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Foreword

This book provides an excellent introduction to the ideas and basic mathematical techniques needed for a study
of Einstein’s superb — and now widely observationally confirmed — general theory of relativity. The underlying
concepts and basic mathematics are presented with utmost clarity and by numerous greatly illuminating diagrams.
The reader is taken on a gentle but comprehensive route up to cosmology, as currently understood, and to the
strange features of rotating black holes and to gravitational waves. I am sure that it will inspire many students
and other readers to enter into the beauties and of the power of this subject, which deeply underlies much of the
physics of our world, and perhaps it will inspire others to carry this understanding further into what is currently
unknown.

Roger Penrose
July 2021
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The organization of the
book

1.1 The evolution of the book

There is little doubt that relativity theory captures the imagination. Nor
is it surprising: the counter-intuitive properties of special relativity, the
bizarre characteristics of black holes, the new era of gravitational wave
detection and with it the advent of gravitational wave astronomy, and the
sheer scope and nature of cosmology and its posing of ultimate questions;
these and other issues combine to excite the minds of the inquisitive. Yet,
if we are to look at these issues meaningfully, then we really require both
physical insight and a sound mathematical foundation. The aim of this
book is to help provide these.

This book is a substantial extension of the book Introducing Einstein’s
Relativity. The original book grew out of some notes written in the mid-
1970s to accompany a UK course on general relativity. Originally, the
course was a third-year undergraduate option aimed at mathematicians
and physicists. It subsequently grew to include MSc students and some
first-year PhD students. The notes were originally pitched principally at
the undergraduate level, but the book contained sufficient depth and cov-
erage to interest many students at the first-year graduate level. This book
has been extended to include more advanced material which would be
more appropriate for graduate-level students. To help fulfil this dual pur-
pose, the more advanced sections (LLevel 2 material) are indicated by a
hatched bar alongside the appropriate section. We emphasise that Level 1
material is essential to the understanding of the book. To help put a bit
more light and shade into the book, the more important equations and
results are given in tinted panels.

Part A on special relativity is designed to provide an introduction to
special relativity sufficient for the needs of the rest of the book. The book is
then designed to give students insight and confidence in handling the basic
equations of the theory. From the mathematical viewpoint, this requires
good manipulative ability with tensors. Part B is devoted to developing
the necessary expertise in tensors for the rest of the book. It is essentially
written as a self-study unit. Students are urged to attempt all the exer-
cises which accompany the various sections. Experience has shown that
this is the only real way to be in a position to deal confidently with the
ensuing material. Part C then starts by using tensors to reformulate spe-
cial relativity. From the physical viewpoint, in our view, the best route
to understanding relativity theory is to follow the one taken by Einstein.

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0001



2 The organization of the book

Thus, the second chapter of Part C is devoted to discussing the principles
which guided Einstein in his search for a relativistic theory of gravitation.
The field equations are approached first from a largely physical viewpoint
using these principles and subsequently from a purely mathematical view-
point using the variational principle approach. After a chapter devoted
to investigating the quantity which goes on the ‘right-hand side’ of the
equations, the structure of the equations is discussed as a prelude to solv-
ing them in the simplest case. This part ends by considering solar system
tests of the experimental status of general relativity. The main purpose of
the book is to develop the theory in such a way that it is possible to reach
three major topics of current interest, namely, black holes, gravitational
waves, and cosmology. These topics form the subject matter of Parts D,
E, and F, respectively.

Each of the chapters is supported by exercises, numbering over 350 in
total. The bulk of these are straightforward calculations used to fill in parts
omitted in the text. The numbers in parentheses indicate the sections to
which the exercises refer. Although the exercises in general are impor-
tant in aiding understanding, their status is different from those in Part
B. Those exercises are absolutely essential for understanding the rest of
the book and they should not be omitted. The remaining exercises are
desirable. The book is neither exhaustive nor complete, since there are
topics in the theory which are not covered or only met briefly. However,
it is hoped that it provides the reader with a sound understanding of the
basics of the theory.

1.2 Acknowledgements

Very little of this book is wholly original in character. Thus, to take an
example right from the beginning of the book, the k-calculus provides
the best introduction to special relativity because it offers insight from the
outset through the simple diagrams that can be drawn. Indeed, one of
the themes of this book is the provision of a large number of illustrative
diagrams (over 250, in fact). The visual sense is the most immediate we
possess and helps lead directly to a better comprehension. A good subtitle
for the book would be An approach to relativity via space-time pictures. The
k-calculus is an approach developed by Herman Bondi from the earlier
ideas of A. Milne. So the fact that this and many of the approaches in
the book have been borrowed from one author or another has been to
organize the material in such a way that it is more readily accessible to the
majority of students.

General relativity has the reputation of being intellectually very de-
manding. There is the apocryphal story attributed to Sir Arthur Edding-
ton, who, when asked whether he believed it true that only three people in
the world understood general relativity, replied, “Who is the third?” In-
deed, the intellectual leap required by Einstein to move from the special
theory to the general theory is, there can be little doubt, one of the great-
est in the history of human thought. So it is not surprising that the theory
has the reputation it does. However, general relativity has been with us for



over a century, and our understanding is such that we can now build it up
in a series of simple logical steps. This brings the theory within the grasp
of most undergraduates equipped with the right background. So the book
has been written in the spirit that any explanation that aids understanding
should ultimately reside in the pool of human knowledge and thence in
the public domain and therefore not belong to any one author.

1.3 The status of scientific research

Einstein’s theory of relativity is arguably the greatest scientific achieve-
ment of the human mind. It comprises the ‘special theory’ developed
around 1905, concerned with physics in the absence of gravitation, and
the ‘general theory’, developed some ten years later, which incorporates
gravitation. Most surprisingly, it was the product of the work of just one
theoretical physicist — Albert Einstein. The development of special rel-
ativity was remarkable enough since it was achieved when Einstein was
working in a patent office, and not in a scientific community or a uni-
versity. However, the move to the general theory, which took Einstein ten
years of endeavour, was a colossal achievement not just involving a deeper
insight into the underlying physical principles but requiring a whole new
mathematical machinery to make these ideas explicit. This book attempts
to retrace the ideas of Einstein in leading up to the special and general
theories. It is our belief that this route leads to a deeper understanding of
the theory.

However, the question arises: Would we have arrived at these theories
without Einstein? It was already clear at the turn of the twentieth century
that something was wrong with the current understanding at the time of
basic physical ideas, especially as it related to motion involving high veloc-
ities and the propagation of light. The new physics required was encoded
in the Lorentz transformations, which had been produced on an ad hoc
basis to reconcile underlying inconsistencies. Einstein’s key contribution
was to derive them from two physical principles and demonstrate that they
rested on a deeper understanding of the concept of simultaneity. Most
historians of science would agree that, sooner or later, the new physics of
the special theory would likely have been arrived at. However, whether
the move to the general theory, and with it the accompanying revolution
in our understanding of basic physical ideas, would have been achieved
without Einstein is less clear. This raises the question: How does science
develop and will it necessarily refine our ideas and thereby lead to an ‘ul-
timate’ understanding of the world we live in? Einstein’s work led to the
development of the field of cosmology — modelling the universe — which
is the science of the very large. He also made significant contributions to
the other great theory of the twentieth-century quantum theory — the sci-
ence of the very small. Yet these two theories remain in basic conflict and
considerable research effort has gone into trying to find a theory of quan-
tum gravity which reconciles the two. We end this section by exploring
the question: Where are we currently in the search?

The status of scientific research 3



4 The organization of the book

Table 1.1
GRO 1955 Bern, Switzerland
GR1 1957 Chapel Hill, USA
GR2 1959 Royaumont, France
GR3 1962 Jablonna, Poland
GR4 1965 London, UK
GRS 1968 Thilisi, USSR
GR6 1971 Copenhagen, Denmark
GR7 1974 'Tel-Aviv, Israel
GR8 1977 Waterloo, Canada
GR9 1980 Jena, DDR
GR10 1983 Padova, Italy
GR11 1986 Stockholm, Sweden
GR12 1989 Boulder, USA
GR13 1992 Cordoba, Argentina
GR14 1995 Florence, Italy
GR15 1997 Pune, India
GR16 2001 Durban, South Africa
GR17 2004 Dublin, Ireland
GR18 2007 Sydney, Australia
GR19 2010 Mexico City, Mexico
GR20 2013 Warsaw, Poland
GR21 2016 New York, USA
GR22 2020 Valencia, Spain

In 1955 a conference on general relativity and gravitation was held in
Bern, Switzerland, now referred to as GRO. Two other conferences were
held in 1957 and 1959, named GR1 and GR2, respectively, and after that
they have been held generally every 3 years, with subsequent conferences
being numbered accordingly (see Table 1.1). GRO was held some forty
years after the discovery of general relativity and, at the time, involved
a relatively small community of scholars. Such has the world of scien-
tific research grown in the interim that the conferences now include more
than a thousand attendees. Even so, the field of classical general relativ-
ity research is a relatively small one in physics, although there is growth
in the field of detection of gravitational waves, and cosmology has essen-
tially become a discipline in its own right. So there are many thousands
of people involved in fundamental research and, not surprisingly, there is
a spread of opinion as to the progress that has been made. The biggest
field of research in this area currently is in ‘string theory’, and its adherents
would likely consider this to be the right way forward, but the jury is out
on its efficacy, especially as regards to any experimental verification. In
contradistinction, general relativity now has a considerable weight of ex-
perimental support. There have been a score or more attempts to provide
an alternative classical theory of gravitation, but the consensus is that Ein-
stein’s theory is both consistent with current observations and is, in some
sense, the simplest theory. But the issue of a theory of quantum gravity is
more complex. First of all, there is an explosion in the research literature,
and keeping track of it is a tall order. How would one know if someone had
made the equivalent ‘Einsteinian’ breakthrough to a theory of quantum
gravity? Many would agree that two of the most important theoreticians
since Einstein are the UK mathematical physicists Stephen Hawking and
Roger Penrose. Indeed, in 2020 Penrose was awarded a Nobel Prize for
his pioneering work in showing ‘that black hole formation is a robust pre-
diction of the general theory of relativity’, although he did not receive the
prize until he was at the advanced age of 89. Perhaps Hawking did not live
long enough to receive his recognition. In fact, Einstein was only awarded
a Nobel Prize for his work on the photoelectric effect and not for his more
important, although possibly controversial at the time, work on relativity.
Both Hawking and Penrose have independently suggested a route to a the-
ory of quantum gravity but neither is, what one might say, currently in the
main stream of scientific endeavour in that relatively few researchers are
continuing work using their suggested approaches. Indeed, the authors of
this book have suggested a potential canonical quantization programme
but it has received scant attention. We are not saying that our approach, or
that of Hawking or Penrose, or string theory is ‘right’. What we are saying
is that the world of research is much more complex than in the time of
Einstein and we are into other areas such as ‘reputation’ and ‘fashion’ (see
Penrose 2017). There is also the question as to whether there will ever be
a “Theory of Everything’. In the very large — the world of cosmology —
there appears to be a need for a theory of ‘dark matter’ and ‘dark energy’
and, at the time of writing, no such compelling theory exists. In the other
direction — the world of the small — we have, in turn, theories of atoms,
fundamental particles, quarks, and so on ... but does it necessarily lead
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to an ultimate theory? LLooking back and doing so with our current un-
derstanding, you could argue that general relativity is almost forced on
you. The hope is that, if and when a successful theory of quantum grav-
ity is produced, it will also force itself on you, but detecting that is likely
to be a more challenging task. Fundamental science does not unfold at a
constant pace, but rather it does so in fits and starts. It is all the more re-
markable that the work of just one man led to such a giant leap forward in
our understating of the physical world, and this is the focus of this book.

1.4 A note for students on studying
from a book

A few words of advice if you find studying from a book hard going.
Remember that understanding is not an all-or-nothing process. One un-
derstands things at deeper and deeper levels, as various connections are
made or ideas are seen in different contexts or from a different perspec-
tive. So do not simply attempt to study a section by going through it line
by line and expect it all to make sense at the first go. It is better to begin
by reading through a few sections quickly — skimming — thereby trying
to get a general feel for the scope, level, and coverage of the subject mat-
ter. A second reading should be more thorough, but should not stop if
ideas are met which are not clear straightaway. In a final pass, the sections
should be studied in depth with the exercises attempted at the end of each
section. However, if you get stuck, do not stop there; press on. You will
often find that the penny will drop later, sometimes on its own, or that
subsequent work will produce the necessary understanding. Many exer-
cises (and exam questions) are hierarchical in nature. They require you
to establish a result at one stage which is then used at a subsequent stage.
If you cannot establish the result, then do not give up. Try and use it in
the subsequent section. You will often find that this will give you the nec-
essary insight to allow you to go back and establish the earlier result. For
most students, frequent study sessions of not too long a duration are more
productive than occasional long, drawn-out sessions. The best study envi-
ronment varies greatly from one individual to another. Try experimenting
with different environments to find out what is the most effective for you.

As far as initial conditions are concerned, that is, assumptions about
your background, it is difficult to be precise, because you can probably
get by with much less than the book might seem to indicate (see §1.5).
Added to which, there is a big difference between understanding a topic
fully and only having some vague acquaintance with it. On the mathemat-
ical side, you certainly need to know calculus, up to and including partial
differentiation, and solution of simple ordinary differential equations. Ba-
sic algebra is assumed and some matrix theory, although you can probably
take eigenvalues and diagonalization on trust. Familiarity with vectors and
some exposure to vector fields is assumed. It would also be good to have
met the ideas of a vector space and bases. We use Taylor’s theorem a lot,
but probably knowledge of Maclaurin’s theorem will be sufficient. On the
physics side, you obviously need to know Newton’s laws and Newtonian
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Fig. 1.1 “The product of two tensors
is equal to another’, according to Hugh
Lieber.

gravitation. It would be helpful also to know a little about the potential for-
mulation of gravitation (though, again, just the basics will do). The book
assumes some familiarity with electromagnetism (Maxwell’s equations,
in particular) and fluid dynamics (the Navier-Stokes equation, in partic-
ular), but neither of these are absolutely essential. It would be very helpful
to have met some ideas about waves (such as the fundamental relationship
¢ = Av) and the wave equation in particular. In cosmology, it is assumed
that you know something about basic astronomy but, to gain an under-
standing of modern cosmology in the final chapter, you will need much
more of a background in contemporary physics.

Having listed all these topics, then, if you are still unsure about your
background, try the book and see how you get on. If it gets beyond you
(and it is not a Level 2 section) press on for a bit and, if things do not get
any better, then cut out. Hopefully, you may still have learnt a lot, and you
can always come back to it when your background is stronger. In fact, it
should not require much background to get started, for Part A on special
relativity assumes very little. After that, you hit Part B, and this is where
your motivation will be seriously tested. If you make it through the first
half of the book, then the pickings on the other side are very rich indeed.

1.5 A final note for the less able student
from Ray

I was far from being a child prodigy, and yet I learnt relativity at the age of
15! Let me elaborate. As testimony to my intellectual ordinariness, I had
left my junior school at the age of 11, having achieved the unremarkable
feat of coming 22nd in the class in my final set of examinations. Yet I really
did know some relativity four years on — and I don’t just mean the special
theory, but the general theory (up to and including the Schwarzschild
solution and the classical tests). I remember detecting a hint of disbelief
when I recounted this to Alan Tayler, who was later to become my tutor,
in an Oxford entrance interview. He followed up by asking me to define a
tensor and, when I rattled off a definition, he seemed somewhat surprised.
As it turned out, Alan was instrumental in enabling Introducing Einstein’s
Relativity to be published by Oxford University Press thirty years later.
In fact, we did not cover very much more than I first knew in the Oxford
third-year specialist course on general relativity. So how was this possible?

I, too, had heard the story about how only a few people in the world
really understood relativity, and it had aroused my curiosity. I went to
the local library and, as luck would have it, I pulled out a book entitled
Einstein’s Theory of Relativity by Lillian Lieber (2008; originally published
in 1945). This is a very bizarre book in appearance. The book is not set
out in the usual way but rather as though it were concrete poetry. More-
over, it is interspersed by surrealist drawings by Hugh Lieber involving
the symbols from the text (Fig. 1.1). I must confess that at first sight the
book looks rather cranky; but it is not. Indeed, it has been reprinted in
recent years (see Further reading). I worked through the book, filling in
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all the details missing from the calculations as I went. What was amaz-
ing was that the book did not make too many assumptions about what
mathematics the reader needed to know. For example, I had not then met
partial differentiation in my school mathematics, and yet there was suf-
ficient coverage in the book for me to cope. It felt almost as if the book
had been written just for me. The combination of the intrinsic interest of
the material and the success I had in doing the intervening calculations
provided sufficient motivation for me to see the enterprise through to the
end.

Perhaps, if you consider yourself a less able student, you are a bit
daunted by the intellectual challenge that lies ahead. I will not deny that
the book includes some very demanding ideas (indeed, I do not under-
stand every facet of all of these ideas myself). But I hope the two facts that
the arguments are broken down into small steps and that the calculations
are doable will help you on your way. Even if you decide to cut out after
Part C, you will have come a long way. Take heart from my little story —
I am certain that, if you persevere, you will consider it worth the effort in
the end.

1.6 A final note for the more able student
from James

In revising and extending Ray’s book Introducing Einstein’s Relativity,
I wanted to keep to the style of the original version, which attempted as
far as possible to give a self-contained account of the key areas of general
relativity and which provided all the details of the calculations either in
the text or in the exercises. However, since Ray wrote the original version
of the book nearly thirty years ago, the range of topics that deserve atten-
tion has expanded considerably and this has made it harder to keep the
material quite as self-contained so you may need to do more background
reading. There are two reasons why the scope has expanded.

The first reason is that, from a mathematical point of view, the idea
of general relativity as an entirely geometric theory of gravity described
in terms of the curvature of space-time has been supplemented by an
increasing emphasis on an approach where one thinks of Einstein’s
equations as a system of partial differential equations. This is needed in
attacking outstanding theoretical problems such as ‘cosmic censorship’
as well as constructing stable numerical relativity codes to simulate events
such as colliding black holes. This has resulted in extending the chapter
on “The structure of the field equations’ and adding a new chapter, “The
3+1 and 2+2 formalisms’, which goes into more detail about the passage
from the geometrical formulation of Einstein’s equations to a description
in terms of evolution equations.

The second reason comes from the increasingly detailed experimen-
tal information that we now have about the structure of the universe. For
example, we now know considerably more about gravitational waves from
the direct measurements, made by the LIGO gravitational wave obser-
vatories, of radiation from colliding black holes, as well as the indirect

7
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measurements of gravitational radiation coming from the orbits of binary
pulsars (see Chapter 21 for details). We also have much more accu-
rate information about the expansion of the universe and the cosmic
microwave background (CMB). These developments have resulted in en-
larging the chapter on gravitational waves considerably to provide details
of both the generation and the detection of gravitational waves, as well
as adding a new chapter describing the modern approach to cosmology,
in which one uses experimental evidence to determine the cosmological
parameters of our universe. Understanding the sources of gravitational
waves and cosmological models requires input from a broader range of
physics than the rest of the book. Rather than get bogged down in the
details, we have tried to keep to a summary of the essential points, but
much of the current research in these areas involves an understanding of
other areas of physics in extreme relativistic conditions.

Much of the additional content is Level 2 material, which is more suit-
able for graduate students. As a result, we decided to extend the further
reading sections for all the chapters in the book and include more ref-
erences to ongoing research. In order to ensure that these references are
easily accessible and remain up to date, our first port of call has been to
the online journal Living Reviews in Relativity (see Further reading). This
journal contains full, open-access, online articles that provide critical re-
views of the current state of research, and available sources in all areas
of relativity. Furthermore, as the name implies, authors are encouraged
to update these reviews to take account of any recent developments. My
advice to all readers of this book is to keep a broad outlook and to try and
maintain an interest in both the mathematics and the underlying physics.
Although Einstein’s equations have remained unchallenged as the corner-
stone of relativity, our approach to analysing them has changed over time.
Once it was sufficient to know about differential geometry and tensor
analysis. Although these still provide the key mathematical tools, current
research in relativity now covers a wide spectrum and involves a variety
of different formalisms. One also requires a knowledge of areas such as
algebraic and differential topology and mathematical analysis, as well as
more applied areas such as signal processing and relativistic astrophysics.
As alluded to earlier, one of the big challenges is to provide a quantum
theory of gravity and this brings in still other areas of mathematics and
physics. Despite some progress, it would seem that we are still quite a long
way from having an an accepted theory of quantum gravity and it might
well be that this requires both new mathematics and new physics.

Like Ray, I would like to end by saying something about the books that
have influenced me. Before going to university, I read a short book enti-
tled Space-Time Algebra by David Hestenes. While there was much in the
book I did not understand, it introduced me to the concept of ‘spinors’
as a way of describing both classical and quantum physics. Several years
later, this drew me to the work of Roger Penrose, who saw conformal ge-
ometry and spinors as playing a key role in understanding gravitational
physics, which influenced my own work on using spinors to investigate
gravitational energy. The two-volume book Spinors and Space-Time by
Penrose and Rindler provides a comprehensive treatment of these topics



and more. A second source which was profoundly influential to both Ray
and myself was The Large Scale Structure of Space-Time by Stephen Hawk-
ing and George Ellis. Indeed, for researchers of our generation, this was
regarded as something akin to the status of the Bible in the field and, like
the work of Penrose, it continues to inspire the current generation. How-
ever, it is written at a level which is perhaps too sophisticated for most
undergraduates (in parts too sophisticated for many specialists!). Part D
of the book owes much to the approach of Hawking and Ellis and we
hope that this part of the book will provide a small stepping stone to The
Large Scale Structure of Space-Time. To that end, and because we cannot
improve on it, we have in places included extracts from that source virtu-
ally verbatim. We felt that, if students were to consult this text, then the
familiarity of some of the material might instil confidence and encourage
them to delve deeper. We are hugely indebted to the authors for allowing
us to borrow from their superb book.

1.7 Research interests of the authors

To provide some background about the authors to our readers and
scientific colleagues, here is a summary of our fields of research interests.

Ray

Computer algebra in general relativity

Exact solutions and their invariant classification

The 2+2 formalism

Numerical relativity and the CCM (Cauchy-Characteristic Matching)
approach

A 242 canonical quantization programme

James

Quasi-local mass in general relativity

Low regularity solutions of Einstein’s equations

Gravitational singularities

Numerical relativity and the CCM (Cauchy-Characteristic Matching)
approach

A 2+2 canonical quantization programme

Exercises

1.1 Go online and look at the latest two volumes of Living Reviews in
Relativity at https://www.springer.com/journal/41114/.

1.2 Go online and look at the titles of the new submissions in
the general relativity and quantum cosmology section of arXiv at
https://arxiv.org/list/gr-qc/new and see if you can find articles that relate
to the topics you found when looking at Living Reviews in Relativity.

Exercises
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1.3 Read a biography of Einstein (see Part A of the Bibliography at the
end of this book).

Further reading

The first four references relate to the discussion in §1.3 on quantum
gravity. For a non-technical review of various approaches to quantum
gravity, see also the article by Kiefer (2005). The remaining references
are formative influences on the authors of this book.

Hawking, S. W. (1979). ‘Euclidean quantum gravity’, in Lévy, M., and
Deser, S., eds, Recent Developments in Gravitation. NATO Advanced
Study Institutes Series (Series B: Physics), vol 44. Springer, Boston, MA,
145-73.

Penrose, R. (1968). Twistor quantisation and curved space-time. Inter-
national Journal of Theoretical Physics, 1(1), 61-99.

d’Inverno, R. A., and Vickers, J. A. (1995). 2+2 decomposition of
Ashtekar variables. Classical and Quantum Gravity, 12(3), 753.

Penrose, R. (2016). Fashion, Faith and Fantasy in the New Physics of the
Universe. Princeton University Press, Princeton, NJ.

Kiefer, C. (2006). Quantum gravity: General introduction and recent
developments. Annalen der Physik, 15(1-2), 129-48.

Lieber, L. R. (2008). The Einstein Theory of Relativity (reprint of 1945
edition). Paul Dry Books, Philadelphia, PA.

Iya, B. (ed.) Living Reviews in Relativity, https://[www.springer.com/
journal/41114/, accessed 16 April 2021.

Hestenes, D. (2015) Space-Time Algebra (2nd edn). Birkhduser, Basel.

Penrose, R., and Rindler, W. (1986). Spinors and Space-Time. Vols 1 and
2, Cambridge University Press, Cambridge.

Hawking, S. W., and Ellis, G. E R. (1973). The Large Scale Structure of
Space-Time. Cambridge University Press, Cambridge.
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The k-calculus

2.1 Model building

Before we start, we should be clear what we are about. The essential activ-
ity of mathematical physics, or theoretical physics, is that of modelling
or model building. The activity consists of constructing a mathematical
model which we hope in some way captures the essentials of the phenom-
ena we are investigating. I think we should never fail to be surprised that
this turns out to be such a productive activity. After all, the first thing you
notice about the world we inhabit is that it is an extremely complex place.
The fact that so much of this rich structure can be captured by what are,
in essence, a set of simple formulae is quite astonishing. Just think how
simple Newton’s universal law of gravitation is and yet it encompasses
a whole spectrum of phenomena, from a falling apple to the shape of a
globular cluster of stars. As Einstein said, “T’he most incomprehensible
thing about the world is that it is comprehensible’ (Einstein, 1954).

The very success of the activity of modelling has, throughout the his-
tory of science, turned out to be counterproductive. Time and again, the
successful model has been confused with the ultimate reality, and this, in
turn, has stultified progress. Newtonian theory provides an outstanding
example of this. So successful had it been in explaining a wide range of
phenomena that, after more than two centuries of success, the laws had
taken on an absolute character. Thus it was that, when at the end of the
nineteenth century it was becoming increasingly clear that something was
fundamentally wrong with the current theories, there was considerable re-
luctance to make any fundamental changes to them. Instead, a number of
artificial assumptions were made in an attempt to explain the unexpected
phenomena. It eventually required the genius of Einstein to overthrow the
prejudices of centuries and demonstrate in a number of simple thought
experiments that some of the most cherished assumptions of Newtonian
theory were untenable. This he did in a number of brilliant papers writ-
ten in 1905, proposing a theory which has become known today as the
special theory of relativity. Of course, the special theory of relativity
was not the end of the story, and Einstein went on to develop general
relativity — a relativistic theory of gravitation.

We should perhaps be discouraged from using words like ‘right’ or
‘wrong’ when discussing a physical theory. If we remember that the es-
sential activity is model building, a model should then rather be described
as ‘good’ or ‘bad’ depending on how well it describes the phenomena

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0002
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it encompasses. Thus, Newtonian theory is an excellent theory for
describing a whole range of phenomena. For example, if one is concerned
with describing the motion of a car, then the Newtonian framework is
likely to be the appropriate one. However, it fails to be appropriate if we
are interested in very high speeds (comparable with the speed of light)
or very intense gravitational fields (such as in a neutron star). To put it
another way, together with every theory, there should go its range of va-
lidity. Thus, to be more precise, we should say that Newtonian theory is
an excellent theory within its range of validity. From this point of view,
developing our models of the physical world does not involve us in con-
stantly throwing theories out, since they are perceived to be wrong, or in
unlearning them, but rather it consists more of a process of refinement
in order to increase their range of validity. So the moral of this section
is that, for all their remarkable success, one must not confuse theoretical
models with the ultimate reality they seek to describe.

2.2 Historical background

In 1865, James Clerk Maxwell put forward the theory of electromag-
netism. One of the triumphs of the theory was the discovery that light
waves are electromagnetic in character. Since all other known wave
phenomena required a material medium in which the oscillations were
carried, it was postulated that there existed an all-pervading medium,
called the ‘luminiferous ether’, which carried the oscillations of electro-
magnetism. It was then anticipated that experiments with light would
allow the absolute motion of a body through the ether to be detected.
Such hopes were upset by the null result of the famous (and techni-
cally difficult) Michelson—Morley experiment in 1881, which attempted
to measure the velocity of the Earth relative to the ether and found it to
be undetectably small. In order to explain this null result, two ad hoc hy-
potheses were put forward by Lorentz, Fitzgerald, and Poincaré in 1895,
namely, the contraction of rigid bodies and the slowing down of clocks
when moving through the ether. These effects were contained in some
simple formulae called the ‘Lorentz transformations’. This would affect
every apparatus designed to measure the motion relative to the ether so
as to neutralize exactly all expected results. Although this theory was
consistent with the observations, it had the philosophical defect that its
fundamental assumptions were unverifiable.

In fact, the essence of the special theory of relativity is contained in
the Lorentz transformations. However, Einstein was able to derive them
from two postulates, the first being called the ‘principle of special rela-
tivity’ — a principle which Poincaré had also suggested independently in
1904 — and the second concerning the constancy of the velocity of light.
In so doing, he was forced to re-evaluate our ideas of space and time and
he demonstrated through a number of simple thought experiments that
the source of the limitations of the classical theory lay in the concept of
simultaneity. Thus, although in a sense Einstein found nothing new, in
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Fig. 2.1 Train travels in straight line.
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that he rederived the Lorentz transformations, his derivation was physi-
cally meaningful and in the process revealed the inadequacy of some of
the fundamental assumptions of classical thought. Herein lies his chief
contribution.

2.3 Newtonian framework

We start by outlining the Newtonian framework. An event intuitively
means something happening in a fairly limited region of space and for
a short duration in time. Mathematically, we idealize this concept to be-
come a point in space and an instant in time. Everything that happens in
the universe is an event or collection of events. Consider a train travel-
ling from one station P to another R, leaving at 10 a.m. and arriving at
11 a.m. We can illustrate this in the following way: for simplicity, let us
assume that the motion takes place in a straight line (say, along the x-axis
(Fig. 2.1)); then we can represent the motion by a space-time diagram
(Fig. 2.2) in which we plot the position of some fixed point on the train,
which we represent by a pointer, against time. The curve in the diagram
is called the history or world-line of the pointer. Notice that at Q the
train was stationary for a period.

We shall call individuals equipped with a method of measuring time
(an ideal clock) and a method of measuring distance (an ideal ruler) ob-
servers. Had we looked out of the train window on our journey at a
clock in a passing station, we would have expected it to agree with our
watch. One of the central assumptions of the Newtonian framework is
that two observers will, once they have synchronized their clocks, always
agree about the time of an event, irrespective of their relative motion. This
implies that, for all observers, time is an absolute concept. In particular,
all observers can agree to synchronize their clocks so that they all agree
on the time of an event. In order to fix an event in space, an observer may
choose a convenient origin in space together with a set of three Cartesian
coordinate axes. We shall refer to an observer’s clock and coordinate axes
as a frame of reference (Fig. 2.3). Then an observer is able to coor-
dinatize events, i.e. determine the time ¢ an event occurs and its relative
position (x,y, 2).

We have set the stage with space and time; they provide the backcloth,
but what is the story about? The stuff which provides the events of the
universe is matter. For the moment, we shall idealize lumps of matter
into objects called bodies. If the body has no physical extent, we refer
to it as a point particle or point mass. Thus, the role of observers in
Newtonian theory is to chart the history of bodies.

Newtonian framework 15
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Fig. 2.4 Two observed bodies and their inertial frames.

2.4 Galilean transformations

Now, relativity theory is concerned with the way different observers see
the same phenomena. One can ask: are the laws of physics the same for all
observers or are there preferred states of motion, preferred reference sys-
tems, and so on? Newtonian theory postulates the existence of preferred
frames of reference. The existence of these is essentially implied by the
first law, which we shall call N1 and state in the following form:

N1: Every body continues in its state of rest or of uniform motion in a
straight line unless it is compelled to change that state by forces acting
on it.

Thus, there exists a privileged set of bodies, namely, those not acted on
by forces. The frame of reference of a co-moving observer is called an
inertial frame (Fig. 2.4). It follows that, once we have found one inertial
frame, then all others are at rest or travel with constant velocity relative
to it (since otherwise, Newton’s first law would no longer be true). The
transformation which connects one inertial frame with another is called
a Galilean transformation. To fix ideas, let us consider two inertial
frames called S and S’ in standard configuration, i.e. with axes parallel
and 8’ moving along S’s positive x-axis with constant velocity (Fig. 2.5).
We also assume that the observers synchronize their clocks so that the
origins of time are set when the origins of the frames coincide. It follows
from Fig. 2.5 that x = x” + ot so the Galilean transformation connecting
the two frames is given by

X =x—vot, y=y, 2=z (=t 2.1)

The last equation provides a manifestation of the assumption of abso-
lute time in Newtonian theory. Now, Newton’s laws hold only in inertial
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Fig. 2.5 Two frames in standard configuration at time ¢.

frames. From a mathematical viewpoint, this means that Newton’s laws
must be invariant under a Galilean transformation.

2.5 The principle of special relativity

We begin by stating the relativity principle which underpins Newtonian
theory.

Restricted principle of special relativity:
All inertial observers are equivalent as far as dynamical experiments
are concerned.

This means that, if one inertial observer carries out some dynamical ex-
periments and discovers a physical law, then any other inertial observer
performing the same experiments must discover the same law. Put an-
other way, these laws must be invariant under a Galilean transformation.
That is to say, if the law involves the coordinates x, y, 2, ¢ of an iner-
tial observer S, then the law relative to another inertial observer S’ will
be the same, with x, y, 2, t replaced by «/, v/, 2/, ¢/, respectively. Many
fundamental principles of physics are statements of impossibility, and the
above statement of the relativity principle is equivalent to the statement
of the impossibility of deciding, by performing dynamical experiments,
whether a body is absolutely at rest or in uniform motion. In Newtonian
theory, we cannot determine the absolute position in space of an event,
but only its position relative to some other event. In exactly the same
way, uniform velocity has only a relative significance; we can only talk
about the velocity of a body relative to some other. Thus, both position
and velocity are relative concepts.

Einstein realized that the principle as stated above is empty because
there is no such thing as a purely dynamical experiment. Even on a
very elementary level, any dynamical experiment we think of perform-
ing involves observation, i.e. looking, and looking is a part of optics, not
dynamics. In fact, the more one analyses any one experiment, the more it
becomes apparent that practically all the branches of physics are involved
in the experiment. Thus, Einstein took the logical step of removing the
restriction of dynamics in the principle and took the following as his first
postulate.
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Postulate I. Principle of special relativity:
All inertial observers are equivalent.

Hence we see that this principle is in no way a contradiction of Newtonian
thought, but rather constitutes its logical completion.

2.6 The constancy of the velocity of light

We previously defined an observer in Newtonian theory as someone
equipped with a clock and a way of measuring distance with which to
map the events of the universe. In many textbooks, the concept of a ‘rigid
ruler’ is introduced to do this. However, as pointed out by Bondi (1966),
although quantum theory gives us a practical mechanism for producing
an ideal clock (such as an atomic clock) the concept of a ‘rigid ruler’ is
fraught with difficulty. What is rigidity anyway? If a moving frame ap-
pears non-rigid in another frame, which, if either, is the rigid one? The
approach of the k-calculus is to dispense with the rigid ruler and use
radar methods for measuring distances. In the radar method, an ob-
server measures the distance of an object by sending out a light signal
which is reflected off the object and received back by the observer. The
distance is then simply defined as half the time difference between
emission and reception. Note that, by this method, the speed of light
is automatically one and distances are measured in intervals of time, like
the light year or the light second (~3 x 10% m).

Why use light? The reason is that we know that the velocity of light is
independent of many things. Observations from double stars tell us that
the velocity of light in vacuo is independent of the motion of the sources
as well as independent of colour, intensity, etc. For, if we suppose that the
velocity of light were dependent on the motion of the source relative to an
observer (so that if the source were coming towards us, the light would
be travelling faster, and vice versa), then we would no longer see double
stars moving in Keplerian orbits (circles, ellipses) about each other: their
orbits would appear distorted; yet, no such distortion is observed. There
are many experiments which confirm this assumption. However, these
were not known to Einstein in 1905, who adopted the second postulate
mainly on philosophical grounds. We state the second postulate in the
following form.

Postulate II. Constancy of velocity of light:
The velocity of light is the same in all inertial systems.

The speed of light is conventionally denoted by ¢ (from the Latin celer-
itas meaning ‘speed’) and, in SI units, it has the exact numerical value
2.997924580 x 10® ms™! (so that the metre is defined in the SI system



as the distance travelled by light in a vacuum in 1/299792458 of a sec-
ond). In this book, we shall mostly work in relativistic units, in which ¢
is taken to be unity (i.e. ¢ = 1). Note, in passing, that another reason for
using radar methods is that other methods are totally impracticable for
large distances. In fact, these days, distances from the Earth to the Moon
and Venus can be measured very accurately by bouncing radar signals off
them.

2.7 The k-factor

For simplicity, we shall begin by working in two dimensions, one spatial
dimension and one time dimension. Thus, we consider a system of ob-
servers distributed along a straight line, each equipped with a clock and a
flashlight. We plot the events they map in a two-dimensional space-time
diagram. Let us assume we have two observers, A at rest and B moving
away from A with uniform (constant) speed. Then, in a space-time di-
agram, the world-line of A will be represented by a vertical straight line,
and the world-line of B by a straight line at an angle to A’s, as shown in
Fig. 2.6.

A light signal in the diagram will be denoted by a straight line making an
angle of 45° (;7/4 radians) with the axes, because we are taking the speed
of light to be 1. Now, suppose A4 sends out a series of flashes of light to
B, where the interval between the flashes is denoted by 7" according to
A’s clock. Then it is plausible to assume that the intervals of reception by
B’s clock are proportional to 7, say, k7. Moreover, the quantity k, which
we call the k-factor, is clearly a characteristic of the motion of B relative
to A. We now assume that if 4 and B are inertial observers, then the
k-factor is a constant in time and independent of 7. Indeed, we will
go further and assume that it is independent of the point in space-time
where the measurement is made and only depends on the relative speed of
the two inertial observers. From a mathematical point of view, this is the
assumption that space-time is homogeneous, i.c. the same at every point.
From B’s point of view, A is moving away from B with the same relative
speed, so the principle of special relativity requires that the relationship
between A and B must be reciprocal. So that, if B emits two signals with
a time lapse of T according to B’s clock, then A receives them after a time
lapse of kT according to A’s clock (Fig. 2.7). Note that, in interchanging
the roles of 4 and B, we are assuming that there are no directional effects,
which amounts to the assumption that space-time is isotropic, i.c. it is
the same in any direction.

In the radar method, an observer A4 assigns coordinates to an event P
by bouncing a light signal off it. Suppose a light signal is sent out at a time
t = t1, and received back at a time ¢ = 7, (Fig. 2.8); then, since the velocity
of light in both directions is the same, the time (as measured by A) at the
point P is halfway between #; and 7,. Furthermore, since by assumption
the speed of light is 1, the distance to P is half the time for the round
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Fig. 2.9 Relating the k-factor to the rel-
ative speed of separation.
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Fig. 2.10 Observers relatively at rest
(k=1).

trip. Hence, according to our radar definition of distances, the space-time
coordinates of P are given by

(tx) = (5(t1 + 12), 3 (12 — 17)). 2.2)

We now use the k-factor to develop the k-calculus.

2.8 Relative speed of two inertial observers

Consider the configuration shown in Fig. 2.9 and assume that A and B
synchronize their clocks to zero when they cross at event O. After a time
T, A sends a signal to B, which is reflected back at event P. From B’s point
of view, a light signal is sent to A after a time lapse of 27 by B’s clock. It
follows from the definition of the k-factor that A receives this signal after
a time lapse of k(kT). Then, using (2.2) with t; = Tand 1, = KT, we
find the coordinates of PP according to A’s clock are given by

(tx)=(S(F+ )T, 3R - 1)T). (2.3)

Thus, as T varies, this gives the coordinates of the events which constitute
B’s world-line. Hence, if @ is the velocity of B relative to A, we find

x k-1
v=—=———.
t R+1
Solving for k% in terms of v, and taking the positive square root in order
to have the same direction of time for A and B, we find

1
k:(“”)z. 2.4)
1—9o

We shall see in the next chapter that this is the usual relativistic formula
for the radial Doppler shift. If B is moving away from A, then 2 > 1,
which represents a ‘red’ shift, whereas, if B is approaching 4, then £ < 1,
which represents a ‘blue’ shift. Note that the transformation v — —v
corresponds to interchanging the roles of 4 and B and resultsin £ — 1 /4.
Moreover,

as we should expect for observers relatively at rest: once they have
synchronized their clocks, the synchronization remains (Fig. 2.10).



2.9 Composition law for velocities

Consider the situation in Fig. 2.11, where k45 denotes the A-factor be-
tween A and B, with kg¢ and k4¢ defined similarly. It follows immediately
that

kac = kapkpc. (2.5)
Using (2.4), we find the corresponding composition law for velocities:

0, + o
vgc = BT UBC (2.6)
1+ VABYVBC

This formula has been verified experimentally to very high precision. In-
deed, formula (2.6) was first proposed empirically (prior to the theory of
special relativity) by Fizeau in 1851 in order to explain the results of an
experiment measuring the speed of light in a rapidly moving fluid. Note
that, if v43 and vpc are small compared with the speed of light, i.e.

o <K 1, ovpc<Kl,
then we obtain the classical Newtonian formula
VAC = V4B t UBC»

to lowest order. Although the composition law for velocities is not simple,
the one for k-factors is and, in special relativity, it is the k-factors which
are the directly measurable quantities. Note also that, formally, if we sub-
stitute vgc = 1, representing the speed of a light signal relative to B, in
(2.6), then the resulting speed of the light signal relative to A is

in agreement with the constancy of the velocity of light postulate.

From the composition law, we can show that, if we add two speeds less
than the speed of light, then we again obtain a speed less than the speed of
light (exercise). This does not mean, as is sometimes stated, that nothing
can move faster than the speed of light in special relativity, but rather that
the speed of light is a border which can not be crossed or even reached.
More precisely, special relativity allows for the existence of three classes
of particles:

1. Particles that move slower than the speed of light are called sublu-
minal particles. They include material particles and elementary particles
such as electrons and neutrons.

2. Particles that move with the speed of light are called luminal parti-
cles. They include the carrier of the electromagnetic field interaction, the
photon, other zero rest-mass particles (see §4.5) and, theoretically, the
carrier of the gravitational field interaction, called the graviton.

3. Particles that move faster than the speed of light are called superlu-
minal particles or tachyons. There was some excitement in the 1970s
surrounding the possible existence of tachyons, but all attempts to detect
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Fig. 2.11 Composition of k-factors.



22 The k-calculus

Fig. 2.12 Relativity of simultaneity.

them to date have failed. This suggests two likely possibilities: either
tachyons do not exist or, if they do, they do not interact with ordinary
matter. This would seem to be just as well, for otherwise they could be
used to signal back into the past and so would appear to violate causality.
For example, it would be possible theoretically to construct a device which
sent out a tachyon at a given time and which would trigger a mechanism
in the device to blow it up before the tachyon was sent out! We will there-
fore assume for the rest of this book that tachyons do not exist and that
nothing can travel faster than the speed of light.

2.10 The relativity of simultaneity

For Einstein, the relativity of simultaneity was at the very heart of spe-
cial relativity and resolves many of the paradoxes that the classical theory
gives rise to. Consider two events P and Q which take place at the same
time, according to A, at points which are equal but opposite distances
away. A could establish this by sending out and receiving the light rays as
shown in Fig. 2.12 (continuous lines). Suppose now that another inertial
observer B meets A at the time these events occur according to A. B
also sends out light rays RQU and SPV to illuminate the events, as shown
(dashed lines). By symmetry, RU = ST and so these events are equidis-
tant, according to B. However, the signal RQ was sent before the signal
SP and since the events are equidistant B concludes that the event Q took
place before P. Hence, although A judges P and Q to be simultaneous,
B considers Q to have occurred first. Indeed, it is not hard to see that, by
making a very small change in the time of P (according to A), one can
have P occurring before Q for observer A but after O to occur before P
for observer B. This is an example of the relativity of simultaneity.

Einstein realized the crucial role that simultaneity plays in the theory
and, in his popular work Relativity: The Special and General Theory, gave
the following simple thought experiment (which we slightly update) to
illustrate its dependence on the observer. Imagine a train travelling along
a straight track with velocity v relative to a stationary observer A on the
bank of the track. In the train, B is an observer situated at the centre of
one of the carriages. We assume that there are two electrical devices on
the track that are the length of the carriage apart and equidistant from A.
When the carriage containing B goes over these devices, they fire and
activate two light sources which are situated at the end of the carriage
(Fig. 2.13) and which each emit a photon. From the configuration, it is
clear that, according to Observer A, the two photons will be emitted si-
multaneously. However, from A’s point of view, B is travelling towards
the light emanating from light source 2 and away from the light emanating
from light source 1. Since the speed of light is a constant, 4 will observe
B meeting the light from source 2 before the light from source 1. Hence,
B will observe the photon from light source 1 strike the front of the train
before the other photon strikes the back. This is in accordance with the
space-time diagram given above where P is the photon hitting the back
of the train and Q is the photon hitting the front. These are simultaneous
for observer A on the bank but Q occurs before P for observer B on the
train.
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Fig. 2.13 Photons emanating from the two sources.

2.11 Causality

In Newtonian theory, the notion of absolute time, which all observers
agree on, enables one to unambiguously say that a ‘cause’ precedes its ‘ef-
fect’. Given the example of the previous section in which different inertial
observers can disagree about the order of events, one might worry about
how the notion of causality survives in special relativity. However, the as-
sumption that nothing can travel faster than the speed of light comes to
our rescue. Given an event O, we say that an event E (say) is on the future
light cone of O if it lies on a light ray starting from O that then reaches
E (see Fig. 2.14). The fact that it is a cone will become clearer later when
we take all the spatial dimensions into account. Since all inertial observers
agree on the speed of light, the future light cone does not depend on the
particular choice of inertial observer but is invariantly defined. Simi-
larly, we say an event H (say) is on the past light cone of O if there is a
light ray starting from H that reaches O. The observer-independent con-
cept of light cone thus divides space-time into three regions. The future
of O consists of points E, F, and so on. that can be reached by travelling
at speeds less than or equal to the speed of light. Since nothing can travel
faster than the speed of light, these are the points in space-time that can
be influenced by what happens at O. For this reason, we often call these
points the causal future of O. Similarly, points in the past of O are points
such as H, J, and so on, where it is possible to reach O by travelling at less
than or equal to the speed of light. Again, since nothing can travel faster
than the speed of light, these are the only points in space-time that can
have an effect on O, so justifying the name causal past. Note that the
world-line of any inertial observer or material particle passing through O
must lie within the light cone at O. Finally, points in the region labelled
‘elsewhere’ in Fig. 2.14 consist of points that cannot affect or cannot be
affected by what happens at O. This is because to go from O to a point
G in the ‘elsewhere’ region (or vice versa) would require travelling faster
than the speed of light. The temporal relationship to O of events in the
‘elsewhere’ region will not be something all observers will agree upon. For
example, one class of observers will say that G took place after O, another
class will say that G took place before O, and yet another will say they took
place simultaneously.
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Fig. 2.15 The clock paradox.

Fig. 2.16 Spatial analogue of clock para-
dox.

2.12 The clock paradox

Consider three inertial observers as shown in Fig. 2.15, with the relative
velocity v4c = —v4p. Assume that 4 and B synchronize their clocks at O
and that C’s clock is synchronized with B’s at P. Let B and C meet after a
time 7T according to B, whereupon they emit a light signal to 4. According
to the k-calculus, A receives the signal at R after a time &7 since meeting
B. Remembering that C is moving with the opposite velocity to B (so
that £ — £~ 1), then 4 will meet C at Q after a subsequent time lapse of
k~1T. The total time that A records between events O and Q is therefore
(k+ k1) T. For k # 1, this is greater than the combined time intervals
2T recorded between events OP and PQ by B and C. But should not the
time lapse between the two events agree? This is one form of the so-called
clock paradox.

However, it is not really a paradox; rather, what it shows is that, in
relativity, time, like distance, is a route-dependent quantity. The point
is that the 27 measurement is made by two inertial observers, not one.
Some people have tried to reverse the argument by setting B and C to
rest, but this is not possible since they are in relative motion to each other.
Another argument says that, when B and C meet, C should take B’s clock
and use it. But, in this case, the clock would have to be accelerated when
being transferred to C and so it is no longer inertial. Some opponents of
special relativity have argued that the short period of acceleration should
not make such a difference, but this is analogous to saying that a journey
between two points which is straight nearly all the time is about the same
length as one which is wholly straight (as shown), which is clearly not true
(Fig. 2.16). The moral is that, in special relativity, time is a more difficult
concept to work with than the absolute time of Newton.

A more subtle point revolves around the implicit assumption that the
clocks of A and B are ‘good’ clocks, i.e. that the seconds of A’s clock are
the same as those of B’s clock. One suggestion is that 4 has two clocks,
adjusts the tick rate until they are the same, and then sends one of them
to B at a very slow rate of acceleration. The assumption here is that the
very slow rate of acceleration will not affect the tick rate of the clock.
However, what is there to say that a clock may not be able to somehow
add up the small bits of acceleration and so affect its performance? A more
satisfactory approach would be for 4 and B to use identically constructed
atomic clocks (which is, after all, what physicists use today to measure
time). The objection then arises that their construction is based on ideas in
quantum physics which is, a priori, outside the scope of special relativity.
However, this is a manifestation of a point raised earlier, that virtually any
real experiment which one can imagine carrying out involves more than
one branch of physics. The whole structure is intertwined in a way which
cannot easily be separated.



2.13 The Lorentz transformations

We have derived a number of important results in special relativity, which
only involve one spatial dimension, by use of the k-calculus. Other results
follow essentially from the transformations connecting inertial observers,
the famous Lorentz transformations. We shall finally use the k-calculus to
derive these transformations.

Let event Phave coordinates (¢, x) measured by 4, and (7, x’) measured
by B (Fig. 2.17). Assume that A and B both set their clocks to zero when
they meet. Let A send out a light signal at time ¢; to illuminate P which is
reflected back and received by A at time #,. Since, according to the radar
method, ¢ = 1(z; + &) and x = (12 — 1), we can solve these to obtain
t; = t—xand 1 = t+ x. An identical calculation for observer B, using the
primed coordinates, gives #; = ¢ — x’ and &, = ¢ + x’. On the other hand,
according to the k-calculus, #; = kr; while 1 = &z, This gives

! —x =k(t—x), t+x=k({+x). 2.7

After some rearrangement, and using equation (2.4), we obtain (exer-
cise) the so-called special Lorentz transformation
t— ovx , x — ot

ll = m, X = m (28)

This is also referred to as a boost in the x-direction with speed v, since
it takes one from A’s coordinates to B’s coordinates, and B is moving away
from A, with speed v. Some simple algebra reveals the result (exercise)

7?2 —x? =72 —x%

2 is an invariant under a special Lorentz

showing that the quantity 2 — x
transformation or boost.

To obtain the corresponding formulae in the case of three spatial
dimensions, we consider Fig. 2.5 with two inertial frames in standard con-
figuration. Now, since, by assumption, the xz-plane (y = 0) of 4 must
coincide with the x’z’-plane (y/ = 0) of B, then the y and y' coordinates

must be connected by a transformation of the form
y=ny, 2.9
because
y=0 <<= 3y =0.

We now use the assumption that space is isotropic. We then reverse the
direction of the x- and y-axes of A and B and consider the motion from
B’s point of view (see Figs. 2.18 and 2.19). Clearly, from B’s point of
view, the roles of A and B have interchanged. Hence, by symmetry, we
must have

v = ny. (2.10)
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Fig. 2.17 Coordinatization of events by
inertial observers.
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v v’

Fig. 2.18 The x- and y-axes from Figure 2.5, reversed.

B x
24 2

Fig. 2.19 Figure 2.18 from B’s point of view.

Combining (2.9) and (2.10), we find
=1 = n==+1.

The negative sign can be dismissed since, as v — 0, we must have y/ — y,
in which case n = 1. Hence, we find 3/ = vy, and a similar argument for z
produces 2’ = z.

2.14 The four-dimensional world view

We now compare the special Lorentz transformation of the last section
(using relativistic units in which the speed of light is one) with the Galilean
transformation connecting inertial observers in standard configuration
(see Table 2.1). In a Galilean transformation, the absolute time coordi-
nate remains invariant. However, in a Lorentz transformation, the time
and space coordinates get mixed up (note the symmetry in x and 7). In
the words of Minkowski (1952), ‘Henceforth space by itself, and time by
itself are doomed to fade away into mere shadows, and only a kind of
union of the two will preserve an independent reality.’

In the old Newtonian picture, time is split off from three-dimensional
Euclidean space. Moreover, since we have an absolute concept of si-
multaneity, we can consider two simultaneous events with coordinates
(t,x1,¥1,21), and (4, x2,¥2,22); then, the square of the Euclidean dis-
tance between them,

02 = (x1 —x2)° + (v —32)” + (21 — 22)%, Q.11
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Table 2.1
Galilean transformation Lorentz transformation
t— vx
/ _ ! _
=1 l_(l—vz)l/z
;L ; ;o x—t
X =x—v x_(l,DZ)l/z
Y=y V=y
g =z 2=z

is invariant under a Galilean transformation. In the new special relativity
picture, time and space merge together into a four-dimensional con-
tinuum called space-time. In this picture, the square of the interval
between any two events (1, x1,V1,21) and (&2, X2, V2, 22) is defined by

C=(t—06) (1 —x) =) — (21— ) (2.12)

and it is this quantity which is invariant under a Lorentz transformation.
Note that, formally, we always denote the ‘square’ of the interval by s2,
but the quantity s is only defined if the right-hand side of (2.12) is non-
negative. If we consider two events separated infinitesimally, (z, x, v, 2) and
(t+ dt, x + dx, v + dy, 2z + dz), then this equation becomes

ds® = d — dx? — dy? — d2?, (2.13)

where all the infinitesimals are squared in (2.13). A four-dimensional
space-time continuum in which the above form is invariant is called
Minkowski space-time and provides the background geometry for
special relativity. We will discuss this in more detail in the next chapter.

So far, we have only met a special Lorentz transformation which
connects two inertial frames in standard configuration. A full Lorentz
transformation connects two frames in general position (Fig. 2.20). It
can be shown that a full Lorentz transformation can be decomposed into
an ordinary spatial rotation, followed by a boost, followed by a further or-
dinary rotation. Physically, the first rotation lines up the x-axis of S with
the velocity v of §’. Then a boost in this direction with speed v trans-
forms S to a frame which is at rest relative to S’. A final rotation lines
up the coordinate frame with that of §’. The spatial rotations introduce
no new physics. The only new physical information arises from the boost
and that is why we can, without loss of generality, restrict our attention to
a special Lorentz transformation.
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Fig. 2.20 Two frames in general position.

Exercises

2.1 (§2.4) Write down the Galilean transformation from observer S to
observer §’, where S’ has velocity v; relative to S. Find the transforma-
tion from &’ to S and state in simple terms how the transformations are
related. Write down the Galilean transformation from S’ to 8" where S”
has velocity v relative to §'. Find the transformation from S to S”. Prove
that the Galilean transformations form an Abelian (commutative) group.

2.2 (§2.7) Draw the four fundamental k-factor diagrams (see Fig. 2.7)
for the cases of two inertial Observers A and B approaching and receding
with uniform velocity v:

(i) as seen by A;

(i1) as seen by B.

2.3 (§2.8) Show that v — —v corresponds to & — k~'. If # > 1 corre-
sponds physically to a red shift of recession, what does & < 1 correspond
to?

2.4 (§2.9) Show that (2.6) follows from (2.5). Use the composition law
for velocities to prove that, if 0 < vy < 1 and 0 < vc < 1, then
O0<vgc< 1.

2.5 (§2.9) Establish the fact that, if 245 and vp¢ are small compared with
the velocity of light, then the composition law for velocities reduces to the
standard additive law of Newtonian theory.

2.6 (§2.10) In the event diagram of Fig. 2.14, find a geometrical con-
struction for the world-line of an inertial observer passing through O who
considers event G as occurring simultaneously with O. Hence, describe
the world-lines of inertial observers passing through O who consider G as
occurring before or after O.



2.7 (§2.12) Draw Fig. 2.15 from B’s point of view. Coordinatize the
events O, R, and Q with respect to B and find the times between O and
R, and R and O, and compare them with A’s timings.

2.8 (§2.13) Deduce (2.8) from (2.7). Use (2.7) to deduce directly that
P22 =22
Confirm the equality under the transformation formula (2.8).

2.9 (§2.13) In S, two events occur at the origin and a distance X along the
x-axis simultaneously at ¢ = 0. The time interval between the events in S’
is T. Show that the spatial distance between the events in S is (X2 + 72)1/2
and determine the relative velocity v of the frames in terms of X and 7.

2.10 (§2.14) Show that the interval between two events (1, X1, ¥1, 21 ) and
(12, %2, V2, 22) defined by

$* = (11 — lz)z — (%1 — x2)2 —(n —yz)z — (21— 22)2>
is invariant under a special Lorentz transformation. Deduce the
Minkowski line element (2.13) for infinitesimally separated events. What
does s become if #; = #; and how is it related to the Euclidean distance o
between the two events?

Further reading

This chapter is based on Bondi’s article in the Brandeis lectures (Traut-
mann et al. 1964). A slightly more popular version is in the book of his
1965 Tarner lectures (Bondi 1967). We consider a more conventional in-
troduction to special relativity in the next chapter. The classical text by
Einstein (100th anniversary edition of the 1915 original) gives an insight
into his views on various aspects of relativity theory and, in particular,
the importance of the relativity of simultaneity. The 100th anniversary
edition has a useful commentary by Guttfreund and Renn.

Trautmann A., Pirani E A. E., and Bondi, H. (1964). Lectures on General
Relativity. Brandeis Summer Institute on Theoretical Physics, 1964, vol.
1. Prentice-Hall, Englewood Cliffs, NJ.

Bondi, H. (1967). Assumption and Myth in Physical Theory. Cambridge
University Press, Cambridge.

Einstein, A. (2015). Relativity: The Special and General Theory (100th
anniversary edn). Princeton University Press, Princeton, NJ.
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The key attributes of special
relativity

3.1 Standard derivation of the Lorentz
transformations

We start this chapter by deriving again the Lorentz transformations, but
this time by using a more standard approach. We shall work in non-
relativistic units in which the speed of light is denoted by ¢. We restrict
attention to two inertial observers S and &’ in standard configuration.
As before, we shall show that the Lorentz transformations follow from
the two postulates, namely, the principle of special relativity and the
constancy of the velocity of light.

Now, by the first postulate, if the observer S sees a free particle, i.e. a
particle with no forces acting on it, travelling in a straight line with con-
stant velocity, then so will §’. Thus, using vector notation, it follows that,
under a transformation connecting the two frames,

r=rot+ut <= v =vry+u'?.
Since straight lines get mapped into straight lines, it suggests that the

transformation between the frames is linear and so we shall assume that
the transformation from S to S’ can be written in matrix form

¢

~

X
Y , (3.1)
Z/

where Lis a 4 x 4 matrix of quantities which can only depend on the speed
of separation v. Using exactly the same argument as we used at the end of
§2.13, the assumption that space is isotropic leads to the transformations
of y and z being

vy =y and 2 =z (3.2)

We next use the second postulate. Let us assume that, when the origins of
S and S’ are coincident, they zero their clocks, i.e. £t = ¢ = 0, and emit a
flash of light. Then, according to S, the light flash moves out radially from
the origin with speed ¢. The wave front of light will constitute a sphere. If
we define the quantity I by

1, x, v, z):x2+y2+zz—czz2,

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0003
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Fig. 3.1 A hyperbolic rotation for points

on

—x=1.

then the events comprising this sphere must satisfy 7 = 0. By the second
postulate, S’ must also see the light move out in a spherical wave front
with speed ¢ and satisfy
I'=x?+y2+2° -2/ =0
Thus it follows that, under a transformation connecting S and S,
I=0 < I =0, 3.3)
and, since the transformation is linear by (3.1), we may conclude
I=nl', (3.4
where 7 is a quantity which can only depend on v. Using the same argu-
ment as we did in §2.13, we can reverse the role of S and S’ and so, by the
relativity principle, we must also have
I' =nl (3.5
Combining the last two equations, we find
=1 = n==+l.
In the limit as v — 0, the two frames coincide and I’ — I, from which we
conclude that we must take n = 1.
Substituting # = 1 in (3.4), this becomes
-2 =x 4y -2
and, using (3.2), this reduces to
2= 2R =K 2L
or, in relativistic units with ¢ = 1,
-2 =xt o7 (3.6)
In the same way that two points (x,v) and (x’,3') on a circle are related
by rotations (so that x’ = xcosf + ysin, and ¥ = —xsinf + ycos®),
two points on the hyperbola x?> — £ = constant are related by hyperbolic

rotations (Fig 3.1) so that

x' = xcosha — tsinh o, 3.7

¢ = —xsinha + tcosh a. (3.8)

Indeed, using (3.7) and (3.8), one can verify that (3.6) is satisfied (ex-
ercise). Now, the origin of &’ (x’ = 0), as seen by S, moves along the
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positive x-axis of S with speed v and so x’ = 0 must correspond to x = 1.
Substituting into (3.7), we see

0 = vtcosh o — tsinh «,
so that
tanh o = 2. (3.9)

Using the identity cosh? @ — sinh? @ = 1 and (3.9), we obtain

1 1
h = = 5
cosha (1 —tanh?@)1/2 (1 —0?)1/2
. v
sinh o = tanh acosh o = m
Substituting in (3.7) and (3.8) gives
Y= (x — vr)
(1 _ 112)1/2’
/= (t — vx)
(1 _ z)2)1/2’

as we found in §2.13.

Writing the above equation in non-relativistic units by inserting factors
of ¢ to give the variables the correct dimensions, we obtain the formula
for a special Lorentz transformation or boost:

! =B(t—ovx/P), ¥ =Bx—vt), ¥V=y 2=z (3.10)
where we have introduced the standard quantity 8 given by

1
0= ar

and the symbol := here means ‘is defined to be’.

3.2 Mathematical properties of Lorentz
transformations

From the results of the last section, we find the following properties of a
special Lorentz transformation or boost.

1. A boost along the x-axis of speed v is equivalent to a hyperbolic ro-
tation in (x, z)-space through an amount « (called the rapidity in some
textbooks) given by tanha = v/c.

33
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2. If we consider v to be very small compared with ¢, for which we use the
notation v < ¢, and neglect terms of order v? /¢?, then we regain a Galilean
transformation

r=t, x¥=x—ot, Y=y, 2=z

We can obtain this result formally by taking the limit ¢ — oo in (3.10).
3. If we solve (3.10) for the unprimed coordinates, we get

/

t=B(l +vx'/c*), x=p(K +o), y=y, z=42.

This can also be obtained formally from (3.10) by interchanging primed
and unprimed coordinates and replacing v by —v. This is what we should
expect from physical reasons, since, if S moves along the positive x-axis
of S with speed v, then S moves along the negative x'-axis of S’ with speed
v or, equivalently, S moves along the positive x’'-axis of S’ with speed —v.
4. Special Lorentz transformations form a group:

(a) The identity element is given by v = 0.

(b) The inverse element is given by —o (as in 3 above).

(¢) The product of two boosts with velocities 2 and ¢’ is another boost
with velocity 2. Since boosts with velocities  and o’ correspond to
hyperbolic rotations in (x, z)-space with rapidities « and o', where

tanha =v/c and tanha' =7'/c,

then their resultant is a hyperbolic rotation of o/ = a + o, where

tanh o + tanh o’
/! 1 A
v /c=tanh o' = tanh(a + ') =
/ ( ) 1 + tanh atanh o'’

from which we immediately obtain

/
17 v+ v

o) (11

Compare this with equation (2.6) in relativistic units.
(d) Associativity is left as an exercise.

5. The square of the infinitesimal interval between infinitesimally sepa-
rated events (see (2.13)),

ds? = 2d? — dx? — dy? — d2?, (3.12)

is invariant under a Lorentz transformation.

We now turn to the key physical attributes of Lorentz transformations.
Throughout the remaining sections, we shall assume that S and S’ are in
standard configuration with non-zero relative velocity o.



Fig. 3.2 A rod moving with velocity v relative to S.

3.3 Length contraction

Consider a rod fixed in §’ with endpoints x;, and x}, as shown in Fig. 3.2.
In S, the ends have coordinates x4 and xp (which, of course, vary in time)
given by the Lorentz transformations

x4 = B(xa —vta), = B(xp— vip). (3.13)

In order to measure the lengths of the rod according to S, we have to find
the x-coordinates of the end points at the same time according to S. If we
denote the rest length, namely the length in ', by

by = x5 — x4
and the length in S at time 7 = 14 = tg by
! =xp— x4.
Then, subtracting the formulae in (3.13), we find the result

0=p5714¢,. (3.14)
Since
o] <c <= B>1 <= [{</ly,

the result shows that the length of a body in the direction of its motion
with uniform velocity v is reduced by a factor (1 — v?/c?)'/2. This
phenomenon is called length contraction. Clearly, the body will have
greatest length in its rest frame, in which case it is called the rest length, or
proper length. Note also that the length approaches zero as the velocity
approaches the velocity of light.

In an attempt to explain the null result of the Michelson—Morley ex-
periment, Fitzgerald had suggested the shortening of a body in motion
relative to the ether. He speculated that the intermolecular forces are pos-
sibly of electrical origin so that material bodies would contract in the
line of motion. These ideas were subsequently developed by Lorentz and
Poincaré using various modifications to the electromagnetic forces. Ein-
stein was the first to completely remove the ad hoc character from the
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World-line
of clock
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Fig. 3.3 Successive events recorded by a
clock fixed in S'.

World-line

: of clock
1

Fig. 3.4 Proper time recorded by an ac-
celerated clock.

contraction hypothesis, by demonstrating that this contraction did not
require motion through a supposed ether, but could be explained using
special relativity, which changed our notions of space, time, and simul-
taneity. Unlike the Fitzgerald contraction, the special relativistic effect
is relative, i.e. a rod fixed in S appears contracted in S’ and, since the
space-time interval ¢?> — x? remains unchanged, is better regarded as a
change of perspective in Minkowski space-time. Note also that there are
no contraction effects in directions transverse to the direction of motion.

3.4 Time dilation

Leta clock fixed at x” = x/; in 8’ record two successive events separated by
an interval of time Ty (Fig. 3.3). The successive events in 8’ are (x/,7})
and (x/;, 7 + Tp), say. Using the Lorentz transformation, we have in S

n =Bt +oxy/P)y = B4+ To+wvxy/c?).
On subtracting, we find the time interval in S defined by
T=0t—-1,
is given by
T = BT. (3.15)

Thus, moving clocks go slow by a factor (1 — v?/c?)~'/2. This phe-
nomenon is called time dilation. The fastest rate of a clock is in its rest
frame and is called its proper rate. Again, the effect has a reciprocal
nature.

Let us now consider an accelerated clock. We define an ideal clock
to be one unaffected by its acceleration; in other words, its instantaneous
rate depends only on its instantaneous speed v, in accordance with the
above phenomenon of time dilation. This is often referred to as the clock
hypothesis. The time recorded by an ideal clock is called the proper
time 7 (Fig. 3.4). If at time ¢ the clock is moving with speed v(z), then
the infinitesimal version of (3.15) is

dr = (1 - ”W)l/z du.

c2

So that just as in vector calculus, by approximating the world-line of the
clock by a number of short straight lines and taking the limit, the proper
time of an ideal clock between 7, and #; is given by

. N\ 1/2
T:/ (1 _ ”(? ) de. (3.16)
) (4




The general question of what constitutes a clock or an ideal clock is
a non-trivial one. However, an experiment has been performed where
an atomic clock was flown round the world and then compared with an
identical clock left back on the ground. The travelling clock was found on
return to be running slow by precisely the amount predicted by relativ-
ity. Another instance occurs in the study of cosmic rays. Certain mesons
reaching us from the top of the Earth’s atmosphere are so short-lived that,
even had they been travelling at the speed of light, their travel time in the
absence of time dilation would exceed their known proper lifetimes by
factors of the order of 10. However, these particles are, in fact, detected
at the Earth’s surface because their very high velocities, relative to ob-
servers on the Earth, keep them young, as it were. Of course, whether or
not time dilation affects the human clock, that is, biological ageing, is still
an open question. But the fact that we are ultimately made up of atoms,
which do appear to suffer time dilation, would suggest that there is no
reason by which we should be an exception.

3.5 Transformation of velocities

Consider a particle in motion (Fig. 3.5) with its Cartesian components of
velocity being

_(dx dy dz).
(t15uz5u3) = <dt’ dt’dz) in S,

and

dx' dy d2'\.
(Mll, u'z, 7/3) = <dl‘/> @, d[’) m S/.

Taking differentials of a LLorentz transformation
! =pB(t—wvx/?), x=B(x—ovt), y=v, 2=z
we get
d/ = B(dr—vdx/c?), d' = B(dx—ods), dy =dy, d¢ =ds,

and hence

Path of particle

Fig. 3.5 Particle in motion relative to S and §'.

Transformation of velocities
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,_dy _ Bldx—ody) _ dx/di—v _ wm -

T T B(dr —ovdx/c?) 1 —o/E(dx/d) 1 —wuv/c2’ (3.17)

A= diy’ B dy 3 dy/ds 3 U

27 dr T B(dr—odx/) T B[l — v/ (dx/dr)] T B(1 —uv/3)’
(3.18)

,_d dz 3 dz/dz 3 u3

BT T Bdi—vdx@) B[l — o/ (dx/dd)]  B(1—wo/R )
(3.19)

Notice that the velocity components u, and u3 transverse to the direc-
tion of motion of the frame S’ are affected by the transformation. This
is due to the time difference in the two frames. To obtain the inverse
transformations, simply interchange primes and unprimes and replace v

) by —v.
ct ct
3.6 Relationship between space-time
Ri— L diagrams of inertial observers
We now show how to relate the space-time diagrams of S and &' (see
Fig. 3.6). We start by taking ¢t and x as the coordinate axes of S, so that
x’ a light ray has slope 45° (in relativistic units). Then, to draw the ¢/~ and
- . x'-axes of §’, we note from the Lorentz transformation equations (3.10)
0] he)

Fig. 3.6 The world-lines in S of the fixed

/ —_— j—
points and simultaneity lines of S’. =0 <= a= (U/ €)X,

that is, the x’-axis, given by ¢/ = 0, is the straight line ¢t = (v/c)x with
slope v/c¢ < 1. Similarly,

X=0 & c=(c/v)x

that is, the c¢f'-axis, given by x’ = 0, is the straight line ¢z = (¢/2)x with
slope ¢/v > 1. The lines parallel to Oct’ are the world-lines of fixed points
in §’. The lines parallel to Ox’ are the lines connecting points at a fixed
time according to S’ and are called lines of simultaneity in . The
coordinates of a general event P are (ct,x) = (OR, OQ) relative to S and
(cf',x') = (OV,OU) relative to S’. However, the diagram is somewhat
misleading because the length scales along the axes are not the same. To
relate them, we draw in the hyperbolae

x? — 2 =2 - A7 = +1

as shown in Fig. 3.7. Then, if we first consider the positive sign, setting
c = 0, we get x¥' = +1. It follows that OA is a unit distance on Ox’'.
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Similarly, taking the negative sign and setting x' = 0 we get ¢t = &1 and
so OB is the unit measure on Oct’. Then the coordinates of P in the frame
S’ are given by

(o) = QU 9V
x)=\oa’oB)-

Note the following properties from Fig. 3.7.

