Arjeh M. Cohen Hans Cuypers
Hans Sterk (Eds.) »

Some Tapas
of
Computer Algebra

With 20 Figures

@ Springer



Arjeh M. Cohen
Hans Cuypers
Hans Sterk

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.0.Box 513

NL-5600 MB Eindhoven

The Netherlands

e-mail

Cohen: amc@win.tue.nl
Cuypers: hansc@win.tue.nl
Sterk:  sterk@win.tue.nl

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Some tapas of computer algebra [ Arjeh M. Cohen ... (ed.). - Berlin ; Heidelberg ; New York ;
Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1999
(Algorithms and computation in mathematics ; Vol. 4)

ISBN 3-540-63480-0

Mathematics Subject Classification (1991): 13-01, 13Pxx, 14-01, 14Pxx, 17Bxx,
20Bxx, 20B40, 52B12, 94Bxx, 94B35, 12Hxx, 12A20, 68C20

ISSN 1431-1550
ISBN 3-540-63480-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplica-
tion of this publication or parts thereof is permitted only under the provisions of the German
Copyright Law of September 9,1965, in its current version, and permission for use must always be
obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

© Springer-Verlag Berlin Heidelberg 1999

Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the rele-
vant protective laws and regulations and therefore free for general use.

Cover design: MetaDesign plus GmbH, Berlin. ’
Typesetting: Typeset in L'TEX by the editors and reedited by Adam Leinz, Kerlruhe, using o
Springer YTEX macro-package.

SPIN 10643224 4613143 - 343310 - Printed on acid-free paper



Preface

In the years 1994, 1995, two EIDMA minicourses on Computer Algebra were
given at the Eindhoven University of Technology by, apart from ourselves,
various invited lecturers. (EIDMA is the Research School ‘Euler Institute for
Discrete Mathematics and its Applications’.) The idea of the courses was to
acquaint young mathematicians with algorithms and software for mathemat-
ical research and to enable them to incorporate algorithms in their research.
A collection of lecture notes was used at these courses.

When discussing these courses in comparison with other kinds of courses
one might give in a week’s time, Joachim Neubiiser referred to our courses
as ‘tapas’. This denomination underlined that the courses consisted of appe-
tizers for various parts of algorithmic algebra; indeed, we covered such spicy
topics as the link between Grobner bases and integer programming, and the
detection of algebraic solutions to differential equations.

As a collection, the notes turned out to have some appeal of their own,
which is the main reason why the idea came up of transforming them into
book form. We felt however, that the book should be distinguishable from
a standard text book on computer algebra in that it retains its appetizing
flavour by presenting a variety of topics at an accessible level with a view to
recent developments.

Naturally, the book contains a summary of some basic key results, such
as Grobner bases (Chapter 1), the LLL algorithm (Chapter 3), and factori-
sation (Chapter 4). Despite the variety of topics, the reader will find ample
interdependencies. For instance, Chapters 2 and 5 deal with commutative
and noncommutative algebra—it is an interesting exercise to see what the
commutative counterparts are of the notions defined in Chapter 5. Grobner
basis theory comes back in Chapters 7, 10, and 11 on integer programming,
coding theory and decoding, respectively. An outsider may be surprised to see
that topics like the sign of a real algebraic number and closed form solutions
of differential equations (Chapters 6 and 9) can be dealt with completely al-
gebraically. Chapter 8, on group theoretic algorithms, does not need much of
the preceding chapters, but the theory interlocks with coding theory, as be-
comes apparent in the Projects 6 and 7 on Mathieu groups and Golay codes,
respectively. .

This brings us to a few words on the seven ‘projects’. For those wanting
to acquaint themselves somewhat further with part of the material presented
in the eleven chapters, these ‘projects’ have been collected at the end of
the book. A project is a coherent body of exercises around a theme, which
could serve as a practical session related to one or more chapters. The first



VI Preface

project can be dealt with immediately after Chapter 1; Project 2 depends on
Chapter 6, Project 3 on Chapters 2 and 6, whereas Projects 4 and 5 add to
Chapters 5 and 8, respectively. Finally, the projects already mentioned, viz.
6 and 7, depend mainly on Chapters 8 and 10.

We have tried to achieve a uniform set of notes, while preserving some
characteristics of the style of the individual authors. For example, in one
chapter the exercises occur at the end, whereas, in another, they are inter-
spersed in the text.

We hope that the result may be of use to university teachers composing
a course in mathematical aspects of computer algebra as well as to advanced
undergraduate students interested in algorithms in algebra.

Eindhoven; April 1998 A. M. Cohen, H. Cuypers, H. Sterk

Acknowledgements

The work of Laureano Gonzalez-Vega (Chaps. 2, 6 and Projects 2, 3) and of Maria-
Jose Gonzalez-Lopez (Projects 2 and 3) was partially supported by FRISCO (Eu-
ropean Union, LTR 21024) and DGICYT PB 95/0563-A (Sistemas de Ecuaciones
Algebraicas: Resolucién y Aplicaciones). The work of Fabrice Rouillier and Marie-
Frangoise Roy (Chaps. 2 and 6) was partially supported by FRISCO; the work of
Gabor Ivanyos and Lajos Rényai (Chap. 5) was supported in part by OTKA Grant
016;%30,- AKP Grant 96-350/24, MKM Grant FKFP 0612/1997, and EC Grant
AL KIT.



Contents

Chapter 1. Grobner Bases, an Introduction

Arjeh M. Cohen . ....... .. . 1
1. Introduction. ...... ... . ... e 1
2. Monomials . ....... ... . .. 4
3. The Buchberger Algorithm .. ........... ... ... .. ... . ... ..... 7
4. Standard Monomials .......... ... ..o 15
5. Solving Polynomial Equations ................ ..., 17
6. Effectiveness of Polynomial Rings ................ ... ... ... ..., 23
Chapter 2. Symbolic Recipes for Polynomial
System Solving
Laureano Gonzalez-Vega, Fabrice Rouillier,
and Marie-Francoise Roy.......... .. ... ... i i i 34
1. Introduction. ........ .. .o 34
2. General Systems of Equations .................coiiiiiiiin.... 35
2.1 Algebraic Preliminaries ....................... e 35
2.2 First Recipes for Polynomial System Solving ................ " 40
3. Linear Algebra, Traces, and Polynomial Systems ................. 46
3.1 Eigenvalues and Polynomial Systems ....................... 46
3.2 Counting Solutions and Removing Multiplicities ............. 48
3.3 Rational Univariate Representation ........................ 51
4. As Many Equations as Variables ............................... 58
4.1 Generalities on Complete Intersection Polynomial Systems .... 58
4.2 Recipes for Polynomial System Solving When the Number
of Equations Equals the Number of Unknowns . .............. 60
5. Grobner Bases and Numerical Approximations................... 61
Chapter 3. Lattice Reduction
Frits Beukers . .. ... o 66
I, Introduction. .......o it e e e 66
2 Lattices. ... 66
3. Lattice Reduction in Dimension 2 ............... ... ... ...... 68
1. Lattice Reduction in Any Dimension ........................... 70
5. Implementations of the LLL-Algorithm ......................... 73
6. Small Linear Forms ............c.c.iiiiiiiiiiiiiiiineininne., 75



VIII  Contents

Chapter 4. Factorisation of Polynomials
Frits Beukers . ... ..ot e

Introduction. .......... ..ot e i
Berlekamp's Algorithm ......... ... .. ... .. ... . .
Additional Algorithms .......... ... ... .. i
Polynomials with Integer Coefficients . ..........................
Factorisation of Polynomials with Integer Coefficients, I...........
Factorisation of Polynomials with Integer Coefficients, I1..........
Factorisation in K[X], K Algebraic Number Field................

No o,

Chapter 5. Computations in Associative and Lie Algebras
Gébor Ivanyos and Lajos Rényai................. .. .. ..t

1 Introduction. .. ..oovie e e e e e
Basic Definitions and Structure Theorems.......................
Computing the Radical .......... ... ... ... ... ... . ...
Applications to Lie Algebras ............... i,
Finding the Simple Components of Semisimple Algebras ..........
Zero Divisors in Finite Algebras . ................. ... ... . ...,

SOtk N

Chapter 6. Symbolic Recipes for Real Solutions
Laureano Gonzalez-Vega, Fabrice Rouillier, Marie-Frangoise Roy,
and Guadalupe Trujillo . .~.... ... i i i

1. Imtroduction. .........c.iii e e
2. Real Root Counting: The Univariate Case.......................
2.1 Computing the Number of Real Roots ......................
2.2 Sylvester Sequence . ........... .. i e
2.3 Sylvester-Habicht Sequence................................
2.4 Some Recipes for Counting Real Roots .....................
Real Root Counting: The Multivariate Case . ....................
The Sign Determination Scheme ...............................
Real Algebraic Numbers and Thom Codes ......................
Quantifier Elimination............ ... oot iiivnn.nn.
Appendix: Properties of the Polynomials in the Sylvester-Habicht

SeqUEnCE. ... o e e
7.1 Definition and the Structure Theorem ......................
7.2 Proof of the Structure Theorem............................
7.3 Sylvester-Habicht Sequences and Cauchy Index ..............

NSO AW

Chapter 7. Griobner Bases and Integer Programming
Glinter M. Ziegler.........ooviiiiiieininiieneronnrenasansansnsns

1. Introduction. ........cooiiiiniiiiiiiiiiie ittt iiienrnannnns
2. What is Integer Programming? ...............ccoiiiiiiiiiins,
3. A Buchberger Algorithm for Integer Programming .......... e



Contents

4. A Geometric Buchberger Algorithm ............................
5. A Variant of the Buchberger Algorithm .........................
6. EXercises . ...... ..o e

Chapter 8. Working with Finite Groups
Hans Cuypers, Leonard H. Soicher, and Hans Sterk .................

1. Imtroduction. .. ... ... i
2. Permutation Groups. .............0iiiirirr i,
21 TheSetting . ...t i e i
2.2 Computing Orbits and Stabilizers . .........................
2.3 Computing Bases and Strong Generating Sets ...............
2.4 Generators for Some Subgroups. ................ [P
3. Coset Enumeration. .......... ...t
3.1 Introduction. ......... ...ttt e e
3.2 Todd-Coxeter Coset Enumeration ..........................

Chapter 9. Symbolic Analysis of Differential Equations
Mariusvan der Put . ... ... .. e

1. Introduction. . ...... ..o e
2. The Equation y’ = fwith feC(z) ...,
2.1 The Algorithm ........ ... .. ... . i e,
The Equation ¢ = fy with fe C(z)* ........ ... ... ... ... ...
Rational Solutions of an Equation of Order n....................
Some Differential Galois Theory ................... P
5.1 Picard-Vessiot Theory .......... ... ... ...
Order Two Equations Over C(z)..........oooiiiinn ...
The Local Differential Galois Group . ...........................
The Equation ¢/ =rywithr € Clz], r #0............. ...l
9. The Equation ¢/ =ry withr € Clz,z7Y] ....... ool

O W

XN

Chapter 10. Grébner Bases for Codes
Mario de Boer and Ruud Pellikaan . ...............................

I. Introduction.......... ... ..t
2. Basic Facts from Coding Theory .......... ... .. i,
2.1 Hamming Distance............... .t nnneenan ..
2.2 Linear Codes .......oii it e
2.3 Weight Distribution ............ ... ... ... . i
2.4 Automorphisms and Isometries of Codes ....................
3. Determining the Minimum Distance ............................
3.1 Exhaustive Search ........... e e e
3.2 Linear Algebra ....... ... i
3.3 Finite Geometry ..........oiniiiiei it
3.4 Arrangements of Hyperplanes ............ et
35 Algebra. ... .ottt it e i it i



X Contents

4, CyclicCodes ..o e e e 247
4.1 The Mattson-Solomon Polynomial................... ... .... 248
4.2 Codewords of Minimal Weight ................. ... .. ..... 250

5. Codes from Varieties ............ .. i it 251
5.1 Order and Weight Furnictions ........... .. ... .. . ..., 252
5.2 A Bound on the Minimum Distance ............. ... ... .... 254

Chapter 11. Gribner Bases for Decoding

Mario de Boer and Ruud Pellikaan ............ ... ... ... ... ... .. 260

1. Introduction. ... .....coouii i ettt 260

2. Decoding . ...oviii e e 260

3. Decoding Cyclic Codes with Grobner Bases ..................... 262
3.1 One-Step Decoding of Cyclic Codes ............ ..ot 265

4. The Key Equation .......... ... .. 0ttt 267
4.1 The Algorithms of Euclid and Sugiyama, ...... ... ........... 269
4.2 The Algorithm of Berlekamp-Massey ....................... 270

5. Grobner Bases and Arbitrary Linear Codes...................... 271

Project 1. Automatic Geometry Theorem Proving

Tomas Recio, Hans Sterk, and M. Pilar Vélez....................... 276

1. Introduction. ....... ...t e 276

2. Approaches to Automatic Geometry Theorem Proving............ 277

3. Algebraic Geometry Formulation............................... 277

4. Searching for Conditions . ............. .o, 282

5. Searching for Extra Hypotheses . ............. ... . oL, 291

Project 2. The Birkhoff Interpolation Problem

Maria-Jose Gonzalez-Lopez and Laureano Gonzalez-Vega ............ 297

1. Introduction....... ... i e 297

2. Poised Matrices. ....... ..o 297

3. Examples . ..o 301

4, Conclusions .......... .ot e e 303

Project 3. The Inverse Kinematics Problem in Robotics

Maria-Jose Gonzalez-Lopez and Laureano Gonzalez-Vega ............ 305

1. Introduction. .. ..... ... ittt eaas 305

2. The ROMIN Manipulator .. .......cviivrivrienenrnrennnesenns 305

3. The Elbow Manipulator ..........ccviiiiiiirnrenrnernnrnnnnn 307

Project 4. Quaternion Algebras

Gébor Ivanyos and Lajos Rényai...............cciiniiviiiinnn.en 311

1 Introduction. . ... it tin s 311

2. Four Dimensional Simple Algebras .................... PN 311

3. Quaternion Algebras and QuadraticForms................. Soo... 312



Contents

Project 5. Explorations with the Icosahedral Group
Arjeh M. Cohen, Hans Cuypers, Remko Riebeek ....................

1. Introduction. . .........couiniiin ittt i e e
Three-Dimensional Representations for W(H3z) ..................
Coset Enumeration. .. ........... it
The Permutation Representation of W on the Cosets of I .........

=W

Project 6. The Small Mathieu Groups
Hans Cuypers, Leonard H. Soicher, and Hans Sterk .................

1. Introduction. . ....oovinne e e
The Affine Planeof Order 3 ...... ... .. o i i
A 3-(10,4,1) Design and the Mathieu Group Myg ................
The Groups Mi; and Mig. ...t i i
Two 2-Transitive Subgroups of My ........ ... .. ... . ..
Graphs Which Are Locally the Incidence Graph of the Biplane . ...

N

&N

=]

Project 7: The Golay Codes
Mario de Boer and Ruud Pellikaan ......................c.ccoou....

Introduction. . ... i e e e
Minimal Weight Codewords of G11 . ...t
Decoding of Ga3 with Grobner Bases ...........................
One-Step Decoding of Gaz .. ..o ooiiiii e
The Key Equation for Gog ... ...
G, Exercises .................. e

i ol e

:','\

Index .. ...

XI






List of Contributors

Frits Beukers

University of Utrecht
Department of Mathematics
Budapestlaan 6

Utrecht .

The Netherlands
beukers@math.ruu.nl

Mario de Boer
Ministerie van Defensie
Kattenburgstraat 7

1018 JA Amsterdam

The Netherlands
mariodb@worldonline.nl

Arjeh M. Cohen

Eindhoven University of Technology
Department of Mathematics

and Computing Science

P.O. Box 513

5600 MB Eindhoven

The Netherlands

amc@win.tue.nl

Hans Cuypers

Eindhoven University of Technology
Department of Mathematics

and Computing Science

P.O. Box 513

5600 MB Eindhoven

The Netherlands
hansc@win.tue.nl

Gabor Ivanyos

Computer and Automation Institute
Hungarian Academy of Sciences
Lagymanyosi u. 11

Budapest H-1111, Hungary

Gabor. Ivanyos@sztaki.hu

Maria-Jose Gonzalez-Lopez

Universidad de Cantabria
Departamento de Matemdticas
Estadistica y Computacién
Facultad de Ciencias

39071 Santander, Spain
glopez@matesco.unican.es

Laureano Gonzalez-Vega
Universidad de Cantabria
Departamento de Matematicas
Estadistica y Computacién
Facultad de Ciencias

39071 Santander, Spain
gvegalmatesco.unican.es

Ruud Pellikaan

Eindhoven University of Technology
Deptartment of Mathematics

and Computing Science

P.O. Box 513

5600 MB Eindhoven

The Netherlands
ruudp@win.tue.nl



XIV  List of Contributors

Marius van der Put
University of Groningen
Department of Mathematics
Blauwborgje 3

Postbus 800

9700 AV Groningen

The Netherlands
mvdput@math.rug.nl

Tomas Recio

Universidad de Cantabria
Departamento de Matematicas
Estadistica: y Computacién
Facultad de Ciencias

39071 Santander, Spain
recio@matesco.unican.es

Remko Riebeek

Ministerie van Defensie
Kattenburgstraat 7

1018 JA Amsterdam
The Netherlands
remkor@worldaccess.nl

Lajos Rényai

Computer and Automation Institute
Hungarian Academy of Sciences
Lagymanyosi u. 11

Budapest H-1111, Hungary
lajos@ilab.sztaki.hu

Fabrice Rouillier

INRIA Lorraine

Technopole de Nancy-Brabois
615 rue du Jardin Botanique
F-54600 Villers-les-Nancy, France
Fabrice.Rouillier@loria.fr

Marie-Frangoise Roy
Université de Rennes
IRMAR (URA CNRS 305)
Campus de Beaulieu

35042 Rennes cedex, France
costeroyCuniv-rennesi.fr

Leonard H. Soicher

Queen Mary and Westfield College
School of Mathematical Sciences
Mile End Road

London E1 4NS, U.K.
L.H.Soicher@maths.qmw.ac.uk

Hans Sterk

Eindhoven University of Technology
Department of Mathematics

and Computing Science

P.O. Box 513

5600 MB Eindhoven

The Netherlands
sterk@win.tue.nl

Guadelupe Trujillo
Universidad de Cantabria
Departamento de Matematicas
Facultad de Ciencias

39071 Santander, Spain
trujillo@matsunl.unican.es

M. Pilar Vélez

Universidad Antonio de Nebrija
Departamento

de Ingenieria Informatica
Pirineos, 55

28040 Madrid, Spain
pvelez@dii.unnet.es

Giinter M. Ziegler
Technical University Berlin
MA 6-1

Department of Mathematics
10623 Berlin, Germany
ziegler@math.tu-berlin.de



Chapter 1. Grobner Bases, an Introduction

Arjeh M. Cohen

1. Introduction

Grobner bases form a core topic of computer algebra and are needed for var-
ious subsequent chapters of this book. There are several ways of looking at
the famous Buchberger algorithm for constructing Grébner bases. In this sec-
tion, we give three interpretations. In the following sections, the Buchberger
algorithm and its role according to each interpretation will be discussed in
detail.

Rings in this chapter are generally understood to have unit element and
to be commutative.

Definition 1.1. A ring R is called effective if

o its elements can be described on computer, and equality between two ele-
ments can be tested by means of an algorithm,

o its ring operations can be performed by means of algorithms, and

o the solutions of a linear equation »_, a;,z; = b with a;,b € R and unknown
2; € R (in terms of a particular solution and a finite set of generators for
the module of all solutions of the corresponding homogeneous equation)
can be found algorithmically.

Examples are the integers, the rationals, and algebraic number fields. It may
look surprising at first sight that there is an explicit requirement for equality
tests between elements. This is due to the fact that often the elements do not
have unique representations. The simple case of integers already shows that
there is work to be done: if we define integers as strings of digits, we need to
equate the elements 01 and 1. In the case of the rationals, the elements are
usually represented by pairs of integers (a,b) with b # 0 (standing for a/b,
of course). The equality test between (a, b) and (a’, b’) is then reduced to the
cquality test between the integers ab’ and a’b.

Finite rings are also effective: if R is a ring on n elements (n < 00), it
can be presented by a multiplication table and an addition table, that is,
(symmetric) matrices whose columns and rows are indexed by the elements
of R and whose entries are also filled with elements of R. If the (z,y) entry is
2, the interpretation is that the product of x and y is z. Negation, the zero,
and the unit element of R can be read off from these tables, and so all ring
operations are effective. Finiteness of R also makes solving the linear equation
cffective: given a,,...,an € R™ and b € R, a mere exhaustive search for all
(r1,...,Zm) € R™ satisfying 3%, a;z; = b would solve the equation.



2 A.M. Cohen

Effectiveness of the field Q of rational numbers as a ring is also straight-
forward. Solving the linear equation comes down to expressing one variable
as dependent on all others. Solving a linear equation over Z involves the use
of extended ged’s and is less common practice, so we relegate the proof of
this fact to an exercise:

Exercise 1.2. Show that Z is effective.

When we say that a field is effective, we do not only mean that it is
effective as a ring but also that the inverse of a nonzero element can be found
algorithmically. For Q and for finite fields, this is also clearly satisfied.

Let R be a ring. We are concerned with the polynomial ring R[X] =
R[X1,...,X,] in the variables from X = {X;,..., X,}. If X’ consists of the
single variable X, we write R[X] = R[X] and call polynomials in R[X] uni-
variate. The ring R[X] can be identified with the ring R[X},..., X _1][X4n];
this means that a polynomial in n variables can be considered as a univariate
polynomial whose coeflicients are polynomials in n — 1 variables.

An ideal of R[X] is a subset I of R[X] such that

o sums of elements of I also belong to I,

o 0€l,and
o the product of an element of I by an element of R also belongs to I.
Examples are I = {0}, I = R[X], and I = {f € R[X] | f(0,...,0) = 0}. The

last example can be generalized to an arbitrary subset Z of R" 1nstead of the
singleton {(0,...,0)}:

I(Z) = {f € R[X] | V.ez f(2) = 0}

is an ideal of R[X]. This connection between ideals and subsets of R" is the
starting point of algebraic geometry. For more details, see any introduction
to algebraic geometry, e.g., [19].

The intersection of a family of ideals of R[X] is again an ideal of R[X ]
Thus, for a subset B of R[.X], we can define (B), the ideal of R[X] generated
by R[X], as the intersection of all ideals containing B. The following theorem
shows that ideals of R[X] can often be described by finite generating sets
(sometimes called bases). Recall that a ring R is called Noetherian if every
ideal of R is generated by a finite subset of R. Obviously, fields are Noetherian.

Theorem 1.3 (Hilbert’s Basis Theorem). The ring R[X] is Noetherian
if R is.
Proof. A proof appears in most introductions to abstract algebra (see, for

instance [2] or [3]).

If a ring is Noetherian, and its elements can be properly represented on
computer, then so can its ideals, namely by finite lists of ideal generators.
Thanks to the theorem, the class of Noetherian rings is a considerably large



Chapter 1. Grébner Bases, an Introduction 3

one. In this context, one might ask whether effectiveness is also inherited
from a ring to a polynomial ring over that ring.

Problem 1: For an effective ring R, provide algorithms turning R[X] into
an effective ring.

Suppose that R is effective. Then the elements of R[X] are clearly repre-
sentable on computer. Denote by M the set of all monomials of R[X]. It is a
monoid. Besides, it is a linear spanning set for R[.X]. (Observe that, if R is
a field, R[X] is a vector space over R with basis M.) If m € M then there
is a vector a € N™ such that m = X7 --- X3, which we often abbreviate to
X2, The map a — X® : N* — M is an isomorphism of monoids. Now each
f € R[X] is a sum of finitely many terms, i.e., elements of the form cX? with
¢ € R and a € N™. Thus f can be represented on a computer by the list of
all such pairs (¢, a). Conversely, any set of such pairs with the property that
no two have the same monomial X2, uniquely represents a polynomial (the
empty set corresponds to the zero polynomial).

Also, the ring operations of R[X] are easily seen to be effective as well.
Thus, the only interesting part of Problem 1 is to describe all solutions of the
equation ), a;z; = b.

Example 1.4. To see that, at first sight, this problem is not trivial, take a; =
X%Xz - 1, az = X1X22 - 1, and b = Xl —X2 in R[X] = Q[Xl,Xz]. A
solution to the equation y1a1 + yaa2 = b is (y1,y2) = (X2, —X1). To produce
a solution, the combination of the polynomials a1, a2 in the left-hand side
has to decrease the degree of a1, az. There does not seem to be any control
over how this may be done. In §6 we will see how the Buchberger algorithm
deals with this problem.

For the other two interpretations of the Buchberger algorithm, we need
that R = K is an effective field. Then K[X] is an infinite dimensional vector
space over K, and every ideal of K[X] is a K-linear subspace.

Problem 2: Given a finite set of polynomial equations over K in the variables
X, produce a ‘triangular form’ of the equations, so that one can look for
solutions by elimination of variables.

FErample 1.5. Compared with the system of polynomial equations for z1, x5 €
K:
al(mlamZ) = 07 aZ(mlamZ) = 07
where a), ag are as in Example 1.4, the following ‘derived system’
r182(1, Tg) — T2a1(2T1,%2) 1 T1— T2 =0
(14 23x2)az(xy, x2) + xiaz (1, x2) : 1-23=0

is much easier to solve. It has a triangular form in the sense that z is missing
from the last equation. Thus, it can be used as a starting point; it says that

£y is a cube root of unity, z; € {1,e?*/3,¢"/3}; the first equation is used
to express x2 in the known z; (in fact, it tells us that z; and x3 coincide).



4 A.M. Cohen

To an ideal I of R[X] we associate an equivalence relation defined by a ~ b
if and only if a — b € I. The set of corresponding equivalence classes R[X]/I
is a ring, the quotient ring of R[X] by I. There is a canonical ring morphism
from R[X] to R[X]/I, such that the image of any element of [ is 0.

Observe that if R = K is a field, the quotient ring K[X]/I is also a vector
space over K. This gives rise to the idea of representing elements of K[X]/I
by polynomials in a fixed linear subspace S of K[X] complementary to I.
In order to perform the arithmetic of K[X]/I on elements of S, we need to
find, for an arbitrary element f € K[X], the unique element f' € § with
f-flel
Problem 3: Given a finite subset B of K[X], produce an effectively com-
putable K-linear projection map K[X] — S, where S is a linear subspace of
K[X] isomorphic (as a vector space) to K[X]/(B), with kernel the ideal (B)
of K[X] generated by B.

Example 1.6. For the subset B = {a1, a2}, with a1,a2 as in Example 1.4,
the triangular form of the ‘equivalent’ pair {X; — X5, 1 — X3} described in
Problem 2 suggests the choice of 1, X;, X? as the basis for a complement of
(B) in the vector space R[X]. The ring homomorphism that we will find in
dealing with this problem will send an arbitrary polynomial f € R[X] to

(go+ga+gs+ )+ (g1+gstgr+-)Xi+(92+9s+gs+-)X7,

where f(X1,X1) = Y, :X%. (That is, first replace X, by Xi, using that
X2 — X lies in the kernel, and then replace all occurrences of X3 by 1, using
that X3 — 1 lies in the kernel.)

In this chapter, we shall go into each of the above three views of the Buch-
berger algorithm. To this end we need the notion of a reduction order on
monomials; it is introduced in §2. Next, in §3, we present the Buchberger
algorithm. We finish with three sections, each dealing with one of the three
interpretations, but in the reverse order of their appearance here.

We shall mainly be looking at polynomial rings over a field. For Problem
1, this is a proper restriction of generality, as the theory also works for R = Z.
But the presentation is greatly simplified by this assumption.

2. Monomials

Recall that M denotes the monoid of all monomials of K[X]. We shall use
a total order < on M which is compatible with the monoid structure in the
sense that, for all m,m’,m"” € M,

l..m21;
2. if m' <m" then mm’ <mm”.



Chapter 1. Grobner Bases, an Introduction 5

A total order with these properties is called a reduction order. Note that
it refines the division relation: if m divides m' then m < m/'.

Ezample 2.1. The lexicographic order (coming from the identification of M
with N™). Here X® < XP if and only if, for some k € {1,...,n}, we have
a; =b; for all i < k and a < by.

Another example is the lezicographic total degree order, that is, order first by
total degree, then by lexicographic order, usually taking X; > X5 > --- >
Xn. Here the total degree of X* is degX® = > 7, a;. More generally, an
order < is called a total degree order if it is a refinement of the partial order
< given by X% > X? if and only if degX® > degXP.

Exercise 2.2. Prove thdt, if n = 1, the natural order on N is the only
reduction order on M = N.

Exercise 2.3. Prove that the following order is a reduction order on the
monomials of K[X]: X® < X® if and only if either }~,a; < Y, b, 0r 3. a; =
Y, bi and there is k € {1,...,n} with ax < b; and a; = b; for all j > k.

Exercise 2.4. Verify that a total degree ordering has the property that, for
each m € M, the set of all monomials less than m is finite. Show that this is
not true for a lexicographic order.

Termination of the Buchberger algorithm is based on the fact that the
orders involved are well founded. Recall that an order is called well founded
if each strictly descending chain is finite. Denote by F (M), or simply F, the
collection of all finite subsets of M. For A € F and v € M write

As,={z € A|z>u}.

If B is another member of F, then, since A and B are finite, the finite
(nonempty) subset (AU B)\ (AN B) has a (unique) maximal element v with
respect to <. We write A >x B if u belongs to A and A <z B otherwise.
Thus, A <x B means that there exists u € B\ A such that A, = Bs,.

Proposition 2.5. The following holds for M.

1. Each reduction order on M is well founded.
2. If < is a total order on M, then the relation <r is a total order on F.
3. If, moreover, < is well founded, then so is <r.

Proof. 1. Suppose that there exists an infinite chain m, > mg > -+ in M.
Then n > 1, for otherwise n = 1 and < is the usual order on N, which"is
obviously well founded. One way to obtain a contradiction is to derive an
infinite strictly descending chain in N™*~! from the given one in M = N,
Another approach is to use Theorem 1.3. Here, we consider the ideals

Ij={m1,...,mj}K[X] for j=1,2,...,



6 A.M. Cohen

where, for a subset A of K[X], we write A-K[X] or (A) for the ideal generated
by A; thus A - K[X] is an alternative notation for (A), which stresses the
dependence on the ring K[X]. These ideals form an ascending chain. Since
K[X] is Noetherian, the chain terminates, so there is N € N with m; € Iy
for all j > N. Take j > N. Then, as m; € Iy, there is i < N with m;|m;.
Hence m; < my, contradicting the assumption that m; > m; for i < j.

2. Straightforward.

3. For F € F, we denote by max F the maximal element in F' with respect to
<. Assume that Fy >z Fy >x --- is an infinite strictly descending sequence
in F(M). Then max F; > max F; > --- is a weakly descending infinite
chain in M. By 1., there are a number N; and a monomial f; such that
max Fi = f; for all k > N. For each j > 1, set F{") = Fy,4+;\ {f1}. Now
Fl(l) >F Fz(l) >z --- is again infinite and descending. Thus, there are a
number Ny and a monomial fy such that max F,El) = fy for all k > N,
and so on. In this way, a descending sequence of monomials f; > fa > ---
arises. As such a sequence cannot be infinite, we find a number M such that
fi = fm for all i > M. But that implies that there exists a number £ such
that F; = Fy for all i > ¢, a contradiction.

Exercise 2.6. Extend Part 3 of Proposition 2.5 in two different ways for a
reduction order < on M:

1. Let B be a finite totally ordered set and G the set of all maps B — M.
Prove that the relation <g on G given by
9<g g <= reB 9 < g and Vo5t ge = g,

for g,¢’' € G, is a well-founded order on G.

2. Let H be the collection of all finite multisets in M (that is, all maps
M — N with nonzero image in only finitely many members of M).
Prove that the relation <3 on H given by

9 <n ¢ <= Imem g(m) < ¢'(m) and Vns>m g(n) = g'(n),
for g, g’ € H, is a well-founded order on H.
We shall use these orders to compare (sets of) polynomials.

Definition 2.7. To single out the highest monomial and coefficient from a
polynomial f € K[X], we set

L. Im(f) = max{m € M | f,, # 0}, with the convention that Im(0) = —oo;

2. le(f) is the coefficient of the monomial Im(f) of f, with the convention
that lc(0) = 0;

3. 1t(f) = lo(f) Im().



Chapter 1. Grébner Bases, an Introduction 7

The symbols lm, lc, It stand for leading monomial, leading coefficient and
leading term, respectively. For f € K|[X], we'shall write M to denote the
set of monomials occurring in f.

Exercise 2.8. Prove that, for f,g € K[X], we have It(fg) = It(f)It(g) and
Im(f + ¢g) < max(lm(f),1lm(g)). Give an example to show that equality does
not always hold in the latter inequality.

Exercise 2.9. Instead of K[X], one can study more general rings and still
construct Grébner bases using reduction orders. A good setting is the ‘monoid
ring’ R-M = @,,,c5; Rm, where M is a monoid admitting a reduction order
and R is an arbitrary ring. But not all monoids admit reduction orders. Show
that a nontrivial finite cychc monoid does not admit a reduction order. How
about the additive monoid Z?

Exercise 2.10. Many examples of reduction orderings on M are obtained
as follows: Starting from any reduction order < and a vector ¢ € N*, a new
reduction order <, is obtained by requiring that X2 <. X® if and only if
eithera-c<b-cora-c=b-cand X* < XP. Herea-c=3 . jaic.If ¢
is the all-one vector, the order is a total degree order.

3. The Buchberger Algorithm

In the sequel, we shall often assume that R = K is an effective field. One can
work with less drastic restrictions, but life is simpler this way.

Let B be a finite set of polynomials in K[X] and f € K[X]. The residue
class f+(B) in K[X]/(B) consists of all polynomials of the form f+3 ;. 5 gsb,
where g, € K[X]. We are after a ‘small’ canonical representative of f + (B),
that is, an element of the residue class which is as small as possible in some
sense and hopefully unique. In order to specify what small is, we need to
measure polynomials. Different measures lead to different algorithms. One
possible measure is lm(g) for a polynomial g. The following routine makes
Im(g), for g running through f + (B), as small as possible ‘at first sight’. This
is achieved by subtracting suitable multiples of polynomials from B.

Reduce(B, f) =
J:={be B | Im(b)|lm(f)};
if J#0
then choose b € J,;
return Reduce(B, f — (1t(f)/1t())b)
else return f
fi.



8 A.M. Cohen

Note that the algorithm terminates after a finite number of steps, since the
second argument in the recursive call of Reduce has a leading monomial which
is smaller than lm(f) (so that well-foundedness of < does the job). For given
B C K[X] and f € K[X], the output of Reduce(B, f) is a polynomial g €
f+(B) with lm(b) flm(g) for every b € B. This polynomial g has the property
that its leading monomial cannot be ‘reached’ by a leading monomial from
B.

Example 8.1. The routine Reduce is not fully determined by what we have
written, as we shall see by taking B = {X?Y — 1,XY? — 1}. (Here, as
more often, we replace X; and X2 by X and Y, respectively, to improve
readability.) Then, for f = X2Y?, we obtain Reduce(B, f) = f — X(XY?2 —
1) = X or Reduce(B,f) = f — Y(X?Y — 1) = Y according as we choose
b=X?Y —1orb=XY2-1in B with Im(b) | Im(f).

Definition 3.2. A polynomial f € K[X] is said to be reduced (modulo B
and <) if f = Reduce(B, f). Moreover, g € K[X] is said to be a reduced form
of f € K[X] (with respect to B and <) if g = Reduce(B, f) (for at least
some fully specified version of the algorithm Reduce).

Remark 8.3. In the literature, the reduced form of f is also referred to as the
remainder of f with respect to B. This terminology nicely points out that
reduction is a generalisation of the familiar univariate polynomial division
with remainder. "

Remark 8.4. The output Reduce(B, f) = 0 implies that

f = Y gbe (B) with Im(g,h) < Im(f) forallbe B.  (3.1)
beB

An obstruction to membership testing (‘does f belong to (B)?’) using Reduce
is that it may occur that, although f € (B) is reduced modulo B, there is
no expression of f satisfying (3.1). For instance, with B as in Example 3.1,
the polynomial f = X —Y isin (B),as f = Y(X?Y — 1) - X(XY?~1) =
Yb; — Xby; but Im(Yb;) = lm(Xb2) = X?Y? > Im(f), and there is no
expression f =3, p gsb with Im(gspb) < Im(f) for all b € B.

Definition 3.5. As mentioned before, other measures on polynomials may
lead to different smallest representative polynomials of f + (B). If we take
M,, the (finite) set of all monomials of g, to measure g € K[X], then an
important variation of Reduce arises. Now we subtract from g a multiple of
b € B by a term ¢ whenever 1t(tb) is a term of g (not necessarily 1t(g)):

StronglyReduce(B, f) =
J :={(b,m) € B x M; | Im(b) |m};
ifJ#0
then choose (b,m) € J;



Chapter 1. Grobner Bases, an Introduction 9

return StronglyReduce(B, f — (fmm/1t(b))b)
else return f
fi.

Observe that Mj decreases at each recursive call with respect to <# as in
Proposition 2.5, This justifies the remark that StronglyReduce attempts to
minimize M, for g € f + (B). We shall call f € K[X] strongly reduced with
respect to B and the fixed reduction order <, if the algorithm StronglyReduce,
when applied to (B, f), yields f itself. In other words, if there is no monomial
m € My that is a multiple of the leading monomial of a member of B.

Exercise 3.6. Consider the algorithm StronglyReduce defined above.

1. Show that StronglyReduce terminates. Hint: use Part 3 of Proposition 2.5
applied to the sequence My for f the subsequent second arguments in
the recursive calls of the routine.

2. Show that, for given B C K[X] and f € K[X], StronglyReduce(B, f) is
a polynomial g € f + (B) with lm(b) fm for b € B and m € M,.

3. Take f = XY and ¢ = X — Y € R[X,Y] and let < be the lexicographic
order on M with X > Y. Verify that StronglyReduce({f, g}, f) may
produce both 0 and Y?2.

Definition 3.7. Fix a reduction order on M. In order to formulate the Buch-
berger algorithm, we need the notion of S-polynomial of f, g € K[X]. It is the
most efficient K[X]-linear combination of f and g that has a leading term
of which we do not a priori know that it can be reduced modulo {f, g} (see
Exercise 3.8 for an exception to this rule). This is done by ‘matching’ the
lcading terms for f and g by multiplication with suitable terms and next
subtracting these multiples of f and ¢ from each other. For instance, if < is
n total degree reduction order, f = 6X2Y +3X +2, and g = 3XY?-Y — X,
then their S-polynomial is (1/6)Y f — (1/3)Xg = (2X2? 4+ 5XY +2Y)/6. The
formal definition of S-polynomial is

_ lem(Im(f),Im(g)) . lem(lm(f),Im(g))
S(f,9) = 1t(f) - 1t(g)

if f¢g # 0 and 0 otherwise. (Here, lcm stands for least common multiple.)
Cancellation of the leading terms implies

Im(5(f,9)) <lem(lm(f), lm(g)). (3.2)

Observe that the S-polynomial of f and g is a member of {f, g} K[X]. For
instance, in the above example, S(X2Y — 1,XY?2 - 1) = X — Y. The fact
that X — Y belongs to the ideal (B) also indicates that the difference of the
two outcomes of Reduce(B, f) as computed in Example 3.1 lies in (B).

f




10 A.M. Cohen

Exercise 3.8. Suppose that f,g € K|[X] satisfy ged(lm(f),lm(g)) = 1.
Prove that Reduce({f,g},S(f,g)) =0.

In the Buchberger algorithm, the S-polynomial is used to find new mem-
bers of (B) from two polynomials in B which do not yet reduce to 0 mod
B. If the reduction of the result is nonzero, then we add it to B. Here is the
Buchberger algorithm in its simplest form.

GroebnerBasis(B) =
P := {unordered pairs from B} ;
while P # 0 do
choose {f,g9} € P;

P:=P\{f g};
¢ := Reduce(B, S(f,9));
ifc#0

then B := BU{c};
P:=PU{{bc}|be B};
fi;
od; return B.

Termination is a consequence of the fact that the sequence {lm(b) | b €
B}K|[X] of ideals of K[X] for subsequent values of B, produced in the course
of the algorithm, strictly ascends. Since K[X] is Noetherian, this chain must
be finite, and so the addition to B stops after a finite number of times. If there
are no additions to B, the finite set P will be exhausted, whence termination.

It is very hard to provide a good explicit upper bound on these chains of
increasing B’s; bad examples are known.

For simplicity of presentation, we have not taken into account that, at
some stages during the algorithm, one can actually discard some members of
B, so that B does not necessarily grow as wildly as suggested. Also, Exercise
3.8 can be used to eliminate certain pairs from P before starting to compute
the corresponding S-polynomial.

The result of a GroebnerBasis computation with input B is a particularly
nice generating set for (B) in that it is a Groébner basis in the following
sense. (The proof of this observation will be given in Corollary 3.12.)

Definition 3.9. A finite subset B of K[X] is called a Grébner basis if, for
each polynomial f € (B), the zero polynomial is a reduced form of f modulo
B. If so, and if I = (B), we also say that B is a Grobner basis of I.

Theorem 3.10 (Grébner Basis Characterisation). The following state-
ments concerning a finite subset B of K[X] with respect to a reduction or-
dering < on M are equivalent.



Chapter 1. Grobner Bases, an Introduction 11

1. B is a Grobner basis;

2. S(b,c) reduces to 0 modulo B for each pair b,c € B;
3. {lm(f) | f € (B)}K[X] = {lm(b) | b € B}K[X];

4. {1t(f) | f € (B)}K[X] = {lt(b) | b € B}K[X].

Clearly, 3 and 4 are equivalent. We have added 4 because (other than 3) it
is the criterion that can also be used as a definition of Grébner basis in case
K is not a field. Note that, due to Criterion 2, it can be effectively verified
whether B is a Grébner basis; in fact, B is a Grébner basis if and only if
the algorithm GroebnerBasis above leaves B unaltered. Besides, it does not
matter which of the two reductions is applied in Criterion 2: it is equivalent
to both Reduce(B, f) = 0 and StronglyReduce(B f) = 0 (and to (3.1) in
Remark 3.4).

Proof. Actually, only one implication is hard to prove: 2 = 3.

1 = 2 is trivial as S(b,¢) € (B).

2 = 3. Suppose f € (B). We will show that Im(f) € ({lm(a) | @ € B}). This
will imply the nontrivial inclusion in 3. Since K is a field, we may (and shall)
assume, without loss of generality, that all polynomials b in B are monic,
that is, have le(b) = 1. By assumption there is a map g : B — K[X], a — g,

with
f=Y_ gao.

a€B

To this expression for f we associate the multiset A4 : M — N given by
Ay =m— #{a € B|lm(gea) = m}.

We assume that g is chosen such that A, is minimal with respect to the
order <3 on H, the collection of finite multisets M — N, defined in Part 2
of Exercise 2.6.

Obviously, max Ay > Im(f). We show that we can achieve equality. Sup-
pose, to this end, max Ay > Im(f). Then there must be b,c € B with
Im(gsb) = lm(g.c) attaining this maximum. (For the monomial does not
occur in the left-hand side of the equation f =) 5 goa and so must occur
at least twice in the right hand side.)

As Reduce(B, S(b,c)) = 0, in view of Inequality (3.2), there exist h, €
K|X] (a € B) with

S(b,c) = > haa and Vacp Im(hea) < lem(Im(b),Im(c)).  (3.3)
a€EB .

We shall use this expression of S(b, ¢) to construct a new coefficient system
‘. B = K[X] with Ay <y Ag and f = 3} pgsa, thus obtaining a
contradiction with the minimality of A,. '
It follows from Im(gyb) = Im(g.c) that lem(lm(b), Im(c)) divides Im(gpb).
lat t be the quotient term



12 A.M. Cohen

‘e 1t(gsb)
lem(lm(b), lm(c))

Then
tlt(c)

1t(gs) = ged(Im(b), Im(c))’

gb = 1t(gs)b+ (g5 — 1t(gs))b

- gclctl((ir)r?(;),lifzzz)) gcd(lrilt((:)),clm(c)) + (9~ 1t(90))0
= tS(b0) + ltl(f(g(f))c + (g5 — 1t(gn))b
= 26% thea + le(gs)lm(ge)e + (gs — 16(g5))b,
whence f =) gla, with
9% = the + go —1t(gs),
g. = ge+the+lc(gy)lm(g.), and

gy = ga+thgforac B\ {bc}.

In view of (3.1) in Remark 3.4, Inequality (3.2), and the definition of ¢, we
derive that ¢’ : B — K|[X] satisfies

Im(gyb) < max(Im(thsb), lm(gsb — 1t(gs)b)) < lm(gsb) = max A,
Im(gic) < max(lm(gcc), Im(thcc))

< Im(gcc) = max Ay, and, for a € B\ {b,c},
Im(gla) < max(lm(gea),lm(th,a)) <lm(gpb) = max A,

with equality only if Im(gea) = Im(gsb). This implies Ay <3 Ag, a contra-
diction with the minimality of A4. Thus, we must have max A; = Im(f). But
then Im(f) = lm(gsb) for some b € B, so Im(f) € {Im(b) | b € B}K[X], and
we are done.

4 = 1. Assume that Criterion 4 holds and let f € (B). Without loss of
generality, we may assume f = Reduce(B, f). Suppose f # 0. Then, since
1t(f) € {lt(b) | b € B}K|X], there are a nonzero b € B and g € K[X]
with 1t(f) = 1t(gb). But then Im(f — gb) < lm(f), so f can be reduced, a
contradiction. Consequently, f = 0, proving Criterion 1.

Corollary 3.11. Suppose that I is an ideal of K[X] and B is a finite subset
of I. If
{lt(v) | b € B}K[X] = {lt(f) | f € I}K[X],

then B is a Gribner basis of I.



Chapter 1. Grébner Bases, an Introduction 13

Proof. Clearly, (B) C I. Suppose f € I. We want to establish f € (B).
Without loss of generality, we may assume f = Reduce(B, f). Arguing as
in ‘4 = 1’ of the proof of the above theorem, we find that f = 0, proving

fe(B).

Corollary 3.12. The result of the algorithm GroebnerBasis applied to B is
a Grébner basis B’ with (B) = (B').

Proof. Only elements of (B) are added to B in order to get B’, so clearly,
(B’) = (B). At the end of the algorithm, Part 2 of Theorem 3.10 is satisfied
and so B’ is a Grobner basis.

Remark 3.13. Corollary 3.11 is extremely useful. For instance, it shows that
we may throw away members b from a-Grébner basis B that do not contribute
to the so-called initial ideal {lt(a) | a € B}K[X], in the sense that

{lt(a) | a € B}K[X] = {lt(a) | a € B\ {b}}K[X].

Thus, one can trim down a Grobner basis to a minimal Grobner basis, that is,
one from which removal of an element would always lead to a strictly smaller
ideal. In fact, we can do better and even construct a unique Grobner basis
(for a fixed reduction ordering), see Theorem 3.16.

Ezample 3.14. We first compute the Grobner basis of B = {b;, b} with
by = X?Y — 1 and b; = XY? — 1 as in Example 3.1 with respect to the
lexicographic order in which X > Y. We have already seen that

b3 = Reduce(B, S(b;,b2)) = X - Y.
So the next values of B and P are

B = {X’Y-1,XY2-1X-Y},
P = {{X’Y-1,X-Y}, {XY*-1,X-Y}}.

Now picking the first pair from P, we find ¢ = 0, so we can continue with the
second pair. This produces ¢ = Y3 — 1, so we must append by = Y3 — 1 to
I3. Moreover, updating P yields

P={{X’Y -1,Y*-1}, {(X-Y,Y3-1}, {(XY?-1,Y%-1}},

which looks pretty horrible. Actually, now the S-polynomials of all pairs in
P reduce to zero, so we are done. Thus the Grobner basis is {b1, b2, b3, ba}.
e to Remark 3.13, {bs, b4} is also a Grébner basis of the same ideal.

Deflinition 3.15. Let B C K[X] be a finite subset of K[X]. Then B is
called a reduced Grébner basis if it is a Grobner basis and if each b € B
has le(b) = 1 and is strongly reduced with respect to B \ {b} (in formula,
b = Strongly Reduce(B \ {b},b)). |



14 A.M. Cohen

The strength of this notion will be clear from the following result.

Theorem 3.16. For a given reduction order, each ideal of K[X] has a unique
reduced Grobner basis.

Thus, one can tell if two ideals are equal by computing their reduced
Grobner bases.

Proof. First we prove existence. For each b € B, the condition on lc(b) = 1
can obviously be satisfied at any time by dividing b by lc(b). Thus, we can, and
will, assume that the members of B are monic, i.e., have leading coefficient
equal to 1. By Corollary 3.12, given a finite set of generators of an ideal, we
can find a Grobner basis B for that ideal.

If b € B is not strongly reduced with respect to B\ {b}, there is ¢ € B,
¢ # b, with Im(c) | m, where m € M,. Write ¥/ = b — bp,lm(b)c/lt(c). This
is the result of the first step in StronglyReduced(B \ {b}, b) and My < M.
Writing M(B) for the multiset:

M(B)=(me M #{be B|b,, #0}),

this gives M(B) >y M(B U {b'} \ {b}), with the notation of Exercise 2.6.
By transitivity of <3, we find M(B) = M(B’) if B’ is obtained from B
by substituting a strong reduction of b by B\ {b} (and removing 0 from
the result). Hence, well foundedness of <4 (cf. 2.6) gives termination of the
algorithm replacing each strongly reducible b € B with respect to B \ {b} by
¢ = StronglyReduce(B \ {b},b) if ¢ # 0 and removing it from B if ¢ = 0.
After termination, all elements b € B are strongly reduced with respect to
B\ {b}, and so we have obtained a reduced Grébner basis.

Suppose B and C are both reduced Grobner bases of (B). Let b € B.
Then there is ¢ € C such that lt(c) = lm(c) | lm(b) = 1t(b). On the other
hand, there is b’ € B such that 1t(¥’) | 1t(c). But then 1t(d') | 1t(b), so the fact
that B is reduced implies b = b’. Hence 1t(c) = 1t(b). We have shown that for
every member of B there is an element of C with the same leading term. By
symmetry, we have the same with the roles of B and C interchanged. This
observation already implies that B and C have the same cardinality.

Now take b € B\ C such that lm(b) is minimal. As argued above, there
is ¢ € C such that 1t(b) = lt(c). Consider b — c. It belongs to (B) and
Im(b — ¢} < lm(b), so, by minimality of Im(b), there are fg (d € BN C) such
that b — ¢ = Y cgre fad with Im(fyd) < lm(b). We want to show that the
sum is empty. Suppose that fg # 0 for some d € B N C. Then there is a
monomial t € M UM, such that lm{d) | Im(t), contradicting that B and
C are reduced Grobner bases. Hence Y, fad = 0 and b = ¢, which conflicts
with b € C. We have shown that B C C. By symmetry, we conclude that B
coincides with C.

Exercise 3.17. Give a simple example to show that the reduced Grébner
basis depends on the reduction order.



Chapter 1. Grébner Bases, an Introduction 15
4. Standard Monomials

This section is devoted to Problem 3: produce an effectively computable K-
linear projection map from K[X] onto a complement of (B) in K[X]. We
shall first motivate why we want such a map.

By Hilbert’s Basis Theorem 1.3, a quotient ring of K[X] is of the form
K|[X]/(B) for a finite subset B of K[X]. Thus, the projection of K[X] onto
a complement U of (B) in K[X] will provide an isomorphism K[X]/(B) = U
of K-vector spaces. This means that U can serve as a model for K[X]/(B).
Addition and subtraction of members of U is clear from the vector space
structure. The multiplication of two polynomials f,g € U gives a polynomial
fg not necessarily in U, but its projection onto U (with kernel (B)) will
provide the unique polynomial in U corresponding to fg. In this manner, the
K-algebra operations (testing equality, multiplication, etc.) of K[X]/(B) are
effective whenever the projection onto U is.

Ezample 4.1. Let B = {f} where f is a univariate polynomial in K[X] (with
X = Xj) of degree m, and let U be the linear subspace of K[X] consisting
of all polynomials of degree less than m. Then each element g + f K[X] €
K[X]/(f) corresponds to a unique polynomial of U: just take the remainder of
division by f, i.e., Reduce({f},g). Using the linear projection map K[X] —
U, g — Reduce({f}, g), we can express all arithmetic operations of K[ X]/(f),
such as addition, multiplication, and even division, in terms of polynomial
operations on U.

Exercise 4.2. Suppose f € K|[X] is irreducible of degree m (so that
K[X]/(f) is an extension field of K of degree m). Show that the inverse
in K[X]/(f) of a nonzero element g + f K[X] can be determined by the
Extended Euclidean Algorithm. Hint: Find polynomials u,v € K[X] with
ug +vf = 1; then u represents the inverse of g.

Definition 4.3. Given a reduction order < on the monomials M of K[X],
the monomials not divisible by the leading monomial of any member of (B)
are called standard.

By U we denote the K-linear subspace of K[X] spanned by all standard
monomials. It is a vector space isomorphic to the vector space K[X]/(B).
Recall that M denotes the set of monomials occurring in the polynomial f.
Oue can try and describe the projection K[X] — U with kernel (B) as iter-
atively replacing f € K[X] by g = f — ra with ¢ € B and r € K[X] suitably
chosen so as to obtain My < My, cf. Proposition 2.5. The iteration continues
until no monomial occurring in the result is divisible by the leading term of a
polynomial from B. In other words, we are describing StronglyReduce(B, f).
In order for the result to be in U, the leading monomial of any element of
(13) must be a multiple of the leading monomial of at least one member of B.
IInt that is a nontrivial condition! In fact, by Theorem 3.10, it is equivalent
to B being a Grobner basis. We summarize:



16 A. M, Cohen

Proposition 4.4. Suppose B is a Griobner basis of K[X]. If U is the linear
span of all standard monomials, then

K[X]=Ua®a® (B).
Moreover, StronglyReduce(B, f) projects f into U.

Thus, the algebraic operations of a K-algebra A = K[X|]/(B) are effective:
First compute C' = GroebnerBasis(B). The elements of A are the residue
classes f+(B), which are represented by f. Then the equality between f+(B)
and g+ (B) is tested by equating the two polynomials StronglyReduce(C, f)
and Strongly Reduce(C, g). Now multiplication on A works as follows: do the
arithmetic in K[X] and apply StronglyReduce(C,-) to the result. Note that
StronglyReduce is not needed for subtraction and addition.

Ezample 4.5. For B asin Example 3.1, we have seen that C = {X-Y,Y3—1}
is a Grobner basis (if X > Y). Thus A = K[X]/(B) can be thought of as
the linear subspace U of K[X] spanned by {1,Y,Y?}, and squaring Y? gives
StronglyReduce(C,Y4) =Y € U.

Exercise 4.6. Suppose B is a Grobner basis in K[X] with respect to a fixed
reduction order. Prove that Strongly Reduce(B, f) = StronglyReduce(B, g)
holds if and only f + (B) =g+ (B).

Remark 4.7. The set K[X] is used to represent polynomials, not only for
K[X] itself but also for the quotient ring K[X]/I, where I is an ideal of
K|[X]. We have seen that, by use of StronglyReduce and Reduce, these rep-
resentatives can be controlled. The ultimate control is the existence of a
unique element in K[X] for a whole class in K[X]/I. Such an element is of-
ten referred to as a normal form, especially when it can be computed starting
from an arbitrary representative by means of rewritings. This is achieved by
StronglyReduce with respect to a Grébner basis. Thus, we shall also refer to
StronglyReduce(B, f) as a normal form of f if B is a Grébner basis.

Ezample 4.8. A StronglyReduce algorithm for the Grassmann variety of
lines on a vector space V was known before Grobner bases. Recall that A* V,
the exterior square of V, is the vector space that can be obtained as the
—1-eigenspace of V' ® V with respect to the involution ¢ : V@V - V@V
interchanging the two factors; that is, o(z @ y) = y® z for 2,y € V. (K
is assumed to have characteristic distinct from 2.) It has dimension (}) and
coordinate functions Xj; for 1 < ¢ < j < n, where n = dimV, which can
be extended by the rules X;; = 0 and X;; = X;;. Recall that 1-dimensional
linear subspaces spanned by pure wedges Ay =z Q®y—yQ®<z in /\2 |4
represent 2-dimensional subspaces of V' (namely, the linear span of z and y).
The set of all single wedges is actually an algebraic variety: it is the zeroset
of the quadratic polynomials '

Pym = XyXm+ XjpXa+ XeiXji. (4.1)



Chapter 1. Grobner Bases, an Introduction 17

Using these equations, it is easily derived that modulo the ideal generated
by the Pij.xi, one can always rewrite a monomial to a linear combination of
monomials X;; X, each of which satisfies ¢ < j, k <[, and i <k, j <I. This
observation can be used to prove that the polynomials (4.1) form a Grébner
basis and that those just mentioned form the set of all standard monomials.
Thus, if we denote their linear span by U, we have

K{Xij |[1<i<j<n}=U {Pyuw |i<jk<l})

In particular, the quadratic polynomials P;;..; form a Grobner basis with
respect: to any total degree lexicographic order extending the partial order
on the variables given by

Xij < Xuoi<kandj<! (wherei<j, k<1l).

Exercise 4.9. Verify that, if dim V' = 4, the Grassmann variety of lines is
just a (single) quadric. Consider the Grassmann ring for dimV = 5, that
is, K[X12,...,X4s]/({Pijikt})- Write out X,5X23X34 as a sum of standard
monomials.

5. Solving Polynomial Equations

We now address Problem 2: Suppose we have a vector a € K [X]¢. We want
to describe the subset of K™ consisting of all solutions x € K™ of the system
of equations *

a1(x) = az(x) = --- = ag(x) = 0.

We shall denote this subset of K™ by Z(a), or Z(A) if A = {a,,...,a¢}.

Before dealing with the general case, note that,-at first year university
level (or earlier), we were taught how to deal with such a system if n = 1
(the univariate case) or if all a; have degree 1 (the linear case). Let us briefly
recall these two particular cases.

The Univariate Case

If X = {X,} = {X}, we can use the Euclidean Algorithm to reduce the equa-
tions a,(x) = -+ = ag(x) = 0 to the single one f(z) = 0, where f € K[X]
is the ged of {a),...,a¢}. Once the system is reduced to a single univari-
ate polynomial equation, all we can do further is factor the polynomial into
irreducible ones. Each irreducible factor will then have as solutions formal
elements in the extension field that it defines. In particular, solutions in K
correspond to the linear factors of f.



I8 A. M. Cohen

Example 5.1. Consider the polynomials

ap = XW¥-7X2418X%-21X%+10,
a, = X2?-6X%2-X°+11X4+2X—6.

The ged of these two polynomials is ag = X* — 2. This is an irreducible
polynomial. In particular, there are no rational solutions. Each solution can
be described as an element z of an extension field isomorphic to Q[X]/(X* -
2). Inside the latter field we can describe one solution as z = X + (ag). If we
want to describe all solutions in these terms, we need the so-called splitting
field of ag. Here, clearly —x is another solution. Further solutions are zeros of
the quotient ep = X2 +z? of X4 —2 by (X —z)(X +x). Since this quotient is
irreducible over Q(xz), the quadratic extension Q(x)[X]/(co) is needed for a
description of the two remaining solutions. Within that extension, the element
y =X + ¢Q(x)[X] is a solution, as well as —y.

Because of the particular form of ag, we can describe z by the more
familiar notation z = 2. The additional information in this notation is that
it refers to the biggest real root among all four. Similarly, y can then be
identified with iz = i¥/2. To see this, note that z = y/x satisfies 22 = —1 (as
y?2 = —z? in Q(x)[X]/(co)), so that it can indeed be identified with 1.

In most cases (as explained by Galois theory) it is not possible to find
such an explicit description of a root in K. For instance, for a zero of the
irreducible polynomial X® + X + 1, one cannot do much better than produce
the tautology z =Root0f (X°® + X + 1, X). If K is an algebraic number field,
one way of distinguishing the five roots is by describing their embeddings in
the complex plane. For instance, one might refer to the biggest (or one but
biggest) real solution, or the complex solution with greatest real part, etc.

In conclusion, solving a system of univariate equations comes down to
solving a single univariate equation, namely the gcd of the original poly-
nomials. In order to find explicit descriptions of solutions, factorization of
univariate polynomials over field extensions is needed. See Chapter 4 for a
treatment of this topic. Suffice it to say here that, in general, it is not easy
to find a factorization over an extension field.

The Linear Homogeneous Case

Suppose now that all a; are linear in the variables X = {X,,...,X,}. Then
the usual solution method is Gauss elimination. We order the variables, say
X) < -+» < X,. Suppose, without loss of generality, that the monomial X,
occurs in ag (that is, it occurs in a; as the monomial of a.term with nonzero
coefficient). Denote by a® the coefficient of X; in a;. Thus, a®® # 0. A new
system of £—1 linear equations is formed by replacing a; by a} = a*ra;—a’"a
for j # ¢, so X, cancels out. The equation a, = 0 is kept apart for later
use, namely to express the coordinate z,, of solutions x in terms of other
coordinates. The system a; = 0 may collapse as some of the a; could be zero.



Chapter 1. Grobner Bases, an Introduction 19

Apart from this phenomenon, there are no complications: one continues with
the a} (j # £), eliminating the next variable down from X, that occurs in
one of these. If, at some stage, a variable X; has not been set aside as yet and
does not occur in the resulting system, then xz; will be a free parameter for
the solution z. The final result has a set of free parameters, and —due to the
equations kept apart— a way of expressing each of the remaining coordinates
z; in terms of these parameters.

Ezxample 5.2. Let K = Q and consider the polynomials
ay = 8X1 - 18X2 - 9X3 - 6X4,

Qg = 4X1 - 10X2 —6X3 - 4){}4,
asz = 2X1 - 6X2 —3X3 ——2X4,

The corresponding system of equations in two variables, derived according to
the above procedure, with =3 and n = 4, is

a, = a1 —3a3=2X1,
a9 —203 :2X2

a

As X3 does not occur in a} and ab, the variable X5 can be assigned any
value in Q. The two remaining equations are already in upper triangular
shape; they express z; = 0 and x5 = 0, respectively. The equation set apart
(coming from a3z = 0) then expresses x4 in terms of z3, and so all solutions
look like

(0, 0, z3, —31‘3/2) with z3 € Q.

The Role of the Buchberger Algorithm

The general solving strategy is a blend of the two methods encountered in
the above special cases.

It is important to observe that the set of equations a; = +.- =ag =0 is
cquivalent to any other set b = -+ = by = 0 for which {by,..., b} K[X] =
{a1,...,a¢} K[X]. The idea behind the solving procedure is to replace the set
{a1,...,a,} by a more suitable (‘upper triangular’) set: a Grébner basis with
respect to a lexicographic order.

Example 5.3. In the univariate case, every Grobner basis of {ai,...,as}
contains f = gcd(ay,...,as), and the singleton {f} is a Groébner basis of
({a1,...,ae}). Thus, Grébner bases achieve the same reduction as described
above.

Before going over to more variables, we fix < to be the lexicographic order
on Mwith X; < X3 <--- < X.



20 A. M. Cohen

Ezample 5.4. Put A = {a1,...,a;}. In the linear case, with X,, occurring
in ag, we can perform GroebnerBasis(a) in such a way that we compute
Reduce(A, S(a;, ag)) first, for all j < £. Note that the S-polynomial involved
coincides with the reduction from a; to a} described in the treatment of the
linear case above. The reduction takes care of further elimination of variables
in a} as is done later in the Gauss elimination. In our short description of
Groebner Basis we did not throw out elements from the basis at hand. But
here it is clear that AU{a’}\{a;} and A generate the same ideal and that the
leading terms of AU {a}}& {a;} and of AU{aj} also generate the same ideal,
so we may remove a; in the Grébner basis computation once a} has been
adjoined. Continuing this way, we do not increase the number of equations.
After all reductions of S(aj,ap) have been dealt with, the equation a, will
have stayed apart, as its leading term X, does not occur in any of the other
equations., Thus the same pattern emerges as with Gauss elimination.

Solving Polynomial Equations

Of great importance for solving equations is the following result.

Proposition 5.5 (Elimination of Variables). If B is a Grobner basis
with respect to the lericographic order < with X; < --- < X,,, and if i < n,
then

K[X1,...,Xi)n(B) = (K[Xy,..., Xi|n B)K[X,, ..., X;].

Proof. The inclusion D is obvious. Let f € K[X),..., X;]N(B). Since f € (B)
and B is a Grébner basis, there are hy for b € B with f = }7, 5 hyb and
Im(hyb) < lm(f). But f € K[X,,...,X;], so Im(f) < X;;1. Hence also
Im(hsb) < Xit1, showing that Im(hpb) lies in K[X,, ..., X;]| foreach b € B. In
particular, b € K[X},..., X;]NB whenever hy # 0. Since hy € K[X),..., X;],
this establishes f = 3, hpb € (K[X), ..., Xi] N B)K[X\,..., Xi].

Exercise 5.6. An order with X, < --- < X, is called an elimination order
if X} < X4, for any j and i = 1,...,n — 1. Show that Proposition 5.5 is
also valid for any elimination order instead of the lexicographic order.

The proposition guarantees that, whatever solutions x € K" to b(x) = 0
for b € B there may be, their first coordinates x; will satisfy the ged of all
equations in (B) without variables X5, ..., X,,. More precisely:

Proposition 5.7. Suppose B is a Grobner basis with respect to the lexico-
graphic order with X; < -+ < X,. Let (x1,...,2¢) € K¢ for some £ < n.
Then, for 1 < € < n, we have

1. if (z1,...,%n) € Z(B) then (z1,...,2¢) € Z(BNK[X,,...,Xy]);
2. ifC={f(z1,...,xe,Xe41,...,Xn) | f € B} then

Z(C) = {(zl'H""’zn) € K"-‘ | (zl’zﬁ"-' ,zn) € Z(B)};



Chapter 1. Grobner Bases, an Introduction 21

3. the set C of 2. is a Grébner basis in K[Xgyy,...,X,].

Proof. 1. If f € K[X),...,X,] then, viewing f as a polynomial in the vari-
ables Xy, ..., X, which is constant in Xyy,,...,X,, we have f(2),...,2¢) =
f(zy,...,xe,Te41,...,2,). If, moreover, f € B, then f(z,,...,r,) =0, and
so f(z),...,2¢) = 0, proving (z),...,x¢) € Z(BN K[X}1,...,X¢]).

2. Immediate from the definition of C.

3. First observe that if X' --- X% < X}'--- X%, then X&' - Xon <
X4t X, In particular, if f,g € K[X] satisfy Im(f) < lm(g), then
lm(f(zl, Ve .,(II[,X[+1, P ,Xn)) S lm(g(zl, P ,(II[,X[+1, PR ,Xn)).

Let ¢ € CK[X¢41,...,X,]- Then there are hy € K[Xgt1,...,Xy,] for
b € B such that

9= Zhbb(fﬁl,--~.,$Z,Xe+1,---,Xn)‘
beB
Consider § = Y, g hsb(X1,..., X¢, Xey1,...,Xn) € K[X]. Since § € (B)
and B is a Grobner basis, there are hy € K[X] with § = 7, 5 hsb and

Im(hyb) < lm(§) for all b € B. The leading monomial of § has the form
X{t... X3~ for certain ay,...,a, € N, with Im(g) = X7{}* -+ X2~ By the
observation at the beginning of the proof,

lm(ﬁb(zl, cey o1, Xy ooy Xp)b(za, oo 2o, Xy oo, X)) <

: S lm(g(zla . '7zl—17XZa e aX'n)) = lm(g)

with equality for at least one b € B. For such a polynomial b we have, since
b(:l:l,...,:lrg_l,Xg,... ,Xn) € C,
lm(g) S lm(b(zl,...,zg_l,Xg,...,Xn))K[Xg+1,...,Xn] Q
g {lm(c) |C€C}K[X[+1,...,Xn],

whence
{im(g) | g € (C)}K[X¢41, .-+, Xn] = {lm(c) | c € C}K[Xeya,..., Xnl.

By Theorem 3.10, C is a Grobner basis in K[Xgy, ..., Xy]. This proves Part
3.

As a consequence of this proposition, we can reduce the solution of b, =
-+« = b, = 0 to solving polynomial equations in fewer variables.

Example 5.8. Let us solve b) = by = 0 with B = {b1,b3} as in Example 3.1.
In the Grobner basis of B there is a single polynomial in the single variable
Y (namely by, see Example 3.14), which tells us that Y = /1. The next
equation up (namely b3 = 0) tells us X = Y. This completely determines the
solution set:

Z(B)= {(1, 1), (e2w1/3'eﬂwi/3)’ (e4wi/3’e41ri/3)}'



22 A.M. Cohen

Ezample 5.9. Consider b = (X? + Y? + Z2,XYZ) € K[X,Y,Z]?, where
K is an effective subfield of C. The reduced Grébner basis with respect to
the lexicographic order with X > Y > Z can be easily computed by use of
a computer algebra software package. The result is B = {b;, by, b3} where
bs =Y3Z + Z3Y . Since B has no univariate polynomial in Z, we have Z(Bn
K[Z]) = Z(0) = K3. There is one element in B that is a polynomial in the
variables Y and Z only, viz., b3. Solving b3 = 0, we find that

Z(BNK[Y,Z]) = Z(b3) = {(z,y,2) |[y=0VvV2=0Vy=izVy=—iz}

provided ¢ = /=1 € K. Thus, it is the union of the four lines {Y = 0},
{Z = 0}, {(yyiy) | vy € K}, {(y,—iy) | y € K} of K?. This distinction of
cases propagates as we add the variable X, a phenomenon typical of what
can be expected in general. In this case, the result is a union of lines in K3.

More about solving polynomial systems can be found in Chapter 2.

Exercise 5.10. Recall that the minimal polynomial of an algebraic number
z € K is the polynomial of minimal positive degree in K[X] of which z is a
zero. Let f be as above. Show that the following method finds the minimal
polynomial of g + (f) € K[X]/(f), for ¢ € K[X]: Compute the Grébner
basis B of (g9 — Y, f) € K[X,Y]? with respect to the lexicographic order
with X > Y. Then BN K[Y] is generated by the minimal polynomial (with
variable Y') for g.

Exercise 5.11. The previous exercise may be seen as a special case of the
following more general determination of the image and kernel of a morphism.
Let I be an ideal of K[X] generated by a finite set B and let ¢ : K[)] —
K[X]/I be a morphism of K-algebras. Prove the following assertions.

1. ¢ is determined by polynomials F; € K[X] such that ¢(Y;) = F; + I
(j=1,...,m), where Y = {Y1,...,Yn}.
2. Let J be the kernel of the morphism

¢*: KX V)Y — K[XU)Y|/(B)

given by ¢*(Y;) = F;+ (B) and ¢*(X;) = X;+ (B). Then J is generated

by Y; — F;, (j = 1,...,m) and B. Hint: for g € ker ¢*, write g = g —

9(X1,...,Xn, F1,...,Fy) as a linear combination of ‘binomials’ Y* — F@

(e € N™) and show by induction on a that such binomials are in the ideal

generated by Y; — Fj.

ker¢ = J N K[Y].

4. ker ¢ can be computed by means of a Grobner basis algorithm applied
to the above generating set for J with respect to an elimination order
(cf. Proposition 5.5) satisfying Y < X; for all ¢,i,j € N.

5. f € K[X] satisfies

f+I€im¢ <& StronglyReduce(G, f) € K[Y),
where G is a Grébner basis for J as suggested above.

@



Chapter 1. Grobner Bases, an Introduction 23

6. Effectiveness of Polynomial Rings

In this section we are concerned with Problem 1: effectiveness of K[X]. As we
have seen, this amounts to describing all solutions x = (z1,...,z;) € K[X]¢
of the equation

Z a;xr; = b, (61)

1<i<¢

for a = (ai,...,a) € K[X]¢ and b € K[X]. We shall also use vector notation
and write ax' = b for this equation.

Determining whether there is a solution to (6.1) is the same as the ideal
membership problem for the ideal I = {a,,...,a,}K[X] and the polynomial
b, that is, b € I if and only if Equation (6.1) has a solution. But, by the
definition of Grébner basis and Corollary 3.12, b is a member of I if and only
if Reduce(GroebnerBasis({ai,...,as}),b) = 0, and so this can be decided
effectively. This observation already indicates that solving (6.1) is easier if
A ={ay,...,0¢} is a Grobner basis.

Suppose we know Reduce(B, f) = 0. Then f € (B), and the more elabo-
rate version below of the Reduction Algorithm gives us a vector ¢ € K[X]¢ of
coefficients for which the membership f € (B) is realised, that is, such that
f=bc', where b € K[X] is such that B = {by,...,b}.

ExtendedReduce(b, f) =

J:={ie{l,...,€} | lm(b;)lm(f)};

if J#£0

then choose j € J;
(c, g) := Extended Reduce(b, f — (1t(f)/1t(b;))b;);
return (c + (1t(f)/1t(b;))e;, 9)

else return (0, f)

fi.

Heree; (1 < j < £) denotes the standard basis of the K[X]-module K[X]*.
We describe the functionality of the algorithm in the following

Proposition 6.1. For b € K[X]¢ and f € K[X], the algorithm Extended-
Reduce finds a pair (c, g) consisting of a vector ¢ € K[X]¢ and a reduced form
g € K|X] of f such that f — g =bc" andlm(bic;) <Im(f) fori=1,...,¢.

Let a € K[X]*. If we have found one solution d of the equation ax™ = b,
then any solution is of the form d+y where y is a solution of the homogeneous
equation ay T = 0.



24 A.M. Cohen

If {a1,...,a¢} is a Grobner basis, then ExtendedReduce(a,b) produces
a particular solution to ax' = b. Therefore, the main problem is the
homogeneous equation ax' = 0. Note that its solutions form a K[X]-
submodule of K[X]¢; in fact they form the kernel of the K[X]-linear map
ba : K[X]* — K|[X] given by ¢a(x) = ax'. Thus, solving the homogeneous
equation can be conveniently rephrased as the problem of finding a set of
generators of ker ¢g.

Definition 6.2. Elements of ker ¢, describe relations among the individual
components of a; such relations are called syzygies.

We shall find a finite spanning set for the syzygies of a.

Syzygies for Vectors of Terms

First we treat the case where a is a vector of terms, that is, each component
a; is a term. Note that this solves the problem of finding a spanning set for
the sygyzies corresponding to a monomial ideal, that is, an ideal generated
by a set of monomials. Theorem 6.9 below shows how to deal with the general
case.

If a is fixed and v has to be chosen so as to cancel out a; and a;, we
can take v with nonzero components at the indices ¢ and j only, leaving
a;v; + a;v; to be made zero. This can be done similar to the construction of
the S-polynomial. '

For 1 <14 < j < £ with a;,a; # 0, we define

m¥ = lem(lm(a;),Im(a;)), and (6.2)
vi = (m{/1t(as))e; — (md /1t(a;))e;. (6.3)

Lemma 6.3. Let a € K[X]* be a nonzero vector of terms with ax # 0 for
all k. Then the elements v (1 < i < j < £) of K[X]® generate ker ¢a as a
K [X]-submodule. Moreover, for each w € ker ¢a, there are f;; € K[X] with
Im(f;;m¥) < lm(a;w;) such that

w = Z fijvf,j.

1<i<j<t

Proof. As ais a vector of terms, we have ax = lt(ax) for each k. Consequently,
for all 4, j,

a(v¥)T = aimi /lt(as) — a;mid 1t(a;) = 0,
so that the K[X]-submodule generated by the v¥ is contained in ker ¢,.

As for the converse, suppose w € ker¢,. If w = 0, or there is just one
coordinate in which w is nonzero, there is nothing to prove. Therefore, we
assume that there are two distinct indices, say 4, j, with i < j, such that
w;, w; # 0 and Im(a;w;) = Im(a;w;). In particular, there are a term u and a
coefficient ¢ € K with lt(a;w;) = um¥ = clm(a;w;). Now w' = w—uv¥/ has



Chapter 1. Grébner Bases, an Introduction 25

w: = Wi — um;]/lt(al) = w; — lt(w"-)’
'w; = w;+ umg/lt(aj) = wj + Clm(wj)/lc(aj)a and
wp = wg fork#i,j.

Note that w € ker ¢, implies that w’ € ker ¢5 by the first part of this proof.
Using Part 1 of Exercise 2.6 applied with B = {1,..., £}, we see that the map
B — M, k — lm(w},) is smaller than k — lm(wg). Thus repeatedly replacing
w by w’ as above, we find a descending chain which must stop after finitely
many steps. But it only stops if w = 0. Hence, w € ker ¢,.

The last assertion of the lemma follows from an estimate of u in terms of
the coordinates of w’ and w above. Indeed, f;; is built up of terms such as
u and Im(um¥) < lm(w;)lm(a;).

Exercise 6.4. For (X?Y,XY?, X,Y3)in Q[X,Y]4, find a finite spanning set
of syzygies.

So far, we have provided a solution to Equation (6.1) for the case where
a consists of terms and b= 0.

Syzygies for Grobner Bases

Still we are not ready for the general case. We pass to a vector a € K[X]¢
such that A = {a;,...,a¢} is a Grobner basis with a; # 0 for all i. Then 0
is the reduced form of S(a;,a;) modulo A for any 4, 3. In view of (3.1), this
means that there is a vector h¥/ € K[X]¢ with

S(ai,a;) = a(h¥)"T and lm(akhf)<mff(a) for all k, (6.4)

where 1t(a) stands for the vector of leading terms of a. The vector h*/ can be
found by means of the ExtendedReduce algorithm; it is the first component
of the output of ExtendedReduce(a, S(a;,a;)).

But also

S(a;,a;) = (mff(a)/lt(ai))ai - (mff(a)/lt(aj))aj = a(vff(a))T.

Thus, v/, — b € ker ¢,
Theorem 6.5. Suppose that a € K[X]¢ is such that {a1,...,a¢} is a
Grobner basis and all a; # 0. Then the submodule ker ¢ of K[X] is gener-
ated by all N N

vllf(a) ~h"Y with 1<i<j<¥

here vftj(.) is defined as in (6.8) and h'/ as in (6.4).



26 A.M. Cohen

Proof. Suppose v € ker ¢a. Then lt(v) € ker ¢y(a) and so, by Lemma 6.3,
there are fi; € K[X] with

It(v) = Zfijvfij(a) and lm(fijmfg(a)) < lm(a;v;).
12

Now consider 3 N
V’ =V - Z fij(v;’f(a) - h”),
43

where h¥ is as in (6.4). Since Vfij(a) — h% € ker ¢a, the vector v’ also belongs
to ker 5. By the inequality of (6.4) we find, for each s € {1,...,¢},

hn(anijhij) < lm(fijmff(a)) < lm(aivi) < max{lm(akvk) l 1<k< f}.

Hence max{lm(axv;) | 1 £ k < £} < max{lm(axvk) | 1 < k < ¢}. Therefore,
we can apply induction to conclude that every vector of ker ¢, is a K[X]-
linear combination of the v/, — h¥.

By now we can solve the equation at the beginning of the section.

Corollary 6.6. A complete solution to Equation (6.1) in case a corresponds
to a Grébner basis is obtained as follows: Compute

(d, g) := ExtendedReduce(a,b).

If g # 0, then there are no solutions. Otherwise, d is a particular solution
and an arbitrary solution is of the form

d+ Y fii(va —hY) with fi; € K[X],
)
forh as in (6.4).
To summarize, given a vector b € K[X]¢ such that {b,...,b} is a

Grébner basis (without zero polynomials), the following algorithm determines
a set of generators for ker ¢p,.

GroebnerVectorSyzygies(b) =

S :=0; £:=length(b);
t = (It(bi))1<i<ts
forifrom1lto/—1do

if b; # 0 then

for j from i+ 1 to £ do
if b; # 0 then
(h,g) := ExtendedReduce(b, S(by, b;));



Chapter 1. Grobner Bases, an Introduction 27

# Here, we should have g =0
§:=Su{vy —h}
fi
od
fi

od; return S.

Ezample 6.7. We shall determine the output of this algorithm for the vector
b = (X-Y,Y3—1) corresponding to the Grobner basis found in Example 3.14
with respect to the lexicographic ordering with X > Y. Note that t = (X, Y3)
and S(b;,b3) = X — Y. Now ExtendedReduce(b, X — Y'*) gives the vector
h = (1,-Y) satisfying hbT = X — Y3. As the vector of leading terms of b is
t = (X,Y?3) we have vi? = (Y3,—X), and so the syzygies of b are spanned
by viZ-h=(Y3-1,Y - X).

Syzygies in General

If a does not correspond to a Grébner basis, we first need to translate the
setting into one in which a Grébner basis appears. The following lemma takes
care of this translation. Consider a K[X]-module morphism x : K[X]¢ —
K[X]. The result states that the generating set of ker x can be constructed
from the generating set of the kernel of another morphism with the same
image in K[X]. Recall that, for a € K[X]¢, we write ¢q : K[X]¢ — K[X] for
the K[X]-linear map given by ¢, (x) = ax'.

Lemma 6.8. Let b € K[X]® and a € K[X]*. Suppose F is an £ x k-matriz
over K[X] satisfying Fa' = b' and G is a k x £ matriz over K[X]| with
a' = Gb'. If H is a matrix whose rows form a generating set for the
K[X]-module ker ¢p, then the kernel of the morphism ¢a : K[X]* — K[X] is
generated by the rows of the matrices GF — I and HF.

Proof. As(GF —I)a' =GbT —a'” =0and (HF)a' = Hb" =0, clearly
all rows of (G F — I) and of H F belong to ker ¢,.

Conversely, assume p = (p;)i<i<k € K[X]*¥ belongs to ker¢s. Then
pGbT =pa’ =0, s0 pG € ker ¢p, and there is q € K[X]¢ withpG = q H.
Now p=p(I —GF)+pGF = p(I— GF)+ qHF, showing that p is a
K[X]-linear combination of the rows of GF — I and H F.

Returning to the equation ax' = 0, we let b € K[X]™ be a vector
corresponding to a Grobner basis for {ai,...,as}. Then ¢, and ¢, have
the same image in K[X], namely the ideal that they generate. Thus there
are matrices F and G with Fa” = bT and Gb' = a'. The matrix F
can be obtained by keeping track of how the new elements in the Grobner



28 A.M. Cohen

basis are being formed as K[X]-linear combinations of the old ones in the
course of the algorithm Groebner Basis. We shall refer to such a procedure
as ExtendedGroebnerBasis, so

(F,b) := ExtendedGroebnerBasis(a)

yields a vector b corresponding to a Grébner basis and a matrix F with bT =
Fa'. The matrix G can be read off from (G;, ;) = ExtendedReduce(b, a;)
for each i. Then G is the matrix whose i-th row is G;.

We now arrive at the most general version of the Syzygies Algorithm.
Given a € K[X]*, the following algorithm determines a set of generators for
ker ¢q.

Syzygies(a) =
(F,b) := ExtendedGroebner Basis(a);
for i from 1 to k do
(G, 9) := ExtendedReduce(b, a;);

od;
H := GroebnerVector Syzygies(b);
S =

for i from 1 to k do S := SU{G;F — ¢} od;
for each he€ H do S :=SU{hF} od,;
return S.

Theorem 6.9. Upon input of a vector a € K[X]|*, the algorithm Syzygies
computes a set of generators of the K[X]-submodule ker ¢, of K[X]*.

Proof. Termination of Syzygies is obvious. To see that for a € K[X]*, the
algorithm Syzygies finds a spanning set for the syzygies of a, observe that
b, a, F, G, and H, as computed in the algorithm, all satisfy the hypotheses
of Lemma 6.8. So, by the lemma, the rows of the matrices GF — I and HF,
which make up the output of Syzygies, generate ker ¢5. Hence the theorem.

Ezample 6.10. Reconsider a = (X2Y — 1,XY? — 1) € Q[X,Y]?, and recall
that, in Example 3.14, we have found b = (X — Y, Y3 — 1) such that {b, b2}
is a Grobner basis for {a;,a2}. We shall now compute matrices F' and G
expressing their linear dependencies. We have

((Y,—X),X —Y) = ExtendedReduce(a, S(ay,a2)),
and,

((1,-Y?),Y? - 1) = ExtendedReduce((a, X — Y), S(aa, X - Y)).



Chapter 1. Grébner Bases, an Introduction 29

Hence the following Q[X, Y]-linear relations hold:

Xy -1
Y - X -1 0 XY?2 -1
0 1 -Y? —1) X-Y
Y3 -1

By use of Gauss elimination (elementary row operations), they can be rewrit-

tenas b’ = Fa', where
Y -X
F—(—Ya XY2+1)'

In order to find G we just apply ExtendedReduce(b,a;) for i =1,2:

EzxtendedReduce(b,a,) = ((XY +Y?1),0)
ExtendedReduce(b,a2) = ((Y?%1),0)

T

and so the equation Gb' = a” is satisfied for

(XY +Y? 1
o= (A1),

According to Example 6.7, the matrix H, whose rows are spanning syzy-
gies of b, is (1—Y3 X —Y ). Thus, by Lemma 6.8 the syzygies of a are
spanned by the rows of the matrix

2 _ _v2
GF-T) XYO 1 X3’+1
HF )~ '

Y- XY3 X?Y?2-Y

This is obviously a superfluous spanning set. The first row suffices as the
third is a scalar multiple of it and the second is trivial. Thus, the extensive
computations have led to the simple conclusion that the syzygies of a are
spanned by (az, —a1).

Corollary 6.11. If K is an effective field, then K[X] is an effective ring.

Proof. As stated at the beginning of this section, we only need to verify the
existence of an algorithm solving ax' = b for given a € K[X]* and b €
K|X]. Let (F,g) = ExtendedGroebnerBasis(a), so g' = Fa'. In Corollary
6.6, it has been described how to find a particular solution e to gx' = b.
Then d = eF is a particular solution to ax' = b, By Theorem 6.9, the set
S = Syzygies(a) is a finite spanning set for the syzygies of a. Therefore (cf.
Corollary 6.6) any solution of ax' = b is of the form

d+)_ fus with f, € K[X].
8€ES



30 A.M. Cohen

Corollary 6.12. If K is an effective field, then each quotient ring of K[X]
is effective.

Proof. (Sketch) The effectiveness of K[X]| was established in Corollary 6.11.
Let us now consider a quotient of K[X] by an ideal J. By Hilbert’s Basis
Theorem 1.3, J is finitely generated and so (cf. Theorem 3.16) it is generated
by a Grébner basis C = {¢y,...,cx} with respect to a fixed reduction order
<. :
The elements of the quotient ring K[X]/J can be represented by poly-
nomials in K[X] whose monomials are standard monomials, see Proposition
4.4. This also show how equality of two elements can be tested, and how the
ring operations can be performed, see the discussion at the beginning of §4.
It remains to verify how we can solve the linear equation in the unknown

;.

¢
S (ai+ N@i+J)=b+J with a;,be K[X]. (6.5)
i=1
We may think of a,, ..., as, b as polynomials in K[X] which are reduced with
respect to C' and <. Now consider the ‘extended’ linear equation }_, a;z; +
3.;¢Y; = b in the unknown =;,y;. Since K[X] is effective, we can find
S = Syzygies((a, c)) and (d,e) € K[X]¢** such that any solution in K[X]¢+*

is of the form
(da e) + Z f(s,t)(sat)'
(s,t)€S

Now every solution in K[X]/J to (6.5) is just the projection of a solution
as above on the first £ coordinates, i.e., of the form

d+ Y fews
(s,t)€S
Exercise 6.13. Suppose the elements b,...,b¢ and ¢),...,c generate the

respective ideals I and J of K. Prove that a set of generators for the ideal
INJ can be found effectively by first constructing a generating set G of ker ¥,
where x : K*t* — K is the morphism sending ¢; to b; if i € {1,...,£} and
toci—gifi € {€+1,...,£+ k}, and next taking as generating set

¢
{Zgibi
i=1

i gz(gla"‘ag£+k)eG}'

Hint: x = ¢p,c)-



Chapter 1. Grébner Bases, an Introduction 31

Notes

Although there is prior work by others (e.g., Hermann, Hironaka, Janet, Zagarias),
Grobner basis theory really got off the ground with Buchberger’s thesis [5] (a pleas-
ant introduction to the topic by the same author is [6]}). The term Grébner basis
was coined by Buchberger; Grobner is the name of his thesis adviser. The thesis
describes an algorithm for finding a Grobner basis; the algorithm has later become
known as the Buchberger algorithm. The topic has grown into a significant field of
mathematics, as can be seen from the proceedings [8].

Recently quite a few introductions to Grobner basis theory have come to light.
The best book we recommend for making a first acquaintance with the topic is
[11]. Another good one is [1]. More advanced but very instructive is [24]. Also [4]
contains a lot of information. An interesting overview of basic applications is [7].

Implementations of the Buchberger algorithm exist in most general purpose
Computer Algebra Packages (Aziom, Magma, Maple, Mathematica, Singular, Re-
duce, ...). One of the most efficient implementations known to me is GB (internet
address: http://posso.litp6.fr/GB.html).

Various generalisations of Grébner bases have not been covered in these notes.
First, as mentioned in the introduction, the coeficient ring need not be a field. A
treatment of the more general case can be found in [25]. Another generalisation
leaves the coefficients in a field, but starts with the noncommutative polynomial
ring (cf. [22]) or, even more general, free path algebras (cf. [15]). Complications here
are that one cannot expect the analogue of Buchberger’s algorithm to exist as the
word problem (testing equality when given two representatives) for quotient rings is
unsolvable. A common generalization of Grobner basis theory to both the noncom-
mutative case and arbritrary effective coefficient rings, is presently unknown. There
are many special rings for which a Grébner basis theory is being set up. Here we
restrict ourselves to mentioning Lie algebras, for which the notion of Grébner basis
has been worked out and brought into connection with Lyndon:Shirshov bases, see
[31, 9].

Section 5 only scratches the surface of what Grébner bases mean for polynomial
system solving. Chapter 2 is devoted to solving polynomial systems with finitely
many solutions. There it also becomes clear that other approaches exist. Here we
give a few more indications as well. For instance, polynomial systems of equations
can also be solved by the use of resultants. See Chapter 9 for the definition of a
resultant of two polynomials. Upon input two polynomials f, ¢ in the variables
X,Y, it outputs a univariate polynomial in the variable X, called the resultant,
with the property that the X-coordinate of each common zero of f and g is a zero
of the resultant. Multivariate analogues exist, see [26, 12, 18], but the theory does
not seem fully worked out. Yet other algorithms for solving equations involve the
involutive method, cf. [27].

The term ‘standard monomials’ was known long before Grobner bases. The
Grassmannian varieties were examples where reduction of an arbitrary polynomial
to a linear combination of standard monomials was well established, see for instance
[13, 10].

References

I. W.W. Adams and P. Loustaunau (1994): An Introduction to Grébner Bases,
Graduate Studies in Math. 8, Amer. Math. Soc.



32

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A.M. Cohen

M. F. Atiyah and I. G. Macdonald (1969): Introduction to Commutative Algebra,
Addison-Wesley, Reading, MA.

. M. Artin (1991): Algebra, Prentice Hall, Englewood Cliffs, NJ.
. T. Becker and V. Weispfenning (1993): Grobner Bases, Graduate Texts in

Mathematics 141, Springer-Verlag, New York Berlin Heidelberg.

. B. Buchberger (1965): Ein Algorithmus zum Auffinden der Basiselemente des

Restklassenringes nach einem nulldimensionalen Polynomideal, Ph. D. Thesis,
Innsbruck. (An English translation of the journal version of part of this thesis
can be found as an appendix in [8].)

. B. Buchberger (1985): Gréobner bases: an algorithmic method tn polynomial ideal

theory, pp. 184-232 in: Recent Trends in Multidimensional System Theory, N.K.
Bose (ed.), Reidel.

. B. Buchberger (1987): Applications of Grébner bases in non-linear computa-

tional geometry, pp. 52-80 in: Trends in Computer Algebra, Lecture Notes in
Computer Science 296, Springer-Verlag, Berlin Heidelberg New York.

. B. Buchberger and F. Winkler (eds.) (1998): Grobner bases and applications,

London Math. Soc. Lecture Note Series 251, Cambridge University Press, Cam-
bridge.

. L.A. Bokut and P. Malcolmson (1996): Grébner-Shirshov bases for quantum

enveloping algebras, Israel J, Math. 96, 77-113.

A.M. Cohen and R.H. Cushman (1993): Gréobner bases in standard monomial
theory, pp. 41-60 in: Computational Algebraic Geometry, eds.: F. Eysette and
A. Galligo, Progress in Math. 109, Birkh&user.

D. Cox, J. Little, and D. O’Shea (1992): Ideals, Varieties, and Algorithms,
Springer-Verlag, Berlin Heidelberg New York.

D. Cox and B. Sturmfels (eds.) (1998): Applications of Computational Algebraic
Geometry, Proceedings of Symposia in Applied Math. 53, Amer. Math. Soc.,
Providence, RI.

C. DeConcini, D. Eisenbud, and C. Procesi (1980): Hodge Algebras, Astérisque
91,

D. Eisenbud (1995): Commutative Algebra With a View Toward Algebraic Ge-
ometry, Graduate Texts in Math. 150, Springer-Verlag.

Daniel R. Farkas, Feustel, C.D. Green, and L. Edward (1993): Synergy in the
theories of Groebner bases and path algebras, Can. J. Math. 45, 727-739.
K.O. Geddes, S.R. Czapor, and G. Labahn (1992): Algorithms for Computer
Algebra, Kluwer, Dordrecht.

Green, Edward L. (1993): An introduction to noncommutative Groebner bases,
pp. 167-190 in: Computational Algebra. Papers from the Mid-Atlantic Algebra
Conference, held at George Mason University, Fairfax, VA, USA, May 20-23,
1993. (K.G. Fischer and G. Klaus, eds.) New York: Dekker, Lect. Notes Pure
Appl. Math. 151.

L. M. Gelfand, M. M. Kapranov, and A.V. Zelevinsky (1994): Discriminants,
Resultants and Multidimensional Determinants, Birkh&user, Basel.

R. Hartshorne (1977): Algebraic Geometry, Graduate Texts in Mathematics 72,
Springer-Verlag, New York Berlin Heidelberg.

M. Kalkbrener (1989): Solving systems of polynomial equations by using
Grébner bases, pp. 282-293 in: Proc. EUROCAL ’87, Lecture Notes in Com-
puter Science 378, Springer-Verlag, Berlin Heidelberg New York.

P. Lalonde and A. Ram (1995): Standard Lyndon bases of Lie algebras and
enveloping algebras Trans. Amer. Math. Soc. 347, 1821-1830.

Mora, Teo (1994): An introduction to commutative and noncommutative Groeb-
ner bases, Theor. Comput. Sci. 134, 131-173.



23

24.

25,

26.

27.

Chapter 1. Grobner Bases, an Introduction 33

. M. Pohst and H. Zassenhaus (1989): Algorithmic Algebraic Number Theory,
Encyclopedia of Mathematics and its Applications 30, Cambridge University
Press, Cambridge.

L. Robbiano (ed.) (1989): Computational aspects of commutative algebra (spe-
cial issue of Journal of Symbolic Computation), Academic Press, London.

W. Trinks (1978): B. Buchbergers Verfahren, Systeme algebraischer Gleichun-
gen zu lésen, J. Number Theory 10, 475-488.

B.L. van der Waerden (1931): Moderne Algebra II, Springer-Verlag, Berlin Hei-
delberg New York.

A.Yu. Zharkov and Yu. A. Blinkov (1994): Program. Comput. Softw. 20, 34-36.
Translation from Programmirovanie 1994, No. 1, 53-56.



Chapter 2. Symbolic Recipes for Polynomial
System Solving

Laureano Gonzalez-Vega, Fabrice Rouillier, and Marie-Frangoise Roy

1. Introduction

In many branches of science and engineering where mathematics is used, the
resolution of a problem coming from practice is often reduced to the search of
a solution for a system of (algebraic or differential) equations modelling the
considered problem. From our point of view, to solve a polynomial system of
equations is to rewrite it (i.e., to present it in a different form) in such a way
that some ‘nontrivial’ information about its solutions can be derived from
this new presentation. The information mentioned above can be related to
the existence or non-existence of complex or real solutions, to the number of
real or complex solutions, to the approximation of one or several solutions,
ete.

The last statement will become clear with the following example: let us
consider the following polynomial system:

fi=x®—yz+1=0
fa=23+yz2+z—-y=0.

