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Preface

Molecular biology represents one of the greatest intellectual
syntheses in the twentieth century. It has fused the traditional disciplines
of genetics and biochemistry into an agent for understanding virtually
any problem in biology or medicine. Moreover, it has produced a set of
powerful techniques—called recombinant DNA technology—applicable
to fundamental research and to biological engineering.

Even as molecular biology establishes itself as the dominant
paradigm throughout biology, the field itself is undergoing a new and
profound transformation. With the availability of ever more powerful
tools, molecular biologists have begun to assemble massive databases of
information about the structure and function of genes and proteins. It is
becoming clear that it will soon be possible to catalogue virtually all
genes and to identify virtually all basic protein structures. What began as
an enterprise akin to butterfly collecting has become an effort to
construct biology’s equivalent of the Periodic Table: a complete
delineation of the molecular building blocks of life on this planet. The
new thrust is most obvious in the Human Genome Project, but it is
paralleled by similarly oriented efforts in structural and functional
biology as well.

As molecular biology works toward characterizing the genetic basis
of biological processes, mathematical and computational sciences are
beginning to play an increasingly important role: they will be essential
for organization, interpretation, and prediction of the burgeoning
experimental information. The role of mathematical theory in biology is,
to be sure, different from its role in physics (which is more amenable to
description by a set of simple equations), but it is no less crucial.

The National Research Council organized the Committee on the
Mathematical Sciences in Genome and Protein Structure Research to
evaluate whether there was a need for increased interaction between
mathematics and molecular biology. In its initial meeting, the committee

]Dausset, I, and H. Cann, 1994, “Our Genetic Patrimony,” Science 264 (September
30), 1991; Narional Research Council, 1988, Mapping and Sequencing the Human
Genome, Washington, D.C.: National Academy Press.
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unanimously agreed that a need was evident. Focusing on the
impediments to progress in the area, the committee concluded that the
greatest obstacle to progress at the interface of these fields was not a lack
of talented mathematicians, talented biologists, or grant funding. Rather,
the major barrier was communication: mathematicians interested in
working on problems in molecular biology faced an uphill battle in
learning about a completely new and fast-moving field. In most cases,
researchers working successfully at the interface of mathematics and
molecular biology had solved this problem by finding a colleague
willing to invest considerable time to teach them enough to be able to
identify important problems and to begin productive work.

The committee decided that it could make its greatest contribution
not by writing a report confirming the need for interactions between
mathematics and molecular biology, but rather by (to put it in biological
terms) lowering the activation energy bamier for those interested in
working at the interface. Specifically, the committee members agreed to
produce a book that could serve as an introduction to the interface
between mathematics and molecular biology.

This book of signed chapters is the result of some three years of
effort to create a product that would be interesting and accessible to both
mathematicians and biologists. The book is not intended as a textbook,
but rather as an introduction and an invitation to learn more. Each
chapter aims to describe an important biological problem to which
mathematical methods have made a significant contribution. As the
examples make clear, mathematical and statistical issues have
contributed key insights and advances to molecular biology, and.
conversely, molecular biology has posed new challenges in the
mathematical sciences. The book highlights those areas of the
mathematical, statistical, and computational sciences that are important
in cutting-edge research in molecular biology. It also tries to illustrate to
the molecular biology community the role of mathematical methodolo-
gies in solving biomolecular problems.

Although there is a growing community of researchers working at
the interface of molecular biology and the mathematical sciences, the
need still far outstrips the supply. The Board on Mathematical Sciences
hopes this book will inspire more individuals to become involved.

This book would not have been possible without sustained efforts by
a number of people, to whom the committee and the Board on -

viii



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Maolecular Biology (1995)
http://www.nap.edu/openbook/0309048869/html/R3. html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved
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Chapter 1
The Secrets of Life:
A Mathematician’s Introduction
to Molecular Biology

Eric S. Lander ‘
Whitehead Institute for Biomedical Research
and Massachusetts Institute of Technology

Michael S, Waterman
University of Southem California

Molecular biology has emerged from the synthesis of
two complementary approaches to the study of life—
biochemistry and genetics—to become one of the most
exciting and vibrant scientific fields at the end of the
twentieth century, This introductory chapter provides a
brief history of the intellectual foundations of modern
molecular biology and defines key terms and concepts
that recur throughout the subsequent chapters.

The concepts of molecular biology have become household words.
DNA, RNA, and enzymes are routinely discussed in newspaper storics,
prime-time television shows, and business weeklies. The passage into
popular culture is complete only 40 years after the discovery of the
structure of deoxyribonucleic acid (DNA) by James Watson and Francis
Crick and only 20 years after the first steps toward genetic engineering.
With breathtaking speed, these basic scientific discoveries have led to
astonishing scientific and practical implications: the fundamental
biochemical processes of life have been laid bare. The evolutionary
record of life can be read from DNA sequences. Genes for proteins such
as human insulin can be inserted into bacteria, which then can
inexpensively produce large and pure amounts of the protein. Farm
animals and crops can be engineered to produce healthier and more
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desirable products. Sensitive and reliable diagnostics can be developed
for viral diseases such as AIDS, and treatments can be developed for
some hereditary diseases, such as cystic fibrosis.

Molecular biology is certain to continue its exciting growth well into
the next century. As its frontiers expand, the character of the field is
changing. With ever growing databases of DNA and protein sequences
and increasingly powerful techniques for investigating structure and
function, molecular biology is becoming not just an e¢xperimental
science, but a theoretical science as well. The role of theory in molecular
biology is not likely to resemble the role of theory in physics, in which
mathematicians can offer grand unifying theories. In biology, key
insights emerge less often from first principles than from interpreting the
¢razy quilt of solutions that evolution has devised. Interpretation
depends on having theoretical tools and frameworks. Sometimes, these
constructs are nonmathematical.  Increasingly, however, the
mathematical sciences—mathematics, statistics, and computational
science—are playing an important role.

This book emerged from the recognition of the need to cultivate the
interface between molecular biology and the mathematical sciences. In
the following chapters, various mathematicians working in molecular
biology provide glimpses of that interface. The essays are not mtended
to be comprehensive up-to-date reviews, but rather vignettes that de-
scribe just enough to tempt the reader to learn more about fertile areas
for research in molecular biology.

This introductory chapter briefly outlines the intellectual foundations
of molecular biology, introduces some key terms and concepts that recur
throughout the book, and previews the chapters to follow.

BIOCHEMISTRY

Historically, molecular biology grew out of two complementary
experimental approaches to studying biological function: biochemistry
and genetics (Figure 1.1). Biochemistry involves fractionating (breaking
up) the molecules in a living organism, with the goal of purifying and
characterizing the chemical components responsible for carrying out
a particular function. To do this, a biochemist devises an assay for
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FIGURE 1.1 Genetics and biochemistry began as independent ways to study biological
function.

measuring an “activity” and then tries successive fractionation
procedures to isolate a pure fraction having the activity. For example, a
biochemist might study an organism’s ability to metabolize sugar by
purifying a component that could break down sugar in a test tube.

In vitro (literally, in glass) assays were accomplished back in the
days when biologists were still grappling with the notion of vitalism.
Originally, it was thought that life and biochemical reactions did not
obey the known laws of chemistry and physics. Such vitalism held sway
until about 1900, when it was shown that material from dead yeast cells
could ferment sugar into ethanol, proving that important processes of
living organisms were ‘“just chemistry.” The catalysts promoting these
transformations were called enzymes.

Living organisms are composed principally of carbon, hydrogen,
oxygen, and nitrogen; they also contain small amounts of other key
elements (such as sodium, potassium, magnesium, sulfur, manganese,
and selenium). These elements are combined in a vast array of complex
macromolecules that can be classified into a number of major types:
proteins, nucleic acids, lipids (fats), and carbohydrates (starches and
sugars). Of all the macromolecules, the proteins have the most diverse
range of functions. The human body makes about 100,000 distinct
proteins, including:

e enzymes, which catalyze chemical reactions, such as digestion of
food;
e structural molecules, which make up hair, skin, and cell walls;
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o transporters of substances, such as hemoglobin, which carries
oxygen in blood: and

o trangporters of information, such as receptors in the surface of
cells and insulin and other hormones.

In short, proteins do the work of the cell, From a structural stand-
point, a protein is an ordered linear chain made of building blocks
known as amino acids (Figures 1.2 and 1.3). There are 20 distinct amino
acids, each with its own chemical properties (including size, charge,
polarity, and hydrophobicity. or the tendency to avoid packing with
water). Each protein is defined by its unique sequence of amino acids;
there are typically 50 to 500 amino acids in a protein.

AN B
FIGURE 1.2 Proteins are a linear polymer, assembled from 20 building blocks called

amino acids that differ in their side chains. The diagram shows a highly stylized view
of this linear structure.

FIGURE 1.3 Examples of different representations of protein structures focusing on
(left) chemical bonds and (right) secondary structural features such as helices and
sheet-like elements. Reprinted, by permission, from Richardson and Richardson
{1989). Copyright © 1989 by the Plenum Publishing Corperation.
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The amino acid sequence of a protein causes it to fold into the
particular three-dimensional shape having the lowest energy. This gives
the protein its specific biochemical properties, that is, its function.
Typically, the shape of a protein is quite robust. If the protein is heated,
it will be denatured (that is, lose its three-dimensional structure), but it
will often reassume that structure (refold) when cooled. Predicting the
folded structure of a protein from the amino acid sequence remaing an
extremely challenging problem in mathematical optimization. The
challenge is created by the combinatorial explosion of plausible shapes,
each of which represents a local minimum of a complicated nonconvex
function of which the global minimum is sought.

CLASSICAL GENETICS

The second major approach to studying biological function has been
genctics. Whereas biochemists try to study one single component
purified away from the organism, geneticists study mutant organisms
that are intact except for a single component. Thus a biochemist might
study an organism’s ability to metabolize sugar by finding mutants that
have lost the ability to grow using sugar as a food source.

Genetics can be traced back to the pioneering experiments of Gregor
Mendel in 1865. These key experiments elegantly illustrate the role of
theory and abstraction in biology. For his experiments, Mendel started
with pure breeding strains of peas—that is, ones for which all
offspring, generation after generation, consistently show a trait of
interest. This choice was key to interpreting the data.

One of the traits that he studied was whether the pea made round or
wrinkled seeds. Starting with pure breeding round and wrinkled strains,
Mendel made a controlled cross to produce an F generation. (The ith
generation of the cross is denoted F;.) Mendel noted that all of the
generation consisted of round peas; the wrinkled trait had completely
vanished. However, when Mendel crossed these I, peas back to the pure

breeding wrinkled parent, the wrinkled trait reappeared: of the second
generation, approximately half were round and half were wrinkled.

Moreover, when Mendel crossed the F, peas to themselves, he found that
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FIGURE 1.4 Mendel’s crosses between pure breeding peas with round and wrinkled
sceds revealed the relltale binomial ratio 1:2:1 in the second generation that led Mendel
1o infer the existence of discrete particles of inheritance.

the second generation showed 75 percent round and 25 percent wrinkled
(Figure 1.4).

On the basis of these and other experiments, Mendel hypothesized
that traits such as roundness are affected by discrete factors—which
today we call genes. In particular, Mendel suggested the following:

« Each organism inherits two copies of a gene, one from each
parent. Each parent passes on one of the two copies. chosen at
random, to each offspring. (These important postulates are called
Mendel’s First Law of Inheritance.)

« Genes can occur in alternative forms, called alleles. For
example, the gene affecting seed shape occurs in one form (allele
A) causing roundness and one form (allele a) causing
wrinkledness.

» The pure breeding round and wrinkled plants carried two copies
of the same allele, 44 and aa, respectively. Individuals carrying
two copies of the same gene are called homozygotes. The F
generation consists of individuals with genotype Aa, with the
round trait dominant over the wrinkled trait. Such individuals
are called heterozygotes.
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+ In the cross of the F, generation (4a) to the pure breeding
wrinkled strain (aa), the offspring were a 1:1 mixture of da:aa
according to which allele was inherited from the F, parent. In
the cross between two F, parents (4a), the offspring were a

1:2:1 mixture of 44.:4a:aa according to the binomial selection
of alleles from the two parents.

It is striking to realize that the existence of genes was deduced in
this abstract mathematical way. Probability and statistics were an
intrinsic part of early genetics, and they have remained so. Of course,
Mendel did not have formal statistical analysis at his disposal, but he
managed to grasp the key concepts intuitively. Incidentally, the famous
geneticist and statistician R.A. Fisher analyzed Mendel’s data many
vears later and concluded that they fit statistical expectation a bit too
well. Mendel probably discarded some outliers as likely experimental
CITOrIS.

It was almost 35 vyears before biologists had an inkling of where
these hypothetical genes resided in the cell (in the chromosomes) and
almost 100 years before they understood their biochemical nature.

MOLECULAR BIOLOGY

- As suggested in Figure 1.1, the biochemical and the genetic
approaches were virtually digjoint: the biochemist primarily studied
proteins, whereas the geneticist primarily studied genes. Much like the
great unifications in mathematics, molecular biology emerged from the
recognition that the two apparently unrelated fields were, in fact,
complementary perspectives on the same subject.

The first clues emerged from the study of mutant microorganisms in
which gene defects rendered them unable to synthesize certain key
macromolecules. Biochemical study of these genetic mutants showed
that each lacked a specific enzyme. From these experiments the
hypothesis became clear that genes somehow must “encode” enzymes.
This (Nobel-Prize-winning) notion was dubbed the “one gene-one
enzyme” hypothesis, although today it has been modified to “one
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8 CALCULATING THE SECRETS OF LIFE

gene-one protein.” Of course, the mystery remained: How do genes
encode proteins?

The answer depended on finding the biochemical nature of the gene
itself, thereby uniting the fields. To purify the gene as a biochemical
entity, one needed a test tube assay for heredity—something that might
seem impossible. Fortunately, scientific serendipity provided a solution.
In a famous series of bacteriological studies, Griffith showed 50 vyears
ago that certain properties (Such as pathogenicity) could be transferred
from dead bacteria to live bacteria. Avery et al. (1944) were able to
successively fractionate the dead bacteria so as to purify the elusive
“transforming principle,” the material that could confer new heredity on
bacteria. The surprising conclusion was that the gene appeared to be
made of DNA.

The notion of DNA as the material of heredity came as a surprise to
most biochemists. DNA was known to be a linear polymer of four
building blocks called nucleotides (referred to as adenine, thymine,
cytosine, and guanine, and abbreviated as 2, T, C, and G) joined by a
sugar-phosphate backbone. However, most knowledgeable scientists
reckoned that the polymer was a boring, repetitive structural molecule
that functioned as some sort of scaffold for more important components.
In the days before computers, it was not apparent how a linear polymer
might encode information. If DNA contained the genes, the structure of
DNA became a key issue.

In their legendary work in 1953, Watson and Crick correctly inferred
the structure of most DNA and, in so doing, explained the main secret of
heredity. While some viruses have single-stranded DNA, the DNA of
humans and of most other forms of life consists of two antiparallel
chains (strands) in the form of a double helix in which the bases
(nucleotides) pair up to form base pairs in a certain way (Figure 1.5) so
that the sequence of one chain completely specifies the sequence of the
other: an A on one chain always corresponds to a T on the other, and a
G to a C. The sequences are complementary. The fact that the
information is redundant explains the basis for the replication of living
organisms: the two strands of the double helix unwind, and each serves
as a template for the synthesis of a complete double helix that is passed
on to a daughter cell. This process of replication is carried out by
enzymes called DNA polymerases. Mutations are changes in the
nucleotide sequence in DNA. Mutations can be induced by external
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FIGURE 1.5 The DNA double helix consists of anti-parallel helical strands, with
complementary bases (G-C and A-T).

forces such as sunlight and chemical agents or can occur as random
copying errors during replication.

There remained the question of how the 4-letter alphabet of DNA
could “encode” the instructions for the 20-letter alphabet of protein
sequences. Biochemical studies over the next decade showed that genes
correspond to specific stretches of DNA along a chromosome (much like
individual files on a hard disk). These stretches of DNA can be
expressed at particular times or under particular circumstances.
Typically, gene expression begins with transcription of the DNA
sequence into a messenger molecule made of ribonucleic acid (RNA)
(Figure 1.6A). This transcription process is carried out by enzymes
called RNA polymerases. RNA is structurally similar to DNA and
consists of four building blocks, the nucleotides denoted &, J, C, and G,
with U (uracil) playing the role of T. The messenger RNA (mRNA) is
copied from the DNA of a gene according to the usual base pairing rules
(a U in RNA corresponds to an & in DNA, an A comrespondstoa T, 2 G
to a C, and a C to a G). The messenger RNA copied from a gene is
single-stranded and is just an unstable intermediate used for transmitting
information from the cell nucleus (where the DNA resides) to the
cytoplasm (where protein synthesis occurs). The mRNA is then
translated into a protein by a remarkable molecular machine called the
ribosome.
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i1

B
FIRST SECOND POSITION THIRD
POSITION POSITION
(5" END) U C A G (3 END)
Phe Ser Tyr Cys U
Phe Ser Tyr Cys C
U Len Ser Stop Stop A
Leu Ser Stop Trp G
Leu Pro His Arg U
Leu Pro His Arg C
C Leu Pro Gln Arg - A
Leu Pro Gln Arg G
Ile Thr Asn Ser 0]
Ile Thr Asn Ser C
A Ile Thr Lys Arg A
Met Thr Lys Arg. G
Val Ala Asp Gly U
Val Ala Asp Gly C
G Val Ala Glu Gly A
Val Ala Glu Gly G

Note: Given the position of the bases in a codon, it is possible to find the corre-
sponding amino acid. For example, the codon (5") AUG (3") on mRNA specifies
methionine, whereas CAU specifies histidine. UAA, UAG, and UGA are termi-
nation signals. AUG is part of the initiation signal, and it codes for internal me-

thionines as well.

FIGURE 1.6 After messenger RNA is transcribed from the DNA sequence of a gene, it

is translated into protein by a remarkable molecular device called the ribosome. (A)

Ribosomes read the RNA bases and write a corresponding amino acid sequence. The
correct amino acid is brought into juxtaposition with the correct nucleotide triplet
through the mediation of an adapter molecule known as transfer RNA. (B) The table
showing the correspondence between triplets of bases and amino acids is called the
genetic code. Reprinted from Recombinant DNA: A Short Course by Watson, Tooze,
and Kurtz (1994). Copyright © 1994 James D. Watson, John Tooze, and David T.
Kurtz. Used with permission of W.H. Freeman and Company.
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The ribosome “reads” the linear sequence of the mRNA and “writes”
(i.e., creates) a corresponding linear sequence of amuno acids of the
encoded protein. Translation is carried out according to a three-letter
code: a group of three letters is a codon that specifies a particular amino
acid according to a look-up table called the genetic code (Figure 1.6B).
There are 4° different codons. The codons are read in contiguous,
nonoverlapping fashion from a defined starting point, called the
translational start site. Finally, the newly synthesized amino acid chain
spontaneously folds into its three-dimensional structure. (For a recent
discussion of protein folding, see Sali et al., 1994.)

The details of the genetic code were solved by elegant biochemical
tricks, which were necessary because chemists had only the ability to
synthesize random collections of RNA having defined proportions of
different bases, With some combinatorial reasoning, this proved to be
sufficient. For example, if the ribosome is given an mRNA with the
sequence UUUUU. . ., then it makes a protein chain consisting of only
the amino acid phenylalanine (Phe). Thus UUU must encode
phenylalanine. By examining more complex mixtures, researchers soon
worked out the entire genetic code.

Molecular biology provides the third leg of the triangle, relating ge-
netics and biochemistry (Figure 1.7).

FUNCTION

N\

Classical Genetics Classical Biochemistry

/

GENE — Molecular Biology

PROTEIN

FIGURE 1.7 Molecular biology connected the disciplines of genctics and biochemistry
by showing how genes encoded proteins.
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THE RECOMBINANT DNA REVOLUTION

By 1965, molecular biology had laid bare the basic secrets of life.
Without the ability to manipulate genes, however, the understanding was
more theoretical than operational. In the 1970s, this situation was
transformed by the recombinant DNA revolution.

Biochemists discovered a variety of enzymes made by bacteria that
allowed one to manipulate DNA at will. Bacteria made restriction
enzymes, which cut DNA at specific sequences and served as a defense
against invading viruses, and ligases. which join DNA fragments. With
these and other tools (which are now all readily available from
commercial suppliers), it became possible to cut and paste DNA
fragments at will and to introduce them into living cells (Figure 1.8).
Such cloning experiments allow scientists to reproduce unlimited
quantities of specific DNA molecules and have led to derailed
understanding of individual genes. Moreover, producing recombinant
DNA molecules that contain bacterial DNA instructions for making a
particular human protein (such as insulin) gave birth to the
biotechnology industry. ‘

A key development was the invention of DNA sequencing, the
process of determining the precise nucleotide sequence of a cloned DNA
molecule. With DNA sequencing, it became possible to read the
sequence of any gene in stretches of 300 to 500 nucleotides at a time.
DNA sequencing has revealed striking similarities among living
creatures as diverse as humans and yeast, with far-reaching consequences
for our understanding of molecular structure and evolution. DNA
sequencing has also led to an information explosion in biology. with
public databases still expanding at a rapid exponential rate. In early
1993, there were over 100 million bases of DNA in the public databases.
For reference, the entire genome of the intestinal bacteria Escherichia
coli (E. coli) consists of about 4.6 million bases. and the human genome
sequence has roughly 3 billion bases.

In recent years a powerful new technique called the polymerase
chain reaction (PCR) has been added to the molecular biologist’s tool
kit (Figure 1.9). PCR allows one to directly amplifv a specific DNA
sequence without resort to cloning. To perform PCR, one uses short
DNA molecules called primers (typically about 20 bases long) that are
complementary to the sequences flanking the region of interest. Each
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J
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FIGURE 1.8 By cloning a foreign DNA molecule in a plasmid vector, it is possible to
propagate the DNA in a bacterial or other host cell.
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Primer extension
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Primer extension
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Primer extension

Cycles 4- 25

:

FIGURE 1.9 The polymerase chain reaction (PCR) allows exponential amplification of
DNA. The method involves successive rounds of copving (using the enzyme DNA
polymerase) between two synthetic primers corresponding to nearby DNA sequences.
Each round doubles the number of copies. Courtesy of the Perkin-Elmer Corporation.
Reprinted from the National Research Council (1992).
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primer is allowed to pair with a base in the complementary region and is
then extended to contain the full sequence from the region by using the
enzyme DNA polymerase. In this fashion a single copy of the region
gives rise to two copies. By iterating this step » times, one might make
2" copies of the region. In practice, one can start with a small drop of
blood or saliva and obtain a millionfold amplification of a region. Not
surprisingly, PCR has found myriad applications, especially in genetic
diagnostics.

MOLECULAR GENETICS IN THE 1990s

With the tools of recombinant DNA, the triangle of knowledge (see
Figure 1.7) has been transformed, to use a mathematical metaphor, into a
commutative diagram (Figure 1.10). It is possible to traverse the diagram
in any direction—for example, to find the genes and proteins underlying
a biological function or to find the protein and function associated with a
given gene.

A good illustration of the power of the techniques is provided by
recent studies of the inherited disease cystic fibrosis (CF). CF is a
recessive disease, the genetics of which is formally identical to
wrinkledness in peas as studied by Mendel: if two non-affected carriers
of the recessive CF gene « (that is, heterozygotes with genotype A4aq)
marry, one fourth of their offspring will be affected (that is, will have
genotype aa). The frequency of the disease-causing allele is about 1/42
in the Caucasian population, and so about 1/21 of all Caucasians are
carriers. Since a marriage between two carriers produces 1/4 affected
children, the disease frequency in the population is about
1/2000 (= 1/4x1/21x1/21).

Although CF was recognized relatively early in the century, the
molecular basis for the disease remained a mystery until 1989. The first
breakthrough was the genetic mapping of CF to human chromosome 7
in 1985 (Figure 1.11). Genetic mapping involved showing that the
inheritance pattern of the disease in families is closely correlated with
the inheritance pattern of a particular DNA polymorphism (that is, a
common spelling variation in the DNA), in this case on chromosome 7.
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FUNCTION

Classical Genetics Classical Biochemistry

N\

GENE €—— Molecular Biology —3 PROTEIN

FIGURE 1.10 Recombinant DNA provided the ability to move freely in any direction
among gene, protein, and function, thereby converting the triangle of Figure 1.7 into a
commutative diagram.

The correlation does not imply that the polymorphism causes the
disease, but rather that the polymorphism must be located near the site of
the disease gene. Of course, “near” is a relative term. In this case, “near”
meant that the CF gene must be within 1 million to 2 million bases of
DNA along the chromosome. The next step was the physical mapping
and the DNA sequencing of the CF gene itself, which took four more
years to accomplish. This involved starting from the nearby
polymorphism and sequentially isolating adjacent fragments in a tedious
process called chromosomal walking until the disease gene was
reached. Once the disease gene was found, its complete DNA sequence
was determined. (A description of how one knows that one has found the
disease gene is beyond the scope of this introduction.)

From the DNA sequence, it became clear that the CF gene encoded a
protein of 1,480 amino acids and that the most common misspelling in
the population (accounting for about 70 percent of all CF alleles) was a
three-letter deletion that removed a single codon specifying an amino
acid, a phenylalanine at position 508 of the protein. On the basis of this
finding, it became possible to perform DNA diagnostics on individuals
to see if they carried the common CF mutation.

Even more intriguingly, the sequence gave immediate clues to the
structure and function of the gene product. When the protein sequence
was compared with the public databases of previous sequences, it was
found to show strong similarities to a class of proteins that were
membrane-bound transporters—molecules that reside in the cell
membrane, bind adenosinetriphosphate (ATP), and transport substances
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Chromosome 7

FIGURE 1.11 Chromosomal walking from flanking genctic markers to the gene
responsible for cystic fibrosis. The distance covered totaled more than 1 million DNA
bases.

into and out of the cell (Figure 1.12A). By analogy, it was even possible
to irfer a likely three-dimensional shape for the CF protein (Figure
1.12B). In this way, computer-based sequence analysis shed substantial
light on the structure and function of this important disease gene.

With the recent advent of gene therapy—the ability to use a virus as
a shuttle to deliver a working copy of a gene into cells carrying a
defective version—clinical trials have been started to try to cure the
disease in the lung cells of CF patients. The path from the initial
discovery of the gene to potential therapies has been stunningly short in
this case.

THE HUMAN GENOME PROJECT

With the identification of the CF gene as well as a number of other
successes, it has become clear that molecular genetics has developed a
powerful general paradigm that can be applied to many inherited
diseases and will have a profound impact on our understanding of human
health. Unfortunately, the paradigm involves many tedious laboratory
steps: genetic mapping (finding a polymorphism closely linked to the
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disease gene), physical mapping (isolating the consecutive fragments of
DNA along the chromosome), and DNA sequencing (typically
performed in pieces of only 300 to 500 letters at a time). It would be
inefficient to repeat these steps for each of the more than 4,000 genetic
traits and digeases already known. To accelerate progress, molecular
geneticists have seen the value of building infrastructure—a common set
of maps, tools, and information—that can be applied to all genetic
problems. This recognition led to the creation of the Human Genome
Project (National Research Council, 1988), an international effort to
analyze the structure of the human genome (as well as the genomes of
certain key experimental model systems, such as E. coli, yeast,
nematodes, fruit flies, and mice).

Because most molecular biological methods are applicable only to
small fragments of DNA, it is not practical to sequence the human
genome by simply starting at one end and proceeding sequentially.
Moteover, because the current cost of sequencing is about $1 per base, it

would be expensive to sequence the 3 x 10° bases of the human
chromosomes by conventional methods. Instead, it ts more sensible to
construct maps of increasing resolution and to develop more efficient
sequencing technology. The current goals of the Human Genome Project
include development of the following tools:

«  Genetic maps. The goal is to produce a genetic map showing the
location of 35,000 polymorphisms that can be used to trace
inheritance of diseases in families. As of this writing, the goal is
nearly complete.

o Physical maps. The goal is to produce a collection of
overlapping pieces of DNA that cover all the human
chromosomes. This goal is not completed yet but should be by
1996.

« DNA sequence. The ultimate goal is to sequence the entire
genome, but the intermediate steps include sequencing particular
regions, generating more efficient and automated technology,
and developing better analytical methods for handling DNA
information.

With the vast quantities of information being generated, the Human
Genome Project is one of the driving forces behind the expanding role
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for mathematics, statistics, and computer science in modern molecular
biology.

COMING ATTRACTIONS

The chapters of this book describe important applications of
mathematical, statistical, and computational methods to molecular
biology. These methods are developing rapidly, and, mainly because of
this situation, the presentations in this book are intended to be
introductory sketches rather than scholarly reviews. Without claiming to
be a complete survey, this book should convey to readers some of the
exciting uses of mathematics, statistics, and computing in molecular
biology. Other introductions to various aspects of molecular biology can
be found in Watson et al. (1994), Sueyer (1988), U.S. Department of
Energy (1992), Watson et al. (1987), Lewin (1990), and Alberts et al.
(1989).

Chapter 2 (“Mapping Heredity”) describes how statistical models
can be used to map the approximate location of genes on chromosomes.
Gene mapping was mentioned above for the case of the cystic fibrosis
gene. The problem becomes especially challenging—and mathematics
plays a bigger role—when the disease does not follow simple Mendelian
inheritance patterns—for example, when it is caused by multiple genes
or when the trait is quantitative rather than qualitative in nature. This is
an important subject for the Human Genome Project and its applications
in modern medical genetics.

The next three chapters focus on the analysis of DNA and protein
sequences. As new genes are sequenced, they are routinely compared
with public databases to look for similarities that might indicate
common evolutionary origin, structure, or function. As databases expand
at ever-increasing rates, the computational efficiency of such
comparisons is crucial. Chapter 3 (“Seeing Conserved Signals™)
describes combinatorial algorithms for this problem. Because
coincidences abound in such comparisons, careful statistical analysis is
needed. Chapter 4 (“Hearing Distant Echoes™) discusses the application
of extremal statistics to sequence similarity. For closely related
sequences, sequence comparison also sheds light on the process of
evolution, Chapter 5 (“Calibrating the Clock™) discusses the applications



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Malecular Biolqu (1995)
http://www.nap.edu/openbook/0309048869/html/23 html, copyright 1995, 2000 The National Academy of Sciences. all rights reserved

A Mathematician’s Introduction to Molecular Biology 23

of stochastic processes to such evolutionary analysis. The discovery and
reading of genetic sequences have breathed new life into the study of the
stochastic processes of evolution. The chapter focuses on one of the most
exciting new tools, the use of the coalescent to estimate times to the
most recent common ancestor.

Geometric methods applied to DNA structure and function are the
focus of the next three chapters, Watson and Crick’s famous DNA
double belix can be thought of as Jocal geometrical structure. There is
also much interesting geometry in the more global structure of DNA
molecules. Chapter 6 (*“Winding the Double Helix”) uses methods from
geometry to describe the coiling and packing of chromosomes. The
chapter describes the supercoiling of the double helix, in terms of key
geometric quantities—link, twist, and writhe—that are related by a
fundamental theorem. Chapter 7 (“Unwinding the Double Helix”)
employs differential mechanics to study how stresses on a DNA
molecule cause it to unwind in certain areas, thereby allowing access by
key enzymes needed for gene expression. Chapter 8 (“Lifting the
Curtain”™) uses topology to infer the mechanism of enzymes that
recombine DNA strands, providing a glimpse of details that cannot be
seen via experiment.

Finally, Chapter 9 (“Folding the Sheets™) discusses one of the
hardest open questions in computational biology: the protein-folding
problem, which concerns predicting the three-dimensional structure of a
protein on the basis of the sequence of its amino acids. Probably no
simple solution will ever be given for this central problem, but many
useful and interesting approximate approaches have been developed. The
concluding chapter surveys various computational approaches for
structure prediction.

Together, these chapters provide glimpses of the roles of
mathematics, statistics, and computing in some of the most exciting and
dynamic areas of molecular biology. If this book tempts some
mathematicians, statisticians, and computational scientists to leam more
about and to contribute to molecular biology, it will have accomplished
one of its goals. Its two other goals are to encourage molecular biologists
to be more cognizant of the importance of the mathematical and
computational sciences in molecular biology and to encourage
scientifically literate people to be aware of the increasing impact of both
molecular biology and mathematical and computational sciences on their
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lives. If this book makes progress toward these three goals, it shall have
been well worth the effort.
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Chapter 2
Mapping Heredity:
Using Probabilistic Models and
Algorithms to Map Genes and Genomes
Eric S. Lander

Whitehead Institute for Biomedical Research
and Massachusetts Institute of Technology

For scientists hunting for the genetic basis of inherited
diseases, the human genome is a vast place to search.
Genetic diseases can involve such subtle alterations as a one-
letter misspelling in 3 billion letters of genetic information.
To make the task feasible, geneticists narrow down genes in
a hierarchical fashion by using various types of maps. Two
of the most important maps—genetic maps and physical
maps—depend intimately on mathematical and statistical
analysis. This chapter describes how the search for disease
genes touches on such diverse topics as the extreme behavior
of Gaussian diffusion processes and the use of combinatonial
algorithms for characterizing graphs.

The human genome is a vast jungle in which to hunt for genes causing

inherited diseases. Even a one-letter error in the 3x10° base pairs of
deoxyribonucleic acid (DNA) inherited from either parent may be sufficient
to cause a disease. Thus, to detect inherited diseases, one must be able to
detect mistakes present at just over 1 part in 10”. The task is sometimes
likened to finding a needle in a haystack, but this analogy actually
understates the problem: the typical 2-gram needle in a 6,000-kilogram
haystack represents a 1,000-fold larger target. In certain respects, the gene
hunter’s task is harder still, because it may be difficult to recognize the target
even if one stumbles upon it.

25
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The human genome is divided into 23 chromosome pairs, consisting of
1 pair of sex chromosomes (XX or XY) and 22 pairs of autosomes. The

number of genes in the 3x10° nucleotides of the human DNA sequence is
uncertain, although a reasonable guess is 50,000 to 100,000, based on the
estimate that a typical gene is about 30,000 nucleotides long. This estimate is

only rough, because genes can vary from 200 base pairs to 2x10° base
pairs in length, and because it is hard to draw a truly random sample.

Although molecular biologists refer to the human genome as if it were
well defined in mathematicians’ terms, it is recognized that, except for
identical twins, no two humans have identical DNA sequences. Two
genomes chosen from the human population are about 99.9 percent identical,
affirming our common heritage as a species. But the 0.1 percent variation
translates into some 3 million sequence differences, pointing to each
individual’s uniqueness. Common sites of sequence variations are called
DNA polymorphisms. Most polymorphisms are thought to be functionally
unimportant variations—arnsing by mutation, having no deleterions
consequences, and increasing (and decreasing) in frequency by stochastic
drft. The presence of considerable DNA polymorphism in the population
has sobering consequences for disease hunting. Even if it were
straightforward to determine the entire DNA sequence of individuals (in fact,
determining a single human sequence is the focus of the entire Human
Genome Praject), one could not find the gene for cystic fibrosis (CF) simply
by compating the sequences of a CF patient and an unaffected person: there
would be too many polymorphisms.

How then does a geneticist find the genes responsible for cystic fibrosis,
diabetes, or heart disease? The answer is to proceed hierarchically. The first
step is to use a technique called genetic mapping to nammow down the
location of the gene to about 1/1,000 of the human genome. The second step
is to use a technique called physical mapping to clone the DNA from this
region and to use molecular biological tools to identify all the genes. The
third step is to identify candidate genes (based on the pattem of gene
expression in different tissues and at different times) and look for functional
sequence differences in the DNA (for example, mutations that introduce stop
codons or that change crucial amino acids in a protein sequence) of affected
patients. This chapter focuses on genetic mapping and physical mapping,
because it tuns out that each intimately involves mathematical analysis.
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GENETIC MAPPING
The Concept of Genetic Maps

Genetic mapping is based on the perhaps counterintuitive notion that it is
possible to find where a gene is without knowing what it is. Specifically, it is
possible to identify the location of an unknown disease-causing gene by
correlating the inheritance pattem of the disease in families with the
inheritance pattern of known genetic markers. To understand the foundation
of genetic mapping, it is useful to return to the work of Gregor Mendel.

Based on his expertments with peas (see Chapter 1), Mendel concluded
that individuals possess two copies, called alleles, of each gene. Mendel’s
Laws of Inheritance are as follows:

«  First Law. For any gene, each parent transmits. one allele chosen at
random to its offspring.

s  Second Law. For any two genes, the alleles transmitted by a parent
are independent (that is, there is no correlation in the alleles
transmitted).

Although Mendel’s First Law has held up well over the past 130 years, the
Second Law turned out to be false in general. Two genes on different
chromosomes show no correlation in their inheritance pattern, but genes on
the same chromosorme typically show correlation.

Consider the backcross in Figure 2.1, showing the inheritance of two
genes A and B on the same chromosome. The F, individual carries one
chromosome with alleles @, and &, at the two genes and another
chromosome with alleles @, and b,. Ofien, one or the other chromosome
1s transmitted completely intact to the offspring. If this always happened,
the inheritance pattern at the two genes would be completely dependent:
a, would always be co-inberited with b5,. But the situation is more
interesting. Crossing over can occur at random points along the
chromosomes, involving an even swap of DNA material. If a crossover
occurs between genes A and B, it ‘results in recombination between the
genes, producing a chromosome carrying a new combination of alleles:
a,b, or a,b, . In fact, multiple crossovers can occur along a chromosome;
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FIGURE 2.1 Schematic drawing of genetic recombination in an F, heterozypote with
distinct alleles at two loci (marked as A and B) on a chromosome. When no
recomnbination occurs between A and B in meiosis, chromosomes carrying the original
pair of alleles result. When recombination occurs, the resulting chromosomes carry a
new combination of alleles.

recombination between two loci will result whenever an odd number of
CrOSSOVers OCCUI.

Genetic mapping is based on the recognition that the recombination
frequency® between two genes (or loci) provides a measure of the distance
between them. If two genes are close together, 8 will be small. If they lie
farther apart, @ will be larger. If the recombination frequency is significantly
less than 0.50, the genes are said to be linked. The first genetic linkage map
(Figure 2.2), showing the location of six genes in the fruit fly Drosophila
melanogaster, was constructed in 1911 by Alfred Sturtevant, when he was
still a sophomore at Columbia University en route to a career as a great
geneticist. Genetic maps were a tnumph of abstract mathematical reasoning:
Sturtevant was able to chart the location of mutations affecting fly
development—even though he understood neither the biochemical basis of
the defects nor even that genes were made of DNA!

The genetic distance 4, ; between two genes A and B (measured in
units called morgans, after the fly geneticist Thomas Hunt Morgan) is

defined as the expected number of crossovers between the genes. If one
assumes that crossovers are distributed independently with respect to one
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FIGURE 2.2 The first genctic map, showing six loci on the Drosophila X chromosome,
was constructed by Alfred Sturtevant in 1911.

another, genetic distance can easily be converted into recombination
frequency. (This assumption of independence is not quite right but is
adequate for many purposes.) For the number of crossovers between genes A
and B will then be Poisson distributed with mean d=d, 5, and so the

probability of an odd number of crossovers can be shown (by summing
alternate terms of the Poisson distribution) to be

e=(1—e‘2”)/2.

This equation, relating recombination frequency to genetic distance, is
known as Haldane’s mapping function. For small distances, the formula
reduces to 6 = d , which reflects the fact that the possibility of more than one
crossover can be neglected. For large distances d, the recombination
frequency® approaches 0.50—that is, independent assortment. Mammalian
chromosomes are typically 1 to 3 morgans in length. Geneticists typically
report distances between genes in centimorgans.

Incidentally, genetic distance between two gemes is not necessarily
proportional to the physical distance measured in nucleotides. Since crossing
over is a biological process catried out by enzymes acting on the
chromosome, the distribution of crossovers need not be (and typically is not)
uniform with respect to the DNA sequence. Accordingly, molecular
geneticists work with two different kinds of maps: genetic maps based on
crossover frequency and physical maps based on nucleotide distances. There
can be considerable inhomogeneity between the maps. although human
geneticists often employ the rough rule of thumb of 1 centimorgan ~ 1
megabase. (The relationship between genetic and physical length varies
among organisms: 1 centimorgan is about 2 megabases in the mouse, about
200 kilobases in the nematode worm Caenorhabditis elegans, and about 3
kilobases in yeast.)
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Genetic mapping is an essential first step in characterizing a new
mutation causing an interesting phenotype (that is, trait). Consider first the
situation of (1) a laboratory organism in which experimental matings can be
set up at will and (2) traits that are monogenic and fully penetrant (that is, the
phenotype is completely determined by the genotype at a single gene). For
example, a Drosophila geneticist might find a dominantly acting mutation at
a locus A causing flies to have an extra set of wings (in fact, such mutations
exist). He would set up crosses with strains camrying different genetic
markers (that is, variants in other genes of known location) in order to find
the regions showing comrelated inheritance. Figure 2.3A shows a backeross
of this type. The gene A is clearly not linked to locus B but is tightly linked
to locus C. The proportion of recombinant chromosomes provides a
straightforward statistical estimator of the recombination frequency. In this
case, the recombination frequency between A and C is about 20/200 = 10
percent. The gene A can be positioned more precisely by using the
three-point cross shown in Figure 2.3B, in which two nearby genetic markers
are segregating. Here, it is clear that A maps about midway between genes C
and D (see figure caption).

For experimental organisms and simple traits, genetic mapping provides
a straightforward way to locate the trait-causing gene to a small interval—
typically about 1 centimorgan or less. In essence, on¢ need only “count
recombinants.” Because the analysis is so easy, Drosophila geneticists rarely
need to appeal to statistical or mathematical concepts. For geneticists
studying human families or complex traits, however, the situation is quite
different.

Challenges of Genetic Mapping:
Human Families and Complex Traits

Medical geneticists studying diseases face two major problems: (1) for
human diseases, one cannot arrange matings at will but rather must
retrospectively interpret existing families; and (2) for both human diseases
and animal models of these diseases, the trait may not be simply related to
the genotype at a single gene. Owing to these complications, genetic
mapping of disease genes often requires sophisticated mathematical analysis.
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The first problem is the inability to arrange matings. To offset this
limitation, human geneticists need to have a huge collection of frequent,
naturally occurring genetic markers so that the inheritance pattern of each
chromosomal region can be followed just as if one had deliberately sct up a
cross incorporating specific genetic markers. Throughout most of the
century, only a small number of such naturally occurring genetic markers
were known (an example is the ABO blood types), and thus human genetic
mapping remained a dormant field. In 1980, David Botstein set off a
revolution by recognizing that naturally occurring DNA polymorphisms in
the human population filled the need (Botstein et al., 1980). By 1994, over
4,000 DNA polymorphisms had been identified and mapped relative to one
another,

Even with a dense genetic map of DNA polymorphisms, human genetic
mapping confronts several special problems of incomplete information:

» For individuals homozygous (g, /a,) at a gene, one cannot
distinguish at this location between the two homologous
chromosomes (that is, the matemnally and paternally inherited
copies of the chromosome).

e For individuals heterozygous (4, /a,) at a gene, one cannot tell
which allele is on the paternal chromosome and which is on the
matemal chromosome unless one can study the individual’s
parents.

¢ Information for deceased individuals (or for those who choose not
to participate in a genetic study) is completely missing from the
pedigree, Because of these uncertainties, one often cannot simply
count recombinants to estimate recombination frequencies.

Another problem is that many traits and diseases do not follow simple
Mendelian rules of inheritance. This problem has several aspects:

s Incomplete penetrance. For some “disease genes,” the probability
that an individual inheriting the discase gene will have the disease
phenotype may be less than 1. This probability is called
the penetrance of the disease genotype. Penetrance may depend
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FIGURE 2.3 Examples of three-point ¢rosses. (A) Locus A is unlinked to locus B but
is linked to locus C at a recombination fraction of 10 percent.
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FIGURE 2.3 (B) Locus A is located between loci C and D, at about 10 percent
recombination fraction from each. The first two types of progeny involve
chromosomes with no recombination; the next four involve a single recombination, and
the last two involve double recombination (between C-A and A-D). The double
recombinant class is always least frequent, a property that allows one 1o determine the
order of three linked loci from a cross in which they are all segregating.

on other unknown genes, age, environmental exposure, or random
chance. For example, a gene called BRCA1 on chromosome 17
predisposes to early onset of breast cancer in some women, but
the penetrance is estimated to be about 60 percent by age 50 and
85 percent by age 80. As a result, one cannot conclude that an
unaffected person has inherited a normal copy of the gene.
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e Phenocopy. Some diseases can be due to nongenetic causes. For
example, colon cancer can be caused by mutations in the APC
gene on human chromosome 5, but most cases of colon cancer
are thought to be nongenetic in origin (and are often attributed
to diet). As a result, one cannot conclude that an affected person
has necessarily inherited the disease genotype.

o  Genetic heterogeneity. Some diseases may be caused by
mutations in any one of several different genes. Thus, a disease
may show linkage to a genetic marker in some families but not
in others.

e Polygenic inheritance. Some diseases may involve the
interaction of mutations at several different genes
simultaneously.

Due to the incomplete inforrnation on natural families and the
uncertainties of complex genetic traits, a human geneticist often cannot
reliably infer an individual’s genotype based on his or her phenotype;
inferences are probabilistic at best. As a result, genetic mapping requires
more sophisticated analytical methods than simply counting recombinants
between a disease gene and nearby markers.

Animal models of human diseases are slightly simpler, inasmuch as
experimental crosses can be amanged. Still, interesting diseases typically
show complex inheritance even in inbred animal strains. For example,
mouse and rat models of diabetes involve incomplete penetrance,
phenocopies, and polygenic inheritance. Sophisticated analytical tools are
thus needed for such genetic mapping as well.

MAXIMUM LIKELTHOOD ESTIMATION

To handle the problem of incomplete information, geneticists have
adopted the statistical approach of maximum likelihood estimation. Briefly
sketched below is the basic formulation (see, e.g., Ott, 1991).

In most cases, a geneticist needs to estimate a parameter &-—for
example, the recombination frequency between a disease gene and a
cenetic marker or the mean increase in blood pressure attributable to a
putative gene at a specific location along the chromosome. The geneticist
would ideally like to have complete genotypic data X—for example, the
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genotype for every family member, including the precise parental
chromosome from which each allele was inherited. Given complete
information, it is usually easy to estimate the required parameters—for
example, the recombination frequency can be estimated by counting
recombinant chromosomes, and the penetrance can be estimated by finding
the proportion of individuals with a disease-predisposing genotype that
manifests the disease. Unfortunately, one typically has only incomplete data
¥ from which 1t is difficult to estimate 6 directly.

The maximum likelihood estimate 6 is the value that makes the
observed data Y most likely to have occurred, that is, the value that
maximizes the likelihood function, L(0): =P(Y]0). Using Bayes
Theorem, one can calculate L(0) by the equation:

L(®): =P(Y18)= Y, P(¥]X)P(X]0),

where the summation is taken over all possible values for the complete data
X. The sum is easy to calculate in theory: it decomposes into various terms
(corresponding to each individual and each genetic interval) that are
conditionally independent, given complete data X.

One can then calculate 0 by numerical maximization methods. To

determine whether 6 is significantly different from a null value 0, (for
example, to see whether an estimated recombination frequency is
significantly less than 50 percent), one examines the likelihood ratio
Z= L(é )/ L(©,) . If Z exceeds some appropriate threshold 7, a statistically
significant effect has been found.

In principle, virtually any genetic problem can be treated by this
approach. In practice, however, two important issues arise: (1) efficient
algorithms and (2) statistical significance.

Efficient Algorithms

cma )

The number of terms in the sum L(0) scales as roughly O(e
where m is the number of people in the family, » is the humber of genetic
markers studied, and ¢ is a constant. Except in the case of the smallest

L
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problems, it is infeasible to enumerate all the terms in the sum. Thus, it is a
challenge even to calculate the likelihood L{8) at a single point, let alone to

find the value® that maximizes the function. Considerable mathematical
attention has been devoted to finding efficient ways to calculate 2(0).

The first breakthrough was due to Elston and Stewart (1971), who
devised an algorithm for computing the sum in a nested fashion from the
youngest generations of a family to the oldest. The algorithm used the fact
that the youngest generation is dependent only on its parents. The nnning

time scales as O(me"), being exponential only in the number of genetic
markers. This algorithm has been a mainstay of genetic calculations but
becomes cumbersome when geneticists wish to employ ever-denser maps
involving more genetic markers.

Subsequently, Lander and Green (1987) developed an alternative
algorithm based on hidden Markov models for nesting the sum according to
the genetic markers used, starting with markers at one end of the map and
working across to the other end. These authors also exploited the
expectation-maximizanon algorithm from statistics (a well-known maximum

likelihood approach) to aid mn the multidimensional search for 6. The

algorithm scales as O(ne®™), being linear in the number of markers
afthough exponential in the number of family members. This algorithm has
proven very useful for constructing dense genetic linkage maps, which
involves studying many markers in families of limited size. But it is not
practical for studying large disease pedigrees.

