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Preface

This book provides an introduction to the analysis of particular algorithms. It has its
origin in lecture courses given at the Universitat des Saarlandes, Saarbrticken in 1980
and at the Johann Wolfgang Goethe-Universitat, Frankfurta.M. in 1982. The material
can be covered in a one-semester course.

In preparing the notes for publication as a book, | have added a considerable
amount of material additional to the lecture notes, with the intention of making the
book more useful. My prime consideration has been to produce a textbook whose
scope is selective; some of the omitted material is outlined in various exercises and
should be useful in indicating possible approaches to certain problems. Moreover,
problems are provided to furnish examples, to expand on the material or to indicate
related results, and occasionally to guide the reader through the steps of lengthy
proofs and derivations. | have referred, in various places, to those books and original
papers which have been of particular assistance to me.

| wish to take this opportunity to thank all those who have had a part in this work,
and who have made this book possible. | am particularly indebted to Professor Dr.
Gunter Hotz for his encouragement in the writing of this textbook. Special thanks are
due to Ute Schurfeld for careful reading of the text. Dr. P. Spuhler from Teubner-
Verlag provided co-operative and competent support in all editorial problems. Finally,
| wish to thank Teubner-Verlag and John Wiley & Sons for very good and timely
editorial work.

Frankfurt a.M., West Germany R. Kemp
December 1982
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Introduction

‘Analysis of algorithms’ is quite important in computer programming, because
there are generally several algorithms available for a particular application and
we would like to measure and compare the time and storage requirements.
Time may be measured by counting steps, statements, or the number of times
some given operation is performed; space may be measured by bits, words, or
the number of registers and cells required during execution of the algorithm.

The analysis usually consists of determining the behaviour of an algorithm in
the best case, in the worst case and in the average case. The best (worst) case is
characterized by the minimum (maximum) total amount of time or space
requirements taken over all inputs of some fixed size. To characterize the
average case, it is necessary to define what we mean by the average; in general.
we must make some assumptions about the expected characteristics of the
inputs of some fixed size. If an input x of size n has the probability p, and
requires the total amount of time or space k,, then the average case is
characterized by the behaviour of the expected value (Appendix A) of the
random variable which has the value k, with probability p,. In most problems
we will make the reasonable assumption that each of the inputs of size n is
equally likely, but the analysis can also be carried out under other assumptions.
To obtain a quantitative indication of how close to the average we may expect
the amount of time or storage requirements to be, we will compute further
characteristics of the given distribution such as the wvariance, the standar.
deviation, the moments about the origin, or the (cumulative) distribution function
(Appendix A).

Now an important problem is to compare the time and space requirements
of algorithms available for a particular application. Sometimes we want to
decide which is best. But this is easier said than done. In many cases we may
only compare the time requirements or the storage requirements of two
algorithms, because the one algorithm requires less time but more space than
the other. Similarly, comparing two algorithms in the best, worst, or average
case, the same situation can occur. For example, the sorting algorithm
‘Heapsort’ is faster than the algorithm ‘Quicksort’ in the worst case, but not in
the average case. Summing up, a comparison of two algorithms should be
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made only for the time or storage requirements in the best or worst or average
case. (Nevertheless, there are other criteria of goodness of algorithms such as
the product of time and space requirements or the adaptability to computers.)

The classical complexity theory deals with the time and storage requirements
of algorithms in the worst case. In practice, there are some objections to the
measuring of the goodness of an algorithm by these quantities, although their
computation can be an extremely difficult task. If an algorithm requires time or-
space of order O(f(n)) in the worst case, then the constant in the O-term can be
fantastically large and the result is only of theoretical interest. Furthermore, if
the inputs corresponding to the worst case have a probability which tends to
zero for large input sizes, then it is hard to see why the goodness of the
algorithm is measured by its worst case. Therefore, the importance of the worst
case can be reduced by the knowledge of its probability. But the computation
of this probability can be rather difficult, unless impossible. In practice, an
algorithm requiring time n on the average in 99 per cent of all possible inputs of
size n should be preferred to an algorithm for the same problem which needs
time n? in the worst and average case, even though the former algorithm needs
time n? in the worst case.

Study of the behaviour of an algorithm on the average is accompanied by
many mathematical calculations; we need to use the results ~f complex variable
theory, number theory, probability theory, discrete matheratics and combina-
torics. The principal techniques involved in the analysis of - 1gorithms consist of
counting of certain objects, solving of recurrences, working with finite
summations, handling of generating functions and asymptotic evaluating of
expressions. The last part of this introductory section is devoted to some simple
examples elucidating the above ideas and concepts.

ExampLE 1.1 We consider the following one-tape Turing machine 7 which
adds one to a binary number a,_,a,_, ... aja, of length n.

Initial configuration:

* 0/7-1 00_2 01 00 % f

}

Read ~write head

Final configuration:

cle, [e, | - |alal*]-  §

Read-write head

where

Z C,'2i =1 + Z ai2i.

0<i<gn 0<ign~1




O—1, R~ LN Rk L
) 2 'C‘”j ~@)

-0, ¢ 0—~0, R
1—1, R

State-transition diagram: Here, q, is the initial state and ¢, is the final state.
The label ‘x — u, v’ on an arc means: take this transition if the input symbol is
x; replace x by u and move the read-write head one square in direction v,
where v is L for left, R for right, and S for ‘don’t move’. The Turing machine T
moves the head to the left and replaces all ones by zeros until it has found the
rightmost zero (or *) in *a,_,a,_,...a,a,*; after replacing this symbol by
one, it starts back and enters the final state.

We will measure the time requirements of the described Turing machine by
the number of moves T'(n) necessary to transfer the initial configuration to the
final configuration.

Best case: Obviously, the minimum number of moves is two; this happens if
ao = 0. Assuming that all binary numbers of length n are equally likely, the
probability that T visits exactly two squares is 27!, because there are 2" !
numbers with ay = 0.

Worst case: The maximum number of moves is 2n + 2; this happens if a, -, =
a,_, ="""=a, = ao = 1. The probability that this case occurs is 27"

Average case: We will assume that each of the 2" numbers is equally likely.
An input *a,_,a,_,..a,ae* requires exactly 2m, 1 <m < n + 1, moves if and
only ifa,_,=0nra,_,=a,_3="""=a,=ap=1Am#n+1ora,_,=
Qm_3 ='""=4a, =ao=1A m=n+ 1. Therefore, the probability that an input
of length n requires time 2m is equal to 27"*%+1= 1 <m < n + 1. Since

y m MX"TP—(n+Dx" +x
e (x — 1)? ’

I<m<n

if x # 1, we find that the average time T(n) is given by the expected value
T(n) = Z Qm)2~m¥hrim = 4 — 27FL,
I<m<gn+t
The s-th moment about the origin is (Appendix A)
piny= 35  (2m)y2 "t rn

I<m<n+1

=2 Z ms2—m+(n+1).s2s—n—l — s Z m2m

mz1 mzn+2

— 22s+1As(%) + O(nsz—n),
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where A,(u) is the s-th Eulerian polynomial (see Appendix B, 2.3). As special
cases, we have uj(n) = T(n) ~ 4, uy ~ 24, uy ~ 208.

For the variance, we have therefore 6%(n) ~ 8. To complete our analysis, we
compute the cumulative distribution function. Using the geometric series, we
obtain for xe[1:n — 1]

V,2x)= Y 27¥mu=1—(1=38,,, )27

t<k<x
Thus the probability that an input of length n needs less than or equal to 2m
moves is V,(2m). For example, 93.75 per cent of all inputs of length n require
less than or equal to eight moves. Chebyshev’s inequality (Appendix A) tells us

that the probability that T'(n) fails to lie within 2\/5 x 10 ~ 28.28 of its average
is less than or equal to 10 2. This example shows that the worst case behaviour
is two pessimistic, in order to measure the goodness of the given algorithm.
Considering the storage requirements of our algorithm, that is, the number of
squares S(n) required by a computation with input of length n, it is easy to see
that S(n) = n in the best case, S(n) =n + 1 in the worst case, and S(n) =

n + 27" in the average case. The best case has the probability 1 — 27" and the
worst case 27",

ExampLE 1.2 We consider the following one-tape Turing machine T which
copies the ones appearing in the binary number *a,_,a,_, ... a,aq* of length

n behind the right-hand end of the input.

Initial configuration:

% 0”-1 0”-2 .o e 01 00 L3 P j
4

Read - write head

Final configuration:

— - fimes———\

*|a . |ag, , S 2 -7 I N O O I IR f

Read -write head
Where ZOQI’S"—I ai =m.

0—+0,~/
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State-transition diagram: Here, q, is the initial state and g5 is the final state.
The label ‘x — u, v’ on an arc has the same meaning as in Example 1.1; the
input symbol U stands for the blank tape symbol. Each square of the tape
behind the rightmost * contains a blank symbol in the initial configuration.
The Turing machine T moves the head to the right and searches successively
the ones appearing in *a,_;a,_, ... a;a,*; when it finds a one, T replaces this
one by $ and starts right along the tape until the first L. After replacing this
by one, the head moves back to $. $ is replaced by one, and T searches the next
one in *a,_,a,_,...a,a,* T enters the final state if it finds * behind a,,.

We will measure the time requirements of T by the number of moves T'(n)
necessary to transfer the initial configuration to the final configuration. First,
we shall compute the number of moves required to transform the configuration

~m; .,-times—

100*1...1...(

* (9, , |9y | 9ien

4
Read - write head

into
~m_ -times —

*|a,, a, a,_, .ol a, ao % |1 1 )/

}
Read —write head

Obviously, m,; =Y, 1¢<na; and my =), a; If a,=0, then there is
exactly one move. If g; = 1, then we have to copy q; behind the right-hand end.
T replaces a; by 8, starts right along the tape and finds the first | | after
(i + m;,; +2) moves. The Turing machine now writes one, and the head
moves back to $ again giving the contribution (i + m;,, + 2) to the total
amount of moves. After replacing $ by one, the head moves one square right
and finds a;_,. Thus our task requires 1 + 2q,(i + m;,, + 2) moves for any
ie[0:n—1]. To obtain the total time requirements T'(n) for a given input
*a,_,a,_,...a,a,*, we have to sum over all i such that 0 <i<n—1. We
obtain

T(n)= Z [1+2a,(i+m,, +2)]

0gign—1

=n+2 ) ig+4 Y a+2 ) Y aa;

0<ign—-1 0<ig<n-1 | Oisn—li+lgjgn-1

2
=n+2 Y ig+3 ) a,-+[ > a,-j|
o<i

0<gisn—~1 0<i<n—1 <n-—-1

Best case: Evidently, the best case is characterized by the condition a,_, =
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a,_,=''"=a, =ay = 0. It follows that the minimum number of moves is n.
Assuming that all binary numbers of length n are equally likely, the probability
that T visits exactly n squares is 27",

Worst case: Since all terms on the right-hand side of the general formula given
above for T(n) are non-negative, the worst case happens if a,_, = a,_, ="
=a, = ay, = 1. Hence the maximum number of moves is n(2n + 3), because
Yo<i<n—1 i = n(n — 1)/2. The probability that this case occurs is 27"

Average case: We will assume that each of the 2" inputs is equally likely. There
is no simple condition of two binary numbers of length n, so that both have the
same time requirements. Therefore, we do not know the probability that an
input of length n requires time m. Fortunately, we can compute the total
number of moves t, necessary for all inputs of length n. We obtain (see Exercise
1.1) 7, = 3n(n + 3)2" 2. Since the average time T(n) is given by 2 "1,, we find
T(n) = 2n(n + 3). In contrast with Example 1.1, the time requirements of our
algorithm in the worst and average case have the same order, namely O(n?).
Here, the worst case is really appropriate to measure the goodness of the
algorithm, although its probability is exponentially small. Furthermore, our
example shows that it is sometimes possible to compute the average case
behaviour of an algorithm, even though the probability that an input of size n
requires time (or space) m is unknown; in this case, we have no exact
information about the moments, distribution function, etc.

Finally, let us consider the storage requirements of our algorithm. We will
measure the space by the number of squares S(n) which are scanned by the
read-write head in any computation starting in the initial configuration with
input *a, _,a,_, ...a;ay* and leading to the final configuration. Obviously, we
have

Sm)=n+1+ > g
O<gign—1
Best case: This case is characterized by the condition a,_, =a,_., ="""
= a, = a, = 0. Hence the minimum number of scanned squares is n + 1. The
probability that this case occurs is 27", provided that all binary numbers of
length n are equally likely.

Worst case: The maximum number of scanned squares is 2n + 1; this happens
ifa,_, =a,_., =""+=a, = a, = 1. The probability that this case occursis 27"

Average case: We will assume that each of the 27" numbers is equally likely.
An input *a, _,a,_, ... a,ay* requires exactly n + 1 + m, 0 < m < n, squares if

e . . ny. .
and only if it contains m ones. Since there are ( ) inputs with m ones, the
m

probability that an input of length n requires n + 1 + m squares is (;)2'”.




Therefore, the average space S(n) is given by the expected value

Sm)y= > m+1+ m)(:l>2"' =3n+1,
0<m<n

because

Y (m+1+ m)( >= 3n2"~! + 2" (see Exercise 1.2).

n
0<ms<n m

The s-th moment about the origin is (see Exercise 1.2)

)= > (m+1+ m)‘(:;)2"' =327+ O(m* 1),
O<m<n

As special cases, we obtain the exact values pi(n) =S(n) =3n + 1, u,(n) =

3n? + L3n + 1. For the variance, we have therefore 62(n) = n/4. Finally, let us

consider the cumulative distribution function ¥, (x) which gives the probability

that an input requires less than or equal to (n +1+ x) squares. For

0 < x < n —1 we obtain (see Exercise 1.4)

AT (")2'"

0<m<x m

=(n-— x)(") Jq F(l—o" "1 de.
X/ Jij2

This is a binomial distribution with point probability p = 1.

ExaMmpLE 1.3 This example is devoted to a generalization of Example 1.1. We
consider the following two-tape Turing machine T which transforms a positive
integer n given in the unary number system into the binary number system.

Initial configuration:

—— 1 -times ————
T I 1 T R I O I B B R j input tape

[}
Read - write head

[.. u u u Ul lul - / work tape

4
Read-write head

Final configuration:
— n-times ——

® " T T T T RO B B I N K O / input tape

4
Read -write head

[.. Ul g, | 9paa| <o |91 9% | * / work tape,

}
Read-write head
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where D o icm a2 = n.

1,% — 1,5, %, L

1;0—’1,5;1,/?‘/\

(4 »{(q
@ tu—15 1R @

1.1 —1,5,0,L 1,1
1,0

—_—
—_—

State-transition diagram: Here, q, is the initial state and g5 is the final state.
The label ‘x; y— u,v;p,q" on an arc means: take this transition if the
read—write head on the input tape scans x and the head on the work tape scans
y; replace x by u, y by p, and move the head on the input tape (on the work
tape) one square in direction v (in direction g), where L, R, and § have the same
meaning as in Example 1.1. The Turing machine T moves the head on the
input tape to the right; when it finds a one, T adds one to the binary number
on the work tape. The addition of one is performed according to the procedure
given in Example 1.1.

Since there is exactly one input of length n for each integer n, the worst and
best case of our algorithm coincide with the average casc. The Turing machine
T visits (n + 1) squares on the input tape and ({ld(2n)| + 1) squares on the
work tape, because a number n has {Id(2n)| bits in its binary representation.
Thus the space requirements S(n) of our Turing machine are

S(n) =n+ {Id2n)| + 2.

Let us now consider the time requirements of T given by the sum of moves on
the input and the work tape. Evidently the number of moves on the input tape
is n. In order to transform the configuration on the work tape

f u Gm Gm_1 01 00 * | f

Read-write head

into

Read - write head

with
Z Ci2i = Z a,-2i + 1,

o<i<r 0<i<m
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the Turing machine T has to perform (2t + 2) moves, where ¢ is the maximum
number of zeros appearing as suffix in c,c,_, ... ¢,c,. Obviously, ¢ is the unique
integer such that '

Y 2 =22k + 1)
o<gisr

for k > 0 or in other words, ¢ is the number of all positive divisors of the form
25, se N, of the integer ) ;«, c;2". Therefore, an input consisting of n ones
requires ), <, (2¢(i) + 2) moves on the work tape, where d(x) is the number of
all positive divisors of the form 2°, se N, of the integer x. Hence the time
requirements T'(n) are given by

Tn)=3n+2 > 0G)
I<ign

If we let S,(n) denote the number of ones appearing in the binary
representation of n, we have further (see Exercise 1.5(d))

T(n) = 5n — 28,(n).
This equation implies
5n —2[ld(n)| < T(n) < 5n — 2

forn > 1, because 1 < §,(n) < [Id(2n)|. Evidently, the function S,(n) has a very
erratic behaviour which is clarified by the following result given in [22]: there
exists a continuous function F: R — R, periodic with period 1, such that

Y 8,() = inld(n) + nF(ld(n))

I<ign-1

for n > 1. Furthermore, the function F is nowhere differentiable and has the
Fourier series

Fix)y= )  f,exp(2nikx)

-0 kg
which converges absolutely and has the coefficients f, given by
fo=1%ld(m) — §In"'(2) — 5 = —0.1456
fi = =S Y+ 707  In~1Q2)  with g, = 2mik In"1(2), k # 0.

(For similar problems concerning digital sums see [33],[84].) Using this result,
we immediately obtain

T(n)=5n—[(n+1)1d@n + 1) — nld(n)]
+ 2[(n + DF(d(n + 1)) — nF(d(n)]
=5n—1d(n) — In"1(2)
+2[(n + DF(d(n + 1)) — nF(ld(n))] + O(n~").
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FIGURE 1. Graph of the function f(n) = 21d " (n)[(n + 1)F(d(n + 1)) — nF(ld(n))].

The erratic behaviour of the function
fn)=1d"'(n)[T(n) — 5n + 1d(n) + In~1(2)]

is illustrated in Figure 1. An elementary computation shows that |f(n)] <1 (see
Exercise 1.6). This example shows that the functions appearing in a detailed
analysis of algorithms are sometimes very mysterious (compare also Chapter
5). They necessarily involve a knowledge of calculus or higher mathematics.

Exercises
1.1 Show that

S OY a=@m+12n

(a)
0<ap<lt 0<a,<t 0<ign
® Y - Y Y ia=nm+12
0<ay <t 0<a, <1 0<ign
2
© Y - ¥ [Z a,»:l =mn+1)n+2)2" L
O<gag <t 0<a, <1 | 0<ign
1.2 Let

seN, and fn)= 3 (n+1+m)s<:1).

0<m<n

Show that [i,(n) = 2", f,(n) = 3n + 2)2"~ 1, f,(n) = (n + 1)(9n + 4)2" "2 and generally
A, (n) = n*3°2" 7S + O(n*~'2"). (Hint: Take the derivatives of

ﬁ,(X)= z (;)xn+m+l =xn+l(l+x)n

0<m<n

and use formulae (B8) and (B25).)
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1.3 Show thatforu>s>0,w>0,r >20:

5 r—k\(s+k\ [r+s+1
O<k<r\ W u T \wtu+1/

1.4 (a) Show that for 0 <k < n:

n L n\ (**7
Yo X"y = —k) uk(x +y —u)" % du
o<i<k \! k) J,

(b) Show that for 0 <k < n:

/2

(:) ="tig1 Jm cos"() cos((n — 2k)a) da.
0

1.5 Let d(n) be the unique integer such that n = 2°"(2k + 1) for n > 1, k > 0, and let

S,(n) be the number of ones appearing in the binary representation of n.

(@) Show that d2i +1)=0fori >0 and 0(2i) = d(i) + 1 fori> 0.
(b) Show that d(n) is multiplicative, i.e. d(r) + d(s) = 0(rs).

(c) Show that d(n!) =n — S,(n).

(d) Show that ), (;¢, 0(j) = n — S,(n).

1.6 Prove that the function f(n) given at the end of Example 1.3 is an oscillating
function with |f(n)| <1.
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A Simple Class of Algorithms

2.1 Definition of a Random Algorithm

The purpose of this section is to present a well-known class of algorithms, the
so-called random algorithms. In practice, many algorithms do not satisfy the
strong assumptions of a random algorithm, but analysis of the computation
time for algorithms of this kind affords a welcome occasion for introducing
some basic definitions.

DerFINITION 2.1 Let S be a set and r,,: S — N, be a mapping. The tuple M =
(S, ry) is called a multiset over S. If ry,(a) = n, then the element a € S occurs
exactly n times in M. The union, intersection and inclusion of two multisets M
and N over S are defined in the following way:

M < N:=(Vae S)(ry(a) < ry(a));
M AN :=(S,ry~y) Wwhere (Va€ S)(rynn(a) = MIN(ry(a), ry(a)));
M ON:=(S,ryoy) Where (Va € S)(ryon (@) = MAX(ry (a), ry(a))).

(Note that these definitions are simple generalizations of the corresponding
concepts for sets in the usual sense.)

DEFINITION 2.2 Let V be a finite set, k € N and B, (V) be the set of all subsets
of V containing k elements. A graph is a tuple G = (V, A), where

(@) V is a finite set of nodes (or vertices);
(b) A is a finite multiset over P, (V), the so-called arcs (or edges).

Two nodes v,, v, € V are called adjacent if {v,,v,} € A. The graph G is simple if
r.({vy,v,}) <1forall {vy,v,} € B3(V). The n-tuple (v;,v,,...,v,) V", neN,
is called a path of length n from vto v' if v =v, and v’ = v, and {v,,v,.,} € 4
for 1 < k < n. The path (vy,v,,...,v,) is simple if v,...,v,_, are distinct and
vy, ..., 0, are distinct; it is closed, if v, = v,. The graph G is connected if every
two nodes are connected by at least one path. G is called acyclic if all paths
appearing in G are not closed.

12
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FIGURE 2. Plane representation of the graph G.
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FIGURE 3. Plane representation of the digraph G.

ExaMmpLE 2.1 Let V = {vy, vy, v;, v3} and 4 = {{vo, v}, {v1,0;}, {v0, 02},
{v,,v3}}. G = (V, A) is a graph with four nodes and four arcs. For example, the
nodes v, and v, or v, and v, are adjacent. The 7-tuple (vq, vy, v, Vg, V4, ¥,, U3) iS
a path of length seven from v, to vy; this path is not simple. Moreover, the
graph G is connected and simple.

A convenient plane representation of a graph G consists in drawing the
nodes as points and the edges as segments. Figure 2 represents the graph G.

DEFINITION 2.3 A directed graph (or digraph) is a tuple G = (V, 4), where:

(@) V is a finite set of nodes (or vertices);
(b) 4 is a finite multiset over V x V, the so-called arcs (or edges).

The graph G is simple if r,((vy,v,)) <1 for all (v,,v,)eV x V. If

a=(vy,v,)€A,

wesay v, is the initial node and v, is the final node of the arc a; we write v, = init(a)
and v, = fin(a). The out-degree out(v) (in-degree in(v)) of a vertex ve V is defined
by

out(v) := card({a e 4jinit(a) = v}) (in(v) := card({a € A[fin(a) = v})).

ExampLE 22 Let V = {vg, 1,02, 03} and 4 = {(v, Vo), (g, V1), (o, ¥y ), (V2 Vo),
vy, 0,), (1, 9,), (1, 02), (v2,03)}. G = (¥, ) is a directed graph with four nodes
and eight arcs. For example, in(v;)=4, out(vy)= out(v,)= 3:
in(vy) = out(v,) = 2, in(v;) = in(v;) =1 and out(v;) = 0. For a = (v2, v) € 4,
init(a) = v, and fin(a) = v,. Moreover, G is not a simple digraph. There is
again a plane representation of a digraph G, analogous to that introduced in
Example 2.1. The nodes correspond to points and the arcs to oriented
segments. Figure 3 represents the given digraph G.

