More Programming Pearls

Confessions of a Coder



More Programming Pearls

Confessions of a Coder

Jon Bentley

AT&T Bell Laboratories
Murray Hill, New Jersey

A
\ A4

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts ¢ Menlo Park, California ¢ New York

Don Mills, Ontario ¢ Wokingham, England ¢ Amsterdam < Bonn
Sydney ¢ Singapore ¢ Tokyo ¢ Madrid ¢ San Juan



To Daniel Timothy Bentley

Library of Congress Cataloging-in-Publication Data

Bentley, Jon Louis.
More programming pearls.

Includes index.

1. Electronic digital computers--Programming.
L. Title.
QA76.6.B452 1988 005  87-37447
ISBN 0-201-11889-0

L

Copyright © 1988 by Bell Telephone Laboratories, Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher. Printed
in the United States of America. Published simultaneously in Canada.

This book was typeset in Times Roman and Courier by the author, using an Autologic
APS-5 phototypesetter driven by a DEC VAX 8550 running the 9th Edition of the UNIX

operating system.

DEC, PDP and VAX arc trademarks of Digital Equipment Corporation. UNIX is a
registered trademark of AT&T.

CDEFGHIJ-HA-89



PREFACE

Computer programming is fun. Sometimes programming is elegant science.
It’s also building and using new software tools. Programming is about people,
too: What problem does my customer really want to solve? How can I make it
easy for users to communicate with my program? Programming has led me to
learn about topics ranging from organic chemistry to Napoleon’s campaigns.
This book describes all these aspects of programming, and many more.

This book is a collection of essays. Each one can be read in isolation, but
there is a logical grouping to the complete set. Columns 1 through 4 describe
techniques for manipulating programs. Columns 5 through 8 present some
tricks of the programmer’s trade; they are the least technical in the book.
Columns 9 through 12 turn to the design of input and output. Columns 13
through 15 describe three useful subroutines. More details on these themes can
be found in the introduction to each part.

Most of the columns are based upon my “Programming Pearls” columns in
Communications of the Association for Computing Machinery. The publica-
tion history is described in the introductions to the various parts. Given that
early versions already appeared in print, why did I bother writing this book?
The columns have changed substantially since they first appeared. There have
been literally thousands of little improvements: there are new problems and
solutions, little bugs have been fixed, and I've incorporated comments from
many readers. Some old sections have been removed to reduce overlap, many
new sections have been added, and one of the columns is brand new.

The biggest reason for writing this book, though, is that I wanted to present
the various columns as a cohesive whole; I wanted to display the string of pearls.
My 1986 book Programming Pearls is a similar collection of thirteen columns,
built around the central theme of performance, which played a prominent role
in the first two years of the CACM column. The topic of efficiency rears its
head in a few of these columns, but this book surveys a much larger piece of the
programming landscape.

As you read the columns, don’t go too fast. Read them well, one per sitting.
Try the problems as they are posed — some of them aren’t as easy as they look.
The further reading at the end of some columns isn’t intended as a scholarly

v



vi MORE PROGRAMMING PEARLS

reference list; I've recommended a few books that are an important part of my
personal library.

I am happy to be able to acknowledge the substantial contributions of many
people. Al Aho, Peter Denning, Brian Kernighan and Doug Mcllroy made
detailed comments on each column. I am also grateful for the helpful com-
ments of Bill Cleveland, Mike Garey, Eric Grosse, Gerard Holzmann, Lynn Jel-
inski, David Johnson, Arno Penzias, Ravi Sethi, Bjarne Stroustrup, Howard
Trickey, and Vic Vyssotsky. I appreciate receiving permission from several peo-
ple to quote their letters, particularly Peter Denning, Bob Floyd, Frank Starmer,
Vic Vyssotsky, and Bruce Weide. I am especially indebted to the ACM for
encouraging publication of the columns in this form, and to the many Commun-
ications readers who made this expanded version necessary and possible by their
comments on the original columns. Bell Labs, and especially the Computing
Science Research Center, has provided a wonderfully supportive environment as
I’ve written the columns. Thanks, all.

Murray Hill, New Jersey J. B.



CONTENTS

Part I: PROGRAMMING TECHNIQUES

Column 1: Profilers

Computing Primes e Using Profilers e A Specialized Profiler
Building Profilers ¢ Principles ¢ Problems e Further Reading

Column 2: Associative Arrays

Associative Arrays in Awk e A Finite State Machine Simulator
Topological Sorting e Principles e Problems ¢ Further Reading

Column 3: Confessions of a Coder

Binary Search e Selection ¢ A Subroutine Library e Principles
Problems

Column 4: Self-Describing Data

Name-Value Pairs ¢ Provenances in Programming e A Sorting Lab
Principles ¢ Problems

Part II: TRICKS OF THE TRADE

Column 5: Cutting the Gordian Knot

A Quiz e Some Solutions e Hints e Principles ¢ Problems
Further Reading ¢ Debugging

Column 6: Bumper-Sticker Computer Science

Coding e User Interfaces e Debugging e Performance ¢ Documen-
tation e Managing Software e Miscellaneous Rules e Principles o
Problems e Further Reading

Column 7. The Envelope is Back

A Warm-Up for Cool Brains e Performance Rules of Thumb e
Little’s Law e Principles ¢ Problems e Further Reading ¢ Quick
Calculations in Everyday Life

vii

15

27

37

45

47

57

69



vili MORE PROGRAMMING PEARLS

Column 8: The Furbelow Memorandum
The Memo e Principles ¢ Further Reading

Part III: I/0 FiT FOR HUMANS

Column 9: Little Languages
The Pic Language e Perspective e Pic Preprocessors e Little
Languages for Implementing Pic e Principles ¢ Problems e Further
Reading

Column 10: Document Design
Tables e Three Design Principles e Figures ¢ Text e The Right
Medium e Principles o Problems e Further Reading ¢ A Catalog of
Pet Peeves

Column 11: Graphic Output
A Case Study ¢ A Sampler of Displays e Principles e Problems e
Further Reading ¢ Napoleon’s March to Moscow

Column 12: A Survey of Surveys
The Problems of Polling e The Languages ¢ The Pictures ¢ Principles o
Problems

Part IV: ALGORITHMS

Column 13: A Sample of Brilliance

A Sampling of Sampling Algorithms e Floyd’s Algorithm e Random
Permutations e Principles ¢ Problems e Further Reading

Column 14: Birth of a Cruncher

The Problem e Newton Iteration ¢ A Great Place to Start ¢ The
Code e Principles e Problems e Further Reading ¢ A Big Success
Story :

Column 15: Selection

The Problem e The Program e Analysis of Run Time ¢ Principles o
Problems e Further Reading

Appendix 1: The C and Awk Languages
Appendix 2: A Subroutine Library
Solutions to Selected Probleljls

Index

77

81

83

101

115

127

137

139

147

159

171
175
183

203



More Programming Pearls

Confessions of a, Coder



COLUMN 1: PROFILERS

The stethoscope is a simple tool that revolutionized the practice of medicine:
it gave physicians an effective way to monitor the human body. A profiler can
do the same thing for your programs.

What tools do you now use to study your programs? Sophisticated analysis
systems are widely available, ranging from interactive debuggers to systems for
program animation. But just as CAT scanners will never replace stethoscopes,
complex software will never replace the simplest tool that we programmers have
for monitoring our programs: a profiler that shows how often each part of a pro-
gram is executed.

This column starts by using two kinds of profilers to speed up a tiny pro-
gram (but keep in mind that the real purpose is to illustrate profilers). Subse-
quent sections sketch various uses of profilers, a profiler for a nonprocedural
language, and techniques for building profilers.

1.1 Computing Primes

Program P1 is an ANSI Standard C program to print all primes less than
1000, in order (see Appendix 1 if you don’t know C):

int prime(int n)
{ int i;

999 for (i = 2; 1 < n; i++)
78022 if (n % 1 == 0)
831 return 0;
168 return 1;
}
main()
{ int i, n;
1 n = 1000;
1 for (i = 23 i <= n; i++)
999 if (prime(i))
168 printf("%d\n", i);
}

The prime function returns 1 (true) if its integer argument n is prime and
0 otherwise; it tests all integers between 2 and n—1 to see whether they divide

3



4 MORE PROGRAMMING PEARLS COLUMN 1

n. The main procedure uses that routine to examine the integers 2 through
1000, in order, and prints primes as they are found.

I wrote Program P1 as I would write any C program, and then compiled it
with a profiling option. After the program executed, a single command gen-
erated the listing shown. (I have made minor formatting changes to a few of
the outputs in this column.) The numbers to the left of each line were produced
by the profiler; they tell how many times the line was executed. They show, for
instance, that main was called once, it tested 999 integers, and found 168
primes. Function prime was called 999 times. It returned one 168 times and
returned zero the other 831 times (a reassuring quick check: 168+831=999). It
tested a total of 78,022 potential factors, or about 78 factors for each number
examined for primality.

Program Pl is correct but slow. On a VAX-11/750 it computes all primes
less than 1000 in a couple of seconds, but requires three minutes to find those
less than 10,000. Profiles of those computations show that most of the time is
spent testing factors. The next program therefore considers as potential factors
of n only those integers up to vn. The integer function root converts its
integer argument to floating point, calls the library function sqrt, then converts
the floating-point answer back to an integer. Program P2 contains the two old
functions and the new function root:

int root(int n)

5456 { return (int) sqrt((float) n); }
int prime(int n)
{ int i;
999 for (i = 2; i <= root(n); i++)
5288 if (n % i == 0)
831 return 0;
168 return 1;
}
main()
{ int i, n;
1 n = 1000;
1 for (i = 2; i <= n; i++)
999 if (prime(i))
168 printf("%d\n", i);
}

The change was evidently effective: the line counts in Program P2 show that
only 5288 factors were tested (a factor of 14 fewer than in Program P1). A
total of 5456 calls were made to root: divisibility was tested 5288 times, and
the loop terminated 168 times because i exceeded root(n). But even though
the counts are greatly reduced, Program P2 runs in 5.8 seconds, while P1 runs
in just 2.4 seconds (a table at the end of this section contains more details on
run times). What gives?



COLUMN 1 PROFILERS §

So far we have seen only line-count profiles. A procedure-time profile gives
fewer details about the flow of control but more insight into CPU time:

%time cumsecs #call ms/call name

82.7 4.77 _sqrt
4.5 5.03 999 0.26 _brime
4.3 5.28 5456 0.05 _root
2.6 5.43 _frexp
1.4 5.51 __doprnt
1.2 5.57 _write
0.9 5.63 mcount
0.6 5.66 _Creat
0.6 5.69 _printf
0.4 5.72 1 25.00 _main
0.3 5.73 _close
0.3 5.75 _exit
0.3 5.77 _isatty

The procedures are listed in decreasing order of run time. The time is displayed
both in cumulative seconds and as a percent of the total. The three procedures
in the source program, main, prime and root, were compiled to record the
number of times they were called. It is encouraging to see the same counts once
again. The other procedures are unprofiled library routines that perform miscel-
laneous input/output and housekeeping functions. The fourth column tells the
average number of milliseconds per call for all functions with statement counts.
The procedure-time profile shows that sqrt uses the lion’s share of CPU
time. It was called 5456 times, once for each test of the for loop. Program P3

calls that expensive routine just once per call of prime by moving the call out
of the loop:

int prime(int n)
{ int i, bound;

999 bound = root(n);
999 for (i = 2; 1 <= bound; i++)
5288 if (n % i == 0Q)
831 return 0;
168 return 1;
}

Program P3 is about 4 times as fast as P2 when n=1000 and over 10 times as
fast when n=100,000. At n=100,000, the procedure-time profile shows that
sqrt takes 88 percent of the time of P2, but just 48 percent of the time of P3.
It is a lot better, but still the cycle hog.

Program P4 incorporates two additional speedups. First, it avoids almost
three-quarters of the square roots by special checks for divisibility by 2, 3, and
5. The statement counts show that divisibility by two identifies roughly half the
inputs as composites, divisibility by three gets a third of the remainder, and
divisibility by five catches a fifth of those numbers still surviving. Second, it
avoids about half the remaining divisibility tests by considering only odd
numbers as potential factors. It is faster than P3 by a factor of about three, but



6 MORE PROGRAMMING PEARLS COLUMN 1

it is also buggier than its predecessor. Here is (buggy) Program P4; can you
spot the problem by examining the statement counts?

int root(int n)

265 { return (int) sqrt((float) n); }
int prime(int n)
{ int i, bound;
999 if (n % 2 == 0)
500 return 0;
499 if (n % 3 == 0)
167 return 0;
332 if (n % 5 == 0)
67 . return 0;
265 bound = root(n);
265 for (i = 7; 1 <= bound; i = i+2)
1530 if (n % i == 0)
100 return 0;
165 return 1;
}
main()
{ int i, n;
1 n = 1000;
1 for (i = 2; 1 <= n; i++)
999 if (prime(i))
165 printf("%d\n", i);
}

The previous programs found 168 primes, while P4 found just 165. Where
are the three missing primes? Sure enough, I treated three numbers as special
cases, and introduced one bug with each: prime reports that 2 is not a prime

because it is divisible by 2, and similarly botches 3 and 5. The tests are
correctly written as

if (n % 2 == 0)
return (n == 2);

and so on. If n is divisible by 2, it returns 1 if n is 2, and O otherwise. The

procedure-time profiles of Program P4 are summarized in this table for
n = 1000, 10,000, and 100,000:

N PERCENT OF TIME IN
sqrt prime other

1000 45 19 36

10,000 39 42 19

100,000 31 56 13




COLUMN 1 PROFILERS 7

Program PS5 is faster than P4 and has the additional benefit of being correct.
It replaces the expensive square root operation with a multiplication, as shown
in this fragment:

265 for (i = 7; i#i <= nj; i = 1i+2)
1530 if (n % i == 0)

100 return 0;

165 return 1;

It also incorporates the correct tests for divisibility by 2, 3, and 5. The total
speedup is about twenty percent over PS5.

The final program tests for divisibility only by integers that have previously
been identified as primes; Program P6 is in Section 1.4, coded in the Awk
language. The procedure-time profile of the C implementation shows that at
n=1000, 49 percent of the run time is in prime and main (the rest is in
input/output), while at #=100,000, 88 percent of the run time is spent in those
two procedures.

This table summarizes the programs we’ve seen. It includes two other pro-
grams as benchmarks. Program Q1 computes primes using the Sieve of Era-
tosthenes program in Solution 2. Program Q2 measures input/output cost. For
n=1000, it prints the integers 1, 2, ..., 168; for general n, it prints the integers
1, 2, ..., P(n), where P (n) is the number of primes less than a.

PROGRAM RUN TIME IN SECONDS, N=
1000 10,000 100,000

Pl. Simple version 2.4 169 ?
P2. Test only up to root 5.8 124 2850
P3. Compute root once 1.4 15 192
P4. Special case 2, 3, 5 0.5 5.7 78
P5. Replace root by * 0.3 3.5 64
P6. Test only primes 0.3 33 47
Ql. Simple sieve 0.2 1.2 10.4
Q2. Print 1..P (n) 0.1 0.7 5.3

This section has concentrated on one use of profiling: as you're tuning the
performance of a single subroutine or function, profilers can show you where the
run time is spent.

1.2 Using Profilers

Profilers are handy for small programs, but indispensable for working on
large software. Brian Kernighan used a line-count profiler on the 4000-line C
program that interprets programs written in the Awk programming language.
At that time the Awk interpreter had been widely used for several years. Scan-
ning the 75-page listing showed that most counts were hundreds and thousands,
while a few were tens of thousands. An obscure piece of initialization code,



8 MORE PROGRAMMING PEARLS COLUMN |

though, had a count near a million. Kernighan changed a few parts of the six-
line loop, and thereby doubled the speed of the program. He never would have
guessed the hot spot of the program, but the profiler led him right to it.

Kernighan’s experience is quite typical. In a paper cited under Further
Reading, Don Knuth presents an empirical study of many aspects of Fortran
programs, including their profiles. That paper is the source of the often quoted
(and more often misquoted) statement that, “Less than 4 per cent of a program
generally accounts for more than half of its running time.” Numerous studies
on many languages and systems have shown that for most programs that aren’t
I/0-bound, a large fraction of the run time is spent in a small fraction of the
code. This pattern is the basis of testimonials like the following:

In his paper, Knuth describes how the line-count profiler was applied to
itself. The profile showed that half of the run time was spent in two loops.
Changing a few lines of code doubled the speed of the profiler in less than an
hour’s work.

Column 14 describes how profiling showed that a thousand-line program
spent eighty percent of its time in a five-line routine. Rewriting the routine
with a dozen lines doubled the speed of the program.

In 1984 Tom Szymanski of Bell Labs put an intended speedup into a large
system, only to see it run ten percent slower. He started to remove the
modification, but then enabled a few more profiling options to see why it had
failed. He found that the space had increased by a factor of twenty; line
counts showed that storage was allocated many more times than it was freed.
A single instruction fixed that bug. The correct implementation sped the
system up by a factor of two.

Profiling showed that half of an operating system’s time was spent in a loop
of just a few instructions. Rewriting the loop in microcode made it an order
of magnitude faster but didn’t change the system’s throughput: the perfor-
mance group had optimized the system’s idle loop!

These experiences raise a problem that we only glimpsed in the last section:
on what inputs should one profile a program? The primality programs had the
single input »n, which nonetheless strongly affects the time profile: input/output
dominates for small n, while computation dominates for large n. Some pro-
grams have profiles quite insensitive to the input data. I’d guess that most pay-
roll programs have pretty consistent profiles, at least from February to
November. The profiles of other programs vary dramatically with the input.
Haven’t you ever suspected that your system was tuned to run like the wind on
the manufacturer’s benchmark, while it crawls like a snail on your important
jobs? Take care in selecting your input mix.

Profilers are useful for tasks beyond performance. In the primality exercise,
they pointed out a bug in Program P4. Line counts are invaluable for evaluat-
ing test coverage; zero counts, for instance, show untested code. Dick Sites of



COLUMN 1 PROFILERS 9

Digital Equipment Corporation describes other uses of profiling: “(1) Deciding
what microcode to put on chip in a two-level microstore implementation. (2) A
friend at Bell Northern Research implemented statement counts one weekend in
a real-time phone switching software system with multiple asynchronous tasks.
By looking at the unusual counts, he found six bugs in the field-installed code,
all of which involved interactions between different tasks. One of the six they
had been trying (unsuccessfully) to track down via conventional debugging tech-
niques, and the others were not yet identified as problems (i.e., they may have

occurred, but nobody could attribute the error syndrome to a specific software
bug).”

1.3 A Specialized Profiler

The principles of profiling we’ve seen so far apply to languages ranging from
assemblers and Fortran to Ada. But many programmers now work in more
powerful notations. How should we profile a computation in Lisp or APL, or in
a network or database language?

We’'ll take UNIX pipelines as an example of a more interesting computa-
tional model. Pipelines are a sequence of filters; data is transformed as it flows
through each filter. This classic pipeline prints the 25 most common words in a
document, in decreasing frequency.¥

cat $
tr -cs
tr A-2
sort |

uniq -c |
sort -r -n |
sed 25q

-za-z ’\012’ |

-Z

p > --

I profiled the pipeline as it found the 25 most common words in a book of
about 60,000 words. The first six lines in the output were:

3463 the
1855 a
1556 of
1374 to
1166 in
1104 and

t The seven filters perform the following tasks: (1) Concatenate all input files. (2) Make one-word
lines by transliterating the complement (-c) of the alphabet into newlines (ASCII octal 12) and
squeezing out (-s) multiple newlines. (3) Transliterate upper case to lower case. (4) Sort to bring
identical words together. (5) Replace each run of duplicate words with a single representative and
its count (-¢). (6) Sort in reverse (-x) numeric (-n) order. (7) Pass through a stream editor; quit
(@) after printing 25 lines. Section 10.5 uses a picture to describe the sort | uniq -¢ | sort
idiom in steps 4, 5 and 6.



10 MORE PROGRAMMING PEARLS COLUMN 1

Here is the “pipeline profile” of the computation on a VAX-11/750:

lines words chars
10717 59701 342233
57652 57651 304894
57652 57651 304894
57652 57651 304894
4731 9461 61830
4731 9461 61830

25 50 209

times
14.4u 2.3s 18r tr -cs A-Za-z \012
11.9u 2.2s 15r tr A-Z a-z
104.9u 7.5s 123r sort
24.5u 1.6s 27r uniq -c
27.0u 1.6s 31r sort -rn
0.0u 0.2s Or sed 25q

The left parts describe the data at each stage: the number of lines, words, and
characters. The right parts describe the filters between the data stages: user,
system, and real times in seconds are followed by the command itself.

This profile provides much information of interest to programmers. The
pipeline is fast; 3.5 minutes of real time for 150 book pages is moving right
along. The first sort consumes 57 percent of the run time of the pipeline; that
finely tuned utility will be hard to speed up further. The second sort takes only
14 percent of the pipeline’s time, but is ripe for tuning.¥ The profile also
identifies a little bug lurking in the pipeline. UNIX gurus may enjoy finding
where the null line was introduced.

The profile also teaches us about the words in the document. There were
57651 total words, but only 4731 distinct words. After the first transliteration
program, there are 4.3 letters per word. The output showed that the most com-
mon word was “the”; it accounts for 6 percent of the words in the files. The six
most common words account for 18 percent of the words in the file. Special-
casing the 100 most common words in English might speed things up. Try
finding other interesting factoids in the counts.

Like many UNIX users, I had previously profiled pipelines by hand, using
the word count (wc) command to measure files and the time command to
measure processes. A ‘“‘pipeline profiler” automates that task. It takes as input
the names of a pipeline and several input files, and produces the profile as out-
put. Two hours of my time and fifty lines of code sufficed to build the profiler.
The next section elaborates on this topic.

1.4 Building Profilers

Building a real profiler is hard work. Peter Weinberger built the C line-
count profiler that produced the output we saw earlier; the project took him
several weeks of effort spread over several months. This section describes how a
simple version can be built more easily.

Dick Sites claimed that his friend “implemented statement counts one

t The second sort takes 25 percent of the run time of the first sort on just 8 percent of the number of
input lines — the numeric (-n) flag is expensive. When | profiled this pipeline on a single column,
the second sort was almost as expensive as the first; the profile is sensitive to the input data.



COLUMN 1 PROFILERS 11

weekend”. | found that pretty hard to believe, so I decided I'd try to build a
profiler for Awk, an unprofiled language that is described in Appendix 1. A
couple of hours later, my profiler produced this output when I ran the Awk ver-
sion of Program P6:

BEGIN { <<<1>>>
n = 1000
x[0] = 2; xc = 1
print 2
for (i = 3; i <= n; i++) { <<<998>>>
if (prime(i)) { <<<167>>>
print i
}
}

exit

}

function prime(n, i) { <<<998>>>
for (i=0; x[i]#*x[i]l<=n; i++) { <<<2801>>>
if (n % x[1i] == 0) { <<<831>>>
return 0
}

}
{ <<<167>>> }

x[xc++] = n
return 1

}

The number in angle brackets after a left curly brace tells how many times the
block was executed. Fortunately, the counts match those produced by the C
line counter.

My profiler consists of two five-line Awk programs. The first program reads
the Awk source program and writes a new program in which a distinct counter
is incremented at the start of each block and a new END action (see Appendix
1) writes all counts to a file at the end of execution. When the resulting pro-
-gram runs, it produces a file of counts. The second program reads those counts
and merges them back into the source text. The profiled program is about 25
percent slower than the original, and not all Awk programs are handled
correctly — I had to make one-line changes to profile several programs. But for
all its flaws, a couple of hours was a small investment to get a prototype profiler
up and running. Section 7.2 of The AWK Programming Language cited in Sec-
tion 2.6 presents details on a similar Awk profiler.

Quick profilers are more commonly written than written about. Here are a
few examples:

In the August 1983 BYTE, Leas and Wintz describe a profiler implemented
as a 20-line program in 6800 assembly language.

Howard Trickey of Bell Labs implemented function counts in Lisp in an
hour by changing defun to increment a counter as each function is entered.



12 MORE PROGRAMMING PEARLS COLUMN |

In 1978, Rob Pike implemented a time profiler in 20 lines of Fortran. After
CALL PROFIL(10), subsequent CPU time is charged to counter 10.

On these and many other systems it is possible to write a profiler in an evening.
The resulting profiler could easily save you more than an evening’s work the first
time you use it.

1.5 Principles

This column has only scratched the surface of profiling. I've stuck to the
basics, and ignored exotic ways of collecting data (such as hardware monitors)
and exotic displays (such as animation systems). The message of the column is
equally basic:

Use a Profiler. Make this month Profiler Month. Please profile at least one
piece of code in the next few weeks, and encourage your buddies to do likewise.
Remember, a programmer never stands as tall as when stooping to help a small
program.

Build a Profiler. If you don’t have a profiler handy, fake it. Most systems
provide basic profiling operations. Programmers who had to read console lights
25 years ago can get the same information today from a graphics window on a
personal workstation. A little program is often sufficient to package a system’s
instrumentation features into a convenient tool.

1.6 Problems

1. Suppose the array X[1..1000] is sprinkled with random real numbers. This
routine computes the minimum and maximum values:

Max := Min := X[1]

for I := 2 to 1000 do
if X[I] > Max then Max := X[I]
if X[I] < Min then Min := X[I]

Mr. B. C. Dull observed that if an element is a new maximum, then it can-
not be a minimum. He therefore rewrote the two comparisons as

if X[I] > Max then Max :
else if X[I] < Min then Min :

X[1]
X[1]

How many comparisons will this save, on the average? First guess the
answer, then implement and profile the program to find out. How was your
guess?

2. The following problems deal with computing prime numbers.

a. Programs Pl through P6 squeezed two orders of magnitude out of the

run time. Can you wring any more performance out of this approach to
the problem?

b. Implement a simple Sieve of Eratosthenes for computing all primes less
than n. The primary data structure for the program is an array of n bits,



COLUMN 1 PROFILERS 13

all initially true. As each prime is discovered, all of its multiples in the
array are set to false. The next prime is the next true bit in the array.

c. What is the run time as a function of n of the sieve in part b? Find an
algorithm with running time of O(n).

d. Given a very large integer (say, several hundred bits), how would you
test it for primality?

3. A simple statement-count profiler increments a counter at each statement.
Describe how to decrease memory and run time by making do with fewer
counters. (I once used a Pascal system in which profiling a program slowed
it down by a factor of 100; the line-count profiler described in this column
uses tricks like this to slow down a program by only a few percent.)

4. A simple procedure-time profiler estimates the time spent in each procedure
by observing the program counter at a regular interval (60 times a second on
my system). This information tells the time spent in each part of the pro-
gram text, but it does not tell which procedures called the time hogs. Some
profilers give the cost of each function and its dynamic descendants. Show
how to gather more information from the runtime stack to allocate time
among callers and callees. Given this data, how can you display it in a use-
ful form?

5. Precise numbers are useful for interpreting profiles of a program on a single
data set. When there is a lot of data, though, the volume of digits can hide
the message in the numbers. How would you display the profiles of a pro-
gram or a pipeline on 100 different inputs? Consider especially graphical
displays of the data.

6. Program P6 in Section 1.4 is a correct program that is hard to prove correct.
What is the problem, and how can you solve it?

1.7 Further Reading

Don Knuth’s “Empirical Study of Fortran Programs” appeared in volume 1
of Software —Practice and Experience in 1971 (pp. 105-133). Section 3 on
“dynamic statistics” discusses both line-count and procedure-time profilers, and
the statistics they were used to gather. Section 4 tunes seventeen critical inner
loops, for speedup factors ranging from 1.5 to 13.1. I have read this classic
paper at least once a year for the past decade, and it gets better every time. I
strongly recommend it.



COLUMN 2. ASSOCIATIVE ARRAYS

Anthropologists say that language has a profound effect on world view.
That observation, usually known as Whorf’s hypothesis, is often summarized as
“Man’s thought is shaped by his tongue.”

Like most programmers, my computing thought is shaped by my Algol-like
tongue. PL/1, C and Pascal look pretty much alike to programmers like me,
and it’s not hard for us to translate such code into Cobol or Fortran. Our old,
comfortable thought patterns can be easily expressed in these languages.

But other languages challenge the way we think about computing. We are
amazed by Lispers as they work magic with their S-expressions and recursion,
by APL fans who model the universe as the outer product of a couple of long
vectors, and by Snobol programmers who seem to turn any problem into a big
string. We Algolish programmers may find it painful to study these foreign cul-
tures, but the exposure usually yields insight.

This column is about a language feature outside the Algol heritage: associa-
tive arrays. The arrays we know have numeric subscripts, while associative
arrays permit references like count["cat"]. Such data structures are present in
languages such as Snobol and Rexx (an IBM command interpreter); they allow
complex algorithms to be expressed in simple programs. These arrays are close
enough to Algol to be understood quickly, yet novel enough to challenge our
thinking habits.

This column examines the associative arrays provided by the Awk language.
Most of Awk is from the Algol tradition, but its associative arrays and several
other features merit study. The next section introduces Awk’s associative arrays.
Subsequent sections describe two substantial programs that are cumbersome in
most Algol-like languages, yet can be elegantly expressed in Awk.

2.1 Associative Arrays in Awk

The- Awk language is sketched in Appendix 1. We’'ll review the language
briefly by studying a program to find suspicious entries in a file of names. Each
line in the program is a “pattern-action” pair. For each input line that matches
a pattern on the left, the action enclosed in brackets on the right is executed.

15



16 MORE PROGRAMMING PEARLS COLUMN 2

The complete Awk program contains only three lines of code:

length($1) > 10 { e++; print "long name in line", NR}
NF 1= 1 { e++; print "bad name count in line", NR}
END { if (e > 0) print "total errors: ", e }

The first pattern catches lang names. If the first field (named $1) is longer
than 10 characters, then the action increments e and prints a warning using the
builtin variable NR (for number of record, or line number). The variable e
counts errors; Awk conveniently initializes all variables to zero. The second pair
catches lines that do not contain exactly one name (the builtin variable NF
counts the number of fields in the input line). The third action is executed at
the end of the input. It prints the number of errors, if there were any.

Associative arrays aren’t at Awk’s core; many Awk programs don’t use
them. But the arrays are integrated nicely into the language: like other vari-
ables, they aren’t declared and are automatically initialized at their first use.

We’ll now turn to a second problem on names: given a file of n names, we
are to generate all n? pairs of names. I know several people who have used
such a program in selecting first and middle names for their children. If the
input file contains the names Billy, Bob and Willy, the output might lead
parents to a euphonic selection such as Billy Bob and away from Billy Willy.

This program uses the variable n to count the number of names seen so far.
Like all Awk variables, it is initially zero. The first statement is executed for
each line in the input; note that n is incremented before it is used.

{ name[++n] = $1 }
END { for (i = 1; 1 <= n; i++)
for (j = 1; J <= nj; j++)
print name[i], name[j]

}

After the input file has been read, the names have been stored in namelll
through nameln]. The END action prints the pairs with two for loops.
Although this program uses only numeric subscripts,f note that it doesn’t have
to declare the size of the name array.

The program generates a lot of output, especially if some names occur
several times in the input file. The next program therefore uses an array
indexed by strings to clean the input file. Here is the complete program:

{ if (count[$1]++ == 0) print $1 }

When a name is first read its count is zero, so the name is printed and the array
element is incremented. When subsequent occurrences of the name are read, its

t Snobol distinguishes between arrays that have numeric subscripts and tables whose subscripts are
strings. Awk has only one kind of array; numeric subscripts are converted to strings before they are

stored. Subscripts may have multiple indices — Awk creates a single key by concatenating the
indices, separated by a special character.



COLUMN 2 ASSOCIATIVE ARRAYS 17

count is larger and no further action is taken. At the end of the program the
subscripts of count represent exactly the set of names.

That fact allows us to combine the two previous programs into one: given a
file of (possibly duplicated) names, this program prints all unique pairs.

{ name[$1] = 1 }

END { for (i in name)
for (j in name)
print i, j

}
The associative array name represents the set of names. All values in name are

1; the information is contained in the array indices. That information is
retrieved by a loop of the form

for (i in name) statement

The loop iterates statement over all values i that are a subscript of name,
which are exactly the names in the input file. The loop enumerates all names,
but in an arbitrary order; the names will usually not be sorted. (Awk does pro-
vide a convenient interface to the UNIX system sort, but that’s beyond the
scope of this column.)

The next program moves from the nursery to the kitchen. We would prefer
that a shopping list like

chips 3
dip 2
chips 1
cola 5
dip 1

be collapsed to the more convenient form

dip 3
cola 5
chips 4

This program does the job.

{ count[$1] = count[$1] + $2 }
END { for (i in count) print i, count[i] }

Section 1.3 describes a program for counting the number of times cach word
occurs in a document. The following program does the job using Awk’s fields as
an overly simple definition of words: a sequence of characters separated by
blanks. The strings “Words”, “words” and “words;’ are therefore three
different words.

{ for (i = 1; i <= NF; i++) count[$i]++ }
END { for (i in count) print count[i], i }

The program took 40 seconds of VAX-11/750 CPU time to process the 4500
words in a draft of this column. The three most frequent words were “the”



18 MORE PROGRAMMING PEARLS COLUMN 2

(213 occurrences), “to” (110) and “of” (104). We will return to the run time
of this program in Section 11.1.

This trivial spelling checker reports all words in the input file that aren’t in
the dictionary file dict. The preprocessing uses Awk’s getline command to
read the dictionary into the array goodwords:

BEGIN { while (getline <"dict") goodwords[$1] = 1 }
{ for (i = 1; i <= NF; i++)
if (!1($i in goodwords))
badwords[$i] = 1

}
END { for (i in badwords) print i }

The main processing collects badwords, and postprocessing prints the violations.
The test

if ($i in goodwords)

evaluates to true if the i** field is a subscript of the goodwords array, and the
not operator ! negates the condition. A programmer unfamiliar with Awk
might have used the simpler test

if (goodwords[$i] == 0)

That test yields the same answer but has the undesired side-effect of inserting a
new zero-valued element into goodwords; many excess elements could dramati-
cally increase the time and space requirements of the program.

With these small examples as background, we’ll move on to two larger prob-
lems. Fortunately, we won’t have to study much larger programs.

2.2 A Finite State Machine Simulator

Finite State Machines (FSMs) are an elegant mathematical model of com-
putation and a useful practical tool. They arise in such diverse applications as
the lexical analysis of programming languages, communication protocols, and
simple hardware devices. Wulf, Shaw, Hilfinger and Flon cover the subject in
Section 1.1 of their Fundamental Structures of Computer Science (published in
1981 by Addison-Wesley).

As an illustration, they consider the simple task of “suppressing” the starting
ones in a stream of bits:

Input: 011010111
Output: 001000011

A one immediately following a zero is changed to a zero, and all other bits in
the input stream are left unchanged.



COLUMN 2 ASSOCIATIVE ARRAYS 19

The following two-state machine encodes the last input bit in its state:
“LIZ” means “Last Input Zero” and “LIO” means “Last Input One”.

0—0 1 —1

The arrow pointing at LIZ means that the machine starts in that state. The arc
from LIZ to LIO says that if the machine is in LIZ and the input is a one, then
the output is a zero and the next state is LIO.

The program that executes FSMs uses two primary data structures. If the

FSM contains the arc
Statel InSym — OutSym @

then the following equalities hold

trans[State1, InSym]
out[State1, InSym]

State2
OoutSym

The name trans is for state transition and out is for output symbol.
The machine and input described above are encoded as follows.

LIZ 0 LIZ O
LIZ 1 LIO O
LIO 0 LIZ 0
LIO 1 LIO 1
start LIZ

0

1
1
0

The first four lines represent the four edges of the FSM. The first line says that
if the machine is in state LIZ and the input is zero, then the next state is LIZ
and the output is zero. The fifth line identifies the start state, and subsequent
lines are input data.

This program executes FSMs described in the above form.

run

== 1 { print out[s, $1]; s = trans[s, $1] }
run =

0 { if ($1 == "start") { run = 1; s = $2 }
else { trans[$1, $2] = $3; out[$1, $2] = $4 }
}



20 MORE PROGRAMMING PEARLS COLUMN 2

The program has two primary modes. It starts with the variable run at the
value zero. In that mode it adds machine transitions to the trans and out
arrays. When the first field of a line is the string ‘“‘start”, the program stores
the desired start state in s and switches to run mode. Each execution step then
produces output and changes state as a function of the current input ($1) and
the current state (s). ‘

This miniature program has many flaws. Its response to undefined transi-
tions, for instance, is catastrophic. The program as it stands is fit, at best, for
personal use. On the other hand, it provides a convenient base upon which one
might build a more robust program; see Problem 2.

2.3 Topological Sorting

The input to a topological sorting algorithm is a directed graph with no
cycles, such as

A
N

If the graph contains an edge from A4 to B, then A4 is B’s predecessor and B is
A’s successor. The algorithm must order the nodes such that all predecessors
appear before their successors; here is one of many possible orderings.

The algorithm must cope with the possibility that the input graph contains a
cycle and therefore cannot be sorted.

Such an algorithm might be used, for instance, in drawing a three-
dimensional scene of objects. Object 4 precedes object B if B is in front of A4 in
the view, because 4 must be drawn before B. The scene of four rectangles on
the left induces the partial order on the right.

“r N
P p i \D/




COLUMN 2 ASSOCIATIVE ARRAYS 21

There are two valid orderings of the vertices: 4 B C D and 4 C B D. Each of
the orderings properly overlays the objects. Other applications of topological
sorting include laying out a technical document (terms must be defined before
they are used) and processing hierarchical VLSI designs (an algorithm must
process the components of a part before processing the part itself). Before read-
ing on, think for a minute about how you would write a program for topologi-
cally sorting a directed graph.

We’ll study a topological sorting algorithm from Section 2.2.3 of Knuth’s
Art of Computer Programming, volume 1: Fundamental Algorithms. The
iterative step of the algorithm can be viewed as follows: choose a node T with no
predecessors, write T to the output file, and then remove from the graph all
edges emanating from 7. This figure shows the algorithm’s progress on the
four-node scene graph. The stages are depicted from left to right; at each stage,
the node T is circled.

B C C /@)
\D/ D/ b @
The resulting list is A B C D.
A slow implementation of this algorithm scans the entire graph at each step
to find a node with no predecessors. We will now study a simpler algorithm
that is also more efficient. For each node the algorithm stores the number of

predecessors the node has and the set of its successors. For instance, the four-
node graph drawn above is represented as:

NODE | PREDECESSOR | SUCCESSORS
COUNT
A 0 B C
B 1 D
C 1 D
D 2

The iterative step of the algorithm chooses a node whose predecessor count is
zero, writes it on the output, and decrements the predccessor count of all its suc-
cessors. It must be careful, though, to remember the order in which the counts
went to zero; it uses a queue of nodes for that task. (If the queue becomes
empty before all nodes have a predecessor count ol 2670, then the program
reports that the graph contains a cycle.)



22 MORE PROGRAMMING PEARLS COLUMN 2

This pseudocode assumes that the graph is presented to the program as a
sequence of (predecessor, successor) pairs, one pair per line.

as each (pred, succ) pair is read
increment pred count of succ
append succ to successors of pred
at the end of the input file
initialize queue to empty
for each node i
if pred count of i is zero then append i to queue
while queue isn’t empty do
delete t from front of queue; print t
for each successor s of t
decrement pred count of s
if that goes to zero then append x to queue
if some nodes were not output then report a cycle

The running time of the algorithm is proportional to the number of edges in the
graph, which is within a constant factor of optimal. (Each edge is processed
twice: once as it is read and once as it is removed from the queue.)

The Awk program implements the queue as an array with indices in the
range 1..n. The integer glo is the index of the first element in the queue and
ghi is the index of the last. The successor sets are implemented by two arrays.
If 4 has the successors B, C and D, then the following relations hold

succct["A"] == 3
succlist["A", "1"] == "B"
succlist["A", "2"] == "C"
succlist["A", "3"] == "D"

The input to this Awk program is a file of predecessor, successor pairs. Its out-
put is either the sorted node list or a warning that such a list doesn’t exist.

{ ++predct[$2] # record nodes in predct,
predct[$1] = predct[$1] # even those with no preds
succlist[$1, ++succcent[$1]] = $2

END { qlo = 1
for (i in predct) {
n++; if (predct[i] == 0) ql++gqhi] = i
}
while (gqlo <= qhi) {
t = qlgqlo++]; print t
for (i = 1; i <= succent[t]; i++) {
s = succlist[t, i]
if (--predct[s] == 0) ql[++gqhi] = s
}
}
if (ghi != n) print "tsort error: cycle in input"”

}

The second line in the program ensures that all nodes occur as indices in predct,
even those with no predecessors.



COLUMN 2 ASSOCIATIVE ARRAYS 23

The associative arrays in this program represent several different abstract
data types: a symbol table of node names, an array of records, a two-
dimensional sequence of successor sets, and a queue of nodes. The small size of
this program makes it easy to understand, but failing to distinguish abstract
data types in a larger program could make it indecipherable.

2.4 Principles

Awk programmers can do a lot with a little. Most programs we’ve seen
would be an order of magnitude larger in a conventional language. And the size
reduction is due to just a few Awk features: implicit iteration over input lines,
automatic separation into fields, initialization and conversion of variables, and
associative arrays.

Those arrays are the only mechanism Awk has for combining its primitive
data types of strings and numbers. Fortunately, associative arrays can represent
many data structures quite naturally.

Arrays. One-dimensional, multidimensional and sparse arrays are all
straightforward to implement.

Sequential Structures. Queues and stacks result from an associative array
and an index or two.

Symbol Tables. Symbol tables provide a mapping from a name to a value.
An Awk symbol table maintains symtab[name] = value. If all names have
the same value, then the array represents a set.

Graphs. Finite State Machines and topological sort both process directed
graphs. The FSM program uses a matrix representation for the graph, while
topological sort uses an edge-sequence representation.

Education aside, of what practical value are Awk and its associative arrays?
Awk programs are small. That’s not always an advantage (like APL one-liners,
they can be obnoxiously impenetrable), but ten lines of code is almost always
better than a hundred. Unfortunately, Awk code tends to run slowly. Its sym-
bol tables are relatively efficient, but arrays indexed by integers are orders of
magnitude slower than the conventional implementation. When are small, slow
programs useful?

The run-time cost of many programs is negligible compared to their develop-
ment cost. The Awk topological sorting program is near production quality
for some tasks; it should be more robust in the presence of errors.

Simple programs make useful prototypes. Let the users try a small program
first. If they like it, build an industrial-strength version later.

I use Awk as a testing environment for subtle subroutines; we'll return to
this topic in the next column.



24  MORE PROGRAMMING PEARLS COLUMN 2

2.5 Problems

1. Choose an Awk program in this column and rewrite it in a different
language. How do the two programs compare in size of source code and
run-time efficiency?

2. Enhance the FSM simulator in various ways. Consider adding error check-
ing (bad states, bad inputs, etc.), default transitions, and character classes
(such as integers and letters). Write a program to perform lexical analysis
for a simple programming language.

3. The topological sorting program in the column reports the existence of a
cycle if one is present. Modify it to print the cycle itself. Make it more
robust in the presence of errors.

4. Show that a graph induced by a three-dimensional scene can contain cycles.
Give restrictions that guarantee the absence of cycles.