By using some of the techniques to be presented in this chapter, it will be
shown that the previous system is equivalent (in the sense that they share
the same set of complex solutions) to the following one:

=y -3y -4 +72 -8y —-2=0
g2=x-2y + Ty} + 542 - 17y -9 =0.

From this presentation it is very easy to conclude that the initial system has
five different complex solutions and that only three of them are real or that

(—0.6032, —1.2936)

is an approximation for one of the real solutions of the considered system.

The main purpose of this chapter is to show how to use the algorithms
and methodology provided by computer algebra to find the solutions of an
algebraic system of equations with a finite number of complex solutions. The
chapter contains expository parts, which are kept as self-contained and as
elementary as possible, recipes, and examples. We try to present the different
techniques so that they can be understood by a non-specialist in the subject.
The main mathematical prerequisites are elementary algebra (in particular
linear algebra).



Chapter 2. Symbolic Recipes for Polynomial System Solving 35

The chapter is divided into four sections. The first one is devoted to in-
troduce (and to prove) the basic mathematical prerequisites from algebraic
geometry needed to understand the rest of the chapter and to show some
basic methods in polynomial system solving using Grobner bases (which are
presented in Chapter 1). The second one shows how polynomial system solv-
ing can be reduced to a linear algebra problem: the construction of the new
system, equivalent to the initial one, is done by working in a concrete fi-
nite dimensional vector space and by, mainly, computing efficiently traces
of endomorphisms over such vector space. In the next section, we consider
the particular case of polynomial systems of equations where the number of
equations is equal to the number of unknown. In the last section we consider
very briefly numerical approximation techniques where the coordinates of the
solutions are presented as the eigenvalues of some of the endomorphisms in-
troduced in the third section. Each of the topics is divided into a theoretical
background, a list of recipes, and examples.

2. General Systems of Equations

2.1 Algebraic Preliminaries

Let K be a field of characteristic zero and K an algebraically closed field
containing it. More concretely, the reader is invited to think of K as being
the field Q of rational numbers and of K as being the field C of complex
numbers.

The ring of polynomials in the variables X, ..., X with coeflicients in
K is denoted by K[X),...,X] or K[X], where X is short for X,,..., Xj.
Recall from Chapter 1 that the ring K[X] can be identified with the ring
K[X),...,Xk-1][Xk]- A polynomial in K[X] is monic with respect to X, if
its leading coefficient when considered as a polynomial in X with coefficients
in K[X1,...,Xk—1] is 1. The total degree of a monomial in k variables is
the sum of the degrees with respect to each variable and the total degree
of a polynomial in k variables is the maximum of the total degrees of its
monomials.

Let P be a finite set of polynomials in the variables X;,..., X with
coefficients in K and let L be a field containing K as a subfield. The set of
zeros of P in L¥ is

ZL(P)={(z1,...,2x) € LF |YPEP P(zy,...,z;) =0}.

This set is also called the set of solutions in L* of the polynomial system of
equations P = 0. Abusing terminology, we also speak of the solutions of a
polynomial system P.

To a finite set of polynomials P is associated the ideal I(P) generated by
P in K[X], i.e., the smallest ideal of K[X] containing P. In Chapter 1, it



36 L. Gonzalez-Vega, F. Rouillier, and M.-F. Roy

was denoted by (P) or PK[X]. The elements of this ideal are of the form
Y pep ApP where the Ap are elements of K[X]. A polynomial in I(P) van-
ishes at any point of Z%(P). Note that when k = 1, the ideal generated by P
in K[X;] is principal (i.e., generated by a single polynomial), and generated
by the ged of the polynomials in P. We denote the quotient K[X]/I(P) by A.
We can also look at the ideal 1(P) generated by P in K[X], i.e., the smallest
ideal of K[X] containing P, and define A = K[X]/I(P). Given z € Z%(P)
and @ € A, the value Q(z) € K is well defined since two polynomials in K [X]
having the same image in A, have the same value at z.

The following well-known result gives an algebraic characterization of sys-
tems of polynomials with a finite number of zeros.

Theorem 2.1. The K-vector space A = K[X]|/I(P) is finite dimensional
if and only if Z5(P) is a finite set. Moreover, in this case the number of
elements of Z7-(P) does not exceed the dimension of A as a K-vector space.

The proof of this result relies on a famous theorem in algebra, Hilbert’s
Nullstellensatz, which we prove for completeness. We first give it in its weak
form. The proof we present, due to Michel Coste, is a simplification of Van
der Waerden'’s proof [29].

Theorem 2.2 (Weak Hilbert’s Nullstellensatz). Let P = {P,,..., P}

be a finite set of polynomials of K[X| without zeros in K*. There exist poly-
nomials Q1,...,Qs of K[X] such that1 = P1Q1 + - - + PsQ;.

The theorem can be interpreted as follows: it is clear that if an identity
1 =PQ@ + -+ P,Q; holds, the polynomials Pi,..., P, do not have a
common zero. The main point of the theorem is to prove the converse, which
is far from obvious.

Proof. The proof is by induction on k. When k = 1, the ideal generated by
Py,...,P; in K[X1] is principal, that is, generated by a single polynomial Q.
If Q is not constant, it has a zero in K since K is algebraically closed, and
this zero is common to all P;.

Suppose now that k > 1 and that the theorem holds for k — 1. Since K
is infinite, one can suppose that the polynomial P; is monic with respect to
X}, after a linear change of variables, using the following lemma.

Lemma 2.3. Let P € K[X] be a polynomial of total degree d. There exists
a linear change of coordinates of the form

Xi=Yi+MY ..., Xg1=Yeo1 + X 1Yk, Xix=Y,

such that the polynomial P(Y1 + MYk, ..., Ye—1 + Ak—1Yk, Yi) is monic with
respect to Y.



Chapter 2. Symbolic Recipes for Polynomial System Solving 37

Proof. Consider new indeterminates Ai,..., Ax—1 and take A(Yy,...,Y:) =
P(Yl + MY, .., Y1 + Ak—IYk, Yk). The polynomial A(Yl, ceey Yk)
is of degree d . in Yi since the coefficient of Y in K is a polynomial
B(A;, ..., Ag—1) in the variables A; that is not identically zero. It is enough
to find elements A; of K such that B()\1,...,At—1) is not zero to prove the
lemma. This is always possible in an infinite field, according to the following
lemma.

Lemma 2.4. Let K be an infinite field. If a polynomial B(Z:1,...,Z;) in
K|[Zi,..., 2] is not identically zero, there are elements (z1,...,2) in K*
such that B(z1,...,z2k) 18 a nonzero element of K.

Proof. The proof is by induction on k. It is true for a polynomial in one
variable since a nonzero polynomial of degree d has at most d roots in a field.
Suppose now that it is true for k — 1 variables, and consider a polynomial
B(Zi,...,Zy) in k variables which.is not identically zero. Thus, if we con-
sider P as a polynomial in Z, with coefficients in K[Z,, ..., Zk_1], one of its
coefficients is not identically zero in K[Z),..., Zx_1]. Hence, by the induction
hypothesis, there exist (21, ..., zx~1) with B(21,. .., 2k—1, Zk) not identically
zero. We are in the case of one variable, which we already considered.

So coming back to the proof of the theorem, suppose that P, is monic
with respect to X. Take a new indeterminate U, and put

Q(U,X)=P2+UP3+"'+US_2P3.

The resultant (see §1 of Chapter 9) of P; and @ with respect to X}, belongs
to K[U, X,,...,Xk_1], and is written

RESXk(Pl,Q) = Dg(Xl, .. .,Xk_l)Ue + -4 Do(Xl, . -,Xk—l)-

This resultant belongs to the ideal generated by P; and @, so there are
polynomials A and @ of K[U, X] such that

Resxk (Pl, Q) = APl + QQ

Identifying the coefficients in this equality between polynomials in U, one
sees that Do, ..., Dy belong to the ideal generated by P, ..., P;.

Suppose now that Dy, ..., D, have a common zero z’ in K ~! For every
a € K, we have Resx, (P1,Q)(a,z’) = 0. Since P; is monic with respect to
Xk, its leading coefficient in X} never vanishes, and so the annihilation of
the resultant implies that for every a € K the polynomials P;(2/, Xx) and
Q(a,2’, Xi) have a common root in K. Since P;(2’, Xi) has a finite number
of roots in K, one of them, say a, is a root of Q(a, z’, X} ) for infinitely many
a € K. Choosing s — 1 such distinct elements ai,...,a,_1, we get that the
polynomial Q(a, U) of degree < 8 — 2 in U has s — 1 distinct roots, which is
possible ouly if Q(z',a,U) is identically zero. So one has Py(z',a) =+« =



38 L. Gonzalez-Vega, F. Rouillier, and M.-F. Roy

P,(2',0) = 0. Hence (2, ) is a zero of Py,...,P,, which is contrary to the
hypothesis.
Thus Dy, ..., Dy have no common zeros in K By the induction hy-

pothesis, 1 belongs to the ideal generated by Dy, ..., D, in K[X},..., Xk_1].
As we have seen that Dy,..., D, are in the ideal generated by Pi,..., P, in
K[X], we conclude that 1 belongs to this ideal too, which means that there
exist polynomials Q1,...,Qs of K[X] such that 1 = PiQ1 + - - + P, Q;.

As usual, Hilbert’s Nullstellensatz is derived from the weak form 2.2 using
Rabinovitch’s trick.

Theorem 2.5 (Hilbert’s Nullstellensatz). Let P = {P,..., P} be a fi-
nite set of polynomials with coefficients in K. If a polynomial P with coeffi-

cients in K vanishes on the common zeros of Py,..., P, in fk, a power of
P belongs to the ideal I(P) in K[X].

Proof. The set of polynomials {P,...,Ps, TP — 1} has no common zeros in

K so, according to the weak version of Hilbert’s Nullstellensatz (Theorem
2.2), we can find polynomials

Ql(Xla"'anaT)a"'aQs(Xla"'anaT)aQ(X1a~~~anaT)

such that 1 = P1Q1 + -+ + P;Q; + (TP —1)Q. Replacing everywhere T by
1/P and multiplying by a convenient power of P, we find a power of P in
the ideal I({P1,..., Ps}).

The set of those polynomials P such that a power of P belongs to the
ideal I(P) is called the radical of I(P):

VIP)={Pe K[X]|3meN P™¢c I(P)}.

Another usual way of presenting Hilbert’s Nullstellensatz is by saying that
the radical of I(P) coincides with the set of polynomials in K[X] vanishing

. =k
on the common zeros of P,..., Py in K.

We now prove Theorem 2.1.

Proof. (Proof of Theorem 2.1) If A is a finite dimensional vector space of
dimension N over K, the powers 1, X1, ..., X} of the variable X; are neces-
sarily linearly dependent in A, which gives a polynomial p;(X;) in the ideal
I(P). This means that the first coordinate of any common zero of P is a zero
of p;. Doing the same for all the variables, we see that Z%(P) is a finite set.

Conversely, if Z%(P) is finite, take a polynomial p;(X1) € K[X1] whose
zeros are the first coordinates of the elements of Z4(P). According to
Hilbert’s Nullstellensatz 2.5 a power of p; belongs to the ideal 7(P). Do-
ing the same for all variables we get, for every {, a polynomial of degree d; in
EK[X,] in the ideal 7(P). It means that any monomial of multidegree greater



Chapter 2. Symbolic Recipes for Polynomial System Solving 39

than (di, ..., dx) is a linear combination in A of monomials of respective de-
grees in X; smaller than d;. Thus, A is finite dimensional over K. We conclude
that A is finite dimensional over K using the following lemma.

Lemma 2.6. Let P be a finite set of polynomials in K[X]. Then A =
K[X]/I(P) is a finite dimensional vector space of dimension N over K if
and only if A = K[X]/I(P) is a finite dimensional vector space of dimension
N over K.

Proof. We consider a family B, ..., B, of elements of K[X] and we denote
by by, ..., by their images in K[X]/I(P) and by b1, ...,bn, their images in
KI[X]/I(P). It is enough to prove that by, ..., by, are linearly independent if
and only if by, ..., b, are linearly 1ndependent It is clear that if by,..., by,
are linearly 1ndependent bi,...,b, are linearly independent. Conversely if
b1, ..., b, are linearly dependent it means that there exist (Ay,...,An) in
K" \{0} and, for each P € P, a polynomial Ap of degree dp in K[Xj,..., X4]
such that

MBi+ -+ AmBm = > _ ApP. (%)

Since the various polynomials Ap P are linear combinations of a finite number
of monomials, the identity (%) can be seen as the fact that a huge linear
system of equations with coefficients in K has a solution in K. We know by
linear algebra that this linear system of equations also has solutions in K
which means that there are A; and Ap with (A1,..., Am) in K™\ {0}, and
Ap € K[X] with

MB1++ AnBm =) ApP.

This means that by, ..., by, are linearly dependent.

Definition 2.7. An element u of A is separating if two distinct zeros of
Z7(P) have different images in K by wu.

In order to prove the last assertion of the theorem we use the following
lemma.

Lemma 2.8. If Z5%(P) has n points, then at least one of the u; = X +
iXo+ - ik le for 0<i < (k—1)(3) is separating.

Proof. Consider a couple (z,y) = ((z1,...,Zk), (Y1, - ., Yx)) of distinct points
of Zz(P) and let £(z,y) be the number of i,0<i < (k—1)(}), such that
u;(z) = u;(y). Since the polynomial (z —y1)+(a:2—y2)t+ +(zk Ytk 1,

which is not identically zero, has no more than k—1 distinct roots, the number
#(z,y) is always at most k — 1. As the total number of unordered pairs of
(distinct) points of Zz(P) is at most (}), this completes the proof of the
lemma.



40 L. Gonzalez-Vega, F. Rouillier, and M.-F. Roy

If u is separating and Z5(P) = {z1,...,2,} has n distinct points, then
—as we are going to show— 1,u,...,u" ! are linearly independent elements
of A. Suppose that there exist a; € K such that

in A; then the polynomial ag + aju! + -+ + a,_1u™ ! belongs to the ideal
I(P) and ‘

n—1 )
Za,-u’(as,-) =0, 1<i<n.
i=0

The univariate polynomial Z;:Ol o;t* = 0 has n distinct roots and is of degree
at most n — 1, hence is the zero polynomial. Thus 1,u, ...,u"! are linearly
independent elements of A and n is at most the dimension of A as a K-vector

space. This concludes the proof of Theorem 2.1.

2.2 First Recipes for Polynomial System Solving

This section is devoted to showing how to use Grobner bases to solve poly-
nomial systems. Given a reduction ordering (cf. Chapter 1) < on the monoid
of all monomials of K[X], it is possible to define the division of a polynomial
Q € K[X] by a finite family of polynomials P. This division process is not
uniquely defined as there are choices to be made in the process of the compu-
tation. Following Chapter 1, a remainder of f with respect to P (and <) will
be denoted by Reduce(P, f). Recall that it may happen that a polynomial
belongs to the ideal generated by P while its remainder when divided by P
is not zero.

A reduced Grobner basis of a finite set of polynomials P for a reduction
ordering is defined in Chapter 1. It is a finite set of polynomials G generating
the ideal I(P) with good properties with respect to division and with leading
coefficients equal to 1. Namely, the remainder with respect to G is uniquely
determined and a polynomial belongs to the ideal generated by P if and only
if its remainder is zero when divided by G. The quotient A = K[X]/I(P) is
generated as a K-vector space by the monomials under the staircase, i.e., the
monomials which are not a multiple of the leading monomial of an element
ingG. ‘

As we have seen in Chapter 1, given a reduction ordering, the Buchberger
algorithm is one of the possibilities of computing in a finite number of steps
a Grobner basis for every polynomial system (see also. [1, 3, 9, 12, 13, 22]). .

The usual reduction orderings (described on the exponents) are:

o Lezicographic order: a = (ay,...,ax) >iex 8 = (£1,...,0k) if and only if
in the vector difference a — 3 the left-most nonzero entry is positive,



Chapter 2. Symbolic Recipes for Polynomial System Solving 41

o Graded lex order: a = (o1,...,0K) >grex 8 = (B1,--.,08k) if and only if
Yai>d fior 3o =30 and @ >iex 5,

o Graded reverse lez order: a = (ai, ..., ak) >greviex 8 = (81, ..., 08k) if and
only if S"a; > Y. 8 or Yo = .06 and a <jexr B where lex’ is the
lexicographical order with X, > ... > X;.

The rest of the section is devoted to showing how to obtain information
about the zero set of a finite number of polynomials by computing its Grébner
basis.

The first two recipes say that a Grobner basis computation does not
add extraneous solutions to the initial polynomial system and that from the
Grobner basis it is possible to decide whether solutions exist.

Recipe 0: Main Property.

The common zeros of the set of polynomials P coincide with the common
zeros of any Grébner basis of P (with respect to any reduction ordering).

Recipe I: Existence of a Zero.

—k .
The set of polynomials P has a common zero in K if and only if the reduced
Grobner basis of P with respect to any reduction ordering is not equal to

{1}.

For example, Recipe I shows that the polynomial system of equations

2y —2zy—1=10
3z+yizr—2zy= 0
z2—y2+1=0

has no solution. The next Maple session shows the computation of the
Grobner basis with respect to the reduction ordering <greviex-

List_Pol:=[x**3%y-2kx*y-1,3*kx+y*kdkx—2%x*y , xx*2-y**2+1] :
gbasis(List_Pol, [x,y],tdeg);

[1]

Recipe II: Normal Form.

Let G be a reduced Grobner basis of P with respect to any reduction ordering
<. Denote by M the set of monomials under the staircase of G (recall that
these are the monomials which are not divisible by the leading monomial
of an element of G). They span a complement to the ideal I(P) in K[X].
The output Reduce(G, f) is unique; it is called the normal form of f with
respect to (P, <) and often abbreviated to NF(f). The map f — NF(f) is
a function from K[X] into the set of linear combinations of elements of M.
The main property of this function is the following (cf. Chapter 1):



42 L. Gonzalez-Vega, F. Rouillier, and M.-F. Roy

A polynomial k belongs to the ideal generated by P if and only if
NF(k) = 0.

The normal form NF'(h) of h is the unique linear combination of
elements of M such that h — N F(h) belongs to the ideal generated
by P.

The next example describes how to compute the monomials under the
staircase and the normal form.

Ezample 2.9. Consider the polynomial system of equations:
Pi=a%y 222+ +xy=0 Py:=2z% — 2 +xy=0.

The Grobner basis of P, and P, with respect to the reduction ordering
<grevlex is:

G := {222 — y* + zy,y* + 6y° + 162y, vy — 42y — ¥*}.

The leading terms of the polynomials in G are computed below.

1=k 2ky—2kxak2+yrk2+xny s £2:=2kxak-yrk2+xky
GB:=gbasis([f1,f2], [x,y],tdeg);
[22% — o + 2y, —4zy — v + 7, y* + 6° + 162y
for j from 1 to 3 do print(leadmon(GB[j], [x,y],tdeg)) od;
[2,2%], [1,29°], [1,4]

The set of monomials under the staircase

<] (o}

o

is a finite set of monomials consisting of those monomials which are not
multiples of y*, zy, or z%:

A= {1,4,9*,9% 7,2y} = {w, w2, ws,ws, ws,ws}.

If we ask for the normal form of a polynomial in z and y (using the function
normalf of Maple) we find a linear combination of elements in .A. For example
the normal form of z° is computed as follows:



Chapter 2. Symbolic Recipes for Polynomial System Solving 43
normalf (x**3,GB, [x,y] ,tdeg);
(1/2)y® + 3zy.

Recipe III: Existence of a Finite Number of Zeros.

The set of polynomials P has a finite number of zeros if and only if the
reduced Grobner basis G of P with respect to any reduction ordering has
the following property:

For every unknown X; there exists a polynomial in G such that its
leading term with respect to the considered reduction ordering (the
biggest of its monomials) is equal to X/ for some s > 0.

The explanation of this recipe relies on the fact that A is a finite dimen-
sional vector space if and only if the set of monomials under the staircase is
finite.

The number of solutions of the polynomial system of equations

By—2zy+2=0
3zz+ylz—222=0
By—2ry+2-3zz—ylz+22=0

is infinite. Its Grobner basis with respect to <greviex is:
[z3y—2:cy +2,3x2+y'r —222%,62%2 —4x22 + yizz — 3200 + 225,
222y 4 oyt — 62322 + 4202 + 3282 — 227,
so that, by Recipe III, the number of solutions is infinite since there does
not exist a polynomial in the Grobner basis such that its initial term with
respect to <greviex is a power of z.

The next recipe shows how to transform the initial polynomial system of
equations (with a finite number of solutions) into a triangular system.

Recipe IV: Reduction to Triangular Form.

If a finite set of polynomials has a finite number of common zeros then its
reduced Grobner basis with respect to the reduction ordering <jex has the
following structure:

X}:k +wk(Xk) degxk (wk) < Sk

Xkt + w1 (Xe-1, Xk) degx, ,(Wk-1) < 8k—1

X'+ wi (X, Xz, .00y Xie—1, Xi) degx, (wy) < 51

Qi Xy, Xe)y o, Qe(Xny . ooy Xi).



44 L. Gonzalez-Vega, F. Rouillier, and M.-F. Roy

More information about how Grobner bases provide triangular systems
can be found in [15, 21, 25].
In the case of the polynomial system of equations

2+y+2—1=0
z+y?+2-1=0
z+y+22—-1=0

we get:
[:Ar:+y+z2—11,y2 +z—y—2%, -2t +2y2% + 24, —2% — 424 + 2% + 423,

which provides a single polynomial in one variable, two polynomials in two
variables and one polynomial in three variables:
" T+y+22—-1=0
—y—22+9y%+2=0
222y — 22 + 24 =0
—22 -4+ 25+ 423 =0

The next recipe shows that under suitable assumptions the Grébner basis
with respect to <jex has a very simple structure. The initial system is reduced
to a univariate equation.

Recipe V: Shape Lemma.

If a polynomial system of equations has a finite number of solutions, and
moreover the variable X} is separating and all solutions are regular (see Def-
initions 2.7 and 3.2), its Grobner basis with respect to the reduction ordering
<jex has the following structure:

X1 — g1(Xk), X2 — 92(Xk), . -y X1 — gb—1(Xk), 9u(Xk),

where every ¢;(X) is a univariate polynomial.

We say that we are in the Shape Lemma case if this structure holds (see
[5] for a more detailed discussion about this condition).

The Shape Lemma provides a very simple structure: the problem has been
reduced to the resolution of a single equation in one unknown. For example,
for the polynomial system of equations

73 +yz? —y? =0
2zy2 +z?2—y+1 =0

we find the following system:
2v'+* +y-1+z+4° 40 -3y +1 - 4" + 4° — 3° + 8° - 2],

Nevertheless it is not always the case that the Grobner basis with respect to
<lex has such a simple shape. For example, if we consider the system



Chapter 2. Symbolic Recipes for Polynomial System Solving 45

l-z—zy?—z22 =0
1-y—yz?—yz?2 =0
1-2—2z2x%2— 22 =0,

the Grébner basis with respect to <jex does not have the Shape Lemma
structure:
6322z + 6322y + 728822 — 9070z — 1599 — 33328212 — 28772* + 1203222°

—1466802z° + 2234322 — 2124623 — 134932° 4 8072527 — 7309726
—1110282'° + 6192421,

12644y + 25288y2° + 37932y2* + 1264423y + 12644y2? + 12644zg — 12644y
—729042' + 142762 + 10416022 + 13497 — 955372 — 4760382° + 1974842°
—3379522 + 501082% — 856712° — 34553127 — 550492° + 26023621°
—296668z11,

8yz” + 202°y + 4yz* + 1623y + 814z2 + 4y + 822 — 62 — 16217 — 32% 1 622°
—4828 4 527 — 202% + 25 + 4527 — 192° — 4427° + 36211 — 1,

—24+282'2 —32% —821% —22% 4+ 3128 — 2% — 2% 4+ 1225 4+ 82'% 4+ 2027 +122°
+422'° — 162" — 1.

In the Shape Lemma case, a lexicographic Grobner basis gives a univariate
polynomial f € K[X,] such that A is isomorphic to K[X,]/I({f}). This is the
simplest form we can hope to find for the quotient A = K[X]/I(P); neverthe-
less, there are cases where K[X]/I(P) is not isomorphic to a finite algebra of
this form. For example, it is easy to show that K[X, Xo|/I({X%, X, X5, X2})
is not of this form.

The computation of a Grobner basis using the Buchberger algorithm de-
pends strongly on the chosen reduction ordering. In particular, in many ex-
amples, the computation of the Grobner basis with respect to <ex requires
an enormous computing time or the size of the output is too big, while com-
puting a Grobner basis for another reduction ordering is possible.

When there are a finite number of zeros, the lexicographic Grébner ba-
sis can be computed efficiently by a change of ordering (FGLM Algorithm
— see [14]). Given a Grobner basis for another reduction ordering, standard
linear algebra algorithms can be easily applied in the K-vector space A. The
lexicographic Grébner basis is obtained by detecting linear combinations of
monomials in A. For example, the first polynomial fi(Xx) can be viewed
as the minimal polynomial of X;. More generally, we put successively in an
N x N matrix (N is the dimension of A), the reduced expressions of possible
monomials (considering them with respect to the lexicographic ordering and
starting from 1), removing the ones that can be expressed as a linear combi-
nation (each combination gives one polynomial of the lexicographic basis —
remark that the first found combination is the minimal polynomial of X}) of
the preceding ones and stopping when the matrix has full rank.



46 L. Gonzalez-Vega, F. Rouillier, and M.-F. Roy

3. Linear Algebra, Traces, and Polynomial Systems

In this section we consider a finite set of polynomials P such that Z#(P) is
finite, of size, say n, so that with the notation of the last section, A and A
are finite dimensional vector spaces over K and K of the same dimension,
say N. We are going to indicate the relations between the solutions of the

system of equations and the eigenvalues of specific linear endomorphisms of
A and A.

3.1 Eigenvalues and Polynomial Systems

We are going to explain how the quotient ring A splits in a finite number
of local factors, one for each solution of the polynomial system. These local
factors are used to define the multiplicities of the solutions of the polynomial
system. In the most usual case these local factors will be nothing but the
field K itself, and the splitting will consist of sending an element of A to its
values at the various points of Zz(P).

We need a new definition. A local ring B is a ring such that for every
a € B, either a is invertible or 1 + a is invertible. A field is always a local
ring. An equivalent definition of local ring is a ring with a unique maximal
(proper) ideal —the set of non-invertible elements then forms the maximal
ideal.

Given a multiplicative subset S of a ring A (i.e., a subset of A closed
under multiplication), we define an equivalence relation on couples (a, s) with
a € Aand s € S by (a,s) ~ (d,s) if and only if there exists t € S such
that t(as’ — a’s) = 0. The class of (a,s) is denoted by a/s. The ring of
fractions S~ A is the set of classes a/s equipped with the following addition
and multiplication

(a/s)+ (d'/s") = (as’' +d's)/(ss), (a/s)(a'/s’) = (aa’)/(ss").

The localization of A at x € Z7(P), denoted by A, is the ring of fractions
associated to the multiplicative subset S, consisting of elements of A not
vanishing at x. The ring A; is local: an element P/Q of A, is invertible
if and only if P(z) # 0, and it is clear that either P/Q is invertible or
1+ (P/Q) = (Q + P)/Q is invertible.

We are going to prove the following result.

A= [ 4

zEZF('P)

Theorem 3.1.

Definition 8.2. We denote by u(z) the dimension of A, as a K-vector space.
We call u(z) the multiplicity of the zero z € Zg(P). If u(z) is 1, then z is
sald to be a regular zero of P.



Chapter 2. Symbolic Recipes for Polynomial System Solving 47

Every element x € Z(P) is regular if and only if A is a product of a
finite number of copies of K.

We are also going to prove the next result, less well known but extremely
useful.

Theorem 3.3 (Stickelberger’s Theorem). Let f € A and let Ly be the
linear endomorphism of multiplication by f (so that L;(g) = fg forg € A).
Then L;(A;) C A,. The restriction of Ly to A, has only one eigenvalue
f(x); its multiplicity is p(x).

The proof of Theorem 3.1 is based on the following result.

Proposition 3.4. If Z5(P) is finite, then, for every x € Z4(P), there exist
elements e; of A with

o Z ex =1,
z€Z+(P)

© eg = €y,

o ez{z)=1,

o ezey =0 for y # z withy,x € Z5(P).

Proof. We first prove that there exist elements s, of A (z € Zx(P)) with
52(x) = 1,s5(y) = 0 for every y € Z5(P), y # x. Without loss of generality
we can suppose that the variable X, is separating. The classical Lagrange
interpolation gives polynomials in X; with the required properties.

Since s,s, vanishes on every common zero of P, Hilbert’s Nullstellensatz
2.5 implies that there exist powers of s, denoted by t;, such that ¢;t, = 0 in
A for y # «, and ¢,(z) = 1. The family of polynomials P U {t, | z € Z&(P)}
has no common zeros so, according to Hilbert’s Nullstellensatz, there exist
polynomials 7, such that Y t,r, = 1in A. Take e, = t,r,. It is easy to verify
the claimed properties.

The element e, is called the idempotent attached to z. Since e, is idem-
potent, e; A equipped with the restriction of the addition and multiplication
of A is a ring.

We prove now that the ring e, A coincides with the localization of 4 at z.
The isomorphism is as follows: the element e, P of e, A is sent to e;(P/1), the
element (P/Q) of A is sent to P(1/Q(z)(1 — v+ ...+ (—v)¥~1))e, where
v is defined by Q@ = Q(z)(1 + v). To see that this is an isomorphism, note
that ve; is zero everywhere on Z%(P), so that (ve;)V = vMe, = 0. Thus,
(1 4 v)e, is invertible in e, A and its inverse is (1 —v + ...+ (—v)¥ " 1e,, so
that Q(1/Q(z)(1—v+...+(~v)V"1))es = es, and (P/Q) = Pe,(1/Q(x)(1~
v...+ (oY), -

Since}__¢ 25(P) €z = 1, A2, 2. (p) A= The canonical surjection of Aa
onto A, coincides with the multiplication by e.

This ends the proof of Theorem 3.1. More precisely, we have shown



48 L. Gonzalez-Vega, F. Rouillier, and M.-F. Roy

Theorem 3.5. For everyx € Z4(P) there exists an idempotent e, such that

es A=A, and
A4~ [] 4.
:cEZ?('P)

We now come to the conclusion of the proof of Stickelberger’s Theorem
3.3.

Proof (of Theorem 3.3). Since A, is the image of A under multiplication by
ez, it is clear that L;(A;) C A,. As e,(f — f(z)) vanishes on the common
zeros of P, Hilbert’s Nullstellensatz implies that there exists m € N such
that (e;(f — f(z)))™ = 0, which means that L;_ () is nilpotent. This proves
Stickelberger’s Theorem.

__ If the multiplicity of z is 1, then, as a consequence of the preceding result,
A, = K and the canonical surJectlon A — A, coincides with evaluation at
x.

Corollary 3.6. For f € A, the multiplication endomorphism Ly has the
following properties:

o The trace of Ly is

> w@)f@).

z€ Z4(P)
o The determinant of Ly is
H f(z)H@),
z€Z7(P)
o The characteristic polynomial of Ly is

M= ][I @-s@)=.

:cEZF('P)

3.2 Counting Solutions and Removing Multiplicities

Since A is a finite dimensional vector space, any endomorphism of A can be
represented by means of a matrix with respect to a fixed basis. For every
h € A, we define the h-trace bilinear form, notation TrB;, (or simply trace,
notation TrB, if A = 1) as the bilinear map:

TtBp: AxA — K
(fa g) — ’I\race(Lfgh)’
where Trace denotes the usual trace of a linear endomorphism. The corre-

sponding quadratic form associated to TrB), called Hermite quadratic form
will be denoted by:



Chapter 2. Symbolic Recipes for Polynomial System Solving 49

th A — K
f +— Trace(Lyzp).

The main properties of these quadratic forms are summarized in the next
two theorems. We shall write Areq to denote the algebra K[X]/+/I(P).

The next theorem gives the connection between TrB, the radical of I(P)
and the kernel of the quadratic form Q,:

ker(Q,)={f € A|Vg TrB(f,g) = 0}.
Theorem 3.7.
FeVI(P) < f € ker(@Q)).

Proof. Let f be an element of \/I(P). Then f vanishes on every element of
Z%(P). So, applying Corollary 3.6, we obtain the following equality for every
g € K[X]:

TrB(f, g) = Zu(wi)f (z:)g(zi) = 0.

Conversely, if f is an element such that, for any ¢ in A, TrB(f,g9) = 0
then Corollary 3.6 gives:

TrB(f,g) = Zu(zi)f(z,-)g(zi) =0 VgeA4, (*)

where ,,...,Z, are the elements of Z7(P). Let u be a separating element.
Equality (x) applied with g =1,..., u™~! gives:

( 1 1 ) w(xy) f(z1) (0)
u(:cl.)"‘l u(z,;)"*l u(g;n).f(g;n) 6

so that f(z1) =... = f(z,) =0, since u is separating and the matrix at the
lefthand-side is a Vandermonde matrix, whence invertible. Using Hilbert’s
Nullstellensatz 2.2, we obtain f € y/I(P) as wanted.

The rank of @}, gives interesting information.
Theorem 3.8. For h € A, the quadratic form Qp satisfies:
rank(Qpr) = #{z € Z%(P) | h(z) # 0}.

Proof. Consider a separating element u. The elements 1, u, ...,u"! are lin-
early independent and can be completed to a basis

— —_ — -1
w1 =lLwy=u,...,wn =u""",Wn41,-.. ,WN

of the K-vector space A. Corollary 3.6 provides the following expression for
the quadratic form Qa:



50 L. Gonzalez-Vega, F. Rouillier, and M.-F. Roy

N n N 2
9= gwi€A = Qu(g)= Zu(xi)h(xz (Zggwg(wz ) )

=1

where the z;’s are the elements in Z+(P) and the p(x;)’s are the correspond-
ing multiplicities. Consequently, @y is the map

9= (g1, 9n8)" - TT - AQp(@i)h(21), ..., (zn)B(@0)) - T+ (91, .., 9N)

where
1 ... U((El)n—l wn+1(x1) e wN(.’El)
I'= :

i cor w(@p)™ Y wpga(mR) - wN(xn)

and A denogtes a diagonal matrix with indicated diagonal entries. Therefore
it suffices to prove that the rank of I' is equal to n. But u is separating and
the principal minor of the matrix I' is a Vandermonde determinant.

If A= {w,...,wn} is a basis of A, then the matrix of TrBj, with respect
to A is given by:

Trace(hwiw;) ... Trace(hwwy)

Trace(hwnw;) ... Trace(hwywy)

where Trace(hw;w;) represents the trace of the endomorphism Lpy,w;- In
what follows the matrix of L, with respect to the considered basis A will be
denoted by L. If h = 1 then the matrix TrB; is simply called trace matriz
and denoted by TrM.

Recipe VI: Counting Solutions and Removing Multiplicities.

o rank(Q:) = #(Z (7’))

o rank(Q@p) = #{93 €Z (7’) | h(z) # 0},

o If ker (TrM) is generated by {g1,..-,9¢} as a linear subspace of A then
PuU{g,...,g:} is a system of generators for \/I(P), i.e., a polynomial
system with the same solutions as the initial one but such that all the
solutions are regular according to Theorem 3.7.

The last item of this recipe allows us to apply numerical methods, such as
Homotopy Methods or the Newton Method, more safely for approximating
the solutions.

Ezample 3.9 (Continuation of Example 2.9). Determining the Trace Matrix
TrM requires the computation of the trace of the matrices of multiplication
of any two basis elements. For example



Chapter 2. Symbolic Recipes for Polynomial System Solving 51
0

*

176

* X X X

‘C’wawe =

*

—64

* X X X K

* X XX O K
* X X O * K
* O X X X K

*

(we only give the values of the diagonal elements of the matrix). Its trace is
112.
These computations produce:

6 -2 20 —-56 —4 4
-2 0 —-56 272 4 —40
20 -56 272 —-992 —-40 112

—-56 272 992 4160 112 —544
—4 4 —40 112 8 -8
4 -—-40 112 -544 -8 80

TtM =

(112 appears at the entry in the sixth row and the third column). We conclude
that rank(TrM) = 3 and /I(P) is generated by the polynomials

{P1, P, 2y + zy, 2y + y° + 4z}.

More information about how to transform the resolution of a polynomial
system of equations to a linear algebra problem can be found in [3, 26, 27,
28, 30, 31].

3.3 Rational Univariate Representation

In this section we describe a method, based on trace computations and known
as the rational univariate representation ([2, 28]), for solving a polynomial
system of equations. We are going to describe the coordinates of the solu-
tions of a polynomial system with a finite number of solutions as rational
functions of the roots of a univariate polynomial. Compared to the Shape
Lemma method described above, this method is completely general. Even in
the Shape Lemma case, it gives a more compact description of the solutions.

3.3.1 Definition and Properties. For any element u € A, let x,,(T) be the
characteristic polynomial of the linear transformation L,. Then, according
to Corollary 3.6,

w@= ] (@ -u@)“®.

TEZH(P)

The polynomial x,(T) can be computed with the following method. The
i-th Newton sum s; (cf. Chapter 5) associated to the polynomial x,(T) is by

definition )
8 = z p(z)u(z)"
z€ Zg(P)



52 L.Gonzalez-Vega, F.Rouillier, and M.-F. Roy

According to Stickelberger’s Theorem 3.3, s; = Trace(u?). If

N
xu(T) = ZbiTN—i,

i=0
then ™ (J)
ace(u
WD o5 B A
( se2g (P)T ("’) s T
and thus
N-1N-k-1
X, (T) = Z Z Trace(u )b, TV ~F—7-1,
k=0 j=0

Identifying the coefficients of TV —~! on both sides, we get Newton’s formula
(cf. Chapter 5):

(N —i)b; = Z Trace(u? )b;—j, (3.1)
j=0

so that x(T) can be computed from Trace(u?), for j = 0,...,N
For any v € A, we define:

gu(v,T) = Z p(z)v(z) H (T —v).

T€Z+(P) veu(Zg(P))v#u(z)

If u is separating, the multiplicity p(z) of x coincides with the multiplicity
u of u(x) as a root of x,,(T) and we can express the values of v at the points
of the set Zz(P) as rational functions of the roots of x.(T') (z € Z&(P)),
since:

Y @) II (u(2) - v)

gu(v,u(z))  2€Zg(P) veu(Zx(P)) v#u(z) = (2)
gu(1,u(2)) Yo ) I we@-v '
2€Z(P)  veu(Bg(P)wiu(s)

We indicate now how to express g,(v,T), following [2]. Given a monic
polynomial P, we denote by P the squarefree part of P, ie., the monic
polynomial P = P/ ged(P, P). Note that, since

wh= [l @-v

veu(ZL(P)
is the squarefree part of x,,(T),
p(z)v(z)u(z)’ .
(v T) _ )> pa)v(z) _ )> Xz: Y Trace(vu’)
W eggm T Hm T m T



Chapter 2. Symbolic Recipes for Polynomial System Solving 53

If

Xu(T) =Y aT™,
i=0 ‘
multiplying both sides by X,,(T') and using that g,(v,T) is a polynomial in
K[T], we have:

n—1ln—-k—1

gu(v,T) = Z Z Trace(vu? )a; T %771,
k=0 j=0
This equality proves that g, (v, T) € K[T}. '
Given a univariate polynomial p = E?:o ¢T" ™ we denote, for j =
0,...,n, the j-th Horner polynomial associated to p by
j . .
Hj(p) = ZC-,;TJ—‘L.

=0

The expression of g, (v, T) becomes:

9u(v,T) = Z—: Trace(vu! ) Hp—j—1(Xu(T)).
=0

This last equality provides a method for computing g, (v, T) from x,(T) and
Trace(vw?) for 5 =0,...,n.

Let P be a set of polynomials with a finite number of common zeros. Let
u € A be a separating element. The set of polynomials

{Xu(T),gu(lvT),gu(Xl’T)’ v ,gu(Xk,T)}

defines the rational univariate representation of P associated to u. The fol-
lowing proposition summarizes its most important properties (see [28]).

Proposition 3.10. The rational univariate representation associated to a
separating element u satisfies the following properties:

1. The polynomials x4 (T),9u(1,T), 9u(X1,T), ..., gu(Xk,T) are elements
of K[T]. .

2. The degree of the squarefree part of x.(T) is equal to the number of
elements in Z#(P).

3. If z is a root of the system, u(zx) is a root of xu(T) with the same multi-
plicity. Conversely, if t is a root of xu(T),

gu(Xl:t) gu(Xk:t)
gu(l’t) ’ ’ gu(lat)

is a root of the system with the same multiplicity.



54 L. Gonzalez-Vega, F. Rouillier, and M.~-F. Roy

4. In the Shape Lemma case, u = Xy is separating and g,(1,Xy) is an
invertible element of A; the lexicographic Grobner basis can be derived
from the rational univariate representation associated with X:

X1 - (gu(l,Xk)—lgu(Xl:Xk) mod Xu(Xk))

Xot — (9u(L, X1) ™ gu(Xi_1, X&) mod xu(X))
Xu(Xk)'

5. The rational univariate representation (associated to u) of the radical of
I(P) is, with g, (v,T) denoting the polynomial g, (v, T) mod X, (T),

{Yu(T),gu(l’T),gu(leT), ce vgu(Xk’ T)}

When a separating element is known, the associated rational univariate
representation can easily be computed from the following traces:

Trace(u’) (i=0,...,N),
where N = dim g A and
Trace(v'X;) (i=0,...,n,j5=1,...,k),
where n = #(Z%(P)) = degree(x,(T)).

Recipe VII: Rational Univariate Representation Computation.

The input is a Grobner basis G C K[X] of a set of polynomials P with a
finite number of zeros.

1. Compute a monomial basis of A = K[X),..., X;]/I(P), and let N be the
dimension of the K-vector space A.

2. Compute the matrix TrM and deduce the number of distinct roots n of the
system by computing its rank.

3. Choose any u in

{X1+iXo+ - +F1X, | 0<i< (k- 1)(’2‘)}

(one among them is a separating element of Zz(P)).

4. Compute, for m € {1,..., N}, the numbers Trace(u™), and deduce the
polynomial x,(T), using Newton’s formula (3.1).

5. Compute X, (T), and let n’ be its degree. If n’ < n then go to Step 3 and
try another candidate separating element u.

6. Compute, for j € {1,...,k} and ¢ € {0,...,n}, the numbers Trace(X;u")
and deduce the polynomials g, (X;, T).



Chapter 2. Symbolic Recipes for Polynomial System Solving 55

7.If n’ = n, then u is a separating element and the zeros of the system are:

(gu(xl,n gu(Xk,w)

gu(lvt) ’ ’ gu(l,t)

where t is a root of x,(T).

More efficient criteria for determining if u is a separating element can
be used. For example an element u € A is separating if and only if the
polynomials h;(u) = X, (w)X; — gu(Xi,u) ({=1,...,k) are in the radical of
I(P) (see [19, 28]), which can be checked using Theorem 3.7. Since most of the
traces needed have been computed before (when using the algorithm above),
this test appears to be very efficient in practice. In the case of systems with
integer coefficients, a separating element can be computed using modular
arithmetic (see [28]). In general and with probability 1, a randomly chosen u
is a separating element.

Example 3.11. We present here a nontrivial example in order to compare
the lexicographic Grobner basis and the rational univariate representation.
Here the first variable is separating and all roots are regular. The polynomial
system chosen has been extracted from the PoSSo collection of polynomial
systems of equations:

Pp= 222 + 2y + 222+ 12 — ¢
Py = 22y +2yz 4+ 22t — 2
Py= 222+ 22 +2yt—y
Py=2r4+2y+22+t-1.

This polynomial system of equatlons is named Katsura3 after its proposer
and its class has often been used as a test for the efficiency of algorithms
dealing with Grobner basis computations. A Grobner basis with respect to
the lexicographic ordering was first computed. The lexicographic Grobner
basis computed with t > z > y > z is

p; = 5913075t — 1596902376967 + 4884038z — 5913075 + 27511962422
—83893585623 — 64757233682* + 274396105442° + 312462696962°

p, =19710252z — 9719772163227 — 167851222 — 9158924z + 81479282823
—2760941496z* — 1212191503225 + 73975630752x°

py = 5913075y + 3714382837442 + 30947828z — 202491055623
—13252427622 + 11520686172x* + 2264593982425 — 237550027104x°

Pz = 12830428 — 9331227 + 155522% + 314425 — 11202* + 3623 + 1522 — .

We observe that the coefficients in the univariate polynomial p, are smaller
than in the other polynomials.

Since we are in the Shape Lemma case, the variable z is separating; here
is the corresponding rational univariate representation:



56 L. Gonzalez-Vega, F.Rouillier, and M.-F. Roy

x=(T) = 128304T8 — 9331277 + 1555276 + 3144T5 — 1120T* + 3673
+15T2 - T
9:(1,T) = 7185024T7 — 457228875 + 65318475 + 110040T* — 3136073
+756T2 + 210T — 7
92(t, T) = 3872448T7 — 26075521 + 408528T° + 63088T* — 2022473
+540T2% +172T — 7
9:(2,T) =303264T7 — 314928T° + 1135447° — 9840T* — 300073

+564T2 — 12T ,
9s(y, T) = 69984077 — 4497127 + 7480875 + 1956 T* — 1308T°
+174T? — 18z.

As mentioned in Proposition 3.10, x, = p.. The lexicographic Grobner basis
contains coefficients bigger than 10'2 while the biggest coefficient of the ra-
tional univariate representation is smaller than 108, This behaviour, observed
in [2], is due to the inversion of g,(1,T) (see Proposition 3.10).

3.3.2 Splitting the Rational Univariate Representation. In this part
we suppose that

{Xu(T)»gu(l’T)’gu(XlaT)a cee vgu(Xk’T)}

is a rational univariate representation for the elements of the finite set Z%(P).

The main advantage of the rational univariate representation is that we
can apply many methods dealing with univariate polynomials in order to
study the system. In order to simplify the output, one can for example make a
squarefree decomposition, or even factorize the first polynomial of the rational
univariate representation

k
Mm=HMﬂ)

and also provide a representation of all the roots by a set of rational univariate
representations:

k
U{Xu,i(T)a gu,i(l’ T)a gu,i(Xl,T), s ’gu,i(ka T)}’

=1
where gy, i(1,T) = g4(1,T) mod X, ,:(T).

Ezample 3.12. Consider the following system where none of the variables is
separating

Utz —1t2~ 22 ~1222-13 =0

WUyz —y?> — 22 —y222-13 =0

2ty —t2 —y? —t%2 -13 =0.

A rational univariate representation is given by:



Chapter 2. Symbolic Recipes for Polynomial System Solving 57

xu(T) = T*® — 56567 + 12508972712 — 142134024407 *° + 9020869309270T®
—32160810095050007° + 6068330147542307327"*
—51316296630855044152T2 + 1068130551224672624689

9u(1,T) = T™ — 4949T"3 + 9381729T*! — 8883376525T° + 4510434654635T"
—1206030378564375T° + 151708253688557683T3
—6414537078856880519T

gu(t,T) = 7T1T** — 35513572 4 673508751 T° — 633214359791T°
+3148153566598697'° — 79677638700441717T*
+8618491509948092045T2 — 205956089289536014429

gu(y, T) = 86T* — 41887072 + 759804846T'° — 6704856642387
-~ +4307445009725282T° — 71012402366579778T*
+7099657810552674458T2 — 168190996202566563226

gu(z, T) = 1162'% — 48359272 + 7842268687 — 6340622415927
+270086313707548T°% — 58355579408017944T*
+552098810523618066872 — 131448117382500870952.

Noticing that x,(T') equals

(T* — 1222T2 + 371293) - (T* — 103072 + 190333)-
(T* - 2326T2 + 484237) - (T* — 1078T? + 31213),

we can split the rational univariate representation in four components. For
example, the component corresponding to the first factor is:

Xun(T) = T* — 122272 + 371293
9u1(1,T) = —1528597T3 + 939034343T
gu1(t, T) = 67229849947 — 10442038172
gu1(y, T) = 115704058093 — 20340464372
9u1(z, T) = 67229849947 — 10442038172,

~N

One advantage of the rational univariate representation is that it helps to
keep track of root multiplicities. The polynomials of the rational univariate
representation give an easy way to express the multiplicity of each root:

gu(l u(z))
Vo e ZHP), uplz)= .
K X (u(@))
where the prime on %, denotes the derivative. Using this formula, we obtain
the squarefree factorization of X, (T") by computing the ged’s:

Xu,i(T) = ng(gu(lvT) - lYL(T)v Yu(T))’ 1=1,... ,deg(Xu(T));

and we can compute the number of roots of glven multiplicity ¢ as the degree
of Xy (T).

As a direct consequence of these last results, we can define the rational
univariate representation of the roots of multiplicity : of Z%p) which al-
lows us to split the rational univariate representation without factorization
(factorization can be very costly in practice):



58 L. Gonzalez-Vega, F. Rouillier, and M.-F. Roy

{Xu,i(T)agu,i(ly T), gu,i(Xl,T), e 7gu,i(Xk’ T)},

where
gu,‘i(l’T) = gu(lvT) mod Yu,i(T)'

Ezample 3.13. Consider the following system

24 — 92q — 92b — 113b° + 49a* + 49b* — 11a® — 115° + a® + b® + 14242 + 284ab
+142b% — 339a%b — 339ab® + 294a2b? + 196ab® — 55a*b — 110a3b? — 110a?b3
—55ab* + 6a°b + 15a%b2 + 20a3b® + 15a2b* + 6ab® — 113a® + 1964°b

¢® + 3bc® + 3b%c + b°
863 + 12b%c — 12ab? + 6bc? — 12cab + 6a%b + ¢® — 3ac? + 3a%c — a®.
A rational univariate representation is given by:

Yu,1(T) = 8T — 44T + 98T* — 113T3 + 71T2 — 23T + 3
9u(1,T) = 24T2 — 50T + 23

gula, T) = 24T3 — 50T? + 23T

gu(b, T) = 22T% — 43T + 18

gulc, T) = —22T2 + 43T — 18,

Since X,, ,(T) = 2T' -3, X o = 2T — 1 and X,, 3 = T — 1, there is one root of
multiplicity 1,-one root of multiplicity 2, and one root of multiplicity 3. The
rational univariate representations with respect to these multiplicities are:

Yu,s =T — 17 gu,3(17T) = gu,3(a7T) = gu,3(b7T) = —37 gu,3(c, T) =3

714,2 =2T -1, gu,2(1vT) =4, gu,2(a7T) = gu,2(b» T) =2, gu,2(c» T) = -2
Yu,,l =2T — 37 gu,l(laT) = 27 gu,l(a,T) = gu,l(b’ T) = 37 gu,l(cv T) =-3.

4. As Many Equations as Variables

We now consider systems of polynomial equations with a finite number of so-
lutions defined by as many equations as variables. These polynomial systems
are called complete intersection polynomial systems.

4.1 Generalities on Complete Intersection Polynomial Systems

Let {Py,..., Py} be a complete intersection polynomial system and A the cor-
responding quotient ring. We say that a linear form X (i.e., a linear mapping
from A to K) is dualizing if the bilinear form

A(a, b) = Mab)

is non-degenerate.
An important property of complete intersection polynomial systems is the
following one. -



Chapter 2. Symbolic Recipes for Polynomial System Solving 59

Proposition 4.1. There erists a dualizing linear form € on A. For every
dualizing form, the mapping associating to a in A the linear form b+ £(abd)
is a one to one correspondence between elements of A and linear forms over

A.

The proof is far from obvious and can be found for example in [6]. In
what follows, we describe explicitly how to obtain a dualizing form. Let Y =
Y1, ..., Y, be indeterminates, just like X'. We define

B(Xl, oY) = det(Pij) € K[X,y],
with P;; equal to

}Di(}/la'--7Yt7'——17Xj7Xj+1,""Xk) _Pi(yvl,""ytj—lvy},Xj+la-'-an)
X; - Y; '

Observe that A® A can be viewed as the quotient ring of K[, Y] by the ideal
generated by all P(X,,...,Xy), P(Y1,...,Y;) for P € P. Now the class of
B(X),...,Yx) in A® A is called the Bezoutian of P, ..., P, and is denoted
by Bez(z,y).

If e;,...,eN is a basis of A, an element a of A ® A can be written as
Y-a;je; ®e; and a linear form A on A assigns to a, in a natural way, the
element a* of A, defined as

a = Z ai,j/\(ei)e,
g

To a linear form )\ we associate the element Bez(z,y)* of A where z and y
denote the class in A of the variables in X and ), respectively. This mapping
is surjective and the linear form ¢ associated to 1 is dualizing. It is called
the Kronecker symbol (or global residue), and it is defined by Bez(z,y)¢ = 1.
Moreover the element of A corresponding to a linear form A in the bijection
of Proposition 4.1 is Bez(z,y)” and £(Bez(z,y)*b) = A(b).

In the univariate case, i.e., K = 1, denoting by H; the Horner polynomial
of degree ¢ associated to P = Py,

B(X,Y) = u ZHd 1-(V)X ZY Hy 1 i(X),

we obtain that the polynomial associated to A is Y A(Hz—1-;(Y))X*. The
Kronecker symbol £ sends 1,...,X%"2 to 0 and X4~ ! to 1.

Coming back to the multivariate case, the classical Jacobian of Py, ..., Py
agrees with Bez(z, ). The linear form associated to Jac in the correspondence
of Proposition 4.1 is the Trace morphism and #(Jac u) = Trace(u). As a
consequence, the quadratic form @, can be presented as:

f — €(Jac hf?).



60 L. Gonzalez-Vega, F. Rouillier, and M.-F.Roy

When all the zeros of {Py,..., Py} are regular, we have

wp= Y o

T€Z%(P) Ja,c(x)

One important property of complete intersection algebras is that the
eigenspaces for the multiplication by f, which correspond as described above
to the eigenvalues f(z), are of dimension 1: eigenvectors are Bez(X,r) € A
with 2 € Z(P). This gives fixed point properties and interesting numerical
methods for solving polynomial systems [3, 10].

4.2 Recipes for Polynomial System Solving When the Number of
Equations Equals the Number of Unknowns

Recipe VIII: Number of Different Solutions.

o Start from a basis A of A as a K-vector space (for example, given by the
monomials under the staircase of a Grobner basis).

o Compute the Jacobian determinant of Py, P,,..., Py:
ap, aP;
> o>
Jac =| :
or eliy
83X, T 09Xy

o Compute the matrix Lj,. (i-e., the matrix of the endomorphism Lj,. with
respect to A). .

o The rank of the matrix Lj,. is equal to number of different solutions of the
polynomial system.

Ezample 4.2 (Continuation of Example 2.9). The next excerpts of a Maple
session show the computation of the matrix £ for the polynomial system of
equations in Example 2.9.

Jac := det(jacobian(F,[x,y]));
Jac := —4xy? + 2%y — 8x% — 49% — 423

Abasis := [1,y,y**2,y**3,x,x*y]:
for omega in Abasis do normalf (omega*Jac,GB, [x,y],tdeg) od;

—6y% — 262y — 8y?
2y% — 8y
—20y° — 64zxy
56y° + 64zy
20zy + 4y°
—4y3 + 16zy -



Chapter 2. Symbolic Recipes for Polynomial System Solving 61

Now in the matrix P = Lja. the i-th column consists of the coefficients of the
i-th polynomial in the above list with respect to the given monomial basis of
A

0 0 0 0 0 0

0 0 0 0 0 0
p_| 8 0 0 0 0 o
Tl -6 2 —20 56 4 —4
0 0 0 0 0 0

-26 —8 —64 64 20 16
rank(P) ;

3

Thus the considered polynomial system of equations has three different solu-
tions.

5. Grobner Bases and Numerical Approximations

Once a Gribner basis is known, a procedure for determining the solutions
numerically is as follows. According to Stickelberger’s Theorem 3.3, the &
matrices Lx,, ..., Lx, have the following property: for each i, the set of ¢-th
coordinates of the common zeros of P coincides with the set of eigenvalues
of Lx,. The main problem is to recombine the different elgenvalues in order
to get the solutions of the polynomial system.

When all the solutions are regular, the idempotents e, assocga.ted tox €
Zz(P) are, a,ccordmg to Stickelberger’s Theorem 3.3, the eigenvectors of
the various Lx,’s. So, all matrices Lx,, ¢ = 1,...,k, are diagonalizable in
the same basis of eigenvectors. If, moreover, the ﬁrst variable is separating
(this means that the characteristic polynomial of Lx, is squarefree), we can
compute the eigenvalues and eigenvectors of L x,. The eigenvalues are the first
coordinates of the elements = (24, ...,2%) € Zg(P), and the eigenvectors
fz obtained are proportional to the idempotents e,. Now

Cxl'f:clefa:a ['Xz'f:czx2f:n reey ['Xk'f:c=xkf:n

so that x2,..., 2k can be computéd from f; and Lx,,...,Lx,.

In the general case, we can use for example the following lemma [20].

Lemma 5.1. If {A,,...,An} is a commuting family of matrices (A;A; =
AjA; for every pair from the family) then there erists a unitary matrizc U
such that

=U"AU

is upper triangular.



62 L. Gonzalez-Vega, F. Rouillier, and M.-F. Roy

Applying this lemma to the commuting family of matrices {Lx,,...,Lx,},
it is possible to read off from the diagonal of the upper triangular matrices
T; = U*Lx,U the coordinates of the solutions of the polynomial system. The
construction of the matrix U is not difficult in the exact arithmetic/data case
but there are interesting problems in the floating point /inexact data case [11].

Recipe IX: Approximating the Solutions (Regular Case)

o Compute the matrices Lx,,...,Lx,.

o Compute the characteristic polynomial of Lx, and check if it is squarefree.
If it is not squarefree, go to Recipe X.

o If it is squarefree compute the eigenvalues of Lx,, using any numerical
algorithm.

o Compute the eigenvectors of Lx, using any numerical algorithm and com-
pute the other coordinates of the solutions as indicated above.

Recipe X: Approximating the Solutions

o Compute the matrices Lx,,...,Lx,.

o Compute the eigenvalues of Lx,,...,Lx, using any numerical algorithm.

o Combine the obtained results to get the solutions by using, for example,
the preceding lemma.

Ezample 5.2 (End of Example 2.8). Finally the matrices £, and Ly, to-
gether with their eigenvalues, are computed.

for omega in Abasis do normalf (omega*x,GB, [x,y],tdeg) od;A

T
zy
dzy +¢°
—2y3
—1/2zy + 1/2y*

—2zy

for omega in Abasis do normalf (omega*y,GB, [x,y],tdeg) od;



Chapter 2. Symbolic Recipes for Polynomial System Solving 63

Similarly to Ljac, these lists give us M; = L, and My = L,

M

000 0 0 0 000 0 00
000 0 0 0 100 0 00
~looo 0o 12 o M 010 0 00
“loo1 -2 0o o0 27lo 01 -6 0 1
100 0 0 0 000 0 00
014 0 -1/2 -2 0 0 0 —16 1 4
eigenvals (M1);eigenvals(M2);
0,0,0,0,—2, —2
0,0,0,0,2, —4

subs (x=-2,y=2,F) , subs (x=-2,y=-4,F) ,subs (x=0,y=0,F) ;
[0,0], [0, 0], [0,0]

So, the three solutions of the polynomial system of equations we consider are
(_2>2)a (_2’_4) and (0> 0)

References

[

. W.W. Adams and P. Loustaunau (1994)An Introduction to Grobner Bases.
Graduate Studies in Mathematics 3, Amer. Math. Soc.

M.-E. Alonso, E. Becker, M.-F. Roy, and T. Wormann (1996): Zeros, Multi-
plicities and Idempotents for Zerodimensional Systems. Algorithms in Algebraic
Geometry and Applications, Progress in Mathematics 143, 1-20, Birkhduser.
W. Auzinger and H.J. Stetter (1988): An Elimination Algorithm for the Com-
putation of all Zeros of a System of Multivariate Polynomial Equations. Int.
Series in Numerical Mathematics 86, 11-30, Birkhéuser.

. E. Becker (June 1996): Private communication.
. E. Becker, M. G. Marinari, T. Mora, and C. Traverso (1993): The Shape of the

Shape Lemma. Proceedings of ISSAC-94, 129-133, ACM Press.

. E. Becker, J.-P. Cardinal, M.-F. Roy, and Z. Szafraniec (1996): Multivariate

Bezoutians Kronecker Symbol and Eisenbud-Levine formula. Algorithms in Al-
gebraic Geometry and Applications, Progress in Mathematics 143, 79-104,
Birkh&user.

. E. Becker and T. Wérmann (1996): Radical computation of a zero-dimensional

tdeal ad real root counting. Mathematics and Computers in Simulation 42 (4-6),
561-569.

T. Becker and V. Weispfenning (1993): Groebner Bases, a Computational Ap-
proach to Commutative Algebra. Graduate Texts in Mathematics 141. Springer-
Verlag, New York Berlin Heidelberg.

B. Buchberger (1985): Grébner bases: an algorithmic method in polynomial
ideal theory. Multidimensional Systems Theory (N. K. Bose Ed.), Chapter 6,
184-232, Reidel Publishing Company, Dordrecht.



64

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22,

23.

24.

25.

26.

27.

28.

L. Gonzalez-Vega, F. Rouillier, and M.-F. Roy

J.-P. Cardinal (1993): Dualité et algorithmes itératifs pour la solution des
systémes polynomiauz. Thése, Université de Rennes 1.

R .M. Corless (1996): Groebner bases and matriz eigenproblems. SIGSAM Bul-
letin 30 (4), 26-32.

D. Cox, J. Little, and D. O'Shea (1993): Ideals, Varieties and Algorithms. Un-
dergraduate Texts in Mathematics. Springer-Verlag, New York Berlin Heidel-
berg.

D. Eisenbud (1995): Commutative Algebra with a View Toward Algebraic Ge-
ometry. Graduate Texts in Mathematics 150, Springer-Verlag, New York Berlin
Heidelberg.

J. C. Faugere, P. Gianni, D. Lazard, and T. Mora (1994): Efficient computation
of zero-dimensional Grobner bases by change of ordering. Journal of Symbolic
Computation 16 (4), 329-344.

P. Gianni (1987): Properties of Grébner bases under specialization. Proceed-
ings Eurocal-87. Lectures Notes in Computer Science 378, 293-297, Springer-
Verlag, Berlin Heidelberg New York.

P. Gianni and T. Mora (1989): Algebraic solution of polynomial equations using
Grobner bases. Proceedings AAECC-5. Lectures Notes in Computer Science
359, 247-257, Springer-Verlag, Berlin Heidelberg New York.

P. Gianni, V. Miller, and B. Trager (1988): Decomposition of algebras. Lecture
Notes in Computer Science 356, 300-308, Springer-Verlag, Berlin Heidelberg
New York.

M. Giusti and J. Heintz (1993): La determination des points isoles et de la di-
mension d’une variete algebrique peut se faire en temps polynomial. Computa-
tional Algebraic Geometry and Commutative Algebra, Symposia Mathematica,
vol. XXXIV, 216-256, Cambridge University Press.

L. Gonzélez- Vega and G. Trujillo (1995): Using symmetric functions to describe
the solution set of a zero dimensional tdeal. Lecture Notes in Computer Science
948, 232247, Springer-Verlag, Berlin Heidelberg New York.

R. Horn and C. Johnson (1985): Matriz Analysis. Cambridge University Press.
M. Kalkbrener (1987): Solving systemns of algebraic equations by using Grébner
bases. Proceedings Eurocal-87. Lectures Notes in Computer Science 378, 282
292, Springer-Verlag, Berlin Heidelberg New York.

T. Krick and L. M. Pardo (1996): A computational method for diophantine
approzimation. Algorithms in Algebraic Geometry and Applications, Progress
in Mathematics 143, 193-254, Birkhauser, Basel.

Y.N. Lakshman and D. Lazard (1991): On the complexity of zero-dimensional
algebraic systems. Effective Methods in Algebraic Geometry, Progress in Math-
ematics 94, 217-225, Birkhduser, Basel.

B. Mishra (1993): Algorithmic Algebra. Texts and Monographs in Computer
Science. Springer-Verlag, Berlin Heidelberg New York.

M. Moreno-Maza (1997): Calculs de Pgcd au-dessus des Tours d’Extensions
Simples et Résolution des Systémes d ’Equatiom Algébriques. Doctoral Thesis,
Université Paris 6.

H. M. Moller (1993): Systems of algebraic equations solved by means of endo-
morphisms. Applied Algebra and Error Correcting Codes, Lecture Notes in
Computer Science 673, 43-56, Springer-Verlag, Berlin Heidelberg New York.
P. Pedersen, M.-F. Roy, and A. Szpirglas (1993): Counting real zeros in the
multivariate case. Computational Algebraic Geometry, Progress in Mathemat-
ics 109, 6176, Birkh&user, Basel.

F. Rouillier (1996): Algorithmes efficaces pour l'étude des zéros réels des
systémes polynomiauz. Doctoral Thesis, Université de Rennes L.

B.L. Van der Waerden (1950): Modern Aigebra II. F. Ungar Publishing Co.



Chapter 2. Symbolic Recipes for Polynomial System Solving 65

30. V. Weispfenning (1995): Solving parametric polynomial equations and inequal-

31.

ities by symbolic algorithms. Computer Algebra in Science and Engineering,
163-179, World Scientific, Singapore.

K. Yokoyama, M. Noro, and T. Takeshima (1992): Solutions of systems of
algebraic equations and linear maps on residue class rings. Journal of Symbolic
Computation 14, 399-417.



Chapter 3. Lattice Reduction

Frits Beukers

1. Introduction

We shall give an introduction to the LLL-algorithm over Z. The algorithm
is due to L. Lovdsz, HW. Lenstra and A.K. Lenstra. It is concerned with
the problem of finding a shortest nonzero vector in a lattice. In Section 2, we
begin by introducing the relevant background material on lattices. Then we
proceed to déscribe lattice reduction and finding shortest nonzero vectors in
dimension 2. Section 4 presents the core result of this chapter: LLL-lattice
reduction in any dimension. Section 5 deals with the implementation of the
LLL-algorithm, and the last section discusses an application of the algorithm
to the problem of finding Z-linear combinations of a given set of real numbers
with small values.

2. Lattices -

Consider R™ with the standard inner product, which we denote by v - w.

Lemma 2.1. Let G be an additive subgroup of R™. Then G is discrete in R™
if and only if there exist R-linearly independent elements vy,...,v, € G such
that G = {z\vi + -« + z,Vp | T1,...,2, € Z}.

Proof. Suppose G = {z1vi + -+ + TV, | Z1,...,%» € Z} with vi,..., v,
linearly independent over R. Let yx be the minimum of |zyvy + -+ + z,v,|
as T1,...,T, run over all real numbers such that z2 + --- + 2 = 1. Since
the v; are independent, this minimum is nonzero. Hence we have, for any
T1,...,Z- € R, that

|z1vy + -+ zpvy| > py/a 4+ 22

Hence, for any nongzero v € G, we obtain |v| > u. Hence G is discrete.

Suppose, conversely, that G is discrete. Let r be the dimension of the
R-linear span of G and choose r linearly independent (over R) elements
wi,..., W, of G. Consider the set

F={xeG|x=mwy+ +pwy, Vi:0< y; <1}.

Since G is discrete, the set F is finite. For eachi = 1,...,r we choose v; € F
such that vi = yyw¢ + -+ + ppw, with g > 0 and minimal. Since w; € F,



Chapter 3. Lattice Reduction 67

such an element always exists. Clearly the v; are also R-linearly independent.
Let v € G and write v = ZLI A;v;. For each i, let v; be equal to A; minus
its largest integral part. Then v/ := Y ._, »;v; is also an element of G. We
assert that v; = 0 for all i. Suppose not, then choose j minimal such that
v; > 0. Then v’ written with respect to the w; looks like v/ = vu;w; + - -,
contradicting the minimality in our choice of v;.

Definition 2.2. A lattice in R" is a discrete subgroup of the additive group
R™.

A set of independent generators of a lattice L is called a (lattice) basis.
The rank of a lattice L is the usual one in the sense of linear algebra and it
equals the number of elements of a lattice basis.

Lemma 2.3. Let wy,...,w, and vy, ..., Vv, be any two bases of a lattice L.
Then there exists an v X r-matric M with integral entries and det(M) = +1
such that w;, = Mv; fori=1,...,r.

Proof. Since {v;}; and {w;}; are bases of L, there exist r X r-matrices M, N
with integral entries such that w; = Mv; and v; = Nw; for all . Hence
MN =1d, and det{M)det(N) = 1. Since both determinants are integers, we
conclude that det(M) = det(N) = +£1.

Definition 2.4. Let L be a lattice in R™. Let v, ..., Vv, be a basisof L. Then
we define the determinant of a lattice by /det(v; - v;). Notation: d(L).

The matrix (v;-Vv;)ij=1,..r is called the Gram-matriz of vi,...,v,. Note
that the Gram-matrix is symmetric with positive eigenvalues. Hence its de-
terminant is positive and we can take its square root.

For future use we make the following observation. Let v;,...,v, be a
basis of R and let V' be the matrix whose columns consist of these vectors.
Then VTV is the matrix whose entries consist of the inner products v; - v;.
Hence d(L)? = det(v; - v;)ij=1,...n = det(V ") det(V). So we conclude that
d(L) = |det(v1,...,vr)l|.

From the theory of lattices we have the following theorem.

Theorem 2.5 (Minkowski). Let L be a lattice of rank r. Let vi € L be a
shortest nonzero vector, vo € L a shortest vector independent of vy, etc., and
let finally v, € L be a shortest vector independent of vy,...,v,_1. Then,

27‘
vol(B,) 9(L)
where vol(B,) is the volume of the unit ball in R".
We add that Vol(B,) = 7™/2/I'(14r/2). As B, contains the (hyper-)cube
whose vertices all have coordinates +1/,/r we obtain Vol(B,) > (2/\/T)". As

a consequence we find that |v,| < /Fd(L)'/".
An important problem with many applications is the following one.

il [vr| <



68 F.Beukers

Problem 2.1. Given a basis of a lattice L. Determine a nonzero vector in
L with minimal length. ~

A possible application would be the determination of a,b € Z such that
p = a?+ b? for a prime p with p = 1 mod 4.

Ezample 2.6. Let p be a prime with p = 1 mod 4. Find z € Z such that
22 = —1 mod p (there exist algorithms to do this quickly). Consider the
lattice

L ={(z,y) € Z* | z = zy mod p}.

Check that (p,0) and (z,1) form a basis of L. Hence d(L) = p. Denote a
shortest nonzero vector in L by (a,b). By Minkowski’s theorem we have that
|(a,b)|?> < 4p/=, hence a®+b? < 2p. On the other hand, a? +b% = (bz)2 +b% =
0 mod p. Hence p divides a® + b? and we conclude that p = a2 + b%.

Exercise 2.7. Let L be a lattice with base by, ..., b,. Show that the length
of every nonzero vector in L is bounded below by the smallest eigenvalue of
the Gram-matrix of the b;.

3. Lattice Reduction in Dimension 2

In case n = 2 there is a very efficient algorithm to find shortest vectors in
lattices. Let L be a lattice in R? with basis v;, vo and assume |va| > |vy].

Algorithm 3.1 (Euclid).

loop:
- choose k € Z such that —%vl vy < (vea—kvy) vi £ -;-vl ‘v
Vo :=Vy — kVy;
if [ve| > |vi| then stop;
else interchange v; and va; goto loop;
fi.

We assert that this algorithm terminates and that v, is a shortest nonzero
vector in L and vy is a shortest vector in L\ {cvi| c € R}.

Proof. First we show termination. At the start of every loop the vector v, is
strictly smaller than at the start of the previous loop. Since every bounded
disc contains only finitely many elements of L (L is discrete), the algorithm
terminates.

We now show correctness of our algorithm. Let v;,vs be the result of
the algorithm. In particular we have that |vz - v;| < %|v1|2 and |v3| 2> |v1].
Choose any nonzero v € L. There exist a,b € Z such that v = av, + bv,,
Notice that



Chapter 3. Lattice Reduction 69

[v[?

a®|vy|? + 2ab(vy - v2) + b2|va|?
a®|vi|? — |ab||vy|? + b?|va|?
(a® — |ab| + b2)|vy |2 > |v1]?.

Vv IV

Hence v; is a shortest vector. Now suppose v independent of vy, i.e.,
b # 0. Then,

1 3
VP2 @l - labllvaf? + JB vl + J0vaf?
3
= (la| - 181/2)?Iv1[* + Zb2"'2'2
> |vo|® if |b] > 1.
If b = £1 then

[VI* > a®vi|? — la||vi[* + [v2|* > |va|.
Hence v3 is a shortest vector independent of v;.

Lemma 3.2. Let v, be the result of the previous algorithm. Then |v,| <
(4/3)'/4d(L)'/2.

Proof. We have |v3| > |vi| and |v; - v2| < 4|v1|?. Notice that

[vi|2  vi-vo
vi-ve  |val?

d(L)?

Vi?[val? = [v1 - ve?

v

1 3
4_ vt = Sivi 14
[v1] 4|V1| 4|V1|
Taking fourth roots on both sides yields our inequality.

Notice that the inequality sign of the previous lemma becomes equality
precisely when |v;| = |vo| and |v; - vo| = 3|v;|%. This case corresponds to
the hexagonal lattice.

The most important feature of Euclid’s algorithm is its remarkably short
runtime as shown by the following exercise.

Exercise 3.3. Let [ be the length of the shortest nonzero vector in a lattice
of rank 2. Let v, vy be the initial basis of the lattice. Prove that Euclid’s
algorithm ends in O(log(|v1|/!)) iterations.

Exercise 3.4. Let ¢ be a real number in ]1/v/3,1[. Suppose that we replace
the stopping condition |vg| > |vy| in our previous algorithm by |v3| > c|vy].
Let v; be the result of our new algorithm. Show that for any nonzero v € L
we have |v| 2> c|v,|.



70 F. Beukers
4. Lattice Reduction in Any Dimension

In case n > 3 there are hardly any polynomial time, general purpose meth-
ods with a shortest lattice vector as guaranteed output. However, in 1982
L. Lovéasz, H'W. Lenstra and A.K. Lenstra (cf. [2]) proposed an algorithm
which produces in polynomial time a lattice vector whose length is at most
a known factor larger than the shortest possible length.

Before describing the algorithm we review the Gram-Schmidt orthogonal-
isation procedure. Let vy,. .., v, be (not necessarily independent) vectors in
R™. Define recursively,

v, = Vi
IV A\

v: = Vi—Zlejv; (2’=2,...,T)
2

j<i
where the ’ sign in the summation denotes deletion of terms where v} = 0.
The vectors v} consist of (possibly) some zero vectors and an orthogonal
basis of the space spanned by vy,..., v,.
Notice that |vi| < |vi| for all k and that det(v;-v;) = det(v;-v}). Hence,

det(v; - v;) H|v |2<H|v 2.

This inequality is known as Hadamard’s inequality. In particular, when
Vi,...,Vn is a basis of R we obtain

n
|det(vy,...,vq)| < H|vi|.

In the sequel, whenever we have a set of vectors vy, ..., v,, we denote by
vi,..., vy the result of the Gram-Schmidt procedure. The so-called Gram-
Schmidt coefficients v; - v;/|v;|* are denoted by u;. We take p;; = 0 if
v‘f =0.

In practice we shall only be interested in the inner products v; - v;. To
compute these products we use the following algorithm.

Algorithm 4.1 (Gram-Schmidt).

G:= (V-,; . Vj);
for i from 1 to n do
if Gi; # 0 then
for j from ¢ +1 to n do
subtract G;;/G; times the i-th column from the j-th column;
od;
fi;
od.



Chapter 3. Lattice Reduction 71

When the algorithm terminates, the matrix G has the products v; - v;-‘ as
entries.
We are now ready to discuss LLL-reduction.

Definition 4.2. Let L be a lattice. A basis by,...,b, of L is called LLL-
reduced if
whenever 1 <j<i<r

N =

lpiz] <
and

3
b} + pii—1bi|* > Z|b}‘_l|2 whenever 1 <4 <.

The second condition can be rewritten as [b;[? > (§ — uZ,_,)|bj_,|? and
is known as Lovasz’s condition. The vector b; +p;;—1b;_; can be interpreted
as the projection of b; on the orthogonal complement of by,...,b;_o. In the
special case r = 2 the conditions read |bs - b;| < |b;|? and |ba|? > 2|b,|2.

Theorem 4.3. Let by, ...,b, be an LLL-reduced basis of a lattice L. Then,
1. d(L) < 1‘[:=§ |b;| < 2r"=D/44(L).

2, |b1| < 9(r—1 /4d(L)1/r

3. For every nonzero x € L we have |b;| < 20"~1/2|x|.

4. For any linearly independent set of vectors xi,...,X; € L we have |b;| <
20-1/2 max(|x, |, ..., |x|) for 1 < j < t.

Proof. First note the following inequalities,
[bil? = b} +pi;i1Ibi s+ + pf [bI

* 1 * 1 *
Ib;|* + Z|bi—1|2 +eeet Z|b1|2-

IA

Furthermore, |b;-‘|2 > %|b;-‘_1|2 as a consequence of the Lovéasz condition.
Hence |b}|? < 2°~7|b}|? whenever j < i. Hence for all i we have
1 ,
Ibs|> < [1 +02+ 2244 21‘1)] b} |2

2i-1 41
2

We are now ready to prove the statements of our theorem. First of all,

b:|? < 201 bz |2
1 1

r r r
a(y = T o] < J[ ol < 2772/ T bt = 27 ~/%a(L).
i=1 =1

=1

This proves part 1.
Secondly, whenever 1 < j < ¢ < r we have

|by| < 2(1‘—1)/2|b;| < 206-9)/320-D/3|py| = 2(-V/3|py|.



72 F. Beukers

Application of the latter inequality to the case j = 1 yields
Iby|” < 27U/ bi b3 - - [by| = 27D 44(L).
Hence |by| < 2("—1/44(L)}/7, which proves part 2.
Note that part 3 is a special case of 4 with ¢t = 1.
For the proof of part 4 we choose k minimal such that x;,...,x; lie in
the span of by, ..., by. Suppose x; = 3, ;< Tijb; = 32, < ;< 5ijP}. Choose

i such that r;; # 0. Notice that the r;; are integers and that r;x = s;x. Since
X1, ...,X; are independent we have k > t. Observe that

x:[* > % [bi|* = ri[bil* > |bif%.
So, whenever j < k,
bj[* < 257! |bif? < 267t xi|* < 27 max(|xi[?, - Ixef).

In particular, since k > ¢, this inequality holds whenever j < ¢.

Let us now give an informal description of the LLL-reduction procedure ap-
plied to any k-tuple of vectors by, ..., by.

Algorithm 4.4 (LLL-Reduction). Suppose that the vectors by,...,bg_;
are LLL-reduced (true if k = 2). Replace by by by — 3, , a;b; with
a;j € Z in such a way that |px;| < 1/2 whenever j < k. Suppose
|bx|? > (8/4 — pf x_1)Ibi_;[>. Then by, ..., bk is LLL-reduced and we can
stop. If the Lovasz condition is not satisfied we interchange by and by_,,
apply LLL-reduction to by, ..., by_; and repeat the procedure.

Now apply LLL-reduction to the basis by,...,b, of a lattice L. It is clear
that if the algorithm terminates we have obtained an LLL-reduced basis of
L. It remains to show that the algorithm actually terminates. To this end we
introduce the quantities

d; = det((bs - bt)s=1,..:)

for i = 1,...,r. In particular, d, = d(L)2. Let

r—1
D=1]]d.
i=1

During the LLL-reduction this quantity changes only value when two vectors
by and by, are interchanged. In fact, only di-; changes value in that case.
A simple computation shows that the new value will be di_, = dx—1|b} +
gk k-1b}_1|2/|bt_,|2. Since we had to interchange by and by_; the Lovisz
condition is apparently not satisfied and so we get dj_; < 3dy_1. Hence D
gets reduced by a factor 3/4. Note that D has a lower bound which depends



Chapter 3. Lattice Reduction 73

only on the lattice and not on the choice of basis. This can be seen as follows.
Let ! be the length of the shortest nonzero vector in L. Minkowski’s theorem
applied to the lattice generated by the first i vectors shows that I < /i, dl/ %
for each i = 1,...,r. Hence d; > (I2/i)’ and so, D > (lz/r)r(r /2 In
particular, we see that the number of interchanges in the LLL-reduction is
bounded by O(log D + r2log(y/7/1)) and so the algorithm terminates.

Exercise 4.5. Let m = max;—; . |b;|. Show that the number of swaps
occurring in the LLL-algorithm is bounded by cr? log(m+/7/l) where ¢ > 0
is a constant and [ is the length of the shortest nonzero vector in L.

5. Implementations of the LLL-Algorithm

It turns out to be possible to give very simple implementations of the LLL-
algorithm. Here we shall give a version which requires only operations on the
Gram-matrix and an auxiliary matrix which keeps track of the transformation
between the original basis and the transformed basis. Our first observation
is that the matrix (b; - b;-‘)iyjzl,m,r can be obtained by putting the Gram-
matrix of (b;-b;) into column echelon form by the algorithm Gram-Schmidt
sketched above. The second observation is that replacement of by, say, by
by — Z]. <k ajb; does not change the corresponding vectors bj. The third
observation is more subtle. If we interchange bx_; and by and apply Gram-
Schmidt to the newly ordered set, we obtain a new orthogonal system {b}*},.
Notice however, that bi* = b} if i # k,k — 1 and that

bk - b}
el 1—-bk+|b—f|21bk 1
and
o * bk 1 bk
by* = by, - |b—|21b
1
* bk.bk— ok

Based on these observations we can propose the following implementation.
Suppose that we want to carry out LLL-reduction on the vectors by, ..., b,.
We introduce the n x n-matrix H to keep a record of the relation between
the (partially) reduced set of vectors and the original b;. We initialise H
either to the matrix whose rows are the b; or to the n x n-identity matrix.
The n x n-matrix G will be used to carry out the reduction. We initialise it
by the reduced Gram matrix (b; - b}). For the purpose of the algorithm we
concatenate the matrices G and H to (G|H). We have two procedures which
will be the building blocks of our LLL-reduction. These procedures affect the
matrix (G|H) which is assumed to be a global variable. The integer & in the
input is assumed to satisfy 1 < k < n.



74 F. Beukers

Procedure reduce(k,!). We assume that [ < k and that the G-part of
(G|H) is in lower triangular form. If G;; = 0 we do nothing. If G;; # 0 we
choose the nearest integer q to Gk,l/ G, and subtract g times the I-th row
of (G|H) from the k-th row of (G|H).

Procedure swap(k). We assume that the G-part of (G|H) is in lower diag-
onal form. Interchange the k-th and k — 1-st row in (G|H). Interchange the
k-th and k — 1-st column in G. Add Gk_1,/Gk,x times the k-th column to
the k — 1-st column of G. Add a suitable multiple of the k — 1-st column of
G to the k-th column so that the element at place k — 1, k becomes zero.

The LLL-algorithm proceeds as follows. We initialise G and H to the
reduced Gram matrix and the matrix of b;’s respectively and then apply the
following procedure with k = n.

Algorithm 5.1 (LLL).

Procedure LLL(k):

if k=1 then stop fi;

LLL(k — 1); lovasz := false;

while lovasz = false do
if Gk—1,xk—1 = 0 then stop fi;
reduce(k,k —1);
M= Gk—l,k/Gk—l,k—'l;
lovasz := (Gix > (2 — p2)Gr—1,k-1);
if lovasz = true
then for [ from 1 to k — 1 do reduce(k, k — {); od;
else swap(k); LLL(k — 1);
fi;

od.

If we do not know the b; explicitly, but only the Gram-matrix, we can ini-
tialise H to the n x n identity matrix. After finishing the algorithm the matrix
H will be the transformation matrix between the b; and the reduced basis.
One may notice that we can apply this algorithm without any change to a
set of vectors b; which is not necessarily R-linearly independent, but where it
is known that they generate a (discrete) lattice. Let b, .. ., b}, be the outcome
of LLL. If the rank of the b; is r, then b, =0 for i = 1,...,n — r and the
remaining b} will be a reduced basis of the lattice generated by the b;. In
the case of dependent input vectors we have to recheck our termination proof
of LLL. However, we can simply use the quantities d} = H'li;l,G” 20 Gii
instead of the dg. '



Chapter 3. Lattice Reduction 75
6. Small Linear Forms

The first application was by its inventors, who used it to construct a poly-
nomial time algorithm to factor polynomials. In the section on factorisation
of polynomials we shall discuss it. The application we have in mind here is
finding Z-linear combinations of a given set of real numbers with very small
values. What is meant by ‘small’ is indicated by the following theorem of
Dirichlet.

Theorem 6.1. Let ay,...,an, € R and A = Yi_, |o|. For every M € N
there ezist my,...,m, € Z, not all zero, such that |m;| < M for all i and
|m1a1 + -+ mnan| < A/Mn_l.

Proof. We may assume that «; > O for all ¢. Consider the set
B={kioy+ -+ kna, |Vi: k;€Z, 0< k; < M}.

Note that #B = M™ and 0 < z < A(M — 1) for each z € B. Divide
the interval [0, A(M — 1)] into M™ — 1 subintervals of equal length. Since
#B = M™ there exists at least one interval containing at least two elements
of B, say kjog + - -+ + knoyp and kjag + -+ + kl,a,. We have applied the so-
called ‘box principle’ or ‘pigeon hole principle’ here. Let m; = k; —k for all ;
then we conclude that |mia; +- - +mpa,| < AM-1)/(M™-1) < A/M™!
and not all m; are zero.

Dirichlet’s theorem is optimal in the following sense.

Theorem 6.2. Lete > 0 and let V, be the subset all real n—tuples (a1,...,an)
with Y_._, |oi| = 1 such that the inequality

Imicy + -+ + Mpan| < 1/ M1

hase infinitely many solutions my, ..., m, € Z with |m;| < M for alli. Then
V. has measure zero.

Let ay,...,a, be real numbers normalised such that, say, > i, |a;|? =1. A
very important application of the LLL-method is to prove the non-existence
of integers m;, ..., m, such that

|miay + -+ mupon| <€, |myl,...,|my| <M (6.1)

where the product eM™~! is extremely small. So we are in an exceptional
case with respect to Dirichlet’s theorem,

To this end choose N = M/e and apply LLL-reduction to the lattice L
generated by the row vectors of the matrix

1 00 -+ 0 Nog
01 0 .-+ 0 Nag

000 ---1 Nap



76 F.Beukers

With the standard inner product on R™*!, the determinant of the lattice is
given by d(L)? = 1+ N%(a? + -+ a2) = 1+ N2 Let by,...,b, be the
reduced basis we have found. Suppose that a solution to (6.1) exists. Denote
(my,...,mu,mNay+ - +myNeay,) by x and note that x| < (n+ 1)M.

From the properties of a reduced basis it would then follow that |b;| <
2(n=1)/4(n4+1)M. So, if this inequality does not hold, we have a contradiction
and conclude that (6.1) does not have any solutions. Note that M = eN <
ed(L), hence M™ < (eM™ 1)d(L). Since eM™ ! is exceptionally small, we
see that M/d(L)'/™, and hence |b;|/d(L)Y/" are exceptionally small. Since
this does not happen in generic cases we can usually disprove the existence
of solutions to (6.1).

In the explicit solution of diophantine equations using Gel'fond-Baker
techniques we typically find the problem

lmiag + -+ mpoy| < ¢~ Ims lm;| < M

for some ¢ > 1. Because of the inequalities |m;| < M we have a finite search
range for solutions. However, due to the size of M a case by case check is
impossible. Instead we will use a technique developed by B.M.M. de Weger
[4] in his Ph.D. thesis.

Let us first look for solutions with max; |m;| > 2nlog(M)/log(c). For
such solutions we get the inequalities (6.1) with e = M ~2". We now apply
the LLL-algorithm in the way described above. If M is large, € is extremely
small compared to the Dirichlet bound. Hence we expect our method to show
that there are no solutions of (6.1). This expectation is practically always
vindicated. So the only solutions of our original problem satisfy

Imyay + -+ 4 mpap| < ¢ ™% Iml

with |m;| < 2nlog(M)/log(c). Note that for large M this is a spectacular
reduction of our search space. If so desired we repeat the procedure with
2nlog(M)/log(c) to get an even further reduction of the search space. In
solving diophantine equations one has usually two or three of these rounds.
This technique has been applied in many papers on computational diophan-
tine equations. As an illustration we mention the paper [3].

Notes

This chapter was prepared as material for a course at the Master Class Computa-
tional Number Theory of the Mathematical Research Institute in the Netherlands
in 1995. During the preparation we made good use of H. Cohen’s beautiful book
[1] and profited from many discussions with Wilberd van der Kallen.



Chapter 3. Lattice Reduction 77

References

1. H. Cohen (1995): A Course in Computational Algebraic Number Theory (2nd
edition) Springer-Verlag, Berlin Heidelberg New York.

2. A.K. Lenstra, H. W. Lenstra jr., and L. Lovész (1982): Factoring polynomials
with rational coefficients, Math. Ann. 261, 515-534.

3. N. Tzanakis and B. M. M. de Weger (1989): On the practical solution of the Thue
equation, J. Number Theory 31, 99-132.

4. B.M. M. de Weger (1987): Solving exponential diophantine equations using lattice
basis reduction algorithms, J. Number Theory 26, 325-367.



Chapter 4. Factorisation of Polynomials

Frits Beukers

1. Introduction

In many rings, commutative or not commutative, the elements can be written
as a product of irreducible elements (not necessarily unique). In algorithms in
computer algebra it is often essential that this should be realized in an efficient
way. The most important examples in this respect are Z, Fq|X], Z[X] and,
as a more reeent example of computational interest, the ring Q(X)[d/dX] [6].
The latter ring is not commutative and factorisation into irreducibles is not
unique.

Factorisation in Z, or rather our apparent inability to do this efficiently,
lies at the heart of new developments in cryptography and random number
generation. Factorisation in Q(X)[d/dX] has gained some interest recently
because it enables one to find algebraic relations between solutions of linear
differential equations [2]. In this lecture we shall concentrate on factorisation
in F4[X] and Z[X].

2. Berlekamp’s Algorithm

Let F, be the finite field with ¢ = p® elements for some prime p and let
f € Fy[X]. The problem is to find distinct irreducible polynomials fi,..., f, €
F¢[X] and e; € N such that f = ff* ... f&r. We call the powers f;* the
primary factors of f. When ¢ is small an efficient and widely used algorithm
for decomposition into primary factors is Berlekamp’s algorithm. It is based
on the following observation

Lemma 2.1. Let v € Fg[X] be such that v? =v modf. Then

f=11 ged(f,v-a).

a€F,

Proof. 1t is known that Y9 -Y = Haqu (Y — a). Hence

f=ged(fv?!—v)=ged | f, [Jw-a) | = ] ged(f,v-a).

acF, a€F,

The latter equality follows from the fact that ged(v — a, v — b) = 1 whenever
a#b



Chapter 4. Factorisation of Polynomials 79

For the computation of a gcd we can use Euclid’s algorithm which works
very efficiently in Fq[X]. Of course, a factor of the form ged(f, v —a) need not
be irreducible or even primary. But of course we can repeat the procedure
to each of these factors with a different solution of ¥v¢ = v mod f. The
second observation which makes Berlekamp’s algorithm work is that if we
use sufficiently many distinct v we obtain a factorisation of f into primary
factors. This will be proved below. The third observation is that solving
v? = v mod f is basically an Fg-linear problem since v(X)? = v(X9). In fact,
the space of solutions to v? = v mod f is an Fg-linear vector space.

To determine the dimension of this vector space we use the ring isomor-
phism ‘
Fo[X1/(f) = &7 FolX]/(fi*) (€)

given by the Chinese Remainder Theorem. We have
Theorem 2.2. The set of solutions v mod f to v? = v mod f forms a ring

and 1is isomorphic, via (C), to the subring ®]_,Fq of ®_ Fq[X]/(ff). In
particular, it is an Fy-linear vector space of dimension r.

Proof. We determine the solution set of v? = v in ®7_,Fo[X]/(f*). It suffices
to prove that, for any v € F4[X] and any i = 1,...,7, we have

vI=vmod f{* <= Is € F,;: v=smod f.

The proof of ‘<=’ being trivial, we note that f* = Haepq ged(f, v — a).
Since the factors in the product are pairwise relatively prime and since f;
is irreducible there is at most one a for which ged(f*,v — @) is nontrivial.
Hence f* divides v — a and we are done.

Exercise 2.3. Prove that the solutions in F4[X]/(f) of v» = v form an r-
dimensional vector space over Fp.

In an informal but unambiguous way we can now describe Berlekamp’s

algorithm as follows. Determine a basis v; = 1,vs,...,v, of v = v mod f.
Let E = {f} (E will be a set of factors of f whose product equals f). If r = 1
we are done, f is primary. If r > 1, we replace for j = 2,...,r each element

h € E by the nontrivial elements of the set {gcd(h,v; — a)}aer,. Obviously,
the algorithm terminates. The resulting set E is the set of primary factors
of f. To see the latter statement consider an element h € E. For every j
there exists s; € Fy such that v; = s; mod h. A fortiori, since vy,...,v,
is a basis, to every solution v of v9 = v mod f there exists s, such that
v = 8, mod h. Now suppose that k contains two relatively prime primary
factors, say fi* and f3°. Then, as v runs through all solutions of v = v, we
have v = 8, mod f{* for i = 1,2. In particular, the solutions to v = v do
not surject to ®f_,F,[X]/(f;*), which is a contradiction.

i=1



80 F. Beukers

Exercise 2.4. Formulate a variant of Berlekamp’s algorithm where we use
the solutions of vP = v. What are the possible (dis)advantages?

A problem which remains after performing Berlekamp’s algorithm is to
decompose the primary factors into irreducible factors. This is easy. If the
primary factor, say F, is not a polynomial in X?, we recover the irreducible
factor by F/F’ where F' is the derivative of F. If F is a polynomial in XP?
first write F' = g”k where g is not a polynomial in X?. Then determine g/g’.

An alternative, which seems more economic, is to reduce f to a squarefree
polynomial first and then apply Berlekamp’s algorithm. Suppose that f = gh?
where g is a p-th power free polynomial. Then the squarefree polynomial f
defined by f = f/ged(f, f") has the same irreducible factors as g. Here f’
denotes the derivative of f. To determine these irreducible factors we can
feed f to Berlekamp’s algorithm. Having found the irreducible factors of g
we can divide them out from f and we are left with the pure power A? in
which we have to factor h via the same method.

Finally we add a word on the implementation of the solution of v9 =
v mod f. Let n be the degree of f. Consider the basis 1, X, X2,..., X!
of the Fy-vector space Fg[X]/(f). With respect to this basis the linear map
sending any v to its g-th power v9 has a matrix which we denote by Q. We
formalise this in a lemma.

Lemma 2.5. Let f € F[X] be a polynomial of degree n. Let Q be the n x n-
matriz whose i-th row contdins the coefficients of the polynomial X* reduced
modulo f. Then, for any polynomial v of degree < n and coefficient vector v,
the coefficient vector of v? reduced modulo f equals v - Q.

The computation of vy, ..., v, then comes down to computation of a basis
of the kernel of Q.

Exercise 2.6. Let p be the characteristic of Fg and let f € Fy[X]. Prove
that f is the p-th power of another polynomial if and only if f € F,[X?].

Exercise 2.7. Let f,g,h € F;[X] and f = gh? where g does not contain
any p-th power of a polynomial. Prove that we can find h? by the following
algorithm. Repeat f := ged(f, f') until f' = 0. Then f = h?. What is the
maximal number of steps required?

Exercise 2.8. Let fi,..., f. be the irreducible factors of f whose expo-
nent in the factorisation of f is not disivible by p. Prove that f,--- f, =

f/ged(f, ).
Exercise 2.9. Factor X'2—1 in F5[X] by hand using Berlekamp’s algorithm.

Exercise 2.10. Here is another method to produce solutions of the congru-
ence v? = v mod f. Assume that f is squarefree and has irreducible factors
all of the same degree 3. Prove that, for an arbitrary polynomial b, the poly-
nomial



Chapter 4. Factorisation of Polynomials 81
pltata®+-+¢* ™" 104 f

is such a solution. (Hint: use Lemma 3.1 of the next section).

