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Foreword

The relationship between growth and form is one of the most exciting
problems in biology. The complexity of developmental processes that
transform a seed into an adult tree or a fertilized egg into an animal is
difficult to comprehend and defies traditional mathematical descriptions.
Their limitations led Benoit Mandelbrot to the discovery of fractals:
the intricate geometric objects more suitable for representing irregular
forms of nature than figures of Euclidean geometry. Mandelbrot ob-
served that many fractals could be obtained using a strikingly simple
construction invented in 1905 by Helge von Koch and consisting of
repetitive substitutions of given geometric figures by sets of other fig-
ures. In 1968, Aristid Lindenmayer proposed a similar mechanism as a
mathematical model of the development of multicellular organisms. In
this case, cell divisions were viewed as substitutions of the mother cells
by their children. The analogy between the substitution of geometric fig-
ures and the division of cells related fractals to developmental biology.

In this book, Jaap Kaandorp applies mathematical models and com-
puter simulations rooted in fractals to explore the relationship between
growth and form in marine sessile organisms: corals and sponges. The
sophistication of the models progresses from simple geometric abstrac-
tions to comprehensive models of specific organisms found in nature.
Commendably, Kaandorp emphasizes the predictive power of the mod-
els as the essential criterion of their practical value. One interesting
application is biomonitoring, in which a mathematical model is used
to establish the relationship between the shape of an organism and its
environment. This relationship makes it possible to use the shape of
a growing organism as an indicator of environmental conditions. The
purpose may range from pollution control to the study of long-term
climatic changes.

Most of the book is devoted to the description of Kaandorp’s origi-
nal results obtained in the scope of his Ph.D. research at the University
of Amsterdam, followed by a fellowship at the University of Calgary.



VIII Foreword

Formally educated in both computer science and biology, Kaandorp dis-
plays a profound knowledge of the living organisms he describes and
the computer science techniques he needs to devise and implement the
models. The book collects the results accumulated to date and presents
a vibrant account of science in progress.

Calgary, January 1994 Przemyslaw Prusinkiewicz
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Introduction

In living organisms an almost infinite multitude of forms is found, yet there
is still very little understanding how these forms emerge. The emergence
of forms in the growth process of biological objects is one of the most
fundamental problems in biology. The view that growth and form are
interrelated has a long tradition in biology. A classical study on this subject
is D’Arcy Thompson’s (1942) book On growth and form. In this study the
form of an organism is considered as an event in space-time and not
merely a configuration in space. This view is also the basis for many of
the mathematical models which have been developed to obtain insight
into the morphogenesis of biological objects.

A mathematical model which has been used frequently to model bi-
ological pattern formation is known as the reaction diffusion mechanism
(Turing 1952). This model describes diffusing chemicals, which can pro-
duce steady-state heterogeneous spatial patterns under certain conditions.
In this theory of morphogenesis, patterns or structures result from this spa-
tial pattern (the prepattern) of non-homogeneous chemical concentration
distributions.

A well-known mathematical model for biological pattern formation
is the L-system (Lindenmayer 1968). This model has recently been ap-
plied on a wide scale in computer graphics for the synthesis of biological
objects. Some examples of L-systems will be discussed in Chap. 2.

Many objects in nature, in contrast with man-made objects, show at
first sight a high degree of irregularity, non-smoothness and fragmenta-
tion. These objects cannot easily be described using traditional modelling
techniques using spheres, lines, circles, etc. They do not resemble the
“normal” objects of euclidean geometry. Closer observation reveals that
these objects are often characterized by the remarkable property of self-
similarity within a certain interval of scales: an enlargement of the object
will often yield the same details. A well-known example of self-similarity
in biology is the human lung. The bronchi and bronchioles form a tree-like
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branching pattern, where the branching of the airways on a smaller scale
looks like the branching pattern at larger scales (Goldberger et al. 1990).

Constructions of sets with the property of self-similarity have been
known in mathematics for a long time. These sets were often used as ex-
amples for which certain mathematical properties cannot be determined.
They were formerly considered as pathological cases. In the book The
fractal geometry of nature by Mandelbrot (1983) it is demonstrated that
these self-similar sets are very useful objects, applicable as mathematical
models for many objects in nature. Also in this book, the name “fractals”
is coined for these self-similar sets; in the next chapter a more precise
definition of fractals will be given.

The study of growth and form in nature has been stimulated consid-
erably by the development of fractal theory (Falconer 1990). The fractal
quality can be demonstrated for many biological objects, for example
blood vessel systems (Turcotte et al. 1985; Wlczek et al. 1989; Family
et al. 1989), coral reefs (Bradbury and Reichelt 1983), and vegetation
(Morse et al. 1985). Fractals often seem to serve quite well as mathemat-
ical models of biological objects.

An important development in fractal theory was the modelling of
growth patterns with the “Laplacian” (Niemeyer et al. 1984) models,
which started in physics with the diffusion-limited aggregation (DLA)
model (Witten and Sander 1981). Laplacian models are very successful
in physics and can be generalized to describe many fractal growth phe-
nomena (Sander 1986). Examples of the DLA models will be shown in
Chap. 2.

In spite of the many studies, still very few exact results are available
about the problem how forms emerge in the biological growth process.
In almost all cases, it is not yet known how the genetic information is
physically translated into the actual form. Much research is being done
in biology, experimental as well as theoretical, in order to reveal more
about the physics and mathematics behind the growth process in which
the DNA code gives rise to certain shapes and patterns in the physical
environment.

New developments in mathematics, physics, and computer science
offer possibilities for biologists to obtain a deeper understanding of the
emergence of form. With recent developments in computer science, it has
become possible to carry out simulation experiments in which the growth
process, the interaction between cells or skeleton elements, can be imitated
in virtual computer objects. The capabilities of computer simulations are
still too limited to simulate the complete growth process on a molecular
level. It is even hard to imagine that it will ever be possible to carry out a

Fractals

DLA model

Simulation of ¢
and form
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The desired level
of refinement
of the model

Basic building
elements

Modules

complete simulation experiment in which a DNA molecule generates new
molecules, where the generated molecules form cells, and in which cells
finally interact in clusters. A comparison between the possibilities of the
DNA in the cell and computer simulations is given by Murray (1990): “An
idea of the immense complexity of a cell is given by comparing the weight
per bit of information of the cell’s DNA molecule, around 10722, to that
of, say, imaging by an electron beam of around 107! or of a magnetic
tape of about 107°. The most sophisticated and compact computer chip
is simply not in the same class as a cell.”

The first crucial step in the development of simulation models is the
choice of the level of the elements which are interacting in the physical
environment in a growth process. This choice will, firstly be determined
by the desired refinement of the model and, secondly for practical reasons
by the physical limitations of the computer hardware. An obvious choice
in a simulation model of a seed plant, serving to yield an understanding
of how the growth form develops, is the cellular level. A lower level,
for example the atomic level, compared to the level in which the genetic
information is encoded, would yield no better insight. A practical choice
in the simulation of the form of a (stony) coral, a bryozoan, a sponge or
a virus could be the level of the corallite, a zooid, a skeleton element (a
spiculum) or a molecule, respectively. These elements are the typical basic
building elements for these organisms which determine the final growth
forms, for an exigent part.

In a simulation model of the growth process of a vegetation of seed
plants, a quite practical choice could be to simplify the level of the basic
building elements to that of the modules (the apical meristems, see Harper
et al. 1986). A still higher level is used by Koop (1989), where in a
simulation system of forests the vertical projections of crowns and profiles
of trees are used as basic elements in the model. In order to create a
simulation model of a flock of starlings, it is probably not useful to descend
down to the molecular level. A typical characteristic of growth processes,
vegetations or communities of organisms is that they exhibit a behaviour
which cannot be deduced from the individual composing elements (see
Simons 1969). By some authors this is considered as a characteristic of
life: “All collections of living things show properties unexpected from a
knowledge of a single one of them” (Lovelock 1988). From the DNA of
the starling it is probably not possible to deduce the final shapes of the
flock of starlings. Together the basic elements exhibit a new, often highly
complex behaviour. To obtain deeper understanding of these complex
systems, simulation models will be often the only way available.
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The choice of the research taxa is another crucial step in the develop-
ment of simulation models. For example, simulating the growth process of
seed plants on a cellular level may already lead to highly complex models
with a vast number of parameters. Especially when the abiotic terrestrial
environment is taken into account, a model simulating the growth of in-
teracting cells will become too complex in number of parameters. The
predictions which can be made with such a model are often within the
range of normal fluctuations which occur in the real objects. This is a
notorious problem in models of ecosystems: these often exhibit a highly
complex dynamics and are often characterized by a limited predictabil-
ity and low applicability in new situations, in spite of the high levels of
precision used in the computation. In Saris and Aldenberg (1986) these
models are even indicated as “artefacts of precision”. The same prob-
lem can be encountered in for example economical, meteorological, and
climatological simulation models.

In order to develop a morphological model based on low-level ele-
ments, an attractive choice can be sessile marine organisms. The abiotic
marine environment is characterized by a remarkable uniformity when
compared to the terrestrial environment. Many of the environmental pa-
rameters influencing the growth process of sessile marine organisms, such
as salinity, oxygen, and sometimes even temperature may be assumed to
be constant. For many marine organisms the physical environment can
often be reduced to two key parameters: water movement and light. For
these reasons, in the marine environment important simplifications can
be made in modelling the physical world, compared to the terrestrial or
the freshwater environment.

A second important simplification which can be made in modelling
for a large group of sessile marine organisms is based on the fact that
they exhibit a relatively simple growth process. The growth process of,
for example, a (stony) coral, in which only the surface of the colony is
alive and where new layers are deposited onto the dead core, is much
simpler to model than the growth process of a seed plant. In spite of the
relatively simple growth process, a remarkably high diversity of forms
can be observed in a coral reef.

For these reasons, many of the examples shown in this book involve
marine organisms. The intention of this book is not to discuss modelling
techniques for marine organisms only. The modelling techniques devel-
oped should be considered as a basis from which to develop more complex
models suitable for simulating other organisms, organs of organisms, and
communities. In the last chapter some examples of these more complex
models will be shown.

Predictive value
of the models

Marine sessile
organisms
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One argument which still should be mentioned, in particular for inves-
tigating sessile marine organisms, as found in a coral reef, is that it has an
important environmental application. Coral reefs form an important part
of the ecosystems on earth. However, together with the rain forests the
coral reefs belong to the many endangered ecosystems on earth. Yet very
little insight has been obtained in these ecosystems. Since 1986 bleach-
ing of corals has been observed in reefs along the coasts of Australia,
Caribbean, and the Indo-Pacific Ocean, a phenomenon which may lead
to dying of corals. This phenomenon is connected by some authors to the
global warming of the earth (see Bunkley-Williams and Williams 1990;
Glynn and Croz 1990; Goreau and Macfarlane 1990; Jokiel and Coles
1990).

In this book an attempt is made to demonstrate that there should be
a clear relation between the real and the virtual objects. The develop-
ment of a simulation model should be supported by experimental work.
A simulation model which has not been tested against reality is in dan-
ger of lacking practical use. It is necessary to correlate the model with
observations of the actual objects and experiments in order to verify all
assumptions made in the model. Building simulation models is a typically
interdisciplinary endeavour in which mathematics, computer science, bi-
ology, and experimental work are interwoven. During the construction of
growth models it is necessary to describe the various aspects of the growth
process in formal terms. This formal way of describing the process leads
to a systematic approach, where none of the aspects can be neglected.
The formal description together with the resulting simulation model can
indicate which field experiments could deliver interesting results. Even
if the model appears to be incorrect, this working method may lead to
interesting new results.

1.1 Structure of the Book

In Chap. 2 several approaches to model forms are discussed and the advan-
tages and disadvantages of the various approaches are compared. Some
of the mathematical models mentioned above will be discussed in more
detail. The development of a robust 2D geometric modelling system is
described, which is then applied in the following chapters. It is demon-
strated how from simple rules, stepwise more complex rules can be built.
The geometric modelling system will be suitable for simulating a growth
process in 2D. The modelling of a growth process of a simple (artificial,
non-biological) object is discussed.
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In Chap. 3 the same modelling method is used to model biological
forms in 2D. As a case-study a certain growth process found in marine
sessile organisms, such as sponges and stony corals, is used.

In Chap. 4 the development of methods to compare virtual and real
objects is described. In this chapter experiments with real objects are
discussed to verify the model.

In Chap. 5 the geometric modelling system of Chap. 2 is extended
to 3D. A method is presented for modelling in 3D the growth process
discussed in Chap. 3.

The subject of Chap. 6 is the application of the 2D and 3D models
discussed in the previous chapters. Examples are given of how simulation
models can be used in ecological research.



Methods for Modelling
Biological Objects

In this chapter several methods for modelling biological objects are dis-
cussed. The methods described in this chapter have the potentiality to
serve as morphological models of biological objects. In the first section a
model for pattern formation, based on diffusing chemicals, is described.
In Sect. 2.2 the iteration processes and fractals which form the general
base of the methods described in the Sects. 2.3, 2.4, 2.5 and, 2.6 are dis-
cussed. In the last section of this chapter a review is given of the methods
mentioned in the chapter and arguments are given as to which method is
the most applicable for morphological models of growth processes.

2.1 Reaction Diffusion Mechanisms

One of the oldest mathematical models used for modelling biological
pattern formation is known as the reaction diffusion mechanism (Turing
1952). This model describes diffusing chemicals, where often a system
of two antagonistic chemicals is used consisting of an activator and an
inhibitor. This model can be described as a system of equations (Murray
1990) in the form:

§A )

< = F(A,I)+ D, v A 2.1
81

5 - GA,D+D v I

In these equations A and 7 represent respectively the concentrations of the
activator and the inhibitor. The functions F' and G represent the reaction
kinetics and the right terms in both equations the diffusion process, where
D4 and D; are the diffusion coefficients for the activator and inhibitor.
The diffusion process can result in a heterogeneous spatial prepattern
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of chemical concentration distributions, in the case D; is much larger
than Dy4. In Turing’s proposal for a theory of morphogenesis, patterns or
structures result from this prepattern. This prepattern can be defined as
a heterogeneous spatial pattern of inhibitor and activator concentrations,
while the resulting pattern can be considered as the realization of the
prepattern. This model is especially suitable for generating patterns that
may result more or less directly from this prepattern. It has been applied for
simulating patterns found on shells (see Meinhardt and Klingler 1987 and
1992; Fowler et al. 1992), and coat patterns (Murray 1988 and 1990). Ina
mammalian coat pattern the hair colour is determined by the pigment cells,
the melanocytes, which can produce pigment (melanin). It is believed that
whether or not the melanocytes produce melanin is determined by the
presence or absence of chemical activators and inhibitors (Murray 1988).
Although these chemicals are not known yet, it is supposed that coat
patterns are a reflection of an underlying chemical prepattern. Itis possible
to simulate such a prepattern, which is caused by diffusing activators and
inhibitors; an example of such a simulation is shown in Fig. 2.1 (after
Boon and Noullez 1987). This pattern was simulated in a two-dimensional
lattice, where the cells can be in two states: activated (black) or inhibited
(white). (Details about simulating a diffusion process in a 2D lattice will
be discussed in Sect. 2.4) Many general and specific features found in
mammalian coat patterns and shell patterns can be explained with this
theory, although the theory itself still has to be confirmed by experimental
observations.

Shells and
coal patterns

Fig. 2.1. Simulation of a
prepattern caused by diffusing
activators and inhibitors in a
2D lattice. The cells in the
lattice can be in two states:
activated (black) or inhibited
(white) (after Boon and
Noullez 1987).
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Fig. 2.2. Diagram of an
iteration process in which the
output of one 1teration s used
as input for the next one

Fig. 2.3. Geometric
construction of the quadric
Koch curve: the construction
starts with the initiator (A) and
each edge of the object is
replaced by the generator (B) in
each iteration step. The
iteration process results in the
quadric Koch curve (C).

2.2 Iteration Processes and Fractals

The common basis of the methods discussed in the rest of this chapter is
an iteration process (see Fig. 2.2). These methods have the potentiality
to serve as morphological models of biological objects. In this iteration
process the output of one iteration is used for the next one. The relation f
between input and output may be linear or non-linear. The examples shown
in the following sections are based on a linear relation. Examples of objects
generated in a process with a non-linear relation are the Julia sets (see Julia
1918; Mandelbrot 1980 and 1983; Peitgen and Richter 1986). In these
examples the relation f in the iteration process is a quadratic mapping
in the complex plane. The objects which are generated in this iteration
process are often fractals (examples of fractal objects will be shown later
in this chapter). The process may also deliver normal geometric figures
or single points of attraction, or may not converge. This depends on the
choice of f in the iteration process.

An example of a linear relation in the iteration process is the construc-
tion shown in Fig. 2.3. In this construction the iteration process starts with
a square (the initiator). In each iteration step an edge of the object is re-

Xn+1=“Xn)
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placed by a set of 8 edges (the generator). In each step a combination of a
geometric scaling, rotation and, translation is done for each edge; together
this combination can be written as a linear transformation in the iteration
process. The process results in the curve shown in Fig. 2.3C, which is
known, in the limit case, as the quadric Koch curve (Mandelbrot 1983).
This type of curve was regarded in the past as a pathological case for
which certain mathematical properties cannot be determined.

The Koch curve is characterized by three remarkable properties: it is
an example of a continuous curve for which there is no tangent defined at
any of its points, it is locally self-similar on each scale, an enlargement
of the object will yield the same details, and the total length of the curve
is infinite. The quadric Koch curve is an example of a fractal object. In
Mandelbrot’s book, fractals are defined as sets for which the Hausdorft-
Besicovitch dimension exceeds the topological dimension. Fractals may
be defined as sets with, in most cases, a fractional dimension, which
is often indicated as the fractal dimension. Fractals show a self-similar
structure, and this phenomenon may be used as the guiding principle. For
a more general definition of fractal dimension see Hutchinson (1981),
Dekking (1982), Hata (1985); Falconer (1985 and 1990) and Barnsley
(1988).

The value of the fractal dimension D can, for this special case, be
determined analytically: the value is 1.5 exactly. The value of D may be
calculated for this self-similar curve made up of N equal sides of length r
using (2.2) from Mandelbrot (1983). The ratio » of the length of a side of
a fractal approximant and the preceding fractal approximant and is also
known as the similarity ratio.

D = log(N)/ log(1/r) (2.2)

The value of the fractal dimension can also be determined experi-
mentally. When an estimation of the total length is made by covering the
curve with an equal-sided polyline with side length €, the total length
of the curve L(¢) increases when € decreases, however without converg-
ing to a finite limit. The process in which the total length is estimated
with an equal-sided polyline, where the length of € decreases in succes-
sive approximations, is visualized in Fig. 2.4. The relation between the
approximation of the total length L(€) and € is given in (2.3) (Mandel-
brot 1983, see for approximation methods also Rigaut 1991, Dooijes and
Struzik 1993). In Fig. 2.5 some estimations of the total length of the Koch
curve, made for various values of €, are depicted.

L(e)~¢e'™P (2.3)

Koch curves

Fractal dimens
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Statistical
self-similarity

Fig. 2.4. Estimation of the total
length of the curve shown in
Fig. 2.3C. The total length
L(¢) is estimated by covering
the curve with an equal-sided
polygon with side length ¢; in
successive approximations the
length of € decreases.

Fig. 2.5. Relation between the
total length L(¢) and ¢, where
the value of L(¢) was estimated
with the method displayed in
Fig. 2.4

The exponent D in this equation, in the case of the Koch curve, is the
value of the fractal dimension (Mandelbrot 1983). The value of D can
be estimated from Fig. 2.5, which yields a value D ~ 1.5. D can be
determined analytically only in a few special cases. In general (for example
for abiological object) D can only be determined experimentally, as shown
in Fig. 2.5. Many biological objects are non-deterministic fractal objects,
which are (statistically) self-similar within a certain interval of scales.
Within this interval, fractals can be used as a mathematical model of the
biological object.

An iteration process is a very natural way to describe growth processes
in biology or in physics. In a growth process the last growth stage will

1.14]

097

log [L(€)]

0.79]

log (e)
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new polyps are added in the
growth process

serve as input for the next growth step. In Fig. 2.6 this iteration process
is visualized for Alcyonium glomeratum (Octocorallia). In this organism
new basic building elements, in this case the polyps, are added to the
preceding growth stage in each growth step.

This iteration process is suitable for modelling the shape, as it emerges
in time, in a growth process. The same process is suitable for modelling {

other aspects of growth, as for example the growth of a population. In
this case, the size of a population is also determined by the size of the
population in the preceding growth step.

As will be demonstrated, fractal objects result surprisingly often from
iteration processes. The iteration process can be considered as the basis
of growth processes in nature, which could be the explanation for the
fact that fractal objects are so common in nature. It is indeed hard to
find the objects of euclidean geometry in nature. Tetrahedron-shaped and
cube-like organisms are hardly to be found. Sphere-like organisms can
be found among Orbulina (Foraminifera) and radiolarians. An example
of a spherical radiolarian Aulonia is shown in Fig. 2.7. Some more of the
series of platonic solids (a nice and systematic description of these solids
can be found in Wenninger 1971) such as the thombic dodecahedron in
Fig. 2.8 and the tetrakaihedron are quite common among cells. But fractal
objects, like trees and clouds in the terrestrial world and branching corals
and waves in the marine tropical world, dominate.

In many cases, as for example in many of the seed plants, the basic
building elements, the cells, resemble in general the platonic solids of
euclidean geometry, whereas they often aggregate into clusters with fractal
characteristics. In some cases the basic building elements themselves are

Fig. 2.6. Diagram of the
growth process of Alcyonium
glomeratum: the growth form
of the preceding stage is used
as input for the formation of
the next growth stage.

Fig. 2.7. Example of a
spherical radiolarian, Aulonia
hexagona (after Haeckel 1887)

N

Fig. 2.8. Example of a rhombic
dodecahedron, as can be found
among cells
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Methods for modelling
biological objects

Lindenmayer
grammar

Fig. 2.9. A fractal-like basic
building element (B) found in
the Lithistids (Porifera, after
Sollas 1878). The growth form
which is constructed from these
elements is shown in (A).

fractal objects; an example of this can be found among the Lithistids
(Porifera), see Fig. 2.9, where the fractal spicula aggregate in cup-shaped,
mushroom, or spherical forms.

The various methods for modelling biological objects, which are dis-
cussed in the following sections, differ mainly in the representation of
the objects in the iteration process. In many cases these techniques can
be considered as alternative approaches. They can also be combined with
each other; an example of this will be given later on. The situation can
be compared to the use of different data structures in computer science.
It is often a fruitful approach to represent a problem in more than one
type of data structure. One can then combine the benefits of the different
representations.

2.3 Generation of Objects Using Formal Languages

A well-known model for biological pattern formation, from botany, is
the L-system or Lindenmayer grammar (see Lindenmayer 1968). The
Lindenmayer grammar is similar to those known in conventional formal
language theory as Chomsky hierarchy languages (see Hopcroft and Ull-
man 1979). A rather fundamental difference is that the rewriting rules
(production rules) are applied simultaneously in the Lindenmayer gram-
mar. In the L-systems strings are generated in an iteration process, as
shown in Fig. 2.2. The symbols X, and X, 4, in the iteration process are
represented by strings in a formal language. The strings themselves do
not contain geometric information; in order to translate the strings into
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F1:

F2: '
A

a morphological description, additional drawing rules are necessary. An
L-system can be defined by using a triple K denoted by < G, W, P >,
in which G is a set of symbols, W is the starting string or axiom, and P
is the production rule.

Many of the “classical” fractal curves shown by Mandelbrot (1983)
can be generated with L-systems (see Prusinkiewicz and Lindenmayer
1990). An example of such a fractal curve is the Dragon sweep, which
can be denoted as:

Kdragon_sweep = < Gdragon_sweep’ Wdragon_sweepa P, dragon_sweep ~
Gdragon_sweep = {Fla F, +, _}

Wdragon_sweep F

Pdragon_sweep = {h->Fh"h+hHh h->FH-FK+—-4+-— -}

< iteration > < iterated string >
0: F
1: L+ F
2: F+RHh+F-F
3: F+h+FH-FBK+F+F—-F -F

The string generated at level 10 is visualized in Fig. 2.10B. The drawing
rule is shown in Fig. 2.10A. In the visualization of the string one starts
drawing the polyline F, and at the endpoint (indicated as “0”) a 90° turn is
made, after this the next polyline is drawn and turns are made as indicated
in the string. The turns are indicated as + (90° to the right) and — (90° to
the left).

Fig. 2.10. (A) Drawing rule of
the curve shown in (B) The
symbols F) and F; are
visualized as polygons, at the
endpoint of each polygon
(indicated as “O”), turns are
made as indicated in the string.
The symbol + is interpreted as
a turn of 90° to the right and —
as a turn 90° to the left. (B)
Curve (Dragon sweep)
resulting from the L-system
depicted in (2.4) and the
drawing rule in (A).

Dragon sweep
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L-systems and
biological objects

Monopodial branching

Homogeneous
transformations

L-systems have been applied for bio-morphological description (see
for example Hogeweg and Hesper 1974). In De Boer (1989) examples
of L-systems simulating division patterns in cell layers can be found.
In this study the first five cleavage stages of a Patella vulgata embryo
are simulated. In Frijters (1976) is shown by examples how L-systems
can be applied to formalize the different florescence states of Hieracium
murorum. In Renshaw (1985) is demonstrated how the root structure and
canopy development of a sitka spruce Picea sitchensis can be simulated
with this method.

An example in which L-systems are applied in bio-morphological de-
scription, is the generation of two different branching patterns: monopo-
dial and dichotomous or sympodial branching. The two types of branching
patterns are illustrated in Figs. 2.11 and 2.12. Both branching patterns may
be defined as L-systems by using a triple < G, W, P >. In L-systems
describing branching patterns, brackets are used to denote branches. The
brackets represent a branch which is attached to the symbol left to the left
bracket.

Monopodial branching may be represented by the following L-
system:

Ko = <Gp, Wa, Po > (2.4)
Gn = {0,LLD
Wn = 0
P, = {0—11[0]0,1 - 1,[—> [,]~1
< 1teration > < iterated string >
0: 0
1: 11[0]0
2: L1[11[0]0]11[0]0
3: L1[11[11[0]0]11[0]0]11[11[0]0]11[O]O

One possibility to visualize the generated strings for monopodial
branching is to use the drawing rule shown in Fig. 2.11A. In this drawing
rule the string 11[0]0 1s visualized alternating as between the shapes a
and b. The visualization can be described as a series of translations and
rotations. The transformations (using homogeneous coordinates, see Fo-
ley et al. 1990) are represented by matrix operators, where 7 (DX, DY)
indicates a translation over the vector (DX, DY) and Rp(y) a rotation
about an angle y. When a coordinate frame is assumed, with the origin
O = (0, 0), each symbol in the string defines a transformation of the
previous coordinate system A. The positions of the successive origins
of the coordinate systems form the vertices used in the visualization of
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Fig. 2.11. (A) Drawing rule for
monopodial branching: the
string 11[0]0 is visualized as
alternating between shapes a
and b. (B) Visualization of a
generated string, for
monopodial branching, from
level 6

Fig. 2.12. (A) Drawing rule for
dichotomous branching,
visualization of the string
11[0][0]. (B) Visualization of a
generated string, for
dichotomous branching, from
level 6

A B

the strings. The visualization is done by drawing line segments between
the successive vertices. The coordinate frame A, in a certain stage of the
visualization, consists of the product of all previous homogeneous trans-
formations. At the end of a branch the coordinate frame is reset to the
one at the beginning of the branch. The visualization can be described in
algorithmic form as:

1: A= A-T@);i=i+1, (2.5)
0: A= A-T@)yi=i+I,
[: A= A-R(—y)if (odd(i));
A - R(y) if (even(i));
stack (i),
l: pop(i); A = A,

where g is the vector [0, DY] and y = 45°

The string generated at level 6 is visualized in Fig. 2.11B.
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Dichotomous
branching

L-systems and
randomness

Dichotomous branching may be represented by the L-system:

Ki = <Gg, Wy, Py >

Ga = {0,LL]D
Wg = 0
P; = {0— 11[0][0,1 = 1, [—>[,]1 =]}
< iteration > < iterated string >
0: 0
l: 1170][0]
2: H1toronrtfojron
3: LITTI{TE{O][OTI[ 1 T{O][OTT][1 11 1[O][OT][1 L [O][O]]]

The string 11[0][0] may be visualized using the drawing rule shown in
Fig. 2.12A. The drawing rule uses the same translations and rotations as
in Fig. 2.11A; in this rule both a rotation to the left and to the right are
carried out. The result (from level 6) is visualized in Fig. 2.12B.

Many examples of applications of L-systems are from computer
graphics, where they have been used on a wide scale for generating im-
ages of biological objects. Examples of these studies are: Aono and Kunii
(1984); Smith (1984); De Reftye etal. (1988); Prusinkiewicz et al. (1988);
Prusinkiewicz and Lindenmayer (1990).

In the examples shown in this section the final image can be generated
by the interpretation of the generated strings, by applying the drawing
rules. These strings can be expressed recursively. The strings generated in
the system for monopodial branching (2.4) can be described recursively

o S(n+ 1) = 11[SM]S(n) (2.6)

It is also possible to apply randomness in the production rules, for
example in the following L-system, where a mixture of monopodial and
dichotomous or sympodial branching is used:

K. = <G, W,P >
Gr — {O’ 1’ [’ ]}
Wr == O
0.5 0.5
P. = {0 11[0][0],0 = 11[0]0,1 —» 1,[—> [,] =1}
In this L-system the probabilities of applying the sympodial and monopo-
dial production rules are indicated above the arrows. A string generated

at level 7 is visualized in Fig. 2.13. In the case of this stochastic L-system
the advantage of expressing the branching structures recursively is lost.
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It is no longer possible to predict the string from a certain iteration level,
as was done in (2.6) for a deterministic L-system. In the examples of
L-systems shown above, the objects were generated in 2D, but it is also
possible to extend these systems to 3D. Examples of this are given by
Aono and Kunii (1984), Prusinkiewicz and Lindenmayer (1990).

In L-systems it is not easy to introduce geometric restrictions in the
iteration process. In the example of monopodial branching the geometric
transformations from the visualization algorithm (2.5) are not included
in the production rule of (2.4). A very obvious restriction in modelling
growth processes is a rule which prevents intersections in the object.
In Figs. 2.11B, 2.12B and 2.13 intersections occur everywhere in the
objects. This limitation makes L-systems less applicable for developing
a geometric model, where geometric restrictions are essential.

2.4 Diffusion Limited Aggregation Models

The Diffusion Limited Aggregation model of Witten and Sander (1981)
has been used on a wide scale in physics for explaining various fractal
growth phenomena, such as particle aggregation, dielectric breakdown,
viscous fingering and electro-chemical deposition.

An example of fractal growth which can be described with this DLA
model is a growing object (for example a bacterium colony in a petri
dish) which is consuming a nutrient from its environment (see Meakin
1986). The concentration ¢ 1s zero on the object and it is assumed that

Fig. 2.13. Visualization of a
generated string of level 7 in
which randomness is applied

L-systems and
geometric restrictions
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Fig. 2.14. Visualization of the
meaning of the Laplacian
model. In this figure a growing
object (the object is displayed
again in Fig. 2.15) is pressed
into a sheet, which is fixed at
the edges. The height of the
sheet represents the local
nutrient concentration; the
object itself is situated on the
bottom plane, where the
concentration equals zero.

Laplace.equation

the diffusion process, described by (2.7) is fast compared to the growth
process. In this diffusion equation D is the diffusion coefficient.

dc_D )
a Ve

The nutrient concentration is supposed to remain constant (¢ = 1.0) on
a circle or sphere (the boundary), surrounding the growing object. The
concentration ficld will attain a steady state, in which % equals zero. The
distribution of the nutrient concentrations around the object, in a steady
state, is described by the homogeneous Laplace equation (2.7).

8¢ 8% %

2
=__ 1+ _ 1+ _ =0 2.7
Ve 8x12+8x22 8x3 7
c = C(x] » X2, x3)
c(x) = Oforx € object
c(x) = 1forx € boundary

The meaning of the Laplacian model can be visualized by Fig. 2.14
(after Sander 1987). In this picture a growing object (the same object is
shown againin Fig. 2.15) is pressed into a rubber sheet, which is fixed at the
edges. The height of the rubber represents the local nutrient concentration.
The concentration is maximal at the borders of the sheet, where nutrient
is supplied continuously and is minimal at the object itself, where the
nutrient is consumed. The steady state is described by the curved surface,
which satisfies the Laplace equation. The object grows fastest at the sites
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where the highest nutrient gradients occur. These sites can be recognized
in Fig. 2.14 by the steepest slopes in the rubber sheet. Intuitively it can be
seen that growth is the fastest at the tips of the object, where the highest
gradients occur.

In the previous example of the DLA model, ¢ represents the nutrient
concentration. With the same model, fractal growth patterns which arise in
a dielectric breakdown can be explained. In this case, ¢ in (2.7) represents
the electric potential (see Niemeyer et al. 1984) and the growing object is
represented by a discharge pattern (known in the literature as a Lichtenberg
figure) on which the electric potential is zero on the pattern and 1.0 on a
circular electrode. The same DLA model is used to simulate flow velocity
in a Hele-Shaw cell (see Feder 1988). These cells are used in physics
for experiments in hydrodynamics. In this case the ¢ in (2.7) represents
the flow velocity and this model can be applied to model fluid instability
phenomena, known in the literature as viscous fingering (see Nittmann et
al. 1985; Feder et al. 1989)

The Laplacian model can be generalized to describe other fractal
growth phenomena (see Sander 1986; Stanley and Ostrowsky 1987), for
example growth of electro deposits (see Brady and Ball 1984) and particle
aggregation, where growth takes place in non-equilibrium. For a growth
process where a cluster of particles is formed and in which the cluster
grows by adding new particles, growth in equilibrium can be defined as
a process where in the cluster formation the most stable configuration is
formed and the particles are allowed to change sites in order to achieve
this stability. In a growth process in non-equilibrium the possibility that

Fig. 2.15. DLA cluster
generated within a 1000 x 1000
lattice, where 1.0 was taken for
7 in (2.8). The local
concentrations are visualized as
alternating black and coloured
regions and the object itself is
displayed in red. The
concentration decreases in the
coloured basins when the
colour shifts from pink to blue.

Discharge patterns

Growth in
non-equilibrium
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Growth in
equilibrium

O
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Fig. 2.16. Construction of a
DLA cluster in a two
dimensional lattice. The object
itself consists of occupied sites
in the lattice, which are
displayed as black circles. The
possible candidates which can
be added to the object in a next
growth step are indicated as
open circles.

particles change sites is limited, the consequence is that a cluster is formed
which, in most cases, is not the most stable configuration.

In a growth process in equilibrium, for example as found in many
growing crystals, particles are “trying” various sites of the growing ob-
ject, until the most stable configuration is found. In this type of growth
process a continuous rearrangement of particles takes place, the process
is relatively slow, and the resulting objects are very regular (Sander 1987).
Many growth processes in nature are not in equilibrium, aggregation of
particles being an extreme example: as soon as a particle is added to the
growing cluster, it stops trying other sites and no further rearrangement
takes place. In this type of process the local chances that the object grows
are not everywhere equal on the object and an unstable situation emerges.
Typical for these phenomena is that they occur in a field which is in a
steady state (compare the diffusion equation (2.7) when % equals zero).
The probability that growth takes place is the highest at the steepest gra-
dients of the field, causing still steeper gradients. In Fig. 2.14 can be seen
that the growing tips will press further into the rubber sheet, resulting
in steeper gradients and a more instable situation. Growth processes in
non-equilibrium are self-amplifying and relatively fast, and the resulting
objects are often fractals.

Growth processes in which clusters of particles are formed and grow
by adding particles to the cluster can be simulated with cellular automata.
The particles are represented by sites in a lattice in these automata. Growth
processes in equilibrium can be simulated with deterministic cellular au-
tomata (Wolfram 1983). For modelling non-equilibrium growth processes
probabilistic cellular automata are more suitable. This method will also be
applied in this book for modelling biological objects. For this reason the
construction of a probabilistic cellular automaton in a steady state field
will be discussed briefly.

Laplacian growth can be simulated in a two-dimensional lattice, and
the simulations can be extended to three or more dimensions (see Meakin
1983a and b). In the simulations shown in this section, growth starts with
one occupied site in the lattice (the “seed” in Fig. 2.16). The cluster may
look after a few initial growth steps as shown in Fig. 2.16. The occupied
sites are displayed as black circles. In next growth steps new sites are added
to the cluster; the possible candidates are indicated as white circles. The
probability p that k, an element from the set of open circles o neighbouring
a black circle o, will be added to the set of black circles is given by (2.8):

(c)”

p(keoake.):m

where ¢, = concentration  (2.8)
at position k
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In (2.8) an exponent  is assumed to describe the relation between the local
field and the probability (n usually ranges from 0.5 to 2.0, see Niemeyer et
al. 1984; Meakin 1986). The sum in the denominator represents the sum
of all local concentrations of the possible growth candidates (the open
circles in Fig. 2.16).

The concentrations in the lattice sites (lattice coordinates i, j ), before
each growth step, can be determined with the Laplace equation (2.7). The
solution of this equation can be approximated by the following algorithm
(see Ames 1977, Niemeyer et al. 1984, Press et al. 1988):

while ( ((¢; j)n — (¢i j)n—1) > tolerance ){ (2.9)
Ci,j = %(Ci+1,j +cim1j+cij+1+cij-1)
}

n = iteration number

This step in the simulation model, where the curved surface shown
in Fig. 2.14 is determined, is computationally the most expensive part.

The local concentrations are visualized as alternating black and
coloured regions in Fig. 2.15 (compare Mandelbrot and Evertsz 1990).
The nutrient concentration decreases when the black or coloured basin of
equal concentration range 1s situated closer to the object. The concentra-
tion decreases in the coloured basins when the colour shifts from pink to
blue. The objectitselfis displayed inred, and the basin (with concentration
near zero) where the object is located is coloured black. In this example a
linear source (the top row of the lattice) of nutrient was chosen, for reasons
which will become obvious later on. This figure shows an example of a
DLA cluster on a 1000 x 1000 lattice, where a value of n = 1 was used in
(2.8).

There are many more possibilities, like point-like or line-shaped nu-
trient sources. These boundary conditions do not affect the fractal di-
mensionalities of the generated structures (see Meakin 1986). The fractal
dimension of the object shown in Fig. 2.15 is about 1.7 when the value
n = 1.0 is used in (2.8). It is possible to generate objects with a higher
fractal dimension by using a lower value for . When a lower value for 7 is
used the overall nutrient gradient around the object will become steeper.
Although growth is fastest at the tips of the object, where the highest gra-
dients occur, it can intuitively be seen that the probability that branches are
formed at sites situated more in the bays of the object increases when such
a lower value 1s used. The consequence will be that the overall branching
degree increases and an object with a higher fractal dimension emerges.