Recently, mathematical geneticists have explored ways to approximate
L(®) by sampling from the sum. Modem techniques such as Gibbs
sampling and importance sampling have been introduced in the past few
years (Kong, 1991; Kong et al., 1992 a,b; Kong et al., 1993; Thompson and
Wijsman, 1990). These methods exploit the fact that each piece of missing
data depends only on local information in the pedigree: the probability
distribution of the genotype of genetic marker 7 in individual ; depends only
on the genotvpes of nearby markers in nearby individuals. Finding better
ways to compute the likelihood function remains a problem from the
standpoint of genetics and an excellent test bed for new statistical estimation
techniques.
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Statistical Significance

In many genetic situations, one may search for a disease gene by

estimating © at many locations along the genome. When multiple
comparisons are done, the threshold for statistical significance must be
higher than the threshold for a single comparison. But how high should the
threshold be? In principle, looking for the presence of a gene at every
position along a continuous line involves infinitely many tests—although
nearby points are clearly correlated. Surprisingly, the answer to this threshold
question turns out to depend on relatively recent results from the theory of
large deviations of diffusion processes. This idea is elaborated on in the next
section, based on an example from recent work in our laboratory on
susceptibility to colon cancer.

Excursion: Susceptibility to Colon Cancer in Mice and
the Large Deviation Theory of Diffusion Processes

Colon cancer is one of the most prevalent malignancies in Western
societies, with an estimated 145,000 new cases and 60,000 deaths per vear in
the United States alone. Although environmental factors such as diet can
markedly influence the incidence of the disease, genetic factors are known to
play a key role. Some families show striking clusters of colon cancer, with
aggregations far beyond what could be explained by chance alone. Among
such colon cancer families, there is a distinctive subtype called familial
adenomatous polyposis (FAP), which is characterized by the fact that
affected individuals develop a large number of intestinal growths called
polyps that can become tumors. Genetic mapping studies (Bodmer et al.,
1987; Leppert et al., 1987) showed that FAP was genetically linked to a
region on the long arm of human chromosome 5; subsequently, physical
mapping studies led to the isolation of the responsible gene, named APC
(Groden et al., 1991; Kinzler et al., 1991; Nishisho et al., 1991).

One way to study the role of APC in tumorigenesis is to tum to
biochemistry, in an effort to understand the cellular components with
which the protein product interacts. Another way is to twmn back to
genetics for further imsight. One observation about FAP families is that
individuals inheriting precisely the same APC mutation may be affected to
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different degrees. What is the reason for the variability in the manifestation
of the disease? Is it due to environment or to the effects of other genes? If the
latter, then finding such modifying genes could shed light on the process by
which colon cancer develops.

By the usual scientific serendipity, animal studies turned out to hold an
important clue. In 1990, William Dove’s laboratory at the University of
Wisconsin was performing mutagenesis experiments and identified a mouse
that spontaneously developed colon tumors (Moser et al, 1990), The
dominantly acting mutation responsible for the trait was named Min (for
multiple intestinal neoplasta). After considerable genetic mapping and
cloning, Dove and his colleagues showed that Min was in fact a mutation in
the mouse version of the APC gene (Su et al., 1992).

The Min mouse thus provided a model of human colon cancer and, in
particular, a way to look for other genes that might suppress the development
of colon tumors. The Min mutation is usually maintained in a heterozygous
state on a mouse strain called B6, and such B6 Min/+ mice typically develop
about 30 intestinal tumors and die by 3 to 4 months of age. When Dove and
his colleagues crossed this mouse to another mouse strain called AKR, they
got a surprising result: the F, Min/+ progeny developed many fewer colon
tumors. On average, the F, mice developed about six tumors and most did
not die from them. Somehow, the AKR strain must have contributed alleles
at one or more genes that substantially modified the effects of Min. Dove’s
laboratory and our laboratory decided to collaborate to try to map the
modifying genes (Dietrich et al., 1993),

A backcross was arranged in which the F, progeny were mated back to
the more susceptible B6 strain (Figure 2.4). For any modifier locus, 50
percent of the progeny should inherit one copy of the suppressing allele from
the AKR strain (that is, have genotype AB) and 50 percent should be
homozygous for the nonsuppressing allele from B6 (that is, have genotype
BB). Each animal inheriting the Min mutation was scored for its phenotype
by dissecting the intestine and counting the number of tumors and for its
genotype by typing the mice for a dense map of DNA polymorphisms that
had been constructed in our laboratory (Dietrich et al., 1992).

The complete data for animal 7 consists of two parts: phenotype ¢,
and a continuous function g,(x) indicating the genotype—which is either
AB or AB—at each position along the chromosome (Figure 2.5). Actually,
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FIGURE 2.4 Distribution of colon tumeors caused by the Min mutation. Mice from the
B6 strain carrying the genotype Mirv+ develop about 30 tumors on average. When
these mice are crossed to the AKR strain, the resulting F, progeny develop only about 6
tumors. When the F, progeny are crossed back to the B6 strain, the resulting backcross
progeny show a wide distribution in twmor number. (A) Design of cross. (B)
Scatterplot of tumor numbers from different generations in the cross.
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FIGURE2.5 Schematic representation of data for genetic analysis of quantitative traits
in a backeross. Every offspring (i = 1,2,...,n) has a phenotype that is a continuous
variable {; and a genotype at every position in the genome. The genotype g, (x) at
position x has two possible states in a backcross (homozygous or heterozygous,

encoded as 0 or 1 and represented by black or white in the figure). The figure
illustrates the case where the phenotype might depend on two quantitative trait foci

(QTL, and QTL,), according to a linear model¢ = a,g, +a,g, +&, where g is the

genotype at QTL, the 2, are constants, and £ is a normal random variable.

the problem is slightly more complicated because one can only observe the
genotype at the location of the DNA polymorphisms studied. However, for
this discussion, the map can be assumed to be so dense that the data are
essentially continuous. It can also be assumed that the number 7 of progeny
is vety large.

At every position x along the chromosome, the animals can be divided
into two sets according to their genotype:

AB(x) = {animal i | g,(x) = A4}
and BB(x)={animali|g,{x)= BA4}.

If a major modifier gene occurs at location x°, then the animals in
AB(x") should have many fewer tumors than the animals in BB(x"). One
could thus perform a r-test (the usual two sample ¢ statistic based on the
mumber of tumors per animal in the two groups) at every position along the
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chromosome to find a region where the ¢-statistic Z exceeds some critical
threshold 7.

How high a threshold is needed to ensure statistical significance, if one
scans the entire genome? If for a single chromosome there is no modifying
gene along the chromosome, the r-statistic Z(x) at any given point x should
be normally distributed with mean 0. It is thus easy to determine the
appropriate significance level for the single test at x. But we need to know
about the distribution of max Z(x), where the maximum is taken over the
entire chromosome.

This question belongs to the field of Gaussian processes. A family of
variables {Y(x),a <x<b} is called a Gaussian process if for each
n=1.2,... and each x <x,<...<x,, the random variables
Z(x)),Z(x,),...,Z(x,) are jointly normally distributed. A Gaussian process
is specified by its mean W()=E(Z(¢)) and its covariance
C(s,t)y=cov(Z(s5),Z(t)). An important example is the “Omstein-
Uhlenbeck process,” in which u()=0 and C(s,t)=e P, The
Omstein-Chlenbeck process arises naturally in physics, because it describes
the behavior of a particle undergoing Brownian motion trapped in a potential
well. In recent years, Gaussian processes have been a subject of considerable
mathematical interest, and the large deviation theory has been worked out for
many cases, including the Omstein-Uhlenbeck process.

Interestingly, it is not hard to show that the statistic Z(x) in our genetic
example also follows an Omstein-Uhlenbeck process with 3 =2. (The

mean is 0, and the covariance follows essentially from the Haldane mapping
function mentioned above.) Using recent mathematical results (Feingold et
al., 1993; Lander and Botstein, 1989), one can thus show that, for large 7,

P{max _ Z(x)2t}~(C+ 2GrY(1 - ®(1)),

where @ (1) 1s the standard normal cumulative distribution function, C' is the
number of chromosomes, and G is the length of the genome in morgans. In
short, the probability of exceeding threshold r somewhere along a genome of
length G is larger by a factor of about 2Gt” than the probability of
exceeding it at a single point.
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Returning to the problem of colon cancer, we applied this analysis to the
mouse genome, which has C = 20 chromosomes and genetic length G =~ 16.
By genetic mapping, we-found a striking region on mouse chromosome 4 for
which Z = 4.3. The nominal significance level of the statistic 1s

p=17x10". After correcting for searching over an entire genome (by

multiplying by 2G(Z,, . )2 , the significance level is p = 0.01. This suggests
that there is indeed a modifying gene in this region of chromosome 4.

On the strength of this analysis, several additional crosses were arranged
to confirm this result. With more than 300 animals analyzed, the results are

now unambiguous: the corrected significance level is now <107, and it
appears that a single copy of the suppressing form of the gene can decrease
tumor number at least twofold. Expeniments are now under way to clone the
gene, in order to learn its role in reducing colon cancer in genetically
predisposed mice. With luck, it may suggest ways to do the same in humans.

PHYSICAL MAPPING
Assembling Physical Maps by “Fingerprinting” Random Clones

Genetic mapping is only the first step toward positional cloning of a
gene. Once a gene has been determined to lie between two genetic markers,
the geneticist must produce a physical map—consisting of overlapping
clones spanning the chromosomal region between the two flanking markers.
Traditionally, physical maps have been produced by the process of
chromosomal walking: one starts with clone C. containing one of the genetic
markers, uses C, as a probe to find an overlapping clone C,, uses C, as a
probe to find C,, and so on until the region has been spanned (Figure 2.6).
Chromosomal walking is an inherently serial procedure, and each step may
take several weeks (due to the laboratory procedures involved in making and
using a probe).

This tedious process could be eliminated if one simply constructed a
complete physical map of overlapping clones spanning the entire genome.
The idea is more practical than it may seem at first glance. Whereas
chromosomal walking proceeds serially, a physical map of an entire
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Chromosome 3 il ¢

FIGURE 2.6 Schematic diagram illustrating chromosome walking. One starts by
1solating a clone C, containing the initial starting point. C, is then used as a probe to
isolate overlapping clones, such as C,. The process is iterated to obtain successive steps
in the walk. Although at each step one isolates clones extending in either direction,
only those clones extending the walk to the right are shown in the diagram.

genome can be constructed in parallel. The idea is to describe each clone C
by an easily determined fingerprint F(C)}—which can be thought of as a set
of “artributes” of C. If two clones have substantial overlap, their fingerprints
should be similar. Conversely, if two clones have very similar fingerprints,
they are likely to overlap. In principle, one should be able to construct a
physical map by fingerprinting a large collection of clones and using
computer analysis to compare the fingerprints and recognize the overlaps.

The choice of a fingerprinting method depends principally on laboratory
considerations; certain types of clones are more amenable to certain types of
analysis. Given a large collection of random subclones taken from a genome
G, possible fingerprints include the following:

s Complete DNA sequence. For very small genomes such as those
of viruses, it is practical to reassemble the genome from very short
subclones of length ~300 to 500 base pairs. For such short
subclones, the best fingerprint is the complete DNA sequence of
the subclone. It tums out to be relatively easy to sequence such
short subclones in one laboratory step, and the resulting sequence
provides the most complete possible fingerprint of the clone.
Using this information, one can attempt to find the overlaps and
piece together the sequence. In fact, this is a widely used
technique, referred to as “‘shotgun” sequencing (Figure 2.7).
However, the method is effective only for genomes of length
< 100,000 base pairs. For larger genomes (such as the genome of
even the simplest bacterium), it is difficult to analyze
enough subclones to ensure that the entire genome is covered
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Complete DNA sequance

attgatctcctagtctagttogategggatctcaatcacaccctgeatgttacattgecatacgttagecactacgyg

Fragments

attgatctcctagoctagt

tagtcragrragatcggyatataaatcaca
cgatcgggatctcaatcacaco
tctcaatcacacccetgeatgre
argtracartgeatacgtta
tacgttagcattacgg

FIGURE 2.7 Schematic diagram illustrating “shotgun” DNA sequencing assembly. To
obtain the sequence of a larger picce of DNA, one determines the sequence of random
subclones and pisces together the complete pieces based on the overlaps. In practice,
the subclones are considerably larger than those shown (typically 300 to 3500 base
pairs) and the overlaps used in assembling the sequence are much larger.

(see the discussion of the coverage problem below). Moreover, the
ability to reassemble the sequence is stymied by the frequent
occurrence of repeat sequences, which hamper the recognition of
overlaps. Nonetheless, shotgun sequencing of small subclones is
the method of choice for sequencing moderate-sized DNA
fragments.

Restriction map. Larger genomes must be analyzed by studying
larger subclones. Such subclones are typically too large to be
conveniently sequenced. Instead, restriction maps can provide a
useful fingerprint. Restriction maps show the positions of
recognition sites at which particular restriction enzymes cut. For
example, the restriction enzyme EcoRI cleaves at the sequence
GARTTZ. In effect, a restriction map is an ordered list of the
restriction fragments in a clone. To make a restriction map, one can
use the method of partial digestion: one radioactively labels one
end of a clone, adds a restriction enzyme briefly so that only a
random selection of the sites are cut, and measures the lengths of
the resulting fragments (Figure 2.8). Restriction maps can be
efficiently constructed for clones of moderate size (up to about
50,000 base pairs), although the procedure can be tedious and
exacting. If two clones have restriction maps that share several
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consecutive fragments, it is a good bet that they overlap. With this
strategy, Kohara and colleagues (1987) constructed a complete
physical map of the bacterium Escherichia coli with a genome of
4.6 million base pairs using phage clones containing fragments of
about 15,000 base pairs.

Restriction fragment sizes. Rather than constructing an ordered list
of the restriction fragments, one can construct an unordered list.
This tums out to be technically simpler, because one need not
carefully control the rate of cutting as in partial digestion. Clones
can instead be digested to completion and the fragment lengths
measured.  Although the unordered Ilist contains less
information, it can still provide an adequate fingerprint. For

E E E E E

* | L | |
partial digestion

R
* I
*
* |
& |

|

gel electrophoresis for length measurement

FIGURE 2.8 Schematic diagram illustrating restriction mapping of a DNA fragment by
partial digestion. The DNA fragment at the top has several sites (denoted by E) that
can be cleaved by the restriction enzyme EcoRI. A large collection of molecules of this
DNA fragment is radioactively labeled at one end (denoted by a star) and then exposed
briefly to the restriction enzyme. The period of exposure is sufficiently brief that the
enzyme can cleave only about one site per molecule, resulting in a collection of
radioactively labeled fragments terminating at the various E sites. The length of these
fragments (and thus the positions of the E sites) can be determined by gel
electrophoresis of the fragments and subsequent exposure of the gel to x-rav film.
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example, Olson and colleagues (1986) used this approach to
construct a physical map of the yeast Saccharomyces cerevisiae
with a genome of 13 million base pairs.

Content of sequence tagged sites. For very large genomes such as

the human genome with 3 x10° base pairs, it is necessary to work
with large subclones of length >100,000 base pairs. For such
large subclones, a different fingerprinting strategy has gained favor
in recent years. The method is based on sequence tagged sites
(STSs), which are very short unique sequences taken from the
genome which can be easily assayed by the polymerase chain
reaction (PCR). The fingerprint of a clone is the list of STSs
contained within it; the data form an incidence matrix of clones by
STSs (Figure 2.9). Clones containing even a single unique STS
common should overlap. As an aside, the determination of which
clones contain a given STS is typically made using a combinatorial
pool scheme that avoids having to test each STS against each clone
(Green and Olson, 1990). Using this approach, Foote et al. (1992)
and Chumakov et al. (1992) constructed the first complete maps of
human chromosomes (Y and 21, respectively).

Regardless of the experimental details of the fingerprinting scheme,
there are two key mathemnatical issues pertinent to the construction of a
physical map:

1.

Algorithms for map assembly. Given the fingerprinting data, what
algorithm should be used for constructing a physical map? This
question is closely related to graph theory: given information about
adjacency among clones inferred from their fingerprints, one must
reconstruct the underlying geometry of the physical map.

Statistics of coverage. How many clones must be studied to yield a
map covering virtually the entire genome? This question belongs to
probability theory: assuming that subclones are distributed
randomly across the genome, one needs to know the distribution of

gaps—uncovered regions or undetected overlaps —in the map.
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FIGURE 2.9 Schematic diagram illustrating the principle of STS content mapping.
Vartous unique points in the genome, called STSs, are tested against a collection of
random large-insert clones, such as YACs, to determine which STSs are contained in
which YACs. Based on the resulting adjacency matrix, one attempts to reconstruct the
order of the STSs in the genome. “Contigs,” consisting of groups of STSs connected by
YACs, are assembled based on the adjacency data. In the figure, the STSs can be
grouped into two contigs.

Mathematical analysis is thus essential to the design and execution of
physical mapping projects (Arratia et al,, 1991; Lander and Waterman,
1988). This is illustrated in a discussion below of the considerations involved
in making a physical map of the entire human genome.

Excursion: Designing a Strategy to Map the Human Genome

Under the auspices of the Human Genome Project, our laboratory is
engaged in constructing complete physical maps of the mouse and human

genomes, each about 3x10° base pairs in length. The task is daunting,
requiring analysis of tens of thousands of clones, each carrying extremely
large DNA fragments. Before undertaking such a project, it was crucial to
perform careful analysis to identify the best strategy.

Currently, the best clones for making a human physical map are yeast
artificial chromosomes (YACs). A good YAC library might contain inserts
of about 1 million base pairs in length. Even with such large inserts, it would
take 3,000 YACs to cover the human genome if they were laid end-to-end.
Of course, clones taken from an actual library will be arrayed randomly, and
so considerably more clones are required to ensure coverage.

As noted above, the best fingerprint for studying YACs is STS content
mapping. Each STS is screened simultaneously agamnst the entire YAC
library to identify the clones that contain it. Because STSs are screened in
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parallel, it is most efficient to work with a fixed YAC library and to test
STSs sequentially,

For mathematical analysis of physical mapping, the YACs and STSs can
be abstracted to a set J of intervals (which may vary in size) and a set P of
points distributed randomly along a line segment. An interval is said to be
anchored if it contains at least one point p € P. Two anchored intervals 7,
and /., are said to be connected if there is a point p e P contained in their
intersection. Note that two intervals may overlap but fail to be connected. If
we take the transitive closure of the comnectivity relation, the resulting
equivalence classes of anchored intervals are called anchored “contigs.” (For
the purpose of the exposition, a definition is used that differs shghtly from
that in Arratia et al, (1991), in which contigs refer only to equivalence classes
containing at least two intervals.)

The key question is: How many intervals and how many points should
be analyzed to construct a reasonably complete physical map—that is, one in
which the vast majority of the genome 1s contained in a modest number of
large contigs? We define the following notation:

G, the length of the genome in base pairs;

L, the length of a random clone in base pairs, a random variable;

L, the expected length of a random clone, L =E(L);

N, the number of clones to be used;

M, the number of STSs to be used;

a = LN/AG , the expected number of clones covering a random STS; and
b =LM/G , the expected number of STSs contamed in a random clone.

Clone lengths 7. will be assurned to be independent, identically distributed
random variables, with the probability density function of the normalized
length / = L/L. denoted by A/) and the inverse cumulative distribution
function (also called the survival function) denoted F{I) = P(J/L > x). It is
also useful to define the auxiliary function

J(x)= exp{-aT F{ldr},
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which can be interpreted as the probability that two points separated by
distance x are not covered by a common clone.

The problem belongs to the area of coverage problems, which treat
processes of covering a space with random sets of a given sort. Often,
mathematical authors focus on the goal of attaining complete coverage. Such
results are not really appropriate from a biological standpomt—because they
depend sensitively on the distribution of covering sets being absolutely
random, an assumption that is biologically mplausible. Instead, it is more
sensible to focus on central behavior—that is, the goal of covering most of
the space.

STS content mapping poses a slightly unusual coverage problem,
because the definition of coverage involves joining together random intervals
with random points. It is nonetheless possible to analyze many features of
the stochastic process in order to derive many prescriptive results. Arratia
and colleagues (1991) proved the following result, which describes the basic
COVErage propetties:

Proposition: With the notation as above,
(1) the expected number of anchored contigs is Np, , where

P = Jbe_b“J(u)F(u)du )
(2) the expected length of an anchored contig is A E(L) , where
A ={1+ [(b*u— 2b)e™ J(u)du} / ap, , and
0

(3) the expected proportion 7, of the genome not covered by anchored
contigs is

¥y = Jjbze_b(”_v) —_J(u)J(v) dudv .
00 J(u -+ V)
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Figure 2.10, taken from Arratia et al. (1991), plots these functions for the
case of clones of constant size. From these graphs, experimentalists ¢an plan
their experimental approach. For our own physical mapping project in the

human genome, the typical clone size is about 1x 10° base pairs. Based on
the trade-offs between screening more YACs and using more STSs, we
selected a = 6 and » = 3—corresponding to about 18,000 YACs and about
9,000 STSs. This selection should ensure that about 7, =99 percent of the
genome is covered, with about 850 anchored contigs having average length
of about 3.5 megabases.

Having explored the question of experimental design, it is worth briefly
discussing the issues involved in data analysis. The process of STS content
mapping may consurne several person-years of laboratory work, but the final
result will simply consist of a large (18,000 x 9,000) adjacency matrix
A=(g;), with a; =1 or 0 in position i,j according to whether YAC,

contains STS, . Based on this information, how do we determine the correct

order of the STSs in the genome?

In principle, a proposed order of the STSs is consistent with the
observed data if and only if permuting the columns of the adjacency matrix 4
according to this order causes 4 to have the consecutive ones property—that
is, in each row, the ones occur in a single consecutive block. This property
follows from the fact that each YAC should consist of a single connected
interval taken from the genome (see Figure 2.9). The consecutive ones
property has been extensively studied in computer science. Booth and
Leuker (1975) devised an elegant linear-time algorithm for solving the
problem in a very strong sense: Given a (0,1)-matrix 4 with # rows and m
nonzero entries, the algorithm needs a running time of only Ofm+n) to
determine whether there is any column permutation causing the matrix to
have the consecutive ones property and, if so, to produce a simple
representation of all such column permutations.

In practice, there is a serious problem with this approach: it assumes that
the data are absolutely error-free. However, laboratory work is never flawless
and certainly not when the task involves filling in 162 million entries in an
adjacency matrix. If even a few errors are present, the Booth-Leuker
algorithm is almost certain to report that there is no consistent order! In fact,
there are likely to be many errors, including
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» False negatives: one may fail to identify some proportion of the
Y ACs containing an STS;

» False positives: some proportion of the YACs detected as
containing an STS may not actually do so; and

«  Chimeric YACs: some proportion of the YACs may not represent a
single contiguous region, but two unrelated regions that have been
joined together in a single clone.

Moreover, the occurrence of false negatives and positives may not be
random but systematic (owing to deletions of clones or contamination of
samples). In short, algorithms must be robust to errors in the data.
Producing such algorithms is an interesting challenge that draws on
methods from graph theory, operations research, and statistics. As of this
writing, the best approach has not yet been determined.

CONCLUSION

Genetic and physical mapping are key tools for describing the function
and structure of chromosomes. Only in the simplest cases is such mapping
completely devoid of mathematical issues. In the case of human genetics,
mathematics plays a crucial role.

In essence, mapping problems—Iike many problems in computational
biology—involve indirect inference of the structure of a biological entity,
such as a chromosome, based on whatever data can be effectively gathered in
the laboratory. Tt is not surprising that mapping problems draw on statistics,
probability, and combinatorics. Although the field of mapping dates nearly
to the beginning of the 20th century, the area remains rich with new
challenges—because new laboratory methods constantly push back the
frontiers of the maps and features that can be mapped in DNA.
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Chapter 3
Seeing Conserved Signals:
Using Algorithms to Detect Similarities
Between Biosequences

Eugene W. Myers
University of Arizona

The sequence of amino acids in a protein determines its
three-dimensional shape, which in turn confers its function.
Segments of the protein that are critical to its function resist
evolutionary pressures because mutations of such segments
are often lethal to the organism. These critical “active sites”
tend to be conserved over time and so can be found in many
organisms and proteins that have similar function.
Analogously, functionally important segments of an
organism’s DNA tend to be conserved and to recur as
common motifs. Tn this chapter, the author introduces
algorithms for comparing DNA and protein sequences to
reveal similar regions. Particular attention is given to the
problem of searching a large database of catalogued
sequences for regions similar to a newly determined
sequence of unknown function.

Since the advent of deoxymbonucleic acid (DNA) sequencing
technologies in the late 1970s, the amount of data about the protein and
DNA sequence of humans and other organisms has been growing at an
exponential rate, It is estimated that by the tum of the century there will be
terabytes of such biosequence informadon, including DNA sequences of
entire human chromosomes. Databases of these sequences will contain a
wealth of information about the nature of life at the molecular level if we can
decipher their meaning.
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Proteins and DNA sequences are polymers consisting of a chain of
monomers with a common backbone substructure that links them together.
In the case of DNA, there are 4 types of monomers, the nuclectides, each
having a different side chain. For proteins, there are 20 types of monomers,
the amino acids. With just a few exceptions, the sequence of monomers, that
is, the primary structure, of a given protein or DNA strand completely
deterrines the three-dimensional shape of the biopolymer. Because the
function of a molecule is determined by the position of its atoms in space,
this almost perfect correlation between sequence and structure implies that to
know the function of a biopolymer, it in principle suffices to know its
primary sequence.

The primary sequence of a DNA segment is denoted by a string
consisting of the four letters A,C, G, and T. Analogously, the primary
sequence of a protein is denoted by a string consisting of 20 letters of the
alphabet, one for each type of amino acid. In principle, these strings of
symbols encode everything one needs to know about the protein or DNA
strand in question. If the primary sequences of two proteins are similar, then
it is reasonable to conjecture that they perform the same function. Because
DNA'’s principal role is one of encoding information (including all of an
organism’s proteins), the similarity of two segments of DNA suggests that
they code similar things.

Mutation in a DNA or protein sequence is a natural evolutionary
process. Emors in the replication of DNA can cause a change in the
nucleotide at a given position. Less often, a nucleotide 1s deleted or inserted.
If the mutation occurs in a region of DNA that codes for protein, these
changes cause related changes in the primary sequence and, hence, the shape
and activity of the protein. The impact of a particular mutation depends on
the degree to which the original and new amino acid sequences differ in their
physical and chemical properties. Mutations that result in proteins that are 5o
altered that they function improperly or not at all tend to be lethal to the
organism. Nature is biased against mutations in those critical regions central
to a protein’s function and is more lenient toward changes in other regions.

Similarity of DNA sequences is a clue to common evolutionary origin.
If two proteins In two organisms evolved from a common precursor, one
will generally find highly similar segments, reflecting strongly conserved
critical regions. If the proteins are very recemt derivatives, one might
expect to see similarity over the entire length of the sequences. While
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proteins can be similar because of evolution from a common precursor,
similarity of protein sequences can also be a clue to common function
independent of evolutionary considerations. It appears that nature not only
conserves the critical parts of a protein’s conformation and function, but also
reuses such motifs as modular units in fashioning the spectrum of known
proteins. One finds strong similarities between segments of proteins that
have similar functions. A strong similarity between the v-sis oncogene and a
growth-stimulating hormone was the key to discovering that the v-sis
oncogene causes cancer by deregulating cell growth. In that case, the
similarity involved the entirety of the sequence. In other cases, functionally
related proteins are similar only in segments corresponding to active sites or
other functionally critical stretches.

FINDING GLOBAL SIMILARITIES

To illustrate the underlying techniques of sequence comparison, we
begin with a simple, core problem of finding the best alignment between the
entirety of two sequences. Such an alignment 1s called a global alignmenr
because it aligns the entire sequences, as opposed to a local alignment, which
aligns portions of the sequences.

As an example, consider finding the best global alignment of 4 =
ATTACC and B = ATATCG under the following scoring scheme. A letter
aligned with the same letter has a score of 1. A letter aligned with any
different letter or a gap has a score of 0. The total score is the sum of the
scores for the alighment. A matrix depicting this “unit-cost™ scoring scheme
is shown in Figure 3.1. Under this unit-cost scheme, the score of an
alignment is equal to the number of identical aligned characters. The obvious
alignment igi@*gg has a score of 4. However, because gaps are allowed, a
higher score can be achieved, namely, 5, which can be shown to be the
highest score possible. An optimal alignment, that is, an alignment that
achieves this highest score by aligning five symbols, is i? gAAEgE . In some
cases, there is only one, unique optimal alignment, but in general there can

AT-TACG
be many. For example, 7 7.5+ 5 also has ascore of 5.
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The unit-cost scoring scheme of Figure 3.1 is not the only possibie
scheme. Later in this chapter, we will see a much more complex scoring
scheme used in the comparison of proteins (20-letter alphabet). In that
scheme and other sconing schemes, the scores in the table are real numbers
assigned on the basis of various interpretations of empirical evidence. Let us
introduce here a formal framework to assist our thinking.

5| - A C G T
-0 0 0 0 0
A0 1 0 0 0
cl|o 0 1 0 o0
GO0 O O 1 0
T|0 0 0 0 1

FIGURE 3.1 Unit-cost scoring scherne.

Consider comparing sequence A =aa,---a, and sequence
B =4,b,---by , whose symbols range over some alphabet ¥, for example,
¥Y={2,C,G,T} for DNA sequences. Let 8(a,b) be the score for aligning
a with b, let 8(a,~) be the score of leaving symbol a unaligned in sequence
A, and let 8(—,b) be the score of leaving b unaligned in B. Here o and b

range over the symbols in ¥ and the gap symbol “—”. The score of an
alignment is simply the sum of the scores & assigns to each pair of aligned
ATTA-CG .
svmbols, for example, the score of A-TATCC 18
(AR +8(T,—) +8(T,T) +3(A,8) +8(=,T) +8(C,C) + 8(G,G),
which for the scoring scheme of Figure 3.1 equals 5. An optimal alignment
under a given scoring scheme is an alignment that yields the highest sum.

Visualizing Alignments: Edit Graphs

Many investigators have found it illuminating to convert the problem of
finding simitarities into one of finding certain paths in an edir graph.
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Proceeding formally, the edit graph G, 5 for comparing sequences A and B

is an edge-labeled directed graph, as illustrated in Figure 3.2 for the example
mentioned above. The vertices of the graph are arranged in an M +1 by
N +1 rectangular grid or matrix, so that (i, j) designates the vertex in
column i and row j (where the numbenng starts at 0). The following edges,
and only these edges, are in G g

1. If ie[l,M] and ;je[0,N], then there is an A-gap edge

(i-1j)—(i,)) labeled ! whose score is §(a,,—).

2. If ie[0,M] and ;Fe[l,N], then there is a B-gap edge

(i,j—1) = (i, j) labeled p whose scoreis 8(—,b)).
j
3. If ie[l,M] and je [l,N], then there is an alignment edge

" "

(i-1j—1) - (i,j) labeled ;' whose score is §(a;,b;).

The edit graph has the property that paths and alignments between
segments of A and B are in isomorphic correspondence. That is, any path
from vertex (g,n) to vertex (i,j) for g<i and 2<; models an

alignment between the substrings a <y and by iDy,»---b;, and vice

g+1agv2

versa. The alignment modeled by a path is the sequence of aligned pairs

given by labels on its edges. For example, in Figure 3.2 the two highlighted

paths, both from vertex {0,0) to (6.6) comespond to the two optimal global
. ATTA-CG AT-TACG

alignments 3~ 7o o and 3oar” oG -

The Basic Dynamic Programming Algorithm

We now tum. to devising an algorithm, or computational procedure,
for finding the score of an optimal global alignment between sequences A
and B. We focus on computing just the score for the moment, and return to
the goal of delivering an alignment achieving that score at the end of this



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology (1995)
http://www.nap.edu/openbook/0309048869/html/61.html, copyright 1935, 2000 The National Academy of Sciences. all rights reserved

Seeing Conserved Signals 61
j————=
© A T T A c G
RE—TZ_’RT—-K&_—KS_-KE_—T
A 2 & i a2 i a2k i s a5 o a
ké¥3*3¥6¥5¥5¥
j - A - T - T - A - [ - G -
T‘l_‘ T T T T T T T T T T T T
ke%z&s*al&sﬁkey
Ay 2 1 i i1 i i:r i 58 & 5 3
ke%z*z%a%s%ey
T: % : F ;I % & 1% 3
ki%!%f*i*i%?l}
c - % z & c & ¢ & ¢ ¢& c o c
NN NN
Gz & s & : & ¢ & & ¢ s & s
L{‘S_SN_EN_&&_SN_EX
()

FIGURE3.2 G, g for A= 2TTACG and B=2ATATCG.

subsection. First, obsetve that, in terms of the edit graph formulation, we
seck the score of a maximal-score path from the vertex ® at the upper
left-hand comer of the graph G, p to the vertex @ at the lower right-hand
cormner.
Consider computing S(7, 7) , the score of a maximal-score path from @
to some given vertex (7, /) in the graph. Because there are only three edges
directed into vertex (i, j), it follows that any optimal path P to (i, j) must
fit one of the following three cases: (1) P is an optimal path to (i —1,7)
followed by the A-gap edge into (7, 7); (2) P is an optimal path to (i, j— 1)
followed by the B-gap edge into (i, /); or (3) P is an optimal path to
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(i—1,j—1) followed by the alignment edge into (7, ;). It is critical to note
that thg;ubpath preceding the last edge of P must also be optimal, for, if it is
not,"then it is easy to show that P cannot be optimal, a contradiction. This
observation immediately leads to the fundamental recurrence:

S@, jy=max {S(i—1,j-1)+8(a;,b)),
S(i-1,/)+8(a;.-),
S(iaj_1)+5(_5bj)}>

which states that the maximal score of a path to (i, ) is the larger of (1) the
maximal score of a path to (i —1,7) plus the score of the A-gap edge to
(i, ), (2) the maximal score of a path to (7,7 —1) plus the score of the
B-gap edge to (i, j), or (3) the maximal score of a path to (i —1, 7 —1) plus
the score of the alignment edge to (i, j).

All that is needed to have an effective computational procedure based on
this recurrence is to determine an order in which to compute S—values. There
are many possible orders. Three simple alternatives are (1) column by
column from left to right, top to bottom in each column, (2) row by row
from top to bottom, left to right in each row, and (3) antidiagonal by
antidiagonal from the upper left to the lower right, in any order within an
antidiagonal (antidiagonal % consists of the wvertices (/,7) such that
(i + j =k ). Using the first sample ordering leads to the algorithm of Figure
3.3. In this algorithm, M denotes the length of A and N denotes the length of
B.

The algorithm of Figure 3.3 computes S(i, j) for every vertex (i, ) in
an (M +1)x (N +1) matrix in the indicated order of / and j. Along the left
and upper boundaries of the edit graph (that is, vertices with i =0 or j =0,
respectively), the algonthm utilizes the recurrence, except that terms
referencing nonexistent vertices are omitted (that is, in lines 3 and 5,
respectively). The algorithm of Figure 3.3 takes O(MN) time; that is, when
M and N are sufficiently large, the time taken by the algorthm does
not grow faster than the quantity MN. If one stores the whole
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0. wvar$:array [0.. A,0..N] of real

1. S[0,0]«0

2. for j«1toNdo

3 810, /1< 5[0,/ 1] +8(=,b))

4. for i1 toMdo

5 { S[0)e S[i—1,0)+8(a,,-)

6. for j <1 to Ndo

7. S[i, jlemax  {S[i-1,7-1]+8(a;,b,)
Sli-1,/1+68(a;,-),
S, j=1+8(=b,)}

8 !

9. write “Maximum score is” S [M,N].

FIGURE 3.3 The classical dynamic programming algorithm.

(M+1)x(N+1) matrix S, then the algorithm also requires O(MN)
space.

The algorithm of Figure 3.3 is a dynamic programming algorithm that
utilizes the fundamental recurrence. Dynamic programming is a general
computational paradigm of wide applicability (see, for example, Horowitz
and Sahni, 1978). A problem can be solved by dynaric programming if the
final answer can be efficiently determined by computing a tableau of optimal
answers to progressively larger and larger subproblems. The principle of
optimaliry requires that the optimal answer to a given subproblem be
expressible in terms of optimal answers to smaller subproblems. Our basic
sequence comparison problem does yield to this principle: the optimal
answer S(i,j) for the problem of comparing prefix A4 =a,a,...a, and

prefix B, =bb,...b, can be found by computing optimal answers for

smaller prefixes of A and B. The recurrence formula describes the
relationship of each subproblem to a larger subproblem.

The algorithm of Figure 3.3 computes only the score of a
maximum-scoring global alignment between A and B. One or all of these
optirnal alignments can be recovered by tracing the paths backwards from
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@ to © with the aid of the now complete matrix S. Specifically, an edge
from vertex v, to M is on an optimal path if §(v;) plus the score of its edge
equals S(®).If v, is on an optimal path, then, in turn, an edge from v, to
v, is on an optimal path if S(v,) plus the score of the edge equals S(v,). In

this way, one can follow an optimal path back to the start vertex @. In
essence, this fraceback procedure moves backwards from a vertex to the
preceding vertex whose term in the three-way maximum of the recurrence
vielded the maximum. The possibility of ties creates the possibility of more
than a single optimal path. Unfortunately, this traceback technique for
identifying one or more optimal paths requires that the entire matrix .S be
retained. giving an algorithm that takes (O MN) space as well as time.

A more space-efficient approach to delivering an optimal alignment
begins with the observation thar if only the score of an optimal alighment is
desired then only the value of S(M,N) is needed, and so S-values can be
discarded once they have been used in computing the values that depend on
them. Observing that one need only know the previous column in order to
compute the next one, it follows that only two columns need be retained at
any instance, and so only O(N) space is required. Such a score-only
algorithm can be used as a subprocedure in a divide-and-conquer algotithm
that determines an optimal alignment using only O(M + N) space. The
divide step consists of finding the midpoint of an optimal source-to-sink path
by running the score-only algorithm on the first half of B and the reverse of
the second half of B. The conquer step consists of determining the two
halves of this path by recursively reapplying the divide step to the two
halves. Myers and Miller (1988) have shown this strategy to apply to most
comparison algorithms that have linear-space score-only algorithms. This
refinement is very important, since space, not hme, is often the limiting
factor in computing optimal alignments between large sequences. For
example, two sequences of length 100,000 can be compared in several hours
of CPU time, but would require 10 billion units of memory if optimal
alignments were delivered using the simple O(MN) space traceback
approach. This is well beyond the memory capacity of any conventional
machine.



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molec.ular Biolqu (1995)
http://www.nap.edu/openbook/0309048869/htmlies html, copyright 1995, 2000 The National Academy of Sciences. all rights reserved

Seeing Conserved Signals 65

FINDING LOCAL SIMILARITIES

We now turn to the problem of finding local alignments, that is,
subsegments of A and B that align with maximal score. Local alignments
can be visualized as paths in the edit graph, G,p. Unlike the global
alignment problem, the path may start and end at any vertices, not just from
® and ®. Intrinsic to determining local similarities is the requirement that
the scoring scheme & be designed with a negative bias. That 1s, for alignment
of unrelated sequences (under some suitable stochastic model of the
sequences) the score of a path must on the average be negative. If this were
not the case, then longer paths would tend to have higher scores, and one
would generally end up reporting a global alignment between two sequences
as the optimal local alignment. For example, the simple scoring scheme of
Figure 3.1 is not negatively biased, whereas the scheme of Figure 3.4 is.

Note that under this new scheme, the alignment ATTALG

ATATCG
with score 3.34, whereas i? Eﬁx;gg now has lesser score 3. In this case, the

18 now optimal

optimal alignment happened to be global, but for longer sequences this is
generally not the case. For example, the best local alignment between

) . TTGCTGA
T'T'/"H ~ —~ m L L By
GAGGTTGCTGAGAR and ACTCTTCTTCCTZA is the alignment TTCCTTA

of score 4.34 between the underlined substrings,

5 - A C G T

- -1 -1 -1 -1 -1
A -1 1 -33  -33  -33
C -1 =33 . 1 -33 -33
G -1 =33 -33 1 -33
T -1 =33 233 .33 1

FIGURE 3.4 A local-alignments scoring scheme.

The design of scoring schemes that properly weigh alignments to expose
biologically meaningful local similarities is the subject of much
investigation. The score of alignments between protein sequences is the sum
of scores assigned to individual pairs of aligned symbols, just as for
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DNA. However, since proteins are represented by combinations of 20 letters
and the gap symbol, the table of scores is now 21x 21. These scores may be
chosen by users to fit the notion of similarity they have in mind for the
companison. For example, Dayhoff et al. (1983) compiled statistics on the
frequency with which one amino acid would mutate into another over a fixed
period of time and from these built a table of aligned symbol scores
consisting of the logarithm of the normalized frequencies. Under DayhofT’s
scoring scheme, the score of an alignment is a coarse estimate of the
likelihood that one segment has mutated into the other. Figure 3.5 is a scaled
integer approximation of Dayhoff's matrix that is much used in practice
today.

The basic issue in local alignment, just as in the case of global
alignment, is to find a path of maximal score. However, there are more
degrees of freedom in the local alignment problem: where the paths
begin and where they end is not given a priori but is part of the problem.
Note that if we knew the vertex (g,4) at which the best path began, we

could find its score and end-vertex by setting S(g,k) to 0 and then
applying the fundamental recurrence to all vertices (i, ;) for which iz g
and j = h. We can capture a// potential start vertices simultaneously by

modifying the central recurrence so that 0 is a term in the computation of
the maximum; that is,

SG,/)={0.5( ~ 1.7~ 1) +8(a,.b,).
S(i=1,7)+8(a,-),
S, j=1)+8(=5))}.

Indeed, with this simple modification, §(z,7) is now the score of the
highest-scoring path to (Z,7) that begins at some vertex (g,h) for which
g<i and A< j. The best score of a path in the edit graph is then the
maximum over all vertices in the graph of their S-values. A vertex
achieving this maximum is the end of an optimal path. This basic result is
often referred to as the Smith-Waterman algorithm after its inventors
(Smith and Waterman, 1981). The beginning of the path, the segments it
aligns, and the alignment between these segments can all be delivered in
linear space by further extensions of the treatment given above for global
alignments. If one uses such a comparison algorithm with the scoring
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scheme of Figure 3.5, one sees the three regions of similarity shown in
Figure 3.6 between the sequence of the monkey somatotropin protein and the
somatotropin precursor protem of a rainbow trout. Note that while in many
cases the aligned symbols are identical, they do not have to be.

Thus far we have presented the local similarity problem as one of
finding two subsegments of the sequences that align with maximal score.
But as illustrated in Figure 3.6. the ultimate goal is to expose not a single
such alignment, but all the significantly conserved segments, ideally
nonoverlapping as in the somatotropin example of Figure 3.5. To this end,
Waterman and Eggert (1987) proposed the following simple algorithm. Find
a highest-scoring local alignment by the method indicated in the previous
paragraph. Eliminate every edge in the edit graph that is adjacent to a vertex
on the path of this local alignment. Now find a highest-scoring path over the
remaining graph. Eliminate the edges adjacentto this second-best path, and
proceed to find a third-best path, and so on. In this way, one produces a
series of local alignments of decreasing score whose underlying paths do not
intersect. Note that this procedure may generate local alignments whose
substrings overlap. Nonetheless, this procedure 1s very effective in
identifying the biologically relevant local homologies between two
sequences. As originally presented, the algorithm requires O(MN) space,
but recent refinements by Chao and Miller (1994) have reduced both storage
and computing time and have permitted the comparison of two sequences of
length 100,000 on a conventional workstation in several hours.

The output of such a problem could be displayed as a sequence of
alignments, as in Figure 3.6. It is also convenient and illuminating to
depict all the alignments as paths in an edit graph, as in Figure 3.2.
However, as the sequences become larger and larger, one must “step back™
from the details of the edit graph. Figure 3.7 is a depiction of the edit
graph of the monkey and rainbow trout somatotropin sequences of Figure
3.6 where only the paths comresponding to the three aligned segment pairs
are drawn. At this level of resolution, the small gaps in the alignments of
the second and third segment pairs appear as small discontinuities in paths
that otherwise follow the direction of the diagonal of the edit graph grid or
matrix. When the sequences become very large, say on the order of
100,000 nucleotides, then small local alignments are not seen, and neither
are gaps in large alignments unless they are very large. Nonetheless, such



gy (1995)

2000 The National Academy of Sciences. all rights reserved

Galculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biolo

http://www.nap.edu/openbook/0309048869/html/69.html,

copyright 1995

‘surooad wdanojeuros om) Jo suoidas paalasuo) 9°¢ UL

L6T x ¥ ¥ » 0GL UOTITSOd
DNYHTS I OMYALTALIA AW MIMIDY T 'S ANYYANITOOTMOALND & SANOLUL],
DSOHEAS-ADNOATHTALTI MUNATIIDXTTIOANN L' LYAANT IS NLAANS X $ AD U0

68T ¥ > ¥ * kL TUuoT31504

G1] = 2100%

GET X ¥

¥ x * ¥ ¥ ¥ 85 SUOTYLSOJ
DADSOLITINIDANTASTIAS TON-YNYARTSNS T T-—TIOSTAAMS AT THAS H 1IN TAS SHOLHHENUAIS AT SASND U P3noay,
HUATIOWTIOIDE A LAATTARAASAS IO AN IS NV AASHTADAILH IMSOTTTIS T TG INSMOOLATINSdLJ I STSIDTS TADNUOW
TeETx ¥ x * 3 ¥ s 3 TG U013 TSod
€01 = 8J0DS

6 x % ¥ 0T :uUoT3Tsod

MAHULTTLOATANILACY L TH THOANS AV INI TIONATVS $IN0ag,

MO IAY A TATOAT AV IOH LHH YT TWYN A 1S LI T LT FAsyuor

Li= ¥ * ¥ ¢ UOT3TSOd

69 = 2I00%



Calculating the Secrets of Life: Cantributions of the Mathematical Sciences to Malecular Biology (1995)
http://www.nap.edu/openbook/0309048869/htmli70.html, copyright 1995, 2000 The National Academy of Scignces. all rights reserved

70 CALCULATING THE SECRETS OF LIFE

dot plots give a meaningful visualization of all the similarities between
segments in a single snapshot and are ubiquitous.

VARIATIONS ON SEQUENCE COMPARISON

In this section a number of the most important variations on sequence
comiparison are examined, The survey is by no means exhaustive.

Variations in Gap Cost Penalties

How to assign scores to alignment gaps has always been more
problematic than scoring aligned symbols, because the statistical effect
of gaps is not well understood (see Chapter 4). Nature frequently deletes or
inserts entire substrings as a unit, as opposed to individual polymer

MONKEY

51 189

- c o & -

19Tlmmm e g m e e e e e

FIGURE 3.7 Dot plot of somatotropin alignments.
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elements. It is thus natural to think of cost models in which the score of a gap
is not just the sum of scores assigned to the individual symbols in the gap, as
was used in the previous two sections, but rather a more general function,
gap(x), of its length x. For example, it is common to score a gap according to
the affine function gap(x)=r+sx, where r>0 is the penalty for the
mtroduction of the gap and s> 0 is the penalty for each symbol in the gap.
Such affine gap costs are particularly important when comparing proteins.
For example, a gap penalty of 8 +4x works well in conjunction with the
aligned symbol scores of Figure 3.5. Because a gap is viewed as detracting
from similarity, its score is a penalty that is subtracted from the total.
Accommodaring affine gap scores involves the following variation on

the central recurrence (Gotoh, 1982). For each subproblem, A, versus B,

one develops recurrences for (1) the best alignment that ends with an A-gap,

Ag(i,)), (2) the best alignment that ends with a B-gap, Bz(i,j), and (3)
the best overall alignment, S(i, j). This leads to the following system of
recurrence equations:

Ag(i, ) = max{dg(i—1j)}-55(0-1Lj)-(r+9)}
Bg(lsj) :max{Bg(i,j—1)—S,S(z',j—1)—(r+s)}
S.7) =max{S(i-1j-1)+8(a;,b;), Ag(i. /). B, ))} -

S terms contributing to an Ag or Bg value are penalized » +s because a gap
is being initiated from that term. Ag terms contributing to Ag values and Bg
terms contributing to Bg values are penalized only s because the gap is just
being extended. An algorithm that applies these recurrences at each (7, )
leads to an O(MN) time algorithm for global alignments with affine gap
costs. Simply adding a 0 term to the S-recurrence gives an algorithm for local
alignments with affine gap costs.