3. Additional Algorithms

It is clear that the bottleneck of Berlekamp’s algorithm lies in the deter-
mination of the factorisation h = [],cp gcd(h,v — a). For every a € F,
we have to determine a ged. In particular, when ¢ is large compared to r,
most ged-computations of ged(h,v — a) will yield a trivial result, which is
of course quite wasteful. A variant of Berlekamp’s algorithm which does
not have this defect is the Cantor-Zassenhaus algorithm. However, it is of
a probabilistic nature, but this need not disturb a practically minded fac-
toriser. Let notation be as in the previous section, suppose that ¢ is odd
and that 7 > 1. Suppose we have randomly chosen a solution v € F,
of ¥4 = v mod f, whatever ‘random’ means. Consider the factorisation
f = ged(f,v) ged(f, v@ /2 — 1) ged(f,v(@"V/2 + 1). This factorisation is
only trivial if f divides either of the three factors, and since we may reason-
ably assume f v we have a trivial factorisation if f divides either v(a-1/2 -1
or v(@1/2 4 1, Define s; € Fq by v = s; mod f{* for i = 1,...,7. Then we
have a trivial factorisation if and only if all s; are simultaneously squares, or
simultaneously non-squares. The probability that this happens is of course

=1\’ 1
2 L) < <
q 21‘—1 -

Hence the probability of failure is at most 1/2 for one trial, and at most
1/1000 for a row of ten trials! For many practical purposes this idea suffices
to find the complete factorisation of f.

We mention one more way of obtaining (partial) factorisations of f. It is
based on the following well-known lemma.

N =

Lemma 3.1. The polynomial X9 — X factors over F,[X] into the product
of all monic irreducible polynomials of degree dividing k.

For squarefree f of degree n this lemma yields the following factorisation
algorithm. Let ¢g; = ged(X? — X, f) and define recursively

. i—1
g: = ged Xq‘*X7f/ng ) 1=2,...,n.
i=1

Then we have f = gy - - - gn, Where g; is the product of all irreducible factors
of f of degree i. We call this the distinct degree factorisa‘tion. In‘g}'actice we
can apply this method by computing X? mod F and X? = (X? ) mod f



82 F. Beukers

for i = 2,...,[n/2]. This repeated procedure of taking g-th powers can be
done quite efficiently using the matrix @ introduced in Lemma 2.5.

As a final remark we note that the discussions above also provide us with
two irreducibility tests for elements of F4[X]. We collect them in the following
proposition together with a third one.

Proposition 3.2. Suppose that f € Fy[X] is squarefree of degree n. Let Q
be the matriz constructed in Lemma 2.5. Then f is irreducible if and only if
at least one of the following conditions hold.

1. The rank of the kernel of Q — Id equals 1.
2. ged(f, X9~ X)=1fori=1,...,[n/2].
3. fI(X9" - X) and gcd(Xq"/l — X, f) =1 for every prime | dividing n.

Exercise 3.3. Prove the validity of the irreducibility tests in the above
proposition.

Most computer algebra packages have a built-in algorithm for factorisa-
tion of polynomials f in Fp[X], where p is a prime. We have

Factor[f,Modulus->p] in Mathematica,
factmod(f,p) in PARI and
Factor(f) mod p in Maple.

Exercise 3.4. Play with one or more of the above functions and try to find
how large the degree of f or the size of p can be taken before running times
tend to become long.

4. Polynomials with Integer Coefficients

We start by noting that if P € Z[X] factors in Q[X], then this factorisation
takes place in Z[X]. This fact follows from the so-called Lemma of Gauss. By
the content of P we simply mean the gcd of the coefficients of P. We denote
it by ¢(P). A polynomial with content 1 is called primitive.

Lemma 4.1 (Gauss). Let A,B,C € Z[X] and C = AB. Then
c(C) = c(A)e(B).

Proof. We may as well assume that c(A) = ¢(B) = 1. We have to show that
¢(C) = 1. Suppose ¢(C) > 1 and let p be a prime divisor of ¢(C). Then
C = 0 mod p hence AB = 0 mod p. But this implies that Fp[X] has zero
divisors, which is impossible. Hence ¢(C) = 1.

Corollary 4.2. Let P € Z|X] and suppose P = AB with A, B € Q[X]. Then
there exist a,b € Q such that aA,bB € Z[X] and P = (aA)(bB).



Chapter 4. Factorisation of Polynomials 83

Proof. Without loss of generality we may assume ¢(P) = 1. Choose a,b €
Q such that aA,bB are polynomials with integral coeflicients and content
1. From Gauss’s Lemma we obtain ¢(abP) = c(aB)c(bB) = 1. So abP is
a polynomial with integral coefficients and content 1. Since c(P) = 1 we
conclude that ab = £1. Choosing the sign of a suitably we can see to it that
ab =1 and hence P = (aA)(bB).

So when factoring in Q[X] we might as well restrict to factorisation prob-
lems in Z[X]. We know that a divisor d of an integer a has the property that
|d| < |a|. In Z[X] we have a similar property with respect to the l>-norm. For
any f =301, fiX" € Z[X] we denote ||f]| = (L1, £7)'/.

Theorem 4.3 (Landau-Mignotte). Let f,g € Z[X] have degrees n and
m respectively. Suppose that g divides f. Then, for i = 0,...,m, we have

lgsl < () £]]. Moreover,
om 1/2
< .
Il < (%) "

Proof. First of all we establish for any a € C and h € C[X],
(X ~a)h|| = |a] - |(X ~ @~ )AL
This can be seen as follows. Put h = 3"7_ h;X* and h_; = hnq1 = 0. Then,

n+1
Z |hi_1 — ahi|2
=0

n+1

= Z(lhi_1|2 — ahil_zi_l - (_Ihi_ll_li + |ahi|2)
=0
n+1 _ B

= > (Ihil* = ahihi—y — ahi_1h; + |ahia|?)
=0
n+1

= Zlahi—l —hi|2
1=0
= [I@@X - 1)A|* = |al*||(X —a~")h|%.

(X —a)h|l?

Let b1,...,bs be the set of zeros of f outside of the unit disk in the complex
plane ordered in decreasing absolute value. Let a),...,a,_, be the set of
zeros inside the unit disk. Then,

1112

i=1

lar - anl?l1fn [T (X —3;) H(X Al

v

|fnbl ' 'bu|2~



84 F. Beukers

Hence ||f|| = |fnb1---bs|. Let y1,...,vm be the set of zeros of g ordered in
decreasing absolute value. The i-th coefficient of g equals

gi = (—1)i9m0i(’71, . 'a’Y'm)a

where o; is the i-th symmetric function. Since this function contains (T)
products of v; we obtain

™m
loi(y1y - ym)| < (i)|’71'~'%|
< (”?)wl---ms(’T’)|b1~--bs|
1 1
<

(7 ns15

Furthermore, g,, divides f,, whence |gm| < |fn|, and the result follows. The
inequality ||g|| < (2$)1/2|| f|| follows from the identity Y -, (T)2 = (3™.

m

One might wonder if the bound (*™) is not too large. An interesting

theorem by Mignotte [5] shows that in fact it is not.

Theorem 4.4 (Mignotte). There exists ¢ > 0 with the following property.
For every m € N there ezist f, g € Z[X] with g|f and deg(g) = m such that

2m\ /2 d|f]]
llgll > (m) m—lo\/Tm)'

The Landau-Mignotte bound reduces the set of polynomials which may
possibly divide a polynomial f € Z[X] to a finite set. This gives an effec-
tive, but highly inefficient, factorisation algorithm. However, the bound can
be used in two efficient factorisation algorithms, which we present in the
following sections.

Exercise 4.5. An ad hoc way to prove irreducibility of a polynomial in Z[X]
is to prove that its reduction modulo a prime p is irreducible in F,[X]. For
arbitrary irreducible polynomials such a prime can usually be found very
quickly. However, there are exceptions. Prove that X* + 1 is irreducible in
Z[X] but reducible modulo any prime.

5. Factorisation of Polynomials with Integer
Coefficients, 1

The first, and oldest, algorithm we present starts with a factorisation of the
polynomial f reduced modulo some prime p, which is then (almost) lifted to
characteristic zero via the so-called Henael lift.



Chapter 4. Factorisation of Polynomials 85

Theorem 5.1 (Hensel’s Lemma). Let f,g,h € Z[X] be monic polyno-
mials. Let p be a prime and k € N such that f = gh(mod pk) and
ged(g mod p, h mod p) = 1. Then there exist monic polynomials g, h such
that § = g (modp*), h = h(modp*) and f = gh mod p*+'. Moreover, § and
h are uniquely determined modulo p*+!.

Proof. Put § = g + p*u and h = h + p*v, where u,v are polynomials to
be determined of degrees less than deg(g), deg(h) respectively. The equation
f = gh mod p**! comes down to f — (g + p*u)(h + p*v) = 0 (mod p*+!),

hence
f—gh
P

(uh + gv) = 0 (mod p).

Since g mod p and h mod p are relatively prime, there are (mod p) uniquely
determined u, v of degrees less than deg(g) and deg(h) respectively such that

uh + gv = (f — gh)/p* mod p. A fortiori § and h are uniquely determined

modulo pF*!.

The upshot of this theorem is that a mod p factorisation into relatively
prime factors can be lifted to a factorisation in the so-called p-adic numbers.
Notice that the proof given above also provides a simple algorithm to perform
such a lift. In fact, there is very simple variation on this lifting which can be
described as follows.

Hensel(f,g,h) =
choose a,b € Z[X] such that ag+bh =1 (mod p);
g9 =9
for k=1,2,3,4,... do
Determine uy € Z[X] such that
deg(ux) < deg(g) and ux = bf (mod gi);
Gk+1 = Gk + Uk}
od.

Exercise 5.2. Show that, in the above algorithm, we have
f =0 (mOd pkagk)
for every k.

There is a simple way to speed up the Hensel lifting procedure and go
from a mod p* factorisation to a mod p?* factorisation in one step.

Exercise 5.3. Modify the proof of Hensel's lemma to go from mod p* to
mod p?* in one step.



86 F. Beukers

We can now give a factorisation algorithm for f € Z[X]. Let us assume
that ¢(f) = 1 and that f is squarefree. Let n be the degree of f and let
B be an a priori upper bound for the absolute values of the coeflicients of
possible divisors of f whose degree is at most [n/2]. This can either be given
by the Landau-Mignotte bound or some other estimate. Let f,, be the leading
coeflicient of f. Then perform the following steps.

1. Choose a prime p not dividing the discriminant of f and f,. Factor f
modulo p. ‘

2. Choose k so that p* > 2|f,|B and lift the mod p factorisation to a
factorisation f = f, [[._, hi mod p* where the A; are monic.

3. For each subset S C {1,...,7} compute h € Z[X] such that h = f, -
[T;cs hi mod p* and such that h has degree at most [n/2], coefficients
less than |f,|B in absolute value and test whether h divides f, - f.

Although the above algorithm works satisfactory in most cases, it is not
guaranteed to have a running time polynomial in n. Consider for example the
extreme case where f factors into linear factors modulo p. In the final step
we then have to make roughly 2" verifications, which is indeed exponential
in n. One might argue that if a factorisation modulo p has too many small
factors one could take another prime p. However, even this is not always a
solution as shown by the following construction. Let dy,...,d, be a set of
pairwise relatively prime integers and define '

faoa X = [ K-avd - e/ eZ[x].

€14 €r€EE]

Exercise 5.4. Prove that modulo any prime p, not dividiflg dy---d,, the
polynomial fq, ... 4,.(X) factors into factors of degree at most 2.

Notice that the degree of fq, .. 4,(X) equals 2" and that the numbers of
factors modulo any prime p is at least 27!,

In the beautiful paper [4] by A.K. Lenstra, H-W. Lenstra jr. and L. Lovdsz,
the authors published a factorisation algorithm which is indeed polynomial
in the degree of f and log||f||. It is based on their method of lattice re-
duction. Beside its application in factorisation this technique has found wide
applications in many other areas of computational mathematics.

6. Factorisation of Polynomials with Integer
Coefficients, 11

We now sketch a factorisation algorithm in Z[X] based on the LLL-algorithm.
Let f be the polynomial to be factored and assume that it is squarefree and
primitive. Let n be its degree. Let p be a prime not dividing the discrimi-
nant. Let h € Z[X] be a monic polynomial, irreducible in Fp[X] and suppose



Chapter 4. Factorisation of Polynomials 87

h mod p divides f mod p. Our problem will be to find the primitive irre-
ducible divisor hg, unique up to a factor 1, of f such that A mod p divides
hp mod p. -

Let | be the degree of h and let m > [. Choose k¥ € N to be specified
later. Using Hensel lifting we choose A in such a way that h mod p* divides
f mod p*. We shall identify the set of polynomials in R[X] of degree at most
m with the set of its coefficient vectors, which is R™+!. Consider the lattice
L of rank m + 1 spanned by the polynomials

pPX': 0<i<l and RX7:0<j<m-—1L

Note that L is simply the set of polynomials of degree < m which are divisible
by h modulo p*. Since h is monic, we easily verify that d(L) = p*. We now
have a fundamental observation.

Proposition 6.1. Let b € L satisfy
P> A1l
Then ged(f,b) # 1, in particular b is divisible by hg.

Proof. Suppose that f and b do not have a common divisor of positive degree.
Consider the lattice M generated by the polynomials X*f(X), 0 < i < m
and X7b(X), 0 < 5 < n. Since ged(f, b) is constant, these polynomials are Z-
linear independent, hence they generate a lattice M of rank n+ m. Note that
the determinant d() is precisely the absolute value of the resultant of f and
b. By Hadamard’s inequality it can be bounded by || f||™|[5||®. On the other
hand, we can choose a basis bg, b;,... for M in Hermite normal form with
respect to 1,X, X2, ... X"*™~1 Gince every polynomial in M is divisible
modulo p* by h, we have that bg, b;,...,b_; are divisible by p*. Hence, p*!
divides d(M). So we get p* < ||f||™||b||", contradicting the inequality in the
statement of our proposition.

The idea of the factorisation algorithm is now to choose k so large that a
possible factor hg, whose size we know by the Landau-Mignotte bound, can
be considered as very small vector in L.

Proposition 6.2. Let notation be as above. Suppose that by,...,byt+1 15 a
reduced basis for L, and that

n/2
2m
kil mn/2 m+n
g > 22 () e,
Then we have deg(hg) < m if and only if
[lbull < @*/11F1I™) ™.



88 F. Beukers

Proof. The ‘if’-part is immediate from the previous proposition. Suppose
now that deg(ho) < m. Then L contains a vector, namely hg, whose norm is

bounded by (21;") 1z ||f1| (Landau-Mignotte). From the properties of a reduced

basis we then know that |[b,|| < 2™/2||ho|| < 2m/2(21’:)1/2||f||. By the lower
bound for k given, this implies that ||b;|| < (£*/||f||™)'/™.

We observe that the above two propositions already suffice to yield a
factorisation algorithm. However, there is one more result which tells us how
to find ho without much effort after the lattice reduction has been performed.

Proposition 6.3. Let notation be as in the previous proposition. Suppose
there is an index j such that

1511 < @*/11£1I™)Y™.
Let t be the largest such j. Then
deg(ho) =m+1—t and ho==xged(by,..., b).

Proof. Let J be the set of all j for which the inequality ||b;]| < (p*/]]f]]|™)/"
holds. We know that b; is divisible by hg for every j € J. Furthermore the
b; are R-linearly independent and we have deg(ho) < m + 1 —~ |J|, hence
|J| < m+1— deg(ho). On the other hand we have for every i that || X he|| =

[|hol| < (2$)1/2||f||. For i =0,...,m — deg(ho) the polynomials X%hg are in

L and by the properties of a reduced basis we get ||b;|| < 2™/2(*™) 1/2]] fll
for j = 0,...,m — deg(ho). Using the lower bound for p* we get ||b;|| <
@/l for j = 0,...,m — deg(ho) and we infer that |[J| > m + 1 —
deg(ho). Combined with the upper bound for |J| this implies J = {1,...,m+
1 — deg(hg)}. We conclude that ¢t = m + 1 — deg(ho) and that deg(hg) =
deg(ged(by, - . -, b))

It remains to show that ged(by,...,b) is primitive to establish hy =
+ged(by, ..., b). Note that b; is divisible by hg. Hence by /c(b1) is divisible
by ho, hence by /c(b1) € L. Since b; is a basis vector of L we conclude that
¢(b1) = 1. Hence b; and, a fortiori, ged(by,...,b) are primitive.

It does not take much imagination to see how one can construct a fac-
torisation algorithm in Z[X] from the above propositions. In their article,
Lenstra, Lenstra and LovVasz carry out a running time analysis and they con-
clude that the number of bit operations is bounded by O(n!% +n%(log || f||)3).

7. Factorisation in K[X], K Algebraic Number Field

This section requires some knowledge of algebraic number fields. Let K be an
algebraic number field of degree n and let o (i = 1,...,n) be its embeddings
in C. We also choose a primitive element 8 € K, i.e., K = Q(6).



Chapter 4. Factorisation of Polynomials 89

We like to factor a given polynomial A € K[X] in K[X]. Of course we
may assume that A is squarefree. Given a polynomial A € K[X] we define
its norm by

N(4) = H oi(A).

Since the coefficients of N(A) are symmetric functions of the o;(6) we have
that N(A) € Q[X].

In order to perform the factorisation we need the following lemmas.

Lemma 7.1. Let A € K|[X] be irreducible. Then N(A) is a power of an
irreducible polynomial in Q[X].

Proof. Let [], Nf* be the factorisation of N'(A) into irreducible factors in
Q[X]. Since A divides this product and A is irreducible, there exists an i
such that A divides ;. Consequently o;(A) divides V; for every j and hence
N (A) divides NJ*. Thus our Lemma follows.

Lemma 7.2. Let A € K[X] be a squarefree polynomial. Then for all but
finitely many k € Q the polynomial N(A(X — k6)) is squarefree.

Proof. We denote the zeros of 0;(A) by §; ; where j =1,...,n,i=1,...,m
and m is the degree of A. So the zeros of o;(A(X — k@)) are given by 3; ; +
ko;(0). The polynomial N'(A) is not squarefree if at least two of such zeros
coincide. However, it is easy to see that this can happen for at most finitely
many k € Q.

Proposition 7.3. Let B € K[X| be squarefree and assume that N(B) is
squarefree. Let [], N; be the irreducible factorisation of N(B) in Q[X]. Then
the irreducible factorisation of B in K[X] is given by [], ged(B, N;).

Proof. Let By, ..., By be the irreducible factors of B. We know that N (B;)
is a power of an irreducible polynomial for every i. But they also divide
N(B) which is known to be squarefree. Hence the N (B;) are irreducible
and distinct. So, after reordering of indices we may assume N (B;) = N; for
i =1,...g. It now follows that B; = ged(B, N;), which proves our assertion.

Factorisation of a squarefree polynomial A € K[X] is now straightforward.
First find £ € Q such that N(B) with B(X) = A(X — k@) is squarefree.
This will usually be the case after a very few trials for k. Determine the
irreducible factors N; of A'(B). Then the irreducible factors of B are given
by the ged(B, N;). The factors of A are easily recovered.



90 F. Beukers

Notes

During the preparation we made good use of the very nice article [3]. In most
books on computational number theory one can find a description of Berlekamp’s
algorithm. In particular, we mention the beautiful books [1] and [3] of which we
have made good use in the preparation of these lectures. References to more recent
articles are given below.

References

1. H. Cohen (1995): A Course in Computational Algebraic Number Theory (2nd
edition), Springer-Verlag, Berlin Heidelberg New York.

2. M.F. Singer and F. Ulmer (1993): Galois groups of second and third order linear
differential equation, J. Symbolic Computation 16, 9-36.

3. A.K. Lenstra (1982): Factorisation of polynomzals in: Computational Methods
in Number Theory, Mathematical Centre Tract 154 (H.W. Lenstra jr, R. Tijde-
man, eds.).

4. A K. Lenstra, H.W. Lenstra jr., and L. Lovész (1982): Factormg polynomials
with rational coefficients, Math. Ann 261, 515-534.

5. M. Mignotte (1982): Some useful bounds. Computer algebra, symbolic and alge-
braic computation, Comput. Suppl. 4, 259-263.

6. M. van Hoeij (1996): Factorization of linear differential operators, PhD. Thesis,
Katholieke Universiteit Nijmegen, The Netherlands.



Chapter 5. Computations in Associative
and Lie Algebras

Gébor Ivanyos and Lajos Rényai

1. Introduction

In this chapter we consider some basic algorithmic problems related to finite
dimensional associative algebras. Our starting point is the structure theory
of these algebras. This theory gives a description of the main structural in-
gredients of finite dimensional associative algebras, and specifies the way the
algebra is constructed from these building blocks. We describe polynomial
time algorithms to find the main components: the Jacobson radical and the
simple direct summands of the radical-free part.

Next we look at the problem of exploring the structure of simple algebras.
On the constructive side we discuss algorithms for finding zero divisors in
finite algebras. We show that this problem belongs to the same complexity
class as the task of factoring polynomials over finite fields.

We touch upon some applications of the associative decomposition algo-
rithms. These include efficient algorithms for calculating the radicals (solvable
and nilpotent) of Lie algebras. We also outline a randomised polynomial time
algorithm to find a common invariant subspace of a set of linear transforma-
tions over a finite field.

2. Basic Definitions and Structure Theorems

First we give some basic definitions related to associative algebras. A linear
space A over the field F is an algebra over F if it is equipped with a binary,
F-bilinear operation (called multiplication). It is customary to denote the
product of z,y € A by xzy. Multiplication is assumed to be associative, i.e.,

z(yz) = (zy)z for every z,y,z € A.

We restrict our attention to finite dimensional algebras only. We shall
assume throughout that dimpA = n < co. We say that A is a commutative
algebra if zy = yx for every z,y € A. An F-subspace B of A is a subalgebra of
A, if B is closed under multiplication: if z,y € B, then zy € B. An important
example of a subalgebra is the centre C(A4) = {r € A| zy = yz for every y €
A}. If A has a multiplicative identity element 1 = 14, then we have F =
F .14 < C(A) (here < is used to denote a subalgebra). The algebra A is
central-(over F) if it has an identity element 1 = 14 and C(A) = F. An

!



92 G.Ivanyos and L. Rényai

F-subspace T of A is a left ideal of A if yr € T whenever x € Zandy e A. A
right ideal is defined analogously. An F-subspace T of A is an ideal of A if T
is both left and right ideal of A. If T is an ideal in A, then we can form the
factor algebra A/I. The notions of homomorphism and A-module are used in
the standard way, cf. Herstein [16], Pierce [26].

A couple of elements 0 # x,y € A is a pair of zero divisorsin A, if zy = 0.
A nonzero element e € A is an idempotent if e? = e.

The algebra A is simple if it has no ideals except (0) and A, and AA # (0),
where AA is the algebra generated by products ab with a, b € A. We say that
A is the direct sum of its (left) ideals A, ..., Ax (written as A; & - -- & Ag)
if A is the direct sum of these linear subspaces.

Examples 2.1. (1) Let the field K be a finite algebraic extension of F. In
this case K is a simple and commutative {associative) algebra over F.

(2) My(F), the algebra of all d by d matrices over F. Here multiplication is
the familiar matrix multiplication. It is not difficult to see that Mg(F) is a
simple algebra over F.

(3) Let G be a (multiplicatively written) group. The elements g € G form
an F-basis of the group algebra F[G]. The elements of F[G] are linear com-
binations ), a;9; with @; € F and g; € G. Multiplication is defined by
(i @igi) - (32, B595) = 3, 2= @iB39:9;- From the associativity of the group
law it follows that F'[G] is an associative algebra.

(4) Subalgebras of Mg(F). These are linear subspaces of My(F') closed with
respect to matrix multiplication.

The latter examples are in a sense quite general, as the following straight-
forward fact shows.

Representation Theorem 2.2. Let A be an algebra over the field F and
suppose that dim r A = n. Then A is isomorphic to a subalgebra of M, 1 (F).

Proof. We shall use the regular representation. For x € A we define the linear
map R, : A > A as R,(y) = xy for every y € A. It is immediate that R
is a homomorphism of A to the algebra of linear transformations of the F-
space A. If A has an identity element, then R is injective, hence we have an
embedding of A into M,,(F). If A has no identity element, then first we adjoin
one using the Dorroh extension {(Exercise 2.7). This increases the dimension
by one and now the regular representation embeds A into M, 1(F).

An element z € A is called nilpotent if z* = 0 for some positive integer
k (which may depend on z). An element z € A is strongly nilpotent if zy
is nilpotent for every y € A. The Jacobson radical Rad(A) of A is the set
of strongly nilpotent elements of A. It is not difficult to see that Rad(A)
is an ideal of A (Exercises 3.9-3.11) and that the factor .A/Rad(.A) has no
nonzero strongly nilpotent elements. It can be shown also, that Rad(A) is a



Chapter 5. Computations in Associative and Lie Algebras 93

nilpotent ideal: there exists a positive integer k such that z 25 ---zx = 0, for
all z1,z2,...,2x € Rad(A).

An algebra A is semisimple if |A| > 2 and Rad(A) = (0). There is a
very strong and useful characterization of semisimple algebras (Herstein [16],
Pierce [26]):

‘Wedderburn’s Theorem 2.3. If A is a finite dimensional semisimple as-
sociative algebra over the field F', then A is expressible as a direct sum

A=A QA D & A, (2.1)

where the A; are exactly the minimal nonzero ideals of A. Moreover, A;
is isomorphic to a full (and simple) matriz algebra My, (F;) where F; is a
possibly noncommutative extension field of F (1 <1i < k).

Another theorem by Wedderburn (Herstein [16], p. 71) implies that if F
is finite then the fields F; are actually commutative.

Ezample 2.4. Let 83 £ M3(F) be the subspace of the matrices with all
column and row sums equal. It is immediate that if a € 83 with column
and row sums «, and b € 83 with column and row sums 3, then all row and
column sums of ab are af. This implies that Ss is actually a subalgebra of

Ma(F).

Exercise 2.5. Prove that dim rS3 = 5. (Hint: There is exactly one matrix
in 83 with arbitrarily specified entries in the first row and in the first two
positions of the second row.)

Now we show that S3 is a semisimple algebra over F'. In fact, we pro-
ceed directly to determine the Wedderburn decomposition of S3 into simple
algebras. Let F3 denote the F-space of column vectors of length 3 and let
e; € F3 stand for the column vector with 1 in the i-th position and 0 else-
where (i = 1,2,3). Let U < F? denote the subspace spanned by the vector
e, +eo+ez and U’ < F3 the subspace of all vectors whose components sum up
to 0. Straightforward calculation verifies that F3 = U@ U’ and that S; leaves
U and U’ invariant: if v € U, w € U’ and a € 83 then av € U and aw € U’.
Let B < M3(F) be the subalgebra of all matrices b for which U C U and
bU’ C U’ hold. We have B = F & My(F), hence

Now 83 < B together with Exercise 2.5 gives that B = S3.

Next we explore the structure of the group algebra F3[S3] of the symmetric
group S3 on the three letters 1,2,3. The base field is Fa, the two-element field.
Let € F3[S3] be the sum of the elements of S3: z = 3, .5 7. We have
nx = z7 = z for every m € S3. This implies that the subspace Z spanned by
z is an ideal of F3[Ss]. This is a nilpotent ideal because z? = 6z = 0. We



94 G.Ivanyos and L. Rényai

infer that Z < Rad(F2[S3]). We show that we have equality here; 7 is, in fact,
the radical of the group algebra.

To this end we define a homomorphism & of S3 into the group of invertible
matrices from Mj3(F2). The image &(7) of the permutation 7 of {1,2,3} is
the linear map which sends e; to e,(;). For example

0 01 1 0 0
o((123)=| 1 0 0 | and S(23)=[ 0 0 1
010 010

The map ¢ extends to an algebra homomorphism, which we also denote
by &, of F2[S3] into M3(F2), actually into Ss. The ideal 7 is in the kernel of
9 because &(z) = 3, s, B(7) = 0.

Exercise 2.6. Verify that #(F2[S3]) = S3. (Hint: Check that the matrices
&(m), m € S3, w # id are linearly independent over F.)

From the exercise we see (comparing dimensions) that the kernel of @ is
Z. The image is a semisimple algebra, hence Rad(F2[S3]) < Z. This, with the
reverse inclusion gives that Rad(F2[S3]) = Z.

We have thus determinéd the major structural building blocks of the
group algebra F2[S3]. It has a one-dimensional radical; the semisimple factor
splits into two simple components.

In this chapter we discuss algorithms related to the structure theory out-
lined in the preceding paragraphs. We explain some basic methods for finding
in a computationally efficient way the structural ingredients of algebras. In
Section 3 we present algorithms for computing the Jacobson radical. Here
the interesting case is when F (and consequently A) is finite. These methods
are applied in Section 4 to the computation of the (solvable) radical and the
nilradical of Lie algebras.

The computation of the Wedderburn decomposition (2.1) of semisimple
associative algebras is the subject of Section 5. We explain a solution for the
case |A| < oo, and outline extensions to the infinite case, where the main
concern is controlling the size of the results.

In Section 6 an algorithm is presented for finding zero divisors in a finite
algebra A: nonzero elements z,y € A such that zy = 0. It may come as a
surprise, that the case A = M, (F) causes most of the complications here.
The infinite version of the problem looks much more difficult. Some evidence
pointing to this is given in Project 4.

Some of the exercises include algebraic facts which are related to our
subject matter. Others are devoted to algorithmic topics. Highlights are the
applications of the zero divisor algorithm. For example, the method can be
used to find a common invariant subspace for a set of linear operators over a
finite field.

Motivation far considering algorithms for associative algebras can be
drawn from a very basic mathematical principle. In theoretical considerations



Chapter 5. Computations in Associative and Lie Algebras 95

as well as in practical applications one frequently has some linear operators
X1,X3,..., X, € M, (F) and is interested in the common invariant subspaces
of these operators. These subspaces are precisely the common invariant sub-
spaces of A, the algebra generated by the X;. In studying these subspaces,
one may often take advantage of the richer structure of A.

As a simple example of this, we refer back to Example 2.4. We can gain
valuable information about the action on the space F2® of the matrices &(),
7 € S3 by working with the algebra &3 generated by them.

We are interested in exact (symbolic) computations. For this reason we
consider ground fields admitting efficient exact arithmetic. In this chapter F
will be either a finite field or an algebraic number field.

We specify now the input of the algorithmic problems addressed. To ob-
tain sufficiently general results, we consider an algebra to be given as a
collection of structure constants. If A is an algebra over the field F and
ay,az,...,a, is a basis of the F-space A, then multiplication is completely
described if we express the products a;a; as linear combinations of the basis
elements:

aia; = Yij1a1 + *++ + Vijnln.

The coefficients v;;x € F are called structure constants. When an algebra
is given as input, we assume that it is represented as an array of structure
constants. Substructures (such as subalgebras, ideals, subspaces) can then be
represented by bases whose elements are linear combinations of basis elements
of the ambient structure (algebra). ‘

In our cases F' can be viewed as an algebra over its prime field P; therefore
F can also be represented with structure constants from P. (If F is finite
then P =, for some prime p, if F is a number field then P = Q.) In these
cases F is usually specified by giving the (monic) minimal polynomial f of
a single generating element « over the prime field P. This is a special case
of the representation with structure constants. The coefficients of f give the
structure constants with respect to the P-basis 1, a, a?,...,a" ! of F where
n = dimpF.

Another important way to represent an algebra is in the form of a matrix
algebra. In these cases we are given a collection of matrices which generate
the algebra. The algorithms described in these notes are applicable in this
setting as well. From such a matrix representation one can efficiently find a
basis of the algebra and then calculate structure constants with respect to
this basis (see Exercise 2.8).

We would like to consider a.lgorlthms which have a theoretical guarantee
for their efficiency. From the perspective of computer science these are the
polynomial time algorithms. An algorithm runs in polynomial time if, on
inputs of length n (n is a positive integer) the computation requires at most
n® bit-operations. Here ¢ > 0 is a constant independent of n. We refer to
[17], Chapters 12-13 and [8] for the basic notions related to the complexity
of algorithms.



96 G. Ivanyos and L. Rényai

The length (or size) of the objects we work with is defined in quite a
natural way. The size of a natural number is the number of bits in its binary
representation. That is, the size of m is [log,(m + 1)]. The size of a rational
number p/q expressed in lowest terms is size(p)+size(q). Modulo p residue
classes have size [log,(p+1)]. The size of objects built up from simpler ones
(polynomials, vectors, matrices, arrays of structure constants, etc.) is the sum
of the sizes of their components.

We now briefly comment on the most important algorithmic tools em-
ployed in the methods to be described later on. Polynomial time procedures
are available for the fundamental seminumerical computations (such as the
arithmetical operations in F and polynomial arithmetic over F), if F is a
finite field or an algebraic number field. The reader is referred to Collins,
Mignotte, and Winkler [7], Knuth [22] for the details. The basic a.lgorlthmlc
tasks of linear algebra (such as testing linear dependence, computing ranks,
determinants, and solving systems of linear equations) can be implemented in
deterministic polynomial time over the fields considered. If F is finite, then
the well-known textbook methods demonstrate this point. In the number-
field-case it will be sufficient to solve linear algebra problems over the field
of rationals Q. There are polynomial time methods to solve systems of linear
equations over @ and over the integers Z [1], [12], [21].

The algorithmic problem of factoring polynomials over F' turns out to be
very important for us. We refer the reader to Chapter 4 for an introduction
to this subject. We record here only that there are deterministic polynomial
time methods to solve such problems over number fields.

The picture is a bit more complicated when the ground field is finite, say
F =F,. There are deterministic methods — the first one given by Berlekamp
[3], [24] - with time complexity polynomial in the parameters p, s and deg(f)
where f(X) € F,[X] is the polynomial to be factored and g = p®, p prime.
Note that the input size in this case is about (1+ deg(f)) log g, consequently
the running time of the method is not bounded by a polynomial in the input
size. The problem can be solved in polynomial time if we allow randomization.
The first such method was also proposed by Berlekamp [4]. The method
belongs to a special kind of randomised methods, the so-called Las Vegas
algorithms. A Las Vegas algorithm for an arbitrary input either gives a correct
solution or, with small probability, admits failure. The point is, that a method
of this kind never gives a misleading answer.

As we have already suggested, some of the algorithms we are to discuss
require factoring polynomials over finite fields. We intend to make clear the
dependence of the methods on this algorithmic ingredient. For this reason,
we define a deterministic algorithm to be an f-algorithm, if it is allowed to
call an oracle (subroutine or procedure) for factoring polynomials over finite
fields. The cost of a call is the size of the input passed on to the procedure.

A polynomial time f-algorithm can be considered as practical, because
the factoring oracle admits Las Vegas polynomial time implementations.



Chapter 5. Computations in Associative and Lie Algebras 97

For the next exercises A denotes a finite dimensional associative algebra
over the field F'.

Exercise 2.7. We define the Dorroh extension A* of A as the set of pairs
(a, \), where a € A and A € F. Addition and multiplication on A* are defined
as follows:

(@1, A1) + (a2, A2) = (a1 + a2, A1 + A2),

(a1, M1)(az, A2) = (@ra2 + A1az + A2a1, A1 A2).

Show that A* is an F-algebra with an identity element. Moreover A* contains
a subalgebra (in fact, an ideal) isomorphic to A.

Suppose that A is given as a collection of structure constants v;;x € F
with respect to an F-basis ay,az,...,an.

Exercise 2.8. Let by,...,b; be elements of A given as linear combinations
of the a;. Give an algorithm which employs at most O(n*) arithmetical oper-
ations over F to compute an F-basis of the subalgebra (ideal) generated by
the b;. (Hint: Use the fact that a system of linear equations over F' with n
variables and n equations can be solved with O(n3) arithmetical operations.)

Exercise 2.9. Suppose that we are given bases of two F-subspaces U,V of
A. Find a basis for U NV at the expense of O(n3) arithmetical operations
over F. (Hint: Find first dual bases for U and V.)

3. Computing the Radical

Here we consider the problem of computing (a basis of) the radical Rad(.A)
of an algebra A. We give polynomial time algorithms over the ground fields
we work with. The main algorithmic problem we address is the following.

Suppose A is a finite dimensional associative algebra over the field F',
given as a collection of structure constants. OQur objective is to find a basis
of Rad(A), the radical of A, in time polynomial in the input size.

If char F = 0, then the problem is equivalent to solving a system of linear
equations over the ground field as follows from the characterization of the
radical by Dickson [9], pp. 106-108:

Dickson’s Theorem 3.1. Let A be a finite dimensional algebra of matrices
over a field F', and char F = 0. Then

Rad(A) = {z € A| Tr(yz) =0 for every y € A}.

'In fact, if a1,...,a, is & linear basis of A over F, then to find Rad(A),
it suffices to solve the linear system Tr(a;z) = 0,7 = 1,...,n, where z is an
‘unknown’ element of A.

We now turn to the case where A (and hence F = F,) is finite. We assume
that p is a prime, q is a power of p, F = F, and that A is a subalgebra of



98 G. Ivanyos and L. Rényai

M, (F). Using the regular representation of A (or that of its Dorroh exten-
sion, if necessary), we can efficiently achieve this situation. The statement of
Dickson’s Theorem is no longer valid in positive characteristic (see Exercise
3.13). There is, however, a more subtle, and still useful, description of the
radical in this case. We explain this in the sequel.

We define the natural number [ by the following inequalities: p! < n <
p'*1. Let B denote the set of matrices AU{I} where I is the identity element
of M (F). Let a € M,,(F) be a matrix. It will be convenient to work with
the following variant of the characteristic polynomial of a:

Xa(X) = det(Xa +I) € F|X].

Consider the expansion of X,(X) as a polynomial in the variable X:

n
Xa(X) =14 caiX".
i=1

The indices of the form 7z = p?, j = 0,...,[ play a key role in the following
arguments. For j = 0,...,] we define the ‘trace functions’ T; by

T;j(a) == cqpi-
Obviously, To(a) = Tr(a) is the (ordinary) trace of the matrix a.

We also define a sequence A =: Ry 2 R1 D --- D Ry of subsets of A as
Rj:={a€e A | Ti(ba)=0foreverybe Band0<: <j} (1<j<Ii+1).
Alternatively, for every 0 < j <[, we have

Rjs1:={aeR; | Tj(ba)=0 for every b € B}.

At this point we can formulate a characterization of Rad(A) which is
useful for computational purposes. It is the main result of this section and
reads as follows:

Theorem 3.2. Let A <M, (F) be an algebra of matrices over the finite field
F of characteristic p. Putl = |_logp n|, and let Ro, Ry, ..., Rit1 be as defined
above. Then

1. Ro,R1,...,Riy1 are ideals of A;

2. Ri+1 = Rad(A);

3. For every j € {0,...,1} the function T; is p’-semilinear on R;, i.e.,

Ty(aa+ ) = o Ty(a) + 67 T;(b)
for every o, B € F and a,b € R;.

Property 3 implies that we can obtain a basis of R;j;; from a basis of
R; by solving a system of linear equations over F. Indeed, set ag = I, and
let a,...,aq be a basis of A over F. Suppose that we have a basis {h,,..., A}



Chapter 5. Computations in Associative and Lie Algebras 99

of R; over F, and we are looking for a basis of R;;,. Semilinearity implies
that an element a € Rj, a=Y_;_, Aih; is in Rj41 if and only if

3 Tjah) A =0, (t=0,...,d).
i=1

The inverse of the automorphism A — AP’ of the finite field F = Fy can be
computed efficiently (Exercise 5.6), hence the system above can be efficiently
translated into

ZTj(athi)P_lfx\i = 0 (t = 0,. . ,d)
=1

This latter is a system of linear equations in the variables A;,..., A,. Thus,
we start with Ry = A and then in turn proceed to compute Ry,...,Rj41.

From a basis of R; we obtain a basis of R;;; by solving a system of linear
equations over F'. The number of equations and the number of variables is at
most 72, hence the system can be solved in time (n + log ¢)°(!). We obtain
a basis of Rad(A) in I + 1 = O(logn) such rounds; therefore the overall cost
of the computation is (n + log q)°M) bit operations. Below we give a formal
description of the algorithm.

Radical(A) :=
A:= {I}Ubasis of A,
H = basis of A;
for j from 1 to |log,n| + 1 do
if H # () then

G = (Tj(ah)zﬂ )aeA,heH
A :=a basis of ker G;
H:={Ah1+...+Xhy | (Ay,...,4,) € A}
fi
od
return H.

We recall some basic concepts and facts from the representation theory of
algebras which we shall use in the proof of the theorem. Let A be an arbitrary
finite dimensional algebra over the field F. A (finite dimensional) A-module
is a finite dimensional linear space V over F equipped with a bilinear map
from A x V to V. As customary, we denote the image of (a,v) € A XV
by av. We require that (ab)v = a(bv) for every a,b € A and v € V. As
an important example, the matrices from M,(F) act on the linear space
F™ of column vectors of length n in the natural way (multiplication from



100 G.Ivanyos and L. Rényai

the left). It is easy to see that this multiplication defines on F™ an M,,(F)-
module structure (and an A-module structure as well for every subalgebra
A <M, (F)). ’

The preceding construction has a (partial) converse. Let V be an A-
module with dim zV = n. We fix an F-basis of V and for every a € A we
take 1(a) € My (F) which is the matrix of the linear map v — av, called
the action of a on V. It is easy to check that the map ¥ : A — M,(V) is
an algebra homomorphism. This map is called the matrix representation of
A corresponding to the module V. Of course, ¥ is defined only up to change
of bases in V. An A-module isomorphism of two A-modules V and W is an
F-linear bijection ¢ : V — W satisfying ¢(av) = a¢(v) for every a € A and
veV.

In investigations related to substructures of an .A-module V it is con-
venient to use the notation HU where H C A and U C V. The subspace
HU <V is the linear span of the elements hu, where h € H and u € U. A
submodule (or an A-invariant subspace) of V is an F-linear subspace U C V
such that AU < U, i.e.,au € U for every a € A and u € U. Restriction of the
action of A to a submodule U makes U obviously an .A-module. Also A acts
on the factor space V/U in a natural way: a(v+ U) := av + U. It is easy to
see that this multiplication makes the factor space V/U an A-module, called
the factor module.

Obviously, (0) and V are always submodules.’ Modules V with exactly
two submodules are of particular interest. If AV = (0) then V is called a
zero module. Since the action of A is identically zero, every subspace is a
submodule; therefore dim V' must be one. A module V with nontrivial mul-
tiplication that has exactly two submodules is called a simple or irreducible
A-module. Note that since the subspace AV is always a submodule, for a
simple module V' we have AV = V.

By a composition series of V we mean achain (0) = Vo < Vi <... <V, =
V of submodules such that for i = 1,..., r there exists no submodule U with
Vi—1 < U < V;. In other words, the factor modules V;/V;_; are either simple
modules or one-dimensional zero modules. Let (0) =V < Vi <... <V, =V
be a composition series of the A-module V. Let W be a simple .A-module.
The multiplicity of W in the composition series (0) =V < V1 <... <V, =V
is the number of factors V;/V;_; isomorphic to W.

Assume that W is a simple .A-module. Let J be an arbitrary (left) ideal
of A

From the fact that the space JW is an .A-submodule, we infer that
JW = W or JW = (0). In particular, since the radical is a nilpotent
ideal, Rad(A)W = 0 and A # Rad(A). For elements a € A and subsets
H C A, we denote their images under the natural map A — A = .4/Rad(A)
by @ and H, respectively. The preceding observation implies that for every
a € A be Rad(A) and v € W we have (a + b)v = av. In other words, the
action of 2 on W depends only on @ This means that W can be considered
as an A-module in a natural way.



Chapter 5. Computations in Associative and Lie Algebras 101

Let Ji,...,J; be the minimal elements of the set of ideals of A properly
containing the radical. Wedderburn’s Theorem applied to .A/Rad(A) shows
that this set of ideals is finite, as the Wedderburn decomposition of A is
J1®...@J;. There exists a unique ideal Jyw € {Jy, ..., J;} such that Jy W =
W. Existence can be seen from W = AW = E'E:l J:W . Uniqueness follows
at once from the relations J;J; < Rad(.A) for ¢ # j. We say that the simple
module W belongs to the ideal J € {Jy,..., i} if W = JW.

The simple modules which belong to the same ideal J € {J1,...,J;} are
isomorphic. To see this, let L; be an arbitrary left ideal Ly < J of A which
is minimal among the left ideals properly containing Rad(.A). The image
L, of Ly is a minimal norizero left ideal of A. The left ideal L; can be
considered as an .A-module in g natural way (via the multiplication in .A).
Then Rad(A) is a submodule of L; and the factor module is L;. Assume
that the simple .A-module W belongs to the ideal J € {J},...,Ji}. We can
exhibit an isomorphism ¢ : Ly — W as follows. It is straightforward to verify
that the set N = {@ € J|aW = (0)} is a two-sided ideal of J. From the facts
that J is a simple algebra and JW # (0) we infer that N = (0). This implies
the existence of an element v € W such that L;v # (0). We define the map
¢ : Ly - W as ¢(z) := zv. Obviously ¢ is a linear map, and ¢ commutes
with the action of every element of A: ¢(azx) = (ax)v = a(zv) = ag(z). This
means that ¢ is an A-module homomorphism. It remains to show that ¢ is
one to one. It is straightforward to see that ker ¢ is a left ideal of A, and im ¢
is a submodule of W. By construction, we have im ¢ > Ljv > (0). Because
of minimality of L; and irreducibility of W this is only possible if ker ¢ = (0)
and im¢ =W. )

After these preparations we prove Theorem 3.2 in a sequence of lemmas.
The statement of the first lemma can be considered as a special case of the
theorem, where the underlying module is simple.

Lemma 3.3. Let J be a simple algebra over the finite field FF and W be a
simple J-module. Then there exists an element a € J with Trw (a) = 1, where
Trw(a) stands for the (ordinary) trace of the action of a on W.

Proof. By Wedderburn’s Theorem J = My4(F'), where d is a positive integer
and F’ is a finite extension of F. We identify J with this matrix algebra. The
space F’ 4 of column vectors of length d over F' forms a simple J-module.
Since the simple J-modules are isomorphic, we can identify W with this
module. It is easy to see that for every a € J

Trw (a) = Trp p(Tr(a)),

where the inner trace on the right hand side is the trace of ¢ as a matrix from
Mg(F'), while the outer trace is the trace function of the field extension F'/F
(or, equivalently, the trace of the regular representation of the F-algebra F').
Since finite fields are perfect, the function Trs,r is nontriviali there exists
an element a € F' with trace 1. The element a € J of the form



102 G. Ivanyos and L. Rényai

a 0 0
0 0 0
0O 0.- -0

has trace 1, as required. This finishes the proof of the lemma.

Below we show that semilinearity and other useful properties hold for the
trace functions T; on certain ideals.

Lemma 3.4. Let A < M, (F) be a matric algebra over the field F of char-
acteristic p. Assume that A # Rad(A). Let 0)=Vo < Vi <... <V, =V be
a composition series of the A-module V = F™. Let Jy,...,J¢ be the minimal
elements of the set of ideals of A properly containing Rad(A). For every index
i € {1,...,t} fix a simple A-module W; that belongs to the ideal J; and denote
the multiplicity of W; in the composition series by m;. Put | = |log,n| and
define the ideals Ry, Ry,..., Ry, as

R; =Rad(4) + Y Ji. (3.1)
lemi

Then

1. R}, = Rad(A);

2. For every j € {0,...,1} the function T; is p-semilinear on R} (in the
sense of Theorem 3.2).

3. Tj(ab) = T;(ba) for every j € {0,...,l}, b€ Aanda € R}

4. Tj is identically zero on R}, (3 =0,...,1).

5. T; is not identically zero on ideals J; such that the multiplicity m; is
divisible by p’ but not by p’*! (5=0,...,1).

Proof. Obviously R’ is an ideal of A containing the radical. On the other
hand, from p'*! > n > r > m; we infer that R}, , = Rad(.A). (Recall that r
is the length of a composition chain of V.)

For an arbitrary (finite dimensional) A-module U and a € A let Xy,o(X)
denote the variant Xy )(X) = det(X4(a) + Iyy) of the characteristic poly-
nomial. Here, ¢(a) stands for the matrix of the action of a on U written in
terms of a basis of U and Iy is the appropriate identity matrix. Although v
is defined only up to a change of bases, since similar matrices have identical
characteristic polynomials, X,,(X) does not depend on the particular choice
of the basis of U. Moreover, if two modules U and W are isomorphic then
Xv.o(X) = Xw,a(X) for every a € A. This can be seen at once by choosing
bases of U and V', respectively, that are mapped into each other by an iso-
morphism between U and V. We also note that Xy,q(X) is identically one if
U is a zero module. -

By switching to an appropriate basis for V (starting from a basis of Vj,
then extending it to a basis of V3, and so on), we may assume that the



Chapter 5. Computations in Associative and Lie Algebras 103

matrices from A are in block-upper-triangular form. The diagonal blocks
correspond to the action specified above on the factors V;/V;_;. The charac-
teristic polynomial of a € A is the product of the characteristic polynomials
of the diagonal blocks of a; and the same holds for the variants ¥ we work
with. To see this, just observe that both polynomials are determinants of
block-upper-triangular matrices (with entries from F[X]). The result of our
discussion so far can be summarized in the following simple formula.

Xa(X) = Xv,a(X) = HxW.,a X)m. (3.2)

Letc € ’R;-. The action of ¢ is zero on factors V;/V;_; which do not belong
to ideals J appearing in the definition of ’R;-. Thus, if J; is an ideal not in
the sum, then Xw, c(X) is identically one. Hence from (3.2) we infer

= JI xw..)™ = ( I1 iJa,c(X)’”"/”j) : (3.3)

pIfmy pi|m;

We denote by Trw,(a) the (ordinary) trace of the action of a on W;. By
comparing the coefficients of X? on the two sides, we obtain

»
_ ( 3 %’I‘rwi(c)) . (3.4)

pi|m;,

From this we see that T}(c) is the p’th power of a linear function. It follows
that Tj(c) is p’- semlhnea.r (property 2 of the lemma) on R’. Statement 3
follows at once from (3.4) and the identities Try, (ab) = Trw, (ba) (a,b € A).

Let j <l and a € R}, be an arbitrary element. Equation (3.3) with
¢ = aand j+ 1 in place of j shows that ¥Xo(X) is the p’*'th power of
another polynomial, hence the coefficients of the terms X* with exponent
t not divisible by p’*! are all 0. In particular, T;(a) = 0. This establishes
property 4.

It remains to prove statement 5. Assume that p/|m; (i.e., J; C R}) but
m,; is not divisible by p/t1. By Lemma 3.3, applied to J = J/RadA, there
exists an element a € J such that Try, (a) = 1. Let m = m;/p’. The elements
of J act as zero on the composition factors V;/V,,_1 which do not belong to
J; therefore we have ¥Xo(X) = Xw, o(X)™ = (Xw,,o(X)™)?". This shows
that Tj(a) is the coefficient of X in the polynomial Xw, o(X)™. We have
T;(a) = mTrw,(a) = m. The integer m is not 0 in F. We have finished the
proof of the lemma.

The last lemma provides a tool to inductively verify that the subsets R ;
coincide with the ideals R} defined in Lemma 3.4.



104 G. Ivanyos and L. Rényai

Lemma 3.5. Keeping the notation of Lemma 3.4, for each j € {0,...,1} we
have
i+1 = {a € R | Tj(ab) = 0 for every b € {I} U.A}.

Proof. Let S;4) stand for the right hand side.

From the definition it is obvious that Rt < Ry Let a € R, and
b€ AU{I}. Since R}, is an ideal, we have ab € R} ;. Hence by statement
4 of Lemma 3.4, Tj (ab) = 0. We obtained R/, C SJ+1

It remains to prove the reverse inclusion. Based on the semlhnea.rlty of T;
on R, we show first that S;, is a linear subspace. To this end, let a,b € S;4.
This means that a,b € R and Tj(ca) = Tj(cb) = 0 for every c € .AU {I}. Let
o, € F be arbitrary scalars. We have to show that aa 4+ 8b € S;4;. Since
aa + pb € R}, this is true iff Tj(c(aa + 8b)) = 0 for every c € AU {I}. The
latter equality follows at once from Tj(c(aa + b)) = o?’ Tj(ca) + BP T;(cb).

From the definition and property 3 of Lemma 3.4 it is immediate that
S;+1 is closed with respect to multiplication both from the left and from the
right by elements from A, hence S;;, is an ideal of A.

Assume now by way of contradiction, that S;11 > R, (strict inclusion).
Since Rad(A) acts as zero on composition factors, we have S;4; 2 Rad(.A).

From these we infer the existence of an index ¢ € {1,...,t} such that
Ji € Sj41, and the multiplicity m; is divisible by p/ but not by p’*!. By
statement 5, Lemma, 3.4, there exists an element a € J; such that T;(a) # 0.
This means that a € S;1, a contradiction. We have proved the lemma.

Now we can easily finish the proof of our theorem.

Proof. (of Theorem 3.2) The statements of the theorem are vacuously valid if
A =Rad(A). We therefore assume that A # Rad(A). We can use Lemma 3.5
to establish inductively that R; = R} (j =0,...,1 + 1). Now the sets R;
are ideals containing the radical by the definition of ’R;. Properties 2 and 3
follow from the statements of Lemma 3.4. This concludes the proof of the
theorem.

Remark 3.6. The approach presented here is a simplified and specialized ver-
sion of a result from [5], where arbitrary fields of characteristic p are allowed.
In that general case the characterization of the ideals R; is slightly more com-
plicated than formula (3.1). In [19] a radical algorithm over transcendental
extensions of finite fields is presented.

The results obtained so far can be summarized as follows.

Theorem 3.7. Let A be a finite dimensional algebra over the field F, given
by a collection of structure constants. Then (a basis of ) Rad(A) can be com-
puted in time polynomial in dimy,A and logq.

Ezample 3.8. We explain how the algorithm works for the group algebra
F3[S3] discussed in Example 2.4. We use the regular representation to



Chapter 5. Computations in Associative and Lie Algebras 106

embed F3[S3] into the matrix algebra Mg(F2). We know that Fy[S3] has'a
one-dimensional radical Z and F3[S3|/Z = Fy & M2(F2). It follows that there
are two isomorphism classes of simple modules: a one-dimensional module
corresponding to the regular representation of Fo, and a two-dimensional one
corresponding to the usual representation of M2 (F2) on Fy2.

Using the structure of F{S3], we exhibit an explicit composition series
of the regular representation and determine the multiplicities. We denote
by W, the one-dimensional ideal of F3[S3]/Z. Let W, and W3 stand for the
two minimal left ideals of the four-dimensional component consisting of the
2 x 2 matrices with all zeros in the first and second column, respectively.
The factor F2[S3]/Z is the direct sum of these three minimal left ideals. We
denote by ¢ the natural map F3[S3] — F3[S3]/Z and set Vo = (0), Vi = Z,
Vo = ¢~ 1(Wh), V3 = ¢~ 1 (W) + W), and V, = F2[S3]. Obviously, the factors
V2 /Vi, Va/V; and V,/V; are simple. It is also straightforward to verify that
F2[S3] does not act as zero on T; therefore the first composition factor Vi /Vy
is a simple module as well. Comparing the dimensions, we obtain that the
multiplicity of the one-dimensional simple module is 2, and the same holds for
the multiplicity of the 2-dimensional simple module. Hence in Theorem 3.2
we have R; = F3[S3] and Ry = R3 = Z, i.e., our algorithm finds the radical
in the second round.

Exercise 3.9. Let a € M,(F) be a matrix over F, char F' = (. Show that a
is nilpotent iff Tr(a*) =0 for i = 1,...,n. (Hint: Newton’s identities for the
elementary symmetric polynomials.)

Exercise 3.10. (This is a weak form of a theorem of Wedderburn.) Assume
char F' = 0, and that A has an F-basis consisting of nilpotent elements. Prove
that every element of A is nilpotent.

Exercise 3.11. Assume that char F = 0. Show that the sum a + b of two
strongly nilpotent elements a,b € A is strongly nilpotent again. Use this to
prove that Rad(.A) is an ideal of 4. (Hint: See the previous exercise.)

Exercise 3.12. Prove Dickson’s Theorem. (Hint: Exercise 3.9.)

Exercise 3.13. Show that Dickson’s Theorem fails badly in positive char-
acteristic: give an example of a semisimple algebra of matrices over F, on
which the trace function identically vanishes.

4. Applications to Lie Algebras

We recall first some basic facts about Lie algebras. Detailed expositions can
be found in Jacobson [20] and Humphreys [18]. A linear space £ over the
field F is a Lie algebra, if L is equipped with an F-bilinear binary operation
[ ] such that [zz] = 0 for every z € £ and [[zy]z] + [[y2]z] + [[2z]y] = O (the
Jacobi identity) for every z,y,z € L.



106 G. Ivanyos and L. Rényai

Just like in the associative case, we have the familiar notions of subalgebra,
ideal, factor algebra and homomorphism for Lie algebras. The derived series
of £ is the collection £ of ideals in £ defined as £© = £, and £G+D =
[£OLD] for ¢ > 0. A Lie algebra L is called solvable if the derived series
reaches (0) in finitely many steps: £(™ = (0) for some natural number n.
Here we consider finite dimensional Lie algebras only. In this case £ has a
unique maximal solvable ideal, denoted by R(L), the radical of L.

The descending central series of L is the sequence £7 of ideals of £, where
L9 = £ and £**! = [LLY] for i > 0. A Lie algebra £ is nilpotent if L™ = (0)
for some natural number n. If dim p£ < oo, then £ has a unique maximal
nilpotent ideal N (L), the nilradical of L.

Ezample 4.1. Let A be an associative algebra over F. For two elements a, b €
A we write [ab] = ab—ba for the additive commutator. It is easy to check that
this operation satisfies the identities of a Lie-bracket. As a consequence, if an
F-subspace £ of A is closed with respect to the operation [ ], then £ can be
considered as a Lie algebra. Particularly important are the Lie subalgebras
of this form which are obtained from A = M4(F). They are called linear Lie
algebras. ’

There is a straightforward analogue of the regular representation for a Lie
algebra £. For an z € L, let ad(z) : £ — £ be the linear map that maps
y € L to [zy]. The map z » ad(z) is a Lie algebra homomorphism from £
to the linear Lie algebra gl(£) of all linear transformations of the F-space L.
Unfortunately, this map is far from being faithful (if £ is simple, then this
map is faithful). We just remark here that, according to a deep theorem of
Ado and Iwasawa ([20], Chapter 6), every finite dimensional Lie algebra is
actually isomorphic to a linear Lie algebra.

Just like associative algebras, Lie algebras can be conveniently described
by structure constants. If £ is a Lie algebra over field F' and a;,as,...,a,
is a basis of £, then the bracket is described if we have the products a;a; as
linear combinations of the basis elements:

[aia;] = yijra1 + - + Vijnln.

The coeflicients v;;x € F are called structure constants.

Now we outline algorithms for computing the nilpotent and the solvable
radical of a Lie algebra. These problems can be reduced to associative radical
computations. First we consider the nilradical. We need a theorem of Jacob-
son [20] p. 36. Let £ be a finite dimensional Lie algebra over an arbitrary
field F.

Jacobson’s Theorem 4.2. Let A be the associative (matriz-) algebra gen-
erated by the linear transformations ad(z), z € L, i.e., the image ad(L) of
the adjoint representation of L. Then an element z € L s in the nilradical
N(L) if and only if ad(z) € Rad(.A).



Chapter 5. Computations in Associative and Lie Algebras 107

This result offers a reasonable way to computing N(£) if the ground field
F is a finite field or an algebraic number field. Indeed, we can compute first
a basis of .4, and then compute Rad(.4) with the algorithms of the previous
section. We calculate the intersection of the F-subspaces ad(L) and Rad(.A)
by solving a system of linear equations. By Jacobson’s Theorem the inverse
image in £ of the intersection ad(£) NRad(A) is N(L). A formal description
of our method reads as follows.

Nilradical(L) :=
A := associative algebra generated by ad(L);
return ad~!(Rad(.A)).

Corollary 4.3. Let L be a finite dimensional Lie algebra over the field F,
where I is either a finite field or an algebraic number field. Suppose that £
is given as a collection of structure constants. Then the nilradical N(L) can
be computed in time polynomial in the input size.

Next we address the problem of computing the solvable radical R(L).
Over fields of characteristic zero, Beck, Kolman and Stewart [2] have given
an efficient algorithm to compute R(L). The algorithm hinges on a description
of R(L) via the Killing form, which is analogous to Dickson’s Theorem. Over
fields of positive characteristic, just like Dickson’s Theorem, this description
is no longer valid.

For finite F' the problem of computing R(L) can be reduced efficiently to
the problem of computing N(L).

We observe first that N(£) < R(L) and if N(£) = (0) then R(L) = (0),
because the next to last element of the derived series of R(L) is an Abelian,
hence nilpotent ideal of £. With these in mind we define the sequence £; of
Lie algebras as follows: let Lo = L; if N(£;) # (0) then let £;4; = L;/N(L;);
if N(L;) = (0) then L;4, is not defined. This sequence of Lie algebras has
no more than dim £ + 1 elements. From Corollary 4.3 we obtain that the
algebras £; can all be computed in polynomial time over finite F'. Let £; be
the last algebra of the sequence. We then have £; = £/R(L). Moreover, we
can construct a basis for R(L) by keeping track of the preimages of the ideals
we factored out during the computation of the sequence Lo, Ly,...,L;.

It is instructive to view this argument/computation in terms of ideals of
L. For ¢ > 0 let Z; denote the kernel of the composition of the natural maps
LQ — L1 — - = L;. We then have I),cI,cC...C Ij, N(E/Iz) :Ii+1/Ii
for 0 < i < j, and Z; = R(L). From a basis of Z; a basis of Z;4, is obtained
by a single call of the nilradical-algorithm with the algebra £/Z; as input. As
a result, we obtain elements by,bs,...,bx € £ such that by +T;,...,b + I;
form a basis of Z;/Z;. Now the elements b together with a basis of Z; will
constitute a basis of Z;;,. In j such rounds we obtain a basis of R(L). Below
we give a formal description of the algorithm.



108 G. Ivanyos and L. Rényai

SolvableRadical (L) :=

S = (0);

loop
S := Nilradical(L/S);
¢ := natural map L — L/8S;
S:=¢1(S);

until S = (0);

return S.

Corollary 4.4. Let L be a finite dimensional Lie algebra over Fg, given by
structure constants. Then (a basis of) the solvable radical R(L) can be com-
puted in time polynomial in dimg L and loggq.

Variants of the radical algorithms discussed here are implemented by
Willem de Graaf in a general library of Lie algebra algorithms, called ELIAS
(for Eindhoven Lle Algebra System), which is built into the computer alge-
bra systems GAP4 and MAGMA. These activities are part of a bigger project,
called ACELA, which aims at an interactive book on Lie algebras (cf. [6]).

5. Finding the Simple Components
of Semisimple Algebras

We have given an algorithm for computing Rad(.A). Our next target is the
Wedderburn decomposition of the radical-free part .A/Rad(A). From A we
can form .A/Rad(.A) efficiently. We therefore can assume that 4 is semisimple,
that is Rad(.A) = (0). The idea of the algorithm is easier to explain when
the ground field F is finite; we will consider this problem first. Then the
necessary modifications to make the method work over Q will be outlined.
The input to the problem is a finite semisimple associative algebra A over
the field F, (¢ = p®, p prime). A is given as an array of structure constants.
By Wedderburn’s Theorem there exists a decomposition

A=A A S & A,

where A;, Ay, ..., A; are the minimal nonzero ideals of .A. We give an f-
algorithm running in time polynomial in dimg, A and log q to find bases for
the ideals A;. This method was given by K. Fried! [13].

First we reduce the problem to the case where A is commutative. Recall
that the centre C(A) of A is

C(A)={z € A| zy = yz for every y € A}.



Chapter 5. Computations in Associative and Lie Algebras 109

It is not difficult to show that C(.A) is also a semisimple algebra. Moreover,
the Wedderburn decomposition of C(.A) is inherited from the Wedderburn
decomposition of A in the following sense:

CA)=CA1)DC(A2)® - B C(Ax).

Let a1,as,...,a, be the input basis of A, i.e., the one with respect to which
the structure constants are given. From a,, as, ..., a, we can obtain a basis
of C(A) simply by solving a system of linear equations. The fact that an
element 2 € A is in C(A) is equivalent to the relations za; = a;2, i =
1,...,n. If we write z as a linear combination with ‘unknown’ coefficients
z = A1a; + A2az + -+ + Mpan, then we obtain a system of linear equations
over Fy. A basis of the solution-space gives a basis of C'(A).

From the Wedderburn decomposition of C(A) we can easily recover the
Wedderburn decomposition of .A. In fact, we have

Ai=C(A)A for i=1,... k. (5.1)

Indeed, C(A;)A is a nonzero ideal of A and clearly C(A;)A < A;. Now
(5.1) follows from the simplicity of .A;. The transition from C(A;) to A; is
simple linear algebra. We select a maximal linearly independent set from
the products b;a,, where b; and a, run through a basis of C(A;) and A,
respectively.

Henceforth we assume that A is a commutative semisimple algebra over
Fg. In this case the ideals A; are finite fields containing the ground field
F,. We describe a method which breaks A into a direct sum of smaller ideals
A=I®J,unless k = 1. This cutting procedure suffices to solve the problem,
because T and 7 are also semisimple and commutative. Moreover, their ideals
are also ideals of .A. We can therefore cut 7 and J, and so on, until we have
all the minimal ideals A;.

The procedure for cutting A is an iteration which processes sequentially
the basis a;,...,a,. As for the general step of the iteration, suppose that
the elements aq, ..., a; have already been processed and that the subalgebra
F; generated by ay,...,a; is a field. This is certainly true at the beginning
with Fy = Fq. If ¢ = n, then by assumption F,, = A is a field; therefore
it has no proper ideals. Suppose that ¢ < n. We calculate first the (monic)
minimal polynomial f(X) of the element b = a;y; over the fleld F;. This is
again easy linear algebra. We have to find the first linear dependence over
F; of the elements 14,b,b%,...,b". Next we factor f into irreducible factors
over the field F;. This is the point where we call a factoring oracle. If f
turns out to be irreducible over Fj, then Fi(a;4+1) is a field. In this case we
put Fi+; = F;(ai+)) and the i-th step is finished. We maintained the loop-
invariant because F;4, is a field.

What happens if f is reducible over Fj, say f = gh where g, h € F;[X] are
nonconstant polynomials? Using the minimality of f and the fact that A is
a direct sum of fields, we see that g and A are relatively prime polynomials:



110 G.Ivanyos and L. Rényail

there exist ¢',h’ € F;[X] such that g'g + h'h = 1. We set T = Ag(b) and
J = Ah(b). We have that Z and J are proper ideals of A, because Zh(b) = (0)
and Jg(b) = (0), while Ah(b) # (0) and Ag(b) # (0). From these facts we
see also that Z N J = (0). From the relation ¢'(b)g(b) + ' (b)h(b) = 1.4 we
infer that the ideal generated by Z and J is .A. This implies that A =7 & J.
We formalize the cutting method in the following procedure.

Cut(A) =
(a1,a2,...,0n) ;= basis of A,
F =Ty
for ¢ from 1 to n do
f(X) := minimal polynomial of a; over F,
H := irreducible factors of f(X) over F;
if |H| > 1 then
choose g(X) € H;
h(X) = f(X)/9(X);
T :=g(a:)A;
J = h(a;)A;
return {Z, J}
fi;
F := F(a;)
od;
return {A}.

The discussion above implies the following;

Theorem 5.1. Let A be a finite semisimple associative algebra over the field
F, (g =p®, p prime), given by a collection of structure constants. Then there
exists an f-algorithm running in time polynomial in dimg A and logq for
finding the Wedderburn decomposition of A.

We can substitute into the cutting procedure either a polynomial time Las
Vegas method [4] or the deterministic method (3] for the oracle for factoring
polynomials:

Corollary 5.2. The minimal ideals of the algebra A above can be found by a
polynomial time Las Vegas algorithm. Similarly, the minimal ideals of A can
be found by a deterministic method running in time polynomial in dimyg A
and q.

Remark 5.8. The cutting procedure works over algebraic number fields as
well. There is only one additional difficulty to cope with. During the iterative



Chapter 5. Computations in Associative and Lie Algebras 111

application of the cutting method the sizes of the intermediate results (bases
for ideals) may grow too fast. It is possible however, to fix this problem. One
can establish a bound similar to the Landau-Mignotte Theorem in Chapter 4
for the smallest bases of the ideals of .A. From an arbitrary basis of an ideal
7 it is possible to obtain efficiently a small basis for Z. Thus, an application
of the cutting procedure is followed by a ‘reduction step’, in which we cal-
culate small bases of the new ideals found in the cutting phase. This leads
to a deterministic polynomial time algorithm for finding the Wedderburn
decomposition over algebraic number fields [13].

Remark 5.4. Eberly [10] proposed an efficient Las Vegas algorithm which
avoids iteration over the basis elements of .A. The key idea is the use of split-
ting elements. An element b € A is a splitting element of A if the minimal
polynomial of b over F' is squarefree and has maximal degree among the el-
ements of A. If F is a sufficiently large perfect field, and .A is a semisimple
commutative algebra over F, then A contains a splitting element with mini-
mal polynomial of degree dimg.A. In this case a random element b € A has
a good chance of being a splitting element.

Let b be a splitting element of A, and let f be the minimal polynomial
of b over F with factorization f = fi1fs2::- fr into irreducible polynomials
fi € F[X]. It can be shown that Af;(b), i =1,2,...,k are the minimal ideals
of A

The procedure in GAP4 (and in MAGMA) for computing the Wedderburn
decomposition has been implemented by Willem de Graaf. It employs a com-
bination of the ideas described here: the cutting procedure for small F', and
splitting elements for large fields.

Exercise 5.5. Suppose that A is semisimple and commutative. Let 0 # a
be a zero divisor in .A. Show that .Aa is a proper ideal of A.

Exercise 5.6. (Fast exponentiation) Let a € A. Show that ¢™ can be com-
puted using only O(logm) multiplications in A. (Hint:\Consider first the
binary representation of m.)

The next four exercises sketch a possible refinement of the method of
this section for computing the Wedderburn decomposition of a semisimple
commutative algebra over F,. The method is essentially a reduction to the
case where the minimal ideals of A are all isomorphic to Fy,. This implies
for example, that the factoring oracle is employed only for finding roots of
polynomials in the prime field Fp.

Exercise 5.7. Suppose that F' = F,,, where p is a prime and that e = a
holds for every a € A. Show that A is semisimple. Moreover A is a direct
sum of ideals isomorphic to Fp.

Exercise 5.8 (Berlekamp Subalgebra). Suppose that F = F,. Put
B(A) = {a € A|a? =a}.



112 G.Ivanyos and L. Rényai

Show that B(A) is a subalgebra of A.

Exercise 5.9. Show that a basis of B(.A) can be computed using O(n?3 log p)
arithmetical operations over F,. (Hint: Observe that the map a — a? is Fp-
linear. Moreover B(.A) is precisely the set of fixed points of this map.)

Exercise 5.10. Suppose that F' = F,, and A is semisimple commutative.
Let I be an ideal of .A. Show that D = B(A) NI is a nonzero ideal of B(.A)
and DA = I. (Hint: Wedderburn’s Theorem.)

6. Zero Di\;isors in Finite Algebras

One way to-1ook at the cutting procedure is to note that it finds zero divisors
in a finite algebra A. Indeed, if A is decomposable at all, then we construct a
decomposition with the pair of zero divisors g(b) and h(b). We can also find
zero divisors efficiently if Rad(A) # (0): an arbitrary nonzero z € Rad(.A)
and a power of z will suffice. Thus, with the methods discussed so far, we
can find zero divisors in (Las Vegas) polynomial time, unless A is a simple
algebra. To cover this remaining case, we study zero divisors of finite simple
algebras in more detail.

The argument presented below is a constructive version of the proof in [16]
pp. 71-72 of Wedderburn’s Theorem on finite division algebras. Let F' = F,
be a finite field, and a € M, (F), a € F such that L = F(a) is a field. Let {
denote the degree of L over F. Thus, the minimal polynomial f of a over F
is irreducible over F and deg(f) = I.

Lemma 6.1.

(i) Let a and F be as above. Then there exists a matriz ¢ € M, (F) such that
clac=al.

(i) Let ¢ € Mn(F) be an element satisfying (i), and denote by Alg(a,c) the
F-algebra generated by a and c. Then Alg(a,c) is not commutative, and

Algla,c)=L+cL+---+c™L+---.

Proof. By assumption L is a simple subalgebra of M, (F) and the automor-
phism ¢ of L sending a to a9 leaves F' element-wise fixed. A theorem of
Noether and Skolem (Pierce, [26], Section 12.6) implies that this automor-
phism is inner; there exists a matrix ¢ € M,(F) such that 42 = ¢(b) = ¢~ tbc
for every b € L. Now (i) follows. As for the statements of (ii), Alg(a, ¢) is not
commutative, because ac # ca. The rest follows from the obvious relation
Lc C cL.

The next statement paves the way for a considerable simplification in the
search for zero divisors. Let. ¢ be an element satisfying (i) above.



Chapter 5. Computations in Associative and Lie Algebras 113

Lemma 6.2. Suppose that Alg(a,c¢) = M,(F). Then we have | = n,
dim pF(c) =n, c® € F, and Alg(a,c) is a direct sum of F-subspaces:

Alg(a,c)=L@cL@---ac" 'L (6.1)

Proof. Tt is a simple calculation to verify that for an arbitrary natural number
i we have c*act = a9 . Note also, that a? = a because the field F(a) has
¢' elements. Thus, we have ¢ lad = ad = a, hence acd = cla. We infer that
c! is in the centre of Alg(a,c) = M, (F), which is F. Now by Lemma 6.1
¢ € F C L implies that

Alg(a,c)=L+cL+--- 4+ L.

From this we infer that dim rAlg(a, ¢) < I2. Moreover, there is equality here if
and only if the sum is a direct sum. Recall that [ is the degree of the minimal
polynomial of a, hence ! < n. In these circumstances Alg(a,c) = M, (F) is
possible only if I = n, and the sum in Lemma 6.1 (ii) is a direct sum. Finally
we observe that ¢ cannot be a root of a polynomial over F' with degree k < n.
Otherwise Alg(a, ¢) would be the direct sum of the subspaces ¢/ L (0 < j < k).
By counting dimensions we see that such a short decomposition is impossible.

Our algorithmic task will eventually boil down to finding zero divisors in
an algebra of the form My(F), described by structure constants with respect
to a ‘general’ basis. The point is that here we do not have a nice basis of
the algebra (say of rank one matrices). For this reason we have to develop a
basis-free approach to the problem.

We study further the setting at hand: we have a,c € M n(F) such that
L = F(a) is a field, c"'ae = a9, and Alg(a,c) = M,(F). We have established
that c is a root of a polynomial of the form X™ — a where a € F, and this is
the minimal polynomial of ¢ over F'. Recall that the norm of an element d of
L is defined as

N(d) := dd%d? .- 4%
(More precisely this is the norm of L over F.) The following lemma reduces
the problem of zero divisors to finding elements with a specified norm.

Lemma 6.3. Let d € L be an element such that N(d) = 1/a. Then1—cd is
a zero divisor in Alg(a,c) = M,(F).

Proof. Considér the element z € Alg(a, c) defined by the following expression

—2

z=1+cd+c*dd? + -+ +c*'gd?- .. d?

It is a direct calculation to verify that z(1 —cd) = 0. On the other hand, the
decomposition in (6.1) is a direct sum. This implies that neither z nor 1 — cd
can be zero, as both of them have 1 for the component belonging to L. This
completes the proof.



114 G.Ivanyos and L. Rényai

Unfortunately we cannot treat the norm equation N(X) = 1/a (with X
as unknown) directly as an instance of the factoring problem, because of
the high degree of the polynomial involved. We circumvent this difficulty by
imposing additional conditions on c.

Lemma 6.4. Let a,c be as before. Suppose further that the minimal polyno-
mial X™ — o of ¢ is irreducible over F. Then the polynomial g(X) = X" 1/«
is also irreducible over F'. Moreover, g splits into linear factors in L, and if
n is odd then N(d) = 1/a for each d € L with g(d) = 0.

Proof. From the irreducibility of X™ — a we infer that F(c) is a field and
dim pF(c) = n. It is clear also, that ¢ and 1/c generate the same field over F,
hence the minimal polynomial of 1/c¢ is also irreducible over F with degree n.
We have g(X) € F[X], g(1/c) = 0 and deg(g) = n. From this we infer that g
is the minimal polynomial of 1/c over F, hence g is irreducible over F. The
fields L and F(c) have the same degree over F, hence F(c) & L, so g splits
into linear factors in L. Finally, let d be a root of g from L. The irreducibility
of g implies that g(X) = (X — d)(X —d9).-- (X — dq"_l); therefore the
constant term is (—1)"N(d) = —N(d) = —1/a, proving the last claim.

Lemma, 6.4 shows that if n is odd, then we can solve the norm equation
N(X) = 1/a by factoring a polynomial of degree n. The next statement gives
a similar result for n = 2.

Lemma 6.5. Let L be a quadratic extension field of F'. Suppose that we are
given an element 3 € F such that X2 — 3 is an irreducible polynomial over
F (in other words, (3 is a quadratic nonresidue in F). Then we can find an
element d € L such that N(d) = 8 by a polynomial time f-algorithm.

Proof. Suppose first that —0 is a quadratic nonresidue in F. If d € L is a
root of A(X) = X2 + (3 then the other root of h is d?. By inspecting the
constant term of A(X) = (X — d)(X — d9) we obtain that d?t! = N(d) = 3.
Thus, a required d can be found by factoring a quadratic polynomial in L.

It remains to consider the case where —3 is a quadratic residue in F'.
Let v be an element of F such that v2 = —f3. Such v can be found by
factoring a quadratic polynomial in F. We claim that it suffices to find an
element b € L such that N(b) = —1. Indeed, then we can put d = b, because
N(d) = yyIN(b) = ¥*N(b) = (-8) - (-1) = 8.

We now turn to the norm equation N(X) = —1. If h € L is a quadratic
nonresidue in L, then by Euler’s lemma we have

O e
Thus, for b = hiT" we have
N(b) = bbY = ST p 47 0 = 2 o g,



Chapter 5. Computations in Associative and Lie Algebras 115

To find a good h, we define a sequence 2, 23, ..., zx of elements of L: let
z3 = —1. Suppose that z; is defined. Then let 2,13 be an element of L such
that 2;4;2 = 2z;, provided that such an element exists. Let z; be the last
element of this sequence. We have

z;‘;k—l =-—1 and z;‘;k =1,
hence z; generates a multiplicative subgroup of order 2% in L. This implies
in particular, that 2% < ¢2, hence 2z is obtained at the expense of solving at
most 2 log, ¢ quadratic equations in L. Also, h = 2 is a good choice, because
2k is not a quadratic residue in L.

In both cases the norm equation can be solved by factoring not too many
quadratic polynomials. The proof is complete.

We can now describe a polynomial time f-algorithm for finding zero divi-
sors in finite algebras. The input is an algebra A over the finite field Z = Fr,
p prime and dim z. A = m. The algebra A is specified as a collection of struc-
ture constants. The procedure ZERODIV() returns a pair of zero divisors
z,y € A, if zero divisors in A exist.

procedure ZERODIV(A)

Step 1. Compute first Rad(A) with the method of Section 3. If Rad(.A) #
(0) then let x € Rad(.A) be an arbitrary nonzero element. As z is nilpotent,
an appropriate power of T may serve as y; return(z,y).

Step 2. (A is semisimple)

With the method of Section 5 compute the Wedderburn decomposition of A.
If A is not simple, with T and J different minimal ideals of A, then let x and
y be arbitrary nonzero elements of T and J, respectively; return(z,y).

Step 3. (A is simple)

Check whether A is commutative. This involves comparisons of the products
a;a; and aja;, where a,,...,an Is a basis of A. If A is commutative, then
terminate concluding that A is a field (and hence it has no zero divisors).

Step 4. (A is a full matrix algebra over an extension field F' = F, of Z; say
AM,(F)and n > 1.)

Select an element b € A which is not in F - 14. Compute and factor the
minimal polynomial f(X) of b over F. If f is not irreducible over F, say
f(X) =g(X)h(X) is a proper factorization, then return(g(b), h(b)).

Step 5. (Here f is irreducible over F', hence F(b) is a field.)

If dim g F'(b) is even, then select an a € F'(b) such that dim g F'(a) = 2 (find a
solution of the system of F-linear equations 29" = z in F(b) \F). Ifdim g F'(b)
is odd, then put a := b.



116 G.Ivanyos and L. Rényai

Step 6. (F(a) is a field and ! = dim g F'(a) is either odd, or [ = 2.)

By solving a system of linear equations over F find a nonzero ¢ € A such
that ac = ca?. Compute and factor the minimal polynomial g(X) of ¢ over
F. If g is not irreducible over F, then return zero divisors as in Step 4.

Step 7. (The element c € A is invertible and ¢~ 'ac = a9%.)
Form (a basis of) Alg(a,c), the F-algebra generated by a and c. If Alg(a, c) #
A then set A := Alg(a,c) and go back to Step 1.

Step 8. (Here Alg(a,c) = A 2 M, (F) with n = +/dim g.A. Moreover n is
either odd or n = 2. The minimal polynomial of ¢ over F is f(X) = X" — &
for some o € F, and f is irreducible over F.)
Find a solution d € F(a) of the norm equation N(X) = 1/c. Use the method
of Lemma. 6.4 for this if n is odd, and the algorithm of Lemma 6.5 for n = 2.
Finally set v := 1 — cd, and

wi=1+cd+c*dd? + - +c"1dd?- - 4T,
return(u,v).

end procedure

Theorem 6.6. Let A be an algebra over Fy given as a collection of structure
constants, dimy,, A = m. Then ZERODIV() finds a pair of zero divisors in
A, unless A is a field (and hence contains no zero divisors). As an f-algorithm
ZERODIV() runs in time polynomial in the input size. In other words, the
running time is bounded by a polynomial in m, r, and logp.

Proof. First we consider the correctness of the method. If A4 is not simple,
then we clearly find zero divisors at Step 1 or 2. If A is a field then ZERODIV
terminates at Step 3 with a correct answer again. From Step 4 on we are
in a full matrix algebra and work towards the situation described in the
annotation of Step 8. At Steps 4-6 we either find ¢ and ¢ with the required
properties, or obtain zero divisors during the process.

If Alg(a,c) # A then we reduce the problem to a smaller instance. The
new A is not commutative by Lemma 6.1, hence also contains zero divisors.
The dimension of A decreases here. As a consequence, a Step of ZERODIV is
executed at most m times. Lemma 6.2 implies that the annotation preceding
Step 8 is valid, hence Lemma 6.3 is applicable: © and v is indeed a pair of
zero divisors.

As for the complexity of the method, it suffices to establish a polynomial
bound on the time required by a single Step, because Step 7 allows for it-
eration at most m times. For Steps 1 and 2 polynomial bounds follow from
Theorems 3.7 and 5.1. Step 3 is carried out by inspecting and comparing
2m(m — 1) products of shape a;a;. Steps 4-7 require linear algebra and fac-
toring polynomials of degree at most m over F. Finally the norm equation is
solved by one of the polynomial time f-algorithms given in Lemmas 6.4 and
6.5.



Chapter 5. Computations in Associative and Lie Algebras 117

Remark 6.7. The jump back at Step 7 is not really necessary. It can be shown
that at that point Alg(a,c) & M;(F). Therefore we could directly proceed
with Step 8, with / in the place of n. We leave the details of this to the reader.

As we did with the method for the Wedderburn decomposition, we can
substitute into ZERODIV either a polynomial time Las Vegas method [4] or
the deterministic method [3] for the oracle for factoring polynomials:

Corollary 6.8. Let A, m, r, and p be as before. We can find zero divisors
in A (if there are any) in Las Vegas time polynomial in m, r, and log p. Also,
the problem can be solved in deterministic time polynomial in m, r, and p.

The results of Sections 3 and 5 imply that there exists an efficient f-
algorithm to decide if a given finite algebra A is isomorphic to a full matrix
algebra. One checks if Rad(A) = (0) and whether A is directly indecom-
posable. If A turns out to be simple, say if A = M, (Fg), then we can also
find n and ¥, efficiently. In Exercises 6.9-6.12 we consider the algorithmic
problem to establish an explicit isomorphism from A to M, (F,). This means
representing A as an algebra of linear transformations of an n-dimensional
Fg-space V.

Exercise 6.9. Let e € M,(F;) be an idempotent matrix of rank 1 and put
V = Mg(Fg)e. Show that dimy V = n and M, (F,) acts nontrivially, and
hence faithfully, on V via multiplication from the left.

Exercise 6.10. Let e € M,(F,) be an idempotent such that rank(e) = m.
Then eM, (Fy)e = M, (Fq).

Exercise 6.11. Let z € M,(F,) be a singular matrix, and let e be a right
identity element of the left ideal M, (Fq)z. Prove that e is a singular idem-
potent.

Exercise 6.12. Suppose that we are given an algebra .A such that A4 =
M, (Fg). Then an explicit isomorphism from A to M,,(Fy) can be constructed
by a polynomial time f-algorithm. (Hint: Exercise 6.9 shows that it suffices
to find an idempotent e of rank 1. To achieve this, it is enough to give an
algorithm to construct a singular idempotent; Exercise 6.10 allows then to
reduce the problem to a smaller (in n) instance. To find a singular idempotent,
call ZERODIV(A). If a zero divisor (a singular matrix) is returned, then use
the idea of Exercise 6.11.)

An explicit isomorphism is useful because the usual representation of
M, (F;), as the algebra of all n x n matrices over Fy, is easy to handle.
For example we can conveniently decompose M,(F,) into a direct sum of
minimal left ideals.



118 G. Ivanyos and L. Rényai

Exercise 6.13. Let e;; € M,(F,) be the matrix having 1 in position (¢, 7)
and O elsewhere. Show that My (Fq)ei is a minimal nonzero left ideal of
M, (F,). Moreover,

M, (Fg) = Mn(Fg)enn ® Mp(Foleaz @ - -+ @& My (Fg)enn.

Exercise 6.14. Let A be a given finite semisimple algebra over Fq. Suggest
a polynomial time f-algorithm to express A as a direct sum of minimal left
ideals. (Hint: With the method of Section 5 break A into a direct sum of
minimal ideals. The minimal ideals are simple algebras over finite fields. Now
use the results of Exercises 6.12-6.13.)

In the subsequent exercises we outline an algorithm to find a nontrivial
common invariant subspace for a set X1, ..., Xy € M, (F,) of matrices acting
on the Fg-space V' of column vectors of length n.

Exercise 6.15. Let A be a subalgebra of M,,(F,) and suppose Rad(A) # (0).
Prove that Rad(A)V is a proper A-invariant subspace of V.

Exercise 6.16. Let A be a semisimple subalgebra of M, (F,) such that I €
A. Consider the decomposition of A into a direct sum of minimal left ideals:
A=p1 B D pm. Let 0 # v be an arbitrary vector from V. Prove that there
is a j such that p;v # (0), and for any such j the subspace p;v is a minimal
nonzero A-invariant subspace.

Exercise 6.17. Let S = {X},..., Xk} C Mp(F,) be a set of given matrices.
Suggest a polynomial time f-algorithm to find a nontrivial S-invariant sub-
space of V' if there is any. An Fg-subspace (0) C U C V is required for which
XU C U for every X € S. (Hint: Let A be the matrix-algebra generated
by S. Clearly S and A have the same invariant subspaces. If AV C V, then
U = AV suffices. Otherwise if Rad(A) # (0), then use Exercise 6.15. For the
case Rad(A) = (0), see Exercise 6.16.)

Notes

The general algebraic background required to follow the chapter is usually covered
in a first course on algebra. We use extensively the basics of linear algebra and the
first facts about field extensions. Lang [23] is an excellent text on basic algebra.
Mignotte [25] covers the subject with special emphasis on tools, methods relevant
in computer algebra.

We use just the elements of the theory of associative algebras. The reader
can consult Herstein [16] and Pierce [26] (mainly Chapters 1-3) on this subject.
Basic facts about Lie algebras (solvability, nilpotence, radicals) can be found in
Humphreys [18] and Jacobson [20].

Polynomial time algorithms play a key role in the chapter. We refer to Hopcroft—
Ullman [17], Chapters 12~-13 and Cormen-Leiserson-Rivest [8] for an introduction
to the complexity of algorithms.



Chapter 5. Computations in Associative and Lie Algebras 119

The first polynomial time algorithm for computing the Jacobson radical over
finite fields was given in [13]. Here we followed a novel approach proposed recently
by Cohen-Ivanyos—Wales [5], where the problem is treated for arbitrary fields of
characteristic p > 0.

The applications discussed in Section 4 to Lie algebras are from Rdényai [27].
The more recent [15] by de Graaf-Ivanyos—-Roényai also contains polynomial time
methods for Lie algebras. Description of algorithms in the ELIAS package can be
found in the Ph. D. thesis [14] of Willem de Graaf.

The algorithm presented here for the Wedderburn decomposition is from Friedl—
Rényai [13], where number fields are also considered as ground fields. A more effi-
cient algorithm has been given recently by Eberly and Giesbrecht [11]. A solution
for function fields over finite fields can be found in Ivanyos—Szént6—Rényai {19].

The material for Section 6 and for Exercises 5.7-5.10 and 6.9-6.17 is mostly fromr
Rényai [28]. The problem of finding zero divisors over the rationals is considered in
Rényai [27]; [29] is a survey on computations in associative algebras.

References

1. E. H. Bareiss (1968): Sylvester’s identity and multistep integer-preserving Gaus-
sian elimination, Mathematics of Computation 103, 565-578.

2. R.E. Beck, B. Kolman, and I. N. Stewart (1977): Computing the structure of a
Lie algebra, Computers in nonassociative rings and algebras, Academic Press,
New York, 167-188.

3. E.R. Berlekamp (1968): Algebraic Coding Theory, McGraw-Hill.

4. E.R. Berlekamp (1970): Factoring polynomials over large finite fields, Math. of
Computation 24, 713-715.

5. A.M. Cohen, G. Ivanyos, and D.B. Wales (1997): Finding the radical of an
algebra of linear transformations, J. of Pure and Applied Algebra 117 & 118,
177-193.

6. A.M. Cohen and L. Meertens (1995): The ACELA project: Aims and Plans, to
appear in: Human Interaction for Symbolic Computation, ed. N. Kajler, Texts
and Monographs in Symbolic Computation, Springer-Verlag, Berlin Heidelberg
New York.

7. G.E. Collins, M. Mignotte, and F. Winkler (1983): Arithmetic in basic algebraic
domains, in: Computer Algebra. Symbolic and Algebraic Computation, 2nd
edn., Springer-Verlag, Berlin Heidelberg New York, 189-220.

8. T.H. Cormen, C.E. Leiserson, and R. L. Rivest (1990): Introduction to Algo-
rithms, The MIT Press.

9. L.E. Dickson (1923): Algebras and Their Arithmetics, University of Chicago.

10. W.M. Eberly (1989): Computations for Algebras and Group Representations,
Ph.D. thesis, Dept. of Computer Science, University of Toronto.

11. W.M. Eberly and M. Giesbrecht (1996): Efficient decomposition of associative
algebras, Proc. of ISSAC’96, ACM Press, 170-178.

12. J. Edmonds (1967): System of distinct representatives and linear algebra, Jour-
nal of Research of the National Bureau of Standards 718, 241-245.

13. K. Friedl and L. Rényai (1985): Polynomial time solution of some problems in
computational algebra, Proc. 17th ACM STOC, 153-162.

14. W.A. de Graaf (1997): Algorithms for Finite-Dimensional Lie Algebras, Ph.D.
Thesis, Technische Universiteit Eindhoven.



120

15.

16.
17.

18.

19.

20.
21.

22.

26.
27.
28.

29.

G.Ivanyos and L. Rényai

W. A. de Graaf, G. Ivanyos, and L. Rényai (1996): Computing Cartan subalge-
bras of Lie algebras, Applicable Algebra in Engineering, Communication and
Computing 7, 339-349.

L. N. Herstein (1968): Noncommutative Rings, Math. Association of America.
J.E. Hopcroft and J.D. Ullman (1979): Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley.

J.E. Humphreys (1980): Introduction to Lie Algebra and Representation The-
ory, Graduate Texts in Mathematics 9, Springer-Verlag, Berlin Heidelberg New
York.

G. Ivanyos, L. Rényai, and A. Szénté (1994): Decomposition of algebras over
Fqo(X1,. .., Xm), Applicable Algebra in Engineering, Communication and Com-
puting 8, 71-90. ‘

N. Jacobsorr (1962): Lie Algebras, John Wiley.

R. Kannan and A. Bachem (1979): Polynomial algorithms for computing the
Smith and Hermite normal forms of an integer matriz, SIAM J. on Computing
4, 499-507.

D.E. Knuth (1981): The art of computer programming, Vol. 2, Seminumerical
algorithms, Addison-Wesley.

. S. Lang (1965): Algebra, Addison-Wesley.
. R. Lidl and H. Niederreiter (1983): Finite Fields, Addison-Wesley.
. M. Mignotte (1992): Mathematics for Computer Algebra, Springer-Verlag, Ber-

lin Heidelberg New York.

R.S. Pierce (1982): Associative Algebras, Springer-Verlag, Berlin Heidelberg
New York.

L. Rényai (1988): Zero divisors.in quaternion algebras, Journal of Algorithms
9, 494-506. .

L. Rényai (1990): Computing the structure of finite algebras, J. of Symbolic
Computation 9, 355-373.

L. Rényai (1993): Computations in associative algebras, Groups and Computa-
tion, DIMACS Series 11, American Mathematical Society, 221-243.



Chapter 6. Symbolic Recipes
for Real Solutions

Laureano Gonzalez-Vega, Fabrice Rouillier, Marie-Frangoise Roy,
and Guadalupe Trujillo

1. Introduction

The main purpose of this chapter is to show how to use algorithms and
methodology provided by computer algebra to manipulate in a symbolic way
the real solutions of an algebraic system of equations.

For example, the solution of a concrete problem in neural networks (see
[35]) is reduced to determine the real common solutions of the algebraic
system of equations

l—cry — 128 — 1122 =0
1—cxe — 2273 — 2223 =0

1 —cz3 — z32% — 2322 = 0,

where c is a parameter taking only integer values. Two different, and very
interesting, problems arise naturally from this example:

o first, for every instance of the parameter c to solve the corresponding poly-
nomial system by determining, for example, the exact number of different
real solutions and one approximation of the coordinates of every real solu-
tion, and

o second, to determine under which conditions on the parameter ¢ the poly-
nomial system has at least one real solution.

Describing some of the possibilities that computer algebra offers to answer
such questions is the main goal of this chapter.

To answer the first question we are going to use some of the methods intro-
duced in Chapter 2 since, from the information obtained about the complex
solutions, we will recover information about the real solutions. This will be
accomplished in two different ways: either by reducing the problem to a ques-
tion in linear algebra (for example, the number of different real solutions will
be equal to the signature of the trace matrix introduced in Chapter 2) or
by reducing it to a univariate problem (for example, by using the Rational
Univariate Representation introduced in Chapter 2, too). This last remark
motivates the study in this chapter of the Real Root Counting Problem in
the univariate case.



122 L. Gonzalez-Vega, F.Rouillier, M.-F. Roy, and G. Trujillo

As for the second problem, by using techniques of Chapter 2, it will be
reduced to determining the conditions the parameter ¢ must verify in order
that the polynomial

8cxdt — 8x13 + 28c2x1? — 16cx}! + (38¢3 + 4)z1° — 2¢2xd + (25¢* + 6¢)2h
+(14c® + 6)x] + (8¢® + 4c?)x§ + (10c* + 2¢)x3 + (c® + 3 ~ 5)z}
+(2¢% — 3c?)xd — ca? + (—2c3 + 1)x3 — 2

have a real solution. This is a typical Quantifier Elimination Problem and
the last part of this chapter is devoted to showing how to solve it.

The different techniques of this chapter are illustrated in some concrete
examples. We hope that we are presenting these techniques in such a way
that they can be understood (and used) by a non-specialist in the subject;
no more thah a basic knowledge of elementary algebra (mainly linear algebra)
is assumed. A prerequisite for the section devoted to the Real Root Counting
Problem in the multivariate case, is Chapter 2.

The chapter is divided into five sections (disregarding this introduction
and an appendix). The first two sections are devoted to the problem of count-
ing real solutions for polynomial systems of equations. The first one, §2, gives
a recent efficient method to determine the number of real roots of a univari-
ate polynomial, based on Sylvester-Habicht sequences. The second section,
§3, examines the same problem for polynomial systems of equations with a
finite number of complex solutions, and presents Hermite’s method and its
variants.

