives of the orbits of k-subsets and A € R, then the minimum representative of
the orbit G{A U {x}), where z ¢ A, is of the form A’ U {z'} where A’ € R and
z' > max{y : y € A'}. These ideas give us Algorithm 6.16.

Algorithm 6.16: ORBREPS2 (n, R, S)

external MINREP(), LISTINSERT(), CHANGEBASE()

for each A in the list R
(¢ {z€ X:z>max{y:y€ A}}
foreachz € ¢
(b« AU {z}
MINREP(n, G, b, a)
if a is not in the list S
then LISTINSERT(S, a)

k0
foreachy € A

Blk] « y
do < do | do {k1—k+1

Blk] & =

jek+1
foreachy ¢ A
Al « y
J+ji+1
CHANGEBASE(n, G, 8)
for each g € U,

| doc ¢ c\ {g[i]}

do

Coset representatives 223

6.4 Coset representatives

Suppose that G is a permutation group on the set X' and that (X, B) is a set system.
If g € G we define the image of B under g to be the set system on X’ whose blocks
are

9(B) = {g(S5) : S € B}.
Then the stabilizer of B in G is the subgroup
H={g9€G:¢(B)=B}

of G. Thus we can find a left transversal {g;,92,...,9-} of H in G; see Sec-
tion 6.1.

THEOREM 6.11 Let G be a permutation group on X and let (X, B) be a set
system. If H is the subgroup

H={g€G:g(B)=B)

and {g\,¢2,...,9r} is a left transversal of H in G, then the orbit of B under G
has length r = |G|/|H| and is given by

G(B) = {gl (3)192(3): v -,gr(B)}'

PROOF Since {g1,92,...,9r} is a left transversal, then by Theorem 6.2
|G|/VH| = r and we can write G as the disjoint union

G=91HngHU Ung.
Thus if g € G, then g = g;h for some i and h € H. Hence
9(B) = (g:h}(B)

= g(h(B))
= g:(B).
Furthermore. if g;(B) = g;(B) for some i # j, then (9; '¢:)(B) = B and so

g;-l g; € H. Hence the left cosets g; H and g; H are identical, contradicting that
{g1,92,--.,9-} is aleft transversal. 1

Consequently, computing a left transversal of a subgroup H of G can be very
useful, since it can be used to compute the orbit of B under G.

224 Groups and Symmelry

Algorithm 6.17: TRANSVERSAL (n,m, H,G)

external MULT(), TEST()
global DoneFEarly
procedure USE(n, g)
foreach f ¢ R
h + MULT(n, INV(f),)
do {ifm = TEST(n, h, H)
then return
R« RU{g}
if|R| >m
then DoneFEarly « true

main
DoneFEarly « false
m + |G|/|H|
Re#®

RUN(n,d, USE)
return (R)

Example 6.11
In Example 6.3, the automorphism group H = Aut(P) is displayed. It is a
subgroup of G = Sym({0,1,2,3,4}). A transversal of H in G is

Il (31 4)7 (2¥ 3)’ (2’3)4)1 (2741 3)’ (274))
(1,2),(1,2)(3,4),(1,3,2),(1,3,4,2),(1,4,3,2),(1,4,2) [’

and the orbit of the pentagon under G is displayed in Figure 6.4.)

6.5 Orbits of k-tuples

A k-tuple on the m-element set X is a sequence 0 = [z1,z2,...,Zx] with entries
from X. If all the entries are distinct, then o is called a k-permutation and the set
of all k-permutations of X’ is denoted by k-II(X). Let G be a permutation group
on X.If ¢ = [£1,%2,...,%%] is a k-tuple on X" and g € G, then we define

9(0) = [g(z1), 9(z2)s - - -, 9(Zs)].

Orbits of k-tuples 225

FIGURE 6.4
The orbit of the pentagon.

The orbit of & is
G(o) = {9(c} : g € G}.
For g € G, we let Xx(g) denote the number of k-permutations fixed by g. Then
Xk(g) = |{o € k-II(X) : g(0) = o}|.

Analogously to Theorem 6.10, we have

THEOREM 6.12 Let G be a permutation group on X. Then the number of orbits
of k-permutations of X under G is

N = 1] Z Xe(g)-

g€CG

226 Groups and Symmetry

It is significantly easier to develop an algorithm to compute the number of orbits
of k-permutations (as well as the orbits themselves) than it is for k-subsets. This
is because a k-permutation is fixed if and only if all of its points are fixed. We
leave these algorithms for exercises.

The number N} of orbits of k-tuples can be related to the number Ny of orbits
of k-permutations on X using the Stirling numbers of the second kind, $(m,n).
These were introduced in Section 3.2.

Given a k-tuple 0 = f[zi,2;,...,2¢]. we construct a partiion =, of
{1,2,...,n} by assigning i and j to the same block of 7, if and only if
z, = z;. If the partition 7, has n blocks, then o has n distinct entries. Let
vy = [2],5,...x}] be, in the order in which they first appear, the distinct en-
tries in 0. For example, if ¢ = [3,1,4,5,3,2,4, 1, 4], then

7o = [{1,5},{2,8},{3,7,9}, {4}, {6}]
and
v, = {3,1,4,5,2].
We now see that two k-tuples ¢ and 7 are in the same orbit under G if and only if
Mg = Ty

and v, and v, are in the same orbit of G. If |X'| = m, then there are S(7n, n) ways
to partition X into n parts, and for each partition there are N, n-permutations.
Multiplying and summing over n gives the following result.

THEOREM 6.13
k

N} = Z S(m,n)N,.

n=1

6.6 Generating objects having automorphisms

When a desired set system is too large or too complicated to search for with
backtracking methods, other properties of the set system must be assumed. One
approach is to assume that the set system has certain automorphisms. Searching
the orbits under the assumed automorphism group is often a much easier task. If
the proper group is chosen, the set system may be found. This approach has been
very successful and will be discussed in the next few sections. Also, knowing an
automorphism group of the set system often provides a much shorter description
of the object. For example, a Steiper triple system, STS(25), (see Exercise 4.11
and Section 5.4) is given by the orbits of the three blocks

{0,8,13}, {0,2,3}, {0,4,11}, {0,6,15}

Generating objects having automorphisms 227

under the cyclic group G generated by
a=(0,1,2,3,...,23,24).

This is 2 much smaller presentation than listing all 100 blocks in an STS(25).

6.6.1 Imncidence matrices

One popular method for using automorphisms is to construct an incidence matrix.
Recall that if G is a permutation group on X', then, for any positive integer j <
| X[, the number of orbits of j-element subsets of X under G is denoted by V;
and can be computed using Theorem 6. 10.

LEMMA 6.14 Let G be a permutation group on X, let A be any orbit of t-subsets
and let T be any orbit of k-subsets. Then the quantity

I{K €T;: K DT}

is independent of the choice of representative Ty € A,

PROOF If Ty, 75 € A, thenthereisag € G suchthat g(Tp) =T3. If To C K €
T, then Tg C ¢(K). Since g is one-to-one it follows that the number of k-subsets
in I that contain Ty is the same as the number that contain 3. I

Definition 6.6: Let G be a permutation group on A and suppose 0 < 7 <
k < |X|. Then the orbit incidence matrix is the Ny by Ny matrix Ay such
that

1. the rows of Ay are labeled by the orbits A1, Ag,. .., Ay, of t-clement
subsets;

2. the columns of A are labeled by the orbits I'y,I's,...,I'n, of k-
element subsets; and

3. the [A;,T;]-entry is
AwlAT,] = [{K €T, : K D Ty

with Ty € A; any fixed representative.

228 Groups and Symmetry

Example 6.12 Two orbit incidence matrices.

1. Let G be the group generated by the iwo permutations
(0)(1,2,3)(4,5,6)
and
(0)(1,2)(5,6).
The orbits of pairs under G are:
Ay = {{4,5},{4,6},{5,6}}
Az = {{1,5},{2,6},{3,4}}
Az = {{1,4},{1,6},{2,4}, {2,5},{3,5}.{3,6}}
Aq = {{1,2},{1,3},{2,3}}
As = {{0,4},{0,5}, {0,6}}
Ae = {{0,1},{0,2},{0,3}}
The orbits of triples under G are:
I = {{4,5,6}}
I, = {{1,4,6},{2,4,5},{3,5,6}}
I; = {{1.4,5},{1,5,6}, {2,4,6}, {2,5,6}, {3,4,5}, {3,4,6} }
'y = {{1,2,5},{1,3,5}, {2,3,6},{1,2,6},{1,3,4}, {2,3,4}}
I's = {{1,2,4},{2,3,5},{1,3,6}}
I's = {{1,2,3}}
Iz = {{0,4,5}, {0,4,6}, {0,5,6} }
Is = {{0,1,5},{0,2,6}, {0,3,4} }
s = {{0,1,4},{0,2,5},{0,3,6},{0,1,6}, {0,2,4},{0,3,5} }
o = {{0,1,2}, {0,2,3},{0,1,3}}
The orbit incidence matrix A,; for G is:
I [I30y LT P T Ty Tho

A,

I'g
[=J = = e B
OCOOHO m
OO0 NN
OOV mNO
CO-HMOO
CO=mDOO
ONODO
-0 0 D
NNOHOé
VWO =ROOoQO

Generating objects having automorphisms 229
2. Let G’ be the group generated by the two permutations
(0,1,14,11,2,4,8,5,13,7,3,10,12,6,9)

and

(0)(1,2)(3)(4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14).

For this example, we give one orbit representative for each orbit.

Orbits of Pairs under G’
A, =G'({0,2}). A2 =G'({0,1}), A3z = G'({0,5}),
Ay =G'({0,3}), As = G'({0,6})

Orbits of Triples under G’
T = G'({0,2,5}), T, =G'({0,1,13}), T3=G'({0,1,2}),
s =G'({0,1,8}), I's = G'({0,1,4}), I's = G'({0,1,5}),
I'; = G'({0,2,9}). s =G'({0,2,7}). Iy = G'({0,1,7}),
o =G'({0,1,6}), T'm =G"'({0,3,6}), T2=0G'({0,2,8}),
I'is= G'({O, 1,9}), T= G'({O,l, 10}), T'is = G‘({0,3,9}),
I'e = G'({0,5,10}), Tz =G'({0,2,12}), Ts =G'({0,1,12}),
I'ie = G'({0,1,3})

The orbit incidence matrix Aa3 for G’ is:

[Ty T2 T3 Tg P T Ty Tg o Tip Ty iz Tis Tag Tis Tig Fir Tig Tag
Ayj1112001210 011 0 0 01 0 1
A0 21120011 0 01 1 00 0 11
A3 |2 000020206 2 0 00 2 01 2 00
Ay(2200100000 2 0 0 01 0 2 1 2
Asf0 000001022 11 2 2 2 0000

1

The orbits in Example 6.12 can be constructed with Algorithms 6.14 or 6.16,
and the A2s matrix can be obtained with Algorithm 6.18. Before running Algo-
rithm 6.18, it is assumed that a complete set of orbit representatives & and S of ¢-
and k-element subsets (respectively) have been constructed.

230 Groups and Symmeltry

Algorithm 6.18: INCIDENCEMATRIX (n,G, R, S)

external RUN()
global T, K, stab, A
procedure MATUSE(n, g)
foreach K' € S
d {if T C g(K")
then A{T,K'| + A[T,K'] +1

procedure MATUSE2(n, g)
if K = g(K)
then stab = stad + 1

main
foreachT € R
d {foreach KeS§
do A[T, K] + 0
foreachT € R
do RUN(n, G, MATUSE})
foreach K € S
stab « 0
RUN(n, G, MATUSE?)
foreachT € R
do AT, K] + A[T, K}/stab

Observe that the columns of the first matrix in Example 6.12 labeled by I'y, 'y
and Tg sumto J = [1,1,1,1,1,1)7. That is, if

U =1,0,0,0,1,0,0,0,1,0)T,

then Ag3U = J and consequently the subsets in the union of the orbits Iy, I's
and I'g form a Steiner triple system of order 7 with automorphism group G.

Also, observe that the columns of the second matrix in Example 6.12 labeled
by I'7, 16 and T'yg sumto J = [1,1,1,1,1]7. That is, if

U =0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0)7,

then A23U = J and consequently the subsets in the union of the orbits I'7, ['16
and I"yg form a Steiner triple system of order 15 with automorphism group G'.

Definition 6.7: Let 7 be a collection of subsets of the set X'. A set system
(X, B) is called an exact cover of T if every subsetin 7 is contained in exactly
one member of B, If in addition 7 is the collection of all t-element subsets of
X, then (X, B) is called a Steiner system.

Generating objects having automorphisms 231

Let K be the collection of subsets that are admissible as members of 8. Sup-
pose further that 7 and K are both the union of orbits under the subgroup G of
Sym(X), say

T:A]UAQU"'UAN,
and
K=Tulhu-.-ul'n,,

then it is conceivable that G could be an automorphism group of the desired exact
covering system (X', B). If this is the case, then an A7 orbit incidence matrix
can be defined in a similar fashion as Definition 6.6. An exact covering of 7~ hav-
ing G as an automorphism group would correspond to a solution to the equation

ATKJU = Jv

where J = [1,1,...,1]T. There will often be orbits I'; that will contain some
member of 7 more than once. The corresponding column of Arx would have
a non-(0, 1)-entry and the orbit cannot be used in the construction of the desired
exact covering system. Consequently, we may remove these columns from Ay
leaving a (0, 1)-matrix M for which we seek a soluion MU = J. This new prob-
lem can be transformed 1o the Exact Cover problem. This is Problem 4.2 and
was described in Chapter 4, where Algorithm 4.6 was developed to solve it. Think
of the rows of M as a set R and the columns of M as subsets {C},C,,...,Cp}
of R, where

Cj={ieR:M[i,jl=1}.

The transformation is now complete: a solution corresponds to a subcollection
le yCiayees CJ" such that

Cj"l r‘lcl_-,',.2 =0

foralll < k) < hy < ¢, and

14
U C;, = R.
h=1

When the problem becomes too large for Algorithm 4.6 to solve, another approach
is to use the method of basis reduction we describe in Chapter 8.

232 Groups and Symmelry

6.7 Notes

Section 6.1
A recommended general book on group theory is Rotman (93]

Section 6.2

Two recommended books on permutation groups are Dixon and Mortimer [26)
and Butler [15]. A book on combinatorics that includes a discussion of algorithms
for automorphism groups and permutation groups is Cameron [16).

Algorithm 6.9 is our own design but originates from the work of Schreier and
Sims [99]. A faster but more complex method was developed by Knuth (54]. It
runs in O(n®) tme. A version that reduces the worst case storage requirement 10
O(n?) at the sacrifice of speed was given by Jerrum [46].

Section 6.3

There are many group theory and combinatorics books that discuss applications of
Theorem 6.10, for example Brualdi { 14], Cameron { 16], van Lint and Wilson [67],
Roberts [92], Straight [105], Rotman [93], and Tucker [107] to name a few.

Algorithm 6.14 was first described by Kreher and Radziszowski (60]. Algo-
rithms 6.15 and 6.16 are apparently new.

Section 6.5
Theorem 6.13 can also be found in Cameron [16].

Section 6.6

The method of using orbit incidence matrices to find certain systems is described
in Kramer and Mesner [57]. Algorithm 6.18 can be found in the article by Kreher
and Radziszowski [60].

Exercises

6.1 Write out the multiplication table for the group given in Example 6.2. Find all the
subgroups of this group.
6.2 Let p be a prime and define for each a,b € Zp, ¢ # 0, thie function

fen(X)=aX +b.
Let
G = {f(a) : 0,0 € Zpa # 0}.
(a) Show that G is a group under function composition.

Exercises 233

(b) What is the order of G?
(c) Let
H={faon:8€Z, a#0}
Show that H is a subgroup of G.
(d) What is the order of H?
(e} Find a left trausversal of H in G.
6.3 Prove Theorem 6.5.
6.4 Use Algorithm 2.14 to compute the automorphism group of the Steiner triple system
with blocks
{0,1,2}, {3,4,5}, {6,7,8}, {0,3,6},
{ {1,4,7}, {2,5,8}, {0,4,8}, {1,5,6}, } .
{213’7}' {07577}) {1,3,8}, {2:4;6}
6.5 Compute the automorphism group of the graph depicted below by inspection. Check
your work with Algorithm 2.14.

2 5

1 4

6.6 Use Algorithm 6.5 to compute the group generated by
o = (01 1, 2)(3: 4, 5)

and
B =(1,2)(4,5)
6.7 Consider the permutation group G on {0, 1, ..., 9} with Schreier-Sims representa-
tion
G =(8:[UolUs,...,Us))
where 3 = I and

I, (0,1,3,6)(2,5,9,7)(4,8), (0,2,5,9,6)(1,4,8,3,7),
(0,3)(1,6)(2,9)(5,7), (0,4,9,6)(1,2,5,8)(3,7),

Uo = { (0,5,6,2,9)(1,8,7,4,3), (0,6,9,5,2)(1,7,3,8,4),
(0,7,6)(1,2,8)(3,4,9), (0,8,4,1,9)(2,5,3,6,7),
(0,9,2,6,5)(1,3,4,7,8)

Ui = {I, (1,2)(3,4)(6,7), (1,3,6)(2,4,7)(5,9,8),
P, 9(2.3)(6,7)(8,9), (1,6)(2,7)(5,9), (1,7,3,2,6,4)(5,8, 9)}
U, = {1}

u3 = { l, (3) 6)(4) 7)(5a 8) }
Us = Us =Us = Ur = Us = Up = {I}
Determine which of the following permutations are members of the group G.
(a) «a=(0,1,2,3,4,5,6)
(b) 8=(0,1,2,3,4)(5,6,7,8,9)
(C) ’7 (01 31 51 8' 7)(179) 2761 4)'

234 Groups and Symmetry

6.8 Find a Schreier-Sims representation with base
g =031,4,2,0,6,7,5] = {(0,3,2,4)(6,7,5)
of the automorphism group of the cube given in Figure 6.2.
6.9 Let G be a permutation groupon X = {0,1,2,...,n— 1} andlet S§ C X. Show
that
Gs = {9€G:¢(S) =S}
is a subgroup of G, where
9(5) = {g(z) : z € S}.
6.10 Let G be a permutation group on X = {0,1,2,...,n — 1}. Show that
Go={9€G:g(0) =0}
G = (g€ Go:g(1) =1}

Ga={g€G:9(2)=12}

Gno1 ={9€Gn-2:9(n—1)=n-1} ={I}
are subgroups of G and that
G2Go26G12G22 - Gay = {I}.

6.11 Use Theorem 6.10 to compute the number of non-isomorphic graphs on 6 vertices
with 4 edges.
6.12 Use Algorithm 6.13 to compute the number of non-isomorphic graphs on 10 vertices
with 7 edges.
6.13 What is the minimurm orbit representative in the orbit of {3, 6, 4, 2} under the group
G given in Exercise 77
6.14 Prove Theorem 6.12. (The proof is similar to that used for Theorem 6.10.)
6.15 Given a permutation group G on a set X', develop and implement algorithms to
compute
(a) the number of orbits of k-permutations; and
(b) the number of orbits of k-tuples.
6.16 Given a permutation group G on a set X, develop and implement algorithms that
find orbit representatives for
(a) each of the orbits of k-permutations; and
(b) each of the orbits of k-tuples.
6.17 Let G be a permutation group on & and consider the matrix A defined in Defini-
tion 6.6,
{a) Show that A has a constant row sum, and that this sum does not depend on
the group G.
(b) Suppose U is a vector with entries either 0 or 1 that solves the matrix equation
Awl = J,where J = {1,1,1,...,1]7. Show that U/ also satisfies the orbir
length equation

N
> irs) Ul (6.5)

=i

(¢) Write Equation 6.5 for the two situations described in Examplie 6.12.

