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Preface

This is an English version of the book in two volumes, entitled “Keijo Shori
Kogaku (1), (2)” (Nikkan Kogyo Shinbun Co.) written in Japanese. The
purpose of the book is a unified and systematic exposition of the wealth of
research results in the field of mathematical representation of curves and
surfaces for computer aided geometric design that have appeared in the last
thirty years.

The material for the book started life as a set of notes for computer aided
geometric design courses which I had at the graduate schools of both computer
science, the university of Utah in U.S.A. and Kyushu Institute of Design in
Japan. The book has been used extensively as a standard text book of curves
and surfaces for students, practical engineers and researchers.

With the aim of systematic exposition, the author has arranged the book in
8 chapters:

Chapter 0: The significance of mathematical representations of curves and
surfaces is explained and historical research developments in this
field are reviewed.

Chapter 1: Basic mathcmatical theories of curves and surfaces are reviewed
and summarized.

Chapter 2: A classical interpolation method, the Lagrange interpolation, is
discussed. Although its use is uncommon in practice, this chapter is
helpful in understanding Chaps. 4 and 6.

Chapter 3: This chapter discusses the Coons surface in detail, which is one of
the most important contributions in this field.

Chapter 4: The fundamentals of spline functions, spline curves and surfaces are
discussed in some detail.

Chapter 5: This chapter discusses the so-called Bézier curve and surface which
are frequently used in practical applications.

Chapter 6: This chapter deals with B-spline curves and surfaces, which are
more general than the Bézier ones. Special emphasis is placed on
this chapter in this book because B-spline curves and surfaces are
expected to play an important role in the future.

Chapter 7: The last chapter discusses the rational polynomial curves which are
capable of representing conic sections exactly.

The present author has learnt much from the published work of others,
particularly from late Prof. S.A. Coons, Prof. M. Hosaka (Tokyo Denki
University), Prof. A.R. Forrest (University of East Anglia), Prof. R. F. Riesen-
feld (University of Utah), Prof. I. D. Faux (Cranfield Institute of Technology),
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Prof. M.J. Pratt (Cranfield Institute of Technology) and he has drawn exten-
sively on them. He has done his best to give credit where it is due.

Finally, the author’s thanks go to Mr. Harold Solomon for the translation
from the original Japanese.

Hino, Tokyo, September 1988 Fujio Yamaguchi
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On the Symbols Used in This Book

Among the symbols used in these books, several which require caution are
discussed below.

(1) t is the standard symbol for a parameter representing a curve, and u and w
for parameters representing a surface. In some places the length of a curve is
used as a parameter in the discussion; it is s.

(2) Derivatives with respect to parameters other than s, such as ¢, are denoted
by dots (-); derivatives with respect to s are denoted by primes ('). For
example,

P . dpP
=P, —_—=
dt ds

t, u and w can be regarded as time parameters in the motion of mass points.
Since in physics it is customary for derivatives with respect to time to be
denoted by dots, this convention has been followed in the present book.

(3) An ordinary coordinate vector is denoted by a slanted letter, for example P.
A homogeneous coordinate vector is denoted by a vertical letter, such as P.

(4) In mathematical representations of curves and surfaces, a vector that is
given for the purpose of definition is denoted by Q, and a defined curve or
surface vector by P. For example in

P(t)=Hoo(t)Qo+Ho, (1) Qi+ H, o) Qo+ H, (1),

the position vectors Q,, Q, and the tangent vectors Q,, Q, are given, and
the curve P(t) is defined.






0. Mathematical Description of Shape Information

0.1 Description and Transmission of Shape Information

Shapes of industrial products can be roughly classified into those that consist
of combinations of elementary geometrical surfaces and those that cannot be
expressed in terms of elementary surfaces, but vary in a complicated manner.
Many examples of the former type are found among parts of machines. Most
machine parts have elementary geometrical shapes such as planes and
cylinders. This is because, as long as a more complicated shape is not
functionally required, simpler shapes are far simpler from the point of view of
production. In this book, these shapes are called Type 1 shapes. Meanwhile,
the shapes of such objects as automobile bodies, telephone receivers, ship hulls
and electric vacuum cleaners contain many curved surfaces that vary freely in
a complicated manner. Let us call these Type 2 shapes.

A designer draws his concept of a shape on paper and proceeds with the
design while checking it against the shape that he has drawn. Sometimes
during the design work it becomes necessary to build a physical model of the
shape. In such a case, blueprints are prepared and given to a model builder.
The final step in design is to prepare a set of blueprints on which are written
all of the information needed to produce the item that has been designed. The
designer must write all of the information needed to produce a 3-dimensional
shape on 2-dimensional paper. In the case of a Typel shape, these 2-
dimensional drawings are called three orthogonal views; in the case of a
Type 2 shape they are frequently called curve diagrams.

It has always been difficult to express the considerable amount of
information needed to describe a 3-dimensional shape on a limited number of
2-dimensional drawings. In the case of Type! shapes the task has been
simplified by defining a number of conventions for drawing preparation which
the designer can learn and, as he accumulates experience, learn to transmit
information effectively to other people on 2-dimensional diagrams. Since
Type 1 shapes are geometrically regular and familiar in everyday life, it can be
expected that a person who reads the diagram will be able to infer the correct
shape from what is on the paper, so that the transmission of shape
information proceeds relatively smoothly. Consequently, as far as Type 1
shapes are concerned, if it can be assumed that people will look at the
diagrams, this method is very effective for describing and transmitting a
considerable amount of 3-dimensional shape information on a limited number
of drawings. And since the drawings are in standard formats, they are easy to
be manipulated.
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What, then, is the relation between shape and drawings for Type 2 shapes?
Since Type 2 shapes include curved surfaces which vary in a complicated
manner, in general there are many cases in which a small number of curves
drawn on paper are not in themselves sufficient to describe the shape. In the
case of a Type 2 shape, it is not possible to rely on the ability of the person
reading the drawings to infer the necessary shape information from it. If not
enough curves are given, the shape between one curve and the next will vary
depending on the subjective judgment of the person reading the drawings.
Often the model builder’s interpretation of the drawings differs somewhat
from what the designer intended. When the designer sees the model, he tries to
tell the model builder what shape it is that he really intended, but in the
absence of adcquate tools for this purpose there is no way to give a really
accurate explanation.

0.2 Processing and Analysis of Shapes

In the design of an industrial product, various types of processing and analysis
are performed with respect to the shape to make sure that it not only has a
beautiful exterior appearance, but also satisfies a number of necessary
technical conditions. For example, calculation of the surface area, volume,
weight and moment of inertia of a shape, structural strength analysis,
vibration analysis, fluid flow analysis, thermal conductivity analysis and NC
tape preparation also may become necessary. All of these processings and
analyses are performed by having a person read shape information from
drawings and then using the resulting data. Recently, through technological
advances such as the Finite Element Method (FEM) and the Finite Boundary
Method (FBM), it has become possible to perform these analyses even on
complicated shapes. In the case of a Type | shape, it is possible to assume that
there will be no problem of ambiguity in the representation of a shape by
drawings, so there are few problems in shape processing and analysis.
Meanwhile, in the case of a Type 2 shape, there are many ambiguities in the
drawing representations, so it is very difficult for a person to read the data
necessary for shape processing and analysis.

In addition, viewing this problem from the point of view of amount of
information, in general a Type?2 shape involves a much greater amount of
information than a Type | shape. It is very troublesome for a person to read
such a large amount of information and then perform calculations using that
large amount of information, and it is easy for mistakes to occur. Let us
consider the case of a container as an example. The internal volume of the
container must be rigorously adjusted to a specified value. If the container
that is designed has an actual volume that is smaller than the nominal
volume, the customers will probably complain. If the volume is too large, the
company that bottles drinks will suffer a loss. Since volume calculation for a
complicated shape cannot be carried out easily, normally it is done by the end
summing rule. Based on curve information on the drawings, the cross-
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sectional shape which the container is expected to have at a certain height is
drawn on graph paper, and the number of squares enclosed by the curve is
counted to give the area of the cross-section. The shape of the container is
approximated as a collection of a large number of thin slices, the cross-
sectional area of each of which is calculated by the above method, and then
the volumes of the slices are added up to give the total volume. Calculating
the volume in this manner takes a great deal of time and is very troublesome,
and then the shape must be adjusted to bring the actual volume into
agreement with the specified volume, which is also very difficult.

From the point of view of description and transmission of shape
information and processing and analysis with respect to that shape, many
problems lurk in a design and production system based on drawings,
particularly in the case of Type 2 shapes.

0.3 Mathematical Description of Free Form Shapes

One method of solving this kind of problem is to describe shapes mathemati-
cally. When this is done shape description becomes objective rather than
subjective, and it becomes possible to use the power of computers to do the
various processings and analyses with respect to the shape.

Technology for describing shapes mathematically was first developed in
connection with numerical control processing technology. Since the world’s
first NC 3-dimensional milling machine was perfected at M.LT. in 1951,
concentrated research, mainly at M.IT., began on software technology for
describing shapes mathematically and preparing NC tapes using a computer.
The large-scale software system called “APT IIT” was perfected in the early
1960s. In the APT system, a program reads shape information off of drawings.
When the shape and the movement of a tool that processes that shape are
programmed, the computer creates a numerical model of the shape; then,
based on that model, it calculates accurate coordinates of the tool path and
outputs an NC tape. At the stage at which the APT system is used, design
work related to the shape has been completed. To put it another way, the
APT system deals with the last stage of design; it uses a computer to create an
NC tape which contains what might be called “production command infor-
mation”. Use of the APT system still requires drawings; consequently the
problem of “ambiguity” of drawings in shape design remains. In this design
method, shape creation and modeling and in fact all decision-making
operations in the basic design and detailed design stages are done completely
by human beings, and a finished physical model is produced. Using
measurement of the model a mathematical model is created on the computer
to produce a N/C machining tape for the part. In other words, in this method
a copy of the physical model is produced mathematically; that is, this is a
design method “from a physical model to mathematical model”.

In 1963, Ivan E.Sutherland of M.LT. announced a revolutionary system
called “Sketchpad”. Tt created the possibility that basic design and detailed
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design could be done under computer control.” Even if a shape is described
mathematically, it is hard for a person to understand what kind of shape is
being described just by looking at the mathematical description. The
mathematical description of the shape is stored in a computer memory device.
If it can be displayed on a CRT screen, then it becomes visible to people and
can be understood easily by a human being. In this case, the shape description
and transmission can be regarded as being carried out objectively. Since it is
easy to create a drawing of the shape from its mathematical model, by
creating various drawings of the shape as seen from various locations and
directions, a person’s understanding of the shape can be deepened. The person
can draw a freehand sketch by stylus of the desired shape on the CRT screen,
and can instruct the computer to perform specialized processing of the shape
by pointing to a particular point on the CRT screen image with the stylus.
Consequently, if a mathematical model can be created based on the picture
drawn by a person and on information indicated by a stylus, it becomes
possible to do even basic design and detailed design on the CRT screen
through conversational interaction with the computer (Fig.0.1). That is to say,
in place of the conventional design process based on drawings, a new design
process can be conceived which is based on a mathematical model of a shape
stored in a computer. In this method, in contrast to the method described
above in which a physical model is converted to a mathematical model,
mathematical model is created in the very beginning stage of design; if
necessary a physical model can then be created from the mathematical model.

(model handling  (output processing

program) program)
(eves) (brain)
Mathematical ™ solid )A—’
modeldol[hi computer physical model man shag:, geflg"
shape / ode
(hands)
(input processing (computer
program) display)
computer space human space

Fig.0.1. Shape design by cooperation between man and computer

0.4 The Development of Mathematical Descriptions
of Free Form Curves and Surfaces

At the start of the 1960s, J. C. Ferguson of Boeing Aircraft Company in the
U.S.A. announced a method of describing curve segments as vectors, using
parameters (refer to Chap.3). A Ferguson curve segment is a cubic vector
function with respect to a parameter obtained by specifying the position
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vectors and tangent vectors of the starting and end points of the curve
segment. An actual curve is created by joining these curve segments smoothly.
In addition, Ferguson, using these curve segments, proposed a method of
creating a portion of a surface (called a surface patch) that satisfies the
conditions imposed by specifying position vectors and tangent vectors at 4
points, and put this method to practical use in Boeing’s surface creation
program FMILL. FMILL is a system intended to create NC tapes. Before this
work by Ferguson, mathematical representation descriptions of curves had
been the form y=f(x) or F(x, y)=0. In contrast, Ferguson curves have the
following advantages.

1) Not only curves in a plane, but curves in space can be expressed by simple
functions.

2) The part of a curve that is needed can easily be specified by a parameter
range.

3) Since a slope parallel to the y-axis can be expressed by dx/dt=0, it is not
necessary to use dy/dx=oco.

4) Transformations of a curve such as translation and rotation can be carried
out simply by multiplying by a transformation matrix.

Subsequently, parametric description of curves and surfaces became the
standard method of mathematical representation.

It can be seen from NC-processed surface shapes that when Ferguson
surface patches are taken to be relatively large, the surface tends to be
flattened in the vicinity of the 4 corners of the patch.

Ferguson curves and surfaces are an example of the use of Hermite
interpolation functions.

In 1964, S.A. Coons of M.IT. announced a surface description method in
which one considers the position vectors of the 4 corner points of a surface
patch and the 4 boundary curves, and derives a mathematical description
which satisfies those boundary conditions (refer to Sect. 3.3.2). A generalized
version of this concept was announced in 1967 (refer to Sect. 3.3.3). Coon’s
surface patch is defined not only by the position vectors and higher order
differential vectors with respect to the 4 corner points of the patch, but also
the position vectors related to the 4 boundary curves and the higher order
differential vectors with respect to the directions across the boundary curves.
In practice, it is sufficient to give positions with respect to the 4 corner points
of the surface patch, tangent vectors in 2 directions, mutual partial differential
vectors (twist vectors) and positions with respect to the 4 boundary curves and
tangent vector functions in the directions across the boundary curves. In this
method, if the 4 boundary curves and tangent vector functions are expressed
by Hermite interpolation formulas, a representation resembling the Ferguson
patch is obtained. This is called a bi-cubic Coons surface patch; it is expressed
in a simple form and is widely used. If the twist vector is set to zero, the bi-
cubic Coons surface patch agrees with the Ferguson surface patch. That is, the
Ferguson surface patch is a special case of the Coons surface patch. The
reason that the Ferguson surface patch flattens the surface in the vicinity of
the 4 corners is that the twist vector has been taken to be zero. In his paper,
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Coons discussed the conditions which must be satisfied to join surface patches
together to form a continuous surface, and gave a method for connecting
them so as to be continuous up to the n-th order differential vector in the
directions across the boundary curves.

Ferguson curve segments and surface patches and Coons surface patches
share a number of problems in control and connection of segments and
patches, such as the following.

1) Tt is difficult for a person to control the shape of a surface directly.

2) When curve segments or surface patches are connected, it is necessary to be
concerned not only with local mathematical continuity at the contact
points, but also with overall smooth connection of the whole curve or
surface, but neither method specifies the conditions necessary for this.

Coons’ intention in conceiving the surface patch was to make it possible
for a person to do design work interactively on a computer while watching a
CRT screen connected to the computer. However, in practice Coons’ surface
patch has found its greatest application in physical model surface fitting,

A technique for solving the “connection” problem is the spline (refer to
Chap.4). A spline is a flexible band made of wood, plastic or steel. In the
design of products having free form surface shapes such as ships, airplanes
and automobiles, splines held in shape by “weights” have long been used to
obtain free form curve shapes. It is known from experience that curves
produced by splines are fair. A curve produced by a spline is described by
different cubic degree curves in different segments between “weight” and
“weight”. At the positions of “weights”, that is, at the connecting points
between curve segments, connections are continuous up to the curvature.
Moreover, along the entire length of the spline, the integral of the square of
the curvature must be a minimum among all possible curves passing through
the “weight” points. This means that the total bending energy stored in the
spline is a minimum.

Mathematical curves which approximate spline shapes by means of
parametric vector functions are very important in CAD. In particular, the
natural spline (refer to Sect. 4.4) has the property that it gives the
interpolation that minimizes the integral of the square of the curvature.
Ferguson’s and Coons’ conditions for connection of curve segments and
surface patches insure local mathematical continuity. However, an infinite
number of curves which are mathematically continuous at the contact points
can be obtained by varying the magnitude of the tangent vector, resulting in
an infinite number of possible curve shapes. The minimum interpolation
property of the natural spline indicates what conditions should be satisfied in
connecting curve segments and what shape the overall curve should have. In a
spline.curve, the connection conditions are determined simultaneously at all
connection points. By repeated application of a method similar to the spline
curve method, spline surfaces can be created. For example, in a bi-cubic spline
surface (refer to Sect. 4.11), continuity on the patch boundary curves is
obtained up to the curvature in the direction across the boundary curves.
Then the spline surface is uniquely determined. The spline method can be



0.4 The Development of Mathematical Descriptions of Free Form Curves and Surfaces 7

thought of as automatically solving the “connection” problem that exists with
Ferguson and Coons curves and surfaces.

The shape of a spline curve is controlled by varying the positions of the
connection points between curve segments (corresponding to “weight” po-
sitions) and by increasing the number of curve segments. Since the position of
one point on a spline curve is determined by all data relating to the initially
given points through which the curve must pass (which are also connecting
points between curve segments), the effect of changing the position of one
point through which the curve must pass extends throughout the whole curve.
In addition, in some cases, curves are produced which vary in ways that are
hard to predict from the given series of points through which the curve must
pass. For example, there can be a loop in the curve that is produced even
though there is no such a shape in the given series of points. As long as one
wishes to use spline curves and surfaces as they are produced, there is a
problem of “control”.

D.G. Schweikert proposed the use of a “spline under tension™?. This was
an attempt to improve the controllability of the spline. By suitably adjusting
the parameter that corresponds to tension, the production of loops in the
spline can be prevented. The curve representation takes the form of a
hyperbolic function.

P. Bézier of the Renault Company in France announced a curve represent-
ation that is defined by giving one polygon (refer to Chap.5). This Bézier
curve segment can be regarded as a curve obtained by smoothing the corners
of the given polygon. Bézier curves have been put to practical use in Renault’s
automobile body design system UNISURF?®. Bézier curve segments and
surface patches are defined only by the position vectors of polygon vertices;
unlike the Ferguson and Coons methods, this method does not require
analytical data that are hard to understand intuitively such as tangent vectors
and twist vectors. Bézier curve segments are expressed as a convex combin-
ation of the polygon vertex position vectors which define the curve, and
possess a variation diminishing property. Consequently the curve shape can be
approximately anticipated from the polygon shape. In addition, it is also
possible to increase the degree of the polynomial curve; for example, a curve
segment can be split into two segments without changing the shape of the
curve, or the degree of the curve can be formally increased also without
changing its shape. That is to say, Bézier curves and surfaces are in a form
that is easy for a person to control.

In actual design of a curve or surface, it is necessary to connect a number
of curve segments or surface patches smoothly. In this case, in order to
connect with continuity up to the curvature, troublesome restrictive conditions
must be applied to the connecting sections in the vicinity of the polygon
vertices. Bézier curves and surfaces have superior “controllability”, but have a
problem with “connection”. Bézier curves and surfaces use Bernstein Basis
functions as blending functions.

Gordon and Riesenfeld proposed curves and surfaces which use Basis
splines as blending functions. These are called B-spline curves and surfaces
(refer to Chap.6). B-spline curves, like Bézier curves, are defined by polygon
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vertices and have properties similar to those of Bézier curves. That is, B-spline
curves are expressed as a convex combination of polygon vertex position
vectors, and also have the variation diminishing property. Curve shapes are
smoothed versions of the polygon shapes and can be roughly predicted from
the polygon shapes. In contrast to Bézier curve, which is a convex
combination of all of the vertex position vectors, B-spline curve differs in that
it is a convex combination of a number of vertex position vectors in their
immediate vicinity. It follows from this that the shape variation properties of
the polygon show up even more clearly in B-spline curves than in Bézier
curves. If n is the number of sides of the given polygon, the B-spline curve is
formed by smoothly joining (n— M +2) (M — 1)-degree curve segments. A basis
spline is determined by specifying the order M and the knot vector. The curve
segments which make up a B-spline curve are defined by the M polygon
vertices in the vicinity of each. Consequently, when one polygon vertex
position is varied to control the curve shape, the effect of the change is locally
confined. This property is very important in designing curves.

[ Ferguson curves and surfaces

(Problems 1n control
and connection)

Coons surfaces

Bezier curves and surfaces | Interpolated spline curves and surfaces |

(umprovement with respect to (improvement with respect to
the connection problem) the connection problem)

I B-spline curves and surfaces | | Spline under tension J

(Solves problems of control (Attempt to improve
and connection) controllability)

Fig.0.2. Sequence of development of mathematical curve and surface description methods

Fig.0.3. A surfacc formed by joining
surface patches in a matrix
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B-spline curves are superior curves which combine the superior controlla-
bility of Bézier curves with the connection properties of spline curves. By
specially specifying the knot vector in a B-spline curve segment, it can be
made to agree with the Bézier curve segment.

The sequence of development of mathematical curve and surface descrip-
tion methods described above is shown schematically in Fig.0.2.

B-spline curves can perhaps be thought of as possessing ideal “control”
and “connection” properties. How well do B-spline surfaces describe surface
shapes? As shown in Fig.0.3, an ordinary, simple surface can be expressed by
joining a number of surface patches together in a matrix. In the case of such a
simple surface, the surface can be described and processed as a single B-spline
surface (a surface defined by m x n position vectors). When it comes to actual
surfaces, it sometimes happens that it is difficult to describe and process the
surface shape as such a simple surface. Figure 0.4 shows an example of the
kind of surface shape that occurs in the vicinity of a corner of a solid object
formed by the convergence of three ridges. In this case, there is a problem of
how to describe a triangular area of a surface. Figure 0.5 shows another
example, this time of a rounded concave corner formed by the convergence of
3 ridges. In this case the surface becomes pentagonal in shape. It is not
impossible to express such special shapes other than standard quadrangular
shapes by mathematical functions, but special, complicated treatment becomes
necessary. Special considerations also become necessary when joining neigh-
boring surface patches together.

Curves and surfaces which can be described as ordinary polynomials with
respect to parameters have been described above. However, circles and
circular arcs, which are very important in industry, cannot be rigorously
expressed by ordinary polynomials. Rigorous mathematical expressions of
conic section curves is possible in the form of rational polynomials with
respect to a parameter (refer to Chap.7). Consequently, rational polynomial
descriptions of curves and surfaces are very interesting, but full-scale research
and practical applications along this line remain as problems for the future.

Fig.0.4. Example of a surface in
which a triangular surface patch
occurs
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Fig.0.5. Example of a surface in
which a pentagonal surface patch
occurs

References (Chap. 0)

1) Fujio Yamaguchi: Computer Graphics, Nikkan Kogyo Shimbun Sha, Introductory
Chapter (in Japanese).

Schweikert, D.G.: “An Interpolation Curve using a Spline in Tension”, J. Math. & Phys.
45, 312—317, 1966.

Bézier, P.: “Example of an Existing System in the Motor Industry: The UNISURF
System™, Proc. Roy. Soc. Lond. A 321, 207—218, 1971.

2

3



1. Basic Theory of Curves and Surfaces

1.1 General

1.1.1 Properties of Object Shapes and Their Mathematical Representation

Before a computer can perform processing relating to a shape, a mathematical
description of that shape must be provided on the computer’s memory. Such a
description should preserve as many of the properties of the actual object
shape as possible. From the point of view of computer processing the
following properties are particularly important.

(1) Spatial Uniqueness

Two objects cannot occupy the same space at the same time. This property is
called spatial uniqueness. Object shapes are expressed in a computer by data
structures using numerical shape data and functions, but spatial uniqueness is
very difficult to express. Therefore a program is needed to test for overlap
between positions of two bodies.

(2) Boundedness and Continuity

An object shape occupies a bounded space defined by a number of mutually
adjacent surfaces of finite extent. In this book, this property is called the
boundedness of the object shape. In performing computer-aided design it is
extremely important for the range over which the shape being designed
extends to be conveniently expressed. Let us consider the case of a curve. The
curve in Fig. 1.1 is multivalued: it takes on several y-values for some values of
x, and also several x-values for some values of y. If this curve is described by

Fig.1.1. A curve segment for which y is
multi-valued with respect to x and x 18
z multi-valued with respect to y
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a function y=F(x), trying to describe its range can be very difficult. On the
other hand, if it is described by a parametric vector function P(t)=[x(t) y(t)],
then the range can be described simply as a<t<b where t=a and t=b at the
two ends of the curve.

Curved (or plane) object surfaces are in continuous connection, without a
break, along curved boundary lines or ridge lines. This property of an object
is called continuity. Many types of processing on shapes make effective use of
this continuity property. Consequently, in expressing an object shape on a
computer, it is important to express how the surfaces connect to each other
along boundary curves. This description is performed by a data structure.

(3) Independence of Coordinate Axes

An object shape is independent of the coordinate system in which it is
described. This seems natural enough, but it is an important condition in
formulating a mathematical model of the object. As an example, consider the
problem of selecting points on a clay model, measuring their coordinates and
then fitting them to a mathematical representation of a curve. This is normally
done by letting the measured points define the curve and interpolating between
them. The final curve must be the same regardless of the coordinate system in
which the coordinates of the points were measured. This property is called
shape invariance under transformation. If the method of arriving at a
mathematical representation is inappropriate, the condition of shape
invariance under transformation will not be satisfied.
For example, consider the following parametric curve.

Pt)=Ay(t) Po+ A, (1) P, (0=t=1) (1.1)

where Ay(t)=(1—t)* and A,(t)=¢>. In this case, the relations A,(0)=1,
Ay(1)=0, A,(0)=0, 4,(1)=1 hold, so we see that P(t) is a curve which passes

through the two points P, and P,. Taking P,=[00] and P, =[1010], P(t)
describes the line segment connecting P, and P, (refer to Fig. 1.2). Expressing
P, and P, in the x*y* coordinate system, P§=[—3 —2] and P¥=[7 8]; then
if we let

Px(t)=Ao(t) P§+A4,(1) P

P*(t) passes through the same points as P(t) at t=0 and =1, but for 0<t<1
P*(t) describes a curve different from the straight line of P(t). That is, the
straight line representation of Eq. (1.1) is not desirable.

In Eq. (1.1) a curve is described as a vector using the parameter ¢. There is
an alternate way to describe curves, the non-parametric method in the form
y=F(x). In the latter representation, at a point at which the curve becomes
parallel to the y-axis the slope dy/dx becomes infinite, making it difficult to
handle on a computer. In practice it becomes necessary to use another
suitable coordinate system in which the slope does not become infinite.
However, depending on the shape of the curve being represented, there are



1.1 General 13

y¥* Tm‘\:u—w-[o 01+ ¢-[10 10]
\ P (10,10)
¥ /P *(1,8)

4

)

Py(0,01 £
Py*{=3,-2) x

Fig.1.2. An example in which a shapc doecs not remain invariant under coordinate
transformation

some cases in which the slope will become infinite no matter what coordinate
system is chosen. This happens when the curve is closed. On the other hand,
with a parametric representation the slope is:

dy dy /dxiy

dx dt | dt  x
so the direction parallel to the y-axis can be simply represented by:
x=0.

The shape of an object is independent, unaffected by the coordinate system
in which it is described. This property of an object is called axis independence.
Axis independence must exist in order for a shape to be expressed on a
computer.

In the above we have studied a relation between two types of
mathematical representation of a curve and the properties of a shape. We
have seen that an expression for a curve in the form y=F(x) is inadequate to
represent the properties possessed by shapes. A parametric representation
overcomes this difficulty.

The advantages which a parametric representation of a curve has over a
non-parametric representation can be summarized as follows.

1) Axis independence can be expressed (refer to Sect. 1.1.3).

2) Tt is easier to specify the regions of a multivalued curve.

3) Since it is an independent expression with respect to x, y and z (x and y
in the case of a plane curve), affine transformations and projective
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transformations can easily be performed by 4 x4 matrices (3 x 3 matrices
for plane curves).
4) Representation of space curves is easy.

In order to express a space curve by a non-parametric representation, it
must be defined as the intersection of two curved surfaces: y=F(x) and
z=G(x), or @,(x, y,z)=0 and @,(x, y,z)=0. In a parametric representation it
can be represented in the form P(t)=[x() y(t) z(t)].

5) Since x, y and z are expressed as explicit functions of the parameter ¢, a
point on the curve can be easily computed.

Since curved surfaces are basically regarded as being represented by
groups of curves, the above arguments with respect to curves can be thought
of as also applying to curved surfaces.

1.1.2 Design and Mathematical Representations

A mathematical representation of a curve or curved surface must not only
express the properties possessed by a shape, they must also satisfy certain
necessary conditions for design.

(1) Abundant Expression Power Having Generality

The designer’s demands with regard to shapes are not limited; they change
frequently, and a mathematical representation of a shape must be able to
respond to them flexibly. For a mathematical representation of a curve, in
some cases a straight line is appropriate, while in other cases a conic section
such as a circle or ellipse might be appropriate. In addition, in some cases it is
desirable not to be limited to fixed shapes, but rather for the representation to
have the capability to respond flexibly to any arbitrary shape that the designer
draws freely with a stylus.

Ordinarily, a curve or curved surface is thought of as consisting of a
number of curve segments or surface patches which are connected together.
When designing a smooth curve or curved surface, it is necessary to make
sure that the curve segments or surface patches are connected smoothly.
Mathematically, continuity to a sufficiently high order derivative (usually up
to the slope or the curvature) is required. The smoothness of a curve involves
not only this kind of local continuity but also the overall large-scale
smoothness of the curve. Figure 1.3 shows examples of curves which are
connected in such a manner that there is (a) continuity of position only (class
C%), (b) continuous to the slope (class C'), (c) continuous to the curvature
(class C?). Figure 1.4 shows a corner R of a curve. In (a), the connection is
done with straight line segments and a circular arc, so the slope is continuous
at the connection point, but the curvature is discontinuous (class C'). When
the discontinuity of curvature reaches a certain level, it becomes noticeable to
the naked eye. (b) shows a corner R with the connection performed with a
curve in such a manner that the curvature is continuous (class C2).
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/ | /
/ : /// / | /

(a)

Fig.1.3. (a) A class C° curve connection; (b) a class C! curve connection; (c) a class C? curve
connection

(a) (b)

Fig. 1.4. Expression of a corner R. (a) Class C*; (b) class C*

In designing a curve or curved surface, it sometimes happens that it is
desired to have the slope be discontinuous at a certain point. In fact, the
discontinuity of slope is sometimes necessary. A point where the slope is
discontinuous is called a cusp. Figure 1.3(a) shows a cusp. A line of
discontinuity in a curved surface is called a crease (refer to Fig. 1.5).

Fig. 1.5. Example of a crease in a curved surface
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(2) Ease of Shape Control

Shapes of curves and curved surfaces which appear on the display could
ideally be manipulated at will by the designer. At the start of the design work,
the designer focuses on the overall shape that is displayed and forms his
judgments. Consequently, it is desirable for the designer to be able to exercise
global shape control (Fig.1.6). Along the curve there are a number of control
points which control the shape. Usually the control points are the same points
that were used to define the curve. It would be very troublesome if it were
necessary to change the parameters of all of the control points in order to
change the shape of the curve. Ideally one would be able to change the shape
of the entire curve by controlling just one suitable control point. As the design
work progresses, the designer’s attention shifts from the overall curve to
localized sections of it. Then the designer wants to be able to change the
shapes of only those sections while leaving the rest of the curve unchanged.
Consequently, it is desirable to have the capability for not only global control
of the shape of a curve, but also local control (Fig.1.7). A local control
capability is a necessary condition for being able to converge the trial-and-
error design process.

There are cases in which it is impossible to control the locations of control
points in such a way as to obtain the desired shape with only one

Q Q; P(t) Q5

Qo
Fig.1.6. Local control of a curve
(when point Q, changes to Q%, the
Qx curve changes from P(¢) to P*(t))
Q, Q, P(t) Qs
Qs
Q

Fig.1.7. Global control of a curve
(when point Q, is changed to QF the
Q* curve changes from P(t) to P*(¢))
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mathematical expression. In such cases, it is necessary to have some method
to improve the capability of the mathematical expression to express a shape.
Figures 1.8 and 1.9 show examples of ways in which the ability to express
shapes can be increased. In Fig. 1.8 the shape is preserved while one curve
segment is split into two segments. In Fig. 1.9 the shape is preserved while the
degree of the curve segments is increased by one. What is important here is
that the capability to express shapes is increased without changing the shapes
themselves.

Some curves have special properties such as the convex hull property or the
variation diminishing property. In such cases shape control is made easier
because the changes that a shape will undergo when the control point
parameters are varied can be predicted (refer to Chaps. 5 and 6).

t=1
Splhitting point

(b)

Fig.1.8. An cxample of how a curve can be split into two segments while preserving its
shape (a Bézier curve). (a) Before splitting; (b) after splitting; (c) after splitting
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Fig.1.9. An example in which the shape of the curve is preserved and (in form) the degree of
the curve is increased (Bézier curve). (a) Before degrce 1s increased; (b) after degree 1s
increased; (c) before and after degree is increascd

1.1.3 Invariance of a Shape Under Coordinate Transformation

In Sect. 1.1.1 we referred to the invariance of a shape under coordinate
transformation. Now let us look at the conditions for such invariance to be
satisfied.

Let a curve be represented by

P(t)=[x() y(t) z(t)]
=[do(t) 1(0)... $,(1)] [Qo Q1 --- Q1" (12)

Oo(t), P1(2), ..., ¢,(t) are linearly independent polynomial functions of ¢; Q,,
0., ..., 0, are the position vectors that define the curve.
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Let us separately consider the 3-dimensional rotation matrix T (a 3x3
matrix) and the translation m=[m,m, m.]. In order for the shape to be
invariant, it is necessary that the curve expressed in terms of Q¥, Of, ..., Q¥
in the transformed coordinate system transform by the same amount as Q,,
0, ..., 0, do.

For the rotation matrix T we have:

a 0T
PE(1)=[do(t) $:(0) .. da(0)] Q;T =[o(®) §1(0) .. $,(0)] QiT
Q* Q,.,T
-
=[do(®) $1() ... $u(1)] Q =POT
0,]

so that in the case of rotation the condition of invariance is automatically
satisfied.
Next let us consider the translation.

08
PHO=[60(t) 910 .. $y(0] | &
:Q(;er
—[90(8) 1(0) - dy(0] | 2T
0, +m
2
“[000) 610) o 0] |2 [+ G004 6,04 o+ 000 m
0
= PO+ (o) + 91 1)+ .. +6,0)m. (13)

From Eq. (1.3), in order for the shape to be invariant the relation
o)+ (O + ... +¢,(t)=1 (1.4)

must be satisfied. Equation (1.4) is sometimes called Cauchy’s relation.
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1.2 Curve Theory

1.2.1 Parametric Representation of Curves;
Tangent Lines and Osculating Planes

Let us express a curve as a vector using the parameter ¢:

P(t)=[x(t) y(t) z(t)].
Next consider the derivative vector evaluated at t=t,:*
P(to) = [¥(to) J(to) 2(to)]-
If the condition
P(t,)£0 (1.5)

is satisfied, then the curve is said to be regular at t=t,. A point at which a
curve is regular is called an ordinary point; a point at which it is not regular is
called a singular point. For condition (1.5) for regularity to be satisfied, x(t,),
y(t,) and Z(t,) must not all be zero at once. This condition is expressed
mathematically by the following inequality:

X(to)® +y(to)* +2(to)* >0. (1.6)
If the derivatives of x(t), y(t) and z(t) of a curve P(t) (a<t <b) to order r

exist and are continuous, and if the curve is regular throughout the interval,
then that curve is said to be of class C".

P(so+4s)—P(so)

| P(so+4ds)—P(sg)l=4ds

(a) (b)

Fig. 1.10. Diagrams explaining the tangent vector P(t,) and the unit tangent vector P’(s,).
(a) The tangent vector; (b) the unit tangent vector

*) If t is thought of as time, then the first derivative with respect to ¢ is the velocity vector and the second
derivative with respect to ¢ is the acceleration vector.
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In Fig.1.10(a), consider the vector P(t,+4t)—P(ty), from P(t,) to
P(t,+ At) on the curve P(r), divided by At:

P(ty+4t)— P(t,)
At ’

This vector indicates the direction from P(ty) to P(t,+ At). If the curve is
regular at ¢=¢,, then this vector converges to the finite magnitude vector
P(t,) in the limit as 4t—0. P(z,) is called the tangent vector at the point t=t,.
Let us now use the length s of the curve as a parameter. We will indicate
the derivative with respect to s by the prime symbol ' to distinguish it from
the derivative with respect to t.
Since

dp dp dt P
=P =— —=— (1.7
ds dt ds s

ds _, dx dy dz\* =
a0 M(dt) +(dt) +<dt> =VE (18)

then if P+ 0, we have:

,_P_ P
P_i‘VW (1.9)
L P=1. (1.10)

That is, P’ is in the same direction as P, and its magnitude is 1. P’ is called
the unit tangent vector (refer to Fig. 1.10(b)). It can be seen from Egq. (1.8) that
s is the magnitude of the tangent vector. In this book, the magnitude of the
tangent vector will sometimes be denoted by o, and the unit tangent vector by
t. Hence we have:

§=a (L.11)
P=t. (L12)

The equation of a tangent line can be expressed in terms of a parameter u
as:

R () = P(to) +ut(to)- (1.13)

Here the parameter u is the distance from the tangent point.

At a point where a curve is regular, the tangent line is unique. However, at
a singular point there occur various anomalous cases. Examples of singular
points are shown in Figs. 1.11 and 1.12. At a cusp, as shown in Fig. 1.11, P
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y
x=413—612+3¢
1.0p y= —312+3¢
=0
§=0
t=0.5
0.5
t=0
=1
0 0.5 1.0= Fig. 1.11. Example of a singular point (1)
{x:, {x:10t3—15t2+6t
= =103 1542 +
y t y y t t2+6¢
(1.0,1.0) 1.0,1.
1.0f t=1 1.0f Ii=0(,_5 /5) 10
(11}:0 TT10 t=1
t=0.5
t=0 0
AN t 5_+_/§)
lg=0\"" 10
1 L
0 1.0 2 0 1.0«
(a) (b)

Fig. 1.12. Example of a singular point (2)

can become discontinuous or a 0 vector. Figure 1.12 shows examples in
which line segments are expressed parametrically. With the expression used in
Fig. 1.12(a), the line segments are regular over the entire interval. In contrast,
in Fig. 1.12(b), although the line being expressed is the same two singular
points occur within the interval. In this case, as t increases from the starting
point t=0 to 1:(5—]/5)/ 10, the point on the line progresses steadily toward
the end point. At t:(S—Iﬁ)/IO x=y=0, so this point is a singular point.
From t=(5—]/§)/10 to t:(5+]/§)/10, as t increases the point on the line
progresses back toward the starting point. t:(5+]/5)/ 10 is another singular
point; there the direction reverses again and the point on the line progresses
toward the end point t=1. The possibilities for such parameterization, the
assigning of a relation between points on a line and a parameter, are
numerous. It is desirable to choose a parameterization such that the curve is
normal at as many points as possible.
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Normal plane Fig.1.13. The normal plane

Another type of singular point is one at which the curve degenerates to a
single point.

A plane which passes through point P(t,) on a curve and is perpendicular
to the tangent line to the curve at that point is called normal plane (Fig. 1.13).
The equation of a normal plane is:

(R—P(ty)) - P(tg)=0. (1.14)

Consider a point P(t,) on a curve and a plane which passes through it and
two points very close to it, P(to+4t) and P(to+4,t). The plane that is
approached in the limit as 4,¢ and 4,t approach 0 independently is called the
osculating plane at point P(t,). The osculating plane is given by the following
equation.

[R—P(to), P(ty), P(to)] =0. (1.15)

The brackets indicate a triple scalar product; P(t,) x P(t,)+0. Equation (1.15)
is the condition for the three vectors R— P(t,), P(to) and P(t,) to lie in the
same plane.

A general plane passing through the point P(t,) can be written in terms of
its unit normal vector a as a-(R—P(ty))=0. The length of the perpendicular

distance from the point P(t,+ At) on the curve P(t) to this plane is:
) B
a-(P(ty+4t)—P(ty))=a- (P(tO)At+ ;—‘") Atz+“.)

(Fig. 1.14). In the special case when a- P(t,)=0, a - P(t,)=0, that is, when the
plane is the osculating plane, this length is a 3rd-order infinitesimal with
respect to At. Consequently, the osculating plane is the plane that best fits the
curve at the point P(t,).

The line that lies in the osculating plane, passes through the point P(t,)
and is perpendicular to the tangent vector P(t,) at that point is called the
principal normal. The line that passes through point P(t,) and is perpendicular
to the osculating plane is called the binormal, and the plane determined by the
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Unit normal vector
P(i,+4t)

yd a-(P(t+41)— P(t))

Fig. 1.14. Perpendicular distance from a point on a curve to a plane

Fig.1.15. Relation between the normal plane,
osculating plane and rectifying plane. / normal
plane; 2 rectifying plane; 3 binormal; 4 prin-
cipal normal; 5 tangent line; 6 osculating plane

tangent and the binormal is called the rectifying plane. These relations are
shown in Fig. 1.15.

1.2.2 Curvature and Torsion

Let us consider the meaning of the second derivative P"(s)=d?*P/ds*. From
the definition of a derivative, we have:

P/(sy+As)— P’
Pr(sy) = lim £ Got49=Plso) (1.16)
As— 0 AS

As shown in Fig. 1.16(a) and (b), in the limit as As— 0 the numerator
P'(so+A4s)— P'(sy) is perpendicular to the tangent vector at the point P(sy)
and points toward the center of curvature of the curve. It can be seen from
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P/(50+As)
P/(So)
P/(so+4s)—=P’(s9)
1
P'(sg+ds)— P’ (so) =46

A0

1

P/(SU+AS)
(b)

Fig. 1.16. Geometrical relation between the center
(a) of curvature, P'(so) and P'(sy+ 45)

Fig. 1.16(b) that its magnitude is 46. Consequently, the magnitude of P"(s,)
is:

1
—Ads
40 1
IP"(so) = lim === 1im 2 — = — =,
A4s—~0 A4S As— 0 As 0

Here ¢ is the radius of curvature and « is the curvature. P” can be expressed
in terms of them as:

1
P'=—n=xkn. (1.17)
0

Here n is the unit vector pointing toward the center of curvature, Since P"(s)
is a vector that has a magnitude equal to the curvature at point s and points
toward the center of curvature, it is sometimes called the curvature vector.
Curvature is the rate of turning of the unit tangent vector ¢ with respect to the
length of the curve s, in other words, a quantity that indicates how rapidly or
slowly the curve is turning.

Next, let us find the relationship between the curvature vector P”(s) and
the derivative vectors P and P with respect to the parameter t. From Eq. (1.9):

Differentiating the above equation with respect to s gives:
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pyE (25 p)
P = d ( P )ﬁ_ 21/ P 1
e ds p? /P

1 [. P P
e () .
w| Vi \ /P .

B
where:
. P ) .
BzP——,(—,-P)zB . 1.20
1/}7 1/17 |B| n ( )

Equation (1.18) gives the relation between the curvature vector and the
derivative vectors P(t) and P(t) with respect to the parameter t.
Taking the absolute value of Eq. (1.19) gives:

1 |B|
[P(s)| =—=—".
o |P?

(1.21)

By using Egs. (1.18) and (1.21), the center of curvature can be determined
graphically as shown in Fig. 1.17.
If we use the relation:

(a) (b)
Fig.1.17. How to find the center of curvature graphically
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P

P (1.22)

then Eq. (1.18) becomes:

1.

Combining this equation with Eq. (1.17) gives:

g2
P=""n+st. (1.23)
0

If the parameter ¢ is regarded as time, Eq. (1.23) expresses the well-known
dynamical relation that the acceleration P acting on a mass point equals the
sum of the tangential acceleration §t and the normal acceleration (§%/g) n. This
relation is shown in Fig. 1.18.

The form of Eq. (1.18) for the curvature vector can be changed as follows:

Pi(s) =1 = PL [P2B— (P P)]

(Px Pyx P

— )
- (1.24)*
|Px P|
=— n 1.25)*%
TE (1.25)
=kKn. (1.25)
Consequently, the curvature k becomes:
PxP PxP
e [DXPL_1PX Pl (1.26)

pP

A point on a curve at which k=0 is called a point of inflection.

Fig.1.18. P is the sum of the tangent acceleration and
normal acceleration

*) Using the identity A x (Bx C)=(4-C)B—(A- B) C for the triple vector product.

*¥) (P x P) is perpendicular to P; this vector product is itself a vector which points toward the center of
curvature.
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The vector b=txn is called the unit binormal vector. The unit binormal
vector can be expressed as follows:

b=txn

_P 1 @xPxP] 1 y

= T ><|:K 7“’]4 ] |P|5 [Px((Px P)x P)]
|P|5 [P (Px P)— (P (Px P) P]

(using the identity for the triple vector product)

1 PxP

ST (- P-(PxP)=0) (1.27)
Px P
TR (1.28)

Figure 1.19 shows the relation between the unit tangent vector ¢, the unit
principal normal vector n and the unit binormal vector b.

Letting 4¢ be the angle between the osculating planes at two slightly
separated points P(s,) and P(s,+ 4s), the torsion of the curve at point P(s,) is
defined as:

7= lim M (1.29)

Torsion is a measure of the amount of rotation of the osculating plane with
respect to the length of the curve s. In other words, torsion is a quantity that
indicates whether the curve is twisting rapidly or slowly. Torsion can be
expressed mathematically in terms of the derivatives P, P and P with respect
to the parameter ¢ as follows:

_(PxP)-P [P PP] [PPP]
T (PxP? (PxPp? Sk

(1.30)

n Fig.1.19. Relation between the unit tangent vector,
unit principal normal vector, and unit binormal vector
b, unit bmormal vector; m, unit principal normal
t vector; £, unit tangent vector
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The condition for a curve to be a plane curve, in other words a curve with
zero torsion, is:

ETRES

(Px Py P=|x (131)

e e
[SHES PN
Il
(=

bt

1.2.3 Frenet Frames and the Frenet-Serret Equations

If we take the directions of the unit tangent vector ¢, the unit principal normal
vector n and the unit binormal vector b to be the positive directions along the
tangent, the principal normal and the binormal, respectively, then the coordinate
system formed by the tangent, the principal normal and the binormal is a
right-handed system. These coordinate axes move as the parameter ¢ varies
(refer to Fig. 1.19). The set (P;t, n, b) is called a moving frame or a Frenet
frame. When properties of a space curve are investigated in the vicinity of
various points on it, the Frenet frame of each point is used.

Let us now look at the changes in the Frenet frame as the curve parameter
is varied. First from the relation for the unit tangent vector, we have:

dP—P/*t
ds

Then, from another of the relations which we derived (refer to Eq.(1.17)):

dt p
—=t=xn.
ds

Next, let us find dn/ds=n’'. Since n is a unit vector,
n*=1.
Differentiating both sides of this equation with respect to s gives:

dn
-——=0.
" ds
We see from this that dn/ds is perpendicular to n. Therefore dn/ds can be
written in the following form:

dn
o= artasb. (132)

Taking the scalar product of both sides of this equation with # gives:
dn

t—

1= (1.33)
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Since we also have the relation:

t-n=0
differentiating by s gives:

dt 4t dn 0
8 a2,
ds ds

Consequently we have:

dn
t-—=—«K. 1.34
ds * (1.34)

Comparing Eqs. (1.33) and (1.34), we see that a, = —«. Next, take the scalar
product of b with both sides of Eq. (1.32):

dn
Bl 1.35
P (1.35)
Since we also have the relation:
b-n=0

differentiating by s gives:

db dn
. —=0. 3
ds ntb ds (1.36)

The unit binormal vector b is perpendicular to the osculating plane. Since the
torsion is the rate of rotation of the osculating plane with respect to s,

‘ﬂ” — (137

ds

Differentiating the relation
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The second term on the left-hand side of this equation is:

dt
b-—=b-xkn=0,
s Kn
so that:
db
—t=0.
ds

From this relation, we see that db/ds is a vector that is perpendicular to both
b and ¢, that is, a vector that is directed along the principal normal. Its
magnitude is given by Eq. (1.37) as 7. If we adopt the convention:
db
—=—1n
ds

then Eq. (1.36) becomes:

dn
—1+4+b-—=0.
! ds
Comparing this equation with Eq. (1.35) we see that a, =1, so that Eq. (1.32)
becomes:

d
EP = _kt4nh. (1.38)
ds

The above results can be summarized as follows:

P'=t (1.39)
t' =xn (1.40)
n =—xt+th (141
b =—tn. (1.42)

These equations are called the Frener-Serret equations. The differential
geometric properties of space curves are all derived from these equations.

1.2.4 Calculation of a Point on a Curve®

Consider a curve that is expressed as a polynomial in the parameter ¢, such as
the following cubic expression:

P(t)=At3>+Bt>+Ct+D (0<t<1). (1.43)
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A point on the curve can be calculated by dividing the t-interval up into n
segments as follows:

—0,6,26, ..., n6
r=h0 20 ’”} (1.44)

S=1/n

and substituting into Eq. (1.43) n sequence. In this case it is convenient to
change Eq. (1.43) into the following form:

Pit)=(At+B)t+C)t+D. (1.45)

Equation (1.43) requires 6 multiplications per coordinate per point, but Eq.
(1.45) requires only 3, so computations can be performed more rapidly.

Next, let us consider a method of calculating points on a curve at high
speed using no multiplications at all, by using finite difference formulas.

P(t)=At*+Br*+Ct+D
AP(t)=P(t+3)—P(t)
=A(t+0°*+B(t+6)*+C(t+8)+D—At*—Bt*—~Ct—D
=3A46t2+(3A45*+2BS)t+ AS>+ B +C§
A2P(t)= AP(t+8)— A P(t)
=3A46(t+06)>+(3A6*+2Bd) (t+8)+A*+B5*+Cé
—3A46t*~(348* +2B3)t—AS*—B&*—C$§
=646*t+6A45° +2B5>
A3 P(t)=A*P(t+35)—A*P(t)
=6A45%(t+08)+6A45°+2B5*—6A45*t—6A45°—2B5?
=6A45%.
The 3rd-order finite difference is a constant vector that is independent of the
parameter. In general, for an nth-order polynomial cspression, the nth-order
finite difference is a constant vector.
Let us use the notation Py, AP,, 4%P,, AP, and P,, AP,, A*P;, AP; to
denote the various order finite differences at t=0 and r=id respectively. Then
we have the relations:

P, =P,+4P,
AP =AP;+ 4P,
A2P =A*Py+ AP,
AP, =43P,

(1.46)

so that if the various order finite differences at t=0, that is, Py, 4 P,, 4% P,,
A3 P, are known, then the points on the curve at t=4, 24, ..., i, ... can be
found in sequence solely by repeated additions. However, if, for example,
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6=1/2°, finite differences such as A4°P, become vectors with very small
magnitudes, so that in some cases the length of a computer word is not
adequate to maintain sufficient accuracy. In such cases this problem can be
solved by storing AP,, 4*P,, A3P, as 1/5 precision, 1/6% precision, 1/3°
precision numbers, respectively, and applying Egs. (1.46) in the form:

P =Py+5 (; AP0>

1 1 1
— AP, == APy+5|— 42P,

2
0 0 0 (147)
1 2 1 2 1 3
ST A Pi=r APt |5 4P,
1

1
4 P = 54 *P,
If we take 6 =1/2" (where m is a positive integer) in the above equations, then
the necessary computations can be performed at high speed using exclusively
shift operations and additions, without time-consuming multiplications.
In calculations with Eqgs. (1.47) it is convenient to express the various order
finite differences at t =0 as a 4 x 3 matrix:

P, D
1
gAPo AS*+BS+C

= 1.48
L ) (1.48)
5 4P 646+2B
1 3
55 4P 64

In this book, the matrix in Eq. (1.48) will be referred to as the finite difference
matrix.

1.2.5 Connection of Curve Segments

Let us now consider the problem of connecting a curve segment Py(t)
(0=t <1) to the curve segment Py(r) (0 <t <1) (Fig. 1.20).

Pt

(0=:=1) 0=:=<1)

Fig.1.20. Continuity conditions for curves. Conditions for continuity up to curvature:
2

® PuO=P ;@ P02 B(1); @ 1"'"(0):(:—2> Bil)+BPy(1)
1 1
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First, we have the condition of continuity of position:

Py(0) =P (1). (1.49)

If the magnitudes of the tangent vectors of Pi(t) and Py(t) at the connection

point are «; and «, respectively, then thc condition for the slope to be
continuous is:

1. 1 .
— Py(0)=— P(1)=¢ (1.50)
o, o
or:
0= Pi)=4P() (A:Z—) (1.5

Next, let us find the condition for the centers of curvature of the two curve
segments at the connection point to vary continuously. Equation (1.17) for the
curvature is:

P'=xkn.

In this equation « is the magnitude of the curvature and » is the unit principal
normal vector, pointing toward the center of curvature. From the above
equation, for the center of curvature of the curve to vary smoothly at the
connection point, it is necessary for both x and n to be continuous.

If the binormal b=¢xn and ¢ are continuous then » is also continuous.
Consequently, to find the condition x and » to be continuous, we require a con-
dition for both x and b to be continuous. From Eq. (1.27):

_PXP
PR

Kb

Consequently, in order for the center of curvature of a curve to vary
continuously at a connection point, we must have:

Py(0)x Py(0) _ Pi(1)x P;(l)_
124 (0)° 1B

Substituting the relation in Eq. (1.51) into this equation and rearranging gives:

Pi(1)x [PH(O)—(:%)Z P}(n] =0.

1

From this equation, the following equation is obtained, with § an arbitrary
scalar”.
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P..<0)=(Zz) F()+pP(1)

=22 B(1)+BP(1) (A:Zz). (1.52)

1.2.6 Parameter Transformation

Normally, a curve segment P(t) is normalized so that t=0 at one end and
t=1 at the other end. If we are to use only one part of this curve, from t =t,
to t=t,, or perform some processing on this part, it is convenient to
normalize the parameter over this part of the curve (refer to Fig. 1.21). In

P(t) i=1

,ﬁ—/f‘m
=0 P(t%) Fig.1.21. Curve parameter transformation

order to keep the degree of the curve unchanged when performing this
transformation, the following linear relation must hold between the old
parameter t and the parameter after transformation t*.

t=(1—t*to+t*t, =to+(t; —to)t*. (1.53)
Substituting this relation for ¢ into the original equation of the curve gives the
normalized curve equation in terms of t*, with t* varying from O to 1 over the
interval of interest. For example, in the case of the cubic curve:

P(t)=[t* 2t 1] [4 B C D]" (1.54)

the normalized curve equation over the interval to <t <t is:

P(t*)=[{to+(t,—to)t*}*  {to+(t;—to)t*}*  {to+(t; —to)t*} 1]

SN N

=[(t,—to) 3 t*34+3(t; —to) tot*2+3(t, —to) t3t* + 15
(=t t¥24+2(t —to) Lot ¥ +12  (t,—to)t*+1t, 1]

O AW
Il
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[ (t,—t0)’® 0 0 014
= [£%3 %2 1% 1] 3(ty—1)’ty  (ti—10)* 0 offB
3=t 2t —to)to ti—to 0| C

L t to  1]|D] (155

=[*3 R % 1
L ] 3(Il—t0)t0A+2(l,—lo)toB+

(ti—10)°4
3(ty—to) 1o A +(t; —to)?
—to)C

t3A+tB+t,C+D (1.56)

A*
%
c* [

D*

=[* %2 1* 1]

Let us now see how the tangent vector of the curve changes under the
parameter transformation of Eq. (1.53). The tangent vector after trans-
formation becomes:

dP _dP dt _ . dP 57
@ = ar are ) g (1.57)
That is, the magnitude of the tangent vector is reduced in proportion to the
reduction of the range through which the original parameter varies
(0=t —1,<1). For the second derivative vector we have:

d*P a*p
——— ==t —— 1.58
=t S (1.58)
so that it is reduced in proportion to the square of the reduction of the
parameter range.

Let us now consider a more general parameter transformation, the rational
transformation given by the following equation:

at*+b

Cet*41
This transformation is sometimes called bilinear transformation or a
homographic transformation. With t*=0 and t*=1 at t=t, and t=t,,

respectively, this transformation takes the following form, with # an arbitrary
scalar:

_ (nt;—to)t* +1o

m—1Dt*+1 (1.59)
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The shape within the old parameter range 1, <t <t is now expressed without
shape change in terms of the new parameter which varies in the domain
0=<t*<1. Compared to the transformation of Eq. (1.53), the transformation of
Eq. (1.59) has an increased degree of freedom because # can be chosen freely.
When =1, the transformation of Eq. (1.59) reduces to the transformation of
Eq. (1.53). As n varies, what changes is the relation between a point on the
curve and the parameter value; the shape does not change.
In the special case t,=0, t; =1 we have:

nt*
= 1.60
m—Dr*+1 (L.60)

Equation (1.59) is frequently used in rational polynomial parameter
transformations, because only the parameter range changes, while the shape
and the degree of the equation remain unchanged. Equation (1.60) is used
when one wishes to change only the relation between points on the curve and
parameter values, without changing the parameter range.

When the following curve:

a4 ayttay,
a1312+a7_3t+a33

x(f)
(1.61)

a12t2+a221+a32
Y=g ——
a3t taszt+tasz;
expressed in terms of rational polynomials in which both the numerator and
denominators are quadratic expressions is transformed using Eq. (1.60), the
result is similar in which both the numerators and denominators are quadratic
expressions. Let us demonstrate this.
The homogeneous vector representation P(r)=[x(r) y(¢) 1] for the rational
polynomial curve expressed by Egs. (1.61) is*®:

a1y @y3 q3

w)P(O)=[? t 1] [ a2y @y aps |- (1.62)
d3y 33 d33

Substituting the parameter relation of Eq. (1.60) into this equation gives:

e 2 ne* iy 42 43
W(t*)P(t*)=|:{(’771>l*+l} n—Dr*+1 1] Ay dyy Ap3 |=

a3y A3z 433

* As for homogeneous coordinates, refer to Newman & Sproull. Prmciples of Interactive Computer
Graphics, Second edition, McGraw-Hill.
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Ayy Gip Q37|
=[n*t*? ne{(n—1 e+ 1} {(’7*1)1‘*’*1}2] l:a21 azy ‘123:|
a3y d3z A3
ntopm=1 @-=17 A1 diz 3
=[**t*1]] 0 n 20=1) | | ax ayp a3 |. (1.63)
0 0 1 Ay Ay, sy
Consequently, in terms of ordinary coordinates we have:

_ Pay +n—1ay +—1) a5} t*? +{nax, +2(—Vas, ) t*+ay,

x(t*
) a3 +n0—1)ay+(0—1) ass} 2 +{nay; +2(n—1 a3} t* +ay;

{1 an+nir—D)ayn+0—1)7 a2} 2 + {18, +2(1 = 1) az,} t* + a5,
{1 a+nn—1)as+ (=17 a3} % + {1 a3+ 2(1 =1 @33} t* + a3

y(e*)=

Next, let us look at the change in the tangent vector under this parameter
transformation. The tangent vector after the transformation is:

ap_dp dr
dt*  dt de*’

From Eq. (1.60), we have:

. on
dr*  {(p—-er+1)2
apP n dpP

a T e as

Therefore, the tangent vectors at points t*=0 and t*=1 are, respectively:

dpP
dr*

dP
£
weo Tt

aP
1:0’ dr*

1 4P

~ @ (1.65)
=1

=1

As a result of using transformation (1.60), the shape is unchanged, the range
within which the parameter varies remains the same, and the variation of a
point on the curve for a given change in the parameter is changed. As a result,
the magnitudes of the tangent vectors at both ends are changed, but the
product of the magnitudes of the two tangent vectors remains the same. That
is:

**) Multiplying a homogeneous vector by a nonzero scalar constant does not alter 1ts ordinary coordinate
vector. We shall define the equality m ordinary coordmate vector with the symbol =
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apP dP dpP apP )
- - — =— — . (1.66)
dt* |pog dt¥ |wey  dt |20 dt |,=y

1.2.7 Partitioning of a Curve Segment

Let us consider a case in which a curve P(t) is split into two curves P, (u)
(0=<u=<1) and P,(u) (0=<u<=<1) at a point corresponding to t=t,, We will
demonstrate this using the cubic curve (1.43) (Fig. 1.22).

Fig. 1.22. Partitioning of a curve scgment

The first curve P, (u) is obtained by setting ¢, =0, t,=¢t, and r*=u in Eq.
(1.56). This gives the following expression:

Piw)=[u*uv*ul]

The second curve P,(u) is o
(1.56) to give the expression:

Pyw)=[udu?u 1]

[t34
t:B
t,C |
L D

(1.67)

btained by setting t,=t,, t;=1 and t*=u in Eq.

(1—-t)* A
31—t t,A+(1—t)* B
3A—t)t2A+2(1 -t )t B+(1—-t)C|
t3A+t2B+t,C+D

(1.68)

Partitioning the curve in this way makes it possible to apply local control to

its shape.