Summation and affine functions are not the only options available for
scoring gaps. The gap cost function gap(x) can be taken to be a concave (flat
or cupped downward) function of length, that is, a function such that
gap(x+1)— gap(x) < gap(x)— gap(x—1) for all x>0. The class of
concave gap cost functions includes affine functions but is much wider than
just affine functions. For example, for positive a and b, the function
gap(x)=alogx+b is a concave function that finds occasional use in
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sequence comparison. It has been postulated that such a model is natural for
biological sequences where gap costs would be expected to have a
decreasing marginal penalty as a function of length. For this model,
investigators have been able w0 design algorithms that take
O(MN (log N +log M)) time or less (Miller and Myers, 1988; Eppstein et
al., 1989).

It is also possible to design an algorithm for completely arbitrary gap
cost functions. However, such generality comes at a price: the best available
algorithm takes O(MN(M + N)) time (Waterman et al., 1976). For this
reason and because the more restricted affine and concave models appear
adequate to most needs, the general algorithm is rarely used.

The Duality Between Similarity and Difference Measures

Thus far we have considered the comparison problem to be one of
exposing the similarity between two sequences and thus bave naturally
thought in terms of maximizing the score of alignments. Another natural
perspective is to think about how a sequence A may have evolved into
sequence B over time. In this context, one seeks alignments that reveal the
minimum number of mutational events that might have effected the
transformation. In this view, an aligned symbol of B is substituted for its
counterpart in A, an unaligned symbol in A is delefed, and an unaligned
symbol in B is inserted. For example, in the alignment i??ﬁ&gg , the first
T in ATTACG is deleted, and the second T in ATATCG is inserted. In the
alignment igi@gg, T is mutated into A, and A is mutated into T. As
before, the scoring scheme & assigns a score to each evolutionary event
modeled by a column, but now the interpretation is that § represents the
differences rather than the similarities between symbols. Note that for formal
purposes it is assumed that an A mutates into an A in the alignments above at

no cost; that i, one chooses 6(A,2) to be 0.

Given a scoring scheme & reflecting an evolutionary or difference-based
model, the goal is to find an alignment of minimal score, that is, one that
indicates the minimum-scoring set of changes needed to go from one
sequence to a related sequence. Let D(A,B) be the score of a minimal
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cost alignment between sequences A and B. In honor of its inventor, thig
score is formally known as the generalized Levenshtein measure or distance
between sequences A and B. Indeed the measure, [, between sequences
forms a metric space over sequences if the underlying scoring function &
forms a metric space over the underlying alphabet. Thus calling this measure
a distance is formally correct for a wide class of scoring schemes 4.

Immediately note that the distance and similarity perspectives are
complementary. To solve a difference problem, we need only revise our
previous discussions by replacing maximum with minimum in every sentence
and formula. Also, one could simply take a & for a difference problem and
multiply every score by —1. Applying the similarity algorithm with the
modified scores would produce optimal alignments for the original
difference problem, and multiplying the resultant similarity score by —1
would give the distance between the two sequences.

Aligning More Than Two Sequences at a Time

Molecular biologists are frequently interested in comparing more than
two sequences simultaneously. For instance, given a number of sequences of
the same functionality, it is much more likely that the similarity that gives
this common function will be more evident among the group than among
two sequences from the group. A closely related problem is to discover the
evolutionary relationships between a set of sequences by constructing an
evolutionary tree, or phylogeny, that minimizes the evolutionary changes that
must have taken place along each branch of the tree. A third application for
aligning a collection of sequences is to correct errors in the “raw”
experimental data obtained in DNA sequencing experiments. Typically, 1 to
10 percent of the symbols in a sequenced fragment are incorrect, missing, or
spurious. These errors are detected and corrected by sequencing a given
stretch several times and then forming a comsensus by aligning the
sequences. Figure 3.8 illustrates a multi-aligmment of such sequence data.
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CTCGCE-CACAT-AGGGCG-GBTC~CCEASA-3A-TAGSCAAGLC
CTCGCEGCACATTCGSGCG-GTCTCEAGATGACTAGCC-AECC
CTCGCGGCA-ATTCEEGCE=-GTCTCCASA-SACTAGGCAAGLC
CTCICGTCACATTCGIGCSIGTCTCCAGA-GACTASGCAAGLC
CTCGCGE-ACATTCEEGEG-GT-TCG-3A-3ACTAGGCARGIC

CTCGCEGCACATTCGEGCG GTCTCGAGR GACTAGECAAGCC«“consensus”

FIGURE 3.8 A multi-alignment of five DNA sequences.

Suppose we wish to align K sequences A' A’ A" where
is of length N'. As for the basic problem, we wish to

Al = a;a;---afvi
arrange the sequences into a tableau using dashes to force the alignment of
certain characters in given c¢olumns, For example, in Figure 3.8 the dashes
are placed so as to ammange columns consisting of primarily one symbol. For
each column, the consensus of the column is the symbol that occurs the
greatest number of times in that column. Concatenating these consensus
characters together, ignoring dashes, gives the consensus sequence for the
five experimental trials. As for pairwise alignments, each columm of X
symbols of the multi-alignment is scored according to a user-supplied
function &. For example, if & is the number of symbols in the column not
equal to the majority symbol of the column (which can be a dash), then the
multi-alignment of Figure 3.8 has score 13, and this is the minimum possible
score over all possible multi-alignments of the five sequences.

The problem of finding a maximum (minimum)-scoring alignment
among X sequences can be solved by extending the dynamic programming
recurrence for the basic problem from a recurrence over a two-dimensional
matrix to a recurrence over a K-dimensional matrix. Let i= (i|,i,,...,i, ) be
a vector in K-dimensional Cartesian space. Now we compute a

K-dimensional array S, where S(i) is the score of the best alignment among
the prefix sequences A}l ,A,.z2 sree ,Ai’f( . The central recurrence now becomes

S(i) = max{S(i—e) + 8(e:a,,...,ep:a; ) e € {01} —(0,0,...,0)},

& 1y

where e:a means “if ¢ = 1 then a else
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In terms of an edit graph model, imagine a grid of vertices in K-dimensional
space where each vertex i has 2 —1 edges directed into it, each
corresponding to a column that when appended to the alignment for the
edge’s tail gives rise to the alignment for the prefix sequences represented by
i. Computing the .S values in some topological ordering requires a total of
O(N®) time, where N =max, N'. While multiple sequence comparison
algonithms of this genre are conceptually straightforward, they take an
exponential amount of time in K and are thus generally impractical for
K>3,

Multiple sequence comparison has been shown to be NP-complete
{Garey and Johnson, 1979), which means that it is almost surely the case that
any algorithm for this problem must exhibit time behavior that is exponential
in K. Thus many authors have sought heuristic approximations, the most
popular of which is to take O(K°N*) time to compute all pairwise optimal
alignments between the X sequences, and then produce a multiple sequence
alignment by merging these pairwise alignments. Note that any multiple
sequence alignment induces an alignment between a given pair of sequences
{take the two rows of the tableau and remove any columns consisting of just
dashes). However, given all of the possible K(K—1)/2 pairwise
alignments between K sequences, it is almost always impossible to arrange a
multi-ahignment consistent with them all. Try, for example, merging the best
pairwise alignments among ACG, CGA, and GAC. But, given any K -1
alignments relating all the sequences (that is, a spanning tree of the complete
graph of sequence pairs), it is always possible to do so. Feng and Doolittle
(1987) compare a number of methods based on this approach. The most
recent algorithms utilize the natural choice of the K—1 alignments whose
scores sum to the minimal possible amount (that is, a minimum spanning
tree of the complete graph of sequence pairs). However, such merges do not
always lead to optimal alignments, as is illustrated by the following example:

G—=CACA G ——-CACA G—-CACA
GGCA—A and GG—CAA vield GG—CA — A, but GGCA—-A ig better,
GGACA— GGACA —— GG—ACA



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology (1995)
http://www.nap.edu/openbook/0300048869/html/ 76 html, copyright 1995, 2000 The National Academy of Sciences. all rights reserved

76 CALCULATING THE SECRETS OF LIFE

While the choice of & for a multi-alignment scoring scheme is
conceptually a function of K arguments, it is often the case that & is
effectively defined in terms of an underlying pairwise scoring function 8 .
For  example, the  sum-of-pairs score is  defined  as
8(ay.ay,...,a5)=2.8"(a;,a,), where one must let §(--)=0. In

<)
essence, the sum-of-pairs multi-alighment score is the sum of the scores of
the K(K —1)/2 pairwise alignments it induces. Another common scheme

is the consensus score, which defines B(al,az,...,a,() as
max/min{y, 8’(c,a;):ce¥w{-}}. The symbol ¢ that gives the best

score 1s said to be the consensus symbol for the column, and the
concatenation of these symbols is the consensus sequence. In effect, the
congensus multi-alignment score is the sum of the scores of the K pairwise
alignments of the sequences versus the consensus. The example of Figure
3.8 is such a scoring scheme where &7 is the scoring scheme of Figure 3.1.
While we do not show it here, the problem of determining minimal
phylogenies mentioned at the start of this subsection can also be modeled as
an instance of a multiple sequence alignment problem by choosing a & for
columns that suitably encodes the tree relating the sequences (Sankoff,
1975). However, the more general phylogeny problem requires that one also
determine the tree that produces the minimal score. This daunting task
essentially requires the exploration of the space of all possible trees with X
vertices. So in practice, evolutionary biologists have put a great deal of effort
into designing heuristic algorithms for the phylogeny problem, and there is
much debate about which of these is best.

K-Best Alignments

The alignment algoritm in the section “The Basic Dynamic
Programming Algorithm” above reports an optimal alignment that is clearly
a function of the choice of scoring scheme. Unfortunately, biologists have
not yet ascertained which scoring schemes are “correct” for a given
comparison domain. This uncertainty has suggested the problem of listing all
alignments near the optimum in the hope of generating the biologically
correct alignment.
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From the point of view of the edit graph formulation, the K-best problem
is to deliver the K-best shortest source-to-sink paths, a problem much studied
in the operations research literature. Indeed, there is an O(MN + KN) time
and space algortthm, immediately available from this literature (Fox, 1973),
that delivers the K-best paths over an edit graph. The algorithm delivers these
paths/alignments in order of score, and K does not need to be known a prior:
the next best alignment is available in O(N) time. The essential idea of the
algorithm is to keep, at each vertex v, an ordered list of the score of the next
best path to the sink through each edge out of v. The next best path is
traceable using these ordered lists and is extracted, and the lists are
approptiately updated.

If all one desires is an enumeration, not necessarily in order of score, of
all alignments that are within £ of the optimal difference D(A.B), then a
simpler method is available that requires only the matrix S of the dynamic
programming computation. While not any faster in time, the simpler
alternative below does require only O(MN) space. One can imagine tracing
back all paths from the sink to the source in a recursive fashion. The essential
idea of the algorithm is to limit the traceback to only those paths of score not
greater than D(A,B)+¢ . Suppose one reaches vertex (i, ) and the score

of the path thus far traversed from the sink to this vertex is 7(7, j) . Then one
traces back to predecessor vertices (1 —1,7), ¢(—1,j—-1,and (Z,j—1) if
and only if:

S(i =1, ))+8(a,~)+T(, j) < D(A,B) +¢,
SG—1,j-1)+3(a;.b))+T(i,j) < D(A,B) +e,
S, j=1)+d(=b,) +T(i, /)< D(A,B) +¢,

respectively. This procedure 18 very simple, space economical, and quite
fast,

A classic example of the need for affine gap costs was presented in a
paper by Smith and Fitch (1983) comparing the o and B chicken
hemoglobin chains. For a setting of the gap costs that gave the
biologically correct alighment, there were 17 optimal alignments, 1,317
alignments within 5 percent of the optimum, and 20,137,655 within 20
percent of the optimum. This kind of exponential growth suggests that
perhaps rather than list alignments, one should report the best possible
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scores in order or give a color-coded visualization of the edit graph that
colors edges according to the score of the best path utilizing the edge.
Another interesting variation is to explore the range of solutions not by
enurnerating near-optimal answers, but by studying the range of optimal
answers produced by parametrically varying aspects of the underlying
scoring scheme (Waterman et al., 1992),

Approximate Pattern Matching

A variation on the local alignments problem discussed above is the
approximate match problem. For this problem, imagine that A is a very long
sequence and B a comparatively short query sequence. The problem is to
find substrings of A, called match sites, that align with the entirety of B with
a score greater than some user-specified threshold. An example might be to
find all locations in a chromosome’s DNA sequence (A) where a particular
DNA sequence clement (B) or some sequence like it occurs. It is not hard to
see that this problem is equivalent to finding sufficiently high scoring paths
that begin at a vertex in row 0 and end at row N of the edit graph for A and
B. By simply permitting 0 to be a term in the computation of S-values in row
0 and checking values in row NN, one obtains the desired modification of the
basic dynamic programming algorithm.

The problem is taken to another level by generalizing B, the query, from
a sequence to a pattern (that describes a set of sequences). This variation is
called approximate pattern matching. Computer scientists working on
text-searching applications have long studied the problem of finding
exact matches to a pattern in a long text. That is, given a pattern as
a query, and a text as a database, one seeks substrings of the database text
that match the pattem (exactly). Pattern types that have been much studied
include the cases of a simple sequence, a regular expression, and a
context-free language. Such pattems are notations that denote a
possibly infinite set of sequences, each of which is said to (exactly) match
the pattem. For example, the regular expression A(T|C)G * denotes the set
of sequences that start with an A followed by a T or a C and then zero or
more G’s, that is, the set {AT,AC,ATG,ACG,ATGG, ACGG,ATGGEE,...}.
Assuming the pattern takes P symbols to specify and the text is of length
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N, there are algorithms that solve the text searching problem in O(2+ N),

O(PN), and QO(PN ®) time, depending on whether the pattem is a simple
sequence, a regular expression, or context-free language, respectively. Fusing
the concept of exact pattern matching and sequence comparison gives rise to
the class of approximate pattemn matching problems. Given a pattern, a
database, a scoring scheme, and a threshold, one secks all substrings of the
database that align to some sequence denoted by the pattern with score better
than the threshold. In essence, one is looking for substrings that are within a
given similarity neighborhood of an exact match to the pattern. Within this
framework, the sirnilarity search problem is an approximate pattern matching
problem where the pattem 1s a simple sequence. We showed earlier that this
problem can be solved in G( PN) time. For the case of regular expressions,

the approximate match problem can also be solved in O(PN) time (Myers

and Miller, 1989), and, for context-free languages, an O(PNB) algorithm is
kmown (Myers, 1994a). While the cost of searching for approximate matches
to context-free languages is prohibitive, searching for approximate matches
to regular expressions is well within reason and finds applications in
searching for matches to structural patterns that occur in proteins.

Parallel Computing

The basic problem of comparing sequences has resisted better than
quadratic, O(MN) time algorithms. This has led several investigators to
study the use of parallel computers to achieve greater efficiency. As stated
above, the S-matrix can be computed in any order consistent with the data
dependencies of the fundamental recurrence. One naturally thinks of a
row-by-row or column-by-column evaluation, but we pointed out as a
third alternative that one could proceed in order of antidiagonals. Let
antidiagonal % be the set of entries {(7,/) i+ /j=4x}. Note that to
compute antidiagonal 4 one only needs antidiagonals k—1 and £-2.
The critical observation for parallel processing is that each entry in this
antidiagonal can be computed independently of the other entres in the
antidiagonal, a fact not true of the row-by-row and column-by-column
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evaluation procedures. For large SIMD (single-instruction, multiple-data)
machines, a processor can be assigned to each entry in a fixed antidiagonal
and compute its result independently of the others. With OQ(M) processors,
¢ach antidiagonal can be computed in constant time, for a total of O(N)
total elapsed time. Note that total work, which is the product of processors
and time per processor, 18 still O(MN). The improvement in time stems
from the use of more processors, not from an intrinsically more efficient
algorithm,

This observation about antidiagonals has been used to design custom
VLST (very large scale integration) chips configured in what is called a
systolic array. The “array” consists of a vector of processors, each of which
18 identical, performs a dedicated computation, and communicates only with
its left and right neighbors, making it easy to lay out physically on a silicon
wafer. For sequence comparisons, processor i computes the entries for row 7
and contains three registers that we will call L(Z), V (i), and U{(i). At the
completion of the & th step, the processors contain antidiagonals £ and & —1
in their L and ¥ registers. respectively, and the characters of B flow through
their U registers. That is, L(i), =S@,k—i=-1), V({), =S80,k -7), and
U(i), =b,_;, where X (i), denotes the value of register X at the end of the
k th step. It follows from the basic recurrence for S-values that the following
recurrences correctly express the values of the registers at the end of step
k +1 interms of their values at the end of step &:

U@, = Uai-1,,

L(i)k+1 = V(i)k’

V@), =max{Li-1) +38(a.Ui-1)),
V- 1)1_ -+—5(ai ),
V@), +8(=UG-1),)}.

These recurrences reveal that to accomplish step & +1, processor i—1
must pass 1ts register values to processor i and each processor must have
just enough hardware to perform three additions and a three-term
maximum. Moreover, each processor must have a (2]'W|+1) -element
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memory that can be loaded with the scores for &(a;,?), &(—,7), and
d(a;,—) where ? is any symbol in the underlying alphabet ¥. The beauty of
the systolic array is that it can perform comparisons of A against a stream of
B sequences, processing each symbol of the target sequences i constant
tirne per symbol. With current technology, chips of this kind operate at rates
of 3 million to 4 million symbols per second. A systolic array of 1,000 of
these simple processors computes an aggregate of 3 billion to 4 billion
dynamic programming entries per second.

COMPARING ONE SEQUENCE AGAINST A DATABASE

The current GENBANK database (Benson et al., 1993) of DNA
sequernces contains approximately 191 million nucleotides of sequence in
about 183,000 sequence entries, and the PIR database (Barker et al., 1993) of
protein sequences contains about 21 million amino acids of data in about
71,000 protein entries. Whenever a new DNA or protein sequence is
produced in a laboratory, it is now routine practice to search these databases
to see if the new sequence shares any similarities with existing entries, In the
event that the new sequence is of unknown function, an interesting global or
local similarity to an already-studied sequence may suggest possible
functions. Thousands of such searches are performed every day.

In the case of protein databases, each entry is for a protein between 100
and 1,500 amino acids long, the average length being about 300. The entries
in DNA databases have tended to be for segments of an organism’s DNA
that are of interest, such as stretches that code for proteins. These segments
vary in length from 100 to 10,000 nucleotides. The limited length here is not
intrinsic to the object as in the case of proteins, but because of limitations in
the technology and the cost of obtaining long DNA sequences. In the early
1980s the longest consecutive stretches being sequenced were up to 5,000
nucleotides long. Today the sequences of some viruses of length 50,000 to
100,000 have been determined. Ultimately, what we will have is the entire
sequence of DNA in a chromosome (100 million to 10 billion nucleotides),
and entries in the database will simply be annotations describing interesting
parts of these massive sequences.
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A similarity search of a database takes a relatively short query sequence
of a protein or DNA. fragment and searches every entry in the database for
evidence of smmilarity with the query. In protein databases, the query
sequence and the entries in the database are typically of similar sizes. In
DNA databases, the entries are typically much longer than the query
sequence, and one is looking for subsegments of the entry that match the

query.

Heuristic Algorithms

The problem of searching for protein similarities efficiently has led
many investigators to abandon dynamic programming algorithms (for which
the size of the problem has become too large) and instead consider designing
very fast heuristic procedures: simple, often ad hoc, computational
procedures that produce answers that are “nearly” correct with respect to a
formally stated optimization criterion. One of the most popular database
searching tools of this genre is FASTA (Lipman and Pearson, 1985).
FASTA looks for entries that share a significant number of short identical
subsequences of symbols with the query sequence. Any entry meeting this
criterion is then compared via dynamic programming with the query
sequence. In this way, the vast majority of entries are eliminated from
consideration quickly. FASTA reports most of the alignments that would be
identified by an equivalent dynamic programming calculation, but it misses
some matches and also reports some spurious matches. On the other hand,
FASTA is very fast.

A more recently developed heuristic algorithm is BLASTA (Altschul et
al.,, 1990). BLASTA is faster than FASTA but is capable of detecting
biologically meaningful similarities with accuracy comparable to that of
FASTA. Given a query A and an entry B, BLASTA searches for segment
pairs of high score. A segment pair is a substring from A and a substring
from B of equal length, and the score of the pair is that of the no-gap
alignment between them. One can argue that the presence of a
high-scoring segment pair or pairs is evidence of fumctional similarity
between proteins, because insertion and deletion events tend to
significantly change the shape of a protein and hence its function. Notwe
that segment pairs embody a local similarity concept. What is particularly
usefil is that there is a formula for the probability that two sequences have
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a segment pair above a certain score. Thus BLASTA can give an assessment
of the statistical significance of any match that it reports. For a given
threshold, 7, BLASTA retuims to the user all database entries that have a
segment pair with the query of score greater than 7 ranked according to
probability. BLASTA may miss some such matches, although in practice it
misses very few.

The central idea used m BLASTA is the notion of a neighborhood. The
r-neighborhood of a sequence S 15 the set of all sequences that align with S
with score better than r. In the case of BLASTA, the #-neighborhood of S is
exactly those sequences of equal length that form a segment pair of score
higher than ¢ under the Dayhoff scoring scheme (see Figure 3.5). This
concept suggests a simple strategy for finding all entries that have segment
pairs of length £ and score greater than ¢ with the query: generate the set of
all sequences that are in the #-neighborhood of some A-substring of the query
and see if an entry containg one of these strings, Scanning for an exact match
to one of the strings in the neighborhood can be performed very efficiently:
on the order of 0.5 million characters per second on a 20 SPECint computer.
Unfortunately, for the general problem, the length of the segment pair is not
known in advance, and even more devastating is the fact that the number of
sequences in a neighborhood grows exponentially in both & and 7, rendering
it impractical for reasonable values of 7 To circumvent this difficulty,
BLASTA uses the fast scanning strategy above to find short segment pairs of
length £ above a score 7, and then checks each of these to see if they are a
portion of a segment pair of score 7 or greater. This approach is heuristic
(that is, may miss some segment pairs) because it is possible for every length
k subsegment pair of a segment pair of score 7' to have score less than £,
Nonetheless, with k=4 and f=17 such misses are verv rare, and
BLASTA takes about 3 seconds for every 1 million characters of data
searched.

To get an idea of the relative efficiency of various similarity searching
approaches, consider the following rough timing estimates for a typical 20
SPECint workstation and a search against a typical protein query. The
dynmamic programming algorithm for local similarities presented above (also
known as the Smith-Waterman algorithm) takes roughly 1000.0N
microseconds to search a database with a total of N characters in it. On the
other hand, FASTA. takes 20.0N microseconds, and BLASTA only about
2.0N microseconds. At the other end of the spectrum, the systolic array
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chip described above takes only 0.3N microseconds to perform the Smith-
Waterman algorithm with its special-purpose (and expensive) hardware.

Sublinear Similarity Searches

The total number N of characters of sequence in biosequence databases
13 growing exponentially. On the other hand, the size of the query sequences
15 basically fixed; for example, a protein sequence’s length is bounded by
1,500 and averages 300. So designers of efficient computational methods
should be prnincipally concerned with how the time to perform such a search
grows as a function of V. Yet all currently used methods take an amount of
time that grows lincarly in ¥, that is, they are O(N) algorithms. This
includes not only rigorous methods such as the dynamic programming
algorithms mentioned above but also the popular heuristics FASTA and
BLASTA. Even the systolic array chips described above do not change this.
When a database increases in size by a factor of 1,000, all of these O(N)
methods take 1,000 times longer to search that database. Using the timing
estimates given above, it follows that while a custom chip may take about 3
seconds to search 10 million amino acids or nucleotides, it will take 3,000
seconds, or about 50 minutes, to search 10 billion symbols. And this is the
fastest of the lhinear methods: BLASTA will take hours, and the Smith-
Waterman algorithm will take months. One could resort to massive
parallelism, but such machinery is beyond the budget of most investigators,
and it is unlikely that speedups due to improvements in hardware technology
will keep up with sequencing rates in the next decade.

What would be very desirable, if not essential, is to have search

methods with computing time sublinear in N, that is, O(N®) for some
o < 1. For example, suppose there is an algorithm that takes O(N")
time, which is to say that as N grows, the time taken grows as the square

root of N. For example, if the algorithm takes about 10 seconds on a 10
million symbol database, then on 10 billion symbols, it will take about

1,00005 =31 times longer, or about 5 minutes. Note that while an

O(NO'S) algorithm may be slower than an O(N) algorithm on 10
million symbols, it may be faster on 10 billion. Figure 3.9 illustrates this
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“crossover™ in this figure, the size of N at which the O(N**) algorithm
overtakes the O(N) algorithm is approximately 1x 10°. Similarly, an

O(N®*) algorithm that takes, say, 15 seconds on 10 million symbols,
will take about 1 minute, or only 4 times longer, on 10 billion. To
forcefully illustrate the point, we chose to let our examples be slower at
N =10 million than the competing O(N)algorithm, As will be seen in a
moment, a sublinear algorithm does exist that is actually already much
faster on databases of size 10 million, The other important thing to note
is that we are not considering heuristic aJgorithms here. What we desire
is nothing less than algorithms that accomplish exactly the same
computational task of complete comparison as the dynamic
programming algorithms, but are much faster because the computation is
performed in a clever way.

A recent result on the approximate string matching problem under the
simple unit-cost scheme of Figure 3.1 portends the possibility of muly
sublinear algorithrs for the general problem. For relatively stringent
matches, this new algorithm is 3 to 4 orders of magnitude more efficient
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than the equivalent dynamic programming computation on a database of 1
million characters. On the other hand. the approximate string matching
problem is a special case of the more biologically relevant computation that
involves more general scoring schemes such as the ones in Figures 3.4 and
3.5, and a sublinear algorithm for the general problem has yet to be achieved.

We conclude with a few more details on this sublinear algorithm
(Myers, 1994b). For a search of matches to a query of length P with D or
fewer differences, the quantity € = IY/P is the maximum fraction of
differences permitted per unit length of the query and is called the mismatch
ratio. Searching for such an approximate string match over a database of

length N can be accomplished in O(DN*™* log N) expected time with
the new algorithm. The exponent 1s an increasimg and concave function of £
that is 0 when € = 0 and depends on the size || of the underlying alphabet.
The algorithm is superior to the O(N) algorithms and truly sublinear in N
when € is small enough to guarantee that pow(g) < 1. For example, pow(t)
is less than 1 when £ <33 percent for |'¥|=4 (DNA alphabet) and when & <
56 vpercent for |¥W|=20 (protein alphabet). More specifically,
pow(e)<022+23 when YW|=4 and pow(e)=<017-+14e when

['¥|=20. So, for DNA, the algonthm takes a maximum of O(N’?) time

when ¢ is 12 percent, and for proteins, a maximum of O(NO'S) time when £
is 26 percent. The logic used to prove these bounds is coarse, and, in
practice, the performance of these methods is much better than the bounds
indicate, If these results can be extended to handle the more general problem
of arbitrary scoring tables, the impact on the field could be great.

OPEN PROBLEMS

While progress is continually being made on existing problems in
sequence comparison, new problems continue to arise. A fundamental issue
1s the definition of similarity. We have focused here only on the
insertion-deletion-substitution model of comparison and some small
variations. Some authors (e.g., Altshul and Erikson, 1986) have looked at
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nonadditive scoring schemes that are intended to reflect the probability of
finding a given alignment by chance. A fundamental change in the
optimization criterion for alignment creates a new set of algorithmic
problems,

What about fundamentally speeding up sequence comparisons? The best
lower bounds placed on algorithms for comparing two sequences of length N
is O(NlogN), yet the fastest algorithm takes O(N”/log” N) time
(Masek and Paterson, 1980). Can this gap be narrowed, either from above
(finding faster algorithms) or below (finding lower bounds that are higher)?
Can we perform faster database searches for the case of generalized
Levenshtein scores, as is suggested by the results given above for the
approximate string matching problem? Speeding up database searches is
very important. Are there other effective ways to parallelize such searches or
to exploit preprocessing of the databases, such as an index?

Biologists are interested in searching databases for patterns other than
given stnngs or regular expressions. Recently, fast algorithms have been
developed (Kannan and Myers, 1993; Landau and Schmidt, 1993) for
finding approximate repeats, for example, finding a pattern that matches
some string X and then 5 to 10 symbols to the right matches the same string
modulo 5 percent differences. Many DNA structures are induced by forming
base pairs that can be viewed as finding approximate palindromes separated
by a given range of spacing. More intricate patterns for protein motifs and
secondary structure are suggested by the systems QUEST (Arbarbanel et al.,
1984), ARIADNE (Lathrop ct al., 1987), and ANREP (Mehldau and Myers,
1993), all of which pose problems that could use algorithmic refinement.

Finally, biologists compare objects other than sequences. For example,
the partial sequence information of a restriction map can be viewed as a
string on which one has placed a large number of beads of, say, eight colors,
at various positions along the string. Given two such maps, are they similar?
This problem has been examined by several authors (e.g., Miller et al.,
1990). There are still fundamental questions as to what the measure of
similarity should be and how to design efficient algorithms for each. There
has also been work on comparing phylogenetic trees and chromosome
staining pattems (e.g., Zhang and Shasha, 1989). Indubitably the list will
continue to grow.



Calculating the Secrets of Life: Cantributions of the Mathematical Sciences to Molecular Biology (1995)
http://www.nap.edu/openbook/0309048869/html/88.html, copyright 1995, 2000 The National Academy of Sciences. all rights reserved

88 CALCULATING THE SECRETS OF LIFE

REFERENCES

Altschul, §.F., and B.W. Erikson, 1986, “Locally optimal subalignments using nonlinear
sirmilarity functions,” Bull. Math. Biol. 48(3/6), 633-660.

Altschul, SF., W. Gish. W. Miller, E.W. Myers, and D.J. Lipman, 1990, “A basic local
alignment search tool,” Journal of Molecular Biclogy 215, 403-410.

Arbarbanel, R.M., P.R. Wieneke, E. Mansfield, D.A. Jaffe, and D.L. Brutlag, 1984, *Rapid
searches for complex patterns in biological molecules,” Nucleic Acids Research 12(1),
263-280.

Barker, W.C., D. George, H-W. Mewes, F. Pfeiffer, and A. Tsugita, 1993, “The PIR-
International database,” Nucleic Acids Research 21(13), 3089-3092.

Benson, D.. D.J. Lipman, and J. Ostell, 1993, “GenBank,” Nucleic Acids Research 21(13),
2063-2965.

Chao, K-M., and W. Miller, 1994, “Linear-space algorithms that build local aligriments
from fragments,” Algorithmica, in press.

Dayhoff, M.O., W.C. Barker, and L.T. Hunr, 1983, “Establishing homologies in protein
sequences,” Methods in Enzymology 91, 524-343. -

Eppstein, D., Z. Galil, and R. Giancarlo, 1989, “Speeding up dynamic programming,”
Theoretical Computer Science 64, 107-118.

Feng, D.F., and RF. Doolittle, 1987, “Progressive sequence alignment as a prerequisite to
correct phylogenetic wees,” Jowrnal of Molecular Evolution 25, 351-360.

Fox, B., 1973, “Calenlating the Kth shortest paths,” INFOR J (Can. J. Oper. Res. Inf
Process.) 11, 66-70.

Garcy, M.R_, and D.S. Johnson, 1979, Computers and Inzracitability. A Guide to the Theory
of NP-Complete Problems, New York: W.H. Freeman Press.

Gotoh, O., 1982, “An improved algorithm for matching biological sequences,” Jownal of
Molecular Biology 162, 705-708.

Horowitz, E., and S. Sahni, 1978, pp. 198-247 in Fundamentals of Computer Algorithms,
New York: Computer Science Press.

Kannan, S K., and E.W. Myers, 1993, “An algorithm for locating non-overlapping regions of
maximum alignment score,” Proceedings of the 4th Combinatorial Pattern Maiching
Conference, Springer-Verlag Lecture Notes in Computer Science 684, 74-86.

Landau. G.M,, and J.P. Schmidr, 1993, “An algorithm for approximate tandem repeats,”
Proceedings of the 4th Combinaiorial Pattern Matching Conference, Springer-Verlag
Lecture Notes in Computer Science 684, 120-133.

Lathrop, R.H., T.A. Websrer, and T.F. Smith, 1987, “ARIADNE: A flexible framework for
protein structure recognition,” Commun. ACM 30, 909-921.

Lipman, D.J., and W.R. Pearson, 1985, “Rapid and sensitive protein similarity searches,”
Science 227, 1435-144]

Masek, W.J., and M.S. Paterson, 1980, “A faster algorithm for computing string-edit
distances,” Jownal of Computing Systems Science 20(1), 18-31.

Mehldaw, G., and EW. Myers, 1993, “A system for pattern matching applications on
biosequences,” CABIOS 9. 3, 299-314,



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology (1995)
http://www.nap.edu/openbook/0309048869/html/89.html, copyright 1995, 2000 The National Academy of Sciences. all rights reserved

Seeing Conserved Signals 89

Miller, W., and E-W. Myers, 1988, “Sequence comparison with concave weighting
functions,” Bull. Math. Biology 50(2), 97-120.

Miller, W., J. Ostell, and K.E. Rudd, 1990, “An algorithm for searching restriction maps,”
CABIOS 6, 247-252.

Myers, EW., 1994a, “Approximately Matching Contex: Free Languages,” TR94-22,
Department of Comiputer Science, University of Arizona, Tucson, Ariz.

Myers, EW., 1994b, “A sublinear algorithm for approximate keywork searching.”
Alporithmica 12(4), 345-374.

Myers, EEW,, and W. Miller, 1988, “Optimal alignments in linear space,” CABIOS 4(1),
11-17.

Myers, EW., and W, Miller. 1989, “Approximate matching of regular expressions,” Bull.
Math. Biol. 51(1), 5-37.

Sankoff, D., 1975, “Minimal mutation trees of sequences,” SIAM Jownal of Applied
Mathematics 28(1), 35-42.

Smith, T.F.. and M.S. Waterman, 1981, “Identification of common molecular sequences,”
Journal of Molecular Biology 147, 195-197.

Smith, T.F., and W.S. Fitch, 1983, “Optimal sequence alignmerns,” Proceedings of the
National Academy of Sciences USA 80, 1382-1386.

Waterman, M.S., and M, Eggert, 1987, “A new algorithim for best subsequence alignments
with application to tRNA-rRNA comparisons,” Jowrral of Molecular Biology 197, 723-
728.

Waterman, M.S., M. Eggert, and E. Lander, 1992, “Parametric sequence cormparisons,”
Proceedings of the National Acadery of Sciences US4 89, 6090-6093.

Waterman, M.S., T.F. Smith, and W.A. Beyer, 1976, “Some biological sequence metrics,”
Advances in Mathematics 20, 367-387.

Zhang, K, and D. Shasha, 1989, “Simple fast algorithms for the editing distance between
trees and related problems,” SI4M Jowrnal on Compuring 18, 1245-1262.



Calcoulating the Secrets of Life: Contributions of the Mathematical Sciences to Malecular Biology (1995)
http://www.nap.edu/openbook/0309048863/html/90.html, copyright 1995, 2000 The National Academy of Sciences. all rights reserved

Chapter 4
Hearing Distant Echoes:
Using Extremal Statistics to Probe
Evolutionary Origins

Michael S. Waterman
University of Southern California

The comparison of DNA and protein sequences provides a
powerful tool for discerning the function, structure, and
evolutionary origin of important macromolecules.
Sequence comparison sometimes reveals striking matches
between molecules that were hitherto not known to be
related—immediately suggesting hypotheses that can be
tested In the laboratory. In other cases, sequence
comparison reveals only weak similarities. In such
instances, statistical theory is essential for interpreting the
significance of such matches. The author discusses large
deviation theory for sequence matching and applies it to
evaluate a tantalizing report concerning distant echoes
from the earliest period in the origin of life.

As soon as new deoxyribonucleic acid (DNA) or protein sequences
are determined, molecular biologists immediately examine them for
clues about their biological significance. A number of important
questions about the function of a newly determined protein are often
asked, including the following. What can be inferred about the function
of a new protein on the basis of its amino acid sequence? Can one
discern the reactions it catalyzes or the molecules it binds? What three-
dimensional shape will the linear amino acid sequence of a protein
assume when it folds up according to the laws of thermodynamics?
Another class of questions concerns the evolutionary relationships
between known sequences. For example, some questions concerning

90
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hemoglobin are the following. What is the evolutionary relationship
between three related ¢, £ and y hemoglobin genes? What is the
evolutionary relationship between the hemoglobin molecules from
various organisms? What do these sequences tell us about the
evolutionary history of humans, chimpanzees, and gorillas? Each of
these questions can be approached, if not always entirely solved, by
sequence comparison.

Sequence comparison is of tremendous interest to molecular
biologists because it is becoming easy to determine DNA and protein
sequences, whereas it remains difficult to determine molecular structure
or function by experimental means. Thus, functional and structural clues
from sequence analysis can save years of work at the laboratory bench.
An important early example illustrates the point. Some years ago,
molecular biologists compared the protein sequence encoded by a
cancer-causing gene (or oncogene) called v-sis to the available database
of protein sequences. Remarkably, a computer search revealed that the
sequence showed more than 90 percent identity to the sequence of a
previously discovered gene encoding a growth-stimulating molecule,
called platelet-derived growth factor (PDGF). Instantly, cancer
researchers had a precise hypothesis about how this oncogene causes
unregulated cell growth, Subsequent experiments confirmed the guess.

Nowadays, molecular biologists routinely carry out such computer
searches against the current databases (which now contain both protein
and DNA sequences) and are rewarded with striking and suggestive
matches at a high frequency (perhaps 20 to 30 percent for a new gene).
In some cases, the matches extend across the entire length of the protein.
In other cases, there is a strong match across a restricted
domain—examples include particular sequences at the catalytic site of
enzymes that hydrolyze adenosinetriphosphate (ATP) or at the DNA-
binding site of proteins that regulate the activity of genes. The frequency
with which such strong matches are found is a tribute to the
tremendously conservative nature of evolution: many of the basic
building blocks of proteins and DNA have been reused in hundreds of
different ways.

For the majority of new sequences, however, there is no striking
match in the database. Although this may change with time (some
molecular biologists believe that there are only a few thousand or a few
tens of thousands of basic architectural motifs for proteins and that it 1s
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just a matter of time before we collect them all), computer searches will
turn up only weak similarities. Before attempting to read biological
significance into such weak similarities, one must evaluate their
statistical significance. Not surprisingly, this is an area in which
mathematics has much to offer molecular biology. To motivate the study
of the statistical significance of sequence similarities, we consider a
single data set that provoked a great deal of excitement a few years ago
when a team of researchers thought that they saw extraordinary clues
about early evolution in the sequences of genes encoding certain
ribonucleic acid (RNA) molecules.

The origin of the universe and the origin of life are topics of wide
interest to both biologists and nonbiologists. One approach to studying
the origin of the universe is to listen to faint echoes from the Big Bang.
Similar approaches are used in studying the origin of life. Are there any
molecular echoes remaining from the origin of life? Each of the three
key molecules in molecular biology—DNA, RNA, and protein—has
been championed by some theorists as the earliest self-replicating
molecule. Proteins have seemed attractive to some because of their
ability to catalyze chemical reactions. DNA has seemed attractive to
others because it is a stable store of information. Lately, however, RNA
has taken the lead based on the well-known ability of RNA to encode
informarion in the same manner as DNA and the recently discovered
ability of RNA to act as nonprotein enzymes that are able to catalyze
some chemical reactions. These properties suggest that some RNA
sequence might have been able to achieve the key feat of self-
replication—serving as both self-template and replication enzyme. Thus,
life may have started out as an RNA world.

As indicated in Chapter 1, modem RNAs come in three varieties:
messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), and transfer
RNAs (tRNAs). mRNAs are the messages copied from genes. tRNAs
are components of the macromolecular structure, called the ribosome,
used for translating RNA sequences into protein sequences. tRINAs are
the “adapter molecules” that read the genetic code, with an anticodon
loop recognizing a particular codon at one end and an attachment site for
the amino acid corresponding to this codon at the other. rRNAs and
tRINAs are clearly ancient inventions, necessary for the progression from
life based only on RNA to organisms employing proteins for efficient
catalysis of biochemical reactions.
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In the early 1980s David Bloch and colleagues reported that they had

found that these two types of RNA—tRNA and rRNA—had significant
sequence similarities implying a common evolutionary ancestry (Bloch
et al., 1983). In his paper, Bloch reported:

Many tRNAs of E. coli and yeast contain stretches whose base
sequences are similar to those found in their respective tRNAs. The
matches are too frequent and ecxtensive to be attributed to
colncidence. They are distributed without discernible pattern along
and among the RNAs and between the two species. They occur in
loops as well as in stems, among both conserved and non-conserved
regions. Their distributions suggest that they reflect common
ancestral origins rather than common functions, and that they
represent true homologies.

Such tantalizing arguments should be grounded in statistics—since we
cannot test the origin of life by direct experiment (as we could test a
proposed function for a protein based on sequence similarity). In this
chapter, we develop some tools for evaluating statistical significance and
apply them to Bloch’s data.

The biological hypothesis that relationships between the RNAs are
true homologies is necessarily imprecise. The evidence given is frequent
and extensive matchings of stretches of sequences between the
molecules, just the sort of matchings that the local algorithm presented
below is designed to find. To “test” the biological hypothesis, we form a
statistical hypothesis that the sequences are generated with independent
and identically distributed letters. Then we test this hypothesis by
computing scores using the local algorithm. Since letters in real
sequences are not independent, it is possible to change the hypothesis to
a Markov hypothesis, for example. This does not change the score
distribution very much for the distributions obtained from real
sequences. If the score distribution is consistent with that from
comparison of random sequences, we would fail to reject the statistical
hypothesis and thus have evidence against the biological hypothesis. If,
on the other hand, the scores are frequently too large, showing strongly
matching stretches or intervals of sequence, we have evidence for the
biological hypothesis and against the statistical hypothesis.

Statistical questions are increasingly important in molecular biology.
While statistical significance 15 not directly related to biological
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importance, it i8 a good indicator and can lead to the formulation of
important biological hypotheses, as noted above. Conversely, lack of
statistical significance is an important clue in considering whether to
reject a relationship that may seem interesting to the human eye. With
over 70,000 sequences in modem databases, molecular biologists require
an automatic way to reject all but the most interesting results from a
database search. Comparing one sequence to the database involves
70,000 comparisons. Comparing all pairs of sequences involves

{70’;00)5 or about 2.4><109, comparigons. As we will see with the

tRNA and rRNA comparison, even a small number of comparisons can
raige subtle questions.

GLOBAL SEQUENCE COMPARISONS

We will now discuss a number of situations for sequence
comparisons and some probability and statistics that can be applied to
these problems. Some powerful and elegant mathematics has been
developed to treat this class of problems. Our discussion will naturally
break into two parts, global comparisons and local comparisons,

Sequence Alignment

In this section we study the comparison of two sequences. For
simplicity the two sequences 4;4,...4, and BB,...5B,, will consist of
letters drawn independently with identical distribution from a common
alphabet.

Sequences evolve at the molecular level by several mechanisms. One
letter, A for example, can be substituted for another, G for example.
These events are called substitutions. Letters can be removed from or
added to a sequence, and these events are called deletions or insertions.
Given two sequences such as ATTGCC and ACGGC, it is usually not
clear how they should be related. The possible relationships are often
written as alignments such as:
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ATTGCC
ACGG-C
or
ATTGCC
-ACGGC

where in the first case there are three identities, two substitutions, and
one insertion/deletion (indel) and in the second case there are two
identities, three substitutions, and one indel.

An alignment can be obtained by inserting gaps (“~") into the
sequences so that

Ay A, — A A A
and
B,B,...B, — BB,...B, .

Here the subsequence of all 4, # “~” is identical to AA,.. A, . Then,

since the *-sequences have equal length, 4 is aligned with B, . In
Chapter 3, algorithms to achieve optimal alignments are discussed. Here
we are interested in the statistical distribution of these scores, not in how
they are obtained. Global alignments refer to the situation where all the
letters of each sequence must be accounted for in the alignments. There
are two types of global alignments, alignments where the pairing is
given and alignments where the pairing is not given.

Alignment Given

In this section, we assume the alignment is given with the
sequences:

AAy.. A,
Ble.IABn .

(Gaps “=” have been added so that these sequences both have the same
length—L in the previous section, n here—and the stars have been
omitted to simplify the notation.) In this case the alignment is given and
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therefore cannot be optimized. We give the statistical distribution of the
alignment score for completeness, however. Let s(4,B) be a real valued
random variable. Define the score S by

$=%5(4,.8),

i=1

and let E(S) denote the expectation of § and Var (S) denote the variance.
Clearly, E(S) = nE(s(4.8)) and

Var(S) = n Var(s(A4, B)).

Since S is the sum of independent, identically distributed random
variables s(4,B), the central limit theorem implies that for large »

S ~ Normal(n E(s( 4, B)),nVar(s( 4, B))).

If s(A,B)€{0,1}, then S is binomial (n, p) , where p= P{s(A,B)=1}.
Even when the letters are not identically distributed, the limiting
distribution is normal under mild assumptions (Chung, 1974).

Alignment Unknown

The assumptions of the last section are carried over: 4,4,...4, and
B,B,...B, are composed of independent and identically distributed
letters and s(A4,B) is a real valued random variable on pairs of letters.
We extend s(-,-) to s(A,—) and s(—,B) so that deletions are included.

We assume that the value of s for all deletion scores is smaller than
maxs(A4,B). An alignment score § is the maximum over all possible

alighments

L

§= max ¥ s(4,B).

aligrments =1
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The optimization destroys the classical normal distribution of alignment
score, but an ecasy application of a beautiful theorem known as
Kingman’s subadditive ergodic theorem gives an interesting result:

Theorem 4.1 (Kingman, 1973) For s,t nomnegative integers with
0=s<t,let X, beacollection of random variables that satisfy
(i) Whenever s<it<u, X <X +X,,,
(i) The joint distribution of { X} is the same as that of {X,,,.1},
(iii) The expectation g, = E(X 05,) exists and satisfies g, 2 Kt for

some constant K and all t>1.

Then the finire lim,__ X, /t=X exists with probability | and in the

medn.

The essential assumption is (ii), the subadditivity condition. To
motivate and illustrate this theorem, recall the strong law of large
numbers (SLLN), which treats independent, identically distributed (iid)
random variables W, /,,... with w=E(W,). The SLLN asserts that

Wy + Wyt + W,
_>
n

u

with probability 1.
It 1s easy to see that additivity holds. Set

U,= Y W.
s+lisigr
Of course (1) is satisfied:
Un= X W+ W
s+lgisr RISy
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Since the W, are iid, (ii) is evidently true. Finally, g(t)=E(U,,) =11,
$0 that (iii) holds with p = —K . Therefore the limit

lim ¥ W, /¢

dad PTr=1

exists and is constant with probability 1. Notice that this setup does not
allow us to conclude that the limit is W . This is a price of relaxing the
assumption of additivity.

Retuming to the statistical distribution of alignment score, recall that
an alignment score S is the maximum over all possible alignments

Z
§= max Y s(4 .B).

alignments =1
Define X, by

-X,, = scoreof 4,,,4,,...4, vs B B_,...B,.

Syt
Then evidently,

=X, z2(-X,)+(-X,,)
and
X_v,u S Xs‘r +an‘,u '

We have that g, =E(XO‘,) exists since the expectation of a single
alignment exists and —X, is the maximum of a finite number of

alignment scores. The final hypothesis to check is g, = —Kr for some
constant X and all 7> 1. Clearly,

E(-X,,) <t maxs(4,5)
so that
g, 2 —(maxs{A4, B))t =—Kt.
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Our conclusion is that

limX,, /t=MA

exists with probability | and in the mean. Therefore optimal alignment
score grows linearly with sequence length. Obviously, A = E(s(A, B)).

In the sumplest case of interest, the alphabet has two uniformly
distributed letters and s(A4,B) =0 if 4# B and s(4,A)=s(B,B)=1.
The alignment score is known as the longest common subsequence, and
Chvatal and Sankoff (1975) wrote a seminal paper on this problem in the
1970s. In spite of much effort since then, A remains undetermined.
Deken (1979) gives bounds for A: 07615<A <08602. Without
alignment the fraction of matching letters is 0.5 by the strong law of
large numbers. Not too much is known about the variance either,
although Steele (1986) proves it is O(n).