Exercises 235

6.18 Let G be the permutation group on X = {0,1,...,8} generated by
a =(0,1,2)(3,4,5)(6,7,8)

(a) Find all the orbits of pairs under the action of G.

(b) Find all the orbits of triples under the action of G.

(c) Compute the A23 matrix of G.

(d) Find a vector U with entries either 0 or 1 that solves the matrix equation

Ayl = J,

where J = [1,1,1,..., l]T. The orbits of triples corresponding to the entries
of U that have value 1 will form a Steiner triple system of order 9. Verify
this fact!

7

Computing Isomorphism

7.1 Introduction

Among the most important concepts common to all areas of mathematics are iso-
morphism and symmetry. In particular, these ideas pervade combinatorial al-
gorithms to an exceptional degree. Not only is the enumeration of equivalence
classes and the selection of representative configurations important, but also is
the elimination of repeated computation. The detection of isomorphic structures
is essential in the construction of practical algorithms. To illustrate these ideas,
we will discuss in the next (wo sections the graph isomorphism problem, culmi-
nating with an algorithm for determining when two graphs are isomorphic. This
will be followed with applications of the algorithms to other structures.

We say that two graphs are isomorphic if there is a one-to-one correspondence
between their vertex sets that sends edges to edges. More precisely, we have:

Definition 7.1: Two graphs G, = (V1,&;) and G; = (Va, £2) are isomor-
phic if there is a bijection f : V; — V), such that

{f(z), f(y)} € & ifand only if {z,y)} € &;.

The mapping f is said to be an isomorphism between G and Ga.

If f is an isomorphism from a graph G to itsclf, then f is called an automor-
phism. The set of all automorphisms of a graph is a permutation group called the
automorphism group Aut{G) of the graph. The automorphism group of a graph
was discussed in Chapter 6.

The problem of determining if two graphs are isomorphic is, in general, very
difficult, although most researchers believe that it is not NP-complete. If addi-
tional structural properties are assumed, then often one can find a polynomial
algorithm for the restricted set of graphs. For example, it.is known that the iso-
morphism of graphs whose maximum degree is bounded by a given constant can

238 Computing Isomorphism

d
b
i
a h
¢ fo3
Gy G2
FIGURE 7.1
The function f = ? ‘11 3 3 3 j’, E Z }81 ?)is an isomorphism

between G1 and G».

be determined in polynomial time. We will present in Section 7.3.1 a polynomial
time algorithm to determine isomorphism of trees.

In Section 7.2 we will give a general grapb isomorphism algorithm that uses
the method of invariants or repeated refinement. An algorithm that is, in general,
superior to this one is presented in Section 7.3. It uses the method of certificates
or canonical labeling. Isomorphism of other combinatorial structures is studied in
Section 7.4

7.2 Invariants

Informally a function @ is an invariant of the graph G = (V,£) if ¢ does not
depend on the presentation of G. For example, consider the set of all graphs
having vertex set V = {vy,v2,...,v,}. The list

[deg{v1), deg(v2), deg(vs), - . ., deg{va)],

called the degree sequence of the graph, is not an invariant. However, if the degree
sequence is sorted in non-decreasing order, then it is an invariant.

Other invariants are, for example, the number of triangles contained in G. the
determinant of the adjacency matrix of G, and the number of spanning trees of G.
Formally we define an invariant for a specified family of graphs as follows:

Invariants 239

Definition 7.2: Let F be a family of graphs. An invariant on F is a function
& with domain JF such that

®(G,} = ®(G>) if G, is isomorphic to Go.

Observe that if (¢,) # ®(G,), then we may conclude that G, and G, are non-
isomorphic. However, if $(G;) = ®(G,), then no conclusion can be drawn. For
example, there are two non-isomorphic graphs on 6 vertices that have the same
degree sequence.

There are countless invariants to choose from. One should choose invariants
that are easy to compute which distinguish many graphs. The function ® given
by ®(G) = 1 for all graphs G is an invariant, but not a very good one — it
distinguishes no graphs. A convenient way to specify an invariant is 1o use ordered
partitions.

Definition 7.3: An ordered partition B of V is an ordered list
B = [B[OL B[1]1 B[Z], cee ’B[k - 1]],

where { B|0], B[1],. .., B{k— 1]} is a partition of V. The size k of the partition
is denoted by | B}.

For example, if G is a graph on the n-element vertex set V, and if degg(v)
denotes the degree of vertex v in G, then

B ={B[0], B[1), B[2],...,B[n - 1]],
defined by
Blil = {ve V: degg(v) = i},
is an ordered partition of the vertices of G. Furthermore the function
&(G) = {1B[0]l, |B1l} ..., |Bln - 1]j]

is an invariant for the family of graphs. This is because |B[i]| is the aumber of
vertices of degree i in G, and if two graphs on n vertices are isomorphic, then they
have the same number of vertices of degree i, foreacht =0,1,... ., »n — 1.

240 Computing Isomorphism

Definition 7.4: Let F be a family of graphs on the vertex set V and let D
be a function with domain (F x V). Then the partition induced by D is

B = [B[0}, B[1], B[?], ..., B[r — 1],

where

Bli] = {veV:G(G,v) =i}.

If the function

@p(G) =[|B[0]],|BQ]l, - -, |Bln — 1]]

is an invariant, then we say that D is an invariant inducing function.

Let z denote an arbitrary vertex of G. Some invariant inducing functions are:
the degree of z; the number of triangles in G that contain z; the determinant of
the adjacency matrix of G \ z; and the number of spanning trees of G rooted at z.

Let Z = [Dy,D,,...,Dy] be a list of invariant inducing functions. We will
use Z to construct a sequence of partitions of V that become finer and finer. Set
Xo(G) = V. the partition of V consisting of one block. For ¢ > 0, define the
partition X;(G) by stipulating that z and y belong to the same block of X;(G) if
and only if

1. z and y belong to the same block of X;_;(G); and

2. £ and y belong to the same block of the partition induced by D;, i.c., if
Di(G,z) = Di(G,y).

To determine if two graphs G; = (V1,&1) and G2 = (V,, &) arc isomorphic by
this method we can proceed as follows. Let f be a bijection from V) to V,. (There
must exist such a bijection for otherwise G, and G2 do not have the same number
of vertices and are hence non-isomorphic.} Computc the sequence X;(G,) and
the sequence X;(G.), foreachi = 0,1,2,...,n. If, for any ¢, the structure of the
corresponding partitions do not agree, then the graphs cannot be isomorphic. If
they agree for all 4, then G, is isomorphic 10 G, if and only if there is a bijection
f from V; 10 V. that respects the final partitions X,(G;) and X,(G,) and is also
an isomorphism. We give an example to illustrate.

Example 7.1 Graph isomorphism by invariant inducing functions
For any graph G, define

Dy(G,z) = degg(z) and
DZ(g,I) - [dJ(I) 1j = 11 21 seey dﬂ—l(:c)],
where

d;(z) = |{y: y is adjacent to = and deg; (y) = j}

Invariants 241

and n is the number of vertices. Let G| and G, be the graphs in Figure 7.1. Then
wc compute the following.

XO(gl) = {01 1a2731 4a 576a 77819}

-XO(g2) = {G, ba c, dae, flglh)i:j}'

T |0123456789
Di(G:,z) 1336363331
3
X\1(G1) = {0,9},{1,2,4,6,7,8}, (3,5}
z labcde fghij
Dy(G2,7) (3333663311
¢
Xl(g'l) = {zv]}v {a,b,c,d,g,h}, {(’., f}~
D2(g1)0) = (Oa Dv 11 07070a 0:0)0)
D2(gla 1) = (0101270701 17010!0)
D'z(gl’z) = (0,0,1,0,0,2,0,0,0)
D2(9113) = (010, 510101 1,0,0,0)
D?(gl,4) = (Oa Dy 17 07 0121 01010)
D,(G,,5) = (0,0,5,0,0,1,0,0,0)
D2(g]16) = (01 01 110107 2s0a0’0)
D»(G,,7) = (0,0,1,0,0,2,0,0,0)
D2(g178) = (270a 0)0101]-1 Du Da 0)
D,(G,,9) = (0,0,1,0,0,0,0,0,0)

Dz(g2sa) = (01 0,2,0,0,1,0, 070)
D2{(G2,b) = (0,0,1,0,0,2,0,0,0)
D2(g2rc) = (O)Dx 17010a 270)0)0)
Dy(Gs,d) = (0,0,1,0,0,2,0,0,0)
D2(g2ve) = (D!Ds 5?0i 0) 1101 010)
D‘Z(g‘b f) = (070x570| 0,1,0,0,0)
D‘2(927g) = (0701 I,D, 0,2,0,0,0)
D2(g27h’) = (2’0701 07071)0701 O)
Dz(gz"'») = (OaO, 1701010)(],070)
D2(921]) = (090a17010,110a0,0)
4

X3(Ga) = {i, 5}, {h}. {b.¢,d, g}, (a}, {e, £}

242 Computing Isomorphism

This restricts a possible isomorphism to bijections between the following sets:

{0,9} «— {ij}

{8} «— {(n}
{2,4,6,7} +— {b,c,d, g}
{1} — {a}
(3,5} +— {e,f})

There are 96 = (21)(1D(41)(11)(2!) bijections giving the possible isomorphisms.
Examination of each of these possible isomorphisms shows that only the follow-
ing eight bijections are isomorphisms.

01234567889 01234567889
tadegfecbhij jadeg fcbhbhi
0123456789 01234567889
iadeg fbechij jadeg fbchi
0123456789 0123456789
iaedg fcbhiy joaedg febhi
0123456789 01234567829
taedg fbchiy jaedg fbechi

In order to successfully implement this method for graph isomorphism an ap-
propniate set Z of invariant inducing functions should be chosen. Afier choosing
these functions, a data structure for the graphs can then be chosen that optimizes
the speed of evaluating functions in Z. Once all of the induced invariants are
evaluated for the two graphs and the final partitions of the vertices are reached,
a backtracking algorithm can be used to determine which of the correspondences
are actual isomorphisms.

Algorithm 7.1 can also be used to compute the automorphism group of a graph
G by specifying both parameters G, and G, to be equal to G. However, it is usually
more efficient to write a new algorithm that uses the fact that G- is the same as
G . If this is done, then Algorithm 6.9 of Section 6.2.3 can be used (o store the
automorphism group. This is particularly helpful if the group is large.

Algorithms 7.1 and 7.2, when used with the two invariants suggested in Ex-
ample 7.1, are particularly bad when the graph is extremely regular.

Invariants

243

doﬁ

do ¢

Algorithm 7.1: 150 (Z,Gy,G2)

globaln, W, XY

procedure GETPARTITIONS()
X[0] « V(G))
Y[0} « V(G.)
Nel
foreachD eI

[fori +—0toN -1

(Partition X [¢] into sets X, {i], X2[il, ..., Xm, (],

where z, 17’ € X;[i] & D(z) = D(z')

Partition Y'[i] into sets Y} [3), Ya[i}, - . ., Y, k],
wherey,y' € Y;i] & D(y) = D(y')

ifm; #n;
then exit (G, and G, are not isomorphic.)

Order Y [i), Ya{t], . . ., Yim,[¢] so that for all j
D(z) = D(y) whenever z € X,[i] and y € Yj[i]

if ordering is not possible

do

then
if OK

main

.

| then exit (G, and G, are not isomorphic.}

Order the partitions so that:

I XEN = (Y < {X[+ 1]f = {Y[i + 1]| forall 4
NeN+m-1
return (V)

procedure FINDISOMORPHISM(£)
if £ =n then output (f)
e wig
for each y € Y[j]

(OK « true

foru + Otof -1

{({u,e} € £(G1) and { f[u],y} & £(G2))
do if

or

({uve} ¢ E(gl) and {f[ulv y} € “:(92))
OK + false
then {f[f] -y

FINDISOMORPHISM(€ + 1)

N GETPARTITIONS()
for i «+ Oto N do for each z € X[i]do W|z] + i
FINDISOMORPHISM(0)

244 Computing Isomorphism

Algorithm 7.2: AUT(Z,G)

external ENTER()
globaln, W, X
procedure GETPARTITION()

X[0] + V(G1)

N1

foreachD el
fori +— 0toN — 1

o {Partition X [i] into sets X, [3], X2[i], ..., Xm[t]
where z,z’ € X,[i] & D(z) = D(z’)

Order the partition so that | X[i]| < |X[¢ + 1]} for all
NN+m-1
return (V)

do

procedure FINDAUTOMORPHISMS (£)
ifé=mn
then ENTER(f)
i« Wi
for each y € X[j]
(OK + true
foru+ Otof -1
{({u,f} € £(G) and { f[u], y} ¢ £(9))
doif { or
({u, €} ¢ £(G) and {f[u], y} € £(G))
then OK + false
if OK
then {f[f] —y

FINDAUTOMORPHISM(€ + 1)

do {

main
N « GETPARTITION()
fori +—Oton -1
do U; + {I}
fori <« Oto N
d {for eachz € X[i
do Wiz} +:
FINDAUTOMORPHISM{()
s+0
while || > 1
dos+s+1
return ([uo,u1 oo ,u,])

Computing certificates 245

7.3 Computing certificates

The last section determined when two graphs are isomorphic by actually attempt-
ing to construct an isomorphism between them. Another way to determine iso-
morphism is to compute from any graph in a given isomorphism class a unique
representative. This leads us to the concept of certificates. Currently, the fastest
general graph isomorphism algorithms use this method.

Definition 7.5: A centificate Cert() for family F of graphs is a function
such that for any G, G, € F,

Cert(G;) = Cert(G.) if and only if G; and G, are isomorphic.

Note that a certificate is an invariant.

7.3.1 Trees

In this section we will develop a certificate for the family of trees. Recall a that
tree is a connected graph G = (V,) with no circuits. A vertex = € V is a leaf if
degg(z) = 1. The cenificatc for trees will be a string of Os and 1s of length 2n,
where n = |V|. To compute the certificate we follow the following steps.

1. Label all the vertices of G with the string O1.
2. While there are more than two vertices of G:

For each non-leaf z of G,

(1) let Y be the set of labels of the leaves adjacent to z and the label
of z, with the inijtial 0 and trailing 1 deleted from z;

(b) replace the label of £ with the concatenation of the labels in YV
sorted in increasing lexicographic order, with a O prepended and
a | appended;

(¢) remove all leaves adjacent 1o z.

3. 1If therc is only one vertex x left, report the label of z as the ccrtificate.

4. If there arc two vertices z and y left, then report the labels of z and y,
concatenated in increasing lexicographic order, as the certificate.

When the leaves of a tree are repeatedly removed, then eventually either one or
two vertices will be left. These vertices are called the center of the tree. Thus,
because the algorithm works by repeated pruning of the leaves, we will be left
with one of two possible final cases. Examples of the computation for both types
of trees appear in Examples 7.2 and 7.3. A formal description of the procedure is
given as Algorithm 7.3,

246 Computing Isomorphism

Example 7.2 A tree with one center

N\‘;:lrzz‘;:f Non-leaves Current Tree

I: Y=0
2: Y ={01,01}
3: Y ={01}

? 4: v ={)
5: Y={}
6: Y ={01}
1: Y = {001011}

6 4: Y = {0011}

5: Y= {0011}

1: 00010111

3 4: Y ={00010111,000111,0011} 5: 000111
4: 000111

1 ® 4: 00001011100011100111

Certificate = 00001011100011100111.

Computing centificates 247

Example 7.3 A tree with two centers

Number of

Vertices Non-leaves Current Tree

0: Y ={01}

1: Y ={01} : 01
9 2: Y={01} : 01

4: Y ={01}

5: Y = {01}

2: 0011
1: Y ={0011,0011,01}
i 4: Y = {0011,01} 5: 0011
0: 0011 4: 0011
1: 000110011011

2

4 : 00011011

Certificate = 00011001101100011011.

248 Computing Isomorphism

Algorithm 7.3: TREETOCERTIFICATE (G)

external SORT()
global N, n, Label, Leaves, Children, LastParent
procedure FINDLEAVESANDCHILDREN()
forj —0ton—-1
do Children[j] + 0
Num « 0
forj «0Oton~1
if [Ngj]] = 1
do Leaves|Num] « j
then ¢ Children|k] « Children[k] U {7} wherc N[j] = {k}
Num « Num + 1
return (Vum)

procedure REDUCE()
fori — Oton~1

(if Children[i] # 0

je0
LastParent « i
Ali] « Afi]\ Children][i]
for each u € Children|i]
do 4 Afu] « @
then do < Y[j] « Label[u]
jeg+l
Y[7] « Label[7] with first and last symbols deleted
je3+1
SorT(Y)
t | Label[i] « the concatenation of 0, Y [u], and 1
main
fori —~ Qton -1
do Label[i] « 01
Nen
while V > 2
do {N & N — FINDLEAVESANDCHILDREN()
REDUCE()
FINDLEAVESANDCHILDREN()
ifN =2

then return (SORT([Label[Leaves[0]], Label| Leaves(1]]]))
else return Label[LastParent]

Given a certificate S = 3, - - - 825, it may be desirable to determine what tree
it came from. It will, of course, be impossible to determine the precise tree but

Computing certificates 249

it is possible to compute the trec up to isomorphism. Observe that Algorithm 7.3
initially labels the vertices of the input tree by 01. Thus the resulting certificate
S = 8 --- 83, will be a totally balanced sequence, as defined in Section 3.4,
and we can take advantage of the mountain range description described there. To
review, consider the function f : {0,1,...,2n} — Z defined by

fl0)=0

_Jfz)+1ifs, =0
f(’“+1)—{f(z)—1ifs,=1

Then f(z) is the excess of Os over 1s in the certificale up to position z. The
graph of this function will look like a mountain range rising from (0, 0) having
scveral peaks and returning to (0, 2r). An example is given in the first jteration of
Example 7.4. Call sea leve! the line y = 0. Then the mountain range will hit sea
level either 2 or 3 times depending on whether the tree has 1 or 2 centers. That
is, the equation f(z) = 0 will have 2 or 3 solutions and the graph will either look
like one mountain with several peaks or two mountains each with several peaks.
Mountains correspond to vertices of the tree. In the case of sea level, y = 0, if
there are two mountains we have two adjacent vertices; otherwise, there is one
mountain and one corresponding vertex,

Letting the water rise 10 ¥ = 1 will divide the mountains into sub-mountains.
That is, the graph of f(z) splits into segments according to how it crosses the
line y = 1. If a mountain M corresponding to vertex v splits into sub-mountains
My, My, ..., M, k > 1, then we introduce new vertices v;,ve, ..., Vs that are
adjacent to v.

The water continues to rise and at each level y = 2,3, 4, ..., we check to see
how the mountains divide and introduce new vertices and edges as we go until
there are no more mountains left. A formal description of this procedure is given
in Algorithm 7.4,

Example 7.4

Initial certificate: 00001011100011100111

First iteration.