The Sign Determination Scheme, to determine sign conditions realized by
a finite set of polynomials on the real roots of a polynomial or a polynomial
system, is studied in the third section. The fourth section contains a brief
introduction to the characterization of real algebraic numbers via Thom'’s
codes. In the final section, §6, it is shown how to perform Quantifier Elim-
ination in several cases where the structure is simple enough to allow for
direct application of the methods presented in the first two sections in a
parameterized way.

An appendix, §7, proves the properties of the Sylvester-Habicht sequences
in full detail.

2. Real Root Counting: The Univariate Case

This section presents some methods to count the real solutions of a univariate
polynomial. We define the Cauchy index and relate it to real root counting.
Then we describe an extension of the classical Sturm sequence, indicate the
drawbacks of this method, and introduce a slight modification of the theory
of subresultants, which exhibits a much better behaviour. This will be used
in §6.



Chapter 6. Symbolic Recipes for Real Solutions 123
2.1 Computing the Number of Real Roots

First we define the Cauchy index of a rational function. If A is a univariate
polynomial then, for the rational function A’/A, we shall see that its Cauchy
index is equal to the number of real roots of A.

2.1.1 Cauchy Index and Real Root Counting. Let D be an integral
domain contained in a real closed field R and let K be its field of fractions.
Let A and B be univariate polynomials with coefficients in D.

The multiplicity of a root a of A in R is, as usual, the exponent k& such
that A = (X — a)*A; with A, a polynomial such that A,(a) # 0. The polar
multiplicity of a in the rational function B/A is the integer k such that -

B__B
- A N (X —a)kAl

with X — a dividing neither B; nor A;. The rational function B/A has
a finite limit at @ when the polar multiplicity of ¢ in B/A is nonposi-
tive. The rational function B/A has an infinite limit at a_ (respectively,
ay) if its polar multiplicity at a is strictly positive. The limit at a, is
ooo where ¢ = sign(Bi(a)/A1(a)). The limit at a_ is coo where o =

(—1)*sign(B1(a)/A1(a)).

Definition 2.1. The Cauchy index of B/A, denoted by I(B/A), is the num-
ber of jumps of the function B/A from —o¢ to +00 minus the number of
jumps of the function B/A from +oo to —oo. In other words,

1B/4)= Y e

{a€R|A(a)=0}

where &, is defined as follows.

B B
+1 if im — = —oand lim — = 40
T—a_ T—ay
f— B
€a 1 if lim B = 4ooand lim B = —oo
z—a_ A r—ay

0 otherwise.

The connection between the Cauchy index and the number of roots in a
real closed field is given by the corollary to the next proposition. Let

c(A) =card{z € R| A(z) =0},
ci+](A; B) =card{z € R| A(z) =0, B(z) > 0},
cio](A; B) =card{z € R| A(z) =0, B(z) = 0},
ci-j(A;B) =card{z € R| A(z) =0, B(z) < 0}.

Proposition 2.2. I(A'B/A) = ¢4 (A; B) — ¢-)(4; B).



124 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

Proof. We restrict our attention to the roots c of A which are not roots of B
since A’B/A, at a common root of A and B, has a finite limit. Defining k as
the multiplicity of the root ¢ in A, we find

A'B kB(c)
A X-—c¢

+ R,

with R, having a finite value at c; so it is easy to see that

o there is a jump from —o00 to +o0o at ¢ in A'B/A (e, = 1) if B(c) > 0,
o there is a jump from +oo to —oo at ¢ in A'B/A (e. = —1) if B(c) < 0.

Corollary 2.3. I(A'/A) = ¢(A).

The Cauchy index is also used in the solution of the Routh-Hurwitz prob-
lem, i.e., to determine the number of different complex roots with real nega-
tive part of a polynomial with real coeflicients (see [16]).

2.2 Sylvester Sequence

2.2.1 Computing the Sylvester Sequence. The signed remainder se-
quence, or Sylvester sequence, of A and B is defined as follows.

Algorithm 2.4 (Sy).
Input: The polynomials A and B.
Output: The Sylvester sequence

Sy’ = Sy’(A, B).

Initialization: Sy° := A, Sy' :=B. _
Loop: (i = 2,...) The polynomials Sy*~? and Sy*~! are already known. The
polynomial Sy* will be computed.

Sy* = —Rem(Sy* %, Sy* ™)

End: The algorithm ends with Sy*, the (signed) ged of A and B when
Sywtl =0.

‘When B = A’, we recover the usual Sturm sequence of A: Stu?(A) =
Sy’ (A, 4').

Definition 2.5. The usual case is the case where the degree of A is d, the
degree of B is d — 1, and the degrees of the polynomials in the remainder
sequence decrease exactly by one. Note that, in the usual case, the degree of
Sy~ is exactly j.



Chapter 6. Symbolic Recipes for Real Solutions 125

Definition 2.6. The i-th quotient Q; in the signed Fuclidean division of A
by B, is defined as _ _ '
Sy~ = Qi- Sy'™' ~ Sy'.

The signed Euclidean transition matriz is

(Bal)-(ha)
(5ol ) (5 @) (3) - (%)

Note that this matrix is unimodular (that is, it has determinant equal to 1).

It satisfies

Below we give the Sturm sequence of the polynomial

A:=9X18 ~18x1 —33x10 +102Xx8 + 7X7 — 36X°
—122X° + 49X* +93X3 — 42X?% — 18X + 9;

It also is the Sylvester sequence of A and A’.

Stu®(A) = (36X + 99X 10 — 510X8 — 42X7 + 252X ° + 976.X°

—441X* — 930X 3 + 462X2% + 216X — 117)

Stu®(A4) = 4 (10989X10 + 21240X° — 70746 X8 — 6054 X7 — 13932X
+159044X° — 24463X* — 153878X3 + 59298 X2 + 35628 X

—17019)

Stu*(A) = 72327 (626814X° — 1077918X8 + T1130X7 — 830472X°
+2259119X° + 460844 X* — 2552804 X + 668517X2

+632094X — 256023)

Stu®(A) = gaoi9 (43475160 — 57842286.X 7 + 5258589.X

—92294719X° + 134965334 X* + 312051193

—T79186035X % + 5258589.X + 9147321)



126 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

Stu®(A) = peaa2s282658 = (1584012126X7 — 2548299819X°

+984706749.X5 — 3696028294 X* + 59460329113

—T713636955X2 — 2548299819.X + 984706749)

Stu’(A) = ST B0 12002 - (12232018869 © — 8633929833X °

—28541377361X3 + 20145836277X2 + 12232018869

—8633929833)

8 _ ___66705890184927233102721564159514728 5 _ 2
Stu (A) - 1807309302290980501324553958871415645 (3X X+ 3)

Note that the size of the coefficients appearing in the Sturm sequence is
big. It has been shown recently (see [30] or [31]) that it is quadratic in the
degree of the input polynomial.

When dealing with Sturm (Sylvester) sequences there are also specializa-
tion problems. Let D be a domain, K its field of fractions, A and B polyno-
mials in D[X]. Suppose that the computation of the Sylvester sequence has
been done in the field K, and that the coefficients of A and B are special-
ized (that is, we consider a ring morphism f from D to a domain D’ and
its natural images f(A) and f(B) under the extension f: D[X]| — D'[X]).
The Sylvester sequence associated to f(A) and f(B) is not easy to compute
from the Sylvester sequence of A and B because, in the Euclidean division
process of A by B, elements of D appear in the denominator, and may well
specialize to 0. In this case the Sylvester sequence of f(A) and f(B) is not
obtained by specializing the Sylvester sequence of A and B, and the degree
of the polynomials in the Sylvester sequence of f(A) and f(B) does not agree
with the degree of the polynomials in the Sylvester sequence of A and B.

Ezample 2.7. Consider the general polynomial of degree 4,
A=X*+pX? +gX +r.
The Sturm sequence of A computed in Q(p, ¢,7)[X] is
Stul(A) = X%+ pX24+gX + 71

Stu'(A) = 4X3+2pX + ¢

—(2pX?% + 3¢ X + 4r)
4

Stu?(A) =



Chapter 6. Symbolic Recipes for Real Solutions 127

(2p® — 8pr + 9¢*) X + p?q + 12¢r)

Stu®(A4) = = 5
p

p?(16p*r — 4p3q? — 128p?r? + 144pg*r — 27¢* + 256r3)
4(2p® — 8pr + 9¢2)*

When we choose particular values g, §, 7 for p, ¢, r, then the Sturm sequence
of A = X*+ pX?% 4+ GX + 7 is generally obtained by replacing p, q, 7 by
P, §, 7, respectively, in the Sturm sequence of X* + pX? + ¢X + r. But
in some cases (when denominators vanish) this substitution is impossible
and the computation has to be redone. For § = 0, the Sturm sequence of
A=X*4+gX +7is:

Stu®(A) = X4+ GX +7

Stu*(A4) =

Stul(4) = 4X3 + g
Stu?(A) = — (34X + 47)/4

Stud(4) = —(27g* — 25673)/(276°).

2.2.2 Sylvester Sequence and Cauchy Index. The Cauchy index can be
computed from the Sylvester sequence as follows. Let A and B be polynomials
in D[X]. We denote by

Vsy(A, B;a) = V({Sy’ (A, B)}j=0,....d; @) -

the number of sign changes of the Sylvester sequence of A and B at a €
R U {—00,+00}, and put

Vsy(A, B) = Vsy (A, B; —00) — Vsy (A, B; +00).
Theorem 2.8. Vs,(A,B) = I(B/A).
A proof of this result can be found for example in [42].
Corollary 2.9.  Vsy(A,A'B) = cj4j(A4; B) — ¢—j(4; B).

Corollary 2.10. Let A be a polynomial in D[X]. Then Vsy(A,A’) is the
number of real roots of A.



128  L.Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo
2.3 Sylvester-Habicht Sequence

The Sylvester-Habicht sequence gives, just like the Sylvester sequence, the
Cauchy index of a rational function, but with a better control of the size of
coeflicients and without specialization problems.

In the following, we are going to define the Sylvester-Habicht sequence
by means of an algorithm. We first indicate the algorithm in the usual case,
so that the analogy with the signed remainder sequence becomes apparent;
then we give the algorithm for the general case.

An alternative definition of the polynomials in the Sylvester-Habicht se-
quence, togethér with the correctness proof of the algorithm, appears in the
appendix to this chapter, §7.

2.3.1 Computing the Sylvester-Habicht Sequence. For A of degree d,

we take
= aaX%+as1 X7 +ag2X42+ - +ag,

B = bg X9 + - + bo.

The Sylvester-Habicht sequence of A and B consists, for 0 < j < d, of
polynomials H;(A, B) of respective degrees < j. In the usual case, H;(A, B)
is of degree j. The j-th principal Sylvester-Habicht coefficient, which is the
coefficient of degree j of H;, will be denoted by

h; = syha;(A, B).

By convention, Hg(A, B) = A.
The following algorithm computes the Sylvester-Habicht sequence in the
usual case.

Algorithm 2.11 (SyHaU).
Input: Polynomials A and B of respective degrees d and d — 1.
Output: The Sylvester-Habicht sequence

Hj = SyHaj(A, B)

with0 < j < d.
Initialization: d := deg(A); Hq := A; Hq_y := B;

Hy 5:= —Rem(h%_,Hy, Hy_,);

Loop: (j < d) The polynomials H;, H;_;, and h; are already known with
h; nonzero and j — 1 = deg(H;—1). The polynomial H;_, will be computed:

1
Hj—2 = —FR;em(h?_lHJ, Hj——l)-
J

End: The algorithm ends when Hy has been computed, i.e., when j < 1,

Remark 2.12. In the usual case above, it is clear that Hj is proportional to
Sy4-7, and that the ratio is a square.



Chapter 6. Symbolic Recipes for Real Solutions 129

In the general case, the Sylvester-Habicht polynomials will present the fa-
mous gap structure, graphically displayed by the following diagram of Habicht
lines.

More precisely, the following algorithm computes them.

Algorithm 2.13 (SyHa).

Input: The polynomials A and B with d = deg(A).
Output: The Sylvester-Habicht sequence

with 0 < 7 < d. The principal Sylvester-Habicht coefficients will be denoted
by ‘
h; = syha;(4, B).

Initialization: Hy := A, hg:= ag !, and

o 4= B if ¢ = deg(B) < d,
4-1°7 | Rem(a3°B, A) otherwise, where e = [4=2t1]

Loop: H;, 71_:,-, and H;_, are already known with h; = ﬁj nonzero and k =
deg(H;_.). The lacking H, and h; are going to be computed up to Hi_; and
hi.
1. Computation of Hy for k < £ < j — 1.
Ifk <j—2, then
H,=0.
2. Computation of hy for k < £ < j — 1.
Define c;_; as the leading coefficient of H;_,. If k = j — 1, then there
is nothing to compute; else (k < 7 — 1) compute, for £ decreasing from
j—1tok, he by kj_1 :=cj_1, and

Eg = (—l)j—l—l—L——l+lcj_l .
5



130 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

3. Computation of Hj.

Take —
_ hyH;_; —

Cj—1

Hkl

4. Computation of Hj_;.

. :
Hy_1 := ——=Rem(c;_1hiH;, H;_1).
hih;

End: The algorithm ends when Hy has been computed, i.e., when i<l

Remark 2.14. Note that hahq = 1 and hjh; = hjz- when 7 < d and deg(H;) =
J. ‘

The values of j with h; # 0 are precisely the degrees of the polynomials in
the signed remainder sequence. Note that the algorithm for the general case
contains, as a particular case, the algorithm for the usual case since in that
situation hahq = 1, H;_1 = Hy,cj~1 = hx = hj_1. We gave the algorithm
for the usual case only to stress the analogy between the Sylvester-Habicht
sequence and the signed remainder sequence.

Remark 2.15. The algorithm should be executed as follows (for simplicity,
we do not take signs into account in what follows).

o For the computation of hy, take ¢;—1 and make j — k — 1 times the follow-
ing computation: multiply by c¢;_; and divide by h;. All the intermediate
divisions are exact, i.e., with- a result in D[X]. In particular, for j = d,
dividing by hg is multiplying by aq4.

o To compute Hj it suffices to multiply H;_; by hi41 and divide the result
by h; (up to sign).

o For the computation of Hy_;, take Hj, multiply it by c;_1, then by hy,
perform the Euclidean division of the polynomial thus obtained by Hj;_1
(the quotient and remainder are in D[X]), and divide the result by h;h;.

In the appendix to this chapter (§7), we prove that all the divisions needed
in the algorithm are exact, and that all the intermediate steps of the com-
putation above take place in D[X]. This is proved for the computation of
hi in Lemma, 7.10. The fact that the Euclidean remainder of the division of
cj—1hyH; by H;_1 can be done entirely in D follows from Corollary 7.18.

When B = A’, we recover the so-called Sturm-Habicht sequence of A:
StHa’(A) = SyHa;(A, A) (see [18] or [19]). The next example shows the
Sturm-Habicht sequence of the polynomial

A:=9X"—18X" - 33X"% + 102X® + 7X" — 36X°®
—-122X°% + 49X4 + 93X3 - 42X? - 18X +9,



Chapter 6. Symbolic Recipes for Real Solutions 131

i.e., the Sylvester-Habicht sequence of A and A’. The sequence is:
StHag(A) = StHa;(A) = StHag(A) = StHag(A) = StHay(A) = 0,
StHas(A) = —55039237100912075040(3X°® — 7X2 + 3)

StHag(A) = —12397455648(12232018869.X° — 8633929833X°
—28541377361X 3 + 20145836277X 2 + 12232018869X

—8633929833)

StHar(A) = —1377495072(1584012126 X7 — 2548299819
+984706749X > — 3696028294 X ¢ + 59460329113
—713636955X 2 — 2548209819 — 2548299819X
+984706749)

StHag(A) = —38263752(43475160X 8 — 57842286 X7 + 5258589X6
—92294719X 5 + 134965334 X ¢ + 31205119X3
—79186035X 2 + 5258589 X + 9147321)

StHag(A) = —1062882(626814X° — 1077918 X8 + 71130X 7 — 830472X 6
+2259119X5 + 460844.X* — 2552804 X 3 + 668517X 2
+632094X — 256023)

StHao(A) = —6561(10989X 10 + 21240X° — 70746X® — 6054X7
—13932X° + 159044 X5 — 24463X 4 — 153878X 3
+59298X 2 + 35628X — 17019)

StHa;; (A) = 1053(36 X + 99X 10 — 510X8 — 42X 7 + 252X6 + 976X 5
—441X* — 930X 3 + 462X2 + 216X — 117)

StHays(A) = A’
StHal3(A) = A.

Note that the size of the coefficients is moderate, compared with the Sturm
sequence. It will be a consequence of the definition of the Sylvester-Habicht
sequence to be given in the appendix to this chapter that their bit size is
linear in the degree d of the considered polynomials (cf. Corollary 7.8).

Given a specialization, i.e., a ring morphism f: D — D', we are interested
in an easy way to compute the Sylvester-Habicht sequence of f(A) and f(B)
when the Sylvester-Habicht sequence of A and B is known.



132 L. Gonzalez-Vega, F. Rouillier, M.-F.Roy, and G. Trujillo

Proposition 2.16. Let f:D — D’ be a ring homomorphism such that d =
deg(A) = deg(f(A)), d > g = deg(B) (so that g > deg(f(B))), then, for all
j<d,

SyHa;(f(A), f(B)) = f(SyHa;(A, B)).

The specialization properties of the Sylvester-Habicht sequence are shown
on the general polynomial of degree 4:

A=X*+pX2+qX +r

The Sturm-Habicht sequence of A is formed by the polynomials (belonging
to Zlp, q,7|[X]):

StHas(A) = X* +pX? +¢X +r

StHaz(A) = 4X3 + 2pX + ¢

StHag(A) = —4(2pX2% +3¢X + 4r)

StHa; (A) = —4((2p - 8pr +9¢? )X + p?q + 12q7)

StHag(A) = 16p%r — 4p®q? — 128p%r? + 144pg®r — 27¢* + 25673,

It agrees, up to squares in Q(p, q,7), with the generic Sturm sequence for A.
If p = 0, the Sturm-Habicht sequence of the polynomial A = X% +¢X +r is

StHas(A) = X4 +¢X +r
StHaz(A) = 4X3 + ¢
StHay(A) = —4(3¢X + 4r)
StHa;(A) = —12¢(3¢X + 4r)
StHag(A) = —27¢* + 25673,

which is the specialization of the Sturm-Habicht sequence of A with p = 0.
As we have seen above, this was not the case with Sturm sequences.

Finally, remark that, although it may not be clear from the presentation of
the Sylvester-Habicht sequence given here, the polynomials in this sequence
always belong to D[X] and denominators never appear. This is explained
in the appendix (see §7.1), where the coefficients of the polynomials in the
Sylvester-Habicht sequence are shown to be determinants of matrices whose
entries are coefficients of the initial polynomials. So much for the reason
why the use of Sturm-Habicht sequences avoids the specialization problems
attached to Sturm sequences.

2.3.2 Sylvester-Habicht Sequence and Cauchy Index. We are going
to explain that the sign variations in the Sylvester-Habicht sequence give the
Cauchy index.
Let A and B be polynomia.ls in D[X]. We denote by Vsyna(4, B;a) =
V({SyHa;(4, B)};=0,..,¢;a) the number of sign changes of the Sylvester-
Habicht sequence at a a.nd define

VayHa(A, B) = Vayna(A, B; —00) — Vayha(A4, B; +00).



Chapter 6. Symbolic Recipes for Real Solutions 133
Theorem 2.17.  Vgyua(A,B) = I(B/A).

The proof of this result appears in §7, the appendix to this chapter. Note
that in the usual case, Theorem 2.17 is an immediate consequence of Theorem
2.8, because of Remark 2.12.

Corollary 2.18.  Vsyna(A, A'B) = ¢4)(4; B) — ¢|—|(4; B).

Corollary 2.19. Let A be a polynomial in D[X|. Then Vgyua(A, A") is the
number of real roots of A.

Next we indicate how to compute the Cauchy index by using only the
principal Sylvester-Habicht coefficients, rather than the whole Sylvester-
Habicht sequence. First we need a definition. Given an injective mapping
£:]0,...,d] — N, we consider an ordered list [a] of nonzero elements of an
ordered field K indexed by ¢. We define D([a]) as

d—1
> a(i)
=0
where
0 if £(i + 1) — £(%) is even
.\ def
o(i) =

(—1)EEHD—EO-D/2 . sign(ayyagutny) if €00 + 1) — £(3) is odd

Note that when £(i) = i for every ¢, the integer D([a]) is nothing but the dif-
ference between the number of sign changes in [ao, ..., (—1)a;..., (—1)%a4]
and the number of sign changes in [ao, ..., a;, ..., aq]. It can be described also
as the difference between the number of sign permanences and the number
of sign changes in [ay, ..., ad].

Proposition 2.20. Let A and B be polynomials in D[X]. We denote by ¢
the finite sequence of integers such that SyHa,(4, B) is not defective, i.e.,
syha;(A, B) # 0, and [h] the corresponding list of h; = syha;(A, B). Then

D([r]) = 1(B/A).

The proof appears in §7, the appendix to this chapter.

2.4 Some Recipes for Counting Real Roots

The Cauchy index can be computed using Algorithm SyHa and Proposition
2.20. We give recipes to determine the number of real roots of a univariate
polynomial or the Sturm Query of A and B, denoted by SQ(A, B), which is
the integer cj4+)(A; B) — ¢;-(4; B).



134 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

Recipe CRS;: Counting real solutions for a polynomial A.

o Compute the principal coefficients of the Sturm-Habicht sequence of A
using Algorithm SyHa applied to A and A’: [h] = [hq,-. ., ho].
o Compute D([h]), which is the number of real roots of A.

Recipe SQ;: Sturm Query of A and B: ¢y (4; B) — c[—|(4; B).

o .Compute the principal coefficients of the Sylvester-Habicht sequence of A
and A’'B by use of Algorithm SyHa: [h] = [hq,..., ho].
o Compute D([h]), which is the Sturm Query of A and B.

Another method for computing the number of real roots/of a univariate
polynomial is Uspensky’s method, based on Descartes’ rule (see [10]).

3. Real Root Counting: The Multivariate Case

In Chapter 2, several problems regarding the complex solutions of a polyno-
mial system of equations were reduced to linear algebra problems with the
help of Grdbner Bases computations. In this section we continue with the
same philosophy but now we are interested in information on real solutions.
Let R be a real closed field containing a field K, let K be an algebraically
closed field with R C K, and let P = {Py,..., P} be a finite set of poly-
nomials with coefficients in K. Suppose that A = K[X,,...,Xy]/I(P) is a
finite dimensional vector space over K. Let N be the dimension of A as a
K-vector space and n be the number of distinct solutions of P in K", so that
n < N. Let Zg(P) denote the set of real solutions of P. Given h € A, we
define, the Sturm Query of h with respect to P by

SQ(P,h) = #{z € Zr(P) | h(z) > 0} — #{z € Zr(P) | h(z) < 0}.
In particular, when h = 1, we find the number of real solutions of P: the
cardinality of Zr(P).
We associate to h the quadratic form, called trace form, defined in §3 of

Chapter 2,
Qn: A — K

f — Tx(L 2 )
and the corresponding bilinear form TrBj. The signature of a quadratic form
is the difference of the numbers of positive and negative entries once the
quadratic form is diagonalized.

Theorem 3.1 (]2, 3, 14, 36, 37]).
SQ(P, h) = signature(Qy,).

Proof. Choose a separating element u € A. If

n—1
Z /\.'ui

1=0



Chapter 6. Symbolic Recipes for Real Solutions 135

is a linear combination of powers of u which is 0 in A, then

n—1
T)=> AT
i=0
has n distinct roots. Thus, the elements 1,u,...,u™ ! are linearly indepen-
dent in A, as u(Zr(P)) has n distinct elements. Consider a basis
w1 = 1,&)2 =U ..., Wp = u"_l,wn+1,.. G WN
of A. Then, given (f1,..., fn), denote by

N
=Y fuw

=1

the corresponding linear combination. According to Stickelberger Theorem
(see Chapter 2), on this basis, Qr(f) is given by

N 2 N 2
> k@) (X f@) + Y pah(@)( D i)
ac€Zg(P) i=1 a€Z(PN\Zr(P) i=1
as a quadratic form of the variables f;. The signature of
N 2
Z h(c) ( Z fiwi(a)>
a€Z(PN\Zr(P) i=1

is 0 since, for o and & complex conjugate solutions of P,

oz)(if,-w,-(oz))2 + h(a)(ﬁjfiw,-(a))z

is a difference of two real squares. So the signature of Q) agrees with the

signature of
N
> tah(e) (X fenle)
i=1

a€Zg(P)
which is obviously equal to SQ(P, h).

The signature can be computed, for example, as follows.
Proposition 3.2. If S is a symmetric N x N matriz with entries in R and
Ps(\) =ag+a1A+---+(=1)VAY

is the characteristic polynomial of S, then the signature of S is equal to the
difference of the number of sign variations and the number of sign perma-
nences in {ag,a1,...,(-1)V}.



136 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

This method was used in [48] and [37]. More efficient methods appear in
[41].

The preceding results produce the first recipe for determining directly the
number of real solutions of the considered system (the Sturm Query for P
and 1).

Recipe CRS,: Counting real solutions for a zero-dimensional polyno-
mial system P.

o Compute the matrix of @, (or TrB;) as in §3 of Chapter 2, through a
Grobner basis computation and several normal form determinations.
o Compute the signature of @1, which is the number of different real solutions

of P.

Recipe SQy: Counting the Sturm Query of h for a zero-dimensional
polynomial system P.

o Compute the matrix of Qp (or TrB) as in §3 of Chapter 2, through a
Grobner basis computation and several normal form determinations.
o Compute the signature of Qp,, which is SQ(P, h).

When the number of equations is equal to the number of unknowns, there
is another recipe determining the number of real solutions or the Sturm

Query.

Recipe CRSj3 (respectively, Recipe SQ3).
Determine the Bezoutian of Pi,..., Pk, Bez by computing the determinant

B(X,Y) introduced in §4 of Chapter 2 and its Normal Form in A ® A:
Bez = Z Ay ww(X)w'(Y)
w,w’' €A

where A is the basis of A as K-vector space. If B is the matrix of the a,, .’s,
then signature(Lyac - B) = #(Zr(P)) (respectively, signature(Ljac.h - B) =
SQ(P, h)) where Ly, (respectively, Lyac.n) is the matrix of L, (respectively,
Ljac.n) with respect to the basis A.

Ezample 3.3. Let us consider the polynomial system of equations:
Pi=X2X, —2X2 4 X2+ X1X,=0, P:=2X2-X24+X,Xo=0
already considered in Chapter 2. In this éxample, the R-basis of A is:
A={1,X,, X3, X3, X1, X1 X2} = {w1, w2, w3, wa, ws, we}.

The computations performed in Chapter 2 produce the matrix of ¢; with
respect to .A:



Chapter 6. Symbolic Recipes for Real Solutions 137

6 -2 20 —56 —4 4

-2 0 —56 272 4 —40

20 -56 272 992 —40 112
—56 272 -—992 4160 112 544 |°
—4 4 —40 112 8 -8

4 —-40 112 544 -8 80

r:[‘]_‘:

which allows us to conclude that signature(Tr) = 3; thus the polynomial
system of equations has exactly three real solutions.
In order to use Recipe CRSj, first B(X,Y) is computed:

B(X,Y) = —4X,Y1 - 2XoY, - Y1 X2 - 1 XoY2 — X1 XoYs + X1 XoY)
—2Y2X, —2X2 - X, X2 — 2Y} — 4Y2.
The matrix B is obtained through the computation of the normal form of

B(X,Y):
0 0 -2 -1 0 -4

0 -2 0 0 0 -1

B— -2 0 0 0 -1 0
-1 0 0 0o 0 0

0O 0 -1 0 -4 1

-4 -1 0 0 1 0

Finally, L. is determined
0 0 0 0 0 0
0 0 0 0 0 0
Lyne = -8 0 0 0 0 0
ac -6 2 =20 56 4 -4|°

0 0 0 0 0 o0

—26 —8 —64 64 20 16

and the use of the previous recipe allows us to conclude that

00 0 0 0 O
00 0 0 0 O
. . 0 016 8 0 32|
signature(Ljac - B) = signature 0 0 8 6 0 26| ’
00 0 0 0 O
0 0 32 26 0 132

and that the number of real solutions of our polynomial system is equal to 3.

Another way of computing the number of real solutions of a zero-
dimensional polynomial system proceeds by using the rational univariate
representation (Recipe VII in Chapter 2). In this way the problem is re-
duced to applying CRS; to the minimal polynomial of the given separating
element for P.

Recipe CRS4: Counting real solutions for a zero-dimensional polyno-
mial system P.



138 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

o Compute the rational univariate representation for P and let u be the
corresponding separating element.

o Apply Recipe CRS; in order to get the number of real solutions of x(u, T),
which is the number of real solutions of P.

Recipe SQ4: Counting the Sturm Query of h for a zero-dimensional
ideal P.

o Compute the rational univariate representation for P and let u be the
corresponding separating element.

o Write n/ for the smallest even number bigger than n, and define

g'u.(XlaT) g'u-(Xk’T))

9.(1,T) "7 gu(1,T)

Apply Recipe 80, to A = x(u,T) and B(T), which provides SQ(P, h).

B(T) = g.(1, T)™ h(

Ezample 3.4. For the Cassou-Nogués polynomial system of equations coming
from the PoSSo test suite,

P, = 15b4cd? + 6b4¢® + 21b4c?d — 144b%¢c — 8b2c2e — 28b2cde — 648b%d
+36b%d2%e + 9b*d® — 120

Py = 30c3b4d — 720db%c — 24c3b%e — 432¢2b° + 5T6ec — 5T76de + 16ch?d?e
—32de?c + 16d%e? + 16e2¢? + 9c*b* + 5184 + 39d2b4c? + 184%b4c
—432d%b? + 24d3b%e — 16c%b%de — 240¢

P3 = 216db2%c — 162d%2b° — 81¢2b? + 5184 + 1008ec — 1008de + 15¢%b%de

—15¢3b2%e — 80de?c + 40d%e? + 40e2c?
Py = 261 + 4db2%c — 3d?b? — 4c2b? + 22ec — 22de,

the variable b is separating and thus the corresponding characteristic poly-
nomial is given by

_ 16 _ 11328065425280 1114 _ 1082059945089290240 1-12
w(T)=T 5581434681 L 4063565882449 L

38925480508049063936 Tl 0 + 145090425457775476736 T8

7 8898609684915963 6487086460303737027
+ 3121544456059492499456 T6 + 5952612054194978816 T4
14187258088684272878049 3447503715550278309365907

+ 110637258033332224 T2 + v 281474976710656
22619071877725375987749715827 49467910196585397285208628513649 *

Applying Recipe CRS; to this polynomial, we find that the Cassou-Nogues
polynomial system of equations has exactly four different real solutions.



Chapter 6. Symbolic Recipes for Real Solutions 139

4. The Sign Determination Scheme

In this section, we suppose given polynomials hy,...,hs in K[Xi,..., X]
and g; € {+,—,0} for i € {1,..., s}. We consider the problem of determining
the existence of solutions for the system

sign(hy (X)) = €1, .. .,sign(hs(X)) = ¢, (S1)

at the real zeros of a polynomial system P (see [4, 42]).

The sign determination scheme will solve the following problem: for P
a polynomial system, hy,...,h, polynomials in K{Xji,...,Xx], determine
which are the sign conditions to be satisfied by the polynomials hi,..., hs
when evaluated on the solutions of P in R. The case s = 1 is very easily
solved with the help of Recipe SQ; (when k = 1) or Recipe SQ2, SQ3 or SQ4
(when k > 1): we already know that

Clo] ('P; hl) + Cl+] ('P; hl) + C[_]('P; hl) = SQ('P, 1)
e (P; 1) — ¢ (P 1) = SQ(P, hy).

Also
c+)(P; hy) + cj—(P; 1) = SQ(P, hY)

Propaosition 4.1.

1 1 1 cio(P; h1) SQ(P,1)
0 1 1 C[~] (P; h1) SQ(P, h%)

Thus, the computation of three Sturm Queries (P and 1, P and h;, P
and h?) and the solving of a linear system of equations provides the integers
cio](P; h), c(41(P; h1), and ¢;_(P; h1). To continue this study, we need to
generalize the definition of ¢;4(P; k1) to a family of polynomials.

Definition 4.2. Let P bea zero-dimensional ideal in K[X], H = (hy,..., hs)
polynomials in K[X] and ¢1,..., &, a family of sign conditions (i.e., every g; is
an element of {+, —,0}). The integer ci, . .,(P;H) is defined as the number
of real solutions of P such that the sign of each h; in such a solution is equal
to g;:

Cles,onea (Ps H) = #{z € Zr(P) | sign(hj(z)) =¢;, 1<j<s}

The case s = 2 is solved in a similar way as before. For example, if
H = (hq, hy), then

SQ(P, hlhz) = C[+] (P, hlhz) - C[_](P, hlhz)
= cp4](PsH) + c——|(P; H)
— ¢4-1(P;H) — ¢y (P; H).
Thus, the solution for 8 = 2 requires the computation of 9 Sturm Queries
and the solving of the following linear system of equations of order 9.



140 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

11 1 11 1 1 1 1 \ -C[Ool(P;H” [ SQ(P,1) ]
01 -1 01 -1 0 1 - C[+0](P;H) SQ(P,hl)
01 1 01 1 0 1 1 ¢j—o)(P; H) SQ(P,h?)
00 0 11 1 -1 -1 —1}|cpy(P;H) SQ(P, ha)
00 0 01 -1 0 -1 1 C[++](P;H) = SQ(P,hlhz)
00 0 01 1 0 -1 —1[|cy(PH) SQ(P, h2hy)
00 0 11 1 1 1 1 co—)(P;H) SQ(P, h2)
00 0 01 -1 0 1 —1])cy(P;H) SQ(P, hih3)
00 0 01 1 0 1 1/l (P;H)] LSQ(P,A2AZ).

This is clearly not a good strategy since for computing the sign conditions
realized by the polynomials Ay, ..., h, at the real solutions of P, precisely 3°
Sturm Queries are required whereas the total number of solutions and thus
of nonempty sign conditions is independent of s. To overcome this problem
(see [4], [11] or [43]) we use the simple fact that the number of sign conditions
looked for is bounded by the number of real solutions of P; we accordingly
reduce the linear system once solved, by removing those sign conditions that
are already known to be not realized by any real solution of P (see [42] for
complete proofs).

Recipe SI: Sign Determination Scheme.

In the initialization step, the values SQ(P, 1), SQ(P, h1), SQ(P, h?) are com-
puted, and the linear system

11 1 cpo}(P; h1) SQ(P,1)
A -C=Vi: 01 —1]-|cy(Ph1)| =|SQP,h1)
01 1 C[~] (P; h1) SQ(P, h%)

is solved. The initialization step ends by the following determination of a
linear system B, - D; = W,.

*1 The columns of A; corresponding to the zero solutions in C) are removed
and from this matrix a square and full rank matrix B; is extracted.

*3The vector D; is obtained from C; by removing those elements which are
equal to 0.

*3The vector W is obtained from V) by keeping the elements corresponding
to the columns taken from A; to get B;. We denote by K,,...,K,, the
polynomials whose Sturm queries appear in W;.

In the j + 1-st step, a linear system B; - D; = W, as well as the list
K,,...,K,, is obtained with information on the behaviour of the real roots
of P on the polynomials h,,...,h;, and the situation for h;y, is going to be
analyzed. First the linear system A;;, - C;41 = V;4, is constructed where

B; B; B;
Aj+1= 0 Bj —Bj 3



Chapter 6. Symbolic Recipes for Real Solutions 141
[ oprsro(Pihis o hy)

cisp...600 (Pi by, .. hy)
c[é%...é}.] (Py hi,... ahj) C[é%...5}+] (P‘, hi,... ,hj)
D; = : = Cjn = :
C[éi‘---é;‘](P?hly o hy) : C[éf...é;‘+](P§hly v hy)
cist..sr—1(Pi b1y oy hy)

_C[ég...éy—](PQ hi,... . h;)
[ SQ(P; K1) ]

SQ(P; K.,)
SQ(P; K1) SQ(P; Kihjt1)

W; = : = Vi = :
SQ(PyKuJ) SQ(P; K'u.j hj-H)

| SQ(P; K’U-j)h?-f—l d
Next, the linear system A;;; - Cj41 = Vj41 is solved and the new system
Bji1 - Djp1 = Wy, together with K, ..., K, the output of step j + 1,

) 'u.j+1 )
is constructed by using the same rules (1), (*2), (*3) as in the initialization
step.
Example 4.3. The output of SI applied to the polynomials

P = 25 — 152% 4 85x% — 22522 + 2742 — 120,
hy =% -2z +1, hy =3z —x+2,

is the linear system:

(1 1) _ [c[oH(P;hl,hz) =11 _[5Q(P1)=5 ]
01 Cly+](Pshy, he) = 4 SQ(P,hy) =4]|"
If a new polynomial, h3, is going to be considered, then it is not necessary

to start again: it is enough to continue the process with the previous system
and h3 as described in Recipe SI.

We consider now, in the univariate case, the more general problem of
determining the existence of a solution for the system

sign(h1 (X)) = ¢1,...,sign(hs(X)) = €, (S1)



142 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

where hy,...,hs are polynomials in K[X] and &; € {+,—,0} for i €

{1,...,m}. This problem is reduced to the case where one of the ¢; is equal
to 0. To this end we define the polynomial P by
= d h
h=11h:, P=(1+h)2. —|—— | =hQ1-h2.
11 g () =wa-#)

It is very easy to verify that the system &; has a solution if and only if the
system
P(X) = 0,sign(h1(X)) =e1,...,sign(hs (X)) = &, (S2)

has a solution.
In the multivariate case, this problem is also reduced to the sign determi-
nation of a set of functions at the zeros of a polynomial system (see [1, 42]).

5. Real Algebraic Numbers and Thom Codes

Computer algebra provides a new strategy for dealing with real algebraic
numbers, which are the real roots of monic univariate polynomials with in-
teger coefficients: the so-called Thom codes. Thom’s Lemma, an easy result
from Real Algebraic Geometry (see [5] or [11]) assures that, for a real closed
field R and a given polynomial A € R[z], there are no two different real roots
of A giving the same signs to the derivatives of A. This allows the introduction
of the Thom code of a real algebraic number a as a list [A;€q-1,€4-2, .-, €1]

where ¢; € {+,0,—} and A is a polynomial in Z[X| with degree d such that
A(a) = 0 and for every i in {1,...,d — 1} the sign of A®)(a) is equal to ¢;.

A first example is provided by the Thom codes of v/2 and —v/2:

V2 — [XP-24] —vV2—[X? -2

It is clear that the computation of Thom codes for the real roots of a univari-
ate polynomial is exactly the application of Recipe SI to A and the list of
its derivatives sorted according to degree (starting with the one of smallest
degree). To sort the real roots of a univariate polynomial once their Thom
codes are known, is an easy task according to the following proposition.

Proposition 5.1. Let A be a polynomial in R[X| of degree d with o and 3
real roots of A with Thom codes

a=[Aea,.,al,  B=[Aibar,..., 8]
Then:

1 If, forje {1,...,d =1}, ¢ = é;, then a = 3.

2. Otherwise, let k be the biggest index such that ex # 6. Then:
a) If €41 = +, then a > B if and only if ¢4 > 6
b) If €441 = —, then a > 3 if and only if ex < &



Chapter 6. Symbolic Recipes for Real Solutions 143

There exist algorithms manipulating real algebraic numbers knowing only
their Thom codes: field operations, computations in towers of fields, etc. All
of these algorithms are purely symbolic and consist of several Sturm Queries
computations and linear systems of equations solving, and do not require
any kind of approximation of the real roots of the considered polynomial (see
[11], [43] and [12]). Moreover, it is worth remarking that these algorithms
do not require the squarefree hypothesis often used in algorithms computing
isolating intervals for the real roots of a univariate polynomial.

Example 5.2. Let A be the polynomial
A= X5-15X*+85X% —225X2 4 274X — 120.

In order to compute Thom codes for the real roots of A we apply Recipe
SI to A and its derivatives, starting with the one of smallest degree, A, In
order to avoid unnecessary computations the process is stopped once all the
real roots are characterized, i.e., when all the elements in vector C; are equal
to 1. In this example this happens after considering A9, A®) and A®:

SI(A, {A(4),A(3),A(2)})

gives
SQ(A7K1) = 5a SQ(A7K2) = 07SQ(A7K3) = 47
SQ(A,K4) =0,5Q(A,K5) =0
and
11 1 1 1 clo—o](4; A®, A®), AR)) 5
01 -1 1 -1 C[+++](A; AW AG), A(z)) 0
01 1 1 1 et 4] (A; AW A® AD) | = (4
01 1 -1 -1 c[++_](A;A(4),A(3),A(2)) 0
01 -1 -1 1 ot )(4; AW, A®) A2 0
with
Ki=1  Ky=X-3  K;=X?2—-6X+09,
Ks=2X3—-18X? + 51X — 45,
Ks = 2X% —24X3 4 105X2 — 198X + 135,
so that

cpo—oj (4; AW AG) A@) =
4 (4 A® AB) A®)) =
l—14(4; AW ABG) A@) =
i1 (4 AW AG) A®) =
Cletm] (A; AW AG) A(2)) =
Thus, Thom codes for the real roots of A are

1
1
1
1
1.

ar=[0-0, a=[+++, az=[-++],



144 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Truyjillo

a=lrt-],  as=[-+-]
Applying Proposition 5.1, we obtain the sorting of the «a;:
oy <oz <oy <oag<ag

Finally, to determine the sign of a5 —a3—1, it is enough to apply again Recipe
SI to the linear system shown before with the polynomial A = X4 — X — 1.
In fact, this gives the sign behaviour of A on the a;:

h(a1) > 0, h(az) >0, h(as) >0, h{as) >0, hi{as)<0.

Practical experience has shown that, in general, manipulation of real al-
gebraic numbers by means of Thom codes is less efficient than the use of
isolating intervals. However, Thom codes have the following advantages: first,
they are more stable since once they have been computed they do not need
to be refined and, second, they are the only way of dealing with real algebraic
numbers over non-Archimedean ordered fields. This last statement may be
clarified by the following example.

Example 5.3. Non-Archimedean ordered fields appear quite frequently as
very useful tools when considering algorithms dealing with topological ques-
tions of real algebraic sets (for instance plane curves, see [12]) or quantifier
elimination methods with low complexity, see [26]).

When studying real algebraic plane curves, non-Archimedean ordered
fields can be used to decide the topological type of the considered curve
around a singularity. If we consider the real algebraic curve C defined by the
polynomial

A=2X*-3X%y +Y*-2Y3+Y?

then it is well known that the X-coordinates of the singular points are con-
tained in the set of real roots of the discriminant D of A with respect to the
variable Y:

D = X5(2048 X% — 4608X* +37X?% + 12).

The polynomial D has 5 real roots; let a be the smallest one, characterized
by its Thom code. To compute the behaviour of the curve C to the right of
the vertical line X = «, the polynomial A is considered as a polynomial in
the variable Y with coefficients in Q(X):

A=Y*-2Y3 4+ Y%~ (3X?%)Y +2X*.

Next the field Q(X) is ordered by saying that X is bigger than « and smaller
than every rational number bigger than «. In this context the number of real
roots of A (Y being the unknown) in the real closure of Q(X) is equal to the
number of branches of C that touch to the right of the vertical line X = a.
In this case the number of real roots can be computed by determining the
principal Sylvester-Habicht coefficients of A and A’, considered as polynomi-
alsin Y, {hx(X)}kmo,...4; applying Recipe CRS;, we find that the number is



Chapter 6. Symbolic Recipes for Real Solutions 145

2. The conclusion is that there are two branches of C leaving from the right
of the vertical line X = «. Note that, to determine the sign of an element
q(X) € Q[X], it is sufficient to determine the sign of the first non-vanishing
derivative of ¢{X) when evaluated in a: so it is enough to apply Recipe SI.

The field Q(X), ordered as described before, is non-Archimedean since,
by definition, there are no rational numbers between & and X.

6. Quantifier Elimination

One of the main problems in Computational Real Algebraic Geometry is the
development of efficient Quantifier Elimination algorithms. Tarski’s Theorem
assures that, for any quantified formula on sign conditions of polynomials, it
is possible to construct algorithmically a quantifier free formula equivalent to
the initial one. For example,

dzeR 22+br+c=0 — b% — 4¢ > 0.

As this problem, in its more general form, is well known to be unsolvable in
polynomial time (see [13]), one way of attacking this problem is the isolation
of specific and particular cases where efficient algorithms can be applied. In
this context, the word efficient does not mean polynomial time: we search
algorithms, methods, and criterions allowing us to perform Quantifier Elim-
ination on formulae with a fixed structure and low degrees of the involved
polynomials (see for example [28], [27] or [47]).

In this section, some recipes are presented according to this methodology:
easy to describe methods performing Quantifier Elimination on formulae with
a prescribed structure. The first case to be considered is possibly the easiest
one: one quantifier and one equation or inequality (following [21]).

Proposition 6.1. Let d be a positive even integer and
Ad(g,X) = X¢ + ad_le_l +...4+a1X + ag.
Put

Hy: VYV Aia,xz)>0,
eq: Jz A4la,z)=0,
Ag: Fz A4la,z) <0
Then:
Hd — D([Syha'd(Adv A:i)» v 7Syha'0(Ad7 A:i)]) = Oa
eq = D([syhay(Ad4, Ay), - - - ,syhag(Aq, 43)]) > 0,
dj2—1 ~
N2
Aa =\ D(Hsyhay(Ra;, Ry (AT ™) Vosksadl) >0,
=1
with

2j—2

Rij =Y (AP (@)
k=0



146 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Tryjillo

Conditions equivalent to Hy and ey are presented as a union of basic semi-
algebraic sets obtained by regarding all the 342 possible sign conditions over
the polynomials syha;(A4, A);) and keeping those making 0 (for Hg) or > 0
(for e4) the function D. The situation for Ag is similar but a little more
complicated.

Example 6.2. For the first nontrivial case, d = 4, the formula Hj is equivalent
to the union of the following 9 semi-algebraic basic sets:

[>0,<0,>0] U [<0,>0,>0] U [<0,<0,>0] U
u [<0,=0,>0] U [<0,=0,<0] U [=0,>0,<0] U
U [=0,<0,>0] U [=0,=0,>0] U [<0,=0,=0],
with [72, 71, 70| denoting the semi-algebraic set defined by S2720, 51710, So700,
and where the polynomial S; is defined as follows.
Sz = 3a§ - 8a2
S; = 2a2a% - 8a2 + 32aza0 + ajazas — 12a%ag — 6a1a3 — 36a2
So = —27a% — 4a3a3 + 18aza3a3 — 6a3aga? + 144aza0a? + a%a2a?
—4a3a? — 192aza2a; + 18apazada; — 80apaaza; + 256a3
—27a5a3 + 144aza3a2 — 128a2a2 — 4a3a3ag + 16ajae.
The previous description for H4 can easily be reduced to the following
one.
[<0,#0,>0]U[=0,<0,>0]U[>0,<0,>0] U[=0,>0,<0]U
U[Sz < O,Sl = 0] =

[<0,#0,>01U[=0,<0,>0]U[>0,<0,>0]U[S2<0,5 =0].
The last simplification is due to the following fact:
3a
8
For e4 we get the union of the following 16 semi-algebraic basic sets:
[>0,>0,>0]U[>0,>0,<0]U[>0,<0,<0] U[<0,<0,<0]U
[>0,=0,>0]U[>0,=0,<0]U[=0,>0,>0]U[=0,<0,<0]U

[=0,=0,<0]Uu[>0,>0,=0]U {>0<0_0] U[<0,<0,=0]Ju
[=0,>0,=0]U[=0,<0,=0]U[>0,=0,=0] U[=0,=0,=0].

Sp=0 = ay= S = —(16a; +a3)? <0.

The same strategy as for Hy allows us to obtain a simplified description:
es=[92=0,8 <0]U[>0,<0,<0]U[<0,<0,<0]U[S2>0,8 >0].

Finally, we remark that a set appearing in this description for H; or ¢4 may
be empty.



Chapter 6. Symbolic Recipes for Real Solutions 147

One natural generalization of the previous case is the following Quantifier
Elimination problem:

A zxgl—’rQl(t,xl,...,xk) =0
Ao :.’L'22+Q2(£,.’L'1,...,.’Ek) =0
JdxeR,...,Jzr €R .

Ap = o + Qi(t, 21, .., 21) =0,

where every Q;(t, X1,...,Xx) is a polynomial in Z[t, X1, ..., Xk] with to-
tal degree (in the X’s) smaller than d; and t = (¢1,...,tx). This kind of
polynomial system is usually called a Pham System. The restriction on the
structure (and number) of the polynomials in the system is due to the need
of controlling the Grébner basis of Ajp,...,Ax. In this situation, for any
specialization of the parameters t, the set {A4;,..., Ax} is a Grobner ba-
sis with respect to the total degree ordering, and the monomials X{** - - - X%
(0 < @y < d;,1 €1 < n) give the basis A of §3. This allows us to construct
the trace matrix Tr whose entries will be polynomials in the parameters ¢t and
thus:

Jz1€R---Fzx € R Ai1(z) =0A ... A Ak(z) =0 < signature(Tr) > 0.

The problem has been reduced to parameterizing, or finding a closed ex-
pression, for the signature of a symmetric matrix depending polynomially on
several parameters. This can be accomplished using Proposition 3.2.

Example 6.3. For the Pham System

A1 = X2+ ui X1+ i Xo +wy,
Az = X2 + ua X1 + 12 X2 + wo,

the monomial set A is
A= {17X17X27X1X2}
and the trace matrix has the following form

Soo S0 So1 Su
S0 S0 Su Sa

Tr =
So1 S11 Soz Si2 )’
S11 S21 Si2 Sz
ith
wit Soo = 4
So1 = —2vo
S10= —2u

S20 = 2u% + 2v1vp — 4dun

Su = 3U1U2 + vou1

So2 = 2ugu + 21)% — 4ws

Si12 = —2ugu? — Sugu vz + dugw, — viu; + 2waus

Sa1 = —Bujviug — vou? — 2v1v2 + dvywe + 2vown

Saa2 = Bugu;v1vg + ulvd — 2ulwy + Jvful — 6v VoW,
—6ugu w; - 2w1v3 + dwwe + 2ugud + 2v,03.



148 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

The signature of this symmetric matrix determines the solution of any Quan-
tifier Elimination on the polynomial system of equations

Al(.’L'l,.’L'z) = 0, A2(.’L'1,.’L'2) =0
via its characteristic polynomial.

This approach tends to generate very complicated expressions when com-
puting the characteristic polynomial (see the example below). A way of avoid-
ing this problem was proposed in [22]; it involves changing the set A, in such
a way that Tr obtains a Hankel structure, resulting in a much easier signature
parameterization.

Ezample 6.4. For the Pham System
A=X%24bX+c,

the monomial set A is

A={1,Xx}

and the trace matrix has the following form.

_ (S0 Swo)_[ 2 —b
Tr_(slo Szo)_(—b b2—2c)

The use of Proposition 3.2 for the characteristic polynomial of Tr,
| A2 4 (2¢ — b2 — 2)X + (b2 — 4c),

provides the following characterization for the different values of the signature
for &
signature(Tr) =2 <> 2c — b2 —2< 0,62 —4c > 0
signature(Tr) = 1 <=>2c —b* =2 < 0,62 —4c =0
20—b2-2=0, b2 —4c>0 or
20— -2>0, b —4c<0 or
signature(Tr) =0 <= ¢ 2c—b*-2<0, b2 —4c< 0 or
2c—-82-2=0,4%2—4c<0 or
2c—b°-2=0, b> —4c=0.
Two cases have been removed since they provided negative signature. Here it
is easy to work out the above formulae and find the simpler result, but in gen-
eral this is a very complicated problem. Fortunately, the matrix Tr is Hankel
and its signature is uniquely determined by the sign of its principal minors:
2 and b? — 4c. In this particular case, the signature of Tr is equal to the dif-
ference of the number of sign variations and the number of sign permanences
in {1,2,5% — 4c}. Thus, the classical result is obtained automatically:

' 2 if*—4c>0
signature(S;) = ¢ 1 ifb2 —4c =0
0 ifb®—4c<O.
The extension of this Hankel approach to a general Pham System can be
found in [22].



Chapter 6. Symbolic Recipes for Real Solutions 149

We end this section by showing how to test the emptiness of a hypersurface
in R*, i.e., how to perform Quantifier Elimination on the formulae

dz,eR,...,3zx €R P(z1,...,xx) =0,

where P is a degree d polynomial in Z[X}, ..., X]. First, let Xx4; and 2 be
new variables such that R[f2] is ordered by assuming that 1/2 is infinites-
imal: positive and smaller than every positive rational number. Next, the
polynomial P is deformed in the following way

k+1 2
P+ Q=P+ (fo—r)?)
i=1

with Q € Z[2][X4, ..., Xk|. Next, a new variable ¢ is introduced such that ¢
is infinitesimal with respect R[f2] and a new deformation is performed:

k
Q~ R=(1 —C)Q+C(fo(d+1) + XS, - (k+ 1)(Q+1)2(d+1)).

i=1

According to [42], the hypersurface R(X1,..., Xx+1) = 0 in L**+! is smooth
and bounded by 2+1, where L denotes the real closure of R(f2, ). Moreover,
the set S of critical points with respect to X; of this hypersurface

R([2,¢];x1,. .-, Tk41) =0

OR

T&([Q’C],Xl’ ce an+1) =0
OR :

an+1(['QaC];X1,.. '7Xk+1) =0

is finite since the previous polynomial system is a Pham System. Their so-
lution in L**! and the consideration of { — 0 provides the answer: if there
exists a real solution in L¥*! such that the limit for { — 0 exists, then our
initial hypersurface is nonempty.

7. Appendix: Properties of the Polynomials in the
Sylvester-Habicht Sequence

This appendix is concerned with technical details and proofs of some results
in §2.



150 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo
7.1 Definition and the Structure Theorem

Polynomials in the Sylvester-Habicht sequence of (A, B) are polynomia.lé
which are proportional to polynomials in the remainder sequence of (A4, B)
but have better properties such as bit size control and good behaviour under
specialization. They are defined through determinants and obtained by a sign
modification from the subresultant sequence of (A, B). For an integer d > 1,
we call (A, B) a (regular) d-couple if d = deg A > deg B. If d is clear from
the context, we speak simply of a regular couple.

Remark 7.1. We shall assume d = deg A > deg B throughout this section. If
(A, B) is not a regular d-couple, we can replace B by B; = Rem(a2*B, A),
where 2¢ is the smallest even number > ¢ — d + 1. This does not modify the
Cauchy index. In general, we define the sequence H;(A, B), for j =0,...,d,
by H;(A, B;) if ¢ = deg(B) > d.

Let D be a domain, K its quotient field. For a regular d-couple (A, B)
in D[X] and j < d — 1, let the j-th Sylvester matrix of (A, B), denoted by
syl; = syl; (A, B), be the matrix whose rows are the coefficient vectors of the
polynomials

AX3277 AX93-i .  AX,A,B,BX,...,BX% %I Bxi-1-i
with respect to the monomial basis
) S D Gt S VNS & §

This matrix has 2d -1 -2j = (d—1—-j)+ (d—j) rowsand 2d — 1 — j
columns. If

A = adXd+ ad_le“l +ad_2Xd—2 + -+ ag,

B = ba—1 X%+ bg 2 X972+ -+ b

(allowing top terms of B to vanish), then syl; has the shape

Qg e e e e oag
d—1-3j
g e e eee eeeag
syl; = baoi - oo oo by
L T d—j
Nbar - by - b )
2d—1—j

and is a submatrix of the full Sylvester matrix syl, = syl,(4, B).

Remark 7.2. We name the rows by the corresponding polynomials AX™ (re-
spectively, BX?) and the columns by the corresponding monomials X*. For
instance, the first column is the X34-3-J.column.



Chapter 6. Symbolic Recipes for Real Solutions 151

For £=0,...,2d — 2 — j, let syl; , = syl, ,(A, B) be the square matrix of
dimension 2d — 1 — 25 obtained by taking the first 2d — 2 — 25 columns of
syl; (the ones indexed by X24~277 X2d-3=3 . XJi*1) and the X*-column
of syl;.

The Sylvester-Habicht sequence of a d-couple (A, B) is the sequence

Hy=Hy(A,B),...,Hy = Hy(A, B)
defined as follows.

© HdzA,

J
0H3=§:®uwgaxf ifo<j<d-1.

£=0
Notice that Hg_1 = B. (Formally, we add the definitions H_; = 0, and
deg(0) = —1, 1¢(0) = O for the degree and leading coefficient of the zero
polynomial.) The sequence of principal Sylvester-Habicht coefficients

ha = ha(A, B),. .., ho = ho(A, B),

is defined as h; = coeff;(H;), the formal leading coefficient of H; for 0 <
J < d (with the extension h_; = 0). If h; = 0, the polynomial H; is called
defective. So h; # 0 boils down to saying that (H;, H;_1) is a regular j-couple.

Remark 7.3.

1. For reasons of signs we consider the Sylvester-Habicht. polynomials (cf.
[18], [19], [20]) rather than the usual subresultants. The corresponding
factor of proportionality (—1)(¢~7)(4-7-1)/2 js accomplished by the above
permutation of the BX?®-rows in the definition of the j-th Sylvester ma-
trix. So for a d-couple (A, B), the Sylvester-Habicht sequence results from
the subresultant sequence by multiplying the two starting subresultants
A and B by +1, the next two by —1 (no matter whether non-defective,
defective, or vanishing), and so on. Furthermore, this permutation of the
rows has organizational advantages when syl;_, is considered as subma-
trix of syl;; one only has to add a first and a last row in order to get
syl;.

2. For reasons of uniformity in the degree of B (and for simpler recursions),
we consider throughout the Sylvester-Habicht polynomials with respect
to a degree pattern (d,d — 1), even if deg(B) < d — 1.

3. The initializing definition hqy = a4 differs from the tradition but appears
more natural to us.

Remark 7.4. Let £; = X;(A, B) be the (2d—1—25) x (2d —2—2j) east block
of the matrix syl; on the columns of X 24-2-7, X2d=3~7  X7+2 Xit+1 The
matrix X; defines a linear form o; = 0;(A, B) given by 0;(£) = det(X;,&)
for ¢ € D34-1-% which is orthogonal to these columns. This linear form o;

is nonzero if and only if the rank of X; takes its maximal value 2d - 2 — 2j; in



152 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

this case its extension to K2¢71~2J is uniquely determined up to a nonzero
factor in K by this orthogonality property. The coefficients coeff, (H;) of H;
are the values of o; on the X”-column. Therefore,

2d—2—j
H; = Zdet syl; )X Z det( syl]e
d—2-j d—1-j3
= Y w, AX"+ > v, BX
r=0 t=0

d—2—j d—1—j
= ( > uj,,XT> A+ ( Uj,txt> B
r=0 =0

t
= U;-A+V;-Be€(A,B)D[X],

where the coefficients u; » = u; (A, B) and v;; = v;+(A, B) of the polynomi-
als U; = U;(A, B), V; = V;(A, B) € D[X] of the extended gcd like expression
for H; at the right hand side (also known as a Bézout relation) are, up to
sign, the maximal minors of X; (that is, the coefficients of the linear form
ag j).

Now we are going to make the relation between the Sylvester-Habicht
polynomials and remainders more precise. The main property of the Sylvester-

Habicht polynomials is the following Structure Theorem, which is a refine-
ment of the famous Subresultant Theorem (cf. [6, 7, 8, 15, 18, 25, 29, 33, 38]).

Theorem 7.5 (Structure Theorem). For a d-couple (A, B) of polynomi-
als in D[X]|, D a domain with quotient field K, the polynomials in the
Sylvester-Habicht sequence Hy, ..., Hy are either K -proportional to the poly-
nomials in the signed remainder sequence Sy°,...,8y", or zero. Putting
j = deg Sy* and k = deg Sy*t! for i < w, one has the K-proportionalities
Sy* ~k Hj,
Sy**t! ~x H;_1 ~k Hy.
Furthermore, writing c;_, = coeffx(H;_,) for the leading coefficient of H;_1,
the following relations hold.
1. If j = d, then
hi = (“1)U=RU=k=D/2 o, | (g;_1hy) 7R 1.

Ifj < d, then

. F—k-1
hy = (~1)G-RG=k-D/2 ¢, . (E.Ll) )



Chapter 6. Symbolic Recipes for Real Solutions 153
/

2. Hy=0fork<f<j—1.
3. a)Let k > 0. If j =d, then

Hk—l = —Rem(hk . Cj—l . Hj7Hj—1);
if j <d, then
h? - Hi_1 = —Rem(h - cj_1 - Hj, H;_1).

b) These are exact signed Euclidean divisions in D[X].

Remark 7.6.

1. The values of j with h; # O are precisely the degrees of the polyno-
mials in the signed Euclidean remainder sequence. The vanishing of the
intermediate Sylvester-Habicht polynomials is the famous gap structure
described in §2.3.1.

2. When j < d and H;_; is non-defective, that is, when k = j — 1, then
hj_1 = cj_1 = hy and the exact signed Euclidean division in 3 becomes
Habicht’s generic division formula h? “H; 5 = —Re,,m(h?_1 -H; H;_1)
(cf. [25]).

3. When H;_, is defective, the preceding result is a strict improvement of
the classical Subresultant Theorem.

4. Defining hq = h3', h; = h;, as in Algorithm SyHa, the formulae in the
Structure Theorem can be unified for 0 < 5 < d by

a)

j—k—1
hi = (~1)U=RG=k=D/2 o (cfl) ,
h;
b) Hy=0for k<f<j—1,
¢) for k>0,

hjﬁj . Hk—l = —Rem(hk cCj—1- Hj, Hj_l).

As an immediate consequence of the Structure Theorem, and of the re-
mark above, we get the correctness of Algorithm SyHa.

Corollary 7.7. Algorithm SyHa computes the Sylvester-Habicht sequence
of A and B.

Corollary 7.8. Algorithm SyHa outputs polynomials in D[X]|. When ex-
ecuted as indicated in Remark 2.15, all its intermediate computations take
place in D[X]. If A and B are polynomials in Z[X| with coefficients of bit
size T (with 7 > log(p+1)), the output and intermediate computations of the
algorithm are polynomials with integer coefficients of bit size at most O(pr).

Proof. This is an immediate consequence of Hadamard’s inequality on the
size of determinants, see §3 of Chapter 3 or [34].



154 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo
7.2 Proof of the Structure Theorem

Apart from Statement 3b) on the exact signed Euclidean division, which we
shall prove at the end of this section, the proof of the Structure Theorem 7.5
will follow from the subsequent two lemmas. For technical reasons we modify
the remainder of the Euclidean division

A =Quo(A, B) - B+ Rem(A, B)

of a couple (A, B) of nonzero polynomials in K[X] with deg A > deg B by

multiplying this equation by _i—A The Gaussian remainder Gau(A, B) is
defined as

Gau(4,B) = ( idj) Rem(A, B)

leB ch
Note that

Gau(aA,bB) =b- Gau(A, B) for nonzero a,b € K (7.1)

(while Rem(aA,bB) = a - Rem(A, B) for nonzero a,b € K) and that the
cofactor of B in the above Bézout relation for the Gaussian remainder is
monic. The latter property is characteristic of the Gaussian remainder se-
quence Gy, . ..,Gy, which is recursively defined by G;+1 = Gi+1(4,B) =
Gau(G;_1,G;) with starting conditions Go = A and G; = B

Lemma 7.9. Let (A, B) be a d-couple of nonzero polynomials in K[X] with
Gaussian remainder sequence Gy, ...,G,,. Then there is a polynomial A; €
K|[X] of degree di — d; and a monic polynomial B; € K[X| of degree do — d;
(where d; = deg R; = deg G;) such that

Gi+1 :A1A+B1B
fori=20,...,w—1.
Proof. Induction on 3.

The monic cofactor of B in the above Bézout relation for G;,, allows us to
perform a unimodular row manipulation (with determinant one) in the matrix
syl, which replaces some of the BX®-rows by certain G;,) X'-rows. Since the
maximal minors of syl, remain unchanged, we can conveniently analyze the
coefficients of the Sylvester-Habicht polynomials in the gap situation and
bridge the gap.

We define by = h7! and for j = d;, k = di41 two consecutive degrees of
polynomials in the Sylvester sequence



Chapter 6. Symbolic Regipes for Real Solutions 155

j—e—1
T (_1Y—f1. . .. -1’
hg—( 1) C]_l =
h;

for k < £ < j. Note that, in the usual case, for j < d, h; = h;.

Lemma 7.10. Assume degH; = j > degH;_1 = k andd; = j > diy1 =
degG;+1. Then the following hold.

1. Hi_y =aq-h;-Giy1 (s0 dix1 = k and 1cGiy1 = acj_ﬁ ),
d-hy

2.Hy=0fork<f<j—1, _

3. Hp= (-=1)G—k)—k=1)/2. afi_k Ry - (1CGL+1)J'—k—1 - Gis1,

4. hy is a maximal minor of syl, and hx = hy.

Proof. Assume first that j < d and h; = h;. We consider the ¢-th Sylvester
matrix syl, for 7 > £ > k and replace the rows of

BXd4-i Bxd-i+l x4t pxd-1-¢

by the rows of Giy1,Gin1X,...,Giz1 X7 %7€ G;11 X714, By Lemma 7.9
this new matrix results from syl, through row manipulations with determi-
nant one (adding successively linear combinations of previous rows to the
rows of BX4~J BXd—i+l  BXd-2-¢ BXd-1-¢ of syl,) and has the fol-
lowing shape:

T
I
I
I
I
I
|
|
I
I
I
I
I
I
|
I
I
I
0 1
|
I
|

— - - - -} - Y- - —— — — ]

4 I + II + I+ IV  + A% +

where the top parallelogram comprises the rows of
AXd-27¢ pAxd-3-¢ AXdI AXxd1d

the two middle parallelograms together correspond to the j-th Sylvester ma-
trix syl; and comprise the rows of

AX4™23 AX4-33 L AX,A



156 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

and of ‘ _
B,BX,...,BX% % px4-1-J

and finally the bottom parallelogram comprises the rows of
Git1,Gin1 X, .., Gipn X777, G X9 7174
furthermore, for the vertical stripes,

I  is the block of the columns of X2d-2-¢ X2d-3-¢ = x2d-j x2d—-1-j
II  is the block of the columns of X2d-2-J X2d-3-j  XJi+2 xj+1

III is the block of the columns of X7, X9-1 ..  Xi—(E-k)+1 xj-(t=k)

IV  is the block of the columns of XJ~(~k)-1 xi-(t=k)-2 xk+1 xk
V s the block of the columns of X*~1 X*=2 . X 1.

Note that the upper triangular (j — £) x (j — £) north block of stripe I has on
its diagonal the element aq4, the middle (2d — 1 — 2j) x (2d — 2 — 2j) block of
stripe II is the matrix X; (see Remark 7.4), stripe IIl has a (j—¢) x ({—k+1)
null south block, and that the (7 — £) x (5 — £) south block of IV has on its
anti-diagonal always the element lc(Gi41).

1. For j — £ =1, the linear form o4 = 0;_, is nonzero since aq - h; # 0, and
we find from the shape of the above matrix that H;_; = aq- h; - Giy1,
which can only be zero if G;1 = 0, that is, if # = w, or in other words,
if k=diy; = —1.

If K = —1 all linear forms o, are null for £ < j since the bottom parallel-
ogram of the above matrix is null, so we assume k > 0 in what follows.

2. For j—£>2and {—k+1 > 2, the null south block of III shows that the
columns of I, II, and the first two of III (that is, the columns of X7, XJ+1)
are linearly dependent. So the same columns of X, are dependent, and
the linear form oy is zero. Thus Hy =0fork < £ < j — 1.

3. For £ = k, stripe III consists of just the X7-column and the shape of the
above matrix shows that

Hy = (-1)U=RU—*=0/2 g3=% . 1e(Gin )T ™% - i

4. By the first statement c;_;/h; = ag - 1¢(Git1), so he is the minor of
the columns of stripe I, stripe II, the first column of stripe III (the X7-
column), and the columns of stripe IV of the above matrix, and hence it
coincides with the same minor of syl,.

The case j = d is similar and left to the reader (consider syl, directly).

Proof (of the Structure Theorem 7.5). It remains to show the third item
in the Structure Theorem 7.5. Using Lemma 7.10 and relation (7.1) for the
Gaussian remainder we find



Chapter 6. Symbolic Recipes for Real Solutions 157

Hi_1 = aq-hg-Giz2 = aq- b - Gau(Gi, Giy1)
h _
= :_ﬁ . Gau(Gi, ad - hj . Gi+1)
h;
h
= 2*.Gau(H;, H;_)
h;
hi-c;_
= ——# . Rem(Hj,Hj_l).
hjh;
Thus, _
_hjthk—l = Rem(hk cCj—1 Hj,Hj_l);
o if j =d, then

Hk-l = —Rem(hk cCj—1- Hj,Hj-l),
o if § < d, then

h? . Hk-l = —Rem(hk *Cj—1" Hj,Hj_l).

The fact that this is an exact signed Euclidean division in D[X] will be
shown at the end of this section (Corollary 7.18).

Corollary 7.11. For a d-couple (A, B) in D|X] and j # deg(ged(A4, B))—1,
we have j <d—1,

H; =0 <<= 0; =0 <= rank(X;) < 2d—2— 2j.
For j = deg(gcd(A, B)) — 1, we have H; =0 and o; # 0.

The Bézout relations for the nonzero H; of Remark 7.4 are uniquely
determined through a certain degree condition on the cofactors U; and Vj;
we shall call them the polynomials of the j-th Bézout relation, that is, with
definite articles.

Proposition 7.12. For a d-couple (A, B) of polynomials in D[X] the poly-
nomials U; and V; in D[X] in the j-th Bézout relation

Hj:Uj'A'F‘/j’B

are uniquely determined by the degree restriction degV; < d —1—j for all j
such that H;(A,B) # 0. One has deg V; =d—1—j if and only if j = d or
H; ., is non-defective.

Proof. This is clear for j = d. For j < d, degV; < d — 1 — j implies the
validity of the additional degree bound deglU; < d — 2 — j. H; # 0 always
implies 0; # 0. Any such degree restricted Bézout relation for any nonzero
polynomial of degree < j uniquely corresponds to a linear form that is K-
proportional to o; (see Remark 7.4). If this polynomial coincides with Hj,
then the factor of proportionality is one. (In any case, if o; # 0, the pair
(Uy, V) is uniquely determined up to K-proportionality by the conditions
degVj<d-1-janddegU;-A+V;-B)<j)



158 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

Corresponding conditions make transition matrices unique; analogously
to the above, we shall speak of the transition matrices.

Corollary 7.18. Let 0 < j < d, let (A,B) be a d-couple and (C, D)
a j-couple of polynomials in K[X]|. Assume (C,D) to be elementwise K-
proportional to a couple of two consecutive signed Euclidean remainders of
(A, B), and suppose

M= (II{ i) € K[X]**?

is a transition matrix, that is,

(5)=(3)

Then the conditions degJ <d—1—j, D#0, and deg L < d — j imply that
the transition matric M = M(C, D; A, B) is unique, unimodular, and that
degL =d—3j.

If D = 0, an additional nonzero scaling of det M makes M unique with
these properties.

Proof. By the Structure Theorem 7.5 we may assume by a monomial scaling
that (C, D) = (Hj,Hj—l)- Then if Hj_l 7é 0,

U; V;
M= 7.2
(Uj—l Vj-l) ’ (72)

by Proposition 7.12. Another monomial scaling and the comparison with the
unimodular signed Euclidean transition matrix (cf. Definition 2.6) show that
M is unimodular with degV;_, = d —j . If H;_; = 0, then the second row
of M in (7.2) may be scaled arbitrarily. Passing to the generic situation first
shows that in any casedet M € K (a constant polynomial), and H; # 0 shows
det M # 0. (For j = 0 pass first to the generic situation of (d + 1)-couples
and consider j = 1.)

We fix a d-couple (A, B) of polynomials in D[X] and study the transition
between two regular couples of Sylvester-Habicht polynomials (H;, H;_1) and
(Hk,Hg_1), that is, both regular and 0 < k < j < d. If, moreover, H;_, ~x
Hj, then the pair of regular couples of Sylvester-Habicht polynomials is said
to be consecutive. For such a pair (k,7), 0 < k < j < d, we define the
Sylvester-Habicht transition matriz by

Nij= Nk,j(A, B) = M(Hy, H—y; Hj, Hj-1),

where M is defined by Corollary 7.13. We scale det Nj j = hi/h2 if Hy ) = 0
(this is motivated by the non-final transition; see the subsequent Lemma 7.14,
Proposition 7.15, and Proposition 7.16). By definition, we have



Chapter 6. Symbolic Recipes for Real Solutions 159

Hi H;
= Neji- [ 9.
(e, ) =% ()

Ne, = (Ul,k,j Vl,k,j)

Now write

Uskj Vaki

with entries in K[X]?*2. Note that Uy k,; = 0 in the consecutive case.
Generally, Ny ; is the product of all the intermediate consecutive Sylvester
transition matrices.
We have the following lemma.

Lemma 7.14. Let (A, B) be a regular d-couple of polynomials in D[X],
(Hj,H;_1) and (Hy, Hk_1) two consecutive regular couples of its Sylvester-
Habicht polynomials and 0 < k < j < d. Then the anti-diagonal entries of
the consecutive Sylvester-Habicht transition matriz

0 Vik,j
N . 2%}
kg (U2,k,j Va,k,j )

are:

hi hi-cj_1
Vik;j=——, Usp; =——=2"—.
Lk.j i1 2,k,j hjhj
So,
h2
det N, ; = —£—.
k.j 7

iy

Moreover, degVa . ; = j — k.

Proof. Immediate consequences of points 2 and 3a) of the reformulation of
Structure Theorem 7.5 in Remark 7.6.

Letd=dyp >d1 >...>j=d; > ... >d, denote the degree sequence
in the remainder sequence of the d-couple (A4, B). We consider the Sylvester-
Habicht transition matrix N; 4 = N; 4(A4, B),

Nj,d = Ndi:di—l Tt Ndx,do

of an ‘absolute transition’ satisfying

Hy \ _~ ( Ho \_n . (4
(i) =% (g, ) =% (5):

Proposition 7.15. Let (A, B) be a d-couple of polynomials in D[X], 0 <
j <d, and (Hj,H;_1) a regular couple of its Sylvester-Habicht polynomials.

Then U
, |7
Nig= J i,
s (Uj—l V,-_1>

where Uy, V3, U1, Vy-1 € D[X] are the polynomials of the j-th and (j—1)-th
Bézout relations.



160 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

Proof. By Proposition 7.12 and Corollary 7.13.
For a ‘relative transition’ one has the following result.

Proposition 7.16. Let (A, B) be a d-couple of polynomials in D|X], (H;,
H;_1) and (Hy, Hx—1) two regular couples of its Sylvester-Habicht polynomi-
als and 0 < k < j <d. Then

det Ni; = —%-,
7 hjhy

BN (Ve Ve ) (Vim Y
h]h] Nk’]—(Uk—l Vk-l) (_Uj—l U] ’

and therefose the elements of this scaled matriz lie in D[X].

Proof. The matrix Ny ; is the product of all intermediate consecutive Syl-
vester-Habicht transition matrices; so, by the multiplicativity property of
determinants and Lemma 7.14, det N ; = h2 /h;h;.

When j # d, the factorizations of Nj ; and of N; 4 show that we can in
fact write N ; = Nggq - N]fdl; so, by Proposition 7.16 and det N; 4 = hjﬁj,
the scaled matrix is in fact free of denominators.

Corollary 7.17. Vo ;= L“Zﬁj‘/’“—‘”&
Next, we deduce the exact divisibility stated in Structure Theorem 7.5.
Corollary 7.18.
—hi-cjo1-Hj = (Ug—1-V; — Vi1 -U;) - Hj_y + hjh; - Hy_y
is an eract signed Euclidean division for j < d.

Proof. The exact divisibility for j = d is obvious. For j < d, it is a conse-
quence of the preceding result.

We end this section with the proof of Proposition 2.16.

Proof. (of Proposition 2.16) The proposition is clear from the definition of
the polynomials in the Sylvester-Habicht sequence in terms of determinants.

A more detailed study of the specialization properties of the Sylvester-
Habicht sequence can be found in [19].



Chapter 6. Symbolic Recipes for Real Solutions 161
7.3 Sylvester-Habicht Sequences and Cauchy Index

We first prove Theorem 2.17, using the preceding Structure Theorem.

Proof. (of Theorem 2.17) We can suppose without loss of generality that
(A, B) is a regular d-couple. If z; < ... < z, are the real roots of the non
identically zero polynomials

H; =SyHa;(A,B) j€{0,...,d},

with h; = syha]-(A,B), we write g < T) < ... < Tr < Try1 With zg (re-
spectively z,,1) sufficiently small (respectively big). For every i € {1,...,r}
choose an element y; between z; and x;4,. Take yo = zo and y, = T,41.

We have the following equalities:

‘/SyHa(A, B) = ‘/SyHa(A7 B, ~OO) - VSyHa(A, B7 +OO)

= E[Vsyﬂa(A, B;yi—1) — Veyua(A, B; yi)],

i=1

which reduces the proof of the theorem to the study of the integer:
‘/SyHa(Aa B; yi—l) - ‘/SyHa(Aa B; yi)

for every i € {1,...,r}.

We remark that those polynomials in the list [Hy, ..., Hg], which are not
identically 0 do not vanish at any y; and that H,, the last polynomial which
is not identically O in the Sylvester-Habicht sequence, is a greatest common
divisor of A and B. Consequently, if  is not a root of A, Hy(z) # 0. The
proof of the theorem is based on the following lemmas.

Lemma 7.19. If A(z:;) #0 and H;_1(x:) = 0 with deg(H;_1) = j — 1,
then, fory € {y;_1,v:}:

sign(H;_2(y)H;(y)) = -1,
so that, if j < d — 1, then
V([Hj, Hj—1,Hj2);yi—1) = V([Hj, Hj_1, Hj—2];y:) = 1.

Proof. Since H;_1(z;) = 0 and Hy(x;) # 0, we have H;_2(z;) # 0. So apply-
ing identity 3 in Theorem 7.5 and using Remark 7.6 we get

hsh;H;_2 = —h?_ Rem(H,41, H;) = sign(H;_2(xs) Hj(z:)) = -1,

which implies, if j < d — 1, regardless of the sign of H;_;(y) with y €
{yi—l’ yt'}’

V([Hy, Hj-1, Hj-alsyi-1) = V([H;, Hj—1, Hy-a)sm) = 1.



162 L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo
Lemma 7.20. If A(z;) #0 and H;_1(x;) =0, withdeg(H;_1) =k <j-1,
then, fory € {yi—1,¥:}:
sign(Hy-1(y)H;(y)) = —sign(Hk(y)H;-1(y))
so that, if j < d — 1, then, fory € {y;—1,¥:}:

VUt ) =1 a0 <o

Proof. Again since Hy(z;) # 0, H;(x;) # 0. We denote by c;j_1 the leading
coefficient of H;_;. Applying Identity 3 in Theorem 7.5, and Remark 7.6
we get: hjﬁij_l(a:i) = —cj-1hgH;(x;) so that Hix_1(z;) # 0, and using
identity 1 in Theorem 7.5 we see that, for y € {y;—1,¥:}

sign(Hy_1(y)H;(y)) = —sign(Hx(y)H;—1(v)),

from which, looking at all possible cases, we derive:

2 if Hk_l(a:i)Hj(a:i) >0
1 if Hk_l(a:i)Hj(a:i) <0,

V([H;, Hj-1, Hy, He1];y) = {
so that in all cases
V([Hj, Hj—1, Hg, He-1];yi-1) = V([H}, Hj_1, Hy, He-1]; y3)-
Lemma 7.21. If i € {1,...,7} and A(z;) # 0, then
Vsyna(A, B; yi-1) — Vsyna(4, B;y;) = 0.

Proof. We note first that since A(x;) # 0, the signs of Hy, H, and Hy —with
Hi(x;) # 0- in y;—; and y; coincide. So, we need only know the behaviour of
the polynomials that are not identically 0 in the sequence when z; is a root
of some H;. The only two possibilities are the following.

1. j <d—1 with deg(Hj—1) = j — 1; deg(H;) = j and Hj;_1(z;) = O:
according to Lemma, 7.19,

V([H;,H;_1,H;_o);y;-1) = V([Hj, Hj_1, Hj—2]; 43).

2. j<d—-1 with k =deg(H;_1) <j—1,deg(H;) =j and H;_1(z;) = 0:
in this case, according to Lemma 7.20,

V([Hj, Hj-1,Hx, He—1]; yi) = V([Hj, Hj_1, Hg, Hx—1]; 9i-1)-
Thus, we conclude that if z; satisfies A(x;) # 0, it follows that
VSyHa(Aa B;yi—l) - VSyHa(Av B;yi) =0,

which is what we wanted to show.



Chapter 6. Symbolic Recipes for Real Solutions 163
Lemma 7.22. If i € {1,...,r} and A(z;) =0, then
Vsyra(A, B;yi—1) — Vsyna(A, By yi) = €,
(cf. Definition 2.1).
Proof. Let d = deg(A) > g = deg(B). Let £ be such that H, # 0, H; = 0 for

every j < £. We define a new sequence K = [Ky_¢, ..., Kg] of polynomials:
let H be the monic polynomial proportional to H, and define

K;=H;/JH je{o,...,d—1¢}.

The first observation is that the Cauchy index of Ky ¢/Kgq_¢—1 coincides
with the Cauchy index of B/A. Clearly we also have

V([Ka-e,--.,Kol;y) = V(Ha, ..., Hil;y)

with y € {y;,yi-1}-
For every j in {0,...,d— £ — 1} we define

d] = hj+g.

Then for every j € {0,...,d—£} such that d; # 0 and deg(K;_1) =k < j—1,
the sequence K has the following properties, denoting by cj_; the leading
coefficient of K;_;:

1. C;'_lKk = dkKj_l,
2. ifk<l<j—2,then K, =0,

3. d?Kk_l = —c;-_ldkRem(Kj,Kjﬁl),

as an easy consequence of Theorem 7.5, given the definition of K.
We can write:

AX)=(X —z:)°p(X)  p(zi) #0,
B(X)=(X —z:)fq(X)  q(z:) #0,
and we only need to study two cases:

1. f > e. In this case K4_4(x;) # 0 and we can proceed as in Lemma 7.21
using the properties of the polynomials in the sequence K which are the
same as the polynomials in the Sylvester-Habicht sequence.

2. f < e. In this case Kg—¢(z;) = 0 and Kq—¢—1(z;) # 0. Proceed-
ing as in Lemma 7.21 and using the properties of X, we conclude
that V([Ka—e-1,..., Kol;4i-1) — V([Ka—gy-1,---, Ko|;3:) = 0. So we
only need to study V([Kq-¢, Ka—e—1]; ¥i-1)—V ((Ka—s, Kq—¢—1]; ¥:) when
Kgg-1(zi) # O

Kao(X) = (X —z:)* p(X)  p(z:) #0,
Kye(X) =q(X)  gqlzi) #0,



164 L. Gonzalez-Vega, F.Rouillier, M.-F. Roy, and G. Trujillo

which gives, with a look at all possible cases,
V([Ka—t, Ka—e-1];%i-1) = V([Ka—e, Ka_o-1];4i) =

0 ife—fiseven
=< 1 ife— fisodd and p(z;)q(z;) >0 » = ¢&4,.
—1 if e— f is odd and p(z;)g(z;) <0

This ends the proof of Theorem 2.17.
We now prove Proposition 2.20, using again the Structure Theorem.

Proof (Proof of Proposition 2.20). We denote H; = SyHa;(A, B) and h; =
syha;(A, B). If all of the polynomials in the Sylvester-Habicht sequence as-
sociated to A and B are regular (i.e., their index in the Sylvester-Habicht
sequence is equal to their degree), then it is clear that:

I(B/A) = VsyHa(4, B)
= V([(_l)dhd7 (_l)d-lhd*l, ceey —‘h’l, ho]) - V([h’d7 sy h17 ho])
= D([ho,--.,hd]).
where V' denotes the number of sign variations in the considered list.
Problems arise when there are defective polynomials in the Sylvester-
Habicht sequence, i.e., when there appears some h;_; that is equal to zero.
In this case, the principal Sylvester-Habicht coefficient is not the leading

coefficient of H;_;. Denote as usual by k the degree of H;_;. The situation
is as follows:

hj #O,hj“1 =0,...,hge1 =0k # 0.
We need to prove the following equality:

r ¥ V([Hj, Hj—1, Hx]; —00) — V([H}, Hj-1, Hi]; +00)

0 if j — k is even

a
=

€
=g =

(-1)U—k=1)/2 . sign(hgh;) if j ~ k is odd.

Applying Theorem 7.5 to this situation, we first notice that H;_; and Hy
are proportional, so that sign(H;_1H,+00) = sign(H;_1Hg, —00). We de-
note by o;, 0;_1 and oy, respectively, sign(H;, +00), sign(H;_1,+00) and
sign(Hg, +00).

o When j — k is even, the sequence of signs of [Hj, H;j_1,Hi] at +o00 is
[0j,05-1,0k] and at —oo is [0;,0;_1,0k] when j is even (respectively
[-0j, —0j—1,—0k| when j is odd), which implies that 7 =0 when j — k is
even.



Chapter 6. Symbolic Recipes for Real Solutions 165

o When j — k is odd, the sequence of signs of [Hj, H;_1,Hj] at +oo is

[0j,05-1,0k] and at —oo is [0, —0;_1,—0k] when j is even (respectively
[—0;,0-1,0%] when j is odd). Also, using Theorem 7.5, 1, we see that

)gz—knj—k—q
2

so that o = sign(hkh;), when (j — k — 1)/2 is even, because

(_1) f.‘i—k)(,zz'—k—lz

?

and o = —sign(high;) when (j — k — 1)/2 is odd, because

J—k)(j—k—1

(-1) =1

The equality between o and 7 is now obtained in all cases:

o if j —k is even, then 71 =0 =0,
o if j—kisodd and (j — k — 1)/2 is even, then 7 = o = sign(hxh;),
o ifj—kisodd and (j — k —1)/2 is odd, then 7 = o0 = —sign(hih;).

References

10.

. Basu, S., Pollack, R., and Roy, M.-F. (1996): On the combinatorial and algebraic

complexity of Quantifier elimination. J. Assoc. Comput. Machin. 43, 1002—
1045.

Becker, E.: Sums of Squares and Trace Forms in Real Algebraic geometry.
Cahiers du Séminaire d’Histoire des Mathématiques, 2 éme série, Vol. 1 (1991),
Université Pierre et Marie Curie.

Becker, E. and Woermann, T.: On the trace formula for quadratic forms. Ja-
cob, William B. (ed.) et al., Recent advances in real algebraic geometry and
quadratic forms. Proceedings of the RAGSQUAD year, Berkeley. Contemp.
Math. 155, 271-291 (1994).

Ben-Or, M., Kozen, D., and Reif, J. (1986): The complezity of elementary al-
gebra and geometry. J. Comput. Syst. Sci. 32, 251-264.

Bochpak J., Coste, M., and Roy, M.-F. Géométrie algébrique réelle (1987):
(Real algebraic geometry). Ergebnisse der Mathematik und ihrer Grenzgebiete.
3. Folge, Bd. 12, Springer-Verlag, Berlin Heidelberg New York.

Brown, W.S. (1971): On Euclid’s algorithm and the computation of polynomial
greatest common divisors. J. Assoc. Comput. Machin. 18, 478-504.

Brown, W.S. and Traub, J.F. (1971): On Euclid’s algorithm and the theory of
subresultants. J. Assoc. Comput. Machin. 18, 505-514

Collins, G.E. (1967): Subresultants and reduced polynomial remainder se-
quences. J. Assoc. Comput. Mach. 14, 128-142.

Collins, G. E. (1975): Quantifier elimination for real closed fields by cylindrical
algebratc decomposition. Autom. Theor. form. Lang., 2nd GI Conf., Kaiserslau-
tern 1975, Lect. Notes Comput. Sci. 33, 134-183.

Collins, G.E. and Loos, R. (1982): Real zeroes of polynomials. Computer Alge-
bra, Symbolic and Algebraic Computation, Comput. Suppl. 4, 83-94.



166

11.

12.

13.
14.
15.

16.
17.

18.

19.

20.

21.

22.
23.
24.
25.

26.

27.
28.

29.
30.

31.
32.

33.

L. Gonzalez-Vega, F. Rouillier, M.-F. Roy, and G. Trujillo

Coste, M. and Roy, M.-F. (1988): Thom’s lemma, the coding of real algebraic
numbers and the computation of the topology of semi-algebraic sets. J. Symb.
Comput. 5, No. 1/2, 121-129. )

Cucker, F., Gonzalez-Vega, L., and Rossello, F. (1991): On algorithms for real
algebraic plane curves. Effective Methods in Algebraic Geometry, Proc. Symp.,
Castiglioncello/Italy 1990, Prog. Math. 94, 63-87.

Davenport, J. and Heintz, J. (1988): Real Quantifier Elimination is Doubly
Ezponential. J. Symb. Comput. 5, No. 1/2, 29-36.

Demazure, M. (1985): Charles Hermite: déja ... . Notes informelles de calcul
formel VII. Ecole Polytechnique.

Ducos, L. (1996): Algorithme de Bareiss, Algorithme des sous-résultants.
RAIRO, Inf. Theor. Appl. 30, No. 4, 319-347.

Gantmacher, F. R. (1966): Théorie des matrices. Vol. 2, Dunod.

Gonzalez Vega, L. (1989): La sucesidn de Sturm-Habicht y sus aplicaciones al
Algebra Computacional. Doctoral Thesis. Universidad de Cantabria.
Gonzalez-Vega, L., Lombardi, H., Recio, T., and Roy, M.-F. (1989): Sturm-
Habicht sequence. Proceedings of ISSAC-89 (Portland), 136-146, ACM-Press.
Gonzalez-Vega, L., Lombardi, H., Recio, T., and Roy, M.-F. (1994): Specialisa-
tion de la suite de Sturm et sous-resultants (Specialization of the Sturm sequence
and subresultants). I) RAIRO, Inf. Theor. Appl. 24, No. 6, 561-588 (1990). I1.)
RAIRO, Inf. Theor. Appl. 28, 1-24.

Gonzalez-Vega, L., Lombardi, H.; Recio, T., and Roy, M.-F. (1998): Deter-
minants and real roots of univariate polynomials. Quantifier Elimination and
Cylindrical Algebraic Decomposition (B. F. Caviness and J. R. Johnson, eds.),
Texts and Monographs in Symbolic Computation, 300-316, Springer-Verlag,
Wien New York.

Gonzalez-Vega, L. (1996): A combinatorial algorithm solving some quantifier
elimination problems. Quantifier Elimination and Cylindrical Algebraic Decom~
position (B. F. Caviness and J. R. Johnson, eds.), Texts and Monographs in
Symbolic Computation, 365-375, Springer-Verlag, Wien New York.
Gonzalez-Vega, L. (1996): A special quantifier elimination algorithm for Pham
systems. Preprint, Santander.

Grigor'ev, D. Yu. (1988): Complezity of deciding Tarski algebra. J. Symb. Com-
put. 5, No. 1/2, 65-108.

Grigor’ev, D.Yu. and Vorobjov, N.N. (1988): Solving systems of polynomial
inequalities in subezponential time. J. Symb. Comput. 5, No. 1/2, 37-64.
Habicht, W. (1948): Fine Verallgemeinerung des Sturmschen Wurzelzaehlver-
fahrens. Comment. Math. Helv. 21, 99-116.

Heintz, J., Roy, M.-F., and Solerno, P. (1990): Sur la complezité du Principe de
Tarski-Seidenberg (On the complezity of the Tarski-Seidenberg principle). Bull.
Soc. Math. Fr. 118, No. 1, 101-126.

Heintz, J., Roy, M.-F., and Solerno, P. (1993): On the theoretical and practical
complexity of the existential theory of the reals. Comput. J. 36, No. 5, 427-431.
Hong, H. (1993): Quantifier elimination for formulas constrained by quadratic
equations via slope resultants. Computer Journal 36, 5, 439-449.

D. Lazard (1997): Sous-résultants, unpublished manuscript, Paris.

Lickteig, T. and Roy, M.-F. (1996): Cauchy index computation. Calcolo 33,
337-351.

Lickteig, T. and Roy, M.-F. (1997): Sylvester-Habicht segquences and fast Cauchy
index computation. Preprint, Rennes.

Lombardi, H. (1989): Algébre Elémentaire en temps polynomial. Doctoral The-
sis, University of Nice.

Loos, R. (1982): Generalized polynomial remainder sequences. Computer Alge-
bra, Symbolic and Algebraic Computation, Comput. Suppl. 4, 115-137.



34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Chapter 6. Symbolic Recipes for Real Solutions 167

Mignotte, M. (1982): Some useful bounds. Computer Algebra, Symbolic and
Algebraic Computation, Comput. Suppl. 4, 259-263.

Noonburg, V.W. (1989): A neural network modeled by an adaptive Lotka-
Volterra system. SIAM Journal on Applied Mathematics 49, 1779-1792.
Pedersen, P. (1991): Couting real zeroes, Thesis, Courant Institute, New York
University.

Pedersen, P., Roy, M.-F., and Szpirglas, A. (1993): Counting real zeros in the
multivariate case. Computational Algebraic Geometry, Progress in Mathemat-
ics 109, 203—-224, Birkhauser, Basel.

Quitté, C. (1997): Une démonstration de lalgorithme de Bareiss par algébre
ertérieure. Unpublished manuscript.

Renegar, J. (1992): On the computational complerity and geometry of the first-
order theory of the reals. Parts I, IT and III. J. Symb. Comput. 13 (3) 255-352.
Renegar, J. (1991): Recent progress on the complexity of the decision problem
for the reals. Discrete and computational geometry, Proc. DIMACS Spec. Year
Workshops 1989-90, DIMACS, Ser. Discret. Math. Theor. Comput. Sci. 6, 287—
308.

Rouillier, F. (1995): Formules de Bareiss et reduction de formes quadratiques.
(Bareiss formulas and reduction of quadratic forms). C. R. Acad. Sci. Paris,
Ser. I, 320, 10, 1273-1277.

Roy, M.-F. (1996): Basic algorithms in real algebraic geometry: from Sturm the-
orem to the existential theory of reals. Lectures on Real Geometry in memoriam
of Mario Raimondo, Expositions in Mathematics 23, 1-67. de Gruyter, Berlin.
Roy, M.-F. and Szpirglas, A. (1990): Complezity of computation on real alge-
braic numbers. J. Symb. Comput. 10, No. 1, 39-51.

Seidenberg, A. (1954): A new decision method for elementary algebra. Ann.
Math. 60, 365-374.

Tarski, A. (1951): A decision method for elementary algebra and geometry.
Prepared for publication by J.C.C. Mac Kinsey.

Weispfenning, V. (1995): Solving parametric polynomzal equatwns and inequal-
ities by symbolic algorithms. Computer Algebra in Science and Engineering,
163-179, World Scientific.

Weispfenning, V. (1997): Quantifier elimination for real algebra — the quadratic
case and beyond. J. of AAECC 8, 85-101.

Weispfenning, V. (1995): A new approach to gquantifier elimination for real al-
gebra. Quantifier Elimination and Cylindrical Algebraic Decomposition (B. F.
Caviness and J. R. Johnson, eds.), Texts and Monographs in Symbolic Com-
putation, 376-392, Springer-Verlag, Wien New York.



Chapter 7. Grobner Bases
and Integer Programming

Giinter M. Ziegler

1. Introduction

‘Integer programming’ is a basic mathematical problem, of central importance
in Optimization and Operations Research. While a systematic body of theory
has been developed for it in the last fifty years [14], it has been realized only
very recently, first by Conti & Traverso [5], that the Buchberger algorithm (cf.
Chapter 1) provides a solution strategy for integer programming problems, in
particular in the case of families of programs with ‘varying right hand side’.

Section 2 gives a short introduction to ‘what integer programming is
about’. Then we discuss a basic version of the Buchberger algorithm applied
to integer programming (Section 3). In Section 4 we show how, in the special
case of the binomial ideals that arise from integer programs, the Buchberger
algorithm can be formulated as a combinatorial-geometric algorithm that op-
erates on lattice vectors. A surprisingly simple variation of the Buchberger
algorithm for integer programming is presented in Section 5.