LOCAL SEQUENCE COMPARISONS
Alignment Given

Consider many independent throws of a coin with probability p of
heads, where 0 < p < 1. For any p, there will be stretches where the coin
comes up heads every time. What is the distribution of the length of the
longest of these head runs? This maximum length is known as a “local”
score; while it is a global maximum, it is a function only of the nearby
tosses. A related problem is to consider sequence A A,... 4, of letters
chosen independently and from a common alphabet, {A,C,G, T} for
DNA for example. The letters 2 and G are known as purines (R), and C
and T are known as pyrimidines (Y). A two-letter alphabet is natural
when grouping nucleotides by chemical similarity. In fact, there is a
hypothesis that the first nucleic acid sequences were made up of just two
elements, R and Y. It is natural to ask how random the distribution of R
and Y is for a given sequence. We will study how large is R,, the length
of the longest run of purines R in a sequence of length ». Here an
occurrence of R 1s a “head” for the coin tossing analogy.
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The coin tossing question was considered by Erdds and Rényi
(1970), who found the strong law

lim —R2 — | with probability 1. @.1)

nyee 10g1/p n

Of course, one may desire more detailed information about X, . For
an example, we look at “168” rRNA from £. cofi, which is 1,541 letters
in length and is known by its sedimentation rate 8§ of 16. (The
sedimentation rate 1s an indication of mass: the greater the mass, the
higher the rate of sedimentation and the larger the value of S.) Equation
(4.1) tells us that we would typically see about log,,, 1,541=10.6 R’s in

a row where p=%. What if we have a head run of length 14 in our 168

sequence? Is this score extreme enough to be of note? For the statistical
question of significance, we need to have a way to compute such
probabilities. This is supplied by Poisson approximation.

For an appropriately chosen test length ¢, we see an R run of length ¢
begins at a given position with a small probability. Since the number of
positions where such a run could occur is large, the number of long head
runs should be approximately Poisson. Our discussion about the
mathematics behind this intuition follows Goldstein (1990).

This intuition is almost correct. One must first, however, adjust for
the fact that runs of heads occur in “clumps”; that is, if there is a run of
heads of length ¢ beginning at position ¢, then with probability p there
will also be a run of heads of length 7 beginning at position o +1, with
probability p* a run of heads of length ¢ beginning at position o + 2,
and so forth. Hence, the total number of runs of length ¢ or more is seen
to have a compound Poisson distribution. By counting only the first such
run in every clump, the occurrences now counted are no longer clumped
and their number is approximately Poisson. This is an example, with
average clump size 1+ p+p°... =1/ (1—p), of the “Poisson clumping
heuristic,” as described by Aldous (1989). Using the fact that having no
runs of length ¢ is equivalent to having the longest head run shorter than
t, we can approximate the distribution of the length of the longest run of
heads. In the remainder of this section we explore the approximation of
this distribution by the Poisson distribution.
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Let 7 be an index set, and for each ate7, let X, be an indicator
random variable, that is, X, =1 if an event occurs and X, =0 if the

event does not occur. The total number of occurrences of events can be
expressed as

w=YX,.

ael

It seems intuitive that if p, =P (X, =1) is small, and 1|, the size of the
index set, is large, then W should be approximately Poisson distributed.
Certainly this is true when all the X ,oe/, are independent. In the
case of dependence, it seems plausible that the same approximation
should hold when dependence is somewhat confined. For each ¢, we let
B_ be the set of dependence for ¢; that is, for each & € 7, assume we

are given a set B, < I such that
X, isindependent of X3, ¢ B, . 4.2)
Define

b= Z Zpapﬁ and

oE/ BeBy

b?.zz zpaﬁ, where ,pa]'j EE(X&Xﬁ)'
&l 0=BeBy

Let Z denote a Poisson random variable with mean A, so that for
k = 05 1:23-“3

o M
P(Z=k) = e R

Classically, the Poisson distribution is the probability law of rare
events. It 1s remarkable that a few probability distributions arise with
great frequency. The three principal distributions are the binomial, the
normal, and the Poisson. (See Feller (1968) for an extensive discussion
of these matters.)
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Let h: 2" — R, where Z" ={0,1,2,...}, and |}|=sup,,q|h(k)|. We
denote the total variation distance between the distributions of W and Z
by

|w - z|= sup | E(h(7)) - E(W(2)) |
j .=1
=2 sup |[P(Wed)—P(Zc 4)|.

Acz®

More general versions of the following theorem appear in Arratia et al.
(1989, 1990). They refer to this approach as the Chen-Stein method.

Theorem 4.2 Let W be the number of occurrences of dependent events,
and let Z be a Poisson random variable with E(Z)=E(W)=A. Then

1— e—).

A

W—-2z| < 26 +b,) < 2b, +by),

and in particular
P =0)—e* < (b+b)1-e) /L.

We first apply Poisson approximation to the distribution of the
length of long success runs in Bernoulli trials. This has application to
molecular sequences and provides a good illustration of the methods
needed for sequence comparisons in the case when the alignment is
unknown. Let C,C;,... be independent Bernoulli random variables
with success probability p, and let R, be the length of the longest run of
heads contained in the first n tosses. Fix a test level ¢ and let the index
set be /={1,2,...,n—1t+1}; the elements of the index set will denote

locations where head runs of length ¢ or greater may begin. A head run
of length 7 or more begins at position 1 if and only if the indicator
random vanable

X, =CG,...C,
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takes on the value 1. Now, to unclump the remaining runs define

X, =(1-C,.)C,C,,,...C., for =23 . n—t+1.

+1° 0 o1

For o0 =2,3,...,n=t+1, X, will be 1 if and only if a run of 7 or more
heads begins at position o, preceded by a tail. Below we calculate 5,,
show that b, =0, and find a bound for the approximation.

Write now the total number of clumps of runs of length ¢ or more as
the sum of dependent indicator random variables

W= YX,.

el

The Poisson approximation heuristic says we should be able to
approximate the distribution of W by a Poisson random variable with
mean

ra(f) = E(W) = p'((n—1)(1- py+1). (4.3)
In particular then, since we have as events
{R, <t} = {W=0},
the distribution function of R, can be approximated as
P(R <1) = P(W=0) = ¢,

The test length ¢ is dictated by requiring A to be bounded away from 0
and o; this is equivalent to the condition that ¢ —log,,, » is bounded. In

fact, for integer ¢, with ¢ defined by
t = log, (n—-0)(1-p)+D+e,

the above approximation predicts that
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P(R <t) = e = exp(-p°),

that is, that R, —log, ,((n—2)1-p)+1) has an asymptotic extreme
value distribution. This is almost so; the limiting distribution is
complicated by the fact that R can assume only integer values.

However, this fact does not complicate the approximation itself.

For an example we return to our problem with the 168 rRNA
sequence. We model an R run of length 14 by n = 1,541 independent
tosses of a fair coin. Using formula (4.3), we calculate that A, = 0.0700.
Using the Poisson distribution, P(R5, =14) Is approximately
1—exp(—A,)=0.0676.

Even so, without a bound on the error we have no way of knowing if
the event is likely or not. To assess the accuracy of the above

approximation, we apply Theorem 4.2. We define B, =

{B el:jo—Bjs ¢} forall o Since X, is independent of {X;:p & B,},
condition 1 is satisfied. Furthermore, if IS|oc-B| <t, we cannot have
both X and X equalto 1 since we require that a run begin with a tail.
Therefore p,, =0 for B e B,.B %0, and hence b, =0.

In order to calculate &, =3, . 8, PaDp» We break up the sum over

B e B, into two patts, depending on whether or not p, appears. This
yields the bound

b, < N2 +1)/(n=—t+1)+20p". (4.4)
Theorem 4.2 now shows us that the Poisson approximation is quite
accurate for the example considered above; the probability computed is

correct to within b, < 107, that is,

00699 < P(R, 213) < 0.0701.
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Alignment Unknown

The situation for matching between two sequences is closely related,
although the dependence structure becomes more complex. Suppose that

the two sequences 4,4,...4, and B, B,...B, arec made up of letters
independently and uniformly chosen from a d-letter alphabet. It must be
emphasized that whenever the letters are not uniformly chosen, Theorem
4.2 holds but is not straightforward to apply. In matching DNA, d =4,
for protein sequences, d = 20. Let

I ={i,)): 1<isn—-t+L1<j<m-t+1}.
Define indicator random variables
E ;=1 if A,.=Bj.

Let p=P(E, =1)=1/d.
As in the case of head runs, we need to unclump matches and
consider “boundary effects.” Let

/Yi,j = Ei,jE‘:-].j-v-l'"Ei+r-l.j+zL1 if i=1 orj=1

t
and otherwise

X, ;= (I*Efq,j-l)Ei,jEHl,jﬂ"'E

1,7 i+i=1,7+1-1"

With W=7, _, X,, calculating A =E(W) yields

A= pln+m=21+)+(n—-t)(m—-1)1-p)]. (4.5)

In matching two tRNA sequences, one of length 76, the other of
length 77, would a match of length 9 be unusual? For the given
parameters, A =0.0136 and under the model above, the event has a
probability of approximately
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l—exp(-A) = 0.135.

A bound on the error may be calculated in a way similar to that for coin
tossing. We note that again b, =0, and by breaking the sum for b, into
two sums, one of which is made up of all terms that involve the
boundary, we find

b, < A+ 1)/ (n—t+)(m=1+1)+20p".

Hence, the probability above is correct to within 8.5 x 107 .

APPLICATION TO RNA EVOLUTION

Now we bring these ideas to bear on our RNA evolution problem.
We have a set of 33 tRNA molecules and one 16S rRNA molecule from
E. coli. In Bloch et al. (1983), matchings between 168 and each of the
tRNAs were intensely studied. tRNA evolution is a complex topic and
tRNA/tRNA comparisons were not made in this study. Table 4.1 shows
the length of the longest exact match A, between these sequences, along

with estimates of significance or p-values (l—e_h") from our Chen-
Stein method. There are no exceptionally good matchings in this list, and
so this analysis discounts any deep relationship between the sequences.
In fact the p-values seem unusually large. In the 33 comparisons the
minimum p-value is 0.26. Still we should not give up the scarch. One
estimate puts the origin of these sequences at 3 billion years ago. We
should not expect large segments of sequence to be preserved in every
position over such vast amounts of time. Instead, mutations such as
substitutions, insertions, and deletions will accumulate,
greatly complicating our task. It is possible that the hy-pothesis of
common origin is correct and that so much evolutionary change has
taken place that no significant similarity remains. The next section,
“Two Behaviors Suffice,” examines the results of this search for unusual
similarity using more subtle sequence comparison algorithms.
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Table 4.1 Exact Match P-Values

tRNA GenBank Length H, 1-&™ b,
Locus (n)

ala-la  ECOTRAIA 76 9 0.26 1.87%10°
ala-ib  ECOTRAIB 76 9 0.26 1.87%10°
cys ECOTRC 74 8 0.69 2.67x10"
asp-1 ECOTRD1 77 8 0.71 2.79x10°
glu-1 ECOTREI 76 10 0.71 1.25%10°
glu-2 ECOTRE2 76 10 0.71 125%10"
phe ECOTRF 76 9 0.26 1.87x10°
gly-1 ECOTRGI 74 7 0.99 3.90%10°
gly-2  ECOTRG2 75 6 1.00 5.70x10°
gly-3 ECOTRG3 © 76 9 0.26 1.87x10°
his-1 ECOTRHI 77 9 0.26 1.89%10°
ile-1 ECOTRII 77 9 0.26 1.89%10%
ile-2 ECOTRI2 76 10 0.71 1.25%10°
lys ECOTRK 76 6 1,00 5.78%10°
leu-1 ECOTRLI 87 8 0.76 3.19% 10"
leu-2 ECOTRL2 87 ] 0.76 3.195 10"
leu-5 ECOTRLS5 87 9 0.29 2.16x 10"
met-f  ECOTRMF 77 9 0.26 1.89x10°
metm  ECOTRMM 77 8 0. 2.79%10*
asn ECOTRN 76 7 0.99 4.01%10°
gin-1 ECOTRQ1 73 8 0.70 2.71x10*
gln-2 ECOTRQ2 75 8 0.70 2.71x 10"
arg-1 LCOTRRI 76 7 0.99 4.01%10*
arg-2 ECOTRR2 77 7 0.99 4.07x10"
ser-1 ECOTRS1 8% 8 0.76 3.23%10°
ser-3 ECOTRS3 93 9 0.31 2.33%10°
thr-ggt  ECOTRTACU 76 7 0.99 4.01x10°
val-1 ECOTRV1 76 8 0.70 2.75x10°
val-2a  ECOTRV2A 77 8 0.71 2.79%107
val2b  ECOTRV2B 77 9 0.26 1.89%10°
trp ECOTRW 76 7 0.99 4.01x10°
tyr-1 ECOTRY! 85 8 0.75 3.11x10"
tyr-2 ECOTRY?2 85 8 0.75 311%10°

H, the length of the longest exact match between the listed tRNA molecule and

a 168 rRNA molecule: 1— e-b’
tRNA moleculs; b, column entry is the caloulated bound on b,

, the p-valuc (estimate of significance) for n"
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TWO BEHAVIORS SUFFICE

In this section we describe a statistic that provides a link between the
sections “Global Sequence Comparison” and “Local Sequence
Comparison” of this chapter. This statistic is the score of the best
matching intervals between two sequences, where nonidentities in the
alignments receive penalties. In the section “Global Sequence
Comparisons,” we showed that the growth of score of global alignments
of random sequences is linear with sequence length. In the section
“Local Sequence Comparisons,” we showed that the number of long
runs of exact matches between random sequences has an approximate
Poisson distribution. Below we show that the Poisson distribution
implies that, for exact matching, the growth of longest run length is
proportional to the logarithm of the product of sequence length, Then we
state the result that all optimal alignments of a broad class have a score
that has either logarithmic or linear growth, depending on the penalties
for nonidentities. We will consider two sequences A = A4 A,...4, and

B = B,B,...B, of equal length n.

Recall that p:=P(two random letters are identical)= P(C, =1). In
the case of unknown alignments, A = E(W#) is given from equation (4.5)
by

A= p(n+tn-2t+D)+(n—-t)n-1)1-p).

For A =1, we expect one run of length ¢. Then

,_.
lf

p{n+n-2t+ ) +(n-t)n—1)1-p))
p'(nn(1-p)).

bl

Solving for ¢ yields
t = log,,, (nn(1- p)).

Therefore the length of the longest run of identities grows like
logy, (n*) = 21ogy,, ().



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Malecular Biology (1995)
http://www.nap.edu/openbook/0309048869/html109.html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

Hearing Distant Echos 105

To relax our stringent requirement of identities, we recall scoring for
the alignments as introduced in the section “Global Sequence

Comparisons.” Extend the sequence 4,4,...4, to A4, 4,...4, by
inserting gaps “~” and similarly extend B B,...B, to B Bsz

Define
L W -
S(A3B) = maXZS(A(‘ :Bj )3
=]
where
+1if A=8
s(4,8) = {—p it A2 B’

s(-,B) = s(4,-) = -6,

and U =0,8 =0. The maximum is extended over all ways of inserting
gaps and all L.

In Smith and Waterman (1981) and Waterman and Eggert (1987),
dynamic programming algorithms are presented to compute

H(A,B) = H(A,B;u,8) = max{S(,J): Ic A,JcB}

in time O(nl). By I'c A, for example, we mean all /=4,4,,,...4,,
where 1<7 < j<n. This algorithm was designed to study situations like
our 168 rRNA/RNA relationships. We are searching for segmental
alignments that are not necessarily perfect matchings but are unusually
good matches. After some discussion of the statistical properties of
H(A,B;1L,8), we will apply the algorithm to our data.

The statistic H(A,B;1,8) is for one of the so-called local alignment
algorithms, However, when the penalties | and & are set to 0, the
algorithm computes a global alignment. The results in the section
“Global Sequence Comparisons” imply that

H(A,B;0,0)~an;

but when the parameters are set to <o, the regults in the section “Local
Sequence Comparisons” imply that
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H(A,B;es,00)~blogn.

It 15 natural to ask if there are other growth rates. The answer is
presented in Waterman et al. (1987) and Arratia and Waterman (1994),
where the following result is proved: Assume both sequences have equal

lengths n. There is a continuous curve in the nonnegative (U,0) plane
such that when (U,8) belongs to F,, the same component as (0,0), the
growth of A is linear with sequence length. When (u,8) belongs to F,,,
the same component as (es,2) , the growth is logarithmic with sequence
length. In any curve crossing from F; to F_ there is a phase transition
in growth of the score H(p,08). This behavior is quite general, and in
Armatia and Waterman (1994) it is shown to hold with very general
penalties for scoring matches, mismatches, and indels, The behavior of
H(A,B;1,0) when (l1,8) lies on the line between F; and F remains
an open question.

RNA EVOLUTION REVISITED

How do the results in the previous section apply to our comparisons
of 168 rRNA with tRNAs? As we have seen, the matchings of Bloch et
al. (1983) were the result of applying a local algorithm, and so we will
apply the local algorithm H to the data and study the distribution of
scores. The first task is to compare the sequences using the statistic
H{A,B;p,0) with L =09 and & =2.1. These values have been used in
several database searches, and the growth of scores from aligning
random sequences lies in the logarithmic region. The results of the
algorithm applied to our data can be found in Table 4.2. No closed-form
Chen-Stein method has been arrived at for alignments with indels, so the
results are presented in number of standard deviations (#o) above the
mean value for comparing two random sequences of similar lengths.
(See Waterman and Vingron (1994) for recemt work on estimating
statistical significance.) The estimated mean as a function of the tRNA
length is

H(A,B;11=09,8 =2.1) = 504 logn—3095,
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Table 4.2 Scores and Alignment Statistics

tRNA Score o Matches mms. Indels

ala-1a 12.2 -.02 14 2 0
ala-1b 12.2 -0.1 14 2 0
cys 21.0 6.2 40 10 5
asp-1 10.8 -1.1 22 8 2
glu-1 10.9 -0.8 21 9 1
glu-2 12.8 0.6 22 B 1
phe 13.0 0.6 32 10 5
aly-1 9.4 14 15 4 1
gly-2 9.5 -1.2 35 15 6
gly-3 14.4 1.5 41 14 7
his-1 13.2 1.1 28 12 2
ile-1 13.6 0.9 41 26 2
ile-2 14,0 13 35 10 6
lys 10.7 -0.5 23 7 3
leu-1 13.8 0.7 - 49 28 5
Jeu-2 11.7 -0.7 33 17 3
leu-5 13.4 0.4 36 14 5
met-f 12.0 -.03 44 20 7
met-m 11.4 -0.2 21 4 3
asn 15.3 2.4 33 13 3
gln-1 11.8 0.1 23 8 2
gln-2 12.1 0.2 26 11 2
arg-1 13.3 0.7 48 23 7
arg-2 12.8 0.3 26 8 3
sar-1 11.1 -1.3 29 11 4
ser-3 13.8 0.3 42 18 6
thr-ggt 10.1 -1.3 15 1 2
val-1 11.9 -0.2 22 9 1
val-2a 11.3 -0.7 14 3 0
val-2b 11.3 -0.4 14 3 0
trp 11.0 -0.7 22 10 1
tyr-1 11.7 -04 31 17 2
tvr-2 10.9 -0.9 42 19 7

P

# o. the number of standard deviations above the mcan value (for somparing
the two random scquences of similar lengths); mms., mismatches; indels,
insertions/deletions,
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while the standard deviation is estimated to be 6 =149. In contrast to
Table 4.1, there is one tRNA, that for cystine, that scores exceptionally
high. The tails of the extremal distributions in the logarithmic region
probably behave like exp(—As), where # is the test value as in the section

“Local Sequence Comparisons” and A is a constant, but this has not yet
been proven rigorously. The usual intuition informed by the tail of a

normal distribution has the probabilities behaving like exp(—t*)/2,
which converges to 0 much more rapidly than the Poisson or exponential

tails. Thus except for the cystine score, the remaining scores look very
much like scores from random sequences. Simulations were performed,

and the score 21.0 has an approximate p-value of 107, so that it is not
possible to dismiss this matching for statistical reasons alone. As far as
we know, no one has offered a biological explanation of this interesting
match. As to the hypothesis of Bloch et al. (1983), while their work
concluded that “‘matches are too frequent and extensive to be attributed
to coincidence,” it is not supported by the data but is instead the result of
incorrect estimation of p-values. This data set received their most
extensive analysis, and they concluded that over 30 percent of the
matchings between E. coli 168 TRNA and tRNAs were significant at the
level o = 0.10. Correct estimates show about 10 percent of the matching
at the level o = 0.10. While the origin of life may be hiding in tRNA and
16S rRNA, it remains elusive.
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Chapter 5
Calibrating the Clock:
Using Stochastic Processes to Measure
the Rate of Evolution

Simon Tavaré
University of Southern California

Deoxyribonucleic acid (DNA) sequences record the history
of life. Although DNA replication is remarkably accurate,
mutations do occur at a small but nonnegligible rate, with
the result that an individual’s descendants begin to diverge
in DNA sequence over time. By examining DNA
sequences among different species or among different
individuals within a single species, it is possible to
reconstruct aspects of their evolutionary history. Such
studies have been pursued with special interest in the
human, where an unusual DNA sequence called the
mitochondrial genome has been used to trace human
migrations and human evolution, The author shows how
mathematical tools from the theory of stochastic processes
assist in calibrating the molecular clock inherent in DNA
sequences.

While DNA sequences are transmitted from parent to child with
remarkable fidelity, mutations do occur at a small but nonnegligible rate,
with the result that an individual’s descendants begin to diverge in DNA
sequence over time. Some mutations are deleterious and are eliminated by
natural selection, but many are thought to be selectively neutral and thus
accumulate at a roughly steady rate—providing a molecular clock for
measuring the time since two species or two individuals within a species
shared a common ancestor. In this manner, it is possible to reconstruct an
evolutionary tree and even estimate the times of key separation events.

114
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Different biological sequences within an organism may obey different
clocks. The amino acid sequence of a protein encoded by a gene changes
more slowly than the DNA sequence of the underlying gene because many
amino acid changes may be selectively disadvantageous (because they
disrupt function). On the other hand, a significant proportion of DNA
changes may be selectively neutral because they create a synonymous codon
(that is, one that specifies the same amino acid). Similarly, DNA regions
within genes change at a slower rate than the DNA sequences located
between genes. Accordingly, evolutionary studies of distant species are often
carried out by examining amino acid sequences of proteins, while
evolutionary comparisons among more closely related species are better done
by examining DNA sequences within or between genes.

To study evolution within a single species such as the human, it is often
useful to study DNA sequences that change at especially rapid rates. The
mitochondrial genome provides an ideal substrate for such studies. The
mitochondrion is an organelle found in the cytoplasm of eukaryotic cells,
whose primary role is to generate high-energy compounds that the cell uses
to drive chemical reactions. Although the mitochondria use many proteins
that are encoded by genes in the cell nucleus, each mitochondrion has its
own small circular chromosome that encodes a few dozen genes essential for
its function. '

In the human, the mitochondrial genome consists of 16,569 base pairs
whose DNA sequence has been completely determined (Anderson et al.,
1981). Human mitochondria are inherited only from the mother, and so
their genealogy 1s considerably simpler to follow than for genes encoded
in the nucleus (which are inherited from both parents and are subject to
recombination between the two homologous copies in the cell).
Conveniently for evolutionary studies, mitochondrial DNA (mtDNA) has
an increased rate of nucleotide substitution compared to nuclear genes,
owing to the presumed absence of certain DNA repair mechanisms.
Moreover, the mitochondrial genome contains certain regions that are
particularly tolerant of mutation, that is, appear to be subject to little
selective pressure (Avise, 1986) and thus show a great deal of varation. In
all, the mitochondrial genome may be evolving 10 times faster than the
nuclear genome.

For these reasons, molecular population geneticists have carmried out
many studies of the DNA sequences of mitochondrial variable regions in
many human populations (Di Rienzo and Wilson, 1991; Horai and
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Hayasaka, 1990; Vigilant et al., 1989, 1991; Ward et al., 1991), Studies of
mitochondnal sequences of different Native American tribes strongly
suggest that there were multiple waves of colonization of North America by
migrant groups from Asia, and even allow one to estimate the dates of these
events (Schurr et al.,, 1990; Ward et al., 1991). Assuming a constant
evolutionary rate, the pattem of mutations between diverse human groups
has been used to argue (Cann et al., 1987) that the mitochondria of all living
humans descended from a mother that lived in Africa some 200,000 years
ago—the so-called Eve hypothesis. Although the precise details of the
hypothesis are disputed (Maddison, 1991; Nei, 1992; Templeton, 1992), the
general power of the methodology is well accepted. (As an aside, the reader
should note that the existence of a common ancestor—Eve, so to speak—is a
mathematical necessity in any branching process that satisfies very weak
conditions. The biological controversies pertain to when and where Eve
lived.)

Each of these applications requires a knowledge of the rate at which
mutations occur in an mtDNA sequence. Estimates of this rate have been
obtained by comparing a single DNA sequence from each of several species
whose times of divergence are presumed known. Divergence is calculated
from the number of nucleotide differences between species (using methods
that correct for the possibility of multiple mutations at a site), and rate
estimates are obtained by dividing the amount of sequence divergence by the
divergence time. For data taken from multiple individuals in a single
population, one requires a model that takes account of the population genetic
aspect of the sampling: individuals in the sample are correlated by their
common ancestry. In this chapter, we describe the underlying stochastic
structure of this ancestry and use the results to estimate substitution rates.

We have chosen to focus on rate estimation to give the chapter a single
theme. We are not interested per se in statistical aspects of tests for selective
neutrality of DNA differences; rather, we assume neutrality for the data sets
discussed as examples. The techniques described here should be regarded as
illustrative of the theoretical and practical problems that arise in sequence
analysis of samples from closely related individuals, The emphasis is on
exploratory methods that might be used to summarize the structure of such
samples.
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OVERVIEW

To illustrate the methods, we use a set of North American Indian
mitochondrial sequences described in Ward et al. (1991). These authors
sequenced the first 360 base pairs of the mitochondnal contro! region for a
sample of 63 Nuu-Chah-Nulth (Nootka) Indians from Vancouver Island. The
sample comprises individuals who were maternally unrelated for four
generations, chosen from 13 of the 14 tribal bands. As a consequence the
sample deviates from a truly random sample, although it will be treated as
such for the purposes of this chapter. An important parameter in the analysis
is the effective population size of the group. This is approximated by the
number of reproducing females, giving a value of about 600 for the
long-term effective population size V.

The most common DNA changes seen in mitochondria are transitions
(changes from one pyrimidine base to the other or one purine base to the
other, thatis, C «> T or A ¢ G) rather than transversions (changes from a
pyrimidine to a purine or vice versa). Indeed, the sequenced region shows no
transversions, so that each site in the sequences has one of just two possible
nucleotides. We focus on the pyrimidine (C or T) sites in the region. There
are 201 such sites, in which 21 varable (or segregating) sites define 24
distinct sequences (called alleles or lineages). The details of the data,
including the allele frequencies, are given in Table 5.1.

The parameter of particular interest here is 6, the population geneticist’s
stock in trade. The variable 41is a measure of the mutation rate in the region,
and it figures in many important theoretical formulas in population genetics.
For mitochondrial data, it is defined by

0=2Nu,

where N is the effective population size referred to earlier, and « is the
mutation rate per gene per generation. Once #1s estimated, we can estimate u
if N is known or N if u is known. In what follows, we estimate the
compound parameter & rather than its components.

In the section immediately following, we begin by outlining the
structure of the coalescent, a robust description of the genealogy of
samples taken from Jlarge populations. The effects of mutation are
superimposed on this genealogy in several ways. The classical case, which
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records the allelic partition of the sample, leads to the sampling theory of the
infinitely-many-alleles model initiated by Ewens (1972). The Ewens
sampling formula is then described, followed by a brief digression into the
simulation structure of mutations in the coalescent, both in top-down and
bottom-up form. Next, the infinitely-many-sites model is introduced as a
simple description of the detailed structure of the segregating sites in the
sample. Finally, we retum to classical population genetics theory, albeit from
a coalescent point of view, to discuss the structure of K-allele models. This
in tum develops into the study of the finitely-many-sites models, which play
a crucial role in the study of sequence variability when back substitutions are
prevalent,

In the next section we digress to present a mathematical vignette in the
area of random combinatorial structures. The Ewens sampling formula was
derived as a means to analyze allozyme frequency data that became prevalent
in the late 1960s. Current population genetic data is more sequence oriented
and requires more detailled models for its analysis. Nonetheless, the
combinatorial structure of the Ewens sampling formula has recently emerged
as a useful approximation to the component counting process of a wide range
of combinatorial objects, among them random permutations, random
mapping functions, and factorization of polynomials over a finite field. We
show how a result of central importance in the development of statistical
inference for molecular data has a new lease on life in an area of discrete
mathematics.

The final section briefly discusses some of the outstanding problems in
the area, with particular emphasis on likelihood methods for coalescent
processes. Some aspects of the mathematical theory, for example,
measure-valued diffusions, are also mentioned, together with applications to
other, more complicated, genetic mechanisms,

THE COALESCENT AND MUTATION

The genealogy of a sample of n genes (that is, stretches of DNA
sequence) drawn at random from a large population of approximately
constant size may be described in terms of independent exponential random
variables 7,7, _,,...,7, as follows. The time 7, during which the sample

has »n distinet ancestors has an exponential distribution with parameter
n(n—1)/ 2 at which time two of the lines are chosen at random to coalesce,
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giving the sample »n—1 distinct ancestors. The time 7,_; during which the
sample has #—1 such ancestors is exponentially distributed with parameter
(n—1)(n—-2)/2, at which point two more ancestors are chosen at random
to coalesce. This process of coalescing continues until the sample has two
distinct ancestors. From that point, it takes an exponential amount of time
7, with parameter 1, to trace back to the sample’s comimon ancestor. For
our purposes, the time scale is measured in units of N generations, where N
is the (effective) size of the population from which the sample was drawn.
This structure, made explicit by Kingman (1982a,b), arises as an
approximation for large N to many models of reproduction, among them the
Wright-Fisher and Moran models. A sample path of a coaleseent with n =35
is shown in Figure 5.1.

FIGURE 5.1 Sample path of the coalescent for #=35. T denotes the time during which

the sample has j distinct ancestors. 7} has an exponential distribution with mean
2/j(i-1).

From the description of the genealogy, it is clear that the time T, back
to the common ancestor has mean
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n

or approximately 2N generations for large sample sizes. Further aspects of
the structure of the ancestral process may be found in Tavaré (1984). Rather
than focus further on such issues, we describe how the genealogy may be
used to study the genetic composition of the sample.

To this end, assume that in the population from which the sample was
drawn there is a probability u that any gene mutates in a given generation,
mutation acting independently for different individuals. In looking back »
generations through the ancestry of a randomly chosen gene, the number of
mutations along that line is a binomial random variable with parameters »
and u. If we measure time in units of N generations, so that » =| Nt | (that
15, # is Nt rounded down to the next lower integer), and assume that
2Nu—0 as N — o, then the Poisson approximation to the binomial
distribution shows that the number of mutations in time ¢ has in the limit a
Poisson distribution with mean 8¢ /2. This argument can be extended to
show that the mutations that arise on different branches of the coalescent tree
follow independent Poisson processes, each of rate 6 /2 . For example, the
total number of mutations {1, that occur in the history of our sample back to

its common ancestor has a mixed Poisson distribution—given
7.1, ... T, s, has a Poisson distribution with mean 8", /7 . The
- J

a2 n=l2-

mean and variance of the number of mutations are given by Watterson

(1975):
6 ol 1
E(u ) = —2'2 JE(T) =6 5.1
=2 J=1
and
I'-l 271—] 1
Var(p ) = 62 +0° 3 —. (5.2)
: g =9 =]

We are now in a position to describe the effect that mutation has on the
individuals in the sample,
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The Ewens Sampling Formula

Motivated by the realization that mutations in DNA sequences could
lead to an essentially infinite number of alleles at the given locus, Kimura
and Crow (1964) advocated modeling the effects of mutation as an
infinitely-many-alleles model. In this process, a gene inherits the type of its
ancestor if no mutation occurs and inherits a type not currently (or
previously) existing in the population if a mutation does occur. In such a
process the genes in the sample are thought of as unlabeled, so that the
experimenter knows whether two genes are different, but records nothing
further about the identity of alleles. In this case the natural statistic to record

about the sample is its configuration C, =(C,,C,,...,C, ), where
C; = number of alleles represented j times,

Of course, C, +2C, +... +nC, = n, and the number of alleles in the sample
is

K, =C+C+..+C,. (5.3)

The sampling distribution of C_ was found by Ewens (1972):

PC, —a) = H[ejal (5.4)

e(") j=1 J J!

for a=(a,,a,...,a,) satisfymg a;20 for j=12,...,n and

M .
Y" ja =n,and where
J=1 J

By =0O+D--O+n-1).

From (3.4) it follows that
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Sk el:
P(K, =k) = rb—, k=12, .n, (5.5)
e(ﬂ)

and

(K,) f 0 (5.6)
E(X,) = -, .
j=()e +J

Sf being the Stirling number of the first kind. From (5.5) and (5.4) it
follows that K is sufficient for &, so that the information in the sample
relevant for estimating @ is contained just in X, . This allows us (Ewens,
1972, 1979) to calculate the maximum likelihood (and moment) estimator of
@ as the solution 6 of the equation

n-1 é
k=2 7
=08+

where £ is the number of alleles observed in the sample. In large samples, the
estimator § has variance given approximately by

. k-1 )

For the pyrimidine sequence data described above in the “Overview”
section, there are k=24 alleles. Solving equation (5.7) for § gives

A

0 =10.62, with a variance of 9.89. An approximate 95 percent confidence
interval for @is therefore 10.62 * 6.29 . This example serves to underline the
variability inherent in estimating ¢ from. this model. The pyrimidine region
comprises 201 sites, so that the per site substitution rate is estimated to be
0.053+0.031.

The goodness of fit of the model to the data may be assessed by using
the sufficiency of K, for & given K , the conditional distribution of the

allele frequencies is independent of 6. Ewens (1972, 1979) gives further
details on this point. To describe altemative goodness-of-fit methods, we
return briefly to the probabilistic structure of mutation in the coalescent.
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Forwards and Backwards in the Tree

Hudson (1991) describes many situations in which simulation of
genealogical trees is useful. In its simplest form, the idea is to construct (a
simulation of) a coalescent tree, with times and branching order, and then
superimpose the effects of mutation on this tree using the Poisson nature of
the mutation process. In this section we make use of two equivalent
descriptions of the effects of mutation in the coalescent tree in which the
mutation and coalescence events evolve simultaneously.

Top-down

The first of these methods is a very useful “top-down” scheme exploited
by Ethier and Griffiths (1987) in the context of the infinitely-many-sites
model. We start at the common ancestor of the sample and think of the
genetic process running down to the sample. Just after the first split, we have
a sample of two individuals, each of identical genetic type. Attach to each
individual a pair of independent exponential alarm clocks—one of rate
8 /2, the second of rate 1/2—and suppose the clocks are independent for
different individuals. The & clocks will determine mutations, the other clocks
split times. Now watch the clocks until the first one rings: if a é-clock rings,
a mutation occurs in that gene, whereas if one of the other clocks rings, a
split occurs in which that gene is copied, now making a sample of three
individuals. Using the standard “competing exponentials” argument, the
probability that a mutation occurs first is

0/2+0/2 _ 8
0/2+0/2¢1/2+1/2 B+1

whereas a split occurs first with probability 1/ (8 + 1) . Furthermore, given
that a mutation occurs first, the gene in which it occurs is chosen uniformly
and at random, and given that a split occurs first, the gene that is copied is
chosen uniformly and at random.

Once an event occurs, the process repeats itself m a similar way.
Suppose, then, that there are currently m genes in the sample. Attach
independent mutation clocks of rate © /2 and independent split clocks of
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rate (m—1)/2 to each of the m genes and wait for one to ring. The
probability that a mutation clock rings first is 6 /(8 +m—1), and, given that
a mutation occurs first, the gene that mutates is chosen uniformly and at
tandom. Similarly, the probability that a splic occurs first is
(m-1)/(0 +m—1), with the splitting gene being chosen at random from
the m possibilities.

The only wrinkle left 1s to describe the rule that tells us when to stop
generating splits or mutations. In order to have the right distribution for the
numbers of mutations when the sample has » ancestors, we must run until
the first split after », discard the last observation, and then stop.

This simple scheme can be used effectively to simulate observations
from extremely complex mutation mechanisms using only Bernoulli random
variables, and provides a way of generating and storing the effects of each of
the mutations. Some examples are given in the following sections.

Bottom-up

The second scheme, which proves very useful for deriving recurrence
relatons for the distribution of allele configurations, is the “bottormn-up”
method. In this case, the idea is to use the exponential alarm clocks from the
bottom of the tree (that is, beginning at the sample) and run up to the
common ancestor at the top. If we look up from the sample of size n toward
the root, the probability that we will encounter a mutation before a
coalescence 15 6 /(0 +#n—1), and the probability that a coalescence will
occur first is (n—1)/(@+n—1). The probability distribution of the
configuration at the tips may then be related to the distribution of the
configuration at the mutation or coalescence time.

To illustrate how this works, consider the infinitely-many-alleles
mutation structure. Suppose that the current configuration consists of counts
a=(a,a,...,a,) with a, =0, and let P,(a) denote the probability of
this configuration. If the first event in the past is a coalescence, then the
configuration of n —1 genes must have been

(@yca,,a;+La,, —La,,....a,,)
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for some j=1,2,...,n—2, and a gene in class j must be chosen to have an
offspring. Since this last event has probability j(a, +1)/(n—1), the

contribution to P, (a) from such terms is

Py— > ~P_(a,..a

=1 n-1 e

n—1 (& ja;+1) A
[ J a+la., —l,aj+2 N SN )J

(5.9)

If; on the other hand, the first event in the past was a mutation, then the
configuration must have been either

(al—l,az,_..,aj_z,aj_l_l,aj+1,a a, ,0)

P2 EARAE Ry B

and the mutation occurred to0 a gene i a j class, j=3,4,...,n—1
(probability j(a; +1)/n), or

(@, =2,a, +L,a,,...,a,_,0)

and the mutation occurred to a gene in the 2 class (probability
2(a, +1)/n),or

(ay,....,a,.,,0)

and the mutation occurred to a singleton gene (probability a, / ). Finally,
the configuration could have been

(a,-la,,. ..a,,,a,,—11)

n=2>

and the mutation oceurred in the n class (probability 1). Combining all these
possibilities and adding the term in (3.9) gives
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P (a)=

0 +n_1(Pn(al - 1’a23"‘5an—2=an71 _131)

a
+-an,,(a],...,a,,_1,0)

2 1
. (ay + )Pn(al,2,a2+l,a3,...;a,,_1,0)
n
n=1j(a, +1
+2L,__)
=3
n_l n—.?j(aj +].)
O+n-1 /5 n-l

P (ay=Lay,....a;,y,a;,,—La; +La,,....,a,,,0)

Pn—l(a1="'?aj—l’aj + ]’aj—l _LaJ‘+2s---aan~1))-

(5.10)

The only case not covered by equation (5.10) is the one in which
a=(0,...,0,1) . In this case the previous event had to be a coalescence, and
0

n—1

P (0,...,0,1) = m

n

P_(0,....0,1). (5.11)

The persistent reader will be able to verify that P, (a) given by the Ewens
sampling formula (5.4) does indeed satisfy equations (5.10) and (5.11).

The Infinitely-Many-Sites Vodel

The infinitely-many-sites model of Kimura (1969) and Watterson (1975)
is the simplest description of the evolution of a population of DNA
sequences. The sites in the sequences are completely linked, and ecach
mutation that occurs in the ancestral tree of the sample introduces a new
segregating site into the sample. In this process, each new mutation occurs at
a site not previously segregating—new mutations arise just once. It follows
that at ecach segregating site, the sample may be classified as type 0
(ancestral) or type 1 (mutant). Of course, in practice we do not know which
1s which. The sequences in the sample may now be described by strings of 0s
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and 1s. If distinct sequences are treated as alleles, then the sampling theory is
reduced to that covered by the Ewens sampling formula.

The number S, of segregating sites is an important summary statistic
for the sample. Since each new mutation produces a segregating site, it
follows that S, =, , the number of mutations in the ancestral tree. The
mean and variance of S, are therefore given by (5.1) and (5.2), tespectively.

The number of segregating sites has been studied extensively for many
variants of the infinitely-many-sites process, including the effects of selection
and recombination, for example. Hudson (1991) gives an accessible
summary of this work. When there is no recombination, the fundamental
results have been established by Watterson (1975), Ethier and Griffiths
(1987), and Griffiths (1989).

Watterson (1975) parlayed the moments of §, into an unbiased

estimator 8 of &, namely,

=>3]
ll
)

(5.12)

LT

with variance

Var(S )
H

n

Var( 6 )=

n-l o~
where A =3’ 5. Note that 8 does not depend on knowing which type at a
S

site 1s ancestral and does not make full use of the data. For the pyrimidine
data, there are 21 segregating sites, giving an approximate 95 percent
confidence interval for ¢ of 4.46+3.10. This should be compared to the
estimate of 10.62 £ 6.29 obtained from the Ewens sampling formula.

Now think of the data as an nx s matrix of 0s and 1s, 5 being the
number of segregating sites in the sample. When 0 is known to be ancestral
in each site, Griffiths (1987) established that the data are consistent with the
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infinitely-manyv-sites model as long as in any set of three rows of the matrix,
at most one of the patterns

0 1 1
Ly, {0, |1
1 1 0

occurs. This is equivalent to the pairwise compatibility condition. for binary
characters established by Estabrook et al. (1976) and McMorris (1977): two
sites are compatible if two or fewer of the patterns 01, 10, 11 occur. When
the ancestral state is unknown, an analogous result holds: two sites are
compatible if at most three of the patterns 00, 01, 10, 11 occur.

This translates into a simple test of whether a given ser of binary site
data is consistent with the infinitely-many-sites model. If in all pairs of
columns at most three of the pattems 00, 01, 10, 11 occur, then there is at
least one labeling of the sites that is consistent, McMorris (1977) proved that
consistent data remain consistent when the most frequent type is taken as
ancestral.

In practice, back mutations and recombination make most molecular
data inconsistent with this model. However, it is worthwhile to look for
maximal subsets of sites that are consistent, as this provides a way to identify
regions of the sequence with simple structure. For the pyrimidine data
described in Table 5.1, the maximal consistent set has 14 sites, those in
positions 2-8, 11-12, 14-16, and 20-21. The remaining 7 sites have some
inconsistencies, attributable to back substitutions, for example.

Of the 2" =16,384 possible relabelings of the consistent set, just
16 are consistent. Each of these labelings is associated with a
genealogical tree that describes the relationships between the mutations
in the coalescent. The precise definition of the (equivalence class of)
trees 1s given in Ethier and Griffiths (1987) and Griffiths (1989). The
tree 1s equivalent to those built using compatibility methods for binary
characters; see Felsenstein (1982, pp. 389-393) for a detailed discussion
and references. The nodes in the tree represent the mutations that have
generated the segregating sites, and the tips represent the sequences. A
convenient algorithm for finding these trees is provided by Griffiths
(1987), who also shows (Griffiths, 1989) how the probability of a tree
with a given ancestral labeling can be computed under the
infinitely-many-sites model. Griffiths® program PTREE can then be used
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to construct true maximum likelihood estimators of the parameter 4. It
can also be used to compare “likelihoods” of the different ancestral
labelings. The corresponding theory of the unrooted genealogical trees
that arise when the ancestral labeling is unknown has recently been
developed by Griffiths and Tavaré (1994c), and this leads to a practical
computational method for estimating &by maximum likelihood.

Our analysis of the mitochondrial data set has shown that while parts of
the region are consistent with a simple evolutionary model, there are sites
which are behaving in a more complicated way. In the next section, we
describe a finitely-many-sites model that is useful for modeling regions in
which back mutations have occurred.

K-Allele Models

We turn first to the K-allele model. In this process, we assume that there
are K possible alleles at the locus in question. When a mutation oceurs to an

allele of type 7, there is a probability m, that the resulting allele is of type ;.
To allow for different rates of substitution for different alleles, we can have
m; >0, and we write M = (m;) . The effects of mutation along a given line
are now modeled by a continuous time Markov chain whose transition
matrix P(t)=(p;(¢)) gives the probabilities that a gene of type i has been
replaced by a descendant gene of type j a time # later. Indeed,

P(r) = exp [%(M—f)],

where I is the K x X identity matrix, so that the generator of the mutation
process is

(q;) = Q(M#I). (5.13)

¢ 2

ill
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It is worth pointing out that a given Q matrix can be represented in more than
one way in the form (5.13), so that 8, for example, is not identifiable without
further assumptions. However, the rates g;, j#i are identifiable. If Q has a

stationary  distribution m=(m,,m,,...,w;) satisfymg wQ=0,

Elen =1, and if the common ancestor of the sample has distribution =,
4

then the distribution of a gene at any point in the tree is also 7, and the

process is stationary.
From the data analyst’s perspective, the sample of 7 genes can be sorted

into a vector N=(N,, N,,..., Ny) of counts, there being N, alleles of type

j in the sample. Surprisingly, the stationary distribution of N is known
explicitly only for the special case

1
q; =—¢€,;>0, j#i.

This is equivalent to the independent mutations case in which
O =g, +€,+ . +€,, X, =¢;/0,and m; =n; forall { and ;. In this case,
Wright’s Formula (Wright, 1968) can be used to show that

pev-w = (PTIT se

i=1 ny

for
n=(n,ny,...,0),n; 20for j=1,2,.. . K,and n=n, +n, +...+ .

In the next section, we use this result for the case K =2 .1If

Q= %[_ﬁa _OEJ (5.15)

then equation (5.14) specializes to

) = POV, =1) = (a+{3+n-1j_1(1+|3—1)[n-5;0;_1] (5.16)

n
for [=0,1,...,n.
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Because the samphng formula for general O is not known explicitly, it is
useful to have a way to compute it. Perhaps the simplest is an application of
the bottom-up method described above. Define ¢(n) =P(N=n), and set
e; =(0,...,0,1,0,...,0), the 1 occurring in position j. Look up the tree to
the first event that occurred. This is either a mutation (with probability
0 /(0 +n—1)) or a coalescence (with probability (n—1)/(® +n-1)). By
considering the configuration of the sample at this event, we see that g(n)
satisfies the recursion

] ~ 1 n; +1
g(n) = m(%;mﬁq(n)+ ;%Tmyq(n+ei -e,))
n—1 n;—1
: —e, 5.17
T 1% g e 54D

where g(n) = 0 if any n, <0, and ¢(e;) =7, . The process is stationary if
n, ==, for all i, We exploit this recursion more fully in the section below
on likelihood methods.

The Finitely-Many-Sites Models

We now have the machinery necessary to describe the
finitely-many-sites model for molecular sequence data involving »n
sequences, each of s sites. The sites are thought of as completely linked. and
each site is typically one of either 2 or 4 possibilities. At its grossest level,

the finitely-many-sites model is “just” a K-allele model in which K =2° or

4° . From an inference point of view, however, there are far too many
parameters in such a model. and some simplification is required. The
simplest null model of sequence evolution is the case in which mutations
occur at arate of 0 /2 per gene, but when a mutation occurs, a site is chosen
at random to mutate and the base at that site changes according to a mutation
matrix M. A slightly more general model might allow site 7 to mutate with
probability p;, once more according to M. For a two-type classification of

each site, the first model has two parameters to be estimated, and the second
has s+ 1. These schemes can be modified to allow for other comrelation
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structures between the sites at the expense of more complicated methods of
analysis.

Motivated by our sequence data, we concentrate on the two-state case
and discuss methods for estimating the parameters of the simplest null
model. At a single site, the model behaves exactly like a 2-allele process
with

=8 -
Q=5-(M-1D),

because the per site substitution rate is 0 / 5. This has the structure of (5.15),
with o=m8/s and B=m0/s. The distribution of sites is
exchangeable (since, conditional on the coalescent tree, mutations are laid
down independently at each site; this is a simple example of a marked
Potsson process argument), and in particular the sites have identical
distributions. They are not of course independent because of correlations
induced by the common ancestry in the coalescent. However, some simple
properties of the sequences are easy to calculate. In particular, the number
S, of segregating sites has mean

E[S,] = sP(site is segregating) = s(1-g(0)—g(n)), (5.18)

where g(') is given by (5.16).

The equation (5.18) provides a simple heuristic method for estimating
the parameters of the process. First, the equilibrium base frequencies
n,=Pf/{o+P) and 1, = /(o +P) are estimated from the sequence
data. This done, the expected fraction of sites that are not segregating is,
from (5.16) and (5.18),

T®,) (TOm +n) TOr,+n)

-1 =
sTE(G-S)) T(8, +n) r®.mx,) r®m,) 7

(5.19)

where 6, =6/s i3 the per-site substitution rate. For the pyrimidine
mtDNA data, the observed fraction of nonsegregating sites is 180/201 =
0.896 and the observed fractions of C (labeled 1) and T (labeled 2) bases
are T, =0.604 and 1, = 0.396, respectively. Substituting these into (5.19)
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and solving for 8, give the moment estimator 5: = 0.050. This translates
into an estimate of & =2g,, =0.050x040=0.02, and an estimate of
B =2g,, =003. The varance of the moment estimator is hard to compute

explicitly, although the top-down simulation method for the coalescent could
be used to simulate the process and therefore to construct empirical estimates
of the variance.