250 Computing Isomorphism

N

Second iteration.

X O X X XK

A
d'.VV! O ,\\?..

000 0"0‘0‘0;

KOO

CANPAATY % v
A/

Third iteration.

|
y OGO
N e el

A’A’A’A’

O (N
AN IIRASATRAK A TRAA ANAAATEAA ATRAA APAA AIREA A
R X TR TR
h’(A’A’A‘A‘A’A “"A“’A‘A’A’A‘A‘A’A’A A"‘A’A’A’A‘A A‘A A“’A’A‘A’A‘A’A’A“"\\A‘

Computing certificates 251

Example 7.5

Initial certificate: 00011001101100011011

o— L
First iteration. M

ALV AN

DO

Second iteration.

o

OGO

L ot -
Third iteration. POCROOOCONGT O SROO X KOO RKY
e o e Y e

252 Computing Isomorphism

Algorithm 7.4: CERTIFICATETOTREE (§)

procedure FINDSUBMOUNTAINS (€, S)
comment: if £ = 2, then the first and last symbols of S are
dropped; otherwise ¢ should be 1.
m « |§|
k<0
M[k] + the empty string
MTk) « Mk}, Se-1
f+1
forc — ftom—¢
(if S[z] =0
then f « f+1
else f «~ f—1
M(k] « MIk], S

v:lo#iff=0

ke—k+1
then ¢ M[k] « the empty string
| fe0

return (k)

main
n « |S}/2
G = (V,&) « the empty graph of order n
ve0
k « FINDSUBMOUNTAINS(1, S)
ifk=1
then {Label[v] « M[0]
vev+1l
Label{v) « M[0}]
vev+l
else < Label[v] « M[1]
vev+l
£« £U{{0,1}}
fori —0Oton-1
(if | Label[v]| > 2
k «+ FINDSUBMOUNTAINS(2, Label[])
Label[i} « 01
then forj «~0Otok -1
Label[v] « M[j]
do { &£ « £ U {{i,v}}
vev+1l

do ¢

return (G = (V,£))

Compunting certificates 253

7.3.2 Graphs

The most popular method of defining a certificate for the family of all graphs is
to consider the adjacency matrix of a given graph G = (V,£). Each possible
ordering or permutation m : V — V of the vertices of a graph determines a
particular adjacency matrix A, (G).

lif {m(u),n(v)} € &
0 otherwise.

Ar(G)[uv] = {

The n(n — 1)/2 entries above the main diagonal of A,(G) form an n(n — 1)/2
bit binary number Num, (G), when written column by column. Of course, when
n is large, an n{n — 1)/2 bit binary number will exceed the largest integer that
can be represented by the computer and thus in practice the n{n — 1)/2 bits are
partitioned into an array of several integers, or into a string of characters. The
smallest number that can be obtained via the different possible orderings defines
a certificate of the graph.

Cert(G) = min{Num,(G) : = € Sym(V)} (7.1)

Unfortunately this certificate is difficult to compute. If it were in fact computed,
then necessarily there will be as many leading bits that are 0 as is possible. Con-
sequently, the first k vertices in the ordering that achieves this certificate are pair-
wise non-adjacent and k is as large as possible, Thus these k vertices form a
maximal independent set. They would be a maximum clique in the complement
of the graph G. Consequently, any algorithm that actually computes this certifi-
cate also solves the Maximum Clique problem; see Section 4.6.3. This problem
is known to be NP-complete. On the other hand, it is generally believed (but
not proven) that problem of determining is two given graphs are isomorphic is
not NP-complete. If this is indced true, then computing this certificate may be
more work than is necessary. [ndeed many modern graph isomorphism programs,
including the one that we will present, define the certificate to be

Cent(G) = min{Num,(G) : = € Ilg} (7.2)

where Ilg is a set of permutations determined by the structure of G but not by any
particular predefined ordering of V.

254 Computing Isomorphism

Definition 7.6: A partition B is a discrete partition if | B{§]| = 1 for all 7,
0 < j < k. Itis aunit partition if |B| = 1.

A partition B is an equitabie partition with respect to the graph G = (V, £) if
forall i and j
[Ng(u} N B[]l = [Ng(v) N B[j]I

for all u, v € B[i], where

Ng(u) ={z € V: {u,v} €}

is the neighborhood of uin G.

Suppose B is an ordered equitable partition of size k with respect to the graph
G. Define the k by k matrix Mp as follows:

Mgli, 5] = [Ng(v) N B[j]i,

where v € B[i]. The value Mg(i, j] does not depend on the choice of v € V],
because the partition is cquitable. If B is discrete, then Mg is an adjacency matrix
of G. The cntries of Mp are non-negative integers, and we define Num(B) to be
the sequence of k(k — 1)/2 entries above the main diagonal writien column by
column. Furthermore, if B is discrete, then B determines a permutation 7 of V
by the relation B[i] = {n{i}}. Thus, in this case, we have

Num(B) = Num,(G),

when Num(B) is interpreted as a binary number.

Example 7.6 An equitable partition

0 1 B = [{0},{2,4}, {5.6},{7},{1,3}]

is an equitable partition,

00012
00102

6 3 Mg=101110], and
10200
12000

Num(B) = [0101 1’]-, 0, 1, 2, 2, 0, 0].

Computing certificates 255

Definition 7.7: An ordered partition B is a refinement of the ordered parti-
tion A if
1. every block B[] of B is contained in some block A[j] of A; and

2. ifu € Afi;] and v € A[;] with 4; < j;, then u € Bliz] and v € Blj,]
with i3 < ja.

For example
B = [{0},{2,4}.{5,6},{7},{1,3}]

is a refinement of
A =[{0},{1,2,3,4,5,6,7}].

However, [{2,4}, {5,6}, {0}, {7}, {1,3}] is not a refinement of A, because the
blocks are out of order, with respect to A.

Let A be an ordered partition and consider any block T" of A. Define a function
Dr:V -5 {0,1,...,n - 1} as follows:

Dr(v) = INg(v) N T|.

The function D7 induces the invariant ®p,., which can be used to refine the
ordered partition A to a ordered partition B, as follows:

i, Set B equal to A.

2. Let S be a list containing the blocks of B.

3, While S # 0 do

4. remove a block T from the list S;

5. for each block Bli] of B do

6. for each h, set L[k] = {v € Bli]: Dr(v) = h}:

7 if there is more than one non-empty block in L, then

8 replace the block Bji] with the non-empty blocks in L,
in order of the index A, h = 0,1,...,n — 1;

9. add the non-empty blocks in L to the end of the list S.

After Step 5 of this procedure is repeated for each block of B, either B will not
have changed, or B will be a refinement with more blocks. In the latter case, we
add the new blocks of B to the list S and use them for possible further refinement.
The process continues until all blocks in S have been considered. Observe that we
may ignore a set T in the list S if we have already considered sets that partition T".
The partition B that results will, because of Step 6, be equitable and Step 8 will
guarantee that Num(B) will be minimal among all arrangements of the blocks of
the partition B that are a refinement of 4.

Algorithm 7.5 gives a more detailed presentation of this refinement procedure,
An example is given in Example 7.7.

256

Computing Isomorphism

Algorithm 7.5: REFINE (n,G, A, B)

global L U,S, T, N

procedure SPLITANDUPDATE(R, G, B, 5)
L « empuy list
for each u € B[j]

do {h(—lTnNg(u)l
L[} « LA U {u}
m« 0
forh—0ton—1
doif L[h] # @
thenm < m + 1
ifm>1
(for h + |B| — 1 downto j + 1
do Bjm — 1+ h] « DB[h]
k+20
forh «0ton—1
if L[h] # 0
then < Blj + k] « L[A]
do S[N + k] « L[A]
then ¢ v v U L]
kek+1
j=j+m-1
(N=N+m
main
D+ A
for N « Oto |B]
do S[N] = B[N]
UV
while N £ 0
(N« N-1
T = S[N}
fTCcU
(U« U\T
j«0
do < while j < |Bjand |B| <=n

do + {if|B| #1
do then SPLITANDUPDATE(n,G, B, 5)
j+1+1

if|Bl|=n

{ then exit

Computing certificates 257

If A = [A[0], A[1],..., A{k]] is an ordered partition of thc set V and f is a
bijection with domain V, then the image of 4 under f is thc ordered partition

f(A) = [B[0], B{1],..., B[¥]]

where B[i] = {f(z) : € Alz].i = 0,1,...,k. Observe that thc above proce-
dure and Algorithm 7.5 do not depend on the ordering of the vertices. A conse-
quence of this is Theorem 7.1 whose proof we leave as an exercise.

THEOREM 7.1 Let f be an isomorphism from the graph G, = (V1,&,) to the
graph Go = (Va, £2). If By is the partition that results when Algorithm 7.5 is run
with input G and A,, then f(B,) is the partition that results when Algorithm 7.5
is run with input Gy and f(A;),

Example 7.7 Refining to an equitable partition
We illustrate the refinement procedure using the graph given in 7.6 and the initial
partition A = [{0},{1,2,3,4,5,6,7}].
B =[{0},{1,2,3,4,5,6,7}]
S =1[{1,2,3,4,5,6,7}, {0}]
~~
T
D{O} : B = [{0},{2,4,5,6}, {1,3, 7}]
S =1[{1,2,3,4,5,6,7},{1,3,7},{2,4,5,6}]
T
D345 : B = [{0},{2,4},{5,6},{1,3,7}]
S =1[{1,2,3,4,5,6,7},{1,3,7}, {5,6},{2,4}]
T
Dy24y : B = [{0},{2,4},(5,6},{7},{1,3}]
$=1{1,2,3,4,5,6,7},{1,3,7}, {5,6},{1,3}, {7}]
-
Diy:B= ({0}, {2, 4}, {5.6}.{7}. {1,3}]
5=1[{1,2,3,4,5,6,7},{1,3,7},{5,6}, {1, 3}]
Va
Di1 3y : B = [{0},{2,4},{5.6}. {7}, {1,3}]
§= [{1,2,3,49 5,6, 7}9 {1731 7}7 {596}]
T
Dis.ey « B = [{0},{2,4}, (5,6}, {7}, {1,3}]

258 Computing Isomorphism

S ={{1,2,3,4,5,6,7},{1,3,7}]
T
S =[{1,2,3,4,5,6,7)]
T
S=[]

The final refined equitable partition is B = [{0}, {2,4}, {5,6},{7}, {1,3}]. [

Example 7.8 shows that Algorithm 7.5 cannot be expected to lead to a proce-
dure that produces a certificate of the type given in Equation 7.1. This is because,
starting with the unit partition, Algorithm 7.5 first partitions the vertices in order
of their degrees, and this partitioning may not necessarily lead to an arrangement
with smallest Num.

Example 7.8 Refining to discrete partitions
We illustrate the refinement procedure using the graph

and the initial partition A = [{0, 1,2, 3,4, 5,6}]. The adjacency matrix of G is
0

OO0 QOoOOo
O MFHFOOOO
O=OmOOO
O e OO
OO O
— D b e

Ot = OO

and
Numy(G) = (0000010101011lllOOlll)binary.

B= [{Oy l, 2: 3’ 4! 57 6}]

S =1{0,1,2,3,4,5,6}]
T

Computing certificates 259

Dyo1.2.3.4.56) : B = [{0},{1,2}, {3,4,6}, {5}]

S = [{5}y{3,4,6},{172},@
T

D{(‘l} :B= [{0}’{172}v{374}1{6}x {5}]

5 = ({5},{3,4,6},{1,2}, {6}7L3vi}J
T

Dgay:B = ({0}, {1,2}, {3,4}, {6}. {5}]

§ =[{s}, (3,4,6},{1.2), {6})
T

D{G} B = [{0},{1’2}’{3’4}v{6}’{5}]

S = I{5}7 {37 476}7 {112}]
T

Duyay:B= ({0},{1,2},{3,4}. {6}, {5}]
5= [{5},{3,4,6}]
_?"—d

T
D{3.4.6} :B = [{0}: {1 2}: {3’4}7 {6}’ {5}]

5 =[{5})
k2

Dysy : B = [{0},{1.2},{3,4}, {6}, {5}]
S=[1

This results in the equitable partition

B = [{0},{1,2},{3,4), {6}, {5}].

This partition is not discrete and thus does not determine an ordering of the
vertices. The first block containing more than one vertex is {1,2}. Thus any
discrete partition that refines B must either look like [{0}, {1}, {2}, ..] or like
[{0}, {2}, {1}, ..]. We try both possibilities.

First we refine B = [{0}, {1}, {2}, {3.4}, {6}, {5}].

B = [{0}, {1} {2}, {3.4}.{6}, {5}]
S = I{5}v{6]1 {374]7{2}1{1}’ {0]]
el

Dy :B = [{0},{1},{2},{3,4}, {6}, {5}]

260 Computing Isomorphism

S = [{5}7 {6}! {3:4}’ {2}'&]

T
D{l} :B= {0}, {1}7{2}' {3}, {4}, {6}, {5}
This results in the discrete partition
B = [{O}r {1}! {2}’ {3}! {4}’ {6}7 {5”
which determines the ordering
m =10,1,2,3,4,6,5]

of the vertices. The corresponding adjacency matrix is

0 00O0O0OTI1TO0O
0 00O010O0°1
0 001 0OD01
0 010111
01 01011
1 001101
0111110

and
Num,, (G) = (0000010101100110111 ll)bina.ry'

The other possibility is to refine B = [{D}, {2}, {1}, (3,4}, {6}, {5}].
B =[{0}, {2}, {1},{3,4}, {6}, {5}]
S = [{5},{6}.{3,4}.{1}, {2},@

T
D{O} :B = [{0}’ {2}) {1}! {314}7 {6}7 {’5}}
S =[{5},{6},{3,4}, (1}, (2}]
3y
D2y : B = {0}, {2}, {1}, {4}, {3}. {6}, {5}
This gives the discrete partition
B = [{0},{2},{1}, {4}, {3}, {6}, {5}]
which determines the ordering

m = [01 2, 1:4!3’6’ 5]

Computing certificates 261

of the vertices. The corresponding adjacency matrix is

0000 o010
0 0 00 1FC01
0 001001
0010111
0101011
1 001101
0111110

and
Num,, (G) = (0000010101lOOllOlllIl)binary.

The two computed permutations ; and 72 have
Num,, (G) = Num,,(G) = (0000010101 lOOllDIllll)binm.y.
So we would report the certificate to be:
C = (00000101011001101111 l)binary‘

In general we would take the smallest Num, (G) that was obtained as the certifi-
cate.
It is interesting to observe that

Nump(G) < C,

which can be seen by examining the eleventh bit. Also, the degree sequence of
the original graph is 1,2,2, 4, 4,5, 4, whereas the degree sequence with a vertex
ordering that yields certificate C'is 1,2,2,4,4,4,5.

Starting with any equitable partition P of the vertices V of a graph G, a block
P[i] of size m greater than 1 can be split into two blocks, the first having size 1 and
the second having size m — 1. All such splittings must eventually be considered.
Given a new partition obtained by splitting, Algorithm 7.5 can be applied to obtain
an equitable partition. This process can be repeated until alt blocks have size 1.
When a discrete partition P’ is reached, an ordering 7 of the vertices of the graph
is determined:

(5] = p; where the j*® block of P’ is {p;}. (7.3)

From # we can compute Num, (G) and compare it to Num,(G), where u is the
ordering giving the smallest Num that has been found so far. That is, among the
orderings discovered during the search, 4 is continually updated so that Num,{G)
is smallest.

262 Computing Isomorphism

Using the techniques in Chapter 4, a backtracking algorithm for the ordering
that gives the smallest possible Num can be developed as follows. A partial so-
lution or node of the state space tree is an equitable partition. The root node is
the partition consisting of a single block. To continue the backtrack search from
the current node, a block of it is found that has size greater than one. An entry of
this block is chosen; it is split off and the resulting partition is refined. When the
search backs up to this node a different entry is chosen. This continues until all
entries have been considered. If there are no blocks of size greater than one, then
the partition P’ is a discrete partition. Using Equation 7.3 an ordering, =, is now
determined from which Num, (G) is calculated and compared to Num,,(G).

One simple method to prune this search is to compare the current partition to
4 at each node. That is, we make comparisons as we go and not just when the
partition becomes discrete. If P is the current partition and £ is the index of the
first block P[¢] such that | P[£]| > 1, we can define the partial permutation © by

n[§] = p, where the j*" block of P’ is {p,}

for j = 0,1,...,£ — 1. Thus the first £ entries of m are the first € entries of
the ordering that would result if we were to continue the backtracking unul the
partition became discrete. We can compare these entries to the first £ entries of
{¢ by just checking the number that results from the first £ rows and columns of
the adjacency matrices A, and A. It was precisely for this application that we
defined Num, (G} to be the n(n — 1)/2 bit binary number obtained from the en-
tries above the main diagonal of A,(G) written column by column rather than
row by row. The partial ordering m can only complete 1o an ordering =* with
Num,. (G) < Num,(G) if, the first time that entries differ, we have A,[t,j] = 0
and A,[i,j] = 1. These observations lead to the procedure given as Algo-
rithm 7.6. Using the techniques of Chapter 4, a backtrack procedure can now
be developed. The backirack procedure with this amount of pruning is Algo-
rithm 7.7, It is invoked by Algorithm 7.8.

Algorithm 7.6: COMPARE (G, 7, £)

forj«—1ltoé-1
(fori « 0Otoj —1
z + Agpli], ulj])
y « Aglnlil,x[j]
ifz<y

then return (Worse)
ifz>y

then return { Better)

do1 do

return (Equal)

Computing certificates

263

Algorithm 7.7: CANON1 (G, P)

external REFINE(), COMPARE()
REFINE(G, P, Q)
Find the index ¢ of the first block of @ with |Q[€]| > 1
Res «— Better
if BestEzxist
fori < Oton -1
then do m [i] = ¢; where Q[i] = {q¢:}
Res + COMPARE(G, 1,)
if Q has n blocks
if not BestEzist
fori: — Oton—1
then { do uli] = ¢, where Q[i] = {¢:}
BestExist « true
els {if Res = Better

then

then p « m;
’ (C QI
D« Qlf]
forj —0toj<?
do R[] + Q[7]
for j « £+ 1 to size(Q)
else { if Res # Worse { w:;: eR([;-"; ;] « Q[

Rf] « {u}

CANONI1(G, R)
C=C\{u}

u + any element of C

do < R[¢+ 1] « D\ {u}

Algorithm 7.8: CERTI (G)

external CANON1()
P« [{0,1,...,n}]
CANONI(G, P)
k<0
C+0
for j « n — 1 downto 1
fori + j — 1 downto 0

do
do {k —k+1
retorn (C)

if {ufi], plj]} € £(G) thenC « z + 2¢

264 Computing !somorphism

The state space tree that results when Algorithm 7.8 is run on the Graph in
Example 7.7 is given in Figure 7.2. The nodes labeled by Worse give pruned
subtrees. The node labeled by First gives the ordering # that was obtained the
first time the partition became discrete. It also gives the Num,, that results. A
smaller Num,, that turns out to be the actual certificate is seen at the node labeled
Better. The nodes labeled Equal occur when the ordering gives a Num,, that
equals Num,,, where g is the ordering with the smallest Num found so far. In this
example we see that the certificate of the graph in Example 7.7 is 5192304.