1.2.8 Parametric Cubic Cur

ves

The parametric cubic curve segment (1.43) is completely determined by setting
the parameter equal to 0, the position vector to @ and the tangent vector to
(), at one end, and the parameter to 1, the position vector to Q, and the
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tangent vector to Q, at the other end (for further details refer to Sect. 3.2.1).
This gives:

A=2(Q—0))+Qp+0,
B=3.(Q1 *Qo}*on‘Q1
C=0,

D=Q,.

If we have two curve segments such that the two end points of one curve
and the directions of the tangent vectors are the same as those of the other,

A~

/
(e)

Fig.1.23. Shapes of parametric cubic curves. (a) case with no abnormalities; (b) cusp; ()
loop; (d) one inflection point; (e) two inflection points
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then, if the magnitudes of the tangent vectors at these end points are different,
the shapes will be different. The magnitudes as well as directions of the
tangent vectors affect the shapes of the curves.

Let us focus attention on a point of inflection of a curve segment. From
Eq. (1.26), a point of inflection is a point at which:

PxP=0.

If we exclude points at which P=0, then a point of inflection is a point at
which:

P=gp (1.69)

where g is a scalar. Since this is a second-degree equation with respect to ¢, we
see that as the parameter varies from O to 1, a parametric cubic curve can
have a maximum of 2 inflection points. A typical shape of a parametric cubic
curve is shown in Fig. 1.23.

Next, let us look at the torsion of a parametric cubic curve.

P(ty=[%yz]=3A41>+2Bt+C
P()=[%j]=6A4t+2B . (1.70)
Po=[xyz]=64

Substituting these relations into Eq. (1.31), we obtain:

%y 2| |34,2+2Bt+C, 3A4,+2B+C, 3A4,1*+2B,t+C,

%y Z|=| 6A,t+2B, 6A4,t+2B, 6A,1+2B,
Xyz 64, 64, 64,
A, A, A,
=-12|B, B, B,
c.C, C,

Therefore, the condition for a parametric cubic curve to be a plane curve is:

B, B, B,|=0. (1.71)

C,.C, C,
From this cquation a curve for which 4,=A,=A.=0, that is a quadratic
parametric curve, has zero torsion and is a plane curve. Therefore, we see that
the minimum degree that a polynomial curve must have in order to be a space
curve is 3. In addition, even for a cubic curve, if the 2nd-degree coefficients
(B, By, B,) or the 1st-degree coefficients (C,, C,, C,) are 0, the curve is a plane
curve.
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1.2.9 Length and Area of a Curve

A very small segment of a curve has approximately the same length as the
chord which subtends that segment. The chord vector obtained by varying the
parameter by At is approximately P(t)At, so the length [ of the curve from the
parameter value ¢, to ¢, can be calculated as:

1:]‘ |P(t)] dt. (L.72)

to

If we assume that the curve is a plane curve that can be represented by
Eq. (1.43), then:

t
I= [ AL + A0+ A, + A1+ Ay dt
fo

;tf f(odt. (1.73)

to

Here:

JO =Y AP+ AP+ A+ A 1+ A,
A,=9(A2+42)
Ay=12(A.B,+A,B,)
Ay=6(A,C,+A4,C,)+4(B2+B))
A,=4(B,C,+B,C,)

Ag=C2+C2.

We apply the following parameter transformation:
t= t0+(t1—t0)u
in order to be able to use the Gauss quadrature method. The transformation
is applied to Eq. (1.73) to give:
o 1 1
I= j” fOydt=(t; —tg) J.f(lo’*(ll*lo)“)d“:(ll —to) j” glu)du
to 0 0

=(ti—to) i w, g (u;). (1.74)

In this equation, m is the number of knots in Gauss’ formula, the u; are the
knots and the w; are weight factors.

Next, in the case of a plane curve, let us find the area of the “pie slice”
formed by the origin and a curve segment (Fig. 1.24). The pie slice defined by
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P(i+41)

0 Fig.1.24. Area enclosed by a curve

the origin and the two points on the curve P(t) and P(t+A4t) is approximated
by the triangle O—P(t)— P(t+ At). Since this area A4S is 1/2|P(t) x P(t)| At,
the area S swept out by the curve as the parameter varies from ¢, to ¢, is:

S=%'f |P(t)x P(1)|dt. (1.75)

1.2.10 Intersection of a Curve with a Plane
A plane is represented by the equation:
ax+by+cz+d=0.
Since the curve P(t)=[x(t) y(t) z(t)] satisfies this equation, we have:
ax(t)+by(t)+cz(t)+d=0. (1.76)
The roots of this equation can be found by the Newton-Raphson method. If
the curve P(t) has been normalized in the range 0<t <1, the roots will be
confined to this interval. The calculation can be made very efficient by

pointing at the intersection points on the display with a stylus to obtain the
first iterations.

1.2.11 Intersection of Two Curves

For simplicity let us restrict ourselves to the problem of finding intersections
of two plane curves

Pi(t)=[x,(6) y;(t) 2, ()] and P, (u)=[x,(u) y,(u) z,(w)].

In this case, we have:

Xl(t)=xz(u)}

0<t<1,0=5u<l). 1.77
3O =20 0=l 0521 7
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Let us seck solutions of the simultaneous equations for the two unknowns t and
u(0=t=<1,0=u<1) by the Newton-Raphson method. The calculation can be
made very efficient by pointing at the intersection points on the display with a
stylus to obtain the first iterations.

If both curves are given by cubic polynomials of the form (1.43), then Eq.
(1.77) becomes the following:

A P+ B2+ C it + Dy — (A ti® + By > + Cou+ D, ) =0

. (L78
Alyr3+B,yt2+C,yr+D,y—(Azyu3+Bzyu2+czyu+Dzy)=0} (L.78)

1.3 Theory of Surfaces

1.3.1 Parametric Representation of Surfaces

Suppose that a curved surface is described by a polynomial in terms of the
two parameters u and w which vary on its surface:

P(u, w)=[x(, w) y(u, w) z(u, w)]. (1.79)
If a curved surface satisfies the conditions that the three Jacobians:

oy, 2) ¥ 0(z, x) a(x, y)
J.= J,= s J.=
T o w) Y7 0w, w) 3(u, w)

are not all zero at the same time, in other words, that:
JI4IZ+J2%0 (1.80)

that the curved surface P(u, w) has all derivatives with respect to x, y and z up
to r-th order, and, moreover, that all such derivatives are continuous, then the
curved surface defined by Eq. (1.79) is said to be of class C".

Condition (1.80) is the condition for the curved surface to not degenerate
to a point or a curve, and to not contain any singular points such as spikes.
This condition requires constraints on both the curve itself and the para-
meters. Even for the same curve, it is possible that for one parameter
expression condition (1.80) will be satisfied, and for another parameter
expression it will not.**

* This notation 1s defined by.

oy @z
ay, z) ou ou
Bfuw) oy oz

aw dw

**) For example, If the xy pldne 1s expressed as x=u, y=w, z=0 then J,=1, but if the same plane 1s
expressed as x=u’, y=w?, z=0 then at the onigin J,=J,=J,=0.
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In the discussion that follows, unless otherwise stated it is assumed that
condition (1.80) holds.

If w=w, (fixed), the curved surface representation describes a curve
P(u, w,) on the curved surface. This curve is called the u-curve. Similarly, the
curve P(uy, w) on the curved surface corresponding to u=u, (fixed) is called
the w-curve.

At a point P(uy, wy) on the curved surface, the tangent vector in the
direction of the u-curve is:

P 7|:5x(u,w0) 0y (u, wo) az(uawo):l
v ou du ou g

Similarly, the tangent vector in the direction of the w-curve is:

[Ox(uo, w) 8y(ug, w) 0z(ug, w}]

P =
ow ow ow

w

If these two vectors are drawn starting from the point P(ug, w,), if condition
(1.80) is satisfied the angle between them is non-zero (Fig. 1.25). That is,

/ o Fig. 1.25. Tangent vectors in two parameter directions
on a curved surface

condition (1.80) is equivalent to saying that the vectors P, and P, are linearly
independent at each point on the curved surface. Condition (1.80) is also
equivalent to P, x P, +0%.

A curve in an arbitrary direction on a curved surface can be expressed in
terms of a parameter t as P(u(t), w(t)) (a<t<b). Therefore, at point P(u,, wy),
the tangent vector in the direction of that curve becomes:

apP
dt

du
=P,
“dt

dw

e 1.81
Y (181)

t=tg

t=tg t=to

* Note that (P, x P2 =J2+J2+J2.
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Note that ug=u(t,) and wyo=w(t,). The above formula expresses the fact that
a tangent vector in an arbitrary direction on the curved surface lies on the
plane formed by P, and P,. This plane is called the tangent plane at the point
P(uy, wy). Letting R be a position vector on the tangent plane, the tangent
plare is given by the following equation.

[R—P(ug, wo), P,, P,]=0. (1.82)

The straight line that passes through point P(u,, w,) and is perpendicular
to the tangent plane at that point is called the normal line. The normal vector
e can be expressed in terms of P, and P,, in a right-hand systems as follows:

P, xP, P,xP,
e= = .
VPxP) JIE+IE+TE

(1.83)

¢ is called the unit normal vector:

1.3.2 The First Fundamental Matrix of a Surface
As was stated in the preceding section, a curve on the curved surface P(u, w)
can be given by u=u(t), w=w(t), (a <t <b). The following notation is used for
this.

u(t)=[u(t) wt)]. (1.84)

From Eq. (1.81), the tangent vector to this curve is given by:

w.

) P
P=P,i+P =[1 W] [P"}
=id. (1.85)

Here A is defined by:

P,
A= [Pj. (1.86)

The square of the magnitude § of the tangent vector is given by:

2=P@)=P(t) Pt)"

o Pu i e Pu2 P,,'Pw i
s [Feea w5 5[]

=iFaT. (1.87)
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Here F is the matrix defined by:

P2 P, P,
rz[P_P - } (1.88)

This matrix F is called the first fundamental matrix of the curved surface.
Using the first fundamental matrix, the unit tangent vector ¢ of a curve on
a curved surface is:

(PO _ a4
POl @rary}

(1.89)

Therefore, the cosine of the angle 6 between the two curves w, =u,(t) and
u,=u, () on the curved surface is, using (1.89):
i1 A4 AT i, Fii]
cost=t, t,=— 221 __ i (1.90)
() Fai)? (i, Fi3)* (i Firl)? (i, Fa3)

The length of a curve on the curved surface is given by:

5} 13t
1= sdt=[ @@Fi?)? dr. (1.91)

to To

Next, let us consider a small area of a curved surface surrounded by the
parametric curves u=ug, u=ug+Au, w=w,, w=w,+Aw. Referring to Fig.
1.26, we see that the area A4S of this small segment of surface is:

AS=|P,xP,|Audw.

P (ug,wo4 dw)

l Plugtdu, wo+dw
i

Fig.1.26. Area of an infinitesimal curved surface patch
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We also have:
|P,xP,|>=P}P,—(P,- P, ¥ =|F|. (1.92)

Therefore, the curved surface area corresponding to the region R on the uw
plane is:

S=f{ 1F|* dudw. (1.93)
R

1.3.3 Determining Condit.ons for a Tangent Vector to a Curve on a Surface
As shown in the preceding section, since the unit tangent vector of a curve on
a curved surface is given by Eq. (1.89), the condition that determines the unit
tangent vector ¢ is:

WFi">0. (1.94)

In the case P2 +0, changing the form of the equation slightly gives:

p: p,-p ][
aFaT =T WJ[ v D W] ["J:P5u2+2pu-1’wuw+1’5w2
w

P,-P, P v
of ., PiPu N, PIPL—(P,-P)
=P;|u+ — W] + —PZ——w
of o PPy N IPXPP 5
=P i+ oz W Pz Ww2>0 (P2+0). 1.95)

This equation implies that if the conditions
i#+0 and P,xP,+0 (1.96)

are satisfied, the unit tangent vectors are determined for all curves u=u(t). If
the second condition is satisfied but the first is not, then, as can be seen from
Eq. (1.81) and (1.83), the tangent plane and normal line arc determined, but
the unit tangent vector ¢ is not determined due to twisting of the curve
u=u(t). If the first condition is satisfied but the second is not, there can be a
cusp or the u-curve and the w-curve can be parallel, with the result that the
tangent plane is undetermined .

* Using the vector identity (4 x B) (Cx D)=(4C) (BD)—(4D)(BC)
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1.3.4 Curvature of a Surface
From Eq. (1.9) we have:
P=sP'=jt.
Differentiating by t we obtain the equation:

P=5st+s5t=5t+5t
=§t+5%kn. (1.97)

Now let us find P for the curve u(t)=[u(t)w(t)] on the curved surface
P(u, w). From Eq. (1.81) we have:

P=P,i+P,w.
Therefore:

. dP, d
P sipu w
dt u+r,u+ dt

=P, 0>+ P, i+ Pii+ P, w>+ P, Wi+ P, W

Wt P

= P %+ Py i+ P io+ Py W2 4 Pyii+ PV (1.98)

Taking the inner producl of the unit normal vector e to the curved surface
and P from Eq. (1.97), since e and ¢ are perpendicular with each other:

e-P=5kn-e. (1.99)

Also taking the inner product of the unit normal vector e and P from Eg.
(1.98), since e is perpendicular to both P, and P,:

e P=e P, i’te P, uwte P, uwte- P, w2

P "
=L W][ P :-Puw} [ﬂ

=aGi” (1.100)
where:
e-P, e-P
G= u w | 1.101
vt oy

From Eq. (1.99) and (1.100) we obtain:

$2kn-e=nuGa® . (1.102)
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Fig.1.27. The intersection curve C of the
plane containing the tangent vector P and
the unit normal vector e with a curved
surface

The matrix G is called the second fundamental matrix of the curved surface.
Normally, in the curved surface representation encountered in CAD, it often
happens that P,,=P,,. In such a case, G is a symmetrical matrix.

Let a space curve u=u(t) be given on the curved surface P(u, w) and let C
be the curve formed by the intersection of the curved surface with the plane
which includes the tangent vector P=#A at a point P on the curve and the
unit normal vector e (refer to Fig. 1.27). The curvature of the curve C is called
the normal curvature relative to the direction #A4 at point P. The normal
curvature is the projected length of the curvature vector of the curve u to e.
Letting k, be the normal curvature, from Eq. (1.102) we have:

§2k,=uGu"
aGa"  aGa'

K== (1.103)

The sign of , is plus if the curve C is concave in the direction of e, negative if
it is convex. As shown in Fig. 1.27, k,<0 at point P.

In general, if the direction of the intersection curve at point P changes, the
curvature x, will also change. The direction in which «, takes an extreme
value is called the principal direction of the normal curvature. In Eq. (1.103), if
we take:

¢(=u, n=w, L=e-P, M=eP,=eP,,
N=e-P,, E=P! F=P,P, G=P:
then:

LE*+2MEn+Nn?—k, (EE2+2FEn+Gn?)=0. (1.104)

To find the extreme value of k,, take the partial derivatives with respect to ¢
and 5 and set 0k, /0¢=0 and Jk,/0n=0 to obtain:

(L—k,E)E+(M =k, F)n=0 } (1.105)

M—k,F)E+(N-1,G)n=0
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Eliminating ¢ and # from these equations gives:

(EG—F?)k2—(EN+GL—2FM)x,+ LN —~M?=0. (1.106)
This quadratic equation always has two real solutions K, ma, and K, .- Knmax
and K., are the maximum and minimum values of the normal curvature,
called the principal curvatures.

From the relation between the roots and the coefficients we have:

LN-M? _(e-P,)(e-P,)—(e P,)’

K =k, K,

nmaxKnmin = po— 7= PP, — (P, P,)
G
16l (1.107)
|F|
EN+GL-2FM
2H= = F_F?
Kymin T Knmax EG—F?
_PXe-P,)-2(P, P P,)+Pe P,)
|F| (1.108)

K is called the total curvature or the Gauss curvature, while H is called the
mean curvature. It is easy to show that the two directions in which the
principal curvatures are obtained are perpendicular to each other.

1.3.5 Calculation of a Point on a Surface

Many of the curved surface patch equations which are normally used are of
the bi-cubic surface type:

3
P(u Z Ay 5o utw! (1.109)

H
HMu

=(A00W + Aoy W+ Aoy W+ Ags) U +(A oW + A W AW+ Aya) u?
(AW + Ay Wt AW+ Aps)ut Asow® + Ay W2+ Asw+ Ay
(1.110)
Aoy Aoy Aoz Ao [W?
Ay Ay Ay A || WP
Ay Ay Ay Ay, wl’
Azg Az Ay As

=[w*u?ul] (1.111)

—

For a curved surface of this type, just as in the case of a curve, a point on a
curved surface can be calculated rapidly by finite difference calculation.
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Taking w to be fixed in Eq. (1.110), we have:
P(u, w)=Au>+Bu*+ Cu+D
where:

A=AgoW3+ Ag Wi+ Ag,w+ Ags
B=A oW+ A W+ A,wt A3
C=ApoW + A4, W+ Ayyw+ Ay
D= Ayow+ Ay W+ Azpw+ Asy

which is the equation of a cubic curve. Then, using the finite difference matrix
in Eq. (1.48), a point on a curve on the curved surface for which w is fixed can
be found.

Letting & be the finite difference increment in the u-direction and denoting
a forward finite difference by 4, the finite difference matrix for =0 is, from
Eq. (1.48):

Py D AyoW3+ Ay W2t Ay w+Asy

jAPO | NuseBsrc| |0 Aogt Aot AW+ (37 gy +I Ay, + Ayy)w?

0 + (0% Aoy +0A 1+ Ay) w67 Aoz +04 .3+ 45,
! ) 5 - (68 Ago+2A10)W>+(65Ag; +2A4,)W?
— 4%P, ,, 6A45+2B 90 10 o1 11

52 e - F(684g+2A,,)w+603Agy+24,

1

6—3A3P0,W 64 6AgoW*+6 A W +6Agy w+ 64,

(1.112)

Therefore, the finite difference matrix for w=20 is:

Py, As;
1 . .
EAP” §2Agz+0A 3+ Ay,
1 = . . 1.113
5 APy, 65Ag3+2A4,; (1113)
1 3
()‘T/l PDAD 6’403

Next, in Eq. (1.112), let us take the finite difference in the w-direction at
w=0. Letting & also be the finite difference increment in this direction and
denoting the forward finite difference in this direction by ¥, then the first
order finite differences are:
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1
5 VPoo
1

52 VPo.)

1
- V(A%Po o)

5 V(4P o)

53

Ayg02+ A5, 0+ 45,

(0% Ago+0A 0+ Azo) 6% +(5%Agy +A4, +A3,) 0
+0%4g, +0A,+ A5,

(60Ago+2A,0)0% +(65Ag; +24,,)8
6040, +24,,

64007 +6.Ag, 5+6Ag,

(1.114)

The second and third order finite differences are:

1
- V2P, ,

I 2

a V(4P )
] 2 2
7 (4%P, )

1
55 VI (1Po)

1

5 V3Po o
I 3

SV UP)
1 3 2

PP
I 3 3

5 V3 (4% Py 4)

6A4300+24;,
6(0%Ago+ A 1o+ Apo) 6+2(52 Ao, +5 Ay +Azy)

6(65Ago+2A10)5+2(65Ag; +24,,)

36 Aoy 5+ 1240,
i (1115)
64,
6(0%Agg+0410+A20)
(1.116)
6(664g0+24,0)
36 4gq

Let us name the 4 x3 matrices on the right-hand sides of Egs. (1.113),
(1.114), (1.115) and (1.116), respectively as finite difference matrix A, finite
difference matrix B, finite difference matrix C and finite difference matrix D

(Fig. 1.28)

Calculations on the curve P(u,0) in the u-direction at w=0 can be carried
out by finite differences using matrix A4, that is, Eq. (1.113). Next, to find the
finite difference matrix to be used to calculate the curve P(u, §), as shown in
Fig. (1.28) perform finite difference calculations for each element correspond-
ing to matrices 4, B, C and D. Therefore, to generate a family of curves
extending along the u-direction separated by a parametric distance y (6=1/2",
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Fig.1.28. Finite difference computations between clements of finite difference matrices A, B,

Fig.1.29. Gencration of points on
a curved surface by finite dif-
ference computations
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Fig.1.30. Vcctor matrix transposition of finite difference matrices 4, B, C, D

y=1/2", m=n) in the w-direction, it is sufficient to perform 1 curve-generating
finite difference operation in the u-direction for every 2™~ " finite difference
operations between matrices (Fig. 1.29).

Next, to find a family of curves extending in the w-direction, as shown in
Fig. 1.30 matrix transpositions are performed using the vectors of finite
difference matrices A, B, C and D. In other words, the process described above
can be performed with the order of u and w reversed; this corresponds to the
transformations 4;;« 4, in the finite difference matrices.

1.3.6 Subdivision of Surface Patches

Let us now divide up a curved surface patch, using a bi-cubic surface
described by Eq. (1.111) (Fig. 1.31).

First, let us find equations to describe the surface patch P(u*, w¥*)
(0=u*<1; 0<w*<1) within the bi-cubic surface patch P(u, w) surrounded by
u=u,, u=u;, w=w, and w=w,. To do this the following parameter
transformation must be performed in Eq. (1.111).

U=+ u* (U —uy) (1.117)

W=Wo+w*(w; —w,). (1.118)
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P(u,w)

Fig. 1.31. Division of a surface patch (1)

Substituting (1.117) and (1.118) into (1.111), and using the result for parametric
transformation of a curve (Eq. (1.55)), gives:

P(u*, W*)=[u*3 uk? y* 1]

(g —uo) 0 0 0[ 400 Aor Aoy Aoz
% 3(uy—up)ug  (uy—uo) 0 O0f[A10 411 Az Az
3(up—uo)us 20y —uo)uy ui—tg 0| Ay Ay Ay Ay
up ug Uo 1430 Az Ay Ass
[(w1—wp)* 30w —wo)wo 3(wi—wo)wd wg |[w*>
% 0 (wy—wo)? 2(wy—wo)wo W w¥?
0 0 Wy —Wo wo || w*
0 0 0 1 1
O=u*<1; 0Sw*<1). (1.119)

Using Eq. (1.119), the curved surface formula for the case in which the
surface patch P(u,w) in Fig. 1.32 is divided into 3 sections is obtained as
follows:

e Formula for curved surface section A:

in Eq. (1.119), set ug=1ug, =1, wo=0, w; =1.
e Formula for curved surface section B:

in Eq. (1.119), set u,=0, u; =uy, wo=0, w, =w,.
e Formula for curved surface section C:

in Eq. (1.119), set uq=0, u; =uy, wo=w,, w;=1.
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Fig.1.32. Division of a surface patch (2)

1.3.7 Connection of Surface Patches

Let us consider the problem of connecting surface patch Py(u, w) along its
curve u=0 continuously to surface patch P;(u, w) along its curve u=1 (Fig.
1.33).

First, the condition for the boundary curves of both patches to coincide is:

Py, w)=P(L,w) (O<w<1). (1.120)

Next, on the boundary curve between both patches, in order for the slope to
be continuous in the direction across the boundary curve it is necessary for

Pi(1,1)=Py(0,1)

P (0,1)
ww) P, (1, w)

P(1,0)=P(0,0)

Py (1,0)

/ Fig. 1.33. Connection of surface patches
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the tangent plane Py(0,w) (0=w<1) to coincide with the tangent plane
P(l,w) (0=w=1). In this case, the direction of the normal vector is
continuous; that is, taking p(w) to be a positive scalar function, we have:

Py o (0,w) X Py (O w)=p(w) Py, (Lw) x Py, (Lw) (Osws1).  (L121)
Since Py ,,(0,w) =P, (1, w), if y(w) is an arbitrary scalar function we have:
Py, 0 w)=p(W) Py ,(L,w)+y(w) P, (Lw) 0=ws). (1.122)

The implication of Eq. (1.122) is that Py (0, w) of the second surface patch lies
on the tangent plane of the first surface patch along the boundary curve.
Taking y(w)=0 as a special case, we obtain:

Py 0 w)=p(w) Pr,(1,w) 0=w=1). (1.123)

In this case, the u-curve is smoothly connected across the boundary curve
between the two surface patches (Fig. 1.34). This is a slope continuity
condition and is a more severe condition than in the case of Eq. (1.122).

Py .0,w)—7(w)Pr (1, w)

PLLD=Py0,1) PoD

Py(1,0)=Py(0,0) .

Py(1,0)

Py(0,1)

P(0,0)

Fig. 1.34. Special casc of connection by slope continuity (w-curves arc continuous)

The condition expressed by Eq. (1.120) requires that on the boundary
curve, the degree of w on Py(u, w) must agree with the degree of w on P (u, w).
This does not constrain the degree of w over all of the patch Py(u,w). The
degree of w on Py (u, w) can be specified to have an arbitrary value n not lower
than the degree of w on Py(u, w) as long as it agrees with the degree on P,(u, w)
on the boundary curve.-
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In addition, surface patches can be connected as shown in Fig. 1.35 by
means of a suitable parametric transformation.

Fig.1.35. Special case of patch connection

1.3.8 Degeneration of a Surface Patch

It is possible for 2 coincident vertices of the 4 corners of a surface patch to
form a triangular surface patch (Fig. 1.36). Curve P(0, w) of this surface patch
becomes a single point D regardless of the value which w takes from 0 to 1. In
other words, the boundary curve degenerates to a point. When performing
shape processing, for example in NC processing, when, for example, a tool
path is calculated it is necessary to find the normal vector at every point on
the surface. Normally, a normal vector on a surface is found as the vector
product of tangent vectors in two parametric directions. However, at point D
the vector product becomes:

P,(0, w) x P, (0, w). (1.124)

Tangent planc

Fig.1.36. A surface patch that has degencrated to a triangular shape
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Since P,,(0, w)=0, the normal vector at point D cannot be determined by this

method. In such a case, the normal vector is determined as a limit, as follows.
The unit normal vector e on the curve u=Au is:

P,(Au, w)x P, (du, w)

= vl (1.125)
[P, (Au, w) X P, (du, w)|
We also have:
P, (Au, w)= P, (0, w)+Au P, (0, w) (1.126)
P, (Au, w)= P, (0, w)+ AuP,,, (0, w)
=AuP,, (0, w). (1.127)

Substituting the relations in Eqs. (1.126) and (1.127) into (1.125) and taking the
limit gives, for the unit normal vector at point D:

: . PO,w)x P, (0,w)+AuP,(0,w) x P, (0,w)
e,=lim e= lim
Au—0 tu~0 [Py (0, w) X Py (0, w)+ Au P, (0, W) X P, (0, w)|
_ PO, w)xP,, (0w
PO w) X PO, )]

(1.128)

In order for the unit normal vector to be determined uniquely, formula (1.128)
must have a unique value for any arbitrary w from 0 to 1.

In other words, when a triangular patch is expressed as an ordinary
quadrangular patch, the unit normal vector at the degenerate point D cannot
be found by normal means; it must be found using (1.128). And in order for
formula (1.128) to be uniquely determined, special care must be taken (refer to
Sects. 3.39 and 5.2.4).

1.3.9 Calculation of a Normal Vector on a Surface
A normal vector NV at a point on a curved surface is calculated as follows:

N ﬁPiu, w) N é‘PEu, w) (1.129)
du ow
=[N%ﬂ 0, %) wa}

O(u, w) d(u,w) O(u,w)

=[J, J, J.]1.

v 2)
d(u, w)

The Jacobians such as are defined as follows:
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dy 0z
a(y, 2) =y = ou du
ou,w)y  * |dy oz
ow 0w

In a special case, for example, when a triangular patch is represented as a
quadrangular patch, one boundary line degenerates to a point. At this point
the Jacobian becomes singular and the normal vector cannot be found by the
above method (refer to Sect. 1.3.8).

The unit normal vector e is:

J J J
e=|:— x y d ] (1.130)
VIZHIE+IE YIZHI+IE YJIE+IE+)?

1.3.10 Calculation of Surface Area and Volume of a Surface

To find the surface area of a curved surface, the first fundamental matrix can
be used and the calculation performed with Eq. (1.93), but Jacobians can also
be used, as follows.

P )4
2 ( Y
3, (ww) du

u
) ] |

48 |2 P( X=—P(u, w)|dudw

S 15u % w) E (u w‘ udw

/ Fig.1.37. Calculation of surface area of a curved
surface

The surface area 4S of an infinitesimal parallel quadrangle formed by the
P 4 i .
infinitesimal tangent vectors 3 P(u,w) Au and 5 P(u, w) Aw in the u- and w-
u ow

directions is (Fig. 1.37):
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0 0
AS=|—P(u,w)yx— P(u,w)| dudw=|N| dudw
u ow

=)/ I+ I +I2 dudw. (1.131)

The surface area S over the entire surface patch is then obtained as
follows:

S=[ds

1
§VIZHI24T7 dudw. (1.132)
o

O

Next, let us find the volume V' of the space enclosed when a curved surface
patch is projected onto the xy plane (Fig. 1.38). The projected area A4S,
obtained by projecting an infinitesimal area on the xy plane is obtained by
setting J.=J,=0 in Eq. (1.131):

A48, =J, dudw.

This gives the following expression for the volume V enclosed by the column
formed when 4S8 is projected onto the xy plane:

AV=z(u,w)AS,=z(u,w) J, dudw.

Accordingly, the total volume V becomes:

11
V={{z(ww)J dudw. (1.133)
oo

i w)

Xﬁi Fig.1.38. Volume of the space en-
a3, closed by projecting a curved sur-
x face onto the xy plane
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1.3.11 Offset Surfaces

The following equation can be used to generate a point on the curved surface
P, (u, w) that is offset a distance d with respect to the curved surface P(u, w).

Py(u,w)=P(u,w)+e(u,w)d. (1.134)

In this equation, e(u, w) is the unit normal vector in the offset direction at
point P(u, w).

To express Py(u, w) as a bi-cubic surface in the format of Eq. (1.111), point
Py (u, w) can be calculated for the points corresponding to points u,w=0, 1/3,
2/3, 1 on the curved surface P(u, w); then the bi-cubic surface passing through
these 16 points can be found by solving simultaneous equations (Fig. 1.39).
This curved surface is an approximation to the offset curved surface.

‘R / Fig. 1.39. Generation of an approx-

mmate cubic offset surface
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2. Lagrange Interpolation

2.1 Lagrange Interpolation Curves

It is known that there exists one at most nth-order polynomial that connects

the (n+ 1) points (Xo, fo) (X1, f1), -+-» (X f,) having different abscissas®.

First, let us use the following notation for the product of the differences of
X, Xqy oeey Xy

W(x)=(x—xXq) (x—X) ... (x—Xx,) zf] (2.1)

Denote the above expression with the factor (x—x,) removed by W;(x):

W) = (x = Xo) (X—X,) o (X=X, 1) (X = X1 1) zf[

(22)

Then the polynomial f(x) that connects a given sequence of points is given
by the following formula (Fig. 2.1):

fix)= _Z Li(x) f; (2.3)
where:
W)y (x—x)
Li(x)= W) 7]1:‘[0 =)’ (2.4)
f(x) //’/“'
no " i
. 7

ETET) *7 Tal  En % Fig.2.1. Lagrange interpolation
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Equation (2.3) is called Lagrange’s formula, and L;(x) is called Lagrange’s
coefficient polynomial. L;(x) can also be expressed as follows:
W) W
(x=x) Wilx) — (x=x) W'x)’

Li(x)= 2.3)

From Eq. (2.4) it is easy to show that the following relation holds for L, (x):

0 (i+))

Li(x)=4d;,= { 1 G=)) (2.6)

showing that the polynomial interpolates these points. It is possible for f (x)

to be of degree less than n, depending on the coordinates of the points.
Lagrange’s coefficient polynomial can be used to derive a parametric

vector expression for a curve passing through the points Q,, Qy, Q,, ..., Q,:

PO)=Y L) Q Osi<1) @)
where:

Lin=1{] =4 28

o= e38)

We also have:

to(=0)<ty<t,<...<t,(=1). (2.9)

If the points Q, Q,, ..., Q, are nearly equidistant, we have:

—_ (2.10)
n

Fig.2.2. Distribution of parameter
x values according to chord length
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If the points are not approximately equidistant then a better result can be
obtained by distributing the parameter t, according to the chord length
between points (refer to Fig. 2.2):

X

1

L= (2.11)
¢
=1
If we have n=3 and t,=i/n, then L,(t) become as follows:
Lo(t)= 9(: 1)(t z)u 1)
o2 3 3
2
L ()= t(!—f) t-1
2 @12

9 1 2
Li(t)= i t (l*g) (I— 3*)

A graph of L,(¢) is shown in Fig. 2.3, and an example of a curve generated by
L,(¢t) in Fig. 2.4.

In general Lagrange curves work well up to n=>5, that is, for up to 6
points, but when n becomes larger than this the high-degree polynomial effect
causes fluctuations to occur, making it difficult to obtain a smooth curve.

Li(t) Lot}

0.6

0 4

L,

Lotey Li(1)

02

Fig.2.3. Graph of Lagrange cocfficient
polynomial (for the casc n=3)



2.2 Expression in Terms of Divided Differences 67

P(1)
X

P+ p(/
X

x
P0) Fig.2.4. Example of Lagrange curve

2.2 Expression in Terms of Divided Differences

Let fy, fi, ... be the function values at different abscissas x,, X;, .... The
functional values do not necessarily need to be defined by an analytical
formula; they could, for example, simply be given as values f; at discrete data
points x;. In this case, the first-order divided difference f[x,, x,] is given by
the following formula:

fi=lo
—X, )

f[xmxl]zx (2.13)

1 o

Geometrically, these 1st-order divided differences give the slopes of the line
segments connecting the data points (x,, f) and (xy, f}). 2nd and higher order
divided differences are defined as follows:

fDxo, X1, x2] =f[x"x;]¢x1] 2.14)

:f[xu s X =f [Xg, ooy Xum 1] )

Xn—Xo

SIx0s X15 «rvs Xn] (2.15)

Equation (2.15) gives the divided differences of arbitrary order in terms of
the divided differences of one lower order. This equation is used to calculate
the values of divided differences numerically.

The divided difference expression on the right-hand side of Eq. (2.15) can
be applied repeatedly to express the divided difference of any order n in terms
of linear combinations of (n+ 1) function values f5, fi, ..., f,:

o Ak
Wolra) W0 T T )

SIxo, X1, 000 X1 = (2.16)
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Wy (xo)s Wi(xy), ..., W,(x,) in this equation are determined by Eq. (2.2). As
can be seen from this equation, the divided differences are symmetrical with

respect to their arguments x,, Xy, ..., X,, so the values of the divided
differences are invariant no matter how the order of the arguments is
interchanged.

Substituting x for x,, f for f;, x, for x, and f, for f; in Eq. (2.13) and
solving for f gives:

f=fo+(x—x0) fx xo]- 2.17)

Similarly, substituting x for x,, f for f;, x, for xy, f; for f;, x, for x, and f;
for f, in Eq. (2.14) leads to:

SIx xo] =f[x0, {1+ (x—x,) f [ xo, x(]. (2.18)
Substituting the right-hand side of this equation for f[x, x,] in Eq. (2.17)
gives:

f=fo+(x—x0) f[x0, x11+(x —x0) (x—x1) f [x, X0, x]. (2.19)

Repeating the above substitutions in sequence leads to the following formula:

S=1o+(x—x) f[x0, 11+ (x—x0) (x—x1) f [0, X1, X ]+ ...
+(x—x0) (x—=x) ... (x=Xp-1) S [X0s--, X,]
+(x—xq) ... (x—x,)f[x, Xqg, -+, X,]- (2.20)

This formula is called Newton’s divided difference interpolation formula with
remainder. The last term is the remainder. So the formula consists of the first
(n+1) terms and the remainder term. Let us focus attention on the first (n+1)
terms, the sum of which will be denoted by f. f is of at most degree n.

Taking x =x, gives:

fx:xn =fo-
Then, taking x=x, gives:

/Z:M = fo+(x)—Xo) f[x0, X, ]

=fo+(x, 7x0)@

Xy —Xg
=fi.

Then, taking x=x, gives:

Se=x=fo+(x2—%0) f[X0, X1+ (x2—Xo) (X3 —x1) f [X0, X1, X,] =
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Ly fi—fo

—X;  X;—Xg

=fo+(x,— o)f Iy x) () 2

Xo X2~ Xo
=f.

The same process can be continued, giving f_,(:x“=f,l when x=x,. As was
stated at the beginning of this chapter, there is only one polynomial that
passes through the (n+1) points (xo, fo)s (X1, fi)s --s (Xm f) SO f is simply
another expression for the Lagrange polynomial. This means that the Lag-
range polynomial formula (2.3) can be expressed as:

fL(X)Ef:fu+(x_xo)f[xo; Xy ]+ (e=xg) (x—x1) f [xo, X1, X2+ ...
+(x—Xg) (x—x1) . (x—Xp— ) f[X0, X1, oovs X,]. (2.21)

Using this equation rather than Eq. (2.4) greatly reduces the number of
time-consuming multiplications.

The discussion until now treats divided differences for scalar functions. Let
us now consider divided differences for parametric vector functions.

Let Q,, Oy, ..., O, be position vectors corresponding to different para-
meters tg, t, ..., t,. Then the Ist-order divided difference is:

Qlto, t,] = ~% (222)

- 0
The 2nd-order divided difference is:

Oty 1= 0lto, t,] ]

Olto, t1, 1= ot (2.23)
. 27 o
Similarly, the nth-order divided difference is:
Olto, t1, ..o, 1,] = Oy, s ta] = Qlto, - tu=1] ) (2.24)

1l

Defining the product of differences as:
W,t)=(t—to) t—t) ... (t—t;_) t—t,4y) ... (t—1, zH t—t;) (225)

gives, for an equation corresponding to Eq. (2.16):

o .o . o,
Wotto) T Wt T T W)

Olto, ty, s tal = (2.26)
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Then, the divided difference expression for the parametric Lagrange poly-
nomial corresponding to Eq. (2.21) is:
P(t)= Qo +(t—1to) Qlto, t,1+(t —to) (t—11) OLto, t1, t2]+ ...
Ft—to) (t—t1) ... (t—1,-1) Lo, 1y -os ta]- 227

Problem 2.1. Using the divided difference expression for a parametric Lag-
range polynomial, find the formula for the case n=3, t;=i/n and confirm that
the coefficient polynomial formula agrees with formula (2.12).

Solution: First find the divided differences.

0Ly, 1= 272 070 39 g,
17 to 7_0
3
00 _0-0 .
o 1= 272 90 59,0,
373
01, 1= 22 07 50 o,
ty—t, 2
3
O 1y 1= 2Let1=0l00)_30,-0)-3(0,-00

20
3

9
= 2'(Q0*2Q1+Q2)

g[tz, 31— 0[1y, t5] _ 3(0;—0,)-3(0,— 01)
ty—t, 1

1—=
3

Q[rh ts, ts] =

9
:2 (0,-20,+03)
Olty, 15, 13]1— Qlto, 4, 15]

t37t0

Q[Mg ty, b, t3]=

9 9
3 (21=20: 409~ (020, +0,)

1-0
9
=5 (-0 +3Q,-30,+0y).
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Setting n=3 in formula (2.27), and substituting Q[t,, t,], Qolto, t1, t,] and
Olto, ty, ta, t3] gives:

P(t)= 04 +(t—to) Qlto, t11+(t—to) (t—1,) Qlto, 1y, 1]
+(t—to) (t—11) (t—15) Qlto, t1, 15, 13]

1
=Q0+3t(Q17Q0)+%t<t7§) (Q0—20,+0,)

9 1 2
+51<f—§) (f—§> (—Qo+30,-30,+05)

9 1 2 27 2
=7(tv§) (t—;)(r—l)(.m? (,,,) (=1,

Ti(=) e g ()
77r tfg (t— )Q2+5r rf§ tfg 0,

=Lo(t) Qo+ Ly (1) @1 +Ly(t) Q2+ Ls(t) Q.

This confirms that the coefficient polynomial that has been obtained agrees
with the Lagrange coefficient polynomial.
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3. Hermite Interpolation

3.1 Hermite Interpolation

Hermite interpolation is a generalized form of Lagrange interpolation. Whereas
Lagrange interpolation interpolates only between values of a function fy, fi, ...,
f, at different abscissas x,, xi, ..., X,, Hermite interpolation also interpolates
between higher order derivatives (Fig. 3.1). The following discussion deals with
Hermite interpolation of function values and slopes.

flz)
o
NS
\\<;
for | fa
‘ 7% =  Fig.3.1. Hermite interpolation
When function values fy, fi, ..., f, and slopes f3, fi, ..., f, are given at

different abscissas x,, x;, ..., x,, the Hermitc polynomial fp(x) used to
interpolate between these data is given by the following formula”:

Sul9= 3 % AL @)

where: o
£.09=[1-2 L) (= x)] () 62
1) =0x—x) L} (x) 3.3)

L;(x) is given by Eq. (2.4). From the fact that L;(x) is an nth-degree formula, we
see that the polynomial in (3.1) is a (2n+ 1)-degree polynomial which satisfies
2(n+1) conditions.
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The most common form of Hermite interpolation used in CAD interpolates

not between (n+ 1) points as in formula (3.1), but rather involves interpolation up
to the kth-order derivative between 2 points x4 and x,:

1 k
fal)= Y Y (S, (34

This formula gives a (2k+ 1)-degree polynomial. H, ;(x) can be expressed in
terms of Kronecker’s dclta as:

as
— _H. . =6..6. 35
s i) =040 (5)
which means:
d* 1 (i=j and r=s
e Hr.z(xf):{ o ) (3.6)
X 0 (i%j or rFs)

In this chapter, we will discuss Ferguson curves and surfaces and Coons
surfaces based on Hermite interpolation.

3.2 Curves

3.2.1 Derivation of a Ferguson Curve Segment

As we found jn Scct. 1.2.2, a parametric cubic curve is the lowest degree
polynomial that can describe a space curve. A parametric cubic curve is given as
follows:

P(t)=[t*t2t 11 [4 B C D]"
=[t3 2t 1M (3.7)
In this formula, M is a 4 x 3 matrix. Differentiating by ¢ gives:
P()=[3¢* 2t 1 O]M. (3.8)
The curve is supposed to have a position @, and tangent vector 0, att=0,
and a position @, and tangent vector @, at t=1 (Fig. 3.2). Substituting these

conditions into formulas (3.7) and (3.8) and expressing the resulting relations in
matrix form, we obtain:

271 0001
o [t 111
= M.
Ol 00 10
ol 13210
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t=0 Fig.3.2. A Ferguson curve segment

This cquation can be inverted to find M as:

00 0 17'[Q, 2 -2 1 171[Q,
moft tt o [-3 3-2-1||@
0010 0 0 0 1 offlg,
3210 0, 1 0 o offlg,

Substituting this M into formula (3.7) gives the paramctric cubic curve that

satisfies the specified boundary conditions:

2 -2 1 11[0Q,
-3 3 -2-1l]o
Py=[t3t*t1 =0t e 1M,
()[tt]()OIOQO[tJL
1 0 0 o0}l0
where:
2 -2 1 1
-3 3 -2-1
M=y o 1 of
1 0 0 0

The curve P(t) can also be written in the following form.

Do
o
0
o

=H0,o(t) Q0+H0,1(t) Q1 +H1,0(I) Q0+H1.1(I)Q1

P(t): [Ho,o(t) Ho.l(t) Hl.O(t) H,y, ()]

where:
Hoot)=263=312+1=(t—1)*(2t+1)
Hyq ()= —263+3t2 =12(3-21)
Hyo()=13-2t24+t =(t—1)*t
Hy (t)=t>—t? =(t—-1)¢?

2
0,
0,
0,

(39

(3.10)

(3.11)

(3.12)

(3.13)
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Since they will be referred to frequently, let us write out M, and the first and

second derivatives of Hg o(t), ..., Hy (1)

000
|t
© oot

3201

1
1
ol
0

Hoolt)=6>—6t=6t(t—1)

Ho ()= —6t246t=6¢(1—t)

Hio()=32—4t+1=3t=1)(t—1)

H, ()=32-2t=t(3t-2)

Table 3.1. Cubic Hermite interpolation functions

Hy,o(8) Hy, () Hy,y () )

£=0 1 0 0 0
Function value

t=1 0 1 0 0

t=0 0 0 1 0
Ist denvative

t=1 0 0 0 1

£=0 -6 6 —4 -2
2nd denvative

i=1 6 —6 2 4

0.0

2N
=)

—0.3

(3.14)

(3.15)

Fig.3.3. Cubic Hermite interpolation
functions
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Hoyot)=12t—6=6(2t—1)

Hy (t)= —12t+6=6(1—2t

o, (1) (1-20) 616

H, o(t)=6t—4=2(3t-2)

Hy (t)=6t-2=2(3t~-1)

Since parametric cubic curves were first used by J.C. Ferguson and S.A.

Coons, they are called Ferguson curves (or Coons curves). As shown in formula

(3.12), these curves are expressed as linear combinations of vector data Q,, Q,,
0y, 0,. We can consider that input data are blended in lincar combination with

«
@
a

@
e / \
/ / \
/
/ / \ .
i 4 Y
/ Qo
, Y, \
/ . v \
/ [/I— // V@
@ \
Rl
y Qo=(10,10)  Qo=1(90,20) v Qo=(10,20)  Qo=(90,30)
OL Qi=(40,80)  {1=(60,20) o Q1=(80,80)  Qi=(20,~ 80)
x
(a) (b)
) Q@ .
& \\4‘)\
'\.\ A %
! / Y
J / \\)Q'
@,
. ‘/ g
Q - /
///
2 &
y Qo=(0,0)  Qo=(80,20) v Q=(0,00  Qo=(20,80)
Q1=(70,80)  Qi=(—80,20) o Q1=(80,60) Qi=(—40,40)
(d)

(c)

Fig.3.4. Ferguson curve segments
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0.5!

y  Fig.35. The effect of tangent vector
x——  magnitude on curve shape'?

weights given by the coefficients Hy (), Ho ;(t), Hy o(t) and H, ;(t). In this
sense, a curve cocfficient function expressed as a linear combination is referred to
as a blending function. In particular, the blending functions Hy o(t), Hg,(t),
H, o(t)and H, ,(t) were used extensively by S.A. Coons, so they are called Coons
blending functions. Hy o(t), Ho ; (t), H; o(t) and H, ,(t) have the propertics given
in Table 3.1 at t=0and t=1. H o(t), ..., H, ;(t) arc graphed in Fig. 3.3.

Examples of Ferguson curve segments are given in Fig. 3.4. The curve shapes
change with not only the direction but also the magnitude of the tangent vectors
at the starting and end points. In Fig. 3.5, the starting point is taken as Q@ =[0 0]
and the end point as @, =[1 0]. The tangent vectors at the starting and end
points both have the magnitudes ]/ik. In this case, the Ferguson curve segment
P(t) is expressed by the following formula:

P(t)=Hgo(t) [0 0]+ Ho 1 (t) [1 01+ Hyo(t) [k k]1+H, (1) [k —k].
That is

— — 3 — 2
x=2(k-1)2+3(1—k)t +kt}‘ (3.17)

y=k(—t+1)

To find the singular point of this curve, differentiate Eq. (3.17) and set the
derivatives equal to 0:
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d
d—fz6(k~1)t2+6(lfk)r+k:0
dy

—k(=2t+1)=0.
it ( +1)

These equations can be solved to obtain t =14, k= 3. The curve shapes obtained
when k is varied are shown in Fig. 3.5. When k is near 1, a relatively natural curve
shape is obtained between the two end points. As k increases above 1 the
variation of the curve increases; at k=3 and t=4 a cusp appears. When k
increases above 3 a loop appears.

3.2.2 Approximate Representation of a Circular Arc by a Ferguson Curve
Segment

Let us consider how to approximate a circular arc of unit radius by a Ferguson
curve segment (Fig. 3.6). Since the shape of a Ferguson curve segment is invariant
under coordinate transformation, let us express it in terms of an x’y’ coordinate
system with the x’-axis along the line that bisects the circular arc rather than the
basic xy coordinate system.

The magnitudes of the tangent vectors to the curve at points @, and Q, are
both a. If we assume that the curve passes through (1,0) at t =4, then we have:

cosf  —sinf

1 1 1 1 1 cost sinf
P{=)=| Hool =) Hor[ =) Hy o[ =) Hy [ =

(2) [ 0'0(2) 0'l<2) 1'0(2) "1(2>] asinf acosf

= [cos(-)+% sinf) 0] .

—asinf acosf

Fig.3.6. Expression of a unit
radius circular arc as a
Ferguson curve segment




3.2 Curves 79
Consequently:

4(1—cosf)

a
cosf+—sinf=1 ... a=
4 T ne

The approximate formula for the circular arc becomes as follows:

P(l)= [Ho.o(l) H0.1(l) Hl.O(t) H1,1(t)]
cost —sinf
cosf sinf 0=r<) (3.18)
4(1—cost) 4(1—cosf)/tand - =
—4(1—cost) 4(l—cost)/tand
where:

0=(0,—0,)/2.

To find the error with respect to a true circle, let us find the value of t which
gives the extreme value of distance r(t) from the origin to the curve:

r)=)/P@) . (3.19)

Differentiating this formula with respect to ¢ and sctting the derivative equal to 0
we obtain:

P(t)- P()=0. (3.20)

Equation (3.20) is a Sth-degree equation in ¢, It can be easily seen that it has roots
at t=0, t=0.5 and r=1, as follows:

P(0)=[cos# —sinf] P(0)=[4(1—cosf) 4(1—cosh)/tand]
. P(0)-P(0)=0

P(%>=U 01 f’(%)=[0 35inf—2 (1 —cosf)/tand]
1\ (1
r(3)#(3)-
P(1)=[cos# sint]

P(1)=[—4(1—cos#) 4(1—cosb)/tanb]
- P(1)- P(1)=0.
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We find the roots of the remaining quadratic equation as follows:

Y1=4(k,/ky) - (3.21)

Here, k, and k, are functions only of the angle ¢. From the above equation we
find that extreme values occur at two points symmetrically located with respect
to t=0.5. From the value of ¢t in Eq. (3.21) and from Eq. (3.19), it can be shown
that the deviation from a true circle is always positive and that the extreme
values of the deviation are equal'? (refer to Fig. 3.7). Maximum deviations are
given as functions of the center angle 28 in Table 3.2.

| =

o =

Ferguson curve
segment approximation

Fig.3.7. Deviation from a true circle

Center angle|  Deviation from Table 3.2. Error in a}zgroximating a circular arc as a Fer-
Q@ a true circle (¢) guson curve segment
10° 5.0x10710
20° 3.3x1078
30° 3.7x1077
45° 4.0x1078
60° 2.4%1075
90° 2.7x107¢
120° 1.5x1073
160° 8.9x1073
180° 1.5X1072

3.2.3 Hermite Interpolation Curves

By generalizing the method that we used to derive a Ferguson curve segment and
specifying the positions and derivative vectors to order k at 2 points, a (2k+1)-
degree polynomial curve can be obtained. A curve obtained by this method is
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called a Hermite interpolation curve. A Ferguson curve segment is a cubic
Hermite interpolation curve. Cubic Hermite interpolation curves are very
important in treating curves and surfaces in CAD.

The Hermite interpolation curve in the case k=0 is a straight line connecting
2 points:

P(t)=(1—1)Qy+1Q;.

A 5th-degree Hermite interpolation curve can be derived by a method similar to
that used to derive a Ferguson curve segment; the Sth-degree polynomial is given
by the following formula.

Pt)=[t> t* 3> t* t 1]x[A BC D E F]". (3.22)
The 1st and 2nd order derivatives of formula (3.22) are:
AT

B

N C
P(t)=[5t* 4¢3 3t2 2t 1 0] (3.23)

B(e)=[20¢3 121 61 2 0 0] (3.24)

Assuming that the curve has a position @, tangent vector Q, and 2nd
derivative vector (J, at t=0 and a position Q,, tangent vector @, and 2nd
derivative vector ), at t =1 (Fig. 3.8), the following equation can be derived from
(3.22), (3.23) and (3.24).

=0 Fig.3.8. Data for generating a Sth-degree Hermite interpolation curve
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(QO 00000 17[4
0, 11111 1]|(B
2 0000T1O0|]|C
o075 4321 0||D
IR 00020 0||E
10,] [2012 6 2 0 0] |F
4 00000 17T'TQ,
B 111111 0,
c 000010 R
D|7| s 4321 0| |0
E 000200 J,
| F 2012 6 2 0 0 0,
_ LA
-6 6~3—3—§§—‘Q0—‘
515 8 7 i 0,

2
~ =10 10-6-4-31 R
2 2
0000%0 0,
0 0 1 0 0 o]0
| 1 0 0 0 0 of|g]

Substituting this relation into (3.22) gives:

P(t)=

[Bere3e2e1] x| —10 10—6—47E =

0 0 0
0 0 1
1 0 0

=[Ko,0(t) Ko,1(t) Ky,0(t) Ky1(t) Kz 0(t) Kz1(t)]

x[Qo @1 Qo 0, 0, 01"

—6 6 -3 -3 =

3. Hermite Interpolation

117
2 2
3

5 -1

[
0
0,
0,

04

(3.25)

(3.26)
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where:

Koolt)=—6t>+15t*—1013+1
Ko, (t)=61°—15t*+10¢3

Ky o(t)=—3t5+8t*—613+1¢
Ky (t)=—3t>+T7t*—4¢13

1 3 3 1
Kaol)=—, z5+5t“—5 13+5t2

1 1
sz,(t):EtS—t‘wEﬁ

83

(327

The properties of K o(t), ..., K, ;(t) at t=0 and t=1 are given in Table 3.3.

Graphs of K o(t), ..

Table 3.3. 5th-degree Hermite interpolation functions

., K, 1(t) are given in Fig. 3.9.

Koo® | Kox® | Kao® | K@ | Kaal® | Koa®
Function =0 ! 0 0 0 0 0
value =1 0 1 0 0 0 0
=0 0 0 1 0 0 0
Ist denvative
=1 0 0 0 1 0 0
=0 0 0 0 0 1 0
2nd dervative
=1 0 0 0 0 0 1
=0 | —60 60 —36 —24 —9 3
3rd denvative —
‘ =1 | —60 60 -2 —36 -3 9

_Kio() \
- ™~ Kz (1)
~ Kao(t) ™ N
s -
0 0.5 . 1.0
~_ e
Kui (8™ —

function

T ‘ Fig.3.9. A 5th-degree Hermite interpolation
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3.2.4 Partitioning of Ferguson Curve Segments

Let us now consider just the part of the Ferguson curve segment derived in Sect.
3.2.1 from t=t, to t, and express just this part of the curve in terms of a new
parameter t*(0<t*<1) (Fig. 3.10). From Eq. (1.53), the parameter transform-

ation is:

t=to+(t, —to) t*.

New curve —>]

< L=l =1,
=0 (1%=0) (1%=1) Fig.3.10. Expression of part of a curve

Substituting this relation into (3.9) gives:

P(t*)=[(t; —to)> t*3 4+ 3(t, —to) tot* 2 +3(t, —to) t3t* +13 g?

(t1*to)zt*2+2(t1‘t0)t0t*+t§ (tlfto)t*WLto 1] Mc Qo

0,

(t;—to)? 0 0 0 (O3

[ e g 1] 3(t,—to)ty  (t1—1to)? 0 0 M 21

3(ty—to)tg  2(ti—to)ty t;—to O ‘190

[ I ty 1 0,

=[t*3 1*2 g% 1] M

213312 +1 —21343¢2 ta—2t2+t, t3—1t2
23 =312 +1 —2t3 43¢} t3-2t2+1, 13 —t?

X R R R
(t,—to) (615 —610) (1, —to) (— 613 +615) (¢, —1o) (3§ —dto+1) (¢, —10) (315 —21,)
(t1—10) (617 —611) (t;—1to) (=617 +61) (¢, —to) (3] =41, +1) (t;—1to) 327 —21y)

[Qo
X Q.‘
0
| Q1] =[t*® *2 * 11 M,
Hoo(to) Ho 1 (to) H, o(to) H,y 1 (to) (o
Hoo(ty) Ho(ty) Hyo(ty) Hy,(ty) Ql

X (tlit())liIO,O(tO) (tlito)}?o,l(t()) (tl_to)f:il,o(to) (tl_to)f:il.l(t()) QO
7(t1_t0)H0.0(t1) (tlitO)HO,l(tl) (tlito)Hl.O(tl) (tlit())Hl,l(tl) Ql
(3.28)
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P(t,)
—[4%3 2 g% P(tl)
=[t* % t* 1] M, (t—to) Plto) | (3.29)

(t:—1o) P(t,)

In Eq. (3.29), the curve P, (t*) obtained for t,=0, ¢, =t, is the first half of the
curve P(t) divided at point t=t,. This is:

PL(tH)=[t* t** t* 1] M. O<*<1). (3.30)

The latter half curve P,(t*) from t=1, to t=1 can be obtained by setting t,=t
and t, =1 in Eq. (3.29):
[ P(t)
P(1)
(1-t) P(t)
(1=t P(1)

Pt =[t* t*? t* 1] M, 0st*<1). (3.31)

Thus the Ferguson curve segment P(¢) has been split into two Ferguson curve
segments. This division does not change the shape of the curve.

3.2.5 Increase of Degree of a Ferguson Curve Segment

Let us now consider the problem of formally increasing the degree of a Ferguson
curve segment to Sth order without changing its shape. The Ferguson curve
segment can be formally transformed as follows.

9

. o,

Pit)y=[> >t 11M.|
m[ttt]‘Q_o
o,

0o 0 0 0

00 0 0|[Q,

2 -2 1 1
=[5t 32t 1] 330 g 2 (3.32)
0O 0 1 0
1 0 0 O

(2
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A 5-th degree Hermite interpolation curve has the form given in Eq. (3.25).
Taking the position vectors, tangent vectors and 2nd derivative vectors that
define a Sth-degree Hermite interpolation curve having the same form as Eq.
(3.32) to be Q% Q% QF, OF, Q¥ and Q¥, we obtain:

0 0 0 0 —6 6 -3 -3-05 057[Qf
0 0 0 0|0 15 -15 8 7 15 —1 o*
2-2 1 t|lef |-10 10-6—-4—-15 o05]|]|0¢
-3 3 -2-1||lgl | o o o 0o o5 o0 oF
0o 0o 1 o||o 0 0 1 0 0 0 O
1 0 0 0 1 0 0 0 0 0 o
Consequently:
o1 -6 6-3-3-05 05T'[ 0 0 0 O
o* 1515 8 7 15 —1 0 0 0 0[[g
o [-10 10 -6 -4 —1.5 05 2 -2 1 1|l
ol o o0 0o 0o 05 o0 -3 3-2-1||0,
I3 0 0 1 0 0 0 0 0 1 oflo
or] Lt 0o 0o 0 0 o 1 0 0 0
r00000 1 00 0 0
111111 00 0 0|[Q
000010 2-2 1 1l|le
[543 2103 3-2-1]]0,
000200 0o 0 1 offlo
2012 6 2 0 0 1 0 0 0
T1 0 0 0 0,
0 1 0 0|[Q [
| o0 1 o] 0,
oo 0o e 0
-6 6 —4 2|0 6(Q,—00)—220,+0))
| 6 -6 2 4 —6(Q— Qo) +2(0,+20))

Therefore we have:

05=0,, 01=0,, Q§=Q0s QT=Q1

s R . . . . 333
5 =6(01—Q0)—2(20,+0y), Ot = -6(Q1*Qa)+2(Qo+2Q1)} G



3.3 Surfaces 87

3.3 Surfaces

3.3.1 Ferguson Surface Patch

Ferguson conceived a method of generating a curved surface using the cubic
Hermite interpolation curve (Ferguson curve segment) found in Sect. 3.2.1'2,

The data needed to define a surface “patch” are the position vectors at the 4
corners and tangent vectors in two parameter directions (Fig. 3.11).

P*(u,1)

7 QL)

(0=u=1) Q.(1,0)

Fig.3.11. Generation of a Ferguson surface patch

If these data are given, then the two boundary curves P(u,0) and P(u, 1) in
Fig. 3.11 can be expressed as Ferguson curve segments, by the following
equations:

P(u, 0)=Hq o (u) @(0,0)+ Hy,, () Q(1,0)

+Hy o) Q,(0,0)+H, ,()Q,(1,0) (334
P(u,1)=H, o) Q0, 1)+ Ho , (u) @(1, 1)

+H, o) Q,(0,1)+H, () Q,(1, 1)

Let Q*(0,0), 0*(1,0), Q*(0, 1) and Q*(1, 1) be the position vectors at the tips of
the tangent vectors Q,,(0,0), Q,,(1,0), 0,,(0,1) and Q,(1,1) in the w-direction at
the 4 corner points. Next, create the two Ferguson curve segments connecting
0*(0,0) and Q*(1,0), and Q*(0,1) and Q*(1, 1), respectively. For this purpose,
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assume that the tangent vectors in the u-direction are Q,(0,0), Q,(1,0), Q,(0, 1)
and Q,(1,1). At this time, the two curve segments are:

P*(u, 0)=Ho () @*(0,0)+ Ho () @*(1,0)
+H, o) Q,(0,0)+H,,, (1) Q.(1,0)

P*(u, 1)=H () @*(0, 1)+ Ho,  (u) @*(1, 1)
+Hy 0 Q0 H+H, () Qu(1,1)

(3.39)

When a certain value is specified for u, the 4 points are determined from Eq.
(3.34) and (3.35). Assuming the tangent vectors in the w-direction at the 2 points
P(u,0) and P(u,1) to be P*(u,0)—P(u,0) and P*(u, 1)— P(u, 1), respectively, the
Ferguson curve segment connecting the 2 points P(u,0) and P(u, 1) in the w-
direction can be determined.

