Computer Science
and Scientific Computing

CURVES AND SURFACES
FOR COMPUTER AIDED

GEOMETRIC DESIGN

A Practical Guide
Fourth Edition

Gerald Farin

Curves and Surfaces for
Computer-Aided Geometric Design

A Practical Guide

Fourth Edition

Gerald Farin

Department of Computer Science
Arizona State University
Tempe, Arizona

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

ACADEMIC PRESS, INC. (“AP”) AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CRE-
ATION OR PRODUCTION OF THE ACCOMPANYING CODE (“THE PRODUCT”) CANNOT AND
DO NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY USING
THE PRODUCT. THE PRODUCT IS SOLD “AS IS” WITHOUT WARRANTY OF ANY KIND (EX-
CEPT AS HEREAFTER DESCRIBED), EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY WARRANTY OF PERFORMANCE OR ANY IMPLIED WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. AP WARRANTS ONLY THAT
THE MAGNETIC DISKETTE(S) ON WHICH THE CODE IS RECORDED IS FREE FROM DEFECTS
IN MATERIAL AND FAULTY WORKMANSHIP UNDER THE NORMAL USE AND SERVICE FOR
A PERIOD OF NINETY (90) DAYS FROM THE DATE THE PRODUCT IS DELIVERED. THE PUR-
CHASER’S SOLE AND EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS EXPRESSLY
LIMITED TO EITHER REPLACEMENT OF THE DISKETTE(S) OR REFUND OF THE PURCHASE
PRICE, AT AP’S SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY OR TORT
(INCLUDING NEGLIGENCE), WILL AP OR ANYONE WHO HAS BEEN INVOLVED IN THE CRE-
ATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO PURCHASER FOR ANY DAMAGES,
INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRODUCT OR ANY
MODIFICATIONS THEREOF, OR DUE TO THE CONTENTS OF THE CODE, EVEN IF AP HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY
OTHER PARTY.

Any request for replacement of a defective diskette must be postage prepaid and must be accompanied by
the original defective diskette, your mailing address and telephone number, and proof of date of purchase
and purchase price. Send such requests, stating the nature of the problem, to Academic Press Customer
Service, 6277 Sea Harbor Drive, Orlando, FL 32887, 1-800-321-5068. AP shall have no obligation to
refund the purchase price or to replace a diskette based on claims of defects in the nature or operation of
the Product.

Some states do not allow limitation on how long an implied warranty lasts, nor exclusions or limitations
of incidental or consequential damage, so the above limitations and exclusions may not apply to you. This
Warranty gives you specific legal rights, and you may also have other rights which vary from jurisdiction
to jurisdiction.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWAREIS SUBJECT TO THE UNITED STATES
LAWS UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED. ANY FURTHER
SALE OF THE PRODUCT SHALL BE IN COMPLIANCE WITH THE UNITED STATES DEPART-
MENT OF COMMERCE ADMINISTRATION REGULATIONS. COMPLIANCE WITH SUCH REG-
ULATIONS IS YOUR RESPONSIBILITY AND NOT THE RESPONSIBILITY OF AP.

JF1IC COMPUTING

This book is printed on acid free paper. @
Copyright © 1997, 1993, 1990, 1988 by Academic Press

All rights reserved.

No part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photo-
copy, recording, or any information storage and retrieval system,
without permission in writing from the publisher.

ACADEMIC PRESS, INC.

525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
1300 Boylston Street, Chestnut Hill, MA 02167, USA
http://www.apnet.com

Academic Press Limited
24-28 Oval Road, London NW1 7DX, UK
http://www.hbuk.co.uk/ap/

Chapter 1 was written by P. Bézier.
Chapters 11 and 22 were written by W. Boehm.

Library of Congress Cataloging-in-Publication Data

Farin, Gerald E.

Curves and surfaces for computer aided geometric design : a
practical guide / Gerald Farin.—4th ed.

p- cm.

Includes bibliographical references and index.

ISBN 0-12-249054-1

1. Computer graphics. 2. Computes=aided design. 1. Title.
II. Series.
T385.F37 1996

006.6'01'516352—dc20 96-27090
CIP

Printed in the United States oR g

96 97 98 99 00 MP 4 3 2 1

Contents

Preface

1

2

P. Bézier: How a Simple System Was Born

Introductory Material

2.1
22
23
2.4
2.5
2.6
2.7
2.8
29

Points and Vectors

Affine Maps

Linear Interpolation

Piecewise Linear Interpolation
Menelaos’ Theorem

Barycentric Coordinates in the Plane
Tessellations and Triangulations
Function Spaces

Exercises

The de Casteljau Algorithm

3.1
32
33
34
35
3.6

Parabolas

The de Casteljau Algorithm
Some Properties of Bézier Curves
The Blossom

Implementation

Exercises

The Bernstein Form of a Bézier Curve

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10

Bernstein Polynomials

Properties of Bézier Curves

The Derivative of a Bézier Curve

Higher Order Derivatives

Derivatives and the de Casteljau Algorithm
Subdivision

Blossom and Polar

The Matrix Form of a Bézier Curve
Implementation

Exercises

vii

XV

12
12
16
18
21
22
23
25
30
31

33
33
34
36
40
42
42

44
44
46
48
49
52
53
56
59
60
63

viii

Contents

Bézier Curve Topics 64
5.1 Degree Elevation 64
52 Repeated Degree Elevation 66
53 The Variation Diminishing Property 67
54 Degree Reduction 67
5.5 Nonparametric Curves 71
5.6 Cross Plots 72
5.7 Integrals 73
5.8 The Bézier Form of a Bézier Curve 74
59 The Barycentric Form of a Bézier Curve 74
5.10 The Weierstrass Approximation Theorem 77
5.11 Formulas for Bernstein Polynomials 78
5.12 Implementation 79
5.13 Exercises 79
Polynemial Interpolation 81
6.1 Aitken’s Algorithm 81
6.2 Lagrange Polynomials 84
6.3 The Vandermonde Approach 85
6.4 Limits of Lagrange Interpolation 86
6.5 Cubic Hermite Interpolation 87
6.6 Quintic Hermite Interpolation 91
6.7 The Newton Form and Forward Differencing 92
6.8 Implementation 94
6.9 Exercises 94
Spline Curves in Bézier Form 96
7.1 Global and Local Parameters 96
7.2 Smoothness Conditions 97
7.3 C! and C? Continuity 99
74 Finding a C! Parametrization 102
7.5 C! Quadratic B-spline Curves 102
7.6 C? Cubic B-spline Curves 107
7.7 Finding a Knot Sequence 110
7.8 Design and Inverse Design 110
7.9 Implementation 111
7.10 Exercises 112
Piecewise Cubic Interpolation 113
8.1 C! Piecewise Cubic Hermite Interpolation 113
8.2 C! Piecewise Cubic Interpolation I 115
8.3 C! Piecewise Cubic Interpolation II 118
8.4 Point-Normal Interpolation 120
8.5 Font Design 120

8.6 Exercises 121

Contents

10

11

12

Cubic Spline Interpolation

9.1 The B-spline Form

9.2 The Hermite Form

9.3 End Conditions

94 Finding a Knot Sequence
9.5 The Minimum Property

9.6 Implementation
9.7 Exercises
B-splines

10.1 Motivation

10.2 Knot Insertion

10.3 The de Boor Algorithm
10.4 Smoothness of B-spline Curves
10.5 The B-spline Basis

10.6 Two Recursion Formulas
10.7 Repeated Knot Insertion
10.8 B-spline Properties

10.9 B-spline Blossoms

10.10 Approximation

10.11 B-spline Basics

10.12 Implementation

10.13 Exercises

W. Boehm: Differential Geometry I

11.1 Parametric Curves and Arc Length
11.2 The Frenet Frame

11.3 Moving the Frame

114 The Osculating Circle

11.5 Nonparametric Curves

11.6 Composite Curves

Geometric Continuity

12.1 Motivation

122 The Direct Formulation

12.3 The y Formulation

12.4 The v and B Formulation

12.5 Comparison

12.6 G? Cubic Splines

12.7 Interpolating G* Cubic Splines

12.8 Local Basis Functions for G? Splines
12.9 Higher Order Geometric Continuity
12.10 Implementation

12.11 Exercises

ix

122
122
125
127
131
136
138
140

141
141
143
147
150
151
153
156
158
159
163
167
168
170

171
171
173
174
175
178
179

181
181
182
183
184
185
186
189
190
192
195
195

13

14

15

16

Conic Sections

13.1 Projective Maps of the Real Line
13.2 Conics as Rational Quadratics
13.3 A de Casteljau Algorithm
13.4 Derivatives

13.5 The Implicit Form

13.6 Two Classic Problems

13.7 Classification

13.8 Control Vectors

13.9 Implementation

13.10 Exercises

Rational Bézier and B-spline Curves

14.1 Rational Bézier Curves

14.2 The de Casteljau Algorithm

14.3 Derivatives

14.4 Osculatory Interpolation

14.5 Reparametrization and Degree Elevation
14.6 Control Vectors

147 Rational Cubic B-spline Curves

14.8 Interpolation with Rational Cubics
14.9 Rational B-splines of Arbitrary Degree
14.10 Implementation

14.11 Exercises

Tensor Product Patches

15.1 Bilinear Interpolation

15.2 The Direct de Casteljau Algorithm
153 The Tensor Product Approach
15.4 Properties

15.5 Degree Elevation

15.6 Derivatives

15.7 Blossoms

15.8 Normal Vectors

159 Twists

15.10 The Matrix Form of a Bézier Patch
15.11 Nonparametric Patches

15.12 Tensor Product Interpolation

15.13 Bicubic Hermite Patches

15.14 Implementation

15.15 Exercises

Composite Surfaces and Spline Interpolation
16.1 Smoothness and Subdivision
16.2 Tensor Product B-spline Surfaces

Contents

196
196
199
204
205
205
208
209
212
213
213

215
215
218
220
221
221
224
225
226
227
229
229

231
231
233
236
239
240
241
243
244
247
248
249
250
253
254
254

256
256
258

Contents

17

18

19

163 Twist Estimation

16.4 Bicubic Spline Interpolation

16.5 Finding Knot Sequences

16.6 Rational Bézier and B-spline Surfaces

16.7 Surfaces of Revolution

16.8 Volume Deformations

16.9 CONS and Trimmed Surfaces

16.10 Implementation

16.11 Exercises

Bézier Triangles

17.1 The de Casteljau Algorithm

17.2 Triangular Blossoms

17.3 Bernstein Polynomials

17.4 Derivatives

17.5 Subdivision

17.6 Differentiability

17.7 Degree Elevation

17.8 Nonparametric Patches

17.9 Rational Bézier Triangles

17.10 Quadrics

17.11 Interpolation
17.11.1 Cubic and Quintic Interpolants
17.11.2 The Clough—Tocher Interpolant
17.11.3 The Powell-Sabin Interpolant

17.12 Implementation

17.13 Exercises

Geometric Continuity for Surfaces

18.1
18.2
18.3
184
18.5
18.6
18.7
18.8

Introduction

Triangle-Triangle
Rectangle—Rectangle
Rectangle-Triangle

“Filling In” Rectangular Patches
“Filling In” Triangular Patches
Theoretical Aspects

Exercises

Surfaces with Arbitrary Topology

19.1
19.2
19.3
194
19.5

Doo—Sabin Surfaces
Interpolation
S-Patches

Surface Splines
Exercises

xi

261
264
265
268
270
270
274
276
278

279
279
282
283
285
289
291
293
293
296
298
301
302
303
305
306
307

308
308
309
312
313
314
315
315
316

317
317
320
321
323
324

xii

20

21

22

23

24

Contents

Coons Patches 326
20.1 Ruled Surfaces 326
20.2 Coons Patches: Bilinearly Blended 328
20.3 Coons Patches: Partially Bicubically Blended 331
20.4 Coons Patches: Bicubically Blended 332
20.5 Piecewise Coons Surfaces 334
20.6 Exercises 334
Coons Patches: Additional Material 336
21.1 Compatibility 336
21.2 Control Nets from Coons Patches 338
21.3 Translational Surfaces 340
21.4 Gordon Surfaces 341
21.5 Boolean Sums 343
21.6 Triangular Coons Patches 344
21.7 Implementation 347
21.8 Exercises 347
W. Boehm: Differential Geometry II 348
22.1 Parametric Surfaces and Arc Element 348
22.2 The Local Frame 350
22.3 The Curvature of a Surface Curve 351
224 Meusnier’s Theorem 352
22,5 Lines of Curvature 353
22.6 Gaussian and Mean Curvature 355
2277 Euler’s Theorem 356
22.8 Dupin’s Indicatrix 357
229 Asymptotic Lines and Conjugate Directions 358
22.10 Ruled Surfaces and Developables 359
22.11 Nonparametric Surfaces 360
22.12 Composite Surfaces 361
Interrogation and Smoothing 363
23.1 Use of Curvature Plots 363
23.2 Curve and Surface Smoothing 364
23.3 Surface Interrogation 367
23.4 Implementation 369
23.5 Exercises 370
Evaluation of Some Methods 372
24.1 Bézier Curves or B-spline Curves? 372
242 Spline Curves or B-spline Curves? 372
24.3 The Monomial or the Bézier Form? 373
24.4 The B-spline or the Hermite Form? 375

245 Triangular or Rectangular Patches? 376

Contents xiii

25 Quick Reference of Curve and Surface Terms 378
Appendix 1: List of Programs 385
Appendix 2: Notation 386
Bibliography 387

Index 421

Preface

In the late 1950s, hardware became available that allowed the machining of 3D shapes
out of blocks of wood or steel.! These shapes could then be used as stamps and dies
for products such as the hood of a car. The bottleneck in this production method was
soon found to be the lack of adequate software. In order to machine a shape using a
computer, it became necessary to produce a computer-compatible description of that
shape. The most promising description method was soon identified to be in terms
of parametric surfaces. An example of this approach is provided by Plates I and III:
Plate I shows the actual hood of a car; Plate III shows how it is represented internally
as a collection of parametric surfaces.

The theory of parametric surfaces was well understood in differential geometry.
Their potential for the representation of surfaces in a Computer Aided Design (CAD)
environment was not known at all, however. The exploration of the use of parametric
curves and surfaces can be viewed as the origin of Computer Aided Geometric Design
(CAGD).

The major breakthroughs in CAGD were undoubtedly the theory of Bézier
surfaces and Coons patches, later combined with B-spline methods. Bézier curves
and surfaces were independently developed by P. de Casteljau at Citroen and by
P. Bézier at Renault. De Casteljau’s development, slightly earlier than Bézier’s, was
never published, and so the whole theory of polynomial curves and surfaces in
Bernstein form now bears Bézier’s name. CAGD became a discipline in its own right
after the 1974 conference at the University of Utah (see Barnhill and Riesenfeld [31]).

This book presents a unified treatment of the main ideas of CAGD. During the last
years, there has been a trend towards more geometric insight into curve and surface
schemes; I have followed this trend by basing most concepts on simple geometric
algorithms. For instance, a student will be able to construct Bézier curves with hardly
any knowledge of the concept of a parametric curve. Later, when parametric curves are
discussed in the context of differential geometry, one can apply differential geometry
ideas to the concrete curves that were developed before.

The theory of Bézier curves (and rational Bézier curves) plays a central role in this
book. They are numerically the most stable among all polynomial bases currently used
in CAD systems, as was shown by Farouki and Rajan [196]. Thus Bézier curves are
the ideal geometric standard for the representation of piecewise polynomial curves.

! A process that is now called CAM for Computer Aided Manufacturing.

XV

xvi Preface

Also, Bézier curves lend themselves easily to a geometric understanding of many
CAGD phenomena and may, for instance, be used to derive the theory of rational and
nonrational B-spline curves.

While this book offers a comprehensive treatment of the basic methods in curve
and surface design, it is not meant to provide solutions to application-oriented prob-
lems that arise in practice. In particular, no algorithms are included to handle in-
tersection, rendering, or offset problems. At present, no unified approach exists for
these “geometry processing” problems. However, the material presented here should
enable the reader to read the advanced literature on the topics; on offsets: [169],
[182], [183], [282], [286], [289], [306], [420], [481]; on intersections: [28], [148],
[150], [218],[223], [245], [265], [287], [290], [316], [325], [344], [380], [404], [423],
[453], [455] [457]; on rendering: [1], [95], [205], [219], [326], [469].

Also, this is not a text on solid modeling. That branch of geometric modeling
is concerned with the representation of objects that are enclosed by an assembly of
surfaces, mostly very elementary ones such as planes, cylinders, or tori. As solid
modeling systems are becoming fully accepted, they are incorporating the freeform
curves and surfaces described in this book. The literature includes: [98], [186], [194],
[276], [343], [354], [416], [487].

I have taught the material presented here in the form of both conference tutorials
and university courses, typically at the intermediate level. The exercises are in three
categories: simpler questions at the beginning of each Exercises section, harder
questions marked by asterisks, and programming exercises marked by “P.”” Many of
these programming exercises use data provided on the enclosed disk. Students should
thus get a better feeling for “real” situations. In teaching this material, it is essential
that students have access to computing and graphics facilities; practical experience
greatly helps the understanding and appreciation of what might otherwise remain dry
theory.

When I use this book as a text for a one-semester CAGD class at the lower
graduate/upper undergraduate level, I typically cover the following chapters: the first
half of Chapter 3, Chapters 4, 5, 6, 8, 9, 15, and 16. Material from other chapters is
sprinkled in as needed.

The C programs on the disk are my implementations of some (but not all) of
the most important methods described here. The programs were tested for many
examples, but they are not meant to be “industrial strength.” In general, no checks
are made for consistency or correctness of input data. Also, modularity was valued
higher than efficiency. The programs are in C, but with non-C users in mind—in
particular, all modules should be easily translatable into FORTRAN.

This book would not have been possible without the stimulating environment
provided by the CAGD group at Arizona State University (and formerly at the
University of Utah), founded by Robert E. Barnhill. The book also greatly benefitted
from numerous discussions I had with experts such as A. Nasri, T. Foley, Q. Fu,
H. Hagen, J. Hoschek, G. Nielson, R. Patterson, and A. Worsey. I would also like to
express my appreciation for the funding provided by the National Science Foundation

Preface xvii

and the Department of Energy.? Special thanks go to D. C. Hansford for the numerous
helpful suggestions concerning the mathematical side of the material, and also to
W. Boehm, who was a critical and constructive consultant during the development of
this book.

I am also grateful to the following people for suggesting improvements over the
previous editions: S. Abi-Ezzi, N. Beebe, W. Boehm, R. E. Barnhill, E. Clapp, P. J.
Davis, B. Hamann, D. Jung, F. Kimura, T.-W. Kim, S. Mann, G. Nielson, A. Swimmer,
K. Voegele, W. Waggenspack, H. Wolters, M. Wozny, G. Wu, and Y. Yamaguchi.

Gerald Farin
Tempe, Ariz.

2Grants DCR-8502858 and DE-FG02-87ER25041, respectively.

Chapter 1

P. Bézier: How a Simple
System Was Born

In order to solve CAD/CAM mathematical problems, many solutions have been of-
fered, each being adapted to specific matters. Most of the systems were invented
by mathematicians, but UNISUREF, at least initially, was developed by mechanical
engineers from the automotive industry. They were familiar with parts mainly de-
scribed by lines and circles; fillets and other blending auxiliary surfaces were scantily
defined, their final shape being left to the skill and experience of patternmakers and
die-setters.

Circa 1960, designers of stamped parts such as car-body panels used French
curves and sweeps, but in fact the final standard was the “master model,” the shape
of which, for many valid reasons, could not coincide with the curves traced on the
drawing board. This problem resulted in discussions, arguments, haggling, retouches,
expenses, and delay.

Obviously, no significant improvement could be expected as long as no method
was devised that could provide an accurate, complete, and indisputable definition of
freeform shapes.

Computing and numerical control (NC) had made great progress at that time, and
it was certain that only numbers, transmitted from the drawing office to tool drawing
office, manufacture, patternshop and inspection, could provide an answer. Drawings
would of course remain necessary, but they would only be explanatory, their accuracy
having no importance. Numbers would be the single, final definition.

Certainly, no system could be devised without the help of mathematics—yet
designers, who would be in charge of operating such a system, had a good knowledge
of geometry, especially descriptive geometry, but no basic training in algebra or
analysis.

It should be noted that in France very little was known at that time about the
work performed in the American aircraft industry. The papers of James Ferguson

1

2 Chapter 1. P. Bézier: How a Simple System Was Born

___——

Figure 1.1: An arc of a hand-drawn curve is approximated by a part of a template.

were little disseminated before 1964; Citroén was secretive about the results obtained
by Paul de Casteljau, and the famous technical report MAC-TR-41 (by S. A. Coons)
did not appear until 1967. The works of W. Gordon and R. Riesenfeld were printed
in 1974.

At the beginning, the concept of UNISURF was oriented toward geometry rather
than analysis, but with the idea that every datum should be exclusively expressed by
numbers.

For instance, an arc of a curve could be represented (Figure 1.1) by the co-
ordinates, cartesian of course, of its limit points, i.e., A and B, together with their
curvilinear abscissas, related by a grid traced on the edge.

The shape of the middle line of a sweep is a cube, if its cross-section is constant,
its matter is homogeneous, and the effect of friction on the tracing cloth is neglected.
However, it is difficult to take into account the length between endpoints. Moreover,
the curves employed for software for NC machine tools, i.e., 2D milling machines,
were lines, circles, and sometimes parabolas. Hence, a spline shape should be divided
and subdivided into small arcs of circles placed end to end.

In order to transform an arc of circle into a portion of an ellipse, one could imagine
(Figure 1.2) a square frame containing two sets of strings, whose intersections would
be located on an arc of a circle. If the frame sides are hinged, flexing the hinges
transforms the square into a diamond (Figure 1.3). The circle becomes an arc of an
ellipse, which would be entirely defined as soon as the coordinates of points A, B,
and C were known. If the hinged sides of the frame were replaced by pantographs
(Figure 1.4), the diamond would become a parallelogram, and the arc of an ellipse is
still defined by the coordinates of the three points A, B, and C (Figure 1.5).

Chapter 1. P. Bézier: How a Simple System Was Born 3

B C
O

[]
.
N
R
o]

Figure 1.2: A circular arc is obtained by connecting the points in this rectangular grid.

Figure 1.3: If the frame from the previous figure is sheared, an arc of an ellipse is
obtained.

Chapter 1. P. Bézier: How a Simple System Was Born

Figure 1.4: Pantograph construction of an arc of an ellipse.

~.’
l’ =
7/
- /
TS /
S~ ’
T~ /
\'\ /
~—
\‘\,-<

Figure 1.5: A “control polygon” for an arc of an ellipse.

Chapter 1. P. Bézier: How a Simple System Was Born 5

Of course, this idea was not realistic, but it was easily replaced by the computation
of coordinates of successive points of the curve. Harmonic functions were available
with the help of analog computers, which were widely used at that time and gave
excellent results.

However, employing only arcs of ellipses limited by conjugate diameters was
far too restrictive, and a more flexible definition was required.

Another idea came from the practice of a speaker projecting, with a flashlight, a
small cross or arrow onto a screen displaying a figure printed on a slide. Replacing
the arrow with a curve and recording the exact location and orientation of the torch
(Figure 1.6) would define the image of the curve projected on the wall of the drawing
office. One could even imagine having a variety of slides, each of which would bear
a specific curve: circles, parabola, astroid, etc.

Of course, this was not a realistic idea, because the focal plane of the zoom
would seldom be square to the axis—an optician’s nightmare! But the principle
could be translated, via projective geometry and matrix computation, into cartesian
coordinates.

At that time, designers defined the shape of a car body by cross-sections located
100 mm apart, and sometimes less. The advantage was that, from a drawing, one
could derive templates for adjusting a clay model, a master, or a stamping tool. The
drawback was that a stylist does not define a shape by cross-sections, but rather by so-
called “character lines,” which are seldom plane curves. Hence, a good system should
be capable of manipulating and directly defining “space curves” or “freeform curves.”

A S N N N
A VN

Figure 1.6: A projector producing a “template curve” on the drawing of an object.

Chapter 1. P. Bézier: How a Simple System Was Born

Figure 1.7: Two imaginary projections of a car.

Of course, one could imagine working alternately (Figure 1.7) on two projections of
a space curve, but it is very unlikely that a stylist would accept such a solution.

Theoretically, at least, a space curve could be expressed by a sweep having a
circular section, constrained by springs or counterweights (Figure 1.8), but this would
prove quite impractical.

Would it not be best to revert to the basic idea of a frame? But instead of being
inscribed in a square, the curve would be located in a cube (Figure 1.9) that could
become any parallelepiped (Figure 1.10) by a linear transformation that is easy to
compute. The first idea was to choose a basic curve that would be the intersection of
two circular cylinders; the parallelepiped would be defined (Figure 1.10) by points
0O, X, Y, and Z, but it is more practical to put the basic vectors end to end so as to
obtain a polygon OMNB (Figure 1.10), which directly defines the endpoint B and its
tangent NB. Of course, points O, M, N, and B need not be coplanar and can define a
space curve.

Polygons with three legs can define quite large a variety of curves (see Figure
3.4 in Section 3.3). To increase that variety, however, we can imagine to make use of
cubes and hypercubes of any order (Figure 1.11) and the relevant polygons (Figure
1.13) (see Figure 3.4 in Section 3.3).

Chapter 1. P. Bézier: How a Simple System Was Born

Figure 1.8: A curve held by springs.

Figure 1.9: A curve defined inside a cube.

Chapter 1. P. Bézier: How a Simple System Was Born

Figure 1.11: Higher order curves can be defined inside higher dimensional cubes.

Chapter 1. P. Bézier: How a Simple System Was Born 9

At that moment, it became necessary to do away with harmonic functions and
revert to polynomials. This was even more desirable because digital computers were
gradually replacing analog computers. The polynomial functions were chosen ac-
cording to the properties that were considered best: tangency, curvature, etc. Later it
was discovered that they could be considered as sums of Bernstein’s functions.

When it was suggested that these curves could replace sweeps and French curves,
most stylists objected that they had invented their own templates and would not
change. It was solemnly promised that their “secret” curves would be translated into
secret listings and buried in the most secret part of the memory of the computer, and
that only the stylists would have the key to the vaulted cellar. In fact, the standard
curves were flexible enough and secret curves were soon forgotten. Designers and
draftsmen easily understood the polygons and their relation to the shape of the
corresponding curves.

In the traditional process of body engineering, a set of curves was carved in a
3D model, and interpolation between the curves was left to the experience of highly
skilled patternmakers. However, in order to obtain a satisfactory numerical definition,
the surface must be totally expressed with numbers.

At that time, around 1960, very little, if anything, had been published about
biparametric patches. The basic idea of UNISURF came from a comparison with a
process often used in foundries to obtain a core. Sand is compacted in a box (Figure
1.12), and the shape of the upper surface of the core is obtained by scraping off the
surplus with a timber plank cut as a template. Of course, a shape obtained by such
a method is relatively simple, because the shape of the plank is constant and that of
the box edges is generally simple. To make the system more flexible, one might wish
to change the shape of the template as it moves. In fact, this takes us back to a very
old, and sometimes forgotten, definition of a surface: it is the locus of a curve that is

RSN
TOETNL

Figure 1.12: A surface is being obtained by scraping off excess material with wooden
templates.

10 Chapter 1. P. Bézier: How a Simple System Was Born

simultaneously moved and distorted. About 1970, a Dutch laboratory sculpted blocks
of styrofoam with a flexible, electrically heated strip of steel, the shape of which was
controlled by the flexion torque imposed on its extremities.

This process could not produce a large variety of shapes, but the principle could
be translated into a mathematical solution. The guiding edges of the box are similar
to the curves AB and CD of Figure 1.13, which can be considered as directrices of
a surface defined by their characteristic polygon. If a curve such as EF is generatrix,
defined by its own polygon, the ends of which run along lines AB and CD, and the
intermediate vertices of the polygon are on curves GH and JK, then the surface ABDC
is known as soon as the four polygons are defined. Connecting the corresponding
vertices of the polygons defines the “characteristic net” of the patch, which plays
the same role relative to the surface as the polygon of a curve. Hence, the cartesian
coordinates of the points of the patch are computed according to the values of two
parameters.

After this basic idea was expressed, a good many problems remained to be
solved: choosing adequate functions, blending curves and patches, and dealing with
degenerate patches, to name only a few. The solutions were a matter of relatively
simple mathematics, the basic principle remaining untouched.

A system was thus progressively created. If we consider the way the initial idea
evolved, we observe that the first solution—parallelogram, pantograph—is the result

Figure 1.13: The characteristic net of a surface.

Chapter 1. P. Bézier: How a Simple System Was Born 11

of an education oriented toward kinematics, the conception of mechanisms. Then
geometry and optics appeared, which very likely came from army training, in which
geometry, cosmography, and topography played an important part. Then reflection
was oriented towards analysis, parametric spaces and finally, data processing, because
a theory, as convenient as it may appear, must not impose too heavy a task on the
computer and must be easily understood, at least in principle, by the operators.

Note that the various steps of this conception have a point in common: each idea
must be related to the principle of a material system, simple and primitive though it
may seem, on which a variable solution could be based.

An engineer defines what is to be done and how it can be done, not only describing
the goal, but leading the way toward it.

Before looking any deeper into this subject, observe that elementary geometry
played a major part. The subject should not gradually disappear from the training of
a mechanical engineer. Each idea, each hypothesis, was expressed by a figure or a
sketch, representing a mechanism. It would have been extremely difficult to build a
purely mental image of a somewhat elaborate system without the help of pencil and
paper. Let us consider, for instance, Figures 1.9 and 1.11; they are equivalent to Egs.
(4.7) and (15.6) in later chapters. These formulas, conveniently arranged, are best
suited to express data to a computer. Most people, however, would better understand
a simple figure than the equivalent algebraic expression.

Napoleon said: “A short sketch is better than a long report.”

What parts are played by experience, by theory, and by imagination in the
creation of a system? There is no definite answer. The importance of experience
and of theoretical knowledge is not always clearly perceived. Imagination seems a
gift, a godsend or the result of beneficial heredity. But is not imagination in fact
the result of the maturation of knowledge gained during education and professional
practice? Is it not born from facts apparently forgotten, stored in the dungeon of a
distant part of memory, and suddenly remembered when circumstances call them
back? Is not imagination partly based on the ability to connect notions which, at
first sight, look quite unrelated, such as mechanics, electronics, optics, foundry, and
data processing—to catch barely seen analogies—like Alice in Wonderland, to go
“through the looking glass™?

Will psychologists someday be able to detect in humans a gift such as this that
would be applicable to science and technology? Is it related to the sense of humor,
which can detect unexpected relations between facts that look quite unconnected?
Will we learn how to develop it? Or will it forever remain a gift, bestowed by pure
chance on some people while others must rely on carefulness and rationality?

It is important that “sensible” people sometimes give free rein to imaginative
people. “I succeeded,” said Henry Ford, “because I let some fools try what wise
people had advised me not to let them try.”

Chapter 2

Introductory Material

2.1 Points and Vectors

When a designer or stylist works on an object, he or she does not think of that object
in very mathematical terms. A point on the object would not be thought of as a triple
of coordinates, but rather in functional terms: as a corner, the midpoint between two
other points, and so on. The objective of this book, however, is to discuss objects that
are defined in mathematical terms, the language that lends itself best to computer
implementations. As a first step toward a mathematical description of an object, one
therefore defines a coordinate system in which it will be described analytically.

The space in which we describe our object does not possess a preferred coordinate
system—we have to define one ourselves. Many such systems could be picked (and
some will certainly be more practical than others). But whichever one we choose, it
should not affect any properties of the object itself. Our interest is in the object and
not in its relationship to some arbitrary coordinate system. Therefore, the methods
we develop must be independent of a particular choice of a coordinate system. We
say that those methods must be coordinate-free or coordinate-independent.!

The concept of coordinate-free methods is stressed throughout this book. It
motivates the strict distinction between points and vectors as discussed next. (For
more details on this topic, see R. Goldman [230].)

We shall denote points, elements of three-dimensional euclidean (or point) space
B3, by lowercase boldface letters such as a, b, etc. (The term “euclidean space” is
used here because it is a relatively familiar term to most people. More correctly, we
should have used the term “affine space.”) A point identifies a location, often relative
to other objects. Examples are the midpoint of a straight line segment or the center
of gravity of a physical object.

"More mathematically, the geometry of this book is affine geometry. The objects that we
will consider “live” in affine spaces, not in linear spaces.

12

2.1. Points and Vectors 13

a

Figure 2.1: Points and vectors: vectors are not affected by translations.

The same notation (lowercase boldface) will be used for vectors, elements of
three-dimensional linear (or vector) space R>. If we represent points or vectors by
coordinates relative to some coordinate system, we shall adopt the convention of
writing them as coordinate columns.

Although both points and vectors are described by triples of real numbers, we
emphasize that there is a clear distinction between them: for any two points a and b,
there is a unique vector v that points from a to b. It is computed by componentwise
subtraction:

v=b—a, abePF, veR.

On the other hand, given a vector v, there are infinitely many pairs of points a, b
such that v = b — a. For if a, b is one such pair and if w is an arbitrary vector, then
a + w, b + w is another such pair since v = (b + w) — (a + w) also. Figure 2.1
illustrates this fact.

Assigning the point a + w to every point a € [is called a translation, and the
above asserts that vectors are invariant under translations while points are not.

Elements of point space E* can only be subtracted from each other—this opera-
tion yields a vector. They cannot be added—this operation is not defined for points.
(It is defined for vectors.) Figure 2.2 gives an example.

Howeyver, addition-like operations are defined for points: they are barycentric
combinations.* These are weighted sums of points where the weights sum to one:

_x . bEP
b—zgajbj, b= @1
p=

They are also called affine combinations.

14 Chapter 2. Introductory Material

70

Figure 2.2: Addition of points: this is not a well-defined operation, since different co-
ordinate systems would produce different “solutions.” The two points to be “added”
are marked by solid squares.

At first glance, this looks like an undefined summation of points, but we can rewrite
(2.1)as

b = by + Zaj(bj — by),

j=1

which is clearly the sum of a point and a vector.
An example of a barycentric combination is the centroid g of a triangle with
vertices a, b, ¢, given by

1 + 1 b+ 1
g=3a+t3 3¢

The term “barycentric combination” is derived from “barycenter,” meaning ‘“‘cen-
ter of gravity.” The origin of this formulation is in physics: if the b; are centers
of gravity of objects with masses m;, then their center of gravity b is located at
b = 3"m;b;/ %" m; and has the combined mass) m;. (If some of the m; are nega-
tive, the notion of electric charges may provide a better analogy; see Coxeter [119],
p- 214.) Since a common factor in the m; is immaterial for the determination of the
center of gravity, we may normalize them by requiring > " m; = 1.

An important special case of barycentric combinations are the convex combina-
tions. These are barycentric combinations where the coefficients «;, in addition to

2.1. Points and Vectors 15

Figure 2.3: Convex hulls: a point set (a polygon) and its convex hull, shown shaded.

summing to one, are also nonnegative. A convex combination of points is always
“inside” those points, which is an observation that leads to the definition of the con-
vex hull of a point set: this is the set that is formed by all convex combinations of
a point set. Figure 2.3 gives an example; see also Exercises. More intuitively, the
convex hull of a set is formed as follows: for a 2D set, imagine a string that is loosely
circumscribed around the set, with nails driven through the points in the set. Now
pull the string tight—it will become the boundary of the convex hull.

The convex hull of a point set is a convex set. Such a set is characterized by
the following: for any two points in the set, the straight line connecting them is also
contained in the set. Examples are ellipses or parallelograms. It is an easy exercise to
verify that affine maps (see next section) preserve convexity.

Let us return to barycentric combinations, which generate points from points. If
we want to generate a vector from a set of points, we may write

n
v= E ajPj
j=0

where we have a new restriction on the coefficients: Now we must demand that the
0 j sum to zero.
If we are given an equation of the form

a=>» Bb,

and a is supposed to be a point, then we must be able to split the sum into three
groups:

a= Z Bib; + Z Bjb; + Z Bjb.

E B,=1 E B,=0 remaining B's

16 Chapter 2. Introductory Material

Then the b; in the first sum are points, and those in the second sum may be interpreted
as either points or vectors. The b; in the third one are vectors. While the second and
third sums may be empty, the first one must contain at least one term.

The interplay between points and vectors is unusual at first. Later, it will turn
out to be of invaluable theoretical and practical help. For example, we can perform
quick type checking when we derive formulas. If the point coefficients fail to add
up to one or zero—depending on the context—we know that something has gone
wrong. In a more formal way, T. DeRose has developed the concept of “geometric
programming,” a graphics language that automatically performs type checks [145],
[146]. R. Goldman’s article [230] treats the validity of point/vector operations in
more detail.

2.2 Affine Maps

Most of the transformations that are used to position or scale an object in a computer
graphics or CAD environment are affine maps. (More complicated, so-called projec-
tive maps are discussed in Chapter 13.) The term “affine map” is due to L. Euler;
affine maps were first studied systematically by F. Moebius [361].

The fundamental operation for points is the barycentric combination. We will
thus base the definition of an affine map on the notion of barycentric combinations.
A map ® that maps B> into itself is called an affine map if it leaves barycentric
combinations invariant. So if

X = Zajaj; Zaj = 1, x,ajE[E3

and ® is an affine map, then also
Ox = > a;da;; Ox Pa; € F. (2.2)

This definition looks fairly abstract, yet has a simple interpretation. The expression
X =) aj;a; specifies how we have to weight the points a; so that their weighted
average is X. This relation is still valid if we apply an affine map to all points a; and
to x. As an example, the midpoint of a straight line segment will be mapped to the
midpoint of the affine image of that straight line segment. Also, the centroid of a
number of points will be mapped to the centroid of the image points.

Let us now be more specific. In a given coordinate system, a point x is represented
by a coordinate triple, which we also denote by x. An affine map now takes on the
familiar form

Ox = Ax + v, 2.3)

where A is a 3 X 3 matrix and v is a vector from R3.

2.2. Affine Maps 17

A simple computation verifies that (2.3) does in fact describe an affine map, i.e.,
that barycentric combinations are preserved by maps of that form. For the following,
recall that " a; = 1:

P (Zajaj) =A (Z ajaj> +v
= ZajAa]— + Zajv
= Z 23] (Aaj + V)
= Z ajq)aj,
which concludes our proof. It also shows that the inverse of our initial statement is

true as well: every map of the form (2.3) represents an affine map.
Some examples of affine maps:

The identity. Itis given by v = 0, the zero vector, and by A = I, the identity matrix.
A translation. Itis given by A = I, and a translation vector v.

A scaling. It is given by v = 0 and by a diagonal matrix A. The diagonal entries
define by how much each component of the preimage x is to be scaled.

A rotation. If we rotate around the z-axis, then v = 0 and

cosa —sina O
A= sina¢e cosa O
0 0 1

A shear. An example is given by v = 0 and

1
A= 1|0
0

S = Q
—_— O

This family of shears maps the (x, y)-plane onto itself.

A parallel projection. All of E is projected onto the (x, y)-plane if we set

>

i
oo -
o~ O
oo o

and v = 0. Note that A may also be viewed as a scaling matrix.

18 Chapter 2. Introductory Material

Figure 2.4: A shear: this affine map is used in font design in order to generate slanted
fonts. Left: original letter; right: slanted letter.

We give one example of an affine map that is important in the area of font design.
A given letter is subjected to a 2D shear and thus transforms into a slanted letter.
Figure 2.4 gives an example; see also Section 8.5.

An important special case of affine maps are the euclidean maps, also called rigid
body motions. They are characterized by orthonormal matrices A that are defined by
the property ATA = I. Euclidean maps leave lengths and angles unchanged; the most
important examples are rotations and translations.

Affine maps can be combined, and a complicated map may be decomposed into
a sequence of simpler maps. Every affine map can be composed of translations,
rotations, shears, and scalings.

The rank of A has an important geometric interpretation: if rank(A) = 3, then
the affine map ® maps three-dimensional objects to three-dimensional objects. If the
rank is less than three, ® is a parallel projection onto a plane (rank = 2) or even onto
a straight line (rank = 1).

An affine map of E? to [E? is uniquely determined by a (nondegenerate) triangle
and its image. Thus any two triangles determine an affine map of the plane onto
itself. In 3, an affine map is uniquely defined by a (nondegenerate) tetrahedron and
its image.

More important facts about affine maps are discussed in the following section.

2.3 Linear Interpolation

Let a, b be two distinct points in E>. The set of all points x € > of the form

x=x()=(0—nHa+th; tER 2.4

2.3. Linear Interpolation 19

0t 1

Figure 2.5: Linear interpolation: two points a, b define a straight line through them.
The point x divides the straight line segment between a and b in the ratior : 1 — ¢.

is called the straight line through a and b. Any three (or more) points on a straight
line are said to be collinear.

For ¢ = 0 the straight line passes through a, and for ¢ = 1 it passes through b.
For 0 = t = 1, the point x is between a and b, while for all other values of 7 it is
outside; see Figure 2.5.

Equation (2.4) represents X as a barycentric combination of two points in E>.
The same barycentric combination holds for the three points 0,7, 1 in E': t = (1 —
t)-0+t-1.Sotis related to O and 1 by the same barycentric combination that
relates x to a and b. However, by the definition of affine maps, the three points a, x, b
in three-space are an affine map of the three points 0, ¢, 1 in one-space! Thus linear
interpolation is an affine map of the real line onto a straight line in E3 2

It is now almost a tautology when we state: Linear interpolation is affinely
invariant. Written as a formula: if ® is an affine map of E> onto itself, and (2.4)
holds, then also

®x = ®((1 — na +tb) = (1 — r)®a + tDb. 2.5

Closely related to linear interpolation is the concept of barycentric coordinates,
due to Moebius [361]. Let a, x, b be three collinear points in E>:

x = aa + Sb; a+pB=1 2.6)

Then « and B are called barycentric coordinates of x with respect to a and b. Note
that by our previous definitions, x is a barycentric combination of a and b.

3Strictly speaking, we should therefore use the term “affine interpolation” instead of “linear
interpolation.” We use “linear interpolation” because its use is so widespread.

20 Chapter 2. Introductory Material

The connection between barycentric coordinates and linear interpolation is ob-
vious: we have « = 1 — ¢ and B = t. This shows, by the way, that barycentric
coordinates do not always have to be positive: For t & [0, 1], either a or B is neg-
ative. For any three collinear points a, b, ¢, the barycentric coordinates of b with
respect to a and c are given by

_voly(b, ¢
vol 1 (a, C) ’

__volj(a, b)
voly(a, ¢)’

where vol; denotes the one-dimensional volume, which is the signed distance between
two points. Barycentric coordinates are not only defined on a straight line, but also
on a plane. Section 2.6 has more details.

Another important concept in this context is that of ratios. The ratio of three
collinear points a, b, ¢ is defined by

vol; (a, b)

ratio(a, b, c) = Wbc)

Q.7

If o and B are barycentric coordinates of b with respect to a and ¢, it follows that

ratio(a, b, ¢) = g. (2.8)

The barycentric coordinates of a point do not change under affine maps, and neither
does their quotient. Thus the ratio of three collinear points is not affected by affine
transformations. So if (2.8) holds, then also

ratio(®a, b, c) = g, 2.9)
where @ is an affine map. This property may be used to compute ratios efficiently.
Instead of using square roots to compute the distances between points a, x, and b, we
would project them onto one of the coordinate axes and then use simple differences
of their x- or y-coordinates.* This method works since parallel projection is an affine
map!

Equation (2.9) states that affine maps are ratio preserving. This property may be
used to define affine maps. Every map that takes straight lines to straight lines and is
ratio preserving is an affine map.

The concept of ratio preservation may be used to derive another useful property
of linear interpolation. We have defined the straight line segment [a, b] to be the affine
image of the unit interval [0, 1], but we can also view that straight line segment as
the affine image of any interval [q, b].

“But be sure to avoid projection onto the x-axis if the three points are parallel to the y-axis!

2.4. Piecewise Linear Interpolation 21

The interval [a, b] may itself be obtained by an affine map from the interval [0, 1]
or vice versa. With ¢t € [0, 1]and u € [q, b], that map is givenby t = (u—a)/(b —a).
The interpolated point on the straight line is now given by both

x(f) = (1 —)a + tb

and

b—ua+u—a
b—a b—a

x(u) = b. (2.10)
Since a,u, b and O, ¢, 1 are in the same ratio as the triple a, x, b, we have shown
that linear interpolation is invariant under affine domain transformations. By affine
domain transformation, we simply mean an affine map of the real line onto itself.
The parameter ¢ is sometimes called a local parameter of the interval [a, b].

A concluding remark: we have demonstrated the interplay between the two
concepts of linear interpolation and ratios. In this book, we will often describe
methods by saying that points have to be collinear and must be in a given ratio. This
is the geometric (descriptive) equivalent of the algebraic (algorithmic) statement that
one of the three points may be obtained by linear interpolation from the other two.

2.4 Piecewise Linear Interpolation

Let by, ..., b, € E? form a polygon B. A polygon consists of a sequence of straight
line segments, each interpolating to a pair of points b;, b, . It is therefore also called
the piecewise linear interpolant PL to the points b;. If the points b; lie on a curve ¢,
then B is said to be a piecewise linear interpolant to ¢, and we write

B = Ple. (2.11)

One of the important properties of piecewise linear interpolation is affine invari-
ance. If the curve ¢ is mapped onto a curve @ ¢ by an affine map @, then the piecewise
linear interpolant to ®c is the affine map of the original piecewise linear interpolant:

PLdec=d PLe 2.12)

Another property is the variation diminishing property. Consider a continuous
curve ¢, a piecewise linear interpolant Lc, and an arbitrary plane. Let cross ¢ be the
number of crossings that the curve ¢ has with this plane, and let cross PLc be the
number of crossings that the piecewise linear interpolant has with this plane. (Special
cases may arise; see Section 2.9.) Then we always have

cross PL ¢ < crossc. (2.13)

22 Chapter 2. Introductory Material
plan®

by

bo

Figure 2.6: The variation diminishing property: a piecewise linear interpolant to a
curve has no more intersections with any plane than the curve itself.

This property follows from a simple observation: consider two points b;, b;+;. The
straight line segment through them can cross a given plane at one point at most, while
the curve segment from ¢ that connects them may cross the same plane in many
arbitrary points. The variation diminishing property is illustrated in Figure 2.6.

2.5 Menelaos’ Theorem

We use the concept of piecewise linear interpolation to prove one of the most important
geometric theorems for the theory of CAGD: Menelaos’ theorem. This theorem can
be used for the proof of many constructive algorithms, and its importance was already
realized by de Casteljau [134].

Referring to Figure 2.7, let

a, = (1 —0p +1p,
a;, = (1 —s)p; +sp,
b, =1 —0p2 +1p;,
b, = (1 — 5)p; + sps.

Let ¢ be the intersection of the straight lines a,;b, and a;b;. Then

t
ratio(a;, ¢, b,) = 1= o and ratio(a,, ¢, bs) = 1=+ (2.14)
s _

For a proof, we simply show that c satisfies the two equations

c=(1-sa, +sb, and c=(1-0ta, + tb,,

2.6. Barycentric Coordinates in the Plane 23

P:

Figure 2.7: Menelaos’ theorem: the point ¢ may be obtained from linear interpolation
atrorats.

which is straightforward. Notice also that the four collinear points py, a,, a,, p, as well
as the four collinear points p,, by, by, p3 are affine maps of the four points 0, £, s, 1 on
the real line.

Equation (2.14) is a “CAGD version” of the original Menelaos’ theorem, which
may be stated as (see Coxeter [119]):

ratio(by, by, py) - ratio(p,, a;, a;) - ratio(a,, ¢, b;) = —1. (2.15)

The proof of (2.15) is a direct consequence of (2.14). Note the ordering of points in
the second ratio! Menelaos’ theorem is closely related to Ceva’s, which is given in
Section 2.6.

2.6 Barycentric Coordinates in the Plane

Barycentric coordinates were discussed in Section 2.3, where they were used in
connection with straight lines. Now we will use them as coordinate systems when
dealing with the plane. Planar barycentric coordinates are at the origin of affine
geometry—they were first introduced by F. Moebius in 1827; see his collected works
[361].

Consider a triangle with vertices a, b, ¢ and a fourth point p, all in E2. It is always
possible to write p as a barycentric combination of a, b, ¢:

p = ua +vb + we. (2.16)

A reminder: if (2.16) is to be a barycentric combination (and hence geometrically
meaningful), we require that

u+v+w=1. (2.17)

24 Chapter 2. Introductory Material

The coefficients u := (u, v, w) are called barycentric coordinates of p with respect
to a, b, ¢. We will often drop the distinction between the barycentric coordinates of
a point and the point itself; we then speak of “the point u.”

If the four points a, b, ¢, and p are given, we can always determine p’s barycentric
coordinates u, v, w: Egs. (2.16) and (2.17) can be viewed as a linear system of three
equations [recall that (2.16) is shorthand for two scalar equations] in three unknowns
u, v, w. The solution is obtained by an application of Cramer’s rule:

" area(p, b, ¢) y area(a, p, ¢) area(a, b, p) (2.18)
= , V= W= — .
area(a, b, ¢) area(a, b, ¢) area(a, b, ¢)

Actually, Cramer’s rule makes use of determinants; they are related to areas by the
identity

1| % b, ¢,
area(a, b, ¢) = 3| % b, ¢ |. (2.19)
1 1 1

We note that in order for (2.18) to be well defined, we must have area(a, b, ¢) # 0,
which means that a, b, ¢ must not lie on a straight line.

Because of their connection with barycentric combinations, barycentric coordi-
nates are affinely invariant: let p have barycentric coordinates u, v, w with respect to
a, b, ¢. Now map all four points to another set of four points by an affine map ®.
Then ®p has the same barycentric coordinates u, v, w with respect to ®a, @b, dc.

Figure 2.8 illustrates more of the geometric properties of barycentric coordinates.
An immediate consequence of Figure 2.8 is known as Ceva’s theorem:

ratio(a, p., b) - ratio(b, p,, ¢) - ratio(c, py, a) = 1.

More details on this and related theorems can be found in most geometry books, e.g.,
Gans [224] or Berger [46], or Boehm and Prautzsch [76].

Any three noncollinear points a, b, ¢ define a barycentric coordinate system in
the plane. The points inside the triangle a, b, ¢ have positive barycentric coordinates,
while the remaining ones have (some) negative barycentric coordinates. Figure 2.9
shows more.

We may use barycentric coordinates to define bivariate linear interpolation.
Suppose we are given three points py, p2, p3 € 2. Then any point of the form

p = p(w) = p(w, v, w) = up; + vpy + wps (2.20)

with u + v + w = 1 lies in the plane spanned by py, p,, p3. This map from [F? to
[E3 is called linear interpolation. Since u + v + w = 1, we may interpret u, v, w as
barycentric coordinates of p relative to py, p», p3- We may also interpret u, v, w as
barycentric coordinates of a point in E? relative to some triangle a, b, ¢ € E. Then
(2.20) may be interpreted as a map of the triangle a, b, ¢ € [E? onto the triangle
PL. P2, P3 € [E°. We call the triangle a, b, ¢ the domain triangle. Note that the actual

2.7. Tessellations and Triangulations 25

b

Figure 2.8: Barycentric coordinates: let p = ua + vb + we. The two figures show some
of the ratios generated by certain straight lines through p.

location or shape of the domain triangle is totally irrelevant to the definition of linear
interpolation. (Of course, we must demand that it be nondegenerate.) Since we can
interpret u, v, w as barycentric coordinates in both two and three dimensions, it follows
that linear interpolation (2.20) is an affine map.

Barycentric coordinates are not restricted to one and two dimensions; they are
defined for spaces of higher dimensions as well. For example, in three-space, any
nondegenerate tetrahedron with vertices py, ps, p3, P4+ may be used to write any point

pPasp = uip; + uzpz + usps + usps.

2.7 Tessellations and Triangulations

When dealing with sequences of straight line segments, we were in the context of
piecewise linear interpolation. We may also consider more than one triangle, thus
introducing bivariate piecewise linear interpolation. While straight line segments are

26 Chapter 2. Introductory Material

o}
u<o
w<0
\ o
(010)
o} [e] [o}
(_17111)
- v=0
(001) (100
o}
(@] o}
(11_272)

Figure 2.9: Barycentric coordinates: a triangle defines a coordinate system in the
plane.

combined into polygons in a straightforward way, the corresponding concepts for
triangles are not so obvious; they are the subject of this section.

We will first introduce the concept of a Dirichlet tessellation; this will lead to an
efficient way to deal with triangles. So consider a collection of points p; in the plane.
We are going to construct influence regions around each point in the following way:
Suppose each point is a transmitter for a cellular phone network. As a car moves
through the points p;, its phone should always be using the closest transmitter. We
may think of each transmitter as having an area of influence around it: whenever a car
is in a given transmitter’s area, its phone switches to that transmitter. More technically
speaking, we associate with each point py a tile T; consisting of all points p that are
closer to p; than to any other point p;. The collection of all these tiles is called the
Dirichlet tessellation of the given point set.”> Two points are called neighbors if their
tiles share a common edge. See Figure 2.10.

It is intuitively clear that the tile edges should consist of segments taken from
perpendicular bisectors of neighboring points. This observation directly leads to a
recursive construction which is due to R. Sibson [477]: suppose that we already
constructed the Dirichlet tessellation for a set of points, and we now want to add
one more point p,. First, we determine which of the previously constructed tiles is

This structure is also known as a Voronoi diagram or Thiessen regions.

2.7. Tessellations and Triangulations 27

Figure 2.10: Dirichlet tessellations: a point set and its tile edges.

occupied by pr; referring to Figure 2.11, let us assume it is T;. We now draw all
perpendicular bisectors between py and its neighbors, thus forming Tz. Continuing
in this manner, we can construct the tessellation for an arbitrary number of points.
Each point is thus in the “center” of a tile, most of them finite, but some infinite. It is

Figure 2.11: Dirichlet tessellations: a new point is inserted into an existing tessellation;
its tile is shaded.

28 Chapter 2. Introductory Material

not hard to see that all points with infinite tiles determine the convex hull of the data
points; see Section 2.1 for a definition.

While the preceding method may not be the most efficient one to construct the
Dirichlet tessellation for a set of points, it is very intuitive, and also forms the basis of
the following fundamental theorem. The tile T} is formed by cutting out parts of p.’s
neighboring tiles. Let A; be the area cut of T;, and let A be the area of T;. Then we
can write py as a barycentric combination of its neighbors (note that _ A; = A):

=Y %pi, @21)

This identity is also due to R. Sibson [477]; in case the summation is over only three
neighbors, it reduces to the barycentric coordinates of Section 2.6.

The Dirichlet tessellation of a set of points determines another fundamental
structure that is connected with the point set: its Delaunay triangulation. If we
connect all neighboring points, we have created a set of triangles that cover the
convex hull of the point set and that have the given points as their vertices; see Figure
2.12. The points with infinite tiles are now connected; they are called boundary points
of the triangulation.

We should mention one problem: while the Dirichlet tessellation is unique, the
Delaunay triangulation may not be. As an example, consider four points forming
a square: either diagonal produces a valid Delaunay triangulation. Four points that
have no unique Delaunay triangulation are called neutral sets; such points are always
cocircular.

Figure 2.12: Delaunay triangulations: a point set with its Dirichlet tessellation (fine
lines) and its Delaunay triangulation (heavy lines).

2.7. Tessellations and Triangulations 29

Clearly, there are many valid triangulations of a given point set. As it turns out,
the Delaunay triangulation is one of the “nicer” ones. Intuitively, we might say that
a triangulation is “nice” if it consists of triangles that are close to being equilateral.
If we compare two different triangulations of a point set, we might then compute
the minimal angle of each triangle. The triangulation that has the largest minimal
angle would be labeled the better one. Of all possible triangulations, the Delaunay
triangulation is the one that is guaranteed to produce the largest minimal angle; for
a proof, see Lawson [324]. The Delaunay triangulation is thus said to satisfy the
max—min criterion.

One might also consider the triangulation that satisfies the min—-max criterion:
the triangulation whose maximal angle is minimal. These triangulations are not easy
to compute; one reason is that their neutral point sets are fairly complex (see Hansford
[272]).

An important implementation aspect is the type of data structure to be used
for triangulations. Data sets with several million points are not unheard-of, and for
those, an intelligent structure is crucial. Such a structure should have the following
elements:

1. A point collection of (x, y) coordinate pairs,

2. A collection of triangles, each pointing to three elements in the point list and
also to three elements in the triangle collection, namely those that designate a
triangle’s three neighbors.

These collections are best realized in the form of linked lists, for ease of inserting
and deleting points. This data structure goes back to F. Little, who implemented it in
1978 at the University of Utah.

The major use of triangulations is in piecewise linear interpolation: suppose
that at each data point p; we are given a function value z;. Then we may construct
a linear interpolant—using linear interpolation from Section 2.6—over each of the
triangles. We obtain a faceted, continuous surface that interpolates to all given data.
This surface is not smooth, but it will give a decent idea of the shape of the given
data. One application is in cartography: here, the given data points might be co-
ordinates obtained from satellite readings, and the function values might be their
elevations. Our piecewise linear surface is an approximation to the landscape being
surveyed.

Once function values are involved, it may be advantageous to construct a trian-
gulation that reflects this information. Such triangulations are called data dependent;
see Dyn et al. [163] or Brown [82]. Here, one does not just consider triangles in
the plane, but rather the three-dimensional triangles generated by the data points

(Xt Yio Zk)-

®Boundary triangles may have only one or two neighbors.

30 Chapter 2. Introductory Material

2.8 Function Spaces

This section contains material that will later simplify our work by allowing very
concise notation. Although we shall try to develop our material with an emphasis
on geometric concepts, it will sometimes simplify our work considerably if we can
resort to some elementary topics from functional analysis. Good references are the
books by Davis [122] and de Boor [126].

Let Cla, b] be the set of all real-valued continuous functions defined over the
interval [a, b] of the real axis. We can define addition and multiplication by a constant
forelements f, g € Cla, b] by setting (af + Bg)(t) = af(t) + Bg(t) forallt € [a, b].
With these definitions, we can easily show that C[a, b] forms a linear space over the
reals. The same is true for the sets C*[a, b], the sets of all real-valued functions defined
over [a, b] that are k-times continuously differentiable. Furthermore, for every k, C**!
is a subspace of C*.

We say that n functions fi, ..., f, € Cla, b] are linearly independentif | ¢; f; =
Ofor all t € [a, b] impliesc; = -+ =c¢, = 0.

We mention some subspaces of C[a, b] that will be of interest later. The spaces
P" of all polynomials of degree n are:

pi(t) = ag + at + agt2 + -+ a,”, t € la bl

For fixed n, the dimension of P" is n + 1: each p” € P" is determined uniquely

by the n + 1 coefficients ay, . .., a,. These can be interpreted as a vector in (n + 1)-
dimensional linear space R”*! which has dimension + 1. We can also name a basis
for P": the monomials 1,112, ...,t" are n + 1 linearly independent functions and

thus form a basis.

Another interesting class of subspaces of Cla, b] is given by piecewise linear
functions: leta = fnp < 1; < --- < t, = b be a partition of the interval [a, b]. A
continuous function that is linear on each subinterval [#;, t;1,] is called a piecewise
linear function. Over a fixed partition of [a, b], the piecewise linear functions form
a linear function space. A basis for this space is given by the hat functions: a hat
function H;(t) is a piecewise linear function with H;(t;) = 1 and H;(¢;) = 0if i # j.
A piecewise linear function f with f(z;) = f; can always be written as

f@&y =" fiH@).

i=0

Figure 2.13 gives an example.

We will also consider linear operators that assign a function Af to a given
function f. An operator A : Cla, b] — Cla, b] is called linear if it leaves linear
combinations invariant:

Alaf + Bg) = ¢ Af + BAg;, a,BER

2.9.

Exercises 31

‘ 1 3 2

H() H1 H2
a b

Figure 2.13: Hat functions: the piecewise linear function f can be written as f =

Hy

+ 3H, + 2H,.

An example is given by the derivative operator that assigns the derivative f’ to a
given function f: Af = f'.

2.9 Exercises

*3.

*4.,

Of all affine maps, shears seem to be the least familiar to most people.’” Construct
a matrix that maps the unit square with points (0, 0), (1, 0), (1, 1), (0, 1) to the
parallelogram with image points (0, 0), (1, 0), (2, 1), (1, 1).

In the definition of the variation diminishing property, we counted the crossings
of a polygon with a plane. Discuss the case when the plane contains a whole
polygon leg.

We have seen that affine maps leave the ratio of three collinear points constant,
i.e., they are ratio-preserving. Show that the converse is also true: every ratio-
preserving map is affine.

We defined the convex hull of a point set to be the set of all convex combinations
formed by the elements of that set. Another definition is the following: the
convex hull of a point set is the intersection of all convex sets that contain the
given set. Show that the two definitions are equivalent.

"Recall that Figure 2.4 illustrates a shear.

32

*5.
*6.

*7.

PI1.

pP2.

Chapter 2. Introductory Material

Show that the n + 1 functions f;(t) = t';i = 0,..., n are linearly independent.
Our definition of barycentric combinations gives the impression that it needs the
involved points expressed in terms of some coordinate system. Show that this
is not necessary: draw five points on a piece of paper, assign a weight to each
one, and construct the barycenter of your points using a ruler (or compass and
straightedge, if you are more classically inclined).

Remark: For this construction, it is not necessary for the weights to sum
to one. This is so because the geometric construction remains the same if we
multiplied all weights by a common factor. In fact, one may replace the concept
of points (having mass one and requiring barycentric combinations as the basic
point operation) by that of mass points, having arbitrary weights and yielding
their barycenter (with the combined mass of all points) as the basic operation.
In such a setting, vectors would also be mass points, but with mass zero.?

Let a triangulation consist of b boundary points and of i interior points. Show
that the number of triangles is 2 + b — 2.

Fix two distinct points a, b on the x-axis. Let a third point x trace out all of the
x-axis. For each location of x, plot the value of the function ratio(a, x, b), thus
obtaining a graph of the ratio function.

Use the recursive algorithm from Section 2.7 to implement Dirichlet tessella-
tions.

8 was introduced to this concept by A. Swimmer. It was developed by H. Grassmann in

1844.

Chapter 3

The de Casteljau Algorithm

The algorithm described in this chapter is probably the most fundamental one in the
field of curve and surface design, yet it is surprisingly simple. Its main attraction
is the beautiful interplay between geometry and algebra: a very intuitive geometric
construction leads to a powerful theory.

Historically, it is with this algorithm that the work of de Casteljau started in
1959. The only written evidence is in [133] and [134], both of which are technical
reports that are not easily accessible. De Casteljau’s work went unnoticed until W.
Boehm obtained copies of the reports in 1975. From then on, de Casteljau’s name
gained more popularity.

3.1 Parabolas

We give a simple construction for the generation of a parabola; the straightforward
generalization will then lead to Bézier curves. Let by, by, b, be any three points in
B3, and let t € R. Construct

by() = (1 —)by + thy,
bl(t) = (1 =)b, + b,
b3(t) = (1 — Hbj(r) + 1b ().
Inserting the first two equations into the third one, we obtain
b3(t) = (1 — £)°by + 2t(1 —)b, + £°by. (3.1

This is a quadratic expression in ¢ (the superscript denotes the degree), and so b(z)(t)
traces out a parabola as t vaties from —o to +o. We denote this parabola by b?. This
construction consists of repeated linear interpolation; its geometry is illustrated in

33

34 Chapter 3. The de Casteljau Algorithm

b,

bo by

Figure 3.1: Parabolas: construction by repeated linear interpolation.

Figure 3.1. For ¢ between O and 1, b(¢) is inside the triangle formed by by, by, by; in
particular, b%(0) = by and b?(1) = b,.
Inspecting the ratios of points in Figure 3.1, we see that

ratio(bg, by, b;) = ratio(by, b, by) = ratio(b}, b, b}) = t/(1 —).

Thus our construction of a parabola is affinely invariant because piecewise linear
interpolation is affinely invariant; see Section 2.4.

We also note that a parabola is a plane curve, because b?(¢) is always a barycentric
combination of three points, as is clear from inspecting (3.1). A parabola is a special
case of conic sections, which will be discussed in Chapter 13.

Finally we state a theorem from analytic geometry, closely related to our parabola
construction. Let a, b, ¢ be three distinct points on a parabola. Let the tangent at b
intersect the tangents at a and ¢ in e and f, respectively. Let the tangents at a and ¢
intersect in d. Then ratio(a, e, d) = ratio(e, b, f) = ratio(d, f, ¢). This three tangent
theorem describes a property of parabolas; the de Casteljau algorithm can be viewed
as the constructive counterpart.

3.2 The de Casteljau Algorithm

Parabolas are plane curves. However, many applications require true space curves.
For those purposes, the previous construction for a parabola can be generalized to
generate a polynomial curve of arbitrary degree n:

!Compare the comments by P. Bézier in Chapter 1!

3.2. The de Casteljau Algorithm 35

de Casteljau Algorithm
Given: by, by,....b, € B andr € R,
Set:

BY(1) = (1 = b} (1) + b} (1) { P (3.2)

and b?(t) = b;. Then b{j(¢) is the point with parameter value ¢ on the Bézier curve b".

The polygon P formed by by,..., b, is called the Bézier polygon or control
polygon of the curve b*.2 Similarly, the polygon vertices b; are called control points
or Bézier points. Figure 3.2 illustrates the cubic case.

Sometimes we also write b*(t) = B[by, ..., b,;t] = B[P;?] or, shorter, b* =
Blby, ..., b,] = BP. This notation’® defines B to be the (linear) operator that asso-
ciates the Bézier curve with its control polygon. We say that the curve B[by, ..., b,]is
the Bernstein—Bézier approximation to the control polygon, a terminology borrowed
from approximation theory; see also Section 5.10.

S
_—

0

Figure 3.2: The de Casteljau algorithm: the point bj() is obtained from repeated linear
interpolation. The cubic case n = 3 is shown for¢ = 1/4.

2In the cubic case, there are four control points; they form a tetrahedron in the 3D case.
This tetrahedron was already mentioned by W. Blaschke [59] in 1923; he called it “osculating
tetrahedron.”

3This notation should not be confused with the blossoming notation used later.

36 Chapter 3. The de Casteljau Algorithm

The intermediate coefficients b} (¢) are conveniently written into a triangular
array of points, the de Casteljau scheme. We give the example of the cubic case:

bo
b; b}

33
b, bl b2 33

b; bl b? b

This triangular array of points seems to suggest the use of a two-dimensional array
in writing code for the de Casteljau algorithm. That would be a waste of storage,
howeyver: it is sufficient to use the left column only and to overwrite it appropriately.

For a numerical example, see Example 3.1. Figure 3.3 shows 50 evaluations of
a Bézier curve. The intermediate points b} are also plotted, and connected.

A de Casteljau scheme for a planar cubic and for t = %:
0
O_
"o o
_2 _1_
[8] 4] [2]
3
2] [2] (2
rA471 T g 7
o] [3] 3] 11
Lol L1] L2 3

Example 3.1: Computing a point on a Bézier curve with the Casteljau algorithm.

3.3 Some Properties of Bézier Curves

The de Casteljau algorithm allows us to infer several important properties of Bézier
curves. We will infer these properties from the geometry underlying the algorithm.
In the next chapter, we will show how they can also be derived analytically.

Affine invariance. Affine maps were discussed in Section 2.2. They are in the tool
kit of every CAD system: objects must be repositioned, scaled, and so on. An
important property of Bézier curves is that they are invariant under affine maps,
which means that the following two procedures yield the same result: (1) first,
compute the point b”(¢) and then apply an affine map to it; (2) first, apply an affine

3.3. Some Properties of Bézier Curves 37

Figure 3.3: The de Casteljau algorithm: 50 points are computed on a quartic curve,
and the intermediate points b} are connected.

map to the control polygon and then evaluate the mapped polygon at parameter
value .

Affine invariance is, of course, a direct consequence of the de Casteljau
algorithm: the algorithm is composed of a sequence of linear interpolations
(or, equivalently, of a sequence of affine maps). These are themselves affinely
invariant, and so is a finite sequence of them.

Let us discuss a practical aspect of affine invariance. Suppose we plot a
cubic curve b? by evaluating at 100 points and then plotting the resulting point
array. Suppose now that we would like to plot the curve after a rotation has been
applied to it. We can take the 100 computed points, apply the rotation to each of
them, and plot. Or, we can apply the rotation to the 4 control points, then evaluate
100 times and plot. The first method needs 100 applications of the rotation, while
the second needs only 4!

Affine invariance may not seem to be a very exceptional property for a useful
curve scheme; in fact, it is not straightforward to think of a curve scheme that
does not have it (exercise!). It is perhaps worth noting that Bézier curves do not
enjoy another, also very important, property: they are not projectively invariant.
Projective maps are used in computer graphics when an object is to be rendered
realistically. So if we try to make life easy and simplify a perspective map of

38 Chapter 3. The de Casteljau Algorithm

a Bézier curve by mapping the control polygon and then computing the curve,
we have actually cheated: that curve is not the perspective image of the original
curve! More details on perspective maps can be found in Chapter 13.

Invariance under affine parameter transformations. Very often, one thinks of a
Bézier curve as being defined over the interval [0, 1]. This is done because it
is convenient, not because it is necessary: the de Casteljau algorithm is “blind”
to the actual interval that the curve is defined over because it uses ratios only.
One may therefore think of the curve as being defined over any arbitrary interval
a = u = b of the real line—after the introduction of local coordinates ¢ =
(u — a)/(b — a), the algorithm proceeds as usual. This property is inherited
from the linear interpolation process (2.10). The corresponding generalized de
Casteljau algorithm is of the form:

r _b_u r—1 Uu—a .,
bi@) = 3—b{"'@w) + , — bW (3.4)

The transition from the interval [0, 1] to the interval [a, b] is an affine map.
Therefore, we can say that Bézier curves are invariant under affine parameter
transformations. Sometimes, one sees the term linear parameter transformation
in this context, but this terminology is not quite correct: the transformation of
the interval [0, 1] to [a, b] typically includes a translation, which is not a linear
map.

Convex hull property. Fort € [0, 1], b"(¢) lies in the convex hull (see Figure 2.3) of
the control polygon. This follows because every intermediate b] is obtained as a
convex barycentric combination of previous b’,~ I_atno step of the de Casteljau
algorithm do we produce points outside the convex hull of the b;.

A simple consequence of the convex hull property is that a planar control
polygon always generates a planar curve.

The importance of the convex hull property lies in what is known as in-
terference checking. Suppose we want to know if two Bézier curves intersect
each other—for example, each might represent the path of a robot arm, and our
aim is to make sure that the two paths do not intersect, thus avoiding expensive
collisions of the robots. Instead of actually computing a possible intersection,
we can perform a much cheaper test: circumscribe the smallest possible box
around the control polygon of each curve such that it has its edges parallel to
some coordinate system. Such boxes are called minmax boxes, since their faces
are created by the minimal and maximal coordinates of the control polygons.
Clearly each box contains its control polygon, and, by the convex hull property,
also the corresponding Bézier curve. If we can verify that the two boxes do not
overlap (a trivial test), we are assured that the two curves do not intersect. If the
boxes do overlap, we would have to perform more checks on the curves. The
possibility for a quick decision of no interference is extremely important, since

3.3. Some Properties of Bézier Curves 39

in practice one often has to check one object against thousands of others, most
of which can be labeled as “no interference” by the minmax box test.*

Endpoint interpolation. The Bézier curve passes through by and b,: we have
b*(0) = by, b*(1) = b,. This is easily verified by writing down the scheme
(3.3) for the cases t = Oand ¢t = 1. In a design situation, the endpoints of a curve
are certainly two very important points. It is therefore essential to have direct
control over them, which is assured by endpoint interpolation.

Designing with Bézier curves. Figure 3.4 shows two Bézier curves. From the in-
spection of these examples, one gets the impression that in some sense the Bézier
curve “mimics” the Bézier polygon—this statement will be made more precise
later. It is why Bézier curves provide such a handy tool for the design of curves:
To reproduce the shape of a hand-drawn curve, it is sufficient to specify a control
polygon that somehow “exaggerates” the shape of the curve. One lets the com-
puter draw the Bézier curve defined by the polygon, and, if necessary, adjusts
the location (possibly also the number) of the polygon vertices. Typically, an
experienced person will reproduce a given curve after two to three iterations of
this interactive procedure.

I

Figure 3.4: Bézier curves: some examples.

“Tt is possible to create volumes (or areas, in the 2D case) that hug the given curve closer
than the minmax box does. See Sederberg et al. [463].

40 Chapter 3. The de Casteljau Algorithm

3.4 The Blossom

In recent years, a new way to look at Bézier curves has been developed; it is called the
principle of blossoming. This principle was independently developed by de Casteljau
[135] and Ramshaw [414], [416]. Other literature includes Seidel [464], [467], [468];
DeRose and Goldman [150]; Boehm [68]; and Lee [328].

We introduce blossoms as a generalization of the de Casteljau algorithm. Written
in a scheme as in (3.3), we have to compute n columns. Our generalization is as
follows: in column r, do not again perform a de Casteljau step for parameter value ¢,
but use a new value #,. Restricting ourselves to the cubic case, we obtain:

by

b, byln]

by biln] bjl, 1]

b; bllt] bit, 6] b1y, b, 13].

(3.5)

The resulting point bg[t 1, 12, 3] is now a function of three independent variables; thus
it no longer traces out a curve, but a region of [3. This trivariate function b[-, -, -] is
called the blossom of the curve b3(¢), after L. Ramshaw [414]. The original curve is
recovered if we set all three arguments equal: t =t} = t, = 3.

To understand the blossom better, we now evaluate it for several special argu-
ments. We already know, of course, that b[0, 0, 0] = by and b[1, 1, 1] = bs. Let us
start with [#{, t,, 3] = [0, 0, 1]. The scheme (3.5) reduces to:

by
b, by

3.6
b, b by (3-6)

b; b, b, by =b[00,1].

Similarly, we can show that b[0, 1, 1] = b,. Thus the original Bézier points can
be found by evaluating the curve’s blossom at arguments consisting only of 0’s and
I’s.

But the remaining entries in (3.3) may also be written as values of the blossom
for special arguments. For instance, setting [¢y, £, 131 = [0, 0, ¢], we have the scheme

by
b, by
b, b, by 3.7

b; b, b; by =Dbl[001]
Continuing in the same manner, we may write the complete scheme (3.3) as:

by = b[0, 0, 0]

b; = b[0,0,1] b[0,0,¢]

b, =b[0,1,1] b[0,£ 1] b[O,z¢¢]

b; =b[1,1,1] bt 1,11 bt 1] bl 1]

(3.8)

3.4. The Blossom 41

This is easily generalized to arbitrary degrees, where we can also express the
Bézier points as blossom values:

b; = b[0®?, 1%, (3.9)

where) means that ¢ appears r times as an argument. For example, b[0), £?,
197 = b[0, £ 1].
The de Casteljau recursion (3.2) can now be expressed in terms of the blossom

b[]:
b[o(n—rfi), t(r)’ l(z)] — (1 _ t)b[o(n—r—i+1), t(r—l)’ 1(1)]
+ tb[0¢ D, (7D 1 H Dy, (3.10)

The point on the curve is given by b[#].

We next note that it does not matter in which order we use the ¢; for the blossom’s
evaluation. So we have, again for the cubic case, that b[ty, 15, 13] = b[#,, 3, #1], etc.
A proof of this statement is obtained using Figure 2.7: point ¢ in that figure may be
written as the value of a quadratic blossom: ¢ = b[z, s] = bl[s, ¢]. The general result
follows from this special instance.

Functions whose values do not depend on the order of their arguments are
called symmetric; thus a blossom is a symmetric polynomial function of » variables.
Every polynomial curve has a unique blossom associated with it—it is a symmetric
polynomial of 7 variables, mapping R" into E3.

The blossom has yet another important property. If the first argument of the
blossom is a barycentric combination of two (or more) numbers, we may compute
the blossom values for each argument and then form their barycentric combination:

blar + Bs,t2,...,ta] = ablr, t,...,t,] + Bbls, fa,..., 1,]; a+ B =1 (3.11)

Equation (3.11) states that the blossom b is affine with respect to its first argument,
but it is affine for any of the remaining arguments as well. This is the reason why the
blossom is called multiaffine. Blossoms are multiaffine since they can be obtained by
repeated steps of the de Casteljau algorithm. Each of these steps consists of linear
interpolation, an affine map itself; see (2.5).

Knowing that the blossom is uniquely associated with the curve, we could
have used (3.11) to define the de Casteljau algorithm: we just observe that t =
(1 —=1)y*0+t =1, and now (3.11) yields (3.10).

We may also consider the blossom of a Bézier curve that is not defined over
[0, 1] but over the more general interval [a, b]. Proceeding exactly as above—but now
utilizing (3.4)—we find that the Bézier points b; are found as the blossom values

b; = bla" 2, b (3.12)

Thus a cubic over u € [a, b] has Bézier points b[a, a, al, bla, a, b], bla, b, b], b[b, b, b].
If the original Bézier curve was defined over [0, 1], the Bézier points of the one

42 Chapter 3. The de Casteljau Algorithm

corresponding to [a, b] are simply found by four calls to a blossom routine! See also
Figure 4.5.

3.5 Implementation

The header of the de Casteljau algorithm program is:

float decas(degree,coeff,t)
/* uses de Casteljau to compute one coordinate
value of a Bezier curve. Has to be called
for each coordinate (x,y, and/or z) of a control polygon.

Input: degree: degree of curve.
coeff: array with coefficients of curve.
t: parameter value.

Output: coordinate value.

*/

This procedure invites several comments. First, we see that it requires the use of
an auxiliary array coeffa. Moreover, this auxiliary array has to be filled for each
function call! So on top of the already high computational cost of the de Casteljau
algorithm, we add another burden to the routine, keeping it from being very efficient.

A faster evaluation method is given at the end of the next chapter.
To plot a Bézier curve, we would then call the routine several times:

void bez_to_points(degree,npoints,coeff,points)

/* Converts Bezier curve into point sequence. Works on
one coordinate only.
Input: degree: degree of curve.
npoints: # of coordinates to be generated. (counting
from 0!)
coeff: coordinates of control polygon.
Output: points: coordinates of points on curve.

Remark: For a 2D curve, this routine needs to be called twice,
once for the x-coordinates and once for y.

*/

The last subroutine has to be called once for each coordinate, i.e., two or three
times. The main program decasmain. c on the enclosed disk gives an example of
how to use it and how to generate postscript output.

3.6 Exercises

1. Suppose a planar Bézier curve has a control polygon that is symmetric with
respect to the y-axis. Is the curve also symmetric with respect to the y-axis? Be
sure to consider the control polygon (—1, 0), (0, 1), (1, 1), (0, 2), (0, 1), (—1, 1),
(0,2), (0, 1), (1, 0). Generalize to other symmetry properties.

3.6.

*3.

*4.

P1.

P2.

P3.

P4.

Exercises 43

Use the de Casteljau algorithm to design a curve of degree four that has its
middle control point on the curve. More specifically, try to achieve

1

Five collinear control points are a solution; try to be more ambitious!
The de Casteljau algorithm may be formulated as

Blbg,...,b,;t1 = 1A = t)Blby,...,b,—1;t] + tB[by,..., b,;t]

Show that the computation count is exponential (in terms of the degree) if you
implement such a recursive algorithm in a language such as C.

Show that every nonplanar cubic in E? can be obtained as an affine map of the
standard cubic (see Boehm [64]):

t
x(t) = 12
2

Write an experimental program that replaces (1 — ¢) and ¢ in the recursion (3.2)
by [1 — f(®)] and f(¢), where f is some “interesting” function. Change the
routine decas accordingly and comment on your results.

Rewrite the routine decas to handle blossoms. Evaluate and plot for some
“interesting” arguments.

Experiment with the data set outline_2D.dat on the floppy: try to recapture
its shape using one, two, and four Bézier curves. These curves should have
decreasing degrees as you use more of them.

Then repeat the previous problem with outline_3D.dat. This data set is three-
dimensional, and you will have to use (at least) two views as you approximate
the data points. The points, by the way, are taken from the outline of the sole of
a high-heeled shoe.

Chapter 4

The Bernstein Form of a
Bézier Curve

Bézier curves can be defined by a recursive algorithm, which is how de Casteljau first
developed them. It is also necessary, however, to have an explicit representation for
them; this will facilitate further theoretical development considerably.

4.1 Bernstein Polynomials

We will express Bézier curves in terms of Bernstein polynomials, defined explicitly
by

Bi(t) = (:‘) 1 — 1y 4.1y

where the binomial coefficients are given by

i 0 else.

There is a fair amount of literature on these polynomials. We cite just a few: Bernstein
[47], Lorentz [340], Davis [122], and Korovkin [314]. An extensive bibliography is
given in Gonska and Meier [234].

Before we explore the importance of Bernstein polynomials to Bézier curves,
let us first examine them more closely. One of their important properties is that they
satisfy the following recursion:

Bi(ty = (1 — nB} (1) + B} (1) 4.2)
with
BY(t)=1 (4.3)

44

4.1. Bernstein Polynomials 45

and
Bi(t)=0 for j &{0,...,n} 4.4)

(n)tl(l _ Zt)n—i

4

(" B 1):"(1 — i+ (',’ - 1);"(1 —
i i—1

(1 =B (1) + B (o).
Another important property is that Bernstein polynomials form a partition of

unity:

The proof is simple:

Bi(t)

P:HOESE (4.5)
j=0

This fact is proved with the help of the binomial theorem:

1=[+0-0] = Z ('f)tf(l — = ZB;?(:).
=0 M =0
Figure 4.1 shows the family of the five quartic Bernstein polynomials. Note that the
B? are nonnegative over the interval [0, 1].
We are now ready to see why Bernstein polynomials are important for the devel-
opment of Bézier curves. The intermediate de Casteljau points b} can be expressed
in terms of Bernstein polynomials of degree 7:

b = Y biiBi() . {Oe {O’n' N ’r’f (4.6)
2 .
B Bj
Bf o4 B

Bi.

Figure 4.1: Bernstein polynomials: the quartic case.

46 Chapter 4. The Bernstein Form of a Bézier Curve

This equation shows exactly how the intermediate point b/ depends on the given
Bézier points b;. Figure 3.3 shows how these intermediate points form Bézier curves
themselves.! The main importance of (4.6) lies, of course, in the case r = n. The
corresponding de Casteljau point is the point on the curve and is given by

b"(1) = b3(1) = D b;B(1) @7
j=0

We still have to prove (4.6). To that end, we use the recursive definition (3.2) of
the b} and the recursion for the Bernstein polynomials (4.2) and (4.4) in an inductive
proof:

bi(t) = (1 = Hb~'(1) + 1] (®)

i+r—1 i+r
==Y bBZl0+t > BB ().
j=i j=i+l

Reindexing and invoking (4.4), we can rewrite this as

i+r i+r

bj() =1 -0 bBIZl() +1> bBIZL (1)
j=i j=i

itr

= Zb (1= DBZH) + BiZL (D]
j=i

Application of (4.2) then completes the proof. Note that (4.2) also defines B and B},
since B! = BI~! = 0 by (4.4).
With the intermediate points b} at hand, we can write a Bézier curve in the form

n—r

b'(H) = > bj(B] (). (4.8)

i=0

This is to be interpreted as follows: First, compute r levels of the de Casteljau
algorithm with respect to ¢. Then, interpret the resulting points b} (¢) as control points
of a Bézier curve of degree n — r and evaluate it at .

4.2 Properties of Bézier Curves

Many of the properties in this section have already appeared in the previous chapter.
They were derived using geometric arguments. We shall now rederive several of

'We can also use Figure (3.2) to provide an example: the point b? lies on the Bézier curve
determined by by, by, bs.

4.2. Properties of Bézier Curves 47

them, using algebraic arguments. If the same heading is used here as in Chapter 3,
the reader should look there for a complete description of the property in question.

Affine invariance. Barycentric combinations are invariant under affine maps. There-
fore, (4.5) gives the algebraic verification of this property. We note again that
this does not imply invariance under perspective maps!

Invariance under affine parameter transformations. Algebraically, this property
reads

; biBl(1) = ; b;B" (Z — Z) . 4.9)

Convex hull property. This follows, since for¢ € [0, 1], the Bernstein polynomials
are nonnegative. They sum to one as shown in (4.5).

Endpoint interpolation. This is a consequence of the identities

B(0) = &;9

BY(1) = 5 (4.10)

and (4.5). Here, §;; is the Kronecker delta function: it equals one when its
arguments agree, and zero otherwise.

Symmetry. Looking at the examples in Figure 3.4, it is clear that it does not matter
if the Bézier points are labeled by, by, ..., b, orb,, b, _y, ..., by. The curves that
correspond to the two different orderings look the same; they differ only in the
direction in which they are traversed. Written as a formula:

D biBi0) =) b, Bi(1 ~). (4.11)
j=0 j=0

This follows from the identity
Bi(t) = B,_;(1 — 1), (4.12)

which follows from inspection of (4.1). We say that Bernstein polynomials are
symmetric with respecttotand 1 — ¢.