1. A boost can be thought of as a hyperbolic rotation given by (3.7)
and (3.8) in the (x,cf) plane through an amount given by the rapidity
a. Thus, a boost is equivalent to a skewing of both the coordinate axes
inwards through the angle tan(v/c). (This was not appreciated by some
past opponents of special relativity, who gave some erroneous counter
arguments based on the mistaken idea that a boost could be represented
by a real rotation in the (x, ct)-plane.)

2. The hyperbolae are the same for all frames and so we can draw in any
number of frames in the same diagram and use the hyperbolae to calibrate
them.

3. The length contraction and time dilation effects can be read off directly
from the diagram. For example, the world-lines of the end points of a unit
rod OAin 8§, namely ¥’ = 0 and x’ = 1, cut Ox in less than unit distance.
Similarly, world-lines x = 0 and x = 1 in S cut Ox’ inside OF, from which
the reciprocal nature of length contraction is evident.

4. Event A has coordinates (¢, x") = (0, 1) relative to S’ and hence, by a
Lorentz transformation, coordinates (cz, x) = (8v/c, 8) relative to S. The
quantity OA defined by

OA = (czl2 + x2)1/2 =5(1+ '02/02)1/2,
is a measure of the calibration factor
1+22/c? 1/2
()

which can be used to compare distance measures in S’ with those in S.

ct=1

ct ct’
B
Light ray
1)
A
%
U
ow—_
x=1

Fig. 3.7 Length scales in S and S'.
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3.7 Acceleration in special relativity
We start with the inverse transformation of (3.17), namely

/
uy +v

U = ————
1+ ujv/c?’

from which we find the differential
dut! u, + o v
duy = L _ L —du
" 1+ ujv/c? ((1+u’1'v/02)2> 2
1 du

B2 (1 + /)

Similarly, from the inverse Lorentz transformation
t=B(7 +x'v/c?),
we find the differential
de = B(de + (dx')v/?) = B(1 + ufv/c?)dr.

Combining these results, we find that the x-component of the acceleration
transforms according to

dwm 1 dup (3.20)
de B3(1+ujv/2)’ A
Similarly, we find
duy _ 1 dujy i3 du'l, (.21)
dt g1+ uyo/2) A7 282(1 +ulv/2)’ dY
dus _ 1 duy vl du’l. (3.22)
At 21+ djo/2)” A 282(1 +u'yv/2)’ df

The inverse transformations can be found in the usual way.

It follows from the above formulae that acceleration does not trans-
form in the expected way under a Lorentz transformation, so does not
correspond to a vector in Minkowski space. However, it is clear from the
formulae that the existence or not of acceleration is an absolute quantity,
that is, all inertial observers agree whether a body is accelerating or not.
Put another way, if the acceleration is zero in one frame, then it is nec-
essarily zero in any other frame. We shall see that this is no longer the
case in general relativity. We summarize the situation in Table 3.1, which
indicates why the subject matter of the book is ‘relativity’ theory.

3.8 Uniform acceleration
The Newtonian definition of a particle moving under uniform accelera-

tion is

du
— = constant.
de



Table 3.1

Theory Position  Velocity Time Acceleration

Newtonian Relative Relative Absolute Absolute

Special
relativity Relative Relative  Relative Absolute
General
relativity Relative Relative Relative Relative

"This turns out to be inappropriate in special relativity since it would imply
that u — oo as t — 0o, which we know is impossible. We therefore adopt a
different definition. Acceleration is said to be uniform in special relativ-
ity if it has the same value in any instantaneously co-moving frame, that
is, at each instant, the acceleration in an inertial frame travelling with the
same velocity as the particle has the same value. This is analogous to the
idea in Newtonian theory of motion under a constant force. For example,
a spaceship whose motor is set at a constant emission rate would be uni-
formly accelerated in this sense. Taking the velocity of the particle to be
u = u(1) relative to an inertial frame S, then at any instant in a co-moving
frame §' it follows that the velocity relative to S’ is 0, thatis, 2/ = 0,2 = u
and the acceleration is a constant, a, say, i.e. du’/d¢ = a. Using (3.20),

we find
du 1 u? 3/2
- \lma) @

We can solve this differential equation by separating the variables

du

(1—2/2)p2 adt

and integrating both sides. Assuming that the particle starts from rest at
t = tog, we find

u

T —wjays - =)
Solving for u, we get

= dx _ a(t — 1)
Codr 1+ a?(r—19)2 /212

Next, integrating with respect to ¢, and setting x = x( at ¢ = tp, produces

(v = x0) = 518 + (- )] - &
x—x0) = —[c+a(t— - —.
0 a 0 a
This can be rewritten in the form

(x —x0+c*/a )2 (- cto)’ =1, (3.23)

(¢2/a)’ (¢2/a)’

Uniform acceleration 41
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Fig. 3.9 The twin paradox.
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which is a hyperbola in (x,ct)-space. If, in particular, we take
xo — ¢*/a = 1o = 0, then we obtain a family of hyperbolae for differ-
ent values of a (Fig. 3.8). These world-lines are known as hyperbolic
motions and, as we shall see in Chapter 25, they have significance in
cosmology. It can be shown that the radar distance between the world-
lines is a constant. Moreover, consider the regions I and II bounded by
the light rays passing through O, and a system of particles undergoing
hyperbolic motions as shown in Fig. 3.8 (in some cosmological models,
the particles would be galaxies). Then, remembering that light rays ema-
nating from any point in the diagram do so at 45°, no particle in region I
can communicate with another particle in region II, and vice versa. The
light rays are called event horizons and act as barriers beyond which no
knowledge can ever be gained. We shall see that event horizons will play
an important role later in this book.

3.9 The twin paradox

The twin paradox is a form of the clock paradox which has caused the
most controversy — a controversy which raged on and off for over fifty
years. The paradox concerns two twins whom we shall call 4 and A. The
twin A takes off in a spaceship for a return trip to some distant star. The
assumption is that A is uniformly accelerated to some given velocity which
is retained until the star is reached, whereupon the motion is uniformly
reversed, as shown in Fig. 3.9. According to A4, A’s clock records slowly
on the outward and return journeys and so, on return, 4 will be younger
than A. If the periods of acceleration are negligible compared with the
periods of uniform velocity, then could not A reverse the argument and
conclude that it is 4 who should appear to be the younger? This is the
basis of the paradox.

The resolution rests on the fact that the accelerations, however brief,
have immediate and finite effects on A4 but not on A, who remains iner-
tial throughout. One striking way of seeing this effect is to draw in the
simultaneity lines of A for the periods of uniform velocity, as in Fig. 3.10.
Clearly, the period of uniform reversal has a marked effect on the simul-
taneity lines. Another way of looking at it is to see the effect that the
periods of acceleration have on shortening the length of the journey as
viewed by A. Let us be specific: we assume that the periods of acceleration
are T, 1>, and T3, and that, after the period 77, A has attained a speed
V= \/ﬁ/ 2. Then, from A’s viewpoint, during the period 77, A finds that
more than half the outward journey has been accomplished, in that 4 has
transferred to a frame in which the distance between the Earth and the
star is more than halved by length contraction. Thus, 4 accomplishes the
outward trip in about half the time which A ascribes to it, and the same
applies to the return trip. In fact, we could use the machinery of previous
sections to calculate the time elapsed in both the periods of uniform ac-
celeration and uniform velocity, and we would again reach the conclusion
that on return 4 will be younger than A. As we have said before, this points
out the fact that, in special relativity, time is a route-dependent quantity.



The Doppler effect

The fact that in Fig. 3.9 A’s world-line is longer than A’, and yet takes
less time to travel, can appear at first counterintuitive. However, this can
be shown to be a consequence of the fact that the usual three-dimensional
Euclidean metric appears with negative signs in the Minkowski metric

ds? = 2d? — dx? — dy? — d2?,

which means that moving in space reduces the space-time length s.

3.10 The Doppler effect

All kinds of waves appear lengthened when the source recedes from the
observer: sounds are deepened, light is reddened. Exactly the opposite
occurs when the source, instead, approaches the observer. We first of all
calculate the classical (non-relativistic) Doppler effect.

Consider a source of light emitting radiation whose wavelength in its
rest frame is \g. Consider an observer S relative to whose frame the source
is in motion with radial velocity u«,. Then, if two successive pulses are
emitted at times differing by d7 as measured by &', the distance these
pulses have to travel will differ by an amount «,d? (see Fig. 3.11). Since
the pulses travel with speed ¢, it follows that they arrive at S with a time
difference

At =d +u,dd /e,
giving
At/dl =1 +u,/c.

Now, using the fundamental relationship between wavelength and veloc-
ity, set

A=cAt and M\g=cd?.

We then obtain the classical Doppler formula

u,dt’

o .

Fig. 3.11 The Doppler effect: (a) first pulse; (b) second pulse.
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At k2l

pde’ de’

Fig. 3.12 The special relativistic Dop-
pler shift.

Fig. 3.13 The radial Doppler shift k.

Ao =1+u/c. (3.24)

Let us now consider the special relativistic formula. Because of time di-
lation (see Fig. 3.3), the time interval between successive pulses according
to Sis fd7 (Fig. 3.12). Hence, by the same argument, the pulses arrive
at S with a time difference

At = Bde + u,pdr /e,

and so this time we find that the special relativistic Doppler formula
is
A L+ u/c

= e a7 (3.25)

If the velocity of the source is purely radial, then u, = 2 and (3.25)
reduces to

A [(1+9/c 1/2
ST e

'This is the radial Doppler shift, and, if we set ¢ = 1, we obtain (2.4),
which is the formula for the k-factor. Combining Figs. 2.7 and 3.12,
the radial Doppler shift is illustrated in Fig. 3.13, where d¢’ is replaced
by T. From (3.25), we see that there is also a change in wavelength, even
when the radial velocity of the source is zero. For example, if the source
is moving in a circle about the origin of § with speed v (as measured by
an instantaneous co-moving frame), then the transverse Doppler shift
is given by

A 1
=—— 3.27
Ao (1—7)2/c2)1/2 ( )

This is a purely relativistic effect due to the time dilation of the moving
source. Experiments with revolving apparatus using the so-called Moss-
bauer effect have directly confirmed the transverse Doppler shift in full
agreement with the relativistic formula, thus providing another striking
verification of the phenomenon of time dilation.



Exercises

3.1 (§3.1) Verify that, if ¥’ = xcosha — tsinha, and ¢/ = —xsinha
+ tcosh «, then

=2 =x?-17

3.2 (§3.1) Sand &' are in standard configuration with v = ac (0 < a < 1).
If a rod at rest in S’ makes an angle of 45° with Ox in S, and 30° with O'x
in &, then find a.

3.3 (§3.1) Note from the previous question that perpendicular lines in
one frame need not be perpendicular in another frame. This shows that
there is no obvious meaning to the phrase ‘two inertial frames are parallel’,
unless their relative velocity is along a common axis, because the axes
of either frame need not appear rectangular in the other. Verify that the
Lorentz transformation between frames in standard configuration with
relative velocity v = (v, 0, 0) may be written in vector form as

/:r+(%(6—1)—ﬁt)v, t’:B<l—z:2r)>

where 7 = (x, ¥, 2). The formulae are said to comprise the ‘Lorentz trans-
formation without relative rotation’. Justify this name by showing that the
formulae remain valid when the frames are not in standard configuration,
but are parallel in the sense that the same rotation must be applied to each
frame to bring the two into standard configuration (in which case, v is the
velocity of 8’ relative to S, but v = (v, 0, 0) no longer applies).

3.4 (§3.1) Aberration refers to the fact that the direction of travel of a
light ray depends on the motion of the observer. Hence, if a telescope
observes a star at an inclination 6’ to the horizontal, then show that,
classically, the ‘true’ inclination 6 of the star is related to 6’ by

sin 6

tanf = ————
cosf +v/c’

where v is the velocity of the telescope relative to the star. Show that the
corresponding relativistic formula is

sin 6

r_
tanf’ = B(cosh +v/c)’

Exercises
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3.5 (§3.2) Show that special Lorentz transformations are associative, that
is, if O(%;) represents the transformation from observer S to §', then

(O(21)O(22)) O(w3) = O(v1) (O(v2)O(23)) -

3.6 (§3.3) An athlete carrying a horizontal 8 m-long pole runs at a speed
v such that (1 —2?/c¢?)~'/2 = 2 into a 4 m-long room and closes the door.
Explain, in the athlete’s frame, in which the room is only 2 m long, how
this is possible. [Hint: no effect travels faster than light.] Show that the
minimum length of the room for the performance of this trick is 8/(v/3
+2)m. Draw a space-time diagram to indicate what is going on in the rest
frame of the athlete. [Hint: You may find it helpful to look up the “pole in
the barn paradox” on the web for a detailed discussion of this problem.]

3.7 (§3.5) A particle has velocity u = (11, uz, u3) in Sand w’ = (1, s, uf)
in 8. Prove from the velocity transformation formulae that

L, @ — )@ - )
¢ —u =
(¢ + ujv)?

Deduce that, if the speed of a particle is less than ¢ in any one inertial
frame, then it is less than ¢ in every inertial frame.

3.8 (§3.7) Check the transformation formulae for the components of ac-
celeration (3.20)—(3.22).
Deduce that acceleration is an absolute quantity in special relativity.

3.9 (§3.8) A particle moves from rest at the origin of a frame S along the
x-axis, with constant acceleration « (as measured in an instantaneous rest
frame). Show that the equation of motion is

ax® +2x — i = 0,

and prove that the light signals emitted after time ¢ = ¢/« at the origin will
never reach the receding particle. A standard clock carried along with the
particle is set to read 0O at the beginning of the motion and reads 7 at time
tin S. Using the clock hypothesis, prove the following relationships:

o\ —1/2
u aT u aT
— = tanh —, 1-— - = cosh —,
c c c c
at .. aT & aT
— =sinh —, x=—(cosh— —1),
c c « c

where u is the speed of the particle. Show that, if 72 < ¢? / o?, then,
during an elapsed time 7 in the inertial system, the particle clock will
record approximately the time 7(1 — a? 7% /6¢?).

If a = 3g, find the difference in recorded times by the spaceship clock and
those of the inertial system



(a) after 1 hour;
(b) after 10 days.

3.10 (§3.9) A space traveller 4 travels through space with uniform ac-
celeration g (to ensure maximum comfort). Find the distance covered in
twenty-two years of A’s time. [Hint: using years and light years are used
as time and distance units, respectively, then g = 1.03]. If on the other
hand, A describes a straight double path XYZYX, with acceleration g on
XY and 7Y, and deceleration g on YZ and YX, for six years each, then
draw a space-time diagram as seen from the Earth and find by how much
the Earth would have aged in twenty-four years of A’s time.

3.11 (§3.10) Let the relative velocity between a source of light and an
observer be u, and establish the classical Doppler formulae for the
frequency shift:

&0
1+u/c’

source moving, observer at rest:v =
observer moving, source at rest:v = (1 — u/c)vp,
where 1y is the frequency in the rest frame of the source. What are the

corresponding relativistic results?

3.12 (§3.10) How fast would you need to drive towards a red traffic
light for the light to appear green? [Hint: Areqg ~ 7 X 107 'm, Agreen & 5
x 1077m.]

Further reading

There are many fine texts around on special relativity. One is a book by
Rindler (1982). Another excellent book is written by a Southampton ex-
colleague, Les Marder (1968).

Marder, L. (1968). An Introduction to Relativity. L.ongman, LLondon.

Rindler, W. (1982). Introduction to Special Relativity. Oxford University
Press, Oxford.
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The elements of relativistic
mechanics

4.1 Newtonian theory

Before discussing relativistic mechanics, we shall review some basic ideas
of Newtonian theory. We have met Newton’s first law in §2.4, and it states
that a body not acted upon by a force moves in a straight line with uniform
velocity. The second law describes what happens if an object changes its
velocity. In this case, something is causing it to change its velocity and
this something is called a force. For the moment, let us think of a force as
something tangible like a push or a pull. Now, we know from experience
that it is more difficult to push a more massive body and get it moving
than it is to push a less massive body. This resistance of a body to mo-
tion, or rather change in motion, is called its inertia. To every body, we
can ascribe, at least at one particular time, a number measuring its inertia,
which (again, for the moment) we shall call its mass . If a body is mov-
ing with velocity v, we define its linear momentum p to be the product
of its mass and velocity. Then Newton’s second law (IN2) states that the
force acting on a body is equal to the rate of change of linear momentum.
The third law (IN3) is less general and talks about a restricted class of
forces called internal forces, namely, forces acting on a body due to the
influence of other bodies in a system. The third law states that the force
acting on a body due to the influence of the other bodies, the so-called
action, is equal and opposite to the force acting on these other bodies
due to the influence of the first body, the so-called reaction. We state the
two laws below.

N2: The rate of change of momentum of a body is equal to the force
acting on it, and is in the direction of the force.

N3: To every action there is an equal and opposite reaction.

Then, for a body of mass m with a force F acting on it, Newton’s second
law states

dp d(mo)
F=—= .
dz de

4.1)

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0004
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Fl FZ
—
m, m,

Fig. 4.1 Measuring mass by mutually
induced accelerations.

If, in particular, the mass is a constant, then we obtain the well-known
formula

d
F = md—z; = ma, “4.2)

where a is the acceleration.

Now, strictly speaking, in Newtonian theory, all observable quantities
should be defined in terms of their measurement. We have seen how an
observer equipped with a frame of reference, a ruler, and a clock can
map the events of the universe, and hence measure such quantities as po-
sition, velocity, and acceleration. However, Newton’s laws introduce the
new concepts of force and mass, and so we should give a prescription for
their measurement. Unfortunately, any experiment designed to measure
these quantities involves Newton’s laws themselves in its interpretation.
Thus, Newtonian mechanics has the rather unexpected property that the
operational definitions of force and mass which are required to make the
laws physically significant are actually contained in the laws themselves.

To make this more precise, let us discuss how we might use the laws
to measure the mass of a body. We consider two bodies isolated from all
other influences other, than the force acting on one due to the influence
of the other, and vice versa (Fig. 4.1). Since the masses are assumed to
be constant, we have, by Newton’s second law in the form (4.2),

F1 =mia; and Fz = mrQ;.
In addition, by Newton’s third law, F; = —F,. Hence, we have

ma; = —ma;. (43)

Therefore, if we take one standard body and define it to have unit mass,
then we can find the mass of the other body, by using (4.3). We can keep
doing this with any other body and in this way we can calibrate masses.
In fact, this method is commonly used for comparing the masses of el-
ementary particles. Of course, in practice, we cannot remove all other
influences, but it may be possible to keep them almost constant and so
neglect them.

We have described how to use Newton’s laws to measure mass. How
do we measure force? One approach is simply to use Newton’s second
law, work out ma for a body, and then read off from the law the force
acting on m. This is consistent, although rather circular, especially since
a force has independent properties of its own. For example, Newton has
provided us with a way for working out the force in the case of gravitation
in his universal law of gravitation (UG).

UG: Two particles attract each other with a force directly proportional
to their masses and inversely proportional to the distance between
them.



Isolated systems of particles in Newtonian mechanics 51

If we denote the constant of proportionality by G (with value approxi-
mately 6.67 x 107" m*Kg~'s~2 in SI units), the so-called Newtonian
constant, then the law is (see Fig. 4.2)

mymy .

F=-G 2 7,

(4.4)

where a hat denotes a unit vector. There are other force laws which can
be stated separately. Again, another independent property which holds for
certain forces is contained in Newton’s third law. The standard approach
to defining force is to consider it as being fundamental, in which case
force laws can be stated separately or they can be worked out from other
considerations. We postpone a more detailed critique of Newton’s laws
until Part C of the book.

Special relativity is concerned with the behaviour of material bodies
and light rays in the absence of gravitation. So we shall also postpone
a detailed consideration of gravitation until we discuss general relativity in
Part C of the book. However, since we have stated Newton’s universal laws
of gravitation in (4.4), we should, for completeness, include a statement
of Newtonian gravitation for a distribution of matter. A distribution of
matter of mass density p = p(x, ¥, 2, £) gives rise to a gravitational potential
¢ which satisfies Poisson’s equation

V3¢ = 47Gp, (4.5)

at points inside the distribution, where the Laplacian operator V? is given
in Cartesian coordinates by

2?20 &
COx2 0y2 022

At points external to the distribution, this reduces to Laplace’s equation

V3¢ = 0. (4.6)

We assume that the reader is familiar with this background to Newtonian
theory.

4.2 Isolated systems of particles
in Newtonian mechanics

In this section, we shall, for completeness, derive the conservation of lin-
ear momentum in Newtonian mechanics for a system of n particles. Let
the ¢th particle have constant mass m; and position vector #; relative to
some arbitrary origin. Then the ith particle possesses linear momentum
p; defined by p, = m;#;, where the dot denotes differentiation with respect
to time ¢z. If F; is the total force on m;, then, by Newton’s second law, we

m

>
r

m,

Fig. 4.2 Newton’s universal law of grav-
itation.
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have
F; = p, = mj¥. 4.7

The total force F; on the ith particle can be divided into an external force
F* due to any external fields present and to the resultant of the internal
forces. We write

F; = Pth + zn:Fl],

=1

where Fj; is the force on the ith particle due to the jth particle and where,
for convenience, we define F;; = 0. If we sum over ¢ in (4.7), we find

dtz z‘”’l zmzﬂf

iy=1

Using Newton’s third law, namely, F; = —F};, then the last term is zero
and we obtain P = F*', where P = >, P; is termed the total linear
momentum of the system, and F™* = "  F™ is the total external

force on the system. If, in particular, the system of particles is isolated,
then

F**=0 = P=C,

where C is a constant vector. This leads to the law of the conservation
of linear momentum of the system, namely,

Pitial = Prinal. (4.8)

4.3 Relativistic mass

The transition from Newtonian to relativistic mechanics is not, in fact,
completely straightforward, because it involves at some point or another
the introduction of ad hoc assumptions about the behaviour of particles
in relativistic situations. We shall adopt the approach of trying to keep
as close to the non-relativistic definition of energy and momentum as we
can. This leads to results which in the end must be confronted with exper-
iment. The ultimate justification of the formulae we shall derive resides
in the fact that they have been repeatedly confirmed in numerous ex-
periments, for example in particle physics. We shall only derive them in
a simple case and state that the arguments can be extended to a more
general situation.

It would seem plausible that, since length and time measurements
are dependent on the observer, then mass should also be an observer-
dependent quantity. We thus assume that a particle which is moving with
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Fig. 4.3 The inelastic collision in the frames S and S'.

a velocity u relative to an inertial observer has a mass, which we shall term
its relativistic mass, which is some function of u, that is,

m = m(u), 4.9)

where the problem is to find the explicit dependence of m on u. We re-
strict attention to motion along a straight line and consider the special case
of two equal particles colliding inelastically (in which case they stick to-
gether), and look at the collision from the point of view of two inertial
observers S and S (see Fig. 4.3). Let one of the particles be at rest in the
frame S and the other possess a velocity u before they collide. We then
assume that they coalesce and that the combined object moves with ve-
locity U. The masses of the two particles are respectively »(0) and m(u)
by (4.9). We denote m(0) by m( and term it the rest mass of the particle.
In addition, we denote the mass of the combined object by M(U). If we
take S’ to be the centre-of-mass frame, then it should be clear that, rel-
ative to &, the two equal particles collide with equal and opposite speeds,
leaving the combined object with mass M at rest. It follows that S’ must
have velocity U relative to S.

We shall assume both conservation of relativistic mass and conservation
of linear momentum and see what this leads to. In the frame S, we obtain

m(u) + mo = M(U), m(u)u+0 = MU)U,

from which we get, eliminating M(U),

m(u) = my (ui]U> . (4.10)

The left-hand particle has a velocity U relative to §', which in turn has a
velocity U relative to S. Hence, using the composition of velocities law,
we can compose these two velocities, and the resultant velocity must be

Relativistic mass
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m ()

my

o

Fig. 4.4 Relativistic mass as a
function of velocity.

identical with the velocity « of the left-hand particle in S. Thus, by (2.6)
in non-relativistic units,

2U
(1+0?/c?)

u=

Solving for U in terms of u, we obtain the quadratic

2
2 — (20> U+ =0,
u

which has roots

CZ

U=—=
u

I\ 2 1/2 5 5N 1/2
() -2 =She(-9)"].

u u c
In the limit # — 0, this must produce a finite result, so we must take the
negative sign (check), and, substituting in (4.10), we find finally

m(u) = ymo, (4.11)
where
y(u) = (1 — uz/cz)_l/z. (4.12)

This is the basic result which relates the relativistic mass of a moving par-
ticle to its rest mass. Note that this is the same in structure as the time
dilation formula (3.15), i.e. T = B7Tp, where 3(v) = (1 — 7;2/52)71/2,
except that time dilation involves the factor 3(v), which depends on the
velocity v of the frame S relative to S, whereas v(u) depends on the ve-
locity u of the particle relative to S. If we plot m against u, we see that
relativistic mass increases without bound as « approaches ¢ (Fig. 4.4).

It is possible to extend the above argument to establish (4.11) in more
general situations. However, we emphasize that it is not possible to derive
the result a priori, but only with the help of extra assumptions. How-
ever it is produced, the only real test of the validity of the result is in the
experimental arena and here it has been extensively confirmed.

4.4 Relativistic energy

Let us expand the expression for the relativistic mass, namely,
2 2\—1/2
m(u) = ymg = mo(1 — 12 /?) /2,

in the case when the velocity u is small compared with the speed of light
¢. Then we get

u

m(u) = mo + Ciz(%mouz) + O (c:) s (4.13)
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where the final term stands for all terms of order (u/c)* and higher. If
we multiply both sides by ¢?, then, apart from the constant mgc?, the
right-hand side is to first approximation the classical kinetic energy (k.e.),
that is,

mc* = moc® + Lmou® + - -+ =~ constant + kee. (4.14)

We have seen that relativistic mass contains within it the expression for
classical kinetic energy. In fact, it can be shown that the conservation of
relativistic mass leads to the conservation of kinetic energy in the New-
tonian approximation. As a simple example, consider the collision of two
particles with rest mass # and 71, initial velocities v; and 7, and final
velocities v, and v, respectively (Fig. 4.5).
Conservation of relativistic mass gives
1/2

-2 _ _ - -1/2
mo(1 — 03 /c?) 2y io(1 — 03 /c%) =mp(1 —v3/c?) /
-1/2

(4.15)

+ (1 — 23/%)

If we now assume that v1, 91, v2, and 2, are all small compared with ¢,
then we find (exercise) that the leading terms in the expansion of (4.15)
give

1
2

Wlo?)f + %}’7’!0@% = %WL()‘Z)% + %ﬁ’lo@i (4.16)
which is the usual conservation of energy equation. Thus, in this sense,
conservation of relativistic mass includes within it conservation of energy.
Now, since energy is only defined up to the addition of a constant, the
result (4.14) suggest that we regard the energy E of a particle as given by

E = mc*. (4.17)

This is one of the most famous equations in physics. However, it is not
just a mathematical relationship between two different quantities, namely
energy and mass, but rather states that energy and mass are equivalent
concepts. Because of the arbitrariness in the actual value of E, a better
way of stating the relationship is to say that a change in energy is equal to
a change in relativistic mass, namely,

AE = A(mc?).

Relativistic energy 55
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Using conventional units, ¢? is a large number and indicates that a small
change in mass is equivalent to an enormous change in energy. As is well
known, this relationship and the deep implications it carries with it for
peace and war, have been amply verified. For obvious reasons, the term
mgc? is termed the rest energy of the particle. Finally, we point out that
conservation of linear momentum, using relativistic mass, leads to the
usual conservation law in the Newtonian approximation. For example
(exercise), the collision problem considered above leads to the usual
conservation of linear momentum equation for slow-moving particles:

mov1 + myv1 = movy + my,. (4.18)

Extending these ideas to three spatial dimensions, then a particle mov-
ing with velocity u relative to an inertial frame S has relativistic mass s,
energy E, and linear momentum p given by

m=~ymy, E=mc, p=mu. (4.19)

Some straightforward algebra (exercise) reveals that

(Efc)® — p2 — p% — p2 = (moc)’s (4.20)

where moc? is an invariant, since it is the same for all inertial observers. If

we compare this with the invariant (3.12), i.e.

(Cl)zixziyzizz :sz’

then it suggests that the quantities (E/c, px, py,ps) transform under a
Lorentz transformation in the same way as the quantities (cz, x, v, 2). We
shall see in Part C that the language of tensors provides a better frame-
work for discussing transformation laws. For the moment, we shall assume
that energy and momentum transform in an identical manner, and quote
the results. Thus, in a frame &’ moving in standard configuration with
velocity v relative to S, the transformation equations are (see (3.10))

E =B(E—vpy), pl=Bpx—vE/P), Py=py Po=ps (421

The inverse transformations are obtained in the usual way, namely, by
interchanging primes and unprimes and replacing v by —v, which gives

E=B(E +vp,), px=Bp.+0E/SP), py=0) pz=0p,. (4.22)

If, in particular, we take S’ to be the instantaneous rest frame of the
particle, then p’ = 0 and E' = Ey, = myc®. Substituting in (4.22), we
find



mo Cz

E:ﬁE’;W

= mc?,

where m = mo(1 —v?/c?)~1/? and p = (BvE'/?,0,0) = (m2,0,0) = mv,
which are precisely the values of the energy, mass, and momentum arrived
at in (4.19) with u replaced by v.

4.5 Photons

At the end of the 19th century, there was considerable conflict between
theory and experiment in the investigation of radiation in enclosed vol-
umes. In an attempt to resolve the difficulties, Max Planck proposed that
light and other electromagnetic radiation consisted of individual ‘packets’
of energy, which he called quanta. He suggested that the energy E of each
quantum was to depend on its frequency v, and proposed the simple law,
called Planck’s hypothesis,

E = hv, (4.23)

where % is a universal constant known now as Planck’s constant. The
idea of the quantum was developed further by Einstein, especially in at-
tempting to explain the photoelectric effect. The effect is to do with the
ejection of electrons from a metal surface by incident light (especially
ultraviolet) and is strongly in support of Planck’s quantum hypothesis.
Nowadays, the quantum theory is well established and applications of it
to explain properties of molecules, atoms, and fundamental particles are
at the heart of modern physics. Theories of light now give it a dual wave—
particle nature. Some properties, such as diffraction and interference, are
wavelike in nature, while the photoelectric effect and other cases of the
interaction of light and atoms are best described on a particle basis.

The particle description of light consists in treating it as a stream of
quanta called photons. Using equation (4.19) and substituting in the
speed of light, # = ¢, we find

1/2

mo=~"'m=(1—-u**)""m=0, (4.24)

that is, the rest mass of a photon must be zero! This is not so bizarre as it
first seems, since no inertial observer ever sees a photon at rest — its speed
is always ¢ — and so the rest mass of a photon is merely a notional quantity.

If we let 2 be a unit vector denoting the direction of travel of the photon,
then

D = (o bys P2) = A,
and (4.20) becomes

(E/c)* — p* = 0.

Photons
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Taking square roots (and remembering ¢ and p are positive), we find that
the energy E of a photon is related to the magnitude p of its momentum by

E = pe. (4.25)

Combining these results with Planck’s hypothesis £ = hv, we obtain
the following formulae for the energy E, and linear momentum p of the
photon:

E=h, p=(hw/cn. (4.26)

It is gratifying to discover that special relativity, which was born to recon-
cile conflicts in the kinematical properties of light and matter, also includes
their mechanical properties in a single all-inclusive system.

We finish this section with an argument which shows that Planck’s hy-
pothesis can be derived directly within the framework of special relativity.
We have already seen in the last chapter that the radial Doppler effect for
a moving source is given by (3.26), namely

A [(1+09/c 12

Mo \1-9/c ’
where )\ is the wavelength in the frame of the source and ) is the wave-
length in the frame of the observer. We write this result, instead, in terms

of frequency, using the fundamental relationships ¢ = Av and ¢ = Agvp,
to obtain

1/0::<1+‘U/C>1/2. 4.27)

v 1-9/c

Now, suppose that the source emits a light flash of total energy Ej. Let
us use (4.22) to find the energy received in the frame of the observer S.
Since, recalling Fig. 3.11, the light flash is travelling along the negative
x-direction of both frames, (4.25) leads to the result p, = —Ey /¢, with the
other primed components of momentum zero. Substituting in the first
equation of (4.22), namely,

E= ﬂ(E’ + vP;)>

we get

/e _o/ec 1/2
EZﬂ(EO_vEO/C> = M =E (14-1);0) 5

or

E 1/2
=) “329



Combining this with (4.27), we obtain

E, _E

140 v

Since this relationship holds for any pair of inertial observers, it follows
that the ratio must be a universal constant, which we call 4. Thus, we have
derived Planck’s hypothesis, E = hv.

We leave our considerations of special relativity at this point and
turn our attention to the formalism of tensors. This will enable us to
reformulate special relativity in a way which will aid our transition to gen-
eral relativity, that is, to a theory of gravitation consistent with special
relativity.

Exercises

4.1 (§4.1) Discuss the possibility of using force rather than mass as the
basic quantity, taking, for example, a standard weight at a given latitude
as the unit of force. How should one then define and measure the mass
of a body?

4.2 (§4.3) Show that, in the inelastic collision considered in §4.3, the rest
mass of the combined object is greater than the sum of the original rest
masses. Where does this increase derive from?

4.3 (§4.3) A particle of rest mass my and speed u strikes a stationary
particle of rest mass . If the collision is perfectly inelastic, then find the
rest mass of the composite particle.

4.4 (§4.4)
(1) Establish the transition from (4.15) to (4.16).
(i1) Establish the Newtonian approximation equation (4.18).

4.5 (§4.4) Show that (4.19) leads to (4.20). Deduce (4.21).

4.6 (§4.4) Newton’s second law for a particle of relativistic mass #z is

F= C%(Wm)

Define the work done dE in moving the particle from #» to » + dv. Show
that the rate of doing work is given by

dE _ d(mu)
de  dr

‘u.

Use the definition of relativistic mass to obtain the result

%‘ M u% Hint: u d—u = u%
de (1 —u?/c2)3/27 dr de T de’

Exercises
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Express this last result in terms of di/dr and integrate to obtain

E = mc® + constant.

4.7 (§4.4) Two particles whose rest masses are m; and m,, move along a
straight line with velocities u; and u,, respectively, measured in the same
direction. They collide inelastically to form a new particle. Show that the
rest mass and velocity of the new particle are m3 and w3, respectively,

where
2 2 2 2
m5 = my + m5 + 2mymay1y2(1 — uyuz /),
Y = myyi1uy + myy2un
3 =
my1 + mp2
with

n=—ui/)7V 0 = (1w

4.8 (§4.4) A particle of rest mass my, energy ¢y, and momentum p, suf-
fers a head-on elastic collision (i.e. masses of particles unaltered) with a
stationary mass M. In the collision, M is knocked straight forward, with
energy E and momentum P, leaving the first particle with energy e and
momentum p.
(i) Show that

P+P:P0>

e+ E=ey+ M.

(i) Squaring the above equations and using (4.20) show that
E
e—z = pP + ey M,
c
(iii) Squaring the above equation and again using (4.20) show that

m2 P + Mzczp2 = 2pPe, M + szécz.

@iv) Letting P = py — p in the above show that

_ po(m2 — M)
© 2Mey + M2 + mic?’

and

_ ZpoM(EQ + MCZ)
T 2Mey + M2 + mdc’




What do these formulae become in the classical limit?

4.9 (§4.4) Assume that the formulae (4.19) holds for a tachyon, which
travels with speed v > ¢. Taking the energy to be a measurable quantity,
then deduce that the rest mass of a tachyon is imaginary and define the
real quantity x4, by mo = iu,.

If the tachyon moves along the x-axis and if we assume that the
x-component of the momentum is a real positive quantity, then deduce

v
m = maﬂo, p=pylvla, E= mc,

where a = (v2/c% — 1)71/2.
Plot E/moc® against v/¢ for both tachyons and subluminal particles.

4.10 (§4.5) Two light rays in the xy-plane of an inertial observer, making
angles # and —6, respectively, with the positive x-axis, collide at the ori-
gin. What is the velocity v of the inertial observer (travelling in standard
configuration) who sees the light rays collide head on?

4.11 (§4.5) An atom of rest mass 1 is at rest in a laboratory and absorbs a
photon of frequency v. Find the velocity and mass of the recoiling particle.

4.12 (§4.5) An atom at rest in a laboratory emits a photon and recoils. If
its initial mass is 7o and it loses the rest energy e in the emission, prove
that the frequency of the emitted photon is given by

v= 2(1 — e/2myc?).

Further reading

Again, the main reference is Rindler (1982), but the book by Dixon
(1978) and also the one by Taylor and Wheeler (1966) give alternative
approaches.

Dixon, W. G. (1978). Special Relativity, the Foundation of Modern Physics.
Cambridge University Press, Cambridge.

Rindler, W. (1982). Introduction to Special Relativity. Oxford University
Press, Oxford.

Taylor, E. E, and Wheeler, J. A. (1966). Spacetime Physics. Freeman, San
Francisco, CA.
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Tensor algebra

5.1 Introduction

To work effectively in Newtonian theory, one really needs the language of
vectors. This language, first of all, is more succinct, since it summarizes
a set of three equations in one. Moreover, the formalism of vectors helps
to solve certain problems more readily, and, most important of all, the
language reveals structure and thereby offers insight. In exactly the same
way, in relativity theory, one needs the language of tensors. Again, the
language helps to summarize sets of equations succinctly and to solve
problems more readily, and it reveals structure in the equations. This part
of the book is devoted to learning the formalism of tensors, which is a pre
condition for the rest of the book.

The approach we adopt is to concentrate on the technique of ten-
sors without fully taking into account the deeper geometrical significance
behind the theory. We shall be concerned more with what you do
with tensors rather than what tensors actually are. There are two dis-
tinct approaches to the teaching of tensors: the abstract or index-free
(coordinate-free) approach and the more common approach in relativity
text books, which uses indices. The main advantage of the more abstract
approach is that it is based on the existence of an underlying geometrical
object defined on the whole manifold and thus offers deeper geometrical
insight, particularly when it comes to looking at global structure. How-
ever, it has a number of disadvantages. First of all, it requires much more
of a mathematical background, which in turn takes time to develop. The
other disadvantage is that the tensorial objects used in relativity have ob-
jects with large numbers of indices and complicated contractions which
are hard to write down in an index-free fashion. Finally, for all its elegance,
when one wants to do a real calculation with tensors, as one frequently
needs to, then recourse often has to be made to using a particular coor-
dinate system adapted to the problem in hand. We shall adopt the more
conventional index approach based on how tensors transform under a
change of coordinate system, because it will prove faster and more practi-
cal. In some ways, it also accords more with Einstein’s ideas that the laws
of physics should not depend on how one constructs the local coordinate
system. Furthermore, it also provides a quick route to the geometrical and
global ‘abstract index’ approach of Penrose (1968) in which indices are
used simply to indicate the type of a tensor and are not related to the use

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0005
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¢ = constant
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Fig. 5.1 Plane polar coordinate curves.

of a particular coordinate system. In any case, we advise those who wish
to take their study of the subject further to look at a more geometrical
approach at the first opportunity.

We repeat that the exercises are seen as integral to this part of
the book and should not be omitted.

5.2 Manifolds and coordinates

We shall start by working with tensors defined in # dimensions since, and
it is part of the power of the formalism, there is little extra effort involved.
A tensor is an object defined on a geometric entity called a (differential)
manifold. We shall not define a manifold precisely because it would in-
volve us in too much of a digression. But, in simple terms, a manifold
is something which ‘locally’ looks like a bit of #-dimensional Euclidean
space R". For example, compare a 2-sphere S? with the Euclidean plane
R2. They are clearly different. But a small bit of S? looks very much like a
small bit of R? (if we neglect metrical properties). The fact that S is ‘com-
pact’, i.e. in some sense finite, whereas R? ‘goes off to infinity’ is a global
property rather than a local property. We shall not say anything precise
about global properties — the topology of the manifold — although the is-
sue will surface when we start to look carefully at solutions of Einstein’s
equations in general relativity.

We shall simply take an #-dimensional manifold M to be a set of points
such that each point possesses a set of n coordinates (x',x%,...,x")
where each coordinate ranges over a subset of the reals, which may, in
particular, range from —oo to +oo. The reason why the coordinates are
written as superscripts rather than subscripts will become clear later. Now
the key thing about a manifold is that it may not be possible to cover
the whole manifold by one non-degenerate coordinate system, namely,
one which ascribes a unique set of # coordinate numbers to each point.
Sometimes it is simply convenient to use coordinate systems with de-
generate points. For example, plane polar coordinates (R, ¢) in the plane
have a degeneracy at the origin because ¢ is indeterminate there (Fig. 5.1).
However, here we could avoid the degeneracy at the origin by using Carte-
sian coordinates. But in other circumstances we have no choice in the
matter. For example, it can be shown that there is no single coordinate
system which covers the whole of a 2-sphere S? without degeneracy. The
smallest number needed is two, which is shown schematically in Fig. 5.2.
We therefore work with coordinate systems which cover only a portion of
the manifold and which are called coordinate patches. Figure 5.3 in-
dicates this schematically. A set of coordinate patches which covers the
whole manifold is called an atlas. The theory of manifolds tells us how
to get from one coordinate patch to another by a differentiable coordi-
nate transformation in the overlap region. The behaviour of geometric
quantities under coordinate transformations lies at the heart of tensor
calculus.
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5.3 Curves and surfaces

Given a manifold, we shall be concerned with points in it and subsets
of points which define curves and surfaces of different dimensions. We
shall frequently define these curves and surfaces parametrically. Thus
(in exactly the same way as is done in Euclidean 2- and 3-space), since a
curve has one degree of freedom, it depends on one parameter and so we
define a curve by the parametric equations

x*=x%u), (a=1,2,...,n), (5.1)

where u is a parameter and x! (u), x*(u), ... ,x"(u) denote n functions of
u. Similarly, since a subspace or surface of m dimensions (m < n) has
m degrees of freedom,, it depends on m parameters and it is given by the
parametric equations

Curves and surfaces
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x4 = xutyudy ™), (a=1,2,...,n). (5.2)

If, in particular, m = n — 1, the subspace is called a hypersurface. In this
case,

x? = x“(ul,uz,‘..,u”_l), (a=1,2,...,m)

and the n— 1 parameters can be eliminated from these 7 equations to give
one equation connecting the coordinates, i.e.

f(xl,xz, .. 5x") =0. (5.3)
From a different but equivalent point of view, a point in a general posi-
tion in a manifold has »n degrees of freedom. If it is restricted to lie in a

hypersurface, an (n — 1)-subspace, then its coordinates must satisfy one
constraint, namely,

Aty %, o, x") =0,

which is the same as equation (5.3). Similarly, points in an #-dimensional
subspace (m < n) must satisfy n — m constraints

fl (-xla x2> ,xn) = O;
L%, ") =0,

(5.4)
Tt x%, L, x") =0,

which is an alternative to the parametric representation (5.2).

5.4 Transformation of coordinates

As we have seen, a point in a manifold can be covered by many differ-
ent coordinate patches. The essential point about tensor calculus is that,
when we make a statement about tensors, we do not wish it simply to hold
just for one coordinate system but rather for all coordinate systems. Con-
sequently, we need to find out how quantities behave when we go from
one coordinate system to another one. We therefore consider the change
of coordinates x? — x’“ given by the n equations

K =fxh 2 X (a=1,2, ... ,n), (5.5)

where the f’s are single-valued continuous differentiable functions, at least
for certain ranges of their arguments. Hence, at this stage, we view a co-
ordinate transformation passively as assigning to a point of the manifold
whose old coordinates are (x!',x%,...,x") the new primed coordinates

(x'1,x"%,...,x'"). We can write (5.5) more succinctly as x'“ = f%(x), where,



from now on, lower-case Latin indices are assumed to run from 1 to 7,
the dimension of the manifold, and the f are all functions of the old un-
primed coordinates. Furthermore, we can write the equation more simply
still as

K= x%(x), (5.6)

where x’%(x) denote the n functions f*(x). Notation plays an important
role in tensor calculus, and equation (5.6) is clearly easier to write than
equation (5.5).

We next contemplate differentiating (5.6) with respect to each of the
coordinates x°. This produces the n x n transformation matrix of
coefficients:

fox't ox'! ox' ]
o a2 ow

ox'* ailz %/2 ox’

|:axb:| = 8x1 8x2 ox" . (57)
Lox!  Ox? Ox" 4

The determinant J' of this matrix is called the Jacobian of the transfor-
mation:

Ox'?

5 |- (5.8)

r-|

We shall assume that this is non-zero for some range of the coordinates
xb. Then it follows from the inverse function theorem that we can (in
principle) solve equation (5.6) uniquely for the old coordinates x* and
obtain the inverse transformation equations

x* = x*(x). (5.9

It follows from the product rule for determinants that, if we define the
Jacobian of the inverse transformation by

| Ox®
~oxt|’

thenJ=1/J.

It is convenient to assume that the functions x’* = x"*(x) and x* = x*(x’)
are not just differentiable but smooth, which means that we can dif-
ferentiate the functions as often as we wish. A manifold for which the
transformation functions (5.6) and (5.9) are smooth is called a smooth
manifold and, from now onwards, unless we say otherwise, we will
assume that we are working on a smooth manifold.

Transformation of coordinates
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In three dimensions, the equation of a surface is given by z = f{x,);
then its total differential is defined to be

_of of
dz = 8xdx+ 8ydy.

Then, in an exactly analogous manner, starting from (5.6), we define the
total differential

0x'? ox'® Ox'a
fa — 77 1 + 2 + .4
dx = 1 dx 2 dx "

N
dx”,

for each a running from 1 to n. We can write this more economically by
introducing an explicit summation sign:

0 = O
A =" o da®. (5.10)
b=1

This can be written more economically still by introducing the Einstein
summation convention: whenever a literal index is repeated, it is un-
derstood to imply a summation over the index from 1 to n, the dimension
of the manifold. Hence, we can write (5.10) simply as

1a
ox'"

dw'® = dx®. (5.11)

T ooxb

The index a occurring on each side of this equation is said to be free and
may take on separately any value from 1 to n. The index & on the right-
hand side is repeated and hence there is an implied summation from
1 to n. A repeated index is called bound or dummy because it can be
replaced by any other index not already in use. For example,

8xla de 3 ax/a

Ox? Ox¢ A’y

because ¢ was not already in use in the expression. We define the
Kronecker delta 47 to be a quantity which is either 0 or 1 according to

1 ifa=25b,
ge=4 U4 (5.12)
0 ifa#b.

It therefore follows directly from the definition of partial differentiation
(check) that

ox'toxt
axlb = @ = 5b' (513)



5.5 Contravariant tensors

The approach we are going to adopt is to define a geometrical quantity in
terms of its transformation properties under a coordinate transformation
(5.6). We shall start with a prototype and then give the general definition.

Let P be a point on the manifold and let v(u) be a differentiable curve
parameterized by u such that P = v(0). Now let (x!,...,x") be a local
coordinate system in a neighbourhood of P; then we can write the curve
v in these coordinates as being given by

Then the derivative at # = 0 defines a tangent vector to the curve at P
(Fig. 5.4) which in these coordinates is given by

dx?

T4 = (0). (5.14) Fig. 5.4 The tangent vector to the curve

du

Now suppose we introduce a new coordinate system (x'!,...,x”) ina
neighbourhood of P and look at the same curve ~ in the x'* coordinate
system. Then using (5.6) we may write the curve () in this coordinate
system as

X (u) = x'(x(u)). (5.15)
In terms of these coordinates, the tangent vector at P is given by

dx/a

Tlll —
du

(0). (5.16)

Then, by the function of a function rule for derivatives, we have

/a b /a
77 = {6’64 [d"(o)} - {8’“ } T, (5.17)
oxt |, | du oxt |

Remember that the repeated index b is summed over. Thus, the compo-
nents of the tangent vector 77 in the new coordinate system are nothing
but the components in the old coordinates multiplied by the # X n trans-
formation matrix [0x'*/0x’],. We will take (5.17) as our prototype for
how a vector transforms at a point P and use it in future as our definition.
We now define a contravariant vector or contravariant tensor of

rank (order) 1 at P as a set of quantities, written X“ in the x*-coordinate
system, which transforms under a change of coordinates according to

ox'“

x°= 2
Ox?

X?, (5.18)

where the transformation matrix is evaluated at P. The tangent vector
to a curve is just a special case of (5.18). It is important to distinguish
between the actual invariant geometric object like the tangent vector and

Contravariant tensors

x* = x*(u) at P.
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Fig. 5.5 The tangent vector at two points
of a curve x* = x%(u).

its representation in a particular coordinate system. This is given by the
n numbers [dx?/du]p in the x?-coordinate system and the (in general)
different numbers [dx'®/du]p in the x’?-coordinate system. When we want
to talk about the tangent vector to the curve without referring to a specific
coordinate system, we will write it as 4(0) and we depict it with an arrow
in Fig. 5.5.

We now generalize the definition (5.18) to obtain contravariant ten-
sors of higher rank or order. Thus, a contravariant tensor of rank 2
is a set of #? quantities associated with a point P, denoted by X% in the
x*-coordinate system, which transform according to

ab_@x’aax’b 4 519

©0x¢ OxdT (5-19)
The quantities X’* are the components in the x’®-coordinate system,
the transformation matrices are evaluated at P, and the law involves two
dummy indices ¢ and d. An example of such a quantity is provided by
the so-called tensor product Y?Z?, of two contravariant vectors Y? and Z?
(exercise). The definition of third- and higher-order contravariant tensors
proceeds in an analogous manner. An important case is a tensor of zero
rank, called a scalar or scalar invariant ¢, which transforms according
to

¢ =¢. (5.20)

at P.

5.6 Covariant tensors

In ordinary vector calculus in R3, there are two obvious geometric con-
structions which give rise to a vector. The first is taking the tangent to a
curve and the other is taking the gradient of a scalar function defining a
surface. The first provided our prototype for a contravariant vector while
the second will provide us with the prototype for a covariant vector. Let
¢ be a differentiable scalar (real-valued) function on the manifold; then,
at a general point P in the manifold, ¢(P) = %, where % is a real number.
Now, in R? in standard Euclidean coordinates (x!,x?,x%), the equation
¢(x*) = k defines a surface S and

grade = ((% ¢ 3&)):

ox1’ 9x2” 0x3

gives a vector normal to the surface. We will show that this remains true in
the general case, but things are a bit more complicated using a general co-
ordinate system. Let ¢ be a scalar field and let (xl, ...,x") be a coordinate
system in the neighbourhood of the point P. Then in these coordinates
we may write

¢ = p(x*), (5.21)



and by (5.2) the equation ¢(x?) = k defines a hypersurface S through P.
The derivative of ¢ defines a covariant vector or co-vector at ° normal
to S given in these coordinates by

(5.22)

(2],

Ox?

Note that the index on the covariant vector N, is below while that on the
contravariant vector 7% was above. As we will see below, the difference in
the position of the index is important and indicates that it transforms in a
different way.

Now let us introduce a different coordinate system (x'!, ..., x) in the
neighbourhood of P. We now look at the same hypersurface but this time
described in terms of the x* coordinate system so the hypersurface is now
given by ¢(x'*) = k. Then in this coordinate system the components of
the normal co-vector are given by

;| 00
N’ = [&ML. (5.23)

Remembering from equation (5.9) that x* can be thought of as a function
of %%, equation (5.21) can be written equivalently as

¢ = p(x*(x)).

Differentiating this with respect to x’®, using the function of a function
rule, we obtain

0p 0 0x°

Ax’® ~ 9xa 9x'b’

where 0x?/0x'® is evaluated at P. Then changing the order of the terms,
the dummy index, and the free index (from b to a) gives

op  oxb d¢
0%~ Ox 9 -2
so that by (5.22) and (5.23)
;L oxb
N, = [8x’“ PNZ,. (5.25)

This is the prototype equation we are looking for. Notice that compared
to (5.17) it involves the inverse transformation matrix 9x°/9x".

We therefore define a covariant vector or covariant tensor of rank
(order) 1 to be a set of quantities, written X, in the x*-coordinate system,
associated with a point P, which transforms according to

Ox?

X', = pwE

X (5.26)

Covariant tensors
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where the transformation matrix occurring is assumed to be evaluated
at P. The normal co-vector to a hypersurface is just a special case of
(5.26). Again, it is important to distinguish between the actual invariant
geometric object like the normal co-vector (which we will write as d¢) and
its representation in a particular coordinate system, given by the #» num-
bers [0¢/0xp in the x?-coordinate system and the (in general) different
numbers [0¢/0x"|p in the x’*~coordinate system.

Similarly, we define a covariant tensor of rank 2 by the transformation
law

_ Ox° Ox?

X o= Xeds (5.27)

ox'? ax’b ¢

and so on for higher-rank tensors. Note the convention that contravari-
ant tensors have raised indices whereas covariant tensors have lowered
indices. (The way to remember this is that co goes below.) The fact
that according to (5.10) the differentials dx® formally transform as the
components of a contravariant vector explains the convention that the co-
ordinates themselves are written as x* rather than x,, although note that
it is only the differentials and not the coordinates which have tensorial
character.

5.7 Mixed tensors

Following the pattern of (5.19) and (5.27), we go on to define mixed
tensors in the obvious way. For example, a mixed tensor of rank 3 — one
contravariant rank and two covariant rank — satisfies

Ox'" Ox¢ Ox
X% = 9 5 O of- (5.28)
If a mixed tensor has contravariant rank p and covariant rank ¢, then it is
said to have type or valence (p, q).

We now come to the reason why tensors are important in mathematical
physics. Let us illustrate the reason by way of an example. Suppose we find
in one coordinate system that two tensors, X,; and Y,,, say, are equal, i.e.

X = Y (5.29)

Let us multiply both sides by the matrices 9x?/9x’° and 9x®/0x’ ¢ and take
the implied summations to get

Ox¢ Oxb _Ox* OxP
Ix'c Oxd % T Gate Pad ~

Since X,; and Y}, are both covariant tensors of rank 2, it follows that

'» = Y, In other words, the equation (5.29) holds in any other coor-
dinate system. In short, a tensor equation which holds in one coordinate
system necessarily holds in all coordinate systems. Thus, although we



Elementary operations with tensors

introduce coordinate systems for convenience in tackling particular prob-
lems, if we work with tensorial equations, then they hold in all coordinate
systems. Put another way, tensorial equations are coordinate independent.
This is something that the index-free or coordinate-free approach makes
clear from the outset.

5.8 Tensor fields

In vector analysis, a fixed vector is a vector associated with a point,
whereas a vector field defined over a region is an association of a vec-
tor to every point in that region. In exactly the same way, a tensor is a set
of quantities defined at one point in the manifold. A tensor field defined
over some region of the manifold is an association of a tensor of the same
valence to every point of the region, i.c.

P— T (P),

where 7% (P) is the value of the tensor at P. The tensor field is called
continuous or differentiable if its components in all coordinate systems are
continuous or differentiable functions of the coordinates. The tensor field
is called smooth if its components are differentiable to all orders, which is
denoted mathematically by saying that all the components are C°°. Thus,
for example, a contravariant vector field defined over a region is a set of
n functions defined over that region, and the vector field is smooth if the
functions are all C*°. The transformation law for a contravariant vector
field then becomes

ox'®

X = [axb

] X (x), (5.30)
P

at each point P in the region, since the old components X* are functions
of the old x%-coordinates and the new components X'? are functions of
the new x’?-coordinates.

As in the case of vectors and vector fields in vector analysis, the dis-
tinction between a tensor and a tensor field is not always made completely
clear. We shall for the most part be dealing with tensor fields from now
on, but to conform with general usage we shall often refer to tensor fields
simply as tensors. We will again shorten the transformation law such as
(5.30) to the form (5.26) with everything else being implied. If we wish
to emphasize that a tensor is a tensor field, we shall write it in functional
form, namely, as 7% (x).

5.9 Elementary operations with tensors

Tensor calculus is concerned with tensorial operations, that is, opera-
tions on tensors which result in quantities which are still tensors. In this
section, we will look at algebraic operations on tensors, i.e. operations that
can be performed at a point. A simple way of establishing whether or not
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a quantity is a tensor is to see how it transforms under a coordinate trans-
formation. For example, we can deduce directly from the transformation
law that two tensors of the same type can be added together to give a
tensor of the same type, e.g.

Xabc = Yabc + Zabc. (531)

The same holds true for subtraction and multiplication by a real number.

A covariant tensor of rank 2 is said to be symmetric if X, = X;,, in
which case it has only %n(n + 1) independent components (check this by
establishing how many independent components there are of a symmetric
matrix of order #). Symmetry is a tensorial property. A similar definition
holds for a contravariant tensor X%. The tensor X, is said to be anti-
symmetric or skew symmetric if X, = — X}, which has only %n(n— 1)
independent components; this is again a tensorial property. A notation
frequently used to denote the symmetric part of a tensor is

Xy = 3 (Xap + X3a) (5.32)
and the anti-symmetric part is
Xia) = 3(Xap — Xoa). (5.33)
In general,
1 . L
Xiajar--a) = ] (sum over all permutations of the indices a; to a,)
and

Xiarar--a] = % (alternating sum over all permutations of the indices
ai to a,).
For example, we shall need to make use of the result
Xiabg = & (Xabe — Xaco + Xeab — Xeba + Xoca — Xpac)- (5.34)

(A way to remember the above expression is to note that the positive terms
are obtained by cycling the indices to the right and the corresponding
negative terms by flipping the last two indices.) A totally symmetric
tensor is defined to be one equal to its symmetric part, and a totally
anti-symmetric tensor is one equal to its anti-symmetric part.

Given a tensor field of type (p, g), we may multiply it by a scalar field
¢ (i.e. a tensor field of type (0,0)) to obtain a tensor field also of type
(p, q). More generally, we can multiply the components of two tensors of
type (p1,91) and (p2, ¢2) together and obtain the components of a tensor
of type (p1 + P25 q1 + g2), for example

X%a = Yy Zey. (5.35)
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This is an example of the tensor product of two tensors. One can read-
ily show (exercise) that the above definition does not depend on the
coordinate system used to undertake the multiplication.

Another particularly important example of a tensorial operation is
contraction. We start with an example. Let X? be a contravariant vector
field and let Y, be a covariant vector field. Then at each point they define
a real number

¢ = X°Y,, (5.36)

(remember that the repeated index a is summed over), called the contrac-
tion of Y, with X%. What does this look like in another set of coordinates?
Using the transformation laws (5.18) and (5.26) for X’ and Y/, we find

raxrr [ OX" Ox°
XVa= <8beb Ox'a Ye
Ox'® Ox*
= <axbax> X,
= 5X°Y,

= XY,
= X"Y,.

Thus
(XY 1)p = (X“Ya)p = 6(P). (537

This is a very important result as it shows that the contraction of a covari-
ant vector with a contravariant vector gives a scalar field ¢, which does
not depend on the coordinates. This is important physically as it shows
how to obtain coordinate independent results using tensors. Although we
will not make use of it in this book, this result is also important mathe-
matically for the coordinate-free approach to differential geometry as it
shows that covariant vectors are, in the language of linear algebra, dual
to contravariant vectors and explains the alternative name of co-vectors.

We now consider the contraction of two general tensors. Given a tensor
of mixed type (p,q), we can form an object of type (p — 1,¢ — 1) by
the process of contraction, which simply involves setting a raised and
lowered index equal. For example,

X%%ea — X%ea = Yoq, contraction on a and b.

One can show that by doing this one obtains a tensor of type (p—1,g—1),
i.e. in the above example, a tensor of type (1,3) has become a tensor of
type (0,2) and that the tensor one obtains does not depend upon the
coordinate system in which one does the contraction. Notice that we can
also contract a tensor by multiplying by the Kronecker tensor 47, e.g.

Xea = 00 X pea. (5.38)
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In effect, multiplying by ¢ turns the index & into a (or, equivalently, the
index a into b). If one starts with some tensorial object of type (p, p) and
contracts all the indices to obtain an object of type (0, 0) this gives a scalar
field or tensor invariant whose value does not depend upon the co-
ordinate system. It was the fact that contracting tensorial objects results
in scalar quantities, which can in principle be measured and do not de-
pend on the coordinates used, that led Einstein to use tensors as a way of
formulating the laws of physics.

5.10 Index-free interpretation of
contravariant vector fields

As we pointed out in §5.5, we must distinguish between the actual geo-
metric object itself and its components in a particular coordinate system.
The important point about tensors is that we want to make statements
which are independent of any particular coordinate system being used.
This is abundantly clear in the index-free approach to tensors. We shall
get a feel for this approach in this section by considering the special case
of a contravariant vector field, although similar index-free interpretations
can be given for any tensor field. The key idea is to interpret the vector
field as an operator which maps real-valued functions into real-valued
functions. Thus, if X represents a contravariant vector field, then X op-
erates on any real-valued function f to produce another function g, i.e.
Xf = g. We shall show how actually to compute Xf by introducing a
coordinate system. However, as we shall see, we could equally well intro-
duce any other coordinate system, and the computation would lead to the
identical result.
In the x%-coordinate system, we introduce the notation

O := aia’
and then X is defined as the operator
X = X0, (5.39)
so that, for any real function f,
Xf = (X'0a)f = X*(0ul), (5.40)

and, in the x?-coordinate system, X gives the directional derivative in
the X? direction. Let us compute X in some other x’?-coordinate system.
We need to use the result (5.13) expressed in the following form: we may
take x? to be a function of x’® by (5.9) and x’® to be a function of x¢ by
(5.6), and so, using the function of a function rule, we find

Ox* D e, g Ox* OxX°
o =~ ot W (K)) = 5 e

a (5.41)
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Then, using the transformation law (5.18) and (5.24) together with the
above trick, we get

5}
8xld
_Ox'_, 0x¢ 0
© Oxb T Ox’a Ox¢
_ 0x¢ ameb 0

X/aa; - X/a

T Ox’e Oxb T Oxe
0
Ox¢
0
_vb 9
=X Ox?b
= X?0,.

=6 X°

Thus, the result of operating on by X will be the same irrespective of
the coordinate system employed in (5.39), and this provides the key idea
in the coordinate-free approach to differential geometry.

In any coordinate system, we may think of the quantities [0/0x,] as
forming a basis for all the vectors at P, since any vector at P is, by (5.39),
given by

Xp = [Xa]P {gca];

that is, a linear combination of the [0/0x%],. The vector space of all the
contravariant vectors at P is known as the tangent space at P and is
written TpM (Fig. 5.6). In general, the tangent space at any point in a
manifold is different from the underlying manifold. For this reason, we
need to be careful in representing a finite contravariant vector by an ar-
row in our figures since, strictly speaking, the arrow lies in the tangent
space, not the manifold. Two exceptions to this are Euclidean space and
Minkowski space-time, where the tangent space at each point coincides
with the manifold.

As we remarked at the end of §5.9, equation (5.37) shows that covari-
ant vectors at P are elements of the so-called dual vector space to 7pM,
which is called the cotangent space and is denoted T;M . General ten-
sors in the coordinate-free approach are then constructed by taking tensor
products of elements of 7pM and T,M or, equivalently, by considering
multi-linear maps from copies of 7pM and T;M to R. We will not pursue
the coordinate-free approach here but see, for example, Wald (1984) for
further details.

Given two vector fields, X and Y, we can define a new vector field
called the commutator or Lie bracket of X and Y by

[X,Y] = XY - YX. (5.42)
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Contravariant vectors

Tangent space 7p(M)

Manifold M

Fig. 5.6 The tangent space at P.

Letting [X, Y] = Z and operating with it on some arbitrary function f

Zf= X, Y)f
= (XY - YX)f
= X(Yf) — Y(X[)
= X(Y0uf) — Y(X"0uf)
= X°0(Y'Ouf ) — Y*Op( X Daf)
= (X0, Y — YPORX)Dof — XY (0p0uf — 0uOhf)
= (X0, Y — YP0,X%)0,f,

since the last term vanishes from the commutativity of second mixed
partial derivatives, i.e.

0?2 0?
0a0o = Ox20xb ~ OxbOxr OsDa:

We therefore see that the Lie bracket of two vector fields also defines a
directional derivative and is therefore itself a vector field with components
/% given by

7= [X, Y] = Xb0, Y — Y0, X", (5.43)

since f is arbitrary. It also follows, directly from the definition (5.42)
(exercise), that

(X, X] =0, (5.44)

(X, Y] = [V, X], (5.45)
X[V, 2]+ [Z,[X, Y]]+ [Y,.[Z,X] =0. (5.46)



Equation (5.45) shows that the Lie bracket is anti-commutative. The
result (5.46) is known as Jacobi’s identity. Notice it states that the left-
hand side is not just equal to zero but is identically zero. What does this
mean? The equation x> — 4 = 0 is only satisfied by particular values of x,
namely, +2 and —2. The identity x*> — x> = 0 is satisfied for all values of
x. But, you may argue, the x? terms cancel out, and this is precisely the
point. An expression is identically zero if, when all the terms are written
out fully, they all cancel in pairs.

Exercises

5.1 (§5.3) In Euclidean 3-space R3:

(1) Write down the equation of a circle of radius a lying in the xy-plane
centred at the origin in (a) parametric form and (b) constraint form.

(i) Write down the equation of a hypersurface consisting of a sphere of
radius a centred at the origin in (a) parametric form and (b) constraint
form. Eliminate the parameters in form (a) to obtain form (b).

5.2 (§5.4) Write down the change of coordinates from Cartesian coor-
dinates (x?) = (x,3,2) to spherical polar coordinates (x*) = (1,6, ¢) in
R3. Obtain the transformation matrices and express them both in terms
of the primed coordinates. Obtain the Jacobians J and J’. Where is J/ zero
or infinite?

5.3 (§5.4) Show by manipulating the dummy indices that

(Zabc + anb + me)XquXC = 3ZachaXbXC.

5.4 (§5.4) Show that
() 6¢x° = X°,

(i) 60X, = X,

(iii) 656569 = &4.

5.5 (§5.5) If Y* and Z° are contravariant vectors, then show that Y?Z? is
a contravariant tensor of rank 2.

5.6 (§5.5) Write down the change of coordinates from Cartesian coor-
dinates (x%) = (x,) to plane polar coordinates (x*) = (R, ¢) in R? and
obtain the transformation matrix [0x?/0x®] expressed as a function of
the primed coordinates. Find the components of the tangent vector to
the curve consisting of a circle of radius a centred at the origin with the
standard parametrization (see Exercise 5.1 (i)) and use (5.18) to find its
components in the primed coordinate system.

5.7 (§5.6) Write down the definition of a tensor of type (2,1).

5.8 (§5.6) Show that, if one assumes that §° is defined by (5.12) in the x*
coordinates and has the tensor character indicated, then (5.12) is true in

Exercises
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any coordinate system. Thus, 6 is a constant or numerical tensor, that
is, it has the same components in all coordinate systems.

5.9 (§5.6) Show, by differentiating (5.24) with respect to x’¢, that
0?¢/0x°0x® is not a tensor.

5.10 (§5.9) Show that, if Y%, and Z%, are tensors of the type indicated,
then so is their sum and difference.

5.11 (§5.9)
(1) Show that the fact that a covariant second-rank tensor is symmetric in
one coordinate system is a tensorial property.

(i) If X is anti-symmetric and Y, is symmetric, then prove that
X®Y, =0
ab — Y.

5.12 (§5.9) Prove that any covariant (or contravariant) tensor of rank 2
can be written as the sum of a symmetric and an anti-symmetric tensor.
[Hint: consider the identity Xo = 2 (Xap + Xpa) + 3 (Xap — Xpa) ]

5.13 (§5.9) Verify that the definition of the tensor product given by (5.35)
does not depend on the coordinate system used.

5.14 (§5.9) If X%, is a tensor of the type indicated, then prove that the
contracted quantity Y, = X%, is a covariant vector.

5.15 (§5.9) Evaluate §¢ and 5?52 in n dimensions.

5.16 (§5.10) Check that the definition of the Lie bracket leads to the
results (5.44), (5.45), and (5.46).

5.17 (§5.10) In R, let (x%) = (x,y) denote Cartesian and (x'¢) = (R, ¢)
plane polar coordinates (see Exercise 5.6).

(i) If the vector field X has components X“ = (1,0), then find X".

(i) The operator grad can be written in each coordinate system as

_ 0 U O LU
gradf= 8xl+8y]_8RR+R ¢¢

where fis an arbitrary function and

R = cos ¢7 + sin ¢y, J) = —sin ¢ + cos ¢j.

Take the scalar product of grad f with 4, j, f?, and c% in turn to find rela-
tionships between the operators 9/9x, 8/9y, /0R, and 9/0¢.

(iii) Express the vector field X as an operator in each coordinate system.
Use Part (ii) to show that these expressions are the same.

@v) If Y* = (0,1) and Z* = (—y, x), then find Y'%, Z’%, Y and Z.

(v) Evaluate all the Lie brackets of X, Y, and Z.