DEFINITION 2.4 Let G = (V, A) be a directed graph and ne N. The n-tuple
(vy,...,v,) € V", is called an oriented path of length (n — 1) from v to v' if v = v,
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and v =v, and (v,,v,,,)€A for 1 <k<n We say the oriented path
(v1,...,v,) i1s simple if the nodes v,,...,v,_, are distinct and the nodes
v,,...,0, are distinct. A simple oriented path from a vertex to itself is an
oriented cycle.

As an example of these definitions, we may refer to our Example 2.2. The 6-
tuple (vo, vy, vy, vy, U,, Up) 1 an oriented path of length five from v, to bo; this
path is not simple. The path (v,,v,) is an oriented cycle of length one and
(v, v5, v, v,) is an oriented cycle of length three.

DEFINITION 2.5 Let G = (V, A) be a directed graph. The associated graph G' =
(V', 4") is the simple graph defined by

@ Vi=V; _
(b) A':= {{v;,0;} € B, (V)| (v, v;) € A V (13,0,) € A}

G is said to be strongly connected if there is an oriented path from v to v for any
two nodes v,v' € V with v # v'. G is connected if the associated graph G’ is
connected. G is called rooted if there is at least one vertex v, such that there is
an oriented path from v to v, for all v e V with v # v,.

Evidently, the associated graph G’ of the digraph G given in Example 2.2 is the
graph of Example 2.1. The graph G is not strongly connected because there is
no oriented path from v, to one of the nodes v,, v,, or v,. On the other hand, G
is connected and rooted with root v;.

DerFINITION 2.6 Let G = (V, A) be a digraph with one root v, of out-degree 0
and let A4, ve V, be the multiset of all arcs a e 4 with init(a) = v. A (total)
mapping p: 4 — {0, 1] satisfying the condition

is called a probability distribution on G. A random algorithm (G, p) is a digraph
G with one root of out-degree 0 together with a probability distribution on G.
The random algorithm (G, p) is said to be simple, if the digraph G is simple, i.e.
A is a set in the usual sense.

A random algorithm serves as a model for certain algorithms. The graph
G = (V, A) represents the control relations. For example, a flow chart resembles
the kinds of control constructs usually encountered in programming, and a
state diagram of any mathematical machine can be interpreted as a description
of the control relations of the algorithm performed on this machine. In the
former case, G is in the main a directed graph with unlabelled arcs, and in the
case of state diagrams, G is a digraph with labelled edges. The nodes of G
represent steps in the computation and the arcs represent the possible sequence

of these steps.
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Given a simple random algorithm (G, p), a computation corresponds in an
obvious manner to an criented path from the vertex v, to the root v, of G,
where v, (v,) represents t=e ‘start’ step (‘stop’ step) of the algorithm. The given
probability distribution p assigns a probability p(a) to each arc ae A.
Therefore, each computa:ion corresponds to a random path which starts at v,
and which subsequently chooses edge a e A with probability p(a), until v, is
reached; the choice of ecze taken at each branch is to be independent of all
previous choices. This assumption is very strong and is not satisfied by many
realistic algorithms.

Evidently, if G is not = simple graph, then the one-to-one correspondence
between computations a~d random paths can no longer be stated. (We have
defined an oriented path by a sequence of nodes and not by a sequence of
arcs!) But in this case, =2 can modify the graph G of the random algorithm
(G, p) in the following wax: if there are two or more edges a; = (v;, v,) joining
the same two vertices v,. -5, then add an extra node v, ; for each arc a; which
divides this arc into two parts. If p(a;) =w, holds in G, then define
p((vy,v;;)):=w; and p((r--.v,)):=1 in the modified graph. For example, the
graph

",
V. Wz - v
1 12
Wy
becomes
“
W, 1
l/‘| VZ

Obviously, if we carry -t this modification, the new graph is simple and
henceforth, we can restr>- our considerations to simple random algorithms.

2.2 Analysis of Random 2xlgorithms

In this section we shall ve a detailed analysis of the computation time for

DEerFINITION 2.7 Let (G. - be a simple random algorithm with G = (¥, A) and
card(V) = s. The s x s-muzirix 7 = (p;;) with
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FIGURE 4. A random algorithm with a probability distribution.

ol 0) i 00 d
Pi =0 if (v;,0,) ¢ A

is called the fundamental matrix of the random algorithm (G, p).

ExaMpLE 2.3 Consider the digraph G of Example 2.2 (Figure 3) which
represents the control relations of the Turing machine given in Example 1.3.
The probabilities associated with the arcs are defined in Figure 4. The node v,
represents the ‘start’ step and v, the ‘stop’ step. The corresponding simple
random algorithm is illustrated in Figure 5. For example, the computation
corresponding to the oriented path (vy, vg, Vg1, Uy, U115 U1s V12, V15 Uas Ug, Ug2s Ugs
v,, v3) is chosen with the probability

245
3538944

The fundamental matrix of the simple algorithm is given by

l'az-l-351

BN
PP

3.1 1.
2121

P
V=
N

Vo Vo1 Vo2 Uy Uy Uy Uz VU3
L 5 0 0 0 0 0]
0O 0 O 1t 0 0 0 O] vy
0 0 0 1 0 0 0 O vy,
=10 0 0 0 % % % 0]|v
O 0 0 1 O 0 0 Ofuv,
0O 0 0 1 0 0 0 Ofuv,
31 0 0 0 0 0 0 |
0 0 0 0 0 0 0 0] uv

Let us now consider a simple random algorithm (G, p) with the nodes V =
{v,,...,0,} and the fundamental matrix 7 = (p;)). It is easily seen that (n"),; is
the probability that a computation starting at node v; will be at node v; after n
steps. We prove the following basic result.

TueoreM 2.1 If (G, p) is a simple random algorithm with the fundamental
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FIGURE 5. The corresponding simple algorithm.

matrix n, then the matrix (I — n) is non-singular. Moreover, (I — )~ ! =

Zk >0 .

Proof First we prove that the powers n* of the matrix n tend to the matrix 0
with all entries O as k increases. Note that there is an integer n such that an
oriented path from any node v € ¥ to the root v, has a length less than or equal
to n. Since there are only a finite number of nodes, n is simply the maximum of
the lengths of the paths required from each node. Hence there is a positive
number we {0,1] such that the probability of reaching the root v, by an
oriented path of length less than or equal to n is at least w, from any node v e V.
Thus the probability of not reaching the root v, by a path of length less than or
equal to n is at most (1 — w). Since the probability of not reaching v, by a path
of length less than or equal to kn is less than or equal to (1 — w)* (which tends
to zero as k increases), the sequence n* converges to the zero matrix.

Next we shall show that the matrix / — = has an inverse. For this purpose,
consider the identity

I-m+rn+m2+nd+ - +n" N=I—n"

which is easily verified by multiplying out the left-hand side. By the first part of
our proof we know that the right-hand side tends to I as n increases. Since
det(I) =1, det(I — n") # 0 for sufficiently large n. Hence det(Il — n) # O,
because the determinant of a product of two matrices is the product of the
determinants. Therefore, the matrix (I — n) is non-singular and has an inverse.
Multiplying both sides of the above identity by (I — =) ™!, we obtain

I+n+nt++n'=U—-n)" ' —a")
Now the right-hand side of this new identity tends to (I — =)~' as n increases.
This completes the proof of our theorem. W

We will now give a probabilistic interpretation to (I — z)~ L.

THEOREM 2.2 Let (G, p) be a simple random algorithm with the fundamental
matrix 7. The average number R;; of times node v; appears in a random path
from node v, to node v; is given by ((I — 7))y
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Proof We will present two different proofs of this fact.

(a) Obviously,

Ryj=> [1-Y)0 + (@";1]

k>0 [N —— R

probability that the probability that the
node v; is not reached node v; is reached
from v, after k steps from v, after k steps

Hence, by Theorem 1.1,

R;; = Z (nk)ij = (Z ﬂk) =(I-mn)7h),;
k>0 k>0 ij
(b) Consider a random path (v;, vy, ..., v;). We may add up the contributions
to R;; in the initial node v, plus each contribution to R;; in the following
nodes. Therefore,

R;; = §;; + Pix : Ry;
~ I<kss —
contribution 1, probability that average number
if v, = v;, and the arc (v;, v,) of times node
contribution 0, is chosen v; appears in
if v; # v; (Vs oo, 05)

Hence, with matrix R:=(R;;), R=1+nR which is equivalent to
R=(I-n)"" N

This theorem establishes the fact that the mean of the total number of times the
random algorithm is in a given step v; is always finite, and that these means are
simply given by (I — =) ~!. The variance ¢ can also be expressed by the matrix
(I — )" ! (see Exercise 2.4).

ExaMpLE 2.4 We will apply this result to the random algorithm given in the
previous Example 2.3. We have

Uo Vo1 Vo2 Uy VUyp Upz U2 U3
Py ¥ s 3§ 4 1o
4 3 3 8 3 3 4 1|y
4 3 B 8 F 3 4 1) v
I-m"'=14 3% § 8 § 3§ 4 1|v
4 3 I 8 B 3 4 1|y
4 3 I 8 i 3 4 1|,
43 3 6 3 3 4 1n
0 0 0 0 0 0 0 1]u
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Considering all computations starting at node v, and stopping in vs, the
VertiCes Vo, Voy, Ugz, Uy, Uy 1, Uy 2, Ug, V3 are traversed 4, 8 28 8 7 3 4 1 times on
the average, respectively. A computation of the matrix a‘z’ = (o- ) giving the

variance yields (see Exercise 2.4)

Vo Vo Vo2 Ui Uy Uy U3 U3
08 104 644 56 0 40 1p Vo
8 0 0 s 4L 12 9 Vo,
¥OE RS P R oo o,
c®= |8 10 10 55 10 40 (3 o v,
§ R P 56 7 e 12 0 U1y
PR P s B R 12 0 o,
£ ¥ P s BE RO o
0 0 0 0 0 0 0 0 v

We will conclude this section by presenting some further basic results of
random algorithms. The simple proofs are left to the reader.

THEOREM 2.3 Let (G, p) be a simple random algorithm with the fundamental
matrix . The probability w;; that the node v; occurs in a random path from
node v; to node v; is given by wii= (I —m)” l)”/((I —~m)~'); The probablllty
q; that a random path starting at v; will never return to node v; is g; =

YU —m)" Yy W

Applying this result to our running example, we find that the nodes Vo, Uo1» Vo2,
Uy, Uy, Vg3, Uy, U3 OCCUT 1n a computation starting at v, and stopplng in vy with
probability 1, &%, 1%, 1, 15, 3, 1, 1, respectively.

In this section we have given some fundamental definitions concerning
directed and undirected graphs; moreover, we have presented a simple class of
algorithms and their analysis of the computation time. Readers familiar with
stochastic processes may recognize that random algorithms are essentially a
special case of finite Markov chains, the so-called absorbing Markov chains.
There are many papers and textbooks dealing with extensive studies of

stochastic processes of this kind (e.g. [57], [112]).

Exercises

2.1 Show that a strongly connected digraph is rooted and that a rooted digraph is

connected. Is the converse of these implications also true? .
2.2 Consider the state diagram of the Turing machine defined in Example 1.1. Can this
algorithm be interpreted as a random algorithm ? Assume that the probabilities for the

transitions are given by
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Transition ‘ 1—-0,L lO—-»l,R

x— 1, R ‘O—aO,R ‘l—al,R

*— % |, '

Probability | p ‘ r ll—p—r' q ' w |1—q—w

Set up the fundamental matrix = of the corresponding random algorithm and compute
the average number of times a node appears in a computation. Compute also the
variance and the probabilities that a node occurs in a computation.

2.3 Prove Theorem 2.3.

24 Let (G, p) be a simple random algorithm with the fundamental matrix =.

(a) Compute the probability that a node v occurs exactly k times in a random path from
node v’ to the root v,.

(b) Show that the variance concerning the average number R;; of times node v;
appears in a random path from node v, to node wv; is given by
(I = m)~'QU — =)y — I) — (I — m),);;, where the matrix A, is formed from A by
squaring each entry and the matrix A4, by setting off-diagonal entries equal to zero.
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Permutations and Their Applications

3.1 Motivation

In this section we shall investigate the average behaviour of some characteristic
quantities of permutations which appear in the analysis of many algorithms.
We shall rediscover some well-known numbers such as Stirling numbers, Euler
numbers, Eulerian numbers, etc.

For example, consider the following obvious procedure for the computation
of the maximum of n distinct numbers.

ALGORITHM MAX
Input: n, A[1],..., A[n], where A[i] # A[j] fori#j, 1<i,j<n
Output: MAX(A[i ]).

Method: The algorithm is described by Figure 6. Starting with k =1, the
algorithm MAX examines successively the values A[k], 1 <k <n. If it scans
A[k], then m = MAX,, . (A[r]). The value A[k] is now compared with m
(step @); if A[k] is greater than m, then the value of the current maximum m is
changed (step {0); otherwise, the next value A[k + 1] is examined.

Evidently, algorithm MAX requires a fixed amount of storage in the best,
worst, and average case, because it uses only the four variables a, k, m, and n.

Let us now consider the time requirements T'(n) of the algorithm MAX. For
this purpose, we will count the number of times each step is executed. We have:

Step  Number of times
D 1
) 1
€) 1
@ 1
® 1
® n
@) n
n—1
©® n—1
@ An
a 1
) 1

21
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FIGURE 6. Flowchart of algorithm MAX.

Here, A, is the number of times the value of the current maximum m must be
changed. Knowing the costs of each step and the number of times each step is
executed gives us the information necessary to determine the time requirements
of the algorithm MAX on a particular computer. It remains to study the
quantity A4,.

Best case: Evidently, the best case is characterized by the condition A[1] >
A[i +1], 1 <i < n. It follows that the minimum number of times the value m
must be changed is zero. Assuming that all inputs A[1],..., A[n] are equally
likely, the probability that A, = 0 is n™! (cf. the average case).

Worst case: The maximum number of times the value m must be changed is
n — 1; this happens if A[i] < A[i + 1], 1 <i < n. The probability that this case
occurs is n!~! (cf. the average case).

Average case: We will assume that each of the n! inputs A[1],..., A[n] is
equally likely. Let M, , be the number of inputs A[1],..., A[n] with 4, = k,
ke[0:n—1]. If A[n] = MAX| ;<.(A[i]), the value of 4, is one higher than the
value A4,_, obtained on A[1],...,A[n —1]; if A[n] # MAX,<;<.(A4[i]), the
value of A, is the same as 4,_, on A[1],..., A[n — 1]. Therefore,
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Mn,k = Mn—l,k-—l - (n - l)iwn—l,k'

Obviously, the initial conditions are M, , = d,, and M, , = O for k < 0. Since
Pnix =n!"'M,, is the probability that an input A[1],..., A[n] requires k
changes of the value m in step {0, we find immediately

pn,k=n~1pn—l,k—l _(l_n_l)pn-—l,k
with
Pix = 50,]‘ and Prx = 0 fork<O.

Now we have to solve this recurrence. To do this, we consider the generating
function P,(x) of the numbers p, ,, k = 0. defined by (Appendix A)

P,,(X) = Z pn,kxk

k=7

Using the above recurrence for p, ,, we obtain

P,,(X) = n_l z pn—l,k-—lxk - (1 - n_l) z pn—l,kxk

k=0 k=0

=n"! Z 17n—1,kxk+1 - (1- n_l) Z pn-—l,kxk

k>0 k>0
=n"'xP,_,(x)+ (1 —n"")P,_,(x)
x+n-—1
=——-P,_;x).
n

The last equation implies further

1
P"(x)=x+n (x:n)'

In order to obtain an explicit expression for the probabilities p, ., we have
now to compute the coefficient of x* in thz expansion of P,(x). An application
of formula (B8) leads directly to (n > 1)

1

P,(x)=(—1"! .l NSEFL )Rk,

=z

where S® are the Stirling numbers of the first kind. Hence
p P = (_ 1)n+k_:SS|k+l)/rl.l

An inspection of (B15) shows that p, , ~ [y + Intn)]¥/(nk!) for k = o(In(n)),
where y is Euler’s constani. As special caszs. we obtain further by (B10)
Pro=(=1""iSnt=n""

and

— QM — 1
Prm—y =SSOl =n1"1,

which are the probabilities of the best and worst case. To compute the s-th
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moments about the origin given by

#;(n) = z kspn,k’

k=0

we consider the generating function f,(z) defined by

= Y py(n)z"
n=0
1
= T R(=D T (=) ST,
k=0 nz0 n!

Using (B12), f.(z) can be transformed into

1
=Y k(-1 D [In(1 — z)]** .

k=0

Thus, by the binomial theorem,

fie)= Y ( —1)"“‘_”5[1 1— 2)]*
- () (=17 Y ( —l)k—[ln(l—z)]"
j=0 k=2
- (-1 T (- it - 2]

+ 2 (f)(—l)s"' 2 ( —1)"—[1n(1 — 7))~

jz1 k=2

Obviously, the first sum is equal to
(—1)*[exp(—In(1 — z)) — 1 + In(1 — 2)].
Applying (B21) to the second sum, we further obtain
fie) = (1[Il —2) =1 + (1 — 2)""]

+ —3 (”q-)(—nﬂ' 2, (=19 n(l - 2)]*

= Z >l k=1

+In(l —z) ) (S,>(— 1),

izt

where #® are the Stirling numbers of the second kind. Therefore,

ok
£@) = (=1 ==+ (-1 Y (j.)(—l)f y o=

izl k=21

Henceforth, let {z" )f(z) be the coefficient of z" in the expansion of a function f.
By definition, u;(n) = {z")f,(z). Since
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z 1 1
fl(z)=_1—z+1—zln(1—z>

1
35
nzl 1<i<n !

and
z 1 1 2 1 1
f2(2)=1—z+1—zl:ln(1—z>] _l—zln(l—z>
R EHEDER R
nz2 | 2</<n.] l<¢<;l l<¢<n
i 1\? 1 1
=L X)X L o+l
nz2  L\tI<ign 1<i<n t<i<n !
we obtain

pin)=HO —1 and  p(n) = [HO]? — HO — B +1,

where H" is the generalized Harmonic number (Appendix B, 1.4). Therefore, the
average number A, of times the value of the current maximum m must be
changed is HV — 1 =In(n) + y — 1 + O(n™?) (see (B29)). For the variance, we
obtain (see (B30))

o*(n) = py(n) — [u)(n)]?
— H(l) _ H(Z)
=In(n)+7y—in2+0(n™1),

where vy is Euler’s constant.

It remains to study the s-th moment y;(n) for large n and fixed s > 3. For this
purpdse, we return to the above function f,(z). Fortunately, the expansion of
the function (1 — z) "![In(1 — z) " *']* is known (see [91]). We have

(1— z)‘l[ln(l —z) k= Z by 2",
nzk
where

by, = [ln(n)] (1 + —(k—) + O([In(n)]~ 2))

for fixed k and large n. Therefore,

e = (=1r = ) (s.)(—w‘ DLW

izl k=1 n>k
which implies

i) = ()16)
=+ -0 E () B o

jz1 1<i<n
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Using (B50) and (B51), we further obtain

Y. L9b;, = B,(In(n)) + yB;(In(n)) + O([In(n)] ~*A/(In(n)))

I<ign

= BIn(n) + —— B,..,(In(n))
In(n)

— y#{In(n)) + O([In(n)]~*%,(In(n)))
= [lnm))’ + O([In(n)]" "),
where %,(x) is the n-th Bell polynomial. Since

2 (;>(— Iyx) = (1—x)*—1,

izl

we immediately obtain
ps(n) = (= 1)°[(1 = In(n))* + O((1 — In(n))*/In(n))]
= [In(n)]* + O([In(n)]*~ ).

Thus the s-th moment about the origin is asymptotically given by In*(n) for all
fixed s > 1.

This example shows that the time requirements of the algorithm depend on
the quantity 4, associated with the input; we shall see in section 3.2.1 that 4,
can be interpreted as a characteristic quantity of a permutation of n objects.

3.2 Average Values of Characteristic Quantities of Permutations

DEFINITION 3.1 A permutation of a set M is a bijective map of M on to itself.
The set of all permutations of M is denoted by S(M). The permutation
0o € S(M) with o4(x) = x for all x e M is called the identity permutation.

It is well known that S(M) is a group (symmetric group) with the unit
element o, S(M) and with the composition ‘0’ of maps as operation.
Generally, a subgroup G of S(M) is called permutation group of M; we write
G < &(M). Without loss of generality, we restrict our further considerations to
the case that M is a finite subset of N. There are many ways of representing a
permutation ¢ € S(M):

(a) Standard notation
The permutation ¢ € S(M) is written in a two-line notation; the elements of M
appear in a top row, and underneath each element under the mapping . Thus

1 23 45 6 7 89
256 48 7 319

represents a o € S(Ng), where o(1) = 2, 6(2) =5, 6(3) = 6, a(4) = 4, a(5) = 8§,
a(6)=7,06(7) =3, 6(8) =1, and a(9) = 9.
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FIGURE 7. Graph notation of o.

(b) Linear notation

The lincar notation of a permutation ¢ € S(M), M = N,, is the sequence a(1),
d(2), ..., a(n). Thus, ¢ has the linear notation 2, 5, 6, 4, 8, 7, 3, 1, 9. (Generally,
the linear notation of a permutation requires a fixed ordering on M.)

(c) Graph notation

The permutation ¢ € S(M) is represented by a simple digraph G, = (M, 4),
where 4:= {(x, y)|y = o(x) A x # y}. Thus Figure 7 corresponds in this way
to the above permutation e.

(d) Matrix notation
The permutation ¢ € S(M) is represented by a m x m-matrix T,, where m =
card(M). T, = (t;;) is defined by t;;:= 0, ). Thus the matrix

J

01 00O0OO0OTO O]
0000T100TO00O0
000001000
000100O0TO OO
T.=10 0 00 000 1 0
00000O0OTL1O0O
001000000
1 000O0O0OOTUO0O
(0000000 O 1]

represents our permutation ¢ € S(Ng). Clearly, a m x m-matrix represents a
permutation if and only if all rows and columns have exactly one entry 1 and
(m — 1) entries 0. Such a matrix is called a permutation matrix.

(e) Cycle notation

Let 0 e S(M) and i, e M. The sequence i,,i,,i3,... With i;=0(i;-,), j=
2,3,4 ..., has the property that there is an element i, which has already
appeared among iy, i,,...,i,-;, because M is a finite set. Let i, be the first
element with this property; i, must be i;, because, in the contrary case, we have
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for some je M: j=o(i,) = (i) with i, #i,. The sequence i,,i,,...,i of
minimal length [ with a(i;) = i, is called a cycle of & generated by i,. Obviously,
a cycle of o generated by some element i; € M is uniquely determined by each
of its elements. The set of cycles of a permutation ¢ € (M) forms a partition
on M. A permutation ¢ is written in cycle notation, if

0 =1y1,1125.-: ’llr1|121’122” .. ’12r2| e |lp1’lp2" .. ’lpr,,’

where i;,i;,. .., i, 1 <J < p,are the cycles of ¢. Thus the cycle notation of
the above permutation o is 4|5, 8, 1, 2|7, 3, 6|9. It is not unique; for example,
9141, 2,5,8]3,6,70r7,3,6(9|2, 5,8, 1|4 are both equivalent to 4|5, 8, 1, 2|7, 3,
6/9. Note that there is a one-to-one correspondence between the cycles
appearing in the graph notation and the cycles in the cycle notation of a
permutation o.