5. Design programs for the following tasks. How can you use associative arrays
to simplify the programs?

a. Trees. Write a program to build and traverse binary trees.

b. Graphs. Rewrite the topological sorting program using depth-first search.
Given a directed graph and a distinguished node x, report all nodes that
can be reached from x. Given a weighted graph and two nodes x and y,
report the shortest path from x to y.

¢. Documents. Use a simple dictionary to transliterate from one natural
language to another (a line in an English-French dictionary might con-
tain the two words “hello bonjour”). Prepare a cross-reference listing of
a text or program file, with all references to each word listed by line
number. Awk programmers might try using input field separators and
substitution commands to achieve a more realistic definition of words.

d. Random Sentence Generation. The input to this program is a context-free
grammar such as

S — NP VP

NP — ALN|N

N — John | Mary

AL = A|A AL

A — Big | Little | Tiny
VP — V AvL

V — runs | walks

AVL — Av| AVL Av
Av — quickly | slowly

The program should generate random sentences like “John walks
quickly” and “Big Little Mary runs slowly quickly slowly”.

e. Filters. The second “name” program filters out duplicate words from a
file; the spelling checker filters out words that are in the dictionary.
Write other word filters, such as removing words that are not on an



COLUMN 2 ASSOCIATIVE ARRAYS 25

“approved list”, but leaving approved words in the same order. (These
tasks are easier when the inputs are sorted.)

f. Board Games. Implement Conway’s “Game of Life”. You might use
Awk’s delete x[i] statement to remove old board positions.

6. Describe various implementations of associative arrays, and analyze the
access time and storage cost of each.

2.6 Further Reading

Aho, Kernighan, and Weinberger designed and built the original Awk
language in 1977. (Whatever you do, don’t permute the initials of their last
names!) They describe the current language and its tasteful use in The AWK
Programming Language, published by Addison-Wesley in 1988. Chapter 7 of
their book shows how Awk is a useful tool for experimenting with algorithms;
we will use Awk for that purpose in Columns 3, 13 and 14. Chapter 6 describes
Awk as a processor for little languages; we’ll use Awk for that purpose in
Column 9. Other chapters provide a tutorial and reference manual and apply
Awk to problems in data processing, databases and word processing. The Awk
book is an excellent introduction to an interesting and useful language.



COLUMN 3: CONFESSIONS OF A CODER

Most programmers spend a lot of time testing and debugging, but those
activities don’t often get much attention in writing. This column describes how
I tested and debugged a few hard subroutines, with an emphasis on the scaf-
folding 1 used in the process. The scaffolding around a building provides access
to components that workers couldn’t otherwise reach. Software scaffolding con-
sists of temporary programs and data that give programmers access to system
components. The scaffolding isn’t delivered to the customer, but it is indispens-
able during testing and debugging.

Enough background, and on to two painful stories.

Confession 1. Several years ago I needed a selection routine in the middle of
a 500-line program. Because I knew the problem was hard, I copied a 20-
line subroutine from an excellent algorithms text. The program usually ran
correctly, but failed every now and then. After two days of debugging, I
tracked the bug down to the selection routine. During most of the debug-
ging, that routine was above suspicion: I was convinced by the book’s infor-
mal proof of the routine’s correctness, and I had checked my code several
times to make sure it matched the book. Unfortunately, a “<” in the book
should have been a “<”. I was a little upset with the authors, but a lot
madder at myself: fifteen minutes worth of scaffolding around the selection
routine would have displayed the bug, yet I wasted two days on it.

Confession 2. Several weeks before I first wrote this column [ was working
on a book of my own, which included a selection routine. I used techniques
of program verification to derive the code, so I was sure it was correct.
After I placed the routine in the text, I wondered whether it was even worth
my time to test it. I hemmed and hawed, trying to decide....

The conclusion and another confession come later in this column.

This column is about the testing and debugging tools I use on subtle algo-
rithms. We’ll start by scrutinizing two subroutines, complete with several com-
mon bugs to make our study more interesting. As a reward for plowing through
all the code, this column concludes by describing a little subroutine library and

27



28 MORE PROGRAMMING PEARLS COLUMN 3

some tests of its correctness; I hope that the library will make it easy for you to
use correct versions of these routines in your programs.

Warning — Buggy Code Ahead

3.1 Binary Search

The “black box” approach is at one extreme of testing: without knowing the
structure of the program, hence viewing it as a black box, the tester presents a
series of inputs and analyzes the output for correctness. This section is about a
testing approach at the opposite extreme: the code is in a white box,f and we
watch it as it works.

The code we’ll study is a binary search. Here is the routine, together with a
simple testbed:

function bsearch(t, 1, u, m) {
l1=1,u=n
while (1 <= u) {
m = int((1+u)/2)

print " ", 1, m, u
if (x[m] < t) 1 =m
else if (x[m] > t) u =m
else return m
}
return 0
}
$1=="£111" {n=28%2; for (i = 1; 1 <= n; i++) x[i] = 10xi }
$1=="n" {n=8%$21}
$1=="x" { x[$2] = $3 }
$1=="print" { for (i = 1; i <= n; i++) print i ":\t" x[i] }
$1=="search" { t = bsearch($2); print "result:", t }

The Awk binary search function has the single argument ¢; later elements in the
parameter list are the local variables. It should return an index of ¢ in x[1..n] if
t is present in the array, and zero otherwise. The print statement traces the
values of /, m and u throughout the search (the lower end, middle, and upper
end of the current range). I indicate that it is scaffolding by placing it in the
left margin. Can you spot any problems with the code?

The bottom five lines of the program are Awk “pattern-action” pairs. If the
input typed by the user matches the pattern on the left, then the code within
brackets on the right is executed. The pattern in the first pair is true if the first
field of the input line typed by the user ($1) is £ill. On such lines, the
number in the second field ($2) is assigned to the variable n, and the for loop
fills n values of the array x.

t Logic dictates that the boxes should be “opaque” and “transparent” (“painted” and “glass”?), but
I’ll stick with the traditional and illogical black and white.



COLUMN 3 CONFESSIONS OF A CODER 29

Here’s a transcript of a run of the program. I first typed £i11 5, and the
program created a sorted array of five elements. When I typed print, the pro-
gram printed the contents of the array.

£i11 5

print

1: 10
2: 20
3; 30
4: 40
5: 50

Now come a few searches in that array. I typed search 10, and the next
three lines show the range narrowing to find that 10 is in position 1 in x. The
searches for 40 and 30 are also correct.

search 10
135
12 3
112

result: 1

search
13
3 4

result: 4

search 30
135

result: 3

(S IS, -3
[=]

Unfortunately, the next search runs into trouble.

[=]

search

b DR Ww
b D W
oo u,

With this clue, can you find the bug in the program?

Binary search is supposed to narrow the range /..u until termination. The
assignment 1=m usually does so, but when / and m are equal it loops endlessly.
The assignment should instead be 1l=m+1, which excludes m from the range.
(The techniques of program verification help one derive this code systematically;
excluding m is the key point in the proof of termination.) The assignment u=m
should similarly be changed to u=m-1. The resulting correct binary search is in
Appendix 2.



30 MORE PROGRAMMING PEARLS COLUMN 3

The n and x commands allow us to alter the arrays produced by £i11. To
find how the correct code behaves on a two-element array with equal elements,
the command x 2 10 sets x[2] to 10, and the next command sets n to 2.

£i11 S
x 2 10
n 2
print
1: 10
2: 10
search 20
112
2 2 2
result: 0

The search for 20 then correctly reports that it is not in the array.

I'd be really surprised if someone shows me a bug in the final binary search
program. I used program verification techniques to prove the code correct, and
then I beat on it with the black-box test reproduced in Appendix 2. Simple
observations like those described in this section reassure me that the code indeed
behaves as I thought. That reassurance cost just six lines of Awk scaffolding
beyond the binary search code.

The techniques of this section are simple and well known. Unfortunately,
scaffolding is too often neglected by programmers. A few minutes spent testing
a prototype of a subtle algorithm like binary search can save hours of debugging
after it is incorporated in a large system. If a hard routine fails in a big pro-
gram, construct scaffolding so you can access it directly, or better yet, build a
small version in a supportive language like Awk.

3.2 Selection

The next program uses Hoare’s algorithm to select the k**-smallest element
of the array x[1..n]. Its job is to permute the elements of x so that
x[1.k=1] € x[k] € x[k+1..n]. We will study this routine in detail in
Column 15:

function select(1l, u, k, i, m) {

if (1 < u) {
swap(l, l+int((u-1l+1)#*rand()))
m=1
for (i = 1+1; 1 <= u; i++)

if (x[i] < x[1])

swap(++m, i)

swap(l, m)
if (m < k) select(m+1, u, k)
else if (m > k) select(l, m-1, k)

}

The code was easy to prove correct; it passed all tests on the first try.



COLUMN 3 CONFESSIONS OF A CODER 31

That program uses “tail recursion”: the recursive call is the last statement in
the procedure. Tail recursion can always be transformed to iteration by replac-
ing subroutine calls by assignment and loop statements. The next version
replaces the recursive routine with a while loop, and this returns us to my next
confession. My first mistake, of course, was in debating whether to test the
code. Any author who errs as often as I do should either test the program or
label it with “WARNING — UNTESTED CODE”. The second mistake is in
the selection routine itself; any ideas?

function swap(i, j, t) { t = x[i]; x[i] = x[j]; x[j]1 = t }

function select(k, 1, u, i, m) {
l1=1;u=n
while (1 < u) {
print 1, u
swap(l, l+int((u-1+1)*rand()))
m=1
comps = comps + u-1
for (i = 1+1; 1 <=.u; i++)
if (x[i] < x[1])
swap(++m, i)
swap(1l, m)

if (m < k) 1 = m+1
else if (m > k) u = m-1
}
}
$1=="£F1il1l1" { n = $2; for (i = 1; 1 <= n; i++) x[i] = rand() }
$1=="n" {n=$2}
$1=="x" { x[$2] = $3 }
$1=="print" { for (i = 1; i <= n; i++) print " ", x[i] }
$1=="sel" { comps = 0; select($2); print " compares:", comps
print " compares/n:", comps/n

for (i=1; i< k; i++) if (x[i] > x[k]) print i
for (i=k+1; i <= n; i++) if (x[i] < x[k]) print i

We'll first watch the program at work. The £i11 command sprinkles ran-
dom numbers in the range [0,1] into the array, and print is like that in the
previous program.

0.93941

0.532356
0.392797
0.446203
0.535331

The command sel 3 partitions the array so that the third-smallest element is in
x[3]. It displays the computation as it progresses, and also checks the



32 MORE PROGRAMMING PEARLS COLUMN 3

correctness of the final answer. The subsequent print command then displays
the partitioned array.

el 3

WWwwwan
oot o

compares: 11
compares/n: 2.2
print
0.446203
0.392797
0.532356
0.535331
0.93941

Although the code produces the correct answer, the trace is suspicious. Can you
find the hint of the bug in that history?

We’ll corner the bug in a more perverse array, built and displayed as follows.

£ill1 2
x 15
x 25
print
5
5

Selecting the second-smallest element works just fine, but there are problems in
finding the smallest.

sel 2
12
compares: 1

compares/n: 0.5
el 1

= aln
NDMDNDDNDDN

With this information, it was easy for me to spot the bug and to handle the tail
recursion more carefully; the final code is in Section 15.2 and Appendix 2. (The
program computed many correct answers only because the bug was often hidden
by the randomizing swap statement. Randomization, for better or worse, often
compensates for bugs.)

Apart from its correctness problem, the original code has a “performance
bug”: even when it gives the right answer, it takes too long. We’ll see in
Column 15 that a correct selection program requires roughly 3.4n comparisons
to find the median of an n-element array. These tests (and a dozen more like



COLUMN 3 CONFESSIONS OF A CODER 33

them) show that the performance of the correct selection routine from Appendix
2 is in the right ballpark:

£i11 50
sel 25
compares: 134
compares/n: 2.68
£i11 100
sel 50
compares: 363
compares/n: 3.63

I have removed the output of the print statements that traced the values of /
and u to save space in this column; it was a pleasure to watch them behave
properly as I conducted the real tests.

3.3 A Subroutine Library

Before this column was originally published in Communications of the
ACM, many programmers had mentioned that they used pseudocode published
in previous columns as a basis for implementing an algorithm in their favorite
language. For some time I had wanted to collect the algorithms into a little
library, but the code was always too long. When the Awk language acquired
functions in early 1985, I realized that it was the ideal vehicle for communicat-
ing a set of useful subroutines in clean, succinct, and tested code.

The designer of an industrial-strength subroutine library must face the
difficult problems of portability, efficiency, and general interfaces. The designer
must also choose an implementation language, which gives programmers in that
language easy access to the routines. Unfortunately, that choice usually denies
the routines to users of other languages.

Appendix 2 is a set of “language-independent” subroutines, suitable for
copying into various implementation languages. Since no sane programmer
would code a serious application of this nature in Awk,t the code is equally use-
ful to a programmer using any Algol-like language. The routines are short.
Tradeoffs were made for brevity and against twenty- and thirty-percent
improvements in efficiency. There are no interfaces; all routines operate on the
array x[1..n]. These short, clean, correct routines provide a useful starting
point for programmers without a better library.

The routines themselves are less than half the program text; the remainder is
a black-box correctness test. (Scaffolding is often this big. In Chapter 13 of
The Mythical Man Month, Fred Brooks states that there might be *“‘half as
much code in scaffolding as there is in product”; in Section 1.4.1 of

T Apart from sequential search and insertion sort, all subroutines in the library are designed for
efficient asymptotic running times — usually O(n log n). For problems on arrays, the overhead of
Awk’s interpretation and associative arrays renders it orders of magnitude slower than conventional
compiled languages.



34 MORE PROGRAMMING PEARLS COLUMN 3

Fundamental Algorithms Knuth raises that to as much scaffolding as delivered
code.) The tests all have the same structure: an input is constructed, the rou-
tine is called, and the answer is then checked for correctness. The progress of
the tests is reported as they are run. This is helpful for locating any error, and
encouraging for the runs that report no errors — at least you know they did
something. Most tests are run for all values of n in 0..bign, where bign=12; at
most O(n?) work is performed at each value of n. The sorting test examines n!
random permutations for n in 0..smalln, where smalln=5. That gives a high
probability of uncovering any permutation on which the algorithm fails. (Most
random tests aren’t so thorough.) The complete program required seven
minutes of CPU time on a VAX-11/750.

With the exception of the selection routine discussed earlier (and described
in detail in Column 15), I wrote the Awk routines by transliterating pseudocode
published in previous columns. Those columns give informal correctness argu-
ments using techniques of program verification. I had tested all the routines
before publication, using a combination of watching, measuring and black-box
testing; some columns report bugs I found during that process. I therefore
wasn’t surprised when testing uncovered no logical errors in the routines; I fixed
a few syntax errors in less than a minute each.

Testing did, however, uncover two interesting bugs in Awk. The first mani-
fested itself as an infinite loop in the binary search routine bsearch. When I
extracted from Appendix 2 a tiny scaffolding program like the one in Section
3.1, the infinite loop was obvious. I presented the resulting fifteen lines to Brian
Kernighan, who was adding several new features to Awk at that time. I was
unsure of whether the bug was in my program or his, but hopeful enough that it
might be Kernighan’s fault to risk certain ridicule if the fault were mine.
Changing the line

else return m

to

else { print "returning"; return m}

showed that the Awk interpreter’s new functions had the common bug of not
properly executing a return from within a loop. After the bug was identified,
Kernighan fixed Awk within ten minutes.

I then ran back to my terminal to watch with glee as the test of binary
search ran successfully for all » in the range 1..9. I was heartbroken to see the
test fail for n=10. At that time, bign=10. Because I couldn’t think of any
good reason why code should fail at n=10, I re-ran the test with bign=9 and
bign=11, hoping that the problem was in the last test. Unfortunately, the code
consistently worked properly up through 9 and failed at 10 and 11. What
changes between 9 and 10?

Awk variables can be either numbers or strings. The Awk manual states
that if the two operands in a comparison are both numeric then they are



COLUMN 3 CONFESSIONS OF A CODER 35

compared as numbers, otherwise they are compared as strings. Because of
unusual circumstances in this program involving function calls, the interpreter
inappropriately observed that the string “10” precedes the string “5”. I created
a six-line program that tickled this bug, and Kernighan had the problem fixed
the next day.

3.4 Principles

This column has touched on several tasks common in the programmer’s day-
to-day life. None is particularly glamorous, but all are important.

Scaffolding. This column illustrates prototype routines, print routines to
observe program behavior, measurement code, and component tests. Other
scaffolding includes test data (dummy files and data structures) and program
“stubs” that facilitate top-down testing by simulating unfinished routines.

Special-Purpose Languages. The right language can make a program an
order of magnitude shorter and cleaner. Exploit the strengths of the languages
available to you. Awk is a fine language for prototyping algorithms: its associa-
tive arrays let you simulate many common data structures; its fields, implicit
loops, and pattern-action pairs simplify input/output; implicit declaration and
initialization of variables lead to succinct programs. Chapter 7 of The AWK
Programming Language (cited in Section 2.6) presents more information on
using Awk to experiment with algorithms. Section 13.2 and Solution 14.6 give
Awk scaffolding for two subtle algorithms.

Testing and Debugging. This column concentrated on testing and debugging
small components. White-box views of the computation initially show that the
code behaves as we expected. Black-box tests are later used to increase our
confidence in the correctness of the routine.

Bug Reports. The component test of the subroutine library inadvertently
turned into a system test for Awk’s recently added functions. Kernighan calls
this the “new user phenomenon”: each new user of a fresh system uncovers a
new class of bugs. I pushed harder on functions than previous users. On the
two occasions when the 300-line program tickled an Awk bug, I reproduced the
bizarre behavior in a short program before reporting the problem (fifteen lines
in one case, six in the other). Stu Feldman of Bell Communications Research
speaks from years of experience maintaining a Fortran compiler:

The program author, support organization, and your friends will all ignore
you if you send a bug report and a 25,000 line program listing. It took me
several years to teach [name changed to protect the guilty] this fact and get
him to work on it. Techniques involve staring at code, intuition, bisection
(try throwing out the last half of the subroutine), etc.

If you find a bug, report it with the smallest possible test case.
The Role of Program Verification. I need all the help I can get in making a
correct program. Informal verification techniques help me write the code and



36 MORE PROGRAMMING PEARLS COLUMN 3

check it before I ever implement it, and testing is crucial after I have the code
in hand. Because I’m getting better at verification, I’'m no longer astounded
when a small but complex routine works the first time. If it doesn’t work, I use
testing and debugging to help me locate the invalid assertions and fix them
along with the code (I’'m usually able to resist those urges to “just change it
until it works” — I try to write only programs that I understand). Appendix 2
illustrates two uses of assertions: the pre- and postconditions of a routine provide
a precise and concise specification of its behavior, and assertion comments in the
code (especially loop invariants) explain the algorithms. For a more direct
application of verification ideas to testing, see Problem 3.

3.5 Problems

1. Build scaffolding that allows you to observe the behavior of routines in
Appendix 2. Heaps are particularly interesting to watch.

2. Improve the assert routine of Appendix 2 so that it tells more about the
location of the error.

3. The assert routine can also be used in white-box testing: change the asser-
tions that are presently comments into calls to the assert routine. Rewrite
assertions in that form for one of the routines in Appendix 2. Does that
strengthen the tests in the sense of Problem 4?

4. Evaluate the quality of the black-box tests in Appendix 2 by introducing
bugs into the various routines. Which bugs are caught by which tests?

5. Rewrite the programs in this column in another language. How long are
they compared to the Awk code?

6. Write scaffolding that allows you to time the performance of various algo-
rithms in Appendix 2. How can you present the results graphically?

7. Build a subroutine library like that in Appendix 2 for a different problem
domain, such as graph algorithms. Strive for short, correct algorithms that
are also reasonably efficient.

8. By the literal specifications in Appendix 2, this is a correct sortihg algorithm:

for (i

= 1; 1 <= n; i++)
x[i] =

i;

A sorting algorithm must, of course, also guarantee that the output array is
a permutation of the input. The sorting, heap, and selection algorithms in
Appendix 2 guarantee this property by altering the array only by using the

swap routine. How would you test a less structured program for the permu-
tation property?



COLUMN 4. SELF-DESCRIBING DATA

You just spent three CPU hours running a simulation to forecast your
company’s financial future, and your boss asks you to interpret the output:

Scenario 1: 3.2% -12.0% 1.1%

Scenario 2: 12.7% 0.8% 8.6%

Scenario 3: 1.6% -8.3% 9.2%
Hmmm.

You dig through the program to find the meaning of each output variable.
Good news — Scenario 2 paints a rosy picture for the next fiscal year. Now all
you have to do is uncover the assumptions of each. Oops — the disaster in
Scenario 1 is your company’s current strategy, doomed to failure. What did
Scenario 2 do that was so effective? Back to the program, trying to discover
which input files each one reads....

Every programmer knows the frustration of trying to decipher mysterious
data. The first two sections of this column discuss two techniques for embed-
ding descriptions in data files. The third section then applies both methods to a
concrete problem.

4.1 Name-Value Pairs

Many document production systems support bibliographic references in a
form something like this:

%author A, V. Aho
%author M. J. Corasick
%title Efficient string matching:
an aid to bibliographic search
%journal Communications of the ACM
%volume 18
%number 6
%month June
%year 1975
%¥pages 333-340

37



38 MORE PROGRAMMING PEARLS COLUMN 4

%title The Art of Computer Programming,
Volume 3: Sorting and Searching

%author D. E. Knuth

%publisher Addison-Wesley

%city Reading, Mass.

%year 1973

Blank lines separate entries in the file. A line that begins with a percent sign
contains an identifying term followed by arbitrary text. Text may be continued
on subsequent lines that do not start with a percent sign.

The lines in the bibliography file are name-value pairs: each line contains
the name of an attribute followed by its value. The names and the values are
sufficiently self-describing that I don’t need to elaborate further on them. This
format is particularly well-suited to bibliographies and other complex data
models. It supports missing attributes (books have no volume number and jour-
nals have no city), multiple attributes (such as authors), and an arbitrary order
of fields (one need not remember whether the volume number comes before or
after the month).

Name-value pairs are useful in many databases. One might, for instance,
describe the aircraft carrier USS Nimitz in a database of naval vessels with
these pairs:

name Nimitz
class CVN
number 68
displacement 81600
length 1040
beam 134
draft 36.5
flightdeck 252
speed 30
officers 447
enlisted 5176

Such a record could be used for input, for storage, and for output. A user could
prepare a record for entry into the database using a standard text editor. The
database system could store records in exactly this form; we’ll soon see a
representation that is more space-efficient. The same record could be included
in the answer to the query “What ships have a displacement of more than
75,000 tons?”

Name-value pairs offer several advantages for this hypothetical application.
A single format can be used for input, storage, and output, which simplifies life
for user and implementer alike. The application is inherently variable-format
because different ships have different attributes: submarines have no flight
decks and aircraft carriers have no submerged depth. Unfortunately, the exam-
ple does not document the units in which the various quantities are expressed;
we'll return to that shortly. |

Some database systems store records on mass memory in exactly the form



COLUMN 4 SELF-DESCRIBING DATA 39

shown above. This format makes it particularly easy to add new fields to
records in an existing database. The name-value format can be quite space-
efficient, especially compared to fixed-format records that have many fields,
most of which are usually empty. If storage is critical, however, then the data-
base could be squeezed to a compressed format:

naNimitziclCVNinu681di81600i1e1040!
be1341dr36.51f1252isp30iof447ien5176

Each field begins with a two-character name and ends with a vertical bar. The
input/output format and the stored format are connected by a data dictionary,
which might start:

ABBR NAME UNITS

na name text

cl class text

nu number text

di displacement tons

le length feet

be beam feet

dr draft feet

f1l flightdeck feet

sp speed knots

of officers personnel
en enlisted personnel

In this dictionary the abbreviations are always the first two characters of the
name; that may not hold in general. Readers offended by hypocrisy may com-
plain that the above data is not in a name-value format. The regular structure
supports the tabular format, but observe that the header line is another kind of
self-description embedded in the data.

Name-value pairs are a handy way to give input to any program. They are
one of the tiniest of the “little languages’ described in Column 9. They can
help meet the criteria that Kernighan and Plauger propose in Chapter 5 of their
Elements of Programming Style (the second edition was published by
McGraw-Hill in 1978):

Use mnemonic input and output. Make input easy to prepare (and to
prepare correctly). Echo the input and any defaults onto the output; make
the output self-explanatory.

Name-value pairs can be very useful in code that is far removed from input-
output. Suppose, for example, that we want to provide a subroutine that adds a
ship to a database. Most languages denote the (formal) name of a parameter
by its position in the parameter list. This positional notation can lead to
remarkably clumsy calls:

addship("Nimitz", "CVN", "68", 81600, 1040,
134, 36.5, 447, 5176,,,30,,,252,,,,)

The missing parameters denote fields not present in this record. Is 30 the speed



40 MORE PROGRAMMING PEARLS COLUMN 4

in knots or the draft in feet? A little discipline in commenting conventions
helps unravel the mess:

addship("Nimitz", # name
"CVN", # class

"68", # number
81600, # disp

# length

1040,
ces)

Some languages support named parameters, which make the job easier:

addship(name = "Nimitz",
class = "CVN",
number = "68",

disp = 81600,
length = 1040,
.)

If your language doesn’t have named parameters, you can simulate them with a
few routines (the variables name, class, etc., are distinct integers):

shipstart()
shipstr(name, "Nimitz")
shipstr(class, "CVN")
shipstr(number, "68")
shipnum(disp, 81600)
shipnum(length, 1040)

shipend()

4.2 Provenances in Programming

The provenance of a museum piece lists the origin or source of the object.
Antiques are worth more when they have a provenance (this chair was built in
such-and-such, then purchased by so-and-so, etc.). You might think of a prove-
nance as a pedigree for a non-living object.

The idea of a provenance is old hat to many programmers. Some software
shops insist that the provenance of a program be kept in the source code itself:
in addition to other documentation in a module, the provenance gives the history
of the code (who changed what when, and why). The provenance of a data file
is often kept in an associated file (a transaction log, for instance). Frank
Starmer of Duke University tells how his programs produce data files that con-
tain their own provenances:

“We constantly face the problem of keeping track of our manipulations of
data. We typically explore data sets by setting up a UNIX pipeline like

sim.events -k 1.5 -1 3 |

sample -t .01
bins -t .01



COLUMN 4 SELF-DESCRIBING DATA 41

The first program is a simulation with the two parameters k and 1 (set in this
example to 1.5 and 3).f The vertical bar at the end of the first line pipes the
output into the second program. That program samples the data at the desig-
nated frequency, and in turn pipes its output to the third program, which chops
the input into bins suitable for graphical display as a histogram.

“When looking at the result of a computation like this, it is helpful to have
an ‘audit trail’ of the various command lines and data files encountered. We
therefore built a mechanism for ‘commenting’ the files so that when we review
the output, everything is there on one display or piece of paper.

“We use several types of comments. An ‘audit trail’ line identifies a data file
or a command-line transformation. A ‘dictionary’ line names the attributes in
each column of the output. A ‘frame separator’ sets apart a group of sequential
records associated with a common event. A ‘note’ allows us to place our
remarks in the file. All comments begin with an exclamation mark and the type
of the comment; other lines are passed through untouched and processed as
data. Thus the output of the above pipeline might look like:

ltrail sim.events -k 1.5 -1 3
ltrail sample -t .01

ltrail bins -t .01

!dict bin_bottom value item_count

0.00 72
0.01 138
0.02 121

lnote there is a cluster around 0.75
|frame

All programs in our library automatically copy existing comments from their
input onto their output, and additionally add a new trail comment to docu-
ment their own action. Programs that reformat data (such as bins) add a
dict comment to describe the new format.

“We’ve done this in order to survive. This discipline aids in making both
input and output data files self-documenting. Many other people have built
similar mechanisms; wherever possible, I have copied their enhancements rather
than having to figure out new ones myself.”

Tom Duff of Bell Labs uses a similar strategy in a system for processing pic-
tures. He has developed a large suite of UNIX programs that perform transfor-
mations on pictures. A picture file consists of text lines listing the commands
that made the picture (terminated by a blank line) followed by the picture itself
(represented in binary). The prelude provides a provenance of the picture.
Before Duff started this practice he would sometimes find himself with a
wonderful picture and no idea of what transformations produced it; now he can
reconstruct any picture from its provenance.

T Note that the two parameters are set by a simple name-value mechanism. — J.B. -



42 MORE PROGRAMMING PEARLS COLUMN 4

Duff implements the provenances in a single library routine that all pro-
grams call as they begin execution. The routine first copies the old command
lines to the output file and then writes the command line of the current program
on the output.

4.3 A Sorting Lab

To make the above ideas more concrete, we’ll apply them to the task of con-
ducting experiments on sort routines. Experiments in the last column dealt with
the correctness of the routines; these experiments concentrate on their run time.
This section will sketch an interface suitable for gathering performance data;
Column 15 uses such data. The input and output are both expressed in name-
value pairs, and the output contains a complete description of the input (its
provenance).

Experiments on sorting algorithms involve adjusting various parameters, exe-
cuting the specified routine, then reporting key attributes of the computation.
The precise operations to be performed can be specified by a sequence of name-
value pairs. Thus the input file to the sorting lab might be this description of a
sorting experiment:

n 100000
input identical
alg quicksort
cutoff 10
partition random
seed 379

In this example the problem size, n, is set to 100,000. The input array is initial-
ized with identical elements (other options might include random, sorted,
or reversed elements). The sorting algorithm in this experiment is quick for
Quicksort; insert (for insertion sort) and heap (for Heapsort) might also be
available. The cutoff and partition names specify further parameters in
some implementations of quicksort.

The input to the simulation program is a sequence of experiments in the
above format, separated by blank lines. Its output is in exactly the same format
of name-value pairs, separated by blank lines. The first part of an output record
contains the original input description, which gives the provenance of each
experiment. The input is followed by three additional attributes: comps records
the number of comparisons made, swaps counts swaps, and cpu records the
run time of the procedure. An output record might therefore consist of the
input record shown above, together with these fields at the end:

comps 4772
swaps 4676
cpu 0.1083

Given the sort routines and the additional supporting procedures that do the



COLUMN 4 SELF-DESCRIBING DATA 43

real work, the control program is easy to build. Its main loop can be sketched
in pseudocode as follows:

loop
read input line into string S
if end of file then break
F1 := first field in S
F2 := second field in S
if s = "" then
simulate()
reset variables to their default values

else if F1 = "n" then
N := F2

else if F1 = "alg" then
if F2 = "insertsort" then alg := 1
else if F2 = "heapsort" then alg := 2
else if F2 = "quicksort" then alg := 3
else error("bad alg")

else if F1 = "input" then

write S on output
simulate()

The code reads each input line, processes the name-value pair, and copies it to
the output. The simulate() routine performs the experiment and writes the
output name-value pairs; it is called at each blank line and also at end of file.

This simple structure is useful for many simulation programs. Its output can
be read by a human or fed to later programs. The input variables together pro-
vide a provenance of the experiment; because they appear with the output vari-
ables, any particular experiment can be repeated. The variable format allows
additional input and output parameters to be added to future simulations
without having to restructure existing data. Problem 8 shows how this approach
can be used to perform sets of experiments.

4.4 Principles

This column has only scratched the surface of self-describing data. Some
systems, for instance, allow a programmer to multiply two numeric objects of
unspecified type (ranging from integers to arrays of complex numbers); at run
time the system determines the types by inspecting descriptions stored with the
operands, and then performs the appropriate action. Tagged-architecture
machines provide hardware support of self-describing objects, and some com-
munications protocols store data along with a description of its format and
types. It is easy to give even more exotic examples of self-describing data.

This column has concentrated on two simple but useful kinds of self-
descriptions. Each reflects an important principle of program documentation.

The most important documentation aid is a clean programming language.
Name-value pairs are a simple, elegant, and useful linguistic mechanism.



44

MORE PROGRAMMING PEARLS COLUMN 4

The best place for program documentation is in the source file itself. A data
file is a fine place to store its own provenance: it is easy to manipulate and
hard to lose.

4.5 Problems

1.

Self-documenting programs contain useful comments and suggestive indenta-
tion. Experiment with formatting a data file to make it easier to read. If
necessary, modify the programs that process the file to ignore white space
and comments. Start your task using a text editor. If the resulting format-
ted records are indeed easier to read, try writing a “pretty printing” program
to present an arbitrary record in the format.

Give an example of a data file that contains a program to process itself.

. The comments in good programs make them self-describing. The ultimate in

a self-describing program, though, is one that prints exactly its source code
when executed. Try to write such a program in your favorite language.

Many files are implicitly self-describing: although the operating system has
no idea what they contain, a human reader can tell at a glance whether a file
contains program source text, English text, numeric data, or binary data.
How would you write a program to make an enlightened guess as to the type
of such a file?

5. Give examples of name-value pairs in your computing environment.

Find a program with fixed-format input that you find hard to use, and
modify it to read name-value pairs. Is it easier to modify the program
directly or to write a new program that sits in front of the existing program?

Give examples of the general principle that the output of a program should
be suitable for input to the program. For instance, if a program wants a
date to be entered in the format “06/31/88”, then it should not write:

Enter date (default 31 June 1988):

The text sketched how to do one experiment on a sorting algorithm. Often,
though, experiments come in sets, with several parameters systematically
varied. Construct a generator program that will convert this description

n [100 300 1000 3000 10000]
input [random identical sorted]
alg quicksort

cutoff [S 10 20 40]
partition median-of-3

into 5%X3x4 = 60 different specifications, with each item in a bracket list
expanded in the cross product. How would you add more complex iterators’
to the language, such as [from 10 to 130 by 20]?

How would you implement name-value pairs using Awk’s associative arrays?



PARTII: TRICKS OF THE TRADE

Here’s a trick of the medical trade useful for anyone who donates blood.
Before sticking the big needle in your arm, the nurse first pricks your finger for
a few drops of blood. Some thoughtless nurses jab the pad of the index finger,
which is the most sensitive spot of the most used finger. It is better to poke a
less sensitive part (on the side, halfway down from nail to pad) of a less com-
monly used finger (the ring finger). This trick can make a blood donor’s day a
little more pleasant. Tell it to your friends before the next blood drive.

These columns describe some similar tricks of the programmer’s trade.
Column 5 is about finding simple solutions to hard problems, Column 6 is a col-
lection of rules of thumb, and Column 7 describes quick calculations useful in
computing. Column 8 is about managing large software projects; its trick is in
helping a programmer in the trenches to see things from the boss’s perspective.

You won’t find a whole lot of code and mathematics here. These columns
are at an intellectual level not far above the trick of drawing blood samples
from the side of the ring finger. Fortunately, these tricks are almost as useful,
and not too much harder to apply. ‘

Column 5 appeared in the February 1986 Communications of the ACM,
Column 6 appeared in March 1986, Column 7 appeared in September 1985,
and Column 8 appeared in December 1987.

45



COLUMN 5. CUTTING THE GORDIAN KNOT

Gordius tied the knot. To the person who could untie it, Asia was the prom-
ised prize. For centuries the knot resisted all efforts, until Alexander the Great
approached it in 333 B.C. Instead of repeating the vain efforts of his predeces-
sors, he drew his sword and slashed through the knot; Asia was soon his. Since
that time, “cutting the Gordian knot” has meant finding a clever solution to a
complex problem.

In modern language, Alexander took the easy way out. This column is about
taking the easy way out of programming problems.

A word about authenticity: with the exception of a few feeble (and, I hope,
obvious) attempts at humor, all anecdotes in this column are true. Some names
have been obscured to protect the guilty.

5.1 A Quiz

This quiz describes three problems that arose in real systems. The problems
are classics: sorting, data transmission, and random numbers. You probably
know some classic solutions, but try to find a more elegant approach before you
peek at the solutions in the next section.

Problem 1 — Sorting. The circulation department at Scientific American
receives thousands of letters every day. The lion’s share falls into half a dozen
major categories: payments of bills, renewals of subscriptions, response to direct
mail promotions, and so forth. The mail must be sorted into these groups before
it is processed by the data entry clerks. Describe schemes for sorting the mail.

Problem 2 — Data Transmission. This problem was faced by a group of
engineers at Lockheed’s Sunnyvale, California, plant in 1981. Their daily prob-
lem was to transmit about a dozen drawings produced by a Computer Aided
Design (CAD) system in their plant to a test station about 25 miles away, in
the mountains near Santa Cruz. An automobile courier service took over an
hour for the one-way trip (due to traffic jams and mountain roads) and cost a
hundred dollars per day. Propose alternative data transmission schemes and
estimate the cost of each.

Problem 3 — Random Samples. One step in the sampling proca.'ss of a pub-
lic opinion polling firm was to draw a random subset from a printed list of

47



48 MORE PROGRAMMING PEARLS COLUMN 5

precincts. Their manual solution required a boring hour with a table of random
numbers. An alert employee suggested a program to which the user types a list
of N precinct names (typically a few hundred) and an integer M (typically a
few dozen); the program’s output is a list of M of the precincts chosen at ran-
dom.’ Is there a better solution?

5.2 Some Solutions

If this section were titled “Solutions” it might sound like I thought I knew
the answers. Here are a few good answers, but I wouldn’t be surprised if other
solutions were even better.

Solution 1. A clerk could manually place each letter in one of several bins;
an automated solution might use a letter-processing machine for the job. Those
solutions are expensive, so the magazine has the Post Office do the job for them.
They use a different post office box number for each of the major categories,
and the mail is delivered in bundles corresponding to the categories. Each box
costs about a hundred dollars per year, which is a tiny fraction of the annual
salary of a clerk.

Solution 2. The Lockheed team first considered using an existing microwave
link to transmit data between the two sites, but producing the drawings at the
test station would have required an expensive printer. Their final solution was
to draw the pictures at the main plant, photograph them, then send the 35mm
film to the test station by carrier pigeon, where it was enlarged and printed on
an existing microfilm viewer. The pigeon took just half the time and less than
one percent the dollar cost of the car (the birds worked, literally, for pigeon
feed). Over a 16-month period the pigeons transmitted hundreds of rolls of film
and lost only two (because there are hawks in the area, the pigeons carried no
classified data).

Solution 3. It is immoral for a person to type in hundreds of names only so
that a computer can ignore most of them. I therefore wrote a program to which
the user types two input integers, M and N. The program then prints a sorted
list of M integers chosen at random in the range 1..N. For instance, if M=5
and N=100, the output list might be

6 8 47 66 80

The user then counts through the 100 precincts in the list, and marks the
numbers 6, 8, 47, 66 and 80 as selected. The resulting dozen-line program was
easy to write and was eagerly used by the pollsters. We'll see programs for a
similar task in Column 13.

When I talked about this problem at West Point, a cadet suggested an even
better approach. To sample M precincts, photocopy the precinct list, cut the
copy into equal-sized pieces with a paper slicer, vigorously shake the slips in a
large paper bag, and then pull out M of them. That solution is rapid to imple-

ment and gives appropriately random answers, as long as you shake the bag
hard enough.



COLUMN 5 CUTTING THE GORDIAN KNOT 49

5.3 Hints

In each story in the quiz, a simple insight made a hard problem easy. Here
are a few ideas for you to ponder as you search for elegant solutions to hard
problems that you face.

What the User Really Wants. An operations researcher was assigned to dev-
ise an elevator scheduling policy to minimize passenger waiting time in a certain
building. After visiting the building, he realized that the problem his employer
really wanted to solve was to minimize the discomfort to the passengers (who
didn’t enjoy waiting for elevators). He solved the problem by installing mirrors
near each elevator. The passengers then spent their wait admiring themselves,
and complaints about the speed of the elevators were dramatically reduced. He
found what the users really wanted.

A slight variation of that trick is commonly used to make a slow program
acceptable to its users. A microcomputer program I once wrote took two hours
to process one thousand records, so at each record it printed a message like

Processing record 597 of 985

Because all records took roughly the same amount of time, the users could plan
their schedules accordingly. I'm sure that the resulting program was more com-
fortable than a program twice as fast that didn’t tell the user when it was going
to finish. The users wanted predictability more than speed.

I once urged a company to replace their ugly seven-by-nine dot matrix
printer with a handsome daisy wheel printer. The company rejected the idea
out of hand: the current reports clearly had the authority of “The Computer”,
while attractive reports would look like some mere human had typed them. The
users wanted authority, not beauty. With similar motivation, some compilers
report that “this program contains 1 errors™ to remind the user that computers
are stupid.

Knowing what the user really wants doesn’t always make life easier. If your
specification is to ensure that

Xl < x[21 € x[31 < - < XINV]

you might use the simple program

for I := 1 to N do X[I] :=1I

or the even more elegant code

N :=0
If you know that the user really wants to sort the array, though, neither of these
programs will prove particularly useful.

Costs and Benefits. Before settling on a solution, understand its costs and
benefits. The benefits of excellent documentation are worth the cost of pro-
grammer time if the program is frequently used by many people; the costs far



50 MORE PROGRAMMING PEARLS COLUMN 5

outweigh the benefits if the program is a one-shot job. Many jobs worth doing
aren’t worth doing right. A novelist is foolish to agonize over each word in a
shopping list.

Most problems have many potential solutions. Consider, for instance, the
problem of injuries suffered in automobile accidents. Accidents are avoided by
measures such as driver training, strict enforcement of speed limits, stiff penal-
ties for drunk driving, and a good system of public transportation. If accidents
do occur, injuries can be reduced by the design of the passenger compartment,
wearing seat belts, and air bags. And if injuries are suffered, their effect can be
reduced by paramedics at the scene, helicopter ambulances, trauma centers, and
corrective surgery. One should understand the costs and benefits of all
approaches before spending too much money on any single approach.

Don’t Make the Problem Too Hard. An old puzzle asks how a barometer
can be used to compute the height of a building. Answers range from dropping
the instrument from the top and measuring the time of its fall to giving it to the
building’s superintendent in return for a look at the plans. A modern version of
the puzzle asks how a personal computer can balance a checkbook. An elegant
solution is to sell the machine and deposit the money.

Peter Denning observes that many tasks that are commonly implerhented on
home computers can be done more effectively by hand: “It’s much faster to look
at my monthly calendar on the wall than to turn on the computer, insert a
floppy, load it, start the calendar program, and read my appointments. The
same comment applies to recipes. My bookkeeping system for papers I handle
as an editor depends on a file drawer and simple looseleaf notebook. I can
quickly keep track of the status of all papers, referees, revisions, etc. It is signi-
ficantly faster than any of the computerized systems I’ve seen used by other edi-
tors. Putting my system on a computer would slow it down. I’'m able to get my
job done faster without a computer.”

Computers provide excellent solutions to some hard problems, but they aren’t
the universal solvent. Clever programmers leave their swords at home and cut
Gordian knots with pigeons, post offices, paper bags, or looseleaf notebooks.

Don’t Make the Problem Too Easy. In his wonderful How To Solve It,
Polya points out that “the more general problem may be easier to solve’”; he
calls this the Inventor’s Paradox. It is possible to write a program to permute
the values in the variables 4 through G such that

A<SBSKC<D<ESF<G

It is a lot easier, though, to copy the variables into an array X, call a general
sorting routine, and then copy X back into the variables.