Invariance under barycentric combinations. The process of forming the Bézier
curve from the Bézier polygon leaves barycentric combinations invariant. For
a + 3 = 1, we obtain

D (abj+ BepBi() = a > bBi(1) + B> ¢;Bi). (4.13)

j=0 j=0 j=0

In words: we can construct the weighted average of two Bézier curves either by
taking the weighted average of corresponding points on the curves, or by taking
the weighted average of corresponding control vertices and then computing the
curve.

48 Chapter 4. The Bernstein Form of a Bézier Curve

This linearity property is essential for many theoretical purposes, the most
important one being the definition of tensor product surfaces in Chapter 15.

Linear precision. The following is a useful identity:
n .
S lgay =4, 4.14)
n
j=0

which has the following application: Suppose the polygon vertices b; are uni-
formly distributed on a straight line joining two points p and q:

J J :
b, =|1—= + Zq; =0,...,n
j (n>p nq J n

The curve that is generated by this polygon is the straight line between p and q,
i.e., the initial straight line is reproduced. This property is called linear precision.’

Pseudo-local control. The Bernstein polynomial B has only one maximum and
attains it at £ = i/n. This has a design application: if we move only one of the
control polygon vertices, say, b;, then the curve is mostly affected by this change
in the region of the curve around the parameter value i /n. This makes the effect
of the change reasonably predictable, although the change does affect the whole
curve. As a rule of thumb (mentioned to me by P. Bézier), the maximum of each
BY is roughly %; thus a change of b; by three units will change the curve by one
unit.

4.3 The Derivative of a Bézier Curve

The derivative of a Bernstein polynomial B} is obtained as

d oy _d/n\,;
EBi(t)‘ <i>z(1 1)

dt
I T D (il) (L I P
_i!(n—i)!t (-9 i!(n—i)!t(l H
__nn— DY g e nn = DY i
ﬁ(i—l)!(n—i)!t -2 i!(n—i—l)!t(l 2
=n[B/Z' () — B ().
Thus
Ly = n [Bkee) - BT\ (4.15)

dt

2If the points are not uniformly spaced, we will also recapture the straight line segment.
However, it will not be linearly parametrized.

4.4. Higher Order Derivatives 49

We can now determine the derivative of a Bézier curve b":
d ‘ _ _
ab"(t) = nz (B =1(= B '(n)] by
=0

Because of (4.4), this can be simplified to

n n—1
%b”(r) =nY BIZl(Hb; —nY B} '1b,
j=1 j=0
and now an index transformation of the first sum yields
d n—1 n—1
YO =n) BT\ 0bj—n) BjT(0b),
j=0 j=0
and finally
d n — — n—1
0= n;(bjH —b)B: ().

The last formula can be simplified somewhat by the introduction of the forward
difference operator A

Ab; =bj; — b, (4.16)
We now have for the derivative of a Bézier curve:
d n—1
n . n—1 . 3
b (t)—nZ%Ab,Bj (t); Ab; ER. (4.17)
=

The derivative of a Bézier curve is thus another Bézier curve, obtained by differencing
the original control polygon. However, this derivative Bézier curve does not “live”
in B3 any more! Its coefficients are differences of points, i.e., vectors, which are
elements of R>. To visualize the derivative curve and polygon in E°, we can construct
apolygon in E3 that consists of the pointsa+ Aby, ..., a+ Ab,,_;. Here ais arbitrary;
one reasonable choice is a = 0. Figure 4.2 illustrates a Bézier curve and its derivative
curve (with the choice a = 0). This derivative curve is sometimes called a hodograph.
For more information on hodographs, see Forrest [212], Bézier [53], or Sederberg
and Wang [462].

4.4 Higher Order Derivatives

To compute higher derivatives, we first generalize the forward difference operator
(4.16): the iterated forward difference operator A" is defined by

Ab; = A" by — A" "D, (4.18)

50 Chapter 4. The Bernstein Form of a Bézier Curve

Figure 4.2: Derivatives: a Bézier curve and its first derivative curve (scaled down by
a factor of three). Note that this derivative curve does not change if a translation is
applied to the original curve.

We list a few examples:
Aﬂbi = bi
Albi =bi+1 —b;
A%b; = b;iy = 2biyy + b
A’b; = bis3 — 3b;s2 + 3bi4y — by

The factors on the right-hand sides are binomial coefficients, forming a Pascal-like
triangle. This pattern holds in general:

A'b; = Z (3)(_1)r—jbi+j~ (4.19)

j=0

We are now in a position to give the formula for the »™ derivative of a Bézier
curve:

dr n —_ n! — r n—r
@b (1) = P ;OA b;B 7 (0). (4.20)

The proof of (4.20) is by repeated application of (4.17).

4.4. Higher Order Derivatives 51

Figure 4.3: Endpoint derivatives: the first and second derivative vectors at t = 0 are
multiples of the first and second difference vectors at by.

Two important special cases of (4.20) are given by t = 0 and ¢ = 1. Because of
(4.10) we obtain

;ﬂ b"(0) = () ———A"by 4.21)
and

¢ b"(1) = ———A"b,—,. 4.22)

der (n)

Thus the r™ derivative of a Bézier curve at an endpoint depends only on the r + 1
Bézier points near (and including) that endpoint. For r = 0, we get the already
established property of endpoint interpolation. The case r = 1 states that by and
b, define the tangent at ¢ = 0, provided they are distinct.> Similarly, b,—, and b,
determine the tangent at ¢ = 1. The cases r = 1, r = 2 are illustrated in Figure 4.3.

If one knows all derivatives of a function at one point, corresponding to t = 0,
say, one can generate its Taylor series. The Taylor series of a polynomial is just that
polynomial itself, in the monomial form:

n

x(1) = Z %XU)(O)Zj.

j=0

Utilizing (4.21), we have

LOEDY G)Ajbo . 4.23)

i=0

The monomial form should be avoided wherever possible; it is very unstable for
floating-point operations.

3In general, the tangent at by is determined by by and the first b; that is distinct from by.
Thus the tangent may be defined even if the tangent vector is the zero vector.

52 Chapter 4. The Bernstein Form of a Bézier Curve

4.5 Derivatives and the de Casteljau Algorithm

Derivatives of a Bézier curve can be expressed in terms of the intermediate points
generated by the de Casteljau algorithm:

dr n —
dr b =

T)' ATHITT(D). (4.24)

This follows since summation and taking differences commute:

n—1 n n—1 n—1
DTAb; = b= > b;=A) b, (4.25)
j=0 j=1 j=0 j=0

Using this, we have

dtr =G)Y (4.26)
= r)'A Zb BN (1) 4.27)

j— n! Ar n—r 2
BT by " (0). (4.28)

The first and the last of these three equations suggest two different ways of computing
the r* derivative of a Bézier curve: for the first method (4.26), compute all r* forward
differences of the control points, then interpret them as a new Bézier polygon of degree
n — r and evaluate it at 7.

The second method, using (4.28), computes the r derivative as a “by-
product” of the de Casteljau algorithm. If we compute a point on a Bézier curve
using a triangular arrangement as in (3.3), then for any n — 7, the corresponding b} ™"
form a column (with » + 1 entries) in that scheme. To obtain the * derivative at ¢,
we simply take the r™ difference of these points and then multiply by the constant
n!/(n — r)!. In some applications (curve/plane intersection, for example), one needs
not only a point on the curve, but its first and/or second derivative at the same time.
The de Casteljau algorithm offers a quick solution to this problem.

A summary of both methods: to compute the r™ derivative of a Bézier curve,
perform r difference steps and n — r evaluation steps. It does not matter in which
order we perform these two steps.

The case r = 1 is important enough to warrant special attention:

d
PO = n[bi ') — b~ (0)]. (4.29)

The intermediate points b2 ! and b?~! thus determine the tangent vector at b"(t),
which is illustrated in Figures 3.1 and 3.2.

Two ways to compute the tangent vector of a Bézier curve are demonstrated in
Example 4.1.

4.6. Subdivision 53

To compute the derivative of the Bézier curve from Example 3.1, we could
form the first differences of the control points and evaluate the corresponding
quadratic curve at t = 3:
[0
| 2
8

ey
EiREIRN

Alternatively, we could compute the difference b? — bj:

HEHRH

In both cases, the result needs to be multiplied by a factor of 3.

Example 4.1: Two ways to compute derivatives.

4.6 Subdivision

A Bézier curve b” is usually defined over the interval (the domain) [0, 1], but it can
also be defined over any interval [0, c]. The part of the curve that corresponds to [0, ¢]
can also be defined by a Bézier polygon, as illustrated in Figure 4.4. Finding this
Bézier polygon is referred to as subdivision of the Bézier curve.

The unknown Bézier points ¢; are found without much work if we use the
blossoming principle from Section 3.4. There, (3.12) gave us the Bézier points of a
polynomial curve that is defined over an arbitrary interval [a, b]. We are currently
interested in the interval [0, c], and so our Bézier points are:

¢; = b[0" " .

Thus each ¢; is obtained by carrying out i de Casteljau steps with respect to ¢, in
nonblossom notation:

¢ = bé(c). (4.30)

This formula is called the subdivision formula for Bézier curves.

Thus it turns out that the de Casteljau algorithm not only computes the point
b"(c), but also provides the control vertices of the Bézier curve corresponding to the
interval [0, c]. Because of the symmetry property (4.11), it follows that the control
vertices of the part corresponding to [¢, 1] are given by the b;f_" Thus, in Figures 3.1
and 3.2, we see the two subpolygons defining the arcs from b”*(0) to b"(c) and from
b"(c) to b"(1).

54 Chapter 4. The Bernstein Form of a Bézier Curve

b

/C €3

C1

bou{, bs

Figure 4.4: Subdivision: two Bézier polygons describing the same curve: one (the b;)
is associated with the parameter interval [0, 1], the other (the ¢;) with [0, c].

Figure 4.5 shows the blossom notation if we subdivide at two parameter values
¢ and d simultaneously. This is a direct consequence of (3.12).

Instead of subdividing a Bézier curve, we may also extrapolate it: in that case,
we might be interested in the Bézier points d; corresponding to an interval [1, d].
They are given by

d; = b[1") g = b{;_j(d).

It should be mentioned that extrapolation is not a numerically stable process and
should be avoided for large values of d.

Subdivision for Bézier curves, although mentioned by de Casteljau [134], was
rigorously proved by E. Staerk [478]. Our blossom development is due to Ramshaw
[414] and de Casteljau [135].

Subdivision may be repeated: we may subdivide a curve at ¢ = 1/2, then split
the two resulting curves at t = 1/2 of their respective parameters, and so on. After k
levels of subdivisions, we end up with 2% Bézier polygons, each describing a small arc
of the original curve. These polygons converge to the curve if we keep increasing &,
as was shown by Lane and Riesenfeld [319]. We will prove a more general statement
in Section 10.7.

Convergence of this repeated subdivision process is very fast (see Cohen and
Schumaker [112] and Dahmen [120]), and thus it has many practical applications.
We shall discuss here the process of intersecting a straight line with a Bézier curve:
Suppose we are given a planar Bézier curve and we wish to find intersection points
with a given straight line L, if they exist.

If the curve and L are far apart, we would like to be able to flag such configurations
as quickly as possible, and then abandon any further attempts to find intersection

4.6. Subdivision 55

b[1,1]

b0, 0]

—_—
1

0 C d 1
Figure 4.5: Generalized subdivision: evaluation of a quadratic at two parameter val-

ues ¢ and 4 subdivides it into three segments. Its Bézier points are shown in blossom
notation.

points. To do this, we create the minmax box of the control polygon: this is the smallest
rectangle, with sides parallel to the coordinate axes, that contains the polygon. It is
found very quickly, and by the convex hull property of Bézier curves, we know that
it also contains the curve. Figure 4.6 gives an example.

Having found the minmax box, it is trivial to determine if it interferes with L;
if not, we know we will not have any intersections. This quick test is called trivial
reject.

Now suppose the minmax box does interfere with L. Then there may be an
intersection. We now subdivide the curve at ¢+ = 1/2 and carry out our trivial reject
test for both subpolygons.* If the outcome is still inconclusive, we repeat. Eventually
the size of the involved minmax boxes will be so small that we can simply take their
centers as the desired intersection points.

4The choice t = 1/2 is arbitrary, but works well. One might try to find better places to
subdivide, but it is most likely cheaper to just perform a few more subdivisions instead.

56 Chapter 4. The Bernstein Form of a Bézier Curve

Figure 4.6: The minmax box of a Bézier curve: the smallest rectangle that contains the
curve’s control polygon.

The routine intersect employs this idea, and a little more: as we keep subdivid-
ing the curve, zooming in toward the intersection points, the generated subpolygons
become simpler and simpler in shape. If the control points of a polygon are almost
collinear, we may replace them by a straight line. We could then intersect this straight
line with L in order to find an intersection point. The extra work here lies in deter-
mining if a control polygon is “linear” or not. In our case, this is done by the routine
checkflat. Figure 4.7 gives two examples. Note how the subdivision process finds
all intersection points in the bottom example. These points will not, however, be
recorded by increasing values of .

4,7 Blossom and Polar

After the first de Casteljau step with respect to a parameter value ¢, the resulting
b})(tl), ey b,ll_ 1(#1) may be interpreted as a control polygon of a curve p;(¢) of degree
n — 1. In the blossoming terminology from Section 3.4, we can write:

pi(t) = b, 177V,

Invoking our knowledge about derivatives, we have:

n—1

pi(t) = Y [(1 = t)b; + by | B (1)

i=0

n—1 n—1
= " [(1 = t)b; + by — LO]B IO + Y bl OB (1)
i=0 i=0

n—1

n—1
=(t — Y _[bisy — BB (1) + > _bl(1)B! (1),
i=0

i=0

4.7. Blossom and Polar 57

sy

y= v

A 7

7

Figure4.7: Curve intersection by subdivision: two examples are shown. Intersection is
with the x-axis in both cases. Note the clustering of minmax boxes near the intersection
points.

Therefore,

Hh—t

pi(t) = b(z) + %b(t). (4.31)
The polynomial p, is called first polar of b(z) with respect to ¢;. Figure 4.8 illustrates
the geometric significance of (4.31): the tangent at any point b(z) intersects the polar
p1(?) at p;(¢). Keep in mind that this is not restricted to planar curves, but is equally
valid for space curves!

For the special case of a (nonplanar) cubic, we may then conclude the following:
the polar p; lies in the osculating plane (see Section 11.2) of the cubic at b(#;). If
we intersect all tangents to the cubic with this osculating plane, we will trace out the

58 Chapter 4. The Bernstein Form of a Bézier Curve

Figure 4.8: Polars: the polar p, (t) with respect to#; = 0.4 isintersected by the tangents
of the given curve b(r).

polar. We can also conclude that for three different parameters ¢y, #,, #3, the blossom
value bz, 1, 13] is the intersection of the corresponding osculating planes.

Another special case is given by b[0, £~]: this is the polyromial defined by
by, ..., b,—;. Similarly, b[1, £"~D1is defined by by, ..., b,. This observation may be
used for a proof of (3.9).

Returning to the general case, we may repeat the process of forming polars, thus
obtaining a second polar p; 5(f) = b[zy, 1, £772)], etc. We finally arrive at the n
polar, which we have already encountered as the blossom b[ty, ..., #,] of b(t). The
relationship between blossoms and polars was observed by Ramshaw in [416]. The
above geometric arguments are due to S. Jolles, who developed a geometric theory
of blossoming as early as 1886 in [299].

Section 3.4 provided a way to generate the blossom of a curve recursively. We
may also find explicit formulas for it; here is the case of a cubic:

>W. Boehm first noted the relevance of Jolles’s work to the theory of blossoming.

4.8. The Matrix Form of a Bézier Curve 59

b[t, 1, 13]

= (1 — 11)b[0, 1, 3] + 11b[1, 1, 13]

= (1 = 1)[(1 = 22)b[0, 0, 53] + 1,b[0, 1, 13]] + 11 [(1 — £2)b[O, 1, 23]
+1b[1, 1, 13]] = b[0,0,01(1 — #,)(1 =)(1 — 13)
+b[0,0, 11[(1 — 6,)(1 — 1)13 + (1 = 1)1(1 = 13) + 1, (1 — 1)(1 — 13)]
+b[0, 1, N[ti2(1 — 13) + 11(1 = 1)t + (1 — 1))1p13]

+b[1, 1, 1]t t2t5.

For each step, we have exploited the fact that blossoms are multiaffine.

Note how we recover the cubic Bernstein polynomials for t; = t, = #3. The
preceding development would hold for parameter intervals other than [0, 1] equally
well, because of the invariance under affine parameter transformations.

We should add that not every multivariate polynomial function can be interpreted
as the blossom of a Bézier curve. To qualify as a blossom, the function must be both
symmetric and multiaffine.

4.8 The Matrix Form of a Bézier Curve

Some authors (Faux and Pratt [199], Mortenson [364], Chang [96]) prefer to write
Bézier curves and other polynomial curves in matrix form. A curve of the form

x(t) =Y Cilt)

j=0
can be interpreted as a dot product:
Co(?)
x)=[¢ ... ¢] :
Cu(1)
One can take this a step further and write
Co(t) Mgy ... Mop 10
: = : : . (4.32)
Cu(1) My ... Mgy "

The matrix M = {m;;} describes the basis transformation between the basis polyno-
mials C;(¢) and the monomial basis t'.

60 Chapter 4. The Bernstein Form of a Bézier Curve

If the C; are Bernstein polynomials, C; = B}, the matrix M has elements

mi; = <—1>f"'(’]7> (f) (4.33)

a simple consequence of (4.23).
We list the cubic case explicitly:

1 -3 3 -1
o 3 -6 3
M=1lo0 0o 3 -3

0 O 0 1

The matrix form (4.32) does not describe an actual Bézier curve; it is rather
the monomial form, which is numerically unstable and should be avoided where
accuracy in computation is of any importance. See the discussion in Section 24.3 for
more details.

4.9 Implementation

First, we provide a routine that evaluates a Bézier curve more efficiently than decas
from the last chapter. It will have the flavor of Horner’s scheme for the evaluation of
a polynomial in monomial form. To give an example of Horner’s scheme, also called
nested multiplication, we list the cubic case:

¢y + ey + tzcz + t3c3 = ¢y + t[e; + t(c; + 1c3)].

A similar nested form can be devised for Bézier curves; again, the cubic case:

3 3
b3(t) = {[(3) shy + (szl s+ (2) t2b2}s+ <3>t3b3,

where s = 1 — r. Recalling the identity

() =m0 7) i
i i i—1

we arrive at the following program (for the general case):

float hornbez(degree,coeff,t)

/* uses a Horner-like scheme to compute one coordinate
value of a Bezier curve. Has to be called
for each coordinate (x,y, and/or z) of a control polygon.

Input: degree: degree of curve.
coeff: array with coefficients of curve.
t: parameter value.

Qutput: coordinate value.

*/

4.9. Implementation 61

To use this routine for plotting a Bézier curve, we would replace the call to decas in
bez_to_points by an identical call to hornbez. Replacing decas with hornbez
results in a significant savings of time: we do not have to save the control polygon in
an auxiliary array; also, hornbez is of order n, whereas decas is of order n’.

This is not to say, however, that we have produced super-efficient code for
plotting points on a Bézier curve. For instance, we have to call hornbez once for
each coordinate, and thus have to generate the binomial coefficients n_choose_i
twice. This could be improved by writing a routine that combines the two calls. A
further improvement could be to compute the sequence of binomial coefficients only
once, and not over and over for each new value of . All these (and possibly more)
improvements would speed up the program, but would be less modular and thus less
understandable. For the code in this book, modularity is placed above efficiency (in
most cases).

We also include the programs to convert from the Bézier form to the monomial
form:

void bezier_to_power (degree,bez,coeff)
/*Converts Bezier form to power (monomial) form. Works on
one coordinate only.

Input: degree: degree of curve.
bez: coefficients of Bezier form
Output: coeff: coefficients of power form.

Remark: For a 2D curve, this routine needs to be called twice,
once for the x-coordinates and once for y.

*/
The conversion program internally calls iterated forward differences:

void differences(degree,coeff,diffs)
/*
Computes all forward differences Delta”i(b_0).
Has to be called for each coordinate (x,y, and/or z) of a control polygon.
Input: degree: length (from 0) of coeff.
coeff: array of coefficients.
Output: diffs: diffs[i]l= Delta"i(coeff[0]).
*/

Once the power form is found, it may be evaluated using Horner’s scheme:

float horner(degree,coeff,t)
/*
uses Horner’s scheme to compute one coordinate
value of a curve in power form. Has to be called
for each coordinate (x,y, and/or z) of a control polygon.

62 Chapter 4. The Bernstein Form of a Bézier Curve

Input: degree: degree of curve.
coeff: array with coefficients of curve.
t: parameter value.

OQutput: coordinate value.

*/
The subdivision routine:
void subdiv(degree,coeff,weight,t,bleft,bright,wleft,wright)

/*

subdivides ratbez curve at parameter value t.

Input: degree: degree of Bezier curve
coeff: Bezier points (one coordinate only)
weight: weights for rational case
t: where to subdivide

Output:

bleft,bright: left and right subpolygons
wleft,wright: their weights

Note: 1. For the polynomial case, set all entries in weight to 1.
2. Ordering of right polygon bright is reversed.
*/

Actually, this routine computes a more general case than is described in this chapter;
namely, it computes subdivison for a rational Bézier curve. This will be discussed
later; if the entries in weight are all unity, then wleft and wright will also be unity
and can be safely ignored in the context of this chapter.

Now the routine to intersect a Bézier curve with a straight line (the straight line
is assumed to be the y-axis):

void intersect(bx,by,w,degree,tol)

/* Intersects Bezier curve with x-axis by adaptive subdivision.
Subdivision is controlled by tolerance tol. There is
no check for stack depth! Intersection points are not found in
‘natural’ order. Results are written into file outfile.

Input: bx,by,w: rational Bezier curve

degree: its degree

tol: accuracy for results
Output: intersection points, written into a file
*/

This routine (again covering the rational case as well) uses a routine to check if
a control polygon is flat:

int check_flat(bx,by,degree,tol)
/* Checks if a polygon is flat. If all points

4.10. Exercises 63

are closer than tol to the conmnection of the
two endpoints, then it is flat. Crashes if the endpoints
are identical.

Input: bx,by, degree: the Bezier curve
tol: tolerance
Output: 1 if flat, O else.
*x/

4.10 Exercises

1.

*4.

P1.
P2.

Consider the cubic Bézier curve given by the planar control points

LD

Att = 1/2, this curve has a cusp: its first derivative vanishes and it shows a sharp
corner. You should verify this by a sketch. Now perturb the x-coordinates of b;
and b, by opposite amounts, thus maintaining a symmetric control polygon.
Discuss what happens to the curve.

Show that a nonplanar cubic Bézier curve cannot have a cusp. Hint: use the fact
that b§~!, b?~!, b} are identical when we evaluate at the cusp.

Show that the Bernstein polynomial B? attains its maximum at t = i/n. Find
the maximum value. What happens for large n?

Show that the Bernstein polynomials B} form a basis for the linear space of all
polynomials of degree n.

Compare the run times of decas and hornbez for curves of various degrees.
Use subdivision to create smooth fractals. Start with a degree four Bézier curve.
Subdivide it into two curves and then perturb the middle control point b, for each
of the two subpolygons. Continue for several levels. Try to perturb the middle
control point by a random displacement and then by a controlled displacement.
Literature on fractals: [30], [346].

. Use subdivision to approximate a high-order (n > 2) Bézier curve by acollection

of quadratic Bézier curves. You will have to write a routine that determines if a
given Bézier curve may be replaced by a quadratic one within a given tolerance.
Literature on approximating higher order curves by lower order ones: [290],
[294].

Chapter 5

Bézier Curve Topics

5.1 Degree Elevation

Suppose we were designing with Bézier curves as described in Section 3.3, trying
to use a Bézier curve of degree n. After we modify the polygon a few times, it may
turn out that a degree n curve does not possess sufficient flexibility to model the
desired shape. One way to proceed in such a situation is to increase the flexibility
of the polygon by adding another vertex to it. As a first step, one might want to
add another vertex, yet leave the shape of the curve unchanged—this corresponds to
raising the degree of the Bézier curve by one. We are thus looking for a curve with
control vertices b(()”, ooy bflll] that describes the same curve as the original polygon
by, ..., by

Using the identities (5.32) to (5.34)—each easy to prove—we rewrite our given
curve as x(t) = (1 — H)x(r) + x(t), or

—_— - n + 1 B i ﬂ+l " l + 1 ’l+1
x(1) = ; — T biB 0+ ; DB .
The upper limit of the first sum may be extended to n + 1 since the corresponding
term is zero. The summation of the second sum may be shifted to the limits 1 and
n + 1, and then changed to the lower limit O since only a zero term is added. We thus
have
n+1 n+l1

n+1—i i
= ———bB" (1) + ——b; (B (1)
X(1) ; T PBTO ;Hlbl, ®
Combining both sums and comparing coefficients yields the desired result:
M = (1 — by i= +
b; n+1b' 1 (1 n+])b" i=0...,n+1 (5.1

Thus the new vertices bgl) are obtained from the old polygon by piecewise linear
interpolation at the parameter values i/(n + 1). It follows that the new polygon FP

64

5.1. Degree Elevation 65

b

bs = b{e

by

b = b'e

Figure 5.1: Degree elevation: both polygons define the same (degree three) curve.

lies in the convex hull of the old one. Figure 5.1 gives an example. Note how ZP is
“closer” to the curve BP than the original polygon P.

While our proof is based on straightforward algebraic manipulations, a more
elegant proof is provided through the use of blossoms. If we had the blossom
bWV[ty,..., ty+1] of the degree-elevated curve, then we could compute its control
polygon using (3.9). After some experimentation (try the case n = 2!), it is easy to
see that the blossom is given by

n+1

1
(O] = ;
bV,] = — Zbltl,...,tnﬂlt]]. (5.2)
j=0
Here, the notation bz, ..., t,41]¢;] indicates that the argument ¢; is omitted from
b[z, ..., t,+1]. The control points are now given by application of (3.9):

b;H—l — b(I)[O(n+I—i>’ 1<l>]

Inspection of all terms that now arise in (5.2) reveals that the point b;_; appears i
times and that the point b; appears n + 1 — i times, thus re-proving our previous
result.!

Degree elevation has important applications in surface design: for several algo-
rithms that produce surfaces from curve input, it is necessary that these curves be of
the same degree. Using degree elevation, we may achieve this by raising the degree
of all input curves to the one of the highest degree. Another application lies in the
area of data transfer between different CAD/CAM or graphics systems: Suppose you
have generated a parabola (i.e., a degree two Bézier curve), and you want to feed it
into a system that only knows about cubics. All you have to do is degree elevate your
parabola.

! Again, work out the example n = 2 to build your confidence in this technique!

66 Chapter 5. Bézier Curve Topics

5.2 Repeated Degree Elevation

The process of degree elevation assigns a polygon EP to an original polygon P. We
may repeat this process and obtain a sequence of polygons P, EP, E?P, etc. After r
degree elevations, the polygon Z"P has the vertices bf,’), ..., b{), and each b{" is

explicitly given by
b =3 b, (’;) % (5.3)
j=0 i

This formula is easily proved by induction.

Let us now investigate what happens if we repeat the process of degree elevation
again and again. As we shall see, the polygons " P converge to the curve that all of
them define:

lim Z’P = BP. 54
To prove this result, fix some parameter value ¢. For each r, find the index i such that

i/(n + r) is closest to t. We can think of i/(n + r) as a parameter on the polygon
E"P, and as r — oo, this ratio tends to t. One can now show (using Stirling’s formula)

that
(7))

i/(r%}l-r?)—'t (" “.L")

12

=1 -, (5.5)
and therefore

lim b{" =Y b;B1) = [BPI().
ylim b ,2:5 iB}(®) = [BPI(t)
Equation (5.5) will look familiar to readers with a bachground in probability: it states
that the hypergeometric distribution converges to the binomial distribution.
Figure 5.2 shows an example of the limit behavior of the polygons E"P.

Figure 5.2: Degree elevation: a sequence of polygons approaching the curve that is
defined by each of them.

5.4. Degree Reduction 67

The polygons Z"P approach the curve very slowly; thus our convergence re-
sult has no practical consequences. However, it helps in the investigation of some
theoretical properties, as is seen in the next section.

The convergence of the polygons " P to the curve was conjectured by R. Forrest
[212] and proved in Farin [168]. The above proof follows an approach taken by J.
Zhou [509]. Degree elevation may be generalized to “corner-cutting”; for a brief
description, see Séction 10.7.

5.3 The Variation Diminishing Property

We can now show that Bézier curves enjoy the variation diminishing property:* the
curve BP has no more intersections with any plane other than the polygon P. Degree
elevation is an instance of piecewise linear interpolation, and we know that operation
is variation diminishing (see Section 2.4). Thus each Z" P has fewer intersections with
a given plane than has its predecessor 7 VP, Since the curve is the limit of these
polygons, we have proved our statement. For high-degree Bézier curves, variation
diminution may become so strong that the control polygon no longer resembles the
curve.

A special case is obtained for convex polygons: a planar polygon (or curve) is
said to be convex if it has no more than two intersections with any plane. The variation
diminishing property thus asserts that a convex polygon generates a convex curve.
Note that the inverse statement is not true: convex curves exist that have a nonconvex
control polygon!

While the variation diminishing property seems straightforward enough, it is
still not totally intuitive. Consider the following statement: two Bézier curves with
common endpoints do not intersect more often than their control polygons. This
appears to be true just after one jots down a few examples. Yet it is false, as shown
by Prautzsch [411].

5.4 Degree Reduction

Degree elevation can be viewed as a process that introduces redundancy: a curve is
described by more information than is actually necessary. The inverse process might
seem more interesting: can we reduce possible redundancy in a curve representation?
More specifically, can we write a given curve of degree » as one of degree n — 1?7 We
shall call this process degree reduction.

In general, exact degree reduction is not possible. For example, a cubic with
a point of inflection cannot possibly be written as a quadratic. Degree reduction,
therefore, can be viewed only as a method to approximate a given curve by one of

“The variation diminishing property was first investigated by I. Schoenberg [450] in the
context of B-spline approximation.

68 Chapter 5. Bézier Curve Topics

lower degree. Our problem can now be stated as follows: given a Bézier curve with
control vertices b;;i = 0,..., n, can we find a Bézier curve with control vertices
bi;i = 0,..., n — 1 that approximates the first curve in a “reasonable” way?

Let us now pretend that the b; were obtained from the b; by the process of degree
elevation (this is not true, in general, but makes a good working assumption). Then
they would be related by

n—1ia

b;; i=01,...,n (5.6)

b, = lf)i_l +

;= -
n

This equation can be used to derive two recursive formulas for the generation of the
b; from the b;:

- b —ibi1
L L Oy (5.7)

n—i

and
big= ——— " j=pna—1..1 (5.8)

The Ei are obtained by “unraveling” (5.1) left to right, while the E,- are obtained in

a right-to-left manner. Note that two undefined terms appear: they are b_; and b,.
Both are multiplied by zero, so no harm is done.

Figure 5.3 illustrates these two recursive formulas: a cubic polygon is given, and
two quadratic approximations are obtained.

—
b[]o

.ﬁ
b2

Figure 5.3: Degree reduction: a cubic is approximated by a “right-to-left” and by a
“left-to-right" quadratic. Both approximations are very poor.

5.4. Degree Reduction 69

If the given curve had actually been of degree n — 1 (i.e., if it had been the result

of a degree elevation), than both the b, and the b; would produce that original curve
of degree n — 1. Since in general this is not true, we only obtain approximations—
quite bad ones in most cases. The reason is that both (5.7) and (5.8) are extrapolation
formulas, which are numerically unstable.

Figure 5.3 suggests that all vectors f;, - i;, are parallel, an observation that was
ﬁrst made by J. Braun [80] For a proof, we simply observe that the coplanar triangles

b, 1 b, 1, b; andb;, b,, b, are similar.? Let us determine one of these vectors, namely

b 1 —b,,. To that end, we use an explicit formula for the b,, given in [165] or [168]:
it+j n b
()
We deduce
— dﬂ
b,-1 —b, = A"by = @X(I). 5.9

Following the same reasoning, all vectors Ei - Ei are parallel to the n™ derivative
vector of the given degree n curve.

One observes that (5.7) tends to produce reasonable approximations near b, and
that (5.8) behaves decently near b,. We may take advantage of this and combine both
approximations, thus arriving at

bi=0—=A)b; +A b i=0,....n— 1. (5.10)

We may set A; = i/n (not so great; see Farin [174]) or A; = 0 fori < n/2 and
A = 1fori > n/2 (decent; see Forrest [212]).

A better, and in some sense optimal way was first described by Watkins and
Worsey [497] and also by Eck [165]. This optimal solution has its roots in approxi-
mation theory and uses the theory of Chebychev polynomials.* For more information
on these polynomials, consult [101] or [122].

Chebychev polynomials 7; of degree i are defined recursively:

Ti1(t) = 2Ti(t) — Ti-1(1);
Ty(®) = 1,
Ti(t) =t

In an approximation theory setting, these polynomials are typically defined over the
interval [—1, 1]; over the interval [0, 1], we would use the scaled version T;(2¢ — 1).

3Verify in Figure 5.3 fori = 1!

“Incidentally, while the French automotive companies Citroén and Rénault used Bernstein
polynomials for their CAD/CAM systems, the American company Chrysler used Chebychev
polynomials in their first system.

70 Chapter 5. Bézier Curve Topics

Each Chebychev polynomial 7; has the unique property of achieving i + 1 extreme
values in the interval [—1, 1], alternating between the values +1 and — 13

Chebychev polynomials form a basis for all polynomials of degree n, and so
every polynomial p”(¢) has a unique representation

p'(H) =) _tTi(0).
i=0

What is interesting in our context is the following: if we truncate the leading term
t,T,(t) from the above sum, then we have found the—unique—polynomial p” ! of
degree n — 1 that deviates from the given one by the least possible amount. More
precisely: we have that max_;<,<; ||p"(¢£) — p*~(¢)|| is smaller for this p”~! that for
any other n — 1 degree polynomial. This process is known as Chebychev economiza-
tion. We could thus transform our Bézier curve of degree n into its Chebychev form,
truncate the leading term, and transform back to the Bézier form of degree n — 1.
This is what Watkins and Worsey [497] did. Eck showed that one can equivalently
set

1 < /2n
A= 2n—1 j—ZO (2j> (5.11)

in (5.10). The maximum deviation between the original and the degree reduced curves
is given by [|A"bg|[2?"~D (see Figure 5.4).

Figure 5.4: Degree reduction: combining the two degree reduction building blocks
(solving from left to right and from right to left), together with the concept of Cheby-
chev economization, yields a reasonable approximation.

>Compare this to Bernstein polynomials: they only have one extreme value in the interval
(o, 1!

5.5. Nonparametric Curves 71

A drawback of (5.11) is that it does not guarantee that 130 = by and 13"_1 = b,.
The simplest (if not optimal) solution to this dilemma is to simply enforce these two
conditions.

5.5 Nonparametric Curves

We have so far considered three-dimensional parametric curves b(¢). Now we shall
restrict ourselves to functional curves of the form y = f(x), where f denotes a
polynomial. These (planar) curves can be written in parametric form:

x(1) t
b(t) = = .
) [y(r)} [f(t)]
We are interested in functions f that are expressed in terms of the Bernstein basis:
JF@®) = boBy(t) + -+ + buB(D).

Note that now the coefficients b; are real numbers, not points. The b; therefore do not
form a polygon, yet functional curves are a subset of parametric curves and therefore
must possess a control polygon. To find it, we recall the linear precision property of
Bézier curves, as defined by (4.14). We can now write our functional curve as

b)) = > [Jb/ "]B;‘(t). (5.12)
=0t

Thus the control polygon of the function f(r) = > b B} is given by the

points (j/n, b;); j = 0, ..., n. If we want to distinguish clearly between the paramet-

ric and the nonparametric cases, we call f(z) a Bézier function. Figure 5.5 illustrates

the cubic case. We also emphasize that the b; are real numbers, not points; we call

the b; Bézier ordinates.

ol
!l
—_

Figure 5.5: Functional curves: the control polygon of a cubic polynomial has abscissa

values of 0, 1, 3, 1.

72 Chapter 5. Bézier Curve Topics

Because Bézier curves are invariant under affine reparametrizations, we may
consider any interval [a, b] instead of the special interval [0, 1]. Then the abscissa
valuesarea + i(b —a)/n; i =0,...,n.

5.6 Cross Plots

Parametric Bézier curves are composed of coordinate functions: each component is a
Bézier function. For two-dimensional curves, this can be used to construct the cross
plot of a curve. Figure 5.6 shows the decomposition of a Bézier curve into its two
coordinate functions. A cross plot can be a very helpful tool for the investigation
not only of Bézier curves, but of general two-dimensional curves. We will use it for
the analysis of Bézier and B-spline curves. It can be generalized to more than two
dimensions, but is not as useful then.

',

Figure 5.6: Cross plots: a two-dimensional Bézier curve together with its two coordi-
nate functions.

5.7. Integrals 73

5.7 Integrals

As we have seen, the Bézier polygon P of a Bézier function is formed by points
(j/n, bj). Let us assign an area AP to P by

1 n
- — > b, (5.13)
j=0

An example for this area is shown in Figure 5.7; it corresponds to approximating the
area under the polygon by a particular Riemann sum (of the polygon).

It is now easy to show that this “approximation area” is the same for the polygon
P, obtained from degree elevation (Section 5.1):

n+l . .

J
P g4+ (11— b;
A 2 n+1 ! (n+1) 1

n

H

1 +2,
n+24 +1 7
j=0

=

=

= AP.

If we repeat the process of degree elevation, we know that the polygons Z'P
converge to the function BP. Their area AZ"P stays the same, and in the limit is
equal to the Riemann sum of the function, which converges to the integral:

1 n n
u 1
j=0 Jj=0
The special case b; = §; ; gives

" 1
/OB(x)dx Pt (5.15)

i.e., all basis functions B} (for a fixed n) have the same integral.

=

Figure 5.7: Integrals: an approximation to the area under P.

74 Chapter 5. Bézier Curve Topics

5.8 The Bézier Form of a Bézier Curve

In his work ([50], [51], [52], [53], [54], [55], [57], see also Vernet [490]), Bézier
did not use the Bernstein polynomials as basis functions. He wrote the curve b” as a
linear combination of functions F;':

b'(t) = Zc JFD), (5.16)

j=0
where the F7 are polynomials that obey the following recursion:
FMNt) = (1 —F) + tFr () (5.17)
with
F =1, F (=0, F @ =1 (5.18)

Note that the third condition in the last equation is the only instance where the
definition of the F}' differs from that of the B! An explicit expression for the F}' is
given by

F=)"B. (5.19)
j=i

A consequence of (5.18) is that Fj = 1 for all n. Since Fi)=0 fort € [0, 1], it
follows that (5.16) is not a barycentric combination of the ¢;. In fact, ¢ is a point
while the other ¢; are vectors. The following relations hold:

¢y = by, (5.20)
¢ = Abjal',] > 0. (521)

This undesirable distinction between points and vectors was abandoned soon after R.
Forrest’s discovery that the Bézier form (5.16) of a Bézier curve could be written in
terms of Bernstein polynomials (see the appendix in [53]). Why is the point-only form
more desirable? Just try to write down the de Casteljau algorithm in the point-vector
form!

5.9 The Barycentric Form of a Bézier Curve

In this section, we present different notation for Bézier curves that will be useful later.
Let p; and p; be two distinct points on the real line. Then, as described in Section
2.3, we can write any point p on the straight line in terms of barycentric coordinates
of p; and p;: p = up; + vp», thus identifying p withu = (,v)andu + v = 1. In
particular, p; = (1, 0) and p, = (0, 1). The real line can be mapped into E3, where it

5.9. The Barycentric Form of a Bézier Curve 75

defines a polynomial curve b(u); namely,

b(uy =) (i J)uvfb,, > BYb;, (5.22)

i+j=n ’ i+j=n
i,j=0 i, j=0

n\ n!
i j i

Note that, although (5.22) looks bivariate, it really isn’t: the condition u + v = 1
ensures that we still define a curve, not a surface. The connection with the standard
Bézier form is established by settingt = v, b; = b, ;.

The barycentric form demonstrates nicely two important properties of Bézier
curves: invariance under affine parameter transformations and, as a consequence,
symmetry, as discussed in Section 3.3. The location of the two points p; and p;
becomes completely irrelevant—all that matters is the relative location of p with
respect to them, described by u and v.

Here is what the de Casteljau algorithm becomes in barycentric notation:

where

r=1,...,n

b; ;(u) = ub,+1) + vb,]+1(u) { itj=n—r (5.23)
The point on the curve is then given by by 4(u).

We can also define derivatives in terms of the barycentric form. Derivatives

produce tangent vectors, and these have a sense of direction, which we abandoned

for the sake of symmetry. We may reintroduce a direction into our calculations by

relating u to the “standard” parameter ¢:
u=ut)={1—-1t1t).

‘We obtain

d 0 du 0
g U@ = Zeb gt b dt'

Inserting the known values for 4 and &, we have

d d d
ab[u(t)] = Eb - Eb' (5.24)

If we define a vectord by d = p, — p; = (—1, 1), this equation may be written
as a directional derivative with respect to d:

%b[u(t)] = Dgb(u). (5.25)

We shall now see how the de Casteljau algorithm ties in with these directional
derivatives.

76 Chapter 5. Bézier Curve Topics

Instead of evaluating at a point u with u + v = 1, let us evaluate at the vector
d = (—1, 1). The de Casteljau algorithm (5.23) becomes

b, (@) = —b/} (d) + b}l (d).

Thus a vector argument for the de Casteljau algorithm produces forward differences!
In other words,

b ;(d) = A"bj,

where the term on the right-hand side is in standard, nonbarycentric notation.
We thus have, for the first derivative,

n—1
Dgblu(d] =nY AbBY '(ty=n Y bl (@B (w. (5.26)
j=0 i+j=n—1

The last part of this equation asserts that our directional derivative is obtained by
taking one de Casteljau step with respect to d and n — 1 steps with respect to u. This
calls for the blossom notation!

The Bézier points of a curve can be expressed as blossom values of the arguments
p; and p;; we thus have three possible ways to label Bézier points, using the standard,
the barycentric, and the blossom notation:

b;=b;; = b[P(1i>y P<2j>]; itj=n
The intermediate points in the de Casteljau algorithm can now be written as
b, = blp{’, p uL i+ j+r=n,

and the point on the curve is given by b[u].
Returning to (5.26), we get

Dgb(u) = Dgb[u‘™] = nb[u®~", d].
The preceding arguments easily generalize this to

Djb(u) = Dib[u”] = ”—!b[u<"*’>, a1 (5.27)
(n—r)!

Thus the r™ derivative of a curve involves r vector steps and n — r point steps
of the de Casteljau algorithm. Of course, it is immaterial in which order these steps
are performed. Figure 5.8 illustrates the quadratic case.

We finish this section with an identity that is due to L. Euler. We may formally
replace d by uin (5.27):

n!
(n—r)!

This shows how closely related the processes of differentiating and evaluating are
when we combine the barycentric notation and blossoms.

Dib(u) = b[u™].

5.10. The Weierstrass Approximation Theorem 77

b[Pl P2|

Figure 5.8: Blossoms and derivatives in barycentric form: a point on a quadratic,
together with its derivatives: The constant second derivative is given by b[d®].

510 The Weierstrass Approximation Theorem

One of the most important results in approximation theory is the Weierstrass ap-
proximation theorem. S. Bernstein invented the polynomials that now bear his name
in order to formulate a constructive proof of this theorem. The interested reader is
referred to Davis [122] or to Korovkin [314].

We will give a “customized” version of the theorem, namely, we state it in the
context of parametric curves. So let ¢ be a continuous curve that is defined over [0, 1].
For some fixed n, we can sample ¢ at parameter values i/n. The points ¢(i/n) can
now be interpreted as the Bézier polygon of a polynomial curve x,,:

X,(f) = Zc (é) BI(1).
i=0

We say that x, is the n™ degree Bernstein—Bézier approximation to c.

We are next going to increase the density of our samples, i.e., we increase n. This
generates a sequence of approximations X,, X,+1, The Weierstrass approximation
theorem states that this sequence of polynomials converges to the curve c:

lil’; x,(1) = c(t).

At first sight, this looks like a handy way to approximate a given curve by
polynomials: we just have to pick a degree n that is sufficiently large, and we are as

78 Chapter 5. Bézier Curve Topics

close to the curve as we like. This is only theoretically true, however. In practice, one
would have to choose values of » in the thousands or even millions in order to obtain
a reasonable closeness of fit (see Korovkin [314] for more details).

The value of the theorem is therefore more of a theoretical nature. It shows that
every curve may be approximated arbitrarily closely by a polynomial curve.

5.11 Formulas for Bernstein Polynomials

This section is a collection of formulas; some appeared in the text, some did not.
Credit for some of these goes to R. Goldman, R. Farouki, and V. Rajan [197].
A Bemstein polynomial is defined by

B = { (ra =o€ on,

else.

The power basis {t'} and the Bernstein basis {B!} are related by

no(j
=3 QB;(;) (5.28)
j=i (1)
and
n _ . _ ji—i 1] j
Bi(t) = ;(1)/ (;) (i)ﬂ. (5.29)
Recursion:
BMt) = (1 —)B*'(t) + B!} (v).
Subdivision:
Bj(ct) =) Bl(0)B}(). (5.30)
j=0
Derivative:
ad;B{‘(t) = n[BIZ} () — B\ (0)].
Integral:
' n+l
/B{’(x)dx Z B (), (5.31)
0 _] i+1

! 1
/ B”(x)dx = Tl

5.13. Exercises

Three degree-elevation formulas:

‘1 n — n+ 1 =i n+l1
(1~ DBl = “——B" (1)

1B} (t) = —B{Tf(t)

n+1

Bi() = —— ,":sm.
Product:
(O
BB = Bl (w).
i+j

512 Implementation

79

(5.32)

(5.33)

(5.34)

(5.35)

A C routine for degree elevation follows. Note that we have to treat the cases i = 0
and i = n + 1 separately; the program would not like the corresponding nonexisting
array elements. The program actually handles the rational case, which will be covered

later. For the polynomial case, fill wb with 1’s and ignore wc.

void degree_elevate(bx,by,wb,degree,cx,cy,wc)

/* input: two-d Bezier polygon in bx, by and with weights

in wb. Degree is degree.

Output:degree elevated curve in cx,cy and with weights in wc.

Note: for nonrational (polynomial) case, fill wc with 1’s.

*/

5.13 Exercises

*1. Prove (5.19).

*2. Prove the relationship between the “Bézier” and the Bermstein form for a Bézier

curve (5.16).
*3, Prove that

t . ¢ n)
/0 b"(x)dx = H—]Zb{)(t).

j=0

*4. With the result from the previous problem, prove

t
F't)=n / B '(x)dx.
0

80

*5.

P1.

P2.

Chapter 5. Bézier Curve Topics

Show that the control points b; from (5.7) define a curve that is the original
curve’s Taylor expansion of degree n — 1 at ¢t = 0.

The recursion formula for Bernstein polynomials is equivalent to the de Casteljau
algorithm. Devise a recursive curve evaluation algorithm for curves in Chebychev
form based on the recursion for Chebychev polynomials. Program it up and
experiment!

Program up degree reduction with some of the methods outlined in Section 5.4.
Work with the Bézier polygon supplied in the file degred. dat.

Chapter 6

Polynomial Interpolation

Polynomial interpolation is the most fundamental of all interpolation concepts; the
earliest method is probably attributable to I. Newton. Nowadays, polynomial inter-
polation is mostly of theoretical value; faster and more accurate methods have been
developed. Those methods are piecewise polynomial; thus they intrinsically rely on
the polynomial methods that are presented in this chapter.

6.1 Aitken’s Algorithm

A common problem in curve design is point data interpolation: from data points p;
with corresponding parameter values 7;, find a curve that passes through the p;.! One
of the oldest techniques to solve this problem is to find an interpolating polynomial
through the given points. That polynomial must satisfy the interpolatory constraints

pit)=p;; i=0,...,n

Several algorithms exist for this problem—any textbook on numerical analysis will
discuss several of them. In this section we shall present a recursive technique that is
due to A. Aitken.

We have already solved the linear case, » = 1, in Section 2.3. The Aitken
recursion computes a point on the interpolating polynomial through a sequence of
repeated linear interpolations, starting with

i1 — 1 n =1

t
1 .
p; (1) = ' piri; i=0...,n— 1L
! tiv1 =t s — 4

Let us now suppose (as one does in recursive techniques) that we have already
solved the problem for the case n — 1. To be more precise, assume that we have found
a polynomial p(’)"1 that interpolates to the » first data points py,..., p,—1, and also

'The shape of the curve depends heavily on the parameter values #;. Methods for their
determination will be discussed later in the context of spline interpolation; see Section 9.4.

81

82 Chapter 6. Polynomial Interpolation

a polynomial p?~! that interpolates to the n last data points py, .. ., p,. Under these
assumptions, it is easy to write down the form of the final interpolant, now called p}:

t ——
Pon) = ——pj (O + ——p] (). (6.1)
In — 0 Iy 0

Figure 6.1 illustrates this form for the cubic case.
Let us verify that (6.1) does in fact interpolate to all given data points p;: for

t =1,
Pi(to) = 13~ (t0) + 0% pi (1) = po

A similar result is derived for ¢ = ¢,. Under our assumption, we have pi~'(#;) =
p} (%) = p; for all other values of i.
Since the weights in (6.1) sum to one identically, we get the desired pjj(t;) = p;.
We can now generalize (6.1) to solve the polynomial interpolation problem:
starting with the given parameter values ¢; and the data points p; = p?, we set

- =1,...,n
+r r 1 l -1 y Il
= 1)+ t . 6.2
(t) t1+r ti () by — p1+] () { 0’ e m—F ()
2
Po
PR
)
(%
to t3

Figure 6.1: Polynomial interpolation: a cubic interpolating polynomial may be ob-
tained as a “blend” of two quadratic interpolants.

6.1. Aitken’s Algorithm 83

Ly —e 1 —
to t1 ¢t

Figure 6.2: Aitken’s algorithm: a point on an interpolating polynomial may be found
from repeated linear interpolation.

It is clear from the preceding consideration that pfj(¢) is indeed a point on the
interpolating polynomial. The recursive evaluation (6.2) is called Aitken’s algorithm.?

It has the following geometric interpretation: to find p}, map the interval [#;, #;+.]
onto the straight line segment through p! !, p/;|. That affine map takes 7 to p. The
geometry of Aitken’s algorithm is illustrated in Figure 6.2 for the cubic case.

It is convenient to write the intermediate p/ in a triangular array; the cubic case
would look like

Po
1
P1 Py
L (6.3)
P2 P Py
Ps Py Pi P

We can infer several properties of the interpolating polynomial from Aitken’s
algorithm:

o Affine invariance: This follows since the Aitken algorithm uses only barycentric
combinations.

2The particular organization of the algorithm as presented here is due to Neville.

84 Chapter 6. Polynomial Interpolutioﬁ

e Linear precision: If all p; are uniformly distributed® on a straight line segment,
all intermediate p; (¢) are identical for » > 0. Thus the straight line segment is
reproduced.

e No convex hull property: The parameter ¢ in (6.2) does not have to lie between
t; and t;+,. Therefore, Aitken’s algorithm does not use convex combinations
only: pj(¢) is not guaranteed to lie within the convex hull of the p;. We should
note, however, that no smooth curve interpolation scheme exists that has the
convex hull property.

e No variation diminishing property: By the same reasoning, we do not get the
variation diminishing property. Again, no “decent” interpolation scheme has
this property. However, interpolating polynomials can be variation augmenting
to an extent that renders them useless for practical problems.

6.2 Lagrange Polynomials

Aitken’s algorithm allows us to compute a point p*(¢) on the interpolating polynomial
through »n + 1 data points. It does not provide an answer to the following questions:
(1) Is the interpolating polynomial unique? (2) What is a closed form for it? Both
questions are resolved by the use of the Lagrange polynomials L.

The explicit form of the interpolating polynomial p is given by

p(t) = > piLl(), (6.4)

i=0

where the L! are Lagrange polynomials,

[[—1)
L) = =~———. (6.5)
H%ﬂ # —t))

Before we proceed further, we should note that the L must sum to one in order
for (6.4) to be a barycentric combination and thus be geometrically meaningful; we
will return to this topic later.

We verify (6.4) by observing that the Lagrange polynomials are cardinal: they
satisfy

L?([j) = 6,~,j, (66)

with §;; being the Kronecker delta. In other words, the i" Lagrange polynomial
vanishes at all knots except at the i™ one, where it assumes the value 1. Because
of this property of Lagrange polynomials, (6.4) is called the cardinal form of the
interpolating polynomial p. The polynomial p has many other representations, of

3If the points are on a straight line, but distributed unevenly, we will still recapture the
graph of the straight line, but it will not be parametrized linearly.

6.3. The Vandermonde Approach 85

course (we can rewrite it in monomial form, for example), but (6.4) is the only form
in which the data points appear explicitly.

We have thus justified our use of the term the interpolating polynomial. In fact,
the polynomial interpolation problem always has a solution, and it always has a
unique solution. The reason is that, because of (6.6), the L! form a basis of all
polynomials of degree n. Thus (6.4) is the unique representation of the polynomial
p in this basis. This is why one sometimes refers to all polynomial interpolation
schemes as Lagrange interpolation.*

We can now be sure that Aitken’s algorithm yields the same point as does (6.4).
Based on that knowledge, we can conclude a property of Lagrange polynomials that
was already mentioned right after (6.5), namely, that they sum to one:

Zn:L;l(t) = |.
i=0

This is a simple consequence of the affine invariance of polynomial interpolation, as
shown for Aitken’s algorithm.

6.3 The Vandermonde Approach

Suppose we want the interpolating polynomial p” in the monomial basis:
P = Z a;t). 6.7
j=0

The standard approach to finding the unknown coefficients from the known data is
simply to write down everything one knows about the problem:
p"(t)) = po = ag + ayty + - - + ayl,

P(t) =p1r =ap +aiy + -+ ay,

p'(th) = Pn = ag + ayt, + -+ aut;.

In matrix form:

Po 1t 5 114 a,
2 n
Pi 1 # ... q a)
= .o . . . (6.8)
Pn 1 t, 2 ... a,

“More precisely, we refer to all those schemes that interpolate to a given set of data points.
Other forms of polynomial interpolation exist and are discussed later.

86 Chapter 6. Polynomial Interpolation

We can shorten this to
p = Ta (6.9)

We already know that a solution a to this linear system exists, but one can show
independently that the determinant det T is nonzero (for distinct parameter values
t;). This determinant is known as the Vandermonde of the interpolation problem. The
solution, i.e., the vector a containing the coefficients a;, can be found from

a=T""p (6.10)

This should be taken only as a shorthand notation for the solution—not as an algo-
rithm! Note that the linear system (6.9) really consists of three linear systems with the
same coefficient matrix, one system for each coordinate. It is known from numerical
analysis that in such cases the LU decomposition of T is a more economical way
to obtain the solution a. This will be even more important when we discuss tensor
product surface interpolation in Section 15.12.

The interpolation problem can also be solved if we use basis functions other than
the monomials. Let {F}'}{_, be such a basis. We then seek an interpolating polynomial
of the form

p(t) =) CFL). (6.11)
j=0

The preceding reasoning again leads to a linear system (three linear systems, to be
more precise) for the coefficients ¢;, this time with the generalized Vandermonde F:

Fi(to) Fito) ... Fp(o)
Fgt) Fi(t) ... Fr(t)

=Y : 6.12)
Fit) Fit) ... Fit)

Since the F}' form a basis for all polynomials of degree #, it follows that the generalized
Vandermonde det F is nonzero.

Thus, for instance, we are able to find the Bézier curve that passes through a
given set of data points: the F} would then be the Bernstein polynomials B'.

6.4 Limits of Lagrange Interpolation

We have seen that polynomial interpolation is simple, unique, and has a nice geomet-
ric interpretation. One might therefore expect this interpolation scheme to be used
frequently; yet it is virtually unknown in a design environment. The main reason is
illustrated in Figure 6.3: polynomial interpolants oscillate. For quite reasonable data
points and parameter values, the polynomial interpolant exhibits wild wiggles that
are not inherent in the data. One may say that polynomial interpolation is not shape
preserving.

6.5. Cubic Hermite Interpolation 87

Figure 6.3: Lagrange interpolation: while the data points suggest a convex inter-
polant, the Lagrange interpolant exhibits extraneous wiggles.

This phenomenon is not due to numerical effects; it is actually inherent in the
polynomial interpolation process. Suppose we are given a finite arc of a smooth
curve ¢. We can then sample the curve at parameter values #; and pass the interpo-
lating polynomial through those points. If we increase the number of points on the
curve, thus producing interpolants of higher and higher degree, one would expect
the corresponding interpolants to converge to the sampled curve ¢. But this is not
generally true: smooth curves exist for which this sequence of interpolants diverges.
This fact is dealt with in numerical analysis, where it is known by the name of its
discoverer: itis called the “Runge phenomenon” [427]. Note, however, that the Runge
phenomenon does not contradict the Weierstrass approximation theorem!

As a second consideration, let us examine the cost of polynomial interpolation,
i.e., the number of operations necessary to construct and then evaluate the interpolant.
Solving the Vandermonde system (6.8) requires roughly n* operations; subsequent
computation of a point on the curve requires n operations. The operation count for
the construction of the interpolant is much smaller for other schemes, as is the cost
of evaluations (here piecewise schemes are far superior). This latter cost is the more
important one, of course: construction of the interpolant happens once, but it may
have to be evaluated thousands of times!

6.5 Cubic Hermite Interpolation

Polynomial interpolation is not restricted to interpolation to point data; one can also
interpolate to other information, such as derivative data. This leads to an interpo-
lation scheme that is more useful than Lagrange interpolation: it is called Hermite
interpolation. We treat the cubic case first, in which one is given two points p, p;
and two tangent vectors mg, m, . The objective is to find a cubic polynomial curve p
that interpolates to these data:

p(0) = po,
p(0) = my,
p() = my,
p(l) = p1,

where the dot denotes differentiation.

88 Chapter 6. Polynomial Interpolation

We will write p in cubic Bézier form, and therefore must determine four Bézier
points by, ..., bs. Two of them are quickly determined:

by = po, bz = p1.

For the remaining two, we recall (from Section 4.3) the endpoint derivative for Bézier
curves:

PO) = 3Ab, p(1) = 3Ab,.

We can easily solve for by and b,:
1 1
by = po + 3o, by = p; — 3

This situation is shown in Figure 6.4.

Having solved the interpolation problem, we now attempt to write it in cardinal
form; we would like to have the given data appear explicitly in the equation for the
interpolant. So far, our interpolant is in Bézier form:

1 1
p(t) = poBj(1) + (Po + 5m0> B(t) + (pl - §m1> B3(t) + p1Bi(0).

<&

Figure 6.4: Cubic Hermite interpolation: the given data—points and tangent
vectors—together with the interpolating cubic in Bézier form.

6.5. Cubic Hermite Interpolation

89

H3

H3

Figure 6.5: Cubic Hermite polynomials: the four H? are shown over the interval [0, 1].

To obtain the cardinal form, we simply rearrange:

p() = poHy(t) + moH{ (1) + myH; (1) + p1H5(0),

where we have set’®

(6.13)

Hi@t) = Bj(t) + B (1),

1
Wm=§ﬁ®

(6.14)

1
@m=—¢%x

H3(t) = B3(t) + B3(1).

The H are called “cubic Hermite polynomials” and are shown in Figure 6.5.

What are the properties necessary to make the H; cardinal functions for the cubic
Hermite interpolation problem? They must be cardinal with respect to evaluation and
differentiation at t = QO and ¢t = 1, i.e., each of the Hf equals 1 for one of these four
operations and is zero for the remaining three:

d
H2(0) =1, —H0) =
0(0) = 1, dtHo(O) 0,
d
H}(0) =0, —H}0) =
10 =0 —H0) =1,
3 — d 3
H3(0) =0, —H3(0) =0,
dr
d
H3(0) = 0, a—tHS(O) =0,

d
EH3(1)=O, H;(1) =0,
d 3 3 —
5H1(1)=0, H(1) =0,
d 3 3

aHz(1)=1, H3(1) =0,
d 3 3

5H3(1)=0, H3(1) =1L

5This is a deviation from standard notation. Standard notation groups by orders of deriva-
tives, i.e., first the two positions, then the two derivatives. The form of (6.13) was chosen
because it groups coefficients according to their geometry.

90 Chapter 6. Polynomial Interpolation

Another important property of the H? follows from the geometry of the inter-
polation problem; (6.13) contains combinations of points and vectors. We know that
the point coefficients must sum to one if (6.13) is to be geometrically meaningful:

HY() + H¢t) = 1.

This is of course also verified by inspection of (6.14).

Cubic Hermite interpolation has one annoying peculiarity: it is not invariant
under affine domain transformations. Let a cubic Hermite interpolant be given as
in (6.13), i.e., having the interval [0, 1] as its domain. Now apply an affine domain
transformation to it by changing ¢t to 7 = (1 — t)a + 1b, thereby changing [0, 1] to
some [a, b]. The interpolant (6.13) becomes

P = polly (@) + moH}(F) + m A3 (3) + p H3(D), (6.15)

where the I:I,3 (?) are defined through their cardinal properties:

N d . d . N

H}@) =1, —H}a)=0 —HJ®b)=0 H}b) =0
dr dr

3 d s d ., ~3

Hi(a) = 0, d—thr1 (@) =1, a;H] (b) =0, Hj(b) =0,

. d . d
Hi(a) =0, a;Hg(a) =0, a;1513‘(11) =1, H3b)=0,

d

a1933(1;) =0, H®b) =1

B =0, SA@ =0
To satisfy these requirements, the new A must differ from the original H;. We obtain
H3 (@) = Hy),
B® = b - aH)),
B @) = (b~)H; (1)
B3 (@) = H3 (@),

(6.16)

where ¢t € [0, 1] is the local parameter of the interval [a, b].

Evaluation of (6.15) at f = a and 7 = b yields p(a) = po, P(b) = p;. The
derivatives have changed, however. Invoking the chain rule, we find that dp(a)/dt =
(b — a)my and, similarly, dp(b)/dt = (b — @)m,.

Thus an affine domain transformation changes the curve unless the defining
tangent vectors are changed accordingly—a drawback that is not encountered with
the Bernstein—Bézier form.

To maintain the same curve after a domain transformation, we must change the
length of the tangent vectors: if the length of the domain interval is changed by a
factor a, we must replace mg and m; by my /a and m, /«, respectively. There is an
intuitive argument for this: interpreting the parameter as time, we assume we had one
time unit to traverse the curve. After changing the interval length by a factor of 10,
for example, we have 10 time units to traverse the same curve, resulting in a much

6.6. Quintic Hermite Interpolation 91

AN

y-—- ‘0 a ‘ =t

]—] ——

Figure 6.6: Lengths of tangent vectors and domain intervals: the longer the domain
interval (right cubic function), the shorter the tangent vector of the parametric curve.

lower speed of traversal. Since the magnitude of the derivative equals that speed, it
must also shrink by a factor of 10.

An illustration is given in Figure 6.6. It shows—using a parametric cubic and
the x-portion of its cross plot—how a stretching of the domain interval “flattens”
the x-component function. This results in a shorter tangent vector of the parametric
curve. In this figure, we have made use of the fact that the slope of a function may be
expressed as the height of a right triangle with base length one.

We also note that the Hermite form is not symmetric: if we replace ¢ by 1 — ¢
(assuming again the interval [0, 1] as the domain), the curve coefficients cannot simply
be renumbered (as in the case of Bézier curves). Rather, the tangent vectors must be
reversed. This follows from the foregoing application of the affine map to the [0, 1]
that maps that interval to [1, 0], thus reversing its direction.

The dependence of the cubic Hermite form on the domain interval is rather
unpleasant—it is often overlooked and can be blamed for countless programming
errors by both students and professionals. We will use the Bézier form whenever
possible.

6.6 Quintic Hermite Interpolation

Instead of prescribing only position and first derivative information at two points, one
might add information for second-order derivatives. Then our data are py, mg, Sg and
p1, my, s, where sy and s; denote second derivatives. The lowest order polynomial

92 Chapter 6. Polynomial Interpolation

to interpolate to these data is of degree five. Its Bézier points are easily obtained
following the preceding approach. If we rearrange the Bézier form to obtain a cardinal
form of the interpolant p, we find

P(t) = PoHy(t) + moH; (1) + soH5 (1) + s, H3 (1) + mH; () + p H3 (1), (6.17)
where

H; = B} + B} + B,

H) = %[Bf + 2B3),

HS = —BS
27 552
1
HS = —BS,
37 59"3

1
—5[233 + B]],

=
I

H; = B] + B} + Bi.

It is easy to verify the cardinal properties of the H;: they are the straightforward
generalization of the cardinal properties for cubic Hermite polynomials. If used
in the context of piecewise curves, the quintic Hermite polynomials guarantee C?
continuity since adjoining curve pieces interpolate to the same second-order data. For
most applications, one will have to estimate the second derivatives that are needed
as input. This estimation is a very sensitive procedure—so unless the quintic form is
mandated by a particular problem, the simpler C? cubic splines from Chapter 9 are
recommended.

6.7 The Newton Form and
Forward Differencing

All methods in this chapter—and in the Bézier curve chapters as well—were con-
cerned with the construction of polynomial curves. We shall now introduce a way to
display or plot such curves. The underlying theory makes use of the Newton form
of a polynomial; the resulting display algorithm is called forward differencing and is
well established in the computer graphics community. For this section, we only deal
with the cubic case; the general case is then not hard to work out.

So suppose that we are given a cubic polynomial curve p(¢). Also suppose that
we are given four points p(ty), p(t1), p(f2), p(t3) onit such that t;+; — ¢; = h, i.e., they
are at equally spaced parameter intervals. Then it can be shown that this polynomial

6.7. The Newton Form and Forward Differencing 93

may be written as

- [1 - 2 1 3
P(t) = Po+ 3 (1 = 10)APo+ 55 (1 = fo)(t = 11)A o + 75 (1~ 1)t —11)(t ~12)A” P
(6.18)
The derivation of this Newton form is in any standard text on numerical analysis.
The differences A’p; are defined as

A'p; = A p;s — A7 'p; (6.19)

and A%p; = p;.
The coefficients in (6.18) are conveniently written in a table such as the following
(setting g = 1/h):

Po

pi gApo

P> gApr g*A%p

P gAp AP A%,

The diagonal contains the coefficients of the Newton form. The computation of this
table is called the startup phase of the forward differencing scheme.

We could now evaluate p at any parameter value ¢ by simply evaluating (6.18)
there. Since our our evaluation points ¢; are equally spaced, a much faster way exists.
Suppose we had computed p; = p(¢;), etc., from (6.18). Then we could compute all
entries in the following table:

Po

p1 8Apo

P2 gApr g*A%p

ps gAp, gPA%p; gA°py (6.20)

p:s gAps g*A%p, gPA’p,
Ps gAps g'A’ps g’A’p,

Now consider the last column of this table, containing terms of the form g>A3p;. All
these terms are equal! This is so because the third derivative of a third-degree poly-
nomial is constant, and because the third derivative of (6.18) is given by g*A*py =
3A3L
We thus have a new way of constructing the table (6.20) from right to left. instead
of computing the entry p, from (6.18), first compute g?>A?p, from (6.19):

g'A%p, = £A%p; + g°A%p,,
then compute gA p3 from
gAps = g*A’p, + gAp,,
and finally

ps = gAp; + ps.

94 Chapter 6. Polynomial Interpolation

Then compute ps in the same manner, and so on. The general formula is, with
¢ = gA'p;:

4, =qt +dqi_;; i=21,0 (6.21)
It yields the points p; = ¢0.°

This way of computing the p; does not involve a single multiplication after
the startup phase! It is therefore extremely fast and has been implemented in many
graphics systems. Given four initial points po, p;, P2, P3 and a stepsize A, it generates
a sequence of points on the cubic polynomial through the initial four points. Typically
the polynomial will be given in Bézier form, so those four points have to be computed
as a startup operation.

In a graphics environment, it is desirable to adjust the stepsize h such that
each pixel along the curve is hit. One way of doing this is to adjust the stepsize
while marching along the curve. This is called adaptive forward differencing and is
described by Lien, Shantz, and Pratt [333] and by Chang, Shantz, and Rochetti [99].

Although fast, forward differencing is not foolproof: As we compute more and
more points on the curve, they begin to be affected by roundoff. So while we intend
to march along our curve, we may instead leave its path, deviating from it more and
more as we continue. For more literature on this method, see Abi-Ezzi [1], Bartels et
al. [42], or Shantz and Chang [472].

6.8 Implementation

The code for Aitken’s algorithm is very similar to that for the de Casteljau algorithm.
Here is its header:

float aitken(degree,coeff,t)

/* uses Aitken to compute one coordinate
value of a Lagrange interpolating polynomial. Has to be called
for each coordinate (x,y, and/or z) of data points.

Input: degree: degree of curve.
coeff: array with coordinates to be interpolated.
t: parameter value.

Output: coordinate value.

Note: we assume a uniform knot sequence!
*/
6.9 Exercises

1. Show that the cubic and quintic Hermite polynomials are linearly independent.
2. Generalize Hermite interpolation to degrees 7, 9, etc.

It holds for any degree n if we replace i = 2,1,0byi =n—1,n—2,...,0.

6.9.

*3.

*4,

P1.

P2.

P3.

Exercises 95

The de Casteljau algorithm for Bézier curves has as its “counterpart” the recur-
sion formula (4.2) for Bernstein polynomials. Deduce a recursion formula for
Lagrange polynomials from Aitken’s algorithm.

The Hermite form is not invariant under affine domain transformations, while
the Bézier form is. What about the Lagrange and monomial forms? What are
the general conditions for a curve scheme to be invariant under affine domain
transformations?

Aitken’s algorithm looks very similar to the de Casteljau algorithm. Use both to
define a whole class of algorithms, of which each would be a special case (see
[184]). Write a program that uses as input a parameter specifying if the output
curve should be “more Bézier” or “more Lagrange.”

The function that was used by Runge to demonstrate the effect that now bears
his name is given by

fx) = xe[-1,1]

14+ x%
Use the routine aitken to interpolate at equidistant parameter intervals. Keep
increasing the degree of the interpolating polynomial until you notice “bad”
behavior on the part of the interpolant.

In Lagrange interpolation, each p; is assigned a corresponding parameter value
t;. Experiment (graphically) by interchanging two parameter values #; and ¢;
without interchanging p; and p;. Explain your results.

Chapter 7

Spline Curves in Bézier Form

Bézier curves provide a powerful tool in curve design, but they have some limita-
tions: if the curve to be modeled has a complex shape, then its Bézier representation
will have a prohibitively high degree (for practical purposes, degrees exceeding 10
are prohibitive). Such complex curves can, however, be modeled using composite
Bézier curves. We shall also use the name B-spline curves for such piecewise polyno-
mial curves. This chapter describes the main properties of cubic and quadratic spline
curves. More general spline curves will be presented in Chapter 10.

7.1 Global and Local Parameters

Before we start to develop a theory for piecewise curves, let us establish the main
definitions that we will use. When we considered single Bézier curves, we assumed
that they were the map of the interval 0 = ¢ = 1. We could make this assumption
because of the invariance of Bézier curves under affine parameter transformations;
see Section 3.3. Life is not quite that easy with piecewise curves: while we can assume
that each individual segment of a spline curve s is the map of the interval [0, 1], the
curve as a whole is the map of a collection of intervals, and their relative lengths play
an important role.

A spline curve s is the continuous map of a collection of intervals uy < ... < ug,
into 3, where each interval [u;, 4;+1] is mapped onto a polynomial curve segment.
Each real number u; is called a breakpoint or a knot. The collection of all y; is called
the knot sequence. For every parameter value u, we thus have a corresponding point
s(u) on the curve s. Let this value u be from an interval [u;, u;+]. We can introduce a
local coordinate (or local parameter) ¢ for the interval [u;, ;1] by setting

u—u u— u

t= =) (7.1)

Uil — Ui A;

One checks that ¢ varies from O to 1 as u varies from u; to u;, .

96

7.2. Smoothness Conditions 97

Ug u; uz ug Uy

/

Figure 7.1: Local coordinates: the interval [uy, u3;] has been endowed with a local
coordinate ¢. The third segment of the spline curve is shown with its Bézier polygon.

When we investigate properties of the curve s, it will be more convenient to do
so in terms of the global parameter u. (An example of such a property is the concept
of differentiability.) The individual segments of s may be written as Bézier curves,
and it is often easier to describe each one of them in terms of local coordinates. We
adopt the definition s; for the i segment of s, and we write s(u) = s;(t) to denote a
point on it. Figure 7.1 illustrates the interplay between local and global coordinates.

The introduction of local coordinates has some ramifications concerning the use
of derivatives. For u € [u;, u;4+1], the chain rule gives

ds(u) _ ds; () g

2

du dt du 7.2
1 dS,'(t)

= 2 (1.3)

Two more definitions: the points s(;) = s;(0) = s;_1(1) are called junction
points or joints. The collection of the Bézier polygons for all curve segments itself
forms a polygon; it is called the piecewise Bézier polygon of s.

7.2 Smoothness Conditions

Suppose we are given two Bézier curves s, and s;, with polygons by, ..., b, and
b,, ..., by, respectively. We may think of each curve as existing by itself, defined
over the interval t € [0, 1] or some other interval. We may also think of the two

98 Chapter 7. Spline Curves in Bézier Form

curves as two segments of one composite curve, defined as the map of the interval
[ug, up] into 3. The “left” segment s, is defined over an interval [u, u;], while the
“right” segment s, is defined over [u), u,] (see Section 7.1).

Let us pretend for a moment that both curves are arcs of one global polynomial
curve b"(u), defined over the interval [u, u,]. Section 4.6 tells us that the two polygons

bo,..., b, and b, ..., by, must be the result of a subdivision process. Then their
control vertices must be related by
byri =bi_;(); i=0,...,n (7.4)

where t = (u — up)/(u1 — up) is the local coordinate of u, with respect to the interval
[uo, u1].

Now suppose we arbitrarily change b,,; the two curves then no longer describe
the same global polynomial. However, they still agree in all derivatives of order

0,...,n— 1 at u = u;! This is simply because b;, has no influence on derivatives
of order less than n at u = u,. Similarly, we may change b,,—, and still maintain
continuity of all derivatives of order 0,...,n —r — 1.

We therefore have the C” condition for Bézier curves: the two Bézier curves
defined over uy = u = u; and ¥y = u = u,, by the polygons by,..., b, and
b,, ..., by, respectively, are r times continuously differentiable at u = u; if and only
if

byti = b _;®); i=0,...,r (7.5)

where t = (up —ug)/ (U1 — up) is the local coordinate of u, with respect to the interval
[ug, u1]. See Example 7.1 for a specific case.

Suppose the curve from Example 3.1 is defined over [0,1]. What are the Bézier
points of a second Bézier curve, defined over [1,3] and with a C? join to the
first curve? We have to evaluate at ¢t = 3:

S h DO DO OO

|
S
<)

The boldface points are the desired ones. If they are the first three Bézier points
of the “right” curve, both curves will be C? over the interval [0,3].

o ONO

Example 7.1: Computing the C? extension of a Bézier curve.

7.3. C' and C? Continuity 99

Thus the de Casteljau algorithm also governs the continuity conditions between
adjacent Bézier curves. Note that (7.5) is a theoretical tool; it should not be used to
construct C" curves—this would lead to numerical problems because of the extrap-
olations that are used in (7.5).

Another condition for C” continuity should also be mentioned here. By equating
derivatives using (4.20) and applying the chain rule,! we obtain

1Y) i 1Y) i .
(Zg) A'b,_; = (A—I) A'b, i=0,...,r (7.6)

Conditions for continuity of higher derivatives of Bézier curves were first derived
by E. Staerk [478] in 1976. The cases r = 1 and r = 2 are probably the ones of most
practical relevance, and we shall discuss them in more detail next.

7.3 C! and C? Continuity

We know that only the three Bézier points b1, b,, b, + influence the first derivatives
at the junction point b,,. According to (7.5), b, is obtained by linear interpolation
of the two points b,_y, b,. These three points must therefore be collinear and must
also be in the ratio (u; — ug) : (42 — u;) = Ag : A;. This C! condition is illustrated
in Figure 7.2.

It is important to note that collinearity of three distinct control points b,_1, by,
b,+1 is not sufficient to guarantee C! continuity! This is because the notion of
C! continuity is based on the interplay between domain and range configurations.
Collinearity of three points is purely a range phenomenon. Without additional in-
formation on the domain of the curve under consideration, we cannot make any
statements concerning differentiability. However, collinearity of three distinct con-
trol points b,,_1, by, b,+1 does guarantee a continuously varying tangent line.

Ao : A

N

—_
Ao : D1

Figure 7.2: C' condition: the three shown Bézier points must be collinear with ratio
AO . Al.

'Equation (4.20) is with respect to the local parameter of an interval. We are interested in
differentiability with respect to the global parameter.

100 Chapter 7. Spline Curves in Bézier Form

A special situation arises if Ab,—_; = Ab, = 0, ie., if all three points
b,_1, b,, by+1 coincide. In this case, the composite curve s has a zero tangent vector
at the junction point b, and is differentiable regardless of the interval lengths Ag, A;.
Zero tangent vectors may give rise to corners or cusps in curves, a fact that intuitively
contradicts the concept of differentiability.

Smoothness and differentiability only agree for functional curves—the connec-
tion between them is lost in the parametric case. Differentiable curves may not be
smooth (see cusps above) and smooth curves may not be differentiable (see Figures
7.6 and 7.7).

Moving on to C? continuity, let us now assume that s is C', so that (7.5) and (7.6)
are satisfied for » = 1. The additional C? condition, with » = 2 in (7.5), states that the
two quadratic polynomials with control polygons b, 5, b,—1, b, and b,, b,.41, by, 42,
defined over [ug, u;] and [uy, u,], describe the same global quadratic polynomial.
Therefore, a polygon b,,—,, d, b, ., must exist that describes that polynomial over the
interval [ug, uo]. The two subpolygons are then obtained from it by subdivision at the
parameter value u;.

A C? condition for a C! curve s at ; is thus the existence of a point d such that

b,-1 = — t))b,—» + 1,4, (1.7)
b1 =1 —t)d + t1b, 4o, (7.8)

where 1; = Ay/(uy — up) is the local parameter of u; with respect to the interval
[ug, u,]. Figure 7.3 gives an example.

This condition provides us with an easy test to see if a curve is C? at a given
breakpoint u;: we simply construct auxiliary points d—, d+ from both the right and
the left and check for equality. Figure 7.4 shows two curve segments that fail the C?
test.

A0 : Al

Figure 7.3: C? condition: two Bézier curves are twice differentiable at the junction
point b, if the auxiliary point d exists uniquely.

7.3. C' and C? Continuity 101

Ag A,

Figure 7.4: C? condition: the two segments shown generate different auxiliary points
d..; hence they are only C'.

Another derivation of the C? condition would be to compute the left and right
second derivatives at the junction point b, and to equate them. The second derivatives
at a junction point are essentially second differences of nearby Bézier points. For the
simpler case of uniform parameter spacing, Ag = A;, Figure 7.5 shows how this
approach leads to the same C? condition as before.

bn+2

Figure 7.5: C? condition for uniform parameter spacing: if A’b,, = A?%b,
= A?, a unique auxiliary point d exists. (Proof by the use of similar triangles.)

102 Chapter 7. Spline Curves in Bézier Form

While both ways of checking C? continuity are mathematically equivalent, the
first one is more practical: it compares points (d— and d), while the second one com-
pares vectors (left and right second derivatives). One usually has a point tolerance?
present in an application, but it would be hard to define a tolerance according to which
two second derivative vectors can be labeled equal. The problem of checking for C?
continuity arises when a piecewise cubic curve is given and one tries to convert it to
B-spline format, see Section 7.6.

7.4 Finding a C' Parametrization

Suppose we are given a piecewise Bézier curve. A probable question would now be:
“Is this curve C!'?” This question is meaningless! The concept of C' continuity is
based upon an interplay between the knot sequence and the control polygons of the
curve. Hence a meaningful question would be: “Can we find a knot sequence such
that the curve is C' with respect to it?”

We can determine such a knot sequence from inspection of the piecewise Bézier
polygon: if it has “corners” at the junction points, it cannot define a C! spline curve,
and the notion of a knot sequence is meaningless. (A C° spline curve is C® over
any knot sequence.) Suppose then that we have a piecewise Bézier polygon with
b;u—1, bin, bin+1 collinear for all i. We can now construct a knot sequence as follows:

setug = 0, uy = 1 andfori = 2,..., L determine u; by solving
Ao 1Ayl
= 7.9
A TAbyl 7

for A;. If desired, we may now normalize the u; by dividing through by u;. This
forces all u; to be in the unit interval [0, 1]. Of course, any scaling or translation of
the knot sequence is allowed: our C' conditions are invariant under affine parameter
transformations!

Any other choice of parameter intervals will not change the shape of the piecewise
curve—that shape is uniquely determined by the Bézier polygons. However, different
knot spacing will change the continuity class of the curve defined by its Bézier
polygons; the cross plots that are shown in Figures 7.6 and 7.7 demonstrate this. We
see that the continuity class of a curve is not a geometric property that is intrinsically
linked to the shape of the curve—it is a result of the parametrization.

7.5 C! Quadratic B-spline Curves

Let us consider a C! piecewise quadratic spline curve s that is defined over L intervals
uy < ... < uy,asin Figure 7.8. We call the Bézier points b, inner Bézier points,
and the by; junction points.

2If two points are closer together than this tolerance, they are regarded as equal.

7.5. C' Quadratic B-spline Curves 103

]

Y

|
Ad
t B @«

“

Figure 7.6: A C' parametrization: the piecewise quadratic Bézier curve is C' when
the parameter intervals are chosen to be in the same ratio « : B as the Bézier points
by, b, bs.

We can completely determine a quadratic spline curve by prescribing the knot
sequence and the Bézier points

bo, by, bs, ..., boity, ..., bar—1, by

The remaining junction points are computed from the C' conditions

A; A
byy + ‘A‘bz,ﬂ; i=1,...,L—1 (7.10)

b, = — i _Bi-1
XTAL A A + A

We can thus define a C' quadratic Bézier curve with fewer data than are necessary
to define the complete piecewise Bézier polygon. The minimum amount of informa-
tion that is needed is (1) the polygon by, by, b3, ..., byis ..., bap—y, by, called the
B-spline polygon or de Boor polygon of s, and (2) the knot sequence ug, . . ., uz.> If the
curve is described in termsof this B-spline polygon, it is sometimes called a B-spline

3For readers familiar with the IGES definition of B-splines: there, the knots uy and u
would have to be listed three times each.

104 Chapter 7. Spline Curves in Bézier Form

z%y

¥

Figure 7.7: A C° parametrization: the piecewise Bézier curve is the same as in the
previous figure. It is nora C' curve with the choice of uniform parameter intervals as
indicated in the cross plot.

curve. We also denote the quadratic B-spline polygon by d_;, dy, ..., d;—;, d.; see
Figure 7.8. Each B-spline polygon, together with a knot sequence, determines a C'
quadratic spline curve, and, conversely, each quadratic C! spline curve possesses a
unique B-spline polygon.*

From the definition of a quadratic B-spline polygon, we can deduce several
properties, which we shall simply list since their derivation is a direct consequence
of the previous definitions:

¢ Convex hull property
e Linear precision

e Affine invariance

“The numbering of knots and control points here is strictly aimed at the quadratic case. A
different numbering scheme is employed in Chapter 10 for more general configurations.

7.5. C' Quadratic B-spline Curves 105

d_; =bo Aq Az

(e t

ug uq uz ug U4

Figure 7.8: C' quadratic splines: the junction points b,; are determined by the inner
Bézier points and the knot sequence.

e Symmetry
¢ Endpoint interpolation

e Variation diminishing property.

The last property follows because the piecewise Bézier polygon of s is obtained by
piecewise linear interpolation of the B-spline polygon, a process that is variation
diminishing, as seen in Section 2.4.

All of the preceding properties are shared with Bézier curves, although the convex
hull property may be sharpened considerably for quadratic B-spline curves: the curve s
lies in the union of the convex hulls of the triangles by; 1, bo;+1, byiy3; i = 1..., L—2
and the triangles bg, by, b3 and by; 3, byy —1, by;, as shown in Figure 7.9. One Bézier
curve, on the other hand, could only be guaranteed to lie within the convex hull of its
whole control polygon.

By definition, quadratic B-spline curves consist of parabolic segments, i.e., planar
curves. However, the B-spline control polygon may be truly three-dimensional—we
thus have a method to generate C! space curves that are piecewise planar.

One important property that single Bézier curves do not share with B-spline
curves is local control. If we are dealing with a single Bézier curve,® we know that a
change of one of the control vertices affects the whole curve—it is a global change.
Changing a control vertex of a quadratic B-spline curve, on the other hand, affects
at most three curve segments. It is this local control property that made B-spline

5In this context, we do not consider Bézier curves as parts of composite curves!