The DLA model is typically suitable for modelling growth patterns
in biology when the organisms can be considered as aggregates of loose

Approximation solutio
Laplace equation

Fractal dimension
DLA cluster
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DLA model and
bacteria colonies

particles. As a model of a growing coherent structure it is less applicable.
An example of such a coherent structure is the formation of growth layers,
in which neighbouring particles become connected with each other in a
more systematic way. When the particles are connected in a mesh this has
important consequences for the resulting growth form, as will be shown
in the section on modelling radiate accretive growth. The DLA model
has been applied in biology to model the forms of bacteria colonies (see
Fujikawa and Matsushita 1989 and 1991; Matsushita and Fujkawa 1990;
Matsuyama et al. 1989) and growth forms of dendritic hermatypic corals
(see Nakamori 1988). One important feature of the DLA models in the
present context is that the physical environment where the growth process
takes place can be modelled and can be used to explain the emergence of
growth forms. In general it is not easy and even quite artificial to describe
the growth of an organism with a cellular automaton. For this reason, in a
later section, the DL A model will be used in combination with a geometric
model.

2.5 Generation of Fractal Objects Using Iterated
Function Systems

Another method for the calculation and specification of objects, with a
resemblance to biological objects, is based on Iterated Function Systems
(IFS, see Barnsley 1988). With this method a large class of objects, which
are often fractals, can be generated.

The first component of an IFS consists of a finite set of mappings of
a 2- or 3-dimensional space into itself:

M - {Ml, Mz, ceny Mm}
The second component is a set of corresponding probabilities:
P ={P1’P2v-~~9Pm}

Y p=1

i=]

in which:

In a number of cases, fractal objects may be generated by randomly
choosing mappings from M. The iteration process starts with a point zo,
and a mapping M, (with probability P;) is chosen out of M, resulting in
71 = M;(zo). The result of the IFS is calculated in an iteration process
(see Fig. 2.2). The objects X, and X,4, in the iteration process are, in
this case, represented by 2- or 3-dimensional points and f by the set of
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mappings M with corresponding probabilities P. The initial points z;, are
driven by the iteration process to points of attraction (“the attractor”), in
case the mappings are contractions and the process converges.
One example of the generation of a fractal object is the Dragon Sweep  Dragon sweep
from Mandelbrot (1983). This object may be generated using two map-
pings in the complex plane (see Demko et al. 1985):

M] 2 Zn41 =Sy +1 (210)
My zny1 =85z, — 1

In these mappings z is a complex variable (z = x + iy) and s a complex
parameter: i1
= — 4 -
T2
The corresponding set of probabilities is:

P =1{0.5,0.5)

The process starts with the point 0 in the complex plane. The resulting Twin Dragon sweep
figure, the Twin Dragon Sweep, is shown in Fig. 2.17. It can be demon-

strated that this object is the same as the curve in Fig. 2.10B: when the

latter is reflected, it fits exactly in the original one and together they form

the Twin Dragon Sweep.

Fig. 2.17. Twin Dragon sweep
generated with Iterated
Function Systems, using the
two mappings from (2.10)
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Fig. 2.18. Image of a leaf
generated with Iterated
Function Systems, using the
four mappings from (2.11). In
leaf A the set of corresponding
probabilities from (2.11) was
used. The choice of mappings
is visualized in (B) in this
picture the resulting points of
the four mappings are
separated from each other by
translating M, .. M,
respectively by the vectors:
0.15;0; 0.1 +0.1i; —0.1 4+
0.1i. Without applying these
additional translations the four
objects in B result in the object
in A,

Most of the mappings in this section are displayed in complex no-
tation, since this is usual in the literature on IFS. With this notation a
compact description of the mappings is achieved. The complex mappings
are only useful to describe the mappings in 2D. Alternatively, more in
agreement with the next section, these mappings could be denoted as a
concatenation of homogeneous transformations (scalings, rotations and
translations).

The IFS method may be applied for generating images of natural ob-
jects, by searching for a “fitting” attractor. For this purpose it is necessary
to cover the original object with locally affine images of itself. After hav-
ing found the appropriate mappings (which is not always a trivial task)
and selecting corresponding probabilities, an attractor is generated which
approximates the original object. An example of the construction of an
image of a leaf (see Barnsley 1988) by recursively applying a set of four
mappings and a corresponding set of probabilities (2.11) is shown in
Fig. 2.18A.

M, zp 0.6z, + (1 — 0.6)(0.45 + 0.9i)
0.6z, + (1 —0.6)(0.45 + 0.37)
Mz, = (04 —-03i)z,+ (1 —0.4+0.3/)(0.60 + 0.97)
My 74 (0.4 +0.3i)z, + (1 — 0.4 —0.3:)(0.30 + 0.97)

Pliar = {0.25,0.25,0.25,0.25)

2.11)
M Zy4
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The choice of the mappings is visualized in Fig. 2.18B; in this picture the
resulting points of the four mappings are separated from each other by
translating M, .. M4 respectively by the vectors: 0.17, 0; 0.1+0.1; —0.1+
0.1;. Without applying these additional translations the four objects in B
result in the object in A. In this figure it can be seen that the image of
the leaf contains four smaller replicas of itself which can be generated
by applying a combination of a translation, rotation and a scaling. After
defining the four transformations delivering the replicas, the image can
be described by the IFS in (2.11). A branching structure (see Lauwerier
1987) can be generated by using the following IFS:

} Xpt1 = 0.5x, + 0.5y, — 0.5

M
: Yngr = 0.5x, — 0.5y, +0.5

(2.12)
Iy i Xngy = 0.6667x, + 0.3333
2 Y41 = —0.6667y,

Plbranches = {05»05}

The resulting branch is depicted in Fig. 2.19.
This method is suitable for approximating a given image and can be
applied in data compression and for describing the self-similar aspects

Fig. 2.19. Branching structur
resulting from the IFS in (2.1

IFS and
branching objects
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Geometric substitution

Koch curves

of the image. It is not suitable as a model of a growth process, as the
mappings in (2.11), while generating the leaf image, do not supply any
information about how the leaf was formed in a growth process.

2.6 Iterative Geometric Constructions

In the last method (see also Kaandorp 1987; Lauwerier and Kaandorp
1988) to be discussed, the objects are generated by geometric construc-
tions. In geometric constructions the symbols X, and X, in Fig. 2.2
represent geometrical objects (edges, polylines, surfaces, volumes). In the
iteration process, objects are replaced by further sets of objects. In many
cases this process results in fractal objects. In the first subsection it is
described how production rules can be formulated for an extensive class
of objects. It will be demonstrated how from simple rules, stepwise, more
complex rules can be built. Some of the fractal curves from Mandelbrot
(1983) will be used as examples. From this starting point a robust system
is developed, with which a large variety of objects can be generated. The
objects used as examples do not have any biological significance and are
only meant to demonstrate the development of the modelling system. In
the second subsection it is shown how production rules can be entered into
a 2D modelling system for iterative constructions. The final 2D geomet-
ric.modelling system developed is suitable for simulating simple growth
processes in 2D.

2.6.1 Geometric Production Rules in 2D Modelling

Many of the fractal curves from Mandelbrot (1983) can be constructed
by defining an initial polyline (the initiator) and a generator polyline
(the generator), which replaces the edges of the initiator in the iteration
process. With those two components production rules for many objects,
often characterized by a fractal dimension, may be formulated.

One of the quadric Koch curves (see object A in Fig. 2.20) results
from the production rule in Fig. 2.21. The initiator and the generator
are both represented by a list of edges, which contains all the geometric
information.

In Fig. 2.20 the initiator component is indicated as objects: in the
iteration process the initiator is the 0-approximant of a curve, which can
have a fractal dimension. The third component in the production rule
(the base element) represents the polyline being replaced in the iteration
process. In the example of the quadric Koch curve this base element
consists of one edge.



I: Dragon sweep (generalized rules)

generator: object: base element:

E: irregular ramifying and seeding object 1) connection 1) connection 1) list of edges
generator: object: 2) generator se- 2) list of sub-objects
1) generator se- 1) list of sub-objects lection function + age
lection function + age 3) list of sub- 2a) list of base
2) list of sub- 1a) list of edges + genrators elements +
generators fertilization 3a) sub-generator festilization + type
2a) sub-generator processing function 3) list of post-
processing function 3b) list of base processing functions
2b) list of edges + elements +
fertilization fertilization + type ?

4

C: irregular ramifying object
generator: object:

1) generator pro- 1) list of edges
cessing function + fertilization
2) list of edges +

fertilization

H: Sierpinsky arrowhead

generator: object: ) base ele- G: Monkeys tree
1) connection 1) connection ments: rator: biect: 1
2) list of base 2) list of base 1) list of generator:  object: base ele-
1) list of base 1) list of base ments:
elements elements edges .
elements +  elements + 1) list of
type type edges
J
B: regular ramifying object |
generator: object: .
1) list of edges + 1) list of edges e
fertilization + fertilization .. . O
)
[ ..
g N ™y KB
[} ..
D: seeding square
generator: object: F: spiny ball base ele-
A: quadric Koch curve 1) list of sub- 1) list of sub-objects generator: object: ments:
generator: object: generators la) list of edges 1) list of base 1) list of base 1) list of
1) list of edges 1) list of edges 1a) list of edges elements clements edges
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initiator generator base element

Fig. 2.21. Production rule of a .
quadric Koch curve. The J_|_r

resulting fractal is shown in
Fig. 2.20A.

In general the geometric construction, as described above, can be
described as a base element (edge) replacement system:
base element = edge(V,, Vp) (2.13)
initiator = edge(Vy, V)); edge(V), V))..edge(V,_,, V),
generator = edge(Vi, Vipr), — edge(Vi, My (V))),

edge(M, (Vi) Maj(V))); - - - edge(Muu_ j (V). Vig1),

< iteration > < iterated list of edges >

0: - -edge(Vi, Vigr); -+~
: - -edge(Vi, My (V;)); edge(My(Vy), My (Vi)), - -
edge(Mm—1.1(V;), Vig1)s -+
2: edge(Vi, Mi(Vh)), edge(My2(Vi), Mn(V)), -+

edge(Mpy-12(Vi), Min(V));
edge(M,(V), M12(M1,(V}))),
edge(M2(M,,(Vi)), My (M11(V}))), - -
edge(My—; 2(M\,(Vi)), My (Vi)
edge(My (V;), Mi2(My(V}))),
edge(M\y(My (V})), My (M (V)))); - -
edge(My,—1 2(M21(V})), My (V})); - -
edge(My,— 1 (V}), Mia(My,—1 1 (V)))),
edge(My(Mp—1 1 (V})), Mary(Mp—1 1(Vi)));
edge(Mpm 1 2(My—1.1(V;)), Vigr)s - -

< . . . o
Fig. 2.20. Classification In this edge replacement system the iteration process starts with an initial
diagram of linear fractals based  polyline consisting of n + 1 vertices V and n + 1 edges. In the gener-
on the minimal rules necessary d < ; . 1 db . £

for representing all components ator an edge(V;, Vi) (0 < .z < n)is rgp aced by a series of m pew
of the production rules. The edges. The new edges are obtained by a series of transformations, derived
general set of rules on top of from the geometrical information described in the generator polyline (see
the classification (I) can be Fie. 2.21). Fi 297 sh h h . £ 1 f .
used for representing all ig. 2.21). Figure 2. ' shows how the series of m - transtormations
objects discussed in Sect. 2.6. M, J ~Mm—l.j are obtained from the generator polyline.
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The transformations are determined in four steps:

1) In the first step the start points of the generator polyline (V Gy) and
the edge being replaced (V;) are positioned so as to coincide.

2) In the second step the angle y between the edge(V;, V;4|) and
edge(VGy, VG, is determined, where as rotation point the vertex

Vi is used.
3) In the third step the scaling factor:
Vi, Vil
sf = M (2.14)
IVGo, VG

is determined.
4) Inthe fourth step a translation is done over the vector [ Vg — Vi, Vyr—
Vyil (0 <k <m).
In each step a combination of a scaling §, rotation R and translation 7 18
done for each edge. Together this combination can be written as a linear
transformation:

Ml‘] = RV‘(}/)S(Sf, Sf)'T(ka - in, Vyk - Vyl)
for0 <k <m,

(2.15)

where j is iteration number

In this respect the Koch curve and the other fractals which will be discussed
can be described as linear fractals.

The linear fractals can be classified on the basis of the set of rules
minimally necessary to represent all components of the production rule.
In Fig. 2.20 a possible classification is shown of some linear fractals.
The quadric Koch curve (object A) is represented by the smallest number
of rules and is the most primitive object. The rules in this diagram are
the specifications of the actual data structures, which were used in the
implementation of the geometric modelling system.

An attribute can be introduced in the production rule which defines
the fertilization state of each edge. This fertilization attribute may be in
the state “fertile” or “not-fertile”. This attribute controls which edges will
be replaced in the next iteration steps; only the fertile edges of the pre-
ceding iteration step are replaced by the generaror. The production rule
for a Pythagoras tree (Fig. 2.23) is an example. In this rule the fertiliza-
tion attributes of the edges of the initiator and generator are defined; in
Fig. 2.23 the fertile edges are indicated with asterisks. In Fig. 2.20B the
list of edges representing the ramiform object is extended with a fertiliza-
tion attribute. The edge replacement system for the tree construction can
be described as:

VG,

VG,
VG,

1y, Vi

2
VGy
3 e * —eo
4 —
=
Vi

Fig. 2.22. Derivation of the

m — 1 transformations

M. My, ; from the
generator polyline. As example
the generator from Fig. 2.21 is
used.

Fertilization attribute

Pythagoras tree
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Fig. 2.23. Production rule for a initiator generator base element
simple tree (Pythagoras tree).

Fertile edges (edges of the
preceding iteration step which / o
will be replaced in the next ‘
iteration step) are marked with m

asterisks. The resulting object - ‘
is shown in Fig. 2.20B.

base element = edge(V,, V) (2.16)
initiator = (edge(Vy, V1), NF), (edge(V|, V), F),
(edge(Va, V3), NF), (edge(V3, Vy), NF),
generator = (edge(Vi, Vi), F) — (edge(V;, M1;(V})), NF),
(edge(M,j(Vi), My (V))), NF),
(edge(M,j(Vy), M3;(V1)), F),
(edge(M3;(Vi), M4yj(V))), NF),
(edge(My;(V;), Ms;(Vi)), NF),
(edge(Ms;(Vi), Mej(V))), F),
(edge(Ms;(V), Mq;(Vi)), NF),
(edge(M7;(V;), Vig1), NF),
(edge(Vi, Vig1), NF), — (edge(Vi, Vit1), NF),

< iteration > < iterated list of edges >
0: (edge(Vy, V1), NF), (edge(V,, V), F),
(edge(Vy, V3), NF), (edge(Vs, Vy), NF),
l: (edge(Vo, Vi), NF), (edge(Vi, M1 (V1)), NF),

(edge(M1(V1), My (V})), NF),

(edge(Ma (V1), M3 (V))), F),

(edge(M3(V1), My (V1)), NF),

(edge(M4 (V1), Msi(V))), NF),
(edge(Ms(V;), Mg (V1)), F),

(edge(Me (V1), M71(V1)), NF),
(edge(M71(V1), V1), NF), (edge(V,, V3), NF),
(edge(V3, Vo), NF),

In this replacement system the fertilization attribute is indicated as F
(fertile) or N F (not-fertile).



32 Methods for Modelling Biological Objects

The next step, in creating an extensive class of production rules, is to
create a continuous range of generators. This was done by introducing a
new attribute in the description of the generator: the generator processing
function. In the new construction the original generator is processed by
this function. The new gererator is a transformation of the original one and
may vary between certain limits, as specified by the generator processing
function. An example is shown in Fig. 2.24, where a generator processing
function is introduced in the construction of a ramiform object. In this
example a function is introduced which processes the original generator
by rotating it between two limits. The angle of rotation 6 is determined
by a random function and an irregular ramifying object is obtained (see
Fig. 2.20C). The construction of the irregular ramifying object is an ex-
ample of a non-deterministic iterative geometric construction and can be
compared with the L-system where randomness was applied (Fig. 2.13).
In the classification diagram (Fig. 2.20C) it can be seen that the generator
component is extended by a new attribute, which contains a reference to
a generator processing function. The edge replacement system for this
construction can be described as:

base element = edge(V,, Vi) (2.17)

initiator = (edge(Vy, V1), NF); (edge(V|, V,), F);
(edge(Va, V3), NF); (edge(V3, Vo), NF);
generator processing
function = foreach (edge(V;, Vi1), F) arotation
matrix Ry is determined
for lower_limit < 0 < upper_limit;
0 is chosen from a uniform distribution

with two limits

generator = (edge(V;, Vi), F); —>

(edge(V;, Rg(M,;(V})), NF);
(edge(Rg(M,;(V})), Ro(M2j(Vi))), N F);
(edge(Rg(M1;(V:)), Ro(M3;(Vi))), F);
(edge(Ro(M3j(Vi)), Re(M4j(V:))), NF);
(edge(Rg(M4;(V})), Ro(Ms;(V))), NF);
(edge(Ro(Ms;(Vi)), Ra(Ms;(V)))), F);
(edge(Ro(Mej(Vi)), Rg(M7;(V)))), NF);

Generator processing
function

Non-deterministic
iterative geometric
constructions
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Fig. 2.24. Production rule for a
tree in which the original
generalor is processed by a
function which allows random
movements of the generator
between two limits. The
generalor processing function
is described in the right part of
the generator component. The
resulting object is shown in
Fig. 2.20C.

Fig. 2.25. Production rule for a
self-seeding square. The
generalor consists of two parts
and seeds new squares during
each iteration. The resulting
object is shown in Fig. 2.20D.

Self-seeding square

initiator generator base element

. i

W

initiator generator base element

B ]

(edge(Ro(M7;(V1)), Viy1), NF),
(edge(‘/i, ‘/l'—|—l)s NF), -
(edge(‘/iv ‘/i—|—1)s NF),

In this system, for each fertile edge the transformation M;; is extended
with a rotation over the angle 6.

Another class of production rules contains rules which generate new
objects in each iteration step. The result of such a rule is a fragmented
cluster of objects. Each enlargement of the fragmented curve reveals that
the object is still further subdivided into sub-objects. An example of the
construction of such an object, which generates recursively new objects,
is displayed in the production rule in Fig. 2.25, the result of which is
displayed in Fig. 2.20D. In each iteration step each edge generates an
new object, a square. In order to represent this type of objects, both the
generator and the initiator component are extended, the generator by a
list of sub-generators and the initiator by a list of objects.

Each sub-generator and object consists of a list of edges. This con-
struction is described in the following replacement system:
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initiator = edge(Vy, V1);edge(V\, V2), edge(Vo, V3);  (2.18)
edge(Vs, Vo);
generator = edge(Vi, Viy)); —
sub_generator( :
edge(V, Vit1);
sub_generator] :
edge(M,;j(Vi), Ma;(V1)); edge(My;(Vi), M3;(Vi));
edge(Ms;(V), Myj(V))); edge(My; (Vi), My; (Vi)
< iteration > < iterated list of edges >
0: object0 :
edge(Vo, Vi); edge(Vy, V2);
edge(Vy, V3), edge(Vs, Vp),
l: objectO :
edge(Vo, V1), edge(V,, V),
edge(Va, V3), edge(V3, V),
objectl :
edge(M,,(Vo), M2 (Vo)), edge(My(Vo), M31(Vo));
edge(Ms(Vo), M4 (Vo)); edge(My (Vo), My, (Vo)),
object2 :
edge(My(V)), M2 (V))); edge(Ma (Vi), M3 (V1))
edge(M3(V1), My (V))); edge(My (V1), M1 (V1));
object3 :
edge(M(V2), M2 (V2)), edge(My1(V2), M3(V2)),
edge(Ms(V2), My (V2)); edge(My (V2), My (Va));
object4 :
edge(M(V3), M21(V3)), edge(My(Va), M3 (V3)),
edge(M3(V3), My (V3)); edge(My)(V3), My1(V3)),

A new class of objects is created by applying several types of genera-
tors in the iteration process. The generator component in the production
rule is represented in this class by a list of generators and a generator  Gene
selection function, which defines which generator should be applied to  funct.
a certain edge. An example of a rule for an irregular ramifying object,
which generates new irregular ramifying objects, is shown in Fig. 2.26.
In this example a list of generators consists of two elements: the irregular
ramifying generator (Fig. 2.24) and the generator which “seeds” squares
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Fig. 2.26. Production rule fora
vegetation of ramifying
objects. The growing generator
(gen0) is chosen by the
generator selection function
(left part of the generator
component) as long as the age
of the object is less than 3
iterations; on the third iteration
the object starts seeding (genl).
The resulting object is shown
in Fig. 2.20E and 2.27.

Vegetation of
ramiform objects

Fig. 2.27. Vegetation of
irregular ramifying objects
produced with the rule in

Fig. 2.26. In this picture three
successive generations of
ramifying objects are
displayed.

initiator generator base element
gen(
! —_—
. i \ ”/>
if(age==3) | \ |
genl ' |

else
| gen0 gonl

(Fig. 2.25). A generator selection function is included in the generator
component and is used to determine which generator should be used for
replacing edges of the preceding iteration step. The growing generator
(gen0) is chosen as long as the age attribute of the object does not equals
3 iteration steps. When the age of the object equals three iteration steps,
the object starts seeding a new set of objects (age equals 0), using the seed-
ing generator (genl). The result, a self-reproducing ramiform object is
shown in Figs. 2.20E and 2.27. The original ramiform object has changed
into a vegetation of ramiform objects. The construction is described in
the following edge replacement system:
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base element = edge(V,, Vp) (2.19)
initiator = ((edge(Vy, V1), F), (edge(V;, V,), NF),
(edge(V2, V3), F), (edge(V3, Vi), NF),
(edge(Vy, Vs), F), (edge(Vs, Vo), NF);
(edge(Ve, V2), F), (edge(V;, Vo), NF);), age = 0),

generator processing
function = foreach (edge(V;, Vi1|), F) a rotation
matrix Ry is determined
for lower_limit <6 < upper_limit;
6 is chosen from a uniform distribution

with two limits
generator selection

function = if (age == 3) then generator — generatorl

else generator — generator0

generatorQ0 = (edge(V;, Viyy), F), —
(edge(Vi, Ry(M,;(Vi)), NF),
(edge(Ro(My;(Vi)), Ry(My;(V)))), NF),
(edge(Ro(Maj(Vi)), Ro(M3;(Vi))), F),
(edge(Ry(Mj(Vi)), Rg(M4j(Vi))), NF),
(edge(Ry(Ma4j(Vi)), Rg(Ms;(Vi))), NF);
(edge(Ry(Msj(Vi)), Ry(Msj(Vi))), F),
(edge(Rp(Mej(Vi)), Ro(Mr;(Vi))), NF),
(edge(Rg(Mrj(Vi)), Vit1), NF),

generatorl = (edge(V;, Viy), F), —
sub_generator1,0:
(edge(Vi, Viy1), F),
sub_generatorl, 1 :
((edge(M,;(Vi), Myj(V))), F),
(edge(M,j(Vi), M3;(Vi)), F),
(edge(Ms5;(Vi), Maj(Vi)), F);
(edge(Msj(Vi), My j(V))), F),), age = 0),
(edge(Vi, Vit1), NF) — (edge(V;, Viy1), NF),

In all objects discussed so far, base elements (edges) of the preceding
iteration step with fertilization state “fertile”” were replaced by a new set of
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Fig. 2.28. Production rule for a
simple base element object.
The resulting object is shown
in Fig, 2.20F

Base element

Spiny ball

initiator generator base element

\f

edges. This rule can be generalized to a new rule where the base element
consists of a polyline, which is replaced by a new set of polylines. The
base element, the third component in the production rule, can consists of
more than one edge. The rules in the classification diagram (Fig. 2.20F)
are extended with this third component. An example of a rule where
this extension is used is shown in Fig. 2.28. Here spine-like polylines,
consisting of two edges, are replaced by a new set of spines. The result is
a spiny ball.

In the base element replacement systems below, the notation be(V;, Vp)
indicates a list of b 4+ 1 edges:

be(Vo, Vi) = LE_ {edge(Vi, Viy))) (2.20)

The edges in the replacement systems to be illustrated, are connected, for

b > 1 be(Vy, Vp) can be written as a series of edges: 221)

be(Vy, V) = be(edge(Vy, V1); edge(Vy, Va); - - - edge(Vy, Voi1));

The construction of the spiny ball can be represented by the following
base element replacement system:

base element = El-lzo{edge(Vi, Viii) (2.22)
initiator = be(Vy, Vo); be(V,, Vy), be(Vy, Vi); be(Vs, Vo),
generator = be(Vaui, Vasiza), =
be(Vasi, M2 j(Vasi)), be(M2;(Vasi), Vasiy2);
< iteration > < iterated list of base elements >
0: be(Vo, V2); be(V2, Va), be(Va, Vs), be(Vs, Vo),
1: be(Vo, M21(Vy)); be(Ma; (Vo), V2),

be(V,y, My (V1)) be(My(V2), Vy),
be(Vy, M5 (Vy)); be(My(Vs), Ve);
be(Vs, M2 (Vy)), be(M,,(Ve), Vo);

In this system the base elements are denoted as be(- - -).
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initiator generator base element

/P /=

A further generalization of the rule in which base elements are re-
placed by a new set of base elements is a rule where different versions
of one type of base element are used. The different versions of the base
element are obtained by reflecting the original base element. In this new
generalization the attribute zype is added to each base element, which
indicates the type of reflection used. An example of a construction of an
object with four #ypes of reflection is displayed in Fig. 2.29. In this ex-
ample the types are: type 1, normal base element; fype 2, y-coordinate of
base element is reflected; #ype 3, x-coordinate of base element is reflected;
type 4, x- and y-coordinate of base element are reflected. As a result it
is possible to construct, for example, the Monkeys tree of Mandelbrot
(1983) (see diagram Fig. 2.20G). The construction of the Monkeys tree
can be represented by the following base element replacement system:

base element = L5_,{edge(Vi, Vii1} (2.23)
initiator = (be(Vy, V7),typel),
generator = (be(v7*is V7*i+7)9 typel)’ -

(be(V7si, M7,1(Vixi)), type2),
(be(M7,1(Vixi), M14.1(V14i)), type3);
(be(M 4, (V1ai), M2y 1(V24)), typel),
(be(M31,1(V7ai), Mag 1(V74)), type3),
(be(Mas.1(V74i), M3s1(V7si)), type3),
(be(M3s1(V74i), Maz, 1 (V14:)), typed);
(be(Myz,1(Vai), Mas,1(V14i)), typed),
(be(Myg 1 (V1si), Mss1(V1ai)), typel),
(be(Mss 1(Vixi), Mes,1(Vai)), typed),
(be(Me3 1(V34i), Visit7))), typel);
(be(Viai, Vixivr), type2); — -
(be(Viai, Vixivq), type3); — -«
(be(Vrui, Visivr), typed); —> -+

Fig. 2.29. Production rule for
the Monkeys tree shown in
Fig. 2.20G. The #ype of the
base elements is denoted in the
first two components with
numbers: fype 1, normal base
element, type 2, y-coordinate
has been reflected; type 3,
x-coordinate has been
reflected; type 4, x- and
y-coordinate has been reflected.

TBype attribute

Monkeys tree
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Bypes of
base elements

Sierpinski arrowhead

In this system only the replacement of a base element of type 1 is
displayed; the resulting types of base elements of the other types in the
replacement process can be found in Table 2.1.

Table 2.1. Resulting type of base element, when a base element of a preceding
iteration step is replaced by a new set of base elements

type base element being replaced 1

type 1 generator
type 2 generator
type 3 generator
type 4 generator

N — B W W
— N W |

2
2
|
4
3

AW N -

In the previous examples the polylines are connected in one or more
curves; after each iteration step, in most cases, the length of each curve
increases (only the length of the self-seeding square curves in Fig. 2.20D
remains the same) but all elements are connected and there is one start and
one end point of the curve. A more extended type of construction applies
a generator and an object, which consists of base elements, which may be
either connected or disconnected. This extension is introduced in the rules
shewn in Fig. 2.20H by adding the attribute connection, which can be in the
state “connected” or “disconnected”. An example is shown in Fig. 2.30.
This production rule specifies the construction of a Sierpinski arrowhead,
using triangles as base elements. The base element replacement system
is given below:

(2.24)

base element = be(edge(V,, Vp); edge(Vy, V.); edge(V,, Vo))
initiator = be(edge(Vy, V1), edge(V,, V2), edge(Va, Vo)):
generator = be(edge(Visi, Vasir1); edge(Vasiyy, Vasit2));
edge(Visiva, Vasi))s —
be(edge(Vsui, My j(Vaii)),
edge(M\;(V3si), Myj(Vasi)),
edge(Mj(Visi), V3ui)),
be(edge(M,;(Vssi), Vasit1);
edge(Vixiy1), M3j(V3i));
edge(M3;(V3si), Mij(Vasit1));
be(edge(M,j(V34i), M3j(V3,:));
edge(Ms;(Vaxi), (Vasit2));
edge(Viyiza, Myj(V34i)));
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initiator generator base element
initiator generator base element
i gen0
if odd(i)
l gen(
b else . .
gen i genl
e

The final step in creating a general system of rules for the generation
of objects is to combine all previous rules. This combination of rules is
displayed in Fig. 2.201: with this combination it is possible to capture all
the objects shown so far and it is possible to define production rules for
still more objects. An example of a new construction, which is possible
with (a subset of) the rules in Fig. 2.201, is the production rule (Fig. 2.31)
of the Dragon sweep (Mandelbrot 1983). The Dragon sweep is created
by using a list of two generators which alternate. The base element used
in the generator and object component consists of two edges. The odd
base elements of the preceding object are replaced by gen0, the even base
elements by genl. The construction can be described, using a subset of
the replacement rules, in the following system:

Ll_{edge(V;, Vii1} (2.25)
(be(Vy, V2), type2), (be(Va, Vu), typel),

base element =
initiator =

generator selection
function = if (odd(i)) then generator — generator0

else generator — generatorl

Fig. 2.30. Production rule for
constructing a Sierpinski
arrowhead. The resulting object
is shown in Fig. 2.20H.

Fig. 2.31. Production rule for
constructing the Dragon
Sweep: odd base elements of
the preceding object are
replaced by gen0, even base
elements by genl. The
resulting object is shown in
Fig. 2.20L

Dragon sweep
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generatorQ = (be(Vyi, Vauira), typel); —
(be(Vai, M3 j(Vai)), typel),
(be(M;j (Vai), Vaxiga), type2);
(be(Vai, Vasita), type2); —
(be(Vai, M2 j(Vai)), typel),
(be(M2j(Vai), Vasiv2)), typel),

generatorl = (be(Vy, Vasiia), typel);, —
(be(Vai, M5 j(Vai)), type2),
(be(Msj (Vai), Vasit2)), typel);
(be(Vai, Vasit2)), type2), —
(be(Vai, Msj(Vai)), typel),
(be(Msj(Vai), Vasit2)), type2),

In the previous sections it was demonstrated that this object can be
constructed in many alternative ways: by applying formal languages (see
Fig. 2.10B) or the Iterated Function Systems (see Fig. 2.17). It is an
object which occurs frequently in the literature on iteration processes.
Some authors even associate it with a pathological demon in science (see
Lovelock 1988)!

Fig.2.201 shows that another rule (list of post-processing functions)
was added, which was not used until then. This rule contains references
to functions which post-process the result X,, 1 (see Fig. 2.2) of an itera-
tion step. These functions will be discussed in more detail in Sect. 2.6.3,
where the iterative geometric constructions will be used to model a growth
process.

2.6.2 The Geometric Modelling System
for 2D Objects

The three components of the production rule may be regarded as argu-
ments for an algorithm for calculating objects. The object is generated
by an algorithm in an iteration process, in which the calculated object
(new_objects) is used as input (old_objects) of a next iteration (compare
Xyn41 and X, 1n Fig. 2.2). The algorithm, suitable for 2D objects, is de-
scribed in a summarized form using pseudo code below:
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fractal( old _objects, new_objects, generator, base_element ) {
A if ((mo generator processing function is used) &&
(mo selection function is used))
a local copy of the generator is made and the transformation
matrices M;; (see 2.15) are derived from the generator;
B: next object from old_objects is taken {
C1: next base_element from current old_object is taken {
D1: if (current old base_element is fertile) {
E1: if ((generator processing function is used) ||
(selection function is used))
In case a selection function is used a generator 1s
selected from the list of generators;
In case a generator processing function is used a local
(copy changed by a generator processing function ) is
made of the original generator, the transformation
matrices M;; are derived from the local copy;
E2: next sub-generator is taken {
F: next base_element is taken from the sub-generator {
G: next vertex is taken from base_element of the sub-generator {
G1: transformation is performed using M;;;
new vertex is added to new_objects;
}
fertilization status of new base_element (equal to
fertilization status of current base_element generator)
is added to new_objects,
type of the new base_element is evaluated from type
current base_element generator and current old
base_element and added to new_objects (see Table 2.1);
}end F
} end E2
E3: if (base_element generates new object)
A new object is added to new_objects,
} end D1
D2: if (current old base_element is not fertile)
old base_element and its fertilization and type state is added to new_objects
} end C1
C2: if (post-processing functions are used)
new_object 1s post-processed by one or more post-processing functions;
}end B
} end fractal
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Fig. 2.32. Diagram of the 2D
modelling system for iterative
geometric constructions. The
system itself is enclosed by a
rectangle.
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The modelling system is depicted in Fig. 2.32. In this diagram the
system is enclosed by a rectangle. As discussed above, it is necessary
to construct production rules consisting of three components: initiator,
generators, and base elements. The three components can be designed
interactively in the modelling system or taken from external storage. These
external storage files contain the parameters of the rules describing the
three components. Newly designed components can be added to these
files.

The generators may contain an attribute, which refers either to a
special function which processes the original generator or to a generator
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selection function which selects, during the calculation of the object, a
generator from a list of generators. The result of one iteration step can
be post-processed by a list of post-processing functions (these functions
will be discussed in the next section). The main part of the system is the
fractal algorithm, which uses the output of one iteration as input for the
next one.

It is possible to define new production rules during the generation
of the objects, so the ultimate object can be influenced interactively. The
final result can be stored externally and this file can used to reinitialize
the iteration process and to continue the calculations.

2.6.3 Modelling a Growth Process in 2D with Iterative Geometric
Constructions

In this section some examples are given of simple growth processes of
artificial objects. The results of the preceding section are used in models
of growth processes. Although these objects are sometimes reminiscent
of biological ones, the growth process has no biological significance. The
examples are all based on the iterative geometric construction shown in
Fig. 2.33. The resulting ramifying object is shown in Fig. 2.34. In this
section it will be demonstrated how from this construction more complex
objects can be built by the introduction of rules in the iteration process
(see also Kaandorp 1991a). These rules differ from the rules applied in the
preceding section, since they are not applied in the generation of the object
but to the result of the generation procedure (an iteration step). These
rules can be divided into two types: those which represent the internal
properties of the growing object, and those which reflect the influence
of the environment on the object. In the models of the actual biological
growth processes a generator rule, as shown in Fig. 2.33, represents the

initiator generator

& W

Internal properties
of a growth process

Fig. 2.33. Geometric
production rule for a ramifying
object. Fertile sides (sides of
the preceding iteration step,
which will be replaced in next
iteration steps) are marked with
asterisks. The resulting object
is shown in Fig. 2.34. The ratio
t/b (1 is the size of a fertile
side, b is the size of the basis of
the generator) is indicated as
the similarity ratio.
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Fig. 2.34. Ramifying object
resulting from the geometric
production rule shown in
Fig. 2.33

Influence of
the environment

internal (genetically) defined part of the growth process, for example in
the generator it is internally defined that each branch will split into two
new ones. This type of rule is responsible for the self-similar aspect of the
object and resides typically in the generator part of the production rule.
The second type of rule represents the influence of the environment on the
growth process. Examples of such rules are: the object is not allowed to
grow on sites which are already occupied by the object, and the object is
not allowed to grow across certain borders. In general this type of rule will
disturb the regularity and the self-similar aspect of the growing object.

In the chapters on the modelling of actual biological objects, basically
the same strategy will be followed as in this section on ramifying objects.
First, internal rules are defined which describe the species-specific as-
pects, for example the architecture in which the elements of the object are
connected, the properties of the transport system of nutrients through the
tissue, etc. After this the influence of the physical environment is defined,
for example the light distribution for models of organisms which use light
as an energy source, and geometric hindrances.

Aside from being convenient demonstration objects the ramifying
forms are sometimes used as a simple phenomenological description of
branching patterns in biology (see Aono and Kunii 1984, Bell 1986).

The Ramifying Objects. In the production rule shown in Fig. 2.33, the
ratio between the size ofthe base of the branch (b) and the size€ of the fertile
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tips (¢) of the branches equals the self-similarity ratio. The effect of chang-
ing /b is depicted in the series of ramifying objects in Fig. 2.35, where
(z/b) 1s increased from 0.5 to 1.0. The effect of changing the self-similar
aspect of the ramifying object causes the thin-branching and compact
object A to transform gradually into a more plane-filling object C.

The first extension which can be introduced is a function which pro-
cesses the original generator depicted in the construction in Fig. 2.33. The
original generator is represented in the geometric modelling system as a
sequence of transformations M;;: the generator (see Sect. 2.6.1). The
processing function is indicated as the generator processing function. A
generator processing function which will generate a ramiformeous object
with an irregular appearance uses the original generator as an argument
and delivers a new generator on which a rotation is performed. The angle
of rotation is chosen randomly between two limits (see Fig. 2.36, com-
pare Fig. 2.24 and (2.17)). In this case for lower_limit and upper _limit
respectively the values —m /4 and 7 /4 were used. The result of this pro-
duction rule is shown in Fig. 2.37. This generator processing function is
an example of an external influence, which disturbs the self-similar aspect
of the object shown in Fig. 2.34.

Inthe case of the irregular ramifying object only the original generator
is used as an argument in the generator processing function. To generate
an irregular ramifying object that grows in a certain prevailing direction,
some additional local information (indicated as local inf) is necessary.
In the present case this local information is the angle y of a fertile element
with the prevailing direction of growth. An angle 6 is chosen randomly
between two limits: y < 6 < m /2. The probability that a specific angle is
chosen is maximal for an angle which equals 7 /2 and minimal for an angle
that equals y, which was achieved by truncating a normal distribution with
mean value 77 /2. An example of an irregular ramifying object growing in
a prevailing direction (in this case the right upper corner) is shown in Fig.
2.38. This rule, in which branches have the highest probability to branch

initiator generator

Q

Fig. 2.35. In this series of
ramifying objects the value of
the similarity ratio (¢/b) in the
production rule in Fig. 2.33 is
gradually increased in the
sequence A..C. The respective
values 0.5.0.75. and 1.0 were
used.