The problems to this chapter treat the relation between lattice vectors
and binomials, and the ‘Grobner basis of a lattice’, in more detail.

2. What is Integer Programming?

A polyhedron P is any intersection P := {x € R" | Ax < b} of closed
halfspaces, in some R™. Here A € R™*™ is a matrix, while x € R™ and
b € R™ are column vectors. A bounded polyhedron is a polytope.

Given any linear function x —— c¢'x on R, the linear programming prob-
lem is to determine a point x in the polyhedron P for which the linear func-
tion ¢ x is minimal. The points in P are called feasible. If P is a nonempty
polytope, then the existence of an optimal point Xy is guaranteed. Further-
more, if the linear function c¢' is generic (with respect to the inequalities
that define P), then the optimal point xq is unique.

It is both useful and customary to deal only with a restricted class of ra-
tional polyhedra in some ‘standard form’. That is, one considers, for example,
only polyhedra of the form

P = {x€eR"|Ax=b, x>0},



Chapter 7. Grobner Bases and Integer Programming 169

with the additional assumptions that A and b have only integral coordinates.
This is not much of a loss of generality: nonrational data do not occur ‘in na-
ture,” and general polyhedra can be represented by polyhedra in this equality
standard form by suitable coordinate transformation, introduction of slack
variables, multiplication by common denominators, etc.

Linear programming is a well-established theory. In a practical sense the
linear programming problem is ‘solved’: after essential progress in the eight-
ies (including the construction of polynomial algorithms such as the ‘ellip-
soid method’, the rise of ‘interior point methods’ that are both theoretically
polynomial and practically competitive, and considerable refinements of the
classical ‘simplex method’), we have now codes available (such as CPLEX,
by Bob Bixby) which will solve virtually every linear program that you can
cook up and store in a computer.

The situation is vastly different for integer programming, the task to com-
pute an integral vector in P that minimizes ¢ " x. In this situation, the points
in PN Z" are called feasible. A basic result of polyhedral theory states that
the convex hull

P, = conv{xe€Z" | Ax =b, x > 0},

is also a polyhedron with finitely many facets. However, the facet-defining in-
equalities for the polyhedron P; are not usually known in general (otherwise
we would be done by linear programming), they are hard to determine, and
their number may be huge. Thus the integer programming problem — of es-
sential importance in many practical applications — is still a great challenge.
It is still not difficult to produce integer programs of reasonable size (m = 20
and n = 30, say) that none of the currently available codes can solve. Here
solution, as we will see, really comprises two separate tasks, both of them
nontrivial: to find an optimal solution, and to prove that it is optimal.

While several ‘good’, or at least ‘interesting’, solution strategies exist,
integer programming is still a difficult problem. The object of this chapter
is an introduction to one (relatively new) such strategy: the construction of
test sets for integer programming via the Buchberger algorithm. In a basic
version, we will present this in the following section.

3. A Buchberger Algorithm for Integer Programming

For the following exposition, we consider a family of integer programs for
which A € N™X" js a fixed, nonnegative integer matrix. The right hand
side vector, b € N™, is considered as variable. Thus we consider the integer
polyhedra

Pi(b) := conv{x € N* | Ax =b}.

Now let c # 0 be a (fixed) linear objective function. To make life easier, we
also assume that the linear program



170 G.M. Ziegler

LP(b) minc'x: Ax=b, x>0

is bounded for every b. This is not much of a restriction: for example, it is
satisfied if ¢ > 0. In particular, it implies that the integer programs

TP (b) minc'x: Ax=b, x€N"

are bounded.

In the following, we also need that the objective function is generic. To
enforce this, we choose a term order < (1ex1cograph1c, for example) that can
be used as a tie breaker, and define

X ey s {cixfc—_'l:y, or
c'x=cy and x~<y.
We will use a total order such as <., derived from the ‘original’ objective
function, as the input for the integer programming algorithms of this chapter.
Note that < is a term order (in the sense of Grobner basis theory) if and
only if c > 0.
With the above assumptions, we get that each of the integer programs

IP(b) miny, {x € N* | Ax = b}

either has no feasible points, or it has a unique optimal solution. (The optimal
solution, but not its objective function value, will in general depend on the
tie breaker used to define <..) We use

IPAc

to denote the whole family of these integer programs, with fixed A and c,
but varying right hand side b. The key idea is to consider this whole class of
programs simultaneously.

Ezample 3.1. For n = 2 we can draw figures such as the following, which is
obtained for A = (2 3), where P;(b;) denotes the convex hull of the feasible
(integer) points of IP(b), for b = (b;). We get that Pr(0) = 0, the set Pr(b:1)
is a point for b; € {0,2,3,4,5,7}, while Pr(b;) is a (bounded) line segment
for bl =6 and for bl > 8.

PO P2 Pid) zl



Chapter 7. Grobner Bases and Integer Programming 171

We call a vector x € N* non-optimal if there is another vector y € N™
that is feasible for the same right hand side (that is, Ax = Ay), and that is
‘better’ than x in the sense that y <. x. A simple but crucial observation
is that if x is non-optimal, and if x’ > x is componentwise larger than x,
then x’ is non-optimal as well. Thus the Gordan-Dickson lemma, according
to which every subset of N” has only finitely many minimal elements (for the
componentwise order), yields the following key fact.

Lemma 3.2 (Minimal Non-optimal Points). The minimal (with respect
to inclusion) set of vectors a; € N* such that

{x € N" | x non-optimal} = {x € N"|x> a; for somei}
is unique and finite, and thus it can be written as {a;,ag,...,a:}.

This lemma is important since it yields the indexing set for both the min-
imal test set for IP 4 c, as follows, and for the Grobner basis of the associated
ideal, see Theorem 3.7 below.

Ezample 3.3. For n < 2 we necessarily have t = 1 (Exercise!). Our figure
depicts the situation for n = 2, A = (2 3), b = (6), and ¢ = (1 4). The
shaded region covers all the non-optimal integral points for this family of

prograims. o

aj

aj T
Here both a; and a} are contained in Pr(b), for b = Aa; = Aa} = (6).

Definition 3.4. A subset G. C Z" is a test set for the family IP 4 ¢ of integer
programs if and only if

o Ag =0for all g € G,
o g>c0forall g € G, and
o for every non-optimal point x € N™, there is some g € G, with x — g > 0.

The definition of a test set immediately provides us with the following
algorithm for integer programming — once we have a feasible point to start
with, and we know how to compute a test set. One might note the similarity
to ‘improvement heuristics’, such as the ones used to find good solutions to
traveling salesman problems.



172 G.M. Ziegler

Algorithm 3.5. To solve programs in a family IP 4 :
Input a test set G for the family IP 4 ¢
’ and some x € N* (x is feasible for IP(Ax))
Repeat find g € G; such that x — g > 0,
X—X-—g
Until optimal.

Ezample 3.6. (Thomas [18]) For the family of integer programming problems
that are given by

A= (1 11 1) and ¢ = (131417)

0 1 1
-1 -1 2

g = ) ’ g2 = -1} g3 = 1}
-1 1 0

and these three are sufficient to do the optimization for an arbitrary right
hand side. For b = (10 15) T, we obtain the situation displayed in the figure,
which shows the projection to the (z1, z;)-plane: there are 18 feasible points,
and the three test set vectors are sufficient (and necessary!) to get you from
any feasible point to the optimal one.

«— the optimal solution)

=

A
=

1
6
0
3

[en <) I <) B nl

)
/
=

v

RO O w;



Chapter 7. Grobner Bases and Integer Programming 173

Theorem 3.7. (Thomas [18, Cor. 2.1.10]) The unique minimal test set for
the family IP 4 o of integer programs is given by

G. = {a,- —a; | a; € min<{x € N" non-optimal},
a; optimal for IP(Aa}), where Aa; = Aa}}.

The connection between Integer Programming and Grébner Basis Theory
can now be made by observing that the minimal test set of Theorem 3.7
corresponds to the reduced Grébner basis of the binomial ideal

Ip == (X® —-X* |Aa=0, acZ")

with respect to the term order <. (Here a* is our shorthand for the vector
we obtain by replacing all negative coordinates of a by zero. Similarly, we
use a~ := (—a)T, so that we have a = at —a~, with a*t,a~ > 0. As is
customary, X? is a notation for X7* ... X2~ etc.)

The information that G, is a Grobner basis of I4 is not terribly helpful,
since in general we do not know a generating set for the ideal — so we can’t
compute a Grébner basis, either. Thus we use a small dirty trick: we create
a larger integer program, which has an obvious integer feasible point, and for
which the ideal has a nice generating set to start from. (Versions of this trick
appear both in algebra, see [6, Sect. 3.3], and in linear programming, where
slack variables are introduced to obtain ‘Phase I’ problems that have feasible
starting basis, see the ‘big-M method’ in [14, Sect. 11.2].)

For this, we consider the ‘extended integer programs’

EIP(b)  minxg,,., {(;) € N™™ | Iy + Ax = b},

where M € N is a large constant, I, is the m x m identity matrix, and 1
denotes the vector of all ones. We use

EIP 4

to denote the whole family of these integer programs, with fixed A and ¢, but
varying right hand side b. What have we gained? On the one hand, all of the
programs EIP(b) are feasible: they have the obvious solution x =0, y = b.
However, an optimal solution will satisfy y = 0, x = xp if the program IP(b)
is feasible, because M was chosen to be very large. If IP(b) is infeasible,
then the extended program EIP(b) has an optimal solution with y # 0. The
binomial ideal that corresponds to EIP 4 . does have a nice generating set
that we can use to start a Buchberger algorithm.

Proposition 3.8. (Conti & Traverso [5]) The ideal
= af yal _ wa; yag ary _ a; mn
Ly = {Y¥X5 -y X% | (1,,,,A)(a2) 0, (a2 ez™m)

is generated by the binomials



174 G. M. Ziegler

YA — X; for1<j<nm.

The reduced Grébner basis of I, a) with respect to the term order <(p1.c)
yields the minimal test set G(ar1,c) for the family EIP 4 o, via the canonical
bijection
(a‘> — YoIX®T _ yeixes.
az

The binomials Y4® — X; form a Grébner basis for the ideal that they
generate, for a lexicographic term order with X; > Y;. To see that this
is the whole ideal I(y,, a), start with any binomial in Iz, a), reduce it to a
binomial that contains no X-variables using the generators of I(; 4y, and
then conclude that you have arrived at the zero binomial, using Exercise 6.4.

Putting things together, we have an extremely simple algorithm for inte-
ger programming: we ‘only’ need to compute a reduced Grobner basis with
respect to the term order <(as1,¢), and then use this with the above algorithm
to solve the extended programs EIP 4 ..

Algorithm 3.9 (Integer Programming via Buchberger’s Algorithm)
The following procedure solves the extended integer program

IP(b) min__ {x € N"|Ax = b}

for A€ N™*" b e N™, ceN".

First Phase: Compute a test set
Input A, ¢
Compute the reduced Grobner basis Giar1,c) for I := (YA® — X i)
Output the test set Gar1,c)-

Second Phase: Reduction
Input g(M1,c), b
Reduce the monomial Y with respect to G(ar1,c), get Y2 X2,
Output If a; # 0, return ‘infeasible’.
If a; = 0, return ‘xg = ay is optimal’.

While the first phase of this algorithm (computation of a Grébner basis)
amounts to hard work, the second one should typically be quite easy & fast
(if we manage to efficiently search the Grdbmner basis, which may be huge).
But even if we cannot obtain a complete Grobner basis from the first phase,
then we can still use any partial basis to reduce the monomial YP, which
may yield a feasible, or even the optimal, point.

However, we are still making quite a detour in Algorithm 3.9: one can for-
mulate the Buchberger algorithm so that it operates directly on lattice points
(no ideals, binomials, etc., involved!). This geometric formulation (given in
the next section) yields an extremely simple algorithm for integer program-
ming; also one that is very easy to implement! The basic version is not terribly
efficient: but we will discuss a few basic ideas about ‘how to speed it up’.



Chapter 7. Grébner Bases and Integer Programming 175

4. A Geometric Buchberger Algorithm

The Buchberger algorithm for integer programming is a special case of the
general Buchberger algorithm. However, there is a lot of special features in the
special situation of ‘toric ideals’ that we are dealing with here. In particular,
one only has to deal with ‘binomials with disjoint supports’: thus we can
get an entirely geometric formulation of the algorithm, dealing with lattice
vectors in Z™ — no polynomials whatsoever appear. This simplifies the data
structures considerably!

The translation process may be done as follows. The first observation is
that, by definition,

Ig,,4 = (Y% —X;|1<j<n)

is a binomial ideal, an ideal generated by binomials. Any S-pair of two bi-
nomials is a binomial (see Exercise 6.3 for a sharper version of this fact).
Also the reduction of binomials by binomials leads to binomials. Thus the
entire Buchberger process produces only binomials during its lifetime, and
any reduced Grébner basis of I(y,, 4) consists of binomials.

As the second step in our translation process we notice that, whenever a
binomial appears in the computation whose two terms have a common factor,
we may remove that factor, and the corresponding ‘reduced’ binomial is also
contained in Iy 4). This follows from the stronger statement that I is a
‘lattice ideal’, in the following way.

A lattice is a discrete additive subgroup £ C Z", that is, the set of all
integral linear combinations of a finite set of linearly independent vectors
in R™. With every lattice £L C Z™ we associate the lattice ideal

Ir = (X* —X* | acL).

Thus, Proposition 3.8 shows that I(;, 4) is a lattice ideal. Note that in the
definition of I, we can replace £ by the subset of all lattice vectors that are
positive with respect to the ordering > that we consider, that is, by

L£7° := {aeL]|a>0}.

Thus the Buchberger algorithm can immediately remove the common
factors from all binomials that it produces. (In particular, any reduced
Grobner basis of I contains only binomials of the form Xa" — X2 with
a € £7°) Thus the Buchberger algorithm can really be formulated as a
geometric algorithm operating on lattice vectors. So we get the following
two algorithms to compute the reduced Grébner basis of a lattice, that is,
the finite subset G C £~° that corresponds to the reduced Grébner basis of
I¢. The assumption for this is that we know a ‘good’ generating set for the
lattice, i.e., a subset of the lattice corresponding to a set of binomials that
generates Ic.



176 G. M. Ziegler

Algorithm 4.1 (Reduction). The following algorithm computes the re-
duction of a vector f € Z™*™" by a set G of integer vectors. Compare it to the
algorithm Reduce of Chapter 1!
Input G C £~ f - 0.
Repeat
If there is some g € G with g* < f*, then replace f by +(f —g) > 0.
If there is some g € G with g™ < £~ then replace f by f + g.
Output f :=f.

Our figure illustrates the first case in the reduction algorithm, where we have
gt < f7, and the reduced vector arises as a difference. (Lattice vectors such
as g can be drawn with the head at g% and the tail at g~.)

You should check that this reduction process corresponds to the reduction
of X" — X = X3 - X{ by X8" — X8 = X2 — X, where the resulting
polynomial X3 — X; X, has a common factor X, whose removal corresponds
to a translation of the dotted vector.

Algorithm 4.2 (Buchberger Algorithm on Lattice Vectors).
The following algorithm computes the reduced Grobner basis of the lattice C,
for a fixed term order >.
First Step: Construct a Grobner basis
Input A basis {ai1,...,a,} C L of the lattice £ such that the binomials
X" — X® generate I. (See Exercise 6.5!)
Set Goig =0, G:={a,...,a,}
Repeat While G4 # G, repeat the following steps
Gotd ' =G
(S-pairs) construct the pairs g:=a—a’ > 0 with a,a’ € G.
(Reduction) reduce the vectors g by the vectors in Gyq. If § # 0, set
G:=GUE.
Second Step: Construct a minimal Grobner basis

Repeat If for some g € G the point g* can be reduced by some g’ € G\g,
then delete g from G.

Third Step: Construct the reduced Gribner basis

Repeat If for some g € G the point g~ can be reduced by some g’ € G\g,
then replace g by the corresponding reduced vector: ¢ := G\g U&.
Output Greq := 6.



Chapter 7. Grébner Bases and Integer Programming 177

All these operations are easy to visualize (at least in the 2-dimensional
situation). They are also easily implemented — just do it. There is also a lot
of flexibility: in fact, for a successful implementation it is important to reduce
earlier, otherwise the Grobner bases constructed in the ‘First Step’ will be
too large. See [5, 12, 21] for further ideas about how to make this efficient.

We just remark that the elements that can occur in a reduced Grobner
basis can be characterized geometrically in a different way. The following
theorem is due to Sturmfels & Thomas [16].

Theorem 4.3. The universal Grobner basis (that is, the union of all the
reduced Grobner bases Ge of IP4 ¢, for all objective functions c) consists of
all the primitive lattice vectors a € Z™ (with Aa =0, and +a ¢ Z™ for A > 1)
such that [at,a~] is an edge of the polyhedron

Pr(at) = conv{x € N"|Ax = Aa"}.

This theorem can be applied as well to the extended integer programs
EIP,4, where we know how the minimal test sets (Grobner bases) can be
computed via Buchberger’s algorithm. Sturmfels & Thomas [16] also have a
technique to compute universal Grobner bases via one single application of
a Buchberger algorithm (to a larger problem).

5. A Variant of the Buchberger Algorithm

The following presents a variation of the Buchberger algorithm that may be
even more useful for integer programming.

Given a matrix A € N™X" an objective function ¢ € N™, and a right
hand side vector b € N™, we denote by IP 4 the optimization problem

max., {x€N"| Ax <b, 0<x < u}.

This is a special but quite common type of integer program, which we call a
problem in inequality standard form with upper bounds. See also Exercise 6.1.
Again, in order to avoid dealing with degenerate cases we refine the objective
function ¢"x to get a term order <. A test set for a problem of the type
IP 4 bc is aset G of vectors g > O such that every non-optimal feasible point
can be improved by one of the test set vectors. Algebraically, both u and b
provide ‘degree bounds’ for Buchberger algorithms. Thus test sets for fami-
lies of problems of the type IP 4 . correspond to certain truncated Grébner
bases. However, our discussion in the following stays in the elementary ge-
ometry setting of [21]; The algebraic picture can be found in [20].

Roughly speaking, a test set, ¢ say, can be computed as follows. Start
with the n unit vectors, i.e., set G := {e; | 1 < i < n}. Iteratively, compute
the difference vectors between all pairs of vectors that are in G and direct
each such difference vector such that it is greater than 0 with respect to



178  G.M. Ziegler

the order. All such difference vectors are added to G, if they are not already
in G, and if they are differences of feasible points for IP 4 1, c. The algorithm
terminates when no more vectors are added to G.

More precisely, the basic algorithm can be formulated as follows:

Algdrithm 5.1. To compute a test set for integer programs IP4p . in in-
equality standard form with upper bounds.

Input A and <.
Initialize Set Gog:=0, G :={e; |1 <i<n}.
While G4 # G perform the following steps:
Set Go1g :=G.
For all pairs of vectors v, w € G such that
wHrcv, ~b<Aw—-v)<b and ~-u<w-v<u,
set G :=GU{w—v}

Whenever the loop in this algorithm is executed (except for the last time),
a new vector is added to the set G,;4. Since the number of integral vectors
x satisfying —u < x < u is bounded by H?=1(2u,- + 1), the above algorithm
terminates after finitely many steps.

Let us now show that the set G generated by the above algorithm is a
test set for IP 4 p . Suppose that x is a feasible point (Ax < b, 0 < x < u)
that cannot be improved by any element in G, and let x’ be a feasible vector
with x’ > x. Then x’ — x is not an element of G. However, as X' — x can
be written as a linear combination of unit vectors and since unit vectors are
elements of G, we can decrease from x to reach 0, then increase to reach x’.

T2 |

Hence, there exists a sequence P = (x°,... xP) of vectors x* and a number
) q b b

1 <7 < p with the properties:

(i) x® =x,xP =x/,

(i) foralli =1,...,7, —(x* —x'"1) € G,
(i) foralli =7 +1,...,p, (x* - x*"1) € g,
(iv) every vector in P is feasible.



Chapter 7. Grébner Bases and Integer Programming 179

Let pmin be the smallest number such that there exists some sequence
Poin = (xo, Cee ,x”"“")
of vectors x* and a number 1 < T < pmin satisfying (i), (ii), (iii) and (iv).

T2

|

Since —(x™ —x7~!) € G and (x"t! — x7) € G, the difference vector
v = (XT+1 _x‘r) _ (_(x‘r _x‘r—l)) — XT+‘1 _ x‘r—l

has been computed in the while loop of Algorithm 5.1. Moreover, both vectors
x"*t1 and x7~! are feasible. It follows that —b < Av < b and —u; < v; < u;
for all 1. -

In case that 0 <. v, the vector v was added to G. Consequently,

P o= (x0..,x7 7 xTHL L xPmin)

and 7 — 1 again satisfy properties (i)—(iv), yet involving pmin — 1 vectors, a
contradiction.

Therefore v <. 0. In this case the vector —v was added to G in Algo-
rithm 5.1. Then,

P'o= (x0..  xTTh xTTL L xPmin)

and 7 satisfy properties (i)-(iv). Since again only pmin — 1 vectors belong
to P/, we obtain a contradiction.
Thus we have proved the following theorem.

Theorem 5.2. Algorithm 5.1 terminates afier a finite number of steps. The
output is a test set for the integer programming problem IP o p c.

Compared to Algorithm 3.9, this extremely simple algorithm has some es-
sential advantages. In particular, it works without the increase in dimension
1o obtain the extended problem: the computation takes place in the original
space. However, Algorithm 5.1 still has the problem that it computes too



180 G. M. Ziegler

many elements: the partial Grébner basis computed is way too large. (For
the basic version of the algorithm presented here, nearly all difference vectors
of feasible points will be contained in G!) Thus one has to work with reduc-
tion, and thus discard superfluous elements during the computation (see [21]).
Also, this algorithm sometimes makes way too many comparisons, while gen-
erating only relatively few new basis elements. Such observations, made on a
practical implementation, led to further variations of the algorithm that are
currently still under investigation.

6. Exercises

Exercise 6.1 (Standard Forms of Integer Programs). Show that the
‘equality standard form’

min{c"x | Ax = b, x > 0},
and the ‘inequality standard form’
max{c x| Ax < b, 0 < x < u}

of linear programs are equivalent: for any problem in one form we can con-
struct a problem in the other form that solves it.
(Assume that A € N™*™ has no zero columns, b € N™, and ¢ € Z".)

Exercise 6.2 (Upper Bounds). For a problem of the form
max{c'x | Ax <b, x > 0},

with A € N™*" b € N™, and ¢ € Z", how can we compute upper bounds
u; for the variables z;7 What happens in the special case when A has a zero
column?

The following problem sharpens our observation that S-pair formation
corresponds to difference of vectors: we explicitly identify the ‘superfluous’
monomial factors that occur in the formation of S-pairs.

Exercise 6.3 (S-Pairs and Difference Vectors). For a,b € Z", a,b -
0, the S-polynomial of X** — X& e I and X' —XP™ €I, is

xmin(a+,b+) (x(a—b)+ _ x(a—b)_)
a monomial times the binomial corresponding to a — b.

Exercise 6.4 (Binomial Criterion). A binomial X* — XP, with a,b > 0,
is contained in I if and only if a — b € L.
(Hint: X* and XP reduce to the same standard monomial.)



Chapter 7. Grébner Bases and Integer Programming j181

Exercise 6.5 (Ideal of a Lattice: Generators). Assume that the lattice
L is generated by the columns of a nonnegative matrix A € N™*™, Show that
then the ideal I, is generated by the binomials

b G
Show that this can fail if we do not assume A to be nonnegative. (A more
general version of this is [21, Lemma 2.1].)

Exercise 6.6 (Grobner Bases of a Lattice: an Example). Let L4 C Z
be the 2-dimensional lattice generated by the columns of

A=(}1 ;)

Compute all the (four) different reduced Grébner bases for the corresponding
ideal. Describe the structure of the various Grébner basis elements. How many
standard monomials are there in each case?

Exercise 6.7 (Grobner Bases of a Lattice: Geometry). Show that if
L is a 2-dimensional integral lattice, then the universal Grobner basis (the
union of all the reduced Grobner bases) consists of the following lattice vec-
tors: '

e the vertices a € Z? of the polyhedron conv(L N N2\0), and
e the vectors a € £ that have one positive and one negative component, and
for which O and a are two adjacent vertices of the polyhedron

conv(LN{x€Z?|x>—-a"}).

(Remark: a similar structure theorem is true in higher dimensions as well,
but harder to prove [17].)

Exercise 6.8 (A Variant of Buchberger’s Algorithm: an Example).
Apply Algorithm 5.1 to compute a test set G for the 0/1 knapsack problem

max{z, + 2z + 3z3 | z1 + 2x2 + 323 < 3, z; € {0,1}, 1 =1,2,3}.

[dentify a minimal test set Gmin C G.

Notes

While the theory of Grébner bases [1, 2, 3, 6] yields basic ideas and tools, the
discussion in this chapter stays in an ‘elementary geometry’ setting. Chvital [4]
and Schrijver [14] are excellent guides to all topics related to Linear and Integer
Programming. [22] is a recent exposition of the geometry and combinatorics of
polytopes.

As mentioned in the introduction, the basic ideas of Section 3 are due to Conti
& Traverso [5]. The connection between lattices, binomial ideals and Grébner bases



182 G. M. Ziegler

is relevant to interesting aspects in the theory of integer programming (the ‘local
situation’, Gomory’s [9] ‘group problem’), but also, for example, to the ideals of
toric varieties. The key reference for these directions is Sturmfels [15]. See [8] for
more on binomial ideals.

Our presentation in Sections 3 and 4 is based on Thomas [18] [19, Chap. 2]. I
am very grateful to Rekha Thomas for many helpful comments and discussions on
this chapter, and for her permission to report about and draw on her materials.

The ideas for Section 5 are from [21]. An algebraic interpretation of the situation
in terms of ‘truncated Grobner bases’ was given in [20].

We refer to [10] for an alternative approach to the ‘phase I’ problem. Recently,
Li, Guo, Ida, Darlington [11] have described a combination of truncated Grébner
bases with the Hogten-Sturmfels approach. They also reported some computational
tests: on random problems of sizes up to 8 x 16 —which must still be considered very
modest for all practical purposes. Computational results (also for larger, structured
problems) are also presented in [10], in [7], and in [21].

A successful application of the Buchberger approach to a class of integer pro-
gramming problems arising in practice was reported in Natraj, Tayur & Thomas [13].

References

1. W.W. Adams and P. Loustaunau (1994): An Introduction to Grobner Bases,
Graduate Studies in Math., Vol. III, American Math. Soc., Providence RI.

2. T. Becker and V. Weispfennig (1993) Grobner Bases: A Computational Ap-
proach to Commutative Algebra, Graduate Texts in Mathematics 141, Springer-
Verlag, New York Berlin Heidelberg.

3. B. Buchberger (1985): Grébner bases: An algorithmic method in polynomzal
ideal theory, in: N.K. Bose (ed.), ‘Multidimensional Systems Theory’, D. Reidel,
184-232.

. V. Chvétal (1983): Linear Programming, Freeman, New York.

. P. Conti and C. Traverso (1991): Buchberger algorithm and integer program-
ming, pp- 130-139 in Proceedings AAECC-9 (New Orleans), Springer, Lecture
Notes in Computer Science 539.

6. D.A. Cox, J. B. Little, and D. O’Shea (1992): Ideals, Varteties, and Algorithms.
An Introduction to Computational Algebraic Geometry and Commutative Alge-
bra, Undergraduate Texts in Mathematics, Springer-Verlag, New York Berlin
Heidelberg.

7. F. Di Biase and R. Urbanke (1995): An algorithm to calculate the kernel of
certain polynomial ring homomorphisms, Experimental Math. 4, 227-234.

8. D. Eisenbud and B. Sturmfels (1996): Binomial ideals, Duke Math. J. 84, 1-45.

9. R.E. Gomory (1969): Some polyhedra related to combinatorial problems, Linear
Algebra and its Applications 2, 451-455.

10. S. Hosten and B. Sturmfels (1995): GRIN: An implementation of Grébner bases
for integer programming, pp. 267-276 in: “Integer Programming and Combina-
torial Optimization” (E. Balas, J. Clausen, eds.), Proc. 4th Int. IPCO Confer-
ence (Copenhagen, May), Lecture Notes in Computer Science 820, Springer-
Verlag, Berlin Heidelberg New York.

11. Q. Li, Y. Guo, T. Ida, and J. Darlington (1997): The minimised geometric
Buchberger algorithm: An optimal algebrasc algorithm for integer programming,
pp. 331-338 in: Proc. ISSAC‘97, ACM Press.

12. C. Moulinet and L. Pottier (1997): Grébner bases of toric ideals: properties,
algorithms, and applications, preprint, INRIA Sophia Antipolis, 10 pages.

[SLC



13.

14,
15.
16.

17.

18.
19.

20.

21.

22.

Chapter 7. Grobner Bases and Integer Programming 1 183

N.R. Natraj, S.R. Tayur, and R.R. Thomas (1995): An algebraic geometry
algorithm for scheduling in presence of setups and correlated demands, Math.
Programming 69A, 369-401.

A. Schrijver (1986): Theory of Linear and Integer Programming, Wiley-
Interscience, Chichester.

B. Sturmfels (1995): Grobner Bases and Convezr Polytopes, AMS University
Lecture Series, Vol. 8, American Math. Soc., Providence RI.

B. Sturmfels and R.R. Thomas (1997): Variation of cost functions in integer
programming, Math. Programming 77, 357-387.

B. Sturmfels, R. Weismantel, and G.M. Ziegler (1995): Grébner bases of lat-
tices, corner polyhedra, and integer programming, Beitrige Algebra und Ge-
ometrie/Contributions to Algebra and Geometry 36, 281-298.

R.R. Thomas (1995): A geometric Buchberger algorithm for integer program-
ming, Math. Operations Research 20, 864-884.

R.R. Thomas (1994): Grébner basis methods for integer programming, Ph. D.
Thesis, Cornell University, 157 pages.

R.R. Thomas and R. Weismantel (1997): Truncated Grobner bases for integer
programming, Applicable Algebra in Engineering, Communication and Com-
puting (AAIECC), 8, 241-257.

R. Urbaniak, R. Weismantel, and G.M. Ziegler (1997): A wvariant of Buch-
berger’s algorithm for integer programming, SIAM J. Discrete Math. 10, 96—
108.

G. M. Ziegler (1995): Lectures on Polytopes, Graduate Texts in Mathematics
152, Springer-Verlag, New York Berlin Heidelberg.



Chapter 8. Working with Finite Groups

Hans Cuypers, Leonard H. Soicher, and Hans Sterk

1. Introduction

Two common ways to describe groups are to present them by generators and
relations or as automorphism groups of algebraic, geometric or combinatorial
structures, (Think of linear groups acting on vector spaces, symmetry groups
of regular polytopes, Galois groups etc.) An automorphism group of such a
structure may also be considered to be a subgroup of the group of all per-
mutations of the elements of that structure. Automorphism groups can thus
be seen as permutation groups. Permutation groups are groups consisting of
permutations of a set with composition of permutations as group multipli-
cation. So, for example, we may view linear groups as permutation groups
on the set of vectors of the underlying vector space (but this may not be
the most efficient approach). The Todd-Coxeter coset enumeration method
provides, among other things, a link between groups given by generators and
relations on the one hand and permutation groups on the other.

Since permutations of a finite set (say {1,2,...,n}) can be easily dealt
with on a computer, this opens up the way for computations in groups. Per-
mutation group algorithms is now the most developed area of Computa-
tional Group Theory, and is still being actively developed (see for example
[26, 27, 14, 15, 8, 9]).

In Section 2, we describe some of the basic permutation group algorithms.
We describe algorithms for computing the order of a group, testing nilpo-
tency or solvability, and algorithms for computing generators for particular
subgroups like centralizers, normalizers, and stabilizers of sets or elements.
Since we are dealing with permutation groups acting faithfully on a set §2 of
size n say, such a group has order at most n!. Thus, it is certainly possible
to perform all kinds of computations within this group in a finite amount of
time. However, we will mainly concentrate on algorithms with running time
polynomial in n.

By way of illustration, in Project 6, we make use of some of the algorithms
in Section 2 to help with the construction of the small Mathieu groups and
some of their interesting subgroups. Coset enumeration is then used as a tool
to solve a problem in graph theory: classify all connected graphs which are
locally isomorphic to the incidence graph of the biplane of order 11, and
admit an ordered-triangle-transitive automorphism group.

Good references for most of the results discussed are [4] for permuta-
tion group algorithms and (22, 28] for coset enumeration methods. For actual



Chapter 8. Working with Finite Groups, 185

computations with permutation groups one may use either a general pur-
pose computer algebra system like Maple [6] (if the computations are quite
straightforward), or a more specialized system like MAGMA [3] or GAP [24].

2. Permutation Groups

2.1 The Setting

2.1. For a set £2, we denote by Sym(2) the symmetric group of all permuta-
tions (i.e., bijections) of 2. If 2 = {1,...,n}, we usually write S, instead of
Sym(f2). Group multiplication is the composition of permutations, but read
from left to right in accordance with the implementation in several computer
algebra systems.

The basic notion that connects groups to permutations is that of a per-
mutation representation: for a group G, a permutation representation of G is
a homomorphism of G into the group Sym(f2) for some set 2. In particular,
each element g € G acts on §2, that is, produces a permutation of 2; we
denote the image of w € 2 under the action of g by w9. (This means that we
let elements of Sym({2) act on the right.) A permutation group is a subgroup
of Sym(2) (this corresponds to the special case where the homomorphism is
an inclusion). In this setting the usual terminology is that G acts on 2. In
this section we deal with finite groups G and finite sets {2 (the most obvious
one: {1,2,...,n}). For a permutation representation with finite set (2, the
cardinality |§2| is called the degree of the representation.

Interesting situations usually arise when the sets carry some additional
structure. A simple example illustrating this is the group of symmetries of
(the graph on the vertices of) a cube, described as a permutation group of
the eight vertices. For example, with the labeling of Figure 2.1, the permuta-
tion (1,2, 3,4)(5, 6, 7, 8) describes a rotation over 90°, whereas (2,5)(3,8) is a
reflection in the plane through 1, 6, 7 and 4. (The permutations are written
as products of disjoint cycles.)

| 2

Fig. 2.1. Symmetries of the cube as permutations.



186 H. Cuypers, L. H. Soicher, and H. Sterk

2.2. Producing meaningful permutation representations of a given group can
be quite hard. The construction used in the proof of the classical result that
every group is isomorphic to a permutation group usually provides little in-
sight: as a set take {2 = G, the group itself, and assign to each g € G the
permutation Ry : G — G, sending h € G to hg (right multiplication by g).
The map G — Sym(G), g — R, is the required injective homomorphism. An
indication of the restricted practical value of this realization is the relatively
large size of Sym(G) and length of its elements (written as permutations)
compared to the size of G.

There are several ways of constructing new permutation representations
out of a given one, which may be of help in studying specific aspects of the
group. For example, the group of symmetries of the cube also acts on its four
main diagonals (each encoded as a pair of opposite vertices). This induced
action makes it clear for instance that the group of symmetries admits a
surjective morphism to the group S4. Another example is the induced action
of a group (acting on the set £2) on the set of subsets of size k of 2 or the
action by multiplication from the right on the right cosets of G with respect
to a subgroup (see below).

2.3. To further analyse permutation representations, the following basic no-
tions are also needed. '

Let G act on 2. The G-orbit (or orbit for short) of an element w € 2 is
the set

wC ={w9|geG}

Orbits evidently partition the set £2, that is, being in the same orbit defines
an equivalence relation on f2. The group G is said to act transitively if {2 itself
is an orbit. Equivalently: for every x,y € {2 there exists a g € G with 29 = y.
A generalization is the notion of a t-transitive group: for every two t—tuples
(z1,Z2,...,7¢) and (y1,y2,-..,¥t), each consisting of ¢ distinct elements of
12, there exists a g € G with 2] = y; (1 = 1,...,t). A 1-transitive group is
called transitive in accordance with the previous definition.

For example, the symmetric group S,, acting on {1,2,...,n} is clearly
n-transitive; the alternating group A,, (i.e., the group of even permutations)
is (n — 2)-transitive, but is not n—transitive for n > 2. The symmetry group
of the cube is transitive, but not 2—transitive (two adjacent vertices cannot
be transformed into two non—-adjacent vertices).

The stabilizer of an element w is the subgroup

G, ={g€ G| =w}

There is a relation between the cardinalities of G, G, and the orbit w® of w,
which will be exploited in the following sections, and which we now explain.
Define the map

f:G—-wWC, g—uwl.
By the definition of orbit, this map is surjective. Also, if g,h € G, then
f(g) = f(h) if and only if wP¥™' = w, that is, hg~! € G.. So f(g) = f(h) if



Chapter 8. Working with Finite Groups, 187
and only if the cosets f~}(f(g9)) = Guwg = {a:g | z € G,} and f1(f(h)
G,h coincide. We conclude that for every o’ € w®, the set f~!(w') has |
elements. This proves:

)
G.

Proposition 2.4. If a finite group G acts on 2 and w € 12, then
1G1/1Gw| = [w°.
In particular, if G acts transitively, then |G|/|G,| = |12|.

2.5. If G acts transitively, then the map constructed in the proof of Proposi-
tion 2.4 is a bijection between the set f2 and the set G, \G of right cosets of
G, in G. Through this bijection, G acts on G,,\G. The action of an element
g € G on {2 is transferred into right multiplication by g on the elements in

GN\G:

g:Gu,h— Gy hg.

In fact, in a similar way, every subgroup H of G gives rise to a transitive
permutation representation of G. The group G acts by right multiplication
on the right cosets of H in G. More precisely, for every g € G the map ‘right
multiplication by g’

R, : H\G — H\G, R,(Hh)= Hhg for Hh € H\G

is a (well-defined) bijective map. Then g — R, defines a morphism of G
into Sym(H\G). This is a slight variation of the construction used to prove
that every group is isomorphic to a permutation group (the case where H is
trivial). It enables one to focus on properties of the group G related to the
subgroup H.

Since the stabilizer of H € H\G is H itself, Proposition 2.4 is just another
version of

Lagrange’s Theorem 2.6. Let G be a finite group and let H be a subgroup
of G. Then
|H| divides |G|.

In particular, the order of any element of G (i.e., the order of the group
generated by that element) divides |G|.

2.2 Computing Orbits and Stabilizers

2.7. A group G is generated by its subset X if every element of G can be
written as a product gi192---gm where g; € X or g; ' e X for all i (of
course, if the group is finite, then we do not need to include the inverses).
The elements of X are called generators and we write G = (X) to denote
that G is generated by X.



188 H. Cuypers, L. H. Soicher, and H. Sterk

In this section we develop the basic tools for computations in groups
generated by a set of permutations in S,. On a computer the generating per-
mutations are stored instead of all of G. As a first example we explain a naive
approach to computing the order of such a permutation group. Throughout
this section, all permutation groups and the sets on which they act are as-
sumed to be finite.

2.8. The Order of a Group. First compute the order of an orbit of an
element w of 2 = {1,2,...,n} and then compute the stabilizer of that el-
ement. According to Proposition 2.4, the product of the orders of the orbit
and the stabilizer equals the order of the group G. To determine the order
of the stabilizer, we consider the action of this stabilizer on the set 2 \ {w}
and repeat the process. To make this strategy work, we need algorithms to
compute orbits and (generators for) stabilizers.

Ezample 2.9. In the example of the cube, it is easy to see that the symmetry
group G is transitive on the eight vertices of the cube. So the relation |G| =
8 - |G1| holds. Using the rotation (2,5,4)(3,6,8) we find that the G,-orbit
of 2 contains at least 2, 5 and 4. Since these vertices are the only ones at
distance 1 from the vertex 1, this orbit has exactly 3 elements. So we get
|G| = 8-3-|Gy,2|, where G 2 is short for (G1)2. A similar argument shows
that the G, o—orbit of 3 contains 2 elements: 3 and 6 (use the reflection
(4,5)(3,6)). The stabilizer Gy 2,3 is trivial so that the order of G is equal to
8:-3.-2=148.

2.10. Orbits. The first task is to determine the orbits of a permutation
group G = (X) generated by the subset X. To find the orbit containing the
element w, here is what you do:

1. Start with the set {w}. This is the initialization of ‘orbit-to-be’, the set
that is to become the full orbit of w.

2. Have each element of X act on w. If this doesn’t produce any new el-
ements, you are done. Else, put the elements different from w in a set
‘new’ .

3. Update ‘orbit-to-be’ by setting it equal to the union of ‘orbit-to-be’ and
the set ‘new’.

4. Have each element of X act on each element of ‘new’ (rather than of
‘orbit-to-be’ as this saves work). If this doesn’t produce any element not
already in ‘orbit-to-be’, then you’re done. Else update ‘new’ by setting it
to contain precisely the elements found at this stage that are not already
in ‘orbit-to-be’.

5. Go back to 3.

It is useful to store certain information about the action of the elements of
X on the orbit elements in a structure called a Schreier tree, defined below.

Definition 2.11. Let G < Sym({2) be generated by a set X, and let a € £2.
A Schreier tree with root a for X is a tree (i.e., graph without cycles), rooted



Chapter 8. Working with Finite Groups® 189

at o, having its edges labelled by elements of X, and satisfying the following
properties:

— The vertices are the elements of the G-orbit of «. (In particular, if G is
transitive, this is the whole of {2.) )

— For each edge 7, with i closer to the root a than j, there is a generator
b € X labelling the edge, such that i* = j. We denote such an edge by

[i, b, 4]

In computer.implementations, a Schreier tree is efficiently stored and ac-
cessed as a ‘Schreier vector’ (see [4]).

2.12, Constructing a Schreier Tree. A Schreier tree with root a for X is
constructed as follows. Have each element of X act on . Unless all elements
of X fix a, in which case we are done, this produces a number of distinct
new vertices with edges emanating from the root. Label these edges with the
appropriate elements of X. We now have the vertices at distance 1 from «a.
Then have each element of X act on each of these vertices at distance 1.
Apart from the old vertices, this produces the vertices at distance 2. Then
continue in this way until the orbit is complete. At each stage, label the edges
containing new vertices and be careful not to create a cycle.

For example, in Figure 2.2 you see this construction of a Schreier tree
with root 1 for {a = (1,2)(3,4),b = (1, 3)(2,4)}.

Fig. 2.2. Constructing a Schreier tree for {(1,2)(3,4), (1,3)(2,4)}.

2.13. Suppose G = (X) < Sym(£2). From a Schreier tree with root a for X
we can read off a way to express a given w € o as w = a9 with g € (X).
First identify the vertex w, then follow the path down the tree until the root
« is reached, while bookkeeping the generators in X labelling the edges in
this path. Finally, the desired permutation is obtained by multiplying these
generators in the correct order (the reverse order in which they were found);
we denote this permutation by t,,. So a*» = w. For example, from Figure 2.2
we find 4 = 1% and t4 = ab.



190 H. Cuypers, L. H. Soicher, and H. Sterk

2.14. Stabilizers. Let a be an element in 2. The problem we address next
is to find a subset Y of G = (X) that generates the stabilizer G, of a.

Elements of G that clearly stabilize a are constructed in the following
way. Let T be a Schreier tree with root « for X. For b € X and i € a©, the
element tibti—,,1 stabilizes a.. Here, b can be thought of as bridging two branches
of the Schreier tree, or two (possibly coinciding) vertices in the same branch
(see Figure 2.3). The elements of the form t;bt;' are called Schreier elements
(or Schreier generators). (Of course, if [i,b,1%] is an edge, this construction
yields the trivial element.) The relevant statement about these elements is
contained in the following version of Schreier’s Lemma.

Ly

Fig. 2.3. Bridging two branches

Schreier’s Lemma 2.15. Let T be a Schreter tree with root o for X, and
let G = (X). Then the stabilizer G, of a is generated by the set of Schreier

elements
{tibt;' |i€a® be X}

Proof. We noted above that this set of Schreier generators is contained in
the stabilizer, so we concentrate on the other inclusion.

Let g € Go. Then g =b; - - b, is a product of elements b; € X (we do not
need their inverses, since we assume the group to be finite). Suppose r > 0.
Let j be the maximal index such that a, a®*,a®1%2 ... ab1% is a path in the
tree with labels b,,...,b;, respectively. Notice that j < r. Let § = abrbi
then tg = by - -~ b;. Now consider (tsbtz, )~'g, where b = bj1.1, and rewrite it
as follows:

(tobtgs ) 'g = tgebjta---by.
Then we apply the same reasoning to this element. Since ¢z corresponds to
a path in the tree from o, this procedure will end with an element ¢, in at
most r — j steps. However, as all elements at the lefthand-side of the equality
stabilize a, the element ¢, has to be the trivial element. This implies that g
is an element in the group generated by the Schreier generators.

2.16. Computing the Stabilizer. Schreier's Lemma suggests the following
algorithm to compute stabilizers. Start with ‘stab-to-be’ being the empty set.



Chapter 8. Working with Finite Groups 191

For each b € X, i € a®, check if [, b, 1°] is an edge. If not, insert the element
tibti_,,1 into the set ‘stab-to-be’. Finally, ‘stab-to-be’ is a generating set for the
stabilizer of a.

2.17. Using the algorithms so far and Proposition 2.4, we compute the order
of the group G = (X), acting on 2 = {1,2,...,n} as follows. From Proposi-
tion 2.4 we infer |G| = |G-orbit of 1| - |G|. If G| is trivial, then we are done,
since with the algorithm from 2.10 we can compute the order of an orbit. If
G is not trivial, then we consider the Gj-orbit of 2 and the stabilizer of 2
inside Gy, etc. Eventually we will find an ¢ such that the stabilizer in G .., ;
of the element ¢ + 1 is trivial. (This will occur after at most n — 1 steps.
Indeed, the pointwise stabilizer of {1,...,n — 1} is the trivial group.) The
order of G is then of course given by the product

|G| = |G-orbit of 1| - |G;-orbit of 2| ---|Gy,... ;-orbit of i + 1.

2.18. Timing. Both the algorithm for computing an orbit and that for find-
ing a generating set for a stabilizer can be performed in polynomial time
with respect to the input n and the size of the generating set X. Indeed, the
calculation of an orbit and the construction of the corresponding Schreier
tree can be implemented to take O(n|X|) steps. The application of Schreier’s
Lemma to obtain a generating set for a stabilizer takes (at most) O(n3|X|)
steps. (Here a step is an elementary operation such as determining the im-
age of an element of {2 under some permutation. The multiplication of two
permutations and the inversion of a permutation both take O(n) steps.) In
particular, both algorithms are polynomial in the size of the input. However,
the order algorithm, as described above, has a big disadvantage: the number
of generators for the various stabilizers can become enormous. In order to
avoid this we may invoke, for each stabilizer, the following algorithm 2.19,
due to Sims, which guarantees at most () generators for G.

Since this algorithm is polynomial in n and the size of the generating
set X, also the order computation for a permutation group can be done in
polynomial time. (See also 2.24 for a more efficient algorithm to compute the
order of a permutation group.)

2.19. Decreasing the Number of Generators. The algorithm takes as
input a generating subset X of a subgroup G of S,,. (Here we denote by G*
the pointwise stabilizer in G of {1,...,i}; G =G.)

- Seti=1.
While g, h € X N G*~! with i9 = i* # 4, replace X by (X \ {h}) U {gh~'}
and remove any duplicates and trivial elements from X. After this step all
elements in X N G*~! but not in G* will act differently on .

- If 1 = n, then output X and stop, otherwise increase 7 by 1 and go back to
the previous step.



192 H. Cuypers, L. H. Soicher, and H. Sterk

Clearly, G is still generated by the output X. However, the number of ele-
ments in X does not exceed

n—1 n
S-i=5).
i=1

2.20. The algorithms described so far also provide a way to test membership
in a permutation group G < S,, in polynomial time in the input parameters
n and the size of the generating set. If g € S,,, then just compare the orders
of G and (G, g) to decide whether or not g € G. Although polynomial, this
is not a very efficient algorithm to check membership. A better way to check
membership will be discussed in 2.22.

2.3 Compilting Bases and Strong Generating Sets

2.21. Bases, Stabilizer Chains and Strong Generating Sets. It is clear
that, to compute the order of G, any finite sequence B of distinct points of {2
for which the (pointwise) stabilizer is trivial, suffices as input for the orbit and
stabilizer computations in the algorithm from 2.17. Such a sequence is called
a base for G. A stabilizer chain of G with respect to a base B = [bl, ooy bE]
is the chain of the subgroups G > Gy, > -+ > Gb,,..00_1 = Gb,,..0, = {1},
where Gy, .. », denotes the pointwise stabilizer of by, ..., b.

The combination of algorithms to compute orbits of the G—action (2.10)
and stabilizers in G (2.16), which we described above, computes the order
of G, but, with a little extra bookkeeping, also produces a base [1,...,1 + 1]
and generators for the subgroups in the stabilizer chain for this base

Given a base B = [by,...,bx]| and stabilizer chain G > Gy, > --- >
Goybey = Goyope = {1} w1th respect to B, a generating set X for G
with the property that Gy, ... s, is generated by its intersection Gy, .. 5, N X
with X (i = 1,...,k), is called a strong generating set for G (with respect
to B). Thus the above algorithm provides us with a base and, when we join
all the generators found in the intermediate stages, with a strong generating
set for G. Using the base B instead of [1,...,n — 1], the algorithm in 2.19
transforms the strong generating set into one with respect to B of size at
most (3)

We notice that the construction of a base and strong generating set can
be done in polynomial time in n and |X]|.

An improved version of this algorithm is the Schreier-Sims algorithm de-
scribed in 2.24. Within this algorithm we make use of the following: .

2.22. Elements as Words in the Generators. Let G be a permutation
group acting on {1,...,n}. Suppose B = [b;,...,b] is a base for G and
G=G">G! =Gy, == G* =Gy,.p = {1} is the corresponding
stabilizer chain. Let X be a strong generating set for G with respect to B.



Chapter 8. Working with Finite Groups 193
N

For each pair G* and G*t! we identify the Gi-orbit of b;;; with the set
of right cosets of G**! in G (see 2.5). Then we describe this action of G*
on the cosets of G**! by a Schreier tree T, with root b;1;, for the strong
generators in X N G*, Together these Schreier trees Ti,...,Tx completely
encode the action of G on the whole set {1,...,n}.

Suppose g is an arbitrary element of Sym((2). We now describe a proce-
dure, called ‘sifting’, which either writes g as a word in the elements of the
strong generating set X for G or shows that ¢ ¢ G. First suppose that g
fixes each base point by, ...,bk. If g = 1 then g € G is the empty word in the
strong generators, and if g # 1 then g ¢ G. Now we may suppose that g fixes
each of by, ..., b; for some ¢ < k, and moves b;4;. If bf+1 g bgﬁl, then we con-
clude that g ¢ G. Otherwise, by using the Schreier tree T;; we find elements
S15..-,8 of X N G* such that b7, ; = bi11°". Then h := g(sy---s,)" fixes
each of by, ..., b;y). We may now (recursively) apply the sifting procedure to
h to either determine that h, and hence g, is not in G, or to find a word v in
the elements of X N G*t! such that v = h. In the latter case, g = vs; --- 8, is
a word in the strong generators from X.

Exercise 2.23. Suppose both G = (g1,...,9s) and H = (hy,...,h;) are
subgroups of S,,, given by their generators. Describe an algorithm that tests
whether H is normalized by G.

Also give an algorithm to test whether H < G.

2.24. The Schreier-Sims Algorithm. C. Sims [26] devised an algorithm,
now called the Schreier-Sims algorithm, to construct a base and associated
strong generating set for the permutation group G = (X). This algorithm
is a variant of the above, but Sims avoids the inclusion of many redundant
Schreier generators in a strong generating set.

The Schreier-Sims algorithm takes as input a finite sequence B of distinct
elements from {2 and a generating set S for G, such that no element of S
fixes every element of B. Such a pair B, S is called a partial base B and
partial strong generating set S with respect to B. (It is very easy to compute
such a pair B, S given an arbitrary generating set for G.) The algorithm then
attempts to verify that B is a base for G, and S a strong generating set with
respect to B. If this is not the case, then the algorithm adds points to B and
group elements to S, as necessary, so that on termination B is a base for G,
and S is a strong generating set with respect to B.

Here is an outline of a simple version of the Schreier-Sims algorithm:

1. If S = {}, then return B, S.

2. At this point we have a nonempty partial base B = [by, ..., b], say, and
partial strong generating set S, such that G = (S), and no element of S
fixes each element of B. Set C := [by,...,b], T := SN Gs,, and apply
this algorithm (recursively) with input C, T, so that they are modified to
be a base C = [by,...,bx,..., b, say, and associated strong generating
set T, for H = (T). :



194 H. Cuypers, L. H. Soicher, and H. Sterk

3. Set B := [by,bs,...,b)] and § := SUT. Now we can do membership
testing in H < Gy, (using C and T'). Using the ‘sifting’ algorithm from
2.22, we test each Schreier generator s for G, to see if s € H. If all such
Schreier generators are in H then we are done, and return B, S.

4. Otherwise we have a Schreier generator s € Gy,, but s ¢ H. We set
S = S U {s}. If 5 fixes all points of B, we append to B a point of {2
which is moved by s. We now go to Step 2.

In practice, a good implementation of the Schreier-Sims algorithm can be
used to compute bases and strong generating sets for permutation groups of
degree up to about 10,000. There are many variations and improvements to
the basic Schreier-Sims algorithm, which can extend this range (see [14, 8]).

2.25. The record of a stabilizer chain, strong generating set and correspond-
ing Schreier trees also provides a way to systematically run through the
elements of the group. In particular, we can use it to perform backtrack
searches. Suppose this record for a group G is given with respect to a base
B = [by,...,bg]. As before, we denote by G* the (pointwise) stabilizer Gy, ... »,
of the first 1 elements of B; for i = 0, G® denotes G. For 1 < i < k, let R; be a
set of right coset representatives for G* in G*~!. (The set R; can be computed
from the Schreier tree corresponding to the orbit biG'—1 .} Then every element
g € G can be expressed in a unique way as

gkgrk—1"""-01,

such that g; € R; for i = 1,...,k (recall 2.22). We can thus enumerate
the elements of G by running through all products of this form, If we most
frequently vary gx through Ry, then gx—; through Rx_; and so on, and if the
first element in the enumeration of g; € R; is always taken to be the identity,
we obtain an enumeration in which we first enumerate the elements of G*,
then those of G¥~! that are not in G¥, and so on.

Since the pointwise stabilizer of B in G is the trivial group, each element
g of G is also uniquely determined by the base image B9. Thus, instead of
enumerating all elements of G as above, we could also enumerate all base
images.

2.4 Generators for Some Subgroups

We sketch how Schreier’s Lemma can be used to compute (generators for)
various special subgroups.

2.26. An Algorithm for Orbits on Cosets. Let X be a generating set for
the subgroup G of S,,. The algorithm in 2.10 presents a way to compute the
orbits of G on {1,...,n}. This algorithm is easily generalized to the following
algorithm that constructs the permutation representation of G on the right
cosets of a subgroup H of G, provided we are able to test membership in H.



Chapter 8. Working with Finite Groups 195
~

This membership test makes it possible to check whether two elements g and
g’ represent the same coset, since Hg = Hg' if and only if g¢'~! € H.

Suppose H is such a subgroup with a membership test. Then the following
algorithm, which resembles the one in 2.10, computes the G-orbit of the
element H of H\G by means of coset representatives and a Schreier tree for
the action on the right cosets. ‘

1. Start with the set @ = {e}, where e is the identity element of G, repre-
senting the coset H. This is the initialization of ‘orbit-to-be’, the set that
is to become a full set of coset representatives. Also, initialize a Schreier
tree T with root e (and no other vertices at present).

2. Have each element of X act on e by multiplication on the right. If this

does not produce any representatives of new cosets, we are done. Else, put

the elements representing distinct new cosets in a set ‘new’, and update
the Schreier tree T with these new elements and appropriate edge-labels.

Enlarge the ‘orbit-to-be’ O by taking the union of @ and the set ‘new’.

4. Have each element of X act on each element of ‘new’ (rather than of
‘orbit-to-be’ as this saves work) by multiplication on the right. If this
does not produce any cosets not already represented in O, then we are
done. Else set ‘new’ to contain precisely the elements found at this stage
representing distinct cosets that are not already represented by elements
in O, and update the Schreier tree T accordingly.

5. Go back to 3. '

@

Together with Schreier’s Lemma, this algorithm can be used to compute a
set of generators for H algorithmically (cf. 2.16): just compute (generators
for) the stabilizer of the element e representing the coset He = H.

2.27. Subgroups with Membership Test. The above algorithm depends
on the presence of a membership test for the subgroup H of G. As examples
of groups for which we have a membership test, one can think of:

— The centralizer of an element or of a subgroup (given by a set of generators)
of G.

— The center of a group G generated by a set of permutations from S,,.

— The (setwise) stabilizer in G of some subset of {1,...,n}.

— The normalizer of some subgroup K for which we have a membership test.

- The intersection of two subgroups G and H of S,, provided we have a
generating set for G and a membership test for H. Apply the algorithm to
construct the permutation representation of G acting on the right cosets
of GN H in G. Schreier’s Lemma then yields a generating set for G N H,
and the ‘sifting’-algorithm provides us with a membership test for G N H.

Remark 2.28. Suppose the membership test for H can be performed in time
polynomial in n. Then the above algorithm runs in time polynomial in 7,
the size of the set of generators for G, and the size of O, which is the index
of H in G. However, this index is often huge, and other methods, such as



196 H.Cuypers, L. H. Soicher, and H. Sterk

backtrack search, to compute a generating set for the subgroup H are often
much preferable (see [4, 15, 16]).

2.29. Here is a further list of special subgroups. Some of them are used in
deciding nilpotency or solvability of a permutation group given by a set of
generating permutations.

2.30. Normal Subgroups. Let G = (X) and H = (Y} be two subgroups
of S,. Since, with the help of the ‘sifting’-algorithm, we are able to test
membership of elements y € Y of G, we can check whether H is a subgroup
of G. Moreover, we can even check whether H is a normal subgroup in G by
checking the membership of 7 'yz in H forallz € X andy €Y.

2.31. Normal Closure. For a subgroup H = (Y) of G = (X) the normal
closure of H in G is the smallest normal subgroup of G containing H. The
normal closure of H in G is generated by {g~'yg| g€ G,y € Y}.

The following is an algorithmic approach to finding a generating set S for
the normal closure of H in G.

— Start with setting S:=Y.

— As long as there is an element s € S and z € X with 7 1sz ¢ (S) replace
S by SU{z"lsz}.

— Return S.

The final set S thus obtained generates a normal subgroup of G and hence
is the normal closure of H in G.

2.32. The Commutator Subgroup. The commutator subgroup G' =
[G,G] of G = (X) is the normal subgroup generated by all commuta-
tors [g,h] = g~'h~lgh, with g,h € G. In particular, the normal closure
of the subgroup ([z,2'] | z,2' € X) is certainly contained in G’. Since
[y, z] = y~ Yz, z]yly, 2] for all z,y,z € G, we see that every commutator
of G = (X) is contained in the normal closure of ([z,z] | z,2’ € X). Hence
this normal closure equals the commutator subgroup of G. Therefore we can
compute the commutator subgroup of G with the help of the above algorithm,

If H = (Y) is a subgroup of G = (X), then similarly we can compute
the subgroup [G,H| = ([g,h] | ¢ € G,h € H) as the normal closure of
([‘T’y] |‘T € Xay € Y) m G'

2.33. Solvable and Nilpotent Groups. The commutator subgroup of G
is also called the (first) derived subgroup of G. Inductively one defines the
n-th derived group G™ of G as the commutator subgroup of the (n — 1)-
th derived subgroup. The commutator or derived series of G is the chain of
subgroups

G>GV >G> ...

(Continue this series until it is stable.) The group G is said to be solvable if
this series terminates with the trivial group {1}.



N
Chapter 8. Working with Finite Groups 197

By Lagrange’s Theorem 2.6 a commutator series can have length at most
2Log(|G|). Hence, as we can compute commutator subgrdups, we can com-
pute the commutator series of a permutation group G given by a set of
generators and test it for solvability. Moreover, since the computing of nor-
mal closures and commutator groups can be done in polynomial time and
the length of a commutator series is at most 2Log(n!), the commutator series
can be calculated in polynomial time.

The lower central series of a group G is the chain of subgroups

Lo2Li2Ly>...

where Lo = G and L;41 = [G, L;]. The group G is called nilpotent if the lower
central series of G terminates at the trivial group. Similar to the computation
of the derived series of G we can compute the lower central series of G and
test G for nilpotency in polynomial time.

3. Coset Enumeration

3.1 Introduction

The starting point in this section is a group given by a finite presentation by
generators and relators. We explain how to obtain a permutation represen-
tation of such a group on the set of cosets of a subgroup of finite index. The
procedure we discuss is due to Todd and Coxeter [29] and is known as (Todd-
Cozxeter) coset enumeration. Coset enumeration and related algorithms for
finitely presented groups are available in the group theory system GAP and
in the algebra system MAGMA.

3.2 Todd-Coxeter Coset Enumeration

Let G be a group given by a finite set X = {g1,...,gn} of generators, subject
to a finite set R of relators in these generators. (Here each element r € R
is a word in the elements of X U X!, and saying that r is a relator is the
same thing as saying that r = 1 is a relation.) Thus, G is the quotient of the
free group on {g1,...,gn} by the normal closure of the subgroup generated
by the elements in R. This will be denoted by

G =(X|R).

Suppose H is a subgroup of G generated by Y = {hy,..., ht}, and that all the
clements of Y are given as words in the elements of X U X ~!. We will discuss
a method, first described by Todd and Coxeter [29], which, if it terminates,
provides us with the permutation representation of G on the right cosets of
the subgroup H. The Todd-Caxeter coset enumeration method is a trial and
error process that tries to enumerate all the different cosets of H in G. These



198 H. Cuypers, L. H. Soicher, and H. Sterk

cosets will be denoted by positive integers; the integer 1 represents H. The
notation n¢ is shorthand for the (label of the) image under g of the coset
with label n.

Todd-Coxeter enumeration relies on the following three observations:

~TC-1:1"=1forallheY;
— TC-2: 57 = j for all cos?ts jand re R,
-~ TC-3:i9 =j < i=j9 for all cosets i,5 and all g € X.

These observations will be used in setting up three kinds of tables for the
action (by multiplication on the right) of the elements of X and X! on the
set H\G of right cosets of H in G. The entries of the tables will be filled with
the various (integers representing the) cosets of H.
In explaining the three kinds of tables, we will illustrate the process for
the group
G= <I’ y | I2’ y2a (Iy)3>’

isomorphic to Sz, and its subgroup H generated by z.

3.1. Three Types of Tables. First, for every generator h =g;, ---g;, €Y
of H, where g;, € XUX ™!, we construct a so-called subgroup table. This table
consists of only one row of length ! + 1 and starts and ends with the entry
1 (this corresponds to TC-1: multiplying the coset H with h gives back H
again, see 3.2 below). The last ! entries of this row are indexed by g;, up to
g;,- The table is set up in order to describe the action of g;,,9;,95,,.--,h =
gj, *++ g; on the coset H. In our example there is only one subgroup table,
reflecting the equality Hx = H:

subgroup | z
1 1

Second, for each relator r = g, ---g;, € R, with g;; € X UX™!, we
construct a relator table with k + 1 columns, the last k of which are indexed
by gi,,- .-, g;,. The number of rows is determined during the process. Again,
each row starts and ends with the same integer, reflecting TC—2; each row
is filled with the images of the coset corresponding to this integer under g;,,
Gi19izy---sT = Giy * - - Gs, » Tespectively, as will be explained in more detail in
3.2

For our specific group, there are three relator tables; using the subgroup
table, the first row of each of these is filled as follows (a new coset is introduced
if no information is available to fill in a spot):

relator |z | = relator | ¥

relator |z |y |2 |y|z| ¥
1 [1]1 1 ]2 1 1

1

L R

Third, for bookkeeping of the desired permutation representation, we con-
struct a coset table consisting of | X| + 1 columns, where the last | X | columns



Chapter 8. Working with Finite Groups 199

are indexed by the elements of X. The unlabelled column contains the in-
tegers already assigned to a coset in H\G during the process. In the rows
we store the various images of a coset under multiplication by the elements
of X. In particular, the g-th entry of the row starting with k contains the
integer representing the coset k9, if k9 has been defined, and otherwise some
symbol (or blank) is used to indicate that k9 has not yet been defined. (For
efficiency, in most machine implementations of coset enumeration the coset
table also contains a column for each element of X ~1 that is not obviously
in X. Also in machine implementations, the subgroup and relator tables are
not stored explicitly, but information in them is recreated as necessary. See
22, 5].)
This leads, at this stage, to the following coset table for G:

coset | x |y
1 12
2 3|1
3 4
4 5
5 1

It is clear that in the case of the group G there cannot be five cosets. In
fact, as we will see below, the cosets labelled 2 and 5 coincide as well as the
cosets labelled 3 and 4. So we turn to a more detailed description of how to
fill the various tables and how to ‘scan’ for such ‘coincidences’.

3.2. Filling in the Tables. The basic idea is to fill the subgroup and relator
tables so that the following holds: if two neighbouring spots in a row are filled
from left to right with (integers representing) the cosets H' and H”, and if
H" is in the column indexed by g, then H'g = H” (it is sometimes convenient
to read this as H' = H"g~!, TC-3).

Il [

HI H"

Hg

Once we discover that H'g = H” from a subgroup or relator table, we may
need to update the coset table. If ¢ € X and there is no entry in the coset
table recording the image of H' under g, we record there that H'g = H".
Similarly, if g~ € X and there is no entry in the coset table recording the
image of H” under g1, we record there that H"g~! = H'. (If the coset table
already contains information which implies there are two different integers
representing H' or H”, we have obtained a c01nc1dence, the processing of
which is described later.)

In each relator table, the first entry of the first row is filled with a 1. Since
for each relator r we have that ;7 = j, each row starts and ends with the
same integer.

In a subgroup or relator table, an empty entry to the right of an entry
m, where the empty entry is in the column indexed by g € X U X1, is filled



200 H. Cuypers, L. H. Soicher, and H. Sterk

with m? if this coset is already known by the information in the coset table;
otherwise it can be filled with the smallest positive integer s not yet used.
In that case, we add a new row starting with s to the coset table as well as
the information m9 = s (possibly in the form s97 = m). We also add a new
row starting with s to each relator table. A similar action is taken to fill an
empty spot to the left of an entry m: if g indexes the column containing m,
then the open spot is filled with m9~" if this coset already has a label and by
the smallest unused positive integer otherwise. Again this information and a
new row are added to the coset table and a new row is added to each relator
table.

3.3. Scanning for Coincidences. Let’s return to our example first. Adding
the rows for the cosets labelled 2 to 5 and filling some of the obvious spots,
we obtain’

relator | z | x relator | y | ¥ relator |z |y |z |y |z |y
1 1)1 1 2|1 1 172(3[4]5]1
2 312 2 112 2 3145111112
3 3 3 4713 3 3
4 514 4 4 4 4
5 5 5 115 5 5

(In fact, all entries can be filled now, but we don’t need this yet.)

From the second and third relator tables we obtain that 2¥ = 1 and
5Y = 1. This says that the cosets labelled 2 and 5 are in fact equal. So we
replace 5 by 2 in the relator tables and remove the rows starting with a 5,
so the tables then collapse to tables with four rows. Another collapse is the
following: from the first relator table we deduce 2* = 3 and 2* = 4,50 3 = 4.
Only three cosets remain and it is straightforward to finish the relator tables

relator | z | © relator | y | ¥ relator |z |y |z |y |z |y
1 111 1 21 1 1233|211
2 312 2 1[2 2 3132112
3 213 3 313 3 217112313
and the coset table
coset | T | ¥
1 112
2 31
3 213

In particular, we have found a permutation representation of G into S3, where
z is mapped to (2,3) and y to (1,2). The index of H in G equals 3. As H is
a group of order at most 2, the group G is of order at most 6. So the above
permutation representation establishes an isomorphism between G and S3.
When filling in the entries of the various tables, we may implicitly be
writing down relations between some of the cosets, just like in the example.



Chapter 8. Working with Finite Groups 201

Such an event where two distinct integers i and j are found to represent the
same coset is called a coincidence (or collapse) of i and j. This happens when
the information in our tables tells us that i = j9 for some g € XUX ™!, but
i# 7.

If a coincidence is discovered then it must be processed. Here is a basic
way to process a coincidence of i < j. First, for each ¢ € X for which
i9 is not defined in the coset table but j9 is, insert in the coset table the
information that i9 = j9. Next, replace each entry j in all the tables by i.
Then check all filled entries of the tables for further coincidences and repeat
this procedure until there are no more coincidences. Finally, in each table,
for each coset i, remove all rows starting with ¢ except the first such. Notice
that this procedure is finite as the occurrence of each coincidence reduces the
number of integers used in the tables by one.

Efficient and correct handling of coincidences is the most delicate part
of a practical computer implementation of coset enumeration (see [22, 5] for
useful details).

Todd-Coxeter coset enumeration procedures consist of filling in the tables
and scanning for and processing coincidences until all tables are completely
filled and no more coincidences can be deduced from the tables. Note that at
various points in the procedure, there may be more than one way to continue.
There is an enormous amount of flexibility in the coset enumeration process,
and many different approaches have been suggested and experimented with
(see [5, 22]). Depending on the presentation and the method used, there can
be huge variations in the time and store taken by a coset enumeration. At
present, the most advanced methods are due to George Havas, and these
methods are available in the MAGMA [3] system.

If a Todd-Coxeter coset enumeration procedure terminates, then the final
coset table gives a set of permutations that satisfy the three conditions TC—-1
to TC-3.

Of course, termination of the procedure is possible only if the index of H
in G is finite. But the converse is also true, provided each row of each table is
filled (or deleted) after a finite number of steps and provided the tables are
regularly scanned for coincidences. We state this in the theorem below, first
proven by Mendelsohn [20]. (Although termination of Todd-Coxeter coset
enumeration can be guaranteed when the index of H in G is finite, there can
be no general bound on the time or store required for such an enumeration.
This follows from the fact that determining whether or not a finitely presented
group is trivial is algorithmically undecidable.)

For the purposes of this theorem we assume that we also explicitly main-
tain relator tables for the trivial relators gg~! and g~!g, for all g € X. This
is to ensure that ¢9 and ¢9 " are eventually defined for each coset i and each
g€ X.

Theorem 3.4. Suppose the indez of H in G is finite. Any Todd-Cozeter
coset enumeration procedure in which it is taken care of that a) each row of



202 H. Cuypers, L. H. Soicher, and H. Sterk

each table is completely filled (or deleted) after a finite number of steps and
that b) there are only finitely many steps between two scannings of the tables
for coincidences, will terminate.

Proof. Consider the first row of any table. After a finite number of steps all
the entries of this row are filled. The first entry, 1, is stable, and the other
entries can only change to smaller integers. This can only happen a finite
number of times, so the row remains stable after a finite number of steps.

Assume that after a finite number of steps all the first k — 1 rows of the
tables are filled and stable, and that p is a k-th row of one of the relator
tables. Let a be the first entry of p. Then there exists an element b < a
occurring in one of the stable rows and a g € X U X! with 9 = a. (Indeed,
a was first defined as (¥')9 for some b < a, and collapses can only replace
this &' by some integer b < ¥'.) So a occurs somewhere among the first k — 1
rows and is therefore stable. Then, as we argued for the first row, p will also
be stable after a finite number of steps.

So if the procedure does not terminate after a finite number of steps, the
number of stable rows will increase beyond any bound. In particular, the
procedure would provide us with a transitive permutation action of G on a
countably infinite set (just read the coset table) in which H is contained in
the stabilizer. This contradicts the fact that H has finite index in G.

Exercise 3.5. Perform coset enumeration on the above example G ~ Sj,
but try to choose a strategy that does not force you to define more than 3
cosets.

Example 3.6. Let
G = (a,b,c| a®,b%,¢%, (ab)?, (ac)?, (be)°).

We will perform coset enumeration with respect to the subgroup generated
by a and b. We begin with the following tables:

subgroup | a subgroup | b

1 1 1 1
relator | b | b
relator | ¢ | ¢
relator |a | a | a 1 5T 1 111
1 1171 5 ) 2 312
3 2(3

Now we add the tables for (ac)? and (bc)® and fill them as far as possible:

relator |[a|c|la|c relator | b |c|blc|b]ec
1 112 1 1 1727131321
2 2111112 2 332112
3 3 3 21111213




Chapter 8. Working with Finite Groups 203

N

Implicitly we have obtained that 2¢ = 2 and 3° = 3. After adding two cosets

3% =4 and 4° = 5 we get:

relator

alala relator | ¢ | ¢ relator [ a | c | a | c
1 111 1 211 1 112211
2 21212 2 112 2 211172
3 41513 3 3(3 3 4 313
4 5134 4 4 4 5 4
5 3[4]5] 5 5 5 313|145
From these we deduce that 4¢ = 5. This leads to:
relator |a | a | a relator | ¢ | ¢ relator [ a |[c|a|c
1 111 1 211 1 1221
2 21212 2 112 2 2|11]11[2
3 4153 3 3(3 3 451313
4 5134 4 514 4 51454
5 3|45 5 45 5 313|145
relator | b | b relator | b |c|b|lc|b | ¢
1 1{1 1 1[12]3[312]1
2 312 2 3132112
3 213 3 21111233
4 4 4 5] 4
5 5 5 4[5

So far we have not used the relator table for (ab)® yet. This table can already

be filled as follows:

relator |a |b|a|b|lal|b
1 1({1f{1f1}1]1
2 2134 312
3 45132213
4 5 4
5 312(2(|3]4]5

and we obtain 4% = 5. It is easy now to fill all tables consistently with the
numbers 1 up to 5 and so the group {a,b) has index 5 in G. Moreover, we
obtain a permutation representation of G into As. This representation is
actually an isomorphism as follows from Exercise 3.7 below.

Exercise 3.7. Let H be the group given by the following presentation

H = {(a,b]| a®,b?, (ab)?).

Perform coset enumeration with respect to the subgroup {(a), and show that

H~A,



204 H. Cuypers, L. H. Soicher, and H. Sterk

Ezample 3.8. We end this section with a larger example. Since it is too elab-
orate to easily do the computations in this example by hand, we have per-
formed them with the help of GAP.

Consider the following presentation:

G = (a,b,c,d | a®,b% %, d% (ab)?, (ac)*, a(cd)?, (be)?, (bd)®).

Coset enumeration with respect to the subgroup (a,b,c) provides us with
a transitive permutation representation of the group G of degree 22. The
elements a, b, ¢ and d are mapped to the following permutations a, 3, v and
4, respectively:

(4,6,8)(7,10,9)(11,12, 13)(14, 18, 16)(15, 17, 20)(19, 22, 21),
(3,4)(5, 7)(6,8)(9, 10)(12, 15)(13, 17)(16, 19) (18, 21),
(2,3)(6,8)(7,11)(9,12)(10, 13)(14, 18)(15, 17)(19, 22),

W

[83
8.
Y
and

6 = (1,2)(3,5)(4, 7)(6,9)(8, 10)(11, 14)(12, 16)(13, 18)(15, 19)(17, 21)(20, 22).

The group (a, 3,7), which by the previous example is isomorphic to As,
stabilizes the point 1 and has three orbits on the remaining points; one of
length 5, one of length 10 and one of length 6. The group G has order 22 -
|As| = 1320. Let

P ={1,5,7,9,10,11,12,13,15,17,20} = {1} U 5{®A")

and
B={1,...,22} \ P = 2{@fm y14{ehm,

Then G stabilizes the partition {P, B} of {1,...,22}; the permutation 4 in-
terchanges P and B. The stabilizer H of one part, say P, has index 2 in G
and is 2-transitive on the 11 points in P. It is a fact that H is a simple group
isomorphic to PSL;(11). We will encounter this group again in Project 6 of
this book.

Notes

Permutation Groups

The basic notions on symmetric groups can be found in almost any algebra text-
book. The basics of permutation representations, like orbit and stabilizer, are de-
scribed in [23].

Schreier’'s Lemma goes back to [25], where Schreier gives a proof of the cele-
Fra]ted Nielsen-Schreier Theorem that subgroups of free groups are free, see also
10].



Chapter 8. Working with Finite Groups 205

The concepts of base and strong generating set were introduced by Sims [26,
27]. They form the key ingredients for most permutation group algorithms. The
algorithm 2.21 to find a base and strong generating set is also due to Sims [26].

For several aspects that we did not discuss we refer to the literature: [2] and [19]
for complexity, [1] and its references for probabilistic approaches, and [4, 15, 16] for
backtrack search algorithms.

An in-depth discussion of polynomial-time permutation group algorithms is
given in [19]. For example, the centre of a permutation group can be found in
polynomial time. One deep result in polynomial-time group theory is that a Sylow p-
subgroup of a permutation group can be found in polynomial time. This was proved
by Kantor (see [11] and Kantor and Taylor [12]) using the classification of finite
simple groups. Although Kantor’s algorithm does not seem to be very practical,
significant progress by Morje [21] lays the theoretical groundwork to what should
be a practical polynomial-time algorithm for Sylow subgroups.

Coset Enumeration

Groups given by generators and relations play a central role in group theory, but
they are also used in different branches of mathematics, such as knot theory, see
for example [7]. A good reference for the theory of group presentations is [10].

Coset enumeration is due to Todd and Coxeter, see [29]. A good impression of
the usefulness of Todd-Coxeter coset enumeration, and more detailed discussion of
this process, its computer implementation and its variants, can be obtained from
[5, 13, 22, 10, 28]. Mendelsohn’s result on the termination of Todd-Coxeter coset
enumeration was first described in [20]. ‘

‘We have described a very basic hand approach to coset enumeration. Most coset
enumeration is now done by quite sophisticated computer programs, and it is not
uncommon to enumerate 10° or more cosets by machine computation.

Double coset enumeration is described by Linton in [17], and he has also de-
vised an algorithm [18] closely related to coset enumeration for constructing matrix
(rather than permutation) representations of finitely presented groups.

Computer Algebra Systems and Algorithms

It is quite straightforward to write your own programs, say in Maple, for the al-
gorithms discussed in the first section (this has already been done for most of
these algorithms in the Maple package group). In GAP and MAGMA, everything we
discussed and much more is available, efficient and a pleasure to work with.

For an up-to-date overview of the forefront of research in computational group
theory we refer the reader to [9], which includes papers on new approaches to
computing with groups generated by matrices.

References

1. L. Babai (1996): Randomization in group algorithms: Conceptual questions, pp.
1-17 in Groups and Computation II (L. Finkelstein and W.M. Kantor, eds),
DIMACS Series in Discrete Mathematics and Theoretical Computer Science
28, American Math. Soc.



206

10.
11.
12.
13.
14.
15.

16.

17.
18.

19.

20.

21.

22.

H. Cuypers, L. H. Soicher, and H. Sterk

. W. Bosma and J. Cannon (1992): Structural computation in finite permutation

groups, CWI Quarterly 5 (2) 127-160.

. W. Bosma, J. Cannon, and G. Matthews (1994): Programming with algebraic

structures: the design of the Magma language, pp. 52-57 in Proceedings of
ISSAC '94, Assoc. Comp. Mach.

. G. Butler (1991): Fundamental algorithms for permutation groups, Lecture

Notes in Computer Science 559, Springer-Verlag, Berlin Heidelberg New York.

. J.J. Cannon, L. A. Dimino, G. Havas, and J. M. Watson (1973): Implementation

and analysis of the Todd-Cozeter algorithm, Math. Comp. 27, 463—490.

. B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M. B. Monagan, and

S.M. Watt (1992): First Leaves: A Tutorial Introduction to Maple V, Springer-
Verlag, Berlin Heidelberg New York.

. R.H. Crowell and R.H. Fox (1977): Introduction to Knot Theory, Graduate

Texts in Mathematics 57, Springer-Verlag, Berlin Heidelberg New York.

. L. Finkelstein and W.M. Kantor (editors) (1993): Groups and Computation,

DIMACS Series in Discrete Mathematics and Theoretical Computer Science
11, American Math. Soc.

. L. Finkelstein and W. M. Kantor (editors) (1996): Groups and Computation II,

DIMACS Series in Discrete Mathematics and Theoretical Computer Science
28, American Math. Soc.

D.L. Johnson (1990): Presentations of Groups, Cambridge University Press,
Cambridge.

W.M. Kantor (1985): Sylow’s theorem in polynomial time, J. Comput. System
Sci. 30, 359-394.

W.M. Kantor and D.E. Taylor (1988): Polynomial-timne versions of Sylow’s
theorem, J. Algorithms 9, 1-17.

J. Leech (1984): Coset enumeration, pp. 3-18 in Computational Group Theory
(M.D. Atkinson, ed.), Academic Press, London.

J.S. Leon (1980): On an algorithm for finding a base and strong generating set
Sfor a group given by generating permutations, Math. Comp. 35, 941-974.

J.S. Leon (1991) Permutation group algorithms based on partitions, I: theory
and algorithms, J. Symb. Comput. 12, 533-583.

J.S. Leon (1996): Partitions, mﬁnements and permutation group computatzon,
pp. 123-158 in Groups and Computation II (L. Finkelstein and W.M. Kan-
tor, eds), DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 28, American Math. Soc.

S. A. Linton (1991): Double coset enumeration, J. Symb. Comput. 12, 415-426.
S.A. Linton (1991): Constructing matriz representations of finitely presented
groups, J. Symb. Comput. 12, 427-438.

E.M. Luks (1993): Permutation groups and polynomial-time computation, pp.
139-175 in Groups and Computation, (L. Finkelstein and W.M. Kantor, eds),
DIMACS Series in Discrete Mathematics and Theoretical Computer Science
11, American Math. Soc.

N.S. Mendelsohn (1965): An algorithmic solution for a word problem in group
theory, Canad. J. Math. 16, 509-516. Correction, Canad. J. Math. 17, 505.

P. Morje (1996): On nearly linear time algorithms for Sylow subgroups of small-
base permutation groups, pp. 257-272 in Groups and Computation II (L. Finkel-
stein and W.M. Kantor, eds.), DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 28, American Math. Soc.

J. Neubiiser (1982): An elementary introduction to coset table methods in com-
putational group theory, pp. 1-45 in Groups - St. Andrews 1981 (C.M. Campbell
and E.F. Robertson, eds), LMS Lecture Notes 71, Cambridge University Press,
Cambridge. '



23.

24.

25.

26.

27.

28.

29,

Chapter 8. Working with Finite Groups 207

P. M. Neumann, G. A. Stoy, and E. C. Thompson (1994): Groups and Geometry,
Oxford University Press, Oxford.

M. Schoénert, et al. (1994) GAP - Groups, Algorithms and Progmmmmg, ver-
sion 3, release 4, Lehrstuhl D fiir Mathematik, RWTH Aachen. .

0. Schreier (1927): Die Untergruppen der fr‘ez’en Gruppen, Abh. Math. Sem.
Univ. Hamburg 5, 161-183.

C.C. Sims (1971): Computation with permutation groups, pp. 23-28 in Pro-
ceedings of the Second Symposium on Symbolic and Algebraic Manipulation
(S.R. Petrick, ed.), Assoc. Comp. Mach.

C.C. Sims (1971): Determining the conjugacy classes of a permutation group,
pp. 191-195 in SIAM-AMS Proceedings 4, American Math. Soc.

C.C. Sims (1994): Computation with Finitely Presented Groups, Cambridge
University Press, Cambridge.

J.A. Todd and H.S.M. Coxeter (1936): A practical method for enumerating
cosets of a finite abstract group, Proc. Edinburgh Math. Soc. 5, 26-34.



Chapter 9. Symbolic Analysis
of Differential Equations

Marius van der Put

1. Introduction

The purpose of this chapter is to give an idea of the methods for solving
linear differential equations with ‘computer algebra’. Sections 2, 3, and 4 are
elementary and use almost no differential algebra.

The later sections are less elementary since differential Galois theory plays
an essential role there. Some standard differential algebra is presented in
Section 5 as well as some highlights of differential Galois theory. There are
almost no proofs given.

Kovacic’s algorithm ([3]) for order two equations is explained in some
detail in Section 6. It can be seen as a very concrete application of differential
Galois theory. For later use the local differential Galois groups of the equation
y" = ry are calculated (including complete proofs) in Section 7.

The next section studies the special case of an order two equation with
only one singular point.

The simplifications of Kovacic’s algorithm for order two equations with
two singular points is the subject of Section 9.

2. The Equation y’ = f with f € C(x)
Some Background and Notation

By C we denote a field of cha.racteristic_ 0, i.e., the field C contains the field
Q of rational numbers. Furthermore, C' stands for an algebraic closure of
C. The field of rational functions with coefficients in C is denoted by C{(zx).

This field consists of the expressions ¢ where a,b € C[z] are polynomials

(and b # 0). The operation ' = £ on C(z) is the usual differentiation of
rational functions. Similarly, one considers the differentiation ’ = a‘i; on the
field C(z). The derivatives of a function y are denoted by ¥’,3”,... or by y(™
forn > 0.

Sometimes new functions, e.g., log(v) with v € C(z), are added to the
field C(z) in order to express solutions of the differential equation under
consideration. We will work intuitively with those expressions and we will



Chapter 9. Symbolic Analysis of Differential Equations 209

N \
use the rules log(vw) = log(v) + log(w) and log(v)’ = %' Those expressions
can be interpreted in the case where C is a subfield of the field of complex
numbers C, as actual logarithms of rational functions.
The ‘calculus approach’ to the equation ¢’ = f with f € C(z) is as follows.
The partial fraction decomposition of f is a finite sum

Fert

with p a polynomial and all o, c(n, a) € C. Then there is a solution y € C(z)
if and only if ¢(n,a) = 0 for n = 1 and all . If some ¢(1, a)’s are not zero
then one can still write a solution in closed form, using some log(z — «). This
method has two disadvantages:

o This closed form solution is often very complicated.
o One has to calculate the poles of the rational function f.

Our aim is to find a symbolic formula for y which uses the minimal amount
of algebraic numbers.

We need the notion of resultant. Let f = fpz™ + --- + fiz + fo and
g =gnx"™ + -+ g1 + go be two polynomials in x with coefficients in some
field. The resultant R.(f,g) is defined as the determinant of the (n + m)-

matrix .
fm . L fO \
o o o o S0
gn . . . 9
9n - - 90
\ e w0 )

One can prove the following formula

R.(f,9)=frem  J[  (ci-8y),

1<i<m,1<j<n

where the a; and the 3; are the zeros of f and g (in some field extension).
Hence the resultant is zero if and only if f and g have a common root (in
some field extension).

The algorithm that we will give is part of the Risch algorithm. There are
contributions of Hermite, Rothstein, Trager and many others to the algo-
rithm,



210 M. van der Put
2.1 The Algorithm

Given f € C(z), the algorithm finds y € C(x) with y' = f or reports nonex-
istence of such a y. In the latter case, the algorithm produces the simplest
formula for y. This formula involves rational functions, some logarithms of
rational functions and some constants, algebraic over the field C.

(1) Write f = = + s with r,¢,s polynomials, ¢ monic, ged(r, q) = 1 and
the degree of r is less than the degree of q. Let ¢ = q1q2q3 - ~q,’§ denote the
square-free decomposition, i.e., the g; are monic polynomials and ¢1q293 - - - qx
has no multiple zeros. The ¢; are calculated using gcd’s only. With linear
algebra one ctn find an expression

q 1<i<k, 1<j<i qZ

with r; ; polynomials. For j > 1 one writes r; ; = sq; + tq;. This is possible
since ¢; and ¢; are relatively prime. The Euclidean algorithm produces s and

t. Then )
M_sﬁ-(j—l)_lt’+ t
e g~ 1-5q"

With steps of this type we find

r .
/ —-dr = Z ﬁd:v + a rational function with rational coefficients.
q 1<i<k q;

This reduces the general case to [ 2dx with a,b polynomials, b monic, the
degree of a less than the degree of b and ged(a,b) = ged(¥,b) = 1. This is
the starting point of the next step.

(2) We now focus on [ £dz. For notational convenience we suppose that C' =
Q. This is anyway the most interesting case. The roots of any polynomial with
coefficients in Q@ are considered as elements of the field of complex numbers
C. We introduce a new variable ¥ and form

R(y) := Rz(a — yb',b) € Qy].

For a complex number + one has R(v) = 0if and only if the gcd(a—~¥,b) # 1.

Let 7y1,...,7n € C denote the distinct zeros of R(y).

Define v; := ged(a — %b,b) € Q(n,...,7)[z]. In Proposition 2.2 we
will show that & =37, 7,-2—’1: and that [ $dz = 3., v log(vs) is ‘the best
formuld’ for the primitive of the rational function §. This means that any
other formula contains also the algebraic numbers vy, . ..,v, (see part (2) of
Proposition 2.2). We will first give an example, which explains the meaning
of the v; and the v;.



Chapter 9. Symbolic Analysis of Differential Equations 211

I
Example 2.1. Let ¢ be _?gx_s%;z“ . The solutions 71, ¥2,v3 of R(y) = 0
are 1/3,-2/5, 2/3 Furthermore ~; is a double zero of R(y) = 0. The v; are

2> -1,z +2,z — 2. Hence & = $ 2%~ — §$+2 2L Theﬁrsttermca.nbe

3721
expanded a little further as 5—}r— + é
as partial fraction is:

1 1 + 1 1 2 1 2 1
3z+1 3z-1 5z+2 3x-2
One observes that the v; are the ‘residues’ of  dr at the various poles of

% dx. Moreover v; is the product of the terms x — a occurring with residue
7;. This is the idea behind the algorithm and the proof of Proposition 2.2.

Proposition 2.2. Let a,b e C(z). Then:

1. [ %dr=>3""_, vilog(v;).
2. For every ezpression Y .-, 6;log(w;) with &; € C, w; € C(z), that is a

solution of y' = ¢, one has

M- € Q(O1,. .-, 0m).

Proof. Each v; is square-free since v; | b. For ¢ # j one has ng('Ui,'U]’) =
ged(a — b, a — ;b',b) = 1 since ged(b',b) = 1. Hence v := vy -+ vy, is a

divisor of b. Let 3 be a zero of b. Then b (3) # 0 and gcd(a — :J,(%%b’ b) # 1.
3

Therefore :—,%E% is some 7; and S is also a zero of v; = ged(a — b/, b). Since
b is square-free, it follows that v = b.

We want to show tha.t =3, 7,—1 This is equlvalent to proving
that P := a — >, yivi = o s actually 0. The polynomial P has degree less
than the degree of b. For any j the polynomial v; is a divisor of a — v;b’ =

n
a—y 21_1 v Now

n

v v
god(v;, P) = ged(vj,a = 139 ) = ged(y,0 — 35 3 vl) = vy,
J

i=1 K

since v; divides v * for i # j. Hence P is divisible by all v; and hence by
V=v;- Uy = b. Slnce the degree of P is less than the degree of b, one has
P =0. This proves the first statement.

Let a formula ¢ = 251'% be given. We transform it by writing w; =

(',-éil, with f;,g; € C[z] monic polynomials and ¢; constants. The result is

$ = E&:% with @; € Clz] monic. Then

Q81+ -,8) € Q(dy, -+, 0n).

In other words, we may already suppose that the initial w;’s are monic
polynomials in C[z]. In the next step every w; is decomposed as a prod-

uct of monic linear factors. We find an expression § = )4 Z'_‘;‘ and



212 M. van der Put

again Q(67,...) C Q(81,--.,0,). The terms in this sum with the same coef-
1

ficient /' are collected a.nd thls gives the result ¢ = 3" €;2t, where the
w; are monic, mutually coprime and square-free, the €; are dlstmct and all
€; € Q(6y,...,0,). The proof will be ﬁmshed when we can show that the last

expression for £ is identical with Z '7, . That the expressions are identical
(up to order) follows from b = wy - - - wyy, ‘and

w'
ged(a — €;b',b) = gcd(Z(ei — fj)j(wl W), W e Wey) =

. 2
1

Indeed, every ¢; is equal to some ~y; and evei'y w; is equal to some v;.

Exercise 2.3. Find an expression for

/ 2r+1 dx
x4 + 223 + 22 - 2

with the method of Proposition 2.2.

Hint: Use Maple for the calculation of the determinant R(y). Let Maple find
the solutions v; of R(y) = 0. Let Maple find the ged’s v;.
Use the method of Proposition 2.2 to find an expression for

1
— d.
/x3+x+1 T

Compare this with the solution found with the partial fraction decomposition
1
of 5= e

3. The Equation ¥y’ = fy with f € C(z)*

This time we want to know the solutions y # 0 which are algebraic over C(z),
i.e., y # 0 satisfies a polynomial equation y% + ag_,y% ' +---+ay+ag =0
with coeflicients a; € C(x).

Write f = # with a,b polynomials, b monic and ged(a, b) = 1. We intro-
duce a new variable y and form the polynomial R(y) := R;(a—y¥,b) € Cly].
The answer to the question is:

Proposition 3.1. The equation y' = fy has an algebraic solution # 0 if and
only if the following conditions are satisfied.

1. ged(Y',b) = 1 and the degree of a is less than the degree of b.
2. All the zeros of R(y) are rational numbers.



Chapter 9. Symbolic Analysis of Differential Equations 213

Proof. Suppose that y # 0 is an algebraic solution of t?le equation y' =
fy. Let the minimal polynomial equation of y over the field C(z) be y +
ag—1y* ' + -+ + a1y + ap = 0. Differentiation of this equation yields

fdy? + (fag—1(d— 1) +a/_)y* '+ + (far + a})y +a) = 0.

By minimality, this new equation for y must be a multiple of the equation of
minimal degree d. This implies

ay_y = faq_1, aj_o = 2faq—1, ...,ay = (d—1)fa;, af = dfao.

The rational function ag is # 0. Write ag = [[;_, v/**, where the v; are
inequivalent irreducible polynomials and where the m; are integers. Then
=%, (—m‘—/d—)l’* = ¢ with ged(a,b) = 1. Clearly b = [];_, v and the
degree of a is strlctly less than the degree of b. Moreover ged(b,b) =
Furthermore R(A) = 0 if and only if the ged(a — AV, b) is # 1. The last
condition is equivalent to v; divides a — Ab’ for some j. The term a — A’ is
equal to 3;(%¢ — A) 2. Clearly v; divides a — AV’ if and only if 7 — A = 0.
The zeros of R(y) are therefore rational numbers. So [ satisfies the conditions
(1) and (2).

On the other hand, assume that f satisfies the two conditions. Let
Y1y -.+,¥n denote the zeros of R(y) and put v; = ged(a — v, b). Accord-
ing to Proposition 2.2, one has f = ¢ = pI '7,-%:1. The ~; are supposed to
be rational numbers and as a consequence the v; are polynomials with coeffi-
cients in C. Let N denote the common denominator of the ;. The expression
y = [I;-, v]* is algebraic over C(z), since y"¥ € C(z). It is clear that y is a
solution of the equation 3’ = fy.

Exercise 3.2. Construct an algorithm for finding the algebraic solutions of

the equation ¢’ = fy with f € Q(z)*. Test whether ¥’ = fy has an algebraic

solution and calculate the solution if there is one, for the following f’s:
~9723 + 222 + 1292+ 6 Trt + 2122 + 47 + 10

d .
1524 + 3022 — 45 an 25 4+623 +2245x+5

4. Rational Solutions of an Equation of Order n

For the differential equation
y™ 4+ an_1y™ Y 4+ ... 4 goy = 0, with all a; € C(z),

we try to find the solutions in C(z).

It seems more general to study the solutions in C(xz) of this equation.
We will explain the theoretical reason why this gives no new information.
Let V c C(z) denote the set of solutions of the equation. This is a vector
space over C of finite dimension (see Lemmas 5.1 and 5.2). Let G denote



214 M. van der Put

the Galois group of the field extension C > C. The group G acts on C(z)
in the obvious way. This action commutes with the differentiation ’ and so
V is invariant under the action of G. For g € G, A € C and v € V one has
g(M) = g(A)g(v). It follows from [7, Chapter 10, Proposition 3], that there
is a basis vy, ..., vs of V over C such that the v; are invariant under G and
thus belong to V N C(z). Hence it suffices to study the rational solutions in
C(x) of the equation above.

The idea of the algorithm is the following: Suppose that the denominator
of a solution y € C(x) is known and that one also knows a bound on the
degree of the numerator. Then the unknown coefficients of the numerator
can be calculated with linear algebra.

A solution y can only have a pole at o if at least one of the a; has a pole
at a. Also, oo is a possible pole of y. Hence the location of the possible poles
of y is known. What we have to do is to estimate the possible order of a pole
of y.