106 Chapter 7. Spline Curves in Bézier Form

Figure 7.9: The convex hull property: a C' quadratic B-spline curve lies in the union
of a set of triangles. The triangles are formed by triples of consecutive control vertices.

curves as popular as they are. If a part of a curve is completely designed, it is highly
undesirable to jeopardize this result by changing the curve in other regions. With
single Bézier curves, this is unavoidable.

As a consequence of the local control property, we may include straight line
segments in a quadratic B-spline curve: if three subsequent control vertices are
collinear, the quadratic segment that is determined by them must be linear. A single
(higher degree) Bézier curve cannot contain linear segments unless it is itself linear;
this is yet another reason why B-spline curves are much more flexible than single
Bézier curves. Figure 7.10 shows a quadratic B-spline curve that includes straight
line segments. Such curves occur frequently in technical design applications, as well
as in font design.

T4 >

Figure 7.10: Quadratic B-spline curves: curves can be designed that include straight
line segments.

7.6. C? Cubic B-spline Curves 107

Figure 7.11: Closed curves: two closed quadratic B-spline curves are shown that have
the same control polygon but different knot sequences.

From inspection of Figure 7.8, we see that the endpoints of a B-spline curve are
treated in a special way. This is not the case with closed curves. Closed curves are
defined by s(ug) = s(uy). Figure 7.11 shows two closed quadratic B-spline curves.
For such curves, C! continuity is defined by the additional constraint (d/du)s(uy) =
(d/du)s(uy).

The figure also shows that a B-spline curve depends not only on the B-spline
polygon, but also on the knot sequence.

7.6 C? Cubic B-spline Curves

We are now interested in C? piecewise cubic spline curves, again defined over L
intervals uy < ... < u;. Consider any two adjacent curve segments s,—; and s;. To
be C! at u;, the relevant Bézier points must be in the ratio A;_; : A;, or

A A
b3i—1 + -~ (7.11)

by = A+ A A + A

To be C? as well, an auxiliary point d; must exist such that the points bs;_5, b3;—1, d;
and d;, bs; 41, b3+ are in the same ratio A;_; : A;, as follows from the C? conditions
(7.8). Figure 7.12 illustrates this point.

A C? cubic spline curve defines the auxiliary points d;, which form a polygon
P. Conversely, a polygon P and a knot sequence {x,} also define a C? cubic spline
curve. Set
Ay + A Ay

d_, + 24, (7.12)

b . =
3i-2 A A

108 Chapter 7. Spline Curves in Bézier Form

Figure 7.12: C? cubic B-spline curves: the auxiliary points d, define the B-spline poly-
gon of the curve.

LY, Ay + Ay
=g 2 g,)
b3i— A d., A d; (7.13)
fori = 2,L — 1, where
A= Ai—2 + Aifl + A,’. (714)

With the junction points bs; defined in (7.11), the piecewise Bézier curve defined
by the d; meets the C? conditions at every knot ;.

Near the ends, things are a little more complicated. We define the cubic B-spline
polygon to have vertices d_j, dy, ..., dz, dz.+1 and then set

b() = d_,
by = do (7.15)
_ A A
b, = gigdot grgde
_ A Ar-
by = AL 2L+A&L ld[fl + AL—Z+§L—1dL’
by, = d, (7.16)
b;y, = d...

Now the spline curve is C? at every interior knot. This construction is due to W.
Boehm [61]. An illustration is given in Figure 7.13.

If a cubic spline curve is expressed in terms of the B-spline polygon (the polygon
consisting of the d;), it is usually called a C? cubic B-spline curve.

Cubic B-spline curves enjoy the same properties as do quadratic ones:

¢ Convex hull property

e Linear precision

7.6. C? Cubic B-spline Curves 109

Figure 7.13: B-splines: a cubic B-spline curve with its control polygon.

Affine invariance

e Symmetry

Endpoint interpolation

Variation diminishing property

Local control.

Local control for cubic B-spline curves is not quite as local as it is for quadratic
ones. If a control vertex d; of a cubic B-spline curve is moved, four segments of the
curve will be changed, as shown in Figure 7.14.

Figure 7.14: Local control: as one control vertex is moved, only the four “nearby”
curve segments change.

110 Chapter 7. Spline Curves in Bézier Form

7.7 Finding a Knot Sequence

“Given the de Boor polygon and the knot sequence, construct the corresponding
piecewise Bézier polygon” was the topic of the last two sections. In freeform design,
one creates the de Boor polygon interactively, but how does one create the knot
sequence? An easy answeristo setu; = i, or some other (equivalent) uniform spacing,
but this method is too rigid in many cases. The jury is still out on what constitutes
an “optimal” parametrization. As a rule of thumb, better curves are obtained from a
given polygon if the geometry of the polygon is incorporated into the knot sequence.
For example, one may set (in the cubic case)

Uy = 0,
u = ”d1 - (Ll”,
w = wo+ld—dyll i=2...L—1, (7.17

i

7 u -y + ldpsy — dpll.

This is a chord length parametrization for cubic B-spline curves when the polygon
is given.® This parametrization often produces “smoother” curves than the uniform
one described above (see Sapidis [440]).

7.8 Design and Inverse Design

Quadratic B-spline curves seemed to do a pretty good job of producing complex
shapes, so why increase the degree to cubic? Cubic polynomials are true space curves,
i.e., they are not planar. For 2D shapes, piecewise quadratics might suffice, but when
it comes to 3D, they can only produce piecewise 2D segments. Two examples why
this is not desirable: 3D curves that are used to describe robot paths will exhibit
jumps in their torsion—this is bad for the joints of the robot arm. Secondly, 3D
curves that have to satisfy aesthetic requirements would simply look bad if described
by piecewise planar shapes.’

Another advantage of piecewise cubics is the fact that they may have inflection
points inside a segment. With piecewise quadratics, one would have to make sure
that there is a junction point at every inflection point.

How do we design curves using cubic B-splines? The typical freeform design
takes place in a 2D environment, with the use of a mouse or some other interactive
input device. A control polygon is sketched on the terminal, the resulting curve is
drawn, the control polygon is adjusted, and so on. The parametrization that is being
used should be kept away from the designer, and would most likely be one of the
two methods described in the previous section. To obtain a 3D curve, one would then
change to another view (by rotating the curve) and continue adjusting control points.

% Another chord length parametrization exists if data points are given for an interpolatory
spline, as described in Chapter 9.

0f course, this could be overcome by using a large number of quadratic pieces. But then,
why not go a step further and do everything piecewise linear, with even more pieces?

7.9. Implementation 111

The final result might look reasonable on the terminal, but should probably undergo
a final smoothing process as discussed in Chapter 23.

Sometimes designers do not like to deal with control polygons and prefer to
manipulate the curve directly. In that case, the curve should be obtained from an
interpolation process as described in Chapters 8 or 9. It may be represented internally
in B-spline or piecewise Bézier form. If the designer wants to change a certain
junction point X; to a new location, this may easily be done locally using B-spline
technology as follows.

Displacing x(u;) by a vector v; would require a displacement of d; to a new
location d; + e;. Clearly e; must be parallel to v;, and so we can state

1
€ = —V. (718)
¢
The value of ¢; may be computed to
1 = 4o — U
¢ = (Ai MiT M2 oA, M2 T) . (7.19)
Uil — Ui Uip1 — Ui— Uivy — Ui—1

Thus we have solved our problem, called inverse design. In this mode, we would
directly move the junction point X; and simply hide the equivalent change in the
control polygon from the designer. We need to keep in mind that this procedure
(since it changes d;) will also change x;_; and x;.1, although by smaller amounts.
Note that we can interpret Fig. 7.14 as an illustration of inverse design!

7.9 Implementation

The following is a program for the conversion of a cubic B-spline curve to piecewise
Bézier form:

void bspline_to_bezier (bspl,knot,l,bez)

/* converts cubic B-spline polygon into piecewise Bezier polygon.

Input: Dbspl: B-spline control polygon
knot: knot sequence
1: no. of intervals

OQutput: bez: piecewise Bezier polygon. Each junction point b_3i is

only stored once.

Remark: bspl starts from O and not -1 as in the text. All
subscripts are therefore shifted by one. For those familiar
with Chapter 10: don’t try to use multiple knots here --
in terms of that chapter, the end knots u_0 and u_l
have multiplicity 3, but all other
knots are simple, and the curve is C2.

*/

This routine has to be called for each coordinate (i.e., two or three times).
Speedups are therefore possible.

112 Chapter 7. Spline Curves in Bézier Form

7.10 Exercises

1. If we write the de Casteljau algorithm in the form of a triangular array as in
(3.3), subdivision tells us how the three “sides” of that array are related to each
other. Write explicitly how to generate the elements of one side from those of
any other one.

2. Describe the chord length parametrization for closed B-spline curves.

*3, Consider two Bézier curves with polygons by, ..., b,andb,, ..., b,,.Letb,—, =
... = by = ... by, so that both curves form one (degenerate) C” curve. Under
what conditions on b,_,_ and b, , 4 is that curve also C"*1?

*4, We are given a closed polygon. Suppose we want to make the polygon vertices
the inner Bézier points by; ;1 of a piecewise quadratic and that we pick arbitrary
points on the polygon legs to become the junction Bézier points b,;. Can we al-
ways find a C! parametrization for this (tangent continuous) piecewise quadratic
curve?

P1. Design a helix-like C? cubic B-spline curve. Then plot the blossom b[t, #, s] for
each cubic piece, for the range 0 = ¢ = 1 and —0.5 = s = 0.5 (assuming that
t is the local parameter for each piece). You should obtain a surface. Discuss its
properties.

Chapter 8

Piecewise Cubic
Interpolation

Polynomial interpolation is a fundamental theoretical tool, but for practical purposes,
better methods exist. The most popular class of methods is that of piecewise polyno-
mial schemes. All these methods construct curves that consist of polynomial pieces
of the same degree and that are of a prescribed overall smoothness. The given data
are usually points and parameter values; sometimes, tangent information is added as
well.

In practice, one usually encounters the use of piecewise cubic curves. They may
be C2—the next chapter on cubic spline interpolation is dedicated to that case. If they
are only C', the trade-off for the lower differentiability class is locality: if a data point
is changed, the interpolating curve only changes in the vicinity of that data point. We
call this class of interpolants piecewise cubic interpolants.

This chapter can only cover the basic ideas behind piecewise cubic interpolation.
A large variety of interpolation methods exist that are designed to cope with special
problems. Most such methods try to preserve shape features inherent in the given
data, for example, convexity or monotonicity. We mention the work by Fritsch and
Carlson [222], McLaughlin [355], Foley [209], [210], McAllister and Roulier [352],
and Schumaker [453].

8.1 C! Piecewise Cubic Hermite Interpolation

This is conceptually the simplest of all C! interpolants, although not the most practical
one. It solves the following problem:

Given: Data points Xy, ..., Xz, corresponding parameter values uy, ..., u;, and
corresponding tangent vectors my, ..., my.

113

114 Chapter 8. Piecewise Cubic Interpolation

Find: A C'piecewise cubic polynomial s that interpolates to the given data, i.e.,
d

siwu)=x;, —su)=m;; i=0,...,L (8.1)
du

We construct the solution as a piecewise Bézier curve, as illustrated in Figure 8.1.
We find the junction Bézier points immediately: b;; = x;. To obtain the inner Bézier
points, we recall the derivative formula for Bézier curves from Section 7.3:

d 3
W s(u;) = ——(bs; — bs;—q)
u

Ay
= Ai[(b3i+l = b)),
where A; = Au;. Thus the inner Bézier points bs;41;i = 0,..., L — 1 are given by
b3ir1 = b3 + %mi» (8.2)
and the inner Bézier points by;_j,i = 1,..., L are
b3i—; = b3 — 'A_g,:lmi- (8.3)

What we have done so far is construct the piecewise Bézier form of the C!
piecewise cubic Hermite interpolant. Of course, we can utilize the material on cubic
Hermite interpolation from Section 6.5 as well. Over the interval [u;, u;4;], the

Figure 8.1: Piecewise cubic Hermite interpolation: the Bézier points are obtained
directly from the data.

8.2. C' Piecewise Cubic Interpolation I 115

interpolant s can be expressed in terms of the cubic Hermite polynomials A7 (u) that
were defined by (6.16). In the situation at hand, the definitions become:

H3(w) = B3(t) + B; (1),

. A

) = ;B%(n,
(8.4)

SN

Hy(u) = _?Bz(t)y

H) = B3(1) + B3(1),

where t = (u— u;)/4; is the local parameter of the interval [u;, u;+1]. The interpolant
can now be written as

s(u) = x;H3(u) + mE3) + my A3 (u) + ;155 (w). (8.5)

This interpolant is important for some theoretical developments; of more practical
value are those developed in the following sections.

8.2 C! Piecewise Cubic Interpolation I

The title of this section is not very different from the one of the preceding section,
and indeed the problems addressed in both sections differ only by a subtle nuance.
Here, we try to solve the following problem:

Given: Data points X, ..., X, and tangent directions l,,...,1; at those data
points.

Find: A C! piecewise cubic polynomial that passes through the given data points
and is tangent to the given tangent directions there.

Comparing this problem to the one in the previous section, we find that this
one is more vaguely formulated: the “Find” part does not contain a single formula.
This reflects a typical practical situation: one is not always given parameter values u;
or tangent vectors my; very often, the only available information is data points and
tangent directions, as illustrated in Figure 8.2. It is important to note that we only

Figure 8.2: C! piecewise cubics: example data set.

116 Chapter 8. Piecewise Cubic Interpolation

have tangent directions, i.e., we have no vectors with a prescribed length. We can
assume without loss of generality that the tangent directions l; have been normalized
to be of unit length:

Ml = 1.

The easiest step in finding the desired piecewise cubic is the same as before: the
junction Bézier points bs; are again given by by; = x;, i = 0,..., L.

For each inner Bézier point, we have a one-parameter family of solutions: we
only have to ensure that each triple bs;_j, bs;, bs;4+¢ is collinear on the tangent at
bs; and ordered by increasing subscript in the direction of 1;. We can then find a
parametrization with respect to which the generated curve is C' [see (7.9)].

In general, we must determine the inner Bézier points from

bs;ir1 = by + oyl (3.6)
bsi—1 = bz — Bi-i1l;, (8.7)

so that the problem boils down to finding reasonable values for ; and 8;. While any
nonnegative value for these numbers is a formally valid solution, values for «; and
B; that are too small cause the curve to have a corner at x;, while values that are too
large can create loops. There is probably no optimal choice for «; and SB; that holds
up in every conceivable application—an optimal choice must depend on the desired
application.

A “quick and easy” solution that has performed decently many times (but also
failed sometimes) is simply to set

a; = B; = 0.4]|Ax|. (8.8)

(The factor 0.4 is, of course, heuristic.)
The parametrization with respect to which this interpolant is C' is the chord
length parametrization. It is characterized by

A B llAx

At i Axll

(8.9)

A more sophisticated solution is the following: if we consider the planar curve
in Figure 8.3, we see that it can be interpreted as a function, where the parameter ¢
varies along the straight line through by and bs. Then

||b3i+3 — bl

A . = - - @@ -

” b31|| 3 cos ®i B

[lb3i+3 — byl

Abs; = "
[1Absll 3cos Wi

We are dealing with parametric curves, however, which are in general not planar and
for which the angles ® and ¥ could be close to 90 degrees, causing the preceding
expressions to be undefined. But for curves with 0;, ¥;;; smaller than, say, 60

8.2. C' Piecewise Cubic Interpolation I 117

bsii1 b3 o

bsi i3

Figure 8.3: Inner Bézier points: this planar curve can be interpreted as a function in an
oblique coordinate system with bs;, b;13 as the x-axis.

degrees, the foregoing could be utilized to find reasonable values for «; and 3;:

! [lAx]|
a; = ills
3 cos 0 '
1
e e— A l .
Bi 3cos‘I’,-+1” xil

Since cos 60° = 1/2, we can now make a case distinction:

IaxlP f 1@, < 60°
-={ 3hAx, 18 (8.10)

2||Ax;|| otherwise

and

. 8.11)
2||Ax;|| otherwise.

lAx > ¢ W] < 60°
Bi =

This method has the advantage of having linear precision. It is C' when the knot
sequence satisfies A; /A1 = Bi/ai+1.

Note that neither of these two methods is affinely invariant: the first method,
(8.8), does not preserve the ratios of the three points bs;_y, bs;, by;+1 because the
ratios ||Ax;_{|| : [|Ax;|| are not generally invariant under affine maps.! The second
method uses angles, which are not preserved under affine transformations. However,
both methods are invariant under euclidean transformations.

IRecall that only the ratio of three collinear points is preserved under affine maps!

118 Chapter 8. Piecewise Cubic Interpolation

8.3 C! Piecewise Cubic Interpolation II

Continuing with the relaxation of given constraints for the interpolatory C! cubic
spline curve, we now address the following problem:

Given: Data points X, ..., X;, together with corresponding parameter values
Ug, ..., UL.

Find: A C! piecewise cubic polynomial that passes through the given data points.

One solution to this problem is provided by C? (and hence also C!) cubic splines,
which are discussed in Chapter 9. Here, we will determine tangent directions sl; or
tangent vectors m; and then apply the methods from the previous two sections.

The simplest method for tangent estimation is known under the name FMILL.
It constructs the tangent direction l; at x; to be parallel to the chord through x;_; and

Xi+1:
Vi = Xi+1 — Xj-1, i=1,...,L_1. (812)

Once the tangent direction v; has been found,” the inner Bézier points are placed on
it according to Figure 8.4:

e Ay
bsi—1 = b mvn (8.13)
byes = by + — v, (8.14)
3i+1 3i 3(Ai—1 +Ai) i .

This interpolant is also known as a Catmull-Rom spline.
This construction of the inner Bézier points does not work at X, and x;.. The next
method, Bessel tangents, does not have that problem.

bsit1

Xi+1

Xi—1

Figure 8.4: FMILL tangents: the tangent at x; is parallel to the chord through x,_; and
Xi+1-

ZNote that here we do not have ||v;|| = 1!

8.3. C! Piecewise Cubic Interpolation II 119

The idea behind Bessel tangents?> is as follows: to find the tangent vector m;
at x;, pass the interpolating parabola q;(u) through x;_1, x;, X;+; with corresponding
parameter values u;_1, u;, u;+1 and let m; be the derivative of q;. We differentiate q;
at u;:

d
m; = aqi(ui)-
Written in terms of the given data, this gives
m; = (IA:_(]II‘)AX{_I + %Axi; i=1,...,L—1 (8.15)
where
_ A

The endpoints are treated in the same way: mg = d/duq;(ug), m;, = d/duq;—;(ur),
which gives

AX()
my=2— —mj,
A
Ax;—g
m; =2 —my_
Ay

Another interpolant that makes use of the parabolas q; is known as an Overhauser
spline, after work by A. Overhauser [379] (see also [81] and [141]). The i segment
s; of such a spline (defined over [u;, uiH]) is defined by

si(u) =

Uivi —
A;

In other words, each s; is a linear blend between ; and q;+. At the ends, one sets
so(u) = qo(u) and s;—1(u) = qz—1(u).

On closer inspection it turns out that the last two interpolants are not different
at all: they both yield the same C! piecewise cubic interpolant (see Exercises). A
similar way of determining tangent vectors was developed by McConalogue [353],
[354].

Finally, we mention a method created by H. Akima [4]. It sets

Qz(u)+ A, q,ﬂ(u) i=1,...,L—2.

m; = (1 —¢)a;—; + cay,

where
_Ax
a; = T,
and
[|Aa; |l

¢ = .
C lAa|l + []Aa]

This interpolant appears fairly involved. It generates very good results, however, in

situations where one needs curves that oscillate only minimally.

3They are also attributed to Ackland [2].

120 Chapter 8. Piecewise Cubic Interpolation

Figure 8.5: Finding cubic boundaries: while the endpoints of a boundary curve are
fixed, its end tangents only have to lie in specified planes.

8.4 Point-Normal Interpolation

In a surface generation environment, one is often given a set of points p; € [E> and
a surface normal vector n; at each data point, as illustrated in Figure 8.5. Thus we
only know the tangent plane of the desired surface at each data point, not the actual
endpoint derivatives of the patch boundary curves.

If we know that two points p; and p; have to be connected, then we must construct
a curve leading from p; to p; that is normal to n; at p; and to n; at p;. A cubic will
suffice to solve this generalized Hermite interpolation problem. In Bézier form, we
already have by = p; and b; = p;. We still need to find b; and b,.

There are infinitely many solutions, so we may try to pick one that is both
convenient to compute and of reasonable shape in most cases. Two approaches to
this problem appear in Piper [402] and Nielson [376]. Both approaches, although
formulated differently, yield the same result.

As a first approximation to by, project bs into the plane defined by by = p;
and n;. This defines a tangent at by. Place the final b; anywhere on this tangent,
using some of the methods described in Section 8.2. The remaining point b, is then
obtained analogously.

8.5 Font Design

We conclude this chapter with an application of growing importance, namely font
design. A graphics language such as PostScript has to generate characters for many
different font sets—Arabic, Helvetica, boldface, just to name a few. These fonts must
be scaleable, i.e., if a different font size is desired, the original fonts must be rescaled.
Had the original fonts been stored as pixel maps, scaling would cause serious aliasing
problems. It is common practice, therefore, not to store a given character as a pixel
map, but rather to store its outline as a sequence of Bézier curves. These allow smooth

8.6. Exercises 121

Figure 8.6: Font design: the characters in this book are stored as a sequence of cubic
Bézier curves.

arcs where desired, and also allow for sharp corners, as shown in Figure 8.6.* This
book was printed using PostScript, so all characters have been generated as piecewise
cubic Bézier curves.

8.6 Exercises

*2.

*3.

P1.

p2.

. Show that Akima’s interpolant always passes a straight line segment through

three subsequent points if they happen to lie on a straight line.

Show that Overhauser splines are piecewise cubics with Bessel tangents at the
junction points.

One can generalize the quintic Hermite interpolants from Section 6.6 to piece-
wise quintic Hermite interpolants. These curves need first and second derivatives
as input positions. Devise ways to generate second derivative information from
data points and parameter values.

Using piecewise cubic C! interpolation, approximate the semicircle with radius

1 to within a tolerance of € = 0.001. Use as few cubic segments as possible.
Literature: [156], [228].

Program the methods from Section 8.3. Apply to the semicircle from the previous
problem and compare to the special-purpose interpolant developed there.

“This is my own rendition of the letter r.

Chapter 9

Cubic Spline Interpolation

In this chapter, we discuss what is probably the most popular curve scheme: C?
cubic interpolatory splines. We have seen how polynomial Lagrange interpolation
fails to produce acceptable results. On the other hand, we saw that cubic B-spline
curves are a powerful modeling tool; they are able to model complex shapes easily.
This “modeling” is carried out as an approximation process, manipulating the control
polygon until a desired shape is achieved. We will see how cubic splines can also
be used to fulfill the task of interpolation, the task of finding a spline curve passing
through a given set of points. Cubic spline interpolation was introduced into the
CAGD literature by J. Ferguson [202] in 1964, while the mathematical theory was
studied in approximation theory (see de Boor [124] or Holladay [285]). For an outline
of the history of splines, see Schumaker [452].

Because of the subject’s importance, we present two entirely independent deriva-
tions of cubic interpolatory splines: the B-spline form and the Hermite form.

9.1 The B-spline Form

We are given a set of data points X, ..., Xz, and corresponding parameter values (or
knots or breakpoints) ug, ..., uz.! We want a cubic B-spline curve s, determined by
the same knots and unknown control vertices d_1, ..., d;+ such that s(x;) = x;: in
other words, such that s interpolates to the data points.

The solution to this problem becomes obvious once one realizes the relationship
between the data points x; and the control vertices d;. Recall that we can write every
B-spline curve as a piecewise Bézier curve (see Section 7.6). In that form, we have

x;=bs; i=0,...,L
The inner Bézier points bs;+; are related to the x; by
o = Qibsi-t + Ai-ibsiy
‘ A+ A

i=1,...,L—1, (9.1)

'The knots are in general not given—see Section 9.4 on how to generate them.

122

9.1. The B-spline Form 123

where we have set A; = Auy;. Finally, the bs;. are related to the control vertices d;
by

CAdi (A +A-Dd;

i1 = j=2,...L—1 9.2
b3l 1 A,-_z + Al’_l ¥ Ai s 1 y ()
and
A+ A pd; + A diy

b,‘ = 5 =l,...L*2. 9.3
A Aoy + A+ Ay l ©-3)

Near the endpoints of the curve, the sitnation is somewhat special:
by = —/—————, 9.4
2 Ap + A, ©4)

Apidp— + Ay ody

9.5)
Ao+ 4, ¢

b3 =

We can now write down the relationships between the unknown d; and the known
X;, i.e., we can eliminate the b;:

Aoy + ADx; = ad;—) + Bid; + i1, (9.6)

where we have set (with A_; = A; = 0):

R

i Ao+ A+ A

B = Ai(A o+ Ay n A (A + Ajyy)
COAN A A A A ALY
o (Aimy)?

v Ay + A+ Ay

If we choose the two Bézier points by and bs;_ arbitrarily, we obtain a linear
system of the form

1 do Io
a; B d; r
: : = | TR
a—1 Bt vt dz—; ri—
1 d; ry,
Here we set
ro = by,

r; = (A-1 +A)x,

rp = b1

124 Chapter 9. Cubic Spline Interpolation

The first and last polygon vertices do not cause much of a problem:
d-; =x5, dp+1 = Xg.

This linear system can be made symmetric: we can multiply each equation by a
common factor. In particular, we can divide the i equation through by Al.z,]Aiz.
Also, we would have to delete the first and last rows and columns from the system
and update the right-hand side accordingly. The resulting new matrix will now be
symmetric; its entries will satisfy a;+; = ;.

The coefficient matrix will be diagonally dominant if A;_, + A;—; > A;, which
is easily seen from the symmetric version of the linear system. If this condition holds
for all i, the system has a unique solution. The fact that it always has a solution,
as long as the u; are increasing, is not that easily seen. It is a consequence of the
Schoenberg-Whitney theorem, for which the reader is referred to Chapter XIII of de
Boor’s Guide to Splines [126].

Note that an affine parameter transformation does not affect the linear system.
Therefore it would not matter if we rescaled our parameter values u;.

In the special case of all A, being equal, that is, for an equidistant parametrization,
the system becomes even simpler:

1 dy by
% % 1 d] 6X]
1 1 d2 6X2
: =1 . (9.8)
1 4 1 dL_2 6XL_2
1 73 d—: 06X
L 1 | [de | | bar—1 |

Frequently one must deal with closed curves; see Figure 9.1. The number of
equations is reduced since the C? condition at x, = x;, should not be listed twice in
the linear system. It now takes the form:

Bo Yo ag do ro
o B d, |
: =: | ©9
a2 B2 YL d;» |)
Yr-1 a1 PBr-i dr—¢ ry—

Here, the right-hand sides are of the form
r; = (A- + A)x;.

For these equations to make sense, we define a periodic continuation of the knot
sequence:

Ay =47, A =4

9.2. The Hermite Form 125

Figure 9.1: Closed curves: the interpolation problem becomes periodic.

The matrix of this system is no longer tridiagonal; yet one does not have to resort to
solving a full linear system. For details, see Ahlberg et al. [3], p. 15.

We conclude with a method for B-spline interpolation that occasionally appears
in the literature (e.g., in Yamaguchi [503]). It is possible to solve the interpolation
problem without setting up a linear system! Just do the following: construct an initial
control polygon—by setting d; = Xx;, for example. This initial polygon will not define
an interpolating curve. So, for i from O to L, correct d; such that the corresponding
curve passes through x;.? Repeat until the solution is found.

This method will always converge, and will not need many steps in order to do so.
So why bother with linear systems? The reason is that tridiagonal systems are most
effectively solved by a direct method, whereas the above iterative method amounts
to solving the system via Gauss-Seidel iteration. So while geometrically appealing,
the iterative method needs more computation time than the direct method.

9.2 The Hermite Form

An interpolatory C? piecewise cubic spline may also be written in piecewise cubic
Hermite form. For u € [u;, u;+1], the interpolant is of the form

X(u) = X;H3(r) + mAH (r) + Aim, (H3(r) + X1 H; (), (9.10)

2See Section 7.8 for details.

126 Chapter 9. Cubic Spline Interpolation

where the Hj3- are cubic Hermite polynomials from (6.14) and r = (u — u;)/A; is the
local parameter of the interval [u;, u;+1]. In (9.10), the x; are the known data points,
while the m; = x(u;) are the unknown tangent vectors. The interpolant is supposed
to be C?; therefore,

Xe(u) — X-(w;) = 0. 9.11)
We insert (9.10) into (9.11) and obtain

Ammy_y + 2(A; 1 + Apm; + Ajymyyy =3 (% + —A“A‘Ax') ;

, (9.12)
i=1..L-1

Together with two end conditions, (9.12) can be used to compute the unknown
tangent vectors m;. Note that this formulation of the spline interpolation problem de-
pends on the scale of the ;; it is not invariant under affine parameter transformations.
This is a result of the use of the Hermite form.

The simplest end condition would be to prescribe my and m;, a method known
as clamped end condition. In that case, the matrix of our linear system takes the form

1 my ry
ar Bi M my r
: = , (9.13)
a—1 PBr-1 V-1 m;_ g}
1 my, ry
where
a; = A,
Bi = 2(A;-1 + Ay,
Yi = Aoy
and
o = My,
AAX | A AX .
i = + ci=1,...,L—1,
r 3 (A A) I
rr=mg.

Having found the m;, we can easily retrieve the piecewise Bézier form of the
curve according to (8.2) and (8.3).

When dealing with linear systems, it is a good idea to make sure that a solution
exists and that it is unique. In our case, the coefficient matrix is diagonally dominant,
which means that the absolute value of any diagonal element is larger than the sum
of the absolute values of the remaining elements on the same row:

1Bil > leul + |vil.

Such matrices are always invertible; moreover, they allow Gauss elimination without
pivoting (see any advanced text on numerical analysis or the fundamental spline text

9.3. End Conditions 127

by Ahlberg et al. [3]). Thus the spline interpolation problem always possesses a
unique solution (after the prescription of two consistent end conditions).

Since the coefficient matrix is tridiagonal (only the diagonal element and its two
neighbors are nonzero), we do not have to solve a full (L + 1) X (L + 1) linear system.
One forward substitution sweep and one for backward substitution is sufficient, as
implemented in the programs 1_u_system and solve_systemn that follow. All our
remarks about the linear system hold for the B-spline form as well.

9.3 End Conditions

We may have the interpolation routine select the end tangents my and m;, automati-
cally instead of prescribing it ourselves. One such selection is called the Bessel end
condition. Here, the end tangent vector my is set equal to the tangent vector at X
of the interpolating parabola through the first three data points. Similarly, m; is set
equal to the tangent vector at x; of the interpolating parabola through the last three
data points. Now the right-hand side changes to

_202A0 + Ay B 24,

o~ AopBy %o 2A0A1X1 A131X2

(9.14)

and

o 2Ap B 2QA;-1 +AL-)

=X 0 Xt ———
A 5B 2A; 2AL Br-181-1

Of course, this condition may also be formulated in terms of the B-spline repre-
sentation. This amounts to finding the control points dy and d;, which are actually
Bézier points. They were already determined in the context of C' piecewise cubic
interpolation; see (8.15). C code for this version of Bessel end conditions is given in
the routine bessel_ends described later.

Another possibility is the quadratic end condition, which sets X(uy) = X(u;) and
X(up—1) = X(uz). Now the linear system changes to

ry X7. (915)

1 1 my ry
ar B my r
: = : (9.16)
ar—1 PBr-1 V-1 my— rr-1
1 1 my, r.
and
2 2
rg = —Axy, rp = Ax; .
0 A Xp, IrL A L—1

A slightly more complicated end condition is provided by the not-a-knot condi-
tion. Using it, we force the first two and the last two polynomial segments to merge
into one cubic piece. This means that the third derivative of x(u) is continuous at u;.

128 Chapter 9. Cubic Spline Interpolation

Writing down the conditions leads to a nontridiagonal system, which can, however,
be transformed into a tridiagonal one. Its first equation is

A Bimg + Bimy

(Ag)?
A

A
Ax, + A—l(:m0 + 2A1)Axy; 9.17)
0

the last one is

Bi_ymy_ + Ap_oBr—imy

(Ap—y)? AL
= Axp_y +
Ay X2 Ay

(3AL—1 + ZAL_Q)AXLfl. (918)

Finally, we mention an end condition that bears the name “natural.” The term
stems from the fact that this condition arises “naturally” in the context of the minimum
property for spline curves, as described later in this chapter. The natural end condition
is defined by X(up) = X(u,) = 0. The linear system becomes

2 1 my Iy
a; B wn m; r;
: =|: (9.19)
ar-1 Br-1 Yr-1 m;_; |
1 2 my, rg,
and
3 3
= —AXy, = Ax; .
1Y) Ay Xg, I A X7 -1

This end condition forces the curve to behave like a straight line near the endpoints;
usually, this results in a poor shape of the spline curve.

The spline system becomes especially simple if the knots u; are uniformly spaced;
for example, the clamped end condition system becomes

1 my) YY)
1 4 1 m; I
: = | : : (9.20)
1 4 1 my—; ry—1
my ry
where
Iy = my,

r; =3X;+1 —X—-1); 1=1,...,L—1,

Irr = mp.

9.3. End Conditions 129

Figure 9.2: Exact clamped end condition spline.

We finish this section with a few examples, using uniform parameter values in
all examples.? Figure 9.2 shows equally spaced data points read off from a circle
of radius 1 and the cubic spline interpolant obtained with clamped end conditions,
using the exact end derivatives of the circle. Figure 9.3 shows the curvature plot* of
the spline curve. Ideally, the curvature should be constant, and the spline curvature is
quite close to this ideal.

k=0

Figure 9.3: Curvature plot of exact clamped end condition spline.

3Because of the symmetry inherent in the data points, all parametrizations discussed later
yield the same knot spacing. All circle plots are scaled down in the y-direction.
“The graph of curvature versus arc length; see also Chapter 23.

130 Chapter 9. Cubic Spline Interpolation

Figure 9.4: Bessel end condition spline.

Figure 9.4 shows the same data, but now using Bessel end conditions. Near the
endpoints, the curvature deviates from the ideal value, as shown in Figure 9.5.

Finally, Figure 9.6 shows the curve that is obtained using natural end conditions.
The end curvatures are forced to be zero, causing considerable deviation from the
ideal value, as shown in Figure 9.7.

/A. N NSV G U A\

k=0

Figure 9.5: Curvature plot of Bessel end condition spline.

9.4. Finding a Knot Sequence 131

Figure 9.6: Natural end condition spline.

k=20

Figure 9.7: Curvature plot of natural end condition spline.

9.4 Finding a Knot Sequence

The spline interpolation problem is usually stated as “given data points x; and pa-
rameter values u;,” Of course, this is the mathematician’s way of describing a
problem. In practice, parameter values are rarely given and therefore must be made
up somehow. The easiest way to determine the u; is simply to set #; = i. This is
called uniform or equidistant parametrization. This method is too simplistic to cope

132 Chapter 9. Cubic Spline Interpolation

with most practical situations. The reason for the overall poor® performance of the
uniform parametrization can be blamed on the fact that it “ignores” the geometry of
the data points.

The following is a heuristic explanation of this fact. We can interpret the parame-
ter u of the curve as time. As time passes from time i to time u;,, the point X(u) traces
the curve from point X(up) to point X(u;). With uniform parametrization, x(u) spends
the same amount of time between any two adjacent data points, irrespective of their
relative distances. A good analogy is a car driving along the interpolating curve. We
have to spend the same amount of time between any two data points. If the distance
between two data points is large, we must move with a high speed. If the next two
data points are close to each other, we will overshoot because we cannot abruptly
change our speed—we are moving with continuous speed and acceleration, which
are the physical counterparts of a C? parametrization of a curve. It would clearly be
more reasonable to adjust speed to the distribution of the data points.

One way of achieving this is to have the knot spacing proportional to the distances
of the data points:

A; - [|AX]]
Ay ”AxiH”.

A knot sequence satisfying (9.21) is called chord length parametrization. Equation
(9.21) does not uniquely define a knot sequence; rather, it defines a whole family of
parametrizations that are related to each other by affine parameter transformations.
In practice, the choices up = 0 and u;, = 1 or uy = 0 and u;, = L are reasonable
options.

Chord length usually produces better results than uniform knot spacing, although
not in all cases. It has been proven (Epstein [167]) that chord length parametrization
(in connection with natural end conditions) cannot produce curves with corners® at
the data points, which gives it some theoretical advantage over the uniform choice.

Another parametrization has been named “centripetal” by E. Lee [327]. It is
derived from the physical heuristics presented above. If we set

A { llAx]] }1/2
||AXi+1||

the resulting motion of a point on the curve will “smooth out” variations in the
centripetal force acting on it.

Yet another parametrization was developed by G. Nielson and T. Foley [377]. It
sets

9.21)

9.22
B ©22)

v 5. 4
3 .ldl 1 + 3 ®1+1d1+1:|, (9.23)

Ai:di[1+— -
2di- +d; 2d; +diiy

SThere are cases in which uniform parametrization fares better than other methods. An
interesting example is in Foley [210], p. 86.

8A corner is a point on a curve where the tangent (not necessarily the tangent vector!)
changes in a discontinuous way. The special case of a change in 180 degrees is called a cusp;
it may occur even with chord length parametrization.

9.4. Finding a Knot Sequence 133

where d; = ||Ax;|| and
R T
®i = i (- ®i)) ’
min (7)

and 0, is the angle formed by x;_1, X;, X;+1. Thus @,- is the “adjusted” exterior angle
formed by the vectors Ax; and Ax;_;. As the exterior angle (':)i increases, the interval
A; increases from the minimum of its chord length value up to a maximum of four
times its chord length value. This method was created to cope with “wild” data sets.

We note one property that distinguishes the uniform parametrization from its
competitors: it is the only one that is invariant under affine transformations of the
data points. Chord length, centripetal, and the Foley methods all involve length
measurements, and lengths are not preserved under affine maps. One solution to this
dilemma is the introduction of a modified length measure, as described in Nielson
(37517

For more literature on parametrizations, see Cohen and O’Dell [111], Hartley
and Judd [273], [274], McConalogue [353] , and Foley [210].

Figures 9.8 to 9.15% show the performance of the discussed parametrization
methods for one sample data set. For each method, the interpolant is shown together
with its curvature plot. For all methods, Bessel end conditions were chosen.

While the figures are self-explanatory, some comments are in place. Note the very
uneven spacing of the data points at the marked area of the curves. Of all methods,
Foley’s copes best with that situation (although we add that many examples exist
where the simpler centripetal method wins out). The uniform spline curve seems to
have no problems there, if one just inspects the plot of the curve itself. However, the
curvature plot reveals a cusp in that region! The huge curvature at the cusp causes
a scaling in the curvature plot that annihilates all other information. Also note how
the chord length parametrization yields the “roundest” curve, having the smallest
curvature values, but exhibiting the most marked inflection points.

Figure 9.8: Chord length spline.

"The Foley parametrization was in fact first formulated in terms of that modified length
measure.
8Kindly provided by T. Foley.

Figure 9.9: Curvature plot of chord length spline.

Figure 9.10: Foley spline.

Figure 9.11: Curvature plot of Foley spline.

9.4. Finding a Knot Sequence 135

Figure 9.12: Centripetal spline.

Figure 9.13: Curvature plot of centripetal spline.

Figure 9.14: Uniform spline.

136 Chapter 9. Cubic Spline Interpolation

K =70,000

x = —80,000

Figure 9.15: Curvature plot of uniform spline.

There is probably no “best” parametrization, since any method can be defeated
by a suitably chosen data set. The following is a (personal) recommendation. You
may improve the shape of the curve, at the cost of an increase of computation time,
by the following hierarchy of methods: uniform, chord length, centripetal, Foley.
The best compromise between cost and result is probably achieved by the centripetal
method.

9.5 The Minimum Property

In the early days of design, say ship design in the 1800s, the problem had to be handled
of how to draw (manually) a smooth curve through a given set of points. One way
to obtain a solution was the following: place metal weights (called “ducks”) at the
data points, and then pass a thin, elastic wooden beam (called a “spline”) between the
ducks. The resulting curve is always very smooth and usually aesthetically pleasing.
The same principle is used today when an appropriate design program is not available
or for manual verification of a computer result; see Figure 9.16.

’

Figure 9.16: Spline interpolation: A plastic beam, the “spline,”
through data points, marked by metal weights, the “ducks.”

is forced to pass

9.5. The Minimum Property 137

The plastic or wooden beam assumes a position that minimizes its strain energy.
The mathematical model of the beam is a curve s, and its strain energy E is given by

E = / (k(s))*ds,

where k denotes the curvature of the curve. The curvature of most curves involves
integrals and square roots and is cumbersome to handle; therefore, one often approx-
imates the preceding integral by a simpler one:

. a2 2
E = / [@s(u)] du. (9.24)

Note that E is a vector; it is obtained by performing the integration on each component
of s.

Equation (9.24) is more directly motivated by the following example: when an
airplane is scheduled to fly from A to B, it will have to fly over a number of of
intermediate “way points.” The amount of fuel used by an airplane is mostly affected
by its acceleration, which is essentially equivalent to the second derivative of its
trajectory. Thus if the plane follows a cubic spline curve passing through all the way
points, it will be guaranteed to use the least amount of fuel!

In a more general setting, we may word this as: among all C* curves interpolating
the given data points at the given parameter values and satisfying the same end
conditions, the cubic spline yields the smallest value for each component of E. Fora
proof, let s(u) be the C? cubic spline and let y(u) be another C? interpolating curve.
We can write y as

y(u) = s(u) + [y(w) — s(u)].

The preceding integrals are defined componentwise; we will show the minimum
property for one component only. Let s(u) and y(u) be the first component of s and
y, respectively. The “energy integral” E of y’s first component becomes

Uy, Uy, Uy,
E= / (3)°du + 2 / §(y — $)du + / (5 — $)*du.
up Ug Uy

We may integrate the middle term by parts:

/ 55— §)du = 55 — 9| — / (3 — 5)du.
y Up u

0

The first expression vanishes because of the common end conditions. In the second
expression,” is piecewise constant:

L-1

/ G Hdu= 30—)

o j=0

Uy

uy

°T am grateful to P. Crouch for bringing the airplane analogy to my attention.

138 Chapter 9. Cubic Spline Interpolation

All terms in the sum vanish because both s and y interpolate. Since
ur,
/ (G —$)*du>0
o

for continuous ¥ # §,

/L(j")2d142/L(3)2du, (9.25)

we have proved the claimed minimum property.

The minimum property of splines has spurred substantial research activity. The
replacement of the actual strain energy measure E by E is motivated by the desire for
mathematical simplicity. The curvature of a curve is given by

= A
%3 -
But we need ||x|| = 1 in order for [|%X]| to be a good approximation to . This means,

however, that the curve must be parametrized according to arc length; see (11.7).
This assumption is not very realistic for cubic splines in a design environment; see
Exercises.

While the classical spline curve merely minimizes an approximation to (9.24),
methods have been developed that produce interpolants which minimize the true
energy (9.24), see [357], [86]. Moreton and Séquin have suggested to minimize the
functional f [&'(1)1dt instead, see [363].

9.6 Implementation

The following routines produce the cubic B-spline polygon of an interpolating C?
cubic spline curve. First, we set up the tridiagonal linear system:

void set_up_system(knot,l,alpha,beta,gamma)

/* given the knot sequence, the linear system for clamped end
condition B-spline interpolation is set up.
Input: knot: knot sequence (all knots are simple; but,

in the terminology of Chapter 10, knot[0]
and knot[1] are of multiplicity three.)
points: points to be interpolated
1: number of intervals
Output:alpha, beta,gamma: 1-D arrays that constitute
the elements of the interpolation matrix.
Note: no data points needed so far!

*/

The next routine performs the LU decomposition of the matrix from the previous
routine. (Note that we do not generate a full matrix, but rather three linear arrays!)

9.6. Implementation 139

void 1_u_system(alpha,beta,gamma,l,up,low)
/* perform LU decomposition of tridiagonal system with
lower diagonal alpha, diagonal beta, upper diagonal gamma.

Input: alpha,beta,gamma: the coefficient matrix entries

1: matrix size [0,1]1x[0,1]
Output:low: L-matrix entries
up: U-matrix entries

*/
Finally, the routine that solves the system for the B-spline coefficients d;:

solve_system(up,low,gamma,l,rhs,d)

/* solve tridiagonal linear system
of size (1+1)(1+1) whose LU decomposition has entries up and low,
and whose right hand side is rhs, and whose original matrix

had gamma as its upper diagonal. Solution is d[0],...,d[1+2].
Input: up,low,gamma: as above.
1: size of system: 1+1 eqs in 1+1 unknowns.
rhs: right hand side, i.e, data points with end
‘tangent Bezier points’ in rhs[1] and rhs[1+1].
Output:d: solution vector.

Note shift in indexing from text! Both rhs and d are from 0 to 1+2.

*/
If Bessel ends are desired instead of clamped ends, this is the code:

void bessel_ends(data,knot,l)
/* Computes B-spline points data[l] and data[l+1]
according to bessel end condition.

Input: data: sequence of data coordinates datal[0] to data[l+2].
Note that datal[i] and data[l+1] are expected to
be empty, as they will be filled by this routine.
They correspond to the Bezier points bez[1] and bez[31-1].
knot: knot sequence
1: number of intervals
Output: data: now including ‘tangent Bezier points’’ data[1], data[l+1].
*/

The centripetal parametrization is achieved by the following routine:

void parameters(data_x,data_y,l,knot)
/* Finds a centripetal parametrization for a given set
of 2D data points.

Input: data_x, data_y: input points, numbered from O to 1+2.
1: number of intervals.

Output: knot: knot sequence. Note: not (knot[1]=1.0)!

Note: data_x[1], data_x[1+1] are not used! Same for data_y.

*/

140

Chapter 9. Cubic Spline Interpolation

A calling sequence that utilizes the preceding programs might look like this:

parameters(data_x,data_y,l,knot);
set_up_system(knot,1,alpha,beta,gamma) ;
1_u_system(alpha,beta,gamma,l,up,low);

bessel_ends(data_x,knot,1);
bessel_ends(data_y,knot,1);

solve_system(up,low,gamma,l,data_x ,bspl_x);
solve_system(up,low,gamma,l,data_y,bspl_y);

Here, we solved the 2D interpolation problem with given data points in data_x,

data_y, a knot sequence knot, and the resulting B-spline polygon in bspl x,
bspl._y. This calling sequence is realized in the routine c2_spline.c.

9.7 Exercises

*3.

*4,

PL.

P2.

P3.

Formulate the quadratic and natural end conditions for the case of cubic B-spline
interpolation.

Although this section is on cubic spline interpolants, we might also have con-
sidered quadratic ones. Yet there is a difference: for the case of closed curves,
C' quadratic spline interpolation with uniform knots does not always have a
solution. Why?'?

Show that interpolating splines reproduce cubic polynomial curves—that they
have cubic precision. This means that if all data points x; are read off from a
cubic: x; = ¢(;), and the end tangent vectors are read off from the cubic, then
the interpolating spline equals the original cubic.

Any curve may be reparametrized in terms of its arc length s. Show that a
polynomial curve of degree n > 1 cannot be polynomial in terms of its arc
length s. See Chapter 11 for the arc length parametrization—the key condition
is that ||%(s)|| = 1 if s is the arc length parameter.

Program the following: instead of prescribing end conditions at both ends, pre-
scribe first and second derivatives at iy. The interpolant can then be built segment
by segment. Discuss the numerical aspects of this method (they will not be won-
derful).

Interpolate data points from a semicircle and compare your results with those
from the corresponding exercises in Section 8.6.

Compare C? cubic spline interpolation to the C! case from Chapter 8, using the
data sets outline_2D and outline_3D.

19T. DeRose pointed this out to me.

Chapter 10
B-splines

B-splines were investigated as early as the nineteenth century by N. Lobachevsky (see
Renyi [421], p. 165); they were constructed as convolutions of certain probability
distributions.! In 1946, 1. J. Schoenberg [449] used B-splines for statistical data
smoothing, and his paper started the modern theory of spline approximation. For
the purposes of this book, the discovery of the recurrence relations for B-splines by
C. de Boor [125], M. Cox [118], and L. Mansfield was one of the most important
developments in this theory. The recurrence relations were first used by Gordon and
Riesenfeld [249] in the context of parametric B-spline curves.

This chapter presents a theory for arbitrary degree B-spline curves. The original
development of these curves makes use of divided differences and is mathematically
involved (see de Boor [126]). A different approach to B-splines was taken by de Boor
and Hollig [131]; they used the recurrence relations for B-splines as the starting
point for the theory. In this chapter, the theory of B-splines is based on an even more
fundamental concept: the Boehm knot insertion algorithm [62]. Another interesting
new approach to B-splines is the blossoming method proposed by L. Ramshaw [414]
and, in a different form, by P. de Casteljau [135], which we will also discuss in this
chapter.

Warning: subscripts in this chapter differ from those in Chapter 7! For the cubic
and quadratic cases special subscripts are useful, but the general theory is easier to
explain with the notation used here.”

10.1 Motivation

Figure 10.1 shows a C? cubic spline (nonparametric) with its B-spline polygon. The
relationship between the polygon and the curve was discussed in Section 7.6. In

"However, those were only defined over a very special knot sequence.

%In terms of this chapter, we used end knots of multiplicity two (quadratic case) or three
(cubic case) in Chapter 7. The coefficients there started with the subscript i = —1; here, they
will start with { = 0.

141

142 Chapter 10. B-splines

that section, we were interested in the parametric case, whereas now we will restrict
ourselves to nonparametric (functional) curves of the form y = f(u). The reason is
that much of the B-spline theory is explained more naturally in this setting.

In Section 5.5, we considered nonparametric Bézier curves. Recall that over the
interval [u;, u;11], the abscissas of the Bézier points are u; + jAu;/n;j = 0,..., n
Two cubic Bézier functions that are defined over [u;_1, ;] and [u;, u;+] are C? at u;
if an auxiliary point d; = (§;, d;) can be constructed from both curve segments as
discussed in Section 7.3. Some of the points d; are shown in Figure 10.1. Section 7.3
tells us how to compute the y-values d; of these points. Using the same reasoning for
the u-coordinates & (see Exercises), we find

1
& = g(ui_l +up +oupy); i=1,2,33 (10.1)
We can now give an algorithm for the “design” of a cubic B-spline function:

1. Given knots u;.

2.Find abscissas & = 3(u;—1 + i + 1)

3. Define real numbers d; to obtain a polygon with vertices (&, d;).

4. Evaluate this polygon (= piecewise linear function) at the abscissas of the inner
Bézier points. This produces a refined polygon, consisting of the inner Bézier
points.

5. Evaluate the refined polygon at the knots u;, the abscissas for the junction Bézier
points. We now have the junction Bézier points.

After step 5, we have generated a C* piecewise cubic Bézier function. In a similar
manner, we could generate a C! piecewise quadratic Bézier function. In this chapter,
we will aim for a generalization of the preceding definition of piecewise polynomials
to include arbitrary degrees and arbitrary differentiability classes.

do d
6
€1 €s
v v \V, \Vi \v4 \v4
A A A A
Ug up U2 us Uy

Figure 10.1: B-splines: a nonparametric C? cubic spline curve with its B-spline poly-
gon. (In the context of this chapter, the end knots are of multiplicity three.)

3This notation is still in harmony with the cubic case of Section 7.3; we will change notation
for the general case soon!

10.2. Knot Insertion 143

10.2 Knot Insertion

We will now define an algorithm to “refine” a piecewise linear function. Later,
this piecewise linear function will be interpreted as a B-spline polygon, but at this
point, we discuss only an algorithm that produces one piecewise linear function from
another.

Suppose that we are given a number rn (later the degree of the B-spline curve)
and a number L (later related to the number of polynomial segments of the B-spline
curve). Suppose also that we are given a nondecreasing knot sequence

Ug, ..., Up+2n—2

Not all of the u; have to be distinct. If u; = - -+ = u;4,_1, i.e., if r successive knots
coincide, we say that u; has multiplicity r. If a knot does not coincide with any other
knot, we say that it is simple, or that it has multiplicity one.

If knots have multiplicity higher than one, we have two alternatives: we may list
them in our knot sequence repeatedly, or we may list them only once, keeping track
of their multiplicity in a separate sequence.

When we define B-spline curves later, we will use only the interval [u,_|,
..., Ur4,—1] as their domain. These knots are the “domain knots.” We call L the
potential number of curve segments—if all domain knots are simple, L denotes the
number of domain intervals. For each domain knot multiplicity, the number of domain
intervals drops by one. If we list each knot only once and keep track of its multiplicity,
the sum of all domain knot multiplicities is related to L by

L+n—1

d on=L+1,

i=n—1
where r; 1s the multiplicity of the domain knot ;.
We shall illustrate the interplay between knot multiplicities and the number of
domain intervals by means of the following examples:
Letn =3,L = 3,and

{140, ey Ll7} = {O, 1, 2, 3, 4, 5, 6, 7}

All knots are simple, so the number of domain intervals is three.
Leaving n and L unchanged, consider

{uo, ..., us} =10,1,2,3,5,6,7},
but now with a multiplicity sequence
{mo,...,me} ={1,1,1,2, 1,1, 1}

In this knot sequence, the knot #3 = 3 has multiplicity two, thus r; = 2, and we only
have two domain intervals.

The multiplicities of the nondomain knots do not affect the number of domain
intervals. If we set

{ug,...,u7} =40,0,0,3,4,7,7,7},

144 Chapter 10. B-splines

then ug and us both have multiplicity three; however, they are listed only once each
in the domain knot sequence, which is

{u21 us, Ug, u5} = {0’ 3,4, 7}'

Thus we have three domain intervals.
We now define n + L Greville abscissas & by

1
§i=—(ui+---+u,-+,,_1); i=0,...,L+n—1. (102)
n

The Greville abscissas are averages of the knots. The number of Greville abscissas
equals the number of successive n-tuples of knots in the knot sequence.

We next assume that we are given ordinates d;, also called de Boor ordinates, over
the Greville abscissas and hence a polygon P consisting of the points (§;, d;); i =
0,...,L + n— 1. This polygon is a piecewise linear function with breakpoints at the
Greville abscissas. Figure 10.2 shows some examples.

We now define our basic polygon manipulation technique, the knot insertion
algorithm. As before, at this point we are only concerned with polygons, not with
B-spline curves! Suppose a real number u € [u,—1,..., Uy +,—1] is given and we
want to insert it into the knot sequence. We call the new knot sequence a refined knot
sequence. It defines a new set of Greville abscissas, called £¥. Each & will be the
abscissa for a vertex (£, d) of the new polygon P*. The knot insertion algorithm is:

o & €o €3
\v4 Av4 \v4 Av4 Av4 v
A A A A A A A
ug u Up g
dg
do
€a
v v \vi v v
A A A A A A A
Up Ug

Figure 10.2: Greville abscissas: for various knot sequences and degrees, the cor-
responding Greville abscissas together with the polygon P are shown. Top left:
n=1,L = 1;topright,n =2, L = 2;bottom: n =3,L = 2.

10.2. Knot Insertion 145

5 =da
£ & & =6 &
v \v4 Vo V v v
7y x y ¥ 1 % r § A
110 u u5

Figure 10.3: Knot insertion: the new knot is u; the new Greville abscissas are
marked by larger icons. Old knot sequence: uo, uy, uz, us, us, us. New sequence:
Uo, Uy, Uy, U, U3, Us, Us. In this example, n = 2, L = 3.

Knot insertion, informal: compute the Greville abscissas & for the refined knot
sequence. Evaluate P there to obtain new ordinates d = P(£/). The refined
polygon P" is then formed by the points (£, d/*). The d}* are given by (10.4).

Figure 10.3 shows an example of the knot insertion procedure for the quadratic
case. It is possible to insert the knot u again—it will then become a double knot, or a
knot of multiplicity two, which simply means it is listed twice in the knot sequence.
As another example of knot insertion, Figure 10.4 shows how the knot u is inserted
again,

We shall formalize the knot insertion algorithm soon, but we can already deduce
some properties:

uu
d3

ITEN
v i y Vv 7 v
A A A A A A
Uo t Us
u
u

Figure 10.4: Knot insertion: the knot u is inserted again. Old knot sequence:
Ug, Uy, Ug, U, U3, Ug, Us. New sequence: ug, Uy, Us, U, U, Uz, Uy, Us.

146 Chapter 10. B-splines

e The polygon P“ is obtained from P by piecewise linear interpolation at the
Greville abcissas & (see Section 2.4).

e As a consequence, knot insertion is order independent: if we insert two knots
u and v into the knot sequence, the order in which we insert them does not
matter. This follows from Menelaos’ theorem of Section 2.5.

e As a further consequence, knot insertion is variation diminishing: no straight
line intersects P* more often than P.

e As yet another consequence, knot insertion is convexity preserving: if P is
convex, so is P

e Knot insertion is a local process: P differs from P* only in the vicinity of u
(the exact definition of vicinity being a function of the degree n).

We are now ready for an algorithmic definition of knot insertion. It is mostly
intended for use in coding. The preceding informal description conveys the same
information.

Knot insertion algorithm:
Given: u € [uy—1, ..., Ur+n-1].
Find: refined polygon P¥, defined over the refined knot sequence that includes u.

1. Find the largest I with u; = u < u;+;. If u = u; and y; is of multiplicity » : stop.
Else:

2. Fori=0,...,1 —n+1,set & =¢.
3. Fori=1—-—n+2...,1+1,set

1 1
&= —(u+ t i) + —u.
n n

. Fori=I+2...,L+nset& =¢&_.

. Fori=0,...,L+n,setd’ = P(§).

. Renumber the knot sequence to include u as u; .
. Replace Lby L + 1.

L R N7 I N

Step 5 only involves actual computation fori =1 —n +2,...,1 + 1. We now
derive a formula for P(&}).

As before, let u be in the interval [y, u;1;]. It is not hard to see that §;_; = £ <
&. Thus d} is obtained by linear interpolation:

i = ;"__gi dioy + 55 :g"‘lld,.; i=I—-n+2..,1+1 (10.3)
i i—1 i i—
We invoke (10.2):
i+n—1 i+n—2 i+n—2 i+n—2
s u; — o Tu;—u o Uit u— e T U
d[u — Z]—z J ijz J d,‘—] + Z}—z J Z;—z 1 jdi

Uitp—1 — Ui—1 Uitn—1 — Uj-1

10.3. The de Boor Algorithm 147

dp
d’u
do 2
dy dy
d]_ d3
ﬁo 131 1;2 u ﬁ3 * *

Figure 10.5: Knot insertion: this process may be interpreted as piecewise linear inter-
polation.

and simplify:
de= St TR g ETMEL G i=T—n42. 0+ 1 (104)
Uitn—1 — Ui—1 Uitn—1 = Ui—1

This is our desired knot insertion formula.

Ithas the form of linear interpolation, and we recall from Section 2.3 that this may
be interpreted as an affine map. In our case, we would map the interval [u;—, #;4+,-1]
onto the polygon leg defined by (§—;, d;—) and (&, d;), as shown in Figure 10.5 for
the cubic case.

10.3 The de Boor Algorithm

In the previous section, we described an operation to manipulate polygons. We shall
now use this operation for the definition of B-spline curves. Recall Figure 10.4, in
which a knot u was reinserted so that its multiplicity was raised to two. What happens
if we reinsert u again? The answer: nothing. No new Greville abscissas are generated.

In general, for degree n, repeated insertion of a knot u no longer changes the
polygon after the multiplicity of u has reached n. We use this fact in the algorithmic
definition of a special function, called a B-spline curve.* The algorithm used in this
definition is called the de Boor algorithm:

de Boor algorithm, informal: To evaluate an n'"-degree B-spline curve (given by
its de Boor ordinates and knot sequence) at a parameter value u, insert u into the
knot sequence until it has multiplicity n. The corresponding polygon vertex is
the desired function value.

4We use the term “curve” loosely to emphasize that the theory developed here carries over
easily to parametric curves.

148 Chapter 10. B-splines

Figure 10.6: The de Boor algorithm: example withn = 3,L = 2.

Before we proceed further, one comment should be made. What is meant by
“corresponding polygon vertex?” If a knot u; is of multiplicity », then one of the
Greville abscissas coincides with u;, namely, & = %(u,- + oot Upp-1) = Ui
Consequently, the polygon has a vertex (u;, d;), and d; is the function value of the
B-spline curve at u;. Figure 10.6 gives an illustration. We now realize that we have
encountered an example of the de Boor algorithm earlier; see Figure 10.4 for the case
n=2.

Note that the de Boor algorithm needs fewer insertions if the parameter value u
is already an element of the knot sequence. If it has multiplicity r, then only n — r
reinsertions are necessary to make u a knot of multiplicity 7.

We are now ready for a formal definition. Let us denote a B-spline curve of degree
n with control polygon P by B, P, and its value at parameter value u by [B,P](u). We
will only define the curve for values of u between u,—; and uy1,—;.

de Boor algorithm: Letu € [uy, ;1) C [4y—1, U +n—1]- Define
a7y + — L kel (10.5)

Ui+n-k — Ui—1 Uitn—k — Uji—1

fork=1,...,.n—r,and i=I—-n+k+1,...,1 —r + 1. Then

Uitn—k — U

df (u) =

s(u) = [B,PYw) = dj"], (w) (10.6)

is the value of the B-spline curve at parameter value u. Here, r denotes the
multiplicity of u if it was already one of the knots. If it was not, set r = 0. As
usual, we set d2(u) = d;.

C. de Boor [125] published this algorithm in 1972. It is the B-spline analogue of the
de Casteljau algorithm. Figure 10.7 shows schematically which d; are involved in
(10.5).

10.3. The de Boor Algorithm 149

® ° [dI—D+1 L] [] [] dI+1 L] (] []

1 1
dI—n+2 dI+1

n—1
dy dI+1
n
141

Figure 10.7: The de Boor algorithm: for u € [y, u;+,], the scheme of generated inter-
mediate points is shown, assuming that u was not one of the existing knots.

In our description of the de Boor algorithm, we did not renumber the knot
sequence and the control points at each level, since our interest is only in the final
result d;'"7, (). Of course, at each level k, we generate a new control polygon that
descrlbes the same B-spline curve as did the previous control polygon. In particular,
for k = 1, we obtain the knot insertion algorithm.

Figure 10.6 shows an example. We can also view that example as a case of
multiple knot insertion. In that context, we have constructed several polygons that

describe the same B-spline curve:

k=1: the de Boor ordinates dy, d}, d3, d}, ds, d, corresponding to the knot sequence
0, dy, dy, d3, A3 g

Ug, Uy, U, U, U3, Uy, Us, Ug,

k=2: the de Boor ordinates dy, d}, d2, d2, d}, ds, d, corresponding to the knot se-

1> 42,43, d;3 p g

quence Ug, Uy, Uz, U, U, Uz, Uy, Us, Ug,

k=3: the de Boor ordinates do, d}, d, d}, d}, d}, d, dy corresponding to the knot
sequence ug, Uy, Ua, U, U, U, Uz, Ug, Us, Ug.

Let us next examine an important special case. Consider the knot sequence
O=up=uy = =ty < Uy T Upy1 = " = Upy— =1
Here, both g and u, have multiplicity n. We note that the Greville abscissas are given
by

i+n—1

i .
= — E uj = —; i=0,...,n
n

For 0 =< u = 1, the de Boor algorithm sets/ = n—1and

Ui n— — U;—
k i+n—k k—1 i—1
di(u) = d,)t
Uitn—-k — Ui—| Uitn—k — Ui-1

k—1
s,

Sincen —k =i — k=0, we have u; 1 ,—x = 1, u;—1 = 0 for all i, k; thus

dfw) = (1 —wd +udf ' k=1,...,n 10.7)

150 Chapter 10. B-splines

This is the de Casteljau algorithm!®> Schoenberg [451] first observed this in 1967,
although in a different context. Riesenfeld [423] and Gordon and Riesenfeld [249]
are more accessible references. We will be able to draw several important conclusions
from this special case. First, we note that the restriction to the interval [0, 1] is not
essential: all our constructions are invariant under affine parameter transformations.

Thus, if two adjacent knots in any knot sequence both have multiplicity =,
the corresponding B-spline curve is a Bézier curve between those two knots. The
B-spline control polygon is the Bézier polygon; the Greville abscissas are equally
spaced between the two knots.

After we inserted u until it was of multiplicity n, the initial de Boor polygon (or
Bézier polygon, in this case) was transformed into two Bézier polygons, defining the
same curve as did the initial polygon. Thus we have another proof for the fact that
the de Casteljau algorithm subdivides Bézier curves.

For a B-spline curve over an arbitrary knot sequence, we can always reinsert the
given knots until each knot is of multiplicity n. The B-spline polygon correspond-
ing to that knot sequence is the piecewise Bézier polygon of the curve. We have
thus shown that B-spline curves are piecewise polynomial over [u,—1, u; +,—1]. The
method of constructing the piecewise Bézier polygon from the B-spline polygon via
knot insertion was developed by W. Boehm [63]. A different method was created
by P. Sablonniere [432]. We will give a concise algorithm later, in the context of
blossoms; see (10.18).

10.4 Smoothness of B-spline Curves

Now that we know that B-spline curves are piecewise polynomials of degree n each,
we shall investigate their smoothness: how often is a B-spline curve differentiable at
a point u? Obviously, we need to consider only the knots u,—the curve is infinitely
often differentiable at all other points.

To answer this question, simply reconsider the preceding example of (10.7).
Now, let u be an existing knot of multiplicity r. Our knot sequence is:

0 =up=u=-"=u,
<Up = Uptp = 000 = Upyr—|
<Untr T Untr+1 = "0 T Udpar—1 = 1;

the knot to be reinserted is u = u,. The de Boor algorithm only consists of n — r
levels. Taking into account the multiplicities of the end knots, we have

d*w) =1 —wd ' +udY k=1,...,n—r (10.8)

These are the n — r last levels in a de Casteljau algorithm. Therefore the two polyno-
mial curve segments meeting at u are at least n — r times differentiable at that point
(see Sections 4.5 and 4.6).

>The subscripts are different—but this is simply a matter of notation.

10.5. The B-spline Basis 151

dio
do

€o {10

v v Z 2 g v, i 4 vARv, Z

; A A t A t

Ug ?15 u1o

u 6 uj
Ug uj2

Figure 10.8: Multiple knots: the effects of multiple knots on the curve. Here, n =
3,L=8.

As above, we note that the restriction to the interval [0, 1] is not essential. If we
want to investigate the smoothness of an arbitrary B-spline curve at a knot, we can
always force its two neighbors to be of multiplicity » (without changing the curve!)
and apply our arguments.

Thus a B-spline curve is (at least) C*™" at knots with multiplicity r. In particular,
the curve is n — 1 times continuously differentiable if all knots are simple, i.e., of
multiplicity one. Figure 10.8 shows a cubic (n = 3) B-spline curve over a knot
sequence that has several multiple entries. The triple knots at the ends force dy and
dig to be on the curve.

10.5 The B-spline Basis

Consider a knot sequence uy, ..., ux and the set of piecewise polynomials of de-
gree n defined over it, where each function in that set is n — r; times continuously
differentiable at knot u;. All these piecewise polynomials form a linear space, with
dimension

K—1
dim=(n+1)+ Zr,-. (10.9)

i=1

For a proof, suppose we want to construct an element of our piecewise polynomial
linear space. The number of independent constraints that we can impose on an
arbitrary element, or its number of degrees of freedom, is equal to the dimension
of the considered linear space. We may start by completely specifying the first
polynomial segment, defined over [ug, 4;]; we can do this in n + 1 ways, which is
the number of coefficients that we can specify for a polynomial of degree n. The
next polynomial segment, defined over [u1, u,], must agree with the first segment in

152 Chapter 10. B-splines

position and n — r; derivatives at u;, thus leaving only r; coefficients to be chosen
for the second segment. Continuing further, we obtain (10.9).

We are interested in B-spline curves that are piecewise polynomials over the
special knot sequence [u,—, #z+,—-1]- The dimension of the linear space that they
form is L + n, which also happens to be the number of B-spline vertices for a curve in
this space. If we can define L + n linearly independent piecewise polynomials in our
linear function space, we have found a basis for this space. We proceed as follows.

Define functions N]'(u), called B-splines, by defining their de Boor ordinates to
satisfy d; = 1 and d; = O for all j # i. The N}(u) are clearly elements of the
linear space formed by all piecewise polynomials over [u,—1, Uy+,—1]. They have
local support:

N (u) # 0 only if u € [u;—1, Ui+nl.

This follows because knot insertion, and hence the de Boor algorithm, is a local
operation; if a new knot is inserted, only those Greville abscissas that are “close” will
be affected.

B-splines also have minimal support: if a piecewise polynomial with the same
smoothness properties over the same knot vector has less support than N7, it must be
the zero function. All piecewise polynomials defined over [u;—1, 4;+,], the support
region of N7, are elements of a function space of dimension 2n + 1, according to
(10.9). A support region that is one interval “shorter” defines a function space of
dimension 2n. The requirement of vanishing n — r;_; derivatives at u;—, and of
vanishing n — r;;, derivatives at u;., imposes 2n conditions on any element in the
linear space of functions over [#;—1, 4;+,—1]. The additional requirement of assuming
a nonzero value at some point in the support region raises the number of independent
constraints to 2z + 1, too many to be satisfied by an element of the function space
with dimension 2n.

Another important property of the N}’ is their linear independence. To demon-
strate this independence, we must verify that

L+n—1

Z N w) =0 (10.10)

j=0

implies ¢; = O for all j. It is sufficient to concentrate on one interval [u;, u;1] with
u; < uy4. Because of the local support property of B-splines, (10.10) reduces to

I+1

Z e;N"u) =0 foru € [uz, ur+].

j=I—n+1

We have completed our proof if we can show that the linear space of piecewise
polynomials defined over [u;_,, #;+,+1] does not contain a nonzero element that
vanishes over [y, u;+1]. Such a piecewise polynomial cannot exist: it would have
to be a nonzero local support function over [u;+1, 4;+,+1]- The existence of such a
function would contradict the fact that B-splines are of minimal local support.

10.6. Two Recursion Formulas 153

N2 N2)
v N W

0 2 4 6 8 9 10 12 14
0 6

N6 N3 N3 N3

2 3 7

m‘-—/l\w

0 2 4 6 g 9 10 12 14
0 6

0

Figure 10.9: B-splines: top, some quadratic B-splines over the indicated knot se-
quence; bottom: some cubic ones. Note multiple knots at left end and simple knots at
right end.

Because the B-splines N} are linearly independent, every piecewise polynomial
s over [u,—1, Uy +,—1] may be written uniquely in the form

L+n—1

s(u) = Z d;N"(w). (10.11)
j=0

The B-splines thus form a basis for this space. This reveals the origin of their name,
which is short for Basis splines.

If we set all d; = 1in (10.11), the function s(x) will be identically equal to one,
thus asserting that B-splines form a partition of unity.

Figure 10.9 gives examples of quadratic and cubic basis functions.

10.6 Two Recursion Formulas

We have defined B-spline basis functions in a constructive way: the B-spline N} is
defined by the knot sequence and the Greville abscissa &;. The function N is given by
its B-spline control polygon with de Boor ordinatesd; = §;;; j =0,...,L+n—1.
From it, we can construct the piecewise Bézier polygon by inserting every knot until it
is of multiplicity n. We can then compute values of N7 (u) by applying the de Casteljau
algorithm to the Bézier polygon corresponding to the interval that contains u. There
is a more direct way, which we now discuss.

To further explore B-splines, let us investigate how they “react” to knot insertion.
Let & be a new knot inserted into a given knot sequence. Denote the B-splines over
the “old” knot sequence by N}, and those over the “new” knot sequence by N,-". Note
that there is one more element in the set of N7 than in that of the N?. In fact, the

154 Chapter 10. B-splines

linear space of all piecewise polynomials over the old knot sequence is a subspace
of the linear space of all piecewise polynomials over the new sequence. Let N} be
an “old” basis function that has i in its support. Its B-spline polygon is defined by
dj = 8;;, where j ranges from 0 to L + n — 1 and & denotes the Kronecker delta.
Its B-spline polygon with respect to the new knot sequence is obtained by the knot
insertion process.

Only two of the new de Boor ordinates will be different from zero. Equation
(10.4) yields

P i 0+ a—u- |
= : -1,
Uj+n—1 — Ui—) Uprn—1 — U—1
~ Ul+n — 7] u— up
d1+1 = u -1+ - 0.
Up+n — Up Up+n — U

(Recall that d; = 1, whereas all other d; = 0.) Hence

5 = u-y
d=—)
U+n-1 — U1
4 U+n — i
dg = —.
Ul4n — U

Thus we can write N} in terms of N and N}, ;:

a—u-

A Upn — 0 4
Nw) = My + 2 2R (). (10.12)
—

Uyn—1 — U-1 Ul+n
This result is due to W. Boehm [62]. It allows us to write B-splines as linear combi-
nations of B-splines over a refined knot sequence.

For the second important recursion formula, we must define an additional B-
spline function, N:

_ 1 if Uj—1 =u< Ui
N2(u) —{ 0 else . (10.13)

The announced recursion formula relates B-splines of degree # to B-splines of degree
n—1:

U—u-— U+n — U

NN w) + ” N). (10.14)

Ni(w) = ————
Utn—1 — U—1 Uyn —
To prove (10.14), we shall prove the following more general statement:
i+l
swy=" Y AN} (10.15)
j=itr—n+1
for all r € [0, n]. For its proof, we first check that it is true for r = r; this follows
from (10.13). By the de Boor algorithm, (10.15) is equivalent to
i+1 i+l
swy = > A-aDdiIIINTTw+ Y afd] TN (w),

j=i—n+l+r j=i—n+l+r

10.6. Two Recursion Formulas 155

where
o = L) B
Uitn—r — Uj—1
An index transformation yields
i i+1
_ —1pm— ~1 pjn—
s(u) = E (1 —ajr-ﬂ)d; N;‘+1’(u)+ E a;d; N (u).
j=i—n+r j=i—n+1+r

Because of the local support of the N7 ™", this may be changed to

i+1 i+1
swy= > (A —af,)d] \NETw + Z ald! N (w).
j=i—n+r j=i—n+r

Hence, by the inductive hypothesis,

i+l
sy =Y [N () + (I = af DN w)d] ™"

j=i—n+r

This step completes the proof of (10.15), since we have now shown that (10.15)
holds for r — 1 provided that it holds for r. The recurrence (10.14) now follows
from comparing (10.15) and (10.6). The development of equation (10.14) is due to
L. Mansfield, C. de Boor, and M. Cox; see de Boor [125] and Cox [118]. For an
illustration of (10.14), see Figure 10.10.

The recursion formula (10.14) shows that a B-spline of degree n is a strictly
convex combination of two lower degree ones; it is therefore a very stable formula
from a numerical viewpoint. If B-spline curves must be evaluated repeatedly at the

Figure 10.10: The B-spline recursion: top, two linear B-splines yield a quadratic one;
bottom, two quadratic B-splines yield a cubic one.

156 Chapter 10. B-splines

same parameter values u, it is a good idea to compute the values for N/ (i) using
(10.14) and then to store them.

A comment on end knot multiplicities: the widespread data format IGES uses two
additional knots at the ends of the knot sequence; in our terms, it adds knots #_; and
ur+2n—1. The reason is that formulas such as (10.14) seemingly require the presence
of these knots. As they only are multiplied by zero factors, their values have no
influence on any computation. There is no reason to store completely inconsequential
data; hence the “leaner’” notation of this chapter.

10.7 Repeated Knot Insertion

We may insert more and more knots into the knot sequence; let us now investigate the
effect of such a process. A B-spline curve of degree n is defined over u,,—y, ..., Uy 4 p—1-
Letusseta = u,_1, b = up+,—;. Now insert more knots] into [q, b]; here r counts
the overall number of insertions and i denotes the number of #] in the new knot
sequence. After » knot insertions, we have a new polygon P” that describes the same
curve as did the original polygon P. As we insert more and more knots, so as to
become dense in [g, b], the sequence of polygons P” converges to the curve that they
all define:

limP" = [B,P]. (10.16)

To begin, we recall that a B-spline curve depends only on d,..., di+, over the
interval [uy, ug+1]. Then for u € [uy, ug+1],

min(dy, - - -, di+n) = [B,Pl(w) = max(dy, ..., di+n)

by the strong convex hull property.
We need to show that for any €, we can find an r such that

|P" (1) — [B,Pl(u)| = € for all u

We know that for any €, we can find an r such that

& —&1=8
and

IP"(§) — P (§Nl = ¢
since each P’ is continuous. Thus,
max[P"(&),..., P"(&,,)] — min[P"(§),..., P (&.,)] = ne

for those i that are relevani to the interval [u, uy .]. But we also know that

min(d]) = [B,P](u) = max(d]).

10.7. Repeated Knot Insertion 157

Thus,
|[B.P1w) — P}| < ne; jEIi...,i+nl],
which finally yields
[[B,P1(w) — P"(w)| =< ne,

proving our convergence claim.

The use of repeated knot insertion lies in the rendering of B-spline curves.
If sufficiently many knots have been inserted into the knot sequence, the resulting
control polygon will be arbitrarily close to the curve. Then, instead of plotting the
curve directly, one simply plots the refined polygon. To obtain an adaptive rendering
method, one would control the knot insertion process by inserting more knots where
the curve is of high curvature and fewer knots where it is flat.

Of course, B-spline curves may also be parametric. All we have to do is use
functional B-spline curves (all over the same knot vector) for each component of the
parametric curve:

L+n-1 L+n-1 d!x
x@= Y dN@w= > | d’ |Nw.
i=0 i=0 d?

The curves for n = 2 and n = 3 were already described in Chapter 7, although with
a different notation that especially suited those cases. General degree B-spline curves
enjoy all the properties of the lower degree ones, such as affine invariance and the
convex hull property.

An interesting application of repeated knot insertion is due to G. Chaikin [95].
Although this scheme may be described in the context of functional curves, we prefer
the more intuitive parametric version. Consider a quadratic B-spline curve over a
uniform knot sequence. Insert a new knot at the midpoint of every interval of the knot
sequence. If the “old” curve had control vertices d; and those of the new one are dl(.l),
it is easy to show that

aw

3 1
2i—1 = Zdl + Zd,'_] and d(l)

241 = %d,- + %dm-

If this procedure is repeated infinitely often, the resulting sequence of polygons will
converge to the original curve, as follows from our previous considerations. Figure
10.11 shows the example of a closed quadratic B-spline curve; two levels of the
iteration are shown.

Chaikin’s algorithm may be described as corner-cutting: At each step, we chisel
away the corners of the initial polygon. This process is, on a high level, similar to that
of degree elevation for Bézier curves, which is also a convergent process (see Section
5.2). One may ask if corner-cutting processes will always converge to a smooth curve.
The answer is “yes,” with some mild stipulations on the corner-cutting process; this
was first proved by de Boor [128]. One may thus use a corner-cutting procedure
to define a curve—and only very few of the curves thus generated are piecewise

158 Chapter 10. B-splines

Figure 10.11: Chaikin’s algorithm: starting with the (closed) control polygon of a
quadratic B-spline curve, two levels of the Chaikin iteration are shown.

polynomial! Recent work has been carried out by Prautzsch and Micchelli [412] and
[358], based on earlier results by de Rham [137], [138].

Corner-cutting may also be used for interpolation; see Dyn, Levin, and Gregory
[160], [159].

R. Riesenfeld [424] realized that Chaikin’s algorithm actually generates uniform
quadratic B-spline curves. A general algorithm for the simultaneous insertion of sev-
eral knots into a B-spline curve has been developed by Cohen, Lyche, and Riesenfeld
[110]. This so-called “Oslo algorithm” needs a theory of discrete B-splines for its
development (see Bartels et al. [42]). The knot insertion algorithm as developed in
this chapter is more intuitive and equally powerful.

10.8 B-spline Properties

After the more theoretical developments of the previous two sections, let us examine
some of the properties that we can now derive for B-spline curves.

Linear precision: If I(u) is a straight line of the form | = au + b, and if we read
off values at the Greville abscissas, the resulting B-spline curve reproduces the
straight line:

D UEN; W) = L),

This property is a direct consequence of the de Boor algorithm. It was originally
obtained by T. Greville [261], [260] in a different context. The original Greville
result is the motivation for the term “Greville abscissas.”

Strong convex hull property: Each point on the curve lies in the convex hull of no
more than n + 1 nearby control points.

10.9. B-spline Blossoms 159

Variation diminishing property: The curve is not intersected by any straight line
more often than is the polygon. This result has a very simple proof, presented
by Lane and Riesenfeld [320]: we may insert every knot until it is of full
multiplicity. This is a variation diminishing process, since it is piecewise linear
interpolation. Once all knots are of full multiplicity, the B-spline control polygon
is the piecewise Bézier polygon, for which we showed the variation diminishing
property in Section 5.3.

The parametric case: In the parametric case, it is desirable to have ug and uy1,—|
both of full multiplicity n. This condition forces the first and last control points dg
and d; 4, to lie on the endpoints of the curve. In this way, one has better control
of the behavior of the curve at the ends. The spline curves that we discussed in
Chapter 7 are all described in this form, although we did not formally make use
of knot multiplicities there. If the end knots are allowed to be of lower (even
simple) multiplicity, the first and last control vertices do not lie on the curve, and
are called “phantom vertices” by Barsky and Thomas [40]. Figure 10.12 gives
several examples of B-spline curves over various knot sequences, all with L = 7.

The de Boor algorithm allows a nice geometric description in parametric form.
Formally, we perform the algorithm for all components of the control polygon.
Geometrically, we may “engrave” parts of the knot sequence on each polygon leg:
map the first # + 1 subsequent knots (starting at ug) onto dod;, the next subsequent
n + 1 knots onto d;d,, and so on, until the last subsequent n + 1 knots are mapped
to the last polygon leg. For example, in Figure 10.13, with n = 3 and L = 5, the
knots [uy, us, us, us] are mapped to d,ds, whereas [ug, u), 4y, u3] are mapped to dod;.
The interval [uy, uy4+1], which contains the evaluation parameter u, is thus mapped
to n polygon legs by n affine maps, which are equivalent to linear interpolation as
outlined in Section 2.3. These affine maps take u to the d}(u). The same procedure
is then repeated: Consider all sets of subsequent n knots that contain u;, u;+1. Map
them by affine maps to the polygon formed by the d } and denote the images of u by
d’, etc. The final step is to map the interval u;, u;1; onto dj~', d};| to obtain the
point d}, , on the curve.

Finally, a note on how to store B-spline curves. It is not wise to store the knot
sequence {u;} and simply list multiple knots as often as indicated by their multiplicity.
Roundoff may produce knots that are a small distance apart, yet meant to be identical.
Following the approach taken by Schumaker [452], it is wiser to store only distinct
knots and to note their multiplicities in a second array. From these two arrays, one
may compute the original knot sequence when required—for example, for the de
Boor algorithm.

10.9 B-spline Blossoms

In Section 3.4, we generalized the de Casteljau algorithm by allowing evaluations
at n different arguments ¢, ..., t,, thus arriving at the blossom b[z,...,1,] of a

160 Chapter 10. B-splines

knots:

=3 0<3>.1,2,3,4,5,6,7,8,9
knots:
n=3 0<3>’1<2>’2<2>’3<2>,4<3>
knots:
n=>s 0<5> 1,2 3,4,5<5>
knots:
n=>s

0<5>, 1’ 27 3<2>’4<5>

knots:

n= 0<7>’ 1’2’3<7>

Figure 10.12: Parametric B-spline curves: several examples, all with the same control
polygon but with different degrees and knot sequences.

polynomial curve b(f). The same principle may be applied to B-spline curves. For
the sake of concreteness, let us begin with the case of a cubic B-spline curve, and
also restrict ourselves to the parameter interval [uy, us].

We will now modify the standard de Boor algorithm: at each level k; &k = 1, 2, 3,
we will evaluate at a different argument v; € [us, us]. The relevant control points for

10.9. B-spline Blossoms 161

U uz uy A us Us U7
u

u; ug

ug Ug

Figure 10.13: The de Boor algorithm in parametric form: all groups of n + 1 — r
intervals that contain [u4, us] are mapped onto polygon legs.

our interval are d, .. ., ds, and we obtain the following scheme:
d,
d; di[v]

d, di[v] v, va]
ds dli[vi] di[vi,vo] di[vi, vy, v3l.

Again, it is easy to see that it does not matter in which order we “feed” the the v;
into this scheme. Also, if all v; agree, we recover the standard de Boor algorithm. We
shall use the notation d4[vy, v,, v3] for the point dg[vl, vy, v3], indicating that we are
dealing with the interval [uy, us].

In general, for a parameter interval [y, u;.1], we shall define as the B-spline
blossom—or just blossom—the function d,[vy, ..., v,], obtained by applying the de

Boor algorithm for the interval [u;, u;41] to the control points d;—,,+1, . . ., d;+1, and
using a (possibly) different argument vy at level k of the algorithm. Thus the blossom
corresponding to the interval [uy, u;+1] is a function of » variables vy, .. ., v,; in fact,

it is a multivariate polynomial function. The whole B-spline curve possesses as many
blossoms as it has domain intervals.