Fig. 2.36. Geometric
production rule for an irregular
ramifying object. The original
generator is processed by a
generator processing function,
which allows random
movements of the generator
between two limits. The
generator processing function
is described in the right part of
the generator component.
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Fig. 2.37. Irregular ramifying
object resulting from the
geometric production rule
shown in Fig. 2.36

Fig. 2.38. Irregular ramifying
object resulting from the
geometric production rule
shown in Fig. 2.36, growing
towards a prevailing direction

towards the right upper corner, is an example of an external influence
on the growth process acting non-uniformly on the growing object. A
biological example is a light source influencing the growth process. Local
information is necessary to identify the position of a growing element
with respect to the light source.
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Xp + 1 = generator_proc ( generator_function (X, ), local_inf)

X’h + 1 =post_proc,, ( ~..post_procy ( post_procg ( X, 1)

The second extension is the introduction of functions which post-

‘»g

Fig. 2.39. Irregular ramifying
object in which intersecting
branches of the object shown in
Fig. 2.38 are removed by a
post-processing function

Fig. 2.40. Diagram of the
iteration process in which three
extensions are introduced in the
original iteration process

(Fig. 2.2): the generator
processing function
(generator _proc), a chain of
post-processing functions
(post_procy), and local
information (local _.inf)

Post-processing

process the result of each iteration step. An example is a function functions

which removes the intersecting branches from the object. The result,
a non-intersecting ramifying object, is shown in Fig. 2.39. The gen-
erator processing- and these post-processing functions are represented
in a new diagram of the iteration process: Fig. 2.40 shows a chain
of post-processing functions (post _procy, post_procy, .., post_procy).
The non-intersection rule is an externally defined geometrical restriction
which influences the growth of all biological organisms. This rule will later
become one of the major rules in the growth models of actual biological
organisms. Non-intersection can be introduced as an additional condition
in the edge replacement system describing the object from Fig. 2.39:

Non-intersection rule
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base element

initiator

generator processing

function(y) =

new_edges =

generator =

edge(V,, V) (2.26)
((edge(Vy, V1), F); (edge(Vy, Vo), NF);
(edge(Vy, Vi), F); (edge(Vs, Vy), NF);
(edge(Vy, Vs), F); (edge(Vs, Vi), NF);
(edge(Vy, V7), F); (edge(V4, Vi), NF);), age = 0);

for each (edge(V;, Vi), F) a rotation
matrix Ry is determined for
Yy <6 < m/2;60 is chosen randomly
between the two limits
P (0) is a (truncated) normal
distribution with 8 = 7 /2
{(edge(V;, Ro(M,;(Vi)), NF);
(edge(Ry (M, ;(V)), Ro(My; (Vi))), NF);
(edge(Rs (Ma; (Vi) Re(Ms;(Vi))), F),
(edge(Ro(M;j(Vi)), Rg(M4;(Vi))), NF);
(edge(Rg(M4j(Vi)), Ro(Ms;(Vi))), NF),
(edge(Ro(Msj(Vi)), Rg(Ms;(Vi))), F),
(edge(Rg(Me;(Vi)), Ro(M7;(Vi))), NF),
(edge(Rg(M7;(Vi)), Vit1), NF); }
if (an edge in new_edges intersects
an edge of the object ) then

(edge(Vi, Viy1), F), — (edge(Vi, Vit)), NF);
else

(edge(Vi, Viy1), F), > new_edges
(edge(Vi, Viq1), NF); — (edge(Vi, Viy), NF);

In this replacement system the angle y is an argument of the generator
processing function and the newly generated edges are only added to the
ramifying object in the case that this does not lead to intersection.

The chain of post-processing functions may contain all kinds of rules
for the growing object. Without these post-processing functions the ele-
ments of a ramifying object cannot interact with each other; they make it

Geometric restrictions possible to introduce restrictions, for example that an element is not al-
lowed to intersect an other element, or elements should remain at a certain
distance from each other.
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In Fig. 2.39 growth stops as soon as a branch is going to intersect
a part of the object. In Fig. 2.41 the iteration process of Fig. 2.40 is
extended with an additional cycle. In this new iteration process a fertile
side produces a new branch that is tested for intersections with the object.
When an intersection is found, further new branches are generated until a
branch is found, by trial and error, that does not intersect, or the number of
attempts exceeds a certain maximum (nretry). In the latter case the branch
is removed from the object and the tested fertile side becomes non-fertile.
In Fig. 2.42 the result of this new addition is shown. In this figure each
fertile side produces a maximum number of new branches (in this picture
nretry = 10 was used); the result is that branches try to avoid each other
and the number of branches created is higher than in Fig. 2.39. For the
generation of Fig. 2.43 a new post-processing rule is inserted in the chain
of post-processing rules, stating that the ramifying object is not allowed
to intersect a nearly closed box. The aperture of this box is found by the
ramifying object by trial and error.

In actual biological objects the intersections as occurring in Fig. 2.37
will appear less frequently. The objects can have a self-avoiding architec-
ture. It is possible to construct a branching generator which exactly avoids
itself in each iteration step as shown in Fig. 2.44 (some more examples of
self-avoiding ramifying structures are given by Mandelbrot 1983, Aono
and Kunii 1984). Of course this mathematical property of self-avoidance
and strict self-similarity (not considering the trunk of this object) would
quickly get lost in an actual growth process, where the physical environ-
ment will influence the growth process (examples of this will be shown
in the next chapter). Only statistical self-similarity remains in biological
ramifying structures. Growing branches in seed plants suppress growth

Xq + 1)m = generator_proc { generator_function (Xp, ) )Jocal_inf)

Xn + 1)rn4

Xp+1)m satisfies
pOSt_procy or
m > nreuy

Xr1+1

4

X'h + 1 = post_proc, ( ....post_procy ( post_procy (X, 4 1 ))-..)

Avoiding intersections
by trial and error

Self-avoidance

Fig. 2.41, Diagram of the
iteration process, where the
iteration process (Fig. 2.40) is
extended with an additional
cycle
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Fig. 2.42. Irregular ramifying
object where all fertile sides
generate a maximum of nretry
branches until a branch is
found that does not intersect
the object (see Fig 2.41)

Fig. 2.43. Irregular ramifying
object where all fertile sides
generate a maximum of nretry
branches until a branch is
found that does not intersect
the object (see Fig 2.41) or the
box surrounding the object

in other branches by apical dominance where the phytohormone auxin,
produced by the top meristem, suppresses growth in the side branches.
In many autotrophic' branching organisms (e.g. seed plants, many stony

'A (photo-)autotrophic organism requires only inorganic substances and light as an
energy source for growth.
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Al“

corals) growth in the lower branches is suppressed by the cast shadows
of the upper branches. In many branching heterotrophic® organisms
(e.g. some bacteria colonies, bryozoans, many sponges), as well in many
branching growth patterns in physics, growth in the other branches is sup-
pressed simply by depletion of the nutrients necessary for growth (see for
example Fig. 2.15). In DLA-like structures, as electrochemical deposi-
tion, dielectric breakdown patterns, etc. (see Sect. 2.4) this suppression
is very effective: loops are very seldom observed. The first three rea-
sons (self-avoidance, apical dominance and cast shadows) can explain
why the phenomenon of anastomosis is so surprisingly rare among most
seed plants. Probably the growth process is highly controlled among seed
plants and anastomosis only occurs when the process is disturbed strongly.
Among the root systems of the seed plants this phenomenon is observed
much more frequently; one possible explanation could be that the physical
environment disturbs the growth more in combination with a more com-
plicated systems of meristems (in the meristem in the root, which causes
secondary growth, the cambium is star-shaped instead of ring-shaped).
This system seems to be apt to generate highly irregular forms. In Chap. 3
it will be demonstrated that anastomosis appears more frequently among
marine sessile organisms.

2A heterotrophic organism requires an external source of one or more organic com-
pounds as an energy source. In many marine organisms these compounds are often
obtained by filtering suspended material from the environment.

Fig. 2.44. Self-avoiding
ramifying object in which a
branching generator is chosen
which exactly avoids the other
branches in new iteration steps

Anastomosis
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2.7 A Review of the Methods

The main objective of this book is to gain insight into the morphogenesis
of organisms and the influence of the physical environment on the emer-
gence of form. For this purpose reaction diffusion mechanisms are less
applicable. The reaction diffusion approach is a model for the prepattern,
consisting of a spatial pattern of activator and inhibitor concentrations. In
a model of the emergence of forms which may result from this prepattern
an additional morphological model is necessary. It can be expected that it
is a fruitful approach to introduce this method in morphological models.

Iterative geometric constructions will be the prevailing method for
constructing models of growth processes in biology. This is conceptually
a very natural way to describe a growth process. Basically it is always
possible to find an iterative geometric construction which mimics a certain
growth process, for example the process shown in Fig. 2.6. In this case
a set of base elements (the base element is the geometrical description
of a polyp) replaces a base element in the iteration process. In the actual
growth process these polyps will exhibit many types of interactions.

The actual growth process is a non-deterministic process, partly be-
cause it is influenced continuously by the environment (for example the
supply of nutrients) and because growth is limited by geometric restric-
tions. A very obvious geometric restriction is that growth cannot take
place at a site in space which is already occupied by the growing object.
This type of limitation and the influence of the environment cannot be
described with a L-system.

In the discussion of iterative geometric constructions it was demon-
strated that it is possible to introduce geometric restrictions in the model
(see the edge replacement system in (2.26)). It is also possible to include
models of the physical environment in the iterative geometric construc-
tions, more detailed examples of which will be given in the next chapter.

The DLA model is a successful model in mimicking the growth pro-
cess of an aggregation of loose particles and the influence of the environ-
ment (the nutrient source). As a model of a growing coherent structure,
DLA isless applicable. In Chap. 3, however, it will be shown that it is pos-
sible to combine both approaches (the iterative geometric constructions
and the DL A model) in order to take advantage of both.

The IFS method is basically unsuitable, since it only delivers an image
of the object and not a complete simulation of its growth process. The
method is a suitable approach for describing the self-similar aspects of
the image.






2D Models of Growth Forms

This chapter discusses how a system of rules can be created, as shown
in the section on the ramifying objects, suitable for the simulation of the
growth process of various sessile marine organisms, for example sponges
(Porifera) and corals (Scleractinia). A crucial difference with the example
of the ramifying objects is that each modelling step is supposed to have a
biological significance. An important reason to use sponges and corals as
subjects of a case-study is that these organisms exhibit a relatively simple
growth process, which makes it comparatively easy to design geomet-
ric production rules to simulate growth processes. Although the marine
sessile organisms belong to many very different taxonomic groups, it is
possible to distinguish several types of corresponding growth processes
within these groups, in which a similar architecture emerges. First almost
all groups belong to the large group of modular organisms. In this group
there 1s a subset of organisms which are formed by one type of growth
process, which will be discussed in particular in the next sections. This
growth process can be found within sponges, stony corals and many other
marine sessile organisms and will be indicated as radiate accretive growth.
Modular growth and radiate accretive growth are the first subjects in this
chapter, followed by a 2D model of radiate accretive growth.

3.1 Modular Growth

Modular growth is defined in Harper et al. (1986) as the growth of genetic
individuals by repeated iteration of (multi-cellular) parts, the modules.
Modules might be the polyp of a (stony) coral or an octocorallian, a
zooid in a bryozoan, a hyphe in a fungal colony, a shoot with an apical
meristem in seed plants, or an osculum together with its aquiferous canals
in sponges. A characteristic of modular organisms is that they do not have
a determinate form, although the module itself might have a determinate
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form (in sponges the module is variable in form). Modular organisms
contrast with unitary organisms, in which a single-celled stage, usually a
zygote, develops into a determinate structure. As well as a great plasticity
in form, modular organisms share such properties as the possibility to
survive partial mortality and the absence of a physiologically limited age.
Modular growth and architecture is a very general principle in biology
(see also Larwood and Rosen 1979, Jackson et al. 1985, Vuorisala and
Tuomi 1986, Rubin 1987), which is also applicable in other sciences, e.g.
computer science (see Unger and Bidulock 1981, on the modular design
of multi-computer systems).

The modular growth of many sponges and corals is relatively simple
when compared to more complex modular organisms like seed plants.
For many sponges it can be defined as parallel modular growth (Kaan-
dorp 1991b), where the various modules grow almost independently, only
limited by steric hindrance. Because of the almost independently grow-
ing modules, which are not limited by the development of other modules,
some important simplifications can be made in the modelling of the growth
process. For organisms with non-parallel growth, such as seed plants, the
growth of the modules, the apical meristems, is limited by the develop-
ment of other modules, for example the root system. A consequence of
the parallel modular growth is that the organisms can increase in size
theoretical without limit and without a decrease in growth velocities. In
reality, growth of these organisms will be limited by external factors like
strong water movements.

In parallel modular growth the final shape is developed by almost
independently growing modules. It is the integrated result of the growth
process of the individual modules and the influence of the environment.
There is no overall control in the final shape of the organism, as in seed
plants. In the latter this overall control becomes manifest for example in
the phenomenon of apical dominance, where the top meristem suppresses
growth in the lower meristems by secreting the phytohormone auxine. As a
consequence of a lack of overall control the final shape often shows a clear
response to the environment. Organisms with parallel modular growth ex-
hibit in general a larger plasticity in forms, higher degrees of irregularity,
and anastomosis compared to non-parallel modular organisms.

3.2 Radiate Accretive Growth

Radiate accretive growth can be defined as an iterative growth process
in which layers of material are added externally to the tip of a preceding
growth step, which remains unchanged in the next growth steps. In this

Unitary organisms

Farallel
modular growth

Apical dominance
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Fig. 3.1. A diagram of a radiate
accretive growth process: new
layers consisting of tangential
and longitudinal elements are
deposited upon the preceding
growth stage. The tangential
elements correspond to the
growth lines and indicate the
circumference of the organism
in earlier growth stages.

Autotrophic
and heterotrophic
organisms

/< R 7\7&4——- tangential element
/< ; %\————— longitudinal element

growth line

longitudinal line

= preceding growth
stage

process the thickness of the layers is highest at a minimal angle between
a tangential element and an axis of growth (see Fig. 3.1) and decreases
towards the sides of the tip. In this process a typical radiate architecture
is formed, where the longitudinal elements are set perpendicular on the
preceding tangential elements. This type of growth can be found among
members of various groups of modular marine organisms: stony corals
(Graus and Macintyre 1982), sponges (Wiedenmayer 1977, Kaandorp
1991b), coralline algae (Bosence 1976), and a symbiotic octocoral sponge
association (Van Soest and Verseveldt 1987). A distinction can be made
between the autotrophic organisms where the growth process is mainly
light-dependent and the heterotrophic ones where growth is mainly deter-
mined by the supply of nutrients, suspended material in the water, from the
environment. Combinations of the autotrophic and heterotrophic source
of carbon for the metabolic synthesis are also possible. In many sclerac-
tinians, photosynthesis of the zooxanthellae is the most important part of
the metabolism, while zooplankton feeding represents only an insignifi-
cant component of the energy intake (Porter 1974, Spencer Davies 1984,
Edmunds and Spencer Davies 1989). For some species it is even demon-
strated that no zooplankton at all is needed for tissue growth (Franzisket
1969, Johannes 1974). Zooplankton may, however, provide essential el-
ements such as N and P for the production and maintenance of tissue
(Bythell 1988). Although the radiate accretive growth process is a rela-
tively simple one it may result in a large variety of growth forms, as shown
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in the following sections. In a general model of radiate accretive growth
the influence of the environment on the growth process will consist of
two components: the influence of the light intensity and the supply of
nutrients. The last component is closely related to the exposure to water
movement, a dominant environmental parameter for most of the marine
sessile organisms.

3.3 Growth Forms of Modular Organisms and the
Physical Environment

A typical characteristic of many modular organisms is that they exhibit
a wide range of growth forms, caused by differences in the physical en-
vironment. This phenomenon that a single species exhibits a wide range
of growth forms (phenotypes), caused by environmental differences, is a
well-known problem in the taxonomy of sponges, corals, and other mod-
ular organisms. It is often possible to arrange the growth forms along a
physical gradient, so that the forms gradually transform into each other
with the changing environmental parameter.

Anexample of a heterotrophic organism with radiate accretive growth
is the sponge Haliclona oculata (see Hartman 1958, De Weerdt 1986).
In Fig. 3.2 a picture of this sponge under natural conditions is shown.
The overall body shape of this sponge tends to be more or less flattened,
although forms which are branching in all directions often appear as well.
In Fig 3.3 examples from the range of growth forms are shown. Basically
these vary within a range from quite regular thin-branching (form A) to
irregular plate-like growth forms (form D). The thin-branching form is
typical for sheltered conditions (the displayed sample was collected in a
tide-less salt water lake), while the plate-like form is found under con-
ditions with more exposure to water movement. In general the thickness
of the branches and the branching rate increase with the rate of exposure
to water movement. Forms A and D are two extremes, between which all
kind of intermediates, such as B and C, can be found. Deviations from
this general trend easily arise as a result of damage to the sponge in the
course of time. More irregular forms are found among sponges which
have an age of several years (see Fig. 3.3E). Probably tissue-material is
removed by abrasion or partial mortality and irregularities arise when new
material is added. Another tendency which can be observed in this range
is an increase in irregularity. These aspects of the growth forms will be
discussed in more detail in the section on the comparison of forms. This

Fig. 3.2. The sponge Haliclona
oculata under natural
conditions (the photograph was
made in Eastern Scheldt in the
Netherlands by M.J. de
Kluijver).

\{

Fig. 3.3. Range of growth
forms of the sponge species
Haliclona oculata. Form A is
typical for sheltered sites, in
the range A - D the exposure to
water movement increases, and
form E is an irregular form
with the age of several years.
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large plasticity in growth forms, caused by differences in exposure to wa-
ter movement, is a well-known phenomenon in sponges (see e.g., Bidder
1923, Warburton 1960, Barthel 1991).

The growth forms of H. oculata are something between the “plates”
and “trees” of the basic forms (for marine sessile animals) described by
Jackson (1979). Such a division in basic growth forms is very artificial,
as can be seen in the example of Haliclona oculata and in more examples
which will be shown in this section. In reality these species can be arranged
in a series of ecotypes along a gradient of one or more environmental key
parameters.

An example of a (mainly) autotrophic organism with radiate accre-
tive growth is the scleractinian coral Montastrea annularis. In Fig. 3.4 a
photograph of this coral under natural conditions is shown. For a mainly
light-dependent organism, the range of growth forms varies with the light
intensity. This species exhibits a hemispherical colony form under cir-
cumstances with a maximum light intensity, when the colony grows close
to the water surface. The colony gradually transforms from hemispherical
through column-shaped and tapered forms to a substrate covering plate
(see Fig. 3.5) when the light intensity decreases (see Graus and Macintyre
1982; see also Roos 1967 about the stony coral Porites astreoides).

Organisms for which light as well as the heterotrophic nutrient source
are the main environmental parameters determining the growth form in-
clude many of the Scleractinia, for example Acropora palmata (see Bythell

Fig. 3.4. The stony-coral
Montastrea annularis
(photograph made by W.H. de
Weerdt in the Caribbean area)

Fig. 3.5. Range of colony
shapes of stony coral
Montastrea annularis. The
colony gradually transforms
from hemispherical (A),
column-shaped (B), and
tapered forms (C) to a substrate
covering plate (D) when the
light intensity decreases.
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1988), and some Porifera (see Wilkinson et al. 1988). In Fig. 3.6 some
growth forms of this stony-coral are shown. Theoretically one would ex-
pect, instead of an one-dimensional variation in forms as in the two preced-
ing examples, a two-dimensional variation in forms. In most cases one of
the environmental parameters will be the dominant cause of the variation
in forms. In Veron and Pichon (1976) beautiful ranges in growth forms of
the scleractinian corals Pocillopora damicornis and Seriatopora hystrix
are shown, where in both cases the growth forms transform from compact
branching forms to thin-branching in the gradient from exposed to water
movement to sheltered conditions. An example of the range of growth
forms of the hydrocoral Millepora alcicornis (see De Weerdt 1981), us-
ing the autotrophic as well as the heterotrophic energy source, is shown in
Figs. 3.7 and 3.8. This species shows, in a range from shallow to deeper

Fig. 3.6. Growth form of the
stony-coral Acropora palmata
(the photograph was made by
W.H. de Weerdt in the
Caribbean area)

Fig. 3.7. Growth forms of the
hydrocoral Millepora
alcicornis (photograph made
by W.H. de Weerdt in the
Caribbean area)

\ 4

Fig. 3.8. Range of colony
shapes of the hydrocoral
Millepora alcicornis. The
colony gradually transforms
from plate-like growth (A) to
thin branching forms (D), when
exposure to water movement
decreases.
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growth sites, a gradual transition from plate-like growth forms to thin-
branching forms. In the same range, both key parameters, exposure to
water movement and light, are varying, water movement being the main
parameter influencing the growth form. The growth process of Millepora
alcicornis is slightly different from the radiate accretive growth process,
and is comparable with Millepora complanata (see Lewis 1991).

For reasons of simplicity, the discussion of the biological significance
of the rules in the development of the models will be limited to the two
examples of organisms with radiate accretive growth given above: the au-
totrophic stony coral Montastrea annularis and the heterotrophic sponge
Haliclona oculata.

3.4 Description of the Internal Architecture of the
Autotrophic Example: Montastrea annularis

The skeletal architecture of many corals can be visualized by sectioning
the colony. If a slab is taken from such a section and x-rayed, and a positive
print is made of the negative, it is possible to trace the growth process mor-
phologically. In Fig. 3.9 a longitudinal section is made through the crest of
the colony along the axis of growth (which for this species is vertical). The
annual growth is visible as dark and light density bands in x-radiographs
(see Graus and Macintyre 1982) and it is possible to distinguish growth
lines, which correspond to the tangential lines in Fig. 3.1.

The tangential and longitudinal lines in Fig. 3.9 correspond to the
faces of the corallites, the cups containing the polyps of the colony. A
clear radiate accretive structure can be seen: growth is the strongest at
the crest of the colony and decreases towards the sides. The longitudinal
faces of the corallites are set perpendicular to the preceding layers. The
preceding growth stage remains unchanged in the growth process. This
is very obvious for stony corals where only the surface is alive and where
the living polyps are depositing material upon the dead core. The growth
process of Montastrea annularis can also be followed experimentally by
staining living colonies with Alizarine Red S (see Graus and Macintyre
1982). The surface of the colony at the moment of staining can be recon-
structed from the coloured band which can be seen in sections used for the
x-radiographs. A tangential view of the colony shows an arrangement of
the corallites, which can be described, in a simplified version, as a regular
tessellation of equal-sided pentagons and hexagons (see Fig. 3.10A and
Fig. 3.10B). The tangential edges of the pentagons and hexagons have

Annual growth of
Montastrea annularis

Tangential arrangemer
of the corallites
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Fig. 3.9. A longitudinal section
through a column-shaped
colony of the stony coral
Montastrea annularis with a
radiate accretive growth
process. The insertion of a
tangential element and the
emergence of a new
longitudinal line is marked
with an arrow.

Fig. 3.10. (A) Tangential view
of a colony of the stony coral
Montastrea annularis

(B) Diagram of the tangential
view of a colony of the stony
coral Montastrea annularis
displayed in (A) showing a
predominantly pentagonal and
hexagonal arrangement of the
corallites




66 2D Models of Growth Forms

about the same size, while in x-radiographs a clear variation in the length
of the longitudinal edges can be seen (see Fig. 3.9) over the surface of the
colony.

The polyps are interconnected and can locally transport organic com-
pounds and calcium to the neighbouring polyps (Taylor 1977, Rinkevich
and Loya 1983). This local transport system can sustain the energy in-
take of an individual polyp, but is only developed in a limited way. At
the borders of the colony, where the longitudinal edges make a maximal
angle with the vertical, the energy intake by photosynthesis of the polyp
together with the support of the neighbouring polyps exceeds a critical
value after which growth is not possible anymore. The clusters of mod-
ules (the polyps) of Montastrea annularis grow independently from each
other, there is no overall control of the growth process, and the growth of
the clusters of modules can be described as a parallel process.

3.5 Description of the Internal Architecture of the
Heterotrophic Example: Haliclona oculata

Among the members of the class of Demospongiae only species with a
certain kind of skeleton architecture can develop erect tree-like growth
forms. The skeleton of Haliclona oculata consists of discrete identical
skeleton elements (the spicula) which are connected by spongin and con-
solidated in a 3D mesh, where a distinction between ascending and inter-
connecting fibres of spicula can be made. This type of skeleton is known
as “regular anisotropic reticulate” and the type of architecture as “radiate
accretive” (terminology after Wiedenmayer 1977). Demospongiae with
a halichondrid skeleton (cf. Wiedenmayer 1977), where the spicula are
oriented randomly as found for example in Halichondria panicea, usu-
ally develop quite irregular (often encrusting) growth forms and seldom
exhibit tree-like forms. The skeleton can be made visible by drying and
sectioning the sponge. The effect of drying is that all material, except the
spicula, virtually disappears by shrinking. An overall view of the skele-
ton, as seen through a stereo microscope, is shown in Fig. 3.11A. In the
anisotropic skeleton ascending (longitudinal) fibres and interconnecting
(tangential) fibres can be discriminated. The radiate accretive architecture
is the reflection of a growth process in which a new layer of material is
added at the tip of a branch or column. The tangential fibres correspond
to surfaces of earlier growth stages. In Fig. 3.11B the longitudinal and
some of the tangential fibres are shown in a line drawing of Fig. 3.11A.

Fig. 3.11. (A) A longitudinal
section of a branching sponge
Haliclona oculata with a
radiate accretive growth
process as seen through a
stereo microscope. (B)
Drawing of the longitudinal
section shown in (A). The
longitidinal and some of the
tangential fibres are shown in a
line drawing. The insertion of a
tangential element and the
emergence of a new
longitudinal line is marked (1).
The deletion of a tangential
element, causing the
disappearance of longitudinal
line in the growth process, is
marked (2).
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Fig. 3.12. A longitudinal
section of a tip of Haliclona
oculata, in which the surface of
a preceding growth stage is
marked with needles. The
growth lines can be
reconstructed by
interconnecting the ends of the
needles (1.5 month
experiment).

Fig. 3.13. Microscopic views _
of the skeleton of Haliclona <~
oculata: view A is a tangential
section, B an idealized view of
a longitudinal one

The growth process of Haliclona oculata can be followed experimen-
tally by marking experiments. The surface of the sponge can be marked
with minute stainless steel needles. The needles are pushed into the living
sponge, the ends of the needles corresponding with the original surface.
The growth lines can be reconstructed by interpolating the ends of the nee-
dles (Kaandorp and De Kluijver 1992). In longitudinal sections through
the marked tips the growth process can be retraced. An example of such
a section 1s shown in Fig. 3.12.

A microscopic view of the skeleton is presented in Fig. 3.13. From
the tangential view, Fig. 3.13A, the structure of the tangential fibres is
apparent. The spicula are arranged in 4- to 6- (seldom 3-) sided polygons.
The length of a side of a polygon is about the size of one spiculum. The
surface of the sponge is tessellated with such polygons. In Fig. 3.13B
an idealized version of the skeleton is presented. In this figure the longi-
tudinal bundles situated in the same plane are shown, with three layers
of the tangential polygons partly visualized in order to demonstrate the
coherence of the longitudinal bundles and tangential layers. From the lon-
gitudinal view it can be seen that the spicula of the longitudinal fibres are
arranged in bundles which are about two spicula thick and form fibres of
variable length. The 3D mesh of spicula in a tip of this sponge possesses
a radial symmetry: a longitudinal section (parallel to the axis of the tip)
will always show about the same structure; the tips however may only be
somewhat flattened (Fig. 3.3C and D).

The aquiferous system of Haliclona oculata is poorly developed,
when compared to a related species like Haliclona simulans (see Johnston
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1862, De Weerdt 1986). Only close to the oscula (the exhalant apertures
of the sponge) is macroscopic evidence of canals found (see Fig. 3.14).

In Haliclona simulans, which also exhibits erect growth forms with
radiate accretive growth, the aquiferous system is far more evolved and
visible as an extensive system of canals. Probably the aquiferous system
of Haliclona oculata is strongly supporteq l?y extgrnal water movements Fig. 3.14. Diagrammatic view
as well (compare Vogel 1974). Under conditions with strong water move- ¢ the aquierous system of the
ments plate-like growth forms are possible, whereas under sheltered con-  sponge Haliclona oculata. The
ditions a decrease of food supply will occur in the tissue, unless itisinshort ~ Water enters through the

. . . . . ‘ . R inhalant pores, the suspended
distance contact with the environment; in this case only thin-branching .. rial in the water is filtered
forms will occur. In the related species H. simulans , with a more evolved  away in the tissue and the water
aquiferous system, relatively wide branches and more globular forms are ~ leaves the sponge through the
. 3°16). The devel fth i oscula. Only close to the oscula

found (see Figs. 3.15‘and .16). ¢ development of the aquiferous sys- . tacks of canals of the
tem is a species-specific pattern, which determines the resulting growth  aquiferous system visible.

form for an exigent part.

|-
»

3.6 An Iterative Geometric Construction
Simulating the Radiate Accretive Growth
Process of a Branching Organism

In the two previous sections on the stony coral Montastrea annularis and
the sponge Haliclona oculata, in the longitudinal sections and tangential
views a similar structure can be observed. Although the two structures
emerged in different ways in taxonomically very different organisms, and
also consist of chemically very different materials, there is an essential
correspondence. In both cases the surfaces of the growth layers can be
simplified as a regular tessellation with pentagons and hexagons (compare
Figs. 3.10B and 3.13) and the longitudinal sections display the same radi-
ate accretive structure (compare Fig. 3.9 and Fig. 3.11B). The formation
of this generic structure, found in very different taxonomical groups, is
the principle of the 2D model discussed in this section. In this section the
development of a general model for radiate accretive growth is discussed
using the autotrophic coral Montastrea annularis and the heterotrophic
sponge Haliclona oculata as examples.

The general model for radiate accretive growth will be developed
stepwise (comparable with the development of the iterative geometric
constructions, shown in Fig. 2.20) as shown in Fig. 3.17 in which an
overview is given (see also Kaandorp 1991a). For each step the biolog-
ical relevance for both examples is discussed, as well as the biological
relevance in general.
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The radiate accretive growth process in two dimensions will be mod-

b ‘ oxhalant elled in an iteration process (see Fig. 3.18), in which the formation of the

: & pores (oscula)  skeleton, as seen in a longitudinal section (see Fig. 3.11B and Fig. 3.9),
el is simulated. In each iteration step a layer consisting of new longitudinal
pores™ | . elements (perpendicular to the preceding layer of tangential elements) and
it new tangential elements (the new surface of the object) is constructed. In

ol the 2D simulation the tangential elements are situated on growth lines of

3 the object. This is a simplification of reality: in the actual objects the tan-

| gential elements are arranged in pentagons and hexagons (see Figs. 3.10B

and 3.13). In Chap. 5 this arrangement will be discussed in detail. In
Fig. 3.19 the construction of a new tangential and a new longitudinal ele-
ment is shown. The length / of the longitudinal element is determined by a
generator processing function. In the model the length of the longitudinal
element varies between 0.0 and 1.0 in most cases (in one example also
values between 0.0 and 2.0 are allowed), while the width s of the tangential
element is a constant. After the construction of a new layer of tangential
and longitudinal elements, the object should satisfy a number of rules,
represented by post-processing functions. The generator processing and
post-processing functions, which will be discussed in detail in the next
subsections, are used to model the internal properties of the simulated ot-
ganism as well as the influence of the physical environment on the growth
process. The following subsections are subdivided into two parts: in the
first part the model is discussed, and in the second part a description is
given of the biological interpretation of the rules introduced in the first
part. Finally in Sect. 3.9, the symbols used in this section are listed.

3.6.1 The Basic Construction: the generator

The Model. The basic geometric construction is shown in Fig. 3.19. The
initiator consists of a number of tangential edges with fertilization state
“fertile”, situated in a semicircle. The generator replaces each fertile edge
(length s) by a non-fertile longitudinal edge and a fertile tangential edge.
This geometric construction is indicated in Fig. 2.40 as the generator.
The length of the longitudinal edge / is determined by a generator process-
ing function. This function uses the original generator and local_inf as
arguments. The latter is the angle o between the original tangential edge

Fig. 3.15. Some growth forms and the vertical y-axis in (3.1).
of the sponge Haliclona
simulans, closely related to f (O!)
Haliclona oculata (after
Johnston, 1862) I = s f(o)

= sinf@)for0 <o <mw 3.1
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The construction can be described by a replacement system (see also
Kaandorp, in press) in which the base elements are unconnected edges:

initiator = (edge(Vy, V1), F);---(edge(V,—1, V,), F);, (3.2)
generator = (edge(Vi, Viy1), F); — (edge(Vi, Viy1), NF);
(edge(M,;(Vi), My (Vi)), NF);
(edge(M;(Vy), Msj(V1)), F);
(edge(Vi, Viyy), NF); — (edge(Vi, Viz1), NF);

The construction starts with an initiator consisting of n edges, for which:

VO<i<n:|Vi, Vil =s (3.3)
The transformations used in the replacement system are:
Dx = 05-(Vxiy — Vx;) (3.4)
Dy = 0.5-(Vyip1 —Vy)
M,; = T(Dx,Dy)

if (¢ > 7 /2) then
M,; = T(Dx +1 - sin(a), Dy — I - cos(e))
else
My; = T(Dx — 1 - sin(a), Dy +1 - cos(a))
M;; = M;;-T(—Dx,—Dy)
Mij = Myj-T(Dx, Dy)

Fig. 3.16. The sponge
Haliclona simulans under
natural conditions (the
photograph was made near
Roscoff in France by M.J. de
Kluijver).
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Fig. 3.17. Diagram showing the
development of growth models
for organisms with radiate
accretive growth




DLA cluster see also Plate 7TA

form H see also Fig. 3.15B
and C

form I1

form A
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The result of this construction appears at the bottom of the diagram
in Fig. 3.17A, in which an overview is presented of the development of
the growth models of a branching organism with radiate accretive growth.

The Biological Objects. A tangential view of a microscopical section
of Haliclona oculata (Fig 3.13A) shows that the size of the tangential
elements scarcely varies. The tangential elements are arranged in a pattern
of pentagons and hexagons, where each element consist of one spiculum.
The biological interpretation of the constant s in the model is the discrete
size of one spiculum, as the size of the individual spicula vary only slightly.
The longitudinal element can vary in length because of the construction
of the longitudinal bundles (see Fig. 3.13B), which consists of a row of
about two spicula thick. The maximal length of the longitudinal bundles
will depend on the size s of one spiculum; for simplicity reasons the
maximal length of ] is chosen to be s. In reality this will depend on species-
specific characteristics in the skeleton architecture. The maximal length,
for example, can easily become larger in species where the longitudinal
bundles consist of rows of more than two spicula thick.

In a tangential view of Montastrea annularis (Fig. 3.10B) and many
other Scleractinia, the same arrangement of the tangential elements, in
mainly pentagons and hexagons, can be observed. The size of the tan-
gential elements can only vary in a very limited way because the stony
coral colony is built of discrete modules, the theca holding the polyps,
where only a small variation in size can occur. The longitudinal size of
the theca, the corallites on the longitudinal section in Fig. 3.9, can vary in
length, because the skeleton, consisting of calcium carbonate, is secreted
at the lower base (the basal disc) of the polyp. The calcium carbonate is

A new layer of material is constructed upon the preceding

object; the length I of new longitudinal elements is
r determined by the functions f and h |

t_ The object should satisfy a certain number of rules J

Tangential view of
Halicluna oculata

Tangential view of
Montastrea annularis

Fig. 3.18. Iteration process for
modelling the radiate accretive
growth process
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deposited beneath the living tissue of the polyps upon a dead core, which
~ makes a continuous variation in length possible. In stony corals these lon-
: gitudinal lengths are influenced by local differences in deposition rates

: on the colony.
In general the constant s in the model reflects the observation that
most organisms with radiate accretive growth are built from discrete units
(modules, skeleton elements, etc.), while the growth process itself causes

new tangential element‘ N /\\\ s
:

N

\,/

i‘new longitudinal element| N

| old tangential element ‘

Fig. 3.19. Construction of a
new tangential and a new
longitudinal element. The
length / of the longitudinal
element is determined by a
generator processing function,
s is the length of a tangential
element, and « is the angle
between the axis of growth
(dotted line) and the old
tangential element.

Fig. 3.20. Plot of
measurements of the
(normalized) length of /
longitudinal fibres between two
succesive growth lines (the
sample from Fig. 3.1 1A was
used) and the angle o between
the longitudinal fibre and the
axis of growth. The
measurements are indicated
with ‘2’ marks. In the same
graph two versions of f(«) are
shown: the ‘x” marks indicate
f () from (3.1) and the ‘0’
marks the one from (3.11).

a continuous variation in the longitudinal elements /.

The initiator (see Fig. 3.17) used in the iteration process, in all the
2D constructions shown in this section, consists of a number of tangential
edges situated in a semicircle. The form of the initiator is chosen because
the growth process of many organisms with radiate accretive growth starts
as an encrusting layer, where from small hemispherical protrusions the
branches develop.

Longitudinal sections of Haliclona oculata (Fig.3.11B and Fig. 3.12)
show that the growth velocity depends upon the angle between the tangent
of the surface and the axis of a column-shaped sponge tip. The highest
growth velocities occur in parts of the sponge where the surface and the
axis of growth make an angle of 90 degrees, while the velocities decrease
to zero at an angle of about 180 degrees. This phenomenon can be ex-
plained by the presence of the spicula secreting cells, which exhibit the
highest activity close to the tip, where they are situated in an area with the
highest supply of material suspended in the water. Indeed, in sections of
growing sponge tips, where the spicula secreting cells are stained (exam-
ples of such sections of the branching sponge species Spongilla lacustris
can be found in Brien etal. (1973)), it can be seen that the spicula secreting
activity is the highest at the tips of the sponge and decreases towards the
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sides. Towards the sides the access to suspended material as well as the
secretion decreases. In the heterotrophic example, with internal secretion
of elements, growth of the longitudinal elements is related to the angle «
between a tangential element and an axis of growth. This dependence is
modelled by the function f(«) (3.1).

In Fig. 3.20, measurements of longitudinal fibres, done in the sample
from Fig. 3.11A, are plotted on a graph. The length / of the longitudinal
fibres between two successive growth lines and their angle o with the
axis of growth were measured. In this figure the measurements were not-
malized using the length of the longitudinal fibre parallel to the axis of
growth. The mean values are indicated with ‘0’ marks and the minimal
and maximal value for a given « displayed as a vertical line. This graph
is based on 141 measurements in 8 different growth rings. On the same
graph the function f(«) is plotted (visualized with ‘x’ marks); it can be
seen that this function can be used to approximate the rate of secretion of
longitudinal elements as a function of the angle «.

This function f () is only relevant for organisms with radiate accre-
tive growth with internal secretion of the elements. It is not relevant for
Scleractinia as Montastrea annularis, since in these organisms the mate-
rial is deposited externally on a dead core. For organisms with internal
secretion this function f(w) is the basic cause of the radiate accretive
structure. In the autrophic class with external secretion the radiate accre-
tive structure has a different cause, but this subject will be discussed in
more detail in the section on the modelling of the influence of the light
intensity on the growth process.