The Algorithm

For notational convenience we restrict ourselves to n = 3. Again for notational
convenience we start by investigating the order of the pole of y at 0. Suppose
that the expansion of y at 0 is ° +*z*+t1+. .. with s < 0. The expansion of a;
at 0 is written as a; = b;z™ +*z™ 1! +--. where the b; are nonzero constants
and the n; are integers. In case a; = 0, we put n; = 0o and b; has no meaning.
The four possible lowest powers of z in the equation ¥® +ay® +a,1y(V +aoy
are

s(s = 1)(s = 2)2°73, s(s — 1)bya® 2tm2 shyx®~11M pog*tno,

Let min denote the minimum of —3, —2+ny, —1+n1, no. The coefficient I(s)
of z57™" can be written as

€35(8 — 1)(s — 2) + €28(s — 1)ba + €18b1 + €obo,

where €; = 1 if the corresponding element in {~3,—2 + ny,—1 + ny,np} is
minimal and €; = 0 otherwise. The expression for I is a nonzero polynomial
in s (seen as a variable) of degree < 3. Since y®) + a3y + a,yV + agy = 0,
the coefficient I(s) of z*7™" must be 0. Thus s is a solution of the equation
I(s) = 0. The latter equation is often called the indicial equation. If there is
no integer s with I(s) = 0 then we can stop the calculations since in that
case there is no nonzero rational solution. If there is no negative integer s
with I(s) = 0 but there is an integer k > 0 then we define 39 = 0. If there is
a negative integer solution of I(s) = 0 then sy < 0 denotes the smallest one.

‘We now return to the general equation of order 3. We will use the following
notation: ord,(f) is the order of the function f at the point p.

Let a,...,a, denote the poles of ag,a;,a3. For every i, 1 < i < r, the
method above yields an integer s; < 0 such that, for any rational solution



Chapter 9. Symbolic Analysis of Differential Equations 215
~

y # 0, one has ord,, (y) > s;. (Or possibly we find that there are no rational
solutions.) This means that we can write y = Z with known N = [[,(z —
a;)” % and with some polynomial T'. The next thing that we have to do is to
estimate the degree of T'. For this purpose we develop y, as, a1, ag at co. The
expansions have the form y = 2t + *x'~ 1+ --- and a; = c;z™ +*x™ 1 4. ..
If a; # 0 then ¢; is supposed to be a nonzero constant and m; is an integer.
If a; = 0 then we put m; = —oc and ¢; has no meaning. The four possible
highest powers of z in the equation y®) + a,y® + a,y(!) + a¢ are

t(t — 1)(t = 2)x* 73, t(t — Dega?™2F™2 teyat~1t™1 ) goztt™o,

Let max denote the maximum of {—3, —2 + mgy, —1 + m;, mp}. Let J(¢) be
the expression

est(t — 1)(t — 2) + €at(t — 1)cg + €1 tc1 + epco,

where the ¢; = 1 if the corresponding term is equal to max and ¢; = 0
otherwise. Then J is a nonzero polynomial of degree < 3 in ¢ (seen as a
variable). If there is no integer ¢ with J(¢) = 0 then we stop the algorithm.
In the other case, let s, denote the largest integer that is a zero of J. Then
we find that ¢t < s,,. Expanding y = % at infinity leads to the inequality
degree(T) < so+degree(IN). This is the bound that we are looking for.

Let d be the bound for the degree of T and write T' = tg2% + - - -+ t¢. The
equation satisfied by y produces a third order equation for 7. This leads to a
set of linear equations for the coefficients ¢;. With linear algebra one can find
all solutions. This ends the algorithm. In the following we discuss a variation
on the above algorithm.

A Variation

We would like to work with this algorithm over the field C = Q. There is
now the problem that the poles of the a; are algebraic numbers. Let a be an
algebraic number with minimal polynomial P = T%+¢c4_,T% ' +---+¢, T +
ey € Q[T over Q. The field Q(c) is isomorphic to Q[T]/(P). The calculations
in Q(a) are in fact translated into calculations with polynomials modulo the
ideal (P). ‘

Algebraic numbers will slow down the computations and may cause other
problems. How to avoid this?

We assume that we can factor polynomials over Q (cf. Chapter 4). Instead of
working with an algebraic number which is a pole of some a;, we will work
with an irreducible monic factor p € Q[z] of the denominator of some a;.
Every element in Q(z) has a unique expansion ), - 4 d,p™ where the d,, are
polynomials in Q[z] with degree less than the degree of p. We will use those
expansions in order to find the number of factors p in the denominator of a
solution y. Write y = a(x)p® + »p**! + ... with a a nonzero polynomial of



216 M. van der Put

degree less than the degree of p. Similarly, a; = b;(x)p™ + *p™ 1 +.... With
notations similar to the ones used before, one finds an expression

I=e35(s — 1)(s - 2)a(x)(p(2))’ + e25(s — 1)a(z)(p(x)' ) az(z)+

e1sa(z)p(r) a1(z) + €oa(z)ao(z) mod p.

This expression must be identically zero for the given s. Since a(z) is in-
vertible modulo p, we can omit a(x). Let d be the degree of p. Then I can
be written as I = Iy + L1z + --- + I;_12%! with all I; € Q[s] of degree
< 3. We are looking for integers s which are common zeros of the polynomi-
als Iy, ..., Iz . If there is no such integer then there is no rational solution
y # 0 of the equation. In that case we stop the algorithm. If there is such an
integer and the smallest one is > 0 then we put s, = 0. If there are negative
integers satisfying the equations, then the smallest one is by definition s, < 0.
Now any solution ¥ # 0 has the from % with N = [][p~*#. The rest of the
algorithm is unchanged.

Exercise 4.1. Calculate the solutions in Q(z) of the equation y” = ry with

_ 6z* + 262° + 4222 + 30z - 8
T (x+1)2(z+5)(x3 - 1)

Exercise 4.2. Compute the rational solutions of the equation

3 82% — 63z —27 .,  4482% + 1080z + 1080 ) 24
y - =y + y' - y=0.
(24z + 27)x 3(8z + 9)%x (8z +9)%x
5. Some Differential Galois Theory
A linear differential equation of order n is an equation of the form:
y(") + an_ly(""l) + -4 aly(l) + a0y = f,
where f, ag, ..., an_ are also functions. The equation is called homogeneous if

f =0 and inhomogeneous if f # 0. The main question is to find out whether
some solution or all solutions of the equation can be written in a ‘closed
formula’. We have already seen some algorithms related to this question.
One can expect closed formulas only when the functions f,ag,...,a,_; are
very well specified. The methods are algebraic and the conditions on the
f.a0,...,an_1 will also be algebraic in nature. As before, C will denote a
field of characteristic 0 and C will denote an algebraic closure of this field.
In applications C and C will be subfields of the field C of complex numbers.

Most of the time we will assume that f,ay,...,an—1 belong to C(x), the
field of rational functions over C, or to C((x)), the field of formal Laurent
series over the field C, consisting of the expressions } ., v anz", with N € Z
and all a,, € C. The expressions are ‘formal’ and there is no condition on the



Chapter 9. Symbolic Analysis of Differential Equations 217

convergence. One can add and multiply the elements of C'(()) in the obvious
way. Every nonzero element has an inverse (e.g., the inverse of 1 + z is the
La.urent series ), ~o(—1)"2™). Thus C((2)) is indeed a field. The operation
= T is defined by (3°,,5 5 an2™) = 2,5 N0aT"” 1
Those two fields are examples of differential fields. A dzﬁ’erentzal field K is
a field equipped with a differentiation a — a’. The differentiation is supposed
to satisfy the following rules:

(a+b)Y =d +b and (ab) = a'b+ab'.

The field of constants C of K is the subfield {a € K | o’ = 0}. We will
assume that the characteristic of K is 0 and that the differentiation on K is
not trivial. In that case Q C C and C # K.

How many solutions of a homogeneous differential equation of order
n over a differential field K are there? Let us write W = {w € K |
w satisfies the equation}. It is clear that W is a vector space over the field of
constants C of K.

Lemma 5.1. The dimension of W over C is at most n.

Proof. A matrix differential equation over K has the form v/ = Av, where A
is an n x n-matrix with coefficients in K and where v is a vector of length n.
The order n homogeneous equation ‘

y(") + an_ly("—l) 4+ +’\aly(l) +agy=0

can be translated in the following matrix equation v/ = Av:

!’

y o 1 0 .. 0 y
y@ o o0 1 .. 0 y®
y@ _ . . . . y@

. 0 0 o . . 1 .

y™-D —a0 —@1 —G2 . . —Qnp_) y(=1

In Lemma 5.2 below we will show that V := {v € K" | v/ = Av} is a
vector space over C with dimension < n.
Now the subspace W is mapped to V by

w
w®
w®

w("._l)

This map is easily seen to be C-linear and bijective. The dimensions of W
nnd V are equal and so the dimension of W is < n.



218 M. van der Put

Lemma 5.2. V := {v € K" | v/ = Av} is a vector space over C with
dimension < n.

Proof. This follows from the statement:

Ifvy,...,ux € V are linearly dependent over K then the vectors are lin-
early dependent over C.

The proof of this statement is given by induction on k. The case k = 1 is
obvious. Suppose k > 1 and suppose that v,...,v, are linearly dependent
over K. In a nontrivial relation fijv; + ---+ fyvx = 0 (with all f; € K) we
may suppose that f; = 1. Apply the operation v — v’ — Av to the equation.
The result is an equality fyve +--- + fivr = 0. If the f] are 0 for 2 <i <k,
then all f; € C and we have found a linear relation over C. If not all f; are
0, then the induction hypothesis can be applied.

Remark 5.3. One can show that any matrix equation v’ = Aw, with A an
n X n-matrix over K, is equivalent to a matrix equation coming from a ho-
mogeneous order n equation over K. This means that we can switch back
and forth between matrix equations and order n linear equations.

5.1 Picard-Vessiot Theory

We make a small excursion into ordinary Galois theory in order to explain
later the ideas of differential Galois theory.

Consider a field K of characteristic 0 and a polynomial P € K[T] of degree
n. We assume for convenience that ged(P, P’) = 1 (i.e., P has no multiple
zeros in any field extension of K). In general P does not have n zeros in K.
One defines a splitting field L of P over K as follows:

1. K is subfield of L.
2. P has n (distinct) zeros in L.
3. L is minimal with respect to (1) and (2).

Let ay,...,an € L denote the n zeros of P. Then the last condition can
be replaced by L = K(ay,-..,a,); in words, ‘the field L is generated over K
by a1,...,an’.

This splitting field is unique up to a K-linear isomorphism. The Galois
group G = Gal(L/K) of L over K is the group of the K-linear field automor-
phisms of L. This group permutes the elements of {ai,...,a,}. Any ¢ € G
is determined by its action on {a;,...,a,}, and so G can be considered as a
subgroup of the permutation group of {a1,...,a,}. A main result of Galois
theory is the Galois correspondence:

There is a 1-1 correspbndence between the subgroups H of G and
the subfields M of L which contain K. This correspondence is given
by the two maps, which are each other’s inverses,



Chapter 9. Symbolic Analysis of Differential Equations 219

H — L” ‘= the elements of L invariant under
the action of all h € H,

M ~ Gal(L/M)
(N.B. L is also a Galois extension of M).

The structure of the Galois group G gives important information about
the polynomial equation P(T) = 0. In particular, the group G is solvable
if and only if the solutions of the equation P(T) = 0 can be written in
a ‘closed form’. This means that the solutions can be expressed in terms
of ordinary elements of K by using the symbols %/ and (of course) the
operations +,-,( )~1.

It may come as a surprise that Galois theory has a perfect analogue for
linear differential equations over a differential field K. We will give the high-
lights of what is called Picard-Vessiot theory. In the following we make the
assumption that the field of constants C of K is algebraically closed.

In general, a homogeneous linear differential equation of order n over the
differential field K does not have ‘all’ its solutions in K itself, i.e., the vector
space W = {w € K | w satisfies the equation} has dimension < n over C.
One tries to find a ‘minimal differential field extension’ L of K such that
Wr = {w € L | w satisfies the equation} does have dimension n over C.
The precise formulation is the following:

L D K is called a Picard-Vessiot field for the equation if:

K C L is an extension of differential fields.

L has C as field of constants.

W (as defined above) has dimension n over C.

L is minimal in the sense that, for a differential field M with K C M C L
and dimension of Wy over C' equal to n, the equality M = L holds.

Ll i S

One can show that a Picard-Vessiot field exists and that two Picard-
Vessiot fields for the same equation are isomorphic differential field extensions
of K. In the special case K = C(z) it is rather easy to show the existence of
a Picard-Vessiot extension. We will indicate a proof in Lemma, 6.1.

The differential Galois group G of the given equation over K and with
Picard-Vessiot field L is defined as the group of the automorphisms o of the
field L such that o is the identity on K and o commutes with the differen-
tiation of L. This group G acts in a C-linear way on Wi. Indeed, since o
commutes with ’, one has for w € W, that the element ocw € L is also a solu-
tion of the equation and therefore lies in Wy,. This action of G on W, induces
# group homomorphism G — Autc(Wr) 2¢ GL(n, C). This homomorphism
is injective and its image is an algebraic subgroup of GL(n, C). In this way G
obtains the structure of a linear algebraic group over C. We will denote the
differential Galois group by DGal(L/K).



220 M. van der Put

The Galois correspondence has the following analogue:

There is a bijection between the algebraic subgroups H of G and the
differential fields M with K C M C L. This correspondence is given
by the two maps, which are each other’s inverses,

H +— L¥ = the elements of L fixed under the action of H,
M ~ DGal(L/M)

(N.B. L is also a Picard-Vessiot extension of M).

Special cases of this correspondence are:

1. Put G = DGal(L/K). The set L®, of the G-invariant elements of L is
equal to K.

2. Let HC G be a normal a.lgebralc subgroup of G. Then G/H is again a
linear algebraic group and G/H can be identified with DGal(L? /K).

3. Let G° denote the connected component of the identity in G. Then G°
is a normal (algebraic) subgroup of G and G/G? is a finite group. The
field L is a finite Galois extension of K with (ordinary) Galois group
equal to G/G°.

4. L D K is a finite extension (equivalently, all the solutions of the differ-
ential equation are algebraic over K) if and only if G is a finite group.

The differential equation over K and the corresponding Picard-Vessiot
extension L O K is called Liouvillian if there exists a sequence of differential
subfields K = Lo c L, C---C L,_1 C L, with L = L,, and such that for
every i the extension L; C L;; has one of the following three forms:

1. L; C L;;; is a finite algebraic extension.
2. L,‘+1 = Li(t) with t’ = f € L;.
3. Liyy = Li(t) with & = f € L.

Loosely stated, the differential equation is Liouvillian if all the solutions
can be obtained from K by adding algebraic functions, primitives [ fdz and

exponentials of primitives ef 74* The Liouvillian solutions of a differential
equation are what we have vaguely called ‘solutions in closed form’ or ‘sym-
bolic solutions’.

The structure of the differential Galois group DGal(L/K) of a differential
equation is the key to our questions about symbolic solutions. Indeed, one
has the following result:

Let G = DGal(L/K) denote the differential Galois group of a dif-
ferential equation over K. The equation is Liouvillian if and only
if G° is a solvable linear algebraic group (i.e., after conjugation the
group G° is a subgroup of the group of upper triangular matrices in
GL(n,C))

We will develop this point of view in detail for differential equations of order
two.



Chapter 9. Symbolic Analysis of Differential Equations 221

Ezxamples 5.4. (1) Consider the equation 3y = f over K with f € K. We
suppose that this equation does not have already a solution in K. The equa-
tion can be replaced by the equivalent homogeneous one 3" — I}:y’ =0. We
claim that the Picard-Vessiot extension of this equation is L = K(t), where
t is transcendental over K and t' = f. It suffices to show that the set of
constants of K (t) is again C. As an illustration we will give a proof of this.

Any element of K(t) can be written as § where a,b € K]|t|, b is monic
and ged(a,b) = 1. Suppose that (§)’ = 0. Then a’b = ab’ and so b divides ¥’.
Write b = t% + bg_1t%1 + --- + by with all b; € K. If b has degree > 0, then
Y = (df +b_)t4t + -+ (fby + b)). If df + b),_, = O then the equation
3y = f has a solution in K. This contradiction implies that the degree of ¥
is d — 1. This is not possible since b is supposed to divide ¥’'. We conclude
that b=1 and o’ = 0. If the degree of a is > 0 then &’ cannot be zero. Thus
a € K and a € C since o’ = 0.

The differential Galois group of the equation consists of the automor-

phisms o with o(t) =t + ¢ for some ¢ € C. Indeed, o(t) =o(t')=0o(f) = f
and (o(t) — t)’ = 0. The differential Galois group is therefore isomorphic to
the linear algebraic group G, = C, which is called the additive group.
(2) The equation 3y’ = fy with f € K*. There are two possibilities here.
The first possibility is that, for every integer n # 0, the equation ¥ = nfy
has no solution # 0 in K. Then the Picard-Vessiot field is L = K(t) with ¢
transcendental over K and ¢’ = ft. The differential Galois group consists of
the automorphisms o of the form o(t) = ct, where ¢ € C*. In other words,
the differential Galois group is the linear algebraic group G,, = C* (which
is called the multiplicative group).

The second possibility occurs if there exist integers n # 0 such that y’ =
n fy has a nonzero solution in K. Let m > 0 be the smallest positive integer
with this property and let g € K* satisfy ¢’ = mfg. Then the Picard-Vessiot
field of the equation is K (t) where ¢ is algebraic over K with minimal equation
t™ — g = 0. The differential Galois group consists of the automorphisms ¢
with o(t) = ¢t and ¢ € C such that (™ = 1. In other words, the differential
Galois group is the algebraic subgroup of G,, = C™ consisting of the mth
roots of unity.

We leave the verification of (2) as an exercise for the reader. We note the

connection of this example with Proposition 3.1.
(3) The Airy equation ¥’ = xy over C(z) has differential Galois group
SL(2,C). This will be proved in Section 8. The group is connected and not
solvable. This has as consequence that the solutions (the Airy functions)
cannot be obtained from the rational functions by means of integrals and
exponentials of integrals and algebraic functions.



222 M.van der Put

6. Order Two Equations Over C(x)

As usual, the algebraic closure of C will be denoted by C. Consider the
equation ¥’ + ay’ + by = 0 with a,b € C(z). It has a certain differential
Galois group G C GL(2,C).

One can transform the equation y” + ay’ + by = 0 into the equation v’ = rv,
with r € C(z), by the substitution y = fv where f = exp(—3 [ a dz). The
term r is equal to ;a®+ 1a’ —b. The new equation v” = rv has a differential
Galois group H which is, according to the next lemma, an algebraic subgroup
of SL(2,C). This simplifies matters.

However the transformation uses maybe an extension of the differential
field C(x), since the equation ff—’ = —a need not have a solution in C(z). As a
consequence, solving v"" = v is not quite the same as solving y” +ay’' +by = 0.
One can show that the two differential Galois groups are related by G/Z =
H/T,where Z and T are the subgroups of G and H consisting of the multiples
of the identity. In the second part of Remark 9.3, we will encounter an example
of this situation.

This means that our restriction, in this section, to equations of the form
y’ = ry is a slight loss of generality.

Lemma 6.1. There is a Picard-Vessiot field for the equation y_” =ry. The
differential Galois group of the equation is a subgroup of SL(2,C).

Proof. Let d € C be such that r has no pole at d. We introduce the variable
t = —d and write r = ), 7nt". We try to find solutions of the form
Y=3_,500nt™ of the equation 3 = ry. This leads to the set of equations

(n+2)(n+ Dapsz = Z r;a; for all n > 0.

i+j=n

Here, ap and a; can be chosen arbitrarily. After this choice, the a,, are de-
termined for n > 2. So we find two solutions y; = 1 +0 -t + *t2 + ---
and yo = t + *t2 + - - - which are linearly independent over C. The subfield
K = C(2)(v1,9},¥2,¥5) C C((z — d)) is easily seen to be a Picard-Vessiot
field for the equation. An element o in the differential Galois group has, with
respect to the basis y;,y2 of the space V of all solutions of the equation in

K, the matrix ( Z 2 ) € GL(2,C). In order to see that the determinant
of this matrix is 1, we consider the expression y,y5 — yiy2. The derivative
of this expression is 0 and so ¥y — ¥;y2 € C. In particular, o leaves this
element invariant. As o(y1y% — y1y2) = (ad — be)(y1y2 — Y1¥2), We conclude
ad —bc =1.

In the next proposition we ha.le collected the relevant information about
the algebraic subgroups of SL(2, C).



Chapter 9. Symbolic Analysis of Differential Equations 223

Proposition 6.2. The algebraic subgroups G of SL(2,C) are, up to conju-
gation in SL(2,C), classified as follows:

1. G =8L(2,0).
2. G is reducible, i.e., G is a subgroup of {( ; :

3. G 1is irreducible and imprimitive, i.e., G is a subgroup of the infinite
dihedral group

pe{( 2 )t )

and G s irreducible.
4. G is d finite primitive group which means that G has the properties:
o G is finite.
o G 15 irreducible, i.e., no line in 62 1s tnvariant under G.
o G is not imprimitive, i.e., there is no pair of lines in 52 such that G
permutes these two lines.

There are three finite primitive groups in SL(2,C) (up to conjugation),
they are called the tetrahedral group, the octahedral group, and the icosahedral
group. The images of those groups in PSL(2,C) = SL(2,C)/{%} are isomor-
phic to the groups Ay, Sy, and As. The three groups have order 24, 48, and
120, respectively.

Except for the three fihite groups of part (4) of the proposition, there are
the following representatives of the conjugacy classes of finite subgroups of
SL(2,C):

o The cyclic group of order n with generator ( % §(‘)1 ) with (, a prim-
n

itive n-th root of unity.
o The finite dihedral groups D,, given as

. gim 0 0 _Cim .
D’”"{(% 4;,;)’(45,:; 0 )} 05“2’"}’

where (2, is a primitive 2mth root of unity.

The Algorithm

The aim of the algorithm is to find, for a given equation y” = ry with
r € C(z), the differential Galois group G and solutions in ‘closed form’ (if they
exist). It turns out that there are no solutions in closed form if G = SL(2, C).
If G is a proper subgroup of SL(2,C), then the Picard-Vessiot field of the



224 M. van der Put

equation turns out to be a Liouvillian extension of C(z) and thus the solutions
of y" = ry can be written in closed form.

The classification in Proposition 6.2 is the basis for the algorithm of Ko-
vacic. We will explain some of the steps.
(1) Suppose that the equation y” = ry has a reducible differential Galois
group G. Then there is a line Cy C V = Cy; + Cy, which is invariant under
the action of G. For every o € G there is a constant ¢ € C with o(y) = cy.

Then also o(y'} = cy’. Therefore a(yy—') = yyi. The Galois correspondence of

the Picard-Vessiot theory asserts that u := % € C(z). A small calculation
shows that u satisfies the equation u’ + u? = 7. This equation is called the
Riccati equation associated to y”’ = ry. Thus a necessary condition for G
to be reducible is that the Riccati equation u’' + u? = r has a solution in
C(z). This is also sufficient! Indeed, let « € C(z) satisfy u' + u® = 7. Let
y € K, y # 0 be a solution of ¥ = uy. Then y” = ry and so y € V. Let o be
an element of G. From y' = uy and u € C(z) it follows that (oy)’ = u(oy).
Hence o(y) = cy for some ¢ € C”. And so the line Cy C V is invariant under
G and G is reducible.

(2) Suppose that the differential Galois group G is imprimitive. Then V has a
basis, say again {yi, }/2}, such that G permutes the lines Cy; and Cyz. Then
:-; ’ o
elements u; +u2 and u;uz are invariant under G and belong therefore to C(z).
The u; are the zeros of the polynomial T2 — (u; + u2)T + (ujuz) € C(z)[T].
Hence the Riccati equation u’ + u2 = r has a solution which is algebraic over
C(z) of degree two. A continuation of this type of reasoning shows that G
is imprimitive if and only if the Riccati equation v’ + u? = r does not have
a solution in C(x) and does have a solution which is algebraic over C(z) of
degree two.

(3) Similar arguments and a study of the finite primitive groups lead to the
following statement.

the elements u; := i =1,2, are also permuted by the elements of G. The

Proposition 6.3. Suppose that the differential Galois group of y' = ry is
not equal to SL(2,C). Then there is a solution of the Riccati equation u'+u? =
T which is algebraic over C(x). Let n > 1 denote the minimal degree of such
an algebraic solution of the Riccati equation. Then n can only have the values
1,2,4,6,12. Furthermore:

n =1 if and only if G is reducible.

n = 2 if and only if G is imprimitive.

n =4 if and only if G is conjugate to the tetrahedral group.
n =6 if and only if G is conjugate to the octahedral group.
n =12 if and only if G is conjugate to the icosahedral group.

O 0 0o O ©°

(4) The procedure for determining n and u (see [3] for more details) runs as
follows:



Chapter 9. Symbolic Analysis of Differential Equations 225

(a) One starts by considering n = 1 and tries to compute a solution u € C(x)
of the Riccati equation. First one determines the singular points d € C or oo of
y"” = ry. For each singular point one calculates ‘local solutions’, i.e., working
over the differential fields C((z — d)) or C((z™!)), of the Riccati equation.
For each singular point one finds at most two principal parts of a possible
local solution. With some ‘gluing’ one tries to build a ‘global solution’, i.e., an
element of C(z). This procedure is presented in more detail in the Sections
7, 8,and 9.

If this leads to a solution u, then one can reduce the equation y” =
Ty to order one (inhomogeneous) differential equations. A further study of
those equations produces the differential Galois group and the closed form
solutions.

(b) Suppose that no solution with n = 1 is found. Then one proceeds with the
case n = 2. In principle the method of (a) can be copied, but applied to the
second symmetric power of the equation y” = ry. If a solution is found, then
the equation y” = ry is reduced to order one (inhomogeneous) equations.
The differential Galois group is then found as well as the solutions in closed
form.

(c) One continues in a similar way with the cases n = 4,6, 12 (in that order).

(d) If no algebraic solution u is found, then the differential Galois group is
SL(2,C) and there are no solutions in closed form.

7. The Local Differential Galois Group

In this section we will (for convenience) assume that the field C is alge-
braically closed. We use the term ‘local’ in the sense that the differential field
C(z) is replaced by a larger differential field K. The field K is the comple-
tion of C(z) at a point of C' U {0o}. This means that K is one of the fields
C((z — d)) (with d € C) or C((z71)).

The local differential Galois group of an equation over C(z) with respect
to one of the fields K is denoted by G4 or G

The local differential Galois group of an equation over C(z) is easily deter-
mined. The well-known formal classification of differential equations (mean-
ing the classification over the fields K'), due to Turrittin, can be used to find
this group.

Let a differential equation over C(z) be given. Let G denote its differential
Galois group. As we will see the local differential Galois groups G4 and G
can be embedded as subgroups of G. The knowledge of the local differential
Galois groups will be used in the sections 8 and 9 for the determination of
G.

In this section we study the differential Galois group of the equation
y"” = ry over the field C((z)). The proof of Lemma 6.1 can be modified in
order to show that this group is contained in SL(2,C).



226 M. van der Put

For r € C((z)), r # 0 one defines the order ordg(r) of r = 3 r,2" to be
the minimal integer n with r,, # O.

Proposition 7.1. Let Gy denote the differential Galois group of the equation
y" =ry over the field C((x)). Writer € C((z)), 7 # 0 asr =3 rpz™. Then
we have the following distinction of cases.

1. ordy(r) > 0; then Gy =1.

2. ordg(r) = —1; then Go = G,.

3. ordg(r) = —2 andr =r_ax 2+ r_yz7 4 -+ with r_5 # 0. Now
a) (1+4r_3)V? ¢ Q; then Go = Gn,.
b) (1+47_2)Y2 € Q\ Z; then Gy is finite cyclic with order > 3.
¢) (1+4r_3)Y2 € Z and odd; then Gy is 1 or Gg.
d) (1+4r_2)Y% € Z and even; then Gy is {£1} or {£1}G,.

4. ordo(r) < —3 and odd, then Gy = Do

5. ordg(r) < —4 and even, then Gy = Gy,

If (1+4r_2)/2 = £ € Q\ Z with ged(t,n) = 1 and n > 1, then the order of
Go is n if both t and n are odd. Otherwise the order of Gy is 2n.

Proof. The proof consists of somewhat long calculations with formal Laurent
series. Let PV denote the Picard-Vessiot field of the equation and let V denote
the solution space of the equation in the field PV. Then V has dimension
two over C and the group Gy lies in SL(V).

(1) If ordo(r) > O then the equation is regular. In particular, there are
two solutions of the form 1+ *z + *z%+ - -- and z+ *z2 + *xz3 +-- - in C((z)).
Thus Go =1. .

(2) Suppose ordg(r) = —1. Any solution in C((z)) can be normalized
t0 g = 2¥ + go412°7! + gpi22°T2 + .-+ € C((z)). One finds v = 1 and
recurrence relations for the coeflicients g;. Hence there is a solution g €
C((z)). Write y = gF. Then F, which we may suppose not to lie in C;
satisfies the differential equation F’ = cg~2 with ¢ € C*. This equation has no
solution in C((x)) (otherwise ¢’ = ry would have two independent solutions
in C((z))). According to the first example of Section 5, the differential Galois
group is G,.

(3) Suppose that ordg(r) = —2. We try to solve the associated Riccati
equation v’ + u? = r with some u € C((z)). The order of u at 0 is obviously
—1. Write v = u_127 ! +up + u17 + ugz® + - - -. Then one finds a sequence of
equations:

w?,—u_y = r_g3, (7.1)

2u_yuy = T_1, (7.2)

(Qu_1+ Duy+ud = 1o (7.3)

...... ces (7.4)

(U + (B4 1))Upyr +*%% = 74, (7.5)

...... .. (7.6)



Chapter 9. Symbolic Analysis of Differential Equations 227

Then u_, = 1/2 4 1/2(1 + 4r_5)'/2. After a choice for u_; the other
coeflicients of u are uniquely determined if moreover 2u_; + n + 1 is never
zero. In the case that 2u_; + n + 1 = 0 for certain n there might be no
solution of the Riccati equation starting with the chosen u_; or there might
be infinitely many solutions of Riccati starting with the chosen u_.

In case (a) there are two solutions, say u and 4. They correspond with
two lines L; and Ls, spanned by y1,y2, in the solutior,,l space V which are
invariant under the group Gp C SL(V). One has u = %1; and @ = %é. Hence
any o € Gg has the form o(y;) = cy; and o(y2) = ¢ 'yz with ¢ € C*. Hence
Go C G- Moreover y; € V is not algebraic over C((z)) since u_; is not
rational. Therefore, the equation y' = uy has differential Galois group G,.
Hence Gy = G,,,. .

Case (b) is similar to case (a). Now the differential Galois group of the
equation y' = wuy is finite cyclic, since u_; is rational. The order of this
group, which is isomorphic to Gy, is equal to the smallest integer N > 1 such
that Nu_; is an integer. This proves case (b} and the last statement of the
proposition.

In case (c) there is at least one solution u of the Riccati equation. Since
u_) is an integer, there is a y1 € C((z))* with y| = uy;. Take a yp in V
such that {y1,y2} is a basis of V. Then any o € Gy satisfies o(y;)} = y1 and
o(y2) = y2+cy1 with ¢ € C. Thus Gy is an algebraic subgroup of the additive
group G,. Hence Gy is either 1 or G,.

Case (d) is similar to case (c). There is at least one solution u of the
Riccati equation. Since 2u_; is an odd integer, one finds that the solution
y1 # 0 of ¥ = uy does not lie in C((z)) and y? € C((z)). Choose y2 € V
such that {y;,y2} is a basis. Any o € G satisfies 0(y;) = +y; and o(yz) =
+yo + cy1 with ¢ € C. Then Gy is either equal to the group {+1} or is equal
to {+1} x G,.

(4) Suppose that ordp(r) = 2n+1 with n < —2. Then the Riccati equation
' 4 u? = 7 has two solutions u and 4 in the field C((z'/2)) (and no solution
in C((z)) itself). The elements y;,y2 € V with u = %i; and & = %;1 are
not algebraic over C((z'/2)) since u and i have the form *z™*1/2 4 ... and
n+ 1/2 # —1. The differential Galois group of the equation over the field
C((z'/?)) consists of the o with oy; = ey, and oy, = ¢!y, with any c € C*.
The group G contains this group and also contains an element that permutes
the two lines Cy; and Cys. Hence Gy = Dy

(5) Suppose that ordg(r) is even and < —4. The two solutions of Riccati

are in C((z)) and one easily sees that y;,y2 are not algebraic over C((z)).
Hence Gy = G,

Remarks 7.2. (1) In the cases (3c) and (3d) there is an algorithm for deter-
mining Go. The length of this algorithm depends on the integer (1+ 4r3)}/2.
(2) Instead of the field of formal Laurent series in £ one can also consider
an equation over the field of formal Laurent series in z — ¢ for some c € C.



228 M.van der Put

The statements are the same in this case. Also the case of the field of formal
Laurent series in the variable z~! is important. This field is denoted by
C((z™1')). This field is associated with the point co. The elements of this
field are the expressions }_, . anz™ with all a, € C and N € Z. One defines
the order orde(f) of an element f = 3 .\ anz" as the smallest integer
k with a_i # 0. The differentiation in the field C((z~!)) is again ' = £.
Proposition 6.2 is the analogue of 7.1 for C((z ’1)) The differential Galols
group over the field C((z~!)) will be denoted by G

(3) The results on the local differential Galois groups will be used in the
following two sections. We will explain just how they are used.

Let a differential equation Ly = 0 be given over C(z). Then there is a
Picard-Vessiot field PV and a differential Galois group G associated to this.
The same equation can also be considered over the field C((z)). The Picard-
Vessiot field over C((z)) will be denoted by PVy. The field C(x) embeds
in C((z)). Let V be the subspace of PV, consisting of all the solutions of
L(y) =0 in PVy. Let C(z)(V) denote the smallest differental subfield of PV,
containing C(z) and V. It is easily seen that C(z)(V) is a Picard-Vessiot field
for L(y) = 0 over C(z). Hence PV and C(z)(V) are isomorphic differential
fields over C(z). In other words, there exists an embedding PV — PV,. This
embedding is not unique. For a fixed choice of the embedding one finds an
injective homomorphism Gy — G. Indeed, any o € Gy acts on V as a C-linear
map (and is determined by this action). Hence o leaves the subfield C(z)(V)
invariant, is C(z)-linear and commutes with . Thus ¢ induces a differential
automorphism of PV over C(z), that belongs to G. The homomorphism
Go — G is clearly injective. Another choice of the embedding PV — PV,
induces a homomorphism Gy — G which is obtained from the first one by
conjugation with an element of G.

The differential Galois group of the equation L(y) = 0 over the field
C((z — ¢)) is denoted by G.. There is an injective homomorphism G, — G.
In a similar way one finds an injective homomorphism G, — G.

One can show that the group G is generated as an algebraic group by
the images of the G, — G (with ¢ € C) and G, — G. This gives some
information about the group G, but in general not enough to determine G.
The problem here is that those images are only known up to conjugation with
an element in G.

Proposition 7.3. Calculation of G

1. ordeo (1) > 4; then Goo =
2. ordeo (1) = 3; then Goo = Gy
3 orde(r)=2andr=r_ox 2 +71_37 3+ .- withr_5 #0.
a) (1+4r_2)'2 ¢ Q; then Goo = G.
b) (1+4r_3)"/2 € Q\ Z; then G is finite cyclic with order > 3.
¢) (1+4r_3)/2 € Z and odd; then G, is 1 or G,.
d) (1+4r_3)'/? € Z and even; then G, is {£1} or {£1}G,.



Chapter 9. Symbolic Analysis of Differential Equations 229
4. ordeo(r) < 1 and odd; then Go, = D.
5. ordeo(r) < 0 and even; then G, = Gy,

If(1+4r_5)Y2 =t € Q\Z with ged(t,n) = 1 and n > 1, then the order of
Goo s n if both t and n are odd. Otherwise the order of G is 2n.

8. The Equation y” = ry with » € C[z], r # 0

The equation y”’ = ry has oo as only singular point. The algorithm that will
be presented here is a simplification of Kovacic’s algorithm. Still an interesting
part of the Kovacic algorithm is needed for finding symbolic solutions. The
algorithm is based on the following result:

Proposition 8.1. Consider the equation y" = ry where r € Clz] is a

nonzero polynomsial of degree n.

1. If n = 0 then the Riccati equation has two solutions and the differential
Galois group 1s conjugate to the multiplicative group

en={( 2 2)]eco).

2. If n > 0 then the differential Galois group is conjugate to the Borel group

o={(5 o)

if and only if the Riccati equation has a solution in C(z). If the Riccati
equation has a solution then n is even.

3. The differential Galois group is SL(2,C) if there is no solution of the
Riccati equation in C(x).

acC, beﬁ}

Proof. Let K O C(z) denote the Picard-Vessiot field of the equation y" = ry.
Let G denote the differential Galois group and let G° denote the component
of the identity of G. The finite extension C(z) C F := K¢° has Galois group
G /G°. The equation is regular at any point ¢ € C and thus K can be embed-
ded into the field C((z —c)). Hence also F can be embedded into C((z — c)).
This means that the field extension C(x) C F can only be ramified above the
point oo. It is well known that a nontrivial extension of C(z) is ramified above
ut least two points. Consequently, ' = C(z), and by Galois correspondence
G = G°. In view of the classification of the algebraic subgroups of SL(2, C),
given in Section 6, one finds the following possibilities

SL(2), B, G, and G.,={( 0t ) l beé}



230 M.van der Put

for G. The local differential Galois group G, is a subgroup of G. We have seen
in Section 7 that G is either G, for n even or D, for n odd. This eliminates
G, as a candidate for G. Moreover, for odd n one has that G = SL(2, C).

The three groups SL(2,6), B, G,, occur if and only if the number of
solutions of the Riccati equation is 0, 1, 2.

If r # 0 is a constant then the Riccati equation has the two solutions
+./7. The differential Galois group is isomorphic to G.,. The two symbolic
solutions are e¥Vv7e, ‘

If the degree of r is > 0 then we will show that the differential Galois
group G cannot be isomorphic to G,,. Suppose the contrary, then there are
two solutions y;,y2 of ¢’ = ry such that for any 0 € G thereisa c € C
with o(y1) = cy1 and o(y2) = ¢ 'yz. The element f = y,y; is invariant
under G and belongs to C(z) according to the Galois correspondence. A
small calculation shows that f satisfies the equation f( —4rf(1) — 27/ f = 0.
We note that this equation is the second symmetric power of the equation
y” = ry. This third order equation has only a singular point at oc. It follows
(see Section 4) that the solution f must be a polynomial. We have therefore
proved our claim if we can show that the operator L : C[z] — Clz], defined
by L(f) = f® —4rf) _ 2/ f, has kernel 0. A small calculation shows that
L(z*) = rp(—4k — 2n)z™ %=1 4 ... for k > 0. This implies that for a nonzero
polynomial f of degree k > 0, the degree of L(f) is n + k — 1. Hence L is
injective. "

We conclude that for n > 0 the group G can only be B or SL(2,C). The
first case occurs if and only if the Riccati equation has a solution in C(z). We
have already seen that n must be even in this case and that there is only one
solution u € C(z) of the Riccati equation. Hence this solution lies in C(z).

The Algorithm

For nonconstant r we want to develop an algorithm that calculates the pos-
sible solutions in C(z) of the equation ' + u? = r. Suppose that u exists,
then u has an expansion at 0o of the form a,z" + a,_ 12" +--- € C((z71))
with a, # 0 and n > 1. It follows that the degree of r is 2n. Hence we find
that there are no solutions if the degree of r is odd.

Assume now that the degree of r is 2n > 0. Then u’ 4 u2 has the expansion

2n—1 2 ‘N2n—2
@z + (ann_1 + @n_18n)T°" ' 4 (Anan_2 + a2 _; + an_2an)z? 2 4+ -

+(ana_1 +an-1a9 + -+ a_1a, + nay)c" 4 -

We only want to calculate the a., ..., a_;. The equality v’ +u? = r leads to

two solutions for (an,...,a—1).
On the other hand, let & # oo be a pole of u. Then the equation v’ +u? = r
proves that the expansion of u at « is equal to u = m—:; +etx(z—a)+---

Let a,,...,aq denote the set of all the poles of u and put F = [[(z — «;).
Then u = v+ ‘;, where v is & polynomial in C[z]. Hence v = apz" +- - - +ag



Chapter 9. Symbolic Analysis of Differential Equations 231

and d = a_;. A necessary condition is therefore that a_; is an integer > 0.
Suppose that this condition is satisfied; then we proceed by calculating F'.
Write F = 2% + fg_,2% ' + ...+ fiz + fo. The equation u’ 4+ u? = r leads
to the equation F” + 2vF’ + (v' + v2 — r)F = 0. Hence the coefficients of

2% k=0,...,n+d— 1 in this expression are 0. This leads to a set of linear
equations for the f;. The coefficient of z"+9~1 can be seen to be identically 0.
The equations for k =n+d—2,...,n —1 determine f4_,,..., fo as one can
see. Those fy_1,..., fo should also satisfy the equations for k =0,...,n — 2.

If this is not the case, then there is no solution for the Riccati equation.

Ezample 8.2. The equation y’ = (rez% + riz + ro)y with rp # 0. Write
7o = A% and 7, = 2AB. The condition that a_; = d € Z, d > 0 determines
ro = B2? + (2d + 1)A. (Note that we have supposed here (as we may) that
u = Ar+B+dzx~'++zx72+-...) The d linear equations for the coefficients of
F = z%4 f3_10% 1 4. . .4 f always have a unique solution. This can be seen as
follows. Write F' = %+ G. The equation for G is G” + 2(Az + B)G' —2dAG =
—2Bdz?! — d(d — 1)z%~2. One considers the operator L on polynomials of
degree < d, given by the formula L(G) = G + 2(Az + B)G’ — 2dAG. Then
L(z*) = 2A(k — d)z*+ lower degree. Hence L is bijective and the equation
L(G) = —2Bdz?~! — d(d — 1)z%2 has a unique solution.

The conclusion is that r of degree 2 gives the Borel group as differential
Galois group if and only if 7 has the form A%z%+2ABz + B?+ (2d+1)A for
suitable A€ C', BeC, deZ, d>0. (We note that actually A, B € C.)

We continue with the case d = 1 in order to show how symbolic solutions
can be calculated. The unique solution of the Riccati equation is u = Az +
B + =15 A solution of the equation y’ = uy is

y = (x+ A7 B) exp(1/2Az? + Bxz).

Then y{ = ry1. A second solution ys of the-last equation can be obtained
with the method of ‘variation of constants’. Put y, = fy;. Then f satisfies
"y +2f'y, = 0. A possibility for f’ is y; 2. Hence y2 = y fyl'z dz is a
second solution of the equation.

Exercise 8.3. Let r = 2% + 223 + 22 + 8z + e. For which constants e does
the Riccati equation u’ + u2 = r have a solution u € Q(z)?

Give symbolic expressions for two solutions of the equation ¥’ = ry for
the cases where u exists.

9. The Equation y” = ry with r € Clz, 2]

In this section we develop some theory and an algorithm that determines
the differential Galois group G and the possible Liouvillian solutions for this
oquation. As in Section 8, the algorithm is a simplification of Kovacic’s al-
gorithm for this special case. We note that there are at most two singular



232 M.van der Put

points, namely 0 and oc. The local differential Galois groups Gy and G, are
almost completely determined by ordo(r), ordeo(r) and r_,. The groups Gy
and G,, which can be identified with certain subgroups of GG, determine the
possibilities for G. We start with the study of a special case.

Lemma 9.1. Forr =r_772 (and r_3 # 0) one has:

1. If r—p = —=1/4 then G = {£1} x G,.

2. If(1+4r_3)% is equal to the positive rational number L withged(t,n) = 1,
then G is a finite cyclic group of order n if both t and n are odd, and of
order 2n if either t or n is even.

8. In all other cases G = Gy,

Proof. The Riccati equation v’ + u? = r has the solution(s) u = u_;z~! with
u_y = 3 & L(1 4 4r_3)'/2. For r_; = —1/4 there is only one solution 1z~?
of the Riccati equation. Then y; = z/2 is a solution of ¢ = ry. The second
solution y; can be written as fz'/2 for some (nonconstant) f. One finds that
f' =dz~! with d € C, d # 0. This equation has no solution in C((z'/2)). It
follows that the group G consists of the elements ¢ such that o(y;) = +y;
and o(yz) = Fyz + cy; with ¢ € C. This proves case (1).

In the other cases there are at least two solutions of the Riccati equation

and thus G C Gy,. One proves (2) and (3) as in Proposition 7.1.

Theorem 9.2. Suppose that r # r_ox™2

1. The table below gives the possibilities for the groups Go, G, G. The term
_ Cy4 indicates the cyclic group of order 4.

Go Goo G
#Cs | Do SL(2)
D | #Cs |SL®)
Cy Do, SL(2) or Do
Do Cy SL(2) or Dy
# Do | # Doo | G, B or SL(2)

U] Lol Do =~

2. In cases 8 and 4 (they are of course similar) the group G is equal to Do
if and only if the Riccati equation u' + u2 = r has a solution in C(z'/?).
3. In case 5, the group G is equal to G,,, B or SL(2) if and only if the
number of solutions of the Riccati equation in the field C(z) is 2, 1, or 0.

Proof. (1) Suppose that G = D,. We will show that either Gy = D, and
Goo = C4, or Gy = C4 and G o = Dy. This proves the cases 1, 2, 3, and 4
of the table. ,

Assume that G = Dy,. Then G° C G has index two. Let K denote the
Picard-Vessiot field of the equation. Then K€’ is a quadratic extension of
C(z). As in the proof of Proposition 8.1 one finds that this extension is only
ramified above 0 and oco. It follows that K¢° = C(z/3). The solution space
V € K of the equation has a basis y,y3 such that the group G consists of



Chapter 9. Symbolic Analysis of Differential Equations 233

all automorphisms with determinant 1, that permute the two lines Cy;, Cys.
The subgroup G° C G consists of the automorphlsms o such that o(y1) = cy1

and o(y;) = ¢y, with ¢ € C". Then u = 511 and T = % are invariant

under G° and therefore belong to K€* =C C(z'/?). They are solutions of the
Riccati equation and are conjugate over C(z). One can write those solutions
as u = A+ Bx'/? and % := A — Bx'/? with A, B € C(z) and B # 0. From

r=u+u? = (A" + A%+ 2B?) + (B + 2 'B/2 + 2AB)z'/?,

one concludes that A’ + A2+ B2 = r and 2AB + B’ + 27 !B/2 = 0. The

last equation translates into A = —Zx -1 %%
Let a # 0,00 and suppose that B has a zero at a of order k£ > 0. The

expans1on of A atais A= —L + +.+ and the expansion of r at a reads r =

(zk/ z) + + - «.. This produces the contradiction that r has a pole at a.

We conclude that B has no zeros on C*. In particular, ordg(B)+ord.(B) > 0.
One has the following possibilities:

1. k=ordog(B) > —
The expansion of A at 0is A= (—% — 1k)z~! + * + - - - and that of r is
r=(3+3k+ (L +1k)?)22+xz7 1+ . One finds (1+4r_5)1/2 = 2kE3
and Proposition 7.1 yields Gy = Cy.
Put | = ordeo (B). The expansion of A at 0o is A = (—3+3)a~ +*x 72+
.- and the expansion of r at oo is

r=((———) (———) e i A

If I <1 then ordy(r) is odd and < 1. By Proposition 7.3 one has G, =
D.
Ifl>2then r =r_oz 2+ *x~ 3+ ... and so r = r_yz~2. This case is
excluded in the theorem.

2. k=ordo(B) < —2and so ! = ord(B) > 2. Then ordg(r) = 2k—1 is odd
and < —3, hence Gy = Dy. The expansion of r at oo and Proposition
7.3 imply that G = Cy.

We consider now case 5 and assume that Gy # Dy # Go. The group
(i is different from D, as we have proved. Suppose that G c SL(2,C) is
a finite primitive group. Then the Picard-Vessiot field K > C(z) is a finite
extension. As in the proof of Proposition 8.1 one shows that this extension is
only ramified above the points 0 and oo. The Galois group of K /E(x), which
coincides with the differential Galois group, is then a finite cyclic group. This
contradicts the assumption that G is a finite primitive group. Hence G is
cither SL(2) or a reducible group, i.e., contained in B.

We suppose now that G C B and try to see that G can only be B or G,
It suffices to show that G contains G,,, since in that case G can only be B
or Gp.



234 M. van der Put

If ordg{(r) > 0, then by Proposition 8.1 it follows that G = B or G = Gy,.

If ordg(r) = —1, then ordo(r) < 1 and so Gy = G, and G = G-
Hence G = B.

If ordg(r) = —2, then ordoo(r) < 1 since 7 # 7_2x 2. Then Goo = G, C
G.

If Ordo(?") < =3, then Gy = G,, CG.

This finishes the verification.
(2) and (3) follow easily from the proof of (1) above.

The Algorithm

2

(1) The case r = r_az~? is completely described in Lemma 9.1.

(2) Determine which case of Theorem 9.2 occurs by using ordgy(r), orde (r),
r_o. In the cases 1, 2 the algorithm stops.

(3) Suppose that r satisfies case 5 of Theorem 9.2.

A possible solution of the Riccati equation has the form vy + v + FTI with
vp € z7C[z7Y], voo € Clz] and F € Cz] a monic polynomial of degree d
with F(0) # 0.

The term vo is given by:

1. If ordg(r) > 0, then vg = 0.

2. If ordg(r) = —1, then vp =z~ L.

3. If ordg(r) = —2, then vo = (3 £ 1(1+4r_2)}/2)z~! (one or two possibil-
ities).

4. If ordg(r) = —2n < —4, then vg = *xz™™ + - - + *x~! such that ordy(r —
v2 — v§) > —n (two possibilities).

Let E denote the coefficient of = in v.
The term wo, = *x 7! + * + *x + - - - + *2™ is defined by

1. If ordeo (1) > 3, then wy, = 0.
2. If ordoo (1) = 2, then woo = (5 + 3(1+4r,)*/2)2! (one or two possibili-
ties).
3. If ordeo (1) = —2m < 0, then we, = *2™ + -+ - + * + x2~ ! should satisfy
orde (r — w2, —w!l,) > 2 — m (two possibilities).
Let D denote the coefficient of 27! in wee. Put vy := Weo — Dz~ L.

For a choice of the pair (vg, W) one calculates D — E. If this is not an
integer and > 0, then one tries another pair.

If a pair (vg, W) satisfies D — E € Z and > 0, then one considers a monic
polynomial F = x4+ fy_12% 1+ - -+ f of degree d = D— E. This polynomial
must satisfy the differential equation F” + 2vF’ + (v' + v? — r)F = 0 where
¥ = vy + Veo. This leads to a set of linear equations for the f;. If this has a
solution, then u is found. If not, then one chooses another pair (vg, woo ).



Chapter 9. Symbolic Analysis of Differential Equations 235

(4) If r presents the case 3 or 4 of Theorem 9.2, then one has to solve the
equation u’ + u? = 7 with u € C(z!/2). This is done as in (3) above, with z
replaced by z1/2.

Remarks 9.3. 1. The calculation of the first coeflicient of vy might involve a
quadratic extension C of the field C. If there is indeed a solution u € C(x)
(or in C(x'/2)) of the Riccati equation, then there are two solutions. They
have their coefficients in C and are conjugated over C. The equation for (the
first coefficient of) we, must have a solution in C. The differential Galois
group will be G = G,;;. Similar statements hold in case the calculation of w,
involves a quadratic extension of C.

2. Recent work of J.-P. Ramis, M.F. Singer and C. Mitschi on differential
Galois theory describes and constructs differential equations over, say C(z)
with a fixed number of singularities. In particular, Theorem 3 of the paper
[6] describes all the differential Galois groups over the field of convergent
Laurent series in the variable z. It is remarked ([6], page 267) that this
coincides with the possibilities for the differential Galois groups of equations
over C(x) having at most singular points at 0 and oo. The subgroups of SL(2)
in this list are

SL(2), B, G, Gg, {£1} x G,, the finite cyclic groups C,, with n > 1.

Why is the group G, missing from our list?

Essentially the only equation for the group G, is y” + 'y’ = 0. This equa-
tion is transformed by y = 22~%/2 into 2” = —1z~2z which has differential
Galois group {£1} x Gg. The extra term {*1} obviously comes from the

quadratic extension which is used in this transformation.

Exercise 9.4. Consider the equation y” = (r_;z~ ' +ro+r1z)y withr_; # 0.

1. Prove that there only is a symbolic solution if 7} = 0, r¢ # 0 and the
Riccati equation u’ + u? = r_12~! + ry has a solution in Q(z).

2. Suppose that u exists. Prove that the differential Galois group is equal

to B. Prove that u is unique.

Find the first parts of the expansions of u at 0 and oc.

4. Conclude that u has the form v =z ! +a + FT', where a is a constant
and where F' is a monic polynomial of degree d > 0 with simple zeros
such that F(0) # 0.

5. Conclude by looking at the coefficient of 27! of the expansion of u at co
that ro = (zr7y)*

6. The condition o9 = (ﬂti_—-{}ﬁ)z with d € Z, d > 0 is necessary for the
existence of u. Show that for d = 0,1 the condition is also sufficient.

7. Calculate the symbolic solutions for the case d = 0.

8. Show that the condition is sufficient for any d by writing F = z¢ +
fa-12%"1 + ... + fo and by analyzing the system of linear equations that
one obtains from

@



236 M. van der Put

xF”—f—(J—:—z—i-Q)F’— ro F =0.

d
1 d+1
Exercise 9.5. Calculate symbolic solutions for the equation

3
"o__ -3 _ v, -2

Hint: Find Gy and G . Calculate the ‘negative part’ v of the expansion at 0
for the possible solutions u € Q(z'/2). (The expansion of u at 0 is an element
of Q@((x/2)).) Conclude that u has the form v+ £ for some monic polynomial
F in z'/2. Find the degree of F.

Notes

The presentation of Sections 2 and 3 is influenced by a manuscript of A.H.M. Levelt
on symbolic integration ([4]).

The algorithm of Section 8 is essentially the one invented by Liouville [5]. Our
treatment can be seen as a modern version of Liouville’s work.

The method and results of Section 9 are probably new. This section has its
origin in an essay by B.E. Tuitman, written for her doctoral exam at the University
of Groningen. Some of the exercises were composed by M. van Hoeij.

A good introduction to differential algebra is [1]. An extensive survey of the state
of the art on differential Galois groups, algorithms for linear differential equations
and the inverse problem for differential Galois theory is given in [8].

References

. L Kaplansky (1952): An Introduction to Differential Algebra, Hermann, Paris.

. E.R. Kolchin (1973): Differential Algebra and Algebraic Groups, Academic Press,
New York. )

3. J. Kovacic (1986): An algorithm for solving second order linear homogeneous

differential equations, J. of Symbolic Computation, 3—43.

A.H. M. Levelt (1992): Lectures on symbolic integration, University of Nijmegen.

J. Liouville (1834): Mémoire, Sur Uintégration d’une classe d’équations

différientielles du second ordre en quantités finies explicites, Journal de

Mathématiques pures et appliquées, 425-456.

6. J.-P. Ramis (1996): About the inverse problem in differential Galois theory: The

differential Abhyankar conjecture, pp. 261-278 in: The Stokes Phenomenon and

Hilbert’s 16th Problem, (editors B.L.J. Braaksma, G.K Immink, M. van der

Put), World Scientific, Singapore.

J.-P. Serre (1968): Corps locauz, Hermann, Paris. _

M.F. Singer (1997): Direct and Inverse Problems in Differential Galois Theory,

A survey for the “Collected works of Ellis Kolchin”.

N =

bl

®© N



Chapter 10. Grobner Bases for Codes

Mario de Boer and Ruud Pellikaan

1. Introduction

Coding theory deals with the following topics:

o Cryptography or cryptology. Transmission of secret messages or electronic
money, eavesdropping, intruders, authentication and privacy.

o Source coding or data compression. Most data have redundant information,
and can be compressed, to save space or to speed up the transmission.

o Error-correcting codes. If the channel is noisy one adds redundant infor-
mation in a clever way to correct a corrupted message.

In this and the following chapter we are concerned with Groébner bases and
error-correcting codes and their decoding. In Sections 2 and 3 a kaleidoscopic
introduction is given to error-correcting codes centered around the question of
finding the minimum distance and the weight enumerator of a code. Section 4
uses the theory of Gréobner bases to get all codewords of minimum weight of a
cyclic code. Section 5 gives an elementary introduction to algebraic geometry
codes. '

All references and suggestions for further reading will be given in the
notes at the end of this chapter. The beginning of this chapter is elementary
and the level is gradually more demanding towards the end.

Notation: The ring of integers is denoted by Z, the positive integers by
N and the nonnegative integers by Ng. The ring of integers modulo n is
denoted by Z,,. The number of elements of a set S is denoted by #5. A field
is denoted by F and its set of nonzero elements by F*. The finite field with ¢
clements is denoted by F,. Vectors are row vectors. The transpose of a matrix
M is written as M ". The inner product of the vectors x and y is defined as
x-y =xy' =Y x;y:. The projective space of dimension m over F, is denoted
by PG(m,q). Variables are denoted in capitals such as X,Y, Z, X,,..., Xp.
If I is an ideal and F an element of Fy[X1,...,X,,|, then Z§(I) denotes the
zero set of I in F™, and the coset of F' modulo I is denoted by f.

2. Basic Facts from Coding Theory

Words have a fixed length n, and the letters are from an alphabet Q of ¢
clements. Thus words are elements of Q™. A code (dictionary) is a subset of
Q". The elements of the code are called codewords.



238 M. de Boer and R. Pellikaan
2.1 Hamming Distance

Two distinct words of a code should differ as much as possible. To give this
a precise meaning the Hamming distance between two words is introduced.
If x,y € Q", then

d(x,y) = #{i | z; # y;}-

Exercise 2.1. Show that the Hamming distance is a metric. In particular,
show that it satisfies the triangle inequality

d(x,z) < d(x,y) + d(y,z).
The minimum distance of a code C is defined as

d=d(C)=min{d(x,y) [ x,y € C, x #y}

2.2 Linear Codes

If the alphabet is a finite field, which is the case for instance when Q = {0, 1},
then Q™ is a vector space. A linear code is a linear subspace of Fy. If a code
is linear of dimension k, then the encoding

£:Ff — T},

from message or source word x € ]F’; to encoded word ¢ € Fy can be done
efficiently by a matrix multiplication:

c = E(x) = %G,

where G is a k x n matrix with entries in Fy. Such a matrix G is called a
generator matriz of the code.

For a word x € F7 its support is defined as the set of nonzero coordinate
positions, and its weight as the number of elements of its support, denoted
by wt(x). The minimum distance of a linear code C is equal to its minimum
weight

d(C) = min{wt(c) | c € C, ¢ # 0}.

In this chapter a code will always be linear.

The parameters of a code C in Fy of dimension k& and minimum distance
d will be denoted by [n, k,d], or [n, k,d]. Then n —k is called the redundancy.
For an [n, k, d] code C we define the dual code C+ as

Ct={x€eF;|c-x=0 forall ceC}.

Exercise 2.2. Let C be a code of length n and dimension k. Show that
C+ has dimension n — k. Let H be a generator matrix for C+. Prove that
C={ceFy |H ¢’ =0}. Therefore H is called a parity check matrix for C.



Chapter 10. Grobner Bases for Codes 239

Ezample 2.3. The [7,4,3] Hamming code has generator matrix G and its
dual, the [7, 3, 4] Simplex code has generator matrix H, where

— = =

8 ) 11107100
G = X  H=|1101010
: 1011001

[ == == R ]

11
10
01
11

oo
S o~ O

0

Exercise 2.4, Let (I|P) be a generator matrix of C, where I is the k x k
identity matrix. Show that (—PT|I,_) is a parity check matrix of C.

2.3 Weight Distribution

Apart from the minimum distance, a code has other important invariants.
One of these is the weight distribution {(i,a;) | ¢ = 0,1,...,n}, where «a;
denotes the number of codewords in C of weight ¢. The polynomials We(X,Y)
and W¢(X), defined as

Wo(X,Y) =Y a;X"'Y" and We(X) =) auX™"
=0 =0

are called the (homogeneous) weight enumerators of C. Although there is no
apparent relation between the minimum distance of a code and its dual, the
weight enumerators satisfy the Mac Williams identity.

Theorem 2.5. Let C be an [n, k] code over F,. Then
Woi(X,Y)=q *We(X + (g-1)Y, X = Y).

2.4 Automorphisms and Isometries of Codes

Other important invariants of a code are its group of automorphisms and its
group of isometries.

Let Perm(n, q) be the subgroup of GL(n, q) consisting of permutations of
coordinates. Let Diag(n, q) be the subgroup of GL(n, q) consisting of diagonal
matrices. Let Iso(n, q) be the subgroup of GL(n, ¢) which is generated by
Perm(n,q) and Diag(n, q).

A code that is the image of C under an element of Perm(n,q) is said to
be equivalent to C. The subgroup of Perm(n,q) that leaves C invariant is
the automorphism group of C, Aut(C).

A code that is the image of C under an element of Iso(n,q) is said to
be isometric to C. The subgroup of Iso(n,q) that leaves C invariant is the
isometry group of C, Is0(C).

Exercise 2.8. Show that Aut(C) = Aut(C+) and similarly for Iso(C).



240 M. de Boer and R. Pellikaan

Exercise 2.7. Show that a linear map ¢ : Fy — F7 is an isometry if and
only if ¢ leaves the Hamming metric invariant, that is,

d(p(x), o(y)) = d(x,y),
for all x,y € Fy.

A code of length n is called cyclic if the cyclic permutation of coordinates
o(t) =1 — 1 modulo n leaves the code invariant. See Section 4.

Exercise 2.8. Show that the [7, 4, 3] Hamming code, as defined in Example
2.3, is not cyclic, but that it is equivalent to a cyclic code.

3. Determining the Minimum Distance

Given a generator matrix of a code, the problem is to determine the minimum
distance of the code. We will give five possible solutions here. All these meth-
ods do not have polynomial complexity in n, the length of the code. One
cannot hope for a polynomial algorithm, since recently it has been proved
that this problem is NP complete.

3.1 Exhaustive Search

This is the first approach that comes to mind. It is the brute force method:
generate all codewords and check for their weights.

Since one generates the whole code, other invariants, like the weight dis-
tribution, are easy to determine at the same expence. But going through all
codewords is the most inefficient way of dealing with the problem.

It is not necessary to consider all scalar multiples Ac of a codeword ¢ and
a nonzero A € [, since they all have the same weight. This improves the
complexity by a factor ¢ — 1. One can speed up the procedure if one knows
more about the code, for example the automorphism group, in particular for
cyclic codes.

By the MacWilliams relations, given the weight distribution of a code,
one can determine the weight distribution of the dual code by solving linear
equations. Therefore it is good to do exhaustive search on whatever code (C
or C*) has lowest dimension.

Ezxample 3.1. The Hamming code. Generating all 16 codewords of the Ham-
ming code yields the following weight distribution of the code:

weight | # codeword.é
0 1

3 7
4 7
7 1




Chapter 10. Grobner Bases for Codes 241

This could have been achieved by first computing the weight distribution of
the dual code (dimension 3) and then applying the MacWilliams transform.
Also, one can use that the code has a cyclic automorphism group of order
7. Therefore one knows that the number of codewords of weights 3 or 4 are
multiples of 7.

Exercise 3.2. Does it hold in general that the number of codewords of a
given weight in a cyclic code is a multiple of the length? If not, what is the
exact relation?

3.2 Linear Algebra

In a sense the theory of linear codes is just ‘linear algebra’. The determination
of the minimum distance can be phrased in these terms as the following
exercise shows.

Exercise 3.3. Show that the minimum distance is the minimal number of
dependent columns in a parity check matrix.

But also for this method one has to look at all possible combinations of
columns, and this number grows exponentially.

We give a sketch how the minimum distance of linear codes is determined
by the algorithm of Brouwer. Let G be a k x n generator matrix of G. After
a permutation of the columns and row reductions we may suppose that the
first £ columns form the k x k identity matrix. Any linear combination of
w rows with nonzero coefficients gives a codeword of weight at least w. In
particular, if the code has minimum distance 1, then we will notice this by
the fact that one of the rows of G has weight 1. More generally, we look at all
possible linear combinations of w rows for w=1,2,... and keep track of the
codeword of smallest weight. If we have found a codeword of weight v, then
we can restrict the possible number of rows we have to consider to v—1. The
lower bound w for the weight of the codewords we generate is raised, and the
lowest weight v of a codeword found in the process so far is lowered. Finally
v and w meet.

An improvement of this method is obtained if G is of the form (G - -- Gy)
where G1,. .., G are matrices such that the first k& columns of G; form the
k x k identity matrix for all j = 1,...,[. In this way we know that any linear
combination of w rows with nonzero coeflicients gives a codeword of weight
at least lw.

Exercise 3.4. Show that the maximum length of a binary code of dimension
4 and dual distance 3 is 7. What is the maximum length of a g-ary code of
dimension k and dual distance 37 Hint: Use Exercise 3.3 and read the next
section on finite geometry first.



242 M. de Boer and R. Pellikaan
3.3 Finite Geometry

It is possible to give the minimum distance of a code a geometric interpreta-
tion.

Suppose that the code is nondegenerate, this means that there is no co-
ordinate j such that c; = 0 for all codewords c. For the determination of the
minimum distance this is not an important restriction. So no column of the
generator matrix G of a [n, k, d] code is zero and its homogeneous coordinates
can be considered as a point in projective space of dimension k — 1 over F,.
If two columns are dependent, then they give rise to the same point. In this
way we get a set P of n points (counted with multiplicities) in PG(k — 1, q),
which are not all contained in a hyperplane. This is called a projective system.

A projective system P of n points Py,..., P, in PG(k —1,q), with P; =
(915 : -+ * gkj), defines the code C with generator matrix G = (g;;). This
code depends on the choice of the enumeration of the points of P and on the
choice of the homogeneous coordinates of P;.

Two projective systems P; and P, are called equivalent if there exists a
projective transformation o € PGL(k — 1, ¢) such that o(P;) = Ps.

Exercise 3.5. Show that in this way we get a one-to-one correspondence be-
tween isometry classes of nondegenerate [n, k, d] codes and equivalence classes
of projective systems of n points in PG(k—1,q) such that the maximal num-
ber of points in a hyperplane (counted with multiplicities) is equal to n — d.

Erample 3.6. The 7 columns of the [7,3,4] Simplex code, viewed as homoge-
neous coordinates of points in PG(2,2), give the seven points of the Fano
plane. All lines contain three points, so indeed the minimum distance is
7—3=4.

Let F(X,Y,Z) € F,[X,Y, Z] be a homogeneous polynomial of degree m. Let
P be the set of points (a : b : ¢) € PG(2,q) such that F(a,b,c) = 0, then
we say that P is a projective plane curve of degree m in PG(2,q) and that
F(X,Y,Z) = 0 is its defining equation.

Exercise 3.7. What can be said about the minimum distance of the code
of a plane curve in PG(2,q) of degree m which has n points? Notice that the
answer depends on whether the defining equation has a linear factor or not.
Codes from plane curves are treated more extensively in Section 5.

Exercise 3.8. The Klein quartic is the projective plane curve with defining
equation
XY +Y3z+ 23X =0.

What are the parameters of the code associated to the Klein quartic over Fg?

A rational normal curve in PG(r, q) is the image of the map

¢: PG(1,q9) — PG(r,q)



Chapter 10. Grobner Bases for Codes 243

given by o(xg : x1) = («f : x5 ey ¢ --- : zox]™! ¢ 2), or a projective

transformation of this image.

Exercise 39 Show that the ¢ + 1 points of a rational normal curve in
PG(r,q) lie in general linear position, that is, no r + 1 of these points lie in
a hyperplane. What are the parameters of its associated code?

Exercise 3.10. Show that, possibly after a projective change of coordinates,
the points of a rational normal curve are zeros of the 2 x 2 minors of the

following matrix
Xo X1 ... X,
X X2 ... X, ’

What is the vanishing ideal of a rational normal curve in PG(r,q)?

Exercise 3.11. The Hezacode is the quaternary code with generator matrix

R,

G:

OO =

0 01 1
1 01 «
01 1 o

Q

where o € Fy4 is a primitive element satisfying o + o + 1 = 0. Show that
the last 5 columns of G lie on the conic X2 + X; X, = 0 over Fy, which is a
rational normal curve. Use Exercise 3.9 to show that d > 3. Show that all 5
lines in PG(2,4) through (1: 0 : 0), corresponding to the first column of G,
intersect the remaining 5 points in exactly one point. Conclude that d > 4.
Determine the weight distribution of the code using this geometric setting.

3.4 Arrangements of Hyperplanes

In this section we consider the dual picture.
Let C be a nondegenerate code. The columns of the generator matrix G
can be considered as hyperplanes in ]Féc or PG(k — 1,¢). Then column g}

corresponds to the hyperplane with equation ELI 9i ;X; = 0. The multiset
of hyperplanes will be denoted by H.

Exercise 3.12. Show that the weight of a codeword ¢ = xG is given by
wt(c) = n — number of hyperplanes in M through x,
where this number is counted with multiplicities.

Clearly, the number of codewords of a certain weight ¢ equals the number
of points that are on exactly n — ¢ of the hyperplanes in H. To find a nice
expression for this we introduce the following notations. For a subset J C
{1,2,...,n} we define

C(J)={c€e€C|cj=0forall je J},



244 M. de Boer and R. Pellikaan

I(J) = dim C(J).

Under the above correspondence we get the following isomorphism of vector
spaces:

() H; = ().

jeJ

Be = Z (QI(J) -1).

#JI=t

Now define

Exercise 3.13. Let d* denote the minimum distance of the dual code. Then

show that for t < d+
n
B = (t)(qk_t - 1).

Exercise 3.14. Recall that o is the number of codewords of weight s. Prove

the following formula,
n—t
n—s
=3 (") e

by computing the number of elements of the set of pairs
{(J,e) | JC{1,2,...,n},#J =t,c € C(J), ¢ #0}
in two different ways.

Exercise 3.15. Show that the weight enumerator of C' can be expressed in
terms of the 3, as follows:

n—d
Wo(X) = X"+ Y B(X —1)".
t=0

Exercise 3.16. Prove the following identity either by inverting the formula
of Exercise 3.14 or by an inclusion/exclusion argument:

n—d ¢
ap = Z (_1)n+s+t (n B s)ﬂt’

t=n—s

Ezample 3.17. The Hamming code, see Exercise 2.3. The seven hyperplanes
in H are given by: X1 =0,Xs = 0,X3 = 0, Xy = 0,X1+ X2+ X3 =
0, X1+ X2+ X4 = 0, X; + X3 + X4 = 0. Going through all points x € F§ and
checking on how many of the hyperplanes in H they are, gives, after applying
Proposition 3.15, the weight enumerator of the code. Computing the I(J) for
all J gives the following result:

#JJ0][1]2]3 4 4
)[4 [38[2]1|1for7J|0for28J 0|00

o
[
-3




Chapter 10. Grébner Bases for Codes 245

Since B; = 0 for ¢ > 5 and there are J of size 4 such that C(J) # {0} we
see that the minimum distance is d = 3. To find the weight distribution we
compute the 3;.

ﬂo = 1(? — 1) =15 [87) = 1

ﬂl = 7(23 — 1) =49 a1 = 0

ﬂz = 21(22 — 1) =63 a2 = 0

B3 = 35(21 —1)=35|la3 = Bs=7

Bs = T(2'-1)=7 oy = P3—4Bs=T

Bs = 0 as = [2—303+684=0

Bs = 0 ag = P1—282+383—4064=0
Br = 0 ar = Po—Pr1+B2—[F3+Ps=1

Exercise 3.18. Compute the weight enumerator of the [7, 3, 4] Simplex code
and verify MacWilliam’s identity.

Exercise 3.19. Compute the weight enumerator of the code on the Klein
quartic of Exercise 3.8.

Exercise 3.20. Let C be an [n, k,n — k4 1] code. Show that I(J) =n —#J
for all J. Compute the weight enumerator of such a code.

Exercise 3.21. Prove that the number {(J) is the same for the codes C and
FgeC in Fy. for any extension F,e of F,. '

Using the Exercises 3.14, 3.16 and 3.21 it is immediate to find the weight
distribution of a code over any extension F if one knows the I(J) over the
ground field F, for all subsets J of {1,...,n}. Computing the C(J) and I(J)
for a fixed J is just linear algebra. The large complexity for the computation
of the weight enumerator and the minimum distance in this way stems from
the exponential growth of the number of all possible subsets of {1,...,n}.

Exercise 3.22. Let C be the code over F,, with ¢ even, with generator
matrix H of Exercise 2.3. For which ¢ does this code contain a word of
weight 77

Exercise 3.23. Compare the complexity of the methods ‘exhaustive search’
and ‘arrangements of hyperplanes’ to compute the weight enumerator as a
function of ¢ and the parameters [n, k,d] and d*.
3.5 Algebra
Let the n hyperplanes in ‘H have equations

Li(X) = Ly(X) = - - = Ln(X) = 0,

where the L; are linear forms in the variables X, Xj,..., X\ as in the pre-
vious section. Then a general codeword is of the form



246 M. de Boer and R. Pellikaan

c= (Ll(x),Lg(x), cee ,Ln(x))a

where x € IF’,;. Now let I; be the ideal generated by all products of ¢ distinct
Li (X)a 80

t
I, = (HL,S(X) l 1 <4, <12<<zt§n)

s=1
If &, is the ideal generated by all homogeneous forms of degree ¢ in k variables
Xi,...,Xk, then clearly I; C @;. We have the following.
Exercise 3.24. Show that
Zr (I)={x€ ]F’,; | wt(e) < t, with ¢ = xG}.
Exercise :3.25. Show that
d = min{t | 2p,(l;+1) # {0}}.

Determining whether Zf, (I;) = {0} can be done by computing a Grébner
basis for the ideal. Sometimes it is easy to see that I, = &;, whence one
can conclude immediately that Zg, (I;) = 2 ($:) = {0}. But in general no
polynomial algorithm is known to decide this question.

The ideals I, are generated by (?) elements and also this makes it infea-
sible to work with this method when n and t are large.

Contrary to what is done in exhaustive search, here all codewords are

considered at once.
Ezample 3.26. The Hamming code, see Exercise 2.3. For this code we have
c= (I11I21I31I41I1 +z2+ T3,T1 + T2 + 4,21 +T3+ I4)'

It is easy to see that I = (X1, X2,X3,X4) = @, and hence d > 1. Also
I, = @, and I3 = D3 is easy to check, so d > 3. To prove d = 3 it is enough to
note that I is contained in the ideal (X, X2, X3), so (0,0,0,1) € 25, (I4).

Erample 3.27. For the Hexacode, see Exercise 3.11, it is easy to see that
I, = @, and I; = $;. We skip the computation of I3 and compute a Grobner
basis for I4. The result is:
I = (X}, XX, X] X3, X1 X3, X] X0 X3, X X3, X1 X3, X1 X3 X3,
X1 Xo X3, X1 X3, X5, X3X3, X2X2 X2 X3, X3).
We find that Iy = @4 and hence d > 4. Since the rows of G are codewords of
weight 4, we can conclude that d = 4. For completeness, a Grobner basis is
computed for I5:
Iy = (X{Xo+X1X5, XiXs+ X1 X3, X3 X X3 + X1 X2X3,
XiX3X3+ X1 Xa X3, X2X0 X2 + X1 X3 X3, X3 X3 + X2 X3).
Now I is contained in the ideal (X, X3), s0 (0,0,1) € 2Zy,(I5) and indeed
d=4.



Chapter 10. Grébner Bases for Codes 247

4. Cyclic Codes

In this section we consider a very important special class of codes: cyclic
codes. We will find a nice algebraic description of the codewords of minimal
weight in such codes and a way to decode up to half the minimum distance.
It is not claimed that this is the most efficient way of treating this problem.

A cyclic code is a code C with the following property:
if ¢=(co,c1...,6n_1) € C, then (ch-1,c0...,cn—2) € C.

In the context of cyclic codes it is convenient to consider the index i of a
word as an element of Z,,, the cyclic group of order n.
Consider the bijection ¢ between Fy and F,[X]/(X™ — 1),

¢(C) =co+c X + "'+Cn—1Xn_1.

Then ideals in the ring F,[X]/(X™ — 1) correspond one-to-one to cyclic codes
in F. In the rest of this chapter we will not distinguish between codewords
and the corresponding polynomials under ¢; we will talk about codewords
¢(X) when in fact we mean the vector and vice versa.

Since F4[X]/(X™ — 1) is a principal ideal ring, every cyclic code C is
generated by a unique monic polynomial g(X) of degree at most n — 1, the
generator polynomial g(X):

C={c(X)|c(X)=r(X)g(X) mod (X" — 1), r(X) € F[X]}.

Instead of describing a cyclic code by its generator polynomial g(X), one can
describe the code by the set of zeros of g(X) in an extension of F,.

From now on we assume that n is relatively prime with q. Let o be a
primitive n-th root of unity in an extension field Fy.. A subset J of Z, is
called a defining set of a cyclic code C if

C = {c(X) € Fy[X]/(X™ — 1) | ¢(a?) = 0 for all j € J}.
The complete defining set J(C) of C is defined as
J(C)={j €Z, | c(c?) =0 for all c € C}.

Ezample 4.1. There are exactly two irreducible polynomials of degree 3 in
F2[X]. They are factors of X7 + 1:

X"+1=(X+D)(X*+ X+ D)X+ X* 4+ 1).

Let o € Fg be a zero of X3 + X + 1. Then « is a primitive element of Fg
and o? and o are the remaining zeros of X3+ X + 1. Consider the binary
cyclic code C of length 7 with defining set {1}. Then J(C) = {1,2,4} and
X3 + X +1 is the generator polynomial of C. The code C is equivalent with
the Hamming code.



248 M. de Boer and R. Pellikaan

Exercise 4.2. BCH bound. Show that a cyclic code has at least minimum
distance d if J(C) contains d — 1 subsequent elements.

Exercise 4.3. The cyclotomic coset of j € Z,, is the set {¢'j | i € Ng}. Show
that a complete defining set is a union of cyclotomic cosets.

Exercise 4.4. Let C be a cyclic code of length 7 over F,. Show that {1, 2, 4}
is a complete defining set if ¢ is even.

Exercise 4.5. Show that a binary cyclic code of length 11 has minimum
distance 2 or 11.

Exercise 4.6. Show that the cyclotomic coset of {1} in Z23 contains 4 sub-
sequent elements for ¢ = 2.

4.1 The Mattson-Solomon Polynomial

Let a(X) be a word in F;. Let o € F,e be a primitive n-th root of unity.
Then the Mattson-Solomon (MS) polynomial of a(X) is defined as

AZ)=) az", A; = a(a’) € Fye.
i=1

Here too we é.dopt the convention that the index 7 is an element of Z,, so
An+i = Az‘.

The MS polynomial A(Z) is the discrete Fourier transform of the word
a(X). Notice that A, € F,.

Proposition 4.7.

1. The inverse is gwen by a; = % A(o?).

2. A(z) is the MS polynomial of a word a(X) if and only if Ajq = Ag. for
allj € Zy,.

3. A(z) is the MS polynomial of a codeword a(X) of the cyclic code C if
and only if Aj =0 for all j € J(C) and Ajq = A] forall j=1,...,n.

Exercise 4.8. Let 3 € F;c be a zero of X" — 1. Show that
i gi=[n if g=1
— 10 if B#£1.
Expand A(a?) using the definitions and use the above fact to prove Proposi-

tion 4.7(1). Prove the remaining assertions of Proposition 4.7.

Let a(X) be a word of weight w. Then the locators z,, 2, ..., Z, of a(X)
are defined as

{zhzﬂv . 'vzw} = {ai I Qg # 0}
Let y; = a; if x; = o’. Then



Chapter 10. Grobner Bases for Codes 249

Consider the product

Then o(Z) has as zeros the reciprocals of the locators, and is (sometimes)
called the locator polynomial In this chapter and the following on decoding
this name is reserved for the polynomial that has the locators as zeros.

Let 0(Z) = 3., 0:Z". Then o; is the i-th elementary symmetric function
in these locators:

— t Lo ST
oy = (—1) E TjTjy+ Tjy.
1<j1<ja< < je<w

The following property of the MS polynomial is called the generalized
Newton identity and gives the reason for these definitions.

Proposition 4.9. For alli
Aipw + 014491+ -+ 04, 4; = 0.

Exercise 4.10. Substitute Z = 1/z; in the equation

w
1+ Z 4+ 0uZ"¥ :H(l—sz)
i=1
and multiply by y; zj-+w. This gives
itw—1

y; x5t + o1y, + -+ opyai = 0.

Check that summing over j = 1,...,w yields the desired result of Proposition
4.9.

Ezample 4.11. Let C be the cyclic code of length 5 over F;g with defining
set {1,2}. Then this defining set is complete. The polynomial

X+ X34 X2+ X +1

is irreducible over F,. Let 3 be a zero of this polynomial in F;g. Then the
order of 3 is 5. The generator polynomial of C is

(X +8)(X+8%) =X+ (B+8)X +5°.
So (83,8 + %,1,0,0) € C and
(B+6*+B%1+4,0,1,0) = (8+5*)(8% 8+5%1,0,0) + (0, 8,8+ 5% 1,0)



250 M. de Boer and R. Pellikaan

is an element of C. These codewords together with their cyclic shifts and
their nonzero scalar multiples give (5 + 5) * 15 = 150 words of weight 3.

Using Propositions 4.7 and 4.9 it will be shown that these are the only
codewords of weight 3. Consider the set of equations:

Ay + 0143 + 0242 + o034, = 0
As + 1Ay + 0243 + 0342 = 0
A + 0’1A5 + 0244 + o03A3 = 0
As 4+ 01A + 0345 + 0344 = 0
As + o1, + o2 + 0’3A5 = 0.

If Ay, A, A3, A4 and Ajg are the coefficients of the MS polynomial of a code-
word, then A; = A, = 0. If A3 = 0, then A; = 0 for all 7. So we may assume
that A3 # 0. The above equations imply A4 = 0,43, As = (6% + 02) A3 and

o3+ 03 =0
o209+ 02+0103 = 0
0%03 + o203 +1 0.

Substitution of o3 = o3 in the remaining equations yields

ot +o0%02+02 = 0
o+ o030 +1 = 0.

Multiplying the first equa:tion by o1 and adding the result to the second one
gives
1+ 01 0’% =0
Thus o) = 0, % and
o0+ ag +1=0.

This last equation has 10 solutions in ¢, and we are free to choose A3 from
Fie. This gives in total 150 solutions.

Exercise 4.12. Let C be the code of the previous example. Compute the
number of codewords of weight 3 with the help of Exercise 3.20.

Exercise 4.13. Let C be a cyclic code of length 7 over F, with defining set
{1,2,4}. Show that d(C) > 3 if ¢ is odd.

4.2 Codewords of Minimal Weight

The following way to get all minimal codewords of cyclic codes uses the theory
of Grobner bases.

Let C be a cyclic code of length n over F, with defining set J(C). Let Fge
be an extension of F, that contains an n-th root of unity. Let Sc(w) be the
following system of equations:



Chapter 10. Grobner Bases for Codes 251

Aw+1 + UlAw + + O'wAl = 0
Auyz + 014wt + + owA2 = 0
) : :
Aw+n + UlAw+n—1 + T + owlAn = 0
for all j € J(C) A;j =0
| for all j € Z,, Ay = A}

In this system both the A; and the o; are indeterminates.

From the properties of the MS polynomial stated in Propositions 4.7 and
4.9 we see that codewords of weight at most w give solutions of the system
Sc{w), and that conversely any solution to the system comes from a codeword
of weight at most w. The exact relation is as follows.

Theorem 4.14. The solutions (Ao, A1, ..., An_1) to Sc(w) over Fge are the
coefficients of the MS polynomials of codewords of weight at most w.

Corollary 4.15. The minimum distance d is equal to the smallest value
of w such that Sc(w) has a nonzero solution over Fg.. FEach solution
(Ao, A1, ..., An—1) to Sc(d) over Fye corresponds one-to-one to a codeword
of minimal weight.

We conclude that the codewords of minimal weight in a cyclic code can
be determined by solving a system of equations in the polynomial ring
Fy[Ao, Ay,...,An-1,00,01,...,04]. Solving the system can be done by com-
puting a Grobner basis for the ideal defined by Sc¢(d). This method will be
applied to the ternary Golay code in Project 7.

Exercise 4.16. Let C be a cyclic code of lerigth 7 over Fy, g even, with
defining set {1, 2,4}. Show that the number of codewords of weight 3 is equal
to 7(¢ — 1).

5. Codes from Varieties

Consider a geometric object X with a subset P consisting of n distinct points
which are listed Py, ..., P,. Suppose that we have a vector space L over F,
of functions on X with values in F,. Thus f(P;) € F, for alli and f € L. In
this way one has an evaluation map

evp: L — Fy

defined by evp(f) = (f(P1), ..., f(Py,)). If this evaluation map is linear, then
its image is a linear code.

In the following, X is a subset of an affine variety, that is, the common set
of zeros in affine space of some given set of polynomials. The points P, ..., P,
are called rational when they have coordinates in F,. The functions w1ll be
polynomial functions. .



252 M. de Boer and R. Pellikaan

Extending a reduction order on the set of monomials to a function on all
polynomials gives an example of an order function. A special kind of order
function is a weight function. The theory of Grébner bases is used to show
the existence of certain weight functions.

These order functions will be used to define codes and to derive a bound
for the minimum distance for these codes that is similar to the BCH bound
for cyclic codes.

5.1 Order and Weight Functions

Let F be a field. In this chapter an F-algebra is a commutative ring with a
unit that contains F as a unitary subring. Let R be an F-algebra. An order
Junction on R is a map

p:R—’NQU{—OO},
that satisfies for f, g, h € R the following conditions:

(0.0) p(f) = —co if and only if f=0.

(0.1) p(Af) =p(f) for all nonzero A € F.

(0.2) p(f +9) < max{p(f),p(9)}
and equality holds when p(f) < p(g)

(0.3) If p(f) <p(g) and h#0, then p(fh) < p(gh).

(04) If p(f) = p(g), then there exists a nonzero A € F such that
p(f = Ag) < p(g)-

Here —co < n for all n € Np.

Ezample 5.1. Let R = F[X,,...,X,,). Let < be a reduction order on the
monomials in X,,...,X,, that is isomorphic to the ordinary order on N.
The lexicographical total degree order is isomorphic with (N, <), but the
lexicographical order is not if m > 1. Let the sequence (F; | i € N) be an
enumeration of the monomials in increasing order, so F; < F;;,; for all i.
They form a basis of R over F. So every nonzero polynomial F has a unique

representation
F =) \F,
i<
where A; € F and A; # 0. Define p(F) = j — 1. Then p is an order function
on R.

Exercise 5.2. Let R be an F-algebra. Show that there exists a sequence
(fi | ¢ € N) which is a basis of R over F such that p(f;) < p(fi+1)-

Let L(l) be the vector space with basis fi1,..., f;. Let I(i,j) be the small-
est [ such that f;f; € L(l). Prove that I(,j) is strictly increasing in both
arguments. Such a sequence is called well-behaving.



Chapter 10. Grobner Bases for Codes 253

Let R be an F-algebra. A weight function on R is an order function on R that
satisfies furthermore

(05) p(fg) = p(f)+p(9)

for all f,g € R. Here —co +n = —oo for all n € Nj.

If p is a weight function and p(f) is divisible by an integer d > 1 for all
f € R, then p(f)/d is again a weight function. Thus we may assume that the
greatest common divisor of the integers p(f) with 0 # f € Ris 1.

A degree function on R is a map that satisfies conditions (0.0), (0.1),
(0.2) and (0O.5). It is clear that condition (0.3) is a consequence of (O.5).

Ezample 5.3. The standard example of an F-algebra R with a degree function
p is obtained by taking R = F[X|,...,Xn] and p(F) = deg(F), the degree
of F € R. It is a weight function if and only if m = 1. '

Let w = (w1, ..., wy) be an m-tuple of positive integers called weights.
The weighted degree of & € NT* and the corresponding monomial X is defined
as

wd(X®) = wd(a) = Y _ oy,
and of a nonzero polynomial F = 3 A\, X* as
wd(F) = max{ wd(X®) | Aa #0 }.

The lexicographical total weighted degree order <y on Nf* is defined as o <w 3
if and only if either wd(a) < wd(B) or wd(a) = wd(8) and a <. 3, and
similarly for the monomials.

Exercise 5.4. Show that wd is a degree function on F[X}, ..., X,,] and that
~<w 18 a reduction order that is isomorphic with (N, <).

Exercise 5.5. Let R be an F-algebra with a weight function. Show that the
set of elements of weight zero is equal to F*.

Ezample 5.6. Consider the F-algebra
R=F[X,Y]/(X?-Y*-Y).

Assume that R has a weight function p. Let £ and y be the cosets in R of X
and Y, respectively. Then 2% = y* + y. Now y € F, so p(y) > 0 by Exercise

5.5, and p(y*) = 4p(y) > p(y) by (0.5). Thus p(y* +y) = p(y*) by (0.2).
Therefore

50(c) = p(z°) = p(y* +y) = 40(y)
Thus the only possible solution is p(z) = 4 and p(y) = 5.
Exercise 5.7. Let R = F|X,Y]/(X3Y + Y3 + X). Show by the same rea-

soning as in the example above that p(z) = 2 and p(y) = 3 if there exists a
weight function p on R. Prove that there exists no weight function on R.



254 M. de Boer and R. Pellikaan

Let M be the set of monomials in X, ..., X,,. The footprint or A-set of a
finite set B of polynomials is defined by

A(B) = M\ {Im(BM) | B€B,B # 0, M € M}.

(Here Im denotes the leading monomial.) If B is a Grébner basis for the ideal
I in R, then the cosets modulo I of the elements of the footprint A(B) form
a basis of R/I.

Exercise 5.8. Let <y be the lexicographical total weighted degree order on
the monomials in X and Y with weights 4 and 5 for X and Y, respectively.
Show that

{X'Y7 | 4,5 €Ny, j <4}

is the footprint of X% + Y* + Y with respect to the reduction order <.

Prove that the degree function wd is injective on this footprint. Let (F} |
! € N) be an enumeration of this footprint such that wd(F}) < wd(Fy4,) for
alll. Let R = F[X,Y]/(X5+Y?* 4+Y). Let f; be the coset of F, in R. Thus
(fi | 1 €N) is a basis of R over F. Define p; = 4i + 55 if f; = z%y’.

Let L(I) be the vector space with fi,..., fi as basis. Let I(4,) be the
smallest [ such that f;f; € L(l). Prove that p, = p; + p; if | = (3, j).

Show that there exists a weight function on R as a conclusion of the above
results or as a special case of the following.

Theorem 5.9. Let I be an ideal in F[X,,...,Xm] with Grébner basis B with
respect to <w . Suppose that the elements of the footprint of I have mutually
distinct weighted degrees and that every element of B has two monomials of
highest weighted degree in its support. Then there exrists a weight function p
on R = F[X,,...,Xn|/I with the property that p(f) = wd(F), where f is
the coset of F modulo I, for all polynomials F.

Exercise 5.10. Let R=F[X,Y]/(X°+Y®+G(X,Y)), where gcd(a,b) = 1
and deg(G) < b < a. Show that R has a weight function p such that p(z) = b
and p(y) = a.

Exercise 5.11. Let p be a weight function. Let I' = {p(f) | f € R, f # 0}.
We may assume that the greatest common divisor of I" is 1. Then I' is called
the set of non-gaps, and the complement of I" in Ng is the set of gaps. Show
that the number of gaps of the weight function of Example 5.10 is equal to

(a—1)(b—1)/2.

5.2 A Bound on the Minimum Distance

We denote the coordinatewise multiplication on F7 by *. Thus a x b =
(a1bs,...,anby,) for a = (a1,...,as) and b = (by,...,b,). The vector space
F7 becomes an Fg-algebra with the multiplication *.



Chapter 10. Grobner Bases for Codes 255

Let R be an affine Fg-algebra, ie., R = Fy[X\,...,X,,]|/I, where I is an
ideal of Fy[ X}, ..., Xm]. Let P = {P,..., P,} consist of n distinct points of
the zero set of I in F*. Consider the evaluation map

evp : R — Iy,
defined as evp(f) = (f(P1),..., f(Pn)).

Exercise 5.12. Show that evp is well defined and a morphism of F,-
algebras, that means that this map is Fg-linear and evp(fg) = evp(f)*evp(g)
for all f,g € R. Prove that the evaluation map is surjective.

Assume that R has an order function p. Then there exists a well-behaving
sequence (f; | 7 € N) of R over Fq by Exercise 5.2. So p(f;) < p(fi+1) for all
i. Let h; = evp(f;). Define

C(l)={c€F;|c-h; =0forall j <I}.

The map evp is surjective, so there exists an N such that C(I) = 0 for all
l>N.
Let y € Fg. Consider

$ij(y) =y - (hi xhy).
Then S(y) = (8:(y) | 1 <1i,j < N) is the matriz of syndromes of y.
Exercise 5.13. Prove that
S(y)=HDHT,

where D is the n x n diagonal matrix with y on the diagonal and H is the
N x n matrix with rows hi,...,hy. Use this fact to show that

rank S(y) = wt(y).

Let L(l) be the vector space with basis f1,..., fi. Let I{z, §) be the smallest
! such that f; f; € L(l). Define

N =A{(4) [1G,5) =1+ 1}
Let »(I) be the number of elements of N(I).

Exercise 5.14. Show that 7, < --- < iy <rand j;, < --- < j, < r, if
(11,41),- - -, (i, J¢) is an enumeration of the elements of N(l) in increasing
order with respect to the lexicographical order.

Exercise 5.15. Suppose that y € C(l) \ C(l + 1). Prove that

85 (y) = 0 if u+v<t
wivY) =\ not zero if u4v=1¢t+1.

Use this fact together with Exercises 5.13 and 5.14 to prove that
wi(y) 2 ().



256 M. de Boer and R. Pellikaan

Define
dorp(l) = min{v(l') | I' <1}

dorp p(l) = min{u(l') | I > 1, C(I') # C(I' + 1)}.

As a consequence of the definitions and Exercise 5.15 we get the following
theorem.

Theorem 5.16. The numbers dorp,p(l) and dorp(l) are lower bounds for
the minimum distance of C(l):

d(C()) > dorp,p(l) > dorp(l)-

Exercise 5.17. Reed-Solomon codes. Let R = Fy[X|. Let p be the order
function defined as p(f) = deg(f). Let a be a primitive element of F,. Let
n=gqg-1and P={d°...,0"" 1}
Prove that (X¢~! | ¢ € N) is a well-behaving sequence and I(i, j) = i+j—1.
Show that C(l) is a cyclic code with defining set {0,1,...,! — 1} and
dorp(l) =1+ 1. Thus the BCH bound is obtained.

Exercise 5.18. Let p be a weight function and (f; | ¢ € N) a well-behaving
sequence. Let p; = p(f;). Show that N(I) = {(4,7) | pi + pj = pr+1}-

Exercise 5.19. This is a continuation of Exercise 5.8 with F = [F1g. Prove
that dorp(l) = v(I) =1 -5 for all | > 17 and verify the numbers in the
following table. ’

I 123456 7 8 0 10111213 141516
pu 045891012 13 14 15 16 17 18 19 20 21
v(l) 223434 6 6 4 58 9 8 9 1012
dorp(l) | 22333 4 4 4 458 8 8 91012

Show that there are exactly 64 zeros of the ideal X® 4+ Y* 4+ Y with
coordinates in ;6. Denote this zeroset by P. Determine dorp,»(l) for all I.

Exercise 5.20. Suppose that p is a weight function. Let v be the number
of gaps. Show that dorp(l) >1+1— 7.

Exercise 5.21. Reed-Muller codes. Let R = F4[X,,..., X} and let p be
the order function associated to the lexicographical total degree order on the
monomials of B. Let n = ¢™. Let P = {Py,..., P,} be an enumeration of
the ¢™ points of Fg".

Show that ll(l) = H(Ei"l'l) and dORD(l) = (E Ei)-'l- 1 when fl+1 = HX:'

Now suppose that fi1; = X7, Then {f;|i <} is the set of monomials of
degree at most r. The corresponding words {h; | i < [} generate RMy(r, m),
the Reed-Muller code over F, of order r in m variables. So C(!) is the dual
of RM,(r,m) which is in fact equal to RMy((g — 1)m —r —1,r).