Use the Right Tools in the Right Way. When the house-spouse complained
that he had just spent half an hour writing a note to the milkman, his kindly
wife suggested that next time he write the note before he puts it in the bottle.
The UNIX program tr transliterates all occurrences of certain characters in its



COLUMN 5 CUTTING THE GORDIAN KNOT 51

i

input file to other characters in its output file. A colleague found the following
program consuming enormous amounts of time on our system.
Vj tr a A <input >temp1

a
tr b B <temp1 >temp2
tr ¢ C <temp2 >temp1

tr z 2 <temp1 >output
remove temp1 temp2

The programmer wanted to change all lower-case letters to upper case. He
eventually did the job more simply and more efficiently with this command.

tr a-z A-Z <input >output

If a program seems too awkward, try to find a simpler solution.

What Do You Reward? Brilliance is typically the act of an individual, but
incredible stupidity can usually be traced to an organization. A popular
Western writer once confessed that when he was paid by the word, the heroes in
his books always took six bullets to die. When programmers are paid by the
line of code, how do you suppose the array X[1..1000] is initialized to zero?
(Hint: programmers paid by the speedup initially produce slow code, and pro-
grammers required to execute a certain percentage of branches during testing
have a lot of statements of the form if true then ....)

A programmer friend who works for a large company had just shaved 25
percent from the run time of a program. He was ecstatic. The program con-
sumed two hours per day of supercomputer time, and the ten-line change
reduced that by half an hour, for a savings of several hundred dollars per day.
He bubbled in to the computation center with the good news of an extra half
hour per day on their biggest engine, and was surprised to see their crestfallen
faces. Because of the company’s internal billing policy, this change would cost
the comp center roughly $100,000 per year in funny-money. That company’s
organizational structure actively discouraged effective utilization of a multi-
million dollar resource.

We've Always Done it this Way. For twenty years the plant had faithfully
put a small hole in a mass-produced flywheel. Drilling the hole was expensive,
so the mechanical engineers investigated other ways of putting it there. The
team finally asked why the hole was there, and refused to accept the pat answer
of “it’s always been there”. They eventually found that the original prototype
flywheel was a little out of balance, so the designer reduced the mass on the
heavy side by drilling the hole. For two decades that quick fix left its legacy in
slightly out-of-balance devices. The team’s elegant solution of ignoring the hole
was not only cheaper, it gave better flywheels.

It’s frustrating enough that people don’t look for new solutions because
“we’ve always done it this way”. It’s even worse when management ignores
your wonderful new solution because “we’ve never done it that way”. (Some
companies still use that excuse for building huge applications systems in



52  MORE PROGRAMMING PEARLS COLUMN 5

assembly code rather than in a high-level language.) Good luck in getting past
this mindset, but beware the power of your enemy. The bureaucracy at a large
university was explained as, “This school is two hundred years old and has never
done anything for the first time.”

Profit from Play. As a college freshman I had just learned about binary
search and about assembly language coding. For my own amusement, and as
an excuse for learning a little more about both subjects, I implemented a
general-purpose binary search routine in assembly language. I had a part-time
job in the data-processing center, and a few weeks later a run was cancelled
after the operators estimated it would take two hours. We found that the bulk
of the time was devoted to a sequential search, and when we replaced that with
a call to my subroutine the run finished in ten minutes.

Dozens of times since then I have seen today’s toy turn into next week’s
beast of burden or next year’s product. In the September 1985 Scientific Amer-
ican, Kee Dewdney describes the atmosphere at Bell Labs in which it is impos-
sible to draw the line between work and play. (My management even considers
writing these columns as work, when it is about the most fun I can imagine.)
One colleague, for instance, spent a week developing a color-graphics system
because he wanted to draw pictures of a robot doing a back-flip. A few months
later a chemist used the system to illustrate the structure of a molecule. The
metallic spheroids that were bodily parts for the robot served as atoms in the
molecule. The result was well worth the few minutes required to apply existing
tools to the new task, and easily justified the cost of building the system in the
first place.

5.4 Principles

Most of the stories in this column have the same outline: a hero was too lazy
to solve a problem the hard way, and found an easy way out. Bob Martin said
it best: “Attack the problem, not the programming.”

5.5 Problems

1. I was once asked to write a program to transmit one particular data set from
one personal computer to another PC of a very different architecture. A few
questions showed that the file had only 400 records of 20 numeric digits
each. How would you proceed?

2. When a new researcher reported to work for Thomas Edison, Edison asked
him to compute the volume of a light bulb. After several hours with calipers
and calculus, the new guy returned with the answer of 150 cubic centime-
ters. In less than a minute, Edison computed and responded ‘“Closer to
155.” What was Edison’s insight? |

3. To conduct an experiment, a psychologist needed to preduce random permu-
tations of three observers and three stress levels (High, Medium, Low).



COLUMN 5 CUTTING THE GORDIAN KNOT 53

After discussing the problem, we agreed that a program should produce out-
put like this:

1 3L 2M 1H
2 3H 1M 2L
3 1L 2H 3M
4 1M 2L 3H

The first line describes subject number 1, who is to be seen first by observer
3 in a low stress level, then by observer 2 under medium stress, and finally
by observer 1 under high stress.

When 1 first thought about the problem I quickly sketched a program. One
six-element array contains the six permutations of {1,2,3} and another con-
tains the six permutations of {L,M,H}. The program randomly chooses one
of each, and then prints the two permutations spliced together. How would
you generate these random permutations? (Hint: what is a common way to
randomly generate one object out of six?)

4. This code finds the closest point in the array X[1..N] to the point B:

BestDist := Infinity
for I := 1 to N do
ThisDist := sqrt((A[I].X - P.X)**2 + (A[I].Y - P.Y)»»2)
if ThisDist < BestDist then
BestDist := ThisDist
BestPoint := I

Statistics from Section 7.2 show that the sqrt routine is the time bottleneck
of the routine. Find a way to make the code run faster.

5. Critique the following examples of problem solving.

a. When two people were chased by a bear, one stopped to put on running
shoes. “You dummy,” said the second, “you can’t outrun a bear.” The
first replied, “I don’t have to outrun that bear, I just have to outrun you.”

b. Problem: What should you do if you are chased by a bear, and you don’t
know whether it is a black bear or a grizzly bear? Solution: Run up a
tree. If it is a black bear, it will run up after you. But if it is a grizzly,
it will just knock the tree down then walk over to get you.

5.6 Further Reading

Of the many books that discuss problem solving, my favorite is Conceptual
Blockbusting by James L. Adams (second edition published by Norton in
1979). Adams defines conceptual blocks as “mental Walls that block the
problem-solver from correctly perceiving a problem or €Onceiving its solution”.
His excellent book encourages you to bust them.

One problem with all such books is that so much general Pmblem solving
divorced from any particular technical area begins to fonk like “just puzzles”. I



54 MORE PROGRAMMING PEARLS COLUMN 5

tried to remedy that in my book Programming Pearls (published by Addison-
Wesley in 1986). It interweaves programming details with-stories of finding the
easy way out of some important, hard problems. See especially the index entries
for common sense, conceptual blocks, elegance, engineering techniques, insight,
Inventor’s Paradox, problem definition, and simplicity.

5.7 Debugging [Sidebar]*t

Every programmer knows that debugging is hard. Fortunately, there are
often simple solutions to hard debugging problems. Debugging tasks range from
designing tests that will flush out the little critters to repairing the broken
pieces. We’'ll now focus on just one small part of the job: after we observe
weird behavior, how do we identify the culprit who is causing the problem?

A great debugger makes the job look simple. Distraught programmers
describe a bug that they’ve been chasing for hours, the master asks three or four
questions, and three minutes later the programmers are pointing at the faulty
code. The expert debugger never forgets that there has to be a logical explana-
tion, no matter how mysterious the behavior may seem at the time.

That attitude is illustrated in an anecdote from IBM’s Yorktown Heights
Research Center. A programmer had recently installed a new computer termi-
nal. All was fine when he was sitting down, but he couldn’t log in to the system
when he was standing up. That behavior was one hundred percent repeatable:
he could always log in when sitting and never when standing.

Most of us just sit back and marvel at such a story. How could that darn
terminal know whether the poor guy was sitting or standing? Good debuggers,
though, know that there has to be a reason. Electrical theories are the easiest to
hypothesize. Was there a loose wire under the carpet, or problems with static
electricity? But electrical problems are rarely one-hundred-percent consistent.
An alert IBMer finally asked the right question: how did the programmer log in
when he was sitting and when he was standing? Hold your hands in front of
you and try it yourself. The problem was in the terminal’s keyboard: the tops of
two keys were switched. When the programmer was seated he was a touch typ-
ist and the problem went unnoticed, but when he stood he was led astray by
hunting and pecking.

At an ACM Chapter meeting in Chicago, I heard the story of a banking sys-
tem written in APL that had worked for quite some time, but unexpectedly quit
the first time it was used on international data. Programmers spent days scour-
ing the code, but they couldn’t find any stray command that would quit the pro-
gram and return control to the operating system. When they observed the
behavior more closely, they found that the problem occurred as they entered

T Sidebars in Communications of the ACM are offset from the text of the column, often in a bar at
the side of the page. While they aren’t an essential part of the column, they provide perspective on
the material. In this book they appear as the last section in a column, marked as a “sidebar”.



COLUMN 5 CUTTING THE GORDIAN KNOT 55

jata for the country of Ecuador: when the user typed the name of the capital
sity (Quito), the program interpreted that as a request to quit the run!

In both cases the right questions would have guided a wise programmer to
the bug in short order: “What do you do differently sitting and standing? May
[ watch you logging in each way?” “Precisely what did you type before the
program quit?”

The best books I have seen on debugging are the two volumes of The Medi-
cal Detectives by Berton Roueché. The first volume was published in paperback
by Washington Square Press in 1982, and the second volume appeared in 1986.
The heroes in these books debug complex systems, ranging from mildly sick peo-
ple to very sick towns. The problem-solving methods they use are directly appli-
cable to debugging computer systems. These true stories are as spellbinding as
any fiction.



COLUMN 6: BUMPER-STICKER COMPUTER SCIENCE

Every now and then, programmers have to convert units of time. If a pro-
gram processes 100 records per second, for instance, how long will it take to
process one million records? Dividing shows that the task takes 10,000 seconds,
and there are 3600 seconds per hour, so the answer is about three hours.

But how many seconds are there in a year? If I tell you there are
3.155%107, you’ll probably forget it. On the other hand, it is easy to remember
that, to within half a percent,

7 seconds is a nanocentury.

Tom Duff
Bell Labs

So if your program takes 107 seconds, be prepared to wait four months.

The February 1985 column in Communications of the ACM solicited from
readers bumper-sticker sized advice on computing. Some of the contributions
aren’t debatable: Duff’s rule is a memorable statement of a handy constant.
This rule about a program testing method (regression tests save old inputs and
outputs to make sure the new outputs are the same) contains a number that
isn’t as ironclad.

Regression testing cuts test intervals in half.

Larry Bernstein
Bell Communications Research

Bernstein’s point remains whether the constant is 30% or 70%: these tests save
development time.

There’s a problem with advice that is even less quantitative. Everyone
agrees that

Absence makes the heart grow fonder.

Anon

and

57



58 MORE PROGRAMMING PEARLS COLUMN 6

Out of sight, out of mind.

Anon

Everyone, that is, except the sayings themselves. There are similar contradic-
tions in the slogans in this column. Although there is some truth in each, all
should be taken with a grain of salt.

A word about credit. The name associated with a rule is usually the person
who sent me the rule, even if they in fact attributed it to their cousin Ralph
(sorry, Ralph). In a few cases I have listed an earlier reference, together with
the author’s affiliation (as of September 1985, when this column first
appeared). I'm sure that I have slighted many people by denying them proper
attribution, and to them I offer the condolence that

Plagiarism is the sincerest form of flattery.

Anon

Without further ado, here’s the advice, grouped into a few major categories.

6.1 Coding

When in doubt, use brute force.

Ken Thompson
Bell Labs

Avoid arc-sine and arc-cosine functions — you can usually do better
by applying a trig identity or computing a vector dot-product.

Jim Conyngham
Arvin/Calspan Advanced Technology Center

Allocate four digits for the year part of a date: a new millennium is
coming.

David Martin
Norristown, Pennsylvania

Avoid asymmetry.

Andy Huber
Data General Corporation

The sooner you start to code, the longer the program will take.

Roy Carlson
University of Wisconsin

If you can’t write it down in English, you can’t code it. :

Peter Halpern
Brooklyn, New York



COLUMN 6 BUMPER-STICKER COMPUTER SCIENCE

Details count.

Peter Weinberger
Bell Labs

If the code and the comments disagree, then both are probably
wrong.

Norm Schryer
Bell Labs

If you have too many special cases, you are doing it wrong.

Craig Zerouni
Computer FX Ltd.
London, England

Get your data structures correct first, and the rest of the program
will write itself.

David Jones
Assen, The Netherlands

6.2 User Interfaces

[The Principle of Least Astonishment] Make a user interface as con-
sistent and as predictable as possible.

Contributed by several readers

A program designed for inputs from people is usually stressed
beyond the breaking point by computer-generated inputs.

Dennis Ritchie
Bell Labs

Twenty percent of all input forms filled out by people contain bad
data.

Vic Vyssotsky
Bell Labs

Eighty percent of all input forms ask questions they have no business
asking.

Mike Garey
Bell Labs

Don’t make the user provide information that the system already
knows.

Rick Lemons
Cardinal Data Systems

59



60 MORE PROGRAMMING PEARLS COLUMN 6

For 80% of all data sets, 95% of the information can be seen in a
good graph.

William S. Cleveland
Bell Labs

6.3 Debugging

Of all my programming bugs, 80% are syntax errors. Of the
remaining 20%, 80% are trivial logical errors. Of the remaining 4%,
80% are pointer errors. And the remaining 0.8% are hard.

Marc Donner
IBM Watson Research Center

It takes three times the effort to find and fix bugs in system test
than when done by the developer. It takes ten times the effort to
find and fix bugs in the field than when done in system test. There-
fore, insist on unit tests by the developer.

Larry Bernstein
Bell Communications Research

Don’t debug standing up. It cuts your patience in half, and you
need all you can muster.

Dave Storer
Cedar Rapids, Iowa

Don’t get suckered in by the comments — they can be terribly
misleading. Debug only the code.

Dave Storer
Cedar Rapids, lowa

Testing can show the presence of bugs, but not their absence.

Edsger W. Dijkstra
University of Texas

Each new user of a new system uncovers a new class of bugs.

Brian Kernighan
Bell Labs

If it ain’t broke, don’t fix it.

Ronald Reagan
Santa Barbara, California

[The Maintainer’s Motto] If we can’t fix it, it ain’t broke.

Lieutenant Colonel Walt Weir
United States Army



COLUMN 6 BUMPER-STICKER COMPUTER SCIENCE 61

The first step in fixing a broken program is getting it to fail repeat-
ably.

Tom Duff
Bell Labs

6.4 Performance

[The First Rule of Program Optimization] Don’t do it.

[The Second Rule of Program Optimization — For experts only.]
Don’t do it yet.

Michael Jackson
Michael Jackson Systems Ltd.

The fastest algorithm can frequently be replaced by one that is
almost as fast and much easier to understand.

Douglas W. Jones
University of Iowa

On some machines indirection is slower with displacement, so the
most-used member of a structure or a record should be first.

Mike Morton
Boston, Massachusetts

In non-I/0-bound programs, less than four per cent of a program
generally accounts for more than half of its running time.

Don Knuth
Stanford University

Before optimizing, use a profiler to locate the “hot spots” of the pro-
gram.

Mike Morton
Boston, Massachusetts

[Conservation of Code Size] When you turn an ordinary page of
code into just a handful of instructions for speed, expand the com-
ments to keep the number of source lines constant.

Mike Morton
Boston, Massachusetts

If the programmer can simulate a construct faster than the compiler
can implement the construct itself, then the compiler writer has
blown it badly.

Guy L. Steele, Jr.
Tartan Laboratories



62

MORE PROGRAMMING PEARLS COLUMN 6

To speed up an [/0-bound program, begin by accounting for all
I/0. Eliminate that which is unnecessary or redundant, and make
the remaining as fast as possible.

David Martin
Norristown, Pennsylvania

The fastest 1/0 is no 1/0.

Nils-Peter Nelson
Bell Labs

The cheapest, fastest and most reliable components of a computer
system are those that aren’t there.

Gordon Bell
Encore Computer Corporation

Most assembly languages have a loop operation that does a compare
and branch in a single machine instruction; although it was intended
for loops, it can sometimes be used to do a general comparison very
efficiently.

Guy L. Steele, Jr.
Tartan Laboratories

[Compiler Writer’s Motto — Optimization Pass] Making a wrong
program worse is no sin.

Bill McKeeman
Wang Institute

Electricity travels a foot in a nanosecond.

Commodore Grace Murray Hopper
United States Navy

Lisp programmers know the value of everything but the cost of noth-
ing.

Alan Perlis
Yale University

6.5 Documentation

[The Test of Negation] Don’t include a sentence in documentation if
its negation is obviously false. ‘

Bob Martin
AT&T Technologies



COLUMN 6 BUMPER-STICKER COMPUTER SCIENCE 63

When explaining a command, or language feature, or hardware
widget, first describe the problem it is designed to solve.

David Martin
Norristown, Pennsylvania

[One Page Principle] A {specification, design, procedure, test plan}
that will not fit on one page of 8.5-by-11 inch paper cannot be
understood.

Mark Ardis
Wang Institute

The job’s not over until the paperwork’s done.

Anon

6.6 Managing Software

The structure of a system reflects the structure of the organization
that built it.

Richard E. Fairley
Wang Institute

Don’t keep doing what doesn’t work.

Anon

[Rule of Credibility] The first 90% of the code accounts for the first
90% of the development time. The remaining 10% of the code
accounts for the other 90% of the development time.

Tom Cargill
Bell Labs

Less than 10% of the code has to do with the ostensible purpose of
the system; the rest deals with input-output, data validation, data
structure maintenance, and other housekeeping.

Mary Shaw A
Carnegie-Mellon University

Good judgement comes from experience, and experience comes from
bad judgement.

Fred Brooks
University of North Carolina



64 MORE PROGRAMMING PEARLS COLUMN 6

Don’t write a new program if one already does more or less what
you want. And if you must write a program, use existing code to do
as much of the work as possible.

Richard Hill
Hewlett-Packard S.A.
Geneva, Switzerland

Whenever possible, steal code.

Tom Duff
Bell Labs

Good customer relations double productivity.

Larry Bernstein
Bell Communications Research

Translating a working program to a new language or system takes
ten percent of the original developmetit time or manpower or cost.

Douglas W. Jones
University of Iowa

Don’t use the computer to do things that can be done efficiently by
hand.

Richard Hill
Hewlett-Pdickard S.A.
Geneva, Switzerland

Don’t use hands to do things thdat can be done efficiently by the
computer.

Tom Duff
Bell Labs

I’d rather write programs to write programs than write programs.

Dick Sites
Digital Equipment Corporation

[Brooks’s Law of Prototypesl Plan to throw one away, you will
anyhow.

Fred Brooks
University of North Carolina

If you plan to throw one away, you will throw away two.

Craig Zerouni
Computer FX Lid.
London, England



COLUMN 6 BUMPER-STICKER COMPUTER SCIENCE

Prototyping cuts the work to produce a system by 40%.

Larry Bernstein
Bell Communications Research

[Thompson’s Rule for First-Time Telescope Makers.] It is faster to
make a four-inch mirror then a six-inch mirror than to make a six-
inch mirror.

Bill McKeeman
Wang Institute

Furious activity is no substitute for understanding.

H. H. Williams
Oakland, California

Always do the hard part first. If the hard part is impossible, why
waste time on the easy part? Once the hard part is done, you're
home free.

Always do the easy part first. What you think at first is the easy
part often turns out to be the hard part. Once the easy part is done,
you can concentrate all your efforts on the hard part.

Al Schapira
Bell Labs

6.7 Miscellaneous Rules

[Sturgeon’s Law — This applies as well to computer science as to
science fiction.] Sure, 90% of all software is crap. That’s because
90% of everything is crap.

Mary Shaw
Carnegie-Mellon University

If you lie to the computer, it will get you.

Perry Farrar
Germantown, Maryland

If a system doesn’t have to be reliable, it can do anything else.

H. H. Williams
Oakland, California

One person’s constant is another person’s variable.

Susan Gerhart .
Microelectronics and Computer Technology Corporation

65



66 MORE PROGRAMMING PEARLS COLUMN 6

One person’s data is another person’s program.

Guy L. Steele, Jr.
Tartan Laboratories

[KISS] Keep it simple, stupid.

Anon

6.8 Principles
If you’ve made it this far, you'll certainly appreciate this excellent advice.

Eschew clever rules.

Joe Condon
" Bell Labs

6.9 Problems

Although this column has allocated just a few words to each rule, most of
the rules could be greatly expanded (say, into an undergraduate paper or into a
bull session over a few beers). These problems show how one might expand the
following rule.

Make it work first before you make it work fast.

Bruce Whiteside
Woodridge, Illinois

Your “assignment” is to expand other rules in a similar fashion.
1. Restate the rule to be more precise. The example rule might be intended as

Ignore efficiency concerns until a program is known to be correct.

or as

If a program doesn’t work, it doesn’t matter how fast it runs; after
all, the null program gives a wrong answer in no time at all.

2. Present small, concrete examples to support your rule. In Chapter 7 of their
Elements of Programming Style, Kernighan and Plauger present ten tangled
lines of code from a programming text. The convoluted code saved a single
comparison, and incidentally introduced a minor bug. By “wasting” an extra
comparison, they replace the code with two crystal-clear lines. With that
object lesson fresh on the page, they present the rule

Make it right before you make it faster.

3. Find “war stories” of how the rule has been used in larger programs.



COLUMN 6 BUMPER-STICKER COMPUTER SCIENCE 67

a. It is pleasant to see the rule save the day. Section 1.2, for instance,
describes several examples when profiling a system pointed to hot spots
which were then easily fixed.

b. It can be even more impressive to hear how ignoring the rule leads to a
disaster. When Vic Vyssotsky modified a Fortran compiler in the early
1960’s he spent a week making a correct routine very fast, and thereby
introduced a bug. The bug did not surface until two years later, because
the routine had never once been called in over 100,000 compilations.
Vyssotsky’s week of premature optimization was worse than wasted: it
made a good program bad. (This story, though, served as fine training
for Vyssotsky and generations of Bell Labs programmers.)

4. Critique the rules. Which are always “capital-T Truth” and which are
sometimes misleading? I once stated to Bill Wulf of Tartan Laboratories
that “if a program doesn’t work, it doesn’t matter how fast it runs” as an
undebatable fact. He raised the example of a document formatting program
that we both used. Although the program was significantly faster than its
predecessor, it could sometimes seem excruciatingly slow: it took several
hours to compile a book. Wulf won our verbal battle with this argument:
“Like all other large systems, that program today has ten documented, but
minor, bugs. Next month, it will have ten different small, known bugs. If
you could magically either remove the ten current bugs or speed up the pro-
gram by a factor of ten, which would you pick?”

6.10 Further Reading

If you like heavy doses of unadorned rules, try Tom Parker’s Rules of
Thumb (Houghton Mifflin, 1983). The following rules appear on its cover:

798. One ostrich egg will serve 24 people for brunch.

886. A submarine will move through the water most efficiently if it
is 10 to 13 times as long as it is wide.

The book contains 896 similar rules.
Many of Butler Lampson’s “Hints for Computer System Design” in IEEE
Software 1, 1 (January 1984) are handy rules of thumb:

Handle normal and worst cases separately.
In allocating resources, strive to avoid disaster rather than to attain
an optimum.

Lampson’s hints summarize his experience in building dozens of state-of-the-art
hardware and software systems.



COLUMN 7: THE ENVELOPE IS BACK

Every programmer should feel comfortable with “back-of-the-envelope” cal-
culations. When you’re deciding whether to add a new command to a database
system, for instance, you might want to estimate

How much programmer time is required to develop the code?
How many disks have to be added to store additional data?
Is the current CPU fast enough to provide reasonable response time?

Quick calculations are also useful in everyday life: will the reduced fuel bills of
a 30-mile-per-gallon car balance a purchase price that is $1000 greater than a
20-mpg car?

I first described back-of-the-envelope calculations in the February 1984
Communications of the ACM. After that column appeared, many readers con-
tributed further ideas on the topic. This column presents two of those: rules of
thumb useful for programmers, and Little’s Law (a simple rule of amazing util-
ity). But before we get to the technical details, the next section provides some
mental stretching exercises.

7.1 A Warm-Up for Cool Brains

The student told me that the run time of his binary search subroutine was
1.83 log, N. I asked, “1.83 what?” He thought for a few seconds while staring
at the ceiling and the floor and finally responded, “Either microseconds or mil-
liseconds — I’'m not really sure.”

The student was blissfully ighorant of a factor of one thousand, three orders
of magnitude. He couldn’t even offer the excuse that performance wasn’t a con-
cern — he cared enough to calculate three significant digits. Like too many
programmers, the poor student suffered from what Douglas Hofstadter calls
“number numbness”: milliseconds and microseconds are both unimaginably
small time units, so why bother distinguishing between the two? This section
provides some resensitization exercises that are designed to increase your appre-
ciation of orders of magnitude.

Is a factor of a thousand really such a big deal? A microyear is about 32

69



70 MORE PROGRAMMING PEARLS COLUMN 7

seconds while a milliyear is 8.8 hours — I deeply regret that I didn’t let the stu-
dent choose between those two for how long he had to stay after school. Electri-
city travels about a foot in a nanosecond — that’s a bottleneck in supercomputer
design. In a microsecond it can go across a large building, and in a millisecond
from New York to Washington, D.C. And speaking of Washington, it seems
that some people who live there are always forgetting the difference between a
million and a billion.

A fast sprinter can run a hundred meters in ten seconds, for an average velo-
city of 10 meters per second. One thousand times that speed is faster than the
space shuttle, while one-thousandth the rate is slower than an ant. A factor of a
thousand is a big deal, but there are bigger deals yet. This table shows some
additional order-of-magnitude checkpoints of velocity.t

METERS ENGLISH
PER SECOND | EQUIVALENT EXAMPLE
107" 1.2 in/century | Stalactites growing
10710 1.2 in/decade | Slow continent drifting
107° 1.2 in/year Fingernails growing
1078 1 ft/year Hair growing
1077 1 ft/month Weeds growing
107¢ 3.4 in/day Glacier
1073 1.4 in/hr Minute hand of a watch
1074 1.2 ft/hour Gastro-intestinal tract
1073 2 in/min Snail
1072 2 ft/min Ant
107! 20 ft/min Giant tortoise

1 2.2 mi/hr Human walk
10! 22 mi/hour Human sprint
102 220 mi/hour Propeller airplane
10° 37 mi/min Fastest jet airplane
10* 370 mi/min Space shuttle
10° 3700 mi/min | Meteor impacting earth
106 620 mi/sec Earth in galactic orbit
10’ 6200 mi/sec LA to satellite to NY
10® 62,000 mi/sec | One-third speed of light

If T describe a moving object, you can probably estimate its velocity pretty
accurately. Whether the object is a rocket flying through the air or a beaver
gnawing through a log, you can most likely guess its speed to within a notch or
two of its true position in the table. In the next section we’ll work on intuition
about computational velocity.

t The table was inspired by Powers of Ten, by Morrison et al. (published in 1982 by Scientific
American Books). Its subtitle is “A book about the relative size of things in the universe and the
effect of adding another zero”. It zooms in 42 factors of ten from a view 10® meters across (ten
thousand times the diameter of our galaxy) to a view 107'¢ meters across deep within a carbon atom.



COLUMN 7 THE ENVELOPE IS BACK 71

7.2 Performance Rules of Thumb

I don’t know how much salt costs, and I don’t really care. It’s so cheap that
I use it without regard to cost, and when I run out I buy some more. Most pro-
grammers feel the same way about CPU cycles, with good reason — they cost
next to nothing. _ ‘

I expect that executives at salt companies have a different attitude toward
the lowly substance. If each American consumes a dollar worth of salt each
year, that creates a market worth a quarter of a billion dollars — a ten-percent
decrease in production costs could be worth a fortune. And every now and then,
programmers must worry about the cost of CPU cycles for a similar reason:
some programs spend them by the billions.

The price of salt is usually marked on the container, but how can you deter-
mine the cost of a line of code? Benchmarking the performance of a computer
system is a difficult and important task; multimillion-dollar systems are pur-
chased on the basis of ten and twenty-percent differences. Fortunately, rough
estimates are easier to come by. They may be off from their “true” values by a
factor of two, but they’re still useful.

I'll now describe how I spent half an hour to get ballpark cost estimates on
the system I usually use, a VAX-11/750 running the C language and the UNIX
operating system. (Even if you don’t care about CPU time, you may be
interested in the design of these simple experiments.) I started with a five-line
C program whose guts were

n = 1000000;
for (i = 1; 1 <= n; i++)
H
The UNIX system’s time command reported that it took 6.1 seconds. Each
iteration of the null loop therefore cost 6.1 microseconds. My next experiment
used the integer variables i1, 12 and i3:
n = 1000000;
for (i 1; 1 <= n; i++)
i1 i2 + i3;

This code took 9.4 seconds, so an integer addition costs about 3.3 microseconds.
To test the cost of procedure calls, I defined the function

int sum2(int a, int b)
{ return a+b; }

and assigned i1 := sum2(i2, i3) in the loop. That took 39.4 seconds, so a
function call with two integer parameters takes about 30 microseconds.
Unfortunately, even experiments as simple as these are fraught with poten-
tial problems. Is C addition really as fast as 3.3 microseconds, or did the com-
piler notice that the same addition was done repeatedly and therefore perform it
just once, before the loop? But if that happened, what else would- account for
the 3.3 microsecond delay? Maybe the new code was aligned differently in the



72 MORE PROGRAMMING PEARLS COLUMN 7

instruction cache, or maybe the system was just busier during the second test.
And so on and so on.

Testing those hypotheses expanded the performance experiments from a few
minutes to half an hour, but I'm pretty sure that the resulting estimates are
accurate to within, say, a factor of two. With that caveat, this table presents
ballpark estimates of the cost of several mathematical operations in this imple-
mentation of C.

OPERATION MICROSECONDS
Integer Operands

Addition 33

Subtraction 3.7

Multiplication 10.6

Division 11.0
Floating Operands

Addition 10.6

Subtraction 10.2

Multiplication 15.7

Division 15.7
Conversions

Integer to float 8.2

Float to integer 11.2
Functions

Sine 790

Logarithm 860

Square root 940

It’s easy to summarize the data: most arithmétic operations in C cost about
10 microseconds. Integer addition/subtraction is faster (3.5 microseconds) and
floating multiplication/division is slower (16 microseconds). But beware the evil
functions! They’re only-a few characters to type, but they’re two orders of mag-
nitude more expensive than the other operators.

On those rare occasions when performance does matter, I use this data in
two ways. The general trend helps me to make accurate estimates. If a routine
performs N2 steps of a few arithmetic operations each, a C implementation will
take roughly half a minute when N is 1000. If the routine is called once a day,
I won’t worry about its efficiency from now on. If I had planned to call the rou-
tine several times a minute, though, I won’t even bother coding it and instead
search for a better solution.

The table also highlights the expensive operations. Budget-minded chefs can
safely ignore the price of salt if caviar is on the menu; C programmers on this
system can ignore the primitive arithmetic operations surrounding a square root.
But beware that relative costs change from system to system. On a PDP-10
Pascal compiler I once used, floating point operations cost 2 microseconds, while
square roots and integer-to-float conversions both cost 40 microseconds. A
conversion in C costs 1 floating point operation while a square root costs 60; in



COLUMN 7 THE ENVELOPE IS BACK 73

Pascal both costs are 20. Problem 2 encourages you to estimate the costs on
your system.

7.3 Little’s Law

Most back-of-the-envelope calculations use obvious rules: total cost is unit
cost times number of units. Sometimes, though, one needs a more subtle
insight. Bruce Weide of Ohio State University wrote the following note about a
rule that is surprisingly versatile.

“The ‘operational analysis’ introduced by Denning and Buzen (see Comput-
ing Surveys 10, 3, November 1978, 225-261) is much more general than queue-
ing network models of computer systems. Their exposition is excellent, but
because of the article’s limited focus, they didn’t explore the generality of
Little’s Law. The proof methods have nothing to do with queues or with com-
puter systems. Imagine any system in which things enter and leave. Little’s
Law states that ‘The average number of things in the system is the product of
the average rate at which things leave the system and the average time each one
spends in the system.” (And if there is a gross ‘flow balance’ of things entering
and leaving, the exit rate is also the entry rate.)

“I teach this technique of performance analysis in my computer architecture
classes. But I try to emphasize that the result is a general law of systems
theory, and can be applied to many other kinds of systems. For instance, if
you're in line waiting to get into a popular nightspot, you might figure out how
long you’ll have to wait by standing there for a while and trying to estimate the
rate at which people are entering. With Little’s Law, though, you could reason,
“This place holds about 60 people, and the average Joe will be in there about 3
hours, so we’re entering at the rate of about 20 people an hour. The line has 20
people in it, so that means we’ll wait about an hour. Let’s go home and read
Programming Pearls instead.” You get the picture.”

Peter Denning succinctly phrases this rule as “The average number of
objects in a queue is the product of the entry rate and the average holding
time.” He applies it to his wine cellar: “I have 150 cases of wine in my base-
ment and I consume (and purchase) 25 cases per year. How long do [ hold
each case? Little’s Law tells me to divide 150 cases by 25 cases/ycar, which
gives 6 years per case.” .

He then turns to more serious applications. “The response-time formula for
a time-shared system can be proved using Little’s Law and flow balance.
Assume NV terminals of average think time Z are connected to an arbitrary sys-
tem with response time R. Each user cycles between thinking and waiting-for-
response, so the total number of jobs in the meta-system (consisting of teérminals
and the computer system) is fixed at N. If you cut the path from the system’s
output to the terminals, you see a meta-system with average load N. average
response time Z+R, and throughput X (measured in jobs per me unit),
Little’s Law says N=Xx(Z +R), and solving for R gives R = N/X — Zz"



74 MORE PROGRAMMING PEARLS COLUMN 17

Denning goes on to say that “Little’s Law is more useful when augmented
with the ‘forced flow law’ and the ‘utilization law’. You can then calculate
answers to questions like this: A humongous computer system contains a bazil-
lion disks, a quadrillion CPUs, a classified .operating system, and 20 terminals of
average think time 20 seconds. Its disk unit is observed to serve 100 requests
per job and runs at the rate of 25 requests per second. What is the system’s
throughput and response time? (I get 0.25 jobs/second and 60 seconds.) These
answers are exact if the system is in flow balance, which is normally very close
to true. Any system of arbitrary configuration containing a disk with those
measured values and terminals of those measured values will have the same
throughput and response time. Amazing? Only to the extent that one does not
appreciate the power of the basic laws of system flow and congestion.”

7.4 Principles

The three sections in this column highlight three assets that are often useful
for programmers: familiarity with numbers, willingness to experiment, and
mathematics, when you need it.

7.5 Problems

1. Make tables like the one in the first section to illustrate factors of ten in
measures such as time, weight, distance, area and volume.

2. Conduct experiments to measure the performance of your computer system.
Here is a starting list of useful quantities:

CPU Time
Control flow: overhead of for, while, if, subroutine call
Arithmetic operations
Integer/float: add, subtract, multiply, divide
Floating point: square root, logarithm, sine
Type conversions between integer and float
String operations: comparison and copy
I/0 Time
Read/write one character/integer
Disk access time, disk read time
Disk accesses per database operation
Ultilities
Sort 10,000 integers in memory
Sort 100,000 20-byte strings in a file
Search a text file for a string

Other handy facts include the speed of your compiler in lines of source code
per second and the disk space required to store a one-byte file.

3. The data on run costs assumes a performance model in which variables are
accessed in a constant amount of time and a given instruction always



COLUMN 7 THE ENVELOPE IS BACK 75

requires the same amount of time to execute. Give examples of systems on
which these and other “reasonable’ assumptions are violated.

4. Estimate your city’s death rate, measured in percent of population per year.
5. [P. J. Denning] Sketch a proof of Little’s Law.

6. [P. J. Denningl Use Little’s Law to characterize the flow of a job through a
network of servers.

7. [B. W. Weide] Imagine a queue of customers waiting for service. In its
usual interpretation, Little’s Law relates the average total number of custo-
mers in the queue and in the server to the average time a customer spends
waiting in the queue and in service. How are the average waiting time in
the queue alone and the average number of customers in the queue alone
related to these quantities?

8. [B. W. Weide] Many computer centers still have big mainframes that handle
large numbers of batch jobs concurrently. Some even have a monitor show-
ing the jobs awaiting execution, so you can see where your job stands. Jobs
must await execution, of course, because there is always a backlog of work
(this is due to Murphy’s Law, not Little’s). Suppose the average job spends
20 seconds “in execution” on a machine that can execute 10 jobs con-
currently, and that your job is the last of 100 “awaiting execution” to be
executed in first-in-first-out order. About how long can you expect to wait
until your job is finished?

9. Determine various administrative costs in your organization. How much
does it cost to buy a book beyond the cover price? To have a secretary type
a letter? What is the cost of floor space, measured in dollars per square foot
per year? What is the cost of telephone and computing systems?

7.6 Further Reading

Douglas Hofstadter’s “Metamagical Themas™ column in the May 1982
Scientific American is subtitled “Number numbness, or why innumeracy may
be just as dangerous as illiteracy”. It is reprinted with a postscript in his book
Metamagical Themas, published by Basic Books in 1985.

7.7 Quick Calculations in Everyday Life [Sidebar]

Back-of-the-envelope calculations about everyday events are always good
practice and good fun, and are sometimes even useful. A reader of a draft of
this column described a trip to the supermarket he had taken a few days earlier.
He kept a running total as he walked through the aisles by rounding each item
to the nearest dollar. His final tally was $70.00, and he was confident enough to
look at the register tape when the clerk announced the total price of $92.00.
The clerk had mistakenly entered the product code of six oranges (number 429)
as their price ($4.29); that raised a $2.00 purchase to $25.00.



76 MORE PROGRAMMING PEARLS COLUMN 7

Here’s one that stumped me for a while: what is the volume of a typical 6-
foot-tall male? (Volume refers to cubic centimeters of meat; cubic feet in a
crowded elevator is another question entirely.) A common response figures that
the typical male is 6 feet high by 2 feet wide by half a foot thick, for 6 cubic
feet. A more accurate estimate exploits the fact that humans are roughly the
same density as water, approximately 60 pounds per cubic foot (most swimmers
float when they inhale and sink when they exhale). A person who weighs 180
pounds is therefore about 3 cubic feet. If you know a person’s weight, this rela-
tion can give you their volume to within a few percent, a feat impossible by
multiplying length by width by height.

Here are a few canned questions, but keep in mind that spontaneous ques-
tions are usually the most interesting.

1. If every person in your city threw a ping pong ball into your living room,
how deep would the balls be?

2. What is the cost of a one-hour lecture at your organization? Include both
preparation and audience time.

3. How much money will Americans spend this year on soft drinks? On
cigarettes? On video games? On the space program?

4. How many words are in a typical book? How many words a minute do you
read? How many words a minute do you type?

5. How many dollars per year is the difference between a 20-mile-per-gallon
car and a 40 mpg car? Over the lifetime of a car? What if every driver in
the United States chose one or the other?

6. How much does it cost to drive your car a mile? Don’t forget insurance.

7. How much would it cost to buy extension cords to reach from the earth to
the moon?

8. An old rule of thumb says that a human sitting in a room radiates about 100
watts. How many calories per day must supply that radiator?

I’d like to end with a plea to teachers. In his paper cited in Section 7.6,
Hofstadter tells how he asked students in a New York City physics class the
height of the Empire State Building, which they could see out the window. The
true height is 1250 feet, but answers ranged from 50 feet to one mile. I
recently had a similar experience after a lecture on “back-of-the-envelope” cal-
culations. An examination question asked for the cost of a one-semester,
fifteen-student class section at that college. Most students gave an answer
within thirty percent of my estimate of $30,000, but the extremes ranged from a
high of $100,000,000 to a low of $38.05.

If you’re a teacher, spare ten minutes of lecture for this topic, then reinforce
it with little examples throughout the class. Test your success by an examina-
tion question; I bet you’ll find the answers interesting.



COLUMN 8: THE FURBELOW MEMORANDUM

A friend writes:

On several occasions I have heard you being outspokenly skeptical about the
large budgets and staffs of certain development projects. While rummaging
around for something else this morning I unearthed the attached document,
which may help you understand the practical reasons why development projects
operate as they do. It was written almost a decade ago by G. Furbelow, with
whom Cadwallader-Cohen and I shared an office at the time. I obtained a copy
to show to my boss, who remarked that he saw plenty of letters of this sort any-
way, and didn’t need any more.

In case you have forgotten, THESEUS-II is a communication system for the
Defense Department, originally conceived for DOD in 1964 by a joint
University-Industry Summer Study (Professor G, Manager V, and a six pack of
Bud). It provides rapid-deployment hardened high capacity communications to
connect any two points on the earth’s surface; its basis is big drums of cable in
low earth orbit. When DOD needs extra communications between, say, Zanzi-
bar and the Persian Gulf, they pick an appropriately positioned cable drum and
fire a retrorocket attached to one end of the cable. This causes the cable to
unreel, reenter, and lay itself automatically, entrenching itself as it reaches the
surface, so that only a direct nuclear hit will sever it once it’s entrenched.
Unfortunately, development and field testing problems have caused repeated
delays in turnover of the system for operational use; even today most tests do
not result in successful cable-laying. This problem is believed to be due to sub-
tle flaws in the system control software. The system is expected to function as
intended once these flaws are corrected.

At the time of Furbelow’s letter his software staff was 368 people, and that
turned out to be inadequate for completion of the task. By now the
THESEUS-II software staff is 1850 people, and everyon¢ concerned is optimis-
tic that full operational status will soon be achieved.

77



78 MORE PROGRAMMING PEARLS COLUMN 8

8.1 The Memo

Date: September 13, 1978
Subject: 1979 Budget
From: G. Furbelow
To: J. R. Honcho

While I agree with you that my proposed 1979 budget increase to 229.3% of
the 1978 budget seems unusually large, it is a standstill budget, which cannot be
further reduced without serious impact on our committed work program. To
make it clear how this situation comes about, I shall review the factors which
led to the increase. . '

As you recall, our work program and work force were nearly static for
several years prior to 1978. This year my organization undertook “catch-up”
work on THESEUS-II, to reduce the backlog of deferred maintenance and
enhancement requests. For this purpose we have an approved 1978 budget 6.8%
higher than standstill. Our original staffing plan was to accommodate this work
by adding 25 people to the staff on January 1, 1978. But our recruiting got off
to a slow start, and almost all of our new employees will arrive between July 1
and December 31. So, to meet our work commitments we are achieving the
necessary 25 staff years of added effort by a temporary bulge in the last few
months of the year; this will cause our year-end headcount to be up 19% from
January 1, and we have made our standstill projections accordingly.