3.2.1 Average Number of Cycles of a Permutation

DEFINITION 3.2 Let 0 € S(M) be a permutation. The cycle notation

R TEPRRIY P [ CYPRIIY PN DI | AP A

is called canonical, if

(1) (vjie[l :p])(ij1 > MAX (iﬂ)>

ZS).Srj

and

(2) (Wjell:p — 1D <igeiyn)

The canonical cycle notation of a permutation is unique. The above
permutation ¢ = 4|5, 8, 1, 2|7, 3, 6|9 has the canonical cycle notation 4|7, 3,
6|8, 1,2, 5]9.

There is a nice one-to-one correspondence between the permutations in
canonical cycle notation and in linear notation. Obviously, replacing the
symbol ‘|’ in the canonical cycle notation by °,, we get a permutation in linear
notation. For example, our permutation ¢ is changed into the permutation 4, 7,
3,6,8,1,2,5,9. On the other hand, there is only one way to insert the symbol
‘|’ in the linear notation of a permutation to obtain a canonical cycle form; one
must find the left-to-right maxima, where i, is a left-to-right maximum of the
permutation ¢ = iy, i,...,i, given in linear notation, if i, > MAX,;..(i;). To
obtain the canonical cycle form, we have to replace the symbol ¢, before each
left-to-right maximum by °|’. For example, the permutation in linear notation
4,7,3,6,8,1,2,5,9 has the left-to-right maxima 4, 7, 8, 9; therefore, we can
uniquely reconstruct the canonical notation of our permutation ¢ and obtain
4|7, 3,618, 1, 2, 5/9.

This one-to-one correspondence shows that the number of cycles in the cycle
notation of a permutation ¢ € S(N,) is equal to the number of left-to-right
maxima in the linear notation of the permutation ¢’ which arises from ¢ by
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eliminating ‘|. We have already computed this number in section 3.1: the
number of left-to-right maxima in a permutation ¢ € S(N,,) is one higher than
the number of times the value of the current maximum m must be changed in
step {0 during the execution of algorithm MAX with input ¢. Using the results
of section 3.1, we immediately obtain the following theorem.

THEOREM 3.1 Assuming that all n! permutations ¢ € S(N,,) are equally likely,
the probability that a permutation has k cycles is

P = (=10 ~ [y + In(m)]* "/ (n(k — 1))

for k =1 4 o(In(n)). The average number of cycles appearing in a permutation
ce S(N,) is

pm)=HP =ln(n) +y+0n~").
The variance is given by
?n)=HY —HP =Inh)+y—-&> +0n~'). N

A similar computation as in section 3.1 shows that an asymptotic equivalent of
the s-th moment about the origin is u (n) = [In()]* + O([In(n)]*~") (see
Exercise 3.1).

3.2.2 Average Length of a Cycle

We sHall now compute the average length of a cycle; this is equivalent to
asking about the average distance between left-to-right maxima in a
permutation ¢. An inspection of Theorem 3.1 shows that the total number of
cycles appearing in all permutations ¢ € S(N,) is equal to n!H{). First, we
shall compute the number of all cycles of length [ among all n! permutations.
Let i,,i5,...,i; be such a cycle. This cycle occurs in (n — [)! permutations,
because there are (n — I)! possibilities to permute the remaining elements in
N,\{i;,...,i;}. Next, we shall determine the number of different cycles of length
I. This number is (n),/l, because there are (n — j) choices for i;,,,0 <j < [,and
the same cycle appears in the [ different forms i,, i, .1, ..., i_ 15 0y gy e v 5 br—1,
1 <r <l Thus the total number of cycles of length [ appearing in all
permutations ¢ € S(N,) is (n — 1)!(n),/l = n!/l. Note that ), ., n!l/l =n!H®,
which is an alternative proof of the fact that the total number of cycles
appearing in all permutations ¢ € S(N,) is equal to n!H{". Assuming that all
these cycles are equally likely, the probability that a cycle has the length [ is
I"'n(n'HP) = 1/(IHM). The computation of the s-th moment about the
origin leads to (see (B72))
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- [H,(,”]_l Z [s-1

Igign
= [SHr(tl)]”l[Bs(n + 1) - Bs - 5s—1,0]a

where B,(x) is the s-th Bernoulli polynomial and B, the s-th Bernoulli number. As
special cases, we obtain the exact values

pin) = [HOT [n +1— 3+ 3~ 1] = WH®
and

pon) = [2HM][n + 1> —(n + 1) + § — §] = in(n + L/HD.
Thus the computation of the variance yields
0% (n) = uyn) = [ ()] = dn[n(HP = 2) + HOY[HOT

Since By(x) = x* + O(x*"!') for x =1, an asymptotic equivaient of u.(n) is
given by

pon) =[sHP T Yn +1)° + O((n + 1)*"Y/HLV)
= s~ 'n%In(n) + O(n*~!/In(n)).
Combining the above results, we have proved the following thecrem.
THeOREM 3.2 Assuming that all cycles appearing in all permutations

o € S(N,) are equally likely, the probability p,, that a cycle has a length I,
1<I<n,is

Py =[IH"]™
=[l(n@n) +y)]~' + O([(nl(In(n))*]"")
The average length of a cycle appearing in a permutation ¢ € S(N,) is
py(n) = n/HP
= n/(In(n) + y) + O([In(n)]~2).
The variance is given by
o2(n) = n[n(H® - 2) + HOYQIHOT)

_ n(n+1) _ n(4n + 1) 3
" 2n@m) +7y) 4nm)+7)Y  (n@m) +y)?

+O0(In(m)]"%. M

3.2.3 A General Approach

In the previous section we have computed some statistical results concerning
the cycles in a permutation. This section is devoted to the presentation of a
general approach to the solution of similar problems.
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DeriniTION 3.3 Let G < &(N,) be a permutation group. A permutation ¢ € G
is said to be of type {(c,(6),cs(0),...,c,(c)) if its cycle notation contains
exactly c;(g) cycles of length I, 1 <1 < n. The cycle indicator Z(G;t,,...,t,) of
G is a polynomial in the variables t;, 1 <i < n, defined by

Z 1"[ C(a)

Z G' 7""t
(Gt card(G) 0€G 1<i<n

For example, the symmetric group S(N;) consisting of the permutations 1|2|3;
112,3;1,2,3;1,2|3; 1,3]2;1,3,2 of types (3,0,0), {1,1,0),¢0,0,1),{1,1,0),
(1,1,0), {0,0,1) respectively, has the cycle indicator

Z(S(Ny); ty, 1, t3) = g[13 + 3525 + 23],

Note that Y, ., jc;(6) = n,if 6 € G has the type {c,(5),...,c,(5)). Obviously,
Z(G;ty,...,t,) can also be written in the form

1
Z(G;ty,... G ti
(G’ 1> ’[) Card(G) Zc:"/ Clseney c,,lsll-.—[sn LI
l<:<n’cl=”

where G, ., . =card({c e G|o is of type {c;,...,c,)}. Generally, the cycle
indicator plays an important part in many enumeration problems concerning
graphs and their colouring ([ 18], [19], [93]). We shall now prove the following
lemma.

LemMa 3.1 Let G < S(N,) be a permutation group.
(a) The total number of cycles appearing in all permutations ¢ € G is given by
card(G) x %Z(G; [ A | PO
(b) The number of all cycles of length [ appearing in all permutations ¢ € G is
given by
card(G) x %Z(G;l,l, NP U PR | | P
(I + 1)-th argument
(¢) The number of all permutations ¢ € G with k cycles is given by
card(G) x {t*YZ(G; t,t,...,t).
(d) The number of all permutations ¢ € G with k cycles of length | is given by
card(G) x {t*>Z(G;1,1,...,1,¢,1,...,1)

(I + 1)-th argument

Proof Let g € G be of type {c,(0),...,c,(0)).
(a) Evidently, o has > ., ci(0) cycles. Thus the total number of Acycles
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appearing in all permutations ¢ € G is given by Y ,.c Y <i<, ¢;(6). On the
other hand, we have

0 0
card(G) x ot Z(G;t,. .5 )=y = a Y tRisienc)]

a oG

=Z Z ¢i(0).

oeG I <ign

This proves part (a).
(b) Obviously, the number of all cycles of length | appearing in all permuta-
tions ¢ € G is given by >, ¢,(0). Since

3 3
card(G) x 2 Z(Gs 1., 1t 1,y Dley = = X 19,y

oG

(! + 1)-th argument = Z ¢,(o)
oG

we have proved part (b).

Similar arguments yield the results given in parts (c) and (d) of Lemma

3. W

We will apply Lemma 3.1 to the special case G = S(N,,). It is not hard to see
that the number S(N,),, ... . of all permutations of type {cy15...,Cpy is equal to
n![]i<i<n (c)) ™! (see Exercise 3.2). Therefore,

Z@N) - st) = Y Hi(t—f)c'.

!
Crumcy 20 1<icn Cpv \1
1 gjgnlCy=n

The formal ordinary generating function fen (4, t;,tp,...) of
Z(S(N,); t;,...,t,) can be computed as follows:

fanptsty, by o)=Y WZ(S(N,); ty,. .. 5 L)

n>=0

) 1 ()"
=2u Y Il Fl7
nz=0 CleeensCy 20 1<i<n i+ \!
Lgj<nley=n
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=exp(—t In(1 — u))
=(1—u!

1
_ k _ 1\ tkgk)
=1+ T ¥ wrt o (—1)r s,

nzl 1<k<n

An application of Lemma 3.1(c) leads immediately to
card(S(N,)) x (W"t* Y fen,) (U, t,t,...) = (= 1" ¥,

This result was proved in the first part of Theorem 3.1. Since

0 0 - 1 1
Efe(N,,)(uatat,---)hﬂ=a_t(1_“) '|,=1=1_uln< )

l—u
=Y wHY
nzl

we obtain with part (a) of Lemma 3.1:
a 1
card(S(N,)) x {v") P feryWst,ty . M=y =nt HY.

This proves the second part of Theorem 3.1.
Considering

fG(N")(ualav L),
/7

(I + 1)-th argument
we find

| |
fenyWs1,...,1,¢,1,...) =exp<z —-u +7(t —1)u‘>

izl

= exp(—ln(l —u) + % (t — l)u’)

— 1 Z 1 uli(t_l)i

1—u,?01il’!

= Z Z lilii (t — 1)iut++!

k20 0<i<K

[
<

1 .
" Z lil" (t - l)l
n=0 0<i<|n/l] .

nek 1 i i-
=) wtt l—il_—!(k>(—1) k,

nz0 k20 0<i<|nft|
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Hence, by part (d) of Lemma 3.1,
card(S(N,)) x <u"t">fe(N")(u, L,... ,1,/5,1, cel)

(I + 1)-th argument

1 /i .
=n! —_ (—l)l—k
Osigln/l] It <k>

n! 1
= T g2 TV BT
The last expression gives the number of all permutations ¢ € S(N,) with k
cycles of length I. As a special case, the number of all permutations with no
cycle of length one is given by n! o<, (—1)%i! 1. Permutations of this kind
are called derangements. Furthermore, the number of all permutations with
exactly k cycles of length one is n!k!™! > o,  (— 14171

Finally, let us compute the number of all cycles of length | appearing in all
permutations ¢ € S(N,). Since

ul

otl—u
1

0 Jd 1 1
a_t,-fs(N")(uala""latala"')|t=1 = t exp(7 (t—l)u')
(I + 1)-th argument ;

[SSN

—Uu

—

Z Wi
/=0

we obtain with part (b) of Lemma 3.1,

!

0 n!
card(S(N,)) x {u") 3 SfermpW, 1, ... 1,81, =y = T

for 1 <1 < n. This again proves our result given in the previous section.

3.2.4 Average Number of Falls and Rises of a Permutation

DeFINITION 34 Let 6 =1iy,ip,...,i,€ S(N,) be a permutation in linear
notation. The pair (i,,i,,,), re[l:n —1], is called a fall (rise), if i, >1i,,,
(ir < ir+1)'

For example, the permutation ¢ = 2,5,6,4,8,7,3,1,9 has the four falls (6, 4),
(8,7),(7,3), (3,1) and the four rises (2, 5), (5, 6), (4, 8), (1, 9). It is not hard to see
that the sum of the falls and the rises appearing in a permutation ¢ € S(N,,) is
always equal to n — 1. Falls and rises are important in the analysis of sorting
algorithms because they divide a given sequence of data into sorted segments.

Let us compute the number g, , of all permutations ¢ € S(N,) with k falls.
For this purpose, consider a permutation iy, i5,...,i,_; € &(N,_,) with the k




35

falls (pdp+1) I ST < k. Inserting the new element n in all possible places, such
a permutatlon generates exactly n permutations in &(N,), namely ¢; =i, ...,
My, . siy-1,0<j<n—1,whereag,=n,i,...,i,_;ando,_; =i,...,
i, _1,n. Now we can make the following observations:

—(k + 1) of the generated permutations have k falls. This case happens if n is
inserted between i, », and iy 41 1 <j <k, or after i,

—The remaining (n — k — 1) permutations have (k + 1) falls because a new fall
is generated if n is inserted between i; and i,,,, where A #r;, 1 <j <k, or
before i,.

Thus we find the recurrence
px = k + l)an—l,k + (n— k)an—l,k—l

for n, k > 1. The initial conditions are a, , =1forn >0and a,, =0 for k >1,
because only the identity permutation has zero falls and S(N,) = . If we put
a, = A(n, k + 1), then the above recurrence becomes exactly the formula (B34)
which defines the Eulerian numbers A(n, k). Hence, assuming that each of the n!
permutations ¢ € S(N,) is equally likely, the probability that a permutation
has k falls is given by p, , = A(n, k + 1)/n!.

We now consider the s-th moment about the origin. We obtain

pe(n) = 3 k'pyy

k=0

— Z (k = 1)*A(n, k)

k>l

Y (i)(—l)“‘ Y kA, k).

k=1
Generally, we have the identity (see Exercise 3.8)

1+22Ank)—x —ZA(x)—

nzl k21 n>0

= (1 - x)/[1 — x exp(t(1 — x))],

where A,(x) is the n-th Eulerian polynomial introduced in Example 1.1 (see
Appendix B, 2.2). Replacing ¢t by t/(x — 1), we further obtain

t" 1
-1 _1—n_=
L+ 2 Ayl = D7 0 [ exp(0) — |
x—1

= Y [exp(t) = 17%/(x — 1)*

k=0




36

Hence forn > 1

A,(x)=x (x —1)" "¢, 4
1<k<n

N

where ¢, , is the coefficient of t"/n! in the expansion of (exp(t) — 1)*. Applying
(B20), we immediately obtain c, , = k! %£®, where &® is the Stirling number of
the second kind. Replacing x(x — 1)" * by (x — 1)**! ™% 4+ (x — 1)* ¥ and using
(B18), we finally obtain

A) = T kIFEOE -1,

0<k<n

a relation which was first proved in [46]. Now we differentiate this equation
with respect to x:

A = ¥ k! (" . k)sf:.";t”(x — 1k

Taking x =1, we have
AP(1) = Al (n — A)! LoD,

because only the term for k = n — A in the sum appearing on the right-hand
side of the above equation is unequal to zero. Since by (B17)

k
K=Y m!<m>9a‘"'>,

0<m<2A

we further obtain

S KA k)= T migm Y (:I)A(n,k)

k=1 0<m<4 k=1

Y AmAm()

0<m<i

= Y mln—m g mrogm

0<m<4i
Returning to the above expression for u.(n), we have shown that
s A n\"! 1
pm =% (J(—lr- ) ( ) KT DL,
0<A<s o<ms<a \M

As special cases, we obtain by (B19)
ui(n) = (n — 1)/2 and u5(n) = 3n* — 5n + 4)/12.

Therefore, the variance is given by o2(n) = p5(n) — u(n) = (n + 1)/12.
Summarizing the above results, we have proved the following theorem.
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THEOREM 3.3 Assuming that all permutations ¢ € S(N,) are equally likely, the
probability p, , that a permutation has k falls, 0 <k <n—1,is

Pni = Aln, k + 1)/n!,

where A(n, k) is a Eulerian number. The average number of falls appearing in a
permutation ¢ € S(N,) is

Hi(n) = x(n — 1),

The variance is given by ¢?(n) ={(n +1). B

3.2.5 Average Length of a Run

Let ¢ =1i,,i5,...,i, € ©(N,) be a permutation in linear notation. The falls
appearing in ¢ divide the sequence iy, i,,...,i, into segments or runs. For
example, the permutation ¢ = 2, 5,6, 4, 8,7, 3, 1,9 has the five runs 2, 5, 6; 4, 8;
7; 3; 1,9. The number of elements in a run is its length.

Let us now compute the number r, , of all runs of length p appearing in all
permutations ¢ € S(N,). For this purpose, we consider the number 7, , . of all
permutations ¢ = iy, iy, ..., i, € S(N,) having the property that the element i,
at position q is the beginning of a run of length greater than or equal to p.

LEMMA 3.2

. _ntp+0,)/(p+1)! iffg<sn—p+1
Tmra = 0 otherwise

Proof

(a) First we shall consider the case g = 1. We have to compute the number of
all permutations ¢ =i, i,,...,i, € S(N,) with

I <y < <y Zipyy 2y 2772y
The number of such permutations may be enumerated as follows:

—We have i;e{i; +1,...,n}, 2 <A <p, for fixed i; €[1:n]. Therefore,
0 i

there are ( 111 ways to choose the elements i,,...,i, for fixed i;.
p —

: n

Thus there exist lei,Sn(p

iy

1) ways to arrange the elements i, i,,

iy

—The number of ways to choose the remaining elements i,,,...,i, is
equal to the number of permutations in 6({1,...,n}({il,...,ip}),
namely (n — p)!

n_il

Thus there are (n — p)! ) < <n (p B 1) permutations in S(N,) of the
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above form. Using the identity given in Exercise 1.3 with R:=n,w:=p — 1,
u:= 0 and s:= 0, we obtain our result for g = 1.

(b) Let us now consider the case g > 2. We have to compute the number of all
permutations ¢ = iy, i,,...,i, € S(N,) with
il 21.2 2'.'21.41—1 >iq<iq+l <”.<iq+p—l 2iq+p2..'2in'

To obtain the number of such permutations, we compute the following
contributions:

—We have i e{l,...,i;_; — 1} for fixed i, _, €[1:n]. Therefore,
hefi,+1,...,m\li,-,} q+1<Ai<q+p-—-1,
n—i,—1

p—1
for fixed i, _, and i,. Hence we have

for fixed i,_, and i,. Thus there are ( ) ways to choose the

3

elements iy, y, ..., 4,1

» » (n — i 1— 1)
1<ig— g <n 1<ipSig—y 1 p—

ways to arrange iy .y, g .- > lg4p-1-

—The number of ways to choose the remaining elements i,,i,, ..., i;_,,

ig+p> -+ iy is equal to the number of permutations in 6({1,...,n}\

{ig=1>igp--+>ig4p-1}), namely (n — p — 1)!

Thus there are

—p—1! T z_l(n—iq—1>

I<igoy <0 1€ig<i p—1

permutations in S(N,) of the above form. It is easy to see that the double sum
. k
appearing in this expression is equal to the sum ) o< c,_o(k + 1)(p 1).

Using Exercise 1.3, we obtain our result for g >2. This completes the
proof. W

We are now ready to show the following theorem.

THEOREM 3.4 The number r,, of all runs of length p appearing in all
permutations ¢ € S(N,) is given by

Fom = 1
2 2
p‘+p—1 p"—p-1
=n! 1 — I<Spsn-1
e =1 [("+ T TR Py } psn
Proof Obviously, 7, ,, — 7.,+1,4 is the number of all permutations ¢ = iy, i,

.., i, € G(N,) such that the element i, at position q is the beginning of a run of
length p. Therefore, by Lemma 3.2, :
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Tnp = Z [rn\p,q ~ Tn,p+ 1,4]
1<q<n

BSATIES W IR TS W
I<gg<n—p+1 (p +'1)! 1<gq<n—p (p +'2)!

An elementary computation shows that this expression is identical to our
desired result. W

Since the number of runs appearing in a permutation ¢ € S(N,) is one greater
than the number of falls in o, we obtain with Theorem 3.3 and Theorem 3.4 the
following corollary.

CoroLLARY Assuming that all permutations ¢ € S(N,) are equally likely, the
probability p,, that a permutation has k runs, 0 < k <n, is p,, = A(n, k)/n!,
where A(n, k) is a Eulerian number. The average number of runs appearing in a
permutation is p)(n) = (n + 1)/2. The variance is given by o%(n) = (n+ 1)/12.
The average number of runs of length p in a permutation is

pP+p—1 p*—p-—1
(p +2)! (p +1)!

foril<p<n—1tlandn!"'forp=n N

(n+1)

Next we shall determine the average length of a run.

THEOREM 3.5 Assuming that all runs appearing in all permutations ¢ € S(N,,)
are equally likely, the probability p, , that a run has the length p is

p>2+p-—1 2 p?P—-p-—1

- 1 I:n—1
G i ntl e rpellin—l]
pn* = 2
if p = n.
n+ 1) p=n

The average length of a run is p)(n) = 2 + O(n~'). The variance is given by
6*(n) =4e —10+ 0(n~ 1)

Proof First we compute the number R, of all runs appearing in all
permutations ¢ € S(N,). Using Lemma 3.2 and Theorem 3.4, this number is
given by

R, = Z Tnp = Z Z [Fn,p.q_Fn,pH,q]

I<p<n I<p<n I<g<n

= Z [Fn,l,q - Fn,n+l,q:| = %(n +1) 3

I<g<n

Hence the desired probability p, , is equal to R, 'r, , which is equivalent to our
proposition.




40

The s-th moment about the origin is

wm)=R;" Y pr.,

I<p<n

Using Lemma 3.2 and Theorem 3.4, this expression can be easily transformed

into
pn+1) p-—1
= — -1y - .
#(n) = +h3@“’ (p ”LP+U! o
We can now apply the identity given in (B21); we find
ps+l
S [ —<p—1>]~— sE_-e ¥ oo,
1<p<n ! pzl p: I1<p<s+1

where the &), are the Stirling numbers of the second kind. Therefore, we
further obtain

oo e e P _
us(n)—2lgp:$" [p"—(p 1)](p+1)! +0(n~1).

Since by (B56)
s _ —1) <
Y. [pr—(p—1y] (p i y =

pzn+l pzn+l p

_(n+1) 3 (n+pyn+1)!

T+ )5+ 10n+p)!
(n+1) Z p(n+1)!

Tm+DS (n+p)!

s

(n+ 1) p
S+ 1) ,,; (n+2)?!

. (n+2p*? A( 1 )
T+ D+ \n+2

(n+2)
=0Qn+0!