Further reading

As discussed in the book, we consider tensors via the index approach,
as we consider it the quickest route to being proficient in using tensors
in practice. The older texts adopt the same approach, and one example
of a classic text on differential geometry, which was a major source for
this book, is the one by Synge and Schild (1949). Many of the modern
books which introduce tensors using the index-free approach are, in our
opinion, quite sophisticated for a first course in general relativity. One ex-
ception, however, is the excellent book of Schutz (1985). This is written
at about the same level as this book and contains material not covered in
this book, so may be considered as a companion text to this book. The ear-
lier book of Schutz (1980) provides a more solid grounding in differential
geometry. The book by Wald (1984) is also excellent and contains some
more advanced material. Adopting a completely index-free approach is
notationally difficult in many calculations, so that the abstract index nota-
tion of Penrose (1968) provides an excellent and practical coordinate-free
method of doing tensorial calculations. The most advanced and complete
treatment of this and other geometrical methods can be found in the two
volumes of Penrose and Rindler (1986). Our treatment has one impor-
tant omission, and that is the topic of differential forms (which is omitted
because we do not use it). The book by Hughston and Tod (1990) on
general relativity includes both a treatment and a subsequent application
in discussing anisotropic cosmologies. The various sign conventions can
be found on the inside cover of Misner et al. (1973). We use the time-
like convention of Landau and Lifshitz (1971). We also list some other
more mathematical texts on Lorentzian geometry that readers who want
to go into more detail may find useful. These include the books by O’Neil
(1983) and by Choquet-Bruhat, De Witt-Morette, and Dillard-Bleick,
(1977).

Choquet-Bruhat, Y., De Witt-Morette, C., and Dillard-Bleick, M.
(1977). Analysis, Manifolds and Physics. North-Holland, Amsterdam.

Hughston, L. P, and Tod, K. P. (1990). An Introduction to General
Relativity. Cambridge University Press, Cambridge.

Landau, L. D., and Lifshitz, E. M. (1971). The Classical Theory of Fields.
Pergamon, Oxford.

Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation.
Freeman, San Francisco, CA.

O’Neil, B. (1983). Semi-Riemannian Geometry: With Application to Rela-

tivity. Pure and Applied Mathematics Series. Academic Press, New York,
NY.

Penrose, R. (1968). ‘Structure of space-time’, in DeWitt, C. M., and
Wheeler, J. A., eds, Battelle Rencontres 1967 Lectures in Mathematics and
Physics. W. A. Benjamin, New York, NY, 121-235.
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Penrose, R., and Rindler, W. (1986). Spinors and Space-Time. Vols 1 and
2, Cambridge University Press, Cambridge.

Schutz, B. E (1980). Geometrical Methods in Mathematical Physics.
Cambridge University Press, Cambridge.

Schutz, B. E (1985). A First Course in General Relativity. Cambridge
University Press, Cambridge.
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Tensor calculus

6.1 Partial derivative of a tensor

In the last chapter, we met algebraic operations which are tensorial, that is,
which convert tensors into tensors. The operations are addition, subtrac-
tion, contraction, and tensor products. The next question which arises is,
What differential operations are there that are tensorial? The answer to
this turns out to be very much more involved. The first thing we shall see
is that partial differentiation of tensors is not tensorial. Different authors
denote the partial derivative of a contravariant vector X¢ by

(]

X
OpX* or 8— or X', or X%
Oxb ’

and similarly for higher-rank tensors. We shall use a mixture of all the
first three notations. (Note that, in the literature, the partial derivative
of a tensor is often referred to as the ordinary derivative of a tensor,
to distinguish it from the tensorial differentiation we shall shortly meet).
Now differentiating (5.18) with respect to x’°, we find

1a
o X = 0 <8x Xb)

Ox'¢ \ Oxt

ox? 9 [ox*
—axwaxd<axbxb )

Ox'? Ox? 9%x'% Ox4

= 5 90Xt e g 6.1)

If the first term on the right-hand side alone were present, then this would
be the usual tensor transformation law for a tensor of type (1, 1). However,
the presence of the second term prevents 9, X* from behaving like a tensor.

There is a fundamental reason why this is the case. By definition, the
process of differentiation involves comparing a quantity evaluated at two
neighbouring points, P”and Q, say, dividing by some parameter represent-
ing the separation of P and Q, and then taking the limit as this parameter
goes to zero. In the case of a contravariant vector field X%, this would
involve computing

L X — (X0

Su—0 ou ’

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0006
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Fig. 6.1 The tangent vector field result-
ing from a congruence of curves.

for some appropriate parameter du. However, from the transformation
law in the form (5.30), we see that

X =

Oxb

Oxb

} X% and X'(j:[axm] Xp.
p Q

This involves the transformation matrix evaluated at different points,
from which it should be clear that X7, — X¢, is not a tensor. Similar remarks
hold for differentiating tensors in general.

It turns out that, if we wish to differentiate a tensor in a tensorial man-
ner, then we need to introduce some auxiliary structure onto the manifold.
We shall meet three different types of differentiation. First of all, in the
next section, we shall introduce a contravariant vector field onto the man-
ifold and use it to define the Lie derivative. Then we shall introduce
a quantity called an affine connection and use it to define covari-
ant differentiation. Finally, we shall introduce a tensor called a metric
and from it build a special affine connection, called the metric connec-
tion, and again define covariant differentiation but relative to this specific
connection.

6.2 The Lie derivative

The argument we present in this section is rather intricate. It rests on
the idea of interpreting a coordinate transformation actively as a point
transformation, rather than passively, as we have done up to now. The
important results occur at the end of the section and consist of the formula
for the Lie derivative of a general tensor field and the basic properties of
Lie differentiation.

We start by considering a congruence of curves defined such that
only one curve goes through each point in the manifold. Then, given any
one curve of the congruence,

we can use it to define the tangent vector field dx*/du along the curve.
If we do this for every curve in the congruence, then we end up with a
vector field X? (given by dx?/du at each point) defined over the whole
manifold (Fig. 6.1).

Conversely, given a non-zero vector field X?(x) defined over the manifold,
then this can be used to define a congruence of curves in the manifold
called the integral curves or trajectories of X“. The procedure is ex-
actly the same as the way in which a vector field gives rise to field lines or
streamlines in vector analysis. These curves are obtained by solving the
ordinary differential equations

dx®
- X (x(u)) . (6.2)



‘Dragged-along tensor’ at Q

. )
Tensor’ at PP “Tensor’ at Q

x4 X“(0)

P

Fig. 6.3 Using the congruence to compare tensors at neighbouring points.

The existence and uniqueness theorem for ordinary differential equations
guarantees a solution, at least for some subset of the reals. In
what follows, we are really only interested in what happens locally
(Fig. 6.2).

We therefore assume that X“ has been given and we have used it to
construct the local congruence of integral curves. Suppose we have some
tensor field 7} (x), which we wish to differentiate using X*. Then the es-
sential idea is to use the congruence of curves to drag the tensor at some
point P (i.e. 77" (P)) along the curve passing through P to some neigh-
bouring point Q, and then compare this ‘dragged-along tensor’ with the
tensor already there (i.e. 7% (Q)) (Fig. 6.3). Since the dragged-along ten-
sor will be of the same type as the tensor already at O, we can subtract
the two tensors at Q and so define a derivative by some limiting process
as Q tends to P. The technique for dragging involves viewing the coor-
dinate transformation from P to Q actively, and applying it to the usual
transformation law for tensors. We shall consider the detailed calculation
in the case of a contravariant tensor field of rank 2, 7%(x), say.

Consider the transformation

X = x* + ou X(x), (6.3)

where du is small. This is called a point transformation and is to be
regarded actively as sending the point P, with coordinates x¢, to the point
Q, with coordinates x* + 6uX"(x), where the coordinates of each point are
given in the same x?-coordinate system, i.e.

P— 0,
x* = x% + duX(x).

The point Q clearly lies on the curve of the congruence through P which
X% generates (Fig. 6.4). Differentiating (6.3), we get

ox* .

W = 617 + du 6[,Xa (64)
Next, consider the tensor field 7% at the point P. Then its components
at P are T%(x) and, under the point transformation (6.3), we have the

mapping
T (x) — T (),

The Lie derivative 87

Fig. 6.2 The local congruence of curves
resulting from a vector field.
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x?-coordinate chart

Fig. 6.4 The point P transported to Q in
the same x“ coordinate system.

i.e. the transformation ‘drags’ the tensor 7% along from P to Q. The
components of the dragged-along tensor are given by the usual trans-
formation law for tensors (see (5.30)), and so, using (6.4)

e OFOR
73 = 22 0% ey
= (09 + 6u0.X") (05 + 6u0,X") T (x)
= T%(x) + [0:.X T (x) + 0uX T (x)] 0u + O(6u?). (6.5)

Applying Taylor’s theorem to first order, we get
T(x) = T(x° + 6uX(x)) = T%(x) + ou X9, T (x). (6.6)
We are now in a position to define the Lie derivative of 7% with respect

to X%, which is denoted by Lx 7%, as

T (50) — T (%
Lx7% = lim M. (6.7)
du—0 ou
This involves comparing the tensor 7%(%) already at Q with 7% (%), the
dragged-along tensor at Q. Using (6.5) and (6.6), we find

LyT%=X0,T" - T 0, X" — T 9, X". (6.8)
It can be shown that it is always possible to introduce a coordinate sys-

tem such that the curve passing through P is given by x! varying, with

x2,%3,...,x" all constant along the curve, and such that

X* £ 4§ =(1,0,0,...,0) (6.9)

along this curve. The notation = used in (6.9) means that the equation
holds only in a particular coordinate system. Then it follows that

X = X9, = 0y,
and equation (6.8) reduces to
LxT% = 0, T*. (6.10)

Thus, in this special coordinate system, Lie differentiation reduces to or-
dinary differentiation. In fact, one can define Lie differentiation starting
from this viewpoint.

We end the section by collecting together some important properties
of Lie differentiation with respect to X which follow from its definition.



The Lie derivative
1. It is linear; for example
Lx(AY* + uZ%) = \Lx Y* + uLxZ2% (6.11)
where A and y are constants. Thus, in particular, the Lie derivative of the

sum and difference of two tensors is the sum and difference, respectively,
of the Lie derivatives of the two tensors.

2. It is Leibniz; that is, it satisfies the usual product rule for differentia-
tion, for example

Lx(Y* Zs,) = V(Lx Zs.) + (Lx Y*)Zs,. (6.12)

3. It is type preserving; that is, the Lie derivative of a tensor of type
(p, q) is again a tensor of type (p, q).

4. Tt commutes with contraction; for example
0pLx T% = Lx T%,. (6.13)
5. The Lie derivative of a scalar field ¢ is given by
Lx¢ =Xop=X"0,0. (6.14)

6. The Lie derivative of a contravariant vector field Y“ is given by the
Lie bracket of X and Y, that is,

LxY'=[X,Y]"= X0, Y* — Y’ 9, X" (6.15)
7. The Lie derivative of a covariant vector field Y, is given by
LxY, = X°0, Y, + Y,0,X". (6.16)
8. The Lie derivative of a general tensor field 7} is obtained as
follows: we first partially differentiate the tensor and contract it with X.
We then get an additional term for each index of the form of the last two

terms in (6.15) and (6.16), where the corresponding sign is negative for
a contravariant index and positive for a covariant index, that is,

LxT5 =X0.Ty. — T35 .0 X" —---+TE X+ ---. (6.17)
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x° X4 X pOX - 0X*
I
‘Parallel” vector ‘,' X4 0X°
I
I
]
P Q

Fig. 6.5 The parallel vector X* + 6 X" at
0.

6.3 The affine connection and covariant
differentiation

Consider a contravariant vector field X?(x) evaluated at a point Q, with
coordinates x* + dx?, near to a point P, with coordinates x*. Then, by
Taylor’s theorem,

X%(x + 0x) = X(x) + 0x°0, X" (6.18)
to first order. If we denote the second term by 6 X%(x), i.e.
5X%(x) = 6x’ 9, X" = X*(x + 0x) — X*(x), (6.19)

then it is not tensorial, since it involves subtracting tensors evaluated at
two different points. We are going to define a tensorial derivative by intro-
ducing a vector at Q which in some general sense is ‘parallel’ to X* at P.
Since x?+0x“ is close to x%, we can assume that the parallel vector only dif-
fers from X?(x) by a small amount, which we denote §X%(x) (Fig. 6.5).
By the same argument as in §6.1 above, §X%(x) is not tensorial, but we
shall construct it in such a way as to make the difference vector

[X%(x) + 0X°(x)] — [X7(x) + 6X°(x)] = 6X°(x) — X°(x)  (6.20)

tensorial. It is natural to require that 4 X“(x) should vanish whenever X*(x)
or 6x* does. Then the simplest definition is to assume that § X is linear in
both X* and ¢x“, which means that there exist multiplicative factors I';,
where

OX%(x) = — % (x) X (x)0x¢ (6.21)

and the minus sign is introduced to agree with convention.

We have therefore introduced a set of 7® functions I'¢, (x) on the mani-
fold, whose transformation properties have yet to be determined. We now
define the covariant derivative of X%, written in one of the notations
(where we shall use a mixture of the first two)

VX' or X% or XY

by the limiting process

) 1
VX" = 6}(1&)10 e {X%(x+0x) — [X(x) + 6X%(x)] } .
In other words, it is the difference between the vector X%(Q) and the vec-
tor at Q parallel to X?(P), divided by the coordinate differences, in the
limit as these differences tend to zero. Using (6.18) and (6.21), we find

VX" =0, X" +T¢.X°. (6.22)

Note that in the formula the differentiation index ¢ comes second in the
downstairs indices of I'. If we now demand that V X" is a tensor of type
(1,1), then a straightforward calculation (exercise) reveals that I'{, must
transform according to
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a Ox'® Ox° Ox' 4 Ox? Oxt 9%/

=— I — 6.23
T 9xd gyt Ox'C T 9xr DX OxdOx (o220

or, equivalently (exercise),
a ox'* Oxt Ox _,  ox 94 (6.24)

be — 8xd ax/b axlc of 6xd axlbaxlc'

If the second term on the right-hand side were absent, then this would
be the usual transformation law for a tensor of type (1,2). However,
the presence of the second term reveals that the transformation law is
linear inhomogeneous, and so I';, is not a tensor. Note, however, the
inhomogeneous term in (6.23) is exactly what is needed to cancel the in-
homogeneous term in (6.1) and so guarantees that (6.22) defines a tensor.
Any quantity I';. which transforms according to (6.23) or (6.24) is called
an affine connection or sometimes simply a connection or affinity. A
manifold with a continuous connection prescribed on it is called an affine
manifold.

We next define the covariant derivative of a scalar field to be the same
as its ordinary derivative, i.e.

Vad =0, ¢. (6.25)

If we now demand that covariant differentiation satisfies the Leibniz rule,
then we find (exercise)

VX, =0.X, - Tt X, (6.26)

Notice again that the differentiation index comes last in the I'-term and
that this term enters with a minus sign. The name covariant derivative
stems from the fact that the derivative of a tensor of type (p, ¢) is of type
(p,q + 1), that is, it has one extra covariant rank. The expression in the
case of a general tensor is (compare and contrast with (6.17))

V. Ty =0.Te +T4 e+ —T4T% . — ... (6.27)

It follows directly from the transformation laws that the sum of two con-
nections is not a connection or a tensor. However, the difference of two
connections is a tensor of valence (1, 2), because the inhomogeneous term
cancels out in the transformation. For the same reason, the antisymmetric
part of a I'} , namely,

Ty =T — T

is a tensor called the torsion tensor. If the torsion tensor vanishes, then
the connection is symmetric, i.e.

7, =T%. (6.28)
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From now on, unless we state otherwise, we shall restrict ourselves
to symmetric connections, in which case the torsion vanishes. The
assumption that the connection is symmetric leads to the following useful
result. In the expression for a Lie derivative of a tensor, all occurrences
of the partial derivatives may be replaced by covariant derivatives. For
example, in the case of a vector (exercise),

LxY? = X0, Y* — YP9,X% = XPV, Y* — YV, X" (6.29)

6.4 Affine geodesics

If T} is any tensor, then we introduce the notation

Vx Ty =XV T, (6.30)
that is, Vx of a tensor is its covariant derivative contracted with X. Now
in §6.2 we saw that a contravariant vector field X determines a local
congruence of curves,

where the tangent vector field to the congruence is

dx?

du

We next define the absolute derivative of a tensor 7} along a curve C
of the congruence, written D7} /Du, by

D
Dy (1) = Vx T (6.31)
The tensor T3y is said to be parallely propagated or transported
along the curve C if

D

D, [6) =0 (6.32)
This is a first-order ordinary differential equation for 7}, and so given
an initial value for T}, say, T} (P), equation (6.32) determines a tensor
along C which is everywhere parallel to T} (P).

Using this notation, an affine geodesic is defined as a privileged curve
along which the direction of the tangent vector is propagated parallel to
itself. In other words, the parallely propagated vector at any point of the
curve is parallel, that is, proportional, to the tangent vector at that point:

D /dx® dx?

— =X .

Du \ du (u) du
Using (6.31), the equation for an affine geodesic can be written in the
form

VX = A XY, (6.33)



or, equivalently (exercise)

d’x* L Te dx?dx® dx?
du? bdu du ~ " du’

(6.34)

Note that I';, appears in the equation multiplied by the symmetric quan-
tity (dx®/du)(dx‘/du), and so, even if we had not assumed that ', was
symmetric, the equation picks out just its symmetric part.

The property of being a geodesic as defined by (6.34) does not depend
on the choice of parameter. If we introduce a new parameter # along the
curve by an invertible transformation # = &(u), then

dx _ dudx”
du ~ du du’

d?x¢  dudx® <du> 2 Py
and =

diz ~ di2 du  \di) du?”

Hence

dzx“+ o dx?dx du 2 dzx“+ adixbdxc +@dx‘l
di? bedqm du ~ \da du? b qu du di2 du

_ % 2)\+d2u dx?
T\ d& di? | du’

using (6.34). So defining a new parameter

~ du, dad’u
A= —on g == 8 6.35
da” " dudi? (6.35)
we obtain (check)
d?xa dxb dx¢ - dx?
yre S RS 6.36
diz " da da 7 da (6.36)

which has the same form as (6.34). From (6.35) we see that by choosing
u suitably it is possible to parameterize the curve in such a way that A
vanishes and hence the tangent vector is covariantly constant along
the curve. Such a parameter is a privileged parameter called an affine
parameter, often conventionally denoted by s, and the affine geodesic
equation reduces to

d2x dx? dx¢
—_— 4G———=0 6.37
ds? Tl ds ds ( )

or, equivalently,
VxX*=0. (6.38)

We can also see from (6.35) that an affine parameter s is only defined up
to an affine transformation (exercise)

Affine geodesics
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Fig. 6.6 Two affine geodesics passing
through P, with given directions.

1)

Fig. 6.7 Two affine geodesics from P,
refocusing at Q.

s—as+ [,

where « and  are constants. We can use the affine parameter s to define

the affine length of the geodesic between two points P; and PP, by fgz ds,
and so we can compare lengths on the same geodesic. However, we
cannot compare lengths on different geodesics (without a metric) because
of the arbitrariness in the parameter s. From the existence and uniqueness
theorem for ordinary differential equations, it follows that, corresponding
to every direction at a point, there is a unique geodesic passing through the
point (Fig. 6.6). Similarly, any point can be joined to any other point, as
long as the points are sufficiently ‘close’, by a unique geodesic. However,
in the large, geodesics may focus, that is, meet again (Fig. 6.7).

6.5 The Riemann tensor

Covariant differentiation, unlike partial differentiation, is not in general
commutative. For any tensor T}, we define its commutator to be

VNI =V Ty .

Let us work out the commutator in the case of a vector X?. From (6.22),
we see that

V. X = 0. X" + T¢.X°.
Remembering that this is a tensor of type (1, 1) and using (6.27), we find
VaVeX = 04 (0.X* + T3 X") + T4 (0.X° + T5.X°) — T¢, (0.X* + T4,X7),
with a similar expression for V.V X%, namely,
VVaX® = 0, (04X + T3, X°) + T2 (04X° + I5,X") — T4, (0:.X° +T5.X°) .
Subtracting these last two equations and assuming that
040.X" = 0,04X°%,

we obtain the result

Ve ViX* = VgV X = Ry X+ (I, — T%,) VX%, (6.39)

where R%,; is defined by
Rade = ac FZd - ad FZC + F;;d ]'—‘Zc - ]'—‘Zc ?d' (640)

Moreover, since we are only interested in torsion-free connections, the
last term in (6.39) vanishes, so using (5.33) we have



Vi Vg Xt = 1R X0, (6.41)

Since the left-hand side of (6.41) is a tensor, and X7 is an arbitrary vec-
tor, it follows that R%, is a tensor of type (1, 3). Itis called the Riemann
tensor. It can be shown that, for a symmetric connection, the commu-
tator of any tensor can be expressed in terms of the tensor itself and the
Riemann tensor. Thus, the vanishing of the Riemann tensor is a neces-
sary and sufficient condition for the vanishing of the commutator of any
tensor. In Section 6.7, we shall search for a geometrical characterization
of the vanishing of the Riemann tensor.

6.6 Geodesic coordinates

We first prove a very useful result. At any point P in a manifold, we
can introduce a special coordinate system, called a geodesic coordinate
system, in which

*

[[3]p = 0.

To see this result we can, without loss of generality, choose P to be at
the origin of coordinates x* = 0 and consider a transformation to a new
coordinate system

X = ¥ = x"+ 1O %P, (6.42)

where Qp, = Q% are constants to be determined. Differentiating (6.42),
we get

ax/(l

_ sa a ..d
W—5d+dex and

Then, since x? vanishes at P, we have

Ox'® Y
[ab] 7o

from which it follows immediately that the inverse matrix

Geodesic coordinates
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Fig. 6.8 Parallel transport round
two curves in a general affine manifold.

Substituting these results in (6.23), we find
[Fgé]P = [ ZC]P - zc'

Since the connection is symmetric, we can choose the constants so that
QZC = [ ZC]P’
and hence we obtain the promised result
/. *
Culp = 0. (6.43)

Many tensorial equations can be established most easily in geodesic
coordinates. Note that, although the connection vanishes at P,

[Fgé,d] P # 0

in general. It can be shown that the result can be extended to obtain a
coordinate system in which the connection vanishes along a curve, but
not in general to a neighbourhood of P. If, however, there exists a special
coordinate system in which the connection vanishes everywhere, then the
manifold is called affine flat or simply flat. We shall next see that this is
intimately connected with the vanishing of the Riemann tensor.

6.7 Affine flatness

In a general affine manifold, the intuitive concept of parallelism breaks
down. For, if we parallely transport a vector from one point to another
along two different curves, we will obtain two different vectors (Fig. 6.8).
If, however, we can transport a vector from one point to any other and the
resulting vector is independent of the path taken, then the connection is
called integrable. Thus, for the usual concept of parallelism to hold, the
manifold must possess an integrable connection. We now prove two lem-
mas which connect together the concepts of affine flatness, integrability,
and vanishing Riemann tensor.

Lemma: A necessary and sufficient condition for a connection to be
integrable is that the Riemann tensor vanishes.

We consider, first, necessity. Since I', is integrable, we can start with a
vector X? at any point and from it construct a unique vector field X*(x)
over the manifold by parallely propagating X“. The equation for parallely
propagating X7 is

Dx* _ dv
Du  du

VX =0,



and, since dx?/du is arbitrary, it follows that the covariant derivative of
X% must vanish, i.e.

VX' =0, X +T¢X = 0. (6.44)

Hence, this equation must possess solutions. A necessary condition for
a solution of this first-order partial differential equation is the so-called
integrability condition

040.X" = 0,04X%, (6.45)

namely, the second mixed partial derivatives should commute. In the pre-
vious section, we met the identity for the commutator of a vector field
(6.39), which for a torsion-free connection gives

VCVan — VdVCXa = 658(1)(“ — adach + Rabchb.

The left-hand side of this equation vanishes by construction, that is, by
(6.44); hence, it follows that (6.45) will hold if and only if

Rabchb =0.

Finally, since X? is arbitrary at every point, a necessary condition for
integrability is R%,.; = 0 everywhere.

We next prove sufficiency. We start by considering the difference in
parallely propagating a vector X* around an infinitesimal loop connecting
x? to x% + dx® + Ax?, first via x* + 0x* and then via x* + Ax* (Fig. 6.9).
From §6.3, if we parallely transport X“ from x* to x* + §x?, we obtain the
vector

X(x + 6x) = X* + 6 X%(x),
where, by (6.21),
6X%(x) = —T9(x) X? (x)0x°.

Similarly, if we transport this vector subsequently to x* + dx* + Ax?, we
obtain the vector

X(x + 6x + Ax) = X*(x + 0x) + 0.X%(x + 0x),
where, in this case,
SX(x + 0x) = —T% (3 + 6x) X? (x + 6x) Ax°.

Expanding by Taylor’s theorem and using the previous results, we obtain
(where everything is assumed evaluated at x%)

5X%(x + 0x) = —(TL + 0,T%.6x7) (XP — FffX'géxf)Axc
T4 XPAx® — 9,T¢. X 6x7 Axe
+ T5.I0X00x Ax® + 94 o X 0x6x/ Ax.
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Fig. 6.9 Transporting X” around
an infinitesimal loop.
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C,

Fig. 6.10 Deforming C; into C;
(infinitesimally at each stage).

Neglecting the last term, which is third order, we have
X(x + 6x + Ax) = X* — D9 XP0x¢ — T4 XPAx® — 9,14 XP6x7 Axe
+ Tp I8 X0 Ax.
To obtain the equivalent result for the path connecting x* to x%+ 0x% + Ax“
via x* + dx?, we simply interchange x% and Ax? to give
Xx + Ax + 0x) = X* — T XPAx® — T4 XP0x¢ — 9,1 X AxTox
+ T I X Ax/5x°.
Hence, the difference between these two vectors is

AX" = X¥(x + 0x + Ax) — X (x + Ax + 0x)
= (04T, — DTy + T4, — T4T%,) XPox Ax
= R%4.X00x° Ax?
= —R%.X"0x°Ax?,

by (6.40) and the fact that the Riemann tensor is antisymmetric on its
last pair of indices (see (6.78)). Thus, the vector X will be the same at
x?+ 0x% + Ax?, irrespective of which path is taken, if and only if R%;.; = 0.
It follows that, if the Riemann tensor vanishes, then the vector X* will
not change if parallely transported around any infinitesimal closed loop.
Using this result and assuming the manifold has no holes (i.e. the manifold
is simply connected), then we can continuously deform one curve into
another by deforming the curves infinitesimally at each stage (Fig. 6.10),
which establishes that the connection is integrable (check).
The second lemma is as follows.

Lemma: A necessary and sufficient condition for a manifold to be
affine flat is that the connection is symmetric and integrable.

Sufficiency is established by first choosing 7 linearly independent
vectors

XA (=1,2,...,n)

at P, where the bold index 7 runs from 1 to # and labels the vectors. Using

the integrability assumption, we can construct the parallel vector fields
X;%(x) and these will also be linearly independent everywhere. Therefore,
at each point P, X;*(P) is a non-singular matrix of numbers and so we
can construct its inverse, denoted by X?,, which must satisfy

XX = 6, (6.46)
where there is a summation over z. Multiplying the propagation equation

X" + 9 X5 = 0,



by X, produces
4= — X' X{". (6.47)
Differentiating (6.46), we obtain
X0 X" = —X'0.X4 = T4, (6.48)
by (6.47). Using (6.48), we find that
X (0.X% — 9pX%) =T4, — T4 =0,

because the connection is symmetric by assumption. Since the determi-
nant of X;* is non-zero, it follows that the quantity in brackets must vanish,
from which we get

8.X"% = 9, X"..

This in turn implies that X%, must (locally) be the gradient of # scalar
fields, f%(x), say, that is,

Xib = 6hf’(x)
If we consider the transformation

x* — ¥ = f4(x),

then
%’: = 0,/ (x) = X%, (6.49)
and so, taking inverses,
% = Xp. (6.50)

Multiplying (6.23) by X,” and using (6.49) and (6.50) and then (6.46)
and (6.48), we find

Xa'T = X" (XX XITY — X' X/ 0.X7))
= 01X XITY — X X Tl = 0.
Again, since the determinant of X," is non-zero, T’ Zc vanishes every-
where in this coordinate system and hence the manifold is affine flat. The
necessity is straightforward and is left as an exercise.

If we put these two lemmas together, we get the result we have been
looking for.

Theorem: A necessary and sufficient condition for a manifold to be
affine flat is that the Riemann tensor vanishes.

Affine flatness
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6.8 The metric

Consider a symmetric covariant tensor field of type (0, 2), say g, (x). The
determinant of g, is denoted by

g = det(gu), (6.51)

and, provided the determinant detg,, # 0, then g, is said to define a
(non-singular) metric. Since g, is a symmetric matrix, at every point PP
we may calculate the eigenvalues at P. We define the signature of the
metric (at P) to be the number of positive eigenvalues minus the number
of negative eigenvalues (there are no zero eigenvalues — why?). Although
the eigenvalues themselves depend on the choice of coordinates the sig-
nature does not (why?). For a Riemannian metric, all the eigenvalues
are positive. A manifold endowed with such a metric is called a Rieman-
nian manifold. A Riemannian metric can be used to define distances
and lengths of vectors. The infinitesimal distance (or interval in rela-
tivity), which we call ds, between two neighbouring points x* and x* + dx®
is defined by

ds® = gup(x) dx® dx®. (6.52)

Note that this gives the square of the infinitesimal distance, (ds)?, which
is conventionally written as ds?. The equation (6.52) is also known as the
line element and g, is also called the metric form or first fundamen-
tal form. The square of the length or norm of a contravariant vector
X% is defined by

X2 = gup(x) X°X°. (6.53)

The metric is said to be positive definite if, for all non-zero vectors
X, X? > 0. It then follows from the definition that a Riemannian metric is
nothing but a positive definite metric. For relativity theory, as we will see,
one has one positive and three negative eigenvalues, so the signature is
—2. We call such a metric Lorentzian. (Note that some authors adopt a
different convention in which a Lorentzian metric has three positive and
one negative eigenvalues so the signature is +2). Because a Lorentzian
metric has eigenvalues of different signs, one can find non-zero vectors
such that

g XXt = 0. (6.54)

We call such vectors null vectors. Just as in special relativity, the set of
null vectors at a point P? form a null cone (in the tangent space 7pM)
which divides the vectors at P into ‘timelike’, ‘spacelike’, or ‘null’.



We may also use the metric to define the angle between two vectors
X% and Y? with X? # 0 and Y? # 0. This is given by

g bXaYb
cos (X,Y) = 2 T T (6.55)
(lgeaX X)) 2 (lgr Y*Y7])2
In particular, the vectors X% and Y* are said to be orthogonal if
g X* Y = 0. (6.56)

So that a null vector is orthogonal to itself.
Since a metric satisfies g # 0, at every point we may define the inverse
metric g% in the x%-coordinates, by

g & =65 6.57)

Although it is not completely obvious, it follows from this definition that
g% is a contravariant tensor of rank 2 and it is called the contravariant
metric (exercise). We may now use g,; and g% to lower and raise tensorial
indices by defining

(6.58)
and

T =g T, (6.59)
where we use the same kernel letter for the tensor irrespective of the posi-
tion of the indices. Since from now on we shall be working with a manifold
endowed with a metric, we shall regard such associated contravariant and
covariant tensors as representations of essentially the same geometric ob-
ject. Thus, in particular, T, T,°, T%, and 7% may all be thought of as
different representations of the same geometric object. Since we can raise
and lower indices freely with the metric, we must be careful about the or-
der in which we write contravariant and covariant indices. For example,
in general, X,’ will be different from X?,.

6.9 Metric geodesics

Consider a timelike curve -y (i.e. a curve with timelike tangent vector) with
parametric equation x* = x%(u). Dividing equation (6.52) by the square
of du, we get

ds\? dx® dx?
(5) =G ar (660

Metric geodesics
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Then the interval s between two points P; and P, on -y is given by

P g P dxadat
s—/ ds = —sdu—/ (gab il > du. (6.61)
P P Py du du

We define a timelike metric geodesic between any two points P; and
P, as the privileged curve joining them whose interval is stationary un-
der small variations that vanish at the end points. Hence, the interval may
be a maximum, a minimum, or a saddle point. Deriving the geodesic
equations involves the calculus of variations and we postpone this to
the next chapter. In that chapter, we shall see that the Euler-Lagrange
equations result in the second-order differential equations

d2x? dx? dx¢ d%s  ds dx?
s g F e g g = (am/ du)g“bdu’ (662

where the quantities in curly brackets are called the Christoffel symbols
of the first kind and are defined in terms of derivatives of the metric by

{aba C} = % (abgac + aagbc - acgab) . (663)

Multiplying through by g% and using (6.57), we get the equations

d*x a) dxbdx d’s ds | dx®
— + — ==/ | — 6.64
du? {bc} du du du? /du du (6.64)
where { Zc } are the Christoffel symbols of the second kind defined by
{Ifc} = g {bc, d} . (6.65)

In addition, the norm of the tangent vector dx?/du is given by (6.60).
If, in particular, we choose a parameter « which is linearly related to the
interval s, that is,

u=as+p, (6.66)

where « and (8 are constants, then the right hand side of (6.64) vanishes.
In the special case when u = s, the equations for a metric geodesic
become

A2 a) dx? dx¢
az ' {bc} & ds 0 (6.67)

and



dx® dx?
——=1. 6.68
8ab ds ds ( )
Apart from trivial sign changes, similar results apply for spacelike
geodesics, except that we replace s by o, say, where

do? = —gudx®dx®.

However, in the case of an indefinite metric, there exist geodesics for
which the distance between any two points is zero called null geodesics.
It can also be shown that these curves can be parametrized by a special
parameter u, called an affine parameter, such that their equation does
not possess a right hand side, and again takes the form

d2xe a) dx? dx*
+ — = =0, 6.69
du? {bc} du du (6.69)
where
dx@ dxb
gab@a =0. (6.70)

The last equation follows since the distance between any two points is
zero, or, equivalently, the tangent vector is null. Again, any other affine
parameter is related to « by the transformation

u— ou+ f,

where « and 3 are constants.

6.10 The metric connection

In general, if we have a manifold endowed with both an affine connec-
tion and metric, then it possesses two classes of curves, affine geodesics
and metric geodesics, which can be different (Fig. 6.11). In standard Eu-
clidean space, both classes are given by straight lines. Affine geodesics
generalize the notion of a straight line as one which does not change direc-
tion, while metric geodesics generalise the notion of a straight line as the
shortest distance between two points. However, comparing (6.37) with
(6.67), the two classes will coincide if we take

a _ a
be — {bc} 5 (671)

or, using (6.65) and (6.63), if

o= 16 (Ohgac + Ocgar — D) - (6.72)

The metric connection 103

Fig. 6.11 Affine and metric geodesics on
a manifold.
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It follows from the last equation that the connection is necessarily sym-
metric, i.e.

5 = T9. (6.73)

In fact, if one checks the transformation properties of bac from first prin-

ciples, it does indeed transform like a connection (exercise). This special
connection built out of the metric and its derivatives is called the met-
ric connection and ensures that the two notions of geodesic coincide.
From now on, we shall always work with the metric connection and we

shall denote it by I';, rather than { I;Ic } where I is defined by (6.72). This

definition leads immediately to the identity (exercise)

vc 8ab = 0) (674)

so that the metric is ‘covariantly constant’. Conversely, if we require that
(6.74) holds for an arbitrary symmetric connection, then it can be de-
duced (exercise) that the connection is necessarily the metric connection.
Thus, we have the following important result.

Theorem: If V, denotes the covariant derivative with respect to the
symmetric affine connection I';,, then the necessary and sufficient con-
dition for the covariant derivative of the metric to vanish is that the
connection is the metric connection.

In addition, we can show that
V. =0, (6.75)
and

V.g?=0. (6.76)

6.11 Metric flatness

Now, at any point P of a manifold, g, is a symmetric matrix of real num-
bers. Therefore, by standard matrix theory, there exists a transformation
which reduces the matrix at PP to diagonal form with every diagonal term
either +1 or —1. The excess of plus signs over minus signs in this form
is just the signature that we defined earlier. Assuming that the metric is
continuous over the manifold, then, since the determinant is non-zero, it
follows that the signature is an invariant. In general, it will not be possible
to find a coordinate system in which the metric reduces to this diago-
nal form everywhere. If, however, there does exist a coordinate system
in which the metric reduces to diagonal form with +1 diagonal elements
everywhere, then the metric is called flat.



How does metric flatness relate to affine flatness in the case we are
interested in, that is, when the connection is the metric connection? The
answer is contained in the following result.

Theorem: A necessary and sufficient condition for a metric to be flat
is that its Riemann tensor vanishes.

Necessity follows from the fact that there exists a coordinate system in
which the metric is diagonal with +1 diagonal elements. Since the met-
ric is constant everywhere, its partial derivatives vanish and therefore the
metric connection I'y, vanishes as a consequence of the definition (6.72).
Since I'}, vanishes everywhere then so must its derivatives. (One way to
see this is to recall the definition of partial differentiation which involves
subtracting quantities at neighbouring points. If the quantities are always
zero, then their difference vanishes, and so does the resulting limit.) The
Riemann tensor therefore vanishes by the definition (6.40).

Conversely, if the Riemann tensor vanishes, then by the theorem of
§6.7, there exists a special coordinate system in which the connection
vanishes everywhere. Since this is the metric connection, by (6.74),

vcgab = acgab - chgdb - Fgcgad = O>

from which we get

Ocat = TL gap + T gaas (6.77)

and it follows that J.g,;, = 0. The metric is therefore constant everywhere
and hence can be transformed into diagonal form with diagonal elements
+1. Note the result (6.77), which expresses the ordinary derivative of the
metric in terms of the connection. This equation will prove useful later.
Combining this theorem with the theorem of 6.7, we see that, if we use
the metric connection, then metric flatness coincides with affine flatness.

6.12 The curvature tensor

The curvature tensor or Riemann—-Christoffel tensor (Riemann
tensor for short) is defined by (6.40), namely,

Ripea = 0Ly — 0l + Tyl — Tyl
where I'}, is the metric connection, which by (6.72) is given as
b = 38" (0b8ac + Oc8ab — Dagse)-
Thus, R%. depends on the metric and its first and second derivatives.
It follows immediately from the definition that it is anti-symmetric on its

last pair of indices

Rpeq = —R%q. (6.78)

The curvature tensor
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The fact that the connection is symmetric leads to the identity (exercise)
Rabcd + Radbc + Racdb =0. (679)

Lowering the first index with the metric, then it is easy to establish, for
example by using geodesic coordinates, that the lowered tensor is sym-
metric under interchange of the first and last pair of indices, that is
(exercise),

Rabcd = Rcdab~ (680)

Combining this with equation (6.78), we see that the lowered tensor is
anti-symmetric on its first pair of indices as well:

Raped = —Rpaca (6.81)

Collecting these symmetries together, we see that the lowered curvature
tensor satisfies

Raped = —Rapde = —Rpaca = Redaps
(6.82)
Rabed + Radbc + Rucdb =0.

These symmetries considerably reduce the number of independent com-

ponents; in fact, in » dimensions, the number is reduced from »* to

Ln?(n* — 1). In addition to the algebraic identities, it can be shown,

again most easily by using geodesic coordinates, that the curvature tensor
satisfies a set of differential identities called the Bianchi identities:

Valedebc + Vcledeab + vadecu =0. (683>

We can use the curvature tensor to define several other important tensors.
The Ricci tensor is defined by the contraction

Rab = Rcacb = gEdeacln (684>

which by (6.80) is symmetric. A final contraction defines the curvature
scalar or Ricci scalar R by

R= gabRab, (6.85)
These two tensors can be used to define the Einstein tensor
Gab = Rab - %gabR> (686}

which is also symmetric and, by (6.83), the Einstein tensor can be shown
to satisfy the contracted Bianchi identities

V,G,” = 0. (6.87)

Note that some authors adopt a different sign convention, which leads to
the Riemann tensor or the Ricci tensor having the opposite sign to ours.



The Weyl tensor

6.13 The Weyl tensor

We shall mostly be concerned with tensors in four dimensions or less.
The algebraic identities (6.82) lead to the following special cases for the
curvature tensor:

(1) ifn= 1: Rabcd = 03
(2) if n = 2, Rycq has one independent component — essentially R;
(3) if n = 3, Ryeq has six independent components — essentially R;

4) if n = 4, Rypq has twenty independent components — ten of which
are given by R, and the remaining ten by the Weyl tensor.

The Weyl tensor or conformal tensor C,;, is defined in #» dimensions,
(n > 4) by

1
Cabea = Rapea + m(gadRcb + 8gocRaa — ZacRap — gbdRca)

1

+ - R.
(n—1)(n—2) (8acgdb — 8adgev)

Thus, in four dimensions, this becomes

Cabcd = Rabcd + % (gadRcb + gbcRda - gacRdb - gbdRm)
+ L (8uckib — GadSes) R- (6.88)

It is straightforward to show that the Weyl tensor possesses the same
symmetries as the Riemann tensor, namely,

Cabcd = _Cabdc = _Cbacd = Ccdab:
(6.89)
Cabed + Cadbe + Cacar = 0.
However, it possesses an additional symmetry
C%a = 0. (6.90)

Combining this result with the previous symmetries, it then follows that
the Weyl tensor is trace-free; in other words, it vanishes if one contracts
any pair of indices. One can think of the Weyl tensor as that part of the
curvature tensor for which all contractions vanish.

Two metrics g, and g, are said to be conformally related or
conformal to each other if

Bab = Qgaps 6.91)

where Q(x) is a non-zero differentiable function. Given a manifold with
two metrics defined on it which are conformal, then it is straightforward
from (6.53) and (6.55) to show that angles between vectors and ratios
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of magnitudes of vectors, but not lengths, are the same for each met-
ric. Moreover, the null geodesics of one metric coincide with the null
geodesics of the other (exercise). The metrics also possess the same Weyl
tensor, i.e.

C%%ca = C%%ea (6.92)

Any quantity which satisfies a relationship like (6.92) is called confor-
mally invariant. Note the position of the indices on the Weyl tensor is
important (with one index up and three indices down). The Weyl tensor
with, for example, two indices up and two down is not conformally in-
variant. Other examples of quantities which are not conformally invariant
are gup, 17, and R%.q. A metric is said to be conformally flat if it can be
reduced to the form

Zab = VMaps (6.93)

where 7,5 is a flat metric. We end this section by quoting two results
concerning conformally flat metrics.

Theorem: A necessary and sufficient condition for a metric to be
conformally flat is that its Weyl tensor vanishes everywhere.

Theorem: Any two-dimensional Riemannian manifold is conformally
flat.

Exercises

6.1 (§6.2) Prove (6.13) by showing that Lxd7 = 0 in two ways: (i) using
(6.17), and (i) from first principles (remembering Exercise 5.8).

6.2 (§6.2) Use (6.17) to find expressions for LxZ; and Lx(Y*Z;.). Use
these expressions and (6.15) to check the Leibniz property in the form
(6.12).

6.3 (§6.3) Establish (6.23) by assuming that the quantity defined by
(6.22) has the tensor character indicated. Take the partial derivative of
o O 0 0!
T oxe T Oxd oxle’

with respect to x® to establish the alternative form, (6.24).

6.4 (§6.3) Show that covariant differentiation commutes with contraction
by checking that V.07 = 0.

6.5 (§6.3) Assuming (6.22) and (6.25), apply the Leibniz rule to the
covariant derivative of X, Y%, where Y” is arbitrary, to verify (6.26).



6.6 (§6.3) Check (6.29).

6.7 (§6.4) If X, Y and Z are vector fields, fand g smooth functions, and
A and u constants, then show that

@) Vx(/\Y-i- uZ) = A\VxY+vVxZ,

(i) VixygyZ = [NxZ + gVyZ,

(i) Vx(fY) = (XN Y +/VxY.

6.8 (§6.4) Show that (6.33) leads to (6.34).
6.9 (§6.4) If s is an affine parameter, then show that, under the transfor-
mation

s — s =73(s),

the parameter will be affine only if s = as+ 3 where o and 3 are constants.

6.10 (S6.5) Show that
Ve VaX% — VgV X% = R 0q Xy — RipeaX?,.

[Hint: write out all the terms on the LHS and many should cancel in pairs
leaving the terms on the RHS.]

6.11 (§6.5) Show that
Vx(VyZ*) = Vy(VxZ") = VixyZ* = RO ZP XYY

[Hint: write out all the terms on the LHS and many should cancel in pairs
leaving the terms on the RHS.]

6.12 (§6.7) Prove that, if a manifold is affine flat, then the connection is
necessarily integrable and symmetric.

6.13 (§6.8) Show that if g* is defined by (6.57) then it is a rank 2 con-
travariant tensor. [Hint: one method is to start from the primed version
of (6.57).]

6.14 (§6.8) Show that if g, is diagonal, i.e. g, = 0 if a # b, then g? is
also diagonal with corresponding reciprocal diagonal elements.

6.15 (S§6.8) The line elements of R? in Cartesian, cylindrical polar, and
spherical polar coordinates are given respectively by

@) ds? = dx? + dy? + d2?,

(i) ds? = dR? + R*d¢? + d2?,

(iii) ds? = dr? + r2d6? + 12 sin? Od¢?.

Find g4, g°°, and g in each case.

6.16 (§6.8) Express T, in terms of Tt

6.17 (§6.9) Write down the tensor transformation law of g,. Show
directly that

{l?c} = 16" (Opgac + Ougab — Daghe)s

Exercises
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transforms like a connection.

6.18 (§6.9) Find the geodesic equation for R? in cylindrical polars. [Hint:
use the results of Exercise 6.15(ii) to compute the metric connection and
substitute in (6.69).]

6.19 (§6.9) Consider a 3-space with coordinates (x%) = (x,y, 2) and line
element
ds® = dx? + dy? + d22.

Prove that the null geodesics are given by

x=lu+l, y=mu+w', z=nu+n,
where u is a parameter and 4, ¢', m, m', n, and »’ are arbitrary constants
satisfying 2 + m?> — n?> = 0.
6.20 (§6.10) Prove that V g, = 0. Deduce that V, X, = g,V X".

6.21 (§6.10) Suppose we have an arbitrary symmetric connection I',
satisfying V.gs = 0. Deduce that I';, must be the metric connection.
[Hint: use the equation to find expressions for Opguc, O.Lap, and —0gp., as
in (6.77), add the equations together, and multiply by 3]

6.22 (§6.11) The Minkowski line element in Minkowski coordinates
() = (21, 2,2) = (62,3, 2),
is given by
ds? = dF — dx? — dy? — d2%.

(1) What is the signature?
(1) Is the metric non-singular?
(iii) Is the metric flat?

6.23 (§6.11) The line element of R3 in a particular coordinate system is
ds? = (dx')? + (x1)?(dx?)? + (! sinx?)?(dx?)%.
(1) Identify the coordinates.

(ii) Is the metric flat?

6.24 (§6.12) Establish the identities (6.79) and (6.80). [Hint: choose an
arbitrary point P and introduce geodesic coordinates at P.] Show that
(6.79) is equivalent to R?pq = 0.

6.25 (§6.12) Establish the identity (6.83). [Hint: use geodesic coordi-
nates.] Show that (6.83) is equivalent to Rgy[a,q = 0. Deduce (6.87).

6.26 (§6.12) Show that G, = 0 if and only if Ry = 0.



6.27 (§6.13) Establish the identity (6.90). Deduce that the Weyl tensor
is trace-free on all pairs of indices.

6.28 (§6.13) Show that angles between vectors and ratios of lengths of
vectors, but not lengths, are the same for conformally related metrics.

6.29 (§6.13) Prove that the null geodesics of two conformally related met-
rics coincide. [Hint: the two classes of geodesics need not both be affinely
parametrized.]

6.30 (§6.13) Given two metrics with are conformally related i.e.
8ab = ngabs
then defining

W=InQ, W,=V.(InQ), Wy=V.(V4nQ)),

show that
®
ch = Wdc-
(i)
oo = L5, + W+ 0: Wy — gp W7
(iii)

R%eq = Rpeq + 0Wep — 02 Wa — gaW'e — g W + 03 W Wy — 62g5a W W*
— & WaW* — 6W,W* — 0386 W W* — goa W W*.

(iv) Use the definition (6.88) to deduce (6.92). [Hint: parts (iii) and (iv)

involve quite long but straightforward calculations (that is if you are care-

ful about symmetries and dummy indices) and eventually some of the
terms cancel in pairs to give simpler expressions.]

6.31 (§6.13) Establish the theorem that any two-dimensional Lorentzian
manifold (i.e. at any point the metric can be reduced to the diagonal form
(+1,—1)) is conformally flat. [Hint: use null curves as coordinate curves,
that is, change to new coordinates

A=A, v=v(%ah),
satisfying

gab)\,dA,b = gabl/,a’/,b =0,

Exercises
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and show that the line element reduces to the form
ds? = #*d\dv,

and, finally, introduce new coordinates § (A + ) and $(A — v).]

6.32 This final exercise consists of a long calculation which will be needed
later in the book. If we take coordinates

(x7) = (0, 5ty 62, %%) = (67,0, ¢)s

then the four-dimensional spherically symmetric line element can be
shown to have the form (see Chapter 15 equation (15.37))

ds? = e¥di? — *dr? — Pd6? — +?sin #d¢?,

where v = v(t,7) and A = A(z, 7) are arbitrary functions of 7 and 7.

() Find gu, g and g? (see Exercise 6.14).

(i) Use the expressions in (i) to find I'}, . [Hint: remember I';, = 'Y, ]
(ii1) Calculate R4 [Hint: use the symmetry relations (6.82).]

@iv) Calculate R, R, and G .

(v) Calculate G%(= g*“Gp = Gp*).
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Integration, variation, and
symmetry

7.1 Tensor densities

A tensor density of weight W, denoted conventionally by a gothic letter,
4., transforms like an ordinary tensor, except that, in addition, the With
power of the Jacobian

0x*
7= ‘axb ’
appears as a factor, i.c.
ox'? Ox?
= R SERRI Y 7.1
R e (7.1)

Then, with certain modifications, we can combine tensor densities in
much the same way as we do tensors. One exception, which follows from
(7.1), is that the product of two tensor densities of weight W; and W is
a tensor density of weight W; + W,. There is some arbitrariness in defin-
ing the covariant derivative of a tensor density, but we shall adhere to the
definition that, if T3 is a tensor density of weight W, then

V. %5 = usual terms if T} were a tensor — WcmTg,'ff. (7.2)
For example, the covariant derivative of a vector density of weight W is
V.3 = 0.3+ I4,3° — W3

In the special case when W = +1 and ¢ = a, we get the important result
(check)

V.2 = 0,59, (7.3)

that is, the covariant divergence of a vector density of weight +1 is
identical to its ordinary divergence. It can be shown that both these
quantities are scalar densities of weight +1 (exercise).

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0007
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7.2 The Levi-Civita alternating symbol

We introduce a quantity which is a generalization of the Kronecker delta
d3, but which turns out to be a tensor density. The Levi-Civita alternat-
ing symbol 7 is a completely anti-symmetric tensor density of weight
+1 and contravariant rank 4, whose values in any coordinate system is
+1 or —1 if abcd is an even or odd permutation of 0123, respectively,
and zero otherwise. Thus, for example, in four dimensions, if we let the

coordinates range from O to 3 (as we shall), i.e.
0.1 .2 .3
(x%) = (x5 %", x%,x°),
then some of its values are

0123 _ 2301 _ 0132 _ _

S2301 _ 0321 _

€ € +1,

and

0120 _ 0331 _ 0101 _
We can use €% to define the determinant of a second-rank covariant
tensor 7, by

1
det(Tup) = 76" e® T Ty Teg Tans (7.4)

which can be shown to be equal to the standard definition where one
expands in rows and etc. Since % is a tensor density of weight +1, we
see from (7.4) that det(Ty) is a scalar density of weight +2. This is in
agreement with the fact that

c d
w(x') = %%Tm(ﬂc) = det7' =J%*detT.

Assuming the determinant is non-zero, we can construct the inverse of a
second-rank tensor. Similarly, we can define the covariant version €gp.4,
which has weight —1. It can be used, in particular, to form the determinant
of a second-rank contravariant tensor 7%,

1
det Tub = E Eabcd€ efgh T beYTg Tdh,

which is a scalar density of weight —2. The covariant derivatives of both
g% and e 4.4 vanish identically (exercise), which from one point of view
motivates the definition (7.2).

We define the generalized Kronecker delta by

+1 foraZb,a=c,b=d
6% = {1 fora#b,a=d, b=c
0 otherwise



and similarly for higher-order tensors. They are constant tensors of the
type indicated, and can be defined in terms of the Kronecker delta by the
determinant relationships

é‘ab _ 5? 5?

cd ~ | Sa 517 >

d d

and
g 05 05
L B
b
of of O

and so forth. In four dimensions they are related to products of the
alternating symbols according to

abcd _ gabed
g €efgh - 6efgh 5

abcd _ gabc
€ Eefé’d — Vefg>

abed _ ab
e e opea = Zéef,

bed —
g Eebed = 3!539

bed
Ea ¢ Eabcd = 4!,

7.3 The metric determinant

If we have a Riemannian manifold with metric g, then it transforms
according to

Ox¢ x4
g/ab(x/) = W@gcd(x)a (75)

and so, taking determinants, we have
/ 2
g =Jg

Hence the metric determinant g is a scalar density of weight +2. In later
chapters, we shall be working with metrics of negative signature, in
which case g will be negative, and so we write the last equation in the
equivalent form

(—=¢) =P(-2).

The metric determinant
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Since all these terms are now positive, we can take square roots, to get

V¢ =IV=¢

and hence /=g is a scalar density of weight +1. The quantity \/—¢
plays an important role in integration. Given any tensor 15, we can form
the product /—g7} " which is then a tensor density of weight + 1.
In particular, we can deduce an important result from equation (7.3),
namely, for any vector 7%,

Valv/=gT*] = Oa[vV—T"]. (7.6)

Now, at any point, the covariant and contravariant metrics are sym-
metric matrices which are inverse to each other by

gabgbc = 52

Let us digress for a moment and consider the general case of finding
the derivative of a determinant of a matrix whose elements are functions
of the coordinates. Consider any square matrix 4 = (a;). Then its inverse,
(bY), say, is defined by

(¥) = - ()" = - (), .7

a

where a is the determinant of A4, 47 is the cofactor of a;;, and T denotes
the transpose. Let us fix 7, and expand the determinant a by the ith row.
Then

n
a= g azAY,
=1

where the index 7 is not summed and we have explicitly used the summa-
tion sign for summing over j for clarity. If we partially differentiate both
sides with respect to a;;, then we get

da .
— =AY .
5y =A% (7.8)

since a;; does not occur in any of the cofactors A¥ (i fixed, j runs from 1
to n). Repeating the argument for every i, as ¢ runs from 1 to n, we see
that the formula (7.8) is quite general. Let us suppose that the a;; are all
functions of the coordinates x*. Then the determinant is a functional of
the a;;, which in turn are functions of the x*, that is,

a= a(al-j(xk)).



The metric determinant

Differentiating this partially with respect to x*, using the function of a
function rule and equation (7.8), we obtain

Oa _ Oa Oa;
Ox* — Qay Ox*

. Oa;:
Y [l
Oxk
- Oay;
— bﬂJ)
9 oxk

by equation (7.7). Applying this result to the metric determinant g and
remembering that g, is symmetric, we get the useful equation

0.8 = ggﬂbacgab‘ (7.9)

We now combine this result with (6.77) (which comes directly from the
vanishing of the covariant derivative of the metric) and find

08 = ggab(rgcgdb + Fgcgad)
= g63TG + 04T
=2gl'?.. (7.10)

Let us compute the covariant derivative of g using (7.2). Then, since
g is a scalar density of weight +2, we have

ch = 8cg - ZgFZC:
and so by equation (7.10) it follows that
V.g=0. (7.11)

This is again intimately connected with the choice of the definition (7.2).
Similarly, we find from equation (7.10) that

Ocv/—g = V=815, = 0,
that is, by (7.2),
Vo/—g=0. (7.12)
In particular, for any tensor 7% , this leads to the identity
Velv=gT%:.] = V=g(V.T%:..), (7.13)
that is, we can pull factors of \/—g and g through covariant deriva-

tives in the same way as we can with factors involving the covariant or
contravariant metric.
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7.4 Integrals and Stokes’ theorem

Unlike tensors in general, we can add a scalar field ¢ evaluated at two
different points, x; and x;, say, and the resulting quantity is still a scalar
since, under a coordinate transformation, the sum transforms like

@' (x'1) + @' (x'2) = d(x1) + ¢(x2), (7.14)

by (5.20). Hence, we might imagine that it is possible to integrate a scalar
field ¢ over some n-dimensional region Q) of a manifold M. However, it
turns out that the volume element d() is not a scalar but, as we shall see, a
scalar density of weight —1. It follows that we can integrate a scalar density
® of weight +1 over a region Q,

/ 3do, (7.15)
Q

since at each point ®dQ is a scalar and can be added together by (7.14).
There are analogous statements which can be made about integration over
curves, surfaces, and hypersurfaces.

Consider an m-dimensional subspace of M whose parametric equation
by (5.2) is

xT=xu), (i=1,2,...,m).
The ‘volume’ element of this subspace is defined to be

b b, b,
thlltlZ"'am — f4az-Am 8x ' ax : ax "

bibsbn BT B Bug du'du? - - du”. (7.16)

This element is an mth rank contravariant tensor under coordinate
transformations and behaves like a scalar under arbitrary change of
parameter. Hence, if X, 4,...,,, 1S an mth rank covariant tensor, then
X, ayeva,, AT 7% is a scalar under both coordinate and parameter trans-
formations, and we can form the integral

/ Xy ay.oea, AT (7.17)
Quy

over some region (,, of the subspace.
We now state Stokes’ theorem for a simply connected m-dimensional
subspace (,, bounded by the (m— 1)-dimensional subspace 9Q,, = Q,,—1:

/ Xlll az - an171d7a1 Gt = / 8(1le11 az - am—ldﬂ-a1 @ am' (7'18)
OQW m

Writing this in terms of the parameters «’, this is nothing but the stan-
dard version of Stokes’ theorem for a region in R”. We will be particularly
interested in the special case of a four-dimensional region Q of a four-
dimensional manifold M, where Q) is bounded by the hypersurface 0Q
(Fig 7.1). Stokes’ theorem then becomes the divergence theorem or
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x0

x2

Fig. 7.1 A four-dimensional region Q bounded by 0Q.

Gauss’s theorem for a contravariant vector density ¢ of weight +1,
which we write in the form

/ TS, = / 34,,dQ, (7.19)
1Y) Q
where
1 bed
dSa = §€ab5dd7 s (720)
and
1 abed
dQ = Ef‘:abcddT . (721)
If we use the coordinates x“ as parameters, then d() is written as d4x,
where
d*x = dx"dx'dx?dx?, (7.22)
and
dS, = (dx'dx?dx’, dx®dx?dy’, dx"da’ dx®, dx’dx’ dx?). (7.23)

Note from the definition (7.21) that d*x is a scalar density of
weight —1.

A particularly important case of (7.19) is when we take T¢ = /—gT*
and we use (7.6) and (7.13) to write

(za,a = 8a(\/ngl)
= va(\/jg’fa)
= \/jgvajaa

in which case (7.19) becomes the covariant divergence theorem

T%/—2dS, = / vV, T%/—gdQ. (7.24)
Q

o0
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7.5 The Euler-Lagrange equations

The variational principle and with it the Euler-LLagrange equations will
play an important role in this book. So, although it is something of a di-
gression, we shall, for completeness, include a brief discussion of their
derivation. Then, as a first indication of their usefulness, we shall show
in the next section how they provide an efficient method for obtaining
geodesics.

A functional may be defined as a correspondence between a real num-
ber and a function belonging to some class. Thus, a functional is a kind
of function where the independent variable is itself a function. One of the
basic problems in the calculus of variations is that of finding the stationary
values (maxima, minima, saddle points) of the action I defined by

Iy] = / L(y,y', x)dx, (7.25)

X1

where L is a functional of the dynamical variable y(x), its derivative
v = dy/dx, and the coordinate x, and is called the Lagrangian. The
problem is easily generalized. In order to solve the problem, we need to
make use of the following result.

Lemma: If fxxf @(x)n(x)dx = 0, where ¢(x) is continuous and 7(x) is
an arbitrary twice-differentiable function vanishing at the end points,
i.e. n(x1) = n(xz) = 0, then ¢(x) = 0.

To establish this, we suppose that ¢(x) # 0 for some x = & in the
interval (x1,x;). To fix ideas, let us assume ¢(¢) > 0. Then, by continuity,
there exists a neighbourhood of &, (§; < £ < &) for which ¢(x) > 0.
Setting

7]()6) — {(X - 51)4(36 - 62)4 for x € (51552)

0 otherwise,

we find that 7)(x) satisfies the conditions of the above lemma. Furthermore,

X2 &
/ P(x)n(x)dx = . o(x)n(x)dx > 0,

which produces a contradiction. Similarly, if we assume ¢(£) < 0, then
again we get a contradiction, and so the result follows.

Returning to (7.25), we assume L is twice differentiable with respect
to its three variables. Let us vary y by an arbitrary small amount and
write

y=y+en(x), (7.26)
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where ¢ is small and 7(x) satisfies the conditions of the lemma, that is,
it has continuous second derivatives and vanishes at x; and x, but is
otherwise arbitrary. We define a variation of y by

0y = y—y=en(x). (7.27)

Differentiating (7.26) with respect to x and using the prime notation, we
get

v =y +er,
so that
50) =y —y =en =(6y),

from which we see that 6 and d/dx acting on y commute. Then, working
to first order in ¢,

Iy = Iy + dy]

X2
= / L(y+en,y +en',x)dx

X1

x2 oL oL
= /x] (L(y,y/, X) + 873)5” + ({93/677,) dx,

by Taylor’s theorem. Thus defining the quantity

oI = Iy + oy] — Iy,

2 (0L oL
ol = ae/x1 (ayn+ ay/n’) dx.

The last term can be integrated by parts, to give

we get

xz% /dx— 87L Xz_/xzd % dx
AR o Ju dx \ 0y e

The term in square brackets vanishes since 7(x;) = n(xz) = 0, and hence

2oL d [OL

If y = y(x) is a stationary curve, then 6] must vanish to first order, and so,
using the above lemma, we find that y must satisfy the Euler-Lagrange

equation for L, that is,
oL d [JL
—— — | =—)=0. .29
Jy dx <8y’ ) (7.29)
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Introducing some further notation which serves as a useful abbrevia-
tion, we define the variational derivative, functional derivative, or
Euler-Lagrange derivative of L by

. ay

SL oL 4 (oL
dy © 9y dx ’

so that (7.28) can be written as

X2 L
61 = iéydx. (7.30)
o Oy

Then, in this formalism, the principle of stationary action requires
oI =0, (7.31)

for arbitrary dy, which leads immediately by the lemma to the Euler-
Lagrange equation

5L

=0 (7.32)

The argument can be generalized to # dynamical variables, each of which
consists of functions of one variable y; (x), . .., v,(x) in a straightforward
manner. Then the action is defined in terms of the LL.agrangian by

X2
I[y13-~-3yn] = / L(y1>~-~;ymyl1;---;y;>9€)dx (733)

X1

and the variations

yi—>5}i:yi+6yi (izlazs-”sn))

where

dyi =emi(x),  mi(x1) =mi(x2) =0,
lead to

oI = /xlxz %(;yidx (summed over 7),
with

oL oL d (8L>

Wi T oy dx \0y
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The principle of stationary action, 6/ = 0, for arbitrary independent
variations ¢y;, produces the Euler-Lagrange equations

OL d /0L .
@‘&(a?;)‘o' (i=1,2,...,m). (7.34)

The further generalization to a system of m dynamical variables y,(x)
A = 1,2,...m), defined on an n-dimensional manifold M, starts from
the action

I= /£@A>yA,b>xa)dQ> (7.35)
Ja

where a comma in the subscript denotes a partial derivative, i.e.
Yap = Opva, and the Lagrangian £ is a scalar density of weight +1 and
leads to the Euler-Lagrange equations

FENRET I
dva ~ Ova 0yab

)b:o (A=1,2,...m). (7.36)

The significance of the variational principle approach is that most, if
not all, physical theories may be formulated by specifying a suitable La-
grangian. The Euler-Lagrange equations can then be computed in a
straightforward manner and these constitute the field equations of the
theory.

7.6 The variational method for geodesics

We now apply the technique of the last section to finding a convenient
way for computing the geodesics of a given metric. We start from the
Lagrangian functional (compare with (7.33))

L= L(x% %% u),

where u is a parameter along a timelike curve and the dot denotes
differentiation with respect to u, defined in terms of the metric by

1/2

L = [gap(x)x*%7) (7.37)
It follows from (6.60) that the action is
Pz PZ
Ldu = / ds=s, (7.38)
P] Pl

where s is the interval between any two points P’; and P, on a curve con-
necting them. The metric geodesic between these points P; and P; is
defined as that curve joining them whose interval is stationary under small
variations which vanish at the end points. In other words, we need to solve
the principle of stationary action problem ds = 0. The solution consists
of the Euler-Lagrange equations (7.34) in the form
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oL d (oL
T <W> =0. (7.39)

In principle these equations solve the problem, but in practice there are a
number of difficulties. First of all, it is much better to work where possible
with L? rather than L to avoid square roots. Then there is the freedom in
the choice of the parameter «. Finally, in the case of an indefinite metric,
there is the distinction between null and non-null geodesics. Assuming
L # 0 and multiplying (7.39) by —2L, we get

d /oL oL
2L [du (axa) - 3xa} =0 (7.40)

which can be rewritten as

2 2
d (aL) oL _ OLdL (7.41)

du \oxa )  ox¢ " “oxedu’

Substituting for L2, the left-hand side of (7.41) produces

d orL? _8L2_i i( xbe) _i( xbe)
dx \ 0% Ox¢  du | 0xe Sbe 0x¢ Se

d .. e
= @(Zgabxb) — (Dugpe) %

= 28X" + 20,85 K — Dugpei’i°

= Zgabjéb + bexc[%(acgba + abgca - aagbc)]
= 2g,X° + 2x°x°{bc, a},
where we have used symmetry, interchange of dummy indices, and

(6.63). If we again assume that L # 0, then the right-hand side of (7.41)
produces

OL dL 0 o1 d [ds
2 2——(gpeX™i°) E» <>

Oka du ~ " Oxe du
oot gd%s
= 2(gpei’%°) égadxd@

d?s ds
=2 —5 /= | gai”.
(duz/du> BabX

Equating these two results and dividing by 2 gives the equation (6.62).
Multiplying through by g% and using (6.65) leads to

%9+ T4 5% = (5/5)%° (7.42)

If we choose the parameter u = s, then the right-hand side vanishes, giving
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%7+ T94°%° = 0, (7.43)

and hence s is an affine parameter. It follows from (7.42) that any other
affine parameter is related to s by

s=as+f, (7.44)

where a and [ are constants. A similar argument applies to spacelike
geodesics (exercise).

In the case of an indefinite metric, the interval ds between neighbour-
ing points on a curve may be zero. A null geodesic is a geodesic whose
interval between any of its two points is zero. It follows from (7.37) that
L vanishes and so the argument given above breaks down. However, it
is possible to modify the argument (we shall not do it) to show that the
general equations of a null geodesic are

X+ T = Mu)xe,

where A(u) is some function of the curve’s parameter # and where the
tangent vector x“ satisfies 2ap%?xP = 0. As before, if the geodesic equations
do not possess a right-hand side, that is, A = 0, then the parameter u is
called affine. Any other parameter z will be affine if it is related to u by

u=oau+f, (7.45)

where o and 3 are constants.
Summarizing, if we define the quantity K by

K = Llgupa'id, (7.46)

and if we take u to be an affine parameter, then the most useful form of
the geodesic equations is (exercise)

OK d (0K

where along any geodesic the quantity K is a constant, with

0,
2K={ +1, (7.48)
_1’

depending on whether the tangent vector is null, or has positive or negative
length, respectively, and where in the last two cases we take u to be the
distance parameters s and o. This is the approach we shall adopt in our
ensuing work. It is possible, by (7.43), to read off directly from (7.47) the
components of the connection I';,, and this proves to be a very efficient
way of calculating I' .
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7.7 Isometries

Tensor calculus is largely concerned with how quantities change under co-
ordinate transformations. It is of particular interest when a quantity does
not change, i.e. remains invariant, under coordinate transformations. For
example, coordinate transformations which leave a metric invariant are
of importance since they contain information about the symmetries of
a Riemannian manifold. Just as in an ordinary Euclidean space, there are
two sorts of transformations: discrete ones, like reflections, and con-
tinuous ones, like translations and rotations. In most applications, these
latter types are the more important ones and they can in principle be ob-
tained systematically by obtaining the so-called Killing vectors of a metric,
which we now discuss below.

Consider a map ¢ : M — M that is invertible and smooth (i.c. can
be differentiated as often as we want). Such a map is called a diffeomor-
phism. Suppose we introduce a coordinate system (x!,...,x"); then ¢,
treated as an active transformation, takes the point P with coordinates x“ to
the point Q with coordinates x%, say. Since x* depends on the coordinates
of P, we may write

and, since ¢ is invertible,

We may use ¢ to take a tensor at the point PP to a tensor at the point Q. For
example, given the tensor 7, at the point P, we define T}; at the point Q
by

c d

Tab = %% cd- (749)
This is called the push-forward map. Note, despite the similarity to
the formula (5.27) for a change of coordinates, formula (7.49) takes the
x?-components of a tensor at the point P to the x*~components of a ten-
sor at the point Q, so is an active transformation describing a change of
location rather than a passive one describing a change of coordinates (as
in §6.2).

Conversely, we may take a tensor T back from Q to the point P using

0% 9x
Tu = 57 Tu (7.50)

This is called the pull-back map.