Note that we have not restricted the v; to be in the interval [uy, u;.;]! In fact,
a very interesting result arises if we evaluate for v; outside that interval. Returning
to our earlier cubic example, let us set [vy, vp, v3] = [uy, U3, us]. The scheme be-
comes:

162 Chapter 10. B-splines

d;
d; a4
d4 L4 d2

ds e o dy = dyfuy, u3, ugl.

The e-entries in the scheme were not computed, because their values do not con-
tribute to the final result. We have, similarly to the Bézier case, recovered one of
the control points! The algorithm no longer uses only convex combinations; instead,
extrapolation is used several times.

To illustrate the principle of control point recovery, we try one more set of
arguments, namely [vy, v5, v3] = [u3, us, us]. The scheme becomes:

d;
d3 []
d4 d3 L4

ds e d; d;=dyfus us usl.

Again, we have recovered a control point. Continuing in this manner, we find that
dy = dy[uy, us, ug] and ds = dy[us, ug, u7]. Figure 10.14 illustrates these examples.
More generally, we have the following: the curve segment defined over [u;, u;]

needs n + 1 control points for its definition, namely d;—,+1, ..., d;+;. They can be
obtained as blossom values:
di—ni1ok = Ailur—pirvio - uikl; k=0,...,n (10.17)

The arguments of d; on the right-hand side are all n-tuples of subsequent knots that
contain either u; or uyq.

As a spinoff, we can give a very compact formula for the conversion of a B-
spline curve into its piecewise Bézier form: let the Bézier points corresponding to the

interval [us, uz+1] be bf, ..., bl. They are given by
b =d;u" T =0, (10.18)
d4 [114115116]

d4fuzugus)

d4[upuzuy]

Figure 10.14: B-spline blossoms (cubic): The knot sequence is uy = u; = u; < uz
<uy <us <ug < u; <ug = ug = uyp. The control points corresponding to [u4, us] are
shown as blossom values.

10.10. Approximation 163

The simplicity of this formula is striking; in former days, involved papers were
written on this conversion problem! That is not to say, however, that (10.18) is the
most efficient way to solve the problem. But it does produce very readable code,
which is equally important.

We will now use the blossoming principle to discuss degree elevation. Formally,
we can write any n"-degree piecewise polynomial curve over a given knot sequence
as one of degree n + 1. It will not be over the same knot sequence: instead, we will
have to increase the multiplicity of each knot by one. We denote these new knots by
it;. The task is then to find the B-spline control points of the degree elevated curve,
similar to the process of degree elevation for Bézier curves as described in Section
5.1

The degree elevated curve d has dg[vy, ..., v,.1] as the blossom of the interval
[k, g 1] = [ug, uy+1]. How can we write it as a combination of blossoms of n
variables? We can try the following:

n+1

A 1
dglve,. o vaet] = —— _Zldl[vl,..., Vurvil, (10.19)
=
where [vi,..., V41 |vj] is the argument sequence [vy, . .., v,41] with v; removed from

it. This simple attempt already yields the solution: dx is a blossom, being a barycentric
combination of blossoms. Also, it is symmetric and multiaffine, and it yields a point
on the given curve for the case of all v; being equal.

To be more specific: we know that the control points d ; are the blossom values

dK—n+r = dK[aK—n+ry---yaK+r]; r=0..n+1

by application of (10.17). Using (10.19), we now have the desired result:

1 n+1
dg—n+r = T+l E dl[aKArH—r;--',aK+r|ﬁK—n+r+j—1]; r=0..n+1L
j=1

(10.20)

Thus the new B-spline vertices can be found by evaluating blossoms at # arguments of
the new knot sequence and then taking their average. The corresponding formula for
the basis functions is given in Section 10.11. A specific case is discussed in Example
10.1.

Literature on B-spline blossoms: [469], [465], [464], [467], [415].

10.10 Approximation

The full generality of the theory of B-splines allows a broader class of curve con-
struction algorithms. Curves are not always required to pass through a set of points;
sometimes it may suffice to be close to the given points. In this case, we speak of
approximating curves. Figure 10.15 illustrates.

164 Chapter 10. B-splines

Let a cubic B-spline curve be defined over {ug = u; = uy, u3,...}. Then the
interval [u4, us] corresponds to [ii7, ig]. The new control point dg4 is computed
as follows:

-

dy = dy[a, s, b, i7]

1 A A A A
1 (dald, @5, 6] + dalitg, its, 27] + dalitg, s, 7] + daylits, s, 47])
1

5 (Aalus, uz, ug] + dylus, us, usl).

For the last step, we have utilized &, = &5 = u3 and &g = 17 = uy.

Example 10.1: B-spline degree elevation and blossoms.

As an example, consider the generation of an airplane wing: its cross-sections
(profiles) are defined by analytical means, optimizing some airflow characteristics, for
example.® One can now compute many (100, say) points on the profile and then ask
for a curve through them. A cubic spline interpolant would do the job, but it would
have too many segments—for a typical profile, a curve with 15 segments might
provide a perfect fit. One possibility is to simply discard data points until we are left
with the desired number. We would then compute the interpolant to the reduced data
set and check if the discarded points are within tolerance. This is expensive, and a
more frequently encountered approach is one that makes sure that all data points are
as close as possible to the curve, avoiding any iterations.

o

Ug u; ug

Figure 10.15: Least squares approximation: the curve should be close to the data
points.

®Many explicit wing section equations are given by the so-called NACA profiles.

10.10. Approximation 165

To make matters more precise, assume that we are given data points p; with
i =0,..., P. We wish to find an approximating B-spline curve p(u) of degree n with
L domain knots, i.e., with a knot sequence u, . . ., Uy +2,—2. We want the curve to be
close to the data points in the following sense. Suppose the data point p; is associated
with a data parameter value w;.” Then we would like the distance ||p; — p(w;)|| to be
small. Attempting to minimize all such distances then amounts to

P
minimize > |Ip; — p(wi)lI%. (10.21)
i=0
The squared distances are introduced to simplify our subsequent computations. They
gave the name to this method: least squares approximation. We shall minimize (10.21)
by finding suitable B-spline control vertices d:

P L+n—1
minimize f(do, ..., d +n-1) = Z||p,~ - Z d;NT (w2 (10.22)
i=0 j=0
Slightly rewritten, this becomes
P L+n—1 L+n—1
minimize f(do,..., dzin-1) = > (P — Y, diNJw)| [pi— Y d;Niow)| .
i=0 j=0 j=0

(10.23)

Thus f is a quadratic form with L + n independent variables d ;. Such functions

only have one minimum, and at its location, the partials with respect to the d; must
vanish: 9f/dd;, = 0.8 Thus:

P L+n—1
0= pi— Z d;NY(wi) | Nfws); k=0,...,L+n—1 (10.24)
i=0 Jj=0
or
L+n—1 P P

> d; > NIw)Npw) = > piNgw); k=0,...,L+n—1 (10.25)
j=0 i=0 i=0

This is a linear system of L + n equations for the unknowns d,, with a coefficient
matrix M whose elements m are given by

P
mix =Y N}w)Njw); 0=<jk=L+n
i=0
These equations are usually called normal equations. The symmetric matrix
M, although containing many zero entries, is often ill-conditioned; special equation
solvers, such as a Cholesky decomposition, should be employed. For more details on
the numerical treatment of least squares problems, see [276] or [325].

"Note that w; does not have to be one of the knots!
8This is shorthand for taking the partials for each of d;’s components.

166 Chapter 10. B-splines

The matrix M is nonsingular in all “standard” cases. It is obviously singular if
the number of data points P + 1 is less than the number of domain knots L + n + 1.
It is also singular if there is a span [u; 1, u;+,] that contains no w;. In that case, the
basis function N ;‘ would evaluate to zero for all w;, resulting in a row of zeroes for M.

We have so far assumed much more than would be available in a practical
situation. First, what should the degree n be? In most cases, n = 3 is a reasonable
choice. The knot sequence poses a more serious problem.

Recall that the data points are typically given without assigned data parameter
values w;. The centripetal parametrization from Section 9.4 will give reasonable
estimates, provided that there is not too much noise in the data. But how many knots
u; shall we use, and what values should they receive? A universal answer to this
question does not exist—it will invariably depend on the application at hand. For
example, if the data points come from a laser digitizer, there will be vastly more data
points p; than knots u;.

After the curve p(u) has been computed, we will find that many distance vectors
p; — p(w;) are not perpendicular to p(w;). This means that the point p(w;) on the curve
is not the closest point to p;, and thus ||p; — p(w;)|| does not measure the distance
of p; to the curve. This indicates that we could have chosen a better data parameter
value w; corresponding to p;. We may improve our estimate for w; by finding the
closest point to p; on the computed curve and assigning its parameter value w; to
p:; see Figure 10.16. We do this for all i and then recompute the least squares curve
with the new w;. This process typically converges after three or four iterations. It was
named parameter correction by J. Hoschek [291].

The new parameter value w; is found using a Newton iteration. We project p;
onto the tangent at p(w;), yielding a point q;. Then the ratio of the lengths [|q; —
p:ll/llp(wy)ll is a measure for the adjustment of w;. The actual Newton iteration step
looks like this:

DA
W= wi + Iy — p(w,n”ﬁﬁ:i” = (10.26)
pi?
P(w) G p(w)

Figure 10.16: Parameter correction: the connection of p; and p(w;) is typically not
perpendicular to the tangent at p(w;). A better value for w; is found by projecting p;
onto the tangent.

10.11. B-spline Basics 167

In this equation, s; denotes the arc length of the segment that w; is in, i.e., uy < w; <
ug+1. This length may safely (and cheaply) be overestimated by the length of the
Bézier polygon of the k™ segment.’

We finally note that (10.26) should not be used to compute the point on a curve
closest to an arbitrary point p;. It only works if p; is close to the curve, and if a good
estimate w; is known for the closest point on the curve.

10.11 B-spline Basics

Here, we present a collection of the most important formulas and definitions of this
chapter. As before, n is the (maximal) degree of each polynomial segment, L is the
number of curve segments if all knots in the domain are simple, and, more generally,
L + 1 is the sum of all domain knot multiplicities.

Knot sequence: {u, ..., u;+2q—2}
Domain: Curve is only defined over [u,—1,..., up4+n—1].
Greville abscissas: & = 1(u; + *++ + uin-1).
Support: N7 is nonnegative over [u;_1, 4;1n].
Control polygon P: (§,4d); i =0,...,L+n—1.
Knot insertion: :Fo insert u; =< u < uyq: (1) Find new Greville abscissas é,-. (2) Set
new d; = P(&).

de Boor algorithm: Givenu; =< u < u;,,, set

Wign—gp — U u— u;
T S A ——

d*u) = 1d,-"‘l(u)

fork=1...,.n—r, and i =1 —n+k+1,...,1 + 1. Here, r denotes the
multiplicity of u. (Normally, u is not already in the knot sequence; then, r = 0.)

Boehm recursion: Let & be a new knot; then,

- u-_ A Ujsn — U 4
Np) = —————R7@) + ——2—R7,).
Ul+n—1 — Ui—1 Ul+n — U
Mansfield, de Boor, Cox recursion:
u— uj— _ U+n — U _
Ni(u) = —— NP Yu) + =2 NI).
Uptn—1 — Ui—1 Uprn — Uy
Derivative:
d n n
_ -1 -1
TN = ————— N7 W) ~ ——— N} ().
u Upt1—1 — U—1 Up+n — Uy
“Hoschek’s original development uses u;+,—; — #,; instead of Aw; and the length of the

total curve instead of s;. Our formula is cheaper and worked well in our applications.

168 Chapter 10. B-splines

Derivative of B-spline curve:

L+n—1
d Ad;_, -
—s(u) =n NN w).
du ; Unt+i—1 — Ui—1
Degree elevation:
1 n+i
N[‘(u) = m Nin+1(u; uj),
j=i-1

where N'*!(u;u;) is defined over the original knot sequence except that the
knot u; has its multiplicity increased by one. This identity was discovered by
H. Prautzsch in 1984 [410]. Another reference is Barry and Goldman [33].

10.12 Implementation
Here is the header for the de Boor algorithm code:

float deboor (degree,coeff,knot,u,i)
/* uses de Boor algorithm to compute one
coordinate on B-spline curve for param. value u in interval i.

Input: degree: polynomial degree of each piece of curve
coeff: B-spline control points
knot: knot sequence
u: evaluation abscissa
i: u’s interval: ul[i]l<= u < ul[i+1]
Output: coordinate value.
*/

This program does not need to know about L. The next program generates a set
of points on a whole B-spline curve—for one coordinate, to be honest—so it has to
be called twice for a 2D curve and three times for a 3D curve.

bspl_to_points(degree,l,coeff,,knot,dense,points,point_num)

/* generates points on B-spline curve. (one coordinate)
Input: degree: polynomial degree of each piece of curve
1: number of active intervals
coeff: B-spline control points
knot: knot sequence: knot[O]...knot[l+2*degree-2]
dense: how many points per segment
Output:points: output array with function values.
point_num: how many points are generated. That number is

easier computed here than in the calling program:
no points are generated between multiple knots.

*/

10.12. Implementation 169

The main program deboormain.c generates a postscript plot of a B-spline
curve. A sample input file is in bspl.dat; it creates the outline of the letter r from
Figure 8.6.

As a second example, the input data for the y-values of the curve in Figure 10.1
are:

degree = 3; 1 = 4; coeff = 0.8, 2.8, 5.7, 2.6, 5.7, 4.0, 0.6;
knot = 0.0, 0.0, 0.0, 2.6, 7.7, 9.9, 17.8, 17.8, 17.8; dense =
10.

Next, we include a B-spline blossom routine:

deboor_blossom(control,degree,deboor,deboor_wts,
knot,uvec, interval,point,point_wt)

/*

FUNCTION: deBoor algorithm to evaluate a B-spline curve blossom.
For polynomial or ratiomal curves.

INPUT: control[]l [0]: indicates type of input curve
0 = polynomial
1 = rational
[1]: indicates if input/output is
in R3 or R4;
3 =R3
4 = R4
degree polynomial degree of each piece
of the input curve, must be <=20
deboor[]1[3] deboor control points
deboor_wts[] rational weights associated with
the control points if control[0]=1;
otherwise weights not used

knot[l knot sequence with multiplicities
entered explicitly

uvec[] blossom (parameter) values
to evaluate

interval interval within knot sequence

with which to evaluate wrt u
(typically: i=interval then
knot[i]l<= u < knot[i+1])

OUTPUT: point[3] evaluation point;
depending on control[] values,
this point will be in R3 or R4
point_wt if control[0]=1 then this is the
rational weight associated with
the point

170 Chapter 10. B-splines

10.13 Exercises

1. For the case of a planar parametric B-spline curve, does symmetry of the polygon
with respect to the y-axis imply that same symmetry for the curve?
2. Prove (10.1). Hint: use similar triangles.

*3, Find the Bézier points of the closed B-spline curves of degree four whose control
polygons consist of the edges of a square and have (a) uniform knot spacing and
simple knots, (b) uniform knot spacing, and knots all with multiplicity two.

*4, Work out the conditions under which the least squares approximation of Section
10.10 yields an interpolating curve.

P1. Use de_boor_blossom to program degree elevation for B-spline curves.

P2. Take the data from the file outline_3D and approximate by a least squares
cubic spline with fewer segments than you did for the corresponding problem in
Chapter 9. Compare.

Chapter 11

W. Boehm: Differential
Geometry I

Differential geometry is based largely on the pioneering work of L. Euler (1707-
1783), C. Monge (1746-1818), and C. F. Gauss (1777-1855). One of their concerns
was the description of local curve and surface properties such as curvature. These
concepts are also of interest in modern computer-aided geometric design. The main
tool for the development of general results is the use of local coordinate systems, in
terms of which geometric properties are easily described and studied. This introduc-
tion discusses local properties of curves independent of a possible imbedding into a
surface.

11.1 Parametric Curves and Arc Length

A curve in E? is given by the parametric representation

x(1)
x=x(t)=| y@®) |, tE€[a,b] CR, (11.1)

z(t)

where its cartesian coordinates x, y, z are differentiable functions of ¢ (see Figure
11.1). (We have encountered a variety of such curves already, among them Bézier
and B-spline curves.) To avoid potential problems concerning the parametrization of
the curve, we shall assume that

x(1)
x()=| y@® | #0, t € [a, b], (11.2)
(1)

171

172 Chapter 11. W. Boehm: Differential Geometry I

x(t)

x(a) — x(t.
/ - 0 0o0o————O0—<
X a t; b

Figure 11.1: Parametric curve in space.

where dots denote derivatives with respect to ¢. Such a parametrization is called
regular.

A change 7 = 7(t) of the parameter ¢, where 7 is a differentiable function of
t, will not change the shape of the curve. This reparametrization will be regular if
T # Oforall t € [a, b], i.e., we can find the inverse t = (7). Let

t
5= st) = / lIxllde (113)
be such a parametrization. Because
dxdr dx
dt = ——dt =
e P

s is independent of any regular reparametrization. It is an invariant parameter and is
called arc length parametrization of the curve. One also calls ds = ||x||dz the arc
element of the curve.

Remark 1 Arc length may be introduced more intuitively as follows: let
t; = a+iAtandlet Az > 0 be an equidistant partition of the ¢-axis. Let x; = x(¢;) be
the corresponding sequence of points on the curve. Chord length is then defined by

5= Yl - ZH‘X“

where Ax; = X;4; — X;. [t is easy to check that for Az — 0, chord length S converges
to arc length s, while Ax; /At converges to the tangent vector X; at x;.

Ay, (11.4)

Remark 2 Although arc length is an important concept, it is primarily used for
theoretical considerations and for the development of curve algorithms. If, for some
application, computation of the arc length is unavoidable, it may be approximated by
the chord length (11.4).

11.2. The Frenet Frame 173

11.2 The Frenet Frame

We will now introduce a special local coordinate system, linked to a point X(¢) on the
curve, that will significantly facilitate the description of local curve properties at that
point. Let us assume that all derivatives needed later do exist. The first terms of the
Taylor expansion of x(¢ + At) at ¢ are given by

1 1
x(t + At) = x + XAt +ii§Az2 +ii'8Az3 +....0

Let us assume that the first three derivatives are linearly independent. Then X, X, X’
form a local affine coordinate system with origin x. In this system, x(¢) is represented
by its canonical coordinates

At + ...
1 2
EAt + ...
1 3
A+

where “...” denotes terms of degree four and higher in Az¢.

From this local affine coordinate system, one easily obtains a local cartesian
(orthonormal) system with origin x and axes t, m, b by the Gram—Schmidt process of
orthonormalization, as shown in Figure 11.2:

X x A\ X

t=—, m=b/A\t b= ——, (11.5)
[[%l] & A%
where “/\” denotes the cross product.
The vector t is called tangent vector (see Remark 1), m is called main normal
vector,? and b is called binormal vector. The frame (or trihedron) t, m, b is called
the Frenet frame; it varies its orientation as ¢ traces out the curve.

Figure 11.2: Local affine system (left) and Frenet frame (right).

'We use the abbreviation At? = (At)2.
2Warning: one often sees the notation n for this vector. We use m to avoid confusion with
surface normals, which are discussed later.

174 Chapter 11. W. Boehm: Differential Geometry I

The plane spanned by the point x and the two vectors t, m is called the osculating
plane O. Its equation is

y x x X | _ e e
det[1 1 0 O}—det[y X, X, X] = 0,

where y denotes any point on O. Its parametric form is

O, v) = X + ux + vX.

Remark 3 The process of orthonormalization yields
Tk X - &% Al
This equation may also be used for planar curves, where the binormal vector b =
t /\ m agrees with the normal vector of the plane.

11.3 Moving the Frame

Letting the Frenet frame vary with ¢ provides a good idea of the curve’s behavior in
space. It is a fundamental idea in differential geometry to express the local change of
the frame in terms of the frame itself. The resulting formulas are particularly simple
if one uses arc length parametrization. We denote differentiation with respect to arc
length by a prime. Since X’ = tis a unit vector, one finds the following two identities:

x'-x'=1 and X -x"=0.

The first identity states that the curve is traversed with unit speed; the second one
states that the tangent vector is perpendicular to the second derivative vector, provided
the curve is parametrized with respect to arc length.

Some simple calculations yield the so-called Frenet—Serret formulas:

t = +km
m = —«kt +7b, (11.6)
b’ = —Tm

where the terms « and T, called curvature and torsion, may be defined both in terms
of arc length s and in terms of the actual parameter ¢. We give both definitions:

Kk = k(s) = |Ix"[],

1% A\ %]

K= KD = S (11.7)
1 ! 4 1

T=1(5) = Fdet[x,x , X,
det[x, X, X']

T = T(f) = W (118)

Figure 11.3 illustrates the formulas of Egs. (11.6).

11.4. The Osculating Circle 175

Figure 11.3: The geometric meaning of the Frenet-Serret formulas.

Curvature and torsion have an intuitive geometric meaning: consider a point X(s)
on the curve and a “consecutive” point x(s + As). Let Aa denote the angle between
the two tangent vectors t and t(s + As) and let AB denote the angle between the
two binormal vectors b and b(s + As), both angles measured in radians. It is easy to

verify that Aa = kAs +... and AB = —7As + ..., where “...” denotes terms of
higher degree in As. Thus, when As — ds, one finds that
_da 4B
T ds”

In other words, k and —7 are the angular velocities of t and b, respectively, because
the frame is moved according to the parameter s.

Remark 4 Note that k and 7 are independent of the current parametrization of
the curve. They are euclidean invariants of the curve, i.e., they are not changed by a
rigid body motion of the curve. Moreover, any two continuous functions k = k(s) > 0
and 7 = 7(s) define uniquely (except for rigid body motions) a curve that has curvature
k and torsion 7.

Remark 5 The curve may be written in canonical form in terms of the Frenet
frame. Then it has the form

As “%KZAS3+...
x(s + As) = lkAs® +ikAs+... |,
LktAs® + ...
where “...” again denotes terms of higher degree in As.

11.4 The Osculating Circle

The circle that has second-order contact with the curve at x is called the osculating
circle (Figure 11.4). Its center is ¢ = x + pm, and its radius p = 1 is called the

K

radius of curvature. We shall provide a brief development of these facts. Using the

176 Chapter 11. W. Boehm: Differential Geometry I

b center ¢
p -~
m

t

Figure 11.4: The osculating circle.

Frenet-Serret formulas of Eqgs. (11.6), the Taylor expansion of x(s + As) can be
written as

1
X(s + As) = x(s5) + tAs + EKmAs2 + ...

Let p* be the radius of the circle that is tangent to t at x and passes through the point
y = x + Ax, where Ax = tAs + %KmAs2 (see Figure 11.5). Note that y lies in the

osculating plane Q. Inspection of the figure reveals that (%AX —p'm)Ax = 0, ie,,
one obtains

. L(Ax)
P = 2 mAx’
From the definition of Ax one obtains (Ax)* = As? + ... and mAXx = jk(As)%.

Thus p* = i +....Inparticular, p = % as As — 0. Obviously, this circle lies in the
osculating plane.

Remark 6 Let x be a rational Bézier curve of degree n as defined in Chapter
14. Tts curvature and torsion at by are given by

n—1wowy b _n—2wews ¢
S =

K=

—, (11.9)
n wywpab

n w1

Figure 11.5: Construction of the osculating circle.

11.4. The Osculating Circle 177

Figure 11.6: Frenet frame and geometric meaning of 4, b, c.

where g is the distance between by and by, b is the distance of b, to the tangent
spanned by bg and by, and c is the distance of b; from the osculating plane spanned
by bg, by, and b, (Figure 11.6). Note that these formulas can be used to calculate
curvature and torsion at arbitrary points x(¢) of a Bézier curve after subdividing it
there (see Section 14.2).

Remark 7 An immediate application of (11.9) is the following: Let x be a point
on an integral quadratic Bézier curve, i.e., a parabola. Let 28 denote the length of a
chord parallel to the tangent at x, and let € be the distance between the chord and the

tangent. The radius of curvature at x is then p = % (see Figure 11.7).
Remark 8 An equivalent way to formulate (11.9) is given by

n — 1 wow, area[bg, by, bs]

k=2 > —
n wi dist’[bg, b;]

(11.10)

and

_ én -2 Wows volume[bg, bl, b;)_, b3]

11.11

2 n ww, area?[bg, by, by] ()
The advantage of this formulation is that it can be generalized to “higher order
curvatures” of curves that span R?, 3 < d =< n (see Remark 12). An application of
this possible generalization is addressed in Remark 13.

Figure 11.7: Curvature of a parabola.

178 Chapter 11. W. Boehm: Differential Geometry I

11.5 Nonparametric Curves

Let y = y(t); t € [a, b] be a function. The planar curve [is called the graph

o]
y(0)
of y(t) or a nonparametric curve. From the preceding, one derives the following:
The arc element:

ds = /1 + y2dr.

The tangent vector:

=]
t= .
1+32 1Y
The curvature:
_ y
K= ——.
[1+)2):

The center of curvature:

1+32 [—5
c=x+ "y [y]_
¥y 1

Remark 9 Note that « has a sign here. Any planar parametric curve can be
given a signed curvature, for instance, by using the sign of det(x, X) [see also Eq.
(23.1)].

Remark 10 For a nonparametric Bézier curve (see Section 5.5),

y(u) = boBy(t) + + -+ + buBp(1).

Figure 11.8: Curvature of nonparametric Bézier curve.

11.6. Composite Curves 179

Where u = ug + tAu is a global parameter, we obtain

l ——— Au A%
a = ; AI,{Z + n2(Ab0)2, b = —l O,

n a

as illustrated in Figure 11.8.

11.6 Composite Curves

A curve can be composed of several segments; we have seen spline curves as an
example. Let x_ denote the right endpoint of a segment and x the left endpoint of
the adjacent segment. (We will consider only continuous curves, so that x_ = x
always.) Let 7 be a global parameter of the composite curve and let dots denote
derivatives with respect to ¢. Obviously, the curve is tangent continuous if

X+ = ax_. (11.12)
Moreover, it is curvature and osculating plane continuous if in addition
Xy = a®%_ + ay %, (11.13)
and it is torsion continuous if in addition
X, = a’%X_ + apXk_ + ayx- (11.14)

and vice versa. Since we require the parametrization to be regular, it follows that
a > 0, while the «; are arbitrary parameters.

It is interesting to note that curvature and torsion continuous curves exist that are
not k' continuous® (see Remark 4). Conversely,

x" =t" = k'm + k(—«t + 7b)

implies that x" is continuous if ' is and vice versa. To ensure x” = x'V, the

coefficients a and «;; must be the result of the application of the chain rule; i.e., with
ay; = B and a3; = vy, one finds that a3, = 3a. Now, as before, the curve is tangent
continuous if

X: = aX-, a >0,
it is curvature and osculating plane continuous if in addition

Xy = a’%_ + Bx_,

3Recall that k' = dk(s)/ds, where the prime denotes differentiation with respect to arc
length s of the (composite) curve. A formula for «’ is provided by Eq. (23.2).

180 Chapter 11. W. Boehm: Differential Geometry I

but it is k' continuous if in addition
X4 = a’¥%_ +3aBX- + yk-
and vice versa.

Remark 11 For planar curves, torsion continuity is a vacuous condition, but
k' continuity is meaningful.

Remark 12 The preceding results may be used for the definition of higher order
geometric continuity. A curve is said to be G, or r"-order geometrically continuous,
if a regular reparametrization exists after which it is C”. This definition is obviously
equivalent to the requirement of C" 2 continuity of k and C"~> continuity of 7. As a
consequence, geometric continuity may be defined by using the chain rule, as in the
earlier example for r = 3.

Remark 13 The geometric invariants curvature and torsion may be generalized
for higher dimensional curves. Continuing the process mentioned in Remark 8, one
finds that a d-dimensional curve has d — 1 geometric invariants. Continuity of these
invariants only makes sense in 4, as was demonstrated for d = 2 in Remark 11.

Remark 14 Note that although curvature and torsion are euclidean invariants,
curvature and torsion continuity (as well as the generalizations discussed in Remarks
12 and 13) are affinely invariant properties of a curve. Both are also projectively
invariant properties; see Boehm [69] and Goldman and Micchelli [233].

Remark 15 If two curve segments meet with a continuous tangent and have
(possibly different) curvatures x— and x4 at the common point, then the ratio x— /k+
is also a projectively invariant quantity. This is known as Memke’s theorem; see Bol
[78].

Chapter 12

Geometric Continuity

12.1 Motivation

Before we explain in detail the concept of geometric continuity, we will give an
example of a curve that is curvature continuous yet not twice differentiable. Such
curves (and, later, surfaces) are the objects that we will label geometrically continuous.

Figure 12.1 shows three parabolas with junction points at the midpoints of an
equilateral triangle. According to (11.10), where we have to set all w; equal to 1, all
three parabolas have the same curvature at the junction points. We thus have a closed,
curvature continuous curve. It is C' over a uniform knot sequence. But it is not C2
according to the C? test of Figure 7.4.

Differential geometry teaches us that our closed curve can be reparametrized such
that the new parameter is arc length. With that new parametrization, the curve will
actually be C2. Details are explained in Chapter 11. We shall adopt the term G? curves
(second-order geometrically continuous) for curves that are twice differentiable with
respect to arc length but not necessarily twice differentiable with respect to their
current parametrization. Note that curves with a zero tangent vector cannot be G2
under this definition. Planar G? curves have continuously varying signed curvature;
G? space curves have continously varying binormal vectors and continuously varying
curvature.

The concept of geometric continuity is more appropriate when dealing with
shape; parametric continuity is appropriate when speed of traversal is an issue.!

Historically, several methods have been developed to deal with G? continuity. In
the following, we present a unified treatment for most of these.

!Speed of traversal is important, for example, when the given curve is a vertical straight
line and we consider the motion of an elevator: higher orders of continuity of its path ensure
smoother rides.

181

182 Chapter 12. Geometric Continuity

Figure 12.1: G? continuity: a closed quadratic G* spline curve.

12.2 The Direct Formulation
Let by,..., b3 and ¢y, ..., ¢3 be the control polygons of two cubic Bézier curves.?
Since we are interested in G2 continuity here, we need only consider the control
points by, by, b3 = ¢, ¢4, ¢, all of which we assume to be coplanar. Referring to
Figure 12.2, let d be the intersection of the lines b;b, and €;¢;.

We set

r_ = ratio(by, by, d), (12.1)

Figure 12.2: G? continuity: using the direct formulation.

2The G? conditions for general degrees will be identical, and so nothing is lost by concen-
trating on the cubic case.

12.3. The y Formulation 183

ratio(d, ¢y, ¢3), (12.2)

ratio(by, bs, ¢q). (12.3)

Letting A, A, B, B: denote the triangle areas in Figure 12.2, we can invoke
(11.10) in order to to express the curvatures k_ and k. of the left and right segments
at bs:

r+

r

_ 4 A_ 4 Ay
T 3T bl T 3l — ol
If these two curvatures agree, we have that
;;; = (12.4)
Referring to the figure again, we see that
A- By _ B-
E—L, A—+—r+, E—r
Inserting this into (12.4) yields our desired G? condition:
r?=r_rs. (12.5)

12.3 The y Formulation

Using the setting of the previous section, we observe that our composite curve could
be made C'! if we introduced a knot sequence with interval lengths A_, A satisfying
A_/A; = r. See Section 7.4 for a justification. Using (12.5), we define

r r4
yi=—=—
r— r
We then have
A A
ratio(by, by, d) = and ratio(d, ¢;, ¢)) = Yo
YA+ Ay

In the case that y = 1, we have the special case of a C? piecewise cubic curve. See
also Figure 12.3.

Figure 12.3: G? continuity: using the y formulation.

184 Chapter 12. Geometric Continuity

W. Boehm used this framework for his development of G* cubic splines; see
[65].

124 The v and 8 Formulation

Using the knot sequence from the y formulation, let us introduce two points d— and
d. such that

A_
ratio(by, by, d-) = ratio(d, ¢;, ¢3) = i
+

We note that d. — d_ is parallel to the tangent at b;. We start with two fairly
trivial identities:

A+ A+ _ A+ 2
A AP m Ak = 2mAD,
A A A
—Ac; — —Ac¢y = —A%c.
A, TR R0T R A

We may rewrite these as

1, . 1 .
§A+X-— - [d-— —hy] = EA—AJrX-,

| 1 .
[C] - d+] - 5A-X+ = EA_A+X+.
Since our curve is C!, we have that x_ = %, = Xandc¢; — b, = [A_ + AL JX/3. If

we now subtract the last two equations, we have
1
d- — d+ = EA_A+[i+ - i-]. (126)

Since d— — d is parallel to the tangent at b; = ¢, so is X, — X_. Hence a number
v exists such that

%, —%- = vk (12.7)

We gave a geometric derivation of (12.7), but it also follows from (11.13) by setting
a = 1, a1 = V.

The v—formulation of G? continuity is due to G. Nielson; it was originally
developed in the context of interpolatory v-splines (see Section 12.7). A similar
approach was taken by B. Barsky [34]; he uses B; = A_/A; and B, = v as the
descriptors of G? continuity and calls them “bias” and “tension,” respectively.

While v depends on the parametrization and thus is not entirely geometric, we
could use

¢ — by

d. —-d, =3 v——
YTV A

12.5. Comparison 185

dy

Figure 12.4: G” continuity: using the v formulation.

to define a shape measure N = 3v/(A_ + A.) as the (signed) ratio between d—, d+
and ¢; — b,. The more negative N becomes, the “rounder” the curve is at b3, and the
more positive it is, the more “pointed” the curve is. As an example, in Figure 12.4
we have a negative value for v.

12.5 Comparison

Why three or four different formulations for G? continuity of piecewise cubic curves?
The reason is partly historical, and partly depends on applications. In fact, the pre-
ceding formulations are by no means the only ones—the discussion of G* continuity
goes back as far as Bir [10], Bézier [53], Geise [226], and Manning [348].

Applications that aim at constructing surfaces will be better served by S, vy, or
v splines. These involve a knot sequence and thus lend themselves to the framework
of tensor product surfaces; see Chapter 16.

Free-form curve design, on the other hand, will benefit more from the direct
formulation because it is linked the most closely to the curve geometry. The direct
approach is the most geometric, followed by the y formulation, which needs a knot
sequence. The least geometric are the v and 3 formulations; their defining quantities
are not invariant under scaling of the knot sequence.

Using the fact that the triangles d, b,, ¢; and d, d—, d+ in Figure 12.4 are similar,
we may derive the relationship

A-+A+ 1_')’

=2
v AA, vy

(12.8)

first found by Boehm [65].

186 Chapter 12. Geometric Continuity

12.6 G? Cubic Splines

The spline curves in this section will be a generalization of the C? cubic B-splines
from Chapter 7. We will follow the notation of that chapter.

We start with a control polygon d_i, ..., d;+;. In the context of C? cubic B-
splines, we now needed a knot sequence in order to place the inner Bézier points on
the control polygon legs; the junction points then were fixed by the C? conditions. In
our case, we have more freedom: we may place the inner Bézier points anywhere on
the control polygon legs; the junction points are then fixed by the G? conditions.

To be more precise, consider Figure 12.5. Placing bs;—, on the polygon leg
d;-, d; amounts to picking a number «a;_; (between 0 and 1) and then setting

b3y = (1 — -di—1 + o;—1d;. (12.9)
Similarly, we place bs;—; by picking a number w;_; and setting
byi-1 = (1 — w-)di—1 + w;-1d;. (12.10)

In the same manner, by choosing numbers «; and w;, we determine bs;+; and bs;4».

We still have to determine the junction point bs;. Upon comparing Figures
12.5 and 12.2, we see that we need the quantities A; = ratio(bs;—;, bs;—1, d;) and
pi = ratio(d;, b3,'+1, bs3;12). Since

I~ w

by = — i lpy , 4 21”1y, (12.11)
1 — - 1 —a;;
and
bai+1 = @ _ Td + %bSHZ, (12.12)
we have
W;—1 — & a;
A= ————, P = . 12.13
1- wW;—1 P W, — o ()

Figure 12.5: G? conditions: inner Bézier points may be placed on the control polygon
legs. The junction points then may be found using the G? condition.

12.6. G? Cubic Splines 187

Setting r; = \/)_, /(\/,_,. + \/;T,), we find the desired junction point to be
by = (1 = r)bgi—1 + ribsiy (12.14)

Continuing in this manner for all i, we have completed the definition of a G? spline
curve. We note that it is advisable to restrict all o; and w; to be between 0 and 1. It
is possible, however, to violate that condition: we only have to ensure that A; and p;
have the same sign. As long as they do, bs; is computable from (12.14).

For an open polygon, we set &y = 0 and w,—; = 1. This ensures the usual
b; = dy and b}L*l =d;..

Our development of G? splines is solely based upon ratios; hence G? spline
curves will be mapped to G? spline curves by affine maps. We may also say that G*
continuity is affinely invariant.

There is one interesting difference between the preceding construction for a G*
spline and the corresponding construction for a C? spline: every C? piecewise cubic
possesses a B-spline control polygon—but not every G* piecewise cubic curve pos-
sesses a G* control polygon. The two cubics in Figure 12.6 are curvature continuous,
yet they cannot be obtained with the foregoing construction: the control point d;
would have to be at infinity.

In interactive design, one would utilize G* cubic splines in a two-step procedure.
The design of the G? control polygon may be viewed as a rough sketch. The program
would estimate the inner Bézier points automatically, and the designer could fine-
tune the curve shape by readjusting them where necessary. For this fine-tuning, it is

d

Figure 12.6: G* splines: these two cubics are a G* spline but do not possess a G*
control polygon.

188 Chapter 12. Geometric Continuity

Figure 12.7: G? splines: a shape may be varied by prescribing tangents in addition to
the control polygon.

important to observe that bs;_q, bs;+1 is tangent to the curve. Instead of prescribing
numbers ¢; and w;—not very intuitive!—a designer may thus specify tangents to the
curve, and the «;, @; can be computed. Figure 12.7 gives examples.
We have just described G? splines using the direct G formulation. Using the
v formulation, we arrive at y-splines, which use a set of y; and a knot sequence,
employing the principles of Section 12.3. We then have
Aoy + ¥l

= 12.15
YVi-18i—2 + Ao + YA ¢)

Q;

and

Yi-14i-2
= , 12.
O YA At A (12.16)

di—1

Ai_2 Aj-1 Aj A1

Figure 12.8: y-splines: the Bézier points are connected to the G? control polygon by
the ratios shown.

12.7. Interpolating G* Cubic Splines 189

The geometry of a y—spline curve is shown in Figure 12.8. Note that for all
v; — 0, the curve will tend toward its control polygon.

12.7 Interpolating G? Cubic Splines

We may also use G cubics to interpolate to given data points x;;i = 0,...,L. In
the C? case, we had to supply a knot sequence in addition to the data points. Now,
we have to specify a sequence of pairs «;, ;. How to do this effectively is still an
unsolved problem, so let us assume for now that a reasonable sequence of «;, wj; is
given. Setting by; = x;, we insert (12.10) and (8.2) into (12.14) and obtain:

(Vi + /% = /i1 = o)y + [/prwi-1 + VA = a)]d;
+ VNl i=1,...,L—1. (12.17)

Together with two end conditions, we then have L + 1 equations for the L + 1
unknowns d;. A suitable end condition is to make d, a linear combination of the first
three data points: dy = ux + vX; + wx,. In our experience, (i, v, w) = (%, % - %) has
worked well. A similar equation then holds for d;. For the limiting case of a; — 0
and w; — 1, the interpolating curve will approach the polygon formed by the data
points. In terms of the y formulation, this spline type was investigated in [186].

Nielson [371] derived the G? interpolating spline from the v formulation. We
now assume that the data points x; have parameter values u; assigned to them. Using
the piecewise cubic Hermite form, the interpolant becomes

x(u) = ;H3(r) + mAH; (r) + A H3(r) + X1 H3 (1), (12.18)

where the H j3 are cubic Hermite polynomials from (6.14) and r = (u — u;) /A, is the
local parameter of the interval (u;, u;+1). In (12.18), the x; are the known data points,
while the m; are as yet unknown tangent vectors. The interpolant is supposed to be
G2, it is therefore characterized by (12.7), more specifically,

Xt (u;) = X-(u;) = yymy (12.19)

for some constants v;, where m; = X(u;). The v; are constants that can be used to
manipulate the shape of the interpolant; they will be discussed soon. We insert (12.18)
into (12.19) and obtain the linear system

JAEEL + gy = Aimy oy + (28,1 + 24 + JAAi)m,

12.20
+A_myyi=1,...,L—1. ()

Together with two end conditions, (12.20) can be used to compute the unknown
tangent vectors m;. The simplest end condition is prescribing my and m;, but any
other end condition from Chapter 9 may be used as well. Note that this formulation
of the v-spline interpolation problem depends on the scale of the #;; it is not invariant
under affine parameter transformations as pointed out in Section 12.5.

190 Chapter 12. Geometric Continuity

If the »; are chosen to be nonnegative, the linear system (12.20) is solvable; in
the special case of all »; = 0, it results in the standard C? cubic spline. For the case
of all v; — oo, the interpolant approaches the polygon formed by the data points.

12.8 Local Basis Functions for G Splines

C? cubic splines form a linear space over a fixed knot sequence. G> have the same
property, best illustrated in terms of the -y formulation. Consider two <y-spline curves
g and § over the same knot sequence and with the same +;. Denote the G* control
vertices of g by d;, those of g by d;. We observe that the barycentric combination

h(w) = (1 — a)g(w) + af(w)

is again a 7y-spline curve. Moreover, the G? control polygon for h consists of the
points (1 — a)d; + ad;. A glance at Figure 12.9 reveals the truth of this statement:
the points d;_,, d;, d, L d form a bilinear surface. Thus the Bézier points and the G?
control vertices of h are related to each other in the same ratios as those of g and §,
ensuring that h is again a y-spline curve.

A consequence of this linearity property is that all -y-splines over the same knot
sequence and with the same -y; form a linear space whose dimension, L + 3, equals
the number of control vertices of each -y-spline in that space. Each element of that
space then has a basis representation

L+1

x(u) = Z d;:M; (). (12.21)

i=—1

Figure 12.9: y-splines: a barycentric combination of two y-splines is obtained by
forming the barycentric combination of their G* control polygons.

12.8. Local Basis Functions for G* Splines 191

We are slightly negligent here: actually, the M; depend not only on u, but also on the
u; and the ;.

We shall now develop several properties of the M; until we are finally able to
give an explicit form for them. As the geometry of the y-spline construction reveals,
they have the following properties:

Partition of unity: This follows since the affine invariance of the y-spline construc-
tion implies that (12.21) is a barycentric combination:

L+1

Z M) = 1. (12.22)

i=—1

Positivity: For y; = 0, the -y-spline curve lies in the convex hull of the control
polygon. Thus (12.21) is a convex combination:

Mi(u) = 0. (12.23)

Local support: If we change one d;, the curve is only changed over the four intervals
(Ui—2, ..., U;12). This is illustrated in Figure 7.14 in the context of C? B-spline
curves. Thus the corresponding basis function M;(x) must vanish outside this
region:

Miw) = 0 for u & [ui—2 tisa]. (12.24)

Equation (12.24) is a consequence of the fact that a change in d; does not affect
b; with j = 3i — 6 or with j = 3i + 6. That change does not affect b3;~s and
bs; -4, either—therefore, the first and second derivatives of the curve at u;_, and
u; 1+, remain unchanged. As a consequence,

2

d d
aMi(uitZ) = @Mi(uitz) =0 (12.25)

With these properties at hand, we can now construct M;. Consider the control
polygon that is obtained by settingd; = { i] while setting all other verticesd; = 0.

The graph of this polygon is quite degenerate—only one control point is nonzero. Its
usefulness stems from the fact that the cross plot of the corresponding -y-spline curve
M;i(w)
M;(u)
can therefore construct the Bézier points of M; by the use of a cross plot (see Figure
12.10); if necessary, consult Sections 5.5 and 5.6. The Bézier ordinates of M; are now
a simple consequence of (12.14), (12.15), and (12.16):

consists of [] ; in other words, it singles out exactly one basis function. We

10—
byy = 21272 (12.26)
I
A+ A
by = M) (12.27)

I

192 Chapter 12. Geometric Continuity

Figure 12.10: Local basis for G? splines: a basis function M; is obtained through the
cross plot technique. Only the plot for x(u) is shown, the one for y(x) being identical.

A+ v A
byigy = —— I (12.28)
I
A
byiyy = L (12.29)
r,
where
[y = yi1Aia + Ao + vl
and

Uy = vl + Ai + yir1Airr
For the junction ordinate b3; we find
A; A
————— b3 +
Ay + 4!
All remaining Bézier ordinates of M; are zero.
Historically, he first local basis for G* splines was developed by G. Nielson and
J. Lewis [331] in 1975. In 1981, B. Barsky [34] developed a local basis for so-called
B-splines, which are, in the context of this chapter, y-splines with constant y; = y
and a distorted uniform knot sequence with A; = BA;_;. Later, local bases were

developed for B-spline curves that are equivalent to y-splines (Bartels and Beatty
[41]).

L byt (12.30)

by = et S
? A + A

12.9 Higher Order Geometric Continuity

Just as we can define higher order parametric continuity C”, we may also define higher
order geometric continuity. We say that a curve is r"-order geometrically continuous,
or G', at a given point, if it can be reparametrized such that it will become C"(see
Remark 12 in Section 11.6). In particular, the new parameter might be arc length.

12.9. Higher Order Geometric Continuity 193

Figure 12.11: G" continuity: a segment of a C" may be reparametrized. The resulting
curve is not C” any more, but still G".

To derive conditions for G” continuity, we start with a composite C” curve X(u)
with a global parameter u. At a given parameter value u, derivatives from the left and
from the right agree:

d d _
Exﬁ = EX.}.; l =0,...,r. (1231)

Now let us reparametrize the right segment by introducing a new parameter
t = t(u); see Figure 12.11. By our earlier definition, the resulting composite curve
will be G, while it is clearly not C" any more. We will now study the conditions for
G’ continuity using this composite G” curve.

Modifying (12.31) so as to incorporate the new parametrization yields:

di di)
W Mx(r)g i=0,...,r (12.32)
The terms on the right-hand side of this equation may be expanded using the chain
rule. Fori = 1, we obtain
X_ =)-(4.

—, 12.33
a ()
where a prime denotes differentiation with respect to u, and a dot denotes differenti-
ation with respect to ¢. For i = 2, we have to apply both the chain and the product
rule to the right-hand side of (12.33):

dr\2 d?t
M=% 0=) +xi—. 12.34
X X+(du) X+du2 (12.34)
For the case i = 3:
dr\? dr d*t a3t
[/ . .
X—”—X+<a> +3X+EW +X+@. (1235)

Let us define o; = d't/du’. Then the preceding equations may be written in
matrix form:
x" a 0 0 X4
x" | =|a a o % |. (12.36)
X— 6 4] 3(11(12 ala' §'+

194 Chapter 12. Geometric Continuity

The lower triangular matrix in (12.36) is called a connection matrix ; it connects
the derivatives of one segment to that of the other. For r"-order geometric continuity,
the connection matrix is a lower triangular » X r matrix; for more details see Gre-
gory [255] or Goodman [235]. See also the related discussion in Section 11.6. The
connection matrix is a powerful theoretical tool, and has been used to derive varia-
tion diminishing properties of geometrically continuous curves (Dyn and Micchelli
[164]), to show the projective invariance of torsion continuity (Boehm [69]), and for
other theoretical pursuits (Goldman and Micchelli [233]).

The above definition of geometric continuity has been used by Manning [348],
Barsky [34], Barsky and DeRose [37], Degen [139], Pottmann [406], [407], and Farin
[173]. In terms of classical differential geometry, the concept of “G?>” is called “order
two of contact”; see do Carmo [155]. It was used in a constructive context by G.
Geise [226] as early as 1962.

An interesting phenomenon arises if we consider geometric continuity of order
higher than two. Consider a G* space curve. It is easy to verify that it possesses
continuous curvature and torsion. But the converse is not true: there are space curves
with continuous curvature and torsion that are not G* (Farin [173]). This more general
class of curves, called Frenet frame continuous, has been studied by Boehm [67]; see
also Section 11.6 and Hagen [263], [264]. They are characterized by a more general
connection matrix than that for G* continuity; it is given by

aq 0 0

) Ol12 0 ,
3

as B o

where (is an arbitrary constant. For higher order Frenet frame continuity, one has to
resort to higher dimensional spaces; this has been carried out by Dyn and Micchelli
[164], Goodman [235], Goldman and Micchelli [233], and Pottmann [405]; see also
the survey by Gregory [255]. An even more general concept than that of Frenet frame
continuity has been discussed by H. Pottmann [406].

A condition for torsion continuity of two adjacent Bézier curves with polygons
by, ..., b, and ¢y, ..., ¢, is given by

volumel[b,,—3,...,b,] volume/[cy, ..., €3]
= . 12.37
[TAb, 1T Aol (1237

See Boehm [66], Farin [173], or Hagen [263].

A nice geometric interpretation of the fact that torsion continuity is more general
than G> continuity is due to W. Boehm [66]. Ifb,, 3, ..., b, and ¢y, ..., c3 are given
such that the two curves are G2, can we vary ¢3 and still maintain G? continuity? The
answer is yes, and ¢; may be displaced by any vector parallel to the tangent spanned
by b,,—; and ¢;. But we may displace ¢3 by any vector parallel to the osculating plane
spanned by b, _,, b,, ¢, and still maintain torsion continuity!

12.11. Exercises 195

1210 Implementation

We include a direct G? spline program. It assumes that the piecewise Bézier polygon
has been determined except for the junction points bs;, which will be computed:

void direct_gspline(l,bez_x,bez_y)
/* From given interior Bezier points,
the junction Bezier points b3i are found from the G2 conditions.
Input: 1: no of cubic pieces.
bez_x,bez_y: interior Bezier points b_{3i+1}, b_{3i-1}.
Output:bez_x,bez_y: completed piecewise Bezier polygon.
Note: b_0 and b_{31+3} should be provided, too!
*/

12.11 Exercises

1. Figure 12.1 shows a triangle and an inscribed piecewise quadratic curve. Find
the ratio of the areas enclosed by the curve and the triangle.

2. Show that the average of two G piecewise cubics is in general not G2.
3. Find an example of a G? torsion continuous curve that is not G>.

*4, Let a G> curve consist of two cubic Bézier curves. The derivatives of the two
curves at the junction point are related by a connection matrix. Work out the
corresponding connection matrix for the Bézier points.

*5. Show that a nonplanar cubic cannot have zero curvature or torsion anywhere.

6. The G? piecewise cubic from Figure 12.6 cannot be represented as a direct G*
spline. Can it be obtained from a v-spline interpolation problem?

P1. Change the programs for interpolating C? cubics so that they compute interpo-
lating G? splines.

Chapter 13

Conic Sections

Conic sections (short: conics) have received the most attention throughout the cen-
turies of any known curve type. Today, they are an important design tool in the aircraft
industry; they are also used in areas such as font design. A great many algorithms for
the use of conics in design were developed in the 1940s; two books by Liming, [334]
and [335], contain detailed descriptions of those methods. A thorough development
of conics can also be found in [76] and [183].

The first person to consider conics in a CAD environment was S. Coons [113].
Later, A. Forrest [211] further investigated conics and also rational cubics. We shall
treat conics in the rational Bézier form; a good reference for this approach is Lee
[326]. We present conics partly as a subject in its own right, but also as a first instance
of rational Bézier and B-spline curves (NURBS), to be discussed later.

13.1 Projective Maps of the Real Line

Polynomial curves, as studied before, bear a close relationship to affine geometry.
Consequently, the de Casteljau algorithm makes use of ratios, which are the fun-
damental invariant of affine maps. Thus the class of polynomial curves is invariant
under affine transformations: an affine map maps a polynomial curve onto another
polynomial curve.

Conic sections, and later rational polynomials, are invariant under a more general
type of map: the so-called projective maps. These maps are studied in projective
geometry. This is not the place to outline the ideas of that kind of geometry; the
interested reader is referred to the text by Penna and Patterson [385] or to [76] and
[183]. All we need here is the concept of a projective map.

We start with a map that is familiar to everybody with a background in computer
graphics: the projection. Consider a plane (called image plane) P and a point o (called
center or origin of projection) in E3. A point p is projected onto P through o by finding

196

13.1. Projective Maps of the Real Line 197

v

Figure 13.1: Projections: a straight line L is mapped onto another straight line L’ by
a projection. Note how ratios of corresponding triples of points are distorted.

o

the intersection P between the straight line through o and p with P. For a projection
to be well-defined it is necessary that o is not in P. Any object in E? can be projected
into P in this manner.

In particular, we can project a straight line, L, say, onto P, as shown in Figure 13.1.
We clearly see that our projection is not an affine map: the ratios of corresponding
points on L and L’ are not the same. But a projection leaves another geometric
property unchanged: the cross ratio of four collinear points.

The cross ratio, cr, of four collinear points is defined as a ratio of ratios [ratios
are defined by (2.7)]:

ratio(a, b, d)

b e, d) = —; .
or(a b, ¢, d) ratio(a, ¢, d)

(13.1)

This particular definition is only one of several equivalent ones; any permutation of
the four points gives rise to a valid definition. Our convention (13.1) has the advantage
of being symmetric: cr(a, b, ¢, d) = cr(d, ¢, b, a). Cross ratios were first studied by
C. Brianchon and F. Moebius, who proved their invariance under projective maps in
1827; see [361].

Let us now prove this invariance claim. We have to show, with the notation from
Figure 13.2, that

cr(a, b, ¢, d) = cr(a b, & d). (13.2)
This fact is called the cross ratio theorem.
For a proof, consider Figure 13.2. Denote the area of a triangle with vertices p,

q, r by A(p, q, r). We note that for instance

ratio(a, b, ¢) = A(a, b, 0)/A(b, ¢, 0).

198 Chapter 13. Conic Sections

Figure 13.2: Cross ratios: the cross ratios of a, b, ¢, d and &, b, ¢ d only depend on the
angles shown and are thus equal.

This gives

_ A(a, b, 0)/A(b, d, 0)
cr(@ b, ¢, d) = A(a, ¢, 0)/A(c, d, 0)

. 115 sin a/lzl4 sin(f3 +)
Lilssin(a + B)/lzly siny

_ sina/sin(B +)
 sin(a + B)/siny’

Thus the cross ratio of the four points a, b, ¢, d only depends on the angles at o.
The four rays emanating from o may therefore be intersected by any straight line;
the four points of intersection will have the same cross ratio, regardless of the choice
of the straight line. All such straight lines are related by projections, and we can
therefore say that projections leave the cross ratio of four collinear points invariant.
Since the cross ratio is the same for any straight line intersecting the given four
straight lines, one also calls it the cross ratio of the four given lines.

A concept that is slightly more abstract than that of projections is that of projective
maps. Going back to Figure 13.1, we can interpret both L and L/ as copies of the real
line. Then the projection of L onto L’ can be viewed as a map of the real line onto
itself. With this interpretation, a projection defines a projective map of the real line
onto itself. On the real line, a point is given by a real number, so we can assume a
correspondence between the point a and a real number a.

13.2. Conics as Rational Quadratics 199

An important observation about projective maps of the real line to itself is that
they are defined by three preimage and three image points. To observe this, we inspect
Figure 13.2. The claim is that a, b, d and their images &, B, d determine a projective
map. It is true since if we pick an arbitrary fourth point ¢ on L, its image ¢ on L' is
determined by the cross ratio theorem.

A projective map of the real line onto itself is thus determined by three preimage
numbers q, b, ¢ and three image numbers &, b, . The projective image ? of a point ¢
can then be computed from

cr(a, b, 1, ¢) = cr(a, b, 1,).
Setting p = (b — a)/(c — b) and p = (b — a)/(¢ — b), this is equivalent to

A

P _ p
t—afc—1n (@-a/C-1

Solving for #:
(t —a)pc + (c — tap
plc =1 +pit—a)

A convenient choice for the image and preimage pointsisa = @ = 0,c = ¢ = 1.
Equation (13.3) then takes on the simpler form

?:

(13.3)

N tp
= ———. 13.4
p(l =)+ pt (34
Thus a projective map of the real line onto itself corresponds to a rational linear
transformation. 1t is left for the reader to verify that the projective map becomes an
affine map in the special case that p = p.

13.2 Conics as Rational Quadratics

We will use the following definition for conic sections: A conic section in E? is the
projection of a parabola in B3 into a plane. We take this plane to be the plane z = 1.
Figure 13.3 gives an example of how to obtain a conic as the projection of a 3D
parabola. Since we will study planar curves in this section, we may think of this plane
as a copy of [, thus identifying points [x y JTwith [x y 1]T. Our special
projection is characterized by

X x/z
y - y/z
z 1

Note thata point[x y]7is the projection of a whole family of points: every point
on the straight line [wx wy w] projects to [x y]T. In the following, we

200 Chapter 13. Conic Sections

A

Figure 13.3: Conic sections: a parabolic arc in three-space is projected into the plane
z = 1; the result, in this example, is part of a hyperbola.

will use the shorthand notation [wx w]T withx € E>for[wx wy w]T.' An
illustration of this special projection is given in Figure 13.4.

Let ¢(¢) € E? be a point on a conic. Then there exist real numbers wo, w, w, and
points by, b, b, € E? such that

woboB3(£) + wib B2 (1) + waby B3 (1)

€0 = T 0B + wiB20) + waB0)

(13.5)

Let us prove (13.5). We may identify ¢(f) € E? with [¢(t) 1 1T € E>. This
point is the projection of a point [w(t)e(t) w(t) 17, which lies on a 3D parabola.
The third component w(¢) of this 3D point must be a quadratic function in # and may
be expressed in Bernstein form:

w(t) = woB2(t) + w1 B(t) + wyB2(1).

IThe set of all points [wx wy w [T is called the homogeneous form or homogeneous
coordinatesof [x 'y]T.

13.2. Conics as Rational Quadratics 201

X

Figure 13.4: Projections: the special projection that is used to write objects in the plane
z = 1 as projections of objects in E*.

Having determined w(¢), we may now write

o) | _ [e wiBHD)
Mo[l]_[S wiB(1) }

Since the left-hand side of this equation denotes a parabola, we may write
2
3 Pi | g2y = (t) Yo wiB ()
|l wi | Y wiBi(t)
i

with some points p; € E2. Thus

2 2
> piBI) = c(t) > wiBi (), (13.6)

i=0 i=0
and hence

PoBi(1) + p1BI(t) + p2B3 (1)
woB3(t) + wiB2(1) + wyB3 (1)’

c(t) =

Setting p; = w;b; now proves (13.5).

202 Chapter 13. Conic Sections

We call the points b; the control polygon of the conic ¢; the numbers w; are
called weights of the corresponding control polygon vertices. Thus the conic control
polygon is the projection of the control polygon with vertices [w;b; w;]T, which
is the control polygon of the 3D parabola that we projected onto c.

The form (13.5) is called the rational quadratic form of a conic section. If all
weights are equal, we recover nonrational quadratics, i.e., parabolas. The influence
of the weights on the shape of the conic is illustrated in Figure 13.5. In that figure,

we have chosen
10 |0 1
we 3] e=[o] [0]

Note that a common nonzero factor in the w; does not affect the conic at all. If
wo # 0, one may therefore always achieve wy = 1 by a simple scaling of all w;.
There are other changes of the weights that leave the curve shape unchanged: these
correspond to rational linear parameter transformations. Let us set

A 51 —3
r= %, 1-n= M
p(l—1)+1% p(l—10)+1t
[corresponding to the choice p = 1 in (13.4)]. We may insert this into (13.5) and
obtain

p*woboB3(D) + pwibiBI(F) + wabyB(?)

c(d) = = = -
© pPwoB3(P) + pw B2(1) + w,B3(1)

(13.7)

Thus, the curve shape is not changed if each weight w; is replaced by W; = p> 'w;
(for an early reference, see Forrest [211]). If, for a given set of weights w;, we select
N wa
p=4/—

Wo

we obtain Wy = w», and, after dividing all three weights through by w,, we have
Wy = Wy = 1. A conic that satisfies this condition is said to be in standard form. All
conics with wg, w, # 0 may be rewritten in standard form with the above choice of
p, provided, of course, that w, /wy = 0.

If in standard form, i.e., wg = w, = 1, the points = c(%) is called the shoulder
point. The shoulder point tangent is parallel to byb,. If we setm = (bg +b,)/2, then
the ratio of the three collinear points m, s, b; is given by

ratio(m, s, by) = wy. (13.8)

We finish this section with a theorem that will be useful in the later development
of rational curves: Any four tangents to a conic intersect 2ach other in the same cross
ratio. The theorem is illustrated in Figure 13.6. The proof of this four tangent theorem
is simple: one shows that it is true for parabolas (see Exercises). It then follows for all
conics by their definition as a projection of a parabola and by the fact that cross ratios
are invariant under projections. This theorem is due to J. Steiner. It is a projective
version of the three-tangent theorem from Section 3.1.

13.2. Conics as Rational Quadratics 203

Figure 13.5: Conic sections: in the two examples shown, wy = w, = 1. As w; becomes
larger, i.e., as [wb;, w;] moves “up” on the z-axis, the conic is “pulled” toward b;.

204 Chapter 13. Conic Sections

Figure 13.6: The four-tangent theorem: four points are marked on each of the four
tangents to the shown conic. The four cross ratios generated by them are all equal.

13.3 A de Casteljau Algorithm

We may evaluate (13.5) by evaluating the numerator and the denominator separately
and then dividing through. A more geometric algorithm is obtained by projecting

. . . . T,
each intermediate de Casteljau point [wibl wj | into E%

-1
’“ —=lpr, (13.9)

l I

where
wi(t) = (1 — w] ' (1) + Wl (). (13.10)

This algorithm has a strong connection to the four tangent theorem above: if we
introduce weight points

wibi +wi b,
w + wr

q;(t) = , (13.11)

then

1—1¢
cr(b], q;, b BT,) = — (13.12)

13.5. The Implicit Form 205

assumes the same value for all 7, ;. While computationally more involved than the
straightforward algebraic approach, this generalized de Casteljau algorithm has the
advantage of being numerically stable: it uses only convex combinations, provided
the weights are positive and 7 € [0, 1].

13.4 Derivatives

To find the derivative of a conic section, i.e., the vector ¢(¢) = de/dz, we may employ
the quotient rule. For a simpler derivation, let us rewrite (13.6) as
p(®) = w()e().
We apply the product rule:
P(1) = w(n)e(r) + w(n)e()

and solve for ¢(7):

PN ST
¢@) = W) [B@) — w(H)e@®)]. (13.13)
We may evaluate (13.13) at the endpoint 7 = O:
] 2
€(0) = —[wib; — wobg — (w1 — wo)bo].
wo

After some simplifications we obtain

&0) = 2L Ab,, (13.14)
wo
Similarly, we obtain
&1) = 2L A, (13.15)
w2

Let us now consider two conics, one defined over the interval [ug, ©;] with control
polygon by, by, b, and weights wg, wi, w, and the other defined over the interval
[, up] with control polygon by, bs, by and weights w;, ws, wy. Both segments form
a C! curve if

w1 w3

—Ab; = —Ab,, 13.16

a0 = 3 AD ()
where the appearance of the interval lengths A; is due to the application of the chain
rule, which is necessary since we now consider a composite curve with a global
parameter u; see also Section 7.1.

13.5 The Implicit Form

Every conic ¢(¢) has an implicit representation of the form

fxy) =0,

206 Chapter 13. Conic Sections

where f is a quadratic polynomial in x and y. To find this representation, recall
that ¢(¢) may be written in terms of barycentric coordinates of the polygon vertices
b0> b1, bg:

c(t) = mobg + 7by + mby; (13.17)

see Section 2.6. Since ¢(f) may also be written as a rational Bézier curve (13.5), and
since both representations are unique, we may compare the coefficients of the b;:

70 = [wo(1 — 1)°1/D, (13.18)
7 = 2wit(1 — 0]1/D, (13.19)
> = [wat’1/D, (13.20)

where D = wiBiz. ‘We may solve (13.18) and (13.20) for (1 — ¢) and ¢, respectively.
Inserting both expressions into (13.19) yields

2
ToTaW
712 =41
Wow2

This may be written more symmetrically as

2 2
T 4wy

T0T2 wows

(13.21)

This is the desired implicit form, since the barycentric coordinates 7, 71, T2 of ()
are given by

b B by b} By b ct
< b b by ¢ b by b ¢
1 1 1 1 1 1 1 1 1
T0 = X x |’ = X x x |’ = x x
by bi b by bi b b bY b}
B, b b b, b b B, b b
1 1 1 1 1 1 1 1 1

The implicit form has an important application: suppose we are given a conic
section ¢ and an arbitrary point x € [E?. Does x lie on ¢? This question is hard
to answer if ¢ is given in the parametric form (13.5). Using the implicit form, this
question is answered easily. First, compute the barycentric coordinates 7y, 71, 7, of X
with respect to by, by, b,. Then insert 7y, 7, 7, into (13.21). If (13.21) is satisfied, x
lies on the conic (but see Exercises).

The implicit form is also important when dealing with the IGES data specifica-
tion. In that data format, a conic is given by its implicit form f(x, y) = 0 and two
points on it, implying a start and endpoint by and b, of a conic arc. Many applica-
tions, however, need the rational quadratic form. To convert to this form, we have to
determine b, and its weight w;, assuming standard form. First, we find tangents at by
and b,: we know that the gradient of f is a vector that is perpendicular to the conic.
The gradient at by is given by f's partials: V f(bg) = [f:(bo), f,(bo)]". The tangent is
perpendicular to the gradient and thus has direction V= f(by) = [— f;(by), Fe]T.

Plate 1.

An automobile.
(Courtesy of Mercedes-
Benz, FRG.)

Plate II.

Color rendering of the
hood. (Courtesy of
Mercedes - Benz, FRG.)

Plate III.

Wire frame rendering of the
hood (Courtesy of
Mercedes-Benz, FRG.)

Plate I'V. In a database, the hood is stored as an assembly of
bicubic spline surfaces. The B-spline net of one of the
surfaces is shown. (Courtesy of Mercedes-Benz, FRG.)

Plate V. A wire frame rendering of a surface (top left) and its
Gaussian (top right), mean (bottom left), and absolute
(bottom right) curvatures.

13.5. The Implicit Form 207

Thus our tangents are given by
to(t) = by + tV* f(by) and
tZ(S) = b2 + sVlf(bZ).

Their intersection determines b;. Next, we compute the midpoint m of by and b;.
Then the line mb, will intersect our conic in the shoulder point s. This requires the
solution of a quadratic equation,? but then, using (13.8), we have found our desired
weight wy!

If the input is not well-defined—imagine by and b, being on two different
branches of a hyperbola!—then the preceding quadratic equation may have complex
solutions. An error flag would be appropriate here. If the arc between by and b,
subtends an angle larger than, say, 120 degrees, it should be subdivided. For more
details, see [502].

Any conic section is uniquely determined by five distinct points in the plane. If
the points have coordinates (xi, y1), .. ., (xs, ys), the implicit form of the interpolating
conic is given by

2 2
X5 X5Y5 Y5 X5 Y5

x* xy y:2ox oy 1
3 oxy o yoxo oy |
_ 3 xyn ¥ oxn oy | 3
f&y) = X3 xys y3 ox3oyz 1 =0
X2 xays Y x4 ys 1
1

The fact that five points are sufficient to determine a conic is a consequence of
the most fundamental theorem in the theory of conics, Pascal’s theorem. Consider
six points on a conic, arranged as in Figure 13.7. If we connect the points as shown,

Figure 13.7: Pascal’s theorem: the intersection points py, p2, p3 of the indicated pairs
of straight lines are collinear.

2The quadratic equation will in general have two solutions. We take the one inside the
triangle by, by, b,.

208 Chapter 13. Conic Sections

we form six straight lines. Pascal’s theorem states that the three intersection points
P1, P2, P3 are always collinear.

It can be used to construct a conic through five points: referring to Figure
13.7 again, let a|, by, ¢, a5, b, be given (no three of them collinear). Let p; be the
intersection of the two straight lines through a;, b, and a;, b;. We may now fix a
line 1 through p;, thus obtaining p, and ps. The sixth point on the conic is then
determined as the intersection of the two straight lines through a;, p, and by, p3. We
may construct arbitrarily many points on the conic by letting the straight line I rotate
around p;.

13.6 Two Classic Problems

A large number of methods exist to construct conic sections from given pieces of
information, most based on Pascal’s theorem. A nice collection is given in a book
by R. Liming [335]. An in-depth discussion of those methods is beyond the scope of
this book; we restrict ourselves to the solution of two problems.

1. Conic from two points and tangents plus another point. The given data
amount to prescribing by, by, b,. The missing weight w must be determined from the
point p, which is assumed to be on the conic. We assume, without loss of generality,
that the conic is in standard form (wy = wy = 1).

For the solution, we make use of the implicit form (13.21). We can easily
determine the barycentric coordinates m, 7, 72 of p with respect to the triangle
formed by the three b;. We can then solve (13.21) for the unknown weight w:

71
2\/ﬁ '
If p is inside the triangle formed by by, by, b, then (13.22) always has a solution.
Otherwise, problems might occur (see Exercises). If we do not insist on the conic in
standard form, the given point may be given the parameter value t = %, in which
case it is referred to as a shoulder point.

2. Conic from two points and tangents plus a third tangent. Again, we are
given the Bézier polygon of the conic plus a tangent, which passes through two points
that we call b} and b{. We have to find the interior weight w,, assuming the conic
will be in standard form. The unknown weight w, determines the two weight points
qo and q, with Goq parallel to bob,; see Figure 13.8.

We compute the ratios ryg = ratio(by, b(l), b;) and r; = ratio(by, b}, b,). From
the definition of the ¢, in (13.11), it follows that ratio(bg, qo, by) = w; and
ratio(by, q1, by) = 1/wy. The cross ratio property (13.12) now yields

(13.22)

wp =

LUN——— (13.23)
w1

from which we easily determine w; = 1/rg/r;. The number under the square root
must be nonnegative for this to be meaningful (see Exercises). Again, if we do not

13.7. Classification 209

Figure 13.8: Conic constructions: by, by, by, and the tangent through b} and b} are
given.

insist on standard form, we may associate the parameter value ¢ = % with the given
tangent—it is then called a shoulder tangent.
Figure 13.8 also gives a strictly geometric construction: intersect lines bobi

and b,b). Connect the intersection with by and intersect with the given tangent: the
intersection is the desired point p.

13.7 Classification

In a projective environment, all conics are equivalent: projective maps map conics
to conics. In affine geometry, conics fall into three classes: hyperbolas, parabolas,
and ellipses. Thus ellipses are mapped to ellipses under affine maps, parabolas to
parabolas, and hyperbolas to hyperbolas. How can we determine what type a given
conic is?

Before we answer that question (following Lee [326]), let us consider the com-
plementary segment of a conic. If the conic is in standard form, it is obtained by
reversing the sign of w;. Note that the implicit form (13.21) is not affected by this;
hence we still have the same conic, but with a different representation. If c(¢) is a point
on the original conic and &(¢) is a point on the complementary segment, one easily
verifies that by, ¢(¢), and ¢&(¢) are collinear, as shown in Figure 13.9. If we assume that
wy > 0, then the behavior of &(r) determines what type the conic is: if &(#) has no
singularities in [0, 1], it is an ellipse; if it has one singularity, it is a parabola; and if
it has two singularities, it is a hyperbola.

The singularities, corresponding to points at infinity of €(¢), are determined by
the real roots of the denominator w(¢) of &(¢). There are at most two real roots, and

210 Chapter 13. Conic Sections

&(t)

Figure 13.9: The complementary segment: the original conic segment and the com-
plementary segment, both evaluated for all parameter values ¢ € [0, 1], comprise the
whole conic section.

they are given by

1+w1i,/w%—l
2+2W1 '

Thus, a conic is an ellipse if w; < 1, a parabola if w; = 1, and a hyperbolaif w; > 1.
The three types of conics are shown in Figure 13.10 (see also Figure 13.5).

ho =

hyperbola

parabola

ellipse

Figure 13.10: Conic classification: the three types of conics are obtained by varying
the center weight w;, assuming wy = w, = 1.

13.7. Classification 211

The circle is one of the more important conic sections; let us now pay
some special attention to it. Let our rational quadratic (with w; < 1) describe
an arc of a circle. Because of the symmetry properties of the circle, the control
polygon must form an isosceles triangle. If we know the angle « = Z (b, by, b)),
we should be able to determine the weight w;.> We may utilize the solution to the
second problem in Section 13.6 together with some elementary trigonometry and
obtain

Wy = CoS e

A whole circle can be represented by piecing several such arcs together. For
example, we might choose to represent a circle by three equal arcs, resulting in a
configuration like that shown in Figure 13.11. The angles « equal 60 degrees, and so
the weights of the inner Bézier points are %, whereas the junction Bézier points have
weights of unity, since each arc is in standard form.

Our representation of the circle is C!, assuming uniform parameter intervals; see
(13.16). It is not C?, however! Still we have an exact representation of the circle, not
an approximation. Thus this particular representation of the circle is an example of a
G? curve.

We should mention that the parametrization of our circle is not the arc length
parametrization as explained in Chapter 11. If uniform traversal of the circle is
necessary for some application, one has no choice but to resort to the classical sine
and cosine representation. It can be shown (Farouki and Sakkalis [198]) that no

Figure 13.11: Circles: a whole circle may be written as three rational Bézier quadratics.

3The actual size of the control polygon does not matter, of course: it can be changed by a
scaling to any size we want, and scalings do not affect the weights!

212 Chapter 13. Conic Sections

rational curve other than the straight line is parametrized with respect to arc length
when evaluated at equal increments of its parameter ¢, and the curve will not be traced
out at uniform speed.

13.8 Control Vectors

In principle, any arc of a conic may be written as a rational quadratic curve segment
(possibly with negative weights). But what happens for the case where the tangents
at by and b, become parallel? Intuitively, this would send b to infinity. A little bit of
analysis will overcome this problem, as we shall see from the following example.

Let a conic be given by by = [—1,0]", b, = [1,0]", and b; = [0, tan «|T and
a weight w; = ccos a (we assume standard form). The angle « is formed by bgb,
and byb, at by. Note that for ¢ = 1, we obtain a circular arc, as illustrated in Figure
13.12.

The equation of our conic is given by

(1—t)2[~01 } +cosa-2ct(1—t){ tar(l)a] +t2{(1)}

c(t) = (1 —1)?+2ct(1 —t)cosa + 12

by

by by

Figure 13.12: Conic arcs: a 168 degree arc of a circle is shown. Note that « is close to
90 degrees.

13.10. Exercises 213

What happens as « tends to 7 ? For the limiting conic, we obtain the equation

-1 0 1
(1—t)2[0]+2t(1—z){c]+t2{(}]

1=+
The problem of a weight tending to zero and a control point tending to infinity has
thus been resolved. For ¢ = 1, we obtain a semicircle; other values of ¢ give rise to
different conics. For ¢ = —1, we obtain the “lower” half of the unit circle.

We have been able to overcome possible problems with parallel end tangents.
But there is a price to be paid: if we look at (13.24) closely, we see that it does
not constitute a barycentric combination any more! The factors of by and b, sum to
one identically, hence [0, c]7 must be interpreted as a vector. Thus (13.24) contains
both control points and control vectors.* An important property of Bézier curves is
thus lost; namely, the convex hull property: it is only defined for point sets, not for a
potpourri of points and vectors.

The use of control vectors allows a very compact form of writing a semi-circle.
But two disadvantages argue against its use: first, the loss of the convex hull property.
Second: to write the control vector form in the context of “normal” rational quadratics,
one will have to resort to a special case treatment. We shall see later (Section 14.6)
how to avoid the use of the control vector form.

c(t) =

(13.24)

13.9 Implementation

The following routine solves the first problem in Section 13.6:

float conic_weight(b0,b1,b2,p)

/*
Input:b0,b1,b2: conic control polygon vertices
pP: point on conic
Qutput: weight of bl (assuming standard form).
Note: will crash in "forbidden" situations.
*/

13.10 Exercises

1. Equation (13.22) does not always have a solution. Identify the “forbidden”
regions for the third point p on the conic.

2. In the same manner, investigate (13.23).
3. Prove that the four-tangent theorem holds for parabolas.

“In projective geometry, vectors are sometimes called “points at infinity.” This has given
rise to the name “infinite control points” by Vesprille [492]; see also L. Piegl [397]. We prefer
the term “control vector” since this allows us to distinguish between [0, c]T and [0, —c]".

214 Chapter 13. Conic Sections

*4, Establish the connection between (13.12) and the four-tangent theorem.

*5. Our discussion of the implicit form (13.21) was somewhat academic: in a “real-
life” situation, (13.21) will never be satisfied exactly. Discuss the tolerance
problem that arises here, i.e., how closely does (13.21) have to be satisfied for a
point to be within a given tolerance to the conic?

P1. Write a routine to iteratively subdivide a conic, putting each piece into standard
form. The middle weights will converge to unity. How do the convergence rates
depend on the type of the intial conic? (See also [342].)

P2. Write a routine to approximate a given Bézier curve by a sequence of elliptic
arcs within a given tolerance.

Chapter 14

Rational Bézier and
B-spline Curves

Rational B-spline curves! have become the standard curve and surface description in
the field of CAD and graphics. The use of rational curves in CAGD may be traced
back to Coons [113], [115], and Forrest [211]. By now, there are books on NURBS:
Fiorot and Jeannin [204], Farin [183], Piegl and Tiller [401].

14.1 Rational Bézier Curves

In the previous chapter, we obtained a conic section in E? as the projection of a
parabola (a quadratic) in [E*. Conic sections may be expressed as rational quadratic
(Bézier) curves, and their generalization to higher degree rational curves is quite
straightforward: a rational Bézier curve of degree n in E* is the projection of an
n'-degree Bézier curve in E* into the hyperplane w = 1. We may view this 4D
hyperplane as a copy of E3; we assume that a point in E* is given by its coordinates
[Xy zw }T. Proceeding in exactly the same way as we did for conics, we can
show that an n®-degree rational Bézier curve is given by

woboBL(t) + * + + + wub,B(t)

_) 3
X0 = B T B x(1), b; € E. (14.1)

The w; are again called weights; the b; form the control polygon. It is the projection
of the 4D control polygon | wib; w;]T of the nonrational 4D preimage of X(t).

!Often called NURBS for nonuniform rational B-splines.
215

216 Chapter 14. Rational Bézier and B-spline Curves

If all weights equal one, we obtain the standard nonrational Bézier curve, since
the denominator is identically equal to one.? If some w; are negative, singularities
may occur; we will therefore deal only with nonnegative w;. Rational Bézier curves
enjoy all the properties that their nonrational counterparts possess; for example, they
are affinely invariant. We can see this by rewriting (14.1) as

_ wiBl(1)
X(1) = Zb ST B

We see that the basis functions
w;B}(1)
i wiB (1)

sum to one identically, thus asserting affine invariance. If all w; are nonnegative, we
have the convex hull property. We also have symmetry, invariance under affine param-
eter transformations, endpoint interpolation, and the variation diminishing property.
Obviously, the conic sections from the preceding chapter are included in the set of
all rational Bézier curves, further justifying their increasing popularity.

The w; are typically used as shape parameters. If we increase one w;, the curve is
pulled toward the corresponding b;, as illustrated in Figure 14.1. Note that the effect
of changing a weight is different from that of moving a control vertex, illustrated
in Figure 14.1. If we let all weights tend to infinity at the same rate, we do not
approach the control polygon since a common (if large) factor in the weights does
not matter—the rational Bézier curve shape parameters behave differently from -
or v-spline shape parameters.

Two properties differ from the nonrational case. First, we have projective invari-
ance. That is, if a rational Bézier curve is transformed by a projective transformation,
we could just as well apply that transformation to the control polygon (using its
weights to write it in homogeneous form) and would end up with the same curve.
Note that nonrational curves only have this property for a subset of all projective
maps, i.e., the affine maps.

The second difference is the linear precision property. Rational curves may have
all Bézier points b; distributed on a straight line in a totally arbitrary fashion:

bi=(1—a,-)b0+aibn; i= 1,...,”‘“1

with arbitrary real numbers ;. We can still find weights w; such that the resulting
curve traces out the straight line bgb,, in a linear fashion. They are given by wy = 1
and

i 1 - Q-1

w; = Wi—1, i:1,...,n.

n+l—-i o

For proofs, see [187] and [205].

2This is also true if the weights are not unity, but are equal to each other—a common factor
does not matter.

14.1. Rational Bézier Curves 217

o—

Figure 14.1: Influence of the weights: top, changing one control point; bottom, chang-
ing one weight.

218 Chapter 14. Rational Bézier and B-spline Curves

14.2 The de Casteljau Algorithm

A rational Bézier curve may be evaluated by applying the de Casteljau algorithm
to both numerator and denominator and finally dividing through. A warning is ap-
propriate: while simple and usually effective, this method is not numerically stable
for weights that vary significantly in magnitude. If some of the w; are large, the 3D
intermediate points [w;b;]" (interpreted as points in a given coordinate system) are
no longer in the convex hull of the original control polygon {b;}; this may result in a
loss of accuracy.?

An expensive yet more geometric technique is to project every intermediate
de Casteljau point [wib; w;]T; b; € E3 into the hyperplane w = 1. This yields
the rational de Casteljau algorithm (see Farin [174]):

Wr—l
bi() = (1 - b’ T+t v'v“ b1, (14.2)

wi i
with

wi(t) = (1 — Hw! 71(@) + Wi (1) (14.3)
An explicit form for the intermediate points b] is given by

Z;:() Wi+ jbit jB(1)
2o Wi+ jB(1)

Note that for positive weights, the b} are all in the convex hull of the original b;, thus
assuring numerical stability.

The rational de Casteljau algorithm allows a nice geometric interpretation. While
the standard de Casteljau algorithm makes use of ratios of three points, this one makes
use of the cross ratio of four points. Let us define points g/ (¢), which are located on
the straight lines joining b} and b]_,, subdividing them in the ratios

bi (1) =

+l

ratio(b, g;, bj,) = vlv—

i

We shall call these points weight points, because they indicate the relative magnitude
of the weights in a geometric way. Then all of the following cross ratios are equal:

1—1¢
cr(bl, g7, bi*L,bi,) = —— forall i

For r = 0, the weight points

0 _ wibi + wisibiy,

=4 Wi + Wig

3These points are obtained by applying the de Casteljau algorithm to the control points w;b;
of the numerator of (14.1). They have no true geometric interpretation, because their location
is not invariant under translations of the original control polygon.

14.2. The de Casteljau Algorithm 219

are directly related to the weights w;: given the weights, we can find the q;, and given
the q;, we can find the weights w;.* Thus the q; may be used as shape parameters:
moving a q; along the polygon leg b;, b;+; influences the shape of the curve. It may
be preferable to let a designer use these geometric handles rather than requiring him
or her to input numbers for the weights.’

As in the nonrational case, the de Casteljau algorithm may be used to subdivide

a curve. The de Casteljau algorithm subdivides the 4D preimage of our 3D rational
Bézier curve X(¢); see Section 4.6. The intermediate 4D points [wibl w}]T; b €
E3, may be projected into the hyperplane w = 1 to provide us with the control
polygons for the “left” and “right” curve segment. The control vertices and weights

corresponding to the interval [0, 7] are given by
b = bi(n), Wit = wj, (14.4)

where the bf)(t) and the wf) are computed from (14.2). The control points and weights
corresponding to the interval [¢, 1] are given by
bIE = bi_(1), wit" = w (14.5)

n—i-

The weight points may be used to sharpen the convex hull property of rational
Bézier curves. We know that every curve is inside the convex hull of its control
polygon. But it is also contained within the convex hull of by, qq, - . ., q,-1, bs; see
[182]. Figure 14.2 illustrates.

Figure 14.2: Convex hulls: if the weight points are used, tighter bounds on the curve
are possible.

“To be precise, we can only find them modulo an—immaterial——common factor.
SThis situation is similar to the way curves are generated using the direct G? spline algorithm
from Chapter 12 compared to the generation of y-splines.

220 Chapter 14. Rational Bézier and B-spline Curves

14.3 Derivatives

For the first derivative of a rational Bézier curve, we obtain

R N
(1) = W“’(” wt)x(1)], (14.6)
where we have set
p(t) = w(x(t); p(),x(t) € B> (14.7)

in complete analogy to the development in Section 13.4. For higher derivatives, we
differentiate (14.7) r times:

r r . .
p(r)(t) = Z () w(f)(t)x(’ J)(t)_
—~\j
j
We can solve for x"(z):

r

X() = |pn - > (;) wOx" @) | (14.8)

w() <

This is a recursive formula for the ™ derivative of a rational Bézier curve. It only
involves taking derivatives of polynomial curves.

The first derivative may also be obtained as a byproduct of the de Casteljau
algorithm, as described by Floater [206]:

n—1. n—1

%(0) = n%[b;’—l — . (14.9)
0

At the endpoint t = 0, we find
X(0) = L Aby.
wo

Let us now consider two rational Bézier curves, one defined over the interval
[ug, u1] with control polygon by, . . ., b, and weights wy, . . ., w,, and the other defined
over the interval [u, u;] with control polygon by, ..., by, and weights w,, ..., wy,.
Both segments form a C! curve if

Wn—1 Wn+1
Ao Ay

where the appearance of the interval lengths A; is due to the application of the
chain rule. This is necessary since we now consider a composite curve with a global
parameter u, as explained in Section 7.1. Note that the weight w,, has no influence on
differentiability at all!