) = Ol /=3,

we immediately obtain

+0(n™Y).

wm =23 [p—(p— )]

p21 )

Thus the value of y.(n) tends to a constant for large n. Using (B21), we find
finally

W =2A-Dfl-2]+22 ¥ ¥ ()

I<i<s—1 1<p<i+l \}

x (= 1y [l = 2271 [ P, — £P] + 0(n ™).
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As special cases, we have by (B19) uj(n) =2 + O(n~') and u,(n) =
de — 6 + O(n~1).
This establishes Theorem 3.5. W

3.2.6 Average Length of the k-th Run

In this section we shall study the average length [, of the k-th run in a
permutation ¢ € S(N,). These numbers play an important part in the theory of
replacement-selection sorting. We restrict our considerations to the study of
the length of the k-th run in a random infinite sequence of distinct numbers
i, iy i3, ...; in other words, we assume that each of the n! possible relative
orderings of the first n elements i,,i,, ..., i, is equally likely. Therefore, our
results are valid for permutations ¢ € S(N,), where n tends to infinity.

Let w, , be the probability that the first k runs have a total length greater
than or equal to p. Obviously, w, , is the number of all permutations ¢ € S(N,)
with less than or equal to k runs divided by p ! Hence by the corollary following
Theorem 3.4

Wy, Y z A(p’ l)
! I1<igk
where the A(p,k) are the Eulerian numbers. Since w, , —w, ,,, is the
probability that the first k runs have a total length p, we obtain for the average
total length of the first k runs

z l; = z P[Wk,p - Wk,p+l] = Z Wi.p:

1<isk p=l p=l
Hence

=Y L— ¥ |

1<i<k 1<ig<k—1
= Z [Wk,p - Wk*l.p]
p>1
1
= ¥ Al k)

pzl

Using (B33), we immediately find

=& k>(exr> ):;x— x x>'

An explicit expression of /, can be derived by (B35) as follows:

1

pzl

_y L zvmw—w( ﬁ

p=1 P! o<k




J? p J?
N A
ogsk ,,>l k—j/p! \k—j—1)p!

1 jP

= 2 (_l)k_j[(k— T

0<j<k N (p — k +j)!

1 jP
+— .
(k_]_l)!pzkz—:j—l (p—k+1+1)!]

=3 (—1)"”‘[ A

0<j<k k —j)! p>0 p!
-k—j—l .p
J J
+ —
(k—J—l)!,,gop!]
jk=im1
=k el(—1)kJ
0§<k (k— Il

We have proved the following theorem.

THEOREM 3.6 Assuming that all n! permutations in S(N,) are equally likely,
the average length [, of the k-th run in ¢ € S(N,) is for large n given by
. Jk—j—-l
L=k el(—1)kJ
k2 k=p"
As special values, we obtain /|, =e —1=1.7183, |, = ¢* — 2¢ =1.9525, and
Iy=e>—3e?+3=19958. H

Using techniques given in section 4.4.1, we can show that /, tends to the
limiting value of two for k — oo (see Exercise 4.5). The sequence [, is not
monotone; for example, I, > 2,1, <2,1,,> 2,1,, < 2. For further analysis see

[47], [55]

327 A4 verage Number of Inversions of a Permutation

DerFINITION 3.5 Let 6 =1iy,i5,...,i,€ &(N,) be a permutation in linear
notation. The pair (i,, i,), r, s € [ 1:n], is called an inversion, if r<s and i, > i,.
For example, the permutation ¢ =2,5,6,4,8,7,3,1,9 has 15 inversions
2,1), (5,9), (5.3), (5, 1), (6,4), (6,3), (6,1), (4,3), (4,1), (8,7), (8,3), 8,1), (7,3),
(7,1), (3,1). Inversions are important in the analysis of sorting algorithms,
because each inversion is a pair of elements that is ‘out of sort’. Obviously, only
the identity permutation g, has no inversions. The maximum number of
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inversions appearing in any permutation ¢ € S(N,) is (2); this is the case if
c=nn-—1,...,2,1.

DerFINITION 3.6 Let 0 =1i,,i;,...,i,€ S(N,) be a permutation in linear
notation and let I(c) be the set of inversions in ¢. The sequence j,,j,,...,J,
with j, = card({(i;, A)| (i;, A) e I(6) A se[l:n]}), 1<A<n, is called the
inversion table of o.

Thus the above permutation ¢ € S(Ng) has the inversion table 7,0, 5, 2,0, 0,
1, 0, 0. By definition, we have always 0<j,<n—41, 1<iA<n, and
card(I(s)) = le}.snjl'

Generally, an inversion table uniquely describes the corresponding
permutation; successively, we have to find the relative placement of the
elements n,n — 1, ..., 2,1 in this order. This can be done as follows:

(a) Write down the number n.

(b) Consider successively the numbers j,_,,j,-2,...,j; appearing in the
inversion table. The number A follows j;, of the numbers already written
down.

For example, consider the above inversion table 7, 0, 5, 2, 0, 0, 1, 0, 0. The
algorithm produces the following sequences: 9 then 8,9 (since jg = 0), then
8,7,9 (since j, = 1), then 6,8,7,9 (since jo = 0), then 5,6,8,7,9 (since js = 0),
then $,6,4,8,7,9 (since j, = 2), etc. Inserting 3, 2 and 1 in an analogous way,
we get our original permutation. It is often easier to solve a problem stated in
terms of inversion tables than the equivalent problem stated in terms of
permutations, because the elements of the inversion table are completely
independent while the elements of the permutation must be mutually disjoint.

Next, we shall compute the generating function of the numbers I, of all
permutations ¢ € S(N,) with k inversions.

TueoREM 3.7 Let I,(z) =D ,s0ln.2" be the generating function of the
numbers I, of all permutations ¢ € S(N,) with k inversions. We have

L@ =0-27[] (1-2)
I1<jgn
Proof Leto =i,,i,,...,i, be a permutation in &(N,) with k inversions and
let jy,j2,- - - ,J, be the corresponding inversion table. Since Y ;<. /i = k and
0 <j, <n-4,1< 1 < n, we immediately obtain

Iy = Z Z Z Zl

0<j,<n—10<j<n-2  0<j,_, <1 0<j, <0
jl +.12 +'+.1n=k

S ]

0<j, <n-1 ja€n—=2 0</,<0 0<j, <n—1
ot =k =y
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Hence

I,,(z):Zz" z In—l.k—j,

k>0  0<j <n—1

= z z Zk+j11”_l,k

0<j, <n—1 k>0

. 1-Zz"
= X zhz]n—l,kzk=_sz_In—l(z)-

0<j <n—-1. k>0

Solving this recurrence, we obtain our result with I,(z) =1. W

CoroLLarYy The numbers I, , satisfy the following relations:

(a) In,k=1n,k—l +I”—l,k fOI'k<n.

® 3 I,,=n

k>0

© Y (=D, =0 forn>1.

k20

(d) In,k = In.(g)—k'

Proof Using the above recurrence 1,(z) = (1 — z) " 1(1 — z")1,_,(z), (a), (b), (c),
and (d) can be easily proved: (a) is implied by the recurrence itself, (b) and (c)
corresponds to I,(1) and I,(—1), and (c) follows from I,(z) = z?I,(z"'). W

An explicit expression for I, , can be easily derived by an application of Euler’s
pentagonal theorem ([ 3]) to the function I,(z) given in Theorem 3.7.

Let us now consider the average number of inversions appearing in a
permutation ¢ € S(N,,).

THEOREM 3.8 Assuming that all n! permutations o € S(N,) are equally likely,
the average number of inversions appearing in a permutation is n(n — 1)/4. The
variance is given by a%(n) = n(n — 1)(2n + 5)/72.

Proof Let p,, be the probability that a permutation has k inversions and let
£(2) = Y50 Pasz® be the generating function of the numbers p, . Obviously,
£.(z) = n!71,(2). Since I,(z) = z¥1,(z"), we obtain

d n (")_1 -1 (")_2 d -1
_ — 2 — ~2 — 1 .
. I,(z)= (2>z I,z7')—2z - 2(2770)

(e

Choosing z = 1, this equation implies

1
L) =3 (Z)I,,(l) -

N -
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Hence

0 =3(5)

An inspection of Theorem 3.7 shows that f,(z) = [ [ <;<, g:(2), where g,(z) =
Y 0<j<i 2/i. Now an elementary computation leads to

d2
@fn(z)=<a;fn(z)> L 7@ =)

1<A<n

d2

+ fu(2) Z(Z)I:QA(Z) ~— d(z) — ( ) ]
|EVES

Choosing z = 1, we obtain further with g,(1)=1,1< A <n

bl

L= Y g+ A1) ¥ [g0) - (g:(1)?].

1<Agn 1<A<n
Since
g)=1""3Y j=@A-1)2
1<
and

g)=4"" 3 ji-1)=0A-1A-2)3,

1<j<a
we find finally
"y = L(" » =1 + 2 Y A-1)@A-5
" 4\2 12, ( )

1<A<n <A<n
= thzn(n — )(n — 2)(9n + 13).
Now an application of (AS5) and (A7) yields
pin) = f(1) =gn(n—1)
c2(n) = £(1) + £,(1) = [f/(D]? = An(n — 1)Q2n + 5).
This completes the proof of Theorem 3.8. W

In this section we have investigated the average behaviour of some important -
characteristic quantities of permutations which appear in the analysis of
sorting and searching algorithms. Some further parameters and classes of
permutations are considered in the Exercises.

Exercises

3.1 Show that the s-th moment about the origin of the real random variable x which
describes the distribution of all permutations g € S(N,) with k cycles (Theorem 3.1) is
asymptotically given by In*(n) + O(In*"*(n)).
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3.2 Show that the number &(N,), ., .. of permutations of type (c,,c5,...,¢c,) is
equal to

n! [] (%D
I<ign
3.3 In section 3.2.3 it is shown that the number of all permutations ¢ € &(N,) with k
cycles of length [ is given by

n! I *k!H™! Y (=Dt
0<i<[n/l|—k

Assume that each of the n! permutations in S(N,) is equally likely. Show that the
average number of cycles of length [ appearing in a permutation ¢ € S(N,) is [~!; the
variance is given by [ 7!,
3.4 Show that the number of derangements is equal to e 'n! rounded to the nearest
integer (n > 1).
3.5 Let G < &(N,) be a permutation group with the cycle indicator Z(G;t,,...,¢t,).

(a) Show that the number of permutations ¢ € G with a shortest cycle of length [ is
given by

card(G) x {u"Y(f5(u,0,...,1,1,...) = f(,0,...,0,0,1,...),
1 i
(! + 1)-th argument

where f;(u,t,,t,,...) is the formal ordinary generating function of Z(G;t,,...,t,).
(b) Assume that all permutations in G are equally likely. Show that the average length
of the shortest cycle is

(uy fo,0,...,0,1,1,...)

1<i<n

(! + 1)-argument

(c) Consider the symmetric group G = &(N,). Show that the average length of the
shortest cycle is asymptotically given by e™7In(n) + O(1), where y is Euler’s
constant. (Use the methods described in section 4.4.1.)

3.6 This exercise gives a generalization of the concept of permutations suggested by the

matrix notation given in 3.2. The n x n-matrix T is called a k-permutation when all rows

and all columns have exactly k entries 1 and (n — k) entries 0. Choosing k =1, T is a

permutation matrix in the sense of 3.2.

(a) Show that the number of all k-permutations of N, is given by

P(n, k) = (% o oxk v vk T (U + X))

I<ij<n

(b) Deduce from (a)
(bl) P(n,1) = n!.
2
(b2) P(n,2) = Y. (—1)*@n—21)! 1! (Z) 242

i>0
(c) Show that

Y P(n,2)z'n!"? = (1 —z)" " exp(—z/2).

n>=0

(For further information see [26].)
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3.7 Show that the exponential generating function of the numbers a,(S) of all
permutations ¢ € S(N,) such that all cycle lengths belong to a set S = N is given by

Y o =exp( 3 2
a,(S) — =ex — .
n=0 n! P keS k
3.8 (a) Start with the recurrence A(n, k)=kAn—1Lk)+ (n—k+1DAn—-1,k—1),
where A(0, k) = é,, and A(n, 0) = §, , and show that the Eulerian numbers A(n, k) have
the following double generating function:

t ,

14+ Y > Alnk)—x*=(1—x)[1 — x exp(e(l — x))] "

n2l k=1 n!

(b) Use (a) to derive the explicit expression (convention: 0° =1)

fn+1
A k)= ¥ (_1),< | )(k -
0<igk J

(c) Show that )| <, <, kA(n, k)= (n+1)!/2.

3.9 Consider the set of all sequences by, b,,...,b, with b;e {0,1}, 1 <i < n. The pair
(b, b, 1), re[l:n—1]is afall, if b, > b, . Assume that all sequences of length n are
equally likely. Compute the probability that a sequence has k falls. Show that the
average number of falls appearing in a sequence of length n is (n — 1)/4. The variance is
(n + 1)/16.

3.10 Let 6 € &(N,) be a permutation and I(g) < P(N,) be defined by

Io) ={I = N,| (3i,jeD) (i <j A a(i) <o(j)}.

The elements of I € I(o) are called an increasing subsequence of 6. Forexample,if ¢ = 2,4, 3,
1, 5 &(Ny), then I(0) = {@, {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,5}, {2,5}, {3,5},
{1,2,5},{1,3,5}}. (Increasing subsequences play a part in the analysis of the computation
time of a special knapsack algorithm ([81]).)

(@) Show that MIN, gy ) (card(I(¢))) =n + 1.

(b) Show that MAX e (card(I(g))) = 2".

(c) Assume that each of the n! permutations in S(N,) is equally likely. Show that the
average number I(n) of increasing subsequences appearing in a permutation

o € S(N,) is given by
n\ 1
I(n) = —.
( ) 0<§Sn (k)k!

(d) Show that I(n) = L{(— 1), where L (x) is the n-th generalized Laguerre polynomial.
(Hint: Use (B87) with «a =0 and x = —1.)
(For further information about the asymptotic behaviour of I(n) and the
computation of the second moment about the origin see [82].)

311 Letg =iy, iy,...,i, € S(N,) be a permutation in linear notation. The pair (i,, i, +1)

is a succession of ¢, ifi,,; =i, +1,0<r<n-1

(a) Show that the number of permutations in S(N,) with exactly k successions is
given by
n—1
k

where D, is the number of derangements in S(N,) computed at the end of section
3.2.3.

(b) Assume that all permutations in S(N,) are equally likely. Prove that a permutation
o € S(N,) has exactly one succession on the average for large n. (See also [105],

[113])

R(n, k) = ( )[Dn—k + Dn—k—l]a
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3.12 Let 6 =iy, iy,..., i, be a permutation in S(N,) and let iy:= 0 and iny1:=0. The
element i; € [1:n] is called a positive peak (negative peak), if i, _, < i, > oo > i<
i+1)» 1 <A < n. The element i, is said to be a double rise (double fall), if Ly <ip<igy
(i1 > i3> i341), 1 <A <n Let P.(s) (P_(0), DR(0), DF(c)) be the set of all positive
peaks (negative peaks, double rises, double falls) appearing in ¢. The quadruple (P, (g),
P _{(0), DR(c), DF(0)) is the pattern of the permutation o. Thus ¢ = 2,5,6,4,8,7,3,1,9
has the pattern ({6, 8, 9}, {1, 4}, {2, 5}, {3,7}).

(a) Show that the quadruple (4, B, C, D) is the pattern of a permutation ¢ e S(N,) if
and only if the following conditions are satisfied:
(1) The sets 4, B, C, D form a partition of N,.
(2) ne A.
(3) Card(4) =1 + card(B).
(4 Ifby,...,b (ay,...,a, n)are the elements of B % Q§(4) in ascending order, then

b;<a,1<i<k

(b) Let (4, B, C, D) be a quadruple of sets satisfying the conditions (1)~4) of part (a).
Show that the number of permutations with pattern (4, B, C, D) is given by the
product Hlsis,, (i), where y: N, — N is recursively defined by y(1) =1 and

yi)—1 ified
yWi+1)={yi)+1 ifieB
(i) ifieCuD.

(Thus there are 1-2-2-2-3-3-2-2-1 = 288 permutations in S(N,) with the above
pattern ({6,8,9}, {1,4}, {2,5}, {3,7}))

() Show that the number of possible patterns associated with the permutations
g € S(N,) is the Catalan number

C, = 1 <2n>.
n+ltin

(d) Show that the number of possible patterns associated with the permutations
o € S(N,) having exactly k negative peaks is

n—1
( k )Ckzn—Zk—l'

(Parts (c) and (d) lead to the well-known identity

~1
C,=Y (” ) )Ck2"‘2““,

k=20

which was found in [114]. For further information about the enumeration of
permutations by a given pattern see [11], [38], [40], [44], [83].)

313 Let o =i, i, ...,i, € ©(N,) be a permutation in linear notation. Here, ¢ is called
alternating if the (n — 1) differences (i;,, —i;), 1 <1 <n —1, have alternating signs.
Thus the permutation e = 2, 5,6, 4, 8,7, 3, 1.9 is not alternating, but 5,2,6,4,8,7,9, 1,
3 is alternating. Let a, be the number of all alternating permutations in S(N,) and set
a,=a, =a, =2

(a) Prove the recurrence

n
4a,,, = (k a,a, _, n>2.
O0gk<n

(b) Deduce from (a) that the exponential generating function. f(2) =Z,!>0 a,z"/n!
satisfies the differential equation 4f'(z) =4 + f%(z). Use this to obtain f(z) =
2 tan(n/4 + z/2).
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(c) Show that
Ay =2|Ez,| and  ay,s; = (=1)"By, 4" 1@ = 1)/in + 1),

where E,, are the Euler numbers and B,, the Bernoulli numbers introduced in
section 3.2.2. (Hint: Use (B38) and (B42).)
(The numbers a,,/2 (a,,+,/2) are often called tangent (secant) numbers. Alternating
permutations were extensively studied in [2]; see also [25].)
3.14 A permutation g € S(N,) is called an involution if the composition ¢ ° ¢ = 7, the
identity permutation.

(@) Show that ¢ € S(N,) is an involution if and only if the cycle notation of ¢ consists
solely of cycles of lengths one or two.

(b) Derive from (a) that the exponential generating function of the numbers i(n) of
involutions in &(N,) is given by

Y i(n)z"/n! = exp(z + z%/2).
i20
(c) Prove that
n!

i(n) = 27K
oskng, k!(n—2k)!

(An asymptotic expression for i(n) is given by i(n) ~ (4e) " V*(n/e)"? exp(\/r;) and
was first derived as a special case in [89].)
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Random Walks, Trees, Lists

4.1 Random Walks

DeFiNiTioN 4.1 Let f:N,v{0} -Z be a (totall mapping with
1f(t) — f(te = 1) <1, 0 <t <n The (n +1)y-tuple p, = (f(0), f(1),..., f(n)) is
called a random walk of length n from f(0) to f(n). Here, p, is said to be simple,
if |f(t)— f(t—1)=1,0 <t <n. The tuple (f(t — 1), f(t)), t € N,, is called the
t-th segment of p, and is denoted by p’. A segment p’; is of type T (type |, type
D, if f&)>ft—-1) (f(t) < f(t—=1), f(t)= f(t —1)). The level of the t-th

segment p'; is the value f(t — 1), teN,.

For example, let n =10 and f be defined by f(4) = f(6) = f(9) =0, f(2) =
f@) = f(5) =1, f(1) = f®) = f(10) = —1, and f(0) = f(1) = 2. Obviously, p,
is a random walk of length 10 from 2 to —1; p, is not simple. The third
segment p3 is of type ] and has the level one. Similarly, the segment p} is of
type | and has the level zero.

One can represent a random walk p, by an oriented path in the plane which
starts in the point (0, f(0)) and is straight between the points with coordinates
(¢, f(1)), 0 <t < n. Obviously, the straight lines correspond to the segments of
ps. Thus the path in Figure 8 represents the above random walk p ;. Obviously,
a random walk is simple if its corresponding path has no horizontal lines.

DerFINITION 4.2 Let p, be a random walk of length n; p is called non-negative,
if £(t) >0 for all t e N, W{0}. The maximal deviation d(p,) of p, is defined by
d(ps) = MAX, < <n (f(2))). The value s(p;) = MAXo ¢, ,<q (f(t) — f(p)) is called
the maximal span of p,; p is said to be (k, h)-bounded, if MAX¢, <, (f(£)) <k
and MIN,,, (f(t)) = h.

Thus the random walk of our running example has the maximal deviation
d(p;) =2 and the maximal span s(p;) = 3. If p, is a non-negative random
walk, then the maximal deviation d(p,) is also called the height of p, and is
denoted by h(p ).

We can generalize the concept of random walks by attaching additional
labels to the segments appearing in p,. This leads to the following definition.

50
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FIGURE 8. Graphical representation of the random walk p,.

DerFiniTION 4.3 Let L be a set, p, a random walk of length n with segments
PPk ..., phand m: {p}|1 <t < n} — L a(total) mapping. The (2n + 1)-tuple

Pra= (fO), f(1),..., f(n); m(p}),m(p}),...,m(p}) is an L-weighted random
walk of length n from f(0) to f(n) with labels in L.

In the same way as in the case of random walks, one can represent an L-
weighted random walk p,, by an oriented marked path in the plane, where the
label n(p;) is attached to the straight line which corresponds to the t-th
segment.

Random walks and N,-weighted (non-negative) random walks play an
important part in the analysis of algorithms dealing with dynamic data
structures, trees, or expressions (see section 4.3 and Chapter 5). Furthermore,
several other mathematical objects correspond to certain sets of (weighted)
random walks.

For example, let M = (N,, r,,) be a multiset over N, with r,,(x) > 1 for all
xeN,, P M and g:N, {0} —Z be a function recursively defined by
g(0) =0, and

gey+1 ifrpc+1)>1
gty—1 frpt+1)=0

fort =0,1,...,n — 1. Obviously, p, is a simple random walk of length n from
0togn) =n—23 < i<n00,0 Choosing L = {rp(t)|1 <t < n}, we can define
n(py):=rp(t), 1 <t < n. Hence p,, = (9(0),9(1),...,9(n); rp(l),...,7p(n)) is a
simple N,-weighted random walk of length n. Obviously, p,, satisfies the
conditions |g(t)] <t for 0 <t<n, n(py) =0, if p; is of type |, and
n(p,) € [1:rp(1)], if p} is of type T. Conversely, some reflection shows that each
simple N,-weighted random walk of length n satisfying the above three
conditions corresponds to a subset of M. Thus we have a one-to-one corre-
spondence between the set of all simple Ny-weighted random walks of length n
defined above and the set of all subsets of the multiset M = (N,, r,,), where

g(t+1)={
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ry(x) = 1forall x e N,. In the case ry, (x) = 1 for all x € N, , all segments of type
1 (type |) are labelled by one (zero). In other words, we can omit the labels and
obtain a one-to-one correspondence between the power set of N, and the set of
simple random walks p, of length n with |f(f)] <t,0 <t <n.

Another well-known mathematical interpretation of {0, 1}-weighted random
walks consists of the game of heads or tails, played with n throws of a coin, or
generally, of stochastic processes. In this case, the labels can be interpreted as
probabilities.

DerINITION 44 Let p, = (f(0), f(1),..., f(n); =m(pp),...,n(p}) be a R-
weighted random walk of length n. The weight w(p,) is defined by

wlpg)= [T =(o%).
I<tgn
If P is a set of R-weighted random walks, then the number prep w(p,) is called
the total weight of P and is denoted by w(P).

When the elements of a set P are only [0:1]-weighted random walks, then
w(P) = card(P) — card(P,), where P, is the subset of P consisting of all [0:1]-
weighted random walks with a segment labelled by zero.

4.2 Enumeration of Random Walks
4.2.1 Uniform Random Walks

In this section we shall enumerate certain classes P of random walks. First we
introduce the notion of a uniform set of random walks.