As I discussed with you in May, we needed additional space to accommodate
the 70 extra people, and we have rented temporary office space for them in
Smallville. Since then, it has become apparent that splitting the organization
would make it impossible for us to function effectively, and we have now deter-
mined that the best thing to do will be to move the entire organization to Small-
ville. This will actually reduce our rent bill by some 14%, which will yield a
considerable long-term saving. In 1979, of course, we will incur the transitional
costs of maintaining both sets of space, and we will have to pay the relocation
costs for the affected employees, as well as the costs of moving equipment and
office furniture. This is the chief reason why our overhead rate in 1979 will go
from 142% to 257%. This other significant factor in the overhead rate rise is
the large Graduate Study Program cost for the 27% of our force which is new
this year (19% growth plus 8% replacement of losses). And, of course, our
direct salary costs will go up by a larger percentage than those for the company
overall, because most of our force has short experience and is on the steeply ris-
ing portion of the salary curves, where allotments are a large percentage of
salary; we anticipate average allotments around 10.5%, compared to the com-
pany figure of 7.2%.

These factors by themselves would only increase our 1979 standstill to 182%
of 1978. The rest of the increase results from unavoidable increases in paid
overtime and in computer costs. We estimate that loss of effectiveness due to



COLUMN 8 THE FURBELOW MEMORANDUM 79

the extended transition to our new quarters will amount to about 25% during
1979; we will lose about another 10% due to the unusually high proportion of
people in the Graduate Study Program next year. To partially offset this we
plan a full working day each Saturday, which must be paid as overtime. This is
a very cost-effective approach, since it increases only Direct Salary, not over-
head. But it can only make up part of the gap, so we must add enough com-
puter capacity to increase productivity by substituting computers for people.
We will do this by installing computer capacity in Smallville about 50% greater
than what we presently have in the region. Unfortunately, we cannot shut down
our present computation facilities until the end of 1979, so our computer costs
for 1979 will be about 2.5 times those of 1978, and the necessary data links
between the two computation centers will increase our total rated computer
center costs in 1979 to about 3.4 times the corresponding 1978 costs.

Taking these factors into account, we see that our 1979 standstill budget is
approximately 228% of 1978, very close to the 229.3% shown in the detailed
budget submission. I must emphasize that this does not allow for any new
work; at this level we will not even be able to meet all of our existing commit-
ments, because even with overtime and added computer capacity we cannot fully
offset the temporary reduction in efficiency we will undergo in 1979.

So I must urge most strenuously that the budget not be reduced below this
standstill level. Indeed, our most recent studies show that to complete our 1979
work program, including appropriate effort to reduce the backlog of deferred
maintenance and enhancement work, we need to grow by 25 people in 1979, an
increase of 5.7% above standstill. This would be a smaller percentage increase
above standstill than we were granted in 1978, and I recommend its approval, to
avoid the need for large “crisis increases” in subsequent years. May I have
your concurrence to proceed on this basis?

G. Furbelow

8.2 Principles — J. B.

My friend was right; I had not appreciated many of the obstacles faced by
large software projects. Furbelow’s memo helped me to understand how
software teams grow to be so big and so expensive. I now shiver with fear at
the very thought of the ferocious pile of paperwork that can cover a software
manager’s desk.

Programmers, be kind to your poor bosses.



80 MORE PROGRAMMING PEARLS COLUMN 8

8.3 Further Reading

The classic reference on the management of software projects is Fred
Brooks’s delightful Mythical Man Month, published in 1975 by Addison-
Wesley. The preface begins, “In many ways, managing a large computer pro-
gramming project is like managing any other large undertaking—in more ways
than most programmers believe.” I knew Brooks was right, but I didn’t realize
how many “more ways” there were until I heard the problems of poor Mr. Fur-
below. Fortunately, Brooks offers solutions to many management problems that
arise in software projects.

Too many programmers who have spent a delightful evening with this book
were so charmed by its easy reading that they failed to appreciate its wealth of
factual material. If you’re in that category, go back and study the book with
pencil in hand.

Connoisseurs of The Mythical Man Month will enjoy Brooks’s “No silver
bullet” in the April 1987 IEEE Computer magazine. It is subtitled “Essence
and accidents of software engineering”. He defines the essential task of
software engineering to be building complex conceptual constructs, while the
accidental tasks involve representing the constructs in languages. The paper
shows how past progress has solved many of the accidental difficulties, and sur-
veys technologies that hold promise for solving the conceptual essence.



PARTIII: 1/0 FIT FOR HUMANS

Software beauty is sometimes skin deep. No matter how wonderful your
program is on the inside, an ill-designed interface can drive users away. And
more than one shoddy program has fooled users with snazzy input and output.
Input and output may be a small part of the system from your view as a pro-
grammer, but the interface is a large part of the user’s view of your software.

These columns describe several aspects of input and output. Column 9
applies principles of language design to making software interfaces that are little
languages. Column 10 is about producing documents that are pleasant to look
at and helpful to read. Column 11 turns to one particular part of documents:
graphical displays of data. Column 12 shows how the techniques of the three
previous columns were applied in computerizing a system for conducting public
opinion polls.

One of the great things about making I/0 fit for humans is that the exercise
provides a fine excuse for talking to many interesting human beings. These
columns describe how my work has brought me into contact with chemists,
graphics designers, statisticians, and political scientists. This is one of the many
reasons that programming is the ideal job for people like me, who can’t decide
what they want to be if they grow up.

Columns 9 and 10 were originally published in Communications of the
ACM in August and September of 1986. Column 11 has been rewritten sub-
stantially since it appeared in June 1984; Sections 11.1, 11.2 and 11.6 are
almost brand new. Column 12 appears for the first time in this book; parts of
the text appeared in June 1984 and August 1986.

R1



COLUMN 9: LITTLE LANGUAGES

When you say ‘“language”, most programmers think of the big ones, like
Fortran or Cobol or Pascal. In fact, a language is any mechanism to express
intent, and the input to many programs can be viewed profitably as statements
in a language. This column is about those “little languages”’.

Programmers deal with microscopic languages every day. Consider printing
a floating-point number in six characters, including a decimal point and two
subsequent digits. Rather than writing a subroutine for the task, a Fortran pro-
grammer specifies the format F6.2, and a Cobol programmer defines the pic-
ture 999.99. Each of these descriptions is a statement in a well-defined little
language. While the languages are quite different, each is appropriate for its
problem domain. Although a Fortran programmer might complain that
999999.99999 is too long when F12.5 could do the job, the Coboler can’t
even express in Fortran such common financial patterns as $,$$$,$$9.99.
Fortran is aimed at scientific computing, Cobol is designed for business.

In the good old days, real programmers would swagger to a key punch and,
standing the whole time, crank out nine cards like:

//SUMMARY JOB REGION=(100K,50K)

// EXEC PGM=SUMMAR

//SYSIN DD DSNAME=REP.8601,DISP=0LD,

/7 UNIT=2314,SPACE=(TRK,(1,1,1)),
// VOLUME=SER=577632

//SYSOUT DD DSNAME=SUM.8601,DISP=(,KEEP),
// UNIT=2314,SPACE=(TRK,(1,1,1)),
// VOLUME=SER=577632

//SYSABEND DD SYSOUT=A

Today’s young whippersnappers do this simple job by typing
summarize <jan.report >jan.summary

Modern successors to the old “job control” languages are not only more con-
venient to use, they are more powerful than their predecessors. '
Languages surround programmers, yet many programmers don’t exploit
linguistic insights. Examining programs under a linguistic light can give you a
better understanding of the tools you now use, and can teach you design

83



84 MORE PROGRAMMING PEARLS COLUMN 9

principles for building elegant interfaces to your future programs. This column
will show how the user interfaces to half a dozen interesting programs can be
viewed as little languages.

This column is built around Brian Kernighan’s Pic language} for making
line drawings. Its compiler is implemented on the UNIX system, which is par-
ticularly supportive and exploitative of language processing. (Section 12.2
shows how little languages can be implemented in a more primitive computing
environment — Basic on a personal computer.)

The next section introduces Pic and the following section compares it to
alternative systems. Subsequent sections discuss some little languages that com-
pile into Pic and the little languages used to build Pic.

9.1 The Pic Language

If you’re talking about compilers, you might want to depict their behavior

with a picture:
Source Compiler Object
Code P Code

(This diagram is genuine Pic output, as are all pictures in this book; we’ll see its
input description shortly.) Some contexts may call for a little more detail about
the internal structure of the compiler. This picture shows a structure typical of
many compilers:

Fmmmmmmmmmmm - -

1 Front End Back End I
I I
Source i _| Linguistic Code i Object
Code I Analysis Generation|[ 1 Code
I I
I I
Lo e e e e e e e 4
Compiler

This diagram also describes the two tasks that a program for drawing pictures
must perform: a back end draws the picture while a front end interprets user
commands to decide what picture to draw.

And just how does a user describe a picture? There are (broadly) three
ways to do the job. An interactive program allows the user to draw the pro-
gram with a hand-controlled device, and a subroutine library adds picture primi-
tives to the constructs in a programming language. We'll return to these
approaches in the next section.

t B. W. Kernighan described “PIC — A language for typesetting graphics,” in Software — Practice
and Experience 12 pp. 1-21, 1982. Kernighan describes an updated version of the language in
“PIC — A graphics language for typesetting, Revised user manual”, Bell Labs Computing Science
Technical Report Number 116, December 1984.



COLUMN 9 LITTLE LANGUAGES 85

The third approach to describing pictures is the topic of this column: a little
language. In Kernighan’s Pic language, for instance, the first figure in this sec-
tion is described as

ellipse "Source" "Code"
arrow

box "Compiler"

arrow

ellipse "Object" "Code"

The first input line draws an ellipse of default size and stacks the two strings at
its center. The second line draws an arrow in the default direction (moving
right), and the third line draws a box with the text at its center. The implicit
motion after each object makes it easy to draw the picture and convenient to
add new objects to an existing picture.

This nonsense picture illustrates several other devices that Pic supports,
including lines, double arrowheads, and dashed boxes.

Bl
l r==—5-=-"
I
B2 —————J B3 I
I I
Lo 4

The program that draws it places objects by implicit motions, by explicit
motions, and by connecting existing objects:

boxht = .4; boxwid = .4

down # set default direction
B1: box "B1"

arrow

B2: box

"B2 " at B2.w rjust

line right .6 from B2.e
B3: box dashed wid .6 "B3"
line <-> from B3.n to B1l.e

The boxht and boxwid variables represent the default height and width of a
box in inches. Those values can also be explicitly set in the definition of a par-
ticular box. Text following the # character is a comment, up to the end of the
line. Labels such as B1, B2 and B3 name objects; LongerName is fine too.
The western point of box B2 is referred to as B2.w; one could also refer to
B2.n or B2.nw, for the northwest corner. A line of the form string at posi-
tion places a text string at a given position; rjust right-justifies the string
(strings can also be left justified or placed above or below positions).



86 MORE PROGRAMMING PEARLS COLUMN 9

These devices were used to draw this figure, which gives a yet more detailed

view of a compiler.
Source
Code

Lexical
Analysis

]

Syntax
Analysis

]

Symbol Semantic Error
Table Analysis Handler

¥
Code

Generation

¥
Code

Optimization

Object
Code

Any particular compiler translates one source language into one object
language. How can an organization maintain 5 different languages on 5
different machines? A brute-force approach writes 25 compilers:

5 languages

25 compilers

5 machines

An intermediate language circumvents much of this complexity. A new
language is installed by writing a front end that translates into the intermediate
language, and a new machine is installed by a back end that translates the
intermediate language into the machine’s output code:

S languages

1 intermediate language

P N

5 machines




COLUMN 9 LITTLE LANGUAGES 87

If there are L languages on M machines, the brute-force approach constructs
LxM distinct compilers, while the intermediate language needs just L front
ends and M back ends. (Pic compiles its output into a picture-drawing subset
of the Troff typesetting language, which in turn produces an intermediate
language suitable for interpretation on a number of output devices, from termi-
nal display programs to laser printers to phototypesetters.)

The last figure uses two Pic programming constructs, variables and loops:

n=2>5 # number of langs & machines
boxht = boxwid = .2
h=.3; w= .35 # height & width for spacing
I: box at w*(n+1)/2,0 # intermediate language box
for i = 1 ton do {

box with .s at i*w, h # language box

line from last box.s to I.n

box with .n at i»*w, -h # machine box

line from last box.n to I.s
}
"1 intermediate language at I.w rjust
"S5 languages " at 2nd box .w rjust
"S5 machines at 3rd box .w rjust

The picture of the brute-force approach is described by a single loop to draw the
boxes, followed by two nested loops to make all pairwise interconnections.

The examples in this section should give you an idea of the structure of Pic,
but they only hint at its power. I have not mentioned a number of Pic’s facili-
ties, such as built-in functions, if statements, macro processing, file inclusion,
and a simple block structure.

9.2 Perspective

" In this section we’ll consider several approaches to picture-drawing programs
and compare them to Pic. Although the particulars are for pictures, the general
lessons apply to designing user interfaces for many kinds of programs.

An interactive drawing program allows the user to enter a picture with a
spatial input device such as a mouse or a drawing pad and displays the picture
as it is drawn. Most interactive systems have a menu that includes items such
as boxes, ellipses, and lines of various flavors (vertical, horizontal, dotted, etc.).
Immediate feedback makes such systems quite comfortable for drawing many
simple pictures, but drawing this picture on an interactive system would require
a steady hand and the patience of Job: :

ORI
IR\ ARN
VRN
BTN

)




88 MORE PROGRAMMING PEARLS COLUMN 9

Pic’s programming constructs allow the picture to be drawn easily:

pi = 3.14159; n = 10; r = .4
s = 2+pi/n
for i = 1 to n-1 do {
for j = i+1 to n do {
line from rxcos(s#*i), r*sin(s»i)\
to rxcos(s*j), rxsin(s»j)

}

(The backslash character \ at the end of a line allows the line to be continued
on the next line.)

But handy as such features are, doesn’t parsimonyt dictate that variables
and for loops properly belong in a full programming language? This concern
is addressed by a subroutine library that adds pictures to the primitives sup-
ported by a given language. Given a subroutine line(x1, y1, x2, y2),
one could easily draw the last picture in Pascal:

pi := 3.14159; n := 10; r := 0.4;
s := 2%pi/n;
for i := 1 to n-1 do
for j := i+1 to n do
line (rxcos(s+i), r«sin(s#i),
r#cos(s*j), rxsin(s+j) );

Unfortunately, to draw this picture

Processor

one must write, compile, execute, and debug a program containing subroutine
calls like these:

ellipse(0.3, 0, 0.6, 0.4)
text(0.3, 0, "Input")
arrow(0.75, 0, 0.3, 0)
box(1.2, 0, 0.6, 0.4)
text(1.2, 0, "Processor")
arrow(1.65, 0, 0.3, 0)
ellipse(2.1, 0, 0.6, 0.4)
text(2.1, 0, "Output")

Even such simple code may be too hard for some nonprogrammers who find Pic

T Arguments beyond taste suggest that Pic’s for loops may be inappropriate: their syntax differs
from similar loops elsewhere in the UNIX system, and Pic’s for loops are orders of magnitude
slower than those in other languages. Purists may write loops in other languages to generate Pic out-
put; I am a delighted if compromised user of Pic’s for loops — the quilts and stereograms in the
exercises were easy to generate using that construct.



COLUMN 9 LITTLE LANGUAGES 89

comfortable, such as technical typists or software managers. The first two argu-
ments to each routine give the x and y coordinates of the center of the object;
later arguments give its width and height or a text string. These routines are
rather primitive; more clever routines might, for instance, have an implicit
motion associated with objects.

So far I've used the term “little language” intuitively. The time has come
for a more precise definition. I'll restrict the term computer language to textual
inputs, and thus ignore the spatial and temporal languages defined by cursor
movements and button clicks.

A computer language enables a textual description of an object to be pro-
cessed by a computer program.

The object being described might vary widely, from a picture to a program to a
tax form. Defining “little” is harder: it might imply that a first-time user can
use the system in half an hour or master the language in a day, or perhaps that
the first implementation took just a few days. In any case, a little language is
specialized to a particular problem domain and does not include many features
found in conventional languages.

Pic qualifies in my book as a little language, although admittedly a big little
language. Its tutorial and user manual is 26 pages long (including over 50 sam-
ple pictures); I built my first picture in well under an hour. Kernighan had the
first implementation up and stumbling within a week of putting pencil to coding
form. The current version is about 4000 lines of C code and represents several
months of effort spread over five years. Although Pic has many features of big
languages (variables, for statements, and labels), it is missing many other
features (declarations, while and case statements, and facilities for separate
compilation). I won’t attempt a more precise definition of a little language; if
the linguistic analogy gives you insight into a particular program, use it, and if
it doesn’t, ignore it.

We have considered three different approaches to specifying pictures:
interactive systems, subroutine libraries, and little languages. Which one is
best? Well, that depends.

Interactive systems are probably the easiest to use for drawing simple pic-
tures, but a large collection of pictures may be hard to manage. (Given 50
pictures in a long paper, how do you make all ellipses 0.1 inches wider and
0.05 inches shorter?)

If your pictures are generated by big programs, subroutine libraries can be
easy and efficient. Libraries are usually uncomfortable for drawing simple
pictures, though.

Little languages are a natural way to describe many pictures; they can be
integrated easily into document production systems to include pictures in
larger documents. Pictures can be managed using familiar tools such as file
systems and text editors.



90 MORE PROGRAMMING PEARLS COLUMN 9

I’ve used picture-drawing programs based on each of the three models: interac-
tive drawers, subroutine libraries, and little languages. Each type of system is
handy for drawing some pictures and awkward for others.¥

9.3 Pic Preprocessors

One of the greatest advantages of little languages is that one processor’s
input can be another processor’s output. So far we’ve only thought of Pic as an
input language. In this section we’ll briefly survey two very small languages for
describing specialized classes of pictures; their compilers generate Pic programs
as output.

We'll start with Scatter, a Pic preprocessor that makes scatter plots from x,y
data. The output of Scatter is fed as input to Pic, which in turn feeds the Troff
document formatter.

Scatter Pic Troff

This structure is easy to implement as a UNIX pipeline of processes:

scatter infile | pic | troff s>outfile

(The UNIX Shell that interprets such commands is, of course, another little
language. In addition to the i operator for constructing pipelines, the language
includes common programming commands such as if, case, for and while.)

Pic is a big little language, Scatter is at the other end of the spectrum. This

Scatter input uses all five kinds of commands in the language.

size x 1.8
size y 1.2

range x 1870 1990
range y 35 240

label x Year

label y Population
ticks x 1880 1930 1980
ticks y 50 100 150 200
file pop.d

The size commands give the width (x) and height () of the frame in inches.
The range commands tell the spread of the dimensions, and labels and ticks

t In terms of implementation difficulty, all three approaches have a front end for specification and a
back end for picture drawing. Subroutine libraries use a language’s procedure mechanism as a front
end: it may be clumsy, but it’s familiar and free. Little languages can use standard compiler tech-
nology for their front end; we’ll see such tools in Section 9.4. Because interactive systems usually
involve real-time graphics, they are typically the hardest to implement and the least portable (often
with two back ends: an interactive one shows the picture as it is being drawn, and a static one writes
the complete picture to a file).



COLUMN 9

LITTLE LANGUAGES 91

are similarly specified. Ranges are mandatory for both dimensions; all other
specifications are optional. The description must also specify an input file con-
taining x,y pairs. The first few lines in the file pop.d are

1880 50.19
1890 62.98
1900 76.21
1910 92.22
1920 106.02

The x-value is a year and the y-value is the United States population in millions
in the census of that year. Scatter turns that simple description of a scatter plot
into a 23-line Pic program that produces this graph:

200— °

Population 15

IOH o
®
50— o *
| | |
1880 1930 1980
Year

The Scatter language is tiny but useful. Its “compiler” is a 24-line Awk
program that I built in just under an hour. (In many environments, Snobol’s
string-processing facilities would make it the language of choice for quickly
implementing a little language; Awk is a more natural choice in my UNIX
environment.) A slightly larger little language for drawing graphs is described
in Section 6.2 of The AWK Programming Language (cited in Section 2.6); it is
not a Pic preprocessor, but rather prints the graph as an array of characters.

Chemists often draw chemical structure diagrams like this representation of
the antibiotic penicillin G:

I
H
CH,~C—N T s \Es
—r CH,
O COOH

A chemist could draw that picture in Pic, but it is a tedious and time-consuming
task. It is more natural for an author with a chemical background to describe



92 MORE PROGRAMMING PEARLS COLUMN 9

the structure in the Chem language, using familiar terms like benzene rings,
double bonds, and back bonds:

R1: ring4 pointing 45 put N at 2
doublebond -135 from R1.V3 ; O
backbond up from R1.V1 ; H
frontbond -45 from R1.V4 ; N
H above N
bond left from N ; C
doublebond up ; O
bond length .1 left from C ; CH2
bond length .1 left
benzene pointing left

R2: flatring5 put S at 1 put N at 4 with .V5 at R1.V1
bond 20 from R2.V2 ; CH3
bond 90 from R2.V2 ; CH3
bond 90 from R2.V3 ; H
backbond 170 from R2.V3 ; COOH

The history of Chem is typical of many little languages. Late one Monday
afternoon, Brian Kernighan and I spent an hour with Lynn Jelinski, a Bell Labs
chemist, moaning about the difficulty of writing. She described the hassles of
including chemical structures in her documents: the high cost and inordinate
delays of dealing with a drafting department. We suspected that her task might
be appropriate for a Pic preprocessor, so she lent us a recent monograph rich in
chemical diagrams.

That evening Kernighan and I each designed a microscopic language that
could describe many of the structures, and implemented them with Awk proces-
sors, each about 50 lines long. Our model of the world was way off base — the
book was about polymers, so our languages were biased towards linear struc-
tures. Nevertheless, the output was impressive enough to convince Jelinski to
spend a couple of hours educating us about the real problem. By Wednesday
we had built a set of Pic macros with which Jelinski could, with some pain,
draw structures of genuine interest to her; that convinced her to spend even
more time on the project. Over the next few days we built and threw away
several little languages that compiled into those macros. A week after starting
the project, the three of us had designed and implemented the rudiments of the
current Chem language, whose evolution since then has been guided by real
users. The current version is about 500 lines of Awk and uses a library of about
70 lines of Pic macros. Jelinski, Kernighan, and I describe the language and
present the complete code in Computers and Chemistry, vol. 11, no. 4, pp.
281-297, 1987.

These two brief examples hint at the power of preprocessors for little
languages. Pic produces line drawings. Scatter extends it to scatter plots and
Chem deals with chemical structures. Each preprocessor was easy to implement
by compiling into Pic. It would be more difficult to extend interactive drawing
programs to new problem domains such as graphs or chemistry.



COLUMN 9 LITTLE LANGUAGES 93

9.4 Little Languages for Implementing Pic

In this section we’ll turn from using Pic to building it. We’ll study three
UNIX tools that Kernighan used to construct the Pic language. Each of the
tools can be viewed as providing a little language for describing part of the
programmer’s job. This section briefly sketches the three tools; the Further
Reading describes all of them in detail. The purpose of this section is to hint at
the breadth of little languages; you may skip to the next section any time you
feel overwhelmed by the details.

An earlier figure illustrates the components in a typical compiler; this figure
shows that Pic has many, but not all, of those components:

Lexical Syntax Code Troff
Analysis Analysis 1 Generation Output

Symbol
Table

We'll first study the Lex program, which generates Pic’s lexical analyzer. Then
we’ll turn to Yacc, which performs the syntax analysis. Finally we’ll look at
Make, which manages the 40 source, object, header, testing and documentation
files used by Pic.

A lexical analyzer (or lexer) breaks the input text into units called tokens.
It is usually implemented as a subroutine; at each call it returns the next token
in the input text. For instance, on the Pic input line

L: line dashed down .8 left .4 from B1l.s

a lexer should return the following sequence:

SYMBOL: L
LINE
DASHED
DOWN
NUMBER: 0.8
LEFT
NUMBER: 0.4
FROM
SYMBOL: B1
SOUTH

Constructing a lexer is straightforward but tedious, and therefore ideal work
for a computer. Mike Lesk’s Lex language specifies a lexer by a series of
pattern-action pairs. The Lex program reads that description and builds a C
routine to implement the lexer. When the lexer recognizes the regular



94 MORE PROGRAMMING PEARLS COLUMN 9

expression on the left, it performs the action on the right. Here is a fragment of
the Lex description of Pic:

"yn return(GT) ;
"<" return(LT) ;
ny=" return(GE) ;
"e=" return(LE) ;
"<-" return(HEAD1);
"_y" return(HEAD2) ;
"e—>" return(HEAD12) ;
"."(sisouth) return(SOUTH) ;

"."(bibotibottom) return(SOUTH);

The regular expression (aib) denotes either a or b. Given a description in this
form, the Lex program generates a C function that performs lexical analysis.

Those regular expressions are simple; Pic’s definition of a floating point
number is more interesting:

({D}+("."2){D}*i"."{D}+) ((eiE) ("+"i-)?{D}+)

The string “{D}”’ denotes the digits 0..9. (In the spirit of this column, observe
that regular expressions are a microscopic language for describing patterns in
text strings.) Constructing a recognizer for that monster is tedious and error-
prone work for a human. Lex quickly and accurately constructs a lexer from a
description that is easy to prepare.

Yacc is an acronym for “Yet Another Compiler-Compiler”. Steve Johnson’s
program is a parser generator; it can be viewed as a little language for describ-
ing languages. Its input has roughly the same pattern-action form as Awk and
Lex: when a pattern on the left-hand side is recognized, the action on the right
is performed. While Lex’s patterns are regular expressions, Yacc supports
context-free languages. Here is part of Pic’s definition of an arithmetic expres-
sion:

expr:
NUMBER
| VARNAME { $$ = getfval($1); }
| expr ‘+’ expr { $%$ = $1 + $3; }
i expr ‘-’ expr { $% = $1 - $3; }
| expr ‘#’ expr { $$ = $1 » $3; }
| expr ‘/’ expr { if ($3 == 0.0) {

error("division by zero");

$3 = 1.0;

}

$$ = $1 / $3; }
= $2; }

i ‘(" expr ‘)’ { s$3
’

Given a description like this, Yacc builds a parser. When the parser finds expr
+ expr, it returns (in $$) the sum of the first expression ($1) and the second



COLUMN 9 LITTLE LANGUAGES 95

expression (which is the third object, $3). The complete definition describes the
precedence of operators (+ binds before +), comparison operators (such as <
and >), functions, and several other minor complications.
A Pic program can be viewed as a sequence of primitive geometric objects.
A primitive is defined as
primitive:
BOX attrlist { boxgen($1); }
CIRCLE attrlist { elgen($1); }
ELLIPSE attrlist { elgen($1); }
{
{

ARC attrlist arcgen($1); }
LINE attrlist linegen($1); }

9

When the parser sees an ellipse statement, it parses the attribute list and
then calls the routine elgen. It passes to that routine the first component in
the phrase, the token ELLIPSE. The elgen routine uses that token to decide
whether to generate a general ellipse or a circle (a special-case ellipse with
length equal to width).

All Pic primitives have the same attribute list; some primitives, however,
ignore some attributes. An attribute list is either empty or an attribute list fol-
lowed by an attribute:

attrlist:
attrlist attr
| /% empty */
3
And here is a small part of the definition of an attribute:

attr:

DIR expr { storefattr($1, IDEF, $2); }
DIR { storefattr($1, DEF, 0.0); }
FROM position { storeocattr($1, $2); }

TO position { storecattr(s$1, $2); 1}

AT position { storecattr($1, $2); }

As each attribute is parsed, the appropriate routine stores its value. This is an
elegant implementation of the name-value pairs discussed in Section 4.1.

These tools tackle well-studied problems. The compiler book cited in Section
9.7 devotes 80 pages to lexers and 120 pages to parsers. Lex and Yacc package
that technology: the programmer defines the lexical and syntactic structure in
straightforward little languages, and the programs generate high-quality proces-
sors. Not only are the descriptions easy to generate in the first place, they make
the language easy to modify.

Stu Feldman’s Make program addresses a more mundane problem that is
nonetheless difficult and crucial for large progcams: keeping up-to-date versions



96 MORE PROGRAMMING PEARLS COLUMN 9

of the files containing header code, source code, object code, documentation, test
cases, etc. Here is an abbreviated version of the file that Kernighan uses to
describe the files associated with Pic:

OFILES = picy.o picl.o main.o print.o \
misc.o symtab.o blockgen.o \
CFILES = main.c print.c misc.c symtab.c \

blockgen.c boxgen.c¢ circgen.c \

SRCFILES = picy.y picl.l pic.h $(CFILES)
pic: $ (OFILES)
cc $(OFILES) -1lm
$(OFILES): pic.h y.tab.h
manual:
pic manual | eqn ! troff -ms >manual.out
backup: $(SRCFILES) makefile pictest.a manual
push safemachine $? /usr/bwk/pic
touch backup
bundle:
bundle $(SRCFILES) makefile README

The file starts with the definition of three names: OFILES are the object
files, CFILES contain C code, and the source files SRCFILES consist of the C
files and the Yacc description picy.y, the Lex description picl.1, and a
header file. The next line states that Pic must have up-to-date versions of object
files (Make’s internal tables tell how to make object files from source files).
The next line tells how to combine those into a current version of Pic. The fol-
lowing line states that the object files depend on the two named header files.
When Kernighan types make pic, Make checks the currency of all object files
(file.o is current if its modification time is later than file.c), recompiles
out-of-date modules, then loads the needed pieces along with the appropriate
function libraries.

The next two lines tell what happens when Kernighan types make manual:
the file containing the user manual is processed by Troff and two preprocessors.
The backup command saves on safemachine all modified files, and the
bundle command wraps the named files into a package suitable for mailing.
Although Make was originally designed specifically with compiling in mind,
Feldman’s elegant general mechanism gracefully supports all these additional
housekeeping functions.

9.5 Principles

Little languages are an important part of the popular Fourth- and Fifth-
Generation Languages and Application Generators, but their influence on com-
puting is broader. Little languages often provide an elegant interface for
humans to control complex programs or for modules in a large system to com-
municate with one another. Although most of the examples in this column are



COLUMN 9 LITTLE LANGUAGES 97

large “systems programs” on the UNIX system, Section 12.2 shows how the
ideas were used in a fairly mundane data processing system implemented in
Basic on a microcomputer.

The principles of language design summarized below are well known among
designers of big programming languages. They are just as relevant to the
design of little languages.

Design Goals. Before you design a language, carefully study the problem you
are trying to solve. Should you instead build a subroutine library or an interac-
tive system? An old rule of thumb states that the first 10 percent of program-
ming effort provides 90 percent of the functionality; can you make do with an
Awk or Basic or Snobol implementation that cheaply provides the first 90 per-
cent, or do you have to use more powerful tools like Lex and Yacc and Make to
get to 99.9 percent?

Simplicity. Keep your language as simple as possible. A smaller language is
easier for its implementers to design, build, document and maintain and is easier
for its users to learn and use.

Fundamental Abstractions. Typical computer languages are built around the
world-view of a von Neumann computer: instructions operate on small chunks of
data. The designer of a little language has to be more creative: the primitive
objects might be geometric symbols, chemical structures, context-free languages,
or the files in a program. Operations on objects vary just as widely, from fusing
two benzene rings to recompiling a source file. Identifying these key players is
old hat to programmers; the primitive objects are a program’s abstract data
types, and the operations are the key subroutines.

Linguistic Structure. Once you know the basic objects and operations, there
are still many ways of writing down their interactions. The infix arithmetic
expression 2+3%4 might be written in postfix as 234x+ or functionally as
plus(2,times(3,4)); there is often a tradeoff between naturalness of
expression and ease of implementation. But whatever else you may or may not
include in your language, be sure to allow indentation and comments.

Yardsticks of Language Design. Rather than preach about tasteful design,
I’'ve chosen as examples useful languages that illustrate good taste. Here are
some of their desirable properties.

Orthogonality: keep unrelated features unrelated.
Generality: use an operation for many purposes.
Parsimony: delete unneeded operations.
Completeness: can the language describe all objects of interest?
Similarity: make the language as suggestive as possible.
- Extensibility: make sure the language can grow.
Openness: let the user “escape” to use related tools.

The Design Process. Like other great software, great little languages are



98 MORE PROGRAMMING PEARLS COLUMN 9

grown, not built. Start with a solid, simple design, expressed in a notation like
Backus-Naur form. Before implementing the language, test your design by
describing a wide variety of objects in the proposed language. After the
language is up and running, iterate designs to add features as dictated by the
needs of your customers.

Insights from Compiler Building. When you build the processor for your lit-
tle language, don’t -forget lessons from compilers. As much as possible, separate
the linguistic analysis in the front end from the processing in the back end; that
will make the processor easier to build and easier to port to a new system or
new use of the language. And when you need them, use compiler-building tools
like Lex, Yacc and Make.

9.6 Problems

1. Most systems provide a package for sorting files; the interface is usually a
little language. Evaluate the language provided by your system. The UNIX
system sort, for instance, is invoked by a command like

sort -t: +3n

This line says to use the character : as the field separator and to sort the file
so that the fourth field (skip the first three fields) occurs in numeric order.
Design a less cryptic language and implement it, perhaps as a preprocessor
that generates commands for your system sort.

2. Lex uses a little language for regular expressions to specify lexical analyzers.
What other programs on your system employ regular expressions? How do
they differ, and why?

3. Study different languages for describing bibliographic references. How do
the languages differ in applications such as document retrieval systems and
bibliography programs in document production systems? How are little
languages used to perform queries in each system?

4. Study examples of what might be the littlest languages of them all: assem-
blers, format descriptions, and stack languages.

5. Many people can perceive a three-dimensional image by crossing their eyes
and fusing the two halves of stereograms:

A small survey I conducted suggests that about half the readers of this



COLUMN 9 LITTLE LANGUAGES 99

column should be able to perceive these three-dimensional scenes; the other
half will get a headache trying.

These pictures were drawn by a 40-line Pic program. Design and implement
a three-dimensional language for describing stereograms.

6. Design and implement little languages. Interesting pictorial domains include
electrical diagrams, data structures such as arrays, trees, and graphs (draw-
ing Finite State Machines like those in Section 2.2 is especially interesting)
and pictorially scored games, such as bowling and baseball. Another
interesting domain is describing musical scores. Consider both rendering the
score on a sheet of paper and playing it on a music generator.

7. Design a little language to deal with common forms in your organization,
such as expense reports for trips.

8. How can processors of little languages respond to linguistic errors? (Con-
sider the options available to compilers for large languages.) How do partic-
ular processors respond to errors?

9.7 Further Reading

You may never have heard of Compilers: Principles, Techniques, and Tools
by Aho, Sethi and Ullman, but you’d probably recognize the cover of the “New
Dragon Book™ (published in 1986 by Addison-Wesley). And you can judge this
book by its cover: it is an excellent introduction to the field of compilers, with a
healthy emphasis on little languages. Furthermore, the book makes extensive
use of Pic to tell its story in pictures. (Most of the compiler pictures in this
column were inspired by pictures in that book.)

Chapter 8 of The UNIX Programming Environment by Kernighan and Pike
(Prentice-Hall, 1984) is the case history of a little language. They start with a
language for evaluating expressions, then add variables and functions, and



100 MORE PROGRAMMING PEARLS COLUMN 9

finally add control constructs and user-defined functions to achieve a fairly
expressive programming language. Throughout the process Kernighan and Pike
use the UNIX tools sketched in this column to design, develop and document
their language. Chapter 6 of The AWK Programming Language cited in Sec-
tion 2.6 describes how Awk can easily process very little languages.



COLUMN 10: DOCUMENT DESIGN

FOR A LONG TIME, COMPUTER OUTPUT LOOKED LIKE THIS. As
time went on, printers acquired lower case letters and
special characters!|®#&%?! Then slow little daisy wheel printers
started producing output so fine that it was called “‘typewriter-quality”. The
printers offered new characters, such as italic fonts, and other typographic
niceties, such as subgcripting-

Mechanical printers store letter images in pieces of metal; laser printers store
letterforms as bits. (At last, something we programmers can get our hands on!)
Laser printers therefore typically come with a wide variety of fonts, some more
exotic than others, and the ability to make text larger or smaller.

The first laser printers were expensive and huge, but technological advances
have since reduced their cost to a few thousand dollars and a couple of square
feet on a desk. Document production systems, such as Scribe, TEX and Troff,
place the capabilities of the devices comfortably within the grasp of program-
mers. Personal computers have spread the technology even more widely. The
popular press touts the revolution in *“desktop publishing”. Because they are the
resident experts for all computing tools, many programmers have recently
turned into amateur typesetters, with tools superior to those used by profession-
als just a decade ago.

And that brings good news and bad. The good news is obvious: we program-
mers can use these powerful tools to construct documents that are handsome to
look at and easy to read. Many programmers now routinely typeset program
documentation, course notes, technical reports, and articles for conference
proceedings. The bad news, unfortunately, is sometimes even more obvious:
most programmers haven’t thought much about document design, and
wrpowerful tools can sometimes be powerfully ABUSEDwa!!!

Like most programmers, I have no training in book design. 1 first wrote this
column shortly after I typeset my 1986 book Programming Pearls. During that
_project, I learned a great deal from professional book designers at Addison-
Wesley and from several Bell Labs colleagues who were writing and typesetting
books at that time. This column is my attempt to pass on some of the more
important lessons I learned during that exercise.

101



102 MORE PROGRAMMING PEARLS COLUMN 10

The previous column discussed several little languages for controlling typo-
graphical programs. This column turns from the mechanism of document pro-
duction to the appearance of the documents that we produce. The column is
aimed at programmers who design and typeset their own documents. Program-
mers not involved in typesetting may also enjoy parts of this column: documents
employ general design principles that are also relevant to software.

The next section is a detailed discussion of one diminutive domain: typeset-
ting tables. The following section presents three design principles underlying
tables and other typography. The two subsequent sections treat figures and
text, and the final section considers the issue of selecting the right medium to
present an idea.

10.1 Tables

One could describe the sizes and populations of the various continents with a
series of sentences, starting with “Asia comprises 16,999,000 square miles,
which is 29.7% of the land area of the earth; its population is 2,897,000,000, or
59.8% of the world’s population.” That information is communicated more
effectively by this table, which is easy to generate on many document produc-
tion systems. This table, like all other tables in this book, was produced by
Mike Lesk’s Tbl program. (Tbl is a little language for describing tables; it is
implemented as yet another preprocessor for Troff.)

. Continent Area %Earth Pop. %Total
Asia 16,999,000 29.7 2,897,000,000 59.8
Africa 11,688,000 20.4 551,000,000 11.4
North America 9,366,000 16.3 400,000,000 8.3
South America 6,881,000 12.0 271,000,000 5.6
Antarctica 5,100,000 8.9 0 0
Europe 4,017,000 7.0 702,000,000 14.5
Australia 2,966,000 5.2 16,000,000 0.3

The remainder of this section is an exercise in table design. We’ll hold con-
stant the numbers and continent names that are the body of the table, and alter
other design parameters in three additional tables. The next version of the table
uses a Helvetica font,t provides more descriptive titles, centers the table within
the margins, centers the continent names, and adds vertical and horizontal lines

t The house style of Communications of the ACM in which this column originally appeared dictates
that all tables shall be in a Helvetica font. One of the reasons is that tables are set in a small (8-
point) text size, and small text is a little easier to read in Helvetica.



COLUMN 10 DOCUMENT DESIGN 103

(called rules). Because the numbers are expressed in more natural units, the
next table is narrow enough to fit in a single column of Communications of the
ACM (the first table had to span two columns when this column first appeared
in that publication; just as in programming, typographical space is often free
but sometimes costs dearly).

Continent Area Population

Mill. Sq. Mi. % Mill. %
Asia 16.999 29.7 | 2,897 | 59.8
Africa 11.688 20.4 551 11.4
North America 9.366 16.3 400 8.3
South America 6.881 12.0 271 5.6

Antarctica 5.100 8.9 0 0
Europe 4.017 7.0 702 | 145
Australia 2.966 5.2 16 0.3

Rules are helpful in guiding the reader’s eye, but the above table has too
much of a good thing. The next table makes do with fewer rules, and doubles
some of the more important ones to reflect their importance in the data set.
Centering the names is also overdone, so we’ll change them back to left-
justified. We’ll use a smaller typeface (9 points instead of 10), and we’ll shrink
the vertical spacing from 12 points to 11 points. The headings are reworded (as
they are in each table in this series), and they are emphasized with a bold font.

Continent Area Population
108 % of | Millions | % of
Sq. Mi. | Total Total
Asia 16.999 297 2,897 59.8
Africa 11.688 20.4 551 11.4
North America 9.366 16.3 400 8.3
South America 6.881 12.0 271 5.6
Antarctica 5.100 8.9 0 0
Europe 4.017 7.0 702 14.5
Australia 2.966 52 16 0.3

The next version of the table is my personal favorite. It is inspired by the
guidelines in Chapter 12 of The Chicago Manual of Style cited in Section 10.8.
It uses as few rules as possible. The only double rule is on top, to set the table
off from the preceding text. I'd like to distinguish the headings from the text,
but the bold font in the previous table is too violent. The next table therefore
uses SMALL CAPITALS for the major headings and leaves the others alone. For



104 MORE PROGRAMMING PEARLS COLUMN 10

similar reasons, the primary font is changed from Helvetica back to the original
Times Roman.

LAND AREA POPULATION
CONTINENT Millions 9f Percent | Millions | Percent
Square Miles

Asia 16.999 29.7 2,897 59.8
Africa 11.688 20.4 551 11.4
North America 9.366 16.3 400 8.3
South America 6.881 12.0 271 5.6
Antarctica 5.100 8.9 0 0
Europe 4.017 7.0 702 14.5
Australia 2.966 5.2 16 0.3

Although the four tables in this section contain the same data, their appear-
ances are quite different. The best table design for a given document depends
on a number of factors, ranging from the capabilities of the document produc-
tion system (what can it do easily or at all?) to the purpose of the document
(advertising should reach out and grab the reader’s eye, while a manual should
provide easy reference).

This discussion of the superficial appearance of tables has neglected many
fundamental issues in table design. The general form of all four tables is
acceptable; it could have been worse (by swapping the rows and columns, for
instance, or by re-ordering some rows or columns). Laying out tables with more
elaborate structure can be challenging. All the tables, though, fail miserably in
the description of the data: What is the source? How and when were the
numbers gathered? Good tables tell who, what, where, when, why and how.
This discussion entirely ignored the most important aspect of the table: What do
the numbers mean? What do we do with them? As important as these issues
are, though, they transcend the typographical theme of this column.

10.2 Three Design Principles

But wait just a minute! This column is for programmers, and we all know
how real programmers feel about documentation of any kind: slap it together as
quickly as possible so you can get back to the fun of programming. I won’t try
to convince hard-core code junkies that documentation is important, but I think
that even they might have something to learn from document design.

Everyone should read Strunk and White’s classic little Elements of Style;
the third edition was published by Macmillan in 1979. What Strunk and White
do for English text, Kernighan and Plauger do for programs in their Elements
of Programming Style (second edition, McGraw-Hill, 1978). Some of the prin-
ciples they enunciate also apply to document design. Here are three fundamen-
tal principles for producing better text, programs, or documents. 2

Iteration. Strunk and White advise authors to “Revise and rewrite.” Good
programmers have long known this; Kernighan and Plauger’s Elements of



COLUMN 10 i DOCUMENT DESIGN 105

Programming Style is built around the revision of programs from textbooks. It
took a lot of work to get from the first table to the last version, but an attractive
document is sometimes worth the effort.