3.6.2 Modelling the Coherence
of the Skeleton

The Model. In order to obtain continuous growth lines in the model it
1s necessary to introduce a rule ensuring that neighbouring tangential el-
ements are situated on a continuous curve (the continuity rule, see also
Fig. 3.17B). Without this rule the tangential elements are growing inde-
pendently, without a connection with the neighbouring tangential elements
(Fig. 3.17A). This rule can be introduced in the replacement system as a
post-processing rule, which ensures that three adjacent tangential edges
((a0, al); (M3 (V;), Myj(V;)); (c0, cl); see Fig. 3.21) are situated on a
continuous curve. The replacement system in which this context sensitive
rule is introduced is listed below:

Measurements of the
longitudinal fibres

External secretion

Continuity rule
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initiator

generator

continuity rule

(edge(Vo, V1), F), - - - (edge(Vyp—1, Vi), F); (3.5)
(edge(Vi, Viy1), F); — (edge(Vi, Vi), NF),
(edge(M,;(Vi), Myj(Vi)), NF),

(edge(Msj(Vi), M4j(Vi)), F);

(edge(Vi, Viq1), NF); — (edge(Vi, Viy1), NF);
M;i(V;) — b0, M4;(V;) — bl

The new vertices b0 and b1 (see also Fig. 3.21) are determined in the

following way:

Fig. 3.21. Construction of the
new vertices b0 and b1,
satisfying the continuity rule
(see (3.6) and (3.5))

Fig. 3.22. Construction of a
new tangential element with
vertices n0 and n1 in the

insertion rule (see (3.8) and

3.7)

pb
pa
pc

d
b0
bl

M, (Vi) (3.6)
0.5- (a0 4+ al)
= 0.5:(c0+cl)
ipa, pc|
pb—0.5-s/d(pa — pc)
pb+0.5-s/d(pa— pc)

The result of this rule is that the edge(b0, b1) is set parallel to the

edge(pa, pc).

A second growth rule, which is necessary to obtain continuous growth
lines, is the addition of new tangential elements when there is enough space
between two neighbouring elements (insertion rule, see also Fig. 3.17B).
Without this rule, gaps would appear in the growing object, increasing
in size after each iteration step; the tangential and longitudinal elements
would not form a coherent skeleton any longer and the skeleton would
disintegrate. This rule is introduced in the following replacement system,
where a new tangential edge (n0, n1) is inserted between two neighbour-
ing tangential edges (b0, b1) and (c0, c1) (see Fig. 3.22):

initiator

generator

continuity rule

insertion rule

(edge(Vo, V1), F); - - - (edge(Vu—1, V), F); (3.7)
(edge(Vi, Viy1), F); — (edge(Vi, Vi+1), NF);
(edge(M,;(Vi), Ma;(Vi)), NF);
(edge(Ms;(Vi), M4j(Vi)), F);
(edge(Vi, Vi), NF); — (edge(Vi, Vi+1), NF),
M;;(Vi) — b0, M4 (Vi) — bl
if (b1, c0]] > s) then
(edge(b0,bl), F); — (edge(b0, bl), F),
(edge(n0,nl), F),
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The vertices n0 and nl of the newly inserted tangential edge (see also
Fig. 3.22) are determined 1n (3.8).

pb = My (V) (3.8)
pc = 0.5-(c0+cl)

d = |bl, 0]

n0 = b1+05-(d—s)/d-(c0—bl)

nl = bl+(s4+05-(d—5s))/d-(c0—5b1)

The Biological Objects. By applying both post-processing rules, object
Fig. 3.17B with a coherent skeleton and continuous growth lines can be
obtained from object A. In reality tangential and longitudinal elements are
arranged in continuous lines, caused by the fact that the spicula bundles
form one connected mesh (see: Figs. 3.13A and B) in the example of
the sponge Haliclona oculata. In the case of Montastrea annularis and
other Scleractinia, the theca of the polyps cannot grow independently from
their neighbours: they are imbedded in the same structure. In general this
phenomenon, that units in a growing organism cannot grow independently
from the neighbouring units because they are embedded in a common
structure, is represented in the model by the continuity rule.

The second rule applied in the iteration process is also related to the
conservation of the coherence of the skeleton. During the growth process
the circumference of the model as well as the real organism with radiate
accretive growth is increasing continuously. The consequence is that the
size of the polygons tessellating the surface of the organism (see for exam-
ple Haliclona oculata Fig. 3.13A and Montastrea annularis Fig. 3.10B)
would increase in subsequent growth steps, when no new tangential ele-
ments are inserted. In reality the tangential elements in Haliclona oculata,
with a size of one spiculum, cannot remain connected and the skeleton
would collapse. In the case of stony coral, gaps would occur between
the theca of neighbouring polyps. In order to conserve coherence new
polyps have to be inserted (compare Fig. 2.6). The insertion of new tan-
gential elements to preserve the coherence of the skeleton is simulated
by the insertion rule. The insertion of new tangential elements causes the
emergence of new longitudinal lines; this can also be observed in both
longitudinal sections (see arrows in Fig. 3.11B and Fig. 3.9). Both coher-
ence conserving rules, the continuity and the insertion rule, are relevant
for all types of organisms with radiate accretive growth.

Continuity rule

Insertion rule
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Fertilization attribute

Secondary growth

3.6.3 Introduction of the Smallest Skeleton Element in the Model

The Model. To generate columns which do not accumulate material
at the lateral sides (Fig. 3.17B) it is necessary to introduce a new rule
in the generator processing function: when [ drops below a certain
inhibition_level, growth will stop. In (3.9) this stopping rule is included.

fl@) = sin(w)for0 <o <m (3.9)
' f(a) for f(a) > inhibition_level
1 0.0 for f(a) < inhibition_level

The result is shown in Fig. 3.17C. When growth of a fertile edge is in-
hibited, the fertilization state of this edge is changed into “non-active”.
The growing object is limited by active and non-active fertile edges; only
active edges will participate normally in generating new edges during
subsequent growth stages. In this object growth only takes places at the
tip. It is useful to make a distinction between active and non-active fertile
edges. With this distinction it is possible that non-active tangential ele-
ments, under certain circumstances, can participate again in the growth
process. Their state is then changed into active, and growth (which will
be indicated as secondary growth) can take place. In the replacement sys-
tem the edges which are in the state “non-active” are indicated with the
attribute ‘SF’. The generator part of this replacement system is displayed
below: (3.10)

generator = (edge(Vi,Viy1), F), — (edge(Vi, Viy1), NF);
(edge(M,j(Vi), My;(Vi)), NF),
if (I > inhibition_level) then
(edge(Ms;(Vi), Msj(Vi)), F),
else
(edge(M5j(Vi), M4j(V1)), SF);
(edge(Vi, Viy1), NF), — (edge(V;, Viy1), NF);
(edge(Vi, Viq1), SF);, — (edge(Vi, Viy1), SF);

The Biological Objects. The biological interpretation of the threshold
value inhibition_level in (3.9) is the minimal possible length of the lon-
gitudinal elements. The longitudinal element in Haliclona oculata can
vary in length because of the construction of the longitudinal bundles
(see Fig. 3.13B), which consists of a row of about two spicula thick.
The length / can vary between a certain upper limit, which is species-
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specific and depends on s, the size of a tangential element, and a cer-
tain lower limit inhibition_level. The interpretation of the lower limit
inhibition_level is that the skeleton is built of discrete elements and the
longitudinal bundles cannot become arbitrarily short. This would lead to
a very dense skeleton where there is no space left for the living tissue. In
reality this accumulation is not found and elements do not develop in the
skeleton when there is not enough space. In the sponge Haliclona oculata
(Fig. 3.11B) growth stops at the lateral sides of the object when the length
of the longitudinal edge drops below a certain threshold. This growth stop
at the lateral sides can also be observed in Fig. 3.12. Here no material is
added during the growth process over the horizontally situated needles.
The stopping of growth when the size of new elements drops below a
certain threshold is expressed in the modified generator processing func-
tion in (3.9). Under certain circumstances, for example when the tissue of
the sponge is damaged locally, secondary growth can take place at these
non-active sites (in the section on the transplantation experiments with
Haliclona oculata some examples will be shown). In the model this can
be simulated by changing the status of non-active fertile edges again into
active.

The lower limit for the longitudinal elements is only relevant for
organisms with radiate accretive growth with internal secretion. In the
Scleractinia where the material is secreted superficially the length of the
longitudinal elements can be vary between almost zero and the upper
limit. A growth velocity of zero in the Scleractinia indicates local dying
of polyps. In the longitudinal section of Montastrea annularis (Fig. 3.9) it
can be observed that in the lateral corallites, which make the largest angle
with the axis of growth of the colony, still a small amount of material is
added to the colony (in Graus and Macintyre 1982, this effect is indicated
as the “maximum corallite growth angle with respect to the vertical”).

3.6.4 Modelling the “Widening Effect”

The Model. The column shown in Fig. 3.17C can be flattened by using
a generator processing function in which an area of equal values appears
instead of one maximum:
10form/2 —m/w <o < (/2 +7/w)
flo) = {sin((n/2)/(7r/2—7r/w)-(7r—a)) for (3.11)
O<a<@@/2—m/w),(@/2+n/w)>a <7
;= {s - f() for f(a) > inhibition_level
0.0 for f(a) < inhibition_level
w > 2

Minimum size
longitudinal elements
in Haliclona oculata

Secondary growth

Minimum size
longitudinal elements
in Montastrea annularis
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Widening factor

Association rule

A more or less flattened shape is obtained by choosing different values
for w (see Fig. 3.17D).

The Biological Objects. The constant w represents a widening factor in
function f; the biological relevance is clear from the observation that in
the growth process of a branching organism with radiate accretive growth
the tip widens before it splits into new branches (see for example the
longitudinal sections of Haliclona oculata in Fig. 3.11B and Fig. 3.12).
Without widening, the sponge would remain a non-branching column,
as will be explained in the section on the formation of branches. The
widening represents a region in the tip where the secreting activity is not
influenced by a lower access to the suspended material in the environment.
This causes a small area of equal maximal growth velocities at the tip of an
organism with radiate accretive growth. The widening factor is a species-
specific parameter in the model. The function f () is an approximation of
the secretion of longitudinal elements as a function of «. In Fig. 3.20 this
function (indicated with ‘o’ marks) is plotted together with measurements
(indicated with ‘0" marks) done on the length of the actual longitudinal
fibres.

3.6.5 Formation of New Growth Axes

The Model. So far, growth rules were formulated for columnar forms.
These forms have in common that there is one growth-axis, the y-axis. In
order to create branching forms it is necessary to formulate a new rule,
allowing the generation of new growth axes. These might arise on the sur-
face of the growing object on sites where a (local) maximum in growth
velocities occurs. The emergence of these maxima will be discussed in
more detail in the next subsections. In Fig. 3.23A a growing object is
shown in which two local maxima develop. The first seven layers in the
object are fertile tangential elements associated with a single growth axis
(prev_D A). In the 8th layer two local maxima and one minimum develop.
In the 8th and next layers, fertile elements are associated with new growth
axes new_D A (the fertile elements to the left of the local minimum) and
new_-D A, (the elements to the right of the local minimum). The associ-
ation of fertile elements with a specific growth axis is determined in a
new post-processing rule (the association rule). The angle o between a
growth axis and a fertile tangential element is calculated in the genera-
tor processing function. The edge replacement system is extended with a
new attribute which defines the direction of the growth axis (the vector
[DAx, DAy]). In the replacement system, (DA,, DA,) is initially set to
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(0,1). The direction of new growth axes corresponds to the direction of
longitudinal elements, where local maxima develop. The fertile tangen-
tial elements are associated with the nearest growth axis in a procedure as
described in Fig. 3.23A. In the association rule the previous growth axis
(prev_DAy, prev_DA,) is replaced by the direction of the new formed
growth axis (new_DA,, new_DAy).

The algorithm in which fertile elements are associated with a specific
growth axis is described in pseudo code below. The algorithm consists of
two parts. In part A the length of longitudinal elements connected with
tangential elements situated at the surface of the object are compared to
each other. The longitudinal elements with a minimum maximum value
are stored in two separate lists. In part B the tangential elements are
associated with a growth axis.

new_DA;

Direction new
growth axes

Algorithm
association rule

Fig. 3.23. Development of new
growth axes in the model. In
example A an old axis of
growth prev_DA is replaced
by two new ones (new_D Ag
and new_-DA,), in example B
many new axes of growth are
generated due to a slight
disturbance of the growth
process.
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association_rule( objects ) {

initialization list of maxima, list of minima, list of plateau values;

initialization booleans ascending, plateau;

initialization variables containing the length of a longitudinal element

cur_l, prev_I;

A: next tangential element in the state F or SF is taken from the objects {
length cur_I of the longitudinal element connected with the current
tangential element is determined;
if (cur_l > prev_l) {

if (ascending == FALSE ) {
if (plateau == TRUE) {
the middle element of the list of plateau values is added to the
list of minima; the list of plateau values is re-initialized, }
else current longitudinal element is added to the list of minima,
ascending = TRUE, plateau = FALSE; } }
else if (cur_| < prev_]) {
if (ascending == TRUE ) {
if (plateau == TRUE) {
the middle element of the list of plateau values is added to the
list of maxima;, the list of plateau values is re-initialized; }
else current longitudinal element is added to the list of maxima,
ascending = FALSE, plateau = FALSE; } }
else {
current longitudinal element is added to the list of plateau values,
plateau = TRUE; }
prev_l = cur_l;

}end A

first maximum is taken from the list of maxima,

first minimum is taken from the list of minima,

B: next tangential element in the state F or SF is taken from the objects {
the current tangential element is associated with the growth axis,
the growth axis (the vector [DA,, DA,]) corresponds with the direction
of the longitudinal element in the current maximum,
if (longitudinal element connected with the current tangential element
corresponds to the current minimum) {

next maximum is taken from the list of maxima;
next minimum is taken from the list of minima; }

} end B

} end association_rule
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The Biological Objects. The biological meaning is that those parts of the
real organism with radiate accretive growth are situated in areas with the
strongest water movement, or under sheltered conditions in areas which
are not yet depleted in nutrients by the other branches, where they will have
easy access to the suspended food and will develop the highest growth
velocities. As a consequence, the protrusion increases in size and new
branches (axes of growth) are formed.

3.6.6 Disturbance of the Growth Process, Formation of Plates

The Model. The growth function described in (3.9) will never generate
more than one maximum. More maxima can emerge when the growth
process is disturbed by external influences. A simple example is the su-
perposition of “noise” on the final length [ of the longitudinal edge. In
the generator processing function (3.12) a function g is introduced, which
returns random values between two limits lowest _value and 1.0.

f@) = sin(@) for0<a<n (3.12)

glowest_value) = random_function(lowest_value, 1.0)

for 0.0 < lowest_value < 1.0

s - f(a) - g(lowest value) for

f(@) - glowest_value) > inhibition_level
0.0 for

f(@) - gllowest _value) < inhibition_level

In (3.12), ] is determined by the product of the function f(«) (from (3.9)
and the function g(lowest_value). Even for a slight disturbance (a value
for lowest _value just below 1.0) the form is deregulated and plate-like
forms as shown in Fig. 3.17E are generated. In those plate-like forms
new irregularities are generated during each iteration, which produce new
growth axes in turn. This process is depicted in Fig. 3.23B.

The Biological Objects. In reality the growth process will be more dis-
turbed on exposed sites; in a turbulent environment a large variation in
growth velocities will occur. Protrusions might also occur as irregulari-
ties on the surface. Because of this variation local maxima and minima
in growth velocity can be identified on the growing object. The most
protruding parts of the sponge will have the highest access to material

Access to
suspended food

Plate-like forms



An Iterative Geometric Construction Simulating the Radiate Accretive Growth Process 83

Controlling the
degree of disturbance

Deletion rule

suspended in the water and will develop the highest growth velocities. A
turbulent environment is modelled by the superposition of some “noise”
on the final length of [ in (3.17). The degree of disturbance is controlled
with the parameter lowest _value.

3.6.7 Additional Rules for the Formation of Branches and Plates

The Model. Two new post-processing rules are necessary when new
growth axes are to be generated during the formation of plates and
branches. During this process some active fertile edges will be enclosed
by surrounding active fertile edges. In order to prevent collisions, edges
of this type are removed from the object. After this, longitudinal lines
so far always ending in a tangential edge will now end somewhere in the
object. This post-processing rule (deletion rule) is the reverse of the inser-
tion rule. Without the removal of non-fitting elements from the skeleton a
dense accumulation of elements would appear. In the following replace-

ment system two new post-processing rules are included: (3.13)

initiator = (edge(Vy, V1), F(0,1));---

(€dg€(Vn_1, Vn), F(Oa 1))7

generator = (edge(V;, Viy1), F, (prev_.DAy, prev_DA))); —

(edge(Vi, Viq1), NF);
(edge(M,j(Vi), M2;(Vi)), NF);
if (I > inhibition_level) then

(edge(M3;(Vy), Myj(Vy)), F, (prev-DAy, prev_DAy));
else

(edge(M3;(V;), Myj(Vi)), SF, (prev-DAy, prev_DAy));
(edge(Vi, Viy1), NF); — (edge(Vi, Viy1), NF);
(edge(V;, Vis.1), SF, (prev_DAy, prev_DA))); —
(edge(Vi, Viy1), SF, (prev_DAy, prev_DA)));

continuity

rule = M;;(V;) — b0, My; (Vi) — bl

insertionrule = if (Jbl, c0l > s) then

(edge(b0,b1), F, (prev_DA,, prev_DA,)); —
(edge(b0,b1), F, (prev_DA,, prev_DAy));
(edge(n0,nl), F, (prev_DA,, prev_DA\));
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deletionrule = if (]|b1, c0}} < s) then
(edge(b0,b1), F, (prev_DA,, prev_DA,)), —,
association
rule = prev. DAy — new_DA,, prev_DA, — new_DA,
anti — collision
rules :
1) non — intersection
rule = if (edge(b0, b1) intersects another edge object ) then
(edge(b0,b1), F, (new_DAy,new_DA))) —

(edge(b0,bl), SF, (new_DA,, new_DAy))
2) avoidance
rule = if (J|pb, pv] < s) then
(edge(b0,b1), F, (new_DA,, new_DAy)) —
(edge(b0,b1), SF, (new_DA,, new_DA,))

Another colliding situation arises when plates or branches intersect.
A rule preventing intersections (non-intersection rule) changes the status  Nown-intersection rule
of intersecting active fertile elements into non-active. A slightly different
version of the previous rule is a rule in which branches are not allowed at
all to intersect, but are forced to keep a certain distance (avoidance rule).  Avoidance rule
This rule changes the status of active fertile elements, that are approach-
ing too much, into non-active.

The Biological Objects. Without applying one of the two “anti-collision”
rules, a physically impossible situation would emerge where branches of
the object would grow through each other. In the replacement system of
(3.13) both anti-collision rules are described. In this replacement system
the vertex pv is a midpoint on a tangential edge, which is not one of the
neighbouring tangential edges from Fig. 3.21.

The deletion of new tangential elements causes the disappearance of
longitudinal fibres in the growth process. This can also be observed in
the longitudinal section (see arrow 2 in Fig. 3.11B). Without the removal
of non-fitting elements from the skeleton a dense accumulation of ele-
ments would appear and the coherence of skeleton would be disturbed.
This deletion rule is another coherence conserving rule; together with the
continuity and the insertion rule, it is relevant for all types of organisms
with radiate accretive growth.

In the model, growth ceases as soon as branches are at the point
of intersection. This non-intersection rule is, applied in a 2D model, a
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Anastomosis

Natural collision
detection

Estimation
of the radius
of curvature

simplification of reality. In actual branching objects (see Fig. 3.3) branches
that are at the point of intersection can escape each other in the third
dimension. In many marine sessile organisms, branches which intersect
also fuse with each other (anastomosis). This can also be observed in
Fig. 3.3 and in branching hydrocorals (see Fig. 3.8). Both aspects will be
discussed further in the section on the restrictions of the 2D model.

Under natural conditions, especially on a sheltered growth site, water
movement and food supply as well as the growth velocity will be slowed
down or stopped when branches collide. Fig. 3.12 reveals that growth stops
in the right branch as soon as the (marked) left branch overgrows the right
branch. In many stony corals it can be observed that when branches ap-
proach each other too closely growth is suppressed (this is well described
for the stony coral Acropora formosa in Oliver 1984). In some stony corals
(such as the genus Galaxea fascicularis, with an equidistant gap between
the theca ) this can even be observed in neighbouring polyps. There is of-
ten a well-defined, species-specific distance between approaching polyps.
This aspect of the growth process, where branches are not allowed to
approach each other too closely, can be modelled with the avoidance
rule. The effect that the growth velocity decreases because approaching
branches locally deplete the same nutrient source can be modelled in a
more natural way by including the influence of local nutrient concentra-
tions on the growth process. This last point is discussed in more detail in
the section on the concentration gradient model.

3.6.8 Formation of Branches

The Model. In the growth rules discussed above, the longitudinal length
! of newly added elements only depends on the angle « between a growth
axis and the active fertile element. An alternative growth rule, in which
instead of « the radius of curvature determines the longitudinal length /, is
shown in (3.14). The radius of curvature can be defined as the radius of the
circle through three points on the circumference of the growing object that
are situated on neighbouring tangential elements. The minimum distance
between these points is the length of a tangential edge s. The rad_curv
becomes infinitely large when the three points are situated on a line. In the
case the points are situated on a hollow site of the contour of the object
rad_curv is negative. The length of the longitudinal edge becomes zero
as soon as the radius of curvature is larger than a certain (fixed) maximum
(max_curv). This happens, for example, when three points are situated
on one line at the lateral side of a column. / attains the maximum value
when the radius of curvature is less then a fixed minimum (min_curv).
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h(rad_curv) = 1.0— (3.14)
(rad-curv — min_curv)/(max_curv — min_curv)
formin_curv < rad_curv < max_curv

h(rad_curv) = 1.0forrad-curv < min_curv

h(rad_curv) = 0.0 forrad-curv > max_curv

h(rad_curv) > inhibition_level

[ s - h(rad_curv) for
0.0 for h(rad_curv) < inhibition_level

The radius of curvature is used as an argument (local-inf’) for the gener-
ator processing function, shown in (3.14). The result of this construction
is shown in Fig. 3.17F. The object starts growing as a column and the
longitudinal edges added at the top (close to the growth axis) are equal-
sized. After some growth stages the top flattens and the curvature exceeds
max_curv. When rad_curv exceeds this maximum value the value of [
decreases and the result is that the object starts branching and an old axis
of growth is replaced by new axes (see Fig. 3.23A). With the parameter
rad _curv the amount of contact of the elements with the environment is
expressed. In Fig. 3.24 the relation between rad _curv and the amount of
contact with the environment is depicted. The amount of contact with the
environment can be described as a quotient of the surface AS through
which nutrient can pass and the area (with distance d from the surface)
being supplied with nutrient:

surface AS _ 2.rad_curv
supplied area  AS.d(1 — —4 ) ~ dQ.rad_curv —d)

2.rad _curv

(3.15)

In (3.15) it can be seen that the amount of contact decreases for an in-
creasing value ofrad_curv; forrad _curv > > d this canbe approximated
with h(rad_curv) (1.0 is maximal contact and 0.0 minimal). A relative
large value of max_curv leads to more flattened branches where some
of the elements in the object are relatively far away from the environ-
ment, while a small value causes more thin-branching objects where the
elements within the objects are situated closer to the environment (both
effects will demonstrated in the next section). The parameter min_curv
defines the lower limit: values for rad_curv below this limit do not affect
the growth process. Both parameters are expressed in units s, the width
of the tangential elements.

Amount of contact
with the environment

Thin-branching objects



An Iterative Geometric Construction Simulating the Radiate Accretive Growth Process 87

Fig. 3.24. Relation between
rad_curv and the amount of
contact with the environment:
AS indicates the surface
through which nutrient can
pass to an area with distance d
from the surface.

Transport of nutrients

Tip-splitting in radiate
accretive growth

AS

rad_curv

The Biological Objects. In reality plate-like growth forms of Haliclona
oculata (Fig. 3.17E) are found, but not under all circumstances (see
Fig. 3.3). The transport of water with suspended material inside the or-
ganism is sustained only in a limited way by an aquiferous system (see
Fig. 3.14) and is in Haliclona oculata strongly supported by external wa-
ter movements as well. Under conditions with strong water movements
plate-like growth forms are possible, whereas under sheltered conditions
a decrease of food supply will appear in the tissue, unless it is in short-
distance contact with the environment; a decrease in growth velocity re-
sults. This process is modelled with the generator processing function
in (3.17). In this function the amount of contact with the environment is
taken to be proportional to the radius of curvature. As soon as the top
widens too much, the amount of contact with the environment becomes
suboptimal and the growth velocity at the top decreases, resulting in a
branching object.

In general the tip-splitting for an organism with radiate accretive
growth can be modelled with the function h(rad_curv) (3.14), which
expresses the limitations of a certain transport mechanism of nutrients
through the tissue. The parameter max_curv is a species-specific param-
eter which describes the power of the transport system, and depends on
external water movements as well: in an environment with a higher rate
of water movement, the transport system is supported by these external
movements and a relatively higher value is applied for max _curv. In Hal-
iclona simulans (see Fig. 3.15) where erect growth forms emerge in the
same radiate accretive growth process, there is an extensive aquiferous
system. A consequence is that in Haliclona simulans more voluminous
and more globular forms develop when compared to Haliclona oculata.
This effect can be modelled in the function k by selecting a higher value
for max _curv, for a simulation of the growth process under sheltered
conditions.
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3.6.9 A Combination of the Previous Models

The Model. A combination of (3.11) and (3.12) yields a growth rule
in which both the radius of curvature and the angle of a fertile active
element with the growth axis are included. The combined growth rule can
be written as a product of the growth functions: function f(«) is derived
from (3.11) and function h(rad_curv) from (3.12). In this case local_inf
in the generator processing function consists of two components: the
rad_curv and o. (3.16)

s« f(a) - h(rad_curv)
[ = {for f(@) - h(rad _curv) > inhibition_level

0.0 for f(a) - h(rad_curv) < inhibition_level

In the growing object small areas with equal-sized longitudinal edges arise
at the top. The radius of curvature increases and the value returned by A
decreases. The result is that / decreases and the object starts branching
(see Fig. 3.17G).

Both effects are included in (3.16): with this generator processing
Jfunction quite regular objects are generated. A more evolved object gen-
erated with this construction is shown in Fig. 3.25A. This object is con-
structed with the value w = 18 in f(«) in (3.11) and obtained after 220
iterations. In this figure only the tangential lines, the growth lines, are
shown.

The next object (see Fig. 3.25B) is generated by disturbing the growth
process by multiplying the product f(«).h(rad_curv) (w = 18 in f(a),
see (3.11)) with the function g (lowest _value) (see (3.12)). This generator
processing function is displayed in (3.17).

(3.17)
s f(a) - h(rad_curv) - g(lowest _value) for
f(a) - h(rad-curv) - g(lowest _value) > inhibition_level
0.0 for
f(@) - h(rad_curv) - g(lowest _value) < inhibition_level

The result is that the object formes plate-like branches (like Fig. 3.17E).
As soon as the radius of curvature of the circumference of the plates ex-
ceeds max_curv in (3.17) the objects start branching. In this object large
plates are formed by allowing a larger value for max _curv than applied in
Fig. 3.25A. The plate formation at the extremities is still further increased
in the object displayed in Fig. 3.25C, where the value of max_curv as well
as the disturbance of the growth process (a lower value for lowest _value
than in Fig. 3.25B) was increased.

Thin-branching forms

Plate-like forms
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Fig. 3.25. Object A was
generated with the model of
Fig. 3.17G, in the objects B and
C the model of of Fig. 3.17H
was used. In A the generator
processing function shown in
(3.16) was used, while B and C
were constructed with (3.17).
In all objects the parameter # in
f (o) (3.11) was set to the
value 18. The parameter
max_curvin h(rad_curv)
(3.14) was respectively set to
the values 7.2s. 21.7s. 36.1s.
In the function g() (3.12) the
values 0.9. 0.7 were used for
lowest_value in the objects B
and C respectively.

The Biological Objects. In Fig. 3.17G the model of a sponge with
the highest growth velocities at the protrusions (model Fig. 3.17C) is
united with the restrictions of the aquiferous system architecture (model
Fig. 3.17F). The parameter max _curv in (3.14) represents the maximum
allowed radius of curvature of the surface; its biological interpretation
is the minimum amount of contact allowed with the environment before
growth velocity will decrease and the sponge starts branching. This pa-
rameter is closely related to the degree of exposure to water movement,
expressed in the model as the degree of disturbance, when lowest _value
in g(lowest _value) (3.12) is increasing the parameter max_curv (3.14)
can also be increased. The increase of food supply is modelled by allow-
ing a higher maximum radius of curvature (max_curv). In the sequence
Figs. 3.25A, 3.25B, 3.25C, the objects transform from thin-branching
into plate-like, more irregular, and more compact forms and exhibit a
higher degree of colliding branches. The same type of transformation
can be seen in the range of Haliclona oculata (Fig. 3.3), where the thin-
branching forms gradually transform in more irregular plate-like growth
forms, when the exposure to water movement increases.

3.7 A Model of the Physical Environment

In the first of the following subsections an example is given of how the
influence of light intensity on the growth process can be modelled, with
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the autotrophic species Montastrea annularis used as example. As will
be demonstrated, only a subset of the rules discussed so far are neces-
sary for modelling this organism. Many of the rules are not relevant for
autotrophic stony coral species with radiate accretive growth: there is
no internal secretion of longitudinal elements, but external deposition of
material upon a dead core (f («) is unnecessary), there is no limiting in-
ternal transport mechanism (h(rad_curv) is unnecessary), no branches
are formed (association, deletion and avoidance rules are superfluous).
The main influence of the physical environment on the growth is assumed
to be the distribution of light intensity on the colony.

In Sect. 3.7.2 the heterotrophic species Haliclona oculata is used as
an example. For this species the influence of the light intensity is assumed
to be irrelevant. All other rules discussed so far are necessary to model
the growth of this branching organism with radiate accretive growth. For
a more complete model it is also necessary to include a model of the nu-
trient distribution around the organism.

3.7.1 The Light Model

The Model. A simple light model (Foley et al. 1990) is presented in
(3.18). In this model the light intensity I (watt/m?) on a surface is deter-
mined by cos(9), where 6 is the angle of incidence of the light beam to
the surface normal and the intensity /s of the light source (see Fig. 3.26).
The light beam corresponds to the vertical, for this tropical species the
light source is assumed to be positioned in the zenith.

1 =1Is-cos(d) (3.18)

The light model can be extended by including diffuse reflection from
the environment. There is reflection from the bottom as well as the sur-
rounding water, due to scattering (see Roos 1967). If the reflected light is
also included, the angle between the normal to a surface and the vertical,
where I becomes nearly zero (max_angle), may vary between m /2 and
7T, as shown in (3.19). With the parameter max _angle the contribution of
the diffuse reflection to the total light intensity can be controlled.

m/2 <max.angle <m (3.19)
0* = 0/max_angle /2
L) = cos(6%)

In Fig. 3.171 two objects, I; and I, are simulated in which the length
of the longitudinal elements [ is determined by the the relative decrease

Autotrophic
non-branching
organisms

Heterotrophic
branching
organisms
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Fig. 3.26. The light intensity /
on a surface is determined by
the cosine of 8, the angle of
incidence of the light beam to
the surface normal, and the
intensity /s of the light source;
max_angle indicates the angle
where the light intensity is just
sufficient for growth.

Maximum
growth angle

| light direction

= -]

surface normal

e o

in light intensity (L(0) = 1/Is). The generator processing function is
displayed in (3.20).
L©®) = cos(d) (3.20)
I = s-L®)

In form I, no reflection from the environment (max_angle = 7 /2) was
used. In form 7, the same construction was applied, only the parameter
max_angle was set to . In both I, and I, the two coherence conserving
rules, insertion and continuity rule, are applied to ensure that the tangen-
tial elements remain connected.

The Biological Objects. In the autotrophic example Montastrea annu-
laris (see Fig. 3.9) growth velocities are highest at the tip of the column-
shaped colony, and the corallites are secreted superficially. Growth of
the corallites is related to the angle 8 of the corallite with respect to the
light source (Graus and Macintyre 1982). In this case the vertical is the
axis of growth and the length / of new longitudinal elements in (3.20) is
determined by the light model, the function L(0) (3.19). When there is
enough reflection from the environment a hemispherical form emerges
(comparable with the simulated form Fig. 3.171,). In form I, max _angle
in the light model L(#) is larger than 7 /2. When the light intensity and
reflection decrease, the form transforms into Fig. 3.171,. The latter form
can be used as a simulation of the actual object shown in Fig. 3.9. In
Fig. 3.171, max_angle is about /2. The angle max _angle represents
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the angle which the longitudinal element of a corallite can make with the
vertical and where the light intensity is just sufficient for sustaining the
photosynthesis. In the case of this autotrophic example the influence of
the physical environment on the growth process is modelled by the light
model. For the autotrophic organisms with external secretion and with
radiate accretive growth, this function L(0) is the basic cause of the radi-
ate accretive structure. Growth of Montastrea annularis can be modelled
with a subset of the rules discussed so far, where only the coherence con-
serving rules (continuity and insertion rule) and the light model L (0) are
relevant. Longitudinal sections of ecotypes of this coral can be simulated
by adapting the max_angle in the light intensity function, as shown in
Fig. 3.171, and 1.

3.7.2 A Combination of the Geometric Model and the
Concentration Gradient Model

The Model. The nutrient concentration ¢ in a diffusion process can be
described with the Laplace equation. It is possible to determine the con-
centration c in a field where an object grows and is consuming the nutrient
(Meakin 1986). The concentration c is zero on the object and it is assumed
that the diffusion process is fast compared to the growth process. The nu-
trient concentration remains fixed (¢ = 1.0) at the top of the field and is
zero at the bottom, when a linear source of nutrient is assumed (Meakin
1986). The concentration field will reach a steady state, where the local
concentrations are described by a solution of the Laplace equation (see
Sect. 2.4). The growth of an object in a concentration gradient can be sim-
ulated in a two-dimensional lattice. The concentrations of nutrient can be
approximated for all sites in the lattice with the approximation algorithm
in (2.9).

If it is assumed that an object as shown in Fig. 3.17 consumes nutrient
from its environment, and if nutrient is supplied by a diffusion process,
the same method as applied in the DLA model can be used to determine
the nutrient concentration distribution around the growing object (see
also Kaandorp 1993a). The algorithm in which the nutrient distribution
is determined is described in (3.21). In the algorithm a combination of
the geometric model objects and lattice representations of the object
(lattice_prev and lattice_updated) is used. The lattice representation
of the object is necessary for solving the Laplace equation with a similar
algorithm as (2.9). In the examples below, two lattices each with 10002
sites are used. The sites in the lattices contain the values of the local
nutrient concentration, which varies in the range 0.0..1.0. Initially all sites

Diffusion proces

Nutrient
concentration
distribution
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inlattice_updated are set to the maximum concentration 1.0. The sites in
the lattice can be in two possible states: “occupied” and “unoccupied”. In
the actual implementation the state “occupied” is represented by a number
larger than 1.0, which is added to the local nutrient concentration in the
lattice site. (3.21)

det_nutrient_distribution( object, lattice_prev, lattice_updated ){
step A (erasing previous lattice representation object ):
for each lattice site with lattice coordinates i, ; {
if (lattice_updated[i] [j] > “occupied”)
lattice_updated[i] [j] = 0.0; }

step B (mapping the object on the lattice):

the geometric model object is mapped on the lattice lattice_updated;
lattice_updated is copied to lattice_prev;

step C (solving the laplace equation):
do {
completed = TRUE;
for each lattice site with lattice coordinates i, j {
prev_value = lattice_prev[i] [j];
if ( prev_value > “occupied” ) updated_value = “occupied”’;
else if (j == lattice_size — 1 ) updated_value = 1.0;
else if (j == 0 ) updated_value = 0.0;
else {
updated_value = % - (conc(i+1,j),conc(i—1,j),conc(i,j+1),conc(ij-1) );
updated_value = (I — w) - prev_value + w - updated_value; }

if ( (prev_value — updated_value) > tolerance ){
lattice_update[i] [j] = updated_value;
completed = FALSE; }
else lattice_update[i][j] = prev_value,
}
copy lattice_updated to lattice_prev;
} while (7 completed ),

step D:
for each tangential element in the state F in object {
an edge probe is drawn perpendicular to the tangential element,
an estimation is made of the local nutrient gradient using (3.23);
the tangential element is associated with this estimation, }
} end det_nutrient_distribution
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The algorithm is applied after each iteration step and can be divided
into four steps. In the first step the representation of the object in the
preceding iteration step is erased, by setting the lattice sites in the state
“occupied” to zero. In step B the object is mapped on lattice_updated.
The boundary is mapped onto the lattice by drawing the edges with a
modified version of the Bresenham algorithm (Foley et al. 1990). This al-
gorithm is usually applied for drawing line segments, visualized in pixels,
on a pixel screen. The contour within the boundary, consisting of sites in
the state “occupied”, is filled by using a scan-line algorithm (Foley et al.
1990).

In step C the Laplace equation is solved in a slightly different way as
in the approximation algorithm of (2.9). When the last algorithm is used,
the process converges very slowly. Step C is computationally the most
expensive step. In order to speed up the convergence in step C, systematic
over relaxation was used (see Ames 1977; Press et al. 1988). In step C
two lattices, lattice_prev and lattice_updated, are used: lattice_prev
with the previous states, while lattice_updated contains all updated val-
ues. The new value updated_value of a lattice site depends on the j-
coordinate. A linear nutrient source is assumed and all top lattice sites
(j-coordinate is lattice_size — 1) are set to the value 1.0. All bottom lattice
sites are set to the value zero. Lattice sites which are part of the object
and in the state “occupied” are unchanged in the iteration process in step
C. A neighbouring site which is in the state “occupied” counts as a zero
value in the approximation process by using the function:

cone(i, j ){ (3.22)
if ( lattice_prev[i] [j] > “occupied” ) return( 0.0 );
else return( lattice_prev[i] [j] );

}

The new value of a lattice site which is not situated at the object
or the bottom or top row is determined by the average value of its 4-
connective neighbours and the previous value prev_value. The contri-
bution of prev_value to updated_value is controlled by the relaxation
parameter o, with values: 1 < w < 2. In the simulations w was set to
the value 1.9 to attain a fast convergence. The approximation process
in step C converges as soon as the difference between prev_value and
updated_value, for all lattice sites, drops below the threshold tolerance.
In the simulations tolerance was set to the value 0.001.

In the final step an estimation was done of the local nutrient con-
centration gradient. This was done by drawing an edge probe with the
Bresenham algorithm in the lattice. The edge probe is set perpendicular

Mapping the object
onto the lattice

Systematic
over relaxation

Local nutrient
concentration
gradients
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to a tangential element in the state F and points into the environment
surrounding the object. The values of the sites situated on the edge are
used to estimate the gradient. In this estimation an exponent # (3.23) was
assumed to describe the relation between the local field and the concen-
tration (Niemeyer et al.1984, Meakin 1986).

k(c)=c" (3.23)

By setting n to a value below 1.0, a steeper overall nutrient gradient
is realized, in the simulations 7 was set to the value 1.0. The nutrient
gradient was used in the calculation of the length / of new longitudinal
elements in the iteration process (Fig. 3.18) by multiplying the product
f(@)-h(rad_curv) ((3.11) and (3.14)) with the function k(c) (3.23). This
combination is shown in the generator processing function in (3.24).