First, the tangent vector in the w-direction at the point P (i, 0) is

P, (u, 0)= P*(u, 0)— P(u, 0)
=H, o) 0*(0,0)+ Ho , (u) Q*(1,0)+ H, 4 (1) Q,(0,0)
+H, ;) Qu(1,0)—(Ho () @0, 0)+ Hy (1) Q(1, 0)
+Hy o) Q,(0,00+H, (1) Q,(1,0)
=Hy,0(u) (Q*(0,0)— Q(0, 0)) + H,y s (u) (@*(1, 0)— Q(1, 0))
=H 0(u) Q. (0,0)+ H, 1 (1) Q,,(1,0). (3.36)

Similarly, the tangent vector in the w-direction at the point P(u, 1) is
P, (u, 1)=P*(u,1)= P(u, 1) =Ho o (u) Q,,(0, 1)+ Ho , () @,,(1,1).  (337)

Therefore, the Ferguson curve segment in the w-direction (that is, the surface
patch) P(u, w) is:
P(u,w)=Ho o(W) P(u,0)+ Ho ; (W) P(u, 1)+ Hy o(w) (P* (1, 0) — P(u, 0))
+H, (W) (P*(u,1) — P(u,1))
=[P (w,0) P(u,1) P*(u,0)— P(u,0) P*(u, 1) — P(u, 1)]
Ho o(W)
Ho 1 (w)
H,yo(w)
Hy (W)

= =

Ho () Q(0,0)+ Ho 1 () Q(1, 0)+ H, (1) @,(0, 00+ H, , () @, (1,0)]"
_| Hoo) QO )+ Ho 1 () Q(1, 1)+ Hy o) @,(0, 1)+ Hy 1 (w) Qu(1, 1)
Ho o) Q,,(0,0)+H, ; (1) Q,(1, )
Ho o) Q. (0, 1)+ Hy 1 (1) Q,(1,

X
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[Ho,o0(W)
Ho 1 (w)
HI‘O(W)

7H1<| (w)

=[H, Lo(u) HO,l(“) HI,O(") H1.1(“)]

Q0,00 Q(0,1) @,0,00 Q.0 1)][Ho,ol
0(1,0) 01,1 0,(1,0) Q,(1,1) | Hoy(w
0.(0,0) 0,(0,1) 0 0 Hy o
0.(1,0) Q,(1,1) 0 0 Hy

(3.38)

If the order of operations is reversed so that first 2 curves are generated in the w-
direction, then curves are generated in the u-direction, the same result (3.38) is
obtained.

If a lattice of points is given, and 2 tangent vectors are given at each point as
shown in Fig. 3.12, then Eq. (3.38) can be used to find a mathematical
representation for each surface patch. At the boundary between neighboring
surface patches, the boundary curve is shared and the tangent vector in the
direction across the boundary curve are also shared, so the curved surface
patches are connected continuously up to the slope. A surface given by Eq. (3.38)
is called the Ferguson surface patch and was in practical use in the surface
generating program FMILL used by the Boeing Company in the United States.

In the 4 x 4 matrix of the Ferguson surface patch, the first and second rows
can be regarded as the patch boundary curves at u=0and u=1, and the first and

Fig.3.12. Generation of a Ferguson surface by lattice point data
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second columns as the patch boundary curves at w=0 and w=1, respectively.
Note also that the third and fourth rows express the tangent vectors in the
direction across the boundary curves at u=0 and u=1, and the third and fourth
columns express the tangent vectors in the direction across the boundary curves
at w=0and w=1.

Let us consider the tangent vectors in the directions across a boundary
curves. For example, the tangent vectors in the direction across the boundary
curves at w=0 and w=1 are given by Egs. (3.36) and (3.37), respectively. Noting
that the relation

Ho o)+ Ho ()=1

holds between the blending functions H, o(u) and H, ,(u), we see that these
tangent vectors become, respectively:

P, (u,0)=P*(u,0)— P(u,0)=(1-2) Q,(0,0)+2Q,(1,0) }
P,(u,1)=P*u,1)—P(u,1)=(1-2Q,0, )+20Q,(1,1)
0ga=H,,w=1.

(339)

Relations similar to Egs. (3.39) hold for the tangent vectors in the direction
across the boundary curves at u=0 and u=1.

From the above discussion, it can be seen that on a Ferguson surface, the
tangent vector in the direction across the boundary curve is obtained by
interpolating linearly between the tangent vectors in the same direction at both
end points.

In addition, we can find the cross partial derivative vector P, (u, w) at the
four corners of the surface patch. From Eq. (3.38), we have:

P, (u, W):[Ho o(u) HO,[(”) Hl,o(“) Hu(“)]

00,0 00,1) 0.0,00 0.0, 1)] [Hoow]
(|20 00D 0.0,0) Q1| | Hoy(w)
0.0.0 01 0 0 | [Hiow
0.1,0 .1 0 0 | [Hi.m

so if, for example, u=w=0, then:

20,0 Q(0.1) 0.,(0,0) Q,(0,1)] [0]
2(1,0) 2@, 1) 0,(1,00 Q,(1,1)) [0
2.0,0 2,01 0 0 1
0,(1,0) 9,(1,1) 0 0 0

P,.(0,00=[0 0 1 0]

A similar result is obtained at the other 3 points:

P,,0,00=P,,(1,0)= P, (0,.) =P, (1, ) = (3.40)
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The cross partial derivative vector is also called the twist vector. The twist vector
will be discussed in more detail below (refer to Sect. 3.3.4). On the Ferguson
surface patch, in the vicinity of the 4 corners there is a tendency for the shape of
the surface to become flattened (refer to Sect. 3.3.4).

3.3.2 The Coons Surface Patches (1964)

Against the background of the great interest in computer graphics centering on
MIT (Massachusetts Institute of Technology) at the start of the 1960s, Associate
Professor S.A. Coons of MIT announced a very powerful mathematical repres-
entation for defining the shape of a curved surface in 1964'>. In 1967 he
developed the method further into a more general curved surface representation.
The curved surface representation which he proposed is called the Coons surface
patch; it is widely known and has found a number of practical applications. Basic
research has also been done on the Coons surface patch, making it clear that it is
a very general surface representation.

Fig.3.13. A Coons surface patch (according to Coons’ 1964 theory)

Consider a surface patch enclosed by four curves as shown in Fig. 3.13. Let u
and w be two parameters used to express this surface patch; they vary within the
ranges 0<u and w<1. Let Q(0,0), @(0,1), Q(1,0) and Q(1,1) be the position
vectors at the four corners, and denote lhe four boundary curves by Q(u,0),
Q(u, 1), Q(0, w) and Q(1, w). The formula for the Coons surface patch that was
announced in 1964 is the following:

P(u,w) = Co,0(u) @0, w)+Co 1 (u) Q(1, )
+Co,0(w) @1, 0)+ Co1 (W) Q1 1)
—Co,0(#) Co o (W) Q(0,0)-Cy ( ) Co,1(w) Q(0, 1)
—=Co.1 () Co,o(w) Q(1,0)0— Co,1 (1) Co,1 (W) Q(1,1). (341)
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This can be put into matrix form:
Pu,w)=—[—1 Coo(u) Co,®)]
0 Ou,0 Qu 1) -1
x |:Q(0, w) Q0,0 Q(, 1):| [Cu.o(w)i|< (342)
o(L,w) Q1,00 O(1,1) ] [ Co,i(w)

This can be decomposed into a sum of 3 terms:

000w Coo(W)
Pu,w)= \[Coo(u) Co, l(u)][QLl )] + [Q (,0) Q(u, 1)] [Co,l(w)]
Y Y
P,u,w) Py(u,w)

000,0) Q0 1)} |:Cu,0(w):| (3.43)

2(1,0) Q(1,1) Cn,l(W))‘

Pe(u,w)

*[Co,n(“) Cn,l(“)] |:

¢

In Egs. (3.41) through (3.43), C, , and C, , are continuous, monotonic blending
functions within the interval covered by the patch. It is clear that the surface
patch P(u, w) is expressed in terms of four boundary curves and the two scalar
functions Cgy and Cy ;.

1) Apply the following conditions to the blending functions C, 4 and C, ;:
Coo(0)=1, Co0(1)=0, C; ((0)=0, Cy,(1)=1. (3.44)

Alternatively, these conditions can be expressed in terms of the Kronecker delta:
Coilj)=96,, (,j:0,1). (3.45)

If this condition is satisfied, then the surface patch P(u, w) has arbitrarily
given curves as boundary curves. For example, in the surface patch formula
(3.43), if we take w=0 then we have:

0,0 C, (0
P(@,0)=[Coolt) Co,1(u)] [Q( : oo ’}

Q(LOJHQ(“’O) Q1] [cm(m
00.0) Q«M)} [cn,n«»}

0(1.0) .0 | c,, 0

P e L
Q(O,O)]

0(1,0)

—[Coo(®) Co1(w)] |:
=[Co,0(u) Co,l(”)] |:

_[Co,o(u) COJ(”)] I:
=0(u,0)
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showing that at w=0 the surface patch P(u, w) coincides with an arbitrarily given
boundary curve Q(u,0). Similarly, for w=1, u=0 and u=1, it is easy to show
that the surface patch coincides with arbitrarily given boundary curves.

To deepen our understanding of the Coons surface patch, let us show
graphically what it means for P(u, w) to be enclosed by four boundary curves.
The surface patch formula (3.43) contains three terms. All of the terms are
expressions in terms of the two parameters u and w, so each term can be thought
of as representing a surface. Let us denote these surfaces by P, (u, w), Pg(u, w) and
P.(u,w), in that order. These are related by:

P(u, w)=P,(u, w)+ Pg(u, w) — Pp(u, w) (3.46)
where:
0,w
Pyt W)= [Co ofu) Coy ()] [g;lm (347)
Pyl )= [0 0) O, 1] [2"‘“?”,)] (348)
0,1 w)

1
Peem =gt Coytat| 200 SOV [0t | g
Q(1,0) Q(1, 1)1 LCy,1(w)

The surface P,(u, w) becomes Q(0, w) at u=0, and at u=1 P,(1,w)=0Q(1, w),
so, as shown in Fig. 3.14, P,(u,w) is a curved surface such that the boundary
curves on two sides are Q(0,w) and Q(1,w). The other two boundary curves of
P, (u,w), corresponding to w=0 and w=1, can be found by substituting w=0
and w=1 into Eq. (3.47):

Paa,1)=Cog(0) QU0,1) +Cy (w) Q(L 1)
|

Q1.1

Qi w)

) / Q1,0
Q0,0)7P,(1,0)= Coou) Q10,00 + €y, (u) Q(1,0)

T — Fig.3.14. The surface P, (u, w)
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1 Coo(w)Q(1,0)
l
\

/
!
!
!

| Py(l,w)=
| +Corlu)Q(1,1)

Coo(w)Q(0,0)
/o I
roro
I
|
|

Q(1,0)

Q(0,0)
T Tr—

Fig. 3.15. The surface Py(u, w)
(3.50)%

Py (u,0)= Co,0(u) Q(0,0)+ Co,, () Q(1,0) }
Py(u,1)=Co 0 () Q(0, 1)+ Co,, () O(1, 1)
Similarly, Py(u, w) is a curved surface which has Q(u,0) and Q(u, 1) as two of its
boundary curves (Fig. 3.15). The other two boundary curves of Pg(u, w) are
Py(0,w)=Co,0(w) Q(0,0)+ Co,, (w) Q(0, 1)} (3.51)
Py(1,w)=Cp,o(W) Q(1,0)+ C,, () Q(1, 1)
Finally, let us discuss Pq(u,w). To find the four boundary curves of this

surface, set u=0, u=1, w=0 and w=1, respectively, to obtain

0(0,0) 20, 1)} |:Cn,0(W):|

o= 1€ Coaon | g 00 ][00

=Cp,0(w)Q(0,0)+Cy,; (W) Q(0, 1) = P (0, w) (3.52)

Pel1, )= Coo9) @010+ Co (@1, 1= By(L,w) 65
Pe(u,0)=Cg (1) (0,0)+ Cy ; (1) Q(1, 0) = P, (u, 0) (3.54)
(3.55)

Pe(u, 1) = Co0(u) (0, 1)+ Co,, () @1, 1)= Py (u, 1)
The surface P¢(u, w) having the four curves P¢(0, w), Po(1,w), Pc(u,0) and Pe(u, 1)
as boundaries is shown in Fig. 3.16
From the above discussion, the Coons surface patch can be interpreted as
follows. A Coons surface patch is composed of the three surfaces P, (u, w), Pg(u, w)
and P (u, w). When surface Py(u, w) is added to curved surface P, (u, w), the curves

* The next conditions are necessary for the blending functions C,, o and Cy ,, which are not explicitly written

1n the origmal paper (see Sect. 1.1 3)
Coolt)+Co,(0)=1.
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Coolul Q10,11 + Cor(ui Q1,11

Q 0,0} /

Fig.3.16. The surface Pc(u, w)

corresponding to u=0, u=1, w=0 and w=1 include some excess curves in
addition to the boundary curves Q(0, w), @(1,w), Q(u,0) and Q(u, 1). These excess
curves are Pp(0, w), Pg(1, w), Py(u,0) and P,(u, 1). As can be seen from Eqgs. (3.52)
through (3.55), the third surface P.(u, w) has these excess curves as its four
boundary curves. Consequently, a Coons surface patch can be interpreted as
expressing a surface that is bounded by the four arbitrarily specified boundary
curves Q(u,0), Q(u, 1), @(0,w) and Q(1, w) (Fig. 3.17).

Py, w) Poiu w)

Fig.3.17. Composition of a Coons surface patch
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2) Add the following conditions for the blending functions to satisfy.
Co.u(o) =0, Co.u(l) =0, CU,L(O) =0, Coa (1)=0 (3.56)
that is:
Co.()=0 (i.j:0,1). (357
In this case, we will investigate the tangent vectors in the direction across the
boundary curves of the surface patch. For example, to find the tangent vector

P, (0, w) that crosses the boundary curve P(0, w)=Q(0, w), first differentiate Eq.
(3.43) by u:

2(0,w)
Q(LWJHQu(M»O) 0.(u, 1)] [

0(0,0) Q(O,l)} |:C0,0(W)]
(L) 0,1 LCo,(w ]

Cu,n(W)]

R =[Coo(®) Co1@)] [ o

*[C‘o.o(”) Co,1(u)] |: (3.58)

Then set u=0:

00,w)
o(1,w)
0(0,0) Q(OJ)} |:C0,0(W):|
0(1,0) (L1} ] [ Co (W)

=Cp oW Q.(0,00+Co ; (W) 0,0, 1). (3.59)

Coolw
]+[Q"(0,0> 0.0,1) [C : “‘,’]
0

P(0,w)=[C,0(0) Co.1(0)] [ W)

000 €00

This equation shows that the tangent vectors in the direction across the
boundary curve P(0,w)=Q(0,w) are expressed only in terms of the tangent
vectors in that direction at both ends of the boundary curve and the blending

0.1: N
T Coalw) Q0,01+ Corlw} Q,{0,1}
Q0.1) y /@

Fig.3.18. Connection of two Coons surface patches



3.3 Surfaces 97

functions, and are independent of the shape of the boundary curve. Similarly, it
can be seen that for the other boundary curves as well, the tangent vectors in the
direction across the boundary curve are expressed by a formula similar to (3.59)
in terms of the tangent vectors in that direction at both ends and the blending
functions.

Consequently, if two such surface patches Py(u, w) and Py (u, w) share the same
boundary curves, and have the same tangent vectors in the direction across the
boundary curve at both ends of the boundary curve, then those two surface
patches are connected continuously to the slope along that boundary curve (Fig.
3.18).

3) Add the following conditions to those to be satisfied by the blending
functions.

Co0(0)=0, Coo(1)=0, &,,(0)=0, C,,(1)=0 (3.60)
or equivalently:

Coi(H=0 (i.j:0,1). (3.61)
Differentiating Eq. (3.58) by u once more and setting u=0 gives:

P (0,w) = Co o (W) (0, 0)+ Cy,1 (W) @ 0, 1). (3.62)

This equation shows that along the boundary curve P(0, w)=Q(0,w), the 2nd
derivative vectors in the direction across the curve are determined solely by the
2nd derivative vectors in that direction at both ends of the curve. That is, along
the boundary curve another surface patch can be connected with continuity up
to the curvature.

Similarly, we have:

CEH(0)=0, CM(1)=0, C§H(0)=0, C(1)=0 (3.63)
or equivalently:
CRU)=0 (,j:0,1). (3.64)

If these conditions are satisfied, then along a boundary curve of the Coons
surface, connection can be made to another surface patch with continuity up to
the nth-derivative vector in the direction across the boundary curve.

The conditions which must be satisfied by the blending functions which are
needed to provide continuity up to the 2nd derivative vector in the direction
across a boundary curve are summarized in Table 3.4. Comparing Table 3.4 to
Tables 3.1 and 3.3, respectively, we see that functions Hy o(t) and H,, ,(t) satisfy
the conditions for continuity up to the derivative vector (slope continuity) and
functions K o(t) and K, ,(t) satisfy the conditions for continuity up to the 2nd
derivative vector (curvature continuity).
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Coo® | Cox(t) Table 3.4. Conditions on the functions C 4(t) and
°° o Co,1(t) so that the connection will be continuous
Function = 1 0 up to the 2nd derivative vector
value
t=1 0 1
=0 0 0
Ist dervative
1=
| 1 0 0
t=0 0 0
2nd denvative
o o o

4y Taking the partial derivative of P,(u, w) in Eq. (3.58) with respect to w and
finding the cross partial derivative vector or twist vector P, (u, w) we obtain:

o o Coolw
Pt =) Cuotil | 90 10,000 @0 [ 6]

e T00.0) QO] [t
ool Cont] [Q(LO) o) [C'n,l(w)} (69

Taking, for example, u=w=0 gives:

0,(0,0)
Qw(l,OJ +[0.(0,0) ,(0.1)] [

2(0,0) Q(, 1)} |:Cn,0(0):|
01,0 QL] | Co,(0)

Cu,o(o):l

Po(0,0)=[Co,0(0) Co,1(0)] [ €t (0)

—[Co.0(®) €, (0] [
=0.
Similarly, the twist vector can be shown to be 0 at the other 3 points:
P,.0,0)=F,(1,00=P,,0,1)=P,(1,1)=0. (3.66)

The relations (3.66) also apply to a Ferguson surface patch. For a discussion of
the effect of the twist vector on the surface shape, refer to Sect. 3.3.4.

5) On the Coons surface patch, the boundary curves can be given arbitrarily.
Let us suppose the boundary curves Q(0,w) and Q(l,w) are given by the
following equations:

Q(0,w) = Co,0(w) Q(0,0)+Co 1 (W) (0, 1) } (3.67)
0(1, W)= Co,o(W Q(L, 0+ Co, s (W) Q(1, 1) ) ’
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In this case, the surface P,(u, w) is:
Q(0,w)
Q(LW)]
Co,0) Q(0,0)+C, () 20, 1)}
Co,oW) Q1,0+ Co 1 (W) (1, 1)
0,00 Q0, 1)} I:CU,O(W):|
0(1,0) QL 1)] LCo, (W)

Py(u,w)= [Co.n(“) Cn,l(”)] [
=[Co.o®) Co1(w)] [
=[Co.0(u) Co.1(w)] [
=Pc(u,w)

so that, as a result, the Coons surface patch becomes:
P(u, w) = Py(u, w).

Meanwhile, let us suppose the boundary curves Q(u, 0) and Q(u, 1) are given by
the following equations:

Q(u,0)= Co,o(w) Q(0, )+C01(M)Q10} (3:68)

O, 1)=Co o) Q0. N+ Co ; () Q(1, 1)
In this case, the surface Py(u, w) becomes:

Py(u, w)y = Pe(u, w)
so that the Coons surface patch becomes:

P(u,w)=P,(u,w).

Consequently, if all four boundary curves Q(0, w), Q(1, w), O(x, 0) and Q(x, 1)
are given by Eqgs. (3.67) and (3.68), then the Coons surface patch P(u, w) becomes:

0.0 Q(0,1)] [ Co.o(w
pi= et o | 500 20T oo

=Po(u,w). (3.69)

6) The lowest order polynomial which satisfies the condition equations (3.44)
for the Coons blending functions is:

Coolt)=1—t, Co,()=t. (3.70)
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In this case, the Coons surface becomes:

0, w) 1—w
Pluw)=[1—u u] [Q +[Q1,0) Q1]
o(1,w) w

(0,0 Q(O,l)] [1 *W]
0(1,0) Q(1,1) w ]
This is the formula for a surface patch of C° continuity.

As was discussed in section 5), if the four boundary curves may be assumed to
have the following form:

—[1—u u] [ (3.71)

Q0,w)=1-w)Q0,0+wQ(0, 1)
Q(L,w)=1-wQ(L,0+wQ(l,1)
Qu,0) =(1—u) Q(0,0)+u Q(1,0)
Qu, 1) =(1—u) @O, )+u Q(1, 1)

then the Coons surface patch is a bilinear surface patch such as the following:

0(0,0) Q(0, l)} [1 7w]

3.72
0(,0) Q1) 67

Pu,w)y=[1—u u] [

7) The simplest polynomials which satisfy both conditions (3.44) and (3.56) for
Coons blending functions are H, 4(t) and H, ,(t). In this case, the Coons surface

18
Ho,o (W):I
0.1(W)

(3.73)

g:? ]+[Qu0) Ou, 1)][

2(0,0) QOJ)} [Ho,o( )]
0(1,0) Q1,1 LH,, (w1

Puw)=[Ho o) Ho,(u)] [
—[Ho,o) Ho ()] [

This is the equation for a surface patch that has class C* continuity.
Let us assume that the four boundary curves are Ferguson curve segments
(Eq. (3.12)):
00, w)= Ho o) @(0,0)+ Ho,; (W) (0, 1)+ H, o (w) Q,,(0, 0)
H, ,w)Q,01)
O(1,w)=Ho o(w) Q(1, 0)+ Ho, W) Q(1, 1)+ H  4(w) @,,(1,0)
+H,,, (W) Q,(1,1)
Q(u,0)=Ho () @0, 0)+ Ho,, () (1, 0)+ H, (1) Q,(0,0)
+H,,u)Q,(1,0)
Qu,1)=H, o) Q(0, 1)+ Ho ; (u) Q(1, )+ H, 4(u) @0, 1)
+H, ) Q,(1,1).
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In this case, P,(u, w) in the Coons surface patch equation is:

Q0w )}
Py(u,w)= Hoo Hy,
(,w)=[Hg o(u) ()] [Q( ) Hy o)
_ (0,0) (0, 1) ©,,(0,0) Q,(0, 1)} Ho, ()
=[Hool) Hoa (] [Q( 0) Q(1,1) 0u(1,0) Qu(t, ) | H,ow)
Hi W)
=[Hoo) Ho1(u) Hyo) Hy ()]
200,00 9(0,1) Q.(0,00 Q.0 )] [Hoo
210 eny 0.0 00| |Hosm| 379
0 0 0 0 H, o(W)
0 0 0 0 Hy (W)
The Pg(u, w) surface is:
Pu(uaw)*[Ho,o(“) Ho,l(u) H1 o(w) H1 1 (W]
20,00 Q@©,1) 0 07 [Hoow)
o QLo QLY 0 0| H,,(w) (3.79)
0.00,00 Q,0,1) 0 0 |H,o(w
0.(1,0) Q.(1.1) 0 0] [Hy;(w)
In addition, the P.(u, w) surface can be deformed as follows:
Pe(u,wy=[Ho,0(u) Ho,1(w) Hy o) Hy ;W)
00,00 Q(0,1) 0 0] [Hoolw
0(L,0) Q(1,1) 0 0] [Ho,(w
1o 0 0o |H,m| 37
0 0 00 H, ;W)

From Eqgs. (3.74), (3.75) and (3.76), the Coons surface patch P(u, w) is:
P(u,w)= [Ho,o(“) H0‘1 (u) Hl,o(”) Hl,l ()]
20,00 Q01 .00 ¢@.0 (
o 0 2D .10 Q11| | Houl
0.0,00 9,0.1) 0 0 Hyo(w)
0.(1,9) 9,11 0 0 (

, 1) Hg oW

(3.77

so that the Coons surface patch agrees with the Ferguson surface patch. In fact,
the Ferguson surface patch is a special case of the Coons surface patch proposed
in 1964, in which the boundary curves are cubic Hermite interpolation curves
(Ferguson curve segments).
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3.3.3 The Coons Surface Patches (1967)
In 1967 Coons announced a generalization of the surface patch formula which

he first announced in 1964, with higher degree terms added. This generalized
surface has the following form:

iCH ’°1w+z ZCU ) Q%5(u, §)

-

(=0r=0 J=0s=0
—i Y E S G, mei ) (378)
1=0 j=0 r=0 5=0
where:
gatb
0%, j) = uiEe Qu,w) e (3.79)

Equation (3.78) can be expressed in matrix form as:
20, w)
o(1,w)
P(u,wy=[Co o) Co (1) Cyo) Cy () ...]7 Q.0 w)
Q.(1,w)

(
al

+[Qw0) Q1) @,(0) @, w1)...]|Cyolw)
(

—[Co,0(w) Co1(w) Cyo() Cyy(w)...]

20,0 Q0.) 0,00 @,01) ..7[Coow

21,0 Q1) .10 @11 ..[|Coi(w
| 200 001D .00 @nO1 ... [ Ciow)

0.(1,0) Q.(1L,1) 0., (1,0 Q.11 ... [fCy,(

(3.80)

From a practical point of view, it is sufficient to use the following equation in
place of Eq. (3.78):
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[\/]._

L G @ hwi+ Y ¥ G0 ()

0r=0 1=05=0

1 1 1 1
“X Y3 3 G, Q). (381)
1=0 ;=0 r=0 s=0

Equation (3.81) can be expressed in matrix form as:

Plu,w)y=—[—1 Cyow) Co ) Cyou) Cy(u)]

0 Qw0 Q1) 0,0 0, 1) -1
20.w) Q0 0) Q0.1 0,00 9,0 Co,0(W)
x| w)  Q(1,0) Q1) @,(1,0 lel) Co W) | (3.82)
2.0,w) .0, ) 2.0.1) 90,0000 Q.01 | Cyolw)
o.(Lw QL0 @11 Q.10 Q. (LD[[Ciiw)
or, alternatively:
20, w)
1
P = [Cagl) Coale) Crat) Coafe] [ 010" |
Q.(1,w)
L ~ J
P(uw)
Coo(W)
C()l
QW) Q) 2,00 ufe ) |
Lo(W)
Ciaw)
N — J
Pyiu,w)
—[Co.0() Co (1) Cy o) Cy W]
000 Q@O @,0.0 @, [Coow
Jewo ey o w0 o anf |Cumf o
0,0,0 0,01 0,00 ,0| [Crow]| ™
) Q1) [Cii(w)

2.(,0)y Q.11 @,,(1,0

Y
Pe(u, w)

The surface patch formula (3.81) (or (3.82) or (3.83)) shows that one surface
patch is defined by the four boundary curves Q(0,w), Q(1,w), Q(u,0) and
Q(u, 1); the functions Q,(0,w), @,(I,w), Q,(u0) and Q,(u 1) of the tangent
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Fig.3.19. A Coons surface patch
(according to Coons’ 1967 theory)

vectors in the directions across those boundary curves, respectively, the tangent
vectors and the twist vectors at the 4 corner points (Fig. 3.19). C, 4(t), Co , (1),
C, o(t) and C, (t) are monotonic, continuous scalar functions; the conditions
on Cy(t) and C, ,(t) have already been given (refer to Table 3.4).

The surface patch announced in 1967, like that of 1964, is expressed in terms
of sums and differences of 3 surfaces.

1) The following conditions are imposed on the blending functions:
Co,0(0)=1, Coo(1)=0, Co,(0)=0, Co,(1)=1 (3.84)
CI,O(O): 0, Cl.()(l) =0, Cl,l 0)=0, C1,1 (1) =0. (3.85)

These conditions can be expressed in terms of the Kronecker delta:
Coi(j)=6,, C1i(j)=0 (,j:0,1). (3.86)

Let us show that in this case, the surface patch P(u, w) has the specified curves

Q(u,0), Q(0,w), Q(u,1) and Q(1,w) as boundary curves. Let us consider, for

example, the surface formula (3.83) with w=0:

20,0
0 (1,0
0,00,0
Q.(1,0

P(u, O)Z[Co,o(“) Co,1(u) Cy o(u) Cy 1 (w)]

+[0w,0) Q@ 1) Q,w,0) @, (u 1)]

(=
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—[Coow) Co, () Cyou) Cyy(u)]

00.0) Q0.1 .00 0.0.1][!
Jewo ewn oo ean|fo
0,00 001 .00 0.0 [0
0.0,0) QLD .10 0.i1] [0

00.0

1,0

~[Cu) Casle) Cooe) o] | 5100

0.1,0)

+Q(u,0)

00,0
—[Co,0t) Co,y(1) Cy o) Cy, (1) Qu((}:;,(())))
0.1.0)

=Q(u,0).

We can then repeat the same procedure for the other cases to show that the
surface patch expressed by (3.83) has the specified curves as boundary curves.

2) Next, apply the following additional conditions to the blending functions:
Co,0(0)=0, Coo(1)=0, Cq(0)=0, Cq,(1)=0 (3.87)
Ciol0)=1, C o(1)=0, C,,(0)=0, C, ,()=1 (3.88)

Conditions (3.87) and (3.88) can be expressed in terms of the Kronecker delta:
Coi()=0. Cp D=0y (.Jj:0,1). (3.89)

Let us show that in this case, on the boundary curves of the surface patch
P(u,w) the tangent vectors in the directions across those curves agree with the
specified tangent vector functions. We can show this as follows. First, different-
iating the surface formula with respect to u, we obtain:

00, w)
(1, w)
2.0,w)
Q.(1,w)

P,(u,w)= [Co,o(”) Co,l(“) Cl,o(”) Cl,l(u)]

(
2w 0 2w @0 Q@] " E
(
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‘[C’o,o[u) Co,l(“) C1,0(”) Cl.l(”)]
00,00 20,1 0,00 Q.0.1)7][Coolw)
o 210 enh 2,010 Q.01 |]Cum (3.90)
02,00 0,01 0,00 Q,0|[Ciow| ™
0.(1,0) Q,(1,1) Qu(L,0) Qu(LD][Cy (W)

Setting u=0 in this expression gives:

Q0,w)
~ o(L,w)
P,(0,w)=[0 0 1 0] 0,00, )
Q.(1,w)
Co,o(w)
Co.1 (W)
+1€2.(0,0) 0,(0,1) 0,.(0,0) @,,(0,1)] c. W
‘1,0 w)
Ci1(w)
00,00 00,1) @,00 @,01)7 [Coow)
001|200 0D 0 e || Com
2.0,00 0,01 @,(0,0) Q01| |Ci oW
0.1,0) Q.1 0.,.(1,0 Q.0 1D][Ci w
=0,(0,W)+C16(1)(@ua(0,0)— Quu(0,0)+C, 4 (19 (@un(0, D= (0 ).

If 0,.(0,00=0,,(0,0) and Q,,(0,1)=Q,,,(0,1), then we have

P,(0,w)=0,(0,w)*.
Next, let us consider the cross partial derivative vectors, that is, the twist
vectors, at the 4 corners. Differentiating Eq. (3.90) again with respect to w gives:

0.0,
P ) = [Co0(8) Cona(@) Cro@) Coy(] gu”w‘(l.g’vy?)
0.1 w)
C:o.o(W)
HIQ0) QD) Qi) @t ] | £ |
1o(W)
C1,1(W)

* Although this 1s not stated exphcitly in Coons’ paper, 1t 1s necessary to assume that on a Coons surface
patch the cross partial derivative vectors are uniquely determined at the 4 corners. This implies that
0.(0.0)=0,,,(0,0), ©,,(1,0)=0,,(1, 0 (0, 1)= @\, (0, 1) and (1, )= Q,u(1.1).
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'[C040(“) Co,l(”) Cl,o(u) Cl,l(”)]

Q0.0 Q0.1 0,00 QW(O D] [Cootm
| eto ey 0,w0 @y ||Cum|
Q0.0 COD Qw00 Qul. 1) Cuow)
QL0 QLD Qw0 QuLh] [Ciutw

Setting, for example, u=w=0 in the above equation gives:

0.(0,0)
2.(1,0)
2..,0,0)
Q..,(1,0)

P,,(0,00=[0 0 1 0]

+[0.(0,0) 2,(0.1) €,.(0,0) ,,.(0,1)]

o - o <

00,00 00,1 0,00 @,01)
2(1,0) oy 9,10 Q.11
0.0,0 0,01 @,0.0 @,©01
0.,0) 0.1 Q.10 QL1
=0,,(0,0+ 0,.(0,0—Q,,(0,0)
=0,,(0,0).
If 0,.(0,00=Q,,,(0,0), then P, (0,0)=Q,,(0,0). Slmlldrly, it can be shown that
at the other 3 points if Q,,(1,0=0,,(1,0), 0,,0,1)=0,,(0,1) and Q,,(1,1)

Lonih, om0 (L. PG =G and AL
=Q,.,(1, 1), respectively.

—[0010]

[= A =}

3) Now add the following conditions to also be applied to the blending
functions.

Co0(0)=0, Co(1)=0, Co,(0)=0, C,, ()= }
o o (3.91)
Cl,a(o)zor Cl.O(l) 0, Cl,l(o) Cl ()=
In a compact notation these become:
Co(N=C1:(N=0 (.j:0,1). (3.92)

Differentiating Eq. (3.90) again by u gives:
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00
Puun) = [Caa0) Coal0) Cglo) €01 | 210
Q.01
Coo)
+T0M00) Qult 1) Qualt0) a1 | '
Coa)

_[Co,o(“) 60,1(“) Cl,o(“) 61,1(“)]

20,00 Q0.1 0,00 Q,0,1)7] [Coolw)
o L0 LD Q.10 Q1) | | Cor(w)

0.00) 2,01 2,00 Q.01]]C o[

0.(L,0) (1) Qn(L0) Q. 1] [C, (W

Setting u=0 in this equation gives:

P, (0,w)=Co o (W) Quu(0,0)+ Co 1 (W) @y (0, 1) + C; o (W) @y (0, 0)
+Cp 1 (W) @0, 1). (3.93)

This means that along the boundary curve corresponding to u=0, the 2nd
derivative functions with respect to the parameter directions across those curves
can be expressed in terms of only the vectors at the end points, Q,,(0,0),
0..0,1), 0,..0,0) and Q,,,(0,1). Consequently, if two neighboring patches
have the same vectors at both ends of the boundary curve, then they are
connected with continuity up to the 2nd derivative vectors (curvature
continuity).

The conditions applied to the blending functions are summarized in Table
3.5. As can be seen from Tables 3.1 and 3.3, Hy o(t), H, ,(t), H, o(t) and H, ,(t)
satisfy Coons’ blending function conditions up to the 1st derivatives, while
Ko o(t), Ko 1 (t), Ky o(t) and K, (t) satisfy them up to the 2nd derivatives.

In general, on a Coons surface patch the condition which must be applied
to the blending functions in order to make it possible to independently specify
the nth-derivative vectors in the directions across the boundary curves is:

CiR ()= 6,403 (3.94)
i, j:0,1
p.q:0,1,....,n
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Table 3.5. Conditions on the functions Cy o(t), Co ;(t), Cy 4(t)
and C; ,(t) so that conncction will be continuous up to the
2nd derivative vectors

Coo®) | Con(® | Crot® | Cra®y
Function =0 i 0 0 0
I
vate =1 0 1 0 0
=0 0 0 1 0
Ist dervative
=1 0 0 0 1
=0 0 0 0 0
2nd denvative
=1 0 0 0 0

4) Let us assume that for the surface patch of Eq. (3.83), the four boundary
curves can be expressed in the following form:

Q(0,w)=Cq 4(W) Q(0,0)+ Co ; (W) (0, 1)
+C1.0W) 0,,(0,0)+C; ; (w) Q,,(0,1)

Q(L,w)=Co0(w) Q(L,0)+ Co , (W) Q(1, 1)
+C; oW Q,(1,0)+C; (W) Q,(1,1)

Q(u,0)=Co () Q(0,0)+ Co ; () @(1, 0)
+C10#) 0,(0,0+Cy () Q,(1,0)

Qu,1)=Co,o(w) @0, )+ Co 1 () Q(1, 1)
+C o) Q,0, )+ Cy () Q(1, 1)

(3.95)

These imply that:

_ (0,00 Q(0,1) ] | Co,0(w)
P(u,w)=[Coo(u) Co,(u)] [Q 0 o, 1)} |:C01 WJ
—[—1 C o) Cy )]
0 Q0,0 Q,u1) -1
><|:Qu(0,W) Q..(0,0) Quw(o’l)i| |:C1.0(W)]- (3.96)
Q.(tw 0,10 @, ] [Ciw

5) Next, let us assume that the following equations apply to the tangent vector
functions in the directions across the boundary curves:
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0.(0,w)=Co,0(w) 2,(0,0)+ Cy,, (w) 0.(0,1)
+Ci0W) (0,00 +Cy 1 (w) (0, 1)
0,(1,w)=Co,0(w) G, (1,0)+Co,1 (W) @, (1, 1)
F+CioW) Quu(1,0)+Cy 1 (W) Qo (1, 1)
0,,/(1,0)=Co,0(u) @,(0,0)+Co,; (1) @,,(1,0)
+Ci0() 00 (0,0)+ Cy,1 () Q.0 (1, 0)
0,(,1)=Co,0) Q,(0, )+ Co,, () @, (1, 1)
+Cio) Qun(0, )+ C1 1 () Qi (1, 1)

(397

These imply that:

0,.,(0,0) QW(O,I)} I:CI‘O(W]]
Qu(1,0) Quy(1, 1)1 LCy 5 (W)

—[=1 Coolu) Co (W]

0 0w,0) Q1) —1
X[Q(O,W) 0(0,0) Q(O,l):| l:Co,o(W)]» (3.98)
O(Lw) Q(1,0) Q1,1 ][ Cou(w)

P(u, W)=[C1,0(“) Cm(")] [

6) Denote the Ist, 2nd and 3rd surfaces in Eq. (3.83) by P,(u, w), Pg(u, w) and
Pc(u, w), respectively.
Assuming that Egs. (3.95) and (3.97) apply, we obtain:
P4 (u, w)= Py(u, w) = Pc(u, )
so that:
P(u,w)=Pc(u,w)
=[Co,0) Co1(u) Cyo(u) Cy ()]

(0,00 20,1) 0,0,0) 0,0, 1)[Coolw)
| 20 oY 0.(1,0 Q,(11) |fCos(w
0.0.0) 0,00,1) 0,,(0,0) Q. (0,1) [ Ci;0(W)
0.(,0) Q,(1,1) Quu(1,0) Qu(1, 1) ] C1,1 (W)

In Eq. (3.99), if we use the cubic Hermite interpolation functions H o(t),
H, (1), H, o(t) and H, ,(t) as blending functions, we obtain:

. (3.99)



3.3 Surfaces

P(u,wy=[Hoo(u) Ho () Hy o) Hy ()]
000,0) 00, 1) 0,000 @,0,1)[Ho,olw)
| Lo Q0.1 Q.(1.0) G,(1.1) | Hoy(w)
0,(0,0) 0,(0,1) 0,,(0,0) 0., (0,1} [ Hyo(w)
0.(1,0) 0,(1,1) Q,.(1,0) Q..(LV[[H,i (W)

Using simpler notation, this becomes:
P(u,wy=[H, o(u) Ho,(u) Hyolu) Hy ()]
x B.[Hoo(W) Ho1(w) Hyo(w) Hy (W)I"
=UMBMIWT
where M, is the matrix defined in (3.10). We also have:
00,0 001 0,00 0,01
_| ewo o1 @,0,0 @.L1
¢ Q.00 001 0.00 Q.01
0.1,y 0.(LY) Q.10 Q.11
U=[u® v u 1]
W=[w? w?> w 1].

111

. (3.100)

(3.101)
(3.102)

(3.103)

Since B, is a matrix which expresses the surface patch boundary conditions, it is

sometimes called the boundary condition matrix (Fig. 3.20).

Since, in the surface patch cquation (3.100), H, ,, H, ;, Hy o and H, , are
expressed as cubic polynomials in the respective parameters, they are expressed

surface patch

Fig.3.20. Vectors that
define a Coons bi-cubic
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in the bi-cubic polynomial form of equation (1.109). Consequently, the surface
described by Egs. (3.100), (3.101) and (3.102) are called bi-cubic Coons patches.

The curved surface having the form (3.100) is a special case of a Coons
surface; since it has a very simple form it is casy to use and is a standard type of
Coons surface.

3.3.4 Twist Vectors and Surface Shapes

Cross partial derivative vectors, that is, twist vectors, do not occur in studies of
curves but do come up in treatment of curved surfaces. In the Ferguson surface
patch and the 1964 Coons surface patch, the twist vectors are 0 at all 4 corners.
As we mentioned in discussing the description of the Ferguson surface patch, a
tangent vector in the direction across a boundary curve can be found by simply
interpolating between the tangent vectors in that direction at the 2 ends of the
boundary curve using the functions H,, and H,,. For example, P,(0,w) is
obtained as:

P,(0,w)=Ho o (W) P,(0,0)+Hy,, (w) P, (0, 1). (3.104)

In this interpolation, the rate of increase of P,(0, w) in the w-direction is forcibly
held to 0 at both ends (Fig. 3.21(a)). At both ends, the vectors showing the rate
of tangent vector increase in the dircction across the boundary curve are also
specified; applying the cubic Hermite interpolation that was applied to the
position vectors to the tangent vectors in the direction across the boundary
curve gives a smoother interpolation. To do this, instead of equation (3.104),
use:

P,(0,w)=Ho o) P,(0,0)+ Hy , (W) P,(0, 1)+ Hy (W) P,,, (0,0)
+H,,w)P,,01). (3.105)

{a) (b}

Fig.3.21. Effect of twist vectors on surface shape. (a) Casc in which twist vectors are zero
vectors; (b) case in which twist vectors are specified to be nonzero vectors
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If the tangent vector in the direction across the boundary curve is determined
according to Eq. (3.105) in the course of deriving Ferguson’s surface formula,
then surface patch formula (3.100), which is a special case of Coons’ 1967
surface, is obtained. If the twist vector is 0, that part will be flattened, but if the
twist vector is nonzero then, from Fig. 3.21(b), it can be expected that the shape
will become rounded. Since the effect of the twist vector on the surface shape is
rather subtle, it is normally difficult to recognize that effect from a static image.
It is casier to understand by moving the curved surface slowly on the display,
or test-cutting the shape with an NC machine.

In the following discussion we will take Coons’ bi-cubic surface patch as an
example and see what we can learn from the formulas about the effect of the
twist vector on the surface shape. On Coons’ bi-cubic surface patch, let us find
the position of a point scparated by a small distance Au, Aw from the corner at
0(0,0). Taking t=4t in H,4(t), Ho (t), Hyo(t) and H, ,(t), and neglecting
terms of quadratic or higher order which are small compared to 1, we obtain:

Hoo(dt)= 2At3—3At2+]'—1
Hy (At)= 2483+ 3412
on(At) A3 =242+ At = At
H, (A1) = 43— A2 =0.

(3.106)

Substituting these relations into surface patch formula (3.100), we find, for a
point on the surface:

P(du, Aw)=[H, o(4u) Ho 1(du) H, o(du) H, 1(4u)]
X B.[Hoo(4w) Hy 1(Aw) Hy o(dW) H1,1(AW]]T

00.0) 001 0,00 0,017
. eno o) g0 gy | |0
=[10
[0 A0 6000 0,0.1) 00,0 00| |aw
0.0.0) O.(L1) Quih0) Ou(l, ol |5

= 0(0,0)+ 0,(0,0) Au+ @, (0,0 Aw+Q,,,(0,0) Au Aw.
(3.107)

From Eq. (3.107), we see that what we are essentially doing is to construct a
vector by adding to the corner position vector @(0,0), a diagonal vector of the
parallelogram made by the two small tangent vectors in the u- and w-direction
and the very small twist vector (Fig. 3.22). Therefore, if the twist vector is 0 at
the corner Q(0, 0) of the surface patch, we see that the surface will be flat in the
vicinity of that corner. Next, let us investigate the effect of the twist vector at a
point other than Q(0, 0), using the similar method.
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-Q,(1,1)du
Q(1,1)

~Q.(1,1)dw
Q. 1,11 dudy
"/
Q,,0,0)dudw
4 -
O 0 dudu
Q,(1,0:4 .
Q0,0 10 “ Fig.3.22. Points on a surface
e, separated by du, Aw from the
u Q,(1,0)4u 4 corners
We have:

Hoo(l—At)=2(1— Aty —3(1— At +1=0
Hy (1—At)= —2(1— At} +3(1—d1)* =1

Hyo(1—A4t)=(1—41P=2(1— 4t +1—4t=0 (3.108)
Hy(1—4)=(1—41P —(1— A1)’ = — 4t
50, in the vicinity of @(1,0):
1
0
P(1—Au, Aw)=[0 1 0—4u] B,
Aw
0
=0(1,00-0,(1,0)du+Q,,(1,0) dw—Q,,,(1,0) dudw. (3.109)
Similarly, in the vicinity of Q{0, 1):
0
1
P(Au, 1 —Aw)=[1 0 4u 0] B, 0
—Aw
=00, 1)+ 0.0, ) 4u—-0,0,1)dw—0,,(0, 1) dudw. (3.110)
Finally, in the vicinity of Q(1, 1), we have:
0
1
P(1—Au,1—4Aw)=[0 1 0 —Au] B, 0
—Aw

=0(LD)—0,(L, 1) du—0,(L 1) dw+ 0, (L, 1) dudw. (3.111)
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The twist vector relations described above are shown in Fig. 3.22. Particular

attention should be paid to the fact that at points Q(0,0) and Q(1, 1) the effect
of the twist vector is +Q,,(0,0)dudw or +Q,,(1,1)dudw; while at Q(1,0)
and Q(0,1) it is —Q,,,(1,0)dudw or —Q,,,(0,1) Audw, respectively. The direc-
tion of the effect is opposite at alternative corners. Therefore, a twist vector that
pushes the surface upward at Q(0,0) will also push it upward at Q(1, 1), but will
push it downward, tending to create an indentation, at Q(1,0) and Q(0,1). In
the example shown in Fig. 3.23, the twist vector is 0, but if vertical twist of
equal magnitude are added downward at the 4 corners, and their magnitude is

Q(1,0)
Q,(0,0) :(0,0,1000)
Q.(1,0) :(0,0,1000)

1(0,0,1000)

Q(0,0) : (0,0,0) Q(0,1) : (0,0,1000) Q,(0,1)
1 (1000,0,0) Q(1,1) : (1000,0,1000) Q,(1,1) :(0,0,1000)
Q,(0,1) : (1000,500,0)

Q(1,0):
Q.(1,1) : (1000,500,0)

Q.,(0,0):(0,0,0)  @Q,(0,1):(0,0,0)

Q..(1,0):(0,0,0)  Q,(1,1):(0,0,0)

Q,(0,0) : (1000,500,0)
Q,(1,0) : (1000,500,0)

Fig.3.23. A surface with zero twist vectors

{
Fig.3.24. A surface with the twist vectors at
all 4 corners taken to be (0, — 1500, 0)
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116
gradually increased, the surface shape changes as shown in Figs. 3.24 and 3.25.
If the same twist vectors are added pointing vertically upward instead of

downward, the result is as shown in Fig. 3.26.

\\ T ,/ Fig.3.25. A surface with the twist vectors at all 4
/ corners taken to be (0, — 12000, 0)

Fig.3.26. A surface with the twist vectors at
all 4 corners taken to be (0, + 5500, 0)
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3.3.5 Methods of Determining Twist Vectors

Since it is very difficult for a human being to determine suitable twist vectors, it
is desirable to have a program that will do it automatically according to a
rational scheme.

Several methods of automatically determining twist vectors will now be
discussed.

(1) Forrest’s Method ™

If one knows not only the 4 corners of a surface patch but also 12 other points
through which the surface patch passes, then the twist vector can be determined
using Coons’ bi-cubic surface formula (3.100) (Fig. 3.27).

Normally, however, one can not expect that these other 12 points, especially
the 4 interior points, will be given. Normally only the 4 boundary curves are
given, and we must determine the twist vector from these alone.

Q0,1) Q1)

2
u
Q0,0 3 b Q(1,0) L
Fig.3.27. Determination of a twist vector by
— Forrest’s method

(2) Method Using Bi-linear Surface Formula'>

Differentiating the bi-linear surface formula (3.72) partially with respect to u
and w and finding the twist vector gives:

000 Q0. 1] -1
Pl =[=11] [Q(LO) o1, 1J [ { ]

=0(0,0-0(1,00—Q(0, 1)+ Q(1,1). (3.112)

It can be seen from this equation that for a bi-linear surface, the twist vector
P, (u,w) is fixed at all points of the surface patch. The following algorithm
permits this twist vector to be used to determine the twist vector for Coons’ bi-
cubic surface formula.

Let us consider four surface patches joined together as shown in Fig. 3.28.
The twist vectors for each surface patch can be found as wy, w, w, and w,
from Eq. (3.112).
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Q Q. Q
wy w,
Q
Q. — Qs
wy wy
Fig. 3.28. Determmation of a twist vector using a bi-linear
Q Qi @, surface formula

1) Let w, be the twist vector at point Q,.

2) Take the twist vector at a point @, to be the average of the twist vectors of
the two surfacc patches which share Q,;: 3(w, +w;).

3) The twist vector at point @, ,; is the average of the twist vectors of the four
surface patches which share Qg y,3: 3 (wo+wy+w,+ws).

This algorithm is very simple and gives a better result than simply forcing
the twist vector to be 0.

(3) Adini’s Method"

This is a bit more complicated than method (2), but it uses more data and gives
a better result. It uses the class C° Coons surface patch formula (3.71). In this
surface formula, assume that the boundary curves are Ferguson curve
segments:

Q(0,w)=Ho o (W) Q(0,0)+ H, , (w) Q0, 1)
+H, o) 0,0,0+H, () 0,0 1)
O(Lw)=Ho o (w) Q(1,0)+ Hy,; (W) Q(L, 1)
+H o) 0, (1,0)+H,, (W) @,,(1, 1)
Q(,0)=Ho,o(u) Q(0,0)+ H,,, («) Q(1, 0)
+H, ) Q.0,0)+H,,(u)Q.(1,0)
O, 1)=Hq,o(u) @0, )+ Hy,, () (1, 1)
+H, o) 0.0, 1)+ H, ; () Qu(1, 1)

(3.113)

In this case, the cross partial derivative vector for the surface patch formula
(3.71) is:

B 0,0,w) -1
P ww)=[-1 1] [Qw(l,w)]ﬂg“("’o) 0, (u,1)] [ L }

00,0 0.1/ [ 1
—=ti [Q(LO) Q(Ll)] [ i } G114
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Using equations (3.113) gives:

P,,(0,0)= - 0,(0,0)+ @, (10— 0,(0,0)+ 0,(0, 1) - C = w(0,0)
P,0,1)=-0,01)+0,01,1)-8,0,0+0,0,1)-C=w(01)
P, (1,0)=-0,0,00+0,(1,0)—- 0,(1,0)+ 0,(1, ) - C=w(1, 0}
P,(1L,1)=-0,01)+0,01,1)-0,0,00+0,(1,1)-C=w(l1)

3.115
where: ( )

C=00.00-0(1,00-0(0, )+ Q(1, 1).

In this case, the twist vectors will in gencral be different at the 4 corners of the
surface patch. When the curved surface patches are connected, the twist vectors
at each point are determined as follows.

When 4 surface patches are connected as shown in Fig. 3.29, the twist
vectors at the 4 corners of each patch can be found as follows.

Q Qe Q
Surface Surface
patch | patch 2

@ Qoizz s
Surface Surface
patch 0 patch 3

Q Qs Q; Fig.3.29. Determination of a twist vector by Adini’s method

1) The twist vector at a point Q; is w;(Q,)*.
2) The twist vector at a point Q;; is +(w;(Q, )+ w;(Q,).

3) The twist vector at point Qois3 is 3 (wo(Qo123)+Wi(Qo123)+ W2 (Qo123)
+w3(Qo123))

This method of determining the twist vector is called Adini’s method.

(4) Method Using the Twist Vector of a Spline Surface (refer to Chap.4)

Assume that position vectors @,; which dctermine the 4 corners of surface
patches are given as a lattice (Fig. 3.30):

0, (=01, ....mj=01,..,n).

When the interpolating spline method described in Chap. 4 is used, the tangent
vectors @, (i=0, 1, ..., m) which definc a curve that passes through a

* We assume this notation denoles the twist vector at @, n the i-th patch
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Qo
\ Q.

'\ow,

Qi
Qi

Fig.3.30. Method using the twist vectors of a spline curved surface

sequence of points in the u-direction and is continuous up to the curvature
vector can be obtained by solving the following condition equation:

Qu.l*l,]+4Qu.1.j+Qu,l+1,j:3(Q1+1.J‘Q|*14/)*) (i:L 2,...,m—1).
(3.116)

Similarly, the tangent vectors Q. (j=0, 1, ..., n) which define a curve that
passes through a sequence of points in the w-direction and is continuous up to
the curvature vector can be obtained by solving the following condition
equation:

Qw.l.]—l +4QW,[,]+QW,[,]'+1:3(Ql,]+17Ql,]‘]) (j=12,....,n—1).
(3.117)

Thus, the lattice of points are connected by curves which are continuous up to

the curvature vector. These curves are supposed to be the boundary curves

which separate neighboring bi-cubic Coons surface patches (Fig. 3.30):
P(u,w)=UM,B, MW" (3.118)

Py, w)=UM.B, MIW'. (3.119)

* Here we use Eq (4.40) for simplicity Ideally Eq (4 38) 1s better
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Since two neighboring surface patches share the same boundary curve, we
have:

Pr(1,w) =Py (0, w).

If we apply the condition that the 2nd derivative vectors in the direction across
the boundary curve are continuous, we obtain:

[6 20 0]MB =[0200]MB ;.

Therefore:

Ql—l.J er.j+1 Qw,ifl,J Qw,x—l,lﬂ
Q.,, Q41 Qw,xj Qw,1,1+1

-1y Qui-1gv1 Quwi1y Quwicr+a

Qu,:,] Qu,.,,‘+1 OQuwr) Quw,x,j+l
0., Q. je1 Qs Qi1

Qivrj Qirrjrr Quavry Quarig+
Quiy  Quiirt Quwiy  Quwiget

Quiv1,y Qu<i+l,j+l Qo1 Quw,i+1,,+1

[6 —62 4]

=[-66 —4 —2]

From the above matrix equation, the following four condition equations are
obtained:

601,60, ;+20,,-1,+40.,,
:_6Qi,j+6Q:+1,/*4Qu,i,/72Qru+l<J (3'120)

60, 1,+1=6Q, 1 +2Qu, - ;41740 541
= *6Qi,1+1+6Qi+1<j+1'4Qu.i,1+1*2Qu,;+1.j+1 (3.121)

6Qu,-1,—6Qu,,t2CQu.—1,;+4 00,
= _6Qw,1,/+6Qw,i+1,]74Quw<|,/72Quw,|+l,/ (3.122)

6Qw.|71,/+1 76Qw.1,]+1+2Quw,1*1.]+1 +4Quw.1,1+1

= _6Qw,|,]+1 Jr6Qw,x+1,1+1 *4Quw.x,,+1 _2Quw.i+1,j+1-
(3.123)

The first two condition equations, (3.120) and (3.121), are essentially the same as
condition equation (3.116). The last two equations, which are essentially the
same as cach other, express the following condition:

Quw\x*l.j+4Quw‘i,/+ Quw.x+1,j:3(Qw.i+1,j7Qw.i*1.]) i=12.., m—1).
(3.124)
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Equation (3.124) expresses the condition that the twist vector is determined so
as to make the 2nd derivative vectors in the direction across a boundary curve
in the w-direction equal. The right-hand side of Eq. (3.124) can be found from
Eq. (3.117), so, by adding two more conditions on Q,,,, , Eq. (3.124) can be
solved to determine Q,,,,;;(i=0, 1, ..., m;j=0, 1, ..., n).

By the above procedure we have determined a twist vector subject to the
condition that the 2nd derivative vectors in the direction across a boundary
curve in the w-direction are equal. An equation corresponding to (3.124) can be
derived for a twist vector subject to the condition that the 2nd derivative
vectors in the direction across a boundary curve in the u-direction are equal. It
can be shown that the twist vectors found by these two methods are the same”.
Therefore, by using a twist vector derived in this way, we can produce a surface
such that the 2nd derivative vectors in the directions across curves in both the
u- and w-directions are continuous.

3.3.6 Partial Surface Representation of the Coons Bi-cubic Surface Patch
On the bi-cubic Coons surface patch described by:

P(u,w)=UMBM " W"
let us try to express the part of the surface in the range uy<u=u,, wo<w=<w,
in terms of the new parameters u* and w* (0<u*, w*<1) (Fig. 3.31). To do this

we perform the following parameter transformation:

u =t +u* (uy —up)

w=wo+ w*(w; —wg).

/ Fig.3.31. Expression of a partial
surface



3.3 Surfaces 123

Applying the result of this parameter transformation for the case of a curve (Eq.
(3.28)) gives:

P(u*, w*)=[u*® u** u* 1M,

H (o) Hy (o) H,y (uo) H,y ; (uo)
Ho,o(’h) Ho.l(“l) H1,o(u1) H1,1(u1)
(”1*”0)1:10,0(“0) (“1_“0)H0,1(“0) ("1‘“0){11,0(“0) (“1_“0)H1,1(”0) ‘
_(”1*“0)1:10,0(“1) (“1*"0)1:101 u) (uy *“o)HLo(“l) (“1*“0){{1,1(”1)
[(Hoo(wo) Hoolwy) (wy— WO)HO o(Wo) (W1*W0)H0,0(W1) w3
% Ho 1 (wo) Hgy(wy) (w,— Wo)Ho 1(wo) (Wlfwo)l“:lo.n(wﬂ MT w2
Hy o(wo) Hyo(wy) (W1—W0}H1 o(Wo) (wy—wo)H, o(wy) | © | w*
| Hy 1 (Wo) Hyy(wy) (wy— Wo)Hm(Wo) (W1*W0)H1,1(W1) 1
=[u*® w*? u* 1M,
P(u,0) P(ug, 1) Pw(“OsO) P, (uo, 1)
P(uy,0) P(u,, 1) (uy,0) P, 1)
(1y — o) P, (1o, 0) (g —uo) P, (g, 1) (y —1ug) Py, (tto, 0) (g — o) Py (o,

( ) 1
“1*"0)1"‘("“0) (14 —ug) P, (uy, 1) (uy —uo) Py (uy,0) (“1*"0)1’ (), 1
[Ho.o(Wo) Hoolwy) (w,— WO)HO o(wo)  (wy WO)HO o(wW1)
Ho 1 (wo) Ho,y(wy) (w, “WO)HO 1(wo)  (wy— WO}HO 1 (wy) w2
Hyo(wo) Hyolwy) (w,— Wo)I'.Il,o(Wo) (wy WO)}.I o(wy)
LH .1 (wo) Hl 1(W1) Wy —wo)H s (wo) (wy—wo)H, 1 (wy)

[u*S u*Z u* 1]M—

[ P(ug, wo) P(ug, wy) (wy —wo) P, (1g, Wo)
P(uy, wo) P(uy, w) (Wy = wo) P, (uy, Wo)

(uy — o) P, (1o, Wo) (U —to)P,(tto, W) (uy —uo) (Wy —wo) Py, (g, Wo)

_(“1_”0)Pu(“1swo) (g —ug) Py (uy, wy) (g — o) (Wy — Wo) Py, (11, Wo)

(wy —wo)P, (g, wy) wx?

(wy—wo) P, (uy, wy) r| W (3.125)
(= ug) (W1 —wo) Py (g wy) | | w*
(uy —ug) (Wy —wo) P (g, wy) 1

3.3.7 Connection of the Coons Bi-cubic Surface Patches

Let us now consider the problem of finding a simple method by which Coons
bi-cubic surface patches can be connected (refer to Sect. 1.3.7).
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-

w=l  pD=P0,1) w7 ]
-7 |

1

1

1

|l

1

\

u=1
-0 Py (u,w) \\
\
\
\
\
>
r i Fig.3.32. Connection of
Py(1,0)= P, (6,\0‘)\“*<7—»7“’// Coons bi-cubic surface
w=0 patches (case 1)

Case 1

Let us connect two surface patches P,(u, w) and P, (u, w) together with continu-
ity up to the slope (class C') as shown in Fig. 3.32. Figure 3.32 shows the case
in which the Py(1,w) boundary curve of Py(u, w) is connected to the P, (0, w)
boundary curve of P, (u, w).

First let us consider the condition that the two boundary curves must be
equal:

P, (0,w)=Py(1,w).

The boundary curve Py(1,w) is expressed by the 2nd row of matrix B,(B.).
Since the boundary curve P, (0, w) of P, (u,w) is expressed by the 1st row of the
B, matrix of P, (u,w) (B,,), we have, for corresponding elements, the condition
that each element in the Ist row of B,, must be equal to the corresponding
element in the 2nd row of B,,.