A more detailed approach to rate estimation in the finite sites model is
described by Lundstrom et al. (1992a). The method is based once more on
the exchangeability of the distribution of base frequencies between sites with
the same mutation structure. Returning to the case in which there are K

possible labelings at each site, define V' =V ) , o be the fraction
nx Xy Xy weerX g

of sites in which x; individuals in the sample have nucleotide ; at that site,
for 1< j< K. The mean of V s given by

E(V ) =P(N=x)= 4(x), (5.20)

the right-hand side being given by (5.14) for the independent mutation
model, or by the solution of the recursion (5.17) in the general case. A least
squares method obtains estimates by minimizing the squared error function

YV —a(x))*.

This moment estimator makes fuller use of the data than the estimate based
on the number of segregating sites. An alternative estimator, also described
in Lundstrom et al, (1992a), is based on the assumption that the sites are
evolving independently. This approximation, which is reasonable for large
substitution rates (where the between-sites correlations are effectively
washed out), produces a likelihood function proportional to

ZV” logg(x),

that can then be maximized to obtain parameter estimates.
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For the mtDNA pyrimidine data, the moment method and the
(independent sites) maximum likelihood method gave estimates of the C to
T rate as o = 2g,, =002, and the T to C rac as § =2¢,, = 0.03. These are
in close agreement with the segregating sites estimator described above. To
assess the variability in the estimates of o and £ we used the top-down
simulation described above, arriving at empirical bootstrap confidence
intervals of (0.01,0.04) for ez and (0.02,0.06) for A These rates correspond

to substitution probabilities of between 17 x 107 and 33 10™° per site per

generation for transitions from C to T, and between 25% 10~ and 50 x107°
per site per generation for transitions from T to C.

The adequacy of these estimates depends, of course, on how well the
model fits the data. To assess this, we investigated how well key features of
the data are reflected in simulations of the coalescent process with the given
estimated rates. As might be expected, the overall base frequencies and the
number of segregating sites observed in the data are accurately reflected in
the simulations. One poor aspect of the fit concerned the number of distinct
sequences observed in the simulations (9 to 17 per sample) compared with
the 24 observed in the data. Thete are several reasons why such a poor fit
might be observed, among them (a) site-specific varjability in mutation rates,
(b) admixture between genetically distinct tribes, and (¢) fluctuations in
population size that are not captured in the model. Further discussion of
these points can be found in Lundstrom et al. (1992a) and in the final section
of the present chapter. ,

At this point, we have come to our mathematical vignette, where
population genetics theory intersects with an interesting area i
combinatorics. The mathematical level of the vignette is somewhat higher
than our discussion of the coalescent; readers primarily interested in aspects
of the coalescent might feel justified in skipping to the final section.
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MATHEMATICAL VIGNETTE:
APPROXIMATING COMBINATORIAL STRUCTURES

Our mathematical vignette takes us from the world of population
genetics to that of probabilistic combinatorics. We show how the Ewens
sampling formula (ESF), whose origins in population genetics were
described above, plays a central role in approximating the probabilistic
structure of a class of combinatorial models. This brief account follows
Arratia and Tavaré (1994), to which the interested reader is referred for
further results. Our first task is to describe the combinatorial content of the
ESF itself.

Approximations for the Ewens Sampling Formula

First, we recall Cauchy’s formula for the number N(a)=
N(a,,a,,...,a,) of permutations of » objects that have a, cycles of length
1, a, cycles oflength 2, . .., a, cycles of length n:

J=1 ]

Ny =1 Sia, =n T[] L (5.21)
1=1 aj!

1(4) denoting the indicator of the event A. If each of the »! permutations is
assumed to be equally likely, then a random permutation has cycle index a
with probability

N(a)
n! (522)

(e 2

where C, = C,(n) is the number of cycles of size j in the permutation.
Comparison with (5.4) shows that (C,C,,...,C,) has the ESF with

P(C =a,,C,=a,,...,.C, =a,)

1l
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parameter © =1. To give the permutation representation of the ESF for
arbitrary &, we need only suppose that for some 6 >0,

P(n)=c8, nes

h?

(5.23)

where !71:) denotes the number of cyeles in the permutation ©t € S, the set of
permutations of 7 objects, The parameter ¢ is a normalizing constant, which
may be evaluated as follows. The number of permutations in S, with &

S¥|, the absolute value of the Stirling number of the first kind.

n

cycles is

Hence

Sk

ek =Ce(n)?

1= SPm =3 YPm) - kzl

e Sy k=1 m:In =k
sothat ¢ =8, . It follows that under this model,

P(C, =a,,C =a,,....C, =a,)

- = 20T L 24

oy AT

In summary, we have shown thar @biasing a random permutation gives the
ESF.

The next ingredient in our story is the observation that the law in (5.24)
can be represented as the joint law of independent Poisson random variables

Z,Z,,...,Z,, having E[Z,]=8/ j , conditional on TEE’Jf:ljZJ. =n:

2(C, Gy Cy= 22,2y, Z,| T =n), (5.25)

where # denotes the law. This follows because
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P(Z =a,,Z,=a,,...,Z,=a,|T=n) =

S dar=n) o ooigg s 1y
P(T: YL) J=1 aj !

5

which agrees with (5.24) apart from a norming constant that does not vary
with a,,a,,...,a,; since both formulas are probabilities, the norming
constants must be equal.

Equation (5.25) suggests that we might usefully approximate the
dependent random variables C,,C,,...,C, by the independent random
variables Z,.Z,,...,Z,. This turns out to be too ambitious, bur we can get
away with just a little less. For any be[n]={1.2,....n}, we can
approximate the jomt laws of C, =C,(n)=(C,,C,,...,C,) by those of
Z,=(2,,Z,,..,2,), with an error that tends to 0 as »n-—'c as long as
b=o(n),thatis, b/n-=>0.

As our measure of how well such an approximation might be expected
to work, we use total variation distance dy, as a metric on the space of
(discrete) probability measures. Three equivalent definitions of the total
variation distance d, (n) between (the law of) C, and (the law of) Z, are

given below:
d,(n) = dp (L(Cy(n)),L(Zy))
= sup |P(C,(n) € 4)-P(Z, € 4)|
Ag.’\lg
5.26
= -21- Zb|P(Cb(n)=a)-P(zb:a)| (5.26)
- mf P(C, ()£ Z,).

In (5.26), the infimum is taken over all couplings of C, and Z, on a
common probability space, and N, ={0,1,2,...}. Arratia et al. (1992) use a
particular coupling to show that there is a universal constant ¢ =¢(0) with
c{1) =2 such that
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d,(n) < c(e)%, (5.27)

so that indeed C, and Z, can be coupled closely if (and, it turns out, only
if) b=o(n).

Combinatorial Assemblies

The spirit of the approximations in the preceding subsection— replacing
a dependent process with an independent one—carries over to other
combinatorial structures. The first of these is the class of assemblies.
Assemblies are labeled structures built as follows. The set {1,2,...,n} is

partitioned into a, subsets of size & for £ =1,2,...,n, and each subset of
size £ 1s marked as one of m, indecomposable components of size k& For
example, in the case of permutations, m, ={(k-1)!, and the components of
size k are the cyeles on & elements, The number of structures M(a) of weight
nhaving a; components of size i, 1 =1,2,....7n, 15 therefore given by

n n | M “ 1
N(a) = I[Zla “——-njn!H < (5.28)
7=1 ! Jj=l _]' {1_!

J

and the total number p(n) of structures of weight » is given by

p(n) = T N(a). (5.29)

A random structure of weight » is obtained by choosing one of the p(n)
possibilities with equal probability. If C; =C;(n) denotes the number of

components of size j, then

P(Cl :al?cz = al:---acﬂ =a = (530)
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In the case of permutations, this reduces to (5.22), because then
m; /! jl=1/j. Note that for any x>0, the probability above is
proportional to

n 4 m.xj UJ. 1
1 Yiag, =n|]]| == —_,
1= il gt a,!

so that by comparison with (5.22) we see that 4(C,C,,...,C,)=
L(Z2,,Z,,...,2,|T=n), where the Z, are independent Poisson random
variables with means

EZz] = @ i=12, _.n
1!
In particular this imphes that
dy(n) = dp (L(C,),£(Z,))

= d; (L(R,), £(R,| T =n)),

where Rb =¥ ., iZ . This observation reduces the calculation of a total

variation distance between two processes to the calculation of a total
variation distance between two random variables. We focus our attention on
the class of assemblies that satisfies the logarithmic condition

W e (5.31)

i! i

for some x,v> 0. Among these are random permutations (for which (5.31)

holds identically in i with k = y =1), and random mappings of [] to itself,
for which mn =(i—l)!2;10ij/j!, K =1/2,y=e. The study of random
mappings has a long and venerable history in the combinatorics literature
and is reviewed in Mutafeiey (1984), Kolchin (1986), and Flajolet and
Odlyzko (1990), for example.
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For the logarithmic class we may choose x =y, and then it is known
(under an additional mild rate of convergence assumption in (5.31)) that

d,(n) = O{%} (5.32)

just as for the ESF. But more detailed information is available. For example,
Arratia et al. (1994b) show that for fixed b,

dy(m) ~ I~ E[IR ~ER]]. (5.33)

The term |k — 1 reflects the similarity of the structure to an ESF with

parameter K, whereas the term E[| R, - E[ R, ]|] reflects the local behavior of
the structure.

The 0-biased structures, those with probability proportional to 6 to the
number of components, can also be studied in this way. In particular (5.30)
holds, the Poisson-distributed Z; now having mean

The accuracy of the approximation of C, by Z, for the logarithmic class is
still measured by (5.32) and (5.33), with x replaced by Ok

A rather weak consequence of the bounds typified by (5.32) and (5.33) is
the fact that for each fixed b, (C,(n),C,(n),....C,(n))= (Z,,2,,....2,),
meaning that the component counting process C converges in distribution (in

R”) to the independent process Z. For each n, we arc comparing the
combinatorial process to a single limiting process. This recovers the classical
result of Goncharov (1944) showing that the cycle counts of a random
permutation are asymptotically independent Poisson random variables with
means 1/i. The analog for random mappings is due to Kolchin (1976).
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There are many uses to which such total varation estimates can be put.
In essence, functionals of the dependent process that depend mainly on the
small component counts (that is, on components of size o(n)) are well
approximated by the corresponding functionals of the independent process,
which are often much easier to analvze. A typical example shows that the
total number of components in such a structure asymptotically has a normal
distribution, with mean and variance 6« logn. A corresponding functional
central limit theorem follows by precisely the same methods. In addition,
these estimates lead to bounds on the distances between the laws of such
functionals. Some examples that illustrate the power of this approach can be
found in Arratia and Tavaré (1992) and Arratia et al. (1993).

Other Combinatorial Structures

The strategy employed for assemblies also works for other combinatorial
structures, including multisets and selections. We focus just on the multiset
case. To build such structures, which are now unlabeled, imagine a supply of

m; types of irreducible component of weight /, and build an object of total

weight n by choosing components with replacement. The number N(a) of
structures of weight » having @; components of size j=12,...,n 1s

N(a) = 1‘| (“ e J@’“F”} (5.34)

J

and the total number of structures of weight 7 is p(n)=X_N(a). A
random multiset of size # bas a; components of size j with probability

ala +m —1 n
H[ ] J EZ la, = n}. (5.35)
t=1

p(n) J=1 f

The ingredient common to assemblies and mulusets 15 the fact that
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2(C,Cy,eesC) = (2,25 Z,| T = 1),

but the approximating independent random variables {Z;} are no longer

Poisson, but rather negative binomial with parameters #z, and x:

P(Z =k) = (m" +kk1j(l—x‘)x'k, k=01,..., (5.36)

valid for 0 < x < 1. In the 6-biased case, the Z; are negative binomial with

parameters m, and Ox', forany 6 <x™' .

The most studied example in this setting concems the factorization of a
random monic polynomial over the finite field GF(q) with g elements. The
components of size i are precisely the irreducible factors of degree i, there
being

1 s
m o= ;Zl-'—(l/])qj
Ji

of them. The function (-} is the Mdbius function: w(k)=-1 or I
according to whether & is the product of an odd or even number of distinct
prime factors, and W(k) = 0 if k is divisible by the square of a prime. The
logarithmic condition

m o~ e (5.37)

is satisfied by random polynomials with ¥ =1 and y = ¢. For this logarithmic
class the total variation estimates (5.32) and (5.33) apply once more (with
appropriate modification for the 0-biased case), and the techniques described
at the end of the previous section can then be used to study the behavior of
many interesting functionals. In particular, examples describing the
finctional central limit theorem, with error estimates, for the random
polynomial case, can be found in Arratia et al. (1993).
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The Large Components

Thus far we have described how we might approximate a complicated
dependent process (the counts of small components) by a simpler,
independent process, with an estimate of the error involved. It is natural to
ask what can be said about the large component counts. To describe this, we
retum once more to the ESF.

Let L,=L/(n)2 L, 2---2 L, denote the sizes of the largest cycle, the
second largest cycle, . . ., the smallest of the random number of cycles in a
B-biased random permutation. We define L; =L;(n)=0,7>K. It is
known from the work of Kingman (1974, 1977) that the random vector
n'l(Ll,Lz,...,LK,O, 0,...) converges in distribution to a random vector
(X,,X,,...). The vector X has the Poisson-Dirichlet distribution with
parameter 6, which we denote by PD(B). There are a number of
characterizations of PD(B), among them Kingman’s original definition: Let
0,20, 2---20 denote the points of a Poisson process on (0,e) having

mean measure with density 6 e * /x, x >0, andset 6 =Y &,. Then

ix]

20X, X,.) =4(ﬁ,°—2,...)
g O

We know that the large components, those that are of a size about n, of 2
8-biased random permutation are described asymptotically by the PD(6) law.
What can be said about the large components of the other combinatorial
structures we have seen? We focus once more on the logarithmic structures
that satisfy either condition (5.31) or (5.37), where population genetics has a
crucial role to play once more.

In approximating the behavior of counts of large components

C" =(.,,C,.,,...,C,) we should not expect to be able to compare to an

independent process because, for example, there can be at most |7/
components of size j or greater, and this condition forces very strong
correlations on the counts of large components. However, we should be

able to compare the component counting process C™ of the combinatorial
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structure  to the ESF process € =(C.,,,C,,,....C.), say. The
approximating process is still discrete and, although not independent, it has a

simpler structure than the original process. For random polynomials, it is
shown in Arratia et al. (1993) that

dpy (4(C), 2(C") = OG} (5.38)

so that the counts of factors of large degree can indeed be cornpared
successfully to the corresponding counts for the ESF. The estimate in (5.38)
has as a consequence the fact that the (renormalized) factors of largest degree
have asymptotically the PD(1) law, a result that aiso follows from work of
Hansen (1994). In addition, a rate of convergence is also available. In fact,
(5.38) essentially holds for any of the logarithmic class (cf. Arratia et al.,
1994a).

In conclusion, we have seen that a variety of interesting functionals of
the component structure of certain combinatorial processes can be
approximated in total variation nomn by either those functionals of an
independent process or those functionals of the ESF itself. The important
aspect of this is the focus on discrete approximating processes, rather than
those found by renormalizing to obtain a continuous limit. In a very real
sense, our knowledge of “the biology of random permutations,” as described
by the ESF, has provided a crucial ingredient in one area of probabilistic
combinatorics.

WHERE TO NEXT?

In the preceding sections, we have illustrated how coalescent techniques
can be used to model the evolution of samples of selectively nentral DNA
sequence data. Simple techmques for estimating substitution rates, some
based on likelihood methods and some on more ad hoc moment methods,
were reviewed. We also illustrated how the probabilistic structure of the
coalescent might be used to simulate observations in order to assess the
variability of such estimators.
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Likelihood Methods

Notwithstanding the lack of recombination and selection, inference
about substitution rates poses some difficult statistical and computational
problems. Most of these are due to the apparently heterogeneous nature of
the substitution process in different regions of the sequence. One of the
outstanding open problems in this area is the development of practical
likelihood methods for sequence data. Inference techniques for sequence data
from a fixed (but typically unknown) tree are reviewed in Felsenstein (1988).
The added ingredient in the population genetics setting is the random nature
of the coalescent itself—in principle, we have to average likelihoods on trees
over the underlying coalescent sample paths. The computational problems
involved in this are enormous. The likelihood can be thought of as a sum
(over tree topologies) of terms, in each of which the probability of the
configuration of alleles, given the branching order and coalescence times
T.T_,...T,, is averaged over the law of 7,7, .....,7,. Monte Carlo
techniques might be employed in its evaluation. One approach, using a
bootstrap technique, is described by Felsenstein (1992).

An altemative approach is to compute likelihoods numerically using the
recursion in equation (5.17). The probabilistic structure of the coalescent
takes care of the integration, and the problem is, in principle at least, simpler.
For small sample sizes and simple mutation schemes this is possible (see
Lundstrom (1990), for example), but it is computationally prohibitive even
for samples of the size discussed carlicr. An alternative is the Markov chain
Monte Carlo approach in Griffiths and Tavaré (1994a), in which equation
(5.17) 1s used to construct an absorbing Markov process in such a way that
the probability ¢(n) in (5.17) is the expected value of a functional of the
process up to the absorption time. That is, represent g(n) as

a(n) = En{l_j)f(N(j)) , (5.59)

where {N(;),=0,1,...} 15 a stochastic process detennined by (5.17), and T
is the time it takes this process to reach a particular set of states. Classical
simulation methodology can now be used to simulate independent
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observations with mean ¢(m). The scheme in (5.39) can be modified to
estimate the entire likelihood surface from a single run, providing a
computationally feasible method for approximating likelihood surfaces.

As an illustration, we return to the mitochondrial data described in the
subsection on the infinitely-many-sites model above. We saw that of the 21
segregating sites in the sample, 14 were consistent with an infinitely-many-
sites model. The remaining 7 sites are described in Table 5.2. These data

comprise a sample of 63 individuals from a K =2" = 128 allele model. The
allele frequencies are given in Table 5.2,

Table 5.2 Incompatible Sites and Frequencies

Sequence : Site 1 9 10 13 17 18 19| Frequency
0 T T € C T T C
1 , 0 0 0o 1 o0 O O 8
2 - 0 0 0 0 O O O 12
3 1 0 0 0 0 0 o 3
4 6 1 0 O 0O O O 12
5 0 0 0 1 1 0 0 2
6 0o 0 1 0 0 0 1 1
7 6 0 0 o 1 1 0 1
8 0 0 0 0 0 1 0 9
9 1 0 0 0 O 1 0 3
10 0o o 1 0o 0 1 0 1
11 0O o o0 0o 0 1 1 7
12 o o 1 0 0 1 1 3
13 o 1 1 0 0 1 1 |

NOTE: Data are from Table 5.1. The row labeled 0 gives the nucleotide
corresponding to O at that site. The last column gives the frequencies of
the alleles in the sample.

The observed fraction of T nucleotides is m. =207 /441 =0469, and

so m. = 0.531. We use these to determine the per-site mutation rate matrix
Q1n (5.15):
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o= 33 )= 2l o6 Y]

where s = 7. Assuming that ©, and 7, are given by their observed

frequencies, there is just the single parameter 0 to be estimated. Preliminary
simulation results give the maximum likelihood estimate of © at about

0 =17 . This corresponds to a per site C — T rate of & = 1.14, and a per site
T — C rate of f = 1.28. These rates are about 50 times higher than those
based on the analysis m the section on the K-allele models above using all
201 sites. Of course, this set of sites was chosen essentially because of the
high mutation rates in the region and so should represent an extreme estimate
of the rates in the whole molecule. Nonetheless, the results do point to the
lack of homogeneity in substitution rates in this molecule. For other
approaches to the modeling of hypervariable sites, see Lundstrom et al.
(19921).

Discussion

The emphasis in this chapter has been the discussion of inference
techniques for the coalescent, a natural model for the analysis of samples
taken from large populations.

An interesting development in the mathematical theory has been the
study of measure-valued diffusions intdated by Fleming and Viot (1979).
This is a generalization of the “usual” diffusions so prevalent in the classical
theory of population genetics, described for example in Ewens (1979, 1990)
and Tavaré (1984). A comprehensive discussion of the Fleming-Viot process
appears in Fthier and Kurtz (1993), where the probabilistic structure of a
broad range of examples, such as multiple loci with recombination, infinitely
many alleles with selection, multigene families, and migration models, are
discussed in some detail.

Perhaps the most important aspect of the theory that has seen rather
little theoretical treatment thus far is the area that might loosely be called
variable population size processes, and their inference. These issues are
becoming more important in the analysis and interpretation of human
mitochondrial sequence data. Two recent articles in this area are Slatkin



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology (1995)
http//www.nap.edu/openbook/0309048869/html/149.html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

Calibrating the Clock 149

and Hudson (1991) and Rogers and Harpending (1992). Lundstrom et al.
(1992b) note that the effects of variable population size on gene frequency
distributions can readily be confounded with the effects of hypervariable
regions in the sequences. A careful assessment of the interaction of these two
effects seems important, as does a detailed treatment of the effects of spatial
structure and population subdivision on the analysis of sequence diversity.
The Monte Carlo likelihood methods developed for sequence data in
Griffiths and Tavaré (1994a) adapt readily to situations like this. See, for
example, Griffiths and Tavaré (1994b.) They offer a practical approach to
inference from very complicated stochastic processes. These techniques are
based on genealogical arguments that provide the comerstone of a firm
quantitative basis for the analysis of DNA sequence data and our
understanding of genomic diversity.
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Chapter 6
Winding the Double Helix:

Using Geometry, Topology, and
Mechanics of DNA

James H. White
University of California, Los Angeles

Crick and Watson’s double helix model describes the
local structure of DNA, but the global structure is more
complex. The DNA double helix follows an axis that is
typically curved—creating a  phenomenon  called
supercoiling, which is crucial for a wide variety of
biological processes. Understanding  supercoiling
requires ideas from geometry and topology. In this
chapter, the author discusses three key descriptors of the
geometry of supercoilled DNA molecules: linking,
twisting, and writhing. These quantities are related by a
fundamental theorem with important consequences for
experimental biology, because it allows biologists to
mfer any one of the quantities from measurements of the
other two.

Deoxyribonucleic acid (DNA) is usually envisioned as a pair of
helices, the sugar-phosphate backbones, winding around a common
linear axis. In the famous model of Crick and Watson, one turn of the
double helix occurs approximately every 10.5 base pairs. However, the
actual structure of DNA. in a cell is typically more complex: the axis of
the double helix may itself be a helix or may, in general, assume almost
any configuration in space. In the late [960s it was discovered that many
DNA molecules are also closed; that is, the axis as well as the two
backbone strands are closed curves. (A closed curve is a curve of finite
length, the “starting point” and “endpoint” of which coincide.) In this
case the DNA is called closed circular or simply closed. This chapter is
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concerned with the geometry, topology, and energetics of closed
supercoiled DNA.

Supercoiling of closed DNA is ubiquitous in biological systems. It
can arise in two ways. First, it can result when DNA winds around
proteins. Second, supercoiling can also result from topological
constraints known as under- or overwinding, in which case the axis of
the DNA usually assumes an interwound, or plectonemic, form.

Supercoiling 1s important for a wide variety of biological processes.
For example, supercoiling is a2 way of storing free energy—which can be
used to assist the vital processes of replication and transcription,
processes that require untwisting or separation of DNA duplex strands.
Thus, supercoiling helps enzymes called helicases, polymerases, and
other proteins to force apart the two strands of the DNA double helix,
allowing access to the genetic information stored in the base sequence. It
also promotes a variety of structural alterations that lead to DNA
unwinding, such as z-DNA (left-handed double helical DNA) and
cruciforms (cross-shapes). In higher organisms, supercoiling helps in
cellular packaging of DNA in structures called nucleosomes, in which
DNA is wound around proteins called histones. It is crucial in bringing
together and aligning DNA sequences in site-specific recombination. It
also changes the helical periodicity (number of base pairs per turn) of the
DNA double helix; such changes can alter the binding of proteins to the
DNA or the phasing of recombinant sequences.

Understanding supercoiled DNA is thus essential for the
understanding of these diverse processes. Numerous biological
experiments—including  those based on  sedimentation, gel
electrophoresis, electron microscopy, X-ray diffraction, nuclease
digestion, and footprinting—can give information about these matters.
However, mathematical methods for describing and understanding
closed circular DNA are needed to explain and classify the data obtained
from these experiments.

This chapter defines and elucidates the major geometric descriptors
of supercoiled DNA: linking, twisting, and writhing. It applies these
concepts to classify the action of the major types of cutting enzymes,
topoisomerases of Type I and Type 1L It then develops the differential
topological invariants necessary to describe the structural changes that
occur in the DNA that 1s bound to proteins. Other chapters in this book
explore applications of topology and geometry to DNA coiling. Chapter
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7 introduces the concepts necessary to describe the mechanical equilibria
of closed circular DNA and gives an analysis of transitions of
superheiical transitions, dealing specifically with strand separation.
Chapter 8 applies the topology of knot theory to explain the action of
enzymes in carrying out the fundamental process of site-specific
recombination.

DNA GEOMETRY AND TOPOLOGY:
LINKING, TWISTING, AND WRITHING

To understand supercoiling in DNA, we model DNA (Bauer et al.,
1980; White and Bauer, 1986) in the simplest possible way that will be
useful for both “open” linear DNA and closed circular supercoiled DNA
wrapped around a series of proteins. Linear DNA is best modeled by a
pair of cylindrical helices, C and W, representing the backbones winding
right-handedly around a finite cylinder whose central axis, A, is a
straight line (Figure 6.1a). Such DNA has a “starting point” and an
endpoint. Relaxed closed circular DNA is modeled by bending the
cylinder to form a closed toroidal surface in such a way that the axis, A,
is a closed planar curve and the ends of the curves C and W are also
Joined (Figure 6.1b). Finally, closed supercoiled DNA can be modeled
by supercoiling the toroidal surface itself (Figure 6.1¢). (Closed DNA
can be used to model “open” lincar DNA because the reference frame is
fixed at the starting point and the endpoint of open DNA even during
biological changes.)

We first wish to describe the fundamental geometric and topological
quantities that can be used to characterize supercoiling, namely, the three
quantities linking, writhing, and twisting (White, 1989). These are
quantities that can be used to measure the interwinding of the backbone
strands and the compacting of the DNA into a relatively small volume.

The linking number is a mathematical quantity associated with two
closed oriented curves. This important property is unchanged even if the
two curves are distorted, as long as there is no break in either curve. For
closed DNA the linking number is that of the two curves C and W. This
number can therefore be changed only by single- or double-stranded
breaks in the DNA. We assume that the two strands are oriented in a
parallel fashion. This assumption is not consistent with the bond polarity
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FIGURE 6.1(a) The linear form of the double helical model of DNA. (b) The relaxed
closed circular form of DNA. (¢) The plectonemically interwound form of supercoiled
closed DNA.
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but greatly facilitates the mathematics necessary for the description of
supercoiling. Because cither backbone curve can be deformed into the
axis curve A without passing through the other. the linking number of a
closed DNA is also the linking number of either backbone curve C or W
with the central axis curve A. Therefore, we describe the linking number
of a DNA in terms of the linking number of C with A.

To define the linking number, the simplest technique is to use the
so-called modified projection method. The pair of curves, A and C,
when viewed from a given point distant from the two curves appear to be
projected into a plane perpendicular to the line of sight except that the
relative overlay of crossing segments is ¢learly observable. Such a view
gives a modified projection of the pair of curves. In any such projection,
there may be a number of apparent crossings. To each such crossing is
attached a signed number +1 according to the sign convention described
in Figure 6.2, If one adds all of the signed numbers associated with this
projection and divides by 2, one obtains the linking number of the curves
Aand C, Lk(A,C), which we denote for simplicity by Lk. In Figure 6.3
a number of simple cases are illustrated. An important fact about the
linking number of a pair of curves is that it does not depend on the
projection ot view of the pair; that is, the total of the signed numbers for
crossings corresponding to any projection is always the same. For so-
called relaxed closed DNA the average number of base pairs per turn of
C around W or C around A is 10.5. Thus Lk can be quite large for closed
DNA. For a relaxed circular DNA molecule of the monkey virus SV40,
which has approximately 5,250 base pairs, Lk is about 500, and for
bacteriophage A of about 48,510 base pairs, Lk is about 4,620.

The linking number of 2 DNA, though a topological quantity, can be
decomposed into two geometric quantities: writhe W7 and twist 7w,
which can be used to describe supercoiling (White, 1969). The linking
number is a measure of the crossings seen in any view. These crossings
can be divided into two categories, distant crossings, which occur
because the DNA axis is seen to cross itself, and local crossings, which
occur because of the helical winding of the backbone curve around the
axis. In the former, the backbone curve of one crossing segment 15 seen
to ¢ross the axis of the other segment, Distant crossings are measured by
writhe, and local crossings by twist. We now give precise definitions of
these two quantities.



Calculating the Secrets of Life: Cantributions of the Mathematical Sciences to Molecular Biology (1995)
http://www.nap.edu/openbook/0309048869/html/158.himl, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

158 CALCULATING THE SECRETS OF LIFE
A
_-"P ‘L‘.

FIGURE 6.2 Sign convention for the crossing of two curves in a modified projection.
The arrows indicate the orientation of the two crossing curves. To determine the sign
of the crossing, the arrow on top is rotated by an angle less than 180° onto the arrow on
the bottom. If the rotation required is clockwise as in (a), the crossing is given a (=)
sign. If the rotation required is counterclockwise as in {b), the crossing is given a (+)
sign.

A

FIGURE 6.5 Examples of pairs of curves with various linking numbers, using the
convention described in Figure 6.2 and the method described in the text.



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecqlar Biology (1995)
http://'www.nap.edu/openbook/’USOSMBBBQ/htmI/'159.h1m|. copyright 1995, 2000 The National Academy of Sciences, all rights reserved

Winding the Double Helix 159

Writhe can be defined in a manner analogous to the linking number.
It is a property of a single curve, in this case the central axis A. In any
modified projection of the single curve A, there will be a number of
apparent crossings. To each such crossing is attached a sign as in the
case of the linking number. If one adds all these signed numbers, one
obtains the projected writhing number. Unlike the linking number,
projected writhe may change depending on the view that one takes. This
is demonstrated by the different views of the same curve in Figure 6.4.
The writhing number is defined as the average over all possible views of
the projected writhing number. If two distant segments of a DNA axis
are brought very close together, then this proximity will contribute
approximately +1 to the writhing number because in almost all views
this proximity will be seen as a crossing. If the DNA axis lies in a plane
and has no self-crossings, then Wr must be equal to zero, because in all
views (except along the plane itself) there will be no apparent crossings.
If the DNA lies in a plane except for a few places where the curve
crosses itself, then the writhe is the total of the signed numbers attached
to the self-crossings. Figure 6.5 gives the approximate writhe of some
examples of tightly coiled DNA axes. Note that for consistently coiled
curves of uniform handedness the larger the absolute value of the writhe
the more compact the curve 1s.

An important fact about the writhe of a space curve is that if the
curve is passed through itself, at the moment of self-passage the writhe
changes by 2. This is because, at the moment of self-passage, no
change takes place except at the point of passage, and the interchange of
the under- and oversegments at the point of passage changes the writhe
by precisely 2. This is illustrated in Figure 6.6. The orientation of the
axis curve is not important because the writhe does not change if the
orientation is reversed. This fact enables one to choose the orientation of
the axis curve, A, to be consistent with that of the backbone strand
orientarion.

We next define the twist of the DNA. For closed DNA the twist will
usually refer to the twist of one of the backbone curves, say C around the
axis A, which is denoted Tw(C,A) or simply 7w. To define the twist,
we need the use of vectors (White and Bauer, 1986). Any local cross
section of the DNA perpendicular to the DNA axis contains a unique
point a of the axis A and a unique point ¢ of the backbone C
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FIGURE 6.4 Illustration of the dependence of projected writhing number on projection.
The axis of the same nonplanar closed DNA is shown in two different projections
obtained by rotating the molecule around the dashed line. The points Q and R on the
axis help illustrate the rotation. The segment QR crosses in front in (a) but is in the
upper rear in (b). The projected writhing number in (a) is —1 and 0 in (b).

m SOVO®
) 0000 Wr -3

FIGURE 6.5 Examples of closed curves with different writhing numbers.

(Figure 6.7). We designate by v,_a unit vector along the line joining the
point a to the pomt ¢. Then as one proceeds along the DNA, since the
backbone curve C turns around the axis A, the vector v, turns around the
axis, or more precisely around T, the unit vector tangent to the curve A.
The twist is a certain measure of this turning. As the point a moves
along the axis A, the vector v, may change. The infinitesimal change in
v, denoted dv,, will have a component tangent to the axis and a
component perpendicular to the axis. The twist is the measure of the
total perpendicular component of the change of the vector v, as the point
a fraverses the entire length of the DNA. It is therefore given by the Jine
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wr - -1 Wr - -1

FIGURE 6.6 The writhing number of curves with one coil. The curve on the left has
writhing number approximately —1 and on the right approximately +1. One curve can
be obtained from the other by a self-passage at the crossing, which changes the
writhing number by +2 or =2.

FIGURE 6.7 Cross-section of DNA. The plane perpendicular to the DNA axis A
intersects the axis at the point a and intersects the backbone curve C at the point ¢. The
unit vector along the line joining a to ¢ is denoted v . Note that as the intersection
plane moves along the DNA, this vector turns about the axis.
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integral expression:

Tw = ijdvﬂc TXv,.
2n
A

When A is a straight line segment or planar curve, dv,, always is
perpendicular to the curve A, so that in these cases, 7w reduces to the
number of times that v turns around the axis. Examples are shown in
Figure 6.8a. Furthermore, if the DNA axis is planar and is also closed,
Tw must necessarily be an integer, because the initial vector v, and the
final vector v, are the same. 7w is not always the number of times that C
winds around A. Indeed, 7w is usually not the number of times that C
winds around A if the axis 15 supercoiled; Figure 6.8b gives an example
in which A itself is a helix and C a superhelix winding around A. In this
case, the twist is the number of times that C winds around A plus a term,
nsiny, which depends on the geometry of the helix A. In addition, in
most cases where the DNA is closed and supercoiled, the twist is not
integral (White and Bauer, 1986).

The linking number, writhe, and twist of a closed DNA are related
by the well-known equation (White, 1969):

Lk =Tw+Wr.

Thus for a closed strand of DNA of constant linking number, any change
in Wr must be compensated by an equal in magnitude but opposite in
sign change in Tw. This interchange is most casily seen by taking a
rubber band or some simple ¢lastic ribbon-like material that has two
edges and while holding it fixed with one hand, twisting it with the
other. After some time, much of the twisting will be seen to introduce
writhing of the axis of the elastic material. The linking number of the
two edges will stay the same because no breaks oceur in the twisting.
Because the model is held fixed by one hand, the twisting must be
compensated by writhing. Though more complicated to explain, it is the
same phenomenon that accounts for the supercoiling of most heavily
used telephone cords. The constant twisting of the cord is eventually
compensated by writhing.
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FIGURE 6.8a Examples of pairs of curves C and A with different values of twist. (a)
Simple examples in which the axis A is a straight line and the twist is the number of
times that C winds around A, being positive for right-handed twist and negative for
left-handed twist. (b) An example in which the axis A is a helix winding around a
linear axis and the curve C is a superhelix winding around A. In this case the twist of C
around A is the number of times that C winds around A (in this case approximately

3.5) plus nsiny where n is the number of times that A winds around the linear axis
and p is the pitch angle of the helix A. Here n is approximately 1.5 and y is
approximately 40°. Thus, Tw =4.46.

APPLICATIONS TO DNA
TOPOISOMERASE REACTIONS

For a relaxed closed DNA that lies in a plane and has no self-
crossings, we have seen that the writhing number is equal to 0.
Therefore, by the fundamental formula, 7w = Lk. Thus both 7w and Lk
are equal to the number of times that the backbone strands wind around
the axis, or more precisely the number of times the backbone curve rises
above and falls below the plane in which the axis lies. For such a DNA
in the B-form, there are about 10.5 base pairs per turn of the backbone.
This linking number is usually denoted Lk,. As we noted above, a
relaxed DNA molecule of monkey virus SV40 with about 5,250 base
pairs has Lk, = Tw=3500. However, the linking number of most closed
circular DNA is not that of the relaxed state. The actual linking number
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Lk in most cases 1s less than Lk;. In the electron microscope, these
DNA are supercoiled and appear to be contorted or coiled-up rings with
many self-crossings. The quantity Lk — Lk, = ALk is called the linking
number difference and is a measure of this supercoiling. By the
fundamental theorem, a change in linking must consist of a change in
twist and a change in writhe: ALk = A7w + AWr . Because the writhe of
a planar curve is 0, AWr becomes simply Wr. Recent work (Boles et al.,
1990) shows the ratio of the change in writhe to the change in twist is
approximately 2.6:1; that is, AWr=072ALk and ATw=028ALk.
Thus, for each change of 1 in the linking difference, there is a change of
0.72 in the writhe. Large changes in linking will therefore result in large
changes in Wr. Because of this, there are negative crossovers introduced
in many views of the DNA. In fact, it has been shown that the
interwound coils shown in Figure 6.1c model negatively supercoiled
DNA well. Such DNA are also called underwound because the twist is
also reduced.

Some time after the discovery of closed supercoiled DNA (Bauer,
1978), enzymes were found that can actually change the linking number
difference and in fact change a highly supercoiled DNA into a relaxed
open circular DNA (Wang, 1985). These enzymes, called
topoisomerases, because they change the topology of the DNA, are
divided into two classes according to their operational function: Type T
topoisomerases, which introduce single-stranded breaks, and Type II
topoisomerases, which introduce double-stranded breaks.

An intuitive description of the action of a Type I topoisomerase can
be given as follows. The first step in a Type I topoisomerase reaction is
to break the backbone curve C of an underwound DNA at a point ec.
Then the backbone curve 15 allowed to rotate in a clockwise fashion to
increase the twist in the direction to that preferred by B-form DNA,
(This rotation is a natural process for DNA with smaller ALk in absolute
value and is energetically more favorable.) Finally, the break is again
sealed at the point ¢. The twist increases by an integral amount
depending on the number of rotations. Because the axis is virtually
unchanged in the immediate process, the writhe remains unchanged.
Therefore the linking number increases by the number of times the C
strand is rotated around the axis A. Energetically, following the
completion of the sealing, each change in linking of +1 will be
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distributed to change the average twist by +0.28 and the average writhe
by +0.72 in accordance with the results mentioned above (Boles et al.,
1990). Eventually, in the presence of topoisomerases of Type I, the
linking number difference of a supercoiled DNA can be reduced to 0. In
reality, an entire population of supercoiled DNA with a specific linking
number difference can be treated with a topoisomerase of Type 1. The
result will be a mixture of the same DNA with linking number
differences that vary all the way from the original number to 0. By way
of example, the native state of the monkey virus SV40 is not a relaxed
circle, but rather a supercoiled DNA with linking number difference of
—25. After treatment with Type I topoisomerase, the same population
exists with linking number differences -25, -24, -23, .., —1, 0,
depending on the amount of change introduced by the enzyme,
Interestingly enough, the same DNA with different linking number
differences can be separated by means of gel electrophoresis (Wang and
Bauer, 1979). Separation occurs due to the fact that such DNA travel
through the tangled molecular matrix of a gel at different speeds because
one has more Wr and is more compact than the other. This is one way in
which the topology of a DNA can be used to characterize DNA’s
physical properties.

Topoisomerases of Type II also have the function of reducing the
amount of linking difference. In the reaction of Type I topoisomerases
described above, the twist was increased to increase the linking number.
In the case of Type II topoisomerases, the increase in linking is due to an
increase in writhing, which is obtained by a self-passage of the entire
DNA molecule. The first step is to bring distant segments of the DNA
into close proximity. Because DNA is found mostly in the interwound
form, it already has distant segments reasonably close, as shown in
Figure 6.1¢. The node so created contributes a —1 to the writhing number
at this point. Next a complete break of the DNA at the cross section of
one of the neighboring segments takes place. This is essentially
accomplished by breaks of both backbone chains in the cross section,
The other segment is now passed through the double-stranded break,
Finally, the original break is resealed. In this process of self-passage, the
writhing nurnber has been increased by +2. This is due to the fact that a
negative crossing has been replaced by a positive crossing. Because the
twist is virtually unaltered in the process, the linking number also
mcreases by +2. After the process is over, the change in linking of +2



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Malecular Biology (1995)
http://www.nap.edu/openbook/0309048869/htrml/166.html, copyright 1995, 2000 The National Academy of Sciences, all tights reserved

166 CALCULATING THE SECRETS OF LIFE

will be distributed to give a change of +1.44 in average writhe and a
change of +0.56 in average twist. Continuing with the same example of
SV40 DNA introduced in the paragraph above, if a topoisomerase of
Type 11 were introduced into a population of SV40 with linking number
difference =25, the result would be a collection of such DNA with
linking number differences —25, —23, -21, ..., -3, —1. Such enzymes in
fact were discovered because of this striking difference from
topoisomerase of Type I in which DNA with all negative differences, not
just the odd ones, were found.

Other functions of topoisomerases are to pass single-stranded DNA
through itself or to pass nicked DNA—that is, DNA in which one of the
backbone strands has been cut by an enzyme—through itself. This aspect
of topoisomerases is dealt with in more detail in Chapter 8. |

DNA ON PROTEIN COMPLEXES

We now turn our attention to the geometric and topological analysis
of DNA whose axes are constrained to lie on surfaces (White et al.,
1988). The most well-characterized example of a protein surface is the
nucleosome core (Finch et al., 1977), a cylinder of height 5.04
nanometers (nm) and radius 4.3 nm. In this case the axis A of the DNA
wraps nearly twice around the core as a left-handed helix of pitch 2.8
nm. The surface on which the DNA molecule lies is the so-called
solvent-accessible surface (Richards, 1977). This is the surface generated
by moving a water-sized spherical probe around the atomic surface of
the protein at the van der Waals distance of all external atoms and is the
continuous sheet defined by the locus of the center of the probe. (In
general, the surface of a protein is defined in this manner.) It is this
surface that comes into contact with the DNA backbone chain. Because
the DNA. is approximately 1 nm in radius, the DNA axis lies on a
surface that is 1 nm outside of the solvent-accessible surface to account
for the separation of the backbone from the axis. This latter surface is the
one to which we shall refer in the rest of this section as the surface on
which the DNA, meaning the DNA axis A, lies or wraps.

For DNA that lies on a surface, the geometric and topological
analyses are best served by dividing the linking number not into twist
and writhe, which relate only to spatial properties of the DNA, but into
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components that relate directly to the surface and surface-related
experiments. The linking number of a closed DNA constrained to lie on
the surface divides into two integral quantities, the surface linking
number, which measures the wrapping of the DNA around the surface,
and the winding number, which is a measure of the number of times that
the backbone contacts or rises away from the surface (White et al.,
1988). Experimentally, the first quantity can be measured by X-ray
diffraction, and the second can be measured by digestion or footprinting
methods. In particular for the nucleosome, the partial contribution to the
surface linking number due to the left-handed wrapping around the
cylindrical core is —1.85 (Finch et al.,, 1981; Richmond et al., 1984).
Furthermore, the winding number has been measured to be the number
of base pairs of the DNA on the nucleosome divided by approximately
10.17 (Drew and Travers, 1985).

THE SURFACE LINKING NUMBER

We now give a formal definition of the two quantities, surface
linking number SLk and winding number, for a closed DNA on a protein
surface. We assume that the surface involved has the property that at
each point near the axis of the DNA. there is a well-defined surface
normal vector. The unit vector along this vector will be denoted by v.
(We assume that the surfaces are orientable. In this case, there are two
possible choices for the vector field v depending on the side of the
surface to which the vector field points.) If the DNA axis A is displaced
a small distance € # 0 along this vector field at each point, a new curve
A, is created. & should be chosen small enough so that durning the
displacement of A to A, no crossings of one curve with the other take
place. The curve A; is also closed and can be oriented in a manner
consistent with the orientation of A. The surface linking number is
defined to be the linking number of the original curve A with the curve
A, (White and Bauer, 1988). Simple examples of the surface linking
number occur for DNA whose axes lie on planar surfaces or spheroidal
surfaces. First, for a DNA whose axis lies in a plane, SLk=0. This is
easy to see, for in this case the vector field v is a constant field
perpendicular to the plane. Hence the curve A, lies entirely to one side of
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the plane and cannot link A, a curve lying entirely in the plane. Second,
if the DNA axis lies on a round sphere, SLk=0. To see this, we can
assume without loss of generality that the vector field v points into the
sphere. In this case the displaced curve A, lies entirely inside the sphere
and hence cannot link A. These and additional examples are illustrated in
Figure 6.9.

SLk is what is technically called a differential topological invariant.
As such, SLk has three important properties. First, if the DNA axis-
surface combined structure is deformed in such a way that no
discontinuities in the vector field v occur in the neighborhood of the
DNA axis A, and A itself is not broken, then SLk remains invariant. For
example, if the DNA lies in a plane and that plane is deformed, SLk
remains equal to 0; if it lies on a sphere that is deformed, SLk remains
equal to 0. Thus, if a DNA axis lies on the surface of any type of
spheroid, SLk =0. Examples of spheroids are shown in Figure 6.10a.
An important example of SLk being equal to 0 is shown in Figure 6.9d,
in which the DNA axis lies on the surface of a capped cylinder. A
second important property of SLk is that it depends only on the surface
near the axis. Hence, if the surface on which the axis lies is broken or
torn apart at places not near the axis, SLk remains invariant. For
example, if a DNA lies on a protein, and a portion of the protein not near
the axis is broken or decomposes, SLk remains invariant. The third
important property is that if a DNA lies on a surface and slides along the
surface, then as long as the vector field v varies smoothly from poinrt to
point on the surface and as long as in the process of sliding the axis does
not break, SLk remains invariant. Thus, if the capped cylinder in Figure
6.9d were allowed to expand and the axis curve required to remain the
same length, it would have to unwind as it slid along the surface of the
enlarged cylinder. However, SLk would remain equal to 0.

Another class of biologically important surfaces exists for which it
is possible that a DNA can have an SLk=0. These are so-called
toroidal surfaces. They consist of the round circular torus and their
deformations. Suppose an axis curve A traverses the entire length of a
round circular torus handle once as it wraps around it a number of times,
n. Suppose further that the inner radius of the torus is equal to r. For the
vector field v, we choose the inward pointing surface normal. In this
case, if one chooses € =r, A, would be the central axis of the torus.
Thus SLk is the linking number of the curve A with the central axis of
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FIGURE 6.9 Examples of displacement curves and SLk. For any curve A lying on a
surface, the displacement curve A, is formed by moving a small distance £ along the
surface normal at each point on the curve. For planar ¢urves as in (a), all of the normal
vectors can be chosen to point upward, and then A, is above A. The curves are
unlinked, and hence SLk = 0. For curves on a spherical surface as in (b), the surface
vectors can be chosen to point inward, and hence A; is entirely inside and therefore
does not link A. 5Lk is again equal to 0. [n (¢) and (d) the surface normal vectors have
been chosen to point inward, and £ has been set equal to the inner radii of the surfaces
on which the DNA is wound. In (¢), A, becomes the central axis of the torus, and SLk =
+4. In (d) the DNA is wrapped plectonemically around a capped cylinder. The
displacement curve A lies entirely mside, and thus SLk = 0.
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FIGURE 6.10 (a) Deformations of the round sphere into spheroids. (b) Deformation of
the round circular torus into toroids.

the torus. This implies that if the wrapping is right-handed, SLk =+n,
and if the wrapping is left-handed, SLk = —n . By the invariant properties
mentioned above, SLk remains invariant even if the round torus is
deformed. Examples are shown in Figure 6.10b.

The concept of SLk can also be applied to DNA that are not attached
to real protein surfaces but are free in space. For example, the most
common kind of free DNA, that is, DNA free of any protein attachment,
1s plectonemically wound DNA. Here the DNA can be considered to lie
on the surface of a spheroid such as the one shown in Figure 6.9b (or a
deformation of it), the exact shape of which is determined by the energy-
minimum DNA conformation. Then the surface may be allowed to
vanish and reappear without changing the shape of the DNA superhelix,
The DNA 1is said to be wrapped on a virtual surface (White et al., 1988).
Thus, the SLk of the DNA in Figure 6.9d is equal to 0 regardless of
whether the surface is virtual or is that of a real protein. More generally,
these concepts can be applied to DNA wrapped on a series of proteins
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with virtual surfaces joining them. An example of this is presented
below in our discussion of the minichromosome.

THE WINDING NUMBER AND HELICAL REPEAT

We next give a formal definition of the winding number of a DNA
wrapping on a surface. Because the vector v is perpendicular to the
surface, it is also perpendicular to the DNA axis A and thus lies in the
perpendicular planar cross section at each point of the DNA. Therefore,
at each point this vector v and the strand-axis vector v__defined above lie
in this same planar cross section. In this plane. the vector v, makes an
angle ¢ with the vector v (Figure 6.11). As one proceeds along the DNA
segment, v spins around v, as the backbone curve C alternately rises
away from and falls near to the surface, while the angle ¢ turns through
2 rradians (that is, 360°). The total change in the angle ¢, divided by the
normalizing factor 27z (or 360°), during this passage is called the
winding number of the DNA and is denoted ® (White et al., 1988). This
number may also be thought of as the number of times that v _ rotates
past v as the DNA is traversed. A related quantity called the helical
repeat, denoted £, is the number of base pairs necessary for one complete
360° revolution. For closed DNA, because the beginning and ending
point are the same for one complete passage of the DNA, the vectors v
and v, are the same at the beginning and at the end. In this case,
therefore, @ must necessarily be an integer.