Of course, two rational Bézier curves form a C” curve if all their components
are C" in homogeneous form:

Ar[wnfrbn~r] — Ar[wnbnl
(Ao) Ay

But keep in mind that there are composite C” curves that do not satisfy this condition!

While the computation of higher order derivatives is quite involved in the case
of rational Bézier curves, we note that the computation of curvature or torsion may
be simplified by the application of the formulas (11.9) or (11.10) and (11.11).

Abn—l =

Ab,, (14.10)

14.5. Reparametrization and Degree Elevation 221

14.4 Osculatory Interpolation

With rational cubics, it is easy to solve an interesting kind of interpolation problem:
given a Bézier polygon by, by, by, b3 and a curvature value at each endpoint, find
a set of weights wg, wi, wy, ws such that the corresponding rational cubic assumes
the given curvatures at by and b;. The following method is very similar to one
developed by T. Goodman in 1988; see [236]. We assume without loss of generality
that wy = w3 = 1.° The given curvatures k, and 3 are then related to the unknown
weights by (11.10):

- 2 —
Ko = _WCO’ K3y = 5;()1, (1411)

where
_ area[by, by, by] _ area[by, by, bs]

Ot T I 4 B e e
dist”[bg, b] dist’[b,, bs]
Equations (14.11) decouple nicely, so that we can determine our unknowns w; and
wy!

2 3 273
w =2 [C_ﬂ} Dyt {ﬂﬁ] . (14.12)

3 | kE ks

For planar control polygons, the quantities ¢y or ¢; may be negative—this happens
when a control polygon is S-shaped. This is meaningful since curvature may be
defined as signed curvature for 2D curves, as defined in (23.1). Of course, one should
then also prescribe the corresponding k, and k3 as being negative, so that one ends
up with positive weights.

A similar interpolation problem was addressed by Klass [312] and de Boor, Hol-
lig, and Sabin for the nonrational case: they prescribe two points and corresponding
tangent directions and curvatures [132]. The solution (when it exists) can only be
obtained using an iterative method.

14.5 Reparametrization and Degree Elevation

Arguing exactly as in the conic case (see the end of Section 13.2), we may
reparametrize a rational Bézier curve by changing the weights according to

wi=cwy i=0,...,n

where ¢ is any nonzero constant. Figure 14.3 shows how the reparametrization affects
the parameter spacing on the curve; note that the curve shape remains the same.

The new weights correspond to new weight points q;. One can show (see Farin
and Worsey [192]) that the new and old weight points are strongly related: the cross
ratios of any four points [b;, q;, §;, b;+] are the same for all polygon legs.

6Goodman [236] assumes that w; = w, = 1.

222 Chapter 14. Rational Bézier and B-spline Curves

o
o
[¢]
(¢}
[¢]
o
]
o
9
O

Figure 14.3: Reparametrizations: top, a rational Bézier curve evaluated at parame-

ter values 0,0.1,0.2,..., 1; bottom, the same curve and parameter values but after a
reparametrization with ¢ = 3.

We may always transform a rational Bézier curve to standard form by using the
rational linear parameter transformation resulting from the choice
Wo
c= g/ —.
Wn
This results in W, = wy; after dividing all weights through by wy, we have the
standard form wy, = W, = 1. Of course, we have to require that the above root exists.
A different derivation of this result is in Patterson [381].

How can rational Bézier curves in nonstandard form arise? A common case
occurs in connection with rational Bézier surfaces, as discussed in Section 16.6: the
end weights of an isoparametric curve will in general not be unity. Such curves are
often “extracted” from a surface and then treated as entities in their own right.

We may perform degree elevation (in analogy to Section 5.1) by degree elevating
the 4D polygon with control vertices [w;b; w; 1T and projecting the resulting

14.5. Reparametrization and Degree Elevation 223

control vertices into the hyperplane w = 1. Let us denote the control vertices of the
degree elevated curve by bgl); they are given by

wi—1a;b;—1 + wi(1 — ap)b;

b = ; i=0...,n+1 (14.13)

wi—10; + wi(l — a;)
and o; = i/(n + 1). The weights wﬁl) of the new control vertices are given by
wl(.l) =wi10+tw(l —a); i=0,...,n+1

The connection of reparametrization and degree elevation may lead to surprising
situations. Consider the following procedure: take any rational Bézier curve in stan-
dard form and degree elevate it. Next, take the original curve, reparametrize it, then
degree elevate it and bring it to standard form. We end up with two different polygons
(and two different sets of standardized weights) that both describe the same rational
curve. This situation is very different from the nonrational case! It is illustrated in
Figure 14.4.

For the sake of completeness, we should mention that ways other than just by
rational linear reparametrizations exist to reparametrize rational curves. For example,
the reparametrization ¢ +— #(2 — t) does not change the curve, but it raises the degree
from n to 2n. As long as the reparametrization is of the form ¢ «— r(), where
r(t) is a rational polynomial, we do not leave the class of rational curves. But if
r(t) is not a monotonic function, then the reparametrized curve will be multiply
traced, or after T. Sederberg [456], “improperly parametrized.” An example of an
improperly parametrized curve is given in Example 14.1, since every point of the
curve corresponds to two parameter values.

Figure 14.4: Ambiguous curve representations: the two heavy polygons represent the
same rational quartic. Also indicated is the rational cubic representation from which
they were both obtained.

224 Chapter 14. Rational Bézier and B-spline Curves

It is possible to write a full circle as one rational Bézier curve of degree five;
see Chou [105]. Its Bézier points are given by

ORI
L1iit)

As the parameter ¢ traces out all values between —oo and +oo, the circle is traced
out twice.

Example 14.1: Writing a full circle as a rational quintic.

14.6 Control Vectors

In Section 13.8, we encountered control vectors (also known as infinite control points)
as the limiting case of parallel tangents to a conic. The resulting curve representation
contained both points and vectors. We can devise a similar form for rational Bézier
curves, first suggested by K. Vesprille [492]; see also [397]. They will be of the form
Zpoints WlblBln(t) + Zvectors viBt'rl(t)

Zpoints W’Btn(t) '
The control vectors do not have weights in this form; we may multiply each v; by a
factor, however, and the curve will change accordingly. Note that at least one of the
point weights w; must be nonzero for (14.14) to be meaningful.

As in the conic case, we have lost the convex hull property, and evaluation of
(14.14) will require special case treatment. However, we can eliminate the control
vectors completely—we just have to degree elevate the curve (possibly more than
once). Example 14.2 shows how to do this.

b(t) =

(14.14)

Let a rational quadratic semicircle in control vector form be given by two
control points by, b, with weights of unity and one control vector v;, without
a weight. Its equation is given by (13.24). After degree elevation, we obtain a
rational cubic with four control points:

mobbbi= || 0 1] o]]
ol

Example 14.2: Writing a semicircle as a rational cubic.

and weights

W] =

1
[wo, wi, wa, w3] = {1, 3

14.7. Rational Cubic B-spline Curves 225

14.7 Rational Cubic B-spline Curves

In this section, we take advantage of the special notation from Chapter 7. A 3D
rational cubic B-spline curve is the projection through the origin of a 4D nonrational
cubic B-spline curve into the hyperplane w = 1. The control polygon of the rational
B-spline curve is given by vertices d_,, ..., d;+;; each vertex d; € [> has a corre-
sponding weight w;. The rational B-spline curve has a piecewise rational cubic Bézier
representation. It may be obtained by projecting the corresponding 4D Bézier points
into the hyperplane w = 1. Thus we obtain

wi-1(1 — ay)d;—y + wiaid;

b3 = Yo , (14.15)
i—1Bid;—; +w;(1 — B)d;
by_; = wi—18:d, 1v3lj:’(Bi) ’ (14.16)

where all points b;, d; are in E* and

A=A, +AL +A,

A,
“= 3
A
Bi=%-
The weights of these Bézier points are given by
vii-z = wii(1 — &) + wia;, (14.17)
Vi1 = wi— 1 Bi +wi(1 = By). (14.18)

For the junction points, we obtain

_ Yivsi-ibsioi + (0 — ¥i)vaivibsisg

bs; , (14.19)
V3i
where
A
vy
and

v3i = Yivai-1 T (1 = yi)vsisg

is the weight of the junction point bs;.

Another way to generate the piecewise rational Bézier polygon is by taking the
control polygon [w;d;, w;]T, converting it to Bézier form, and then dividing through
by the Bézier weights. This is less geometric, but was still chosen as the basis for the
C procedure ratbspline_to_bezier at the end of this section simply because it is
more efficient.

226 Chapter 14. Rational Bézier and B-spline Curves

Figure 14.5: Rational B-splines: the weight of the indicated control point is changed.
The curve is only affected locally.

Designing with rational B-spline curves is not very different from designing
with their nonrational counterparts. We now have the added freedom of being able to
change weights. A change of only one weight affects a rational B-spline curve only
locally, as shown in Figure 14.5.

This development follows the general philosophy of computing with rational
curves: We are given 3D points x; and their weights w;. Transform them to 4D
points [wiX; w; 1T and perform 4D nonrational algorithms (for example, finding
the Bézier points of a B-spline curve). The result of these operations will be a set of
4D points [y; v;]'. From these, obtain 3D points y; /v;. The weights of these 3D
points are the numbers v;.

Let us close this section with a somewhat negative result: There is no symmetric
periodic representation of a circle as a C? rational cubic B-spline curve. If such a
representation existed, it would be of the form

X(w) =Y widiNJ /Y wil; (w),

where all w; are equal by symmetry. Then the w; cancel, leaving us with an integral
B-spline curve, which is not capable of representing a circle. Note, however, that we
can represent any open circular arc by C? rational cubics.

14.8 Interpolation with Rational Cubics

The interpolation problem in the context of rational B-splines is the following:

Given: 3D datapointsxy, ..., Xz, parameter values uy, . . ., uy, and weightswy, ..., wy.
Find: a C? rational B-spline curve with control vertices d_, ..., d; 1, and weights
v_y, ..., vr4+ that interpolates to the given data and weights.

For the solution of this problem, we follow the philosophy outlined at the end of the
last section: solve a 4D interpolation problem to the data points [w;x; w; T and

14.9. Rational B-splines of Arbitrary Degree 227

parameter values ;. All we have to do is to solve the linear system (9.7), where input
and output is now 4D instead of the usual 3D. We will obtain a 4D control polygon
e v]T, from which we now obtain the desired d; as d; = e;/v;. The v; are the
weights of the control vertices d;.

We have not yet addressed the problem of how to choose the weights w; for the
data points x;. No known algorithms exist for this problem. It seems reasonable to
assign high weights in regions where the interpolant is expected to curve sharply. Yet
there is a limit to the assignment of weights: if all of them are very high, this will
not have a significant effect on the curve since a common factor in all weights will
simply cancel. Also, care must be taken to prevent the denominator of the interpolant
from being zero. This is not a trivial task—for instance, we might assign a very large
weight to one data point while keeping all the others at unity. The resulting weight
function w(z) will not be positive everywhere, giving rise to singularities at its zeroes.

Integral cubic spline interpolation has cubic precision: if the data points and
the parameter values come from one global cubic, the interpolant reproduces that
cubic. In the context of rational spline interpolation, an analogous question is that of
conic precision: if the data points and the parameter values come from one global
conic, can we reproduce it? We must also require that the data points have weights
assigned to them. With them, we may view the rational spline interpolation problem
as an integral spline interpolation problem in E*. There, cubic splines have quadratic
precision, i.e., we may recapture any parabola. The projection of the parabola yields
a conic section; thus if our data—points, parameter values, and weights—were taken
from a conic, rational cubic spline interpolation will reproduce the conic.

We should note, however, that this argument is limited to open curves; for closed
curves, we have already seen that we cannot represent a circle as a C*> symmetric
periodic B-spline curve.

More approaches to rational spline interpolation have appeared; we list Schneider
[448] and Ma and Kruth [345].

14.9 Rational B-splines of Arbitrary Degree

The process of generalizing the concept of general B-spline curves to the rational
case is now straightforward. A 3D rational B-spline curve is the projection through
the origin of a 4D nonrational B-spline curve into the hyperplane w = 1. It is thus
given by

im0 widiN7(u)

ST wiNn)

s(u) = (14.20)

‘We have chosen the notation from Chapter 10. Thus (14.20) is the generalization of
(10.11) to the rational parametric case.

A rational B-spline curve is given by its knot sequence, its 3D control polygon,
and its weight sequence. The control vertices d; are the projections of the 4D control
vertices [w;d; w; JT.

228 Chapter 14. Rational Bézier and B-spline Curves

To evaluate a rational B-spline curve at a parameter value u, we may apply the
de Boor algorithm to both numerator and denominator of (14.20) and finally divide
through. This corresponds to the evaluation of the 4D nonrational curve with control
vertices [wid; w;]" and to projecting the result into E>. Just as in the case of
Bézier curves, this may lead to instabilities, and so we give a rational version of the
de Boor algorithm that is more stable but also computationally more involved:

de Boor algorithm, rational: Let u € [uy, u;1+1) C [u,—1, Uy +,—1]. Define
dfw) = [(1 — apywf a7) + afwf T ()] /wh (14.21)

fork=1...,n—r,and i=I—n+k+1,...,1+ 1, where

aik _ U — Uj—
Uitn—k — Ui-1
and
; ~(1—a)w, i +oz,kwfc I
Then

s(u) = A7 (u) (14.22)

is the point on the B-spline curve at parameter value u. Here, r denotes the
multiplicity of u in case it was already one of the knots. If it was not, set r = 0.
As usual, we setd? = d; and w? = w;.

The reader is referred to Section 10.3 for the notation.

Knot insertion is, as in the nonrational case, performed by executing just one step
of the de Boor algorithm, i.e., by fixing k = 1 in the preceding algorithm. The original
polygon vertices d;_ ., ..., d; are replaced by d(Iljn - d}ljl, their weights are
the numbers wﬁl_)n PR }2 -

A rational B-spline curve, being piecewise rational polynomial, has a piecewise
rational Bézier representation. We can find the Bézier points and their weights for
each segment by inserting every knot until it has multiplicity #, i.e., by applying the
de Boor algorithm to each knot. The routine bsptobez_blossom uses blossoms to
perform this task.

It is also possible to reparametrize a rational B-spline curve, just as we could do
for Bézier curves. For a description, see Lee and Lucian [330].

The derivative of a rational B-spline curve is conveniently found using a result
by Floater:

n—1 n—1

now W1+1[

ur —up w12

$(u) = dry —dp'y, (14.23)

quite analogous to (14.9).

14.11. Exercises 229

14.10 Implementation
The following computes a point on a rational Bézier curve:

float ratbez(degree,coeff,weight,t)

/*
uses rational de casteljau to compute
point on ratbez curve for param. value t.
Input: degree: degree of curve
coeff: control point coordinates
weight: weights
t: evaluation parameter
*/

Reparametrizing a rational Bézier curve:

void reparam(wold,degree,s,wnew)

/* reparametrizes ratbez curve: only the weights,
stored in wold, are changed. New weights are in
wnew. Parametrization is determined by shoulder
point s. For s=0.5, nothing changes. Also,

s should be in (0,1).

*/

The routine to subdivide a rational Bézier curve at a parameter value ¢ was
already given in Section 4.9.

A program that generates the piecewise rational Bézier form from a rational
cubic B-spline curve is:

void ratbspline_to_bezier (bspl_x,bspl_y,bspl_w,knot,1,bez_x,bez_y,bez_w)
/* converts rational cubic B-spline polygon into piecewise

rational Bezier polygon

Input: bspl_x, bspl_y: planar B-spline control polygon

bspl_w: B-spline weights
knot: knot sequence
1: no. of intervals

Output: bez_x, bez_y: planar piecewise Bezier polygon
bez_w: Bezier weights (not in piecewise standard form!)

*/

14.11 Exercises

1. Suppose you are given two coplanar rational quadratic segments that form a C'
curve, but not a G2 curve. Can you adjust the weights (not the control polygons!)
such that the resulting new segments form a G? curve? Hint: use (11.9).

230 Chapter 14. Rational Bézier and B-spline Curves

*2. A rational Bézier curve may be closed, as in the example of a degree elevated
ellipse. Show that a nonplanar 3D rational cubic cannot be closed.

*3. In Section 14.4, we said that signed curvature only makes sense in F2. Why not
in E3?

*4, In Section 14.5, we remarked that the cross ratios of any four points (b;, q;, §;,
b;;1) are the same for all polygon legs. How is this cross ratio related to the
reparametrization constant ¢?

P1. Define and program a rational Aitken algorithm, i.e., one where the data points
are assigned weights. Try to adjust those weights in an attempt to reduce the
oscillatory behavior of the interpolant.

P2 Usedeboor_blossom to write a degree elevation program for rational B-splines.
Apply it repeatedly and study the behavior of the weights.

Chapter 15

Tensor Product Patches

The first person to consider this class of surfaces for design purposes was probably
de Casteljau, who investigated them between 1959 and 1963. The popularity of
this type of surfaces is, however, due to the work of Bézier only slightly later, as
documented in Chapter 1. Initially, Bézier patches were only used to approximate a
given surface. It took some time for people to realize that any B-spline surface can
also be written in piecewise Bézier form.

We will use the example of Bézier patches to demonstrate the tensor product
approach to surface patches. Once that principle is developed, it will be trivial to
generalize other curve schemes to tensor product surfaces.

15.1 Bilinear Interpolation

In Section 2.3 we studied linear interpolation in E* and derived properties of this
elementary method that we then used for the development of Bézier curves. In an
analogous fashion, one can base the theory of tensor product Bézier surfaces on the
concept of bilinear interpolation. While linear interpolation fits the “simplest” curve
between two points, bilinear interpolation fits the “simplest” surface between four
points.

To be more precise: Let bo,g, bg 1, by, by,; be four distinct points in E*. The set
of all points x € [of the form

1

1
X(u,v) = Y > by Bl (w)B}(v) (15.1)

i=0 j=0

is called a hyperbolic paraboloid through the four b; ;. In matrix form:

x(wv) = [1-u u]mg E?iH];v] (152)

231

232 Chapter 15. Tensor Product Patches

Figure 15.1: Bilinear interpolation: a hyperbolic paraboloid is defined by four points
b,

Since (15.1) is linear in both u and v and it interpolates to the input points, the surface
x is called the bilinear interpolant. An example is shown in Figure 15.1.

The bilinear interpolant can be viewed as a map of the unit square 0 < u,v = 1
in the u, v-plane. We say that the unit square is the domain of the interpolant, while the
surface X is its range. A line parallel to one of the the axes in the domain corresponds
to a curve in the range; it is called an isoparametric curve. Every isoparametric curve
of the hyperbolic paraboloid (15.1) is a straight line; thus hyperbolic paraboloids are
ruled surfaces. See also Sections 20.1 and 22.10. In particular, the isoparametric line
u = 0 is mapped onto the straight line through by and by ;; analogous statements
hold for the other three boundary curves.

Instead of evaluating the bilinear interpolant directly, one can apply a two-stage
process that we will employ later in the context of tensor product interpolation. We
can compute two intermediate points

bgi(]) = (1 =wbgo + vbg1, (15.3)
bl = (1 = vbyo + vbyy, (15.4)
and obtain the final result as
X(u, v) = byo(u,v) = (1 —)bl + ubly.

This amounts to computing the coefficients of the isoparametric line v = const first
and then evaluating this isoparametric line at u. The reader should verify that the

15.2. The Direct de Casteljau Algorithm 233

Figure 15.2: Bilinear interpolation: the surface z = xy over the unit square.

other possibility, computing a u = const isoparametric line first and then evaluating
it at v, gives the same result.

Since linear interpolation is an affine map, and since we apply linear interpolation
(or affine maps) in both the - and v-direction, one sometimes sees the term “biaffine
map” for bilinear interpolation; see Ramshaw [414].

The term “hyperbolic paraboloid” comes from analytic geometry. We shall justify
this name by considering the (nonparametric) surface z = xy. It can be interpreted as
the bilinear interpolant to the four points

0 1 0 1
oOj,{o],| 1], 1
0 0 0 1

and is shown in Figure 15.2. If we intersect the surface with a plane parallel to the
x, y-plane, the resulting curve is a hyperbola; if we intersect it with a plane containing
the z-axis, the resulting curve is a parabola.

15.2 The Direct de Casteljau Algorithm

Bézier curves may be obtained by repeated application of linear interpolation. We
shall now obtain surfaces from repeated application of bilinear interpolation.

Suppose we are given a rectangular array of points b; ;0 = i, j = n and
parameter values (4, v). The following algorithm generates a point on a surface
determined by the array of the b; ;:

234 Chapter 15. Tensor Product Patches

Given {b, }};_, and (u,v) € R?, set

br~l,r71 b~ Lr—1
rro_ _ ij+1
bi,]‘_lil uu] brlrlbrlrl

i+1,j it+1,j+1
r —
=0,.

(15.5)

,...,

,n—r

and boO = b; ;. Then by is the point with parameter values (u, v) on the Bézier
surface b™". (The reason for the somewhat clumsy identical superscripts will be
explained in the next section.) The net of the b; ; is called the Bézier net or control
net of the surface b™”. The b; ; are called control points or Bézier points, just as in
the curve case. Figure 15.3 shows an example for n = 3; Example 15.1 shows how to
compute the quadratic case. An example of a bicubic (n = 3) Bézier patch is shown
in Figure 15.4.

We have defined a surface scheme through a constructive algorithm just as we
have done in the curve case. We could now continue to derive analytic properties
of these surfaces, again as in the curve case. This is possible without much effort;
however, we use a different approach in Section 15.3.

In the next section we shall be able to handle surfaces that are of different degrees
in u and v. Such surfaces have control nets {b; ;}; i = 0,...,m, j = 0,...,n. The
direct de Casteljau algorithm for such surfaces exists, but it needs a case distinction:

Figure 15.3: The direct de Casteljau algorithm for surfaces: the point on the surface is
found from repeated bilinear interpolation.

Figure 15.4: Bézier surfaces: a bicubic patch with its defining control net.

Let a Bézier control net be given by

1
1
1

Jd 1
1

1
AR D OO OO
1
1

PO OO OO C
L

AR BE DR OO &

L 0]
After one step of the direct de Casteljau algorithm for (u, v) = (0.5, 0.5), we

I

obtain
F W S
1 1
L O | [05]
o (3
3 3
L1 [25]
The point on the surface is
2
2

Example 15.1: Computing a point on a Bézier surface using the direct de Casteljau
algorithm.

236 Chapter 15. Tensor Product Patches

u

Figure 15.5: The direct de Casteljau algorithm: a surface with (m, n) = (2, 3) proceeds
in a univariate manner after no more direct de Casteljau steps can be performed.

consulting Figure 15.5, we see that the direct de Casteljau algorithm cannot be
performed until the point of the surface is reached. Instead, after k = min(m, n),
the intermediate b* Jk form a curve control polygon. We now must proceed with the
univariate de Castelj au algorithm to obtain a point on the surface. This case distinction
is awkward and will not be encountered by the tensor product approach in the next
section.

15.3 The Tensor Product Approach

We have seen in the introduction by P. Bézier how stylists in the design shop physically
created surfaces: templates were used to scrape material off a rough clay model (see
Figure 1.12 in Chapter 1). Different templates were used as more and more of
the surface was carved out of the clay. Analyzing this process from a theoretical
viewpoint, one arrives at the following intuitive definition of a surface: A surface is
the locus of a curve that is moving through space and thereby changing its shape.
See Figure 15.6 for an illustration.

We will now formalize this intuitive concept in order to arrive at a mathematical
description of a surface. First, we assume that the moving curve is a Bézier curve of
constant degree m. (This assumption is made so that the following formulas will work
out; it is actually a serious restriction on the class of surfaces that we can represent
using the tensor product approach.) At any time, the moving curve is then determined

15.3. The Tensor Product Approach 237

g

Figure 15.6: Tensor product surfaces: a surface can be thought of as being swept out
by a moving and deforming curve.

by a set of control points. Each original control point moves through space on a curve.
Our next assumption is that this curve is also a Bézier curve, and that the curves on
which the control points move are all of the same degree. An example is given in
Figure 15.7.

This can be formalized as follows: let the initial curve be a Bézier curve of degree
m:

b"(u) = > biB'(u).
i=0

Let each b; traverse a Bézier curve of degree n:

b; = b;(v) = Zbi.jB;(V)'

j=0

We can now combine these two equations and obtain the point b™"(x, v) on the
surface b™" as

m n
b (u, v) = Z Z b, ;B (u)B(v). (15.6)
i=0 j=0
With this notation, the original curve b” () now has Bézier points b;o;i = 0,...,m.

It is not difficult to prove that the definition of a Bézier surface (15.6) and
the definition using the direct de Casteljau algorithm are equivalent (see Problems).
Example 15.2 supports this view.

238 Chapter 15. Tensor Product Patches

Figure 15.7: Tensor product Bézier surfaces: Top, a surface is obtained by moving the
control points of a curve (quadratic) along other Bézier curves (cubic); bottom: the
final Bézier net.

We have described the Bézier surface (15.6) as being obtained by moving the
isoparametric curve corresponding to v = 0. It is an easy exercise to check that the
three remaining boundary curves could also have been used as the starting curve.

An arbitrary isoparametric curve ¥ = const of a Bézier surface b”™”" is a Bézier
curve of degree m in u, and its m + 1 Bézier points are obtained by evaluating all
rows of the control net at v = const. As a formula:

bYS(® =D _byBj(®): i =0....m.
j=0

This process of obtaining the Bézier points of an isoparametric line is a second
possible interpretation of Figure 15.7. The coefficients of the isoparametric line can

15.4. Properties 239

We can also compute the point on the surface of Example 15.1 by the tensor
product method. We then evaluate each row of Bézier points for u = 1/2, and
obtain the intermediate values

[\S 2N S IR el]

N

3

This quadratic control polygon defines the isoparametric curve b(%, v); we
evaluate it for v = 1/2 obtain the same point as in Example 15.1.

Example 15.2: Computing a point on a Bézier surface using the tensor product
method.

be obtained by applying m + 1 de Casteljau algorithms. A point on the surface is then
obtained by performing one more de Casteljau algorithm.

Isoparametric curves u = const are treated analogously. Note, however, that
other straight lines in the domain are mapped to higher degree curves on the patch:
they are generally of degree n + m. Two special examples of such curves are the two
diagonals of the domain rectangle.

15.4 Properties

Most properties of Bézier patches follow in a straightforward way from those of
Bézier curves—the reader is referred to Sections 3.3 and 4.2. We give a brief listing:

Affine invariance: The direct de Casteljau algorithm consists of repeated bilinear
and possibly subsequent repeated linear interpolation. All these operations are
affinely invariant; hence, so is their composition. We can also argue that in order
for (15.6) to be a barycentric combination (and therefore affinely invariant), we
must have

n m
Z ZB;"(M)B;(V) =1. (15.7)

j=0 i=0

This identity is easily verified algebraically. A warning: there is no projective
invariance of Bézier surfaces! In particular, we cannot apply a perspective pro-

240 Chapter 15. Tensor Product Patches

jection to the control net and then plot the surface that is determined by the
resulting image. Such operations will be possible by means of rational Bézier
surfaces.

Convex hull property: For 0 = u,v = 1, the terms B{"(u)B;-’(v) are nonnegative.
Then, taking (15.7) into account, (15.6) is a convex combination.

Boundary curves: The boundary curves of the patch b™”" are polynomial curves.
Their Bézier polygons are given by the boundary polygons of the control net. In
particular, the four corners of the control net all lie on the patch.

Variation diminishing property: This property is not inherited from the univariate
case. In fact, it is not at all clear what the definition of variation diminution
should be in the bivariate case. Counting intersections with straight lines, as we
did for curves, would not make Bézier patches variation diminishing; it is easy to
visualize a patch that is intersected by a straight line while its control net is not.
(Here, we would view the control net as a collection of bilinear patches.) Other
attempts at a suitable definition of a bivariate variation diminishing property have
been similarly unsuccessful.

15.5 Degree Elevation

Suppose we want to rewrite a Bézier surface of degree (m, n) as one of degree
(m + 1, n). This amounts to finding coefficients bfyljro) such that

n m+1
b v) = Y [Z b OB (u)

j=0 Li=0

B;-’(v).

The n + 1 terms in square brackets represent n + 1 univariate degree elevation
problems as discussed in Section 5.1. They are solved by a direct application of (5.1):

o _ L a1 i CJi=0...,m+1
bi,j m+]blfl,j (m-+1 bl,},]: 0,.,.]1. (158)

A tensor product surface is thus degree elevated in the u-direction by treating all
columns of the control net as Bézier polygons of m™-degree curves and degree
elevating each of them. This is illustrated in Figure 15.8.

Degree elevation in the v-direction works the same way, of course. If we want to
degree elevate in both the u- and the v-direction, we can perform the procedure first
in the u-direction, then in the v-direction, or we can proceed the other way around.
Both approaches yield the same surface of degree (m + 1, n + 1). Its coefficients b{lji”
may be found in a one-step method:

. . b, ._ b,
ay _ e i i-1,j—1 i—1,j n+l .
bi,j [mir LT] b; -1 b; ;] [11—]
=0

15.6. Derivatives 241

Figure 15.8: Degree elevation: the surface problem can be reduced to a series of
univariate problems.

The net of the bfljil) is obtained by piecewise bilinear interpolation from the original
control net.

15.6 Derivatives

In the curve case, taking derivatives was accomplished by differencing the control
points. The same will be true here. The derivatives that we will consider are partial
derivatives d/du or 3/ dv. A partial derivative is the tangent vector of an isoparametric
curve and can be found by a straightforward calculation:

F] N
Ebm,n(u’ V) = Z [5 Z bI)]B;n(M)l B;’(V)
j=0 i=0
The bracketed terms depend only on «, and we can apply the formula for the derivative
of a Bézier curve (4.17):

9 n m—1 ~
aP W =m> > AVby BT B,
j=0 i=0
Here we have generalized the standard difference operator in the obvious way: the
superscript (1, 0) means that differencing is performed only on the first subscript:
A ; = b;1y; — by ;. If we take v-partials, we employ a difference operator that
acts only on the second subscripts: Ao'lb;,_,- =b; j+1 — b; ;. We then obtain

m n—1

0 mn _ A n-— m
5b u, v) = nZZAOIbL/B_; 'WB(w).

i=0 j=0

242 Chapter 15. Tensor Product Patches

Again, a surface problem can be broken down into several univariate problems:
to compute a u-partial, for instance, interpret all columns of the control net as Bézier
curves of degree m and compute their derivatives (evaluated at the desired value of
u). Then interpret these derivatives as coefficients of another Bézier curve of degree
n and compute its value at the desired value of v.

We can write down formulas for higher order partials:

n m-—r

9" mn r0 m—r n
D) = ™ r)']Z(;IXOIA b; ;B (u)B(v) (15.10)
and
as m n—s
%bm"(u, v) = S)' ZZA%, /BY (VB (). (15.11)
i=0 j=0

Here, the difference operators are defined by

A™%b;; = AT M0byy — AT MO
and

A%b;; = A%y — A% by

It is not hard now to write down the most general case, namely mixed partials of
arbitrary order:

ar+s n
oY)
m'n' m-r n—s
s ; Bm r Bn s .
(m~r)'(n—s)' ;;A b, (u)). (15.12)

Before we proceed to consider some special cases, the reader should recall that
the coefficients A™b; ; are vectors and therefore do not “live” in E>. See Section 4.3
for more details.

A partial derivative of a point-valued surface is itself a vector-valued surface. We
can evaluate it along isoparametric lines, of which the four boundary curves are the
ones of most interest. Such a derivative, e.g., 3/du |,=¢, is called a cross boundary
derivative. We can thus restrict (15.10) to # = 0 and get, with a slight abuse of
notation,

n

Z A"%bq ;B (v). (15.13)

m!

rbmn(o) —)'

Su

Similar formulas hold for the other three edges. We thus have determined that »*-
order cross boundary derivatives, evaluated along that boundary, depend only on the
r + 1 rows (or columns) of Bézier points next to that boundary. This will be important
when we formulate conditions for C” continuity between adjacent patches. The case
r = 1 is illustrated in Figure 15.9.

15.7. Blossoms 243

AOleO
b30

Figure 15.9: Cross boundary derivatives: along the edge v = 0, the cross boundary
derivative only depends on two rows of control points.

15.7 Blossoms

Blossoms helped us gain insight into many properties of polynomial curves; the
tensor product analogy is just as helpful and is developed easily. We define a tensor
product blossom as

blui, ..., unlvi, ..., Val,

meaning the following: compute the (curve) blossom values b;[u, . . ., un] of all rows
of control points, using the same values for each row. Then use those values as input
to the (curve) blossom b[vy, ..., v,].!

Tensor product blossoms inherit their properties from their curve building blocks.
Thus, the blossom b[#<"~|v<">] is the point on the surface, the order of evaluations
does not matter, and we have multiaffinity in both u and v.

Two examples of blossoms: the osculating bilinear surface t(s, ¢) at a point x(u, v)
may be written as

t(s, 1) = b~ 1=, s> 1. (15.14)

This surface is linear in both s and ¢ and agrees with x(, v in both partials and twist
(modulo some constant factors). The surface o(s, #) given by

o(s, t) = blu, s~ |y, =" 17]

10f course, we could have started with the columns first.

244 Chapter 15. Tensor Product Patches

is the osculant or first polar of the given surface at x(u, v). It is the analogue of the
univariate polar from Section 4.7.

Just as in the curve case, we may use blossoms for subdivision or domain
transformation. If the new patch is to be defined over the domain rectangle [a, b] X
[c, d], then its Bézier points ¢; ; are given by

¢;j = bla™ 0|0 g, (15.15)

For the special case [a, b] = [c,d] = [0, 1], we recover the original Bézier points.
While (15.15) may look complicated, it really is not: all we have to do is to write a
tensor product blossom routine—a matter of about 10 lines of code!

Blossoms may also be used to find derivatives, in analogy to Section 5.9. In
barycentric form, we can write our patch as b(u, v) withu = (), up) and v = (v}, v;).
Definingd = e = (—1, 1), derivatives now take the form

" Sx(u, v
ITXwMY) Di’x(u,v) =

m: (1) ym=n)|gl yln=s)
pEe S — s)‘b[d et 1. (15.16)

Evaluations with respect to d are equivalent to taking differences in the i-direction;
those with respect to E? correspond to differences in the j-direction. Again, it does
not matter in which order we perform the evaluations.

We may use the blossom formulation of derivatives to approach a practical
problem. It is often the case? that not only a point on a surface is needed, but also
its u- and v-partials. Standard tensor product evaluation will only give us a either
a u-partial or a v-partial as a by-product. However, (15.14) may always be used to
compute both partials. Algorithmically, here is what to do: for a given (i, v) (no
blossom notation here), perform evaluation with respect to u for all rows of control
points, but stop all evaluations at level m — 1. This gives us two points per row. Then
perform evaluation with respect to v for the resulting two columns of points, now
stopping at level n — 1. We have generated four control points, corresponding to the
bilinear osculant t of (15.14). They may now be used for evaluation of position and
partials. For example, we find the u-partial as

ox(u, v)

= m([(1 — vty + vto] — [(1 — ity + vEgo])

with t;; the control points of t(x, v). This approach was first discussed by Mann and
deRose [347]. See also Sederberg [457].

15.8 Normal Vectors

The normal vector n of a surface is a normalized vector that is normal to the surface
at a given point. It can be computed from the cross product of any two vectors that
are tangent to the surface at that point. Since the partials 3/du and §/dv are two such

ZFor applications such as rendering or numerical methods.

15.8. Normal Vectors 245

vectors, we may set

b%b”""(u, VA %b”""(u, V)
[Zbmm(u, v) /N L, v)||”

n(u, v) = (15.17)

where /\ denotes the cross product.
At the four corners of the patch, the involved partials are simply differences of
boundary points, for example,

A I’Oboyo /\ AO‘ lb(),o
[1A10bg0 A\ AOTbol|

n(0, 0) = (15.18)

The normal at one of the corners (we take by as an example) is undefined if
A"Obo,o and Ao'lb(,,o are linearly dependent: if that were the case, (15.18) would
degenerate into an expression of the form g. The corresponding patch corner is then
called degenerate. Two cases of special interest are illustrated in Figures 15.10, 15.11,
and 15.12.

In the first of these, a whole boundary curve is collapsed into a single point. As
an example, we could set bgg = bjg = -+ = b, = ¢. Then the boundary b(u, 0)
would degenerate into a single point. In such cases, the normal vector at v = 0 may
or may not be defined. To examine this in more detail, consider the tangents of the
isoparametric lines # = #, evaluated at v = 0. These tangents must be perpendicular

n(1,0)

bo3

Figure 15.10: Degenerate patches: a “triangular” patch is created by collapsing a
whole boundary curve into a point. The normal at that point may be undefined.
Normals are shown for u = 0 and foru = 1.

246 Chapter 15. Tensor Product Patches

c =bgo = byg

rt:S
\ = bgo = byg

\\\\\\\“‘
\\\\\\

bos

Figure 15.11: Degenerate patches: if all b;; and ¢ are coplanar, then the normal vector
at ¢ is perpendicular to that plane.

to the normal vector, if it exists. So a condition for the existence of the normal vector
at c is that all v-partials, evaluated at v = 0, are coplanar. But that is equivalent to
bo1, byy, - - ., by and ¢ being coplanar.

A second possibility in creating degenerate patches is to allow two corner partials
to be collinear, for example, d/du and 3/dv at (0, 0), as shown in Figure 15.12. In

Figure 15.12: Degenerate patches: the normals at all four corners of this patch are
determined by the triangles that are formed by the corner subquadrilaterals (one
corner highlighted).

15.9. Twists 247

that case, b, bg;, and by are collinear. Then the normal at by, is defined, provided
that by, is not collinear with by, bg;, and bgy. Recall that bgg, b1g, bgi, and by; form
the osculating paraboloid at (&, v) = (0, 0). Then it follows that the tangent plane at
by is the plane through the four coplanar points bgg, b1g, bg1, and b;;. The normal at
bqo is perpendicular to it.

A warning: when we say “the normal is defined” then it should be understood
that this is a purely mathematical statement. In any of the preceding degeneracies, a
programusing (15.17) will crash. A case distinction is necessary, and then the program
can branch into the special cases that we just described. More complex situations are
encountered when one also wants to compute curvatures of a degenerate patch. A
solution is offered in [500]. An a priori check for degenerate normals is described in
[308].

15.9 Twists

The twist of a surface’ is its mixed partial 3%/dudv. According to (15.12), the twist
surface of b™" is a Bézier surface of degree (m — 1, n — 1), and its (vector) coefficients
have the form mnA h; ;. These coefficients have a nice geometric interpretation. For
its discussion, we refer to Figure 15.13. The point p; ; in that figure is the fourth point
on the parallelogram defined by b, , b;+1 ;, b; j+1. It is defined by

Pij =~ bit,; =b;j+1 — b (15.19)

Figure 15.13: Twists: the twist coefficients are proportional to the deviations of the
subquadrilaterals from parallelograms.

3In this chapter, we are only dealing with polynomial surfaces. For these, the twist is
uniquely defined. For other surfaces, it may depend on the order in which derivatives are taken;
see Section 21.1.

248 Chapter 15. Tensor Product Patches

Since
A"y = (bivr j+1 = biv1)) — (b j+1 — by), (15.20)
it follows that
AYMby; = by — Pij- (15.21)

Thus the terms A !"!b; ; measure the deviation of each subquadrilateral of the Bézier
net from a parallelogram.

The twists at the four patch corners determine the deviation of the respective
corner subquadrilaterals of the control net from parallelograms. For example,

2
a—%b'"v"(o, 0) = mnA by, (1522)

This twist vector is a measure for the deviation of by; from the tangent plane at by.

An interesting class of surfaces is obtained if all subquadrilaterals b; ;, b4, ;,
b; 11, j, bi+1 j+1 are parallelograms; in that case the twist vanishes everywhere. Such
surfaces are called translational surfaces and will be discussed in Section 21.3; an
example is shown in Figure 21.4. They have an interesting shape property: if all
control points of a translational surface lie on the boundary of their convex hull, then
the surface is convex; see Schelske [447]. A surface is convex if it does not contain a
pair of points such that their connection by a straight line intersects the surface.

15.10 The Matrix Form of a Bézier Patch

In Section 4.8, we formulated a matrix expression for Bézier curves. This approach
carries over well to tensor product patches. We can write

b™"(u, v) =

[By .. Beo || : : '
b ... by Bi(v)

The matrix {b;;}, defining the control net, is sometimes called the geometry matrix of
the patch. If we perform a basis transformation and write the Bernstein polynomials
in monomial form, we obtain

b()() bOn VO
b vy =[W’ owm (MU O IN| (15.24)
bm() bmn 14

The square matrices M and N are given by

my; = (—1)1"'(”.’) (’) (15.25)
Jj/\i

15.11. Nonparametric Patches 249

iy = (= 1)y (") (’) (15.26)
N AN

In the bicubic case, m = n = 3, we have

and

| -3 3 —1
o 3 -6 3
M=N=149 o 3 -3
0O 0 0 I

For reasons of numerical stability, the use of the monomial form (15.24) is not
advisable (see the discussion in Section 24.3). It is included here since it is still in
widespread use.

1511 Nonparametric Patches

This section is the bivariate analogue of Section 5.5. Having outlined the main ideas
there, we can be brief here. A nonparametric surface is of the form z = f(x, y). It has
the parametric representation

u
x(u, v) = % ,

fu,v)

and we restrict both # and v to between zero and one. We are interested in functions
f that are in Bernstein form:

m

Fxy) =D byBxB(Y).

! J

Using the identity (4.14) for both variables u and v, we see that the Bézier points of
X are given by

i/m
b; = | j/n

The points (i/m, j/n) in the (x, y)-plane are called Bézier abscissas of the function
f; the b;; are called its Bézier ordinates. A nonparametric Bézier function is not
constrained to be defined over the unit square; if a point p and two vectors v and
w define a parallelogram in the (x, y)-plane, then the Bézier abscissas a;; € E? of
a nonparametric Bézier function over this domain are given by a;; = p + iv + jw.
Figure 15.14 gives an example.

250 Chapter 15. Tensor Product Patches

Figure 15.14: Nonparametric patches: the Bézier points are located over a regular
partition of the domain rectangle.

Integrals also carry over from the univariate case. With a proof analogous to the
one in Section 5.7, one can show that

1 1 m n .) ~ Z:n Z'; blj
/0 /0 Z[:Zj:bijBi (x)Bj(x) = m (15.27)

15.12 Tensor Product Interpolation

We could use curves both for free-form design and for interpolation; the same is true
for tensor product patches. A a preparatory step, let us rewrite (15.6) in an equivalent
matrix form:
bbyy -+ bon | [By
X(uv)=[Brw -+ Bpw || : : . (15.28)
b.o - bun B,(v)
Suppose now that we are given an (m + 1) X (n + 1) array of data points

Xij; 0 =i =m, 0= j = n We want the surface (15.28) is to interpolate to them,
i.e., (15.28) must be true for each pair (u;, v;). We thus obtain (n + 1) X (m + 1)

15.12. Tensor Product Interpolation 251

equations, which we may write concisely as

X = UBYV, (15.29)
where
Xo0 “* Xon
X = ’
Xm0 t Xmn
Bg'(ug) -+ Bp(uo)
U= : : ,
By um) -+ By(um)
Co " Con
B =)
Cn0o """ Cmn
and
By(vo) -+ Bgy(va)
V=1 :
Bi(vo) -+ By(vn)

Matrices U and V already appeared in Section 6.3; they are Vandermonde matrices.
In aninterpolation context, the x;; are known and the coefficients b;; are unknown.
They are found from (15.29) by setting

B=U'XxXvl. (15.30)

The inverse matrices in (15.30) exist provided the functions B} and B} are linearly
independent.

Equation (15.30) shows how a solution to the interpolation problem could be
found, but one should not try to invert the matrices A and B explicitly! To solve and
understand better the tensor product interpolation problem, we rewrite (15.29) as

X =DV, (15.31)
where we have set
D = UB. (15.32)

Note that D consists of (m + 1) rows and (n + 1) columns. Equation (15.31) can be
interpreted as a family of (m + 1) univariate interpolation problems—one for each
row of X and D, where D contains the unknowns. Having solved all (n + 1) problems
(all having the same coefficient matrix V'!), we can attack (15.32), since we have just
computed D. Equation (15.32) may be interpreted as a family of (» + 1) univariate

252 Chapter 15. Tensor Product Patches

n+1
n+1 n+1
— =
— —
+ X = E D n \V
a
n+1 m+1 n+1
~— i i
+ D = |+ U + B
g g
_

Figure 15.15: Tensor product interpolation: the dimensions of the involved matrices.

interpolation problems, all having the same coefficient matrix U. Figure 15.15 shows
the dimensions of the involved matrices.

We thus see how the tensor product form allows a significant “compactification”
of the interpolation process. Without the tensor product structure, we would have to
solve a linear system of order (m + 1)(n + 1) X (m + 1)(n + 1). That is an order of
magnitude more complex than solving m + 1 problems with the same (n+ 1) X (n+ 1)
matrix and then solving n + 1 problems with the same (m + 1) X (m + 1) matrix. If
m = n, the naive approach would thus need O(m®) computations, whereas the tensor
product approach just needs O(m™*). This will be even more dramatic for interpolating
spline surfaces.

There is a less algebraic way to describe the tensor product interpolation process
as well. Considering (15.31), we see that it may be interpreted as a family of univariate
interpolation problems with the same coefficient matrix V. That is to say, we have
to solve a univariate interpolation problem for each row of data points, eventually
resulting in the elements of D. Then we have to tackle (15.32), meaning we have to
solve a family of univariate interpolation problems for each column of coefficients
of D. All these problems have the same coefficient matrix U, finally resulting in the
desired coefficient matrix B.

The tensor product structure of our problem thus allows for the following two-
step solution:

First, interpolate all rows of data points and write the resulting control points into an
intermediate array.

Second, interpolate all columns of that array; the resulting control points represent
the solution to our problem.

15.13. Bicubic Hermite Patches 253

15.13 Bicubic Hermite Patches

Bézier patches are the tensor product generalization of Bézier curves; in a very similar
way, we can also can also generalize Hermite curves (see Section 6.5) to patches. The
input parameters to this patch representation are points, partials, and mixed partials.
A bicubic patch in Hermite form is given by

3 3
x(u, v) = Z Zh,-_ HHW), 0=<uv =1, (15.33)

i=0 j=0

where the H? are the cubic Hermite functions from Section 6.5 and the h; ; are given
by

x(0,0) x,00 x,01 x(01)
x(0,0) x,(0,0) x.(0, 1) x,01)
(1 0) x,0(1,0) XL, 1) x,(1,1)
x(1,0) x,(1,0)0 x,(1,1) x(,, 1)

(h;;1 = (15.34)

The coefficients of this form are shown in Figure 15.16. Note how the coefficients
in the matrix are grouped into four 2 X 2 partitions, each holding the data pertaining
to one comer.

As in the curve case, the Hermite form is very sensitive to the u- and v-parameter
intervals. If these are not both [0, 1], as before, but rathera = u < bandc =v =d,

Figure 15.16: Bicubic Hermite patches: the shown points and vectors define a patch
over the unit square.

254 Chapter 15. Tensor Product Patches

then our patch becomes

3 3
x(u, v) = ZZh,; JHOHN), 0=st=1. (15.35)

i=0 j=0

Here, s and ¢ are local coordinates of the intervals [a, b] and [c, d]. The coefficient
matrix now changes. WithA, = b —aand A, = d — ¢, itis

x(0, 0) Ax,(0,0) Ax,(0, 1) x(0, 1)
Ax, (0,00 AAXLO00) AAXO0 1) Ax,0 1)
Auxu(l’ 0) AuAunv(lv 0) AuAvxuv(l’)] Arx,(1, 1)

x(1,0) Ayx,(1,0) Ax,(1,1) x(1,1)

[h;;]1 = (15.36)

15.14 Implementation

The following is the header for a program to plot a tensor product Bézier surface, in
fact, a rational one. If the polynomial case is desired, just set all weights to unity.

void plot_ratsurf(bx,by,bw,degree_u,degree_v,u_points,v_points,
scale_x,scale_y)
/* plots v_points isoparametric
curves of the rat Bez surface, each with u_points
points on it.

Input: bx, by: arrays with x- and y- coordinates of
control net.
degree_u,degree_v: degrees in u- and v- direction
u_points,v_points: plot resolution
scale_x,scale_y: scale factor for postscript.

Output: postscript file
*/

15.15 Exercises

1. Draw the hyperbolic paraboloid from Figure 15.2 over the square
(—1,=-1), (1, =1), (1, 1), (—1, 1). Try to do it manually, i.e., without graphics
support.

2. Show that the direct de Casteljau algorithm generates surfaces of the form (15.6).
Hint: use blossoms.

3. If a Bézier surface is given by its control net, we can use the de Casteljau algo-
rithm to compute b”™" (i, v) in three ways: by the direct form from Section 15.2,

15.15. Exercises 255

*4.

*5.

*6.

P1.

P2.

P3.

or by the two possible tensor product approaches, computing the coefficients of
a u (or v) isoparametric line, and then evaluating that curve at v (or ©). While
theoretically equivalent, the computation counts for these methods differ. Work
out the details.

Show that Bézier surfaces have bilinear precision: if b;; = x(i, ﬁ) and X is
bilinear, then b™"(u, v) = x(u, v) for all u, v and for arbitrary m, n.

Generalize (4.31) to the tensor product case.

Describe a method to find the Bézier points of the diagonal curve u = v of a
tensor product Bézier patch of degrees (n, n). (If this sounds hard, start with
n=1YH

Generalize the routine degree_elevate to the tensor product case.

Generalize the routine aitken to the tensor product case, i.e., program tensor
product Lagrange interpolation.

The data file car .dat contains data points of four boundary curves of a surface
close to the one shown in Color Plate TV. Try to fit a Bézier patch (your pick
of the degrees!) so that you get close to the corresponding surface in the color
plates.

Chapter 16

Composite Surfaces and
Spline Interpolation

Tensor product Bézier patches were under development in the early 1960s; at about
the same time, people started to think about piecewise surfaces. One of the first publi-
cations was de Boor’s work on bicubic splines [124] in 1962. Almost simultaneously,
and apparently unaware of de Boor’s work, J. Ferguson [202] implemented piecewise
bicubics at Boeing. His method was used extensively, although it had the serious flaw
of using only zero corner twist vectors. An excellent account of the industrial use of
piecewise bicubics is the article by G. Peters [386].

16.1 Smoothness and Subdivision

Let x(u, v) and y(u, v) be two patches, defined over [u;—y, u;] X [v;, v;41] and
[ur, ur+1] X [vy, vy11], respectively. They are r times continuously differentiable
across their common boundary curve X(;, v) = y(u, v) if all u-partials up to order r
agree there:

r

,
x(1, v) = 4 y(u, v) . (16.1)
u=u ou’ u=uy;
Now suppose both patches are given in Bézier form; let the control net of the “left”
patch be {b;;};0 < i = m, 0 = j = n and those of the “right” patch be {b;;};m =
i =2m,0 = j = n. We can then invoke (15.13) for the cross boundary derivative of
a Bézier patch. That formula is in local coordinates. To make the transition to global
coordinates (u, v), we must invoke the chain rule, just as we did for composite curves
using (7.6):

1 "< r,0 n _ 1 r 2 " u
(A1—1> ZA P Bj() = (AI) ZA *by, ;B (), (16.2)

Jj=0 j=0

256

16.1. Smoothness and Subdivision 257

where A; = w74y — uy. Since the B'}(v) are linearly independent, we can compare

coefficients:
1\ 1\
(5) e = () 4 g =0

This is the C" condition of (7.6) for Bézier curves, applied to all n + 1 rows of the
composite Bézier net. We thus have the C” condition for composite Bézier surfaces:
two adjacent patches are C" across their common boundary if and only if all rows
of their control net vertices can be interpreted as polygons of C" piecewise Bézier
curves. We have again succeeded in reducing a surface problem to several curve
problems. The smoothness conditions apply analogously to the v-direction.

The case r = 1 is illustrated in Figure 16.1. The C! condition states that
for every j, the polygon formed by by j, ..., by, ; is the control polygon of a C!
piecewise Bézier curve. For this to be the case, the three points b,,—1 j, by j, bty
must be collinear and in the ratio A;—; : A;. This ratio must be the same for all ;.
Simple collinearity is not sufficient: composite surfaces that have b,,—1 ;, by, j, byt
collinear for each j but not in the same ratio will in general not be C'. Moreover,
they will not even have a continuous tangent plane. The rigidity of the C' condition
can be a serious obstacle in the design of surfaces that consist of a network of Bézier
patches (or of piecewise polynomial patches in other representations).

We already saw how to use blossoms to subdivide Bézier patches using (15.15).
Here we treat an important special case more geometrically. Suppose the domain
rectangle of a Bézier patch is subdivided into two subrectangles by a straight line

=

Figure 16.1: C! continuous Bézier patches: the shown control points must be collinear
and must all be in the same ratio.

258 Chapter 16. Composite Surfaces and Spline Interpolation

\

Figure 16.2: Subdivision of a Bézier patch: all rows are subdivided using the de
Casteljau algorithm.

u = ii. That line maps to an isoparametric curve on the patch, which is thus subdivided
into two subpatches. We wish to find the control nets for each patch. These two
patches, being part of one global surface, meet with C" continuity. Therefore, all
their rows of control points must be control polygons of C" piecewise n'-degree
curves. Those curves are related to each other by the univariate subdivision process
from Section 4.6.

We now have the following subdivision algorithm: interpret all rows of the control
net as control polygons of Bézier curves. Subdivide each of these curves at u = i.
The resulting control points form the two desired control nets. For an example, see
Figure 16.2.

Subdivision along an isoparametric line v = 7 is treated analogously. If we want
to subdivide a patch into four subpatches that are generated by two isoparametric
lines u = it and v = 9, we apply the subdivision procedure twice. It does not matter
in which direction we subdivide first.

16.2 Tensor Product B-spline Surfaces

B-spline surfaces (both rational and nonrational) play an important role in current
surface design methods and will be discussed here in more detail. Using the notation
from Chapter 10, a parametric tensor product B-spline surface may be written as

x(u, v) = Z Z ;N N (), (16.3)
i

16.2. Tensor Product B-spline Surfaces 259

A\

A

|

\

.

Figure 16.3: Bicubic B-spline surfaces: top, a control net for a bicubic B-spline surface
consisting of 5 X 3 patches; bottom, the corresponding surface.

where we assume that one knot sequence in the u-direction and one in the v-direction
are given. A typical control net, corresponding to triple end knots! and consisting of
5 X 3 bicubic patches, is shown in Figure 16.3.

For curves, triple end knots meant that the first and last two B-spline control
points were also Bézier control points; the same is true here. The B-spline control
points d;; for which i or j equals 0 or 1 are also control vertices of the piecewise

!This is the notation from Chapter 10. The notation from Chapter 7 is implicitly based on
triple end knots.

260 Chapter 16. Composite Surfaces and Spline Interpolation

Bézier net of the surface. Thus they determine the boundary curves and the cross
boundary derivatives.

Since a bicubic B-spline surface is a collection of bicubic patches, how can we
find the Bézier net of each patch? The answer to this question may be useful for the
conversion of a B-spline data format to the piecewise Bézier form. It is also relevant
if we decide to evaluate a B-spline surface by first breaking it down into bicubics.
The solution arises, as usual for tensor products, from the breakdown of this surface
problem into a series of curve problems. If we rewrite (16.3) as

x(wv) = Y N | Y dyNiw)|
i j

we see that for each i the sum in square brackets describes a B-spline curve in the
variable u. We may convert it to Bézier form by using the univariate methods described
in Chapters 7 or 10. This corresponds to interpreting the B-spline control net row by
row as univariate B-spline polygons and then converting them to piecewise Bézier
form. The Bézier points thus obtained may be interpreted—column by column—as
B-spline polygons, which we may again transform to Bézier form one by one. This
final family of Bézier polygons constitutes the piecewise Bézier net of the surface,
as illustrated in Figure 16.4.

Needless to say, we could have started the B-spline-Bézier conversion process
column by column. From the Bézier form, we may now transform to any other
piecewise polynomial form, such as the piecewise monomial or the piecewise Hermite
form.

B-spline curves may be open or closed; the same is true for surfaces. Yet B-
spline surfaces may be closed in two different ways: we may form surfaces with the
connectivity of a cylinder or with that of a torus. No tensor product surface, however,
can have the connectivity of a “double torus” or more complicated surfaces. In fact,
even a surface with the topology of a sphere is not representable as a tensor product
surface, at least not as one without degeneracies.

Figure 16.4: Bringing a bicubic B-spline surface into piecewise bicubic Bézier form: we
first perform B-spline-Bézier curve conversion row by row, then column by column.

16.3. Twist Estimation 261

16.3 Twist Estimation

Suppose that we are given arectangular network of points x;;; 0 =1 =M, 0= J =
N and two sets of parameter values u; and v;. We want a C' piecewise cubic surface
X(u, v) that interpolates to the data points:

x(uz, vy) = xy5.

For a solution, we utilize curve methods wherever possible. We will first fit
piecewise cubics to all rows and columns of data points using methods that were
developed in Chapter 8. We must keep in mind, however, that all curves in the u-
direction have the same parametrization, given by the u;; the v-curves are all defined
over the v;.

Creating a network of C! (or C?) piecewise cubics through the data points is
only the first step toward a surface, however. Our aim is a C' piecewise bicubic
surface, and so far we have only constructed the boundary curves for each patch. This
constitutes 12 data out of the 16 needed for each patch. Figure 16.5 illustrates the
situation. In Bézier form, we are still missing four interior Bézier points per patch,
namely, byy, by, bz, byy; in terms of derivatives, we must still determine the corner
twists of each patch; for a definition, see Section 15.9.

Figure 16.5: Piecewise bicubic interpolation: after a network of curves has been cre-
ated, one still must determine four more coefficients per patch. A network of 3 X 3
patches is shown.

262 Chapter 16. Composite Surfaces and Spline Interpolation

We now list a few methods to determine the missing twists.

Zero twists: Historically, this is the first twist estimation “method.” It appears,
hidden in a set of formulas in pseudo-code, in the paper by Ferguson [202]. Ferguson
did not comment on the effects that this choice of twist vectors might have.

“Nice” surfaces exist that have identically vanishing twists—these are trans-
lational surfaces (see Figure 21.4). If the boundary curves of a patch are pairwise
related by translations, then the assignment of zero twists is a good idea, but not
otherwise. In these other cases, the boundary curves are not the generating curves of
a translational surface. If zero twists are assigned, the generated patch will locally
behave like a translational surface, giving rise to the infamous “flat spots” of zero
twists. The effects of zero twists will be illustrated in Chapter 23.

If a network of patches has to be created, this choice of twists automatically
guarantees C' continuity of the overall surface. Thus it is mathematically “safe,” but
does not guarantee “nice” shapes.

Adini’s twist: This method has been introduced into the CAGD literature
through the paper by Barnhill, Brown, and Klucewicz [26], based on a scheme
(“Adini’s rectangle”) from the finite element literature. The basic idea is this: the
four cubic boundary curves define a bilinearly blended Coons patch (see Chapter 20),
which happens to be a bicubic patch itself. Take the corner twists of that patch to be
the desired twist vectors.

If a network of patches has to be generated, the preceding Adini’s twists would
not guarantee a C' surface. A simple modification is necessary: let four patches meet
at a point, as in Figure 16.6. The four outer boundary curves of the four patches
again define a bilinearly blended Coons patch. This Coons patch (consisting of four
bicubics) has a well-defined twist at the parameter value where the four bicubics
meet. Take that twist to be the desired twist. It is given by

Figure 16.6: Adini’s twist: the outer boundary curves of four adjacent patches define
a Coons surface; its twist at the “middle” point is Adini’s twist.

16.3. Twist Estimation 263

Xu(ug, vy)

_ X(upey, vy) — XUy, vy)

Upey — Up—
X, (ur, vy+1) — Xuur, vy—1)
Vi+l — Vy-1
XUy, vysr) = X1, vy1) — XWUpey, vy-1) + X(Up—-1, vy-1)
(upr1 — up-1)Wye1 = vy-1) .

+

It is easy to check that Adini’s method, applied to patch boundaries of a translational
surface, yields zero twists, which is desirable for that situation. Adini’s twist is a
reasonable choice, because, considered as an interpolant, it reproduces all bivariate
polynomials of the form uv/, u'v;i, j € {0, 1, 2, 3}, which is a surprisingly large set.?

Figure 16.7 compares zero and Adini’s twist if only one patch is used. The zero
twists give rise to undesirable distortions.

Bessel twists: This method estimates the twist at x(u;, v;) to be the twist of
the biquadratic interpolant to the nine points X(uy+,, vs+5); 1, s € {—1,0, 1}. Since a
biquadratic patch has a bilinear twist, Bessel’s twist is the bilinear interpolant to the
twists of the four bilinear patches formed by the nine points. Those twists are given
by

Ay, vy)
qrJs AA, ,
and Bessel’s twist can now be written

q-17-1 Q-14] [1—-Bs]

Xw(u],vj) = [1—(11 oy] Q71 q. Bj

Figure 16.7: Twist estimation: the four interior Bézier points are computed
to yield zero corner twists (left), and then according to Adini’s method
(right).

This is why this twist is called, in the context of finite elements, a “serendipity element.”

264 Chapter 16. Composite Surfaces and Spline Interpolation

where
_ Ay Ay

ar = s BI = .
Upyr — Up—) Vi1 = V-1
Other methods for twist estimation exist, including Brunet [84], Selesnick [471],
Hagen and Schulze [268], and Farin and Hagen [185].

16.4 Bicubic Spline Interpolation

In Section 15.12, we saw how to fit an interpolating Bézier patch to a rectangular
array of data points. In “real life,” this would not happen too often—rather, one would
use tensor product bicubic B-spline surfaces. The principles from Section 15.12 carry
over for this case easily, and no new theory has to be developed.

Suppose we have (K + 1) X (L + 1) data points x;; and two knot sequences
Uy, ..., ug and vy, ..., vy. Our development is illustrated in Figure 16.8. We use the
notation from Chapter 9. For each row of data points, we prescribe two end conditions
(e.g., by specitfying tangent vectors or Bézier points) and solve the univariate B-spline
interpolation problem as described in Section 9.1. As all these interpolation problems
use the same tridiagonal coefficient matrix, an L — U decomposition should be
performed before the row-by-row loop is entered. We thus produce the elements of
the matrix D, marked by triangles in Figure 16.8.

We now take every column of D and perform univariate B-spline interpolation
on it, again by prescribing end conditions such as clamped end tangents or Bessel
tangents. The resulting control points constitute the desired B-spline control net.
An example is shown in Figure 16.9. In it, the data points are connected in the
u-direction—this is just to highlight the structure of the data.

The final B-spline control nei has two more rows and columns than X.* This is
due to the end conditions; to resolve the apparent discrepancy, we may think of X as

o
o> h
o :
o

Figure 16.8: Tensor product bicubic spline interpolation: the solution is obtained in a
two-step process.

3This is inherited from the curve case: there one gets L + 2 control points for L data points.

16.5. Finding Knot Sequences 265

Figure 16.9: Tensor product bicubic spline interpolation: the given data, lower
right (scaled down), and the solution, using Bessel end conditions and uniform
parametrizations.

having two additional rows and columns that constitute the end condition data. This
concept is implemented in the attached code.

Although mathematically equivalent, the two processes—first row by row, then
column by column; or first column by column, then row by row—do not yield the
same computation count if K # L.

16.5 Finding Knot Sequences

While tensor product spline interpolation is very elegant, its use is limited to cases
where the data points possess a rectangular structure. When the data points deviate
from a “nice” grid, the problem of finding an appropriate parametrization is not easy;
it may not have a solution at all. In the curve case (Section 9.4), we were able to devise
several methods that assigned parameter values to the given data points. So why not

266 Chapter 16. Composite Surfaces and Spline Interpolation

take those methods and apply them to the tensor product case in much the same way
in which we generalized curve methods to their tensor product counterparts? The
problem is that we have to produce one set of parameter values for all isoparametric
curves in the u-direction; the same holds for the v-direction.

We may endow each isoparametric curve (in the wu-direction, say) with a
parametrization from Section 9.4. To arrive at one parametrization for all of them,
we may then carry out some averaging process. Such an approach will only produce
acceptable results if all our isoparametric curves have the same shape characteristics,
i.e., if they essentially yield the same parametrization. This is, however, not always
the case, as Figures 16.10, 16.11, 16.12 illustrate.*

Are there ways out of the dilemma? Not if one has unevenly distributed data and
insists on bicubic spline interpolation. If one is willing to go to higher degrees and to
replace C! or C? continuity by G' continuity (see Chapter 18), then several methods
exist—see the literature cited in that chapter.

Figure 16.10: Finding knots for bicubic splines: all “horizontal” isoparametric curves
have knots u; = [0, 4, 5.5, 6.0]. Note that the bottom curve has a reasonable shape.

4 Another interesting phenomenon may be observed here: note how the first and the third
of this set of surfaces have varying densities in their plots. The reason is that each cubic
isoparametric curve was plotted in 90 increments on a pen plotter. With very unequal parameter
spacing, this generates abruptly varying spacing on the curves.

16.5. Finding Knot Sequences 267

Figure 16.11: Finding knots for bicubic splines: all “horizontal” isoparametric curves
have knots ; = [0, 1, 2, 3].

Figure 16.12: Finding knots for bicubic splines: all “horizontal” isoparametric curves
have knots 1; = [0,0.5, 1.5, 6.5]. Now the top curve has a good shape.

268 Chapter 16. Composite Surfaces and Spline Interpolation

16.6 Rational Bézier and B-spline Surfaces

We can generalize Bézier and B-spline surfaces to their rational counterparts in much
the same way as we did for the curve cases. In other words, we define a rational
Bézier or B-spline surface as the projection of a 4D tensor product Bézier or B-spline
surface. Thus, the rational Bézier patch takes the form

2222 wijbi BB} (v)

x(u, v) = , (16.4)
Zi Zj wth,m(u)By(v)
and a rational B-spline surface is written as
i i Wi d, Nlm M)N'}(V
s(u, v) = 2i 25 WiV ON) (16.5)

Z,’ Z]‘ W”N:"(M)N;‘(V) .

Figure 16.13 shows an example of a rational B-spline surface. It was obtained
from the same control net as the surface in Figure 16.3, but with weights as shown
in the figure. Note how the “dip” became more pronounced, as well as the “vertical
ridge.”

Rational surfaces are obtained as the projections of tensor product patches—but
they are not tensor product patches themselves. Recall that a tensor product surface
is of the form x(u,v) = 37,37, ¢; ;F; j(u, v), where the basis functions F; ; may be
expressed as products F; j(u, v) = A;(w)B;(v). The basis functions for (16.5) are of
the form

w; iN" N7 (v)
2 2, W NN ()

Because of the structure of the denominator, this may in general not be factored into
the required form F; ;j(u, v) = A;(u)B;(v).

But even though rational surfaces do not possess a tensor product structure, we
may utilize many tensor product algorithms for their manipulation. Consider, for
example, the problem of finding the piecewise rational bicubic Bézier form of a
rational bicubic B-spline surface. All we have to do is to convert each row of the
B-spline control net into piecewise rational Bézier cubics (according to Section 14.7).
Then we repeat this process for each column of the resulting net (and the resulting
weights!), simply following the principle outlined in Figure 16.4.

As another example, consider the problem of extracting an isoparametric curve
from a rational Bézier surface. Suppose the curve corresponds to v = 9. We simply
interpret all columns of the control net as control polygons and evaluate each at
¥, using the rational de Casteljau algorithm, for example. Keep in mind that we
also have to compute a weight for each control polygon. We can now interpret all
obtained points together with their weights as the Bézier control polygon of the
desired isoparametric curve. In general, its end weights will not be unity, i.e., the
curve will not be in standard form (as described in Section 14.5). This situation may
be remedied by the use of the reparametrization algorithm, which is also described
in that section.

F,',j(l/{, V) =

1111
1111
1111
3333
1111
1111
1111

N

270 Chapter 16. Composite Surfaces and Spline Interpolation

16.7 Surfaces of Revolution

Currently, rational B-spline surfaces are used for two reasons: they allow the exact
representation of surfaces of revolution and of quadric surfaces. We will briefly
describe surfaces of revolution in rational B-spline form here—quadric surfaces will
be treated in Section 17.10.

A surface of revolution is given by

r(v)cosu
r(v)sinu

z2(v)

For fixed v, an isoparametric line v = const traces out a circle of radius r(v), called
a meridian. Since a circle may be exactly represented by rational quadratic arcs, we
may find an exact rational representation of a surface of revolution provided we can
represent r(v), z(v) in rational form.

The most convenient way to define a surface of revolution is to prescribe the
(planar) generating curve, or generatrix, given by

gv) = [r(v), 0, z"1"

and by the axis of revolution, in the same plane as g. Suppose g is given by its
control polygon, knot sequence, and weight sequence. We can construct a surface
of revolution such that each meridian consists of three rational quadratic arcs, as
shown in Figure 13.11. For each vertex of the generating polygon, construct an
equilateral triangle (perpendicular to the axis of revolution) as in Figure 13.11.
Assign the given weights of the generatrix to the three polygons corresponding to
the triangle edge midpoints; assign half those weights to the three control polygons
corresponding to the triangle vertices. In this way, we represent exactly “classical”
surfaces such as cylinders, spheres, or tori.

Instead of breaking down each meridian into three arcs, we might have used
four. The resulting four biquadratic control nets then form three concentric squares
in the projection into the z = 0 plane. The control points at the squares’ midpoints
are copies of the generatrix control points; their weights are those of the generatrix.
The remaining weights, corresponding to the squares’ corners, are multiplied by
cos(45°) = \/5/ 2. Figure 16.14 gives an example of a parabola that sweeps out a
surface of revolution.

Note that although the generatrix may be defined over a knot sequence {v;} with
only simple knots, this is not possible for the knots of the meridian circles; we have
to use double knots, thereby essentially reducing it to the piecewise Bézier form.

xX(u, v)

16.8 Volume Deformations

Sometimes local control of a surface, nice as it may be, is not what is needed. A
typical design request is “stretch this surface in that direction,” or “bend that surface
like so.” These are global shape deformations, and the usual tweaking of control

16.8. Volume Deformations 271

Figure 16.14: Surfaces of revolution: the surface is represented as four rational bi-
quadratic patches. The solid control points (shown for one patch only) have weight 1;
the open points have weight 0.71. Graphics courtesy of MCS, system ANVIL-5000°.

polygon vertices is somewhat cumbersome for this task. P. Bézier devised a method
to deform a Bézier patch in a manner that would satisfy this global deformation
principle. We shall see that it is also applicable to B-spline surfaces. For literature,
see Bézier [53], [56], [57]. A more graphics-oriented version of this principle was
presented by Sederberg and Parry [461].

To illustrate the principle, let us consider the 2D case first. Let x(¢) be a planar
curve (Bézier, B-spline, rational B-spline, etc.), which is, without loss of generality,
located within the (1, v) unit square. Next, let us cover the square with a regular grid
of points b;; = [i/m, j/n]";i = 0,...,m;j = 0,..., n. We can now write every
point (4, v) as

W) = by Bl WB;
i=0 j=0

this follows from the linear precision property of Bernstein polynomials (4.14).

272 Chapter 16. Composite Surfaces and Spline Interpolation

If we now distort the grid of b; ; into a grid f),-, j» the point (u, v) will be mapped
to a point (&, ¥):

@9 =" Xn:b, B (WB}(v). (16.6)

i=0 j

In other words, we are dealing with a mapping of E? to [E2.

In particular, the control vertices of the curve x(¢) will be mapped to new control
vertices, which in turn determine a new curve y(¢). Note that y is only an approxi-
mation to the image of x under (16.6).> This is highlighted by the fact that the image
of x’s control polygon under (16.6) would be a collection of curve arcs, not another
piecewise linear polygon.

We now have an indirect method for curve design: changing the b; ; will produce
globally deformed curves. This technique may facilitate certain design tasks that are
otherwise tedious to perform. Figure 16.15 gives an example of the use of this global
design technique.

This technique may be generalized. For instance, we may replace the Bézier
distortion (16.6) by an analogous tensor product B-spline distortion. This would
reintroduce some form of local control into our design scheme.

The next level of generalization is to E3: we introduce a trivariate Bézier patch
by

m n l
= b, By (u)B}(v)Bi(w), (16.7)
n I

i=0 j=0 k=0

which constitutes a deformation of 3D space [E*. We may use (16.7) to deform the
control net of a surface embedded in the unit cube. Again, the use of a Bézier patch
for the distortion is immaterial; we might have used trivariate B-splines, etc., in order
to introduce some degree of locality into the method.

rL———-

e—=

Figure 16.15: Global curve distortions: a Bézier polygon is distorted into another
polygon, resulting in a deformation of the initial curve.

3 An exact procedure is described by T. DeRose [144].

16.8. Volume Deformations 273

Figure 16.16: Global surface distortions: part of a surface is embedded in a Bézier
volume (top). That volume is distorted (middle), leading to a distorted final object
(bottom).

274 Chapter 16. Composite Surfaces and Spline Interpolation

An example is shown in Figure 16.16. Part of the mushroom-shaped surface is
embedded in a trivariate Bézier volume that is cubic in the vertical direction and
linear in the other two. The top layer of control points is moved upward, leading to a
C? distortion of the initial object.

Why use deformation methods instead of just manipulating control vertices inter-
actively? Volume deformation methods allow a designer to modify whole assemblies
of surfaces at once, in a way that spreads out the changes in each part of the assembly
in a very harmonic way. By tweaking control vertices one by one, a similarly balanced
modification cannot be the result.

16.9 CONS and Trimmed Surfaces

If we create any parametric curve (u(t), v(¢)) in the domain of a surface x(u, v), it will
be mapped to a curve x(u(t), v(¢)) on the surface, or CONS. If the domain curve is
itself a Bézier curve of degree p, then the CONS will be of degree (m + n)p, assuming
m and n are the parametric degrees of X(u, v). Such curves were first considered by
Bézier, see [S51], [54], where they were called “transposants”.

In most practical applications, the curve in the domain is expressed as a piecewise
linear curve, and the resulting CONS is approximated as being piecewise linear. If
the piecewise linear CONS is dense enough, this should not cause problems. CONS
can arise in many applications: If we intersect two surfaces, the resulting intersection
curve is a CONS on either of the two surfaces. Or we could project a space curve
onto a surface, again resulting in a CONS.

If the domain curve of a CONS is closed, then it divides the domain into two
parts: those inside the curve and those outside. In the same way, the closed CONS
divides the surface into two parts. If we want to know, for an arbitrary point (x, v)
in the domain, if it lies inside the domain curve, take an arbitrary ray emanating
from (%, v). Then count the number of its intersections with the domain curve. If it
is even, (i, v) is outside, and inside otherwise; see Figure 16.17 for an illustration.
For programming purposes, there are no “arbitrary” rays. Rays parallel to the u- or
v-direction will typically suffice.

CONS are mainly used for a modification of tensor product surfaces by a tech-
nique known as “trimming.” A trimmed surface has certain areas of it marked as
invalid or invisible by a set of closed CONS. Figure 16.18 gives an example. There,
two CONS are employed: one corresponds to a closed curve in the domain, the other
one is the perimeter of the domain. The in/out test works just as for only one CONS.

Another example for trimmed surfaces is given in Plate III. Toward the lower
right quadrant of that figure, we see a small “patch” surface that blends the central
part of the hood to the part over the fender. (Such surfaces, by the way, are extremely
tedious to design.) If you take a close look at Plate I1I, you will see that the surfaces
covered by the “patch” surface are not drawn where the patch surface is drawn. In
fact, they are not defined there. The parts that are occupied by the patch surface are
not part of the “regular” surfaces—they are “trimmed away.”

16.9. CONS and Trimmed Surfaces 275

Figure 16.17: Inside/outside test: a ray from the solid point intersects the domain
curve three times; it is inside. The open point is inside. The inside region is shown
shaded.

hS
y

Figure 16.18: Trimmed surfaces: certain parts of a tensor product surface are marked
as “invalid” by a pair of CONS.

276 Chapter 16. Composite Surfaces and Spline Interpolation

Trimmed surfaces should be viewed as an “engineering” extension of tensor
product patches. That is to say, they are not a panacea for all surface problems,
either. Consider, for example, the problem of joining two trimmed surfaces together
in a smooth way. If they are to join along trim curves, there is no known method
to ensure exact tangent plane continuity between them, as was the case for standard
tensor patches. Such smoothness questions must be dealt with on a case-by-case
basis, which is clearly not very desirable. Just consider the problem of fitting the
blend surface from Plate III between its neighbors!

Literature on trimmed surfaces: Farouki and Hinds [195], Shantz and Chang
[472], Casale and Bobrow [91], Miller [359], Lasser and Bonneau [322], Brunnett
[85], Vigo and Brunet [493].

16.10 Implementation

The routines in this section are written for rational surfaces. By setting all weights
equal to one, the standard piecewise polynomial case is recovered.

The routine that converts a rational bicubic B-spline control net into the piecewise
bicubic Bézier form:

void ratbspl_to_bez_surf (bspl_x,bspl_y,bspl_w,lu,lv,knot_u,
knot_v,bez_x,bez_y,bez_w,aux_x,aux_y,aux_w)

/* Converts B-spline control net into piecewise
Bezier control net (bicubic).
Input: bspl_x,bspl_y: B-spline control net (one coordinate only)
bspl_w: B-spline weights
1u,lv: no. of intervals in u- and v-direction
knot_u, knot_v: knot vectors in u- and v-direction
Output: bez_x,bez_y: piecewise bicubic Bezier net.
bez_w: Bezier weights.

Work space:aux_x,aux_y,aux_w: needed to store intermediate results.

Remark: The piecewise Bezier net only stores each control point once,
i.e., neighboring patches share the same boundary.
Knots are simple (but, in the language of Chapter 10, the
boundary knots have multiplicity three).

*/

Once the piecewise rational Bézier representation of a bicubic spline surface is
achieved, the following routine plots the whole surface:

void plot_ratbez_surfaces(bez_x,bez_y,bez_w,lu,lv,u_points,v_points,
scale_x,scale_y,value)

/% Plots piecewise cubic surface, i.e., generates postscript output
Input: bez_x, bez_y: control nets
lu,lv: no. of segments in u- and v- direction

u_points,v_p oints: per patch: v_points many

16.10. Implementation 277

isoparametric curves with u_points
points on each
value: minmax box of all control nets.
scale_x,scale_y: scale factors for postscript

*/

Tensor product spline interpolation (bicubic) is carried out by the following
routine. It utilizes Bessel end conditions.

void spline_surf_int(data_x,data_y,bspl_x,bspl_y,lu,lv,knot_u,
knot_v,aux_x,aux_y)

/* Interpolates to an array of size [0,lu+2]x[0,1lv+2]

Input: data_x, data_y: data array (one coordinate only)
lu,lv: no. of intervals in u- and v-direction
knot_u, knot_v: knot vectors in u- and v-direction

Output: bspl_x,bspl_y: B-spline control net.

Work space: aux_x, aux_y.

Remark: On input, it is assumed that data_x and data_y have rows
1 and lu+l and columns 1 and lv+1l empty, i.e., they are
not filled with data points. Example for lu=4, 1lv=T7:

x0xxxxxx0%

0000000000

x0xxxxxx0x x=data coordinate,
x0xxxxxx0x O=unused input array
x0xxxxxx0% element.

0000000000 The 0’s will be filled with
x0xxxxxx0x ‘tangent Bezier points’.

This approach makes it easy to feed in clamped end conditions
if so desired: put in values in the 0’s and delete the calls
to bessel_ends below.

*/

Next is the header of a program that plots the control net of a Bézier surface or
of a composite surface.

void psplot_net(lu,lv,bx,by,step_u,step_v,scale_x,scale_y,value)

/* plots control net into postscript-file.
Input: 1lu,lv: dimensions of net
bx,by: net vertices

step_u,step_v: subnet sizes (e.g. both=3 for pw bicubic net)
scale_x,scale_y:scale factors for ps
value: window size in world coords

Output: written into postscript file

*/

278 Chapter 16. Composite Surfaces and Spline Interpolation

16.11 Exercises

1. Justify that in tensor product interpolation (Section 15.12), it does not matter if
one starts with the row interpolation process or with the column interpolation
process. Give computation counts for both strategies. (In general, they are not
equal!)

2. Generalize Lagrange interpolation to the tensor product case.

3. Generalize the B-spline knot insertion algorithm to the tensor product case.

*4, Show that if two polynomial surfaces are C! across a common boundary, then
they are also twist continuous across that boundary.

*5. Generalize quintic Hermite interpolation to the tensor product case.

*6. Suppose we want to find a parametrization {i;} for a tensor product interpolant.
We may parametrize all rows of data points and then form the averages of the
parametrizations thus obtained. Or we could average all rows of data points, e.g.,
by setting p; = 3_; %x,; j» and we could then parametrize the p;. Do we get the
same result? Discuss both methods.

P1. Embed your Bézier surface from Problem P3 of Chapter 15 in a tricubic grid,
similar to Figure 16.16. Then “stretch” your surface, leaving the front part
unchanged.

P2. Model a Klein bottle as a closed bicubic B-spline surface. Literature: [280],
[155]. If you have the graphics capabilities, display your result as a translucent
surface.

P3. Generate an array of points on a sphere. For latitudes, take ¢; = 0, 10, 20,...,90
degrees. For longitudes, take y; = 45, 50, 55, ..., 75 degrees. Pass several tensor
product interpolants through the data and compare their deviations from the true
sphere. For the bicubic C? spline interpolant, also compare uniform and chord
length parametrizations.

Chapter 17

Bézier Triangles

When de Casteljau invented Bézier curves in 1959, he realized the need for the
extension of the curve ideas to surfaces. Interestingly enough, the first surface type
that he considered was what we now call Bézier triangles. This historical “first” of
triangular patches is reflected by the mathematical statement that they are a more
“natural” generalization of Bézier curves than are tensor product patches. We should
note that while de Casteljau’s work was never published, Bézier’s was; therefore,
the corresponding field now bears Bézier’s name. For the placement of triangular
Bernstein—Bézier surfaces in the field of CAGD, see Barnhill [22].

While de Casteljau’s work (established in two internal Citroén technical reports
[133] and [134]) remained unknown until its discovery by W. Boehm around 1975,
other researchers realized the need for triangular patches. M. Sabin [428] worked
on triangular patches in terms of Bernstein polynomials, unaware of de Casteljau’s
work. Among the people concerned with the development of triangular patches we
name P. J. Davis [123], L. Frederickson [220], P. Sablonniere [433], and D. Stancu
[479]. All of their Bézier-type approaches relied on the fact that piecewise surfaces
were defined over regular triangulations; arbitrary triangulations were considered by
Farin [170]. Two surveys on the field of triangular Bézier patches are Farin [178] and
de Boor [127].

17.1 The de Casteljau Algorithm

The de Casteljau algorithm for triangular patches is a direct generalization of the
corresponding algorithm for curves. The curve algorithm uses repeated linear in-
terpolation, and that process is also the key ingredient in the triangle case. The
“triangular” de Casteljau algorithm is completely analogous to the univariate one,
the main difference being notation. The control net is now of a triangular structure;

279

280 Chapter 17. Bézier Triangles

baoo

Figure 17.1: Bézier triangles: a cubic patch with its control net.

in the quartic case, the control net consists of vertices

boso
by31bi3g

bo22b121b2o
bo1ab112b211b31o

boosb103b202D301bago

Note that all subscripts sum to 4. In general, the control net consists of %(n +1D(n+2)
vertices. The numbers]E(” + 1)(n + 2) are called triangle numbers. Figure 17.1 gives
an example of a cubic patch with its control net.

Some notation: we denote the point b, by b;. Also, we use the abbreviations
el = (1,0,0), €2 = (0,1,0), €3 = (0,0,1), and |i| = i + j + k. When we say
lil = n, we meani + j + k = n, always assuming i, j, k = 0.

The de Casteljau algorithm follows.

de Casteljau Algorithm:

Given: atriangulararray of points b; € E>; |i| = » and a point in E? with barycentric
coordinates u.

Set:
bj () = ub{)y (w) + vbi 5(w) + whi5(w), (17.1)
where
r=1....,nand il =n—r

and b{(u) = b;. Then b{(u) is the point with parameter value u on the Bézier
triangle' b".

'More precisely, a triangular Bézier patch.

17.1. The de Casteljau Algorithm 281

Figure 17.2: The “triangular” de Casteljau algorithm: a point is constructed by re-
peated linear interpolation.

Figure 17.2 illustrates the construction of a point on a cubic Bézier triangle.
We give a simple example: for n = 3,r = 1, and i = (2,0,0), we would obtain
b%oo = ubsgo + vba1g + whygr. A complete numerical example is given in Example
17.1.

At this point, the reader should compare the “triangular” de Casteljau algorithm
with the univariate one, and also have a look at the barycentric form of Bézier curves
(see Section 5.9).