7.3.3 Pruning with automorphisms

Recall that if = € Sym(V) is an ordering of the vertices of the graph G = (V, &),
then A, denotes the adjacency matrix with respect to this ordering. That is,

Ax[t, 5] = Alrli], nl5]],

where A is the adjacency matrix of G with respect to the usual ordering of ver-
tices,
0,1,2,...,n-1.

Consequently, a € Sym(V) is an automorphism of G if and only if 4, = A.
THEOREM 72 Let G = (V,&) be a graph and let my,u € Sym(V) be two

orderings of the vertices of G. If Num,,, (G) = Num,,(G), then my = myu~" is an
automorphism of G.

PROOF Observe that Num,, (G) = Num,(G) if and only if A, = A,. Thus

Anz[inj] = Anp“ [7'1 J]

= Afmp= fi], mp 5]

= Am, [0~ [i], u™"[J]]

= Aulp™ il w7 A]]

= Alpp™[i], e~ [3]]

= A.
Therefore 2 is an automorphism of G. 1

Theorem 7.2 tells us how to obtain the automorphism group of the graph. When

a leaf node with a discrete partition # for which Algorithm 7.6 returns Equal is
reached, an automorphism is discovered, namely ¢ = 7~ . The automorphisms
discovered can be managed with Algorithm 6.11 and the methods in Chapter 6.

If g is an automorphism of the graph, then consider the orderings 7 = gu.
Let Py, Ps,. .., P: be the path from the top node of the state space tree to the

265

Computing certificates

*£°¢ ddurexy ui ydead ayp uo £z unpriody Suniuna o) s)NsA yei aa3 adeds 2els Y7 JO MIAAIAQ

7L 3ANOL
® o ® ® [] ® ® ® [] ® ® ® ® ® ® ® ® ® [] [] ® [] ® [] ® [] ® ®
® ® < ® ®
< < e1lgiLolzolv < etlolLelvolz <
oloslvzletls gleglvoletlo wliolzoletls pzolL98|1]e ¥20/29¢l€lT £1lzl9¢l¥zlo

g *#20296|Tle pue £1)2lv0lz bz0|L95lelT ‘eTiL]9¢ipz|0 1000 14 SPAmqRg
.m. {panupguod) 7', TUNOIA
m jonbsg jonbyg jonbg jonbag jonbyg onbyg

2 o_u_v_m_wr:_m o_v_w_o_m::_m %_v_n_%:_m N_v_er_%:_m v_o_w_m_u_m:_m v_m_o_%_m_% 254044 asiop

fw.. < < < | :

m olvzloslzltle zlvolegioltle vlzolzolsltle erlolelzlolvlz erlolzlslvlolz

<
¥20|29¢(1ie £119/281%0l2

POETO1S = “wnyy

PT0LOGET = x
nbyg jonbsg jonbsg jonbsg jonbsy : 4dag
c_m_v_n_@:_m: o_gm_o_m:_m: N_%_m_m_o_m: N_v_o_h_m_m_m: v_o_m_or_m_m: v_m_o_h_m_m_mz
olvzlacglzliel zlvol2glolel vlzolzolglel

2o ~_
vzol298]glt
266299 = “wnp
€1295%20 = &
jonbsg yonbg yonbyg D a8t
ﬁ_m:_n_gm_v_o .m:_u_n_w_m_v_o ﬁ_m_h_m_n_%_o m_ﬂ:_o_m_%_c

etlzlglolzivlo etlzlofelr|zlo
¢12loglpzlo

266

267

Computing centificates

‘0log/peletls pue zlzelvoleTlo ‘FlLolzoletls ‘c1lglL9iz0lp s1004 m saanqng
(panunuod) "L TANOIA
'8¢ = SIAON PUe pOETEIS = QLAY ‘2T = |9}
5404 Isso 25404 8404 assoM asiom assom assoM

o_m_@_mr_:m: %_m_v_m_ﬂ_m_h o_m_o_m_zm:r o_o_m_v_m_m:r N_m_h_o_%_m_w N_h_m_v_o:_m_o N_m_h_or_m:_m N_h_m__._o_m___o

ologivzltielL ologl¥elelt]2 zleslvoltlele zlzglvoleltlo
< <
oloslpelen s zlestroletlo
unLO\S u.ﬁQ\S u«.&Q\S unLQ\S
vlolziolzltiele vizislzlolricle wisluioleieitis vlzlslcloleitte 25404 asso
vlzolzolT|¢le vl29lz0leltlg etlglolzlolzly etlelLiolzloly

<
v|L91Z0[eTlg £1lg29lz0l¥

268 Computing Isomorphism

leaf in which the ordering y was last updated. Then g(P), g(P2),...,9(FP:) is
a path from the top node to a leaf that obtains the ordering # = gu. If P =
|P[0], ..., Pl€]] is a partition, then g(P) is the partition {g(P][0}), ..., g(P[€]))-
Thus every automorphism of the graph will be obtained using this modification
to the backtrack search. Note that some automorphisms may be obtained earlier
when ¢ is not as yet optimal, but they will be discovered again when the optimal
ordering is found.

Now that we know how to find automorphisms, we can use them to drastically
prune the scarch. Consider the backtrack tree given in Figure 7.3. When node
1|3|567]024 is reached we know that (1,3) and (2,4)(5,6) are automorphisms
and thus the subgroup

{L.(1,3),(2,4)(5,6), (1,3)(2,4)(5,6)}

which is generated by them is an automorphism group of the graph. Ordinarily
we would split the block 567 of this partition in each of the three ways

1. 1|3/5/67|024
2. 1]3|6]57|024
3. 1]3{7|56{024.

When the first of these is searched another automorphism (0, 2)(6, 7) is discov-
ered. This one, together with the first two, generates the subgroup

1)

(1,3),

(2,9)(5,6),
(1,3)(2,4)(5,6),
(0,2)(6,7),

(0? 2" 4)(51 7’ 6)’
(0,2)(1,3)(6,7),
(0,2,4)(1,3)(5,7,6),
(0,4,2)(5,6,7),
(0,4)(5,7),
(0,4,2)(1,3)(5,6,7),
(0,4)(1,3)(5,7)

of the automorphism group of the graph. We now see that (2, 4}(5, 6) is a known
automorphism and that it carries partition 1 to partition 2. Also the automorphism
(0,4)(5, 7) will carry partition 1 to partition 3. Consequently, the subtrees that
would result from searching the nodes labeled by partitions 2 and 3 are isomorphic
to the already searched subtree labeled by partition 1. They will produce orderings
n for which the Num, are exactly those found when partition ! was searched.
Thus these subtrees may be pruned.

In order 10 accomplish the pruning by automorphisms as suggested by the
above the algorithm needs to be able to do the following:

0

Computing certificates 269

1. manage discovered automorphisms; and
2. use known automorphisms to prune the search.

For 1, we use Algorithm 6.11 as described earlier. For 2, suppose

Q= wlaig| - lg-1lQlf]| -

is a partition whose first block of size greater than 1 is Q(£]. Let u € Q[¢] and let

R=q|qlg| - lg-11ulQ\ {u}]----

After searching the subtree obtained from the refinement of R, we will have ob-
tained an automorphism group

G = [Up, Uy,... . Us, ..., Uy
The partition
R' = golgrlgz| - - 1ge-1 [W'IQUEI N {u'}] - -,

where u’ € Q€] and u’ # u, can be pruned if there is a g € G such that g(R) =
R’'. Thus g must fix

Qo,q1s.--,qt=1

and map u to u’. If the B of G is

4o,q1,-- 530, Y,

then g can easily be determined. In this case, there is such a g if and only if
there exists g € U, such that g{u) = «’. Consequently, we need only use Algo-
rithm 6.12 to change the base 3 of G to

ﬁ = [q07qla"')erur'H]1

and then check ;. This pruning by automorphisms is done by Algorithm 7.9,
which is invoked by Algorithm 7.10. There is a dramat.lc improvement, as is
shown by Figure 7.3.

Computing Isomorphism

270

--¢ djdurexq ut ydears) ay) uo gz WLy Buruunt wWos) SHNSII Jerp aa) 3deds av)s gL

£L NO1L
‘91 = SHAON PUE ‘pOET6IS = SMedYnId) ‘g1 = |9
$0€Z61G = *wnN 286299¢ = “wny
(L'9)(z 0 ¥20LOCET = L (9‘9)(¥°2) (1) £1295370 = &
ISLOMN D aug : s339g D SUS T 4usy D384t
plLlolzloleltle vlolzlalLlclel pizlolLlolclelt gltizlsiolzlvlotlglzloleiwizlo €l1lzlolslvizlo
as4o M
|

vlLolzoleltle etlollslelolz vlzol2olglelt grielslolzlv|o g1lzlolelvlzlo
v|2olzoletle erlolielvolz vzolLoslel £1/2195¥zl0

L9SPETIO

Computing certificates 271

Algorithm 7.9: CANON2 (G, G, P)

external REFINE(), COMPARE(), ENTER2(), CHANGEBASE()

REFINE(G, P, Q)
Find the index € of the first block of Q with |Q[f}| > 1
Res « Better
if BestEzist
fori —Oton-—1
then { do m,[i] = ¢; where Q[i] = {q:}
Res +— COMPARE(G, m), £)
if Q has n blocks
(if not BestEzist

BestEzrist + true

if Res = Better
then Best «),
else if Res = Equal

fori —0Dton—1
then do Bestli] = ¢; where Q[i] = {¢.}

then j

els fori « Oton-1
then { do mym [i]] « Best[i]

{ ENTER2(73, G)
((C + Qlf]
D Q[
forj—0toj<t

do RJj] + Q]
for j « €+ 1 to size(Q)

do R[j + 1] + Q[j]
while C # 0
(4 + any element of C
R[f] + {u}
else { if Res # WorseJ RlE+1] « Q\ {u}
CANON2(G,G, R)
forj « Oto?

do A'[j] « r where R[j] = {r}
foreachy ¢ {£'0],5'1),...,8'[}

do jeg+1l

Blhley

CHANGEBASE(n, G, ')
foreach g € If;
| doC C\ {g(w)}

doJ

272 Computing Isomorphism

Algorithm 7.10: CERT2 (G, G)

external CANON2()

comment: Set G to the identity group with base I
forj — 0ton—1doldy « {I}
G « (L [Uo, Uy, ..., Un_1])
P<[{0,1,...,n}]
CANON2(G, G, P)
ke0
C«0
for j «n — 1 downto 1
fori « 5 — 1 downto 0
do do {if{p[i],u[j]} € E(G) thenC « x +2*
k=k+1

return (C)

7.4 Isomorphism of other structures
74.1 Using known automorphisms

If we know some or all of the automorphisms of the graphs we wish to compute
the certificates of, then we can first use Algorithm 6.9 to find the Schreier-Sims
fepresentation G of the group generated by these automorphisms, and then input
G o Algorithm 7.10. This will speed up the search for the certificate, because
these automorphisms can be used to prune the tree before they are discovered in
the scarch. This is particularly useful when trying to find all graphs with a given
automorphism group, say, for example, all graphs on n vertices, that have

(0,1,2,3,...,n—1)

as an automorphism. In Figure 7.4, we show the state space tree for the certificate
of the graph in Example 7.7 that results when we include as input the automor-
phism group of this graph. Even in this small example, a savings from searching
16 nodes to 10 nodes results.

7.4.2 Set systems

One common method of determining isomorphism of set systems is to use the
following trick. Given a set system (X, B), a graph G = (V,£) is defined as
follows:

V=X UB;and

{z,B} € £ if and only if B, where z € X and B € B.

Isomorphism of other structures

(1] 67
0|24|5|6|7|13 1|3l5(i‘7!024
0|2|4|5||6|7|13 1|3|5|(?7|02]4
0|2|4|5‘6|7|1|3 1|3|5|6‘7|0[2|4

First : Better :
m = 02456713 m = 13567024
Num, = 5667952 Num, = 5192304

5|13|0|2l67|4
5|1[3|(i2|67|4
5|1|3|0‘2|6|7|4

Worse

|G| = 12, Certificate = 5192304, and NODES = 10.

FIGURE 7.4

State space tree that results from running Algorithm 7.9 on the Graph in

Example 7.7.

273

If the search is initialized with the partition of the vertices into the two blocks X’
and B, then Algorithm 7.10 will return a group whose restriction to X will be the
automorphism group of the set system. Furthermore it is not difficult to see that
two set systems arc isomorphic if and only if their corresponding graphs have the

same certificates.

Example 7.9 A set system and its corresponding graph

The graph.

The set system.

Bo = {0,1,2}
B, ={0,1,3}
Bz = {0,2,4}
B; = {0,3,5}
B = {0,4,5}
Bs = {1,2,5}
Bs = {1,3,4}
Br = {1,4,5}
Bg = {2,3,4}
By = {2,3,5}

Computation of the automerphism group and certificate for this sct system is

given in Figure 7.5. Notice that (2,3)(4, 5). (1,2)(3, 4}, (0,1)(2, 3) generate lht[:l

full automerphism group of this set system.

Computing Isomorphism

274

+£°£ 3jdwexy ul ydean) ayp uo ¢z wPLI0F)y Jutuund Woj s) nsal 18y} 2a1) 2deds aels 3y,
§LTNOA
"01 = STAON PUe ‘(XTH) 6¢ 18£89S9 09Z06Z0E 00790881 = 2MLIYNI) ‘09 = |9

_ , : s 'gog g tgia°asatad
(g g @) g g wﬂmm) (sgsgyog sa)a @) (g og) ZESPTO
(€“2)1'0) (sP)(eD) 184t
Pauyg : U _
saoagleagliag|baléal|BalsSalial®
o1t |27 |97 ST | Y erl2cr] € mmw_ o N_rﬂm_mﬂ__om_ gl _ ‘aloglgl*d|’a\ d|’d|'a|*a|%a
gql'gl‘g\’a*a " a|* a1 1°g1°g ogligl’g el glglsg|ogleglsg lzlelglvltlo

lelzlglelolt lelzlvle]tlo
tgogltgitataleg|ta sglia®a
[p1lselzio

'‘gegl-gleacal'aliaraleata 'geg|*gligigialoasalea e

lezlsplolt lgzler|Tlo
Lgogsgtgoglegsg g gty /\
ls¥e2olt vgtgia'goqlta g g g g
e
mmwmhm.omnm. vmammm nmom
lsvez10

Notes 275

7.5 Notes
Section 7.1

In [68)] it was shown that the isomorphism of graphs whose maximum degree is
bounded by a given constant can be determined in polynomial time.

Section 7.2

The technique of using invariants is among the earliest methods used for deter-
mining isomorphism,; see the description in Ku&era [61].

Section 7.3

The method of using balanced binary suings of length 2n as a certificate for trees
on n vertices is due to Ronald Read [88].

An excellent discussion on writing graph isomorphism programs can be found
in Kocay [55]. A somewhat different algorithm, which is very popular, was de-
veloped by McKay [70, 71].

Exercises

7.1 Find an isomorphism between the following two graphs. (These are two ditferent
representations of the Petersen graph.)

ATR T

a

2 3

7.2 Use the algorithm described in Section 7.3.1 to compute the centificate for the tree
given below

7.3 Use the algorithm described in Section 7.3.1 to compute the tree whose certificate
is 000010111001010110011100001110001111.

276

74
7.5

7.6

1.7

7.8

7.9

Computing Isomorphism

Provide a detailed proof of Theorem 7.1.
Use Algorithm 7.10 to compute the certificate and automorphism group of the fol-
lowing graph. . 0 .

2 10
3 9

4 8

5 7

Use Algorithm 7.10 to compute t%e automorphism group of the Steiner triple system
given below. Compare your result with Exercise 6.4.

{0)])2}7 {314)5}7 {6'778}1 {0, 3r6},

{1,4,7}, {2,5,8}, {(0,4,8)}, {1,5,6}, ;.

{2,3,7}, {0,5,7}, {1,3,8), {2,4,6}
Compute the number of non-isomorphic Steiner tple systems of order 13. (See
Exercise 4.11.)
Give a reasonable definition for the automorphism group of a Latin square and use
Algorithm 7.10 to compute the automorphism group of the Latin square given in
Example 1.1.2.
Use your solution to Exercise 4.13 and Algorithm 7.10 to determine the number of
non-isomorphic Latin squares of order 4.

8

Basis Reduction

8.1 Introduction

Many combinatorial search problems can be reduced to solving a matrix equation
of the form

AU =18 (8.1)

for a (0, 1)-valued column vector U. For example let £ = {ej,e2,...,em}
be the set of edges of a graph G with vertex set V = {1,2,...,n}. If T =
{T1,T2,...,Tn} is the set of all triangles in the graph G, then we may definc the
m by N matrix A by

. o [1 ife;isanedgeof Tj;
Ali, 1] = { 0 ifnot.

A (0,1)-valued solution U to the matrix equation AU = B, where B =
(1,1,...,1]%, is an edge decomposition of G into triangles. If a decomposition
into other subgraphs is desired, then 7 can be chosen to contain these types of
subgraphs. In Section 4.5, the problem of choosing members from a given collec-
tion S = {S1,82,...,5n} of subsets of aset R = {1,2,...,n} such that they
partition R is discussed. If the matrix A is defined by

.o [1 ifieS;;
A["’ﬂ‘{ 0 ifnot,

and B = [1,1,...,1]7, then this problem asks for the (0, 1)-valued solutions
U (o Equation 8.1. Recall that matrix A is called an incidence matrix. When
the collection of graphs or sets in the decomposition are assumed to have certain
symmetries, the resulting incidence matrices are discussed in Section 6.6.1. These
incidence matrices need not be (0, 1)-valued matrices; see Example 6.12.

When the size of the incidence matrix A is large, backiracking approaches often
fail (o find solutions in reasonable time. To get around this problem, the heuristic

278 Basis Reduction

search techniques of Chapter 5 can be employed. Another successful technique
for solving Equation 8.1 has been the method of basis reduction. It begins by
first transforming Equation 8.1 to the optimization problem of finding a shortest
vector in a lattice. Consider the matrix equation

[+ -2 [4]- (3] 62

where 0 denotes the 0 vector and 7 the identity matrix. A vector & € R? is repre-
sented in the computer as a g-dimensional array, whose entfries are the components
of b. The following proposition is evident:

LEMMA 8.1 The (0, 1)-valued column vector U solves Equation 8.1 if and only
if it solves Equation 8.2.

If 51 ,52, cees 5,, € R are real-valued vectors, and a;, a2, . . ., p € R, then
g= alg[+a252 +--- +ngp

is a linear combination of by,b,, ..., b, over the real numbers. The set of all
linear combinations of by, b2, . . ., b, is the vector space

SpanR(gl,gz,...,(;,,) = {all_;l +agl-;2 + - +a,,5p i, €R 1<i<p)
If the coefficients oy, g, . . . , cp are restricted to be integers, then
Spanz(t;l,gg,. .. ,gp) = {a,l-;l + azgz +- 4+ a,,(_;',, ra; €Z,1 <1< p}

is said to be the lattice spanned by b, 52, ceey I_;p.