Rather than consider a fixed tensor at P, we now consider a tensor field
Tap(x). We say that ¢ is a symmetry of the tensor field if taking T, in
(7.50) to be the value of the tensor field at O, i.e. T = T.5(X) and then
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pulling T, back to the point Pjust gives the same as T (x) at the point P.
Thus, ¢ is a symmetry if

¢ 95d
= PO (), (7.51)

Tab(x) - %W cd

where both sides are now a function of x.
Of special interest is the case where the tensor field is the metric gu.
A symmetry of the metric is called an isometry and satisfies

ox° 0% _
8ab(x) = a—;a—;gcd(x(x)). (7.52)

In general, the condition (7.52) is very complicated, but it may be greatly
simplified if we consider the special case of an infinitesimal coordinate
transformation

xf — & = 1% + eX%(x), (7.53)

where ¢ is small and arbitrary and X* is a vector field. Differentiating
(7.53) gives

or
W = 5[, +58qu,

and so, substituting in (7.52) and using Taylor’s theorem, we get

San(%) = (05 + €0, X°) (6§ + 0, XV) gea(x° + £X°)
= (65 + £0,X°) (04 + €0, XY [gea(x) + €X°Dogoalx) + - - -]
= g (%) + €[gaaOp X% + 50, X" + X°0,8) + O(£2).
Working to first order in ¢ and subtracting g,;(x) from each side, it follows

that the quantity in square brackets must vanish. This quantity is simply
the Lie derivative of g,, with respect to X by (6.17), namely,

Lxgas = X08ab + £aaO0p X" + gpa0a X" (7.54)

Now we can replace ordinary derivatives by covariant derivatives in any
expression for a Lie derivative and so, using (6.74) and (6.58), the
condition for an infinitesimal isometry becomes

Lxgaw = VX, + Vo Xp = 0. (7.55)

These are called Killing’s equations and any solution of them is called
a Killing vector field X“. In the language of §6.2, equation (7.55) states
that the metric is ‘dragged into itself’ by the vector field X“. We have thus
established the following important result.
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Theorem: An infinitesimal isometry is generated by a Killing vector
X%(x) satisfying Lxg,, = 0.

It proves sufficient to restrict attention to infinitesimal transformations
because it can be shown that it is possible to build up any finite trans-
formation with non-zero Jacobian (i.e. a continuous transformation) by
an integration process involving an infinite sequence of infinitesimal
transformations.

Exercises

7.1 (§7.1) Write down the expression for the covariant derivative of a
scalar density ¢ of weight +1.

7.2 (§7.2) Use the definition of the covariant derivative of a tensor density
(7.2) to show that the covariant derivatives of both £°¢ and €. vanish
identically.

7.3 (§7.3) Denoting the transformation matrices by

Ox® b ox'
Jo=\| 5> JY = | — 5
b (8x’b) ( Oxb )
use the argument of §7.3 to show that

9.J = JI9, I,

where J = det(J,;) is the Jacobian. Hence show from first principles that,
if T¢ is a vector density of weight +1, then 0,%¢ is a scalar density of
weight +1.

7.4 (§7.3) Start from the assumption that, for an arbitrary vector field 7%,

Vo [V=¢T"] = 0. [V=¢T"] ;

and show that this leads directly to the result

Valv—gl =0, [\/—g] — Fga\/—g
(which is consistent with the definition in Exercise 7.1).

7.5 (§7.4) Show that, for any vector field 7%, the divergence theorem in
four dimensions can be written in the form

T°/—gdS, = / V. T%/—gd*x.
Q

oQ

7.6 (§7.5) Find the Euler-Lagrange equations for the Lagrangians
(@) L(y,y's%) = 3> + 57,
(i) L(y1, 32,5150 %) = 53 + y132 + 31(V'7 +53).



7.7 (§7.6) Trace the variational argument which leads to the equations for
a spacelike geodesic. Defining K by (7.46) and (7.48), show that (7.41)
can be written in the form (7.47). [Hint: if « is affine, then d/du = 0.]

7.8 (§7.7) Use (7.46), (7.47), and (7.48) to find the geodesic equations
of the spherically symmetric line element given in Exercise 6.32. Use the
equations to read off directly the components and check them with those
obtained in Exercise 6.32(ii). [Hint: remember I'j, = 1'%, ]

7.9 (§7.7) Find all Killing vector solutions of the metric

E
8ab = 0 x )

where (x7) = (x%,x!) = (x,¥).
7.10 (§7.7) Deduce (7.55) from (7.54).

7.11 (§7.7) Find all the Killing vectors X* of the three-dimensional
Euclidean line element

ds? = dx? + dy? + d2%.

[Hint: deduce from Killing’s equations that 0,.X, + 9, X}, = 0, differentiate
with respect to x¢, permute the indices to show that 9;0,.X, = 0, and inte-
grate to get X* = W XP 417, where w?, and t¢ are constants of integration,
usually termed parameters.]

Denoting the six independent constants of integration by A1, Az, Az, A4,
s, and \g, respectively, write the general solution for X* in the form

1 2 3 4 5 6
)\1Xa+>\2Xa+A3Xu+>\4Xa+/\5Xa+)\6Xa.
Find expressions for the vector fields )l(, (=1,2,...,6) and hence, or

iy
otherwise, find all values of [X, X]. Interpret the six Killing vector fields
in terms of geometrical transformations.

7.12 (§7.7) Show that, if X* and Y* are Killing vectors, then so is any
linear combination AX* + #Y? , where A and y are constants.

7.13 (§7.7) Consider the following operator identity:
LxLy - LyLx=Lixy-

(1) Check it holds when applied to an arbitrary scalar function f.

(i1) Check it holds when applied to an arbitrary contravariant vector field
m?. [Hint: use the Jacobi identity.]

(iii) Deduce that the identity holds when applied to a covariant vector
field V,. [Hint: let f = W*V/, where W* is arbitrary.]

Use the identity to prove that, if X and Y are Killing vector fields, then so
is their commutator [X, Y].

Given that 9/0x and —yd/0x + x0/dy are Killing vector fields, find
another.

Exercises
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7.14 (§7.7) Express (V.V, — V, V)X, in terms of the Riemann tensor.
Use this result to prove that any Killing vector satisfies

ViV X, — RpX? = 0.

7.15 (§7.7) By making use of the identity
R%peq + R%gpe + R%cap = 0,
or otherwise, prove that a Killing vector satisfies

V VX, = Rabchu’-
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Special relativity revisited

8.1 Minkowski space-time

As we saw in Chapter 2, special relativity discards the old Newtonian pic-
ture in which absolute time is split off from three-dimensional Euclidean
space. Instead, we introduce a four-dimensional continuum called space-
time in which an event has coordinates (z, x, ¥, 2), and where the square of
the infinitesimal interval ds between infinitesimally separated events sat-
isfies the Minkowski line element (2.13). The essence of special relativity
lies in the special Lorentz transformations, and the significance of the
Minkowski line element is that it is invariant under such transformations.
We now use the language of Part B to formulate this more precisely.

Minkowski space-time, or simply flat space, is defined as a four-
dimensional manifold endowed with a flat metric of signature —2. Then,
by definition, since the metric is flat, there exists a special coordinate sys-
tem covering the whole manifold in which the metric is diagonal, with
diagonal elements equal to £1. From now on, we shall use the conven-
tion that lower-case latin indices run from 0 to 3. The special coordinate
system is called a Minkowski coordinate system and is written

(xa) = (x0> xl, x2> x3) = (l, X5 Vs Z) (81)

We adopt the sign convention in which the Minkowski line element
takes the form

ds? = d? — dx? — dy? — dz%. (8.2)
We write this in tensorial form as
ds? = 1y dx® dx®, (8.3)

where from now on we will always take 7,, to denote the Minkowski
metric

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0008
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S o

Nab =

—_

0
0
0
-1

2 e e =

—1
0 —
0

(e}

=diag (1, -1, -1, —1).

(8.4)

If we use some other general coordinate system then we shall write the

metric in the form

ds® = gabdxadxb.
For example, in spherical polar coordinates,

(x*) = (16, ),
where, as usual,

x=rsinfcos¢p, x=rsinfsing, =z=rcosb,
the line element becomes
ds? = d — dr? — 12d6? — ¥ sin® 6d¢?,

and the metric is

g = diag(1, —1, —1?, —#* sin” ).

One of the main results of Part B is the theorem of §6.11, which states
that a necessary and sufficient condition for a metric to be flat is that
its Riemann tensor vanishes. In Minkowski coordinates, the metric 7,
is constant and so the connection I'j, vanishes in this coordinate system,
from which it is clear that the Riemann curvature tensor vanishes. How-
ever, in a general coordinate system, the connection components will not
necessarily vanish. For example, in spherical polar coordinates, we find

that I'}, has non-vanishing components

r,=-n Il = —rsin’6,
2, =71 '3, = —sinf cos¥,
;=1 I3, = cotd,

but, if we compute the Riemann tensor, we will again find
Rabcd =0,

as required by the theorem.

(8.5)



8.2 The null cone
In Minkowski space-time, the ‘square’ of the length or norm of a vector
is defined as usual by

X? = g XX = X, X% (8.6)

The vector is said to be

timelike if g,X°X’ > 0,
spacelike if g, XX’ <0, (8.7)
null or lightlike if g, X°X? = 0.

Two vectors X* and Y“ are orthogonal if their inner product vanishes,
that is,

gabXaYb =0,

from which it follows that a null vector is orthogonal to itself.

The set of all null vectors at a point P of a Minkowski manifold
forms a double cone called the null cone or light cone. In Minkowski
coordinates, the null vectors X? at P satisfy

nubXaXb = 03
that is,
(X9 — (x1) = (x») = (x*) =0, (8.8)

which is the equation of a double cone. This null cone lies in the tangent
space T, at I but, since it is easy to show that the tangent space is itself
a Minkowski manifold (by (8.8)), we can identify the tangent space with

the underlying manifold and regard the null cone as lying in the manifold.

We will not be able to do this when we go on to consider non-flat mani-
folds. If we define the timelike vector 7% in Minkowski coordinates by 7%
=(1,0,0,0), then a timelike or null vector X* is said to be

future-pointing if 7,X°7T° > 0,
past-pointing if 17,X°7° < 0.
The future-pointing vectors all lie inside or on one sheet of the cone called

the future sheet, and past-pointing vectors lie inside or on the past sheet
(Fig. 8.1).

The null cone
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Null cone—_ \ Future-pointing timelike vector

Future-pointing null vector

_— Spacelike vector

y

Past-pointing timelike vector

Fig. 8.1 The null cone with one dimension (the z-direction) suppressed.

8.3 The Lorentz group

The Lorentz transformations are defined as those linear homogeneous
transformations

x* = &% = L%x0, (8.9)

of Minkowski coordinates which leave the Minkowski metric 7,, invari-
ant. From (8.9),

ax/a

W = Laln

and, substituting in the transformation formula for a metric (7.5) (with
primes and unprimes interchanged), we get (exercise)

Lac Lbd Nab = MNecds (8 10)

since the metric remains invariant. We see from (7.52) that Lorentz
transformations are isometries. It follows immediately from (8.10) that
Lorentz transformations preserve lengths and inner products of vectors.
The Lorentz transformations form a group called the Lorentz group L.
The identity element of the group is 3 and the inverse element is given
by the inverse matrix. The matrix L%, is invertible because, if we take
determinants of each side of (8.10), we get

(detI%)? =1 = detl% = +1,

and so the matrix is non-singular. If we set ¢ = d = 0 in (8.10), we also
find that

(L)% = [(L'0)? + (L?0)* + (L%0)?] = 1,



from which it follows that (1.%9)? > 1 and so either 1% > 1 or 1% < —1.
We divide Lorentz transformations into four separate classes depending
on whether det L% = 41 and 1% > 1 or L% < —1.If detl?% = +1,
then L% is called proper or orientation preserving. An example of an
improper Lorentz transformation is the discrete transformation

{=t, x=—x, vV =y, 2=z

which reverses the x-direction. If L%, > 1, then L% is called or-
thochronous or time-orientation preserving. An example of a non-
orthochronous Lorentz transformation is the discrete transformation

f=—t, ¥=x, vV=y, 2=3

which reverses the ¢-direction. The proper orthochronous transforma-
tions, denoted by LI (read ‘L arrow plus’), form a subgroup of L. Clearly,
Ll contains the identity, whereas the other three subsets do not and hence
are not subgroups.

In fact, Ll is a six-parameter continuous group of transformations. We
can interpret the parameters physically by considering the transformation
actively as transforming one inertial frame S into another inertial frame
S’ in general position which is moving with velocity v relative to S (see
Chapter 2, Fig. 2.20). Then two parameters correspond to the two Euler
rotations required to line up the x-axis of S with the velocity of §’, one
parameter corresponds to a boost from S to a frame at rest relative to S’
(and this parameter depends on the speed of &' relative to S), and the
final three parameters correspond to the three Euler rotations required to
rotate the frame into the same orientation that S’ has. Another subgroup
of L is the ordinary three-dimensional rotation group.

The Poincaré group P consists of those linear inhomogeneous trans-
formations which leave 7, invariant. A Poincaré transformation is made
up of a Lorentz transformation together with an arbitrary translation (in
space and time), i.e.

x4 = &% = L%+ A (8.11)

The Lorentz group L is a proper subgroup of P, and the translations
form an invariant (normal) subgroup of P. The Poincaré group P is
a ten-parameter group, consisting of six Lorentz parameters plus four
translation parameters. The continuous Poincaré transformations con-
stitute the full set of isometries of the Minkowski metric. Physically, a
Poincaré transformation maps one inertial frame S into another inertial
frame S’ in general position.

The Lorentz group
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¢ Velocity tangent
vector at P

r Null cone at P

X

Fig. 8.2 World-line of a material
particle.

8.4 Proper time

A timelike world-line or timelike curve is defined as a curve whose
tangent vector is everywhere timelike. If, in particular, the curve is a
geodesic, it is called a timelike geodesic. Timelike curves represent
tracks on which material particles or observers can travel. From §8.2, we
see that the velocity tangent vector to a timelike curve at any point P must
lie within the null cone emanating from P (Fig. 8.2). This is a manifesta-
tion of the special relativity result that material particles travel with speeds
always less than the speed of light. Spacelike and null curves and geodesics
are defined in an analogous manner to timelike ones.

At any point P, we define the null cone or light cone, which consists
of all null geodesics passing through P. This coincides with the null cone
of null vectors passing through P. Then the null cone divides space-time
into three distinct regions, namely future, past, and elsewhere (Fig. 8.3).
Any point in the future or past may be reached by a future-directed or
past-directed timelike geodesic, respectively. Any point in the region ex-
terior to the null cone, called elsewhere, can be reached by a geodesic
which is everywhere spacelike. This is an invariant division of events
which all observers agree upon. This follows because of the invariance
of 14 under a Lorentz transformation, which means that null cones get
mapped onto null cones. Moreover, events to the future of P get mapped
into events which are still to the future of P under an orthochronous
Lorentz transformation. A similar result holds for past events. How-
ever, non-orthochronous Lorentz transformations reverse the past and
future.

Since I'j, vanishes in Minkowski coordinates, the equations for a non-
null geodesic (7.43), in these coordinates, reduce to

d*x?
ax _ 0,
dy?

(8.12)

Null cone (future sheet)

Null cone (past sheet)

X

Fig. 8.3 Invariant classification of events relative to P.



Proper time

for some affine parameter u, where the tangent vector satisfies

dx? dxb
Nab——

= = 1
 d (8.13)

The geodesic is timelike or spacelike depending on whether & > 0 or
k < 0, respectively. In the case when & > 0, we introduce a new parameter

p— = up),

— ] =k
du
It follows from (8.13) that the new tangent vector dx*/d has unit length.

The parameter y is called the proper time and is denoted by 7. Thus, in
relativistic units, from (8.3) and (8.13), the proper time satisfies

satisfying

dr? = ds%. (8.14)

This shows that proper time 7 is an affine parameter along timelike
geodesics.
In non-relativistic units, the equation for the proper time becomes

—ds?, (8.15)

which checks dimensionally since s is a distance parameter. Let us see
how proper time 7 relates to coordinate time ¢ for any observer whose
3-velocity at time ¢ is v, where

_(dr dy ds
T \arara)
From (8.15) and (3.12), we have

dr? =

So the proper time between z, and 1, is given by
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151 ,02 2
7':/ (1—2> ds, (8.16)
) 4

in agreement with (3.16).

8.5 An axiomatic formulation of special
relativity

We are now in a position to give a completely precise formulation of spe-
cial relativity which will prove useful when we wish to generalize to the
general theory. We do this by stating two sets of postulates or axioms.

Axiom I. Space and time are represented by a four-dimensional man-
ifold endowed with a symmetric affine connection I';, and a metric
tensor g, satisfying the following:

(1) g 1s non-singular with signature —2;
(i)  Vega =0;
(1)) R%q = 0.

Axiom II. There exist privileged classes of curves in the manifold
singled out as follows:

(1) ideal clocks travel along timelike curves and measure the param-
eter 7 (called the ‘proper time) defined by d7? = gudx?dx?;

(i) free particles travel along timelike geodesics ;

(iii) light rays travel along null geodesics.

The first axiom defines the geometry of the theory and the second ax-
iom puts in the physics. Thus, the first axiom states that I', is the metric
connection (by I(ii)) and that the metric is flat (by I(iii)) and defines a
formal parameter whose physical significance is given in the second ax-
iom. The first part of the second axiom makes physical the distinction
between space and time in the manifold. In canonical (Minkowski) coor-
dinates, it distinguishes the coordinate x° from the other three as the “time’
coordinate. More precisely, it states that it is the proper time 7 which a
clock measures in accordance with the clock hypothesis. The remainder
of Axiom II singles out the privileged curves that free particles and light
rays travel along.

Looking at this theory from a purely axiomatic viewpoint, one can ask,
Is there any a priori reason for singling out timelike and null geodesics as
trajectories for material particles and photons for light rays, or could one
make some other choice (say, spacelike geodesics)? In Newtonian the-
ory, free particles travel in straight lines, by Newton’s first law. It would
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seem natural, therefore, to take geodesics as the analogue of straight lines.
The significance of timelike geodesics is that their choice, unlike the case
of spacelike geodesics, is consistent with causality. As we have seen,
Minkowski space-time admits the Poincaré group as its invariance group.
Hence, if two neighbouring events P and Q of the history of a free particle
occur on a timelike geodesic at proper times 7 and 7 + d7, respectively,
then an orthochronous Poincaré transformation preserves the fact that Q
occurs after P. This is consistent with causality, since we say that the
arrival of the particle at Q is caused by its having previously been at P.

Null geodesics possess a special property which makes them natural
candidates for light signals. The equation of a null geodesic in Minkowski
coordinates is

2

i—:; =0, (8.17)
where

dx® dw?

nabaa =0, (8.18)

for an affine parameter u. Integrating (8.17), we get

dx?

d =k, (8.19)

where the components of 2% are constants of integration. Substituting in
(8.18), we obtain

Ny KRS = 0, (8.20)

and so &% is a null vector. Let us define the 3-velocity # along the null
geodesic by

dx! dx? dx? kR
1 23y _
w= (s s ) = (de’de’de> - (kO’ 5 k0>’ ®-2D

using (8.19) and the fact that £° # 0 (why?). Writing (8.20) out fully, we
find

(kO)Z _ (k1)2 _ (k2)2 _ (k3)2 =0,

and hence it follows from (8.21) that #?> = 1. Thus, null geodesics have
associated with them a characteristic velocity of magnitude 1. Further-
more, this property is preserved under a Poincaré transformation, and so
they seem natural candidates for encoding the constancy of the velocity
of light.
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8.6 A variational principle approach
to classical mechanics

We met an introduction to relativistic mechanics in Chapter 4. We shall
now look for a formulation which rests on a variational principle. The
importance of the variational formulation of a physical theory is that it
is often very simple and elegant and, moreover, it is one method which
lends itself easily to generalization. Indeed, most current theories use the
variational approach as their starting point. We start by summarizing the
variational formulation of a classical system moving under a conservative
force.

A mechanical system is described by 7 generalized coordinates
x? (a = 1,2,...,n) which are functions of time ¢, #n generalized veloc-
ities %, the kinetic energy T = 1g,;%’x’, and the potential energy
V(x), which gives rise to n generalized forces F, = —9V/0x*. The
Lagrangian L is defined to be

L:=T-7.
Then the principle of stationary action is
5]
68=9 / Ldt =0,
5]

and this leads to the Euler-Lagrange equations
OL d oL\ 0
oxa  dr \ox*)

A straightforward calculation leads to the equations of motion

%9+ T4 5% = F7, (8.22)

where I} is the metric connection of g. If there are no external forces,
then the above equations can be thought of as defining geodesics on an
n-dimensional Riemannian manifold, with metric g,; called configura-
tion space. We define generalized momenta

Do = OL/O%° (8.23)
and the Hamiltonian H by
H = px* — L. (8.24)

If H is time-independent, then it can be shown to be equal to the total
energy E of the system.

As an example of this formalism, let us consider the simple case of
a free particle moving in three dimensions with velocity u#. Adopting
Cartesian coordinates, we have

(xa) = (x1>x2>x3) = (x>y> Z)'
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Then

from which we find
8ab = diag(m: m, m) = Mbgp.
By assumption, IV = 0, and so

L=T=tms, (8.25)

giving generalized momenta

Px:a:mx; py:@:mﬁ.}J Dz = - = ma2.
The Euler-Lagrange equations are

d, . d
$(mx) =0,

which are just the three components of Newton’s second law. The
Hamiltonian is

H=u-u—L=m(*+3*+%) - T=imi’ =T=E

In general, if we consider a system with no forces acting, then the
Lagrangian reduces to

_ 1 ca:b
T= 58apX %",

This Lagrangian is identical to the quantity K defined in (7.46) of §7.6.
In that section, we saw that (if we work with affine parameters) this gives
the same Euler-Lagrange equations as the Lagrangian (7.38), namely, as

ds

e 1
3 (gapi®x%)2,

does. Thus, for convenience, we may take the action S for a free particle

to be
7]
S:/ é dr = / ds. (8.26)
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8.7 A variational principle approach
to relativistic mechanics

We now consider a free particle in relativistic mechanics moving on a
curve

x* = x(1),

where 7 is the proper time. Since 7 is an affine parameter, we assume
from (8.26) of the last section that the action can be written as

S= —a/ ds, (8.27)

1

where « is a constant to be determined. Working in Minkowski coordi-
nates and introducing a new parameter yx, where x# = u(7), we can write

the action as
“ dx? dxb 1/2
S= —a/ (nab) dy.
” dp du

The Euler-Lagrange equations

oL d oL ~0o
Oxa  dp \O(dxe/du) )

lead to

d dxe dxd\ "2 dxt
) il 8.28
P [a(ﬂddﬂ d,u) b (8.28)

Since

dx¢ did _ Neqdxdx? _ ds? _ dr?

du du dp? A2~ dp?’

Ned

In relativistic units, the field equations give

. d dudx*] d dx®]  dibdr

0= @ {amdedﬂ] = @ [Cmade] = anabwaa

which leads to %* = 0, where now we are using dot to denote differentia-
tion with respect to 7, and which are the standard geodesic equations in
Minkowski coordinates.

Instead of using the proper time 7 as our time parameter, let us use
instead the coordinate time ¢ and see how various quantities are defined
in terms of time and space coordinates. The equation of the world-line of
the particle is now

X = x(t): y= y([)a 2= Z(t);
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and it has a 3-velocity u defined by

dx dy dz
_ (02 3y _ (9x dy dZ
u_(u’“’u>_<dt’dt’dz>'

Using

ds? = nabdxadxb
=d —dx? — dy? — d2?
=d2(1 —?),

we can write the action (8.27) as

5]
S= —a/ (1 —?)"2ds,

5]

where the new Lagrangian (which we shall also write as L) is
L=—a(l—u®)?=—a+ lawd +- -

for small velocities. Comparing this with the classical expression (8.25),
namely %muz, we may identify « with the mass of the particle as u — 0.
Note that the additive constant —« in the Lagrangian is unimportant (see
Exercise 8.9). Thus « is equal to the rest mass m of the particle. Hence,

we have
L=—m(1 — u?)'". (8.29)
We define the 3-momentum p by (check)
oL OL OL ~-1/2
=\5a 73> 35> 53]~ 1 - g . .
p (8u1 EPP 8243) mo( u ) u (8.30)

Comparing this with the classical relationship p = mu, we define the
relativistic mass m by (see (4.11))

m = mo(l — uz)l/z.
Using the Hamiltonian to define the energy E (see (4.17)), we find

E=H=p-u—L=m(1 — 12) > =m, (8.31)

after some simple algebra. We have thus regained the results of (4.19) in
relativistic units.
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8.8 Covariant formulation of relativistic
mechanics

We finish this discussion of relativistic mechanics by giving a full
4-dimensional or covariant formulation of the variational principle.
The action S is a coordinate independent quantity, so in a general
coordinate system (8.27) becomes

T2
S=—my / (gapx?x®)1/2dr,
T1

where g, is a flat metric and is used for raising and lowering indices. The
4-velocity u® is defined by

d a
w = d’; = &, (8.32)
and the 4-acceleration a’ by
du  d%x*
et (8.33)

The covariant 4-momentum p, is defined by

oL
pll L axa bl
from which we find that
Da = _mogabub(gcducud)l/z'

So in Minkowski coordinates the spatial components are given by

(P1>P2>P3) = Wl()(ul, uza “3)3 (834)

so that p = mou as expected.
If a particle is acted on by a force, then the four-dimensional version
of Newton’s second law becomes

dp?
dr’

= (8.35)

where f¢ is called the 4-force. If there is no external force acting, then

dp?
dr

=0 = p*=FkK, (8.36)

where k% is a constant 4-vector. This is the conservation of
4-momentum law and generalizes to an isolated system of 7z particles



with 4-momenta p,* (i=1, 2, ..., n)

> pi =k,
=1

where &% is a constant 4-vector. Finally, we define the angular momen-
tum tensor /% of the particle in Minkowski coordinates by

0% = x3pb — xbp?, (8.37)

If we now assume that i is a scalar, then it follows that all the quantities
have the tensor character indicated under a general coordinate transfor-
mation. If, in particular, we restrict attention to Minkowski coordinates,
we can relate these four-dimensional quantities to the three-dimensional
ones of the last section and Chapter 4. We can then consider how the four-
dimensional quantities transform under a Lorentz transformation and
so obtain the transformation law for the three-dimensional quantities (ex-
ercise). Thus, in particular, we can confirm the transformation equations
(4.21) for the energy and momentum of a particle.

We have considered the main ingredients of special relativistic me-
chanics, but we shall not pursue the topic further. We shall, rather,
concentrate on our main task — that of establishing the general theory.

Exercises

8.1 (§8.1) Check (8.5) and show that the Riemann tensor vanishes.

8.2 (§8.2) Show that a timelike vector cannot be orthogonal to a null vec-
tor or to another timelike vector. Show that two null vectors are orthogonal
if and only if they are parallel.

8.3 (§8.2) The vectors 7, X, Y, and Z have components

7% = (1,0,0,0), X“=(0,1,0,0),
Y¢ = (0,0,1,0), Z*=(0,0,0,1).

Show that the only non-vanishing inner products between the vectors are

TP=-X=-Y=-722=1.
Define the following:
L“——1 (T"+ 7% N‘l——1 (T" = 7%
- \/j bl - \/i bl
1 _ 1
M= —(X*+1iY%), M= —(X*—-iY"),
ﬁ( ) ﬁ( )

Exercises
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where i = v/—1. Treating M? and M? as vectors, show that all four vectors
are null and the only non-vanishing inner products are

[°N, = —M*M, = 1.

8.4 (§8.3)

(1) Check that (8.9) leads to (8.10), assuming invariance.
(i) Show that the Lorentz transformations form a group.
(iii) Show that the Poincaré transformations form a group.

8.5 (§8.3) Show that a Killing vector X, satisfies the equation 9,0,.X, = 0
in flat space in Minkowski coordinates. [Hint: use Exercise 7.10 or
Exercise 7.14.] Deduce that the Killing vectors are given by

X, = wabxb + las

where wy, = —wy, and ¢, are arbitrary parameters (constants of integra-
tion). How many parameters are there in:

(a) an n-dimensional manifold?

(b) Minkowski space-time?

What do the parameters correspond to physically in Minkowski space-
time?

8.6 (§8.4) Prove that the proper time 7 is an affine parameter along a
timelike geodesic for a general space-time. [Hint: Use (7.42).]

8.7 (§8.6) Establish the equation of motion (8.22).

8.8 (§8.6) Consider two masses 71 and 2, suspended on the ends of a
rope passing over a frictionless pulley. Show that the LLagrangian can be
written in the form

L= %(ml + mz)jcz + migx + mag(f — x),

where the mass 2 is a distance x below the horizontal and £ is a constant.
Find the Euler-Lagrange equation of motion. Define the generalized
momentum for the system and hence obtain the Hamiltonian.

8.9 (§8.7) If Lis a Lagrangian, then show that the Lagrangians L and L,
where (i) L; = AL and (ii) L, = L+ u, with A and x constants, possess the
same field equations as L. Show also that, if L # 0, then the Lagrangians
(iii) L3 = I? and (iv) L4 = L'/2 give rise to the same field equations.

8.10 (§8.8) Show that, in Minkowski space-time in Minkowski coordi-
nates, u® = (u°,u',u?,1%) = (7,yu), where v = (1 — u?)~'/2. Show also

that p, = (E, p).
By considering the invariant p,p°®, deduce that (see (4.20))

B p =



Use the four-dimensional version of Newton’s second law to identify the
4-force in Minkowski coordinates as

Ja = (yu-F,~F),
where F is the force acting on the particle. Show also that

dp. _< dE dp>

dr 75’75

and give a physical interpretation of the zero component of the four-
dimensional Newton’s law.

8.11 (§8.8)

(1) Use the tensor transformation law on the 4-velocity «“ to find the trans-
formation properties of # under a special Lorentz transformation between
two frames in standard configuration moving with velocity v. Show in par-
ticular, that 7/ /v = (1 — u,v), where § = (1 — %)~ /2,

(i1) Find the transformation properties of E and p under a special Lorentz
transformation.

(ii1) Find the transformation properties of F under a special Lorentz trans-
formation. Are forces still absolute quantities in special relativity?

(iv) A particle moves parallel to the x-axis under the influence of a force
F = (F,0,0). What is the force in a frame co-moving with the particle?

Further reading

The axiomatic description of special relativity given here is that of
Trautmann, Pirani, and Bondi (1964). For further consideration of the
Lorentz group, see the book by Carmeli and Malin (1976).

Carmeli, M., and Malin, S. (1976). Representation of the Rotation and
Lorentz Groups: An Introduction. Dekker, New York, NY.

Trautmann A., Pirani E A. E., and Bondi, H. (1964). Lectures on Gen-
eral Relativity. Brandeis Summer Institute on Theoretical Physics, 1964,
vol. 1. Prentice-Hall, Englewood Cliffs, NJ.
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The principles of general
relativity

9.1 The role of physical principles

We are at last ready to embark on our central task, namely, that of ex-
tending special relativity to a theory which incorporates gravitation. In
this chapter, we shall undertake a detailed consideration of the physi-
cal principles which guided Einstein in his search for the general theory.
There is a school of thought that considers this an unnecessary process,
but rather argues that it is sufficient to state the theory and investigate
its consequences. There seems little doubt, however, that consideration
of these physical principles helps give insight into the theory and pro-
motes understanding. The mere fact that they were important to Einstein
would seem sufficient to justify their inclusion. If nothing else, it will
help us to understand how one of the greatest achievements of the hu-
man mind came about. Many physical theories today start by specifying a
Lagrangian from which everything else flows. Indeed, we could adopt the
same attitude with general relativity, but in so doing we would miss out
on gaining some understanding of how the framework of general relativ-
ity is different again from the framework of Newtonian theory or special
relativity. Moreover, if we discover limitations in the theory, then there is
more chance of rescuing it by investigating the physical basis of the theory
rather than simply tinkering with the mathematics. It is perhaps signifi-
cant that Einstein devoted much of his later life to an attempt to unify
general relativity and electromagnetism by various mathematical devices,
but without success.

There are five principles which, explicitly or implicitly, guided Einstein
in his search. Their names are:

(1) Mach’s principle,

(2) the principle of equivalence,

(3) the principle of covariance,

(4) the principle of minimal gravitational coupling,

(5) the correspondence principle.

The status of these principles has been the source of much controversy.
For example, the principle of covariance is considered by some authors
(e.g. Bondi, Fock) to be empty, whereas there are others (e.g. Anderson)
who believe it possible to derive general relativity more or less solely from
this principle. Similarly, although the ideas behind Mach’s principle were
important to Einstein in deriving the field equations, there are consider-
able doubts about whether relativity is a fully Machian theory (e.g. Bondi,
Samuel). On the other hand, there is general agreement that the principle

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0009



154 The principles of general relativity

of equivalence is the key principle and we discuss in Chapter 16 how this
leads to a metric theory of gravity. One source of confusion over the role
of the various principles arises from the fact that their formulation differs
quite markedly from author to author. Since some of the principles are
more of a philosophical nature, this is perhaps not so surprising. We shall
attempt to give some precise formulations of them in the hope that we can
ultimately check the principles out against the theory. We now discuss the
principles in turn.

9.2 Mach’s principle

The essence of the first two principles comes from understanding the
nature of Newton’s laws more precisely. Do Newton’s laws hold in all
frames of reference? As we have seen before, they are stated only for a
privileged class of frames called inertial frames. So the question arises
as to how inertial frames are determined by the properties of the Universe
and what form Newton’s laws take in other, non-inertial, reference frames.

We shall investigate the status of Newton’s second law for a non-inertial
frame S’ being uniformly accelerated relative to an inertial frame S with
acceleration a. For simplicity, we shall assume the frames are in standard
configuration with the acceleration along the common axis (Fig. 9.1). As-
suming that the observers initialize their clocks when they meet, then the
relationship between the frames is given by

x=x'+s, v=y, z=2, t="¢. (9.1

Letting a dot denote differentiation with respect to ¢ (or ¢, which is the
same by the last equation), then we find from the first equation that

X=x+S5,
and, differentiating again,
x=xX+s=¥+a, 9.2)

by assumption. Consider a particle of mass m moving along the x-axis
under the influence of a force F = (F,0,0). Then Newton’s second law
becomes F = mix, which by (9.2) gives

F = mx = m¥X’ + ma.

S S’

—> Acceleration a

X

<z z

Fig. 9.1 Positions of S and S’ at time ¢.



From the point of view of the observer &, this equation can be rewritten
in a standard form with the term mass times acceleration relative to S’
on the right-hand side, to give

F — ma = mx'. (9.3)

Thus, compared to S, observer S’ detects a reduction of the force on
the particle by an amount ma. This additional force is called an inertial
force. Other well-known inertial forces are centrifugal and Coriolis
forces arising in a frame rotating relative to an inertial frame (exercise).
Notice that all inertial forces have the mass as a constant of propor-
tionality in them. The status of inertial forces is again a controversial one.
One school of thought describes them as apparent or fictitious forces
which arise in non-inertial frames of reference (and which can be elimi-
nated mathematically by putting the terms back on the right-hand side).
We shall adopt the attitude that, if you judge them by their effects, then
they are very real forces. For, after all, inertial forces cause astronauts to
blackout in rocket ships, and flywheels to break under centrifugal effects.
Is it enough to describe these as being due to apparent forces or reference
frame effects? There must be some interaction going on to cause such
dramatic effects. The question arises, What is the physical origin of iner-
tial forces? Newtonian theory makes no attempt to answer this question;
the Machian viewpoint, as we shall see, does.

Let us ask another fundamental question. If Newton’s laws only hold
in inertial frames, then how do we detect inertial frames? Newton realized
that this was a fundamental question and attempted to answer it by devis-
ing an ingenious thought experiment — the famous bucket experiment.
He first of all postulated the existence of absolute space: ‘Absolute space,
in its own nature, without relation to anything external, remains always
similar and immovable’. Thus, he saw absolute space as a fixed backcloth
against which all motion is observed. An inertial observer then becomes
an observer at rest or in uniform motion relative to absolute space. Inertial
forces arise in the manner described above only when an observer is in
absolute acceleration relative to absolute space. The bucket experi-
ment is a device for detecting such motion. More precisely, the experi-
ment determines whether or not a system is in absolute rotation relative
to absolute space.

The experiment consists of suspending a bucket containing water by a
rope in an inertial frame. The rope is twisted and the bucket is released.
The motion divides into four phases:

B1: At first, the bucket rotates, but the water does not, its surface
remaining flat.

B2: The frictional effects between the bucket and the water eventually
communicate the rotation to the water. The centrifugal forces cause
the water to pile up round the edges of the bucket and the surface
becomes concave (Fig. 9.2). The faster the water rotates, the more
concave the surface becomes.

B3: Eventually the bucket will slow down and stop, but the water will
continue rotating for a while, its surface remaining concave.

Mach’s principle 155

Fig. 9.2 The bucket and water in abso-
lute rotation.
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Acceleration a

Fig. 9.3 Inclination of the surface of the
water in absolute linear acceleration.

Fig. 9.4 Pendulum swinging in a
non-rotating frame.

B4: Finally, the water will return to rest with a flat surface.

Newton’s explanation of this experiment is that the curvature of the water
surface in B2 and B3 arises from centrifugal effects due to the rotation of
the water relative to absolute space. This curvature is not directly con-
nected to local considerations such as the bucket’s rotation since, in B1,
the surface is flat when the bucket is rotating and, in B3, curved when the
bucket is at rest. In this way, Newton gave a prescription for determining
whether a system is in absolute rotation or not. Similar arguments apply
to systems which are linearly accelerated relative to absolute space. Here,
the surface becomes inclined at angle to the horizontal (Fig. 9.3) (see Ex-
ercise 9.1(i1)). In simple terms, all observers should be equipped with a
bucket of water. Then an observer will be inertial if and only if the surface
of the water is flat.

We now turn to the view which was proposed by Mach in 1893, al-
though it grew out of similar ideas arrived at earlier by Bishop Berkeley.
This is a semi-philosophical view, the starting point of which is that there
is no meaning to the concept of motion, but only to that of relative mo-
tion. For example, a body in an otherwise empty universe cannot be said
to be in motion according to Mach, since there is nothing to which the
body’s motion can be referred. Moreover, in a populated universe, it is
the interaction between all the matter in the universe (over and above the
usual gravitational interaction) which is the source of the inertial effects
we have discussed above. In our universe, the bulk of the matter resides in
what is historically called the ‘fixed stars’. Then, from Mach’s viewpoint,
an inertial frame is a frame in some privileged state of motion relative to
the average motion of the fixed stars. Thus, it is the fixed stars through
their masses, distribution, and motion which determine a local inertial
frame. This is Mach’s principle in essence. Returning to the bucket ex-
periment, Newton gives no reason why the surface curves up when it is
in rotation relative to absolute space. Mach, however, says that the cur-
vature stems from the fact that the water is in rotation relative to the
fixed stars. One way of seeing the difference between the two viewpoints
is to ask what would happen if the bucket was fixed and the universe
(i.e. the fixed stars) rotated. Since all motion is relative, it follows from
the Machian viewpoint that the surfaces of the water would be curved,
whereas in Newtonian theory no such effect would be detected. Hence,
Mach sees all matter coupled together in such a way that inertial forces
have their physical origin in matter. The bucket has very little effect on
the water’s motion because its mass is so small. On the other hand, the
fixed stars contain most of the matter in the universe and this counteracts
the fact that they are a very long way away.

There is one very outstanding and simple fact that lends support to
the Machian viewpoint. Consider a pendulum set swinging at the North
Pole (Fig. 9.4). According to Newton, the pendulum swings in a frame
which is not rotating relative to absolute space. In this frame, the Earth is
rotating under the pendulum. An observer fixed on the Earth will see the
pendulum rotating. The time taken for the pendulum to swing through
360° is therefore the time taken for the Earth to rotate through 360° with



respect to absolute space. We can also measure how long the Earth takes
to rotate through 360° relative to the fixed stars. The remarkable fact is
that, within the limits of experimental accuracy, the two times are the
same. In other words, the fixed stars are not rotating relative to absolute
space, from which it follows that inertial frames are those in which
the fixed stars are not rotating. In Newtonian theory, there is nothing
a priori to predict this; it is simply a coincidence. Whenever we find
coincidences in a physical theory, we should be highly suspicious of the
theory — it is usually saying that something fundamental is going on. From
the Machian viewpoint, it is the fixed stars which determine the inertial
frames and the result is precisely what we would expect.

Can one say anything more precise about the interaction postulated
by Mach? Since inertial forces involve the mass of the body experiencing
them, it would seem likely for reasons of reciprocity that the effect of
the stars should be due to their masses and proportional to them. On
the other hand, inertial forces are unaffected (at least to the accuracy of
experiment) by local masses such as the Earth or the Sun. Accordingly,
the influence of the distant bodies preponderates. So we would not expect
inertial effects to vary appreciably from place to place.

Consider the motion of a particle in an otherwise empty universe.
Then, according to Mach, since there are no other masses in existence,
the particle cannot experience any inertial effects. Now introduce another
particle of tiny mass. It is inconceivable that the introduction of this very
small mass would restore the inertial properties of the first particle to its
customary magnitude — its effect can only be slight. This implies that
the magnitude of an inertial force on a body is determined by the mass
of the universe and its distribution. If, in particular, the universe were
not isotropic, then inertial effects would not be isotropic. For example, if
there were a preponderance of matter in a particular direction, then iner-
tial effects would be direction dependent (as illustrated schematically in
Fig. 9.5).

Preponderance
of matter

]a

mya Same body
accelerated
in different
directions
Inertial
frame
N mya

Fig. 9.5 Direction-dependent inertial effects in an anisotropic universe

(m1 # ma2).
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Experiments were carried out separately by Hughes and Drever around
1960 which established that mass is isotropic to at least one part in 10'8,
The Hughes—Drever experiment has been called the most precise null ex-
periment ever performed. This null result can be interpreted in two ways.
Either Mach’s principle is untenable or the universe is highly isotropic. In-
deed the uniform nature of the cosmic microwave background radiation
(CMB) puts strong upper limits on the lack of isotropy in the Universe.

In Newtonian theory, the gravitational potential ¢ at a point a distance
r from the origin due to a particle of mass m situated at the origin is
¢ = —Gm/r, where G is Newton’s gravitational constant. The potential at
any point can only depend on the properties of the body itself. However,
from the Machian point of view, the mass m of the body depends on the
state of the universe. Hence, the ratio of these two effects, namely G, con-
tains information about the universe. In particular, if the universe was
in a different state at any earlier epoch, then the ‘constant’ G would have
a different value. An evolutionary universe would require G = G(1), i.e. a
function of epoch. Again, if the universe did not present the same aspect
from every point (except for local irregularities), G would vary from point
to point. A fully Machian theory should essentially allow one to calculate
G from a knowledge of the structure of the universe.

What is the status of Mach’s principle? The biggest limitation of the
principle is that it does not give a quantitative relation for the interac-
tion of matter. Similarly, it can be argued that Mach’s ideas do not really
contribute to an understanding of why there appears to be such a fun-
damental distinction between unaccelerated and accelerated motion in
nature, that is, it does not explain why the interaction should be velocity
independent but acceleration dependent. Some critics claim that Mach
only replaced Newton’s absolute space by the distant stars and learnt
nothing new thereby. However, the principle was considered to be of
great importance to Einstein, who attempted to incorporate it into his
general theory. This, as we shall see, he only partially succeeded in doing
(although, an alternative theory to general relativity, called the Brans—
Dicke theory developed in the 1960s, claims to be more fully Machian).

An imprecise version of Mach’s principle is ‘matter there influences
inertia here’ (Misner, Thorne, and Wheeler 1973) but going from this
to a precise formulation is difficult. For example, Bondi and Samuel list
ten versions of Mach’s principle and there are many further variations on
these given by other researchers. To give a flavour of these, we list three
variants below. The first statement tries to incorporate the essential part
of Mach’s ideas.

M1. The matter distribution determines the geometry of the Universe,

where by the ‘geometry’ of the Universe we mean the privileged paths
along which particles and light rays travel.

The next statement refers to the belief that it is impossible to talk about
motion or geometry in an empty universe, so that there should be no
solution corresponding to an empty universe.



M2. If there is no matter then there is no geometry.

The final statement refers to a universe containing just one body, then,
since there is nothing for it to interact with, it should not possess any
inertial properties.

M3. A body in an otherwise empty universe should possess no inertial
properties.

9.3 Mass in Newtonian theory

Up to now, we have talked rather glibly about the mass m of a body. Even
in Newtonian theory, we can ascribe three masses to any body which
describe quite different properties. Their names, notation, and general
description are:

(1) inertial mass !, which is a measure of the body’s resistance to
change in motion;

(2) passive gravitational mass ", which is a measure of its reaction
to a gravitational field;

(3) active gravitational mass », which is a measure of its source
strength for producing a gravitational field.

We shall discuss each of these in turn.

Inertial mass ! is the quantity occurring in Newton’s second law,
which we met in Chapter 4. It is at any one time a measure of a body’s
resistance to change in motion and is also called the body’s inertia.
Newton’s second law, stated more precisely, is

d(m'o)
F=———, .
" (9.4)
or
F = n'a, (9.5)

for constant inertial mass . Note that, a priori, 7! has nothing directly
to do with gravitation. The next two masses, however, do.

Passive gravitational mass " measures a body’s response to being

placed in a gravitational field. Let the gravitational potential at some point
be denoted by ¢. Then, if mF is placed at this point, it will experience a
force on it given by

F = —m® grad ¢. (9.6)

Mass in Newtonian theory 159
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Fig. 9.6 Galileo’s Pisa experiments.

Active gravitational mass m* measures the strength of the gravitational

field produced by the body itself. If m* is placed at the origin, then the
gravitational potential at any point distant » from the origin is given by

Gm®

b=— . 9.7)

r

We shall now see how these three masses are related in the Newtonian
framework. We start from the observational result that if we neglect non-
fundamental forces, like air resistance, then two bodies dropped from the
same height will reach the ground together. In other words they suffer
the same acceleration irrespective of their internal composition. This
empirical result is attributed to Galileo in his famous Pisa experiments
(Fig. 9.6).

Of course, you would not get this result with a hammer and a feather,
say, because the air resistance would slow down the fall of the feather. It
would be possible on the Moon, however, since the Moon has no atmo-
sphere. Indeed, readers may know of the incident on one of the Moon
landings when an astronaut tried this ‘experiment’ and confirmed the
anticipated result (Fig. 9.7).

Let us assume that two particles of inertial masses m! and 5, and
passive gravitational masses 72} and 5 are dropped from the same height
in a gravitational field. Then, from (9.5) and (9.6), we have

>
mia; = F; = —m] grad ¢,
1 =F, = r d
mya; = F, = —m; grad ¢.
The observational result is a; = a5, from which we get
1, P_ 1/ P
my [my = my[m;.

Repeating this experiment with other bodies, we see that the ratio m'/m"

for any body is equal to a universal constant, «, say. By a suitable choice
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Fig. 9.7 The Moon landing ‘experiment’.

of units, we can, without loss of generality, take o = 1, from which we
obtain the result

inertial mass = passive gravitational mass. (9.8)

We discuss the experimental verification of (9.8) in Chapter 16 but here
we simply note that this equality is one of the best attested results in
physics and has been verified to one part in 10! (see §16.3).

In order to relate passive gravitational mass to active gravitational mass,
we make use of the observation that nothing can be shielded from a grav-
itational field. All matter is both acted upon by a gravitational field and is
itself a source of a gravitational field. Consider two isolated bodies situ-
ated at points Q and R moving under their mutual gravitational interaction
(Fig. 9.8). The gravitational potential due to each body is, by (9.7),

Gmd G
¢1:_ 13 ¢2:_ 2‘
r r

The force which each body experiences is, by (9.6),

Fy=—m] gradg ¢z, Fr = —mb gradg 1,

Q F, F, R

@ > < o

Body 1 Body 2

Fig. 9.8 The mutual gravitational interaction of two isolated bodies.
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If we take Q to be the origin, then the gradient operators are

.0
grady, = 75 = —grad,

so that
G P A G P._A
F, = %@ F, = _%;ﬂ
But, by Newton’s third law, F; = —F,, and so we conclude

P, A _ Py A
my [my = my [my.
Using the same argument as before, we see that

passive gravitational mass = active gravitational mass. (9.9)

'This is why in Newtonian theory we can simply refer to the mass m of a
body, where

9.4 The principle of equivalence

We define a gravitational test particle to be a test particle which experi-
ences a gravitational field but does not itself alter the field or contribute to
the field. We wish to embody the empirical result of the Pisa experiments
in a principle.

P1. The motion of a gravitational test particle in a gravitational field
is independent of its mass and composition.

This is known as the strong form of the principle of equivalence, and we
are going to build general relativity on this principle. Notice the difference
in its status in the two theories. In Newtonian theory, it is an observational
result — another coincidence. It could be possible, for example, that if we
looked closer (with an accuracy greater than 1 in 10'?) then different bod-
ies would possess different accelerations when placed in a gravitational
field. This would not upset Newtonian theory, which could accommo-
date such a result. In general relativity, it forms an essential hypothesis of
the theory and, if it falls, then so does the theory.

Next, we wish to make explicit the assumption that matter both re-
sponds to, and is a source of, a gravitational field. However, we have seen
in special relativity that matter and energy are equivalent, so the statement
about the gravitational field applies to energy as well. We incorporate this
result into a statement which is known as the weak form of the principle
of equivalence.
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P2. The gravitational field is coupled to everything.

Thus, no body can be shielded from a gravitational field. However, it is
possible to remove gravitational effects locally from our theory and so
regain special relativity. This we do by considering a frame of reference
which is in free fall, i.e. co-moving with a gravitational test particle. If,
in particular, we choose a freely falling frame which is not rotating, then
we regain the concept of an inertial frame, at least locally. We mean
here by ‘locally’ that observations are confined to a region over which the
variation of the gravitational field is unobservably small. In such inertial
frames, test particles remain at rest or move in straight lines with uni-
form velocity. This leads to the following statement of the principle of
equivalence.

P3. There are no local experiments which can distinguish non-rotating
free fall in a gravitational field from uniform motion in space in the
absence of a gravitational field.

In Einstein’s words, ‘for an observer falling freely from the roof of a
house there exists no gravitational field’. He described this as the ‘hap-
piest thought of my life’, and it played an important role in devising the
general theory of relativity. Notice that once again in P3 we have encoded
our principle as a statement of impossibility.

Einstein noticed one other coincidence in Newtonian theory which
proved to be of great importance in formulating a statement of the prin-
ciple of equivalence. All inertial forces are proportional to the mass of the
body experiencing them. There is one other force which behaves in the
same way, that is, the force of gravitation. For, if we drop two bodies in
the Earth’s gravitational field, then they experience forces ;g and mi,g,
respectively. This coincidence suggested to Einstein that the two effects
should be considered as arising from the same origin. Thus he suggested
that we treat gravitation as an inertial effect as well; in other words, it g
is an effect which arises from not using an inertial frame. Comparing the
force mg of a falling body with the inertial force ma of (9.3) suggests the
following version of the principle of equivalence.

P4. A frame linearly accelerated relative to an inertial frame in special
relativity is locally identical to a frame at rest in a gravitational field. O

These last two versions of the principle of equivalence can be vividly clari- I e
fied by considering the famous thought experiments (Gedankenexperiment
in German) of Einstein, which are called the lift experiments. - “ " 'l ‘ 2\
We consider an observer confined to a lift or, more precisely, a (1A N :Q %
room with no windows in it or other means of communication with the : -~ - :J{/;)
outside world. The observer is allowed equipment to carry out simple RSN =
dynamical experiments. The object of the exercise is to try and deter- gjg. 9.9 Case 1: The lift in an acceler-
mine the observer’s state of motion. We consider four states of motion  ated rocket ship.
(Figs. 9.9-9.12).
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Fig. 9.10 Case 2: The lift in an unaccel-
erated rocket ship.

I mg

Earth

Z

Fig. 9.11 Case 3: The lift placed on the
Earth’s surface.

7

lil//

Fig. 9.12 Case 4: The lift dropped
down an evacuated lift shaft.

Case 1. The lift is placed in a rocket ship in a part of the universe far
removed from gravitating bodies. The rocket is accelerated forward with
a constant acceleration g relative to an inertial observer. The observer in
the lift releases a body from rest and (neglecting the influence of the lift,
etc.) sees it fall to the floor with acceleration g.

Case 2. The rocket motor is switched off so that the lift undergoes uni-
form motion relative to the inertial observer. A released body is found to
remain at rest relative to the observer.

Case 3. The lift is next placed on the surface of the Earth, whose rota-
tional and orbital motions are ignored. A released body is found to fall to
the floor with acceleration g.

Case 4. Finally, the lift is placed in an evacuated lift shaft and allowed
to fall freely towards the centre of the Earth. A released body is found to
remain at rest relative to the observer.

Clearly, from the point of view of the observer, Cases 1 and 3 are indis-
tinguishable, as required by P4, and Cases 2 and 4 are indistinguishable,
as required by P3. Let us trace the argument that shows that these
requirements lead to the concept of a non-flat, i.e. a curved space-time.
In special relativity, in a coordinate system adapted to an inertial frame,
namely, Minkowski coordinates, the equation for a test particle is

d*x? ~ 0

dr? '
If we use a non-inertial frame of reference, then this is equivalent to using
a more general coordinate system. In this case, the equation becomes

dr? beqr dr — 7

where I'? is the metric connection of gu, which is still a flat metric but
not the Minkowski metric 7,. The additional terms involving I'¢, which
appear are precisely the inertial force terms we have encountered be-
fore. Then the principle of equivalence requires that the gravitational
forces, as well as the inertial forces, should be given by an appropriate
I'?.. In this case, we can no longer take space-time to be flat, for other-
wise there would be no distinction from the non-gravitational case. The
simplest generalization is to keep I';, as the metric connection, but now
take it to be the metric connection of a non-flat metric. If we are to in-
terpret the I'y, as force terms, then it follows that we should regard the
Zab as potentials. The field equations of Newtonian gravitation consist
of second-order partial differential equations in the gravitational poten-
tial ¢. In an analogous manner, we would expect general relativity also
to involve second-order partial differential equations in the potentials g.
The remaining task which will allow us to build a relativistic theory of
gravitation is to choose a likely set of second-order partial differential
equations.
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9.5 The principle of general covariance

Recall the principle of special relativity, namely, that all inertial observers
are equivalent. As we have seen in the last section, general relativity at-
tempts to include non-inertial observers into its area of concern in order
to cope with gravitation. Einstein argued that all observers, whether in-
ertial or not, should be capable of discovering the laws of physics. If this
were not true, then we would have little chance in discovering them since
we are bound to the Earth, whose motion is almost certainly not inertial.
Thus, Einstein proposed the following as the logical completion of the
principle of special relativity.

Principle of general relativity: All observers are equivalent.

Observers are intimately tied up with their reference systems or coordi-
nate systems. So, if any observer can discover the laws of physics, then any
old coordinate system should do. The situation is somewhat different in
special relativity, where, because the metric is flat and the connection inte-
grable, there exists a canonical or preferred coordinate system: namely,
Minkowski coordinates. In a curved space-time, that is, a manifold with
a non-flat metric, there is no canonical coordinate system. This is just
another statement of the non-existence of a global inertial observer. How-
ever, the statement needs to be treated with caution, because in many
applications, there will be preferred coordinate systems. For example,
many problems possess symmetries and the simplest thing to do is to
adapt the coordinate system to the underlying symmetry. It is not so much
that any coordinate system will do, but rather that the theory should be
invariant under a coordinate transformation. Thus, the full import of the
principle of general relativity is contained in the following statement.

Principle of general covariance: The equations of physics should
have tensorial form.

Some authors argue that this statement is empty, because it is possible
to formulate any physical theory in tensorial form. (Of course, this real-
ization only came after the advent of general relativity.) Whether or not
this is the case, it was clearly of central importance to Einstein, as is ev-
ident from the name he gave it. We shall make use of it in the form of
the principle of general covariance, which is why we undertook our major
digression in Part B to learn the language of tensors.

9.6 The principle of minimal gravitational
coupling

The principles we have discussed so far do not tell us how to obtain
field equations of systems in general relativity when the corresponding
equations are known in special relativity. The principle of minimal grav-
itational coupling is a simplicity principle or Occam’s razor that
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essentially says we should not add unnecessary terms in making the tran-
sition from the special to the general theory. For example, we shall later
meet the conservation law

T =0, (9.10)

in special relativity in Minkowski coordinates. The simplest generalization
of this to the general theory is to take the tensor equation

V,T% = 0. (9.11)
However, we could equally well take
VT + RV . T = 0, (9.12)

since R%,; = 0 in special relativity and (9.12) again reduces to (9.10) in
Minkowski coordinates. We therefore adopt the following principle.

Principle of minimal gravitational coupling: No terms explic-
itly containing the curvature tensor should be added in making the
transition from the special to the general theory.

The principle was not stated by Einstein but was used implicitly. Unfor-
tunately, it is rather vague and ambiguous and needs to be used with care.

9.7 The correspondence principle

As we stated from the outset, we are engaged with modelling, and together
with any model should go its range of validity. Then any new theory must
be consistent with any acceptable earlier theories within their range of va-
lidity. General relativity must agree on the one hand with special relativity
in the absence of gravitation and on the other hand with Newtonian grav-
itational theory in the limit of weak gravitational fields and low velocities
(compared with the speed of light). This gives rise to a correspondence
principle, as indicated in Fig. 9.13, where arrows indicate directions of
increased specialization.

Newtonian theory
of gravitation

Y

General relativity

Newtonian mechanics
Special relativity > in the absence of
gravitation

Fig. 9.13 The correspondence principle for general relativity.



Exercises

9.1 (§9.2)

(i) A pendulum is suspended from the roof of a car moving in a straight
line with uniform acceleration a. Find the angle the pendulum makes with
the vertical. Explain what is happening from the viewpoint of an inertial
observer external to the car and a non-inertial observed fixed in the car.
(i) A bucket of water is located in the car as well. Find the angle which
the surface of the water makes with the horizontal.

(iii) A bucket of water slides freely under gravity down a slope of fixed
angle « to the horizontal. What is the angle of inclination of the surface
of the water relative to the base of the bucket?

9.2 (§9.2)

(1) Consider a body rotating relative to an inertial frame about a fixed
point O with angular velocity w in Newtonian theory. The velocity v of
any point P in the body with position vector OP = ris given by

V=WwWXT7T.

Let 7, §, k denote unit vectors in the inertial frame S, and 7, §, £’ denote
unit vectors in a frame S’ fixed in the body, where both origins are at O.
If u = u(?) is a general vector with components

o o/ /
u=ut +ubj + sk,

in §', show, by differentiating this equation, that

wl [,
dr]g |d]g ‘

(ii) Consider a non-inertial frame S’ moving arbitrarily relative to an iner-
tial frame S, where the position of the origin O’ of §’ relative to the origin
O of Sis s(7) and its angular velocity is w(z). A particle of constant mass
m situated at a point with position vectors # and # relative to S and S,
respectively, is acted on by a force F. Show that 8’ can write the equation
of motion of the particle in the form

F— [ma+2mw X ¥ + mw X (w X ) +mw X '] = mi,

where a is the acceleration of O’ relative to O and a dot denotes differen-
tiation with respect to time in the frame of §’. What are the quantities in
square brackets? Interpret these quantities physically.

9.3 (§9.3) Fill in the details that lead to the equalities (9.8) and (9.9).

9.4 (§9.3) Write down the equations of motion for an isolated system
of three bodies of inertial masses 7., m}, and »2}. Eliminate the internal

Exercises
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forces from these equations and demonstrate that, if two of the bodies
are rigidly bound to form a composite system, then the inertial mass is
additive.

9.5 (§9.4) In the lift experiments, explain the motion of the released body
from the point of view of: case (1) an inertial observer, case (2) an inertial
observer who initially sees the rocket moving away with constant velocity
v, and case (4), an observer at rest on the surface of the Earth.

9.6 (§9.4) Consider a sphere of non-interacting particles falling towards
the Earth’s surface. Taking into account the different accelerations of
particles in the sphere, what is the ensuing shape of the enclosing volume?

9.7 (§9.4) Find the geodesic equations for R? in cylindrical polar coor-
dinates (see Exercise 6.18). Interpret the terms occurring which involve
re.

9.8 (§9.4) What is the path of a free particle
(1) in an inertial frame?
(i) in the presence of a uniform gravitational field?

Use the principle of equivalence and the particle theory of light to find the
path of a light ray in the above two cases and hence deduce light bending
in a gravitational field.

9.9 (§9.6) Write down a generalization of (9.10) to a curved space which
involves a term quadratic in the Riemann tensor.

9.10 (§9.6) An anti-symmetric tensor F,;, satisfies the equation in special
relativity in Minkowski coordinates

8[anC] =0.

Write down the simplest generalization to a curved space-time and show
that it is identical to the original equation.

9.11 (§9.7) Write down the correspondence principle for the transition
from special relativity (in non-relativistic units) to Newtonian theory in
the absence of gravitation. Express this transition as a limit involving the
speed of light. Draw a sequence of diagrams to indicate what happens
to the null cone in this limit. What happens to the three regions defined
by the null cone in special relativity? What happens to the concept of
simultaneity in the limit?

Further reading

There are many excellent textbooks suitable for a first course in general
relativity. The book A first course in general relativity by Schutz (1985) is
at a similar level to this book. The book by Carroll (2004) is also suitable



for a first course and covers a slightly different range of topics. The book
by Hartle adopts what is calls a ‘physics first’ approach, so those with
a strong physics background will find it a useful alternative. For those
wanting something at a more advanced level, the first recommendation
would be the book by Wald (1984).

Carroll, S. M. (2004). Spacetime and Geometry: An Introduction to General
Relativiry. Addison Wesley, San Francisco, CA.

Hartle, J. B. (2003). Gravity: An Introduction to Einstein’s General Relati-
vity. Addison Wesley, San Francisco, CA.

Schutz, B. E (1985). A First Course in General Relativiry. Cambridge
University Press, Cambridge.

Wald, R. M. (1984). General Relativity. University of Chicago Press,
Chicago, IL.
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The field equations of
general relativity

10.1 Non-local lift experiments

The considerations of the last chapter led us to conclude that, locally,
i.e. neglecting variations in the gravitational field, we can regain special
relativity. However, in a non-local situation, we require a non-flat met-
ric which may be thought of as the potentials of the gravitational field.
Correspondence with Newtonian theory then suggests that we require
second-order field equations in these potentials, and, moreover, from the
principle of covariance, these equations must be tensorial in character. In
this chapter, we shall pursue the Newtonian correspondence further and
reformulate Newtonian theory in such a way that it leads naturally to the
particular set of field equations of general relativity.

We return to the lift experiments and consider performing the follow-
ing non-local experiments. We assume that the observer’s equipment
is sufficiently sensitive to detect variations in the gravitational field. The
four experiments take the same form as before, but this time the ob-
server releases two bodies, whose mutual interactions we ignore (Figs.
10.1-10.4).

Case 1. From the point of view of the observer in the lift, the two bodies
fall to the ground parallel to each other.

Case 2. The bodies remain at rest relative to the observer.

Case 3. The two bodies fall towards the centre of the Earth and hence
fall on paths which converge.

Case 4. The bodies appear to the observer to move closer together, be-
cause they are falling on lines which converge towards the centre of the
earth.

It follows that the observer can distinguish the uniform inertial field
of Case 1 from the Earth’s non-uniform gravitational field of Case 3 by
considering the relative motion of test particles. Again, in free fall, bodies
travel on geodesics in a gravitational field which converge (or diverge),
as in Case 4. The point of these thought experiments is that the pres-
ence of a genuine gravitational field, as distinct from an inertial field, is
verified by the observation of the variation of the field rather than by
the observation of the field itself. We shall see that in general relativity
this variation is described by the Riemann tensor through the equation of
geodesic deviation.

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0010
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Fig. 10.1 Case 1: The lift in an acceler-
ated rocket ship.

Fig. 10.2 Case 2: The lift in an unaccel-
erated rocket ship.
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Fig. 10.3 Case 3: The lift placed on the
Earth’s surface.
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Fig. 10.4 Case 4: The lift dropped down
an evacuated lift shaft.

10.2 The Newtonian equation of deviation

The non-local lift experiments reveal that we should focus our atten-
tion on two neighbouring test particles in free fall in a gravitational field.
We look at this motion first of all in Newtonian theory using the tensor
apparatus of Part B. We introduce Cartesian coordinates

(x*) = (xl,xz,x3) = (%, 2),

where, for the rest of this chapter, Greek indices run from 1 to 3, and then
the line element of Euclidean 3-space R? is

do? = dx? + dy? + d2?,
from which we obtain the Euclidean metric
8ap =0p = diag (1, 1, 1). (10.1)

We therefore raise and lower indices with the three-dimensional Kro-
necker delta. This means that in Newtonian theory there is really no
distinction between raised and lowered indices, but we will retain the no-
tation in order to help us compare results later with the general theory.
We consider the paths of two neighbouring gravitational test particles of
unit mass travelling in vacuo in a gravitational field whose potential is ¢.

Let the particles travel on curves C; and C; so that they reach the
points P and Q at time ¢ (Fig. 10.5). If we use the time ¢ as the parameter
along the curves, then the parametric equations of C; are

x% = x%(1), (10.2)
and those of C, can be written as
x* = x(1) + (1), (10.3)

where n“ is a small connecting vector which connects points on the
two curves with equal values of 7. Since the particles have unit mass, the

2

X
A CX \Cz

Fig. 10.5 Freely falling gravitational test particles at time .
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equation of motion of the first particle, by (9.5) and (9.6), can be written
in the tensor form

X% = —-0%o, (10.4)
where a dot denotes differentiation with respect to time and

o6 06 O
% =605 6 = (aﬁ’ %, aﬁ) = (gradg)p. (10.5)

Similarly, the equation of motion of the second particle is
X +1j% = —(0% ¢) (10.6)

Since 7, is small, we may expand the term on the right-hand side by
Taylor’s theorem (exercise), to obtain

— (0% d)g = —(0"d)p— (17 050 ¢) 1» (10.7)
to first order. Subtracting (10.4) from (10.6), we get
i = —n" 950" ¢. (10.8)
If we define the tensor K®g by
K%g := 0%03 ¢, (10.9)

then the equation of motion (10.8) of the connecting vector 17,, which we
call the Newtonian equation of deviation, becomes

i* + K3 nP = 0. (10.10)

Note that K,3 = 0,03¢ is symmetric. This equation is intimately con-
nected with the Newtonian field equations in empty space, namely,
Laplace’s equation (4.6), which can be written (exercise)

K*, = 0. (10.11)

In other words, the tensor K, g is symmetric and trace-free. We now
search for a relativistic generalization of these equations.

10.3 The equation of geodesic deviation

Following the axioms of §8.5, we assume that free test particles in general
relativity travel on timelike geodesics. We therefore consider a 2-surface
S ruled by a congruence of timelike geodesics , that is, a family of
geodesics such that exactly one of the curves goes through every point of
S. The parametric equation of S is given by
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Fig. 10.6 The vectors IV* and &% at a
point Pin S.

x* = x%(1, o),

(10.12)

where 7 is the proper time along the geodesics, and o labels distinct
geodesics. We define two vector fields on S by

o Ox°
Ve = 57 (10.13)
and
o Ox7
"= P (10.14)

Then 17? is the tangent vector to the timelike geodesic at each point,
and £° is a connecting vector connecting two neighbouring curves in
the congruence (Fig. 10.6). The commutator of I7? and &° satisfies

(V,€])" = VP0e® — €bo, Ve

_o¢ 0 (ov\ _ov 0 (o

T 97 Oxb \ Bo 0o Oxb \ Ot

B aZxa B aZxa

T 9rdc  OodT

-0 (10.15)

since the mixed partial derivatives commute. (It can be shown that the
vanishing of the commutator is a necessary and sufficient condition for the
vector fields to be surface-forming, which means that the congruences
generated by the two vectors knit together to form a 2-surface.)

By (6.15), the commutator is also equal to the Lie derivative L£%.
We now use the result which allows us to replace partial derivatives by
covariant derivatives in an expression for a Lie derivative

0 =Lyg*
Vb, e — £ 9, 1
= VOV, 6% — ¢V, Ve
= Ve — Ve VO (10.16)

Taking the covariant derivative of this equation with respect to 7%, we
find

ViV = Vi Ve V. (10.17)

The equation we are seeking derives from the identity (Exercise 6.11)

Vx(VyZ") = Vy(VxZ") — Vixy Z° = RpaZ’ X Y. (10.18)

If we set X* = Z% = VV? and Y* = £9 then the second term on the left
vanishes, because ¢ is tangent to an affinely parametrized geodesic, and
so, by (6.38),
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V4= 0. (10.19)

The third term vanishes by (10.15), since the covariant derivative of any
tensor with respect to the zero tensor is zero. Thus, (10.18) becomes

ViVe Ve — R VOV = 0. (10.20)
By definition,
D?%¢e .
D2 ViyVigs,

and so, using (10.17), equation (10.20) becomes the promised equation
of geodesic deviation

D?¢e

B — R% g VoVeEd = 0. (10.21)

The absolute derivative along the curve is the tensorial analogue of the
time derivative along the curve in (10.10).

10.4 The vacuum field equations of general
relativity

We now want to compare the relativistic equation (10.21) to the Newto-
nian result (10.10). To do this we define

K% = R% . VeVe, (10.22)
so that equation (10.21) becomes

D?¢e

5.7 * K%¢&b = 0. (10.23)

Comparing this with the Newtonian equation (10.10), we see that K%,
defined by (10.22) is the relativistic analogue of the Newtonian quantity
K% g defined by (10.11). Continuing with this analogy, we now tentatively
suggest that the relativistic version of (10.11) is
K, =0. (10.24)
From (10.22) this gives
Racad Ve Vd =0,

and thus R, V21? = 0 along any timelike geodesic, where 174 is the tan-
gent to the geodesic. Since at any point P and for any timelike vector ¢
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we can find a geodesic through P with this tangent vector, it follows that
RupVeVt =0, (10.25)

at any point P and for any timelike vector I, Since R, is symmetric, it
follows (exercise) that this is only possible if

Ra = 0. (10.26)

We therefore take (10.26) as the vacuum field equations for general
relativity, i.e. the field equations in the absence of matter.