Based on the de Casteljau algorithm, we can state many properties of Bézier
triangles:

Affine invariance: This property follows since linear interpolation is an affine map
and since the de Casteljau algorithm makes use of linear interpolation only.

Invariance under affine parameter transformations: This property is guaranteed
since such a reparametrization amounts to choosing a new domain triangle, but
we have not even specified any particular domain triangle. More precisely, a point
u will have the same barycentric coordinates u after an affine transformation of
the domain triangle.

The convex hull property: Guaranteed since for 0 < u,v,w = 1, each b{ is a
convex combination of the previous b{ .

The boundary curves: For a triangular patch, these curves are determined by the
boundary control vertices (having at least one zero as a subscript). For example,
a point on the boundary curve b”(i, 0, w) is generated by

bl (1, 0, w) = ubl L + whi h: u+w=1,

which is the univariate de Casteljau algorithm for Bézier curves.

282 Chapter 17. Bézier Triangles

Let the coefficients b; of a quadratic patch be given by

0
6
0
0 3
3 3
0 6
0 3 6
0 0 0|,
0 0 9

and letu = (%, % %). Also, we make the assumption that bsgy = [6, 0,9]" is
the image of el, and by = [0, 6, 0]" is the image of e2.
The de Casteljau steps are as follows: for r = 1, the b} are given by

1
4
2

The result bj is

7/3

Example 17.1: Computing a point with the de Casteljau algorithm.

17.2 Triangular Blossoms

The blossoming principle was introduced in Section 3.4 and also proves useful here.
We will develop blossoms for triangular patches very much as we did in Section 5.9
for curves; the reader is assumed to be familiar with that material.

Our development follows a familiar path: we feed different arguments into the
de Casteljau algorithm. At level r of the algorithm, we will use u, as its argument,
arriving finally at level n, with the blossom value b[uy, . . ., u,]. Note that all arguments
are triples of numbers, because they represent points in the domain plane. The
multivariate polynomial b[uy, ..., u,] is called the blossom of the triangular patch
b(u). This blossom has all the properties that we encountered earlier: it agrees with
the patch if all arguments are equal: b(u) = b[u"] (recall that u”’ is short for n-fold
repetition of u), it is multiaffine, and it is symmetric.

17.3. Bernstein Polynomials 283

Let us consider a special case, namely, that of fixing one argument and letting
the remaining ones be equal, similar to the developments of polars in Section 4.7. So
consider b[el, u®~1]. We have to carry out one de Casteljau step with respect to el,
and then continue as in the standard algorithm. Since a step with respect to el yields

biel) = by i lil=n—1,
we end up with a triangular patch of degree n — 1 whose vertices are the original
vertices with the exception of the by ; .—that row of control points is “peeled off.”
We may continue this experiment: if we next use e2, we peel off another layer

of coefficients, and so on. Let us utilize el i times, €2 j times, and €3 k times. We are
then left with a single control point:

b; = b[e1<">, e2<f>, e3<k>] li| = n. (17.2)

So again the Bézier control points are obtainable as special blossom values!
‘We may also write the intermediate points of the de Casteljau algorithm as special
blossom values:

b/ (u) = b[u?’, e1?, &2, €3], i+ j+k+r=n (17.3)

If we are interested in the control vertices ¢; with respect to a different triangle,
with vertices f1, 2, 3, say, all we have to do is to evaluate the blossom:

¢ = b[f1?, £207 £30], (17.4)

This relationship, without use of the blossoming principle, is discussed by Goldman
[229] and by Boehm and Farin [73]. See also Seidel [466].

17.3 Bernstein Polynomials

Univariate Bernstein polynomials are the terms of the binomial expansion of [t +
(1 — £)]". In the bivariate case, Bernstein polynomials B} are defined by?
Bi'(u) = (n) Wviwk = #u"vjwk; li| = n. (17.5)
i iljtk!

We define Bj'(u) = 0if i, jk < Oori j k > n for some subscripts. This follows
standard convention for the trinomial coefficients (’}). Some of the quartic Bernstein
polynomials are shown in Figure 17.3.

As an example, the quartic Bernstein polynomials could be arranged in the
following triangular scheme (corresponding to the control point arrangement in the
de Casteljau algorithm):

v
Ww 4w’
6viw? 12uvw 6u?v?
4vw? 12uvw? 12uPvw 4udy

wh duwd 6Pw? 4w P

2Keep in mind that although B} (u, v, w) looks trivariate, it is not, since u + v + w = 1.

284 Chapter 17. Bézier Triangles

B s =—o
TN I S >
P ==

Figure 17.3: Bernstein polynomials: four quartic basis functions are shown; the shapes
of the remaining ones follow from symmetry.

Bernstein polynomials satisfy the following recursion:

Blu) = uB!'" L (u) + vBI"L(w) + wB Lw); |i] = n. (17.6)

i—el i

This follows from their definition, as given in (17.5), and the use of the identity

(1) =(a) - (Ca)+ (-a)

The intermediate points b{ in the de Casteljau algorithm can be expressed in
terms of Bernstein polynomials:

bj(w) = > " buBj); il =n—r. (17.7)
lil=r

Setting r = n, we see that a triangular Bézier patch can be written in terms of
Bernstein polynomials:

b"(w) = bjw) = Y _ b;B}(u). (17.8)
ljl=n

We still need to prove (17.7). We use induction and the recursive definition of
Bemstein polynomials:

17.4. Derivatives 285

r+l1 _ r r r
bi " = ubj,q +Vbi e + whi, g
=u Z bitjrenB; + v Z biijre2Bj +w Z bitj+e3B;
lil=r lil=r lil=r

J— r r r

= Z ubi+ij,el + vbi+ij_e2 + Wbi+ij—e3
li=r+1

- +1

= 2 bigB"
lil=r+1

Compare with the similar proof for the univariate case of (4.6)!
We can generalize (17.8) just as we could in the univariate case:

b'w)= > biwB] "(m):; 0=r=n (17.9)

lil=n—r

17.4 Derivatives

When we discussed derivatives for tensor product patches (Section 15.6), we con-
sidered partials because they are easily computed for those surfaces. The situation
is different for triangular patches; the appropriate derivative here is the directional
derivative. Let u; and u, be two points in the domain. Their differenced = u; — u;
defines a vector.? The directional derivative of a surface at x(u) with respect to d is
given by

Dgx(u) = dx,(u) + ex,(a) + fx,(w).

A geometric interpretation: in the domain, draw the straight line through u that is
parallel to d. This straight line will be mapped to a curve on the patch. Its tangent
vector at x(u) is the desired directional derivative.

The partials of a Bézier patch are not hard to compute; we have, for the u-partial:

J n!
u ijlk!

flil=n

J .
—b(uw) u' v/ whb;
u

_ E: =DV %
= nm: W“ V'w bi
> ik L bk

lil=n—-1

n Y biaBl W

lil=n—1

3In barycentric coordinates, a point u is characterized by u + v + w = 1, while a vector
d = (d, e f)is characterizedby d + e + f = 0.

286 Chapter 17. Bézier Triangles

Working out similar expressions for the v- and w-partials, we have found our direc-
tional derivative:

Dabw) =n) [dbiver + ebicer + fbives] Bl W). (17.10)
lil=n—-1

A closer look at the terms in square brackets brings to mind the de Casteljau algorithm,
and we may write (17.10) as

Dgb(u)=n > bi(@)B{ ™ (W) (17.11)
lil=n-1

Thus a directional derivative is obtained by performing one step of the de Castel-
jau algorithm with respect to the direction vector d, and n — 1 more with respect to
the position u. Such configurations can be succinctly expressed in blossom form:

Dgb(u) = nb[d, u 1. (17.12)

We may continue taking derivatives, arriving at

1
Dib(u) = — _r bid), u®="1. (17.13)

(n—
The r™ directional derivative at b(u) is therefore found by performing r steps of the
de Casteljau algorithm with respect to d, and then by performing » — r more steps
with respect to u. Of course it is irrelevant in which order we take these steps (first
noted in [169]).

In the same way, we may compute mixed directional derivatives: if d; and d, are
two vectors in the domain, then their mixed directional derivatives are

n!
R e T K K (17.14)

This blossom result may also be expressed in terms of Bernstein polynomials.
Taking n — r steps of the de Casteljau algorithm with respect to u, and then » more
with respect to d, gives

nb(u) = (——— > b B (d). (17.15)
lil=r

Or, we might have taken r steps with respect to d first, and then n — r ones with
respect to u. This gives

D;b"(w) = —— (n Z b} (d)B] " (w). (17.16)

||—n r

Let us now spend some time interpreting our results. First we note that (17.15)
is the analogue of (4.24) in the univariate case. This sounds surprising at first, since
(17.15) does not contain differences. Recall, however, that some of the components of
d must be negative (since d +e + f = 0). Then the Bj(d) yield positive and negative
values. We may therefore view terms involving B;(d) as generalized differences.

17.4. Derivatives 287

(In the univariate case, this is easily verified using the barycentric form of a Bézier
curve.) Similarly, (17.16) may be viewed as a generalization of the univariate (4.20).

For r = 1, the terms bJ] (d) in (17.16) have a simple geometric interpretation:
since b (d) = dbj.e1 + ebjrea + fbjiea and |j| = n — 1, they denote the affine map
of the vector d € E? to the triangle formed by bjret, Pjre2, bjtes. The directional
derivative of b” is thus a triangular patch whose coefficients are the images of d on
each subtriangle in the control net (see Figure 17.4). For computational purposes, we
would compute the net of the nbjl(d) and use them as the input for a de Casteljau
algorithm of an (n — 1)*-degree Bézier patch.

Similarly, let us set » = 1 in (17.15). Then,

Dgb"(w) = ny " b}~ (u)B;(d)
lil=1

n@bi' + eb% ' + fbih).

Since this is true for all directions d € E?, it follows that b2 ', b2, !, bl ! define
the tangent plane at b"(u). This is the direct generalization of the corresponding uni-
variate result. In particular, the three vertices bg 0, Do n—1.1, P1,,~1,0 Span the tangent
plane at by, o with analogous results for the remaining two corners. Again, we see
that the de Casteljau algorithm produces derivative information as a by-product of
the evaluation process; see Example 17.2 for a numerical example.

We next discuss cross boundary derivatives of Bézier triangles. Consider the
edge u = 0 and a direction d not parallel to it. The directional derivative with respect
to d, evaluated along u = 0, is the desired cross boundary derivative. It is given by

!
Dibw| = o f‘r)! 3 b @B () L (17.17)

lio|=n—r

where iy = (0, j, k). Sinceu = (0, v, w) = (0, v, 1 —v), this is a univariate expression,
a Bézier curve in barycentric form as discussed in Section 5.9. Note that it depends

\

Figure 17.4: Directional derivatives: the coefficients of the directional derivative of a
triangular patch are the vectors b} (d).

288 Chapter 17. Bézier Triangles

Let the coefficients b; of a quadratic patch be those from Example 18.1. Let us
pick the directiond = (1, 0, —1). We can then compute the b} (d):

3

0

6
3 3
0 0
0 9

If we now evaluate atu = (1, 1, 1), we obtain the vector

3
0
5

>

which must still be multiplied by a factor of n — 1 = 2 to obtain the directional
derivative D(l‘(),_l)bz(%, %, %)

Alternatively, we might have taken the b} from Example 17.1 and evaluated
them at d. The result is the same!

Example 17.2: Computing a directional derivative.

only on the r + 1 rows of Bézier points closest to the boundary under consideration.
Analogous results hold for the other two boundaries; see Figure 17.5. This result is
the straightforward generalization of the corresponding univariate result. We will use
it for the construction of composite surfaces, just as we did for curves.

N

Figure 17.5: Cross boundary derivatives: any first-order cross boundary directional
derivative of a quartic, evaluated along the indicated edge, depends only on the two
indicated rows of Bézier points.

17.5. Subdivision 289

17.5 Subdivision

We will later study surfaces that consist of several triangular patches forming a C”
overall surface. Now, we start with a surface consisting of just two triangular patches.
Let their domain triangles be defined by points a, b, ¢, 4, as shown in Figure 17.6. If
the common boundary is through b and ¢, then the (domain!) point 4 can be expressed
in terms of barycentric coordinates of a, b, ¢:

a= via + V2b + vic.

Suppose now that a Bézier triangle b" is given that has the triangle a, b, ¢ as
its domain, such that we have barycentric coordinates a = el,b = e2,¢ = 3. Of
course the patch is defined over the whole domain plane, in particular over 4, ¢, b.
What are the Bézier points ¢; of b” if we consider only the part of it that is defined
over &, ¢, b?

The answer was already given with (17.4):

¢ = b[a? e2 3% i+ j4+k =n (17.18)
So all we have to do is compute the point b(a) using the de Casteljau algorithm, and
the intermediate points are the desired patch control vertices!

Some of the ¢; deserve special attention: the common boundary of the two patches

is characterized by u = 0. The Bézier points of the corresponding boundary curve
must be same for both patches; we have

cj, = b2, e3¥] =b;; j+k=n, (17.19)
where jo = (0, j, k). We also have
Croo = b[ﬁ<n>],

thus asserting, as expected, that we find ¢,qo as a point on the surface, evaluated at a.
A numerical example is given in Example 17.3.

We thus have an algorithm that allows us to construct the Bézier points of the
“extension” of b” to an adjacent patch. It should be noted that this algorithm does

C

o

b

Figure 17.6: Subdivision: the domain geometry.

290 Chapter 17. Bézier Triangles

Figure 17.7: Subdivision: the intermediate points from the de Casteljau algorithm
form the three subpatch control nets.

not use convex combinations (when a is outside a, b, ¢). It performs piecewise linear
extrapolation, and should therefore not be expected to be very stable.

If a is inside a, b, ¢, then we do use convex combinations only, and (17.18)
provides a subdivision algorithm. Just as a subdivides the triangle a, b, ¢ into three
subtriangles, the point b"(a) subdivides the triangular patch into three subpatches.
Equation (17.18) provides the corresponding Bézier points. Figure 17.7 gives an
illustration.

Just as in the curve case, if we insert a dense sequence of points into the domain
triangle, the resulting sequence of control nets will converge to the surface. This fact
may be used in rendering techniques or in intersection algorithms.

Figure 17.8: Subdivision: the Bézier points of a surface curve that is the image of a
straight line through one of the domain triangle vertices.

17.6. Differentiability 291

A special case arises if v is on one of the edges of the domain triangle a, b, c.
Then (17.18) generates the Bézier points of the surface curve through b"(v) and the
opposite patch corner; see Figure 17.8. Such curves, joining a vertex to a point on the
opposite edge, are called “radial lines.”

17.6 Differentiability

Consider two triangular patches that are maps of two adjacent domain triangles.
Any straight line in the domain that crosses the common edge is mapped onto a
composite curve in E°, having one segment in each patch. If all composite curves that
can be obtained in this way are C” curves, then we say that the two patches are C”
continuous.

Equation (17.18) gives a condition by which two adjacent patches b and b can
be part of one global polynomial surface. Both patches share the line # = 0, and are
clearly C” along it. If we relax this to some lower degree r of continuity, we only
have to consider r + 1 layers of control points of each patch, and we have a condition
for C” continuity between adjacent patches:

Bioiky = BEWVip =0,....7 (17.20)

Eq. (17.20) is a necessary and sufficient condition for the C” continuity of two
adjacent patches. If the patches share the boundaries v = 0 or w = 0, the conditions
are analogous.

Figure 17.9: C' continuity: the shaded pairs of triangles must be coplanar and be an
affine map of the two domain triangles.

292 Chapter 17. Bézier Triangles

For r = 0, (17.20) states that the two patches must share a common boundary
control polygon. The case r = 1 is more interesting because (17.20) becomes

b1 iy = vibujx + vabo jr1x + v3bo jrsr. (17.21)

Thuseachb; ;b is obtained as a barycentric combination of the vertices of aboundary
subtriangle of the control net of b*. Moreover, forall j + kK = n— 1, these barycentric
combinations are identical. Thus all pairs of subtriangles shown in Figure 17.9 are
coplanar, and each pair is an affine map of the pair of domain triangles of the two
patches.* We call the pairs of coplanar subtriangles that satisfy this condition affine
pairs. Example 17.3 gives more details.

We refer to Example 17.1. Let us define a second domain triangle that shares
the edge w = 0 with the given domain triangle and that has a third vertex a.
Let &’s barycentric coordinates with respect to the initial domain triangle be
(1, 1, —1). We can perform one de Casteljau algorithm step and obtain for the
b} (a):

3

6

6
3 6
3 3
0 15

A quadratic patch that is C! with the given one along its edge w = 0 is then
given by the control net

0
6
0

3
3
6

3

6

6
6 6
3 01,
15 9

where the e-entries could be any numbers; they have no influence on C!
continuity between the two patches.

Example 17.3: Computing a C! patch extension.

Tt is not sufficient that the pairs are coplanar—this does not even guarantee a continuous
tangent plane.

17.8. Nonparametric Patches 293

Figure 17.10 shows a composite C! surface that consists of several Bézier trian-
gles. The (wire frame) plot of the surface does not look very smooth. This is due to
the different spacing of isoparametric lines in the plot, not to discontinuities in the
surface. The generation of planar slices of the surfaces shows that it is in fact C'.

17.7 Degree Elevation

It is possible to write b” as a Bézier triangle of degree n + 1:
> obiBr@) = > b"Br (). (17.22)
lil=n lil=n+1

The control points b{" are obtained from

1
n+1

b = [ibi—e1 + jbi-ez + kbi_c3]. (17.23)
For a proof, we multiply the left-hand side of (17.22) by u + v + w and compare
coefficients of like powers. Figure 17.11 illustrates the case n = 2. Degree elevation
is performed by piecewise linear interpolation of the original control net. Therefore,
the degree elevated control net lies in the convex hull of the original one.

As in the univariate case, degree elevation may be repeated. That process gener-
ates a sequence of control nets that have the surface patch as their limit (Farin [169]).
More details are in Farin [178].

17.8 Nonparametric Patches

In an analogy to the univariate case, we may write the function

2= bBl(u) (17.24)
lil=n
as a surface
u i/n
v _ in | o
w | =2 |k | B
z lil=n bi

Thus the abscissa values of the control polygon of a nonparametric patch are given
by the triples i/n, as illustrated in Figure 17.12.The last equation holds because of
the linear precision property of the Bernstein polynomials B,

u=7y %B{'(u),

lil=n

294

Chapter 17. Bézier Triangles

v

31

i

\

\

\ N \\\
A
\ \\\\\\\\k\\

==

‘
|

\

e

0
.

&

Figure 17.10: Bézier triangles

: a composite C! surface. Top: the control net; next: the
piecewise cubic surface; next: the domain triangles; next: planar slices through the
surface.

17.8. Nonparametric Patches 295

Figure 17.11: Degree elevation: a quadratic control net together with the equivalent
cubic net.

and analogous formulas for v and w. The proof is by degree elevation from one to n
of the linear function u. Example 17.4 shows a nonparametric patch.

Nonparametric Bézier triangles play an important role in the investigation of
spaces of piecewise polynomials, as studied in approximation theory. Their use has
facilitated the investigation of one of the main open questions in that field: what is
the dimension of those function spaces? (See, for instance, Alfeld and Schumaker
[7]). They have also been useful in defining nonparametric piecewise polynomial
interpolants; see, for example, Barnhill and Farin [27], Farin [175], Petersen [392],
or Sablonniére [436].

Nonparametric Bézier triangles may be generalized to Bézier tetrahedra by
introducing barycentric coordinates in tetrahedra; see Exercise P1 at the end of the
chapter.

Figure 17.12: Nonparametric patches: the abscissas of the control net are the n-
partition points of the domain triangle.

296 Chapter 17. Bézier Triangles

The bivariate function z = x> + y? may be written as a quadratic nonparametric
Bézier patch over the triangle (0, 0), (2, 0), (0, 2). Its coefficients are:
[0]
2
L 4 -
[o] [1]
1 1
(- 0 - L 0 .|
[0 1] 2
0 0 0
| O | 0 4

Example 17.4: A nonparametric quadratic patch.

17.9 Rational Bézier Triangles

Following the familiar theme of generating rational curve and surface schemes, we
define a rational Bézier triangle to be the projection of a nonrational 4D Bézier
triangle. We thus have

Zlil:n W,Bln(ll) '
where, as usual, the w; are the weights associated with the control vertices b;. Needless
to say, for positive weights we have the convex hull property, and we have affine and
projective invariance.

Rational Bézier triangles may be evaluated by a de Casteljau algorithm in a
not-too-surprising way:

b*(u) = bi(u) = (17.25)

Rational de Casteljau algorithm:
Given: a triangular array of points b; € E3; |i| = n, corresponding weights wj, and
a point in a domain triangle with barycentric coordinates u.

Set:
r—1r—1 r—1 Hr—1 r—1 pr—1
b} (u) = UWiieaPirer + vwi+e2rbi+e2 + wwi+e3bi+e3’ (17.26)
Wi
where
— _ -1 -1 -1
wi = wi(w) = uw () + vwi (@) + wwi(u)
and

r=1...,n and lil=n—r

17.9. Rational Bézier Triangles 297

and b?(u) = by, w? = wj. Then bgj(u) is the point with parameter value u on the
rational Bézier triangle b”.

This algorithm works since we can interpret each intermediate b as the projection
of the corresponding point in the de Casteljau algorithm of the nonrational 4D
preimage of our patch.

Something surprising happens now. Everything thus far was yet another exercise
in generating rational schemes. In the case of rational Bézier curves, the initial weights
could be used to define weight points q;, as described in Section 14.2. In the triangle
case we can also define weight points g; by setting

Wite1Ditel T WiteaDirez + Witeabires

qi = ; lil=n—1
Witel T Wite2 T Witea

The usefulness of the q; in the curve case stemmed from the fact that they could be
used as a design handle: we could define points q; and then retrieve the weights w;.
Now, in the triangle case, this is no longer possible (first noted by Ramshaw [414]).
We can see why just by considering the quadratic case n = 2, illustrated in Figure
17.13.

If we were given a set of weights wi; [i| = 2, we would not only generate the
weight points q;, but also the point

_ woubori + wioibior + wiobiio
Woir + Wio1 + W10

The point p is then at the intersection of the three straight lines qgo;, bi1o, etc. If
we prescribed the three q; arbitrarily (as shown in Figure 17.13), those straight lines
would not intersect in one point any more, thus leaving p overdetermined. Since the

bo20

boo2
baoo

Figure 17.13: Weight points: an arbitrary choice of the three weight points g1, qe2, Ge3
would overdetermine the location of p.

298 Chapter 17. Bézier Triangles

existence of a set of weights implies the existence of p, the nonexistence of p implies
that we cannot find a set of weights if we prescribe the q; arbitrarily.

For higher degrees, the situation is analogous. So far, no geometric means is
known that could define weights similar to the weight point approach for curves. A
first step could be the paper by G. Albrecht [5].

We now give a formula for the directional derivative of a rational Bézier triangle.
Just as in Section 17.4, let d denote a direction in the domain triangle, expressed
derivative Dy of a rational triangular Bézier patch b"(u). Proceeding exactly as in the
curve case (see Section 13.4), we obtain

1
Dgb"(u) = m[i)(u) — Da(w)b*(w)],

where we have set
p(w) = wb"(w) =) wibiB{ (w).
lil=n

Higher derivatives follow the pattern outlined in Section 13.4, i.e.,

Dip(w) — Y~ Djw(w)D~ (w)

j=1

P
W= L

17.10 Quadrics

There were (at least) two motivations for the use of rational Bézier curves: they are
projectively invariant, and they allow us to represent conics in the form of rational
quadratics. While the first argument holds trivially for rational Bézier triangles, the
second one does not carry over immediately.

The proper generalization of a conic to the case of surfaces is a quadric surface,
quadric for short. A conic (curve) has the implicit equation g(x, y) = 0, where g is
a quadratic polynomial in x and y (see Section 13.5). Similarly, a quadric has the
implicit equation g(x, y, z) = 0, where ¢ is quadratic in x, y, z.

Quadrics are of importance in almost all solid modeling systems-—these systems
rely heavily on the ability to decide quickly if a given point is inside or outside a
given object. If that object is bounded by simple implicit surfaces, such a decision is
simple and reliable. If the object’s boundaries are made up from, say, bicubics, the
same decision is much more time-consuming and error-prone.

Every finite arc of a conic could be written as a quadratic rational Bézier curve—
can we also write every triangle-shaped region on a quadric as a rational quadratic
Bézier triangle? Let us try an octant of a sphere. In rational quadratic form, it
would have six control net coefficients and six associated weights. Since a rational
quadratic has no interior Bézier points, we only have to concentrate on the boundary
curve representation. They are quarters of circles, and their representation is given
in Section 13.7; see also Figure 17.14. Thus we should be done, but actually, we are

17.10. Quadrics 299

boo2

b200

Figure 17.14: The octant of a sphere: an attempt to write it as a quadratic rational
Bézier triangle.The weights of the solid control points are unity; the others have
weight 1/2.

stuck: if we try to evaluate our rational quadratic at u = [1, 1, 1], we do not end
up on the sphere! Thus not every triangular quadric patch can be represented as a
triangular rational quadratic patch. We have seen that rational quadratic triangular
patches and quadric triangular patches are far from being in a one-to-one relationship.
Luckily, this does not mean that we cannot express quadric patches as rational Bézier
triangles—we just have to use higher degrees. In fact, rational guartic Bézier triangles
are always sufficient for this purpose. Our initial example, the octant of the sphere,
has the following rational quartic representation (Farin et al. [189]). The control net
(for the octant of the unit sphere) is given by

[0,0,1]
[0,1] [0, o, 1]
[B,0, B [v. v 11 10,8 BI
[1,0,a] [1, %yl [% 1] (01 a]
[1,0,0] [1, 0] [B B.0] [a1,0] [0, 1,0]

where

a=03-D/V3 B=G3+1)/2V/3 y=1-(-2)T~-/3)/46.

The weights are

2
woso = 4v/3(V/3 = 1), woz1 = 3V/2, waz = 4, wiay = \\26 +2v2-3),

the other ones following by symmetry.

300 Chapter 17. Bézier Triangles

To represent the whole sphere, we would assemble eight copies of this octant
patch. Other representations are also possible: each octant may be written as a rational
biquadratic patch (introducing singularities at the north and south poles); see [400]. A
representation of the whole sphere as two rational bicubics (Piegl [395]) turned out to
be incorrect (see Cobb [108]). Quite a different way of representing the sphere is also
due to J. Cobb: he covers it with six rational bicubics having a cube-like connectivity
[107].

Let us now discuss the following question: given a rational quadratic Bézier
triangle, what are the conditions under which it represents a quadric patch? The
following will be useful for that purpose.

We defined a conic section as the projective map of a parabola, the only conic al-
lowing a polynomial parametrization. For surfaces, we again consider those quadrics
that permit polynomial parametrizations: these are the paraboloids, consisting of
elliptic and hyperbolic paraboloids and of the parabolic cylinders. Every quadric
surface may be defined as a projective image of one of these paraboloids.’

A paraboloid may be represented by a parametric polynomial surface of degree
two. However, as we have seen, not every parametric quadratic is a paraboloid. We
need an extra condition, which is easily formulated if we write the quadratic surface
in triangular Bézier form: A quadratic Bézier triangle is an elliptic or hyperbolic
paraboloid if and only if the second derivative vectors of the three boundary curves
are parallel to each other. It is a parabolic cylinder if those three vectors are only
coplanar. This statement is due to W. Boehm.

For a proof, we observe that nonparametric or functional quadratic polynomials
[i.e., of the form z = f(x, y)] include all three types of paraboloids, and all three
satisfy the conditions of the theorem. Next, we observe that every paraboloid may be
obtained as an affine map of a paraboloid of the same type. Thus every paraboloid
may be obtained as an affine map of a functional quadratic surface. Consequently,
the control net of any paraboloid must be an affine image of the control net of a
functional quadratic Bézier triangle.

In a projective setting, we would say that the boundary curves of functional
paraboloids intersect in one point (this may be the point at infinity) and have coplanar
tangents there. Since all quadrics may be obtained from the functional ones by
projective maps, we obtain the following characterization of quadric surfaces: A
rational quadratic Bézier triangle is a quadric if and only if all three boundary
curves meet in a common point and have coplanar tangents there. Figure 17.15 gives
an illustration; for more details, see Boehm and Hansford [75].

A quadric is determined by nine points. If nine points (xy, yy, z1), - - -, (X9, Y9, Z9)
are given, then their interpolating quadric may be written in implicit form as follows:

2y 2 xy xz yz ox y z 1
2oy oan oz oya v owo a1
q(x, 3, 2) = t=0 @727

2 2 2
X5 Yy Z; XoYe XoZo YoZg X9 Yo Zg 1

>W. Boehm (1990), private communication.

17.11. Interpolation 301

\\i\ 7\4”j/ .

Figure 17.15: Quadrics as rational quadratics: the defining condition is that the ex-
tensions of the three boundary curves meet in one point (marked by an arrow) and
have coplanar tangents there.

While theoretically a solution to the nine-point interpolation problem, (17.27) does
not lend itself to successful numerical treatment. The reason is the “= 0" part of
that equation: floating-point numbers rarely equal zero, and so tolerances must be
devised. It is not obvious how to do this here.

17.11 Interpolation

Triangular patches may also be used for scattered data interpolation: in that context,
we are given a set of points X; in the plane, each associated with a function value z; and
a tangent plane T;°. We wish to find a surface z(x) that interpolates to the given data,
i.e., z(X;) = z;. As a preprocessing step, the data sites x; are triangulated according to
Section 2.7. We then wish to construct a triangular patch over each of the triangles.
These patches will not be parametric, but rather functional, as in Section 17.8.

We should note that more methods exist for the problem of scattered data inter-
polation; excellent surveys are in [217], [218], [219], [292].

The assumption of given tangent planes or gradients is not always realistic. Where tangent
plane information is not supplied, it will have to be estimated.

302 Chapter 17. Bézier Triangles

Figure 17.16: The nine-parameter interpolant: nine of its 10 Bézier ordinates are di-
rectly determined from the given data.

17.11.1 Cubic and Quintic Interpolants

In order to illustrate the basic methodology, we discuss the so-called nine-parameter
interpolant. We now assume that we are given function values and also gradients
(i.e., x— and y— partials, or tangent planes).’

A nine-parameter interpolant will be cubic over each triangle, thus being deter-
mined by 10 coefficients or Bézier ordinates. Nine of these are immediately deter-
mined by the given data, see Figure 17.16: clearly the three values bsgq, by3g, boo3 are
simply the given function values at the triangle’s vertices. Instead of considering all
remaining coefficients, we restrict ourselves to by, . Its location ag,, in the x, y-plane
is given by

1
12 = 7Xp03 T 7 X030
3 3 ’

where Xgp3 and X3 are given data sites (relabeled here for convenience). The
given tangent plane at Xqg; is of the form z(x, y) = Zygs + xXoos + yYoo3, Where
Zoo3, Xoo3, Yooz are given position, x— and y— partials. Then we simply have to
evaluate that plane at ag;; and we have by:

bo1z = z(ap12).

The remaining Bézier ordinates are found in the same way. Note that this process is
simply univariate cubic Hermite curve interpolation as outlined in Section 6.5!

The tenth coefficient, b,) 1, is not determined by the data. It is independent of
the prescribed data and can be assigned any arbitrary value. A reasonable choice is
to select by) ; such that quadratic precision of the interpolant is maintained, i.e., if
the nine prescribed data were read off from a quadratic, then the interpolant would
reproduce this quadratic. If a quadratic is degree elevated to cubic, the coefficient
by,1,1 may be expressed as

1 1
bii1 = Z(bZ,D,l + b2+ bop1 + boy2 + baio T bioo) — g(bz,o,o + bo3o + boo3)-
(17.28)

"The assumption of given tangent planes is not too realistic; most likely, these will have to
be estimated from the given function values.

17.11. Interpolation 303

Thus choosing b, ;1 according to (17.28) ensures quadratic precision of the inter-
polant. P. Alfeld® has pointed out that other choices of b; | | also ensure quadratic
precision; it is an open question if any of these choices can be sensibly labeled “best.”

In a situation where data are prescribed at several triangles in a triangulation, the
preceding interpolant has a serious drawback: it requires C! data, but the produced
overall surface is only C°. The reader is invited to construct an example!

If we insist on C! continuity, we could raise the degree from three to five. We
then have to prescribe position, two first and three second derivatives at the vertices
of each triangle. This fixes 18 of the quintic’s 21 coefficients. The remaining three
are used to ensure C! continuity between neighboring patches, in the same way as
described later for the Clough—Tocher interpolant. This method for C! interpolation
is described in detail in [27]—see Figure 17.17 for an illustration. Again, we have
the drawback that second-order information has to be supplied, yet only first-order
smoothness is obtained.

17.11.2 The Clough-Tocher Interpolant

This interpolant is conceptually the simplest of all so-called split-triangle inter-
polants, and it has been known in the finite element literature for some time; see
Strang and Fix [480]. It is characterized by the “simplest” symmetric split of a tri-
angle: each vertex is joined to the triangle’s centroid; thus a macro-triangle’ is split
into three mini-triangles. Any other interior point other than the centroid would do;
the centroid is chosen for symmetry reasons.

The first-order data that this interpolant requires are position and gradient values
at the vertices of the macro-triangle, plus some cross boundary derivative at the

Figure 17.17: Quintic C' interpolants: the solid points are derived from the C? data at
the vertices; the open ones have to be chosen in order to ensure C ! continuity across
patch boundaries.

8Private communication, 1985.
The given triangles in a triangulation are referred to as macro-triangles in order to differ-
entiate between them and the triangles resulting from the splitting process, the mini-triangles.

304 Chapter 17. Bézier Triangles

midpoint of each edge. The prescribed cross boundary derivative could be in any
direction not parallel to its edge; but since adjacent macro-triangles should share
the same data along the common edge, it is most natural to choose the direction
perpendicular to that edge. We then speak of a cross boundary normal derivative.

In summary, we have 12 data per macro-triangle. Itis easily seen that interpolation
to this data produces a globally C' surface if cubic polynomials are employed over
each mini-triangle.

We shall now turn to the description of the actual interpolant; we refer to Figure
17.18. The Bézier ordinates of the three boundary curves (marked by full circles) are
found exactly as for the nine-parameter interpolant. The next “layer” of ordinates,
marked by full circles and triangles, is determined if we enforce interpolation to
the cross boundary derivatives: The cross boundary derivative, evaluated along an
edge, is a univariate quadratic polynomial. It can be written as a univariate Bézier
polynomial with three coefficients according to (17.17). The first and last of the three
coefficients are determined by the gradients at the vertices, the center one as well by
the cross boundary derivative at the midpoints of that edge.

We are still left with the task of specifying the ordinates marked by diamonds
in Figure 17.18. Since the interpolant must be C' over each macro-triangle, those
ordinates must satisfy the C' conditions. Thus each of the three outer ordinates of
the four ones under consideration must be the average of the adjacent three ordinates
that have already been determined. Finally, the center ordinate must be the average
of the three ones just found.

In many applications, we will not be given the required cross boundary deriva-
tives at the edge midpoints. The most obvious method to estimate this derivative is
condensation of parameters: For each edge of the macro-triangle, the cross bound-
ary derivatives can be computed at its two endpoints. The midpoint cross boundary
derivative is simply set to be the average of those values. A more involved, but gener-

Figure 17.18: The Clough-Tocher interpolant: each macro-triangle is split into three
mini-triangles.

17.11. Interpolation 305

ally better, result is described in [175]. That methods attempts to minimize the jump
in the second cross boundary derivative across two neighboring patches; see also
[188].

We conclude this section with a somewhat surprising result (recall that the
Clough-Tocher interpolant is designed to be C'): The Clough-Tocher interpolant is
C? at the centroid of the domain triangle, although it was designed to be just C!! For
a proof, consult [178].

17.11.3 The Powell-Sabin Interpolant

These interpolants produce C' piecewise quadratic interpolants to C! data at the
vertices of a triangulated data set; see Powell and Sabin [408]. Each macro-triangle
is split into six mini-triangles using the incenter as the interior split point.!” Edges
are split by joining incenters of neighboring triangles; see Figure 17.19. The Bézier
ordinates of the quadratic mini-patches are determined in three steps as shown in
Figure 17.19. Any two adjacent macro-triangles of this type will be differentiable
across their common edge: by construction, each cross boundary derivative is just
one linear function instead of being piecewise linear.

Figure 17.19: The Powell-Sabin interpolant: a macro-triangle is split into six mini-
triangles.

10The original Powell-Sabin interpolant was more involved.

306 Chapter 17. Bézier Triangles

The Powell-Sabin interpolant uses more triangles than does the Clough—Tocher
method—but it is easier to contour. Each Powell-Sabin patch is a quadratic of the
form z = f(x, y), and a contour is of the form ¢ = f(x, y), i.e., a conic. This conic
may be written as a rational quadratic Bézier curve according to Chapter 13. Its Bézier
points and weights may be determined by solving a number of quadratic equations;
see [S02].

17.12 Implementation

We include a function for the evaluation of a Bézier triangle. It uses a linear array for
the coefficients b; in order to avoid a waste of storage by putting them into a square
matrix.

tri_decas(bpts, tri_num, ndeg, u, b, patch_pt)

/*

Function: Triangular de Casteljau algorithm for an n"th
degree triangular Bezier patch.
Algorithm is applied once for a given (u,v,w) and works on one
coordinate only.

Input: bpts[il Bezier points (of one coordinate)
as a linear array (see below).
i=0...tri_num

tri_num Based on the degree of the patch.
(n+1) (n+2) /2

ndeg Degree (n) of the patch.

ulil oo Barycentric coordinates (u,v,w) of
evaluation point. i=0,2

blil.....oooiiit A working array with dimension >=
to bptsl[].

Output: patch_pt One coordinate of the point on

the patch evaluated at (u,v,w).

bl ..o Contents have been changed.

Linear array structure: It is assumed that the usual (i,k,j) structure
of the Bezier net has been put into a linear
array in the following manner.

(E.g., for n=3)

b_(300) --> bpts[0] (u=1)

b_(030) --> bpts[6] (v=1)

b_(003) --> bpts[9] (w=1)
*/

17.13. Exercises 307

17.13 Exercises

*3.

*4,
PI.

P2.

P3.

Find the barycentric coordinates of the incenter of a triangle.
Suppose that in Figure 17.13 we prescribed p instead of the three q;. We could
then find several sets of weights. Can that idea be generalized to higher degrees?

Work out exactly how terms involving B; (d) generalize the univariate difference
operator.

Show that the Bernstein polynomials B'(u) are linearly independent.

In Section 16.8, we saw how to modify surfaces by embedding them in the unit
cube and then distorting it using trivariate tensor product schemes. Experiment
with the following: instead of embedding a surface in a cube, embed it in a
tetrahedron and distort it using a Bézier tetrahedron:

b(u) = " biB} (w),

lil=n

where now u = (u, 4, us, us) are barycentric coordinates in a tetrahedron. Also
try to embed the surface into a collection of tetrahedra for more local control.
More literature on Bézier tetrahedra: de Boor [127], Farin [178], Hoschek and
Lasser [292], Goldman [229], Lasser [321], and Worsey and Farin [501].

Work out a degree reduction procedure for Bézier triangles. Literature: Petersen
[392].

Exercise 2 of Chapter 6 addressed the similarity between the Aitken and de
Casteljau algorithms. Generalize to the triangular patch case and write a program
that modifies tri_decas accordingly.

Chapter 18

Geometric Continuity
for Surfaces

The concept of geometric continuity is not restricted to curves. Surfaces in this regard
are much more complex to deal with, so we will restrict ourselves to the case of first-
order geometric continuity. Here are some pointers to the literature: Boehm [70],
Charrot and Gregory [100], DeRose [146], Farin [171], Gregory [255], Hahn [269],
Herron [279], Liu and Hoschek [337], Kahmann [303], Kiciak [307], Jensen [296],
Jones [302], Nielson [376], Piper [402], Sarraga [445], [446], Shirman and Séquin
[474], van Wijk [487], Vinacua and Brunet [494], and Veron et al. [491].

18.1 Introduction

Let us take a look at Figure 18.1. It shows the (potential) boundary curves of two
cubic triangular Bézier patches. In each, the interior control point by;; is missing.
Can we determine these two missing points such that the resulting two patches form
a C! surface? We must thus produce two control nets that satisfy the C! condition
as illustrated in Figure 17.9. But this is not possible in our example: the two shaded
pairs of triangles in Figure 18.1 are not affine pairs in the sense of Section 17.6, i.e.,
they cannot be obtained as an affine map of one pair of domain triangles.

We have a better chance of solving the problem if we relax the requirement of
C' continuity to that of G! continuity: two patches with a common boundary curve
are called G' if they have a continuously varying tangent plane along that boundary
curve. The concept of G! continuity is a genuine generalization of C! continuity: all
(nondegenerate) C ! surfaces are G, but not the other way around.

An example (if somewhat simplistic) of a G' yet non-C' surface is easily con-
structed: take two triangles formed by the diagonal of a square in the (x, y)-plane
and interpret them as two linear Bézier triangular patches. They are clearly G', but
they are not C! if we pick as their domain the two adjacent triangles with vertices
(0,0),(1,0), (0, 1) and (0, 0), (1, 0), (—1, 0).

308

18.2. Triangle-Triangle 309

Figure 18.1: G' continuity: the shown cubic curves cannot be the boundary curves of
two C' cubic Bézier triangles since no suitable pair of domain triangles can be found.

One important aspect of G' continuity is that it is completely independent of the
domains of the two involved surface patches. For C! continuity, the interplay between
range and domain geometry was crucial, but now the domains are only needed so
that we can evaluate each patch.

We will next discuss the different configurations of G' continuity between trian-
gular and rectangular patches.

18.2 Triangle-Triangle

In this section, we shall construct a (sufficient) condition for two adjacent triangu-
lar Bézier patches to be G'. We only have to consider the control polygon of the
common boundary curve and the two “parallel” rows of control points in each patch.
The situation is illustrated in Figure 18.2, where some suitable abbreviations are
introduced.

Figure 18.2: G' continuity: the G' constraints may be expressed in terms of the de
Casteljau algorithm. The quartic case is shown.

310 Chapter 18. Geometric Continuity for Surfaces

Let x(¢) be a point on the common boundary curve of the two patches. It may be
constructed using the de Casteljau algorithm from either patch since the de Casteljau
algorithm yields the tangent plane at a point (see Section 17.4), being spanned by
the b~ 1. These points are labeled p(¢), q,(?), q.(¢), and r(z) in Figure 18.2. The two
patches are G if these four points are coplanar for all ¢, i.e., if the lines Pr and @, q;
always intersect.! This means that numbers A and p exist such that

Ap() + (1 = Mr() = uqp(r) + (1 = pw)q.(r) (18.1)
for all 7. Of course, u = w(¢) and A = A(¢).
We can write explicit expressions for p(t), q5(¢), q.(¢), and r(t):

n—1

p() = > _pBr (1),

i=0

n—1

Q) =Y @Bl (@),

i=0

n—1

Q) =Y g B (1),

i=0

n—1

r(t) = Z B ().

i=0

We now attempt to simplify our task of formulating G! conditions: we make the
assumption that A(#) and u(¢) are both linear, i.e.,

A@) = Ao+ Mt u(8) = po + s

Our G! condition (18.1) can then be written

n—1 n—1
Qo+ MDY PBI T O + (1= A~ Mit) Y 6Bl (1)
i=0 i=0
n—1 n—1
= (o +) Y GBI O+ (1= po— DD @1 BT,
i=0 i=0
Rearranging:
) n—1 P+1 .
Z[Aop. + (1= MBI+ N Y s — ril— Bl
i=0 i=0
n—-1 n—1
[pogi + (1 = po)gi+11B] " + i > [q; — ALY
i=0 i=0

1To be precise, we must also require that p and r be on differens sides of q, and qp; otherwise
we might generate surfaces that double back on themselves along the common boundary curve.

18.2. Triangle-Triangle 311

The terms B}, | were obtained from (5.33). We next perform degree elevation on the
B!~! terms and compare coefficients of the resulting B, which yields

i
n

é[()\o T ADPi-1 + (1= A — Apr—q] + (1 -) [Aop; + (1 — Ag)ri]

[(o + m)gqi-1 + (1 — po — wpgil + (1 - %) [roqi + (0 — mo)di+1]-

S|~

We may simplify this by setting

ar = Ao+ A, Br =t ag = Ao, Bo = o

and rearranging:

%[[alpiﬂ + {1 —a)ri] - [Biqi—1 + (A — Bl)qi]]

i (18.2)
= - (1 - ;) [[aopi + (1 = ao)ri] — [Boq: + (1 — Bo)ql'ﬂ]]-
This is our desired G! condition. If it holds for alli = 0, ..., n, the two patches have
a continuous tangent plane all along their common boundary.

To arrive at a geometric interpretation of (18.2), we first consider the special
cases i = 0 and i = n. Fori = 0, we obtain

aopo + (1 — ag)rg = Bodqo + (1 — Bo)qy, (18.3)

and i = n yields

a1Pr-1 + (1 - al)rn—l = qun—l + (1 - Bl)qn- (184)

These equations describe the geometry of the planar quadrilaterals formed by
Po 90, Yo, 9; and p,—1, Q.—1, Tn—1, qn, respectively. If we were given the two quadri-
laterals in some application, we could then readily determine oy, oy, Bo, B1 by
interpreting (18.3) and (18.4) as two overdetermined linear systems for those quan-
tities. If the involved quadrilaterals are planar, unique solutions will exist.

Let us concentrate on pg, (g, Iy, q;- The two numbers «y and By tell us how
to compute the intersection of the two diagonals: either as agpg + (1 — ag)ry or as
Bodo + (1 — Bo)q,. In any other quadrilateral, formed by p;, r;, q;, q;+1, the analogous
two expressions ogp; + (1 — ag)r; and Bopq; + (1 — By)q;+1 will in general yield two
different points. The difference vector of these two points is an indication of how
much the shape of the arbitrary quadrilateral differs from that of py, qo, I'o, q;. This
difference vector may be written as

d;o = [ogp; + (1 — ap)ri] — [Boq: + (1 — Bo)i+1].

Similarly, we may measure how the quadrilateral p;, r;, q;, q;+1 differs from p,—1,
| P qnfly qn:

d;, = lapi-1 + (1 — ap)r;] — [Biqi-1 + 1 — BDq:]

312 Chapter 18. Geometric Continuity for Surfaces

Figure 18.3: G! continuity: for two quadratics, the shape difference vectors d; , and
d; o are shown. Note that they sum to 0.

Now our G! condition takes on the simple form
la;, + (1 - i) do=0; i=0,...,n (18.5)
n n

The quadratic case is illustrated in Figure 18.3. This case is of special interest: our
G! condition is only sufficient, not necessary, in general. However, for quadratics, it
is both sufficient and necessary.?

18.3 Rectangle-Rectangle

We now consider two tensor product Bézier patches with a common boundary curve
of degree n, illustrated in Figure 18.4. Consider any point x(#) on this curve. It may be
constructed using the (univariate) de Casteljau algorithm. The de Casteljau algorithm
yields the tangent of a curve as a by-product (Section 4.5), namely, as the difference
of the two intermediate points b} ! and bg‘l. In Figure 18.4, those two points are
labeled q,, and q,. It now follows that the tangent plane of the left patch in Figure 18.4
is spanned by the points p, q,, q, and that of the right patch is spanned by qp, q,, T,
where

p() = > piBl(D)

i=0

and

r(t) = ZriB,f’(t).

i=0

We could now follow a similar development, as in the previous section, but a little
trick will give us our desired G' condition easily. Let us simply degree elevate the

2This was observed by T. DeRose (1989), private communication.

18.4. Rectangle-Triangle 313

____——OI'g—

do = o

Figure 18.4: G' continuity for rectangular patches: the shaded quadrilateral must be
planar as it varies along the common boundary. The case of a cubic boundary curve
is shown.

common boundary curve from degree n to n + 1. Call the degree-elevated control
points o, - . ., §,+1 (see Section 5.1 for the degree elevation procedure). Now we are
in the situation of the previous section! Namely, we have n + 1 control points p;,
n + 2 control points §;, and # + 1 control points r;. Our situation is equivalent to that
of a G! join between two triangular patches of degree n + 1.
The desired G! condition is therefore given by
i N N
[[alpiﬂ + A —a)ri] = [Bi1@i-1 + (1 — Bl)qi]:l
n+1 .
[A A
= - (1 T 1) [[aopi + (1 = ao)ri] = [Bo§; + (1 — Bo)qz'+1]],
(18.6)

where i varies from O ton + 1.
The geometric interpretation is analogous to that of the preceding section.

18.4 Rectangle-Triangle

This situation, illustrated in Figure 18.5, is now treated in a completely analogous

way. We assume that both patches have a common boundary curve of degree n. If

we degree elevate the triangular patch (Section 17.7), we have the control point rows

Do, - - -, Pn (from the tensor product patch), q, . . . , §»+1 (the degree elevated common

boundary curve), and ry, . .., r, (from the degree elevated triangular patch). Thus the

G! condition is

[" N N
P [[mpi—l + (.1 —a)ri—1] = [B1Gi-1 + (1 — Bl)qi]:|
1 n ~ A~
== (1 T 1) [[aopi + (1 = ag)r;] — [Bod; + (1 — ﬁo)qz'ﬂ]},

(18.7)

again with i ranging from 0 to n+1.

314 Chapter 18. Geometric Continuity for Surfaces

q0 = Qo

Figure 18.5: G!' continuity for triangular and rectangular patches: the shaded quadri-
lateral must be planar as it varies along the common boundary. The case of a cubic
boundary curve is shown.

18.5 “Filling In” Rectangular Patches

Suppose that we were given the boundary curves of two bicubic patches, as shown
in Figure 18.4. At the endpoints of the common boundary curve, we assume that the
three curves meeting there have coplanar tangents. Can we find interior Bézier points
P1, P2 and ry, r; such that the two patches will have a continuously varying tangent
plane along the common boundary? We shall employ the G' condition (18.6) for this
purpose. As a first step, we determine a and S from pg, o, ro, §1 and @y, B; from
P3 @3, 13, G-

There are three equations in (18.6) that involve our four unknowns p;, p, and
r;, rp. After some suitable modification, they are of the form

aoP1 + (1 - ao)l'l = rhsl,
1P + (1 - al)rl + agp2 + (1 - (Xo)l'z = rhs2,
a1p2 + (1 — ay)rp, = rhs3.

We have abbreviated the right-hand sides of the equations somewhat.
The preceding may be written in matrix form:

Ax = b, (18.8)
with
(o %)) 1- (o %))
A= o 11— a 1-o ;

a; (1—a)

X = [py, p2, I, 1], and b = [rhsl, rhs2, rhs3]7.

18.7. Theoretical Aspects 315

Since the rows of A are linearly independent, the underdetermined system (18.8)
always has solutions. One way of finding one is as follows: suppose we already have
an estimate X = [Py, po, Ty, 2] for the unknowns. Then one solves the system

AATy = b — AX
for y, and the solution is given by
x=x+ ATy

This solution stays as close as possible to the initial guess X; see [77].
The F; and p; could, for instance, be generated by Adini’s twists (see Section
16.3). This idea was carried out by Sarraga [445], [446] in a slightly different context.

18.6 “Filling In” Triangular Patches

Let us reconsider Figure 18.1. Do our G' conditions allow us to complete the cubic
curve network such that the resulting surface will be G? In our notation, the unde-
termined points are p; and r;. There are two G' equations that involve these points.
They are of the form

a1p1 + (1 - al)rl = rhsl,
agpr + (1 - ao)rl = rhs2.

The coefficient matrix of this system:

A= |: ag 1- (04] :|
o 1 —a
is singular if &y = «. Therefore, in this case, we are not guaranteed to have a solution
(see Piper [402] for an explicit counterexample).

We can, however, solve the problem if we resort to quartics. After we degree
elevate all boundary curves, we now have to determine unknown control points py, p,
and ry, r. This is exactly the situation from the preceding section and is solved in
exactly the same way. B. Piper [402] first used quartics to solve this kind of Hermite
interpolation problem.

18.7 Theoretical Aspects

We have developed an approach to geometric continuity that is powerful enough
to solve several applications-oriented problems. It is practical, but it is not general:
there are G! surfaces that do not satisfy the condition (18.2); see exercises. T. DeRose
has developed conditions that are both necessary and sufficient for G! continuity of
adjacent Bézier patches.

316 Chapter 18. Geometric Continuity for Surfaces

Several authors (consult the surveys by Boehm [70], Herron [279], and Gregory
[255]) define geometric continuity of surfaces in the following way: two surfaces that
share a common boundary curve are called G” if, for every point of the boundary
curve, a reparametrization exists such that both surfaces are C” in a neighborhood
of that point. For the case r = 1, this definition yields tangent plane continuity. Its
advantage is that it also works for higher orders; the price to be paid is that it is
rather abstract. For the case of G* continuity, another popular definition is to require
acommon Dupin’s indicatrix along the boundary curve (see Section 22.12, Kahmann
[303], and Pegna and Wolter [383]).

18.8 Exercises

1. In Section 18.1 we saw an example of triangular patch boundaries that could
not be completed to construct an overall C! surface. Find similar examples for
tensor product patches.

2. Show that the G! conditions (18.2) include the case of strict C! continuity (17.21)
between triangular patches.

*3, Construct surfaces that are G' yet do not satisfy (18.2).

*4. Consider eight triangular patches, assembled so as to form eight octants of a
sphere-like surface. Show that this closed surface cannot be C', i.e., one cannot
find a region in the plane that is composed of eight triangles that have a C! map
that maps them to the surface.

P1. Construct a sphere-like G' surface that is made up of six biquartic patches having
a cube-like connectivity.

Chapter 19

Surfaces with Arbitrary
Topology

The surfaces that we have met so far are best suited for shapes that are the image
of some part of the plane—of a rectangle in the case of B-spline or Bézier surfaces,
or of a triangulated region in the case of composite Bézier triangles. This limits the
topology of these surfaces; for example, it is not possible to construct even a sphere
without introducing degenerate patches while using a C' map of a part of the plane.
Many shapes that have the topology of a planar region are too complex to model with
one tensor product surface; just imagine modeling a glove that way. The complexity
issue may be tackled using the approach of hierarchical B-splines, as proposed by
Forsey and Bartels [216].

In this chapter, we will investigate methods that are suited for the construction of
shapes of arbitrary complexity and/or topology. We can only present a brief selection
of methods; more literature on the topic can be found in [161], [510], [489], [488],
[487], [253], [254], [257], [278], [363], [344], [507], [339]. The basic concepts of
surface topology are nicely explained in [280].

19.1 Doo-Sabin Surfaces

The fundamental idea of this kind of surfaces goes back to Chaikin’s algorithm;
see Section 10.7. There, we started with a polygon, iteratively applied a refinement
procedure to it, and observed that in the limit we ended up with a smooth curve.
M. Sabin and D. Doo asked whether this principle could be carried over to surfaces:
start with a polyhedron, iteratively apply a refinement procedure to it, and see if a
smooth surface would result.

They then came up with the following algorithm, illustrated in Figure 19.1 and
documented in [157]: Input: an arbitrary (open or closed) polyhedron with vertices p;.

317

318 Chapter 19. Surfaces with Arbitrary Topology

Figure 19.1: The Doo-Sabin algorithm: a new polyhedron is constructed by a refine-
ment procedure.

These vertices form (straight) edges and (not necessarily planar) faces, thus defining
the topology of the polyhedron. The refinement step now becomes:

1. Find the centroid of the vertices of each face.

2. Find the midpoints of all straight lines joining these centroids to their defining
vertices.

3. Construct a new polyhedron from these midpoints. Step 3 needs some more
explanation. The new polyhedron will have faces that are constructed according
to three different rules:

3a. The F-faces are found by connecting the midpoints of each original face.

3b. The E-faces are found by considering any two original faces sharing a common
edge: there are exactly four midpoints on the lines connecting each face centroid
with the edge endpoints. These four points produce a four-sided face.

3c. The V-faces are formed by considering all E-faces around an original vertex.
They surround a face that is “centered” around that vertex.

As we keep repeating the algorithm, it produces mostly four-sided faces. The
only non-four-sided faces are F-faces near those initial vertices whose valency! is
not four. In fact, it is not hard to see that after the first step the valencey of every
new vertex is four. In this manner, large regions of the new polyhedra are covered
with nets that seem to have a tensor-product structure. Let us analyze what the Doo—
Sabin algorithm does in those regions. Referring to Figure 19.2, we see that it is
nothing but inserting interval midpoints into the u— and v— knot sequences of a
uniform biquadratic B-spline surface! So evidently Doo—Sabin surfaces are “mostly”
biquadratic B-splines.

Non-four-sided faces play a different role: once we have created one, it will never
go away, it will just become smaller. It turns out that the surrounding biquadratic B-

!The valency of a vertex is the number of edges emanating from it.

19.1. Doo-Sabin Surfaces 319

Figure 19.2: The Doo-Sabin algorithm: in regularly gridded parts of a polyhedron, it
is equivalent to biquadratic B-spline knot refinement.

splines still form a smooth, or G!, overall surface near those “extraordinary points.”
This result is far from trivial to show, and goes back to Doo/Sabin [157]. See also
[16], [17], [419]. Figure 19.3 gives an example of several steps of the algorithm.

As a rather trivial observation, Doo-Sabin surfaces have the convex hull and
local control properties, and their construction is affinely invariant. But they also
do not need an underlying parametrization, which makes them more geometric than
tensor product B-spline surfaces. A drawback of this nice feature is the problem of

Figure 19.3: The Doo-Sabin algorithm: an example.

320 Chapter 19. Surfaces with Arbitrary Topology

point evaluation: while we can evaluate as many points as close to the surface as we
like, computation of just one point is not trivial.

One set of points on the surface is easy to identify: at every level of subdivision,
the centroid of any face will be on the final surface. For a proof, we observe that any
face will produce a sequence of F-faces converging to its centroid. In the limit, the
centroid is thus on the surface.

The same issue of Computer Aided Design that included the Doo-Sabin alo-
gorithm also contained a competing method, invented by E. Catmull and J. Clark;?
see [92]. While Doo—Sabin surfaces are a generalization of biquadratic B-splines to
arbitrary topology, Catmull-Clark surfaces generalize bicubic B-spline surfaces to ar-
bitrary topology. However, they fail to carry over one important aspect: while bicubic
B-splines are C?, one would expect their generalizations to be G2. Yet Catmull-
Clark surfaces are only G' at the extraordinary points; see [16], [17]. They are G?
everywhere else.

19.2 Interpolation

When dealing with B-splines, we could start from a control polygon and design
a curve, or we could start with data points and find an interpolating curve. We
can also use recursive subdivision surfaces for interpolation. The idea goes back
to Nasri [370] and to Lounsbery, Mann, and DeRose [341]. The latter reference
constructs interpolating Catmull-Clark surfaces, while Nasri constructs interpolating
Doo-Sabin surfaces—we will focus on them.

So givenis a polyhedron with vertices p;, and we wish to find another polyhedron
with vertices v; such that the resulting Doo—Sabin surfaces passes through the p;.
Each of the (unknown) v; will generate a V-face with vertices q;;k = 1,..., n;,
where n; is the valency of v;. We know that the centroids of these V-faces are on the
surface, and we simply require them to be the given data poins:

1
pi = —(qi + -+ qin)
n;

Note that the given points are not on the faces of the desired polyhedron, but rather
on the V-faces obtained from it after one level of subdivision; see Figure 19.4 for an
illustration.

Since the relationship between the q;; and the unknowns v; is known, we have a
set of linear equations relating the given p; to the unkown v;. For closed polyhedra,
the number of equations equals the number of unknowns, leading to a sparse linear
system. For open polyhedra, the situation is more complicated; it is dealt with by
Nasri [369].

2This is Jim Clark, founder of Silicon Graphics and Netscape.

19.3. S-Patches 321

Figure 19.4: Interpolating Doo-Sabin surfaces: the intermediate points g, are used to
set up a linear system.

19.3 S-Patches

All polynomial patches that we have seen so far were maps of either a domain
rectangle or a domain triangle, resulting in rectangular or triangular patches. If we
want to build surfaces of arbitrary topology from a collection of patches, it may be
desirable to include patches with more edges than just three or four. One way to do
this is due to T. DeRose and C. Loop; see [152], [153], [339].

In order to build an s-sided patch, we take as its domain a convex 2D polygon
P, with vertices py, ..., Ps, ordered counterclockwise. For every point p inside this
polygon, we construct “generalized barycentric coordinates” uy, . . ., us, by consider-
ing all triangles formed by p and the polygon vertices p;—this approach is due to
Charrot and Gregory [100]. If the area® of triangle p, p;, pi+1 is denoted by A;, then
we define

m = Ay Ao Ajyr A

Since these 7; do not sum to one, we normalize and obtain
.
= (19.1)
1 + -+ n
For s = 3, we obtain standard barycentric coordinates in a triangle. If p is on the
edge p;, P;;1 of Py, then only u; and u;,; are nonzero.
The key idea now is this: since the u; sum to one, they may be interpreted as
barycentric coordinates of an (s — 1)-dimensional simplex S;; see Section 2.6. We call

3If p is outside the polygon, we use signed areas.

322 Chapter 19. Surfaces with Arbitrary Topology

the vertices of the simplex s;; [i| = 1. In particular, if s = 3, the simplex is a triangle;
if s = 4, it is a tetrahedron. We associate the point p; of P; with [0, 1, 0691, All
points u = (u,..., u,) inside this simplex that have barycentric coordinates (19.1)
trace out a two-dimensional subset of the simplex. It has the property that if p is on
one of P;’s edges, then u is on the corresponding edge of S;.

Next, we may define a Bézier patch over S;. Recall that S; is just the domain of
that patch; the corresponding Bézier points may “live” in any dimension. We restrict
them to be three-dimensional points b;, with [i| = n, the degree of the Bézier patch.
This number 7 is referred to as the “depth” of the S-patch. The equation of the S-patch
becomes

x(u) = j{:lanan. (19.2)

lil=n

As we are interested in a surface patch, i.e., a map of the inside of P to that patch,
we constrain u in (19.2) to satisfy (19.1).

In order to define an s-sided S-patch of depth n, we thus have to specify a control
net with vertices b;, having the connectivity of S;. The polygon 2 is its domain;
if we want to evaluate at a point p € P, we first find p’s generalized barycentric
coordinates u, and then evaluate (19.2) by carrying out an (s — 1)-dimensional
de Casteljau algorithm with the 3D points b; as control net. See Figure 19.5 for an
illustration.

We note that formally the degree of x(u) is n. But since each u; is a rational linear
function of p’s location, the actual structure of the S-patch is that of a rational poly-
nomial of degree n(s — 2). However, when s = 3, S-patches are standard polynomial
Bézier triangles of degree n.

We should note that more approaches exist for s-sided patches: the reader is
referred to the survey articles [488] and [254].

b20000

b
D11000

bo2000

boo200

Figure 19.5: S-patches: an example for s = 4 and n = 2.

19.4. Surface Splines 323

19.4 Surface Splines

As we iterate through the Doo—Sabin algorithm, more and more of the surface is
covered by biquadratic patches, just leaving the extraordinary regions. After two
iterations, these are already nicely separated—they correspond to s-sided regions. J.
Peters had the idea of deviating from the Doo—Sabin procedure after two steps and
filling in these s-sided regions with a collection of bicubics, such that the overall
surface is G'; see [391], and also [390] or [387]. It is not equivalent to the Doo—Sabin
surface, but it has the advantage of being a collection of standard patches without
singularities.

The situation after two (or more) steps of the Doo—Sabin algorithm is shown in
Figure 19.6. We have so far created the points marked by squares. The solid squares
mark control points surrounding an s-sided region, while the open ones are control
points of the network of biquadratic patches. We are going to cover the s-sided region
with a collection of s bicubic patches, all having a center point ¢ in common. This
center point is simply the average of all solid control points surrounding the s-sided
region, only partially shown in Figure 19.6.

Next, we have to degree elevate each quadratic boundary curve of the s-sided
region and to subdivide it at its (parametric) midpoint. This gives two boundary
curves of each bicubic patch.

The “outer” two layers of each bicubic patch lie on bilinear patches, as shown
in Figure 19.6. Their computation* is illustrated for the four top left points in that
figure:

[boo bor | _
bip bu

D= D=
A r—
—
—
(I
=Ry
—_—
—
N— tl—
R a—
| |

Figure 19.6: Surface splines: the control points determining the Bézier points b;; of
one bicubic patch.

“We give a slightly simplified version of Peters’ original development [391] here.

324 Chapter 19. Surfaces with Arbitrary Topology

Figure 19.7: Surface splines: an example.

The remaining eight Bézier points along the outer patch boundary are found
analogously.
The three remaining Bézier points byy, bas, bs, are determined as follows:

. X 4 s 27 d(i+j)+d(i+j+l)
i 1 .
b9 = b = > eos (/27) T
j=1

where the superscript (i) refers to the ith bicubic patch of the patch collection covering
the s-sided region. Now all angles £ (b33, b3y, bo3) are equal. The points b(2’2) must be
determined such that G! continuity is ensured around bss. Setting ¢ = cos(27/s)
ande; = (1 — c)bgiz) + cbgil) , they are
g { ST o
—= ijl(s = D(—1)e;; ifniseven
A surface spline is shown in Figure 19.7.

Surface splines may also be used to interpolate to a mesh of data points in the
same way as Doo—Sabin surfaces did: after two steps of the Doo—Sabin algorithm,
move those control points that surround given data points such that their average
equals that data point. Then proceed as before, and interpolation is ensured.

19.5 Exercises

*1. The Doo—Sabin recursion generates a sequence of F-faces for every face, in the
limit converging to the centroid of the considered face. Show that the limiting
F-faces are planar.

19.5. Exercises 325

P1.

P2.
P3.

P4.

Write a program to find an interpolating Doo—Sabin surface to the eight vertices
of a cube.

Program up S-patches with n = 3 and varying values of s.

Modify S-patches as follows: the definition of “generalized barycentric coordi-
nates” (19.1) may be replaced by u; = % from (2.21).

Given a tetrahedron, display the point set defined by (19.1).

Chapter 20

Coons Patches

We have already encountered design tools that originated in car companies; Bézier
curves and surfaces were developed by Citroén and Renault in Paris. Two other major
concepts also emerged from the automotive field: Coons patches (S. Coons consulted
for Ford, Detroit) and Gordon surfaces (W. Gordon worked for General Motors,
Detroit).! These methods have a different flavor than Bézier or B-spline methods:
instead of being described by control nets, they “fill in” curve networks in order to
generate surfaces.

A designer thinks not in terms of surfaces, but rather in terms of “feature curves;”
these are lines on a car between which the actual surfaces fit “naturally.” In Plate
III, we can see some of these lines as boundary curves of B-spline surfaces. Once a
designer has produced the feature lines, a filling-in process follows that generates a
surface from a network of curves. The techniques used in this process are known by
the names of their inventors, Coons and Gordon.

Additional literature on Coons patches includes Coons’s “little red book™ [114]
(also available in a French translation [117]) and Barnhill [19], [20]. In the area of
numerical grid generation for computational fluid dynamics, Coons patches are also
frequently employed; here, they are known as transfinite interpolants (see [483]).

Before we start with their description, we need to discuss an important “building
block.”

20.1 Ruled Surfaces

Ruled surfaces, also called “lofted surfaces,”” are both simple and fundamental to
surface design. They are of considerable importance in their own right, in particular

'Tust for the record—in the late 1960s, Chrysler began to develop a curve and surface
scheme that was based on Chebychev polynomials.

2The word “lofted” has an interesting history: In the days of completely manual ship design,
full-scale drawings were difficult to handle in the design office. These drawings were stored
and dealt with in large attics, called “lofts.”

326

20.1. Ruled Surfaces 327

for the design of “functional” surfaces in mechanical engineering. Ruled surfaces
solve the following problem: given two space curves ¢; and ¢, both defined over
the same parameter interval ¥ € [0, 1], find a surface x that contains both curves as
“opposite” boundary curves. More precisely: find x such that

x(u, 0) = ¢c1(u), x(u, 1) = co(u). (20.1)

Clearly, the stated problem has infinitely many solutions, so we pick the “simplest”
one:

x(u, v) = (1 — v)ei(u) + vep(u), (20.2)
or, with (20.1):
x(u, v) = (1 — v)x(u, 0) + vx(u, 1). (20.3)

Ruled surfaces have the familiar flavor of linear interpolation: every iso-
parametric line u = const is a straight line segment, as illustrated in Figure 20.1.

The difference from earlier occurrences of linear interpolation is that now we
interpolate to whole curves, not just discrete points—thus this process is often referred
to as transfinite interpolation. Note how the linear terms in v are kept separate from
the data terms in u.

An important aspect of ruled surfaces of the form (20.3) is the generality that
is allowed for the input curves x(, 0) and x(x, 1): there is virtually no restriction on
them other than having to be defined over the same parameter interval. (We chose
the interval [0, 1], but any other interval [a, b] will do—we will then have to use
formula (2.10) for general linear interpolation.) For instance, one of the input curves
might be a cubic polynomial curve, the other a spline curve or even a polygon. More
information on ruled surfaces can be found in Section 22.10.

Co

L
C
u 1

Figure 20.1: Ruled surfaces: two arbitrary curves ¢, ¢, are given. A surface is fitted
between them by linear interpolation.

328 Chapter 20. Coons Patches

Figure 20.2: Linear interpolation: the average of two convex polygons may not be
convex itself.

The general definition (20.3) provides a procedural surface definition: it gives
an algorithm for the computation of a point on the surface, not a closed form. This
property will be inherited by all Coons-type surfaces.

Ruled surfaces depend on the parametrization of the input curves. If we
reparametrize one or both of them, the resulting surface will have a different
shape. An example of such a reparametrization would be in the context of rational
boundary curves; see Section 14.5.

Linear interpolation between curves may not be as intuitive as might be expected.
To see why, consult Figure 20.2. It shows that the average of two convex curves
(polygons in the case of the figure) is not necessarily convex. Linear interpolation
between curves is thus not shape preserving.

20.2 Coons Patches: Bilinearly Blended

A ruled surface interpolates to two boundary curves—a rectangular surface, however,
has four boundary curves, and that is precisely what a Coons patch interpolates to.
This simplest instance of Coons patches was also developed first by Coons [113].

To be more precise: given are four arbitrary curves ¢;(«), ¢;(u) and d;(v), do(v),
defined over u € [0, 1] and v € [0, 1], respectively. Find a surface x that has these
four curves as boundary curves:

X, 0) = ¢ (u), x(u, 1) = cx(u), (20.4)
x(0,v) = d;(v), x(1,v) = do(v). (20.5)

20.2. Coons Patches: Bilinearly Blended 329

We have just developed ruled surfaces, so let us utilize them for this new problem.
The four boundary curves define two ruled surfaces:

r.(u,v) = (1 —v)x(u, 0) + vx(u, 1)
and
rg(u, v) = (1 — w)x(0, v) + ux(1, v).

Both interpolants are shown in Figure 20.3, and we see that r. interpolates to the
c-curves, yet fails to reproduce the d-curves. The situation for ry is similar, and
therefore equally unsatisfactory. Both r. and ry; do well on two sides, yet fail on
the other two, where they are linear. Our strategy is therefore as follows: let us try
to retain what each ruled surface interpolates to, and let us try to eliminate what
each fails to interpolate to. A little thought reveals that the “interpolation failures”
are captured by one surface: the bilinear interpolant r.4 to the four corners (see also
Section 15.1):

0,0) x(0,1 -
rcd(u’v):[l_u u]{:gl,(); igl’lg][vv:|.

We are now ready to create a Coons patch x. It is given by
X=r,+ry — Iy, (206)

or, in the form of a recipe: “loft, + loft, — bilinear.” The involved surfaces and the
solution are illustrated in Figure 20.3. Writing (20.6) in full detail gives

xwv) =[1-u u] { :E?B]

+[X, 0) x(u,1)] [1;" } (20.7)

_[1= x(0,0) x(0,1) 1—v
[1-w u][x(l,O) x(1,1)H v]

It is left as an exercise for the reader to verify that (20.7) does indeed interpolate
to all four boundary curves.

We can now justify the name “bilinearly blended” for the preceding Coons patch:
aruled surface “blends” together the two defining boundary curves; this blending takes
place in both directions. However, the Coons patch is not generally itself a bilinear
surface—the name refers purely to the method of construction.

The functions 1 —u, u and 1 —v, vare called blending functions. A close inspection
of (20.7) reveals that many other pairs of blending functions, say, fi(#), f>(u) and
g1(v), g2(v), could also be used to construct a generalized Coons patch. It would then
be of the general form

330 Chapter 20. Coons Patches

Figure 20.3: Coons patches: a bilinearly blended Coons patch is composed of two
lofted surfaces and a bilinear surface.

20.3. Coons Patches: Partially Bicubically Blended 331

x(wv) =[fiw) fow)] [x(0.v) }

x(1, v)
[xw0) X 1)] [igi J (208)

- x(0,0) x(0, 1) s1(v)
[A folw)] [x(1,0) x(1,1)] { &)]

There are only two restrictions on the f; and g;: Each pair must sum to one
identically: otherwise we would generate nonbarycentric combinations of points
(see Section 2.1). Also, we must have f(0) = g,(0) = 1, fi(1) = g1(1) = 01in
order to actually interpolate. The shape of the blending functions has a predictable
effect on the shape of the resulting Coons patch. Typically, one requires f; and g;
to be monotonically decreasing; this produces surfaces of predictable shape, but is
not necessary for theoretical reasons. Surface modelers that employ Coons patches
typically allow designers to change the blending functions as a way to model the
interior of the patch.

20.3 Coons Patches: Partially Bicubically Blended

The bilinearly blended Coons patch solves a problem of considerable importance with
very little effort, but we pay for that with an annoying drawback. Consider Figure 20.4:
it shows two bilinearly blended Coons patches, defined over u € [0, 2], v € [0, 1].
The boundary curves v = 0 and v = 1, both composite curves, are differentiable.

Figure 20.4: Coons patches: the input curves for two neighboring patches may have
C! boundary curves (left), yet the two Coons patches determined by them do not form
a smooth surface (right).

332 Chapter 20. Coons Patches

However, the cross boundary derivative is clearly discontinuous along ¥ = 1; also
see exercises.’

Analyzing this problem, we see that it can be blamed on the fact that cross bound-
ary tangents along one boundary depend on data not pertaining to that boundary.
For example, for any given bilinearly blended Coons patch, a change in the boundary
curve x(1, v) will affect the derivatives across the boundary x(0, v).

How can we separate the derivatives across one boundary from information along
the opposite boundary? The answer: use different blending functions, namely, some
that have zero slopes at the endpoints. Striving for simplicity, as usual, we find two
obvious candidates for such blending functions: the cubic Hermite polynomials Hj
and H; from Section 6.5, as defined by (6.14).

Let us investigate the effect of this choice of blending functions: we have set
fi =g = H}and fo = g = H; in (20.8). The cross boundary derivative along,
say, # = 0, now becomes

3
xu(0,v) = [%,(0,0) x,(0, 1)] { Hy(v)] .

H) | (20.9)
all other terms vanish since d/duH3,(0) = d/duH3(1) = Ofori = Oandi = 1.
Thus, the only data that influence x, along u = 0 are the two tangents x,(0, 0) and
x,(0, 1)—we have achieved our goal of making the cross boundary derivative along
one boundary depend only on information pertaining to that boundary. With our new
blending functions, the two patches from Figure 20.4 would now be C'.

Unfortunately, we have also created a new problem. At the patch corners, these
patches often have “flat spots.” The reason: partially bicubically blended Coons
patches,4 constructed as above, suffer from zero corner twists:

Xu(i,) =0; i j€E{0 1}

This is easily verified by simply taking the uv-partial of (20.8) and evaluating at the
patch corners.

The reason for this poor performance lies in the fact that we only use two
functions, Hg and H3, from the full set of four Hermite polynomials. Both have zero
derivatives at the interval endpoints, and both pass that property on to the surface
interpolant.

We will now modify the partially bicubically blended Coons patch in order to
avoid the flat spots at the corners.

20.4 Coons Patches: Bicubically Blended

Cubic Hermite interpolation needs more input than positional data—first derivative
information is needed. Since our positional input consists of whole curves, not just

3We also see that bilinearly blended Coons patches suffer from a shape defect: each of the
two patches is too “flat.”” This effect of Coons patches has been studied by Nachman [367].

4We use the term partially bicubically blended since only a part of all cubic Hermite basis
functions is utilized.

20.4. Coons Patches: Bicubically Blended 333

Figure 20.5: Coons patches: for the bicubically blended case, the concept of the lofted
surface is generalized. In addition to the given boundary curves, cross boundary
derivatives are supplied.

points, the obvious data to supply are derivatives along those input curves. Our given
data now consist of

x(u, 0), x(u, 1), x(0,v), x(1,v)
and
x,(1,0), x,(u 1), x,0,v), x,(1,v).

We can think of the now prescribed cross boundary derivatives as “tangent ribbons,”
illustrated in Figure 20.5 (only two of the four “ribbons” are shown there).

The derivation of the bicubically blended Coons patch is analogous to the one in
Section 20.2: we must simply generalize the concept of a ruled surface appropriately.
This is almost trivial; we obtain

he(u, v) = H3(u)x(0, v) + Hi u)x,(0, v) + H; w)x,(1, v) + H3w)x(1, v)
for the u-direction (this surface is shown in Figure 20.5) and
hy(u, v) = Hy(W)x(u, 0) + H; (v)x,(u, 0) + H3 ()x,(, 1) + H3 (v)x(u, 1).

Proceeding as in the bilinearly blended case, we define the interpolant to the
corner data. This gives the tensor product bicubic Hermite interpolant h.; from
Section 15.13:

| Hyw) Hi(uw) Hj(w) H3w) |
x(0,0) x,0,00 x,(0,1) x(0,1) H3(v)
he;(u,v) = % x.(0,0) x,(0,0) x,(0,1) x,(0,1) H?(V)
%(L0) Xw(1,0) xw(L1) x(L1) || H(
x(L0) x,(1,0) x,(L1) x(1,1) H3(v)
(20.10)
The bicubically blended Coons patch now becomes

x=h, +hy; — hy. (20.11)

334 Chapter 20. Coons Patches

Before closing this section, we need to take a closer look at the h,; part of (20.11).
On closer inspection, we find that it wants data that we were not willing (or able) to
provide in our initial problem description, namely, the central “twist partition” of the
4 X 4 matrix in (20.10). The bicubically blended Coons patch needs these quantities
as input, and this has caused CAD software developers many headaches since Coons
proposed his surface scheme in 1964. The most popular “solution” seems to be simply
to define each of the four corner twists to be the zero vector. The drawbacks of that
choice were already discussed in Section 15.9, but alternatives are pointed out in that
section, too.

20.5 Piecewise Coons Surfaces

We will now apply the bicubically blended patch to the situation for which it was
intended: we assume that we are given a network of curves as shown in Figure 21.5
and that we want to fill in this curve network with bicubically blended Coons patches.
The resulting surface will be C!.

To apply (20.11), we must create twist vectors and cross boundary derivatives
(tangent ribbons) from the given curve network. As a preprocessing step, we estimate
a twist vector X,,(u;, v;) at each patch corner. This can be done by using any of the
twist vector estimators discussed in Section 16.3. In that section, we assumed that
the boundary curves of each patch were cubics; that assumption does not affect the
computation of the twist vectors at all, however.

Having found a twist vector for each data point, we now need to create cross
boundary derivatives for each boundary curve. Let us focus our attention on one patch
of our network, and let us assume for simplicity (but without loss of generality!) that
the parameters u and v vary between 0 and 1. We shall now construct the tangent
ribbon x,(u, 0). We have four pieces of information about x,(u, 0): the values of
x,(#,0) at u = 0 and at u = 1, and the derivatives with respect to u there—these are
the twists that we made up above, namely, x,,(0, 0) and x,,(1, 0).

We therefore have the input data for a univariate cubic Hermite interpolant, and
the desired tangent ribbon assumes the form

X, (1, 0) = x,(0, 0)H3 (u) + X,,(0, 0)H; (1) + X, (1, 0VH; () + x,(1, 0)H3 (w0). (20.12)

The remaining three tangent ribbons are computed analogously.
We have thus found a way to pass a C! surface through a C! network of curves.
All we needed was the ability to estimate the twists at the data points.

20.6 Exercises

1. Show that the bilinearly blended Coons patch is not in the convex hull of its
boundary curves. Is this a good or a bad property?

2. Verify the caption to Figure 20.4 algebraically.

20.6. Exercises 335

*3.

*4,

*5.

PI.

Show that the bilinearly blended Coons patch, when applied to cubic boundary
curves, yields a bicubic patch.

Show that Adini’s twist from Section 16.3 is the twist of the bilinearly blended
Coons patch for the four boundary cubics.

As we have seen, two adjacent bilinearly blended Coons patches are not C' in
general. What are the conditions for the boundary curves of the two patches such
that the Coons patches are C'?

Use the data set car.dat. Interpolate all four boundaries using uniform B-
spline interpolation. Then compute the bilinearly blended Coons patch. Next,
experiment with different blending functions and discuss how they change the
shape of the surface.

Chapter 21

Coons Patches: Additional
Material

21.1 Compatibility

It is an obvious requirement for the bilinearly blended Coons patch that the four
prescribed boundary curves meet at the corners; in other words, we must exclude
data configurations as shown in Figure 21.1. This condition on the prescribed data is
known as a compatibility condition. An incompatibility of that form can usually be
overcome by adjusting boundary curves so that they meet at the patch corners.

The bicubically blended Coons patch suffers from a more difficult compatibility
problem. It results from the appearance of the twist terms in the tensor product
term h.; in (20.10). The problem was not recognized by Coons, and only later did
R. Barnhill and J. Gregory discover it; see Gregory [252].

From calculus, we know that we can usually interchange the order of differentia-
tion when taking mixed partials: we can set X,,, = X, if X(¢, v) is twice continuously
differentiable. Unfortunately, this simplification does not apply to our situation. Let
us examine why: at x(0, 0), two given “tangent ribbons” meet. We can obtain the
twist at x(0, 0) by differentiating the “ribbon” x,,(u, 0) with respect to u:

d
0,0) = lim —
Xyu(0, 0) = lim " x, (u, 0),
or the other way around:
Xuw(0,0) = li J x,(0, v)
uvi, = Im —X,(U, v).
vl-.() ov v

If the two twists x,,(0, 0) and x,,(0, 0) are equal, there are no problems: enter this
twist term into the matrix in (20.10), and the bicubically blended Coons patch is
well-defined.

336

21.1. Compatibility 337

/"\\

’/

Figure 21.1: Compatibility problems: in the case of a bilinearly blended Coons patch,
compatible boundary curves must be prescribed. Data as shown lead to ill-defined
interpolants.

However, as Figure 21.2 illustrates, these two terms need by no means be equal.
Now we have a serious dilemma: entering either one of the two values yields a
surface that only partially interpolates to the given data. Entering zero twist vectors
only aggravates matters, since they will in general not agree with even one of the two
twists above.

There are two ways out of this dilemma. One is to try to adjust the given data so
that the incompatibilities disappear. Or, if the data cannot be changed, one can use a
method known as Gregory’s square. This method replaces the constant twist terms in
the matrix in (20.10) by variable twists. The variable twists are computed from the

Figure 21.2: Compatibility problems: we show the example of tangent ribbons that
are represented in cubic Bézier form. Note how we obtain two different interior Bézier
points, and thus two different corner twists.

338 Chapter 21. Coons Patches: Additional Material

tangent ribbons:

uZx,(0,0) + vx,(0,0)

uy 0, 0 =)

% (©.0) u+v

X (0, 1) = —uLx,0,1) + (v ~ 1)Zx,(0, 1)’
—ut+tv-—1

X (1, 0) - (1 — M)%Xu(l, 0) + v;";xv(ly 0)’
l—u+tv

X(1, 1) = (= DZx,(1 1) + (v = DLxy(L, 1).
u—1+v—-1

The resulting surface does not have a continuous twist at the corners. In fact, it
is designed to be discontinuous: it assumes two different values, depending on from
where the corner is approached. If we approach x(0, 0), say, along the isoparametric
line # = 0, we should get the u-partial of the given tangent ribbon x,(u, 0) as the twist
x,,(0, 0). If we approach the same corner along v = 0, we should get the v-partial of
the given ribbon x,(0, v) to be x,,(0, 0).

An interesting application of Gregory’s square was developed by Chiyokura and
Kimura [103]: Suppose we are given four boundary curves of a patch in cubic Bézier
form, and suppose that the cross boundary derivatives also vary cubically. Let us
consider the corner x(0, 0) and the two boundary curves that meet there. These curves
define the Bézier points bg; and byy. The cross boundary derivatives determine by
and b;;. Note that by, is defined twice! This situation is illustrated in Figure 21.2.
Chiyokura and Kimura made by a function of « and v:

by = by, v) = uby(v) + vbll(u)’
u-+v

where by («) denotes the point by, that would be obtained from the cross boundary
derivative x,(0, v), etc. Similar expressions hold for the remaining three interior
Bézier points, all following the pattern of Gregory’s square.