Next, let us consider the continuity of slope in the direction across the
connecting curve. Along the connecting curve Py(1,w) of Py(u, w), the tangent
vector function P, ,(1,w) in the direction across the boundary curve is given by
the following formula:

Po, (1, w)=Hg o(w) @,(1,0)+ Ho , (w) @u(1, 1)
+H; o(W) Quu(1,0)+Hy ; (W) @, (1, 1). (3.126)

From this formula we see that the 4th row of the B, matrix of P, (u, w) expresses
the tangent vector function in the direction across the connection curve. In
addition, along the connencting curve P, (0, w) of the surface patch P, (u, w), the
tangent vector in the direction across the connecting curve is expressed by the
3rd row of the B matrix of P,(u,w). Therefore, in the direction across the
connecting curve, in order for the slope to be continuous we have the condition
that each 3rd row element of matrix B,, must be equal to the corresponding 4th
row element of the matrix B, times r, where r is an arbitrary positive scalar.
This relation is shown in Fig. 3.33. Blank elements in matrix B., are not related
to the connection to Py(u,w); as far as the connection is concerned those
vectors can be chosen freely.
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Fig.3.33. B, matrix relations for the connection in case 1. (a) matrix B,y; (b) matrx B,

Case 2

Next, let us consider the case in which the previously defined surface patch
Py(u,w) is connected along both sides to the surface patches P (u,w) and
P, (u,w), as shown in Fig. 3.34, with continuity up to the slope. In this case, it is
sufficient to repeat the procedure of Case 1 twice. The B, matrix elements of
P, (u,w) and P,(u,w) become as shown in Fig. 3.35. Elements which are left
blank in matrices B., and B, are unrelated to the connection to Py(u, w); as far
as the connections are concerned those vectors can be chosen freely.

Case 3

Now consider the case in which the previously defined surface patch Py (u, w) is
connected to 8 other surface patches around it, with continuity up to the slope,
as shown in Fig. 3.36.

Fig.3.34. Connection of Coons bi-cubic surface patches (case 2)

@00 o1 eoo qor| [0 @i eio e
Qo0 o1 @00 o1 | | ero Cern eoo g ||
Q0D Q01 000 €0t 'vjau 10011 100
Q0.0 3:;;1,0,1}‘1; 007 01| @10 @11 @b gLt L -
() (b) ©

Fig.3.35. B. matnx relations for the connection in case2 (a) matrix B,,; (b) matrix B,
(c) matrix B,
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Fig.3.36. Connection of Coons
bi-cubic surface patches (case 3)

First, the B. matrices of P,(u, w) and Ps(u, w) are found in exactly the same
way as in Case 2. Next, consider the B matrices of P,(u,w) and P,(u,w). In
matrix B, the Ist and 2nd columns express the w=0 and w=1 boundary
curves, while the 3rd and 4th columns express the tangent vector functions in
the direction across the boundary curves along the boundary curves. From this
we see that the elements of the 2nd and 4th columns of B., and of the 1st and
3rd columns of B, are determined by the slope continuity condition. Next, for
the remaining 4 surface patches, P,(u, w), P3(u,w), Pg(u,w) and Pg(u,w), the
conditions on the B matrix elements are determined by the connection con-
ditions to the two neighboring surface patches in each case. The results are
shown in Fig. 3.37. In this figure, the elements that are left blank in each B
matrix can be freely selected as far as the connections are concerned. However,
if one of the blank elements is determined, then some of the others will be
determined by their relationship to it. For example, if element (2,2) of matrix
B, is V, then element (1,2) of matrix B.g is also V.

3.3.8 Shape Control of the Coons Bi-cubic Surface Patch

The Coons bi-cubic surface patch is defined by only 16 vectors: the position
vectors Q(0,0), Q(1,0), Q(0,1) and Q(1,1) at the 4 corners of the patch, the
tangent vectors in the u- and w-directions Q,(0,0), Q,,(0,0), Q,(1,0), 0,(1,0),
0.,(0,1), 0,(0,1), Q,(1,1) and Q,(1, 1), and the twist vectors Q,,,(0,0), Q,,,(1,0),
0,.,(0,1) and Q,,(1,1). For neighboring surface patches, as explained in the
preceeding section if these vectors are suitably determined, the connection will
be continuous up to the slope in the direction across the boundary curve. In
Fig. 3.38, this continuity condition is maintained as 9 surface patches are
connected together. The 2 tangent vectors at each of the 4 corners of each
surface patch are shown. In the figure, these vectors are shown lying in a plane.
The twist vectors at the 4 corners of each patch are all set to be 0, so they are
not shown in the figure. The magnitudes of the tangent vectors at those points
are set equal to the sides of the grid rectangles.
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w

Fig.3.38. Nine surface patches lying on a plane. Vectors at corners of all 9 surface patches:
tangent vector m u-direction: (+ 1000, 0, 0); tangent vector in w-dircction: (0, 0, +1000); twist
vector: (0,0, 0)

(1) Control of the Position Vectors

If the y-coordinate (in the vertical direction) of only one of the four corner
points in the center patch is varied, the surface bulges up so as to pass through
that point (Fig. 3.39). This shape variation occurs in all four of the surface
patches which share the point which was varied; it does not extend to the other
surface patches. If all 4 of the corner points of the center surface patch are
moved exactly the same distance in the y-direction the center patch remains flat
as it moves (Fig. 3.40).

Fig.3.39. Movement of only
. one surface patch corner 500
R units in the y-direction



3.3 Surfaces

129

Fig.3.40. Movement of all
4 corners of the center
surface patch the same
distance 1n the y-direction

Fig.3.41. Rotation of the
tangent vector at a
surface patch corner 30°
upward

Fig. 3.42. Rotation of the
tangent vector at a
surface patch corner 60°
upward
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Fig.3.43. Rotation of the

tangent vector at a

T surface patch corner 90°
T upward

Fig. 3.44. Surface when the
twist vector at a patch
. corner is taken to be

— (0, —1500, 0)

(2) Control of Tangent Vectors

Starting from the condition shown in Fig. 3.38, rotate one of the tangent
vectors at one corner of a surface patch while holding its magnitude fixed. The
result of rotation by 30° is shown in Fig. 3.41, and of rotation by 60° in Fig.
3.42. If it is rotated another 30° so that it points straight up, the surface shape
becomes as shown in Fig. 3.43. Varying a tangent vector changes the shapes of
the four surface patches which share the point at which it is defined.

(3) Control of Twist Vectors

Starting from the condition shown in Fig. 3.38, suppose that a vertical twist
vector is added downward at one corner of a surface patch, as shown in Fig.
3.44. The effect of the twist vector on the surface shape can be easily seen by
increasing its magnitude, as shown in Fig. 3.45. The effect of the twist vector is
to cause parts of the surface to bulge up or become indented near the point
where it is added. The direction of the effect is opposite on neighboring surface
patches. If the twist vector points up instead of down, the direction of its effect
on the surface is reversed.
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Fig.3.45. Surface when the twist vector at a patch corner 1s
taken to be (0, —4000, 0)

3.3.9 Triangular Patches Formed by Degeneration

Let us consider the problem of expressing a degerate triangular patch by a bi-
cubic Coons surface (refer to Sect. 1.3.8).
We can find P,(0, w) from Eq. (3.100) as:

P,(0,w)=[00 1 OJM.BMT[w> w* w 11"
=Hy,o(w) Q0,0+ Hy ; (w) @,(0, 1)
+Hy o) Qs (0,0)+ Hy 1 (W) @, (0, 1). (3.127)

We also have, for P,,(0,w):

P (0, )=Ho,o (%) @, (0, 0)+ Hy,, () 0,0 1)
+Hy 5 (8) Q0,00+ Hy 1 (%) G (0, 1) (3.128)

Both formulas (3.127) and (3.128) are expressed as linear combinations of the
four vectors Q,(0,0), 0,(0,1), 0,,(0,0) and Q,,(0,1). The tangent plane at the
degenerate point must agree with the plane defined by the two tangent vectors
Q.(0,0) and Q,(0,1). Consequently, if the other two vectors, @,,(0,0) and
Q..,(0,1), are both in this same plane, the unit tangent vector described by
(3.128) is uniquely determined for an arbitrary value of w in the range 0<w<1.
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3.3.10 Decomposition of Coons Surface Patches and 3 Types in
Constructing Surfaces

As can be seen from the discussion up to this point, the Coons surface patch
can be decomposed into 3 surfaces, given by the general formula (3.78) for the
Coons surface patch:

Py, w)= i iCnu)Q'“(tw (3.129)

1=0 r=0

M._
M=

Py(u, w)=

J

-LL5

C,,0) Q% (u, j) (3.130)

0s=0

||M=

i ) Cs, (0) @7, j)- (3.131)

These are combined to form the Coons surface patch according to:
P(u, w)= P, (u, w)+ Py(u, w) — Pc(u, w). (3.132)

The surface P,(u, w) is generated by the two curves Q(0,w) and Q(1,w) in
the w-direction and the ith derivative vectors Q"°(0,w) and Q°(1,w) in the u-
direction along those curves up to i=n. Surface Py(u, w) forms a pair with the
surface P,(u,w). Pg(u,w) is thc surface generated by giving the two curves
Q(u,0) and Q(u, 1) in the u-direction and the ith derivative vectors Q% (u, 0) and
Q%*(u, 1) in the w-direction along those two curves up to i =n. A surface created
in this way by giving data with respect to curves in one direction is called a loft
surface (Fig. 3.46).

Surface P.(u,w) is defined by specifying positions with respect to given
lattice points and higher order derivative vectors. Such a surface is called a
Cartesian product surface or a tensor product surface (Fig. 3.47).

A Coons surface patch consists of loft surfaces in both directions and a
Cartesian product surface (Fig. 3.48). Therefore, it is defined by specifying data
for curves in both directions and data with respect to lattice points. We have
already pointed out, in Sects. 3.3.2 and 3.3.3, that a Coons surface patch

V-

(1 (2)

Fig.3.46. Loft surfaces generated by specifying a group of curves 1n (1) the w-direction,
(2) the u-direction
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Fig.3.47. A Cartesian product surface
(tensor product surface)

Fig.3.48. A Coons curved surface patch

includes the loft surfaces and a Cartesian product surface as special cases. Thus,
we see that the Coons surface patch is a very general surface formula. The
Coons surface patch is often called a Boolean sum type surface.

3.3.11 Some Considerations on Hermite Interpolation Curves and Surfaces

Curves and surfaces based on Hermite interpolation are generated by specifying
the positions of points through which they pass and higher order derivative
vectors at those points. As can be guessed from the discussion thus far, they
present a number of problems when a person tries to change, control or design
such a shape.

1) When a curve is defined, it is necessary to define not only the position
vectors at points through which the curve passes, but also the tangent vectors
and higher order derivative vectors at those points. In the case of a surface, the
position vectors must be specified at lattice points through which the surface
passes, along with tangent vectors in 2 directions, twist vectors, etc. at those
points. In general, there are many points at which data must be given, so a
large quantity of date must be input to generate a curve or surface.

2) Since it is hard to predict the effect of a tangent vector or twist vector on a
curve or surface shape in some cases it is very hard for a person to determine
suitable values for them. In addition, although curve segments and surface
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patches can be mathematically connected by making the directions of the
tangent vectors equal at the contact points, if their magnitudes change, the
shapes will change. How to choose the optimum magnitude is not made clear in
the papers of Ferguson and Coons.

3) To control a shape, it is necessary to control different types of vectors,
specifically position vectors, tangent vectors and twist vectors. In general,
depending on the type of vectors, the magnitudes of the vectors are of different
orders, so control tends to be difficult.

4) The effects of tangent vectors and twist vectors on curves and surfaces are
difficult to tell at a glance and differ from point to point, which causes
complications in shape control (refer to Sect. 3.3.4).
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4. Spline Interpolation

4.1 Splines

When a smooth curve passing through a specified sequence of points is
generated, use of the shape of a curve produced by a long narrow elastic band
such as a steel band has long been used in the design of, for example, ships and
automobiles. An elastic band used for such a purpose is called a spline. The
spline can be made to assume the shape of a smooth curve passing through the
specified points by attaching a suitable number of weights, called weights or
ducks (Fig. 4.1).

Fig.4.1. A sphne and weights. f spline; 2 weight (duck)

If a spline is assumed to be long and thin, from elastic theory the Bernoulli-
Euler Law holds. This law states that in a cross-section of the spline, if we let M
be the bending moment, E Young’s modulus and [ the cross-section 2nd order
moment, and k the curvature of the bending that occurs in that cross-section,
then the following relation holds:

M =EIx. @1

Here the deformation of the spline is assumed to be sufficiently small. That is,
in an x—y Cartesian coordinate system, the spline deformation curve (where y
represents the deflection) can be expressed as follows, assuming that dy/dx << 1:

d?y
dx? L dy

KX)=—"""355="7.

S
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From Eq. (4.1), we can write this as:

d?y 1
2 " El M(x). 4.2)
Since the weights act as simple support points for the spline, the variation of
the bending moment M between the weights is linear. Therefore, if we apply
some constraints to both ends of the spline and solve Eq. (4.2), the elastic curve is
determined. This curve consists of separate cubic segments between each pair of
weights which are connected together; not only the slopes but the curvatures are
continuous at the weight positions. However, the rate of change of curvature is
discontinuous at the weight positions.
According to elasticity theory, the shape of the elastic curve minimizes the
total bending energy stored in the spline:

EI !
total bending energy =7 _[ k2(s) ds = minimum. (4.3)
0

Here x(s) is the spline curvature, EI is the spline flexural rigidity, [ is the total
spline length and s is the parameter along the spline length.

4.2 Spline Functions

In the preceding section we explained that the term “spline” comes from the
name of an elastic ruler that is free to bend, and discussed the properties of this
freely bending ruler from a physical point of view. Mathematically speaking, a
spline is a generalization of the physical spline which has presently become a very
important technique in numerical analysis and CAD. Let us now consider the
mathematical aspects of splines. We noted in the preceding section that a
physical spline bends in such a way as to minimize the total bending energy. The
following discussion explores the mathematical analogue of this physical
property.
First, let us define a spline function.

Definition 4.1. A (polynomial) spline function of order M and degree m=M —1,
having an increasing sequence of real numbers:

X <Xo<Xy < <Xyl <Xy <Xpyy ¥

as knots, is a function S(x) which satisfies the following two conditions @D and @.

* In this chapter, the knots are all taken to be different. However, 1n general they can be allowed to
concide. In Chap. 6, a more general knot sequence in which the knots are allowed to coincide is used
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@ S(x)is a polynomial of degree m or less within each interval (x,_,, x;) (i=0, 1,

2, on+lix_ =—00, X,y =+0)
® S(x) and its 1-st, 2-nd, ..., (m—1)-st derivatives are continuous in (x_,
Xnt1)-

Thus, a spline function consists of a number of polynomials which are defined
separately in small intervals and connected together as smoothly as possible. A
spline function of degree m has an m-th derivative that is a step function; the
(m—1)-st and lower-order derivatives are continuous. From the above definition,
an m-th degree polynomial can be regarded as a special case of an m-th degree
spline. Note that a 1-st degree spline function is a bent line. In this book, a spline
function will often be abbreviated as simply “spline”.

4.3 Mathematical Representation of Spline Functions

Let S(x) be an m-th degree spline function. S(x) is continuous to the (m— 1)-st
order derivative at knots x; (i=0,1,...,n). Letting P, ; be an m-th degree
polynomial in the interval (x;_, x;), we have:

PR(x)=PD 1 (x) (r=0,1,....m—1;i=0,1,....n).

Since the m-th degree polynomial g(x) =P, (x)— P, ,(x) and its derivatives up
to order m— 1 have roots at x=x,, we have:

8(X) =Py, 1(x) = Py, (x)=c;(x — x;)"
where ¢, is a constant. This equation can be rewritten as:
P 1 ()= P () +¢.(x—x)".

When an m-th degree polynomial P, ,(x) is given in the interval (x_;, xo),
P, (x) is related to it in the interval (xg, x;) by:

P 1 (X) =Py 0 (X)+ o (x —Xo)™.
The polynomial P, ,(x) in the interval (x;, x,) becomes:
Pm,Z(x)=Pm,0(x)+(’()(x7x0)m+cl(x_xl)m‘

Similarly, the polynomial P,, ;. ,(x) in the interval (x,, x,,) can be written as:

P 1(X)=Ppo(x)+ Zl, ¢x—x)"™

=0
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Rewriting P, ;. (x) in the spline notation S(x), we have:
S)=Pp o)+ Y ¢(x=x)" (2xZx,,y). (44)
i=0

Using the truncated power function:

m_{(xfx,)"‘ (x>x;)
(x—x)7= 0 (x§x,-)

we have, over the entire domain of x:
S()=Ppolx)+ Y cilx—x). (4.5)
1=0

In Eq. (4.5), the ¢;’s are unknown. The next step is to find them. Since the m-th
order derivative of an m-th degree spline function is a step function, $"(x)
becomes discontinuous at the knot points. Let us look at the m-th order
difference between the spline functions on both sides of the knot x,. Using Eq.
(4.4) and differentiating gives:

S (x,40)— S (x,—0) =m!c,. (4.6)

Solving for ¢; gives:

¢ :mi‘ [S™(x;+0)— S (x,— 0)]. )

4.4 Natural Splines

Among spline functions, the natural spline defined below is highly significant in
that it has the property of minimum interpolation.

Definition 4.2. A spline which is at most of degree k—1 in the two end intervals
(x_1,%o) and ()(,,,x,,ﬂ) and 2k—1 in the other intervals is called a natural
spline ®.

From the results in the preceding section, it is clear that a natural spline can
be expressed in the following form, from Eq. (4.5):

n
2k—1
SX)=Py-y o)+ 2 e(x—x)3 1 (4.8)
i=0
* In the case k=2, for x,Sx<x,,, (1=0,1, ..,n—1) the splne 1s cubic, for x_; <x<xg and x, <x <X, 1t

1s linear, since this 1s the actual shape of a physical spline, the name “natural spline” is given to 1t.
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Let us find the conditions on the coefficients c,. For x 2 x,,, $(x) can be written as
in the above equation without the subscript “+”:

n

S(x)=Py—1,0(x)+ Z DT (xzx,). (49)

In this equation, the k-th derivative of S(x) is
SWx)=Q2k—1)2k—2)...(k+ 1)k Y cx—x)"" (x2x,).
i=0
This equation can be rewritten as follows:

S®O(x)=Q2k—1)(2k=2)...(k+1)k Z ci(x—x)k !

1=0

—(Qk—1)@k=2)...(k+ )k Z i( )""’(—l)’x[

—(Qk—1)2k=2)... k+1)kkf [(71)’(k:])x"""ic;xl’:|
(x 2 x,). (4.10)

Since S(x) is a natural spline, for x = x,, it is of at most degree k—1, so the k-th
derivative must be identically 0. Since the right side of Eq. (4.10) is a polynomial
of degree (k—1) in x, for the entire expression to be identically 0 the coefficient of
each power of x must be 0:

5 axi=0 (r=0,1,2,....k—1). (.11)

It is easy to see that the derivative of a spline is also a spline, of one lower
degree, having the same knots. Since a natural spline has k, (k+1), ..., Qk+2)-
order derivatives equal to 0 in both end intervals (x_,,x,) and (x,,X, ), the
respective derivatives must be 0 at the knots x, and x,,.

Definition 4.3. A spline of degree k that is identically 0 in both end intervals
(x-1,%0) and (x,, x, ) is called a C-spline.

From this definition, we see that the k, (kr+ 1), ..., 2k —2)-order derivatives of
a natural spline of degree (2k— 1) are C-splines.
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4.5 Natural Splines and the Minimum Interpolation
Property

A natural spline has the property corresponding to minimizing potential energy,
that is, Eq. (4.3). Let us now give some auxiliary theorems needed to prove this.

Auxiliary Theorem 4.1. Given a C-spline with knots a<x,<x,<... <x,<b,
with C(x) expressed in the form:

and let f(x) be a function that is continuously differentiable m times in the
interval (g, b). Then the following holds:

fc )R (x)dx = (— 1)t Z b, f(x,). (4.12)

a

Proof: Partially integrating the left-hand side of Eq. (4.12) gives:

o

[ €07 ™ () dx = [C £ DT € £ )

8

From the definition of a C-spline, at x=g¢ and x=5b C(x) and all of its
derivatives are identically 0, which implies:

CO ™ dx = (— 1) | €0 D) dx

B—

Partially integrating the right-hand side again and using the fact that the
derivatives of C(x) are 0 at x=a and x=b gives:

b

JCE) P dx=(—1) [C'x) 4 2] —(=1) [ C"(x) f* D (x)dx

8 u

o

b
=(—1? [ C"() f* D).
Repeating this procedure gives:
b b
[CE) fOx)dx=(—1"" [ C* D(x) f'(x)dx. 4.13)

Since C(x) is of degree (k— 1), C*~V(x) is a constant #,(x,<x <x;, ;). Therefore,
the integral on the left-hand side of Eq. (4.13) is, in each interval:
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Xi+1

(=0 ] C¥ R dx = (=1 L (s )= (x3)]

which implies:

D e,

C(x) fP(x)dx=(—1)+" ni ;LS Cxig ) —f (x:)]
i=0

n

=(=1F Y ni=mi=1)f (%) (4.14)

i=0

where n_, =#%,=0 in Eq. (4.14).
From Eq. (4.6), we have:

M= = C% D +0) = €4~V (x,—0)
=(k—1)!b,.

Substituting this relation into Eq. (4.14) gives:

[ CO O dx=(— k-1 3 bif(x)
a i=0
Q.ED.

The purposes of this section are to show that, when (n+ 1) data points
(%05 Yo)s (X1, Y1), +--s (x,,¥,) are given (such that a<x,<x;<...<x,<b) and
k(<n+1)is given, with x,, x,, ..., x, as knots, then the natural spline of degree
(2 k—1) that interpolates between the y values is uniquely determined; and that
among all possible functions that can interpolate between the given data points,
this natural interpolating spline is the function that minimizes:

b
g [f®(x)]*dx. (4.15)

Theorem 4.1. There exists a unique natural spline of degree 2k—1) (k<n+1)
that interpolates between the data points (x4, ¥o), (X1, Y1), -.-» (X0, ¥,), With knots
Xo <X < .o <X,

Proof: Since a natural spline of degree (2k—1) is given by Eq. (4.9), the
condition that it interpolates between the specified data points is expressed
mathematically as follows:

Pk—l,O(xj)+ Z Ci(xj—xi)ikﬂ:yj' (j=0,12,...,n). (4.16)

i=0
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The coefficients ¢; must satisfy the condition of Eq. (4.11):
Y oexi=0 (r=0,1,2,...,k—1). @.17)
1=0

In Eq. (4.16), the first term includes k unknown coefficients and the second
term includes (n+ 1) ¢;’s, so there are a total of (k+n+ 1) unknown coefficients.
Therefore, Egs. (4.16) and (4.17) constitute a system of (k+n+ 1) simultaneous
linear equations.

Next, let us show that these simultaneous linear equations have a unique set
of solutions. This is equivalent to showing that the homogeneous equations with
y,=0(j=0,1,2, ..., n) have only zero solutions; with data points:

(x0, 0), (x4, 0), (x2,0), ..., (x,, 0) (4.18)

and that the natural spline of degree (2 k— 1) that interpolates between these data
points can only be identically zero.

Let f(x) be the natural spline of degree (2 k— 1) that interpolates between the
sequence of points (4.18). As was stated in the preceding section, f®(x) is a C-
spline of degree (k — 1) that has the knots a<x,<x, < ... <x,<b. Since f(x)is 0
at these knots, then, from Auxiliary Theorem 4.1, if we take C(x)%f®(x), then we
have:

‘I, C(X)f"”(X)dX=f [/® (0] dx=0.

This implies that f®(x)=0(a< x<b), so that f(x) is a polynomial of degree not
more than (k— 1). Since f(x) is 0 at k or more different points (the (n+ 1) points
Xgs X1, X2, --+» X,), f(x) must be identically 0*. This shows that the solutions of
the homogeneous equations must be 0. Therefore, the coefficients of the natural
spline given by Eq. (4.9) are determined uniquely by Egs. (4.16) and (4.17). Q.E.D.

Theorem 4.2. Let S(x) be a natural spline of degree (2k—1) which has knots
a<xo<xy<..<Xx,<b and interpolates between the (n+ 1) data points (x,, y,),
(Xys Y1)y --es (X yu). We assume that k<n+1. In addition, let f(x) be an
arbitrary function that interpolates between the above data points and that its
derivative functions up to order k are continuous. Then the following relation
holds:

F IS0 dx =] LW 0072 d.

Equality only occurs in the case f(x)=S(x).

* Ths follows from an theorem If a pol 1 of degree n 15 0 at more than n different points,
then that polynomial 1s identically 0.
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Proof: Start with the identity:

SO0 =SW(x)+ L/ W(x) =S
Squaring both sides gives:

L7900 = [SWET 4 L9~ SO + 289 (9 [ 1910~ SO0

Integrating both sides of this equation, we obtain:
§ L2 = IS0 e 790 —S¥ 0] d
+2 j S®(x) [ £®(x) — S®(x)] dx. {4.19)

Auxiliary Theorem 4.1 can be applied to the third term on the right-hand side.
Since S(x) is a natural spline of degree (2k—1), S%(x) is clearly, from the
discussion in the preceding section, a C-spline of degree (k— 1) which has the
same knots as S(x). Since, by assumption, f(x) and S(x) interpolate between the
same data points, we have at each knot:

Fx)=S(x)=0 (i=0,1,2,...,n).

Substituting S®(x) for C(x) and f (x)— S(x) for f(x) in the auxiliary theorem, we
obtain:

js(kb [f(kb (kb ]dx 0.

The first and second terms on the right-hand side of Eq. (4.19) are non-negative.
Therefore we have:

f [S¥]12dx< } [f900dx.

Equality holds only when the second term on the right-hand side of Eq. (4.19) is
0, that is, when f®(x)—S®(x) is identically 0 in the interval a < x < b. Therefore,
f(x)—S8(x) is a polynomial of degree not more than (k—1). However, we know
that this polynomial is O at (n+ 1)> k different values of x x¢, xy, ..., X,.
Therefore, f(x)—S(x) is identically 0; equality holds only when f(x)=S(x).
Q.E.D.

The above discussion shows that a function which interpolates between the
(n+ 1) data points (xg, Yo), (X1, 1), ---, (X, ¥,) and minimizes the expression (4.15)
is a natural spline of degree (2 k— 1), where k<n+ 1. This is called the minimal
interpolation property of a natural spline. In this sense it can be said that a
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natural spline is the smoothest possible interpolation function. To find a natural
spline, it is necessary to solve the condition equations (4.16) and (4.17).

4.6 Smoothing Splines

In the preceding section, it was shown that a natural spline that passes through
the specified points (xo, Yo), (X1, Y1) .-+ (X, ¥,) has the minimal interpolation
property. In this section we will consider the case in which the data at these
points include a certain amount of error, and find the function f(x) that @
minimizes the “deviation” from the data values and @ is itself as smooth as
possible (Fig. 4.2). The first condition involves minimizing the sum of the squares
of errors:

E=Y /()

while the second condition involves minimization in the sense of the preceding
section, that is, we must minimize:

Ey= [/ (0] dx.

Schoenberg!'® showed that when x,<x, < ... <x, and w; and g are arbitrary
positive numbers, there exists a unique function that minimizes:

n

o= wily —.f(x,)]2+gf [f® )] dx (4.20)

1=0

and that function is a natural spline of degree (2 k— 1) with knots x,, x4, ..., x,. In
this case, the intervals between knots are arbitrary. Such a spline is called a
smoothing spline.

(Zp-1s ¥n-1)
(x, 9) X \
X ! x (2, ys)
oy g
x (22, y2) ! [ i
L x(ay ws) | . 3
H ! i |
Gl 1 b i
N ) 1
oo ‘ Eod 1
ol ! P
[ . :
1 ' i ! i H 1
RN N N I
T H om omm E2 TEo &y
Fig.4.2. A smoothing spline
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4.7 Parametric Spline Curves

When the points @, @, ..., @, through which a curve passes are given, suppose
that a curve is generated by connecting n parametric curve segments
P, (i=1,2,...,n) with continuity up to the curvature (Fig. 4.3).

First, consider the two segments P; and P, having the three points Q,, 0,
Q, as their end points (Fig. 4.4). These curves are expressed by cubic formulas
with the curve length s as a parameter:

P (s)=[s s* s 11M, 4.21)
Py(s)=[s* s* s 1]M, 4.22)

where M, and M, are 4 x 3 matrices. Differentiating these two equations with
respect to s gives:

P/(s)=[3s* 25 1 0] M, (4.23)
Pi(s)=[3s> 2s 1 0] M,. (4.24)
Let s,, s, and s, be the values of the parameter s at points @y, Q; and Q,,
respectively, and denote the unit tangent vectors at those same points by Q;, Q)

and @,. Then, from Egs. (4.21), (4.22), (4.23) and (4.24) the following two
equations hold:

Q sa 85 sp 1
0 5505t s 1
Q; = 352 25; : 0 M, =N M, 4.25)
(¢4 3s2 25, 1 0
Q, . Po(s1 (Poi(t) Q.

PSP () Q.
) | e s—s1 Qa

Q
Q
Fig. 4.3. Generation of a parametric cubic spline curve.

¢,, chord length of the curve segment Q, , Q,; s, curve length parameter;
Qod s=50=0 s,, length along the curve from Q, to Q,; ', derivative with respect to s

() (P(1))

) Ps) (Py{e))
5= 8 @ > : Fig.4.4. The furst two curve segments
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(4.26)

Finding M, and M, from Egs. (4.25) and (4.26) and substituting into Egs. (4.21)

and (4.22) gives:

P(s)=[s® s* s 1IN;!

Py(s)=[s> s s 1]N;!

where N{! is given by:

N1 - .
(51*50)
2 -2
—3(so+5;)  3(so+S,
6505, — 6505,

0,1
2,
9

121 ]

0.
2
Qi

RCY

Sy — 8

) —(so+2sy) (51 —50)
51(250+51) (51— 50)

51(5,—=350)  55(35,—50)

¢ 2 o
—5051(51 —So)

“.27)

(4.28)

S1—S0
—(280+5,) (51 —50)

So(S0+251) (51— 50)

— 5351 (51—So)

(4.29)

and N; ! is obtained by increasing all of the subscripts in the above formula by 1.
Differentiating Egs. (4.23) and (4.24) again to obtain the second derivatives

gives:

P/(s)=[65 2 0 O] N;!

Py(s)=[6s 2 0 O]N,!

9
[
%
[ Q1]
01
0,

1

7

|

2]

(4.30)

(4.31)
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As was stated in Sect. 1.2.2, the second derivative vectors Pj(s) and P;(s) with
respect to length along the curve s have the curvature as their magnitude and
point toward the center of curvature.

Calculating the curvature vector of the curve P, (s) at s=s,, we obtain:

Q0
Pis)=[65, 2 0 01Nt |2
[
[
2
= —=[3s, 100
(s,—50)° [3s ]
2 -2 S1= S0 S1=So Qo
—3(so+sy)  3(sots) —(So+251)(sy—50) —(2so+s,)(s1—50) || C
6505, =650, 51(280+51) (51—50)  So(So+25,) ($;—50) o
51(s1—=350) 55(35,—50) — 5057 (5,—50) — 5§51 (51 —50) f
9
2 0,
= . —3 §,—80 2(s; — . 4.32
(51750)2 [3 =3 s;—s9 2(5,—50)] 3 ( )

Similarly, calculating the curvature vector of the curve P,(s) at s=s,, we
obtain:

2
Pé’(sl)=m[—3 3 =2(s,—51) —(s2—54)] | (4.33)

If we assume that the curves P; (s) and P,(s) have the same curvature vectors at
s=s,, then from Eqgs. (4.32) and (4.33) the following condition holds:

(52510 Q6 +2(s2—50) Q7 +(51 —50) @)

7 Y —5)2 (0, —
T (51— 50) (52—51) {(51 =502 (Q2— Q1) +(s:—51)* (@1 = Qo)} . (4.34)

Equation (4.34) expresses the condition that the two curve segments P, (s) and
P,(s) connecting the first three points Q,, Q, and Q, are connected with
continuity up to the curvature vector at the connection points. This can be
generalized to the condition that the two curve segments P,(s) and P, (s)
connecting any three points Q;_, Q; and Q;, , are connected with continuity up
to the curvature vector at O, by making the following substitutions in Eq. (4.34):
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0—i—1
1—i . (4.35)
2—i+1

Therefore we have:

(8041 =5) Q-1+ 205,41 =8, 1) @i+ (Si—5,-1) Q41

3
= oes, (s —s) {65521 Qa1 = Q)+ (5041 =50 (@~ Qi 1)}
436)

(Igi<n—1).

If the curve length is approximated by chord length:

S, =81 =6
. 437
Sivy TS =Gy
then Eq. (4.36) becomes:
C Qo1+ 201 +6) O+ 004y
3
= @~ @+ (2~ 0y} (438
GG
(1gigsn-1).

As a special case, consider a given sequence of points separated by approximately
equal intervals:

C,o1=¢;=Cy =C.
Then Eq. (4.38) becomes:

Qo +4cQ+cQ 1 =3(Qv 1 —Qi-1)- (4.39)
Expressed in terms of the tangent vectors this becomes:

0.1 +40,40.1=3(Q1— Q1) (4.40)

A formula for the i-th curve segment can be obtained by performing the
subscript substitution (4.35) in (4.27):

0
(2

0.
o

P)=[s* s* s 1IN (4.41)
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Next, performing a parameter transformation for the i-th curve segment P;(s),
0=t=1 corresponds to s,_, <s<s;, if the transformation is of the form:

S=8i +(Si—si- )t (442)
Substituting this relation into (4.41) gives:

P()=[t3 t?t 1]

(s,=s,-1)° 0 0 0 0.,
351 (5=5,-1)? (5,—5,-1) 0 ON—l o
) 3578 =8im)) 28,01(5,—8,-) si—siop O] | Qi
sy st s, 1 [0
[ 2 =2 58 S, =8y [
32 =3 3 =2(5,—si-y) —(—5,-1) [
T e 0 s 0 |en
1 0 0 0 (8
2 -2 1 1 [
32 -3 3 -2 -1 0,
Ot 0 01 of|s—sner ¢4
10 0 0] (—s-0Q
[ Q-
~CHoo) Hoalt) Hyo) o) [ @ | s
L (=5~ 0
[0,
=[Hoo(t) Hoi (1) Hyo(t) Hy (1)) Q,i (4.45)
a0y
| ¢ Qi
[0
=[Hoo(t) Ho(t) Hyo(t) Hy,((t)] Q-Qi . (4.46)
-1
| 0,

As can be seen from Eq. (4.45), to determine all curve segments P,(t)
(i=1,2,...,n) it is necessary that the (n+ 1) unit tangent vectors Q, O, ..., O,
be determined. However, since (n— 1) conditions are given by Eq. (4.38) which
expresses the condition that the curvature vectors be continuous, it is necessary
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to add two more conditions to (4.38) so that all of the unit tangent vectors are
determined and, hence, all of the curve segments are determined.

Let us now take a closer look at the connection points between two curve
segments P,(t) and P, (t) which have been determined in the above manner.
The formulas for curve segments P;(t) and P, ,(¢) are:
[ O
_ 9,

P (t)=[Ho,o(t) Ho,y(t) Hyo(t) Hy,(1)] 0, (447
1 -1
L O

[
P y(t)=[Hoo(t) Ho, (1) Hyo(t) Hy ()] CQ”é[ . (4.48)

“7.+1Q;+1

The tangent vectors at the connection point are found by differentiating (4.47)
and (4.48) and setting t=1 and t=0, respectively:
P()=c, @

P (0)=c. 0

These give the relation:

Py, ) =S b (t)y= 1,801

where:

g =St (4.49)

~ Next, let us find the relation between the second derivative vectors P,(1) and
P, ,(0). Using Egs. (3.16) for the second derivatives of H, (t), ..., H; ;(t) gives:

P()=~6(0i~0i-)+2¢:20+Q.-)) (4.50)
P (0)=6(Cii1— Q) 2614120+ Q01 ). (4.51)
Substituting Q;—Q;_; and Q,,,—@Q; in (4.50) and (4.51) into (4.38) and
rearranging terms gives:
2
EH@=G?)ﬂms%Em (45)

A=Ciq/c
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The curvature vector continuity condition (4.52) is equivalent to the general case
(1.52) with g=0.

We now use curvature vector equation (1.24) to determine whether or not the
curvature vector is continuous on both sides of the connection point when
relations (4.49) and (4.52) hold.

For the segments on both sides of the connection point Q,, first, on the curve
segment P;(t) side, we have:

pr= BOXPOXPD _
P

On the curve segment P, (t) side we have:
(qu(o)XP,'H(O))XP.'H(O)
P, 0"

(L P()x 2P (1) x 4,P,(1)
(2P, (0)*
_(BMxP0)xP()
I YOI

P/, =

=K,n,.

This confirms that we have generated a curve which, at the connection point, is
continuous not only to the slope, but to the curvature vector.

4.8 End Conditions on a Spline Curve

Equation (4.38) holds for 1 <i<n~—1. This relation can be expressed in matrix
form as follows:

%
M Q:‘ =B (4.53)
o,

where:

2w 2(CntCumt) Gy
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{cﬁ (05— 0:)+c3(Q,— Q1))

=1
i

- {cf, 12— Q)+ (@1 — 002}

L Cn—1Cn

Matrix M is (n— 1) x (n+1); it is not square, so an inverse matrix does not exist.
If we express conditions at the ends @, and @, of the curve by some means, we
can replace M and B by an (n+1) x (n+ 1) matrix M and an (n+1) x | matrix B;
then Eq. (4.53) is replaced by the following:

%
m|% -5 (4.54)
[24
From this we obtain:
Qo
Q\_ps.
0.
@y, Qi ..., @, are all determined. Substituting these into Eq. (4.45) determines
al] of the curve segments P;(t) (i=1,2, ...,n).

(1) Case in which unit tangent vectors are specified at both end points Q, and

Specify the unit tangent vectors @, and @, at the end points Q, and @, as
follows:

Qo =1,
0, =t,.

Then the matrices M and B become:
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1 ] 0
¢y 2(cy+cy) ¢y 0
0 cy 2(c3+cy) ¢
M=
. . ¢, 2(c,ten—y) Cooy
1 0 .. 0 0 1
- % -
ce {F% (0:—Q)+3(0,— )}
e {Cg(Qanz)’FC%(Qz*Qx)}
B=
3 2 2
. ¢ {ei-1(Q,~ Q- 1)+ (@1 — Q-2)}

1,

n

Examples of curves generated in this case are shown in Figs. 4.5, 4.6 and 4.7.

(2) Case in which the curvature is 0 at both end points @, and Q,

The 2nd derivative of (4.47) with respect to s is, regarding dt/ds is approximately
constant

Qi’l
a: L.
Pf'i(?ﬁ) [Haal®) Hou ) Huo) a1 | 2 1. 459
0,
/_Qz Qs

\> Fig. 4.5. Examplc of spline curve generation (case in which
Q unit tangent vectors at both ends are specificd ——(1))
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/
Ql/( . \Qs
Q

(3

Qo
Fig. 4.6. Example of spline curve generation (case in which the unit tangent vectors at both

ends are specified 2)

3)

Fig. 4.7. Example of spline curve generation (case in which the unit tangent vectors at both

end points are specified

Setting i=1, t=0 and P} =0 and using relation (3.16) gives:

([
0=[—6 6 —4 —2] CQQ‘, . (4.56)
¢, 0
(4.57)

This relation can be simplified to:
2¢,Qp+¢,01=-30,+30,
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Setting i=n, t=1 and P; =0 in (4.55) and using relation (3.16) gives:

9,
0=[6 —6 2 4] Q," . (4.58)
Qi1
.0,
This can be simplified to:
Q-1 +26,0,=-3Q,-,1+30,. (4.59)

From conditions (4.57) and (4.59), matrices M and B can be expressed as
follows:

[2¢, ¢ 0
c; 2(cy+cy) ¢y 0
C3 2(c3+c) o

M7
0 Comq 2(Cp—1+Cusy) Caz2 0
0 Cy 2(c,+Cyoq) Cyoy
| 0 0 Cp 2¢, |
I 3(@,— Qo) 1
cec {1 (@:— 0+ 3 (0, — Qo))
1€2
3
——- {3 (Q,— @)+ 3 (0, - 0}
C5Cy
B=
3 2 2
{er1(Q=0u-1)+ci(Qu —Qh-2)}
Cn—1Cn

3= 0u-0)

Examples of curves generated in this case are shown in Figs. 4.8, 4.9 and 4.10.

(3) Case in which the slopes and curvature vectors are equal at both end points

@ and @,

Consider the conditions that the slopes and curvature vectors are equal at both
ends of a spline curve:
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Q.
T 7@
//' \ \\
S
; / i
Qb
N
% Fig.4.8. Example of spline curve generation {case in which the
L curvature at both end points is taken to be 0 (1)
Q
Ve
Qa/\
7N
// \«
\ / N
N/
/ ; / \
/ N \
/ @ \
/
/ A\
o/ \
/ Y Qs
AN
/ \
AN
N\,
P
Qo

S Qe

Fig. 4.9. Example of spline curve gencration (case in which the curvature at both end points is
taken to be 0 2))

Q

Fig. 4.10. Example of spline curve gencration (case mn which the curvature at both end points
is taken to be 0 ——(3))
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P, =P, _, (4.60)

Pl,-o=P;, . (4.61)
It is clear that condition (4.60) implies that:

=0, (4.62)

Setting ds/dt = ¢, in Eq. (4.55) gives:

9
. 1 o
Pl,_o=—[-66 —4 — . s
o= [ 1l B (4.63)
c1 Q1
Similarly, setting ds/dt =c, in Eq. (4.55) gives:
0,1
1
P_1=—1[6 —624] Q," . (4.64)
’ Cn Qs
0,

Applying relation (4.61) to Egs. (4.63) and (4.64) and using relation (4.62) gives
the following relation:

{C -00)+c1 (0.~ 0,- 1)}
(4.65)

e, Qi+ @1 +2(c,tcy)

From conditions (4.62) and (4.65), we see that matrices M and B can be expressed
as follows:

[1 0 -1
¢y 2(cy+cy) ¢y 0 0
0 cy 2(c3+cy) ¢,

0 Com1 2(cy_ 1+ cpo2) Cpoa 0
. C, 2(cp+Cum1)  Cuy
0 [ 0 cy 2(c,+¢y) |

(=]
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Fig.4.11. Example of spline curve generation {(case in

which slope and curvature vectors at both end points are

5 taken to be equal)
Q
e Qs
e
N
N\
\\
£0s
[N ’
K £
7 ‘\
Qe= Qo ?/ \
\
T PO llosed curve (1)
Qe
Q@
1\ B 77/' -
T T T T e

Fig. 4.13. Example of splinc curve generation (case of closed curve

Q
o
y
N
. - L - -
T &

Fig. 4.14. Example of spline curve gencration (case of closed curve

Fig. 4.12. Example of splinc curve generation (case

—G)
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_ 0 -
3
e, {C% (Q:—0)+3(0,— Qo)}
3
{3(Q:—0)+3(0,-0))}
(Y

{C:fl(Qn*er)JrC:(anl =0,-2)}

c,,,,c

{e2 (@1 — Qo)+ <1 (@ — Q.- 1)}

€,y

A curve generated by this method is called a periodic spline curve. To make it
a closed curve, it is sufficient to take @, = Q. Examples of these spline curves are
shown in Figs. 4.11, 4.12, 4.13 and 4.14.

4.9 Cubic Spline Curves Using Circular Arc Length

In the spline curves discussed so far, in their derivation the length of a curve
between 2 points has been approximated by the.chord length, This assumption
is appropriate when the variation of the curve between specified points is
relatively slight, but when a fairly large variation is anticipated, in general a
curve closer to the actual spline curve will be obtained by approximating the
curve length by circular arc length.

The radius of the circle passing through the 3 points Q,_,, Q,_, Q, can be
found from Eq. (A.12) in Appendix A: the arc lengths a;_, and a] between Q,_,
and Q;_, and @, , and Q,, respectively can be found from Eq. (A.13) (Fig. 4.15).
Advancing one point to consider the 3 points Q,_;, Q; and @;, ., letting 4, and
a, | be the arc lengths between points @, ; and @, and @, and @, ,, the curve
length between points @,_, and Q, is approximated by a,= (g, +4a;")/2. A similar
procedure is repeated to generate circular arc lengths through the specified

Fig. 4.15. Approximation of curve length by average circu-
0 lar arc length
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sequence of points Qy, O, ..., O,_1, 0,, thus giving approximate curve lengths
for all of the spans except the two end spans. The arc lengths of the two end
spans are found by constructing the circles passing through the points Q,, O,
and @, and Q,_,, 0,_, and @,, and using the circular arc lengths between Q,
and @, and between Q,_, and @,. In this case, to find the unit tangent vectozr
Q;(1<i<(n—1)), ¢ is replaced by a in Eq. (4.38):

a1Qi-1 +2(a, 1 +a) Qi+ 4,044
3
= {a} Q11— Q) +afy 1 (@~ 0 )} (4.66)

4;8;+

and also in the various end conditions discussed in Sect. 4.8.
For the unit tangent vectors Q;(i=0, 1, ..., n) which are obtained, the curve
segment P,(t) in the i-th span can be expressed as follows:

[ Q-4
o
a0,
| 4@
[Q:i-1
=[Ho,o(t) Ho1(t) Hyo(t) Hy ()] QQ: (1=izn). (4.67)
| O

Pi(t)=[Hoo(t) Ho,1(t) Hy,o(t) Hy1(0)]

4.10 B-Splines

A spline function can be determined which satisfies the following conditions
between the knots x,, X;,1, Xj42, X, 4
Condition @ is that the functlon S satisfies the following equations at the
two end knots:
S(x,)=58(x)=0
S(Xi+3):S(X,+3):0-

Condition @ is that at intermediate knots, the function S takes a specified
value, for example:

St 1) =h.

A function which satisfies these conditions is a C-spline of degree 2 (Fig.
4.16(a)).
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/5(2)
/

Fig. 4.16. B-splines

Similarly, a spline function can be determined which satisfies the following
conditions between the knots X;, X, .1, X 45, X;13 and X;4. )

Condition (@ is that the functlon S satisfies the following equations at the
two end knots:

S(x)=5(x)=8(x)=0
S(x,-+4):S(x,+4)= (X,+¢):0-

Condition @ is that at intermediate knots, the function S takes a specified
value, for example:

S(xji)=h.

A function which satisfies these conditions is a C-spline of degree 3 (Fig.
4.16(b)).

Let us now derive a polynomial spline function of degree 2 which satisfies
the first condition.

5

II/\

X=X,

The following quadratic S(x) satisfies S(x,-):S(x):O and S(x,,)=h.
S(x)=— (x—x)% (4.68)

X SXEX,
From spline Eq. (4.5), calling the unknown constant b, we can write:

S(x)= " (=% +by (x—x;41)% (4.69)

(e — X))

Xj12SXZSx), 3
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Calling the unknown constant b,, a quadratic expression that satisfies the
condition S(x;,3)=5(x,;3) =0 can be written as follows:

S(x)=b,(x—x;.3)%. (4.70)
By adding the condition that the curves in the 2-nd and 3-rd spans must have

both position and slope continuity at x =Xx; ,, the unknown constants b, and
b, can be determined as follows:

*(xﬁz*x]) (xj+3ij)

(xj+|*xj)z (x,+z*x,+|) (xj+3_xj+ V)

b, =

X, 42— X

2 h.

b, =
? (]+l x)(,+3*x,+1)(xj+3_xj+z)

Then the curves in each span can be found from (4.71), (4.72) and (4.73).

x,Sx=Zx
h 2
S(x)=—(x?6)Z (x—x)) 4.71)
J J
X, SXSX,,,
h (X,42—%) (Xj13—X))
S(x)=— — ':(x,xf,# (x—X;41)?
{xj+lij)2 ! (xj+27xj+l)(xj+37xj+l) st
4.72)
X SXSX4;
—x)h
(9= (ye2=%) (x=x,5) (4.73)

(x1+| *x]) (xj+3*x,+|) (x]+3'x,+z)

There is another method in which, as a condition for determining the
function, in place of specifying the value h the area enclosed by the curve and
the x-axis is specified. Since the area is:

(1 segdn=t B2 = %) Bramx)

3 X, 41X,

Schoenberg used a method in which he specified a unit area. In this case, we
have:

350-x)

T a2=X)) (55— x)
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Cox and DeBoor specified the area as follows so that Cauchy’s relation holds
(refer to Eq. (1.4)) and normalized:

B 2= %) (503 =X) _ X3 (4.74)
3 Xji1—X; 3 :
In this case we have:
h= M_ (4.75)
Xj+27=X;j
In this case, the spline function is expressed as follows in each interval:
X, sx= Xjt1
S0 ! (x—x) (476)
X)=———————— X—x .
(X41=%) (x,42—x) ’
X SXSX,

1

(xj+l_xj) (xj+z_x,)

x [(xij)zf 7 (pr2=%) (443 —X) (x—x;4 l)l] @77

2= Xjrn) (Xje3—X,41)

S(x)=

1
S(x)= (X=X, 3)% 4.78
) (xj+3_xj+l)(x]+3_xj+2) x i ) ¢ )

(Equations (4.76) to (4.78) agree with Eq. (6.90) to be derived in Chap.6). The
function defined by Eqs. (4.76) to (4.78), with spans continued indefinitely to the
left and right and all but 3 spans having functions values of 0, as shown in Fig.
4.16, is called a B-spline (Basis spline) or fundamental spline of degree 2. A
normalized B-spline of degree 3 can be derived by a similar method. In the case
of degree 3, in the right-hand side of Eq. (4.74) the area is specified as (x4
—x;)/4. A B-spline is a special case of a C-spline. For further details on B-
splines refer to Chap. 6.

4.11 Generation of Spline Surfaces

The method used to generate spline curves can be used to generate spline
surfaces that are continuous up to the curvature.
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Fig. 4.17. Generation of a spline surface

Assume that a lattice of points Q;(i=0,1,...,m; j=0,1,...,n) is given (Fig.
4.17).

@ In Fig. 4.17 there are (n+1) rows of points in the I-direction. If conditions
are given for the unit tangent vectors in the I-direction at the start and end
points of each of these rows of points, then, letting h, be the chord length in the
I-direction®, the (n+1) spline curves in the I-direction are determined by
solving the following condition equations:

B Qraaay+ 20 +1) Gy + 1O,

3
s @ m Q) R (@, O ) (479)

(i=12,..,m—1; j=0,1,....n).

In this case, if normalization is done in each interval using a parameter u, then
the tangent vectors with respect to the parameter u are:

'Quwl,—ljhiQnﬂ,ﬂ 'Qui/*l:hint.]*I}

T o w ’ . (4.80)
‘Qu.:—lj,:h‘Ql,z—l,, 'Qu,zJ/:hin,:,J

(Refer to equations (4.45) and (4.46).)

@ Following a similar procedure to the above, for the (m+ 1) rows of points in
the J-direction, the following condition equations hold:

* For simplicity, h, 1s assumed to not vary m the J-direction
** 0,15 the derivative vector at pownt @, , with respect to curve length in the /-direction
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kyir @1 H 20+ k) Q5 4K, 0y 0
3
ik ((Qj1— Qi) +ky 1 (0= 01} (4.81)
R+
(i=0,1,..,m; j=1,2,...,n—1).

k; is the chord length in the J-direction, and is assumed to not vary in the I-
direction. For each of the rows of points, if conditions on the unit tangent
vectors in the J-direction at the starting and end points are given, Egs. (4.81)
can be solved. In this case, if normalization is done in each interval with a
parameter w, then the tangent vectors with respect to w are:

: Qw,t—l,,ﬂ :kiQ.l.lfl.jfl : Qw.l,/~l =
- Qw,rl,,:k,Ql,:—l,/ ‘Qw.A,/:

(Refer to Lgs. (4.45) and (4.46).)

Procedures (D and @ above generate a net of spline curves passing through
the given lattice points.

(4.82)

® In Fig. 4.18, focus attention on the previously determined group of unit
tangent vectors in the I-direction, @, ,, Q; ., (j=0,1,...,n). First let us explain
the significance of @, o; (j=0, 1,...,n). If the two end vectors Oy, 4o and @y, o,
are suitably specified, the @,, o, (j=1,2, ...,n—1) that will smoothly interpolate
between the @ ,, in the J-direction can be found from the following equations,
corresponding to (4.81)*;

Fig. 4.18. Determination of

Qo0 Quum,i=0,1,...,n)

¥ Q. 15 the cross partial denvative vector wath respect to curve lengths in both the I- and J-directions at
point Q.
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kiv1Qrr0,-112Kjr 1 +k) Qryo, ki Q0,41

3 2
i {2 (Q1,0.5+1= Qr0.) +kj+1(@r0,— Cro,5-1)} (4.83)

(=1,2...,n—1).

A similar method can be used to determine the @y, ,,; (j=1,2,...,n—1) that will
interpolate smoothly between the @, ,, (j=0,1,...,n). In many cases Q;; ¢,
Q1y.0n> Qrymo and @y, are simply taken to be zero vectors.

® Next, focus attention on the groups of unit tangent vectors Q; ;
(i=0,1,...,m; j=0,1,...,n) in the J-direction, previously determined at each
point, which extend in the I direction (Fig. 4.19). There are (n+ 1) such groups,
for j=0,1, ..., n. For each group, the first and last vectors Q,; o; and @, were
already found in procedure ®. By using the equation corresponding to Eq.
(4.83), the @y, ;; (i=1,...,m—1) that will interpolate smoothly between the Q, ;
(i=0,1,...,m) can be determined. The condition equations are as follows:

hi+lQl],i*l.j+2(hl+l+hi)Ql].i,]+thl.I,i+l,]

=wh Qs 1= Qs )+ his 1 (@riy= Qi) (4.84)
i+l

(i=12,...,m—1; j=0,1,...,n).

By solving these equations, 0, ;, are determined at all points. @, ,; is the cross
partial derivative vector with respect to curve length s. Concerning the para-
meters u, w (0=<u, w< 1), the cross partial derivative vector, for example at point
Q;;, is, from Eq. (4.80):

Qu,i,j :thn.u

Fig. 4.19. Determination of @y, (i=0.1,...,m;
F=0.1,....m)
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so, if s is curve length in the J-direction, we have:

as
Quw,i.] = hi Ql.l\:,j W
= h:kau,i.j~
Then, at each point we have:

: Quw.iﬂ.jﬂ :hika’J,l‘ 1y-1 Quw,l,j*l =hlk]Ql.’.l,j’l
. Quw.i— 1,,= h:kamfl,j . Quw.i.]: hxkal.I.Lj

Using Eqs. (4.80), (4.82) and (4.85), from Eq. (3.102) we obtain P,;(u, w) as:

(4.85)

Py(u,w)= UM,

_Qi*l.j*l Ql*l,] Qui-1,j-1 Qw,i*l.]
Q.1 0. Qi1 Qs
Qu,l*l‘j*l Qu,i*l,j Quwi*l‘]"l Quw,l*l,j
| Quii-v @iy Queni-1 Quway

=UM,

[ Qi'l,j—l Qi—l,j ka.I,i*l‘j*l k;Q.I,rl,/
QL,»I Qz.; k] Q.I,l‘jfl k]Q.I,l,j
thl,i*l,]*l hin.l*l,j hikal.I,l‘l,jfl hikJQl.I,l~l,J
L hin,i,j>l hin,i,j hlkal.’,l.j’I hl'kalJ,i.j

MIWT

MIWT

=UM,

71 0 0 07 Ql'*l,j*l Qi—l‘j Q],ifl.jﬂl Q.I,i*Lj
RN | I ¥R 0. Qi1 Q.

0 0 h’l 0 Ql,l‘l,]*l Ql,l*l,j Ql.ld*l,j*l Ql.l,l'l,j

70 00 hi_ Ql.l,j*l Ql,l',j Ql.l,x.j*l Qu,;,j

(10 0 0]
00Oy, (4.86)
00Kk of" '
0 0 0 K]

In procedures @ and @, spline surfaces can be generated even if the order
of the procedures for the I- and J-directions is opposite to that given here. It
has been shown that following the procedures in either order produces the same
surface.
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5. The Bernstein Approximation

5.1 Curves

5.1.1 Modification of Ferguson Curve Segments

As explained in Chap. 3, curves and surfaces based on Hermite interpolation
position vectors of 2 points @, and @, and the tangent vectors at those points
0, and Q; (Chap. 3):

2-2 1 17[Q

PO)=[3 t* t 1] 7(3) (3) 7? 7(1) g‘ (5.1)
0
1t 0o 0 oflo

As explained in Chap.3, curves and surfaces based on Hermite interpolation
have the following problems:

@ At the end points, the effects of the tangent vectors and twist vectors on
shapes of curves and surfaces are in opposite directions, causing confusion
when a person tries to control the shape.

@ To control a curve shape, two different types of vectors, position vectors and
and tangent vectors, must be manipulated. To control a surface shape,
these two plus a third type, twist vectors, must be manipulated. In
particular, the relation between the twist vector and surface shape is
difficult to grasp intuitively; also, the orders of magnitude of the different
vectors are different, so human manipulation is difficult.

One way to solve these problems is shown in Fig. 5.1. On a Ferguson
curve segment, a vector is shown at point @, in the reverse direction of the

Fig. 5.1. Modification of a Ferguson
curve segment
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tangent vector Q,. A cubic curve is supposed to be expressed by the two
points Q, and Q, and 2 appropriate points on the tangent vectors which are
shown, as Q,, and Q,,'®.

For the last 2 points, let us use the point Q,, at a distance 1/p times the
tangent vector from point Q,, and point Q,, a distance 1/p times the tangent
vector, direction reversed, from point Q,:

1.

QOe: Q0+; [N (5~2)
.

Qle:Ql_* 0. (5~3)
p

Solving Egs. (5.2) and (5.3) for Q, and Q,, substituting in Eq. (5.1) and
rearranging gives:

r2-2 1 17T Q
-3 3 -2 -1 0,
Pt)=[tt*t 1]
O=I 0 0 1 o|| p@u—0y
L 0 0 0]|-p(Q.—0Q)
[ 2-2 1 17 1 00 O0][Q,
~3 3 -2 -1 010 ofl|lo
T3 2t 1 1
el o o 1 oll=p 0o p ol
1 0 0 O0f[ 0 p 0 —-p]|Qi
[ 2=p —2+p P —P][@Q]
—342 — —
=[] 3+2p 3-p 2p p 0,
-p 0 p 0 ][Qe
| ! 0 0 0 []|0]
[ 2-p p —p —24+p][ Q]
SR ] =3+2p =2p p  3-p || Qe
-p p 0 0 O,
|1 0 0 0 0,
[N
=[Xo(1) X,() X,(t) X5(0)] Qe (54
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where:
Xo()=(1-0)* {1+2~p)t}
X, @=ptt-1? 55)
(n=p (1-1)
X3(t)=1* 3—p+(=2+p)t}

It is known that a Cauchy relation (Eq. (1.4)) holds among X (t), X, (t), X,(t)
and X(¢), regardless of the value of p:

Xo)+ X, )+ X,0)+X50)=1. (5.6)

It can be shown that the following are the conditions for a curve to always
exist inside the convex polygon formed by Qq, Qo., Q,. and Q;:

Xo()20, X, ()20, X,(0)20, X,()=0 (0<<1). (57)
From these inequalities it follows that the curve is inside the polygon when:
0<p=3. (5.8)

In the case p=0, the curve P(r) reduces to a straight line connecting the 2
points Q, and Q,. As p is increased, the curve approaches closer to the
polygon Qq, Qq., Q.. Q; (Fig. 5.2). If p exceeds the limit of condition (5.8),
for example if p=4, then part of the curve will protrude outside the polygon
Qo, Qoes O1., Q.. Condition (5.8) is the condition for the curve to remain
inside the polygon regardless of the shape of the polygon. Therefore, the

Fig. 5.2. Variation of curve shape with respect to the value of p.
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closest the curve can come to the polygon and still be totally contained within
the polygon is the shape it assumes when p=3. In this case, the functions
Xo(t), X, (t), X,(t) and X4(¢) are:

Xo()=(1-1)*

X )=30-07t |

X,(0)=3(1-1)¢? 9
X;0=1

Let us now renumber the polygon vertices as follows:
Qo — Q (remains the same), Qo, — @y, @1, — @5, Q1 — 0.

Then the curve segment described by Eq. (5.4) becomes:

[N
P(t)=[Xo(1) X,(1) X,(t) X5(1)] g'
[N
3
=2 X010, (5.10)
where:
-1 3 -3 1770,
s 3-6 3 0llo,
PO=[C 1] o o o 0 (5.11)
1t o o offlo,
[N
0,
=03 2t 1M, 512
[ 2t 1] o, (5.12)
0
where:
-1 3 -3 1
3—-6 3 0
Ms=\ 5 3 o of 613
1 0 0 O

Graphs of X,(t), X,(t), X,(t) and X;(t) are shown in Fig. 5.3. The curves
described by Egs. (5. 10) (5.11) and (5.12) coincide with Bézier curve segments
when the latter are of degree 3 The position vectors Q,, ..., Q3 which define
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a Bézier curve segment are called the curve defining vectors. The polygon
formed by joining the points defined by the curve defining vectors is called by
such names as the curve defining polygon, characteristic polygon or Bézier
polygon.