[ = f(&) - h(rad_curv) - k(c) > inhibition_level

{s - f(a) - h(rad_curv) - k(c) for (3.24)
0.0 for f(a) - h(rad_curv) - k(c) < inhibition_level

A combination of the geometric model and the nutrient concentration
gradient obtained by applying the generator processing function from
(3.24) is depicted in Fig. 3.17J. More evolved objects generated with this
model are shown in Fig. 3.27. In both pictures the basins of equal ranges
of nutrient concentration are visualized as alternating black and coloured
regions (Mandelbrot and Evertsz 1990, compare Fig. 2.15). The nutrient
concentration decreases when the black or coloured basin is situated closer
to the object, the decrease in concentration in the coloured basins is shown
by a shift in colour from blue to white. The growth layers in the object are
visualized with brown colours, the basin in which the object is located,
with concentration near zero, is displayed in black. In object Fig. 3.27A
the value of max_curv (3.14) was set to 7.2s, n (3.23) was set to 1.0;
in object Fig. 3.27B the parameter max_curv was set to the value 21.7s,
while n was set to 0.5.

The Biological Objects. Next to the secretion of new layers of growth
proportional to the angle of the axis of growth, and tip-splitting, two more
aspects in the growth process of the heterotrophic example Haliclona
oculata can be observed: the samples in Fig. 3.3 show negative substrate-
tropism and suppression of growth of the shielded branches by the canopy
of branches.

In the range of sponges shown in Fig. 3.3 it can be observed that
there is a clear tendency in the sponges to grow from the substrate. The
same effect can be seen in the case when the sponge grows on the ceiling
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of a cave. In general the maximal angle between the axis of growth (see
Fig. 3.28) and the vertical will be smaller under sheltered conditions when
compared to the exposed conditions. Under sheltered conditions this nega-
tive substrate-tropism is stronger and can be measured using the maximal
angle shown in Fig. 3.28. Negative substrate-tropism can be explained
hydrodynamically: assuming a laminar flow, the water movement is zero
just at the (fixed) substratum and increases quadratically with the distance
from the substratum until the velocity of the laminar flow is reached (e.g.
Vogel and Bretz 1971, Vogel 1983). This causes the sponge to grow from
the substrate towards the area with the highest flow velocities and the
highest supply of suspended material. In sheltered conditions the vertical

Fig. 3.27. (A) Simulated form
generated with a combination
of the geometric and the DLA
model, using the generator
processing function in (3.24).
The parameter max _curv
(3.17) was set to 7.2s, while the
parameter 7 in (3.23) was set to
the value 1.0. The basins of
equal ranges of nutrient
concentration are visualized as
alternating black and coloured
regions. The nutrient
concentration decreases when
the black or colourcd basin 1s
situated closer to the object and
this decrease is vizualized in
the coloured basins as a shift
from blue to white. The growth
process in the object itself is
visualized by using different
brown colours for the growth
layers. (B) Simulated form
generated with a combination
of the geometric and the DLA
model, the parameter
max_curv was set to the value
21.7s and n was set to the value
0.5. The same colour setting as
in the object in (A) was used.
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Fig. 3.28. Determination of the
maximal angle between an axis
of growth of a sponge, or
simulated object, and the
vertical

Modelling
anti-collision rules
in a natural way

gradient in water velocity (together with the food supply and resulting
growth velocity) will be steeper than in exposed conditions, resulting in a
smaller maximal angle between an axis of growth and the vertical, when
compared to the exposed situation.

The aspect of suppression of growth in a shielded branch is experi-
mentally demonstrated in the longitudinal section of Fig. 3.12. This section
reveals that growth stops in the right branch as soon as the (marked) left
branch overgrows the right branch. Especially on a sheltered site, food
supply as well as growth velocity decreases when branches collide. In the
samples shown in Fig. 3.3 the lower branches are significantly shorter than
the upper branches, since growth is suppressed in these lower branches
because of this shielding effect.

In order to model growth which exhibits negative substrate-tropism
and suppression of growth in the shielded branches, it is necessary to add
a model of the physical environment which describes the distribution of
nutrients. In physics the DLA model has been applied to explain frac-
tal growth patterns, as for example found in electrodeposits (Brady and
Ball 1984, Sander 1986) and to describe the concentration of particles
around the growing objects. In the models shown in Fig. 3.27 this method
is used to simulate the distribution of suspended material around a filter-
feeding organism like a sponge under sheltered conditions. Under these
conditions the suspended material can be considered as randomly moving
particles. The particles are only of a larger scale than for example occur
in a electrolytic solution. In a DLA model with a linear nutrient source,
the negative substrate-tropy can be modelled (see Fig. 2.15). With a com-
bination of this model and the geometric model (3.24) these effects can
be simulated. This combination yields the simulated forms of Fig. 3.27,
which exhibit negative substrate-tropism and a suppression of growth of
the shielded branches by the canopy of branches.

With the suppression of the growth of branches which approach each
other too closely and deplete the same nutrient source, the anti-collision
rules in the iteration process (non-intersection and avoidance rule) can
be partially captured in a more natural way. In Fig. 3.27 it can be seen that
the nutrient is locally depleted at sites enclosed by branches; this effect
suppresses growth of shielded branches. The diffusion model holds only
under sheltered conditions; under exposed conditions food supply will
be higher at the parts of the sponge shielded by the canopy of branches
from the environment. Under exposed conditions collision of branches
may lead more often to anastomosis. This aspect of the growth is not (yet)
included in the model.

In Fig. 3.27 a simulation of the growth process with a nutrient dis-
tribution under sheltered conditions is depicted. The diffusion model can
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describe the situation under sheltered conditions. Under exposed condi-
tions laminar and turbulent flows will disturb this pattern. In many ma-
rine organisms it can be observed that a flattened growth form emerges,
where the flattened plane is perpendicular to the flow direction. A flat-
tened growth form can develop because the growth velocities are maximal
when the direction of growth is perpendicular to the flow direction and
minimal when both directions are parallel. To model the emergence of
these flattened forms it is necessary to extend the model to 3D and to
introduce the influence of the flow direction and drift of nutrients on the
growth process. To describe this situation accurately it is necessary to use
the Navier-Stokes equations instead of the Laplace equation. In Chap. 5
the influence of the direction of flow in amodel of radiate accretive growth
will be discussed in more detail.

Of course a crucial simplification is that the growth process is mod-
elled in 2D. In reality the situation that the nutrient is depleted between
the branches (see Fig. 3.27) will occur less frequently because nutrient
will be supplied from more directions.

In general, negative substrate-tropism and suppression of growth of
the shielded branches by the canopy of branches will occur frequently
among branching marine sessile organisms (see also Fig. 3.8). However,
for a robust simulation model, a model of the influence of the nutrient
distribution around the simulated organisms is an essential part.

3.8 Conclusions and Restrictions of the 2D Model

Fig. 3.12 reveals that growth ceases in the right branch as soon as the
(marked) left branch overgrows the right branch. In the model in which
the distribution of nutrients around the object was included (Fig. 3.17J) it
was assumed that especially on a sheltered site water movement and food
supply as well as the growth velocity decreases when branches collide.
The last photograph (Fig. 3.12) is experimental evidence for this effect.
Under exposed conditions this effect is less critical: because of a relatively
higher degree of water movement, food supply will be higher at the parts
of the sponge which are shielded by the canopy of branches from the envi-
ronment. The diffusion model can describe the situation under sheltered
conditions, but under exposed conditions laminar and turbulent flows will
disturb this pattern. To describe this situation accurately it is necessary
to replace the Laplace equation (2.7) by a model which includes the flow
direction and drift of nutrients on the growth process.

Flattened growth forn
and the direction
of the flow

Collision of branches
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rad_curv exceeds
maxr_Ccury

Fig. 3.29. Example of an object
in which the function from
(3.14) dehivers an incorrect
estimation of the contact of the
indicated parts of the object
with the environment

Anastomosis

In the generator-processing functions (for example (3.24)) in which
the influence of the limitations of the transport system are included (3.14)
the radius of curvature rad curv is used to estimate the contact between
the tissue and the environment. This method works for the objects gener-
ated with the models shown below. In forms as shown in Fig. 3.29 it can be
seen that in in some parts of the tissue rad _curv will become very large
and exceed the maximum limit max _curv, while these parts are in short
distance contact with the environment. For this type of object another type
of function is necessary to estimate the contact with the environment.

Deviations from the trend, thin-branching to plate-like forms caused
by a difference in degree of exposure to water movement, easily arise as a
result of damage of the sponge in the course of time. The more irregular
form in Fig. 3.3E is typical for sponges with an age of several years.
Probably tissue-material has been removed by abrasion and irregularities
have arisen when new material was added. This aspect of the growth
process would demand a further extension of the 2D model, for example
by introducing a fourth rule in the iteration process that represents removal
of material especially from the protruding parts of the object, in order to
simulate the process of abrasion.

In Figs. 3.25A, 3.25B, and 3.25C it can be seen that the degree of
branching increases when the objects become more plate-like; in the same
sequence the branches exhibit a higher degree of colliding. In the model,
growth ceases as soon as branches are at the point of intersection. In
reality (see Fig. 3.3) the plate-like forms also exhibit a higher degree of
branching, but growth continues because branches that intersect can avoid
each other in the third dimension. Under natural conditions, especially on
a sheltered growth site, water movement and food supply as well as the
growth velocity will decrease when branches collide. Under more exposed
conditions this last phenomenon is less critical. Sponges from exposed
sites exhibit a high degree of anastomosis and a complicated branching
system. Due to anastomosis a strong construction is formed, which may
withstand strong water movements. The anastomosing surfaces are inter-
connected and form a new continuous surface on which growth continues.

A major improvement will be the extension of this model to 3 dimen-
sions. As mentioned in Sect. 3.5, the skeleton of Haliclona oculata shows
a radial symmetry. Some of the processes (for example the formation of
branches, plate-forming at the extremities of branches) can be described
with a 2D model because of this symmetry. Other processes, like collid-
ing of branches and anastomosis, can be adequately described only with
a 3D model. The growth model is based on the skeleton architecture and
the aquiferous system. Both represent the basal patterns in growth forms.
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Together with the environmental factors they are the main parameters in
causal explanations of growth forms of sponges.

It is useful to create a model for radiate accretive growth which uni-
fies autotrophic and heterotrophic organisms. With such a generic model
it is possible to model growth of organisms where light as well as the het-
erotrophic nutrient source are the main environmental parameters which
determine the growth form, a situation which occurs among many Scle-
ractinia (Bythell 1988) and some Porifera (Wilkinson et al. 1988). The
formation of branches can indicate a significant contribution of the het-
erotrophic component. For organisms which exhibit a combination of au-
totrophic and heterotrophic component, the simple light model as shown
in (3.20) will not be sufficient in many cases. In the case where branching
appears, cast shadows will suppress growth in the lower over-shadowed
branches. This can only be modelled adequately with a 3D geometric
model and a light model which takes cast shadows into account. A model
based on ray-tracing techniques (not as usually applied in computer graph-
ics but a physical illumination model), in which estimations are done for
the local light intensities for each growing element, could be a good re-
flection of the actual environment.

3.9 List of Symbols

Used in this Chapter

o angle between an axis of growth and a tangential
element

f(o) function describing the deposition of a new layer

of tangential and longitudinal elements

l length of a longitudinal element

S length of tangential element

M;; matrix operator i, using homogeneous
coordinates, in iteration step j

V; a vertex with coordinates V,; and V,;

T(DX, DY) translation over the vector [DX, DY]

F,SF,NF an edge can be respectively in the state:

“fertile”, “non-active” or “not-fertile”

Autotrophy
and heterotrophy
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b0, b1

pb
a0, al

pa
c0, cl

pc
no0, nl

vertices of new tangential element constructed
from the tangential edge(V;, V;+,)

midpoint of the edge(b0, b1)

vertices of an edge which is the left adjacent
tangential edge of edge(b0, b1)

midpoint of the edge(a0, al)

vertices of an edge which is the right adjacent
tangential edge of edge(b0, b1)

midpoint of the edge(c0, c1)

vertices of a new tangential edge which is
inserted between edge (b0, b1) and edge(c0, c1)

inhibition_level threshold below which [ becomes zero

w

widening factor in f (o)

g(lowest value) function returning random values between

pv
rad_curv
h(rad_curv)
min_curv

max_curv

max_angle

L)

k(<)

the limits lowest_value and 1.0

midpoint of a tangential edge which is not the
same edge as (a0, al),(b0, bl) or (c0, cl)
radius of curvature formed by a set of 3 points
situated on neighbouring tangential elements
function which returns a normalized version of
the radius of curvature

minimum value radius of curvature (constant
value), expressed in units §

maximum value radius of curvature, expressed in
units s

angle of incidence of the light beam and surface
normal

maximum angle which a longitudinal element can
make with the vertical

function which models the influence of the

light intensity on the growth process

exponent describing the relation between the
local field and the concentration ¢

local nutrient concentration

function which represents the influence of the
nutrient distribution on the growth process






A Comparison of Forms

In the first section of this chapter the simulated forms and the actual growth
forms are compared to each other. A quantitative comparison of these
forms is an essential step in testing the biological validity of simulation
models. When both virtual and actual forms can be quantified, is is also
possible to determine a relation between the model parameters and the
observed forms.

In the second section the effect of changing an environmental param-
eter, in an experiment, on the growth form is tested. The effect on the
growth form is quantified with the methods described in the first section.
These experiments are used to test the predictive value of the simulation
model.

4.1 A Comparison of a Range of Forms

In this section the ranges of growth forms found along a gradient of an
environmental parameter, as well as the ranges of simulated forms, are
compared to each other. The range of growth forms of Haliclona oculata
(Fig. 3.3) is used as an example, the same methods can also be applied
for ranges of growth forms of other organisms (for example Fig. 3.8) as
well as for a simulated range of forms in which one or more parame-
ters are gradually changing (see Figs. 3.25A, 3.25B, and 3.25C). For this
comparison two different approaches are used. In the first approach the
self-similar aspects of the forms are compared. The choice of a suitable
self-similar aspect, for example the self-similarity ratio, depends on the
types of object which are to be compared. Such a comparison is only use-
ful when a class of related objects is considered. A class of related objects
can be generated by using one type of generator. The generators discussed
in Sect. 2.6, on iterative geometric constructions, are all based on a linear
transformation, which can be written as a combination of scaling, rota-
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tion, and translation. If one parameter is gradually changed in this linear
transformation, one obtains a set of generators which result in a class of re-
lated objects. In the example of the series of ramifying objects (Fig. 2.35)
such a related class of objects is shown. The self-similar aspect can be
expressed as the self-similarity ratio t /b in Fig. 2.33. In this example the
scaling factor in the linear transformation embodied by the generator is
gradually changed. The determination of self-similar aspects in a given
image follows basically the same approach as discussed in Sect. 2.5 on
Iterated Function Systems, where these aspects are described in a set of
mappings. In the second approach fractal dimensions of the forms are
determined. In a comparison of forms this fractal dimension is again only
useful when a class of related objects is compared. Many totally different
objects may be characterized by the same fractal dimension.

In order to enable a comparison between the actual growth forms
and the simulated 2D forms, projections (photographs) perpendicular to
branching plane of the organisms were made. The range of forms of a
branching organism originating from a gradient in environmental param-
eters, as well as a range of simulated objects, can be compared by mea-
suring the diameters of circles just fitting in the branches. In Fig. 4.1 the
determination of these circles in the contours of a photograph of a growth
form of Haliclona oculata is shown. Diameters of two circles were mea-
sured: the diameter da of the largest circle (a) which fits in the branch
just before ramification and the diameter db of the largest circle (b) just
after ramification. Additionally the distance rb was measured between
the centres of two successive circles b and a. This distance expresses the
length of a branch.

Fractal dimensions

Measuring the
diameters da and db

Fig. 4.1. Diagram of the
contours of a sponge, with the
locations of the measured
circles. A: circles a are the
largest circles which fits in the
branch just before ramification,
b are the largest circles just
after ramification, and rb is the
distance between the centres of
two successive circles a and b.
B: the skeleton of the object is
constructed by connecting the
centres of a series of maximum
discs.
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Maximum discs

Estimating the
exposure to water
movement

The measurements

da, db, and rb

The circles a and b correspond to the “maximum disc” from mathe-
matical morphology (see Rosenfeld and Kak 1976). The maximum disc
is defined as a disc which fits within the contours of the object and which
is not enclosed by another disc fitting within the contours. The (morpho-
logical) skeleton of an object, as shown in Fig. 4.1B, can be constructed
by connecting the centres of a series of maximum discs. The circle a can
be defined as a maximum disc whose centre is positioned at a branching
point of the skeleton.

4.1.1 A Comparison of a Range of Actual Forms
and the Virtual Objects

In the next two sections growth forms of Haliclona oculata from local-
ities with a different exposure to water movement are compared to each
other and to the virtual forms. Details about the measurements and lo-
cations can be found in Kaandorp 1991b. The differences in exposure to
water movements in these locations is estimated by relating the erosion of
gypsum blocks to the rate of exposure. The erosion value is expressed as
the weight loss of the gypsum blocks (g/hour) during a lunar day (24.45
hours). The erosion values for the different locations, discussed in the
next two sections, is given as an indication of the differences in exposure
to water movement (see De Kluijver 1989).

In Fig 4.2 the diameters da and db and the distance rb, measured in
the samples (see Fig. 3.3) from an exposed site (mean erosion value 0.09
g/h) and a sheltered site (mean erosion value 0.06 g/h) and two simulated
forms (the thin-branching model in Fig. 3.25A and the plate-like model
in Fig. 3.25B) are shown in frequency diagrams. In order to compare both
results with each other all measurements on the models are multiplied
with the factor
dasample_sheltered_site/ dathin—branching_model_A- The mean values, standard de-
viations, and number of observations are summarized in the Table 4.1.

Table 4.1. Mean values and standard deviations of the parameters da, db, and
rb (in cm) for the samples and the models (Fig. 3.25A, B)

% Sda % Sdb E Srb n

thin branching model A 0.26 0.00 0.13 0.00 128 0.59 6
plate-like model B 0.31 0.02 0.19 004 059 033 16
samples sheltered site 026 005 0.15 004 197 145 102
samples exposed site 036 008 020 0.06 132 096 131
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The values of da and db are larger for the exposed site when compared
with the sheltered site, but rb is relatively smaller for the exposed site.
The same trend is observed when the plate-like model is compared with
the thin-branching model.

The distributions of the measurements of the samples are compared
by applying the two-sample rank test (non-parametric). In all cases, the
hypothesis that the distribution of the samples from both sites is the same
is tested against the alternative that they differ by a translation. In all cases
a significance level of 5 % was used. The results of the two-sample rank
test are listed in Table 4.2.

Table 4.2. Results of the two-sample rank test, carried out for the three types of
measurements done for the samples from the sheltered and exposed site

result of the test

da distribution of the samples of the sheltered site 1s situated left
of the exposed one

db distribution of the samples of the sheltered site is situated left
of the exposed one

rb  distribution of the samples of the sheltered site is situated right
of the exposed one

It can be seen that the distributions of da and db of the samples
collected at the exposed locality (da = 0.36 cm) are positioned to the
right of those of the samples collected at the sheltered locality (da = 0.26
cm). The distribution of rb for the samples from the exposed locality is
positioned left of the one for the samples from the sheltered locality.

A thin-branching growth form (for example Fig. 3.3A) is character-
ized by a relatively low diameter of the largest circle a which fits within
the contours, just before branching, together with a low value of the diam-
eter of the largest circle & which fits in the contours after branching. This
form is characterized by a low degree of branching, which is reflected by a
relatively high value for rb, the distance between the circles a and b. The
plate-like form (for example Fig. 3.3D) is characterized by a relatively
high da and db and a high degree of branching resulting in a low rb (see
Tables 4.1 and 4.2). Although there is some overlap in the measured da
(see Fig. 4.2), plate-like growth forms are more common at the exposed
site, while the thin-branching form is typical for a sheltered site.

Except for a relatively low da and db the samples from the sheltered
site as well as the thin-branching model (Fig. 3.25A) are characterized

Distributions

of da and db

|-
Fig. 4.2. Frequency diagrams
of the diameters da, db, and
the distance rb. The diagrams
at left side of the figure are the
measurements on the samples,
at the right those of the models
(Figs. 3.25A and 3.25B).
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Fig. 4.3. Results of a series of
simulations in which the model
" parameter max._curv was_
varied and the resulting da (A)
and db (B) in the simulated
objects was measured. The
A ' B} minimal and maximal values of
725 ‘ 21.7s 36.15 da and db are indicated with
maz_cury (in units s) dotted lines.

by a low degree of branching, with a high rb (see Table 4.1). Table 4.1
shows that these values for the thin-branching model and the plate-like
model are less extreme than the corresponding values for the samples
from the sheltered and exposed locality. From the frequency diagrams it
appears that the area of overlap for all three values is larger for the samples
collected at both sites than for the thin-branching and the plate-like model.

As said in the preceding section the degree of plate formation can Degree of
be controlled with the parameters lowest value (3.12) and max _curv in  plate formation
the model. In object Fig. 3.25C it is observed that the degree of plate-
formation can be increased by using a smaller value for lowest_value
and larger one for max_curv. The degree of plate formation is increased
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Fig. 4.4. Plots of the diameters
da, db, and the distance rb of
the samples from localities
with a different exposure to
water movement, on the y-axis
and the corresponding erosion
values on the x-axis. The mean
values of the measurements are
marked with an asterisk and the
range is visualized with a
dotted line. The number of
measurements is indicated for
each site.
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resulting in a model with a still higher da, lower rb and higher db. In
Figs. 4.3A and 4.3B the da and db in simulated objects were determined
in a series of experiments in which the model parameters max_curv and
lowest _value were varied simultaneously. In this series of simulations
a linear relation, lowest_value = 1.5 - max_curv + 0.25, was assumed
between the two parameters. In the figures it can be seen that both da and
db increase for larger values of max_curv. Both figures are based on 30
measurements for each simulated object, and the da and db values were

multlphed with the factor da Sample_sheltered_site/da[hin—branching_model_A-
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4.1.2 A Comparison of the Growth Forms of Haliclona oculata
Collected in Different Localities

In Fig. 4.4 the mean values of the measurements of the growth forms
collected at sites with a different exposure to water movement (details
about these sites located in the Eastern Scheldt in the Netherlands can be
found in Kaandorp 1991b) and the regression lines are plotted, assuming
that the variance is restricted to the da, db, and rb measurements. For
each site the number of measurements is indicated and the range of the
measurements is visualized as a dotted line. The regression coefficients
were tested to a 5% significance level; the hypothesis that the regression
coefficient 8 = 0 was tested against the alternative 8 > 0 (for da and
db), and B < 0 (for rb). The results are shown in Table 4.3.

Table 4.3. Results of the regression coefficient test, carried out for the three types
of measurements done for the samples collected at sites with different exposure
to water movement (see Fig. 4.4)

result of the test

da hypothesis 8 = 0 is rejected in favour of 8 > 0
db hypothesis 8 = 0 is rejected in favour of 8 > 0
rb  hypothesis 8 = 0 is rejected in favourof B < 0

It can be seen that da and db increase with the erosion value, while
rb decreases. The measurements from the exposed and sheltered sites,
discussed in the preceding subsection, and their corresponding erosion
values are visualized as dots in Fig. 4.4. It can be concluded that plate
formation and branching increases with water movement.

4.1.3 Determination of the Fractal Dimensions in a Range of Forms

In order to estimate the fractal dimensions of Haliclona oculata, projec-
tions (photographs) were made of the sponges. For this purpose a high con-
trast film was used, to obtain sharp contours of the sponges. The contours
were digitized; two examples are shown in Figs. 4.5A (sheltered location)
and 4.5B (exposed location). The contours were digitized by hand-tracing
the contours of the photographs. The fractal dimensions of both contours
were estimated with the coastline method (Mandelbrot 1983), in which the
boundary of the contour is covered with an equal-sided polygon with side

Relation exposure
to water movement

and da, db, and rb

Contour photographs
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Fig. 4.5. Plots of the total
length L(e) of an equal-sided ’
polygon with side length € on 1147
the y-axis and the
corresponding € values on the
x-axis. The total lengths were
measured for the digitized 0.96
contour shown in the same D
picture. The exhibited contour b
in (A) 1s of a sponge Q
originating from a sheltered o753+
site (comparable with
Fig. 3.3A). In (B) the same —

estimation was done for a %

iog(L{¢))
log{L{e))
05
=
™~

sponge from an exposed site 189
(Fig. 3.3C).

7 ' 192 -1.75
log(€) log(€)

length €. In Fig. 4.5 these estimations are visualized for both contours.
The relation between the total length of the equal-sided polygon L (¢) and
the fractal dimension D is given in (2.3). The estimations were done for
6 samples from the sheltered location (mean erosion value 0.06 g/h) and
an exposed location (mean erosion value 0.09 g/h) The same estimations
were carried out for the simulated objects. In Table 4.4 the estimations of
the fractal dimensions of contours of sponges from both sites and of the
models in Figs. 3.25A and 3.25B are shown.

Table 4.4. Fractal dimensions, estimated for contours of sponges from a shel-
tered site, an exposed site, and the thin-branching, plate-like model (Figs. 3.25A
and 3.25B)

sheltered site  exposed site thin-branching model plate-like model

1.04 1.16 1.26 1.67
1.06 1.14
1.04 1.19
1.06 1.08
1.07 1.20
1.05 1.11

The more irregular contours of the sponges from the more exposed
site are characterized by a higher fractal dimension (D = 1.15) than
the thin-branching forms form the sheltered site (D = 1.05). The same
tendency can be observed for the plate-like model (Fig. 3.25A, D = 1.67)
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and the thin-branching model (Fig. 3.25B, D = 1.26). In Fig. 4.6 the
relation between D and the model parameter max_curv is depicted. It
can be seen that that D increases with max_curv. In this experiment
the same relation between lowest _value and max_curv was assumed as
used in Sect. 4.1.1. The fractal dimensions are systematically lower for the
actual sponges. One possible explanation is that growth in the simulated
forms is artificially halted as soon as branches intersect. This limitation of
the 2D model increases the irregularity and as a consequence the fractal
dimension in the models.

4.2 An Experimental Verification of the Model

An important aim of constructing simulation models of growth forms is
to obtain a better understanding of the way in which these growth forms
emerge. In the construction of such models the various aspects of the
growth are described in formal rules, leading to a better insight of growth
forms, and the parameters in these rules which are responsible for certain
aspects in the growth forms can be identified. The identification of these
parameters can be used as a base for experiments: if the assumptions
made in the models are right it should be possible to verify them by
experiments. It is necessary that a growth model not only generates an
object that resembles the actual growth form, but that all rules applied in
the growth model have a biological significance. Different stages in the
growth process can be simulated. An important feature of a correct model
is that the effects of changes in the environment on the growth forms can
be predicted.

Transplantation experiments form an important method to test the va-
lidity of simulation models. In these experiments the normal growth pro-
cess is interrupted and some of the environmental parameters are modified.
A simulation model which takes these parameters into account should be
able to predict the changes in growth forms and the final resulting growth
form. The growth forms of many marine sessile organisms are strongly
influenced by the environmental conditions and can therefore be used for
bio-monitoring. This is an important application of simulation models
with a well-tested biological relevance. With the actual growth forms and
a simulation model, periods of environmental stress, which may lead to
interruptions in the growth process, can be retraced in the growth form.
In addition to the influence of the exposure to water movement, these in-
terruptions may be caused by the occurrence of pollutants, silt, or other
changes in the environment.

Relation between D
and the model paramet.
max_cury

Transplantation
experiments

Bio-monitoring
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Fig. 4.6. Results of a series of
simulations in which the model
parameter max_curv was
varied and the resulting fractal
dimension D in the simulated
objects was measured
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A study in which transplantation experiments were used to obtain
insight in the range of growth forms of two closely related species of
the hydrocoral Millepora was carried out by De Weerdt (1981). Exam-
ples of other studies in which transplantation experiments were used for
causal explanations of different growth forms of marine organisms, under
different environmental conditions, are Graus and Macintyre (1982) on
the coral species Montastrea annularis (Scleractinia) and Vethaak et al.
(1982) on two related species of the sponge Halichondria.

4.2.1 The Simulation Experiments

In one set of simulation experiments only two parameters were varied:
max _curv (3.14) and lowest _value (3.12) in the generator processing
function of (3.17) (the model displayed in Fig. 3.17H). The sheltered
conditions were simulated by selecting a low value for max _curv and the
value 1.0 for lowest _value. The exposed conditions were simulated by
selecting a higher value for max_curv and 0.8 for lowest value.

" In Fig. 4.7A and B the forms generated in the simulation experi-
ment are shown. In form A the parameters max _curv and lowest _value
(Fig. 3.17H) were first set respectively to a low value (7.2s) and 1.0 (no
disturbance). Without interrupting the iteration process this would result
in the thin-branching form shown in Fig. 4.7C. In form A this process
was interrupted and disturbed by setting the parameter lowest _value to
0.8, and simultaneously max_curv was increased (from 7.2s to 21.7s).
In form B the reverse experiment was carried out: initially lowest_value
was set to 0.8 and a high value for max_curv was used, and during the
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generation the parameters were set to 1.0 (disturbance is stopped) and a
lower value for max _curv. Without this last interruption form D emerges.

In a second set of simulation experiments the effect of the concentra-
tion gradient on the form of the object was tested by rotating the object
in the iteration process. The generator processing function from (3.24)
was used (the model shown in Fig. 3.17J). The object was positioned hor-
izontally after 50 iteration steps. In this object the parameter max_curv
(3.14) was set to 21.7s and the parameter n (3.23) was set to 0.5. The
negative substrate-tropism of the model is demonstrated in Fig. 4.8 (see
Sect. 3.7.2), where the object grows towards the nutrient source. In the
picture the nutrient concentration decreases when the black or coloured
basin is situated closer to the object, the decrease in concentration is visu-
alized in the coloured basins as a shift from blue to white, and the object
itself is displayed in black.

4.2.2 The Transplantation Experiments

The experiments described in the previous section — transplanting a thin-
branching object from a simulated sheltered environment to an exposed
environment, the reverse experiment with a plate-like object, and the ro-
tation of an object during the growth process — were also carried out in
the field. Details of these transplantation experiments can be found in
Kaandorp and de Kluijver (1992).

Fig. 4.7. Simulated forms,
using the model shown in

Fig. 3.17H. In form A the
parameters [owest value and
max _curv were set initially to
1.0 and a relatively low value,
then the iteration process was
interrupted and the parameters
were set to 0.8 and a high
value. In form B the reverse
experiment was done. Forms C,
D result from the iteration
process without interruption
(parameter settings are the
mitial ones for A and B,
respectively).
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Fig. 4.8. Form generated with a
combination of the geometric
and the DLA model using the
model in Fig. 3.171. The object
was positioned horizontally
after the 50th iteration step.
The nutrient depletion around
the object the object is
visualized by the colour shift
from blue to white in the
coloured basins, the object
itself is displayed in black.

Fig. 4.9. Map of the study area
in the Netherlands with the
sampled localities (1 is a
sheltered location in Lake
Grevelingen; 2, 3 are two
exposed sites in the Eastern
Scheldt)

During two periods, sponges were collected from a sheltered site 1
(Lake Grevelingen) and two exposed sites 2 and 3 (both in the Eastern
Scheldt, see Fig. 4.9) in the Netherlands. Sites 1 and 2 have rich Haliclona
oculata populations. Site 3, although poor in Haliclona oculata individ-
uals, was chosen because it is an example of a site with a high exposure
to water movement. For the experiments small individual sponges were
used, in order to avoid complicated growth forms in which the effect of
the transplantation can less easily be interpreted.

&/ | Lake Grevelingen
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At all sites some additional sponges were collected before and after
the experiments. This material was used for comparing the effects of the
experiments on the growth forms as explained below.

In the second experiment an improvement was introduced. In this
experiment the sponges were photographed before the transplantation. For
exact measurements some branches were marked with minute stainless
needles. The needles were stuck into the surface of the sponges, the ends
of the needles corresponding with the surface of the sponge before the
experiment. After being marked the sponges were fixed to long nails with
insulated electricity wire (see Fig. 4.10). Each sponge was supported by
a small fissure in the head of the nail in order to ensure that the sponge
remained erect. The nails with the sponges were stuck into the substrate
at the test sites. After a period of about three months the sponges were
recollected and photographed anew, and the position of the needles was
detected by using x-ray photographs.

At each experimental site some sponges were returned to the original
growth site (the control experiment) and some were transplanted to a site
with a different degree of exposure to water movement. The experiment
1s summarized in Fig. 4.11. In this diagram the number of transplants and
the degrees of exposure to water movement are indicated. The erosion
values shown in Fig. 4.11 are taken from the literature (see De Kluijver
1989) and are used as an indication of the degree of exposure to wa-
ter movement on the test sites. The erosion values were measured again
during the transplantation experiments on the three test sites. Next to ex-
posure measurements the sedimentation load on the three test sites was
determined. Sedimentation is a limiting environmental parameter in the
growth process of a sponge; excessive sedimentation (especially fine sedi-
ment) may lead to occlusion of the inhalant pores of the aquiferous system
(see Brien et al. 1973). For this reason also measurements of the daily sed-

5
Site 2 10 > Site2
exp = 0.09 > exp =0.09
10
Site 1 s _| Site1
exp =0.05 10 .| exp=0.05
Site 3 19 .| site 3
exp = 0.22 5 | exp=0.22

Fig. 4.10. Transplantation

experiment with a sponge fixed

to a nail

FErosion values

Sedimentation load

Fig. 4.11. Diagram
summarizing the
transplantation experiment.
The degree of exposure to
water movement is indicated
for each site (see Fig. 4.9) by
the corresponding erosion
values (exp). The number of
experimental individuals is
indicated above the arrows.
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Survival rate of
the transplants

imentation load were made during the experiments on the three test sites.
The sedimentation was measured by using sediment traps and by taking
samples of the upper | cm layer of the bottom sediment. In the bottom
samples a division was in made into different fractions, measured in mm
and determined by using 7 graded sieves (2.8-0.05 mm). Details of the
sedimentation measurements can be found in De Kluijver and Leewis (in
prep.).

The survival rate of the transplants is shown in Tables 4.5 and 4.6. The
low survival rate of the transplants at site 1 in Table 4.5 is probably caused
by human activities. In both tables a relatively low survival rate of the
transplants at site 3 is apparent. The erosion values, measured in the period
1989-1990, are listed in Table 4.7. The corresponding sedimentation loads
and dominant sediment fractions in the period 1989-1990 are shown in
Table 4.8.

Table 4.5. Survival of the transplants in the first experiment (period 11 March
1989 until 30 April 1989)

source target number of transplants number of survivors

site ] sitel 5
site 1 site2 10
site 1  site3 10
site2 site2 S
site2 sitel 10
site3 site3 4
site3 sitel 10

WO 3~

Table 4.6. Survival of the transplants in the second experiment (period 30
November 1989 until 17 March 1990)

source target number of transplants number of survivors

site 1 sitel 5 5
site 1 site2 10 9
site 1 site3 10 7
site2 site2 S 4
site2 sitel 10 10
site3 site3 S 3

site 3 site1 10 10
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Table 4.7. Erosion values of gypsum blocks on the three test sites measured in
the period 1989-1990, in g h~! (n indicates the number of observations)

source minimal value mean value maximal value »n

1 0.05 0.07 0.08 4
2 0.06 0.09 0.14 20
3 0.06 0.13 0.16 8

Table 4.8. Sedimentation loads and dominant sediment fractions on the three
test sites measured in the period 1989-1990

source daily sedimentation (g m~2 day™') dominant fractions (mm)

1 10-1160 0.09-0.30
2 30-1150 0.15-0.30
3 270 - 1450 < 0.09

Examples of transplanted sponges are shown in Fig. 4.12. Sponge
A was transplanted from a sheltered site (site 1) to an exposed site (site
2). With sponge B the reverse experiment was done. The results of the
experiments are summarized in diagrams as shown in Fig. 4.13. In this
figure the resulting diagrams are shown for the transplanted sponges ex-
hibited in Fig. 4.12. The circumference of the sponge at the beginning of
the experiment is indicated with a dotted line (for non-marked branches
only possible in the second experiment) and at the end as solid lines. The
position of the needles, as detected from the x-ray photographs, is also
visualized.

4.2.3 Comparison of Growth Forms of the Transplants
and Simulation Experiments

In the diagrams (see Fig. 4.13) it can be seen that growth only takes place
in certain parts of the sponges, viz. at the tips of the sponges; this is also
demonstrated in the longitudinal section shown in Fig. 3.12. This is in  Fi& 4-12. Examples of
. . . transplanted Haliclona oculata.

agreement with the simulation models where growth only occurs at the  sponge A was transplanted
apices. Only at the trunk of the sponge, close to the nail, is secondary  from the sheltered site 1 to the
growth observed. In photographs (see Fig. 4.12) it appears that the head ~ €xPosed site 2, with sponge B

.- . 5 . the reverse experiment was
of the nail is partly covered with sponge tissue. Also the attachment wire _, icd out (A3.5and B LS

is incorporated in the sponge tissue. This secondary growth is probably = month experiment).

.
Lol
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induced by local damage inflicted to the sponge when being removed from

the substrate. The secondary growth can be introduced into the model ¥

by changing the status of non-active fertile elements (see Sect. 3.6.3)
into active again. The consequence is that these tangential elements can
participate again in the growth process.

The forms of the transplants before and after the experiment were
compared by measuring the diameters of circles just fitting in the branches
(see Fig. 4.14), comparable with the measurements done in Fig. 4.1.
The contours shown in Fig. 4.13 were used for fitting circles within the
branches.

Diameters of three types of circles were measured: the diameter da of
the largest circle (a) which fits in the branch just before ramification, the
diameter db of the largest circle (b) just after ramification, and the diameter
dc of the largest circle c fitting in the top of a branch (see Fig. 4.14). The
value of this last circle should vary between da and db. This assumption
was verified by comparing the dc data sets with with the da, db data
sets. The reason for using this measure instead of da or db is that only
in long-lasting growth experiments are sufficient ramifications formed to
allow enough measurements of da and db. Long-lasting experiments are
less easy to interpret because of the increased chance of damage to the
transplanted sponges in the course of time.

In order to detect the effect of the transplantations on the degree of
plate formation at the extremities of the branches the resulting dc values
are compared to a data set of dc values from the source site, measured

B

Fig. 4.13. Contours of sponges
used for transplantation
experiments. Sample A was
transplanted from a sheltered
site to an exposed site, with
sample B the reverse
experiment was carried out (A
3.5 and B 1.5 month
experiment).

Fig. 4.14. Diagram of the
contours of a sponge, with the
locations of the measured
circles. Circle a is the largest
circle which fits in the branch
just before ramification, b is the
largest circle just after
ramification, c is the largest
one which fits in the top of a
branch (da, db and dc are the
corresponding diameters). dg
is a measure of the amount of
material added in the test
period to the tip of the sponge.
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Measuring the
growth velocity

The distribution of dc

in material collected at the three test sites. In the first experiment this
data set was measured in the material collected additionally. In the second
experiment this set was measured using the contour photographs of the
transplants before the experiment. Additionally in the second experiment
the amount dg of material added to the top of the sponge in the test period
was measured. This distance was measured from the intersection point of
the growth axis and the surface before the experiment (dotted line) and
after the experiment.

The assumption that the distribution of dc is situated between those
of da and db was tested by applying the two-sample rank test for the
material collected additionally at the three test sites. In all three cases
the hypothesis that the distribution of dc is the same as da or db was
tested against the alternative that they differ by a translation. In all cases
a significance level of 5 % was applied. The results of this test are shown
in Table 4.9.