DEFINITION 4.5 Let P be a set of L-weighted random walks and let S be the
set of all segments appearing in the random walks of PP. Here, P is called a
uniform set (with respect to L) if there is a mapping ¢: S — L such that for all
ps. € P and all segments p); appearing in p,, the equation n(p}) = ¢(p}) is valid.

For example, let L = {3, 4, 5, 6, 7}. Consider the set P = {0, 1,2;3,7),(0, 1,0,
1,2;3,5,3,7),(0,1,0, -1, —1;3,5,4,3),0, —1, -1, —1;4,3,3),(0, - 1,0, 1,
2, 1; 4,6, 3,7, 6)}. We obtain S = {(0,1), (1,2), (—1,0), (1,0), (0, —1), (2,1),
(—1, —1)}. For each random walk in P, we have the following labels of the
segments:

Segment s ©0,1) (1,2) (-=1,00 (1,00 (©,-1) 2,1) (=1,-1)

Label I, 3 7 6 5 4 6 3

Defining ¢ by ¢(s):= I,, we see that P is a uniform set of random walks. The set
P ={0,1,1,0; 3,4,5), (0,1,0; 3, 3)} is not uniform. Here, we have § = {(0,1),
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(1,1), (1,0)}. The existence of a mapping ¢ would imply ¢((1,0)) =5 (from
(0,1,1,0; 3,4, 5)) and ¢((1,0)) = 3 (from (0, 1, 0, 3, 3)), which is a contradiction.

Next we will compute the total weight w(P{,(n, p)) of the uniform set
P¢ ,(n, p) consisting of all (k, h)-bounded R-weighted random walks of length n
from O to p. For this purpose, we specify the mapping ¢ by

u, if (i,i +1)is of type 1
e, i+1)={d; if(i,i+1)is of type |
e 1if (1,i +1)is of type ]

Some reflection shows that the elements of P{, (n,p), pe[—h:k], k,h >0, can
be represented by labelled oriented paths in a diagram. Figure 9 presents such
a diagram for the set P 5(7, — 1); for example, the random walk (0, 1,2, 1, 1, 0,
0, —1; ug, uy, ds, ey, dy, e, do) € P4 3(7, — 1) corresponds to the marked path.
In the subsequent sections (especially section 4.3) we shall see that certain
subsets of P?, (n, p) play an important part in the analysis of certain algorithms.

Let us now turn to the computation of the total weight of P{,(n, p). For this
purpose, let

E,in(2) = ZO w(P%n(n, p))z
be the ordinary generating function of the total weights w(P{,(n, p)). Our first
goal is to derive an explicit expression for E,; ,(z). One way to do this is to
compute recurrences for the total weights w(P¢,(n,p)); for example, if
n=2p+2, 1<p<k—1, wP{,(n p)) is given by the sum of the following
three products:

(1) d, ., times the total weight w(P{,(n — 1, p + 1));
(2) e, times the total weight w(P;,(n — 1, p));
(3) u,_, times the total weight w(P{,(n —1,p —1)).

Hence
w(Py,(n,p)) =d, . w(lP{,(n —1,p — 1)) + e,w(P{,(n — 1, p))
+u,  w(PL(n—1,p 1))
forn>p +2and 1 <p <k — 1. Similar recurrences for the other cases can be
derived. The next step consists of translating these recurrences into terms of the

generating functions E,,,(z); for example, taking the above recurrence
together with the valid conditions w(Pg,(n, p)) = 0 for n < p, we obtain

E,in(2)= Z w(Pg,(n, p))z"

n=0

= 2, w(P{a(n, p))2"

nzp




FIGURE 9. Representation of all (2, 3)-bounded, weighted random walks of length 7
from 0 to (—1) in P$ 3(7, —1).

12
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= w(P{ ,(p, p))z? + w(P{,(p + 1,p))z?*!

+ Y w(Pg,n, p))z"

nxp+2
= up—lw(Pr,h(P —1,p—1)2°
+ [epW(P;f,h(P, p)) + u,_w(P,(p,p — 1))]Zp+1

+ 3 [d,c w(PLun —1,p +1)) + e,w(P4(n — 1, p))

nzp+2
+ up—lw([pr,h(n - l’p - 1))]Zn
=u, 1zZE,_; 4 (2) + e,2E ) p(2) + dpi1E i 1,10(2).

Doing this for all recurrences, we obtain a set of equations for the functions
E, ().

An alternative, more elegant method consists of an application of formal
languages and formal power series with non-commuting variables (see [108]).
It is assumed that the reader is familiar with the basic definitions concerning
context-free grammars and languages as stated in [53] and formal power series
as stated in [107]. (A short summary is given in Appendix A, 2.) The basic ideas
are as follows:

(1) Each object to be counted is represented as a word in a free monoid X*
generated by the countable set X. The set of the objects corresponds to the
set of words .¥ < X*.

(2) A context-free, unambiguous substitution scheme G (context-free,
unambiguous grammar, if X is finite) is found that generates .&

(3) The scheme G defines a system of formal equations, one of whose solutions
in the ring of formal power series over the monoid X* is the formal power
series f =Y o W-

(4) We have to choose the property by which we wish to enumerate the objects.
A homomorphism is then constructed which maps the monoid into a
commutative semigroup such that the induced map on the ring of formal
power series maps f on to a generating function F in commuting variables
which is the desired enumerator. Here, F will satisfy the system of formal
equations and this enables us to find a solution for F.

Let us apply this method to the computation of E,; ,(z). We choose
X={w|-h<i<k-1}v{d|-h+1<i<k}
el —h <i<kjvip}

Considering the path diagram given in Figure 9, each random walk p, =
©,...,p; ap,....a,)eP¢,(n,p) can be described by the word
a,a,...a,pe X*; for example, the marked path in Figure 9 corresponds to the
word ugu,d,e, d,e,d,(—1). Thus the objects to be counted are represented by
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L ={weX*|lw=aa,...a,p Ara=0¢(f(i—-1),f()1<i<n].

We now consider the context-free grammar G with the following productions:

S;—e;S;, —h<i<k (rule f;)
S;—d;S;_,, —h+1<i<k (ruleg;)
Si—uwS; 1, —h<i<k—1 (ruleh)
S,—p (rule p)

Some reflection shows that each word w € & can be derived from S, in (n + 1)
steps. For example, let k=2, h=3, n=7, and p= —1. The word corre-
sponding to the random walk 0, 1, 2, 1, 1, 0, 0, —1; ug, u,, d,, e, dy, e,
dy) € P$ 3(7, — 1) has the following derivation in G:

So— uyS,; (rule h,)
—uu, S, (rule h,)
—ugu,d,S, (rule g,)
—uou,d,e, S, (rule f)
—uyu,d,e, d; S, (rule g,)
—ugu,de;de,Sy (rule f5)

— uou;dye,deqdoS_;  (rule go)
—ugu,d,e, d,e,dy(—1) (rule —1)

Thus & = % N X"*!, where & denotes the set of words which can be derived
from S;, i e [ — h:k], using the productions of G. Obviously, the grammar G is
unambiguous. The system of formal equations induced by G is

’ Sk = ekSk + dkSk—l

Si=eiSi+diS‘-_‘+uiS;‘+h _h+1<l<k—1

S-p=e_pS_p+tu_,S_,.y,
where the additional item p appears on the right-hand side of the equation for
S, Let now S; =) ., w be the solution for the variable §;, ie[—h:k]. To
derive the generating function E,; ,(z), we introduce the homomorphism 6
defined by 6(a) = az, a € X\{p}, and 6(p) = 1. 0 induces a homomorphism 6 of

formal power series over the monoids: let p € P{ ,(n,p)and u, = a;a, ... a,p be
the corresponding word in ¥ We have

O(u,) = 0(a,)b(a,) . . . 6(a,)6(p)
=a,a,...a,2"

= w(p)zZ"
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and therefore,

o@a=0(21%}=2 > 6w,)

Upe # n>0 upE.?’of\X"H

=2 2 wp

n20 pePy,(n.p)
= Ep,k.h (Z).

Since the context-free grammar G ts unambiguous, the generating function
E,;x(z) 1s equal to F,(z), where the functions F;(z), —h <i <k, satisfy the
above system of formal equations. We obtain

Fi(z) = ezF(z) + dz2F, _1(2)

Fi(z) = ;zF;(z) + d;zF;_,(z) + w;zF;,,(2), —-h+1<i<k-1
F_n(z) =e_yzF _,(2) + u_pzF _,1,(2),
where an additional 1 appears on the right-hand side of the equation for F,(z).
(It should be obvious that the method described can also be applied to
enumerate other objects, e.g. the total number of occurrences of a label in all

random walks p € P}, (n, p). We have only to change the homomorphism 6!)
Combining the above results, we have proved the following theorem.

THEOREM 4.1 Let Py, (n, p) be the uniform set consisting of all (k, h)-bounded,
R-weighted random walks of length » from O to p and let

E,ix(@) = 3 w(Pg,(np))"

n>0

be the ordinary generating function of the total weights w(Py,(n, p)). The
function E,;,(z), pe[ —h:k], is equal to Fy(z), where the functions F;(z),
—h <i <k, are defined by the system of linear equations

——— N

A-F(z) =¢,,
where
[ F) | 0
Fi_1(2) 0
_ ’ RN
F(z) = Fo(2) , ¢, = | 1 | < (k — p + 1)-th component .

F_).1(2) 0
F_,(z) 0
L .
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and

— -

[1-e.z] —d,z

—tyz [l—e 2] —dy-Zz : 0
— Uy 2 l—ep-2z] —dp_,2
S e .
0 \§\~\_u—h+\lz\‘[l_e—:+\lz\]\:d—lu-lz
| —U_y2 [l—e_,,z]_J

Hence the computation of the generating function E,, ,(z) leads to a system of
linear equations which has a special form. An application of Cramer’s rule
yields the following lemma.

LemMAa 4.1 Let M,, be the non-singular (N — r + 1) x (N — r + 1)-matrix
given by

b" c"
a,+1 br+ 1 Cr+1 O
a, +\2 br +\2 cr:—Z
N\ AY N\ N
N\
A N N . N
AY
0 IR NNPR
L_ aN bN |
. = =
The system of the N linear equations M, y-x = ¢;, where
0
— 9 0
X1 .
N X, N
x=| and ¢ = | 1 | « i-th component
[ xx '
- | 0

has the solution (convention: det(M, ,) =4,_, ,forn <r —1)

(— 1)i+jcjcj+1 R det(Ml,j—l)det(Mi+l,N)/det(Ml,N)
ifje[l:i—1]
x;= {det(M ;_ )det(M,,,y)/det(M, y) ifj=i

J
(— 1)i+jai+1ai+2 <. a; det(Ml,i—l) det(Mj+l,N)/det(Ml,N)
fje[i+1:N] W
Expanding det(M, ) by the elements of the last row, we obtain the recurrence
det(M'.'N) = 5'._1'N fOI' N S Y — 1
det(M'.'N) = bN det(M'.‘N_l) —_ aNCN—l det(Mr,N—Z) fOI‘ N 2 r.




59

We will now apply our results to the equations induced by the functions F, (z)
given in Theorem 4.1. We have to choose: N:=k + h +1 i=k—p+1,b;:

l—e i1z, x;i=F,_;1,(2), ¢;:=—d,_;,,z and a, — Uy —m+12, where
1<j<N,1<A<N-—1and2 <m<N. We obtain

P(lk)k ;(Z)Pk p+2k+h+1(z)

Pl,k+h+1(z)

(z"‘”d,.di_l...dp ‘1 ifielp+1:k]

Fi(z) = (1k)k p(Z)P p+2k+h+2(z)

ifi=
P1,k+h+1(z) P

P(k)k p(z)P it 2x+n+1(2)

Pl,k+h+1(z)

p—i
Z up_lup_z

fie[—h:p +1],

e By

where the P®)(z) are polynomials in z recursively defined by
P8(z)=96,_,, fors<r—1
Pﬁ"s)(z) = [1 €k~ s+lz]Prs 1 uk—s+1dk—s+222P9fs)—2(z) fors>r

Since Fy(z) = E,, ,(z), we have proved the following theorem.

THEOREM 4.2 The generating function E p.i.n(2) Of the total weight w(P{ ,(n, p))
of the uniform set P{ ,(n, p) consisting of all (k, h)-bounded, R-weighted random
walks of length n from 0 to p is given by

P(lk)k p(z)Pk+2 k+n+1(2)

E z)=zu,_(u,_,...u ifpell:k
p,k.h( p—1Up—2 0 Pl,k+h+1(z) p [ ]
Egunlz) = P(lk,){c(z)chk-{-Z,k+h+l(z)
. P(lk,)k+h+1(z)
P¥. (2)P
E_,in@)=2%ded_,...d_,., WP praien 1 (2) if pe[1:h],

P1,k+h+1(z)

where the P®)(z) are polynomials in z satisfying the recurrence

P¥z)=6,_,, fors<r—1

Pi’fs)(z) =[1- ek—s+1z]P£lf;—1(Z) - “k—s+1dk—s+2zngg—2(z) fors>r. N

This theorem gives us a constructive method for computing the generating
function E,; ,(z). It should be clear that the generating function of the total
weights w(Py,(n, i, p)) of the uniform set of all (k, h)-bounded, R-weighted
random walks p of length n from i to p can be derived from E,; ,(z), because
such a p is transformable into a random walk from O to (p — i); we have only
to change the parameters p, k, h and the indices of the labels.
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4.2.2 (d, e, u)-Random Walks

In this subsection we consider an important special case of weighted random
walks. Choose ¢, =efor —h <A<k, uy=ufor —h<i<k-1,andd,=d
for —h +1 <A <k. In other words, the segments of types 1, |, and { of the
random walks in P{,(n, p) are labelled by u, d, and e respectively. A uniform set
P¢ .(n, p) with this specification ¢ is called a (d, e, u)-set and is denoted by
DEU, ,(n, p). An element of DEU, ,(n, p) is said to be a (d, e, u)-random walk.

The formulae given in Theorem 4.2 yield the homogeneous linear recurrence

P¥z)=6,_,, fors<r—1
P¥(z)=[1— ez]P® _,(z) — udz*P® _,(z) fors=r.
Using Appendix A, 4, we obtain the characteristic equation g(z) —
(1 — ez)q,(z) + udz*> = 0, which has the solution
q,(2):=qr(z) =[1— ez £ /(1 — ez)® — dudz*]/2.

Thus P*)(z) can be expressed in the form Aq* (z) + Bg™ (z), where n depends on
r,s and A, B are constants which are determined by the initial conditions.
Computing 4 and B, we find

PO = [(1 — e2)? — 4udz?] (g, @)f 2 = (@@ 2]

for s>r—2 and P¥(z)=0 for s<r—3. We have now to insert the
corresponding expressions for P¥(z) into the formulae for E,, ,(z) given in
Theorem 4.2. Choosing the abbreviation Q,,(z):= P®, ., _,(z), we obtain, after
some simplifications

Qk—p+1(z)Qh+1(z)
Qx+n+2(2)

Ep,k,h (Z) = Zpup

for pe[0:k]

and

Qk+1(z)Qh—p+1(z)
Ok +n+2(2)

Thus it is sufficient to restrict our further considerations to the case E,; ,(z) for
p e [0:k], because E _,; 4(z), p € [0:h], arises from E,, ,(z) by the replacing of
k,h,u by h,k,d respectively. Now we have to compute the coefficient
(2" YE , 4(z) = W(DEU, ,(n, p)). Let us first consider the case ud = 0.

We get 0,.(z) = (1 — ez)" ! and therefore with (A12)

Epun(z) = 22w)(1 = e2)?* = uw? ¥ (A ) p)e‘zw

120 4

E—p,k,h(z) - Zpdp

for p e [0:h].

Hence for p e [0:k]
0 ifp>n

W(DEUk,h (n,p)) = n
( )en ifp<n
14
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To obtain w(DEU, ,(n, —p)), p€[0:h], we have to replace u by d. Next, we
shall consider the case ud # 0. As mentioned above, the functions Q,(z) are
polynomials in z satisfying the recurrence

Qo(z2) =0, 0Q,(z2)=1
Qm(2) = (1 — e2)Qp_1(2) — udz?Q,, _5(2), m=2.
These equations are a reminder of the recurrences of orthogonal polynomials.
Indeed, Q,,(z) = 2™~ H(ud)™ " V2U,, _ (1 — ez)/(2z/ud)), m =1, where U, (z) is

the m-th Chebyshev polynomial of the second kind (see Appendix B, 2.5). In
principle, there are two different ways to compute the coefficient (z"YE,, , ,(z):

(1) The computation of w(DEU, ,(n, p)) by partial fraction expansion

Some reflection shows that the degree of the polynomial z7Q, _ ,.,(z)Q) ., (z)
appearing in the numerator of E,, ,(z) is strictly less than the degree of the
polynomial Q, .,,,(z) appearing in the denominator. Now it is well known
that the Chebyshev polynomial U,(z) has only simple zeros at z,(1) =
cos(mid/(m + 1)), 1 £ 1 < m, that is

Um(z) = 2" I_[ (Z - zm('l))

1gA<m

Therefore,
0.2)= [I (-[e+2Judz,_D)]2).
I<Ai<m—1
Hence
Ep,k‘h(z) = upszk~p+1(Z)Qh+l(Z) = al ,
Qs +n+2(2) 1 <A<k +h+1 1 — v,z

where the «;, 1 <A <k + h +1, are constants and v, is an abbreviation of

[e +2/ud z; 1.1 (A)]. As usual, we obtain a;, Ae[1:k +h + 1], by multi-
plying the last equation by (1 — v,z) and by setting z:= v; '. Thus

W(DEU, 4(n, p)) = (2" YE 41 (2)

=Y Y Vi

n>0 {<Agk+h+1
= Z (1;‘02,
1<Ask+h+1

where
_ “prQk—pH(Z)QhH(Z)[l - Ulz]
o Qk+h+2(z) z=v,;—'.
The value of «, can be determined by L'Hospital’s rule; we obtain
Q- p+1(01 )Qh+1(v).—1)
Qr+n+2(0y Y .

o, = _up -p+1
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Using the explicit expression for Q,,(z) (or well-known formulae for U, (z) and
U..(2)), we find with n, = A/(k + h + 2)

Qo) = (ud)™ =12 sin(mmn, )/ (v7~* sin(nn,))
and

Qi sns20r ) = (= Dk + h + 2)(ud)* 772/ (205 71 sin®(nn,)).
Thus

2 u\¥ | .
0= s (2) sin((h + p + Dyn,) sin((h + D).

Summarizing our results, we have proved the following theorem.

TueOREM 4.3 Let ud # 0. The total weight of the set DEU, ,(n, p), p € [0:k], is
given by

2 u\ ¥ )
D s =T =15 s
w(DEU, ,(n, p)) k+h+2 (d) 1<1<;+h+1 £ (A)

where

o h+p+Dmi\ . [(h+ )7 A
o) = sinBELED )(m)[ +2y/ud (m)]

The weight w(DEU, ,(n, —p)), p €[0:h], is obtained by the replacing of k, h, u
by h, k, d, respectively. W

This result is rather remarkable, because the expression appearing on the right-
hand side of the above equation must always be an integer, provided that u, d, e
are integers with ud # 0. An equivalent relation was derived in [21] for
e=h=p=0,u=d=1andin[62]fore=h=0,u=d=1and p >0.

(2) The computation of w(DEU, ,(n, p)) by Cauchy’s formula
Let us return to the explicit expression for E,, ,(z) given by

Qk-p+1(Z)Qh+1(Z)
Qi +n+2(2) ’

Ep,k,h(z) = Zpup

pe[0:k].

The substitution z = v/(v> + ev + ud) leads immediately to

v — (ud)"
(v? — ud)W? + ev +ud)"" 1

Onl(z) =
Hence

[02h+2 _ (ud)h+1][vzk—2p+2 _ (ud)k—p+1]
[02 _ ud][02k+2h+4 _ (ud)h+-k+2]

E, . n(z) = vPuP(v* + ev + ud)
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Therefore, we obtain with this expression and (A11)

ro[
W(DEUk’h(n. L ') = 2—7!:; J Zz lEp’k,h(Z) dZ

1 dv
_ZC; vn+1 Inpkh(v)
where
. L(ud)h+1 _ 02h+2][(ud)k-p+l _ vZk—2p+2
"P""(v)_“pvp[v + ev + ud] (ud e +PHE 2k F2h+a ]

In other words, w(DEU, ,(n,r)), pe[0:k], is the coefficient of v* in the
expansion of I, ,, ,(v). This coefficient can now be computed by means of the
binomial theorem and the geometric series; generally, it is a sum whose terms
are products of binomial coefficients. Since this expression is not informative in
the general case, its computation is left to the reader we shall consider two
important special cases:

(@) (1,1,1)-Random walks. We obtain

\ [1 _ 02h+2][1 _ vZk—2p+2]
L pin(v) = v’ [v? + v +1] [ — p2k+2h+4

— Z Z (n’ 3)02(k~h+2)j+1+p[1 _ 02h+2][1 _ UZk—2p+2]’
120j>0 A

where (nf) are the trinomial coefficients (see Appendix B, 1). Hence for

p e[0:k],

.3 K
wamuumm»=(;1p)—(n_pﬁ2h_2)+wmmhm

- Jp+2h+2(n7 k1 h)a

r n3
‘ b
w(nkh)—_Z;(n+a—2(k+h+2)j)

n,3
T\n—a—2k+h+2)))]

For w(DEU,,(n, —p)), p= 0:h], we have to replace k,h,u by h,k,d,
respectively. In this case, wi DEU, ,(n, p)) is equal to the number of all paths
from (0, 0) to (n, p) in the dizzram given in Figure 9. This result was proved
in [96] for p=h =0.

where
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(b) (1,0,1)-Random walks. We obtain

thz][l _ vZk—2p+2]

1=
L, pxn(0) = v7[v* +1] T p2kr2h+a

=y (n>vz(k+h+2)j+u+p[1 — R[] — P 20+2),

A=0 >0 '1

Hence for p € [0:k],

0 if n + p =1 mod(2)

()~ (- pa--1)
(n—py2) \1—py2—h-1

+ ‘Pp/z(n, k,h) — lPp/z +n+1(n k, h)
if n + p = 0 mod(2);

n
Ya(n, k, h) =j§l [(n/z ta—(k+h+ 2)j)

n
+(n/2 —a—(k+h +2)j>]'

w(DEU, ,(n, —p)), p € [0:h], arises from this expression by the replacing of

k,h, u by h, k, d respectively. In this case, w(DEU, ,(n, p)) gives the number

of all paths from (0,0) to (n, p) in the diagram given in Figure 9, if we

eliminate all horizontal segments. This result was implicitly proved in [21] |
for p=h=0 and in [66], [95] for p >0 and h=0. The generating

functions E, ; ,(z) and E,, ,(z) were derived in [98]. Non-negative (1, 0, 1)-

random walks of length n from 0 to O are related to ordered trees and

stacks (see section 4.3 and Chapter 5).

w(DEU, ,(n, p)) =

where

We can also ask for the total weight of the sets DEU, ,(n, p),
U -h<p<k DEUp(n,p) 0f |- w<pco DEU o(n, p). Considering only (1,1,1)-
random walks, w(DEU , ,(n, p)) is the number of all paths from (0, 0) to (n, p) in
the diagram given in Figure 9, where the boundaries at y = k and y = —h are
eliminated. Similar interpretations can be given for the weights of the two other
sets.