Although a solution to the posed problem, one should note that Gregory’s square
(or the Chiyokura and Kimura application) is not free of problems. Even with poly-
nomial input data, it will produce a rational patch. Written in rational Bézier form, its
degree is seven in both and v and the corner weights are zero (see [183]). The result-
ing singularities are removable, but require special attention. In situations where one
is not forced to use incompatible cross boundary derivatives, it is therefore advisable
first to estimate corner twists and then to use (20.12) as a cross boundary derivative
generator.

21.2 Control Nets from Coons Patches

Consider the following design situation: four boundary curves of a surface are given,
all four in B-spline or Bézier form, i.e., by their control polygons. Let us assume that

21.2. Control Nets from Coons Patches 339

opposite boundary curves are defined over the same knot sequence and are of the
same degrees. The problem: find the control net of a B-spline or Bézier surface that
fits between the boundary curves. This situation is illustrated in Figure 21.3.

That control net may be obtained in a surprisingly simple way: interpret the
boundary control polygons as piecewise linear curves and compute the bilinearly
blended Coons patch that interpolates to them. This Coons patch is piecewise bilinear.
Its vertices can be interpreted as vertices of a control net for a B-spline or Bézier
surface. As it turns out, that surface is precisely the bilinearly blended Coons patch
to the original boundary curves! The proof is straightforward and relies on the fact
that both the B-spline and Bézier methods have linear precision (Farin [180]) .

The same principle is also applicable to interpolating spline curves and surfaces.
Suppose we are given points on all four boundary curves of a surface (same number
of points and same parametrization for opposite curves, of course!). We can construct
the cubic spline interpolant to all four point sets. For the sake of concreteness,
suppose that the spline curves are represented as piecewise Bézier curves. These four
boundary spline curves define a bilinearly blended Coons patch. We may obtain its
piecewise bicubic representation in two ways: first, we could compute an array of

Figure 21.3: Coons patches: the bilinearly blended Coons patch may be applied to
boundary control polygons.

340 Chapter 21. Coons Patches: Additional Material

points, obtained from the given boundary points by applying the bilinearly blended
Coons method to them. We could then apply bicubic spline interpolation to them.

That same surface could be obtained more easily by applying the bilinearly
blended Coons method directly to the boundary curves (i.e., to their B-spline or
Bézier representations).

Using the Coons technique in conjunction with other surface forms is one of
the most significant applications of the Coons method, implemented in netcoons
below. It can reduce computational costs considerably and is a quick way of fitting
surfaces between boundary curves.! If the boundaries happened to be rational, then
Coons blending should be applied to the homogeneous representation in four-space.

21.3 Translational Surfaces

There is an alternative way to derive the bilinearly blended Coons patch, based on
the two concepts of translational surfaces and convex combinations.

A translational surface has the simple structure of being generated by two curves:
let ¢;(u#) and ¢;(v) be two such curves, intersecting at a common point a = ¢;(0) =
¢;(0). A translational surface t(«, v) is now defined by

tu, v) = ¢ (u) + c(v) — a. (21.1)

Why the name “translational”? It is justified by considering an arbitrary isoparametric
line of the surface, say, u = 1. We obtain t(iz, v) = ¢;(v) + [—a + ¢ (#)], that is, all
isoparametric lines are translates of one of the input curves; see also Figure 21.4.

An interesting property of translational surfaces is that their twist is identically
zero everywhere:

2

J
—t(u,v) = 0.
ouov @ v)

Figure 21.4: Translational surfaces: the Bézier net of a translational tensor product
surface. The control polygons in each direction are translates of each other.

' A warning: it does not always produce “optimal” shapes; see Nachman [367].

21.4. Gordon Surfaces 341

This property follows directly from the definition (21.1). Since both input curves
may be arbitrarily shaped, the resulting surface may well have high curvatures. This
dispels the myth that zero twists are identical to flat spots. In fact, twists are not related
to the shape of a surface—rather, they are a result of a particular parametrization. See
also Section 16.3 on twist generation.

How are translational surfaces related to Coons patches? A translational surface
can be viewed as the solution to an interpolation problem: given two intersecting
curves, find a surface that contains them as boundary curves. If four boundary curves
are given, as in the problem definition for the bilinearly blended Coons patch, we
can form four translational surfaces, one for each corner. Let us denote by t;; the
translational surface that interpolates to the boundary curves meeting at the corner
@ j) i, j €101}

Now the bilinearly blended Coons patch x(i, v) can be written as

N _ too(r, v) to1(u, v) 1—v
x(u, v) = [1—u u} tio(w V)t v) } [v] (21.2)

This form of the bilinearly blended Coons patch is called a convex combination.
It blends together four surfaces, weighting each with a weight function. The weight
functions sum to one (a necessity: nonbarycentric combinations are disallowed) and
are nonnegative for 4, v € {0, 1}. Note that the weight functions are zero where the
corresponding t; ; is “wrong.”

The weight functions in (21.2) are linear in both u and v, another justification for
the term bilinearly blended Coons patch.

21.4 Gordon Surfaces

Gordon surfaces are a generalization of Coons patches. They were developed in the
late 1960s by W. Gordon [246], [248], [245], [247], who was then working for the
General Motors Research labs. He coined the term “transfinite interpolation” for this
kind of surfaces.

It is often not sufficient to model a surface from only four boundary curves.
A more complicated (and realistic) situation arises when a network of curves is
prescribed, as shown in Figure 21.5. We will construct a surface g that interpolates
to all these curves—they will then be isoparametric curves g(u;, v);i = 0,..., m and
g, v;);j = 0,..., n. We shall therefore refer to these input curves in terms of the
final surface g. The idea behind the construction of this Gordon surface g is the same as
for the Coons patch: find a surface g; that interpolates to one family of isoparametric
curves, for instance to the g(u;, v). Next, find a surface g, that interpolates to the
g(u, v;). Finally, add both together and subtract a surface gj,.

Let us start with the task of finding the surface g;. If there are only two
curves g(ug, v) and g(uy, v), the surface g; reduces to the lofted surface g;(u, v) =
L(l)(u)g(uo, v) + L%(u)g(ul, v), where the L} are the linear Lagrange polynomials from
Section 6.2. If we have more than two input curves, we might want to try higher

342 Chapter 21. Coons Patches: Additional Material

g(u,v1)

5

%K\}‘Z ’

Figure 21.5: Gordon surfaces: a rectilinear network of curves is given and an interpo-
lating surface is sought.

degree Lagrange polynomials:

g1, v) = Y gy, VLT (). (21.3)

i=0

Simple algebra verifies that we have successfully generalized the concept of a lofted
surface.

Let us return to the construction of the Gordon surface, for which g; will only
be a building block. The second building block, g;, is obtained by analogy:

g2u,v) = > g v)Lv).
J=0

The third building block, g;», is simply the interpolating tensor product surface

m

g0, v) = >) g, v)LT@L}W).

i=0 j=0

The Gordon surface g now becomes

g=g t¢g —gn (21.4)

21.5. Boolean Sums 343

It is left as an exercise for the reader to verify that (21.4) in fact interpolates to all
given curves. Note that for the actual computation of g, we do not have to use the
Lagrange polynomials. We only have to be able to solve the univariate polynomial
interpolation problem, for example, by using the Vandermonde approach.

We have derived Gordon surfaces as based on polynomial interpolation. Much
more generality is available. Equation (21.4) is also true if we use interpolation
methods other than polynomial interpolation. The essence of (21.4) may be stated
as follows: take a univariate interpolation scheme, apply it to all curves g(u, v;) and
to all curves g(u;, v), add the resulting two surfaces, and subtract the tensor product
interpolant that is defined by the univariate scheme. We may replace polynomial
interpolation by spline interpolation, in which case we speak of spline-blended Gor-
don surfaces. The basis functions of the univariate interpolation scheme are called
blending functions.

21.5 Boolean Sums

Our development of Coons patches was quite straightforward, yet it is slightly flawed
from a geometric viewpoint. When we derived the basic equation (20.6), we added
the two surfaces r. and r; as an intermediate step. This is illegal—the sum of two
surfaces would depend on the choice of a coordinate system (see the discussion in
Section 2.1). Although the situation is straightened out by subtracting the bilinear
surface r.;, one might ask for a cleaner development. It is provided by the use of
Boolean sums.

Let us define an operator P; that, when applied to a rectangular surface x, returns
the ruled surface through x(u, 0) and x(x, 1):

[Pix](w, v) = (1 — v)X(u, 0) + vx(u, 1).
Similarly, we define P, to return the ruled surface through x(0, v) and x(1, v):
[Pox](u, v) = (1 — w)x(0, v) + ux(1, v).

In terms of Section 20.2, P; and P, yield the surfaces r,. and ry.

We would like to formulate the bilinearly blended Coons patch—which we now
call Px—in terms of P; and P>.

Let us take P;x as a first building block for the Coons patch. Since P;x only
interpolates on two boundaries, we will try to add another surface to it, such that the
final result will interpolate to all four boundaries. Such a correction surface must
interpolate to all four boundaries of the error surface x — P;x.2 It may be obtained
by applying P, to the error surface. We then obtain

Px = Tlx + sz(x - Tlx).

Note that this error surface is vector-valued, since both x and P;x are point-valued.

344 Chapter 21. Coons Patches: Additional Material

This expression for the bilinearly blended Coons patch may be shortened by showing
only the involved operators:

P="DP + P —P), (21.5)

where I is the identity operator. This means of obtaining one operator P as a combi-
nation of two operators P, P; is called a Boolean sum and is often written

P=P D P. (21.6)
Of course, one may also multiply out the terms in (21.5). We then obtain
P= T1®?2 = Pl +?2— ?1?2.

We now see that, even with the use of an operator calculus, we still have the same old
Coons patch as defined by (20.6): the term P, P, is simply the bilinear interpolant to
the patch corners.

Let us summarize the essence of the Boolean sum approach: An interpolant to
the given data is built by applying P;. A second operator P, is then applied to the
“failures” of P, and the result is added back to the output from P;. The interpolant P,
may actually be of a simpler nature than P, since it only has to act on zero data where
P, was “successful.” We can illustrate this for the example of univariate cubic Hermite
interpolation: we define P; to be the (point-valued) linear interpolant between two
points Xo and x; and 7, to be the (vector-valued) cubic Hermite interpolant to a data
set 0, my, m;, 0. Then P; @ P, is the standard cubic Hermite interpolant.

A note on the notation used in this section: the letter P that we used to denote our
building block interpolants is due to the term projector. A projector is an operator,
which, if applied to its own output, will not change the resuit.> For example, P;x is
a ruled surface, and P; P;x is the same ruled surface. Operators with the property of
being projectors are also called idempotent.

It was W. Gordon who realized the underlying algebraic structure of Coons
patches. That discovery then led him to the generalization that now bears his name
(Section 21.4). Boolean sums may be utilized in the development of many surface
interpolation schemes—for an excellent survey, see Barnhill [19].

21.6 Triangular Coons Patches

Just as triangular Bézier patches provide an alternative to the rectangular variety,
one may devise a triangular version of Coons patches. Several solutions have been
proposed through the years; we will briefly explain the ones by Barnhill, Birkhoff,
and Gordon [24] and by Nielson [372].

The C° Barnhill, Birkhoff, and Gordon (short: BBG) approach can be explained
as follows. Suppose we are given three boundary curves, as shown in Figure 21.6.
We seek a surface that interpolates to all three of them, i.e., a transfinite triangular

3The term comes from geometry: if a 3D object is projected into a plane, we may then
repeat that projection, yet it will not change the image.

21.6. Triangular Coons Patches 345

Figure 21.6: BBG interpolation: three boundary curves are given, left. Three ruled
surfaces are constructed from them (only one shown, middle). They are combined to
yield the final surface, right.

interpolant. The construction follows the standard Coons patch development in that
it consists of several building blocks, which are then combined in a clever way.

Let us denote* the three boundary curves by x(0, v, w), X(u, 0, w), X(», v, 0). We
define three building blocks, each being a ruled surface that interpolates to two
boundary curves:

v

Pix(n) = (I = r)x(u, 0, w) + rx(u,v,0); r = 4,
Pox(u) = (1 — 9)x(w, v, 0) + sx(0,v, w); s = ‘=, (21.7)
Pix(n) = (1 — O)x(u, O, w) + x(0, v, w); = .

There are several combinations of these surfaces that yield an interpolant Px to all
three boundaries: the Boolean sum of any two—e.g., P = P; @ P;—will have that
property.

Another possibility is to define P as a convex combination of the three 7;:

Px = uPix + vPyx + wPsx. (21.8)

The building blocks that are used in (21.7) are rational in u, v, w, but they are
linear in r, s, . If we were to incorporate cross boundary derivative data, i.e., to build
a C! BBG interpolant, we would define P;, P, P; to be cubic Hermite interpolants
inrs,t:

Pix(u) = H3(r)x(u,0,w)+ H(r)xi(u, 0, w)
+H;(r)x;(u, v, 0) + H3(r)x(u, v, 0),
Px(n) = H(s)x(u, v, 0) + H}(s)x2(u, v, 0) 219)
+H§(s)x2(0, v, w) + H33(s)x(0, v, W), '
Pix(n) = H(Ox(w, 0, w) + H(t)x3(u, 0, w)

+H23(t)x3(u, 0,w) + H33(t)x(0, v, W).

“We use the the concept of barycentric coordinates as outlined in Section 2.6.

346 Chapter 21. Coons Patches: Additional Material

The terms x; are shorthand for directional derivatives of x taken in a direction parallel
to edge i, more precisely:

xi(0) = (v + w)Dez—e3x(n),
x2(u) = (u + w)De3-a1x(u),
x3(0) = (u + V)Dez2—e1x(1).

The factors (v + w), etc., appear because cubic Hermite interpolation is sensitive to
interval lengths. A reminder: the terms el, e2, e3 refer to points, not to edges!

Again, a Boolean sum of any two of the preceding operators will provide a
solution—provided the cross boundary derivatives are compatible (which typically
they won’t be!).

A different approach is due to G. Nielson [372]. He considers—for a C°
interpolant—radial curves, connecting a patch vertex with a point on the opposite
edge, as shown in Figure 21.7. We have

Pyx@) = ux(1,0,0) + (1 — wx(0,r,1 —r); r=——0
v+w

Pox(u) = vx(0, 1,0) + (1 — Wx(1 — 5,0,5); §= —0, (21.10)
u+w

Pox(u) = wx(0,0, 1) + (1 — wix(1 —£,1,0); t= ——.
u+v

The final interpolant may then be written as a triple Boolean sum:

P = PPOEPDP
= Pl + ?2 + ?3
—PP, - PP — PP
+ PP, P

To make this scheme C', one again replaces the linear interpolants in (21.10) by
cubic Hermite interpolants, now with directional derivatives supplied in the radial
directions.

Figure 21.7: Nielson's side-vertex method: three boundary curves are given, left.
Three ruled surfaces are constructed from them (only one shown, middle). They are
combined to yield the final surface, right.

21.8. Exercises 347

For more literature on triangular Coons-type interpolants, consult the following:
Barnhill [18], Barnhill and Gregory [29], [28], Gregory and Charrot [256], Marshall
and Mitchell [351], Lacombe and Bédard [317], and Nielson [373].

21.7 Implementation

The following is a routine that fits a bilinearly blended Coons patch in between four
boundary control polygons, as described in Section 21.2. The routine works on one
coordinate only and will have to be called separately for the x-, y-, and z-components
of a control net.

void netcoons(net,rows,columns)

/* Uses bilinear Coons blending to complete a control

net of which only the four boundary polygons are used as input.
Works for one coordinate only.

Input: net: control net.

rows, columns: dimensions of net.
Output: net: the completed net, with the old boundaries.
*/

21.8 Exercises

1. Whatexactly does the bilinearly blended Coons patch interpolate to when applied
to data as in Figure 21.17

2. Equation (20.12) generates tangent ribbons from the given boundary curve net-
work. Verify that the resulting surface does not suffer from twist incompatibili-
ties.

*3. Translational surfaces have zero twists. Show that the inverse statement is also
true: every surface with identically vanishing twists is a translational surface.

*4. Find a form analogous to (21.2) for the partially bicubically blended Coons patch
and for the bicubically blended Coons patch.

*5. Show that bilinearly blended Coons patches have translational precision: if the
four boundary curves are boundaries of a translational surface, then the bilinearly
blended Coons patch reproduces that translational surface.

*6. Equation (21.8) shows how one can combine the three surfaces from (21.7) in
order to obtain a complete interpolant. How would one have to blend together
the three surfaces from (21.9)?

P1. Use the data set car.dat and fit uniform B-spline interpolants to the four
boundary curves. Use (20.12) and compute a bicubically blended Coons patch.
Compare to the bilinearly blended patch.

Chapter 22

W. Boehm: Differential
Geometry 11

22.1 Parametric Surfaces and Arc Element

A surface may be given by an implicit form f(x, y, z) = 0 or, more useful for CAGD,
by its parametric form

x(u, v)
x=x@wv)= | ywv) |; u= [’:] €[ab] C R (22.1)
z(u, v)

where the cartesian coordinates x, y, z of a surface point are differentiable functions
of the parameters u and v and [a, b] denotes a rectangle in the u, v-plane; see Figure
22.1 (sometimes other domains are used, for example, triangles). To avoid potential
problems with undefined normal vectors, we will assume

x, \x, # 0 for u € [a, b],

i.e., that both families of isoparametric lines are regular (see Section 11.1) and are
nowhere tangent to each other. Such a parametrization is called regular.!

Any change r = r(u) of the parameters will not change the shape of the surface;
the new parametrization is regular if det[r,, r,] # O for u € [a, b], i.e., if one can
find the inverse u = u(r) of r.

A regular curve u = u(¢) in the (u, v)-plane defines a regular curve x[u(z)] on
the surface. One can easily compute the (squared) arc element (see Section 11.1) of
this curve: from X = x,& + X,V one immediately obtains

ds® = [|X][?dr? = (% + 2x,x, 00 + x29?)dr?,

"Examples of irregular parametrizations are shown in Figures 15.10, 15.11, and 15.12.

348

22.1. Parametric Surfaces and Arc Element 349

——o— v = const

uv-plane

Figure 22.1: A parametric surface.

which will be written as
ds® = Edu? + 2Fdudv + Gdv?, (22.2)
where
E = E(u,v) = x,X,,
F = Fu,v) = X,X,,
G =G, v) = X, X%,.

The squared arc element (22.2) is called the first fundamental form in classical
differential geometry. It is of great importance for the further development of our
material. Note that the arc element ds, being a geometric invariant of the curve
through the point x, does not depend on the particular parametrization chosen for the
representation (22.1) of the surface.

For the arc length of the surface curve defined by u = u(¢), one obtains

t t
/ l1x||ds = / VEi + 2Firy + Gitdt.
fy ty

Remark 1: The area element corresponding to the element dudv of the (i, v)-
plane is given by

dA = ||x, du A\ x,dv|| = ||x. /\ x,||dudy;
see Figure 22.2. From ||la /A b||?> = a?b? — (ab)?, one obtains
D =||x, \xl|| = VEG — F2. (22.3)

The quantity D is called discriminant of (22.2). Thus the surface area A corresponding
to a region U of the (u, v)-plane is given by

A=//\/EG—F2dudv.
U

350 Chapter 22. W. Boehm: Differential Geometry I

Figure 22.2: Area element.

Remark 2: If F = 0 at a point of the surface, the two isoparametric lines that
meet there are orthogonal to each other. Moreover, if F = 0 at every point of the
surface, the net of isoparametric lines is orthogonal everywhere.

Remark 3: Note that for any real? du, dv, the first fundamental form ds? is
strictly positive. However, if ds?> = 0, we have two imaginary directions. These are
called isotropic directions at X.

Remark 4: Let uy = ui(f;) and uy, = uy(f,) define two surface curves,
intersecting at X. Both curves are intersecting orthogonally if the polar form of X2,
given by

’.{1).‘2 = El:tlitz + F(ill\'lz + I:tz\'ll) + GV]VQ,

vanishes at x.

22.2 The Local Frame

The partials x,, and X, at a point X span the tangent plane to the surface at x. Let y be
any point on this plane. Then

detly — x, X, x,] = 0
is the implicit equation of the tangent plane. The parametric equation is
y(u, v) = X + Aux, + Avx,.

The normal x,, /\ x, of the tangent plane coincides with the normal to the surface at
x. The normalized normal
X, N\ X, 1
n= - ———— = —[x,\x
T, Axdl DO/ %]
together with the unnormalized vectors x,,, X, form a local coordinate system, a frame,
at x (see Figure 22.3). This frame plays the same important role for surfaces as does

INote that the vector [du, dv] defines a direction at a point x.

22.3. The Curvature of a Surface Curve 351

Figure 22.3: The local frame and the tangent plane.

the Frenet frame (see Section 11.2) for curves. The normal is of unit length and is
perpendicular to x, and x,, i.e., n> = 1landnx, = nx, = 0. In general, the local
coordinate system with origin x and axes x,, X, forms only an affine system; it is also
(unlike the Frenet frame) dependent on the parametrization (22.1).

22.3 The Curvature of a Surface Curve

Let u(¢) define a curve on the surface x(u). From curve theory we know that its

curvature k = 1 is defined by t' = «km; the prime denotes differentiation with

respect to the arc length of the curve. We will now reformulate this expression in
surface terms. Since t = x’ and ¥’ = du/ds, v/ = dv/ds, we have

t' = x" = x,u'? + 2x,uV + x,v'? + xu” + x".

Let ¢ be the angle between the main normal m of the curve and the surface normal
n at the point x under consideration, as illustrated in Figure 22.4. Then

t'n = kmn = Kk cos ¢.

Figure 22.4: Osculating circle.

352 Chapter 22. W. Boehm: Differential Geometry II

Inserting t’ from above and keeping in mind that nx,, = nx, = 0, we have
K COS ¢ = nXyu' > + 2nx,u'v' + nx,,v' 2. (22.4)

Furthermore, nx, = 0 implies n,x, + nx,, = 0 etc. Thus, using the abbreviations

L = L(u, v) = —x,n, = nx,,,
M= M@uv) =-i(Xm, +x0n,) =nX,, (22.5)
N =N v) = —x,n, = nx,,,

Equation (22.4) can be written as
Kk cos ¢ ds* = Ldu? + 2Mdudv + Ndv>. (22.6)

This expression is called the second fundamental form in classical differential ge-
ometry. For any given direction du/dv in the (&, v)-plane and any given angle ¢, the
second fundamental form, together with the first fundamental form (22.2), allows us
to compute the curvature k of a surface curve having that tangent direction.
Remark 5: Note that the arc length in the preceding development was only used
in a theoretical context; for applications, it does not have to be actually computed.

Remark 6: Note that k depends only on the tangent direction and the angle ¢.
It will change its sign, however, if there is a change in the orientation of n.

224 Meusnier’s Theorem

The right-hand side of (22.4) does not contain terms involving ¢. For ¢ = 0, i.e.,
cos ¢ = 1, we have that m = n: the osculating plane of the curve is perpendicular to
the surface tangent plane at x. The curvature k¢ of such a curve is called the normal
curvature of the surface at x in the direction of t (defined by du/dv). The normal
curvature is given by

2" fundamental form
1stfundamental form

1
Ky = Ko(X;1) = — = 22.7)
Po

Now (22.6) takes the very short form

p = pycos . (22.8)

This simple formula has an interesting and important interpretation, known as
Meusnier’s theorem. It is illustrated in Figure 22.5: the osculating circles of all surface
curves through x having the same tangent t there form a sphere. This sphere and the
surface have a common tangent plane at x; the radius of the sphere is py.

As a consequence of Meusnier’s theorem, it is sufficient to study curves at x
with m = n; moreover, these curves may be planar. Such curves, called normal
sections, can be thought of as the intersection of the surface with a plane through x
and containing n, as illustrated in Figure 22.6.

22.5. Lines of Curvature 353

Figure 22.5: Meusnier’s sphere viewed in the direction of t.

Remark 7: If the direction of the normal is chosen as in Figure 22.5, we have
0=p=nppand p = Oonlyif ¢ = w/2, ie., if the osculating plane O coincides
with the tangent plane.

22.5 Lines of Curvature

For Meusnier’s theorem, we considered (osculating) planes that contained a fixed
tangent at a point on a surface; we will now look at (osculating) planes containing
the normal vector at a fixed point x. We will drop the subscript of kg to simplify the
notation. Setting A = dv/du = tan « (see Figure 22.6), we can rewrite (22.7) as

L + 2M\ + NA?

K =k = Foom T o

< - ojidv

du

Figure 22.6: Normal section of a surface.

354 Chapter 22. W. Boehm: Differential Geometry II

N/G)/A\
\T'”/ L/E (kg

A1 0 A2

Figure 22.7: The function k = k(A).

In the special case where L : M : N = E : F : G, the normal curvature x is
independent of A. Points x with that property are called umbilical points.

In the general case, where k changes as A changes, k = k(A) is a rational
quadratic function, as illustrated in Figure 22.7. The extreme values k; and k; of
k(A) occur at the roots Ay and A, of

2

>

det

t~
SEeR

1
G| =0 (22.9)
N

It can be shown that A; and A, are always real. The extreme values k; and k; are the
roots of

kE—L «kF-M | _

det| F-M «kG-N |~

0. (22.10)

The quantities A; and A, define directions in the (u, v)-plane; the corresponding
directions in the tangent plane are called principal directions. The net of lines that
have these directions at all of their points is called the net of lines of curvature. If
necessary, it may be constructed by integrating (22.9).

Therefore, this net of lines of curvature can be used as a parametrization of
the surface; then (22.9) must be satisfied by du = 0 and by dv = 0. This implies,
excluding umbilical points, that

F=0 and M=0.

The first equation, F' = 0, states that lines of curvature are orthogonal to each other;
the second equation states that they are conjugate to each other as defined in Section
22.9.

At an umbilical point, the principal directions are undefined; see also Remark 9.

Remark 8: For a surface of revolution, the net of lines of curvature is defined
by the meridians and the parallels; an example is shown in Figure 22.8.

22.6. Gaussian and Mean Curvature 355

parabolic

hyperbolic

Figure 22.8: Lines of curvature on a torus. Also shown are the regions of elliptic,
parabolic, and hyperbolic points.

22.6 Gaussian and Mean Curvature

The extreme values k; and k, of k = k(A) are called principal curvatures of the
surface at x. A comparison of (22.10) with k2 — (k; + k2)k + Kk k2 = 0 yields

LN — M?
KiKp = —m (2211)
and
NE — 2MF + LG
Ki+ Ky = o Y (22.12)

EG — F?

The term K = kK, is called Gaussian curvature, while H = %(Kl + K;) is called
mean curvature. Note that both k; and «; change sign if the normal n is reversed, but
K is not affected by such a reversal.

If k; and k; are of the same sign, i.e., if K > 0, the point x under consideration
is called elliptic. For example, all points of an ellipsoid are elliptic points. If k;
and k; have different signs, i.e., K < 0, the point x under consideration is called
hyperbolic. For example, all points of a hyperboloid are hyperbolic points. Finally,
if either k; = 0 or k; = 0, K vanishes, the point x under consideration is called
parabolic. For example, all points of a cylinder are parabolic points. In the special
case where both K and H vanish, one has a flat point.

The Gaussian curvature K depends on the coefficients of the first and second
fundamental forms. It is a very important result, due to Gauss, that K can also be
expressed only in terms of E, F, and G and their derivatives. This is known as the
Theorema Egregium and states that K depends only on the intrinsic geometry of the
surface. This means it does not change if the surface is deformed in a way that does
not change length measurement within it.

Remark 9: All points of a sphere are umbilic. The Gaussian and mean curvatures
of a sphere are constant.

356 Chapter 22. 'W. Boehm: Differential Geometry I

Remark 10: Any developable, i.e., a surface that can be deformed to planar
shape without changing length measurements in it, must have K = 0. Conversely,
every surface with K = 0 can be developed into a plane (if necessary, by applying
cuts). See also Section 22.10.

22.7 Euler’s Theorem

The normal curvatures in different directions t at a point x are not independent of each
other. For simplicity, let the isoparametric curves of a surface be lines of curvature;
then we have F = M = 0 (see Section 22.5). As a consequence, we have

K1=E and K2:—G—

’

and k(A) may be written as

o L + N\? E N GA?
k(A) = =k K .

E+G\2 T'E+GA2 E+GA?
The coefficients of k| and k, have a nice geometric meaning: let ¥ denote the angle
between X, and the tangent vector X = X, + X,V of the curve under consideration,

as illustrated in Figure 22.9. We obtain

XX, VE

(22.13)

cosV = — =
“X”“xu” VE + G\2
and
sin¥ = X \/EA

K /E + 6a2’

where A = v/ir as before. Hence k(A) may be written as
k(M) = Ky cos? ¥ + kK, sin® W,

This important result was found by L. Euler.

line of curvature

Figure 22.9: Configuration for Euler’s theorem.

22.8. Dupin’s Indicatrix 357

22.8 Dupin’s Indicatrix

Euler’s theorem has the following geometric implication. If we introduce polar coordi-
nates r = ﬁ and ¥ for a point y of the tangent plane at x by setting y; =

VpeosV, y; = /psin'¥, then setting «;
be written

p—ll and k, = é, Euler’s theorem can

R,
Pr P2

This is the equation of a conic section, the Dupin’s indicatrix (see Figure 22.10). Its
points y in the direction given by ¥ have distance . /p from x. Taking into account
that a reversal of the direction of n will effect a change in the sign of p, this conic
section is an ellipse if K > 0, a pair of hyperbolas if K < 0 (corresponding to \/E
and ,/—p), and a pair of parallel lines if K = 0 (but H # 0).

Dupin’s indicatrix has a nice geometric interpretation: we may approximate our
surface at x by a paraboloid, that is, a Taylor expansion with terms up to second
order. Then Remark 7 of Chapter 11 leads to a very simple interpretation of Dupin’s
indicatrix: the indicatrix, scaled down by a factor of 1 : m, can be viewed as the
intersection of the surface with a plane parallel to the tangent plane at x in the
distance € = inf This is illustrated in Figure 22.11.

Remark 11: This illustrates the appearance of a pair of hyperbolas in Figure
22.10; they appear when intersecting the surface in distances € = * 2—1m—2 ‘We can thus
assign a sign to the Dupin indicatrix, depending on its being “above” or “below” the
tangent plane.

\/ﬁ;\/ﬁ y \/5 Yy
¥d
NI

K>0 K =0 (H#0)

Figure 22.10: Dupin’s indicatrix for an elliptic, a parabolic, and a hyperbolic point.

358 Chapter 22. W. Boehm: Differential Geometry I
¢ \/
Figure 22.11: Dupin’s indicatrix, scale 1 : m.

229 Asymptotic Lines and Conjugate Directions

The asymptotic directions of Dupin’s indicatrix have a simple geometric meaning:
surface curves passing through x and having a tangent in an asymptotic direction
there have zero curvature at X; in other words, these directions are defined by

Ldu? + 2Mdudv + Ndv? = 0. (22.14)

They are real and different if K < 0, real but coalescing if K = 0, and complex if
K>0.

The net of lines having these directions in all their points is called the net
of asymptotic lines. If necessary, it may be calculated by integrating (22.14). In a
hyperbolic region of the surface, it is real and regular and can be used for a real
parametrization.

For this parametrization, one has

L=0and N =0,

and vice versa.

As earlier, let y be a point on Dupin’s indicatrix at a point x. Let y denote its
tangent direction at y. The direction ¥ is called conjugate to the direction X from x to
y. Consider two surface curves u;(t;) and u,(z;) that have tangent directions x; and
%, at X. Some elementary calculations yield that X, is conjugate to X, if

Litlilz + M(l:lll.)z + ilzf/l) + N\'Ilflz =0.
Note that this expression is symmetric in 0, . By definition asymptotic directions
are self-conjugate.

Remark 12: Tsoparametric curves of a surface are conjugate if M = 0 and vice
versa.

Remark 13: The principal directions, defined by (22.9), are orthogonal and
conjugate; they bisect the angles between the asymptotic directions; i.e., they are the
axis directions of Dupin’s indicatrix (see Figure 22.10).

Remark 14: The tangent planes of two “consecutive” points on a surface curve
intersect in a straight line s. Let the curve have direction t at a point X on the surface.
Then s and t are conjugate to each other. In particular, if t is an asymptotic direction,

22.10. Ruled Surfaces and Developables 359

s coincides with t. If t is one of the principal directions at x, then s is orthogonal to t
and vice versa. These properties characterize lines of curvature and asymptotic lines
and may be used to define them geometrically.

22.10 Ruled Surfaces and Developables

If a surface contains a family of straight lines, it is called a ruled surface. 1t is
convenient to use these straight lines as one family of isoparametric lines. Then the
ruled surface may be written

X = x(t,v) = p(t) + vq(2), (22.15)

where p is a point and q is a vector, both depending on ¢. The isoparametric lines
t = const are called the generatrices of the surface; see Figure 22.12.

The partials of a ruled surface are given by x, = p + vq and x, = q. The normal
n at X is given by

_ (p+vp/g
16+ va) il

A point y on the tangent plane at X satisfies
detly — p, p, ql + vdet[y — p, 4. q] = 0;

in other words, the tangent planes along a generatrix form a pencil of planes. However,
if p, ¢, and q are linearly dependent, i.e., if

det[p, 4, q] = O, (22.16)

the tangent plane does not vary with v.
If (22.16) holds for all ¢, the tangent planes are fixed along each generatrix; hence
all tangent planes of the surface form a one-parameter family of planes. Conversely,

Figure 22.12: Ruled surface.

360 Chapter 22. W. Boehm: Differential Geometry II

4o

Figure 22.13: General developable surface.

any one-parameter family of planes envelopes a developable surface that may be
written as a ruled surface (22.15), satisfying condition (22.16); see also Remark 10.

Remark 15: The generatrices of any ruled surface coalesce with one family of
its asymptotic lines. As a consequence of asymptotic lines being real, one has K = 0.

Remark 16: In particular, the generatrices of a developable surface agree with
its coalescing asymptotic lines, also forming one family of its lines of curvature. The
second family of lines of curvature is formed by the orthogonal trajectories of the
generatrices.

Remark 17: It can be shown that any developable surface is a cone p = const,
a cylinder q = const, or a surface formed by all tangents of a space curve, that is,
q = p; see Figure 22.13.

Remark 18: The normals along a line of curvature of any surface form a
developable surface. This property characterizes and defines lines of curvature.

Remark 19: The tangent planes along a curve X = x[u(¢)] on any surface
form a developable surface. It may be developed into a plane; if by this process the
curve x[u(¢)] happens to be developed into a straight line, the curve x[u(#)] is called
a geodesic. At any point X of a geodesic, one finds that

det[x, X, n] = 0. (22.17)

Equation (22.17) is the differential equation of a geodesic; it is of second order.
Geodesics may also be characterized as providing the shortest path between two
points on the surface.

22.11 Nonparametric Surfaces

Letz = f(x, y) be a function of two variables as shown in Figure 22.14. The surface
u
X = xX(u,v) = v
2(u, v)

22.12. Composite Surfaces 361

Figure 22.14: Nonparametric surface.

is then called a nonparametric surface. From the above, one immediately finds
E=1+Zﬁ, F = z,z, G=1+z%,

D*=EG-F>=1+22+72,

—Zu
n=1| -z
1
1 1 1
Lz_uuy MziuwN:_W’
D° D° D°

K_

1 2
- E(ZuuZw - Zuy)'

22.12 Composite Surfaces

A surface x = x(u, t) with global parameters u and ¢ may be composed of patches
or segments of different surfaces. Let x- = x_(¢) denote the right boundary curve
and X = X4(¢) the left boundary curve of two such patches, connected along
X = X(¢), t € [a, b], as illustrated in Figure 22.15. Both patches are tangent plane
continuous if n_ = *=n, at all x(¢). This may also be written

ax—_, = Bxy, + X, (22.18)

where a, 8, y are functions of 7 and the product «f3 is nonvanishing.

The two patches are curvature continuous if they are tangent plane continuous
and both Dupin’s indicatrices agree along the common boundary, in the sense of
Remark 11 and as illustrated in Figure 22.16.

If the common boundary is C!, both indicatrices have a pair of points in common
which are opposed to each other in the direction of the boundary tangent. Although a
conic section is defined by five points (see Section 13.5), or by its midpoint and three

362 Chapter 22. W. Boehm: Differential Geometry II

Figure 22.15: Composite surface.

nondiametrical points, it can be shown that both Dupin’s indicatrices coincide if there
exists a family of curvature continuous surface curves crossing the common boundary.
In particular, this family may be one of asymptotic lines (Pegna and Wolter [384])
or any family of isolines (Boehm [67]), or even any family of unordered directions
(Pegna and Wolter [383]). Moreover, if the boundary is C? only at a point, there are
two directions of curvature continuity there, and so no further conditions have to be
met.

Remark 20: A surface is called tangent or curvature continuous if any plane
section is tangent or curvature continuous, respectively.

Remark 21: Note that the asymptotic directions of both patches may coincide
even if they are imaginary.

Remark 22: A consequence of (22.18) is the following:

Xy = BXy, + yX — ax-, + Bx+v + X

Remark 23: Note that, although Dupin’s indicatrix is a euclidean invariant only,
curvature continuity of surfaces is an affinely and projectively invariant property.

Figure 22.16: Common Dupin’s indicatrix.

Chapter 23

Interrogation and Smoothing

We have discussed many methods for curve and surface generation. In this chapter,
we shall discuss some ways to inspect the geometric quality of those curves and
surfaces and develop a few ideas on how to remove shape imperfections. There is a
growing interest in this area; see, for example, the collection by Sapidis [441].

23.1 Use of Curvature Plots

A spline curve is typically obtained in one of two ways: as a curve that interpolates to
given data points, or as the result of interactive manipulation of a B-spline polygon. In
both cases, it is hard to tell from the display on the screen if the shape of the curve is
acceptable or not: two curves may look identical on the screen, yet reveal significant
shape differences when plotted to full scale on a large flatbed plotter. Such plots are
both expensive and time-consuming—one needs a tool to analyze curve shape at the
CAD terminal.

Such a tool is provided by the curvature plot of the curve. For a given curve,
we can plot curvature versus arc length or versus the parameter. The resulting graph
is the curvature plot. We have already used curvature plots in Chapter 9. All three
curves from Figures 9.2, 9.4, and 9.6 look very similar, yet their curvature plots reveal
substantial differences. The same is true for Figures 9.10 and 9.12. What actually
constitutes a “substantial” difference depends on the application at hand, of course.

The curvature of a space curve is nonnegative by definition (11.7).! Very often,
one is interested in the detection of inflection points of the current planar projection,
i.e., the points of inflection of the curve as it appears on the screen. If we introduce
signed curvature by

_ Xw)y(u) — yw)x(u)

KW = G + Guyer?

(23.1)

!See also the Exercises section at the end of Chapter 14.

363

364 Chapter 23. Interrogation and Smoothing

where x, y are the two components of the curve, it is easy to point to changes in
the sign of curvature, which indicate inflection points. (Those sign changes can be
marked by special symbols on the plot.) Signed curvature is used in all examples in
this book.

We now go one step further and use curvature plots for the definition of fair
curves: A curve is fair if its curvature plot is continuous and consists of only a few
monotone pieces.” Regions of monotone curvature are separated by points of extreme
curvature. The number of curvature extrema of a fair curve should thus be small—
curvature extrema should only occur where explicitly desired by the designer, and
nowhere else!

This definition of fairness (also suggested by Dill [154], Birkhoff [58], and Su
and Liu [481] in similar form) is certainly subjective; however, it has proven to be
a practical concept. Once a designer has experienced that “flat spots” on the curve
correspond to “almost zero” curvature values and that points of inflection correspond
to crossings of the zero curvature line, he or she will use curvature plots as an everyday
tool.

An interesting alternative to plain curvature plots are plots of the logarithm of
curvature; see [88]. Such plots highlight “flat” areas on a curve. Tiny changes in
curvature have a significant effect in these regions, and they are magnified by the use
of logarithms.

23.2 Curve and Surface Smoothing

A typical problem in the design process of many objects is that of digitizing errors:
data points have been obtained from some digitizing device (a tablet being the
simplest), and a fair curve is sought through them. In many cases, however, the
digitized data are inaccurate, and this presence of digitizing error manifests itself in
a “rough” curvature plot of an interpolating spline curve.’

For a given curvature plot of a C? cubic spline, we may now search for the largest
slope discontinuity of k(s) (s being arc length) and try to “fair” the curve there. Let
this largest slope discontinuity occur at u = u;. The slope k' is given by

de det[% X'] ... det[X, X]

ds —IF TR
where, as usual, dots denote derivatives with respect to the given parameter u (see
Pottmann [405]). Note that this formula applies for 2D curves only.

The data point x(i;) is potentially in error; so why not move X(i;) to a more
favorable position? It seems that a more favorable position should be such that the
spline curve through the new data no longer exhibits a slope discontinuity.

(23.2)

2M. Sabin has suggested that “a frequency analysis of the radius of curvature plotted against
arc length might give some measure of fairness—the lower the dominant frequency, the fairer
the curve.” Quoted from Forrest [211].

3Typically, splines that are obtained from interactive adjustment of control polygons exhibit
rough curvature plots as well.

23.2. Curve and Surface Smoothing 365

We now make the following observation: if a spline curve is three (instead of just
two) times differentiable at a point x(u;), then certainly its curvature is differentiable
atuj; i.e., it does not have a slope discontinuity there (assuming that the tangent vector
does not vanish at u;). Also, the two cubic segments corresponding to the intervals
(-1, u;) and (uj, u;j+1) are now part of one cubic segment: the knot u; is only a
pseudo-knot, which could be removed from the knot sequence without changing the
curve.

We will thus try to remove the “offending knot” u; from the knot sequence,
thereby fairing the curve, and then reinsert the knot in order to keep a spline curve
with the same number of intervals as the initial one. We discussed knot insertion
in Chapter 10. The inverse process, knot removal, has no unique solution. Several
possibilities are discussed in Eck and Hadenfeld [166], Farin et al. [190], Sapidis
[440], and Farin and Sapidis [191], [442]. We present here a simple yet effective
solution to the knot removal problem. Let the offending knot u; be associated with
the vertex d;.* We now formulate our knot removal problem: to what position d; must
we move d; such that the resulting new curve becomes three times differentiable at
u;? After some calculation (equating the left and the right third derivative of the new
spline curve), one verifies that the new vertex d j is given by

a _ (uj+2 - uj)lj + (uj - uj_z)l'j
;=

’

Ujpr —Uj—2

where the auxiliary points 1;, r; are given by

I, = (Ujry —uj—3)dj—y — (U —uj)d;—
uj — Uj—3
and
) = W3 —ujo)y — (u; — uj—l)dj+2.

Uj+3 — Uj

The geometry underlying these equations is illustrated in Figure 23.1.

Figure 23.1: Knot removal: if d; is moved to d;, the new curve is three times differen-
tiable at ;.

*This uses the notation from Chapter 7.

366 Chapter 23. Interrogation and Smoothing

The faired curve now differs from the old curve between x(u;) and X(u;42)—
thus this fairing procedure is local.

Figures 23.2 and 23.3 illustrate an application of this algorithm, although it is
not used locally, but for all knots. Note that the initial and the smoothed curves look
almost identical, and only their curvature plots reveal significant shape differences.
The initial curve has an inflection point, which is not visible without the use of
curvature plots. The faired curve does not have this shape defect any more.

In practice, the improved vertex d ; may be further away from the original vertex
d; than a prescribed tolerance allows. In that case, one restricts a realistic d jtobein
the direction toward the optimal d;, but within tolerance to the old d;.

Other methods for curve fairing exist. We mention Kjellander’s method [309],
which moves a data point to a more favorable location and then interpolates the
changed data set with a C? cubic spline. This method is global. A method that fairs
only data points, not spline curves, is presented by Renz [422]. This method computes
second divided differences, smoothes them, and “integrates” back up. Methods that

_ max: 0.010

min: -0.564

Figure 23.2: Curve smoothing: aninitial curve and B-spline polygon with its curvature
plot.

23.3. Surface Interrogation 367

..d max: 0.000

min: -0.507

Figure 23.3: Curve smoothing: the smoothed curve and its curvature plot.

aim at the smoothing of single Bézier curves are discussed by Hoschek [288], [289].
Variations on the described method are given in [191]. A method that tries to reduce
the degrees of each cubic segment to quadratic is given in [181].

23.3 Surface Interrogation

Curvature plots are useful for curves; it is reasonable, therefore, to investigate the
analogous concepts for surfaces. Several authors have done this, including Beck et
al. [43], Farouki [193], Dill [154], Munchmeyer [366], [365], and Forrest [214]. An
interesting early example is on page 197 of Hilbert and Cohn-Vossen [280]. Surfaces
have two major kinds of curvature: Gaussian and mean; see Section 22.6. Both kinds
can be used for the detection of surface imperfections. Another type of curvature can
be useful, too: absolute curvature k. It is defined by

Kabs = |K1| + |K2|)

where k) and k; are the maximal and minimal normal curvatures at the point under
consideration.

368 Chapter 23. Interrogation and Smoothing

Gaussian curvature does not offer much information about generalized cylinders
of the form

c(u,v) = (1 —wx) + ulx(v) + v].

Even if the generating curve x(v) is highly curved, we still have K = 0 for these
surfaces. A similar statement can be made about the mean curvature H, which is
always zero for minimal surfaces, no matter how complicated.

All three kinds of curvatures are shown in Plate V. Note how the surface (a wire
frame rendering) looks perfectly flat, yet the curvatures detect many concave and
convex regions.’

Another method for surface interrogation is the use of reflection lines, first
described in Klass [311]. Poeschl [404] introduced a simplified method, isophotes.
Reflection lines are a standard surface interrogation tool in the styling shop of a car
manufacturer. They are the pattern that is formed on the polished car surface by the
mirror images of a number of parallel fluorescent strip lights. If the mirror images
are “nice,” then the corresponding surface is deemed acceptable. While reflection
lines depend on the position of an observer, isophotes only consider the angle formed
between surface normals and light source.

Reflection lines and isophotes can easily be simulated on a raster graphics device
(mark points whose normal points to one of the light sources). With some more effort,
they can also be computed on a line drawing device (see Klass [311]).

Figure 23.4 shows a surface with one isophote and the effect that a small pertur-
bation can have on that reflection line.

Reflection lines and curvature “paintings” have different usages: reflection lines
are not as fine-tuned as curvatures; they are prone to miss local shape defects of a
surface.® On the other hand, curvatures of a surface may look perfect, yet it might
not have a “pleasant” overall shape—reflection lines have a better chance of flagging
global imperfections.

Figure 23.4: Isophotes: left, a surface with a “perfect” isophote; right, after a pertur-
bation was applied to the surface.

SPlate V is taken from L. Fayard’s master’s thesis [200].
SThis is because reflection lines may be viewed as a first-order interrogation tool (involving
only first derivatives), while curvature plots are second-order interrogation tools.

23.4. Implementation 369

Once imperfections are detected in a tensor product B-spline surface, one would
want methods to remove them without time-consuming interactive adjustment of
control polygons. One such method is to apply the curve smoothing method from
Section 23.2 in a tensor product way: smooth all control net rows, then all control net
columns. The resulting surface is usually smoother than the original surface. Figure
23.4 is an example of this method: the right figure is a B-spline surface; four iterations
of the program fair_surf produced the figure on the left.

More involved methods for surface fairing exist; they aim for the enforcement
of convexity constraints in tensor product spline surfaces. We mention Andersson et
al. [8], Jones [301], and Kaufmann and Klass [306].

23.4 Implementation

The routine curvatures may be used to generate curvature values of a rational
Bézier curve. It writes the values into a file that might be read by another program
that generates a curvature plot.

To compute the curvature at the parameter value ¢, the curve is subdivided using
the (rational) de Casteljau algorithm. Of the two subpolygons that are generated, the
larger one is selected, and its beginning curvature is computed. Since the subdivision
routine rat_subdiv orders both subpolygons beginning at the subdivision point,
only one curvature routine curvature_0 is needed.

void curvatures(coeffx,coeffy,weight,degree,dense)

/* writes signed curvatures of a rational Bezier curve into
a file.
input:
coeffx, coeffy: 2D Bezier polygon
weight: the weights
degree: the degree
dense: how many curvature values to compute
output:

written into file outfile

*/

The routine curvature_0 is a simple application of (11.10):

float curvature_O(bez_x,bez_y,weight,degree)
/* computes curvature of rational Bezier curve at t=0
Input: bez_x, bez_y, weight: control polygon and weights
degree: degree of curve

*/
The following area routine is included for completeness:

float area(pl,p2,p3)
/* find area of triangle p1,p2,p3 */

370 Chapter 23. Interrogation and Smoothing

Note, however, that area returns a negative value if the input points are ordered
clockwise!

The following routine generates the “raw data” that are needed to create the
curvature plot of a rational B-spline curve. Of course, one may simply set all weights
to unity for the polynomial case.

void bspl_kappas (bspl_x,bspl_y,bspl_w,knot,1,dense)

/* writes curvatures of cubic rational B-spline curve into

a file.

input:
bspl_x,bspl_y: 2D rat. B-spline polygon
bspl_w: the B-spline weights
knot: the knot sequence
dense: how many curvature values to compute per interval
1: no. of intervals

output:

written into file outfile

*/

The preceding programs are utilized by the main program plot_b_kappa.c in
order to produce Postscript output for a curvature plot.
Now the programs to fair curves and surfaces: first, the curve case:

void fair_bspline(bspl,knot,1l,from,to)
/* Fairs a cubic rational B-spline curve by knot removal/reinsertion.

Input: bspl: cubic B-spline control polygon (one coord.)
knot: knot sequence
1: no. of intervals

from, to: from where to where to fair
Output: same as input, but hopefully fairer.

*/
Second, the surface case:

void fair_surf(bspl,lu,lv,knot_u, knot_v)

/* Fairs B-spline control net.

Input: bspl: B-spline control net (one coordinate only)
lu,lv: no. of intervals in u- and v-direction
knots_u, knots_v: knot vectors in u- and v-direction

Output: as input

Note: Has to be called once for each x-,y-,z- coordinate.

23.5 Exercises

1. Show that a planar cubic curve may have two points of inflection, i.e., points
where curvature changes sign.

23.5. Exercises 371

P1.

P2.

P3.

P4.

Show that a true space cubic cannot have any points with zero curvature.

The routine curvatures produces a file that contains pairs ¢;, k;, i.e., it can be
used to plot curvature versus parameter. Modify the program so it can be used
to produce plots of curvature versus arc length.

Write a program to compute the torsion of a Bézier or a spline curve. Then
produce torsion plots as an additional interrogation tool for space curves.
Compute the curvatures of isoparametric curves of a spline surface, color code
them, and use them as an interrogation tool.

Produce a uniform B-spline surface that interpolates the four boundary data sets
from car.dat. Test if that surface is fair (using P3 if you want); if not, improve
its shape by using fair_surf.

Chapter 24

Evaluation of Some Methods

In this chapter, we will examine some of the many methods that have been presented.
We will try to point out the relative strengths and weaknesses of each, a task that is
necessarily influenced by personal experience and opinion.

24.1 Bézier Curves or B-spline Curves?

Taken at face value, this is a meaningless question: Bézier curves are a special case of
B-spline curves. Any system that contains B-splines in their full generality, allowing
for multiple knots, is capable of representing a Bézier curve or, for that matter, a
piecewise Bézier curve.

In fact, several systems use both concepts simultaneously. A curve may be
stored as an array holding B-spline control vertices, knots, and knot multiplicities.
For evaluation purposes, the curve may then be converted to the piecewise Bézier
form.

24.2 Spline Curves or B-spline Curves?

This question is often asked, yet it does not make much sense. B-splines form a basis
for all splines, so any spline curve can be written as a B-spline curve.

What is often meant is the following: if we want to design a curve, should we
pass an interpolating spline curve through data points, or should we design a curve
by interactively manipulating a B-spline polygon? Now the question has become one
concerning curve generation methods, rather than curve representation methods.

A flexible system should have both: interpolation and interactive manipulation.
The interpolation process may of course be formulated in terms of B-splines. Since
many designers do not favor interactive manipulation of control polygons, one should
allow them to generate curves using interpolation. Subsequent curve modification may

372

24.3. The Monomial or the Bézier Form? 373

also take place without display of a control polygon: for instance, the designer might
move one (interpolation) point to a new position. The system could then compute
the B-spline polygon modification that would produce exactly that effect. So a user
might actually work with a B-spline package, but a system that is adapted to his or
her needs might hide that fact. See the discussion of “inverse design” in Section 7.8
for details.

We finally note that every C? B-spline curve may be generated as an interpolating
spline curve: Read off junction points, end tangent vectors, and knot sequence from
the B-spline curve. Feed these data into a C? cubic spline interpolator, and the original
curve will be regenerated.

24.3 The Monomial or the Bézier Form?

We have made the point in this book that the monomial form! is less geometric
than the Bézier form for a polynomial curve. A software developer, however, might
not care much about the beauty of geometric ideas—in the workplace, the main
priority is performance. Since the fundamental work by Farouki and Rajan [196],
[197], [194], one important performance issue has been resolved: the Bézier form is
numerically more stable than the monomial form. Farouki and Rajan observed that
numerical inaccuracies, unavoidable with the use of finite precision computers, affect
curves in the monomial form significantly more than those in Bézier form. More
precisely, they show that the condition number of simple roots of a polynomial? is
smaller in the Bernstein basis than in the monomial basis. If one decides to use the
Bézier form for stability reasons, then it is essential that no conversions be made to
other representations; these will destroy the accuracy gained by the use of the Bézier
form. For example, it is not advisable from a stability viewpoint to store data in the
monomial form and to convert to Bézier form to perform certain operations. More
details are given in Daniel and Daubisse [121].

Figure 24.1 shows a numerical example, carried out using the routine bez_to_pow
with single precision arithmetic. A degree 18 Bézier curve (top) was converted to
the monomial form. Then, the coefficients of the Bézier and of the monomial form
were perturbed by a random error, less than 0.001 in each coordinate. (The x-values
of the control polygon extend from 0 to 20.) The Bézier curve shows no visual
sign of perturbation, whereas the monomial form is not very reliable near r = 1.
The experiment was then repeated for a degree 20 curve (bottom) with even more
disastrous results. While degrees such as 18 or 20 look high, one should not forget
that such degrees already appear in harmless-looking tensor product surfaces: for
example, the diagonal u = v of a patch with n = m = 9 is of degree 18!

As a consequence of its numerical instability, the monomial form is not very
reliable for the representation of curves or surfaces.

'This form is also called the power basis form.
2This number indicates by how much the location of a root is perturbed as a result of a
perturbation of the coefficients of the given polynomial.

374

Chapter 24. Evaluation of Some Methods

oun S
—

Figure 24.1: Stability of the monomial form: slight perturbations in the coefficients
affect the monomial form (gray) much more than the Bézier form (black). Top: a degree
18 curve; bottom: a degree 20 curve.

24.4. The B-spline or the Hermite Form? 375

Figure 24.2: A piecewise monomial surface: the patches miss the points (1,1) due to
roundoff.

For the case of surfaces, Figure 24.2 gives an illustration (in somewhat exagger-
ated form). Since the monomial form is essentially a Taylor expansion around the
local coordinate (0,0) of each patch, it is quite close to the intended surface there.
Further away from (0,0), however, roundoff takes its toll. The point (1,1) is computed
and therefore missed. For an adjacent patch, the actual point is stored as a patch
corner, thus giving rise to the discontinuities shown in Figure 24.2. The significance
of this phenomenon increases dramatically when curves or surfaces of high degrees
are used.

One should not forget to mention the main attraction of the monomial form:
speed. Horner’s method is faster than the de Casteljau algorithm; it is also faster than
the routine hornbez. There is a trade-off, therefore, between stability and speed.
(Given modern hardware, things are not quite that clear-cut, however: T. DeRose
and T. Holman [151] have developed a multiprocessor architecture that hardwires the
de Casteljau algorithm into a network of processors and now outperforms Horner’s
method.)

24.4 The B-spline or the Hermite Form?

Cubic B-spline curves are numerically more stable than curves in the piecewise
cubic Hermite form. This comes as no surprise, since some of the Hermite basis
functions are negative, giving rise to numerically unstable nonconvex combinations.
However, there is an argument in favor of the piecewise Hermite form: it stores
interpolation points explicitly. In the B-spline form, they must be computed. Even if
this computation is stable, it may produce roundoff.

As another argument in favor of the Hermite form, one might add that end
conditions for C? spline interpolation are more easily formulated in the Hermite form
than in the B-spline form.

376 Chapter 24. Evaluation of Some Methods

A significant argument against the use of the Hermite form points to its lack of
invariance under affine parameter transformations. Everyone who has programmed
the Hermite form has probably experienced the trauma resulting from miscalculated
tangent lengths. A programmer should not be burdened with the subtleties of the
interplay between tangent lengths and parameter interval lengths.

An important advantage of the B-spline form is storage. For B-spline curves,
one needs a control point array of length L + 2 plus a knot vector array of length
L + 1 for a curve with L data points, resulting in an overall storage requirement of
4L + 7 reals.? For the piecewise Hermite form, one needs a data array of length 2L
(position and tangent at each data point) plus a knot vector of length L + 1, resulting
in a storage requirement of 7L + 1 reals. For surfaces (with same degrees in u and
v for simplicity), the discrepancy becomes even larger: 3(L + 2)* + 2(L + 1) vs
12L% + 2(L + 1) reals. (For the Hermite form, we have to store position, - and
v-tangents, and twist for each data point.)

When both forms are used for tensor product interpolation, the Hermite form
must solve three sets of linear equations (see Section 15.13) while the B-spline form
must solve only two sets (see Section 15.12).

24.5 Triangular or Rectangular Patches?

Most of the early CAD efforts were developed in the car industry, and this is perhaps
the main reason for the predominance of rectangular patches in most CAD systems;
the first applications of CAD methods to car body design were to the outer panels such
as roof, doors, and hood. These parts basically have a rectangular geometry; hence it
is natural to break them down into smaller rectangles. These smaller rectangles were
then represented by rectangular patches.

Once a CAD system had been successfully applied to a design problem, it seemed
natural to extend its use to other tasks: the design of the interior car body panels, for in-
stance. Such structures do not possess a notably rectangular structure, and rectangular
patches are therefore not a natural choice for modeling these complicated geometries.
However, rectangle-based schemes already existed, and the obvious approach was to
make them work in “unnatural” situations also. They do the job, although with some
difficulties, which arise mainly in the case of degenerate rectangular patches.

Triangular patches do not suffer from such degeneracies and are thus better
suited to describe complex geometries than are rectangular patches. It seems obvious,
therefore, to advise any CAD system developer to add triangular patches to the system.

There is a catch: the very addition of a new patch type to an existing system is a
formidable task in itself. This new patch type must be interfaced with every existing
function that the system offers: a routine must be written for triangular patch/plane
intersection, for the offset surface of a triangular patch, and so on. Adding the

3We are not storing knot multiplicities. We would then be able to represent curves that are
only C°, which the cubic Hermite form is not capable of.

24.5. Triangular or Rectangular Patches? 377

nice features of triangular patches to an existing system has its price, both in the
development of new code and in its subsequent maintenance.

A different situation arises if a completely new system is to be developed. The
extra cost for the inclusion of triangular patches into an emerging system is not nearly
as high as that for the addition to an existing system. Such a new system would most
likely profit enough from the additional flexibility offered by triangular patches to
justify a higher implementation cost. Similar arguments hold for other non-four-sided
patch types, as described in Sabin [430], Sabin and Kimura [431], Hosaka and Kimura
[287], Gregory [254], and Varady [488]. A method to convert (exactly) a triangular
patch into three rational rectangular patches is described in [295].

We should add that a development of rectangular patches has blurred the clear
distinction between patch types: This is the trimmed surface as discussed in Section
16.9. It can mimic multisided patches and seems to be a reasonable way to upgrade
a rectangular surface system toward more versatility.

Chapter 25

Quick Reference of Curve
and Surface Terms

ab initio design Latin: from the beginning. Used to describe design processes
in which the designer inputs his or her ideas directly into the computer, without
constraints such as —interpolatory constraints.

Affine combination Same as a —barycentric combination.

Affine invariance A property of a curve or surface generation scheme: the same
result is obtained if computation of a point on a curve or surface occurs before or
after an —affine map is applied to the input data.

Affine map Any map that is composed of translations, rotations, scalings, and
shears. Maps parallels to parallels. Leaves ratios of —collinear points unchanged.
Approximation Fitting a curve or surface to given data. As opposed to —interpolation
the curve or surface approximation only has to be close to data.

Barycentric combination A weighted average where the sum of the weights equals
one.

Barycentric coordinates A point in [E> may be written as a unique —barycentric
combination of three points. The coefficients in this combination are its barycentric
coordinates.

Basis function Functions form linear spaces, which have bases. The elements of
these bases are the basis functions.

Bernstein polynomial The basis functions for —Bézier curves.

Beta-spline curve A — G? piecewise cubic curve that is defined over a uniform
knot sequence.

Bézier curve A polynomial curve that is expressed in terms of —Bernstein poly-
nomials.

Bézier polygon The coefficients in the expansion of a —Bézier curve in terms of
—Bernstein polynomials are — points. Connected according to their natural num-
bering, they form the Bézier polygon.

378

Chapter 25. Quick Reference of Curve and Surface Terms 379

Bilinear patch A patch that is —ruled in two directions. Or: a hyperbolic
paraboloid.

Blossom A multivariate polynomial that is associated with a given polynomial
through the process of —blossoming.

Blossoming The procedure of applying » (the polynomial degree) —de Casteljau
algorithm steps or n —de Boor steps to a polynomial (or to a segment of a spline
curve), but each one for a different parameter value.

B-spline A piecewise polynomial function. It is defined over a —knot partition,
has —local support, and is nonnegative. If a —spline curve is expressed in terms of
B-splines, it is called a B-spline curve.

B-spline polygon The coefficients in the expansion of a —B-spline curve in terms
of —B-splines are —points. Connected according to their natural numbering, they
form the B-spline polygon. Also called de Boor polygon.

Breakpoint Same as a —knot.
CAGD Computer-aided geometric design.
CONS Curve on surface.

C" A smoothness property of curves or surfaces: being r times differentiable with
respect to the given — parametrization.

Chord length parametrization In many curve interpolation problems, data points
need to be assigned parameter values. If these are spaced relative to the spacing of
the data points, we have a chord length parametrization.

Collinear Being on a straight line.

Compatibility For some interpolation problems, the input data may not be arbitrary
but must satisfy some consistency constraints, called compatibility conditions.

Conicsection The intersection curve between a cone and a plane. Or: the projective
image of a parabola. A nondegenerate conic is either an ellipse, a parabola, or a
hyperbola.

Control polygon See —Bézier polygon or —B-spline polygon.

Control vector For rational curves, a —Bézier or —B-spline control point which
has degenerated to a vector, implying a zero —weight.

Convex curve A planar curve that is a subset of the boundary of its —convex hull.
Convex hull The smallest convex set that contains a given set.

Convex set A set such that the straight line connecting any two points of the set is
completely contained within the set.

Coplanar Being on the same plane.
Coons patch A —patch that is fitted between four arbitrary boundary curves.

Cross plot Breaking down the plot of a parametric curve into the plots of each
coordinate function.

Cross ratio A quantity computed from four collinear points, invariant under
—projective maps. A generalization of affine —ratios.

380 Chapter 25. Quick Reference of Curve and Surface Terms

Curve The path of a point moving through space. Or: the image of the real line
under a continuous map.

Curvature At a point on a curve, curvature is the inverse of the radius of the
—osculating circle. Also: curvature measures by how much a curve deviates from a
straight line at a given point.

de Boor algorithm The algorithm that recursively computes a point on a—B-spline
curve.

de Casteljau algorithm The algorithm that recursively computes a point on a
—Bézier curve.

Delaunay triangulation A —triangulation that maximizes the minimal angle of
all triangles. Or: the dual of the —Dirichlet tessellation.

Developable surface A —ruled surface whose Gaussian curvature vanishes every-
where.

Direct G? splines G? piecewise cubics that are generated by specifying a control
polygon and some Bézier points.

Dirichlet tessellation A partition of E? or > into convex —tiles. Each tile is
associated with a given data point such that all of its points are closer to “its” data
point than to any other data point.

Domain The preimage of a curve or surface.

End condition In cubic —spline curve interpolation, one has to supply an extra
condition at each of the two endpoints. Examples of such end conditions: prescribed
tangents or zero curvature.

Frenet frame At each point of a (nondegenerate) curve, the first, second, and third
derivative vectors are linearly independent. Applying Gram-Schmidt orthonormal-
ization to them yields the Frenet frame of the curve at the given point.

Functional curve or surface A curve of the form y = f(x) or a surface of the
formz = f(x, y).

G? spline curve A C! piecewise cubic curve that is twice differentiable with respect
to arc length.

v-spline A — G? spline that is C! over a given knot sequence.

Geometric continuity Smoothness properties of a curve or a surface that are more
general than its order of differentiability.

Gordon surface A generalization of — Coons patches. Interpolates to a recti-
linear network of curves.

Hermite interpolation Generating a curve or surface from data that consist of
points and first and/or higher derivatives.

Hodograph The first derivative curve of a parametric curve.

Homogeneous coordinates A coordinate system that is used to describe rational
curves and surfaces in terms of projective geometry, where they are just polynomial.
Horner’s scheme An efficient method to evaluate a polynomial in — monomial
form by nested multiplication.

Chapter 25. Quick Reference of Curve and Surface Terms 381

IGES Initial Graphics Exchange Specification. A popular data specification format,
aiming at unifying geometry descriptions.

Infinite control point Same as —control vector.

Inflection point A point on a curve where the tangent intersects the curve. Often
corresponds to points with zero curvature.

Interior Bézier points For curves, those Bézier points that are not —junction
points. For surfaces, those Bézier points that are not boundary points.
Interpolation Finding a curve or surface that satisfies some imposed constraints
exactly. The most common constraint is the requirement of passing through a set of
given points.

Junction point A —spline curve is composed of —segments. The common point
shared by two segments is called the junction point. See also —knot.

Knot A —spline curve is defined over a partition of an interval of the real line. The
points that define the partition are called knots. If evaluated at a knot, the spline curve
passes through a —junction point.

Knot insertion Adding a new —knot to the knot sequence of a —B-spline curve
without changing the graph of the curve.

Lagrange interpolation Finding a polynomial curve through a given set of data
points.

Least squares An approximation process that aims at minimizing the deviations
of given data points from a desired curve or surface.

Linear precision A property of many curve schemes: if the curve generation
scheme is applied to data read off from a straight line, that straight line is repro-
duced.

Local control A curve or surface scheme has the local control property if a change
in the input data only changes the curve or surface in a region near the changed data.

Lofting Creating a —ruled surface between two given curves.

Minmax box Smallest 2D or 3D box with edges parallel to the coordinate axes that
completely contains a given object.

Monomial form A polynomial is in monomial form if it is expressed in terms of
the monomials 1, ¢ #2,

Node A term that is used inconsistently in the literature: it sometimes refers to a
—knot, sometimes to a —control point.

NURB Nonuniform rational B-spline curve.
v-spline An —interpolating — G? spline curve that is C' over a given knot se-
quence.

Osculating circle At a given point, the osculating circle approximates the curve
“better” than any other circle.

Osculating plane The plane that contains the —osculating circle of a curve at a
given point.

382 Chapter 25. Quick Reference of Curve and Surface Terms

Oslo algorithm The process of simultaneously inserting several —knots into a
—B-spline curve.

Parametrization Assigning parameter values to —junction points in —spline
curves. Also used with a different meaning: the function that describes the speed
of a point traversing a curve.

Patch Complicated —surfaces are usually broken down into smaller units, called
patches. For example, a bicubic spline surface consists of a collection of bicubic
patches.

Point A location in —space. If one uses coordinate systems to describe space, a
point is represented as an n-tuple of real numbers.

Precision A curve or surface generation scheme has n"-order precision if it repro-
duces polynomials of degree n.

Projective map A map that is composed of —affine maps and central projections.
Leaves cross ratios of —collinear points unchanged. Does not (in general) map
parallels to parallels.

Quadric A surface with the implicit representation f(x, y,z) = 0, where f is a
quadratic polynomial. Or: the projective image of an elliptic paraboloid, a hyperbolic
paraboloid, or a parabolic cylinder.

Ratio A quantity computed from three collinear points. Invariant under —affine
maps, but not under —projective maps.

Rational curves and surfaces Projections of nonrational (integral) curves or
surfaces from four-space into three-space.

Recursive subdivision Curves or surfaces that are defined as the limit of a polygon
or polyhedron refinement process.

Ruled surface A surface containing a family of straight lines. Obtained as linear
interpolation between two given curves.

S-patch A surface patch with an arbitrary number of boundary curves, constructed
by mapping a multidimensional simplex onto a 2D polygon, the domain of the patch.

Segment An individual polynomial (or rational polynomial) curve in an assembly
of such curves to form a —spline curve. The bivariate analogue of a segment is a
—patch.

Shape parameter A degree of freedom (usually a real number) in a curve or surface
representation that can be used to fine-tune the shape of that curve or surface.

Solid modeling The description of closed objects that are bounded by a collection
of surfaces.

Space The collection of all —points.

Spline curve A continuous curve that is composed of several polynomial
—segments. Spline curves are often represented in terms of —B-spline functions.
They may be the result of an —interpolation process or of an —ab initio design
process. If the segments are rational polynomials, we have a —rational spline curve.

Chapter 25. Quick Reference of Curve and Surface Terms 383

Standard form The property of a rational curve of having its end weights equal to
unity.

Stereo lithography The process of producing a physical (usually plastic) model
of a part, involving building layers of material hardened by laser rays aimed inside a
tank of liquid resin.

Subdivision Breaking a curve or surface down into smaller pieces of the same type
as the original curve or surface.

Support The region over which a nonnegative function is actually positive.

Surface The locus of all points of a moving and deforming —curve. Or: the 3D
image of a region in two-space under a continuous map. A surface is often broken
down into —patches.

Surface triangulation A collection of triangular facets that covers a smooth sur-
face, obeying the structure of a —triangulation.

Tangent The straight line that best approximates a smooth curve at a point on it.
This straight line is parallel to the —tangent vector.

Tangent vector The first derivative of a differentiable curve at a point on it. The
length of the tangent vector depends on the —parametrization of the curve.

Tensor product A method to generate rectangular surfaces using curve methods.
Tile The interior of a convex closed polygon.

Torsion A measure of how much a curve “curves away” from the —osculating
plane at a given point.

Transfinite interpolation Interpolating to curves, with infinitely, i.e., transfinitely
many points on it, as opposed to discrete interpolation, which only interpolates to
finitely many points.

Translational surface A surface that is obtained by sweeping one curve along
another one.

Triangular patch A —patch whose —domain is a triangle.

Triangulation A collection of triangles, covering a region in F?, such that the
triangles do not overlap, and such that any two triangles either have no points in
common, or they have one edge in common, or they have one vertex in common. See
also —surface triangulation.

Trimmed surface If the domain of a parametric surface is divided into “valid” and
“invalid” regions, the image of the valid regions is called a trimmed surface.

Twist vector The mixed second partial of a surface at a point. Note: not a geometric
property of the surface, but parametrization dependent.

Variation diminution Intuitively: a curve or surface scheme has this property if its
output “wiggles less” than the data from which it is constructed.

Vector A direction. Usually the difference of two —points.

Volume deformation A surface or a collection of surfaces may be embedded in
a cube. That cube may then be deformed using some trivariate Bézier or B-spline

384 Chapter 25. Quick Reference of Curve and Surface Terms

method—this is the volume distortion—in order to change the shape of the initial
surface(s).

Weight Rational curves and surfaces are often defined in terms of —homogeneous
coordinates. The last component of the homogeneous coordinate is called weight.

Appendix 1

List of Programs

The following list includes all programs that are contained in the te

aitken

area

bessel_ends
bez_to_points
bspline_to_bezier
bspl_to_points
curvature_0
curvatures
deboor
deboor_blossom
decas
degree_elevate
direct_gspline
hornbez
l_u_system
netcoons
parameters
plot_bez_surfaces
plot_surf

ratbez
ratbspline_to_bezier
ratbspl_to_bez_surf
rat_subdiv
set_up_system
solve_system
spline_surf_int
subdiv

subdiv_rat

Section 6.8
Section 23.4
Section 9.6
Section 3.5
Section 7.9
Section 10.12
Section 23.4
Section 23.4
Section 10.12
Section 10.12
Section 3.5
Section 5.12
Section 12.10
Section 4.9
Section 9.6
Section 21.7
Section 9.6
Section 16.10
Section 15.14
Section 14.10
Section 14.10
Section 14.10
Section 16.10
Section 9.6
Section 9.6
Section 16.10
Section 7.9
Section 14.2

385

Appendix 2

Notation

Here is the notation used in this book:

P;
[Iv]|

Xy

cross product

curve derivatives with respect to the current parameter
curve derivatives with respect to arc length

real numbers or real-valued functions

short for (0,0,0)

points or vectors (possibly in terms of barycentric coordinates)
matrices

matrices whose elements are points (“hypermatrices”)
intermediate points in the de Casteljau algorithm
univariate Bernstein polynomials of degree n
bivariate Bernstein polynomials of degree n

short for (1,0,0), (0,1,0), and (0,0,1), respectively
d-dimensional euclidean space

directional derivative of f in the direction d
difference in parameter intervals (i.e., A; = w;41 — u;)
iterated forward difference operator

cubic Hermite polynomials

control polygon

an affine map

operators

(euclidean) length of the vector v

u-partial of x(u, v)

386

Bibliography

[1]

(2]

(3]

(8]

(9]

[10]

[11]

[12]

S. Abi-Ezzi. The graphical processing of B-splines in a highly dynamic
environment. PhD thesis, RPI, 1989. Rensselaer Design Research Center.

T. Ackland. On osculatory interpolation, where the given values of the function
are at unequal intervals. J Inst. Actuar., 49:369-375, 1915.

J. Ahlberg, E. Nilson, and J. Walsh. The Theory of Splines and Their Applica-
tions. Academic Press, 1967.

H. Akima. A new method of interpolation and smooth curve fitting based on
local procedures. J ACM, 17(4):589-602, 1970.

G. Albrecht. A remark on Farin points for Bézier triangles. Computer Aided
Geometric Design, 11, 1994,

P. Alfeld. A bivariate C? Clough-Tocher scheme. Computer Aided Geometric
Design, 1(3):257-267, 1984.

P. Alfeld and L. Schumaker. The dimension of bivariate spline spaces of
smoothness r and degree d = 4r + 1. Constructive Approximation, 3:189-
197, 1987.

R. Andersson, E. Andersson, M. Boman, B. Dahlberg, T. Elmroth, and B. Jo-
hansson. The automatic generation of convex surfaces. In R. Martin, editor,
The Mathematics of Surfaces 1l, pages 427-446. Oxford University Press,
1987.

G. Aumann. Interpolation with developable Bézier patches. Computer Aided
Geometric Design, 8(5):409—420, 1991.

G. Bir. Parametrische interpolation empirischer Raumkurven. ZAMM,
57:305-314, 1977.

A. Ball. Consurf I: introduction of the conic lofting tile. Computer Aided
Design, 6(4):243-249, 1974.

A. Ball. Consurf II: description of the algorithms. Computer Aided Design,
7(4):237-242, 1975.

387

388 Bibliography

[13] A. Ball. Consurf III: how the program is used. Computer Aided Design,
9(1):9-12, 1977.

[14] A. Ball. Reparametrization and its application in computer-aided geometric
design. Int. J for Numer. Methods in Eng., 20:197-216, 1984.

[15] A. Ball. The parametric representation of curves and surfaces using rational
polynomial functions. In R. Martin, editor, The Mathematics of Surfaces II,
pages 39-62. Oxford University Press, 1987.

[16] A. Ball and D. Storry. A matrix approach to the analysis of recursively
generated B-spline surfaces. Computer Aided Design, 18(8):437—-442, 1986.

[17] A. Ball and D. Storry. Conditions for tangent plane continuity of recursively
generated B-spline surfaces. ACM Transactions on Graphics, 7(2):83-102,
1988.

[18] R.Barnhill. Smooth interpolation over triangles. In R. Barnhill and R. Riesen-
feld, editors, Computer Aided Geometric Design, pages 45-70. Academic
Press, 1974.

[19] R. Barnhill. Representation and approximation of surfaces. In J. R. Rice,
editor, Mathematical Software III, pages 69-120. Academic Press, 1977.

[20] R. Barnhill. Coons’ patches. Computers in Industry, 3:37-43, 1982.

[21] R. Barnhill. A survey of the representation and design of surfaces. IEEE
Computer Graphics and Applications, 3:9-16, 1983.

[22] R. Barnhill. Surfaces in computer aided geometric design: a survey with new
results. Computer Aided Geometric Design, 2(1-3):1-17, 1985.

[23] R. Barnhill, editor. Geometry Processing. SIAM, Philadelphia, 1992.

[24] R. Barnhill, G. Birkhoff, and W. Gordon. Smooth interpolation in triangles. J
Approx. Theory, 8(2):114-128, 1973.

[25] R. Barnhill, W. Boehm, and J. Hoschek, editors. Surfaces in CAGD ’89. North
Holland, Amsterdam, 1990.

[26] R. Barnhill, J. Brown, and 1. Klucewicz. A new twist in CAGD. Computer
Graphics and Image Processing, 8(1):78-91, 1978.

[27] R. Barnhill and G. Farin. C! quintic interpolation over triangles: two explicit
representations. /nt. J Numer. Methods in Eng., 17:1763-1778, 1981.

[28] R. Barnhill and J. Gregory. Compatible smooth interpolation in triangles. J of
Approx. Theory, 15(3):214-225, 1975.

[29] R. Barnhill and J. Gregory. Polynomial interpolation to boundary data on
triangles. Math. of Computation, 29(131):726-735, 1975.

Bibliography 389

[30]
[31]

(32]

(33]

[34]

[35]

[36]

(37]

[38]

(39]

[40]

[41]

[42]

[43]

M. Barnsley. Fractals everywhere. Academic Press, 1988.

P. Barry. de Boor-Fix functionals and polar forms. Computer Aided Geometric
Design, 7(5):425-430, 1990.

P. Barry and R. Goldman. De Casteljau-type subdivision is peculiar to Bézier
curves. Computer Aided Design, 20(3):114-116, 1988.

P. Barry and R. Goldman. A recursive proof of a B-spline identity for degree
elevation. Computer Aided Geometric Design, 5(2):173-175, 1988.

B. Barsky. The Beta-spline: a local representation based on shape parameters
and fundamental geometric measures. PhD thesis, Dept. of Computer Science,
U. of Utah, 1981.

B. Barsky. Exponential and polynomial methods for applying tension to an
interpolating spline curve. Computer Vision, Graphics and Image Processing,
27:1-18, 1984.

B. Barsky and J. Beatty. Varying the Betas in Beta-splines. Technical Report
CS-82-49, U. of Waterloo, Waterloo, Ontario, Canada N31 3G1, December
1982.

B. Barsky and T. DeRose. Geometric continuity of parametric curves. Tech-
nical Report UCB/CSB 84/205, Computer Science Division, U. of California,
Berkley, 1984.

B. Barsky and T. DeRose. The beta2-spline: a special case of the beta-spline
curve and surface representation. IEEE Computer Graphics and Applications,
5(9):46-58, 1985.

B. Barsky and D. Greenberg. Determining a set of B-spline control vertices to
generate an interpolating surface. Computer Graphics and Image Processing,
14(3):203-2226, 1980.

B. Barsky and S. Thomas. TRANSPLINE—a system for representing curves
using transformations among four spline formulations. The Computer J,
24(3):271-277, 1981.

R. Bartels and J. Beatty. Beta-splines with a difference. Technical Report
CS-83-40, Computer Science Department, U. of Waterloo, Ontario, Canada,
1984.

R. Bartels, J. Beatty, and B. Barsky. An Introduction to Splines for Use in
Computer Graphics and Geometric Modeling. Morgan Kaufmann, 1987.

J. Beck, R. Farouki, and J. Hinds. Surface analysis methods. JEEE Computer
Graphics and Applications, 6(12):18-36, 1986.

390 Bibliography
[44] E. Beeker. Smoothing of shapes designed with free-form surfaces. Computer
Aided Design, 18(4):224-232, 1986.

[45] G. Behforooz and N. Papamichael. End conditions for interpolatory cubic
splines with unequally spaced knots. J of Comp. Applied Math., 6(1), 1980.

[46] M. Berger. Geometry I. Springer-Verlag, 1987.

[47] S. Bernstein. Démonstration du théoréme de Weierstrass fondeé sur le calcul
des probabilités. Harkov Soobs. Matem ob-va, 13:1-2, 1912,

[48] H. Bez. On invariant curve forms. Computer Aided Geometric Design,
3(3):193-204, 1986.

[49] H. Bez and J. Edwards. Distributed algorithm for the planar convex hull
algorithm. Computer Aided Design, 22(2):81-86, 1990.

[50] P. Bézier. Définition numérique des courbes et surfaces I. Automatisme,
XI1:625-632, 1966.

[51] P. Bézier. Définition numérique des courbes et surfaces II. Automatisme,
XII:17-21, 1967.

[52] P. Bézier. Procédé de définition numérique des courbes et surfaces non
mathématiques. Automatisme, XII1(5):189-196, 1968.

[53] P. Bézier. Numerical Control: Mathematics and Applications. Wiley, 1972.
translated from the French by R. Forrest.

[54] P. Bézier. Mathematical and practical possibilities of UNISURF. In R. Barnhill
and R. Riesenfeld, editors, Computer Aided Geometric Design, pages 127-152.
Academic Press, 1974.

[55] P. Bézier. Essay de définition numérique des courbes et des surfaces
expérimentales. PhD thesis, University of Paris VI, 1977.

[56] P.Bézier. General distortion of an ensemble of biparametric patches. Computer
Aided Design, 10(2):116-120, 1978.

[57]1 P. Bézier. The Mathematical Basis of the UNISURF CAD System. Butter-
worths, London, 1986.

[58] G. Birkhoff. Aesthetic Measure. Harvard University Press, 1933.

[59] W. Blaschke. Differentialgeometrie. Chelsea, 1953. Reprint of the original
1923 edition.

[60] W. Boehm. Parameterdarstellung kubischer und bikubischer Splines. Com-
puting, 17:87-92, 1976.

Bibliography 391
[61] W. Boehm. Cubic B-spline curves and surfaces in computer aided geometric
design. Computing, 19(1):29-34, 1977.

[62] W.Boehm. Inserting new knots into B-spline curves. Computer Aided Design,
12(4):199-201, 1980.

[63] W. Boehm. Generating the Bézier points of B-spline curves and surfaces.
Computer Aided Design, 13(6):365-366, 1981.

[64] W. Boehm. On cubics: a survey. Computer Graphics and Image Processing,
19:201-226, 1982.

[65] W. Boehm. Curvature continuous curves and surfaces. Computer Aided
Geometric Design, 2(4):313-323, 1985.

[66] W. Boehm. Rational geometric splines. Computer Aided Geometric Design,
4(1-2):67-77, 1987.

[671] W. Boehm. Smooth curves and surfaces. In G. Farin, editor, Geometric
Modeling: Algorithms and New Trends, pages 175—-184. SIAM, Philadelphia,
1987.

[68] W. Boehm. On de Boor-like algorithms and blossoming. Computer Aided
Geometric Design, 5(1):71-80, 1988.

[69] W.Boehm. On the definition of geometric continuity. Computer Aided Design,
20(7):370-372, 1988. Letter to the editor.

[70] W. Boehm. Visual continuity. Computer Aided Design, 20(6):307-311, 1988.

[711 W. Boehm. On cyclides in geometric modeling. Computer Aided Geometric
Design, 7(1-4):243-256, 1990.

[72] W. Boehm. Smooth rational curves. Computer Aided Design, 22(1):70, 1990.
Letter to the editor.

[73] W. Boehm and G. Farin. Letter to the editor. Computer Aided Design,
15(5):260-261, 1983. Concerning subdivison of Bézier triangles.

[74] W.Boehm, G. Farin, and J. Kahmann. A survey of curve and surface methods
in CAGD. Computer Aided Geometric Design, 1(1):1-60, 1984,

[75] W. Boehm and D. Hansford. Bézier patches on quadrics. In G. Farin, editor,
NURBS for Curve and Surface Design, pages 1-14. SIAM, 1991.

[76] W. Boehm and H. Prautzsch. Geometric Foundations of Geometric Design.
AK Peters, Boston, 1992.

[77] W.Boehm and H. Prautzsch. Numerical Methods. Vieweg, 1992.

392 Bibliography

[78] G. Bol. Projective Differential Geometry, Vol. 1. Vandenhoeck and Ruprecht,
Goettingen, 1950. Vol. 2in 1954, Vol.3 in 1967. In German.

[79] G. Bonneau. Weight estimation of rational Bézier curves and surfaces. In
H. Hagen, G. Farin, and H. Noltemeier, editors, Geometric Modeling, pages
79-86. Springer, Vienna, 1995.

[80] J. Braun. Degree elevation methods for Bézier curves. Master’s thesis, Uni-
versity of Kaiserslautern, 1995.

[81] J. Brewer and D. Anderson. Visual interaction with Overhauser curves and
surfaces. Computer Graphics, 11(2):132-137, 1977.