5.1.2 Cubic Bézier Curve Segments

As can be seen from the derivation in the preceding section, the tangent
vectors at the starting and end points of a cubic Bézier curve segment are,
respectively:

P(O)= 3(Q1*Qo)}

. 5.14
Bi)=3(0,- 0y) G149

The slope of the curve at its starting and end points coincides with the direc-

tions of sides Q,Q, and Q,Q; of the curve defining polygon.
Next, let us find the curvature at the start and end points of the curve
segment. The second derivative vectors at the two points are:

P(O):6Q0—12Q1+6Q2=6(Q2~Q1)—6(Q1—Qo)}

" 5.15
P(1)=60,-120,+60;=6(Q; —0,)—6(Q,— Q1) G19

The curvature k, at the starting point of a curve segment is, from equation
(1.26):

POXPOI_2 1@~ 0)x(2: -0 516

T oy 10— 0,
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Similarly, the curvature «, at the end point is:

o _IPOXPMI_ 2 10:-00)x(Q:=0,)
PP 3 10— 0, ‘

(5.17)

As can be seen from Eq. (1.24), the location of the center of curvature
depends on the direction of the 2nd derivative vector P with respect to the
tangent vector P. At the start point of a Bézier curve segment, the center of
curvature is in the same half space as @, with respect to the straight line
000, . In Fig. 54(a) Q, lies on the same side as Q5 does with respect to the
straight line Q,Q,, so the center of curvature lies on the Q; side. Similarly, at
the end point of the curve the center of curvature lies on the @, side with
respect to the straight line Q,Q;. In Fig. 5.4(a), @, is on the same side as @,
so the center of curvature is on the @, side. In such a case, if the intersection
of lines Q,Q, and Q,Q; is called S, S is on the outside of both Q,0Q, and
0,0;. In Fig. 54(b), Q, is on the opposite side of Q,Q, as Q, while Q, is
on the same side of 0,0, as Q,. In such a case there is 1 inflection point on
the curve. In this case, point § is on the outside of line Q,@, and inside of
line segment @, Q5.

Next, consider the polygon shape in Fig. 5.4(c). Points @, and Q, are on
extensions of Q,S and @,S, not far from S. In this case, the center of
curvature at the starting point is on the opposite side of line Q,Q; as Q5. The
center of curvature at the end point is on the opposite side of line @,0; as
Q,, and the curve segment has two inflection points. If @, and @, are
removed farther from point S than in Fig. 5.4(c), the situation in Fig. 5.4(d) is
obtained, with the curve having a cusp. If they are removed still farther, the
curve has a loop, as in Fig. 5.4(e). This is easy to understand if we compare
with the case of a Ferguson curve (refer to Sect. 3.2.1). Since the tangent
vectors at the ends of a Bézier curve segment are given by Eqs. (5.14), as

0, —Q, and Q;— 0, become larger, when a certain relationship holds a cusp
develops in the curve. If the magnitude of the tangent vectors becomes still
larger, the curve develops a loop.

Let us find the condition for a cubic Bézier curve segment to have a-cusp,
following the same method as in Sect. 3.2.1. Letting:

0,—Qo=m(S—Qy)
0:—0,=n(Q5—S)

the derivative of the Bézier curve segment is, from Eq. (5.12):

%
P (1) — 242 m(§— Qo)+ Qo
P(y=[3t*> 2t 1 0] My n(S—0)+0, | (5.18)

9,
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Q-

Q
Q

(d) (e)

Fig. 54. Cubic Bézier curve segments

Since the shape of a Bézier curve segment is invariant under coordinate
transformation, let us take the origin at Q, and the positive x-axis in the
Q,— Qj; direction. From the above equation we have:

Qo=[00], §=[S; 5,1, @s=[C0].

Then (5.18) becomes:

1 3-3 1 0 0

. - - s s
PO=3[2:1]| 2-4 2 o0 " <

11 0 o nS,+(1—-nC nS,

C 0
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3m—n)S,+(3n—-2)C 3(m—n)S,
=3[t 1] | 2(n—-2mS,+2(1—n)C 2(n—2m)S, |. (5.19)
mS, mS,
To find the cusp, set P(t)=0. Then:

[Bm—n)t2+2(n—2m)t+m]S,+[Bn—2)t*+2(1—n)t]C=0

[3m—n)t>+2(m—2m)t+m]S,=0 } 620

Solving these equations gives:

4 4\ 4
(mfg) (n— 3): . (521)

When m and n have values that satisfy Eq. (5.21), the cubic Bézier curve
segment has a cusp and the parameter has the value:
_2m-1)
T 3n—2

(5.22)

If we take m=n, when m=n=2 the cusp occurs at t =4 (Fig. 5.4(d)).
A loop occurs in the curve when:

(=3 =3)>5
m—? nfg >§. (5.23)

Representation of a Straight Line

Let us modify a cubic Bézier curve segment as follows:

P(t)=(1-1PQy+3t(1-0)2Q, +32(1 - 1) 0, + 1305
=(Q3—Qo+30:-30,)° +3(Qy =20, + 0,)* +3(Q, — Q)1+ Q.

(5.24)
The condition for the ¢ and t? terms to vanish is:
0;—0,+30,-30,=0 (5.25)
0—20,+0,=0. (5.26)
Using Eq. (5.26), (5.25) becomes:
0,—20,+0;=0. (5.27)

Equations (5.26) and (5.27) are also the conditions for the 2nd derivative
vector to be 0 at the start and end points of the curve (refer to Eq. (5.15)).
From Egs. (5.26) and (5.27) we have:
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0, 2QO3+Q3
_9D0+20;
&="5

Substituting these relations into Eq. (5.24), the Bézier curve segment becomes:
P)=(1-1)Q+10,
so that the curve degenerates to the line segment joining Q, and Q5 (Fig. 5.5).

Approximate Representation of a Circle

Consider an approximate representation of the first quadrant of a circle of
unit radius by a cubic Bézier curve segment (Fig. 5.6).
If we specify the condition that at ¢t =} the curve passes through the point

(2, 1/)/2):

1 1 3 3 1
P<a’> :*8' Qn+§ () +§ Qz +§ Qs

i
SO0 [ K+ Tk 1T+ [0 1]= [ ]
V2 y2

then, solving the above equation, we have:

k= : (/2-1). (5.28)

Q & Q, Q,

—Qu+-L (Qq--
@=0ot-5 (@ Fig.5.5. Expression of a line segment as
Qz:Qu*’%(Qr Qo) Bézier curve segment

Q,=[01 Q= k1]

Fig, 5.6. Approximate expression of a

z
0 A P
Q- [10] j-circle by a Bézier curve segment
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Q= 0+,(01-Q0)
Q1=Q1+1,(Q:— Q)
QY= Qu-+£,(Qs— )
Q=01 -1,(Q1"— Q8
Q= QI £.(QY— QI
Q= QP 1 1.(Q— Q)

Fig. 5.7. Graphical method of determining a point on a curve corresponding to t=1

In this case, the maximum deviation from a true circle is +0.027% (refer to
Table 3.2).
Determination of a Point on a Curve
Let the points on the 3 sides of the curve defining polygon which divide those
sides in the ratio t,: 1 —t, be QL) Q' and Q' (Fig. 5.7):
O =(1-1) Qo +1,0,
o=(1-1)0,+1,0, | . (529
O=(1-1)Q,+1,04
Next, let Q) and Q'?! be 2 points on sides of the polygon Q4'), Q!!!, Qi! that
divide those sides in the ratio t,: 1 —t,:
O =(1-1) @+ 1,01 =(1—1)* Qo +2(1 - 1) 1,0, +17Q,
O =(1—1) Q1" +1,08 =(1—1)*Q, +2(1 - 1) 1,0, +1] 05

Finally, let lel be the point on the line segment Q}), Q'? that divide that
line segment in the ratio t;:1—t,:

}. (5.30)

0P =(1-1,) 08 +1,00. (5:31)
Substituting relations (5.30) into (5.31) gives:

OF =(1—1t,)° Qo +3(1—1,)* 1,0, +3(1 =) 12 Q, + 17 Q5
=P(t,) (532
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which is the point on the curve at which ¢t=t,. The point on the curve where
t=t, can be found graphically by performing the following process: divide
each side of the given polygon in the ratio of t,: 1 —t,. Connect the generated
points and make a new polygon. Repeat the above process for the new
polygon until the polygon becomes a line segment. Divide the line segment in
the ratio t,: 1 —t,. Then the generated point is what we want to find.

Let us look at the vector Q11— Q). From Eq. (5.30), we have:

Q
0P — QR =[124+2t,—1 312 —41,+1 —312+21, t2] g‘
2
0;
1 3-3 17[Q
1 3-6 3 0|]|0,
=—[3:22t, 10
3 B 28 ]73300Q2
1t 0o 0 offo,
1,
=—P(,). (5.33)

That is, among the polygons that are generated in sequence to find a point on
the curve, the last line segment coincides with the tangent to the curve at the
point P(t,) being found.

Partitioning

Consider the problem of dividing a cubic Bézier curve segment P(t) at point
t=t, into two Bézier curve segments P, (u) (0<u<1) and P,(u) (0<u<1) (Fig.
5.8).

P0)=(1-1*Qu+3(1-1)*1Q, +3(1-1)1* @, +1° Q4
[
=[3 2t 11 M, g‘ (0t

2

9,

=0 Fig. 5.8. Partitioning of a Bézier curve segment
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Making the parameter transformation u=t/t, in the above equations, the part

of the curve segment P(t) in the range 0<t=t, is now expressed as P, (u) in
the parameter range 0<u=<1:

P (uw)=[t3u® t2u? tu 1] My

O""OO'—\

2 0 0 Q,
0 2 0 0
=[u® u?ul s My | S 5.34
L w1 0 o|Me | g, (5.34)
0 0 1 0,
Since:
2 0 00 1 0 0 0
0 t2 00 1—t 0 0
. Moo M s s
0 0 ¢, O 2 7Fl(1—1)* 2(1—ty)t, 12 0
0 0 01 (1—t)® 3(1—t)*t, 3(1—t)t? 3

then (modifying so that the first matrix on the right side becomes My):

1 0 0 07 [Q
1—t, tg 0 0 [
Piw)=[u® u® u 11M, U 201t 2 0 Q:

[(1=1)* 30—ty 3(1~1)t} ¢ | | Oy

0,
32 (1- t)Qo+tsQ1
=0t u 113 (=120 +2(1~1)1,0, +120;
(-ry O 31— 60 4301 020,
0,
— 3 2 Q}),]
=0 1My | o (5.35)
oy
where:
O41=(1-1)Qy+1,0,. 52':(1‘ts)on+2(1—t,)tsQ,+t3Qz} 536
051 =(1-1)°Qy +3(1—171,0, +3(1 - 1)1 Qs+ Qs - 69
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From these equations, the vertex vectors of the curve defining polygon which
expresses the part of the curve in the range 0= =<t coincide with the vectors
Q,, OM, O and QO found in the process of graphically determining the
point t=t, on the curve (refer to Egs. (5.29), (5.30) and (5.32)).

Next, find an expression P, () which expresses the part of the curve P(f) in
the range t,<t<1 in the parameter range 0<u<1. To do this we perform the
parameter transformation:

r—t,
u=
1—t,

s

Substituting this into the formula for P(t) gives:

Q
Pa ==tk (-t 1? (=t 11, |
2
05
(1—ty)? 0 0 0 Q
31—ttty (1—t,)? 0 0 0,
[ w1 s M, 537
w0 0e 20—, 1-1 0|0, (537
£ 2 t 1 (43
Since:
(L=t 0 0 0
3=t (I—1)2 0 0
2 My
31—ty 2(1—t), 1—t, 0
I t2 [ |
(1=t 3(—t) e, 3(01—)e &}
B 0 (At 2(—t)r, @2
=M 0 0 1—t, I3
0 0 0 1

then (modifying so that the first matrix on the right side becomes My):

(=6 30—t 3(1—t)el [ Qo
0 (-t 20—ty 2|0

P,wy=[u® v* u 11 M, B e =
) =[w’ u* u 1] My 0 0 1—t, . |1o,

0 0 0 1{o,
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[(1=2)° Qo +3(1— 1, 1,0, +3(1 1)1} 0, +1] Qs
(1=t @, +2(1—1t,)1t,0,+17 Qs

=L L My (1= Qs +1,0;

L 05
(Q})”
[2]
=0l o u 1] My g;” (5.38)
| Os
where:
Q<[y3]= 11—t 3Q0+3(1* 2tQ1+3( - )t3Q2+t53Q3 } 539
QP = (1=0,2 0, +2(1— ()10, 4205, O =(1-)Q, 41,0, | )

From these equations, we find that the vertex vectors of the curve defining
polygon which expresses the part of the cubic Bézier curve segment P(t) in the
range t,<t<1 coincide with the vectors @, Q¥ Q! and @, found in the
process of graphically determining the point t=t¢; on the curve (refer to Eqs.
(5.29), (5.30) and (5.32)).

5.1.3 Bézier Curve Segments

In Sect. 5.1.1, we derived a curve formula defined only by position vectors in
order to solve some problems in the controllability of a Hermite-interpolated
curve. Looking at the blending function X, (r), X, (¢), X,(t), X5(¢) of this curve

formula, we see that these are just the terms of the binomial expansion
[(1—t)+£]>. That is to say, the newly derived curve is expressed as:

PO)- ¥ X000,
=3 (Fa-oe,

If we replace 3 by n, we obtain the more general curve formula:
- P
PO=Y () a-irg

=¥ 800 (540)

where:

B,,(1)= (';) L=y e (5.41)



The B, ,(t) expresses the terms of the expansion [(1—t)+t]" This generalized
curve formula (5.40) was proposed by P.Bézier, so it is called a Bézier curve
segment. B;,(t) is a Bernstein basis function. The Bézier curve segment for the
case n=28 is shown in Fig. 5.9. Figures 5.10 through 5.20 show other examples
of Bézier curve segments.

In a Bézier curve, note that if we take n=2 we obtain a parabola:

P()=(1—1)*Qo+2(1—0)tQ, +1*Q,.

Refer to Sect. 7.3 for more details on parabolas.

Qs

504 Q2

oo 50 100
BEZIER CURVE

Fig.5.9. A Bézier curve segment (1)

BEZIER CURVE

J

100. 00

60.00 80.00
L | L |

40. 00

)
¢

20.00
I

0. 00

T T T T T T T T T ]
0.00 20.00 40.00 60. 00 80.00 100. 00

Fig.5.10. A Bézier curve segment (2)



184 5. The Bernstein Approximation

BEZIER CURVE

100- 00

L

L EU-‘UO B0. GO

0
1

40.00

L

20-‘00

0.00

T T T T T T T T T T ]
0.00 20.00 40.00 60. 00 80.00 100. 00

Fig.5.11. A Bézier curve segment (3)

BEZIER CURVE

100. 00

B0.00
| L

60. 00

40.00

L

20. 00

0. 00

T T T T T T T T T T
0.00 20. 00 40.00 60.00 B80.00 100.00

Fig. 5.12. A Bézier curve segment (4)



185

5.1 Curves

BEZIER CURVE

100. 00

80. 00

40.00

00001

60. 00

20. 00

0.00

Fig.5.13. A Bézier curve segment (5)

BEZIER CURYE

00001

1
100. 00

T

80. 00

T

T

20.00

60. 00

u0. 00

00

Fig. 5.14. A Bézier curve segment (6)
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©
%

BEZIER CURVE

T T T T T
60.00 80. 00

u0.00

00-001

0008

00"09

T

0001

]
100. 00

20. 00

00

Fig. 5.15. A Bézier curve segment (7)

BEZIER CURVE

T T T T
60.00 80.00 100. 00

T T T
40. 00

20.00

00°001

0008

00-09

00-0n

00-02

T

00°0

0.00

Fig. 5.16. A Bézier curve segment (8)
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BEZIER CURVE

T T T ]
80.00 100. 00

60. 00

—
u0.00

=

=

20.00

0o

T T T

00°08 | 00°09 ' o00-on | 0002

000

Fig.5.17. A Bézier curve segment (9)

BEZIER CURVE

T T T T T T T T T
20.00 40. 00 80. 00 80.00 100. 00

T

00 A_cn_

T T T T T T T T
00°08 00°09 00°0h 00°-02

00°0

00

Fig. 5.18. A Bézier curve segment (10)
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BEZIER CURVE

F T T T T T T T 1
0.00 20.00 u0.00 60. 00 80.00 100. 00

Fig. 5.19. A Bézier curve segment (11)

BEZIER CURVE

Bﬂ<l00 . 109-00

60~‘00

L

40.00

|

20. 00

0.00

T T T T T T T T T T
0.00 20.00 40.00 60. 00 80. 00 100. 00

Fig.5.20. A Bézier curve segment (12)
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5.1.4 Properties of the Bernstein Basis Function and Bernstein Polynomial

A Bézier curve is based on a Bernstein polynomial approximation. An n-th
order Bernstein polynomial is given by:

Bxin= 3 81 (542

where f(x) (x € [0,1]) is an arbitrary function.
Following are some important properties of Bernstein polynomials and
Bernstein basis functions.

® For xe[0,1]:

B ()20 (i=0,1,...,n)
B,(x)<1 (i=1,2,...,n=1) ¢~ (543)
B,.(x)<1 (i=0,n)

Moreover:

Byu(0)=1, By,(1)=0, B,,0)=0, B,,()=1. (5:44)

Bsg(z) Big(z) Bsstx)
/ J

0

Fig.5.21. The Bernstein basis function B, ,(x) (n=8)
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From the above relations, in general the Bernstein polynomial approxim-
ation can be used to interpolate between f(0) and f(1). A graph of the Bernstein
basis function B ,(x) for the case n=38 is shown in Fig. 5.21.

@ The derivatives of a Bernstein polynomial at x=0 and x=1 are given by the
following formulas respectively:

at x=0:
Ly ‘ Ll 1"!(’) (’) 545
e n(X,f)x:O—W!;\—) i f " (5.45)
at x=1:

T s
dx" alX>

! r —j
et el (E) e

From the above relations, the i-th derivative at one of the ends is deter-
mined by the value of f(x) at the end and the i neighboring f(x) values.
In particular, the Ist derivatives are given by:

- (f ( ! ) —f«») (547

Lonn| =nfro—(1) (549
X x=1 n

d
4y Besf)

From the above formulas, we see that the Bernstein polynomial functions at
both ends are tangent to the straight lines joining the function values at the end
points and at the neighboring interior points f(1/n) and f{(n—1)/n).

® Y B.w=Y ('f)(lfx)"*‘x‘
=0

' =o \ 1
=[(1-x)+x]"
=1. (5.49)

That is, the Cauchy relation holds.

® The maximum value of B, ,(x) occurs at x=i/n (i# 0, n), and its magnitude

is:
na(5)= (1) 530
n 11 n
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1

By

B,

Balx . /)= 5 (x4

By(x, f)= ;—x»f:!xz r%r’*%'
Bio(a . f)=3x—30x3+105x' — 189x5 4 210¢® Fig. 5.22. Approximation of a function
- 16027+ 90x8— 352% | 6x10 by Bernstein polynomials'®

® Theorem 5.1'°:2%, f(x) is a bounded function on x € [0, 1]. At every point in
x €[0,1] at which f(x) is continuous, the following relation holds (refer to Fig.
5.22):

lim B,(x;f)=f(x). (5.51)
® Theorem 5.2'%2%, Let f(x) be between a, and f,:

G<fOX)<B xe[0,1] (=0,1,....n). (5.52)

Then the i-th derivative of its n-th order Bernstein polynomial satisfies the
following inequalities:

in the case i=0: oo < B,(x; /)< Po (5.53)

n
in th 1Sign: 4<———— — BY(x;f)<B:. 5.54
in the case 1Si<n: o S D) =i+l B (x;f)<B; (5.54)

What this theorem means is that for i=0, the Bernstein polynomial has values
lying between the same maximum and minimum as those of f(x) on x € [0,1].
In general, if f®>0 then BY(x;f)=0. Consequently, for i=1, if f(x) is
monotonic B,(x;f) is also monotonic. For i=2, if f(x) is convex (or concave)
then B,(x;f) is also convex (or concave). That is, the Bernstein polynomial
approximation expresses the overall form of f(x) very well.

@ (Linearity). For arbitrary real numbers o and 3, we have:

B, (x; af + fg)=aB,(x; f)+fB,(x; g). (5.55)
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(Bernstein approximation of linear functions)?".

B,(x;a+bx)=a+bx. (5.56)
The Bernstein approximation of a linear function is the linear function itself.

® (Theorem 5.3: Variation diminishing property)®"). If f is a real-valued func-
tion defined in the interval [0,1], we have:

Z (B0 f)Sv(f). (5.57)

0<x<1

Here the left-hand side is the number of zeros of B,(x;f) in x € (0,1); the right-
hand side is the number of sign changes of f(x) in x € [0,1].

Proof: In the Bernstein polynomial B,(x;f), setting z=x/(1 —x) gives:

)0

so that we now have a polynomial in z in the range 0 <z < oo corresponding to
0<x<1. Using Descartes’ law of signs* we obtain:

2 mesn= 2 [$6(0)(0) = (7) ()]
:v[f(%)] <o(f). (558)

Since we also have the relation:

By(xif) _
(l—xy

M=

v(B.(x; /NS Z(B,(x; /)
from this theorem the following inequality holds:
v(By(xsf) s o(f). (5.59)
From properties @ and ® of a Bernstein polynomial, it follows that:

Bu(x;f(x)—a—bx)=B,(x;f)—a—bx.

* The number of positive roots of an n-th order real polynomal
fx)=a,x"+a,_,x" "+ . +a,

1s an even number less than the number of sign changes of its coefficients a,, @,_,, . a,. “Even number”
means ( or a positive even number, and a root of multiphcity k 15 counted as k roots This 1s called
Descartes’ law of signs.



5.1 Curves 193
Applying relation (5.59) to f(x)—a—bx, the following relation is obtained:
v[Bu(x;f)—a—bx] Se[f(x)—a—bx]. (5.60)
The geometrical significance of inequality (5.60) is that the number of
intersections of y=ax+b with y=B,(x;f) does not exceed the number of
intersections of y=ax+b with y=f(x). This property is called the variation
diminishing property of a Bernstein polynomial. That is to say, if a Bernstein
approximation is applied to a certain function a smoothing effect is obtained. If
the Bernstein approximation is applied repeatedly, the smoothing effect is

repeated, until, in the limiting case of an infinite number of repetitions, the
function reduces to the straight line joining f(0) and f(1).

5.1.5 Various Representations for Bézier Curve Segments
Let us try to express a Bézier curve segment by a formula other than (5.40).

@ First, let us express it as a sum of powers of t.
n [ o

)= Z ( ) —ty ' Q,

o(1) ()i

=0

n) nf( > 1y
j-0
LI n\{n—

_ Poies
,;)z. ‘( (s l)

-5, f‘[,.;(f”‘*’@( )QJ- o)

@ Next, let us try to use an operator to express the Bézier curve segment.
First, introduce the shift operator E to @y, @, ..., Q, of the curve defining
polygon??):

0.=EQ,_,. (5.62)
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From this we have:

0= EIQO' (5.63)

Substituting this relation into (5.40), we obtain:

Pi)=Y ('l.')(l—z)""'r"E‘Qo [Z( ) y- ’tE)'JQ
i=0 =
=(1—t+tE)y'Q,. (5.64)

Next, use the forward difference operator A to express the Bézier curve
scgment. From the definition of the forward difference operator, we have:

40,=0,:1— 0.
From Egq. (5.62), we have:

40,=EQ—Q,=(E-1)0;
. A=E—1. (5.65)

From this equation, E =4+ 1. Substituting this into (5.64) gives:
Pt)=[1-t+t(4+1)]"Qy=(1 +14)"Q,

n .
( . ) (t4Y Qo
o \ i

(7) 14'Q,. (5.66)

I
M=

v

Il
M=

1=0

This finite difference expression (5.66) of a Bézier curve segment can also be
found immediately from (5.61) as follows. When a sequence of vectors Q,, Q,,
Q,, ... is given, the differences of different orders at Q, are:

AQk Qk{l Qk

AZQk:AQk+l_AQk
=02 Qi 1—(Qus1— Q)
=0+2-20 1+ O

Ast:Asz“*AZQk
=03 202+ Qi1 — (s 2201 + Q)
=Qk43_3Qk+2+3Qk+l_Qk

= 2 (_1 ( )Qk+]

J=0
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Therefore, in general the i-th order finite difference is:
r Y i— l
2Q=3 (=7 | Qs (5.67)
J=0 J
In particular, if k=0 we have:
v : = l
AQo=3 (=1} ] @ (5:68)
J=0 ]
Then, from Eq. (5.61):

PO=Y ¢y (—U**J('f) (f)QJ

S S i/ \j
=50 LEer()e)
-1 (0)raer

® Next, consider expressing a Bézier curve segment as a product of power-of-t
basis vectors?®:

Q
P(t)=[Bo,(t) Bi,(t) - Bualt)) Qf
2.
9
=0t Lt 118 Qf (5.69)
2.

and find the (n+ 1) x (n+ 1) matrix f§ for this expression to hold. fi is the matrix
that transforms power basis vectors to Bernstein basis vectors. Using Eq. (5.61),
we obtain:

PH)=Y t‘j:i.o(—l)i'j(g(l:) 9=

i=0 J
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196
I L o\ (n ]
/;0(71) (")(j)Q]
nt o m n—1
()07 )e
=[] :
L n 1
Nty
L= ()()e
_ne-if 0)
| e (Q)0)e
,[tntr1 1

-1 E';)(;) (—l)(f)(:) . |

(5.70)

The matrix f is:
p=0b;1};-0 (5.71)

where:

(- l)"*""( § ) ("f’) O<i+j<n)
b= neA (572)
i :

0 (otherwise)

@ The following simple relationship exists among Bernstein basis functions:

B, 1,1 () +(1=1) By, 1 )

=t <f71> =ty =14 (1—t) (’fl)(liﬂr—l—irl
i—1 i

Ao
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_ r=1n! (r—1 i
7]:(1—1) (r—l) +1(r—1 1)'}(1 oyt

r! r=1 4
:w 1=yt
=B,,(1)
which implies:
B (t)=1B,_ ,—1()+(1—1) B, 1 (1) (5.73)
=B, (t)B,_;,-(t)+ By (t)B, ,_(t) (5.74)

(1<r<n; 0ZiZy).
We also have:
B_,,1(t)=B,,,()=0. (5.75)

This relation is shown in Fig. 5.23. As is clear from the figure, the n-th degree
Bernstein basis function B, ,(t) can be expressed in terms of the (n— 1)-st degree
Bernstein basis function B,_, ,_,(t) and B, ,_,(t). Similarly, the (n—I)-st degree
Bernstein basis functions can be expressed in terms of (n —2)-nd degree Bernstein
basis functions. In general, an n-th degree Bernstein basis function can be
expressed in terms of (n—k)-th degree Bernstein basis functions. If this relation
among Bernstein basis functions is applied to Bézier curves, an n-th degree
Bézier curve segment can be expressed in terms of (n—k)-th degree Bernstein
basis functions:

\ /lft
(Bi1) (Bo1)

6(1—1)%12 41— i
(B24) (Bay) {Biy)

Fig. 5.23. Relation among Bernstein basis functions
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PO=" B, QM) (5.76)
i=0
where:
k
oM(t)= ). B Q.+ (5.77)
j=0

As an example, consider such an expression of a Bézier curve segment for the
case n=4.

I’(t)= Bo,4 Qo+ 31.4 Q1 +Bz,¢ Q2+B3.¢ Q3+B4,¢ Q4

=Bo,1Bo3Q0+(By.1Bos+Bo By 3) Q1 +(By By 3+Bo,1B,3) 0,
+(By1Ba 3+ By 1 B33) Q3+ By 1By 30,

=By 3(Bo,1 Qo+ B, 10:)+ B, ,3(Bo,1 Q1+ By,10Q,)+ B, 5(By,1 @,
+B,,1Q3)+ B3 3(Bo,1 Q3+ B, 1 Q4)
a1 1

= Z Bi,4—1(2 B[.l .'+,'>
=0 j=o

=Bo,1Bo.2(Bo,1 Qo+ B1.101)+(B1,1Bo 2+ Bo.1 By ,2) (Bo, 1 @1+ By1.103)
+(By,1B1,,+Bo,1Bs,5) (Bo,1Q>+ B, 1 Q3)
+By,1B,5(Bo1 Q3+ By, Q4)

=Bo.z(Bé‘1Q0+Bo.1Bl,1Q1+Bo,1BmQ1+Blz.1Q2)
+B,2(B5.1Q1+Bo.1B1,1Q>+Bo 1 By, 0, + B 1 Q3)
+B;2(B3,Q2+Bo,1B1,1Q3+ By 1 B 1 Q3+ B 1 Q)

=Bo2(Bo.2Q0+B120:+B,,0,)
+B,3(By2Q1+B,:0,+B,,03)+B, (B ,Q,+ B, ,0;+B,,0,)

n—k K
= Z B.,n—k(ﬂ(Z Bj.k(t)Qi+j) (n=4, k=2)
i=o0 ;=0

5.1.6 Derivative Vectors of Bézier Curve Segments

The r-th derivative vector of a Bézier curve segment can be expressed in terms
of finite differences as:

e "N B oar 578
aur (@ _(”;ng‘o - (0470 (5.78)

The derivative vectors at the ends t=0 and t=1 are:
n!

[ 40 (579)

dr !
=0: - =
att i P(0) (n—n)!
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dr
att=1: — P()=
ate=1: o P()= (n o

40, (5.80)

From Egq. (5.79), the r-th derivative vector at t=0 is determined in terms of
the (r +1) position vectors Qq, @y, ..., Q,. Similarly, from Eq. (5.80) the r-th
derivative vector at t=1 is determined in terms of the (r+1) position vectors
Qirs Qurirs s Qo

In particular, in the case r=1, that is, the case of the tangent vectors, we
have:

att=0: P(0)=n(Q,—0Q,) (5.81)
atr=1: P(1)=n(Q,— 0, ). (5.82)
. . P . . . >
The slope of the curve at the starting point is in the direction of side Q,Q;;
——
the slope at the end point is in the direction of side Q,-,Q,.
In the case r=2, the equations become as follows.

att=0:  BO)=n(n—1)(0,—20, + Q) (5.83)

att=1:  P()=n(n—1)(0,—20,_1+0,_,) (5.84)

5.1.7 Determination of a Point on a Curve Segment by Linear Operations

Applying relation (5.73) to Eq. (5.77) and rearranging, we obtain:
k
oM ()= Z B (t)Q;+;

=Z tB, 1,k— 1(‘) (1_t)B/k 1()}Q.+,

=0

=
=

=t Y Bjo1x-1(6) Qs +(1-1) Z B,y 1(t) Qi

=0

x.\
._o

k-1
=t Z k=1 )Q:+,+1+(1“t Z ok~ 1(3 Q.+,
i=o0 i=0

(- B*l,k*l(t):Bk.kfl(t)=0)
=108+ (1 1) @ 1),

This implies that the following relation holds:

OM(0) = (1 -0 @~ (0 + 1@ 1(). (585)
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Setting k=n and i=0 in Eq. (5.77) gives:

0P (=¥ B0, = P(). (5.86)
j=0
Also, setting k=0 in Eq. (5.77) gives:
0
ilo](t) = Z Bj,o(t)Qi+[ =0, (i=01..,n. (5.87)
J=0

Using the above relations, a point on the curve P(t) can be found by repeating
simple calculations. This algorithm is as follows.

Algorithm
We are to find a point P(t,) on a curve where the parameter takes the value
t=t, (refer to Fig. 5.24).

1-1
o

I mmme e QG )= QI (1) —Qp M (1)
QY (1) QL (1) e QY (1)@ 2 (1> Q7 * (1) (1)

Fig. 5.24. Determination of a point on a Bézier curve segment by linear calculations

Step 1:
09)=0, (i=0,1,...,n). (588)

Step 2:
Repeatedly apply:

OM(e) =(1—1) O () +£, 0871 (t) (5.89)
for k=1,2,...,n, to find:

o' (¢,) = P(t,). (5.90)



This algorithm can be easily carried out graphically. First draw the curve
defining polygon with vertices Q!°'(t)=Q, (i=0, 1, n). Next, find the points
which divide the polygon sides in the ratio t,: 1~ts, call those points Q''(t,)
(i=0, 1, ..., n—1). These new points form a new polygon. Again find the points
Q}zl(ts) (i=0, ..., n—2) which divide the sides of this new polygon in the ratio

:1—t,. Again a new polygon is formed. Finally, when the new polygon
reduces to the line segment joining Q[" (t,) and Q% ')(,), find the point

[(¢,) that divides this line segment in the ratlo ty:1—1tg; it is the point P(t,)
(refer to Fig. 5.25).

o (-0

Fig. 5.25. Determination of the point P(4) (Example 5.1)

Let us take a closer look at the vector QY 'l(r,)— Q4 ~')(t,). Setting
k=n—1and i=0,1 in Eq. (5.77) we obtain the following.

00 e — 0, z AT - ZB,-,n,,(zS)Q,
=Y Bt )(©@,01-0)
j=0
1[ > #2140,
“a L 5, B 0190
1 .
=— P (591)

That is, among the polygons which are generated in sequence in order to find a
point on a curve, the final line segment coincides with the tangent at the point
P(t,) that is being found.
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d 1
Example 5.1. On the Bézier curve P(t)= Y B, ,(t)Q,, find the point P <§>

using the above algorithm. i=0

Solution

Taking k=1, {)‘](%) }”(%), “’( ) Q“’( )become:
oG5

Q0+ 2,

Sl
1 1 1
%‘”(s)u 0

0, + [

o=

o
+
L°

| |
w\m w1 w\w w| w\w Wl w\m Wl
0
+
?Q
-

w\»—

) o (%), o (%) become:
[1](3) 7Q[1]( )

Qo+ Q1> (§ Q1+% Qz)

Taking k=2, Q[Z](

)
3

(Q/\om

[SENVINS w\m w] o

4 1
3 Q1+§ Q,

t (1
vor(s)ere()

_2(2 1 ) 1(2 1 )ﬁ
=3 §Q1+?Q2 3 ?Qz‘*'?Qa =

)
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Q+ Q2+ 0

o

esla)ifiote

af 1
o (%)

~o|.|; .d‘l\.) .p\w xo\-la

Q+ Qi+ Q4

1 1
Taking k=3, @} (3—), o (—3) become:

()l sery
2 4 1
§< Qo+ 0 +4 Qz) (9' 0, Jr; Qz*g Qs)

Oty Ot a0t 0,
'() l“(l)

Q|+ Oty Qs) ( Qz+ O+ Q4>

oo u\n\) wi w

Q[ﬁl(§)

Am

=57 0+ Q2+ Q3+ Q4

1
Finally, taking k=4, Q[“'( ) (=P<%)> becomes:

1 2 1 1 1
o(3)-3 53]<3>+3 o (?>

-3 ;o)
QoJr QI EQs

(8, 12, 6 +1Q)
Tl Gty Qt gy Gty &

1
=—1(16Q0+32Q,+24Q2+8Q3+Q4).

203
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. 1. - .
As a trial, take n=4 and t:? in the Bézier curve formula, giving:

1y & (4 RS
Pl )= -] |-
()5 005 G)e
1
=3 (160,+320,+240,+805+ Q.).

, 1 1 A . . .

This confirms that Q§ <7> = P(;) The graphical solution of this example is
shown in Fig. 5.25.

5.1.8 Increase of the Degree of a Bézier Curve Segment

Consider the problem of formally increasing the degree of a Bézier curve
segment without changing its shape. As an example suppose that we want to
express a cubic Bézier curve segment by a quartic formula.

Let Q3, @3, Q3 and Q3 be the curve defining vectors of the cubic Bézier
curve segment P;(t), and @3, QF, 03, Q3 and Qf the curve defining vectors of
the quartic Bézier curve segment P, (t).

Transform the cubic Bézier curve segment as follows.

2
_ 0}
Py(t)=[Bo 3(t) By 3(t) By5(t) Bys(1)] 0
2
03
-1 3-3 11[@
3-6 3 0|0}
=[*t1 !
L ] -3 3 0 0@
1 0 0 of|@}
0 0 0 0 N
-1 3-3 1|2
=21l 3-6 3 0 ,
-3 3 0 of|72
1 0 0 0 3
23
3
=[* 3 2t 1] M, Q; .
(4

03
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The quartic Bézier curve segment P, (t) becomes:

P,(t)=[Bo4(t) Bia(t) Bya(t) B3alt) Baa(0] | Q3

1 —4 6 -4 17[02
-4 12-12 4 of|g
=[t*e2e1]| 6—-12 6 0 0 o
-4 4 0 0 of|o¢
1 0o o o0 offe:
(154
ot
=[* 2t 11M, |05
o3
i

The condition for P,(t) and P,(¢) to be identically equal is:

. 0
L 3
M, |0 |=M,["1] (592)
4 2
3 3
0 &

Multiplying both sides of the above equation by M; ' from the left gives:
o

0 o
1 3
Q; = M;lMa 13 =
QA 2

y 0

0:
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(0 0 0 0 1
1
0O 0 0 7 1 o 0 0 O 3
-1 3 -3 t|[=5
=10 0 1 1 1 3 -6 3 0 13
1 i’ § 3 3 0 of|=
2oL 2y 1 0 0 o=
0 4 2 4
t 1 1 1 1]
(1 0 0 O]
1 3 0 0
4 4 3
I ?
=fo 5 5 0 | (593)
2
3 1|Le3
0 - =
0 4 4
10 0 0 1]
Expanding this matrix expression, we obtain:
4 3 1 3
;=05 i(oQ 1+4-03)
1 3 1
Qi=, 03+, Q1= (11Q3+3-0))
IO 1
Q=5 0i+5 0=, @ 0l+2 0 | (594)
3 1 1
Q1= Qi+, B=7 (-0l +1:0)
1
0i=03 =, (403+0:0)

This relation is shown in Fig. 5.26.

In general, when an n-th degree Bézier curve segment is rewritten in an
(n+ 1)-st degree format, the expressions of the curve defining vectors can be
predicted from the right-hand side of Eq. (5.94). We will derive these relations

-3 (?)(Ift)”"t‘QfE



207

5.1 Curves

QA=qf

Q- Q
Fig. 5.26. Formal increase of the degree of a cubic Bézier curve segment (to quartic)

( ) 1—t)~ ‘tQ":| [(1—t)+1]
i=0

b
=i (’Z) (l—t)"""“tlQ?fi (:’) (1—ty e+ Q.

(595)

The first term of this expression can be expanded as follows

5 <?>(171)H+,t,Q[p

i=0
n 14n n n n+1 "
+(n>(1—t) t Qﬁ(HI)(H)% (1

=nZ (}:) (I_Z),H[fitiQinA

i=0

Similarly, the second term can be expanded as

(:’) L=ty i
+("> (=001 =
n

I

) z)"“t"Qg+...+(Z>(1—:)‘t"Q;,‘

(M)

<o o=

M=

0

i

n nel n
=(0)<1—t) 005+
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:<1’1>(1 n+1t0in+< )(1_t)ntlQn

<n> 0n+l
w0 )a-nereigr
5,1 ),

Therefore, Eq. (5.95) becomes:

PO=Y (7)(1*1)"““t"Q.-”+"; (if1><1—t>"*"‘r"Q.t.

(5.96)
nln+1 .
Per0= 3, (" ) i gre (597)
For all ¢ in the range 0=<t=<1 we must have:

P,0)=P,. (1)

which gives:

S, )o@ Jamre=o
; (2!) Q'”(:l) Q'"*l*(n?) Q"' =0.

This equation can be rewritten as:

Py |:Q, 1+ ( n+171)Q,] (5.98)

(i=0,1,..., n+1).

Qn+l
1

Here 0", and Qj,, are undefined, but their coefficients are 0, so they are
irrelevant in calculating Q"**.

Next, in the case of changing from an expression in terms of QF to one in
terms of QF*¥, let us focus on the expression for Q"**, Using Eq. (5.98) gives:

+1_ 1 n n
[24 l—nﬁ(Qo+"Q|)

e IO ) Q]
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1
e |:Q0+ n+1) ——- Q0+nQ1:|
) (206 +nQs).

Continuing this same procedure gives:

k= n+k (kQ5+nQy). (5.99)

Of course we have:
5t =05 (5.100)

5.1.9 Partitioning of a Bézier Curve Segment

By a method to that used to divide a cubic Bézier curve segment (refer to Sect.
5.1.2), an n-th degree Bézier curve segment P(t) can be divided at point t=t,
into two Bézier curve segments P, (1) (0<u<1) and P,(u) (0<u<1). Equation
(5.69) is used for P(t). Performing the parameter transformation u=t/t, in Eq.
(5.69) gives:

Q
P = et 11| 2
0,
# 0 .. 07 [Q
_ 0 it 0,
R 1 s :
[u" u wil|D Lo Bl
0 0 1 0,
Since:
[ts .. 0
(N 5
: 0
K t
[ 1 0 0 0
1—t, t 0
—pld=t?  20-n) 2 0 0
n . n oy
— ‘" _ ‘n 17 ) . n
|1 t,) (1)(1 )" <2>( 1) 24 ¢
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we obtain®:

P (w)y=[u" u

n—1

=[u" u

where:

o= (1-1)"Qo+

i()l
§ B

n—1

5. The Bernstein Approximation

w1l
0 0 o 0][g,
t 0 o ollo,
010

2(1—t,)t, 2

(Y)(h@rm (;>(1—t5)"*2r: . l]e,

Cu1]p

Qo
(1—1t) Qo +1,04
(1) Qo +2(1—1)t,0, +17Q,

(1-t)"Qo+ ( )(l—f) 1,0+ ( )171)” M0+ +1Q,
L

o

o

w116 g (5.101)

o

( )(l*r 0+ ( )(l-t)* A CE Rt J 0}
7t)’( JIJQ

(0<k<n). (5.102)

* Thus could perhaps be anticipated from the n=3 case discussed 1n Sect. 51.2
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The vertex vectors for the curve defining polygon in the range 0=t <t agree
with the vectors QF), O, O, ..., O found in the process of graphically
determining the point t=t, on the curve.

Next, to find P,(u), perform the parameter transformation u=(t—t,)/(1—t)
in equation (5.69) to give:

Qo
Py =[{1—t)utt}" {I—t)utt}™ " .. (I—t)u+tt, 1] B (‘?‘
0,
(I=ty)" 0 .. 0 0
2]
(n)(l—ts)""ts (=t)y~t .. 0 0 ’
1 B 0,
[ ut u ]|y .
1—g)n=2¢2 : : : :
(aorse + 1| g
: : 1—t, 0
" [ t, 1
Since we also have:
(1—t)" 0 .. 0 0
n
<1>(1—tx)""ts 1=t ... 0 0
n B
1—r )= 242 : . :
(owe =
: : 1—t, O
I [ oot 1
n n
1—t)" 1— n—1 . n=2.2 n
(I—t,) (1)( )" (2)(1 )" %
=p| © (1=t ! Lot
0 0 1—t, ¢
L 0 0 0 1
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then®:

Pyw)=[u" u""'...u1]B

(L=t (”)(1—rs)"*'rx (")(1—@)”*2:,3 e | T @
1 2 ps

0 (1—t) ! et 1

0 0 1—t, Qé"

L o 0 0 1 "

=" u' . ul]p
7<17ts)"Qo+(’I><17rs>""rsQl+(;><1frs>"’2z3Qz+...+r:Qn_

(lfzs)"“Ql+("]1)(H.v)“szﬁ..,+z:"‘Qn

(1-1)Q,-,+1,0,
0,

o
Q[ln -1

=" vt .. ul]p (5.103)

o,

[0]
n

—k
Qﬁ"*”=<1—r,m**Qﬁ("1 )(HS)"*“rst+.+...+t:*an

b (”;") -ty 910, (5.104)

)=
n—

= o

B],n*k(ts)Qk+j 0= k< n).

J=0

The vertex vectors for the curve defining polygon in the range t,<t<1 agree
with the vectors Q, @V~ 1 ..., Q! found in the process of graphically
determining the point corresponding to ¢t=t, on the curve.

* This can be anticipated from the case n=3 mn Sect 51.2
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5.1.10 Connection of Bézier Curve Segments

To the Bézier curve segment:

i( )(H" itg, (Ost=1)

we wish to connect a second Bézier curve segment:

Py(t)= i( > l)"_jt]Qu,j 0=t

with continuity up to the curvature vector (refer to Fig. 5.27).
First, at the connection point, from the condition of continuity of position
we have, from (1.49):

Quo=0Om- (5.105)

The condition of continuity of slope at the connection points is expressed by
Eq. (1.50). Using (5.81) and (5.82) gives:

ll' (Qu,l _Qu.o)=”’n (Ql.migl.mfl)=t- (5.106)
oy oy

Here «;, «, are the magnitudes of the tangent vectors Pi(1) and Py(0),
respectively. Equation (5.106) requires that the 3 points Q, .1, Q.= Qo and
0y, are colinear.

nnl (@) tma
nln—1) \ay n @ aln—-1)

# (@i

Qin

f
Q2= Qi

Fig. 5.27. Connection of two Bézier curve segments with cont-
inuity up to the curvature vector. Qy,, ;, Q,,,=0, and Oy,
are colinear. @ ,-25 Qim-1s Ql,(n: Ono, Ouy and Oy, are
Qs coplanar (the condition equation is Eq. (5.108))
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The condition of continuity of curvature vectors at the connection point is
expressed by Eq. (1.52). Using Egs. (5.83) and (5.84), the 2nd derivative vectors
at the connection point are, respectively:

B()=mm—1)(Qn=20m 1+ Om2)
By ©0)=n(n— D (Qu2—20un1+Quo)-

Substituting these into Eq. (1.52) gives:
- 1) (Qll.Zilel,l + Ql[,())
2
o
=m(m-1>(j—) (@in=2Qum 1+ Qi 2) + 11— Qoo )-
1

Using Eqs. (5.105) and (5.106) to eliminate Q,, , and @y, gives:

m(m— ) %\’
[ (nfl) (9”) Q-2

2mm—1) {2,\* 2m a, m
*[ n(n—1) (7) 0w e ﬁJ Qs

mm—1) (2,\*> 2m a, m
+[whﬂ<2>+7‘2+“whnde G107

This determines the Q) , that will make the curvature vectors continuous at the
connection point. This equation can be changed into the form™:

1 2
Qu,z*Ql.m:M (ﬁ> (Qerz*Ql,mﬂ)
nn—1) \«,

mm—1) (e, \* 2m a, m .
ey () gy o ea-emn
(5.108)

This equation shows that Qy , lies in the same plane as Q;,,—2, Qrm—1, Qi
=Qu,o and Qy ;. The relation among the curve defining polygon vectors is
shown in Fig. 5.27.

5.1.11 Creation of a Spline Curve with Cubic Bezier Curve Segments

Consider the problem of connecting cubic Bézier curve segments smoothly,
with continuity up to the curvature vector, to generate a spline curve (Fig. 5.28).

As shown in Fig. 5.28, points Py, P, ..., P, through which the curve passes
are given, and n cubic Bézier curve segments, defined by the 3n+1 curve
defining vectors Qy, Q,, ..., @, are connected. The global parameter is ¢. ¢
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Fig. 5.28. Generation of a spline curve by connection of Bézier curve segments

assumes the knot values ¢, t,, ..., t, at the ends of the segments (the points Py,
P,, ..., P, through which the curve passes). The i-th Bézier curve segment is
given by the following formula.

3
Pi(t)= Z B s(w) Q3 1)+ (5.109)
i=0

where the parameter u is:

t—t;_
0<u=—-""L<1. (5.110)

ti—ti—y
From here on we set t,—t;_, =h;.

The condition for two curve segments P;(¢) and P;,,(t) to have continuous
slopes and curvature vectors can be expressed by the following two equations,

with m=n=3, o,/ =(t; 1 —t)/(t;—t;—1)=hi1/hi, Qrm=03:> Ql,m—I.ZQ?i.—la
Oim—2=03i-2, Ono=0s On1=0s+1, Ou2=03+, and, for simplicity,
B=0%% in Egs. (1.51) and (1.52):

hiv1Q3i-1 +hiQsi 1 =(hi+hiy ) Qs (5.111)

Lhithi 1) Qsiv 1 =1 Qai 2 hi=[(hi+hiy 1) Q31 —hiy 1 Q321 hiyy (5.112)
where:

15ign—1.

The connection conditions (5.111) and (5.112) can be rewritten as follows:

hi(Q3i+1_Q3i):hi+l(Q3i_Q3i—1) (5-113)
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hiv
Q3i—1+lhi.(Q3i—1_Q3i—2) Q31+1+ (Q31+1 Q3i+2)' (5114)

hl+

From these equations, the connection conditions can be shown graphically as
in Fig. 5.29.

Using Egs. (5.113) and (5.114), a spline curve can be generated by the Bézier
curves as follows.

If we take the knot values of parameter t to be equal to the cumulative
chord lengths at the predetermined points through which the curve must pass,

h; is the chord length of P;_, P;:
hy=|P,_—Py.

First, set Q,=P, and Q;=P,. Choose Q, and @, to have recasonable
values; then the first segment P, (t), with end points P, and P,, is determined.
Next, on the extension of the line segment Q,Q,, find point R, such that
0,0, :0Q,R, =h,:h,. Similarly, on the extension of line segment Q,Q;, find
point @, such that Q,0Q;:0,0, =h,:h,. In addition, find point Qs on the
extension of line segment R,Q, such that a similar ratio holds. Then Q5, Q,,
0O, and Q, (=P,) are the curve defining vectors for the second curve segment;
these two segments are connected with continuity up to the curvature vector.

Generate the complete spline curve by repeating similar operations until the
end at Q5,=P,.

Q?HZ
@,

Fig. 5.29. Relation between curve de-
/ ' fining vectors of adjacent curve seg-
ho+1 ments

5.2 Surfaces

5.2.1 Bezier Surface Patches

By using Bernstein basis functions, a cartesian product surface (tensor product
surface) can be expressed as follows.

i B;,, (W) Q;; (5.115)

0 j=0

P(u,w)=

m
i=
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where:
B,-,,,,(u)=<’f'> (1w ul,
1

Normally, by Bézier surface patch, we mean a cartesian product surface as
expressed by Eq. (5.115). Equation (5.115) can be expressed in matrix form as:

P(ua W)z[BO,m(u) Bl,m(u) Bm,m(u)]

Qoo Qo1 - Qo By ,(w)
Qo Qi1 - Qiu||Biaw

x (5.116)

0o Omi o O ||Bsw

Figure 5.30 shows the relation between the surface defining vectors Q;; and the
surface (this figure shows the case m=35, n=4). The shape defined by the Q;; is
called a surface defining net, Bézier net or characteristic net.

Figures 5.31 to 5.33 show examples of this kind of Bézier surface patch.

The 4 boundary curves of such a surface patch are the Beézier curve
segments expressed by the O-th row, m-th row, 0-th column and n-th column of
the center matrix. In Fig. 5.30, for example the boundary curve P(0,w) is the
Bézier curve segment having Qu, Qo1, Qo2> @oz and Q,, as curve defining
vectors. At the 4 corner points of the surface, there must be agreement with the
corresponding surface defining vectors:

P(0,0)=Qqo, P(0,1)=Qy,, P(1,0)=0Q,, P(1,1)=Q,,.

Fig. 5.30. Cartesian product Bézier
surface patch (m=5, n=4)
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Fig. 5.31. Examples of Bézier sur-
face patches (1)

Fig.5.32. Examples of Beé-
zier surface patches (2)

Fig. 5.33. Examples of Bézier surface patches (3)

5.2.2 The Relation Between a Bi-cubic Bézier Surface Patch
and a Bi-cubic Coons Surface Patch

Just as we could express a Ferguson curve segment as a cubic Bézier curve
segment, the relation between the surface defining vectors of a bi-cubic Coons
surface and the surface defining vectors of a bi-cubic Bézier surface patch can
be derived as follows.

The bi-cubic Coons surface patch can be expressed by the following
equation.

Pl w)= UM B-MIW?. (5.117)»

* For definitions of M, and B, refer to (3.10) and (3 103), respectively
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The bi-cubic Bézier surface patch can be expressed as follows:
Py(u,w)= UM B,MIWT. (5.118)

M, is given by Eq. (5.13). By is:
QOO QOl QOZ Q03

— Ql() Qll QIZ Q13 . (5'119)
QZO QZI Q22 QZJ
Q30 Q31 Q32 Q33

Setting P¢(u, w) = Py(u,w):

By

M B-M!=M,B;M}. (5.120)
This implies:

By =(My ' M) Be ME(M)™!
= (M 'Mo) BeME (M5 )T

=(My ' M) Bo(M; " M,)". (5.121)
We also have:
0 0 0 1
1
0 0 - 1
My'= 3 (5.122)
o L2
3 3
i1 1 1
i 0 0 0
1 0 1 0
My ' M= 3 A (5.123)
0 1 0 -3
0 1 0 O
So that:
i 0 0 0
1 o 1 00,0 Q@0 0,00 0.0
B,— 3 (L9 Q1 Q.10 Q.01
o 1 1209 201 0,00 0,(01)
T3 10,10 QL) Q.10 Q,(L1)
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QOO QO[ Q02 Q03

0 0l= Ql() Qll Q12 QlJ
QZO Qll Q22 Q23 '

0 1 Q30 Q31 Q32 Q33

(5.124)

(=}
W= O =

=]
|
I
=]

Therefore:
Qoo =0(0,0)
1
Qo; = Q(0»0)+'3* 0.(0,0)

1
2,=00.1)—+ 2,01
Q3=0(0,1)

1
010=00.0)++ 0,00

1

1 1
=000+ 2,00 ++ 2,00+ 2..0,0

1 1 1
012 =001+ Q01— 1 Q0.1 +5 Q0D

1
QIJZQ(071)+'5 0.0,1) (5.125)

1
0z = Q(]vo)*'?: 0.(1,0)

1 1 1
0:=001.0)—5 Q.(LO)+ 5 0, (1,0~ 2,,(1,0)

1 1 1
0:,=00.1)—5 Q1) ~+ Q.. D+ Qu(L1)

3 9
0:,= 0015 01,1
0:0=00.0
04 = Q1.0+ ,(1.0

1
01,=0(11) 5 Qu(11)
053=0(L1)
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Or, conversely, the surface defining vectors of a bi-cubic Coons surface patch
can be expressed in terms of the defining vectors of a Bézier surface patch.

From Eq. (5.120):

Be=(M;'My) By (M 'M)".
Using M of Eq. (3.14), we have:
10 0 0
g 0 0 1
MM, = _ 30 ol
0-3 3
Therefore:
[ 20,0 Q@01 @,00
B.— 21,0 Q1) @,10
‘7100 2,01 €.00
12.(L0) Q. 11) Q,(1,0)
1 0 0 07[Qw
o0 o 1]l
=3 3 0 0]]|0,
| 0 0 -3 3][[0
QUU QUS 3(Q01_
_ [ 033 3(Q5,—
QIO QOO 3(Ql3 Q03 QOOiQOI
Q307Q20 Q33 Q23 Q20 Qll

QOI
Qll
QZl
Q31

Q2.(0,1)

2.1

0..(0,1)

Q..(1,1)
QOZ QOS 1
Q1 Q3|0
Q22 Q23 0
Qs; 055 ][0
QOU)

Q30)

= Qi0+011) 9(Qo2—

Q30+0Q31) 9(Q22—

0 -3

0
0
1

Q03
Q33

QOSA
Q23 -

(=1

30
0 -3
0o 3

Qo2)

0s,)

0,,+013)
03,+033)
(5.126)

From Eq. (5.126), we see that among the surface defining vectors of a bi-
cubic Coons surface patch, the tangent vectors are related only to the vertex
vectors adjacent to the 4 corners of the Bézier surface; while the internal vertex
vectors Oy, @y,, 0, and Q,, affect the twist vector.

5.2.3 Connection of Bézier Surface Patches?®

Let:

Py(u,w)=[1® u* u 1]MgBy My [w> w?> w 117 (0<u, ws)

Py(u,w)

=0 u® u 1IMyBy My [w* w* w 117

O0=u, wsl)
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be two bi-cubic Bézier surface patches. Suppose that we are to connect the u=0

boundary curve of ;(u,w) to the u=1 boundary curve of P,(u,w) (Fig. 5.34).
The condition for positions to be connected is:

[0 0 0 1]MyBy M5 [w® w2 w 17
=[1 11 1]MBy ME[w® w? w 117 (0=w<1).

Therefore:
[000 IJMpByy=[1 11 1JMyBy,.

Expanding this gives:

[ —1 3 -3 q _QII,OO Qn,m Qu,oz QII.03
[0 00 1] 3 -6 3 0 Qn,lo Q11,11 QII,12 QH,13
-3 3 0 0 QII,ZO Qn,zx Qn,zz Q11,23
B 1 0 0 0_ _Q11,30 Q[1,31 Q[1,32 Q11,33
[—1 3 -3 1] _QI,OO Ql,01 Q1,02 QI,03
=[1111] 3 -6 3 0 QI,IO Ql,ll Ql,12 Ql,13
-3 3 0 0 Q1,20 Q1,21 Q1,22 QI,23
| 1 0 0 0_ _Q1,30 Q1,31 Q1,32 Q1,33
which implies:
Onoi=0s (i=0,1,223). (5.127)

This relation expresses the fact that in order for the two surface patches to have
the same boundary curve, they must have the same surface defining vectors
corresponding to that boundary curve.

Qp o Q.3
Q)03
Qpa
Q1.3=Qy 02
Q| o2} |
|
! |
! . Qu3
! Qi n=Quan
Q0 0
.30

Qizn Qr=Qrow Q. Qu.a

Q1.00

Fig. 5.34. Connection of cubic Bézier surface patches (simple method)
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Next, let us find the condition that the slopes be continuous in the direction
across the boundary curve. In general, this relation is given by Eq. (1.122), but
first let us consider the special case given in Eq. (1.123).
The partial derivatives of each surface with respect to u are:
P (uw)=[3u® 2u 1 O]JMyBy My [w® w?* w 117 (5.128)
Py, (uw)=[3u* 2u 1 O] MyB,  ME [w® w? w 1]7. (5.129)

We find P,(1,w) and P, ,(0,w) from these relations, then substitute in Eq.
(1.123) to obtain:

[00 1 O]JMzB, M} [w* w? w 117
=W [3 2 1 O1M, By M5 [w w? w 1]7. (5.130)

.Since the surface on the left-hand side of this equation is cubic in w, take
u(w)=p. This can be simplified to:

[0010]MBy,=u[3210]MBy,

which becomes:

[—1 3-3 1—‘ 7Qu,oo Quo1 Qo2 Qll,03
[0010] 3-6 3 0 Onio Quir Quiz CQuis
-3 3 0 0 Qu.zo Qll,21 Qn,zz Qu.23
L 1 0 0 07 _Qu,ao Ousi Qusz Onss
[—1 33 1] -Qr,oo Ql,l)l Ql,oz Ql,os
=u[3210] 3-6 3 0 Ql,w Qn,n 012 (%)
-3 3 0 0 020 Qa1 G2 Qs
r o 0 0_ Q30 Qia O Qs

This can be expanded to:

Ouri— Quor=#(Qrz—Gi2) (=0,1,273). (5.131)

This means that @ 5;, O 3,= Quoi» Qu,1; must be colinear (Fig. 5.34).
Next, let us look for general connection conditions based on Eq. (1.122). For
convenience let us repeat Eq. (1.122) here.

Py, O, w) = p(w) Pr, (1, w)+7(w) Py, (1,w). (5132
This connection condition expresses the fact that Py ,(0,w) on the No.2 surface

patch must lie on the tangent plane to a point on the boundary curve of No. 1
surface patch. Equation (5.132) becomes the following:
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Wj Wj
w? w2
(00 1 01M,ByuMp| " | =k [3 2 1 1M, By, M5 | "
1 1

3w

2w

+yw)[1 11 1]MyB, M .