There are equivalent formulations for the winding number of a
closed DNA wrapping on a protein surface. During each 360° rotation of
the vector v, in the perpendicular plane, ¢ assumes the values of 0 (or
0°) and 7 (or 180°) exactly once. When ¢ =0, v, = v, and when ¢ = 7,
v,. = —v. In the latter case, the backbone strand is at maximal distance
from the protein surface, and in the former it comes into contact with the
protein. Thus the winding number of a closed DNA on a protein surface
18 the number of times one of the backbone strands contacts the protein
surface, or it is the number of times the strand is at maximal distance
from it. In this case, it also follows from its definition that the helical
repeat is the number of base pairs between successive contact points of
one of the backbones or the number of base pairs between successive
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FIGURE 6.11 Definition of the surface vectors mecessary to define the winding
number. The duplex DNA axis A lies on the surface. The backbone curve C will pass
above and below the surface as it winds around A. To describe surface winding, two
vectors need to be defined originating at a point a on A, namely, the unit surface
normal vector v and the strand-axis vector v, along the line connecting a to the
corresponding point ¢ on the backbone C. ¢ is defined to be the angle between these
two vectors. The winding number & measures the number of times that ¢ tumns through
360°, or how many times v, rotates past v.

points of maximal distance from the protein surface. This latter number
can be measured directly by digestion or footprinting methods, which
involve probes that search for points of the backbones to cut, the easiest
being those points at maximal distance from the surface.

The winding number @ is also a differential topological invariant
and therefore has the same three properties mentioned above for SL%. In
particular, it remains invariant if the DNA surface structure is deformed
without any breaks in the DNA or any introduction of discontinuities in
the vector field v. Under the same conditions, it also remains unchanged
if the DNA is allowed to slide along the surface.
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RELATIONSHIP BETWEEN LINKING,
SURFACE LINKING, AND WINDING

It is remarkable that the three quantities Lk, SLk, and @, although
very different in definition, are related by a theorem from differential
topology. In fact, for a closed DNA on a surface, the linking number is
the sum of the surface linking number and the winding number (White et
al., 1988); that is,

Lk=58Lk+.

Before we outline the proof of this result, we first give some simple
examples. We then give the proof and conclude with the example of the
minichromoseme.

Tor DNA that lies in a plane or on a spheroid, SLk=0.
Therefore, Lk = @, and if there arc N base pairs in the DNA, the belical
repeat is given by A= N/ Lk . These two cases include relaxed circular
DNA, for which Lk = Lk,, and plectonemically interwound DNA, the
most common form of supercoiled DNA. For DNA that traverses the
handle of a round circular torus while wrapping » times around the
handle, Lk = n + @ if the wrapping is right-handed, and Lk =-n+® if
the wrapping is left-handed. In both cases, Lk i1s unchanged if the torus is
smoothly deformed.

We now outline the proof of the main result. To do this, we first
define the surface twist, S7w, of the vector field v along the axis curve A
(White and Bauer, 1988; White et al., 1988). This is basically defined
the same as the twist of the DNA except that the vector field v is used
and not the vector field v,_. Hence, S7w is given by the equation

STw = i'[dv-Taxv.
2n
A

Thus, $7w measures the perpendicular component of the change of the
vector v as one proceeds along the axis A, and thus is a measure of the
spinning of the vector field v around the curve A. It can also be

considered to be the twist of A, around A. We recall that 7w measures
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the spinning of the vector field v, around the curve A. Thus, the
difference Tw —STw measures the spinning of v, around v. But this is

exactly the winding number ®. Hence Tw - STw=®.
We recall the fundamental formula

Wr(A)+ Tw(C,A) = Lk(C,A) or
Wr+Tw=Lk.
A similar formula relating S7w, Wr, and SLk holds:
Wr(A) + STw = Lk(A,A,) or
Wr + STw =SLk

because STw is the twist of A, around A and SL% is the linking number
of A; and A. Combining the two formulas and using the result that
Tw—STw =@ , we obtain

Lk=SLk+®.

The biological importance of this relationship is that all three of
these quantities are experimentally measurable. Thus, having determined
any two of them, one can calculate the other and then compare with the
experimental value. In the next section, we show by a classical example
from molecular biology, the minichromosome, the power of this
theorem.

APPLICATION TO THE STUDY OF
THE MINICHROMOSOME

A minichromosome is a structure that consists of a closed DNA
bound to a series of core nucleosomes. Such a structure allows the
compaction of a very long DNA into a small volume, in the same way
that a long piece of thread is compacted by wrapping it on a spool.
Understanding such structures is essential to a knowledge of how DNA
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is packaged in the cell. In this section, we study the geometry and
topology of DNA in such a structure. Fach nucleosome may best be
described as a cylinder, the histone octamer, around which the DNA
wraps approximately 1.8 times in a left-handed manner. The DNA
segments between successive nucleosomes are called linker regions.
Thus, the DNA divides between linker DNA and core-associated DNA.
An example of such a structure is shown in Figure 6.12. Such a
compound structure consists of a toroidal surface, part of which is the
real surface of the nucleosome cores and part of which is virtual linker
surfaces joining successive cylinders. These virtual pieces are deformed
cylindrical sections, all of the same radius, on which the linker DNA are
constrained to lie. The specification of each of these surfaces is arbitrary
as long as it takes into account the coiling of the linker. The linker DNA
can thus be thought of as a generating curve for the cylindrical section.
An important condition to be imposed is that the linker DNA does not
wind around the piece on which it lies. This condition will ensure that all
contributions to SLk due to winding around the torus handle will come
only from the intranucleosome winding. Any additional contribution to
SLk must therefore come from the coiling of the linker DNA.

To simplify our example, we will assume that the minichromosome
15 relaxed. This means that the linker regions are planar and that all
contributions to SLk come from the winding of the DNA around the
histone octamers. Such a relaxed state can be achieved by the
introduction into the minichromosome of topoisomerases, which relax
the linker DNA but leave unaffected the DNA on the nucleosome cores.
In this case, SLk can be directly measured by X-ray diffraction and found
to be —1.8 m, where m is the number of nucleosomes. An example with

5 nucleosomes is shown in Figure 6.13, for which SZk =-9. For §V40
DNA, there are about 25 nucleosomes (Sogo et al., 1986). Therefore,
SLk =-45.

The linking number of the DNA on the relaxed SV40
minichromosome is measured in an indirect way. First, the DNA is
stripped of the nucleosome particles, becoming in the process a
plectonemically interwound free DNA. By means of gel electrophoresis,
its linking number can be experimentally measured. In actuality, what is
measured is the difference of its linking number and the linking number
of the same DNA totally relaxed, ALk, as defined above. ALk is found to

be about —1 per nucleosome core; that is, ALk=-25 (Shure and
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FIGURE 6.12 Cartoon of a minichromosome. Three cylinders representing histone
octamers are wound by DNA s0 as to formn three nucleosomes, The nucleosomes are
connected by linker DNA segments. Successive real nucleosomes are connected by
virtual deformed ¢ylindrical pieces, the deformatious of which are determined by the
coiling of the linker. Reprinted, by permission, from White et al. (1988). Copyright ©
1988 by American Association for the Advancement of Science.

FIGURE 6.13 Diagram of a relaxed minichromosome with five c¢ylindrical
nucleosomes. The DNA wraps left-handedly 1.8 times around each nucleosome. The
contribution to SLk is —1.8 for each nucleosome and 0 for sach linker region. For the
entire structure, SZk = —9. Reprinted, by permission, from White et al. (1989).
Copyright © 1989 by Academic Press Limited.
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Vinograd, 1976). As we stated above, relaxed SV40 has a linking
number, Lk, of approximately 500. Therefore minichromosomal SV40

has Lk =475.

We can now answer an important question: Is the number of base
pairs per turn, the helical repeat, unchanged from the 10.5 of relaxed
DNA, when DNA is wrapped on the nucleosome? The answer must be
negative becanse of the relationship Lk =SLk+®. Thus, we can
theoretically determine that because Lk =475 and SLk =-—45, ® must
be 520. However, we have seen above that @ for relaxed SV40 is equal
to Lk,=500. Because @ =520, the average helical repeat for
minichromosomal SV40 equals 5,250/520=10.10. In this analysis, we
have made a great many simplifications, but it is noteworthy that this
number is in remarkably good agreement with the number 10.17 that is
obtained by nuclease digestion experiments. The answer to the question
is thus negative.

To summarize, we have found a fundamental relationship
Lk=S8Lk+® for three quantities that are directly accessible to
experiment, Lk by electrophoresis, SLk by X-ray diffraction, and @ by
digestion. If two of the three are known, one can use the relationship to
predict and therefore verify the experimental evidence for finding the
third. This gives a powerful use of differential topology in the field of
molecular biology.

REFERENCES

Bauer, W.R., 1978, “Structure and reactions of closed duplex DNA,” Annu. Rev.
Biophys. Bioeng. 7, 287-313.

Bauer, W.R., F.H.C. Crick, and J.H. White, 1680, “Supercoiled DNA,” Scientific
American 243, 11R-133,

Boles, T.C.. J.H. White, and N.R. Cozzarelli, 1990, “Structure of plectonemically
supercoiled DNA,” Journal of Molecular Biology 213, 931-951.

Drew, H.R., and A.A. Travers, 1985. “DNA bending and its relation to nucleosome
positioning,” Journal of Molecular Biology 186, 773-790.

Finch, J.T., L.C. Lutter, D. Rhodes, R.S. Brown, B. Rushton, M. Levitt, and A. Klug,
1977, “Structure of nucleosome core particles of chromatin,” Nature 269, 29-36.

Finch, J.T., R.S. Brown, D. Rhodes, T. Richmond, B. Rushron, L.C. Lutter, and A.
Klug, 1981, “X-ray diffraction study of a new crystal form of the nucleosome core
showing higher resolution,” Journal of Melecular Biology 145, 757-770.



Calculating the Secrets of Life: Cantributions of the Mathematical Sciences to Molecular Biology (1995)
http://www.nap.edu/openbook/0309048869/html/178.html, copyright 1995, 2000 The National Academy of Sciances, all rights reserved

178 CALCULATING THE SECRETS OF LIFE

Richards, F.M., 1977, “Areas, volumes, packing and protein structurc,” Ansu. Rev.
Biophys. Bioeng. 6, 151-176.

Richmond, T.J., J.T. Finch, B. Rushton, D. Rhodes, and A. Klug, 1984, “Structure of
the nucleosome core particle at 7A resolution,” Narure 311, 532-537.

Shure, M., and J. Vinograd, 1976, “The number of superhelical turns in native virion
SV40 DNA and minicol DNA determined by the band counting method,” Cell 8,
215-226,

Sogo, J.M., H. Stahl, T. Koller, and R. Knippers, 1986, “Structure of replicating simian
virus 40 minichromosomes. The replication fork, core histone segregation and
terminal structures.” Jouwrnal of Molecular Biology 189, 189-204.,

Wang, J.C., 1985, “DNA topoisomerases,” Annu. Rev. Biockem. 54, 665-697.

Wang, J.C., and W.R. Bauer, 1979, “The clectrophoretic mobility of individual DNA
topoisomers is unaffected by denaturation and renaturation,” Journal of
Molecular Biology 129, 458-461.

White, J.H., 1969, “Self-linking and the Gauss integral in higher dimensions,” Am. J.
Math. 91, 693-728.

White, J.H., 1989, “An introduction to the geometry and topology of DNA structure,”
pp. 225-253 in Mathematical Methods for DNA Sequences, M.S. Waterman (ed.),
Boca Raton, Fla: CRC Press.

White, J.H., and W.R. Bauer, 1986, “Calculation of the twist and the writhe for
representative models of DNA,” Journal of Molecular Biology 189, 329-341.
White, JH., and W.R. Bauer, 1988, “Applications of the twist difference to DNA
structural analysis,” Proceedings of the National Academy of Sciences USA 85,

772-776.

Whire, J.H., N.R. Cozzarelli, and W.R. Bauer, 1988, “Helical repeat and linking
number of surface-wrapped DNA,” Science 241, 323-327.

White, J.H., R. Gallo, W.R. Bauer, 1989, “Effect of nucleosome distortion on the
linking deficiency in relaxed minichromosomes,” Journal of Molecular Biology
207, 193-199.



Calculating the Secrets of Life: Cantributions of the Mathematical Sciences to Molecular Biology (1995)
http://www.nap.edu/openbook/0309048869/html/179.html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

Chapter 7
Unwinding the Double Helix:
Using Differential Mechanics to Probe
Conformational Changes in DNA

Craig J. Benham
Mount Sinai School of Medicine

The two strands of DNA are usually bound together in a double
helix. However, many key biological processes—including DNA
replication and gene expression—require unwinding of the double
helix. Such unwinding requires the input of energy, a large part of
which is stored in the form of supercoiling of a chromosome or
chromosomal region. Given a supercoiled DNA molecule, where
along its sequence will unwinding occwr? In this chapter, the
anthor shows how basic principles of  statistical
mechanics—together with some delicate numerical estimates—
can be applied to predict the sites of supercoil-induced unwinding,
The mathematical predictions are abundantly confirmed by
experimental data and, when applied to new situations, they
suggest novel insights about gene regulation.

Deoxyribonucleic acid (DNA) usually occurs in the familiar Watson-
Crick B-form double helix, in which the two strands of the DNA duplex
are held together by hydrogen bonds between their complementary
bases. Many important biological processes, however, involve separating
the strands of the DNA duplex in order to gain access to the information
¢encoded in the sequence of bases within individual strands. In
transcription, the first step in gene expression, the DNA base pairing
within the gene must be temporarly disrupted to allow an RNA
molecule with a sequence complementary to one of the strands of the
gene to be constructed. In DNA replication, the two original strands of a
parent DNA molecule replicate to form two complete molecules, with
each strand serving as a template for the synthesis of its complement. To
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accomplish this, the strands of the parent molecule must separate to
provide access to these templates.

The regulation of important physiological processes is extremely
precise and complex. In addition to many other layers of control, the
strand separations required for specific functions must be carefully
regulated to occur at the precise positions needed for each activity, and
only at times when that activity 1s to be initiated. Because DNA prefers
to remain in the B-form under normal conditions, strand separation
requires the expenditure of (free) energy. The energy required for strand
separation depends upon the sequence of base pairs being separated.
Because A-T base pairs are held by only two hydrogen bonds whereas
G-C pairs are held by three, it is energetically less costly to separate the
former pairs than the latter. For this reason, strand separations tend to be
concentrated in A+T-rich regions of the DNA. As we will see in this
chapter, this provides the sequence dependence necessary to control the
sites of separation.

Controlling the occurrence of separations can be accomplished by
modulating the amount of energy stored in the DNA molecule itself.
This is done by changing the topological constraints on the molecule.
DNA in living organisms is topologically constrained into domains
within which the linking number is fixed. Enzymes can change this
linking number, placing the DNA in a higher energy state in which pure
B-form DNA is less favored and partial strand separation is
thermodynamically more achievable. (The topology and geometry of
superhelicity, which is the jargon name for this process, have been
described by White in Chapter 6.)

In order to illuminate the role of strand separation in DNA functions,
one needs accurate theoretical methods for predicting how a particular
DNA sequence will behave as its linking number 1s varied. This chapter
describes methods that have been developed to make such predictions.
The results of sample calculations are shown, and the insights that they
provide regarding specific DNA activities are sketched. The global and
topological nature of the constraints imposed on DNA causes behavior
that exhibits many unusual and surprising features.
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DNA SUPERHELICITY—
MATHEMATICS AND BIOLOGY

DNA 1n living cells is held in topological domains whose linking
numbers can be individually regulated. In practice there are two types of
domains. Small DNA molecules can occur as closed circles, whereas
larger DNA molecules are formed into a series of loops by periodic
attachments to a protein scaffold in a way that precludes local rotations
at the attachment site. This arrangement constrains the portion of DNA
between adjacent attachment sites to be a topological domain analogous
to a closed circle.

For simplicity we consider a closed circular duplex DNA molecule
as the paradigm of the topological domain. (Closed circles are also the
molecules of choice for experiments in this field.) The two strands that
make up the DNA duplex each have a chemical orientation induced by
the directionality of the bonds that join neighbor bases. This is called the
5'-3' orientation because each phosphate group in a strand joins the 5'
carbon of one sugar to the 3' carbon of the next. This orientation must be
the same for every phosphate group within a strand, which imparts a
directionality to the strand as a whole. The two strands of the B-form
duplex are oriented so their 5'-3' directions are antiparallel. In
consequence, a duplex DNA molecule ¢an be closed into a circle only by
joining together the ends of each individual strand. Circularization by
joining the ends of one strand to those of the other to form a Mdbius
strip is forbidden because the bonds required would violate the
conservation of 5'-3' directionality. Hence a closed circular DNA
molecule is composed of two interlinked, circular (antiparallel) strands.

Circularization fixes the linking number of the resulting molecule;
the linking number is the number of times that either strand links
through the closed circle formed by the other strand. (Topological
domains formed by periodic attachments have a functionally equivalent
constraint.) The fixing of the linking number Lk within a topological
domain provides a global constraint that topologically couples its
secondary and tertiary structures according to White’s (1988) formula

Lk =Tw+Wr, 7.1
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Although Lk 1s fixed in a topological domain, both 7w and Wr may still
vary, provided they do so in a complementary manner.

Cutting one DNA strand in a domain releases the topological
constraint of constant Lk, allowing it to find its most relaxed state. The
two resulting ends may rotate freely, relaxing any torsional deformation
imposed on the molecule. Writhing deformations can be converted to
twist and then removed by this rotational relaxation. The sum of the
twist and writhe in this relaxed state determines a relaxed linking

number Lk,. Note that, while the linking number Lk of a circular DNA

molecule must be an integer, the relaxed linking number Lk, need not
be integral.

Stresses are imposed on a topological domain whenever its linking
number Lk differs from the relaxed value. The resulting linking
difference o = Lk — Lk, must be accommodated by twisting and/or
writhing deformations:

o =ATw+AWr. (7.2)

Topological domains in living systems are commonly found in a
negatively superhelical state, in which the imposed linking number is
smaller than its relaxed value, so o < 0. Negative superhelicity provides
a mechanism for driving strand separation. Because the separated strands
are less twisted than the B-form, they localize some of the linking
deficiency as a decrease of twist at the transition site, thereby allowing
the rest of the domain to relax a corresponding amount. Since strand
separations require energy, they are disfavored in unconstrained or
relaxed molecules. However, in a negatively superhelical domain, local
strand separations are energetically favored to occur at equilibrium
whenever the topological strain energy that is thus relieved exceeds the
energetic cost of locally disrupting the base pairing between strands.

The linking differences imposed on topological domains in vivo are
carefully regulated. Virtually all organisms produce enzymes that alter
Lk through the introduction of transient strand breaks (Gellert, 1981).
The action of these molecules maintains topological domains in
negatively superhelical, underlinked states (i.e., ot <0). On average,
bacteria and other primitive organisms maintain approximately half their
domains in a superhelical state. Moreover, the amount of superhelicity
imposed on DNA in vivo is known to vary with the cell division cycle in
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a carefully regulated manner (Dorman et al., 1988). The extent of
superhelicity also varies in response to environmental changes (Bhriain
et al., 1989; Malkhosyan et al., 1991). In multicelled organisms,
superhelicity occurs primarily within domains containing actively
expressing genes. The DNA within malignant cancer cells is maintained
at more extreme negative linking differences than that characterizing the
corresponding DNA in normal cells (Hartwig et al., 1981).

Many important regulatory events are sensitive to the degree of
superhelical stress imposed on the DNA. These include the initiation of
gene expression (Smith, 1981; Pruss and Drlica, 1989; Weintraub et al.,
1986) and of DNA replication (Kowalski and Eddy, 1989; Mattern and
Painter, 1979). Substantial evidence suggests that superhelically driven
strand separations may be involved in these processes. One well-
charactenized case occurs at the origin of DNA replication of the
bacterium E. coli (Kowalski and Eddy, 1989). The DNA sequence at this
origin site contains a triple repeat of an A+T-rich run of 13 base pairs
that is required for the initiation of DNA replication. Deletion and
substitution experiments have shown that the key functional attribute of
this sequence 15 its susceptibility to superhelical strand separation. DNA
sequence changes at this site that retain this attribute preserve its ability
to initiate replication in vivo; DNA sequence changes that degrade this
susceptibility destroy in vivo origin function. No other sequence
specificity is observed. Such sequences are called duplex unwinding
elements (DUEs) and are present at origins of DNA replication in many
organisms (Umek et al., 1989).

Superhelicity also is known to modulate the expression of some
genes. In bacteria, superhelicity regulates the expression of the so-called
SOS system, a suite of genes that are activated in response to
environmental stresses or DNA damage. The bacterial response to
deleterious environmental changes is to increase the superhelicity of its
DXNA, which activates expression of the SOS genes (Bhriain et al., 1989;
Malkhosyan et al., 1991). Experimental (Kowalski et al., 1988) and
theoretical (Benham, 1990) results indicate that the susceptibility of
some DNA molecules to superhelical strand separation is confined to
sites that bracket specific genes. This suggests that there may be at least
two classes of genes, distinguishable by their sensitivities to superhelical
separation, whose mechanisms of operation may be different.
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Strand separation in living organisms frequently arises through
Interactive processes, in which local superhelical destabilization of the
B-form acts in concert with other factors. Biclogical systems may
exploit marginal decreases in the stability of the B-form that occur at
discrete sites in superhelical molecules. For example, consider an
enzyme that functions by recognizing a particular sequence and inducing
separation there. It might be energetically able to induce the transition
only if the B-form already is marginally destabilized at that site. This
suggests that superhelical helix destabilization also can regulate
biological processes through mechanisms that need not involve
preexisting separations. For this reason it is important also to develop
methods to predict sites where superhelicity marginally destabilizes the
duplex.

STATEMENT OF THE PROBLEM

This chapter develops methods to predict the strand separation and
helix destabilization experienced by a specified DNA sequence when
superhelically stressed. We will focus specifically on predictions
regarding several plasmids (that is, circular DNA molecules) that have
been engineered to include the E. coli replication origin or variants
thereof. This is done because experimental information is available
regarding superhelical strand separation in these molecules.

In principle, the analysis of conformational equilibria is quite direct.
Because every base pair can separate, there are many possible states of
strand separation available to a topologically constrained DNA molecule.
By basic statistical mechanics, a population of identical molecules at
equilibrium will be distributed among its accessible states according to
Boltzmann’s law. If these states are indexed by 7, and if the free energy
of state i is G, then the equilibrium probability p, of a molecule being
in state i, which is the fractional occupancy of that state in a population
at equilibrium, equals

_ exp(=G, / RT)

Pi = (7.3)

Here Z is the so-called partition function, given by
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Z = Zexp(—G,- /RT), (7.4)

where R is the gas constant and 7 is the absolute temperature. Thus the
fractional occupancies of individual states at equilibrium decrease

exponentially as their free energies increase. If a parameter { has value

€, in state /, then its population average, that is, its expected value C_'T at
equilibrium, is

E = ZCiPi- (7.5

This expression can be used to evaluate any equilibrium property of
interest, once the governing partition function is known.

The application of this approach to the rigorous analysis of
conformational equilibria of superhelical DNA molecules is complicated by
three factors. First, the number of the states involved is extremely large.
Every base pair can be separated or unseparated, so specification of a state of
a molecule containing N base pairs involves making N binary decisions. This
vields a total of 2" distinct states of strand separation. This precludes the
use of exact methods, in which all states are enumerated, to analyze
molecules of biological interest, as these commonly have lengths exceeding
1,000 base pairs. Most DNAs have sites whose local sequences permit
transitions to other conformations in addition to separation, further increasing
the number of conformational states. Second, because the free energy needed
to transform a base pair to an alternative conformation depends on the
identity of the base pair involved, the analysis of equilibria must examine the
specific sequence of bases in the molecule. This precludes several possible
strategies for performing approximate analyses, including combinatorial
methods that assume transition energetics to be the same for all base pairs, or
that average the base composition of blocks. Third, and most importantly,
the global and topological character of the superhelical constraint means that
the conformations of all base pairs in the molecule are coupled together.
Separation of a particular base pair alters its helicity, which changes the
distribution of 7w, and hence of ¢, throughout the domain. This in tum
affects the probability of transition of every other base pair. Whether
transition occurs at a particular site depends not just on its local sequence,
but also on how effectively this transition competes with all other
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alternatives. Thus, separations at particular sites can be analyzed only in the
context of the entire molecule. Divide-and-conquer strategies, in which the
sequence is partitioned into blocks that are individually analyzed, are thus
not feasible. Superhelical transitions must be analyzed as global events,
including simultaneous competitions among all possible transitions. This
renders the accurate analysis of superhelical transitions extremely difficult.

It is not feasible to perform exact analyses of all states for the
kilobase-length, topologically constrained molecules of biological
importance, because the number of states grows exponentially. On the
other hand, it is not enough to look only at the lowest energy states.
Confining attention to the minimum-energy state provides a very poor
depiction of transition behavior. Although any individual high-energy
state is exponentially less populated, there are so many high-energy
states that cumulatively they can dominate the minimum-energy state.
The development of accurate methods to treat superhelical strand
separation requires an intermediate approach (Benham, 1990). First,
enough low-energy states must be treated exactly to provide an accurate
depiction of the transition. Then the cumulative influence of the
neglected, high-energy states must be estimated. Wherever possible,
computed parameter values must be refined by the insertion of correction
terms that account for the approximate influence of the neglected states.
This is the strategy we adopt below.,

THE ENERGETICS OF A STATE

A superhelical linking difference o imposed on a DNA molecule can
be accommodated by three types of deformation, each of which requires
free energy. First, strand separations can occur. Second, the single
strands in the separated regions can twist around each other, thereby
absorbing some of the linking difference. Third, the portion of ¢ not
accommodated by these alterations imposes superhelical deformations
on the balance of the molecule.

Each of these deformations requires free energy that can be
described by some simple formulas. Opening each new region of strand
separation requires a free energy a, while separating each individual base
pair within a region takes free energy b,, or b.., depending on the
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identity of the base pair. In practice, a>>5_ >b,,. Because the
initiation free energy a is large, low-energy states tend to have only a
small number of runs of strand separation. Because b.. is larger than
b,., these runs tend to be in A+T-rich regions. The free energy of
interstrand twisting within separated regions is quadratic in the local
helicity of the deformation, with coefficient denoted by C. The free
energy of residual superhelicity has been measured experimentally to be
quadratic in that deformation, with coefficient K. Combining these
contributions (and allowing the interstrand twisting to equilibrate with
the residual superhelicity), the free energy G of a state is found to
depend on three parameters: the number n of separated base pairs, the
number n,, of these that are A-Ts, and the number » of runs of
separation:

2miCK
4n*C+ Kn

2
Gin,n, r)= [oc + 135} +ar+ban t b (n—n,-).

(7.6)

The energy parameters in this expression, a, b,,, b,.. C, and X, all
depend on environmental conditions such as salt concentration and
temperature. The values of the 5’s are known experimentally under a
wide variety of conditions (Marmur and Doty, 1962; Schildkraut and
Lifson, 1968). However, values for the other parameters are not so well
understood. These parameters must be evaluated before the methods can
yield quantitatively accurate results. We will do this by fitting these
parameters to actual experimental data.

ANALYSIS OF SUPERHELICAL EQUILIBRIA

To calculate the equilibrium strand separation behavior of
superhelical DNA molecules, we proceed as follows. First, the DNA
sequence 1s analyzed and key information needed for later stages is
stored. This step need be done only once per sequence. Next, the linking
difference ¢ and environmental conditions are specified, which sets the
energy parameters and determines the free energy associated with each
state. The state having minimum free energy under the given conditions
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is found from the free energy expression and the sequence data. Then an
energy threshold 6 is specified, and all states ¢ are found that have free
energy exceeding the minimum G_;, by no more than this threshold
amount. Three inequalities occur, one each for n, n,,, and ». Together
the satisfaction of all three inequalities provides necessary and sufficient
conditions that a state satisfy the energy threshold condition. For every
set of values n, n,,, and r satisfying these inequalities, all states with
these values are found from the sequence information. This is a very
complex computational task. The number of states involved grows
approximately exponentially with the threshold 0. In cases where r> 1,
care must be taken to verify that a collection of » runs having the
requisite total length and A+T-richness neither overlap nor abut, but
rather are distinct. An approximate partition function Z,,, is computed
from this collection of low-energy states to be

Z, = 3 exp(-G,/RT). (71.7)
£:Gj—=Gin<®

By focusing only on the low-energy states, approximate ensemble
average (that is, equilibrium) values are computed for all parameters of
interest. These may include the expected torsional deformation of the
strand-separated regions, expected numbers of separated base pairs, of
separated A-T pairs, and of runs of separation, the ensemble average free

energy & , and the residual superhelicity.

The most informative quantities regarding the behavior of the
molecule are its destabilization and transition profiles. The transition
profile displays the probability of separation of each base pair in the
molecule. The separation probability p(x) of the base pair at position x is
calculated from equation (7.5) using parameter (., where {, =1 in
states where base pair x is separated and £, =0 in all other states. This
calculation is performed for every base pair in the sequence. The
transition profile displays p(x) as a function of x.

The destabilization profile is the incremental free energy needed to
induce separation at each base pair, To calculate this quantity, let i(x)
index the states in which the base pair at position x is separated. Then
the average free energy of all such states is
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Zf(x) Gi(x) exp(_Gi(x) /RT)

G(x) =
) Zi(;c) exp(~Ci) / RT)

(7.8)

To determine the destabilization free energy G{x), we normalize by
subtracting the calculated equilibrium free energy:

G(x)=G(x)~ G . (7.9)

Base pairs that require incremental free energy to separate at equilibrium
have G(x)>0, while base pairs that are energetically favored to separate
at equilibrium have G(x)<0. This calculation is performed for each
base pair in the molecule. and the destabilization profile plots G(x)
versus x. Examples of these profiles are given in Figure 7.1,

Although individual high-energy states are exponentially less
populated than low-energy states at equilibrium, they are so numerous
that their cumulative contribution to the equilibrium still may be
significant. The next step in this calculation requires estimating the
aggregate influence of the states that were excluded from the above
analysis because their free energies exceeded the threshold. This
involves estimating the contribution Z(n,n_..,») to the partition function
from all states whose values 7,7, , and r do not satisfy the threshold
condition. Here

Z(”’”AT ,}‘) = pn‘r (HAT)-‘M(H;F) exp(_G(n’n;_T ,7’) / RI) > (710)

where M(n,r) is the number of states with »n separated base pairs in »
runs, which for a circular domain is

M(n,r)zf["_l\ [N‘"‘lj_ (7.11)

r=1) r—1

The only part of Z(n,n
P, (n,-), the fraction of (n,r)-states that have exactly n,, separated

r) not amenable to exact determination is

AT?

A-T base pairs.
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FIGURE 7.1 The wansition (top) and the helix destabilization (bottom) protiles are
shown for the circular pPBR322 DNA molecule at ot = —-26 turns. The promoter (P) and
terminator (T) (the sites that control the start and end, respectively, of gene expression)
of the beta-lactamase gene are indicated. These results were calculated vsing the
energetics found by the method described in the text. Reprinted (bottom panel), by
permission, from Benham (1993). Copyright © 1993 by the National Academy of
Sciences.

The estimation of the influence of the high-energy states is done in
two steps. First, growth conditions are found for Z(n,r), the
contribution to the partition function from all states having » total
separated base pairs in r runs. Assuming that the distribution of A+T-
richness among (n,r)—states is approximately the same as that for
(n,r+1) -states, then the ratio

Zonr + 1)1 Z(nr) = DWW =R0) i RT) = TG) (112)
r(r+1)
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is monotonically decreasing with ». One can find an 7 such that
T(F)y=p<1.Thenforall »>7 wehave T(r) <p, so that

rmElX >
Y Z(nr)< ——Zl(f’;). (7.13)

r=r

By a similar line of reasoning one also can find a value 7, above
which the aggtegate contribution to the partition function again 1s
bounded above by a convergent geometric series:

S 2ty < 20D (7.14)
n=n 1- G
In practice, low values (=0.1) for the series ratios p and ¢ occur at
reasonably small cutoffs (# =8, 7#=150 for a molecule of N =5,000
base pairs under reasonable environmental conditions).
The contribution of the intermediate states having n<»n and r<r
but not satisfying the threshold requires estimating p,, (n..), the

fraction of (r,r) -states that have exactly n,- separated A-T base pairs.
Although in principle one can compute this quantity from the base
sequence, for molecules of kilobase lengths it is feasible to compute only
the exact distribution of A+T-richness in »=2 run states having
n < n,,, = 200. Experience has shown that high accuracy is obtained by
calculating p,,(n,;) exactly, and using p,,(n,,) as an estimate of
D,,(n,-) for r>2. Once the sequence information needed in this step

has been found (a calculation that need be performed only once per
molecule), the performance of the rest of this refinement is
computationally very fast.

These results are used to estimate the contribution Zug to the
partition function from the neglected, high-energy states:
Z=Zg+Zpgy - (7.15)

(Here the carat marks denote approximate values.) Any parameter  that
depends only on n, n,., or r also can have its previously calculated
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approximate equilibrium value corrected for the estimated effects of all
neglected, high-energy states:

Y L, exp(—G, / RT)+ Y L(n g, 7) Z(Mapiye 1)
neg

i _ 1Gi<Gpyjn=8

Z

cal

+ Z g
(7.16)

Examples of correctable parameters include the population-averaged
values of the total numbers of separated base pairs, runs of transition,
and separated A-T pairs. The only important quantities that cannot be
refined in this way are the transition and destabilization profiles, because
their calculation involves positional information. However, their
accuracy can be estimated by comparing the corrected ensemble average
number of separated base pairs with its (uncorrected) value that is
computed as the sum of the probabilities of separation for all base pairs
in the sequence. In this way the accuracy of the profiles calculated with
any specified threshold can be assessed. This allows the threshold to be
chosen to give any required degree of accuracy. In practice accuracies
exceeding 99 percent are feasible at physiological temperatures, even for
highly supercoiled molecules.

Evaluation of Free-Energy Parameters

Before these techniques can yield quantitatively precise calculations,
accurate values must be known for the energy parameters. Only the
separation energetics b,. and b.. have been accurately measured under
a wide range of environmental conditions (Marmur and Doty, 1962:
Schildkraut and Lifson, 1968). The other parameters (the guadratic
coefficient X governing residual linking, the cooperativity free energy a,
and the coefficient C governing interstrand twisting of strand-separated
DNA) are known only for a restricted range of molecules and
environmental conditions.

The theoretical methods described above can be used to determine the
best fitting values of the unknown parameters based on the analysis of
experimental data on superhelical strand separation. Allowing the parameters
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to vary within reasonable ranges, the analyses are repeated, and the set of
values is found for which the computed transition properties best fit the
experimental data (Benham, 1992). Application of this method to data on

strand separation in pBR322 DNA at [Na*]=001M, T=310K finds a
unique optimum fit when K =2350+80 R7T/N , a =10.84 0.2 kecal , and

C=25+03%10"" erg-nt/rad”.

Extensive sample calculations of strand separations in superhelical
DNA have been performed using these energy parameters (Benham,
1992). As described above, substantial amounts of free energy are
required to drive strand separation. In consequence, this transition is
favored only when the DNA is significantly supercoiled. This is shown
in Figure 7.2, where the solid line depicts the probability of strand
separation in pBR322 DNA (N = 4,363 base pairs) as a function of
imposed negative superhelicity under low-salt conditions. The dashed
line gives the ensemble average number of strand-separated base pairs as
a function of —ot . Separation occurs only when the linking difference
satisfies o <—18 turns and is confined to the terminator (3,200 to 3,300)
and promoter (4,100 to 4,200) regions of one particular gene, as shown
in Figure 7.1 above. These results arc in precise agreement with
experiment (Kowalski et al., 1988).
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FIGURE 7.2 The onset of strand separation in pBR322 DNA.
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Accuracy of the Calculated Results

Once the energetics governing transition under specific environmental
conditions have been fit based on the transition behavior of one sequence, the
accuracy of the analytical methods can be assessed by comparing their
predictions with experimental results on other molecules (Benham, 1992).
We did this for six DNA molecules synthesized by David Kowalski, a
biochemist studying the role of strand separation in initiating replication
(Kowalski and Eddy, 1989). Starting from a parent DNA molecule pORIC,
Kowalski made various modifications. pDEL16 has a 16-base pair deletion
from the replication origin site of pORIC. pAT105 and pGC91 were made
by inserting an A+T-rich 105-base pair segment and a G+C-rich 91-base pair
segment, respectively, into the deletion site of pDEL16. pAT105I and .
pGC911 have the same insertions, but placed in reverse orientation. The
complete DNA. sequences of these plasmids were provided to the author by
Dr. Kowalski (private communication).

The transition profiles of these molecules were calculated using the
energetics appropriate to the experimental conditions, which were the same
as in the pBR322 experiments from which the energy parameters were
derived. Figure 7.3 shows the computed transition profiles around the duplex
unwinding element (DUE) of the origin site for the four plasmids of greatest
interest. The region where strand separation was detected experimentally is
shown by a double line in each case. Less separation was detected
experimentally at this location in the pORIC plasmid than in the other two
transforming molecules, and none was detected in pDEL16 or in the other
two molecules whose profiles are not shown in the figure. These
experimental results are in close agreement with the present predictions. In
fact, the agreement may be even better than the figure indicates. Because the
experimental method detects separation only in the interiors of open regions,
the actual separated sites are slightly larger than what the experiment detects.

These results show that the present methods for analyzing superhelical
strand separation are highly accurate. The extensive variations in the
locations of separated regions that result from minor sequence alterations
are precisely depicted. The relative amounts of transition at each site also
agree closely with expenment. The superhelicity required to drive a
specific amount of separation is within 7 percent of the observed value,
which reflects the limit of accaracy with which extents of transition are
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FIGURE 7.3 The transition profiles at DUE sequences. Reprinted, by permission, from
Benham (1992). Copyright © 1992 by Academic Press Limited.

measured in these experiments. This demonstrates that these analytical
methods provide highly precise predictions of the details of strand
separation in superhelical molecules,

APPLYING THE METHOD TO STUDY
INTERESTING GENES

Having developed a method and confirmed its accuracy on test
molecules, we can now apply it to study any DNA sequence of interest.
It tumns out to be particularly illuminating to examine the association
between sites of superhelical destabilization and sites of gene regulation
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(Benham, 1993). Our calculations show some striking correlations involving
sites for initiation of transcription, termination of transcription, initiation of
DNA replication, and binding of repressor proteins.

We find that some bacierial genes show superhelical destabilization at
the sites where gene expression starts and the sites where it ends. One gene
on the pBR322 DNA molecule (from which the dara in Figure 7.1 came) and
one on the ColE] plasmid (from which the data in Figure 7.4a came) are
bracketed by such sites, suggesting that their expression is regulated by the
state of DNA supercoiling, And, indeed, experiments show that these
bracketed genes are expressed at higher rates when their DNA. is superhelical
than when it is relaxed. The other genes on these molecules show no such
destabilized regions. This result suggests that genes in bacterial DNA can be
partitioned into two categories, depending on whether or not they are
bracketed by superhelically destabilized regulatory regions.

In a similar vein, we have analyzed the DNA sequences of two
mammalian viruses, the polyoma and papilloma viruses, each of which can
cause cancer. The most destabilized locations on these molecules occur
precisely at the places where gene expression terminates, the so-called poly-
adenylation sites. The two most destabilized sites in the polyoma genome
occur at the major (M) and minor (m) poly-adenylation sites, as shown in
Figure 7.4b. Of the three most destabilized sites in the papilloma virus
genome, two occur at known poly-adenylation sites for transcription from
the direct strand. The other occurs at a location having the sequence
attributes of a poly-adenylation site for transcription from the complementary
strand. (This observation raises the intriguing possibility that the
complementary strand of this molecule could transcribe, an event that has not
been observed to date.)

The strong association found between destabilized sites and the
beginnings and ends of genes suggests that destabilization may play roles
in their functioning. Many possible scenarios can be suggested for how
this could occur. Clearly, destabilization at a gene promoter could
facilitate the start of transcription by assisting the formation of a complex
between the single strand to be transcribed and the enzyme complex that
constructs the RNA transcript. What about destabilization at the sites
where gene expression is completed (terminators in bacteria and poly-
adenylation sites in higher organisms)? In this case, a likely but subtler
role canbe suggested. The moving transcription apparatus is thought to



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecqlar Biology (1995)
htlp:fiwww.nap.eduiopenbookfoaﬂ9048369/htmI/'197.mm|. copyright 1995, 2000 The National Academy of Sciences, all rights reserved

Unwinding the Double Helix 197
iR P
IS TR R +
s 8 e e
i i
— 4 - J [
& 2 U |
< “
—2l , . ( , ‘
0 1 2 3 4 5 6 7
Sequence Location (kb)
e ’f M Df
= 107wy e e pRYSS b
£y
- 4- d
¢ 2 y
‘5* 0 |
-2 e — : - —
0 1 2 3 4 5 6

Sequence Location (kb)

FIGURE 7.4 The helix destabilization profiles of the circular molecules (top) ColEl
plasmid DNA and (bottom) polyoma virus DNA. The locations of the promoter (P) and
terminarors (T1 and T2) of the bracketed transcription unit of ColE1 are indicated. In
polvoma the control region (denoted by a bar), replication origin (OR), and the major
(M) and minor (m) poly-adenylation sites are shown. Reprinted, by permission, from
Benham (1993). Copyright € 1993 by the National Academy of Sciences.

push a wave of positive supercoils ahead and leave a wake of negative
supercoils behind (Wu et al.,, 1988). A region of strand separation
constitutes a localized concentration of negative superhelicity, due to the
large decrease in twist that occurs. This could provide a sink for the
positive supercoils generated by an approaching complex, preventing the
accumulation of twisting and bending deformations that otherwise could
impede its progress. This would facilitate efficient transcription of the
gene involved. The wake of negative supercoils left behind could
destabilize the promoter region in preparation for the next round of
expression. This model could explain why terminal regions are the most
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destabilized sites found, and why some genes are bracketed by destabi-
lized sites.

DNA replication is another process for which it is interesting to
study the correlation with superhelical destabilization. In the plasmids
pBR322 and ColEl, replication is started by an RNA primer, which
displaces one strand of the DNA at the replication origin by base pairing
to the strand having a complementary sequence. The origin sites on these
molecules are not destabilized by superhelicity. suggesting that the
displacement event does not require a destabilized or separated site. By
contrast, replication of the DNA of phage fl (a virus that attacks
bacteria) involves enzymatic cutting of one strand that is known to
require DNA superhelicity. If one role of DNA superhelicity is to
promote strand separation, one would expect to find highly destabilized
sites abutting the origin of replication. In fact, the calculations show
precisely this, providing strong support for the assumption.

Interesting results also emerge from the study of genes involved in
the SOS response system in the bacterium E. coli. The SOS response
system, as its name suggests, is a collection of genes that are turned on
when the organism experiences any of a variety of serious problems,
ranging from environmental stresses to DNA damage. These genes are
usually turned off by the binding to their promoters of a repressor
protein called LexA, which blocks transcription. Another protein, called
RecA, plays a key role in initiating the SOS response by causing the
removal of the LexA repressor, thereby allowing transcription.

As it happens, the ColEl-encoded gene discussed above that was
bracketed by superhelical destabilization sites is a member of the SOS
response system. What about other SOS response genes? Do they also
show superhelically destabilized regions? To address this question, we
examined every known SOS response gene whose DNA sequence was
available. In every case, the LexA binding site was contained in a
strongly destabilized region. We note that this binding site is 16 base
pairs long. Although it is reasonably A+T-rich, this is not long enough
for its presence alone to assure destabilization.

It is not hard to speculate on the function of these superhelical
destabilization regions in the SOS response. The RecA protein is known
to bind single-stranded DNA. If the SOS response is marshaled against
DNA damage, the damaged region provides single-stranded DNA for
RecA binding. The environmental stresses that activate the SOS
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response system cause an increase in DNA superhelicity (Bhriain et al.,
1989), which can provide strand-separated regions near the LexA
binding sites that allow RecA to bind.

In addition to those sketched here, many other possible roles for
superhelically destabilized regions can be suggested. For example,
destabilization of one site in a molecule could protect other sites from
separating that must remain in the duplex form to function.

DISCUSSION AND OPEN PROBLEMS

This chapter has described how DNA sequences can be analyzed to
determine one Dbiologically important attribute—the relative
susceptibility of regions in the molecule to superhelical destabilization.
The last section indicated how correlations between destabilized sites
and DNA regulatory regions illuminate the mechanisms of activity of
such regions. This work has many other possible uses, one of which is
sketched here. Correlations of the type noted above between
superhelically destabilized sites and regulatory regions can be used in
searching DNA sequences for those regions,

Most commonly available strategies search DNA sequences for short
subsequences (that is, strings) whose presence correlates with a
particular activity. So-called TATA boxes are present at promoters, for
example, while poly-adenylation occurs near AATAAA sites. Sequence
signatures are known for terminators and for several other types of
regulatory sites. This string-search approach is possible because the
enzymes involved with particular functions usually have either specific
Or consensus sequence requirements for activity. In most cases these
string-search methods find large numbers of candidate sites having the
sequence characteristics necessary for function. Among these, commonly
only a small number of sites actually are active.

The strong associations documented here between destabilized sites and
particular types of regulatory regions suggest that this attribute also could be
used to search genomic sequences for those regions. This would supplement
existing string methods, providing more accurate predictions. For example,
the bovine papilloma virus DNA sequence contains 9 sites having the
AATAAA sequence needed for poly-adenylation, of which only 2 are known
to be active. The most destabilized sites on the molecule contain 6 of these
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signal sequences, several of which are very close together, imcluding both
known poly-adenylation sites. As a second example, a search of all known E.
coli sequences finds more than 100 locations having the sequence associated
with LexA binding. Analysis of which of these sites are destabilized could
suggest whether some might be promoters for previously unrecognized SOS-
regulated genes.

The transition behavior of stressed DNA molecules can be
complicated by several additional factors. First, there are other types of
transitions possible for specific sequences within a DNA molecule. For
example, sequences in which a purine (A or G) alternates with a
pyrimidine (C or T) along each strand can adopt a left-handed helical
structure. Transitions to this and to other altemative conformations also
can be driven by imposed superhelicity. So the equilibrium experienced
by a stressed molecule actually involves competition among several
types of transitions, not just strand separation. Because these other
conformations usually are possible only at a small number of short sites
having the comect sequence, their analysis 1s combinatorially simpler
than the treatment of strand separation. The theoretical methods
described here are currently being extended to include the possible
occurrence of other types of transitions.

The second complication arises from the structural restraints on
DNA in cells. There the DNA is not free to twist and writhe to minimize
its energy, but instead is wound around basic proteins to form a
chromatin fiber. This drastically alters the types of deformations the
molecule can undergo. While it is not clear precisely how this constraint
interacts with superhelicity, conformational transitions are expected to be
driven by less extreme deformations in restrained molecules than in
unrestrained ones (Benham, 1987).

The approach outlined here has great promise for finding
biologically important correlates of regulation and for illuminating
specific mechanisms of function.
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Chapter 8
Lifting the Curtain:
Using Topology to Probe the
Hidden Action of Enzymes

De Witt Sumners
Florida State University

A central problem in molecular biology 1s understanding
the mechanism by which enzymes carry out chemical
transformations. The problem is challenging because
most experimental techniques prowvide only a static
snapshot, not a moving picture, of the sequence of
molecular events that take place inside the catalytic core
of the enzyme. For one class of enzymes, however,
mathematics provides a powerful tool to the molecular
biologist. These enzymes are the ones that perform
topological reactions mnecessary for the winding,
unwinding, recombination, and transposition of DNA.
Using topological results about knots and tangles, one
can peer into the reaction center and infer the
mechanisms of action.

One of the important issues in molecular biology is the three-
dimensional structure (shape) of proteins and deoxyribonucleic acid
{DNA) in solution in the cell, and the relationship between structure and
function. Ordinarily, protein and DNA. structure is determined by X-ray
crystallography or electron microscopy. Because of the close packing
needed for crystallization and the manipulation required to prepare a
specimen for electron microscopy, these methods provide little direct
evidence for molecular shape in solution. The three-dimensional shape in
solution is of great biological significance but is very difficult to
determine (Wang, 1982).