Write r + 1 = p(q¢— 1) + u with p, u € Ng such that 4 < ¢—1. Prove that
d(C(l)) = dorp,p(l) = (u + 1)¢*.



Chapter 10. Grobner Bases for Codes 257

Notes

We use [9, 14] and Chapter 1 as a reference for the theory of Grobner bases, and
[31, 32] for the theory of error-correcting codes. The computer algebra packages
Axiom [27], GAP [18] and Macaulay [36] are used for the computations.

The weight enumerator and MacWilliams identity is treated in [31, 32].

See the projects 6 on the Mathieu groups and 7 on Golay codes for more about
automorphism groups of codes and its connection with designs.

For an algorithm to compute the automorphism group of a code we refer to
[30].

For questions concerning complexity issues in coding theory we refer to [7]. The
recent proof of the NP completeness of finding the minimum distance of a linear
code is in [39]. This answers a problem posed in [11]. For cyclic codes there is
an algorithm [8] to compute the weight enumerator that is much faster than the
methods presented here.

For the tables of optimal g-ary codes for ¢ = 2, 3 and 4, see [13]. There is
an online connection to the latest state of the table [12] which can also be used
to propose a new worldrecord. Brouwer’s algorithm is incorporated in the coding
theory package GUAVA [6, 35].

For finite geometry and projective systems we refer to [25, 38].

The treatment of the weight enumerator in Section 3.4 is from [28, 38]; this way
of computing the weight distribution has been implemented by [10].

The treatment of the Mattson-Solomon polynomial can be found in [31, 32]. The
proof of Proposition 4.7 is from [31, Chapter 6] or [32, §8.6]. The proof of Proposition
4.9 is from [32, §8.6 Theorem 24]. The relation with the ordinary Newton identities
is explained in [32, Chap 8 §6 (52)].

The method in Section 4.2 to get the minimal codewords of cyclic codes is from
[1, 2, 3, 4, 5]. This can be generalized to all linear codes as will be explained in the
next chapter. .

Goppa [19, 20, 21, 22, 23] used algebraic curves to construct codes. Nowadays,
these codes are called geometric Goppa codes or algebraic geometry codes; they
give asymptotically good codes, even better than the Gilbert-Varshamov bound
[38]. The mathematics is quite deep and abstract. For the construction and the
parameters of these codes one needs the theory of algebraic curves or algebraic
function fields of one variable [37], in particular, the Riemann-Roch Theorem. The
asymptotically good codes require the knowledge of modular curves. Several authors
[15, 16, 17, 26, 29] have proposed a more elementary approach to algebraic geometry
codes and this new method has much to do with Grébner bases [34].

The notion of order and weight functions and its relation with coding theory is
developed in [24, 34].

Section 5 is from [26, 29, 34]. Theorem 5.9 is from [34]. The values of an order
function form a semigroup in the case of a weight function. The order bound is called
the Feng-Rao bound and is computed in terms of the properties of the semigroup
[29]. The way Reed-Muller codes are treated in Exercise 5.21 is from [24, 33].

A classical treatment of algebraic geometry codes is given in [37, 38].

References

1. D. Augot (1996): Description of minsmum weight codewords of cyclic codes by
algebraic systems, Finite Fields and their Appl. 2, 138-152.

2. D. Augot (1994): Algebraic characterization of minimum codewords of cyclic
codes, pp. 46 in Proc. IEEE ISIT'94, Trondheim, Norway, June 1994.



258

10.
11.
12.

13.

14.
15.

16.

17.

18.
19.
20.
21.
22.
23.
24.

25.

M. de Boer and R. Pellikaan

. D. Augot (1995): Newton’s identities for minimum codewords of a family of
alternant codes, preprint.

D. Augot, P. Charpin, and N. Sendrier (1990): Weights of some binary cyclic
codewords throughout Newton’s identities, pp. 65-75 in Eurocode '90, Lecture
Notes Comp. Sc. 514, Springer-Verlag, Berlin Heidelberg New York.

D. Augot, P. Charpin, and N. Sendrier (1992): Studying the locator polynomial
of minimum weight codewords of BCH codes, IEEE Trans. Inform. Theory 38,
960-973.

R. Baart, J. Cramwinckel, and E. Roijackers (1994): GUAVA, a coding theory
package, Delft Univ. Technology.

. A. Barg: Complerity issues in coding theory, to appear in Handbook of Coding

Theory, (V.S. Pless, W.C. Huffman and R.A. Brualdi eds.), Elsevier.

. A.Barg and 1. Dumer (1992): On computing the weight spectrum of cyclic codes,

IEEE Trans. Inform. Theory 38, 1382-1386.

. T. Becker and V. Weispfenning (1993): Grébner Bases; a Computational Ap-

proach’to Commutative Algebra, Springer-Verlag, Berlin Heidelberg New York.
M. Becker and J. Cramwinckel (1995): Implementation of an algorithm for
the weight distribution of block codes, Modelleringcolloquium, Eindhoven Univ.
Technology.

E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg (19978): On the in-
herent intractibility of certain codzng problems, IEEE Trans. Inform. Theory
24, 384-386.

A.E. Brouwer, http://www.win.tue.nl/win/math.dw.voorlincod.html

A.E. Brouwer and T. Verhoeff (1993): An updated table of minimum-distance
bounds for binary linear codes, IEEE Trans. Inform. Theory 38, 662-677.

D. Cox, J. Little, and D. O’Shea (1992): Ideals, Varieties and Algorithms; An
Introduction to Computational Algebraic Geometry and Commutative Algebdra,
Springer-Verlag, Berlin Heidelberg New York.

G.-L. Feng and T.R.N. Rao (1994): A simple approach for construction of
algebraic-geometric codes from affine plane curves, IEEE Trans. Inform. Theory
40, 1003-1012.

G-L. Feng and T.R.N. Rao (1995): Improved geometric Goppa codes Part I,
Basic Theory, IEEE Trans. Inform. Theory 41, 1678-1693.

G.-L. Feng, V. Wei, T.R.N. Rao, and K.K. Tzeng (1994): Simplified under-
standing and efficient decoding of a class of algebraic-geometric codes, IEEE
Trans. Inform. Theory 40, 981-1002.

M. Schénert et al. (1994): GAP — Groups, Algorithms and Programming, version
3, release 4, Lehrstuhl D fiir Mathematik, RWTH Aachen.

V.D. Goppa (1977): Codes associated with divisors, Probl. Peredachi Inform.
13 (1) 33-39. Translation: Probl. Inform. Transmission 13, 22-26.

V.D. Goppa (1981): Codes on algebraic curves, Dokl. Akad. Nauk SSSR 259,
1289-1290. Translation: Soviet Math. Dokl. 24, 170-172.

V.D. Goppa (1982): Algebraico-geometric codes, Izv. Akad. Nauk SSSR 486.
Translation: Math. USSR Izvestija 21, 75-91, 1983.

V.D. Goppa (1984): Codes and information, Usp. Mat. Nauk 39, No. 1, 77-120.
Translation: Russian Math. Surveys 39, 87-141, 1984.

V.D. Goppa (1991): Geometry and codes, Mathematics and its Applications
24, Kluwer Acad. Publ., Dordrecht.

P. Heijnen and R. Pellikaan (1998): Geneneralized Hamming weights of g-ary
Reed-Muller codes, IEEE Trans. Inform. Theory 44, 181-196.

J. W.P. Hirschfeld and J. A. Thas (1991): General Galois Geometries, Oxford
University Press, Oxford.



26

27.

28.

29.
30.
31.
32.

33.
34.
35.
36.
. H. Stichtenoth (1993): Algebraic Function Fields and Codes, Universitext,

38.

39.

Chapter 10. Grébner Bases for Codes 259

T. Hgholdt, J. H. van Lint, and R. Pellikaan: Algebraic geometry codes, to ap-
pear in Handbook of Coding Theory, (V.S. Pless, W.C. Huffman and R.A.
Brualdi eds.), Elsevier.

R.D. Jenks and R. S. Sutor (1992): Azxiom. The Scientific Computation System,
Springer-Verlag, New York Berlin Heidelberg.

G.L. Katsman and M.A. Tsfasman (1987): Specira of algebruic-geometric
codes, Probl. Peredachi Inform 23 (4) 19-34. Translation: Probl. Inform. Trans-
mission 23, 262-275.

C. Kirfel and R. Pellikaan (1995): The minimum distance of codes in an array
coming from telescopic semigroups, IEEE Trans. Inform. Theory 41, 1720-1732.
J. Leon (1982): Computing the automorphism groups of error-correcting codes,
IEEE Trans. Inform. Theory 28, 496-511.

J.H. van Lint (1982): Introduction to Coding Theory, Graduate Texts in Math.
86, Springer-Verlag, Berlin Heidelberg New York.

F.J. MacWilliams and N. J. A. Sloane (1977): The Theory of Error-Correcting
Codes, North-Holland Math. Library 16, North-Holland, Amsterdam.

R. Pellikaan (1996): The shift bound for cyclic, Reed-Muller and geometric
Goppa codes, pp. 155-175 in Proceedings AGCT-4, Luminy 1993, de Gruyter,
Berlin.

R. Pellikaan (1996): On the erxistence of order functions, submitted to the pro-
ceedings of the Second Shanghai Conference on Designs, Codes and Finte Ge-
ometry.

J. Simonis (1994): GUAVA: A computer algebra package for coding theory, pp.
165-166 in Proc Fourth Int. Workshop Algebraic Combinatorial Coding Theory,
Nowgorod, Russia, Sept. 11-17, 1994.

Ma. Stillman, Mi. Stillman, and D. Bayer, Macaulay User Manual.

Springer-Verlag, Berlin Heidelberg New York.

M. A. Tsfasman and S.G. Vladdut, (1991): Algebraic-geometric codes, Mathe-
matics and its Application 58, Kluwer Acad. Publ., Dordrecht.

A. Vardy (1997): The intractibility of computing the minimum distance of a
code, IEEE Trans. Inform. Theory 43, 1757-1766.



Chapter 11. Grobner Bases for Decoding

Mario de Boer and Ruud Pellikaan

1. Introduction

From the previous chapter one might get the impression that the theory
of error-correcting codes is equivalent to the theory of finite geometry or
arrangeméhts over finite fields. This is not true from a practical point of
view. A code is useless without a decoding algorithm. For engineers the total
performance of the encoding and decoding scheme is important.

An introduction to the decoding problem is given in Section 2. In Section
3 we first restrict ourselves to cyclic codes where the system of syndrome
equations can be explicitly solved using Grobner basis techniques and later,
in Section 5, to arbitrary linear codes. Although this method decodes up to
half the true minimum distance, the complexity is not polynomial, because
there is no polynomial algorithm known to compute Grobner bases. The
algorithms of Euclid, Sugiyama, and Berlekamp-Massey give an efficient way
to decode cyclic codes by solving the key equation.

All references and suggestions for further reading will again be given in
the notes at the end of this Chapter.

2. Decoding

Let C be a linear code. Decoding is the inverse operation of encoding. A
decoder is a map
D:F; — CU{,

such that D(e) = ¢ for all ¢ € C. Let y be a received word. Then D(y) is a
codeword or equal to ?, in case of a decoding failure

Decoding by error detection does the following. Let H be a parity check
matrix of C. The output of the decoder is y if yH ' = 0, and ? otherwise.

If the received word y is again a codeword, but not equal to the one sent,
then the decoder gives y as output and we have a miscorrection also called a
decoding error.

Let C C Fy be the code with minimum distance d that is used to transmit
information over a noisy channel. If the codeword c is transmitted at one side
of the channel and y is received at the other end, then we say that the error
e = y — ¢ has occurred:

y=c+te.



Chapter 11. Grobner Bases for Decoding 261

A decoder D is called a minimum distance decoder if D(y) is a codeword that
is nearest to y with respect to the Hamming metric for all y.

Minimum distance decoding is similar to finding a codeword of minimal
weight. If y is a received word, then one has to find a word in the coset y + C
of minimal weight. Such a word is called a coset leader. To store a list of all
coset leaders requires a memory of ¢"~* such elements and is only efficient
for codes of small redundancy.

If the Hamming weight of the error-vector is at most |(d—1)/2], then ¢ is
the unique codeword which has the smallest distance to y, so the error can be
corrected. The value t = |(d — 1)/2] is called the error-correcting capability
or capacity of the code.

Let H be a parity check matrix for C, so ¢H' = 0 for all ¢ € C. After
receiving y one computes the vector of syndromes

s=yH'.

Since y = ¢ + e we have that s = yHT = cH' + eH' = eH' and the
problem becomes: given s, find a vector e of lowest Hamming weight such
that eHT = s.

A decoder D is called a bounded distance decoder that corrects t errors if
D(y) is a codeword that is nearest to y for all y such that d(y,C) < t. We
say that D decodes up to half the minimum distance if it corrects | (d —1)/2]
€rrors.

Proposition 2.1. Let C be a linear code in Fy with parity check matriz H.

Suppose we have a received word y with error-vector e and we know a set J

with at most d(C) — 1 elements and that contains the set of error positions.

Then the error-vector e is the unique solution for x of the following linear

equations: :
xHT =yH" and z;=0 for j&J.

Exercise 2.2. Prove Proposition 2.1 and deduce that the syndrome of a
received word with at most |(d — 1)/2] errors is unique.

Proposition 2.1 shows that error decoding can be reduced to the problem of
finding the error positions. If we want to decode all received words with ¢
errors, then there are (’:) possible t-sets of error positions one has to con-
sider. This number grows exponentially with n if ¢/n tends to a nonzero real
number. The decoding problem is hard. Only for special families of codes this
problem has an efficient solution with practical applications. We will consider
only bounded distance decoders.

Exercise 2.3. Assume that the channel is a g-ary symmetric channel. This
means that the probability that the symbol z € F, is changed in the symbol
y € Fy is the same for all z,y € F; and = # y, and does not depend on the
position. The probability that a fixed symbol is changed in another symbol,



262 M. de Boer and R. Pellikaan

distinct from the original one, is called the crossover probability and is de-
noted by P. Prove that the probability that an error vector e is equal to the
word ¢ of weight ¢ is given by !

Prob{e = c} _ (qul)t (1— Pyt

Show that the undetected error probability is given by
P

Well—-P,—— | -(1~-P)"

o(1-rI)-a-pr

where W (X,Y) is the homogeneous weight enumerator of C.

3. Decoding Cyclic Codes with Grobner Bases

Let C be an [n, k, d] cyclic code with generator polynomial g(X) and defining
set J = {j1,...,Jr}. Let Fge be an extension of F, that contains all the zeros
of g(X). Let o € Fge be a primitive n-th root of unity. Then a parity check
matrix of C is

1 afv @2h ... gr—Di
1 aj2 a2j2 N a(n_l)j2
H — 1 aj3 a2j3 cen a(n_l)ja
1 ajr air ... a(n_l)jr

Now let e = e(X) be an error-vector of a received word y = y(X). Then
s=yHT =eH'T and ' _
s = y(a’) = e(a”)

is the i-th component of s for ¢ = 1,...,r. It is more convenient to consider
the extension H of the matrix H, where H is the n x n matrix with ¢-th row

(1 o a2i a(n—l)i)
fori=1,...,n. Define 8 = eHT. The j-th component of § is
n—1
§;=e(d’) = Za”
=0

for j =1,...,n. If j € J(C), then §; = e(c¢’) = y(a’), so these syndromes
are known.

From now on 3§; will be denoted by s;. Notice that the old s; is now
denoted by s;,.



Chapter 11. Grobner Bases for Decoding 263

Let e = e(X '} be an error-vector with error positions i1, 3, .. . ,i; and error
values e;,,€i,,. .., €;,. Then the known syndromes will be
t
=Y ey, jeJ(O)
m=1

Consider the following system of equations over Fge[X1, ..., X,,Y1,..., Y, ]:

S YmXi, = s; forjeJ
S(s,v) = Y¢ = Y, form=1,...,v
Xp =1 form=1,...,v.
Conclude that X,, = o' and Y,,, = ¢;,, for m = 1,...,t is a solution of

S(s,t).

Exercise 3.1. Show that the equation ¥, _ ¥, X717 = s;, is a consequence
of S(s,v) for all j € J.

Ezample 3.2. Let J = {1,2}. If C is a cyclic code with defining set J, then
its minimum distance is at least 3 by the BCH bound. So one can correct at
least 1 error. The equations

Yle = 81
Y1X12 = 82

imply that the error position is £, = s3/s, if there is exactly one error. If
moreover ¢ = 2, then s; = 52, so ) = s;.

We have the following.

Proposition 3.3. Suppose thatt errors occurred and t < (d—1)/2. Then the
system S(s,v) over Fge has no solution when v < t, and a unique solution,
up to permutation; corresponding to the error-vector of lowest weight that
satisfies the syndrome equations when v = t. The X; of the solution are the
error-locators and the Y; the corresponding error values. If v > t, then for
every j the system has a solution with X, = of.

Exercise 3.4. Prove Proposition 3.3 using Proposition 2.1.

The system S(s,v) defines an ideal in the ring Fge[X1,...,X,,Y7,...,Y,].
By abuse of notation we denote this ideal also by S(s, v). The zeroset of this
ideal gives the error-vector that occurred during the transmission. Grobner
basis techniques can be used to find the solutions of the equations.

Let <z be the lexicographic order with Z, <y Z3 <r '+ <¢ Zy. Then
< is an elimination order, that is to say it satisfies the following property.

Proposition 3.5. Let I be an ideal in F[2,,2,,...,2y)]. LetG be a Grobner
basis of I with respect to <. Then G N ]F'[Zl,Zg, ., Zy] is a Grobner basis
()fIﬂF[Zl,Zz, . Zg]



264 M. de Boer and R. Pellikaan

Let I be an ideal in F[Z;, Z,,. .., Z,,] with finitely many zeros over F which
are all defined over F. Let V be the zeroset in F* of the ideal I. Then the
zeroset of I NF[Zy,2Z,,...,Z;] is equal to the projection of V on the first i
coordinates. This fact and Proposition 3.5 have a direct application to our
problem of finding the solutions to system S(s,v). Indeed, if (z,...,2,) is
the X-part of a solution to &(s,v), then also any permutation of the z; will
be a solution (apply the same permutation to the Y-part of the solution).
Hence every error-locator will appear as the first coordinate of a solution to
&(s,v). Thus we have sketched the proof of the following.

Proposition 3.6. Suppose that t errors occurred and t < (d — 1)/2. Let
9(X1) be the monic generator of the ideal S(s,t) NF 4 [X,]. Then the zeros of
g are the error-locators.

Before giving the final algorithm for the decoding, we must worry about one
more thing: we assumed we knew how many errors occurred (the v occurring
in system S(s,v)). Now note that the work required to solve the system
S(s, v) for large v is much more than for small v, and remark that in general
words with many errors occur less often than words with few or no errors.
The following theorem leads the way to an algorithm that implements this
idea.

Theorem 3.7. Suppose t errors occurred and t < (d — 1)/2. Denote the
monic error-locator polynomial by [(X1), that is, [(z) = 0 if and only if T is an
error-locator. Let g(X1) be the monic generator of the ideal S(s,v) NFge[X,],
with S(s,v) the ideal in Foe [ X, ..., Xy, Y1,...,Y,]|. Then

1 ifv<t
o(X1) =4 UX)) ifv=t
XP—-1 o>t

Exercise 3.8. Show that in Proposition 3.3 and Theorem 3.7 it is allowed to
replace the assumption ‘t < (d —1)/2’ by the weaker statement ‘the received
word has a unique closest codeword’.

Exercise 3.9. Let §’(s,v) be the system of equations which is obtained by
replacing the equation Y2 =Y,, in S(s,v) by Y4 ! =1forallm=1,..., v
So the variables Y;, disappear if ¢ = 2. How should Proposition 3.3 and
Theorem 3.7 be restated for S'(s, v)?

We are now ready to state the algorithm to decode cyclic codes.

Algorithm 3.10.

input(y);

s:=yHT;

ifsj=0foralljeJ

then output(y); stop; {no errors occurred}
else v:=1;



Chapter 11. Grébner Bases for Decoding 265

g:={1}
while1 € G do
S={Y _YuXi -3, € JJU{YE - Y, X2 -1, m=1,...,v}
G := Grobner(S);
vi=v+1;
od;
{1 € G so there are solutions}
9(X,) := the unique element of G NF4[X1]};
if deg(g(X1)) > v
then output(?); stop { too many errors }
else error-locators := {zeros of g(Z,)}
find error-vector e by solving the linear equations
as in Proposition 2.1
output(y — e)

We will treat an example in the project on the Golay codes.
3.1 One-Step Decoding of Cyclic Codes
In the system of equations S(s,v) the syndromes s; are considered to be

known constants. In this section we treat the syndromes as variables and
consider the corresponding system of equations

Soc1YmXi, = 8; forjeJ
S(v) = Y = Y, fom=1...v
Xr =1 form=1,...,v.

to define an ideal in the ring
Fee[X1,..., X, Y1,..., Y3, 8;,5 € J].

Of course, this has the advantage that we have to solve these equations only
once, and that this can be done before we start to use the code. This is called
the preprocessing of the decoding algorithm. In the actual running of the
algorithm the values of the syndromes s; of a received word are substituted
in the variables S; for j € J.

Exercise 3.11. Let < be a reduction order on the monomials X;,..., X,
Y1,...,Y, and S;,5 € J such that the variables S;,j € J are larger than
Xi,...,Xy and Y3, ...,Y,. Show that S(v) is a Grébner basis with respect
to <.

The exercise gives the impression that we are done. But we have to elim-
inate the variables X3,...,X, and Y},...,Y,. Therefore the variables X,,
S;j,J € J need to be smaller than X3,...,X,, Y1,...,Y,.

As an example, we have applied one-step decoding to binary cyclic codes
with defining sets {1,3}, {1,3,5} and {1, 3,5, 7}, respectively. Remark that



266 M. de Boer and R. Pellikaan

the complete defining sets contain {1,2,3,4}, {1,2,3,4,5,6} and {1,...,8},
respectively. From the BCH-bound we know that these codes can correct 2,3
and 4 errors, respectively. The Grobner basis is computed with a lexicographic
order in a way such that the basis contains a polynomial in X, and the
syndrome-variables S;. We consider binary codes. Thus the error values are
always 1. Therefore we delete the variables Y; in the equations. The equations
of the form X7 = 1 are also left out. So the number of solutions is not finite
anymore. The results are as follows.

Ezample 3.12. q =2, {1,3} C J(C).

S—X1+X2_Sl=0
_X?+X:23—S3=0

Order: X, > X > 53 > 5
Error-locator polynomial with X = X:

S1X%+ 81X + (83 + 83).
Ezample 8.13. ¢ =2, {1,3,5} C J(C).

X + X2 + X3 - S5 =0
S=¢ X} + X3 + X3 - S =0
X} + X3 + X3 - 8 =0

Order: X3 > X5 > X1 >85> 83> 5,
Error-locator polynomial:

(S3+ SHX3 + (8351 4+ SHX? + (85 + 8383 X + (858, + S2 + 5353 + 8F).
FEzample 3.14. q =2, {1,3,5,7} C J(C).

X, + X9 + X3 + Xy — 5 0
S X3 + X3 + X3 + X} - 8 =0
) X3+ X5 o+ X3 4+ X§ - S =0
X! + X + XI + X - 8 =0

Order:X4>X3>X2>X1>S'7>S'5>S'3>S'1
Error-locator polynomial:

(Si5 + Sg + 8551 + S3S?)X4 + (55512 + S’§S’1 + 53511 + S;)Xla-l-
(5751 + 5585 + 5355 + SB)X2 + (5752 + S55% + 53 + 5356) X+
(5753 + ;5'7;5':13 + Sg + 5553512 + 555? + S’§S’1 + 535’17 + S%O)

Ezample 3.15. The error-locator polynomial for the 6-error correcting binary
BCH code took four hours using Axiom. The coefficient of X* has 20, 20, 22,
22, 20, 24 and 46 terms for ¢ = 6,5,...,1 and 0, respectively.



Chapter 11. Grébner Bases for Decoding 267

Exercise 3.16. Give S; weighted degree i and let wd(X) = 1. Notice that
in the above examples the error-locator polynomial is homogeneous of total
weighted degree (*}') if the BCH bound is 2¢ + 1. Show that this is always
the case.

Looking at the formulas for the 2,3 and 4 error-correcting BCH codes one
gets the impression that the number of terms grows exponentially (we do not
know whether this is a fact). Thus specializing the values for the syndromes
still would not give a decoding algorithm of polynomial complexity.

It is a priori not clear that substituting values for the syndromes in the
variables after elimination gives the same answer as the original method with
the syndromes as constants.

To make this point clear we introduce some notation. Let G be a subset
of the polynomial ring in the variables S;,j € J, X1,..., X, and more. Then
G is the subset of G of polynomials in the variables S;,j € J and X, only.
Let s = (s;,j € J) be a vector with coordinates in Fg. Then G, (s) is the set
obtained from G, by substituting the value s; in S; for all elements of G, and
jeJ.

Let <g be an elimination order on the monomials X,,...,X,, Y1,...,Y,
and 8;,j € J with the variables X,,..., X, and Y3,...,Y, larger than 5;,j €
J. That the one-step method works is stated as a fact in the following

Theorem 3.17. Let G be a Grobner basis of S(t) with respect to <g. Let'y
be a received word such thatt errors occurred. Let s be its syndrome. Assume
that the closest codeword to y is unique. Then G, is the Grobner basis of
S()YNFy[X1,5;,5 € J] and G (s) is a (nonreduced) Grobner basis and the
error-locator polynomial is an element of Gy (s).

The proof relies on the fact that S(t) has a finite number of solutions.

4. The Key EQuation

Let C be a cyclic code of length n such that {1,2,...,6 — 1} € J(C). From
the BCH bound we see that the minimum distance of C is at least 4. In
this section we will give a decoding algorithm for such a code, which has an
efficient implementation and is used in practice. A drawback of the algorithm
is that it only corrects errors of weight at most (§ — 1)/2, whereas the true
minimum distance can be larger than §. An example of this phenomenon will
be treated in the project on the Golay codes.

The algorithms in this section work for cyclic codes that have any § — 1
consecutive elements in their complete defining set. We leave it to the reader
to make the necessary adjustments in the case where these elements are not
{1,2,...,6 —1}.

Let a be a primitive n-th root of unity. Let ¢
transmitted codeword that is received as y = y(X)

c(X) € C be the
c(X) + e(X), with



268 M. de Boer and R. Pellikaan

w = wt(e) < (§ — 1)/2. The support of e will be denoted by I. We then can
compute the syndromes

s; = A; =e(at) =y(a') forie J(C),

where the A; are the coefficients of the MS polynomial of e(X), see Section
4.1.Since {1,2,...,6—1} C J(C) and 2w < §—1 we know all Ay, A,, ..., Agy.
Write o; for the i-th symmetric function of the error positions and form the
following set of generalized Newton identities, see Proposition 4.9, Chapter
10:

‘ Al + 014, + 0 4+ o4 =0
Aviz + 014v1 + - 4+ 0,4y =0

. (4.1)
Ay + 01A2v—1 + - + 0,4, = 0

From the system with v = w we have to find the o;. After we have done
this, we can find the polynomial

0(Z)=140,Z4022%+-- +0,2",

which has as its zeros the reciprocals of the error locations. Findihg the zeros
of this polynomial is an easy task. We return to the problem of finding the
coefficients o;. ‘

Exercise 4.1. Consider the system of equations (4.1) as linear in the un-

known o4,...,0, with coefficients in F4(Ay,..., Ay), the field of rational
functions in Ay, ..., A,, which are treated now as variables. Then
4,
oi = —A_()’

where A; is the determinant of a certain w x w matrix according to Cramer’s
rule. Then the A; are polynomials in the A;. Conclude that

ApXY + A XV 4o+ Ay

is a closed form of the generic error-locator polynomial.
Substitute Azi+1 = S2i41 and Az; = S? and compare the result with
Examples 3.12, 3.13 and 3.14.

Exercise 4.2. Show that the matrix (A4;4;1]1 < ¢, 5 < v) is nonsingular if
and only if v = w, the number of errors. Hint: Try to write the matrix as a
triple product of matrices of known rank as done in Exercise 5.13.

The algorithm of Arimoto-Peterson-Gorenstein-Zierler (APGZ) solves the
systems of linear equations (4.1) for v = 1,...,w by Gaussian elimination.

Exercise 4.3. What is the complexity of the algorithm of APGZ?



Chapter 11. Grobner Bases for Decoding 269
Write
5—1 _
S(Z)=>_ Az,
i=1
then an alternative way of formulating (4.1) is that there exist polynomials
¢(Z) and r(Z) such that
o(2)S(2) = ¢(2)2°~* +1(2), deg(r(2)) Sw—1,
or that there exists a polynomial w(Z) of degree at most w — 1 such that
w(Z) = 0(2)8(Z) mod Z°71. (4.2)
This is called the key equation. ’
Exercise 4.4. Check that
wZ)=> ea' [[ 1-02),
i€l jeIN{é}
by rewriting w(Z)/o(Z) mod Z5-1.

Exercise 4.5. Let ¢'(Z) be the formal derivative of o(Z). Show Forney’s
formula for the error values:

w(a™)

“T o)

for all error positions i. The polynomial w(Z) is called the error evaluator
polynomial.

We will discuss two algorithms that are faster than the one proposed in
Exercise 4.3.

4.1 The Algorithms of Euclid and Sugiyama

The Euclidean algorithm is a well-known algorithm that can be used to com-
pute the greatest common divisor of two univariate polynomials. We assume
that the reader is familiar with this algorithm. In order to fix notation, sup-
pose we want to compute ged(r—1(Z), ro(Z)). Then the Euclidean algorithm
proceeds as follows:

r(Z) = a2+ m(2), deg(r) < deg(ro)
ro(Z) = ¢(Z)ri(2Z) + ro(2), deg(r2) < deg(r)
ria(2) = G(Z)ry(Z) + ri(2),  deg(ry) < deg(rj_y)

Tj—l(z) = Qj+1(Z)7'j(Z)-

From this we can conclude that ged(r—1(Z),ro(Z)) = r;(Z). The key equa-
tion can be solved with the algorithm of Sugiyama in the following way.



270 M. de Boer and R. Pellikaan
Algorithm 4.6. Set
ro1(2) = 2%, ro(2)=8(2), U_1(2)=0, Up(2Z)=1,
and proceed with the algorithm of Sugiyama until an r;(Z) is reached such
that
1 1
deg(ri—1(2)) > 5(5 -1) and deg(ri(2)) < 5(6 —3),
also updating '
Ui(Z) = ¢i(Z2)U;1(2) + Us—2(2).
Then the error-locator and evaluator polynomial are
o(Z) = eUx(2),
w(Z) = (-Lers(2),
where € is chosen such that oo = ¢(0) = 1.

Exercise 4.7. Show that the 0(Z) and w(Z) resulting from the algorithm
satisfy

1. w(Z) =0(2)8(Z) mod Z°71,
2. deg(o(2)) < L(65- 1),

3. deg(w(2)) < 1(5—3).

We will not prove the correctness of the algorithm. Sugiyama’s algorithm is
used for decoding in Project 7 on Golay codes.

4.2 The Algorithm of Berlekamp-Massey

The Berlekamp-Massey algorithm is an example of dynamic programming
The algorithm is iterative, and in the j-th iteration the following problem is
solved: find the pair (6;(Z),w;(Z)) such that

l- 0'](0) = 17 .
2. 0;(Z2)S8(Z) = w(Z) mod Z7,
3. d; = max{deg(o;),deg(w;) + 1} is minimal.

It is rather technical to work out what has to be updated when proceeding
to the next iteration. After the algorithm we will give a few remarks on the
variables that are used.

Algorithm 4.8.

1L.j=0 oo=-wy=1 gp=wy=0; do=0; A=1
2. 4; = coefficient of Z7 in 0;(Z)S(Z) — w;(2).



Chapter 11. Grobner Bases for Decoding 271

3. If A; =0 then

djt1:=dj;  0jy1 =05 Wity = Wy

Oip1 =205 wiyy = 2w
4. If A; # 0 and 2d; > j then

dj+1 = d], Oj41 = g — AJ'A_IO';; Wji+1 =Wy AjA—lw;-;

Oipy =205 wiyy = 2w
5. If A; # 0 and 2d; < j then

djyr:=3+1—d;; o541 =05 — AjA‘la;; Wip1 = Wy — AjA‘lwg;

A=Ay 0fyy = Zoj; Wiy = Zw

6. If §;,, is known then j := j + 1 and go to step 2; otherwise stop.
In the algorithm, the variables o and w} are auxiliary. The A; measures
how far a solution to the j-th iteration is from being a solution to the (5 4 1)-
th iteration. If A; = 0, the solution passes to the next iteration. If A; # 0,
then the solution must be adjusted in such a way that the resulting d;,, =
max{deg(c;+1), deg(wj;1) + 1} is minimal. In order to minimize this degree,
the two cases 4 and 5 have to be distinguished.

Notice that in the algorithm of Sugiyama the degree of the polynomial
decreases during the algorithm, whereas in the Berlekamp-Massey algorithm
the degree of the polynomial increases. This is an advantage, since error-
vectors of small weight are more likely to occur than those of high weight.

5. Grobner Bases and Arbitrary Linear Codes

We will start by a general construction of a code, and later show that in fact
this gives all linear codes.
Let P={P,P,,...,P,} C F7' be the set of zeros of a set of polynomials
G ={G1,...,G,} in Fy[Xy, X2,..., X]. Let I be the ideal generated by G.
Define the ring R as
R=FyX,,...,Xu]/I

Let F1, F>, ..., Fr be a basis of the IFg-vector subspace L of R. Consider the
evaluation map
evp L— IFZ

The codes we consider here are
C = Im(evp)*t.

Thus H = (F;(P;)) is a parity check matrix of C. After introducing this
algebraic setting, it is clear how Grobner bases can be used for the decoding
problem. Let d be the minimum distance of C. Suppose we receive a vector y
and we want to decode t errors, with ¢ < |(d— 1)/2]. Then, after computing
the syndromes

n
8 = Ziji(Pj)v
i=1



272 M.de Boer and R. Pellikaan

we can form the following system of equations S(s, v):

z;f:leFi(le,‘u,ij) = s fori=1,...,r
Gi(X1j,-- v Xmj) = 0 forj=1,...,vandi=1,...,u
Y/ = Y forj=1,...,¢
with variables X,j,...,Xm; for the coordinates of a copy of F7* for all
j = 1,...,v, and the variables Y7,...,Y, for the error values in F,. As
in the case of cyclic codes, we see that if (xj,...,X4,¥1,...,¥s), With
X; = (Z1j,-..,Tmj), is a solution to S(s,v), then so is

(xﬂ'(l)v oy Xp() Yr(1)r o0 oy yﬂ'(v))7

for any permutation 7 of {1,...,v}. Hence a Grébner basis G for the ideal
S(s,t) with respect to the lexicographic order with g

Y>>V >Xp > > Xpw> > Xpm1 > > X1y

will have elements that are polynomials in X,,,1, ..., X1 only. These elements
generate the ideal S(s, v)NFy[X11,. . ., Xmi1]. This intersection has no solution
when v < ¢t. If v = ¢, then the intersection is the error-locator ideal, that
means that it has the set of error positions as zeroset in Fg*. The error values
can be found as before for cyclic codes with Proposition 2.1.

Ezample 5.1. Let C be an [n, k, d] linear code with r x n parity check matrix
H, where r = n — k. Consider the n columns of H as points Py, ..., P, € Fy
and set P = {Py,...,P,}. Then P is finite, so it is an algebraic set:

P=2p(I), I={GEFX1,...,X:]|G(P) = =G(P,) = 0}.

If we take as an r-dimensional vector space L the coordinate functions

L=(X1,....,X), 4

then it is clear that C = Im(evp)t.

Exercise 5.2. Describe the Hamming code by the above method. What is
the vanishing ideal in F3[X), X5, X3] if one applies the above procedure to
the Hamming code?

Although in principle every linear code could be described and decoded
in this way, the large number of variables will make it very impractical. The
following exercise relaxes the number of variables a bit.

Exercise 5.3. Let C be a g-ary [n, k,d] code. Let r = n — k. Let H = (h;;)
be a parity check matrix of C. Let m be a positive integer such that ¢™ > n.
Show that there exist n distinct points Py,..., P, in F3* and polynomials
F,...,F, in Fg[Xy,...,X;] such that Fi(P;) = h;;.



Chapter 11. Grobner Bases for Decoding 273

Ezample 5.4. Let C be a cyclic code with defining set J. Instead of treat-
ing this as an arbitrary linear code as in the previous example, it is bet-
ter to use the structure of the parity check matrix, as follows. Take P =
{1,a,...,a" 1} C Fe, the set of n-th roots of unity. Hence

I=(X™—1)Fg[X].
If we take for L the vector space
L=(X|jeJ)

over Fue, it is clear that C is a code as described above, and that the system
S(s,t) we have to solve, equals the one we already met in Section 3.

One-step decoding is done in the same way as for cyclic codes by treating the
s; as variables and the corresponding Theorem 3.17 holds.

The same methods applies for getting the minimal weight codewords of a
linear code.

Notes

That the general decoding problem is hard can be made precise in terms of com-
plexity theory. See [3, 5].

Formulas for the probability of a decoding error or failure for several decoders
and the relation with the weight enumerator is given in [6, 24]. Some history of the
origins of decoding algorithms can be found in [2].

The original idea of one-step decoding is from [9, 10] and [30]. See also [38].

The method to decode cyclic codes up to half the actual minimum distance
using Grobner bases is from [11, 12, 13]. The extension to arbitrary linear codes
is from [17, 18]. Theorem 3.17 is from [17, 18, 25]. The remark in Exercise 3.11 is
from [25]. In this paper the work of [15] is used to transform a GrSbner basis of
a zero-dimensional ideal with respect to one reduction order into a GrSbner basis
with respect to another one. The decoding is considerably faster by this method as
is seen in the Project on the Golay code. Decoding constacyclic codes in Lee metric
by the use of Grobner bases is explained in [28].

A more efficient way to decode cyclic codes is by solving the key equation
[1, 4, 20, 27, 31, 37]. The formula for the error values is from [19].

The material of Section 4 is from [6, 7, 26, 32]. This formulation of the
Berlekamp-Massey algorithm is from [14].

For Reed-Solomon codes a hybrid of the algorithm of Berlekamp-Massey and
Grdbner bases techniques is given in [39, 40, 41] to get all closest codewords of a
received word.

Decoding arbitrary linear codes with Grébner bases is from [17, 18]. This
method can also be applied to get all minimal weight codewords as explained for
cyclic codes in Chapter 10.

There are many papers on decoding algebraic geometry codes and we refer to
the literature [8, 16, 21, 22, 23, 29].

The Berlekamp-Massey algorithm is generalized to polynomials in several vari-
ables by [34, 35, 36]. This theory has very much to do with the theory of Grobner
bases, but it solves another problem than Buchberger’s algorithm. The algorithm is
implemented in the decoding of algebraic geometry codes. See the literature cited
above and [33]. The name footprint for the A-set is from [8].



274

M. de Boer and R. Pellikaan

References

—

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

. S. Arimoto (1961): Encoding and decoding of p-ary group codes and the correc-

tion system, (in Japanese) Inform. Processing in Japan 2, 320-325.

. A. Barg (1993): At the dawn of the theory of codes, Math. Intelligencer 15,

20-27.

. A. Barg: Complerity issues in coding theory, to appear in Handbook of Coding

Theory, (V.S. Pless, W.C. Huffman and R.A. Brualdi eds.), Elsevier.

-4. E.R. Berlekamp (1984): Algebraic Coding Theory, Aegon Park Press, Laguna

Hills CA.

. E.R. Berlgkamp, R.J. McEliece, and H.C. A. van Tilborg (1978): On the in-

herent intractibility of certain coding problems, IEEE Trans. Inform. Theory
24, 384-386.

. R E Blahut (1983): Theory and Practice of Error Control Codes Addison-

Wesley, Reading.

. R.E. Blahut (1985): Fast Algorithms for Digital Signal Processing, AddlSOIl—

Wesley, Reading.

. R.E. Blahut, Introduction to Algebraic Coding, book in prepartation.
. A. Brinton Cooper III (1990): Direct solution of BCH decoding equations, Com-

munication, Control and Signal Processing, Elsevier Sc. Publ., 281-286.

A. Brinton Cooper III (1991): Finding BCH error locator polynomials in one
step, Electronic Letters 27, 2090-2091.

X. Chen, I.S. Reed, T. Helleseth, and T.K. Truong (1994): Algebraic decoding
of cyclic codes: a polynomial point of view, Contemporary Math. 168, 15-22.
X. Chen, I:S. Reed, T. Helleseth, and T.K. Truong (1994): Use of Grébner
bases to decode binary -cyclic codes up to the true minimum distance, IEEE
Trans. Inform. Theory 40, 1654-1661.

X. Chen, I.S. Reed, T. Helleseth, and T. K. Truong (1994): General principles
for the algebraic decoding of cyclic codes, IEEE Trans. Inform. Theory 40,
1661-1663.

J.L. Dornstetter (1987): On the equivalence of Berlekamp’s and Euclid’s algo-
rithm, IEEE Trans. Inform. Theory 33, 428-431.

J. C. Faugere, P. Gianni, D. Lazard, and T. Mora (1993): Efficient computation
of zero-dimensional Grébner bases by a change of ordering, Journ. Symb. Comp.
16, 329-344.

G.-L. Feng and T.R.N. Rao (1993): Decoding of algebraic geometric codes up
to the designed minimum distance, IEEE Trans. Inform. Theory 39, 37—45.

J. Fitzgerald (1996): Applications of Grébner bases to linear codes, Ph.D. The-
sis, Louisiana State Univ.

J. Fitzgerald and R.F. Lax (1998): Decoding affine variety codes using Grébner
bases, Designs, Codes and Cryptography 13, 147-158.

G.D. Forney Jr. (1965): On decoding BCH codes, IEEE Trans. Inform. Theory
11, 549-557.

D.C. Gorenstein and N. Zierler (1961): A class of error-correcting codes in p™
symbols, Journ. SIAM 9, 207-214.

T. Hgholdt, J. H. van Lint, and R. Pellikaan, Algebraic geometry codes, to ap-
pear in Handbook of Coding Theory, (V.S. Pless, W.C. Huffman and R.A.
Brualdi eds.), Elsevier.

T. Hgholdt and R. Pellikaan (1995): On decoding algebraic-geometric codes,
IEEE Trans. Inform. Theory 41, 1589-1614.



23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Chapter 11. Grébner Bases for Decoding 275

J. Justesen, K.J. Larsen, H. Elbrgnd Jensen, A. Havemose, and T. Hgholdt
(1989): Construction and decoding of a class of algebraic geometric codes, IEEE
Trans. Inform. Theory 35, 811-821.

T. Klgve and V.I. Korzhik (1995): Error Detecting Codes, Kluwer Acad. Publ.,
Dordrecht.

P. Loustaunau and E.V. York (1997): On the decoding of cyclic codes using
Grébner bases, AAECC 8, 469-483.

F.J. MacWilliams and N.J. A. Sloane (1977): The Theory of Error-Correcting
Codes, North-Holland Math. Library 16, North-Holland, Amsterdam.

J.L. Massey (1969): Shift-register synthesis and BCH decoding, IEEE Trans.
Inform. Theory 15, 122-127.

J. Maucher and R. Kétter (1996): Decoding constacyclic codes in Lee- and
Mannheim metric by the use of Grobner bases, preprint.

R. Pellikaan (1993): On the efficient decoding of algebraic-geometric codes, pp.
231-253 in Proceedings of Eurocode 92, CISM Courses and Lectures 339,
Springer-Verlag, Wien New York.

W.T. Penzhorn (1993): On the fast decoding of binary BCH codes, pp. 103 in
Proc. IEEE Int. Symp. Inform. Theory, San Antonio.

W. W. Peterson (1960): Encoding and error-correction procedures for the Bose-
Chauduri codes, IRE Trans. Inform. Theory 6, 459-470.

W.W. Peterson and E.J. Weldon (1977): Error-Correcting Codes, MIT Press,
Cambridge.

K. Saints and C. Heegard (1995): Algebraic-geometric codes and multidimen-
sional cyclic codes: A unified theory and algorithms for decoding using Grobner
bases, IEEE Trans. Inform. Theory 41, 1733-1751.

S. Sakata (1981): On determining the independent point set for doubly periodic
arrays and encoding two-dimensional cyclic codes and their duals, IEEE Trans.
Inform. Theory 27, 556-565.

S. Sakata (1988): Finding a minimal set of linear recurring relations capable of
generating a given finite two-dimensional array, Journal of Symbolic Compu-
tation 5, 321-337.

S. Sakata (1990): Extension of the Berlekamp-Massey algorithm to N dimen-
sions, Information and Computation 84, 207-239.

Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa (1975): A method
for solving the key equation for decoding Goppa codes, Information and Control
27, 87-99, 1975.

H.-J. Weber (1994): Algebraische Algorithmen zur Dekodierung zyklischer
Codes, Master’s Thesis, Univ. Dortmund.

D-J. Xin (1993): New approach to decoding Reed-Solomon codes based on gen-
eralized rational interpolation, pp. 219-223 in Proc. Sixth Swedish-Russian In-
ternational Workshop Inform. Trans.

D-J. Xin (1994): Homogeneous interpolation problem and key equation for de-
coding Reed-Solomon codes, Science in China (Series A) 37, No. 11.

D-J. Xin (1995): Extension of the Welch-Berlekamp theorem and universal
strategy of decoding algorithm beyond BCH bound, Science in China (Series
A) 38, No. 11.



Project 1. Automatic Geometry
Theorem Proving

Tomas Recio, Hans Sterk, and M. Pilar Vélez

1. Introduction

The aim of this project is to illustrate how the framework of polynomial
rings and computational methods designed for them can be of help in proving
(plane) geometry theorems. The idea is not original and there are already,
even for the beginner, excellent references concerning this topic. In coherence
with the ‘tapas’ style of this book, we recall a few, tasty ones: for instance, the
recent book by the founder of the modern approach to automatic geometry
theorem proving, Wu Wen Tsun [5]; the textbook [2], which integrates one
section on this material in a commutative algebra/algebraic geometry course,
and the book by Chou [1], including an impressive collection of computed
examples.

The primary motivatien for this contribution has been the preparation
of undergraduate classroom material for computer-aided commutative alge-
bra courses that have been offered, since the middle eighties, at the Uni-
versity of Cantabria and, more recently, at the University Complutense of
Madrid. Thus, the following pages should be regarded as an elaborated ver-
sion of teaching notes; a preliminary version of the notes was used for a
Galois/Eidma, course at the Eindhoven University of Technology. The ratio-
nale of our didactical approach is that algebraic geometry examples improve
students’ understanding of commutative algebra concepts and conversely.

Automatic geometry theorem proving provides an interesting framework
to accomplish this, since an elementary geometry problem has to be modeled
into a commutative algebra statement, which will be, in turn, regarded as
a property of algebraic varieties. In this way students develop the computa-
tional skills in commutative algebra to decide on the status (true or false)
of elementary geometry statements. The didactical relevance is that, in the
context of elementary geometry theorems, the students’ ‘a priori’ intuition
is confronted with the actual behaviour of mathematical objects; this con-
frontation seems the key to significant learning.

As a consequence of the didactical origin of the chapter, our classroom
presentation of the topic turned out to converge towards the style of the
book (2], several years before its publication. This coincidence reflects the
obvious fact that Grobner bases are very likely to be introduced in most
computationally oriented commutative algebra courses and it is also due to



Project 1. Automatic Geometry Theorem Proving 277

a common exploitation of Kapur’s [3] formulation. We thank the authors of
[2] for sending us an earlier draft of their manuscript. Some results below
are similar to theirs, but we take full responsibility for many deviations and
interpretations. Besides, we have enlarged their presentation to include an
introduction to automatic discovery of theorems. In other words, we proclaim
automatization not only for proving a result, but even for inventing results!

Given the complexity of current algorithms for ideal manipulation via
Grobner bases and the usually limited computing resources available in un-
dergraduate mathematics laboratories, it is not straightforward to identify
a collection of examples that can be successfully manipulated with scientific
freeware, such as CoCoA!, running on small machines. We hope this chapter
also shows how some interesting instances of automatic geometry theorem
proving are tractable with Grobner bases, despite the common belief that
they require the more standard approach via characteristic sets.

2. Approaches to Automatic Geometry
Theorem Proving

Although there are several possible approaches to automatic geometry theo-
rem proving, the main steps are always similar:

1) Algebraic formulation: the translation of a geometry statement into alge-
braic equations.
2) Proof: the use of some decision procedure, in the model we are working
with, to determine the validity of the theorem.
3) Searching conditions: the search for extra conditions if the theorem, as it
was formulated originally, is false.

This project is organized around these items; it is a tour along classical
results from geometry, with an illustration of the peculiarities that may arise.
In the examples we will use the computer algebra package CoCoA, but the
computations can also be done with various other systems.

3. Algebraic Geometry Formulation

Let K be a field of characteristic 0, for instance the field of rational numbers
Q, and let L be an algebraically closed field containing K, for instance the
field of complex numbers C. We will restrict our attention to plane geometry
theorems which can be phrased in terms of polynomial equalities over K.

For the rest of this paper, variety means K-variety, open set means K-
open, etc.

! CoCoA is scientific software, produced and freely distributed by Robbiano-Niesi-
Capani, Universitd di Genoa, cocoa@dima.unige.it



278 T. Recio, H. Sterk, and M. P. Vélez

Start by choosing an appropriate coordinate system. Variables x =
(z1,...,24), used to describe coordinates of points or geometric magnitudes
(distance, radius, etc.) that can be chosen arbitrarily, are called independent
variables®; variables y = (y1, ..., yr), used to describe points that satisfy cer-
tain equations in the independent ones because of the construction procedure,
are called dependent variables. In this manner, various geometric statements
such as incidence, parallelism, perpendicularity, distance, etc., can be turned
into polynomial equations in the variables (x,y) with coefficients in K.

Ezample 8.1. ab L cd translates into
(bl — al)(dl — Cl) + (bg — az)(dz — 62) =0,

where a = (a1, a2), b = (b1, b2), etc.
The midpoint of ab is described by the two equations

2U1 =a; + bl and 2U2 =a2+ b2.
Here, u;,us are dependent variables.

Remark 3.2. In our translations we agree not to take advantage of special
features of a particular construction. For instance, we translate parallelism
of ab and cd into (a1 — b1)(c2 — d2) — (a2 — b2)(¢c1 — d1) = 0. If a happens to
be (@1,0) and b happens to be (b;,0), then we specialize this expression to
(a1 — b1){ce — d3) = 0 instead of using the particular form ¢ — d2 = 0.

Exercise 3.3. Express the following conditions as polynomial equations.

1. The point a lies on a circle with center m and radius r.
2. The point a lies on the line bc through points b and c.
3. Points a, b, and c are collinear, i.e., on one line.

After adopting a coordinate system, the hypotheses of a theorem can,
by assumption, be expressed as a set of polynomial equations, hi(x,y) =
0,...,hp(x,y) = 0, and the thesis can be expressed as a polynomial equation,
t(x,y) =0, where hy,...,hp,t € K[x,y]. A geometry theorem 7T is translated
into

V(x,y) € L™ hi(x,y) =0,...,hp(x,y) =0 = t(x,y) =0, (3.1)

where n = d + r. In terms of algebraic geometry, this is phrased as: the
algebraic variety defined by {¢ = 0} contains {h; =0,...,h, =0} C L™.

At this point we need to introduce some notation from algebraic geometry:
given f1,...,fq € Klx,y] we denote by Z(f1,...,fq) C L™ the algebraic
variety (or set) defined by fi,..., fq in L™; given an algebraic variety Z C L™
we denote by I(Z) the ideal defined by Z in K|[x,y| (cf. Chapter 1).

? This is a subtle point to which we will come back in Section 4.



Project 1. Automatic Geometry Theorem Proving 279

Definition 3.4. Given a geometry theorem 7, we define the hypotheses va-
riety H as the algebraic set Z(hy,...,hp) and the thesis variety T as the
algebraic set Z(t). The ideal \/(h1, ..., hp) is called the hypotheses ideal.

Definition 3.5. A theorem 7 is geometrically true if the hypotheses variety
H is contained in the thesis variety T'.

The notion of being geometrically true is related to the ideal membership
problem in the following way.

Theorem 3.6. The following statements are equivalent:

(a) Theorem T is geometrically true.
(b) t€/(h1,..., hp).
(¢c) 1 € (hy,...,hp,tz —1)K[x,y, 2].

Exercise 3.7. Show that (b) and (c) are always equivalent, i.e., do not
need the assumption that L be algebraically closed. Indicate where you use
Hilbert’s Nullstellensatz in the proof of the above theorem.

Item (c) of the theorem is suitable for the use of a computer algebra
system, such as CoCoA. In CoCoA, NormalForm(f,(f1,...,fs)) computes
the normal form of the polynomial f with respect to a Grébner basis of the
ideal generated by {fi,..., fq}. Of course, we have to select an ordering of
the variables, but since we are only interested in deciding if the normal form
is or is not 0 — and this is independent of the ordering — it makes sense to
choose an ordering such as DegRevlLex, which has the reputation of allowing
faster computations. In conclusion, we have

NormalForm(1, (hy,...,h

yhp, tz — 1)) { =0 7 is geometrically true

# 0 7 is not geometrically true

It is important to remark that there is no unique algebraic formulation
for a given geometric statement. When we talk about proving a theorem
T, we implicitly refer to the selected algebraic translation. In particular, it
is often useful to choose formulations that reduce the number of variables
appearing in the statement. For example, since most geometric properties
are invariant under similarities, one can often translate a given theorem into
an equivalent statement in which one or several points have been assigned
numerical coordinates. Here is a simple but illustrative example.

Ezxzample 3.8. The angle subtended by a diameter of a circle from any point
on the circumference is a right angle.



280 T. Recio, H. Sterk, and M. P. Vélez

This statement concerns any circle and any point on it. But it is obvious
that the theorem is true in general if and only if it is true for one concrete
circle (since any two circles are similar and similarities preserve right angles).
Thus we can fix (totally or partially) the given circle. Let us fix the center
but not the radius. Take points o = (0,0), a = (2/,0) and b = (u,v) such
that the segment between o and a is a diameter of a circle and b belongs to
this circle. Observe that ,u,v are the variables, that [, u can be considered
as independent and that v can be considered as dependent on [, u since it
satisfies the equation of the circle.

Hypothesis: the fact that b is on the circle centered at (l,0) with radius !
translates into
h=h{l,u,v) = (u-0)*+2-12=0.

Thesis: the angle oba is a right angle, i.e., ba L bo,
t =t(l,u,v) = u(u—20) + %
Thus, we must check whether NormalForm(1, (h,tz — 1)) = 0, which is

easily verified in CoCoa. Therefore, the theorem is geometrically true. (Of
course, the computation in this example is trivial, even by hand.)

Exercise 3.9. Describe hypotheses and theses in the following cases and
show that the two statements are geometrically true.

1. In a right triangle oba with right angle at b, let p be the projection of b
on oa. Then

loa} _ |ob|

lob|  Jop|’
2. Same situation as before. Then

lop| _ [bp|

lbpl  Ipaj

It seems that we have found a nice way to prove geometry theorems.
Unfortunately, there are well-known theorems that seem ‘false’ using this
method. For instance, according to this procedure, Thales’ Theorem turns
out to be not geometrically true as the following example shows.



Project 1. Automatic Geometry Theorem Proving 281

Example 3.10. (Thales’ Theorem) Given two secant lines r and r’, the tri-
angles obtained by intersecting any two parallel lines m and m’ with the two

secants are similar.
/

() a\ b\ *

Consider the z-axis as one of the secant lines and the line joining points
o = (0,0) and ¢ = (p, g) as the other one. Take points a = ({,0) and b = (s, 0)
on the z-axis and draw the line ac. Let d = (u,v) be the intersection of oc
and the line parallel to ac passing through b.
Hypotheses: d € oc: hi(l,s,p,q,u,v) =qu—pv =10
ac||bd: h2(l,s,p,q,u,v)=q(u—s)—v(p—l)=0

Thesis: the ratios of the lengths of the corresponding sides of the two triangles
oac and obd are equal, i.e.,

fol _ locl _ el
lob] ~ Jod|  |bd|’

This is expressed by the following equations: t; := (u2+v2)I2—s%(p?+4¢?) = 0,
tar=((s—u)?+v)Z-s2((p—-1)?+¢?) =0.

We must check that the hypotheses variety {h; = 0, hy = 0} is contained
in the zeroset of t; (respectively, ¢3). CoCoA's answer for thesis ¢; is negative,
so this thesis is not geometrically true:

Ring ( "ring name:” R ; "characteristic:” 0 ;
"variables:” zuvpgsl ; "weights:” 1,1,1,1,1,1,1
"ordering:” DEGREVLEX );

NormalForm(1, |deal(—vp + ug, —vp + uq — gs + vl,
— 2p?s? — 2q?%8% + zu?? + 20212 - 1));

A similar computation shows that the second thesis is not geometrically true.

This last example makes clear that our procedure to prove geometry the-
orems is not complete: if the answer is YES we can guarantee the statement’s
validity, but if the answer is NO the theorem can still be ‘true’. This can
happen if our algebraic formulation does not correctly represent the geomet-
ric construction we have in mind. For example, in proving Thales’ theorem
(Example 3.10) by hand, it is necessary at some point to avoid degenerate
cases (e.g., the case where c is on the z-axis). In algebraic terms this means



282 T.Recio, H. Sterk, and M. P. Vélez

that certain expressions should not assume the value 0. Nevertheless, these
degenerate cases satisfy the algebraic hypotheses, but the theorem may not
hold for all these cases. Let us deal with this problem.

Let 7 be a geometry theorem and suppose that it is not geometrically
true,i.e,, H ¢ T. The validity of the theorem, however, can be thought of as a
generic matter in the following sense: it can happen that for some polynomial
g € K|[x,y], the smaller set H \ Z(g) is contained in T, i.e., upon removing
some degenerate cases from the hypotheses variety, the thesis holds over the
remaining configurations. Therefore, we propose a change in the formulation
of (3.1), which allows for imposing a condition:

Y(x,y) €L™ hi(x,y) =0,...,hp(x,y) = 0,9(x,y) # 0 = t(x,y) = 0. (3.2)

Definition 3.11. Let hy,...,hp, g,t € K|[x,y] as above. We define the hypo-
theses+condition variety Hy as the algebraic set Z(hy, ..., hp, gk—1) in L™+,
where k is a new indeterminate. -

Definition 3.12. Let hy,...,hp, 9,t € K[x,y]. A theorem of the form (3.2)
is geometrically true under the condition g # 0 if the hypotheses+condition
variety Hy is contained in the thesis variety T = Z(t) C L™,

Exercise 3.13. Show that the ‘validity of a theorem under the condition
g # 0is equivalent to t € \/(hy, ..., hp, gk — 1). Prove that this last condition
holds if and only if .

1€ (h1y..., hp, 9k — 1,tz - 1)K|[x,y,k, 2],

where 2 is a new indeterminate.
Also show that, under the projection L®*! — L™ on the first n coordi-
nates, H, is identified with the set H N {g # 0}.

Now let us go back to Example 3.10.

Exercise 3.14. (Thales’ Theorem revisited) We proved above that, without
any extra condition, Thales’ Theorem is not geometrically true. Now impose
the first nondegeneracy condition that arises, namely that the line oc be
different from the z-axis (i.e., ¢ # 0). Check that the theorem is geometrically
true under this condition.

The next section shows how to look for such nondegeneracy conditions.

4. Searching for Conditions

Notation remains as in the previous section, i.e., Ay, ..., h, describe the hy-
potheses and ¢ the thesis for a geometry theorem. Qur first goal is to inves-
tigate single conditions under which a geometry theorem becomes true.



Project 1. Automatic Geometry Theorem Proving 283

Definition 4.1. A nondegeneracy condition for a geometry theorem is a
polynomial g € K|x,y] such that the theorem is geometrically true under
the condition g # 0.

Exercise 4.2. Prove that a polynomial g € K|[x,y] is a nondegeneracy con-
dition for a geometry theorem if and only if

g € (ha,y..., hp,tz — 1) N K|[x,7]
for some [ > 0.

Remark 4.3. From the computational point of view, it is easier to search
for conditions among the elements of the ideal (hi, ..., hp,tz — 1) N K[x,y]
than among the elements of its radical. Radical computation is more difficult
and less often implemented in computer algebra packages. However, for our
geometric purposes it makes no difference because g(p) # 0 if and only if

g'(p) #0.

The last remark motivates the following
Definition 4.4. The ideal
(h1,---, hp,tz — 1) N K[x,y]
will be called the ideal of nondegeneracy conditions for the given theorem 7.

This definition is too coarse in the sense that there exist conditions that
make no sense for our purposes. For example, if the set Z(g) contains the
hypotheses variety, then Hy, = @ and, logically, any thesis follows from Hg;
this occurs if g € \/(h1,...,hp). If, at the other extreme, the set {g # 0}
contains H, then g does not really impose a condition: H, = H.

In order to avoid such situations, we classify conditions as follows.

Definition 4.5. Let g € k[x,y] be a condition for a geometry theorem.

(i) g is a trivial condition if g € \/(h1, ..., hp).
(ii) Otherwise, g is a nontrivial condition and we distinguish two cases:
a) g is a relevant condition if 1 & (hy,...,hp,9).
b) g is an irrelevant condition if 1 € (h1,...,hp, 9); in this case Hy = H.

Remark 4.6. Trivial or irrelevant conditions, though unimportant by them-
selves, do play a role because it can happen that relevant conditions arise as
combinations of other conditions, including trivial and irrelevant ones.

Exercise 4.7. Let 7 be a geometry theorem which is not geometrically true.
Prove the following statements:

1. If the hypotheses ideal 1/(h1,. .., hy) is prime, all conditions are trivial.
2. If nontrivial conditions for T exist, they are all relevant.



284 T. Recio, H. Sterk, and M. P. Vélez

3. There are relevant conditions for 7 if and only if there are relevant con-
ditions in any basis of the ideal of nondegeneracy conditions of 7.

Remark 4.8. The computation of the ideal of nondegeneracy conditions (see
Definition 4.4) with CoCoA is done using the command

Elim(z, Ideal(hy, . . ., hp, tz — 1)),

which yields a Grébner basis of (hy,...,hp tz —1) N K[x,y].

We discard every element of this basis that represents a trivial condition,
i.e., is contained in the hypotheses ideal v/(hi, ..., hp), in the following way:
compute '

NormalForm(1, Ideal(hy, ..., hp, gk — 1))

in K[x,y,k} if it is O the condition is trivial. For nontrivial conditions we
detect relevant and irrelevant ones by using NormalForm again.

Exercise 4.9. 3 Let oabc be a square. Then the two lines connecting ¢ with
the midpoints of oa and ab, respectively, divide the diagonal ob into three
segments of equal length.

c b

o a

1. Use Exercise 3.3 to give a translation into a system of polynomial equa-
tions. Take o = (0,0),a = ({,0),b = (I,1),c = (0,1).

2. Show that the theorem is not geometrically true.

3. Is the hypotheses ideal prime? If not, can you find a decomposition as
intersection of prime ideals?

4. Analyze trivial and nontrivial conditions in the basis of the ideal of con-
ditions.

5. Find a nondegeneracy condition so that the theorem holds under this
extra condition.

Sets of the kind H \ Z(g) are Zariski open in the hypotheses variety H;
as is well known, such sets form a basis for the topology on H: every open
subset of H is a union of such special open sets.

3 This theorem appears in the proposal ‘School Mathematics in the 1990s’ (ed.
Geoffrey Howson and Bryan Wilson, Cambridge University Press, Cambridge,
1986) of the International Commission on Mathematical Instruction, where the
didactical impact of automatic theorem proving in elementary geometry is al-
ready mentioned.



Project 1. Automatic Geometry Theorem Proving 285

Exercise 4.10. Show that there is a nonempty Zariski open set in H where
the thesis ¢ = 0 holds if and only if there exists a nontrivial condition g such
that: by =0,...,hp =0, #0=t =0.

In searching for conditions, the set of ‘failures’ {t # 0} N H plays a central
role as the following exercise explains.

Exercise 4.11. Let {g1,...,9s} be a basis of the ideal of nondegeneracy
conditions
(h1,... s hp,tz — 1) N K[x,y].

1. Prove that the algebraic set Z(gy,. .., gs) is the Zariski closure of {t # 0}
in H. Conclude that Z(g,,..., gs) is the union of the irreducible compo-
nents of H that meet {t # 0}.

2. Prove that, therefore, Z(gi,...,9s) does not contain a nonempty Zariski
open subset of H contained in Z(t).

3. Show that there is a proper algebraic set (possibly empty) W of H such
that Z(g1,...,9s) \WC{t#0} N H.

For instance, in Exercise 4.9 the Zariski closure of {¢t # 0} N H is equal to
Z(I) N H, the set of degenerate squares. The meaning of the first two items
of Exercise 4.11 is that [ = 0 is a necessary condition for the thesis to fail
over some point of H. On the other hand, the third item shows that it may
not be a sufficient condition: there could be some values of Z(I) N H where
the thesis holds, but such values are contained in a proper Zariski-closed set
of H N Z(l). Intuitively speaking, we could think of the set Z(g1,...,9s) as
the collection of truly degenerate cases where, perhaps, a few of these cases
still satisfy the theorem.

Exercise 4.12. Find, in Exercise 4.9, the set of points in Z(I) N H that
satisfy the thesis.

But, as you can see in the next example, sometimes Z(gy,. .., gs) contains
all the ‘usual’ cases.

Ezxample 4.13. Suppose we want to prove the following statement: The center
of a parallelogram is on one of its edges.




286 T.Recio, H. Sterk, and M. P. Vélez

Consider the parallelogram with vertices o = (0,0), a = (1,0), b = (r, 3)
and ¢ = (p,q). Let d = (u,v) be the center of this parallelogram, i.e., the
intersection of the diagonals. Here [, r, s are the independent variables.
Hypotheses: oa||bc:  hy:=1l(s—q)=0

ob || ac: ho:=qr—s(p—10)=0
d€oc: hs3:=ug—wvp=20
deab: hy:=s(u—0)—vlr—0)=0
Thesis: d€ oa: t:=lw=0
Ring ( “ring name:” R ; ”characteristic:” 0 ;
"variables:” yzuvpqrsl ; "weights:” 1,1,1,1,1,1,1,1,1
"ordering:” DEGREVLEX );
NormalForm(1, Ideal({(s — q),qr — s(p — I),uq — vp, s(u — 1) —v(r - 1),
(lv)z - 1));
1

The theorem is not geometrically true. Let us look for some conditions.

Elim(y..z,|deal(I(s — q),qr — s(p — 1), uq — vp, s(u — 1) — v(r — 1),
(lv)z - 1));
Ideal{vp — 1/2rs — 1/2sl,vr — 1/2rs — vl +1/2sl,q — s,ps — rs — sl,
pr—r2 —pl+ 12 p% — 2 — 2pl + 12, up—1/2r% — pl + 1/212,
vs —1/2s% us — 1/2rs — 1/2sl,ur — 1/2r? — ul + 1/21%);
We choose the condition ps — rs — sl, which is nontrivial:
NormalForm(1, Ideal({(s — q),gr — s(p ~ 1),uq — vp, s(u — 1) —v(r - 1),
(ps—rs—sl)z — 1));
1

And we verify that the theorem is valid under this condition:

NormalForm(1, Ideal({(s — q), gr — s(p — 1), uq — vp, s(u — I) — v(r = 1),
(ps—rs—s)z —1,(vl)y —1));
0

What is the geometric meaning of this condition s(p — r — ) # 0?7 Well,
s # 0 gives the perfectly reasonable condition that the parallelogram is non-
degenerate (i.e., it is not a point), but p — [ # r gives the condition:

the length of the projection of the segment ob onto oa is different
from the length of the projection of the segment ac onto oa.

Obviously, this condition holds only for ‘unusual’ parallelograms. Our method
requires further analysis, since we have proved a (false) ‘theorem’ that holds
over an open set of the variety of parallelograms!



Project 1. Automatic Geometry Theorem Proving 287
True Nondegeneracy Conditions

In order to bridge the gap between a geometry theorem and standard geomet-
ric intuition, we need a finer analysis of the conditions yielding ‘degenerate
cases’. The source of many problems is the fact that the hypotheses variety
may have more components, some of which describe degenerate cases. To
identify these, note that, when we first established the algebraic formulation
of a geometry statement, we identified some variables as being independent.
Now we emphasize this fact by calling such variables geometrically inde-
pendent, because they correspond to coordinates of points in our geometric
situation that can be chosen freely. (Such variables are not absolute: in choos-
ing an algebraic formulation or even within such a formulation, different sets
of variables may acquire this status; rescaling or applying translational or
rotational invariance may reduce the number of geometrically independent
variables.)

It seems natural to carry over the idea of geometrically independent vari-
ables to the hypotheses variety. Since we do not want to establish theorems
that are only true in degenerate cases, finding nondegeneracy conditions
should focus on exhibiting an open set of points in the hypotheses variety
where the geometrically independent variables remain algebraically indepen-
dent, i.e., such that no polynomial in these variables vanishes over the open
set. To exploit this idea, we introduce the following concept of independence
in the framework of commutative algebra.

Definition 4.14. Let I be an ideal of the polynomial ring K[z,..., 2]
The variables z;,,...,z;, € {z1,...,2Zn} are independent modulo the ideal T
ifInK[x,-l,...,x,-d]=(O). ) )

The dimension of an algebraic set H C L™ and its ideal I{H) is the
number

d =dim (H) =dim (I(H))
= max{r | there are r independent variables modulo I(H)}.

In general, the dimension of an ideal coincides with the dimension of its
radical; the special case that we need is proven in the following lemma.

Lemma 4.15. Let I be an ideal of K[z, ..,2,]. Denote by x’ the variables
(Tiy,-..,x5,). Then INK[x'] = (0) if and only if VI N K[x'] = (0).

Proof. The ‘if’ part follows immediately from I C +/I. Conversely, if T N
K[x'] = (0) and g € VIN K|[x'], then g™ € I for some m > 0, so g™ = 0 and
therefore g = 0.

Exercise 4.16.

1. Prove that a set x’ of variables is independent modulo an ideal if and only
if there is an isolated prime p of this ideal such that x’ is independent
modulo p.



288 T. Recio, H. Sterk, and M. P. Vélez

2. Prove that the dimension of an ideal agrees with the maximum dimension
of its associated primes.

The following simple exercise shows that the concept of independent vari-
ables is quite tricky, at least when the ideal is not prime.

Exercise 4.17. Show that {z} and {y, 2} are two maximal sets (with dif-
ferent cardinality) in K[z,y,2] of independent variables modulo the ideal
(zy,zz). Find the dimension of Z(zy, zz).

The connection between these algebraic results and the discussion at the
beginning of this section is provided by the following easy result.

Proposition 4.18. Let x’ be a set of variables, I an ideal of K[zy,...,Tp].
The followtng statements are equivalent:

(a) The set x' is independent modulo I.

(b) There is a nonempty open subset I' of some irreducible component of
the variety Z(I) such that no nontrivial polynomial in the variables x’
vanishes at every point of I'.

(c) There is a nonempty open subset 2 of the variety Z(I) such that no
nontrivial polynomial in the variables x' vanishes at every point of 2.

Proof. Assume x’ is independent modulo I. Then %’ is also independent mod-
ulo an isolated prime ideal of I. Since the irreducible components of Z(I) are
the zeros of the isolated primes of I, it is enough to remark that a polyno-
mial vanishes on an open set of an irreducible variety if and only if it vanishes
on the whole variety. This yields (a) = (b). Now assume (b) holds. Then I
is open (hence dense) in some irreducible component but is not, in general,
open in Z(I). Since I' is dense, it contains a nonempty open subset (2 of Z(I)
(intersect I" with the complement of the union of the remaining components).
Hence (b) = (c). The implication (¢) = (a) is trivial.

Remark 4.19. Besides the brute force way of using the CoCoA command Elim
to check if a set of variables is independent and finding a maximum set of
independent variables, the command Dim provides a direct way to find the
dimension. :

Of course, the variables we choose as geometrically independent in the
formulation of a geometry theorem should be independent variables of K[x, y]
modulo the hypotheses ideal I(H) in order to guarantee that at least we have
an open set of nondegenerate cases in the hypotheses variety. Such an open
set meets (and is dense in) some irreducible component of H, but misses
entirely components describing degenerate cases. So we look for conditions
among polynomials in these variables. This motivates the following definition
and proposition.



Project 1. Automatic Geometry Theorem Proving 289

Definition 4.20. A nonzero polynomial g € K[x,y] is a true nondegeneracy
condition for a geometry theorem 7 if g € K|[x|, where x = (z1,...,24) is a
set of geometrically independent variables over the hypotheses variety, that
is, modulo its ideal, and 7 is geometrically true under the condition g # 0.

Notice that such conditions are always nontrivial, since they do not belong to
the ideal of the hypotheses variety (by definition of independent variables),
hence (by Lemma 4.15) not to its radical.

Proposition 4.21. Retain the notation of Definition 4.20. The following
statements regarding the geometry theorem T are equivalent.

(a) There is a true nondegeneracy condition for T .

(b) There is g € K|[x]\ {0} such that g-t € I(H) = \/(hy,..., hp)-

(c) I. = (hy,...,hp,tz— 1) N K|[x] # (0).

(d) t vanishes on every irreducible component of H where x is a set of
geometrically independent variables.

If one (hence all) of them holds, we say that the theorem 7 is generically
true.

Proof. We leave it to the reader to show that (a), (b) and (c) are equivalent.

Now let us assume (b) and let H; be an irreducible component of H
where x is an independent set of variables. If g € K|[x| \ {0} is such that
g-t €/(h1,...,hp) = I(H), then g -t € I(H;). Now, g & I(H;), because
{z1,...,24} is independent modulo I(H;). Since I(H;) is a prime ideal, it
follows that t € I(H;). '

Conversely, let H = HyU---UH, UH}U- - -UH} be the decomposition of H
in irreducible components, labeled so that x is a set of independent variables
precisely over each H;. As {x1,...,%4} is dependent modulo I(H]’f), for each
j=1,...,1, there is a nonzero g; € K|[x] such that g; vanishes on H}. Take
g=g1---g (if | = 0 choose g = 1); then g - ¢t vanishes on H.

Remark 4.22. By Remark 4.8, nondegeneracy conditions for a statement 7°
are to be found in the elimination ideal (or, rather, in its radical, but we follow
here the same simplification as in 4.3) I, = (hy,..., hp,tz—1)NK]zy,..., z4].
Using CoCoA we obtain a Grébner basis of I, by

Elim(y1..yr, Ideal(hy, ..., hp,tz — 1))
We distinguish two cases:

1) Following Proposition 4.21, we say that theorem 7 is not generically true
if I, = (0). In terms of algebraic geometry this means that {t # 0} holds
over some ‘geometrically relevant’ component of H. In most cases it also
means that {¢ 3 0} N H has the same dimension as H (since degenerate
components ‘should’ have smaller dimension), but see Exercise 4.9.



290 T. Recio, H. Sterk, and M. P. Vélez

2) If I = (g1,--.,9s) # (0), then
h1=0,...,h, =0and (g1 #0or g2 #0or...or g, #0) = ¢t=0.

We leave to the reader the task of finding the geometrical interpretation
of the zeroset Z(gi1,...,9s)-

This analysis implies that Example 4.13 is not generically true since there
are no conditions in the independent variables [, r, s.

Ezxample 4.23. In any right triangle the circle passing through the midpoints
of the sides also contains the feet of the three altitudes.

b

Consider the triangle with vertices o = (0,0), a = (2r,0) and b = (0,2s).
Let d = (0,s), e = (r,0) and f = (r,s). Denote by ¢ = (p,q) the center of
the circle passing through the points d, e, and f. Let g = (u,v) be the foot
of the altitude from o. Remark that r, s are the geometrically independent
variables.

Hypotheses: |cd| =|cel: hi=(r—p)?+¢—p*—(¢—35)2=0
led| = [cf|:  ha=(r—p)*+(s—q)®—p*—(¢—5)?=0
g€ ab: hs=r(v—-2s)+su=0
og L ab: hi=ru—sv=0

Thesis: |cd| = |cg|: t=(u—p)?+(v—q)%—p?>—(g—s)?=0
Ring ( ”ring name:” R ; ”characteristic:” 0 ;
”variables:” zuvpqrs ; "weights:” 1,1,1,1, 1 1,1
"ordering:” DEGREVLEX );

NormalForm(1, Ideal((r — p)? + ¢® — p? — (¢ — 5)2,7(v — 25) + su,
(T _p)2 + (S - q)2 _p2 - (q— 3)257”“’ — 8,
(w=p?+(v—09)?°~-p"—(¢-9)%)2-1));

1

The theorem is not geometrically true. Thus, we look for true nondegeneracy
conditions:



Project 1. Automatic Geometry Theorem Proving 291

Elim(z..q, Ideal((r — p)? + % — p? — (g — $)2,
(r—p)?2+(s—q)2 —p? — (g —5)%,r(v — 28) + su,ru — sv,
(u=-p)?+ =92 -p°—(¢-5)%)z—-1))
Ideal(s, r);

Therefore this theorem is generically true. It fails only for degenerate
triangles, i.e., when s = r = 0.

Exercise 4.24 (Simson’s Theorem). The pedal points (feet) of the per-
pendiculars drawn from an arbitrary point on a triangle’s circumscribed circle
to the three sides are collinear.

1. Let C be the circumcircle with center ¢ = (p,q) of the triangle with
vertices o = (0,0), a = ({,0) and b = (r, s). Set up equations describing
hypotheses and thesis for the theorem.

2. Show that Simson’s Theorem is generically true and derive a true non-
degeneracy condition for its validity. Phrase this as a condition on the
sides of the triangle.

5. Searching for Extra Hypotheses

So far our method identifies a theorem’s validity in nondegenerate cases. It
discovers, essentially, statements that hold over open sets of the hypothe-
ses variety. But, unless one is very lucky (or clever), most properties that
one states ‘at random’ about a certain geometric setting will not be gener-
ally true. For instance, a statement that is false for general triangles, may
hold for special kinds of triangle. For these theorems that are not generi-
cally true, our method has nothing to say (except that they are not true).
Our next task is to find, if possible, extra hypotheses so that the resulting
statement will be generically true over the new set of hypotheses (see [4] for
a detailed account of this method). A natural ideal to study in this context
is the ideal (hy,...,hp,t), because it describes the set where both the hy-
potheses and the thesis hold. Since we should look for new hypotheses that
are expressible in terms of the independent geometric variables, we consider
(h1,-..,hp,t) N K[x], where x = (z1,...,2q) is a distinguished set of geo-
metrically independent variables on the hypotheses variety. The proof of the
following statement is omitted, since it is very similar to that of Proposition
4.21.

Proposition 5.1. The following statements are equivalent.

a) (h1,-..,hp,t) N K[x] # (0).
b) t vanishes on none of the irreducible components of the hypotheses variety
H where the variables x are independent.

In this case we say that the theorem is generically false.



292 T. Recio, H. Sterk, and M. P. Vélez

If a given thesis ¢ is generically false under the hypotheses hi, ..., hp, we
consider the nontrivial ideal (h1,. .., hp,t)NK|x] # (0); it is not contained in
the radical of the hypotheses ideal, since \/(hy, ..., hp) N K[x] = (0). Adding
a nontrivial h € (hy,...,hp, t)NK|[x] to our hypotheses, yields a strictly larger
hypotheses ideal and therefore a strictly smaller hypotheses variety; it may
also affect the set of independent variables. The new hypotheses variety must
now be analyzed via the standard procedure, searching for nondegeneracy
conditions and so on. No guarantee that the new collection of hypotheses
will yield a generically true theorem, but we can try...!

Ezxample 5.2. In any parallelogram, the diagonals intersect at a right angle.

Consider a parallelogram as in Example 4.13, with vertices o = (0,0), a =
(1,0), b = (r,s) and ¢ = (p,q). The independent variables are r,s, .
Hypotheses: oa||bc: hy:=Il(s—¢) =0

ob|lac: hy:=¢qr—s(p-1)=0
Thesis: oc Lab: t:=p(r—1)+¢s=0

Ring ( "ring name:” R ; ”characteristic:” 0 ;
"variables:” zpqrsl ; "weights:” 1,1,1,1,1,1
“ordering:” DEGREVLEX );
NormalForm (1, Ideal(I(s — q),qgr — s(p — 1), (p(r — 1) + ¢s)z — 1));
1
Elim(z..q, |deal(I(s — q),rq¢ — s(p — 1), (p(r — 1) + ¢3)z — 1));
ldeal(0);

Elim(z..q, ldeal(I(s — q),7q — s(p — 1), p(r — 1) + gs));
Ideal(r2sl + s31 — si3);
NormalForm(1, Ideal(i(s — q),7q — s(p — 1), r2sl + s31 — 53,
(p(r =1 +g¢s)z — 1)));
1
Elim(z..r, Ideal(l(s — q),7q — s(p — 1), 72l + 31 — si3,

(p(r = 1) +gs)z — 1)));
Ideal(sl);



Project 1. Automatic Geometry Theorem Proving 293

So the theorem is generically false, but the third computation shows a
new hypothesis,

g=r2sl4+s3 — 513 = sl(r? + 52 — 12),

that makes the theorem generically true (remark that adding this hypothesis
reduces the set of independent variables to s, ). More specifically, we discover
that the theorem s true if the sides of the parallelogram are equal, namely, if
r2+352 =12 (i.e., when it is a square or a rhomboid) and if the parallelogram
does not collapse: sl # 0.

The next example shows how to discover the converse of Simson’s theo-
rem.

Ezample 5.3. Consider a triangle and assume, without loss of generality, that
the vertices have coordinates o = (0,0), a = ({,0), b = (r, s); let d = (m, n)
be an arbitrary point in the plane. We assign coordinates to the feet of the
perpendiculars dropped from d to the three sides of the triangle: e = (v, w),
f = (t,u), d = (m,0). We conjecture that these three points are collinear.

d’

This construction yields the following equations:

Hypotheses: e€ob: sv—rw=20
oblde: rim—-v)+s(n—w)=0
feab: sit—D-u(r—-10)=0
abLdf: (t-m)(r—0)+su—n)=0

Next we conjecture, in this situation, that points e, f, d’ are collinear
(perhaps because they look like lying on a line in the above figure); i.e.,
(w—u){(m —t) + u(v —t) = 0. Not surprisingly, it turns out that

NormalForm(1, Ideal(s(t — 1) — u{r — 1), (t —m)(r — 1) + s(u — n), sv — rw,
r(m—-v)+s(n—w),z(wt—m) —u(lv-m))-1)) =1

so the conjecture is not geometrically true. But it also happens that elimi-
nation of the slack variable z from the ideal yields an ideal not contained in
the radical of the hypotheses ideal. So the conjecture holds over an open set
of the hypotheses variety! Some extra computations confirm that this open



294 T.Recio, H. Sterk, and M. P. Vélez

set lies entirely in a degenerate locus of the hypotheses variety (in fact, it is
contained in the subset where s = 0). This is possible, as remarked above,
because this hypotheses variety has components of dimension 6, while there
are only 5 independent variables (m, n, r, s, ) from a geometric point of view.
On the other hand, if we eliminate the slack variable 2z plus the geometrically
dependent variables v, w,t, u, we get the zero ideal, so the conjecture is not
generically true over an open set of nondegenerate cases:

Elim(z..u,ldeal(s(t — ) —u(r — 1), (t = m)(r — ) + s(u — n), sv —rw

r(m — ) +s(n — w), 2(w(t — m) — uo —m)) = 1);
Ideal (0);

?

Now we start again, this time eliminating all the geometrically dependent
variables, i.e., the variables v to u in the set {v, w,t,u,n,m,r,s,1}, from the
ideal generated by the hypotheses plus the thesis:

Elim(v..u, Ideal(s(t — ) — u(r — 1), (t — m)(r — I) + s(u — n), sv — rw,
r(m —v) +s(n —w), ((w — w)(m — t) + u(v — 1))));
Ideal(nr?s?l — m2s31 — n2s31 + nstl — nrs?l? + ms312);

This yields an extra hypothesis:

nr¥s?l — m?s3l — n?s31 + ns*l — nrs?? + ms32 = 0.

Now we observe that sl is a common factor, and its vanishing clearly corre-
sponds to degenerate cases of ‘flat’ triangles. After removing this factor, the
equation nr?s — m2s% — n2s? + ns® — nrsl +ms?l = 0 remains. Since for a
given triangle the values of [, r, s will be fixed, the above equation should
be regarded as one in the variables m,n. Then it is the equation of a cir-
cle, passing through the three vertices of the triangle. Thus our conjectural
statement is not true in general, but it could be true either if the triangle
degenerates or the given point d is not arbitrary, but lies on the circle de-
termined by the vertices of the triangle. Over nondegenerate triangles the
last condition is therefore necessary. It is easy to check that this condition
is also sufficient (with some nondegeneracy conditions). Indeed, as explained
above, we add one extra variable 2z, and proceed to eliminate, in the ideal
generated by all the hypotheses (old ones plus the newly discovered) and the
thesis (multiplied by z and subtracting 1), all non-independent variables from
{z,v,w,t,u,n,m,r,s,1}:

Elim(z..n,ldeal(s(t — ) —u(r — ), (t = m)(r = 1) + s{u — n),sv —rw,
r(m —v) + s(n— w),nr?s — m?s? — n?2s? + ns3 — nrsl + ms?l,
(w—u)(m—1t)+ulv-—1t)z-1))

Ideal(r* + 2r2s2 + s* — 2731 — 2rs2l + 1212 + §212);



Project 1. Automatic Geometry Theorem Proving 295

Now this nondegeneracy condition is (r% + s2)((r — )% + s2) # 0, which ex-
presses — over the reals — that the vertices of the triangle should not coincide.
Thus we have, so to speak, rediscovered Simson’s Theorem starting from a
wrong assumption.

We finish with a couple of exercises on this technique of automatic dis-
covery of theorems.

Exercise 5.4. In a triangle with vertices a = (5,0), b = (0,a), ¢ = (1,0),
consider a point d = (c,d) on the line ab, and the following lengths: the
distance from d to ac (= z), the distance from d to bc (= y) and the length
of the altitude from b to the opposite side (= z). Then, the algebraic sum of
any two of these lengths is equal to the third one.

1. Denote by e = (u,v) the intersection point of bc with its perpendicular
from d and let f = (c,0). Set up equations describing hypotheses and
thesis (you must assign some signs to the lengths according to the position
of d in ab).

2. Show that the theorem is generically false; add a new hypothesis. Can
you describe its meaning? 4

Exercise 5.5. In a triangle, the orthocenter (intersection of altitudes), the
centroid (intersection of medians), the circumcenter (center of the circle cir-
cumscribed about the triangle) and the incenter (center of the circle inscribed
in the triangle) lie on a line (the Euler line).

1. Consider the triangle with vertices a = (-1,0), b = (1,0), ¢ = (a,b).
Show that the following statement is generically true: the orthocenter
d = (p,q), the circumcenter e = (u,v) and the centroid f = (I,r) lie on a
line.

2. Next, we investigate the statement: the incenter g = (s, w), the circum-
center e = (u,v) and the centroid f = (/,7) lie on a line. The incenter
g = (s, w) is the center of the circle of radius w: (z—s)?+(y—w)?—w? = 0
that is tangent to the sides of the triangle. Find the equations of this point
by eliminating the variables z,y from the equations of the circle with
center (s, w) and radius w and from the equations giving the perpendic-
ularity from a radius of the circle to ac (respectively bc): b(z+1)—(a+1)y
(respectively b{z — 1) — (a — 1)y).

3. Is the new theorem generically true or generically false?

4. Introduce an extra hypothesis expressing that the triangle be isosceles.
Is the new theorem generically true or generically false?

References

1. S.C. Chou (1987): Mechanical Geometry Theorem Proving, D. Reidel

2. D. Cox, J. Little, and D. O’Shea (1992): Ideals, Varieties, and Algorithms, Un-
dergraduate Texts in Mathematics, Springer-Verlag, New York Berlin Heidel-
berg. ‘



296 T. Recio, H. Sterk, and M. P. Vélez

3. D. Kapur (1986): Geometry theorem proving using Hilbert’s Nulistellensatz,
pp. 202-208, in: Proc. of the 1986 Symposium on Symbolic and Algebraic Com-
putation, Ed. B.W. Char, ACM Press, Waterloo.

4. T. Recio and M. P. Vélez (1996): Automatic discovery of theorems in elementary
geometry, submitted to Journal of Automated Reasoning.

5. W.T. Wu (1994): Mechanical Theorem Proving in Geometries, Texts and Mono-
graphs in Symbolic Computation, Springer-Verlag, Berlin Heidelberg New York.



Project 2. The Birkhoff Interpolation Problem

Maria-Jose Gonzalez-Lopez and Laureano Gonzalez-Vega

1. Introduction

The problem of interpolating an unknown function f:R — R by a univariate
polynomial with knowledge of the values of f and some of its derivatives at
some points in R is one of the main problems in Numerical Analysis and
Approximation Theory.

Two classical interpolation cases have been widely studied and solved: the
Lagrange Interpolation Formula and the Hermite Interpolation Problem. In
the first case the values of f at the points z; < --- < x, are known and the
Lagrange Interpolation Formula shows that there exists a unique polynomial
of degree less than or equal to n — 1 with the same behaviour as f at the
points z;.

The Hermite Interpolation Problem generalizes the previous case by in-
cluding some information coming from the derivatives of f. Let ; < --- < x,,
be given points and v, ...,v, positive integers; the Hermite Interpolation
Problem is solved by proving that there exists a unique polyhomial P (which
is explicitly given) of degree less than or equal to

N=u+-+py,-1

such that for every k € {1,...,n} and j € {0,...,vx — 1} the following
equality is satisfied, where f(9) denotes the j-th derivative of f:

PO (zy) = ) (zx).

The main purpose of this project is to show how some of the recipes
introduced in Chapter 6 can be used in order to determine which interpolation
schemes (more general than Lagrange or Hermite) are good in the sense that
for any choice of nodes and function values there is one and only one solution.

2. Poised Matrices

The problem of interpolation by polynomials can be presented in a general
way by describing the interpolation conditions in terms of incidence matrices:
such matrices will contain the information known about f.



298 M.-J. Gonzalez-Lopez and L. Gonzalez-Vega

Definition 2.1. Let n and r be two integers such that n > 1 and r > 0, The
n X (r+1) matrix

€no .-+ Cnr

is called an incidence matriz if e; ; € {0,1} for every i and J.

For an incidence matrix F, the symbol |E| will denote the number of ones

in E:
1Bl =) eij
i

In the case where |E]| is equal to the number of columns in E, the incidence
matrix E is called normal

Let E be an incidence matrix of dimension n x (r +1), X ={zy,..., 25}
a set of real numbers such that z; < --- < x,, and F a matrix of given
real numbers with the same dimensions as F, whose entries are denoted by
fi,j- The Birkhoff Interpolation Problem consists of determining a polynomial
P € R[z] of degree smaller than or equal to r which interpolates F at (X, E),
i.e., which satisfies the conditions:

PY(z;) = fig, (2.1)
where the indices (4, j) are those for which e; ; = 1. |

Definition 2.2. An incidence matrix E with n rows and r + 1 columns is
said to be poised if, for each choice of the nodes z; < - -+ < z,, and matrix F,
there exists a unique polynomial P € R[z] of degree smaller than or equal to
r which interpolates F at (X, E).

Example 2.3. The incidence matrix corresponding to the Lagrange Interpo-
lation Formula,

100 ... 0
100 ...0
100 ...0

is poised.
A second example comes from the Hermite Interpolation Problem:

Exercise 2.4. Describe the corresponding poised incidence n x N-matrix for
any choice of positive integers v1,...,vp, With N =v; + .-+ v, — 1.

The complete characterization of poised matrices is still an open problem.
In the literature on numerical analysis and approximation theory one can
find several sufficient conditions for an incidence matrix to be poised, but a



Project 2. The Birkhoff Interpolation Problem 299

complete characterization has not been found, not even for the cases where
the number of nodes is small, for example 3 or 4 (see for example [1]).

In order to use the techniques introduced in Chapter 6 for determining
all poised matrices with fixed dimension, first:

Exercise 2.5. Prove that the only incidence matrices which are poised are
those which are normal.

The next exercise presents a complete solution for the case n = 2.

Exercise 2.6. A characterization of all poised matrices for the case n = 2
and arbitrary r is given by the so-called Pélya Condition:

A normal incidence matrix F with n rows and r + 1 columns sat-
isfies the Pélya Condition if, for every & in {0,...,7}, the following

inequality holds:
n k
Z Z €ij = k+1.
i=1 j=0
For a normal incidence matrix F with 2 rows and r + 1 columns give a proof
of the equivalence

E is poised <= FE satisfies the Pélya Condition.
Hint: use Rolle’s Theorem (see [1] or [4]).

To deal with the general case, we consider the matrix Mg associated with
the linear system of equations in (2.1), giving the interpolating polynomial
P for X and F, and its determinant Dg. Thus, the problem of determining
the non-poisedness of a normal incidence matrix E is reduced to finding a
set X = {x1,...,2,} of real numbers satisfying

Ty < < and Dg(xy,...,2,) = 0.

Since every polynomial Dg is usually divisible by powers of several (z; — ),

the polynomial resulting from division by all these factors is denoted by Dg
and called the poise-indicator of E. The main property of Dg related to the
poisedness of E is shown in the following theorem and corollary, whose proofs
can be found in [2] and are guided in the following exercises.

Theorem 2.7. Let E be a normal incidence matriz with n rows and r + 1
columns. Then, if ty,...,t,—1 are new variables, the polynomial:

n—1
Hg = DE(.’Dl,.’Dl +tf"1,,$1 +t? +t§,...,$1 + Zt?)
i=1

is a homogeneous polynomial in Z[t,,. .., tn_].



300 M.-J. Gonzalez-Lopez and L. Gonzalez-Vega

Exercise 2.8. Guided proof of Theorem 2.7 (see [2]):

a) Prove that Hg belongs to Z[ty,. .., th—1] = Z[t].

Suppose that Hg = Hg(t, x;) ha.s degree d > 0 in z;. Then there exists
t = (#,...,t_1) € C" ! such that Hg(t*,z;) is a univariate polynomial
of degree d > 0. Let a* € C be such that Hg(t*,a*) = 0. Prove that this
implies the contradiction: Hg(t*,a* + 8) =0 for all 8 € R.

Hint: suppose that there exists 3* € R such that Hg(t*, a* + 8*) # 0;
relate the two (unique) Birkhoff interpolating polynomials for E and the
nodes '

n-1
{a"+80 40 +67 040+ Y67,
i=1

and for £ and the nodes

n—1
{a*,a* +t}'2,...,a* + Zt;&}
i=1

to obtain a contradiction.

b) Prove that Hg(t) is homogeneous.
Let A be a new variable, and consider the polynomial

R(t,\) = He(Mt1, ..., Mao1) = 3 bi(H)N

Prove that there is at most one b;(¢t) nonzero: if two of them were different
from zero then there exist t* € R™™! such that Hg(t*) # 0, and \* €
C such that R(t*, A*) = 0. Relate the two (unique) Birkhoff 1nterpolatmg
polynomials for £ and the nodes

n—1
{0 t12 g2 +t§2...,2t;‘2},
i=1
and for F and the nodes
n—1
{oa2e? 22 +457) ... 22 Y t;2}
i=1

to obtain a contradiction. Conclude that there exists an m such that:
HE(Atl, ey Atn_l) = AmHE(E)

Corollary 2.9. Let E be a normal incidence matriz. Then E is not poised if
and only if the polynomial Hg has a real solution (1,tz,...,t,_1) such that
t2-tp1 # 0.

Exercise 2.10. Prove the previous corollary.



Project 2. The Birkhoff Interpolation Problem 301

3. Examples

This section is devoted to showing how to use the previous theorem and
corollary to determine if a normal incidence matrix is poised or not. The
main computational tools to use have been presented in Chapter 6: the Sturm-
Habicht and Sylvester-Habicht sequences and the Sign Determination Scheme
(Recipe SI).