10.5 Freely falling frames

As our first test of these field equations, we want to look at the Newtonian
limit of (10.26) and show that it gives Laplace’s equation V2¢ = 0 for the
Newtonian gravitational potential ¢. The relationship between Newtonian
theory and general relativity is best understood in a local inertial frame
which is given by a freely falling frame. Such a frame consists of a set
of four vectors ¢;* (where the bold index ¢ = 0, 1,2, 3 labels the vector,
and the roman index b = 0,1, 2, 3 gives the components of the vector)
defined along v, the geodesic x(7)? of a freely falling particle parametrized
by proper time. We choose

to be tangent to the geodesic, and es’, where « is a bold label running
from 1 to 3, to be spacelike vectors which together with ¢, satisfy the
following orthonormality relations

a —_ a — a — a p—
e ega = —e1%e1, = —e3%, = —e3%e3, = 1,

a —_ a J— a p— a — a — a —
e e1a = eperq = €pe3q = 1%, = €1%3, = e2%3, = 0.

These can be succinctly summarized as

gavei’ef’ = Ny (10.27)
where 7;; is the Minkowski metric, that is,
Nigj = diag(l, —1,-1, 71).

The four vectors ¢;* (7 = 0, 1,2, 3) are said to form a frame or tetrad
(vierbein, in German) at P.

Treating ¢;* as a 4 X 4 matrix at P, we can define its inverse (called the
dual frame) ¢, by requiring

ed, = &, (10.28)



where &Z is the Kronecker delta, or the identity matrix in matrix terms. We
have introduced the frame notation merely as a convenience so far, but it
turns out that frames possess a powerful formalism of their own (which
is outside the scope of this book, but see §20.1). For example, in exactly
the same way that we raise and lower tensor indices with the metric g,
we can raise and lower frame indices (7,7, ...) with the frame metric
1. Let us multiply (10.28) by ¢, and write it in the form

(¢vei’)d o = &,

from which it should be clear that the quantity in parentheses must be the
tensorial Kronecker delta, namely,

éyei = 0% (10.29)

The physical interpretation of the frame is as follows: ¢y* = 7% is the
4-velocity of an observer whose world-line is -y, and the three spacelike
vectors e, ® are rectangular coordinate vectors (such as the usual Cartesian
basis 2, j, and k, for example) at P, where the bold Greek indices run from
1 to 3. So far, the frame has only been defined at P, but we also want the
spatial vectors to be non-rotating which requires that

Vyeat = 0. (10.30)

It can be shown that this follows from the physical fact that the spin of a
gyroscope is parallely propagated along a geodesic (Schiff 1960, Hartle
2003). Note that, since ¢, = 1%, we automatically have

Vyel = ViV =0. (10.31)

Taking (10.30) and (10.31) together, we see that a freely falling frame
also satisfies

D
D— (ei“) = O, (1032)
T

from which we see that the frame is parallely transported along the
curve 7.

In the same way as we can get the Cartesian components of a three-
dimensional vector by taking the scalar product of it with ¢, 5, and k, we
define the frame components of the connecting vector £¢ by

£ = e*8" (10.33)

We represent the various quantities schematically in Fig. 10.7. Indeed, we
can find the frame components of any tensor by contracting with ¢;> and
&4 in order to saturate all the unbold indices and replace them by bold
indices. For example, the frame components of a rank 2 tensor 7T, are
given by

— c,d
Tii = Lcdéi €5 .

Freely falling frames

Fig. 10.7 The frame and the
connecting vector at P.
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To find the equation of geodesic deviation as measured by a freely
falling inertial observer, we multiply (10.21) by ¢, and use the fact that
V@ = ¢y?. Taking account of the symmetries of the curvature tensor, this
gives

; D¢

Capn2 t ¢ aR%%caee® e & = 0. (10.34)

Now, by (10.32)

; D2€a ~ DZ(eiaé-a) B D2€i

. = = , 10.35
“apr2 Dr2 D72 ( )
and, using (10.29)
¢ R%aee” eg? € = & \Rae0” eoejd s = Rigjo €. (10.36)
So that the freely falling frame version of (10.21) is
D¢ .
ﬁ + Rl()j()&l =0. (1037)

Note that, because the curvature tensor vanishes if 7 = 0 in the above, we
may write this as an equation for the orthogonal connecting vector,
which is given by 1 = (0,£%). The spatial part of this n® is the precise
analogue of the vector n® of §10.2. In terms of n<, the spatial part of the
equation of geodesic deviation is

D>
DZ + K512 =0, (10.38)
where
K®3 = R%q¢™se0%e¢l = R* 0. (10.39)

Equation (10.38) is the spatial part (10.21) as measured in an inertial
frame whose Newtonian limit we now calculate to compare with (10.10).

10.6 The Newtonian correspondence

In this section, we consider more precisely the Newtonian limit of a slowly
varying weak gravitational field. We shall work in non-relativistic units. In
the Newtonian limit, we assume that there exists a privileged coordinate
system

(x*) = (xo,xl,xz,x3) = (xo,xo‘) = (ct, %, 3, 2),

in which the metric g, differs only slightly from the Minkowski metric 7),.
Moreover, we assume that the field is produced by bodies whose velocities
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are small compared with the velocity of light. If v is a typical velocity of
the bodies, then we let € denote a small dimensionless parameter of order
v/¢, and our basic assumption is

8ab = Nab + €hap + O(E7), (10.40)

where throughout we shall work to lowest order in €. In time 6§z, a body
moves a distance dx® with velocity v, i.c.

5x* ~ velocity x time ~ vdt ~ (v/c)cdt ~ £5x°,
and so
£/6x* ~ 1/6x°.

Then, for any function f, we assume the slow-motion approximation

o _of

6% 2 w, (1041)

that is, derivatives with respect to x° are of order ¢ times the spatial deriva-
tives. The conditions (10.40) and (10.41) are the starting assumptions for
obtaining the Newtonian limit.

We consider the motion of a free test particle moving with a speed of
the order of v on a world-line x* = x%(7) parametrized by the proper time.
It travels on a timelike geodesic

d?x4 dx? dx*
—+ ¢ —— =0. 10.42
dr? beqr dr ( )
By definition,
Adr? = ds?
=2dP — dx? — dy? — d2?
=dA (P - ?)
=2dA(1 — &%),
and so, taking square roots,

dr
— =1+ O(&?). 10.43
4 =1+ 0E) (10.43)

Hence, working to lowest order in €, we can replace 7 by ¢ in (10.42).
Moreover, from our slow-motion approximation,

dx® ~ ecdt,
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so that
1 dx~
22 o). 10.44
¢ dt (€ ( )
In addition
¢ = 16" (0ugpa + Obged — Dagie)
= 10 (0 g + O hea — Dahue) + O(E2), (1045)
so that
a = Ofe). (10.46)

Since we are interested in the Newtonian limit, we restrict our attention
to the spatial part of (10.42), i.e. when a = a, and we obtain, by using
(10.43) and dividing by ¢?

1 d%x> N 1, dxbdxe
2 d? 2 dr i

1 d’x 1 dx? 1 dx? 1dx”
=S 4T 42T [ ——— ) +T% [ ——— ) [ == ) + O(&?).
¢ de 00 OB(C dl) M(c dz)(c dt) ()

From (10.44) and (10.46), the third and fourth terms in this equation are
O(g?) and O(&?), respectively. From (10.45), the second term is

0=

[1+0(e)]

a 8h0a 81’!00
= 4= (25 ~ 5
Ohgo
=1e o O(£?), (10.47)

by the slow motion approximation (10.41). So the spatial part of the
geodesic equation can be written

dzxa _ 1 Zagoo
a2z =2 pxe

[1+0(e)], (10.48)

using (10.40). We compare this with the corresponding Newtonian
equation (10.4), namely,

d’x _ oo}

a2z~ x>’

where ¢ is the Newtonian gravitational potential. Noting that, at large
distances from the sources of the field, ¢ — 0 and gog — 1, we conclude

goo =1+ Zc—f + O(v/c). (10.49)

This is called the weak-field limit.



The Newtonian correspondence

Let us consider the effect of an infinitesimal coordinate transformation
x* = x4 = x + e X (x),

which is consistent with the two assumptions (10.40) and (10.41). Then
we find (exercise)

& = 8ab — € (0aXp + 0pX,) + O (€7) (10.50)
where
Xo = naX’.
To preserve (10.41), we require

ox, 0,
ox0 " S oxe”

which means from (10.50) that ggg is the only component of g,; that does
not alter to first order in €. We have therefore shown that the only compo-
nent of the metric tensor which is well defined to first order for a slowly
varying weak gravitational field is determined to this order by the require-
ment that the theory should agree with Newtonian theory to this order,
and it is given by (10.49). Note that no mention of the field equations has
been made in deriving (10.49). It arises purely from assuming geodesic
motion and the Newtonian limit as embodied in the equations (10.40)
and (10.41).

Having obtained an expression for the weak-field limit, we are now in
a position to calculate the Newtonian limit of equation (10.38). We start
by looking at the curvature tensor. This consists of derivatives of the con-
nection I'{, and terms quadratic in the connection. Since the connection is
O(e), we see that the curvature is also O(¢), with the leading order terms
given by the derivative terms. Hence,

R%ea =Thq.—Theq+ O(e?).
In particular,
R%040 =T, — T, 0 + O(7).

Furthermore, using the slow-motion approximation (10.41) the second
term involves a time derivative and so is also O(¢?). Thus, ignoring the
terms of O(¢?) and setting ¢ = 1, we have

R0 = I,
10 (g
27 0x7 \ Ox“

0%¢

- Ox*OxY

181



182 The field equations of general relativity

by (10.47) and (10.49). Finally, we note that, for a metric given by
(10.40), the components of the frame differ from those of a Minkowski
frame by terms of O(e) so, to leading order, we may use a standard
Minkowski frame whose components coincide with the coordinate vec-
tors. Thus, in the slow-motion weak-field approximation, we find

0%*¢

K%3 = R® = — .
p 080 = HxadxB

(10.51)
Furthermore, in the slow-motion approximation, D/Dz is the same as

d/dt, and the spatial components of the equation of geodesic deviation
(10.38) reduce to

dzna 62¢)
ary —
a2 0 Ox70xP 0,

which is identical to the Newtonian equation (10.10).

If we take the trace of R%y0, we get R0oo0 + R%a0. Since the first term
vanishes, the trace is just R%p,0 = K%, which, using (10.51) and the field
equation (10.26), gives

6aﬂ 82¢

w2 _
OxOxP =V¢=0,

which is just Laplace’s equation for the gravitational potential.
We have therefore shown the following result:

In the slow-motion weak field approximation, the relativistic equation
of geodesic deviation (10.21) reduces to the Newtonian equation of
deviation (10.10), and the relativistic vacuum field equations R,; = 0
reduce to the empty-space Newtonian field equations V2¢ = 0.

10.7 Einstein’s route to the field equations
of general relativity

Our arrival at the vacuum field equations of general relativity has involved
rather a long story. This is not so surprising when you consider that it
took Einstein over ten years of endeavour to move from the formulation
of the special theory (1905) to a final formulation of the general theory
(1916). It might be helpful, therefore, to outline again the main points of
the argument.

1. The principle of equivalence reveals that, if we freefall in a gravita-
tional field, then we can eliminate gravity locally and regain special
relativity.

2. It also states that, locally, we cannot distinguish a gravitational field
from a (uniform accelerating) inertial field and, consequently, we
should regard gravitation as an inertial force.
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3. Following special relativity, we assume that free test particles travel
on timelike geodesics. Then inertial forces arise in the geodesic
equations in the terms involving the metric connection of a flat met-
ric. In order to include the extra effect of gravitation in the metric
connection, we generalize the metric to being curved.

4. 'The metric then plays the role of the potentials of the theory and,
in analogy with Newtonian theory, we seek a set of second-order
partial differential equations for the potentials as field equations of
the theory. Moreover, by the covariance principle, these equations
must be tensorial.

5. If we now take non-local effects into account; then, a genuine gravi-
tational field can be observed by the variation in the field rather than
by an observation of the field itself. This variation causes test par-
ticles to travel on timelike geodesics which converge (or diverge),
and the convergence is described by the Riemann tensor through
the equation of geodesic deviation.

6. The Riemann tensor is a tensor which involves second partial deriva-
tives of the metric and so we might expect the field equations of the
theory to involve the Riemann tensor. The fact that the Newtonian
vacuum field equations involve the vanishing of a contracted tensor
suggests that we might consider a contraction of the Riemann ten-
sor. There is only one meaningful contraction (why?), namely, the
Ricci tensor, and its vanishing is equivalent to the vanishing of the
Einstein tensor.

We thus arrive at the equations

Ry = 0. (10.52)

By Exercise 6.26, the vanishing of the Ricci tensor is equivalent to the van-
ishing of the Einstein tensor, so that we can write (10.52) in the alternative
form

Ga = 0. (10.53)

Equations (10.52) or (10.53) are the equations which Einstein proposed
should serve as the vacuum field equations of general relativity. We
briefly indicate below why (10.53) is the more natural form when we at-
tempt to generalise Poisson’s equation V2¢ = 87Gp in order to include
matter sources for the gravitational field.
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10.8 The full field equations of general
relativity

For completeness, we introduce briefly the full field equations, which hold
in the presence of fields other than gravitation. As we shall see, these
fields are described by the energy-momentum tensor 7,,. Now the
equivalence of mass and energy from special relativity suggests that all
forms of energy act as sources for the gravitational field; indeed, this
is the content of the weak form of the principle of equivalence P2. We
therefore take 7, as a source term in the field equations. In special rel-
ativity in Minkowski coordinates, the energy-momentum tensor satisfies
the conservation equations (see Chapter 12)

9T = 0.

The principle of minimal gravitational coupling suggests the general
relativistic generalization

V,T% = 0.

However, we know that the covariant derivative of the Einstein tensor
vanishes through the contracted Bianchi identities (6.87):

V,G% = 0.

The last two equations suggest that the two tensors are proportional, and
one can write consistently

G? =k T, (10.54)

where k is a constant of proportionality called the coupling constant.
Note that this equation is in line with Mach’s principle in the form
M1, since the matter (7%) determines the geometry (G®) and hence is
the source of inertial effects. The constant x is then determined by the
correspondence principle, since this equation must reduce to Poisson’s
equation (4.5) in the appropriate limit. We shall see in §12.3 that this is
given in non-relativistic units by

k=8G/c*. (10.55)

The equations (10.54) subject to (10.55) constitute the full field
equations of general relativity. We shall, for the most part, work in rel-
ativistic units, in which we can take both ¢ = 1 and G = 1, and then the
coupling constant is simply

Kk = 8. (10.56)

At this stage, we shall define the theory of general relativity to consist
of the axioms of special relativity as stated in §8.5 except that I(iii) is
now replaced by equation (10.54) subject to (10.55). However, before
we consider further the significance of the field equations, we shall look
at, in the next chapter, an alternative derivation based on a mathematical



Exercises

principle rather than physical principles, namely, the variational principle,
and follow this up with an investigation of the right hand side of (10.54),
namely, the energy-momentum tensor.

Exercises

10.1 (§10.2) Taylor’s theorem in three dimensions can be written

floeh) = i) + 32 BV ),

where

x = xi+yj+ zR,
h = i+ hj+ hsk,

.0 .0 0
V—la"‘]aiy"'k&.

Write out the first three terms of the expansion.

10.2 (§10.2) (i) Use Exercise 10.1 to verify (10.7).
(i) Verify that Laplace’s equation can be written in the form (10.11).

10.3 (§10.3) If 1 = dx?/dr is the tangent vector to a timelike geodesic
parametrized by the proper time, and £ is an arbitrary vector field, show
that

@ Vyl* =0,

) Vyl, =0,

(i) V,Vel? =0,

(v) V'V V, = 0.

10.4 (§10.3) Let 2%, = 65 — V*1/, be the projection operator into the space
orthogonal to 1’*. Show that, if we define the orthogonal connecting
vector 1% by n® = h%£0, then (10.21) implies

DZ na
D2

— Rabchch'I]d =0.

10.5 (§10.3) Show that a Killing vector X“ satisfies the equation of
geodesic deviation

D2X? dx? dx¢ xd =

a
Dz R du

along any geodesic x* = x*(«). [Hint: use Exercise 7.15.]

10.6 (§10.3) If, at some point P, the symmetric tensor Ry, satisfies

Rpv*® =0
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for an arbitrary timelike vector 2%, then deduce that R,;, must vanish at
P. [Hint: let % = * + As%, where 1°t, = 1, 5%, = —1,1%,=0,0 < A < 1, A
arbitrary, and consider a special coordinate system in which #* = 0g and
s = 69,64, 04 in turn.]

10.7 (§10.5) Show that, if a frame ¢;* is parallelly propagated along C,
then so is its dual frame é,,.

10.8 (§10.5) If 77 is the inverse of 74, then show that
ab = nijeiaeib and g% = n’jei“ejb.
If (x*) = (t, 1,0, ¢) and
e =(A712,0,0,0), ¢ =(0,4"2,0,0),
& =(0,0,1/r,0), ¢ =(0,0,0,1/rsinf),
where A = A(r) is an arbitrary function, then find g%, g, and the line

element ds2.

10.9 (§10.6) Write out the argument fully which deduces (10.49) from
(10.48).

10.10 (§10.6) Check (10.50). Deduce that gy is the only component not
to alter to order €.

10.11 (§10.7) What principles are used in each of the six steps outlined
in §10.7?

10.12 (§10.8) What principles are used in the transition to the full theory?

Further reading

The references for this chapter are similar to those for Chapter 9. The
article by Schiff (1960) discusses the motion of gyroscopes in general
relativity. This is also discussed in the book by Hartle (1984).

Carroll, S. M. (2004). Spacetime and Geometry: An Introduction to General
Relativity. Addison Wesley, San Francisco, CA.

Hartle, J. B. (2003). Gravity: An Introduction to Einstein’s General Relativ-
1ty. Addison Wesley, San Francisco, CA.

Schutz, B. E (1985). A First Course in General Relativity. Cambridge
University Press, Cambridge.

Schiff, L. I. (1960). Motion of a gyroscope according to Einstein’s theory
of gravitation. Proceedings of the National Academy of Sciences of the United
States of America, 46(6), 871-82.

Wald, R. M. (1984). General Relativity. University of Chicago Press,
Chicago, IL.



General relativity from
a variational principle

11.1 The Palatini equation

Many tensor identities are best derived using the technique of geodesic
coordinates, where we choose an arbitrary point Pat which T'¢, = 0. Then,
in particular, covariant derivatives reduce to ordinary derivatives at the
point P. The Riemann tensor (6.40) reduces to

Req = 014 — 0al'y.. (11.1)

We now contemplate a variation of the connection "%, to a new connec-
ton I'},

¢ 519 =T9 + 6T, (11.2)

Then 4T'}, being the difference of two connections, is a tensor of type
(1,2). This variation results in a change in the Riemann tensor

R%yeq = Rpeq = Rpea + 0R beas
where
*
OR peq = 0.(6T5,) — 04(0T%,)
*
= Ve(0I%g) — Va(dly,)s
since partial derivative commutes with variation and is equivalent to co-
variant derivative in geodesic coordinates. Now both dR%,, being the
difference of two tensors, and the quantities on the right-hand side of the
last equation are tensors, and so, by our fundamental result (if a tensor

equation holds in one coordinate system it must hold in all coordinate
systems), we can deduce the Palatini equation

SR%eq = Vo(6T%,) — V4(6T%), (11.3)

at the point P. Since Pis an arbitrary point, the result holds quite generally.
Contraction on a and ¢ gives the useful result

0Rpa = Va(01'34) — Va(dI3,). (11.4)

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0011
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11.2 Differential constraints on the field
equations

The variational principle proceeds from the specification of a Lagrangian
density £, which is assumed to be a functional of the metric g,; and its
first and possibly higher derivatives, that is,

L= ‘C(guba 8cgab3 8dacgab> .. ) (1 15)

L is required to be a scalar density of weight +1 so that we can form the
action integral

I:/L‘dQ, (11.6)
Q

over some region ) of the manifold. The principle of stationary action
then states that, if we make arbitrary variations of the g,;, which vanish on
the boundary 0Q of QQ, then I must be stationary. Writing this out formally
using the variational notation of Chapter 7, we obtain

Zab — 8ab +08p = I — I+ 0l with 61 =0, 11.7)

where
5l = / LP5g,d0, (11.8)
Q

and £ is the Euler-Lagrange derivative

o = 0L ; (11.9)
5gab
The field equations are then
£% = 0. (11.10)

Since 61 is the difference between two scalars, it must itself be a scalar,
and hence from (11.8) it follows that £% is a symmetric tensor density of
weight +1. We shall consider the details of the calculation of £% in later
sections. However, before we do this we shall derive some very important
differential constraints on the field equations which hold whether or not
the field equations hold and which follow simply from the fact that £
is a density. In general relativity, these will turn out to be the contracted
Bianchi identities.

The idea is to generate a ‘variation’ in the g,;, which is brought about
simply by carrying out a change of coordinates in Q). Then, since I remains
invariant it follows that 6/ must be identically zero,

SI=0. (11.11)



We consider an infinitesimal change of coordinates (7.53) in Q,
x4 = K = X+ e X (x), (11.12)

where X? is a smooth vector field which vanishes on the boundary of Q.
Performing a similar calculation to that of 7.7, we find (exercise)

5gab = g/ab(x) —gab(x) = _Lngab = —E(vaa + VaXb). (1113)
Hence, combining this with (11.8) and (11.11), we obtain

0=06l=—2¢ / LP(V,X,)dQ,
Q

since £ is symmetric by the definition (11.9). We now use a standard
trick, called integration by parts, to write the integral as a difference of
two terms, namely (check),

0=2¢ / (VL) X,dO — 2¢ / Vo[£ X,]dA. (11.14)
Q Q

The term in square brackets is a vector density of weight +1, and hence by
(7.3) its covariant divergence can be replaced by an ordinary divergence.
Then the divergence theorem (7.19) gives

2e / [LPX]dO = 2 | LPX,dSp, (11.15)
Q oQ

which converts the last term in (11.14) to a surface integral. But, by as-
sumption, X* vanishes on (), and hence this term must vanish. Thus,
(11.14) reduces to

/ (VL) X,dO = 0, (11.16)
Q
and, since ) is arbitrary, we must conclude (exercise)

(VoL X, = 0. (11.17)

Finally, since X“ is arbitrary, we obtain the promised differential iden-
tities

VL% = 0. (11.18)

11.3 A simple example

Let us use the following notation: a gothicized tensor is to represent the
corresponding tensor multiplied by 1/—g. Thus, for example,

9ab = V—88x» and Tpp = /—gT.

Then all tensors in gothic type will be tensor densities of weight +1.

A simple example
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190 General relativity from a variational principle

The simplest scalar density that we can make out of g, alone is /—g
itself, namely,

L(ga) = V8 (11.19)

where \/—g is to be regarded as a functional of the dynamical variable g,;.
Recalling (7.8), we write

= gg®, (11.20)
agab
and so
Ov/—¢g —g
5 N e Tad (11.21)
8ab —8
from which we deduce that
oL
Lab - -1 ab‘
agab Zg

Clearly, g = 0 cannot serve as field equations. The identities (11.18)
become

Vg =0, (11.22)

which is trivially satisfied, since both g,;, and \/—g have vanishing covari-
ant derivatives by (6.74) and (7.12).

11.4 The Einstein Lagrangian

The Lagrangian (11.19) clearly cannot serve as the Lagrangian of a phys-
ical theory. However, it turns out that the next most complicated scalar
which can be built out of g, and its derivatives — and it is very much more
complicated — is the curvature scalar R. The resulting Lagrangian,

L =+/—gR, (11.23)

is called the Einstein Lagrangian, where the label G denotes that it
is the Lagrangian for gravitation. We shall employ the notation of a



comma for partial differentiation, otherwise we end up writing terms like
OL/9(0.8a). Then, explicitly,
L6 ==2¢"Ra

= ECdReced

= g¥(Pey, = Tloq + DL, — TLITR)

= g°{[38" (8 + 8are — 8eaf)]
- [%gef(gqf,e + Zofic — gce,f)]’d
+ (38" (gena + gane — 8ean)][38” (g + Geiy — 8pei)]
— (36" (Gome + Gete — Geen)][3€° (gfia + aiy — )]} (11.24)

We must think of this as a functional of g, and its first and second
derivatives, namely,

LG = LG(8abs abie> Zabyed)>

where we regard g% and g (and therefore g?) as functions of g,;. Note
that we could equally well regard L as a functional of one of g%, g®,
or g, and their corresponding first and second derivatives. In the case
where g, are the dynamical variables, the Euler-Lagrange derivative is a
generalization of (7.36) and becomes

0Lg OLg (a,cG ) ( 0Lg )
= — + . 11.25
6gab agab agab,c 5C agab,cd sed ( )

Following the procedure of the last section, we would expect next to cal-
culate actual expressions for each of these terms. For example (exercise),

LG
5gab,cd

= V=gl (8" + £g") — &5 (11.26)

The calculation of the remaining terms, though straightforward, is, unfor-
tunately, absolutely horrendous and we shall not pursue it further. Instead,
we will exploit the variational formalism in the next section and show how
this indirect approach leads to a more tractable calculation. However, had
we proceeded, then we would have found (exercise for the completely
dedicated reader!)

0Lg
(5gab

L = = —/—gG%®, (11.27)

and so the Euler-Lagrange equations lead to the vacuum field equations

—\/—gG* =0, (11.28)
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that is, the vanishing of the Einstein tensor. In addition the identities
(11.18) become

Vi[-vV/—gG? =0 = V,G*=0, (11.29)

that is, the contracted Bianchi identities.

11.5 Indirect derivation of the field
equations

The approach depends on exploiting the J notation fully. It can be shown
(exercise) that & behaves much like a derivative when applied to sums,
differences, and products. For example, let us see what happens when we
apply ¢ to the tensor ¢¢. The variation

8ab — 8ab t 5gab)
induces a variation in g*%, which we write

g — g 4 557, (11.30)
Then

5? = gabgbc — (gﬂb + 6gab)(gbc + §gbc)
=09+ 6g%gp. + g0 g + O(6%).

But, since ¢ is a constant tensor, it cannot change and therefore

68" + &°0gwc = 0, (11.31)

to first order, or, multiplying through by g%,

5™ = —g*g“5gp. (11.32)

Compare and contrast this with the corresponding relationship between
partial derivatives (7.9).
Starting from I written in the form

I:/gabRabdQ;
Q

we carry out a variation and use the Leibniz rule for products, to get

oI = / (09" Rap+9“°0 Rap) Q. (11.33)
Q



We now use the Palatini equation in the form (11.4), so that the second
term on the right-hand side becomes

/ a@6RdQ = / g% [V.(4T%,) — V,(6T%,)] dO
Q

Q
- / [V.(g8T%,) — Vy(g?oT%,)] dQ
Q

. / Du(g5T%, — g*sT%,)d0,
Q

since the covariant derivative of g% vanishes identically and the quantities
in parentheses are vector densities of weight + 1. Using the same argument
as we did in §11.2, this can be converted to a surface integral by the di-
vergence theorem, which vanishes because the variations are assumed to
vanish on the surface of Q. Hence, (11.33) reduces to

ol = / R.p0g°°dQ
Q
= / Ru0[v/—gg®]dQ
Q
- / [Rug®6v/~ + Rop/~25¢1d02
Q

/ V—8(3Rg" — Rypg“g")6g.ad )
Q

- /Q VoE(R — 1 Re¢*)5g.d

/ [—V=8G")6gad 0, (11.34)
Q

where we have used (11.31) and the result (exercise)

6v—g = 1v/=gg"6gu. (11.35)

Using (11.8), we again get the vacuum field equation in the form (11.28)
and the contracted Bianchi identities (11.29) as the corresponding differ-
ential constraints on the field equations.

11.6 An equivalent Lagrangian

The resulting field equations are second order in the partial derivatives.
"This is at first sight rather surprising since by (11.25) we might expect the
last term to produce fourth-order equations. However, it turns out, as we
have seen in (11.26), that OLg/0gu..4 only involves undifferentiated g,5’s
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and OLg/0gu,. only involves once differentiated g,;’s (exercise). In this
section, we make the second-order nature of the equations more evident
by showing that

Lo =L+, (11.36)

where LG depends on the metric and its first derivatives only. It can
be shown that in applying the variational principle argument to such an
equation the divergence term Q7 , can be discarded (by converting to a
vanishing surface integral), and hence it follows that £Lg and Lg give rise
to the same field equations. However, £ is no longer a scalar density.
We sketch the argument below.

The Einstein Lagrangian

EG = —gR
— gabRab
= g%( abe — Lacp + Ffsz?d - FZCFZd)
= g*T%, — g“T%., — Lo, (11.37)
where
L = g®(ers, —T¢,Tr4). (11.38)

Integrating the first two terms in (11.37) by parts, we get
Lo=—g" T4+ "l — Lo+ Q' (11.39)
where
0" = ¢"T, — g*T%,. (11.40)

From the fact that the covariant derivative of g vanishes, we find
(exercise)

g%, =T%g" — T'4g” — I%e*. (11.41)
Substituting in (11.39) and simplifyjng, we obtain the result (11.36).
Once again, we could consider £ as a functional of one of g., g%,

gav» OF g°® and their corresponding first derivatives. For example, let us
choose the g* as the dynamical variables. Then

ZG = EG(gab: gab,c)a

from which it can be shown that



OLg

g —Tere, + T¢I, (11.42)
and
8EG C C C
g " —T¢, + 16°Tg, + 1514, (11.43)
N
The Euler-Lagrange equations
- 0LG 0L
Le=""_ (=2 =0, 11.44
G 8gab (agab,t ),c ( )
then lead to
LE =T, — 305, — 318, +T5I4, —TaTs,. (11.45)
If we use the result (exercise)
Inv/~=gl, =% (11.46)

then

Pgd,b = [ln(\/:g)],ab = [ln(\/jg)}’ba = nga’

>

and so (11.45) gives

rab _ ¢ d c d d e _
LE = = Laap + Tapl'ca — Tacl'ba = Rap-

ab,c

The field equations are correspondingly R, = 0.

11.7 The Palatini approach

The Palatini approach is very elegant and is based on the idea of treating
both the metric and the connection separately as dynamical variables in
the Einstein Lagrangian. To be specific, let us choose Lg as a functional
of g and a symmetric connection I'?, and its derivatives, i.e.

Lg = Ls(g®, T, besd)>
where

L = g"Ra
= 0% (Ve =~ Taap + TsTea = Taclba)s (11.47)

so that the Ricci tensor depends on I';, and its derivatives only. Then, if
we carry out a variation with respect to g,; only,
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6l = / 89 R»dQ)
Q

and the principle of stationary action gives immediately the vacuum field
equations Ry, = 0.

We next carry out a variation with respect to I';, so that

oI = / g%0R,dO)
Q
- / g [V.(0T%,) — V4(3T%,)] dO,
Q

by the corollary of the Palatini equation (11.4). Integrating by parts and
discarding the divergence term by the usual argument, we get

51 = / [Vog™6T5, — V.g™sTS,] dO
Q

_ / (827 ag% — V.g?)oT%,] O,
Q

Since 601 vanishes for arbitrary volumes (), the integrand must
vanish, i.e.

(02 Vag™ — Veg™)oT .

The variations 61", are arbitrary, but symmetric in ¢ and 4, and so only
the symmetric part of the expression in brackets vanishes, i.e.

168% 49% + 159V 49 — Vg% = 0. (11.48)
Manipulating this equation, one can show in turn (exercise) that the co-
variant derivatives of g“b, v -8 g“b, and g, vanish. Finally, by Exercise
6.21,if
vcgab = 03

and the connection is symmetric, then it follows that I'}, is necessarily the
metric connection

be = %g’l d(gbd,c + Zedp — 8bed)-

To summarize, the Palatini approach starts from the Einstein Lagrangian
(11.47) considered as a functional of a metric and an arbitrary symmet-
ric connection and its derivatives. Variation with respect to the metric



produces the vacuum field equations of general relativity, and variation
with respect to the connection reveals that the connection is necessarily
the metric connection.

11.8 The full field equations

So far, we have been concerned with the vacuum field equations. To ob-
tain the full field equations, we assume that there are other fields present
beside the gravitational field, which can be described by an appropriate
Lagrangian density £y; — the matter Lagrangian. The action is then

I= / (Lg + 26Ly)d0, (11.49)
Q

where k is the coupling constant and the reason for the factor of 2 is
explained below. Both Lagrangians are to be considered as functionals of
the metric and its derivatives, and so, varying with respect to g,; (say), we
obtain

‘;j‘;’ = —\/—2G*, (11.50)
and
(Z?;‘ = 1v/=gT™, (11.51)

where the latter equation defines the energy-momentum tensor 7%
for the fields present as being given by

2 0Lm
T = ———=. (11.52)
vV —8 6gab
The reason for the factor of 2 is so that this expression agrees with the so-
called canonical energy momentum tensor defined in special relativity (see
Exercise 11.13). Calculating the Euler-Lagrange equations for (11.49)
and dividing through by /—g, the field equations become

G = kT™, (11.53)

in agreement with (10.54). Note that some authors omit the factor of 2 in

both (11.49) and (11.52) which also gives (11.53). In the next chapter,
we shall investigate the right-hand side of this equation and look at the
definition of the energy-momentum tensor for various important fields.

The full field equations
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Exercises

11.1 (§11.2) Show that, under an infinitesimal change of coordinates
X = 2 = x4+ e X% (x),
the transformed metric satisfies
(%) = gab = —£(VoXy + VaXp)

to first order in €.

11.2 (§11.4) Show that

OLG 11/ ac bd | ad b\ b ed
agab,cd—\/ig[z(g“g +gg") — ¢

11.3 (§11.4) Show that

B) d
aib — _%(gacgbd_i_gadgbc)'

11.4 (§11.4) Check that 0LG/0gm, depends only on g, and its first
derivatives. [Hint: consider (11.24).]

11.5 (§11.5) If y4 are dynamical variables and L; = Li(v4) and L,
= I,(v4), then show from first principles that

(i) (AL + uly) = MOLy + udL,, where A and p are constants,

(ll) 5(L1L2) =1, (5L2 + Lz(SLl.

11.6 (§11.5) Show that

(1) gab(sgab = _gubégabs

(i) 0g = gg®®8g,p (compare this with (7.9)),

(ii)) 0v/=2 = 3v/—28"08u-

11.7 (§11.5) Show that, if we regard g%, g.s, and g%, respectively, as
dynamical variables, then

< LG
(1) 6gab = Rab>

... OL
(i) 525 = Vg0
What differential constraints do each of these quantities satisfy?

11.8 (§11.5)
G If fQ ®dQ = 0, where Q is arbitrary, then prove that ® = 0. [Hint:



choose an arbitrary point P where ®(P) > 0, say, use continuity to show
that there is a region surrounding P where ® remains positive, deduce that
fQ ®dQ > 0 for a suitable ), and derive a contradiction; then complete
the proof.]

@) If W2X, = 0 where X, is arbitrary, then show that W*¢ = 0. [Hint: take
X, = (1,0,0,0), etc.]

11.9 (§11.6) If the Lagrangians L(y,y,x) and L(y,y’,x) differ by a
divergence, i.e.

/
L=1+ dQ(y,y >x)>
dx

then show that L and L give rise to the same field equation.

11.10 (§11.6)

(1) Establish the results (11.41) and (11.46).

(i1) Establish the result (11.36) for the Einstein Lagrangian.
(ii1) Use (11.41) to deduce

ab  _ abc
g c=-9 Pbc'

(iv) Use parts (i) and (ii) to establish the result

b b _ a
0, Lo — 97 sl = —2LG.

(v) Defining L, by
Ldb = Fgc Zd - FCbrzc’

a

so that L = gL, then show that
g% 0T, — g% 40T = Lypdg™ — 0L,
[Hint: Use parts (i) and (ii) to re-express the LHS and the product law
on 6L to re-express the RHS.]
(vi) Take the variation of the equation in part (iv) to establish the result

6Lg = [%(5ZFZd - 62F2d) - Zb] 59ab,c - Lab5gab>

and regarding L = Lg(g?, g%.) then deduce (11.42) and (11.43).
[Hint: Use part (v) and the symmetry of 6g°° . on a and &.]

11.11 (§11.7) Show that, if
100 4% + 169V 497 — Vg% = 0,

for an arbitrary symmetric connection, then
(i) Vg* = 0,

Exercises
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(i) Vey/—g =0,

(iii) Vg = 0,

(IV) vcgab = O)

and deduce that the connection is necessarily the metric connection.
11.12 (§11.7) Use the variational principle approach to find the field
equations of the theory (considered by A. S. Eddington) with Lagrangian

L= V _gRadeRabcd>

treating g and R** as independent variables.

11.13 (§11.8) In Minkowski space, the Lagrangian for a scalar field ¢(x%)
moving in a potential V(¢) is (using our signature)

L= _%gpdqs,cﬁb,d + V(QS)

(1) The ‘canonical’ energy-momentum tensor ©%;, in Minkowski space for
a field with Lagrangian L(¢, 9,¢) is defined to be given by

a . _ oL a
0% = 6(qb,a) qﬁ,b + (SbL-

Calculate O, = 1,,0°, for a scalar field and show that
O = %(Cﬁz +|Vo?) + 1(9),

(which is what one would expect for the energy density as the sum of the
kinetic and potential energy of the field.)

(i) Using the the principle of minimal coupling, explain why the La-
grangian density for a scalar field in a curved space-time is

L=[-3&" b0+ V()V-¢.

(i) Find the energy-momentum tensor 7, for the above Lagrangian
density and show that, if we look at this expression in Minkowski space,
we find

Top = eab:

so that the two definitions agree. [Hint: T5/—g = —20L/5g*.]

11.14 (§11.8) In calculating the energy-momentum tensor of a field
where the Lagrangian involves covariant derivatives, one needs to cal-
culate the variation of the connection. Show that

6T = 3¢V (6ga) + Vi(6ga) — Va(dgsc)].

[Hint: Use the method of geodesic coordinates as used in §11.1.]



Further reading

Further reading

The approach to the variational principle described here is based on the
lovely little book by Schrodinger (1950). A more modern source is the
book by Choquet-Bruhat et al. (1977).

Choquet-Bruhat, Y., De Witt-Morette, C., and Dillard-Bleick, M.
(1977). Analysis, Manifolds and Physics. North-Holland, Amsterdam.

Schrodinger, E. (1950). Space-time Structure. Cambridge University
Press, Cambridge.
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The energy-momentum
tensor

12.1 Preview

Our programme for this chapter is to look at the three most important
energy-momentum tensors in general relativity, namely, the energy-
momentum tensors for incoherent matter or dust, a perfect fluid, and
the electromagnetic field . In passing, we shall encounter a tensor formu-
lation of Maxwell’s equations governing the electromagnetic field. Again,
our treatment will not be exhaustive or complete, but will be sufficient
for generating the explicit expressions for the three tensors, and these ex-
pressions will be essentially all that we require in future chapters. We shall
also look at the Newtonian limit of the field equations and discuss the
calculation for determining the coupling constant.

12.2 Incoherent matter

We start by considering the simplest kind of matter field, namely, that
of non-interacting incoherent matter, or dust. Such a field may be
characterized by two quantities, the 4-velocity vector field of flow

odre

a

where 7 is the proper time along the world-line of a dust particle
(Fig. 12.1), and a scalar field

po = po(x)s

describing the proper density of the flow, that is, the density which u®
would be measured by an observer moving with the flow (a co-moving
observer). The simplest second-rank tensor we can construct from these

two quantities is

T% = pousl®, (12.1)

Fig. 12.1 The world-lines of dust
and this turns out to be the energy-momentum tensor for the matter field. particles.

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0012
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Let us investigate this tensor in special relativity in Minkowski coordi-
nates. Then, by Exercise 8.10, the 4-velocity is

u® =v(1l,u), (12.2)
where v = (1 — 4?)~1/2. The proper time is defined by

dr? =ds?
= gy dx® dx?
=df —dx? — dy? — d2?
=d? (1 — uz)
=~"2dA. (12.3)

Then the zero—zero component of 7% is

0 3,0
™ :PO%% ZPO% =’po, (12.4)
by (12.3). This quantity has a simple physical interpretation. First of
all, in special relativity, the mass of a body in motion is greater than its
rest mass by a factor v, by (4.11). In addition, if we consider a moving
three-dimensional volume element, then its volume decreases by a fac-
tor v through the Lorentz contraction. Thus, from the point of view of
a fixed as opposed to a co-moving observer, the density increases by a
factor 72. Hence, if a field of material of proper density py flows past a
fixed observer with velocity u, then the observer will measure a density

P =7 po. (12.5)

The component 7% may therefore be interpreted as the relativistic en-
ergy density of the matter field, since the only contribution to the energy
of the field is from the motion of the matter (note that this requires a factor
of ¢? in the definition (12.1) in non-relativistic units).

The components of 7% can be written, using (12.2) and (12.5), in the
form (exercise)

1w, Uy Uy
2
u u Uy Uy
T =p| ™ P I (12.6)
Uy Uxlly Uy Uyly

2

Uy Ul Uyl UL

We now show that the equations governing the force-free motion of a
matter field of dust can be written in the following very succinct way

o T =0. (12.7)
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Using (12.6), in the case when a = 0, this equation becomes (exercise)

dp 0 0 0
Fn + a(fmx) + Fy(ﬁ“y) + &(Puz)-

This is precisely the classical equation of continuity

% + div (pu) = 0. (12.8)

In classical fluid dynamics, this expresses the conservation of matter with
density p moving with velocity «. Since matter is the same as energy in
special relativity, it follows that the conservation of energy equation for
dust is 9, 7% = 0. The equations corresponding to a = a (a = 1,2, 3) are
similarly found to be (exercise)

0 0 0 0]
&(pu) + a(puxu) + a—y(puyu) + a(puzu) =0.
Combining this with (12.8), the equation can be written as (exercise)

ou
p [at + (u-V) u} =0. (12.9)

Comparing this with the Navier—-Stokes equation of motion for a
perfect fluid in classical fluid dynamics, namely,

p [% + (u-V) u] = —grad p + pX, (12.10)

where p is the pressure in the fluid, and X is the body force per unit mass,
we see that (12.9) is simply this equation in the absence of pressure and
external forces, which is the appropriate equation for dust.

We have seen that the requirement that the energy-momentum ten-
sor has zero divergence in special relativity is equivalent to demanding
conservation of energy and conservation of momentum in the matter
field — hence the name energy-momentum tensor. Moreover, (12.7)
is known as the energy-momentum conservation law. If we use a non-
Minkowskian metric in special relativity, then (12.7) is replaced by its
covariant counterpart

V,T% = 0. (12.11)

We now make the transition to general relativity and once again define
the energy-momentum tensor for incoherent matter by (12.1), and, us-
ing the principle of minimal gravitational coupling, retain (12.11) as the
statement of the conservation law.
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12.3 The coupling constant

Before moving on to consider other energy-momentum tensors, we look
at the Newtonian limit of the full field equations for incoherent matter, in
order to determine the coupling constant. In the weak-field approximation
we have
2
8ab = Nab + €hap + O(£7). (12.12)

Then, as we will see in Chapter 21, if we apply the gauge condition
(21.24), then

Gap = _%ED (hab - %naandhcd) +0 (62)'
so that the full field equations G,; = kT, become
- %5D (hab - %TlabTIthcd) =rT,+ O(sz). (12.13)

Contracting with 7®® and applying the slow-motion approximation
(10.41), we find (exercise)

1eV2ha = K (Tap — Inasn™Tea) + O (). (12.14)
Let us take, as the source of the field, a distribution of dust of small
proper density py moving at low velocity of order v. This assumption
means that we neglect terms both of order v/c and ppv/c, and then, by
(12.6), in non-relativistic units, the energy-momentum tensor reduces in
our privileged coordinate system to
T = o 08 85, (12.15)
which, in turn, implies
T = czpoégég and de T.u= czpo. (12.16)
The zero—zero component of the field equations (12.14) then becomes
27 _ 2 2
eVahy = ¢ Iip0+0(8 ) (12.17)
But, by (12.12),
goo = 1+ hgo + O(£?),
so that
vngO = 8V2h00 + O(Z—ZZ),

and, by (10.49),

Vgoo = V? (if) +0(e).



Substituting these results in (12.17), we get
V2¢ = Lctkpy + O(e).

Comparing this with Poisson’s equation (4.5), namely,

V2 = 47Gpo,
we obtain the result (10.55), namely,

k= 81G/c". (12.18)
In relativistic units, this reduces to
K = 8. (12.19)

We have therefore used the correspondence principle with Newtonian
theory to obtain the coupling constant x appearing in the full field
equations (10.54).

12.4 Perfect fluid

A perfect fluid is characterized by three quantities: a 4-velocity
u® = dx?/dr, a proper density field py = po(x), and a scalar pres-
sure field p = p(x). In the limit as p vanishes, a perfect fluid reduces
to incoherent matter. This suggests that we take the energy-momentum
tensor for a perfect fluid to be of the form

T% = po u®u® + pS®, (12.20)

for some symmetric tensor S?°. The only second-rank tensors which are
associated with the fluid are %%« and the metric g%°, and so the simplest
assumption we can make is

S = Xutu® + ug®, (12.21)

where A and u are constants. Proceeding as we did in the last section,
we investigate the conservation law 9,7% = 0 in special relativity in
Minkowski coordinates and demand that it reduces in an appropriate
limit to the continuity equation (12.8) and the Navier—Stokes equation
(12.10) in the absence of body forces. This requirement leads to A = 1
and # = —1. Then (12.20) and (12.21) give

T = (po + p) u"u’ — pg® (12.22)

which we take as the definition for the energy-momentum tensor of a
perfect fluid. If we use a non-Minkowskian metric in special relativity,
then we again take the covariant form (12.11) for the conservation law.

Perfect fluid 207
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In the full theory, we also take (12.22) as the definition of a perfect fluid,
and (12.11) as the conservation equations.

In addition, p and p are related by an equation of state govern-
ing the particular sort of perfect fluid under consideration. In general,
this is an equation of the form p = p(p, T), where T is the absolute
temperature. However, we shall only be concerned with situations in
which T is effectively constant, so that the equation of state reduces to

p=2(p).

12.5 Maxwell’s equations

In this section, we wish to reformulate Maxwell’s equations for the electro-
magnetic field in tensorial form. We start by rewriting them in special
relativity in Minkowski coordinates. Working in Heaviside—Lorentz units
with ¢ = 1, we find that Maxwell’s equations in vacuo for the electro-
magnetic field split up into two pairs of equations, namely, the source
equations

divE = p, (12.23)

OE
1B — — =], 12.24
cur’ ER J ( ))

and the internal equations

divB = 0, (12.25)

OB
curl E + i 0, (12.26)

where E is the electric field, B is the magnetic induction, p is the charge
density, and j is the current density. In simple physical terms, (12.23)
is the differential form of Gauss’s law relating the flux through a closed
surface to the enclosed charge, (12.24) is a generalized Ampere’s law re-
lating the magnetic field to a flow of current (where the term involving E is
Maxwell’s displacement current, added in part to produce wave equations
for E and B), (12.25) is the statement that magnetic monopoles do not
exist, and (12.26) is essentially Faraday’s law of induction. The quanti-
ties p and j cannot be prescribed independently because, differentiating
(12.23) with respect to t, we get (remembering that 9/9¢ commutes with
0/0x, 0]y, and 0/90z)

. (OE\ _0Op
div (i)z) = E,

and taking the divergence of (12.24) gives

—div <aalj) = divj.



Thus, p and j must satisfy the equation of continuity
dp .
= 4+ divi=0. 12.27
o+ divj (12.27)

If we interpret j as a convection current, i.e. j = pu, where u is the velocity
field of the material with charge density p, then (12.27) is identical to
(12.8), the continuity equation of fluid dynamics.

In order to write these equations in tensorial form, we define an
anti-symmetric tensor %, called the electromagnetic field tensor or
Maxwell tensor, by

0 E E E
-E. 0 B, -

F* = x g 71, (12.28)
-E, -B, 0 B,
-E. B, -B, 0

and the current density or source 4-vector j° by

I =(pJ)- (12.29)

Then (exercise) the source equations and internal equations can be
written in the form

OpF® =5, (12.30)
O0aFpe + OcFgp + OpFeq = 0. (12.31)

The anti-symmetry of F,;, means that (12.31) can be written more
succinctly as

6[anc] =0. (12.32)
The continuity equation (12.27) becomes
0,7% = 0. (12.33)

Let us be clear what we have done so far. We have merely shown
that, given the definitions (12.28) and (12.29), Maxwell’s equations
(12.23)—(12.26) can be written formally as (12.30) and (12.31). We
have treated * and j* as tensors, but the only justification for doing this is
knowing their transformation properties under Lorentz transformations.
Before the advent of special relativity, their transformation properties
were, in fact, unclear. Indeed, from one point of view, it was precisely the
desire to make Maxwell’s equations LLorentz-covariant that led to the de-
velopment of special relativity. The approach we shall adopt is to propose
(12.28) and (12.29) as a working hypothesis and, from these definitions,
work out their transformation properties. The ultimate justification then,
as always, lies in comparing the predictions with observation, and there
are a host of experiments which support the ansatz.

Maxwell’s equations
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12.6 Potential formulation of Maxwell’s
equations

Rather than working with the fields E and B directly, it is usually more
convenient to work in terms of the potentials. The scalar potential ¢
and the vector potential 4 are defined by

A
E = —grad ¢ — 88—[, (12.34)

B = curl 4. (12.35)
If we define the 4-potential by
¢ = (¢,4), (12.36)
then we find that (12.34) and (12.35) are equivalent to (exercise)

Fp = ab ¢a - aa ¢b~ (1237)

The 4-potential is not defined uniquely by this equation, since we may
perform a gauge transformation

$a = Pa = Pa + O, (12.38)

where 1 is an arbitrary scalar field. Although a gauge transformation alters
the potentials, it leaves F,;, and hence E and B, unchanged (exercise), and
these are the strictly measurable quantities.

In solving particular problems, it is often convenient to reduce the
gauge freedom by imposing a constraint on ¢,, called a gauge condition,
which in turn simplifies the problem. For example, an important gauge for
discussing electromagnetic radiation is provided by the Lorentz gauge

1% ¢ap = ¢%a = 0. (12.39)

Applying this constraint to (12.38), we find that the scalar field v is no
longer arbitrary but must be a solution of the wave equation

Oy = n*ta = 0, (12.40)
where [ is the d’Alembertian operator
O0=09; -0 — 095 — 03.

The definition (12.37) results in the internal equations (12.31) being
automatically satisfied, that is, they become identities (exercise). The
source equations (12.30) become, in terms of the 4-potential,

B ™0™ (9 be — Oc ba)] = j°. (12.41)
In the Lorentz gauge, this reduces to (exercise)

O = j9. (12.42)
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In source-free regions, j* vanishes, and this becomes
O¢® =0, (12.43)

from which it follows that ¢¢ and F%, and therefore E and B, all satisfy
wave equations (exercise).

So far, we have restricted our attention to special relativity in
Minkowski coordinates. To obtain the covariant formulation, we simply
replace ordinary derivatives by covariant derivatives. However, it is not
necessary in equations (12.32) and (12.37) because (exercise)

V[anbc] = a[anc]b (1244)
and
V[b d)a] = 5[1, qba]. (12.45)

The covariant formulation of Maxwell’s equations in vacuo in special
relativity is thus

V,F® = j4, (12.46)

01aFpg = 0, (12.47)
subject to

V.j¢=0. (12.48)

In terms of the 4-potential, we still have

Fap = Op ba — Oa o (12.49)

Using the principle of minimal gravitational coupling, we adopt equations
(12.46) and (12.47) in general relativity, where, however, the metric is no
longer flat but is a solution of the full field equations G* = k7%, and T%
is the energy-momentum tensor arising from the electromagnetic field —
which we now seek.

12.7 The Maxwell energy-momentum
tensor

We shall construct the energy-momentum tensor for the electromag-
netic field from a variational approach. For simplicity, we shall work
in vacuo in special relativity in Minkowski coordinates and restrict at-
tention to a source-free region, i.e. a region where j* vanishes. Consider
the Lagrangian for the electromagnetic field defined by

1
Lr: (fas Far) = o [~ 1FF® + (¢ap — dua) F). (12.50)
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Then
0Lr 0Ly _ <8£E)
5¢a B a(ba a¢a,b ,b
1
=0— —(F*-p"
S ( ),b
and the field equations corresponding to a variation with respect to ¢,
become
(F*—F*), =0. (12.51)
Similarly,
0Ly OLg
0F,  OFy
_ i 0 [_lncenddeF +,,,/ce77df(¢ i— ¢d )F }
S aFab 2 cdlef ¢, )L ef
1
~8r [—in“nYFy — In“n®Fea + n“n®(¢oa — dac)]
1 ac, bd
=35 _Fc + c,d — c)|>
s, [~ Fed + (Pea — Pac)]

and the field equations corresponding to a variation with respect to F,
become

Fy = ¢a,b - ¢b,a- (1252)

This last equation defines F,; in terms of the 4-potential and reveals
that F,; is anti-symmetric. The definition also means that the internal
equations are satisfied automatically and (12.51) reduces to

Pabb:OJ

5

namely, the source equations (in source-free regions). The result (12.52)
also allows us to re-express the LLagrangian as

1
Ly = —— 1" FsFq. (12.53)
167

We now make the transition to the full theory and assume that

L = X8 P FFu (12.54)

together with the definition (12.52) of F,; in terms of ¢,. The factor \/—g
is included to ensure that Lg is a scalar density (note that it reduces to 1
in special relativity in Minkowski coordinates). Then we find (exercise)
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oL N/ —
@*}; = ‘s7g (—g“FrcFya + LgaFraF™) . (12.55)

The analogue of (11.51) for the contravariant metric is

oL V-

O _ V& (12.56)
ogab 2

These last two equations lead to the definition of the Maxwell energy-

momentum tensor 7, in source-free regions

1
Tap = 3= (=& Facloa + § gapFeaF ™) (12.57)
From (12.19), we have k=8 in relativistic units. Thus, the full field
equations in source-free regions, called the Einstein—Maxwell
equations, become

Gap = —28“FocFya + L g FaF®. (12.58)

Let us look at some of the components of 7}, in special relativity in
Minkowski coordinates. In particular, we find that the energy density
of the electromagnetic field is given by

1
Too = < (E*+B°), (12.59)

which agrees with the usual expression for energy density in electrody-
namics. Again, the momentum density is

1
(To15 Toz> To3) = _ZTEXB, (12.60)

where the vector EXB is the Poynting vector of electrodynamics and
represents the momentum density of the electromagnetic field. In addi-
tion, it is straightforward to verify that Maxwell’s equations imply that 7%
is divergenceless, (exercise) i.e.

VT = 0. (12.61)

12.8 Other energy-momentum tensors

We have met two methods for obtaining energy-momentum tensors. The
first is an ad hoc method which constructs likely looking tensors out
of the matter and energy fields present and investigates the conserva-
tion equations (12.7) in the non-relativistic limit. The second method
proceeds from a variational principle formulation and investigates the
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field equations arising from a proposed Lagrangian. We can construct
energy-momentum tensors for other fields or combination of fields using
either approach or a combination of them. In particular, we can combine
non-interacting fields by superimposing them. For interacting fields, we
have to take the interactions into account.

We illustrate this with one example of each procedure. The energy-
momentum tensor for a field of charged matter of proper mass density pg
and 4-velocity u® is (see (12.1) and (12.57))

1
T = po uu® + s (~F“F. + 1" F F). (12.62)

The conservation equations then express the conservation of energy and
the equations of motion for the field. The Lagrangian for an elementary
particle of rest mass 1, for example the 77o-meson, is described by a scalar
field ¢(x) given by

V=g

L= -2

(8" Vad Vo — mo* ¢%) 5 (12.63)
where my is the rest mass of the particle. The energy-momentum tensor
is defined by (12.56), and again the conservation equations express the
conservation of energy and the equations of motion of the field.

12.9 The dominant energy condition

In general, the components of any tensor in a particular coordinate system
do not have an invariant meaning. However, if we choose an invariantly
defined frame and look at the frame components of the tensor, then
these will have physical significance. In the case of the energy-momentum
tensor T,;, we choose a frame at a point by looking for solutions of the
eigenvalue equation

T.0u® = M,

where u° is the eigenvector corresponding to the eigenvalue A. This has
characteristic equation

det(7,° — \6%) = 0.

For all types of standard matter, this equation has real non-zero roots, and
the corresponding eigenvectors can be normalized to form a frame ¢;* of
one timelike and three spacelike vectors. The frame components of 7,
are

Tyj = Taei'e;’ = diag(u, p1, 02> 03)s

since the matrix is diagonal with the eigenvalues as elements. The eigen-
value 4 is called the energy density, and u? = ¢;? is the 4-velocity of



the medium. The eigenvalues p,, (o = 1,2,3) are called the principal
stresses, and the corresponding eigenvectors e,“, the principal axes
of stress. An energy-momentum tensor will only represent a physically
realistic matter field if the energy density is non-negative and dominates
any stresses present. More precisely, all known matter fields satisfy the
dominant energy condition (Hawking and Ellis 1973)

H = 0) —HU < Pa < H- (1264)

The latter condition can be shown to be equivalent to requiring that the
local speed of sound is not greater than the local speed of light.

If, in particular, the three principal stresses are positive and equal
to p say, then setting 4 = pg, the energy-momentum tensor takes the
form of a perfect fluid, (12.22). If the three principal stresses van-
ish, then the energy-momentum tensor takes the form of dust, (12.1).

Exercises

12.1 (§12.2) Establish (12.6) from (12.1). Show that (12.7) leads to
(12.8) and (12.9).

12.2 (§12.3) Derive (12.14) from (12.13) and deduce (12.17).

12.3 (§12.4) Show that the conservation equations for a perfect fluid
lead to the equation of continuity and the equation of motion, in special
relativity in Minkowski coordinates.

12.4 (§12.5)

(1) Show that Maxwell’s equations can be written in the form (12.30) and
(12.31), given the definitions (12.28) and (12.29).

(i1) Show that the internal equations can be written in the form (12.32).
(ii1)) Show that the continuity equation can be written in the form (12.33).
Show directly from (12.30) that this equation is an identity.

12.5 (§12.5) Find the transformation properties of E, B, p, and j under
a boost in the x-direction. [Hint: consider F** and /°.]

12.6 (§12.6)

(1) Show that (12.37) is equivalent to (12.34) and (12.35).

(i) Show that F_; is invariant under a gauge transformation.

(iii) Show that, if F,;, is defined in terms of a 4-potential, then the internal
equations are automatically satisfied.

12.7 (§12.6) Show that, in an appropriate gauge, Maxwell’s equations
reduce to [J¢p® = j% in regions where the source 4-vector is non-zero. What
remaining gauge freedom is left? Deduce that E and B satisfy the wave
equation in source-free regions.

12.8 (§12.6) Check (12.44) and (12.45).

Exercises
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12.9 (§12.7)

(i) Establish (12.55) and (12.57). [Hint: Operate on each side with § and
express each term on the RHS as products with the factor g®.]

(ii) Confirm (12.59) and (12.60).

(iii) Show that the conservation equation (12.61) is equivalent to 9, 7%
= 0 and show that this is satisfied by virtue of Maxwell’s equations.

12.10 (§12.8) Investigate the conservation equations for the energy-
momentum tensor arising from (12.63).

Further reading

All the standard texts listed in the previous chapter have a treatment of the
energy-momentum tensor. The book by Hawking and Ellis (1973) has a
good treatment of the dominant energy condition as well as the strong
and weak energy conditions used in the singularity theorems which we
discuss in §20.13. The treatment on the Newtonian limit is based on that
of Trautman , Pirani, and Bondi (1964), but see also the book by Hartle
(2003).

Hartle, J. B. (2003). Gravity: An Introduction to Einstein’s General Relativ-
1ty. Addison Wesley, San Francisco, CA.

Hawking, S. W., and Ellis, G. E R. (1973). The Large Scale Structure of
Space-Time. Cambridge University Press, Cambridge.

Trautmann A., Pirani E A. E., and Bondi, H. (1964). Lectures on Gen-
eral Relativity. Brandeis Summer Institute on Theoretical Physics, 1964,
vol. 1. Prentice-Hall, Englewood Cliffs, NJ.



The structure of the field
equations

13.1 Interpretation of the field equations

Before attempting to solve the field equations, we shall consider some of
their important physical and mathematical properties in this chapter. The
full field equations (in relativistic units) are

Gy =81T,. (13.1)

They can be viewed in three different ways.

1. The field equations are differential equations for determining the met-
ric tensor g, from a given energy-momentum tensor 7,,. Here, we
are reading the equations from right to left. This is a Machian way of view-
ing the equations since one specifies a matter distribution and then solves
the equations to ascertain the resulting geometry. However, Einstein’s
equations are not entirely Machian since, without imposing additional
conditions, the matter distribution does not determine a unique geome-
try. The most important case of the equations is when 7, = 0, in which
case we are concerned with finding vacuum solutions.

2. The field equations are equations from which the energy-momentum
tensor can be read off corresponding to a given metric tensor g,,. Here,
we are reading the equations from left to right. It was originally thought
that this would be a productive way of determining energy-momentum
tensors. We simply choose arbitrarily ten functions of the coordinates,
namely, the symmetric g, and then we can compute G,; and read off 7,
from (13.1). However, this rarely turns out to be very useful in practice
because the resulting 7,; are usually physically unrealistic and violate the
dominant energy conditions. In particular, it frequently turns out that the
energy density goes negative in some region, which we reject as unphysi-
cal because the positive character of energy density dominates gravitation
theory.

3. The field equations consist of ten equations connecting twenty
quantities, namely, the ten components of g,; and the ten components of
T .. Hence, from this point of view, the field equations are to be viewed as
constraints on the simultaneous choice of g, and 7,;. For example, when
looking at electromagnetism, one solves the Einstein-Maxwell equations
(12.58) for the metric given the energy-momentum tensor (12.57), where
Fop = ¢ap — Ppe With F”b;b = 0. This approach is also used when
one can partly specify the geometry and the energy-momentum tensor
from physical considerations and then the equations are used to try and
determine both quantities completely.

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0013
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13.2 Determinacy, non-linearity, and
differentiability

Let us consider solving the vacuum field equations
Gy =0, (13.2)

for g,p. Then, at first sight, the problem seems well posed: there are ten
equations for the ten unknowns g,;. However, the equations are not in-
dependent but are connected by four differential constraints through the
contracted Bianchi identities

V,G* = 0. (13.3)

So we seem to have a problem of under-determinacy, since there are
fewer equations than unknowns. However, we cannot expect complete
determinacy for any set g,, since any metric can be transformed with
fourfold freedom by a coordinate transformation

a

x* = x*=x"(x) (a=0,1,2,3),

into an equivalent metric which describes the same geometry, but in dif-
ferent coordinates. From this point of view, we should regard the solutions
of Einstein’s equations as equivalence classes of space-times possessing
metrics which are related by coordinate transformations. In order to work
with a particular representative of the equivalence class, we can use the co-
ordinate freedom to impose four conditions on the g,;. These are known
as coordinate conditions or gauge conditions. For example, we could
introduce Gaussian or normal coordinates in which

go=1, ga=0. (13.4)

Then the remaining six unknowns g, can be determined by the six inde-
pendent equations in (13.2). However, there is rather more to the story,
but we postpone its consideration until §13.5. Similar remarks apply to
the full theory.

The field equations are very difficult to handle because they are non-
linear. They do not therefore possess a principle of superposition, that
is to say, if you have two solutions of the field equations, then you can-
not add them together to obtain a third. Put another way, it means that
you cannot analyse a complicated physical problem by breaking it up into
simpler constituent parts. The non-linearity reveals itself physically in the
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following way: the gravitational field produced by some source contains
energy and hence, by special relativity, mass, and this mass in turn is it-
self a source of a gravitational field; that is to say, the gravitational field
is coupled to itself. This non-linearity means that the equations are very
difficult to solve in general. Indeed, originally Einstein anticipated that
one would never be able to find an exact solution of them. It came as
something of a surprise when K. Schwarzschild found an exact solution in
1916 shortly after the publication of the theory. However, Schwarzschild’s
solution arises by making a symmetry assumption, indeed the simplest
assumption of all, namely, spherical symmetry. Today there are a large
number of solutions in existence, probably in excess of four figures (de-
pending on how you count them). Nearly all of them have been obtained
by imposing symmetry conditions or other simplifying assumptions. We
discuss the role they play in understanding the behaviour of solutions to
Einstein’s equations in more detail in §13.10 below.

Ideally, one wants to know what the theory says about physically impor-
tant situations. In cases where symmetry is absent, or where the symmetry
conditions are not strong enough to determine a solution, then recourse
has to be made to either numerical or approximation methods. Approxi-
mation methods are used in situations where the the gravitational field is
weak so that some of the terms in Einstein’s equations can be ignored.
We met an example of using approximation methods in the Newtonian
limit of the last chapter. Another situation in which the gravitational field
is weak is when we are looking at the gravitational field a long way from
an isolated source. From a mathematical viewpoint, the weakness of the
gravitational field means that the linear terms in certain equations are
more important than the rest. We shall meet a linearized form of the field
equations in Chapter 21. Numerical methods are also very important and
have played an important role in constructing numerical models of, for
example, the gravitational radiation produced by colliding black holes,
which have been an essential ingredient in the detection of gravitational
waves. The basis of numerical relativity is the so-called 3+1 formalism
which we describe in Chapter 14.

There are important mathematical questions concerning the differen-
tiability of solutions to Einstein’s equations. However, we shall not take
them into account since we will assume that all our fields are smooth or
C™, so that they can be differentiated indefinitely. This condition can be
weakened considerably; for example, if we assume that the metric is C?,
which means that it can be differentiated twice, then this ensures that the
Einstein tensor G, can be defined and thus the field equations can be con-
structed. There are other conditions affecting the differentiability which
are connected with surfaces of discontinuities that arise in the theory, for
example the surface of a material body. One important set of conditions
(analogous to the continuity conditions of potential theory) are the Lich-
nerowicz conditions: second and higher derivatives of g,;, need not be
continuous across a surface of discontinuity S, but g, and g, must be
continuous across S.
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13.3 The cosmological term

Einstein was rather sceptical about the full field equations (13.1) and
regarded the vacuum field equations (13.2) as more fundamental. How-
ever, Einstein considered that even these equations were deficient in
that they violated Mach’s principle in the form M2, since they admit
Minkowski space-time as a solution. This means that a test body in an
otherwise empty universe would possess inertial properties (as all bod-
ies do in special relativity) even though there is no matter to produce the
inertia. As we pointed out before, a set of partial differential equations pos-
sesses large classes of solutions, many of which are unphysical. In order
to decide which solutions are realized in nature, one must also prescribe
boundary conditions. A natural requirement would be to take space-
time to be asymptotically flat so that the Riemann tensor vanishes at
spatial infinity. However, this requirement does not preclude a flat space
solution of the vacuum field equations.

Einstein, realizing the need for prescribing appropriate boundary con-
ditions, adopted a different approach. Cosmology, that is, the modelling
of the universe, had not really emerged as a separate science prior to gen-
eral relativity. In as much as there was some generally accepted model of
the universe in existence then, it was rather an imprecise one. It suggested
that, overall, the universe is static (i.e. not undergoing any large-scale
motion) and homogeneous (i.e. filled uniformly with matter). There are
two possible ideas about the spatial extent of the universe, either it is open
(or infinite), in which case it goes on forever in spatial directions, or it
is closed (compact or finite), in which case it is bounded in spatial
directions. Einstein therefore tried to incorporate a simple model of the
universe into the theory and then use this model to prescribe boundary
conditions. In particular, he tried to find a static closed solution of the field
equations, corresponding to a universe uniformly filled with matter. In so
doing, he found he was forced to modify the field equations by introduc-
ing an extra term, the cosmological term Ag,,, where A is a constant
called the cosmological constant, so that they become (with our sign
conventions)

Gap — Agap = 8T g (13.5)
Since
Vg =0,
we see that (13.5) is consistent with the requirement
V,T% = 0. (13.6)
Using the results of {11.3, the corresponding L.agrangian becomes

L= (R+2MN)v—g+26Lp. (13.7)



Indeed, if, quite generally, we demand that the gravitational field
equations should

(1) be generally covariant,
(2) be of second differential order in g,
(3) involve the energy-momentum tensor 7,; linearly,

then it can be shown that the only equation which meets all of these
requirements is

Rap + Rgap — Agab = KT, (13.8)

where u, A, and k are constants. The demand that 7, satisfies the con-
servation equations (13.6) then leads to y = —%. In fact, it was in the
same year as Einstein proposed his equations that the great mathemati-
cian Hilbert derived them independently from a variational principle.
Of course, they lacked the physical meaningfulness which Einstein had
bestowed on them, especially through their reliance on the principle of
equivalence.

The full field equations with the cosmological term are Machian in the
sense that they no longer admit flat space as a solution. However, shortly
after Einstein obtained the static cosmological solution, it was discovered
that the universe is not in fact static, but rather is undergoing large-scale
expansion, as evidenced by the galactic red shift. Einstein therefore dis-
carded the static solution. At the same time non-static closed solutions
of the field equations without the cosmological term, corresponding to
an expanding distribution of matter, were found. Worse still, from the
Machian viewpoint, de Sitter discovered a vacuum solution of the field
equations with the cosmological term. These discoveries led Einstein to
reject the cosmological term. He did so with some vehemence; he report-
edly described his original decision to include it as his ‘biggest blunder’.
However, despite the fact that the inclusion of the term does not make the
theory any more Machian, there is no a priori reason to leave it out. The
constant A is assumed to be ‘very small’ in some sense and only of sig-
nificance on a cosmological scale. Most treatments of cosmology include
the term, but it is usually omitted for considerations connected with ter-
restrial or solar system phenomena and, indeed, we shall neglect it until
we come to relativistic cosmology. From the cosmological perspective,
rather than regard the term —Ag,, as sitting on the left-hand side of the
Einstein equations, one can regard +Ag,; as a source term sitting on the
right-hand side of the equations describing the energy-momentum tensor
of so-called dark-energy. We will look at this in more detail when we con-
sider relativistic cosmology in Chapter 26. It is also worth noting that it
is possible to incorporate a number of ad hoc assumptions into Newto-
nian theory and obtain a cosmological theory which has much in common
with relativistic cosmology (see §22.3). In the Newtonian model, if A > 0,
then all matter experiences a ‘cosmic repulsion’, which tends to disperse
the matter to spatial infinity. Conversely, A < 0 corresponds to a cos-
mic attraction. Since all matter experiences the force, it provides, in some
sense, a realization of a long-range Machian-type interaction.