Only in one case was this hypothesis accepted; in all other cases the
assumption appeared to be correct. In Tables 4.10 and 4.11 the mean
values of the three types of diameters for the three test sites are listed.

Table 4.9. Results of the two-sample rank test carried out to test the assumption
that the distribution of dc is situated between those of db and da. This test was
done for data sets collected in the additional material from the three test sites
in the first experiment; in the second the measurements were made using the
contours of the transplants before the experiment.

test site  type of diameter result test result test

(first experiment)  (second experiment)

1 da dcleftda dc leftda

1 db dc right db dc equals db
2 da dc left da dc leftda

2 db dc right db dc right db
3 da dc leftda dcleftda
3 db dc right db dc right db

The values in Table 4.10 were measured in material collected addi-
tionally at the three test sites. The values in Table 4.11 were determined
in the contours in the sponges before the experiment.

The changes in form in the transplants were determined by compar-
ing the dc data sets from the additional material from the test sites to the
dc data sets measured in the transplanted sponges. Both data sets were
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Table 4.10. Mean values of the three types of diameters for the three test sites
measured in the first experiment (n, indicates the number of observations and
sy the standard deviations)

testsite db  Agp Sap  dC Mg Sge da R4y Sda

1 0.15 102 0.04 0.16 51 0.03 0.26 102 0.05
2 0.20 131 0.06 024 50 0.07 036 131 0.08
3 0.19 46 004 021 28 0.04 032 24 005

Table 4.11. Mean values of the three types of diameters for the three test sites
measured in the second experiment (n, indicates the number of observations
and s, the standard deviations)

test site  db Rgp  Sdb dc Rge  Sdc da Rda Sda

1 0.15 52 0.05 0.15 47 0.03 024 44 007
020 52 0.05 024 50 0.08 033 52 0.06
3 0.18 43 0.04 0.18 51 0.04 029 41 0.08

compared by applying the two-sample rank test. The results of the com-
parison are summarized for both experiments in the Tables 4.12 and 4.13.
In Table 4.14 the values of dg, 1.e. the amount of material added to the tip
of the sponge, measured in the transplants in the second experiment are
shown.

The model predicts that a sponge transplanted from a sheltered site  Predicted forms
to an exposed site will yield thin-branching sponges with plate-like ends
(Fig 4.7A). The reverse experiment will yield palmate sponges with thin
distal branches (Fig. 4.7B).

The predicted forms were indeed found in the transplantation exper-  Forms in the
iments. In Fig. 4.12A and Fig. 4.13A a thin-branching sponge is shown, transplantation
which was transplanted from the more sheltered site 1 (mean erosion experiments
value 0.07 gh™!, see Table 4.7) to the more exposed site 2 (mean erosion
value 0.09 g h™1), which exhibits plate-like extremities. In Fig. 4.12B and
Fig. 4.13B aplate-like sponge is shown with which the reverse experiment
was carried out and which depicts a palmate form with thin distal ends.

In general the shift from thin-branching to plate-like and the occur-
rence of palmate forms could be demonstrated by comparing the dc di-
ameters of the sponges at the end of the transplantation experiment with
the dc diameters at the beginning of the experiment. Table 4.12 shows
that the value of dc, when sponges are transplanted from the sheltered
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Table 4.12. Comparison of the dc (indicated as d¢,) data set from the additional
material collected at source site with the d¢ (indicated as dc¢, ) data set measured
in the transplants at the target site, for the experiment in the period 11 March
1989 until 30 April 1989 (n, indicates the number of observations and s, the
standard deviations; the index o marks the measurements at the beginning and
index r at the end of the experiment)

source target n, dc, sS4, resulttest n, dc, sS4,

3 018 003 requalso 51 0.16 0.03
28 0.19 0.04 rrighto 51 0.16 0.03
26 0.21 0.06 rrighto 51 0.16 0.03
23 0.27 0.08 requalso 50 0.24 0.07
36 020 007 rlefio 50 0.24 0.07
26 029 006 rrighto 28 021 0.04
17 0.21 0.06 requalso 28 0.21 0.04

W W NN == =
—_— W = N W N =

Table 4.13. Comparison of the dc¢ (indicated as dc¢,) data set from the contours
of the transplants before the experiment with the d¢ (indicated as dc, ) data set
measured in the transplants at the end of the experiment, in the period 30 Novem-
ber 1989 until 17 March 1990 (n, indicates the number of observations and s,
the standard deviations; the index ¢ marks the measurements at the beginning
and index r at the end of the experiment)

source target n, dc, sg, resulttest n, dc, sq,

19 025 0.06 rrighto 47 0.15 0.03
37 029 0.09 rrighto 47 0.15 0.03
13 0.21 0.08 rrighto 47 0.15 0.03
26 024 006 requalso 50 0.24 0.08
57 0.28 0.08 rrighto 50 0.24 0.08
- - - - 51 0.18 0.04
43 025 0.09 rrighto 51 0.18 0.04

W W NN = ==
— W = N W N

site to the exposed site 2, increases. This indicates an increase of plate-
formation comparable with the sponge depicted in Fig. 4.12A. For the
reverse experiment a decrease of dc and a decrease of plate-formation is
found, resulting in palmate objects. In the control experiments, in which
the sponges were returned to the source site, it appears that the transplan-
tation experiment itself does not result in a shift of the d¢ distribution for
the sites 1 and 2.
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In the second experiment (period 30 November 1989 until 17 March
1990) the shift from plate-like to thin-branching forms, resulting in pal-
mate sponges, could not be demonstrated. In the experiments, carried out
in the sites 1 and 2, a general increase in plate formation was found (see
Table 4.13). This general increase of dc can be explained by the occur-
rence of heavy storms in 1990. Two severe storms struck the area (25
January 1990 and 26 February 1990) with wind speeds of 30 m s™! and
26 m s~ ! (averaged over one hour) respectively, which resulted in an over-
all increase in water movement at the test sites. The difference between
the sheltered and the exposed site disappeared. Although this experiment
did not demonstrate the emergence of palmate forms, it can explain that
in some cases in the normally sheltered Lake Grevelingen (see Fig. 4.9),
typically palmate sponges are found. An example of such a palmate form
is exhibited in Fig. 4.15. During the occurrence of storms and the period
afterwards in which the increase in water movement is gradually damped,
the thin-branching sponges from this location are form plate-like ends.
After the temporary increase in water movement the location becomes
sheltered again. The plate-like ends presumably die off because the tissue
is not in short-distance contact with the environment, or they gradually
transform into palmate growth forms. This result is another indication that
growth forms of sponges have a potential use as a continuous registration
medium of environmental parameters.

In Table 4.14 the values of dg, the amount of material added to the
top of the sponge, measured in the transplants in the second experiment
can be compared for the three test sites. In general it is expected that the
growth velocity will increase when the water movement and food supply
increase on the test site. Because of the occurrence of stormy weather in
the test period it was not possible to make a good distinction between an
exposed and sheltered location: all locations were probably more or less
exposed.

Table 4.14 shows that the transplants on site 3 exhibit a remarkably
low growth velocity. In Tables 4.5 and 4.6 can be seen that for Haliclona
oculata life is not very easy at site 3: there is arelatively low survival of the
transplants at this site. In the second test period it was quite difficult to find
enough living specimens to carry out the transplantation experiments. The
deviating position of site 3 can be explained by its relatively high sediment
load. Table 4.8 shows that the minimal sediment load is high compared
to the other test sites (270 g m~2 day™!), with bottom sediment (mainly
consisting of fractions smaller than 0.09 mm).

With the simulation models it is possible to make some predictions
about the effect of environmental changes on the growth forms. By com-

Palmate sponges

Growth velocity
of the transplants

v

Fig. 4.15. Example of a
palmate sponge, which is
incidentally found in sheltered
locations such as Lake
Grevelingen (see Fig. 4.9)

Fig. 4.16. Example of a
transplanted Haliclona oculata
which was positioned
horizontally at the nail (see
Fig. 4.10) (3.5 month
experiment)



4.15
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Table 4.14. Values of dg for the transplantation experiments done in the period
30 November 1989 until 17 March 1990 (r indicates the number of observations
and s, the standard deviations)

source target n dg  sg

1 1 16 1.07 0.40
1 2 28 1.82 0.93
1 3 13 095 047
2 2 18 1.22 048
2 1 47 1.53 0.46
3 3 - - -

3 1 31 1.26 044

paring growth forms from various sites and using simulation models, it
becomes possible to detect sites with a deviating environmental condition.

In the second experiment a sponge was positioned horizontally at the
nail (see Fig. 4.10). In Fig. 4.16 it can be observed from the attachment
wire (the circle next to the holdfast of the sponge) that the sponge has
been growing in a horizontal direction. There is a clear tendency in the
sponge to grow upwards. Another example of a transplant which was po-
sitioned horizontally is shown in Fig. 4.17. In this figure the contours of
the sponge (taken from photographs) at the beginning and at the end of the
experiment are indicated. This effect shows that the model in Fig. 3.17J
can be used to predict forms which are found in experiments where a
sponge was positioned horizontally (compare Fig. 4.8). It is also experi-
mental evidence for the negative substrate-tropism assumed in the model
Fig. 3.17J.

4.3 Conclusions

Figure 4.4 and Table 4.3 show that plate-formation (resulting in a relatively
higher value for da and db) and branching (a lower value for rb) increases
with water movement. This example shows that growth forms can be used
for bio-monitoring purposes: from the actual forms it is possible to de-
rive some of the environmental conditions in which the form emerged.
In a range with increasing water movement, the irregularity of the ob-
jects increases, resulting in a higher fractal dimension (see Table 4.4). All
these tendencies can also be demonstrated in simulation experiments (see
Tables 4.1 and 4.4 and Fig. 4.3 and 4.6) in which a range of forms was

Fig. 4.17. Contours of the
sponge Haliclona oculata,
which was positioned
horizontally and returned to its
original growth site
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generated where the parameters lowest_value and max _curv change si-
multaneously. From Fig 4.3 the relation between an observed form and
the model parameter max_curv can be derived. In theory a model could
be generated with a high correspondence to the actual samples by tuning
this parameter.

The predictions made by the model (Fig. 4.7A), that a sponge trans-
planted from a sheltered site to an exposed site will yield thin-branching
forms with plate-like ends (Fig 4.7A) while the reverse experiment will
yield palmate sponges with thin distal branches (Fig. 4.7B), could also
be demonstrated in reality. This effect could be demonstrated in many
transplants (see Table 4.12). Also the predicted effect on the growth form
(see Fig. 4.8), when the transplant is rotated and positioned horizontally
during the growth process, could be verified in an experiment shown in
Fig. 4.17.






3D Models of Growth Forms

In this chapter the development of a model of a growth in three dimen-
sions is discussed. In the first section it is demonstrated how the modelling
system for iterative geometric constructions (see also Sect. 2.6) can be
extended to 3D. In Sect. 5.2, a discussion follows on the 3D structure of
an organism with radiate accretive growth. In Sects. 5.3 and 5.4 it is dis-
cussed how this 3D structure can be represented in a model. The results of
these sections, a suitable data representation for a 3D object developing
in the radiate accretive growth process, is used in the final Sect. 5.6, in
which the development of a model of a radiate growth process in three
dimensions is presented. Most of the rules discussed in Sect. 3.6, on the it-
erative geometric constructions for simulating this growth process, will be
extended to 3D. In Sect. 3.6 the biological examples used as a case-study
were the sponge Haliclona oculata and the stony coral Montastrea annu-
laris. For reasons which will become clear in the next sections, the sponge
Haliclona simulans (see Fig. 3.15) is used as an example in this chapter.
The biological significance of the rules will be indicated only briefly in
this chapter, since most of them were already discussed in Sect. 3.6. The
extension to 3D of the simulation model is an essential one, since many
aspects of the growth process (e.g. a larger possibility for the branches
to avoid each other, the formation of flattened forms influenced by the
flow direction) can only be adequately described with a 3D model. For
convenience the symbols used in the sections on the 3D model of radiate
accretive growth (Sects. 5.3-5.7 are listed separately in Sect. 5.8).

5.1 Constructions in Space, a 3D Modelling System
for Iterative Constructions

Some of the 3D equivalents of the classical fractal objects can be generated
with arelatively simple extension of the 2D modelling system described in
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Sect. 2.6. For this purpose the rules for representing the three components
in the production rule should be extended with another component: the
face. For a 3D construction it is necessary to define from which type of
surface the three previous components are constructed. The base elements
are now built themselves from lower level elements, the faces. Each face
contains the references to the vertices. The vertices are stored separately
in a list in order to avoid an enormous amount of overhead, because the
same vertex occurs several times in various surfaces.

The algorithm of the 2D modelling system (see Sect. 2.6.2) is in (a
simple version of) the 3D system extended by a new level in G in which
the vertices are taken from the faces. The transformation in G1 (see (2.15)
is changed into a 3D transformation:

Mi,j = Rrp,axis(}’)~S(va sfysf). (5.1)
T(VGxk — VGyo, VGyk — VG, VG — VGyp)

forO<k<m

The transformation is a combination of arotation (R, with rotation point »p
and axis as axis of rotation), scaling (S, with scaling factor s f, see (2.14)),
and a translation (7', the translation vector is determined by analogy with
(2.15)). The visualization in the modelling and the interactive design of
the four components in the production rules are less trivial for the 3D
objects (on 3D visualization techniques see Newman and Sproull 1979;
Foley et al. 1990).

With the 3D modelling system some of the 3D equivalents of the
curves shown in Sect. 2.6 can be generated. The construction of a 3D
equivalent of the Sierpinski arrowhead (Fig. 2.30) is shown in Fig. 5.1. The
first three components consist of triangles and the first two components are
constructed from the third component: a tetrahedron. In the construction

initiator generator base element

Face

Sierpinski arrowhead

Fig. 5.1. Construction of a 3D
equivalent of the Sierpinski
arrowhead, with the result
shown in Fig. 5.2
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each tetrahedron is replaced by a set of four tetrahedra in each iteration
step. The result of this construction is shown in Fig. 5.2. The replacement
system is shown below:

face = (Vp, V4, Vy) (5.2)
base
element = (facea(Va, Vi, Vo)); facepy(Va, Ve, Va); facec(Va, Va, Vi),
faceq(Vy, Va, Ve));
initiator = be((face,(Vy, Vi, Va)): facey,(Vy, Vo, V3); face(Vy, V3, V1);
face(Vy, V3, V));
generator = be((facea(Vaxi, Vaxit1, Vari+2)); facep(Vaui, Vasiva, Varigs);
face(Visi, Vaxivs, Varit1); face(Vauiti, Vaxits, Vaxit2)); —
be((facea(Vasis Tt j(Vawi)s Taj(Vasi))s
facey(Vasi, Toj(Vasi), T3 (Vasi));
face(Vasi, T3;(Vasi), Ty j (Vasi));
face(T,;(Vaxi), Taj(Vasi), T3j(Vaxi)))s
be((facea(T1j(Vasi), Vasiz1, Taj(Vaxi));
Sfacey(Vaui, Taj(Vaui), Tsj (Vaai)),
face(T\j(Vaxi)s Tsj(Vasi)s Vari1);
face(Vasivr, Tsj(Vasi), Tuj(Vasi)));
be((face,(Tyj(Vaxi), Taj(Vaxi), Vaxiv2),
facep(Tyj(Vasi), Vasi2, Viasiy2);
face(Tyj(Vaxi), Toj(Vaxi), Taj(Vasi));
face(Ty;(Vawi), Tsj(Vasi), Vaxiv2));
be((facea(T3j(Vaxi), Tsj(Vaxi), Tsj (Vasi));
facep(T3;(Vasi), Tsj(Vasi), Vari+3):
face(T3;(Vaxi), Varivs, Tsj(Vasi));
face(Ts;(Visi), Vasi+a, Tsj(Vaxi)));

Seeding square The construction of a 3D equivalent of the seeding square (see
(3D equivalent) Fig. 2.25) is shown in Fig. 5.3. In this construction in each iteration step
a square is replaced by a set of 15 new squares, with the result shown in
Fig. 5.4. The construction of an infinitely empty cube (see Fig. 5.6, the
Menger sponge Menger sponge; see also Mandelbrot (1983)) is shown in Fig. 5.5. In this
construction a cube is replaced by a set of 20 cubes.
In this version of the 3D modelling system several disadvantages
occur:



132 3D Models of Growth Forms
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a) In the 2D system it is trivial to identify which edges border a certain
edge in a (connected) curve of edges. In the 3D system, it is quite difficult
to detect which faces are neighbouring to a certain face in a connected
mesh of faces. A face which is neighbouring to another face has two (ref-
erences to) vertices in common with the other face. Especially for objects
constructed from a large number of vertices, this test will be rather time-
consuming. In the section on 3D models for modelling growth processes,
it will appear that this test is a crucial one.
b) The system is less general, and it is not possible to develop 3D equiva-
lents for all curves and objects shown in the section on the 2D modelling
system. An example is the construction of a 3D equivalent of the rami-
fying fractals (see Fig. 2.23). A possible solution could be to extend the
production rules to rules where several types of surfaces are used. A pos-
sible construction for a 3D equivalent of the ramifying objects is displayed
in Fig. 5.7. In this extended rule the three components are constructed of
tubes, in which as a base element a tube is used consisting of a mixture
of two types of surfaces: n rectangular surfaces (A) and an n-sided circu-
lar surface (B). Examples of objects generated with this type of rule are
shown in Kawaguchi (1982).

The problems shown in this section will return in Sect. 5.6 on 3D
models of radiate accretive growth, where a solution is suggested for
point a).

Fig. 5.2. 3D equivalent of the
Sierpinski arrowhead
constructed with the rule
shown Fig. 5.1

initiator

generator

I
=

base element

NN

Fig. 5.3. The construction of a
3D equivalent of the seeding
square (see Fig. 2.25), with the
result shown in Fig. 5.4
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Fig. 5.4. 3D equivalent of the
seeding square constructed
with the rule shown Fig. 5.3

initiator

generator

base element

Fig. 5.5. The construction of
the Menger sponge (see
Fig. 5.6)

5.2 Description of an Organism with Radiate Accretive
Growth and a Triangular Tessellation of the Surface

The sponge Haliclona simulans (see Fig. 3.15) is closely related to
Haliclona oculata; the internal architecture of the latter is discussed in
Sect. 3.5. In Haliclona oculata the tangential elements are organized in
4- to 6-sided polygons (see Fig. 3.13A). In a tangential microscopic view
of Haliclona simulans (see Fig. 5.8) it can be seen that the tangential
spicula are arranged in a triangular mesh. This triangular arrangement is
characteristic for several species in the sponge family Chalinidae (see De
Weerdt 1986). The longitudinal tracts are arranged in about the same way
as in Haliclona oculata (see Fig. 3.13B). The longitudinal bundles are
somewhat larger in diameter and more than 2 spicula thick. In Haliclona
simulans the longitudinal bundles may vary in length and the 3D mesh of
spicula shows a radiate symmetry, in correspondence with the structure
of Haliclona oculata.

" The triangles in the tangential view in Fig. 5.8 can be thought to be
arranged in, predominantly, pentagons and hexagons. In some cases 7-8
spicula meet in one point and heptagons and octagons are formed. In an
idealized version of the triangular network, it can be transformed into
a network of 5- to 6-sided polygons, when some of the spicula which
meet in one point are removed. The result of this transformation is a
Haliclona oculata-like network. This difference together with a more ex-
tensive aquiferous system in Haliclona simulans (for a comparison with
Haliclona oculata see Sect. 3.5) are the main architectural differences
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which distinguish the two species. In Haliclona simulans layers of trian-
gles are added to the preceding stages in the growth process. This layered
triangular tessellation is a suitable subject for simulation. This triangular
tessellation can be used as a basis to model a layered penta-hexagonal
tessellation, which can serve as a general 3D model for organisms with
radiate accretive growth.

5.3 Representation of a Triangular Tessellation

In this section the representation of a triangular network, as was described
in the preceding section for the biological object, is discussed. This formal
description of a triangular network is necessary to represent the surface
of objects in the 3D model of the growth process. The main goal in this
section is to develop a method for the representation of a surface which
is tiled with discrete skeleton elements, which can only vary somewhat
in size. The skeleton elements are represented as edges of triangles and
these should be as equilateral as possible. With the created representation
it should be possible to tessellate the convex and concave surfaces which
emerge in the growth process.
A triangular mesh can be represented by a vertex index list V:

V=(Vy,.. V) (5.3)
in which each index refers to a coordinate triple in the list C:
C: ((xI’ )’I,Zl),----’(xm Yn, Zn)) (54)

and a list 7 of triangles:

T =T, ...Ty) (5.5
Each triangle 7; from the list 7 consists of a triple of indices:
I, = (Va, Vb, vc) (56)
Va, be Vc eV

In a triangular tessellation of a surface each triangle is surrounded by 3
neighbouring triangles. In the representation of (5.6), the neighbouring
triangles can only be identified by comparing all vertex indices of the
triangle 7; with the indices of the other triangles from the list 7.

A more convenient representation of a triangle, where its neighbours
can be identified straightforwardly, is given in the representation of 7; in
(5.7). In this representation also the indices of the neighbouring triangles
are included:
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Fig. 5.6. The Menger sponge
constructed with the rule
shown in Fig. 5.5

& N
‘, surfaces
< ‘ 3 < OB

initiator generator base element

Fig. 5.7. A 3D construction of
a ramifying fractal, where a
mixture of two types of
surfaces is used in the
construction of the base
element

Fig. 5.8. Tangential view of the
arrangement of spicula in the
sponge Haliclona simulans
(after De Weerdt 1986)

i = ((Va, Vb, Vo), (T, T, 1)) (5.7)
Voo Vb, Ve €V
triangle 7, borders at edge(V,, Vi)
triangle 7, borders at edge(Vy, V)
triangle 7 borders at edge(V,, V)
T, T,, T. € T



136 3D Models of Growth Forms

Fig. 5.9. Diagrammatic
description of the triangle T;
from (5.7). The indices of the
surfaces are underscored.

183
IS

Vis

In Fig. 5.9 the triangle 7; from (5.7) is described in a diagram. The in-
dices of the surfaces are underscored to distinguish them from the vertex
indices. The vertex indices of triangle 7, bordering on 7; are arranged
oppositely to the vertices in 7;. There are three possible arrangements
for the vertices in T,, viz.: V}, V,, V4, Vi, Va, Vp and Vy, Vi, V,. The
arrangement of the vertices is indicated in the diagram with an arrow. The
first edge of a triangle is displayed with an arrow and a line. By consis-
tently doing so, it is possible to define the normal vector of each triangle
unambiguously (Mdbius rule). When T, T}, or T, equals null in (5.7), the
edge (Va, Vi), (Vp, V) or (V,, V,) does not border on another triangle. In
the representation of (5.7) it is easy to identify in a mesh of triangles the
neighbours of a triangle 7; and also to determine the set of triangles which
surround a vertex of the triangle 7;. The set of triangles surrounding the
vertex V, can be denoted as set _triangles(T;, Vp), the set of vertices sur-
rounding the vertex V), as set_vertices(T;, Vp) (see (5.8)). These vertices
are only accessible using the list of triangles 7, and for this reason the
triangle 7; is also used as an argument in both sets.

Fig. 5.10. Diagrammatic
description of the triangle T;
after subdivision into four
children T'1..T4. The

representation of the parent and
children triangles are given in
(5.11) and (5.10). The
connections between triangles
are indicated with the “="
symbol. A parent triangle is
indicated as a dotted line
grouping two children triangles
together.
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Basic size of a
tangential element

Hierarchical
description of a
triangular mesh

set_triangles(T;, V) = {1;, Ty, T4, T,, T, Tp} (5.8)
set_vertices(T;, Vp) = {Vp, Vo, Ve, Vy, Ve, Vi, Vi

In the representation of (5.7) it is not possible to subdivide a triangle T;
into new triangles while leaving the neighbours unchanged. The necessity
of doing this occurs when an additional condition (5.9) is applied which
states that the edges of 7; may only vary between two limits. This condition
stipulates that the triangles in the tessellation should remain as equilateral
as possible. This property is disturbed when the tessellation is used to
cover a convex or concave surface and can be restored by subdividing the
non-fitting triangles. In an actual object one can imagine that the surface
is tessellated with discrete-sized elements. During the growth process the
surface is enlarged and new building elements have to be inserted in order
to preserve the coherence in the tessellation. The limits depend on the size
s, which is a constant describing the basic size of a tangential element in
the mesh. The limits describe the degree of non-equilaterality of triangles;
the values of the limits were chosen arbitrarily.

0.55 < ||V,, VIl < 1.5s and (5.9)
0.5s < ||Vp, V.|} < 1.55 and
0.5s < IV, Vull < 1.5s

In the case that T; is enlarged and all edges exceed 1.5s, it is necessary
to subdivide 7; into four new triangles and a situation as described in
Fig. 5.10 might occur. The parent triangle 7; is split up into four children
T1..T4 and three new points n,, np, n. are added to the vertex list V.
The three new vertices n,, np and n. are situated at the middle of the
subdivided edges.

An extension of the representation in (5.7), where triangles can be
subdivided while leaving the neighbour triangles unchanged, is shown

below: ) .
clow [ ({set of 3 vertex indices}, {set of 1-3 neighbour triangles},

{set of 0-2 parents}, level)

for level =0

T; = 1 ({setof2 childrenand 1 null},
{set of 1 neighbour and 2 nulls},
{set of 0-2 parents}, [evel)

for level > 0

With this representation it is possible to create a hierarchical description
of a triangular mesh in which a parent triangle can be subdivided into
children triangles.
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A representation of a child T'1 is:

Tl = ((Va,nq, ne), (null, T4, null), (T;, T}, 0)) (5.10)
Va,ng,nc €V
triangle 74 borders at edge(n,, n.)
T4, T;,T; €T

The triangle 7'1 shares an edge with the triangle 74 but the other edges
are shared with no other triangles. The nonexistent neighbours are indi-
cated with the value null in the second triplet. In the description of 71 a
reference to its parent 7; is included, and the very last number indicates
that T'1 is a 0-level triangle, which is not further subdivided.

A representation of the parent T; is:

T, = ((T1,T2,nully, (T,, null, null), (null, null, 1)) (5.11)
triangle T, borders at edge(V,, V,)
T1,T2,T, €T

The indices in the first triplet indicate that 7; is composed of two triangles
T'1and T2. The second triplet shows that the parent triangle T; borders on
the triangle 7,. The last triplet indicates that the parent 7; is not enclosed
in any other parent triangle and that 7; is only subdivided once (level 1).
In the representation of the child triangle (5.10) it can be seen that the
level 0 triangle T'1 is enclosed in two level 1 parent triangles 7; and T;.
T; is described as:

T; = ((T1,null, T3), (null,null, T.), (null, null, 1)) (5.12)
triangle T, borders at edge(V,, V,)
T1, T3, T, €T

In this representation a parent triangle consists of two children and one
null reference. The children in the parent triangles are ordered in a way
corresponding to the vertices V,, Vj,, V. of the triangle 7; before the subdi-
vision. The children triangles T 1..T 4 are enclosed in three parent triangles
(Ti, T;, T;). The ordering in the first triplet for these parent triangles is
respectively: (T'1, T2, null), (null, T2, T3), (T'1, null, T3).

In the diagram of Fig. 5.10 the connections between triangles are
indicated with the “=" symbol. A parent triangle is indicated as a dotted
line grouping two children triangles together. The edges of triangles which
are at the border of the tessellation and which do not neighbour other
triangles are unconnected. There can only exist a connection between

Level of subdivision

Connections
between triangles
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Set of triangles
surrounding a vertex

Transition from
large triangles
into small ones

Fig. 5.11. Diagrammatic
description of a triangular mesh
where a transition from large
into smaller triangles occurs.
To describe the situation two
level 1 (parent) triangles are
necessary.

bordering triangles when they share the same edge. In the diagram it can
be seen that there is a connection between the triangle 7,:

Ta = ((Vba Va, Vd)a (Ea Tgv Td)’ (nulla null’ O)) (5'13)
Vb, Va, Vd € V
T, T, TaeT

and 7;. From 7; (5.11) it is possible to identify the two children 7'1 and
T2, and from both it can be derived that they border to 74. In this repre-
sentation it is again possible to identify the neighbours of a child triangle
T'1 and to determine the set of triangles which surround a vertex of T'1.
For example:

set_triangles(T1,V,) ={T1,T,, T,, Ty, Ty, T} (5.14)
set triangles(T1,n,) ={T1,T,,T2, T4}

In the subdivision of 7; there are four children T'1..T4 and two parents
T}, T; introduced. T; is changed from a level O triangle into a level 1 tri-
angle. With this representation, where a parent contains only two children
instead of three or four, a mesh as shown in Fig. 5.11 can also easily be
described. In this mesh, where a transition from large triangles into small
ones occurs, only two triangles of level 1 are necessary to describe the
situation.
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With the representation in (5.10) it is possible to create a hierarchical
description of a triangular mesh, where a triangle can be n times subdi-
vided. The vertex and triangle indices of the parent 7; can be arranged
in a hierarchical structure, as depicted in Fig. 5.12, where the vertices
are the leaves of the tree-structure (see also De Floriani 1989). Between
the 0-level triangles T'1 and T, there is a difference of one subdivision.
With the representation in (5.10) it is possible to create a triangular mesh,
arranged hierarchically, where the difference in number of subdivisions
between bordering triangles is higher than one. This type of mesh will not
satisfy the rule (5.9), where the edges of each triangle in the mesh may
only vary between two limits. In the examples of triangular meshes shown
in the next sections, the maximal difference in number of subdivisions be-
tween bordering triangles will be one. In the representation of (5.10) it
is also possible to create a mesh with “unnecessary” parent triangles (see
Fig. 5.13). For simplicity reasons these superfluous parent triangles are
removed from the list of triangles in the examples of triangular tessella-
tions discussed later on. As a consequence parent triangles will only occur
in transition zones as displayed in Fig. 5.11. As will be demonstrated in
Sect. 5.6, it is possible to cover a 3D curved surface with triangles which
can be considered as built from discrete skeleton elements and where the
triangles remain almost equilateral.

5.4 Representation of a Multi-Layer Triangular
Tessellation

153

Va. Mg Ne T Vb L)

Fig. 5.12. Hierarchical
structure of the vertex and
triangle indices of the parent T;
from Fig. 5.10. The vertex
indices are the leaves of the

tree.

In the previous section a description was given of a possible represen-
tation of a triangular tessellation covering the surface of a 3D object. In
this section the representation is extended to a multi-layer system. This
extension is necessary, since in the simulation of the growth process in
Sect. 5.6 layers consisting of triangles are constructed on top of each other
in the succeeding growth steps. An example of a layered system, where a
triangular tessellation is constructed upon another triangular tessellation,
is shown in Fig. 5.14. The edges of the triangles are situated at the surface
of the layers. These edges will be indicated as the tangential elements of
the layered structure. The indices of the vertices can be represented as a
list of vertex index lists:

Vi Vo, . (5.15)

V|’2, V2_2,

Vl,ma VZ,m,

Fig. 5.13. Triangular mesh with
two “‘unnecessary” parent
triangles which can be replaced
by normal connections
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The longitudinal
elements

Layered biological
objects

where each index refers to a corresponding list of coordinate lists. The
tessellated layers can be represented in a list of triangle lists:

I, 1o, e (5.16)
Ip,Tas, ..

T],m’ T2,ma e

A triangle list Ty ;, T j, ... in this list will be indicated as layer(j). Each
triangle 7; ; from 7 can be represented in the form of (5.10).

In Fig. 5.14 layer(3) can be considered as constructed upon layer (2)
and layer(2) upon layer(1). In the same sequence the total number of
vertex indices, for each layer, increases when the surface of new layer
is larger than the previous one. Between some of the vertices there is a
straightforward correspondence. For example, the vertices V,, 3, V} 3 and
V.3 in layer(3) can be considered as to be derived from V, ;, V;,, and
V.. during the construction of layer (3) upon (layer(2). The vertices of
triangle 7; ; emerge newly in the construction, and between them there is
no straightforward correspondence with vertices inlayer (2). The connec-
tions between corresponding vertices are visualized in Fig. 5.14 as dotted
lines; these connections will be indicated as the longitudinal elements. In
Table 5.1 the list of vertex indices lists for Fig. 5.14 is displayed. The cor-
responding vertex indices have the same (horizontal) vertex index. The
longitudinal elements can be reconstructed using this correspondence.
The same table notation is applied for the list of triangle lists in Table 5.2.
In this representation it is possible to find the neighbouring triangles of
a given triangle in the multi-layered structure, and the (possibly exist-
ing) corresponding triangle in the succeeding and preceding layer can be
detected without traversing all lists of triangles.

In the case that layer (1) was constructed uponlayer(2) andlayer(2)
upon layer(3), the list of vertex indices lists can be described as shown
in Table 5.3.

"~ The null signs in this table show that during the construction some of
the series of longitudinal elements are interrupted, for example the series
V3, Vi has no corresponding vertex on layer(1).

The representation discussed in this section is now suitable to repre-
sent a model of a biological object, as described in Sect. 5.2. The sponge
can be considered as built in layers, each layer consisting of edges (in the
sponges the spicula) which are arranged in triangles. When a new layer
emerges upon a preceding layer, it is possible to represent the subdivisions
which are necessary to conserve a tessellation of nearly equilateral trian-
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gles. The construction of new layers and the subdivision of “non-fitting”
triangles will be discussed further in the next section.

5.5 The Lattice Representation of a Volume Tessellated
with Triangles

With the data structures discussed in the two previous sections it is pos-
sible to represent a geometric model of an organism that is constructed
of layers of triangular tessellations. This representation in continuous 3D
coordinates of the object has many advantages compared to a represen-
tation in discrete space. The growth process itself can be considered as a
continuous process in time and the most natural way to model this process
morphologically is by using a geometric model which allows continuous
increase in size. Many geometric operations, for example transformations,
can be done easily in continuous space. Some of these operations, for ex-
ample rotation and scaling, become less trivial for objects represented
in discrete space. However, for some purposes it is convenient to use a
discrete version of the object, the lattice model, next to the geometric
representation in continuous space.

In order to determine the influence of the physical environment on the
growth process it is often necessary to use a discrete version of the model.
In Sect. 3.7.2 it was demonstrated that the nutrient distribution around
the object can be determined by solving the Laplace equation in discrete
space. In many cases the influence of the physical environment can be
described by partial differential equations like the Laplace equation in
diffusion processes or the Navier-Stokes equation in a moving fluid. In
many solution techniques for these equations, solutions are approximated
in discrete space (see Ames 1977; Niemeyer et al. 1984; Doolen 1990).

In the Sects. 5.6.8 and 5.6.9 the influence of the physical environment
will be modelled by using a lattice version of the geometric model. For
this purpose the geometric model is mapped on a 3D lattice. The compu-
tations which can be done most conveniently in a 3D lattice are carried
out. The results of these computations (local light intensities and nutrient
concentrations) are used in a later stage again in the original model in
continuous space.

A nice feature of the lattice representation of an object is that it offers
the possibility to visualize sections made in an arbitrary plane. In an
object that is represented in geometric space by a multi-layered triangular
tessellation the lattice sites which belong to different layers can be marked.
After this a section can be made through the object and the different

The physical
environment

Visualization
of sections
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Fig. 5.14. An example of a
layered system where a
triangular tessellation is
constructed upon another
triangular tessellation

Table 5.1. List of vertex indices lists for the multi-layer structure in Fig. 5.14

layer index 1 2 3 4 5 6 7 8 9
1 va.l vb.l vc.l

2 Ve Voo Vea Vua Vea Vi

3 Vaz Vo3 Ves Vaz Ves Vis Vez Vs Vi

Table 5.2. List of triangle lists for the multi-layer structure in Fig. 5.14

layer index 1 2 3 4 5 6

1 T,

2 o Too Tyo Ten

3 Thy Tcsz Trs Tes Ths Tz Tes

Table 5.3. List of vertex indices lists for the multi-layer structure in Fig. 5.14. In
this table is assumed that layer (1) is constructed upon layer(2) and layer (2)

upon layer(3).
layer index 1 2 3 4 5 6 7 8 9
3 Vasz W3 Ves Vusz Ves Viz Vesz Vs Vs
2 Va,2 Vb_2 VC‘2 Vd,2 Ve.2 Vf.z null null null
1 Voo Vo Veo null nwll null null nwdl  null




144 3D Models of Growth Forms

triangles are mapped 4— >

on the lattice

—_—

layers can be visualized. The simulated objects which are discussed in
the following subsections can be sectioned with this method. It becomes
possible to compare these sections with the actual sections as shown in
Fig. 3.9 and Fig. 3.11B.

5.5.1 The Lattice Model

In the mapping of the geometric model on the 3D lattice, 3D versions
of the Bresenham algorithm and scan-line filling algorithms are used.
Algorithms which can be used for this purpose are described by Kaufman
(1987, 1988). The mapping of the triangles of an icosahedron, represented
in continuous space, on a 3D lattice of 100 sites is shown in Fig. 5.15. In
the first step the triangles are drawn with a 3D scan-line filling algorithm
in the lattice. After this step, the surface of the icosahedron is represented
by occupied sites in the lattice, and the other sites in the lattice are in the
state “unoccupied”. In the next step the discrete version of the surface of
the icosahedron is filled.

The inside of the discrete version of the surface is filled using a pro-
cedure known in computer graphics literature as the flood-fill algorithm.
The flood-fill starts with a lattice site inside the surface (the “seed”, with
lattice coordinates i _seed, j_seed, k_seed) and this site is set to the state
“recently_occupied”. The algorithm proceeds by testing the 6 direct neigh-
bours of the sites which are in the state “recently_occupied”. The algorithm
stops as soon as no unoccupied neighbours are found anymore and the
boolean new_added lattice sites remains FALSE. The algorithm is
described in pseudo code below:

The discrete version
of the surface

Filling the inside
of the surface
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o

<
Fig. 5.15. Mapping of an
icosahedron, represented in
continuous space, on a 3D
lattice with 100° sites. In A the
geometric model is displayed,
in B the triangles of the
geometric model are
represented in the lattice
model, and in C the inside of
the discrete version of the
icosahedron is filled.