202
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Experimental techniques such as X-ray crystallography and nuclear
magnetic resonance provide ways to infer precise distances between
atoms. However, these methods are not well suited to studying the
dynamic mechanism by which enzymes act. Interestingly, topology can
shed light on this key issue. The topological approach to enzymology is
an experimental protocol in which the descriptive and analytical powers
of topology and geometry are employed in an indirect effort to determine
the enzyme mechanism and the structure of active enzyme-DNA
complexes in vitro (in a test tube) (Wasserman and Cozzarelli, 1986;
Sumners, 19872). Once the enzyme structure and mechanism are
understood in a controlled laboratory situation, this knowledge can be
extrapolated to enzyme mechanism in vivo, that is, in a living cell.

Topology is a branch of mathematics related to geometry. It is often
characterized as “rubber-sheet geometry,” because topological equiva-
lence of spaces allows stretching, shrinking, and twisting of an object in
order to make it congruent to another object. Topology is the study of
properties of objects (spaces) that are unchanged by allowable elastic
deformations. When a given topological property differs for a pair of
spaces, then one can be sure that one space cannot be transformed into
the other by elastic deformation. Changes that can produce non-
equivalent spaces include cutting the space apart and reassembling the
parts to produce another space. It is precisely this topological breakage
and reassembly of DNA that characterizes the mechanism of some life-
sustaining cellular enzymes, enzymes that facilitate replication,
transcription, and transposition. Chapter 6 describes aspects of the
geometry and topology of DNA and points out various topological
transformations that must be performed on DNA by enzymes in order to
carry out the life cycle of the cell. In the present chapter, we describe
how recent results in three-dimensional topology (Culler et al., 1987;
Ernst and Sumners, 1990; Sumners, 1990, 1992) have proven to be of
use in the description and quantization of the action of these life-
sustaining enzymes on DNA.

THE TOPOLOGY OF DNA

The DNA of all organisms has a complex and fascinating topology.
It can be viewed as two very long curves that are intertwined millions of
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times, linked to other curves, and subjected to four or five successive
orders of coiling to convert it into a compact form for information
storage. If one scales the cell nucleus up to the size of a basketball, the
DNA inside scales up to the size of thin fishing line, and 200 km of that
fishing line are inside the nuclear basketball. Most cellular DNA is
double-stranded (duplex), congisting of two linear backbones of
alternating sugar and phosphorus. Attached to each sugar molecule is
one of the four bases (nucleotides): A = adenine, T = thymine, C =
cytosine, G = guanine. A ladder whose sides are the backbones. and
whose rungs are hydrogen bonds is formed by hydrogen bonding
between base pairs, with 2 bonding only with T, and C bonding only
with G. The base pair sequence for a linear segment of duplex DNA is
obtained by reading along one of the two backbones, and is a word in the
letters {2,T,C,G}. Due to the uniqueness of the bonding partner for each
nucleotide, knowledge of the sequence along one backbone implies
knowledge of the sequence along the other backbone. In the classical
Crick-Watson double helix model for DNA, the ladder is twisted in a
right-hand helical fashion, with an average and nearly constant pitch of
approximartely 10.5 base pairs per full helical twist. The local helical
pitch of duplex DNA is a function of both the local base pair sequence
and the cellular environment in which the DNA lives; if a DNA
molecule is under stress, or constrained to live on the surface of a
protein, or is being acted upon by an enzyme, the helical pitch can
change. Duplex DNA can exist in nature in closed circular form, where
the rungs of the ladder lie on a twisted cylinder. Circular duplex DNA
exists in the mitochondria of human cells, for example. Duplex DNA in
the cell nucleus is a linear molecule, one that is topologically con-
strained by periodic attachment to a protein scaffold in order to achieve
efficient packing.

The packing, twisting, and topological constraints all taken together
mean that topological entanglement poses serious functional problems
for DNA. This entanglement would interfere with, and be exacerbated
by, the wvital life processes of replication, transcription, and
recombination (Cozzarelli, 1992). For information retrieval and cell
viability, some geometric and topological features must be introduced
into the DNA, and others quickly removed (Wang, 1982, 1985). For
example, the Crick-Watson helical twist of duplex DNA may require
local unwinding in order to make room for a protein involved in
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transcription to attach to the DNA. The DNA sequence in the vicinity of
a gene may need to be altered to include a promoter or repressor. During
replication, the daughter duplex DNA molecules become entangled and
must be disentangled in order for replication to proceed to completion.
After introduction of these life-sustaining changes in DNA, geometry and
topology, and after the process that these changes make possible is
finished, the original DNA c¢onformation must be restored. Some
enzymes maintain the proper geometry and topology by passing one
strand of DNA through another by means of a transient enzyme-bridged
break in one of the DNA strands, a move performed by topoisomerases.
Other enzymes break the DNA apart and recombine the ends by
exchanging them, a move performed by recombinases. The description
and quantization of the three-dimensional structure of DNA and the
changes in DNA structure due to the action of these enzymes have
required the serious use of geometry and topology in molecular biology.
Geometry and topology provide ways of inferring the dynamic process
of topological transformation carried out by an enzyme. This use of
mathematics as an analytic tool for the indirect determination of enzyme
mechanism is especially important because there is no experimental way
to observe the dynamics of enzymatic action directly.

In the experimental study of DNA structure and enzyme mechanism,
biologists developed the topological approach to enzymology
(Wasserman and Cozzarelli, 1986; Sumners, 1987b). In this approach,
one performs experiments on circular substrate DNA molecules. These
circular substrate molecules are genetically engineered by cloning
techniques to contain regions that a certain enzyme will recognize and
act upon. The circular form of the substrate molecule traps an enzymatic
topological signature in the form of DNA knots and links (catenanes).
Trapping such a topological signature is impossible if one uses linear
DNA substrate. These DNA knots and links are observed by gel
electrophoresis and electron microscopy of the reaction product DNA
molecules. By observing the changes in geometry (supercoiling) and
topology (knotting and linking) in DNA caused by an enzyme, the
enzyme mechanism can be described and quantized. Figure 8.1a gives
the schematics of the topological enzymology protocol; the black box
represents the dynamic reaction in which the enzyme attaches to the
DNA substrate, breaks it apart and reconnects as necessary, and then
releases the DNA products. Typical results of this experimental protocol
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are the reaction products displayed in Figures 8.1b and 8.1c. Figure &.1b
shows the electron micrograph of a DNA (+) figure eight catenane
(Krasnow et al., 1983), and Figure 8.1c shows a micrograph of the DNA
knot 6,* (Wasserman et al., 1985). Both are products of processive Tn3
recombination and are explained in detail below.

Substrate Reaction Product
a c.(,\’_:O Supercoiled

FIGURE 8.1 (a) Topological approach to enzymology. (b) DNA (+) figure eight
catenane, (c) DNA knot 6; - Figure 8.1b reprinted, with permission, from Krasnow et

al. (1983), Copyright © 1983 by Macmillian Magazines Limited. Figure 8.1c reprinted,
by permission, from Wasserman et al. (1985). Copyright © 1985 by the American
Association for the Advancement of Science.
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The topological approach to enzymology poses an interesting
challenge for mathematics: from the observed changes in DNA geometry
and topology, how can one mathematically deduce enzyme mechanisms?
This requires the construction of mathematical models for enzyme action
and the use of these models to analyze the results of topological
enzymology experiments. The entangled form of the product DNA knots
and links contains information about the enzymes that made them.
Mathematics is required to extract mechanism information from the
topological structure of the reaction products. In addition to utility in the
analysis of experimental results, the use of mathematical models forces
all of the background assumptions about the biology to be carefully laid
out. At this point they can be examined and dissected and their influence
on the biological conclusions drawn from experimental results can be
determined.

SITE-SPECIFIC RECOMBINATION

Site-specific recombination is one of the ways in which nature alters
the genetic code of an organism, either by moving a block of DNA to
another position on the molecule (a2 move performed by transposase)
(Sherratt et al., 1984) or by integrating a block of alien DNA into a host
genome (a move performed by integrase). One of the biological purposes
of recombination is the regulation of gene expression in the cell, because
it can alter the relative position of the gene and its repressor and
promoter sites on the genome. Site-specific recombination also plays a
vital role in the life cycle of certain viruses, which utilize this process to
insert viral DNA into the DNA of a host organism. An enzyme that
mediates site-specific recombination on DNA is called a recombinase. A
recombination site is a short segment of duplex DNA whose sequence is
recognized by the recombinase. Site-specific recombination can occur
when a pair of sites (on the same or on different DNA molecules)
become juxtaposed in the presence of the recombimase. The pair of sites
is aligned through enzyme manipulation or random thermal motion (or
both), and both sites (and perhaps some contiguous DNA) are then
bound by the enzyme. This stage of the reaction is called synapsis, and
we will call this intermediate protein-DNA. complex formed by the part
of the substrate that is bound to the enzyme together with the enzyme
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itself the synaptosome (Benjamin and Cozzarelli, 1990; Heichman and
Johnson, 1990; Pollock and Nash, 1983; Griffith and Nash, 1985; Kim
and Landy, 1992). We will call the entire DNA molecule(s) involved in
synapsis (including the parts of the DNA molecule(s) not bound to the
enzyme), together with the enzyme itself, the synaptic complex. The
electron micrograph in Figure 8.2 shows a synaptic complex formed by
the recombination enzyme Tn3 resolvase when reacted with unknotted
circular duplex DINA. In the micrograph of Figure 8.2, the synaptosome
is the black mass attached to the DNA c¢ircle, with the unbound DNA in
the synaptic complex forming twisted loops in the exterior of the
synaptosome. It is our intent to deduce mathematically the path of the
DNA in the black mass of the synaptosome, both before and after
recombination. We want to answer the question: How is the DNA
wound around the enzyme, and what happens during recombination?

FIGURE 8.2 Tn3 synaptic complex. {Courtesy of N.R. Cozzarelli.)



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology (1995)
http://www.nap.edu/openbook/0309048869/html/209.html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

Lifting the Curtain 209

After forming the synaptosome, a single recombination event occurs:
the enzyme then performs two double-stranded breaks at the sites and
recombines the ends by exchanging them in an enzyme-specific manner.
The synaptosome then dissociates, and the DNA is released by the
enzyme. We call the pre-recombination unbound DNA molecule(s) the
substrate and the post-recombination unbound DNA molecule(s) the
product. During a single binding encounter between enzyme and DNA,
the enzyme may mediate more than one recombination event; this is
called processive recombination. On the other hand, the enzyme may
perform recombination in multiple binding encounters with the DNA,
which is called distnbutive recombination. Some site-specific
recombination enzymes mediate both distributive and processive
recombination.

Site-specific recombination involves topological changes in the
substrate. In order to identify these topological changes, one chooses to
perform experiments on circular DNA substrate. One must perform an
experiment on a large number of circular molecules in order to obtain an
observable amount of product. Using cloning techniques, one can
synthesize circular duplex DNA molecules, which contain two copies of
a recombination site. At each recombination site, the base pair sequence
is in general not palindromic (the base pair sequence for the site read
left-to-right is different from the base pair sequence read right-to-left),
and hence induces a local orientation (arrow) on the substrate DNA,
circle. If these induced orientations from a pair of sites on a single
circular molecule agree, this site configuration is called direct repeats {or
head-to-tail), and if the induced orientations disagree, this site
configuration is called inverted repeats (or head-to-head). If the substrate
is a single DNA circle with a single pair of directly repeated sites, the
recombination product is a pair of DNA circles and can form a DNA link
(or catenane) (Figure 8.3). If the substrate is a pair of DNA circles with
one site each, the product is a single DNA circle (Figure 8.3 read in
reverse) and can form a DNA knot (usually with direct repeats). In
processive recombination on a circular substrate with direct repeats, the
products of an odd number of rounds of processive recombination are
DNA links, and the products of an even number of rounds of processive
recombination are DNA knots. If the substrate is a single DNA circle
with inverted repeats, the product 1s a single DNA circle and can form a
DNA knot. In all figures where DNA is represented by a line drawing
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(such as Figure 8.3), duplex DNA is represented by a single line, and
supercoiling is omitted.

The experimental strategy in the topological approach to
enzymology is to observe the enzyme-caused changes in the geometry
and topology of the DNA and to deduce the ¢nzyme mechanism from
these changes, as in Figure 8.1a. The geometry and topology of the
circular DNA substrate are experimental control variables. The geometry
and topology of the recombination reaction products are observables. In
vitro experiments usually proceed as follows: Circular substrate is
prepared, with all of the substrate molecules representing the same knot
type (usually the unknot, that is, a curve without knots). The amount of
supercoiling of the substrate molecules (the supercoiling density) is also
a control variable. The substrate molecules are reacted with a high
concentration of purified enzyme, and the reaction products are
fractionated by gel electrophoresis. DNA molecules are naturally

a. Substrate b. Pre-recambination
synaptic cormplex

c. Post-recombination d. Product
synaptic complex

FIGURE 8.3 A single recombination event: direct repeats.
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negatively charged, with the amount of negative charge proportional to
the molecular weight. A gel is a resistive medium through which the
DNA molecules can be forced to migrate under the influence of an
electric field. The DNA sample is placed at the top of a gel column, and
similar molecules migrate through the gel with similar velocities,
forming discrete DNA bands in the gel when the electric field is turned
off. Normally, gel electrophoresis discriminates among DNA molecules
on the basis of molecular weight; given that all molecules are the same
molecular weight (as is the case in these topological enzymology
experiments), electrophoresis discriminates on the basis of subtle
differences in the geometry (supercoiling) and topology (knot and link
type) of the DNA molecules. For example, in unknotted DNA, gel
electrophoresis discriminates on the basis of number of supercoils and
can detect a difference of one in the number of supercoils. In gel
electrophoresis of knotted and linked DNA, one must nick (break one of
the two backbone strands of) the reaction products prior to
electrophoresis in order to relax the supercoils in the DNA knots and
links, because supercoiling confounds the gel migration of knotted and
linked DNA. For nicked DNA knots and links, under the proper
conditions gel velocity is (surprisingly) determined by the crossing
number of the knot or link; knots and links of the same crossing number
migrate with the same gel velocities (Dean et al., 1985); the higher the
crossing nurnber, the greater the gel mobility. After the gel is run, the gel
bands are excised, and the DNA molecules are removed from the gel and
coated with RecA protein. It is this new observation technique (RecA-
enhanced electron microscopy) (Krasmow et al., 1983) that makes
possible the detailed knot-theoretic analysis of reaction products. RecA
is an E. coli protein that binds to DNA and mediates general
recombination in E. coli. Naked (uncoated) duplex DNA is approxi-
mately 20 angstroms in diameter, and RecA-coated DNA is approxi-
mately 100 angstroms in diameter. The process of RecA coating fattens,
stiffens, and stretches (untwists) the DNA. This fattening and stiffening
facilitates the unambiguous determination of crossings (nodes) in an
electron mictograph of a DNA knot or link and reduces the number of
extraneous crossings. After RecA coating, the DNA is shadowed with
platinum for viewing under the electron microscope. Electron
micrographs of the reaction products (Figure 8.1b and c) are made, and
frequency distributions of knot types of the products are prepared. This
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new precision in the determination of the topology of the reaction
product spectrum opens the door for the building of detailed topological
models for enzyme action.

TOPOLOGICAL TOOLS FOR DNA ANALYSIS

In this section, we will describe the parts of knot theory and tangle
calculus of biological relevance. We give intuitive definitions that appeal
to geometric imagination. For a rigorous mathematical treatment we
refer the reader to Burde and Zieschang (1985), Kauffinan (1987), and
Rolfsen (1990) for knot theory and Emst and Sumners (1990) for tangle
calculus,

Knot theory is the study of the entanglement of flexible circles in 3-
space. The equivalence relation between topological spaces is that of
homeomorphism. A homeomorphism #: X — Y between topological

spaces is a function that is one-to-one and onto, and both 4 and »~' are
continuous. An.embedding of X in ¥ is a function f: X — ¥ such that f
is a homeomorphism from X onto /(X)C Y. An embedding of X in ¥
ig the placement of a copy of X into the ambient space Y. We will
usually take Euclidean 3-space R’ (xyz-space) as our ambient space. A
knot K is an embedding of a single circle in R’; a link L is an
embedding of two or more circles in R*. For a link, each of the circles
of L 15 called a component of L. In chemistry and biology a nontrivial
link 1s called a catenane, from the Latin cataena for “chain,” since the
components of a catenane are topologically entangled with each other
like the links in a chain. In this excursion, we will restrict attention to
dimers, that is, links of two components, because dimers are the only
links that turn up in topological enzymology experiments. We regard
two knots (links) to be equivalent if it is possible to continuously and
elastically deform one embedding (without breaking strands or passing
strands one through another) until it can be superimposed upon the other,

More precisely, if X, and K, denote two knots (links) in R*, they are
equivalent (written K, = K, ) if and only if there is a homeomorphism of
pairs (RS,K])—>(R3,K2) that preserves orientation on the ambient

space R*. We take our ambient space R® to have a fixed (right-handed)
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orientation, where the right-hand thumb corresponds to the X-axis, the
right-hand index finger corresponds to the Y-axis, and the right-hand

middle finger corresponds to the Z-axis. R® comes locally equipped
with this right-handed orientation at all points. A homeomorphism from

R’ to R’ is orientation-preserving if the local right-handed frame at
each point of the domain maps to a local right-handed frame in the
range. Reflection in a hyperplane (such as reflection in the xp-plane by

Ji(x,v,z) = (x,y,—2)) reverses the orientation of R®. We might also
require that the circular subspace K come equipped with an orientation
(nsually indicated by an arrow). If so, we say that our knot or link X is
oriented; if not, we say that it is unoriented. Unless otherwise specified,
all of our knots will be unoriented. The homeomorphism of pairs 4
superimposes K, on K,; in this case the knots (links) can be made
congruent by a flexible motion or flow (ambient isotopy) of space. An

ambient isotopy is a 1-parameter family of homeomorphisms {H,} _, of

R’ that begins with the identity and ends with the homeomorphism
under consideration: H, = identity and H, = h. An equivalence class of
embeddings is called a knot (link) type.

A knot (link) is usually represented by drawing a diagram
(projection) in a plane. This diagram'is a shadow of the knot (link) cast
on a plane in 3-space. By a small rigid rotation of the knot (link) in 3-
space, it can be arranged that no more than two strings cross at any point
in the diagram. For short, crossing points in a diagram are called
crossings. In the figures in this chapter, at each crossing in a diagram,
the undercrossing string is depicted with a break in it, so that the three-
dimensional knot (link) type can be uniquely re-created from a two-
dimensional diagram. Figure 8.4a-e shows standard diagrams (Rolfsen,
1990) for the knots and links that tum up in Tn3 recombination
experiments. In the definition of knot type, we insisted that the
transformation that superimposes one knot on another must be
orientation-preserving on the ambient space. This restriction allows us to
detect a property of great biological significance: chirality. The mirror
image of a knot (link) is the configuration obtained by reflecting the
configuration in a plane in R°. Starting with a diagram for a knot (link),
one can obtain a diagram for the mirror image by reversing each
crossing; the underpass becomes the overpass and vice versa (compare
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Figures 8.4d and 8.4¢). If K denotes a knot (link), let X~ denote the

mirror image. If K=K *, then we say that X is achiral; if X% X", then
we say that K is chiral. For example, the Hopf link (Figure 8.4a) and
the figure eight knot (Figure 8.4b) are achiral, and the (+) Whitehead

(D (@
(D
(5

FIGURE 8.4 (a) Hopf link, (b) figure eight knot, (¢) (+) Whitshead link, (d) 6; ,and

(¢) 6, (mirror image of 6, ).
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link (Figure 8.4¢) and the knot 6, (Figure 8.4d) and its mirror image 6,
(Figure 8.4e) are chiral. Moreover, all the knots and links in Figure 8.4
are prime, that is, they cannot be formed by the process of tying first one
knot in a string and then another.

By moving the knot around in space and then projecting it, it is clear
that every given knot (link) type admits infinitely many “different”
diagrams, and so the task of recognizing that two completely different
diagrams represent the same knot type can be exceedingly difficult. In
order to make this job a bit easier, one usually seeks diagrams for the
knot type with a minimal number of crossings. This minimal number is
called the crossing number of the knot (link) type. The projections in
Figures 8.4 are minimal. Crossing number is a topological invariant of
knot type. A topological invariant is a number, algebraic group,
polynomial, and so on that can be unambiguously attached to a knot
(link) type. Most invariants can be algorithmically computed from
diagrams (Burde and Zieschang, 1985; Crowell and Fox, 1977;
Lickorish, 1988; Kauftfman, 1987). If any invariant differs for two knots
(links), then the two knots (links) are of different types. If all known
invariants are identical, the only conclusion that can be reached is that all
known invariants fail to distinguish the candidates. One must then either
devise a new invariant that distinguishes the two or prove that they are of
the same type by construction of the homeomorphism that transforms
one to the other (often by direct geometric manipulation of the diagram
or by manipulation of string models). Nevertheless, it is possible to
devise invariants (algebraic classification schemes) that uniquely classify
certain homologous subfamilies of knots and links, for example, torus
knots, two-bridge knots (4-plats), and so on. The algebraic classification
schemes for these homologous subfamilies can be used to describe and
compute enzyme mechanisms in the topological enzymology protocol.

Fortunately for biological applications, most (if not all) of the
circular DNA products produced by in vitro enzymology experiments
fall into the mathematically well-understood family of 4-plats. This
family consists of knot and link configurations produced by patterns of
plectonemic supercoiling of pairs of strands about each other. All
“small” knots and links are members of this family—more precisely, all
prime knots with crossing number less than 8 and all prime (two-
component) links with crossing number less than 7 are 4-plats. A 4-plat
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is a knot or two-component link that can be formed by platting (or
braiding) four strings. All of the knots and links of Figure 8.4 are 4-plats;
their standard 4-plat diagrams are shown in Figure 8.5. Each standard 4-
plat diagram consists of four horizontal strings, numbered 1 through 4
from top to bottom. The standard pattern of plectonemic interwinding for
a 4-plat is encoded by an odd-length classifying vector with positive
integer entries < ¢;,¢5,...,C5,> » a5 shown in Figure 8.5. Beginning from
the left, strings in positions 2 and 3 undergo ¢, left-handed plectonemic
interwinds (half-twists), then strings in positions 1 and 2 undergo c,
right-handed plectonemic interwinds, then strings in positions 2 and 3
undergo ¢, left-handed plectonemic interwinds, and this process
continues until at the right the strings in positions 2 and 3 undergo c,;,,
left-handed plectonemic interwinds. In the standard diagram for a 4-plat,
the string in position 4 is not involved in any crossing. The vector
representation for the standard diagram of a 4-plat is unique up to
reversal of the symbol. That is, the vector <c,,,,,¢y,....0,> Tepresents
the same type as the vector <¢,,¢,,...,¢,, >, because turning the 4-plat
180° about the vertical axis reverses the pattern of supercoiling. The
standard 4-plat diagram is alternating; that is, as one traverses any strand
in the diagram, one alternately encounters over- and undercrossings.
Also, standard 4-plat diagrams (with the exception of the unknot <1>)
are minimal (Emst and Sumners, 1987).

For in vitro topological enzymology, we can regard the enzyme
mechanism as a machine that transforms 4-plats into other 4-plats. We
need a mathematical language for describing and computing these
enzyme-mediated changes. In many enzyme-DNA reactions, a pair of sites
that are distant on the substrate circle are juxtaposed in space and bound to
the enzyme. The enzyme then performs its topological moves, and the
DNA is then released. We need a mathematical language to describe
configurations of linear strings in a spatially confined region. This is
accomplished by means of the mathematical concept of tangles. Tangles
were introduced into knot theory by J.H. Conway (1970) in a seminal
paper involving construction of enumeration schemes for knots and links.

The unit 3-ball B® in R® is the set of all vectors of length <1. The
boundary 2-sphere S* =0 B? is the set of all vectors of length 1. The

equator of this 3-ball is the intersection of the boundary S° with
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FIGURE 8.5 Standard 4-plats. (a} < 2> Hopf link, (b) <2,1,1> figure eight knot, (c)
<LLLLl> (=) figure eight catenane, (d) <1,2,1,1,1> 6,* and (&) <3,1,2> 6,.

the xy-plane; the equatorial disk is the intersection of B* with the xy-
plane. On the unit 3-ball, select four points on the equator (called NW,
SW, SE, NE). A 2-string tangle in the unit 3-ball is a configuration of
two disjoint strings in the unit 3-ball whose endpoints are the four
special points {NW,SW,SENE}. Two tangles in the unit 3-ball are
equivalent if it is possible to elastically transform the strings of one
tangle into the strings of the other without moving the endpoints
{NW,SW, SE,NE} and without breaking a string or passing one string
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through another. A class of equivalent tangles 1s called a tangle type.
Tangle theory is knot theory done inside a 3-ball with the ends of the
strings firmly glued down. Tangles are usually represented by their
projections, called tangle diagrams, onto the equatorial disk in the unit 3-
ball, as shown in Figure 8.6. In all figures containing tangles, we assurme
that the four boundary points {NW,SW,SE,NE} are as in Figure 8.6a,
and we suppress these labels.

All four of the tangles in Figure 8.6 are pairwise inequivalent.
However, if we relax the restriction that the endpoints of the strings
remain fixed and allow the endpoints of the strings to move about on the

surface (S$%) of the 3-ball, then the tangle of Figure 8.6a can be trans-

a b

NW NE

SW SE

@ @

FIGURE 8.6 Tangles. (a) Rational, (b) locally knotted, (¢) prime, and (d) trivial.
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formed into the trivial tangle of Figure 8.6d. This can be accomplished

by rotating (on S”) the {NE,SE} endpoints one left half-turn (180°)
about each other, then rotating the {SW.SE} endpoints three right half-
tums about each other, and finally rotating the {NE,SE} endpoints two
left half-turns about each other. The tangles in Figures 8.6b and 8.6¢
cannot be transformed to the trivial tangle by any sequence of such

turning motions of the endpoints on §°. The family of tangles that can
be converted to the trivial tangle by moving the endpoints of the strings

on 8° is the family of rational tangles. Equivalently, a rational tangle is
one in which the strings can be continuously deformed (leaving the
endpoints fixed) entirely into the boundary 2-sphere of the 3-ball, with
no string passing through itself or through another string.

Rational tangles form a homologous family of 2-string

configurations in B’ and are formed by a pattern of plectonemic
supercoiling of pairs of strings. Like 4-plats, rational tangles look like
DNA configurations, being built up out of plectonemic supercoiling of
pairs of strings. More specifically, enzymes are often globular in shape
and are topologically equivalent to our unit defining ball B®. Thus, in an
enzymatic reaction between a pair of DNA duplexes, the pair {¢nzyme,
bound DNA} forms a 2-string tangle. Since the amount of bound DNA
is small, the enzyme-DNA tangle so formed will admit projections with
few nodes and therefore is very likely rational. For example, all locally
unknotted 2-string tangles having less than five crossings are rational.
There is a second, more natural argument for rationality of the enzyme-
DNA tangle. In all cases studied intensively, DNA i3 bound to the
surface of the protein. This means that the resulting protein-DNA tangle
is rational, since any tangle whose strings can be continuously deformed
into the boundary of the defining ball is automatically rational.

A classification scheme for rational tangles is based on a standard
form that is a minimal alternating diagram. The classifying vector for a
rational tangle is an integer-entry vector (a,.a,,...,a,) of odd or even
length, with all entries (except possibly the last) nonzero and having the
same sign, and with |a] \ >1. The integers in the classifying vector

represent the left-to-right (west-to-east) alternation of vertical and
horizontal windings in the standard tangle diagram, always ending with
horizontal windings on the east side of the diagram. Horizontal winding
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is the winding between strings in the top and bottom (north and south)
positions; vertical winding is the winding between strings in the left and
right (west and east) positions. By convention, positive integers
correspond to horizontal plectonemic right-handed supercoils and
vertical left-handed plectonemic supercoils; negative integers correspond
to horizontal left-handed plectonemic supercoils and vertical right-
handed plectonemic supercoils. Figure 8.7 shows some standard tangle
diagrams. Two rational tangles are of the same type if and only if they

have identical classifying vectors. Due to the requirement that | a, ] >1 1in

the classifying vector convention for rational tangles, the corresponding
tangle projection must have at least two nodes. There are four rational
tangles {(0),(0,0),(1),(—1)} that are exceptions to this convention

(‘ a[\ =0 or 1) and are displayed in Figure 8.7c-f. The classifying vector

(a,,a,,...,a,) can be converted to an (extended) rational number
bla € QU by means of the following continued fraction calculation:

bla = a,+1/(a, ,+(1/(a,,+-)).

Two rational tangles are of the same type if and only if these (extended)
rational numbers are equal (Conway, 1970), which is the reason for
calling them “rational” tangles.

In order to use tangles as building blocks for knots and links, and
mathematically to mimic enzyme action on DNA, we now introduce the
geometric operations of tangle addition and tangle closure. Given tangles
A and B, one can form the tangle 4+ B as shown in Figure 8.8a. The
sum of two rational tangles need not be rational. Given any tangle C, one
can form the closure N(C) as in Figure 8.8b. In the closure operation on
a 2-string tangle, ends NW and NE are connected, ends SW and SE are
connected, and the defining ball is deleted, leaving a knot or a link of

two components, Deletion of the defining B’ is analogous to
deproteinization of the DNA when the synaptosome dissociates. One
can combine the operations of tangle addition and tangle closure
to create a tangle equation of the form M4 + B) = knot (link). In
such a tangle equation, the tangles 4 and B are said to be
summands of the resulting knot (link). An example of this phenomenon
is the tangle equation N((—3,0)+ (1)) =<2 >, shown mn Figure 8.8¢c.
In general, if 4 and B are any two rational tangles, then
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K
X

FIGURE 8.7 Tangle diagrams. (a) (2,3.1). (b) (=3,0), (¢) (0), (d) (0,0), () (1), and (f)
(-1).

N(A+B) is a 4-plat. Given these constructions, rational tangles are
summands for 4-plats.
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N(B) = Link

N{(=3.0) + (1)) = <2

FIGURE 8.8. Tangle operations. (a) Tangle addition, (b) tangle closure, and
(c) N{(-3,00+(l)) =<2>

THE TANGLE MODEL FOR
SITE-SPECIFIC RECOMBINATION

The fundamental observations underlying this model are that a pair
of sites bound by an enzyme forms a tangle and that most of the products
of recombination experiments performed on unknotted substrate are 4-



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecqlar Biology (1995)
hnp:.’,’www.nap.eduiopenbookx’oﬁo9043869.1htmIf223.h1m|. copyright 1995, 2000 The National Academy of Scignces, all rights reserved

Lifting the Curtain 223

plats. We will use tangles to build a model that will compute the
topology of the pre- and post-recombination synaptic complex in a
single recombination event, given knowledge of the topology of the
substrate and product (Ernst and Sumners, 1990; Sumners, 1990, 1992;
Sumners et al,, 1994). In site-specific recombination on circular DNA
substrate, two kinds of geometric manipulation of the DNA occur. The
first is a global ambient isotopy, in which a pair of distant recombination
sites are juxtaposed in space, and the enzyme binds to the molecule(s),
forming the synaptic complex. Once synapsis is achieved, the next move
is local and due entirely to enzyme action. Within the region occupied by
the enzyme, the substrate is broken at each site, and the ends are
recombined. We will model this local move.

The aim of our mathematical model is, given the observed changes
in geometry and topology of the DNA, to compute the topology of the
entire synaptic complex, both before and after enzyme action. Within the
region controlled by the enzyme, the enzyme breaks the DNA at each
site and recombines the ends by exchanging them. We model the enzyme
itself as a 3-ball. The synaptosome consisting of the enzyme and bound
DNA forms a 2-string tangle.

What follows is a list of biological and mathematical assumptions
made in the tangle model (Ernst and Sumners, 1990; Sumners, 1992;
Sumners et al., 1994). Most of these assumptions are implicit in the
existing analyses of the results of enzyme experiments on circular DNA
(Cozzarelli et al., 1984; Stark et al., 1989; Spengler et al., 1985; Wasser-
man and Cozzarelli, 1986; Wasserman et al., 1985; Kanaar et al., 1990;
White et al., 1987; Kanaar et al., 1988; Abremski et al., 1986; Droge and
Cozzarelli, 1986; Spengler et al., 1984).

We make the following biological assumption:

Assumption 1 The enzyme mechanism in a single recombination
event is constant, independent of the geometry (supercoiling) and
topology (knotting and catenation) of the substrate population.
Moreover, recombination takes place entively within the domain of the
enzyme ball, and the substrate configuration outside the enzyme ball
remains fixed while the strands are being broken and recombined inside
and on the boundary of the enzyme.

That 15, we assume that any two pre-recombination copies of the
synaptosome are identical, meaning that we can by rotation and
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translation superimpose one copy on the other, with the congruence so
achieved respecting the structure of both the protein and the DNA. We
likewise assume that all of the copies of the post-recombination
synaptosome are identical.

In a recombination event, we can mathematically divide the DNA
involved into three types: (1) the DNA at and very near the sites where
the DNA breakage and reunion are taking place; (2) other DNA bound to
the enzyme, which is unchanged during a recombination event; and (3)
the DNA in the synaptic complex that is not bound to the enzyme and
that does not change during recombination. We make the following
mathematical assumption about DNA types (1) and (2):

Assumption 2 The synaptosome is a 2-string tangle and can be
marhematically subdivided into the sum O, + P of two tangles.

One tangle, the parental tangle P, contains the recombination sites
where strand breakage and reunion take place. The other tangle, the

outside bound tangle O,. is the remaining DNA in the synaptosome

outside the P tangle; this is the DNA that is bound to the enzyme but
that remains unchanged during recombination. The enzyme mechanism
is modeled as tangle replacement (surgery) in which the parental tangle
P is removed from the synaptosome and replaced by the recombinant
tangle R. Therefore, our model assumes the following:

pre-recombination synaptosome = O, + P
post-recombination synaptosome = O, +R.

In order to accommodate nontrivial topology in the DNA of type (3),
we let the outside free tangle O, denote the synaptic complex DNA that

is free (not bound to the enzyme) and that 1s unchanged during a single
recombination event. We make the following mathematical assumption:

Assumption 3 The entire svnaptic complex is obtained from the
tangle sum (O, + synaptosome) by the tangle closure construction.
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If one deproteinizes the pre-recombination synaptic complex, one
obtains the substrate; deproteinization of the post-recombination
synaptic complex yields the product. The topological structure (knot and
catenane types) of the substrate and product yields equations in the
recombination variables {0,,0,,P,R}. Specifically, a single
recombination event on a single circular substrate molecule produces
two recombination equations in four unknowns:

 substrate equation:  N(O, + O, + P)=substrate
product equation: N(O,+ O, +R)=product .

The geometric meaning of these recombination equations is
illustrated in Figure 8.3. In Figure 8.3, O, =(0), O, =(-3,0), P=(0),

and R=(1). With these values for the variables, our recombination
equations become:

substrate equation: N((0) + (3,0 +(0)) =<1>
product equation: N((0) +(=3.0)+(1}) =<2>.

THE TOPOLOGY OF Tn3 RESOLVASE

Tn3 resolvase is a site-specific recombinase that reacts with certain
circular duplex DNA substrate with directly repeated recombination sites
(Wasserman et al.,, 1985). One begins with supercoiled unknotted DNA
substrate and treats it with resolvase. The principal product of this reaction is
known to be the DNA 4-plat < 2 > (the Hopf link, Figures 8.4a and 8.5a)
(Wasserman and Cozzarelli, 1985). Resolvase 15 known to act dispersively in
this situation—to bind to the circular DNA, to mediate a single
recombination event, and then to release the linked product. It is also
known that resolvase and free (unbound) DNA links do not react.
However, once in 20 encounters, resolvase acts processively—additional
recombinant strand exchanges are promoted prior to the release of the
product, with yield decreasing exponentially with increasing number of
strand exchanges at a single binding encounter with the enzvme. Two
successive rounds of processive recombination produce the DNA 4-plat
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<2,1,1> (the figure eight knot, Figures 8.4b and 8.5b); three successive
rounds of processive recombination produce the DNA 4-plat <1,1,1,1,1>
(the Whitechead link, Figures 8.4c and 8.5c), whose electron micrograph
appears in Figure 8.1b: four successive rounds of recombination produce the
DNA 4-plat <1,2,,L1> (the knot 6,, Figures 8.4d and 8.5d), whose
electron micrograph appears in Figure 8.1c. The discovery of the DNA knot
<1,2,1,1,1> substantiated a model for Tn3 resolvase mechanism

(Wasserman et al., 1985).

In processive recombination, it is the synaptosome itself thar
repeatedly changes structure. We make the following biologically
reasonable mathematical assumption in our model:

Assumption 4 n processive recombination, each additional round
of recombination adds a copy of the recombinant tangle R to the
synaprosome.

More precisely, n rounds of processive recombination at a single
binding encounter generate the following system of (n+1) tangle

equations in the unknowns {O,,0;, P, R}:

substrate: MO, + O, +P)=substrate
rthround: MO, +0, +rR )= rth round product, 1<y <n.

For resolvase, the electron micrograph of the synaptic complex in
Figure 8.2 reveals that O, = (0), since the DNA loops on the exterior of
the synaptosome can be untwisted and are not entangled. This
observation from the micrograph reduces the number of variables in the
tangle model by one, leaving us with three variables {O,, P, R} . One can
prove (Sumners, 1990, 1992; Emst and Sumners, 1990) that there are
four possible tangle pairs {O}, R }, which can produce the experimental
results of the first two rounds of processive Tn3 recombination. The
third round of processive recombination is then used to discard three of
these four pairs as extraneous solutions. The following theorems can be
viewed as a mathematical proof of resolvase synaptic complex structure:
the model proposed in (Wasserman et al., 1985) is the unique
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explanation for the first three observed products of processive Tn3
recombination, assuming that processive recombination acts by adding
on copies of the recombinant tangle R.

The process of obtaining electron micrographs of RecA-enhanced
DNA knots and catenanes is technically difficult and requires a relatively
large amount of product due to the extensive work-up required for RecA
coating and mucroscopy. Gel electrophoresis i1s not only technically
much easier to do, but it detects vanishingly small amounts of DNA
product. For these reasons, biologists prefer to use gel electrophoresis as
the assay from which experimental conclusions are to be drawn. For
relaxed DNA knots and links, the gel determines the crossing number of
the (relaxed) products, and comparison to gel ladders for known knot
and catenane structures can be used to obtain more information than
crossing number alone. As an aid to the analysis of topological
enzymology experiments, a table of possible (and biologically
reasonable!) tangle mechanisms has been prepared (Sumners et al.,
1994) for each possible sequence of crossing numbers of reaction
products that can be read from the gel. This tangle table should make the
mathematical analysis of topological enzymology experiments easier to
do.

We now come to the rigorous mathematical proof of Tn3 .
mechanism. The proofs of the following two theorems can be skipped
without detriment to the continuity of the exposition.

Theorem 8.1 Suppose that tangles O,, P, and R satisfy the
Jollowing equations:

(i) N(O, + P)=<1> (the unknot)

(iiy N(O, + R)=<2> (the Hopflink)

(iif) N(O, + R+ R)=<2,1> (the figure 8 knot).

Then {0,,R}={(=3,0),()}, {(3,0),(-D}. {(-2,-3,-D,(D}, or
{(2.3.D.(-D}.

Proof: In this proof we use the following notation: R" denotes
Euclidean n-space, B" denotes the unit ball in R™ (the set of all vectors
in R" of length €1), and S™ denotes the boundary of B (the set of
all vectors in R" of length 1). The first (and mathematically most
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interesting) step in the proof of this theorem is to argue that solutions
{0,,R} must be rational tangles. Now O, , R, and (O, + R) are locally

unknotted, because N(O, +R) is the Hopf link, which has two

unknotted components. Any local knot in a tangle summand would
persist in the Hopf link. Likewise, P is locally unkmotted, because
N(O, + P) is the unknot. Let A’ denote the 2-fold branched cyclic

cover of the tangle A; then 04’ =8' x8'. If 4 is a prime tangle, then the
inclusion homeomorphism injects m,(04)V=Z®Z intoc =, (A4")
(Lickorish, 1981). If both 4 and B are prime tangles, and N(A+ B)
denotes the 2-fold branched cyclic cover, then | (N (A4 + B)") contains a
subgroup isomorphic to Z®Z. If K is any 4-plat, then n,(K’) is a
cyclic group, since K’ is a lens space (Burde and Zieschang, 1985).
Since no cyclic group contains Z@® Z, no 4-plat has two prime tangle
surmmands. This means that if 4 and B are locally unknotted tangles, and
N(A+B) is a 4-plat, then ar least one of A and B must be a rational
tangle. From equation (ii) above, we conclude that at least one of
{0,,R} is rational. Suppose that O, is rational and that R is prime.
Given that N((O, + R)+ R) 1s a knot, one can argue (Lickorish, 1981)
that O, + R is also a prime tangle. From. equation (iii), we then have that
the 4-plat <2,,l1> admits two prime tangle summands, which is
impossible. We therefore conclude that R must be a rational tangle.

The next step 1s to argue that O, is a rational tangle. Suppose that O, is
a prime tangle. Then P must be a rational tangle, because N(O, + P) is the
unknot (equation (1)). Passing to 2-fold branched cyclic covers, we have that
N(O,+P) =8>, and P’ is homeomorphic to $'xB® (since P is
rational), so O; is a bounded knot complement in §* ., We know that R is a
rational tangle and can argue that equation (iii) implies that (R+ R) is
likewise rational. Again passing to the 2-fold branched cyclic covers of
equations (i) and (iii), we obtain the equations N(Q, +R) = the lens space
L(2,1) and N(O,+(R+ R)) = the lens space L(5.3). Since R’ and
(R+ R)" are each homeomorphic to a solid torus S' x B?, this means that
there are two attachments of a solid torus to O} along 9 O] =8'xS',
yielding the lens spaces L(2.1) and Z(5.3). The process of adding on a
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solid torus along its boundary is called Dehn surgery, and the Cyclic Surgery
Theorem (Culler et al., 1987) now applies to this situation to imply that,
since the orders of the cyclic fundamental groups of the lens spaces differ by
more than one, the only way this can happen is for O, to be a Seifert fiber
space and hence a torus knot complement. Fortunately, the results of Dehn
surgery on torus knot complements are well understood, and one can argue
that in fact O] must be a complement of the unknot (a solid torus) (Emst

and Sumners, 1990), which means that O, is a rational tangle.

The proof now amounts to computing the rational solutions to
equations (ii) and (iii), exploiting the classifying schemes for rational
tangles and 4-plats. In Ernst and Sumners (1990), a “calculus for rational
tangles” was developed to perform such calculations. One can use this
calculus of classifying vectors to solve equations (ii) and (iii), obtaining
the four solution pairs {O,,R}={(-3,0),()}, {(3,0),(-D},
{(-2,-3,-1),(1}, and {(2,3,1),(—1)}. Because each of the unoriented
4-plat products in equations (ii) and (iii) is achiral, given any solution set
{0, ,R} to equations (ii) and (iii), its mirror image {-O,,—R} must also
be a solution. So the mathematical situation, given equations (i) through
(ii1), 1s that we have two pairs of mirror image solution sets for {O,,R}.

In order to decide which is the biologically correct solution, we must
utilize more experimental evidence. The third round of processive
resolvase recombination determines which of these four solutions is the
correct one.

Theorem 8.2 Suppose that tangles O,, P, and R satisfy the
Jollowing equations:

(i) N(O, + Py=<1> (the unknot)

(i) N(O, + RY=<2> (the Hopf link)

(1ii) N(O, + R+ R)=< 2,11 > (the figure 8 knot).

(iv) N(O, + R+ R+ Ry =<LLL11> (the (+) Whitehead link).
Then

0,=-30, R=(1), and N(O,+ R+ R+ R+ R)=<121]11>,
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Proof: The wunoriented (+) Whitehead link 1is chiral and
{0,R}=1{(-3,0),(1)} is the unique solution to equations (i) and (iv).

The correct global topology of the first round of processive Tn3
recombination on the unknot is shown in Figure 8.3. Moreover, the first
three rounds of processive Tn3 recombination uniquely determine
N(O, + R+ R+ R+ R), the result of four rounds of recombination. Tt is
the 4-plat knot <I,2,1,1,I>, and this DNA knot has been observed
(Figure 8.1c). We note that there is no information in either Theorem 8.1
or Theorem 8.2 about the parental tangle P. Since P appears in only one
tangle equation (equation (i)), for each fixed rational tangle solution for
0, , there are infinitely many rational tangle solutions to equation (i) for
P (Ernst and Sumners, 1990). Most biologists believe that P =(0), and
a biomathematical argument exists for this claim (Sumners et al., 1994).

SOME UNSOLVED PROBLEMS

1. How does TOPO 1I recognize knots? E. coli contains circular duplex
DNA. molecules. In wild-type E. coli, no knotting has been observed for
these molecules. However, in a mutant strain of E. coli where the production
of Topoisomerase II (the enzyme that performs strand passage via an
enzyme-bridged transient double-stranded break in the DNA) can be blocked
by heat shock, a small fraction (about 7 percent) of knotted DNA has been
observed (Shishido et al., 1987). All observed knots have the gel mobility of
trefoil knots. The observed knots are presumably the by-products of other
cellular processes (such as recombination). This experiment shows that
TOPO I is able to detect DNA knots and kill them in wild-type E. coli. How
does the enzyme (which can act only locally) detect the global topology of a
DNA knot and then make just the right combination of passages to kill the
knot? Tt must be the energy minimization of the DNA itself that detects the
knotting. The enzyme has only to detect when two DNA strands are being
pushed together in space by the DNA itself in an effort to attain a lower
energy state, whence the enzyme can operate, allowing one DNA strand to
pass through another to reach a lower-energy configuration. If one ties a knot
in a short stiff rubber tube (an elastic tube) and seals up the ends to form a
knotted circle, the tube will touch itself, trying to pass through itself to
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relieve strain and minimize energy. For circular elastica in R’, minimization
of the bending energy functional occurs when the elasticum is the round
planar unkmot (Langer and Singer, 1984, 1985). This means that a knotted
elasticurn has at least one point of self-contact and that the elasticum is
pushing at that point of self-contact to get through to a lower energy state.
Does this elasticum model adequately explam the ability of Topoisomerase
II to detect and selectively kill DNA knots in vivo?

2. What is the topology of the kDNA network? The kinetoplast DNA
(KDNA) of the parasite trypanosome forms a link of some 5,000 to 10,000
unknotted DNA circles—the DNA equivalent of chain mail (Marini et al,,
1980; Englund et al,, 1982; Rauch et al., 1994). Work is ongoing (Rauch et
al,, 1994) in which the topological structure of kKDNA is being studied by
means of partial digest of the network, electrophoresis, and electron
microscopy of the characteristic fragments, in which the large kDNA link is
being randomly broken up into small sublinks, and the frequency of
occurrence of these sublink units 15 being used (statistically) to reconstruct
the large link itself. The kDNA network consists of small minicircles and a
few large maxicircles. The minicircles are known to be unkmotted, and it is
known that neighbors link in the fashion of the Hopf link (Figure 8.4a) (like
the links in a chain). Moreover, it is believed that the KDNA network has a
fundamental region that is repeated in space to generate the entire structure.
This gives rise to a knot theory problem: classify the links that allow a
diagram in which each component has no self-crossings (and hence is
unknotted) and in which each component links another component simply
(like the links in a chain) or not at all, and i which the linking structure is
periodic in space. The spatial periodicity amounts to drawing the link
diagram on a torus (or some other compact, orientable 2-manifold), from
whence the entire diagram is reproduced by taking the universal cover. The
algebraic classification of such “chain mail links” should be interesting and
obtainable with off-the-shelf topological invariants. Another topological
problem has arisen in this biological system. A trefoil knotted minicircle has
been observed as an intermediate to the replication process on the KDNA
network (Ryan et al.,, 1988), What is the mechanism that produces this
knotted minicircle? Does the topology of the network naturally generate
knots as replication intermediates?

3. Why is the figure eight knot faster than the trefoil knot? The
phenomenon of gel mobility of relaxed knotted duplex DNA circles (Dean et
al., 1985) has no adequate theoretical explanation. The gel velocity of
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relaxed DNA knots is determined by crossing number; the larger the crossing
number, the faster the migration. Perhaps this is because among knots of the
same length with small crossing numbers, the average value of the radius of
gyration (a measure of the average size) comelates strongly with crossing
number. It is very curious that the crossing number, clearly an artifact of
planar diagrammatic representation of knots, would have anything at all to
do with the three-dimensional average knot confor-mation. What is the
relationship (if any) between radius of gyration of DNA circles of fixed
molecular weight and fixed knot type, crossing number, and the gel mobility
of these knotted DNA circles?

ANNOTATED BIBLIOGRAPHY

Knot Theory

Adams, C., 1994, The Knot Book: An Elemeniary Introduction to Mathemarical Theory
of Knots, New York: W.H. Freeman.
Kauffman, L.H., 1987, On Knots, Princeton, N.J.: Princeton University Press.
Livingstor, C., 1994, Knot Theory, Carus Mathematical Monograph, Vol. 24,
Washington, D.C.: Mathematical Association of America.
Rolfsen, D., 1990, Knots and Links. Berkeley, Calif.: Publish or Perish, Inc.
Each of these mathematics books has an easygoing, reader-friendly stvle and numerous
pictures, a very important commodity when one is trying to understand knot theory.