The cosmological term 221
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13.4 The conservation equations

We have suggested an axiomatic formulation of general relativity which
replaces R%.; = 0 by Gy, = 87T, in Axiom I(iil) of §8.5. However, it
turns out that, rather surprisingly, the geodesic Axioms II (ii) and II(iii)
need not be stated separately in general relativity because it can be shown
that they must hold automatically by virtue of the field equations
themselves. That this is possible can be made plausible by considering
more carefully the motion of a test particle or photon in a gravitational
field. Strictly speaking, the test particle or photon is itself part of the
energy and matter present and so should be contained in the energy-
momentum tensor. This tensor, in turn, being the source term in the
field equations, determines the geometry of space-time and in particular
its geodesic structure. In this sense, the motion of a test particle should
somehow be contained in the field equations. In fact, it is coded into the
Bianchi identities, since they lead to the requirement that

V,T% =0, (13.9)

namely, the conservation equations. It is possible to show that these
equations specify unique equations of motion for a point particle in a grav-
itational field and that the ensuing trajectory of that particle is a geodesic
of the corresponding metric. The original demonstration of this result
was started by Einstein and Grommer, and developed further by Einstein
with contributions from Infeld and Hoffman. Their approach rests on
treating test particles as singularities of the field and, as a consequence,
relies on a special mathematical apparatus which they had to construct to
cope adequately with these singularities. The resulting work is both very
complicated and voluminous and we will make no attempt to describe it.
However, the results were confirmed subsequently by Geroch and Jang,
and by Gralla and Wald using more modern mathematical machinery.

There is one neat little calculation which is very suggestive of what
happens in essence in the general case. It consists of investigating the
equations for a distribution of dust,

T% = pouu®.

Then the conservation equations (13.9) require
Valpouu®] = 0.

The trick is to think of the term in square brackets as being the product
of (pou®) and u and to apply the Leibniz rule to this product:

u'V(pou®) + poul (Vyu) = 0. (13.10)
We next contract this equation with #, and use the result

uu® =1 = u,(Veu*) =0,
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which makes the second term vanish, leaving
Vb(poub) =0.

Substituting this result back in (13.10) and dividing by py # 0, we get
WVt =0,

which is the condition for #* to be tangent to a geodesic. In other
words, the conservation equations necessitate geodesic motion for the
dust particles.

13.5 The Cauchy problem

In this section, we look in some detail at the following mathematical
problem:

Given the metric tensor g,; and its first derivatives at some initial time,
then construct the metric which corresponds to a space-time for all
future time.

"This is the problem of finding the causal development of a physical system
from initial data and is a fundamental problem in the theory of partial
differential equations. It is known as the Cauchy problem or initial
value problem, or IVP for short. For simplicity, we will concentrate on
the case of vacuum solutions of the Einstein equations.

We start with a three-dimensional spacelike hypersurface Y, in the
manifold, which we can take without loss of generality to be given by
x° = 0. We specify g, and its first derivatives g, on 3o (Fig. 13.1).
However, if we know g,; everywhere on Xy, then we know its spacelike
derivatives gu. everywhere on . Hence, it is sufficient to specify the
following initial data on j:

8ab>s  8ab,0>

that is, the metric potentials and their time derivatives. Our problem is
then to use the second-order vacuum field equations to try and solve for
the second time derivatives g.,00. Let us suppose that we have found some
equations for determining g,00. Then, by repeatedly differentiating these
equations with respect to time, we can get all higher time derivatives of g,;.

8ab
Prescribe
8ab,0

Fig. 13.1 The initial data for the Cauchy IVP.
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It follows that, if we assume that g,; is an analytic function of x°, we can
develop it in a power series in x°. More precisely, if Pand O are the points
(0,x¢) and (x%,x5) so that Q lies on the x°-curve passing through P (Fig.
13.2), then, by Taylor’s theorem,

— 1 n
2a(Q) = &ab(P) + Zan o (P’ + D — Ol p(x")" (13.11)
n=2

Before considering the more complicated situation of the vacuum Ein-
stein equations, we illustrate the idea by applying the method to determine
solutions of the wave equation. The wave equation in Minkowski space
may be written as

¢ ¢ 0?9 %@

Since this is a second-order equation in time, we expect that, if we specify
¢ and ¢, := 0¢/Jt on some initial hypersurface ¥, given by ¢ = 0, then
there will exist a unique solution of the wave equation satisfying these
initial conditions. We now show that this is true in the special case that we
have real analytic initial data (i.e. both ¢(0, x) and ¢,(0, x) are smooth
functions with convergent Taylor series).

If we are given ¢ at ¢ = 0, then, by differentiating in the hypersurface
Y0, we know the terms on the right-hand side of (13.12) and hence we
know ¢, at ¢t = 0. Differentiating (13.12) with respect to ¢, we obtain

Po_ o 0o 09
0B 0t0x?  010y*  0102%’

(13.13)

So, if we are given ¢, on Y, then, by differentiating in the hypersurface
again, we obtain the terms on the right-hand side and hence we can find
¢ att=0.

Similarly, if we differentiate (13.13), we obtain

Po_ Po o | 0%
ot 0r20x2  00y* 00z’

(13.14)

Fig. 13.2 Determining the metric at a later time x°.



However, since we now know ¢ on ¢t = 0, we can calculate the right-
hand side of (13.14) and read off the value of ¢, at ¢ = 0. Carrying on
in this way, we can obtain all the 7 derivatives of ¢ at t = 0. We now regard
these as the coefficients of a Taylor series expansion in 7 of ¢(x, ) about
t = 0. This gives us the power series

EDY (%tf(O,x)) 7 (13.15)

This will be our required solution, provided the series converges. In this
simple case, we see that the coefficients of #2* are just the sums of the
2k derivatives with respect to x, v, and 2 of ¢(0,x, v, 2) but, since this is
real analytic in x, y, and 2, we can bound these coefficients by those of
a convergent series. For the odd coefficients, a similar result applies, this
time using the fact that ¢,(0, x, v, 2) is real analytic.

A very general result which gives existence and uniqueness of solu-
tions to systems of analytic partial differential equations with analytic
initial conditions is provided by the following theorem due to Cauchy and
Kowalevskya.

Theorem (Cauchy-Kowalevskya)
Let ®4(t,x),A=1,2,...,N, x € R", be functions that satisfy the system
of partial differential equations

2 HA B 2HB 2HB
0@ :F"(z,x,ch 00" 0727 07 ) (13.16)

or? > 9x2” OxOxB’ DtOxe

where F! for A = 1,2,...N are analytic functions of their arguments.
Then, given analytic initial data,

&1(0,x) = Pl(x), %A(o,x) = Q4(x), (13.17)

the initial value problem given by (13.16) has a unique analytic solution
in a neighbourhood of z = 0.

We do not give the proof of the above theorem but simply remark that
the basic idea is to repeatedly differentiate (13.16) and use the initial data
to obtain a power series expansion in ¢ for ®(z x), just as we did for
the wave equation. One then uses the analyticity of /! to construct a
simpler scalar equation that we can explicitly solve whose solutions are
analytic and bound |®“(x, z)|. Such an equation is said to majorize the
PDE (13.16). Then, by comparing the Taylor series expansions in z, one
concludes that the power series expansion for ®(z, x) converges (for suf-
ficiently small ). Uniqueness follows from the fact that the majorizing
solution vanishes for zero initial data.
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13.6 Einstein’s equations as evolution
equations

We now show how Einstein’s equations can be regarded as evolution
equations. To get an idea of how this works, we introduce a local coordi-
nate system (x%) = (x%,x%), a = 1, 2,3, where x° is a timelike coordinate
(i.e. g% > 0) and x® are spacelike coordinates which provide coordinates
on the spacelike hypersurfaces ¥, given by x° = ¢ = constant.

For simplicity, we will specialize to the vacuum case R, = 0 and split
R, = 0 into three equations

Roo = 0, (1318)
ROa = 0) (1319)
Rop = 0. (13.20)

A straightforward calculation (exercise) reveals that the field equations
can be written in the following form:

Roo = —%gaﬁgaﬁ,oo + Moo = 0, (13.21)
ROa = %gOBgaﬁ,OO + MOa = 03 (1322)
Ra,@ = _%gO Ogaﬁ,OO + Maﬁ = 0> (1323)

where the terms involving M can be expressed solely in terms of the
initial data on Y. This gives rise to two problems of determination:

1. The system (13.21)—(13.23) does not contain gop,,00; hence, we have a
problem of under-determination.

2. The system (13.21)—(13.23) represents ten equations in the six un-
knowns g, ,005 hence, we have a problem of over-determination. This
means that there must be compatibility requirements for the initial data
on Y.

We have met Problem 1 before, and it is not unexpected, since it relates to
the fourfold freedom of coordinate transformations. Since the evolution
of go, is not constrained by (13.21)—(13.23), we therefore take the bold
step of prescribing gy, in a neighbourhood of Y. As we will see below,
this amounts to a coordinate or gauge condition and does not affect the
geometric or physical content of the equations. For example, one could
choose coordinates x* on Yy and extend these to a neighbourhood of ¥
by choosing x* to be constant along geodesics which have initial vectors as
unit normal to the hypersurface, and choosing x° to be the corresponding
affine parameter. This results in Gaussian normal coordinates, where
one has gy Z 1and Loa £ 0. More generally, a choice of go, amounts
to a choice of lapse and shift (see §14.10 for details). Having specified
Zoas We see that equation (13.23) has the required form in order to ap-
ply the Cauchy—-Kowalevskya theorem. So that given analytic initial data
£a3(0,x7) and gn,0(0,x7) on ¥y, we obtain a unique analytic solution for
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2as(x%, x7) for x° in a neighbourhood of 1 = 0. Combining this with the
Zoa terms, this determines the metric in a neighbourhood of the initial hy-
persurface. For this reason, we call the equations R,z = 0 the evolution,
dynamical, or main equations.

However, this all seems too good to be true. We appear to have obtained
the metric g,, without using the Ry, = 0 and Ry = 0 equations. This is
where we need to address Problem 2. If we want our metric to be a solution
of the vacuum Einstein equations, we also need (13.21) and (13.22) to
be satisfied. Using (13.23) on the initial hypersurface, we can replace the
ga8,00 terms in both these equations by expressions that depend only on
the initial data. It therefore transpires that we are not able to choose the
initial data freely but must choose it so that the constraints Ry, = 0 and
Ry, = 0 are satisfied.

To summarize the situation so far, we chose a gauge by specifying go,
in a neighbourhood of ¥, and then chose initial data which satisfy the
constraints on Y. Note this is a non-trivial task; see §14.12 for details.
We may then use the Cauchy—Kowalevskya theorem to solve the dynam-
ical equation (13.23) and obtain g, in a neighbourhood of ¥, which,
together with go,, determines the full metric g, in a neighbourhood of
Y. However, this is not enough for a solution of Einstein’s equations. We
need the constraints to be satisfied not only for z = 0 but at later times as
well and it is not at all obvious if this is true. The reassuring answer to this
question is that, if the constraints are satisfied on the initial hypersurface
Yo, they are also satisfied in a neighbourhood of ¢ = 0. The reason for this
is the contracted Bianchi identities, as we sketch out below. We first show
that, if R,g = 0, then the constraint equations Ry, = 0 and Ry = 0 are
equivalent to G,° = 0.

If R,p = 0, then the scalar curvature is given by

R = g"Roo + 2¢"*Roa. (13.24)
So, using Gtlt=R}— %5513, we have (exercise)

Go°
G,°

16% R0, (13.25)
£ Ro,. (13.26)

Since g% # 0, it immediately follows that, if R,z = 0, then the constraint
equations imply that Gy = 0 and G,° = 0. On the other hand, we now
show that, if R,3 = 0, then G’ = 0 implies G,? = 0 and hence, in
particular, (13.19) and (13.18) are satisfied. From the definition of G,°,
and equation (13.24) for R, we have

Go” = g%’ Roa — 102 (8" Roo + 28" Roy). (13.27)

But, by (13.25) and (13.26), G,° = 0 implies that Ry, = 0 so that, by the
above equation, we must have G,? = 0. We also have

Go? = Ro” = g% Ry + £"*Roy, (13.28)
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which again vanishes by virtue of (13.25) and (13.26). Indeed, if we have
R,5 = 0 and know G,°, then we may use (13.25) and (13.26) to give Ry
and Ry, and then substitute these in (13.27) and (13.28) and divide by
g% # 0 to obtain the remaining terms (exercise):

ZgBO gB/\

B _ 0 0

GQ - gTGO + @G)\ s (1329)
08 2 (1Y

G.P = %OGQO — 168 (ZGOO + g‘g;)()GA()) : (13.30)

Thus, following Lichnerowicz, we may write the vacuum field equations
in the normal form

R.,s=0, G =0,

where the first six equations are evolution equations for g,g,00 and the
last four equations are constraint equations which the initial data must
satisfy on Y. This resolves Problem 2.

We now prove a remarkable result

If the constraint equations are satisfied on Xy, then they are satisfied
for all time, by virtue of the contracted Bianchi identities.

Writing out the contracted Bianchi identity V,G,® = 0 in coordinates
gives

0,G. = —05G" + T4, G0 + 153G —T5,G° — T3, G,Y. (13.31)

Substituting for Gy? and G,” using equations (13.29) and (13.30), we
obtain a linear first-order homogeneous system for G,°. Since the con-
straints are satisfied on the initial surface, we also have G,° = 0 when
t = 0. In the analytic case that we are considering here, we may apply
the Cauchy—Kowalevskya theorem to show the existence of a unique so-
lution to the above initial value problem. However, since G;° appears in
every term on the right-hand side of the differential equation, we see that
G, = 0 is a solution, which by uniqueness must be the only solution.
We have therefore used the contracted Bianchi identity together with the
vanishing of R,z to show that, if the constraints are satisfied on the ini-
tial hypersurface, they are satisfied at subsequent times. Furthermore, we
have also showed that, if R,3 = 0 and the constraints G,° are satisfied for
all z, then Einstein’s equations are satisfied.

In summary, we have shown that, if we have a hypersurface >, with
coordinates (x®) and we want to solve the Cauchy problem, we first need
to choose analytic initial data g,5(0) and gns,0(0) which satisfy the con-
straint equations G,° = 0 on 3. We next need to specify the components
of go, as analytic functions in a neighbourhood of the hypersurface. As
we will see in §14.10, this amounts to choosing how we develop the co-
ordinates (x“) on X into coordinates (x°, x*) in a neighbourhood of X.



Solving Einstein’s equations in harmonic coordinates

Having done this, we need to solve the dynamical equations R,g = 0 for
ga8> Which are 6 equations for 6 unknowns. In the case of analytic initial
data, we know from the Cauchy-Kowalevskya theorem that there exists a
unique analytic solution to these equations. Furthermore, we know that,
because of the contracted Bianchi identities for analytic initial data, the
constraints are satisfied not just on ¥( but in a neighbourhood of the initial
hypersurface. By combining g,s with go,, we obtain the space-time met-
ric g., Which satisfies both the dynamical equations and the constraints
and is therefore the required solution to the vacuum Einstein equations.
Furthermore, in the given coordinates, this solution is unique.

The above discussion made extensive use of the Cauchy—Kowalevskya
theorem, which required analytic coordinate conditions and analytic data.
Physically, this is rather a strong restriction, since an analytical function is
fully determined by its value and those of its derivatives at a single point.
Thus, a knowledge of the function in an arbitrary small region determines
its value everywhere. This does not fit in well with our notion of causality
in general relativity, where nothing can travel faster than light. Because
of this, a major breakthrough in the Cauchy problem was achieved by
Choquet-Bruhat in 1952 when she showed the existence and uniqueness
of solutions to the vacuum Einstein equations in a small neighbourhood
of ¥y for smooth (or more precisely at least C°) initial data. For com-
pleteness, we sketch the proof in the next section, which makes use of
harmonic coordinates.

13.7 Solving Einstein’s equations
in harmonic coordinates

As we have seen above, obtaining a unique solution of Einstein’s equations
requires specifying a choice of coordinates. A particularly useful choice
is to make use of harmonic coordinates, in which the coordinate
functions x%, regarded as scalar fields, satisfy the wave equation

Ox% = gV,.Vx? =0, a=0,...,3. (13.32)

A short calculation (exercise) shows that this is equivalent to the har-
monic gauge condition

H* = g1, = 0. (13.33)

In a general coordinate system, one can show that the Ricci curvature may
be written

Ruy = RE + Hiyyps (13.34)
where

Ral—g = _%gﬁdgab,cd + Qab(éT) ag)a (1335)
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and Q(g, dg) only depends on g, g%, and Zab,c and contains no second-
order derivatives.

So in harmonic coordinates the vacuum Einstein equations become
the reduced Einstein equations given by

R = 0. (13.36)

Since the terms involving the highest derivatives are proportional to
240,048, the reduced equations give a hyperbolic wave-like equation
for g,5. Because of this (and unlike the full Einstein equations), these
equations are in a form where one can apply standard PDE theory to
show the existence of a unique smooth solution given smooth initial data
for g, and gu0 on Xy. Note that, unlike the previous analytic case, we
solve (13.36) for all the components of g, not just go5. Of course,
solving the reduced Einstein equations is not the same as solving the full
Einstein equations, unless one can also ensure that H, = 0 on M. We now
show that one can choose the initial data in such a way that this is true.

To obtain the initial data for (13.36), one first sets goo = 1 and gopo, = 0
on Yy and then solves the constraint equations

G =G, =0, (13.37)

on ¥, to determine a positive definite metric v, := —gqos and a symmet-
ric tensor K3 = gq,0 0N Xp. To complete the initial data for (13.36), we
still need to choose gopp on Xy and it turns out (exercise) that one can do
this in such a way as to ensure that

H,=0 onY. (13.38)

Furthermore, the constraint Gy, = 0 on Xy shows that, if H, vanishes on
3o, then so does H, . On the other hand, the contracted Bianchi identity
V.G% = 0 implies that H, satisfies a wave-like evolution equation, which
again can be shown to have unique solutions in the smooth case. Since
setting H, = 0 everywhere on M satisfies both the wave-like evolution
equation and the initial conditions, by uniqueness it must be the solution.
Thus, we have shown that we can find initial conditions g, and g for
(13.36) that satisfy the constraints and ensure that H, vanishes identically.
We now use standard hyperbolic PDE theory to solve R% = 0 for g, and,
since H, vanishes, it follows that we also have R, = 0. Thus, the g, that
we obtain is also a solution of the vacuum Einstein equations. It remains to
show that all solutions of Einstein’s equations can be obtained in this way.
We postpone this to the next chapter, where we adopt a more geometrical
approach to the Cauchy problem.

A major improvement to this local result was made with the subse-
quent global existence and uniqueness theorem by Choquet-Bruhat and
Geroch. This global theorem shows that, among all the space-times (M, g)
which are solutions of the vacuum Einstein equations and such that ¥ is



an embedded Cauchy surface on which the metric induces the specified
initial data, there exists a maximal space-time (M",g") and it is unique.
Here the term maximal means that any space-time (M, g) that is a solu-
tion of the Cauchy problem is isometric to part of (M", g"). The questions
of existence, uniqueness, and stability (i.e. do ‘small’ variations of the
initial data result in ‘small’ variations in the solution?), and the extent
to which solutions can be developed in general relativity, are deep and
complex questions, and are the topics of current research.

13.8 The hole problem

We have, in fact, been somewhat imprecise in setting up the Cauchy prob-
lem and in so doing we have covered up something which had originally
caused Einstein considerable difficulty. We defined the Cauchy problem
as starting with a manifold with no metric on it (a so-called bare mani-
fold), prescribing initial data on a hypersurface in the manifold, and then
using the field equations to generate a unique solution for the metric g.
However, as we know from the principle of general covariance, we may
then apply a coordinate transformation to g and so obtain another solution
g, say. How are the solutions g and g related physically?

This question had troubled Einstein and was one of the reasons why,
even though the principle of general covariance was formulated in 1907,
another eight years were to elapse before the field equations were finally
obtained. Einstein raised the question in the form of the ‘hole problem’.
Suppose that the matter distribution is known everywhere outside of some
hole H in the manifold. Then the field equations together with the bound-
ary conditions will enable the metric g to be determined inside H and, in
particular, at some point P, say. Now carry out a coordinate transforma-
tion which leaves everything outside H fixed, but which (from the active
viewpoint) moves points around inside H, for example moving P to I,
say (Fig. 13.3). Next, determine afresh the metric g in H. Is g the same
as g? The answer is that, although g will in general be functionally differ-
ent from g (i.e. the components of g will involve different functions of its
coordinates compared with g), it will still represent the same physical so-
Iution. How can this be so if the points inside H have moved? The nub of
the argument is that the point P in the bare manifold is not distinguished
from any other point. It does not become a point with physical meaning
(that is, an event) until a metric is determined in H. As John Stachel puts
it so succinctly, ‘no metric, no nothing’ (2001). Thus, a physical solu-
tion, that is, a space-time, consists of a manifold together with a metric.
Two space-times are physically equivalent, in other words, give rise to the
same gravitational field, if the two metrics can be transformed into each
other. Mathematically, we should regard physical solutions as equivalence
classes of space-times possessing metrics which are related by coordinate
transformations.
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13.9 The equivalence problem

The question which then arises is, Given two metrics, g and g, are they
in fact the same, that is, does there exist a coordinate transformation
transforming one into the other? This is a classic problem in differential
geometry, known as the equivalence problem, and its classic solution
by E. Cartan involves computation and comparison of the tenth covariant
derivatives of the Riemann tensors of g and g.

As one discovers in working out the Riemann tensor, even for some-
thing as simple as the Schwarzschild solution (see Exercise 6.32), it is a
non-trivial task. It is all too easy to make slips in a longhand calculation.
In fact, this task of undertaking large amounts of algebraic calculation
has been made much more tractable and less error-prone with the ad-
vent of general purpose computer algebra systems, the best known of
which include MATHEMATICA, MAPLE, and REDUCE. The system
originally most used in general relativity (for which it was specifically
designed) is the system SHEEDPR together with its extensions CLASSI
(for classifying metrics) and STENSOR (for symbolic tensor manipula-
tion). These systems make possible computations which would have been
impossible to contemplate undertaking by hand. Even so, they are not ca-
pable currently of computing anything like the tenth covariant derivatives
of Riemann tensors and so appear to be of little use in the equivalence
problem.

The situation has been improved profoundly by the work of A. Karl-
hede (1980). We will not pursue the details, but in broad outline the
Karlhede approach is to classify a geometry by introducing a frame or
tetrad, which is defined in stages, such that the Riemann tensor and
its covariant derivatives take on a simple or rather canonical form at
each stage. This is a well-defined procedure leading to a set of invariant
quantities characterizing a given geometry. With this approach, the worst
case theoretically involves computing the seventh covariant derivative,
although, for vacuum solutions of the Einstein equations, it was shown
(Ramos and Vickers, 1996) that this can be lowered to the fifth derivative.
However, experience in using the algorithm suggests that one rarely needs
go beyond the third derivative and often the first derivative is enough.
This makes computer calculation a viable proposition. Thus, given two
metrics, one first computes their invariant classification. If the two sets
are different, then so are the metrics. If they are the same, then there may
be a transformation relating them. The problem is then reduced to solv-
ing a set of four algebraic equations to determine the transformation. In
general, this is non-algorithmic but, in practice, it is often manageable.

13.10 The status of exact solutions

The field equations of general relativity are incredibly difficult to solve.
First, they are non-linear so, in particular, you cannot superimpose solu-
tions or break down complex physical situations into its simpler compo-
nents. But, more immediately, when seen as a set of second-order partial
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Fig. 13.4 The first twenty-six terms of the Ricci tensor component Ry for a
general space-time.

differential equations for the metric, they are, indeed, incredibly compli-
cated. One of the authors was the first to write out the equations explicitly
using a computer algebra system he had designed called LAM (Lisp
Algebraic Manipulator) (see d’Inverno 1980). If we reduce the num-
ber of terms by denoting the determinant of the metric as the symbol g
(rather than the explicit expression for g in terms of the metric g,;) and
write out the components of the metric explicitly as (G00, G01, ..., G33)
which are all functions of the four coordinates (7, X, Y, Z), then the first
twenty-six terms of the components Ry are shown in Fig. 13.4. There are
of the order of 100,000 terms in the Ricci tensor and, if we were to output
the equations in a normal-size font on A4 paper and stack up the paper,
then the stack would be of the order of 3 m high! Not surprisingly, Ein-
stein thought it would not be possible to find exact solutions of the field
equations. So it came as something of a shock when Schwarzschild pro-
duced a vacuum solution in January 1916, a little over a month after the

The status of exact solutions
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publication of the field equations. Schwarzschild looked for the simplest
solution, namely a static spherically symmetric solution. As we shall see,
we do not need the assumption of a static space-time because the vacuum
field equations force a spherically symmetric solution to be static, again
illustrating the special nature of solutions of non-linear partial differential
equations. This solution turns out to be the prototype of a massive black
hole and was eventually generalized to the Kerr—Newman solution with
mass, charge, and spin. Moreover, we have the general theorem that an
isolated black hole tends asymptotically in time to the Kerr—Newman so-
lution, so exact solutions have lead to a good understanding of an isolated
black hole.

Perhaps more surprisingly, in the following years many thousands of
exact solutions were discovered. One way to search for exact solutions is
to consider an ansatz of some kind on the functional form of the met-
ric and then try and solve the resulting field equations. This approach
has proved to be very fruitful. As an example, Harrison assumed that the
metric took on a particular form based on the method of separation of
variables and was able to find explicit forms for forty vacuum solutions
(Harrison 1955). Using the computer algebra system LLAM, it was possi-
ble to determine explicitly that the solutions were, indeed, vacuum. This
involves a set of calculations which it is estimated would take more than a
lifetime to complete by hand - and hence the need for computer algebra
systems. Moreover, using the successor system SHEEP (LAM(B) grown
up!) and its extension CLLASSI, it is possible to provide an invariant geo-
metrical classification of the solutions. This led to the discovery that two of
the solutions are in fact the same, i.e. there exists a coordinate transforma-
tion transforming one solution into the other. This invariant classification
is important for classifying solutions and thereby distinguishing between
solutions which are in fact different and not simply exhibited in differ-
ent coordinate systems. Examples of this are well known: indeed, the
Schwarzschild solution itself has apparently been ‘discovered’ in the lit-
erature on some twenty different occasions! The classic book on exact
solutions (Kramer et al. 2009) has put the many known exact solutions
into an encyclopaedic form.

The fact that there are many known exact solutions would seem like
good news. The bad news is that many of them are unphysical in character
in that they possess singularities or other unphysical regions and so are un-
likely to approximate to real physical situations. It seems to be the nature
of non-linear partial differential equations that they throw up these un-
physical exact solutions. There are some insightful exact solutions which
can be viewed as abstracted away from sources, and exact cosmological
solutions have played an important role in cosmology historically. There
are many important situations where we would like to have exact solutions
but none are know to exist. These include the 2-body problem, interior
black hole solutions, and radiation from an isolated source. Since exact
solutions for these situations are unavailable, recourse has to be made to
approximation theory and numerical relativity, that is, solving Einstein’s
equations numerically on a computer.



Exercises

13.1 (§13.3) Show that the Lagrangian (13.7) gives rise to the full field
equations with cosmological term (13.5).

13.2 (§13.3) Show that, if (13.8) is to be consistent with (13.6), then
1
H=—3.

13.3 (§13.3) Show that the trace of the Maxwell energy-momentum ten-
sor is zero. If A = 0, then what value of # ensures that both sides of (13.8)
are trace-free? Hence, propose an alternative Einstein—-Maxwell theory.

13.4 (§13.3) Show that flat space is not a solution of (13.5).
13.5 (§13.4)
(1) Show that the conservation equations for a perfect fluid lead to

(pO + P)“avaub + (uaub - gdb)VaP =0

(if) We suppose that py = po(p) and define the following quantities:

szXP(/p-ki(p))’

Deduce that C?Q,, = 0.

13.6 (§13.5) If g, is known everywhere on ¥, then establish that gu,, is
known everywhere on S.

13.7 (§13.5) Establish the equations (13.21), (13.22), and (13.23).

13.8 (S13.5) Show that the condition R,z = 0 leads to equations (13.25)
and (13.26). [Hint: use the device of breaking up all latin indices into their
zero and Greek consituents, e.g. %Ry, = g°°Roo + g°“Rya, etc. ]

13.9 (§13.5) Derive (13.29) and (13.30).

13.10 (§13.5)

(i) Establish (13.31).

(ii) Show that G,° satisfies a homogeneous differential equation of the
form

0 b 0 b 0
Ga ,OZCQaGb ,a+DaGb 5

where C*, and D?, only depend on the metric and its first derivatives.
(iii) Assuming that G,° is an analytic function of x°, use (i) above to
develop it in a formal power series in x°. Show that, if [G,°]s = 0, then
GLl=o.

Exercises
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13.11 (§13.7) Show that [Jx* = 0 implies that
H* = g1, = 0.

[Hint: for fixed index a, the coordinate function x¢ is just a scalar field
which you can write as x(?) to indicate that a is just a label. It then follows
that its derivative V,x(?) is a covector field (rather than a type (1, 1) tensor
as might first appear). So establish the result for a fixed a and then relax
the restriction.]

13.12 (§13.7) Show that, if g, and gq,0 satisfy the constraint equations
on Xy, one can choose gopo on 2o so that

H*=0 onX.

[Hint: first use H° = 0 to obtain an expression for gyo,o in terms of 8aB
and g,3,0, then use H* = 0 to find goq,0]-

13.13 (§13.10) There are a number of calculations in the book and
the ensuing exercises which involve long but straightforward calcula-
tions and they would benefit from the use of a computer algebra system.
The more important systems include MATHEMATICA, MAPLE, RE-
DUCE, MACSYMA and AXIOM, but there are many others. The
optional exercise is to investigate whether you wish and are able to gain
access to such a system. There are then the questions of their cost, if any,
whether your institution (if you have one) has access to them, how much
time and effort is involved in learning to use them, and the associated issue
of supporting documentation and help facilities. It is worth mentioning
that all the postgraduates currently doing gravity research known to us
make use of these systems. The system SHEEP, which we reported on in
§13.10 for investigating exact solutions in general relativity, is currently
freely available from http://www.maths.gmul.ac.uk/ mm/shp/. See also
the Living Reviews article of Malcolm MacCallum “Computer algebra
in gravity research” at https://link.springer.com/article/10.1007/s41114-
018-0015-6 which has many other links.

Further reading

The treatment of the Cauchy problem is based on that in Adler et al.
(1975) and Wald (1984). For a comprehensive treatment of the Cauchy
problem, see the book by Ringstrom (2009). A survey of the use of alge-
braic computing in general relativity is given in the article by d’Inverno
(1980), which appears in the Einstein centenary volume edited by Held



(1980). Most of the known solutions to Einstein’s equations can be found
in the book by Kramer et al. (2009).
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Chicago, IL..

Further reading 237






The 3+1 and 2+2
formalisms

14.1 The geomeiry of submanifolds

In the previous chapter, we looked at the Cauchy problem using a spe-
cial coordinate system. In this chapter, we will look at a more geometrical
approach to the problem. We will start by looking at the way in which a
hypersurface ¥ is embedded in a space-time and the geometric data that
one needs to reconstruct the curvature of the space-time, from this. The
key quantities are the induced metric and the extrinsic curvature of
the hypersurface . We then go on to look at the way in which one can
introduce a time function ¢ and use this to slice up the space-time M by a
family of spacelike hypersurfaces, or foliation, ;. The geometry of the
foliation can be described in terms of the lapse function, and the extrin-
sic curvature can be given an alternative description in terms of the rate
of change of the induced metric. The final ingredient is to introduce a
timelike vector field, or fibration, whose integral curves may be used to
identify points on neighbouring, ¢ = constant, hypersurfaces. The geom-
etry of the fibration can then be defined in terms of the shift vector. The
lapse and shift are freely specifiable and encode the fourfold coordinate
freedom in describing the geometry. This machinery allows one to view
general relativity from a different perspective as a dynamical theory in
which Einstein’s equations are encoded in a pair of first-order differential
equations which describe the way in which the dynamical variables, the
induced metric, and the extrinsic curvature, evolve with the time func-
tion z. A knowledge of the induced metric and the lapse and shift may be
used to reconstruct the space-time metric and hence the geometry of the
space-time. A slightly different form of these equations, called the ADM
formalism, was derived by Arnowitt, Deser, and Misner (1959) from
their Hamiltonian formulation of general relativity and formed the ba-
sis for what Wheeler (1963) called geometrodynamics. In §14.13 we
look at an alternative approach called the 2 + 2 formalism, in which one
decomposes space-time into two families of spacelike 2-surfaces. This
approach identifies the gravitational degrees of freedom in a geometri-
cally transparent way and is also particularly suited to situations where
the initial data is given on a null surface.

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0014
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14.2 The induced metric

Let X be a smooth spacelike hypersurface. Then the unit normal #* to X
is timelike, may be taken to be future pointing, and satisfies

nen® = 1. (14.1)
We may use the unit normal #? to construct the projection operator
Bba = (52 - nbn“, (142)

which projects a space-time vector X° into the hypersurface to give
X? = By?X?. W can verify that X? is tangent to the surface since

X%, = By*Xn,
= 5,‘7’ana — mpn®Xn,
= Xb}’lb — be’lb
=0.
Similarly, if Y, is a space-time co-vector, then Y, = B,’Y} satisfies

Y, n® = 0 (exercise). Both these results also follow directly from the fact
that

B.my = 0. (14.3)
We also note (exercise) that
B,SB.” = B,’, (14.4)
as one would expect from a projection operator.

We may use B,? to project tensor fields on M onto tensor fields on . In
particular, we may project the 4-dimensional metric g,; onto ¥ to obtain
the induced metric

hap := B, By'g.a. (14.5)
Using (14.1) and (14.2), we find that
hab = gab — NaMyp. (14.6)
So, for vectors X* and Y tangent to ¥, we have
hap XY = gp XY (14.7)
It is often convenient to introduce coordinates

(x*) = (x%x%) = (,x", 2%, %), (14.8)



The induced covariant derivative

adapted to the hypersurface in which the hypersurface is given by
t = 0 and (x*), o = 1,2,3 are coordinates on the hypersurface. It fol-
lows that, in these coordinates, a vector X? tangent to the hypersurface
has components (0, X%) so that by (14.7)

hop XYY = gop XY, (14.9)

(where Greek indices are summed over 1 to 3). In other words, in these
coordinates, s, are just the spatial components of g,;. With our choice of
space-time signature for the metric as (1, —1, —1, —1), we see that Z,3 is
a metric with signature (—1, —1, —1). It is therefore convenient to define
a positive definite Riemannian metric on ¥ by

Vab = —Hap. (14.10)

14.3 The induced covariant derivative

Let X be a vector field on . We now extend this to a vector field X on the
whole of M in such a way the the vector field remains the same on . We
now consider the projection of the space-time covariant derivative onto
the hypersurface:

B,V.X" = B,0.X" + B, T%, X" (14.11)

Since X? is tangent to ¥ and B,°0, only involves tangential derivatives we
see that this is well-defined on ¥ and does not depend on how we have
extended X from ¥ to M.

Although B,V .X? is well-defined, it may not be tangent to . We
therefore make a further projection and define the induced covariant
derivative D, for vector fields on ¥ by

D, X% := BB,V . X". (14.12)

In a similar way, if 7“‘“';’{__ s, 18 a tensor field on %, then we define

DeTalu.Zf...bg = Bqal .. .BCkakaldl .. 'BbzdeBefvfrlmgi...de- (14.13)
In particular, we find
D.hgy = BacBdeefvf(gcd - nc"d)
—B,*By*B/V{(n.ng)

—BaCBbdndBerf(nc) - BaC”cBdeerf"(nd)
=0,

by (14.3). It also follows (exercise) from the fact that V, is torsion-free
that D, is also torsion-free. Since D, is a torsion-free covariant derivative
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that satisfies D,/ = 0, it must be the (unique) covariant derivative given
by the 3-metric /,,. We have thus shown the following:

The induced covariant derivative D, on X is the metric covariant
derivative of the induced metric %, on X.

If we use coordinates adapted to the hypersurface X, we see that D, X?
only has spatial components which are given by

Do X? = 9, X% +T0, X (14.14)

On the other hand, since D, is the metric covariant derivative of %3, we
have

Do X? = 9,X% + 918 X7, (14.15)

where (3)1“?(7 are the Christoffel symbols of /,3. (Note: these are the same
as the connection coefficients of v, = —/4g, since the Christoffel sym-
bols are quadratic in the metric). Comparing (14.14) and (14.15), we see
that, in adapted coordinates,

i = O (14.16)

Returning to the term B,V X? given by (14.11), we now take the normal
component by contracting with 7. This gives a term 7,B,°V . X?. Since
is tangent to X, we have 1, X? = 0, so that

V. X0 + XV, n, = 0.

Hence

B,V X = —X’B,°V m (14.17)

_XdBdeancnba

where X? = B;#X?, since X? is tangent to X.
We now define the tensor K,; by

Ky = —B,°By*V ny. (14.18)

We call K,;, the extrinsic curvature of the hypersurface, since it mea-
sures the way in which the normal co-vector to the hypersurface bends
as it moves about the hypersurface. It follows immediately from the
definition that

Kan® = Kpn® =0, (14.19)

so that K, defines a tensor field on Y. It also follows from the fact that
the space-time derivative is torsion-free that



Ky = Kpa. (14.20)

Another useful way of thinking of the extrinsic curvature is as the
difference between the space-time covariant derivative and the induced
covariant derivative for vector fields X% and Y%, which, when restricted
to X, are tangential. It follows from (14.18) that the tangential part of
YV, X% is just Y?D, X and from (14.17) that the normal component is
given by K,;X?Y?. So, by splitting Y?V, X into its tangential and normal
parts on X, we obtain the very useful equation

YV X? = YD X + (KXo YY)ne, (14.21)

which can be written in coordinate-free notation as

VyX = DyX+ K(X, Y)n. (14.22)

14.4 The Gauss-Codazzi equations

In the previous section, we showed how the space-time metric g, and
the covariant derivative V, can be used to define the induced metric
hay = —7ap and the extrinsic curvature K, on . We now show that a
knowledge of v,, and K,; is enough to reconstruct all but one component
of the space-time curvature. The first result we will derive in §14.5 be-
low is the Gauss equation, which gives an expression for the space-time
curvature with all the components projected into the hypersurface

B’ BYBEBS Ryt = ® Rupea + KoaKpe — KooK (14.23)

In adapted coordinates, this is just

*

Ropmw = P Rapu + Ko Kp — Ko yKp, . (14.24)
The second key equation we will derive in {14.6 is the Codazzi equation,
which gives an expression for the space-time curvature with three com-
ponents projected onto the hypersurface and one component contracted
with »¢
BBy BEn" Ry, = DyKye — DK (14.25)

which, in adapted coordinates, is just

1'Ropra = DKoy — DaKp.,. (14.26)

The Gauss-Codazzi equations
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The Gauss and Codazzi equations enable us to obtain all the components
of the space-time curvature in terms of v,3 and K,g apart from R,0g0
(exercise). However, this component requires a knowledge of derivatives
of n in the normal direction, which depends on the way the space-time is
sliced up into a foliation by the constant time surfaces, so we will postpone
this to §14.8.

By contracting the Gauss and Codazzi equations, we may obtain ex-
pressions for the constraint equation Gy#n%n® = 0 in terms of the intrinsic
and extrinsic geometry of X. Contracting (14.23) with g% and using
g% = h% + nn°, we obtain

By'BJ"Ry, — nrf By B/ Ry, = O Ryg — K*oKpg + K2 iKpa.  (14.27)

Contracting again on b and d gives, after a short calculation (exercise),

R —2n*n?Ryy = ® R — K%, K + K®Ky,. (14.28)
On the other hand, G, = Ry — 1g.R. Contracting this with nnb gives
Gupn®n® = Rynn® —1/2R
=12 <<3>R — KK + KabK“”) . (14.29)
So (in vacuum) the ‘constraint’ Gn°n’ = 0 becomes
®R — (K*,)(K?) + KpK™ = 0, (14.30)
or, in adapted coordinates,
GIR — (K*,)(KP5) + KopK*? = 0. (14.31)

Note that, in the above, ) R and contractions of K, are carried out using
hap. not v,3. However, the above equation involves an even number of
occurrences of /1,4 and its inverse so that one gets the same answer if one
were to use the positive definite metric Yo = —/qa3.

Contracting the Codazzi equation (14.25) on a and ¢, one obtains

Byn’R,y = DyK*, — D,K%. (14.32)
It then follows that B, n?G,, is given by
Bacndch = Bacnd(Rcd - %gcdR)
= BacndRcd
= DK% — DyK?, (14.33)
by (14.32). So that the ‘constraint’ B,n?G,; = 0 is given by

DyK?, — DK, = 0, (14.34)
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or, in adapted coordinates,
DgK?, — D,K?5 = 0. (14.35)

We therefore see from (14.31) and (14.35) that the #*n’G,, and the
s ndem components of the Einstein equations only depend on 7.3, Ka g,
and their tangential derivatives so are constraints on the intrinsic and
extrinsic 3-geometry.

14.5 Calculating the Gauss equation

Let Z° be a vector field tangent to X (i.e. Z%n, = 0); then, since D, is the
covariant derivative of /4, (and also 7,;), we have

D,DyZ¢ — DyD,Z° = PRy 2% (14.36)
Now
D,DyZ° = Dy(By' B,V 4.7°)
= B/B¥By*V{(B,*B.,*V 1.7°)
= B/By¥By*B,B,*"V NV 4 7°
+ BBy By’ B (VB (V 42°)
+ B/ByBi B, (VB,) (V 4.2°)
= B/By'BS (VN uZ*) + B/Bs*B.*(V/B,") (VaZ°)
+ BBy By (VB (VaZ?)
using (14.4). Now
VB, = V(6] — ngn) = —ng(Vym?) — n(Vny), (14.37)
so that
B/By¥(V/B,") = —BJ/By*ng(Vm®) — n’B/ BV mg = n’Ky.  (14.38)
Similarly, we find using (14.3), (14.4), and (14.18) that
B/Bi*(VB,S) = n,K,°. (14.39)
Hence,

D,Dy7° = B/By'B, (VN 4Z%) + B Koy (V 42%) + By 'K, no(V aZ°).
(14.40)
Now the middle term vanishes when we anti-symmetrize on a and b. Since
n.Z°¢ = 0, we also have n,(V;2¢) = —Z°V 4n,, so that

By'n,(V4Z°) = —Z° BN gn, = Z°Ky. (14.41)
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Putting all this together, we have

D,DyZ¢—DyD,Z¢ = B/ Bdeec(VdeZe —VaVZ)+ Z° K, Koy — Z°Kp Koo
(14.42)
which immediately gives

CVR 2! = B/ByB, R a2 + 2K, Ky — ZK K. (14.43)

We now take Z to be an arbitrary vector field (not necessarily tangent to
¥) and replace Z" by its tangential component B/'Z. Then the above
equation remains true and, since Z” is arbitrary, we have (after some
relabelling of indices)

®) Rupea = Bu*Bs' BEBS Ry + KooKy — KoK (14.44)

which is the Gauss equation (14.23).

14.6 Calculating the Codazzi equation

To calculate the Codazzi equation, we differentiate K,;, which from
(14.18), is given by

Ky = —B, BV n,.

Since K,; is a tensor tangent to the hypersurface ¥, the 3-dimensional
covariant derivative D,K_; is well-defined. Using the definition of D, (see
(14.13)), we get

—D.K,; = —B,*By/ BV Ky

= BBy BV (B/Bf*V )

= B,'By/B£Bf(V,B/)(V;n)
+ B, ByYBEB (V¢Bf) (V)
+ B,*By/ BB/ B (V V)

= B,°By*B£(VB/)(V,m)
+ B/ByB£(V,Bf) (V)
+ B/By*B4(V Vim),

using (14.4). Now the first two terms cancel when one anti-symmetrizes
on a and ¢, so that

DyKye — DKpy = B/ By*BE(V(Viny, — V;Vgny,)
= —BJ/By*B£R ymy, (14.45)

which, on relabelling of indices, is just the Codazzi equation (14.25).



14.7 The geometry of foliations

A Cauchy surface is a spacelike hypersurface X such that each endless
timelike or null curve intersects 3 exactly once (Fig 14.1). A space-time
that possesses a Cauchy surface is called globally hyperbolic. The name
comes from the fact that the wave equation g?V,V,¢ = 0 (a hyperbolic
PDE) has a unique globally defined solution on such a space-time. From
the point of view of Einstein’s equations, the important fact about globally
hyperbolic space-times is that the manifold M has topology

M=% xR, (14.46)

so that the manifold can be sliced up into hypersurfaces 3, , which are the
level surfaces of some time function. We call such a slicing a foliation,
which we define more precisely below.

By a foliation of a manifold, we mean that there exists a smooth scalar
field ¢ (our time function)

¢ M—R, (14.47)
which has non-vanishing gradient and whose level surfaces
Y, ={xeM: o(x) =1}, (14.48)
give the whole of M, so that

M= U3, (14.49)

Since ¢ has non-vanishing gradient, it follows that the hypersurfaces 3,
are non-intersecting, so that each point x on M lies on precisely one
hypersurface ¥, (see Fig. 14.2).

Since we want to consider Einstein’s equations, as evolution equations,
we will be interested in the case where the hypersurfaces ¥, are spacelike
and so we now specialize to this case. Let #? be the unit, future-pointing,
timelike normal to the constant time surfaces X,. Since we now have a
family of hypersurfaces ¥, rather than a single hypersurface ¥, we may
also take derivatives of n? off the hypersurface ¥,. This enables us to define
a new geometric quantity, A = V,n, which in coordinates is given by

A* = nbVn®. (14.50)

As n? is a unit timelike vector, it can be regarded as tangent to the world-
line of an observer. The quantity A% therefore measures the acceleration
of such an observer. In the differential geometry literature, A¢ is called
the geodesic curvature of the unit normal curves, since it vanishes
when the worldlines are affinely parametrized geodesics. Differentiating
the equation #%n, = 1 and contracting with n® gives

nan’Vyn® = 0, (14.51)
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248

The 3+1 and 2+2 formalisms

which implies that
n,A* = 0. (14.52)

So that A% is a spacelike vector tangent to the ¥, hypersurfaces.

We have seen that we may use geometric quantities defined on the hy-
persurface, namely the induced metric /., and the extrinsic curvature K,
to reconstruct all but one component of the space-time curvature. We now
show that A¢ is the additional quantity that we need to know on the hy-
persurface to obtain the missing piece of the space-time curvature. This
is given by the Ricci equation

B, 1By W Roayr = LyKyp + DyAp — Ay + K Kop. (14.53)

14.8 Derivation of the Ricci equation

Now that we have the definition of the acceleration, we may compute all
the components of V,n; (not just those in the hypersurface). Then we
find (exercise)

vanb = _I<ab + naAb- (1454)

We are now in a position to compute L.,,K,;. From the definition of the
Lie derivative

L, Ky = n°V Ky + (Vo) Ky + (Vpn©) K. (14.55)
Now by (14.54) the last two terms can be written
(Vo) K + (Vpn®) Koo = (=K, + 1,4 Ky + (— K¢ + mpA°) K. (14.56)
Again using (14.54), we may write the first term as (exercise)
nNV Koy = —n°(V Vanp) + AoAp + 1an°(V . Ap). (14.57)
Now

n,n° (V. Ap) = (65 — B,°)V.Ap
= v1114[7 - Bac(chb)
= Vody — DoAy — (Ko°A,)mp. (14.58)

Also using (14.52) and (14.54), we obtain

VoAy = Vo(nV cnyp)
= (Van)(Venp) + 1V, V omp
= (=K, + n,A°) (—Kyp + n.4p) + 1V, V ey
= KK — n ARy + 16 (Vo Vemp). (14.59)



Combining (14.57), (14.58), and (14.59), we obtain for the first term in
(14.55)

HV Koy = — 1(V Vo — VoV )y + Audy — Dodp + K Ko
— ne AR — mpAKo. (14.60)

Using n¢(V.V, — V.V ), = —nn Ry, and substituting for (14.56) and
(14.60) in (14.55) gives

Ln1<ab = ncndebm + AaAb — DaAb — I<acl<cb. (1461)

Note that, because of the symmetries of the Riemann tensor, contracting
1n?Rgpe, With n? or n gives zero and hence #n?Ry,, is a tensor in the
hypersurface. Equation (14.61) can therefore be written as

BBy W R aop = LKy + DoAp — AuAy + K Kp,s (14.62)
which is just the Ricci equation. In adapted coordinates, this is

10 Rucpa = LuKog + Dods — Aadp + Ky Ko p. (14.63)

14.9 The lapse function

Since the gradient of ¢ is orthogonal to the level surfaces, this corresponds

to the case where w® = g% ¢, is a timelike vector (i.e. g’ > 0), which,
without loss of generality, we may assume to be future pointing. In such a
case, ¢ is called a time function and we will write the scalar field as #(x)
rather than ¢(x). Since w? is normal to the constant time hypersurfaces,
it must be proportional to the future-pointing normal #* to ¥,. We may
therefore write

n* = Na*, (14.64)

for some scalar function N which is called the lapse of the foliation. Since
both w? and »n* are future pointing, the lapse is positive, so that (check)

N b (14.65)

V gabt,at,b .

Note that, in the numerical relativity literature, where it is common to use
the alternative (—, +, +, +) signature, a time function that increases to the
future results in a past-pointing w?® = gV, T, so that, to ensure that N is
positive, n¢ is taken to be equal to —Nw*.

Since #? is a unit timelike vector field, it can be regarded as tangent to
the worldline of some observer. We call such an observer an Eulerian
observer for the foliation. The constant time hypersurfaces ¥, are then
orthogonal to the worldlines of such an observer and consist of events that
are considered simultaneous from their point of view.

The lapse function 249
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Fig. 14.3 Two hypersurfaces for an Eu-
lerian observer.

Let x* be an event on the hypersurface ¥, and let x* be an event at
a small proper time 7 later on the worldline of an Eulerian observer
(Fig 14.3). Since »“ is a unit vector tangent to the worldline and 47 is
small, we may write

X =x%+ (0T)n. (14.66)
To find out what hypersurface x* is on, we calculate #(x?)

1(3%) = o(x* + (

so that x* lies on the hypersurface X, s;, where 6z = §7/N. In other words,
01 = Nét, so that N ~ 67 /6t and in the limit we have

_dr

=4 (14.67)

This tells us that the lapse is just the rate of change of proper time with
respect to coordinate time for an Eulerian observer.

Since we now have a family of spacelike hypersurfaces ¥, rather than a
single hypersurface, we can calculate how the induced metric changes in
going from one hypersurface to the next. The rate of change of %, with
respect to proper time 7 as measured by an Eulerian observer is given
geometrically by L,, /5. Now

Ly = Lu(8as — 1ap). (14.68)
Calculating the first term gives

Logw = nc(vcgab) + (vanc)gcb + (vbnc)gac
= Vanb + Vbna, (1469)

since the covariant derivative of the metric vanishes, while the second term
gives (exercise)

Ln(nanb) = A,np + Apng. (14.70)
Hence, substituting for (14.69) and (14.70) in (14.68) gives
thab = (Vanb — }’laAb) + (Vbna — i’lea) = *21<ab: (1471)

by (14.54). So, in the case of a foliation, we have



Kap = —3Lphap. (14.72)

Note that, in the numerical relativity literature, this is sometimes taken
as the definition of the extrinsic curvature but it relies on the existence
of a foliation, while the definition we gave in §14.3 only requires a single
hypersurface.

If we introduce coordinates (x“) on some initial hypersurface X,
then we may use the worldlines of the Eulerian observers to give space-
time coordinates (% x%) in a neighbourhood of ¥ by requiring that their
worldlines are given by x® = constant, @ = 1,2,3. Since in these coor-
dinates the geometric version of 9/t is Ly, we may write (14.72) as
(exercise)

Yap = 2NKyp, (14.73)

where 7,3 = —hqp and a dot indicates a derivative with respect to the
coordinate time 7 rather than the proper time 7.

We may also use the lapse to give an expression for the acceleration
vector A° (exercise)

1
A, = ——D,N. 14.
N (14.74)
Hence,
A, = —D,(InN). (14.75)

We can use this to simplify (14.61) since

1 1 1
DA, — A,A, = ——D,DyN + — (D,N)(D, — —(D,N)(D
oAs = Audly = = DuDN + 15 (DN) (Do) = 15 (DuN) (D)
1
= ——D,DyN.
N b
Substituting this into (14.61) gives
1
LK = nnRipea — KoKy + ND“DI’N — 2K, K. (14.76)

We may then use the contracted Gauss equation (14.27) to replace the
term 7n“Ry, by the space-time Ricci tensor. This gives an evolution
equation for the extrinsic curvature in terms of quantities defined in the
hypersurface

1
LK = BBy'Rey— O Ry + KK + N DaDsN 2K, K. (14.77)
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1
i
'

x¢ ,,' x4 + dx¢

Fig. 14.4 A fibration showing the rig-
ging vector T% decomposed into the lapse
and shift.

14.10 The 3+1 decomposition of the metric

In the previous section, we introduced observers who move along world-
lines that are normal to the foliation and used them to construct adapted
coordinates (z,x*). However, although this is geometrically convenient,
it is both physically and mathematically a restriction. We therefore now
consider an arbitrary congruence of curves which are nowhere tangent
to the leaves of the foliation ¥, and with the property that every point
on M lies on precisely one such curve. This is called a fibration in dif-
ferential geometry. Since the curves are nowhere tangent to the constant
time surfaces, we may parameterize these curves by ¢ and define 7% to be
the corresponding tangent vector. Such a vector field is called a rigging
vector. We may now project 7% into components normal and tangential
to X; and write

¢ = an® + ¢, (14.78)

where @ = 7T%n, and 8¢ = B,*T° (Fig. 14.4). Note that, by the
definition of 7%, moving the hypersurface ¥, forward by §:7% results in
the hypersurface X, 5;, so that « is just the lapse

1
a=N=— (14.79)

Vet

The quantity ¢ is called the shift. By definition, it is tangent to the
hypersurfaces so that

B, = 0. (14.80)

Writing equation (14.78) in the form
n“—l(Tl—ﬁ“) (14.81)
- N 5 .
and recalling that g = A% + n%n®, we find

gt = %(7" — BY(T° — B°) + he. (14.82)
We now introduce coordinates adapted to the foliation and rigging as fol-
lows. Let (x*), a = 1,2, 3, be coordinates on some initial slice . Then
we may extend these to coordinates (x°, x*) on M by defining the curves
in the fibration to be given, in these coordinates, by x° = z, x* = constant,
a=1,2,3.
It then follows that, in these coordinates,

0

T=—,
ot

(14.83)

so that

*

T" = 52, (14.84)
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Since 4% and 4% have purely spatial components given by 5# and 7, it
follows that

*

B = 6np", (14.85)
et = Sa5n. (14.86)

Substituting these into (14.82) gives

1/N? —B*IN
gab = (_/6/#/]\[ _fﬂy/_i_ /BﬂBV/NZ) 5 (1487)

where ¥ 1= —h".

We note from taking the determinant of g® that det g? = — det v /N?
so that det (y#) = —N? det (¢?) and ~** is invertible. If we now define
Y BY

Yy = 5; (14.88)

and use v* and 7, to raise and lower Greek indices, then, inverting
(14.87) using gug" = &, we obtain

_ NZ + 5050 _ﬁ//l )
Sab = ( 8, ) (14.89)

Hence we find the line element (using our choice of metric signature) is
given by

ds® = (N? + 87 8,)de* — 2B3,dedx" — 7, dxdx”. (14.90)

Notice that, in these coordinates, gog3 = —7a3 (Where the minus sign
has been introduced to make 7,4 a positive definite Riemannian metric).
Note, however, that g7 # —~*% unless we choose coordinates in which
the shift vanishes.

14.11 The 3+1 decomposition of the
vacuum Einstein equations

So far, we have adopted a purely geometric approach in which we have
given a decomposition of the metric relative to a foliation of a space-time
by spacelike hypersurfaces transvected by a timelike fibration. The ex-
trinsic curvature of a given »(¢) also describes the manner in which the
hypersurface is embedded in the enveloping 4-geometry.

An alternative 3+1 viewpoint regards general relativity as a dynamical
theory in which space time is comprised of the ‘time history’ of a spacelike
hypersurface ¥(¢) regarded as an ‘instant of time’. The geometry of 3(r)
is described by the 3-metric v, while the rate of change of v,, gives an
expression for the extrinsic curvature of ¥(¢). These together with the
acceleration enable one to reconstruct the 4-metric g,;, which gives the
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geometry of the space-time. There are two types of variables: the four
functions comprising the lapse « and shift 5 are kinematical and are freely
specifiable, since they embody the fourfold coordinate freedom of general
relativity. The six functions comprising the 3-metric v, are the dynamical
variables. We now show how these dynamical equations can be can be
formulated as a pair of partial differential equations which are first order
in time.

The first step is to split the ten vacuum Einstein equations G, = 0 into
three parts. The first is a part where we project in the direction normal to
the hypersurface

nn’ Gy = 0. (14.91)

Using the twice-contracted Gauss equation (14.29), we have shown this
can be written

GIR — (K%,)(K%) + K K™ = 0. (14.92)

This only depends on the intrinsic and extrinsic geometry of the hyper-
surface and, in adapted coordinates, is given by

BGIR — (K*,)(K? ) + Ko K™P = 0, (14.93)

where G)R is the scalar curvature of 7,5 and the Greek indices in the
above equation are raised using v**.

The second part involves projecting one component normal to the
hypersurface and one component into the hypersurface

B, n?G,4 = 0. (14.94)

Using the contracted Codazzi equation (14.33), we have shown that this
can be written

DyK?, — DKt} = 0. (14.95)

Again, this only depends on the intrinsic and extrinsic geometry of the
hypersurface and, in adapted coordinates, is given by

DsK?, — DK’ =0, (14.96)

where D,, is the metric covariant derivative of 7,43 and the Greek indices
are raised with %,

The third part involves projecting both components of the Einstein
equations into the hypersurface. However, rather than work with the pro-
jection of G, = 0, it is mathematically more convenient to work with the
projection of R, = 0, which gives

B, ByR.y = 0. (14.97)



The 3+1 decomposition of the vacuum Einstein equations

As previously shown in §13.6, equations (14.91), (14.94), and (14.97) are
equivalent to G, = 0 so there is no problem in using (14.97) rather than
B,*By?G,y = 0. We have already shown in (14.77) that the Ricci equation
gives rise to a propagation equation for K,

1
LKy = —P Ry + KKy — 2K, Ky + N DaDeN. (14.98)
We also have a propagation equation for /4

Luha = —2Kuw, (14.99)

which together with (14.98) may be regarded as a second-order evolution
equation for the 3-metric v,, = —/h. However, to use these equations
in computations, we need to write them in the form of partial differen-
tial equations rather than in the geometrical form given above. The key
to doing this is to note that the Lie derivative with respect to the vector
field 7% is just the partial derivative 9/9r in the adapted coordinates. We
therefore look at modified versions of (14.98) and (14.99) which involve
L rather than L,,. We start with equation (14.99). Using the fact that
T% = Nn® + 3%, we have

Lrhay = Lnnhay + Lghas. (14.100)
Now for the first term we have
LN,, ab = = Nnf (vchab) + (Va(Nnc))hcb + (Vb(Nn‘)hac
= Nn°(V hgp) + N(V 1) ey + n6(VoN) By + N(V i) g,
+ nC(VbN)hac

= NnC(Vchab) + N(Van”)hd, + N(Vbnc)hac

= Z\]thab

= —2NKg,
using n%hg, = 0 from (14.5). For the Lgh,, term, we expand the Lie

derivative using the 3-dimensional covariant derivative D, and use the
fact that D A, = 0. This gives

Lgha = B°Dchap + (Daf3) ey + (DpB) e
= Dyfp + Do fBa-
Combining these results, we have
Ll = —2NKp + DSy + Dpf,. (14.101)
In the adapted coordinates, this is

5)7,,1, *
ot

= 2NK,, — DB, — D, B,. (14.102)
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256 The 3+1 and 2+2 formalisms

We thus obtain an expression for K, in terms of derivatives of hypersur-
face quantities

1 (O
K = 5 ( 4D, B, + DV@) . (14.103)

We now compute L7K ;. This is given by
LNn+ﬁI<ab = Lnn K + LBI<ab~ (14104)
Now

LKas = NiV Kap + (Va(NH)) Ky + (V(N2) Ko
= Nn‘V Koy + N(Va1) Kep + 1 (VoN)Kep + N(V 1) Koe
+ n°(VpN)K,,
= NiV Ky + N(Vur) Koy + N(Vor€)Koe
= NL,Ky
= D,D,N— N <(3)Rab + 2K, Ky — KQKab) ;

using (14.19) and (14.98). For the LgK,, term, we have

LaKuy = DKoy + (Daf)Kep + (Dpf3) K. (14.105)
Combining these, we have

L1K.p = D,DyN + 8D Ky + (D8 Ky + (Dp) Ky

N <(3)Rab + 2K, K — KQKab) , (14.106)

which in the adapted coordinates becomes

0K, «
Tf = D,D,N+ °D,K,,, + (D,5°) K, + (D, °)K,,

~ N(OR + 2K, K2, — K2,K,) (14.107)

This gives the time derivative of K, in terms of quantities in the hyper-
surface. If one now uses (14.103) to substitute for K, in the above, one
sees that this gives a second-order evolution equation for 7,,,.

Notice that, with this 3+1 decomposition of Einstein’s equations, we
do not have evolution equations for the lapse N or the shift 5%; instead,
these are ‘gauge’ quantities that can be thought of as defining the coordi-
nate system rather than as dynamical variables that describe the geometry
of space-time. Indeed, the lapse and shift encode essentially the same in-
formation as g,, which, as we saw from {13.6, is part of the data we need
to specify to find an analytic solution.



The 3+1 equations and numerical relativity

The procedure for solving the Cauchy problem for the vacuum Ein-
stein equations is therefore as follows. One first fixes a coordinate system
x“ on Xy and finds initial data -y, (0) and K, (0) that solve the constraint
equations (14.93) and (14.96). Note that this is a non-trivial task (see
brief discussion below). One then specifies the lapse and shift, which ex-
tends the coordinates x® to give coordinates x* on a neighbourhood of ¥g.
This enables one to evolve v,,, and K, forward in time, for some interval
0 < t < C, as a pair of first-order evolution equations, using (14.102),
(14.107), and the initial data. The Bianchi identities show that, if the con-
straints are initially satisfied, they are satisfied at future times so we now
have 7,,(¢) and K,, () which satisfy (14.91), (14.94), and (14.97) for
0 < ¢ < C and hence satisfy G, = 0 on that interval.

Writing the Einstein equations in this way was first derived by Dar-
mois, as early as 1927, in the special case N = 1 and 5 = 0 i.e. these
are the so-called Gaussian normal coordinates corresponding to the
motion of Eulerian observers with the foliation parametrized by proper
time. The case N # 1, but still with ¢ = 0, was considered by Lich-
nerowicz in 1939 and the general case with arbitrary lapse and shift by
Choquet-Bruhat in 1948. A slightly different form, with K, replaced by
the ‘momentum conjugate to 7,;’, namely p® := ,/7(Ky* — K®), was de-
rived by Arnowitt, Deser, and Misner from their Hamiltonian formulation
of general relativity in 1959. This is the origin of the term Hamiltonian
constraint and momentum constraint for equations (14.30) and (14.34)
and explains why this description of the Einstein equations as a first-order
system is sometimes called the ADM formalism.

In the previous chapter, we outlined the proof of the existence of solu-
tions to the coordinate version of the Cauchy problem in the analytic case
by means of the Cauchy-Kowalevskya theorem. A similar strategy in the
analytic case also works with the above formulation of the equations, as
shown by Darmois and Lichnerowicz. However, from the physical point
of view, asking for analytic initial data seems an unreasonable require-
ment. Unfortunately, it is much harder to prove existence and uniqueness
with non-analytic initial data but the above formalism is the basis for writ-
ing Einstein’s equations as a well-posed initial value problem for which
one can apply standard theorems from the theory of partial differential
equations.

14.12 The 3+1 equations and numerical
relativity

In this section, we will review the current status of the 3+1 formalism with-
out considering the calculational details. The 3+1 approach has been used
extensively in numerical relativity, that is, solving Einstein’s equations
numerically on a computer, and has played a key role in our current
understanding of gravitational collapse and gravitational waves.
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We begin by discussing how to solve the constraint equations. Unlike
the case for the rest of the book we will mostly just be quoting results from
the literature in this section. One of the most useful ways of solving this
is the conformal approach of York and O’Murchadha. The key idea
here is to introduce conformal scalings so that the constraint equations are
cast into a set of four quasilinear elliptic partial differential equations for
four gravitational ‘potentials’. This idea facilitates both theoretical analysis
as well as providing a numerical technique. We start by introducing a
conformal factor 1 and write the 3-metric 7, in the form

Y = w4,3/ﬂl/' (14.108)

The conformal factor is one of the ‘potentials’ which will be fixed by
the Hamiltonian constraint (14.30). Then, among other things, the scalar
curvature transforms as

R=9¢"*R—8y~3(D"D, ). (14.109)

We then perform a so-called transverse traceless decomposition of the
extrinsic curvature tensor, which introduces three additional ‘potentials’
X* which will be fixed by the momentum constraints. Defining the trace-
free part of the extrinsic curvature by

A = K" — %'y”"K, (14.110)
then the choice
A =104 (14.111)
results in the property
D, A" =D, 4" . (14.112)

As with any traceless symmetric tensor, A*” can be decomposed into a
part A7 with vanishing divergence and trace, and another trace-free part
which can be obtained from differentiating a vector potential W”, namely

A = A8+ (W), (14.113)
where
~ o ~ 2 ~
(W) = D*W + D" W — g’?/‘”DUW" (14.114)
and the TT (Transverse-Traceless) part A’}VT satisfies

D, A4 = 0. (14.115)



The 3+1 equations and numerical relativity

In practice, it will generally be inconvenient to give the freely specifiable
part of the conformally scaled extrinsic curvature in terms of a transverse-
traceless tensor. So we ‘reverse decompose’ A% as

Al =T — (fvy, (14.116)

where the traceless, symmetric tensor T is freely specifiable and ¥ is
another vector field. Then

~

A =T+ (LW — (LV)
=T+ (IX)"™, where X=W—V.

The Hamiltonian and momentum constraints become, in this ap-
proach,

A= (DD = GRo+ SRS~ (4 (@xy") w7, (aaa17)

(Ag)* := D, (IX)" = =D, " + %wbﬂK (14.118)

These equations are a set of four quasilinear, coupled elliptic PDEs for
the four gravitational potentials {1, X” }. So, to summarize, the procedure
is:

® freely specify {#*", K, 77”’},
® solve the constraints for the potentials {1, X"},

® construct physical initial data using

Y = Y s (14.119)

S 1
K = (1 4 (X)) w70 + SR (14.120)

A particularly simple choice for solving the constraints is:

® introduce Cartesian coordinates (x,y,z) and take the conformal
metric to be flati.e. 4,, = diag(1,1,1),

® choose the initial slice to be maximal i.e. K = K,/ = 0,

® choose a minimal radiation condition i.e. 7%¥ = 0.

With the above choices, the constraints become

Ay = —18(0X)" (£X) b~ (14.121)

(AgX)" = 0. (14.122)
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This greatly simplifies the problem since the momentum constraint is de-
coupled from the Hamiltonian constraint and is linear. It has been possible
this way to even find analytic solutions of the momentum constraints, for
example, corresponding to one or more black holes with freely specified
linear and angular momentum.

The second issue we need to address is the choice of gauge condi-
tions for the choice of lapse and shift. There are two requirements which
motivate the choice of a particular gauge:

® The avoidance of both coordinate and physical singularities: The
latter can be avoided by slowing down the evolution of the spatial
region near the singularity: This is controlled by the lapse N.

® Making the Einstein evolution equations as simple as possible, so
that a numerical solution is not unduly complicated: This is often
controlled by the shift 5¢. For example, a good choice can lead to
several of the components of 7, vanishing, which reduces the size
of expressions such as that for ®)R.

Choices for the lapse are as follows:

Geodesic slicing. If N = 1 is combined with 8¢ = 0 then we are using
Eulerian observers who are freely falling. The spatial hypersurfaces are
geodesically parallel. This slicing is singularity seeking.

Lagrangian slicing. In spherical symmetry, we can use NU° = 1 com-
bined with 5# = 0, where U is the time-component of the fluid 4-velocity.
Then U, = 0 and fluid world-lines are orthogonal to the spatial hyper-
surfaces (which is possible because there is no vorticity). Since 5# = 0,
the coordinates follow the matter. The fluid world-lines will focus towards
any singularity and so this slicing is again singularity seeking.

Maximal slicing. We can avoid the focusing of world-lines towards sin-
gularities by choosing N in such a way that K = K%, remains zero on
each hypersurface if it is zero on the initial one. Physically, K measures
the expansion of a congruence of world-lines normal to the foliation.
Substituting both K = 0 and dK/Jr = 0 into the evolution equations
gives

YD, Dya —aPR = 47(S — 3p). (14.123)
This is an elliptic equation for « to be solved on each slice X(z), which
means that it can be computationally expensive.
Choices for the shift are as follows:

Eulerian gauge. We simply set 5# = 0 so that the coordinate congruence
is normal to the foliation. Early stellar collapse codes used this gauge.

Lagrangian gauge. For space-times containing matter, we can set
g = U*/U°, where U is the fluid 4-velocity. Thus, the coordinate
congruence coincides with the congruence of the fluid world-lines. For
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one-dimensional flows, this is a convenient choice but, in two or three di-
mensions, where vorticity may be present, the coordinate grid can become
severely distorted, leading to a loss of accuracy.