Consistency. One could spend a lifetime revising and rewriting a single docu-
ment. Strunk and White avoid this problem by counselling us to “Choose a
suitable design and hold to it.” Some programmers have their design dictated
by a shop-wide coding standard. A good standard is a delight, and a poor stan-
dard is often better than none at all. Experiment to find the best style for a
particular kind of document, then stick to it.

Minimalism. Because ‘‘vigorous writing is concise,” Strunk and White tell
us to “Omit needless words.” Robust, efficient and maintainable programs are
also concise; good programmers omit needless lines, variables and routines. I
once heard a programmer praised with “He adds function by deleting code.”
Try to remove as much as possible from your documents, such as superfluous
font changes and excess rules, without reducing the information content.

10.3 Figures

Let’s apply those principles to typesetting figures. We'll start with binary
search in a sorted array, which is described in Section 3.1. Figure 1 shows a
binary search for 50 in an array of 16 elements: the first probe compares 50 to
the middle (eighth) element of the array (41), the second probe looks at the
twelfth element, and so forth, until the fourth probe finds 50 in the eleventh
position. The size, positioning, font and legend of Figure 1 are typical of many
pictures produced on personal computers.

26(26|31(31(32|38|38|41(43 5815979

97

46 (50|53
ooy}
Figure 1. Binary search in an array.

A few experiments gave the next version of the figure, which uses more deli-
cate lines and shrinks the boxes and text to fit comfortably within the margins.

It also varies the length of the arrows that represent the probes, so the arrows
get shorter as the probes get nearer the target.

2612631 |31|32(38|38|41(43]|46|50(53(58(59(79(97

1

Removing the ugly figure caption saves space and placing the figure within the
paragraph saves the reader the effort of scanning for a figure number.




106 MORE PROGRAMMING PEARLS COLUMN 10

Page 391 of the May 1986 Communications of the ACM describes a system
for typesetting music with a figure in an area of about 6Xx6.5 inches:

Text
Userp=—= . ditor
Textual :
music fol:;Ir‘nl:tlfer B
description
Video
Usequ—n music
editor

By shrinking a few pieces of geometry and rotating the diagram to flow across
the page rather than down it, this figure does the same job in about one tenth of
the area of the original (and space in that magazine does matter dearly).
Shrinking figures not only saves space, but the final product looks more profes-
sional than its larger cousins. Try it.

The next column discusses a class of figure used commonly in technical writ-
ing: graphs. This graph, for instance, shows a path through a direction field
that is the solution to a differential equation.

0 010203040506070809 1

P I AR I P I I R P PR
094> —>—=>—=—= =777 09
08 1> —=—> == >~ 27 /[ o3
07> == 7 7S o
0.6 - —= —= g A Y
05J>>—>wrr S T os
Y S A Y
0_3_-_._._.;///// /! tO.3
A R A A ) F 02
0'1_'_.__,/// A B 01
0—_F|/'|f'|f'|f'|f'|f'lf'1f'|f'-0

0 0.102030405060.70809 1
Solution of a Differential Equation

The next version presents the same data with fewer distractions. It has more
informative labels, fewer ticks (the four in this version tell as much as the 84 in



COLUMN 10 DOCUMENT DESIGN 107

the original), and reduced size. The garish arrows have been replaced by more
subtle lines.

————— - s 7
_____ - S
_____ - s /7 7
\/—___, - s /7
y=vyQl+)n —= """
R L A A A
i A A A A )
I A A A B B |
R 2 2 I e B
0 4 ) 1 1 1 1 1 1
0 1

Direction field is y'=x2/y

Many picture programs offer elaborate shading patterns that are frequently
eye-catching and sometimes insightful. Too often, though, they obscure the
message and induce vertigo. Some systems produce color figures, which can be
incredibly powerful (if you disagree, try reading a black-and-white xerographic
copy of a color road map). But color is almost always expensive to reproduce,
and is often overused. Be careful with these devices.

The width of lines in a drawing can change the character of a figure. Here
is a flow graph rendered in three different line widths:

o =
S S

Thin lines fade away, while thick lines look heavy-handed. Strive for balance.

The previous section sketched three design principles: iteration, consistency,
and minimalism. The before-and-after pictures in this section show that itera-
tion is just as relevant for pictures as for any other design. Here are a few
minimalistic points that I try to use consistently in figures.

Keep figures small, but big enough to read comfortably.

Keep figures near the text they amplify. When possible, integrate figures
into the text and do away with captions and figure numbers.

Use color and background shadings sparingly.

Use delicate line widths.



108 MORE PROGRAMMING PEARLS COLUMN 10

10.4 Text

Tables and figures provide fine seasoning now and then, but the meat and
potatoes of any document is text: paragraphs made of sentences made of words.
Here are a few points about producing text that are often neglected in docu-
ments written by programmers.

Font and Size Changes. You know the topic of this paragraph because the
first four words are in an italic font. That font is quite helpful for noting the
definition of a technical term and for displaying mathematical variables (like x,
y and z). Changing the size of text is also sometimes useful.f Beware the
temptation to overuse these devices: a page full of font and size changes is hard
for the eye to traverse.

Display Lists. Text doesn’t always come wrapped neatly in paragraphs; there
are many other ways to deliver words.

1. To make a sequence of similar points, try a sequence of indented paragraphs.

2. This mechanism draws the reader’s attention to the similarities and the
differences in the points.

3. Don’t overdecorate. The numbers in this example are useless. They could
be replaced by bullets or, better yet, nothing.

This display list is abused; a paragraph would have served just as well. The
display list at the end of the previous section is more appropriate.

White Space. Use space to set apart the components of a document: para-
graphs, elements in a display list, figures, or tables. Just as silence is important
in telling a story aloud, space is crucial in laying out a document. Too little
space is likeastorywithoutanypauses, while too much space, uhh, is, well, just as,
ummmm, you know, unbearable.

Page Format. This is the first thing a reader observes in your document.
The chapter and section titles should provide a visual outline of the document
but not be so overwhelming that they chop it into incoherent pieces. The same
holds for captions of tables, figures, programs and the like. The running heads
should inform yet not clutter.

Page Layout. Once you have the content and the page format, the final step
is to put the product into the package. Try to keep a table or a figure near the
text that describes it; if you can’t put the figure on the same page, try for the
opposite page rather than the back of the page. Other niceties include page
balancing to ensure that opposing pages are the same length and removing
widows and orphans (a single word on the last line in a paragraph or a single
line at the top of a page) and rivers (streams of space running vertically
through text).

t Footnotes are small yet still readable. Their parenthetical nature is reflected in a reduced page
budget. Smaller text is also often used in long quotations, exercises, solutions, bibliographies, and
other supporting text.



COLUMN 10 DOCUMENT DESIGN 109

The Publication Process. Before a paper appears on the pages of a typical
journal, it receives the attention of many people. The author’s technical contri-
bution is examined and often improved by a technical editor and referees. A
house editor then marks the writing style to conform to house style, and a
printer sets type to prepare galley proofs. A professional artist simultaneously
prepares figures. After an editor proofreads the pieces, they are laid out to
form the page proofs. A lone programmer lacks the experience and taste of this
gang of trained professionals, but has the advantage of being able to consider a
problem from many viewpoints (if a figure doesn’t fit on a page, a programmer
might float the figure to the next page, shrink it a little, rewrite surrounding
text, or so on). Use your flexibility to advantage, but carefully consider any
advice you can get from the professionals.

The Logical Structure of Text. After this column appeared in Communica-
tions of the ACM, Leslie Lamport of Digital Equipment Corporationt sent me
this electronic mail: “The author should concentrate on the logical structure of
the text more than its visual representation. The nice thing about- the typeset-
ting systems you mentioned by name is that they allow the user to do this by
defining commands. For example, the author of a cookbook can define logical
structures like Recipe, Ingredient List, and Preparation Step. The author can
easily change the formatting of these structures by redefining those commands.
(A serious problem with many typesetting systems is that they encourage the
user not to do this, but instead to add commands like Add Vertical Space and
Two-Column List.)”

Lamport continues, “Some of the advantages of such an approach are obvi-
ous. Reformatting a paper from one journal format to another journal format,
for instance, is rapid and almost painless. What is less obvious is how this
improves the writing by forcing the author to be aware of the document’s struc-
ture (or lack of structure).”

10.5 The Right Medium

So far this column has concentrated on improving a given kind of presenta-
tion. In an important sense, such typographic polishing is inherently superficial.
Pretty typography can’t rescue a paper from bad spelling, faulty grammar, poor
organization, or lack of content. We’ll turn now to a fundamental contribution
that typography can make to the clarity of a paper. Many ideas can be embo-
died in several different forms, such as equations, pictures, or tables; modern
document production systems give programmers a great deal of freedom in
choosing the best form to convey an idea.

t Lamport is the author of LATEX, a set of macros that provide a more structured interface to
Knuth’s TEX typesetting system. He elaborates the ideas in his note in *“‘Document production:
visual or logical” in the “Mathematical text processing” column in the June 1987 Notices of the
American Mathematical Society, pp. 621-624.



110 MORE PROGRAMMING PEARLS COLUMN 10

In selecting the right medium, we programmers have two important
advantages over professional typographers:

Speed. An editor who wishes to experiment in stylistic changes to text must
send instructions to a printer (often in a different city) then wait for the
printer to do the job and ship back the results. That process takes days,
while many programmers can do the job in minutes.

Flexibility. An editor must choose the final form for an idea early in the
game then farm the work out to an expert in that area (such as a profes-
sional artist). Many programmers have tools that allow them to experiment
with different media to present an idea.

The rest of this section experiments with different forms for conveying ideas.

Old geometry books contain sentences like “The square of the hypotenuse of
a right triangle is equal to the sum of the squares of the two adjacent sides.”
We can now communicate that message by combining this picture

T
b

with the equation a? = b% + ¢2.

There are many ways to prove the Pythagorean theorem. We could use the
Euclidean notation found in classical geometry texts (a typographic challenge,
but not insurmountable), we could take a more algebraic approach, or we could
draw this figure:

Both squares contain the same four triangles (whose total area is 2bc). The
remaining area is a2 in the left square and 2 + ¢? in the right square.

Figures don’t always reduce space, though. In Book Design—Systematic
Aspects (Bowker, 1978), Stanley Rice devotes the entirety of page 97 to a
graph relating the number of characters in a manuscript to the number of pages
in the resulting book. He could have replaced that page with the equation
p = 0.318¢, where p is the number of pages and ¢ is the number of characters
in thousands, or with the phrase “3145 characters per page”. The best choice in
such circumstances depends strongly on the cost of an additional page and the
comfort of readers of the book with graphs versus equations.



COLUMN 10 DOCUMENT DIiSIGN 111

Section 1.3 profiled a UNIX pipeline for finding the most common words in
a document; we’ll see a related pipeline in Section 11.1. The heart of the pipe-
line is a common idiom in the UNIX Shell language:

sort | uniqgq -c¢ | sort -rn
The first sort gathers together equal words, the uniq program removes dupli-
cates and precedes each with a count (the -c option), and the second sort
arranges the words in decreasing order (the flags are to reverse the sort and to
use numeric comparisons). Here is the pipeline in pictures, on the input stream
“this is this and that is not this’”:

this and

is is .

this is l'and 3 this

and sort not uniq -c 2is sort -rn 2is
—_ q 1 not =——_-_. "= ] that

that that

. . 1 that 1 not

15 this 3 this 1 and

not this

this this

Column 15 describes an algorithm for selecting the K**-largest element in a
set. It uses a routine to partition the array X[L..Ul; the loop invariant can be
expressed formally as an equation:

XIL1=T A Viugew XUI<T A Vyugeaa X1 T

One could use a common abbreviation for arrays to express the same facts as
comments in a program:

X[L] =T and X[L+1..M] < T and X[M+1..I-1] »>=T

But I believe that the clearest way to communicate the point to people is by a
picture of the array:

T <T >T ?
L M 1 U
Solutions 3.1, 3.2, and 3.3 deal with the heap data structure and the Heap-

sort algorithm. Both depend on the array X[L.U] having the property
Heap (L,U), which is defined mathematically as

VZLSI'SU X[l div 2] < X[l]

Here is an array in which all subarrays have the heap property:

12 20 15 29 23 17 22 35 40 26 51 19|
1 12




112 MORE PROGRAMMING PEARLS COLUMN 10

Heapsort views the array as a binary tree in which X[/] has X[2I] as a left
child and X[27+1] as a right child:

12
/ \
20 15
YA AN
29 23 17 22
/N /\ /
35 40 26 51 19

This binary tree is a heap because each node has a value less than the values in
its (zero, one or two) children. Problem 2 contains additional questions about
the Heapsort algorithm.

In Column 2 we saw Whorf’s hypothesis, which states that “Man’s thought
is shaped by his tongue.” For a long time, my documents were shaped by the
system on which I wrote them. That system supported only text, so I worked
hard to cram my ideas into words. The system I now use lets the content shape
the documents: the ideas can find their homes in text, equations, tables, figures,
programs, graphs, or many other devices. This software encourages me to be a
better author.

And the resulting documents, though laden with displays of various kinds,
are gentle on the reader. At natural times, the discussion moves from text to
pictures to equations to programs, all dictated by the logical flow. Some jour-
nals require that all figures be placed at the end of the paper, which eases pro-
duction at great expense in readability. Imagine trying to read a mathematical
paper in which all equations were numbered, captioned, and herded off to the
end, or a programming text in which all code appeared in Appendix 3! Laying
out a well-integrated paper is more work for the programmer/author, but it
greatly helps the reader, for whom the paper exists in the first place.

10.6 Principles

Whether they like it or not, many programmers are now local experts in
document design. That may not be quite as ludicrous as it sounds. Fred Brooks
eloquently describes the joys and woes of the programmer’s craft in Chapter 1
of his Mythical Man Month. Document production shares many of the experi-
ences on his list. Both tasks involve “making things that are useful to other
people” and in both “one must perform perfectly”. The greatest delight for me
is that both yield “the sheer joy of making things”.

Document design requires creativity. A library in which all documents
looked alike would be as dreadfully boring as a world in which all people
dressed the same and all cars had the same body style and color (probably
black). The best design depends on many attributes of the document; the pack-
age must be tailored to the contents.

But beware of too much creativity. Strunk and White advise authors to



COLUMN 10 DOCUMENT DESIGN 113

“Place yourself in the background.” Good document style, like good program-
ming style or good writing style, is invisible. The content is the primary purpose
of the document; the document style is only a means to that end.

10.7 Problems

1. Many mathematical proofs make extensive use of pictures. Choose a proof
that is easy to present at a blackboard, and express it in your document pro-
duction system. Rich candidates include the sum 14+2+...+N, other proper-
ties of Pascal’s triangle, and other proofs of the Pythagorean theorem.

2. After building the array X[1..N] into a heap, Heapsort uses this invariant:

Heap, < Sorted, >
1 I N

The inequality signs abbreviate X[1..I1<X[I+1.N]. The loop index I
proceeds from N down to 2; the sorted portion of the array grows from size 0
to the entire array. Draw pictures to show the progress of Heapsort, as well
as other sorts based on selecting the largest element.

3. In Methods of Book Design (third edition, Yale University Press, 1983),
Hugh Williamson identifies three primary goals for documents: correctness,
consistency, and clarity. How should you typeset your computer programs to
reach these goals?

10.8 Further Reading

The- thirteenth edition of The Chicago Manual of Style was published by
the University of Chicago Press in 1982. In addition to presenting the house
style of that press, the book presents the principles underlying the particular
choices. This work is a standard in many publishing houses. Programmers who
play publisher would do well to have a copy on their desks.

10.9 A Catalog of Pet Peeves [Sidebar]

Several readers made comments of the form, “You failed to warn about the
dreaded....” Many of those warnings have been incorporated into the text, but
here are a few minor points to consider.

Wide Text. Try to keep lines at most 75 characters long, including spaces
and punctuation. Readers of longer lines tend to lose track when their eyes scan
back (left) to the next line. Computer scientists often make this mistake by
using a 10-point font on 8.5-inch paper with 1-inch margins.

Low-Resolution Devices. The quality of output improves in the sequence of
dot-matrix printers, daisy-wheel printers, laser printers, and phototypesetters;
the devices range in price from a few hundred dollars to a few tens of thousand



114 MORE PROGRAMMING PEARLS COLUMN 10

dollars. Once readers are used to one level of quality, it is hard to go back to a
lower level.

Underlined Words. An italic font will usually do the job more gracefully but
does the job really need to be done at all? There are only a few notations more
than underlining.

Typitis. One particularly frustrated reader fantasized that this column would
include a sample of output from a popular laser printer, along with his critique:
“This laser printer has a resolution of about 300 dots per inch. The fonts were
designed by engineers, not type designers. This sample is quite difficult to read
because it has too much blackness, the proportions between height and width
are imbalanced, white space within letters is imbalanced with white space
between letters, it lacks rhythm. However, the ability to mix fonts within a line
makes it ideally suited to generating ransom notes.”

Truth in Advertising. In the old days, the appearance of a document accu-
rately reflected its status. As the appearance progressed from handwritten notes
to typed rough draft to finely typewritten technical report to journal article, the
content grew more polished. If your beautifully typeset document contains a
few ideas you had over breakfast this morning, please remember to label it as a
“rough draft”.

Missed Resources. Leslie Lamport of DEC sent this electronic mail, “You
omitted the simplest and most effective advice for neophyte designers: go to the
bookshelf and look at what real book designers do. (These days, you may have
to look at non-computer science books to find one that wasn’t typeset by an
amateur.) It’s amazing how few people think of doing that.”

Pictures of Computer Screens. Another reader writes, “These may have ver-
isimilitude, but they offer little else. Screens are usually full of irrelevant stuff.
Moreover, screens are inherently cheap, fast and ephemeral. If your document
is also, why did you write it down in the first place?”

Dumb Hyphe-nation. Most hyphenation programs do pretty well, but protect
your readers from such juicy word breaks as scar-city, the-rapist, and uncle-an.

Double Quotes. "These" double quotes on the keyboard are fine for strings in
a program, but “these” belong in text.

Fig. This common abbreviation for figure saves about two-and-a-half charac-
ters by looking ugly (oops, I mean, ug.).

Mallory’s disease. Mallory tried to climb Mt. Everest “Because it is there.”
That is a fine reason to climb a mountain, but a dreadful reason to emphasize
words with a 24-point sans serif double ugly font.




COLUMN 11: GRAPHIC OUTPUT

Computer systems are getting bigger and better every year: they have more
memory, faster processors and larger databases. That’s good news — computers
can store more data and expend more effort processing it. But once a system
has performed a massive computation, how can we summarize the trends in the
mountain of data?

The answer to that question depends heavily on both the data and the tastes
of the reader. Paragraphs of text and tables of numbers often provide fine sum-
maries. This column, however, will concentrate on graphical representations of
data, which allow the powerful human vision system to process data. Laser
printers and graphics impact printers are widely available at low cost; software
packages bring graphical techniques home to most programmers. This column
shows how we programmers can use the technology to deliver more useful (and
more graphic) output.

11.1 A Case Study

In this section we’ll use some simple graphical methods to study one data set.
Columns 1 and 2 considered the problem of listing all the words in a file,
together with a count of how many times each occurs. Section 2.1 described
this Awk program for the task:

{ for (i = 1; 1 <= NF; i++) count[$i]++ }
END { for (i in count) print count[i], i }

This UNIX Shell pipeline performs the same task; it is similar to a program in
Section 1.3:

cat $* | tr -s ‘\t ’ ‘\012’ | sort | uniq -c

For consistency with the Awk program, the program does not transliteratc upper
case letters to lower case, nor does it sort the final list of words.

I timed both programs on drafts of the fifteen columns in this book. The
first line in the table says that Column 1 had 4351 total words, of which 1579

115



116 MORE PROGRAMMING PEARLS COLUMN 11

were distinct. The Shell pipeline took 3.2 CPU seconds on a VAX-11/750,
while the Awk program took 28.2 seconds.

WORDS RUN TIME

COLUMN Total | Distinct | Shell | Awk
1 4351 1579 3.2 28.2
2 3863 1406 2.6 26.6
3 3577 1324 2.8 26.5
4 2877 1192 2.3 20.2
5 3544 1548 2.9 239
6 3066 1248 2.3 21.7
7 3504 1506 2.7 24.1
8 1288 641 1.1 9.3
9 6740 2233 4.5 42.3
10 6707 2402 49 43.3
11 3423 1585 2.8 24.0
12 3329 1331 2.7 21.5
13 2404 870 1.8 15.0
14 5028 1708 33 31.6
15 4928 1558 3.3 29.2

This section presents some graphs that highlight certain relationships in this
data set. But first take a minute to try to find some trends yourself.

This scatterplott displays the two leftmost columns in the table by showing
the Awk run time as a function of the Shell run time:

45 —
40 —
35
30 -
Awk ¢
25
®
20 |- °
15— °

10,

| | | || |
1 15 2 25 3 35 4 45 5

Shell

t All graphs in this book were produced by “GRAP—A language for typesetting graphs”, which
Kernighan and I described in the August 1986 Communications of the ACM. Grap is implemented
as a preprocessor for the Pic language described in Column 9.



COLUMN 11 GRAPHIC OUTPUT 117

The points lie roughly along a line, so I performed a least-squares regression
that showed that

Tguk = 9.27%XTgp; — 0.88

In words, the Shell program is typically about 9 times faster than the program
implemented in the Awk language.

The next graph is a better presentation of the data set. Some of the changes
are cosmetic: the graph is slightly smaller, there are fewer ticks, the ticks point
outward (ticks within the plotting region tend to obscure the data), and the
labels are more informative. Three other changes provide more information: the
regression line helps us compare the values to the regression, the larger graphi-
cal area shows the regression line passing near the origin, and the plotting sym-
bols are the column numbers.

Awk Run Time
(CPU seconds)

| | I I |
0 1 2 3 4 5

Shell Run Time (CPU seconds)

Notice that all columns lie near the line, which passes close to the origin. Little
Column 8 is processed very quickly, while big Columns 9 and 10 take much
more CPU time.

The next pair of graphs show some relationships between distinct words,
total words, and run time. The graphs highlight the least-squares regressions

WDi.\'tinct = (0.29X% WTotaI + 343

TAwk = 0.006 % WTotaI + 2.56



118 MORE PROGRAMMING PEARLS COLUMN 11

To conserve space, the displays are shrunk to be a bit smaller and are placed
side-by-side:

2500 —

10
— 40
2000 —
4 {5 — 30
1500 — 13 X1s 3 Awk
Distinct 1 Run
Words — 20 Time
1000 — 3
13
10
500 —
0
[ | | | | ) [ ]
0 2000 4000 6000 0 2000 4000 6000
Total Words Total Words

The left graph shows that the number of distinct words is roughly 30% the
number of total words, but only roughly. The right graph shows that the Awk
run time is quite close to the six seconds per thousand words predicted by the
least-squares regression.

11.2 A Sampler of Displays

The last section used one kind of display — scatterplots — to illustrate one
data set. In this section we’ll survey other kinds of graphs that are more suit-
able for summarizing other kinds of data.

You don’t always need a fancy output device to make a good display. John
Tukey’s stem-and-leaf display, for instance, can be produced on any line
printer. This example presents the age at inauguration of the first forty
Presidents of the United States (Washington through Reagan; Grover Cleveland
is counted twice). The first line records the two ages 42 (Theodore Roosevelt)
and 43 (Kennedy); the last line records ages 65 (Buchanan), 68 (Harrison) and
69 (Reagan).

40-44 | 23

45-49 | 67899

50-54 | 001111224444
55-59 | 555566677778
60-64 | 011124

65-69 | 589

The shape of the display is a histogram of the ages (and bell-shaped at that).

Using the units digit as the plotting symbol presents the complete data set.
A time series shows how one variable changes over time. The following pair

of graphs, for instance, share the x-axis to show how the number of telephones



COLUMN 11 GRAPHIC OUTPUT 119

in the United States increased from 1.3 million in 1900 to 120 million in 1970
(the units are millions of telephones, or, obviously, “megaphones”).

120 —
90 —
Linear

Scale 60
30 —

0 — Millions of

100 Telephones
30

Logarithmic

Scale ]
3
1 —

I | | I
1900 1920 1940 1960

Year

The number of telephones in the country grew at a dramatic rate during the
first decade of this century, and then increased at an almost constant percentage
rate during the next six decades. There are just two exceptions to that long-
term trend. The Great Depression led to a decrease in telephones in the early
1930’s, but that dip was made up for by a growth spurt during the Post-War
Boom in the late 1940’s.

The linear scale on the y-axis in the top graph highlights the rapid growth
after 1940, but hides much of the story by squeezing three fifths of the data
into the bottom fifth of the graph. The logarithmic scale in the bottom graph
highlights the growth rate of telephones; straight lines on log-linear graphs
correspond to geometric rates (see Problem 4 and its solution).

The next figure is a variation of Bill Cleveland's dotchart, an alternative to
the popular bar chart. It combines graphical and tabular methods to display
data from Ritchie and Thompson’s paper “The UNIX Time-Sharing System”,
which appeared in the July 1974 Communications of the ACM . The table lists
all system commands that account for more than two percent of either CPU
time or command invocations. The data on CPU time could be useful for
reducing run time (it is a higher level profile than those we saw in Column 1),
while the data on command invocations could be useful for designing user

-,
s



120 MORE PROGRAMMING PEARLS COLUMN 11

interfaces. In both categories fewer than ten commands accounted for over half
the usage.

C compiler .......................... 15.7 Editor|. ... 15.3
User program ......................... 15.2 Llst directory """"""""" 96
Editor |« vovvirieeiinn. 1.9 C compiler |- ---.. .- 6.3
Shell | ..« ... 58 Remove file|. ... ... .. 6.3
Chess | .- ... 3 User program [«-------. 6.0
o ) Print file | ... --.-.. 6.0
List directory | ----33 List users | ----33
Troff ]----3.1 Move file | -.--3.2
Backup | ---26 File status | ----3.1
T T T T T T
0 5 10 15 0 5 10 15
Percent of CPU Usage Percent of Command Accesses
(Top 8 account for 62.7%) (Top 9 account for 59.1%)

Many graphics systems make it easy to present data like this in the ever-
popular pie chart. That is unfortunate, because dot charts are almost always a
better way to present such data. My personal taste is backed up by experiments
that show that the human eye can compare lengths more effectively than it can
compare angles. In fairness, though, pie charts are sometimes effective. The
September 1987 Princeton Engineer used this graph to report the (alleged)
responses to the question “Is Princeton too homogeneous?”

No 100%

Pie charts are fine for the number “100%”’; dot charts are better for more com-
plex data sets.

Different data sets call for different kinds of displays; here are the graphical
displays of data sets used throughout this book:

SECTION GRAPHICAL DISPLAY
10.3 Direction field
11.2 Scatterplot
11.3 Stem-and-leaf display

11.3 Time series
11.3 Dotchart
11.6 Time series on a map

12.2 Bar chart

12.2 Histogram

14.8 Multiple time series

15.3 Box-and-whiskers display




COLUMN 11 GRAPHIC OUTPUT 121

11.3 Principles

Effective graphs require a diverse set of skills. The author of a graph must
understand the application well enough to know what data should be summar-
ized, must appreciate enough statistics to avoid drawing unwarranted (or just
plain wrong) conclusions, and must design and execute the graph in the chosen
medium (be it India ink or laser printer). This section will enumerate several
principles relevant to these activities; most of the principles are taken from one
or more of the references.

The Strengths of Graphs. Graphs can portray a complex set of relationships
simply and clearly. They are most effective when they are processed by the
eyes rather than the brain; that is, the reader of a graph should use the vision
system more than cognitive skills. Graphs should be designed to show the struc-
ture of and the relationships among data; they should rarely be used to present
details. Graphs in a computer system should therefore summarize details that
are also presented elsewhere.

Statistical Integrity. The primary requirement of any form of professional
communication is accuracy. The first concern of a graph is therefore its con-
tent: Are the measurements appropriate? Are the trends that you highlighted in
the graph statistically significant? Is the data biased by tainted sampling? The
form of the graph can also mislead: Is it labelled properly? Are the symbols
that plot the data of size proportional to the data? Huff's How to Lie with
Statistics delightfully sketches these issues.

Beauty. Graphs should excite the reader’s interest in the data. To do this,
they must be attractive. On the other hand, the purpose of a graph is to show
the data, not to draw attention to itself. An elegant graph is therefore a simple
design that illuminates complex data. Effective methods for achieving appealing
graphs include starting with a simple (and preferably well known) form and
erasing superfluous ink.

The Process. Superlative graphs do not spring from programmers’ foreheads;
they are usually the result of several iterations of a three-phase sequence. In
the exploratory phase, preliminary graphs ignore cosmetic issues entirely and
concentrate on showing trends in the data. Next, a confirmatory phase uses ele-
mentary statistics (or at least common sense) to make sure that the trends are
significant. The presentation phase selects the final form of the graph and exe-
cutes it in the appropriate medium.

Don’t Overdo It. In the old days graphs were so hard to make that we
almost never used them. Today we suffer from the opposite problem: graphics
packages are so easy to use that they can tempt a programmer to graph abuse.
Why would you bother writing the simple phrase that “51.27% of the babies



122

MORE PROGRAMMING PEARLS COLUMN 11

born in the United States in 1980 were males” when you could instead plop
down this marvelous graph?

Bobios RBorn in 1980

(Includes only children less
than one year old as of
January 1, 1981.)

S 5 Cee o1 100.0%
: : ! !
151.27% 148.73%
: : : :
IS |
Mol Fornal Fotd

The future is bright for computer-generated graphical display of data. Don’t
give it a bad name.

11.4 Problems

1. Experiment with different presentations of data. Consider issues like these.

a.

b.

Medium. Are graphs the best form for the data? Should it be presented
in text or tables instead?

Form. Have you chosen the best graphical display? Should your data be
presented in a scatterplot, histogram, or time series? Are the right vari-
ables plotted? For instance, should the telephone graph show the number
of telephones each year or the ratio of telephones this year to telephones
last year? How could you plot additional information to study, say, tele-
phones per capita? Should the scales be linear, logarithmic, or use some
other transformation?

Execution. What is the best local structure for the graph? Should scat-
terplots and time series plots have a background grid rather than ticks on

the axes? How many tick marks and where? What labels should mark
the axes?

2. [E. Tuftel Clutter on a graph distracts from the data. Try deleting some of
the components of a graph. If you don’t have a computerized system avail-
able, try making several xerographic copies of a graph and use white
“correction fluid” to erase excess material. Experiment until you find the
balance you like best. I found this to be particularly useful when applied to
my own graphs: the simpler graphs were more attractive at first glance and
presented the data more forcefully.



COLUMN 11 GRAPHIC OUTPUT 123

3. [P. A. Tukeyl Graphical Methods for Data Analysis by Chambers, Cleve-
land, Kleiner and Tukey was published in 1983 by Wadsworth International
Group (the paperback version was published by Duxbury Press). Appendix
7 summarizes thirteen attributes of 74 automobiles as sold in the United
States in the 1979 model year. Rather than presenting a list of 74 mileage
and weight pairs, the following table gives the mileage in the first column
and weights of all cars with that mileage in later columns. The first line
says that two automobiles were rated at 12 miles per gallon; their weights
were 4720 and 4840 pounds.

12 4720 4840

13

14 3420 3830 3900 4060 4130 4330

15 3720 4080

16 3690 3870 3880 4030

17 2830 3170 3350 3740

18 2410 2670 3330 3370 3470 3600 3670 3690 3700
19 3200 3210 3300 3310 3370 3400 3420 3430
20 2830 3250 3280

21 2130 2650 2750 4060 4290

22 2580 2640 2930 3180 3220

23 2070 2160 2370

24 2280 2690 2720 2750

25 1930 1990 2200 2240 2650

26 1830 2230 2520

27

28 1760 1800 2360
29 2110

30 1980 2120
31 2200

32

33

34 1800

35 2020 2050
36

37

38

39

40

41 2040

In addition to presenting the data set, this figure is also a histogram similar
to the stem-and-leaf display in Section 11.2. Explore the relationship
between weight and mileage.

4. Explain why the relation y=axx? plots as a straight line when both x and y
use logarithmic scales. Explain why y=axb* plots as a line when x uses a
linear scale and y uses a logarithmic scale. How are a and b reflected in the
plots? What scales would you use to present the relationship y=a Vx +b?

5. Write a program that graphically displays the output of your system random
number generator. The simplest display divides the generator’s domain into
equal-sized bins and then displays a histogram of the count of random
numbers in each bin. Although a visual display is sufficient to identify
grossly inadequate generators, consult Section 3.3 of Knuth's Seminumerical
Algorithms before you criticize a marginal generator.



124 MORE PROGRAMMING PEARLS COLUMN 11

11.5 Further Reading

One can argue that Darrell Huff’s How to Lie with Statistics (published in
1954 by W. W. Norton and Company, NY, but reprinted often) should be
required for anyone who reads either the popular media or the technical litera-
ture. It describes various ways to slant graphs to make a point, and equips you
with questions to ask about a graph. But all argument ends when you are sum-
marizing data yourself; you must read this charming little book. It contains
simple but effective principles for valid statistical summaries and for presenting
a summary in graphical form.

Edward Tufte’s Visual Display of Quantitative Information is handsome
decoration for any coffee table and great motivation for any programmer. The
book assumes that you have already summarized the data and concentrates on
principles of graphical design and integrity. The graphic of Napoleon’s Russian
campaign in Section 11.6 is a sample of Tufte’s collection of graphical excel-
lence spanning the eighteenth, nineteenth and twentieth centuries. The book is
available only directly from the publisher; its price is $34.00 postpaid from
Graphics Press, Box 430, Cheshire, Connecticut 06410.

Bill Cleveland’s Elements of Graphing Data was published by Wadsworth in
1985. He describes fundamental principles of constructing graphs and surveys
many graphical methods, classified by the kind of data they display. Fascinat-
ing data sets and marvelous graphs make for delightful browsing, and the
graphical principles merit careful study. If you are going to present and
analyze data in graphical displays, this book is for you.

11.6 Napoleon’s March to Moscow [Sidebar]

How would you summarize Napoleon’s disastrous Russian campaign of
1812? Many programmers would be tempted to produce several inches of line
printer output giving a day-by-day account of personnel, supplies and location
complete with weekly and monthly subtotals highlighted by asterisks. The
French engineer Charles Joseph Minard took a different approach to the prob-
lem in 1861: he summarized the campaign in a single graphic. Edward Tufte
expresses the popular opinion that, “It may well be the best statistical graphic
ever drawn.” 1 spent a pleasant afternoon rendering a slightly updated version
of Minard’s graphic in the Pic language.

The upper band shows the route of Napoleon’s main force from the crossing
of the Niemen River on 23 June 1812 to the occupation of Moscow on 14 Sep-
tember. The width of the band is proportional to the size of the army (reduced
from 422,000 men to 100,000). The lower (dark) band shows the size of the
army during its retreat, from late October to 26 December when 10,000 sur-
vivors straggled -across the Niemen. Two movements to protect the French
flanks are similarly displayed. The numbers near the bands give the size of the
forces in thousands of troops. The graph at the bottom is read right-to-left; it
shows certain low temperatures and dates during the retreat.



NAPOLEON’S RUSSIAN CAMPAIGN: June to December, 1812

Moskva R. MOSCOW

Polotsk

.96
....... . Maloyaroslavets

Smorgoni

40°F
20°F
0°F
—20°F

—40°F

20 .
Bobr ) . Miles
50 : . . f T . 1
: Mogilev . : (0] 50 . 100
Beresina R. Dnieper R. : .
40°F
20°F
0°F
—20°F
—40°F
7 Dec 6 Dec 1 Dec 28 Nov 14 Nov 9 Nov 24 Oct 18 Oct

—-26° —-35° —22° -13° 7° —15° 12° 32° 32°

IT NANTOO

1Nd1NO DIHdVYD

Y4!



126 MORE PROGRAMMING PEARLS COLUMN 11

This graphic relates six distinct variables against the background of the cities
and rivers on a map: the army’s position (its latitude and longitude), its size, its
direction of movement, the temperature, and the date. Together they describe
the destruction of an army and the beginning of the end of an empire.

The Russian strategy was primarily one of attrition, but the graphic shows
several major battles. Borodino on 7 September was claimed as a victory by
both sides. The Russians nearly devastated the rear half of the French army at
Viasma on 3 November, and Krasnoe (near Smolensk) saw a running battle for
four days on 15-18 November. The graphic highlights the deadly crossing of
the Beresina River at Studenka on 26-28 November: a thaw a few days earlier
gorged the river, and the temperature dropped to brutal extremes for the cross-
ing itself and the remainder of the retreat.

The prominent role of temperature in this graph suggests its French origin.
The Russian winter was in fact fairly mild until the cold spell of the last week
in November, at which time the French army was already obliterated. French
accounts of the campaign, starting with the reports of Napoleon himself, blame
the disaster on the cold; Russian descriptions tend not to focus on the weather.

I kept the primary structure of Minard’s graphic, including all of his
numbers (even a few of dubious accuracy). I made several cosmetic changes:
towns are labelled by their modern names, the scale is in miles rather than com-
mon leagues, the temperatures use Fahrenheit’s scale rather than Réaumur’s,
and dates are in English. (As a geographical aid, the city of Kovno is in
Lithuania, about 50 miles northeast of the modern Polish border and 500 miles
west of Moscow.) Tufte reprints Minard’s original graphic and describes it with
verve and appreciation on pages 40 and 41 of his Visual Display of Quantitative
Information. -



COLUMN 122 A SURVEY OF SURVEYS

Everybody knows about surveys. The press bombards us with poll results
ranging from the President’s popularity to preferences among brands of popcorn.
In 1980 I had a chance to learn a little about the mechanism behind those sur-
veys. I installed personal computers in a polling firm and wrote programs to
automate some of the firm’s activities.

The first section of this column gives a brief background on polling. The
next two sections sketch two interesting pieces of the system. The second sec-
tion discusses a little language for describing surveys, and the third section
describes some techniques for graphical display of data that were incorporated
into the company’s reports.

Columns 9, 10 and 11 describe general principles for making computer input
and output fit for human consumption. They illustrate the principles with
examples that might appear rather exotic to some programmers. This column
therefore applies the techniques to a mundane data processing system imple-
mented in the Basic language on a microcomputer.

12.1 The Problems of Polling

I installed the company’s first on-site computers in late 1980: three 48-
kilobyte microcomputers. Some of the tasks to be automated were common to
all small businesses, such as preparing a payroll. Many of the tasks, though,
were quite specialized to polling. Solution 3 in Section 5.2, for instance,
describes a simple program that was useful in drawing random samples.

What follows is a grossly oversimplified sketch of polling. I'll give only the
ideas that are necessary for understanding the interesting issues in language
design and data presentation. There are three primary data processing problems
to be faced:

Input: At some time a human interviewer asks questions of a respondent.
Some organizations administer the survey using a paper questionnaire; the
responses are later manually keyed into a database. Other organizations
administer questions by computers that record the responses online.

127



128 MORE PROGRAMMING PEARLS COLUMN 12

Validation: There are many checks for consistency and completeness. Some
issues are global: Is each respondent counted exactly once in the database?
Other checks deal with a single record: Are all questions answered and all
responses in a valid range? Are “Democrat Only” questions administered to
all and only Democrats?

Tabulation and Output: Once the questionnaire database is complete, the
responses are tabulated and presented in a final report. The body-of the
report is a one-page description for each question. Other material includes a
cover page, table of contents, description of survey methods, and a summary
of primary trends.

The next section shows how little languages are useful in all three tasks, and
the subsequent section describes some graphical techniques that were incor-
porated into the final report.

12.2 The Languages

The system I built has three “generic” programs, one for each of the pri-
mary tasks. The programs are specialized to a particular survey by a descrip-
tion written in a little language, which I'll call BPL for “Basic Polling
Language”. Here is the first part of a BPL description of a survey:

Q1,5 What is your political party?
1 Democrat
2 Republican
3 Other
Q2,6 For whom did you vote in 19847
1 Reagan/Bush
2 Mondale/Ferraro
3 Named Other Candidate
4 pidn’t Vote
5 Don’t Know
Q3,7 Where is your polling place?
1 Named a place
2 Did not name a place
Q4,8 In this election, are you
1 Very interested
2 Somewhat interested
3 Not interested

Each line that begins with a “Q” describes a question: ‘Question 1, for
instance, is stored in column 5 of each record, and asks the respondent’s politi-
cal party. The next three lines are the three possible responses to the question.
Allowing the user to indent the responses under the question makes the file
easier to read.

The single BPL language serves as the input language for the three different
generic programs.



COLUMN 12 A SURVEY OF SURVEYS 129

Input: An interactive program can administer the survey from a BPL
description and store the results in the database. If an organization uses
paper questionnaires, then the BPL file can be read by a “pretty-print” pro-
gram to prepare the master copy of the questionnaire and by a data-entry
program to describe record formats.

Validation: From a BPL description, a program can ensure that all questions
are answered and that all responses are in a legal range. We’ll see shortly
how another little language can be used to check more subtle constraints.

Tabulation and Output: The BPL description provides the bulk of the input
to the program that produces the final report of a survey. The user specifies
in yet another simple language the titles to appear on the report, which ques-
tions should be cross-tabulated, and headings for the cross-tabulations.

Just as a Fortran description of a computation can be compiled and executed on
many kinds of computers, a single BPL description of a survey can be inter-
preted to perform several different tasks.

I have neglected a ton of details that complicate all survey programs. For
instance, even though the questions were asked in one order, the user might
want them to appear on the output in a different order (say, from greatest to
least frequency of response). We’ll see several other complications shortly.
When 1 first designed the program, I sketched half a dozen bells and whistles
before | realized that such was the way of folly: I could never anticipate all the
options a user might desire, and any program that dealt with all options would
be a rat’s nest of code.

I therefore looked for a general mechanism that could handle the problems,
and finally settled on a construct I called pseudocolumns. The “real” data was
stored in columns 1 through 250 of the input record. As each record is read,
the program generates pseudocolumns starting at column 251. The user defines
pseudocolumns in a second little language. The BPL description we saw earlier
states that column 5 contains party information in the order Democrat, Republi-
can, Other. To print Republicans before Democrats, one could define column
251 as follows:

define 251
1 if 5 is 2 # Republican

2 if 5 is 1 # Democrat
3 otherwise # Other

As in Pic, the # character introduces a comment. The user can now refer to
column 251:
Q1,251 What is your political party?
1 Republican

2 Democrat
3 Other

Another common task is collapsing fields. For instance, the user might wish



130 MORE PROGRAMMING PEARLS COLUMN 12

to collapse the three age brackets 21-25, 26-30 and 31-35 into the single
bracket 21-35. If column 19 contains age in S-year clumps, one can make
coarser grains in pseudocolumn 252:
define 252 # age, bigger lumps

1 if 19 is 1 # below 21

2 if 19 is 2,3,4 # 21-35

3 if 19 is 5,6,7 # 36-50

4 otherwise # over 50

Pseudocolumns have a more sophisticated application in identifying ‘“high-
propensity” voters, who are most likely to show up at the polls:
define 253 # 1 if high-propensity

1if 6 is 1,2,3 and 7 is 1 and 8 is 1,2
2 otherwise

This column is one if and only if the respondent remembered his or her 1984
candidate (column 6), could name his or her polling place (column 7), and is
interested in this election (column 8). This illustrates the most complex form
for a pseudocolumn; it is similar to the *“conjunctive normal form” found in
boolean algebra.