0

(5.133)

If we assume that both of the surface patches are bi-cubic, then, for the same
reason as before, u(w) is an arbitrary positive scalar u. Also, y(w) can be
expressed as the linear form y(w)=7y,+7y,w. In this case, the left-hand side of
Eq. (5.133) becomes:

left-hand side=[0 0 1 0] MyBy M5 [w® w? w 177

=1 3 -3 17[Quoo Quor Quoz Quos

=[0010] 3 -6 3.0 Qu,lo On11 Q11,12 Q11,13

'3 3 0 0 QILZO QII.ZI Q[I,ZZ QII.ZJ

10 0 0f[Ous Qust Qusz Quss
=1 3 -3 17[w?
3 -6 3 0f[w?
-3 3 0 O0Offw
1 0 0 O 1

=3[w? w2 wl]

_Qll,O() - 3 Q]L()l + 3 QI],OZ - Q",O3 - Q]l,lO + 3 Qll,l 1 3 Q[[, 12 + Q",l]
=3Qu00+60101—3Qu02+3Cu10— 6011 +3012
3 QII,OO - 3 Q",Ol - 3 Qll,l() + 3 Qll,l 1
= Qo0+ Q1o

The 1-st term on the right-hand side of Eq. (5.133) is:

1-st term on the right-hand side=pu(w) [3 2 1 0] MyBy M} [w® w? w 1]7

-1 3 =3 17[@w0 Qio1 Qo2 Dios

—u3210] 36 3 0G0 Quii Q12 Quis
=3 3 0 0[|Q2 Q21 G2 Gi2s

10 0 0f]Qs Qi Qa2 Qs
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w

-1 3 -3 1 w
3 -6 3 0f|w?
-3 3 0 O w
1 0 0 O 1

=3[w? w2 wl]

7”(Q|,20_ 3 QLZ[ + 3 QI,ZZ - QI.23 - Q|,30 + 3 QI,][ - 3 QI,32 + QI.SJ)
”(73Ql.20+6QI,21 73Q|,22+ 3Ql,3076Q],3l + BQ‘,JZ)
2B 0120=3012 =30 30+t3Q131)

(= Q120+ Q130

The 2-nd term on the right-hand side of Eq. (5.133) is:

2-nd term on right-hand side=y(w) [1 1 1 1]MyBy M} [3w? 2w 1 0]"

-1 3-3 1] _QI,OO Ql,m QI,OZ Qo3
3-6 3 0
=(YQ+'V|W)[] ] ] 1] Q],l() Ql,ll QI,‘Z Q[.13
73 3 0 O QI,ZO QI,Z‘ QI.ZZ QI,ZS
] O 0 O_ _QI,S() Ql,]l QLJZ Q|,33
[—1 3 -3 1 0 3 0 O0][w?
3 -6 3 O0f[0o 0 2 offw?
=3 3 0 oflo o o 1w
| 1 0 0 0o[j0 0 O 0] _]
=3[w? wrwl]

X

Y1(—Qi30+3C131 =303+ Q1 33)

70(‘Q|,30+3Q1.31 _3Q1,32+ QI,JJ)'H’l (2 Q|,30_4QL31 +2Q1,32) A

7020130 — 40131 +20132) +71(— Qi 30t Qizn)
Yo(— Q30+ O131)

Comparing the constant terms on both sides of Eq. (5.133) we obtain:

Oy,

107 Qu,oo = H(Ql,so — Q120+ 70 (Ql,sl - QI,JO)- (5.134)

Next, comparing the coefficients of the w terms:

3QII,0043QILOI 73QII,10+3QIL11 =4 (3Q],2073QI,21 73QI,30+3Q].31)

+702 Q3040131 t2032)
+71(= Q130+ Qr31)-
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Rearranging terms and using Eq. (5.134):

Qll,l 17 Qll,Ol = iu(Ql,31 - Ql,21)+'y70 (2 Ql,32 - Ql,30_ Ql,31)
+ (@151~ Ouso)- (5139)

Similarly, when the coefficients of the w? and w® terms are compared the
following 2 equations are obtained:

Qll,12 - Qll,02 = H(Ql,32 - Ql,22)+y70 (Ql.32 + Ql,33 -2 Ql,31)

2
() (5136)

Q13— Oos =101 33— Cr23) + (o +71) (Q133— 01 32)- (5.137)

In the above 4 equations, (5.134), (5.135), (5.136) and (5.137), setting y,=7,=0
we can confirm that these reduce to Eq. (5.131).

The geometrical significance of Eq. (5.134) is that Qy ;, of the No.2 surface
patch lies on the plane formed by the vectors Q) 30— Q0 and Qy 3, — Q@ 30 of
the No.l surface patch (refer to Fig. 5.35). Similarly, the significance of Eq.
(5.137) is that Qy 5 of the No.2 surface patch lies on the plane formed by
0133~ Q123 and Q33— Oy 3.

The geometrical interpretation of Eq. (5.135) and (5.136) is not as simple as
the above 2 cases.

Qi.33= Qn.03

Q.2 Qnus

Q.
Q|.22 Qi 32=Qp

Pi(u, w) Py(u, w)
Q.2 Qnr Qo Qun

) Fig. 5.35. Connection of cubic Bézier surface patches
Q. Q0= Quieg (general method)

5.2.4 Triangular Patches Formed by Degeneration

When a triangular surface patch is to be expressed by an oridnary quadran-
gular Bézier surface patch, let us consider the conditions for the unit normal
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vector at the degenerate point to be uniquely determined (refer to Sect. 1.3.8).
Assume that we are dealing with a bi-cubic Bézier surface patch. Then we have:

P(u,w)= UM BMIWT
P,(0,w) in Eq. (1.128) can be found to be:

P,(0,w)=[0 0 1 0]M,B,ML[w> w? w 1]7
=3By 3(W) (@10~ Qo0)+3B; ;W) (@11 —Qo1)
+3B;3(W) (Q12—Q02) +3 B3 3(W) (Q13— Qo3)-

In Fig. 5.36, at the degenerate point D we have Qyo=0y;= Q02 = @03, SO:

P,(0,w)= 3Bo,3(W) (Q10—Qo0)+3B; 3(W) (@11 —Coo0)
+3B;3,3(W) (Q12—Qo0) +3 B3 3(W) (@13 — Qoo)- (5.138)

We also have, for P, (0,w):

P, 0,w)=[0 0 1 0] MyzB;ML[3w? 2w 1 0]7
:330,3(“’) (QlO_QOO)+3Bl,3(W) Q11— Qo0)
+3Bz.3(w) (le‘Qoo)+3B3,3(W) (Q13—0Qo0)- (5.139)

As can be seen from Egs. (5.138) and (5.139), P,(0,w) and P, (0,w) are both
expressed as linear combinations of the four vectors Q,o— Qo> Q11— Qoo»
0,,— 0y and Q,;—0Q,,. From the properties of a Bézier surface, the direction
of the tangent of curve P(u,0) at point D coincides with the direction of
0,0— 0,0 also, the direction of the tangent to curve P(u,1) at point D
coincides with the direction of Q,;— Q,,, so the tangent plane at point D is
formed by these 2 vectors. Therefore, if Q,; and Q,, lie on this plane, then

Qo= o1 = Q2= Qus

Fig. 5.36. Expression of a triangular surface patch as a
angent plane degenerate Bézier patch



228 5. The Bernstein Approximation

P L

Qo= Q. Qoz\"
M

Fig. 5.37. Application of a degenerate Bézier surface patch (rounded convex corner).
D, degenerate point of patch; e, surface defining point Q;;

P,(0,w) and P, (0,w) are vectors on the tangent plane regardless of the value of
w, so the unit normal vector e is uniquely determined as:

P 0,W)x P,y (0, w)
“TIPO.W) X PO w)]

If three edges of a cuboid are rounded, the triangular part that is produced
at a corner can be expressed as a quadrangular Bézier surface patch, as shown
in Fig. 5.37. Point D is the degenerate point of the patch, where the four surface
defining vectors of the patch PO, Q.. Qy;, Op, and Q,5, coincide. Since @,,,
0.,, 0, and Q,; are on an extension of patch P6 (plane), the normal vector at
point D can be found uniquely by the method described above. PO share the
same boundary curve defining vectors with surface patches P1, P2, P3, P4 and
P5, and, moreover, the three surface defining vectors in the direction across the
boundary curve are colinear, so the patches are connected with continuity up to
the slope.

5.2.5 Triangular Patches

Parametric curves can be expressed as the sum of products of a number of basis
functions and the same number of vectors. In the case of a Bézier curve, the
basis functions (Bernstein basis functions) are the terms of the binomial
expansion:

[(A—=1)+]".

A Bézier surface can be expressed as a sum of products of basis functions, which
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cutotw=1
0=y, v, w=l
Parameter space

st jtk=n(=3)
C0=4,j, k=n(=3)

Fig. 5.38. Triangular patch expressed by the Bézier surface formula

/ / Fig. 5.39. Triangular area coordinates

are expressed as the terms of products of two binomial expansions, and
position vectors which are given as a lattice.

[ —u)+u]™ [(1—w)+w]". (5.140)

A triangular patch can be defined by position vectors which are given in
triangular form (Fig. 5.38). Let u, v and w be the area coordinates of a triangle.
Specifically, in the triangle ABC (Fig. 5.39), one point inside the triangle is
expressed uniquelly by the three coordinates u, v and w:

u=(area of APBC)/(area of AABC),
v=(area of APCA)/(area of AABC),
w = (area of A PAB)/(area of A ABC).

u, v and w are not mutually independent.

u+v+w=1. (5.141)
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The parameter u is 0 when point P is on side BC, and 1 when point P coincides
with vertex A. Similar relations hold for the other parameters v and w:

0<u v, wgl. (5.142)

Also, u has same values when point P is on a line parallel to side BC. Similar
relations hold for v and w.

As shown in Fig. 5.38, a sequence of points given in a triangular lattice can

be expressed in the notation Q). Here we have the relations:

0<i j k=n
i+j+k=n.
Since relation (5.141) holds among area coordinates, we can conceive of a
surface formula of the following form using the coefficients of the terms in the
expansion:

[u+@+w)]"

corresponding to Eq. (5.140):

P

. ) : ( Yo
i=0 j=0
=Z 2 UV Qe (+itk=n). (5.143)
For example, taking n=2 this becomes:
22— 2!
N — — ik
P(u,l,,w)—lg0 };) TE u'vIwh Q2

=u Qo0+ 12 Q20+ W Qios + 20007 10+ 20w 03, +2uw o, -

Similarly, taking n=3 gives:
3 3=t 31 '
, J k
P(u,v,w) :Z ; R u'v'wQ3,
= Qo0+ 07 O30+ W Qo3 +3167003 0+ 317w 03,,
+30%uQ3,0+302w03,, +3wHuQ3 o, + 3w 03, +6uvw i, .

Now let us consider formula (5.143) with one of the three parameters, for
example w, taken to be 0:
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(1) @500

Fig. 5.41. Shape control of the triangular patch in Fig. 5.40. (1) surface defining net; (2) surface

n n—i n! o
P(,0,0)= g u'v'QF, (i+j=n; k=0; u+v=1
(0 i:Zo =0 iljlk! jo (4] )
: n! , _
= —ul 1_ n—i !l . .
i;O i'(n—i)! (=)' Q 10

This has the form of an n-th degree Bézier curve segment. Since the same is true
of the other boundaries, the boundary curves of a triangular patch are n-th
degree Bézier curve segments, with the position vectors corresponding to
boundary curve segments as curve defining vectors. The triangular patch
produced is shown in Fig. 5.40.

5.2.6 Some Considerations on Bézier Curves and Surfaces

Bézier curves and surfaces are defined only by position vectors. They do not
require analytical data which is difficult to understand intuitively, such as
tangent vectors and twist vectors, as do Hermite interpolation curves and
surfaces. What are needed are geometrical data which are easily understood
intuitively, such as polygons and polyhedrons. Moreover, Bézier curves and
surfaces have the following superior geometrical properties.
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@ (Convex Hull Property)

Relation (5.43) and (5.49) hold for the coefficient function B, , of a Bézier curve,
so the Bézier curve segments are convex combinations of the curve defining
vectors Qg, O, ..., Q,. That is to say, a Bézier curve segment is enclosed
within the convex hull determined by these points. Consequently, if Q,
=0, =...0,, the curve degenerates to the single point @,; in addition, if all of
the curve defining vectors are placed to be colinear, it is the line that joins Q, to

Q..

@ (Variation Diminishing Property)

The number of intersections of an arbitrary straight line and a Bézier curve is
never more than the number of intersections of that straight line with the curve
defining polygon. Consequently, a Bézier curve takes a shape that is a
smoothed version of the curve defining polygon shape, and does not contain
any variations that are not in the shape of the curve defining polygon.

In summary, Bézier curves and surfaces preserve the principal features of the
shapes of their respective curve defining polygons and nets (refer to Theorem
5.2), and do not include any important shape variations that are not in the
curve defining polygons and nets, so shape control is easy for humans. In
addition, the degree of a curve can be increased and the curve can be divided
into two curve segments while preserving the shape, which increases flexibility
in shape control.

One problem with Bézier curves is connection. It is theoretically possible to
connect curve segments and surface patches smoothly, but when it comes to
shape control by humans, a program that will preserve those conditions with
flexibility and generality becomes complicated. In addition, the resemblance of
Bézier curves and surfaces to their respective curve defining polygons and nets
is not comparatively good (refer to the discussion of B-spline curves and surfaces
in Chap. 6).

References (Chap. 5)

18) Yamaguchi, F.: “A Taxonomical Study of Computer Aided Geometric Design Systems”,
CS 653 Note 3, Computer Science, Univ. of Utah, 1979,

19) Davis, P.J.: “Interpolation & Approimation”, Dover Publications, 1963.

20) Riesenfeld, R.F.: “Application of B-Spline Approximations to Geometric Problems of
Computer-aided Design”, Umwv. Utah Comput. Sci. Dept. UTECCSc-73-126, March 1973,
University Microfilms OP 65903.

21) Schoenberg, 1.J.: “On Spline Functions”, with Supplement by T.N.E. Greville, Inequ-
alities (O. Shisha, editor), Academic Press, 1967.
22) Hosaka, M., and F.Kimura: “3-dimensional free shape design control theory and its

methodology”, Joho Shori (Information Processing), Vol. 21, No.5, May 1980 (in
Japanese).

23) Cohen, E., and R.Riesenfeld: “General Matrix Representations for Bézier and B-Spline
Curves”, unpublished, Dec. 1977.

24) Bohm, W.: “Cubic B-Spline Curves and Surfaces in Computer Aided Geometric Design”,
Computing, 19, 1977.
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6.1 Uniform Cubic B-Spline Curves

6.1.1 Derivation of the Curve Formula?®

If (n+1) ordered position vectors Q,, Qy, ..., Q,_;, O, are given (Fig. 6.1),
consider the (n—2) linear combinations:

P(t)=Xo(0) Qi1 + X, () Qi+ X, (1) Qi1 + X5(1) Qi 42
(i=1,2,..,n—2) (6.1)®

Fig. 6.1. Derivation of a B-
spline curve (case of M =4)

each formed from four successive points XO() X,(t), X,(t) and X;(t) are
polynomials in the parameter t (0=t <1). P;(t) is a curve segment expressed in
terms of the varying parameter. The condition for two neighboring curve
segments P;(t) and P, () to be continuous at the point cofresponding to r=1
for the first segment and t=0 for the second, that is, for P,(1)=P;,,(0) to hold
forall Q; (j=i—1,4,...,i43) is:

X0(1)=X3(0)=0

X, (1)=X,(0) (6.2)
X,(1)=X,(0)

X;3(1)=X,(0)

Similarly, the conditions that the 1-st derivative vector and the 2- nd derivative
vector be continuous, that is, that P,(1)=P,,,(0) and P;(1)=P,. ,(0), for all 0,
(j=i—1,14, ..., i+3) become:

*) These functions X;(t) are different from the X,(¢) in Sect. 5.1.1. In this book X;(t) is used for an unknown
function.
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(6.3)

(6.4)

In addition, we add the condition that shape be invariant under coordinate

transformation (Cauchy’s condition) (refer to Sect. 1.1.3):

Xot)+ X, () + X, )+ X5(0)=1.

6.5)

Assuming that the functions X,(z), X,(t), X,(r) and X;(¢) are cubic
polynomials, there are a total of 16 unknowns. There are also 16 condition Egs.
(6.2) to (6.5), so the forms of functions X(¢), ..., X;(¢) can be determined.

Considering the symmetry of Egs. (6.2) to (6.5), the functions X,(¢), ...,

X4(t) can be written as follows.
Xo(O)=X5(1-1)
X, (0)=X,(1-1)
Xy () =ay0> + a5, 2+ a5t +as,

X;(t)=a30t> +as, 2 +as,t+as;.

From the first equations of sets (6.2) to (6.4), we immediately find that:

a3y =d3;=0a33=0.

From the fourth equations of each set (6.2) to (6.4) wc have:
ay,=3a30, y;=30a30, Gy3=az,.

From Egs. (6.6), (6.7) and (6.5) we have:

ao=—3as }
a3=1/6

From these results we have:

(6.6)
6.7)
6.8)

6.9)

(6.10)

(6.11)

(6.12)
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6

1 2
X — 32, °
(=5 =43
X,(t)= 1t3+1t2+ t+
]
Xi(=—710

Using these functions, the curve segment formula (6.1) can be expressed as:

P(6)=X,)Q -1+ X,

=[3 2 ¢t 1]

=[3 2 t 11M,

where:
[ 1 1
< 5
1
7 -1
M= .
i 2
L 6 3

= = = =

A= R = R = -

6

0

N0+X,00,4,+X50)Q,+2
=

235

(6.13)
0,

0,

Q1+X
[

(6.14)

(6.15)

Functions (6.13) make the slopes and curvature vectors continuous at the
connection point between curve segments expressed in the form (6.1). In fact, as
will be discussed more fully later, these functions agree with the so-called
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uniform B-spline functions of order M =4 and degree 3 in the case when the
knot vector is specified as:

T=[ty t; t; t3 ty ts tg t;1=[—3 —2 —1 0 1 2 3 4].
In this book, these functions will be expressed by the notation N, ,(¢):

Xo(t)=No4(1), Xl(t)ENlA(t)} 616)

Xy()=N,4(0), X3(0=N3,0 )" ’

As can be seen from the above derivation, the continuity of the segments at

the connection points is assured for all Q (j=0, 1, ..., n), so the dilficult

connection problems encountered with Ferguson curves and Bézier curves are
absent. An example of a curve is shown in Fig. 6.2.

e Fig. 6.2. Example of a B-spline curve (M =4)

Similarly, a curve can be formed from uniform B-spline functions of order 3
degree 2 by assuming quadratic functions and forming linear combinations of 3
points; more generally, a curve can be formed from uniform B-spline functions
of order n+1, degree n as linear combinations of (n+1) points. For example,
the uniform B-spline functions of arder 3, degree 2 Yy(t), Y;(t), Y,(¢) when the
knot vector is specified as

T=[ty t, t; t3ty ts]=[-2 —1 01 2 3]

are given by the following formulas:

Yo(t)= (I_Z)ZEND,s(t)

o =

1
Yl(t):7t2+z+—2— =N, ;1) 6.17)

1
Yz(z)zj =N,5(0)
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Fig. 6.3. Example of a B-spline curve (M =3)

Nio(t)  Npg(t)

“’[‘?’.----

wleo

o=

O~ prmeeemm=

&/

|

Fig. 6.4. Uniform B-spline basis functions (M =4)

Nia(t)

Fig. 6.5. Uniform B-spline basis functions (M = 3)

The curve segment formed from these B-spline functions becomes:

P(t)=Y,()Q; 1 + Y, () Q;+ Y5 () Qi 1y
| L2 re
211l -2 2 ol o |d=t2..0-1. ©.18)
2 11 ollon,

An example of such a curve is shown in Fig. 6.3.

Graphs of N, 5(¢) and N; 4(¢) in the range 0<¢ <1 are shown in Figs. 6.4 and
6.5 respectively.

In order to express the B-spline curve segment of Eq. (6.14) by a Ferguson
curve segment, we take:
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[ (o
o o,
[3 2t 11 M, =[* 2t 1] M|~
| Qo G
Q|+2 Ql
which gives:
QO Qi—l
0, - 0,
- |=M:'"M,
O e
0, Qii2
[ 1 2 1 ]
- = 0
6 3 6
o L 2 1ire.
6 3 6 0
N P P N
2 2 Q.42
1 1
00— 0 —
L 2 2
M 20000 ]
ger"'?Qn EQ1+1
1 2 1
€Q1+§Q.»1+6 Q.2
= ) 1 (6.19)
EQiH_?Q.—x
1 1
?QHZ_EQi

Alternatively, to express a B-spline curve segment by a Bézier curve segment we
take:

0., (o

[ 2 ¢ 1] My 2 =[Pt 1]M, 2
i+1 QZ
Q.2 0

Then the Bézier curve vectors Qy, ..., Q3 are expressed in terms of the B-spline
curve vectors Q,_;, Q,, Q,,4, Q..+, as:
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2 0.,
Ql :M,;'MR Qi
QZ QHI
0, 02
[ 1 2 1 0 T
6 3 6
0 2 } 0 [
3 3 0
o L2 oy (e
33 0.
0 1 2 1
L 6 3 6

1 2 1
‘€Q1+§ Ql+l+ng+Z_

From this we obtain:
1 2 1
Q0=gQ.—1+§Q-+gQH1
2 1
Q125Q1+§Qiu
1
:QoJrg(in_Qx—l)
1 2
Qz:'3 Qf+'3 Qiy
1
=Q3*€(Qi+z*Qi)

1 2 1
Q3=gQi+3 Qa+x+6 Qisr-

239

(6.20)
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Fig. 6.6. Expression of a uniform cubic B-spline curve segment in terms of a Bézier curve
segments. Q;,_, Q;, @1, Q;+,: Curve defining vectors of the B-spline curve segment. Q,, Q,,
0., Q;: Curve defining vectors of the Bézier curve segment.

The geometric relation between the B-spline curve defining vectors Q; ,, Q;,
0.1, 0,., and the Bézier curve defining vectors is shown in Fig. 6.6. To
express a curve defined by given cubic uniform B-spline curve defining vectors

in terms of a Bézier curve formula, first trisect the 3 sides Q,_,Q;, Q,0;.,,,
0,.,10;:,. In this case, on side Q;0Q,,, the trisecting point closer to Q; is Q,
and the trisecting point closer to Q,,; is @,. Next, join the trisecting point on
side Q;_,Q; that is closer to Q; to Q, by a straight line. The midpoint of that
line segment becomes the starting point of the curve, Q,. Similarly, join the
trisecting point on side Q;,,0;., closer to Q;., to Q, by a straight line; the
midpoint of that line segment becomes the end point of the curve, Q.

6.1.2 Properties of Curves?®

The uniform cubic B-spline curve formula (6.14) is relatively simple and has
superior properties, so it is often used in practical applications.

In formula (6.14), the Q;(j=0, 1, ..., n) are the vectors that define the curve,
so they are called curve defining vectors. As in the case of a Bézier curve
segment, the vectors Q; define the vertices of the polygon that determines the
characteristics of the curve shape, that is, the characteristic polygon. The points
P. shown in Fig. 6.1 (i=1,2,...,n—1) correspond to parameter values t=0 or
t=1. These are the position vectors corresponding to knots on the curve, as will
be discussed below. In this book the P; will be called knot point vectors.

Normally, when the curve defining vectors Q; are given (j=0, 1, ..., n) and
the knot point vectors P; are found from them, the transformation is called a
normal transformation; conversely, when the P, are given and the Q, are found
from them, it is called an inverse transformation.
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As shown below, a uniform cubic B-spline curve has superior curve design
properties.

® C? Class Continuity

As is clear from the derivation of B-spline functions in Sect. 6.1.1, at a point
where uniform cubic B-spline curve segments are connected, P(t) and P(t) are
continuous regardless of the values of the vectors Q;; in other words, not only
the slopes but also the curvature vectors are continuous. Because of this
property, there are no difficult problems in connecting the ends of curve
segments, and a curve consisting of connected segments can be treated as a
single unit.

@ Faithfulness with Respect to the Curve Defining Polygon Shape

B-spline curves, like Bézier curve segments, have the variation diminishing
property.

Also, the B-spline function N; 4(t) is always O or positive in 0=t <1, and, in
addition, the Cauchy relation holds:

i N..@)=1. (6.21)

Therefore, the curve segment is expressed as a convex combination of local
sequences of points Q;_;, Q;, Q.. , Q:,,. This convex hull is shown by slanted
lines in Figs. 6.7 and 6.8. In contrast to a Bézier curve, of which the convex hull
is a global region made by all points Q; (j=0, 1, ..., n) (the region enclosed by
dotted lines in Fig. 6.8), the convex hull of a cubic B-spline curve is a local
region formed by 4 points. Compared to a Bézier curve, a B-spline curve has a
shape that is more faithful to the shape of the curve defining polygon.

In addition, as mentioned in Sect. 6.1.1, each segment of a B-spline curve
can be expressed as a Bézier curve defining polygon Q,, Q,, Q,, Q5. Conseq-
uently, the region in which a B-spline curve segment exists, is inside the convex
hull Q,, O, Q,, Q5. This convex hull is shaded in Figs. 6.7 and 6.8.

Q-1 {MQ,Q

Fig. 6.7. Shrinking of a convex hull. Q;_,, Q;, Q;., Q;+,: Curve defining vectors of the B-
spline curve segment. Q,, Q,, Q,, Q5: Curve defining vectors of the Bézier curve segment.
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Fig. 6.8. Relation between convex
hulls of Bézier curve segment and
B-spline curve. Slanted line area:
B-spline curve convex hull; dotted
lines: Bézier curve segment convex
hull; shaded area: shrunken B-
spline curve convex hull

® Local Unigueness

Since a cubic B-spline curve is locally defined by only 4 adjacent vertex vectors
of the curve defining polygon, the change of shape produced by varying one of
the Q; is locally confined. This is an important property in increasing the
efficiency of curve design work. An interpolating spline curve does not have this
property; if one part of it is changed, the effect extends over the whole curve.

® Geometrical Relations Between Derivative Vectors at Ends of Segments

Position vectors, tangent vectors and 2-nd derivative vectors can be easily
determined graphically at the ends of a uniform cubic B-spline curve segment
(Fig. 6.9). That is to say, when a parallelogram is formed by the 3 points Q,_,
0, and Q, ., the starting point P,(0) of the curve segment is on the diagonal
joining @, to the fourth corner, 1/6 of the way from @, to the fourth corner. The
tangent vector P,(0) at the starting point is half-way from Q,_, to Q,,,. The
2-nd derivative vector P;(0) at the starting point is a vector along the diagonal
from @, to the fourth corner, having the length of that diagonal as its
magnitude.

P)=Qt5(Q-Qu)
P =@ Q)

B0)=5(Qu—Q )

Fig. 6.9. Geometrical relation
among position vectors, tangent
vectors and 2-nd derivative vectors
at starting and end points of
B-spline curve segment

P0)=Q 5 (Q—Q)
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Similar relations exist among the position vector P,(1), tangent vector P,(1)
and 2-nd derivative vector P,(1) at the end point of the segment, with the
parallelogram being formed by the 3 points Q;, Q,., and Q,,,.

The parallelogram used to determine the position vector, tangent vector and
2-nd derivative vector at the end point of one curve segment is the same as the
parallelogram used to determine the position vector, tangent vector and 2-nd
derivative vector at the starting point of the next curve segment. This fact helps
to demonstrate the continuity between segments at the connecting points.

® Ease of Inverse Transformation

In shape design, it is sometimes necessary to find the curve defining vectors Q,,
Q,, ..., 0, given the knot point vectors P,, P,, ..., P,_, (inverse transform-
ation). As will be discussed later (refer to Sect. 6.1.4), in the case of a uniform
cubic B-spline curve, inverse transformation can be carried out at high speed,
by simple computations, using the same method for either an open curve or a
closed curve.

® Expression of Straight Lines, Circles, Cusps

In the case of a cubic B-spline curve, if the curve defining vectors Q;_;, Q,,
0,4, and Q;,, lic colinear, the curve segment defined by those four position
vectors degenerates to a line segment. This line segment connects continuously
to the neighboring curve segments with continuity up to the curvature vector.
This feature is extremely useful in practical applications (Fig. 6.10).

Formula (6.14) is not a rational expression in t, so it cannot rigorously
express a circle, but by making the curve defining polygon equilateral a circle
can be expressed approximately.

When the curve defining polygon is an equilateral m-sided polygon, let us
find the curve defining vectors Q;=[Q,,,0,,] which will approximately generate
a circle of unit radius (Fig. 6.11). In Fig. 6.11, the radius R of the circle that
passes through each vertex Q; can be found by the geometrical construction
discussed in @:

Fig. 6.10. B-spline curves connected to a straight
line with class C? continuity




244 6. The B-Spline Approximation

Q,

B-spline curve

Fig. 6.11. Method of generating an approximate
circle as a B-spline curve (M =4)

. R=—" . (6.22)

2n
24cos—
m

Consequently, the vertex vectors @, that will generate a unit circle are:

2n .2z
Q;=|Rcos—i Rsin—1i
B m m
2 | . 2m
3cos—1i 3sin—i
m m
= i=0,1,...,m—1). (6.23)
2n 2n
24+cos— 2+4+cos—
m m

Next, let us find the deviation from a true circle. In Fig. 6.11, the midpoint
P,, of the curve segment generated by the 4 points Q,, ;, Q,, @, and Q, is
found by setting ¢ =4 in formula (6.14):

Qm 1 + Q0+ Ql Q2

2n 2n A 2n
14+cos— ) |11 4+cos— sin— | 11 +cos—
m m m m

- (6.24)

2n 2n
812+cos— 812+cos—
m m
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so that the deviation E (%) from a true circle is:
E=(1—)/P3)x 100

2
(1 —cos 1) (2—cos n)
m m

= x 100. (6.25)
2n
2 (2 +cos )
m

From formula (6.25) we find that a square gives a deviation of 2.8% from a true
circle; an equilateral 12-sided polygon gives a deviation of 0.02%. An example
of generation of a semicircle is shown in Fig. 6.12.

Let us consider the problem of producing a cusp using uniform cubic B-
spline curves. In Fig. 6.13, the sequence of vertices Q,, O, Q,, O3, O,
determines a curve P, P,P,. Next, if two vertices are made to coincide so that
the vertex sequence becomes Q,, @, @,, O,, Q;, Q,, the curve becomes
P, P,P.P,, increasing the curvature in the vicinity of @,. If three vertices are
overlapped at point Q,, the vertex sequence that defines the curve becomes Q,,
0., 0,, 0,, 0,, 05, 0,. The curve becomes P,P,Q,P.P;, and the slope
becomes discontinuous at point Q,, making that point a cusp. In this case there
are straight line segments, P,Q, and Q,Ps, on both sides of the cusp. By
suitably controlling the arrangement of the 3 points centered on Q,, a sharp
cusp can be produced.

Fig. 6.12. Example of generation of a circular arc
(half circle) as a B-spline curve (M =4)

Q.

Fig. 6.13. Formation of a cusp by B-spline curves (M =4)
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6.1.3 Determination of a Point on a Curve by Finite Difference Operations®”

The finite difference matrix needed to calculate a point on a uniform cubic B-
spline curve is found as follows (refer to Sect. 1.2.4).
In formula (6.14), abbreviating N, ,(¢) = N,(¢) we obtain:

P0)=No()Qi-1 + N ()@, + N2 (1)@, + N3 (1) Q.. (6.26)

The 1-st, 2-nd and 3-rd finite differences of P,(t) at t=0 are AP,(0), 4>P,(0) and
A3P,(0), and the finite differences of N,(t) are 4N,(0), 4°N,(0) and 4°N,(0). Then
we have:

P(0)=No(0)Q,-1 + N, (0)Q,+ N>(0)Q, 1, + N3 (00,
AP, (0)= 4Ny (0)Q, -, + AN, (0)Q,+ AN, (0) @, + AN;(0) 0, »
42P,(0)= 4°No(0)Q, -, + 4N, (0)Q,+ 4°N,(0)Q, . + 4°N3(0) Qi »
A3P(0)= 4°No(0)Q,—, + 4°N, (0)Q,+ 4°N,(0)Q, ., + 4°N;(0)Q.
(6.27)
where:
No(0)=;< N;(O)=—=, N,(0 N3(0)=0,
AN, (0)= LI (517717(5, AN,(O):irP—(SZ,
6 2 2 2
ANZ(O):fi(shrléul—(s, AN3(O)=L(53,
2 2 2 6
AN, (0) = — 5%+ 62, A2N,(0)=353—262
A’N,(0)= —363 462, AN, (0)= 6%,

A3Ny(0)= —083%, 43N, (0)=36>, 4°N,(0)= —36°, 4°N,(0)= 5>

Then we can find the finite difference matrix to be:

P,(0) No(0) N,(0) N,(0) N3(0)

1 AP,(0) 1 ANy (0) i_AN,(O) lANZ(O) l41\13(0) Qi

5 5 o 5 5 0

1 =1 1 1 =
— 4*P,(0) - 4°N,(0) — 42N, (0) —AZN 2(0) — 4°N4(0) | | Qs

0 0o ) ] 0

| 1, 1 1 1 "
STAPO) | |55 ANo(0) 55 4°N(0) 5 4°N,(0) < 4N, (0)
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1 2 1 0 T
6 3 6 04
1 1 11 1 1 1 1 0
= —— 624 —06—— —06*—8 ——6*+—O6+— —o°2 . (6.28
6" "2°72 2 27477 6% e, | P
—0+1 362 —35+1 b 0>
| -1 3 -3 1 J

Using the matrix in Eq. (6.28), a point on the curve can be found at high-speed
without multiplications.

In Eq. (6.28), if a certain Q;,;(j=1,0,1,2) varies, the finite difference matrix
for @, ; has to be recalculated, but it is wasteful to repeat the full calculation of
(6.28). It is more efficient to calculate the change due to only the change 4 Q. ;

of @, ;:

P0) ] [ PO T [ NsiO ]

1 1 1

34‘11(0) gé‘Pi(O) 3AN,-+1(0)

) — + a0, (629
5 4P0) — #PO)| |55 4N, (0

I (I 1

*574 P;(0) 5—34 P;(0) 53 A°N; 4 1(0)
(j=—1,0,1,2)

6.1.4 Inverse Transformation of a Curve?”

Consider the inverse transformation problem, of finding the curve defining
vectors Q; (j=0, 1, ..., n) given the knot point vectors P;(i=1,2, ...,n—1) of a

Q=@ P_.(1)
-1

P (1)

Q71:Q,, RH(”RH

Q Fig. 6.14. Inverse transforma-
"1 tion of a curve (M =4) (case of
Q.1 Q.2 a closed curve)
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uniform cubic B-spline curve (Fig. 6.1). In the case of a closed curve, the
problem is one of finding @, (j=—1,0, ..., n,n+1) given P,(i=0, 1, ..., n) (Fig.
6.14).

For both open and closed curves, the following system of simultaneous
equation holds:

i=1,2,...,n—1 (open curve)

! 2 ! =P ( ) 6.30
gQL—HrgQHrgQ(H*( . (6:30)

i=0,1,...,n (closed curve)

Since there are two fewer cquations than unknowns, the following conditions
are applied for open curves and closed curves, respectively:

@ for open curve generation:

=0, 0,=0,-, (6.31)

@ for closed curve generation:
0.1=0., @n:1=0. (6.32)

Conditions (6.31) are that the curvature is 0 at both ends of the open curve.
This condition simplifies the inverse transformation algorithm to the same form
as that for a closed curve. Conditions (6.32) are those for joining the starting
and end points with continuity up to the curvature vector to form a closed
curve.

By adding conditions (6.31) and (6.32) for their respective cases, the number
of equations is made equal to the number of unknowns, and the simultaneous
Eqgs. (6.30) can be solved. Note that equations satisfy the convergence condition
of the Gauss-Seidel method and that there is a special relationship among the
coefficients. Denote the approximation to @, obtained on the k-th iteration by
OF. After QF, ..., O have been found on the k-th iteration, the following
equation holds:

1

2
.-*71+5Q.*+f =P (6.33)

6 6

This equation can be changed into the following form.

o-rit{p-te el (634

Letting &* be the difference between the k-th and (k— 1)-st iterations of Q,, we
obtain:

Sk=QF— Q1

1 1
R N S (639
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Q. ﬁ
Q ) B & =
L e B Q
s e S B @
; ; : ;
| | H '
) : )
: | i i
i ' ! I
H | I !
! ! ' I
| i | )
P, » Q. 2 Foo I Qo
P Q) Py = Qo Fig. 6.15. P-table and Q-table in
2 D - @ H an inverse transformation algo-
- - d nithm. (a) open curve; (b) closed
Q[+ curve
For initial values, in the case of an open curve for i=1, 2, ..., n—1 (in the case
of a closed curve for i=0, 1, ..., n) @°=P,, @3=P, and Q°=P,_, (in the case

of a closed curve, @°,=P,, @V, =P,). In addition, in Egs. (6.34) and (6.35), in
the case i=1, @5 ' is used in place of QF (in the case of a closed curve, for i=0
Q%! is used in place of @ ). By making such changes that do not affect the
essential content of the algorithm, the inverse transformation can be carried out
very simply and at high speed. This algorithm is given below. 8, in the
algorithm is the allowable error, which is set initially. Symbols outside parenth-
eses give processing for generating an open curve; those inside parentheses, for
a closed curve.
Inverse transformation algorithm (refer to Fig. 6.15)

Perform the following processing with respect to each of the x, y and z
coordinates.
Step 1
Fori=1,2,....n—1 (i=0,1,...,n)

P —0,

then 0y — Q¢, Q-1 > Q0 (@i—Q-y, Qo— Cusy)-

Step 2
Fori=1,2,....,n—1 (i=0,1,...,n)

. 1f 1
0.=P,*Q1+5 IP(*E(QH+QL+1)} (6.36)
0,+0,— 0,

then 0 — 0o, Q1> Qs (@i — 0y, Qo— Quiy)
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Step 3
If max {9} > d, then return to Step 2.

If max {9} < J,, the calculation is completed.

Equation (6.36) can be applied for generation of either an open or closed
curve, and the algorithm is extremely simple. In addition, the multiplication by
4 in Eq. (6.36) can be replaced by a shift operation, so the inverse transform-
ation can be performed at very high speed.

As will be discussed below (refer to Sect. 6.2.3) this inverse transformation
algorithm for curves can also be applied to inverse transformation of surfaces.

6.1.5 Change of Polygon Vertices>®

Let us try to change the polygon vertex vectors of a uniform cubic B-spline
curve so that at the starting and end points it will appear to have properties
similar to those of a Bézier curve (refer to Sect. 6.1.1).

In Fig. 6.16, the direction of the tangent vector at the end point P, of the
curve segment P, (¢) is the same as that of the vector from Q, to Q,. Draw a
straight line from point P, parallel to line Q,Q,; the intersection of this line
with side Q, Q, of the polygon is Q, .. As was mentioned in Sect. 6.1.2, point P,
is on the line joining the midpoint of line segment Q,Q, to Q,, and is 1/3 of the

Fig.6.17. Change of a polygon vertex
in the neighborhood of the end point
of a curve
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way from Q,. Consequently, when Q, ., Q. and Q, are given, the true curve
defining vectors Q, and @, are found as:

0y=0,+6(Qp.—0.) (6.37)
-0, +2 2

30,0,

= (638)

Similarly, for the end point of the curve (Fig. 6.17), if Q,_,, Q,-, . and Q, . are
given, the true curve defining vectors Q,_, and Q, are:

Q.- :Qn—l,u‘f' Qn?“‘; LR
:M (6.39)
2
0,=0,2+6(Qnc—Cu-1)- (6.40)

The polygon Qy., Qe Q35 -ovs Qu-z, @y Q. and the curve are displayed
on the screen. If any of the polygon vertex vectors Qp., Q1 ¢, @y-1.c» Qu. that is
displayed should vary, Q,, @, or Q,_;, Q, can be calculated from Egs. (6.37),
(6.38), (6.39) and (6.40). If the curve segment that is affected is recalculated, then
it appears to resemble a Bézier curve, and the B-spline curve shape can be
controlled.

6.2 Uniform Bi-Cubic B-Spline Surfaces

6.2.1 Surface Patch Formulas

A bi-cubic surface patch can be defined using the uniform B-spline functions
(6.16) (Fig. 6.18):

PLJ(“’W)=[N0.4(“) N|,4(“) Ny 4(u) N3 4]

Qiﬂ,;—l Q.ﬂ.j Q.71.1+1 Q./1AJ+2 Noa(w)
Q.,rl Qi., Ql._[+l Q..,+2 N1‘4(W)
Q.+|,j——| Ql+|4_] Q.+1.,+| Ql+l,_]+2 Nz,4(W)
Q:+z,r| Q.+z.1 Q:+2.J+| Ql+2,_]+2 N3,4(W)

= UM B MIW" (6.42)

x (6.41)
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Fig. 6.18. Uniform bi-cubic B-spline surface patch and surface defining vectors

where:

Qi*—l,jfl Qi—l,j Qi*l,jJrl Qi*l,j+2

BR — Qi,j—l Qi,j Qi,j+1 Qi,j+2
Qi+1,j—1 Qi+1,j Qi+1,j+1 Qi+1,j+2
Qi+2,j—1 Qi+2,j Qi+2,j+1 Qi+2,j+2

U=[u? uw? ul], W=[ww?wl].

(6.43)

As shown in Fig. 6.18, one B-spline surface patch is defined by a net consisting
of 16 vertices. In contrast to the case of a Bézier surface patch, the uniform B-
spline surface patch of Eq. (6.41) generally does not pass through any of the
surface defining vector (net vertices). The 4 corner points of the surface patch
are in the vicinity of the 4 surface defining vectors Q, ;, Q; 11, Q4 ; and

Qi+1,j+1'

Let us look at the relation between the B-spline surface of Eq. (6.41) and the

Coons bi-cubic surface. Equating formulas (6.42) and (3.102) gives:
My BM} =M B-M}.
Solving this equation for B, gives:

BC:(MEIMR) BR(MC_IMR)T'
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We also have:

MLTIMR: -5

Therefore:
[ 0(0,0)

P

| =

[Q.-1,,

Q.-
Qi1
[Qis2,

This implies:

1
Q(Oqﬂ):g<

0.(0.0)

0 —

2 1
306
1 2 1
5 3 6
Oi()
2
1 1
> %

00.1) 0,00 @,01
Q(1,1)  0,(1,0)  Q,(1.1)

2

3
1
6

<

[SYICS

1
1
-1

6

Q.0.1) @,,(0.0) Q,,(0.1)
[.(1,0) Q,(1.1)  @u(1,0)  Qy(1,1)

1
— 0
6
2 1
3 6
1
— 0
2
1
0 —
2]
[ 1
6
Q:—L] Q:—|A1+1 Q:—l.,+2 2
0, Qi Qe 3
Qi+1., Q.+1.j+| Q.+L,+z 1
Qi+z,, Q(+Z,]+I Q.+z‘]+z 6
0

1 2 1
7Ql"l,j*1 +§Q.,r1+gQ.+1,rl) =

o= wln o~

253

(6.44)
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2 2 1

+3 Q.—14,+§Qx.,+ng+1,,

I 2 1

6 Q:f1.j+1+3'Q-,,+1+EQ.+14,+1
2 1
Q(O] 7g< 1 1.J+'3"Q:.J+gQL+1.J>
2
3

1 2 1
gle.ﬁl+*Q:,J+1+EQ:+1,,+1

3

1 2 1
+6 (6 Q:f1,,+2+*Q:.;+2+EQH1,,+2>

3

1
0(1,0)= ( Q.1+ Q¢+1, 1+ Q:+z; 1)

2/1 2 1
+§ EQI_1+§Q¢'+I.]+% Qiia,

g( Q-,+1+ Qi 1t Qt+2]+l>

2 1
o, )=— < 1,+§Q.+1,,+EQ,+2J> (6.44)

2 1
Ql g1tz Quir et 3 Qs ;+1>

3

¢+1, 17 Qz—l,ﬁl)

1 1/1 1
1+1.175Ql*1,/ +g 2QL+1,]+175QI*14J+1

Qu(Ol)—*( Q)= QH.,)

1
2
2
? Qi yi1— Q. 1.5+1 Q1+1 g2 le,ﬁz

: ( ) 2(‘ 2.)
Qu(l ) Q:+2; 1 Qi.j’l +§ EQHZ,,* Ql.,

2 2
1
< -+2,,+1*2‘Q:,J+1>

2
( Q. ;+2+3 Q.1 ;+2+ Q:+z ,+z>
1
2

il
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3 )3 (50mm30.m)
Q( )—7< Q:+2; Ql,] +§ EQHZ;H”"EQ;,;H

1

1 1
+g<§Qn+z,,+z’ 5y Qw+z>

171 2 1
0,(0,0)= 5 (gQ.—L]H +§Qi,;+l +gQ1+1,1+1>

{1
*2( O 1,1+ Q¢,1+ Qz+1,1)

1/1 2 1

Qw(o»]):5<th—1,]+z +§Qw+z +EQ'”"+Z>
1/1 2 i

-3 ng—1.1+§Qi.j+gQ1+l,/

171 2 1
Qw(LO):E EQ1.1+1+§Qi+l,]+1+gQi+Z,]+l
1/1 2 1
gQ;.Jﬂ +§Q¢+1,171 +ng+z,,ﬂ

T2
i
0., 1)= (6 Q:,Jerr (£ ,+z+ 0., J+z> (6.44)
1 2 1
2 Ql,]+§Ql+l,/+EQl+2,]

Q...(0,0)= ( Quirye1— 7Qt*1.j+|>

2
b ( Qiirj-1— Qruq)

0.0, 1)=— < Qi1 42— 5 Q1. J+z>

1
2
i
2
1 1
75( Q;+1_, 2Q;—1,,)

Q...(1,0)= Qn+21+1 Q;]+1>

2
< I >
Q:+z.;/1*EQi,Jf1
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(6.44)
171
Quw(]al):E(z Q-+z.,+z Q:1+2>

i
2
1/1 1
3 5Q.+z,, 5 Q
Next, let us find the relation between the B-spline surface given by formula
(6.41) and a Bézier bi-cubic surface patch (5.118). Equating formulas (6.42) and
(5.118) gives:
My B M = My B M,
Solving this equation for B, gives:

= (Mi;lMR) BR(MEIMR)T-

We also have:

L2
6 3 6
o 2 Loy
303
M=l 0o L2
B R— 3 3
o L o2 1
L 6 3 6 |
Therefore:
_QDD QDI QDZ Q03
B = QID Qll QIZ Q13
’ QZO QZl QZZ QZS
7Q30 QZH Q32 Q33
1 2 1 1
- Z — 9
6 3 6
o 2L
33
= X
1 2
0o — = 0
303
o L2 1
i 6 3 6 |
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M1
— 0 0 0 W
6
Qi Qv Qirger Qoyn]| 2 02 101
o Qi QL Qi Qs 33 3 6
iyt Qiry Qi Quiyea|| 1 L 202
QHZ,;*I QHZ,J Qn+2,_,+1 Q;+2.J+z 6 3 3 3
1
0 0 0 —
i 6 |

This implies:
1/1 2 1
Q00=g<6 Q1,1+ 3 Q.1 +6 Q.+1,,—1>

( 0.- Lty Q.]+ Q.+1,>

1/1 2 1
+g<6 [ +3 Q. 1t 6 Q:+1,,+1>

2/1 2 1
Qm :g(g le.,*"j Q.,,*‘EQ.H,,)

1/1 2 1
+ 3 (ng’l,j+1+§QLj+1+ng+|.]+1>

1/1 2 1
Qoz:§<6 Q.fl,ff' 3 Q:,,JFEQ.H,,)

2

1
+§(6Q' 11+1+ Q.]+1+ Q.+1]+1)

1/1 2 1
Q03=g 6 Q:—L,‘f'*} Q.4,+EQ.+1<,
L2
3
1

1 2 1
+g(6 Q:»1.j+z+3 Q.2+ 6 Q:+1.,+z>

1 2 1
<EQ171.,+| +§Ql,j+|+EQl+1,_{+l)

1/2 1 2(2 1
Q0= 6 <§Q..,—1+§Q.‘+|,,—1)+§(3 QL1+§Q.+|J>

1/2 1
+6(§Qz,,+|+§Qn+1‘]+1> (6.45)
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2 1 1/2 1

3 Qn.;"‘?QwL,)‘*’ <3 Q:,+1+3 [ ,+1)
2 2/(2
3Q. + Q.+1,> 3<3
2
3

1 2/(2 1
Q:.,+§Q.+1., +§ gQwH*?Q.H,]H

1
Qi./ﬂ + 3 Q.+1.,+|)

1 1
+ ( Qn.1+2+§Qn+l,]+2>

0
QZU (

2 /1 2
Q.- 1+ Q.+1, 1 +§ gQ..,‘f'?Q.H,,

1
3
2
.1+|+3Q.+|.]+1
2 1/1
3Q.+1,, +3 3 Qi1+ 5 Qivr g

E
2
=35e :
2 2
( tT Q:+1]> < Qx]+1+3Q.+1,]+|>
2
=4l :

2/1
Q:]+ Q:+|]> (?Q;,JJA"‘ Ql+l<j+l>

1
3
*( Q-,+z+ Q.+|,+z)

6
2
3

s.zf
it

I
6 1+ Q;+11 1+ Q.+2] 1)
2 1
Q-.1+’3’Q-‘+1.1+gQ.+z,,
2 1
Q..1+1+3Q.+|41+1+6Qx+2,1+1
3 .]Jr Q:+1]+ Q.+z,>
2 1
lj+l+§Ql+|.]+l+ng+2._[+l

2 1
+ 3 Q;+LJ+6 Ql+2,])

2 /(1 2 1
+§ gQ:,]+l+§Q1+l,1+l +gQ.+z,,+1

(6.45)
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L/l 5 ] (6.45)
Qs :g (g Qi,1+’3 Qi+1\,+EQ1+z.,>
2 2 1
? Qz,+1+3Q:+1 ;+1+6Q:+21+1

171 2 i
+E(gQ:.J+z+*Q¢+1A,+z+ggz+24+z><

3

6.2.2 Determination of a Point on a Surface by Finite Difference Operations

When a B-spline surface patch is given by formula (6.41), then, using the
abbreviation N; ,(t)= N,(t), the finite difference matrices 4, B, C and D given by
Eqgs. (1.113), (1.114), (1.115) and (1.116) are, respectively, as follows.

Finite difference matrix A is:

P,;(0,0) No(0) N(©) N,(0) N;(0)
1 1 1 1 1
s AP,(0,0) fANO(O) EANI(O) EANZ(O) gANS(O)
2p. 0,0 |~ AN, (0) AN, (0) S 42N, (0) | A2N;(0)
52 i\ ()2 0 2 52 3
3 ] 3 3 3 1 3
4°P,;(0,0) 574‘ No(0) 5511 N1 (0) 5711 N, (0) 734 N;(0)

Q-1y-1 Qicry Qioryrr Qonje No(0)]
Q- Q, Q,u Qe |[|NO
Q1+1 gt Qoiry Qurger Quirgea || NaO)
Qiizym1 @iz Qurzger Qvzyea [ [Na(0) ]

(6.46)

Denoting differences in the w-direction by V, finite difference matrix B is:

5V P00 No©® N N0 N (0)
1 1 1 i
— AN, (0 - —A — AN; (0
1y | | 5O MO FaN0) 5 3(0)

=|1 1 1 X

A2 2 A2 A
;TV(AZRJ(O,O)) 57 A No(0) =5 4°N,(0) Nz(O) N3 (©0)
i
L17(11311 ©o)| Lo’ ANo(0) ?AGN‘(O) 5 AN *ASNJ(O)
Lo* A
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my .
5 V No(0)
le,rl le,/ le,,ﬂ er.;wz l N, (0)
e e, e e || i
Qul,ﬁl QHI,] Qz+1,1+1 QHL)+2 lVN (0) ( )
QL+2471 Quz,/ QHZ,,H Q:+2,1+2 d 2
1
EVNJ(O)
The finite difference matrix C is:
" .
5 72 P,;(0,0) Ny (0) N (0) N,(0) N3 (O)
1 1 1 1
— ANL(0 - AN, (0 AN,(0)  — AN,(0
Lprpapgo| | 3N@ GANO SN0 SN0
=1 1 1
L ep 0.0) 5—2A2N(,(0) b_—ZAZNl(O) ?AZNZ(O) — 4N,4(0)
uUs
1 1
1 VZ(A 00)) = 3N(,(O)—A‘Nl(O) AJNZ(O)—LPN;(O)
o . _
5—217 Ny (0)
Ql—l.;»l QLALJ Q:71.1+1 le.1+2 LVZN (0)
[ 0., 0,41 0,42 52
x (6.48)
QHl,/*l Q1+1./ QHL,H Q:+1.,42 i VIN (0)
Q2,01 Qs Gz Qivzgan 52 2
1 2
VMO
The finite difference matrix D is:
1 .
( 53 V3P, (0,0) Ny (0) N (0) N>(0) N;(0)
1 1 1 1
1 — AN, (0 -AN;(0) —AN,(0) —AN,(0
1 paun oy | | 7400 ANO N0 FANO
o
1 1 1 X
1 AN (0) — 42N, (0 AZN 0) — 4*N,4(0
0| |5 N0 5 AN G N0 5 AN0)
1 : APN,(0) ! AN (0) ! A3N,L (0 ! A3N4(0
s PP (43P, 0,0) | Lo* o0 53 3 200) 53 AN O
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Q-1 Qicry Qioryn
Q1 QG
Qlil,_[*l Qlil.j Qlil.jil
Qiiay1 @iz Qivagn

X

le,ﬁz
Q:.ﬁz

QHl.Jiz

QHZ,_HZ

L

Loy
5} V3 No(0)

L
()TV‘NI(O)

1 3
577 N200

Loy
3 VN30
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(6.49)

Equations (6.46), (6.47), (6.48) and (6.49) can be combined into one equation as

follows:
o, _
5tV R,00 No(0) N, (0) N,(0) N3(0)
1 1 1 1
1 AN, (0 AN, (0 AN,(0)  — AN,(0
(5,({1 Vk(/‘l,”(o,o)) () U( ) () l( ) () 2( ) (5 3( )
1 1L N0 L AN ) S 2N, 0) L 42N,
(5“2” V"(AZI’,I(O,O)) ()7 0(0) 52 1 ( )()T 2( ) 52 3( )
L3N, 0 l/131\/0 1/13N0 LN, (0
3 V"(A3l’,,(0,0)) ()i-; 0( )F 1( ) 53 2( )(7 3( )

Q1,1 Qo1 Qi
Q-1 Oy Qs
QHI,J*I Q.H./ QHI._HI
QHzJﬂ QHZ.j QHZ‘Jil

(k=0, 1, 2, 3).

Ql*lJ*Z
Q:,]iz

QHl,_ﬁZ

QHZ,]*Z

L o

1 k
5 VN

1 k
S VN0
1 k
S VN2

1
— VEN3(0)

(6.50)

In surface shape control, if one of the @, varies, it is necessary to
recalculate all of the finite difference matrices A, B, C and D, but to do this
using Eq. (6.50) is wasteful. To perform this calculation efficiently, it should be
performed only for the change 4 Q, (4 denotes the change) and then add this
change. The equation for this can be derived from (6.50):
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1 1 B
& VP00 S PR, 0.0)
ST vH(4 £,40.0) Ser i P,(0,0)
-
gz VHAPP,0.0) sz VAP, (0.0)
1
|5 VP00 | | s PHATPL0.0)
. k |
5;}' Np+ 1 (0) 12 Nq+! (0)
P AN, 110 VEN,.,(0)
oy 4Q.,,, (6.51)
W AZNIH 1(0) VkN.H ()
|57 AN OV N @ (k=0.123: pg=-10.12).

6.2.3 Inverse Transformation of a Surface

When a lattice of points P, (i=1, 2,..., m—1; j=1, 2,..., n—1) is given the
surface defining vectors of the uniform bi-cubic B-splinc surface formula (6.41),
with the lattice points as the 4 corners of surfacc patches, can be found very
casily and at high spced using the curve inverse transformation algorithm
discussed in Sect. 6.1.4 (Fig. 6.19).

Noting that the B-spline functions become:

Nos(0)=1/6, N, 4(0)=2/3, N,4(0)=1/6, N;,(0)=0
Noa()=0, Ny, (1)=1/6, N, (1)=2/3, N;,(1)=1/6

we see that the following equation hold:

1 2 1
1’1,,=g VH,,+§ V,,,+6 Vi, (I=igm—1; 1<j<sn—1)

) 5 . 6.52)
V.,,:gQw—l*EQH‘FEQ;,,H O=igm; 1£j<n—1)

or:

1 2 1 ) .
P,/=gUL,,71+§UU+6UI.J+1 (Isism—1; 1<jsn—1)

1 2 1 (6.53)
Uu=gQ.71,,-+3Ql,+ng+1.J (1gigm~1; 0<j<n)
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v, 3 1 v,
. V 2n-1 ma 1
Viar 71
_________________ Va3 Vs
o e e
' . Vypmmm—m T — o Varz Va2
v, Ve
. 12
Voo PSR
. W Van Y Vo 11V
Vou '

Fig. 6.20. Vectors V generated as intermediate steps in the

/ surface inverse transformation algorithm

Regardless of whether Egs. (6.52) or (6.53) are used, the same Q,; can be
determined. The following discussion will use Egs. (6.52) to explain the inverse
transformation procedure.

First, apply the inverse transformation algorithm for a curve to the se-
quence of m—1 points in the u-direction P ;, P, 4, ..., P,,_,,, P,_; ;. Using
relations (6.52) gives the sequence of points ¥y, Vi, ..., Vaoigs Vit
Similarly, apply the curve inverse transformation algorithm to the 2-nd sequence
of points in the u-direction Py ,, P, 5, ..., Pp_5,, P,_, ,, thus generating the
sequence of points V5, Vi, ..., Vu-1.2, V. Repeat this procedure for all
n—1 sequences of points in the u-direction to give the lattice of sequences of
points ¥; ; shown in Fig. 6.20. Next, focus attention on the m+1 sequences of
points in the w-direction in Fig. 6.20. First, apply the curve inverse transform-
ation algorithm to the first sequence of points ¥, ;, ¥;.5, ..., ¥..—1. Then apply
relations (6.52) to generate the sequence of points Qq o, Qo.1, Qo2 -5 Qon—1>
Qo..- Similarly, apply the inverse transformation algorithm to the other m point
sequences to generate all of the Q,; (i=0, 1, 2, ...,m; j=0, 1, ..., n). These are
the surface defining vectors in Eq. (6.41).

If the order of application of the curve inverse transformation algorithm is
reversed, Eqgs. (6.53) apply. First apply the inverse transformation algorithm to
the sequence of points P, ; in the w-direction, then, with respect to the sequences
of points U, ; that are thus generated in the u-direction, apply the inverse
transformation algorithm again. The final result is the same with either method.

In the inverse transformation algorithm for a curve, we specified that the
two vectors at the ends of the point sequence that is generated must be the
same: Qy=Q,; @,_, =Q,. For this reason, the surface defining vectors that are
generated satisfy similar conditions:

0:.0=0i1, Qin-1=0:. (i=0,1,...,m) } (6.54)

QO,j:Ql,j> Qm—1,j:Qm,j (=0,1,...,n)
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6.2.4 Surfaces of Revolution

In industry, surfaces of revolution are used frequently, and are very important.
As long as rational polynomial expressions are not used, a circle (or surface of
revolution) cannot be rigorously expressed (refer to Sect. 7.4), but, as we saw in
Sect. 6.1.2, by taking the appropriate number of vertices a uniform cubic B-
spline curve can be used to approximate a circle to sufficient accuracy.
Similarly, uniform cubic B-spline curved surfaces can be used to generate
approximate surfaces of revolution, as will now be explained.

In Fig. 6.21 are shown a curve P,(u) in the plane x=z, and a circle (or
circular arc) of unit radius with center at (0,1,0) in the plane y=1. The vector
P(u,w) has components which are expressed as products of the corresponding
coordinate components of P, (u) and P,(w). P(u,w) describes the curved surface
(or part of it) formed by rotating the projection of curve P;(u) onto the x—y
plane around the y axis:

P(u,w)=[P.(u,w) P,(u,w) P,(u,w)]

=[Py () Py (W) Pyy(u) Pyy(w) Py () Py (W)]
=[Py, (u) Py (W) P1y(”) Py (u) P, (W)]. (6.55)
Therefore:
P2 (u,w)+ PZ (u,w) = P7,(u) (P, (w)+ P3.(w))
= P? (u). (6.56)

From Egs. (6.55) and (6.56), we see that the surface P(u, w) has a cross-section in
the plane y= P, (u) that is a circle or circular arc of radius P,,.

Suppose that P, (u) is a uniform cubic B-spline curve and that the circle
P,(w) is approximated by a uniform cubic B-spline curve:

P, (u)=Ny (W) V,_y +N1,4(”) Vi+N2,4(u) Viei+ N3 ) Vg (6.57)

Pz,j(W):NoA(W) I’Vj—1 +N1,4(W) VVj+N2,4(W) I/Vj+l+N3,4(W) VVj+2 (6.58)
(i=1,2,....m=2; j=1,2,...,n—2).