Isothermal and radial gauge. A particular choice of 8# can simplify
Einstein’s equations by making certain components of the 3-metric zero.
Three conditions on 5# enable three components to be eliminated, for
example giving a diagonal line element

do? = YpudX® + Yy dV? + Yandz?. (14.124)

In an isothermal gauge, v,y = 0 and /""" = 799. In a radial gauge, 9
=Y = 0 and vggVpp — ’y§¢ = *sin” 0, and the metric has the form

do* = A*dr* + P B~2d0? + B> (sin 0do + £dh)?, (14.125)

where A, B, and ¢ are metric functions to be determined. This is a par-
ticularly useful gauge for gravitational radiation in asymptotically flat
space-times.

14.13 The 2+2 and characteristic
approaches

There are two major limitations of the 3+1 approach. The first is that the
initial data is not freely specifiable, but must satisfy the constraints. The
conformal approach is a powerful technique for achieving this but does
not reveal what the freely specifiable initial data i.e. the true gravitational
degrees of freedom are in clear geometric terms.

Let us do some counting in the 3+1 regime. Restricting attention to
the vacuum case, we start off with ten field unknowns, namely the com-
ponents of the 4-dimensional metric, and ten vacuum field equations.
However, four of these unknowns may be prescribed arbitrarily because
of the fourfold coordinate field freedom, leaving six components of the
4-metric freely specifiable. Moreover, the field equations are not inde-
pendent but satisfy four differential constraints, namely the contracted
Bianchi identities. The Lichnerowicz lemma reveals that, if the constraints
are satisfied initially and the evolution equations hold generally, then the
constraints are satisfied for all time by virtue of the contracted Bianchi
identities. Then, as we have seen in the 3+1 first-order formulation of
the initial value problem, we end up needing to specify on an initial slice
the six components of the 3-metric v,, together with the six variables
K, subject to the four constraints. So this leaves eight variables freely
specifiable. However, there exists a threefold coordinate freedom within
the initial slice. This can be used, for example, to specify three of the
V- This leaves five variables free. Finally, there is a condition which de-
scribes the embedding of the initial slice into the 4-geometry. This is a
little harder to see, but we have already met examples of conditions like
this such as maximal slicing K = 0. The point is that relationships like
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Fig. 14.5 2-dimensional manifold and
two transvecting submanifolds.

S, initial 2-surface

Fig. 14.6 Double null foliation.

S, :imitial 2-surface

Fig. 14.7 Null timelike foliation.

these are constraints between the 7,, and the K, which encode the na-
ture of the embedding. Such a constraint finally reduces the number of
freely specifiable data to 4. These can be thought of, from a LLagrangian
point of view, as being two ¢’s and two § that is, two pieces of infor-
mation encoded in the metric and two pieces in its time derivative (or,
equivalently, two pieces of information in the extrinsic curvature). It is in
this sense that we say the gravitational field has two dynamical degrees of
freedom. But what are they explicitly in the 3+1 case? Moreover, why are
there six evolution equations rather than the two you would expect for a
system with two degrees of freedom? The 2+2 approach answers these
questions in a transparent way.

The second problem is that the 3 + 1 approach fails if the foliation
becomes null and, furthermore, null foliations are important in their
own right, as we shall see when discussing gravitational radiation in
Chapter 23.

The basis of the 2+2 approach is to decompose space-time into two
families of spacelike 2-surfaces. We can view this as a constructive pro-
cedure in which an initial 2-dimensional submanifold S is chosen in a
bare manifold, together with two vector fields o and n; which transvect
the submanifold everywhere (Fig. 14.5). The two vector fields can then
be used to drag the initial 2-surface out into two foliations of 3-surfaces.
The character of these 3-surfaces will depend in turn on the character
of the two vector fields. The most important cases are when at least one
of the vector fields is taken to be null. For example, if both vector fields
are null, we obtain a double-null foliation (indicated schematically in Fig.
14.6) or, if one is null and the other is timelike, we obtain a null-timelike
foliation (Fig. 14.7).

The most elegant way of proceeding is to introduce a formalism which
is manifestly covariant and which uses projection operators and Lie
derivatives associated with the two vector fields. The resulting formalism
is called the 242 formalism (d’Inverno and Smallwood 1980). When
the vector fields are of a particular geometric character, then this can be
refined further into a 2+(1+1) formalism. Finally, in analogy to the con-
formal approach of the last chapter, one extracts a conformal factor from
the spacelike 2-geometries to isolate the gravitational degrees of freedom.

The resulting formalism leads to a number of advantages. First of all,
it identifies the two gravitational degrees of freedom in an explicit ge-
ometrical way as residing in the conformal 2-geometry (d’Inverno and
Stachel 1978). Secondly, the data is unconstrained and satisfies two dy-
namical equations which are simply ordinary differential equations along
the vector fields. Most importantly, the formalism applies to situations
where the foliation either is null or becomes null. Such initial value prob-
lems are called null or characteristic initial value problems. They are
the natural vehicle for studying gravitational radiation problems (since
gravitational radiation propagates along null geodesics), asymptotics of
isolated systems (since future and past null infinity are null hypersur-
faces), and problems in cosmology (since we gain information about
the universe along our past null cone). From a calculational viewpoint,
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this formalism allows null infinity to be incorporated into the calcula-
tional domain and so allows one to define gravitational radiation in an
unambiguous manner.

We shall not develop the 242 formalism in the same detail as we did
with the 3+1 formalism in the previous section. This is partly because it is
rather complicated looking at first sight. However, much of the procedure
is analogous to that of the 3+1 decomposition, and largely rests on the
use of projection operators and Lie derivatives. The only new entities are
tensors which essentially encode 2-dimensional Lie derivatives. However,
we shall look in detail at the 2+2 decomposition of the metric so we can
compare it with the 3+1 case.

14.14 The 2+2 metric decomposition

In the 3+1 formalism, we slice up space-time into spacelike hypersurfaces
which are the level surfaces of a time function. In the 2+2 formalism, we
instead slice up space-time using a 2-parameter family of 2-surfaces. We
can think of these 2-surfaces as being obtained from the intersection of
two hypersurfaces X and !, which may be defined as the level surfaces
of two scalar functions ¢° and ¢!. We then define

Y(u) = {x € M: ¢"(x9)
YHo) = {x € M: o' (x9)

u = constant},

v = constant},

where we use the bold numbers 0 and 1 to label the hypersurfaces and
associated geometric quantities. We now assume that these hypersurfaces
intersect to define a family of 2-surfaces by

S(uyv) = 2%(u) N2 (o),

and restrict attention to the case when S(u, v) is spacelike. At each point
on S(u,v), we may define the set of tangent directions {S} and a set of
directions orthogonal to {S} which we call {7} (see Fig. 14.8). We say
that { T’} is integrable if we can find a 2-surface 7 such that the vectors
in { T} are all tangent to 7. However, as we now show, in general { 7} will
not be integrable.

We first use ¢° and ¢! to define co-vectors normal to £° and X1,
respectively, by

o_ 0¢°

4 Oxa

1 _ 09!

ta = Ox?

n and (14.126)

We then use these to define a pair of vectors n§ and »{ which satisfy
a B _ 4 —
ngn, = 6, where 4,B =0, 1. (14.127)

These vectors together span {7} and are called a vector dyad for {T}.
The condition for a pair of vectors to be surface forming is that the Lie
bracket vanishes. However,

Fig. 14.8 The timelike 2-space {77} or-
thogonal to {S} at P.
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[ng,m1] #0 in general, (14.128)

so that { T} does not form an integrable distribution. If, however, the Lie
bracket vanishes, then {7} forms a 2-dimensional subspace of M and is
said to be holonomic. We use the n4 to define a 2 x 2 matrix of scalars
Nyg by

Nup = gupnyny, (14.129)
where the bold letters 4 and B etc range over 0 and 1. Because n( and 7,
are independent, the matrix Nypg is invertible, with inverse denoted NAB
We may use Nyp and NAB 1 relate n‘;‘ and n% since

a _ .ab B

ny = & Napny, (14.130)
and

n = gy NAByb,. (14.131)

We define projection operators into {S} and {7} by

¢ = 58 — nond, (14.132)
Ty = ngyns (14.133)

where 4 is summed over 0 and 1. The 2-metric induced on § is given by
the projection

*gab = B3Bjgca = BaaBj = Bu.
Similarly, the 2-metric induced on {7} is given by the projection
hab = TZTYbigcd = Tad’]'rbi = Tab-

Since the components of /4,4 lie in { 7}, we may use ny and n; to give the
dyad components of /., by defining hap := hung n%. It then follows that

hag = hangnly = gunyn’ = Nas.
so that Nyp are just the dyad components of the orthogonal metric /.. In
particular, the elements Ny and Ny; define the lapses of S in {¥¢} and
{X1}, respectively.
We now choose a pair of vectors £ which connect neighbouring
2-surfaces in {S}. We choose them such that
il Bp = ogs (14.134)

which defines £ up to an arbitrary shift vector 6%, i.e.

EY = n% + b3, (14.135)
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with
nlbg = 0. (14.136)

a

Although, in general, the vectors n§ do not commute, it is always possible
to choose the 54 so that

[Eo, E;] = 0. (14.137)

Thus, each EY is tangent to a congruence of curves in ¥4 parametrized

by ¢?(x%). We may therefore choose coordinates such that ¢°(x%) = x°,

¢ (x*) = x!, with x* and x° being constant along the congruence of curves.
In these coordinates,

so that
ny = By — by = (1,0, —by"),
n = El — bl = (03 ls_bli)a

where ¢ ranges over 2 and 3. This results in the 2+2 decomposition of the
contravariant metric

NAB _ NA4Bpi
b _ B
g’ = < _NABb;; 2gzj+NABbilb/B ): (14.138)

where the indices 7 and j range over 2 and 3. The contravariant metric has
components

25 .4 25..
g = ( Nap+ “eibaby  “8iba ) (14.139)

2gijb/A 8ij

Compare and contrast (14.138) and (14.139) with (14.87), and (14.89),
respectively. Note that, in the 2+2 case, the lapse function becomes a 2 x 2
lapse matrix and there are two shift vectors

by = b;0/0x* and by = b{0/0x". (14.140)

In the 2+2 formalism, the next procedure is to extract the conformal
factor ~ given by

v = \Zgl-j|, (14.141)
and define the conformal 2-structure *g; by

gi=(v7?) gy (14.142)
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Timelike geodesic

r

u =

Ny : initial null cone

0, ¢
N
Fig. 14.9 Bondi type coordinates.

An analysis of the field equations goes to show that the two gravitational
degrees of freedom may be chosen to lie in the conformal 2-structure
2g;. An attractive feature of this formalism is that, if we determine the
Euler-Lagrange equations generated by these two degrees of freedom for
the Einstein action, then they turn out to be precisely the two dynamical
Einstein equations. We will not pursue the matter further here but will
consider a particular application of the 2+2 formalism to describe Bondi’s
radiating metric in Chapter 23 (see Fig. 14.9).

Exercises

14.1 (S14.2) Show that, if Y, is a space-time co-vector, then Y, = B,"Y,
satisfies Y, n* = 0.

14.2 (§14.2) Show that the projection operator B, satisfies B,°B.* = B,°.

14.3 (§14.3)

(1) Show that, if the vector fields X* and Y“ are both tangent to X, then
so is the Lie bracket [X, Y].

@ii) If D, is the induced covariant derivative on ¥, then show that

XD, Y — Y'D,X, = B/ (XV,Y! — Y*V,X%).
(>iii) Deduce that
XD, Y’ — YD, X? = X*V,Y® — Y*V, X",

and explain why this shows that D, is torsion-free.

14.4 (§14.3) Calculate v,4 and K, for the ¢ = 0 slice of the spherically
symmetric metric (considered in §15.4) given by

ds? = e¥di? — e*dr? — #(d6? + sin® d¢?),

where v = v(t,7) and A = A(s, 7).

14.5 (§14.4) Show that, by using the Gauss and Codazzi equations, one
can obtain expressions for all the components of the space-time curvature
in terms of 7,5 and K, apart from R,op0. [Hint: use #% = (e2,0,0,0).].

14.6 (§14.4) Establish equation (14.28).

14.7 (S14.8)
(i) Show that V,n, = —Kg + n,4p. [Hint: start from Vn, = 856V cny
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and write 6% in terms of the projection operator B,"].
(i) Show that

1’V Ky = —n°(V Vamp) + AeAp + 1,0V Ap.

14.8 (§14.9) Show that the Lie derivative L, applied to the normal
covector #n, satisfies

L, (nanp) = Agnp + Apng.

14.9 (§14.9) Show that in coordinates adapted to an Eulerian observer
one may write (14.72) as

. *
Yap = 2NKop,
where 7,3 = —hqp and a dot indicates a derivative with respect to the

coordinate time z [Hint: use n = (1/N)d/0¢].

14.10 (§14.9) Show that one may write the acceleration as

A, = —D,(InN),

where N is the lapse

14.11 (§14.9) Use equation (14.76) together with (14.27) to establish
(14.77).

14.12 (§14.14)
(1) Use the definition of the projection operator in (14.132) to show that
the 2-metric on S is given in terms of the 4-metric by

2 ab _ _ab AB_ a b
gd_g - N ngnps

where 4,B = 0, 1.
(ii) Use (14.135) to write ng in terms of EY and 6%.
(iii) Use adapted coordinates in which

Ly = (1’0’ 0’0)5 Ey = (03 1>0>O)> bo = (Os 0, bf)), by = (0; 0, bi):

to establish the 2 + 2 decomposition of the contravariant metric given in
(14.138).

(iv) Confirm the form of the 2 +2 covariant metric given in (14.139).
[Hint: use block multiplication of the matrices in (14.138) and (14.139)
to show that g% = §¢.]
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Further reading

There are many standard treatments of the 3+ 1 formalism in general rela-
tivity; see, for example, the book by Smarr (1979). Our approach follows
that of Gourgoulhon (2012), who is careful to look at the intrinsic and
extrinsic geometry of hypersurfaces before going on to look at foliations
and finally introducing the lapse and shift. The 3+1 formalism plays a key
role in numerical relativity by converting the Cauchy problem into a set of
first-order PDEs. However, many of the treatments of the 3+1 formalism
aimed at numerical relativity go straight to the lapse and shift description.
Also note that in numerical relativity it is usual to take a metric to have the
signature (—, +, +, +) rather than (+, —, —, —), which accounts for some
sign differences in some of the equations.

The 3+1 formalism is not well adapted to looking at the ‘characteris-
tic initial data problem’ in which one specifies the initial data on a null
hypersurface rather than a Cauchy surface. It turns out that the 2+2 for-
malism is particularly well adapted to this. The approach we follow here
is based on the summary in the article by d’Invero (1996). For a detailed
description, see the article by d’Inverno and Smallwood (1980) and, for
an alternative treatment, see the paper by Brady et al. (1996).
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15.1 Stationary solutions

We now turn our attention to solving the vacuum field equations in the
simplest case, namely, that of spherical symmetry. As a preliminary, in
the next two sections, we make clear the distinction between station-
ary and static solutions. In simple terms, a solution is stationary if it is
time-independent. This does not mean that the solution is in no way evo-
lutionary, but simply that the time does not enter into it explicitly. On the
other hand, the stronger requirement that a solution is static means that
it cannot be evolutionary. In such a case, nothing would change if at any
time we ran time backwards, i.e. static means time-symmetric about any
origin of time. Think of the motion of gas in a pipe (Fig. 15.1). If it is
being pumped by some time-dependent device, then the motion will be

. . . C . Bef = Aft =
non-stationary. If the gas travels with constant velocity at each point in the efore (= 1) ter (1= 1> 1)
pipe, then the motion is stationary. If the gas velocity is zero everywhere, (@) o, ., —s ] ,
then the system is static. x: - o 5

A metric will be stationary if there exists a special coordinate system in
which the metric is visibly time-independent, i.e.
(b) Il Il Il Il
(:;gzzi * 0, (15.1) Xy X5 X Xy
X
where x¥ is a timelike coordinate. Of course, in an arbitrary coordinate (o) . R R
system, the metric will probably depend explicitly on all the coordinates; ;1 ;2 ’él x;
so we need to make the statement (15.1) coordinate-independent. If we
define a vector field Fig. 15.1 Two gas particles in a pipe in
(a) non-stationary, (b) stationary, and (c)
* static flow.
X* L5, (15.2)

in the special coordinate system, then

LXgab = Xcgab,c + gacXC,b + gchC,a
; (5(C)gab,c = 8ab,0 = 0>

by (15.1). However, Lxg is a tensor so if it vanishes in one coordinate
system it vanishes in all coordinate systems. Hence, it follows that X* is
a Killing vector field. Conversely, given a timelike Killing vector field
X%, then there always exists a coordinate system which is adapted to the

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0015
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Fig. 15.2 A family of hypersurfaces la-
belled by .

na

) =

Fig. 15.3 The normal vector field n* at
the point P.

Killing vector field, that is, in which (15.2) holds, and then

0 = Lx€u = Zab05

and so the metric is stationary. We have therefore established the
coordinate-independent definition:

A space-time is said to be stationary if and only if it admits a timelike
Killing vector field.

15.2 Hypersurface-orthogonal vector fields

In order to discuss static solutions in a coordinate-independent way, we
need to introduce the concept of a hypersurface-orthogonal vector field,
which we do in this section. We start with the equation of a family of
hypersurfaces given by

A = (15.3)

where different members of the family correspond to different values of
u (Fig. 15.2). Let P be a point on S and let 7% be a tangent vector to S
at P. Then we can find a curve x(s) lying in S such that x*(0) = P and
x?(0) = T*. Since S is given by f{x?) = 4 = constant, we have

f(x%(s)) = constant.

Differentiating this with respect to s by the function of a function rule, we
have
of dx*
ox¢ ds
at P. If we define the covariant vector field 7, to the family of
hypersurfaces by

(15.4)

af

ng = %, (155)

then (15.4) becomes
ngT% = gn®T? = 0,

at P. Since 7" is an arbitrary tangent vector to S, this tells us that #® is
orthogonal to the tangent space of S and is therefore known as the normal
vector field to S at P (Fig. 15.3). Any other vector field X is said to be
hypersurface-orthogonal if it is everywhere orthogonal to the family of
hypersurfaces, in which case it must be proportional to n¢ everywhere, i.¢.

X = Ax)n, (15.6)

for some proportionality factor A, which in general will vary from point
to point.
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Then the integral curves of X* are orthogonal to the family of hypersur-
faces (Fig. 15.4). From (15.6) and (15.5), the hypersurface-orthogonal
condition can also be written

X, = Mas (15.7)

and so
2
XuOp X, = /\f,a)\,bf,c +A f;a]i cb-
Taking the totally anti-symmetric part of this equation and noting that
the first term on the right is symmetric in @ and ¢ and the second term is
symmetric in b and ¢, we see that their totally anti-symmetric parts vanish,
and hence

Xa0Xg = 0. (15.8)

This equation is unchanged if we replace the ordinary derivative by a
covariant derivative (exercise), namely,

X[oVeXy = 0. (15.9)
We have shown that any hypersurface-orthogonal vector field sat-
isfies (15.9). We shall now establish a partial converse, namely, any
non-null Killing vector field satisfying (15.9) is necessarily hypersurface
orthogonal. Since X is a Killing vector, it satisfies (7.55), namely,

Lxgaw = VpX, + VX = 0.

It follows that interchanging indices on the covariant derivative of X,
introduces a minus sign:

Vo Xp = =V X,. (15.10)
Using this, the six terms in (15.9) reduce to three terms:
X, VX, + XV, Xp + Xp V. X, = 0.
Contracting with X° and writing X* = X°X,, we get
X, XV X, + XV, Xp + Xp XV X, = 0,
or, using (15.10),
X, XV X, + X2V, Xy — Xp XV, X, = 0. (15.11)

Interchanging the raised and lowered indices for the dummy index ¢ (why
can we do this?) and using (15.10) on the middle term, this becomes

X, XV X — X2V X, — Xp XV, X = 0. (15.12)

Fig. 15.4 A hypersurface-orthogonal
vector field X.
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Adding (15.11) and (15.12), we get
X,V X2 — XV, X2 + X2 (VX — Vi X,) = 0,

or, since X? is a scalar field and the terms in the parentheses involving the
connection vanish (see (12.45)),

X0 X% — X0, X% + X2 (0,Xp — 0pX,) = 0.
We write this in the form
X20,X, — X,0,X° = X2 X, — X,0, X2,

or, equivalently, dividing by X%,

Xp _ X
()= (). .

since X? is non-null by assumption and so X? # 0. This last equation
requires that the term in parentheses be a gradient of some scalar field, f,
say, i.e.

X,

d—f 15.14

X2 /. ( )
and so, finally,

X, = )(Zf,a_ (15.15)

This is the hypersurface-orthogonal condition (15.7) with A = X2.

15.3 Static solutions

If a solution is stationary, then, in an adapted coordinate system, the
metric will be time-independent but the line element will still in gen-
eral contain cross terms in dx’dx®. If, in addition, the metric is static,
we would expect these cross terms to be absent for the following reason.
Consider the interval between two events (x°, x', x?, x*) and (x° + dx°, x!
+ dx!, x?, %) in our special coordinate system. Then

ds? égoo(dxo)z + 2g0:dxOdx! + gn(dxl)z, (15.16)
where all the g,;, depend on x® only (why?). Under a time reversal
X0 = O, (15.17)
the g, remain unchanged, but ds®> becomes

ds? égoo(dxo)2 — 2g01dx%dx! + gll(dxl)z. (15.18)



The assumption that the solution is static, means that ds? is invariant un-
der a time reversal about any origin of time, and so, equating (15.16)
and (15.18), we find that gy; vanishes. Similarly, go> and go3 must vanish,
and so we have shown that there are no cross terms dx’dx® in the line
element in the special coordinate system. Thus, for a static space-time,
there exists a coordinate system such that x° is a timelike coordinate and
the metric takes the form

ds? = goo (x7)(dx°)? + gas(x7)dxdx?, a,fB=1,2,3. (15.19)
Let us investigate the hypersurface-orthogonal condition (15.9) in a sta-
tionary space-time. We have shown that (15.9) implies (15.15) so that,

in a coordinate system adapted to the timelike Killing vector field, that is,
Xz d¢ » then

Xo = 8ab X’ = gatby = 8oas
and
X = X, X° ;g0a58 = goo-
So (15.15) gives
0a = 800 fas (15.20)

for some scalar field £ When a = 0, this produces f, 0o=1, and so
integration gives

=20 + h(x®),

where 7 is an arbitrary function of the spacelike coordinates only. Con-
sider the coordinate transformation defined by

20 = 0 = a0 n(x”), x* — K =0 (15.21)

Then we find, in the new coordinate system (exercise),

Xz 8, (15.22)
&0 =0, (15.23)
Zho = €005 (15.24)
Zhe = 0. (15.25)

The last equation reveals that there are no cross terms in dx°dx® and so the
solution is static. Conversely, if there exists a coordinate system in which
the metric takes the form (15.19), one can show (exercise) that X* = o¢
is a hypersurface-orthogonal timelike Killing vector. We have therefore
established the following coordinate-free definition of a static space-time.

Static solutions

273
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Fig. 15.5 Two ‘simultaneous’ events in
world time.

A space-time is said to be static if and only if it admits a hypersurface-
orthogonal timelike Killing vector field.

Moreover, we have established the following important result.

In a static space-time, there exists a coordinate system adapted to the
timelike Killing vector field in which the metric is time-independent
and no cross terms appear in the line element involving the time, i.e.
the metric takes the form (15.19).

It can be shown (exercise) that there still exists the coordinate freedom
50 = A+ B, x® — X = WY(XP), (15.26)

where A and B are constants and the functions #'“ are arbitrary. If the
boundary conditions require goo — 1 at spatial infinity, then this requires
A = +£1. Neglecting time reversal, then this fixes 4 to be 1, and so we have
defined a time coordinate, called world time, which is defined to within
an unimportant additive constant. Thus, in a static space-time, we have
regained the old Newtonian idea of an absolute time in the sense that
the manifold can be sliced up in a well-defined way into hypersurfaces
t = constant (Fig. 15.5). Then there exist a privileged class of observers
who measure world time and hence can agree on events being simul-

. . . . *
taneous. The corresponding coordinates are Gaussian, since go, = doqa.

15.4 Spherically symmetric solutions

Spherical symmetry can be defined rigorously using the notion of isome-
try. In §7.7 we defined an isometry ¢ : x* — x? to be a map such that the
metric satisfied (7.52). It then follows that the inverse map ¢! : X% — x¢
is an isometry (exercise). If we have a second isometry, ) : x* — X°, then
the composition of the two, ¥ o ¢ : x* — X%, is also an isometry (exercise).
As a result of this, the set of isometries of a metric forms a group, called
the isometry group. A space-time is spherically symmetric if the metric
remains invariant under a spatial rotation. More precisely:

A space-time is said to be spherically symmetric if and only if its
isometry group contains a subgroup isomorphic to the rotation group
in three dimensions, and the orbits of this group are topologically
2-spheres S2.

In particular, since there must be isometries that generate rotations, there

exist three linearly independent spacelike Killing vector fields X* which
correspond to rotations about the x, v, and z axes and therefore satisfy

XLx=x, XX)=X, XX]=X% (15.27)
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Then (see Exercise 7.4 and Exercise 8.5) there exists a coordinate system
in which the Killing vectors take on a standard form, as expressed in the
following result.

In a spherically symmetric space-time, there exists a coordinate system
(x7) (called Cartesian) in which the Killing fields X* are of the form

X0 Zo,
X~ ;wo‘gxﬁ, Wap = —Wga-

The quantity w, s depends on three parameters which specify three space-
like rotations. These results then lead to a canonical form for the line
element. The calculation is rather detailed, so we shall proceed in a dif-
ferent manner and present a heuristic argument for determining the form
of the line element.

Intuitively, spherical symmetry means that there exists a privileged
point, called the origin O, such that the system is invariant under spa-
tial rotations about O. Then, if we fix the time and consider a point P
a distance a from O, the spatial rotations will result in P sweeping out a
2-sphere centred on O. We can then introduce an axial coordinate ¢ and
an azimuthal coordinate # on the sphere in the usual way. Dropping a
perpendicular from P to the equatorial plane z = 0 at Q, then ¢ is the
angle which OQ makes with the positive x-axis, and 6 is the angle which
OP makes with the positive z-axis (Fig. 15.6). All points on the 2-sphere
will be covered by the coordinate ranges

0<0<m, (15.28)

7. (15.29)

NN

-7 <@
Moreover, the line element of the 2-sphere is (exercise)

ds? = a?(d#? + sin*0d¢?). (15.30)

It is then natural to assume that, in four dimensions, we can augment 6
and ¢ with an arbitrary timelike coordinate ¢z and some radial-type param-
eter 7, so that the line element reduces to the form (15.30) on a 2-sphere ¢
= constant, r = constant. Spherical symmetry requires that the line ele-
ment does not vary when 6 and ¢ are varied, so that # and ¢ only occur in
the line element in the form (d6? + sin’ #d¢?). Moreover, using an argu-
ment analogous to the one we used at the beginning of {15.3, there can be
no cross terms in df or d¢ (exercise) because the metric must be invariant
separately under the reflections

0—0 =n—0, (15.31)
and

b — ¢ =—o. (15.32)

X =

Fig. 15.6 The standard spherical coor-
dinates 6 and ¢.
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Our starting ansatz, then, for a spherically symmetric space-time is that
there exists a special coordinate system

(x") = (&% %', 4%, %) = (4,1,0, ¢),

in which the line element has the form

ds? £ Ad? — 2Bdtdr — Cdr? — D(d6? + sin®0 d¢?), (15.33)
where A, B, C, and D are as yet undetermined functions of 7 and 7, i.e.

A=A(,r), B=B(tr), C=C(tr), D=D(,r).
If we introduce a new radial coordinate by the transformation
r—7v = D%,
then (15.33) becomes
ds® = A'(1,7)d? — 2B (t,7)dedr’ — C'(1,7)dr’” — /*(d6? + sin®0 d¢p?).
(15.34)
Consider the differential
A (t,7)dt — B'(,7) d7’.
The theory of ordinary differential equations tells us that we can always
multiply this by an integrating factor, I = I(z,7’), say, which makes it a
perfect differential. We use this result to define a new time coordinate ¢/
by requiring
dt = I(t,")[A' (t,7)dt — B'(t,7)dr].
Squaring, we obtain
dr? = I*(A°d? — 2A'B'didr’ + B?dr?),
and so
AdP - 2Bdedy = 471724 - 47 B,
and the line element (15.34) becomes
ds? = A7 12407 — (C' + A 7' B)dr” — ¥ (d6? + sin®0 dg?).

Defining two new functions v and A by

A= (15.35)
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and
C +A7'B?=¢, (15.36)
and dropping the primes, we finally obtain the form
ds? = e¥d? — e*dr? — 2(dF? + sin’0 d¢?), (15.37)
where
v=v(tr), A=A{r).

The definitions of v and A in (15.35) and (15.36) are given in terms
of exponentials, which, since they are always positive, guarantees that
the signature of the metric is —2. In fact, there are rigorous arguments
which confirm that the most general spherically symmetric line element
in four dimensions (with signature —2) can be written in the canonical
form (15.37).

15.5 The Schwarzschild solution

We now use Einstein’s vacuum field equations to determine the unknown
functions v and A in (15.37). The covariant metric is

ga = diag(e?, —e*, —r2, —r%sin?6), (15.38)
and, since the metric is diagonal, its contravariant form is
g% =diage™, —e ™, —r %, —r %sin?0). (15.39)

If we denote derivatives with respect to 7 and » by dot and prime, respec-
tively, then, by Exercise 6.32(v), the non-vanishing components of the
mixed Einstein tensor are

| 1
G’ =e? C - rz) 35 (15.40)
Gol = —e M A= -G, (15.41)
S| 1
Gl = e (Vr + rz) 5 (15.42)
2 _ 3_1 y VN /\7/_1’7/_:_//
G7 =057 =5 2 2 7
1 - N\
+ 5e‘” ()\ + /\7 — A;) . (15.43)

The contracted Bianchi identities reveal that equation (15.43) vanishes
automatically if the equations (15.40), (15.41), and (15.42) all vanish
(exercise). Hence, there are three independent equations to solve, namely,
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e (Ar/ — :2> + % =0, (15.44)
e <”r/ + :2) — % =0, (15.45)
A=0. (15.46)
Adding (15.44) and (15.45), we get
N+ =0,
and integration gives
A+ v =h(1), (15.47)

where 4(t) is an arbitrary function of integration. Here, A is purely a func-
tion of r by (15.46), and so (15.44) is simply an ordinary differential
equation, which we write

et —re M\ =1,
or, equivalently,
(re™) =1.
Integrating, we get
A

re” ~ = r+ constant.

Choosing the constant of integration to be —2m, for later convenience,
we then obtain

er = (1—2mm) " (15.48)
It then follows from (15.47) that
¢ =W = SO (1 — 2myr). (15.49)
So, at this stage, the metric has been reduced to
g = diag ["O (1 — 2m/r), — (1 — 2mfr)~", — 2, — r?sin?0] . (15.50)

The final stage is to eliminate 4(z). This is done by transforming to a new
time coordinate 7', i.e. t — ¢, where ¢ is determined by the relation

t
! = / e"/2qy, (15.51)
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where ¢ is an arbitrary constant. Then the only component of the metric
which changes is (exercise)

oo = (1 —2m/r).

Dropping primes, we have shown that it is always possible to find a co-
ordinate system in which the most general spherically symmetric solution
of the vacuum field equations is

ds? = (1—2m/r) d — (1 — 2mfr)”'dr? —1?(d6? +sin® 6 d¢?). (15.52)

This is the famous Schwarzschild line element.

15.6 Properties of the Schwarzschild
solution

We restrict attention to the exterior region » > 2m, where the coordinates
t and r are timelike and spacelike, respectively (see §17.1). It is immediate
from (15.52) that ga,0 =0, and so the solution is stationary. Moreover,
the coordinates are adapted to the Killing vector field X* = dg. Since

X, = g X" = g0 = g0a = 0000 = (1 — 2m/r, 0,0,0),
we see that X? is hypersurface-orthogonal, that is, X, = A, ,, with
A=X?Zgy and f(x?)=¢= constant.
Alternatively, we can check (exercise) that
X0 Xy = 0. (15.53)

Thus, the timelike Killing vector field X? is hypersurface orthogonal to
the family of hypersurfaces ¢ = constant, and hence the solution is static
and zis a world time. Alternatively, it is immediate from (15.52) that the
solution is time-symmetric, since it is invariant under the time reflec-
tion t — ¢ = —t, and time translation invariant, since it is invariant
under the transformation ¢ — ¢ = r+constant, and so again it is static (see
Exercise 15.1). We have thus proved the following somewhat unexpected
result.

Birkhoff’s theorem: A spherically symmetric vacuum solution in the
exterior region is necessarily static.

This is unexpected because, in Newtonian theory, spherical symmetry
has nothing to do with time dependence. This highlights the special char-
acter of non-linear partial differential equations and the solutions they
admit. In particular, Birkhoff’s theorem implies that, if a spherically sym-
metric source like a star changes its shape, but does so always remaining



280 The Schwarzschild solution

Fig. 15.7 A pulsating spherical star can-
not emit gravitational waves.

spherically symmetric, then it cannot propagate any disturbances into the
surrounding space. LLooking ahead, this means that a pulsating spherically
symmetric star cannot emit gravitational waves (Fig. 15.7). If a spherically
symmetric source is restricted to the region r < a for some a > 2m, then
the solution for » > a must be the Schwarzschild solution or, to give it its
full name, the Schwarzschild exterior solution. However, the converse
is not true: a source which gives rise to an exterior Schwarzschild solu-
tion is not necessarily spherically symmetric. Some counter examples are
known. Thus, in general, a source need not inherit the symmetry of its
external field.

If we take the limit of (15.52) as r — oo, then we obtain the flat space
metric of special relativity in spherical polar coordinates, namely,

ds? = d2 — d? — #(d6? + sin® A d¢?). (15.54)

We have therefore shown that a spherically symmetric vacuum solution is
necessarily asymptotically flat. Some authors obtain the Schwarzschild
solution from the starting assumptions that the solution is spherically sym-
metric, static, and asymptotically flat. However, as we have seen, there is
no need to adopt these last two assumptions a priori, because the field
equations force them on you. Let us attempt an interpretation of the con-
stant m appearing in the solution, by considering the Newtonian limit.
A point mass M situated at the origin O in Newtonian theory gives rise
to a potential ¢ = —GM/r. Inserting this into the weak-field limit (10.49)
gives

go0 ~ 1424/ =1 —2GM/(*r),

and, comparing this with (15.52), we see that
m= GM/c* (15.55)

in non-relativistic units. In other words, if we interpret the Schwarzschild
solution as due to a particle situated at the origin, then the constant  is
simply the mass of the particle in relativistic units. It is clear from (15.52)
that m has the dimensions of length, which is consistent with the dimen-
sions given by (15.55). It is sometimes known as the geometric mass.
We postpone a discussion of the coordinate ranges and the interpretation
of the coordinates until Chapter 17. We end this section by summarizing
the properties we have met. The exterior Schwarzschild solution:

(1) is spherically symmetric;
(2) is stationary;
(3) has coordinates adapted to the timelike Killing vector field X%;

(4) isstatic < is time-symmetric and time-translation invariant,
< has a hypersurface-orthogonal timelike Killing vector

field X%;
(5) is asymptotically flat;
(6) has geometric mass m = GMc™2.
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15.7 Isotropic coordinates

In this section, we seek an alternative set of coordinates in which the time
slices ¢ = constant are as close as we can get them to Euclidean 3-space.
More specifically, we attempt to write the line element in the form

ds? = A(r) d — B(r) do?,
where do? is the line element of Euclidean 3-space, namely,
do? = dx? + dy? + d2?,
in Cartesian coordinates or, equivalently,
do? = dr? + 2de? + 7 sin® 0 d¢?,

in spherical polar coordinates. In this form, the metric in a slice
t = constant is conformal to the metric of Euclidean 3-space, and hence,
in particular, angles between vectors and ratios of lengths are the same for
each metric (see Exercise 6.28).

We consider a transformation in which the coordinates 6, ¢, and ¢
remain unchanged while

r— p=p(r), (15.56)

so that p is some other radial coordinate, and we attempt to put the
solution in the form

ds? = (1 — 2m/r) d? — [M(p)]*[dp? + p?(d6? +sin® 0d¢?)].  (15.57)

We could consider how (15.52) transforms under the transformation
(15.56), but it is easier to proceed as follows. Comparing (15.57) with
(15.52), the coefficients of d6? + sin? § d$? must be equal, which requires

” =\ (15.58)
Equating the two radial elements produces
(1 —2mfr) " d? = X2dp?. (15.59)

Eliminating A\ and taking square roots, we find

=+-F, (15.60)
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This is an ordinary differential equation in which the variables are sepa-
rated. Since we require p — co as r — 00, we take the positive sign, and
by integration we find (exercise)

r=p(1+ imjp)’, (15.61)
and so, from (15.58),

A= (1+ Lmjp)" (15.62)

Using (15.61) to eliminate r, we find that the Schwarzschild solution can
be written in the following isotropic form

_ L)
ds? = (12—m/p)2d12 — {1 %m/p)4[dp2 + p*(d6? + sin’ 0 d¢?)].

(1+ %m/p)
(15.63)

15.8 The Schwarzschild interior solution

We end this chapter with a brief discussion of static spherically symmetric
perfect fluid solutions of Einstein’s equations that can serve as an inte-
rior solution to the Schwarzschild solution. As before, the assumption of
spherical symmetry leads to the metric (15.37). However, since we are
now assuming that the solution is static, there is no ¢z dependence so we
now have

The matter is a perfect fluid with energy-momentum tensor given by
(12.22) so that

T = (p+ p)u‘u’ — pg”, (15.64)
where u? is the 4-velocity of the fluid. Since the solution is static, #* must

be proportional to the timelike Killing vector £&* = (1,0, 0, 0) and, since it
is a 4-velocity, it must satisfy u®u, = 1. Hence,

g(l
u'=——r. (15.65)
(€56p)1/2
It follows from this (exercise) that
To° = p, (15.66)

and

T/ = —pd, 4j=1,...,3. (15.67)
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The expression for G° is still given by (15.40) so that this component of
Einstein’s equations gives

81p=e )\—I 1 + !
P = r 7))
_1 d

We now define the function m(r), which in the Newtonian case would be
the total mass inside the radius r, by

m(r) = 477/ p(s)s*ds. (15.69)
0
Then multiplying (15.68) by 72, rearranging, and integrating, we obtain
(exercise)
2
A0 =g 2m) (15.70)
r
The G;' component of Einstein’s equations gives
vl 1
grp=e | —+= | — =, 15.71
= ( . 72) = (15.71)
which, using (15.70), simplifies to (exercise)
-1
1 2 2
v _1 (1 — "1(7)) ("M + 8ﬂr2p> . (15.72)
dr r r r
We now use the fact that V;,7,% = 0 to deduce (exercise) that
dp 1 dv
—=——=(p+p)—. 15.73
A R Jbem (15.73)

Eliminating v’ from (15.72) and (15.73) and rearranging gives

—il
% - —%(p+p)(m(r) + 4rPp) (1 _ Zm—r(r)) . as74)
This is called the Tolman-Oppenheimer-Volkoff equation, or TOV
equation for short, which describes the behaviour of a static spheri-
cally symmetric perfect fluid. If p(r) is a given function of 7, then one
can, in principle, obtain expressions for the pressure and metric coef-
ficients. A particularly simple case is when the density is constant so
p = po = constant. This yields the so-called Schwarzschild interior
solution. If the radius of the star is R, then the total mass is M = %ﬂRS 005
and m(r) is given by (exercise)

(15.75)

MP/R®  r<R,
) =3 r>R.
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Then (15.74) can be integrated with the boundary condition p(R) = 0
(so that the pressure vanishes at the edge of the star) to give the pressure
in the interior (r < R) as (exercise)

(1—2M/R)'/? — (1 - 2MP /R?)!/?
(1 —2Mr/R3)1/2 —3(1 — 2M/R)1/2

p(1) = po [ (15.76)
Then \(r) is given by (15.70) while v(r) is given by integrating (15.72)
to give

301 1/2 _ 11 _ 3\1/212

o = [ B=28/0) 2 =50 2MP /R P <R oo
1—2M/r r

The above equations give the pressure and metric functions for the
Schwarzschild interior solution.

However, it is important to note that, apart from the simple examples,
like the constant density case illustrated above, it is not usual to be able to
specify the density as a given function of . Instead, one has an equation
of state giving a functional relationship between the pressure and the
density so that

p=p(p).
Differentiating this gives
dp _dpdp
dr  dpdr’

which may be substituted into (15.74) to give a (complicated) non-linear
equation for the density. In general this cannot be solved in closed form,
and numerical methods must be used to obtain the solution of the TOV
equation.

Exercises

15.1 (§15.1) A system is time-symmetric if it is invariant under
t—17=—t

Give an example of a non-stationary time-symmetric system. Show that,
if a time-symmetric system is also time-translation invariant, i.e. invariant
under

t — ¢ = t+ constant,

then the system is static. Deduce that a stationary time-symmetric system
is necessarily static.



15.2 (§15.1) Show that, if g, is stationary, then there exists a privileged
coordinate system (zx“) in which the Killing vector field X reduces to
X = 0/0r with X(g.») = 0. Show that X generates a time-translation
invariance

t = ¢ = t+ constant.

15.3 (§15.2)

(1) Take the differential of (15.3) to confirm (15.4).
(i) Show that (15.9) is equivalent to (15.8).

(iii) Check that (15.14) is consistent with (15.13).

15.4 (§15.3)
(1) Establish (15.22)—(15.25) under the transformation (15.21).
(i) Show that there still remains the coordinate freedom (15.26).

15.5 (§15.3) Show that, if there exists a coordinate system in which the
metric takes the form (15.19), then X = 9§ is a hypersurface-orthogonal
timelike Killing vector.

15.6 (§15.4) Show that the composition of two isometries is an isometry.

15.7 (§15.4) Consider a point P on a 2-sphere of radius a centred at the
origin. Find the distance P travels under an increase of coordinates

@) 60— 06+do,

(i) ¢ — ¢ = do.

Use Pythagoras’ theorem to obtain the line element (15.30) for a 2-sphere.

15.8 (§15.4) Show that a spherically symmetric line element cannot pos-
sess cross terms in df and d¢ because the metric must be invariant under
the reflections (15.31) and (15.32). [Hint: assume that all the metric
components g, (a, b # 0) and g33 sin~2 0 do not depend on 6 or ¢.]

15.9 (§15.5) Show that, if (15.40), (15.41), and (15.42) vanish, then so
does (15.43), by the contracted Bianchi identities.

15.10 (§15.5) Show that, under the transformation to a new time coordi-
nate ¢/ given by (15.51), the line element (15.50) is transformed into the
form (15.52), where primes have been dropped in (15.52).

15.11 (§15.6) Check that (15.53) holds for the Schwarzschild line
element where X“ is the timelike Killing vector field.

15.12 (§15.6) Find the dimensions of the gravitational constant G. [Hint:
use (4.4) and Newton’s second law.] Use (15.55) to show that m has the
dimensions of a length.

15.13 (§15.6) Find the non-zero components of Ry for the
Schwarzschild solution.

Exercises
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15.14 (§15.7)

(i) Show that (15.60) taken with the positive sign integrates to give
(15.61).

(i) Use (15.57), (15.61), and (15.62) to derive (15.63).

15.15 (§15.7) Consider (15.63) in the weak-field limit m < p to show
that goo ~ 1 — 2m/p and confirm (15.55).

15.16 (§15.7) Which of the six properties listed at the end of §15.6 still
hold for the isotropic form of the Schwarzschild line element?

15.17 (§15.7) Confirm by direct computation that the isotropic form of
the Schwarzschild solution

ds® = mgfgidﬂ — (14 m/2p)* [dx® + dy® + dz°],

where
r= (2 +17 + 2% = p(1 + m/2p)?
admits the Killing vector fields

o 0 0o 0 0 0 9
o Yoy “ox Yos oy “ox "oz

[Hint: This is a fairly long calculation and you will need to compute in
turn Or/dx, dr/dp and hence dp/dx. Then use the symmetry in x, v, and
z.] Find all their commutators.

15.18 (§15.8)

(1) Verify that, for a static perfect fluid, the energy-momentum tensor sat-
isfies (15.66) and (15.67).

(i) Show that (15.68) leads to (15.70).

(iii) Show that V,7,? = 0 implies (15.73). [Hint: you need only consider
the case a = 1 and then use the results of Exercise 6.32 (ii).]

@iv) Use (15.72) and (15.73) to obtain the T'OV equation (15.74).

(v) Integrate the TOV equation for the constant density case, p
= 3M/47R? for 0 < r < Rand p = 0 for r > R, to obtain (15.76).
Calculate \(r) and v(r), and show this gives the interior Schwarzschild
solution for » < R and the Schwarzschild exterior solution for r > R.



Further reading

All the general relativity textbooks listed below contain material on the
Schwarzschild exterior solution. However, we have only sketched the
details of an interior source for the Schwarzschild solution. A simple
treatment of this is given in the book by Hughston and Tod (1990).

Carroll, S. M. (2004). Spacetime and Geometry: An Introduction to General
Relativity. Addison Wesley, San Francisco, CA.

Hartle, J. B. (2003). Gravity: An Introduction to Einstein’s General Relativ-
1ty. Addison Wesley, San Francisco, CA.

Schutz, B. E (1985). A First Course in General Relativity. Cambridge
University Press, Cambridge.

Wald, R. M. (1984). General Relativity. University of Chicago Press,
Chicago, IL.

Hughston, L. P, and Tod, K. P. (1990). An Introduction to General
Relativity. Cambridge University Press, Cambridge.

Further reading 287






Classical experimental tests
of general relativity

16.1 Introduction

In this chapter, we shall consider various experimental tests of general
relativity. In particular we will focus on the tests of general relativity that
can be carried out in the solar system. However, these tests are really tests
of general relativity in the weak-field regime, in which the gravitational
effects are not significantly different from the corresponding Newtonian
ones. We will show that, in this regime, it is possible to introduce a scheme
called the parametrized-post-Newtonian (PPN) framework in which
one can compare general relativity with alternative gravitational theories.
We will see that by using this framework for weak gravitational fields,
the predictions of general relativity, are confirmed with an error of just
a few tenths of a per cent. However, some of the most interesting predic-
tions of general relativity, such as the the structure of the early universe,
the existence of black holes, and the emission of gravitational waves by
colliding stars, involve strong gravitational fields so cannot be described
through a perturbation of Newtonian gravity. Indirect evidence for the
existence of gravitational waves comes from monitoring binary pulsars,
such as PSR 1913+16, whose orbits decay due to the emission of gravi-
tational radiation. Direct evidence for the existence of gravitational waves
comes from the measurement of gravitational waves by two LLIGO detec-
tors in 2015, where the signal matched the numerical predictions of the
merger of two black holes. This event, which lasted only a few seconds,
was the most powerful astronomical event ever observed. We will describe
in more detail the experimental evidence for the existence of black holes
and gravitational radiation in Parts D and E.

Historically, the first tests of the theory were the three so-called clas-
sical tests of general relativity, namely, the precession of the perihelion
of Mercury, the bending of light, and the gravitational redshift. These
tests were augmented subsequently by a fourth classical test, the delay
of a light signal in a gravitational field. The test of gravitational redshift
was originally thought to be a direct test of general relativity, since it
makes use of the Schwarzschild solution but it was soon realized that it
is really just a test of the weak equivalence principle. However, since
the equivalence principle is such a fundamental part of general relativ-
ity, high-precision measurements of gravitational redshift are important
in confirming the foundations of the theory. Furthermore, taken together
with some tests of special relativity showing local Lorentz invariance and
other experiments showing local position invariance, one is able to provide
strong experimental evidence for the Einstein equivalence principle

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0016
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(see §16.4), which allows one to deduce that gravity can be described
through the curvature of space-time endowed with a symmetric metric.
This paves the way for using the other classical tests to compare general
relativity with other metric theories using the PPN framework. There have
probably been at least a score of alternative relativistic theories of gravita-
tion proposed since the advent of general relativity. However, use of the
PPN formalism shows that the predictions of all these theories in terms of
the solar system tests must all be extremely close to those of general rela-
tivity. This taken with the observations of gravitational radiation strongly
supports general relativity as being the best and simplest classical theory
that we have. We end with a brief chronology of the main experimental
or observational events connected with general relativity.

16.2 Gravitational red shift

Since it is so central to the underpinning of the theory, and was the first
test suggested by Einstein, we begin by considering gravitational redshift.
As we have said, at first it was thought that this was a direct test of general
relativity since it employed the Schwarzschild solution, but it is now clear
that any relativistic theory of gravitation consistent with the principle of
equivalence will predict a redshift. We outline below a thought experiment
which leads directly to the existence of a gravitational redshift. Consider
an endless chain running between the Earth and the Sun, carrying buck-
ets containing atoms in an excited state on one side and an equal number
of atoms in the ground state on the other side (Fig. 16.1). Since the ex-
cited atoms possess greater energy, they must have greater mass (using
E = mc?). They will be heavier than the ground-state atoms and so, by
the principle of equivalence, they will fall towards the Sun, whose grav-
itational field predominates. Suppose we have a device which returns an
atom arriving at the Sun to its ground state, collects the emitted energy
radiated in a mirror, and reflects it back to the Earth, where it is used to ex-
cite an incoming atom in the ground state. Then the rotating chain will run
on indefinitely. In this way, we have constructed a perpetuum mobile,
or perpetual-motion machine. Such a device contradicts the principle
of conservation of energy, the cornerstone of physics, and so something
must be wrong with the argument. It breaks down because the radiation
arriving at the Earth is not sufficiently energetic to excite the incoming
ground-state atom. In other words, it gets downgraded climbing up the
gravitational field: the radiation has been shifted to the red.

We shall next obtain a quantitative expression for the redshift in the
special case of a general static space-time. The coordinates are taken
to be

(xa) = (x0> xa)>

where x° is the world time and x® are spatial coordinates. We con-
sider two observers carrying ideal atomic clocks whose world-lines are
x® = x{ = constant and x* = x§ = constant, respectively (see Fig. 16.2).
Let the first observer possess an atomic system which is sending out
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radiation to the second observer. We denote the time separation between — «° World-line

successive wave crests as measured by the first clock by d7 in terms of :Ifnitter R
proper time and by dx{ in terms of coordinate time. It follows from the dTZ

definition of proper time that World-line
| of absorber

(03 a (a3 2
dr? = gw (x§) dxf dx? = goo (x7) (dx(l)) S (16.1) )

since g, can only depend on the spatial coordinates. Let the correspond- o
ing interval of reception recorded by the second observer be kd7 in proper x§ x5

time and dxg in coordinate time. Then, similarly,

Fig. 16.2 Emission and reception of
successive wave crests of a signal.

(Rdr)? = gop (x3) (dxd)’. (16.2)

However, the assumption that the space-time is static means that
0 0
dx; = dx3, (16.3)
because otherwise there would be a build-up or depletion of wave crests

between the two observers, in violation of the static assumption. Dividing
(16.1) and (16.2), we find

1
k= <g°0(x§)) ? (16.4)
1

The factor & records how many times the second clock has ticked between
the reception of the two wave crests. It follows that, if the atomic system
has characteristic frequency v, then the second observer will measure a
frequency for the first clock of v,, where

1
)\ 2
v= 2=y (goo (x;)) . (16.5)
k goo (%)
Then, in particular,
goo (x7) < goo (x5) = w2<wy, (16.6)

which means that the frequency is shifted to the red. We define the
fractional frequency shift to be

== , (16.7)

which, in the case of the weak-field limit (10.49), namely,
goo ~ 1429/,

gives (exercise)
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, (16.8)

Note that we have obtained this expression without recourse to the field
equations. In the special case of the Schwarzschild solution, this becomes,
in non-relativistic units,

A GM (1 1
= T <— - —> : (16.9)
v C (At ()
Then
n <rn = Av < 0, (16.10)

and so the frequency is shifted to the red.

If we take r; to be the observed radius of the Sun, and r, the radius
of the Earth’s orbit (Fig. 16.3), then (neglecting the Earth’s gravitational
field)

viv ~ —2. X . .
A 2.12 107 (16.11)

Observations of the Sun’s spectra near its edge give results of this order,
but there is great difficulty in interpreting the results generally because
of lack of knowledge of the detailed structure of the Sun and the solar
atmosphere. Similar remarks hold about white dwarfs, which, because of
their small radii compared with their masses, have a more pronounced
shift.

Since there are difficulties associated with astronomical measurements
of the gravitational redshift, there has been interest in the possibility of
a terrestrial test. This is a difficult task because the expected shift over a
vertical distance of 30 m, say, is only of the order of 10~!>. Fortunately,
the discovery of the Mdssbauer effect in 1958 gave a method of produc-
ing and detecting gamma rays which are monochromatic to one part in
10'2, and so makes a terrestrial test feasible. Pound and Rebka carried
out such a test in 1960. They placed a gamma ray emitter at the bot-
tom of a vertical 22 m tower with an absorber at the top. Gamma rays
emitted at the bottom then suffered a gravitational redshift climbing up
the Earth’s gravitational field to the top of the tower and were therefore
less favourably absorbed. By moving the emitter upwards at a small mea-
sured velocity, a compensating Doppler shift was produced which allowed
the rays to be resonantly absorbed. The experimental result gave 0.997
+ 0.009 times the predicted shift of 4.92 x 10~13, that is, an agreement of
better than 1%. Other experiments since 1960 have measured the change
in the rate of atomic clocks transported on aircraft, rockets, and satellites;
these have produced agreement with the theoretical predictions to about
the same order of accuracy. One example being the shift experienced by
radio signals from the space probe Voyager I in its flight past Saturn in
1980. The accuracy was increased by two more orders of magnitude over
the 1960 result in 1976 when a hydrogen maser clock was flown on a



Scout rocket to an altitude of some 10,000 km and compared to a similar
clock on the ground; this showed that the differences between the the-
oretical and measured values for the redshift were less than one part in
2 x 1074, It is intriguing to note that the length of the Scout rocket was
almost exactly the same as the height of the Jefferson Physical Laboratory
tower at Harvard University used for the 1960 experiment.

Although the time differences due to gravitational redshift are small,
it turns out that taking them into account is vital for the accuracy of the
Global Positioning System (GPS). The basic idea is that a GPS satel-
lite sends out a microwave signal encoded with the time and position of
the satellite (as measured in an inertial frame located at the Earth’s cen-
tre). An observer then measures the time at which they receive the signal
and, using the fact that the speed of light is ¢, they can work out their dis-
tance from the satellite at the time the signal was emitted. By doing this
for four or more satellites, the observer’s position can be fixed in space
and time even if the observer does not have an accurate clock. However,
in order to make accurate measurements of position, the measurements
need to be corrected for relativistic effects. The main corrections that are
needed are (i) to account for the special relativistic time dilation due to the
fact that the satellite is moving relative to the inertial frame of the Earth
and (ii) the gravitational redshift due to the fact that the satellite is further
from the centre of the Earth than the observer. Both these effects mean
that the signals will be received at a slower rate than the rate they were
emitted. The GPS satellites orbit at a radius of about Rg = 2.7 x 10* km,
which gives a radial speed of about 4 km/s and this results in a gamma
factor of ¥ ~ 8 x 107°. On the other hand, the fractional correction for
the gravitational redshift is by (16.9)

GM,
CZRS

~ 16 x 107°. (16.12)

Thus, the effect of gravitational redshift is about twice that of the special
relativistic time dilation. Although neither of these effects seem very large,
they account for a time difference of approximately one nanosecond or
a distance of 30 cm. These errors will accumulate over time and without
taking into account the relativistic corrections quickly result in GPS errors
of tens of metres.

16.3 The Eotvos experiment

We have seen that the gravitational redshift is essentially a test of the prin-
ciple of equivalence. Since the principle of equivalence is so central to
general relativity, we mention briefly here the important E6tvos torsion
balance experiment, which tests the equivalence of gravitational and in-
ertial mass. The experiment grew out of the much earlier work of Newton
and Bessel using pendula. The E6tvos experiment consists of two objects
of different composition connected by a rod of length ¢ and suspended
horizontally by a fine wire (Fig. 16.4). If the gravitational acceleration of

The Eo6tvos experiment

293
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Fig. 16.4 The E6tvos torsion
balance.

the two masses is different, then it can be shown that there will be a torque
N on the wire with

IN| =nl(g X k)i, (16.13)

where g is the gravitational acceleration, Z and k are unit vectors along the
rod and the wire, and 7 is a limit on the difference in acceleration called
the Eo6tvos ratio. If the apparatus is rotated with angular velocity w, then
the torque will be modulated with period 277 /w. In the original experiment
of Baron von E6tvos around the beginning of the last century, g was the
gravitational acceleration due to the Earth and the apparatus was rotated
about the direction of the wire. Edtvos found a limit on 7 of || < 5x 1077,

The experiment has been repeated and improved by Dicke at Prince-
ton and Braginski at Moscow. In their experiments, g was due to the Sun,
and the rotation of the Earth provided the modulation of the torque. The
torque was determined by measuring the force required to keep the rod
in place in the Princeton experiment and gave a result || < 10711, In
the Moscow experiment, the torque was determined by measuring the
torsional motion of the rod and produced || < 107!2, one of the most
accurate results in physics. These results have been confirmed by Su et al.
(1994).

16.4 The Einstein equivalence principle

In Chapter 9, we considered the strong and weak forms of the equivalence
principle. However, in the context of the experimental tests of general rel-
ativity, it is useful to introduce a version called the Einstein equivalence
principle, which in some sense lies between the weak and strong versions,
and for which there is very good experimental evidence. The significance
of the principle is that it can be shown to lead to the conclusion that gravity
can be described geometrically as a metric theory, which enables one to
use the classical tests to compare general relativity with alternative metric
theories of gravity.
The Einstein equivalence principle states the following:

1. The trajectory of a freely moving ‘test’ particle is independent of
its internal structure and composition (i.e the weak equivalence
principle is valid).

2. The outcome of any local non-gravitational experiment is indepen-
dent of the velocity of the freely-falling reference frame in which it
is performed.

3. The outcome of any local non-gravitational experiment is indepen-
dent of where and when in the universe it is performed.

Mathematically, point (1) is just one version of the weak equivalence
principle, point (2) amounts to local Lorentz invariance, while point
(3) is local space-time position invariance in both space and time. In
the previous sections, we outlined strong experimental evidence for the
validity of the weak equivalence principle, using both measurements of
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gravitational redshift and E6tvos torsion balance experiments. Evidence
for local Lorentz invariance comes from the many high-precision tests
of special relativity. These include a refined version of the Michelson—
Morley experiment, measurements of the independence of the speed of
light of the velocity of the sources using binary X-ray sources and high-
energy pions as well as experiments demonstrating the isotropy of the
speed of light. Evidence of local position independence in space comes
from measurements of atomic clocks on rockets and satellites. Evidence
for local position independence in time comes from the measurement
of spectral lines in distant galaxies (where the light was emitted in the
distant past) as well as comparing the gravitational redshift of the Earth-
bound clocks relative to the highly stable millisecond pulsar PSR 1937+21
(Will 2006).

The Einstein equivalence principle is of crucial importance because
it is possible to argue from this that gravitation must be a ‘curved
space-time phenomenon’, in which the effects of gravity are equivalent
to those of living in a curved space-time. Details of this assertion are
given in the book by Will (1993), but the argument is based on the
fact that, if the principle is valid, then, in local freely falling frames,
the laws governing experiments must be independent of the velocity
of the frame (local Lorentz invariance), with constant values for the
various fundamental constants in order to be independent of location.
The only laws we know of that fulfil these requirements are those that
are compatible with special relativity. Furthermore, according to the
equivalence principle, in local freely falling frames, test bodies appear
to be unaccelerated, in other words they move on straight lines; but
such ‘locally straight’ lines simply correspond to ‘geodesics’ in a curved
space-time. Thus, the concepts of inertial observer and Lorentz invari-
ance together imply the use of a Lorentz signature metric to describe the
kinematics.

As a consequence of these arguments, theories of gravity that satisfy the
Einstein equivalence principle must also satisfy the postulates of metric
theories of gravity, which are as follows:

Space-time is endowed with a symmetric metric.

2. The trajectories of freely falling test bodies are geodesics of that
metric.

3. In local freely falling reference frames, the non-gravitational laws
of physics are those written in the language of special relativity.

We will see in §16.9 that the two other ‘classical’ tests, the advance
of the perihelion and the bending of light, together with the Shapiro time
delay test, enable one to compare the predictions of general relativity with
other metric theories of gravity — a test general relativity passes with flying
colours.

295
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16.5 Classical Kepler motion

Before considering the motion of a test particle in the Schwarzschild met-
ric, we first review the classical Kepler problem, namely, the motion of a
test particle in the gravitational field of a massive body, before consider-
ing its general relativistic counterpart. It starts from the assumption that
a particle of mass m moves under the influence of an inverse square law
force whose centre of attraction is at the origin O, that is,

F= fm%i-, (16.14)
where 4 is a constant. Then Newton’s second law is
mi = —mgf«. (16.15)

The angular momentum of  is defined as

L=vr x mp, (16.16)
and so
dL . . ..
— =X mr+rXmr
dr
_ _ ﬁ)
e (o
=0,

where the cross products of # with itself and » with # both vanish because
the vectors are parallel. Hence, the angular momentum is conserved and

L = mh, (16.17)

where A is a constant vector. Assuming & # 0, it follows from (16.16) that
r is always perpendicular to %, and so the particle is restricted to move in
a plane. If we introduce plane polar coordinates (R, ¢), then the equation
of motion (16.15) becomes

(fequaz)m%% (R6)b=-LR (16.18)

Taking the scalar product with (ﬁ throughout and integrating produces

R =h, (16.19)

which is conservation of angular momentum again, where % is the magni-
tude of the angular momentum per unit mass. Taking the scalar product
with R throughout (16.18) gives

R—R¢* = —u/R?. (16.20)

We are interested in obtaining the equation of the orbit of the particle,
which in plane polar coordinates is

R = R(¢). (16.21)



If we introduce the new variable # = R™1, then this can also be written as
u = u(¢). Using the function of a function rule, we find
. R 1 1 1
R—d _d<>: dudeo th%——h%

T dr  dr\u) T wrdeodr T w2 de do

by (16.19). Similarly (exercise),

. d’u
_ 322
and so (16.20) becomes Binet’s equation
d*u U

Binet’s equation is the orbital differential equation for the particle, and
has solution (exercise)

U
u=s + C cos (¢ — ¢o)» (16.24)
where C and ¢y are constants. This can be written in terms of R as
(exercise)

€/R =1+ ecos (¢ — o), (16.25)

where ¢ = h?/u and e = Ch?/u. This is the polar equation of a conic
section in which ¢ (semi-latus rectum) determines the scale, e (eccentric-
ity) the shape, and ¢, the orientation (relative to the x-axis). In particular,
if 0 < e < 1, then the conic is an ellipse (Fig. 16.5), and the point of nearest
approach to the origin is called the perihelion.

The motion of a test particle in the field of a massive body is called the
one-body problem. We shall establish the classic result that in Newto-
nian theory the two-body problem of two point masses moving under
their mutual gravitational attraction can be reduced to a one-body prob-
lem. Consider two masses #; and m, with position vectors #; and 7,
respectively (Fig. 16.6). Define the position vector of m; (say) relative to
my by

rYy=vy — 7.

If F is the force on m; due to m,, and F>; is the force on m, due to m;,
then, by Newton’s third law,

F; = —Fp. (16.26)

Using Newton’s second law, (16.26), and Newton’s universal law of
gravitation (4.4), we obtain

Gmymy

2 "

Fp = myry = —mpiry = —
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Fig. 16.5 Kepler motion in an ellipse.

Fig. 16.6 The two-body problem.
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and so
Gmy . Gmy G(my + m3) .
7.

r=r; —1r; = — r— r=—

o o o

We find, finally, that the equation of motion can be written as

Fyy = mi = —m%&, (16.27)

where m, the reduced mass, is given by
m = my my/(my + my) (16.28)
and
u=G(m +my). (16.29)

Comparing (16.27) with (16.15), we see that this is the one-body problem
we discussed earlier. In the simplest model of planetary motion, we take
m; to be the mass of the sun, and #z; to be the mass of the planet. Then,
suitably interpreted (see Exercise 16.6), the motion of a planet is again a
Kepler ellipse.

16.6 Advance of the perihelion of Mercury

We now look at the one-body problem in general relativity. We assume
that the central massive body produces a spherically symmetric gravi-
tational field. The appropriate solution in general relativity is then the
Schwarzschild solution. Moreover, a test particle moves on a timelike
geodesic, and so we begin by studying some of the geodesics of the
Schwarzschild solution. The simplest approach is to employ the varia-
tional method of §7.6. Letting a dot denote differentiation with respect to
proper time 7, we then find, for timelike geodesics,

2K=(1=2m/r) —(1— 27’”/7”)71?2 — 6% —r%sin®0 4% = 1.
(16.30)
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We next work out the Euler-Lagrange equations. It turns out to be suffi-
cient to restrict attention to the three simplest equations, which are given
when a = 0, 2, 3 in (7.47) and which are

d

5 [(L=2m/r) i =0, (16.31)
d% (P6) - singcos8 4 = 0, (16.32)
% (r*sin?06) = 0. (16.33)

This is because we need four differential equations to determine our four
unknowns, namely,

t=11),r=7r(1),0 =0(1),¢ = ¢(7).

However, (16.30) is itself an integral of the motion and so, together with
(16.31)—(16.33), provides the four equations needed. We have seen in
Newtonian theory that the corresponding motion is confined to a plane.
Let us see if this is still true in general relativity. Consider a particle with
initial position in Schwarzschild coordinates given by x%(0) and initial
velocity %(0). Then, since the Schwarzschild solution is spherically sym-
metric, we can, without loss of generality, choose the coordinates such
that 6(0) = /2 and 6(0) = 0. It then follows from (16.32) that 6(0) = 0.
Differentiating (16.32), we can show that all higher derivatives of § must
vanish as well, and hence it follows that the motion is in the equatorial
plane (why?). Then, setting § = 7/2 in (16.33), this can be integrated
directly to give

o =h, (16.34)
where / is a constant. This is conservation of angular momentum (com-
pare with (16.19)) and note that, in the equatorial plane, the spherical

polar coordinate r is the same as the plane polar coordinate R. Similarly,
(16.31) gives

(1—=2m/r)i=k, (16.35)

where % is a constant. Substituting for ¢ and 7in (16.30), we obtain
(1= 2m/r)" = (1 =2m/r) ' =P = 1. (16.36)
We proceed as we did in the classical theory and set # = ¥~ !, which leads to

. du
r= _hdigb
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t z_/ ?
Q t = constant
(a)

(®)

Fig. 16.7 Motion of a test particle (a) in space-time and (b) projected onto
¢t = constant.

Then, using (16.34), we find (16.36) becomes

2 2
1 2
<§Z> 2=k o hifu + 2mad, (16.37)

This is a first-order differential equation for determining the orbit of a
test particle or, more precisely, the trajectory of the test body projected
into a slice ¢z = constant (Fig. 16.7). It can be integrated directly by using
elliptic functions. We shall use an approximation method to solve it.
Differentiating (16.37), we obtain the second-order equation

2
STJ; tu= h—WZl+3mu2. (16.38)

This is the relativistic version of Binet’s equation (16.23) and differs
from the Newtonian result by the presence of the last term. For plane-
tary orbits, this last term is comparatively small, because the ratio of the
two terms on the right-hand side of (16.38) is given in relativistic units
by 3/4% /7%, which for planetary orbits in the solar system is small. On this
assumption, we may solve the equation approximately by a perturbation
method. The first step is to write down equation (16.38) in a dimension-
less form, where we note that, in the relativistic units we are using, i,
7, and % all have the dimensions of length. For the Newtonian equation,
we have seen that u ~ m/h? so that we define the dimensionless variable
# = h?u/m, which in the Newtonian case is approximately one. Writing
(16.38) in terms of z, we obtain
d*a 3m? _,

?&+&:1+?u.

We now introduce the dimensionless quantity
e =3m* /12, (16.39)
and write the differential equation as

d’i
dez‘m: 1+ ci2. (16.40)



Advance of the perihelion of Mercury 301

For a planetary orbit, ¢ is very small, for example € ~ 10~7 for Mercury,
and, since # ~ 1 in the Newtonian case (when ¢ = 0), the additional
perturbation term on the right-hand side will produce an O(¢) change in
the solution. We may therefore assume that the equation has a solution of
the form

it = g + ity + O(E?). (16.41)
Substituting in (16.40), we find

iy +itg — 1 +e (i) +in —uj) + O(e?) = 0. (16.42)

If we equate the coefficients of different powers of € to zero, then the
zeroth-order solution g is the usual conic section (16.24)

ity = (1 + ecos ¢),

where, for convenience, we have taken ¢y = 0. The first-order equation
is

i + i = i, (16.43)
and so, substituting for ug, we get

] + ity = (1 +ecosp)?

= (1 + 2ecos ¢ + e cos? p)

(1+1e?) +2ecos ¢+ Le? cos2¢.
If we try a particular solution of the form
i, = A+ Bosing + Ccos 2¢, (16.44)

then we find (exercise)

A=(1+1e),B=c,C= T (16.45)
Thus, the general solution of (16.40) is
= (1+ecos¢)+c[l+epsing+e*(3 — Lcos2g)]. (16.46)

The most important correction to ug is the term involving e¢ sin ¢, be-
cause, after each revolution, it gets larger and larger. If we neglect the
other corrections and multiply by #/A? to obtain u, this gives

m
~ __

~ 3 [1 + ecos ¢ + cedsin @),

u

or
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Orbit 3

Orbit 2

2TE, .
O Orbit 1

Fig. 16.8 Precession of the perihelion.

u:h—n;{1+ecos[¢(1—s)]}, (16.47)

again neglecting terms of order £ (check). Thus, the orbit of the test body
is only approximately an ellipse. The orbit is still periodic, but no longer
of period 27; rather, it is of period

2
1—¢

~27(l+e¢). (16.48)

In simple intuitive terms, a planet will travel in an ellipse but the axis
of the ellipse will rotate, moving on by an amount A¢ = 27e between
two points of closest approach (Fig. 16.8). This is the famous preces-
sion of the perihelion. Using the fact that, in the Newtonian case,
h? = ma(1 — e?), where a is the semi-major axis of the ellipse, we get the
formula

6rGM

Ag = ca(l —e?)’