Preconditions
Jor the flood-fill

procedure

(5.17)
flood fill( lattice with discrete version of the surface represented
by lattice sites in the state “occupied™ ) {

lattice[i_seed] [j_seed] [k_seed] = “recently_occupied”,;
do {
new_added_lattice_sites = FALSE;
for each lattice site with coordinates (7,7, k) {
if (lattice[i] [j] [k] == “recently_occupied” ){
if (lattice[i-1][j] [k] == “unoccupied” ){
lattice[i-1] [j] [k] = “recently_occupied”;
new_added_lattice sites = TRUE, }
if (lattice[i+1][j][k] == “unoccupied” ){
lattice[i+1] [j] [k] = “recently_occupied”;
new_added _lattice_sites = TRUE; }
if (lattice[i] [j-1] [k] == “unoccupied” ){
lattice[i] [j-1] [k] = “recently_occupied”;
new_added_lattice sites = TRUE; }
if (lattice[i][j+1][k] == “unoccupied” ){
lattice[i-1] [j+1][k] = “recently_occupied”;
new_added_lattice_sites = TRUE; }
if (lattice[i][j] [k-1] == “unoccupied” ){
lattice[i] [j] [k-1] = “recently_occupied”;
new_added_lattice_sites = TRUE, }
if (lattice[i] [j] [k+1] == “unoccupied” ){
lattice[i] [j][k+1] = “recently_occupied’;
new_added_lattice sites = TRUE; }
lattice[i] [j] [k] = “occupied’;
}
}

while ( new_added _lattice_sites );
all lattice sites in the state “recently_occupied” are changed
- into the state “occupied”;

} end flood_fill

The result of the flood-fill operation is shown in the picture at the
right in Fig. 5.15. The flood-fill procedure only works correctly when the
discrete version of the surface in the lattice satisfies the following two
preconditions: the surface should be a manifold and it is assumed that the
scan-filling algorithm in the first stage in Fig. 5.15 worked correctly and
did not leave “6-connective leaks” in the discrete versions of the triangles.
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The resolution which is necessary in the lattice model depends on the
types of computations in which the lattice model is used. For the storage
of a lattice with 512* sites and an 8-bit representation of each lattice
site it is necessary to allocate 128 Mbytes. For practical reasons such a
huge allocation will often not be possible on the available hardware. An
additional problem is that in many cases it will be necessary to maintain
two copies of the lattice model during the computations: one copy with
the old states and a copy with the updated versions of the lattice sites
(see also Sect. 2.4 on solving the Laplace equation; for this problem two
lattices are used).

5.5.2 The Virtual Lattice, a Subdivision of Space

The hardware limitations mentioned in the previous section can be over-
come by using the property that the considered objects often only occupy
a small part of the lattice and the whole structure can be represented in
a more compressed way. In an alternative representation a lattice is used
with lattice_size® lattice units, each unit can be further subdivided into 8
subunits, and each subunit can in turn again be subdivided into § smaller
subunits. The value of /attice_si ze is chosen in such a way that the lattice
can easily be allocated on the available hardware. Each unit or subunit can
be in any of three states: “unoccupied”, “occupied”, or “subdivided”. In
the last case the unit or subunit contains an index which refers to a subunit
in a list containing the state of the subunit. The subunit in the list can be
again in the three possible states.

Storage of the lattice

Subunits

Fig. 5.16. An edge, visualized
with a resolution of 16? lattice
sites, represented with a lattice
consisting of 43 sites and an
additional list of 12 subunits



The Lattice Representation of a Volume Tessellated with Triangles 147

Fig. 5.17. The icosahedron
volume from Fig. 5.15C
visualized with a resolution of
400? lattice sites and
represented with a lattice
consisting of 1003 sites and an
additional list of 106 081
subunits

Flood-fill algorithms

¥

R

In Fig. 5.16 an example is shown how an edge, visualized with a
resolution of 16 lattice sites, can be represented with a lattice of 4° sites
and a list of 12 subunits. Only the sites near or at the edge occur in the
list. The length of the list depends, of course, on the complexity of the
object represented in the lattice. In the objects which will be shown in
later sections, this method yields an enormous saving in memory. It also
becomes possible to develop special versions of algorithms, for example
the flood-fill algorithm shown in the previous section, which can traverse
the 3D lattice relatively fast. In Fig 5.17 the volume of Fig. 5.15C is
visualized in a virtual lattice with 400° sites. The surface was represented
by a lattice of 100 sites and an additional list with subunits of 106 081
elements. In this additional list only the sites from the icosahedron volume
are represented which are at or near the surface. Most of the inside of the
volume is represented by units of the 1003 lattice which are in the state
“occupied”, while most of the outside of the volume is represented as
“unoccupied” sites in the 1003 lattice. Only where a higher resolution is
necessary, at and near the icosahedron surface, are sites from the 100’
lattice in the state “subdivided” and refer to subunits from the additional
list. In a version of the flood-fill algorithm which uses this virtual matrix,
the step size when the lattice is traversed can be adapted. Outside and
inside the icosahedron surface the step size will be a lattice unit of the
1003 lattice, while near and at the surface the step sized is decreased to
that of 400° lattice.
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5.6 An Iterative Geometric Construction
Simulating the Radiate Accretive Growth Process
of a Branching Organism

In this section the development of a 3D model for radiate accretive growth
is discussed (see also Kaandorp 1993b). In this model the representation
method for multi-layered triangular tessellations, discussed in the two
previous sections, will be used to represent the objects in the iteration
process. In the model a skeleton structure, as found in Haliclona simulans,
is simulated. In the model a layer, consisting of a triangular tessellation, is
constructed upon a preceding layer. In this simulation model the tangential
spicula of Haliclona simulans are represented as tangential edges with an
approximately constant size s (5.9), while the longitudinal spicula bundles
are mimicked as edges with a variable length. The multi-layered structure
(compare Fig. 5.14) is an imitation of the structure of Haliclona simulans,
which may be transformed (as explained in Sect. 5.2) into a multi-layered
structure of pentagons and hexagons. This structure can serve as a more
general model for organisms with radiate accretive growth. The lattice
representation of a triangulated object, as discussed in Sect. 5.5, will be
used to determine the influence of the physical environment (light and
nutrient distribution) on the growth process.

5.6.1 The Initiator

As an initiator of the iterative geometric constructions shown in this sec-
tion, a triangulated sphere is used. The triangulated sphere can be derived
from the icosahedron. In the icosahedron all vertices are situated on the
surface of a sphere. When the triangles of the icosahedron are subdivided
into four new triangles (compare the subdivision shown in Fig. 5.10) and
the resulting new vertices are projected on the sphere, exactly enclosing
the original icosahedron, a triangulated sphere is obtained. This procedure
can be repeated leading to a series of spheres (see Fig. 5.18). The original
icosahedron is shown at the left side of the picture. The series of trian-
gulated spheres is also known as a series of icosahedral geodesic domes
with different frequencies (see Wenninger 1979). The spheres are tiled
with approximately equilateral triangles. The triangles are not completely
equilateral; they can be organized in pentagons and hexagons. A convex
object cannot be tiled with either pentagons or hexagons only (see also
Wenninger 1971, Lord and Wilson 1984). The incenters of the pentagonal
and hexagonal groups of triangles are called the pentavalent and hexava-
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Fig. 5.18. A series of
triangulated spheres derived
from an icosahedron (displayed
at the top of the figure) by
subdivision of a triangle of a
preceding sphere into four new
ones. The subsequent
subdivisions of the icosahedron
serve as 1nitial polyhedrons for
the iteration process
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Frequency of a
triangulated sphere

Aulonia

Protrusions in an
encrusting layer

lent vertices of the triangulated spheres. The frequency of such a sphere
can be determined by counting the number of edges, using the shortest
path, between two neighbouring pentavalent vertices. The frequency of
the spheres depicted in Fig. 5.18 is from left to the right respectively 1, 2,
and 8. The pentavalent vertices in this figure are the original vertices of
the icosahedron.

Members of this series of icosahedral domes are often found in na-
ture. An example is the spherical radiolarian Aulonia shown in Fig. 2.7.
When the triangles of the sphere are organized in pentagons and hexagons,
a structure is obtained closely resembling Aulonia. Another famous ex-
ample of spheres, tiled with pentagons and hexagons, which can be de-
rived from the series of icosahedral domes for given frequencies, are the
fullerenes (see Carl and Smalley 1991). In these C-molecules, from which
the “buckyball” is the most famous example, the C-atoms are organized
in a sphere tiled with pentagons and hexagons.

The biological relevance of the spherical initiator for the object with
radiate accretive growth is derived from the observation that in many of
these organisms the growth process starts from hemispherical protrusions,
which develop in an encrusting layer. The arrangement of the tangential
elements in the triangulated spheres corresponds with the penta-hexagonal
arrangements, which can be observed in tangential views of organisms
with radiate accretive growth (see Figs. 3.10B, 3.13A, and 5.8).

The 3D model for radiate accretive growth is developed stepwise,
applying a comparable strategy as in the development of the 2D model
(see Fig. 3.17); this development is shown in Fig. 5.19. The initiators used
in all constructions displayed in this section are all n-frequency derivates
from the the icosahedron.

5.6.2 The Basic Construction: the Generator

The basic construction is depicted in Fig. 5.20. In this picture a new longi-
tudinal element, with length /, is constructed upon a preceding layer. The
longitudinal element is constructed perpendicular to the preceding layer
by determining the mean value of the direction of the normal vectors in the
collection set _triangles(T; j, V; ;): the set of triangles surrounding the
vertex V; j (5.14). The length | is determined by the generator processing

function from (3.1). The angle « is used as an argument in the genera-

tor processing function (local_inf in Fig. 2.40), the angle between the
longitudinal element and the vertical. The construction generates a new
vertex V; ji; the newly generated vertices together define new triangles
T:, j+:1. The construction is basically similar to the one shown in Fig. 3.19.
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A difference is that in Fig. 3.19 a new “fertile” tangential edge and a
“non-fertile” longitudinal one are added to the originally “fertile” tan-
gential edges, while in Fig. 5.20 originally “fertile” vertices generate new
“fertile” vertices. The new vertices define a new longitudinal element and
new tangential ones. The tangential elements are by definition connected
which makes the continuity rule as applied in in the 2D construction (see
Sect. 3.6.2) superfluous. The construction is described in the following
replacement system:

initiator = V={V1,F); - (Vaaa, F);} (5.18)
7= {Tl,l; "'T80,1$ }
generator = (Vi j, F); = (Vij, NF); (Vi jy1, F);

Va,js F); = (Va,j, NF); (Vg j11, F);
Vo, j» F); = (Vb j, NF); (V. jy1, F);
Tij = (Vij, Vajs Vb j)s -+

Ti jrr = ((Vija1, Vajri, Vo j+1), -+ 2)
Tiji—> Tij Tijys

In this system the construction starts with a triangulated sphere consisting
of 80 faces. First the new vertices (Vi j+i, Va j11, Vb, j+1) are generated,
and after this step a new triangle 7; j1, can be constructed between the
three neighbouring new vertices.

The result of the construction, after a few iteration steps, is displayed
in Fig. 5.19A. The biological interpretation of the generator processing
function is explained in the Sect. 3.6.1, on the basic construction applied
in the 2D model.

5.6.3 Isotropic Growth and the Insertion of New Elements

In the object in Fig. 5.19A it can be seen that the tangential elements dilate
further with each iteration step. To obtain an object where the surface
is tessellated with triangles with nearly equal-sized tangential elements
an additional rule is necessary. In the simplest case this problem can
be solved by subdividing any triangle where all three edges exceed the
maximum value 1.5s allowed for a tangential element (5.9) into four
triangles. Examples of such subdivisions are shown in Figs. 5.10 and
5.14. The effect of setting a maximum size to a tangential element is
depicted in Fig. 5.19B. The subdivision of excessively large triangles
can be compared with the insertion rule in Sect. 3.6.2 used to preserve

|
|

Fig. 5.19. Diagram showing the
development of 3D growth
models for organisms with
radiate accretive growth

Vij+

\

Tij+1
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Fig. 5.20. The basic
construction applied in the 3D
models for radiate accretive

growth. In the construction a
new vertex V; jis
constructed upon a vertex V; ;
from the preceding layer: the
construction defines a new
longitudinal element (length /)
and a new triangle T; 41,
consisting of tangential
elements.
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coherence in the 2D skeleton. The insertion of new triangles and the
inclusion of a threshold inhibition_level for the longitudinal element
(this threshold will be discussed below) is described in the following
replacement system:

initiator =

generator =

3D insertion

rulel =

V={W1, F); - (Var1, F); } (5.19)
7= {Tl,li T3 )
(Va,ja F)a g

if (I > inhibition_level) then (V, j, NF); (V4 j41, F),
else (Vo j, NF); (Vg j1, SF);

Vo.j, F); —

if ({ > inhibition_level) then (V. j, NF); Vp j41, F);
else (Vi j, NF); (Vb j1, SF);

Ve, j, F); —>

if (I > inhibition_level) then (V; j, NF); (cb.j+1, F),
else (V¢,j, NF); (Ve jy1, SF);

Ve1,js NF); = (Vi j, NF);

Viz,j» SF); = (Via,j, SF);

Tij=((Va ;s Vojr Vbj), -+ 0)

Tijrr = (Vajtr, Voja1, Ve j41), - 0)

Tijs— T j; Tijyrs

if (1 Va, j+1, Vo jill > 1.55) &&

Vo, jx1, Ve jill > 1.55) &&

(FVe j+1, Va j+11 > 1.55)) then

Va,j+1, F); Vb j1, F); (Ve jq1, F); —

(Va,j+15 F); Vnaj+1: F)s (Vo 1, F);

Vab j+1, F)s (Ve j+1, F); (Vae j1, F);

Tl = ((Va,j+1, Vaa,j+15 Ve j+1, (), (T5,T7,0))
T2 = ((Vaa,j+15 Vo.j+15 Vb j+1), (), (T'5, T6, 0))
T3 = ((Vac,j+15 Vabj+1, Ve j+1), ¢ -), (T6,T7,0))
T4 = ((Vaa.j+1s Vab, j+1, Vac,j41), C+2), (null, null, 0))
T5=T1,T2,null), (), (null, null, 1))

T6 = ((null, T2,T3), (---), (null, null, 1))
T7=(T1,null, T3), (--), (null, null, 1))

T jyi;—>T1;---TT,
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Fig. 5.21. Objects emerging
subsequently in the iteration
process by applying model
Fig. 5.19

3D insertion rule

Threshold value
of the longitudinal
element

The consequence of this rule (3D insertion rule 1)is that new triangles
and longitudinal elements are generated. In Fig. 5.21 a few column-like
objects are shown which emerge in subsequent iteration steps. Each time
a new vertex is generated in the iteration process, the starting point of a
corresponding new longitudinal element is defined on the growth layer.

The biological meaning of this 3D-insertion rule is that in reality
the surface of the organism is tessellated with discrete skeleton elements,
which can vary only somewhat in size (see Figs. 3.10B, 3.13A, and 5.8).
The choice of the lower and upper limit in (5.9) was an arbitrary one; in
reality these limits are typically species-specific properties.

When the generator processing function (3.1) is applied a layered
structure is generated, where the distance between the subsequent layers
can become zero at the sides of a column-shaped object. The length of
the longitudinal element / will become zero at a vertex Vi ;, where the
mean value of the directions of the normal vectors of the the triangles sur-
rounding the vertex (set_triangles(Vi j, Ti.j) in (5.14)) is perpendicular
to the direction of the y-axis.

In order to avoid the generation of a multi-layered structure with
arbitrarily short longitudinal elements, a generator-processing functior
with a threshold value (inhibition_level in (3.9)) can be used. In analogy
with the 2D model (see Sect. 3.6.3) the status of the fertile vertices is set
to the state “non-active”. The surface of the object is limited by a mesh
with fertile vertices in either the state “active” (F in (5.19)) or “non-
active” (SF in (5.19)). These “non-active” fertile vertices can be used
in a more advanced version of the 3D model, where the “non-active”
vertices are set to state “active” again and can participate in a secondary
growth process (see also Sect. 3.6.3). The consequence of the introduction
of “non-active” fertile vertices is that in some parts of the multi-layered
structure the subsequent layers may coincide in the areas with “non-active”
vertices. The result of applying a generator-processing function with a
threshold is an object as shown in Fig. 5.19B. The difference between
objects generated with a generator-processing function with and without
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this threshold can only be observed when longitudinal sections of both
objects are compared (see Figs. 3.17B and 3.17C), where in these sections
the thickness of subsequent layers is visible.

The biological interpretation of the threshold rule is discussed in
Sect. 3.6.3: in organisms with radiate accretive growth, where the skele-
ton elements are secreted internally (as in the Haliclona species), the
longitudinal fibres cannot become too short, since these fibres are built
from discrete skeleton elements.

When a longitudinal section is made through the object depicted in
Fig. 5.19B, parallel to the axis of growth (in this case the vertical), the lay-
ered structure becomes visible. In Fig. 5.22 a part of the object is removed
to show this layered structure. The image obtained from this longitudi-
nal section corresponds with the 2D simulations from Chap. 3. When
another longitudinal section is made through the object in Fig. 5.22 and
the section is made parallel to the axis of growth and includes the centre
of the column, the same image will be obtained. The type of generator
processing function (3.1) used in this object, where different longitudinal
sections remain equal, can be defined as “isotropic”. In the actual objects
a characteristic of isotropic growth is that the growth function empirically
derived from longitudinal sections (see Fig. 3.20) turns out to be the same
in different section planes.

Fig. 5.22. Longitudinal section
through a column-shaped
object (see Fig. 5.19B) where a
part of the object is removed to
show the layered structure

Fig. 5.23. Determination of the
angle 8 between the projection
of the mean normal vector on
the xz plane, in a vertex Vi, j
and the horizontal (indicated as
the x-axis). In the model the
direction of the flow
corresponds to the z-axis.
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Club-shaped objects

Widening effect

5.6.4 Anisotropic Growth and the Insertion of New Elements

The Model. In Fig. 5.19B the curvature of the top of the object remains
unchanged in the iteration process. In order to obtain objects which flatten
slightly atthe top, a generator-processing function like the one from (3.11)
can be used. The result is a club-shaped or clavate object, as shown in
Fig. 5.19C. In this object the degree of widening can be controlled with
the parameter w. In this clavate object a disc of equal-sized longitudinal
elements appears instead of one maximum value. A longitudinal section,
made parallel to the axis of growth and including the centre of the object,
will yield the same image in different planes. The function from (3.11) is
an isotropic one.

An example of an anisotropic generator-processing function is shown
in (5.20). In this function the object does not widen equally in all direc-
tions.

d = w/cos(f)for0<p <m/2 (5.20)
1.0 for0 < a < (w/d)
fl@B) = { cos((w/2)/ (/2 — m/d) - (@ — 7/d))
for(n/2+7m/d)<a<m

N R f(a, B) for f(a, B) > inhibition_level
— ] 0.0for f(a, B) < inhibition level
w > 2

In this function the degree of widening d depends on the angle B (see
Fig. 5.23) between projection of the mean normal vector in a vertex Vj ;
on the xz-plane and the horizontal (indicated as the x-axis). The angle 8
represents the angle between a longitudinal element and the flow direc-
tion, which corresponds with the direction of the z-axis. When 8 = 0 the
widening effect, controlled by the parameter w, is maximal. In this case
the function f(«, B) corresponds with the generator-processing function
from (3.11). For B = 7 /2 the widening effect is minimal, d is infinitely
large, and f(a, B) corresponds with the function cos(a). In Fig. 5.24 the
shape of function (5.20) is displayed for various values of 8. The result of
applying this generator-processing function is a flattened clavate or pla-
nar object (see Fig. 5.19D). In the flattened object a pretzel-shaped area
emerges of equal-sized longitudinal elements.

A side-effect which occurs in the generation of a flattened object
(Fig. 5.19D) is that the triangles on the surface are not enlarged equally in
all directions, as in the clavate object (Fig. 5.19C). The result is an object
in which one or two edges of a triangle exceed 1.5s in (5.9) so that when
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the construction is continued a tessellation emerges where the triangles
are far from approximately equilateral. The problem cannot simply be
solved by the subdivision of the triangle into 4 smaller daughter triangles
(3D insertion rule 1), for this operation would yield triangles with one
or more too small (smaller than 0.5s) edges. A solution is depicted in
Fig. 5.25. Here two triangles, both with two edges exceeding 1.5s in (5.9),
are subdivided into four daughter triangles. This subdivision method (3D
insertion rule 2) does not disturb the penta-hexagonal organization of
the tessellation by introducing for example an octavalent vertex, and all
vertices remain quadri-, penta- or hexavalent.

The Biological Objects. In Sect. 3.6.4 the biological relevance of the
widening effect is discussed. The relation with the actual objects can
be observed in Fig. 3.11B, where the branch widens before branching.
Without widening, the organism would split up into ever smaller branches.
In the longitudinal section it can be seen that the organism widens slightly,
because there is a small area of equal longitudinal elements at the tip
of the branch. The widening effect can work equally in all directions
causing a club-shaped organism, which has some special implications for
the branching process. The biological relation of this clavate form in the
formation of branches will be discussed later on.

In most cases, in for example both Haliclona species, it can be ob-
served that branches do not widen equally in all directions. Especially in
Haliclona oculata (see Fig. 3.11B) the sponge widens more strongly in
one plane than in the other, causing a flattened growth form. For many
marine organisms the growth process takes place in an environment with
tidal flows. The flow pattern for a laminar flow might occur as depicted
in Fig. 5.26 (see Wainwright and Koehl 1976; Koehl 1976 and 1982; Vo-

Fig. 5.24. Shape of the function
fla, B) (5.20)

Second
3D insertion rule

Flattened
growth forms
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Fig. 5.25. Subdivision of two
triangles, both with two edges
exceeding 1.5s in (5.9), into
four daughter triangles

The angle B

Fig. 5.26. Flow pattern around
an organism growing in a
laminar flow. The flow
velocities around the object are
zero at point A (flow
perpendicular to the object),
increase towards the sides, and
have a maximum in point B.

gel 1983). The flow pattern reverses in direction, basically twice a day,
because of the tidal movement. The flow velocities around the object will
be zero at point A (flow perpendicular to the object) and increase towards
the sides, and have a maximum at point B. The flow velocities are highest
at the lateral sides of the organism, parallel to the flow, together with the
supply of suspended material. This results in a relatively faster growth to-
wards the lateral sides parallel to the flow. The growth velocity at a point in
the organism depends on the angle B: the angle between the projection of
the mean normal vector in a point on the xz plane and the x-axis (when the
organism’s growth axis is the y-axis and the flow is in the z-direction). In
f (a, B) (5.20) the secretion of elements also depends on the angle 8 with
the flow direction. In many marine sessile organisms the phenomenon
can be observed that flattened growth forms emerge (see also Fig. 3.8),
when the organism is positioned perpendicular to the prevailing flow di-
rection (see Jackson 1979). The emergence of such a flattened form can
be explained by assuming, as above, that the growth velocities are not
equal in all directions, but depend on the position with respect to this flow
direction.

.= The biological interpretation of the second 3D insertion rule corre-
sponds with the one for the first 3D insertion rule. The preservation of the
penta- hexagonal organization is based on observations made in tangen-
tial views of the biological objects (see Figs. 3.10B and 3.13A), where
predominantly quadri-, penta- and hexavalent vertices are observed.

5.6.5 Formation of Branches

Branches are formed in analogy with the 2D model. For this purpose a
series of estimations is made of the local radius of curvature in a ver-
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tex Vi j. The first step is to collect a set circle of vertices surrounding
the vertices in the set set_vertices(T; ;, Vi ;) (5.8). After this the set
set_vertices(T; j, Vi, ;) is deleted from circle, a set of vertices is left
which are situated approximately in a circle around the vertex Vj ; (see
Fig. 5.27). The algorithm in which the set circ/e is determined is described
below:

collect_circle( circle, T; j, Vi j ) {
circle = set_vertices(T; j, Vi, j);
st = set_triangles(T; j, Vi j);
for each vertex Vi, ; € set_vertices(T;;, Vi j) {

(5.21)

/\/ \

take a triangle T}, ; from st in which the vertex Vi, ; occurs;
circle += set_vertices(Tiz j, Vi ),
}
circle -= set vertices(T; j, Vi ),
} end collect_circle

From these vertices 3 pairs (indicated with black dots) of vertices
are selected, which are situated at a maximum distance from each other.
The vertices, can be considered as situated approximately on a circle. The
vertices in a pair are situated approximately on a diameter of this circle.
In the second step, for each pair and the vertex Vj ; an estimation is made
of the radius of curvature. This radius of curvature is estimated in a plane
perpendicular to the mean normal vector in vertex Vj ;. For this purpose
the pair of vertices is projected onto this plane. The estimation is done
by constructing a circle through the two projected vertices and the vertex
Vk.j. The radius of curvature is infinitely large when the projected pair
of points and Vj ; are situated on a line and is negative when they are on
a concave surface. In the third step the radii of curvature are normalized
using function h(rad_curv) of (3.14). In step four the measurements are
summarized in one index (curv_index) expressing the amount of contact
with the environment. This index is formed by the product of the lowest
value (low_norm_curv) and the average value (av_norm_curv) of the
normalized radii of curvature:

curv_index = low_norm_curv - av_norm_curv (5.22)
In the actual organism the amount of contact with the environment will
decrease when the average radius of curvature increases. When a certain
critical value (max_curv) in (3.14) is exceeded, which is related to the
capabilities of the transport system, no nutrient at all will be transported
and the growth velocity will become zero.

JAVAVY

Fig. 5.27. Determination of a
set of vertices, situated
approximately in a circle
around the vertex V; ;. From
these vertices 3 pairs (indicated
with black dots) of vertices are
selected, which are situated at a
maximum distance from each
other. The pairs and Vj_; itself
are used for the estimations of
the radius of curvature.

Amount of contact
with the environment
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Fig. 5.28. Replacement of an
old growth axis A by two new
ones B and C. The fertile
vertices in this picture are
visualized with edges which
represent the direction of the
associated growth axis.

Replacement of
growth axes
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In Fig. 5.19F this estimation of the local radius of curvature is used
to determine the length / of new of new longitudinal elements, which is
now determined by a combination of f(«, B) and curv_index:

s - f(a, B) - curv_index (5.23)
I = {for f(a, B) - curv_index > inhibition_level
0.0 for f(«, B) - curv_index < inhibition_level

In this construction a flattened object is used, which widens more in the
xy plane than in the xz plane. As soon as the radius of curvature exceeds
the maximum allowed value, in the xy plane two local maxima are formed
(see Fig. 5.28). In the 3D model the longitudinal elements with a local
maximum value, or an area with equal-sized maximum values, are sur-
rounded by smaller ones. In correspondence with the 2D model these local
maxima are associated with new growth axes. In Fig. 5.28 the replace-
ment of an old growth axis A by two new ones B and C is displayed. The
fertile vertices in this figure are visualized with edges which represent the
direction of the associated growth axis. The growth axis is an attribute
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of each vertex in the replacement system (compare the association rule
in the replacement system in (3.13)); this attribute is changed in the 3D
association rule.

The patches with fertile vertices in Fig. 5.28 represent the sites in the
object where growth still takes place and where the length / of the lon-
gitudinal element has not dropped below the threshold inhibition_level
in (5.23). After some iteration steps a local minimum develops and the
patch of fertile vertices is separated into two new ones, because locally the
maximum allowed radius of curvature max_curv in (3.14) is exceeded
and the curv_index component in (5.22) becomes zero. In the two new
patches the growth process continues independently and two new growth
axes develop. A new growth axis in a patch is defined by the direction
of the longitudinal element with a length [ which is a local maximum. In
the actual sections (Fig. 3.11B) it can be observed that as soon as protru-
sions develop, the direction of growth is determined by the direction of a
longitudinal element with a length which is a local maximum.

The detection of local maxima and the association of fertile vertices
with growth axes is done in three steps and is described in the axis as-
sociation algorithms (5.24), (5.25), and (5.26) given below. In the first
step the patch of vertices fertile_patch in the state F is collected in the
procedure collect _fertile_patch (5.24). The procedure starts with an ar-
bitrary chosen vertex in the state F' Vy ;. In the algorithm two alternating
lists list _a and list_b are used. In all three axis association algorithms, a
vertex in combination with a triangle in which the vertex occurs is always
used. As discussed in Sect. 5.3 this combination is necessary since the
only possible way to access the individual vertices is to use the list 7:
in this list the neighbour triangles and their vertices of a given triangle
T; j can be accessed, while the list }V does not possess this feature. In
(5.24) the algorithm proceeds by extending the patch of fertile vertices
fertile_patch with new fertile vertices which surround the vertices at
the borders of fertile_patch. The new vertices and their corresponding
triangles are collected in the sets sv and st respectively. The algorithm
stops as soon no new fertile vertices are encountered and fertile_patch
is bordered by vertices in the state SF.

3D association rule

Collection of a patch
of fertile vertices
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Detection of
local maxima

Association with
growth axes

collect_fertile_patch(T;1 j, Vi1 . fertile_patch ){ (5.24)
fertile_patch = ¢;
list_a, with triangle vertex pairs, is initialized with the pair
(Ti1.j, Via,j)s
do {
list_b, with triangle vertex pairs, is emptied,
for each pair (T}, ;, V2, ;) in list_a {
sv = setvertices(T;2 j, Via. ),
st = set_triangles(T;3 j, Via, ),
sv -= fertile_patch;
all vertices in the state SF are removed from sv;
for each vertex Vi3 ; in sv{
take a triangle T;3 ; from st in which the vertex Vi3 ;
occurs;
add the pair (T;3 j, Vi3 j) to list_b;

fertile_patch += sv;
copy list_b to list_a;

} while ( list_b is not empty );
} end collect_fertile_patch

In the second step of the 3D association rule, fertile_patch is pro-
cessed by the procedure find local maxima (5.25), in which the local
maxima are detected in the patch. For this purpose the distance d be-
tween each vertex in fertile_patch in layer(j) and its predecessor in
layer(j — 1), the length of the longitudinal element, is measured. In the
case the vertex Vi j in fertile_patch was newly inserted in the first or
second 3D insertion rule, this corresponding predecessor does not exist.
In the algorithm (5.25) one or two longitudinal elements, with indices
max 1 _nr and max2_nr and with respective lengths max1_d and max2_d
which are local maxima, are detected. As depicted in Fig. 5.24, the ap-
plication of function f(«, 8) may lead to an area of equal-sized local
maximum values of lengths of longitudinal elements. In this case the po-
tential maximum max1_nr is positioned in the centre of the area. When
there is only one local maximum detected, as for example in the left object
in Fig. 5.28, the vector DA1 with the direction of the maximum longi-
tudinal element is determined. All vertices in the patch fertile_patch
are associated with the growth axis DAI. In the case there are two local
maxima detected (for example the right object in Fig. 5.28), two growth
axes DAl and D A2 are determined and fertile_patch is split into two
new patches in the procedure split_patch.



162 3D Models of Growth Forms

find_local_maxima( fertile_patch ){ : (5.25)
max2_d = maxl_d = 0;
max2_nr = maxl_nr = null;
for each vertex Vy, ; € fertile_patch {
if (vertex Vi j—; exists ){
d= Vi j—1, Vi jll;
if (d > maxl_d){
max2_d = maxl _d;
max2_nr = maxl_nr;
maxl_d=d;
maxl_nr = kl;
if (longitudinal element (Vi1 j_;, Vi1 ;) isina
patch with longitudinal elements with equal lengths ){
the index maxI_nr is set to the index of the
longitudinal element situated centrally in the patch,

}
}
}

if ( max_nr2 == null ){
DAl = Vmax_nrl,j - Ymax_nrl,j—1,
all vertices in fertile_patch are associated with the vector DA,

else {
take a triangle T;; ; in which the vertex V4, _n,1.j 0Occurs;

DAl = Vmax_nrl,j - Vmax_nrl,j—1,

take a triangle T}, ; in which the vertex Vi ax_nr2.j occurs;

DA2 = Vmax_nrz,j - Vmax_nr2,j—1,

Split—patCh( Til,j; Vmax_nrl,j; DA], Ti2.j: Vmax_nr2,j; DA‘?);
}

} end find_local_maxima

The procedure split_patch works in a similar way as

collect _fertile_patch andis also based on set operations. The procedure
is initialized with the two vertices that are local maxima and both vertices
are associated with their corresponding growth axes DA1 and D A2. The
procedure involves collecting new vertices in the state F in the set sv
around a vertex Vi j from the collection of fertile vertices. The vertices
in sv are associated with the growth axis DAXI S, which is an attribute
of Vi ;. The algorithm stops as soon no new vertices in the state F are
found and the investigated area of fertile vertices patch is bordered by
vertices in the state SF.

Axis attribute
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Dichotomous
branching

split_patch(Tilyj, Vmax_nrl,j; DAL, 7‘,'2’]', Vmax_an,j; DA2 ){ (526)
patch = ¢;
list_a, with triangle vertex pairs, is initialized with the pairs
(Til,j; Vmax_nrl,j) and (Ti2,j: Vmax_nr2,j);'
verteX Vinax_nr1,j 18 associated with axis DAI;
verteX Viuax_nr2,j 1s associated with axis DA2;
do {
list_b, with triangle vertex pairs, is emptied;
for each pair (T;3 j, Vki1,;) inlist.a {
sv = set_vertices(T;3 j, Vii,j);
st = set_triangles(Ti3 j, Via, j)
sv -= patch;
all vertices in the state SF’ are removed from sv;,
take the growth axis DAXIS associated with vertex Vi ;;
for each vertex Vi, ;) in sv{
associate vertex Vi, ;) with growth axis DAXIS;
take a triangle T;4 ; from s in which the vertex Vj, ;
occurs;

| add the pair (T4 j, Vi, ;) to list_b;

patch += sv;
copy list_b to list_a;
}
} while ( list_b is not empty );
} end split_patch

In the algorithms (5.25) and (5.26) it is assumed that a maximum
of two new growth axes can be found and split_patch will lead to the
splitting of the original patch into two patches with distinct growth axes
and lead to dichotomous branching. There is no reason to limit these
algorithms to a maximum of two growth axes: it is only for simplicity
reasons that the displayed algorithms are restricted to two growth axes.
Both algorithms can be extended more or less straightforwardly to a larger
number of growth axes. In the actual objects (see for example the sponge
Haliclona oculata in Fig. 4.15) higher order branching can be observed
quite often. In the actual objects the sites where material is added to the
organism can be separated simultaneously into more than two patches
where the addition of material continues.
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5.6.6 The Coherence Conserving Rules

Until now two types of coherence conserving rules (the first and second
3D insertion rule) were used, in which new longitudinal elements were
inserted as soon as the tangential elements become too large. The type
of rule being applied depends on whether triangles enlarge equally in
all directions (isotropic dilation) or enlarge more in one direction than
another (anisotropic dilation). In a branching object generated with the
construction from Fig. 5.19F and displayed in Fig. 5.29, the reverse situa-
tion can also occur. In the branching process fertile vertices may become
enclosed between the other vertices and situations can occur where there
is not enough space for the formation of triangle edges larger than 0.5s
(5.9). In order to resolve this situation it is necessary to delete longitu-
dinal lines in the layered structure. This deletion can also be observed in
Fig. 5.14, when layer(2) is thought to be constructed upon layer (3) and
layer (1) upon layer(2). In Table 5.3 it can be seen that some of the lon-
gitudinal lines (for example the line between the vertices V3 and V¢, in
Fig. 5.14) disappear in the construction of layer (1) upon layer(2). The
deletion of longitudinal elements should be applied while preserving the
penta-hexagonal organization of the tessellation.

In Fig. 5.30 the deletion and insertion rules are displayed. The second
3D deletion rule is applicable in the anisotropic case where in successive
growth steps the size of tangential elements especially in one direction
decreases. In the branching object depicted in Fig. 5.29 this situation
occurs between the branches. In the actual objects this deletion can be
observed in a longitudinal section, as shown in Fig. 3.11B, between the
branches. Without the deletion of “non-fitting” vertices a skeleton would
emerge in which the triangles become arbitrarily small, which is never
found in reality (see Fig. 5.8).
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Fig. 5.29. A branching object
generated with the construction
from Fig. 5.19F
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Fig. 5.30. Insertion and
deletion rules for isotropic and
anisotropic growth functions

3D deletion rule 1

Coherence
conserving rules in
branching objects

/NN

insertion rule 1 deletzon rule 1
anisotropic
> \AA/ W
insertion rule 2 deletion rule 2

The first 3D deletion rule is only applicable in the isotropic case,
where the edges decrease in size equally in all directions. The first 3D
deletion rule is exactly the reverse operation of the first 3D insertion
rule. An example of the case that a cluster of triangles emerges, that
decrease in size equally in all directions in successive iteration steps, is
the construction of a cup-formed object. At the bottom of the cup this
cluster of too-small triangles evolves. This cup form is a common growth
form among sponges (see van Soest 1989). A cup-formed object can be
simulated by using an isotropic growth function (3.11) with a plateau with
maximum values. This function will yield a club-shaped object, as shown
in Fig. 5.19C. When this function is used instead of f(«, B) in (5.22)
the.club-shaped object will transform into a cup form at the moment
max _curv in (3.14) is exceeded.

In the branching objects which will be shown in the following sections,
the coherence conserving rules A, C and D from Fig. 5.30 are used. In
the experiments the tangential elements were allowed to vary within the
range 0.5s..1.5s. Edges below and above this range were removed using
the insertion and deletion rules. In the objects it was nearly possible to
create a tessellation satisfying this range, but in the simulations a residue
of about 20 % of triangles with one or more edges below 0.5s was left
over. It is still an open problem whether this condition can be satisfied
completely in a tessellation where only 4-, 5- and 6-valent vertices are
used.

5.6.7 More Evolved Branching Objects and Collision Detection

The Model. Inthe branching object shown in Fig. 5.29, there is no mech-
anism which prevents branches from growing through each other. To avoid
physically impossible situations it is necessary to include an anti-collision
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rule. In the 3D models collision detection is done in a similar way as in
the avoidance rule in the 2D models (see Sect. 3.6.7). In 3D collision
detection, basically all vertices in the state F have to be compared with
all vertices and this comparison takes O (number of vertices in the state F
x number of vertices) computation time. Especially for large objects it is
worthwhile to make some improvements in the efficiency of the collision
detection algorithm and to try to reduce the number of comparisons.

In the collision detection algorithm in (5.27) in the first step the bound-
ing box is determined that encloses the object. The bounding box is sub-
divided into nsub_boxes® sub-boxes. After this a list is created with the
sub-boxes and for each vertex Vi, ; it is determined in which sub-box the
vertex is located. Each sub-box in the list is filled with indices of vertices
that are located in the sub-box. After this operation the number of compar-
isons can be reduced considerably. When the vertex is in state F, it only
has to be compared with the vertices in sub_box containing Vy, ;. The im-
mediate neighbours of Vi ;, which are in the set disc, are excluded from
the test. As soon as the distance d between Vi, ; and another vertex Vi, ;
becomes too short and drops below the threshold min_dist, the state of
the considered vertex is set to S F. This ensures that no new longitudinal
elements are constructed upon this vertex and that self-intersections are
prevented.

collision_detection(T, V ){ (5.27)
the upper, right, back and the lower, left, front corner of
the box enclosing all vertices in V are determined;
a list is initialized with nsub_boxes® sub-boxes;
for each vertex Vi, j € V{
the sub_box in which Vi, ; is located is determined;
the index k1 is added to sub_box,

for each vertex Vi, ; € V and its corresponding
triangle T;; j € T {
if (Vi j is in the state F' ){
disc = sv = set vertices( T;y j, Vk1.j )
st = set_triangles( T;\ j, Vi1,j ),
for each vertex Vi, j € sv {
take a triangle T;, ; from st in which Vy, ; occurs;
disc += set_vertices( Tz j, Via.j );

}

Avoidance rule

Collision
detection algorithm
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the sub_box from the list with sub-boxes in which Vy, ;
is located is determined;
for each vertex (Via ; € sub_box ) && (Via,j & disc) {
d=1Vii,j, Via, jll;
if (d < min_dist ){
Vi1, j is set to the state SF;

}
}
}
}
} end collision_detection
The replacement The complete replacement system, including collision detection, is
system shown in a summarized form in (5.28). In this replacement system the

exact description of the coherence conserving rules from Sect. 5.6.6 is

left out for simplicity reasons.
(5.28)

V={Vi, F,0,1,1); - (Via1, F, (0,1, 1)); }

T =(T\,; - Tso1;}

generator (Va.j, F, prev_DA); —

if (I > inhibition_level) then

(Va.j, NF, prev_DA); (V4 j11, F, prev_DA);

else (V, j, NF, prev_DA); (Va,j+1, SF, prev_DA);
(Vb,j, F, prev_DA); —

if ( > inhibition_level) then

(Vb,j» NF, prev_DA); Vp j11, F, prev_DA);

else (Vp j, NF, prev_DA); (Vb,j+1, SF, prev_DA);
(Ve j, F, prev_DA); —

if (I > inhibition_level) then

(Ve.j, NF, prev_DA); (cp,j+1, F, prev_DA);

else (Ve j, NF, prev_DA); (V. j41, SF, prev_DA);
(Vk1,j, NF, prev_DA); — (Vk1,j, NF, prev_DA);
(Via,j, SF, prev_DA); — (Via,j, SF, prev_DA);
Tij = (Vajs Vb js Vb.j)y-+)

T jv1 = ((Vajs1, Vo j1, Ve j+1)s )

Lij;— Ty Tij41,

initiator =
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3D insertion
rulel =
3D insertion

rule2 =

3D deletion
rule2 =
3D association
rule = prev_DA— > new_DA;
3D anti — collision
rule = if (|Vii.j, Vio jil < min_dist) then

(Vki.j, Fonew_DA); » (Vi j, SF, new_D A);

The effect of introducing the 3D anti-collision rule is displayed in
Fig. 5.31A and B. In this figure some evolved branching objects are shown
that result after 50 iteration steps. The surfaces of both objects are visual-
ized using Gouraud shading. (a description of this visualization technique
can be found in Foley et al. 1990). In object A the anti-collision rule is not
applied and the branches are growing through each other. When the rule
is included in the iteration process it results in the thin-branching object
B. In this object it can be seen that the branches are formed more or less in
one plane (the plane with 8 = 0 in Fig. 5.24) as a result of using f(«, B)
with the largest widening effect for 8 = 0.