The set of vectors by, b, . . ., by is said to be linearly independent if the only
linear combination over the real numbers that is the zere vector is the one in which
a; =0foralli,1 <i<p,

Let B be a q by p matrix with linearly independent columns: 51,52, ... ,Ep.
Then

L= Spanz(l}'],gg,...,gp) = {Bf: & € Z%

is the lattice with basis (the columns of) B. Not every lattice has a basis of linearly
independent vectors. One example is the lattice spanned by the vectors

RIHEE!

None of these vectors can be written as an integer linear combination of the other
two. Thus each is required in the span of the lattice. On the other hand,

2]+ [2]-2]=15]

Introduction 279

and so they are not linearly independent. We will only be interested in lattices
that have a basis. If p = ¢ and the columns of B are linearly independent, then
the lattice £ with basis B is said to be a full dimensional lattice.

Example 8.1
Consider the matrix

s<[1)

The columns of B are the vectors b; = [1,3), and by = [~2,1). It is easy 1o see
that 31 and I;z are linearly independent. Thus the subspace Spann(l';.,gg) is the
entire zy-plane, but the lattice £ with basis B is a discrete set of points. This is
depicted by the following diagram.

Returning to Equation 8.2, we let £ be the lattice whose basis is the n + m by
n + 1 matrix M defined by

280 Basis Reduction

Then Lemma 8.1 shows that if U is a solution to Equation 8.1, then

o (U
U_{ 6]6‘:'

Conversely, if)
!7= [ul,uz,...,un,0,0,...O]r € Ca
P —

m

then § = MZ for some integer valued column vector £. Consequently, from
Equation 8.2, it follows that

z= [ulyu21"',unad]

for some integer d. We record this result as Lemma 8.2.

LEMMA 82 Let L be the lattice with basis
[r o
w=]1 8]
Then there is a (0, 1)-valued column vector
7= lu,uz,...,u,,0,0,...0T € £ (8.3)
m
if and only if there is a (0, 1)-valued solution U = [1u1,us, .. .,u,)7 to the matrix

equation AU = dB, for some integer d.

Recall that the Euclidean length of a vector ¥ € R* is

171 = /93 + 3+ + 4

Thus, if € £ has the form of Equation 8.3, then the Euclidean length of § is

llgll = y/ud +13 + -+ < VA,

because u; € {0,1} for: = 1,2,...,n. Thus ¥ is a vector whose Euclidean
length is small when compared to most of the vectors in the lattice £.
This leads us to consider the following optimization problem, Problem 8.1.

Problem 8.1: Shortest Vector
Instance: a matrix M with integer entries.
Find: the minimum value of ||#}]
subject to 7 € L, the lattice with basis M.

Theoretical development 281

8.2 Theoretical development

Throughout this section, let
M = [by, by, ... ba]
be an m by n matrix considered as a set of column vectors in Z™, and let
£ = Spang(by,by,y....bn) = {y:y = Mz,z € 2"}

be the lattice with basts M. We will describe an algorithm that will find a new
basis M’ for £ containing vectors that have Euclidean length smaller than the
vectors in those in M. The goal is to produce such a basis containing a vector 5
that solves Problem 8.1. First, in order to facilitate the analysis and development
of the algorithm, we review some concepts from linear algebra.

Recall that essentially the only way we can alter the appearance of a basis,
without changing the vector subspace that it spans, is to either

(i) rcorder the vectors in the basis, or

(i) perform an operation of the form:
replace 5} with 0151 + 0252 4+t ant-).,.

where a; € R for all i and o; # 0. However, we wish to have the new basis still
be a basis for the lattice £. Thus, we also require that a; € Z for all ¢ and that
a; = x1. Consequently, we can reduce any operation of type (ii} to performing
a sequence of the following three operations:

1. Replace 5,- with 5.- + 5_,-
2. Replace b; with — b; + b,
3. Replace b; with b; - b,
Eor example, to obtain the operation,
replace l;z by 2b, + 52 - 353.
the following sequence of operations can be performed:
replace gz with by — b5
replace by with by — bs
replace 52 with be — bs
replace by with by + by
replace l-a with by + ba.

282 Basis Reduction

If 2 = [z1,Z2,---»Zm] and § = [31,¥2,.--,¥m] are vectors in R™, then we
denote by ¥ - § the dot product of Z and ¥, defined as

E-F=nipn+Tayz+ - + I;m¥m.

We say that £ and § are orthogonal if £ - § = 0. If the vectors in a basis are
pairwise orthogonal, we say that it is an orthogonal basis. Notice that ||Z]], the
Euclidean length of £, is v Z « Z. The triangle inequality states that the sum of the
lengths of two sides of a triangle is always greater than the length of the third. In
terms of vectors Z and g, this says that

211+ 11511 > 112 + #11.

Observe that, if the basis vectors b; and gj are orthogonal, then by the triangle
inequality, we have

118; + 5,1l > max{]|B:ll, [185]]},

(|- 5 +5;) > max{|j|l, |51},
and

113: = ;1§ > max{]|8:|!, 115;11}-

Hence, none of the three replacement operations can reduce the length of b;.
Moreover, if all the vectors in the basis are pairwise orthogonal, then there is
no way to further reduce the size of the vectors in the basis. Thus, in order to
achieve a basis with vectors of minimal length, we will try to make a new basis
for the lattice £ in which the vectors in the basis are as pairwise orthogonal as
possible. In general, we will not be able to fully orthogonalize M because we can
only do the above type (ii) operations with integer coefficients. If real coefficients
were allowed, then Algorithm 8.1 would produce a basis in which the vectors
are pairwise orthogomal. Algorithm 8.1, the standard Gram-Schmidt process of
orthogonalization from linear algebra, uses O(n?) arithmetic operations.

Algorithm 8.1: GRAM-SCHMIDT (By, 52, ..., bn)

g{ Lt E]
forj+ 2ton
b} « b;
fori«—1toj—1
0 - - -
do {f}u’ « (B - B NB IR
L b; (—-.‘b; - a.-_,-b;
return ([b;, b;, ceey b:.], {a;,}.-q)

Theoretical development 283

A useful tool for measuring the volume of the parallelepiped determined by a set
of vectors is the determinant.

Definition 8.1: The sign of a permutation on aset X = {1,2,...,n} is
given by

+1 if o is an even permutation;

—1 if o is an odd permutation.

sign{o) = {

The determinant of the n by n matrix M is

detM= 5 sign(a)ﬁM[i,a(i)}.

o €Sym(X) i=1

Recall that Algorithm 2.19 can be used to compute the sign of a permutation.
From Definition 8.1, it is straightforward to see that the determinant of the 2 by 2
matrix M is

det M = M[1,1]M[2,2] - M[1,2]M2, 1]

because the only permutations of {1, 2} arc I (the identity permutation) and (1, 2).
Similarly, the determinant of the 3 by 3 matrix M is

det M = M[1,1]M[2,2]M[3,3] — M[1,1]M[2,3)M(3,2]
-MI1,2]M[2,1]M[3,3] + M[1,2)M(2,3)M[3,1]
+M[1,3]M[2, 1]M][3,2] — M|1,3|M[2,2]M[3,1],
because the permutations of {1,2,3} are I, (2,3), (1,2), (1,2,3). (1,3,2) and
(1, 3). Furthermore, if we denote by M(;; the matrix obtained by removing row

1 and column j, then it is easily seen that we can recursively compute the deter-
minant of M with the formula:

”
det M = Y~ (~1)"I Mli, j] det Mg,
i=1

where 1 is any fixed row. Similarly, the determinant can be computed with the
formula

n
det M = Y " (—1)*I M[s, 5] det M

i=1

where j is any fixed column. This method of computing the determinant is called

cofuctor expansion or Laplace expansion and will (ake O(n!) opcrations. A

method that uses only O(n3) operations is (0 use elementary row operations to

reduce the matrix to upper triangular form; see any text on linear algebra.
Elementary linear algebra establishes Lemma 8.3,

284 Basis Reduction

LEMMA 8.3 Let I;. , 52, ey 5,,. € R™ be linearly independent.
() OninputM = [51 , 52, ooy 5,,], Algorithm 8.1 computes an orthogonal basis

M* = [5;,-’;,...,17;!
for the vector space Spang(By, b2, . . ., bn).
(ii) 3; is orthogonal to each vector in

Spang(B;, ..., Bi_1).

(i) If M is a square matrix, then

|det M| = | det M*| = H|[b‘||

i=1

In view of Lemma 8.3, we define, for any lattice £, with (possibly non-square)
linearly independent basis matrix M = {b,, b, .. ,.] the quantity

vol(L) = 1'[(182 5.
J=1

vol{ L) is the n-dimensional volume of the parallelepiped with vertices
n -
Zb;xj : z;€{0,1} Vi3,

where [5],. .. ,5;] is the orthogonal basis obtained by applying Algorithm 8.1.
This volume is independent of the choice of linearly independent basis for L.
If M is a basis for a lattice £, we define the weight of M to be

7 -
= [T 11B:l1-
i=1

The relationship between wt(M) and vol(L) is provided by Hadamard’s inequal-
ity, which we state now.

LEMMA 8.4 (Hadamard's inequality} For all bases M of L, we have

wt(M) > vol(L).

PROOF Suppose M = [E, , 52, ees ,5,,] is a basts for the lattice £. Then on input
M, Algorithm 8.1 constructs, foreach j = 1,2, ..., n, the vectors

-
by =5 - Z o5,
=1

Theoretical development 285

where (b i)
9 - 9)

;5 = .
T

b; - b} = (b —Za,,b') =b}-b
i=1
because {5}, 5;, .- ,5:,} is an orthogonal basis. If 8 is the angle between 5, and
b}, then

rel2 — e B
{16511 = &5 - b5

-

=5 -5
= |18;]| - 1181l cos(8).

Thus 0 < cos(f) < 1, and so for all § we have ||5;|| < ||5;]|. The result now
follows,

.

Hadamard’s inequality is illustrated in Example 8.2.

Example 8.2
Let _
1 1 013
1 0 210
M=]1 0 100
0o -1 10 3
1 1 -1 00
To obtain the determinant of M we use a cofactor expansion along column 5.
[1 0 21] 11 01
_ 1 0 10 10 21
det M = 3-det 0-1 10 + (—3) det 10 10
[1 1-10] 11-10

1 0 1 10 2 11 0
=3(-1)]0-1 1|-3{-1-det|{10 1|+1-det]10 1
(1 1-1 11-1 11-1
=3(=1)-(1)=-3(-1-1+1-(-1+2)
=-3.

The weight of M is

wi(M) = V- 3. /7- V2 VI8 = 12V21 ~ 54.990908.

286 Basis Reduction

Now applying Algorithm 8.1 we obtain:

1 1 1 3
* 3 2 2 7]
3 3
* x -3 0 1
_ 2 _1
a=| * = + 2 3
* % * % 6
* * * *
and T S S
2 4 3 4
_1 3 =3
1 2 i ¢ -3
. _ 1 _1 _1 3
M= 1 2 Y 3 1
_ 1 1
0o -1 -4 1 o
1 3 3
1 3 -3 0 -3%

(Recall that we have defined o;; only for ¢ < j.) Observe that
vol(£) = 1551 - 118311 - 165} - 311 - 118311

=3

= | det M|.

The key to developing an algorithm to find the shortest vector in a lattice is
revealed in Lemma 8.6. First, recall Cramer’s rule, which is easily established
using elementary linear algebra.

LEMMA 8.5 (Cramer's rule) Let M = [5. , 52, ... ,5,,} be an invertible n by n

matrix with entries in R Then, for any vector § € R, the i-th component of the
solution I to the matrix equation§ = M T is

det M;
;=
77 detM’
where MJ = [511521‘"15j—l11715]+1,*--rgn]'

LEMMA 8.6 Given a full dimensional lattice L, with basis M, let j = ME bea
shortest vector in L. Thenforalli = 1,2,...,n, the i-th component of ¥ satisfies

wt{M)

== Sy

Theoretical development 287

PROOF Using Lemma 8.5, we have

o | det My

where M, = [51,52, . ,Ej_l,ﬁ,5j+1,...,5n]. By Lemma 8.4, we obtain
| det M,{ < {[Bll- |1Ball -~ [{B5— 1t - LG - NBsall--- Bl
Also 5}- € L, and so ||7]] < ||5_,-||. Thus
| det M;| < [[Bull - 12l - 185l - 118511 - BBl - - - 1Bl = wi(M).

Therefore |z;| < wt(M)/vol(L) as claimed, because vol(£) = | det M| when £
is full dimensional. |

As a consequence of Lemma 8.6, we are motivated to find a basis M’ such that
the ratio
wt(M')
vol(L}

is small. Thus, because vol{£) depends only on the lattice £ and not on the basis,
we search for a basis M’ with minimal weight wt(M'). We have the following
lower bound on the shortest vector in L.

LEMMA 8.7 Let M = [by,b,,...,b,) be a basis for the lattice L. Ifb € L,
b#0, then . .
(bl > mjin 115511,

where [53,83, . . ., b2] is the result of running Algorithm 8.1 on input M.
PROOF LetM = [I;. , 52, e ,En] be a basis for the lattice £. Then b € £ implies
that there is a k¥ < n such that
k
b= z bjz]'
i=1
with 2; € Z, z; # 0. Algorithm 8.1 sets
j-1
By =b; - aib},
t=1
where -

(8; - 5,)

Qi = = .
T HTE

288 Basis Reduction

Thus, we sec that
&
i=3 55,
i=

where z; € R for j = 1,2,...,k —1and 2; = z; € Z. Now, becausc

{B7,b3, -+, b4} is an orthogonal basis, we have

1/2

k
081 = { > (55 - 5)(z;)
j=1

|2&] - |(BE])

> min |[53].
J

v

The basis M* = [b%,55,...,5%) computed by Algorithm 8.1 on input M is
typically not a basis for the lattice with basis M. This is because the coefficients
{ ;}i<j are not necessarily integers. Lemma 8.7 suggests that we should look
for a basis that is as close to orthogonal as we can find.

Definition 8.2: Let £ be a lattice with basis M = [51,Bz, ..., 5] and let
M* = [b},b3,...,b;] be the basis for Spang (M) obtained by Algorithm 8.1
on input M. We say that M is a reduced basis if:

(a) |as,;| < 4 foralli < j;and

(b) 'll;;-i-l + aj.j+lg;”2 2 -3'”5;”2 for a“] = 172) ceeat 1.

We are interested in this definition because we can establish the following result
and obtain an upper bound on the length of the shortest vector in a lattice £.

THEOREM 8.8 Let M = [El, l;z, ceny gn] be a reduced basis for the lattice L.
Then the following hold:

L |IBi]] < 202D/ 4vol(L)/7; and
2. wt(M) < 2™ D/4yol(L).

PROOF Suppose [El, ba, ..., 5,1] is a reduced basis for the lattice £. Then the
orthogonality of b} and b}, implies, by part (b) of Definition 8.2, that

3 e o - 2 __ Ta 2 2 -
leb,-ll’ <5341 + a5 83117 = BG4 lI” + af 5411185112

Theoretical development 289

Now, applying part (a), we have {15 S all? > 2||I_>';||2. Tterating this inequality, it
follows that

- 1}’-!
61 2 (5) e (5.4
Since l';}‘ = b; we obtain

(vol(£))? = H 1151)?

1\ Zi=m -)
> (3) e

1 n(n—1)/2 -
=(3) e
This yields part 1.

For part 2, first recall that Algorithm 8.1 sets

where ..
Qi; = ———(bi__- b;) .
1163 1
Thus,
- j -
b= ousbt,
i=1

with @;; = 1. Furthermore, because the vectors {5} are orthogonal it follows
that

J j-1
Y e e 1 P
185117 =Y o 1B 11 < 118511 + 3 DB
i=1 =1
by part (a) of Definition 8.2. Now, using Equation 8.4, we have
|1; 117 < 2974153117,

and hence

- - 138 ., N
B:11° < 118112 (1+522’)52’ 1183 117

t=1

290 Basis Reduction

Therefore,
" g
(we(M))? = [116;11?
i=1
< (=172 H 1153112
i=1

= 2"~/ (vol(£))?,

as claimed. |

Example 8.3 Continuation of Example 8.2
The following computations show that

0o o1 0 o0

0o -1 0 0 -1

M = 0 -1 0 -1 1
-1 00 0 o0

o 01 -1 -1

Il
|
O=O O =
|
DO O -
OCO=O 0
L=~ =l =}

! is a reduced basis for a

g Om=OoO0o 0

where M is the matrix given in Example 8.2, and that
lattice £. From Algorithm 8.1 we have:

+ 00 0 0
+ « 0 L 0
a=|* « « -3 -1
* * * * —‘%
* * * * *
and o 0 1 . s
2 1
0 -1 0 3 -3
M =| o -1 0 -} 3
-1 00 0 0
o 01 -§ -3

Hence part (a) of Definition 8.2 is satisfied. To check part (b) we must show that
) pre 3 pe
16751 + @5 51155112 2 Z”bjllz
for each j = 1,2, 3,4. To see this, observe that for j = 1,2,3, 4 we have

35

e NI - v
"b;+1 + a;,’+1b9 " = 2!2! 2) 5)

A reduced basis algorithm 29

and
3333
s =s,2,2, 2,
qpe=33.32
respectively. Thus, the basis sat.isﬁes part (b) and consequently M' is a reduced
basis for £ = £(M). Checking the bounds in Theorem 8.8, we observe that

18,11 < 2* (vol(£))/3

=2. 3%

s 2.4914618;
and

S ~, 1
wt(M’) = TTIIB;1l = 2(6)% =~ 4.898979
i=1
< 2%vol(£) = 64 - 3% =~ 79.7267801.
0

==

8.3 A reduced basis algorithm

Theorem 8.8 shows that, if we have a reduced basis for a lattice £, then it con-
tains a vector that has length less than or equal to 2("~1/4yol(£)!/". This is
a good start towards finding a shortest vector in £. In this section we present
Algorithm 8.2 which computes a reduced basis for £.

Algorithm 8.2: LLL (3,,5,,...,5,)

external GRAM-SCHMIDT()

done + false

(12,5, Bl ey }ics) GRAM-ScHMIDT (31, By, .,)
while not done

(for j « 2ton
fori(—j—ldowntol
do{ donf|a.,|>
then b; « b, ~ [a._,+2jb

do s - - Y
V£ 1185, + o B n° 3|jb3||2” for some j

then interchange b; and b;,,

else done + true

J[g;,g;,. . .,2;],{0"_1‘}5(]‘) + GRAM-SCHMIDT (b1, b2, ...,bs)
return ([by, b2, ..., b))

292 Basis Reduction

THEOREM 8.9 Let L be a lattice with basis [by, b, . . ., by], and let
Maz = max{||b;]|*: ¢ =1,2,...,n} > 2.

Then Algorithm 8.2 finds a reduced basis for £ using at most O(n®log(Maz))
arithmetic operations.

PROOF When |a;;| > L, Algorithm 8.2 replaces b; with

- 1] -~
F= bj— la;j+§J b;.