(16.49)

where we have used (15.55) to write m in non-relativistic units. Further-
more, we may also eliminate M and write this entirely in terms of the
orbital parameters as (exercise)

2473 g2

M= TEa—ay

(16.50)

where T'is the period of the orbit.

Now, in fact, in Newtonian theory, there is also an advance of the peri-
helion. This is because the planetary system is not a two-body system but
rather an #-body system, and all the other planets produce a perturbation
effect on the motion of one particular planet (rather similar in effect to
the perturbation in (16.38)). For example, the planet Jupiter produces a
measurable perturbation because its mass is relatively large, being about
0.1% of that of the Sun. Mercury has an orbit with high eccentricity and
small period (see (16.50)) and the perihelion position can be accurately
determined by observation. Before general relativity, there was a discrep-
ancy between the classical prediction and the observed shift of some 43
seconds of arc per century. Even though this is a very small difference, it is
very significant on an astrophysical scale and represents about a hundred
times the probable observational error. This discrepancy had worried as-
tronomers since the middle of the 19th century. In fact, in an attempt to
explain the discrepancy, it was suggested that there existed another planet,
which was given the name Vulcan, whose orbit was inside the orbit of
Mercury. (Indeed, there is a famous incident of its reported ‘observation’
by a French astronomer.) However, Vulcan does not exist, and general
relativity appears to explain the discrepancy, since it gives a theoretical
prediction of 42.98 seconds of arc per century. This compares very well
with the 2013 observation which constrains the anomalous precession to



be 42.98 + 5 seconds of arc per century (LLo et al. 2013). The perihelion
shift has also been measured for binary pulsar systems, with that for PSR
1913+16 amounting to 4.2° per year, in agreement with the predictions
of general relativity. We will analyse the behaviour of binary pulsars in
more detail in Chapter 21. The agreement of the residual perihelion pre-
cession with the other planets is not so marked because their observed
precessions are very small and some of the observational data involved is
not sufficiently accurate. One exception is a measurement in 1971 of the
residual precession of the minor planet Icarus, which once again is in good
agreement with the predicted values of general relativity (Table 16.1).

16.7 Bending of light

We next consider the case of the trajectory of a light ray in a spherically
symmetric gravitational field. The calculation is essentially the same as
that given in the last section, except that a light ray travels on a null
geodesic and so a dot now denotes differentiation with respect to an affine
parameter, and the right-hand side of (16.30) is zero. The analogue of
(16.38) is easily found to be (exercise)

d2
d—(;2t+u=3mu2. (16.51)

In the limit of special relativity, » vanishes and the equation becomes

d*u
@ +u= 03 (1652)
the general solution of which can be written in the form

u= %sin (¢ — o) » (16.53)

where D is a constant. This is the equation of a straight line (exercise) as
¢ goes from ¢q to ¢y + 7, where D is the distance of closest approach to
the origin. For convenience, without loss of generality, we may assume
that the coordinates have been chosen so that ¢y = 0. The straight-line
motion (Fig. 16.9) is the same as is predicted by Newtonian theory.

The equation of a light ray in Schwarzschild space-time (16.51) can
again be thought of as a perturbation of the classical equation (16.52). As
before, the first step is to write down the differential equation in dimen-
sionless form by introducing the dimensionless variable # = Du, which,
in the Newtonian case, is approximately one. Writing (16.51) in terms of
u, we obtain

d*i 3
“ia=

@ """ D

NG
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Table 16.1 Predicted and observed
values of residual perihelion precession.

Planet GR prediction Observed

Mercury 43.0 43.1£0.5
Venus 8.6 8.4+£48
Earth 3.8 5.0+1.2
Icarus 10.3 9.8+£0.8

Fig. 16.9 Straight-line motion of a light
ray in special relativity.
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We now introduce the dimensionless quantity

€= — (16.54)
and write the differential equation as

di

dTSZ 4= it (16.55)
Then, for a light ray grazing the surface of the Sun, 3m/D ~ 107, so we
may regard € as a small parameter and, since # ~ 1 in the unperturbed
case, we can expand the solution to (16.55) in powers of € and look for a
solution of the form

=i + iy + O(?). (16.56)

Using the fact that, by (16.53), 7%y = sin ¢, substituting into (16.55), and
equating powers of ¢, we get

W + iy = @ = sin’ p. (16.57)

This has (1 + Ccos ¢ + cos? ¢)/3 as solution (exercise), where C is an
arbitrary constant of integration. Substituting in (16.56) and dividing by
D, we see that u is given by

sin @ m (1+ Ccos ¢+ cos?o) 5
u=—p + 2 + O(e?). (16.58)

Since m/ D is small, this is clearly a perturbation from straight-line motion.
We are interested in determining the angle of deflection, A¢, for a light
ray in the presence of a spherically symmetric source, such as the Sun.
A long way from the source, r — oo and hence u — 0, which requires
the right-hand side of (16.58) to vanish. Let us take the values of ¢ for
which » — oo , that is, the angles of the asymptotes, to be —e; and 77 + €5,
respectively, as shown in Fig. 16.10. Using the small-angle formulae for
€1 and &;, we get

€1 m Iop) m
-——+=(2+0C)=0 —-——+=(2-0C)=0.
D DZ( ) 3 D Dz( )
Yoo ~<_ Asymptotes
Apparent\\~\\\ -
position AT -7
of star el -7
Light ray o Ss<z” (3/1 Apparent direction
T T of light ray
2 o &
1 == = )
bid Sun ~ A

Fig. 16.10 Deflection of light in a gravitational field.
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Fig. 16.11 Position of stars in a field (a) when the Sun is absent and (b) during
a total eclipse.

Adding, we find
Ap=¢e1+e3=4m/D, (16.59)
or, in non-relativistic units,
A¢p =4GM/D . (16.60)

The deflection predicted for a light ray which just grazes the Sun is 1.75
seconds of arc. Attempts have been made to measure this deflection at
a time of total eclipse when the light from the Sun is blocked out by the
Moon, so that the apparent position of the stars can be recorded. Then,
if photographs of a star field in the vicinity of the Sun at a time of total
eclipse are compared with photographs of the same region of the sky taken
at a time when the Sun is not present, they reveal that the stars appear to
move out radially because of light deflection (Fig. 16.11).

The first expedition to record a total eclipse was one in 1919 under the
leadership of Sir Arthur Eddington. The fact that this took place shortly
after the end of World War I (and, moreover, that the expedition was
led by an English scientist attempting to confirm a theory of a German
scientist) caught the imagination of a war-weary world. When Edding-
ton reported that the observations confirmed Einstein’s theory, Einstein
became something of a celebrity, and the newspapers of the day carried
popular articles attempting to explain how we now lived in a curved four-
dimensional world. Einstein was so convinced that his theory was right
that he reportedly remarked that he would have been sorry for God if
the observations had disagreed with the theory. In fact, it is now be-
lieved that the observations were not as clear cut as they then seemed,
because of problems associated with the solar corona, systematic errors,
and photographic emulsions. There have been over ten attempts to make
eclipse measurements, and the results have varied markedly from 0.7
to 1.55 times the Einstein prediction. The 2017 eclipse measurement is

Bending of light
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@ Sun

Fig. 16.12 The gravitational lens effect
of a Schwarzschild field.

regarded as one of the most accurate and agreed with the predicted value
to about 0.01%, with a measurement error of less than 3%. With the ad-
vent of large radio telescopes and the discovery of pointlike sources called
quasars (quasi-stellar objects), which emit huge amounts of electro mag-
netic radiation, the deflection can now be measured using long-baseline
interferometry when such a source passes close to the sun (LLebach et al.
1995), which gives excellent agreement with the predictions of general
relativity (see §16.9 for details).

If one considers a family of curves representing light rays coming in
parallel to each other from a distant source, then the presence of a mas-
sive object like the Sun causes the light rays to converge and produce a
caustic line on the axis ¢ = 0. In this way, a spherically symmetric gravi-
tational field acts as a gravitational lens (Fig. 16.12). Moreover, distant
point-like sources can produce double images (see Fig. 16.13). There was
considerable interest in 1980 when astronomers first reported the iden-
tification of what was previously considered two distinct quasars (known
as 0957 + 561A, B) separated by 6 seconds of arc. The evidence is that
there is a galaxy, roughly a quarter of the way from us to the quasar, which
is the principal component of a gravitational lens. With the advent of the
Hubble space telescope, there have been numerous observations of grav-
itational lensing (see Fig 16.14). An important feature of gravitational
lensing, unlike optical lenses, is that it is achromatic, that is, the deflec-
tion is independent of the frequency of the light. Also, since gravitational
lensing only depends on the mass, it can be used as a method for detecting
matter in the universe whether it is visible or not, which is an important
issue in cosmology (see Chapter 26). The topic of gravitational lensing
is now an important one in modern astronomy (see e.g. Perlick 2004 for
more details on this.)

Apparent -

image _--~

=

Fig. 16.13 Schematic representation of the double-image effect of the gravita-
tional lens.



Fig. 16.14 Photograph of gravitational lensing taken from the Hubble space
telescope.

16.8 Time delay of light

A fourth test which may also be considered a classical test of general
relativity was proposed by Shapiro in 1964. The idea is to use radar meth-
ods to measure the time travel of a light signal in a gravitational field.
Because space-time is curved in the presence of a gravitational field, this
travel time is greater than it would be in flat space, and the difference can
be tested experimentally.

We begin by considering the path of a light ray in the equatorial plane
6 = /2 in Schwarzschild space-time, where, using (15.52),

2K=(1—-2m/r) — (1 =2m/r) ' ¥ —rP ¢ =0, (16.61)

and the dot denotes differentiation with respect to an affine parameter
along the ray. To find the travel time of a light ray, we need to eliminate
¢ in terms of 7 and so obtain a differential equation for dz/dr. The Euler—
Lagrange equation for ¢ gives conservation of angular momentum (see
(16.34))

o =h, (16.62)

where /4 is a constant, and the Euler-Lagrange equation for ¢ is (see
(16.35))

(1 =2m/r)i=k, (16.63)

where kis a constant. If we let r = D denote the point of closest approach
to the Sun (see Fig. 16.15), then, since r is increasing on either side of
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Planet’s orbit

Fig. 16.15 A light ray travelling from a
planet to the Earth in the Sun’s gravita-
tional field.

this it follows that
7=0whenr=D. (16.64)

Substituting this result into (16.61), we get, using (16.62), (16.63),
and (16.64) (exercise),

W/ =D?/(1 —2m/D). (16.65)

From (16.62) and (16.63), we also get

N 2
dp\?> _ (é\ _ D*(1 —2m/r)?
(dz) - (z) ~ #(1-2m/D)’ (16.66)
which we can use to eliminate (;S in (16.61) giving (exercise)
dr 2_ 5 D?(1 —2m/r)

Taking square roots, we get

D*(1 —2m/r)] " ?

dt=%£(1-2 ) 0 dar, 16.68
(-ami 1= S e ase)

and, using Taylor’s theorem to expand the right-hand side in powers of

m, we find to order m? (exercise)

T 2m mD
dt = im (1 + 7 + 7’(7‘-}—D)) dr. (1669)

If we denote the time a light ray travels from the planet to the closest
approach to the Sun as f{Dp) then choosing the positive sign (since r > D),
we get

D Dp r 2m mD
f(DP) = /D dt = /D m (1 + 7 + 7‘(7‘-}—1))) d?", (1670)

and the three terms can be integrated directly to give (exercise)

Dp + /D% — D? Dp—D\'?
_ 2 _ 2 vV P -
fiDp) =4+/Dp —D +2mln< D +m Dot D .

(16.71)
A similar calculation gives the time taken for a light ray to travel from the
closest approach to the Sun to the Earth as given by the above formula
with D replacing Dp. The total time 7 for a light ray to travel from the
Earth to a planet and back is therefore

T =2[f(Dp) + fiDE)]s (16.72)



which gives finally (exercise),
r=2[(D3 - 0?)"" + (D3 - )]

+ amin { [ (D} — D*)""* + Dy] [(D} - D?)""* + D] /D? }
Dp—D\'? /Dp—D\'?
+2m [(DP+D) +<DE+D> s (16.73)

where D is the closest approach to the Sun, Dp is the planet’s orbit radius,
and Dg is the Earth’s orbit radius (see Fig. 16.15). The first term in square
brackets in (16.73) represents the flat space result (as should be clear from
the figure and also by setting m = 0). The actual experiment consists of
sending a pulse from the Earth to the planet and back again. The biggest
effect is when D is close to the solar radius Ds. In this case, the excess
delay AT compared to the special relativistic result is given to a good
approximation by (exercise)

AT~ 4m {m (4%1)1;) +1}, (16.74)

2
S

or in non-relativistic units

4GM 4DpD
AT~ =3 [m( 1;§ E) + 1} . (16.75)

The experimental verification of the delay consists in sending pulsed
radar signals from the Earth to Venus and Mercury and timing the echoes
as the positions of the Earth and the planet change relative to the Sun.
For Venus, the measured delay is about 200 us, which gives an agreement
with the theoretical prediction of better than 5%. A more accurate mea-
surement of AT was carried out with the Viking mission to Mars in 1976,
which verified the general relativistic prediction with an accuracy of better
than 1%.

16.9 The PPN parameters

The purpose of the original classical tests was to compare the predictions
of general relativity with those of Newtonian gravity. However, the results
of the 1919 eclipse measurement of the bending of light were not immedi-
ately accepted by other scientists. In his analysis of the 1922 solar eclipse,
Eddington replaced the Schwarzschild solution by a more general spheri-
cal symmetric metric with a parameter « which is related to the deflection
of light (see equation (16.81)) whose value is 1 for general relativity. This
enabled him to give a more quantitative analysis of the results of the 1922
eclipse measurements, which led to them being more generally accepted.
This approach was later refined by Robertson and Schiff, who introduced
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a second parameter [ that, in a certain sense, measures the non-linearity
of the theory. The parametrized-post-Newtonian (PPN) that we de-
scribe below generalizes the work of Eddington, Robertson, and Schiff
and provides a systematic way of comparing the predictions of general
relativity with a wide class of alternative gravitational theories.

As discussed earlier, general relativity cannot be considered a com-
pletely Machian theory and, in an attempt to produce a relativistic theory
of gravitation which better incorporated Mach’s principle, Brans and
Dicke proposed an alternative theory in 1961. We shall not discuss the
details of it here except to say that it is motivated in part by the idea of
treating the Newtonian constant G as a function of epoch (time), rather
than a constant as in general relativity. The resulting theory has an ad-
justable parameter in it called w and, if, for suitable boundary conditions,
we allow w — 00, then the theory corresponds to general relativity. In-
deed, over the years, a number of alternative relativistic tensorial theories
of gravity have been proposed. In discussing how the predictions of these
alternative theories compare with general relativity, it is useful to have
a framework in which the corrections to Newtonian theory provided by
these theories can be compared.

As we have seen, there is considerable experimental evidence support-
ing the Einstein equivalence principle. Mathematically, this supports the
conclusion that the only viable theories of gravity are metric theories, or
possibly theories that are metric, apart from very weak or short-range
non-metric couplings (as in string theory). We will therefore restrict atten-
tion to metric theories of gravity. For such theories, the PPN framework
provides a useful way of describing the corrections to Newtonian grav-
ity as measured by the experimental tests. There are a total of ten PPN
parameters, which are related to the ten independent components of the
metric g,;. However, four of these are related to violations of conservation
of momentum, while another four are related to the existence of preferred
frames or locations, and none of these eight parameters are relevant to the
‘classical’ experimental tests of general relativity. There are also other ex-
periments which show that all of these eight parameters are extremely
small. We will therefore concentrate on two parameters, v and 3, which
we describe below and which do influence the results of the classical tests
(Will 1993, 2014).

It follows from (15.37) that the most general static spherically sym-
metric metric can be put into the form

ds? = A(r)de® — B(r)d? — (d6? + sin® 0d¢?). (16.76)

However, if we work in non-relativistic units, we must replace dz by cdz,
and r by a dimensionless quantity. Assuming that the only physical pa-
rameter that determines the geometry of the gravitational field of the star
is the mass M, then the only dimensionless quantity that we can construct
from r using M, G, and c is

Ar

=, 16.
G (16.77)

r=



So, in non-relativistic units, (16.76) becomes
ds? = A(")?d? — B(#)dr? — ?(d#? + sin” 0d¢?). (16.78)

We know from the weak-field limit that to have agreement with Newtonian
theory we must have

A =1-2=1-258

r Ar

We get the post-Newtonian correction by expanding A(7) in further
inverse powers of 7.

AF) =1-— % + ‘% +03G7).

Similarly, in order to obtain the Newtonian limit of Euclidean space when
¢ — 00, we must have B(7) — 1 as ¢ — oo, or equivalently as 1/7 — 0.

The post-Newtonian term for B is obtained by expanding it in powers of
1/7. This gives

B#) =1+ % +O0(7%)

for some constant B;. The constants A, and B; are related to the PPN
parameters § and « by (exercise)

Ay =2(8 —7)s By =2y

where the PPN parameters § and - are defined by (16.79) and come from
a similar expansion of the isotropic form of the spherically symmetric
metric. The leading order terms given by

2
ds?=1- 2GM+25 oM
2p 2p

M
— (1 — zf;p) [dp? + p?(d6? + sin® 0dg?)] . (16.79)

The parameter § in some sense measures the ‘non-linearity of gravity’
while the parameter v measures the ‘space-time curvature produced, per
unit rest mass’ (Will, 2014)

Using the same perturbation methods as described earlier in the
chapter, one can now calculate (exercise) the values of the classical tests
using the metric (16.78) and one finds the following:

1. The precession A¢p of a planet per orbit is

1 61GM
A(bp ~ 7(2 + 2’)/ — ﬁ)m

3 (16.80)
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2. The angle of deflection A¢; of a light ray is

1+~ 4GM
A¢y ~ . 16.81
3. The excess time delay in the Shapiro test is
AT~ (LE2)AGM A (4DeDe | (16.82)
2 63 DS

This enables one to use the experimental tests to measure the values of 8
and v and compare these with the general relativistic values.

The most accurate value of v comes from measuring the time delay
and gives

v = 1.000 £ 0.002 .

Using this value of 7 in (16.80), the most accurately measured values of
the advance of the perihelion of Mercury give a value of

B =1.000+0.003 .

Note, however, that, in making these calculations, we have assumed that
the Sun is spherical. However, this is not quite true, since the rotation of
the Sun results in it being oblate so that it is shorter along the axis of
revolution compared to the equatorial radius, due to centrifugal effects.
However, accurate measurements of this by Brown et al. (1989) show that
these distortions are too small to influence the bounds on 3 given above.

In conclusion, we see that the solar system tests described in this
chapter confirm the predictions of general relativity with an accuracy of
only a few tenths of a per cent.

16.10 A chronology of experimental
and observational events
We end our considerations of experimental relativity with a brief chronol-

ogy of the more important experimental and observational events which
relate to general relativity.

1919 Eclipse expedition

1922 Eo6tvos torsion balance experiments
1922 Eclipse expedition

1929 Eclipse expedition
1936 Eclipse expedition
1947 Eclipse expedition
1953 Eclipse expedition

1954 Measurement of red-shift in spectrum of a white dwarf



1960 Hughs—Drever mass-anisotropy experiments
Pound-Rebka gravitational red-shift experiment

1962 Princeton E6tvis experiments

1965 Discovery of 3 K cosmic microwave background radiation
1966 Reported detection of solar oblateness

1967 Discovery of pulsars

1968 Planetary radar measurements of time delay
First radio deflection measurements

1970 Cygnus X1: first black hole candidate
Mariners 6 and 7 time-delay measurements

1971 Measurement of Shaprio time delay

1972 Moscow Eotvis experiments

1973 Eclipse expedition

1974 Discovery of binary pulsar

1976 Rocket gravitational red-shift experiment
Mariner 9 and Viking time-delay results

1978 Measurement of orbit-period decrease in the Hulse—Taylor binary
pulsar

1979 Scout rocket maser clock red-shift measurements

1980 Discovery of gravitational lens

2003 Measurement of orbit-period decrease in double pulsar

2004 Frame-dragging measured by Gravity Probe B

2016 Observation of gravitational waves by advanced LIGO

2018 Accurate measurement of gravitational lensing by Hubble Space
Telescope

2019 Observation of black hole by Event Horizon Telescope

16.11 Rubber-sheet geometry

We end our considerations of general relativity with the description of a
simple model which may help in understanding the theory. Although it is
notin any sense a quantitative model, it has some features in common with
general relativity and, in particular, it illustrates the way that curvature of
space-time can lead to the bending of light. The model consists of an open
box with a sheet of rubber stretched tightly over it. If a marble is then pro-
jected across the sheet, then it will move (approximately) in a straight-line
with constant velocity. This simulates flat space or special relativity, with
the marble’s path corresponding to the straight line geodesic motion of
special relativity (Fig. 16.16). Next, a weight is placed on the centre of
the sheet, causing the rubber to become curved. If the marble is now pro-
jected correctly, it will be seen to orbit the central weight. This simulates
general relativity, where a central mass curves up space-time in its vicin-
ity in such a way that a particle with suitable initial conditions will orbit
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Taut
rubber
Track of marble Marble sheet

Fig. 16.16 Simulation of straight-line
geodesic motion in special relativity.

Box
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Central Track of
weight marble

Fig. 16.17 Simulation of precessing
elliptical motion in general relativity.

the mass. The orbiting marble is performing the ‘straightest’ motion pos-
sible on the curved rubber sheet, or, more precisely, it is travelling on a
geodesic of the sheet. Moreover, if the marble is projected carefully, it
can be seen to be travelling on an elliptically shaped orbit which, owing
to frictional effects between the marble and the rubber sheet, precesses
about the central weight in analogy to a planetary orbit (Fig. 16.17).

We can relate this model better to the full theory if we consider an
embedding diagram of the Schwarzschild solution in a slice = constant
and in the equatorial plane § = /2. The line element then reduces to

ds? = (1 = 2m/r) " dr? + 12 do>. (16.83)

The curved geometry of this two-dimensional surface is best understood
if it is embedded in the flat geometry of a three-dimensional Euclidean
manifold. This is depicted in Fig. 16.18, where the distance between two
neighbouring points (7, ¢) and (r + dr, ¢ + d¢) defined by (16.83) is cor-
rectly represented. However, distances measured off the curved surface
have no direct physical meaning, nor do points off the curved surface;
only the curved 2-surface has meaning. If we fill in the interior of the
Schwarzschild solution for » < 7y (rp > 2m), then this represents the grav-
itational field due to a spherical star, and the embedding diagram looks
like Fig. 16.19. The surface depicted in Fig. 16.19 is similar in nature
to the curved surface of the rubber sheet in Fig. 16.17. This embedding
diagram also helps us to understand the phenomenon of light bending
(Fig. 16.20).

Although these diagrams are helpful in providing some insight into
the idea of a curved space-time, they need to be used with caution. For
example, the actual deflection of light is twice that suggested by Fig. 16.20
because the light travel takes place in space-time rather than space.
What they do show, however, is how mass curves up space (actually,
space-time) in its vicinity and how free particles and photons travel in the
straightest lines possible, namely, on the geodesics of the curved space.
As Wheeler puts it so succinctly, ‘Space-time tells matter how to move;

Fig. 16.18 Schwarzschild solution (¢ = constant, § = 7/2) embedded in
Euclidean 3-space.



Star interior

r=2m

Fig. 16.19 Embedded geometry exterior and interior to a spherical star.

Apparent position of star Actual position of star

Fig. 16.20 Depiction of light bending in the gravitational field of a star.

matter tells space-time how to curve’. The model also explains how the in-
fluence of the central mass is communicated to free particles and photons.
This is very different from the action-at-a-distance theory of Newtonian
gravitation, where a central mass communicates its influence on a distant
particle in a rather mysterious or at least unexplained way. Moreover, if
the central mass changes in any way in Newtonian theory, then its influ-
ence is altered at all distant points instantaneously. In general relativity,
any change in the mass of the central source will spread out like a ripple in
the rubber-sheet geometry, travelling with the speed of light. This leads to
the beginnings of understanding how gravitational waves are generated,
which we shall consider further in Part E.

Exercises

16.1 (§16.2) Show that (16.5) leads to (16.8) in the weak-field limit.
Deduce (16.9) for the Schwarzschild solution.

16.2 (§16.5) Show that (16.16) and (16.17) lead immediately to (16.19)
if B # 0. What is the motion if 2 = 0?

16.3 (§16.5) Establish the result (16.22), Binet’s equation (16.23), and
its solution (16.24) and (16.25).

Exercises

315
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16.4 (§16.5) Establish Kepler’s laws of planetary motion for the one-body
problem, namely,

K1: Each planet moves about the Sun in an ellipse, with the Sun at one
focus.

K2: The radius vector from the Sun to the planet sweeps out equal areas
in equal intervals of time.

K3: The squares of the periods 7 of any two planets are proportional to the
cubes of the semi-major axes a of their respective orbits, that is, 7  a/2.

16.5 (§16.5) Show that the total energy E for the one-body problem can
be written in terms of (R, ¢) as

E= %M(RZ + R?¢?) — mu/R.

Express this in terms of (#,¢) and use (16.25) to identify the parame-
ters as

=0 /uye = (1+2ER /mu)'/?.

16.6 (§16.5) Establish (16.27) subject to (16.28) and (16.29) for the two-
body problem.

16.7 (§16.5) Define the centre of mass R by

miry + mor;
R=- —— =<
my + my

for the two-body problem and deduce that it moves with constant velocity.
Transform to an inertial frame S’ in which the centre of mass is at rest and
situated at the origin O’ of the frame §’. Define position vectors #; and 7;
of my and m; relative to O’, and hence describe the motion of m; and m,
relative to O'. How are Kepler’s laws modified in the case of the two-body
problem? Show that, in particular,

T~ ZﬂaS/z(Gmsun)_l/z.

16.8 (§16.6) Establish the Euler-Lagrange equations (16.31)—(16.33).
Write down the equation corresponding to @ = 1 and confirm that
(16.31)—(16.33) are the three simplest Euler-Lagrange equations.

16.9 (§16.6) Derive (16.37) and deduce (16.38) from it. What do the
equations become in special relativity?

16.10 (§16.6) Show that (16.44) subject to (16.45) is a particular solution
of (16.43). Hence establish (16.47).

16.11 (§16.6) Establish the result (16.50). [Hint: replace by czin (15.52)
and use (15.55) and Exercise 16.7.]
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16.12 (§16.6)
(1) Show that the equation for a test particle orbiting in the equatorial
plane of the Schwarzschild solution can be written

1+ V(r) = #2/2,
where
V(r) =11 = 2m/r)(1 + 12 /7),

h is given by (16.34), and k is given by (16.35).
(ii) Show that V(r) has turning points at

1+ 1-12(’2)2],

and that r_ is a maxima and 7, is a minima.

(iii) Take the time derivative of the first equation in (i) to obtain an
equation for 7 and show that r = ry = constant implies that 1’/(ry) = 0. By
considering the value of I/(7) near r, and r_, deduce that stable circular
orbits are only possible when » = r,. Hence show that the innermost
stable circular orbit (ISCO) occurs when /#? = 12m? and at a radius of
r= 6m.

h2
™

16.13 (§16.7) Use the method of {16.6 to show that, for a light ray,
(1 —2m/r)" = (1 = 2m/r)"'? —?¢* = 0.

Hence derive equation(16.51).

16.14 (§16.7) Show that (16.53) is the general solution of (16.52) and in-
terpret (16.53) geometrically. Hence establish (16.58) as the approximate
solution of (16.51).

16.15 (§16.7) Show that, in the Schwarzschild metric, it is possible for a
photon to travel in a circular orbit of radius » = 3m (which is called the
photon sphere). [Hint: It is enough to consider the case of orbits in the
equatorial plane 6 = 77/2.]

16.16 (§16.8)

(i) Establish (16.65).

(ii) Establish (16.67) and deduce (16.69) to order m?.

(iii) Integrate the three terms in the integrand of (16.70) to establish
(16.71) and deduce (16.73). [Hint: use the substitution » = D cosh u to
integrate the first two terms.]

16.17 (§16.8)
(1) Show that (16.73) leads to (16.74).
(i) Use a dimensional argument to establish (16.75).
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16.18 (§16.9) Assuming a power series expansion of r in terms of p of
the form

r=p+d+0O(p7").

where d is a constant then, by comparing coefficients in the spherical
symmetric solution (16.76) and the isotropic form (16.79), show that

A =2(8-7), By =24.

16.19 (§16.9) Show that for the metric (16.76) the formula for the
bending of light is given by (16.81).

Further reading

A good discussion of the experimental tests of general relativity is included
in the textbook by Hartle (2003), which also discusses gravitational lens-
ing in more detail than we do. A complete but more advanced treatment
of the experimental tests is contained in the book and the Living Reviews
in Relativiry article by Will (2014). There is also a comprehensive Liv-
ing Reviews in Relativity article on gravitational lensing by Perlick (2004).
The quote ‘Space-time tells matter how to move; matter tells space-time
how to curve’ comes from Wheeler’s autobiography Geons, Black Holes
and Quantum Foam (Wheeler and Ford, 2000), and a shorter version of it
is on page 5 of the classic text by Misner, Thorne, and Wheeler (1973).

Hartle ]. B. (2003) Gravity: An Introduction to Einstein’s General Relativity.
Addison Wesley, San Francisco, CA.

Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation.
Freeman, San Francisco, CA.

Perlick, V. (2004). Gravitational lensing from a spacetime perspective.
Living Reviews in Relativity, 7, 9.

Wheeler, J. A., and Ford, K. (2000). Geons, Black Holes, and Quantum
Foam: A Life in Physics. W. W. Norton & Co., New York, NY.

Will, C. M. (1993). Theory and Experiment in Gravitational Physics
(revised edn). Cambridge University Press, Cambridge.

Will, C. M. (2014). The confrontation between general relativity and
experiment. Living Reviews in Relativity, 17, 4.
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Non-rotating black holes

17.1 Characterization of coordinates

In this chapter, we are going to make an effort to understand the
Schwarzschild vacuum solution. The solution (15.52) is exhibited in a
particular coordinate system. In general, if we wish to write down a so-
Iution of the field equations, then we need to do so in some particular
coordinate system. But what, if any, is the significance of any particu-
lar coordinate system? For example, take the Schwarzschild solution and
apply as complicated a coordinate transformation as you can imagine, la-
belling the new coordinates x'*. Now suppose you had been given this
solution and were asked to interpret the solution and identify the co-
ordinates x'?. The solution will, of course, still satisfy the vacuum field
equations, but there is likely to be little or no geometrical significance at-
tached to the coordinates x'*. For example, one cannot just set ¥ =
say, and interpret ¢ as a ‘time’ parameter. As a trivial illustration of this,
consider the transformation

¥0=0, ¥l=r ¥?=1 ?*=¢.

One thing we can do, however, is establish whether the coordinate
hypersurface

x\@ = constant, (17.1)

(where the parentheses enclosing the label a mean that it is to be regarded
as fixed) is timelike, null, or spacelike at a point. The normal co-vector
field to (17.1) is given by

ax(") _ 5((1)
Oxb b

ny =
So that the normal vector is
o = P = 00 = £,
which has magnitude squared given by

= n'n, = g (56(“) = ¢@@  (not summed).

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0017
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Hence the hypersurface (17.1) at P is timelike, null, or spacelike, de-
pending on whether g @ is > 0, = 0, or < 0. At any point where the
coordinate system is regular, the coordinate hypersurfaces may have any
character, but the four normal vector fields nba must be linearly indepen-
dent. Thus, for example, the hypersurfaces could all be null, timelike, or
spacelike, or any combination of these. We shall be meeting the three most
common situations where the four coordinates consist of:

1 timelike, 3 spacelike;

1 null, 3 spacelike;

2 null, 2 spacelike.

Although a metric may be displayed in any coordinate system, if it pos-
sesses symmetries, then there will exist preferred coordinates adapted to
the symmetries. We have already seen in Chapter 15 that, if a solution
possesses a Killing vector field, then the coordinates may be adapted to
the Killing vector field. If a solution possesses more than one Killing vec-
tor field, then the coordinates can be adapted to each of them as long
as the Killing vector fields commute, that is, their Lie brackets vanish.
If they do not commute, then the story is more complicated, but none
the less the symmetries can be used to tie down the possible coordinate
systems.

With these ideas in mind, let us look at the Schwarzschild solution in
the form (15.52) to see if we can characterize the coordinates (¢, 7,6, ¢).
First of all, since

_ . 17.2
72 sin” 6 ( )

it follows that x° = ¢ is timelike and x! = r is spacelike, as long as
r> 2m and both x* = # and x> = ¢ are spacelike. Next, since the metric
is independent of ¢ and there are no cross terms in dz, it follows that the
solution is static and ¢ is the invariantly defined world time of §15.3. The
coordinate ris a radial parameter which has the property that the 2-sphere
¢t = constant, r = constant, has the standard line element

ds? = —?(d#? + sin® 0d¢?),

from which it follows that the surface area of the 2-sphere is 47772. This
would fail to be the case if we had chosen a different radial parameter,
such as the isotropic coordinate p in (15.63). Then, finally, # and ¢ are
the usual spherical polar angular coordinates on the 2-spheres, which are
invariantly defined by the spherical symmetry and are unique up to ro-
tations. In short, the Schwarzschild coordinates (¢, 7,6, ¢) are canonical
coordinates defined invariantly by the symmetries present.



17.2 Singularities

We now turn to another problem associated with coordinates, that is, the
fact that, in general, a coordinate system only covers a portion of the man-
ifold. Thus, for example, the Schwarzschild coordinates do not cover the
axis = 0, § = 7, because the line element becomes degenerate there and
the metric ceases to be of rank 4. This degeneracy could be removed by
introducing Cartesian coordinates (x, y, z), where, as usual,

x =rsinfcos¢p, y=rsinfsing, =z =rcosh.

Such points are called coordinate singularities because they reflect
deficiencies in the coordinate system used and are therefore removable.
There are two other values of the coordinates for which the Schwarzschild
solution is degenerate, namely, » = 2m and r = 0. The value r = 2m is
known as the Schwarzschild radius. The hypersurface » = 2m again
turns out to be a removable coordinate singularity. This is indicated by
the fact that the Riemann tensor scalar invariant

RepeaR = 48m*r~°,

is finite at r = 2m. Since it is a scalar, its value remains the same in all co-
ordinate systems. By the same token, this invariant blows up at the origin
r = 0. The singularity at the origin is indeed irremovable and is variously
called an intrinsic, curvature, physical, essential, or real singularity.
Notice also by (16.4) that, since goo vanishes at the Schwarzschild radius,
the surface » = 2m is a surface of infinite redshift. We shall pursue this
later.

The normal interpretation of the Schwarzschild solution is as a vacuum
solution exterior to some spherical body of radius a > 2m (Fig. 17.1).
A different metric would describe the body itself for » < a, and
would then correspond to some distribution of matter resulting in a
non-zero energy-momentum tensor. As we saw in §15.8, Schwarzschild
obtained a spherically symmetric static perfect fluid solution known as the
interior Schwarzschild solution. Our programme in this chapter will be
to investigate the Schwarzschild vacuum solution abstracted away from
any source for all values of . In such a case, it should be clear from (17.2)
that » = 2m is a null hypersurface dividing the manifold into two discon-
nected components:

I. 2m<r<oo,

II. 0<r<22m.

Inside the region II the coordinates z and r reverse their character, with z
now being spacelike and r timelike. However, as regions I and II, as given
above, are disconnected, we cannot regard them as a single space-time
but need to treat them for the moment as separate.
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Fig. 17.1 Standard interpretation of the
Schwarzschild exterior solution.
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Fig. 17.2 Spatial diagram of
Minkowski space-time.
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Fig. 17.3 Spatial diagram of
Minkowski space time (one spatial
dimension suppressed).
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17.3 Spatial and space-time diagrams

The main technique we shall use to help interpret the solution is to inves-
tigate its local future light cone structure. A local light cone at the point
P is defined to be the set of null directions at P and so the future light
cone spans the set of possible directions of light rays emerging from P.
Light rays are null geodesics along which

ds? = gudx®dx® = 0,

so that light rays are tangent to the light cone at every point on the ray.
The light cone structure puts constraints on the possible histories of an
observer, since an observer moves on a timelike world-line whose direc-
tion at any point must lie within the future light cone at the point. Various
diagrams will help us in trying to understand the nature of the solution.

In a purely spatial diagram, we shall be interested in what happens
at various points in the manifold at two successive intervals of time, #;
and 1, say. At time 7y, a light flash is emitted from each point of interest
and the spatial diagram indicates where the wave fronts of these flashes
have reached at time 7. This is illustrated in Fig. 17.2 for Minkowski
space-time. In this figure, the light from each point will form a spherical
wave front centred on the point. If there are symmetries present, it may be
sufficient to consider what happens if we suppress one spatial dimension.
For example, Fig. 17.2 becomes Fig. 17.3 in the plane z = 0, say, and the
spheres now become circles.

In a space-time diagram, we are interested in the history of these
light flashes. Suppose we take successive ‘snapshots’ of the wave fronts
emanating from some point P at instants ty, f,, t3, and so on (Fig. 17.4).
The idea in a space-time diagram is to stack these pictures up in time.
Since this would involve a four-dimensional picture — and there are
enough problems in drawing three-dimensional pictures in two dimen-
sions — we suppress one spatial dimension and, as in Chapter 2, we draw
the time axis vertically. To be specific, let us restrict attention to the plane
z = 0 and then the wave fronts will become circles (which will appear as
ellipses in the diagram to take some account of perspective) lying on the
future light cone through P (Fig. 17.5). In the same way, we can include
the past light cone, which can be thought of as an imploding wave front.
Again, it will often be sufficient to consider a space-time diagram with two
spatial dimensions suppressed (Fig. 17.6). In a curved space-time, the

1 x 5>t 13>1,

Fig. 17.4 Light flash from a point at three successive times.
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curvature manifests itself in space-time diagrams through the light cones
being squashed or opened out and tipped or tilted in various ways, as we
shall see below.

17.4 Space-time diagram in Schwarzschild
coordinates

We first consider the class of radial null geodesics defined by requiring
ds?=6=¢=0. (17.3)
Then, using our variational principle approach, we have
2K =(1—=2m/n)f — (1 =2m/r) 'i? =0, (17.4)

where a dot denotes differentiation with respect to an affine param-
eter u along the null geodesic. The Euler-Lagrange equation (7.47)
corresponding to x° is

d .
Ew [(1=2m/7)i] =0,

which integrates to give
(1 =2m/r)i=k, (17.5)
where k is a constant. Substituting in (17.4) we find
? =k, (17.6)
or
7= tk, 17.7)

from which it follows that r is an affine parameter (exercise). Rather than
find the parametric equation of these curves, let us look directly for their
equation in the form ¢z = ¢(r). Then

de  de/du 1
- _ 17.
dr  dr/du 7 (17:8)

which can be found from (17.5) and (17.7). Taking the positive sign in
(17.7), we get

dr r

dr  r—2m’

(17.9)

which can be integrated, to give (exercise)

t=71+2mln|r— 2m| + constant. (17.10)

t
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Fig. 17.5 Space-time diagram of light
flash fone spatial dimension suppressed).
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Fig. 17.6 Space-time diagram of
light flash (two spatial dimensions
suppressed).
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Fig. 17.7 Schwarzschild solution in Schwarzschild coordinates (two dimensions suppressed).

In the region I, by (17.9),

dr
r>2m = — >0,
de

so that rincreases as ¢ increases. We therefore define the curves (17.10) to
be a congruence of outgoing radial null geodesics. Similarly, the negative
sign gives the congruence of ingoing radial null geodesics

t=—(r+2mln|r— 2m| + constant). (17.11)

Notice that, under the transformation ¢ — —t, ingoing and outgoing
geodesics get interchanged, as we would expect.

We can now use these congruences to draw a space-time diagram
(Fig. 17.7) of the Schwarzschild solution in Schwarzschild coordinates
with two dimensions suppressed (exercise). The space-time diagram is
drawn for some fixed 6 and ¢. Since the diagram will be the same for all
0 and ¢, we should think of each point (¢, ) in the diagram as represent-
ing a 2-sphere of area 477%. Notice that, as r — 00, the null geodesics
make angles of 45° with the coordinate axes as in flat space in relativis-
tic units, which we should expect since the solution is asymptotically flat.
The local light cones tip over in region II, because the coordinates ¢ and
r reverse their character. For example, the line ¢ = constant is a timelike
line in region II and so must lie within the local light cone. An observer
in region II cannot stay at rest, that is, at a constant value of r, but is
forced to move in towards the intrinsic singularity at » = 0. This diagram
seems to suggest that an observer in region I moving in towards the origin
would take an infinite amount of time to reach the Schwarzschild radius



r = 2m. Equally, the diagram suggests that the same is true for an in-
going light ray. However, we need to remember that regions I and II are
really distinct space-times and it turns out that this space-time diagram is
misleading, as we shall see.

17.5 A radially infalling particle

Let us consider the path of a radially infalling free particle. It will move
on a timelike geodesic given by the equations (exercise)

(1 —2m/7)i = ky (17.12)
(1 =2m/n2 — (1 —2m/r)"'? =1, (17.13)

where a dot now denotes differentiation with respect to 7, the proper time
along the world-line of the particle. Different choices of the constant & cor-
respond to different initial conditions. Let us make the choice £ = 1, which
corresponds to dropping in a particle from infinity with zero initial veloc-
ity (exercise), so that, for large r, we have 1 ~ 1, that is, asymptotically
t~ 7. Then (17.12) and (17.13) give

dr\? r
(dr) =5 (17.14)
Taking the negative square root (why?) and integrating, we find (exercise)
o= 03— P, (17.15)
3(2m)

where the particle is at 7y at proper time 7. This is, perhaps rather
surprisingly, precisely the same as the classical Newtonian result. No sin-
gular behaviour occurs at the Schwarzschild radius, and the body falls
continuously to 7 = 0 in a finite proper time.

If, instead, we describe the motion in terms of the Schwarzschild
coordinate time ¢, then

dt ¢t r\1/2 2m\ !
E«"T—(%) (1_r> . (17.16)

Integrating, we obtain (exercise)

2
t— 1= —W(Tg/z — 7'03/2 + 67}’!7’1/2 — 6m7"(1)/2)
m
1/2+ 2 /291, 1/2 2 1/2
4 2min - 2m) Pl = (2m) 7] (17.17)

1% + (2m)" 2112 — (2m)' /]

For situations where 7y, and r are much larger than 2m, the results (17.15)
and (17.17) are approximately the same, as we should expect. If, however,
r1s very near to 2m, then we find (exercise)

A radially infalling particle
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Fig. 17.8 Radially infalling particle in

times 7 and z.

r—2m=(rg — 2m)e_([_[°)/2m, (17.18)
from which it is clear that
t—o0 =r—2m—0,

so that » = 2m is approached but never passed. The two situations are
illustrated in Fig. 17.8.

The coordinate 7 is useful and physically meaningful asymptotically at
large r since it corresponds to the proper time measured by an observer
at rest far away from the origin. From the point of view of such an ob-
server, it takes an infinite amount of time for a test body to reach » = 2m.
However, as we have seen, from the point of view of the test body itself,
it reaches both » = 2m and r = 0 in finite proper time. Clearly, then, the
Schwarzschild time coordinate z is inappropriate for describing this mo-
tion. Moreover, the coordinate system goes wrong at » = 2m, as is evident
from the behaviour of the line element there. In the next section, we shall
introduce a new time coordinate which is adapted to radial infall, and in
the process we shall remove the coordinate singularity at » = 2.

17.6 Eddington-Finkelstein coordinates

The idea is very simple: we change to a new time coordinate in region I
in which the ingoing radial null geodesics become straight lines. It follows
immediately from (17.10) that, for » > 2m, the appropriate change is
given by

t—1=1t+2mln(r— 2m), (17.19)
because, in the new (7,7, 6, ¢) coordinate system, (17.11) becomes
1= —r+ constant, (17.20)

which is a straight line making an angle of —45° with the r-axis. Differ-
entiating (17.19), we get

_ 2
di=dr+ m

dr, (17.21)
r—2m

and, substituting for dz in the Schwarzschild line element (15.52), we find
the Eddington-Finkelstein form (exercise)
2 5 4m _ 2
ds® = <1 - —m) a2 — " dudr— (1 + —m) dr? — (6> +sin?0de?).
r T 7
(17.22)

This solution is now regular and invertible at » = 2m (exercise); indeed, it
is regular for the whole range 0 < r < 2m so that we can use this form of
the metric to extend the coordinate range from 2m < r < ocoto 0 < r < 00
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Fig. 17.9 Analytic extension of the Schwarzschild solution.

and obtain a bigger vacuum solution. The process is rather reminiscent
of analytically continuing a function in complex analysis and, because of
this, (17.22) is called an analytic extension of (15.52) (see Fig. 17.9).

One could object that the coordinate transformation (17.19) cannot
be used at » = 2m because it becomes singular. However, (17.19) is
just a convenient device to get us from (15.52) to (17.22). Our start-
ing point is really the two line elements (15.52) and (17.22). Given these
solutions, we then ask the question, What is the largest range of the co-
ordinates for which each solution is regular? The answer is the patch
2m < r< oo (together with, of course, —o00 < ¢t < 00, 0 < 0 < 7,
and —7 < ¢ < 7, apart from the usual problem with the coordinates
on the axis # = 0, ) for (15.52) and the patch 0 < r < oo for (17.22). In
the overlap region (2m < r < c0), the two solutions are related by using
(17.19) in this region, and hence they must represent the same solution
in this region. Put another way, the region 2m < r < oo of (17.22) is iso-
metric to region I of (15.52). It also turns out that the region 0 < r < 2m
of (17.22) is isometric to region II of (15.52) but we cannot apply (17.19)
in the whole region 0 < r < oo since this transformation is not defined for
r < 2m. Instead, in the region r < 2m, we need to use the transformation
1 =1+ 2mln(2m — r), which is well defined.

In summary we have started with the Schwarzschild metric (15.52)
given in Schwarzschild coordinates for the region » < 2m < oo (region I)
and introduced new Eddington-Finkelstein coordinates given by (17.19)
to write it in the form (17.22) in order to remove the coordinate singularity
at r = 2m. Looking at the metric in these coordinates, we are able to
extend the metric (17.19) to a vacuum solution of Einstein’s equation
defined on a larger connected manifold with O < r < co. The r > 2m part
of the larger solution is isometric to the exterior Schwarzschild solution
using (17.19), and the part 0 < r < 2m is isometric to region II of (15.52)
but using a different transformation.

In making the extension using (17.19), we note that the solution in
Eddington-Finkelstein coordinates is no longer time symmetric. We can
obtain a time-reversed solution by introducing a different time coordinate,
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t—= " =t—2mln(r — 2m),

which straightens out outgoing radial null geodesics and results in a
different extension.
We can write (17.22) in a simpler form by introducing a null coordinate
v="t+1 (17.23)
which, for historical reasons, is called an advanced time parameter.
The resulting line element is (exercise)
ds?> = (1 — 2m/r)de? — 2dvdr — #(d#? + sin?6d¢?).  (17.24)
It is then easy to show that the congruence of ingoing radial null
geodesics is given by v = constant, which should be evident from (17.20).
The space-time diagram for the Schwarzschild solution in Eddington-
Finkelstein coordinates is given in Fig. 17.10. As before, the light cones
open out to 45° cones as r — oo. The left-hand edge of the light cones
are all at —45° to the r-axis. The right-hand edge starts at 45° to the
r-axis at infinity and tips up as r decreases, becoming vertical at » = 2m,

and tipping inwards for r < 2m. Notice that, at » = 2m, radially outgoing
photons ‘stay where they are’. We can get a three-dimensional picture (in

Radially infalling
particle

v = constant

r=0

r=2m

Fig. 17.10 Schwarzschild solution in advanced Eddington-Finkelstein coordinates.
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Fig. 17.11 Spatial diagram of the Schwarzschild solution in advanced
Eddington-Finkelstein coordinates.

the equatorial plane # = 0, say) by rotating Fig. 17.10 about the z-axis.
Figure 17.10 now illustrates correctly what happens to a radially infalling
particle.

17.7 Event horizons

Figure 17.10 suppresses the angular information in the Schwarzschild
solution. This can best be depicted in the equatorial plane in a spatial
diagram, as shown in Fig. 17.11. A long way from the origin, the spatial
picture is similar to the special relativity picture (Fig. 17.3). As we move
close to the origin, the spherical wave fronts are attracted inwards, so that
the points from which they emanate are no longer at the centre. This
becomes more marked until, on the surface » = 2m, only radial outgoing
photons stay where they are, whereas all the rest are dragged inwards. In
region II, all photons, even radially ‘outgoing’ ones, are dragged inwards
towards the singularity.

It is clear from this picture that the surface r = 2m acts as a one-
way membrane, letting future-directed timelike and null curves cross
only from the outside (region I) to the inside (region II). Moreover, no
future-directed null or timelike curve can escape from region II to region
I. The surface r = 2m is called an event horizon because it represents
the boundary of all events which can be observed in principle by an ex-
ternal inertial observer. The situation is reminiscent of the event horizons
of hyperbolic motions in §3.8. However, they were observer dependent.
The Schwarzschild event horizon is absolute, since it seals off all internal
events from every external observer.

If, instead, we use the null coordinate

w=1r" —r (17.25)

called a retarded time parameter, then the line element becomes

ds? = (1 — 2m/r)dw? + 2dwdr — *(d6? + sin?Ad¢?).  (17.26)

Event horizons
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—
*

r=0 r=2m

Fig. 17.12 The Schwarzschild solution in retarded Eddington-Finkelstein coor-
dinates.

This solution is again regular for 0 < » < oo and corresponds to the
time reversal of the advanced Eddington-Finkelstein solution (17.22)
(Fig. 17.12) and for this reason is sometimes called a white hole. For
r > 2m, this again is just the exterior Schwarzschild solution but, for
0 < r < 2m, this is a different extension to that given by (17.24). The
surface » = 2m is again a null surface which acts as a one-way mem-
brane. However, this time it acts in the other direction of time, letting
only past-directed timelike or null curves cross from the outside to the
inside.

17.8 Black holes

The theory of stellar evolution tells us that stars whose masses are of the
order of the Sun’s mass can reach a final equilibrium state as a white
dwarf or a neutron star. But, for much larger masses, no such equilib-
rium is possible, and in such a case the star will contract to such an
extent that the gravitational effects will overcome the internal pressure
and stresses which will not be able to halt further contraction. General rel-
ativity predicts that a spherically symmetric star will necessarily contract
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Fig. 17.13 Gravitational collapse (two spatial dimensions suppressed).

until all matter contained in the star arrives at a singularity at the centre
of symmetry.

We imagine a situation in which the collapse of a spherically symmet-
ric non-rotating star takes place and continues until the surface of the
star approaches its Schwarzschild radius. To get an idea of the magni-
tude of the Schwarzschild radius, we note that the Schwarzschild radius
for the Earth is about 1 cm and that of the Sun is 3 km. As long as the
star remains spherically symmetric, its external field remains that given
by the Schwarzschild vacuum solution. Figure 17.13 is a two-dimensional
space-time diagram of the gravitational collapse, where the Schwarzschild
vacuum solution is taken to be in Eddington-Finkelstein coordinates. As is
clear from the diagram, an observer can follow a collapsing star through its
Schwarzschild radius. If signals are sent out from an observer on the sur-
face of the star at regular intervals according to that observer’s clock, then
as the surface of the star reaches the Schwarzschild radius, a distant ob-
server will receive these signals with an ever-increasing time gap between
them. The signal at » = 2m will never escape from r = 2m, and all succes-
sive signals will ultimately be dragged back to the singularity at the centre.
In fact, no matter how long the distant observer waits, it will only be pos-
sible to see the surface of the star as it was just before it plunged through
the Schwarzschild radius. In practice, however, the distant observer would
soon see nothing of the star’s surface, since the observed intensity would
die off very fast owing to the infinite redshift at the Schwarzschild radius.
The star would quickly fade from view, leaving behind a ‘black hole’ in
space, waiting to gobble up anything which ventured too close.

For completeness, we conclude this section with a three-dimensional
space-time diagram of gravitational collapse (Fig. 17.14), which is ob-
tained essentially by rotating Fig. 17.13 about the z-axis.

Black holes
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Fig. 17.15 Escape velocity in Newtonian
gravitation.
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Fig. 17.14 Gravitational collapse (one spatial dimension suppressed).

17.9 A Newtonian argument

The idea of a black hole, in the restricted sense of the gravitational field of
a star being so strong that light cannot escape to distant regions, is in fact a
consequence of Newtonian theory, if we adopt a particle theory of light.
Consider a particle of mass m moving away radially from a spherically
symmetric distribution of matter of radius R, uniform density p, and total
mass M (Fig. 17.15). If the particle possesses a velocity v at a distance 7
from the centre, then conservation of energy E gives

E = kinetic energy + potential energy

= %mvz — GMm/r. (17.27)

We define the escape velocity v, to be the velocity at the surface of the
distribution of matter which enables the particle to escape to infinity with
zero velocity. This requires v — 0 as » — oo, which by (17.27) results in
E = 0. Solving for v, we find v> = 2GM/r, and hence the escape velocity is

23 = 2GM/R. (17.28)

Then, if a particle has a radial velocity less than v, at the surface, it will
eventually be pulled back by the gravitational attraction of the distribution.
If light has velocity ¢, then it will just escape to infinity if it is related to the
mass and radius of the distribution by

¢ =2GM/R. (17.29)

Thus, if the mass M were increased (keeping the radius constant) or,
equivalently, the radius R decreased (keeping the mass constant), then it
follows that light could no longer escape. This was recognized by Laplace
in 1798 who pointed out that a body of about the same density as the Sun



but 250 times its radius would prevent light from escaping. Note that the
limiting condition (17.29) in terms of the radius R is

R=2GM/c, (17.30)

or R = 2m in relativistic units, which is the Schwarzschild radius.

17.10 Tidal forces in a black hole

Consider a distribution of non-interacting particles falling freely towards
the Earth in Newtonian theory, where initially the distribution is spheri-
cal (see Exercise 9.6). Each particle moves on a straight line through the
centre of the Earth, but those nearer the Earth fall faster because the grav-
itational attraction is stronger. The sphere no longer remains a sphere but
is distorted into an ellipsoid with the same volume (Fig. 17.16). Thus, the
gravitation produces a tidal force in the sphere of particles. The tidal ef-
fect results in an elongation of the distribution in the direction of motion
and a compression of the distribution in transverse directions. The same
effect occurs in a body falling towards a spherical object in general rela-
tivity but, if the object is a black hole, the effect becomes infinite as the
singularity is reached. We can gain some idea of this by considering the
equation of geodesic deviation (see (10.38) and (10.39)) in the form

Dzna

57 * R%eq e geo’esedn® = 0, (17.31)

for the spacelike components of the orthogonal connecting vector n® con-
necting two neighbouring particles in freefall. Let the frame ¢;* be defined
in Schwarzschild coordinates as

—_

e’=(1—2m/r)~2(1,0,0,0), (17.32)
. 1
e1"=(1 — 2m/7)2(0,1,0,0), (17.33)
e,*=r71(0,0,1,0), (17.34)
e3"=(rsin6)~'(0,0,0,1), (17.35)
Sphere of
SoreeT €3
Ellipsoid
@ of particles
Earth
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Fig. 17.16 Newtonian tidal force: (a) before; (b) after.

Tidal forces in a black hole
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and let us denote the components of n* by

n* = (mhnhn®) = (n’n®). (17.36)

Then (17.31) reduces in Schwarzschild space-time in the above frame to
the equations (exercise)

D’ 2m
DTZ = +7T} 5 (1737)
D*f m o
D2 - 2> (17.38)
D?n? m

= ¢
D2 = 3" (17.39)

The positive sign in (17.37) indicates a tension or stretching in the radial
direction, and the negative signs in (17.38) and (17.39) indicate a pres-
sure or compression in the transverse directions (see Misner, Thorne, and
Wheeler 1973 for further details). Moreover, the equations reveal that the
effect becomes infinite at the singularity » = 0.

Consider an intrepid astronaut falling feet first into a black hole
(Fig. 17.17). The astronaut’s feet are attracted to the centre by an
infinitely mounting gravitational force, while the astronaut’s head is ac-
celerated downward by a smaller though ever-rising force. The difference
between the two forces becomes greater and greater as the astronaut
reaches the centre, where the difference becomes infinite. At the same
time as the head-foot stretching, the astronaut is pulled by the gravita-
tional field into regions with ever-decreasing circumference and so the
astronaut is squashed on all sides. Again the squashing becomes infinite at
the centre. Indeed, not only do the tidal effects tear the astronaut to pieces,
but the very atoms of which the astronaut is composed must ultimately
share the same fate!

Fig. 17.17 Successive times in the astronaut’s fall.



Observational evidence for black holes

17.11 Observational evidence for black
holes

Observing a black hole directly is impossible, unless one were lucky
enough to see a star disappear. However, it is certainly possible to infer
the existence of a black hole through its gravitational effects on its sur-
roundings. There is now a wealth of such evidence for the existence of
black holes that we briefly describe below. For more details, see Cardoso
and Pani (2019).

The first such evidence comes from X-ray binaries; these are double
stars with one standard star and a second, compact, invisible component.
By studying the motion of the standard star, one can deduce the mass
of the invisible partner and, if it is much larger than the maximum mass
a star can have without collapsing, then it cannot be a neutron star and
is a black hole candidate. The black hole will suck matter from its visible
partner, forming an accretion disc, and the hot inner regions will produce
intense bursts of X-rays formed by synchrotron radiation shortly before
the spiralling matter disappears down the hole (Fig. 17.18). It was the
discovery in 1971 of the rapid variations of the X-ray source Cygnus X1
by telescopes aboard the Uhuru satellite that provided the first evidence of
the likely existence of black holes. The visible component is a supergiant
star, and detailed study of the X-rays led to the conclusion that the unseen
body is a compact object with a mass in excess of nine solar masses. Since
the maximum masses of white dwarfs and neutron stars are believed to
be approximately 1.4 and 4 solar masses, respectively, then the simplest
conclusion is that the object is a black hole. Since 1971, a number of other
black hole candidates have been found in X-ray binaries.

A more direct confirmation of the existence of black holes comes from
the observation of gravitational radiation. In September 2015, LIGO

. Visible - -
©. .component

Fig. 17.18 A binary star with one visible and one black hole component.
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measured gravitational waves consistent with the theoretical predictions
for the radiation produced by the merger of two black holes of about 36
and 29 solar masses, respectively. Since then, many more gravitational
wave events have been observed which are completely in line with the
predictions of general relativity and the existence of black holes. We will
say more about this in Chapter 21.

Although black holes were originally thought of as coming from the
collapse of individual stars, there is now considerable evidence that many
galaxies have supermassive black holes at their centre. Astronomers use
the term ‘active galaxy’ to describe galaxies with unusual characteristics,
such as unusual spectral line emission and very strong radio emission.
Theoretical and observational studies have shown that the activity in these
active galactic nuclei (AGNs) may be explained by the presence of su-
permassive black holes, which can be millions of times more massive than
stellar ones. The models of these AGNs consist of a central black hole
that may be millions or billions of times more massive than the Sun. In
particular, by observing the proper motions of stars near the centre of our
own Milky Way, one can deduce that there lies at the centre an object with
a mass of about 2.6 million solar masses and a radius of at most 2! km.
Although the upper limit of the radius is larger than the Schwarzschild
radius, this is strongly indicative of the existence of a black hole, as there
are no other plausible scenarios for confining so much invisible mass to
such a small volume.

Further direct evidence for the existence of supermassive black holes
at the centre of galaxies comes from the Event Horizon Telescope. This is
a large optical telescope array sufficient to observe objects the size of the
event horizon of a supermassive black hole. The idea is to look at the image
of the accretion disc of an AGN and compare this with the substantially
distorted image due to the extreme gravitation lensing of the black hole as
predicted by general relativity. Following observation of a potential black
hole in the center of Messier 87 in 2017, the Event Horizon Telescope
project spent two years analysing the data and in 2019 released an image
that agreed very well with the predictions of general relativity.

17.12 Theoretical status of black holes

When considering black holes at the theoretical level, there is the objec-
tion that the solution is too special in being spherically symmetric. For
example, no account has been taken of charge or rotation. In Chapters
18 and 19, we shall consider the Reissner-Nordstrom and Kerr solu-
tions, which deal with charged and rotating black holes, respectively. We
shall see that, although the story changes in detail, the chief characteris-
tics of a black hole, namely, the existence of absolute event horizons and
singularities, persist. The next objection is that asymmetries have been
excluded. It is not surprising, it can be argued, that, if all the matter is
moving in radially towards the centre, then it will ultimately result in a sin-
gularity there. However, perturbations of the Schwarzschild solution have
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been considered and appear to suggest that all asymmetries are eventually
radiated away and that, asymptotically in time, the system settles down to
a Schwarzschild black hole (Fig. 17.19).

Another objection relates to the particular set of field equations used,
namely, those of general relativity. However, Penrose and Hawking have
managed to prove some remarkable theorems, the so-called singular-
ity theorems, which suggest that many of the qualitative features of this
collapse picture remain in a more general situation. Their results do not
depend on having spherical symmetry or the particular field equations of
general relativity, but on much weaker assumptions such as a metric the-
ory of gravity and the consequent curvature of space-time (as implied by
the Einstein equivalence principle), relativistic causality, and energy con-
ditions (see §20.13 for more details). The theorems prove that, with these
very reasonable assumptions, as a result of the gravitational collapse of a
star, there exist geodesics which come to an end, that is to say, that cannot
be extended any further. This is usually taken to mean that they are ending
on a singularity. Quite where the singularities are located and what their
structure is like are issues which these theorems do not directly address.
Of course, even these very weak assumptions may not apply in extremely
strong gravitational fields. It could be possible, for example, that such
fields result in violations of the energy conditions or failures of causality.
The general belief, however, is that the theorems provide strong evidence
that singularities are, in fact, generic features of relativistic theories of
gravitation.

There is another problem which has not yet been resolved. In order to
discuss in detail the stability of a collapse situation, we need to understand
what is going on inside the star. That is, we need realistic interior solu-
tions which can be matched on to the known exterior solutions. However,
all attempts at finding a realistic interior Kerr solution, and there have
been many of them, appear to have failed. This is somewhat disturbing,
because the attempts seem to suggest that the matching cannot be done.
Were we to have an interior solution, it is conceivable that the motion
might be unstable, leading finally to fragmentation rather than collapse.
Finally, we point out that gravitational collapse deals with situations of
high densities and that these are really the province of quantum theory.
It seems likely that a classical theory like general relativity might be mod-
ified profoundly by quantum effects. Indeed, some theories of quantum
gravity suggest that the collapse is halted before a singularity is reached
and a bounce takes place. However, Penrose has pointed out that we do
not need high densities to create event horizons. Since the radius R of the
event horizon is proportional to the mass m, and the volume is propor-
tional to R?, and hence m, we see that the average density of a black hole
is proportional to 1/m?. Hence, perhaps counter intuitively, the larger the
black hole the smaller the density. In particular, the average density of
the supermassive black hole that is thought to exist at the centre of our
galaxy is of the order of 10% of the density of water. Furthermore, the
gravitational field at the event horizon for such a supermassive black hole
produces a tidal force comparable to that on the surface of the Earth so
this does not involve any extreme physics either.

Asymmetry

(@ ®)

Fig. 17.19 Asymmetry radiated away:
(a) before; (b) eventually.
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Exercises

17.1 (§17.1) Interpret the solution
2 2m 2 2m\ 2 2 2 a2
ds® = 1—? de? — 1—? d¢? — ¢*d? — ¢? sin® tdr”.

17.2 (§17.1) Apply the transformations

t=77 r=7cosl+2m,

0 =sin" (7)), ¢ = cos(¢1)
to the Schwarzschild line element (15.52) and find the coefficient of dz*.
17.3 (§17.1) What is the character of the coordinates of
@) (1,p.5,6) in
ds? = p=2"d — p’z’”[pz’”z(dpz +d2?) + p*de?);
@) (usmx,v) in

ds? = x2du? — 2dudr + 4rx~ 'dudx — Pdx? — x*dy?.

17.4 (§17.1) Dingle’s metric is the most general diagonal metric
ds® = Ad® — Bdx? — Cdy* — Dd=?,

where A, B, C, and D are functions of all four coordinates. What does this
solution become if 9/0x, 0/9dy, and 0/0z are commuting vector fields and
the solution is adapted to these Killing vector fields?

17.5 (§17.2) Write the Schwarzschild line element (14.47) in coordinates
(t,x, v, 2) where x, v, and z are defined by

x =rsinfcos¢p, y=rsinfsing, =z =rcosh.

17.6 (§17.3) Draw a two-dimensional space-time diagram of null
geodesics in special relativity. Draw the world-line of an observer moving
into the origin and out again.

17.7 (§17.4) Integrate (17.6). Deduce that r is an affine parameter.
Integrate (17.9) to obtain (17.10).

17.8 (§17.4) Confirm Fig. 17.7 by first drawing the graphs of
@) y=Inx (x> 0),
(i) y = In x|,



(iil) y = 2mIn x|,

@iv) y = x+ 2mln x|,

in turn, translating the y-axis to x = 2m, and then drawing the graphs of
M) y=x—=2m+2mln|x — 2m| (x > 0),

(Vi) y =x+ 2mlIn|x — 2m| + ¢ (x > 0),

for different values of the constant ¢. What is the slope of the radial null
geodesics at » = 0?

17.9 (§17.5) Establish (17.12) and (17.13) for the equations of a radially
infalling particle. Show that the choice 2 = 1 corresponds to the particle
having zero velocity at spatial infinity (7 = 00).

17.10 (§17.5) Integrate (17.14) to obtain (17.15). Show that this is the
same result as that for a particle falling radially from 7y to r in Newtonian
theory under the influence of a point particle situated at the origin of mass
M, where the particle has zero velocity at infinity.

17.11 (§17.5) Integrate (17.16) to obtain (17.17).

17.12 (§17.5) If ris near 2m, sete = 1 —r/2m and show that the dominant
term in (17.16) is 1/e. Hence deduce (17.18).

17.13 (§17.6) Show that (17.19) transforms the Schwarzschild line ele-
ment (15.52) into the form (17.22). Use (17.23) to express the resulting
line element in the form (17.24).

17.14 (§17.6) Calculate the contravariant form g% of the Eddington-
Finkelstein metric (17.22).

17.15 (§17.6) Draw the Schwarzschild solution in advanced Eddington—
Finkelstein coordinates with one spatial dimension suppressed in the
equatorial plane 6 = /2. (Hint: rotate Fig. 17.10 about the 7-axis.)

17.16 (§17.7) Show that (17.25) leads to the form (17.26). Find the
equations for radial null geodesics and establish Fig. 17.12.

17.17 (§17.8) Draw the white hole analogue of Fig. 17.13 and describe
its appearance to an external observer.

17.18 (§17.10) Show that (17.32)—(17.35) defines an orthonormal frame
in Schwarzschild space-time. Show that the spatial part of the equation of
geodesic deviation leads to (17.37)—(17.39). [Hint: Use the results of Ex-
ercise 15.13.] Give a qualitative argument which reveals that 1" increases
without bound as » — 0.

Exercises
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Further reading

The main reference for black holes is the book by Hawking and Ellis
(1973). A summary of the observational evidence for black holes is sur-
veyed in the Living Reviews in Relativity article by Cardoso and Pani
(2019). We also give a link to the results of the Event Horizon Telescope.

Cardoso, V., and Pani, P. (2019). Testing the nature of dark compact
objects: A status report. Living Reviews in Relativity, 22, 4.

Hawking, S. W., and Ellis, G. E R. (1973). The Large Scale Structure of
Space-Time. Cambridge University Press, Cambridge.

The Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A.,
etal. (2019). First M87 event horizon telescope results. I. The shadow of
the supermassive black hole. Astrophysical Fournal Letters, 875, 1.



Maximal extension and
conformal compactification

18.1 Maximal analytic extensions

We saw in the last chapter that the Schwarzschild solution for 2m < r < co
can be extended either into the advanced Eddington-Finkelstein solution
(17.24) or the retarded Eddington-Finkelstein solution (17.26), where
0 < r < oo. That this is possible is indicated by the fact that a radial
timelike geodesic can be extended through r = 2m down to r = 0. The
question naturally arises, Is it possible to extend these solutions further?

We need to make this question more precise, which we do by introduc-
ing a couple of definitions. A manifold endowed with an affine or metric
geometry is said to be maximal if every geodesic emanating from an ar-
bitrary point of the manifold either can be extended to infinite values of
the affine parameter along the geodesic in both directions or terminates
at an intrinsic singularity (see §17.2). If, in particular, all geodesics em-
anating from any point can be extended to infinite values of the affine
parameters in both directions, the manifold is said to be geodesically
complete. Clearly, a geodesically complete manifold is maximal, but the
converse is not true in general. Minkowski space-time provides a trivial
example of a geodesically complete manifold. Neither the Schwarzschild
nor the Eddington-Finkelstein advanced or retarded extensions is in fact
maximal. However, Kruskal has found the maximal analytic extension of
the Schwarzschild solution and, moreover, this extension is unique. The
Kruskal solution, although maximal, is again not complete because of the
existence of intrinsic singularities. The Kruskal solution can be obtained
by simultaneously straightening out both incoming and outgoing radial
null geodesics. We shall sketch the original procedure of Kruskal in the
next section.

18.2 The Kruskal solution

We start by introducing both an advanced null coordinate v and a re-
tarded null coordinate w, in which case, in the coordinates (v, , 6, ¢), the
Schwarzschild line element becomes (exercise)

ds? = (1 — 2m/r) dodw — +* (d6* + sin®0 d¢?) (18.1)

Introducing Einstein’s Relativity. Second Edition. Ray d’Inverno and James Vickers, Oxford University Press.
© Ray d'Inverno and James Vickers (2022). DOI: 10.1093/0s0/9780198862024.003.0018
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where (v, w) is a function of the coordinates v and w and is determined
implicitly by

1 (v—w) =r+2mln(r—2m). (18.2)

Note that, using (17.23) and (17.25), we