Pseudocolumns have handled all the problems I knew about during the
design phase and many others that I never would have dreamed of. Although
the mechanism is quite general, it was easy to implement. The descriptions are
read and stored by 90 lines of Basic code, and are interpreted by just 11 lines of
Basic code.

There are many ways to process survey data without using little languages.
Before I designed this system, I skimmed a college-level textbook on processing
and analyzing public opinion surveys. The authors describe the problems of
input, validation, and tabulation, and suggest writing a new program from
scratch for each task for each survey. They even provide flowcharts and sample
Fortran code. That approach might work in a college (it would certainly pro-
vide employment for generations of computer science majors), but it is out of
the question for a small company.

At one point I seriously considered building an interactive program. It
sounded easy at first: tell me the question, tell me the responses, now to the next
question. As I explored further, though, I realized that I was designing large
portions of a text editor. (I want to change part of question 35. Which part?
A response. Which response? 3, I think, but let me see them all. Oops, 4.
Change “Smith” to “Smythe”, and leave the rest alone....) 1 finally made pro-
gress by abandoning the interactive approach and thinking about the problem as
designing a little language to describe surveys (and leaving the editing to the
standard text editor!). _

Once a programmer has settled on the general approach, there remains the
task of designing the little language. The company I worked for had previously
used a generic tabulation program that read both its input and the questionnaire



COLUMN 12 A SURVEY OF SURVEYS 131

data base from punched cards. The survey described earlier would be presented
to that program as follows:

QS0053001What is your political party?
QS0063002For whom did you vote in 19847
QS0073003Where is your polling place?
Qs0083004In this election, are you
ST005200 1Democrat

ST0052002Republican

ST00520030ther

ST006200 1Reagan/Bush
ST0062002Mondale/Ferraro
ST0062003Named Other Candidate
ST0062004Didn’t Vote

ST0062005Don’t Know

ST0072001Named a place

ST0072002Did not name a place
ST0082001Very interested
ST0082002Somewhat interested
ST0082003Not interested
ST0054004Total Responses
ST0064006Total Responses
ST0074003Total Responses
ST0084004Total Responses

Lines that begin with “QS” describe a question, and “ST” or “stub” lines
denote a response. The mysterious 2’s, 3’s and 4’s encode some of the bells and
whistles handled in my program by pseudocolumns.

Little languages are not all created equal. This one made life easy for the
programmer (who wrote in assembly language, in case you couldn’t guess) but
difficult for the user. The BPL language contains almost the same information,
but in a more rational format. This description has all questions precede all
answers, the way the machine stores them. BPL places them the way the user
thinks of them, with the responses right after the question. This description
uses vile fixed-column input; BPL uses free-format input, which humans deserve.
Since all questions have a “Total Responses” line, BPL supplies it.

The linguistic view made the new program easier to use than its mainframe
predecessor. It took employees about two working days with a card punch to
describe a survey for the old program, and several computer runs to debug it.
The same job takes just two hours with the new program, and most inputs run
the first time.

12.3 The Pictures

When the firm conducts a survey, it has a lot of data to summarize. A typi-
cal political study polls, say, eight hundred respondents and asks seventy ques-
tions of each. The main body of the final report contains one page for each
question, with percentages on the various answers for the entire population and
for certain subpopulations, such as Republicans, Democrats, males, and females.



132 MORE PROGRAMMING PEARLS COLUMN 12

Although some details are of great interest, the sheer bulk of the report is a
barrier to many readers. The report therefore has a brief “overview” section.
I’ll now sketch the original overview and its new, graphical form.

Before summarizing data one must decide what trends the reader wants to
see. Typical political clients care about such issues as geographical areas of
strength and comparison with past perceptions. This section will focus on a
dimension that attracted a great deal of media attention in the mid-1980’s: the
“gender gap” between the political opinions of men and women. The data is
from a late-1983 poll of 800 voters in the State of New Mexico.

One series of questions concerned the potential 1984 presidential race
between incumbent Republican President Ronald Reagan and several possible
Democratic candidates. (For whom would you vote if Reagan were to run
against Mondale? Against Glenn? Against Hart?) The data on several pages
of the report had previously been summarized in a one-page, typewritten table:

Reagan Democrat Don’t Know
Walter Mondale

Total 49.4% 36.6% 14.0%

Male 58.1% 30.3% 11.7%

Female 40.6% 43.1% 16.4%
John Glenn

Total 48.0% 38.4% 13.5%

Male 54.6% 34.7% 10.7%

Female 41.3% 42.1% 16.6%
Gary Hart

Total 50.8% 28.4% 20.8%

Male 58. 1% 25.3% 16.6%

Female 43.3% 31.5% 25.2%

The first line of the table indicates that 49.4% of the respondents preferred
Reagan in a Reagan-Mondale race while 36.6% preferred Mondale and 14.0%
didn’t know. The next line gives similar percentages for male respondents. The
above data is now presented graphically in a group of bar charts:

Democrat Reagan
Mondale [ 37 | | 49
Male 30 | I 58
Female 43 | | 41
Glenn 38 | 1 48
Male 35 | E 55
Female 42 | | 41
Hart 28 | E 51
Male 25 | I 58
Female 3] , | 43




COLUMN 12 A SURVEY OF SURVEYS 133

The dotted line is at the 50% level needed to win the election. The gaps
between the bars reflect the “don’t know” respondents.

Although the facts are present in both representations, the graph highlights
several trends. First, at the time and place of the poll, President Reagan was in
a very strong position. His strength in the total population was right at the fifty
percent needed to carry the state, he had overwhelming strength among males,
and even among females he was quite close to Mondale and Glenn, and stronger
than Hart. A gender gap is evident both in the support of the president and in
a larger “Don’t Know” factor among females.

Bar charts are not a fancy graphical device, but they are fine for this job.
Because they are well known, they are comfortable for almost all readers. Their
simple form makes them easy to specify in yet another little language and easy
to implement on an inexpensive impact printer with a graphics character set.

Another series of questions asked the respondents to rate the overall job per-
formance of several elected officials. The old overview summarized the
responses in a table of percentages; the new overview section gives them in the
following graph.

President Reagan [ 10] 5522 | 8]
Male 2] 5916 8]
Female |£] 5228 Tﬂ
Governor Anaya 3232 131 | 18
Male 5 31[32 16 | | 16
Female | 6| 3332 9 | | 20
Senator Bingaman [ 3] 4310 | ( 40
Male [ 6] 4312 [ 39
Female [9] 486| [ 41
Senator Domenici | 25 | 536 16
Male ™ 27 ] 576 0
Female ] 24 | 49 5] 22
Legend Excellent | Good | Poor },’gg E:g‘;

The second line indicates that 12% of males rated President Reagan's perfor-
mance as “Excellent”, 59% rated him as “Good”, and so forth. Both Senators
received “Very Poor” ratings of two percent or less, so those rcsponses are
lumped in with “Poor”.

This series of bar charts reveals several trends. Governor Anaya was mildly
unpopular at the time. Senator Bingaman was not well known but was popular
among those who did know him. Almost everyone expressed a0 oOpinion about
President Reagan and most were pleased with his performance. Senator
Domenici had wildly enthusiastic support from his constituents. The only



134 MORE PROGRAMMING PEARLS COLUMN 12

gender gap seems to be in the perception of President Reagan and in one larger
“Don’t Know” factor among females.

Like any other data, polls must be understood in context. They reflect the
opinion only of the population sampled and only at a particular time. The sam-
pling itself introduces error. A sentence in the old report declared that “The
sample size of 800 gives a 95% confidence interval of plus or minus 3.4%.” The
new report amplifies that as follows.

One hundred computer experiments were conducted to illustrate the sam-
pling process. Each experiment tossed 800 fair coins (by computer simula-
tion) and recorded the percentage of heads; this corresponds to sampling 800
voters from New Mexico and asking their opinions on a 50%-50% issue. The
results were

<46.5% ( 0)
46.5-47.4 ( 1) X
47 .5-48. (13) XXXXXXXXXXXXX )
48.5-49. (22) XXXXXXXXXXXXXXXXXXXXXX
49 .5-50. (21) XXXXXXXXXXXXXXXXXXXXX

51.5-52, (11) XXXXXXXXXXX
52.5-53.4 ( 5) XXXXX

4
4
4
4
50.5-51.4 (27) XXXXXXXXXXXXXXXXXXXXXXXXXXX
4
4
% (0)

The middle line says that of the 100 experiments, 21 had a percentage of
heads from 49.5% to 50.4%. Seventy percent of the experiments were within
1.5% of the true answer and all experiments were within 3.5% of the true
answer; we can expect similar accuracy from the poll.

The histogram can be produced on a line printer without graphics capabilities.
Clients have reported that the explanation gives them a good intuitive feeling
for the 3.4% confidence interval.

The old overview section of the report consisted of about ten tables of per-
centages, one table per page. The new overview also has ten pages, but now
each page presents its data graphically. The graphs are more expensive to
prepare: the tables required a couple of secretarial hours, while the graphics
require about twice that.

Are graphs worth two extra hours? In-house analysts think so: because of
their familiarity with the graphs, they can see trends at a glance. Regular
clients also find the graphs helpful; comparing the new graphs with the last set
is easy to do visually and shows important changes over the interim. Even one-
time clients find the graphs useful after a minute or two of browsing. An intan-
gible benefit is that the graphs make the report look a little more exciting. The
bottom line is that the company has done away with the tables and now uses
only graphs in the overviews.



COLUMN 12 A SURVEY OF SURVEYS 135

12.4 Principles

Columns 9, 10 and 11 describe general principles for the design of
input/output and illustrate them in colorful contexts. This column has applied
the same principles to a more drab data processing environment, with results
that were far from drab for the company.

Little Languages. Most of the languages in Column 9 were designed by and
for programmers. Programmers spend their lives with languages; they can
excuse awkward syntax here and there, but they demand the power of program-
mability. The languages in Section 12.2 were designed for users with no back-
ground in computing. I therefore bent over backwards to design languages that
would be simple to learn and easy to use.

Graphic Output. Most of the graphics in Column 11 can be produced only
on sophisticated printers driven by advanced software. The bar charts in Sec-
tion 12.3 were easy to render on a simple impact printer that sold for a couple
hundred dollars. And I stuck to a simple and well-known graphical form; no
logarithmic scales for these users!

12.5 Problems

1. These questions deal with the BPL language for describing surveys.

a. The example incorrectly assumed that a question or a response always fits
on a single line. Extend the language to handle multiple-line text.

b. The response numbers are redundant, because they always appear in the
order 1, 2, 3, ... The program could have supplied them; why did the
language insist that the user provide the numbers?

c. Design a program to automate the administration of a survey. Describe a
mechanism to ensure, for instance, that Democrat-only questions are
asked only of Democrats.

2. The pseudocolumns in Section 12.2 were designed to make common condi-
tions easy to specify. It is possible to describe other conditions, but with
greater difficulty. Suppose that columns 25 and 33 both contain values in
the range 1..4; write a pscudocolumn that is 1 if the two columns contain the
same value and 2 otherwise.

3. Use the techniques sketched in Problem 11.1 to improve the graphs in this
column. Consider issues like the following.

a. Medium. Are graphs the best form for the data? On page 179 of his
Visual Display of Quantitative Information, cited in Section 11.5, Tufte
argues that “super-tables” of percentages are more appropriate for data
like polls. (The table he shows is much larger than those in this column
— it contains 410 percentages.) In your opinion, which way tells the
story more clearly? '



136

MORE PROGRAMMING PEARLS

COLUMN 12

Form. An eager employee at the company redrew the first graph in Sec-
tion 12.3 to have this form. Compare the new graph to the original.
Which is best, and why?

Reagan
Mondale
Don’t Know

Reagan
Glenn
Don’t Know

Reagan
Hart
Don’t Know

20.8

16.6

Total Male Female
49.4| 58.1 | 40.6 |
36.6 | 30.3 43.1 |
14.g 11.7 16.4
4@ 54.6 | 41 .3]
38.4| 34.71 42.1 |
13.§| _M 16.6
50.8] 58.1 | 43.3 |
28.4 25.3

31.5
25.2

Execution. What is the best local structure for the graph? For instance,
do the percentages in the bar charts help or hinder?



PART IV: ALGORITHMS

Aeronautical engineers have their paper airplanes, structural engineers have
their balsa wood bridges, and we programmers have our little subroutines.
Every now and then they are useful in real programs, but they always teach us
more about our craft as programmers.

Communications of the ACM publishes three different kinds of descriptions
of programs. “Case Studies” sketch substantial computer systems, such as an
airline reservation system or NASA’s manned space flight software. “Literate
Programming” presents the complete listing of programs that fit in a few pages.
These “Programming Pearls” columns contain a more exhaustive description of
microscopic subroutines.

Column 13 describes Bob Floyd’s algorithms for generating random combi-
nations and permutations. Column 14 uses techniques of numerical analysis to
build an efficient routine for computing Euclidean distances. Column 15
addresses a fundamental problem on ordered sets: selecting the K‘*-smallest
member of a set.

Column 13 was originally published in Communications of the ACM in
August 1986, Column 14 appeared in December 1986, and Column 15 appeared
in November 1985.

137



COLUMN 13: A SAMPLE OF BRILLIANCE

How can a computer deal a poker hand? If we assign each card in the deck
its own integer between 1 and 52, then we can make a hand from a “random
sample” of 5 integers in the range 1..52, for instance,

4 8 31 46 47

(It is important that no number appear twice; I understand that holding more
than one ace of spades can seriously jeopardize a card player’s health.) Ran-
dom samples also arise in applications as diverse as simulation, program testing,
and statistics.

The first section of this column reviews several standard algorithms for ran-
dom sampling. The next section describes an elegant new algorithm by Bob
Floyd (when this column first appeared in Communications of the ACM,
Floyd’s name was on the byline as the “Special Guest Oyster”). The third sec-
tion then describes how Floyd extends his algorithm to generate random permu-
tations of integers.

13.1 A Sampling of Sampling Algorithms

Before we can generate a random sample, we have to be able to generate a
single random number. We will therefore assume that we have a function
RandInt(L,U) that returns an integer uniformly distributed over L..U.}

It is easy to generate a random sequence of M integers in the range 1..V, so
long as we don’t mind duplicates:

for I := 1 to M do
print RandInt(1, N)

T If you don’t have a RandInt function, you can make one using a function Rand that returns a ran-
dom real distributed uniformly in [0,1) by the expression L+int (Randx(U+1—L)). In the unlikely
event that your system doesn’t even have that routine, consult Knuth’s Seminumerical Algorithms.
But whether you use a system routine or make your own, be careful that RandInt returns a value in
the range L..U — a value out of range is a nasty bug.

139



140 MORE PROGRAMMING PEARLS COLUMN 13

When 1 invoked that program with M set to 12 and N set to 3, the code pro-
duced the sequence

313311121131

This very sequence might come in handy for your next tough game of rock-
paper-scissors. More serious applications include testing finite state machines
and testing sorting programs (see Section 3.3).

Many applications, though, require a random sample without duplicates. A
statistical analysis, for instance, might waste work by observing the same ele-
ment twice. Such samples are often referred to as “samples without replace-
ment” or as “combinations”. For the remainder of this column, though, the
word “sample” will denote a random sample with no duplicates. Solution 3 in
Section 5.2 describes an application of a program like this.

Many sampling algorithms are based on this pseudocode, which we’ll call
Algorithm S:

initialize set S to empty
Size := 0
while Size < M do

T := RandInt(1, N)

if T is not in S then

insert T in S
Size := Size + 1

The algorithm stores the sample in the set S. If S is implemented correctly and
if RandInt produces random integers, then the algorithm produces a random
sample. That is, each M-element subset is produced with probability 1/(§).
The loop invariant is that S always contains a random sample of Size integers
in the range 1../V.

There are four operations on the set S: initializing it to empty, testing an
integer for membership, inserting a new integer, and printing all the members.
Column 11 of my 1986 book Programming Pearls sketches the algorithm and
five data structures that can be used to implement the set S: bit vectors,
unsorted arrays, sorted arrays, binary search trees, and bins. It also sketches
several other algorithms for sampling; see Problem 9.

13.2 Floyd’s Algorithm

Algorithm S has many virtues: it is correct, fairly efficient, and remarkably
succinct. It is so good, as a matter of fact, that I thought one couldn’t do
better. I therefore charged ahead and described it in detail in a column.

Unfortunately, I was wrong; fortunately, Bob Floyd caught me sleeping.
When he studied Algorithm S, he was bothered by a flaw that is displayed
clearly when M=N=100. When Size=99, the set .S contains all but one of the.
desired integers. The algorithm closes its eyes and blindly guesses integers until
it stumbles over the right one, which requires 100 random numbers on the



COLUMN 13 A SAMPLE OF BRILLIANCE 141

average. That analysis assumes that the random number generator is truly ran-
dom. For some nonrandom sequences, the algorithm won’t even terminate.

Floyd set out to find an algorithm that uses exactly one call of RandInt for
each random number in S. The structure of Floyd’s algorithm is easy to under-
stand recursively: to generate a 5-element sample from 1..10, we first generate a
4-element sample from 1..9, and then add the fifth element. The recursive algo-
rithm is sketched as Algorithm F1:

function Sample(M, N)
if M = 0 then
return the empty set

else
S := Sample(M-1, N-1)
T := RandInt(1, N)
if T is not in S then

insert T in S
else
insert N in S
return S

We can appreciate the correctness of Algorithm F1 anecdotally. When
M=5 and N=10, the algorithm first recursively computes in S a 4-element ran-
dom sample from 1..9. Next it assigns to 7 a random integer in the range
1..10. Of the 10 values that T can assume, exactly 5 result in inserting 10 into
S: the four values already in S, and the value 10 itself. Thus element 10 is
inserted into the set with the correct probability of 5/10. The next section
proves that Algorithm F1 produces each M-element sample of an /N-set with
equal probability.

Because Algorithm F1 uses a restricted form of recursion, Floyd was able to
translate it to an iterative form by introducing a new variable, J. (Problem 8
and Section 3.2 discuss the problem of recursion removal in more general
terms.) The result is Algorithm F2, which is more efficient than Algorithm S
yet almost as succinct:

initialize set $ to empty
for J :=N- M+ 1 to N do
T := RandInt(1, J)
if T is not in S then
insert T in S
else
insert J in S

Problems 2 and 3 address the data structures that might be used to implement
the set S.

For those who might scoff that Algorithm F2 is “just pseudocode”, the next
program implements Floyd’s algorithm in the Awk language. The associative
arrays described in Column 2 provide a clean implementation of the set S.



142 MORE PROGRAMMING PEARLS COLUMN 13

Awk’s ARGV array allows the program to access command line arguments, so a
sample of 200 elements in the range 1..1000 can be generated by typing
sample 200 1000. Complete with input and output, the Awk program
requires only eight lines:
BEGIN { m = ARGV[1]; n = ARGV[2]
for (j = n-m+1; j <= n; J++) {
t =1+ int(j » rand())
if (t in s) s[j] = 1
else s[t] = 1
}

for (i in s) print i

13.3 Random Permutations

Some programs that use a random sample require that the elements of the
sample occur in a random order.  Such a sequence is called a random permuta-
tion without replacement. In testing a sorting program, for instance, it is impor-
tant that randomly generated input occur in random order; if the input were
always sorted, the test might not fully exercise the sort code.

We could use Floyd’s Algorithm F2 to generate a random sample, then copy
it to an array, and finally shuffle the elements of the array. This code randomly
scrambles the array X[1..M]:

for I : M'downto 2 do
J := RandInt(1, I)
Swap(X[J], X[I])

This three-step method uses 2M calls to RandInt.

After this column originally appeared in Communications of the ACM,
several readers observed that a slight modification of the above code places a
random M-element permutation from the integers in 1..N in X[1.M]:

for I := 1 to N do
X[I] := I
for I := 1 to M do

J := RandInt(I, N)
Swap(X[J], X[I1])

This algorithm is easy to code, but it requires O (V) run time and O (V) words
of memory. Floyd’s algorithms, which we’ll soon see, are more efficient when N
is large compared to M.

Floyd’s random permutation generator is similar to his Algorithm F2. To
compute an M-element permutation from 1..N, it first computes an (M—1)-
element permutation from 1.N—1. (A recursive version of the algorithm does



COLUMN 13 A SAMPLE OF BRILLIANCE 143

not have the variable J.) The primary data structure of the permutation gen-
erator, though, is a sequence rather than a set. Here is Floyd’s Algorithm P:

initialize sequence S to empty
for J :=N-M + 1 to N do
T := RandInt(1, J)
if T is not in S then
prefix T to S
else
insert J in S after T

Problem 5 shows that Algorithm P is remarkably efficient in terms of the
number of random bits it uses. Problem 6 deals with efficient implementations
of the sequence S.

We can get an intuitive feeling for Algorithm P by considering its behavior
when M=N, in which case it generates a random permutation of N elements. It
iterates J from 1 to V. Before execution of the loop body, S is a random per-
mutation of the integers in 1../—1. The loop body maintains the invariant by
inserting J into the sequence; J is the first element when T=J, otherwise J is
placed after one of the J—1 existing elements at random.

In general, Algorithm P generates every M-element permutation of 1../V with
equal probability. Floyd’s proof of correctness uses the loop invariant that after
i times through the iteration, / = N—M+i and S can be any permutation of i
distinct integers in 1..J, and that there is a single way that the permutation can
be generated.

Doug Mcllroy found an elegant way to phrase Floyd’s proof: there is one
and only one way to produce each permutation, because the algorithm can be
run backward. Suppose, for instance, that M=S5, that N=10, and that the final
sequence is

72915

Because 10 (the final value of J) does not occur in S, the previous sequence
must have been

2915

and RandInt returned 7=7. Because 9 (the relevant value of J) occurs in the
4-element sequence after 2, the previous T was 2. Problem 4 shows that one
can similarly recover the entire sequence of random values. Because all random
sequences are supposedly equally likely, all permutations are also.

We can now prove the correctness of Algorithm F2 by its similarity to Algo-
rithm P. At all times, the set S in Algorithm F2 contains exactly the elements
in the sequence S in Algorithm P. Thus each final M-element subset of 1../V is
generated by M! random sequences, so all occur equiprobably.



144 MORE PROGRAMMING PEARLS COLUMN 13

13.4 Principles

Algorithm S is a pretty good algorithm, but not good enough for Bob Floyd.
Not content with its inefficiency, he developed optimal algorithms for generating
random samples and random permutations. His programs are a model of
efficiency, simplicity, and elegance. Section 13.6 sketches some of the methods
that Floyd uses to achieve such programs.

13.5 Problems

1. How do the various algorithms behave when the RandInt procedure is non-
random? Consider, for instance, generators that always return O, or that
cycle over a range that is much smaller than or much greater than M or N.

2. Describe efficient representations for the set .S in Algorithm F2.

3. Algorithms S and F2 both use a set S. Is a data structure that is efficient in
one algorithm necessarily efficient in the other?

4. Complete the proof of correctness of Algorithm P by showing how to com-
pute from a final permutation the sequence of random integer values that
produced it.

5. How many random bits does Algorithm P consume? Show that this number
is close to optimal. Perform a similar analysis for Algorithm F2. Can you
find algorithms that are more efficient?

6. Describe representations for the sequence S such that Algorithm P runs in
O (M) expected time or in O(M log M) worst-case time. Your structures
should use O (M) worst-case space.

7. Implement Floyd’s algorithms in your favorite programming language.

8. Algorithm F2 is an iterative version of the recursive Algorithm F1. There
are many general methods for transforming recursive functions to equivalent
iterative programs; one method is often illustrated on a recursive factorial
function. Consider a recursive function with this form

function A(M)
if M = 0 then

return X
else
S := A(M-1)

return G(S, M)



COLUMN 13 A SAMPLE OF BRIL.LIANCE 145

where M is an integer, S and X have the same type T, and function G maps
a T and an integer to a 7. Show how the function can be transformed to
this iterative form

function B(M)

S := X

for J := 1 to M do
S := G(S, J)

return S

9. Study other algorithms for generating random samples.

13.6 Further Reading

Robert W. Floyd received the ACM Turing Award in 1978. In his Turing
lecture on “The Paradigms of Programming”, Floyd writes, “In my own experi-
ence of designing difficult algorithms, I find a certain technique most helpful in
expanding my own capabilities. After solving a challenging problem, I solve it
again from scratch, retracing only the insight of the earlier solution. I repeat
this until the solution is as clear and direct as I can hope for. Then I look for a
general rule for attacking similar problems, that would have led me to approach
the given problem in the most efficient way the first time. Often, such a rule is
of permanent value.”

Floyd’s key rule in this problem was, in his own words, to “look for a
mathematical characterization of the solution before you think about an algo-
rithm to obtain it.” His key insight dealt with the probability of the algorithm
generating any particular subset. When Floyd calculated the probabilities of
key events in Algorithm S, he noticed that the denominators were powers of N,
while the denominators in the solution were falling factorials. His algorithms
use a simple structure to generate the correct probabilities. When Floyd finally
conceived Algorithm P, he recalls, “I knew it was right even before I proved it.”

Floyd’s 1978 Turing lecture was published originally in the August 1979
Communications of the ACM. It also appears in the ACM Turing Award Lec-
tures: The First Twenty Years: 1966—-1985, which was published in 1987 by the
ACM Press.



COLUMN 14: BIRTH OF A CRUNCHER

Its practitioners give it the glorified name of “numerical analysis”, but for
most programmers the field of number crunching is a lot like plumbing. We
use it often, but we don’t think about how it works until something goes wrong.

I once held that Neanderthal view. I was cured by a fine course in numeri-
cal analysis, which showed me the elegance of the field. My appraisal of the
subject changed from “ugly and useless” to “beautiful and useless”. I have
good numerical routines available in libraries; why would I ever have to make
my own?

I was recently delighted to discover that even for a layman like me, numeri-
cal analysis can be useful. This column tells how I used some elementary tech-
niques to write a simple numerical routine. I replaced a library function with a
version specialized to the problem at hand. The code grew from five lines to a
dozen, but the routine was three times faster and it made a big program run
twice as fast.

14.1 The Problem

I was working on a program to compute travelling salesman tours through
point sets. A procedure-time profile (as described in Column 1) of the
thousand-line program showed that about eighty percent of the time was spent
in a five-line routine to compute distances. The specification called for the
Euclidean distance between points in K-dimensional space. For instance, the
distance between the three-dimensional points (a,, a,, a;) and (b,, b,, b3) is

@ —=b)? + (a,—by)? + (a;—b;)?

Program 1 computes the distance between the points represented by the vectors
Al1.K]and B[1.X]:

.0

Sum :=
for J := 1 to K do
T := A[J] - B[J]
Sum := Sum + T»T
return sqrt(Sum)

nno

147



148 MORE PROGRAMMING PEARLS COLUMN 14

Program 1 has the advantage of simplicity: it is easy to understand. Unfor-
tunately, it has several disadvantages as well. It may, for instance, generate an
arithmetic overflow even if all inputs, intermediate differences, and the output
are in a valid range. Suppose the machine can represent floating point numbers
up to 10°° and consider computing the distance between (0, 0) and
(3x10%°, 4x10%), which is 5x10%°. Squaring the difference 0—3%102° yields
9% 104 and an overflow. This problem, and a similar problem with underflow,
were not important in the program at hand. The context ensured that differ-
ences were neither extremely large nor extremely small.

A second problem with Program 1 is that it is expensive, at least as imple-
mented in C on a VAX-11/750. Section 7.2 sketches the performance of that
hardware/software system: arithmetic operations range in cost from 3.3
microseconds for integer addition to 15.7 microseconds for floating-point divi-
sion. When K=2, Program 1 requires a whopping 1140 microseconds to com-
pute the Euclidean distance between a pair of points in the plane. Straightfor-
ward experiments (like those described in Section 7.2) showed that the lion’s
share of that time goes to computing the square root, which requires about 940
microseconds.

My goal for the program was to provide a faster distance routine. Problem
5.4 illustrates a method that works in many applications: we simply remove the
sqrt from Program 1. If distances are only compared, then the monotonicity
of sqrt makes it superfluous. That wouldn’t work on this job — I needed to
compare sums of distances. I therefore sought a K-dimensional Euclidean dis-
tance routine with the following attributes.

Domain: K is in the range 1..16 (but typically 2, 3 or 4). The coordinates of
points are in single-precision.

Accuracy: the single-precision output should be accurate to the last decimal
digit, or a relative accuracy of about 107",

Robustness: the inputs may be assumed to be well-behaved. Overflow and
underflow are not major concerns.

Performance: the routine should be as fast as possible.

The rest of this column will focus on a routine with these characteristics. Prob-
lem 17 describes an accurate and robust method that is somewhat slower.

14.2 Newton Iteration

Numerical analysts have developed many techniques for finding a zero (or
root) of a function. Given a function f (x), a zero is a real number r such that
f (r)=0. To compute Va we can find a zero of f (x) = x2—a; if ri—a = 0,
then r = \/a. Thus if we can find zeroes we can compute square roots.

So how do we find the zero of a function? We could use our old friend,
binary search. If a>1, then Va is in the range [1,a]. We can successively
halve that range until we get a good approximation to Va. If a=4, for instance,



COLUMN 14 BIRTH OF A CRUNCHER 149

we will examine the ranges [1,4], [1,2.5], [1.75,2.5], [1.75,2.125], .... Numeri-
cal analysts call this the bisection method; each step yields one additional bit of
accuracy in the answer.

A superior scheme was invented by Isaac Newton, an English computer
scientist who also dabbled in mathematics and physics. His method does not
compute a range explicitly, but rather starts with an initial guess x, and gen-
erates a sequence of approximations x;, x5, x3, .... To generate x;,; we must
know both f(x;) and its derivative f'(x;). We then proceed down the tangent
line until it crosses the x-axis:

-’éi PIAN

Intuitively, we are approximating the function locally by a straight line with
equal y-value and slope. Mathematically, we compute the next iteration by

Xi+] = X; _f(x,')/f’(x,')

To use Newton iteration we must therefore be able to compute both the function
and its derivative.

To find Va we will find the zero of f (x) = x?—a, so f'(x) = 2x. Newton’s
iteration formula is then

Xit+] = X; — (x,z—a)/Zx,
=x; — x;/2 + al2x;

= (x; +alx;)/2

For an intuitive appreciation of why the formula works, observe that if x; is too
small then a/x; is too big; the average of the two is a better estimate. (School
children call this the “divide and average” technique.) Thus once we reach the
final answer, we don’t move away: if x; = Va, , then

xip1 = Na +alNa)R=+a



150 MORE PROGRAMMING PEARLS COLUMN 14

Here is a graphical representation of one step of Newton iteration for finding
\/2_, in which a=2, xo=2, and x; = (2+2/2)/2 = 1.5:

4

The figure hints at the rapid rate at which this method convefges, but the story
can’t be told graphically. Here are the next few elements in the sequence x;:
2.0000000000000000
1.5000000000000000
1.4166666666666667
1.4142156862745098
1
1

.4142135623746899
.4142135623730951

The values were computed by the simple “scaffolding” program shown in Solu-
tion 6. The final answer is correct to 16 decimal places.

14.3 A Great Place to Start

There’s the basic idea of Newton iteration. Two problems stand between us
and a program:

What is a good initial value x?

How many iterations should be made until an iteration x; is declared to be
the final answer?

We will explore the second question in the next section; this section concentrates
on the first.

The example in the previous section showed Newton’s method converging
quickly. Each iteration roughly doubled the number of accurate digits. Because
the error at the i+1% step is proportional to the square of the error at the i
step, numerical analysts refer to this as “quadratic convergence”. That behavior
is typical .of the method, so long as two conditions hold. The first requirement is
that the derivative is not near zero. That is always true for square roots, so long
as we compute VO as a special case, but it can be difficult for other functions.

The second requirement for quadratic convergence is that the initial guess
must be near enough to the final root. When the current value is far from the



COLUMN 14 BIRTH OF A CRUNCHER 151

square root, Newton’s method gives only one bit of accuracy per iteration. Here
is the convergence to NGY , starting from 1000:

1000.0000000000000000
500.0010000000000000
250.0024999960000100
125.0052499580004700

62.5106246430170320
31.2713096020621940
15.6676329948683660

.8976423478563581

.0754412405194990

.2830928243925538

.5795487524060154

.4228665795786682

.4142398735915306

.4142135626178485

.4142135623730951

_S A Ak

Beware, though, that for functions less well behaved, Newton’s method will not
even converge if it starts far from the root.

Most general-purpose square root routines get an initial guess by black
magic of some sort, such as extracting the bit field that is the exponent of a
floating point number and halving it to approximate the square root. (Using the
last square root computed is effective in some applications; see Problem 9.) In
the context of a distance function, we can use other information to get the ini-

tial guess. When K is 2, for instance, we wish to compute a=~+/b2+c?:

e

b

We can use the maximum of b and ¢ (b in the above figure) as the initial guess
xo. Thus we have the inequalities

c <b<a=+Vb2+c? < V2xb?: =V2xb

so we know that a is in the range [b, V2 xb].

In higher dimensions we will use as an initial estimate the maximum of the
differences in all dimensions, which we’ll call D. The distance is at least D and
the sum of the squares of the K differences is at most KxD?2, so the distance is
in the range [D, DVK].

14.4 The Code

We can now write a program for computing Euclidean distances. It uses as
its initial value the maximum difference, and iterates until two subsequent
values are reasonably close: until |x;4;—x;|/x;4; is at most one part in ten



152 MORE PROGRAMMING PEARLS COLUMN 14

million, which corresponds to single-precision accuracy on my machine. Here is
Program 2:

T := abs(A[1] - B[1])
Max := T; Sum := T#*T
for J := 2 to K do
T := abs(A[J] - B[J])
if T > Max then Max := T
Sum := Sum + T»T
if Sum = 0.0 then return 0.0
/% f£ind sqrt(Sum), starting at Max =/
Eps = 1.0e-7

Z := Max

loop
NewZ := 0.5 » (Z + Sum/2)
if abs(NewZ-Z) <= Epsx*NewZ then break
Z := NewlZ

return NewZ

A table at the end of this section displays the run time of all programs dis-
cussed in this column. The table shows that Program 2 is about 35% faster
than Program 1 when K=2: the new square root code is indeed faster than the
system routine. When K=16, though, Program 2 is only about 1.5% faster than
Program 1: the bottleneck in this case is not the square root, and finding the
maximum difference chews up most of the time saved by the faster root-finder.
Fortunately, the specifications stated that K tends to be small.

There are two ways to improve Program 2. We'll start by speeding up the
root-finder, and then shortly work on computing the maximum difference. The
current version iterates until it is close enough; the next version will iterate a
fixed number of times guaranteed to produce convergence. That will remove the
cost of loop overhead, of testing for convergence, and of computing the final
iteration that is so close to its predecessor.

So how many iterations do we need? The specifications state that K<16
and that we must compute to single-precision accuracy. Because K<16, we
know that the distance is at most v16 XD (where D is the maximum difference,
max), and therefore in the range [D,4D]. It seemed that the geometric mean
of that range, 2D, would make a good initial value. I used my scaffolding pro-
gram to examine the convergence from that midpoint to the bounds of the
range. I first computed Vi starting from 2:

x abs(x-1.0)/1.0
2.0000000000000000 1.0000000000000000
1.2500000000000000 0.2500000000000000
1.0250000000000000 0.0250000000000000
1.0003048780487805 0.0003048780487805
1.0000000464611473 0.0000000464611473
1.0000000000000011 0.0000000000000011
1.0000000000000000 0.0000000000000000



COLUMN 14 BIRTH OF A CRUNCHER 153

In the next experiment I used the scaffolding program to compute V16 from
the same starting value of 2:

x abs(x-4.0)/4.0
2.0000000000000000 0.5000000000000000
5.0000000000000000 0.2500000000000000
4,1000000000000000 0.0250000000000000
4,0012195121951220 0.0003048780487805
4.0000001858445894 0.0000000464611473
4.,0000000000000043 0.0000000000000011
4.0000000000000000 0.0000000000000000

Because Newton iteration scales linearly, these two cases model computing
\/D_2 and V16D? from any starting value 2D. Problem 15 proves that these
two extremes are indeed the two that are slowest to converge. The right
columns show that after the first step the two inputs give the same relative
error. The process yields the required seven-digit accuracy after four steps. A
loop unrolled four times thus computes an accurate answer when K<16. The
first part of Program 3 is the same as Program 2. Here are the final lines of
Program 3: '

same as Program 2
/+ compute sqrt(Sum), starting at 2.0xMax =/

Max := Max » 2.0

Max := 0.5 » (Max + Sum/Max)
Max := 0.5 » {(Max + Sum/Max)
Max := 0.5 * (Max + Sum/Max)
return 0.5 * (Max + Sum/Max)

This program is about twice as fast as Program 2 when K=4. Problem 11
suggests a further speedup to computing square roots: use table lookup to obtain
a better initial guess. The above numerical examples show that if we can get
the relative error down to 2.5%, then two further iterations suffice for single-
precision accuracy.

The final improvements leave the lofty planes of numerical analysis to
employ a couple of old coding tricks. The first one is specialized to the C
language. Both the real program and the test program implemented a vector of
points as a two-dimensional array of floating point numbers. The final program
introduced two new variables to point to the two Euclidean points being com-
pared, and thus replaced K two-dimensional array accesses with K references to
a one-dimensional vector. The second trick is described in Problem 10; it
exploits an algebraic identity. Because these speedups are quite particular to
the implementation language, Program 4 was timed but it is not shown in a
pseudocode version.



154 MORE PROGRAMMING PEARLS COLUMN 14

The routines are summarized in the table below. The speedup from Program
1 to Program 4 is a factor of 3.5 for K=2, 2.8 for K=4, and 1.9 for K=16.

PROGRAM MICROSECONDS

NUMBER K=2 K=4 K=16
1 1140 1270 2030
2 730 990 2000
3 350 500 1340
4 330 450 1070

14.5 Principles

Distance computations are the workhorse in many programs. The new dis-
tance routine doubled the speed of my 1000-line travelling salesman program,
and similar speedups are common for other geometric programs. Besides pro-
ducing a useful routine, this exercise has illustrated several general principles.

The Importance of Context. The process of producing a fast distance routine
changes dramatically with many factors. For instance, most of the work
described in this column would have been counterproductive on a system with a
hardware square root instruction. For large values of K (say, 1000), the cost of
the square root is relatively minor. For K=2 (that is, for planar points), the
method sketched in Problem 17 is often faster than Program 4 and always more
robust. One must know a great deal of context before starting to code.

Newton Iteration. This technique is often used by numerical analysts, and is
sometimes useful even to mere mortal programmers — see Problem 1.

Coding Tricks. Though the big improvements are usually due to algorithmic
changes, little improvements to code can reduce run time. In this case study,
unrolling the iteration loop was effective: it removes loop overhead, convergence
testing, and an extra iteration. Other tricks include exploiting algebraic identi-
ties, optimizing array references, and storing precomputed answers in tables (see
Problems 10, 11 and 12).

The Role of Libraries. An excellent library is a delight to use. Many
libraries provide accurate and numerically robust code. It is wise to remember,
though, that few routines can be all things to all users. In this case, special-
purpose code was tailored to the context in which it was used to be more
efficient than the general routine. Re-usability and numerical accuracy were
sacrificed for speed. In this case, that was a sound engineering tradeoff.

14.6 Problems

1. Your library square root routine provides only single-precision accuracy, yet
your application requires double precision. What do you do?

2. On a hand-held calculator, repeatedly take the square root of a number
then square it back again. What does this tell you about the calculator?



COLUMN 14 BIRTH OF A CRUNCHER 155

N

10.

1.

12.

Newton’s method does not work when f'(x)=0. This happens for square
roots when computing V0. How does Newton’s method attempt to com-
pute Vo from a starting value of xy=1? Does the algorithm have similar
problems for computing the root of a positive number near zero?

Study the square root routine provided by your system. If it uses Newton’s
method, what is its initial value and how many iterations does it make?

Some computers have fast hardware multipliers and no hardware dividers.
They implement division by multiplying by an inverse. Show how to com-
pute 1/a by using Newton’s method to find a zero of the function
f (x) =a—1/x. Try using Newton’s method to compute cube roots, or to
find roots of arbitrary polynomials.

Implement a “scaffolding” program for Newton iteration. Its input is a
number whose square root is to be taken, a starting value, and the number
of iterations to be performed; provide defaults. Its output is a trace of the
values and the relative errors.

Implement Programs 1, 2, 3 and 4 on your system. How do you test their
correctness? Build a testbed for timing them. How do your results com-
pare to the times presented in this column?

[J. L. Blue]l This column explicitly ignored the problems of overflow and
underflow in summing the squares of differences. Write a program that is
sensitive to those problems.

A common heuristic uses the last square root computed as the starting
value for the next Newton iteration. Measure this in an application. How
many iterations does it make on the average? How does it compare to
other starting values?

Program 3 doubles Max only to halve it in the next statement; use algebraic
identities to speed up those statements:

ax
ax

M Max » 2.0
M 0.

5 » (Max + Sum/Max)

Table lookup can speed up a program by trading space for run time. How
can this technique be used in computing a good starting value? How could
you use table lookup to compute Euclidean distances if the planar point set
has both x and y coordinates in the range 0..9999?

[A. Appell Show how the K absolute values used by Program 2 to compute
Max can be replaced with a single absolute value. (Hint: keep track of the
largest square seen so far.)

Hardware designers have observed that a division and a square root box of
comparable efficiency require comparable amounts of hardware. Show that
square root is about as hard as division in software, too, by sketching a rou-
tine to compute V2 accurate to one million decimal digits.



156

14.

15.

16.

17.

MORE PROGRAMMING PEARLS COLUMN 14

[S. Crocker] Consideration of finite-precision arithmetic complicates many
programs, but makes this square root routine particularly simple:
X := 1
loop
NewX := 0.5 » (X + A/X)

if NewX = X then return NewX
X := NewX

Does it converge on your machine for all nonzero inputs 4? On all
machines? (For a better starting value, see Problem 9.)

[M. D. Mcllroy]l What is the best starting value for Newton’s method for
square roots in a bounded range? Let n be a natural number and let a, b
and r be reals satisfying 0<a<r<b; let R=r2. Given n, a, and b, we
desire to choose a starting value xy=x for the Newton iteration
xi+1 = (x;+R/x;) /2 to minimize the worst-case relative error

max,<,<p |x,,—r|/r

Show that the optimal choice is xo=+/ab, independent of the value of n.

Problem 15 identifies the best starting value for Newton iteration. How
many iterations are required as a function of the number of dimensions (K)
and the desired accuracy?