Example 8.1. We present a particular case, showing all the objects presented
in the previous section related to the normal incidence matrix E defined by:

1 00100
E=]1]1 11 0 00
01 0 00O

The matrix Mg associated to E is

1 2, 22 23 =zt 2}
N

1 2z2 3z3 423 5z%
1 2z 3r2 423 5z}
0 2 6z 1223 20x3
0 0 6 24z, 60x3

Mg

SO oo

The corresponding polynomial Dg factorizes in the following way:
Dg = —36(zy — x3)%(x; — 22)*(622 — 122371 — 22 + 22223 + 5x2).
Thus the poise-indicator of E is:
Dgp = —36(6x — 12x3x, — 22 + 22273 + 522),
and the polynomial Hg of Theorem 2.7 is
Hg(t,t) = —36(5t1 + 126242 + 6t3).

This allows us to conclude that E is poised since for every z; < x3 < x3 the
polynomial Dg is strictly negative:

r1<r2<2z3 —> Dgp<0 =— Dg<0.

Given n and r, the computation of all poised matrices for n nodes and
degree r has been reduced to determining, for a normal incidence matrix F,
whether the polynomial Hg(1,t3,...,¢n—1) has no solutions with nonzero
coordinates. This is a problem that can be classified as a Quantifier Elimina-
tion Problem. What is required for every E, is whether or not the following
assertion holds:

Jt€eR, .-+, a1 €R HE(].,tg,...,t,._l)=0 and f3---t,-1 #0.



302 M.-J. Gonzalez-Lopez and L. Gonzalez-Vega,

Ezample 3.2. Let E be the following normal incidence matrix
1 0100
1 0000
E= 0 0100}’
01000

whose poisedness we want to determine. In this case, the polynomial to be
considered is the following one:

HEp(1,ty, t3) = 1+ 4t2 + 6t5 — 6t3 + 2t5 — 6125 — 4t.

The principal Sturm-Habicht coefficients of Hg(1,t2,%3) (i.e., the principal
Sylvester-Habicht coefficients of Hg(1,t2,t3) and 8Hg(1, 2, t3)/0t3) with re-
spect to {3 are:

SG = —'1’
SS = —'17
Sy=1+ t%,

Sy =1+ 3t + 3t3 + 13,

Sp = 2¢12 + 12630 + 28¢5 + 33¢5 + 21¢4 + 765 + 1,

Sy = 8t16 + 60¢3* + 180t12 + 284¢10 + 2645 + 152§ + 54t + 1142 + 1,

Sy = —32t3% — 320120 — 135218 — 3192¢16 — 4728¢14 — 4692t12 — 323210
—1564t5 — 52615 — 1183 — 162 — 1,

which, in this particular cz;se, have constant sign for every ¢; € R:
Se < 0, S5 <0, S4>0, Sg>0, 52>0, S > 0, So<0.

When the principal Sturm-Habicht coefficients do not vanish, the formula
giving the number of real roots of Hg(l,a,t3) for any a € R is equal
to the difference between the permanences and. variations of sign changes
in {~,—,+,+,+,+,—} (Recipe CRS;): for any @ € R the polynomial
Hg(1, o, t3) has two different real roots; this allows us to conclude that E is
not poised.

The situation where the signs of the principal Sturm-Habicht coefficients
are constant appears quite often but, in general, this is not the case, and so,
in order to determine the poisedness of a normal incidence matrix, we are
faced with the problem of determining the sign conditions satisfied by a list
of univariate polynomials (Recipe SI of Chapter 6). In the following exercise
we present a guided example of this fact.

Exercise 3.3. Consider the following normal incidence matrix:

0

0
1
E= 0
0

[= =Rl g
[= =Rl g

0
1 0
0 0]’
1 0



Project 2. The Birkhoff Interpolation Problem 303
whose poise-indicator is (once ¢; is replaced by 1):
Hg(1,ta,t3) = 8+ 612 + 6t — t§ — 3t5t2 — 3t2t3 — 5.

1. Compute the (six) principal Sturm-Habicht coefficients S;, 1 = 1,...,6,
of Hg(1,ts,t3) with respect to t3.

2. Deduce that, for t; # 0, the only interesting sign conditions are those
satisfied by the polynomials S; and Sy.

3. Using Recipe SI (which allows one to compute easily the nonempty
sign conditions satisfied by the real roots of an univariate polynomial
or a finite list of univariate polynomials), compute the nonempty sign
conditions satisfied by the polynomials S; and Sj.
Hint: It suffices to look first at the signs at infinity of S; and Sy and
then apply Recipe SI to the polynomial (S; - Sp)’ with the list {S1, So}.
Besides, recall that we are only interested in those sign conditions with
ta # 0.

4. Conclude that E is not poised.

4. Conclusions

A mixture of some basic algorithms used to deal with Quantifier Elimination
Problems allow to determine all the normal incidence matrices which are
poised for the following cases (see [2]):

o n =2 (and any degree; see the Pélya Condition above),
o r = 3 (and any number of nodes),
or=4andn=3or4,

or=5andn=3.

For example, to determine the 6454 poised matrices for degree 5 and 3
nodes, a check of all 18564 normal incidence matrices was needed. These
numbers give an idea of the amount of computation that was necessary to
solve the Birkhoff Interpolation Problem for these particular cases.

Another consequence of this computation was the generation of results
on the number of poised matrices for an arbitrary number of nodes and fixed
degree. In this context, if m, , denotes the number of poised matrices for
degree r and n nodes, then the proof of the following equalities can be found

= (3) 52
o (o))
e ()3 () )



304 M.-J. Gonzalez-Lopez and L. Gonzalez-Vega

One of the main applications of the Birkhoff Interpolation Schemes ap-
pears when reliably controlling the defect in the numerical solution of nonstiff
initial value problems by using Runge-Kutta schemes of any order (see for
example [3]).

References

1. B.D. Bojanov, H. A. Hakopian, and A.A. Sahakian (1993): Spline Functions
and Multivariate Interpolations. Series Mathematics and Its Applications 248,
Kluwer Academic Publishers.

2. L. Gonzalez-Vega (1996): Applying quantifier elimination to the Birkhoff inter-
polation problem. Journal of Symbolic Computation 22, 83-103.

3. D.J. Higham (1991): Runge-Kutta defect control using Hermite-Birkhoff inter-
polation. SIAM J. Sci. Stat. Comput. 12, 5, 991-999.

4. B.Sendov and A. Andreev (1994): Aprozimation and interpolation theory. Hand-
book of Numerical Analysis, Volume I1I, eds. P. G. Ciarlet and J.L. Lions, 229-
300, North-Holland.



Project 3. The Inverse Kinematics Problem
in Robotics

Maria-Jose Gonzalez-Lopez and Laureano Gonzalez-Vega

1. Introduction

One of the most basic (although not easy) problems in Robotics is the inverse
kinematics problem, i.e., the determination of the values for the internal pa-
rameters of a robot manipulator (parameters measured in the motor joints)
in order that a particular configuration (position and orientation) of the ma-
nipulator tip is reached.

In this project, by studying in detail two concrete examples, we show how
to use some of the techniques, introduced in Chapters 2 and 6, to deal with
the corresponding algebraic system of equations (real or complex solutions).

2. The ROMIN Manipulator

Let R be a robot manipulator located in R3 with three arms and three degrees
of freedom:

The three arms are always in the same vertical plane of R3; 8, is the angle
measured in the first arm (the base of the robot), which rotates with respect
to an axis (QoQ:) perpendicular to the ground. Every angle 6, determines
one vertical plane containing the line QpQ,, where the two last arms of the
robot are going to move. The angle 6; (respectively, f3) is measured from
the horizontal plane through Q; (respectively, Q2) to the second arm (re-
spectively, the third arm) in counter-clockwise direction. If P = (X,Y, 2) is



306 M.-J. Gonzalez-Lopez and L. Gonzalez-Vega

a point in R3 then the following system of equations (once Ly and L3 are
fixed):

X = —sin(#;)(Ly cos(fz) + Lz cos(83))

Y = cos(6y) (L2 cos(f2) + Lz cos(f3))

Z= Ly sin(02) + L3 sin(03)

has as solutions the values of the internal parameters (8, f2,83) such that the
extreme point of the robot reaches the point P (remark that the coordinates
(X,Y,Z) of P are considered in a coordinate system of R3 whose origin is in
@1). The translation of these equations to an algebraic system of equations
is made in the usual way:

X = —Sl(L262+L363) 0= S%-{-C% -1
Y= CI(L2C2 + Lgcg) 0= S% -+ C% —1 (T)
Z = Lysg+ L3sj 0=S§+C§—1

where s; = sin(#;) and ¢; = cos(6;).

The optimal solution for this problem, from the symbolic point of view,
is to solve the algebraic system of equations without giving concrete values
to the parameters Ly and L3 or to the coordinates of the point P. For the
particular case considered here, a full symbolic solution can be found by hand
via the Dynamic Evaluation Method, as described in [4] (see also [5]). The
initial system 7 is thus decomposed as a union of 3 systems of polynomial
inequalities (on the parameters) and equalities:

e X241 Y2 4+ 22+ L} - I3 d? ¥ X% 4 y?
(X2 4+Y2#0
dsi — —X Y=0 Y=0
1 Z#0 Z=0
do =Y SG4s2=1 I2-13=0
AL%(Z% + d2)s2 — AZLses, ¢ 7t S
2 o 2ZLysy = e ci+si=1
+e? —4d’L =0 2, 2 2. 2
2dLyco = —2Z L1280+ € @ts=1 G tsz=1
LS22Z L 22 L383=Z—L232 L383=—L232
383 = 4 — L282
\L Z—L \L =—L
| Lzcs = d — Lacs 3C3 2C2 3C3 2C2

Exercise 2.1. Prove that the union of the zeroset of each one of these three
systems agrees with the solutions of the system 7.

In general, this problem can also be treated by using Grébner Bases (see
[2]), but in this particular example such a method fails when the parameters
are specialized to concrete values (in general, the result after specialization
need not be a Grobner Basis). This problem can be avoided by using the
“Comprehensive Grobner Bases” (see [8]), which are more difficult to compute
than the usual Grébner Bases.



Project 3. The Inverse Kinematics Problem in Robotics 307

Any of these methods, including the Dynamic Evaluation one, produces
systems of equations equivalent to the given system in the complex case.
After this, the work remains of determining which are the real solutions,
or even more interesting, which are the sets of parameters for which there
exist real solutions. In the example we are considering, the equations in the
three systems are simple enough to allow easily derive the conditions on
the parameters assuring that the systems have real solutions: they can be
obtained by adding to every system the inequalities:

0<s3<1, 0<s2<1, 0<si<1,
which are translated into conditions on X, Y, Z, Ly, and L3 in every case.

Exercise 2.2. Deduce conditions on X, Y, Z, L, and L3 expressing that
each of the three previous systems has real solutions.

Exercise 2.3. From the union of the three systems, conclude that the set of
admissible points, i.e., the points P = (X, Y, Z) reachable for some configu-
ration (61,82,03) of the robot with lenghts Ly and Lg is

{(X,Y,2) e R¥ | (Ly — L3)? < X2 + Y2+ 7% < (L + L3)?}.

Although in the previous particular case a symbolic (and optimal solution)
was derived by using Dynamic Evaluation, in general this is not always the
case as shown in the next section.

3. The Elbow Manipulator

The elbow manipulator is depicted in the next‘ﬁgure:

Its equations are derived by using the classical matricial form, with the
Denavit-Hartenberg parameters specialized for this robot (see [3] and [6]).
With this convention we obtain the following twelve equations:



308 M.-J. Gonzalez-Lopez and L. Gonzalez-Vega

¢cgc 0 s O c; —S3 0 ¢ cs —s3 0 c3
s1T 0 —c; O | 52 c2 0 sg | s3 s 0 ss3
01 0 o0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1
cg 0 —s4 ¢4 cs 0 s5 O cg —s¢ 0 O
S84 0 C4 84 . 85 0 —Cs 0 . S¢ Ce 0 0 _
0O -1 0 o0 0 1 0 O 0 0 1 0f
0 0 0 1 0O 0 0 1 0 0 01
hir hiz hiz v
_ | har ka2 has w2
hs1 hiz haz vs
0 0 0 1
where:
o s; and ¢; represent the sine and cosine of the angle 6;, i =1,...,6, and

o the matrix (h;j,vi); ;, containing the parameters of this example, charac-
terizes the position and orientation of the manipulator tip.

We add to this initial system the usual equations relating sine and cosine
for every angle:

cA+s:-1=0 cd+si-1=0 2+s2—-1=0
E+si-1=0 A+s2-1=0 ct+s2-1=0

The use of Recipe VI (Chapter 2) and Recipes CRS;, CRS3 or CRSy,
(Chapter 6) allows us, for given values of the parameters (h; ;,v;); ;, to com-
pute, respectively, the number of different complex solutions and how many
of them are real. ‘

Exercise 3.1. Let O; (1 < ) be the matrices
1 00 001 010 1
01 0 8 101 001 1
- 05 =
O 00112) 0011 8 100 1
000 1 000 1 0001
2 1 2 71 3 6 2 1
3 3 3 9 T 7T T 9
-1 -2 2 2 2 -3 6 2
o=|T % % ¢ o= L &
3 3 3 9 T 7T 7T %
0 0 0 1 0 0 0 1

representing five different specializations of the parameters for the elbow ma-
nipulator (position and orientation of the manipulator tip). If ¢(O;) denotes
the number of complex solutions associated to O; and r(O;) the number of
real solutions, use your favourite Computer Algebra System and the recipes
VI, in Chapter 2, and CRSz, CRS3 and CRSq, in Chapter 6, to confirm the re-
sults in the following table:



Project 3. The Inverse Kinematics Problem in Robotics 309

O, |0, | O3 | 04| Os
)8 88838
@) 0 4488

The algorithms to be used in the previous exercise have been very ef-
ficiently implemented inside the European projects PoSSo (a Esprit/BRA
project) and FRISCO (a Esprit/LTR project). They can be contacted:

o by email at posso@posso.dm.unipi.it and
o through the web site http://extweb.nag.co.uk/projects/FRISCO,

respectively. Interactive demos and/or software implementations of all these
algorithms are available from the following web sites:

o http://janet.dm.unipi.it/posso_demo.html for PoSSo, and
o http://www.loria.fr/ rouillie/docrs/rs/rs.html for the FRISCO
RealSolving part.

The example we are considering in this section, the elbow manipulator,
is a particular case of the robot class known as 6R-robot manipulator. For
this class, by using elimination techniques, a polynomial of degree 16 can be
found whose solutions are the values of one of the six internal parameters
for the 6R (cf. [7] or [1]). For the particular case of the elbow manipulator,
in [6], a closed formula (involving only square roots) can be found giving
the six internal parameters in terms of the h;; and vg; these formulae have
been obtained by using ad hoc techniques. For a particular case, this closed
form solution does not provide any insight about the number of real solutions
before performing the substitution, and the computations showed before help
to avoid round-off errors.

References

1. J. Canny and D. Manocha (1994): Efficient inverse kinematics of general 6R
manipulators. IEEE Transactions on Robotics and Automation 10 (5), 648-657.

2. B.Buchberger (1988): Applications of Gréobner bases in non-linear computational
geometry. Trends in Computer Algebra. Lecture Notes in Computer Science 296,
52-80, Springer-Verlag, Berlin Heidelberg New York.

3. J. Denavit and R.S. Hartenberg (1955): A kinematic notation for lower-pair
mechanisms based on matrices. Journal of Applied Mechanics, 215-221.

4. D. Duval (1995): Ewvaluation dynamique et cléture algébrique. Journal of Pure
and Applied Algebra 99, 267-295.

5. M.-J. Gonzalez-Lopez and T. Recio (1993): The ROMIN inverse geometric model
and the Dynamic Evaluation method. Computer Algebra in Industry: Problem
Solving in Practice, 117-142, John Wiley and Sons, New York.

6. R.P. Paul (1981): Robot manipulators: Mathematics, Programming and Control.
The MIT Press Series in Artificial Intelligence.



310 M.-J. Gonzalez-Lopez and L. Gonzalez-Vega

7. M. Raghavan and B. Roth (1989): Kinematic analysis of the 6R manipulator
of general geometry. Proceedings of the International Symposium on Robotics
Research (Tokyo), 314-320.

8. V. Weispfenning (1992): Comprehensive Grébner Bases. Journal of Symbolic
Computation 14 (1), 1-30.



Project 4. Quaternion Algebras

Gébor Ivanyos and Lajos Rényai

1. Introduction

The exercises in this project intend to address the smallest nontrivial case
of the problem of finding zero divisors in noncommutative simple algebras.
For simplicity we restrict our attention to ground fields F with char F # 2.
First we outline (in Section 2) how to find a canonical presentation of a four
dimensional noncommutative simple algebra over the field F. In Section 3
we establish a link between the problem of computing zero divisors in these
algebras and a problem of arithmetical nature: assume that o, 3 € F are given
elements; find a nontrivial solution (z,y,2) € F* of the quadratic equation
ax? + By? — 22 = 0. This latter problem is likely to be difficult if F is the
field of rational numbers (see [2]). We shall use the notation of Chapter 5.
For a detailed exposition of quaternion algebras the reader is referred to [1]
and [3].

2. Four Dimensional Simple Algebras

Throughout this section we assume that A is a noncommutative semisimple
algebra, over F' such that dim . A = 4.

Exercise 2.1. Show that A is simple and C(A) = F1 4. (Hint: Use Wedder-
burn’s structure theorem.)

The next exercise demonstrates that the explicit isomorphism problem is
equivalent to finding a single zero divisor in A.

Exercise 2.2. Assume that we are given a zero divisor 0 # z € A. Suggest
an efficient algorithm for finding an explicit isomorphism A = My(F'). (Hint:
show that dim .42 = 2 and consider the action of A on the left ideal Az.)

Exercise 2.3. Assume that B < A is a commutative subfield of 4. Show
that dim pB < 2. (Hint: B acts on A by multiplication from the left. This
makes A a linear space over B.)

Exercise 2.4. Assume that B < 4 is a commutative subalgebra of A. Prove
that dim #B < 2. (Hint: We may assume that B is not semisimple, in partic-
ular A contains a zero divisor, therefore A & My(F).)



312 G.Ivanyos and L. Rényai

Exercise 2.5. Prove that for an arbitrary element u € A\ F14 the central-
izer C4(u) is the linear subspace of A generated by 14 and u.

Exercise 2.6. Show that for an arbitrary element u € A \ F14 there exists
a unique monic polynomial f(z) = % + ayx + ap € F[z] of degree 2 such
that f(u) = uv? + aju+apla = 0.

The polynomial f(z) in Exercise 2.6 is called the minimal polynomial of
u.

Exercise 2.7. Propose an efficient algorithm for finding an element u €
A\ F14 such that u? = al,4, where a € F is a nonzero scalar.

From now on u denotes an element from A \ F14 such that u? = aly,
where a is & nonzero scalar from F.

Exercise 2.8. Prove that the F-linear map ¢ : A — A given as ¢(v) =
uwv + vu is not bijective. (Hint: Show that im¢ C C4(u).)

Exercise 2.9. Propose an efficient algorithm for finding an element 0 # v €
A such that uv = —vu. (Hint: Preceding exercise.)

From now on we assume that we are also given an element v € A\ 0 such
that w = —vu.

Exercise 2.10. Show that there exists 8 € F such that v?2 = 31 4. (Hint:
Use Exercise 2.5 to prove that v? is in the subalgebra B generated by u. Show
that the assumption v2 € B\ F14 would contradict wv = —vu.)

Assume that v2 = B14, where 8 # 0. (The case v = 0 can be treated by
exercise 2.2.)

Exercise 2.11. Prove that the elements 1 4,u,v,uv form a basis of A. De—
termine the structure constants of A with respect to this basis.

3. Quaternion Algebras and Quadratic Forms

Let a, 3 be nonzero elements of F. Let H(a, 8) stand for the 4-dimensional F-
space generated by 1,u,v,w. We define (bilinear) multiplication on H(a, 3)
by letting 1 act as identity element and

wW=a v’=0 w=-vu=w.

Exercise 3.1. Show that this operation can be extended to an associative
multiplication. (Hint: It suffices to ensure associativity on basis elements.)



Project 4. Quaternion Algebras 313

We can write the matrices of the (left) regular representation of H(a, 3)
in terms of the basis 1,u,v,w as

0 1 1 0
a 0 0 -1

)

1
0 0 -8

0
a
0o 1
—a 0
—aﬂ 0

In the preceding section we gave an effective proof of the fact that ev-
ery four dimensional noncommutative simple algebra over F is of the form
H(e, ) for suitable scalars a, 8 € F. The next exercise demonstrates that
the converse also holds.

Exercise 3.2. Show that H(a,3) is simple and C(H(a,3)) = F1. (Hint:
Using the trace form of the regular representation prove that H(a, ) is
semisimple.)

For an element = ;1 + y,u + Vv + Yyw define the conjugate x* of =
as % =11 — YU — YV — YuW.

Exercise 3.3. Let z,y € H(a,3) and +,d € F. Show that
(i) (ye +dy)* = 2" +dy";

xzx* =zx*x € F1,

Exercise 3.4. Show that finding a zero divisor in H{a, 3) is equivalent to
finding a nontrivial solution (z), 2y, 2y, 2,) in F4 to the equation

22~ a2l - B2 +aBl =

Exercise 3.5. Show that finding a zero divisor in H (e, 3) is equivalent to
finding a nontrivial solution (z,y, 2) in F3 to the equation

ar?+ Byt -2 =0.

(Hint: Show that v11+v,u+v,v+Yww € H(a, B) is nilpotent iff v; = 0 and
0’7u+,3’7v—a,3’73,—0 Set = v/, y = 1u/B, and z = Yy.)



314 G. Ivanyos and L. Rényai

References

. R.S. Pierce (1982): Associative Algebras, Springer-Verlag, Berlin.

1. R.
2. L. Rényai (1988): Zero Divisors in Quaternion Algebras, Journal of Algorithms
9, 494-506.

3. W. Scharlau (1985): Quadratic and Hermitian Forms, Springer-Verlag, Berlin.



Project 5. Explorations with the
Icosahedral Group

Arjeh M. Cohen, Hans Cuypers, and Remko Riebeek

1. Introduction

In Project 6 we have encountered a way to construct groups via a permu-
tation representation. In the early seventies this has been one of the main
tools in constructing sporadic simple groups. However, the permutation rep-
resentations of the large sporadic simple groups like the so-called Monster
and Baby-Monster have too high degree to put them on a computer, see the
Atlas [1]. For these groups one has to use different methods. Many of these
large sporadic simple groups, including the Monster ( see [4]), have been con-
structed as a matrix group. In this project we will show by means of a small
example how one may proceed to construct a group as a matrix group.

The example we will work with is the Cozeter group W (Hs). This is the
group given by the following presentation:

(z,y,2 | 2%,4% 2%, (zy)?, (92)°, (z2)?).

Usually these relations are summarized by the Coxeter diagram of type Hs:

5

x Y z

A priori, the group W(H3) may be infinite, finite, or even trivial. In this
project we will determine the precise structure of W(H3). In Section 2 we
construct a three-dimensional real representation of W (Hj3) from which we
deduce that the group W (H3) has a quotient that is the automorphism group
of the icosahedron. Then, in Section 3, we perform coset enumeration to de-
termine the order and exact structure of the group W(H3). In particular, we
will show that W (Hj) is isomorphic to the automorphism group of the icosa-
hedron; for this reason the group is also referred to as the icosahedral group.
Finally, the permutation representation obtained from the coset enumeration
will be exploited to find several other linear representations of W(Hj3).

Although the group W(Hj) falls within the realm of Coxeter groups (see
for example [2]), we will not make use of the vast machinery developed for
such groups in this project. For representation theory in general, see [3].



316 A. M. Cohen, H. Cuypers, and R. Riebeek

2. Three-Dimensional Representations for W (Hj)

Consider W = (z,y,z | z2,42, 22, (zy)3, (v2)®, (z2)?), the Coxeter group
W (H3) of type Hs. We investigate the three-dimensional real linear represen-
tations of this group, i.e., the homomorphisms of W into the group GL3(R).

Exercise 2.1. Show that = and 2 commute, and that the elements z, y, 2
are conjugate in W.

Suppose ¢ : W — GL3(R) is a homomorphism. By V we denote the
vector space R3. We assume that W acts from the right on the vectors of V.

Exercise 2.2. Suppose ¢(z) = ¢(z). Prove that ¢(z) = #(y) = ¢(z) and
that there is a one-dimensional subspace of V invariant under ¢(W). In par-
ticular, the elements ¢(z), ¢(y) and @(z) either all induce scalar multiplica-
tion with —1 or are all trivial on this subspace.

From now on we assume that x and z are mapped to distinct elements
in GL3(R). In particular, the elements z, y, 2 are mapped to non-identity
matrices!

Exercise 2.3. Use ¢(z)? = id to show that V = ker (¢(z) — id) @ ker (¢(z) +
id). Then show that, without loss of generality, we may assume that we are
in one of the following cases:

-1 0 0 1 0 0
M ez)=] 0 1 0flandegp(z)=|0 1 0 |,or
0 01 0 0 —-1
-1 0 O 1
) ¢z)=| 0 —1 0] and ¢(z 0 —1
0 0 1 0

Exercise 2.4. Show that for every representation ¢, there is also a repre-
sentation ¥ of W with ¢(u) = —¢(u) for u € {z,y, 2}

The above exercise indicates that to find all representations we only have
to consider representations ¢ as in I and multiply them with —1 to obtain
those of case I1. Let us do so.

It remains to find the matrix (yi ;)1<:,j<3 representing ¢(y). The matrices
for ¢(z) and ¢(2) as in case I above can be chosen by fixing a basis of common
eigenvectors of ¢(x) and ¢(z). But there is still some freedom in this choice:
without loss of generality we can replace the matrix (y;,;)1<i ;<3 for ¢(y)
with a conjugate of (y;;)1<i,j<3 by an invertible diagonal matrix

A 00
0 u O
0 0 p



Project 5. Explorations with the Icosahedral Group 317

Exercise 2.5. Prove that (after conjugation) we can assume that y; ; is ei-
ther 0 or equal to +y; ;. If we allow complex A, p, and p, then even y; ; = yj,.
Moreover, we can assume that y; ; > 0 for ¢ < j.

Exercise 2.6. The trace of ¢(y) equals 1. Why? This gives us the following
equation:
Y11 +Yy2,2+ys3=1

What is the order of ¢(zy)? What are the complex eigenvalues of ¢(zy)?
Prove that the trace of ¢(xy) equals 0 and give the resulting equation.
Combine these equations to obtain that y, ; = —1/2.

Exercise 2.7. Set up equations for the entries y; ; corresponding to the other
information available for ¢(y):

L ¢(y)? =1,
2. ¢(z)p(y)o(z) = d(y)p(x)d(y),
3. ¢(v)d(2)d(v)P(2)B(y) = d(2)p(y) P(2)P(y)B(2)-

Perform a Grobner basis computation and solve the system of equations
(and inequalities) for the parameters y; ; obtained so far.
Check that this computation leads to 2 possible solutions for the matrix

B(y)-

Exercise 2.8. Prove that the two representations we have found in the pre-
vious exercises are really distinct, i.e., there is no element g € GL(R3) con-
jugating one representation to the other. (Hint: consider the trace of ¢(yz).)

Exercise 2.9. What group do &(z) and ¢(y) generate? What is its order?
Same questions for the group generated by ¢(y) together with ¢(z2).

Fix a linear representation ¢ of type I as found above. The elements ¢(z),
#(y) and ¢(z) are reflections on R3. Let v be a nontrivial vector in R in the
intersection of the two reflection hyperplanes for ¢(y) and ¢(z). Consider the
orbit Z of v under the group ¢(W).

Exercise 2.10. Show that 7 contains 12 vectors forming the vertices of an
icosahedron.

Check that ¢(W) is contained in the automorphism group of this icosa-
hedron.

Prove that ¢(W) is actually the full automorphism group of this icosahe-
dron. (Here you might use the same methods as in Sections 2 and 3 of Project
6.)

Exercise 2.11. A linear representation of a group G into GL(V) is called
irreducible if V' contains no nontrivial proper G-invariant subspace.
Show that ¢ is irreducible.



318 A.M. Cohen, H. Cuypers, and R. Riebeek

3. Coset Enumeration

In this section we concentrate on the order of the group W = W (Hj). For this
purpose we use the Todd-Coxeter coset enumeration algorithm (see Chap-
ter 8). Therefore we have to fix a subgroup H of W with respect to which
we do the coset enumeration. There are two obvious candidates for H: the
group D = {z,y), which is a quotient of the dihedral group of order 6 and the
group I = (y, z), which is a quotient group of the dihedral group of order 10.

Exercise 3.1. Use the results of the above section to conclude that the group
D is isomorphic to a dihedral group of order 6, and that I is isomorphic to a
dihedral group of order 10.

We use GAP [5] to do the coset enumerations with respect to the subgroups
I and D of W and to construct the permutation representations of W on the
resulting cosets.

:=AbstractGenerator ("x");
:=AbstractGenerator("y");
:=AbstractGenerator("z");
:=Group(x,y,z);
.relators:=[x"2,y"2,z"2, (x*z) "2, (x*y) "3, (y*z) "5] ;
:=Subgroup (W, [y,z]);
Iperm:=0perationCosetsFpGroup(W,I);

# Permutation action on the cosets of I
D:=Subgroup (W, [x,y1);
Dperm:=0OperationCosetsFpGroup(W,D);

# Permutation action on the cosets of D

H = £ N~ M

Exercise 3.2. Perform the coset enumeration and deduce from this the order
of W.

Exercise 3.3. Show that both the cyclic group Zs of order 2 and the alter-
nating group As are quotients of W, and conclude that W ~ Zy x As.

4. The Permutation Representation of W
on the Cosets of I

Let W be as in the previous section and censider the permutation action of W
on the 12 cosets of I = (y, z). As we have seen in 2.10, these 12 cosets can be
viewed as the vertices of an icosahedron. We will construct this icosahedron.

Let P be the set of 12 cosets of I in W. This set P will be the point
set of a graph isomorphic to the icosahedron. The group W acts naturally
on the set P x P, by (a,8)w = (aw, fw) for all w € W. The orbitals of W



Project 5. Explorations with the Icosahedral Group 319

acting on P are the orbits of W acting on P x P in this way. The directed
graph associated to an orbital has as vertices the points of P and as edges
the ordered pairs in the orbital. If, for each edge (a, 3) of this graph, also the
reversed pair (3, ) is an edge, we consider the undirected graph with edges
{a, 3} where («, 8) is in the orbital.

Exercise 4.1. Show that W has four orbitals on the cosets of I, of size 12,
12, 60, and 60, respectively.

Consider the graph belonging to one of the orbitals of size 60. Draw
the (undirected) graph and verify that it is isomorphic to the graph of the
icosahedron.

In GAP we can use:

pairs:=Tuples([1..12], 2);
Orbits(Iperm, pairs, OnPairs);

#load the package GRAPE for working with graphs
RequirePackage ("grape") ;

#We construct the graph with edge set the orbital of (1,2).

gamma:=EdgeOrbitsGraph(Iperm, [1,2], 12);

We can turn the permutation representation of W on the 12 (right) cosets
of I into a linear representation: identifying the 12 cosets (denoted by 1 up
to 12) with 12 basis elements of a 12-dimensional (real) vector space, say
V = {e1,...,e12), the action of an element of W on V is given by linear
extension of the permutation action on the 12 basis vectors. This yields a
12-dimensional linear real representation of W. In GAP this representation is
constructed as follows (at the moment we just define V' over the rationals):

vv:=[1;

for i im [1..12] do VV[il:=[]; od;

for i in [1..12] do for j im [1..12] do VV[il[jl:=0; od; od;
for i in [1..12] do VV[i][i]l:=1; od;

V:=RowSpace (Rationals,VV);

# Now we define the matrices of x, y and z on V.
Rimat:=[];R2mat:=[];R3mat:=[];
for i in [1..12] do

Rimat[i]:=[]1; R2mat[i]:=[]; R3mat[i]:=[];
od;
for {1 in [1..12] do

for j in [1..12] do

Rimat[1][j]:=0; R2mat[i][3]:=0; R3mat[i] [j]:=0;



320 A.M. Cohen, H. Cuypers, and R. Riebeek

od;
od;
for i in [1..12] do
Rimat[i] [i“Iperm.generators[1]]:=1;
R2mat [i] [i“Iperm.generators[2]]:=1;
R3mat[i] [i“Iperm.generators[3]]:=1;
od;
Wmat : =Group (Rimat,R2mat ,R3mat);

In the sequel we will show that the 3-dimensional real representation of
Section 2, in which there is a natural representation of the icosahedron, is a
quotient of V. To find this quotient we first have to find W invariant subspaces
of V.

In the natural 3-dimensional representation of W, each vertex v of the
icosahedron has an opposite vertex —v. This observation leads us to the
following invariant subspace: The twelve points in P can be divided into six
pairs {¢,7(2)}, such that ¢ and 7(i) are at maximal distance in the graph of
the icosahedron. Let U = (e; + e;(;) | ¢ = 1,...,6). The construction of U
can be carried out in GAP as follows:

Blocks(Iperm, [1..12]);

# The pairs of opposite vertices in the icosahedron

# are of the form {i,13-i} in our example

# and for U we find:

U:=Subspace(v,[[1,0,0,0,0,0,0,0,0,0,0,1],
{0,1,0,0,0,0,0,0,0,0,1,0]1,
{0,0,1,0,0,0,0,0,0,1,0,01,
[o,0,0,1,0,0,0,0,1,0,0,01,
{o0,0,0,0,1,0,0,1,0,0,0,0],
{0,0,0,0,0,1,1,0,0,0,0,011);

K:=V/U;

Exercise 4.2, Check that U is a W-invariant subspace of V of dimension 6.

Find a one-dimensional subspace, say .J, in U that is also W-invariant. It is
possible to show that the quotient space U/J is an irreducible representation
of W of degree (= dimension of the space) five.

Since U is a W-invariant subspace of V, the group W also acts as a linear
group on the 6-dimensional quotient space V/U.

To obtain the natural module for the icosahedral group we have to find a
second W-invariant subspace of V' containing U and of dimension 9. To do
so we use another relation between the points of the icosahedron.



Project 5. Explorations with the Icosahedral Group 321

Exercise 4.3. Let v be a vertex of the icosahedron in its natural 3-dimen-
sional representation. Let v;, 1 = 1,...,5 be the five neighbouring vertices of
v. Then there is an o € R such that

5
av = E v;.
i=1

Determine a.

Suppose for each ¢ € {1,...,12} the 5 neighbours of j are equal to j(¢),
i =1,...5 Let X = (ae; — 35 ,e;i | 5 € {1,...,12}). Then X is a
W-invariant subspace of V. What is its dimension?

Use X to construct a 3-dimensional quotient of V' in which the icosahedron
7 is naturally embedded.

All this means that till now we have constructed irreducible representa-
tions of degrees 1 (see 2.2) 3, 3, and 5. Since our group W is isomorphic to
Z4 x Ag, we also have constructed such representations for the subgroup As
of W. Actually, we have not explicitly shown that these representations are
irreducible, but that can be easily checked, even if we restrict them to the
subgroup As of W.

We call two linear representations of a group G equivalent if one can be
obtained from the other by conjugation with an invertible linear transforma-
tion. Representation theory, see [3], tells us that the group G has as many
inequivalent complex linear representations as the number of its conjugacy
classes of elements. Moreover, if these inequivalent irreducible representations
are of degree d;, where i = 1,...,k (the number of conjugacy classes of G),

then
k
D dZ =G|
i=1

Now Ajs has order 60 and contains five distinct conjugacy classes. So,
since 60 —1 — 9 — 9 — 25 = 16, we only need to construct an irreducible four-
dimensional representation of As and, up to equivalence, our list of irreducible
linear representations for As is complete.

Exercise 4.4. The group As acts naturally as a permutation group on 5
elements. Construct a 5-dimensional real vector space Y and a linear repre-
sentation of As on Y using this permutation action.

Find a 4-dimensional quotient space of Y on which Aj acts irreducibly.

Exercise 4.5. Determine, up to equivalence, all irreducible representations
of the group W.

Exercise 4.8. Construct the natural representation in 3-dimensional real
space of the dodecahedron, starting with the permutation action of W on
the 20 right cosets of D.



322 A.M. Cohen, H. Cuypers, and R. Riebeek

References

1. J.H. Conway, R. T. Curtis, S.P. Norton, R. A. Parker, and R. A. Wilson (1985):
ATLAS of Finite Groups, Clarendon Press, Oxford.

2. J.E. Humphreys (1990): Reflection Groups and Cozeter Groups, Cambridge
Studies in Advanced Mathematics 29, Cambridge University Press.

3. W. Fulton and J. Harris (1991): Representation Theory: a First Course, Grad-
uate Texts in Mathematics 129, Springer-Verlag, New York Berlin Heidelberg.

4. R.L. Griess: The Friendly Giant, Inventiones Math. 69 (1982), 1-102.

5. M. Schonert et al. (1994): GAP — Groups, Algorithms and Programming, version
3, release 4, Lehrstuhl D fiir Mathematik, RWTH Aachen.



Project 6. The Small Mathieu Groups

Hans Cuypers, Leonard H. Soicher, and Hans Sterk

1. Introduction

In this project we use the tools and techniques from Chapter 8 to construct
the small Mathieu groups Mg, M;1 and M;2. These groups were discovered
by the French mathematician Emile Mathieu (1835-1890), who also discov-
ered the large Mathieu groups Maa, M2z and Mas. See [9, 10, 11]. They
are remarkable groups: for example, apart from the symmetric and alternat-
ing groups, M2 and My, are the only 5-transitive permutation groups. The
group M) has a normal subgroup of index 2 isomorphic to Ag. The other five
groups are among the 26 sporadic simple groups, occurring in the classifica-
tion of finite simple groups. After Mathieu's discovery of these five sporadic
simple groups it took almost a century before the sixth sporadic simple group
was found.

In fact, many of the algorithms discussed in Chapter 8, and more sophis-
ticated versions of these algorithms, were developed by C. Sims and others
in the late sixties and early seventies as part of the construction and study of
various sporadic simple groups. For example, one of these 26 sporadic groups,
the so-called O'Nan group, was constructed by Sims as a permutation group
on 122760 points by giving a generating set of permutations in Sjzg760. Al-
gorithms like those of Chapter 8 helped Sims to identify the group generated
by these permutations as the O’'Nan group. A more recent construction of
the O’'Nan group, using coset enumeration, is given in [17].

In this project we want to give the reader some of the flavour of how
one may construct a group. For this purpose we consider the small Mathieu
groups. There are several ways to describe the Mathieu groups. They ap-
pear for instance as automorphism groups of the Golay codes, see Project 7.
In this chapter we will find generating permutations for the small Mathieu
groups with the help of design theory (following Liineburg [8]). Moreover we
investigate the 2-transitive subgroups of M;2 and some related graphs and
designs. Finally, we classify some graphs, and in the process find a presenta-
tion by generators and relators for the automorphism group M;js:2 of M;a.
This graph classification and presentation are previously unpublished results
of the second author. In this project we use the algorithms discussed in 8. For
the convenience of the reader we have added GAP-code (see [15]) to perform
these computations.

We use ATLAS notation [2] for group structures. Thus L;(11) is the
simple group PSL3(11), n denotes the cyclic group of that order, and, if p



324 H. Cuypers, L, H. Soicher, and H. Sterk

is prime, p" denotes the elementary abelian group of that order. A group (of
shape) A.B is an arbitrary extension of A by B (A4 is a normal subgroup of
A.B and the quotient by A is isomorphic to B), A: B is a split extension, and
A’ B is a non-split extension.

We remark that much useful information on the Mathieu groups is con-
tained in [4, Chapter 11]. Further information on many of the permutation
representations described in this chapter can be found in [14].

2. The Afﬁne Plane of Order 3

A design A = (P, B) is a set P of points together with a collection B of
subsets of P, called blocks. A design is called a t-(v, k, A) design if it contains
exactly v points, if each block contains exactly k& points, and if any set of ¢
points is contained in exactly A blocks.

The automorphism group Aut(A) of a design A is the subgroup of the
symmetric group Sym(P) of the point set consisting of those permutations
that map blocks to blocks.

2.1. The Affine Plane of Order 3. In this subsection we discuss 2-(9,3,1)
designs. An example of such a design is the following: as points we take the
vectors of the vector space GF(3)?, where GF(3) denotes the field with 3
elements. The blocks (sometimes also called lines) are the triples of points
contained in a coset of a 1-dimensional subspace. Indeed, there are 9 points
in the design; any block consists of 3 points and any pair of points is in a
unique coset of a 1-dimensional subspace.

It is not hard to show that this is, up to isomorphism, the only 2-(9, 3, 1)
design. For this reason, the design is also called the affine plane of order 3.

Let us denote this unique design by O. It is displayed in Figure 2.2. Its
points and lines are encoded as follows:

points

0,0) | 1 lines

(ivg) g T 2 3[1 6 8
(“(0’ 1% : T 5 91 4 7

01 | 5 2 6 712 4 9
18 e 2 5 83 4 8
0.21) | 7 3 5 73 6 0
01| 8 2 5 6[7 8 9

(-1,-1) | 9

2.2. Of course, the automorphism group of the design contains the group of
translations, a group of order 9. The stabilizer of (0,0) contains the group
GLy(3). In particular, the automorphism group of the design contains a group
isomorphic to the split extension 32: GL3(3). The order of this group is 32 -
48 = 432.



Project 6. The Small Mathieu Groups 325

1 2 3

7 8

Fig. 2.1. The affine plane of order 3.

As indicated above, we will consider the automorphism group of © as a
subgroup of the permutation group on the set P of points. With the labeling
given in Figure 2.2 this means it is a subgroup of Sg.

An easy check shows that the following permutations are contained in
H := Aut(8):

a= (1,2,3)4,5,6)(7,8,9), a translation
b= (1,4,7)(2,5,8)(3,6,9), a translation
c= (2,9,3,5)(4,6,7,8),

d= (2,7,3,4)(5,8,9,6),

e= (57)(4,916,8),

f= (47 7) (51 8) (61 9)

Exercise 2.3. 1. Prove that [1,2,4] is a base for the full automorphism
group of ©, and use this to show that this automorphism group has
order 9 - 8.6 = 432.

2. Show that the set {a,b,c,d,e, f} is a strong generating set for H with

respect to the base [1,2, 4].

Prove that H is the full automorphism group of the affine plane 6.

4. Show that H is 2-transitive on the points of 6, but not 3-transitive.

bl

The subgroup G := {a,b,c,d) of H is also 2-transitive on the points of 6.
It is a normal subgroup of H of order 72. This is easily checked in GAP:

a:=(1,2,3)(4,5,6)(7,8,9); b:=(1,4,7)(2,5,8)(3,6,9);
c:=(2,9,3,5)(4,6,7,8); d:=(2,7,3,4)(5,8,9,6);
e:=(5,7)(4,9)(6,8); £:=(4,7)(5,8)(6,9);

H:=Group(a,b,c,d,e,f);
Print("H has size ", Size(H), "\n");
G:=Subgroup(H, [a,b,c,d]);
Orbs:=0rbits (G, [1..91);
if Size(Orbs)=1
then Print("G is transitive", "\m");
Gi:=Stabiliszer(G,1);



326 H. Cuypers, L. H. Soicher, and H. Sterk

Orbsl:=0rbits(Gi,[2..91);
if Size(Orbsi)=1
then Print("G is 2-transitive”,"\n");
else Print("G is not 2-transitive","\n");
fi;
else Print("G is not transitive","\n");
fi;

Print ("G has size ",Size(G),"\n");
Print("G is normal in H is ", IsNormal(H,G),"\n");

3. A 3-(10,4,1) Design and the Mathieu Group M,

In this section we will construct a 3-(10,4,1) design — together with an au-
tomorphism group acting 3-transitively on the 10 points — as an extension of
the 2-(9,3,1) design O.

3.1. © as a Residue. Suppose A = (P, B) is a 3-(10, 4, 1) design. Then the
number of blocks in B equals 10-9 - 8/(4- 3. 2) = 30. Moreover, each point
is on 12 blocks. Fix some point p of A, and consider the residue A, of A at
the point p, where

Ap = (P\{p}, Bp={b\{p}| b€ B and contains p}).

Then A, is a 2-(9,3,1) design, and hence isomorphic to the affine plane &
discussed above. To be specific, take p = 10 and identify Ay with this affine
plane. The 12 blocks of A on p = 10 are then the sets {10} Ub where b is a
block of 6.

Next we want to show how to reconstruct A from the design 6. For that
purpose we still have to determine the remaining 30 — 12 = 18 blocks.

3.2. 4-Arcs. A block of A not containing 10 consists of 4 points of © meeting
any block of © in at most 2 points. Any set of 4 points of © with this property
is called a 4-arc. The number of 4-arcs in € is equal to 54 = 9-8-6-3/(4-3-2-1).

By using the orbit-algorithm we can easily check that H is transitive on
the set of 4-arcs of ©. However, under the action of the smaller group G this
orbit splits into 3 orbits of size 18.

Arcs:=0rbit(H,[1,2,4,5],0nSets);
if Length(Arcs)=54

then Print("The arcs are in one H-orbit of length 54\n");
fi;

G_Arcs_orbits:=0rbits(G,Arcs,0OnSets);

Print ("This orbit splits in ", Length(G_Arcs_orbits),
" orbits of length " );

for orbit im G_Arcs_orbits



Project 6. The Small Mathieu Groups 327

do Print(Length(orbit), " resp. ");
od;
Print("\n");

3.3. A 3-Design and Its Automorphism Group. Let A be the following
design: the point set is {1,...,10}; the blocks of A are the 12 sets {10} U b,
where b is a block of 6, and the eighteen 4-arcs in the G-orbit of {1,2,4,5}.
We check that A is a 3-(10,4,1) design.

10 2 3

7 6

Fig. 3.1. The affine plane 4,.

Fix the point 1 and consider the residue A;. The 9 points and 12 blocks
form a 2-(9,3,1) design isomorphic to 6, see Figure 3.3. The automorphism
group of A; contains the translation

g9=1(10,2,3)(4,9,8)(7,6,5).

It is easily checked, for example with GAP, that the block set of A is invariant
under g, so g € Aut(A).

Let My be the subgroup of S;p generated by G and the element g. Then
My is transitive on the 10 points of A. Hence at each point p of A the
residual design is an affine plane. But then A itself is indeed a 3-(10,4,1)
design.

An order computation yields that |Mjo] =10-9-8 = 720:

g:=(10,2,3) (4,9,8)(7,6,5);
m10:=Group(a,b,c,d,g);
Print("m10 has size ",Size(m10),"\n");

Thus the point stabilizer of 10 in Mo has order 72. Since |G| = 72 and
since G is contained in the point stabilizer of 10, we conclude that these two
groups coincide. In particular, as G is 2-transitive on {1,...,9}, the group
M, is 3-transitive on {1,...,10}; in particular, it is transitive on the 30
blocks. It is called the Mathieu group of degree 10.

Exercise 3.4. 1. Find a base and strong generating set for M)g.



328 H. Cuypers, L. H. Soicher, and H. Sterk

2. Show that Mg has index 2 in the full automorphism group of A.

The design A is, up to isomorphism, the unique 3-(10, 4, 1) design, as can
be proven easily. See [6].

4. The Groups M;; and M,

The preceding procedure gives us three ways, corresponding to the three
choices for the G-orbit on the 4-arcs of ©, to complete the design © to a 3-
(10,4,1) design A. As stated above all three ways lead to isomorphic designs;
here it follows directly from the fact that H normalizes G and permutes the
3 choices of 18 blocks. However, it also shows how we may proceed to extend
A toa4-(11,5,1) design and even to a 5-(12,6,1) design. We will construct
a 4-(11,5,1) design and a 5-(12,6,1) design with the help of a 4- and a
5-transitive group.

4.1. The Groups. Let O, = {1,2,4,5}¢, 02 = {1,2,4,8}C and O3 =
{1,2,4,6}€ be the three orbits of G on the 4-arcs of 6. For i = 1,2, 3, extend
O to a design A* with point set {1,...,9} U{9+ i}, and with blocks the sets
buU{9+1i} (where b runs through the blocks of ©) and the sets in O;. Then
both A% and A3 are 3-(10,4,1) designs just as Al = A,

As before we can prove that go = (11,2,3)(4,6,9)(7,5,8) and g3 =
(12,2,3)(4,8,5)(7,9,6) are automorphisms of A2 and A3, respectively.

Exercise 4.2. Draw the two affine planes A? and A3 and check that g, and
g3 induce translations on these planes.

Consider the groups My = (Mg, 92) and M2 = (Mi1,93). Since gg
moves 11 and g3 moves 12, these groups are transitive on {1,...,11} and
{1,...,12}, respectively.

Order calculations reveal that

|Myy|=11-|Mp| =11-10-9 -8 = 7920,

and
|Mip| =12 | M| =12-11-.10-9- 8 = 95040,

Thus, as Mg is 3-transitive, M;, is 4-transitive and M,, 5-transitive. The
groups M;; and M, are called the Mathieu groups of degrees 11 and 12,
respectively.

For later use we define these groups in GAP:

g2:=(11,2,3) (4,6,9)(7,5,8) ; g3:=(12,2,3)(4,8,5)(7,9,6);
mil:=Group(a,b,c,d,g,g2); ml2:=Group(a,b,c,d,g,g2,83);



Project 6. The Small Mathieu Groups 329

4.3. The Designs. With the groups M;; and M;, at hand we construct a
4-(11,5,1) and a 5-(12,6,1) design as follows. As point set we take the sets
{1,...,11} and {1,..., 12}, respectively. The set of blocks of the 11-design is
the Mj;-orbit of {10,11,1,2,3}. For the 12-design we take as block set the
M, ;-orbit of {10,11,12,1,2,3}.

Exercise 4.4. 1. Prove that the designs constructed above are indeed 4-
(11,5,1) and 5-(12,6,1) designs with automorphism groups Mi;, M2,
respectively.

2. Prove that there does not exist a 6-(13,7,1) design by counting the number
of blocks.

3. Use this to show that there is no 6-transitive group on 13 elements with
point stabilizer isomorphic to M.

Remark 4.5. The above construction of the small Mathieu groups also reveals
a uniqueness proof of the 2 +4-(9 + ¢,3 + ¢,1) designs admitting a (2 + 7)-
transitive automorphism group.

5. Two 2-Transitive Subgroups of M,

In this section we are interested in highly transitive subgroups of the auto-
morphism groups of the 5-(12,6,1) design I'. In particular, we determine the
2-transitive subgroups G of M;; acting on the 12 points of I.

Exercise 5.1. Let G be a subgroup of S;3. Prove that G acts 2-transitively
on {1,...,12} if and only if it contains (at least) two elements of order 11
with distinct support.

The above exercise will be our starting point for the classification of all
2-transitive subgroups of My5. We first fix the element

s=1(2,8,12,6,4,7,11,10,9, 3, 5)

of order 11 in M;2, and denote by S the Sylow subgroup of order 11 in M,
generated by s. By N we denote the normalizer of S in M.

Exercise 5.2, Check that the element s is indeed an element of M,.
Determine 1) generators for N, 2) the order of N and 3) its structure.

s:=(2,8,12,6,4,7,11,10,9,3,5);

Print("s is an element of mi12 ? ", s in m12,"\n");
S:=Subgroup(m12, [s1);

N:=Normalizer (mi12,S);

Print(N);

Print(" N has size ", Size(N), "\n");

Exercise 5.3. Use Sylow's Theorem to show that any 2-transitive subgroup
of My, contains a conjugate of (S, S9), where g runs through a set of repre-
sentatives for double cosets in {NgN | g € My13}. -



330 H. Cuypers, L. H. Soicher, and H. Sterk

In the following GAP-code we determine the proper 2-transitive subgroups
G of M, of the form (s, s9) (where s9 denotes g~'sg), where g runs through
a set of representatives for the double cosets in {NgN | g € M2}

Twotrans:=[]; # list of proper 2-transitive subgroups found so far
D:=DoubleCosets (m12,N,N);
for i in [1..Length(D)]
do g:=Representative(D[il);
G:=Subgroupmi2, [s,s"gl);
if 1°g <> 1 and Size(G) <> 95040 and not (G in Twotrans)
then Add(Twotrans,G);
Print(G,"\n", " G has size ", Size(G),"\n");
fi;
od;

Exercise 5.4. Run the above program to show that there are only two
proper 2-transitive subgroups G of M, of the form (s, s9). One has order
7920, the other order 660.

5.5. 2-Transitive Subgroups of Order 7920. Suppose G is a 2-transitive
proper subgroup of M, of order 7920 obtained by running the above pro-
gram. Then G has the same order as M;;. This is not a coincidence. We will
see that the groups G and M, are isomorphic. To this end we will construct
a 4-transitive permutation representation on 11 points. But first we consider
the action of G on the design I'.

Exercise 5.6. Use GAP to check the following assertions:

1. The group G is 3-transitive on the points of I'.
2. G has an orbit of length 22 on the blocks.

Let B denote a G-orbit of length 22 on the set of blocks. Since G is 3-
transitive on the 12 points of I', every triple of points is in a constant number
A of blocks in B. An easy counting argument shows that A = 2, and we have
found that (P, B) is a 3-(12,6,2) design.

For each block b € B, its complement & = {1,...,12} \ b is also a block
in B. The group G acts on the 11 pairs of complementary blocks of B.

Exercise 5.7. Show that GG induces a 4-transitive action on the 11 comple-
mentary block pairs of B. Use this to prove that G is indeed the automorphism
group of a 4-(11,5,1) design and conclude that it is isomorphic to My;.

Exercise 5.8. If we fix the point 12 of the design (P, B), and consider the
residue of the design at that point, we obtain a 2-(11,5,2) design. Such a
design is unique, see [6], and is called the biplane of order 11. Show that the
full automorphism group of the biplane is isomorphic to the group Ly(11)(=
PSLy(11)) as described in Example 3.8 of Chapter 8. Check that the element
d from Example 3.8 of Chapter 8 interchanges the points and blocks of the
biplane.



Project 6. The Small Mathieu Groups 331

Exercise 5.9. Use the permutation action of M5 on the 12 cosets of G to
find that G is a 4-transitive group on 11 points. (This also reveals that G is
isomorphic to M;;.)

5.10. 2-Transitive Subgroups of Order 660. One of the 2-transitive sub-
groups we have found in 5.4 is of order 660, which we now denote by H. We
also encountered another group of order 660, namely the automorphism group
of the biplane. Again, this is not a coincidence as will be shown in the se-
quel. For that purpose we consider the action of M;2 on the 144 cosets of the
subgroup H. A computation shows that H has two orbits of size 11 on the
cosets in H \ M. Denote one of these two orbits by P and the other by B.

H:=Filtered(Twotrans,x->Size (x)=660) [1];

# now H is the 2-tramsitive subgroup of order 660.
M12:=0peration(mi2,Cosets(m12,H) ,OnRight);

HH:=Stabilizer (M12,1);

Print("The orbits on [1..144] of the stabilizer HH of 1 are:\n",
Orbits(HH, [1..144]1),"\a");

Print ("HH has size ",Size(HH),"\n");

Moreover, H is 2-transitive on P and on B. If we fix an element b in B,
then the stabilizer in H of b has two orbits on P, one of length 5 and one of
length 6. In this way we can associate to each b € B a subset P, of size 5 in
P. Denote by Pg the set of all eleven P;.

Exercise 5.11. Check that (P, Pg) is a biplane of order 11 with automor-
phism group H.

Exercise 5.12. Conclude from the above computations that any proper 2-
transitive subgroup of M3 is either isomorphic to M;; or to La(11).

5.13. A Graph on Cosets. As we have seen before in 5.8, the group L2(11)
admits an outer automorphism switching the points and blocks of the biplane.
This automorphism can be extended to an outer automorphism of the group
M, switching the two classes of subgroups isomorphic to M;; we have en-
countered (point stabilizers in M, and 2-transitive subgroups of order 7920).
This automorphism can be found in the following way. On the 144 points of
the permutation action of G = M;2 on the cosets of the group H ~ L,(11)
we define a graph structure I' by calling two points £ and y adjacent if and
only if y is in one of the two orbits of size 11 under the action of the stabilizer
G, of £ in G. If we fix a vertex x of I', then the 22 vertices adjacent to =
can be identified with the points and blocks of the biplane .of order 11. In
fact, the subgraph induced on these 22 points is the incidence graph of the
biplane. (Check this with the help of 5.11!) The automorphism group of this
incidence graph of the biplane is the group L2(11):2 and the group Mjs: 2
can be found as the automorphism group of the whole graph on 144 points.

In the GAP code below we us the GRAPE [19] share library package to
construct the graph I', determine its automorphism group, check that I is



332 H. Cuypers, L. H. Soicher, and H. Sterk

connected, and study the induced subgraph on the neighbours of a vertex.
The GRAPE package is used for computing with graphs and groups, and uses
B. McKay's nauty [12] package for computing the automorphism group of
a graph. More information on GRAPE functions can be found in the GAP
manual.

RequirePackage("grape");

F:=Filtered(Orbits(HH, [1..144]) ,x->Length(x)=11);

# Now F[1][1] and F[2][1] are representatives of the two HH-orbits

# of length 11.

gamma: =EdgeOrbitsGraph(M12, [[1,F[1] [1]1],[1, F[2][1]]]),

AutM12:=AutGroupGraph(gamma) ;

Print ("AutM12 has size ",Size(AutM12),"\n");

Print("gamma is connected is ",IsConnectedGraph (gamma),"\n");

delta:=DistanceSetInduced(gamma, [1], [1]);

# now delta is the induced subraph on the neighbours of

# the vertex 1.

Print("delta has order ",OrderGraph(delta),

" and vertex-degree set ",VertexDegrees(delta),"\n");
Print("delta has (global) parameters ",
GlobalParameters(delta),"\n");

6. Graphs Which Are Locally the Incidence Graph
of the Biplane

Coset enumeration has many and varied applications in both group theory
and geometry. For example, it has been used by many to study and construct
group presentations (see [7, 16, 3]), to construct and characterize certain
groups (including certain sporadic simple groups) (see [5, 13, 17] and the
previous sections), and to classify certain finite geometries and graphs (see
for example [1, 18, 20, 21, 22]). We shall give some of the flavour of these
applications.

Let I' and A be simple graphs (i.e., undirected, with no loops and no
multiple edges). Then I' is said to be locally A if for every vertex v of I, the
induced subgraph on the neighbours of v is isomorphic to A. We shall use
coset enumeration to study some presentations which arise in the classifica-
tion of the connected, ordered-triangle-transitive graphs which are locally the
incidence graph of the (unique) 2-(11,5,2) design. In the process, we obtain
a presentation for Mis:2, the automorphism group of the sporadic simple
Mathieu group M2, which acts on a locally A graph on 144 points as we
have seen in 5.13.

Let A be the incidence graph of the unique 2-(11,5,2) design D (see 5.8).
Thus A has exactly 22 vertices: 11 corresponding to the points of D and 11
corresponding to the blocks of D, with {v,w} an edge of A precisely when
{v,w} is an incident point-block pair.

Let H = Aut(A). Then H ~ Ly(11):2, and, as was shown in Example 3.8
of Chapter 8, H can be presented as follows:



Project 6. The Small Mathieu Groups 333
H = (a,b,¢c,d|d® 6% ¢ d% (ab)?, (ac)? a(cd)?, (be)?, (bd)?).

In this presentation we find that (a,b,c) is the stabilizer of a vertex y,
(a, b} is the pointwise stabilizer of an edge {y, 2z} on that vertex, and {(a, b, d) is
the setwise stabilizer of the edge {y, 2 }; see also Example 3.8 of Chapter 8. We
further remark that the relator (ac)? is unnecessary in the presentation for H.
Indeed, a = (cd)~* = (dc)*, and so (ac)? = (dc)*c(de)*c = (dc)*(cd)*c? = 1.
In a similar way, we see that (ad)? = 1 holds in H.

If the connected graph I' is locally A, and Aut(I") is transitive on the
ordered-triangles [u,v,w] of I, then it can be shown (see the Exercises 6.1
and 6.2 below) that the stabilizer in Aut(I") of a vertex v of I" acts faithfully
on the neighbourhood of v, and is isomorphic either to L3(11): 2 or its Sylow-
11 normalizer 11: 10.

Exercise 6.1. (See also [18, Theorem 1] (due to Weetman).)

1. Prove that the only element of H fixing a point and each of the 5 blocks
on this point is the identity element.

2. Let I" be a connected graph which is locally A. Suppose g € Aut(I') fixes
a vertex v and all its neighbours. Let w be a vertex adjacent to v. Show
that g fixes the 5 common neighbours of v and w, and conclude that g
fixes all neighbours of w.

3. Prove that ¢ = 1.

Exercise 6.2. Let K be a subgroup of H ~ L2(11):2 that is transitive on
the ordered pairs of adjacent vertices of the incidence graph A of the biplane.
Prove that K is either a Sylow-11 normalizer 11:10 in H, or is H itself.

We now consider the case where I' is a connected, ordered-triangle-
transitive, locally A graph, with vertex stabilizer L(11):2 (see below) in
Aut(I).

Suppose such a I exists, and let {z,y, 2} be a triangle of I'. Then G =
Aut(I') is a quotient of the group formed by amalgamating the G-stabilizers
XY, Z of z,{z,y}, {z,y, 2}, respectively. Analysis of A and L2(11): 2 shows
that X, Y, Z must be respectively isomorphic to

La(11):2, S5, (A4 x3):2.

Furthermore, we must have X NY ~ A5, XNZ ~ Sy, and Y NZ ~ S,.
In fact, we will show that the group G can be generated by elements a, b, ¢, d
and e, such that the following relators hold:

a3,b%,c2,d?, (ab)3, a(cd)?, (bc)3, (bd)?, €2, (ae)?, (be)?, (ce)?, (de)®.  (6.1)

(Recall that 1 = (ac)? = (ad)? are consequences of these relators.)

Indeed, if we fix a vertex x, then the stabilizer X of z is isomorphic to
L3(11):2 and can be generated by elements a, b, ¢ and d such that the relators
above which do not involve e are satisfied. Furthermore, (a,b,c) >~ Ag is the



334 H. Cuypers, L. H. Soicher, and H. Sterk

stabilizer in X of some vertex y adjacent to z, and (a, b) ~ A, is the pointwise
stabilizer in X of an edge {y, z} in the induced subgraph on the neighbours
of .

Let [z,y,2] denote the ordered-triangle containing the above vertices
z,¥, z (in that order). Since we are assuming that G acts transitively on the
ordered-triangles of I', there is an element e € G such that [z, y, 2]* = [y, z, 2].
Then {(a,b,c,e) is of shape As.2, and {(a,b,e) is of shape A4.2. Since we
have {a,b,e) < G, ~ L3(11):2, we conclude (from the subgroup structure
of La(11): 2 (see [2])) that (a,b,e) ~ S4, and so we must have (a,b,c,e) ~ Ss.
Moreover, we can choose the element e in this Sy such that the following
relations hold:

€% = (ae)? = (be)? = (ce)? = 1.

(Compare this with the relations involving d.) Since I' is assumed to be
connected, the group G is generated by a,b,c,d and e. It remains to check
that the relation (de)® = 1 holds. Since [z,y,2]¢ = [z, z,¥] and [z,y, 2]® =
[y, z, 2], the element (de)® fixes each of the three vertices z,y and z of I’
and therefore is contained in (a,b). On the other hand we already know that
ade = da~'e = dea and bde = dbe = deb. So (de)3 € Z({a,b)) = 1.

Now let G be the group presented by generators a, b, c,d and e subject
(only) to the relators given in (6.1). We shall determine the graphs I" by
determining each homomorphic image G of G, such that {(a,b,c,d) maps
(isomorphically) onto X =~ Ly(11):2, (a,b,c,e) maps (isomorphically) onto
Y ~ 85 and (a,b,d,e) maps (1somorph1cally) onto Z ~ (A4 x 3):2. Such ho-
momorphic images G of G are the candidates for the automorphism groups of
the graphs we seek, such that X, Y, Z < G would be the respective stabilizers
of a vertex, an edge on that vertex, and a triangle on that edge. Given a
candidate G, and X and Y, we construct the corresponding candidate graph
I’ as follows. The vertices are the right cosets of X in &G, and the edge-set is
the G-orbit of { X, Xt}, where ¢ is any element of Y\ X. We can then check
whether I' is locally a graph of order 22 and degree 5. If so, it then follows
from our construction that the G-stabilizer of a vertex of I" is Ly(11):2, I' is

connected, G acts transitively on the ordered-triangles of I', and I is locally
A,

Exercise 6.3. Prove the assertions of the previous sentence.

Exercise 6.4. Apply coset enumeration, and find that {a,b, c,d) has index
432 in G. What is the order of G?

Exercise 6.5. Using the presentation (6.1) and coset enumeration, calculate
generators for the degree 432 permutation group formed by G acting (faith-
fully) on the cosets of X = (a,b,c,d). Calculate the orbits of X. Consider
the graph I'y3; whose edge-set is {x,z°}¢, where z is a vertex stabilized by
X. Show that I' is locally the incidence graph A of the biplane of order A1.
(You might try to use some appropriate GRAPE functions.)



Project 6. The Small Mathieu Groups 335

As we have seen in 5.13, the group M)s:2 is the automorphism group of
a connected graph I' on 144 points which is also locally A, and has vertex
stabilizer L2(11):2. It is easy to see that I' is ordered-triangle-transitive. It
follows that Mi2:2 is a quotient of the group G. Since the order of G is 3
times the order of Mj,:2, the group G contains a normal subgroup of order
3.

Exercise 6.6. Show with the help of coset enumeration that the subgroup
N = ((bede)'!) is a normal subgroup of order 3 in G.
What are the orbits of {(bcde)'!) on the 432 points of the graph I'j35?
Construct a graph Iy, with as vertices the 144 orbits of ((bcde)'!) on
the vertices of I'y32, such that I'44 is also locally A.

It follows from 5.13 and the above that Aut(l44) ~ Mia:2,
G/((bcde)') ~ Myz:2,

and

G ~ (3 x My3):2
(note that G has the symmetric group S3 as a homomorphic image). We con-
clude that I'i44 and I'432 are the only connected, ordered-triangle-transitive,
locally A graphs whose vertex stabilizer is Lo(11): 2.
Note that we obtain a presentation for Mj3:2 from the presentation (6.1)
by adjoining the relator (bede)!!.

Exercise 6.7. Give an isomorphism between the group G /N and the group
M,;3:2 as given in 5.13.

Exercise 6.8. (Challenging) As usual, let A be the incidence graph of
the biplane D. Show that if G is the automorphism group of a connected,
ordered-triangle-transitive, locally A graph I', such that the G-stabilizer of
a vertex is 11:10, then G is a quotient of

G = (a,b,c| a®,b%,c? (ac)?, (bc)3, [a, ]!, [b, a]*[a, b]®),

such that for some triangle {z,y, 2z} of I', the G-stabilizers of z, {z, v}, {z, v, 2}
are the respective images of (a,b), (a,c), (b,c). (In particular, show that re-
placing the relator (ac)? by [a,c] in the presentation above does not lead to
such a graph.) _

Study the permutation group G acting on the cosets of (a, b}, using the
permutation group algorithms in GAP or MAGMA. Determine the order and
structure of G.

Prove that G is the automorphism group of an ordered-triangle-transitive,
connected, locally A graph, such that the G-stabilizer of a vertex is 11: 10.

Prove that, up to isomorphism, there is just one ordered-triangle-transi-
tive, connected, locally A graph I', such that the Aut(I")-stabilizer of a vertex
is 11:10.



336

H. Cuypers, L. H. Soicher, and H. Sterk

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. J. van Bon (1993): Some extended generalized herxagons, pp. 395403 in Finite

Geometry and Combinatorics (F. De Clerck et al., eds), LMS Lecture Notes
191, Cambridge University Press, Cambridge.

. J.H. Conway, R.T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson (1985):

ATLAS of Finite Groups, Clarendon Press, Oxford.

. J.H. Conway, S. P. Norton, and L. H. Soicher (1988): The Bimonster, the group

Ysss, and the projective plane of order 3, pp. 27-50 in Computers in Algebra
(M.C. Tangora, ed.), Marcel Dekker, New York.

. J.H. Conway and N.J.A. Sloane (1988): Sphere Packings, Lattices and Groups,

Springer-Verlag, Berlin Heidelberg New York.

. H. Cuypers and J.1. Hall (1992): The classification of 8-transposition groups

with trivial centre, pp. 121-138 in Groups, Combinatorics and Geometry (M.W.
Liebeck and J. Sax], eds), LMS Lecture Notes 165, Cambridge University Press.

. D.R. Hughes and F.C. Piper (1985): Design Theory, Cambridge University

Press, Cambridge (reprinted in paperback, 1988).

. D.L. Johnson (1990): Presentations of Groups, Cambridge University Press,

Cambridge.

. H. Liineburg (1969): Transitieve Erweiterungen endlicher Permutationsgrup-

pen, Lecture Notes in Math. 84, Springer-Verlag, Berlin Heidelberg New York.

. E. Mathieu (1860): Mémoire sur le nombre de valeurs que peut acquérir une

Sfunction quand on y permut ses variables de toutes le maniére possibles, J. de
Math. Pure et App. 5, 9-42.

E. Mathieu (1861): Mémoire sur l'étude des functions de plusieures quantités,
sur la maniére des formes et sur les substitutions qui laissent invariables, J. de
Math. Pure et App. 6, 241-323.

E. Mathieu (1873): Sur la function cing fois transitive des 24 quantités, J. de
Math. Pure et App. 18, 25-46.

B.D. McKay (1990): nauty user’s guide (version 1.5), Technical report TR~
CS-90-02, Computer Science Department, Australian National University.
J. McKay (1974): Computing with finite simple groups, pp. 448-452 in Pro-
ceedings, Second International Conference on the Theory of Groups, Canberra,
1973, Lecture Notes in Mathematics 372, Springer-Verlag, New York Heidel-
berg Berlin.

C.E. Praeger and L.H. Soicher (1997): Low Rank Representations and Graphs
for Sporadic Groups, Australian Math. Soc. Lecture Series 8, Cambridge Uni-
versity Press, Cambridge.

M. Schonert, et al. (1994): GAP — Groups, Algorithms and Programming, ver-
sion 3, release 4, Lehrstuhl D fiir Mathematik, RWTH Aachen.

L. H. Soicher (1988) Presentations for some groups related to Coy, pp. 151-154
in Computers in Algebra (M.C. Tangora, ed) Marcel Dekker, New York. '
L. H. Soicher (1990): A new existence and uniqueness proof for the O’Nan group
Bull. London Math. Soc. 22, 148-152.

L.H. Soicher (1992): On simplicial complezes related to the Suzuki sequence
graphs, pp. 240-248 in Groups, Combinatorics and Geometry (M.W. Liebeck
and J. Saxl, eds), LMS Lecture Notes 185, Cambridge University Press, Cam-
bridge.

L.H. Soicher (1993): GRAPE: a system for computing with graphs and groups,
pp- 287-291 in Groups and Computation, (L. Finkelstein and W.M. Kantor,
eds), DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence 11, Amer. Math. Soc.



Project 6. The Small Mathieu Groups 337

20. R. Weiss (1990): Extended generalized hezagons, Math. Proc. Camb. Phil. Soc.
108, 7-19. ‘

21. R. Weiss (1991): A geometric characterization of the groups McL and Cogs, J.
London Math. Soc. 44, 261-269.

22. S. Yoshiara (1991): A classification of flag-transitive classical c.C2-geometries
by means of generators and relations, Europ. J. Combinatorics 12, 159-181.



Project 7: The Golay Codes

Mario de Boer and Ruud Pellikaan

1. Introduction

In this project we give examples of methods described in the Chapters 10 and
11 on finding the minimum weight codewords, the decoding of cyclic codes
and working with the Mathieu groups (see also 6). The codes that we use here
are the well-known Golay codes. These codes are among the most beautiful
objects in coding theory, and we would like to give some reasons why.

There are two Golay codes: the ternary cyclic code G,; and the binary
cyclic code Go3. The ternary Golay code G1; has parameters [11,6, 5], and it
is the unique code with these parameters. The automorphism group Aut(G;1)
is the Mathieu group M;;. The group My, is simple, 4-fold transitive and has
size 11-10-9- 8. The supports of the codewords of weight 5 form the blocks of
a 4-design, the unique Steiner system S(4,5,11). The ternary Golay code is
a perfect code; this means that the Hamming spheres of radius (d—1)/2 = 2
centered at the codewords of G1; exactly cover the whole space Fi!. The code
Gi1 can be uniquely extended to a [12, 6, 6] code, which we will denote by Gy2.
The code Gy is self-dual and Aut(Gi12) = Mia: the simple, 5-fold transitive
Mathieu group of size 12-11-10- 9 - 8. The supports of the codewords of
weight 6 in G12 form a 5-design, the unique S(5,6,12).

The binary Golay code G23 has similar properties. Its parameters are
[23,12,7], and it is the unique code with these parameters. The automorphism
group Aut(Go3) is the Mathieu group Mz3. The group Ma3 is simple, 4-fold
transitive and has size 23 - 22 - 21 - 20 - 48. The supports of the codewords of
weight 7 form the blocks of a 4-design, the unique Steiner system S(4, 7, 23).
The binary Golay code is a perfect code, so the Hamming spheres of radius
3 centered at the codewords of G;, exactly cover the whole space F23. The
code Go3 can be uniquely extended to a [24,12, 8] code, which we will denote
by G24. The code Go4 is self-dual and Aut(Gz4) = May: the simple, 5-fold
transitive Mathieu group of size 24 - 23 - 22 - 21 - 20 - 48. The supports of the
codewords of weight 8 in Go4 form a 5-design, the unique S(5, 8,24).

2. Minimal Weight Codewords of G;,
Gy, is the ternary cyclic code of length 11 with defining set J = {1}. It

is a [11,6,d] code with complete defining set J(G11) = {1,3,4,5,9}. The
generator polynomial is



Project 7: The Golay Codes 339

9X)= ] X—o)=2+X+2X3+ X"+ X°.
J€J(G11)
From the BCH bound we see that d > 4, and by computing Grobner bases
we will show that in fact d = 5. Moreover, we will determine all codewords
of minimal weight.
First we consider the system Sg,, (4):

(A5 +01A4 + 090A3 +03A2+ 0441 = 0
Ag+01A5 + 02A4 + 0343 +0442 = 0
5911(4) =3 - o
Ay +01A3 + 0242 + 034, +0449 = O
Aj =0 for j € J(g11)
A3j:A? for j:].,...,].]..

\

Using A3; = A? wé can express every A; with i € {1,2,...,10} \ J(G11) as
a power of A, (this can be done since all of these ¢ form a single cyclotomic
coset). Setting A; = 0 for i € J(G11) and writing A, = a and Ag = b this
reduces Sg,, (4) to

o3a

a® + o4a
a® +oia
a®' + 01a? + o9a®
o1a® + 02a® + 03a’® =
a®" + 09a®' + 030 + 04a® =
b+01a% + 03a® +04a® =
o1b+ 02a%" + o4a® =
a+ og2b + 030" =
o1a+ o3b + 0407 =
020 + o4b =

B —b =

Computing a Grobner basis G with respect to the lexicographic order with

OO OO0 ODOOOC

3

Sgn (4) =

e

\

o4>03>02>01>b>a

gives G = {b,a} and hence there are no nonzero codewords of weight at most
4. We conclude d > 5, and even d = 5, since the weight of the generator
polynomial is wt(g(X)) = 5. To determine the minimum weight codewords
we consider the system Sg,, (5):

( Ag + 01A5 + 09A4 + 03As +04As + 0541 = 0
A7 +01Ag + 02A5 + 03A4 + 04A3 + 0542 = 0
o1 (5) = < : P
Ag +01Ag +09A3 + 03A2 +04A) +0o549 = 0
A;=0 for i€ J(gu)
L A3(=A‘? for i=0,...,~~10




340 M. de Boer and R. Pellikaan

Again we can reduce the system as we did in the system Sg,, (4) and compute
its Grobner basis with respect to the lexicographic order with

05 >04>03>02>01>b>a.

The resulting basis G is (after 2 minutes using Axiom or 10 minutes using
Macaulay)

osa + 2a%! + 2a°, 04a + a2, 03a + 2a'%7 + a?! + 2419,
G=( ooa+a™+2a% +a'3,01a +a? +2d7,
b+a™" +2a% + a® + a'l,a'® + 20" + 28 + 2057 + 0% + g,

where a = Az and b = Ap. From the triangular form of the basis G, it is easy
to see that the number of codewords of weight 5 in G1; equals the number of
nonzero solutions to

F(X)=X"34ox M 4 2X8 42X 4 X4+ X =0
in F3s. We determine these solutions in the following exercise.

Exercise 2.1. Let a € F3s be a primitive element. Now show

1. f(1)=0;

2. f(a?) = 0 (you can use a computer algebra package for this);

3. f(a*X) = all f(X).

Conclude from this that the complete set of zeros of f(X) in Fgs \ {0} is

M= {a*1 | i {0,1,...,10}\ J(Gu), j € {0,1,...,21}}.

So the number of codewords of weight 5 is #M = 132 and the locators of
these words (i.e., the polynomials having as zeros the reciprocals of positions
where the codewords have a nonzero value) are given by

(X,a) = (@® + a®) X5 + 2a2X* + (a'%® + 2a%° + ') X3+
o ; it (2(178 +a34 + 2a12)X2+ (2(128 +(16)X+ 1’

witha € M.

Since the code is cyclic, any shift of a codeword of weight 5 is again a
codeword of weight 5. We can recognize this fact from M in the following
way.

Exercise 2.2. Show that there exists a primitive 11-th root of unity 3 such
that o(X, a'la) = 0(B8X,a) for all a € M.

Now we can conclude that the codewords of weight 5 consist of the 6 code-
words with locator polynomials o(X,a), a € {1,a? a%,a’,a?, a0}, their
cyclic shifts, and their nonzero multiples in Fj3!.

Exercise 2.3. Let o again be a primitive element in Fas, then 8 = a?? is a

fixed 11-th root of unity. Check that the zeros of the 6 polynomials (X, a)
are:



Project 7: The Golay Codes 341

polynomial | {: | 37* is a zero}
o(X,1) 2,6,7,8,10
o(X,a?) 3,4,9,10, 11
o(X,a®) 1,5,8,9,11
o(X,a") 1, 2, 8, 10, 11
o(X,a?) 2,3,5179
o(X,a'?) | 3,5,8,10,11

Let B consist of the 6 subsets of {1,...,11} in the table and their cyclic shifts
modulo 11. Then |B| = 66. Show that B is the set of blocks of a 4-design, the
Steiner system S(4, 5,11).

3. Decoding of G,3 with Grobner Bases

Let G2 be the binary cyclic code of length 23 with defining set J = {1}. Then
the complete defining set is J(G23) = {1, 2, 3,4,6,8,9,12,13,16,18} and the
code has parameters [23,12, d]. The BCH bound states that d > 5 but in fact
d = 7. This can be checked in the same way as we did in the previous section
for the ternary Golay code. The computer algebra packages we tried, did not
perform very well on the systems Sg,,(w). Since the minimum distance is 7,
G23 should be able to correct errors of weight at most 3. In this example we
will decode a word with three errors.

-Take

Fou = Fo[B8)/(8" + 6% + 1)

and set o = 3%°. Then 3 is a primitive element of Fy11 and a has order 23.

The generator polynomial of the code is

J€JI(G23)

Suppose we send the codeword g(X), which corresponds to the binary vector
c=(1,1,0,0,0,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0)

over a noisy channel, and the following error occurs during transmission:
e=(1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0).

As a result at the other end of the channel the following vector will be re-
ceived:

Y= (0, 1: 0’ 1: 0’ 1: 1, 1, 0, 1, 0’ 1: 0’ 0’ 0’ 0’ 0’ 1: 0’ 0’ 0’ 0’ 0)’
corresponding to the polynomial

r(X)=X+X3+ X0+ X0+ X"+ X%+ X1 4+ X7,



342 M. de Boer and R. Pellikaan

We will now decode the received word by applying the decoding algorithm.
First we compute the syndrome:

81 = Hy = r(a) = at+a®+a® +ab +a" +a® +all +a'” = g%4+85+ 33+ 32 +1.

Since s; # 0 we see that errors have occurred during transmission.

We already remarked that the Y; variables can be disposed of by setting
them equal to 1, since 1 is the only error value that can occur.

Following the algorithm of Section 3 of Chapter 11 we set

S={Xi++8+8+5+1,X2B +1}

and can conclude that there are no solutions since s; is not a 23-rd root of
unity.
In the next step we set

S={Xo+ X1+ +8+B++1,XB+1,X2+1}

and compute its Grébner basis with respect to the lexicographic order with
X2 > X 1t

g={1}
Since 1 € G there is no solution to these syndrome equations and we proceed
with the loop of the algorithm. We set

S={Xs+X2+X1+ﬁg+ﬁ6+ﬁ3+ﬁz+1’xg3+1’X223+1’X%3+1}’

and a Grobner basis with respect to the lexicographic order with X3 > X5 >
X1 is computed:

Xs+Xo+ X1+ +05+82+52+1,
X2+ XoX1+(B2+ 85+ 33 + B2+ 1) X + X7+
+(B°+ B8+ B+ 82+ )X, + B8+ 8% + 62,
XP+ (B + B0+ B2+ B2+ 1)XE + (B +8° + %) Xy + 8°+ B° + B°.
This took 8 minutes using Axiom. We did the same computation with X?* +
X instead of XJ23 +1 for j =1,2,3 and it took only 90 seconds.

Now 1 ¢ G and there are solutions to the syndrome equations. The error-
locator polynomial is

9(X1) = X7+ (8° + B+ 62 + B2 + DX + (8 +6° + 82) X1+ ° + 8° + B°

and its zeros are the error-locators {a® a®,a7}. Hence the errors occurred
at positions 0, 3 and 17 and the word that was sent is

y - (1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0) =

(1,1,0,0,0,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0).
We have recovered the transmitted codeword c.



Project 7: The Golay Codes 343

4. One-Step Decoding of Ga3

In this paragraph we will decode all error patterns of weight 3 that can
occur in a codeword of the code Go3 at once by computing the Grébner basis
for variable syndromes S. Apart from the advantage that all syndromes are
treated at once, it also has the advantage that the computations take place
over the field Fy instead of the large field F1:. The system of equations is:

Xg+Xo+Xp+S =0

S— X3 +1 = 0
- X2 +1 =0
X3 +1 = 0.

The outcome of this set of equations is quite complicated. The result is much
simpler if we consider the following set of equations.

X3+ Xo+S+X, =
X324+X3 =
X3+ X, =
X#+ X, =

§ =

ocooo

With the lexicographic order with X3 > X5 > X; > S, the computer was still
not finished with its computations after 24 hours. Loustaunau and York did
this example where they started with the above system, which is a Grébner
basis with respect to the lexicographic order with S > X3 > X5 > X, and
transformed it into a Grobner basis with respect to the lexicographic order
with X3 > X5 > X, > § as explained in the notes of Chapter 11. Using the
lexicographic order with X3 > X5 > § > X; we obtain the Grobner basis:

X3+X2 +S+X1,

X224 + Xo,
G={ X258+ X2X) + X25% + Xo X7 + S%0 + §% + 82X, + SX3,
9(Xh),
X124 + X,
with
(828 + SHXP +  (8B7 + SHXP0+
(820 + ST)X1" + (S%1+ 588X %+
(832 +89)X15  + (8% +819)Xx 4+
(824 +SMX13 + (¥ +5'7)X)2+
(X)) = ¢ (8% + 88Xt + (8% 4+ SMX]04
A= (538 4+8%)X) + (8% +51)x34
(S +SMXT  + (8% +54) X+
(8772 + §9) X} + (S8 4+ 996 4 993 1 S20)X}+
(S4+ X3 + (S +5%)X2+
+

(837 + S48 X, (877 + S0 + 547 + 9).



344 M. de Boer and R. Pellikaan

We conclude that for a general syndrome S we find the error-locator polyno-
mial

ng(g(Xl )7 X123 + 1)’
These computations took 120 seconds using Axiom. The original set of equa-

tions S took 150 seconds. Macaulay did both these computations on the same
computer in 3 seconds.

Exercise 4.1. Check that the coefficient of X* is divisible by $23 + 1 for all
t.

Exercise 4.2. Suppose s = 1 + 2 + 3 with z; € Fan and z2° = 1 for all
j. Show that s2® = 1 if and only if z; = z; for some 4, j with 1 <7< j < 3.

Exercise 4.3. Denote g(X1)/(S?2+1) by h(X,). Compute ged(h(X1), X23+
1) with Euclid’s algorithm in the ring F,(S)[X,] and show that it is a poly-
nomial of degree 3 in X; with rational functions in S as coefficients.

5. The Key Equation for G.3

In this section we will use the Euclidean algorithm to decode an error that
occurred during the transmission of a codeword of the binary Golay code Gags.
As we mentioned in Section 4 of Chapter 11, decoding a cyclic code C by
solving the key equation only works for errors of weight at most (6 — 1)/2,
where ¢ is maximal such that {1,2,..., — 1} C J(C). In the case of the
binary Golay code, this means we can only expect to decode errors of weight
at most 2 in this way.

As in the previous section, we assume that the transmitted codeword was
g(X). Suppose the following error occurs:

e =(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0).
Then the received word is
y = (0,1,0,0,0,1,1,1,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0),
corresponding to the polynomial
r(X)=X+X°+ X+ X"+ X°+ X' + X7

After we receive this word, we can compute the following syndromes:

s1 = r(a) = O+ +8"+85+1
s2 = r(@®) = s§ = f++5+8
s3 = r(@®) = &% = F+p+p5°+4°
sa = r(ef) = of = BO+8+4+P+5%

Following Section 4 of Chapter 11 we define



Project 7: The Golay Codes 345
S(Z) =38 + 82Z + 83Z2 + 84Z3
and we start the Euclidean algorithm on S(Z) and Z4. We find
Z4 = 8(2)q1(2) + 1 (2),
with
@(2)= B+ +2+1)Z2+p°+58°+5°+8
and
7'1(Z) — (510+59+ﬁ7+56+ﬁ5+ﬁ4)z2+
B+ +8++8 + )2+
(8°+ 8%+ 5%+ 1).
In the following step we get
S(2) = r1(2)g2(Z) +r2(2),

with
Q(Z)=BC+8+82+1)Z+ B+ +85+1)

and
r(Z)=8"+8+8 +F+8+1.

Since deg(r;(Z)) > 2 and deg(ra(Z)) < 1 we can stop the algorithm and
compute

Ux(Z) = @2)U1(2)+Us(2)
= @(Z)q(Z)+1
= (B +6°+06%2% +
B+ +3+82+B8+1)Z+
B+p+8 +8+8+8+1.
From this we find
0(2) = U 2)](B°+B+B8 +83+8+8+1)=
(ﬁ10+ﬁg+ﬁ7+ﬁe)z2+(ﬁlo+ﬁ9+ﬁ7+ﬁ6+1)Z+1-

Since the zeros of o(Z) are Z = 1 and Z = af, we conclude that the error-
locators are 1 and @!7 and thus that the error-vector is

e=(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0).
We retrieve the transmitted codeword by computingc =y —e.

Exercise 5.1. Do the same example with the algorithm of Berlekamp-
Massey instead of Euclid's algorithm.



346 M. de Boer and R. Pellikaan
6. Exercises

Let C be the binary cyclic code C of length 15 with defining set J = {1, 3,5}.
In the following, & € Fy6 will denote a primitive element satisfying

o'+a+1=0.
Exercise 6.1. Show that the complete defining set is given by
J(C)=1{1,2,3,4,5,6,8,9,10,12},
and that C has generator polynomial
gX) =1+ X+ X2+ X*+ X>+ X8 + X0,

Determine the dimension of the code and apply the BCH bound on the
minimum distance.

In order to find the true minimum distance of C, we will determine all code-
words of weight 7.

Exercise 6.2, Write down the equations of the system S¢(7) and reduce
the system by setting Ap = b and A7 = a and expressing everything in a, b
and ¢1,03,...,07. Compute a Grébner basis for the ideal defined by S¢(7)
and answer the following questions:

1. How many codewords 6f weight 7 does C have?

2. Determine a set M and polynomials o(X,a) such that o(X,a) has as
zeros the locators of a codeword of weight 7 if and only if a € M.

3. Prove that (X, o) = o(a'® X, 1). What does this show?

We will now use code C to decode a word that is a transmitted codeword in
which errors have occured. First we choose a codeword in C.

Exercise 6.3. Pick your favorite polynomial m(X) € Fa[X] of degree at
most 4 and encode it by computing

e(X) =m(X)g(X) mod (X5 + 1).

Now choose a random binary error-vector e of weight at most 3 and compute
the word r that is received at the other end of the channel:

r=c+e.

We will decode the received codeword using all the algorithms we have dis-
cussed. If you want you can exchange the word r you have chosen with some-
one else and try to decode the word ‘he/she sent you’.

Exercise 6.4. Compute the syndromes s; = r(a), s3 = r(a®) and s5 =
r(a®) and proceed with Algorithm 3.10. You have to use a computer algebra
package that can compute Grobner bases over Fig. Compare your result with
the codeword that was sent.



Project 7: The Golay Codes 347

Now compute all syndromes s;, s2,. .., 8¢ and define the syndrome polyno-
mial
S(Z) =81+ 8,7+ 83Z2 + 84Z3 + 85Z4 + 86Z5.

Set
0(Z) =14 01Z + 0,22 + 032Z°.

We want to determine the o; such that o(Z) has as its zeros the reciprocals
of the error positions of e. We have seen two algorithms for this.

Exercise 6.5. Apply Sugiyama’s algorithm to the situation here: compute
the greatest common divisor of Z® and S(Z) until the stop criterion of the
algorithm is reached. Determine o(Z) from this and determine its zeros and
thus the error positions. Compare your result with the codeword that was
sent.

Exercise 6.6. Determine o(Z) by applying the Berlekamp-Massey algo-
rithm. Again find the error-locators and compare this with your result from
the previous exercise.

If the number of errors that were made during transmission is equal to 3, we
can use the formulas we found by one-step decoding.

Exercise 6.7. Look up in Example 3.13 the formula corresponding to a 3-
error correcting binary BCH code, substitute the syndromes you have com-
puted, and determine the zeros and hence the error positions of the equation.






Index

h-trace bilinear form 48
(lattice) basis 67
(regular) d-couple 150

action 100, 185
additive group 221
algebra 91

algebraic subgroup 219
algorithm

— Arimoto-Peterson-Gorenstein-Zierler

268

Berlekamp 78
Berlekamp-Massey 270
Brouwer 241
Buchberger 1,10
Cantor-Zassenhaus 81
decoding cyclic codes 264
Euclid 68, 269
Extended Euclidean 15
ExtendedGroebnerBasis 28
ExtendedReduce 23
factorisation 84, 86
FGLM 45
Gram-Schmidt 70
GroebnerBasis 10
GroebnerVectorSyzygies 26
Hensel 85

Kovacic 208, 224

LLL 66,74

membership 192
minimum distance 241
normal closure 196

orbits 194
Reduce 7
Risch 209

Schreier-Sims 192, 193
stabilizer 191
StronglyReduce 8
Sugiyama 269
Syzygies 28

Todd Caxeter 197

Bézout relation 152

base 192

bases 2

BCH bound 248

Bezoutian 59

binomial ideal 175

Birkhoff Interpolation Problem 298
bounded distance decoder 261

Cauchy index 123
central 91

centre 91

code 237

coincidence 201
collapse 201
commutative algebra 91
complete intersection polynomial
systems 58
composition series 100
condition

— irrelevant 283

— nontrivial 283

— relevant 283

— trivial 283

— true nondegeneracy 289
consecutive 158
content 82

coset enumeration 197
— Todd-Coxeter 197
coset table 198
Coxeter group 315
cyclic code 247

decoder 260

defective 151

defining set 247

— complete 247

degree 185

dependent variables 278
derived series 106
descending central series 106



350 Index

determinant 67

differential field 217
differential Galois group 219
dimension 287

distinct degree factorisation 81
Dorroh extension 97

dual code 238

dualizing 58

effective 1,2

equality standard form 169
equivalent 239, 321
error-locator ideal 272

f-algorithm 96

factor algebra 92

factor module 100

factorisation 78

— distinct degree 81

feasible 168,169

field of constants 217

field of formal Laurent series 216

Galois correspondence 218

Galois group 218

Gaussian remainder 154

Gaussian remainder sequence 154

generated 2

generator polynomial 247

generators 187

generic 168

generically false 291

generically true 289

geometrically independent variables
287

geometrically true 279

— under the condition 282

Golay codes 338

Grébner basis 10

— reduced 13

Grébner basis of a lattice 175

graded lex order 41

graded reverse lex order 41

Gram-matrix 67

Gram-Schmidt coefficients 70

group

— permutation 185

group algebra 92

Hadamard’s inequality 70
Hamming code 239
Hamming distance 238
Hensel lift 84

Hermite quadratic form 48

homogeneous 216

homomorphism 92
hypotheses+condition variety 282
hypotheses ideal 279 ‘
hypotheses variety 279

icosahedral group 223, 315

icosahedron 315

ideal 2,92

ideal generated by a subset 35

ideal of nondegeneracy conditions 283

idempotent 92

imprimitive 223

incidence matrix 298

independent modulo the ideal 287

independent variables 278

inequality standard form with upper
bounds 177

inhomogeneous 216

integer programming 169

integral vector 169

irreducible 100, 317

Jacobian 59
Jacobson radical 92

Katsura3 55
key equation 269

Las Vegas algorithms 96

lattice 67,175

lattice ideal 175

leading coefficient 7

leading monomial 7

leading term 7

least common multiple 9

left ideal 92

Lemma of Gauss 82
lexicographic order 5,40
lexicographic total degree order 5
Lie algebra 105

— factor algebra 106

— homomorphism 106

— ideal 106

nilpotent 106

solvable 106

— subalgebra 106

linear code 238

linear Lie algebras 106

linear programming problem 168
Liouvillian 220

LLL 66

LLL-reduced 71

local differential Galois group 226

!



local ring 46
locally a given graph 332
locator polynomial 249

MacWilliams identity 239
Mathieu group 327, 328
matrix of syndromes 255
matrix representation 100
Mattson-Solomon polynomial 248
minimal Grébner basis 13
minimal polynomial 312
minimum distance 238
minimum distance decoder 261
module 92

module isomorphism 100
monic 14,35

multiplicative group 221
multiplicity 46, 100, 123

Newton sum 51
Newton’s formula 52
nilpotent 92

nilpotent ideal 93
nilradical 106
Noetherian 2
non-optimal 171
nondegeneracy condition 283
norm 113

normal 298

normal form 16,41

not generically true 289

octahedral group 223
optimal 168

orbit 186

orbital 318

order 216,226

order function 252

Pélya Condition 299

partial base 193

partial strong generating set 193
permutation group 185
permutation representation 185
Picard-Vessiot field 219
Picard-Vessiot theory 219
poise-indicator 299

poised 298

polar multiplicity 123
polyhedron 168

polytope 168

primary factors 78

primitive 82

principal 36

Index

projective system 242

quotient in the signed Euclidean
division 125
quotient ring 4

radical 38, 106
rank 67

rational univariate representation 53

reduced 8

reduced form 8

reduced Grobner basis 13

reduced Grobner basis of a lattice
175

reduction order 5

Reed-Muller codes 256

Reed-Solomon codes 256

regular 46, 164

regular couple 150

regular representation 92

relator 197

relator table 198

remainder 8

representation

— linear 316

— permutation 185

resultant 209

Riccati equation 224

right ideal 92

S-polynomial 9

Schreier elements 190
Schreier generators 190
Schreier tree 188

second symmetric power 230
semisimple 93

separating 39

sequence of principal Sylvester-Habicht

coefficients 151
sifting 193
signature 134
signed Euclidean transition matrix
125
signed remainder sequence 124
simple 92,100
solution 169
solutions 35
specialization 131
specialization problems 126
specialized 126
splitting element 111
splitting field 218
square-free decomposition 210
stabilizer 186



352 Index

stabilizer chain 192 thesis variety 279

standard 15 Thom code 142

strong generating set 192 total degree 5,35

strongly nilpotent 92 total degree order 5

strongly reduced 9 trace form 134

structure constants 95,106 trace matrix 50, 147

Sturm Query 134 transitive 186

Sturm sequence 124 -t 186

Sturm-Habicht sequence 130

subalgebra 91 under the staircase 40

subgroup table 198 unimodular 125

submodule 100 univariate 2

support 238 usual case 124

Sylvester matrix 150

Sylvester sequence 124 vector of terms 24

Sylvester-Habicht sequence 151

Sylvester-Habicht transition matrix weight 238

158 weight distribution 239

symmetric group 185 weight enumerator 239

syzygies 24 weight function 253
well founded 5

terms 3

test set 169,171,177 zero divisors 92

tetrahedral group 223 zeros 35