P (u)
Py(w)

-

/ / Fig. 6.21. Generation of a surface of
Plane y =1 z

Plane x =z revolution
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Fig. 6.22. Characteristic polygon of an approximate unit circular arc

W._., W,, Wi, and W,,, (Fig. 6.22) in the above formula (6.58) can be
obtained immediately from Fig. 6.22 when the starting point R and end point §
of the unit circular arc are given (when one circular arc is expressed by multiple
curve segments, R and § are the starting and end points of one segment) (refer
to Sect. 6.1.2):

3
W.=RR=—"—__R 6.
/ 2+R-S (6.59)
W, —RS=— & 6.60
T TR ST (6.60)

The rotation matrices M, and M, for clockwise and counterclockwise rotation,
respectively, by an angle 8 are:

R-S 0 1—(R-S)?
M(): 0 1 0

| —)/1-(R-5)* 0 R-S

[ RS 0 _]/lf(R.S)Z

M, = 0 1 0
1-(R-S)?* 0 RS

so that W,_; and W, , are given by:
W, = WM, (6:61)

W'+2:VV,'+1M1- (6.62)

J
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The x component (for cxample) P, (u,w) of the surface of rcvolution
P(u,w) is:

Pi.J,x(“’W):[No,.a(“) Nia() Nyau) Nya(u)]

Vs No s (W)
V. Nia(w)

x DF i Woe Wy W1 |00 =
Wits Nya(w)
I/l+2,x N3v4(w)

(a)

Fig. 6.23. Example of a surface of revolution (1). (a) curve; (b) surface of revolution

(a)

Fig. 6.24. Example of a surface of revolution (2). (a) curve; (b) surface of revolution
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= [N0,4(“) N1,4(”) NZ.A(“) N3,4(“)]
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[(VoraWore VW VeaWaie VeiaWaas
« VaWoix VW VWi VsWaiax
‘/lv* I,XW’I,X .[/l'*’l,xw,x I/l'+1,xw4l.x I/I+1,.Xu/[t4 2,x
LKW VoW VoW VaaaWoias
[ No.a(w)
N
% 1,4(W) (6.63)
N2.4(W)
7N3.4(W)

(a)

(b)

Fig. 6.25. Example of a surface of revolution (3). (a) curve; (b) surface of revolution

(a)

Fig. 6.26. Example of a surface of revolution (4). (a) curve; (b) surface of revolution

(b)
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Similarly, P, ,(u,w) and P;; .(u,w) can be found, so that P, (u, w) becomes:

R’j(“’w):[Nn,‘t(”) N1.4(“) N2,4(”) N3]
Qw!.;ﬂ th., le,,ﬂ Qx—],iu No.a(w)
Qx.j*] QI,_] Q1.1+l Qz.;+2 N1,4(W)

X (6.64)
Q:+1,,f1 Q:u,, in,j+1 Q.+1\,‘+2 N244(W)
0. 2,j-1 Q1+2,; Q1+2,j+1 Qz+z,,+2 Ns,A(W)
where:
Q=L Voy Vo W] (6.65)

(p=i—L i i+1,i+2;r=j—1,j,j+L j+2).

Equation (6.64) has the same form as that of a general free form surface.
That is to say, in the very general curved surface formula (6.64), when Q,, is a
vector calculated from Eq. (6.65), this surfacc is a surface of revolution with the
y axis as its rotation axis. This is very important, suggesting that it is possible
to first design a surface of revolution and then vary its shape. Figures 6.23 to
6.26 show examples of surfaccs of revolution that were gencrated according to
the thcory described above. Figures 6.27 to 6.29 show examples of shapes
designed by first designing a plane curve, then rotating it to create a surface of
revolution in accordance with the above thcory, and finally applying control to
the @,, data. This design method can be applied widely to design of shapes
which are surfaces of revolution or relatively closc to surfaces of revolution,
such as various kinds of containers.

Fig. 6.27. Example of shape control on a
surface of revolution (1)
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Fig. 6.28. Example of shape control on a
surface of revolution (2)

Fig. 6.29. Example of shape control on a surface
of revolution (3)

6.3 B-Spline Functions and Their Properties (1)

Below, we give the definition of a B-spline function.

Definition 6.12%. 1In the following 2 variable functions of x and y:

M(x; y)=(y—x)% !

{ ="' (yzx
0 (y<x)

(6.66)
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define the M-th order divided difference function M, 4 (x) with respect to the
variable y based on xq, xq, ..., X,!

M; y(X)=M[x;x,% 41, ... X, o] (j=0,1,...,n—M). 6.67)

The functions M, ,,(x) in Eq. (6.67) are called M-th order basis spline functions,
or B-spline functions.

Following are some important properties of B-spline functions and B-spline
function approximations.

(@ Let us show that the functions expressed by Eq. (6.67) are C-splines of
degree M —1 having the knots x,, X, ..., xj+M8’. Use the following identity.

= ==Y ey T (=X)L (6.68)

Take the M-th order divided difference, with respect to y, of both sides of this
identity and write the result as follows:

LyLy=x¥ "1 =(= DY L, [x =¥~ T+ L, [y—x""1].

Since the 2-nd term on the right-hand side of this equation is an M-th order
divided difference of a polynomial of degree M — 1, we have:

L,[(y=xM"1]=0.
Therefore:
L[(y=x¥ " =(=1ML,[(x—y¥ ']
Here we introduce the following polynomial W(x):
W)= (6—2,) (6= X2 1) s (6 X, )- (6.69)

Let Wi(x) be this same product with the factor (x—x,,,) omitted. Then, from
Eq. (2.16), we have:
Ly [(y—x 1] =M (%)

M (95_3‘;)1‘4171 (x_x]+l)“171 (x*xﬁM)Afﬂ]
=(—1 + ot -
=N I: Wo(x;) Wl(xj+1) ot WM(XJ+M)

This equation shows that the B-spline function M, ,(x)=L,[(y—x)¥ '] is a
spline function of degree M — 1 having the knots X, X, .1, ..., X;4 (refer to Eq.
(4.5)). However, since (y—x)¥ ™" is 0 at y=x,, X4, ... X;. When x2x .,
the divided difference with respect to y knots are 0; in other words, for
X2X;4 0 M, (x)=0. In addition, when x<x,, (y—x)¥ " '=(y—x)»"' for
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VY=Xj, Xj41, ---, X;j+ - Since this is a polynomial of degree M —1 in y, the M-th
order divided difference for it is 0; in other words, for x<x,, M; ,(x)=0.

From the above discussion, we see that a B-spline is a C-spline; in fact, a B-
spline is a special case of a C-spline.

@ “B” in B-spline function stands for basis. This refers to the important
property that an arbitrary C-spline of degree M —1 having knots x,, x4, ..., X,
can be uniquely expressed as a linear combination of n— M + 1 B-splines®:

n—-M
Sx)= Y b,M, y(x). (6.70)
=0
® Consider the case in which M —1 knots each are added at both ends of the
knots x,, Xy, ..., X,. These knots are called extended knots:

* ok * * * * * *
D ot ooxfoa xion Xl xmo1 X X 2]

=[X o1y Xoqm—2y e Xog Xg Xp oo Xy Xpig oo Xpypy—1]. (6.71)

In extended knots, x,, xi, ..., X, are called interior knots, and x_ 1), ..., X_4
and x,, 1, ..., X, 4 y— are called additional knots.
n+ M —1 B-spline functions are determined by the extended knots. It can be
shown that an arbitrary spline function S(x) of degree M —1, having the
interior knots as its knots, can be uniquely expressed as a linear combination of
these n4+ M — 1 B-spline functions”. Denoting constants by b,, we have:
n+M-2
Sx)= Y bM, ,(x. 6.72)

=0

In the following discussion, except when it is specifically necessary to make the

Gy

distinction, “*” will be abbreviated in the extended knots.

6.4 B-Spline Functions and Their Properties (2)

This book deals mainly with the use of parametric vector functions for
describing curves and surfaces. Let us now define a B-spline function with knots
expressed by the symbol t.

Definition 6.2. In the following 2 variable functions of t and u:
M(Gu)= (-1 (6.73)

:{ w@=—p™ (Zf” 6.74)
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define an M-th order divided difference function M, ,,(f) with respect to the
variable u based on (g, {y, ..., {,:

M () =M[t;t5 8,415 s Laprd- (6.75)

The function M 4, (t) in Eq. (6.75) is called a B-spline function of order M.

The B-spline functions used in practical applications are the normalized B-
splines N, (). N, »(f) is given by the following formula:

N = em—t)M, (1) (6.76)
=SMG e s G = MGG, -] (6.77)

M; (1) in (6.75) and N; ,,(¢) in (6.76) have no meaning at ¢t =t; with M =1. For
M: | we define:

J(llﬂ_l/)ﬂ (l <’<t;+1)

M, (t)= . 6.78
@) 0 (outside above range) ©.78)
In this case:
1 se<t;)®

N. (= ’ . 6.79
() { 0 (outside above range) (6.79)

It is necessary to note that (6.78) and (6.79) imply that:
1{(O=N, (=0 (=111 (6.80)

There is also a relation corresponding to Eq. (6.72) for the normalized B-
spline functions N, ,,(1); it is clear that:

n+M-2
Sit)= Z ¢N; y (). (6.81)
Let us now continue our discussion of the properties of B-spline functions.

@ The following relations hold for B-spline functions (refer to Appendix B.1).

=1 Liopm—L
Mj.M(l):ile,M*l(t)+ e MJ+1.M—1(I) (6.82)
Lim—t, Lim—1,
-~ t—1; Lym—t
Nj-M(t)77NJ.M*I(I)+7NJ+1.M*1([)‘ (6-83)
Lam-1—Y Liam— 141

*) 1n (6 78) and (6 79), note carefully where the equal sign 15 1n describing the domains of ¢
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/Nyt

Low ol 1l b Ly L R N N ]

t, I,'u b2 t,

(a) (b)

Fig. 6.30. Relation between maximum value and knots of a B-spline function. (a) M: even;
(b) M: odd

Equation (6.82) means that for an arbitrary t, M; () is the average of
M;p-1(t) and M;, ;o (t), and that for t;<t<t; ,, M;,(t) is a convex
combination of M;,_,(t) and M;,, »_,(t). Consequently, from Eq. (6.78),
M; ,(t) is positive for t;<t<t;,, and zero elsewhere. Accordingly, for M >1:

My (0)>0  (t;<t<tjsp) } 650

M y(0)=0 (t=<t; or 2ty )" -
Similarly:

Niu()>0  (t;<t<tjip) } 655

Niu()=0 (t=t; or (2tjy) . '

As shown in Fig. 6.30, the graph of the B-spline function N (¢) is, in
general, bell-shaped in t;<t <t;,,,. The maximum value of the function occurs
at tjy ), Or in its vicinity when M is even, midway between t;, 4 ;), and

tis+1y2 When M is odd.

(® As can be seen from Appendix B, in Eq. (6.81) the following relation holds:

n+M-—2

Y Nu)=1. (6.86)
j=0

Therefore, S(t) is a convex combination of ¢; (j=0, ..., n+M —2).

6.5 Derivation of B-Spline Functions

Let us find the B-spline functions of orders M =1,2, 3,4 from the definition of a
divided difference.

In general, the M-th order divided difference of a function f can be ex-
pressed as a linear combination of the M +1 function values fy, fi, ..., fu
according to the following equation:
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N, (1)
® 1 ° N5 (t)
1
t by ), t,‘»l ’,‘»2 b3
f—— [
(a) (c¢)
W N, (t) Natt)
1
t l;lﬂ L2 t (NEI NP et tyea
P p——
(b) (d)
Fig. 6.31. B-spline functions for M =1, 2, 3, 4
fo S
f[thtla---’tM]: - +- N s 4N
(to—ty) - (to—ta)  (E1—1o) (ty—13) ... (E; —Lpr)
+ .o+ S . (6.87)
(ty—to) - (tyy—trr—1)
Case of M=1:
From Eq. (6.79) we have:
1 t.Zt<t;
N,-l(t)={ (st <tjs) (6.88)
’ 0  (outside above range)

The graph of N;,(t) is shown in Fig. 6.31(a).

Case of M=2:

Setting M =2 in Eq. (6.76) gives:
Nj,Z(t):(tj+27tj)Mj,2(t)

=(tjea—t)MUt; t;, sy, tjy,]

— _ ([j_t)+ ([j+1_t)+
=2ty {(tj_tjﬂ) (ti=tiv2)  (Ge1—1) 1 —tjs2)
(tir2—1)4 }:
(te2— 1) (2= i1 1)
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0 (t=t)
-1,
- (t,<t=t,4q)
Lyt
T bt (6.89)
i (£y41<t<l,42)
L=l
0 (=Y
The graph of N ,(t) is shown in Fig. 6.31(b).
Case of M=3:
Setting M =3 in Eq. (6.76) gives:
N,3O)=(,3—)M, 5(t)
=t —Mt e, b, g, sl
t,—1)3
:(z/u-z,){ & Li
(lj*ljﬂ) (6, —=t,42) (6, —1,43)
. (tyer— 02
(i1 —=1) (a1 —t,42) (6,01 —t,43)
(t2—1)%
(2= t) (e — 1) (Gez—tj43)
(lj+371)2+ }
(r/+371j) (Z/+37r1+1)(z1+3_l_/+2)
0 (t=t)
N
(i<t=t.q)
(61 =) (2 —1)
{7 _/+3 t)
HS ( (l,+3 ,+1)(1+371j+2)
= (6.90)
(lj+z_l) }
— — - = (1, 1 <t=t,,,)
(tjra=t) (o=t 1) (63— 1,1 5) i e
(t1+371)2
— (t,42<t<tii3)
(l/+34t1+1)(1j+3_z_]+2) 2 3
0 (rztj43)
The graph of N, 4(t) is shown in Fig. 6.31(c).

Case of M=4:
Setting M =4 in Eq. (6.76) gives:
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Nyal)=(t,a—1)M, 4 (1)

=(aa—MUIG G, gy iy Uass Ural

A e T R vii
(6=t y) (G—=t,2) (—=1,03) (t—1,14)
i (ljn*l)i o
(et =) e —Lya2) (G =L 3) (a1 =1y 4a)
i (t_/+271)3+
(2= o=t ) a2 = 43) (Gra—11a)
i (’j+3*l)3+

(Gas= ) (Gea— L) (Gas—t2) (ra—1t4a)

+ (l_,+471)1 }
(aa=t) (Gra—1t41) Gaa—L42) (Lea—t43)
(t

0 ' =t)
(t l){ (l]+17t)
+47
! Ty = 1) (e L) (1 —143) (a1 =1 44)
(t42—1)°
Gaa=t) (2= 0 1) (€ua—1,43) (Gea—l)4a)
(l/+3_l)3
(e 1) (Gas—ten) (Gra—L42) (a3 —1Lra)
(t4q—1) }
+ — — — (t,<t=t)y)
(Gea=t) (Gea— 1t 1) (GGea—1a2) (Gra—143) ! ’
6.91)
( z){ (2 0"
— a2
" ’ (',+271j)(l,+271_,+1)(l,+z*l,+3)(l/+z_t_,+4)
n (t,+5—t)
(=) (63— Ln) (a3 —142) (3= 14g)
(lj+4fl)3 }
+ - - — ¢ (e <USl4)
(tia=1) Gra— ) (Gaa—12) (Gra—1,43) ! ’
(t+3—1)°
(ty+a—1)) y
(a3 —t) Gzt ) (Gaa—Liea) (31 4a)
(l_/+4_l)3 }
+ - — ——— ¢ (2<U=143)
(Gaa= ) (Gea—ten) (Gaa—142) (Gra—143) ! !

(l,+4*l)J
N Y (l +3<l<t+4)
(l,+4*t,+1)(t/+4*l_,+z)(l/+47t/+3) ! !

0 (=2 )




278 6. The B-Spline Approximation

The graph of N;4(t) is shown in Fig. 6.31(d).
Next, for the cases M =3 and 4, let us calculate Ny (t) with t;=j—(M —1)
(j=0, 1, ..., 2M —1) as the knot vector elements.
Case of M=3:
Since T=[tot, t,t3t,ts]=[—2 —10123], from Eq. (6.90) we have:

0 (tz-2)
;(t+2)2 (—2<t=—1)
Nosl(t)= —12—t+% (—1<t=0) (6.92)
;i (t—1? 0<t<1)
0 =1
0 (t=-1
%(an (~1<1=0)
Nys(t)= 3(1—1)2+1—(2~t)2(=~t2+z+1) 0<t=1) 6.93)
3 2 2 2 = '
1
2(#2)2 (1<t<?2)
0 (t22)
0 (t=0)
o<z
Nys(t)= —t2+3l-; (1<t=2) 6.94)
—(t—=3)? 2<t<3)
0 (t=3)
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Case of M=4:

Since T=[tot; tyt3lslslst;]=[—3 —2—-101234], from Eq. (6.91) we
have:

Noalt)=

(—2<t=—1)

(—1<t=0)

Ny ()= (6.96)

0<is1)

=}
=
I\
B

o~ o

3 2 3 I 3
SIS - ()

1 1 1 1
Nya(t)= <=_513+5’2+§l+g>i (0<t=1) 6.97)
1

L (<t=2)

l 3
—¢ =3 (2<t<3)

0 (tz3)
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0 (t=0)
Fn
—(t=2P+- (-3 ——(t—4)° (1<t£2)
N3a(t)=1 2 1 (6.98)
S (k) — Y 2<t=3)
3 6
——(t—4)° (3<t<4)
0 (t=4)
From the above equations, we see that for 0<t<1, N ( ) (i=0,1,2) and
N;4(t) (i=0,1,2,3) are the same as Y;(t) (i=0,1,2) and X,(r) (i=0,1,2,3),
respectively, which were derived in Sect. 6.1.1. If the graph of Ng (t) can be

obtained, then it is also clear from the above equations that N ,(t) can be
obtained by horizontal translation (Fig. 6.32). In the case of t;=j—(M —1), we
have:

Njm(t)=No p(t—J). (6.99)

Js

Noa(t) Nis(t) Npglt)

-2 - 0 1 2 3 ' s
-~
to t ty t3 1y ts
(a) M=3

- 3 - - 1 3 1 P
to 2] 2 t3 t4 ts te t7
(b) M=4
Nom(t)  Nim(t) Ny 2m(t) Ny 1m(t)
—(M-1)---——mmmm oo 0 ]-—— e M

-

R e e DL B L L LD DL IM-1 EMm=—mm— e e tem 1

(e

Fig. 6.32. How N; y(t) (j=0, 1, ...) are related to each other through horizontal translation.
(a) M=3; (b) M=4; (c) general case
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No.p(t) can be expressed in the following form:

1 M i M M —
N“M”):Eﬁiiﬂyggt_”< i)a+A4—1—n+ L (6.100)
Therefore:
1 ud i M . M —
N;MU)=(A4_1ﬂi§%(—l)( i)(t+A4—1—4—1)+ ! (6.101)

(j=0,1,...,M—1).

6.6 B-Spline Curve Type (1)

Using the uniform B-spline functions that were derived in Sect. 6.1.1, the
following types of B-spline curves can be determined.

(A) Open Curve

A class CM~2 open curve (of degree M —1) consisting of n—M+2 curve
segments P;(t), with a curve defining polygon determined by the n+ 1 position
vectors Q,, Q,, ..., @,, can be expressed by the following functions, where M is
the order of the B-spline functions (Fig. 6.33).

i+tM-2

P()= ) N m®Q (0=t=1) (6.102)

j=i-1
P, (0)=P, Py yi2a()=P_ i3
(i=12,...,n—M+2)

P,P,, .., P,_,.;are the ends of the curve segments.

Q;

Q

Q()

Fig. 6.33. B-spline curve form (1) (open curve)
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(B) Closed Curve

A class CM~2 closed curve (of degree M —1) consisting of n+ 1 curve segments
P.(¢) (i=0, 1, ..., n), with a curve defining polygon determined by the n+1
position vectors Q,, Q4, ..., Q,, can be expressed by the following function
(Fig. 6.34):

Qs Fig. 6.34. B-spline curve form (2) (closed curve)
i+M-2
Py(t)= Z Nj~i+1,M(t) Qjmod(n+1) O0=t=1) (6.103)
j=i—-1
P;(0)=P;
(i=0,1, ..., n).

For example, if the order of the B-spline function is M =4 and n=35, function
(6.102) becomes:

P(t)=Nos(0) Qi1+ N 4() Qi+ N, 4(t) Qi  + N3 4(0) Qi »
(i=1,2,3)

and (6.103) becomes:

Pi(t)=No 4(t) Qi 1)mode T+ N1,4(t) Qimode T N2,4(1) Qi + 1ymodas + N3,4(t) Qi+ 2)moas
(i=0,1,....5).

The relations between these curves and their curve defining vectors are shown in
Figs. 6.33 and 6.34.
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6.7 B-Spline Curve Type (2)

In functions (6.102) and (6.103), each B-spline curve segment is defined within a
parameter range of 0=¢ < 1. Noting that N » (£), Ny 5 (), N, (t) ... are related
by horizontal translation, the total curve can be defined as follows.

(A) Open Curve

A class CM~2 open curve (of degree M —1) consisting of n—M +2 segments,
with a curve defining polygon determined by the n+1 position vectors Qq, @,
Q,, ..., Q,, can be expressed by the following function:

PO=3 N,,)Q, (O0St=n-M+2) (6.104)

j=o

where the knot vector T that determines the B-spline function is specified as
(Fig. 6.35):

T=[to t, ... tyrm]®=[—(M—1) —(M—2) ... n+1]. (6.105)

(B) Closed Curve

A class CM~2 closed curve (of degree M —1), with a curve defining polygon
consisting of the n+1 position vectors @, O, ..., @,, can be expressed by a
single function as follows:

n+M—1

Pt)= Y N} Qs (OZtSn+1) (6.106)
=0

where the knot vector T that determines the B-spline function is specified as
(refer to Fig. 6.35):

T=[ty ty - byyoy 1] =[~(M=1) =(M=2) ...n+M].  (6.107)

B-spline curves defined in type (2) arc cxactly the same as those defined in
type (1).

* In function (6 104), 1t 18 necessary to determine n+ 1 B-sphine functions. From Sect 63 (3), the extended
knots that include the interior knots fo. ¢y, . , t, define n+M — 1 B-spline functions, so to determine n
+1 B-spline functions we must specify the internal knots o, #,, .., &, -, therefore, the extended knots
are.

[opeen ooz - foft fampgrn bones - Lnd =08 00 ghoy 6 i Gy 6]
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6.8 Recursive Calculation of B-Spline Functions

B-spline functions are easy to calculate recursively using Eq. (6.83) (for its
derivation refer to Appendix B.1).

If order M (degree M —1) and knots t, t,, ... arc specified, the B-spline
functions N, ,(t) are found from the following formula (refer to Sect. 6.4):

I (St<t,, )P
N..(t)= 7= I+ 6.108
(@) {0 (outside above range). ( )
For the case M >1 we have:
t—t; tam—t
Nju()= S N O+ Ny 0. (6.109)

t]iM*l‘tj t,+M_tJ+1

Two or more coincident knots are permitted, with the convention that 0/0=0.

To find N; () from formula (6.109), it is generally necessary to know
Njp-1(t) and Nj,y a1 (t). Also, to find N 4, (t) and N,y 4 (t) it is
necessary to know N, 5 (1), Njy i y-2(t) and N, 5, (t). Continuing this to
the last step, we see that we need to know N i (t), Ny (), ..oy Nyppo1.1(0)
Since these arc known, N (t) is determined.

Now we will use formulas (6.108) and (6.109) to find some B-spline
functions.

Example 6.1. With the knot vector
T=[toty ...tz ]=[-M—-1) —(M=2)..M—1 M],

calculate B-spline functions recursively for the cases M =2, 3, 4 using formulas
(6.108) and (6.109).

Solution. Case of M=2: When M =2,
T=[ty t, t, t3]=[—-101 2].

In formula (6.109), setting j=0, M =2 gives:

t—t, -t
N (t)= P

No,()+
o Noa 0+

=+ No ()+(1=1) Ny, (1).

Ny, (1)

* Note that there 1s no equal sign on the ¢, , side Therefore, when t,=t,,,, N, ,(t)=0
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From (6.108) we have:

0 t<—1)
141 (—1=£<0)

No20=11_, (0<e)
0 (>

Setting j=1, M =2 in formula (6.109) gives:

Nia(= N0 N0

:tN1,1(t)+( —t) Nz,l( )

Thercfore:
0 (t<0)
Ny )= t 0=e<)
120=y,_, (1=t22)
0 (t>2)

Case of M=3: When M =3,
T=[to ty ty t5 t, ts]=[—2 —-101 2 3].

Setting j=0, M =3 in formula (6.109) gives:

Nos(0)= Noz(t)+ Nl,z(f)

=5 t+2) No,z(t)+§ (1=t N, ().

Similarly:

t

N1,3(t):t — let)+ sz(t)
3
1 1

:E(H'1)N1,z(t)+z(2*t)Nz.z(I)

t—

NzAs(t):t *Nz z(t)‘\“* Ns 2(0)
i

1
:,2, szz(t)+5 (B3—t)N;,0)
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t—t, t,—t
No,z(t):ﬁ]vo,ﬂt)‘*'tz Nl,l(t)
1~ %o 2 h

=(t+2) N0,1 ()=t Ny, (1)

t—t, t3—t
Ni,(t)= N+ N, (t)
1,2 tht, 1,1 ti—ty 2.1

=+ DN O+ -0 N, (1)
t—t, t,—t

ti—t, Nz'](t)+t47t3 Ns,l(t)
:thAl(t)‘*'(z_I) Na,l(l)

t—t, ts
N3, (t)= Nsa )+
3,2 fets 1 s

=(-1) N3.1(I)+(3*t) N4,1(t)~

—t
N4,1 (t)
—ty

From the above equations we have:

Vasl0= 5 052N, 0 (== N 04 6 07N
vaj(z)zg(tqt1)2N,vl(t)+(—t2+t+%) szl(t)+%(t72)z N3 ()

2 1
Nos(t) = 2” NZ,l(t)+<At2+3t7%> N3,1(t)+5(t_3)2N4,1(1)<

Therefore:
0 (t<—=2)
1
5(t+2)Z (—2=5t<—1)
1
Noa(t)= 7t271+5 (—1=1<0)
1
S 0=
0 @t>1

287
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0 t<—1)

%(Hl)z (—1=1<0)
N, ()= 7t2+t+% [((ES23))

1

5(t~2)2 (1=t=2)

0 (t>2)

0 (t<0)

[2

) (0<t<1)
N, ()= 7t2+3t—2 (1€1<?)

1

3 (t—3)? (2=13)

0 t>3)

Case of M=4: When M =4, the knot vector is:
T=[tq t; t; 314 b5 g t;]=[-3 =2 —-101234].

Therefore:

—

1
N0,4(I):§(t+3) No,a(‘)“’*(l‘t) N1,3(l)

3

1 1

N1,4(t)*§(f+2)N1.3(I)+§(2*I)Nz,a(f)
1 1

Noalt)= g(H‘l)st( 3(3_t)N3,3(I)
1

N3,4(I)*3 ths(tH' (4=1) Ny 5(0)

Next, find Ny 5(t), Ny 5(t), N 5(t), N5 5(t) and Ny 5(2):
1 1
No.s(l)zi (£+3) No,z(l)"'i (0—1) Ny 5(1)

1
Nis()=7 +2)N lz(t)+ (1=1) N2 5 (1)
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1

Nz,s(’):E(H“l)Nz‘z() 5(2 t) Vsz()
1 1

N3a@=7 (t+0) Ny 5 (0)+5 B0 Nao(1)
1 1

N4,3(1)= ) (I*I)Nzt,z( )+ 5(4 Z)Ns 2(t)

Next, find Ng5(t), Ny 2(t), Npo(t), N3 () Nyo(t) Nso(0):

No2(t)=(t+3) No, (1) +(

N (O)=@+2) Ny () +0—1) N2, (1)
No )=+ 1) N, () +(1—t) N3 1 (1)
V},Z(t)_tNJI() 2=1t) Ny, (1)
Nya(t)=(0— AI(t +(3— l)Ns,l(t)
Nsa(t)=(t— 2Ns.( )+(@—1) Ne,, ()

—1=ON, ()

g

From the above equations we have:

N t71t33N { l323 ! 13}N

04(0) = (43P Noy (0 + —(t+ 1P+ 02— (1= 1% Ny 5 (1)
{2 5! 13}N t 1)°N
36D zx()**(l*) 3a(0)

Ny 4t)= 7(l+2) Nm(l)+{*t’+3(lfl)sfg(l*%a}/"z.l(t)

3 1 3 l 3

+{§(I—1) —5 =2 }Ng..(t)—f(l*Z) Ny (1)

’Vu(t*l (t+1° Nz,l(l)+{~(t*1)3 (t-2°~ (t 3)}Ns,|(t)
{ (t=27— (l 3)}N4,.(I)*6'(l*3)3Ns,u(l)
1 2 1

N3a()= 7t3N31(t)+{ (l—2)3+§(l'3)3*g(l*4)3}Na,-(f)
2 N0 4 N0

Formulas (6.108) and (6.109) define B-spline functions for knot vectors that
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have multiple knots. In the case M =4, the effect of the multiple knots on the
B-spline functions is discussed in Appendix C.

Next, let us give an example of how to compute B-spline functions when
there are multiple knots.

Example 6.2. When the order is M =4 and the knot vector is:
T=[ty ty ty t3t, tsts t;]=[0000111 1]

find the B-spline functions N 4(t), Ny 4(t), N5 4(t), N3 4(t).

Solution. Noting the condition on t in Eq. (6.80) and the convention that
0/0=0, we have:

NO,!(t):Nl,l(t)ZNZ.l(t)=N4.l(t):N5‘1(t)zNG,l(t)=0}
N3, (0)=1 (0=t<1)

Using these relations, we obtain:

No,z(t)= N01(t)+ N11(t) 0

t—t
Nial)=1 ; R
2

Nzl(l)‘l'

Nz.z(t)=t N}l(t) (I—-t)N;3 (1)
3=

__t Naa(§)=tNy, (0
4

—t
Noa(®) == Noa @+ N5, ()=0
4 5
t—t t;—t
Nsa(t)=— - Nsi O+ ~Ne.i()=0
6 7 6

Using the above results, we obtain for N 5(t), Ny 5(t), N, 3(t), N3 3(t), Ny s(t):

t—t ty—t
Nos(t)= 7;) No,z(t)*'t3 Ny,(0)=0
) 3—h
t—t, s
Nl.S([)=t 12(t)+ Nz 2()=(1—=1)*N3,(t)
—
t—t, ts—t
Ny s(t)= N, (0)+ N3 (t)=2t(1-t)N; (1)
ty—1 ts—13
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t—t te—t
Nys(0)=——" N30+ °— Nor()="Ny (1)
t57t3 t67t4
t—t t;—t
Nos(t)=——-Ny o)+ N ,(0)=0
te—1ts t;—1s
Therefore:
t—ty ty—t N
Noalt)= Nost)+———N3(()=1—1)" N3, (1)
t37[0 t47t1
t—1t, ts—t N
Ny4t)= Nis(t)+ ———Ny3()=3(01—1)tN;, ()
t,—ty Is—1,
t—t, te—t )
Noat)= Nos(t)+ ——N3;3(6)=3(1—1)t*N; (1)
ts*lz t67t3
t—t t,—t
Nya(t)=——"Nays(O)+ ——Nos(()=1Ny (1)
te—t3 ty—t,

From the above results, for 0t <1 the B-spline functions become:

Noa()=(1~1)°=B,5(t)
Ny (0=3(1-1)t=B, ()
Nya()=3(01-0)t*=B,;(1)
N3.4([) == Bs,a(t)

It is known that these agree with Bernstein basis functions of degree 3 (refer to
Sect. 6.9(8)).

6.9 B-Spline Functions and Their Properties (3)

When B-spline functions are calculated using formulas (6.108) and (6.109),
multiple knots can be specified.

® (Multiple knots and continuity of functions.)*®
Suppose that k, knots have the same value as t;:

I TV

Then, at ¢,, the continuity of the B-spline functions N; ,, is reduced to C¥ %',
A B-spline obtained with internal knots having a multiplicity k, of 2 or more is
called a subspline basis. In contrast, a basis which has k;=1 for all i is called a
full spline basis. The relation between multiple knots and continuity of func-
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tions is given both mathematically and graphically for the case M =4 in
Appendix C.

A basis for which the multiplicity k; is O for all i can be regarded as
corresponding to a single polynomial. In this case, with the degree M —1 and
continuity C* ™!, the knots are sometimes called pseudo-knots.

@ (Number of nonzero basis functions.)

For a t such that t=t;, there are always M nonzero basis functions of degree
M —1. For a t such that t=t;, if k; is the multiplicity of that ¢;, the number of
nonzero basis functions is M —k;. Therefore, in the case of a full spline, there
are M — 1 nonzero basis functions at the knots and M between knots.

Because of this property, to calculate a point t=t, (;<t,<t;,,) on a B-
spline curve it is sufficient to calculate the M values of Nium (ts) for j=(i—M
+1), ..., i This is because the other N; (t;) are zero (refer to Fig. 6.36). This
implies that:

Pt)= Y Niu(t)Q; (6.110)
j=i—-M+1

When t;<t,<t,,, is specified, the B-spline functions for M =1 are zero, except

for N; ((t,)=1, so that, as shown in Fig. 6.37, the M values N;_p ., p(2), ..,

N; (t,) can be found all at once from formula (6.109), in sequence starting from

Ni,l(ts)'

/

N ot t!

: : Fig. 6.36. Nonzero N () when t;<t,<t;, ;.
town fotog Case of M=4
Nt
N2 (k) Nyl
N 25l N, sl Nosle)
Nyt N g (e N/m4
Ny (1) Ny (8- mmmm o Noy i lt)
\ ’/ Fig. 6.37. Hierarchical relation among
L B e N ylt,) B-spline functions (t;<t,<t;, )
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0 0 0 0 0 0
NU,I NI.I ————————————————— NM 2.1 NMI NMH,] ————————————————— NZM 2,1

\/N/N\/ N/ N/ N/

NMS Niy s Noys NM.M\: Nna/n,{‘:x Nu+2,m-3
NU\M -2 NI,M'Z NM,M 2 NMi].M 2
Nowm- Nyw
(a) (b)

Fig. 6.38. Explanatory diagram for Ng pr_; ()= Ny -1 (t)=0

(Relation between B-splines and Bernstein basis.)
Suppose that an extended knot vector has internal knots [0 1] and the
additional knots on both sides are [0...0] and [1... 1] respectively:

to ty oo ty—1 by taar e baa—g
0O 0 ... O 1 1 1
\ J C J
Y 2 4
M knots M knots

Let us look at the B-spline functions with such a knot vector. In formula
(6.109) we have:
o for the case j=0.

As shown in Fig. 6.38(a), the value of N ,_,(t) is related to Ny, (t), Ny ; (t),
s Npp—o.4(t). From Eq. (6.79), No1(t)= ... =Np—5.1(t)=0, so Ny p—;(t)=0.
We also have t,,_; —t,=0, so, using the convention that 0/0=0:

Niu®)=(0—t)N;sy p-1() (j=0) (6.111)

e for the case j=M —1.

As shown in Fig. 6.38(b), the value of Ny, _,(t) is related Ny ,(t),
Nuyri11(), ooy Nypr—yp4(t). From Eq. (6.79), Ny ()= ... =N,y -, 41(t)=0, so
Nya-1(t)=0. We also have t,,_,—t,,=0, so, using the convention that
0/0=0:

Njm(@)=tN; () (j=M-1) (6.112)

o for the case j+0, j=M—1.
From formula (6.109):

Nim@)=tNjp -1 () + A=) Njyq a1 (). (6.113)
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Noa (D) Nig(8) Ney(t) Nyy (1)

-3 =2 -1 0 i 3 3 !
(a) T=[tg t, ts t3 ts b5 t5 t7)=[—3 —2 —1012 3 4]

—~

Ny (t) N, (1)

Noaft) N3 4(t)

-2 -1 0 1 2

Nos(2) Nig(t) Noy(t) Nay(t)

-1 0 1 [72 . (d) T:[to By ty I3 b4 Is5 s t7]

(e¢) T=ltot:1 ty t5 t; 85 tg t7]=[~1 =1 ~101222] =f00001111]

Fig. 6.39. Conversion from B-spline functions to Bernstein basis functions by increasing
multiplicity of knots

It is known that Egs. (6.111), (6.112) and (6.113) are the same as Bernstein
basis equations (5.73) and (5.75). A Bernstein basis is a special case of B-splines
(refer to Example 6.2). Figure 6.39 shows how a B-spline function approaches a
Bernstein basis as the multiplicity is increased in the case M =4.

® (Rigorous expression of a straight line.)
In Eq. (6.72), if the b; are taken to be values on a straight line, S(x) is that
straight line.

The polynomial (6.72), which is a linear combination of B-spline functions,
has the same variation diminishing property as a Bernstein polynomial:

b(S(x) v (b).

The geometrical significance of this property is discussed in Sect. 5.1.4 ®.

6.10 B-Spline Curve Type (3)

In B-spline curve types (1) and (2), in general the curve does not pass through
the points Q;, but, as discussed in Sect. 6.9, when there are M multiple knots at
the start and end of a knot vector, then at the start and end of the curve the
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relation between the curve defining vectors and the curve shape is similar to
that for Bézier curve segments. Specifically, the starting and end points of the
curve coincide with Q, and Q,, respectively and the slopes of the curve at those
points are the directions of the vectors Q,Q, and Q,_, Q,.

In curve types (1) and (2) the intervals between knots are all 1; but in the
following curve type they are arbitrary.

(A) Open Curve

An open curve (of degree M — 1) consisting of n— M +2 segments, with a curve
defining polygon determined by the n+ 1 position vectors @y, Q,, ..., Q,, is
expressed by the following function:

P()=Y Niu®)0Q; (a9<t<ay_yes) (6.114)
j=0

where the knot vector determining the B-spline functions is:

T=[ty ty ... tysnl-
The knot values are determined as follows (refer to Fig. 6.35):

t,=a, i=0,1,....M—1
ti+M=ai+1 l:O, 1,...,n_M

(6.115)

ti+n+1:an—M+2 l=0) 19’M_1

The open curve expressed by function (6.114) has a starting point that
coincides with @, and an end point that coincides with Q,. The relation
between the knot values and curve segments is shown in Fig. 6.40.

Qs

Q

Q,

Qoé ===y = M1 _Qn
WEh=" =y 1= P(1)= X N.y(1)Q, a1 = a2 = = Loy = Gy Ms2
=

Fig. 6.40. Relation between curve knot values and curve segments (case of an open curve)
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(B) Closed Curve

A class CM~ 2 closed curve (of degree M — 1) consisting of n+ 1 segments, with a
curve defining polygon determined by the n+ 1 position vectors Q,, Q,, ..., O,
is expressed by the following function:

n+M-—1
P(t)= Z Nim®) Qimodn+1y (Ao St=a,4 ) (6.116)
j=0

The knot vector that determines the B-spline functions is:

T=[to ty - tysam—-1]-
The knots are as follows (Fig. 6.35):
i:aO_(an+1_ai+n—M+2) l:07 1,,M—2

P i=0,1,...n+1
Lionime1=0ny1+ @y —ag) 1=0,1,...,M—-2

(6.117)

The relation between the knot values and curve segments is shown in Fig.
6.41.

Po(t)
1=a,(1=an+1)

Fig. 6.41. Relation between
curve knot values and curve
S segments (case of a closed
P,.(1) =N, m(t) Qmod(n+1) curve)
=

In a B-spline curve, a curve generated by knot values corresponding to
internal knots which are specified at equal intervals is called a uniform B-spline
curve; a curve generated by knot values specified at unequal intervals is called a
non-uniform B-spline curve.

Example 6.3. In the case M =4 n=8, find all of the uniform B-spline functions
needed to generate an open curve of B-spline curve type (3).
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Solution. With a;=i (i=0,1,...,n—M +2), the knot vector T is:

T=[to t, t; t3 ty ts ts t7 lg Lo Lyg Ly t15]
=[00001234566 6 6]

There are multiple knots. The B-spline functions can be found from formula
(6.109). Here we use the results from Appendix C.

No,4(f)
Ny 4(t) for the knot vector [0 0 0 0 1] is, from Appendix C, Eq. (C.4):
Noa4(t)=—(t—1 (0st<1)

Nl .4(’)
N, 4(t) is for the knot vector [0 0 0 1 2]. From Appendix C, Eq. (C.3) this

t—(7t2~]8t+]2) 0=t<1)
NI,A(t) = 1
- (-2 (15122
4
N, 4(0)
N, 4(t) is for the knot vector [0 0 1 2 3]. From Appendix C, Eq. (C.2) this is:

12
5 (=11e+18) 0<t<1)

7 9 3
N, ()= o B -324 ) (15t<2)

1
fg(H)’ (25123)

N3 4(0)

N; 4(t) is for the knot vector [0 1 2 3 4]. From Appendix C, Eq. (C.1) this is:
: r? 0<t<1

13 (O=t<1)

2 1

—(z—2)3+§(z—3)3—g(z74)3 (1<t<2)
N3,4(t):

i—(t73)3—%(t74)3 (25t<3)

gy (=r=d)
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Ny alt)

N, 4(t) is for the knot vector [1 2 3 4 5]. Appendix C, Eq. (C.1) gives the
Ny 4(t) for [0 1 2 3 4]. N, 4(t) is obtained by translating this function to the
right 1 unit:

,] (t—1)3 (1=t<2)
. <
= M CET2S)
N4,4(t): 2 1
g(z74)375(z75)3 (3=t<4)
Ag(t—S)S (4sis9)
Ns ()

Nj 4 (t) is for the knot vector [2 3 4 5 6]. This is obtained by translating
N, 4(t) obtained above 1 unit to the right:

;(t—2)3 (2g1<3)
~(t—4)3+§(t~5)3~%(t—6)3 (3t<4)

M= 2: 5)3 ]t 6)° 4<t<5
3(*)*6(*) (4=t<9)

7%@76)3 (5<t<6)

No.a(1)

N 4(t) is the same as N, 4(t) for the knot vector [3 4 5 6 6]. Appendix C,
Eq. (C.5) gives N, 4(t) for the knot vector [0 1 2 3 3]. Ng,(t) is found by
translating this 3 units to the right:

]6(z73)3 (3<t<4)
Ngo(t)= —%(t—3)3+%(t—3)2—%(t—3)+% (4<t<5)
]]2 (6—1)*(11¢—48) (551<6)

N;4(0)
N, 4(t) is the same as N, ,(t) for the knot vector [4 5 6 6 6]. Appendix C,
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Eq. (C.6) gives N, 4(t) for the knot vector [0 1 2 2 2]. N, ,(t) is found by
translating this 4 units to the right:

%(t—4)3 4=t<?)
N7,4(t): 1
" (6—1) {7(t——4)2—10(t—4)+4} (55t<6)
Ng4(t)

Ng 4(t) is the same as N, ,(t) for the knot vector [5 6 6 6 6]. Appendix C,
Eq. (C.7) gives N, 4(t) for the knot vector [0 1 1 1 1]. Ng,(t) is found by
translating this 5 units to the right:

Nya()=(t—5 (5<1<6).

Graphs of N 4(t), Ny 4(t), ..., Ng 4(t) are shown in Fig. 6.42.

Fig. 6.42. B-spline functions for
generating open curve for M =4,
n=38 (curve type (3)) (Example 6.3)

Example 6.4. Using the results from Example 6.3, calculate the open curve for
the case Q,=[00], Q,=[1030], Q,=[3050], Q5=[4055], Q,=[6020],
Q5=[8090], Qs=[90 40], Q,=[120 50], Qs =[160 0].

Solution. From Eq. (6.114) the curve parameter range is from a,=0 to a,_ 4>
=8—4+2=6. Values calculated for the B-spline functions found in Example
6.3 at intervals of 0.25 in ¢ are given in Table 6.1. Results of the calculation of:

8
P(t)= Z N;4(t)Q;
i=0

using the values in this table are given in Table 6.2. The B-spline curve is shown
in Fig. 6.43.%

*) In practice, it is desirable to use formula (6.109) and determine the point on the curve, as demonstrated in
Example 6.7.
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Table 6.1. Values of B-spline functions found in Example 6.3

t | No,s l Nis ' Nou \ N,y ~ Ny \ Ns,4 [ Nega | Nrg Ns,4
0, 1 0 0 0 0 0 0 0 0
0.25 0.422 0.496 | 0.079 | 0.003 | O 0 0 0 0
0.5 0.125 0.594 | 0.260( 0.021| O 0 0 0 0
0.75 0.0156| 0.457 | 0.457 | 0.070 | O 0 0 0 0
1 0 0.25 0.583 0.167| 0 0 0 0 0
1.25 0 0.105| 0.577 | 0.315( 0.003| © 0 0 0
1.5 0 0.031 | 0.469| 0.479| 0.021| O 0 0 0
1.75 1} 0.004 | 0.314| 0.612 | 0.070 | 0 0 0 0
2 0 0 0.167 | 0.667 | 0.167 | 0 0 0 0
2.25 0 0 0.070 | 0.612| 0.315| 0.003| O 0 0
2.5 0 0 0.021 | 0.479| 0.479 | 0.021| 0O 0 0
2.75 0 0 0.003 | 0.315| 0.612| 0.070| 0 0 0
3 0 0 0 0.167 | 0.667 [ 0.167 | 0 0 0
3.25 0 0 0 0.070 | 0.612| 0.315] 0.003| O 0
3.5 0 0 0 0.021 | 0.479 | 0.479| 0.021 | © 0
3.75 0 0 0 0.003| 0.315| 0.612| 0.070( O 0
4 0 0 0 0 0.167 | 0.667 | 0.167 | O 0
4.25 0 0 0 0 0.070 | 0.612 | 0.314 | 0.004 0
4.5 0 0 0 0 0.021 | 0.479 | 0.469 | 0.031 0
4.75 0 0 0 0 0.003 | 0.315}| 0.577 | 0.105 0
5 0 0 0 0 0 0.167 | 0.583 | 0.25 0
5.25 0 0 0 0 0 0.070 | 0.457 | 0.457 0.016
5.5 0 0 0 0 0 0.021 | 0.260 | 0.594 0. 125
5.75 0 0 0 0 0 0.003 | 0.079 [ 0.496 0.422
6 0 0 0 0 0 0 0 0 1

Table 6.2. Coordinates of curve of Example 6.4
P() P
t t
x v x v

0 0 0 3.25 65 44.6

0.25 7.49 19 3.5 69.8 54.7

0.5 14.6 32 3.75 74.3 64.3

0.75 21.1 40.4 4 78.4 70.1

1 26.7 45.8 4.25 81.9 69. 2

1.25 31.1 49.4 4.5 85.5 63. 8

1.5 34.8 51.1 4.75 90.0 56.8

1.75 38.1 50.9 5 95. 8 50.9

2 41.7 48.4 5.25 104.1 47.4

2.25 45.7 4 5.5 116. 4 42

2.5 50.2 38.9 5.75 134.4 28.2

2.75 55 36 6 160 0

3 60.1 37.6
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Qs
=4
Q, ! 0
50 ) =5 X
i =2
1=1
, Q
Q. =3 6
Q
Q . Q
%=0 50 100 =6

Fig. 6.43. Curve of Example 6.4

Example 6.5. For the case M =4, n=3, find all of the B-spline functions needed
to generate a closed curve of B-spline curve type (3).

Solution. Setting a;,=i (i=0,1,2,...,n+1), the knot vector T is, from Eq.
(6.117):

T=[ty t; 1 t3 1y L5 t Uy lg Lo lyo]
—[-3-2-10123456T7].

No,4(t)

No.4(¢) for the knot vector [—3 —2 —1 0 1] is the same as N 4(t) for the
knot vector [0 1 2 3 4] translated 3 units to the left. From Appendix C, Eq.
(C.1) this is:

Noalt)=—¢ (=1 O5t=1)

Ny 4(0)

Ny 4(t) is the same as N ,(t) for the knot vector [—2 —1 0 1 2]. This can
be obtained by translating N ,(t) for the knot vector [0 1 2 3 4] 2 units to the
left. From Appendix C, Eq. (C.1) this is:

T a2p Osi<)
N1,4(t)=

¢ (=2p (1<t<2)
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N, 4(2)

N, 4(t) is the same as N 4(t) for the knot vector [—1 0 1 2 3]. This is
obtained by translating N 4(t) for the knot vector [0 1 2 3 4] 1 unit to the left.
From Appendix C, Eq. (C.1) this is:

7(r71)3+§(r72)37%(t73)3 (0=t<1)
Ny ()= i (r—2)3—%(r—3)3 (1=t<?)
7%073)3 (2=t<3)

N; 4(2)
N; 4(t) is the same as N, 4(t) for the knot vector [0 1 2 3 4]. From
Appendix C, Eq. (C.1) this is:
1r3 0=t<1)
¢ <t<
2 1
7(t72)3+§(t73)37g(t74)3 (15t<?)

N3 4(t)=

2 (z—3)tl(r74)3 (2=t<3)
3 6 =

f%(t44)3 (3<t<4)

Ny a(®)

Ny 4(t) is the same as N 4(t) for the knot vector [1 2 3 4 5]. This is
obtained by translating N 4(t) for the knot vector [0 1 2 3 4] 1 unit to the
right. From Appendix C, Eq. (C.1) this is:

émm (1=1<2)
Noal) =]~ +2 (~4P =L @5 @5i<)
2 map—Losyp 3<i<4
TP~ 1-9) (=i=4)

Nso (1)

Ns4(t) is the same as N, 4(t) for the knot vector [2 3 4 5 6]. This is
obtained by translating N, ,(t) for the knot vector [0 1 2 3 4] 2 units to the
right. From Appendix C, Eq. (C.1) this is:
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%(t—z)3 (25t<3)
N5,4(t)= ) 1
—(t—4)3+§ (t—5)3—g (t—6)° (3=t=4)

N 4 (1)

N 4(t) is the same as N 4(t) for the knot vector [3 4 5 6 7]. This is
obtained by translating N ,(t) for the knot vector [0 1 2 3 4] 3 units to the
right. From Appendix C, Eq. (C.1) this is:

Noal)=¢ (=37 (3=154)

Graphs of N 4(t), Ny 4(¢), ..., Ng 4(t) are shown in Fig. 6.44.

Fig. 6.44. B-spline functions for generating closed
curve for M =4, n=3 (Example 6.5)

Table 6.3. Values of B-spline functions found in Example 6.5

t Nou® | Nia® | Na® | Noa@® | Now® | Noal® | Noa®)
0 0. 167 0. 667 0. 167 0 0 0 0
0.25 0. 070 0.612 0.315 0. 003 0 0 0
0.5 0. 021 0.479 0.479 0. 021 0 0 0
0.75 0. 003 0.315 0.612 0. 070 0 0 0
1 0 0. 167 0. 667 0. 167 0 0 0
1.25 0 0.070 0. 612 0.315 0. 003 0 0
1.5 0 0. 021 0.479 0.479 0. 021 0 0
1.75 0 0. 003 0. 315 0. 612 0. 070 0 0
2 0 0 0. 167 0. 667 0.167 0 0
2.25 0 0 0. 070 0.612 0.315 0. 003 0
2.5 0 0 0. 021 0.479 0.479 0. 021 0
2.75 0 0 0. 003 0.315 0.612 0.070 0
3 0 0 0 0. 167 0. 667 0.167 0
3.25 0 0 0 0. 070 0.612 0. 315 0. 003
3.5 0 0 0 0. 021 0.479 0.479 0. 021
3.75 0 0 0 0. 003 0.315 0.612 0.070
4 0 0 0 0 0.167 0. 667 0. 167
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Example 6.6. Using the results from Example 6.5, calculate the closed curve for
the case Q,=[—100 —100], Q,=[—100100], Q@,=[100100], Q@;=[100
—100].

Solution. From Eq. (6.116), the range of curve parameter is from a,=0 to a,
=a,=4. Values of the B-spline functions found in Example 6.5 calculated for
intervals of 0.25 in t are given in Table 6.3. Values of

6
P(t): Z Nj,4(t) Qjmod4
j=0

calculated using the values in this table are given in Table 6.4. The B-spline
curve is shown in Fig. 6.45%)

Table 6.4. Coordinates of curve of Example 6.6

P P
t t
x ¥y x Yy
0 —66.7 66.7 2 66.7 —66.7
0.25 -36.5 85.4 2.25 36.4 —85.4
0.5 0 91.7 2.5 0 —91.7
0.75 36.5 85.4 2.75 —36.4 —85.4
1 66.7 66.7 3 ~66.7 —66.7
1.25 85.4 36. 4 3.25 —85.5 —36.4
1.5 91.7 0 3.5 —91.6 0
1.75 85.4 —36.4 3.75 —85.5 36.4
y
& 100 %

63 Fig. 6.45. Curve of Example 6.6

*) |n practice, it is desirable to use formula (6.109) and determine the point on the curve, as demonstrated in
Example 6.7.
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Example 6.7. Find the values of the curve of Example 6.4 directly using the
recurrence formula (6.109) rather than from the B-spline function formula.

Solution. When the curve parameter values t, (t;<t,<t;,,) are given, the B-
spline functions, which in general are nonzero, are:

Ni*M+1,M(ts)s Ni—M+2,M(ts)v ey Ni,M(ts)'

The lower order B-spline functions that are used to compute these values are
given in Fig. 6.37. Using these relations, we compute the B-spline function
values below.

The knot vector for this example is:

T=[to t; t; 13 ty ts e t5 lg lg tyo L1y l12]
=[0000123456666].

Nyt Nyt Nyy 5.999
/N /N /N
Nyt Nyo't /’Vw t o Nt N:,15.999 N\w5.999
Nyt Noster Nisits Ng; tr Nys(t) Nyyit) Noy 5999 N;15.999 Ny NS 999
Nog 80 Mgt Nyt Nygioo Negotr Nt Nyt Nogttr NG,75.9990 N,y 5999 N;y 5999 Ny y5.999
tai [ [

Fig. 6.46. Relations among B-spline functions of Example 6.7

For a curve in the interval 0=t,<1, i=3, so it is necessary to find Ny ,(t),
N 4(t), Ny 4(t) and N;4(t). The relations among the lower order B-spline
functions that are used to compute these B-spline function values are shown in
Fig. 6.46(a). Finding these values in sequence starting from the lower-order B-
spline functions, since:

l’ J—
Ny ()= .

L Ny (0 =(1~1) Ny, (1

t4_t3
we have:
N,,(0)=1, N,,(025=0.75, N,,(0.5)=0.5, N,,(0.75)=0.25
and:

t_t3

N3, (t)= N3 (8)=1tN3,(0).

tya—ts
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Therefore:

N3.2(0)=0, N;;(025)=025, N;,(0.5=0.5, N,,(0.75)=0.75

N = SNy, 0= (1= N, (0
4 2

Therefore:
N, 30)=(1-0)-1=1
N,y 3(0.25)=(1-0.25) - 0.75=0.5625

N 3(05)=(1-05)-05=025
N,3(0.75)=(1—0.75) - 0.25=0.0625

t—t ts—t
Nyslt)=-— 2 Naa(t)+ : Nz, (t)
ta—1, ts—1,
1
=N ()45 2=1) Nyo(f)
Therefore:

N, 3(0)=0-1+0.5-(2—0)-0=0
N3.3(0.25)=0.25-0.75 + 0.5 - (2—0.25) - 0.25 = 0.40625
N;3(0.5)=0.5-05+0.5-(2—0.5)-0.5=0.625
N;.3(0.75)=0.75-0.254+0.5-(2—0.75)- 0.75=0.65625

. t—t
Ny a(t)=——2-N; 5 (1) =05tN, 5 ()
3

ts—t
Therefore:

N35(0)=0.5-0-0=0

N;.3(025)=0.5-025-0.25=0.03125

N3.3(0.5)=05-0.5-0.5=0.125

N3.3(0.75)=05-0.75-0.75=0.28125
t,—t

No,a(’):?‘t:Nl.s(l):(lft)Nl,s([)

Therefore:

Noa(0)=(1-0)- 1=1
No.o(0.25)=(1—0.25) - 0.5625 =0.422
Ngo(0.5)=(1-0.5)- 0.25=0.125
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Ny 4(0.75)=(1-0.75) - 0.0625=0.0156

t— st
Nualt)= | Nl = Naatt)
ty— 512

=IN1,3(t)+E (2-1 N, s(0)
Therefore:

N, 4(0)=0-1405-(2—0)-0=0

Ny 4(0.25)=0.25-0.5625+0.5 - (2—0.25)- 0.40625 =0.496
N, 4(05)=05-0.25+0.5-(2—0.5)-0.625=0.594

N, 4(0.75)=0.75-0.0625+0.5 - (2—0.75) - 0.65625=0.457

7k M+l N 0]
ts—t, 7 t—ty 7

Nz.4(f) =

1 1
:EIN2'3(1)+§ (B3—1) N3 5(0)

N;.(0)=0.5-0-0+0333-3—0) 0=

N, 4(0.25)=0.5-0.25-0.40625 +0.333 - (3—0.25) - 0.03125=0.0794
N, 4(0.5)=0.5-0.5-0.625+0.333-(3—0.5)- 0.125=0.260

N, 4(0.75)=05-0.75 - 0.65625+0.333 - (3—0.75)-0.28125 = 0.457

Therefore:

N;.4(0)=0333-0-0=0

N3 4(0.25)=0.333-0.25-0.03125 =0.0026
N;.4(0.5)=0.333-0.5-0.125=0.0208
N, 4(0.75)=0333-0.75-0.28125=0.0703

The curve can be generated in the range t,(=0)<t<t,(=1) by substituting the
above values in:

P(1)= Z 400

The curve in the range 1,(=1)<t<t5(=2) is found from the values of
Ny 4(t), N 4(t), Ny4(t) and N, ,(t). The relations among the lower order B-
spline functions that are relevant to these function values are shown in Fig.
6.46(b). By the same method as before we determine:
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Nia(l), Ny 4(125), Ny 4(L5), Ny 4(175)
Naa(D), Np g (125), N3 4(1.5), Ny u(175)
N3a(l), N3 o(1.25), N3 4(1.5), N3 4(1.75)
Nyall), Nyo(1.25), Nya(1.5), Ny oa(175)

and thus generate the curve in t,(=1)<t <t5(=2).

Repeating a similar procedure, we determine the curve throughout 0=t <6.
Since the B-spline function values at =6 cannot be determined directly by
using the recurrence formula (6.109), it is approximated by the value at a
nearby point such as t=25.999. Since ¢, £ 5.999 <t,, |, i=8, so that it is nec..sary
to find N5 4(5.999), Ng,(5.999), N;,(5999) and Ny ,(5.999). The relations
among the lower order B-spline functions that are relevant to these B-spline
function values are shown in Fig. 6.46(c).

to—t
N7>2(I):I‘27t NB,l(t)
97 t8

6—5.999

N,a(5999) == ==+ 1=0001

t—t
Ns,z(t):t 7%1\]3.1(1)
9 Is

5.999 -5
Ng ,(5.999)=———-1=0999
: 635
to—t
Nes(t)= 2 N, (1)
19—t7
6—15.999
N 3(5.999)=————-0.001 =0
: 6—4
r—t tio—1t
Nty =——" Ny, () Ny, (1)
to—1, tio—ts
5.999—4 6—5.999
N .999) = -0.001 -0.999=0.002
2.3(5.999) 4 0.001 + s 00!
t—t,
Ns,s(l): LN&.Z(")
fio—1g
59995
Ny 3(5.999) = %5 0.999=0.998
to—t
Ns 4(1):t N 3(t)
6—15.999
N5 4(5.999) = 0=0
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t—t, tio—t
Noalt)=—— Ny (0)+-*—— N5(1)
ty—tg fio—1
5.999-3 6—5.999
Noa(5.999) = = =0 042 2 000220
t—t t,—t
Nya(t)= T Naa(0)+- 11— Ng 5(0)
tio—1ty fy—tg
5999 -4 6—5.999
N5 4(5.999)=————-0.002 + =5 -0.998=0.003
t—t
N8.4(I)=z _: Ns.s(t)
11 8
5.999 -5
Ny 4(5999)= "= 0998 0997

6.11 Differentiation of B-Spline Curves

Denote a B-spline curve by:

T N0,

J=1I-M+1

P(t)=

where t;<t<t,,,.

(6.118)

N, x(t) can be expressed as (refer to Eq. (6.77)):

Ny O=MLE; gy ooy taa =Mt 1y, o taar-]

so that:

Nﬁ.\}(l)=(d/dt) {M[t; Lo ons I,+M]7M|:t: ty, ...

5 fj+M»1]}

= *(M—l)[Mj+1,.\171(1)*M,.M71(t)]‘

Therefore:

POO=(M-1) Y,

j=i-MA1

M-y Y [rl—N,_Mq(tJQ,f

j=icme Lam—1 =4

[M,,M—l(t) -

M1 a-1(01Q;

1
— N1+1,M—1(7)Qj]=

LMy
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1 i *)
YIS [\N,,M_l(r)Qr% (00, }

jmiema2 Lbam-1—1; Lam-1—1;
=M-1) Y Nijil(t)%
JEim M2 tj+M*17tj
=M-1) Y Ny-10Q" (tSt<tyy) (6.119)
J=1-M+2
where:
oV = 279 (6.120)
Lol
More generally, the r-th derivative of P(¢) is
POB)=(M—1)..(M=1) YN, ()0 (6.121)
J
where:
Q;0)=QJ
(r—1) (r— 1)
}”=4 (r>0). (6.122)
l[+M—rill

If the knots are uniformly spaced, that is, if t;=¢,+jh for all j, then, with ¥
as the backward finite difference operator:

Vo= 02,
=(M—1)hQ{

VZQJ = VQ_]7 Vqu
=(M-1)h(Q"- Q"))
=(M—1)(M—2)h*Q®

VBQ;: VZQ,*VZQj—l
=(M—=1)(M-2)h*(Q"—0))
=(M—1)(M-2)(M-3)* Q.

Repeating a similar procedure, we find that, in general:

VrQ,=(M—1)(M=2)...(M—r) i QY. (6.123)

* Note that mn t,<t<t,, g, both Ny (t) and N,_ 51 »-; (¢) are zero (refer to Fig. 6.37)



6.12 Geometrical Properties of B-Spline Curves 311
From this equation we can find Q¢ and substitute into Eq. (6.122) to obtain:

PO@O)=h"" Y Nyw - ()7 Q;. (6.124)

6.12 Geometrical Properties of B-Spline Curves

The general geometrical properties of B-spline curves are summarized below.