Application of Geometry and Topology to Biology

Bauer, W.R., F.H.C. Crick, and J.H. White, 1980, “Supercoiled DNA,” Scientific
American 243, 100-113.
This paper is a very nice introduction 1o the description and measurement of DNA
supercoiling.

Sumners, D.W., 1987, “The role of knot theory in DNA research,” pp. 297-318 in
Geometry and Topelogy, C. McCrory and T. Shifrin (eds.), New York: Marcel
Dekker.
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gives an overview of knot theory and DNA, and the second describes the tangle model.
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Proceedings of Symposia in Applied Mathematics, Vol. 43, Providence, R.L:
American Mathematical Society.
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This volume c¢ontains six expository papers outlining new applications of
geometry and topology in molecular biology, chemistry, polymers. and plysics. Three
of the papers concern DNA applications.

Walba, D.M., 1985, “Topological stereochemistry,” Tetrahedron 41, 3161-3212.

This paper is written by a chemist and describes topological ideas in synthetic
chemistry and molecular biclogy. It is a good place to witness the translation of
technical terms of science to mathematical concepts, and vice versa.

Wang, J.C., 1982, “DNA topoisomerases,” Scientific American 247, 94-109.
This paper describes how topoisomerases act to control DNA geometry and
topology in various life processes in the cell.

Wasserman, S.A., and N.R. Cozzarelli, 1986, “Biochemical topology: Applications to
DNA recombination and replication,” Science 232, 951-960.
This paper describes the topological approach to enzymology protocol and
reviews the results of various experiments on topoisotnérases and recombinases.

Whirte, J.H., 1989, “An introduction to the geometry and topology of DNA structure,”
pp. 225-253 in Mathematical Methods for DNA Sequences, M.S. Waterman (ed.),
Boca Raton, Fla.: CRC Press.

This 1s a very nice introductory mathematical treatment of linking number, twist,
and writhe, with DNA applications.
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Chapter 9
Folding the Sheets:
Using Computational Methods
to Predict the Structure of Proteins

Fred E. Cohen
University of California, San Francisco

In principle, the laws of physics completely determine
how the linear sequence of amino acids in a protein will
fold into a complex three-dimensional structure with
useful biochemical properties. In practice, however,
predicting structure from sequence remains a major
unsolved problem. In this chapter the author outlines
current approaches to structure prediction. The most
fruitful approaches are not based on physical simulations
of the folding process, but rather exploit the
conservative nature of evolution. Using statistical
methods, pattern matching techniques, and combinato-
rial problem solving, protein structure prediction is
becoming steadily more tractable.

At the crossroads of physics, chemistry, biology, and computational
mathematics lies the protein folding problem: How does a linear polymer of
amino acids assemble into a three-dimensional object capable of executing a
precise chemical function? Implicit within this question are both kinetic and
thermodynamic issues: Given a particular protein sequence, what is the
conformation of the folded state? What path does the unfolded chain follow
to reach this folded state? This chapter owtlines the history of the protein
folding problem, current research efforts, the obstacles to accurate prediction
of protein structure, and the areas for future inquiries.
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A PRIMER ON PROTEIN STRUCTURE

Proteins are constructed by the head-to-tail jomning of amino acids,
chosen from a 20-letter alphabet. The 20 natural amino acids have a common
backbone, but a vanable side chain or R-group. The R-gtoups may be large
or small, charged or neutral, hydrophobic or hydrophilic, and
conformationally restricted or flexible (see Figure 9.1). It is the physical
properties of these R-groups that determine the diverse structures into which
a given amino acid chain will fold. Broadly speaking, proteins can adopt
fibrous or globular shapes. Repetitive amino acid sequences adopt elongated
periodic fibrous structures, with common examples including elastin (skin),
collagen (cartilage), keratin (hair), and B-fibroin (silk). This chapter focuses
on globular proteins.
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FIGURE 9.1 Twenty amino acids: R-groups are shown clustered by functional types:
aliphatic hydrophobic, aromatic hydrophobic, hydrophilic, negatively charged, positively
charged, and conformationally special.
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The enzyme ribonuclease, which catalyzes the breakdown of ribonucleic
acid (RNA), provides a useful example. The sequence contains 124 amino
acids. Under appropriate conditions, the amino acid chain is covalently
cross-linked in four locations through disulfide bridges between cysteines in
the protein chain. (The amino acid cysteine has a reactive sulfur atom that
forms such bridges, which provide the only covalent bonds joining
nonneighboring amino acids in the chain.) In a classic series of experiments,
Anfinsen et al. (1961) demonstrated that the amino acid sequence of
ribonuclease contained enough information to code for the folded structure.
Specifically, he showed that ribonuclease lost its enzymatic activity in the
presence of a chemical denaturant (which disrupted the protein’s structure)
but spontaneously regained its activity when the denaturant was removed.
Even when the disulfide pairings were scrambled afier denaturation,
renanuration could occur. Thus, without any outside assistance, the protein
could refold. Independent of the starting conformation, the amino acid
sequence contains sufficient information to direct the chain to the comect
folded structure. Similar experiments have been repeated with many other
proteins. This work would suggest that proteins follow an energy gradient
from the denatured state to the native state. The free energy difference
between these two states favors the folded state, and the height of the
activation barrier along the folding pathway govems the rate of chain
assembly (see Figure 9.2).

Recently, molecular biologists have discovered that some proteins can
assist the folding process. These proteins, dubbed foldases, include the
chaperonins (Kumamoto, 1991) that prevent proteins from assembling inside
an undestrable cellular compartment, prolyl isomerases that increase the rate
of the cis-trans isomerization of the amino acid proline (Fischer and Schmid,
1991), and protein disulfide isomerases (Freedman, 1989), which shuffle
disulfide bridges. While it is conceivable that these foldases might take a
protein to a kinetically trapped final state different from the state of lowest
free energy, this seems unlikely. Instead, I imagine that these foldases simply
lower the activation barrier to folding into the lowest energy state. In the
absence of an appropriate foldase, the height of the activation barrier might
be such that in some cases, protein folding will not occur on a biologically
sensible time scale.
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FIGURE 9.2 Thermodynamics of protein folding: the folding chain must surmount a free
energy barrier (AG") to move from the denatured to the native state, The native state is more

stable than the denatured state by free encrgy AG.

One reason for the tremendous interest in the protein folding problem is
that 1t has become simple to determine the amino acid sequence of large
numbers of proteins while it remains difficult to determine the structure of
even a single protein. The first protein sequences were laboriously
determined by classical biochemical methods (Konigsberg and Steinman,
1977). The proteins in question were isolated, purified to homogeneity, and
enzymatically digested mto smaller fragments. Amino acids in ¢ach such
fragment were chemically cleaved, one residue at a time, from one end and
from each successive amino acid. Automated methodologies and improved
chemistry accelerated this process. but protein sequencing remained a tedious
task until molecular biology supplied a different approach (Maxam and
Gilbert, 1980). By deterriiining the deoxyribonucleic acid (DNA) sequence
of the gene encoding the protein (using methods that were quite rapid), one
could infer the amino acid sequence of the protein by simply translating the
DNA codons according to the genetic code. The approach is much faster and
more reliable than direct protein sequencing. With the advent of this
technology has come a flood consisting of tens of thousands of protein

sequences.
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By comparison, the rate at which new protein structures are determined
remains a trickle because the structure determination remaing a formidable
experimental task. X-ray crystallography was the first technique used to
determine the structure of proteins (Kendrew, 1963). One must first coax a
protein to crystallize with sufficient regularity to diffract X-rays. Then the
crystal must be bombarded with X-rays and the X-ray diffraction pattemn
collected, either on film or with an electronic detector system. In pringiple,

the X-ray diffraction pattem corresponds to a Fourier transform D of the
electron density D of the crystal—with the amplitude and phase of the
signal at ¢ach point comesponding to the amplitude and phase of the
corresponding complex Fourier coefficient. Unfortunately, detectors can
record only the amplitude, not the phase. Solving for an X-ray crystal thus

involves determining the density D from ‘iﬁ , which can be a formidable

task. In general, the problem is underdetermined. A mathematical approach
is to add constraints (for example, D must be everywhere positive, since it
represents a density). An experimental approach is to use additional
information from the X-ray diffraction pattern obtained when the protein is
crystallized in the presence of a heavy atom (for example, mercury, uranium,
or platinum) or anomalous scatterers (for example, selenium) bound to the
protein in a covalent or non-covalent fashion. The difference between the
original and modified pattems or the patterns as a function of X-ray
wavelength provides the missing phase information. Although the approach
is very powerful, it requires that the protein architecture not be significantly
changed by this molecular perturbation, and it is more successful when
several derivatives are available for study (Blundell and Johnson, 1976).
Finally, one can start with a good guess at the protein structure. The Fourier
ransform of this structure yields a set of intensities and phases. The
hypothetical structure is rotated and translated until the intensities match the
experimental data. If the correlation between the hypothetical and actual
structure is strong, then the structure determination can succeed without the
need for heavy atom derivatives.

More recently, nuclear magnetic resonance (NMR) spectroscopy has
been used to determine protein structwe (Wuthrich, 1986). Pairs of
hydrogen atoms (protons) produce resonances when they lie in
neighboring positions in the protein chain or when they lie very close
together in space. By determining the correspondence of resonances with
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individual amino acids in the protein, one can determine which amino acids
lie near each other. Based on these constraints, one can use the mathematical
technique of distance geometry (Crippen and Havel, 1988) or restrained
molecular dynamics with simulated annealing to build a partially constrained
structure. (The isotopes “C and N can also provide additional information.)
Currently, this approach requires a noncrystalline but highly concentrated
protein solution and works only for relatively small proteins (the resonances
broaden as the molecule size increases and its mmbling time decreases).

BASIC INSIGHTS ABOUT PROTEIN STRUCTURE

If a protein sequence contains sufficient information to code for a folded
structure, it should be possible to construct a potential energy function that
reflects the energetics of an assembling polypeptide chain. In principle. one
would “only” need to find the minimum of this potential function to know
the protein’s folded state. In practice, this goal has proved elusive.

Some early workers defined molecular force fields compatible with the
experimentally measured conformational preferences of small molecules
(Lifson and Warshel, 1969). Unfortunately, attempts to fold a denatured
chain using this approach were unsuccessful (Levitt, 1976; Hagler and
Honig, 1978) because multiple local minima along the potential energy
surface trapped the folding chain in unproductive conformations (see Figure
9.3). Even with improved search strategies including molecular dynamics
and Monte Carlo methods, it has not been possible to find the native
structure from a random starting point (Howard and Kollman, 1988; Wilson
and Doniach, 1989). This has been called the “multiple minima problem.” It
remains a critical problem for the conformational analysis of complex
molecules. Despite the inability to fold proteins de novo, this approach has
proved valuable for studying the behavior of proteins by studying small
perturbations around the known structure.

Because direct computation is difficult, one approach would be to look
for patternsand regularities in protein structures that might simplify the
task of prediction. In fact, considerable insight can be gained by simply
looking at experimentally determined protein structures. First of all, one
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FIGURE 9.3 The multiple minima problem: a two-dimensional schematic of the energy
surface of a folding protein. Different starting points lead to different metastable states. Only
§, finds the global minimum.

observes that proteins tend to employ certain swereotypical local
conformations called secondary structures. The most important are called a-
helices and (3-sheet structures and were suggested by Pauling (Pauling et al.,
1951) based on first principles. In an a-helix, the chain follows a right-

handed spiral with hydrogen bonds between the amino group (NH) of one
amino acid and the carbonyl group (C=0) of an amino acid a few steps
further along the chain. The result is a stable structure with a sequentially
local network of hydrogen bonds (see Figure 9.4A). B-sheets offer a
different solution to the hydrogen bonding problem. These sheets involve
segments of the chain that are sequentially distant but conformationally
similar, forming an alternating pattem of hydrogen bonds (see Figure
9.4B). The B-strands may lie parallel or antiparallel to one another. In
fibrous proteins, repeated amino acid sequences yield elongated o-helices
like a-keratin (or hair) and P-sheets like B-fibroin (or silk). Globular
proteins must contain amino acid sequences that break «-helix and [3-sheet



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Malecular Biology (1995)
http://www.nap.edu/openbook/03090488639/htm|243.html, copyright 1995, 2000 The National Academy of Sciences, all rights reserved

Folding the Sheets 243

FIGURE 9.4 (A) An alpha helix. (B) A B-sheet: four paralle] f-swands are shown. Hydrogen
bonds exist between oxygen atoms on one strand and nitrogen atoms on the neighboring
strand.
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structure and cause the chain to tumn back toward the center of the molecule.
Secondary structure provides a useful building block for constructing
more complex protein structure (Crick, 1953; Leviit and Chothia, 1976).
Proteins are usefully classified by their use of secondary structures: oo
proteins are structures dominated by «-helices (for example, myoglobin);
/B proteins are predominantly f-sheet structures (for example,
plastocyanin); o/ proteins are characterized by the regular altemation of o~
helices and f-strands (for example, flavodoxin); and @ + f proteins are
charactenized by the irregular altemation of «-helices and f-strands (for
example, lysozyme) (see Figure 9.5). Although the building blocks are
common, the connectivity of the chain varies within these folding classes.
Molecular biologists have borrowed the tenm “topology™ (inappropriately) to
describe the path that the chain takes in joining consecutive secondary
structure elements. For example, many proteins contain four a-helices
packed one against another to form a square four-helix bundle. With one
helix taken as the reference point, the other three helices can be visited in six
distinct orders. Moreover, each of these three helices can lie parallel or
antiparallel to the reference helix. Thus, 48 motifs are possible. Is there any
preference in the arrangements found in nature? By their general structure, «-
helices have a dipole moment with partial positive charges near their N-
terminus (start) and partial negative charges near their C-terminus (end). If
electrostatic considerations are significant, one might expect to see
antiparalle] arrangements predominate (since opposite charges attract). In
fact, a review of available protein structures reveals that 17 of 18 four-
helix bundle structures conform to this expectation (Presnell and Cohen,
1989). Of the six possible motifs involving antiparallel arrangements, five
have been observed in nature so far, and the sixth is expected to crop up as
the database of protein structures grows (see Table 9.1 and Figure 9.6). An
important corollary of the study of four-helix bundles is that quite distinct
sequences can adopt similar structures: the code for folding is degenerate.
Further insight into protein structure is gained by considering the
physicochemical properties of the different amino-acid side chains. Some
side chains (those called hydrophilic) interact favorably with water, while
others (called hydrophobic) do not. For globular proteins, one would
expect (Kauzmann, 1959) that the hydrophilic side chains would tend to
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Table 9.1 Topologies of Currently Known Four-a-Helix Bundles

Number of
Overhand All  Antiparallel Others
Connection(s) Left-handed Right-handed (right-handed)
0 Complement C3a  Cytochrome 5-562
Complement C5a  Cytochrome ¢*
Cytochrome b, Methemerythrin
Interleukin 2 TMYV coat protein
T4 lysozyme
| Ferritin Phospholipase C (b)  Cytochrome
P-450,,
2 Human growth
hormone

NOTE: There are no left-handed topologies for “other” four-a-helix bundles.
TMV is the tobacco mosaic virus.

dominate the exterior of the protein (where it interacts with the aqueous
environment) while hydrophobic side chains would occupy the molecule’s
interior. Richards devised a simple method for defining the “solvent-
accessible” portion of a protein by rolling a sphere with a radius comparable
to that of a water molecule along the molecular surface (Lee and Richards,
1971). When amino acid residues are categorized in this way, it is indeed
found that hydrophobic residues tend to occur on the inside and hydrophilic
restdues tend to occur on the outside, although the correlation is far from
perfect. Solvent-accessible surface area calculations have shed light on the
importance of the “hydrophobic effect” in dnving protein folding and have
proved valuable in dissecting the stabilization of protein—protein and
secondary structure—secondary structure inter-actions.

In summary, the analysis of protein structures has produced some
unassailable conclusions: packing is an important element of protein
stability; secondary structure is a common component of protein structure;
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FIGURE 9.6 (Top) Two left-handed bundles (side view). Three specific attributes fully
describe the topology of a four-ci-helix bundle. These are the (1) polypeptide backbone
commectivity between helices, (2) unit direction vectors of the individual helices, and (3)
bundle handedness. In the first bundle there are no overhand connections, and in the second
bundle there is one overhand connection. The handedness of a particular bundle is
determined using the “right-hand rule” of physics. To determine if a helix bundle is of a
particular handedness, orient the thumb of one hand paralle] to the first helix or helix A
where the positive unit vector stems from N-terminus to C-terminus (and helices A, B, C,
and D are the first, second, third, and fourth helices on the path from the N terminus to the C
termimus). Helix B should be oriented to the left if it is a left-handed bundle and to the right if
it is a right-handed bundle. In the case where helix B is diagonally opposed to helix A, the
handedness is based on the position of helix C relative to helices A and B. (Boftom)
Schernatic representation of the possible artiparallel four-ci-helix bundles (top view). Bold
lines represent cormections in front of the page; thin lines represent connections behind the
page. Left-handed and right-handed forms of four-c-helix bundles have an equal probability
of occurrence. Reprinted, by permission, from Presnell and Cohen (1989). Copyright € 1989
by S.R. Presnell and F.E. Cohen.
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globular proteins partition most hydrophobic groups away from the protein-
solvent interface; and similar sequences yield similar structures, but quite
distinct sequences can produce remarkably similar structures. Molecular
biologists have suggested that nature can borrow pieces of several structures
to construct new structures or simply extract a whole structure and co-opt it
for a new use (Dorit et al., 1990).

This chapter focuses on two of the major computational approaches that
biologists have taken to the protein folding problem: (1) Threading methods,
which rely on aligning a “new” protein with sufficiently sinular proteins for
which structures are already known. Of course, these methods require that
sufficiently similar proteins exist in the available databases. (2) Hierarchical
condensation methods, which involve identification of the building blocks of
protein structure and an understanding of the rules that govern the assembly
of these building blocks into higher-order structure. Unlike the template
methods, these methods can be applied even to proteins that do not closely
resemble previously studied ones.

The rest of this chapter outlines cwrrent work, underscores the limitations
of each strategy, and highlights the computational challenges we face.

THREADING METHODS

If two proteins have evolved from a common ancestor, their structures
tend to remain similar (because structure underlies function) even though
their sequences may diverge considerably. The converse of this statement
offers a recipe for protein structure prediction: if 2 “new” protein sequence is
recognizably similar to the sequence of a protein of known structure, then it
should be possible to approximate the “new” structure by threading the
sequence of the “new” protein through the “old” structure guided by the
sequence alignment. The key step is to accurately align the new sequence
with the known structure. While this is straightforward when the number of
exact residue-for-residue matches between the two sequences exceeds 70
percent, as the degree of identity declines, this task becomes much harder
(Smith and Smith, 1990). Without an accurate alignment, model-building
efforts are doomed to failure.

Proteins are the translated products of information encoded in DNA
stored in the chromosomes of the nucleus. As has been discussed in



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology (1995)
http://www.nap.edu/openbook/0309048869/html/249.html, copyright 1995, 2000 The National Academy of Scignces, all rights reserved

Folding the Sheets 249

previous chapters, a group of three consecutive nucleotides specifies, by the
genetic code, an amino acid for addition to a growing protein chain. From
time to time, spontaneous mutations occur in the DNA sequence; these
mutations produce changes in the amino acid sequence. While some
mutations are deleterious and are eliminated by evolutionary selection, other
mutations are essentially neutral in their effect and thus suffer no negative
selection. As a result, the exact blueprint for a protein will drift over time as
mutations accurnulate. Genetic recombination can introduce additional
variation to a gene. New sections of sequence can be inserted or existing
sections deleted. Distinct genes or gene parts can be duplicated or
concatenated. To trace the putative evolutionary relationship of two proteins,
we must be able to assess the likelihood that a series of mutations, insertions,
and deletions could relate the two sequences. The likelihood that any residue
will be mutated into another residue could depend on the mechanisms for
somatic mutation as well as on the implications of the substitution for the
stability or catalytic efficiency of a protein—that is, it could depend both on
mutation and selection.

We need to determine the likelihood of all possible interchanges
between the 20 natural ammo acids, that is, create a 20 x 20 tirangition
matrix for a Markov process (although sequence evolution is not strictly
Markovian). A number of approaches can be taken:

1. Focusing on mutation, we have to know the frequency of transitions
(A& G, C¢> T) and transversions (A-G <> C-T) as well as the number
of base changes required to change the triplet code for one amino acid into

.another. A minimum base change mairix has been constructed and used to
align protein sequences. This mechanistic approach is most successful with
very closely related protein sequences. Over long periods of time, however,
there is ample opportunity for most mutations to occur, and so the observed
spectrum of changes tends to depend more on the selective advantage or
disadvantage of the amino acid substitutions than on the probabilistic nature
of the mutation process itself.

2. An altemative approach to constructing the 20 X 20 transition matrix
depends on the chemical similarity of the residues. Smith and Smith (1990)
have employed this strategy to categorize and align all of the known
sequences.

3. Finally, an unabashedly empirical approach can be taken. Dayhoff et
al. (1972) manually aligned protein sequences from a functional family (for
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example, cytochromes) and then tabulated the observed interchange
frequency between all pairs of amino acids. Clearly, the success of the
manual alignment and the evolutionary distance between family members
have an impact on the interchange matrix. (In particular, Dayhoff’s matrix
corresponds to the transition matrix for the results of the Markov process
over, for example, 250 million years. From this, one can infer the transition
matrix. for other periods.) In spite of its shortcoming, the Dayhoff matrix has
proved extremely useful.

It is simplistic to expect that any one matrix can be appropriate for all
positions along the chain. In fact, mutational tolerance varies widely at
different positions along a protein chain (Overington et al., 1990). Regions of
the protein interior and secondary structure are less tolerant of mutation.
Conformational restrictions dictate the residue type in tight turns. Some
cysteine side chains are covalently cross-linked to another cysteine along the
chain in a disulfide bridge (and thus are under strict selective pressure to
remain constant), while others exist ag free sulthydryls (and are presumably
less constrained). Moreover, two cysteines in a disulfide bridge have
correlated fates: if the bridge is broken by the mutation of one residue (and
the protein is not sufficiently compromised that evolution selects against it),
the remaining cysteine is under much less selective pressure. Proteins are
highly cooperative structures, and so coupled behavior of sequentially distant
residues is common. For particular proteins with well-understood structures,
specific sequence “profiles” have been developed that incorporate the
coupled behavior of specific amino acids along the chain, This approach
performs extremely well (Bowie et al., 1991), but no general scheme exists
for disceming the cooperative aspects of the sequence of a folded protein.

The existence of insertions and deletions of sequences during
evolution creates a second problem in the development of an alignment
metric. What 1s the correct penalty for creating a gap in one sequence, and
how should the penalty grow as the gap becomes longer? With a sufficiently
weak penalty for gaps, any two sequences can be aligned even if they are
unrelated. To make matters worse, experiments have shown that the
energetic penalty for inserting a sequence along the chain varies with the
location of the insertion (Sondek and Shortle, 1990). Turmn regions are
accommodating, but the middles of secondary structure elements are more
problematic. Smith has asserted that the gap penalty should be equal to
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G, +nG,, where G, is a penalty for creating a gap, G, is the penalty for
extending the gap by one additional residue and #» is the length of the
insertion. No obvious formalism exists for determining G, and G, , so they
are parameters to be chosen to fit the problem at hand. Sternberg has further
complicated this issue by suggesting a strategy to bias the definition of G,
based on the position along a sequence of known structure that relies on the
presence or absence of secondary structure (Barton and Stemberg, 1987).
From a structural viewpoint, this is extremely sensible. From the
computational point of view, the additional difficulties are considerable.
More recent work by Gonnet et al. (1992) based on actual insertions and

deletions suggests that gap penalties should take the form Gyn ™.

Once the mutation and gap metric have been chosen, one wishes to find
the best alignment of two or more sequences. For two sequences, dynamie
programming algorithms offer a rapid method for creating the optimal
pairwise alignment (Smith and Waterman, 1981). For the alignment of
multiple sequences, the problem becomes computationally intractable

(alignment of k sequences of length N takes time O(N*)), and so iterative
pairwise strategies are used. The significance of a final alignment is often
evaluated by comparison with a family of “random” sequences.
Unfortunately, protein sequences are far from random, and so this approach
usually overestimates the significance of an alignment. New methods are
being developed to improve the scoring metrics and to produce “random”
sequernces with the Markov dependences commonly observed in proteins
(Karlin and Altschul, 1990).

When an accurate alignment is available for a new protein sequence
and a protein of known structure, it is possible to construct a useful model
of the “new” three-dimensional structure based on the “old” structure. For
closely related structures. the residue-by-residue positional error is small.
However, the error grows as the divergence between the sequences of the
model and known structures increases (Chothia and Lesk, 1986). Because
“reasoning by homology” plays such an important role in the prediction of
protein structure, various recipes have been developed for model building
(Greer, 1990; Chothia et al., 1989; Jones and Thirup, 1986; Bruccoleri and
Karplus, 1987; Ponder and Richards, 1987, Wilson et al., 1993). One
method is based on using secondary structure segments to create a
molecular scatfold, thereby decomposing the problem. Onto this scaffold,
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particular loops can be added, and the side chain conformation of the
individual residue can be specified. The loops can be selected from a “loop
thesaurns” (although this suffers from the drawback that it cannot predict
novel loops) or by computational search (although this becomes prohibitive
for loops of more than 10 residues). The conformation of the side chains
cannot be determined by direct conformational search because too many
local minima exist, but the problem can be made more tractable by focusing
the computation on “rotamer libraries™ containing the most commonly found
conformations and by performing comparisons with the conformations found
in collections of related sequences (Wendoloski and Salemme, 1992).

While model construction is straightforward, model validation is much
more difficult. Is a homology-built model correct? If not, where is it wrong,
and how can it be improved? The problem turns out to be surprisingly hard.
Indeed, Novotny et al. (1988) showed that it is possible to construct
“incomrect” models that nonetheless satisfy a variety of energetic constraints.
They took hemerythrin and an immunoglobulin domain, two proteins with
entirely different secondary and tertiary structure. The hemerythrin sequence
was forced into the immunoglobulin structure and vice versa. The difficulty
in distinguishing the correct and misfolded structures based on energy
calculations was both remarkable and profound. This suggests that the errors
inherent in existing potential functions may dominate the energy differences
between comectly and incorrectly folded proteins. In practice, homology
modeling has had varied success (Pearl and Taylor, 1987; Wierenga and Hol,
1993), ranging from important triumphs to ambiguous or erroneous results.

Clearly, better methods are needed to evaluate the quality of model-built
structures. One such test stems from the observation that a hallmark of
folded proteins is the close packing of atoms (Richards, 1977). Using various
computational methods, varous workers (Richards, 1977; Fravenfelder et
al., 1987) have shown that the packing density within a protein tums out to
be comparable to that seen in the crystalline arrangement of small organic
molecules, with cavities being rare (and those that are observed can be
functionally relevant). Gregoret and Cohen (1990) have exploited tests for
packing defects as a strategy for sorting comect structures from their
incorrectly modeled counterparts. While this approach provides a useful filter
for rejecting some structures, well-packed but incorrect structures are found.
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A second approach to distinguishing correct from incorrect structures is
based on the concept of solvent-accessible surface area, a notion that has
found broad urility in the analysis of the energetics of protein folding and
molecular recognition (Lee and Richards, 1971). The solvent-accessible
surface area is defined as the area of the locus traced by the center of a sphere
of radius 1.4 angstroms (A) (the radius of a water molecule) when it is rolled
along the surface of the protein. The solvent-accessible contact area is
defined as the region of the molecule that contacts the probe sphere. These
two measures tend to be roughly proportional and can be calculated using
numerical integration (Lee and Richards, 1971) or analytical methods from
differential geometry (Richmond, 1984). Solvent accessibility calculations
tumn out to be quite relevant to the energetics of protein folding (Chothia,
1974). While side chains on the exterior of a protein are in contact with
water, the interior side chain environment resembles the organic solvent
octanol (an eight-carbon alcohol). It is this difference that makes it favorable
for hydrophilic side chains to lie on the surface and hydrophobic residues to
cluster in the interior. The free energy required to transfer particular amino
acid side chains from octanol to water has been measured (Lesser and Rose,
1990). The experimental values correlate closely with the accessible surface
arca of the side chain (1-A’ surface area = 47 calories per mole), and the data
provide a bagis for distinguishing correct from incorrect proten structures.
Indeed, Novotny et al. (1988) found that it was possible to sort the correct
hemerythrin and immunoglobulin structures from their incorrect models by
taking into account the accessible surface area. For this and other reasons,
fourth-generation potential functions are being developed that include a
solvent accessibility term as a method for implicitly incorporating protein-
solvent interactions.

Another issue in evaluating proposed protein structures is the
treatment of electrostatic interactions (Gilson and Honig, 1986). Proteins
contain many charged side chains, and the peptide backbone forms a
dipole. The dielectric behavior of the protein interior is significantly
different from the behavior at or near the protein-solvent interface. This
creates difficulties in computational efforts to evaluate properties of
proteins. For example, a simple coulombic formulation of electrostatic
interactions does a poor job of replicating experimental data on the
intrinsic affinity of an ionizable group for a proton (pKa). Since the
groups in the active site of a protein often have unusual pKa's, advances
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are necessary to improve our understanding of catalysis. Honig and co-
workers have used the Poisson-Boltzmann equation to obtain a better
understanding of protein electrostatics (Gilson and Honig, 1986).
Distinct dielectric environments can be accommodated, and while
closed-form solutions are not possible for any complex systems, finite
difference methods can be used to calculate the field strength. These
studies have proved useful in replicating pKa data, and efforts are under
way 1o incorporate the Poisson-Boltzmann formalism into existing
potential  functions.  Unfortunately, these  calculations are
computationally intensive. Little has been tried to exploit electrostatic
interactions as a guide to the merits of a protein structural model.

Finally, experimental information can be used to sort comect from
incorrect structures. The relative proportion of a-helix and B-sheet in a
protein can be measured by circular dichroism spectroscopy. Discrepancies
between the observed and the predicted data can arpue against a model
structure. The precise cross-linking of the polypeptide chain through
disulfide bridges or other chemical reagents provides distance constraints that
connect sequentially distant regions of the chain. To a lesser extent, site-
directed mutagenesis, which detects the impact of changes to the amino acid
sequence on protein stability and function, and limited proteolysis
experiments, which detect the relative accessibility of regions of the chain,
can provide useful constraints to sort between alternative model structures.
The combination of theoretical methods and low-resolution experimental
tools holds great promise for directing the construction of useful protein
structure models.

PREDICTING HIV PROTEASE STRUCTURE:
AN EXCURSION

Several types of proteases, enzymes that catalyze the breakdown of
proteins, have been characterized by biochemists. Frequently, they are
named after a key component of their catalytic machinery: serine,
cysteine, aspartyl, or metallo proteases. With the discovery of the AIDS
virus (HIV) and the determination of its genomic sequernce, it appeared
that the virus produced a great deal of its enzymatic and regulatory
machinery as one long incapacitated polyprotein that required a specific
protease to split it into active components. Sequence analysis suggested
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a region of the genome that could code for a protein with some
resemblance to the aspartyl proteases known from prokaryotic and
eukaryotic sources. The problems were that the sequence was too short
(~ 100 residues) when compared to the known aspartyl proteases (~ 240
amino acids) and that it contained only one of the two key aspartyl
groups that form the active site. Moreover, the degree of sequence
similarity between the viral sequence and the known aspartyl proteases
was sufficiently low that researchers were unsure of exactly what went
where. This was of more than passing interest as genetic studies of HIV
demonstrated that mutation to the putative aspartyl protease blocked
viral replication, and hence this was a promising target for
pharmaceutical intervention.

Pearl and Taylor (1987) studied the structures of several aspartyl
proteases and constructed a template that encoded the essential features
of this class of enzymes. A sequence template was found that could be
used to scan the database of known sequences and efficiently sort
aspartyl proteases from all other proteins. The HIV sequence fit half of
the template and exhibited very economical tendencies with regard to the
loop reglons that joiped the B-strands in the molecular framework. The
prokaryotic and eukaryotic aspartyl proteases contain two domains that
are structurally similar and can be related by a dyad axis. Moreover, one
of the two aspartate residues in the active site is contributed by each
domain. Pearl and Taylor reasoned that HIV, in an attempt to achieve
additional genomic economy, elaborated a protease that had to pair or
dimerize to form the active enzyme. A three-dimensional model of the
HIV protease was constructed by following the template-directed
homology to the aspartyl proteases of known structure that facilitated
subsequent chemical and biochemical efforts. Their structural model
proved to be extremely insightful when compared with the structural
data provided by X-ray crystallographers several years later.

HIERARCHICAL APPROACHES

If protein folding is so hard, how do proteins manage to get it right?
Does the folding process obey simple, logical rules that could guide
computational efforts to reproduce it? Biochemists tend to describe protein
structure in a hierarchical fashion, and many believe that the folding
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process tends to proceed up the hierarchy (Linderstrom-Lang and Schellman,
1959). According to this view, the amino acid sequence or primary structure
would first collapse from a disordered chain to form ordered elements of
secondary structure, o-helices and p-strands. These secondary structure
elements would coalesce to form a stable tertiary soucture, consisting of the
packing of the secondary structure elements against one another in the
complete protein molecule. Finally, individual protein monomers with stable
tertiary structures can sometimes aggregate to form multimers with the
interaction defining the quaternary structure, often having complex
functional and regulatory roles. This suggests a computational strategy to
relate protein sequence and structure. First, predict the location of c-helices
and f-strands, and then pack secondary structure units together to form an
approximate tertiary structure that can be refined to the folded protein
structure (see Figure 9.7).

Is secondary structure prediction possible? Stated more precisely, is
secondary structure determined predominantly by local interactions along the
chain, or is it dependent on numerous nonlocal (tertiary) interactions?
Various small peptides have been synthesized and spectroscopically
characterized in an effort to understand the origins of the stability of an a-
helix (Padmanabhan et al., 1990). Experiments show that several short
sequences (< 20 residues in length) can form stable o-helices and the
individual amino acid conformational preferences comelate with those
observed in globular proteins. Studying 3-structure in this fashion, however,
has proved more difficult:

Studies of whole proteins shed further light on the degree to which
secondary structure amses from local interactions. Experiments have
suggested that one can identify a “molten globule” state that can be
stabilized under acidic conditions (Kuwajima, 1989). This intermediate
state appears to contain native-like secondary structure as inferred from
circular dichroism studies, but the tertiary structure appears not to be
present. In short, secondary structure appears to be stable in the absence of
tertiary or nonlocal interactions. On the other hand, the local information
producing secondary structure cannot be foo local. For it is known that
identical pentapeptide sequences chosen from distinct proteins can adopt
entirely different structures (Kabsch and Sander, 1984). For example, the
same pentapeptide may form part of an c-helix in one protein and a -
strand in another. Thus, the necessary information must extend beyond
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FIGURE 9.7 A hierarchical condensation model for protein folding. Sequence determines
secondary structure, and secondary structure elements assemble to form an approximate
tertiary structure. Energy refinernent yields a detailed three-dimensional structure.

five residues. Presumably, the solution is that the conformation of some
sequences 1is specified in large part by local interactions. while others are
stable only in the context of the neighboring sequences. The most difficult
challenge for secondary structure prediction methods is to determine the
structure of these context-dependent regions.

Two general strategies have been applied to the secondary structure
prediction problem: statistical approaches and rule-based approaches.

The statistical approaches assert that proteins of known tertiary
structure provide a useful data set describing secondary structure preferences
of individual amino acids. Two presumptions are made: tertiary
structure will exert no consistent effects on secondary structure, and
the existing database is of sufficient size to provide important information.
The first assertion recalls our discussion of the local versus
global determinants of protein organization. [ believe that local
nteractions play a significant role in protein folding, but, in the literature,
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this remains an open question. The adequacy of our current database can be
approached in a more smaightforward way. The conformations of over
40,000 amino acids in approximately 200 distinct protein structures are
known. These distribute between o-structure (~ 30 percent), B-structure (~
30 percent), and turns or coils (~ 40 percent). The likelihood that alanine will
appear in an a-helix ( L, (Ala) ) can be calculated easily from this data set.

I (Ala)= number of alanines in c-helices

number of alanines in data set

Even the 400 amino acid doublet propensities, which reflect the conditional
probability that an alanine will occur in an o-helix contingent on the amino
acid type of the neighboring residue, can be usefully approximated.
However, the current data set is not adequate to provide information about
the 8,000 triplet amino acid preferences. Moreover, it is not clear that the
triplet interaction preferences will be the sum of three doublet interactions or
that complete triplet preferences adequately define the conformational
preferences of amino acids. Additional protein erystal structures and studies
on model peptide systems will help in overcoming these limitations.

In 1974, a landmark paper on protein secondary structure predicion was
published by Chou and Fasman (1974). Working with a much smaller
protein database, the authors calculated the secondary structure propensities
of each amino acid, for example,

number of alanines in a-helices

P, (Ala) = .
u(Al2) number of alanines not in -helices

From this information, residues were classified as helix formers
(P, >105), intermediate (0.70< P, <105), and helix breakers
(P, <0.70). Local clusters of helix formers defined helical nucleation
sites. These nuclei were extended toward the N- and C-termini following
rules based on the aggregate P, ’s. Although no computer algorithm

accompanied the initial work, the method was sufficiently simple that it
could be applied by hand. The accuracy of this algorithm (that is, the
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percentage of correct predictions on a residue-by-residue basis)
approached 60 percent.

Subsequent work has developed more sophisticated variations on the
theme. In 1979, Robson and co-workers introduced an information-theoretic
formalism to supplement conformational preferences of the isolated residues
with preferences based on pairwise interactions (Garnier et al., 1978). The
method was easy to implement in a computer algorithm and achieved ~ 64
percent accuracy. More recently, various authors (Qian and Sejnowski, 1988;
Holley and Karplus, 1989) have employed neural networks, which belong to
a general class of machine leaming algorithms that can efficiently “learn” an
optimal translation of one data string (for example, a protein sequence) into
another (for example, the sequential secondary structure assignments). The
network-is a group of input nodes connected to a group of output nodes with
an optional hidden layer or layers of nodes (see Figure 9.8). A matrix of
weights is developed to map the input information into the nodes on a path
to the output layer. Like neurons in the nervous system, a cooperative
nonlinear “firing” potential is used to decide if adequate information has
accumulated to switch on an output node (see Figure 9.9). For secondary
structure prediction, this “all or none” output node predicts an o-helix when
the accumulated helical propensity of the residue of interest and its neighbors
crosses the threshold. The weights for the connections that relate input nodes
to output nodes are learned by example. A window specifies the number of
neighboring residues that can contribute to the conformational state of the
residue of interest. Case after case of input amino acid sequence and output
secondary structure is presented to the network. A least squares algorithm
defines an optimal set of weights for the encoding of the data set using a
back propagation strategy. A more complete description of neural networks
can be found in a chapter of the book Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1 (Rumelhart et al.,
1986).

Neural networks easily achieve an accuracy of 64 percent, a figure
comparable to that for other methods. It is useful to explore the connection
weights derived by the network that relate amino acids to their secondary
structure preferences. Figure 9.10 is a Hinton diagram of these weights
(the magnitude of the weight is proportional to the area of the square;
positive weights are in white, and negative weights are in black). Alanine
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u e 1 e

Input group
of 21 input
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FIGURE 9.8 The secondary structure neural network. The input pattern is a sequence of
amino acids centered around a central amino acid. Each arnino acid is mapped to one input
group, which is a collection of 21 units. Each amino acid causes an input of 1.0 to one of the
units of its group and an input of 0.0 to the other units. We typically us¢ the six arnino acid
residues on each side of the central amino acid, for a total of 13 x 21 =273 input units. There
are three output units: helix, strand, and coil. Each input unit is connected to each output unit,
and the output unit with the greatest output is taken to be the secondary structure prediction
for the central amino acid. Additional inputr units can be accommodated. Reprinted, by
permission, from Kneller et al. (1990). Copyright © 1990 by Acadermic Press Limitad.
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Output layer

FIGURE 9.9 The basic néural network. Circles represent the units, and squares the weights
between the units. The larger the square, the greater its absolute value. Solid squares
represent negative values, and open squares represent positive values. The bars represent the
outputs of the units, with values ranging from 0.0 to 1.0. The symbols are defined as follows:
0, is the output of unit &; W, is the weight to unit / from unit & and b, is the bias of unit
i, The activation of unit i is ; =Xw,0, +b, , and its output is 0, = (1+e %)™,
Reprinted, by permission, from Kreller et al. (1990). Copyright © 1990 by Academic Press
Litnited.

and leucine are seen to strongly favor a-helices, while proline and glycine
disrupt the a-helix structure and prefer turn conformations, This is consistent
with the structural information derived from previous studies and reinforces
the sensibility of this approach.

Why do neural networks not perform more accurately? We have
begun to address this question. If a network is trained on proteins
restricted to ome structural class, especially all helical proteins, the
accuracy improves significantly (Kneller et al., 1990). For example, nodes
can be added that capture the altemating distributions of hydrophobic and
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hydrophilic residues in a phase-insensitive way. Together, these methods
improve secondary structure prediction accuracy for all helical proteins to 79
percent and for all § proteins to at least 70 percent. o/} proteins remain
problematic. Presumably, this relates to the fact that the fundamental
structural unit in o/ proteins involves an a-helix and the preceding and/or
following B-strands. This super-secondary structure involves at least 30
residues, far more than are included in the windows currently used. By
exploiting a family of aligned protein sequences, improvements in secondary
structure prediction are anticipated. Other aspects of this problem continue to
make this a fertile area for study.

The second general approach to secondary structure prediction is rule-
based methods, which try to capture biochemical regularities in protein
structure, In an important early paper, Lim (1974) described “‘rules” that
specify residue combinations along the chain that stabilize or destabilize a-
helices and P-sheets. The rules attempted to capture the notion that
secondary structure elements need to be compatible with the overall tertiary
structure consisting of a hydrophobic core and hydrophilic exterior. Among
other constraints, 1solated 3-strands are stable only in the context of larger 3
sheets, and the edge strands in these B-sheets have significantly different
propetties than the interior strands. Technical difficulties in the formulation
of the rules hampered efforts to implement these ideas in a computer
program, but this does not detract from the insightfulness of the approach.

Our group has followed up on the rule-based approach pioneered by
Lim. We have constructed PLANS, a Pattem Language for Amino and
Nucleic Acids Sequences, and implemented this language in LISP and C
(Cohen et al., 1983, 1986). Accurate pattemns can be written to identify
various structural features. For example, nule-based pattems can be used to
identify “turns” in protein chains. Tums contain hydrophilic stretches
without periodic structure; they tend to be evenly distributed throughout the
protein cham. Extremely hydrophilic clusters of amino acids are nearly
always turns. Weaker turns can be identified as relatively hydrophilic clusters
of residues appropriately separated from the more obvious tums. The spacing
between turns depends on the secondary structure content of the protein. For
example, an o-helical segment bounded by tums contains approximately
twice as many residues as a similar B-strand segment. The class of a protein
(oo, o/, B/P) offers a simple way of specifying the expected link length
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between tums. Using a hierarchical set of tum pattems embodying these
ideas, one can identify turns with ~ 90 percent accuracy.

Other work on rule-based methods has focused on finding the exact
location of o-helices on o/c proteins (Presnell et al., 1992). Even though
helices are heterogencous objects, patterns have been developed to recognize
their beginnings (N-caps or N-termini), cores, and ends (C-caps or C-
termini). While the core pattemns are very accurate (> 90 percent of helices
can be located), the termini, especially the C-termini, remain poorly defined.
Because of these deficiencies, amalgamation of the three groups of pattems
produces a secondary structure prediction that is only 71 to 78 percent
correct. Developing sequence patterns to represent protein subsiructures is
labor intensive. Recently, there have been attempts to automate this process
by means of heuristic, iterative algorithms for pattern construction (King and
Stemberg, 1990).

The hierarchical approach to protein structure prediction is premised on
the notion that secondary structure will be a wuseful computational
intermediate for the prediction of overall tertiary structure. How exactly can
one use secondary structure information to bootstrap the process?
Conceptually, the most straightforward approach to this problem would be to
construct all possible three-dimensional arrangements of the secondary
structure segments and then eliminate those with structural flaws (high
potential energy).

Combinatorial approaches can be used to search over the many
possible arrangements and evaluate their plausibility (Cohen et al., 1979;
Ptitsyn and Rashin, 1975). The approach is particularly well developed for
the case of o-helices, owing to the fact that the periodicity of o-helices
tends to favor distinet packing geometries for pairs of a-helices (Crick,
1953; Chothia et al., 1977; Richmond and Richards, 1978; Murzin and
Finkelstein, 1988). Hydrophobic residues tend to dominate the interfacial
region between paired o-helices. Moreover, there is a correlation between the
extent of the hydrophobic interface on the a-helices and the preferred
packing geometry. In the next section, we describe an application of
this approach to the oxygen-bearing protein myoglobin. Similar work
has been done on /B (Cohen et al., 1980, 1982; Finkelstein and Reva,
1991). For o/B proteins, the combinatorial complexity of these proteins is
much greater than for /B and o/o proteins, but it is still possible to use



Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Maolecular Biology (1995)
http:/www.nap.edu/openbook/0309048869/html’265.html, copyright 1995, 2000 The National Academy of Scignces, all rights reserved

Folding the Sheets 265

secondary structure as a guide to approximate tertiary structure. A complete
description of these combinatorial algorithms can be found in a recent review
(Cohen and Kuntz, 1989).

If the hierarchical approach to protein structure prediction is to succeed,
secondary structure prediction must improve (to at least the 80 percent
accuracy level), the combmatorial methods must be further refined. and the
radius of convergence of existing potential functions must be extended to
allow optimization of the final structure (Wilson and Doniach, 1989: Sippl,
1990; Trover and Cohen, 1991).

PREDICTING MYOGLOBIN STRUCTURE:
AN EXCURSION

Myoglobin, a 153-residue oxygen-carrying protein, was the first protein
structure to be determined by X-ray crystallography. It is composed of six
long o-helices and two other smaller helices that do not contribute to the
protein’s hydrophobic core. In the 1970s we showed that it is possible to -
construct three-dimensional models of myoglobin by the successive addition
of helices to an initial helix using the putative hydrophobic interfaces, while
respecting the geometric preferences of helix-helix interactions. From the
work of Pauling (1967), we know the conformation and hence the atomic
coordinates of the backbone of an o-helix. To begin, we are free to place
helix A (residues 3 through 18) so that its axis 15 coincident with the x-axis
with 1ts centroid at the origin. Residue 10 is the center of a potential helix-
helix interaction site and creates a sticky patch on the surface of helix A. One
possible pairing of helices would join A and B (20 through 35) through
sticky patches centered at residues 10 and 28. A line segment perpendicular
to the axis of helix A that passes through the C, of residue 10 with a length
of 8.5 A can be used to place helix B such that the segment passes through
the C, of residue 28, is normal to the axis of helix B, and terminates at this
axis. Helix E could be placed via its interaction with helix B, and so on.
While the packing of helices B and E will be sensible, nothing in this
procedure prevents helices A and E from colliding. For the six helices of

myoglobin, there are 14 likely helix-helix interaction sites and 3.4 x 10°
possible structures.
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To complete this calculation, a PDP 11/70 filling an entire machine
room used to work for 48 hours. Today, a laptop computer can complete this
same calculation in much less than one hour. An algorithm with a tree
architecture can be used to generate these structures. Fortunately, many of
the possible structures violate steric constraints (that is, parts of the molecule
collide) or disrupt the connectivity of the chain (that is, the interhelix portion
of the protein chain cannot stretch from the end of one helix to the start of the
next helix), and so large branches of the “tree” can be removed from further
consideration. Remarkably, only 20 plausible stractures are obtained. Using
the additional information that myoglobin contains an iron-bearing heme
group, the list can be winnowed: only 2 of the 20 structures could use two
histidines to chelate an iron atom surrounded by a heme ring in a sterically
reasonable way. As it happens, these 2 structures are extremely similar (root-
mean-square displacement (rmsd) between C, atoms = 0.7 A) and
resemble the crystal structure of myoglobin (rmsd = 4.4 A). Presumably,
detailed energy calculations could be used to refine these structures. To
date, the radius of convergence of existing molecular dynamics
algorithms is too small to close the 4-A gap between these approximate
structures and the X-ray structure.

CONCLUSION

The protein folding problem is enormously important to biologists.
Sequences for exciting new proteins are relatively easy to determine.
Structural data for these molecules are much more difficult to obtain. Yet
proteins contain a structural blueprint within their sequence. The
computational challenge to unravel this blueprint is great. This chapter has
highlighted the important problems in this field and identified fertile territory
for new investigations.
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