THEOREM 4.4
(a) Let ud # 0.

d=P{"P ifp >0
(@l) W(DEU o,,(n, p)) = {u-pévn—pi%; 3,’3 <0

where f(v) = (v* + ev + ud)".
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B (v* + ev + ud)"
(a2) W(_hgsk DEU, 4(n, P)) = <U"> w—d)© —u) Sen(),
where
_ al(v)[(vd)h+lak+l(v) + (vu)*ay, ., (v) — A p+2(0)]
j;J(v)-_ A +p+2(0)
and

a, (v) = v® — (ud)™.

ud — v?

d—v)(u—v)

[v2 + ev + ud]™

(a3) w( U DEUoo,oo(n,p)>= )

—WEpKO

(b) Let ud = 0.

(n)u”e"_” if p e [0:k]

(bl) W(DEUoo,oo(n’ P)) = [Op 1fp >n

For w(DEU , ,(n, —p)), p € [0:h], replace u by d.

(b2) , ,
(n— h)(h>1d,e(h)
+(n— k)(Z)I,,,e(k) Sy
ifk#tnah#n
e+u)—e+n— h)(;ll)l,,,e(h)
W( U DEUk,h('l,P)>= ifk=nanh#n
—h<p<k

e+d)y—e +(n— k)(Z)I,,,e(k)

ifk#nAh=n
e+u)++d)—-¢
‘ ifk=h=n

where I (z) = [Z*7 f*(x + y —t)* 7771 de.

(b3) w( U DEUoo,oo(n,p)) =(e+u)'+(e+d)—e.

—EpSO
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Proof

(@) We have always —n < p < n by definition of a random walk of length n
from O to p. This fact implies DEU, ,(n,p) = DEU , ,(n, p). Using the
general expression for w(DEU, ,(n,p)) obtained above by Cauchy’s
formula, we find w(DEU,, ,(n, p)) = {v" )1, ,...(v), where

(ud)n—p+1 _ vZn—2p+2

(ud)n+1 + 02n+2

Ly pmn(v) = uPvP[0> + ev + ud]"

for p > 0. In the case p < 0, we have to replace u by d. The exponents of v/
appearing in the expansion of (v2 + ev + ud)" are all non-negative.
Considering

n—p+1 _ . 2n—-2p+2 2n+2)A+p
, (ud) v e

= (ud)™? ), (1)

(ud)n+1 + UZn+2 = (ud)(n+l)l.

v(2n+2)().+1)—p
-2 = CESVTENIL
150 (ud)™ 7"
we see that only the term for A = 0 in the first sum generates an exponent.
less than or equal to n. Hence

W(DEU o ,(n,p)) =d (" PY(v* + ev + ud)"

for p > 0. This proves part (al).
Since the sets DEU, ,(n, p) are mutually disjoint, we have

w< 3 DEUk,,,(n,p))= S WDEU,,(n,p))

—h<p<k —h<p<k

(T Lo+ T Lupaa®)).

<p<h 1<p<k

where I, ,,,(v) is our general expression given above, and I}, , ;. 4(v) arises
from I, ,,,(v) by replacing k, h,u by h, k,d, respectively. The two sums
correspond to geometric series; a lengthy, but elementary calculation leads
to the result given in part (a2).

Using the arguments presented in the proof for (al), we have

w( U DEUw.oo(n,p))=w(q DEU,.,,.(n,P))-
—WEPK® —nspsn

Hence this part is a special case of (a2).

(b) In the first part of this subsection we have derived an explicit expression for
w(DEU, ,(n, p)) in the case ud = 0. Applying the same arguments as in (a),
we obtain the desired result. In (b2) we have used Exercise 1.4(a). W

Let us consider some examples.
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ExaMmpLE 4.1 Let DEU ,(n,p) be the set of all (d,e, u}-random walks of
length n from 0 to p. We will compute the total weight w(DEU , . (n, p)) in the
general case for ud # 0. An inspection of Theorem 4.4 shows that we have to
determine a coefficient in the evaluation of a power of a function f(v). In such
cases, the Lagrange-Biirmann formula calls for application; it can be stated as
follows:

Let y = xf(y) be an equation defining implicitly y as a function of x, where f
is a power series with f(0) # 0. The coefficients of y” can be expressed in
terms of those of the powers of f by (x")y? = (p/m){y" P f"

Let us apply this formula to our problem. For this purpose, set x:=z, y:=v
and f(v):= v® + ev + ud. By our substitution, we have z = v/(v? + ev + ud)

and therefore v = zf(v) and v = (22) "![1 — ez — /(1 — ez)® — 4udz?]. (It is left
to the reader to motivate the minus sign of the root!) Hence

(2 y? =L (o o)f.
In other words, {(v"~?)(v? + ev + ud)" is equal to n/p times the coefficient of 2"

in the expansion of v”. This coefficient can easily be determined by a further
application of the Lagrange-Bilirmann formula. An elementary computation

shows that
udz?
1 —
(1 ez)C((1 - )2>,

where C(z) = 3(1 — /1 — 4a). Thus, if we know the coefficients in the
evaluation of a power of C, then we can also compute the coefficients in the
evaluation of a power of v. It is now easily verified that C*(a) = C(«) — «, or
equivalently, C(a) = «/(1 — C(«)). Using the Lagrange-Biirmann formula with
y:=C,x:=aand f(y) = (1 — y)~!, we obtain immediately forn > p > 1

(o )C7 =2 (o)
P/opep\(i_ oyon
~2(rrya-

g (M7

220

P 2n —p —1
n\ n—-1 )

Since C(0) = 0, we have always (" YC?(a) = 0 for n < p. Hence

d 2
(" WP = <Z">?—p(1 - ez)pC”((lu zez)z>

S
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dJ.ZA P
- 2 (e

220

24 — 2 2b=p=1+k\ , 0 puk
A( i )(“‘” ("7 )

121 p—1 n—1 —2u
e (0 T e

Thus for p > 0

w(DEU  _,.(n, p)) = d"’;—j (2" Yo"

_ e\ o1 /24 —p—1 n—1 —2u
‘"e"(d) E,A( A—1 )(2).—p—1)(ude )y

For p <0, we have to replace d by u.

ExampLE 4.2 Let DEU ,(n,p) be the set of all (1,1,1)-random walks of
length n from 0 to p. We obtain, by Theorem 4.4(al),

WDEU 4 (. p)) = (0" "P)(1 + v + 07} = (n”’_3p).

Our general formula derived in Example 4.1 leads to the alternative expression

2). p—1 n—1
DEU , .

Note that we have derived the identity

n,3 _ ZlZl—p—l n—1
n—p) "&I\ 1-1 Noai-p—1)

Thus, eliminating the boundaries in the diagram given in Figure 9, there are

( n.3 ) paths from (0, 0) to the point (r, p).
n—p

By part (a2) of Theorem 4.4, we get
+ v (1 h+ 1 )2
-0 1 + th +2

w( U DEU,,y,,(n,p)>=<v Yl+v+ 2)"
~hp<h

The expansion of the denominator leads to

(1- U)_l(l + 1)2"+2)—1 = Z Z AR+ +)

220 0<j<2h+1
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Hence, by an elementary computation,

w( \U DEU,,n, p))

—h<p<h

=3"-2% Y [a,,;41+1)+ anp (44 +2)],

A200<j<h

) n,3 n,3
an,h,j(m = n—mh+1)=j + n—m(h+1)—j—1).

Choosing k = h in Figure 9, this expression gives the number of all paths with n
segments which start in the point- (0, 0), or equivalently, the number of all
unweighted random walks of length » (from 0) having a maximal deviation less
than or equal to A.

An application of part (a3) of Theorem 4.4 leads to

where

1+
W( U DEUoo,oo(n,p)> = (") = Z 1+ v+ %)
—WEpL©
=" +v) Y > (n, 3)0‘“
120530 \ S

n,3 n,3

= +

Oszs:sn( S ) OSSZS:n—l( S )

= 3"

This result is evident: for each f(t), te€[0:n —1], appearing in a (1,1,1)-
random walk, there are exactly three possibilities of defining f(t + 1).

ExampLE 4.3 Let DEU,_ ,(n,p) be the set of all (1,0,1)-random walks of

length n from O to p. By a similar computation as in the previous examples, we
find

W(DEU 4 ,(n,p)) = {v" "2y (1 + v*)"

{( " )if(n+p)50mod(2)

(n—p)2
0 if (n + p) =1 mod(2)

An application of part (a2) of Theorem 4.4 yields

1+v(1_vh+1)2
1—v 14 02h%2°

w( U DEU,,,,,(n,p)> = ("Y1 + 2"
-h<p<h

This function can be expanded in the same way as in the case of (1,1, 1)-random
walks. We obtain

w( hU h DEU,,,,,(n,p)> =2"=25 Y by,

2120 0<j<h
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where

n

]—um+u—j

by, i(A) = n—h—2
=

n

F;%:EJ—MM+U—j

+

Obviously, this expression gives the number of all simple unweighted random
walks of length n (from 0) having a maximal deviation less than or equal to h.
This result is derived in [98]. The weight w(| o<, <x DEUo(n, p)) is computed
in [66]; it can be shown that the (1,0, 1)-random walks in | Joc,<x DEU, (1, p)
correspond to all prefixes of length n of the Dycklanguage DY; having a depth
less than or equal to k (see [66] and Exercise 5.20). Finally, an application of
part (a3) of Theorem 4.4 leads to the evident result

w( U DEUoo,oo(n,p)>=2".
—WEPKXO

It is interesting to note that the techniques given in this section lead to very
nice combinatorial identities. Computing the weight of a class of random
walks, we have two possibilities to obtain an explicit expression: oh the one
hand, we can evaluate a function by means of the binomial theorem and/or the
geometric series, and on the other, we can derive this evaluation by partial
fraction expansion. Here are two examples.

ExampLE 4.4 Considering (1,1, 1)-random walks, we have proved

W(DEUOO,OO(N, p)) = W(DEU,,,,,(H, p)) = (nn’_3p>

for |p| < n.
Using Theorem 4.3, we obtain

1 . A . A n),p
DE = — - -
w(DEU, ,(n, p)) +11<1§n+lsm(2>sm(2 +2n+2)

A "
X [1 + 2cos<2n n 2)] .

Since sin (E) sin (ﬂ + nAp ) _ (9 if 2 even
2 2 2n+2 {COS _mip 1 odd
2n +2

we obtain the identity

n,3 1 (24 + 1)pn 24 + Dm\ "
(n—p) n+10<4<ncos( 2n + 2 +ocos 2n +2

for |p| < n.
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Furthermore, since

1 . (A + 1)pr
3" = — Nt -  r
B 5 (55T

n+l 0<A<n 2n + 2
x |14+ 2cos M .
2n + 2

ExaMpLE 4.5 In the case of (1,0, 1)-random walks, we have proved

W(DEUoo,oo(n’ P)) = W(DEUn,n(n, P))
~ ( " ) if (n + p) = 0 mod(2)
=\ \(n — p)/2
0 if (n + p) = 1 mod(2)

for |p| < n. An application of Theorem 4.3 yields

2" (24 + Dpr (24 + )r
DEU , = P S —— "l——=.
W( n,n(n p)) n+1 Osgsn COS( n 12 )COS ( n n 7

Hence we obtain the identities

( n i cos (24 + )pr cos” (24 + )
(n—p)2 n+1,5% 2n + 2 2n + 2

if |p| <n, (n + p) = 0 mod(2), and

0= ¥ COS((Z/{ + 1)pn>cosn((2). + l)n)

0<i<n 2n + 2 2n +2

if [pl <n, (n + p) =1 mod(2).

For the derivation of similar results see Exercises 4.2 and 4.3. In this section we
have investigated (k, h)-bounded, (d, e, u)-random walks, where k and h are
constants. For the sake of completeness, we will quote a nice result concerning
(k, h)-bounded, (d, 0, u)-random walks, where now k, h: N, — Z are functions.
In our notation, the result can be stated as follows (for a proof see [10], [88]).

THEOREM 45 Let h:Ny,— Z be a function satisfying h(0) =0,
lh(t) — h(t — 1)| <1 and let P, be the set of all (4,0, u)-random walks p, =
(fO). ..., f(n); 7(p}). ..., n(p}) from f(0) =0 to f(n) = h(n) with h(¢) <
f(t) <t, te Ng. The total weight w(P,) is given by
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g(0)
1

(ud)™

) (%)

() (@) ()

0

w(P,) =

det

dh(n)

g(0) g(1) g9(2) AN
3 2 LA NO /N

~

1

)

~N
~N
~

\\\ o \(g(m - 1)
g(0) g(l) g(2) gm—1)
m m—1 m—2 1

where m = (n + h(n))/2 and g(t) = MIN{j|t < h(t +j) +j}, t € N,.

Note that m is always a natural number by definition of the boundary h(t).
This theorem is a slight generalization of an equivalent result given in [10],
[88] for (1,0, 1)-random walks. The proof consists essentially of the derivation
of a recurrence for w(PP,) which leads to a system of linear equations having a
special form. Choosing u = d = 1, w(P,) is the number of all paths from (0, 0) to
the point (n, h(n)) in a diagram such as given in Figure 10. For example, let
h(0) = h(4) = h(6) = h(8) =0, h(S)=—1, h(1) =h(3)=h(7)=1, h2)=2 and
h(t) = h(t mod(8)) for t > 9 (see Figure 10). We find

g(0) = MIN{j|0 < h(j) +j} =1,
g(l) = MIN{j| 1l < h(l +j) +j} =1,
g2)=MIN{j|2<h(i+2) +j}=4

and generally, g(4t) =g(4t +1) =4t +1, g(4t +2)=g(4t + 3) =4t + 4 for

t € N,. Choosing n = 8, we get m = (8 + 0)/2 = 4 and therefore

(

1
1

)

) o o

0@ e
HOOO oo
() 6) 66

4.2.3 Non-negative Closed Random Walks

This section is devoted to the class of the so-called non-negative closed random
walks which is more relevant to the analysis of algorithms than random walks
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£(¢)
J

FIGURE 10. Graphical representation of the set P,. (The starred points correspond to
the values h(t) of the boundary; each point (¢, s) is labelled by the number of paths from
(0, 0) to this point.)

in their general form (see Chapter 5). A (weighted) random walk p, =
(f(O),..., f(n); m(py),. .., n(p})) is called closed if f(0)= f(n)= 0. First, let us
specify the result obtained in Theorem 4.2 to non-negative random walks. Note
that a non-negative random walk is always (k, 0)-bounded for some k € N,,.

THEOREM 4.6 Let NC{(n) be the uniform set (with respect to the specification
@ given in section 4.2.1) of all (k, 0)-bounded, R-weighted, closed random walks
of length n. The generating function

Gi(z) = ), wNCE(m)"

n>0
of the total weights w(NC{(n)) is given by
G (z) = P(lk,)k(z)/P(lk,)k+1(z)’
where P{,(z) is a polynomial in z recursively defined by
P(lk,)—1(2)=0, P(lk,)o(z)'=1
P(lk,)s(z) =(1- ek—s+lz)P(1k,)s—1(z) - uk—s+1dk—s+222P(1k,)s"2(z)

fors>1. N
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Obviously, G,(z) is always a quotient of two polynomials. Omitting the first
lower index in P (z), the above recurrence implies
_ PY()

i(k,s) = —
V4
Pﬁll(Z)

_ 1

- 2¢(k,s—1
1—ek—sz—uk—sdk—s+lz égs )

and further by iteration

i(k,s) = L
z

2
uk-—sdk—s+lz
l—e,-z2—

2
1 Ug—s+1dk—s+22
— €k-s5+1Z2 —

2
Ue—s 428k 5432

1 —

1 — iz —

AN
~
A

l—ekz

Thus we obtain a continued fraction. Generally, this is ‘an expression of the
form’

which it has become customary to write in a typographically more convenient

form as follows:

=1

l

+ =+
e TP

3
3

+-..

Here, n is called terminating if there is an index j such thata; # 0,1 <i <j — 1,
a;=0and b;_, # 0. It is well known ([94]) that the n-th approximant

_al a as Ay
n(n)_m—l+’§2—|+p;3j+ +ﬁ$

is given by n(n) = A,/B,, where
A ] |1
B_,| |o
An An—l
Bn Bn—l

|
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Furthermore, it is easily verified that
Aan—l _“In—an=(_l)”_l n a.
. l<ksn

Now using the notation of continued fractions, we can reformulate the result
stated in Theorem 4.6 as follows.

THEOREM 4.7 The generating function
Gi(z) = ), w(NC{(n))z"
n>0

of the total weights w(NC{(n)) is given by G,(z) = &,(k + 1), where &, is the
continued fraction defined by

¢ = 1 J+ —u0d122|+ —u1d222|+.”+ —u;_d,z? N
|1—eoz [l—elz |1—ezz 1 — ¢z
¢.(k +1) has a representation of the form &,(k + 1) = A4,(z)/B,(z), where 4, (z)
and B,(z) are polynomials satisfying the recurrences

A_1(2)=0, A0(2)=1
A (2) =[1 — ez]Ai_1(2) — u_,d, 224, _,(2), k>1

and
B_,(z)=1, Bo(z) =1— ¢,z

B, (z) = [1 — €,z]By_ 1 (z) — uy_1dy2*By _,(2), k=1. R

Letting k go to infinity, we obtain a corollary to this theorem.

CoroLLARY The generating function

Go(z) = ), wNC%(n))z"
n=0
of the total weights of the sets NC% (n) is given by G (z) = &,, where ¢, is the
continued fraction defined in Theorem 4.7. W

The representation of the function G,(z) (G, (z)) by a continued fraction has
been discovered in [29]; it was extensively studied in the subsequent paper
[32]. Let us now consider some examples.

ExaMpLE 4.6 Consider the set NCDEU{(n) consisting of all (k, 0)-bounded,
closed (d, e, u}-random walks of length n. We obtain immediately

G,(z) = ¥ w(NCDEUg(n))z" = &,(k + 1)

n=0
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where

. l_l J —udzJ —udz? ¢+ _

1 —ez ll—ez rl—ez

To compute an explicit expression for &,(k + 1) = A,(z)/B,(z), we have to solve
the above recurrences for A,(z) and B,(z). This has already been done in
section 4.2.2; we obtain B,(z) = 4,,,(z) and

(1 — ez)* ' if ud =0
k(z) = 1 ez ’
Z*(ud)¥2U, ( ) if ud # 0

Z. /U
where U «(z) is the k-th Chebyshev polynomial of the second kind.
Thus we obtain our old result (for p = h = 0):

Gy (z) = A(2)/By(2)
_ {(l—ez)‘l if ud=0

1 l—ez ’
“Yud) 12U —— =) ifud+#0
(ud) "( z\/—)/ (22/'@) et

An expansion of these functions has already been computed in section 4.2.2.
Obviously, if ud # 0, &, satisfies the relation

1
1 — ez — udz?¢,’

which leads to a quadratic equation: Using the fact that £, =1, we find the
solution

;=

Gy, (2) =
= Qudz?)"[1 - ez — /(1 — ez)* — dudz?]

2
= (udz?)" 1(1—ez)c((1 dze )2),

where C(«) is the function introduced in Example 4.1. Since
1 /24 -2
C(a)=lgli('l_l)
is the generating function of the Catalan numbers (see Example 4.1), we further

obtain
1/22 =2\ (udz®)*"'
Gul2)= 2, 1(1-1)(1——2—)57-”‘

izl

S <2z>(uj+ j) dy
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Hence w(NC%(n)) =<{z")G,(z)

1 22\/ n \/ud\*
= —_ —1.
o<a§1n/21 A+1 ('1 )(21)(‘32)

Choosing e = 0, this sum collapses and we find (convention 0° = 1)
1 2NN v on

N+1(N)ud if n=2N .

0 ifn=2N +1

Thus the Catalan numbers were rediscovered.
Considering (1,1, 1)-random walks, we obtain

1 2A\/ n
w(NC% (n)) = —_— .
( ) osaglnm'l +1 (’1 )(20

These numbers are well known under the name Motzkin numbers. The first few
values are 1,1,2,4,9,21,...; they correspond to the number of paths from
(0,0) to (n, 0) in the diagram given in Figure 9, where the boundaries are h = 0
and k = ©

WNC2(n)) = {

ExaMpLE 4.7 Let us consider the set NC{(n) of all (k,0)-bounded, N-
weighted, closed random walks of length n with the labels ¢; = 2i +1 and
ud;,, = (i +1)? ieN,. By Theorem 4.7 the generating function of the weights
w(NC¢(n)) is given by the (k + 1)-th approximant of the continued fraction

1 | —125 2l ._2222‘ _32, 2‘
[l—z ﬁ—3z+‘1—52 r 7z

To obtain an explicit expression for &,(k +1), we have to solve the
recurrences

A_,(2)=0, Aglz)=1
A,z) =[1 = @k + )z]As-,(2) — K*2* 4, _,(z), k=1

S =

and
B_,(z)=1, Bylz)=1-z2

B,(z) =[1 — 2k + 1)z]B—,(z) — kK*2?B, _,(z2), k=1
For this purpose, let

F,(z,t)= ) A, (2)¢*/k! and Fglz,t)= Y. Bi_y(2)t*/k!

k=0 k=0

be the exponential generating functions of the polynomials 4,(z) and B,(z). The
above recurrences imply immediately the following differential equations:

(l-i—zt)2 0 FA(z t)—1+(1—z—zzt)F (z, 1)
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and

0
1+ zt)2 FB(z t) = (1—z — 2%)Fg(z, ).
First, we consider the last equation. Obviously,

a%FB(Z’ t)Fg(z,t) = (1 —z — 2*t)/(1 + zt)?

and therefore,

1—z—2z%
In(Fg(z,t)) = R(z) + A2

t
=R(z) — In(1 +¢ —_—
(z) — In(1 + Z)+1+tz
The function R(z) is determined by the initial condition Fgz(z,0) = B_,(z) =1;
this fact implies R(z) = 0. Hence

Fg(z,t) = (1 + tz) ! exp(t/(1 + tz2)).

An inspection of (B88) shows that the function Fg(z~ 1 —tz) is equal to

?

the generating function of the Laguerre polynomial L{?(z). Thus L9(z) =
n! Y —=1)"z"B,_,(z"!) or equivalently

Bi(z) = (k + 1)1 (= DF 1241 LQ (z71).
As usual, to obtain the solution of the non-homogeneous differential

equation for F,(z,t), we can use the solution Fg(z,t) of the homogeneous
equation. We find

F,(z,t) = Fg(z, t)H(z, 1),
where

) 1
S H, =175 exp(—t/(1 + zt)).