Now

(E; . j;') 5: . (EJ - [a,-,- + %J E,)

1165 112 153112
_ (b,;; b;-) _ lc"" . lJ <_b_ub_2>

11811 116511
1

ool
<l
-2

Thus when Algorithm 8.1 is called at the end of the loop, the recalculated ajs
will satisfy part (a) of Definition 8.2. It is also easy to see that, if the algorithm ter-
minates, then condition (b) of Definition 8.2 will be met. To see that the algorithm
terminates, we define for £ = 0,1, 2,.. ., n, the quantity

4
=TT
j=1

Notice that each v; > 0. In particular vy = 1 and v, = vol(£)2. Furthermore,
elementary linear algebra shows that vy is the detcrmmant of the ¢ by £ matrix
whose [¢, 5] entry is b; - b_, In particular, because the b ;s are linearly independent
vectors with integer entries, we have that v, > 1. Thus

V = Hv¢>1

Furthermore, the value of V' changes only when some 5,- is changed, and this
occurs only if

- - 3 -
18541 + @ 3185 < Z"bjllz;

A reduced basis algorithm 293

for some j. In this case, b and b_,.H are interchanged, and Algorithm 8.1 recalcu-
lates the corvesponding orthogonal basis and ay;s. Let B , bz, b be the new
basis after the interchange, and let b bz. b be the recomputed orthogonal
basis. Then

b = bywheni£jorj+1;
b = b'wheni#jorj+1;
bj = bj+|_; and
bJ+l = b’.
Atfter the call to Algorithm 8.1, we have
=b;— Y &, (8:5)
t=1
where
R BB,
C!,j = L‘ ;
[16:11

and |@;;| < 1. On the other hand, we have

Jj
b;+l = bj_'.l - Za,-_,-ﬂb;, (8.6)
i=1

3_.,- = -J-H, and o549 = @ ; fori = 1,2,...,5 — 1. Thus, substituting into
Equation 8.5, we see that

. __ . e)
bj = aj,541b5 + b5y,

Therefore, 3
1133117 = Hayjjaab; + b} 4all* < ;llb,'-llz-

Thus when gj and 5_.;+1 are interchanged, the number v; is reduced by a factor
of 3/4 (or more). The other v; are unchanged and so each time there is an in-
terchange, V is reduced by a factor of 3/4 (or more). Therefore the algorithm
terminates, because throughout Algorithm 8.2 we always have V > 1. The initial
value of v; is by Lemma 8.4 at most (Maz)¢. It follows that, prior to the execution
of the while loop, V is at most (Maz) S Consequently, if ¢ is the number of
interchanges performed, then

n(n 1)

t < logg ((Maz)™"~1/?) = logs (Maz).

Thus t is O(n? log(Maz)), and because Algoril.hm 8.1 is an O(n?) algorithm, it
follows that Algorithm 8.2 uses O(n® log(Maz)) arithmetic operations. I

294 Basis Reduction

8.4 Solving systems of integer equations

In this section, we return to the problem of solving a matrix equation of the form
AU = B fora (0, 1)-valued vector U, where A is an m by n integer valued matrix
and B € Z™. As outlined in Section 8.1, we set M equal to the followingm +n
by n + 1 matrix:

[0
M‘[A B

and consider the lattice £ with basis M.

The basic idea of the algorithm is that if U is very short, then there is a good
chance that it will appear in a reduced basis M' for £. Thus we check whether
the reduced basis contains a vector of the form [U,0] with U € {0,1}". If it
does, then a solution to AU = dB is found for some integer d; otherwise another
approach must be taken. We can also check if the reduced basis contains a vector
[U,0] with U € {0,-1}", forthen —U € {0,1}" and A(-U) = dB.

Example 8.4 Using Algorithm 8.2 to find a solution.

Consider the incidence matrix

1120001000
00220001200
0111100010
A=[0 002110001
0000002120
00000001 22
|1 36631336 3]

of Example 6.12.1, in which we have added the orbit length equation in the last
row, as suggested by Exercise 6.17, For this matrix, we wish to solve AU = B
where

B =[11,1,1,1,1,7".

295

Solving systems of integer equations

The basis M is as follows:

OO 0O OCOQCOOCO

-1
-1
-1
-1
-1
-1
-7 i

COO0QCOOOCOOm™
COCO0OO0OOLOCO =D
COoO0COoOOoO—HOO
COCOCOCO—-HOOO
COO0CO~00O00O0O
DCOoOCO=OQOO0CO O
OO OO OCOOO
(=N~ o eNoN N NN N-]
O~MOOCOCOOoO0OO0

OO QOO0 O0O O

OO - ONM
CO = O NN
Cr OO m — &M
OO OMNOMm
ocCoOo0OHOO
CO ™=~ OOMm
ON - NOD®
NAN—-OOOoWw

~_O MO OO M™Mm

o000 O ™

I

=

The weight of this basis is wt{M) ~ 4504883.126564. Applying Algorithm 8.2

to M, we obtain the reduced basis

OO OO 0O ™

[R e]

o OO0

(= — i]

(=== N

-o OO0

(= R e Y e

-0 D - O
e DO
N OO r vt
|

~_ OO OO0 ™
F O OO0 O ™
SO OO ~

(=== o B e - B e i)

OO OOO

COOC N OO —

OO0 O0O0CO ~

Ml

The weight of the new basis is wt(M') ~ 10571.993190, which is, as expected,

less than wt{M). Also, column 4 of M’ is of the form

..,%10,0,0,0,0,0,0,0]"

(ulyuﬁy-

296 Basis Reduction

with each u; € {0,1}. This gives the solution
U = [w,ue,...,u10]" =[1,0,0,0,1,0,0,1,0,0]"

to AU = dB withd = 1.

In Example 8.4, Algorithm 8.2 succeeds in finding a solution to AU = dB.
However, there are many situations in which it will not succeed. This is because
the weight of reduced basis obtained by Algorithm 8.2 may be still too large to
guarantee that the basis contains the shortest vectors in the lattice (see Exam-
ple 8.5). Therefore, wé will now consider another method to reduce the weight of
the basis. Suppose the current basis is M = [El, 52, ..., bn] and consider combi-
nations of the form

T = g,‘ + Egj
where ¢ = 1. If [|v]| < max{|{8]}, }{b;]|}. then one of ||5;]| and [|B;]} can be
replaced by v and the weight of the basis will be reduced. In order to facilitate the
implementation of this idea, we will use the array A defined by

A;j=b;-b;.
Let k € {i,} be such that ||B¢)| = max{||&]), [|5_.,||} When by, is replaced by &,
the only entries of A that need to be recomputed are A, ;. and Ag p for each A.
Observe, for h # k, that
App =7 by
= (e +eB) - B
= (B - Ba) + € (B; - bn)
= QA p+€Ajn,
and
Aep =77
= (b + eb;) - (B: + €b;)
=D+ A +284 ;.
Thus, A can be updated in O(n) operations. This method of reducing the weight

of the basis is simple to implement, and we present it as Algorithm 8.3. There are
(3) pairs of vectors to check and so this algorithm runs in O(n?) time.

Solving systems of integer cquations 297

Algorithm 8.3: WEIGHTREDUCTION (83,52, ..., 5,)

global A;;,1 <¢,5<n
fori —1ton
(forj — i+ 1ton
(for eache € {—1,1}
(if A;; <Aj; thenk « 5 elsek « ¢
U E.' + cg,-
if [9]* < Ax
rAk,k A+ A+ 2 A
forh+1ton
doifhZiandh £ j
Agp —An+ EAj_h
then {Ah,k “ Den

do ¢
do do ¢
then < lfk;éi
Api = Qi +el;;
{ ‘&k(_Akl
else { k.j (—A,J +EAj‘J'
k*“‘AkJ

bk(—

We sce that progress can be made, using these algorithms, to reduce the weight
of the basis and possibly converge to a solution. It turns out that using a combina-
tion of Algorithms 8.2 and 8.3 is often superior for reducing the weight than using
either of them alone. Among the many possible ways to do this, a successful and
simple method is given in Algorithm 8.4.

Algorithm 8.2 and Algorithm 8.1 work through the basis [5y, 5z, . .. ,8a) from
left to right. Thus the order in which the basis vectors appear has an effect on
the outcome of Algorithm 8.2 and thus also on the outcome of Algorithm 8.4.
For a given input basis, it may be prudent to order the basis vectors in increasing
order of length, while for another basis we may prefer a decreasing order, and still
another could do well with random ordering. Since the algorithms run relatively
quickly, many such approaches can be tried. One can even try sorting the basis
before each call to Algorithm 8.3 and also to include in the while loop additional
calls to Algorithm 8.2. The optimal approach depends on the input basis and is
best determined by experimentation.

298 Basis Reduction

Algorithm 8.4: KR (M = [b,,52,...,5.])

external LLL(), WEIGHTREDUCTION()

Sort the basis vectors so that |5y || < ||Bz]] < -- - < }|Bal|
M « LLL(M)
fori« lton
4 forj « lton
0 { doA,-__, — 5,"55
weight « H:;l VA
done « false
M + WEIGHTREDUCTION(M)
new < n?:l VA
while not done ¢ if new < weight
then weight — new
else done « true

return (M)

Example 8.5
Consider the incidence matrix

21000220012000200¢0¢1
121100000000220202¢
A= 6011211020110111000
0000222100002000220
00000060011 121111211
15151515303030¢ 53015303030303030303015

of Example 6.12.2, in which we have added the orbit length equation in the last
row, as suggested by Exercise 6.17. For this matrix, we wish to solve AU = B,
where

B=[1,1,1,1,1,35]".

Applying Algorithm 8.2 to the basis

w1 5]

299

Solving systems of integer equations

we obtain the basis M’ given below

1_..100000100]00000000000000
0000000004000000001000000
0000000000001_.000010000000
0100000001_..004000100000000
000001_.00001011_.00000001_.010
.|..|_.01_.000004.000001000000000
00000000001_.00010000000000
0000000040010000000001_.010
4010000040100000000000000
01_..100000000000000001_..1_..1000
.|_.0]0%10000000000000000000
4100000000000000000..‘_A.I.OOOO
000004.1000000000000000000
COoOmMmOOOOOoOOODOoO0COOCODOODODOOOD O

L

The weight of this new basis is wt(M') =~ 13152322.331817. Unfortunately

there is no column of the form

. ,’U.]g,O,O,O,O,O,O]T

[ul,ug,. .

with each u; € {0, 1} or with each u; € {0, —1}. Applying Algorithm 8.4 to the

Basis Reduction

300

basis M’, we obtain the basis M*, which is as follows:

O OO0 O0OO0O0O~O0COO0O0OOOOLCOC|loco 0O v
01_.001_.1_.0001_.140000004.0101_.00
OO -~m000C~00O0C0COCOCOCDOQRTO~NlcocOoOODO O
000000000000100001_.0000000
000001_.1000000000000000000
.I_.OOI.I_.IOOOOOODOOOOOO000000
0001_.000004.0000010001_.10000
0000000100000010000140000
0000000000000101_.000000000
000000000010001_.0000000000
1000000104.010000000000000
41000000000000000004.10000
0000000001_.000000001000000
oo OO0 O0OO0O0DOoOO0OO0QCOOO0COODIODOOOO O

—

-1

The weight of this new basis is wt(M ") = 927342.111629, and this is less than

wt(M') for the previous basis. Furthermore, column 17 has the form

.., u19,0,0,0,0,0,0]7

[ul,uz,.

with each u; € {0,1}. This gives the solution

-7”19]T
= [0,90,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1]7

[er,uz,..

U=

dB withd = 1.

to AU =

8.5 The Merkle-Hellman knapsack system

A public key cryptosystem is a method of secure transmission of messages in

which the sender looks up the receiver’s key K from a publicly available list

of keys K. From the key, an encryption rule is determined, which is used to

The Merkie-Heliman knapsack system 301

encode plaintext messages P into ciphertext messages C. A ciphertext message
is then transmitted to the receiver. Only the receiver knows the decryption rule,
comresponding to the key K, that will decode messages sent to him. Anyone else
will have great difficulty in decrypting the ciphentext, even though they know the
public key K and the encryption rule used.

The well-known Merkle-Hellman knapsack cryptosystem was first described
by Merkle and Hellman in 1978. This public key cryptosystem, and several vari-
ants of it, were broken in the early 1980s. In this section we will show how basis
reduction can be used to break the Merkle-Hellman knapsack cryptosystem.

The term “knapsack” is actually a misnomer. The Knapsack problem, as it is
usually defined, is a problem involving selecting objects with given weights and
profits in such a way that a specified capacity is not exceeded and a maximum
profit is attained (see Problem 1.4). The Merkle-Hellman knapsack cryptosystem
is instead based on Problem 8.2.

Problem 8.2: Subset Sum

Instance: positive integers ay, . .. a,, and z. The a;s are called sizes and
z is called the target sum.
Find: a 0-1 vector U = [uy,...,u,] such that

n
E ui; = 2.
i=1

Problem 8.2 is a search problem which is known to be NP-hard, Among other
things, this means that there is no known polynomial-time algorithm that solves
it. But even if a problem has no polynomial-time algorithm to solve it in general,
this does not rule out the possibility that certain special cases can be solved in
polynomial time. This is indeed the situation with the Subset Sum problem.

we define a list of sizes, [a,,. - ., a,], to be superincreasing if

j=1
a; > Zﬂ.,

=1

for 2 € 3 < n. If the list of sizes is superincreasing, then the Subset Sum
problem can be solved very easily in time O(n) by a greedy algorithm, and a
solution U (if it exists) must be unique. The algorithm to do this is presented in
Algorithm 8.5.

302 Basis Reduction

Algorithm 8.5: SUPERINCREASINGSOLVER (@),42,...,8n, 2)

for i < n downto 1

ifz>a,
Z 42— 0
do then {Ui 1
else u; «— 0
ifz=0
then U « [u,,...,upn] is the solution

else there is no solution.

Suppose A = [a, . . -, a,] is superincreasing, and consider the function

n
ea: {0,1}" - {0,...,Za,}
i=1

defined by the rule

n
ea{tts, ..., ug) = Zuiaiv
i=1

Is e4 a possible candidate for an encryption rule? Since A is superincreasing, e 4
is an injection, and the algorithm presented in Algorithm 8.5 would be the cor-
responding decryption algorithm. However, such a system would be completely
insecure because anyone can decrypt a message that is encrypted in this way.

The strategy therefore is to transformn the list of sizes in such a way that it is
no longer superincreasing, The receiver will be able to apply an inversc transfor-
mation to restore the superincreasing list of sizes. On the other hand, an observer
who does not know the transformation that was applied is faced with what looks
like a general, apparently difficult, instance of the Subset Sum problem when
he tries to decrypt a ciphertext.

One suitable type of transformation is a modular transformation. That is, a
prime modulus p 1s chosen such that

n
p> Zai,
i=1

as well as a multiplier m, where 1 < m < p — 1. Then we define
t; = ma; mod p,

1 € i < n. The list of sizes T = [t1,..-,ta] Will be the public key used for
encryption. The values m, p used to define the modular transformation are secret.
The complete description of the Merkle-Hellman knapsack cryptosystem is given
int Definition 8.3.

The Merkle-Hellman knapsack system 303

Definition 8.3: Merkle-Hellman knapsack cryptosystem. Let A =
[a1,...,2,] be a superincreasing list of integers, let p > 3o, a; be prime,
andletl <m < p— 1. For1 €14 < n, define

<« = ma; mod p,

anddenote T = [ty, ..., t,]. Letthe set of plaintext messages be P = {0,1}",
let the set of ciphertext messages be C = {0, ...,n(p — 1)}, and let the set of

keys be
K = {(Arpl m,T)},

where A, p, m, and T are constructed as described above. T is public, and p,
m and A are secret.

For K = (A,p,m,T),and [u1,...,u,] € P, define

n
ey, ..., up) = Zu.‘t,' eC.

i=1

For y € C, define 2z = m~ly mod p and solve Problem 8.2 with sizes
ay,..., 0y and target sum z, obtaining dxc(y) = [u1,...,un] € P.

The following small example illustrates the encryption and decryption opera-
tions in the Merkle-Hellman knapsack cryptosystem.

Example 8.6
Suppose
A =12,5,9,21,45,103, 215, 450, 946]

is the secret superincreasing list of sizes. Suppose p = 2003 and m = 1289.
Then the public list of sizes is

T = [575,436,1586,1030, 1921, 569, 721, 1183, 1570].

Now, if the sender wants to encrypt the plaintext U = {1,0,1,1,0,0,1,1,1],
she computes

y = 575+ 1586 + 1030 4+ 721 + 1183 + 1570 = 6665.
When the ciphertext y is received, we first compute

z=a"lymodp
= 317 x 6665 mod 2003
= 1643.

304 Basis Reduction

Then we solve the instance of Problem 8.2, with sizes s;, 82, ..., 3, and target
sum 2, using Algorithm 8.5, The plaintext (1,0,1,1,0,0,1,1,1) is obtained.
0

By the carly 1980s, the Merkle-Hellman knapsack cryptosystem had been bro-
ken by Shamir. Shamir was able to use an integer programming algorithm of
Lenstra to break the system. This allowed the receivers’s trapdoor (or an equiv-
alent trapdoor) to be discovered by a cryptanalyst. This cryptanalyst can decrypt
messages exactly as the intended receiver does. To circumvent these attacks on the
Merkle-Hellman knapsack cryptosystem other variants were introduced. These
variants had the effect of increasing the density of the Subset Sum problem.
The density of an instance of Problem 8.2, with sizes A = [ay, .. .,ay], is defined
by

n

8(4) =

logg(max; a;)

If 3(A) > 1, then therc will be in general many subsets of the a;s with the
same sum. These instances of Problem 8.2 could not be used in a cryptosystem.
Consequently the interesting casc is when 3(A) < 1. Basis reduction can be used
to solve almost all instances of Problem 8.2 with 8(A) sufficiently smail,

We begin by reducing Problem 8.2 to Problem 8.1. The method and reasoning
is exactly the same as in Section 8.4. However this time the incidcnce matrix
[a1,as,...,a,] has only one row. The basis is thus

(8.7)

Example 8.7
In Example 8.6, the public list of sizes is

T = [575,436, 1586, 1030, 1921, 569, 721, 1183, 1570]

and the received ciphertext is ¥ = 6665. Thus the lattice we wish to reduce is

_[r @
M‘[T —v]'

The Merkle-Hellman knapsack systcm 305

Applying Algorithm 8.2, we obtain the basis

-2 0 1 0 1 01 -1 -2| 1]
-1 0 ~1 1 -1 00 -1 0] 1
1 0 0 -1 -1 -1 1 0 -1, 0
0 -1 -2 -1 1 01 1 0 -1
M' = 6o 0 1 1 0 10 -1 —-1|-=2
B 6o 1 0 0 2 00 0 0| Of"
6 -1 0 2 -1 -11 1 1|1
6 1 0 -1 0 -11 1 2 0
o o 0o o o 11 0 1| 2
| 6 1 0 0 0 10 2 0] 0]
which has the solution
U=10,0,11,001,1,1]
in column 7. In fact U is the original plaintext. 0

It is interesting that the method of basis reduction breaks the Merkle-Hellman
knapsack cryptosystem without determining the multiplier or modulus used.