Moler and Morrison _have described a fast, robust and portable algorithm
for computing vVP2+Q? (see “Replacing Square Roots by Pythagorean
Sums” in the IBM Journal of Research and Development 27, 6, pp.
577-581, November 1983). Their algorithm can be sketched as

P := abs(P); Q := abs(Q)
if P < Q then Swap(P, Q)

if P 0.0 then return Q
repeat IterCount times
R:=Q /P
R := R ¥ R
R :=R / (4 + R)
P := P + 2xR#P
Q := Q@ * R
return P

Its cubic convergence means that the result is accurate to 6.5 decimal digits
after two iterations, to 20 digits after three iterations, and to 62 digits after
four iterations. Its intermediate results avoid overflow and underflow.

a. Use this code in a subroutine to compute planar Euclidean distances.
How does its run time compare to Program 3 when K=2?

b. How can you use this routine to compute Euclidean distances in K
space? How long would your code take when K=1000, and how does
that compare to Program 3?



COLUMN 14 BIRTH OF A CRUNCHER 157

18. How would you write a Euclidean distance routine to run on a parallel pro-
cessor that can perform P arithmetic operations at once?

14.7 Further Reading

There are dozens of excellent textbooks on numerical analysis. Which one is
best for you depends on your desires for breadth and depth and your interest in
mathematics and code.

14.8 A Big Success Story [Sidebar]

The body of this column describes a few hours’ work by an amateur, using
techniques ranging in age from a few decades to a few centuries. We’'ll now
turn to a numerical success story on a grander scale. Everyone knows of the
tremendous advances made in computer hardware over the last few decades.
This section will show how numerical analysis has kept squarely up with that
brisk pace (but with less fanfare in the popular press).

In Section 10.3.C of his Numerical Methods, Software, and Analysis (pub-
lished in 1983 by McGraw-Hill), John Rice chronicles the algorithmic history of
three-dimensional elliptic partial differential equations. Such problems arise in
simulations as diverse as VLSI devices, oil wells, nuclear reactors, and airfoils.
A small pait of that history (mostly but not entirely from Rice’s book) is given
in the following table. The run time gives the number of floating point opera-
tions required to solve the problem on an NXNXN grid.

METHOD YEAR | RUN TIME
Gaussian Elimination 1945 N7
SOR Iteration 1954 8N3

- (Suboptimal Parameters)
SOR Iteration 1960 | 8N*log N
(Optimal Parameters)
Cyclic Reduction 1970 | 8N3log N
Multigrid 1978 60N?

SOR stands for “successive over-relaxation”. The O(N?3) running time of the
Multigrid algorithm is within a constant factor of optimal because the problem
has that many inputs. Even using the 1970 algorithm, the time required to
compute the solution is usually less than the time to read the inputs. Subse-
quent research on the problem has therefore concentrated on numerically robust
solutions to ill-behaved equations.

Computing hardware has also seen dramatic improvements. This table



158 MORE PROGRAMMING PEARLS

COLUMN 14

describes several supercomputers that were the most powerful computing

engines of their time.

MACHINE YEAR MEGAFLOPS
DELIVERED

Manchester Mark I 1947 0.0002
IBM 701 1954 0.003
IBM Stretch 1960 0.3
CDC 6600 1964 2
CDC 7600 1969 5
Cray-1 1976 50
Cray-2 (Estimated; One CPU) 1985 125

The performance is measured in million of floating point operations per second.
I’'ve tried to factor in the “overhead” instructions that accompany the ‘“real”
floating-point operations. Although any such table is necessarily suspect, I think
that no entry in the above table is off by much more than a factor of two.

To compare the hardware and software speedups, let’s consider solving a
smooth problem, Poisson’s equation, using N=64. The bottom curve in the fol-
lowing graph illustrates hardware improvements by running the 1945 algorithm
on various hardware, and the middle curve runs the various algorithms on the
1947 hardware. The top curve shows the combined speedup.

10|2
Total Speedup ... o
s — Second
10° — 3
: — Minute
o o
.® — Hour
Speedup 105 — Algorithms . Run
Factor o R . NP Time
- — Week
.. a° L. IR
10 S e
1 - — Year
ra
— Century
10° —{ @& "Hardware
| l | i
1950 1960 1970 1980

The algorithmic speedup is a factor of a quarter million over a period of
thirty years, and the hardware speedup is half a million over forty years. Each
speedup by itself reduces the run time from centuries to hours. Together, they
multiply to reduce the run time to less than a second. '



COLUMN 15: SELECTION

Suppose you have a list of heights of 101 people. It isn’t too hard to find the
tallest or the shortest on the list, but how would you identify the most mediocre
person (speaking only heightwise, of course)? That is, how would you find the
person on the list who is taller than the fifty shortest people and shorter than
the fifty tallest?

The next section describes the problem around which this column is built:
selecting the X" -smallest member in a set of N elements. A program for the
task is derived in the following section, and the subsequent section analyzes its
rapid running time.

15.1 The Problem

This excerpt from a table entitled “Density of Population by States™ gives
the 1980 figures in persons per square mile.

NAME POPULATION

DENSITY
West Virginia 80.8
North Carolina 120.4
Virginia 134.7
Pennsylvania 264.3
New York 370.6
Maryland 428.7
Connecticut 637.8
New Jersey 986.2
District of Columbia 10,132.3

If you had to choose a single number to characterize the “typical” density in
these nine contiguous areas, what would it be? The average or arithmetic mean
value is 1461.8, but that seems too high: it is greater than eight of the nine

159



160 MORE PROGRAMMING PEARLS COLUMN 15

values. New York’s “middle” value of 370.6 seems more representative; it is
the fifth largest of the nine. Statisticians refer to the M +1%-smallest element
in a set of 2M+1 elements as the median, or its 50" percentile. We’ll use
medians and other percentiles later in this column to analyze data on the run
time of the selection algorithm.

Computer scientists use medians in many “divide-and-conquer” algorithms.
The median partitions a set into two subsets which an algorithm then processes
recursively; Problem 8 uses an algorithm with this structure. Furthermore, the
selection problem is a practical introduction to the theoretical field of com-
parison algorithms; Problem 9 presents two other representative problems.

Let’s turn now from the abstract world of sets to the concrete world of pro-
grams. The input to our selection routine will be the positive integer N, the
array X[1..N1], and the positive integer K <N. The program must permute the
array so that X[1.K-1] < X[K] < X[K+1..N]. At that point, the K-
smallest element in the set resides in its proper position, X[K 1.

15.2 The Program

A simple selection program merely sorts the array X. Unfortunately, this
straightforward solution requires O (N log N) time. In this section we’ll study a
faster algorithm due to C. A. R. Hoare. His method selects the K" -smallest
element in just O(NV) average time. Hoare called his program Find; I'll refer to
the implementation in this column as Select.

Hoare’s selection algorithm is closely related to his Quicksort program. That
divide-and-conquer algorithm can be sketched as

procedure QSort{set S): sequence
if size(S) <= 1 then
return the element in S
else

partition S around a random element
T into subsets A and B such that
elements in A are less than T and
elements in B are greater than T

return QSort(A) followed by T
followed by QSort(B)

The procedure’s input is a set and its output is the sequence of elements in
sorted order. Both input and output structures can be efficiently implemented
in a single array: the sequence in the subvector X[L..U] is represented by the
two integers L and U. .

The Select algorithm has the same structure as Quicksort. Given LK <U,
its first step in finding the proper occupant of X[K1] is to partition the array
around a random element. While Quicksort then recursively operates on both



COLUMN 15 SELECTION 161

subsequences, Select saves time by recurring only on the side that contains K.
Here is Select as it finds the median of a 21-element array:

|21 5 15 7 19 7 (275 65 39 25 73 98 95 53 39 27 63 46 58 82
|27 25(39) 65 73 98 95 53 75 39 63 46 58 82|
|58 73 53 65 39 63 46@98 95 82|

|46 39(53)65 73 63 58]

21 5 15 7 19 7 2227 25 3946 53 65 73 63 58 75 98 95 82

Each level in the picture represents a stage of the algorithm, and the array’s
final configuration is described in the last level. The partitioning element is cir-
cled. Elements to its left have lesser values, while elements to its right are
greater than or equal to the partitioning value.

An iterative selection algorithm can be sketched as follows.

set range to entire array
while range is large do
partition range
repeat on proper subrange

We'll first study the partitioning code, and then turn to the complete algorithm.
The routine partitions the array X[L..U] around the value T=X[L]. After
the 7—1°' step of the iteration, the loop invariant is depicted as

[T] <T —| =T | ? |
i ! ! 1

L M 1 U

The iterative step inspects the I element. If X[I1>T then the invariant
remains true. When X[/]1<T, we regain the invariant by incrementing M to
index the new location of the small element, and then swapping X[M] with
X[I]. The loop terminates with /=U+1, leaving

0 S N N S
’ !
L M U
We then swap X[L] with X[M] to give
| <T [7] 2T |
! P ?
L M U



162 MORE PROGRAMMING PEARLS COLUMN 15

That final swap ensures that we can operate next on L.M—1 or M+1..U. In
both cases, we exclude X[M ], and thereby avoid an infinite loop.

Partitioning around the first element in the array can require excessive time
for some common inputs — for instance, arrays that are already sorted. We do
better to choose a partitioning element at random. We’ll accomplish this by
swapping XI[L] with a random entry in X[L.U], using the function
RandInt(L,U) described in Section 13.1 which returns a random integer in
the range L..U. The complete partitioning code is

Swap(X[L], X[RandInt(L,U)])
M :=L
for I := L+1 to U do
if X[I] < X[L] then
M := M+1
Swap(X[M], X[I])
Swap(X(L], X[M])

Upon termination, we know that X[L.M—1] < X[M] < XIM+1.Ul.

With this partitioning code in hand, we can turn our attention to the com-
plete selection subroutine. Our first version is recursive: Select (L, U, K) parti-
tions the array X[L..U] so that X[L.K—1] < X[KX] < XIK+1.UL If L>U
then the subarray contains at most one element, so we can halt. Otherwise, we
partition the array around the element 7, which is placed in X[M]. The posi-
tion of K relative to M gives three cases:

Case 1 Case 2 Case 3
) v y
| ST 1 s1 ]
L) ! 1
L M U

Case 2 is the easiest. When K =M, the K**-smallest element is in its final place
and the program is finished. When K <M we have Case 1: the K™-smallest
element can’t be in X[M..U], so we exclude that range by recursively operating
on the range L.M—1. Case 3 is similar, and the recursive routine can be
sketched as

procedure Select(L, U, K)
pre L <= K <= U
post X[L..K-1] <= X[K] <= X[K+1..U]
if L < U then

/% Partition X[L..U] so that
X[L..M-1] <= X[M] <= X[M+1..U] »/

if K < M then Select(L, M-1, K)

else if K > M then Select(M+1, U, K)

/% else K = M so finished »/

Since X[M1 is excluded by each recursive call, the program can’t have an
infinite loop.



COLUMN 15 SELECTION 163

The recursive calls in the above procedure are of a special form called tail
recursion: the call is always the last action in a procedure. A tail-recursive pro-
cedure can always be transformed into an equivalent procedure with a while
loop. We’'ll now study an iterative selection subroutine, which we saw earlier in
Section 3.2. It uses L and U as local variables, maintaining the relation that
L<K<U until the final step. After partitioning around X[M ], the code adjusts
L or U (and sometimes both) to narrow the range L..U. Here is the final ver-
sion of the Select program:

procedure Select(K)
pre: 1 <= K <= N
post: X[1..K-1] <= X[K] <= X[K+1,.N]
L :=1; U := N
while L < U do
/+ Invariant: X[1..L-1] <= X[L..U] <= X[U+1..N] »/
Swap(X[L], X[RandInt(L,U)])
M :=L
for I := L+1 to U do
/# Invariant: X[L+1..M] < X[L]
and X[M+1..I-1] >= X[L] =/
if X[I] < X[L] then
M := M+1
Swap(X[M], X[I1])
Swap(X[L], X[MI])
/+ X[1..L-1] <= X[L..U] <= X[U+1..N]
and X[L..M-1] < X[M] <= X[M+1..U] =/
if K <= M then U := M-1
if K >= M then L := M+1

This is the Select algorithm we’ll study in the rest of this column, and it is
fine for typical day-to-day use. There are, however, several improvements that
one should incorporate into an industrial-strength selection routine. Speedups to
the partitioning code are described in Problems 1, 2, 4 and 5.

15.3 Analysis of Run Time

In the previous section we derived a selection routine and informally
analyzed its correctness: it halts on all inputs, and always computes the correct
answer. We’ll turn now to its allegedly linear run time. The intuitive idea
behind the O (NN) average time is that typical iterations remove a substantial
fraction of the range L..U. If each step were to remove half the elements, then
an identity like

N+ NR+NMA+NB+ -+ < 2N

would describe the total run time.



164 MORE PROGRAMMING PEARLS COLUMN 15

This section supports our intuition with observations of the algorithm at
work. In addition to insight about Select, this exercise illustrates general tech-
niques for the empirical analysis of algorithms. (Problem 6 introduces the
mathematical analysis of selection algorithms.)

The first figure in Section 15.2 illustrates the algorithm’s behavior on an
array of 21 elements. That figure is useful as one first studies the algorithm,
but it is too detailed to give much insight into the algorithm’s performance.
Here is a similar picture of an array, and a “stick diagram” representation of
the same computation:

|23 18 45 79 9 40 79 55 §D) 85 82| .
|® 18 45 79 23 40 79 55| .
|55 45 18 23 40 49 79| .

|23 18 @0) 45 55| .
@ 55 —~—t

|9 23 18 40 45 (D 79 79 82 85 82|

The horizontal lines represent the subrange L..U at each iteration, the bullets
represent the partitioning elements, and the vertical line represents K. The stick
diagram contains less information than the array (we don’t know the values
being permuted), but it shows the key issue in performance: the size of the
subarrays throughout the computation.

I generated the figure by adding print statements at key positions in a selec-
tion routine. The resulting output was processed by a program written in the
Grap language for describing graphical displays of data. The array portion of
the figure requires the complete information. The stick diagram, on the other
hand, can be constructed by this program that stores only the values of L and U,
and does away entirely with the array X:

L :=1; U := N
while L < U do
decrement Y
M := RandInt(L, U)
draw a line from L, Y to U, Y
plot a bullet at M, Y

if K <= M then U := M-1
if K >= M then L := M+1

If the array contains no duplicate elements, then randomly choosing the par-
tition element makes it equally likely to wind up in every position between L
and U. For that reason, the above code sets M to a random integer in that.
range. The statistical nature of the algorithm’s performance makes no assump-
tion about the probability distribution of the inputs; the variation is a function
of the randomizing Swap statement. Here are five runs of the program to select



COLUMN 15 SELECTION 165

the median of 101 elements. The integer plotted at the right of each run is the
total number of comparisons used by the process.

ya— . 564
—
— e
 -—
P
. _ 199
:—-‘_
+
_ - 227
————
vl
—
:.
= . 255
"
. _ 356
—

The model of each step halving the range implies that selecting the median
of 101 elements requires roughly

100+50+25+ --- = 200

comparisons. The above figure shows that the model is imperfect yet still use-
ful. The second computation was quite close to the model: each guess came
close to halving the existing interval. The first computation was particularly
unlucky; it chose several partitioning elements near the end of the range. The
next three runs fall between those two extremes. The halving model suggests
that the algorithm uses 2N comparisons. These experiments suggest that the
program runs in C,,.gizxn XN comparisons for some value of C,,.gian>2.

To estimate the constant C,,egian, W€'ll gather data on the number of com-
parisons used by the algorithm. Instead of running the complete algorithm on
real data, we’ll use this “skeleton” program to count comparisons.

CCount := 0

L := 1, U := N
while L < U do
CCount := CCount + U-L

M := RandInt(L, U)
if K <= M then U :
if K> M then L

M-1
M+1

The Select program uses U—L comparisons to partition the U—L+1 elements in
the range L..U. The above program can simulate the computation on a set of
size N=10% in a few dozen steps rather than a few million steps.



166 MORE PROGRAMMING PEARLS COLUMN 15

The next figure plots the results of selecting the median 101 times at five
different values of NN, ranging from 101 to 1,000,001. The left graph presents
the complete data: each mark records the number of comparisons in one experi-
ment divided by N, which estimates the constant C,,4izn- Thus C,edian 2ppP€2Ars
to be between 2 and 6, but the sheer bulk of the data hides the information.

6—f = = = - - = 6
Comps = — - — - F =
per 4% o ! ! - 4
element I I l B
| L | L r
101 10,001 1,000,001 101 10,001 1,000,001
N N

The right graph summarizes the left graph using J. W. Tukey’s “box-and-
whiskers plots”. The middle horizontal line in the box denotes the median of
the samples, and the top and bottom lines denote the upper and lower quartiles
(in this case, the 26"- and 76'*-smallest elements in the set of 101 real
numbers). The lines out of the box show the spread to the 5" and 95 percen-
tiles, and the extreme points beyond those percentiles are plotted explicitly. By
highlighting the important quantiles, the box plot shows that C,, 4., tends to be
between 3 and 4. In 1971, Knuth showed mathematically that its average value
tends to 3.39 as N grows large. The five medians in the right graph are, in
increasing order, 2.90, 3.28, 3.24, 3.37, and 3.32.

So far we have concentrated on computing the median. The next graph
presents data on selecting the K* value, for K = 1, 100,001, 200,001, ...,
1,000,001 and N fixed at 1,000,001. It suggests that the median is the most
expensive to compute, while other values tend to require fewer computations.

|
500,001 1,000,001 500 001 1,000,001

K K

—

The box-and-whiskers plot in the right graph presents the information morel
clearly. We already knew that the median requires about 3.4V comparisons.
This graph suggests that the minimum and maximum require about 2NV



COLUMN 15 SELECTION 167

comparisons. It also suggests that the cost is symmetric around the median.
This makes sense intuitively — selecting the K*-smallest is just selecting the
(N—K)"-largest with the comparisons reversed.

So far our analysis of Select has concentrated on the fact that it uses O (V)
comparisons. Because it does only some constant number of other operations
along with each comparison, its total running time is also linear. To gain
further insight I implemented Select in C on a VAX-11/750 and compared it to
the C library subroutine gsort. The system sort required about 100N log, NV
microseconds to sort an array of /V elements, while Select found the median in
about 100N microseconds. For N=100,000, this translates into ten seconds for
Select versus almost three minutes for the sort.

15.4 Principles

We have analyzed two aspects of Hoare’s selection algorithm: its answer is
correct, and it computes that answer efficiently. This exercise illustrates two
important points about the analysis of programs.

A Spectrum of Analyses. There are several reasons why I believe that the
Select program is correct. This column presented both an informal correctness
argument and pictures showing the algorithm at work (generated by the pro-
gram itself). Section 3.2 describes scaffolding for viewing the program at work
and for testing the program. Each of these analyses supports the others: watch-
ing the program at work gives insight into its loop invariant, which in turn is
useful for testing.

I am also convinced that Select runs in O (N) time on arrays with few dupli-
cated elements. This column supports that premise with an informal mathemat-
ical argument (the “halving model””) and a series of experiments observing the
program at work. The experiments progressed from detailed pictures of the
array to “stick diagrams” illustrating the size of the subrange to graphs count-
ing the number of comparisons. Each experiment in the series described more
computations but gave less information about each one. Problem 6 continues
this trend, and shows how abstraction of the program can eventually lead to a
mathematical analysis.

Skeleton Programs. We saw several programs that provide information
about Select without performing all the work of the complete program. Prob-
lem 6 describes several additional programs with this flavor. While Select
would use several billion steps on a set of size one billion, these programs can
gather information on the same computation in just a few dozen operations.
These programs represent important midpoints on the spectrum of analyses
sketched above.

Graphical Methods in Analysis. Graphical output is now available to many
programmers; we should use it to understand our programs. All pictures in this
column were drawn by simple programs (between ten and thirty lines of code).
We understood the correctness of the algorithm with detailed pictures showing



168 MORE PROGRAMMING PEARLS COLUMN 15

the history of the computations and “array boxes’ that illustrated the loop
invariants. Graphical displays allow us to analyze a large volume of experimen-
tal data. The right graph in the last figure, for instance, uses about 150 hor-
izontal and vertical line segments to represent 550 computations that together
represent over a billion comparisons. The mathematical analysis of most algo-
rithms is downright hard, but simulations and pictures are well within the grasp
of most programmers.

15.5 Problems

1. Select partitions about a random element in the subrange. Study the
effectiveness of using other partitioning elements (such as the median of the
first, middle and last elements in the array or an appropriate representative
of a larger sample).

2. The Select algorithm and its derivatives aren’t always the best ways to
implement selection. How would you select the second-smallest element in
a three-element array? What if K=6 and N=11? What if K=1000 and
the V=1,000,000 input values were stored on a reel of magnetic tape?

3. How would you find the median of one million values stored on magnetic
tape if your computer had only one tape drive and about a dozen words of
main memory? How would you use a second tape drive?

4. Although Select runs in O (V) average time, it requires O (V?) time in the
worst case. Describe a selection algorithm with O(V) worst-case time.

5. Perform experiments and display data for the following problems.

a. The discussion of run time concentrated on the number of comparisons
used; that is a good but sometimes imperfect indicator of cost on a real
machine. Implement a selection algorithm and measure its run time.
Any surprises?

b. Delete the randomizing Swap statement from the Select program. How
does the average run time change? Describe an input that achieves the
worst possible run time.

c. The first graph in Section 15.3 held K fixed at (N+1)/2 and varied N,
and the next graph held N fixed at 1,000,001 and varied K. Describe
the function of two variables that tells the average number of comparis-
ons needed to find the K**-smallest element in a set of N distinct ele-
ments. In particular, what is the shape of the curve induced by varying
K when N is fixed? When K is fixed at a constant fraction of N, how
does that curve behave?

d. Our analyses assumed that the input array contained no duplicated ele-
ments. How does Select perform if some array elements appear many
times? How can that performance be improved?



COLUMN 15 SELECTION 169

6. This problem mathematically investigates the performance of Select when
it is called with K =1, that is, when it selects the least element in the array.
The skeleton program that counts comparisons (without actually selecting
the least element) simplifies to

U := N
while U > 1 do

CCount := CCount + U-1
U := RandInt(1,U) - 1

Show that this recursive program computes the same function

function CCount(N)
if-N <= 1 then
return 0
else
return N-1 + CCount(RandInt(0,N-1))

If Cy denotes the average value of CCount (N) after the code is executed,
show that it satisfies the recurrence relation

Co = Cl =0
Cvn=N-1+1/N 3 (G
0<i<N-I
Write a program that computes Cg, C,, ..., Cys. (Hint: first use a table

Cl0..M] and O(M?) time, then make your algorithm run in O(M) time,
and finally remove the table.) Use that program to characterize the
behavior of Cy. One possible use is to run the program to gather data,
while another approach studies its structure to see how to “telescope” the
recurrence analytically.

7. [J. M. Chambers] The Select algorithm ensures that for a single value of
K, X[1.K-11<X[K]1<X[K+1..N], while Quicksort establishes that con-
dition for all values of K. The problem of “Partial Sorting” calls for estab-
lishing the condition for a set of integers in the range 1..N. For instance, in
drawing box plots of 101 values we were interested in the set {6, 26, 51, 76,
96}. Show how to modify the Quicksort/Select idea to compute partial
sorts. Given the input arrays 1 < K[1]1 < K[2]1 < - < KIMIKN
and X[1..N1], the program should establish

X[1.K[1]-1] < x[K[1]] €
XIK[11+1.K[2]-1] < X[K[2]] <
XIK[R2]+1.K[3]1-1] < xXIK[3]l £ - -~

8. For this problem, assume that every element of the array X has two fields:
X[I).key is the key of the I'** element, and X[I].wt is its weight (a positive
real number). Let S denote Z,¢;<ny X[ilwr. The “weighted median”



170 MORE PROGRAMMING PEARLS ' COLUMN 15

problem calls for computing the integer K and partitioning the array such
that these conditions hold:

X[1.K—-1lkey < X[Klkey < X[K+1..Nl.key
> Xlilwt <SP

1<i<K

> Xlilwt < SP2

K<ig<N

Modify Select to perform this task in linear expected time. Show how to
use a solution to Problem 4 as a subroutine to solve this problem in linear
worst-case time. Modify both algorithms to find other “weighted quan-
tiles”: given a real 0<Q <1, find a record such that the weights of lesser
keys sum to at most QS, while the weights of greater keys sum to at most

(1-0)S.

9. Give algorithms for finding both the minimum and maximum elements in a
set and for finding the maximum and second-largest elements. Try to use
as few comparisons as possible.

10. Experiment with other graphical representations of computations. This pic-
ture, for instance, illustrates the computation depicted in the final figure in
Section 15.2. Numbers in that figure are represented here as vertical bars.
Try “animating” such a representation in a simple movie.

. e N
1 1 PRI I W AN 0 IO OO O O I S |

15.6 Further Reading

Hoare originally described Quicksort and Find in one page of the July 1961
Communications of the ACM. He illustrated the young field of program
verification by arguing the correctness of Find in the January 1971 Communica-
tions. Knuth analyzed the run time of the algorithm in his “Mathematical
Analysis of Algorithms” on pages 19-27 of the proceedings of the 1971 IFIP
Congress. In the March 1975 Communications, Floyd and Rivest present a
selection algorithm that uses just N+K +0(/N) comparisons. Their algorithm
is close to the theoretical optimum, and their code runs like the wind.



APPENDIX 1: THE C AND AWK LANGUAGES

Many of the programs in this book are written in an Algol-like pseudocode.
Several places, though, called for real programs. I chose to illustrate the pro-
filers discussed in Section 1 in the C language. The Awk language is used
heavily in Columns 2 and 3, and is used slightly in Columns 1, 9 and 13.

1.1 The C Language

There are many texts and reference manuals for C. The first, and still my
personal favorite, is The C Programming Language by Kernighan and Ritchie,
published by Prentice-Hall in 1978; a second edition appeared in 1988. This
section sketches a few of the C-isms that appear in Column 1.

The statement a=b assigns the value of b to a, and the expression a==b is
true if the two variables are equal. The expression a%b is the remainder when
a is divided by b, so 10%7 is 3. The printf routine provides a formatted
print statement.

The statement i++ increments the integer i. The ++ operator can also be
used in expressions. If j is 6 then the expression x[ j++] yields x[6] and sets
j to 7, while x[++3] sets j to 7 and yields x[7]. The decrement operator —-
is similar: x[--3] sets j to 5 and yields x[5].

The if statement has the form

if (expression) statement
The Pascal loop

for i := a to b do statement
is written in C as

for (i = a; 1 <= by i++) statement

171



172 MORE PROGRAMMING PEARLS APPENDIX 1

1.2 The Awk Language

The definitive reference for Awk is The AWK Programming Language by
Aho, Kernighan and Weinberger, cited in Section 2.6. Much of Awk’s syntax is
borrowed from C. In particular, all of the constructs described in the previous
section also appear in Awk.

Simple Awk programs can perform interesting computations. Here’s a com-
plete program to compute the base-two logarithms of a file of input numbers.

{ print log($1)/log(2) }

Given the input file

2
16
4
10

it produces the output file

1
4
2
3.32193

The program illustrates several important Awk services. The print statement
enclosed in braces is implicitly iterated over all lines in the input file; the pro-
grammer needn’t worry about the details of the input loop. Additionally, Awk
breaks the input lines into fields. The first field is called $1, the second $2, etc.
The expression in the print statement uses arithmetic and the built-in log
function.

Many of the Awk programs that we will study in this book have the follow-
ing structure.

BEGIN { preprocessing }
{ action for each input line }
END { postprocessing }

The preprocessing is done before the first line of the file is read, and the post-
processing is done after the last line has been read. Any of the three parts may
be omitted. Awk uses braces for grouping statements; Pascal uses begin and
end for the task.

In general, an Awk program consists of “pattern-action” pairs. If the input
line matches the pattern on the left, then the code on the right is executed; that.
process is repeated for each pattern on each input line. BEGIN and END are
special patterns that match before and after the file has been read.



APPENDIX 1 THE C AND AWK LANGUAGES 173

Input lines for the next program contain two fields. The first is a positive
number and the second is a string. The output is the maximum number in the
file and its associated string.

$1 > maxval { maxval = $1; maxname = $2 }
END { print "Maximum value: " maxval
print "Associated name: " maxname

}

Awk initializes variables at their first use (numbers to zero, strings to empty),
so the above program needn’t initialize maxval explicitly. The two statements
in the first action are separated by a semicolon; statements on separate lines
don’t require the semicolon.

The next program computes the mean of the numbers in the input file, which
may contain several numbers on a line. When Awk processes the input line, it
stores the number of fields in the variable NF.

{ for (i = 1; i <= NF; i++) {
n++
sum = sum + $i
}
}

END { print "Average of", n, "numbers is", sum/n }

Awk conveniently converts variables between numbers and strings at run time.
In most programs in this book it should be clear which is which; details on the
policy are in the Awk book.

An Awk function is much like a C function, except that it lacks variable
declarations. The way to declare a local variable in a function, therefore, is to
place it in the parameter list. I put the genuine parameters first in the parame-
ter list; local variables come next, separated by two spaces. A function may
return a value with the return statement.



APPENDIX 2: A SUBROUTINE LIBRARY

This appendix contains the subroutine library described in Section 3.3. The
set algorithms operate on the array x[1..n1]. When the program was executed,
all tests were passed.

The selection algorithm select is described in Column 15. The other sub-
routines are derived and formally proved correct in the following sections of my
1986 book Programming Pearls:

FUNCTION ALGORITHM SECTION
NAME
gsort Quick sort ' 10.2
isort Insertion sort 10.1
siftup Heaps 12.2
siftdown Heaps 12.2
hsort Heap sort 12.4
pqinit Priority queue initialization 12.3
pginsert Priority queue insertion 12.3
pqextractmin | Priority queue extraction 12.3
ssearch Sequential search 2.2
bsearch Binary search 2.2

The complete Awk program appears on the following pages. The set algo-
rithms come first, followed by the testing routines, followed by the main routine.

175



176 MORE PROGRAMMING PEARLS APPENDIX 2

# UTILITY ROUTINES AND SET ALGORITHMS

function swap(i, j, t) { # x[i] :=: x[j]
t = x[il; x[1i] = x[j]; x[j] = t

}

function randint(l, u) { # rand int in 1..u
return 1 + int((u-1+1)»rand())

}

function select(k, 1, u, i, t, m) {
# post: x[1..k-1] <= x[k] <= x[k+1..n]
# bugs: n»**x2 time if x[1]=...=x[n]
l=1,u=n
while (1 < u) {
# x[1..1-1] <= x[1..u] <= x[u+1..n]
swap(l, randint(1l,u))
t = x[1]
m=1
for (i = 1+1; 1 <= uj; i++) {
# x[{1+1..m] < £t and x[m+1..i-1] >= t
if (x[i] < t) swap(++m,i)

}

swap(l,m)

# x[1..m-1] <= x[m] <= x[m+1. .u]
if (m <= k) 1 = m+1

if (m >= k) u = m-1

function gsort(l, u, i, t, m) {
# post: sorted(l,u)
# bugs: n**2 time if x[1]=...=x[n]
if (1 < u) {

swap(l, randint(1l, u))

t = x[1]

m =1

for (i = 1+1; i <= u; i++) {
# x[1+1..m] < t and x[m+1..i-1] >= t
if (x[i] < t) swap(++m, i)

}

swap(l, m)

# x{1..m-1] <= x[m] <= x[m+1..u]

gsort(l, m-1)

gsort(m+1, u)



APPENDIX 2 A SUBROUTINE LIBRARY 177

function isort( i, j) {
# post: sorted(1,n)
for (i = 2; i <= nj i++) {

# sorted(1, i-1)

j = i

while (j > 1 && x[3-11 > x[j1) {
swap(j-1, j)
J_—

function siftup(l, u, i, p) {

# pre maxheap(l,u-1)
# post maxheap(l,u)

i=nu

while (1) {
# maxheap(l,u) except between
# 1 and its parent
if (i <= 1) break
p = int(i/2)
if (x[pl] >= x[i]) break
swap(p, i)
i=p

function siftdown(l, u, i, c¢) {

# pre maxheap(l+1,u)
# post maxheap(1l,u)

i=1

while (1) {
# maxheap(l,u) except between
# 1 and its children
c = 2»1i
if (¢ > u) break
if (c+1 <= u && x[c+1] > x[c]) c++
if (x[i] >= x[c]) break
swap(c, i)
i=c

function hsort( i) {
# post sorted(1,n)
for (i = int(n/2); i »>= 1; i--)
siftdown(i, n)
for (i = n; i >= 2; i--) {
swap(1, i); siftdown(1, i-1)
}

function pqinit(i) {
pqmax = i
n=20



178 MORE PROGRAMMING PEARLS APPENDIX 2

function pqginsert(t) ({
# post t is added to set
assert(n < pgmax)
x[++n] = t
siftup(1, n)

function pqgextractmax( t) {
# pre set isn’t empty
# post max is deleted and returned
assert(n >= 1)
t = x[1]; x[1] = x[n--]
siftdown(1, n)
return t

function ssearch(t, i) {

# post result=0 => x[1..n] =t
# 1<=result<=n => x[{result] = t
i=1
while (i <= n && x[i] I= t) i++

if (i <= n) return i; else return 0

function bsearch(t, 1l,u,m) {

# pre x[1] <= x[2] <= ... <= x[n]
# post result=0 => x[1..n] =t
# 1<=result<=n => x[result] = t

l =1 u=n

while (1 <= u) {
# t is in x[{1..n] => t is in x[1..ul]
m = int((1l+u)/2)
if (x[m] < t) 1
else if (x[m] > t) u
else return m

m+ 1
m-1

}
return 0

}

# TESTING ROUTINES

function genequal( i) { # £ill x

for (i = 15 1 <= nj i++) x[i] = 1
}
function geninorder( i) { # £ill x
for (i = 15 i <= n; i++) x[i] = i

}

function scramble( i) { # shuffle x
for (i = 1; i < ny i++)
swap(i, randint(i, n))



APPENDIX 2 A SUBROUTINE LIBRARY 179

function assert(cond) {
if (lcond) {
errcnt++
print " >> assert failed ««<"

function checkselect(k, i) |
for (i = 1; i< k3 i++)

assert(x[i] <= x[k])
for (i = k+1; 1 <= n; i++)
assert(x[i] >= x[k])

function checksort( i) {
for (i = 13 1 < nj; i++)
assert(x[i] <= x[i+1])

function clearsubs( i) { # clear array x
for (i in x) delete x[i]

}

function checksubs{( i,c) { # alters x
# error if subscripts not in 1..n
for (1 = 1; 1 <= n; i++) delete x([i]
for (i in x) c++
assert(c == 0)

function sort() { # call proper sort
if ( sortname "qsort") gsort(1, n)
else if (sortname "hsort") hsort()
else if (sortname "isort") isort()
else print "invalid sort name"

function testsort(name, i, nfac) {

sortname = name

print " pathological tests"

for (n = 0; n <= bign; n++) {
print " n=", n
clearsubs()
geninorder(); sort(); checksort()
for (i = 1; i <= n/2; i++) swap(i, n+1-1)
sort(); checksort()
genequal(); sort(); checksort()
checksubs ()



180 MORE PROGRAMMING PEARLS APPENDIX 2

print " random tests”

nfac = 1

for (n = 1; n <= smalln; n++) {
print " n=", n

nfac = nfacxn

clearsubs()

geninorder();

for (i = 1; i <= nfac; i++) {
scramble(); sort(); checksort()

}

checksubs ()

function search(t) { # call proper search

if (searchname == "bsearch")
return bsearch(t)
else if (searchname == "ssearch")

return ssearch(t)
else print "invalid search name"

function testsearch(name, i) {
Searchname = name
for (n = 0; n <= bign; n++) {
print " n=", n
clearsubs()
geninorder()
for (i = 1; 1 <= n; i++)

{
assert(search(i) == i)
assert(search(i-.5) == 0)
assert(search(i+.5) == 0)
}
genequal()
assert(search(0.5) == 0)

if (n > 0) assert(search(1) >= 1)
assert(search(1) <= n)
assert(search(1.5) == 0)
checksubs( )

BEGIN { # MAIN PROGRAM

bign = 12
smalln = 5
print "testing assert -- should fail"

assert(1 == 0)



APPENDIX 2

print "testing select"
for (n = 03 n <= bign; n++) {

print " n=", n

clearsubs()

for (1 = 1; 1 <= nj i++) {
geninorder()
select (i)
checkselect(i)

}

for (i = 1; 1 <= nj i++) {
scramble( )
select (i)
checkselect(i)

}

genequal()

for (1 = 1; 1 <= n; i++) {
select(i)
checkselect (i)

}

checksubs()

print "testing quick sort"
testsort("gsort")

print "testing insertion sort"
testsort("isort")

print "testing heap sort"
testsort("hsort")

print "testing priority queues"
for (m = 03 m <= bign; m++) {
# m is max heap size
print " m=", m
clearsubs()
pqinit(m)
for (i = 1; 1 <= m3j i++)
pqginsert(i)

for (i =m; i >= 15 i~-)

assert(pgextractmax() == i)
assert(n == 0)
pqinit(m)

for (i = m; 1 >= 1; i--)
pginsert(i)
for (i = m; i >= 13 i--)

assert(pgextractmax() == i)
assert(n == 0)
pqinit(m)
for (i = 1; i <= m; i++)

pdinsert(1)
for (i =m; i >= 1; i~--)
assert(pgextractmax() == 1)
assert(n == 0)
n = m; checksubs()

A SUBROUTINE LIBRARY

181



182 MORE PROGRAMMING PEARLS APPENDIX 2

print "testing sequential search”
testsearch("ssearch")

print "testing binary search"
testsearch{"bsearch")

print "total errors (1 expected):", errcnt

if (errcnt > 1) print ">>>> TEST FAILED <<<<"

}



SOLUTIONS TO SELECTED PROBLEMS

Solutions for Column 1

1. The problem can be rephrased as asking how many assignments this routine
makes after the array X[1..;V] has been sprinkled with random real numbers
chosen uniformly over [0,1].

Max := X[1]
for I := 2 to N do
if X[I] » Max then
Max := X[I]

A simple argument assumes that if statements are executed about half the
time, so the program will make roughly N/2 assignments. 1 profiled the pro-
gram for ten runs with N=1000, and the number of assignments were, in
sorted order:

4 4 5 5 6 7 8 8 8 9

In Section 1.2.10 of Fundamental Algorithms, Knuth shows that the algo-
rithm makes Hy—1 assignments, on the average, where

Hy=1+12+13+ --- +1/N

is the N** harmonic number. For N=1000, this analysis gives an expecta-
tion of 6.485; the average of the ten experiments is 6.4.

2. The following C program implements a Sieve of Eratosthenes for computing
all primes less than n. Its primary data structure is the array x of n bits,
which are initialized to 1. As each prime is discovered, all of its multiples in
the array are set to 0. The next prime is the next 1 bit in the array. The
profile shows that there are 9592 primes less than 100,000, and that the
algorithm made about 2.57N assignments. In general, the algorithm makes
about NV log log N assignments; the analysis involves the density of prime

183



184

MORE PROGRAMMING PEARLS

numbers and the harmonic numbers mentioned in Solution 1.1. Here is the
profiled code:

main()
{ int i, p, n;
char x[100002];
1 n = 100000;
1 for (i = 1; i <= n; i++)
100000 x[i] = 1;
1 x[1] = 0; x[n+1] = 1;
1 p = 2;
9593 while (p <= n) {
9592 printf("%d\n", p);
9592 for (i = 2#p; i <= n; i = i+p)
256808 x[i] = 0;
9592 do
99999 pt+;
99999 while (x[p] == 0);
}
}

For faster implementations of prime sieves, see the Communications of the
ACM papers by Mairson (September 1977), Gries and Misra (December
1978), and Pritchard (January 1981), or Pritchard’s “Linear prime-number
sieves: A family tree” in Science of Computer Programming, vol. 9, pp.
17-35, 1987.

A simple statement-count profiler increments a counter at each statement.
One can decrease both the memory requirements and the run time of a
profiled program by making do with fewer counters. For instance, one might
associate a counter with each basic block in the program’s flow graph. One
can further reduce the number of counters by using “Kirchhoff’s first law”:
if you have a counter for an if-then-else statement and one for the
then branch, then you don’t need one for the else branch.

The for loop in function prime could potentially give an infinite loop. To
show that the loop always terminates, one must prove that if P is a prime,
then there is another prime less than P2. That theorem is true, but the
proof of the theorem is hard.

Solutions for Column 2

3.

In Exercise 2.2.3—23 of his Fundamental Algorithms, Knuth shows how to
print a cycle in the input graph, if one exists.



SOLUTIONS TO SELECTED PROBLEMS 185

4. Here is a cyclic graph induced by a three-dimensional scene.

<
L \\E\\ N

IR

It is cyclic because a must be drawn before b, b before ¢, and ¢ before a. If
each object in the scene is flat (that is, it has a single z value), and all z
values are distinct, then the z values provide a total ordering and the scene
has no cycles.

2

5a.This Awk program inserts 1000 random numbers into an initially empty
binary search tree, then traverses it.

BEGIN { <<<1>>> n = 1000; root = null = -1
for (i = 1; 1 <= n; i++)
root = insert(root, int(nsrand()))
traverse(root); exit
}
function insert(p, x) { <<<11840>>>
if (p == null) { <<<632>>>
val[p = ++nodecount] = x
lson[p] = rson[p] = null
} else if (x < vallpl) { <<<4847>>>
lson[p] = insert(lson[p]l, x)
} else if (x > vallpl]) { <<<5993>>>
rson[p] = insert(rson[pl, x)
} else { <<<368>>> }
return p
}
function traverse(p) { <<<1265>>>
if (p !I= null) { <<<632>>>
traverse(lsonlpl)
print vall[pl
traverse(rson[pl)

}

The numbers were produced by the Awk profiler described in Section 1.4.
The BEGIN block called the insert function 1000 times; it inserted 632
new numbers in the tree and returned 368 times because the number was
there already. Each insertion took about 11.8 recursive calls, on the average.

5b. This Awk program uses depth-first search to solve reachability. The typical
input line contains a predecessor, successor pair; the sequence of pairs defines
a directed graph. (The topological sort program used the same format.)

,



186

MORE PROGRAMMING PEARLS

When the input line is reach x, the program prints all nodes that can be
reached from x, using a recursive depth-first search.

function visit(node, i) {
if (visited[node] == 0) {
visited[node] = 1
print " " node
for (i = 1; i <= succct[nodel]; i++)
visit(succlist[node, i])

}

$1 == "reach" { print "Nodes reached from " $2
for (i in succct)
visited[i] = 0
visit($2)
}

$1 I= "reach" { succlist[$1, ++succct[$1]] = $2

succct[$2] = 0 + succct[$2] # make it exist

}

The AWK Programming Language by Aho, Weinberger and Kernighan
(cited in Section 2.6) presents algorithms for random sentence generation in
Section 5.1 and a depth-first-search implementation of topological sort in
Section 7.3.

Associative arrays can be implemented with data structures for “symbol
tables”. Relevant structures include binary search trees and sorted and
unsorted sequences. The method of choice in most systems, though, is the
structure Awk uses: hash tables. Solutions 13.2 and 13.6 survey several
implementations of symbol tables.

Solutions for Column 3

Solutions 1, 2 and 3 refer to this Awk testbed for experimenting on heaps.