Unfortunately, the integral of the function appearing on the right-hand side of
this equation is not elementary, because the substitution t:=(1 — uz)/(uz?)
leads to

—z Yexp(—z71) fu“ exp(u) du.
On the other hand, it is easily verified that

gH(z, t) = Fg(—z,—1t).
ot
Thus
T HE = T By(—2)(— k!

k=20
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or equivalently

Hiz,t)=Y(@) + Y (=D¥k + )71+ LO (271,

k>0
where the function Y(z) is defined by the initial condition

Fuz,00=A_,(z) =0
we find immediately that Y(z) = 0. Therefore,

F,(z,t) = Fg(z,t)H(z,t)
1

— 2 tk+lzk(_1)k 2 L(O)( —I)L( l(z—l)
k>0 o<i<k i+1
Thus
A@) =k + 1)1 (=1F Y —— LO(—z"HLO, Y.
o<usk M +1

Combining these results, we have proved that the generating function G,(z)
of the weights w(NC{(n)) is given by

Gi(z) =&, (k +1)

= A (2)/Bi(2)

where L{?(z) is the k-th Laguerre polynomial. In order to compute the
generating function G_(z) = &, of the weights w(NC¥(n)), we cannot use
the same procedure as in the previous example because there is no evident
functional equation for £,. However, in the present case, we can apply a
classical result ([1157]) which can be stated as follows:

Let &(z) =) ,50&,2" be a generating function which has the continued
fraction expansion

1 ] - blzz l - b222 l
ll—aoz \1—alz ‘1—azz
and let £, (k + 1) = A,(z)/B,(z) be the (k + 1)-th approximant of Cz;.further-
more, let { ), be a linear form over polynomials P(x) = } o<« pix' defined
by (P(x)); = Dis0Pi&; The polynomials B,(z) = Z*1B,(z71) satisfy the
orthogonality relations

<2i|Bk4—1(z)>:,, = <Bi—l(z) | Bk—1(2)>:,, = 5k,ib1b2 by
for 0<i<k, where (P(x)|Q(x)), is the scalar product defined by
(P(x)1Q(x)e, = (P(x)Q(x))x,.

This result enables us to compute G, (z), because the generating function

.=
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Fg(z,t) of the polynomials B, _,(z) is known; we have

Fp(z,t) = ), By_y(2)t"/k!

k>0
= Fy(z ™1, zt)
= (1 +t) ! exp(zt/(1 + t))

and therefore (we omit the index w(NC%(n)) in the forms { })

(Fg(z, 1)) = {(1 + t) " exp(zt/(1 + 1)))

_1 1/t Y

420

1 A
=140 ¥ (1 i ) W(NC (2))

On the other hand, we obtain

(Fs(z,1)) = <Z Bk—l(z)tk/k!>

k=0

= Y (B, (2))th/k!

k>0

= Y (B_;(z)By_(2))t*/k!

k=0

= Y (B_;(2)[By_;(2))t*/k!

k=0

= 2 5k,0k '2tk/k '

k>0
=1

Choosing z = t/(1 + t), we find immediately that

(1 —z) 2 = w(NC"’ (4) =1

/.>0

or equivalently that

WINCE(D) = ——.
1—z

> |

Db

Therefore, w(NC%(n)) = n!.
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4.3 One-to-one Correspondences
4.3.1 Random Walks—Ordered Trees

DEFINITION 4.6 An (unordered) tree is a rooted digraph T = (V, A) with one
root r(T)e V such that out(r(T)) =0 and out(v) =1 for all ve V\{r(T)}. If
(vy,v,) € 4, we say that v, (v,) is the son (father) of v, (vy). A node v, is the
brother of a node v, if v, and v, have the same father; a node v, (v,) is the
ancestor (descendant) of v, (v,) if there is a path from v, to v,. A leaf (interior
node) is a node v € V with in(v) = O (in(v) > 0). A subtree of a tree T is any tree
T'=(V',A") such that V£ &, V'V, A'=(V'xV')nA and no node of
V\V’ is a descendant of a node in V’. If (v,, v,) € 4, then each subtree T’ with
r(T’) = v, is called a subtree of v,. The tree T is a r-tree if in(r(T)) =r; T is an
extended binary tree if either in(v) =0 or in(v) =2 for allve V; T is an t-ary
tree, if each node in T has the in-degree t € N or zero. The level of anode ve V-
is the number of nodes on the path from v to the root r(T) including r(T) and v.
The height h(T) of a tree T is the maximum level of a node v € V appearing in T.
We say the tree T has a height of order r,r € N, if there are exactly r nodes in T
with maximum level. The binary tree is called complete if all leaves have the
same level.

For example, let V = {vq, vy, V3, U3, U4, Us, Vg} and A = {(vy, Vo), (03, Vo), (V3, V1),
(v4, 3), (vs,03), (v6, V2)}. We shall follow the convention of drawing trees with
the root on top and having all edges directed downward. Figure 11(a)
represents the tree T = (¥, A). Adopting the above convention, we can omit the
arrowheads and obtain the graph given in Figure 11(b). Figure 11(c) represents
the same tree. Obviously, vy is the father of the nodes v,, vs and v,, v, are sons
of the root r(T) = v,; v, (vy) is the brother of v, (vs). The node v, is an ancestor
of v;, and v is a descendant of v,. The leaves of T are v, vs, vg, the interior
nodes vy, vy, 0, 05. The tree T' = (V', A") with V' = {v,,v3, 04,05} and A’ =
{(vs,v,), (v4,V3), (vs,03)} is a subtree of T with root v,; the tree T” = (V”, 4")
with V” = {v,,v3,0,} and A” = {(v3, v,), (v4, v3)} is not a subtree of T, because

FAN

5

(a) (b) (c)
FIGURE 11. The tree T(V, A).
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Vs € V\V” is a descendant of vy € V. Obviously, T is a 2-tree; it is not an
extended binary tree. The root v, has level 1, v, v, have level 2, v3, v have level
3, and v,,vs have level 4. The tree T has the height h(T) =4 which is of
order 2.

DEFINITION 4.7 Let T = (V, A) be a tree, ve V and R, = A N (V x{v}). Here,
T is called an ordered tree if there is a linear order < on each non-empty R,
ve V; T is called a labelled tree if there is a (total) mapping f: V — L for some
set L of labels; and T is called an unlabelled tree if the labelling function f has a
range with one element.

Evidently, if (v, v) is the i-th element in R, with respect to <, it makes sense to
call the tree T’ with r(T’) = v, the ‘i-th subtree’ at node v. For example,
consider the tree given in Figure 11. We have R, = {(v;, o), (v2, )}, R,, =
{(v3,0,)}, R,, = {(vs, v2)}, R,, = {(a,v3), (vs,v3)}, and R,=gF for
v € {v,, Us, Ug}. Unless otherwise stated, we shall assume that the sons of a node
v are always linearly ordered from left to right in the graphical representation
of a tree. Choosing the orderings (v,, v) < (v5, vo) in R, and (v4, v3) < (vs, v3)
in R, , we obtain the tree of Figure 11(a); if the orderings are defined by
(v2,v0) < (vy, Vo) and (vs, v3) < (v4, v3), then the resulting ordered tree is drawn
in Figure 11(c). Thus the trees given in Figure 11(a) and 11(c) are identical as
unordered trees, but not as ordered trees. Similarly, the trees drawn in Figure
12 are distinct if they are considered as ordered labelled trees. As ordered
unlabelled trees, the first and the second one are identical; as unordered
labelled trees, the first and the third one are the same. Finally, as unordered
unlabelled trees, (a), (b), and (c) represent the same tree. Henceforth, we will
assume that all trees we discuss are ordered unlabelled trees, unless it is explicitly
stated otherwise. Sometimes, ordered unlabelled trees are also called plane trees,
since they are embedded in the plane so that the relative order of subtrees at
each node is part of their structure.

DerINITION 4.8 Let T = (V, A) be a tree. The post-order (pre-order, level-order)
of the nodes of T is the word PO(T)e V* (PRO(T)e V*, LO(T)e V¥
recursively defined by:

FIGURE 12. Three labelled trees.
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(1) If T has a root with no subtree, then PO(T) = PRO(T) = LO(T) = r(T).
(2) If T has a root r(T) with the subtrees T, T),..., T,, then PO(T) =
PO(T,)PO(T,) ... PO(T)r(T) (PRO(T)=r(T)PRO(T,)PRO(T;)

PRO(T,), LO(T) = r(T)LO(Ty)r(T)LO(T,)r(T) ... r(T)LO(T)r(T)).

Thus the post-order, pre-order, and level-order of the nodes of the tree given in
Figure 11(@) is PO(T) = v,05030,06V209, PRO(T) = vov,v30,050,06, and
LO(T) = vg0 03040305030, 0g0,V6V,0,, TESPECtively.

There are well-known one-to-one correspondences between classes of trees and
unweighted non-negative closed random walks introduced in section 4.2.

(@) Ordered trees with n nodes—closed (1,0, 1)-random walks
of length 2n — 2

Let LO(T) = vyv, . .. v,,_, be the level order of T. We define the random walk
p} = (f(0),...,f2n —2) by f(i) = level(v;) — 1,0 <i < 2n — 2, where level(v)
denotes the level of the node v. It is easy to see that this sets up a one-to-one
correspondence between all ordered trees with n nodes and all non-negative
closed (1, 0, 1)-random walks of length 2n — 2. For example, consider all trees
with four nodes illustrated in Figure 13. The level-order of the nodes and the
corresponding random walks are given in the third and second columns. The
last column shows the graphical representation of these random walks. The
present one-to-one correspondence transforms some quantities defined on trees
into those defined on non-negative closed random walks. For example, the
height h(T) is equal to the maximal deviation of p} increased by one, the order
p of the height is equal to the number of segments with level d (p}) appearing in
p; and the in-degree of the root of T is equal to the number of segments with
level 0.

(b) Ordered binary trees with n leaves—closed (1,0, 1)-random walks

of length 2n — 2
Let PO(T) = vyv, ... v,,_, be the post-order of the binary tree T with the set
of leaves L and the set of interior nodes 1. We define the random walk p} =

(f0©),..., f2n —2)) by
f0)=0

L ffi-1D+1 ifnel
f(l)_{f(i—l)—l if v, eI

It is not hard to see that this defines a one-to-one correspondence between all
binary trees with 2n + 1 nodes and all non-negative, closed (1,0,1)-random
walks of length 2n. Figure 14 illustrates this relation for n = 3,

The defined correspondence plays an important part in the analysis of
algorithms that traverse a binary tree using a stack (see section 5.1.1). The
maximal deviation of the random walk p} increascd by one represents the
maximum size of the stack; the number of segments with level d(p})(0)

1<ig<2n-2.
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FIGURE 13. All ordered trees with four nodes and the corresponding random walks.

corresponds to the number of configurations in which the stack has maximum
size (is empty).

Note that (a) and (b) also induce a one-to-one correspondence between the
set of all ordered trees with n nodes and the set of all ordered binary trees with
2n — 1 nodes. This relationship was discovered in [50]. It can be checked that
our correspondence is (apart from the notation) identical to that described in

[20].

4.3.2 Random Walks—Dynamic Data Structures

A data type consists of a set of objects (its domain) and a set of operations to be
done on these objects. Using the ‘operational specification’, the domain and
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FIGURE 14. All ordered binary trees with seven nodes and the corresponding random
walks.

operations of a type can be described by the domain and operations of some’
previously defined type; in our case, this basic type is a file’ (standing for a set
or a sequence) together with the operations ‘insertion’ (I), ‘deletion’ (D),
‘successful search’ (S *) and ‘negative search’ (S 7). It is assumed that these basic
types are intuitively clear so that we can renounce a formal definition.
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A history of length n (see [34], [43]) is a sequence of operations O, (k,),
0,(k;), ..., O,(k,), where k; is a key (an element of a finite set) and
0,€{I,D,S*,S7}, 1<i<n We shall describe the performance of an
operation O in terms of their effect on the files. Given a history 0, (k,), 0,(k,),
..., O,(k,), the content f; of the file at stage i is recursively defined by f, = &
and f; is the result of performing O;(k;) on f;_,,2 <i < n. A history of length n
is called closed if f, = (F; it is called feasible if the result of performing O, (k;) on
fi-1 is always defined. For example, the deletion of a key in an empty file leads
to a history which is not feasible. Finally, a history of length n is said to be of
size k if MAX,¢<, (fi]) =k, where |f| denotes the number of elements
appearing in the file at stage i.

We shall now give some one-to-one correspondences between classes of data
types and N,-weighted random walks. These correspondences were first
introduced in [29], [43]. They are extensively studied in [34].

(a) Stacks—(1,0, 1)-random walks

The domain of the data-type stack consists of all sequences (=files) on a set of
keys which are accessed by position. The operations are I and D which can be
performed only at one end (‘top’) of the file. Formally, the performance of an
operation O(k) on the content of a file f = (a,,a,,...,a,) leads to an f’
defined by

(al,az,...,ar,k) 1f0=1
f =1 (ay,a,...,a,_,) fO=Dandr>=1.
undefined otherwise

There is exactly one possibility of inserting or deleting a key. Forgetting about
the key values and retaining only the information relative to the position of
keys, we are interested in the set of all closed histories of length n (with
maximum size k). For example, the paths from (i.e. random walks) from (0, 0) to
(6,0) in the diagram drawn in Figure 15 correspond to all feasible closed
histories of length 6 with maximum size 3. The set of histories of odd length is
empty; the five closed histories of length 6 are I,D,I,D,I, D (of size 1),
I,D,1,I,D,D;1,1,D,D,1,D;1,1,D,1,D, D (all of size 2)and 1,1, 1, D, D, D (of
size 3). The one-to-one correspondence between the closed histories of length n
induced by a stack and the set of all closed non-negative (1, 0, 1)-random walks
of length n should be obvious; the history has the maximum size k if and only if
the corresponding random walk has a maximal deviation k.

(b) Deques—(2, 0, 2)-random walks

The domain of the data type deque consists of all sequences (=files) on a set of
keys which are accessed by position. The operations are [ and D which can be
performed at the ends of the file. Thus we have to distinguish between two
types of insertions I;, I, and deletions D,, D,; the operation I; (D;) describes the
insertion (deletion) of a key at the left-hand end, I, (D,) the same operation at
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l} / :corresponds to 7

\ :corresponds to 0

Length 77 of
the history

FIGl_JR.E_ 15. A diagram representing histories induced by a stack. (The number of
possibilities of performing an operation is indicated by the label of the segments; the
encircled numbers correspond to the number of histories.)

the right-hand end of the file. Formally, performing an operation O(k) on the
content of a file f = (a,,a,,...,qa,) leads to a file f’ defined by
(@, ay,...,a,k) if0O=1,
(k,ay,a,5,...,a,) if O=1,
f'=<(a;,as,...,a,_;) fO=D, Ar=>1.
>1

(ay, asz,...,a,) fO=D/ Ar

undefined otherwise

Thus there are two possibilities of inserting or deleting a key. Similar to (a),
omitting the key values and retaining only the information relative to the
position of the keys, we will consider the set of all closed histories of length n
(with maximum size k). The number of all feasible closed histories of length 6
with maximum size 3 are represented by the total weight of the set consisting of
all paths (i.e. random walks) from (0,0) to (6,0) drawn in Figure 16. For
example, there are four histories of length 2, namely I,, D;; I,,D,; I;, D, and
I,, D, (all of size 1). The one-to-one correspondence between the closed histories
of length n (with maximum size k) and the set of all ((k, 0)-bounded) closed non-
negative (2, 0, 2)-random walks of length n is evident.

In a similar way as in (a) and (b), we can define further one-to-one
correspondences between histories induced by a queue, by an input-restricted
deque, or by an output-restricted deque and the set of all closed (1,0,1)-,
(2,0,1)-, and (1, 0, 2)-random walks, respectively (see Exercise 4.15).
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1\ / .corresponds to I

\ :corresponds to O

Length » of
the history

FIGURE 16. A diagram representing histories induced by a deque. (The number of
possibilities of performing an operation is indicated by the label of the segments; the
encircled numbers correspond to the number of histories.)

(c) Linear lists—weighted random walks with e, = 0,

u=d,,=i+1ieN,
The elements of the domain of the data type linear list are all sequences (=files)
on a set of keys which are accessed by position. The operations are I and D
which can be performed without restriction; therefore, we have to distinguish

between the types of insertions I,,1,,I3,... (deletions D,, D,, Dj,...)
according to the position in the file where the operation must be performed.
Formally, an operation O(k) made on the content of a file f = (a,a,,...,4a,)

yields a file f” defined by

@,...,a,-1,k,a,...,a,) fO=I,Ape[lir+1]
ff=14@y,....a,_1,8,+1,...,a,) fO=D,Ar>1

undefined otherwise

Thus if a file consists of r keys, there are (r + 1) possible operations I and r
possible operations D. The number of all feasible closed histories of length 6
with maximum size 3 are represented by the total weight of the set of all paths
(i.e. random walks) from (0, 0) to (6, 0) drawn in Figure 17. For example, there
are five closed histories of length 4, namely I,,D,,I,, D, (of size 1) and
1,,1,,D,,D,;1,,1,,D,,D,;1,,1,, Dy, Dy; 1,, I, D5, D, (all of size 2). The one-
to-one correspondence between the closed histories of length n (with maximum
size k) and the set of all weighted ((k, 0)-bounded) closed non-negative random
walks of length n is obvious; using the notation introduced in section 4.2.1, the
weights are ¢, =0, y; =i+ 1l,and d; ., =i+ 1 forieN,.
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J\ /7 .corresponds to 7

\ .corresponds to O

Length 7 of
the history

FIGURE 17. A diagram representing histories induced by a linear list. (The number of
possibilities of performing an operation is indicated by the label of the segments; the
encircled numbers correspond to the number of histories.)

(d) Priority queues—weighted random walks with e; = 0,
u,=i+1,d,,=1ieN,
The domain of the data-type priority queue consists of all finite subsets (=files)
of a totally ordered set K of keys which are accessed by value. The operations -
are I and D; deletion D is performed only on the key of minimal value. Here,
we have to distinguish between the types of insertions I, I,, I, ... according
to the relative rank (with respect to the order on K) of the key k which is to
insert in a file f Formally, if f = {b,,b,,...,b,} denotes the file f =
{a,,a,,...,a,}, where by < b, <---<b,, then, performing an operation O(k)
on the content of f leads to a file f’ defined by

ik} fO=I,Aké¢f
f= 1 by} if 0 =D :
undefined otherwise

where b, < k < b, s€[0:r], with the convention b, < k < b,, . Thus, if a
file has r keys, we have (r + 1) possible operations I and one operation D.
Retaining only the relative rank of a key which is operated upon, the number of
all feasible closed histories of length 6 with maximum size 3 are represented by
the total weight of the set of all paths (i.e. random walks) from (0, 0) to (6, 0)
drawn in Figure 18. For example, there are three closed histories of length 4,
namely I,,D,1,,D (of size 1) and I,,1,,D,D; I,,1,,D,D (of size 2). Thus we
have a one-to-one correspondence between the closed histories of length n
(with maximum size k) and the set of all weighted ((k, 0)-bounded) closed non-
negative random walks of length n, where the weights are ¢, = 0, 4; =i + 1 and
di+;=1,ieN,.
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A / .corresponds to 7

\ :corresponds to 0
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FIGURE 18. A diagram representing histories induced by a priority queue. (The number
of possibilities of performing an operation is indicated by the label of the segments; the
encircled numbers correspond to the number of histories.)

(e) Symbol tables—weighted random walks with e, = i,
i =i+1,d,.,=1,ieN,

The domain of the data type symbol table consists of all sequences (=files) on a
set of keys which are accessed by value. The operations are I, D, and S*. A
deletion D operates always on the key last inserted in the file; the operation S
does not change the content of the file. Similar to the above cases (see also
[34]), we obtain a one-to-one correspondence between the closed histories of
length n (with maximum size k) and the set of all weighted ((k, 0)-bounded)
closed non-negative random walks of length n, where the weights are ¢; = i,
u,=1i+1,and d;,, =1, ie N,. The number of all feasible closed histories of
length 6 with maximum size 3 are represented by the total weight of the set of
all paths (i.e. random walks) from (0,0) to (6,0) drawn in Figure 19. For
example, there are four closed histories of length 4, namely I,,D,I,, D;
1,,S{,8{,D (of size 1)and I,, 1, D, D; I,, 1,, D, D (of size 2).

(f) Dictionaries—weighted random walks with e; = 2i + 1,
u=d,.,=i+1,ieN,
The domain of the data-type dictionary consists of all finite subsets (=files) of a
totally ordered set of keys which are accessed by value. All operations
I,D,S%, S~ are allowed without any restriction. This data type leads to a one-
to-one correspondence between the closed histories of length n (with maximum
size k) and the set of all weighted ((k, 0)-bounded) closed non-negative random
walks of length n, where the weights are ¢, =2i + 1, u; =d;,; =i +1,ie N,
(see [34]).
In this section we have given several examples of one-to-one corre-
spondences between (weighted) random walks and other mathematical objects
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FIGURE 19. A diagram representing histories induced by a symbol table. (The number
of possibilities of performing an operation is indicated by the label of the segments; the
encircled numbers correspond to the number of histories.)

(trees, data types). Indeed, there are many other correspondences of this kind;
here is a short list (see [32], [44], [45]):

—The set of all partitions (or equivalence relations) of a set with n
elements—the set of all non-negative closed weighted random walks of
length n, where the weights are ¢, =d;,;, =i+ 1and y; =1,ieN,.

—The set of all permutations in S(N, ;. ,)—the set of all non-negative closed
weighted random walks of length n, where the weights are e¢; = 2i + 2,
diy,=i+1l,and y; =i+ 2,ieN,.

—The set of involutions appearing in S(N,)—the set of all non-negative closed
weighted random walks of length n, where the weights are ¢, = u; =1, and
diyiy=1+1,ieN,.

—The set of involutions without fixed points in S(N,)—the set of all non-
negative closed weighted random walks of length n, where the weights are
e=0,y,=1,and d;,, =i+ 1,ieN,.

—The set of alternating permutations in S(N,, ;)—the set of all non-negative
closed weighted random walks of length n, where the weights are ¢; =0,
w=i+1l,andd;,;, =i+ 2,ieN,.

—The set of derangements in &(N,)—the set of all non-negative closed
weighted random walks of length n, where the weights are ¢; = 2i,
u=d;., =i+1,ieN,.
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4.4 Exact and Asymptotical Enumeration Results

4.4.1 Useful Techniques for Determining Asymptotics From Generating
Functions

In preceding sections (e.g. 3.2, 4.2) we have established explicit formulae for the
number of certain objects. Sometimes, the computation of such an explicit
expression is complicated and if it is possible, then no information about its
(asymptotical) behaviour can be derived, because its efficiency is low. The same
intricate problem appears in situations where the generating function of the
objects which we want to count is known, but explicit expressions of the
coefficients are not available (e.g. the generating function satisfies a quadratic
recurrence f,.,(z) =1+ zf?(z) or a quadratic functional equation f(z) =
1+ zf(z)f(z?). In this section we shall present some tools for obtaining
estimates of the coefficients of a given generating function. No proof will be
given, but some applications of the stated results. (General methods for
handling sums are discussed in [17]). The following theorem is sometimes
useful for simplifying a problem.

THEOREM 4.8 Let A(z) =) ,504,2" and B(z) = )., b,2" be two power series
with radii of convergence p(4) > p(B) = 0, respectively, and let A(z)B(z) =
Y w50 Ca2" be the product of A(z) and B(z). Assuming that lim,_,, (b,-,/b,) = b
exists and that A(b) # 0, then ¢, ~ A(b)b,. M

The proof of this theorem is standard; it consists of a repeated application of

the triangle inequality to the difference |A(b) — ¢,/b,|. Let us determine the
asymptotic behaviour of the sum §, of the first (n + 1) Catalan numbers, that is

1 /22
S, = — .
Ogggn '1 + 1 (’1 )
We know that the generating function C(z) of the Catalan numbers is given by

1 /2
Co=:% (n")z" (1= /1= 4z))2

(Example 4.1 and Example 4.6). Choosing A(z) = (1 — z) ! and B(z) =
(1 = ./1—4z)/(2z), we immediately obtain

A(z)B(z) = ) S,z".

nz0

Obviously, p(4) =1 and p(B) = L. Moreover,

)

and therefore b = L. Since p(4) > p(B) > 0 and A(b) =5 # 0, by Theorem 4.8
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we obtain

2
S ~4n + 1)-1( n").

If the radii of convergence p(A4) and p(B) are equal, Theorem 4.8 cannot be
applied. The following result can be helpful in such cases.