If the reduced basis obtained by Algorithm 8.2 on the input basis given in Equa-
tion 8.7 fails to contain a solution, then further reduction methods such as Algo-
rithm 8.4 can be applied. Alternatively, we can change the form of the basis. A
different basis that has been studied is

1 0 - 0| &]
0 1 --- 0] 3
M= : I (8.8)
0o 0 --- 1] 4%
alN aN ---a, N —zN

where N = [L/n]. Consider the lattice £ with the basis M =[5, s, ..., by
given in Equation 8.8. If U = {uy, u2,...,u,] is a solution to the Subset Sum

problem
n
Zu,'a,' =2z,

i=1

then .
ﬂ.= ['!7[, e ,inyO] = Zuii;,' - En+1

i=1
isin £,and y; € {——%, 1},fori = 1,2,...,n. Torecover the solution U from
we simply set u; = y; + 1 fori = 1,2,...,n. Observe that [|§il| = /7, and so

¥ is a vector of short length in L(M).

306 Basis Reduction

TABLE 8.1
Subset Sum data.

Basis 8.7 Basis 8.8
d LLL | KR || LLL | KR
0.650 55| 62 99 [100
0.700 38! 53 o8 | 98
0.800 24| 31 9 | 87
0.900 19| 15 82| 79
0.930 131 20 76 | 83
0.960 121 16 73] 78
0.990 10| 17 68 | 78

If the density of the Subset Sum problem is small, then the size of the a;s are
Jarge and consequently most of the vectors in the lattice (with basis {8.7) or (8.8))
will have relatively large length. Therefore, an algorithm that reduces the weight
of the basis will have a good possibility of finding a solution. In this chapter
we have presented two such algorithms, Algorithm 8.2 and Algorithm 8.4. The
success in finding the shortest vector in the lattice with either of these algorithms
is not guaranteed.

A lattice oracle is an algorithm that is guaranteed to return the shortest vector
in the lattice in polynomial time. No such algorithm is known. If such an oracle
exists, then it has been shown that the shortest vector in the lattice with basis 8.7
corresponds with high probability to the solution of the Subset Sum problem,
whenever the density is less than 0.6463. If we instead use basis 8.8, then the
shortest vector corresponds to a solution with high probability when the density
is less than 0.9408. Therefore, theoretically, basis (8.8) is superior to basis (8.7).
To support this, we give experimental evidence in Table 8.1. For each density
listed in Table 8.1 we generated 100 random Subset Sum problems of size
20. These were constructed by choosing 20 random non-negative integers less
than |22%/2|. The target sum was created by choosing a random subset of these
20 integers and then summing the entries. In the table we report for each basis
and each reduction algorithm the number of successes in solving the 100 random
Subset Sum problems.

8.6 Notes
Section 8.2
Analysis similar to that given in this section can be found in [79, 64, 96, 19].

Exercises 307

Section 8.3

Algorithm 8.2 appears in [64] where it was introduced as a method for factor-
ing polynomials with rational coefficients. It is often also called the L3, or the
Lovasz algorithm, and it is a crucial component in many number theoretic algo-
rithms (19].

Section 8.4

The multi-row situation when A is the orbit incidence matrix for constructing
designs (see Section 6.6.1) was first investigated by Kreher and Radziszowski
[58, 60). In particular Algorithms 8.3 and 8.4 were first described in {58, 59, 60].
To the best of our knowledge no theoretical or experimental analysis has been
obtained in this situation. On the other hand, several thousand new combinato-
rial designs were discovered using the basis reduction algorithm of Kreher and
Radziszowski.

Section 8.5

The Merkle-Hellman knapsack cryptosystem was presented in [74]. This system
was broken by Shamir [98}, and the “iterated” version of the system was broken
by Brickell (11]. The analysis using a lattice oracle and giving the bounds on the
density appears in the article [23). For more information, see the survey article
by Brickell and Odlyzko [12] and the Handbook of Applied Cryptography [73].
Algorithm 8.3 which first appeared in [58, 59] was also used by Schnorr and
Euchner to solve Subset Sum problems in [95].

Exercises

8.1 Give a complete proof of Lemma 8.1.
8.2 Which of the following vectors are in the lattice given in Example 8.1?
(a) [-1,18]
(b) |4,12)
() 1,6]
(d) [1,10]
e [1,-11]
8.3 Consider the lattice with basis
1 -2
=[5 7]
that is displayed in Example 8.1.
(a) Compute wt{Af) and vol(L} and verify Hadamard's inequality for this lat-
tice.
(b) Show geometrically (i.e., draw a picture) that for this lattice
wt(M) > vol(£L).

308 Basis Reduction

8.4 Let [b, ,b2,...,ba] be abasis. Give a formal proof that an operation of the form
replace 5, with a1b1 + agby + - + I-;, o+ Qnbn

can be obtained by pcrfonmng a sequence of the following three operations:
(2) Replace b, with b; + bs.,
(b) Replace b with — b; & b and
() Replace &; with &; — b,, where ¢ # 3.
8.5 Using Algorithm 8.1, work out by hand an orthogonal basis for the lattice spanned

by
1 1 2
M=101].
1 1 0

Check your results by computer. What is the volume of the lattice spanned by the
columns of M? Verify Lemma 8.4 for the matrix M.
8.6 Consider the matrix

0 2 3
1 0 -1
M = 2 -2 2
2 2 0
(a) Show that M is a reduced basis.
(b) Verify the inequalities of Theorem 8.8 for the matrix M.
8.7 Use the algorithms in Section 8.4 to construct a Steiner triple system of order 9 that
has

g=1(0,1,2)(3,4,5)(6,7,8)

as an automorphism.
8.8 Suppose the Merkle-Hellman knapsack cryptosystem has as its public list of sizes
the vector

T = [1394, 1256, 1508, 1987, 439, 650, 724, 339, 2303, 810].

Suppose an observer discovers that p = 2503.
(a) By trial and error, determine the value @ such that the lista™ T mod pis a
permutation of a superincreasing list.
{b) Show how the ciphertext 5746 would be decrypted.
(c) Use basis reduction to decrypt the ciphertext 5746.
8.9 Develop an algorithm similar 1o Algorithm 8.3 that reduces the weight of the basis
by considering combinations of the form

Uv=¢ Ei, te: 5:', + €3 5;,,
wheree; = £1,fori =1,2,3.
8.10 For each of the following Subsst Sum problems compute their density and use

basis reduction to find a solution.
(a)

= [283615655564068, 796478694573302, 600340146256703,
732983327534134, 786266787523357, 10551 5816928335,
112897627203131, 330057122934813, 1089988300272331,
1051338601577848, 1109763392717310, 145117009247205,

Exercises 309

283635625683684, 6217169571139, 909231046365184,
740552083084632, 767717555811633, 222691570662389,
287870530458475, 250604219988445],

z = 5055299030829558

b
A = [7960137240, 7503674315, 8975593017, 6982240834, 750319933,

2263778309, 5779454351, 2189761281, 6377653436, 1899000113,

560590007, 6148611908, 5254132888, 4377585063, 1837007135,

8439676091, 4254195333, 5970662702, 1507562435, 1826255982],
z = 37987557118

(©)
A = [806109, 408997, 1169428, 1011478, 1150062, 1182254, 658173,

1198146, 1199680, 430790, 774558, 850850, 916096, 1085626,
164865, 288661, 260406, 619265, 1030628, 946958],
z = 8440889

Bibliography

[1) E. AARTS AND J.K. LENSTRA. Local Search in Combinatorial Optimiza-
tion, John Wiley & Sons, 1997.

[2] G.E. ANDREWS. The Theory of Partitions, Addison-Wesley, 1976.

[3] S. BAASE. Computer Algorithms, Introduction 10 Designs and Analysis
(Second Edition), Addison-Wesley, 1988.

[4] L. BABEL. Finding maximum cliques in arbitrary and in special graphs.
Computing 15 (1991), 321-341.

{5] E. BALAS AND C.S. Yu. Finding a maximum clique in an arbitrary graph.
SIAM Journal of Computing 5 (1986), 1054-1068.

[6] K.P. BOGART. Introductory Combinatorics {Second Edition), Harcourt,
Brace, Jovanovich, 1990.

[7] 1.A. BONDY AND U.S.R. MURTY. Graph Theory with Applications,
American Elsevier, 1976.

[8] R.M. BRADY. Optimization strategies gleaned from biological evolution,
Nature 317 (1985), 804-806.

[9] G. BRASSARD AND P. BRATLEY. Algorithmics Theory and Practice,
Prentice-Hall, 1988.

[10] D. BRELAZ. New methods to color vertices of a graph. Communications
of the ACM 22 (1979), 251-256.

[11] E.F. BRICKELL. Breaking iterated knapsacks. Lecture Notes in Computer
Science 218 (1986), 342-358. (Advances in Cryptology - CRYPTO ’85.)

[12] E.F. BRICKELL AND A.M. ODLYZKQ. Cryptanalysis, a survey of recent
results. In Contemporary Cryptology, The Science of Information Integrity,
G.J. Simmons, ed., IEEE Press, 1992, pp. 501-540.

[13] C. BRON AND J. KERBOSCH. Algorithm 457: finding afl cliques of an
undirected graph H. Communications of the ACM 16 (1973), 375-577.

[14] R.A. BRUALDL. Introductory Combinatorics (Second Edition), Prentice-
Hall, 1992.

[15) G. BUTLER. Fundamental Algorithms for Permutation Groups, (Lecture

3

312 BIBLIOGRAPHY

Notes in Computer Science, vol. 559), Springer-Verlag, 1991.

[16] P.J. CAMERON. Combinatorics: Topics, Technigques, Algorithms, Cam-
bridge University Press, 1994.

[17] V. CERNY. A thermodynamical approach to the traveling salesman prob-
lem. Journal of Optimization Theory and Applications 45 (1985), 41-55.

[18] N. CHRISTOFIDES. Graph Theory: An Algorithmic Approach, Academic
Press, 1975.

[19]1 N. COHEN. A Course in Computational Algebraic Number Theory,
Springer-Verlag, 1993.

[20} C.J. COLBOURN AND J.H. DINITZ, EDS. The CRC Handbook of Combi-
natorial Designs, CRC Press, 1996.

[21] J.H. CONWAY AND R.K. GuY. The Book of Numbers, Springer-Verlag,
1996.

[22] T.H. CORMEN, C.E. LEISERSON AND R.L. RIVEST. Introduction to Al-
gorithms, MIT Press, McGraw-Hill, 1990,

[23] M.J. COSTER, A. Joux, B.A. LAMACCcHIA, A.M. OpLYZKO, C.P.
SCHNORR AND J. STERN. Improved low-density subset algorithms, Com-
putational Complexity 2 (1992), 111-128.

[24] G.A. CROES. A method for solving traveling salesman problems. Opera-
tions Research 6 (1958), 791-812.

[25] J.H. DINITZ AND D.R. STINSON. A fast algorithm for finding strong
starters. STAM Journal on Algebraic and Discrete Methods 2 (1981), 50—
56.

[26] J.D. DIXON AND B. MORTIMER. Permutation Groups, Springer-Verlag,
1996.

[27] A.A.ELGAMAL, L.A. HEMACHANDRA, 1. SHPERLING AND V.K. WEL
Using simulated annealing to design good codes. JEEE Transactions on
Information Theory 33 (1987), 116-123.

[28] S. EVEN. Algorithmic Combinatorics, MacMillan, 1973.

[29] S. EVEN. Graph Algorithms, Computer Science Press, 1979,

[30] T.C. FRENZ AND D.L. KREHER. Enumerating cyclic Steiner systems,
Journal of Computarional Mathematics and Computational Computing 11
(1992), 23-32.

[31] M.R. GARBY AND D.S. JOHNSON. Computers and Intractibilty: A Guide
10 the Theory of NP-Completeness, Freeman, 1979.

[32] I.M. GESSEL AND R.P. STANLEY. Algebraic enumeration. In Handbook
of Combinatorics, R.L. Graham, M. Gritschel and L. Lov4sz, eds., Elsevier
Science, 1995, pp. 1021-1061.

[33] P.B. GIBBONS. Computational methods in design theory. In The CRC

BIBLIOGRAPHY 313

Handbook of Combinatorial Designs, C.J. Colbourn and J.H. Dinitz, eds.,
CRC Press, 1996, pp. 718-753.

[34)} F. GLOVER. Future paths for integer programing and links to artificial in-
telligence. Computers and Operations Research § (1986), 533-549.

f35] F. GLOVER AND M. LAGUNA. Tabu Search. In Modem Heuristic Tech-
niques for Combinatorial Problems, C.R. Reeves, ed., John Wiley & Sons,
1993.

[36] L.A. GOLDBERG. Efficient Algorithms for Listing Combinatorial Struc-
tures, Cambridge University Press, 1993.

[37] I.P. GOULDEN AND D.M. JACKSON. Combinatorial Enumeration, John
Wiley & Sons, 1983.

[38] R.L. GRAHAM, M. GROTSCHEL AND L. LOVAsz, EDS. Handbook of
Combinatorics, Elsevier Science B.V., 1995,

[39] P. HANSEN. The steepest ascent mildest descent heuristic for combinato-
rial programing. Congress on Numerical Methods in Combinasorial Opti-
mization, 1986, Capri, Italy.

[40] A. HERTZ AND D. DE WERRA. The tabu search metaheuristic: how we
used it. Annals of Mathematics and Artificial Intelligence 1 (1991), 111-
121.

[41] J.H. HOLLAND. Adaptation in Natural and Artificial Systems, University
of Michigan Press, 1975.

[42] I.S. HONKALA aND P.R.J. OSTERGARD. Code Design. In Local Search
in Combinatorial Optimization, E. Aarts and] K. Lenstra, eds., John Wiley
& Sons, 1997.

[43] E. HOROWITZ AND S. SAHNI. Fundamentals of Computer Algorithms,
Computer Science Press, 1978.

[44] T.C. Hu. Combinatorial Algorithms, Addison-Wesley, 1982.

[45] T.R. JENSEN AND B. TOFT. Graph Coloring Problems, John Wiley &
Sons, 1995.

[46] M. JERRUM. A compact representation for permutation groups. Journal of
Algorithms 7 (1986), 60-78.

[47] P. Jog, 1.Y. SUH AND D.V. GUCHT. The effects of population size,
heuristic crossover and local improvement on a genetic algorithm for the
travelling salesman problem. In Proccedings of Third international Con-

- ference on Genetic Algorithms, J.D. Schaffer, ed., Morgan Kaufman, 1989.

[48] D.S. JOHNSON, C.R. ARAGON, L.A. MCGEOGH AND C. SCHEVON.
Optimization by simulated annealing: an experimental evaluation. Part I,
graph partitioning. Operations Research 37 (1989), 865-892,

[49] D.S. JOHNSON AND M.A. TRICK, EDS. Cliques, Coloring and Satisfia-
bility: Second DIMACS Implementation Challenge, American Mathemati-

314 BIBLIOGRAPHY

cal Society, 1996.

[50] S.M. JOHNSON. Generalion of permutations by adjacent transpositions.
Mathematics of Computation 17 (1963), 282-285.

[51] R.M. KaRP. Reducibility among combinatorial problems. In Complexity
of Compurer Compuiations, R.E. Miller and J.W. Thatcher, eds., Plenum
Press, 1972, pp. 85-103.

[52] B.W. KERNIGHAN AND S. LIN. An efficient heuristic procedure for par-
titioning graphs. Bell Systems Technical Journal 49 (1970), 291-307.

[53] S. KIRKPATRICK, C.D. GELLAT AND M.P. VECCHL. Optimization by
simulated annealing. Science 220 (1983), 671-680.

[54) D.E. KNuTH. Efficient representation of perm groups. Combinatorica 11
(1991), 33-44.

[55] W.L. KocaY. On writing isomorphism programs. In Computational and
Constructive Design Theory, W.D. Wallis, ed., Kluwer, 1996, pp. 135-175.

[56) D.C. KOZEN. The Designs and Analysis of Algorithms, Springer-Verlag,
1992.

[57] E.S. KRAMER AND D, M. MESNER. t-Designs on hypergraphs. Discrete
Mathematics 15 (1976), 263-296.

[58] D.L. KREHER AND S.P. RaDZIsZowsKkl. Finding simple t-designs by
using basis reduction. Congressus Numerantium 55 (1986), 235-244.

[59] D.L. KREHER AND S.P. RADZISZOWSKI. Solving subset-sum problems
with the L? algorithm. Journal of Combinatorial Mathematics and Combi-
naiorial Computing 3 (1988), 49—63.

(60] D.L. KREHER AND S.P. RADZISZOWSKI. Constructing 6-(14,7,4) de-
signs. Contemporary Mathematics 111 (1990), 137-151.

[61] L. KUCERA. Combinatorial Algorithms, Adam Hilger, 1990.

{62] J. LAGARIAS AND A. ODLYZKO. Solving low-density subset sum prob-
lems. Journal of the ACM 32 (1985), 229-246.

[63] E.L. LAWLER,].K. LENSTRA, A H.G. RINNOOY KAN AND D.B.
SHMOYS. The Traveling Salesman Problem: A Guided Tour of Combina-
torial Optimization, John Wiley & Sons, 1985.

[64] A.K.LENSTRA, H.W. LENSTRA, JR., AND L. Lovasz. Factoring poly-
nomials with rational coefficients. Mathematics Annals 261 (1982), 515-
534.

[65] S. LIN. Computer solutions of the traveling salesman problem. Bell Sys-
tems Technical Journal 44 (1965), 224-2269.

[66] C.C. LINDNER AND C.A. RODGER. Design Theory, CRC Press, 1997.

[67] J.H. VAN LINT AND R.M. WILSON. A Course in Combinatorics, Cam-
bridge University Press, 1992.

BIBLIOGRAPHY 315

[68] E.M. LuUKS. Isomorphism of graphs of bounded valence can be tested in
polynomial time. In Proceedings of the 21st IEEE Symposium on the Foun-
dations of Computer Science, 1980, pp. 42-49.

[69] H.B. MANN. On orthogonal Latin squares. Bulletin of the American Math-
ematical Society 50 (1950), 418-423,

[70] B.D, MCKAY. Naughty User’s Guide (version 1.5), Computer Science De-
partment, Australian National University.

[71] B.D. McKAY. Practical graph isomorphism. Congressus Numerantium 30
(1981), 45-87.

[72] K. MEHLHORN. Data Structures and Algorithms 2: Graph Algorithms and
NP-Completeness, Springer-Verlag, 1984.

[73] A.J. MENEZES, P.C. VAN OORSCHOT AND S.A. VANSTONE. Handbook
of Applied Cryptography, CRC Press, 1996.

[74] R.C. MERKLE AND M.E. HELLMAN. Hiding information and signa-
tures in trapdoor knapsacks. [EEE Transactions on Information Theory,
24 (1978), 525-530.

[75] N. METROPOLIS, A.W. ROSENBLUTH, A.H. TELLER AND E. TELLER.
Equation of state calculation by fast computing machines. Journal of
Chemical Physics 21 (1953), 1087-1091.

[76]) H. MUHLENBEIN, M. GORGES-SHCLEUTER AND O. KRAMER. New so-
lutions to the mapping problem of parallel systems — the evolution ap-
proach. Parallel Computing 4 (1987), 269-279.

[77] H. MUHLENBEIN, M. GORGES-SHCLEUTER AND O. KRAMER. Evo-
lution algorithms in combinatorial optimization. Parallel Computing 7
(1988), 65-85.

[78] W. MYRVOLD, T. PRSA AND N. WALKER. A dynamic programming ap-
proach for testing clique algorithms, preprint (1997).

[79] G.L. NEMHAUSER AND L.A, WOLSEY. Integer and Combinatorial Opti-
mization, John Wiley & Sons, 1988.