More details on the code can be found in Column 12 of my 1986 book Pro-
gramming Pearls.

function maxheap(l, u, i) { # 1 if a heap
for (i = 2#1; i <= u; i++)
if (x[int(i’/2)] < x[i])
return 0
return 1

}

function assert(cond, errmsg) {
if (lcond) {
print ">>> Assertion failed <<«"

print " Error message: ", errmsg



SOLUTIONS TO SELECTED PROBLEMS 187

function siftdown(l, u, i, ¢, t) {

# precondition maxheap(l+1,u)

# postcondition maxheap(1l,u)
assert(maxheap(l+1, u), "siftdown precondition")

i=1

while (1) {
# maxheap(l,u) except between i and its children
Cc = 2#i

if (¢ > u) break

if (c+1 <= u && x[c+1] > x[c]) c++

if (x[i] »>= x[c]) break

t x[i]; x[i] = x[c]; =x[c] =t # swap i, ¢
i c

}
assert(maxheap(l, u), "siftdown postcondition")

}

function draw(i, s) {
if (i <= n) {

print i ":", s, x[i]

draw(2#i, s " ")

draw(2#i+1, s " ")

}

}
$1 == "draw" { draw(1, "") }
$1 == "down" { siftdown($2, $3) }
$1 == "assert" { assert(maxheap($2, $3), "cmd") }
$1 == "x" { x[$2] = %3 }
$1 == "n" {n= 821}

. The recursive draw routine uses indentation to print the implicit tree struc-
ture of the heap (the second parameter in the recursive is the indentation
string s; each call appends four spaces to it).

. The modified assert routine includes a string variable that provides infor-
mation about the assertion that failed. Some systems provide an assertion
facility that automatically gives the source file and the line number of the
invalid assertion.

. The siftdown routine uses the assert and maxheap routines to test the
pre- and post-conditions on entry and exit. The maxheap routine requires
O(U-L) time, so the assert calls should be removed from the production
version of the code.

. The tests in Appendix 2 missed a bug in my first siftup procedure. I mis-
takenly initialized i with the incorrect assignment i=n rather than with the
correct assignment i=u. In all my tests, though, u and n were equal, so
they did not identify the bug.

. Section 15.3 describes experiments on the running time of Hoare’s algorithm
for selecting the k*#-smallest element in a set.



188 MORE PROGRAMMING PEARLS

8. To test that a sort routine permutes its input, we could copy the input into a
separate array, sort that by a trusted method, and compare the two arrays
after the new routine has finished. An alternative method uses only a few
bytes of storage, but sometimes makes a mistake: it uses the sum of the ele-
ments in the array as a signature of those elements. Changing a subset of
the elements will change the sum with high probability. (Summing involves
problems related to word size and non-associativity of floating-point addition;
other signatures, such as exclusive or, avoid these problems.)

Solutions for Column 4

2. In Section 3.9 of The UNIX Programming Environment (Prentice-Hall,
1984), Kernighan and Pike present a program named bundle. The com-
mand

bundle file1 file2 file3

produces a UNIX shell file. When executed, it writes copies of all the files
in the bundle.

3. A self-reproducing program exists in any universal model of computation.
The proof uses the Recursion Theorem and the s-m-n Theorem of recursive
function theory. Hackers have long delighted in writing self-reproducing
programs in real languages; Fortran and C seem to be particularly popular.
The problem is easier if you allow the program to self-reproduce on the error
output. If you start with a small file (say, the single word junk), and then
iteratively feed the error messages printed by the compiler as input back to
the compiler, the process usually converges quickly.

4. The UNIX file system does not classify files by type, but several programs
use the contents of files as an implicit self-description. The file command,
for instance, examines a file and guesses whether the contents represent
ASCII text, program text, shell commands, etc. In their book cited in Solu-
tion 2, Kernighan and Pike present a program called doctype that reads a
Troff input file and deduces what language preprocessors (such as Pic, Tbl,
etc.) need to be run on it.

5. Examples of name-value pairs include PL/1’s GET DATA statement and
Fortran’s NAMELIST. Arrays and functions both map names to values.

7. A general principle states that the output of a program should be suitable for
input to the program. This is especially important for programs that are.
pipes and in window systems that allow output to be selected and re-entered
as input with a few mouse motions.



SOLUTIONS TO SELECTED PROBLEMS 189

Solutions for Column 5

1. Since the file was so small, I suggested re-keying the data from a readily
available listing. Even I can enter digits at the rate of one per second, which
translates to three records per minute or two hundred per hour. Having a
data entry clerk re-key the data using familiar tools should therefore take
less than two hours and cost less than fifty dollars. An automated solution
would require substantial software on both PCs (I would search hard for
packages before writing code myself), as well as the purchase of modems.
Although the high-tech solution is clearly preferable for large volumes of
data, the simple solution was superior for the problem at hand.

2. Lynn Jelinski received the following note from her father, Geoffrey
Woodard,

According to legend, an apprentice plumber new on the job is sent to look
for a left-handed pipe wrench.

Edison assigned his new employees the job of determining the volume of
a light bulb, which is extremely difficult to calculate from measurements,
but simple to determine by displacement in a graduated cylinder.

Somewhere, I heard that at Bell Labs, the first assignment was to
improve the telephone’s coiled receiver cord. The punch line is that a
one-cent change (a redesign does away with the cord by keeping the
mouthpiece and receiver nearer the line terminus) translates into savings
of millions of dollars. Anyway, be warned.

What similar hazing rituals does (or should) your company have?

3. I was premature in leaping to a computerized solution. As soon as I
regained my wits, I suggested that the psychologist write the six permuta-
tions of {1,2,3} on the six faces of a wooden block, and likewise put the stress
levels on another block. When a subject walked in the room, the experi-
menter could generate the random permutations by rolling the two dice:

213 MLH

132 LHM
123 LMH

Although I was delighted by this simple, elegant and effective solution, the
psychologist really wanted the authority of “The Computer” behind the

experiments. [ wrote the program, on the condition that I could tell the
story in this book.

4. Because sqrt is a monotone increasing function, we can remove the square



190 MORE PROGRAMMING PEARLS

root from the code in the loop, and take a single square root after the loop.
Many programmers have a conceptual block against removing the square
root routine.

Solutions for Column 7

3. On many microcomputer Basic interpreters, the cost of accessing a variable
is proportional to its position in the symbol table. Variables used near the
front of the program are therefore cheaper to access than those first used
late in execution. On machines with instruction caches, a minor change can
slide an inner loop out of the cache and increase total time by twenty per-
cent. The week before I first wrote this column, a colleague squeezed a fac-
tor of ten from an Awk program I had written by changing the quotation
marks surrounding a pattern to be slashes (I didn’t appreciate a subtle
semantic distinction). ‘

4. One could estimate the local death rate by counting death notices in a news-
paper and estimating the population of the area they represent. An easier
approach uses Little’s Law and an estimate of life expectancy; if the life
expectancy is 70 years, for instance, then 1/70 or 1.4% of the population dies
each year.

5. Peter Denning’s proof of Little’s Law has two parts. “First, define A=A/T,
the arrival rate, where A is the number of arrivals during an observation
period of length T. Define X=C/T, the output rate, where C is the number
of completions during 7. Let n(z) denote the number in the system at time
t in [0,T]. Let W be the area under n(t), in units of ‘item-seconds’,
representing the total aggregated waiting time over all items in the system
during the observation period. The mean response time per item completed
is defined as R=W/C, in units of (item-seconds)/(item). The mean number
in the system is the average height of n(¢) and is L=W/T, in units of
(item-seconds) / (second). It is now obvious that L=RX. This formulation is
in terms of the output rate only. There is no requirement for ‘flow balance’,
i.e., that flow in equal flow out (in symbols, A=X). If you add that assump-
tion, the formula becomes L=AXR, which is the form encountered in queue-
ing and system theory.”

6. Peter Denning writes: “Suppose you have a network of servers. Let V;
denote the mean number of times each job uses (visits) server i. Then
Vi+ - - - +Vy denotes the total number of job-steps in an average job. The
overall system throughput, X, is related to the local throughput at server i
by the ‘forced flow’ law: X;=V;xX,. Let R, denote the response time .
experienced by a job and L, denote the average number of jobs in the sys-
tem. Little’s formula says that the system’s response time is Ry=L,/X.
But Ly=L;+ - -+Ly, where L; is the mean number of jobs at server i;



SOLUTIONS TO SELECTED PROBLEMS 191

L;=R;xX;, where R; is the mean response time per visit to server i. Using
X;/Xo=V; from the fixed flow law, you get Ro = R XV |+ - - +RyXVy.
This is intuitively true, but easily and rigorously proved using Little’s Law
twice.”

7. Bruce Weide writes: “In the original case, the ‘system’ is the queue plus the
server. Using the notation of Solution 5, R is the average time a customer
spends in the queue and in service, and L is the average number of custo-
mers in the queue and in service. So by Little’s Law, we know L=RX,
where X is the output rate of the server. But X is also the output rate of the
queue, since a customer goes directly from the queue to the server whenever
another leaves the server. Considering the queue by itself to be the ‘system’
and defining Ly as the average number in the queue and Ry as the average
time spent in the queue alone, we see that Ly=RpX. The desired relation-
ship, then, is that the ratios L/R and Ly /Ry are equal.”

8. Bruce Weide offers this solution. “One way to solve this problem considers
two queueing systems. The first is the queue of jobs awaiting execution, and
the second is the computer system itself. By Little’s Law, the second system
has the output rate of jobs, X = L/R. Here, L=10 jobs (because there is
always a backlog of work, the system will always have the maximum 10 jobs
in it, so 10 is also the average number of jobs in the system). The average
time is R=20 seconds, so X must be 1/2 job per second. This is also the
arrival rate of jobs to the second system — flow balance is satisfied because
L is constant, which means every job completing execution is immediately
replaced by the next job. Now the output rate of the first system must also
be 1/2 job/second. We should therefore expect the 99 jobs ahead of ours to
be out of the way after 198 seconds. Then our job completes 20 seconds
later, for a total wait of 218 seconds.”

Solutions for Column 9

1. Section 6.3 of The AWK Programming Language describes a little language
for generating UNIX sort commands.

2. The UNIX system uses regular expressions in the ed editor and grep pat-
tern matcher.

3. Section 4.1 describes a little language for describing bibliographic references.

4. Section 6.1 of The AWK Programming Language describes an assembler
and interpreter implemented in a few dozen lines of Awk. Stacks are used
in languages ranging from the machine code for hand-held calculators (such
as HP machines) to little languages for typesetting (Postscript) to general-
purpose languages (Forth) to hardware (Burroughs machines).



192 MORE PROGRAMMING PEARLS

6. When Mark Kernighan was 11 years old, he started to write a music pro-
gram in Basic with this structure:

1 ’ Play a tune

100 POKE 36874, 262

110 FOR I=1 to 1000: NEXT I
120 POKE 36875, 183

130 FOR I=1 TO 2000: NEXT I
140 POKE 36875, 190

150 FOR I=1 TO 1000: NEXT I
160 POKE 36874, 240

170 FOR I=1 TO 1000: NEXT I

Line 100 generates a tone by “poking” a value into location 36874, line 110
waits while the tone plays, and line 120 plays a tone through a second gen-
erator by poking a value into location 36875. A nudge from his father,
Brian Kernighan, encouraged Mark to consider the error of his ways. He
then rewrote the program to use the microscopic music language defined in
the remarks.

17 1..99 => Delay
2 7 100..999 => Tone 1
3’ 1000..1999 => Tone 2
10 DATA 262, 1, 1183, 2, 1190, 1, 240, 1,

, 100 READ X
110 IF X >= 100 THEN GOTO 140
120 FOR I=1 TO X*#1000: NEXT I
130 GOTO 100
140 IF X >= 1000 THEN GOTO 170
150 POKE 36874, X
160 GOTO 100
170 * 1000 <= X <= 1999
180 POKE 36875, X-1000
190 GOTO 100

8. Morally acceptable strategies for coping with linguistic mistakes range from
single error detection to multiple error detection to error correction. (Ignor-
ing errors is, of course, grossly immoral and will therefore not be con-
sidered.) Single error detection reports the first error in the input and then
halts; this strategy is easy to implement and useful for debugging. Multiple
error detection is more useful because it flags many errors; it is harder to
implement because the parser must untangle itself from one error before
looking for the next. Error correction does what someone thinks the user
really wanted to do; it is very difficult to implement and can be irksome
when it guesses incorrectly.



SOLUTIONS TO SELECTED PROBLEMS 193

Solutions for Column 10

2. Three variations of selection sort are shown in this figure, in which the array
is represented horizontally and time proceeds down the vertical axis.

- Step N | Heap Heap =
Step 2N Sorted Sorted Sorted
Heap 1 Heap 2 Straight

The left diagram shows a simple Heapsort, which builds the heap by sifting
each element up the partially built heap. The middle Heapsort has the same
second phase, but builds the heap right-to-left by sifting elements down
(Appendix 2 uses this version). The right diagram shows a straight insertion
sort; it does not build a heap, which avoids the construction cost but greatly
increases the cost of each selection.

3. The problem asked how programs should be typeset to achieve the three
goals of correctness, consistency, and clarity.

Correctness. The best way to get a correct program in a document is to
start with a correct program on a computer. Life is easiest when one can
test and typeset the program from the same source file. I do that whenever
possible. In some columns, however, I present the algorithms in a pseu-
docode based on Pascal but I implement and test them in C. I therefore
write the C programs in a form as close as possible to the final pseudocode,
and then use a text editor to make the remaining changes (I know — I
should write a program to do the job).

Consistency. Programmers should be consistent about little details such as
capitalization and indentation. Even better than adhering to your own stan-
dard, follow one that already exists in the field. When I present C programs,
for instance, I try to use the format employed by Kernighan and Ritchie in
The C Programming Language.

Clarity. Many systems, such as Don Knuth’s WEB system, produce clear
programs by varying fonts: bold for keywords, italic for variables,
typewriter for text strings, roman for comments, etc. The programs in
this book are typeset in typewriter font: that fixed-size font reflects what
most programmers (myself included) see on their terminals, and is still read-
able even when shrunk to a fairly small size (see, for instance, Appendix 2),



194 MORE PROGRAMMING PEARLS

Solutions for Column 11

1. The last graph in Section 11.1 places two graphs side-by-side to save space.
Because the graphs have a common x scale and distinct y scales, it would be
more useful to place one graph above the other.

3. The left graph plots weight in pounds as a function of miles per gallon. It
shows a correlation, but fails to suggest a general law.

5000 5000
8 8
[] o [e] o ] L
4000 4 gy o ° °§° H 4000
OOO% jo [}
3000 — o5 o o o L 3000
Weight 2 BQO::g o oc? & S Weight
o
2000 — °8 8, °°8 ° o °0® s ° — 2000
1000 — — 1000
0 — | I R — 0
10 20 30 40 O 0.02 0.04 006 008 0.1
Miles per Gallon Gallons per Mile

Paul Tukey of Bell Communications Research suggested that we should
instead plot weight as a function of gallons per mile, the reciprocal of
mileage. His plot is presented in the right graph. It shows that the two
variables are related almost linearly, which explains a hyperbolic trend in the
left graph. Furthermore, the regression line passes through the origin. The
two outliers near 4000 pounds and 21 mpg (roughly .048 gallons per mile)
are the Oldsmobile 98 and the Cadillac Seville. They are heavier than other
cars with similar mileage ratings, or alternatively, they have excellent
mileage compared to other cars of their weight.

4. Solution 3 shows that re-expressing coordinate axes so that data points lie
near a straight line can make a relationship more obvious. We will consider
the relationship y=axx®. Taking the logarithm of both sides of the equa-
tion gives

logy =loga+ blog x
If we plot the curve on the new axes x'= log x and y’'= log y then we see
the linear relationship
y'=loga + bx'
Plotting the relationship y=axb* with y transformed to y' = log y gives

y'=log a + (log b)x



SOLUTIONS TO SELECTED PROBLEMS 195

For the relationship y = avx+b we re-express x'=vx so y=ax'+b. For
more details on transforming axes to highlight relationships, see J. W.
Tukey’s Exploratory Data Analysis, published in 1977 by Addison-Wesley;
Chapters 5 and 6 are especially relevant.

5. This Basic program displays the random number generator RND (1), which
returns a pseudo-random real chosen uniformly between zero and one. It
divides the unit interval into the number of bins specified by the user, and
then grows a histogram of the number of randoms in each bin (the array ele-
ment B (I) counts the randoms in the I** bin).

10 INPUT "Bins"; N

20 DIM B(N-1) ’ N bins, O..
30 FOR I=0 TO N-1: B(I)=0:
40 CLS ’ Clear screen

50 I=CINT(N*RND(1))

60 B(I)=B(I)+1

70 SET(B(I),I)

80 GOTO 50

N-1
NEXT I

The SET subroutine turns on the pixel specified by its two parameters, and
CINT truncates a real number (so CINT(7.9) is 7). The infinite loop in
lines 50 through 80 is terminated by hitting “BREAK” or by accessing a
pixel off the screen (although infinite loops are usually poor practice, I find
them handy for quick programs like this). The Basic system I tested exhi-
bited appropriate behavior: the bin sizes were close to one another, but not
too close.

Solutions for Column 12

1b.1t is easy for the user to supply the response numbers, and their presence
makes it more convenient to look up particular responses in a hard-copy list-
ing of a survey description.

3b. Even though the new graph contains the same information as the first graph
in Section 12.3, I find the old version superior in several ways. The new ver-
sion has some minor problems that could be fixed easily. Aligning the
numbers at the left of their respective boxes would reduce visual clutter and
make them easier to compare. Rounding to integer percentages would also
reduce clutter, without sacrificing significant information.

Small fixes can’t solve the main problem with the new graph: its basic form
is clumsy. It has half again as many boxes as its predecessor, and their
placement makes them more difficult to compare. Quantitatively, the previ-
ous graph uses a single line to denote 50%; this graph would require three
lines for the same job. The first graph grouped the data in the same vertical
order as the other graphs (Total, Male, Female) so the reader can transfer
that pattern among the various graphs, while this graph requires a new



196 MORE PROGRAMMING PEARLS

3c.

pattern. Although the person who prepared the new graph was excited by its
razzle-dazzle, the users found it cluttered and distracting. The company
went back to the old form.

John Tukey of Bell Labs and Princeton University kindly commented on the
second bar graph in Section 12.3. He had several suggestions regarding the
execution of the graph. Since the “Don’t Know” bars point towards the
“Poor” and “Very Poor” bars, the space between them seems to be
significant (the first graph in Section 12.3 uses such a space to represent a
quantity). Because the space has no significance in this graph, Tukey sug-
gested that the “Don’t Know” bars point right to remove the implication.
The “Excellent” and “Very Poor” categories represent strong feelings that
are not emphasized in the above graph; Tukey proposed shading those bars
to increase their visual impact. Finally, he suggested that reducing the size
of the numbers would reduce graphical clutter without decreasing the reada-
bility of the graph.

Tukey also suggested a fundamental change in the form of the graph to
underscore the two parts of its message: the relative rating of the various
officials and the “gender gap” between the perception of men and women.
He suggested regrouping the bars in the graph to tell those two stories in
order. Combining his ideas yields the following graph, which I think is far
superior to mine.

President Reagan
Senator Domenici 25
Senator Bingaman
Governor Anaya

55]22 -8 S

53)6] 16
45]10 | 40
32[32 B EEET

Reagan, Males 12 59|16 8 5
Reagan, Females 8 52(28 7 5
Domenici, Males 27 57]6| 10

Domenici, Females 24 E 22

Bingaman, Males 6 43[12 | 39 |
Bingaman, Females 5 48(6| 41 [
Anaya, Males 5 31|32 16 [ 16
Anaya, Females 6 33(32 9 20

Legend BN O [ P M [DoriKoov]

Excellent Very Poor



SOLUTIONS TO SELECTED PROBLEMS 197

Solutions for Column 13

2. Bob Floyd described several possible data structures to implement the set S
in Algorithm F2: “A bit array is appropriate if /V is no more than perhaps
100 M; if b is the number of bits per word, then the run time is virtually
constant at O(M) + O (N/b).

“For larger IV, use an array of size near M indexed by the high order bits of
the data, of pointers to sorted linked lists containing (the low order bits of)
the data. Mean execution time is O(M), variance is O(M), and maximum
is O(M?).

“A cautious implementation uses a balanced ordered tree. Mean and worst-
case times are O(M log M), with small variance.”

3. A data structure that is efficient for Algorithm S might be slow when used in
Algorithm F2. When M=N, for instance, a binary search tree gives loga-
rithmic expected search time in Algorithm S. In Algorithm F2, though, the
elements are inserted in increasing order, so the binary search tree degrades
into a linked list with linear search time.

5. Any algorithm for generating a random M-element permutation from 1..N
must use at least

N
logy (N X N=1X +++ x N=M+1) = 3 log, I
I=N-M+1

random bits. Algorithm P consumes

N
> log, I ]
I=N—-M+1

random bits, so it is within M bits of optimal.

Doug Mcllroy developed this algorithm to store the G-th combination of M
of N items in array A:

procedure Comb(N, M, G, A)
D := 1
while M > 0 do
T :=C(N-D, M - 1)
if G - T < 0 then

M:=M -1
A[M] := D
else
G :=G-T
D :=D + 1

The function C(N,M) returns (§y). Both the array 4 and the integer G use
a “zero-origin’: the array is indexed over 0..M —1 and the first permutation



198 MORE PROGRAMMING PEARLS

corresponds to G=0. One can therefore generate a random M-element sub-
set of 1..IV with the call

Comb(N, M, RandInt(0, C(N,M)-1), A)

This method uses precisely the optimal number of random bits.

Floyd writes, “An appropriate data structure for the sequence S in Algo-
rithm P is a hash table with a linked list connecting the entries. If the hash
table size is about 2M, the expected running time is O(M). A cautious ver-
sion of this representation is a balanced ordered tree with a linked list run-
ning through it, for expected and worst case times O(M log M).”

Burstall and Darlington describe a system for transforming recursive pro-
grams in Acta Informatica 6, 1, pp. 41-60 (1976) and in JACM 24, 1, pp.
44-67 (January 1977).

Column 11 of my 1986 book Programming Pearls surveys several algorithms
for generating random samples. It describes, for instance, this program from
Section 3.4.2 of Knuth’s Seminumerical Algorithms:

Select := M; Remaining := N
for I := 1 to N do
if RandReal(0,1) < Select/Remaining then
print I; Select := Select-1
Remaining := Remaining-1

That column also describes several implementations for the set S that is the
primary data structure in Algorithm S.

Solutions for Column 14

1.

Use the library routine for a starting guess. A single iteration of Newton'’s
method will then get very close to the double-precision answer, and two
iterations will certainly do the trick.

One can compute 1/a by using Newton’s method to find a zero of
f (x) =a—1/x. The iteration is x;;; = 2x; + ax?. Here is the convergence
to the inverse of 0.9, starting at 1:

1.0000000000000000
1.1000000000000000
1.1110000000000000
1.1111111000000000
1.1111111111111110
1111111111111

Do you see a pattern in the number of correct decimal digits at each step of
the sequence?



SOLUTIONS TO SELECTED PROBLEMS 199

6. Here is an Awk scaffolding program for studying Newton iteration. A typi-
cal input line to the program has three fields: a real number x whose root is
to be computed, an initial value for the Newton iteration, and the number of
iterations to perform. -

function abs(x) { if (x < 0) x = -x; return x }
{ x = $1
y =X

rootx = sqrt(x)
if (NF > 1)

y = $2
ub = 10
if (NF > 2)
ub = $3
for (i = 1; i <= ub; i++) {

printf "%5d: %25.16f %25.16f\n",
i, y, abs(y-rootx)/rootx
newy = .5%(y + x/y)
if (newy == y) {
print " Converged"
break

}
y = newy

If a number of iterations is not supplied, then the program provides a default
value of ten. (It also stops when the sequence converges.) If a starting
value is not supplied, then the program uses x itself.

8. J. L. Blue describes “A portable Fortran program to find the Euclidean
norm of a vector” that avoids overflow and underflow in ACM Transactions
on Mathematical Software 4, 1, March 1978, pp. 15-23.

9. See Solutions 11 and 12.

10. We can remove the first assignment by replacing Max with 2. 0#Max:
Max := 0.5 # (2.0xMax + Sum/(2.0xMax))
and then algebraically manipulate it to
Max := Max + Sum/(4.0xMax)
to save one multiply and a few percent of the runtime of the routine.
11,12. Andrew Appel replaced K absolute values with a single one by keeping
track of the largest square and then computing its absolute value outside the

loop. (Bob Floyd observes that it might be cheaper to use a starting value
based on the sum of the absolute values.) This code incorporates Appel’s



200 MORE PROGRAMMING PEARLS

speedup and additionally uses table lookup for a good starting value. It is
about ten percent faster than Program 4.

MaxT := T := A[1] - B[1]

MaxT2 := Sum := T»T
for J := 2 to K
T := A[J] - B[J]
T2 := T»T
if T2 > MaxT2 then
MaxT := T

MaxT2 := T2
Sum := Sum + T2
if Sum = 0.0 then return 0.0

if MaxT < 0.0 then MaxT := -MaxT
T := MaxT » DistTabl[trunc(Scalex*Sum/MaxT2) ]
T := 0.5 * (T + Sum/T)

return 0.5 * (T + Sum/T)

It uses a vector of floating point numbers initialized by

float DistTab[Scale..K*Scale]l
for I := Scale to K#Scale do
DistTab[I] = sqrt((I+0.5)/Scale)

I achieved single-precision accuracy with Scale=20. My original code for
initializing the table used the system square root routine and took 0.3
seconds for K=16. I made it an order-of-magnitude faster by using the last
square root computed as a starting guess and applying three Newton itera-
tions.

14. W. Kahan'’s lecture notes on “Implementation of Algorithms’ appeared as
Berkeley Computer Science Technical Report #20 and are now available as
National Technical Information Service Report AD-769 124. On page 52 of
Section 19, Kahan shows that the routine in question may not terminate on
an IBM 650; it can fail on other machines, as well.

15. Bob Floyd of Stanford University writes “If the i** approximation is off by
a factor of f, the i+1% is off by a factor of ¢(f) = (f+(1/f))/2, where
¢()=¢(1/f), with smaller values between f and 1/f, larger values outside.
Clearly it is right to minimize the maximum abs log f.”’

Solutions for Column 15

1. Floyd and Rivest’s paper in the March 1975 Communications of the ACM
shows how sampling can be used to yield selection algorithms that are
efficient in both theory and practice.



SOLUTIONS TO SELECTED PROBLEMS 201

2. This loop-unrolled code sorts the array X[1..3] in just three comparisons; the
assert statements show the ordering established after each statement has
been executed.

if X[1] > X[2] then
swap(X[1], X[2])
assert X[1] < X[2]
if X[2] » X[3] then
swap(X[2], X[3])
assert X[1] < X[3] and X[2] < X[3]
if X[1] > X[2] then
swap(X[1], X[2])
assert X[1] < X[2] < XI[3]

This is usually the fastest way to compute the median of three elements. To
find the 1000 -smallest number on a tape of one million elements, one could
read the tape while keeping the 1000 smallest numbers seen so far in a heap
with the largest number on top.

3. A randomized binary search finds the median value of N numbers on a tape
using a few variables and O(log V) passes over the tape. The variables L
and U are lower and upper bounds of the range known to contain the
median; they are initially the minimum and maximum elements in the set.
Each stage of the algorithm makes two passes over the tape. The first pass
stores in the variable M a random integer on the tape in the range L..U (the
first integer in the range is always stored in M, the second element in the
range is stored with probability 1/2, the third with probability 1/3, and so
forth). The second pass over the tape counts how many elements are less
than M and how many elements are greater; M is then stored in either L or
U. The process continues until M is the median value on the tape, which
usually requires O(log V) passes over the tape, for an average total running
time of O(V log N).

A second tape drive reduces the expected run time to O (N) by keeping a
tape that contains only elements currently in the range. Each pass over the
tape consists of three phases. The first phase works as sketched above, the
second phase copies active elements to the second tape, and a third phase
copies them back to the first tape.

4. Blum, Floyd, Pratt, Rivest and Tarjan discovered a worst-case linear-time
selection algorithm in the early 1970’s. Most algorithms texts describe their
algorithm in detail.

6. The variable Cy denotes the average value of CCount (N), the number of
comparisons the selection algorithm uses to find the minimum element in an



202

MORE PROGRAMMING PEARLS

N-element array. This program uses the recurrence relation for Cy given in
the problem statement to print Cy, Cy, ..., Cy.

C[0] := C[1] := 0

print C[0], C[1]

for N := 2 to M do
Sum := 0
for I := 0 to N-1 do

Sum := Sum + C[I]

C[N] := N-1 + Sum/N
print C[N]

Its O(M?) running time can be reduced to O(M) by saving the previous
value of Sum.

C[0] := C[1] := O

print C[0], C[1]

Sum := C[0] + C[1]

for N := 2 to M do
Sum := Sum + C[N-1]
CI[N] := N-1 + Sum/N
print C[N]

The next code does away with the table C[0..M] by storing C[N] in the
variable LastC.

Sum := 0

LastC := 0

print 0, O

for N := 2 to M do
Sum := Sum + LastC

LastC := N-1 + Sum/N
print LastC

One might use this program to examine the behavior of the algorithm exper-
imentally. Alternatively, the structure of the program suggests a summation
formula for Cy (converting the complicated recurrence into a summation is
usually called “telescoping”). The solution is Cy = 2(N—Hy), where Hy
denotes the N** harmonic number

1+12+1/3+ --- +1/N

. Algorithm 410 in the May 1971 Communications of the ACM “partially

sorts” an array; it is due to John Chambers.

The first- and second-largest elements in a set can be found in
N +log; N + O(1) comparisons. Knuth presents this and several other fas-
cinating algorithms for computing order statistics using the optimal number
of comparisons in Section 5.3.3 of his Sorting and Searching.



Adams, J. L. 53

Aho, A. V. vi, 25, 27, 37,99, 101, 172

Alexander 47

Algol 15

algorithm design 3-7, 21, 141-143,
160-163

algorithms see searching, sorting

algorithms, analysis of 22, 140, 150-157,
163-170, 183, 197, 200-202

algorithms, graph 20-24, 184-186

algorithms, selection 30-33, 111,
159-170, 201

analysis, lexical 18, 93-94

analysis, numerical 147

analysis of algorithms 22, 140, 150-157,
163-170, 183, 197, 200-202

analysis, syntax 94-95

Anaya, T. 133

Appel, A. W. 155, 199

Ardis, M. 63

arrays, associative 15-25, 33, 35, 141,
184-186

assembly language 11, 52, 62, 98, 131,
191

associative arrays 15-25, 33, 35, 141,
184-186

audit trails 41

Awk 7,11, 15-25, 28-36, 91-92, 97,
100, 115-118, 141-142, 172-173,
185-187, 190-191, 199

back of the envelope 52, 57, 69-76,
78-79, 189

bar chart graphs 132-133, 136, 196

Basic 97, 127, 130, 190, 192, 195

bears 53

203

INDEX

Bell, C. G. 62

Bentley, J. C. 48

Bentley, J. L. 27, 52, 54, 116, 140, 189

Bentley, J. W. 49

Bernstein, L. 57, 60, 64-65

bibliographies 37-38, 98

binary search 28-30, 52, 69, 105,
148-149, 175, 201

binary search trees 24, 185, 197

Bingaman, J. 133

blood donors 45

Blue, J. L. 155, 199

Blum, M. 201

box-and-whiskers graphs 166

BPL 128-131, 135

Brooks, F. P., Jr. 33, 63-64, 80, 112

Buchanan, J. 118

bug reports 35

bugs 6, 8-10, 28-36, 67, 131, 139, 187,
192

bugs, performance 8, 32, 140, 168, 200

Burstall, R. M. 198

C 3-7,10, 71-72, 153, 171, 183-184
Cadwallader-Cohen, J. B. 77
campaign, Napoleon’s Russian 124-126
Cargill, T. A. 63

Carlson, R. 58

Chambers, J. M. 123, 169, 202
changes, font 108

changes, size 108

Chem 91-92

chemical structure diagrams 91-92
Cleveland, G. 118

Cleveland, W. S. vi, 60, 119, 123-124
Cobol 83



204 MORE PROGRAMMING PEARLS

code tuning 3-7, 51, 61, 6667,
152-154, 199, 201

comments 36, 40-41, 44, 61, 85, 111,
129

compilers 35, 49, 61, 67, 71, 84-87, 91,
93, 98-99

Condon, J. H. 66

confessions 27, 31

consistency 105

Conway, J. H. 25

Conyngham, J. 58

Corasick, M. J. 37

correctness proofs 13, 27, 29-30, 34-36,
111, 140-141, 143-144, 161-162,
184

Crocker, S. 156

Darlington, J. 198

data, self-describing 37-44, 123

data transmission 47-48, 52

databases 38-40, 69

debugging 6, 9, 27-36, 54-55, 60-61,
131, 192

Denning, P. J. vi, 50, 73, 75, 190

design 97, 121, 145

design, algorithm 3-7, 21, 141-143,
160-163

design, document 49, 101-114

Dewdney, A. K. 52

diagrams, chemical structure 91-92

Dijkstra, E. W. 60

direction-field graphs 106-107

distance routines 53, 147-157

document design 49, 101-114

documentation 40, 43, 49, 62, 89, 101

Domenici, P. V. 133

Donner, M. 60

donors, blood 45

dotchart graphs 119-120

Dragon Book 99

Duff, T. 41, 57, 61, 64

Dull, B. C. 12

Edison, T. A. 52

elevators 49

engineering techniques see back of the
envelope, comments, debugging,
design, documentation, graphs,
money, prototypes, scaffolding, test-
ing, tradeoffs

experiments 42-44, 71-72, 164—-167

expressions, regular 94, 191

Fairley, R. E. 63

Farrar, P. 65

Feldman, S. I. 35, 95-96

figures, typesetting 105-107

fingers, ring 45

Finite State Machines 18-20, 24

Flon, L. 18

Floyd, R. W. vi, 137, 139-145, 170,
197-201

font changes 108

Forth 191

Fortran 12, 67, 83, 188

FSMs see Finite State Machines

Furbelow, G. 77-79

Garey, M. R. vi, 59

Gerhart, S. L. 65

Glenn, J. 132

Gordius 47

Grap 116, 164

graph algorithms 20-24, 184-186
graphs, bar chart 132-133, 136, 196
graphs, box-and-whiskers 166
graphs, direction-field 106-107
graphs, dotchart 119-120

graphs, histogram 134

graphs, pie chart 120

graphs, scatterplot 90-91, 116-118, 194
graphs, stem-and-leaf 118

graphs, time-series 119

graphs, ugly 122, 136

Gries, D. 184

Grosse, E. H. vi

Halpern, P. 58

Harrison, W. H. 118

Hart, G. 132

hash search 197

hawks 48

heaps 111-113, 175, 193
Heapsort 42, 111-113, 175, 193
Hilfinger, P. N. 18

Hill, R. 64

histogram graphs 134

Hoare, C. A. R. 160, 170
Hofstadter, D. 69, 75-76
Holzmann, G. vi

Hopper, G. M. 62

hot spots 5, 7-8, 13, 51, 53, 61, 67, 147



Huber, A. 58
Huff, D. 124

insertion sort 42, 193

interactive programs 84, 87, 89-90,
129-130

invariants 143, 161, 167

iteration 104

Jackson, M. A. 61

JCL 83

Jelinski, L. W. vi, 52, 92, 189
Johnson, D. S. vi

Johnson, S. C. 94

Jones, D. 59

Jones, D. W. 61, 64

Kahan, W. 200

Kennedy, J. F. 118

Kernighan, B. W. vi, 7, 25, 34-35, 39,
60, 66, 75, 84-85, 92-93, 96, 99, 104,
116, 171-172, 188, 190, 192-193

Kernighan, M. D. 192

Kleiner, B. 123

Knuth, D. E. 8, 13, 21, 34, 38, 61, 123,
139, 166, 170, 183—-184, 193, 202

Lamport, L. 109, 114

Lampson, B. W. 67

languages, little 39, 42, 44, 83-100,
128-131, 135, 191-192

languages, little see BPL, Chem, Grap,
Lex, Make, Pic, Scatter, Shell, Tbl,
Yacc

languages, programming see Algol,
assembly language, Awk, Basic, C,
Cobol, Forth, Fortran, Lisp, Pascal,
Snobol

LATEX 109

layout, page 108

Leas, D. 11

least-squares regressions 117, 194

Lemons, E. W. 59

Lesk, M. E. 93

Lex 93-98

lexical analysis 18, 93-94

libraries, subroutine 33, 41, 84, 88-90,
154, 167, 175-182, 198

Lisp 11, 62

Little, J. C. R. 73

little languages 39, 42, 44, 83-100,
128-131, 135, 191-192

INDEX 205

little languages see BPL, Chem, Grap,
Lex, Make, Pic, Scatter, Shell, Tbl,
Yacc

Little’s Law 73-75, 190-191

Machines, Finite State 18-20, 24

Mairson, H. G. 184

Make 95-96, 98

Mallory, G. L. 114

management, software 63—65, 69, 77-80

Martin, D. 58, 62-63

Martin, R. L. 52, 62

Mcllroy, M. D. vi, 156, 197

McKeeman, W. M. 62, 65

medians 160

medians, weighted 169-170

Minard, C. J. 124, 126

minimalism 105, 122

Misra, J. 184

Moler, C. B. 156

Mondale, W. F. 132

money 47-48, 51, 71, 73, 78-79, 92,
114, 134

monitors see profilers

Morrison, D. 156

Morrison, P. 70

Morton, M. 61

name-value pairs 37-44, 95, 188
Napoleon 124, 126

Napoleon’s Russian campaign 124-126
Nelson, N.-P. 62

Newton, I. 149, 198

Newton iteration 148-157, 198, 200
nightspots, popular 73

numerical analysis 147

page format 108

page layout 108

pairs, name-value 37-44, 95, 188

Parker, T. 67

parsers 94

partial sorting 169

partitioning routines 111, 161-163, 168

Pascal 13, 72

penicillin 91

Penzias, A. A. vi

percentiles 160

performance bugs 8, 32, 140, 168, 200

Perlis, A. J. 62

permutations, random 34, 53, 142-145,
197



206 MORE PROGRAMMING PEARLS

Pic 84-100

pie chart graphs 120

pigeons 48

Pike, R. 12,52, 99, 188

pipelines 9-10, 40, 90, 111, 115-118

PL/1 188

Plauger, P. J. 39, 66, 104

Polya, G. 50

popular nightspots 73

Postscript 191

Pratt, V. R. 201

prime numbers 3-7, 12, 183

priority queues 175

Pritchard, P. 184

profilers 3-13, 61, 67, 147, 183-184

program verification see correctness
proofs

programming languages see Algol,
assembly language, Awk, Basic, C,
Cobol, Forth, Fortran, Lisp, Pascal,
Snobol

programs, interactive 84, 87, 89-90,
129-130

programs, spelling 18

proofs, correctness 13, 27, 29-30, 34-36,
111, 140-141, 143-144, 161-162,
184

prototypes 11, 23, 30, 35, 51, 64-65, 89,
92, 141 .

provenances 4044

pseudocolumns 129-130, 135

Pythagorean theorem 110

quantiles 160

queues 21-23, 73, 190-191
queues, priority 175

quick tests 4, 32,75
Quicksort 42, 160, 175

random numbers 139

random permutations 34, 53, 142-14S5,
197

random samples 47-48, 139-145,
197-198

Reagan, R. W. 60, 118, 132-133

recursion removal 31, 141, 145, 163

recursion, tail 31, 163

regressions, least-squares 117, 194

regular expressions 94, 191

Rice, J. 157

Rice, S. 110

ring fingers 45

Ritchie, D. M. 59, 119, 171, 193

Rivest, R. L. 170, 200-201

Roosevelt, T. 118

Roueché, B. 55

routines, distance 53, 147-157

routines, partitioning 111, 161-163, 168

run time 3-13, 17-18, 23-24, 33-34, 69,
71-72, 115, 167

Russian campaign, Napoleon’s 124-126

samples, random 47-48, 139-145,
197-198

scaffolding 27-36, 155, 186-187, 199

Scatter 90

scatterplot graphs 90-91, 116-118, 194

Schapira, A. 65

Schryer, N. L. 51, 59

Scribe 67, 101

search, binary 28-30, 52, 69, 105,
148-149, 175, 201

search, hash 197

search, sequential 175

search trees, binary 24, 185, 197

selection algorithms 30-33, 111,
159-170, 201

selection sort 113

self-describing data 37-44, 123

sequential search 175

Sethi, R. vi, 99, 101

Shaw, M. 18, 63, 65

Shell 90

simulations 37, 41-43, 134, 139, 157,
166, 168

Sites, R. L. 8, 10, 64

size changes 108

Snobol 16, 91, 97

software engineering see engineering
techniques

software management 63-65, 69, 77-80

sort, heap see Heapsort

sort, insertion 42, 193

sort, quick see Quicksort

sort, selection 113

sorting 9, 17, 42—44, 47-49, 98, 111,
113, 160, 175, 191, 193

sorting, partial 169

sorting, topological 20-23

space, white 108

spelling programs 18

spots, hot 5, 7-8, 13, 51, 53, 61, 67, 147



spots, popular night 73

square roots 4-7, 53, 72, 147-157, 189

stacks 23, 98

Starmer, C. F. vi, 40

State Machines, Finite 18-20, 24

Steele, G. L., Jr. 61-62, 66

stem-and-leaf graphs 118

Storer, D. 60

Stroustrup, B. vi, 101

structure diagrams, chemical 91-92

Strunk, W., Jr. 104-105, 112

subroutine libraries 33, 41, 84, 88-90,
154, 167, 175-182, 198

supermarkets 75

surveys 47-49, 127-136, 195-196

symbol tables 23

syntax analysis 94-95

Szymanski, T. G. 8

tables 102-104

tables, symbol 23

tail recursion 31, 163

tapes 201

Tarjan, R. E. 201

Tbl 102

testing 8, 23, 27-36, 54, 57, 59-60, 77,
155, 187

tests, quick 4, 32, 75

TEX 101, 109

THESEUS-II 77-79

Thompson, K. L. 58, 119

time-series graphs 119

topological sorting 20-23

tradeoffs 33, 50, 78-79, 101, 197-198

trails, audit 41

transmission, data 47-48, 52

trees, binary search 24, 185, 197

Trickey, H. W. vi, 11

Troff 101

Tufte, E. R. 122, 124, 126, 135

Tukey, J. W. 118, 195-196

Tukey, P. A. 123, 194

typesetting figures 105-107

ugly graphs 122, 136
Ullman, J. D. 99

Vyssotsky, V. A. vi, 59, 67, 77, 79

Washington, G. 118
Weide, B. W. vi, 73, 75, 191

INDEX

weighted medians 169-170
Weinberger, P. J. 10, 25, 59, 172
Weir, W. 60

West Point 48

White, E. B. 104-105, 112
white space 108
Whiteside, B. 66

Whorf, B. 15,112

Whorf’s hypothesis 15, 112
Williams, H. H. 65
Williamson, H. 113

wine cellars 73

Wintz, P. 11

Woodard, G. 189

word counts 9, 17, 115-118
Wulf, W. A. 18, 67

Yacc 94-98

Zerouni, C. 59, 64

207