In Fig. 5.32 the effect is shown of increasing the value of max curv
in the normalization function (3.14) applied in (5.22). The result is a more
irregular object with a higher degree of branching and plate-like branches.
The surfaces of the objects in Fig. 5.32 are visualized by Gouraud shading
and ray-tracing'.

In Fig. 5.31A and B it can be seen that the addition of one rule com-
pletely changes the overall branching pattern. It can be demonstrated that
even for slight changes in a parameter value in the simulation model the
overall branching pattern in the objects changes totally. In (5.29) the model
parameter max _curv is determined by a function that uses the number of
iteration steps it _step as an argument.

max_curv = s - cos(start_pt + /28 - it _step) + 10s (5.29)

The objects are visualized with the rayshade program written by Graig Kolb, de-
veloped at the University of Princeton.

3D anti-collision rule

Plate-like branches
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Fig. 5.31. Branching objects
resulting from the replacement
system in (5.28). The length /
of new iongitudinal elements
was determined by (5.23) and
(5.22). In the objects A and B
the parameter max_curv was
set to 10s. In object A the 3D
anti-collision rule was not
applied in the replacement
system. The surfaces of the
objects in A and B were
visualized using Gouraud
shading.

A population of forms

The result of this function is that max _curv oscillates slightly between
the values 9s and 11s during the iteration process. A remarkable property
of applying this oscillating value of max_curv in the iteration process is
that it is very easy to generate a large set of different branching patterns
by selecting different start points szart_pt in (5.29).

In Fig. 5.33 four examples are displayed of objects generated with
a slightly oscillating max_curv in the iteration process with different
values of start_pt in (5.29). The four objects are visualized by applying
Gouraud shading. Although the branching patterns are different in the four
objects, the overall form of the objects can be described as thin-branching.
Some of the morphological features (see Sect. 4.1) like the thickness of
the branches remain the same. This experiment demonstrates that it is
possible with this type of model of radiate accretive growth to create a
population of forms which are different realizations of the same model.

The Biological Objects. The repulsive collision detection as applied in
(5.27) corresponds with the avoidance rule as discussed in Sect. 3.6.7. In
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Fig. 5.32. Branching objects
resulting from the replacement
system in (5.28). The length /
of new longitudinal elements
was determined by (5.23) and
(5.22). In A a thin-branching
object is depicted, this object
was generated in 90 iteration
steps and the parameter
max_curv was setto 10s. In B
the parameter max _curv was
set to 12s, in object C
max_curuv is set to the value
16s. In B, and C the objects
were generated in 50 iteration
steps. The surface of the object
in B was visualized using
Gouraud shading, the surfaces
of the objects A and C were
visualized by ray-tracing.
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Fig. 5.33. Population of
branching objects resulting
from the replacement system in
(5.28) after 80 iterations. The
length / of new longitudinal
elements was determined by
(5.23) and (5.22). In all objects
the parameter max _curv was
determined by (5.29), start_pt
was set respectively to the
values 3, 5, 9 and 13. The
surface of the objects was
visualized by using Goureud
shading.

A population of
Haliclona oculata

Fluctuations in
exposure to
water movement

some organisms the threshold min_dist is a specific distance; in the 3D
models min_dist was set to the constant s.

In the following sections about the influence of the physical environ-
ment on the growth process, it will be demonstrated that it is possible to
skip the 3D anti-collision rule and to model the growth process where
collisions are prevented in a more “natural” way.

In Sect. 4.1 it was demonstrated that it is possible to arrange some
of the morphological features, for example the the diameter of the largest
circle @ which fits within the contour of a branching organism before a
branch splits into new branches (Fig. 4.1), along an environmental gra-
dient. In Fig. 4.4 the diameter of this circle da as measured in different
populations of Haliclona oculata is related to the exposure to water move-
ment. A population of Haliclona oculata at a certain growth site will be
characterized by morphological features such as da, although none of the
growth forms of this population will be exactly the same.

Inreality an environmental parameter such as exposure to water move-
ment will never remain constant during time. Marine organisms typically
live in an environment with tidal rhythms: the rising and falling of the
sea twice each lunar day, which is again superimposed on the spring and
neap cycle with a period of approximately 14 days. From the measure-
ments in Table 4.14 it can be derived that the growth velocity of Haliclona
oculata is in the range 1.0-1.5 cm in a period of about 10 weeks. When
the amount of water movement is related with the morphological feature
da it is expected that the increase in water movement during spring tide
and the decrease during neap tide will cause a fluctuation in the width
of the branches. It is expected that with precise measurements the spring
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and neap tide oscillation can be retraced in the growth form. In the pho-
tographs on Fig. 3.3 of Haliclona oculata, especially in the thin-branching
growth forms, a certain oscillation in the width of the branches can be
observed. Although this idea should still be verified with field experi-
ments and precise measurements, this could be a possible explanation for
oscillations in width of the branches.

In the simulation experiment discussed above (see Fig. 5.33) such an
oscillation was introduced in the model parameter max _curv. In Fig. 4.3
the relation between the parameter max _curv and the morphological fea-
ture da is visualized in a plot. The choice of different starting points in
the iteration process leads to completely different branching patterns. It is
expected that the same effect occurs in the actual organisms: the starting
point of the growth process in an environment with an oscillating expo-
sure to water movement and also slight disturbances in the growth process
will result in an infinite amount of possible growth forms.

5.6.8 A Model of the Influence of Light Intensity
on the Growth Process

The Model. The simple light model of Sect. 3.7.1 can also be applied for
the morphological simulation of a non-branching, autotrophic organism
with radiate accretive growth. A simulation of the colony shape of the
stony coral Montastrea annularis (see Fig. 3.5) can be realized by using
the simple light model L(8) in the generator processing function from
(3.19). The same function as applied in 2D model can be used in the 3D
model because of the radiate symmetry of the colony. The angle 6 is the
angle between the mean normal vector in a vertex (see Sect. 5.6.2) and the
vertical. Two results of this construction are shown in Fig. 5.19G1 and G2.
In object G1 a column-shaped form is simulated and in G2 the hemispher-
ical shape which emerges when reflection from the bottom is included.
This reflection is simulated by applying a large value for max_angle in
(3.19). In the column and hemispherical forms of Fig. 5.19G only the first
3D insertion rule 1s necessary to preserve the penta- and hexagonal orga-
nization of the 3D tessellation, since the influence of the light intensity
works equally in all directions.

The simple light models in Fig. 5.19G1 and G2 only work in the case
when no branches are formed. A model which includes the formation of
branches and the influence of local light intensities is given below.

I = {locallight_intensity - curv_index > inhibition_level (5.30)

{ s -local light_intensity - curv_index for
0.0 for local light intensity - curv_index < inhibition_level

Oscillations
in growth forms

Column-shaped and
hemispherical forms

Local light intensities
and the formation
of branches
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In this generator processing function a combination is made of (5.22) and
the local light intensity;this light intensity in a vertex is no longer only

Cast shadows determined by the angle 6 as in (3.19). The local_light_intensity is a
value determined by L2(6) given in (5.31) and is also influenced by cast
shadows.

L2(0) = (1 — rest_term) - cos(0) + rest_term (5.31)

These shadows of the upper branches decrease the
local_light _intensity in the lower parts of the object. In the algorithm
givenin (5.32) this effect of cast shadows on the value of L2(8) is included.
The result of this algorithm is an estimation of local_light_intensity in
each vertex Vi ; of the object, which is a value in the range 0.0 .. 1.0.
Diffuse reflection In the function L2(#) a rest term (rest_term) is used which describes
from the environment the diffuse reflection from the environment. This rest_term represents,
in most cases, a small percentage of the maximum light intensity (1.0); in
the simulations values for rest_term in the range 0.0..0.6 are used. The
angle 6 is the angle between the normal vector of a triangle and the light
direction (the vertical).

det_local_light_intensity('T, V, lattice ){ (5.32)

step A:
for each triangle T}, ; € T {

the local_light_intensity on T;, ; is determined using L2(#) from (5.31);

local_light_intensity is added to lattice sites in the state “occupied”; }
step B (cast shadows are determined):
for each lattice site lattice[i] [j] [lattice_size - 1] {

k = lattice_size - 1,

object_found = FALSE;

do {

if (lattice[i] [j] [k] > “occupied”){
lattice[i] [j] [k] += “illuminated”;
object_found = TRUE; }
k— —

while( ! object_found );
}
step C (non-illuminated sites are determined):
for each lattice site lattice[i] [j] [k] {

if ((lattice[i] [j] [k] > “occupied”) &&

(latticefi] [j] [k] < “occupied + illuminated”)) lattice[i] [j] [k] = “occupied”;
}
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step D ( “illuminated” mark is removed):
for each lattice site lattice[i] [j] [k] {
if (lattice[i] [j] [k] = “occupied + illuminated”)
lattice[i] [j] [k] -= “illuminated”,
}
step E:
for each vertex Vi ; € V and its corresponding triangle 7}, jeT{
st = set_triangles(T;y j,Vi.j ),
local_light_intensity = 0.0;
for each triangle T ; € st {
local_light_intensity += mean value of light intensities in
set_lattice_sites(T;z j ), }
local_light_intensity /= number of triangles in st;
the vertex Vi ; is associated with local_light_intensity,

}

} end det_local light intensity

In the algorithm in (5.32) a combination of the geometric model,
represented by the lists 7 and V), and the lattice representation lattice is
used. The lattice representation is obtained by mapping (see Sects. 5.5.1
and 5.5.2) the geometric model on a lattice. In Fig. 5.34 the three stages
of this mapping on a lattice are shown. In the first stage triangles on
the surface of the geometric model of Fig. 5.34A are mapped on a lattice,
resulting in the discrete surface representation of Fig. 5.34B. In the second
stage this discrete surface representation is changed into a discrete solid
representation shown in Fig. 5.34C. In the determination of the local light
intensities a virtual lattice of 400 lattice sites is used. For each triangle
T; j it is now possible to determine a set:

set latticesites(T; ;) (5.33)

which contains the states of lattice sites by which T; ; is represented in
the lattice model. The local light intensity at each vertex of the geometric
model is approximated in the algorithm using the lattice model. Each
lattice site can be brought into the state “unoccupied” or “occupied”. When
a site is in the state “occupied” it can thereupon be brought into the states
“occupied + local_light_intensity” and “occupied + local_light_intensity +
illuminated”. The states are numbers which can be added and subtracted
and they can have the following values:

Combination
of the geometric
and lattice model

The local light
intensity in a vertex
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Fig. 5.34. Mapping of the
geometric model on a lattice of
100° sites. In (A) a geometric
model of a branching object is
disptayed. In (B) the discrete
surface representation and in
(C) the discrete solid
representation of the object in
(A) are shown.
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“unoccupied” = 0 (5.34)
“occupied” > 1
“illuminated” > 1

0.0 < local light_intensity < 1.0

The algorithm in (5.32) can be divided into five sieps. In the first step
the light intensity on each triangle 7}, ; is determined using the light in-
tensity function L2(6). The lattice sites in the set set lattice_sites(T;, j),
which are already in the state “occupied” are brought into the state “oc-
cupied + local _light_intensity”.

In the second step rays are casted from the top of the lattice to the
bottom. When in a column of the lattice a site is encountered which is
in the state “occupied + local_light_intensity” the value “illuminated” is
added to the state of this site. The sites to which “illuminated” is added are
visible from the top of the lattice and will be illuminated by a parallel light
source with a light direction which corresponds to the vertical. The shaded
sites will be after step B in the state “occupied + local_light intensity”.

In step C the local_light_intensity of the shaded sites is set to the value
zero. In step D the marker “illuminated” is removed. In the final step E for
each vertex Vi ; the mean value of local_light_intensity in the lattice sites
situated in the triangles around Vj ; is taken. The result is an estimation of
local light_intensity in the vertex Vi ;; this value can be associated with
the vertex as an attribute in the replacement system.

In Fig. 5.35A and B two more evolved examples are displayed of
the models where the generator-processing function in (5.30) and the
replacement system in (5.28) are applied. In both objects the geometric
model is visualized with Gouraud shading and in Fig. 5.35C the lattice
version of object B is shown. In object C the lattice sites which are situated
on the surface of the object are shown, and the local light intensity is
visualized by the colours gray (zero light intensity) and red, where the
brightness indicates the light intensity.

In the model displayed in Fig. 5.35 the growth process is influ-
enced by the combination local _light intensity.curv_index in (5.32).
In Fig. 5.36 some more evolved examples are shown of models where
the length of new longitudinal elements is determined by the combina-
tion f(«, B).local light_intensity.curv_index (f (a, B) is described in
(5.20)). In A the developmental sequence is shown as the object depicted
in B emerges. In this picture it can be seen that the branches are devel-
oping towards the light source. In Fig. 5.36C the lattice representation
of the object in B is shown; from this picture the local light distribu-
tion over the object can be derived. In this model the contribution of

The light
intensity function

Shaded sites

Visualization
of the local
light intensities
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Fig. 5.35. Branching objects
resulting from the replacement
system in (5.28) after 80
iterations. The length [ of new
longitudinal elements was
determined by (5.30). In all
objects the parameter
max_curv was set to the value
10s. The parameter rest_term
in the light intensity function
L2(6) used in (5.32) was set
respectively to the values 0.0
and 0.3 in the objects A and B.
Both objects are visualized
with Gouraud shading. In
object C the lattice version of
object B is displayed and the
local light intensity is
visualized by the colours gray
(zero light intensity) and red,
where the brightness indicates
the light intensity.
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local light_intensity can be controlled with the parameter rest_term
in (5.31); for the depicted objects this parameter was set to the relatively
high value 0.6.

The Biological Objects. Inorganisms such as Montastrea annularis (see
also Sect. 3.7.1), where light is the main energy source and without the
formation of branches, the simple light models in Fig. 5.19G1 and G2 may
serve to simulate the growth process. In many organisms where the growth
process is influenced for an important part by the distribution of light in
the environment, the formation of branches is found (see Fig. 3.8). In these
organisms often light as well as the heterotrophic energy source (filter-
feeding) are used. Organisms where both energy sources are significant
are for example the Scleractinian Acropora palmata (see Bythell 1988)
and some Porifera (see Wilkinson et al. 1988).

In the models of organisms with the formation of branches and the
influence of light intensity on the growth process, the 3D anti-collision
rule can be modelled with the local light intensities. In the case branches
approach each too closely, the local light intensity will decrease as well
as the growth velocity and collisions are prevented. This anti-collision
mechanism only works when the rest_term in (5.31) is set to zero. An-
other aspect of the formation of branches which is captured quite well with
these models is positive phototropism. In the pictures of organisms with
a significant autotrophic contribution to the energy intake (see Fig. 3.8),
a clear tendency can be observed to form branches towards the direction
of the light source. In the models shown in Fig. 5.35A and B branches
are formed mainly in the direction of the light source and branches can
no longer be found that are growing towards the substrate, as for example
occurs in the models shown in Figs. 5.32 and 5.33.

The objects shown in Fig. 5.36 can be used as a model of an organism
with an anisotropic growth process, where the growth velocities depend
on the position of the organism with respect to the flow direction, and
where the growth process is influenced by local light intensities.

5.6.9 A Model of the Influence of Nutrient Distribution
on the Growth Process

The Model. In Sect. 3.7.2 it was discussed that the nutrient distribu-
tion around an organism, under sheltered conditions, can be described
with the Laplace equation (2.7). The same algorithm as applied in the
2D model (3.21) can, in an extended version, be used to determine the

Organisms without
branch formation

Organisms with
the formation
of branches

Positive
phototropism
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Fig. 5.36. Objects resulting
from the replacement system in
(5.28) after 80 iterations. The
length I of new longitudinal
elements was determined by
(5.30), in this function the
combination

local light_intensity -
curv_index was replaced by
S(a, B) -

local light_intensity -
curv_ndex. The parameter
max_curv was set to the value
10s. The parameter rest_term
in the light intensity function
L2(6) used in (5.32) was set to
the value 0.6. In picture A the
developmental sequence of the
object displayed in B is shown.
The objects in A are visualized
with Gouraud shading, object
B by ray-tracing. In object C
the lattice version of object B is
displayed, the local light
intensity is visualized by the
colours gray (zero light
intensity) and red, where the
brightness indicates the light
intensity.
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nutrient distribution around the 3D object. The extension of the algorithm
is straightforward. The mapping of the object into the 3D lattice can be
done with the methods described in Sect. 5.5.1

A few serious practical problems occur in step C in the algorithm
(3.21) where the Laplace equation is solved. In Sect. 5.5.1 it was men-
tioned that it is often impossible to allocate a lattice with 1000° sites.
This limitation can be overcome by using virtual lattices, as described in
Sect. 5.5.2. The next problem is that when two of these virtual lattices are
used, the convergence in the 3D extension of (3.21) step C is still unac-
ceptably slow?. This problem was avoided by using two normal lattices
of 100° sites whether this decreased resolution gives an inaccurate ap-
proximation of the nutrient distribution around the object is still an open
problem. In the 3D models the lattice sites at the top are set to the value
1.0, while those at the bottom are set to 0.0 in step C of the algorithm.

In the 3D version of the nutrient model an estimation is done of the
local nutrient gradient at each vertex Vi ; in the state F. For this purpose
an edge probe is drawn in step D of the 3D version of (3.21), with a
3D version of the Bresenham algorithm (see Wijkstra 1991). The edge
starts at the vertex Vi ; and has the same direction as the longitudinal
element (Vi ;, Vi j—1) and points into the environment around the object.
The gradient is estimated using the values of lattice sites in probe; in the
estimation the relation between the local field and the concentration k(c)
(3.23) was assumed.

The influence of the local nutrient concentration can be included in
the model by applying a combination of k(c) and curv_index (5.22) in
the generator processing function:

I = 3 k(c)-curvindex > inhibition_level (5.35)

{ s - k(c).curv_index for
0.0 for k(¢) - curv_index < inhibition_level

Two views of a more evolved example in which this function was applied
are shown in Fig. 5.37A and B. In Fig. 5.38 sections through the 100°
lattice model are shown. In these sections the object itself is displayed in
red, and the basins of equal nutrient concentration around are visualized
in alternating black and coloured regions. The colour gradually changes
from white to blue; this colour shift indicates an increasing nutrient con-
centration.

2To obtain a branching object, on a sparc 4 workstation, in 80 iteration steps with
this method would take approximately 186 days!

Laplace equation

Local nutrient
gradient

Sections through
the lattice model
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Fig. 5.37. Two views of an
object resulting from the
replacement system in (5.28)
after 80 iterations. Object A is
visualized by ray-tracing,
object B by applying Gouraud
shading. The length  of new
longitudinal elements was
determined by (5.35). The
parameter max_curv was set to
the value 10s, while 1 in (3.23)
was set to 0.5.

Negative
substrate tropism

The Biological Objects. The model of a branching object in Fig. 5.37,
where the nutrient distribution is mimicked by a diffusion process, ex-
hibits several properties which correspond to the growth process of a het-
erotrophic organism under sheltered conditions (see also the paragraph
on the biological objects in Sect. 3.7.2). In this model the branches are
formed towards the nutrient source, which can be used to simulate neg-
ative substrate-tropism. Collisions in the model are prevented since the
branches compete for the same nutrients, whose concentration locally
between the branches becomes near zero so that growth is suppressed.
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5.7 Conclusions and Restrictions
of the Presented 3D Models

The 3D models of radiate accretive growth presented in this chapter are a
starting point for a larger system of 3D models. With the presented models
the problems discussed in Sect. 3.8, on the restrictions of the 2D model
of radiate accretive growth, are partly solved.

The Laplacian model of the nutrient distribution around the grow-
ing object, presented in Sect. 5.6.9, is only applicable to mimicking the
nutrient distribution under sheltered conditions. A more refined model
requires the inclusion of a model of the flow and the corresponding nu-
trient supply around the object. In the flattened model (Fig. 3.17E), the
growth velocities are unequal on the object and depend on the position of
the object with respect to the flow direction (Figs. 5.23 and 5.26). This as-
sumption is a strong simplification of the reality and is only applicable for
simple objects. In an actual object the flow patterns around the organism
can become highly complex and are influenced strongly by the form of
the organism. In order to simulate the nutrient supply in an object which
grows in a moving fluid, it is necessary to replace the Laplace equation by
a model of the nutrient distribution around the object which allows drift
of nutrients.

In Sect. 5.6.5 a rather simple approach was used to estimate the local
curvature ina vertex. This approach was chosen since it is computationally
a fast method. A disadvantage of this method is that it may introduce noise
in the model. This is a well-known problem in the estimation of curvatures.
A possible solution of this problem is to use polynomial approximations,
in which the best fitting polynomial through a set of points using a least
squares method is approximated (see also Terzopolous 1986, Besl and
Jain 1986, Lim et al. 1990)

In a model of a branching organism with a combination of an au-
totrophic and heterotrophic metabolism, a light and a nutrient distribu-
tion model are necessary. In a simulation of an organism with a com-
bined energy source the influence of both environmental parameters can
be weighted. For some organisms, for example Acropora palmata (see
Bythell 1988), the percentage of the contribution of the light source is
known. Basically it is possible to construct models with such a combined
energy source; a simple example of this was shown in Fig. 5.36.

Two more aspects of the growth which cannot be modelled with the
presented 3D model are anastomosis and abrasion. Anastomosis (the pro-
cess in which branches fuse) is a very characteristic (see also Sect. 3.8)
phenomenon often found among marine sessile organisms. The inclusion

Nutrient
distribution model

Estimation of the
local curvature

Anastomosis
and abrasion
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Fig. 5.38. Sections at different
k-planes (indicated as the
z-value 1n the pictures) through
the lattice representation with
100? lattice sites, of the object.
The object itself is displayed in
red, and basins of equal
concentration ranges are
alternately visualized as black
and coloured regions. The shift
from blue to white indicates a
depletion in nutrient.
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of this effect will increase both the “realism” and the complexity of the
generated forms significantly. The aspect of “negative growth” by abra-
sion will have the same consequence. The multi-layered structures shown
in this chapter are suitable to model the process of abrasion. In a model
of abrasion the outermost layers at the protrusions of the object can be
assumed to have the highest chance of being removed from the object
during the iteration process. The growth process can continue from these
damaged sites on the object by secondary growth (see Sect. 3.6.3). In the
3D model fertile vertices in the state “non-active”, at the damaged sites,
are set to the state fertile and will participate in the iteration process again.

5.8 List of Symbols
Used in Sects. 5.3 to 5.7

V vertex index list

Vi a vertex (index) from the list V, in a
single-layered triangular tessellation
coordinate list

triangle list

a triangle from the list 7, in a single-layered
triangular tessellation

set_triangles(T;, V;) set of triangles surrounding the vertex V;
set_vertices(T;, V;) setof vertices surrounding the vertex V;

SN0

s basic size of a tangential element

level the number of times a triangle is further
subdivided

null no reference to another triangle

n; vertices newly inserted in V when a triangle
is subdivided

Ti triangles newly inserted in 7 when a triangle
is subdivided

Vi vertex V; from layer j in a layered tessellation

T; ; triangle 7; from layer j in a layered
tessellation

F,NF,SF a vertex can be respectively in the state:

“fertile”, “not-fertile”, or “non-active”

Negative growth
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[
inhibition_level
o

fla, B)

w
max_curv

h(rad_curv)

layer(])
lattice

lattice[i][J1[X]
“occupied”
“unoccupied”

“recently_occupied”

“subdivided”
“iIluminated”

lattice_size
curv_index

low_norm_curv
av_Nnorm_curv
fertile_patch

DAXIS
prev_DA

length of a longitudinal element (Vi ;, Vi j—1)
threshold below which [ becomes zero

angle between an axis of growth and the
direction of a newly constructed longitudinal
element

angle between the projection of the mean
normal vector on the xz plane, in a vertex

Vi, j and the x-axis. The direction

of the flow corresponds to the z-axis
function describing the deposition of a new
layer of tangential and longitudinal elements
widening factor in f(«, B)

maximum value radius of curvature,
expressed in units s

function which returns a normalized version
of the radius of curvature

a list with triangles 7' ;, T3 j, ..

the lattice representation of the geometric
model

a lattice site with coordinates i, j, k

lattice sites by which an object is represented
lattice sites that are not occupied by an
object

special marker used in the flood-fill
algorithm (5.17)

special marker used in the virtual lattices to
indicate that a lattice site further subdivided
special marker used in the local light intensity
algorithm (5.32)

maximum of the i, j, k-coordinates in lattice
index summarizing the normalized radii of
curvature in a vertex Vi ;

the lowest value of the normalized radii of
curvature in a vertex Vj ;

the average value of the normalized radii of
curvature in a vertex Vj

patch of neighbouring vertices in the state F
vector with the direction of a growth axis
vector with the direction of the growth axis
before applying the 3D association rule
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new_DA

nsub_boxes

sub_box
min_dist
it_step
start_pt

a

da

L(6)

6
max_angle

vector with the direction of the growth axis
after applying the 3D association rule

the number of times an edge of the bounding
box containing the object is subdivided in

the collision detection algorithm in (5.27)
one of the nsub_boxes> sub-boxes in which the
bounding box containing the object is
subdivided

minimum distance between a fertile vertex
Vi1, j and the other vertices Vi,

in state F or SF used in the collision
detection algorithm in (5.27),

expressed in units s

number of the iteration step

starting point of the function in (5.29)
returning an oscillating max_curv

the largest circle which fits within the
contour of a branching object or organism,
before the branch splits into new branches
the diameter of the circle a

function which returns the light intensity in a
vertex Vi ; in a non-branching object

The angle between the mean normal vector in
a vertex Vj ; and the vertical

maximum angle which a longitudinal element
can make with the vertical

local_light _intensitylocal light intensity in a vertex Vi ; of a

L2(6)

rest_term

set_lattice_sites

probe

branching object

function which returns the light intensity in a
triangle 7; ;, used in the local light
intensity algorithm for a branching object
in (5.32)

a term in L2(6) that describes the
contribution of the diffuse refiection

from the environment

set that contains the states of the lattice sites
by which the triangle T; ; is represented

an edge in the lattice starting in the vertex
Vi.; with the direction of the longitudinal
element (Vg ,Vi j—1) and pointing in

the environment of the object
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k(o) function which represents the influence of the
nutrient distribution on the growth process
n exponent describing the relation between the

local field and the concentration ¢






Final Conclusions

6.1 The 2D and 3D Simulation Models

In Chaps. 3, 4 and 5 it was demonstrated that the radiate accretive growth
can be simulated in 2D and 3D with a geometric model. In these models
growth is described as an iterative process in which the growing object
is represented by a geometrical object. In the iteration process a set of
rules is applied which can be divided into two types: rules representing
the internal properties of the growing object and rules which represent
the influence of the environment on the growth process.

For a branching organism with radiate accretive growth the internal
rules can be summarized as:

a) generator, the geometric construction describing how new skeleton
elements are added to a preceding growth stage.

b) A generator-processing function describing the secretion of elements
over the surface of the object ( f(a)).

c) A generator-processing function which describes the limitations of
the transport system of nutrients through the tissue of the organism
(h(rad_curv in the 2D and curv_index in the 3D models).

d) post-processing rules describing that all elements are connected in a
coherent structure (insertion, continuity and deletion rule).

€) A post-processing rule which represents the formation of new growth
axes (association rule).

The external rules can be summarized as:

a) post-processing rules which represent geometric restrictions (anti-
collision rules).

b) A generator-processing function representing disturbances of the
growth process (g(lowest _value)).

¢) A generator-processing function which represents the influence of the
nutrient distribution on the growth process (k(c)).
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d) A generator-processing function which represents the influence of
the light intensity on the growth process (L(f) in the 2D and
local_light _intensity in the 3D models).

For many of the organisms only a subset of these rules are necessary;
which rules are relevant is determined by species-specific properties (e.g.
autotrophic or heterotrophic organisms, internal or external secretion of
elements).

Some aspects of the growth process, such as the formation of thin-
branching and plate-like forms, can be described with a 2D model. This is
possible because in a radiate accretive growth process basically a structure
is formed with a radiate symmetry. In Sect. 4.1.1 it is demonstrated that
some aspects of a range of ecotypes found along a gradient of exposure
to water movement can be simulated in a series of experiments where the
thin-branching forms gradually transform into plate-like ones. It is also
shown that there is a relation between the model parameters max_curv
and lowest value and the observed forms. Using this relation it is, in
theory, possible to simulate a given growth form in a gradient of exposure
to water movement.

Some aspects of the growth process, such as the formation of a flat-
tened growth form and the possibility of branches to avoid each other in
space, can only be simulated with a 3D model. In Sect. 5.6.5 a 3D model
of a flattened growth with the formation of branches is shown. In this
model a flattened form is generated by assuming a generator-processing
function f(w, B), in which the secretion of elements also depends on the
angle B with the flow direction. This is a drastic simplification of reality.
In an improved version where also drift of nutrient is included, it may be
possible to simulate the emergence of flattened forms in a more natural
way. The 3D models exhibit a relatively much higher complexity and re-
quire several computationally expensive steps. The presented 3D models
of radiate accretive growth are only a starting point for a more extensive
system of 3D models.

The result of this book is a 2D and 3D modelling system capable
of modelling a growth process from which a large class of objects can
emerge. The assumptions in the model were verified with experiments on
the actual objects. These experiments show that the model has a predictive
value. Some of the predictions can be done with the 2D model by using
the radiate symmetry of the simulated organisms. A starting point for a
more refined 3D model of radiate accretive growth is presented in Chap. 5.
The general method for iterative geometric constructions, as presented in
Chap. 2, can be used as a starting point for other classes of models, capable

Radiate symmetry
and 2D models

Flattened forms
and 3D models

Verification
of the models
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Insight into
morphogenesis

Species-specific
parameters

of simulating other types of growth processes. The methods presented in
Chap. 4 can be used more in general for the comparison of growth forms
as found among marine sessile organisms, and for the comparison of sim-
ulated forms and actual forms. The same type of experiments described
in the same chapter may be used in further research on the emergence of
growth and form in marine sessile organisms.

6.2 Application of the Simulation Models in Ecology

The first aim in constructing morphological models of growth processes
is to gain insight into the morphogenesis of organisms. Even relatively
simple growth processes may lead to a surprisingly large variety in growth
forms. A substantial part of the growth forms found in a coral reef may be
covered, when some simplifications are assumed, by the 2D and 3D models
presented in this book. In a more extensive approach these models can be
extended by some more basic types of growth processes other than the
radiate accretive growth process which is used as case study in this book.
In such an approach it is necessary to describe the various aspects of these
types of growth processes in formal rules. This leads to the identification
of parameters responsible for certain features in the growth forms. Such
an approach can be used for causal explanations in taxonomy. It becomes
possible to predict which forms, for a given species with a species-specific
architecture, can develop in the growth process (see Sect. 3.5). It can for
example be predicted that a species with a skeleton where the elements are
oriented randomly will usually develop quite irregular (often encrusting)
growth forms.

When comparing two related species, e.g. the sponges Haliclona ocu-
lata and Haliclona simulans, it is possible to identify the parameters which
cause the species-specific differences in growth forms. As explained in
Sect. 3.5, the aquiferous system in Haliclona simulans is more evolved,
causing the emergence of a more globular and wide-column habit than in
Haliclona oculata. A second architectural aspect which causes a species-
specific difference in growth form is the organization of the tangential
layers in both species. A consequence of the triangulate architecture in
Haliclona simulans is that the overall growth form will be more rigid,
while a penta-hexagonal organization, as found in Haliclona oculata, al-
lows for a more flexible architecture. This more flexible structure resists
strong water movements better and allows a growth form which can sur-
vive in a larger range of habitats with different rates of water movement.
The more rigid architecture of Haliclona simulans leads to a more vul-
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nerable structure, which will often develop a more creeping growth form.
The original tree-like form is damaged and pushed on the substrate, and
the tree-like form emerges again (compare the simulated form in Fig. 4.8).
This phenomenon is described by Dauget (1991) as a reiterated model.
The flexible skeleton architecture, as found in Haliclona oculata, is more
apt to develop the typical tree-shape of this species.

Next to the species-specific parameters, the shape of an organism in
a certain growth stage is determined by the influence of the environment.
Many modular organisms show a clear response in growth form to the
governing environmental conditions (see Sect. 3.3). In order to identify
which aspects of the growth form are influenced by the environment, a
combination of a morphological model with species-specific parameters
and a model of the physical environment is very useful. In such a model
it becomes possible to predict the possible range of ecotypes of a certain
species.

The variety in forms, caused by the influence of the environment, can
often be arranged along a gradient of a changing environmental parameter.
In the case of more than one dominant environmental parameter a phase
diagram can be composed (compare the phase diagram for DLA clusters
in Ohgiwari et al. 1991). Each point in such a diagram corresponds to a
certain setting of the environmental parameters and represents a certain
realization of the growth form. In these response curves the self-similar
aspect (e.g. width of branches, degree of branching, etc., see Fig. 4.4) or
the fractal dimension (see Table 4.4) can be plotted against the value of
the dominant environmental parameter.

The response curves are useful for bio-monitoring purposes. From
these curves it becomes possible to estimate the value of an environmental
parameter from a given growth form. In Fig. 4.4 an estimation is made
of the exposure to water movement using the growth form. In the paper
of Jebram (1980) it is demonstrated for the bryozoan Electra pilosa that
there is a relation between the colony shape and the nutrient supply. In
the study of Bosence (1976) on coralline algae, it is demonstrated that
these organisms show a clear response in the growth form to the exposure
to water movement. The growth process of these algae can be modelled
as a radiate accretive one. Species of these unattached coralline algae
are an important part of the marine communities in tropical as well as
temperate environments. These algae also form a significant part of the
marine sediments. These features make growth forms of this algae group
very suitable as biomonitors of recent and paleoenvironmental conditions.

The growth form is not only a refiection of the governing environ-
mental parameters, but can also be used as a continuous registration of the

Influence
of the environment

Environmental
gradients

Bio-monitoring
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values of these parameters. An impressive example of this can be found
in Marden (1978), where a section through a coral is shown (compara-
ble with the section shown in Fig. 3.9) in which the growth velocities
are recorded in the period between 1620 and 1975. The fluctuations in
growth velocities can be correlated with seasonal variations by combin-
ing such a registration with a simulation model of the growth process and
the influence of the physical environment.

Sudden changes in the environment, causing a disturbance of the
growth process, can also be detected in growth forms. In the transplan-
tation experiments (see Sect. 4.2.3) it was demonstrated that on one of
the three experimental sites growth was stunted by increased sedimenta-
tion. This type of disturbance might also lead to deviating growth forms,
which do not correspond with the forms “normally” observed or with
the simulated forms. In Fig. 4.7 the effect on the growth form of Hali-
clona oculata of a sudden change in the exposure to water movement is
simulated. These predictions can explain deviating forms which can be
demonstrated experimentally (Fig. 4.13) and can be found occasionally
in the field (Fig. 4.15).

Next to a sudden change in sedimentation or exposure to water move-
ment, toxic agents may disturb the growth process. An example of'a growth
form in which the growth process was experimentally disturbed by a
(toxic) agent! is displayed in Fig. 6.1. In this experiment a cup-shaped
sponge was found. This form can be explained by assuming a partial death
or suppression of the secreting cells which are relatively most exposed to
the environment and are situated in the tip of the sponge. The secreting
cells at the borders of the tip are less exposed to the environment and can
continue to grow. The result is that along the borders of the local mini-
mum (the cup) a series of local maxima arises. This form can be simulated
with the clavate model (Fig. 5.19C). On the tip of club-shaped form the
growth velocity will locally decrease when the radius of curvature ex-
ceeds a certain maximum or when growth is simply stopped by setting the
fertile vertices to non-fertile. Around the local minimum branches will be
formed. This type of form is also sometimes found in the field (Fig. 6.2)
and a possible explanation is a temporary disturbance leading to a partial
mortality or suppression of the secreting cells.

'In this example the sponge was (accidentally) exposed for a period of 24h in a
staining experiment with Alizarine red S. Although no trace of the agent was discovered
in the exposed sponge, it developed this type of deviating form.
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Fig. 6.1. An example of a
growth form of the sponge
Haliclona oculata, in which the
growth process was
experimentally disturbed by a
(toxic) agent

Fig. 6.2. Example of a
cup-shaped growth form of the
sponge Haliclona oculata as
sometimes can be found in the
field
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Cup-shaped
growth forms

Simulation
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The forms in Figs. 6.1 and 6.2 demonstrate that the radiate accretive
growth process can result in a cup-shaped growth form: when the branches
around the local minimum would anastomose a real cup is formed. This
type of growth form is characteristic for many other sponge genera. These
cup shapes can become very efficient hydrodynamically when a small
feature of the aquiferous system is changed, where the inhalant pores (see
Fig. 3.14) are situated on the outside of the cup and the exhalant ones at
the inside.

Another application of morphological simulation models is to mimic
the emergence of forms in a community of organisms. In all examples
discussed so far, the growth forms as well as the simulated forms are
assumed to be formed in isolation. In reality, for example in a coral reef,
the forms do notdevelop as individuals. The individual forms will compete
for space, light, nutrients, etc. Sessile organisms in a reef can chemically
suppress each other and are arranged in a competitive network. These
communities show a complex behaviour, which cannot be understood
with simulation models of the individual composing elements. From these
complex communities, as found in coral reefs, still little insight has been
obtained. A morphological model, consisting of several of the dominant
species and the physical environment, could be a way to provide more
information on these reef communities.
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