[80] A. NUENHUIS AND H.S. WILF. Combinatorial Algorithms (Second Edi-
tion), Academic Press, 1978.

[81] T.A.J. NICHOLSON. A sequential method for discrete optimization prob-
lems and its application to the assignment, traveling salesman and three
scheduling problems. Journal of the Institute of Mathematics and its Ap-
plications 13 (1965), 362-375.

[82] C.H. PAPADIMITRIOU. Computational Complexity, Addison-Wesley,
1994,

{83) C.H. PAPADIMITRIOU AND K. STEIGLITZ. Combinatorial Optimization:
Algorithms and Complexity, Prentice-Hall, 1982,

[84) P.W. PURDOM, JR. AND C.A. BROWN. The Analysis of Algorithms, Holt,

316 BIBLIOGRAPHY

Reinhart and Winston, 1985.

[85] N.J. RADCLIFFE. Equivalence class analysis of genetic algorithms. Com-
plex Systems 5 (1991), 183-205.

[86] N.J. RADCLIFFE AND P. SURRY. Formae and the variance of fitness. In
Foundations of Genetic Algorithms 3, D. Whitley and M. Vose, eds., Mor-
gan Kaufman, 1995.

[87] V.J. RAYWARD-SMITH, I.H. OsMAN, C.R. REEVES AND G.D. SMITH,
EDS. Modern Heuristic Search Methods, John Wiley & Sons, 1996.

[88] R.C. READ. The coding of various kinds of unlabeled trees. In Graph The-
ory and Computing, R.C. Read, ed., Academic Press, 1972, pp. 153-182.

1891 C.R. REEVES, ED. Modern Heuristic Techniques for Combinatorial Prob-
{ems, John Wiley & Sons, 1993.

[90] E.M. REINGOLD, J. NIEVERGELT AND N. DEO. Combinatorial Algo-
rithms, Prentice-Hall, 1977.

[91] S. REITER AND G. SHERMAN. Discrete Optimizing. Journal of the Soci-
ety for Industrial and Applied Mathematics 13 (1965), 864-889.

{92] F.S. ROBERTS. Applied Combinatorics, Prentice-Hall, 1984,

[93] 1.J. ROTMAN. An Introduction to the Theory of Groups, Springer Verlag,
1995.

[94] C. SAVAGE. A survey of combinatorial Gray codes. SIAM Review, 39
(1997), 605-629.

(95] C.P. SCHNORR AND M. EUCHNER. Lattice basis reduction: improved
practical algorithms and solving subset sum problems. Lecture Notes in
Computer Science 529 (1991), 68-85. (Fundamentals of Computation The-
ory - FCT '91))

[96] A. SCHRUVER. Theory of Linear and Integer Programming, John Wiley
& Sons, 1986.

{971 R. SEDGEWICK, Algorithms (Second Edition), Addison-Wesley, 1988.

[98] A. SHAMIR. A polynomial-time algorithm for breaking the basic Merkle-
Hellman cryptosystem. JEEE Transactions on Information Theory 30
(1984), 699-704.

[99] C.C. Sims. Computational methods for permutation groups. In Computa-
tional Problems in Abstract Algebra, Pergamon Press, 1970, pp. 169-184.
[100] R.P. STANLEY. Enumerative Combinatorics, Volume 2, Cambridge Uni-
versity Press, 1998.
[101]) D. STANTON AND D. WHITE. Constructive Combinatorics, Springer-
Verlag, 1986.

[102] D.R. STINSON. Hill-climbing algorithms for the construction of combina-
torial designs. Annals of Discrete Mathematics 26 (1985), 321-334,

BIBLIOGRAPHY 317

[103] D.R. STINSON. An Introduction to the Designs and Analysis of Algorithms
(Second Edition}, Charles Babbage Research Centre, 1987,

[104] D.R. STINSON. Cryptography Theory and Practice, CRC Press, 1995.
[105] H.J. STRAIGHT. Combinatorics: An Invitation, Brooks/Cole, 1993.

[106] H.F. TROTTER. PERM (Algorithm [15). Communications of the ACM §
(1962), 434-435.

[107] A. TUCKER. Applied Combinatorics (Third Edition), John Wiley & Sons,
1995.

[108] P. VAN LAARHOVEN AND E.K.L. AARTS. Simulated Annealing: Theory
and Applications. Kluwer Academic Publishers, 1988,

(109] W.D. WALLIS. Combinatorial Designs, Marcel Dekker, 1988.

[110] W.D. WALLIS, ED. Compuitational and Constructive Design Theory,
Kluwer Academic Publishers, 1996,

[111) M.B. WELLS. Elements of Combinatorial Computing, Pergamon Press,
1971.

[112] D.B. WEST. Introduction to Graph Theory, Prentice-Hall, 1996.
[113) H.S. WILF. Algorithms and Complexity, Prentice-Hall, 1986.
[114] H.S. WILF. Combinatorial Algorithms: An Update, SIAM, 1989.

[115] S. GILL WILLIAMSON. Combinaiorics for Computer Science, Computer
Science Press, 1985,

R

Algorithm Index

ADDBLOCK, 172-174
ALLCLIQUES, 112
ARRAYTOCYCLE, 200, 206
ASCEND, 166

AuT, 244

BACKTRACK, 107
BINARYSEARCH, 25, 26
BOUNDING, 123
BRANCHANDBOUND, 142

CANONT, 263

CANON2, 271,272
CATALANRANK, 99
CATALANUNRANK, 100
CERT1, 263

CERT2, 272
CERTIFICATETOTREE, 252
CHANGEBASE, 213, 221, 222,271
COMPARE, 262, 263, 271
CONJPARTITION, 69, 70
CONSTRUCTBLOCKS, 17t, 174
CYCLETOARRAY, 200

DELETEPAIR, 172,173

ENTER, 209, 210, 212, 244
ENTER2, 212, 213, 271
ENUMPARTITIONS, 72,77, 78
ENUMPARTITIONS2, 74
ESTIMATEBACKTRACK, 116
EXACTCOVER, 120
EXACTCOVERBT, 120
EXCHANGEBLOCK, 172174

FINDAUTOMORPHISMS, 244
FINDISOMORPHISM, 243
FINDLEAVESANDCHILDREN, 248
FINDSUBMOUNTAINS, 252

GEN, 209
GENERALIZEDRGEF, 85-87
GENERATERANDOMGRAPH, 139
GENERATERANDOMGRAPH2, 140
GENERATERGF, 84
GENERICGENETICALGORITHM,
164
GENERICHEURISTICSEARCH, 154
GENERICHILLCLIMBING, 158
GENERICSIMULATEDANNEALING,
159
GENERICTABUSEARCH, 161
GENETICTSP, 185-187
GENPARTITIONS, 68
GENPARTITIONS2, 70
GENPARTITIONS3, 70
GETPARTITION, 244
GETPARTITIONS, 243
GRAM-SCHMIDT, 282, 291
GRAYCODERANK, 41
GRAYCODESUCCESSOR, 39
GRAYCODEUNRANK, 42
GREEDYBOUND, 138
GREEDYCOLOR, 137, 138

HEAPSORT, 12
INCIDENCEMATRIX, 230

INITIALIZE, 171, 174

210

320

INSERTIONSORT, 11, 12
INSERTPAIR, 172,173
INTERSECTION, 21

Inv, 199, 208, 212, 224
INVPRUFER, 92

150, 243

KNAPREDUCTION, 17
KNAPSACKI, 106
KNAPSACK2, 108
KNAPSACK3, 125, 126
KNAPSACKSIMULATEDANNEALING,
177
KNAPSACKTABUSEARCH, 180
KR, 298
KSUBSETCOLEXRANK, 46
KSUBSETCOLEXUNRANK, 47
KSUBSETLEXRANK, 44
KSUBSETLEXSUCCESSOR, 43
KSUBSETLEXUNRANK, 45, 139
KSUBSETREVDOORRANK, §1
KSUBSETREVDOORSUCCESSOR,
52
KSUBSETREVDOORUNRANK, 51

LisT, 206

LISTDELETE, 218, 219
LISTINSERT, 218, 219, 222
LISTUSE, 206

LLL, 291, 298

MATUSEI, 230
MAaTUSE2, 230
MaXxCLIQUEI, 136
MAXCLIQUE2, 139
MAXIMUM, 218, 219
MEMBEROFSET, 20
MERGESORT, 28, 29
MGKREC, 184, 185, 187
MINCOSTBOUND, 130
MINEDGEBOUND, 134, 143
MINREP, 221,222
MINREPBT, 221
MKSREC, 184

Algorithm Index

MuLT, 199, 203, 205, 208, 209,
212,219,224

NORSB, 216
NORBUSE, 216

ORBREPBACKTRACK, 219
ORrBREPS1, 219
ORBREPS2, 222

PARTIALLYMATCHEDCROSSOVER,
163, 184, 188
PARTITIONLEXRANK, 77
PARTITIONLEXSUCCESSOR, 76
PARTITIONLEXUNRANK, 78
PERMLEXRANK, 55
PERMLEXSUCCESSOR, 53
PERMLEXUNRANK, 56, 183
PERMPARITY, 62, 63
PMREC, 184, 186
PREDECESSOR, 218, 219
PrROBE, 116
PRUFER, 91
PRUFERTORANK, 93

RANKRGEF, 86

RANKTOPRUFER, 93

REC, 184, 185

RECPARTITION, 68, 70, 216

RECPARTITION2, 70

REDUCE, 130-133, 248

REDUCEBOUND, 133, 134, 143

REFINE, 256, 263, 271

REVISEDSTINSON'SALGORITHM,
174

REVISEDSWITCH, 174

RGFTOSETPART, 83

RKNAP, 124, 125

RUN, 205, 206, 216, 224, 230

RUNBACKTRACK, 205

RUNREPBACKTRACK, 218

SAMPLINGBOUND, 138
SELECT, 183, 185
SELECTPARTITION, 165, 166

ALGORITHM INDEX

SEQUENCETOPATH, 96

SEQUENCETOTABLEAU, 102

SETDELETE, 20

SETINSERT, 19, 20

SETORDER, 21, 28

SETPARTTORGTF, 83

SIMPLEGEN, 203

S1ZEBOUND, 136

SoRT, 248

SPLITANDUPDATE, 256

STEEPESTASCENTTWOOPT, 183~
185

STINSON’SALGORITHM, 169

STIRLINGNUMBERS1, 89

STIRLINGNUMBERS?2, 81

SuBSETLEXRANK, 34, 219

SUBSETLEXUNRANK, 34, 139, 165

SUPERINCREASINGSOLVER, 302

SWITCH, 168, 169, 173

TABLEAUTOSEQUENCE, 102

TEST, 208-210, 212, 224

TEeST2, 212

TRANSFORM, 14, 15

TRANSVERSAL, 224

TREETOCERTIFICATE, 248

TROTTERJOHNSONRANK, 60

TROTTERJOHNSONSUCCESSOR,
63

TROTTERJOHNSONUNRANK, 61

TSP1, 129

TSP2, 134

TSP3, 143

TYPE, 215,216

UGP, 166
UNION, 20
UNRANKRGF, 87
USE, 205, 224

WEIGHTREDUCTION, 297, 298

323

Problem Index

All Cliques, 109,118,119

Construct Steiner Triple System, 168
Exact Cover, 118, 121, 144, 231
Generic Optimization, 152

Knapsack, 176, 178

Knapsack (decision), 7, 16, 17, 28

Knapsack {optimal value), 8, 24, 28

Knapsack (optimization), 8, 16, 17, 28, 105, 107, 108, 123-125, 144, 145, 175,
189, 190

Knapsack (search}, 7, 16

Maximum Clique, 135, 136, 145, 189, 253
Maximum Clique (decision), 15

Maximum Clique (optimization), 24
Maximum Independent Set (decision), 15, 28
Minimum Spanning Tree, 149

Rational Knapsack, 123, 146

Shortest Vector, 280
Subset Sum, 301, 302, 304-308

Traveling Salesman, 127, 128, 130, 134, 141, 142, 144-147, 149, 181, 186,
188, 189

Uniform Graph Partition, 155, 165, 186, 188, 189

Vertex Coloring, 14, 28

Index

Symbols
O-notation, 9
-notation, 9
©O-notation, 9
J-restricted growth function, 85
k-coloring, 14, 136
k-permutation, 3, 224
k-set, 3
k-subset, 3
n-tuple, 3
2-opt move, 182

A
adjacency list, 22
adjacency matrix, 22, 253, 261
arc, 62
array notation, 199
associative, 191
automorphism, 196, 198, 237
automorphism group, 196, 198, 214,
237
average-case complexity, 12, 112

B
backtracking algorithm, 105, 220,
221,242,262
base, 211
basis reduction, 278
Bell number, 78
binary operation, 191
binary reflected Gray code, 36
bit array, 18
bit sring, 19
bitwise boolean and, 18

bitwise boolean or, 18
bitwise complement, 18
block, 5

bounding function, 122
branch and bound, 141

C
cage, 148
capacity, 7, 8, 123
cardinality, 3, 18
Cartesian product, 3
Catalan family, 95
Catalan number, 95
center, 245
certificate, 245
characteristic vector, 33
choice set, 107
chromatic number, 148
ciphertext, 301
clique, 5, 109
clique number, 148
closed, 191
co-lex order. 45, 47
cofactor expansion, 283
combinatorial algorithm, 1
commutative, 192
complete graph, 4, 214
complexity, 11
complexity class, 13
conjugate diagram, 68
conjugate partition, 68
constraint, 8
cooling schedule, 158, 177
cost, 9

326

cost matnix, 155
crossover, 162

cube, 4, 201, 202, 207, 211, 214,

219, 234
cycle, 88
cycle notation, 87, 195, 199

D
dead point, 170
decision problem, 7, 13
degree, 4
degree sequence, 238, 261
delete, 17
density, 304
depth-first traversal, 106
derangement, 65
design strategy, 156
determinant, 283
directed edge, 62
directed graph, 62, 88
discrete partition, 254
distance, 35
divide-and-conquer, 25
dot product, 282

downward move, 158, 159, 177
dynamic programming, 24, 72, 81,

85

E
edge, 4
element, 2
empty list, 3
empty set, 3
enumeration, 1
equitable partition, 254
Euclidean length, 280, 282
even permutation, 62
exact cover, 118, 230
exhaustive search, 105
exponential complexity, 13

F
factorial representation, 55
feasible solution, 8, 152

Ferrers-Young diagram, 68
fixed point, 195

forbidden change, 160

full dimensional lattice, 279
function composition, 195

G
gain, 156, 182
generated, 201
generation, 1, 161
generator, 201
genetic algorithm, 161
girth, 148
Gram-Schmidt process, 282
graph, 4
Gray code, 36
greedy strategy, 23, 123, 137
group, 191
growth rate, 9

H

Index

Hadamard’s inequality, 284, 307

Hamilionian circuit, 4, 128
Hamiltonian path, 36
Hamming distance, 35, 152
Hamming weight, 38
heuristic, 151

heuristic algorithm, 151
hill-climbing, 157

I
identity, 191
image, 213

incidence matrix, 22, 227, 277, 294

incident, 4
inclusion-exclusion, 79
independent set, 14
induced partition, 240
induced subgraph, 135
initial population, 161, 182
initial temperature, 177
insert, 17

intersection, 18

invariant, 239

INDEX

invariant inducing function, 240
inverse, 191

isomorphism, 237

item, 3

K
key, 301

L
Laplace expansion, 283
Latin square, 5, 276
lattice, 278
lattice oracle, 306
leaf, 245
left coset, 193
left transversal, 194, 204, 223
lIength, 3
lexicographic order, 31, 33, 43, 47,
53, 83, 84, 106, 118, 201,
219, 220
lifetime, 160, 179
linear combination, 278
linearly independent, 278
list, 3
list representation, 52
live pair, 168
live point, 168
locally optimal solution, 158
logarithmic growth, 10
loop, 62

M

maximal clique, 109
maximum clique, 5, 13§, 253
membership, 17
Merkle-Hellman crytosystem, 301~

305, 307, 308
minimal change, 57
minimal change algorithm, 31
minimal change order, 36, 48
minimum orbit representative, 219
modular transformation, 302
mountain range, 96, 249
multiplication table, 192

327

multiset, 65
mutation, 161, 182

N
neighborhood, 152, 254
neighborhood function, 152
neighborhood search, 151, 153
non-linear code, 148
NP, 13
NP-complete, 15, 237, 253
NP-hard, 17, 137, 145, 301

o
objective function, 9
odd permutation, 62
optimal solution, 152
optimal value problem, 8
optimization problem, 8, 152
orbit, 203, 213, 226
orbit incidence matrix, 227
orbit length equation, 234, 294
order, 193
ordered partition, 239
orthogonal, 282
orthogonal basis, 282

P

P, 13
part, 67
partial permutation, 262
partial Steiner triple system, 168
partially matched crossover, 162
partition, 5, 67, 78, 226
partition number, 67
Pascal’s identity, 48, 100
pentagon, 197,214, 224, 225
permutation, 3, 52, 87, 128, 162,

195
permutation group, 195
Petersen graph, 28, 148, 275
plaintext, 301
point, 5
polynomial complexity, 13
polynomial transformation, 14

328

possibility set, 107

problem decomposition, 24
profit, 7-9, 123, 152

Priifer correspondence, 91
pruning, 105, 107, 118
public key cryptosystem, 300

R

random graph, 138
random integer, 138, 176
random number, 159
ranking, 31, 39, 44, 46, 51, 54, 59,

76, 86,98, 217
recombination, 162, 182
reduced basis, 288
reduced Latin square, 148, 192
reduced matrix, 130
reduction, 16
refinement, 255
regular, 4
restricted growth function, 82
reverse standard form, 74
revolving door order, 48
rsf-lex order, 74

S

Schreier-Sims representation, 205,
207, 209, 211, 220, 233,
234,272

search, 2

search problem, 8

self-avoiding walk, 145

sequential generation, 31, 35

set, 2

set system, 5§, 196, 201, 223, 226

shift left, 18

shift right, 18

simulated annealing, 158

stabilizer, 213

standard form, 67

standard tableau, 101

state space tree, 106, 115, 138, 142,
262

steepest ascent, 153, 156, 160, 182

Index

Steiner system, 230

Steiner triple system, 148, 167, 214,
226, 230, 233, 235, 276,
308

Stirling number of the first kind, 88

Stirling number of the second kind,
78, 89, 226

subgroup, 193

subset, 3

successor, 31, 38, 43, 52, 53,60, 75

superincreasing, 301

symmetric difference, 35

symmetric group, 195, 214

T
tabu list, 160
tabu search, 160
target profit, 7
target sum, 301
temperature, 158
totally balanced sequence, 95, 249
transposition, 57, 62
transversal design, 6, 189
tree, 91, 245
triangle inequality, 282
Trotter-Jobnson algorithm, 57
Turing reduction, 16
type of a permutation, 215

U
unimodular, 114
unjon, 18
unit partition, 254
universe, 152
unranking, 31, 39, 44, 46, 51, 54,
60, 77, 86,99

v
vertex, 4
vertex k-coloring, 14
vertex coloring, 136
volume, 284

w
weight, 7, 8, 123, 284

INDEX 329

weighted graph, 5, 155
worst-case complexity, 12