(1) Locality

A point on the curve is determined by only the M curve defining vectors Q; in
the immediate neighborhood of that point. Consequently, if a certain polygon
vertex is varied, only the part of the curve in the immediate neighborhood of
that vertex is affected (refer to Fig. 6.47).

(2) Continuity

In general C™~2 continuity between curve segments is maintained.

(3) Convex Hull Property

Equations (6.84), (6.85) and (6.86) hold for a B-spline function, so the curve
segments that comprise the B-spline curve are convex combinations of the
nearest M vectors Q;. That is to say, each curve segment is contained inside a
convex hull formed by the M points. Consequently, compared to a Bézier
curve, a B-spline curve is more faithful to variations in the polygon shape.

As a special case of this property, if @;=Q;,,=... =0 -, these convex
hulls reduce to the points Q;, the curve segments defined by this sequence of
points degenerate to the points Q;, and the curve passes through the Q;.

Also, if Q;, Q) 4, ..., Qj+ m-, all lie colinear straight line, from the convex
hull property of a B-spline curve it follows that the B-spline curve segments are

Q. Qs Qs

Fig. 6.47. Local control of a B-spline
Q curve
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straight line segments. Since a B-spline curve generally maintains C™~2 cont-
inuity at the connection points between curve segments, it can include straight
line segments that are connected to curved segments with C™~2 continuity.

(4) Variation Diminishing Property

The number of intersections between an arbitrary straight line and a B-spline
curve is not more than the number of intersections between that straight line
and the curve defining polygon. Therefore, a B-spline curve assumes a shape
that is a smoothed form of the curve defining polygon shape (refer to Sect.

6.9 @).

6.13 Determination of a Point on a Curve
by Linear Operations>®

De Boor proposed an algorithm for finding a point on a curve recursively by
repeated application of linear operations, without calculating the B-spline
function values (refer to Appendix B.2).
DeBoor’s algorithm

We are to find a point P(t,) on a curve at the parameter value t=t,.

Step 1: Find an i for which t;<t,<t;, ;, then set:

1

r=i—M+1. (6.125)
Step 2: Let:
0t)=0Q; (j=r,r+1, ..., r+M—1). (6.126)

Step 3: Repeatedly apply the formulas:

0(t) =(1=A) 1)+ Qe (6.127)
_t. *)
PR Sty (6.128)
Lirm—x— 1

to find:
P(t)= O™~ 1(z,).

In this algorithm, in the case of a closed curve, the j in Q; is replaced by
jmod(n+1).

*) If a uniform knot vector having a span of 1 is given, then:
t—t;

/1=M—k'
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Q2= Q"Tz( t,)

Q.3=Q l,0+’3( t,)

P(1)=@¥ (1)

Q.3 (1,)=Qn

Q35(1,)

Q1)

Q1)
Qlyu(i

Q' (1,)=q, Q.a=Q5:(1)

Fig. 6.48. Geometrical interpretation of De Boor’s algorithm (case of M =5)

In the above algorithm, in step 1 we are finding the r in the expression Q;
(j=r, r+1, ..., r+M—1) for the curve defining vectors related to the curve
segment in which ¢, is located. Step 2 is the initial value setting. Steps 2 and 3
can be geometrically interpreted as follows (refer to Fig.6.48). The case M =5
will be used as an example in this explanation. In Step 1, suppose that the curve
defining vectors Q,, Q,., Q,.,, Q,.5 and Q,,, of the segment in which ¢ is
located are known. First, according to Step 2, these are the initial value vectors
for the algorithm. That is,

Q'I‘O](ts) — Qr? Q'[‘g-]l(ts) — - Qr (t ) — Qr+4

By linear interpolation between these position vectors, new points
Ol (1), O, (k). QY5 (), QFYL(t)

Q‘.OJMH(L)

Qi2(1)>Q ! maz(2y)

Q¥ (1)

2 ()= Q1 (1) > -~==- QM3 (1,)>QM 2 (1,)
Fig. 6.49.
Relations in De Boor’s
Q) (1) —> Q) (1) > ---o-- Q"*(1)>QM ' (1,)>@¥ (1) algorithm
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are produced on the sides of the polygon. A new polygon can be formed from
these 4 points. Again linearly interpolate between the points of this new
polygon to obtain another new polygon consisting of the points

017, (1), 015 (1)), Q1)

Again linearly interpolate between these points to obtain the 2 points QB (t,),
Q!3,(t,), which are the ends of a line segment. Finally, linearly interpolate
between these 2 points to determine a single point QM4),(t,). This point is the
point P(t;) on the curve that corresponds to t=t,. In general, the linear
interpolation parameter value / is different in each interpolation.

The relationships in DeBoor’s algorithm are shown in Fig. 6.49.

Example 6.8. Find the point on the open B-spline curve found in Example 6.4
at t=4.75, using De Boor’s algorithm.

Solution. From the knot vector of Example 6.3:

T=[to t; t; t3 ty ls te l7 Lg Ly Lyg Ly Ly5]
=[000012345666 6]

we see that, since t;<4.75 <tg, i="7. Therefore r=7—4+1=4.

4.75—
OL(4.75) = (1 — 1) QI (4.75) + 1 QP (4.75) (,1 e > t'5 - o.917>
g—1ls
=(1-2)Qs+10;5
=0.083Q, 409170,
475—
OLI(4.75) = (1~ 1) Q1 (4.75)+ 201" (4.75) (,1 e 0.583>
9—ls
=(1-2)Qs+10
=0417 Q5 +0.583 0,
4.75—
(1475 = (1 - 1) QI (4.75)+ 2001 (4.75) (/1 e} 375)
10—t
*l)‘Q6+1Q7
=0.6250,+03750,
4.75—t
01(4.75) = (1 — 1) QW1 (4.75)+ AQL(4.75) 1=t O.875>
sl
=0.125(0.083 Q, +0.917 Q) +0.875(0.417 Q5 +0.583 Q)
=0.0100,+0.479 0, +0.510 0
4.75—t
0(4.75) = (1 — 1) QLI (4.75)+ 1QYI(4.75) (/1: e :0.375)
9—1;

=0.625(0.417 Q5 +0.583 Q) +0.375(0.625 Q¢ +0.375 Q)
=0.2610;+0.598 0 +0.141 0,
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OP1(4.75) = (1— 1) Q' (4.75) + A QR (4.75) (/1: 4;757’ = 0475>
= 0.25(0.010 Q,+04790,+0.510 Q) Y
+0.75(0.261 Q5 +0.598 O, + 0.141 Q)
=0.0025Q, +0.316 05 +0.576 Q4 +0.106 0,
=0.0025[60 207+0.316[80 90] -+ 0.576[90 407 +0.106 [ 120 50]
=[90.0 56.8]

This result agrees with the coordinates of the point at t=4.75 in Table 6.2.

Example 6.9. Find the point on the closed B-spline curve found in Example 6.6
at t=3.5, using DeBoor’s algorithm.

Solution. From the knot vector of Example 6.5:

T:[To byt Iy g b5 Le By g 1o [10]
=[-3-2-101234567]

we see that, since tg<3.5<t,, i=6. Therefore r=6—4+1=3.

35—t
0L13.5)=(1—1) QP (3.5)+ 101 (3.5) ( :44“ =O.833)
=0.167Q,+0.833Q,
35—t
0M1(3.5)=(1- 1) QL (3.5)+ 1011(3.5) (,1= 4715=o.5)
=0.50,+050,
35—t
0L(3.5)=(1—1) Q3.5+ 10 (3.5) (z: - 1"’ =0.167)
=0.833Q,+0.1670,
35—
0(3.5)=(1— ) QL (3.5)+10L1(3.5) (z: 4_;5=0.75>
=0.25(0.167Q;+0.833 Qo) +0.75(0.5Q0 +0.5Q,)
=0.583Q,+0.3750, +0.042 0,
35—t
021(3.5)=(1—2) Q1(3.5)+ 10 (3.5) (,1 4_2"_0.25>
=0.75(0.5Q, +0.50,)+0.25(0.833Q, +0.167Q,)
=03750Q,+0.583Q, +0.0420,

Q3.5 =(1-) QP (3.5)+ 20P3.5)= (i 337k 0.5)
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=0.5(0.583Q, +0.375Q, +0.042Q;)
+0.5(0.375Q,+0.583 0, +0.0420,)
=0.479 0y +0.479 @, +0.021 @, +0.021 Q,
=0.479[—100 —100]+0.479 [— 100 100]
+0.021 [100 100]+0.021 [100 —100]
=[-91.6 0].

The coordinate values we have found agree with those at t=3.5 in Table
6.4.

6.14 Insertion of Knots>®

A Bézier curve segment can be divided into two curve segments at an arbitrary
point while maintaining its shape. This property is very convenient in curve
design when it is necessary to apply fine shape control. In the case of a non-
uniform B-spline curve a new knot can be inserted to increase the number of
curve defining vectors and the number of curve segments. The theory of this
will now be given.

Suppose that we have a B-spline curve defined on a sequence of knots ...,
b s et

P()=) N, x()Q,. (6.129)

Suppose now that we insert a new knot ¢, between t, and ¢, (t,<t,<t,,,) to
form a knot sequence t,. The relation between the old and new knots is:

=~
Il

=1, =9
=t (j=i+)) (6.130)
=t (Zi+2)

o

The B-spline curve defined by the new knot sequence is:
P)=) N,»()Q,. (6.131)
J

N, (1) are the B-spline functions defined by the new knot sequence 7,. Let us
now find the Q, that express the same curve in terms of the new knot sequence.
For the M +2 knots including the knots ¢,, t, and ¢, :

fyooos bow (=M +15j50)

J

the following divided difference relationship holds.
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(6=t MIt b, o =) MGty o by, 1]
Feu— )Mt s st m]=0
(6.132)

This equation can be easily understood from the divided difference relations:

M [t; iy ey tj&M]
1
:ﬁ (M [1; vt ooes t,+M:|_M[t§ [FEIETE tj+M71:|)
M
Mt ty, ooy tm—1aty]

1
—1 Mt tyg o Gey— L]=M [t 8, s Gy D)
1= h

M1

o~

tytyets oo bul

(M[t5t01s o ead =Mt s s D)
Lim—1h

Setting t,=f in Eq. (6.132) and rearranging it into a B-spline function
relation gives:

o= )M, (O =C— 1) M,y () + =DM,y e (8) (—M+1ZjZ0)

This can be expressed as a relation among the normalized B-spline functions:

-t tLow—L
NoarD) =L N,y 0+ N, D)
Lem—t, Lomer =+
—f { —i
= Ny =M R
Lim—1L; LM+ 141
(i—M+1=j<0). (6.133)
If j has a different value than the above we have:
N,u(®)=N j<i—M
m(t) IYjwM(t) (]_l )} (6.134)
NomO)=N, 11 (Zi+1)
Substituting N, ,(t) from Eq. (6.133) into Eq. (6.129) gives:
P)=Y N,u(Q,
J
= Bows )
= Z = -~ Q,NJ.M(f)+A\Q;N,+1,MU) =
[T RN TN T Ve 5 Liamer—Len
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i+1 t—ft. P G *)
= Z <A1t Qij,M(t)‘*'i\.rFMiA. leNij(t)>

jmi-m+1 \Nj+rm T ML
i+1 f_f‘] "_fj
= z N,M(t) = = Qj+ 1—= = Qj—l
j=i—-M+1 M ]+M_[j

Comparing this equation with Eq. (6.131) gives:

Qj:(l_“j) 0, 1+40;
where:

1 (G<i—M+1)

! Gem—t Liam—1— 1 (i—-M+25j=<i)

0 (jzi+1)

(=t <tisy)

(6.135)

(6.136)

(6.137)

Equation (6.136) means that the new surface defining vectors Q; divide the line
segments Q;_,Q; in the ratio «;:1—a;. This relation is shown in Fig. 6.50.

— + ; n ]

Q -ui1=Q i1 bome2 t, i ot biim-1

Fig. 6.50. Relation between old curve defining vectors and new curve defining vectors formed

by adding another knot

Example 6.10. Add a knot to the B-spline curve in Example 6.4 at t=2.8.

Solution
=28 and M =4.

* Note that f=1;,,.
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The B-spline curve knot vector in Example 6.4 is:

T=[ty ty ty t3 ty ts tg ty tg g Lyg tyy ty5]
=[000012345666 6]

Since t;<t<tg, i=5.
Using these data, Eq. (6.137) becomes:

i (j=<2)
=1 2220 gjsy)
tj+3_ J
0 (j26)

Let us now calculate o; for 3<j<5.

28—, 28-0

a3: = :0.933
te—ty  3—0
28—1, 281

oy = =0.6
to—t, 4—1
28—t 28—2

o5 = = =0.267
tg—ts  5-2

Using these values of «;, we determine new curve defining vectors Q] from Eq.

(6136) Since a;=1 (]<2) 0,=0,, 0,=

0, Qz—Qz “— (j=6), QG_Qia

=0, 0s= Q7, Q,=Qs. The remaining curve defining vectors are:

) ées:Qs
t=4
éa @ A —
=5 =
sk Qz Q; 2\\ 3 Q=Q;
t= —
Ql Q /=1 =Y .
UANE 7y 4=
\\v/
Q,
R - Q=Q
Q=q, =2 100 —

Fig. 6.51. Insertion of a knot at t=2.8 into the curve of Example 6.4 (Example 6.10)
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Qs =(1—o03)Q,+a;0;
=(1-0.933) [30 50]+0.933 [40 55]
=1[39.33 54.67]

Q4:(1_°‘4) 03+0, Q4
=(1—0.6) [40 551+ 0.6 [60 20]
=[52 34]

Qs =(1—0as5)Qs+as50s
=(1-0.267) [60 20]+0.267 [80 90]
=[65.34 38.69]

A graph of the curve after the knot is inserted is shown in Fig. 6.51.

6.15 Curve Generation by Geometrical Processing >!

G. M. Chaikin announced a method for generating curves procedurally, using a
very simple geometrical algorithm, without depending on mathematical repres-
entations. This can be easily understood from DeBoor’s algorithm in Sect. 6.13.

Q, Q,

Fig. 6.52. Diagram explaining Chaikin’s algorithm (1)
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Suppose that a polygon Q,, Q,, ..., @, is given, as shown in Fig. 6.52(a).
Find the midpoints of all of the sides except for the two end sides, and label the
polygon formed from these midpoints R, R, ..., R,,_, (Fig. 6.52(b)). Figure
6.53(a) shows just the vertex R;(B) of the initially given polygon and the
midpoints R;_;(A4) and R;, ;(C) of the two sides attached to it.

Letting P be the midpoint of the line segment formed by connecting the
midpoints of sides AB and BC, we have:

A+B B+C

» T _A+2B+C
2 N 4 ’

P= (6.138)

This point P becomes one point on the curve being generated. This division
produces a set of 2 sides on either side of point P. Equation (6.138) can be
applied to both of these sides. We push the set of 2 sides on the right side, for
example, into the stack and then apply Eq. (6.138) again to the set of 2 sides on
the left. This operation is repeated, pushing the set of 2 sides on the right into
the stack each time, until the length of the set of 2 sides on the left reaches a
certain limit. At this point the contents of the stack are poped up and similar

B(R)

Fig. 6.53. Diagram explaining Chaikin’s algorithm (2)
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Fig. 6.54. Example of a curve generated by Chaikin’s method

operations are performed on them until the stack is empty. This generates a
sequence of lines on the curve corresponding to R;_;, R;, R;,,. If the above
processing is performed for all groups of R,_,, R;, R, (i=1,3, ..., 2n—3), a
curve corresponding to the given polygon Q,, Q,, ..., Q, is generated. An
example of such a curve is shown in Fig. 6.54.

As can be understood from the curve generation process, the curve is
completely determined by only the 3 points R;_,, R;, R;, . The curve segment
has one end at R;_, and the other end at R;,,. Its slope at R;_, is in the
direction of the line segment R;_,R,, and its slope at R, ., is in the direction of
the line segment R;R; . Since the curve passes through the point P calculated
with Eq. (6.138), it is clear that this curve is a parabola (refer to Sect. 7.3). Let us
find the equation of this parabola. Writing the curve function in the form

A
P(t)=[t>t 1] [3] (6.139)
c
we obtain:
A
P(t)=[2t 1 0] |:B:|. (6.140)
c

Since we have the relations P(0)=R,_,, P(1)=R;,,, P(O)=p(R,—R,_,), P(1)
=q(R,,,—R), the following equation is obtained:
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R._, 00 1
A
R 111
. = B|. (6.141)
pR—R_)|"|0 1 0|
4R —RY| [2 1 0
Converting the first matrix on the right-hand side into a square matrix gives:
[ R_, 7T [0 0 1 t][4
R 1 1 1 t||B
v = . (6.142)
pPR—R_y| |0 1 0 1||C
laR..—R)| [2 1 0 1]|0
This implies:
r47 [0 0 1 1! R._,
Bl |t 1 11 R,
cllot o1 p(R,—R;_,)
o] |21 0 1] [a®.—RY
[ 0 0 L1
2 2
1 1 :
o L R,
_ 2 2| R
B 1 R—R,_
0 1 —— —- p(R; 1)
2 2 q(R,.,—R)
1 1
1 -1 —
L 2 2]
[ P Rt proR+ LR, ]
2 i 2 1 2 i+1
P 1 q
- 1+5 R:—|+5(P+4)R.+ 1*5 R;.,
- (6.143)
p
2R. 1+ g— P)R*‘(I—E)R:H
p
(17?)1?: 1+ (p—q)R (1*7> R,y

Equating the 4-th rows of the matrices on both sides gives:

(17£>R- +l(p7q)R—(l—i)R» -0 (6.144)
2 i-1 2 1 2 i+t1 o
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which implies:
p=q=2.

Therefore:

A7 [R_,—2R+R.,
B |= 2R,—2R; | (6.145)
C R,

so the parabola function P(t) becomes:

A
P@)=[t?t 1] B:'
L C

=[*¢1]| 2R—2R,_,
R,

- 1 -2 17 [R._,
=[] -2 2 0][&]
L 1 0 0 Ry
R,
=[(1—1)* 2t(1—1t) t1] [ R, ]
R|+l

R,

=[Bo,(t) By(t) By, (1)] [ R, ] (i=13,..,2n—-3) (6.146)
Rl+l

It is clear that P(¢) is a quadratic Bézier curve corresponding to the sequence of

vertices R,_, R,, R,_,. It is easy to confirm that the following relation holds in
this case (Fig. 6.55):

1\ R_,+2R+R, 1
P(Z):%’ P('E>:RH»17R|>1'

_R.12R.‘+R.+1]

Let us now convert this into an expression in terms of the initially given
sequence of vertices R,_,, R,, R, , rather than R,_,, R,, R, . Since we have
the relations:

R_,+R,
R_,= 27;
2
R, +R,
R:+l: 27”
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R,

R
Fig. 6.55.
R, — Relation between Chaikin’s curve and polygon

the curve becomes:

R._,
Pt)=[(1—1)* 2t(1—1t) *] | R, }
[ R;.
[1 1
— — 0
2 2 R;_,
=[1—-t)*2t(1—-t) 3] |0 1 O |:R,.]
1 1 |LRis
% 2 2

R,
1 11 i-2
=[~(1—t)2 — 2t —tz} R
2 2 2
R;.,

R,
=[No.3(t) Ny3(t) Nps(t)] |: R; :| (6.147)
R,

(refer to Eqgs. (6.17) and (6.18)). This means that the function expresses a
uniform B-spline curve of type (1) and order 3 with respect to @, O, O,, ...,
Qu-1, 0 1(Q-1=200—04, 0s1=20,— 0, 1)

6.16 Interpolation of a Sequence of Points
with a B-Spline Curve

Consider the generation of a B-spline curve (curve type (3)) by interpolation of
a sequence of points Py, Py, ..., P,. The following discussion is for the case of
M =4 (degree 3).

The relation among the points to be interpolated, interior knots and ex-
tended knots (with * symbol) is shown in Fig. 6.56. From property @ of a B-
spline function, there are 3 nonzero B-spline functions at each knot. We call the



326 6. The B-Spline Approximation

tni‘ri:tui%:t"i‘ﬁ:ﬂn
P, tn(:[ni:a:an)

cll

Porpto(=t¥,=a,)

Cn—1

P
0t (=tF=ap)
t¥=1¥=1¥=q,

Fig. 6.56. Interpolation of a sequence of points with a B-spline curve (curve type (3)) (case of
M=4)

Y A - B NEE S

Fig. 6.57. Nonzero B-spline functions at t=t*

3 nonzero functions at knot t*, N;_; 4(t), N;_, 4(t) and N;_; 4(t) (refer to Fig.
6.57). Therefore, in order for the curve to interpolate point P,_; at knot t¥, the
following equation must hold:

Nio34(-3) Qi 3+Ni—24(a;-3) Qi s+ Ni_1 4(a;_3) Qi1 =P,_;
(B<i<n+3). (6.148)

This equation represents n+ 1 conditions, but there are n+3 unknown vectors
Q, Oy, .., Q.+, s0 we are 2 conditions short. So it is necessary to add 2
conditions. We will set the 2-nd derivative vectors of the generated curve P(t)
equal to O at both ends:

at knot t¥:

No4(ao) Qo+ Ny 4(a0) @1+ N, 4(a0) @, =0 (6.149)

at knot ¥, 5:

Nn,4(a¢) Qn+Nn+ 1,4(a,) 0,41+ Nn+2,4(an) 0,.,=0. (6.150)
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For values of extended knots, it is sufficient to take the sum of distances
between points (Fig. 6.56):

t# =ay=0 (i=0,1,2,3)
i+1
thao=a.,,=Y ¢; (=01,..,n-2) (6.151)

j=1

Bpea=d=Y ¢, (i=0123)
J=1

Qo, 01, ..., O+, can be found by solving Egs. (6.148), (6.149) and (6.150), thus
determimng the B-spline curve that passes through lhe speaﬁed points Py, Py,
P,

6.17 Matrix Expression of B-Spline Curves

Let us espress the B-spline curve segment given by function (6.102) by a matrix,
as we expressed a Bézier curve segment in Sect. 5.1.5 ®2¥. If we set M=n+1in
order to establish a correspondence with a Bézier curve, the curve segment
(6.102) becomes:

Qi1
B 0
P(t)=[Nop+1() Nipir@ .. Nopii (0] .
Qi*l Qi+n 1
=[]y Q (6.152)
Qi+n—1
where y is an (n+ 1) x (n+ 1) matrix.
Setting M =n+1 in formula (6.101) gives:
1 n2l (n+1
Nipsil)= =% (—1)1(”i )(z+n~i—m Ost<1).  (6.153)
S =0

Therefore, we have:

[Nows1(8) Nyyws1(t) Naysr(t) oo Nyuia(8)]
[1 nz‘( 1y ( +1>(t+n—i)1 nii <nf1)(t+n7i~1)’;_

1
Lt "i](—l (n-:1>(t—i)'irj|:
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[ n+1> ]
( 1)( o 0 0 0

e n+1> N 0(n+1>
( 1)( " =0, 0 0

WE RS L (ntl n+1 n+1
) () () ()

="ttt ]y

y={n} GJj=0,12...n

Vi ! <n> Z (nfk)‘(ﬂJ“‘f(E]l.) (6.154)

nt\i/ /=

6.18 Expression of the Functions C,,(t), C,,(?), C,,(t) and
C,,(¢) by B-Spline Functions>®

The blending functions that we used to make the higher-order derivative
vectors of a Coons surface continuous (refer to Sects. 3.3.2 and 3.3.3) can be
expressed using B-spline curves.

In the following discussion we consider functions which satisfy the blending
function conditions that will make the 2nd derivative vectors continuous:

[Co.0(0) Co,0(1) Co,0(0) Coo(1) Co0(0) Co,o(1)]
=[100000]

[Co,1(0) Co,i(1) Co,(0) Co i (1) Co1(0) o, (1)]
—[010000]

[C1,0(0) Cyi0(1) €;6(0) Co(1) Cy0(0) €y o(1)]
=[001000]

[Ci1(0) C,s(1) €,4(0) C, i) €, 4(0) €, (1)]
=[000100]

(6.155)

If we wish to derive ordinary pofynomials which will satisfy these conditions,
they will be 5-th degree polynomials such as those derived in Sect. 3.2.3.

Let us express Cg o(t), Co ; (1), Cy o(t) and C, ;(¢) as uniform cubic B-spline
curves of type (1) (refer to Sect. 6.1.1). Take the coordinates of @y, Q,, ..., Qs in
Fig. 6.58 to be:
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Qs
*% ° fl; % ! % ! Fig. 6.58. Expression of the function
0—%—>1 0—% > Co0(t) in terms of B-spline func-
0—*—>1 tions
- -
-3 1
QO 0 1
0, 1 .
0, 3
Q3 N 3 0
0, i .
[ Os | 4
— 0
| 3 i

In this case, 3 curve segments are produced by the sequence of vertices Q,, @,
Q,, 05, O,, O5. From the properties of a B-spline curve, it is clear that the
curve which is made up of these segments satisfies the condition on function
Coo(t) in Eq. (6.155). Let us write these 3 functions as C 4(t), ,Co 0(t) and
3Co0(0):

Now we introduce the local parameter u(0 <u<1) shown in Fig. 6.58. The
curve segment P;(u) (i=1, 2, 3) formed by the vertices Q;_,, Q;, Q;,, and Q,,,
is:

Pw)=[t ;Coo(1)]

~36-2) 0y,
—1 3 -3 1 10_ b o
=i[u3 u? u 1] 3630 3 " (6.156)
6 -3 0 3 0 1.
1 4 1 0 gl Qi+1,y
1
g(i+1) Qivay
t=%(u—1+i). (6.157)
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From Eq. (6.156) we have:

[1Co.0(t) 2Co0(t) 3Co,0(1)]

[-1 3 -3 1} [Qoy Q1y Q2
:l [u3 Wy 1] 3 -6 3 0 Ql,y Qz,y Qs,y
6 -3 0 3 0]]|Qz Qs; Quy
1 4 1 0|0y Qs Os,
r—1 3 -3 1t 1 1
1 - 11
Lppag| 37630 0
6 -3 0 3 of|]t o o
1 4 1 oflo o o
r—1 2 -1
1 0-3 3
J o
ghiwwlll o 5
6 5 1
1
<O§u§1; t:?(u—Hi)). (6.158)

Similarly, by expressing the position vectors in Fig. 6.59 as:

ey
3
QO O 0
0, 1
0. | 3°
ol7| 2,
0, i .
e] |}
L71
3
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Coa(t)
Q; Q, Qs
1.0t
3Coa ()
0.51
1Coq ()
Q ,
1 0/Q, 1 2 1 %
3 3 3
0—% »1 0—%>1
0—4—1
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Fig.6.59. Expression of the func-
tion C, , (t) in terms of B-spline
functions

C,.1(t) is expressed as a function consisting of the 3 functions ;C, , (t), ,Cy , (¢)
and ;C, ,(t) connected together. The forms of these functions are as follows:

[ICO,I(t) 2CO,l(t) 3CO,1(I)]

[ —1 3 —
1 3 —6
=€[u3 u? u 1] 3 0
| 1 4
1 -2 1
1 0 3 -3
__ 3,2 1
gl wullly 3 5
0 1 5

1
<0§u§1; t=3(u—1+i)>.

Similarly, by setting:

1

o | »
0, 1
0, 3
0, 2
0, 3
0; 31
3

© © o wrow|=

9
o,
Q,
0,
.

Qs

- O O O

—_ = O

(6.159)
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respectively (Figs. 6.60, 6.61), the functions C, ,(¢) and C, ;(t) are expressed in
terms of the following:

-1 3 -3 1
1 3 -6 3 O
[1C1,0(t) 2C1,0(t) 3C1,0(t)]=g[u3 u’ u 1] 3 0 3 0
1 4 1 O
1 1]
- 0 =
3 3
0 ! 0
% 3
1
— 0 0
3
| 0 0 0 ]
[—2 3 -1
1 0 -6 3
__ 3,2 1
TR BEPR W
| 0 4 1

<0§u§1; t=§(u—1+i)> (6.160)

and:
-1 3 -3 1
1 3—-6 3 O
C,. () ,CL () 3C, . (O)]=—[u® ®P ul X
[:Ciy 2 1,1() 3Ci a1 (0] 6 [ ] 3 0 3 0
1 4 1 0
,Crolt)
1.0¢ P
0.5
1 92 7 aCrottd
3 z(/;l_u‘f\r‘
. Q, 101.(‘;(1‘ Q) Q Q
1 u 1 1 t
3 0—13 30-%>1 3
@/ | 1 0*}""1
3 Fig. 6.60. Expression of the function
C, (t) in terms of B-spline functions
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Cia(n

1.0t

Q
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e Fig. 6.61. Expression of the function C, () in terms of B-
—-1.0L7 spline functions
[ 0 o o]
1
0 0 —
3
x 1
0 —— 0
3
1 1
_ 0 _
L 3 34
-1 3 =2
1 0 -3 6
__ 3 2 1
o eldl g3
0 -1 —4

6.19 General B-Spline Surfaces

(6.161)

B-spline surfaces can be defined using B-spline basis functions, just as Bézier
surfaces can be defined using Bernstein basis functions. The following dis-
cussion introduces the most frequently used type of expression, of B-spline

surfaces in cartesian product form.
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Given a lattice of position vectors Qgo, Qo1> --> Qons > Omos -+-» Oun»> the
corresponding cartesian product type B-spline surface is given by:

P(u, w)= i zn: N; kW) N; (W) Q;;. (6.162)

Let N;x(u) and N, (w) be the B-spline functions of order K and L,
respectively, used to define a B-spline surface in type (3).
Formula (6.162) can be expressed in matrix form as:

Pu, w)=[No (W) Ny x) ... Npg()]

Qoo Qo1 - Qo N, (W)
Ql 0 Ql 1 e an N (W)
x ‘*f . (6.163)
eese N :
QmO e an "!L(W)

Examples of B-spline surfaces described by function (6.162) or (6.163) are
shown in Fig. 6.62. Some properties are analogous to those of a Bézier surface
patch, such as the fact that Qyy, Qo,> Omo and Q,., are the 4 corners of the
surface, and the shape of the surface in the neighborhood of the 4 corners is
similar to that of a Bézier surface patch. However, whereas a Bézier surface
patch is a single surface patch, a B-spline surface, consists of a number of
surface patches which are connected together smoothly; moreover, a B-spline
surface patch is defined locally by nearby surface defining vectors. Consequent-
ly, on a B-spline surface, unlike a Bézier surface patch, the effect of varying one
vector Q;; is locally limited.

Fig. 6.62. Example of a B-spline surface. (a) surface defining net; (b) B-spline surface formed by
the surface defining net in (a)
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7. The Rational Polynomial Curves

7.1 Derivation of Parametric Conic Section Curves

Conic section curves are in a mutual central projection relationship*. Conse-
quently, arbitrary conic section curves can be derived by performing a suitable
affine transformation and then a central projection on one conic section curve.
For the initial conic section curve, let us use the simplest one to express, the
parabola shown in Fig. 7.1:

[x vy 1]1=[t* ¢t 1].

roj—s

¢ Fig.7.1. The parabola x=y?

If the conic section curve segment to be found is denoted by P(t)=[x* y* 1],
the transformation relation become, with M as the matrix which performs the
projection:

[12 ¢t IIM=w*P()=[X* Y* w*]. (1.1)

As shown in Fig. 7.2, the conic section curve P(t) to be found passes through
. -~ .

point Q, and has a slope Q,Qr at t =0, and passes through point Q, and has

a slope Q;Q, at t =1. These conditions are mathematically expressed as:

[0 0 11M=wiQ,
1

[05 1]M=W;QT

[1 1 1] M=wfQ,

*) Refer to the author’s book Graphics Processing Engineering (in Japanese) (Nikkan Kogyo Shimbun Sha),
see Sect. 3.3.3.
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Qr

P(t)=[z% y* 1]

q, Fig.7.2. The conic section curve P(t) found by a
t=0 Qy t=1 projective transformation

1 w0 0 Q,
0 0 wy Q

Solving for M gives:

[0 0 17!

1 wg 0 0 Qo
M=[0-1 0 wi 0 [ T
0 0 wi]lQ

L1 11

( 1 -2 1791wt 0 0 Q,
= -2 2 O:I [o wk 0] |:QT:|. (7.2)
| 1 0 0 0 0 wt]||OQ,

In Fig. 7.2, Q,, is the midpoint of the line segment connecting Q, and Q,, and
Qg is the intersection of the line segment connecting Q,, and Q with the conic
section curve.

If we assume that we have the additional condition that the conic section
curve segment passes through point Qg at t=1/2, then substituting (7.2) into
(7.1) gives the following equation.

{1 1 -2 171w 0 0 Q,
w=§QS=[Z 5 1} [—2 2 0] [0 w 0] |:QT:|
1 0 0 0 0 wt Q,
[ s L] o .
= ZwoinZw1 Qr | (7.3)

Q,




7.1 Derivation of Parametric Conic Section Curves

Let p be the ratio between the length of Q,,Q and the length of Q,Qg:

Qs=Qu+p(Qr—Qu)

1-p 1-p
=- 5 ’Qn+PQ1‘+TQ1-

Substituting this equation into (7.3) gives:

Qo Qo

1- 1— 1 1 1

W§|:*zg P Tp] I:Qle:I:ZWE 5W¥ ZWT] |:QT:|*
Q,

Q,

339

(7.4)

Qo
Since Q,, Q7 and Q, are homogeneous coordinate vectors, I:QT] isa3x3

Q,

Q7!
matrix. Multiplying both sides of the above equation by [Q7-:| from the

Q;

right and setting w§ = 1/2 (the value of wy is arbitrary), we obtain:
wi=1-p, wi=p, wi=1-p.

Substituting these relations into Eq. (7.2), M becomes:

1 -2 1 1-p0 0 Qo
M=|:—2 2 o] [ 0 p O [Q,
1 0 0 0 01-p Q,

the conic section curve segment to be found becomes:

wP(t)=[X Y w]

1 -2 19r1-p 0 0 Q,
=[? ¢ 1] [72 2 o][ 0 p 0 ][Qr]
1 00 0 0 1-p]lQ

(the asterisks have been omitted from X*, Y* and w¥*).

(1.5)
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7.2 Classification of Conic Section Curves>?

Expressing Eq. (7.5) in ordinary coordinates gives:

_X®O _{0-P)Q0s=2P0rs+(1=P)Q1.}* = 2{(1=P) Qo,c—PQr.e} t+(1=P) Qo.x

*0=J0 2(1—2p)2—2(1-2p)i+1—p

(7.6)

_Y@m _ {(1=p) Q0 =275, +(1—-p) Q1 ,} 7 =2{(1-p) Qo,—PQr,} t+(1—-P) Qs
W) 20 -2p)—2(1-2p)t+1—p

The discriminant D for finding the roots of the denominator w(t) is:
D=(1-2p)*~2(1-2p) (1-p)
=2p-—1
so we have:

1 . .
(i) When p>5, the denominator has different real roots ¢, and ¢,:

1 1
[ P S—
YT T ap 1

Having real roots means that the curve has asymptotes. If p> 1, the two
real roots satisfy 0<t,t,<1. If 1/2<p <1, the roots are not in the range
Otol.Ifp=1,¢t,=0and t,=1.

(ii) When p <%, the denominator does not have any real roots, so the curve
does not have an asymptote.

(iii)y When p:z, the denominator becomes a constant independent of . For
t= 400, x(t) and y(t) become infinite.

From the above considerations, the derived conic section curve segment
formula (7.5) can be classified as follows depending on the value of p.

@ p=0: degenerates to a straight line (concides with the line segment Q,Q,).
1
@ 0<p<51 ellipse
1
P :E: parabola

1
?< p <1: hyperbola

® ©® ©

p=1: degenerates to 2 straight lines (Q,Qy and Q;Q,).
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If p<0, the curve becomes an ellipse on the opposite side of Q,Q; from the
triangle shown in the figure. All of these cases are shown in Fig. 7.3.

QT Qr

Q, —Q
(a) p=0

Qr

Q;
Qr !
o % Q@
Q \\Hv//
te) p=1 (f) p;,,}l
Qr
Qr
&
. Qo
Qo ’ @
\\V/
(g) p=—%
P=73 th) p= -1

Fig.7.3. Conic section curve segments. (a) degenerate straight line; (b) ellipse; (c) parabola;
(d) hyperbola; (e) 2 degenerate straight lines; (f) ellipse; (g) ellipse; (h) ellipse
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7.3 Parabolas

A parabola is obtained by setting p=1/2 in Eq. (7.5). In this case, the
homogeneous coordinate w becomes a constant independent of t, so the
parabola can be expressed in terms of ordinary coordinate vectors Qg, Qr, Q;
as follows:

P(t)=(1—1)*Qo+2(1—1)tQs+1*Q,. (7.7

Evaluating this formula for the parameter value t =1/2 gives:

P<1>— 1 1 1
= —ZQ0+?QT+ZQ1

2
Qo +Qy N Qr+Q,
B 2 2 78
- . (8)
The tangent vectors at t =0, 1/2 and 1 are:
P(0) =2(Q7—Qo)
(1
P<2>: Q1—Q0 (7.9)
P(1) =2(Q,—Qy)

The relations expressed by formulas (7.8) and (7.9) are shown graphically in Fig.
7.4.

Fig. 7.4. Relation between parabola defining vec-
tors and the curve
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7.4 Circular Arc Formulas

7.4 Circular Arc Formulas
starting point Q, and end point Q, is shown in

A circular arc having center Q,,
Fig. 7.5. Letting R be the radius, 6, the angle between the radius vector at the
starting point and the horizontal, and 6 the angle subtended by the arc at the

center, we have:

_1Qs—Qul
T 1Qr—Qyl
0
(7.10)

COS—
2

~~
|

LN

Fig. 7.5. Generation of a circular arc

o
&

From Fig. 7.5 we have:

Qo=[Q.+Rcosb, Q.,+Rsinb, 1]

0 ) 0
cos 60+E sin 00+E
Qr= ch+R70 Qcy+R70 1
cos— COS—
2 2

Q,=[Q., +Rcos(0o+0) Q,+Rsin(0,+6) 1]

(7.11)
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Substituting Egs. (7.10) and (7.11) into (7.5) gives:

. 12 1 Q
WO PO =—— [ ¢ 1] [—2 2 0] (cosg>QT
l+cosz 1 0 0 2
Q,
1-2 1 Q
“o[ ]| -2 2 0 (Cosﬂ> )
[ 1 0 0:| )
Q,
1 -2 1
=[Fr1]| -2 2 0}
1 0 ©
Q.+ Rcosly Q.,+Rsind, 1
0 [ 0 . 0 0
X ercos~—2 +R cos 00+5 chosE+R sin 00+5 cosz
Qe+ R cos(0,+6) Q.+ R cos(0,+0) 1
(7.12)

which is a parametric expression for the circular arc. As a specific example,
consider the expression for a 1-st quadrant quarter circle with 6,=0°, 6 =90°,
0ex=0.,=0 and R=1*¥:

12 19| !
wOP@)=[ t 1] [72 2 0] L
1 o

=[P 11|)y2-2 2 22
1 0 1

* The symbol = 1ndicates that the corres ordinary are equal

**) Refer to the author’s book Graphics Processing Engimeermg (in Japanese) (Nikkan Kogyo Shimbun Sha),
p 102 Eq. (392).
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Next, let us find the circular arcs shown by dotted lines in Fig. 7.5. Setting:

_1Q5-Qyl
1Qr —Qul
cos—
= 2 (7.13)
= 7 .
1—cos -
2
and substituting Eqgs. (7.11) and (7.13) into (7.5) gives:
1 -2 1
wit)P()y=[2t1]| -2 2 0
1 0 0
Q.o+ R cost, Q.+ Rsinb, 1
0 0 0 . 0 0
X| — Qe c055~ R cos (()0+ 2—) —Qy cosifR sin (00+E> —cos 5 (7.14)
Q.+ R cos(0y+0) Q.+ R sin(0,+0) 1

This arc starts from point Q, (t=0), and turns clockwise until it reaches point
Q, (t=1).

In order to obtain the arc expression proceeding counterclockwise from
Q, (t=0) to Q,(t=1) we substitute

t=—t'+1 (7.15)

in Eq. (7.14); this new parameter ¥ is 0 at Q, and 1 at Q,. Then replacing ¢’ by
t gives:

1 -2 1
w(t)P(t)=[2 t 1] [—2 2 0}
1 0 0

Qe+ R cos(0y+0) Q.,+ R sin(0p+0) 1

0 0 0 . 0 0
x| — rXcosz—chos(()(,+j> —Qcycosszsm(()(ﬁE) —cos (7.16)

Q..+ R cosl, Q.,+Rsin0, 1

Examples of arcs generated by Egs. (7.12) and (7.16) are shown in Fig. 7.6.

If a circular arc is expressed as a rational polynomial, as the center angle
becomes large (especially if it exceeds 180°), in the central part of the arc the
intervals between points on the arc corresponding to equidistant parameter
values become widely spaced. Figure 7.7 shows the case with parameter
intervals of 0.1.
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Qr Qr Qr

Fig. 7.6. Generation of a circle

o

Fig. 7.7. Generation of a circle

7.5 Cubic/Cubic Rational Polynomial Curves

Quadratic/quadratic rational polynomial curves expressing conic sections could
be derived by performing an affine transformation and projective transformation
on a curve of the form [x y 1]=[t?>t1]. By a similar method, an affine
transformation and projective transformation can be performed on a curve of
the form [x y z 1]=[t3 t* t 1] to derive cubic/cubic rational polynomial curves.
Here we only show the results*®).

Let the position vectors and tangent vectors of the curve at t=0and t=1 be
Q,, Q, and Q,, Q,, respectively. The curve is supposed to pass through point
Qg at t=t,. Then the cubic/cubic rational polynomial curve is expressed by the
following equation:

* Refer to the present author’s book Graphics Processing Engineering (in Japanese) (Nikkan Kogyo
Shimbun Sha), Sect. 3.5.3.
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2 -2 1 10[we O 0 07[Qo
-3 3 -2 —-1|l0 w, 0 0]]Q,
0 0 1 0f[w, 0 w, 0[[Qo
1 0 0 0f|0 w 0 w|]|Q]

Qo
0 w, 0 0/|Q
we 0 wo 0 []Q
0 w; 0 wy| _Q1_

(7.17)

w)P)=[t> t* t 1]

=[Hy,o(t) Ho,(t) Hyo(t) Hy ()]

where w,, w,, w, and w, are given by the following formula:

Qo] ' [Hoolty) 0 Hy () 0

[wy W, 1y 1,]=0 Q, 0 H, (L) 0 H,y ,(t)
o Tt e T *1Qo Hy () 0 0 0
Q, 0 Hy () 0 0

If we set wo=w, and w,=w, =0 in the cubic/cubic rational polynomial curve
equation (7.17), since (7.17) is expressed in terms of homogeneous coordinates,
when converted into ordinary coordinates it agrees with a Hermite interpol-
ation curve (Ferguson curve segment).

7.6 T-Conic Curves'?

Let us impose the condition that a cubic/cubic rational polynomial curve be
able to express a conic section curve.
Consider, for example, the x component of Eq. (7.17) in the following form.

() = WOQO,XHO,O(t)+W1Q1,xHO,‘(t) +(W0Q0,x+WOQO,x)Hl,O([)+(W1Q1,x+w1Q1,x)Hl,l(t)

woHo o(t)+wi Ho 1 (t) +WoHy o) +W Hy 1 (1)
The denominator can be expressed as a polynomial in ¢ as follows:
(2WO_2W1 +W0+W1)t3—(3W0_3W1 +2W0+W1)t2+W0t+WO.

In order to express a conic section curve, the denominator must agree with
the denominator in Eq. (7.5):

(2W0_2W1 +W0+W1)t3_(3W0_3W1+2W0+W1)IZ+WOI‘+WO
=2(1-2p)t*—2(1-2p)t+1—p.
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Equating coefficients of like powers of ¢ gives:

2W0—2W1+W0+W1 :0
—(Bwe—3W, +2We+W,)=2(1—2p)

(7.18)
Wo=—2(1-2p)
wo=1—p
Solving Egs. (7.18) gives:
wo=1—p, wy=1-p, wo=—-2(1-2p), w;=2(1-2p).
Substituting these values into Eq. (7.17) gives:
2 -2 1 1
-3 3 -2 -1
43 42
wO)P@)=[t> t* t 1] 0 0 1,0
1 0 0 O
1—p 0 0 0 Q.
0 1— 0 0
b Q1 (719
—21-2p) 0 1-p 0 [|Q,
0 20=2p) 0 1-p|]Q,

If we set p=1/2 in Eq. (7.19), it reduces to a cubic Hermite interpolation
curve (Ferguson curve). In other words, the curve expressed by Eq. (7.19),
can express both a cubic Hermite interpolation curve and a conic section
curve. This makes it a very interesting curve. This curve, which was
developed at Boeing Aircraft Company, is called a twisted conic curve or 7-
conic curve.

In order for Eq. (7.19) to express a conic section curve, certain relations
must hold among the specified data Q,, Q,, Q, and Q,. Equating the
coefficient of 3 in (7.19) to 0 gives:

coefficient of > =2p(Qo— Q) +(1—p) (Qo +Q,) =0.

. Fig. 7.8. Geometrical relation among Q,, Q,, Q,
Qo Q—-Q, Q and Q, to express a conic section curve



7.6 T-Conic Curves 349

From this we obtain:
l—p .
Q17Q0:77(00+Q1)- (7-20}

This relation is shown in Fig. 7.8. Letting Q; be the intersection of the
tangents at points Q, and Q,, we have:

1—p .
Q17Q07 2£Q0
p
] (7.21)
Q-Qr= -0
P

Solving these equations for Q, and Q, and substituting into (7.19) gives:

2-2 1 1
wOP@)=[ * t 1] 32l
B 0 0 1 0
1 0 0 0
Qo
1—p 0 0 0 Q,
0 1-p 0 0 2p
—2(1-2p) 0 1I-p 0 —p QrQ)
0 20=2p) 0 1—p 2p
—(Q:—Qy)
1—p
2 -2 1 1
-3 3 -2 -1
B 2¢t1
e
1 0 0 0
r 1-p 0 0
0 1-p 0 0
—2(1-2p) 0 1-p 0
L 0 2(1-2p) O 1—p
[ 1 0 0
0 0 1 o
2 2 0
o2 P 0 Q|-
l—p l—p Q,
2 2
0 __cp
L l—p 1-=p
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=2t 1]
0 0 0
I-p  —=2p 1-p [8"]
r
—2(1—=p) 2p 0 Q,
I—p 0 0

1 -2 1 1-p 0 0 Qo
=[2t 1] [72 2 0} [ 0O p 0 ] [Q,]
1 0 0 0 0 1-p][Q

showing that this agrees with Eq. (7.5) for a conic section curve.

References (Chap. 7)

32) Forrest, A.R.: “Conic Sections”, Draft of Computer-Aided Geometric Design, Dec. 1978.



Appendix A:
Vector Expression of Simple Geometrical Relations

Straight Line Vector Formulas

A straight line which passes through the point Py=[x, yo z¢] in the direction
of the vector L can be expressed in terms of the parameter ¢t as:

P(t)=Py+Lt. (A.1)
When L is a unit vector, the distance between points P(t) and P, along the
straight line becomes |P(t) — Py| = |Lt| = |t].

The vector formula for the straight line passing through the two points

Py={xy yo zo] and P, =[x, y; z,] 18, with L=P, — P,:

P(t)=(1—t)Py+tP,. (A.2)
Points on the line segment P, P, correspond to values of the parameter ¢ in the
range 0=t=<1.

Perpendicular Bisector of a Line Segment

Let V be a vector normal to a plane on which lie the two points P, and P;.
Since the vector (P, —P,)x N is in the direction of the perpendicular bisector,

Perpendicular
bisector

Fig. A.1
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the formula for the perpendicular bisector is found by setting L=(P, — Py)x N
and by replacing P, by (P, — P,)/2 in Eq. (A.1), (Fig. A.1):

_P—P

P(t)=""3

+(P,— Py)x Nt. (A3)

Length of a Common Perpendicular
to Two Non-Parallel Lines

Let PyP, and P} P; be two straight lines. Let the intersections of the common
perpendicular with these lines be H and H' (Fig. A.2). From Eq. (A.1):

H=P,+(P,— P,)t
H' =P, +(P,— Pt

P,

Fig. A.2

Therefore:

H—H'=P,— P}+(P,— Py)t—(P,— Pt

Let I be the length of the common perpendicular and # be the unit vector in the
direction H— H'. Then we have:

l

(H—H') u
(Po—Pg) - u+(Py—Py)t-u—(P{—Py)t' - u
(Po—Pg) - u

u is a unit vector perpendicular to P, — P, and P;— P{:

(P, — Po) x (P; — Pg)

u= .
|(Py — Po) x (P; — Pg)|
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Therefore:

;= Po=Po)- [Py~ Po) x (P — Fo)]
(P, — Po) x (P{—P5)]

_[Po Py PPy, P Py]¥ a4
(PP x(F=Py)| '

Plane Vector Formulas

A plane is expressed by ax+by+cz+d=0. Since [a b ¢]” is a normal vector
N, if P=[x y z] is a point on the plane, we have:

P-N+d=0. (A.5)

Formula for a Plane That Passes Through 3 Points
not on a Straight Line

Consider the 3 points Q,, Qy, Q, that lic on a plane but not colinear. (Q; — Q)
x(Q,—Q,) is a vector normal to the plane. Therefore, from Eq. (A.5) we have:

P-[(Q1—0Q0) x(@2—Q0)1=00 - [(Q1 — Qo) X (@2 — Q)]
Expanding the right-hand side gives:
right side = Qq - [(Q1 — Qo) X (22— Q)]
=00 (@1 x 02— 01 x Qo= Qo x O+ Qo x Qo)
=Q0 (@1 x Q)
=[0o, @1, Q1.

Therefore, the formula for the plane that passes through the three points Qy,

Q. Q,is:
[P, Q= Qo @:—Q01=1[Q0. Q1. O] (A-6)

* The brackets in the numerator indicate the triple scalar product.
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Intersection Point of 3 Planes

Consider 3 planes having the formulas:

P'N1+d1:O
PN2+d2:O
P-Ny+d;=0.

The intersection point is:

B dy(Ny x N3)+dy (N3 x Np)+d5 (V) x N,)

P:
N, - (N, x IV3)

(A7)

It is necessary to have 1V, - (N, x N;) £ 0.

A Circle That Passes Through 3 Points

Let us find the circle that passes through the 3 points Q,, Q;, Q, (Fig.A.3). The
center of the circle is at the intersection of the perpendicular bisector L, of the
line segment Q,Q,; and the perpendicular bisector L, of the line segment
0,0, . Assuming that the points Q,, Q;, @, are on a plane in 3-dimensional
space, the center Q. of the circle to be found is at the intersection of 3 planes,
namely, the plane in which the circle lies, the plane which includes L; and is
perpendicular to the circle plane, and the plane which includes L, and is
perpendicular to the circle plane.
The plane in which the circle lies is expressed by the equation:

(P—Q0) - {(Q1— Qo) x(Q>— @)} =0. (A.8)

The equations of the planes perpendicular to the circle plane and including L,
and L,, respectively:

Fig. A.3
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2
(P=Qo) (@, =00} - ) =0 (A9)

(P00 (- Q)= =0 (A.10

so that substituting P—Q, for P in Eq. (A7), (Q,— Qo) x(Q,—Q,) for N,
0,—Q, for N,, Q,—Q, for N5, 0 for d;, —c?/2 for d, and —c3/2 for dy, we
obtain:

‘1 (Qz Qo) x [(Q1 — Qo) X (@, ~ Qo)] + 3 [(Q1 — Qo) x (@, — Qo)] x (Ql Qo

21(Q1— Qo) % (2, — Qo)

"z [Ll —(Qi— Qo) (2:— Q)] (2 — QDL+ i [e3—(Q— Qo) (22— Q0] (Q2— Qo)
2(Q1~ Qo) x (2, — Qo)

P—0=

(A11)
Letting R be the radius of the circle, we have:

3Lt (01— Qo) (@2 — 00)1(Q1— Qo) - (P— Qy)
+eA 3 (0, - Q0) (s~ QDJ(QZ Qo) (P~ 0Q0)
2{(@1— Qo) X (@2 — Qo)

Using the relations in Eqgs. (A.9) and (A.10) gives:

=(P- Q0=

i3 {3 —2(01— Qo) (@2~ Qo) +c3}
4101 - Qo) x (2 — Qo)
_ C%C% {(Q1*Qo)_(Q2‘Q0)}Z
41(Q1~ Qo) x(Q2— Qo)

101 —Qol 15— Qol 191 — Q5]
2101 — Q) x (2, —Qo)l

In this cae, the circular arc Q,Q, =a, has the length:

R*=

R=

(A.12)

a,=2R sin"(;;e) (A.13)



Appendix B:
Proofs of Formulas Relating to B-Spline Functions

B.1 Proof of Eq. (6.83)

The Leibnitz formula holds for the divided difference of a product of functions.
For a function h(u) expressed in the form:

the M-th order divided difference of h(u) is given by:
M
hlug, .csuyd= 3 fltos -os ] g Lty ons Uy ] (B.1)
r=0

Applying Leibnitz’ formula to the function:
My (t;wy=u—t '=u—0)%"2u—t)
the 2-nd order and higher divided difference of (1 —1) vanish, so we have:

My (15 £, g™
=My [t e I I+ My [ 5  ep] (G — 1)
=My ([t t, s tiam—1]

+MM—1|:t§ Liv1s -~~at,+;\4] M[M ety tim—1] (1),

JHM A
Expressing this formula in the notation of Eq. (6.75) gives:

t

() =M, 4 1(1)‘*’% (M;+1M (=M, (1)

J+M ol
tim—t
— M,y () My -1(0). (B:2)

Lim—t Lol

Putting this into the form of normalized B-spline functions gives, from Eq.
(6.76):

* The subscript M of My, 1s the M of (u—t)¥ !
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M/',M(t) :14 Nj,M (t)

Lam—l

1
Mjy-1(t) =———Njy-1(0)

LGem-171

1
Mj+1,M—1(t)=7Nj+1,M—1(f)

Lam— a1
leading to the following formula:

t—t Lom—t
Niu(t)= < N],M*l([)+vj Ny tm-1(0)-
Giam-1—1 LGam—tis1

B.2 Proof of Formula (6.127)

The B-spline curve formula:

]

PR= Y Nu0OQ tZt<ty)

J=i=M+1
can be transformed as follows using formula (B.2):

PO= % )My s (o= Moy 1(0]Q;
jEi-M+1

i+1

357

(B.3)

= 2 W—t)QMp i)+ =D Q- My (01

J=i-M+1
i+l

= Y My @M=t Q+ -1 —1Q,-1]

j=i-M+1

:Z A’vj,Mfl([)

1

Lam-171
—ZNM10®W0

where:

Q}ﬂ(r):(l L)Q, g,

Lam-1 Lam-171L,

* Note that M,y y—1(t) and M, 5, 1 y—4(2) are both zero 1 t,<t<t,,,.

[([7[)Q1 1+M 1 T)QJ 1]

(B4)
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In general, setting:

9 (k=0)
() = —t
2hw (1 _ 7) g D gEg (k>0)
Liom—k—Y Lim—k—1
(B.5)
we have:
ZA,M WD QM (). (B.6)
For t,<t<t,.4, N;;(t}=1 and the other B-splinc functions are zero, so:
P)=0M"1(0)  (BSe<tyy) B.7)
B.3 Proof of Formula (6.86)
In the proof of formula (6.86) we use the Marsden identity:
( ‘t —ZN;MT)MGM (BB)
i

W, W)= H (w—1t;.,), W w=1

so let us prove it first.
In the case of M =1, the right-hand side of Eq. (B.8) becomes:

ZNM(I) Wj,1(u)=Z N, (=1

i J

so Eq. (B.8) holds.
Of course, Eq. (B.5) also holds for scalar functions. Letting:

) *=0
M) = (] oty ) 051+ LQJI"-”([) (k>0)

Lam-k—1; Gom-x—1,
(B.9)
we have, from Eq. (B.6):
P(t)=ZN/, tQ;= ZN]M Kl [k](t)
i
where:

01(t)=Q;=W, »(u) for allj.
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Then, from Eq. (B.9), we have:

OO =[(taar-1—0) Qo HE—1) Q1 (4 ar-1 —1)
=[tem -1 = OWm @ =) W, e W]/ G ar—1— L)
=[(IJ+M—1‘I)(“_”W,‘M71(“)
F—1) =ty - ) Wipg -1 @/ -1 — 1)
:Wj,Mﬂ( _Z)

Therefore:
ZNj.M ()= ZNJM (1) [1](t)
J
M-I)Z Wm—1 (). (B.10)

Accordingly, if we assume that Eq. (B.8) holds when M is replaced by M —1,
that is, if we let:

(“*0“472:2 N1 (O W, 01 ()

then, from Eq. (B.10):
ZN,M(z fonW)=(u—1) Z]\ M=t () Wigo1 ()
=u—ty™t,
From this the Marsden identity can be proved by mathematical induction.
Then comparing the coefficients of u™ ™' on the left and right-hand sides of

the Marsden identity, we immediately obtain:

YN, () =1. (B.11)



Appendix C:
Effect of Multiple Knots on B-Spline Functions

Here we show the effect of multiple knots on B-spline functions for the case

M=4.

(1) Knot vector T=[ty t; t, t3 t,]=[01 2 3 4]

1.0

Case without multiple knots

[
Noa(t)
0 i 2 3 T,
1[3
6
2
—(t—=2+ 3 t—3)3——(t—)
No ()=
2 (t—3)°— ! (t—4?°
3 6
1
——(t—4)
—(—4)
(2) Knot vector T=[t, t; t, t; t,]=[00 1 2 3]

1.0

Noo(t)

Wi

0<t<1)

(1=t<?2)

2<t<3)

(C.1)



Appendix C: Effect of Multiple Knots on B-Spline Functions

2

t
- (= 1 <t<l1
12( 11t+18) 0=t<1)
7 9 3
No.()= Et3—3t2+?t—E (1£t<2)
1
—g(t—3)3 (2=t=3)

(3) Knot vector T=[t, t; t, t3 t,]=[000 1 2]

1.0

Noa(t)

t
L 00=1814+12)  (0=i<l)

— =2 (1=1£2)

(4) Knot vector T=[t, t, t, t; t,]=[000 0 1]

1.0}

Nou(t)

| Il
0 1 2 3 4

—_—

Nost)=—(—1)° (0=t=1)

(5) Knot vector T=[to t; t, t; t,]=[0 1 2 3 3]

1.0}

Noa(t)

361

(C.2)

(C.3)

(C4)
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— 0<t<1
6 (0= )

1
Noa(t)= E(—7t3+27t2—27t+9) (1=t<?2)

%(3_02(1“—15) 2=t=3)

(6) Knot vector T=[t, t; t, t5 t,]=[012 2 2]

1.0
L Noa(t)
—
1
Zt3 (0<r<1)
N0,4(t)=1
Z(2—t)(7t2—10t+4) (1<1<2)

(7) Knot vector T=[ty, t; t;, t3 t,]=[01111]

l.0’>

Noalt)

No,()=t>  (0=t=1)

(8) Knot vector T=[ty t, t, t3 t,]=[001 2 2]

1.0[*

r No.A(”

(C.5)

(C.6)

(C.7)
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363
1
?t2(3—2t) 0=t<1)
Noa(t)= 1 (C.8)
7(2—t)(—2t2+5t—2) (1£tL2)
(9) Knot vector T=[t, t, t, t; t,]=[012 2 3]
1.0[»
r Noa(2)
0 ] 2 3 i
—t
! 3 (0=t<1)
4 =
1 1
No.(t)= Zt2(2—t)+?t(t—l)(Z—t)+7(3—t)(t—1)2 (1=t<2)
1
—E(t~3)3 (2=t=3)
(C.9)
(10) Knot vector T=[t, t; t, t5 t,]=[011 2 3]
1.0
i Noo(t)
0 1 ) 4
—
! t3 0=t<1)
2 0=
1 1 1
Noa()={ S Q=0+ (=D 2= B=0+5 (=D E~1)* (15t<)
1
——Z(t—3)3 (2=t=3)

(C.10)
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(11) Knot vector T=[t, t; t; t; t,]=[011 2 2]

/N04(t)
0 i 2 3 s
i,
1
5t3 (0=t<1)
N0.4(t): 1
Et(2—t)2+(t—1)(2—t)2+(t—1)(2—t)2 (1=t<2)

(C.11)

(12) Knot vector T=[ty t, t, t3 t,]=[00 11 2]

1.0

Noa(t)

%t2(6—5t) 0<t<l)
No.(t)= 1 (C.12)
_f(t_2)3 (1=t£2)

(13) Knot vector T=[ty t, t, t3 t,]=[01 11 2]

1.0’-

Noalt)
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t 0=t<1)
No4(t)= - C.13
ol {—<t—2)3 0<t=2) (€
(14) Knot vector T=[ty t, t, t5 t,]=[001 1 1]
1.0
Noalt)
o,
Noa4(t)=3t*(1—1) 0=tz (C.14)
(15) Knot vector T=[t, t; t, t3 t,]=[0 0 0 1 1]
1.0F
'[\(/Nmm
S
t
No.()=3t(1—1)* (0=tZ1) (C.15)

(16) Knot vector T=[t, t; t, t; t,1=[00 0 0 0]

No4(t)=0 (C.16)
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