[82] J. Brown. Vertex based data dependent triangulations. Computer Aided Geo-
metric Design, 8(3):239-251, 1991,

[83] I. Brueckner. Construction of Bézier points of quadrilaterals from those of
triangles. Computer Aided Design, 12(1):21-24, 1980.

[84] P. Brunet. Increasing the smoothness of bicubic spline surfaces. Computer
Aided Geometric Design, 2(1-3):157-164, 1985.

[85] G. Brunnett. Geometric design with trimmed surfaces. In H. Hagen, G. Farin,
and H. Noltemeier, editors, Geometric Modeling, pages 101-116. Springer,
Vienna, 1995.

[86] G. Brunnett and J. Kiefer. Interpolation with minimal-energy splines. Com-
puter Aided Design, 26(2):137-144, 1994.

[87] B. Buchberger. Applications of Groebner bases in non-linear computational
geometry. In J. Rice, editor, Mathematical Aspects of Scientific Software.
Springer-Verlag, 1988.

[88] H. Burchardt, J. Ayers, W. Frey, and N. Sapidis. Approximation with aesthetic
constraints. In N. Sapidis, editor, Designing Fair Curves and Surfaces, pages
3-28. SIAM, Philadelphia, 1994.

[89] C. Calladine. Gaussian curvature and shell structures. In J. Gregory, editor,
The Mathematics of Surfaces, pages 179—-196. Clarendon Press, 1986.

[90] Y. Cao and X. Hua. The convexity of quadratic parametric triangular
Bernstein—Bézier surfaces. Computer Aided Geometric Design, 8(1):1-6,
1991.

[91] M. Casale and J. Bobrow. A set operation algorithm for sculptured solids
modeled with trimmed patches. Computer Aided Geometric Design, 6(3):235—
248, 1989.

[92] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer Aided Design, 10(6):350-355, 1978.

Bibliography 393

[93] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer Aided Design, 10(6):350-355, 1978.

[94] E. Catmull and R. Rom. A class of local interpolating splines. In R. Barnhill
and R. Riesenfeld, editors, Computer Aided Geometric Design, pages 317-
326. Academic Press, 1974.

[95] G. Chaikin. An algorithm for high speed curve generation. Computer Graphics
and Image Processing, 3:346-349, 1974.

[96] G. Chang. Matrix formulation of Bézier technique. Computer Aided Design,
14(6):345-350, 1982.

[97] G.Chang and P. Davis. The convexity of Bernstein polynomials over triangles.
J Approx Theory, 40:11-28, 1984.

[98] G.Chang and Y. Feng. An improved condition for the convexity of Bernstein—
Bézier surfaces over triangles. Computer Aided Geometric Design, 1(3):279—
283, 1985.

[99] S. Chang, M. Shantz, and R. Rochetti. Rendering cubic curves and surfaces
with integer adaptive forward differencing. Computer Graphics, 23(3):157-
166, 1989. SIGGRAPH ‘89 Proceedings.

[100] P. Charrot and J. Gregory. A pentagonal surface patch for computer aided
geometric design. Computer Aided Geometric Design, 1(1):87-94, 1984.

[101] E. Cheney. Introduction to Approximation Theory. Chelsea, New York, 1982.

[102] F. Cheng and B. Barsky. Interproximation: interpolation and approximation
using cubic spline curves. Computer Aided Design, 23(10):700-706, 1991.

[103] H. Chiyokura and F. Kimura. Design of solids with free-form surfaces. Com-
puter Graphics, 17(3):289-298, 1983.

[104] H.Chiyokura, T. Takamura, K. Konno, and T. Harada. G Usurface interpolation
over irregular meshes with rational curves. In G. Farin, editor, NURBS for
Curve and Surface Design, pages 15-34. SIAM, 1991.

[105] J. Chou. Higher order Bézier circles. Computer Aided Design, 27(4):303-309,
1995.

[106] R. CloughandJ. Tocher. Finite element stiffness matrices for analysis of plates
in blending. In Proceedings of Conference on Matrix Methods in Structural
Analysis, 1965.

[107] J. Cobb. A rational bicubic representation of the sphere. Technical report,
Computer science, U. of Utah, 1988.

394 Bibliography

[108] J. Cobb. Letter to the editor. Computer Aided Geometric Design, 6(1):85,
1989. Concerning Piegl’s sphere approximation.

[109] E. Cohen. A new local basis for designing with tensioned splines. ACM
Transactions on Graphics, 6(2):81-122, 1987.

[110] E. Cohen, T. Lyche, and R. Riesenfeld. Discrete B-splines and subdivision
techniques in computer aided geometric design and computer graphics. Comp.
Graphics and Image Process., 14(2):87-111, 1980.

[111] E. Cohen and C. O’Dell. A data dependent parametrization for spline approx-
imation. In T. Lyche and L. Schumaker, editors, Mathematical Methods in
Computer Aided Geometric Design, pages 155-166. Academic Press, 1989.

[112] E. Cohen and L. Schumaker. Rates of convergence of control polygons.
Computer Aided Geometric Design, 2(1-3):229-235, 1985.

[113] S. Coons. Surfaces for computer aided design. Technical report, MIT, 1964.
Available as AD 663 504 from the National Technical Information service,
Springfield, VA 22161.

[114] S. Coons. Surfaces for computer aided design of space forms. Technical
report, MIT, 1967. Project MAC-TR 41.

[115] S. Coons. Rational bicubic surface patches. Technical report, MIT, 1968.
Project MAC.

[116] S. Coons. Surface patches and B-spline curves. In R. Barnhill and R. Riesen-
feld, editors, Computer Aided Geometric Design, pages 1-16. Academic Press,
1974.

[117] S.Coons. Méthode Matricielle. Hermes, Paris, 1987. Translation from English
by P. Bézier and M. Moronval.

[118] M. Cox. The numerical evaluation of B-splines. J Inst. Maths. Applics.,
10:134-149, 1972.

[119] H. Coxeter. Introduction to Geometry. Wiley, 1961.

[120] W. Dahmen. Subdivision algorithms converge quadratically. J. of Comput-
tional and Applied Mathematics, 16:145-158, 1986.

[121] M. Daniel and J. Daubisse. The numerical problem of using Bézier curves and
surfaces in the power basis. Computer Aided Geometric Design, 6(2):121-128,
1989.

[122] P. Davis. Interpolation and Approximation. Dover, New York, 1975. First
edition 1963.

[123] P. Davis. Lecture notes on CAGD. Given at the Univ. of Utah, 1976.

Bibliography 395

[124] C. de Boor. Bicubic spline interpolation. J. Math. Phys., 41:212-218, 1962.

[125] C. de Boor. On calculating with B-splines. J Approx. Theory, 6(1):50-62,
1972.

[126] C. de Boor. A Practical Guide to Splines. Springer, 1978.

[127] C. de Boor. B-form basics. In G. Farin, editor, Geometric Modeling: Algo-
rithms and New Trends, pages 131-148. SIAM, Philadelphia, 1987.

[128] C.de Boor. Cutting corners always works. Computer Aided Geometric Design,
4(1-2):125-131, 1987.

[129] C. de Boor. Local corner cutting and the smoothness of the limiting curve.
Computer Aided Geometric Design, 7(5):389-398, 1990.

[130] C. de Boor and R. de Vore. A geometric proof of total positivity for spline
interpolation. Math. of Computation, 45(172):497-504, 1985.

[131] C. de Boor and K. Hollig. B-splines without divided differences. In
G. Farin, editor, Geometric Modeling—Algorithms and New Trends, pages
21-27. SIAM, Philadelphia, 1987.

[132] C. de Boor, K. Hollig, and M. Sabin. High accuracy geometric Hermite
interpolation. Computer Aided Geometric Design, 4(4):269-278, 1987.

[133] P. de Casteljau. Outillages méthodes calcul. Technical report, A. Citroen,
Paris, 1959.

[134] P. de Casteljau. Courbes et surfaces a poles. Technical report, A. Citroen,
Paris, 1963.

[135] P. de Casteljau. Shape Mathematics and CAD. Kogan Page, London, 1986.
[136] P. de Casteljau. Le Lissage. Hermes, Paris, 1990.

[137] G. de Rham. Un peu de mathématique a propos d’une courbe plane. Elem.
Math., 2:73-76; 89-97, 1947. Also in Collected Works, 678-689.

[138] G. de Rham. Sur une courbe plane. J Math. Pures Appl., 35:25-42, 1956.
Also in Collected Works, 696-713.

[139] W. Degen. Some remarks on Bézier curves. Computer Aided Geometric
Design, 5(3):259-268, 1988.

[140] W. Degen. Explicit continuity conditions for adjacent Bézier surface patches.
Computer Aided Geometric Design, 7(1-4):181-190, 1990.

[141] W. Degen. The shape of the Overhauser spline. In H. Hagen, G. Farin,
and H. Noltemeier, editors, Geometric Modeling, pages 117-128. Springer,
Vienna, 1995.

396 Bibliography

[142] Y. DeMontaudouin. Resolution of p(x, y) = 0. Computer Aided Design,
23(9):653-654, 1991.

[143] T. DeRose. Geometric continuity: a parametrization independent measure of
continuity for computer aided geometric design. PhD thesis, Dept. of Computer
Science, U. Calif. at Berkeley, 1985. Also tech report UCB/CSD 86/255.

[144] T. DeRose. Composing Bézier simplices. ACM Transactions on Graphics,
7(3):198-221, 1988.

[145] T. DeRose. Geometric programming. In SIGGRAPH ’88 course notes, 1988.

[146] T. DeRose. A coordinate-free approach to geometric programming. In
W. Strasser and H. Seidel, editors, Theory and Practice of Geometric Modeling,
pages 291-306. Springer-Verlag, Berlin, 1989.

[147] T. DeRose. Necessary and sufficient conditions for tangent plane continuity of
Bézier surfaces. Computer Aided Geometric Design, 7(1-4):165-180, 1990.

[148] T. DeRose. Rational Bézier curves and surfaces on projective domains. In
G. Farin, editor, NURBS for Curve and Surface Design, pages 35-46. SIAM,
1991.

[149] T. DeRose and B. Barsky. Geometric continuity, shape parameters, and geo-
metric constructions for Catmull-Rom splines. ACM Transactions on Graph-
ics, 7(1):1-41, 1988.

[150] T.DeRoseand R. Goldman. A tutorial introduction to blossoming. In H. Hagen
and D. Roller, editors, Geometric Modeling. Springer, 1991.

[151] T. DeRose and T. Holman. The triangle: a multiprocessor architecture for fast
curve and surface generation. Technical Report 87-08-07, Computer Science
Department, Univ. of Washington, 1987.

[152] T. DeRose and C. Loop. S-patches: a class of representations for multi-sided
surface patches. Technical Report 88-05-02, Computer Science Department,
Univ. of Washington, 1988.

[153] T. DeRose and C. Loop. The S-patch: a new multisided patch scheme. ACM
Trans. on Graphics, 8(3):204-234, 1989.

[154] J. Dill. An application of color graphics to the display of surface curvature.
Computer Graphics, 15:153-161, 1981.

[155] M. do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall,
Englewood Cliffs, 1976.

[156] T. Dokken, M. Daehlen, T. Lyche, and K. Morken. Good approximation of
circles by curvature-continuous Bézier curves. Computer Aided Geometric
Design, 7(1-4):33-42, 1990.

Bibliography 397

[157] D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraor-
dinary points. Computer Aided Design, 10(6):356-360, 1978.

[158] W-H. Du and F. Schmitt. On the G' continuity of piecewise Bézier surfaces:
a review with new results. Computer Aided Design, 22(9):556~573, 1990.

[159] N. Dyn, J. Gregory, and D. Levin. Analysis of uniform binary subdivision
schemes for curve design. Constructive Approximation, 7(2):127-148, 1991.

[160] N.Dyn, D. Levin, and J. Gregory. A 4-point interpolatory subdivision scheme
for curve design. Computer Aided Geometric Design, 4(4):257-268, 1987.

[161] N. Dyn, D. Levin, and J. Gregory. A butterfly subdivision scheme for surface
interpolation with tenston control. ACM Transactions on Graphics, 9(2):160-
169, 1990.

[162] N. Dyn, D. Levin, and C. Micchelli. Using parameters to increase smoothness
of curves and surfaces generated by subdivision. Computer Aided Geometric
Design, 7(1-4):129-140, 1990.

[163] N. Dyn, D. Levin, and S. Rippa. Data dependent triangulations for piecewise
linear interpolation. IMA J Numer. Analysis, 10:137-154, 1990.

[164] N. Dyn and C. Micchelli. Piecewise polynomial spaces and geometric conti-
nuity of curves. Technical report, IBM report RCC11390, Yorktown Heights,
1985.

[165] M. Eck. Degree reduction of Bézier curves. Computer Aided Geometric
Design, 10(3-4):237-252, 1993.

[166] M. Eck and J. Hadenfeld. Knot removal for B-spline curves. Computer Aided
Geometric Design, 12(3):259-282, 1995.

[167] M. Epstein. On the influence of parametrization in parametric interpolation.
SIAM J Numer. Analysis, 13(2):261-268, 1976.

[168] G. Farin. Konstruktion und Eigenschaften von Bézier-Kurven und -Fldchen.
Master’s thesis, Technical University Braunschweig, FRG, 1977.

[169] G. Farin. Subsplines iiber Dreiecken. PhD thesis, Technical University Braun-
schweig, FRG, 1979.

[170] G. Farin. Bézier polynomials over triangles and the construction of piece-
wise C" polynomials. Technical Report TR/91, Brunel University, Uxbridge,
England, 1980.

[171] G. Farin. A construction for the visual C! continuity of polynomial surface
patches. Computer Graphics and Image Processing, 20:272-282, 1982.

398 Bibliography
[172] G. Farin. Designing C! surfaces consisting of triangular cubic patches. Com-
puter Aided Design, 14(5):253-256, 1982.

[173] G. Farin. Visually C? cubic splines. Computer Aided Design, 14(3):137-139,
1982.

[174] G. Farin. Algorithms for rational Bézier curves. Computer Aided Design,
15(2):73-77, 1983.

[175] G. Farin. A modified Clough—Tocher interpolant. Computer Aided Geometric
Design, 2(1-3):19-27, 1985.

[176] G. Farin. Some remarks on V2-splines. Computer Aided Geometric Design,
2(2):325-328, 1985.

[177] G. Farin. Piecewise triangular C' surface strips. Computer Aided Design,
18(1):45-47, 1986.

[178] G. Farin. Triangular Bernstein—Bézier patches. Computer Aided Geometric
Design, 3(2):83-128, 1986.

[179] G. Farin, editor. NURBS for Curve and Surface Design. SIAM, Philadelphia,
1991.

[180] G. Farin. Commutativity of Coons and tensor product operators. Rocky Mtn.
J of Math., 22(2):541-547, 1992.

[181] G. Farin. Degree reduction fairing of cubic B-spline curves. In R. Barnhill,
editor, Geometry Processing for Design and Manufacturing, pages 87-99.
SIAM, Philadelphia, 1992.

[182] G. Farin. Tighter convex hulls for rational Bézier curves. Computer Aided
Geometric Design, 10(2):123-126, 1993.

[183] G. Farin. NURB Curves and Surfaces. AK Peters, Boston, 1995,

[184] G. Farin and P. Barry. A link between Lagrange and Bézier curve and surface
schemes. Computer Aided Design, 18:525-528, 1986.

[185] G. Farinand H. Hagen. Optimal twist estimation. In H. Hagen, editor, Surface
Design. SIAM, Philadelphia, 1992.

[186] G. Farin, D. Hansford, and A. Worsey. The singular cases for y-spline inter-
polation. Computer Aided Geometric Design, 7(6):533-546, 1990.

[187] G. Farin and D. Jung. Linear precision of rational Bézier curves. Computer
Aided Geometric Design, 12(4):431-433, 1995.

[188] G. Farin and P. Kashyap. An iterative Clough—Tocher interpolant. Mathemat-
ical Modelling and Numerical Analysis, 26(1):201-209, 1992.

Bibliography 399

[189] G. Farin, B. Piper, and A. Worsey. The octant of a sphere as a non-degenerate
triangular Bézier patch. Computer Aided Geometric Design, 4(4):329-332,
1988.

[190] G. Farin, G. Rein, N. Sapidis, and A. Worsey. Fairing cubic B-spline curves.
Computer Aided Geometric Design, 4(1-2):91-104, 1987.

[191] G. Farin and N. Sapidis. Curvature and the fairness of curves and surfaces.
IEEE Computer Graphics and Applications, 9(2):52-57, 1989.

[192] G. Farin and A. Worsey. Reparametrization and degree elevation of rational
Bézier curves. In G. Farin, editor, NURBS for Curve and Surface Design,
pages 47-58. SIAM, 1991.

[193] R. Farouki. Direct surface section evaluation. In G. Farin, editor, Geometric
Modeling: Algorithms and New Trends, pages 319-334. SIAM, Philadelphia,
1987.

[194] R. Farouki. On the stability of transformations between power and Bernstein
polynomial forms. Computer Aided Geometric Design, 8(1):29-36, 1991.

[195] R. Farouki and J. Hinds. A hierarchy of geometric forms. IEEE Computer
Graphics and Applications, 5(5):51-78, 1985.

[196] R. Farouki and V. Rajan. On the numerical condition of polynomials in
Bernstein form. Computer Aided Geometric Design, 4(3):191-216, 1987.

[197] R. Farouki and V. Rajan. Algorithms for polynomials in Bernstein form.
Computer Aided Geometric Design, 5(1):1-26, 1988.

[198] R.Faroukiand T. Sakkalis. Real rational curves are not “unit speed.” Computer
Aided Geometric Design, 8(2):151-158, 1991.

[199] I. Faux and M. Pratt. Computational Geometry for Design and Manufacture.
Ellis Horwood, 1979.

[200] L. Fayard. Surface interrogation using curvature plots. Master’s thesis, Dept.
of Computer Science, Arizona State Univ., 1988.

[201] D.Ferguson. Construction of curves and surfaces using numerical optimization
techniques. Computer Aided Design, 18(1):15-21, 1986.

[202] J. Ferguson. Multivariable curve interpolation. J ACM, 11(2):221-228, 1964.

[203] D. Filip. Adaptive subdivision algorithms for a set of Bézier triangles. Com-
puter Aided Design, 18(2):74-78, 1986.

[204] J. Fiorot and P. Jeannin. Rational Curves and Surfaces. Wiley, Chicester,
1992. Translated from the French by M. Harrison.

400 Bibliography

[205] J. Fiorot and P. Jeannin. Linear precision of BR-curves. Computer Aided
Geometric Design, 12(4):435-438, 1995.

[206] M. Floater. Derivatives of rational Bézier curves. Computer Aided Geometric
Design, 10, 1993.

[207] N. Fog. Creative definition and fairing of ship hulls using a B-spline surface.
Computer Aided Design, 16(4):225-230, 1984.

[208] J. Foley and A. Van Dam. Fundamentals of Interactive Computer Graphics.
Addison-Wesley, 1982.

[209] T. Foley. Local control of interval tension using weighted splines. Computer
Aided Geometric Design, 3(4):281-294, 1986.

[210] T. Foley. Interpolation with interval and point tension controls using cubic
weighted v-splines. ACM Trans. on Math. Software, 13(1):68-96, 1987.

[211] A. Forrest. Curves and surfaces for computer-aided design. PhD thesis,
Cambridge, 1968.

[212] A. Forrest. Interactive interpolation and approximation by Bézier polynomials.
The Computer J, 15(1):71-79, 1972. Reprinted in CAD 22(9):527-537,1990.

[213] A. Forrest. On Coons’ and other methods for the representation of curved
surfaces. Computer Graphics and Image Processing, 1(4):341-359, 1972.

[214] A. Forrest. On the rendering of surfaces. Computer Graphics, 13(2):253-259,
1979.

[215] A. Forrest. The twisted cubic curve: A computer-aided geometric design
approach. Computer Aided Design, 12(4):165-172, 1980.

[216] D.Forsey and R. Bartels. Hierarchical B-spline refinement. Computer Graph-
ics, 22(4):205-212, 1988. SIGGRAPH Proceedings.

[217] R. Franke. Scattered data interpolation: tests of some methods. Math. Com-
putation, 38(157):181-200, 1982.

[218] R. Franke. Recent advances in the approximation of surfaces from scattered
data. Topics in Multivariate Approx., pages 79-98, 1987.

[219] R. Franke and L. Schumaker. A bibliography of multivariate approximation.
In C. Chui and L. Schumaker, editors, Topics in Multivariate Approximation.
Academic Press, 1986.

[220] L. Frederickson. Triangular spline interpolation/generalized triangular splines.
Technical Report no. 6/70 and 7/71, Dept. of Math., Lakehead University,
Canada, 1971.

Bibliography 401

[221] F Fritsch. Energy comparison of Wilson—-Fowler splines with other interpo-
lating splines. In G. Farin, editor, Geometric Modeling: Algorithms and New
Trends, pages 185-201. SIAM, Philadelphia, 1987.

[222] F. Fritsch and R. Carlson. Monotone piecewise cubic interpolation. SIAM J
Numer. Analysis, 17(2):238-246, 1980.

[223] Q. Fu. The intersection of a bicubic patch and a plane. Computer Aided
Geometric Design, 7(6):475-488, 1990.

[224] D. Gans. Transformations and Geometries. Appleton-Century-Crofts, 1969.

[225] T. Garrity and J. Warren. Geometric continuity. Computer Aided Geometric
Design, 8(1):51-66, 1991.

[226] G. Geise. Uber beriihrende Kegelschnitte ebener Kurven. ZAMM, 42:297-304,
1962.

[227] G. Geise and U. Langbecker. Finite quadratic segments with four conic bound-
ary curves. Computer Aided Geometric Design, 7(1-4):141-150, 1990.

[228] M. Goldapp. Approximation of circular arcs by cubic polynomials. Computer
Aided Geometric Design, 8(3):227-238, 1991.

[229] R. Goldman. Using degenerate Bézier triangles and tetrahedra to subdivide
Bézier curves. Computer Aided Design, 14(6):307-311, 1982.

[230] R. Goldman. Illicit expressions in vector algebra. ACM Transactions on
Graphics, 4(3):223-243, 1985.

[231] R. Goldman. Blossoming and knot insertion algorithms for B-spline curves.
Computer Aided Geometric Design, 7(1-4):69-82, 1990.

[232] R. Goldman and T. DeRose. Recursive subdivision without the convex hull
property. Computer Aided Geometric Design, 3(4):247-265, 1986.

[233] R. Goldman and C. Micchelli. Algebraic aspects of geometric continuity.
In T. Lyche and L. Schumaker, editors, Mathematical Methods in Computer
Aided Geometric Design, pages 313-332. Academic Press, 1989.

[234] H. Gonska and J. Meier. A bibliography on approximation of functions by
Bernstein type operators. In L. Schumaker and K. Chui, editors, Approximation
Theory IV. Academic Press, 1983,

[235] T. Goodman. Properties of Beta-splines. J Approx. Theory, 44(2):132-153,
1985.

[236] T. Goodman. Shape preserving interpolation by parametric rational cubic
splines. Technical report, University of Dundee, 1988. Department of Mathe-
matics and Computer Science.

402 Bibliography

[237] T. Goodman. Constructing piecewise rational curves with Frenet frame conti-
nuity. Computer Aided Geometric Design, 7(1-4):15-32, 1990.

[238] T. Goodman. Closed surfaces defined from biquadratic splines. Constructive
Approximation, 7(2):149-160, 1991.

[239] T. Goodman. Convexity of Bézier nets on triangulations. Computer Aided
Geometric Design, 8(2):175-180, 1991.

[240] T. Goodman. Inflections on curves in two and three dimensions. Computer
Aided Geometric Design, 8(1):37-51, 1991,

[241] T. Goodman, B. Ong, and K. Unsworth. Constrained interpolation using
rational cubic splines. In G. Farin, editor, NURBS for Curve and Surface
Design. SIAM, 1991.

[242] T. Goodman and H. Said. Properties of generalized ball curves and surfaces.
Computer Aided Design, 23(8):554-560, 1991.

[243] T. Goodman and H. Said. Shape preserving properties of the generalised Ball
basis. Computer Aided Geometric Design, 8(2):115-122, 1991.

[244] T. Goodman and K. Unsworth. Manipulating shape and producing geometric
continuity in beta-spline surfaces. IEEE Computer Graphics and Applications,
6(2):50-56, 1986.

[245] W. Gordon. Blending-function methods of bivariate and multivariate interpo-
lation and approximation. SIAM J Numer. Analysis, 8(1):158-177, 1969.

[246] W. Gordon. Distributive lattices and the approximation of multivariate func-
tions. In I. Schoenberg, editor, Approximation with Special Emphasis on
Splines. University of Wisconsin Press, Madison, 1969.

[247] W. Gordon. Free-form surface interpolation through curve networks. Technical
Report GMR-921, General Motors Research Laboratories, 1969.

[248] W. Gordon. Spline-blended surface interpolation through curve networks. J
of Math. and Mechanics, 18(10):931-952, 1969.

[249] W. Gordon and R. Riesenfeld. B-spline curves and surfaces. In R. E. Barnhill
and R. F. Riesenfeld, editors, Computer Aided Geometric Design, pages 95—
126. Academic Press, 1974.

[250] T. Gossing. Bulge, shear and squash: a representation for the general conic
arc. Computer Aided Design, 13(2):81-84, 1981.

[251] J. Gourret, N. Magnenat-Thalmann, and D. Thalmann. Modeling of contact
deformations between a synthetic human and its environment. Computer Aided
Design, 23(7):514-520, 1991.

Bibliography 403

[252]

[253]

[254]

[255

—_

[256]

[257]

[258]

[259]

[260]

[261]

[262]

[263]

[264]

[265]

[266]

J. Gregory. Smooth interpolation without twist constraints. In R. E. Barnhill
and R. F. Riesenfeld, editors, Computer Aided Geometric Design, pages 71-88.
Academic Press, 1974.

J. Gregory. C! rectangular and non-rectangular surface patches. In R. Barnhill
and W. Boehm, editors, Surfaces in Computer Aided Geometric Design, pages
25-34. North-Holland, 1983.

J. Gregory. N-sided surface patches. In J. Gregory, editor, The Mathematics
of Surfaces, pages 217-232. Clarendon Press, 1986.

J. Gregory. Geometric continuity. In T. Lyche and L. Schumaker, editors,
Mathematical Methods in Computer Aided Geometric Design, pages 353-
372. Academic Press, 1989.

J. Gregory and P. Charrot. A C! triangular interpolation patch for computer-
aided geometric design. Computer Graphics and Image Processing, 13(1):80—
87, 1980.

J. Gregory and J. Hahn. Geometric continuity and convex combination patches.
Computer Aided Geometric Design, 4(1-2):79-90, 1987.

J. Gregory and M. Safraz. A rational cubic spline with tension. Computer
Aided Geometric Design, 7(1-4):1-14, 1990.

J. Gregory and J. Zhou. Convexity of Bézier on sub-triangles. Computer Aided
Geometric Design, 8(3):207-213, 1991.

T. Greville. On the normalization of the B-splines and the location of the
nodes for the case of unequally spaced knots. In O. Shisha, editor, Inequalities.
Academic Press, 1967. Supplement to the paper “On spline functions” by 1.
Schoenberg.

T. Greville. Introduction to spline functions. In T. Greville, editor, Theory and
Applications of Spline Functions, pages 1-36. Academic Press, 1969.

E. Grosse. Tensor spline approximation. Linear Algebra and Its Applications,
34:29-41, 1980.

H. Hagen. Geometric spline curves. Computer Aided Geometric Design,
2(1-3):223-228, 1985.

H. Hagen. Bézier-curves with curvature and torsion continuity. Rocky Mtn. J
of Math., 16(3):629-638, 1986.

H. Hagen. Geometric surface patches without twist constraints. Computer
Aided Geometric Design, 3(3):179-184, 1986.

H. Hagen and G. Bonneau. Variational design of smooth rational Bézier curves.
Computer Aided Geometric Design, 8(5):393-400, 1991.

404 Bibliography

[267] H. Hagen and H. Pottmann. Curvature continuous triangular interpolants.
In T. Lyche and L. Schumaker, editors, Mathematical Methods in Computer
Aided Geometric Design, pages 373-384. Academic Press, 1989.

[268] H. Hagen and G. Schulze. Automatic smoothing with geometric surface
patches. Computer Aided Geometric Design, 4(3):231-236, 1987.

[269] J. Hahn. Geometric continuous patch complexes. Computer Aided Geometric
Design, 6(1):55-67, 1989.

[270] B.Hamann, G. Farin, and G. Nielson. G' surface interpolation based on degree
elevated conics. In G. Farin, editor, NURBS for Curve and Surface Design,
pages 75-86. SIAM, 1991.

[271] J. Hands. Reparametrisation of rational surfaces. In R. Martin, editor, The
Mathematics of Surfaces II, pages 87-100. Oxford University Press, 1987.

[272] D.Hansford. The neutral case for the min—max triangulation. Computer Aided
Geometric Design, 7:431-438, 1990.

[273] P. Hartley and C. Judd. Parametrization of Bézier-type B-spline curves. Com-
puter Aided Design, 10(2):130-134, 1978.

[274] P. Hartley and C. Judd. Parametrization and shape of B-spline curves. Com-
puter Aided Design, 12(5):235-238, 1980.

[275] J. Hayes. New shapes from bicubic splines. Technical report, National Physics
Laboratory, 1974.

[276] J. Hayes and J. Holladay. The least-squares fitting of cubic splines to general
data sets. J Inst. Maths. Applics., 14:89-103, 1974.

[277] L. Hering. Closed C? and C? continuous Bézier and B-spline curves with
given tangents. Computer Aided Design, 15(1):3—-6, 1983.

[278] G. Herron. Smooth closed surfaces with discrete triangular interpolants. Com-
puter Aided Geometric Design, 2(4):297-306, 1985.

[279] G. Herron. Techniques for visual continuity. In G. Farin, editor, Geometric
Modeling, pages 163-174. SIAM, Philadelphia, 1987.

[280] D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Chelsea, New
York, 1952.

[281] B. Hinds, J. McCartney, and G. Woods. Pattern development for 3D surfaces.
Computer Aided Design, 23(8):583-592, 1991.

[282] H.Hochfeld and M. Ahlers. Role of Bézier curves and surfaces in the Volkswa-
gen CAD approach from 1967 to today. Computer Aided Design, 22(9):598—
608, 1990.

Bibliography 405

[283] G. Hoelzle. Knot placement for piecewise polynomial approximation of
curves. Computer Aided Design, 15(5):295-296, 1983.

[284] D. Hoitsma and M. Lee. Generalized rational B-spline surfaces. In G. Farin,
editor, NURBS for Curve and Surface Design, pages 87-102. SIAM, 1991.

[285] J. Holladay. Smoothest curve approximation. Math. Tables and Other Aids to
Computation, 11:233-243, 1957.

[286] K. Hollig and H. Mogerle. G-splines. Computer Aided Geometric Design,
7(1-4):197-208, 1990.

[287] M. Hosaka and F. Kimura. Non-four-sided patch expressions with control
points. Computer Aided Geometric Design, 1(1):75-86, 1984.

[288] J. Hoschek. Detecting regions with undesirable curvature. Computer Aided
Geometric Design, 1(2):183-192, 1984.

[289] J. Hoschek. Smoothing of curves and surfaces. Computer Aided Geometric
Design, 2(1-3):97-105, 1985.

[290] J. Hoschek. Approximate conversion of spline curves. Computer Aided Geo-
metric Design, 4(1-2):59-66, 1987.

[291] J. Hoschek. Intrinsic parametrization for approximation. Computer Aided
Geometric Design, 5(1):27-31, 1988.

[292] J.Hoschek and D. Lasser. Grundlagen der Geometrischen Datenverarbeitung.
B. G. Teubner, Stuttgart, 1989. English translation: Fundamentals of Computer
Aided Geometric Design, AK Peters, 1993,

[293] J. Hoschek and F. Schneider. Spline conversion for trimmed rational Bézier-
and B-spline surfaces. Computer Aided Design, 22(9):580-590, 1990.

[294] J. Hoschek and N. Wissel. Optimal approximate conversion of spline curves
and spline approximation of offset curves. Computer Aided Design, 20(8):475—-
483, 1988.

[295] K.Iino and D. Wilde. Subdivision of triangular Bézier patches into rectangular
Bézier patches. Transactions of the ASME, 1992. to appear.

[296] T. Jensen. Assembling triangular and rectangular patches and multivariate
splines. In G. Farin, editor, Geometric Modeling: Algorithms and New Trends,
pages 203-220. SIAM, Philadelphia, 1987.

[297] T. Jensen, C. Petersen, and M. Watkins. Practical curves and surfaces for a
geometric modeler. Computer Aided Geometric Design, 8(5):357-370, 1991.

[298] B. Joe. Knot insertion for beta-spline curves and surfaces. ACM Transactions
on Graphics, 9(1):41-66, 1990.

406 Bibliography

[299] S. Jolles. Die Theorie der Oskulanten und das Sehnensystem der Raumkurve
4. Ordnung, 2. Spezies. PhD thesis, Technical Univ. Aachen, 1886.

[300] A. Jones. An algorithm for convex parametric splines. Technical Report
ETA-TR-29, Boeing Computer Services, 1985.

[301] A. Jones. Shape control of curves and surfaces through constrained optimiza-
tion. In G. Farin, editor, Geometric Modeling: Algorithms and New Trends,
pages 265-279. SIAM, Philadelphia, 1987.

[302] A.Jones. Nonrectangular surface patches with curvature continuity. Computer
Aided Design, 20(6):325-335, 1988.

[303] J. Kahmann. Continuity of curvature between adjacent Bézier patches. In
R. Barnhill and W. Boehm, editors, Surfaces in Computer Aided Geometric
Design, pages 65-76. North-Holland, 1983.

[304] M. Kallay and B. Ravani. Optimal twist vectors as a tools for interpolating a
network of curves with a minimum surface energy. Computer Aided Geometric
Design, 7(6):465-474, 1990.

[305] K. Kato. Generation of n-sided surface patches with holes. Computer Aided
Design, 23(10):676-683, 1991.

[306] E. Kaufmann and R. Klass. Smoothing surfaces using reflection lines for
families of splines. Computer Aided Design, 20(6):312-316, 1988.

[307] P. Kiciak. Constructions of G' continuous joins of rational Bézier patches.
Computer Aided Geometric Design, 12(3):283-304, 1995.

[308] D. Kim and P. Papalambros. Detection of degenerate normal vectors on para-
metric surfaces: tangent cone approach. Computer Aided Geometric Design,
12(3):321-327, 1995.

[309] J. Kjellander. Smoothing of bicubic parametric surfaces. Computer Aided
Design, 15(5):288-293, 1983.

[310] J. Kjellander. Smoothing of cubic parametric splines. Computer Aided Design,
15(3):175-179, 1983.

[311] R. Klass. Correction of local surface irregularities using reflection lines.
Computer Aided Design, 12(2):73-77, 1980.

[312] R. Klass. An offset spline approximation for plane cubics. Computer Aided
Design, 15(5):296-299, 1983.

[313] L. Kocié. Modification of Bézier curves and surfaces by degree elevation
technique. Computer Aided Design, 23(10):692-699, 1991.

Bibliography 407

[314] P. Korovkin. Linear Operators and Approximation Theory. Hindustan Pub-
lishing Co., Delhi, 1960.

[315] M. Kosters. Curvature-dependent parametrization of curves and surfaces.
Computer Aided Design, 23(8):569-578, 1991.

[316] M. Lachance and A. Schwartz. Four point parabolic interpolation. Computer
Aided Geometric Design, 8(2):143-150, 1991.

[317] C. Lacombe and C. Bédard. Interpolation function over a general triangular
mid-edge finite element. Comp. Math. Appl., 12A(3):362-373, 1986.

[318] P. Lancaster and K. Salkauskas. Curve and Surface Fitting. Academic Press,
1986.

[319] J. Lane and R. Riesenfeld. A theoretical development for the computer gen-
eration and display of piecewise polynomial surfaces. IEEFE Trans. Pattern
Analysis Machine Intell., 2(1):35-46, 1980.

[320] J. Lane and R. Riesenfeld. A geometric proof for the variation diminishing
property of B-spline approximation. J of Approx. Theory, 37:1-4, 1983.

[321] D. Lasser. Bernstein—Bézier representation of volumes. Computer Aided
Geometric Design, 2(1-3):145-150, 1985.

[322] D.Lasser and G. Bonneau. Bézier representation of trim curves. In H. Hagen,
G. Farin, and H. Noltemeier, editors, Geometric Modeling, pages 227-242.
Springer, Vienna, 1995.

[323] D. Lasser and A. Purucker. B-spline—Bézier representations of rational geo-
metric spline curves: quartics and quintics. In G. Farin, editor, NURBS for
Curve and Surface Design, pages 115-130. SIAM, 1991.

[324] C. Lawson. Transforming triangulations. Discrete Mathematics, 3:365-372,
1971.

[325] C.Lawson and G. Hanson. SIAM, 1995.

[326] E. Lee. The rational Bézier representation for conics. In G. Farin, edi-
tor, Geometric Modeling: Algorithms and New Trends, pages 3—19. SIAM,
Philadelphia, 1987.

[327] E. Lee. Choosing nodes in parametric curve interpolation. Computer Aided
Design, 21(6), 1989. Presented at the SIAM Applied Geometry meeting,
Albany, N.Y., 1987.

[328] E.Lee. A note on blossoming. Computer Aided Geometric Design, 6(4):359—
362, 1989.

408 Bibliography

[329] E. Lee. Energy, fairness, and a counterexample. Computer Aided Design,
22(1):37-40, 1990.

[330] E.Lee and M. Lucian. M&bius reparametrizations of rational B-splines. Com-
puter Aided Geometric Design, 8(3):213-216, 1991.

[331] J. Lewis. “B-spline” bases for splines under tension, nu-splines, and fractional
order splines. Presented at the STAM-SIGNUM meeting, San Francisco, Dec.
3-5, 1975.

[332] J. Li, J. Hoschek, and E. Hartmann. G"~! functional splines for interpolation
and approximation of curves, surfaces and solids. Computer Aided Geometric
Design, 7(1-4):209-220, 1990.

[333] S. Lien, M. Shantz, and V. Pratt. Adaptive forward differencing for render-
ing curves and surfaces. Computer Graphics, 21, 1987. SIGGRAPH ’87
proceedings.

[334] R. Liming. Practical Analytical Geometry with Applications to Aircraft.
Macmillan, 1944.

[335] R. Liming. Mathematics for Computer Graphics. Aero publishers, 1979.

[336] D.Liu. GC! continuity conditions between two adjacentrational Bézier surface
patches. Computer Aided Geometric Design, 7(1-4):151-164, 1990.

[337] D. Liu and J. Hoschek. GC! continuity conditions between adjacent rectangu-
lar and triangular Bézier surface patches. Computer Aided Design, 21(4):194—
200, 1989.

[338] S. Lodha and J. Warren. Bézier representation for quadric surface patches.
Computer Aided Design, 22(9):574-579, 1990.

[339] C. Loop and T. DeRose. Generalized B-spline surfaces of arbitrary topology.
Computer Graphics, 24(4):347-356, 1990.

[340] G. Lorentz. Bernstein Polynomials. Toronto press, 1953. 2nd ed., Chelsea
1986.

[341] M. Lounsbery, S. Mann, and T. DeRose. Parametric surface interpolation.
IEEE Computer Graphics and Applications, 12(5):45-52, 1992.

[342] M. Lucian. Linear fractional transformations of rational Bézier curves. In
G. Farin, editor, NURBS for Curve and Surface Design, pages 131-139. STAM,
Philadelphia, 1991.

[343] T. Lyche and V. Morken. Knot removal for parametric B-spline curves and
surfaces. Computer Aided Geometric Design, 4(3):217-230, 1987.

Bibliography 409

[344] L. Ma and Q. Peng. Smoothing of free-form surfaces with Bézierpatches.
Computer Aided Geometric Design, 12(3):231-250, 1995.

[345] W. Ma and J. Kruth. Mathematical modeling of free-form curves and sur-
faces from discrete points with NURBS. In J. Laurent, A. LeMéhatuté, and
L. Schumaker, editors, Curves and Surfaces in CAGD, pages 319-326. 1994.

[346] B. Mandelbrot. The Fractal Geometry of Nature. Freeman, San Francisco,
1983.

[347] S. Mann and T. DeRose. Computing values and derivatives of Bézier and
B-spline tensor products. Computer Aided Geometric Design, 12(1):107-109,
1995.

[348] J. Manning. Continuity conditions for spline curves. The Computer J,
17(2):181-186, 1974.

[349] D. Manocha and J. Canny. Rational curves with polynomial parametrization.
Computer Aided Design, 23(9):645-652, 1991.

[350] R.Markot and R. Magedson. Procedural method for evaluating the intersection
curves of two parametric surfaces. Computer Aided Design, 23(6):395-404,
1991.

[351] J.Marshall and A. Mitchell. Blending interpolants in the finite element method.
Int. J Numer. Meth. Eng., 12:77-83, 1978.

[352] D. McAllister and J. Roulier. Interpolation by convex quadratic splines. Math-
ematics of Computation, 32(144):1154-1162, 1978.

[353] D.McConalogue. A quasi-intrinsic scheme for passing a smooth curve through
a discrete set of points. The Computer J, 13:392-396, 1970.

[354] D. McConalogue. Algorithm 66—an automatic French-curve procedure for
use with an incremental plotter. The Computer J, 14:207-209, 1971.

[355] H. McLaughlin. Shape preserving planar interpolation: An algorithm. /EEE
Computer Graphics and Applications, 3(3):58-67, 1985.

[356] A.Meek and R. Thomas. A guided clothoid spline. Computer Aided Geometric
Design, 8(2):163-174, 1991.

[357] E. Mehlum. Nonlinear splines. In R. Barnhill and R. Riesenfeld, editors,
Computer Aided Geometric Design, pages 173-208. North-Holland, 1974.

[358] C. Micchelli and H. Prautzsch. Computing surfaces invariant under subdivi-
sion. Computer Aided Geometric Design, 4(4):321-328, 1987.

[359] J. Miller. Sculptured surfaces in solid models: Issues and alternative ap-
proaches. IEEE Computer Graphics and Applications, 6(12):37-48, 1986.

410 Bibliography

[360] C.Millham and A. Meyer. Modified Hermite quintic curves and applications.
Computer Aided Design, 23(10):707-712, 1991.

[361] F. M&bius. August Ferdinand Mobius, Gesammelte Werke. Verlag von S.
Hirzel, 1885. Also published by Dr. M. Séndig oHG, Wiesbaden, Germany,
1967.

[362] P. Montes. Kriging interpolation of a Bézier curve. Computer Aided Design,
23(10):713-716, 1991.

[363] H.Moreton and C. Sequin. Minimum variation curves and surfaces for CAGD.
In N. Sapidis, editor, Designing Fair Curves and Surfaces, pages 123—160.
SIAM, Philadelphia, 1994.

[364] M. Mortenson. Geometric Modeling. Wiley, 1985.

[365] F. Munchmeyer. On surface imperfections. In R. Martin, editor, The Mathe-
matics of Surfaces I, pages 459—474. Oxford University Press, 1987.

[366] F. Munchmeyer. Shape interrogation: A case study. In G. Farin, editor,
Geometric Modeling: Algorithms and New Trends, pages 291-301. SIAM,
Philadelphia, 1987.

[367] L. Nachman. Blended tensor product B-spline surface. Computer Aided
Design, 20(6):336-340, 1988.

[368] L. Nachman. A note on control polygons and derivatives. Computer Aided
Geometric Design, 8(3):223-226, 1991.

[369] A. Nasri. Boundary-corner control in recursive-subdivision surfaces. Com-
puter Aided Design, 23(6):405-410, 1991.

[370] A. Nasri. Surface interpolation on irregular networks with normal conditions.
Computer Aided Geometric Design, 8(1):89-96, 1991.

[371] G. Nielson. Some piecewise polynomial alternatives to splines under tension.
In R. E. Barnhill and R. F. Riesenfeld, editors, Computer Aided Geometric
Design, pages 209-235. Academic Press, 1974.

[372] G. Nielson. The side—vertex method for interpolation in triangles. J of Approx.
Theory, 25:318-336, 1979.

[373] G.Nielson. Minimum norm interpolation in triangles. STAM J Numer. Analysis,
17(1):46-62, 1980.

[374] G. Nielson. A rectangular nu-spline for interactive surface design. /EEE
Computer Graphics and Applications, 6(2):35-41, 1986.

[375] G. Nielson. Coordinate free scattered data interpolation. In L. Schumaker,
editor, Topics in Multivariate Approximation. Academic Press, 1987.

Bibliography 411

[376] G. Nielson. A transfinite, visually continuous, triangular interpolant. In
G. Farin, editor, Geometric Modeling: Algorithms and New Trends, pages
235-246. SIAM, Philadelphia, 1987.

[377] G. Nielson and T. Foley. A survey of applications of an affine invariant norm.
InT. Lyche and L. Schumaker, editors, Mathematical Methods in CAGD, pages
445-467. Academic Press, 1989.

[378] H. Nowacki, D. Liu, and X. Lu. Fairing Bézier curves with constraints.
Computer Aided Geometric Design, 7(1-4):43-56, 1990.

[379] A.Overhauser. Analytic definition of curves and surfaces by parabolic blend-
ing. Technical report, Ford Motor Company, 1968.

[380] D. Parkinson and D. Moreton. Optimal biarc-curve fitting. Computer Aided
Design, 23(6):411-419, 1991.

[381] R. Patterson. Projective transformations of the parameter of a rational
Bernstein—Bézier curve. ACM Transactions on Graphics, 4:276-290, 1986.

[382] T. Pavlidis. Curve fitting with conic splines. ACM Transactions on Graphics,
2(1):1-31, 1983.

[383] J. Pegna and F. Wolter. A simple practical criterion to guarantee second order
smoothness of blend surfaces. Preprint MIT, 1988.

[384] J. Pegna and F. Wolter. Geometric criteria to guarantee curvature continuity
of blend surfaces. ASME Transactons, J. of Mech. Design, 114, 1992.

[385] M. Penna and R. Patterson. Projective Geometry and Its Applications to
Computer Graphics. Prentice Hall, 1986.

[386] G. Peters. Interactive computer graphics application of the parametric bicubic
surface to engineering design problems. In R. Barnhill and R. Riesenfeld,
editors, Computer Aided Geometric Design, pages 259-302. Academic Press,
1974.

[387] J.Peters. Local cubic and bicubic C! surface interpolation with linearly varying
boundary normal. Computer Aided Geometric Design, 7(6):499-516, 1990.

[388] J. Peters. Local smooth surface interpolation: A classification. Computer
Aided Geometric Design, 7(1-4):191-196, 1990.

[389] J. Peters. Smooth mesh interpolation with cubic patches. Computer Aided
Design, 22(2):109-120, 1990.

[390] J. Peters. Smooth interpolation of a mesh of curves. Constructive Approxima-
tion, 7(2):221-247, 1991.

412 Bibliography

[391] I. Peters. Constructiong C! surfaces of arbitrary topology using biquadratic
and bicubic splines. In N. Sapidis, editor, Designing Fair Curves and Surfaces,
pages 277-294. SIAM, Philadelphia, 1994.

[392] C. Petersen. Adaptive contouring of three-dimensional surfaces. Computer
Aided Geometric Design, 1(1):61-74, 1984.

[393] J. Peterson. Degree reduction of Bézier curves. Computer Aided Design,
23(6):460—461, 1991. Letter to the editor.

[394] L. Piegl. A geometric investigation of the rational Bézier scheme in computer
aided geometric design. Computers in Industry, 7(5):401-410, 1986.

[395] L. Piegl. The sphere as arational Bézier surface. Computer Aided Geometric
Design, 3(1):45-52, 1986.

[396] L. Piegl. Interactive data interpolation by rational Bézier curves. IEEE Com-
puter Graphics and Applications, 7(4):45-58, 1987.

[397] L. Piegl. On the use of infinite control points in CAGD. Computer Aided
Geometric Design, 4(1-2):155-166, 1987.

[398] L. Piegl. Hermite- and Coons-like interpolants using rational Bézier approxi-
mation form with infinite control points. Computer Aided Design, 20(1):2-10,
1988.

[399] L. Piegl. On NURBS: A survey. Computer Graphics and Applications,
11(1):55-71, 1990.

[400] L.Piegland W. Tiller. Curve and surface constructions using rational B-splines.
Computer Aided Design, 19(9):485-498, 1987.

[401] L. Piegl and W. Tiller. The Book of NURBS. Springer Verlag, 1995.

[402] B. Piper. Visually smooth interpolation with triangular Bézier patches. In
G. Farin, editor, Geometric Modeling: Algorithms and New Trends, pages
221-233. SIAM, Philadelphia, 1987.

[403] A. Pobegailo. Local interpolation with weight functions for variable-
smoothness curve design. Computer Aided Design, 23(8):579-582, 1991.

[404] T. Poeschl. Detecting surface irregularities using isophotes. Computer Aided
Geometric Design, 1(2):163-168, 1984.

[405] H. Pottmann. Curves and tensor product surfaces with third order geometric
continuity. In S. Slaby and H. Stachel, editors, Proceedings of the Third
International Conference on Engineering Graphics and Descriptive Geometry,
pages 107-116, 1988.

Bibliography 413

[406] H.Pottmann. Projectively invariant classes of geometric continuity for CAGD.
Computer Aided Geometric Design, 6(4):307-322, 1989.

[407] H. Pottmann. A projectively invariant characterization of G* continuity for
rational curves. In G. Farin, editor, NURBS for Curve and Surface Design,
pages 141-148. SIAM, Philadelphia, 1991.

[408] M. Powell and M. Sabin. Piecewise quadratic approximation on triangles.
ACM Trans. Math. Software, 3(4):316-325, 1977.

[409] M. Pratt. Cyclides in computer aided geometric design. Computer Aided
Geometric Design, 7(1-4):221-242, 1990.

[410] H.Prautzsch. Degree elevation of B-spline curves. Computer Aided Geometric
Design, 1(12):193-198, 1984.

[411] H. Prautzsch. On Degen’s conjecture. Computer Aided Geometric Design,
11(5):593-596, 1994.

[412] H. Prautzsch and C. Micchelli. Computing curves invariant under halving.
Computer Aided Geometric Design, 4(1-2):133-140, 1987.

[413] H. Prautzsch and B. Piper. A fast algorithm to raise the degree of B-spline
curves. Computer Aided Geometric Design, 8(4):253-266, 1991.

[414] L. Ramshaw. Blossoming: a connect-the-dots approach to splines. Technical
report, Digital Systems Research Center, Palo Alto, Ca, 1987.

[415] L. Ramshaw. Béziers and B-splines as multiaffine maps. In R. Earnshaw,
editor, Theoretical Foundations of Computer Graphics and CAD, pages 757—
776. Springer Verlag, 1988.

[416] L. Ramshaw. Blossoms are polar forms. Computer Aided Geometric Design,
6(4):323-359, 1989.

[417] T. Rando and J. Roulier. Designing faired parametric surfaces. Computer
Aided Design, 23(7):492-497, 1991.

[418] D. Reese, M. Reidger, and R. Lang. Fldchenhaftes glétten und verdndern von
Schiffsoberflachen. Technical Report MTK 0243, T. U. Berlin, 1983.

[419] U. Reif. A unified approach to subdivision algorithms near extraordinary
points. Computer Aided Geometric Design, 12:153-174, 1995.

[420] G. Renner. Inter-patch continuity of surfaces. In R. Martin, editor, The
Mathematics of Surfaces 11, pages 237-254. Oxford University Press, 1987.

[421] A. Renyi. Wahrscheinlichkeitsrechnung. VEB Deutscher Verlag der Wis-
senschaften, 1962.

414 Bibliography

[422] W. Renz. Interactive smoothing of digitized point data. Computer Aided
Design, 14(5):267-269, 1982.

[423] R. Riesenfeld. Applications of B-spline approximation to geometric problems
of computer-aided design. PhD thesis, Dept. of Computer Science, Syracuse
U, 1973.

[424] R. Riesenfeld. On Chaikin’s algorithm. Computer Graphics and Image Pro-
cessing, 4(3):304-310, 1975.

[425] D. Rogers and L. Adlum. Dynamic rational B-spline surfaces. Computer
Aided Design, 22(9):609-616, 1990.

[426] J. Roulier and E. Passow. Monotone and convex spline interpolation. SIAM J
Numer. Analysis, 14(5):904-909, 1977.

[427] C. Runge. Uber empirische Funktionen und die Interpolation zwischen ae-
quidistanten Ordinaten. ZAMM, 46:224-243, 1901.

[428] M. Sabin. The use of piecewise forms for the numerical representation of
shape. PhD thesis, Hungarian Academy of Sciences, Budapest, Hungary,
1976.

[429] M. Sabin. Recursive subdivision. In J. Gregory, editor, The Mathematics of
Surfaces, pages 269-281. Clarendon Press, 1986.

[430] M. Sabin. Some negative results in n-sided patches. Computer Aided Design,
18(1):38—44, 1986.

[431] M. Sabin and F. Kimura. Letters to the editor. Computer Aided Geometric
Design, 1(3):289-290, 1984. Concerning n-sided patches.

[432] P. Sablonniere. Spline and Bézier polygons associated with a polynomial
spline curve. Computer Aided Design, 10(4):257-261, 1978.

[433] P. Sablonniere. Bases de Bernstein et approximants splines. PhD thesis, Univ.
of Lille, 1982.

[434] P. Sablonniere. Interpolation by quadratic splines on triangles and squares.
Computers in Industry, 3:45-52, 1982.

[435] P. Sablonniere. Bernstein—Bézier methods for the construction of bivariate
spline approximants. Computer Aided Geometric Design, 2(1-3):29-36, 1985.

[436] P. Sablonniere. Composite finite elements of class C¥. J of Computational and
Appl. Math., 12,13:542-550, 1985.

[437] K. Salkauskas. C! splines for interpolation of rapidly varying data. Rocky
Min. J of Math., 14(1):239-250, 1984.

Bibliography 415

[438] J. Sanchez-Reyes. Single-valued curves in polar coordinates. Computer Aided
Design, 22(1):19-26, 1990.

[439] J.Sanchez-Reyes. Single-valued surfaces in cylindrical coordinates. Computer
Aided Design, 23(8):561-568, 1991.

[440] N. Sapidis. Algorithms for locally fairing B-spline curves. Master’s thesis, U.
of Utah, 1987.

[441] N. Sapidis, editor. Designing Fair Curves and Surfaces. SIAM, Philadelphia,
1994.

[442] N. Sapidis and G. Farin. Automatic fairing algorithm for B-spline curves.
Computer Aided Design, 22(2):121-129, 1990.

[443] B. Sarkar and C-H. Meng. Smooth-surface approximation and reverse engi-
neering. Computer Aided Design, 23(9):623-628, 1991.

[444] B. Sarkar and C. Menq. Parameter optimization in approximating curves and
surfaces to measurement data. Computer Aided Geometric Design, 8(4):267—
290, 1991.

[445] R. Sarraga. G' interpolation of generally unrestricted cubic Bézier curves.
Computer Aided Geometric Design, 4(1-2):23-40, 1987.

[446] R. Sarraga. Errata: G' interpolation of generally unrestricted cubic Bézier
curves. Computer Aided Geometric Design, 6(2):167-172, 1989.

[447] I. Schelske. Lokale Glittung segmentierter Bézierkurven und Bézierflichen.
PhD thesis, TH Darmstadt, Germany, 1984.

[448] F. Schneider. Interpolation and approximation using rational B-splines. Tech-
nical report, TH Darmstadt, 1993.

[449] L. Schoenberg. Contributions to the problem of approximation of equidistant
data by analytic functions. Quart. Appl. Math., 4:45-99, 1946.

[450] L. Schoenberg. On variation diminishing approximation methods. In R. E.
Langer, editor, On Numerical Approx., pages 249-274. Univ. of Wisconsin
Press, 1953.

[451] I. Schoenberg. On spline functions. In O. Shisha, editor, Inequalities, pages
255-291. Academic Press, 1967.

[452] L. Schumaker. Spline functions: Basic Theory. Wiley, 1981.

[453] L. Schumaker. On shape preserving quadratic spline interpolation. SIAM J
Numer. Analysis, 20(4):854-864, 1983.

[454] L. Schumaker and W. Volk. Efficient evaluation of multivariate polynomials.
Computer Aided Geometric Design, 3(2):149-154, 1986.

416 Bibliography

[455] A. Schwartz. Subdividing Bézier curves and surfaces. In G. Farin, edi-
tor, Geometric Modeling: Algorithms and New Trends, pages 55-66. SIAM,
Philadelphia, 1987.

[456] T. Sederberg. Improperly parametrized rational curves. Computer Aided
Geometric Design, 3(1):67-75, 1986.

[457] T. Sederberg. Point and tangent computation of tensor product rational Bézier
surfaces. Computer Aided Geometric Design, 12(1):103-106, 1995.

[458] T. Sederberg and D. Anderson. Steiner surface patches. IEEE Computer
Graphics and Applications, 5(5):23-36, 1985.

[459] T. Sederberg and M. Kakimoto. Approximating rational curves using polymial
curves. In G. Farin, editor, NURBS for Curve and Surface Design, pages 149-
158. SIAM, 1991.

[460] T. Sederberg and T. Nishita. Geometric Hermite approximation of surface
patch intersection curves. Computer Aided Geometric Design, 8(2):97-114,
1991.

[461] T. Sederberg and S. Parry. Free-form deformation of solid geometric models.
Computer Graphics, 20(4):151-160, 1986. SIGGRAPH proceedings.

[462] T. Sederberg and X. Wang. Rational hodographs. Computer Aided Geometric
Design, 4(4):333-335, 1987.

[463] T. Sederberg, S. White, and A. Zundel. Fat arcs: A bounding region with cubic
convergence. Computer Aided Geometric Design, 6(3):205-218, 1989.

[464] H. Seidel. Knot insertion from a blossoming point of view. Computer Aided
Geometric Design, 5(1):81-86, 1988.

[465] H. Seidel. Computing B-spline control points. In W. Strasser and H. Seidel,
editors, Theory and Practice of Geometric Modeling, pages 17-32. Springer-
Verlag, Berlin, 1989.

[466] H. Seidel. A general subdivision theorem for Bézier triangles. In T. Lyche and
L. Schumaker, editors, Mathematical Methods in Computer Aided Geometric
Design, pages 573-582. Academic Press, 1989.

[467] H. Seidel. A new multiaffine approach to B-splines. Computer Aided Geo-
metric Design, 6(1):23-32, 1989.

[468] H. Seidel. Symmetric triangular algorithms for curves. Computer Aided
Geometric Design, 7(1-4):57-68, 1990.

[469] H. Seidel. Computing B-spline control points using polar forms. Computer
Aided Design, 23(9):634-640, 1991.

Bibliography 417

[470] H. Seidel. Symmetric recursive algorithms for surfaces: B-patches and the de
Boor algorithm for polynomials over triangles. Constructive Approximation,
7(2):257-279, 1991.

[471] S.Selesnick. Local invariants and twist vectors in CAGD. Computer Graphics
and Image Processing, 17(2):145-160, 1981.

[472] M. Shantz and S. Chang. Rendering trimmed NURBS with adaptive forward
differencing. Computer Graphics, 22(4):189-198, 1988.

[473] S. Shetty and P. White. Curvature-continuous extensions for rational B-spline
curves and surfaces. Computer Aided Design, 23(7):484-491, 1991.

[474] L. Shirman and C. Séquin. Local surface interpolation with Bézier patches.
Computer Aided Geometric Design, 4(4):279-295, 1987.

[475] L. Shirman and C. Séquin. Local surface interpolation with shape parame-
ters between adjoining Gregory patches. Computer Aided Geometric Design,
7(5):375-388, 1990.

[476] L. Shirman and C. Séquin. Local surface interpolation with Bézier patches:
errata and improvements. Computer Aided Geometric Design, 8(3):217-222,
1991.

[477] R. Sibson. A brief description of the natural neighbour interpolant. In V. Bar-
nett, editor, Interpolating Multivariate Data. John Wiley & Sons, 1981.

[478]) E. Staerk. Mehrfach differenzierbare Bézierkurven und Bézierflichen. PhD
thesis, T. U. Braunschweig, 1976.

[479] D. Stancu. Some Bernstein polynomials in two variables and their applications.
Soviet Mathematics, 1:1025-1028, 1960.

[480] G. Strang and G. Fix. An Analysis of the Finite Element Method. Prentice-Hall,
1973.

[481] B.-Q. Su and D.-Y. Liu. Computational Geometry. Academic Press, 1989.

[482] M. Szilvasi-Nagy. Flexible rounding operation for polyhedra. Computer Aided
Design, 23(9):629-633, 1991.

[483] J. Thompson, Z. Warsi, and C. Mastin. Numerical Grid Generation: Founda-
tions and Applications. North-Holland, 1985.

[484] W. Tiller. Rational B-splines for curve and surface representation. /EEE
Computer Graphics and Applications, 3(6):61-69, 1983.

[485] P. Todd and R. McLeod. Numerical estimation of the curvature of surfaces.
Computer Aided Design, 18(1):33-37, 1986.

418 Bibliography

[486] C. van Overveld. Family of recursively defined curves, related to the cubic
Bézier curve. Computer Aided Design, 22(9):591-597, 1990.

[487] J. van Wijk. Bicubic patches for approximating non-rectangular control-point
meshes. Computer Aided Geometric Design, 3(1):1-13, 1986.

[488] T. Varady. Survey and new results in n-sided patch generation. In R. Martin,
editor, The Mathematics of Surfaces 11, pages 203-236. Oxford University
Press, 1987.

[489] T. Varady. Overlap patches: a new scheme for interpolating curve networks
with n-sided regions. Computer Aided Geometric Design, 8(1):7-26, 1991.

[490] D. Vemet. Expression mathématique des formes. Ingenieurs de I’Automobile,
10:509-520, 1971.

[491] M. Veron, G. Ris, and J. Musse. Continuity of biparametric surface patches.
Computer Aided Design, 8(4):267-273, 1976.

[492] K. Vesprille. Computer aided design applications of the rational B-spline
approximation form. PhD thesis, Syracuse U., 1975.

[493] M. Vigo and P. Brunet. Piecewise linear approximation of trimmed surfaces.
In H. Hagen, G. Farin, and H. Noltemeier, editors, Geometric Modeling, page
341. Springer, Vienna, 1995.

[494] A. Vinacua and P. Brunet. A construction for VC! continuity for rational
Bézier patches. In T. Lyche and L. Schumaker, editors, Mathematical Methods
in Computer Aided Geometric Design, pages 601-611. Academic Press, 1989.

[495] R. Walter. Visibility of surfaces via differential geometry. Computer Aided
Geometric Design, 7(1-4):353, 1990.

[496] C. Wang. Shape classification of the parametric cubic curve and parametric
B-spline cubic curve. Computer Aided Design, 13(4):199-206, 1981.

[497] M. Watkins and A. Worsey. Degree reduction for Bézier curves. Computer
Aided Design, 20(7):398-405, 1988.

[498] U. Wever. Optimal parametrization for cubic splines. Computer Aided Design,
23(9):641-644, 1991.

[499] R. Wielinga. Constrained interpolation using Bézier curves as a new tool in
computer aided geometric design. In R. Barnhill and R. Riesenfeld, editors,
Computer Aided Geometric Design, pages 153—172. Academic Press, 1974.

[500] E. Wolterand S. Tuohy. Curvature computations for degenerate surface patches.
Computer Aided Geometric Design, 7, 1992.

Bibliography 419

[501] A. Worsey and G. Farin. An n-dimensional Clough-Tocher element. Con-
structive Approximation, 3:99-110, 1987.

[502] A. Worsey and G. Farin. Contouring a bivariate quadratic polynomial over a
triangle. Computer Aided Geometric Design, 7(1-4):337-352, 1990.

[503] F. Yamaguchi. Curves and Surfaces in Computer Aided Geometric Design.
Springer, 1988.

[504] C. Yao and J. Rokne. An efficient algorithm for subdividing linear Coons
surfaces. Computer Aided Geometric Design, 8(4):291-304, 1991.

[505] A. Zenisek. Interpolation polynomials on the triangle. Numerische Math.,
15:283-296, 1970.

[506] A. Zenisek. Polynomial approximation on tetrahedrons in the finite element
method. J Approx. Theory, 7:334-351, 1973.

[507] Y. Zhao and A. Rockwood. A convolution approach to n-sided patches and
vertex blending. In N. Sapidis, editor, Designing Fair Curves and Surfaces,
pages 295-314. SIAM, Philadelphia, 1994,

[508] C.-Z.Zhou. On the convexity of parametric Bézier triangular surfaces. Com-
puter Aided Geometric Design, 7(6):459-464, 1990.

[509] J. Zhou. The positivity and convexity of Bézier polynomials over triangles.
PhD thesis, Beijing Univ., 1985.

[510] D.Zorin, P. Schroeder, and W. Sweldens. Interpolating subdivision for meshes
of arbitrary topology. Technical report, Caltech, 1996. Report CS-TR-96-06.

Index

Abi-Ezzi, S., 94
Absolute curvature, 367
Ackland, T., 119
Adaptive forward differencing, 94
Adini’s twist, 262
Affine
combination, 13
domain transformation, 90
geometry, 196
invariance, 21, 24, 34, 47, 83, 104,
109, 117
invariance of Bézier curves, 36
invariance of Bézier patches, 239
invariance of Bézier triangles, 281
map, 16, 31
pair, 292, 308
parameter transformation, 132, 133
reparametrization, 72
space, 12
Aitken, A., 81
Aitken’s algorithm, 83, 230
Akima, H., 119
Akima’s interpolant, 121
Albrecht, G., 298
Alfeld, P., 295, 303
Andersson, R., 369
Approximation, 163
Arc length, 129, 172, 181, 192, 371
parametrization, 211
of surface curve, 349
Area
element, 349
under a curve, 73
of triangle, 24
Asymptotic line, 358

421

Baer, G., 185
Barnhill, R., 262, 279, 295, 326, 336,
344, 346
Barry, P, 168
Barsky, B., 159, 184, 192, 194
Bartels, R., 94, 192, 317
Barycentric
combinations, 13, 32, 83, 213
coordinates, 19, 24, 74, 345
form, of Bézier patch, 244
Basis, 30
Basis transformation, 59, 248
BBG interpolant, 344
Beatty, J., 192
Beck, 1., 367
Bédard, C., 346
Bernstein polynomials, 9, 44
Bernstein, S., 44
Bessel
end condition, 133
tangent, 119, 121
twist, 263
Bézier
abscissa, 249
curves, composite, 96
function, 71
net, 234
ordinates, 71, 249
patch, trivariate, 272
points, 35
polygon, 35
surface, 234
tetrahedron, 295, 307
Bézier, P, 49, 74, 185, 271, 274
Biaffine, 233

422

Bias, 184
Bicubic Hermite interpolant, 333
Bicubic splines, 340
Bilinear interpolant, 263, 329
Bilinear interpolation, 231
Bilinearly blended Coons patch, 262,
329, 336, 339, 340
Binomial coefficient, 44
Binormal, 173
Birkhoff, G., 344, 364
Blaschke, W., 35
Blending function, 329, 343
Blossom, 40, 58, 76, 159, 282, 286
of tensor product surface, 243
for triangular patches, 282
Bobrow, J., 276
Boehm, W., 33, 40, 108, 141, 150,
154, 180, 184, 185, 194, 283,
300, 308, 316, 362
Bol, G., 180
Bonneau, G., 276
Boolean sum, 343, 345
Boundary point, 28
Braun, J., 29, 69, 262
Breakpoint, 96, 122
Brianchon, C., 197
Brunet, P., 264, 276, 308
Brunnett, G., 276
B-spline, 326, 372
B-spline curve, 104
containing straight line, 106
nonparametric, 141
parametric, 157
B-spline interpolation, iterative, 125
B-spline polygon, 103, 141, 260, 363,
372

C? check, 101

Canonical coordinates, 173
Canonical form, 175
Cardinal, 84, 88, 92
Carlson, R., 113

Casale, M., 276

Catmull, E., 320
Catmull-Rom spline, 118
Centroid, 14, 16

Index

Ceva’s theorem, 24
Chaikin, G., 157
Chain rule, 97
Chang, G., 59
Chang, S., 94, 276
Charrot, P, 308, 321, 346
Chebychev
economization, 70
polynomials, 69, 326
Chiyokura, H., 338
Chord length, 172
parametrization, 110, 116
Chou, J., 224
Chrysler, 69, 326
Circle, 2, 5, 129, 211, 226, 270
osculating, 175
Clark, J., 320
Clay model, 5
Closed curve, 107, 124
Cobb, J., 300
Cohen, E., 54, 133, 158
Cohn-Vossen, S., 367
Collinear, 19
Compatibility, 336
Complementary segment of a conic,
209
Computation count, 255
Computational fluid dynamics,
326
Conic precision, 227
Conic section, 34, 196, 199, 298, 357,
361
Conjugate direction, 358
Connection matrix, 194
CONS, 274
Control
net, 234
point, infinite, 213
points, 35
polygon, 35
polygon of a conic, 202
vectors, 224
Conversion
of B-spline surfaces, 260
B-spline to Bezier, 162
Convex combination, 14, 340, 341

Index

Convex hull, 15, 28, 31, 38
Convex hull property, 38, 47, 84, 104,
105, 108, 213, 296
of Bézier patches, 240
of Bézier triangles, 281
for rational Bézier curves,
216
Convex set, 15
Convexity, 31, 67, 328
of surfaces, 248
preservation, 146
Coons patch, bilinearly blended, 262,
329
Coons, S., 2, 196, 215, 326
Coordinate-free, 12
Coordinate system, 12
Corner, 100, 102,116
of a curve, 132
twist, 261
Corner-cutting, 157
Correction surface, 343
Cox, M, 141, 155
Coxeter, H., 14
Cramer’s rule, 24
Cross-boundary derivative, 242, 287,
332
Cross-boundary normal derivative,
304
Cross plot, 72, 91, 191
Cross ratio, 197, 202, 208, 218
Cross-ratio theorem, 197
Crouch, P, 137
Cubic B-spline curve, 108
Cubic Hermite interpolant, 346
Cubic Hermite interpolation, 114,
332, 344, 345
Cubic Hermite polynomial, 89, 126,
189, 332
Cubic precision, 140, 227
Curvature, 137, 174, 363
derivative of, 179, 364
of a nonparametric curve, 178
of a rational Bézier curve, 176, 177,
220
plot, 129, 133, 363
signed, 221, 230

423

Curve
composite, 98
on surface, 274
Cusp, 100, 133
Cylinder, 270

Dahmen, W., 54
Daniel, M., 373
Data transfer, 65
Daubisse, J., 373
Davis, P, 30, 44, 77, 279
de Boor
algorithm for rational B-splines,
228
ordinates, 144
polygon, 103
de Boor, C., 30, 122, 124, 141, 155,
157, 221, 256, 279, 307
de Casteljau algorithm, 34, 52, 53, 99,
150, 233
de Casteljau, P, 2, 22, 33, 40, 54, 141,
231,279
de Rham, G., 158
Degen, W., 194
Degenerate patch, 245
Degree elevation, 224, 293
for Bernstein polynomials, 79
for Bézier curves, 64, 157
for Bézier patches, 240
for B-splines, 163, 168
for rational Bézier curves, 222
Degree reduction, 67
for Bézier triangles, 307
Delaunay triangulation, 28
Depth, of an S-patch, 322
Derivative
of a B-spline, 167
of a conic, 205
of a rational Bézier curve, 220
DeRose, T., 16,40, 194,244,272, 308,
320, 321, 375
Design, 39
Developable surface, 356
Difference operator, 49, 241
Dill, J., 364, 367
Dimension of B-spline spaces, 151

424

Directional derivative, 75, 285
Directrix, 10

Dirichlet tessellation, 26
Discriminant, 349

Divided differences, 141

Do Carmo, M., 194

Domain, 53, 232

Domain knot, 143

Doo, D., 317

Doo-Sabin surfaces, 317, 323
Double knot, 145

Duck, 136

Dupin’s indicatrix, 316, 357, 361
Dyn, N, 29, 158, 194

Eck, M., 69
Ellipse, 209, 357
Elliptic point, 355
End condition, 375
Bessel, 127, 277
clamped, 126
natural, 128
not-a-knot, 127
quadratic, 127
Endpoint interpolation, 47, 105,
109
of Bézier curves, 39
Epstein, M., 132
Equidistant parametrization, 124
Euclidean map, 18
Euclidean space, 12
Euler, L., 16, 76, 171, 356
Extrapolation, 54, 69

Fairness of a curve, 364

Farin, G., 67, 194, 279, 293, 295, 307,
339, 365

Farouki, R., 211, 276, 367, 373

Faux, I., 59

Fayard, L., 368

Ferguson, J., 1, 122, 256, 262

Fine tune, 187

Fiorot, J., 215

First fundamental form, 349

Flat point, 355

Flat spot, 332

Index

Floater, M., 220, 228

FMILL, 118

Foley, T., 113, 132, 133

Font design, 18, 106, 120

Ford, 326

Ford, H,, 11

Forrest, A., 49, 67, 69, 196, 202, 215,

364,367

Forsey, D., 317

Forward difference, 49

Forward differencing, 92

Four tangent theorem, 202

Fractals, 63

Frederickson, L., 279

Frenet frame, 173
continuity, 194

Frenet—Serret formulas, 174

Fritsch, F., 113

Functional curve, 71

Gauss, C., 171, 355

Gauss—Seidel iteration, 125

Gaussian curvature, 355, 367

Geise, G., 185, 194

General Motors, 326

Generalized Vandermonde matrix,
86

Generatrix, 270, 359

Geodesic, 360

Geometric continuity, 180, 181, 211

Geometric programming, 16

Geometry matrix, 248

Goldman, R., 12, 16, 40, 168, 180,
194, 283, 307

Gonska, H., 44

Goodman, T., 194, 221

Gordon surface, 341

spline-blended, 343

Gordon, W., 2, 150, 326, 341, 344

Gradient, of implicit conic, 206

Grassmann, H., 32

Gregory’s square, 337

Gregory, J., 158, 194, 308, 321, 336,
346, 377

Greville abscissa, 144

Greyville, T., 158

Index

Hagen, H., 194, 264

Hahn, J., 308

Hansford, D., 29, 300

Harmonic function, 9

Hartley, P., 133

Hat function, 30

Hermite form, 375

Hermite interpolation, 87, 113, 315,
344

Herron, G., 308, 316

Hilbert, D., 367

Hinds, J., 276, 367

Hodograph, 49

Holladay, J., 122

Hollig, K., 141, 221

Holman, T, 375

Homogeneous coordinates, 200

Horner’s scheme, 60

Hosaka, M., 377

Hoschek, J., 166, 307, 308, 367

Hyperbola, 209, 233, 357

Hyperbolic paraboloid, 231

Hyperbolic point, 355

idempotent operator, 344
Identity map, 17
IGES, 103, 156, 206
Image plane, 196
Implicit form

of a conic, 205

of a quadric, 300

of a surface, 348

tolerances, 214
Improper parametrization, 223
Infinite control point, 213, 224
Inflection point, 110, 370
Inner Bézier point, 102
Integrals, 73

of tensor product patches,

250

Interference checking, 38
Interpolating

conic, 207

polynomial, 81

quadric, 300
Intrinsic geometry, 355

425

Invariance under affine parameter
transformations, 38, 376

Inverse design, 111, 373

Isoparametric curve, 232, 238, 341

Isophotes, 368

Isotropic directions, 350

Jeannin, P, 215

Jensen, T., 308

Joint, 97

Jolles, S., 58

Jones, A., 308, 369

Judd, C., 133

Junction points, 97, 102, 114,
116

Kahmann, J., 308, 316
Kaufmann, E., 369
Kiciak, P., 308
Kimura, F.,, 338, 377
Kjellander, J., 366
Klass, R., 221, 368, 369
Klein bottle, 278
Klucewicz, 1., 262
Knot, 96, 122
insertion, 143
insertion for rational B-splines,
228
multiplicities, in IGES, 156
sequence, 96
Korovkin, P., 44, 77, 78
Kronecker Delta, 47
Kruth, J., 227

Lacombe, C., 346

Lagrange interpolation, 85
Lagrange polynomials, 84, 341
Lane, J., 54, 159

Lasser, D., 276, 307

Least squares, 165

Lee, E., 40, 132, 196, 209, 228
Levin, D., 29

Levin, S., 158

Lewis, J., 192

Lien, S., 94

Liming, R., 196, 208

426

Linear independence of B-splines,

152
Linear interpolation, 18, 327
bivariate, 24
repeated, 33
Linear operators, 30, 35

Linear parameter transformation, 38
Linear precision, 48, 84, 104, 108

of Bézier triangles, 293
of rational curves, 216
Linear space, 13
Linearly independent, 30

Lines of curvature of a surface of

revolution, 354
Little, F., 29
Liu, D., 308, 364
Lobachevsky, N., 141
Local control, 105, 109
Local coordinates, 38, 96, 98
Local parameter, 21, 115
Local support, 152
Lofted surface, 326, 341
Loop, C., 116, 321
Lorentz, L., 44
Lounsbery, M., 320
Lucian, M., 228
Lyche, T., 158

Ma, W., 227

Main normal vector, 173
Mann, S., 244, 320
Manning, J., 185, 194
Mansfield, L., 141, 155
Marshall, J., 346

Mass point, 32

Matrix form of curves, 59
Max-min criterion, 29
McAllister, D., 113
McConalogue, D., 119, 133
McLaughlin, H., 113
Mean curvature, 355, 367
Meier, J., 44

Memke’s theorem, 180
Menelaos’ theorem, 22
Meridian, 270
Meusnier’s theorem, 352

Micchelli, C., 158, 180, 194
Miller, J., 276
Min-max

box, 38, 55

criterion, 29
Mitchell, A., 346
Mixed partials, 242
Mobius, E,, 16, 19, 23, 197
Monge, C., 171
Monomial, 30, 85

basis, 59, 373

form, 51

form of Bézier patches, 248
Mortenson, M., 59
Multiaffine, 41, 59

function, 282
Multiplicities of end knots,

156

Multiplicity of a knot, 143
Munchmeyer, F., 367
Musse, J., 308

Nachman, L., 332
NAPOLEON, 11
Nasri, A., 320
Natural end condition, 132
Nested multiplication, 60
Neutral set, 28
Neville, 83
Newton

form, 92

iteration, 166
Newton, L., 81

Nielson, G., 120, 133, 184, 189, 192,

308, 344, 346

Nine parameter interpolant, 302

Nonparametric
curve, 178
patch, 249

Normal
curvature, 352
equations, 165
section, 352
vector, 244

Normalization of knot sequence,

102

Index

Numerical control, 1
NURBS, 215

O’Dell, C., 133
Order of contact, 194
Orthonormal matrix, 18
Osculant of tensor product surface,
244

Osculating

circle, 175

plane, 57, 174, 194
Osculatory interpolation, 221
Oslo algorithm, 158
Overhauser spline, 119, 121

Parabola, 2, 5, 33, 119, 177, 199, 209,
215, 227, 233, 300
Parabolic
cylinder, 300
point, 355
Paraboloid, 300, 357
Parallel projection, 17, 18
Parameter correction, 166
Parametric B-spline curve, 157
Parametrization, 110, 116, 171, 211,
300, 339
centripetal, 132, 166
chord length, 132
equidistant, 131
for tensor product interpolation,
265
uniform, 131
Parry, S., 271
Partial derivatives, 241
Partition, 30
of unity, 153
Pascal’s theorem, 207
Patterson, R., 196, 222
Pegna, J., 316, 362
Penna, M., 196
Peters, G., 256
Peters, J., 323
Petersen, C., 295, 307
Piecewise Bézier polygon, 97
Piecewise bilinear interpolation,
241

427

Piecewise linear interpolation, 64, 67,
146
Piecewise polynomial curves, 96
Piegl, L., 213, 215, 300
Piper, B., 120, 308, 315
Pixel, 94
map, 120
Poeschl, T., 368
Point, 12
at infinity, 213
Polar, 57
form, 350
of tensor product surface, 244
Polygon, 21
Polynomial space, 30
PostScript, 120
Pottmann, H., 194, 364
Powell, M., 305
Power basis, 373
Pratt, M., 59
Pratt, V., 94
Prautzsch, H., 67, 158, 168
Principal
curvatures, 355
direction, 354
Projective
geometry, 196
invariance, 37
map, 196, 198
Projector, 344

Quadratic
B-spline, 102
precision, 302
Quadric, 298
Quintic Hermite interpolation, 91,
121

Radial line, 291

Radius of curvature, 175

Rajan, V., 373

Ramshaw, L., 40, 54, 58, 141, 233,
297

Range, 232

Rank, 18

Ratio, 20, 31, 197

428

Rational
linear transformation, 199, 202
quadratic form for conics, 202
quadratics, 298
Recursive subdivision, 317
Reflection lines, 368
Regular parametrization, 172
Rendering of B-spline curves, 157
Renyi, A., 141
Renz, W., 366
Reparametrization, 72, 172, 181, 193,
268, 281, 348, 358
of rational B-splines, 228
of rational Bézier curves, 221
of surfaces, 316
Riesenfeld, R., 2, 54, 150, 158, 159
Rigid body motion, 18
Rippa, S., 29
Ris, G., 308
Robot path, 110
Rochetti, R., 94
Rotation, 17
Rough sketch, 187
Roulier, J., 113
Roundoff, 375
Ruled surface, 232, 326, 359
Runge phenomenon, 87

Sabin, M., 221, 279, 305, 317, 364,
377

Sablonniére, P., 150, 279, 295

Sakkalis, T., 211

Sapidis, N., 110, 363, 365

Sarraga, R., 308, 315

Scaling, 17

Scattered data interpolation, 301

Schelske, J., 248

Schneider, F., 227

Schoenberg, 1., 67, 141, 150

Schulze, G., 264

Schumaker, L., 54, 113, 122, 159, 295

Second fundamental form, 352

Sederberg, T., 39, 49, 223, 244, 271

Seidel, H., 40, 283

Selesnick, S., 264

Self-conjugate, 358

Index

Semicircle, 213
Séquin, C., 308
Shantz, M., 94, 276
Shape preservation, 86, 328
Shape preserving interpolation, 113
Shear, 17, 31
Shirman, L., 308
Shoulder
point, 202, 208
tangent, 209
Signed curvature, 178
Simple knot, 143
Slanted font, 18
Smoothness conditions, 97
Solid modeling, 298
Sphere, 270
Spline, 2, 119, 122, 136, 227, 339,
364, 366
cubic , 96
curve, 96
interpolation, 343
quadratic, 96
Stability of the monomial form,
373
Staerk, E., 54, 99
Stancu, D., 279
Standard cubic, 43
Standard form
for conics, 202
for a rational Bézier curve, 222, 268
Steiner, J., 202
Storage of B-spline curves, 159, 376
Straight line, 19
Strain energy, 137
Su, B., 364
Subdivision, 53
in terms of Bernstein polynomials,
78
of Bézier curves, 53
of Bézier patches, 244
of Bezier triangles, 290
of rational Bézier curves, 219
Subspace, 30
Surface, 9
of revolution, 270
Swimmer, A., 32

Index

Symmetric functions, 41, 282
Symmetry, 47, 105, 109

Tangent
length, 376
plane of Bézier triangle, 287
ribbon, 333
vector, 52, 113, 173

Taylor series, 51

Tension, 184

Tensor product, 232, 342
interpolant, 333
interpolation, 376
surfaces, 231

Tetrahedron, 307

Theorema egregium, 355

Thiessen region, 26

Thomas, S., 159

Three tangent theorem, 34

Tiller, W., 215, 300

Torsion, 174
continuity, 194
of a nonparametric curve, 178
of a rational Bézier curve, 176, 177,

220
Torus, 270
Transfinite interpolation, 326, 327,
341

Translation, 13, 17

Translational surface, 248, 262, 340

Transposant, 274

Triangle
area of, 24
numbers, 280

Triangulation, 28
data dependent, 29

Trimmed surfaces, 274

Trinomial coefficient, 283

Trivariate B-splines, 272

Trivial reject, 55

Twist
estimation, 334
incompatibility, 347
variable, 337
vector, 247

Type check, 16

429

Umbilical point, 354
Uniform parametrization, 110,
211
UNISUREF, 1
Unit
interval, 20
sphere, 299
square, 232

Valency, 318
Van Wijk, J., 308
Vandermonde, 86, 251
Varady, T., 377
Variable twists, 337
Variation augmentation, 84
Variation diminishing property, 21,
31, 67, 84, 105, 109, 194
for B-spline curves, 159
for Bézier patches, 240
of rational Bézier curves, 216
Variation diminution, 146
Vectors, 13
Vernet, P., 74
Veron, M., 308
Vesprille, K., 213, 224
Vigo, M., 276
Vinacua, A., 308
Volume distortion, 270
Voronoi diagram, 26

Wang, X., 49

Watkins, M., 69

Weight points, 204, 208, 218, 221,
297

Weights, 202

of rational Bézier curves, 215

Weierstrass approximation theorem,
77

Wolter, E,, 316, 362

Worsey, A., 69, 221, 307

Yamaguchi, F,, 125
Zero tangent vector, 100

Zero twist, 262, 332, 340
Zhou, J., 67