THEOREM 4.9 ([85], [86]) Let A(z) =) ,50a,2" and B(z) = ), b,z" be two
power series and let A(z)B(z) = ) ,50¢,2" be the product of A(z) and B(z).
Assuming that there exist constants «, f, a, b, and p, where a > 0, b > 0, and
p > 0, such that a, ~ ap "n~*and b, ~ bp "n"*# for n— o0, then

(2abp_"\/r; (ifa=0AB=1

nabp " fa=p=1%
"7 ) Ao, + Bipa, | ifa=p =3

(o, fa=3rp=}

The last case also holds if the assumption about g, is replaced by a, =
O(p ~"n~3%) or by A(z) is regular for |z < p + ¢ for some ¢ >0. W

For example, let A(z) = B(z) be the generating function C(z) of the Catalan
numbers given by

Coy= Y — (2">zn — (1= J1—42)/(22).

ason+1\n

By Stirling’s formula, we immediately obtain

4 =b =t (2:) ~ 4/(n/7n).

T n+1

Choosinga = =3, a=b= 1/\/; and p = i, we obtain, by the third case of

Theorem 4.9,
~ 1 o[22\ 1 [2n-2i
e T\ A n—A+I\n—4

~2C(H)a, = 4" fin,/nn).
1 (2n +2

Indeed, ¢, = @psy = bues = — 5|

), because zC2(z) = C(z) — 1.

If we choose

A(z)=B(z)= ) <2n>zn = (1 —4z)" 172,

nz0 \'N

then a, = b, ~ 4*/./nn. Thus with a =b=1//7, p=1 and a = =1, the
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second case of Theorem 4.9 leads to

_ Z 2A\(2n — 24 by — 47
c"_0<1<n A n— 4 e =

In fact, we have ¢, = 4", because A(z)B(z) = (1 — 4z)" L.

THEOREM 4.10 ([ 5]) Let A(z) = dms14,2" and B(z) = Y50 b,z" be two power
series with B(z) = F(z, A(z)), where

F(z,y)= ) ¥ fuzy"

420 k>0

Assuming that F is analytic in (0; 0) and a,_, = o{a,) and

Y laa,- = O(a,-,) for somer >0,
r<k<n—r

then
bn == Z dka,,_k + O(an_r),

0<k<gr—1
where

0
dy = <Zk>|:a—y Fiz, y)|y=A(z):|' H

For example, consider the power series A(z) = ) 5, n! z" which has a radius of
convergence p{4) = 0. Obviously, a,., = ola,), because a, _,/a, = 1/n. Since

a8 il k!(n— k!
Z an— Z (n—r)!

k'(n —k)!
r<k<n/2 (n—r)!

L n — pr— 13!
<2142 Z r+0D!n—r—-1!

r+1<k<n2 (n— r)!

<2

< (r+ 3)r!,

we have also ), <, <., laza, 4| = Ofa,_,) for all r > 0. If we want to compute
the asymptotic behaviour of the coefficients b, in B(z) = ) ,5¢ b,z" defined by
B(z) =[>.,son!z"]7", we have to choose F(z, y) = (1 + y)~' because B(z) =
F{(z, A(z)). Obviously, F(z, y) is analytic near zero. Since

0 -' -
a_y' F(Z, y)ly=,4(z) = _(1 + A(Z)) 25

we obtain immediately by Theorem 4.10

by=— Y (n—k)! {1+ A@) 2+ 0((n—1))

0<k<r—1
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for r > 0. Choosing r = 4, we find by an elementary computation
by = —[n! (2°)f(2) + (n = D1 (W (2) + (1 =21 (Z2f(2) + (n — 3)! {2 ) @)]
+0(n—4)")
where f(z) =1 — 2z — z2 + 4z3. Hence
b,=—n(n—3)!(n* =502 +7Tn—6)(1+ O(n"*)).
THEOREM 4.11 ([54]) Let A(z) = ) ,50a,2" be a meromorphic function with

simple poles at the points z,, s =1,2,3,..., where |z,,,| = |z, s =1,2,3,.
We have

a, ~—) Res(4(2))z;""'. W

s2l z=24

For example, consider the function 4(z) = cos™!(z). Obviously, z,, =
(2m + 1)m/2, m € Z. Since

2m + 1
A R 1
Res (A(z)) = lim = lim
z=1z,, 2= 2m+ V)2 cos(z z—(2m+ V2 sm( )

)
= —sin"1(2m2+ ! n> =(=1)m*1,

we find

a,~ > 2" mT " 2m + )T (=)

=2 g [ 4 (= 1)) Y (= 1)"@m + 1)1,
m=0

Therefore, a,,,; ~ 0 and

4n+1 -2n-— IZ 1)m2m+1) 2n — 1

m20

Indeed, (B38) shows that

= ). Ep 2" (= 1y"/2n)!

n>=0

where E, is the n-th Euler number. Hence a,,,, = 0 and by (B40)

a3y = Eg(—1)2n)! = 412" 2071 T (— 2k +1)" 1,

k>0

If a generating function has singularities other than poles on the boundary of
its disk of convergence, then Theorem 4.10 cannot be applied because there is
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no partial fraction expansion in such cases. However, if the generating function
has only a finite number of algebraic singularities on its circle of convergence,
then asymptotic expansions can frequently be obtained by a result due to
Darboux. The following special case is convenient for handling many
generating functions.

THEOREM 4.12 Let A(z) = Y ,50a,2" be a function with the radius of
convergence p(4) > 0 and with a finite number of singularities z;, A € [1: m], on
the circle of convergence |z| = p(A). Suppose that in a neighbourhood of each
of these singularities z;, A(z) has an expansion of the form A(z) = f(z) +
(1 — z/z;)"“g,(z), A€[1:m], where f, and g, are analytic near z,, g, is non-
zero near z,, and —w,;e C\N,. Then

1 Z gi(z;)n™

- n +o0 (A)—"nw—l),
Ri<igm [Nw,)zZ; (v

a, =

where w = MAX, ., ... Re(w,), and I" denotes the gamma function (Appendix B,
211). N

For example, consider the function 4(z) = (1 — z) "'/ exp(—z/2) which is the
exponential generating function of the numbers P(n, 2) of all 2-permutations of
N, (Exercise 3.6). Here, A(z) has only one singularity at z=1. Thus m =1,
z, =p(A)=1, fi(z2) =0, w,; =%, and ¢, (z) = exp(—z/2). Hence by Theorem
4.12

P(n,2)/n! = %gl(zl)n”z/l"(%) +o(n™17?)

or equivalently
P(n,2) =n!//nen +o(n!n"1?)
=n"e " 12 /2 +o(n"e™™)

by Stirling’s formula.

The exponential generating function of the numbers q,(S) of permutations
o € S(N,) such that all the cycle lengths belong to a set S = N is given by
A(z) = exp() kes 2*/k) (Exercise 3.7). Assume that N\S is finite. We immediately
obtain

A(z) = exp(z k=) z"/k> =(1-2z)"" exp(— Y z"/k>.

k=1 k¢S k¢S

Here, A(z) has only one singularity at z=1. Thus m=1, z; = p(4) =1,
fi(z) =0, w, =1, and g,(z) = exp(— Y ;s 2*/k). Hence, by Theorem 4.12,

(SYn! = - g,z /T + o),
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that is a,,(S)=n!exp(—Zl>+o(n!).

kéSk

Finally, let us consider the generating function A(z):= E,, ,(z) of the total
weights w(DEUY ,(n, p)) for e = 0 (see section 4.2.2). We had shown that

A(z) = Z a /(1 — v,2),

1gisk+h+1
where

A
UA==2 udCOS(Ef;7;;T5>

. 2 u p/2 ‘in (h + p + )rA “in (h + )mA
Y k+h+2\d k+h+2 k+h+2)
Here, A(z) has simple poles at z, =v;', 1<A <k +h+1. Since z,,, > z,,

A=12,....,k+h+ 1, we have p(4) = z,. To obtain all singularities on the
circle of convergence, we have to find all A e [1:k + h + 1] satisfying

A T
2 udCOS(Ei;7;;T§>‘==2 udCOS(Ei;7;;T§>.

This implies A =1and A =k + h + 1. Thus m =2,
T -1 T -1
= - =| =2 -~
z, [2 udcos<k+h+2>] , Z, [ udcos(k+h+2)] ,

fi(z) = Z a, (1 — v;2),

2<Agk+h+1

and

w, =1,¢,(z)=a,

f2(2) = Z a; /(1 —v;z),

l<Agk+h

w, =1 and ¢,(z,) = o, ++1- Hence for fixed k, h, p
1 1 - .
w(DEU} ,(n, p)) = r—lgl(zl)nzl‘"/l"(l) + - 92(z2)nz "/T(1) + o(z; ")
or equivalently

N A" (u\P? . ((h+p+ 1)
WDEULn p) =2 T+ (-] sG] sinl s

X sin (h + Dm cos” _r
M\kTh+2 k+h+2

+ o[ 2"(ud)*'? cos™ T
k+h+2))
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Sometimes an explicit expression for a generating function A(z) is unknown,
but a functional equation for A(z) is available. In such cases, the following
result can be useful for determining the asymptotic behaviour of the coefficient

(z"YA(z).

THEOREM 4.13 ([6]) Assume that the power series A(z) = Y ., a,2" with non-
negative coefficients satisfies F(z, A(z)) = 0. Suppose there exist real numbers
r > 0 and s > a, such that

(i) for some 6 > 0, F(z, y) is analytic for |z <r + 6 and |y| < s + §;

. 0 ~
(i) F(r,s) = e Fz, Man=e¢s =0

2

veer 0 ' 0
(lll) 5 F(Z, y)l(z,y)=(r,s) # 0’ and W F(Z, y)l(z,y)=(r,s) # 0,

D 0
(iv) if [z] < r |yl <s,and F(z,y) = 5};F(z,y) =0,thenz=rand y =s.
Then a, ~ C(r,s)n~ 32" where

0 0*
C(ra S) = ra F(Z, y)l(z,y)=(r,s)/<2n W F(Z, y)l(z,y)=(r,s)>‘ |

Generally, condition (iv) is not easy to verify directly; an alternate is given in
[6]. Let us consider a simple example.

We will compute the asymptotic behaviour of the coefficient of the
generating function A(z) = ), a,z" defined by the functional equation
A(z) =z + f(z) + zA'(z), where f(z)=z +zf'(z), t =21. It can be shown
(Exercise 4.11) that a, is the number of the ordered t-ary trees with n nodes
which are monotonously labelled by 1 and 2; that is, whenever a node v is a
son of v’ then the label of v is greater than or equal to the label of v'. It is not
hard to see that a, =0 if ¢ is not a divisor of (n — 1). The first few values are
a, =2and a,,, =2'+ 1. To apply Theorem 4.13, we define B(z) = z A (z'")
and h(z) = z~Y*f(z!/*). This substitution leads to

B)=Y 0,2 =Y a,,.2"  B()=1+h() +zB'()
nz20 nz20
and h(z) = 1 + zh'(z). Now for the asymptotics.

We have to choose F(z,y)=1+h(z)+2zy'—y which implies
(0/0y)F(z,y) = zty'"! —1. By condition (iv), the numbers r and s are
determined by the equations h(r)+1+rs'=s and rts'"! =1. Hence
r=t"'s7**" and h(r) =s(t —1)t~! — 1. Inserting these relations into the
functional equation for h(z), we find that s is determined by the equation

sttt —1) =2 — st —1) —¢t]* =0.
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Since r =t ~'s™**1 r is also known. With this choice of s and r, the conditions
(1)~(iv) are easily verified. Hence

C(r,s)=[h(r) + s']/[2nt(t — 1)s'"2].
Since h'(z) = h'(z) + zth'~'(z)h'(z), we immediately obtain
h'(r) = b (r)/[1 — rth* =" (r)]
= r~th(r)[h(r) = 1]/[t + (1 = t)h(r)]
= (tr)"'[s(t = 1) — 2¢][s(t — 1) — t]/[2t* — t = s(t — 1)*].
Therefore, a,, ., ~ C(t)}/*>n~3/2r~" where |

2t — st — 2)
2n(t — D[22 — ¢t — st = 1?]’

and s is the solution of the equation

‘e —1) -2t s T —[st—1)—¢t]'=0.

F=p-lgmttl

Cit)=s

For example, if t = 2 (binary trees), we find s = 2(2./3 + 3)/3,r = (2./3 — 3)/4,
and C(2) = (34/3 + 5)/(2n). Thus

Aapiq ~ \/(3 3+ 5)/2n)n"3%(4(2./3 + 3)/3).

If a generating function A(z) satisfies a functional equation of the form

A(z) = z0(A(z2)), then the following result can be established as a special case of
Theorem 4.13.

THEOREM 4.14 ([86]) Suppose F(y) =1+ )Y, ¢;¥' is a regular function of y
when |y <R < +o0 and let A(z) =z + ) ,5,a;z" denote the solution of
A(z) = zF(A(z)) in the neighbourhood of z = 0. If

(i) ¢; > 0and c¢; > 0 for some j > 2;
(i) ¢; =0fori>2;
(iii) tF'(z) = F(r) for some 7, where 0 < 1 <R,

then

Fr) 1" 5,
~ F "
an |:27tF”(‘L')j| n [ (‘C)/‘C] .
For example, consider again the generating function

A(z) =C(z) = Z l(2n B 2>z"

Sin\n-—1

of the Catalan numbers. We know that A(z) = (1 — /1 — 4z)/2 and 4%(z) =
A(z) — z. Choosing F(y) = (1 — y)~!, then A(z) = zF(A(z)). Conditions (i) and
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(i) are easily verified. To determine 7, we obtain by (iii) the equation
11 —1)72 = (1 — 7)~!; its solution is t = 1. Since F(}) =2 and F"(}) = 16, we
immediately obtain our old result

1/2n-2
a, =~ ( :_ [ > ~ 4""1/(n\/7t‘n).
Let us now consider the number of all unordered labelled trees with n nodes
and labels 1,2,...,n, where the root is labelled by 1. The generating function
A(z) =), a,2"/(n — 1)! satisfies the functional equation A(z) = z exp(A4(z))
(see [102]). Choosing F(y) = exp(y), condition (iii) leads to te’ = ¢, that is
t=1. Hence q,/(n — 1)! ~ n"3/2e"/\/§;, or equivalently by Stirling’s formula
a, ~ n"~2. Indeed, a, = n" "2 according to the classical result given in [12].

Let us conclude this section by an interesting theorem which has been
proved in [92].

THEOREM 4.15 Let P(z) and Q(z) = Y(c,cnvg:2% N =1, be two non-
zero polynomials with real, non-negative coefficients satisfying P(0) = Q(0) =
Q'(0) = 0. Assume further that 2 < ¢; < ¢;,,0 <A KN —1, q;>0,0<j <N,
and that the greatest common divisor of the numbers (e; — e,), | <A <N, is
equal to one. If the generating function A(z) = ), a,z" satisfies the functional
equation A(z) = P(z) + A(Q(z)), then '

a, = n_la;"u(ln(n)) + 0 %a™),

where « is the (unique) positive root of Q(z) = z and u(x) is a non-constant,
positive, continuous function which is periodic with period In(Q'(x)). W

For example, let P(z) = z2 + z5 and Q(z) = z% + z° + z”. We have a ~ 0.68233,
and therefore, a, ~ n~!(1.465 57)"u(In(n)), where u(x) is a non-constant positive
continuous function with period = 1.148 95. Functional equations of this type
are of interest in the enumeration of trees. In [92] the above theorem was
proved in order to determine the asymptotic behaviour of the number of all
balanced 2, 3-trees with n leaves; a balanced 2, 3-tree is an unlabelled ordered
tree each of whose interior nodes has either two or three sons, and all of whose
paths from a leaf to the root have the same length. It is easy to see that
the generating function of the numbers a, of these trees satisfies the func-
tional equation A(z) = z + A(z* + z%); the above theorem implies that a, =
n~'¢"u(In(n)), where ¢ = (1 + \/g)/2 and u(x) is a positive, non-constant,
continuous function with period In(4 — ¢).

In this section we have presented some useful techniques for determining the
asymptotic behaviour of numbers g, from their generating function A(z). The
stated theorems can easily be applied in many cases; nevertheless, such a list
must be incomplete. Further useful methods are discussed in [6], along with
interesting applications. Very little is known about obtaining asymptotics from
multivariate generating functions (for a class of bivariate generating functions

see [7]).
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4.4.2 Ordered Trees

In section 4.3.1 we have presented a one-to-one correspondence between the set
of all ordered trees with n nodes and the set of all closed non-negative (1, 0, 1)-
random walks of length (2n — 2). This connection implies immediately the
following enumeration results:

—Let t(n) be the number of all ordered trees with n nodes.

1 (2n -2
t(n) = w(NCDEU",(2n — 2)) = ~ ( :_ 1 > (sec Example 4.6).

—Let t(n, k) be the number of all ordered trees with n nodes and height less
than or equal to k.

e t(n, k) = w(NCDEU?_,(2n — 2))
= w(DEUY ., ¢(2n — 2,0))

A A
— 22 -1(f 4 [)! .o T 2n-2
( ) l$;$k o (k +1>COS (k +1>
(see Theorem 4.3).

o t(n k)= (2"_2>— (2"_2>+¢/0(2n—2,k—1,0)

n—1 n—2

—y,2n— 2,k —1,0)

2n -2 2n -2
=t(n)_j; |:<n_(k+1)j>_2<n—1—(k+1)j>

+ 2n— 2
(n—2—(k+1)j>:|

+ o0 (4" COSZ" (k—:t——f>>

Naturally, these results can be easily derived without use of random walks. The
approach given in section 4.2.1 is an obvious and elegant technique for
counting classes of trees. We will consider some examples.

(see remark following Theorem 4.12).

ExampLE 4.8 Let X = {g;|i > 0} be a countable set and let £ be the set of all
words which can be derived from S using the following context-free
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S
|
i
:
9,55 95 9,555
gO g3555 gO gO gO
5 % %

W 939 %% %% %%5%%% % 9% %% %%

FIGURE 20. Representation of an ordered tree by the corresponding word w.

unambiguous substitution scheme

S — do (rUIC fo)
S—g,SSS...88, k=1 (rule f,)
N, !
k-times

Some reflection shows that each word we & N X" is a coding of an ordered
tree T with n nodes. Here, T is essentially the tree structure induced by the
derivation tree of w e & N X". For example, Figure 20 shows an ordered tree
with 18 nodes together with the corresponding word w € &£ » X '8, The broken
line is not part of the tree; it only designates the root. Note that we have put
some redundant information in the coding, namely each g, appearing in
we ¥ N X" corresponds to a node with in-degree i. The system of formal
equations induced by the substitution scheme is

S=go+ Y ¢,SSS...S5S
k=1 N et
k-times

Let S = ) ,., w be the solution in the ring of formal power series over X*. We
have now to specify the homomorphism 6 representing the property by which
we wish to enumerate the trees. Here are some possibilities.

(a) Let 8 be defined by 6(g;) = z,i > 0, and let t(n) be the number of all ordered
trees with n nodes. We find

0S)=Y Y 6w)=) "cardLNX")= ) t(n)z"

nzl weLnx" nxl1 nx1
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Thus, taking the image of the above formal equation, the generating
function A(z) = 6(S) is given by

AZ)=z+ ) z4%(2) = z/(1 — A(2)).

k21

Hence we find the quadratic equation 4%(z) — A(z) + z = 0 whose solution
is the generating function of the Catalan numbers.

Let 6 be defined by 6(g,) = uz, 8(g;) = z,i > 1, and let ¢, (n) be the number
of all ordered trees with n nodes and m leaves. We find

6S)=Y D OBw)=Yz" ) ut™,

nzl weZnx" nzl weZnX"

where # ,(w) is the number of g, appearing in w. Since each g, corresponds
to a leaf in the corresponding tree, we obtain

6S)= > > tn(n)z"u™

nzl mz1
Thus, taking the image of the above formal equation, we see that the

generating function F(z, u) = 6(S) satisfies the relation

F(z,u)=uz + Y zF*(z,u)

k21

=uz + zF(z,u)/(1 — F(z,u))

which leads to F?(z,u) — (1 + uz — z)F(z, u) + uz = 0. Hence

F(z,u) =41+ uz — z — /(1 + uz — z)* — 4uz]

uz
=(1+uz— z)C<(1 R z)2>’

where C(z) is again the generating function of the Catalan numbers
satisfying C?(z) — C(z) + z = 0. Therefore,

uz
1+ uz —z)C<(1 e —z)2>

o122 u'z'
=RV ES WA (T 1)1

F/2i—2\ o (2+A=2\,
= — Lt Z l_u
s g (T e
_yy 1 2i —2\[2i + A — 2)<ﬂ.>(_ 1)A=rghiyi+a=r,
Si5050 0 \i—1 A p
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This implies

1/2i—2 | — 2 —i ;

) = 2 ?(il— 1 ><n :l—l ><nn— r;z>(_1)m—l
1/n moi(M\(n+i—2
)5 )

Using the general identity

k
kzz:o(]:)(S-; )(_1)k=(_1)'<pir>, r=20,5s=20,p=0

with r:==m, s:=n—2, and p:=n—1, we find for n >2 the closed

expression
1 -2
=)o)
n\m/\m-—1

For n =1, we immediately obtain ¢,(1) =, ,. For a generalization see
[67].

() Let 6 be defined by 6(g,) = uz, 0(g;) = z,i 20, i # ¢, and let d, ,(n) be the
number of all ordered trees with n nodes having m nodes of in-degree t.
Note that d, ,,(n) = t,,(n). We find

6S)=> Y O6w)=>Yz0 Y u*W,

nzl wegnx" n>1 weLNX"

where #,(w) is the number of g, appearing in w. Since each g, corresponds
to a node of in-degree t, we obtain

6S)=> > d,(n)z"u™

nzl m>20

Thus the generating function T(z, u) = 6(S) satisfies the induced equation

T(z,u)=z+ Y zT*(z,u) + uzT*(z, u)
k>
kAt

=z[(1- T(z,u) ™' — (1 — w)T*(z, u)]

for t > 1. Obviously, this relation also holds for t = 0. To get d, ,(n) =
(z"u™)T(z,u), we shall apply the Lagrange-Biirmann formula (see
Example 4.1). We obtain {(z")T(z,u) = (1/n){y" "' )f"(y), where f(y) =
(1=y)~!' — (1 —u)y". Using the binomial theorem and the geometric
series, we find

CiNgngay n\ 2n—2—-At+1)
( >f(y)—z(l>(1 Wi 1)‘( oA )

120
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Hence

N n\ o af2m=2-=At+1)
dym(n) = {u ><n1§0<l)(1 u)™( 1)( ne—1 ))
_l aem AN2n =2 —A(t +1)
Tl ]

Let us assume that all trees with n nodes are equally likely. What is the
average number of nodes of in-degree ¢ appearing in a n-node tree ? We
have to compute the expected value

d,(n)=t""(n) Y. md,,(n).

m21

Let t >1 and D,(z) = Y-, d,(n)t(n)z" be the generating function of the
numbers d,(n)t(n). Since

Z mdtm <Zn>a Z u)|u=1’

mz1

we immediately obtain D,(z) = (6/0u)T(z, u)| 4= -
On the other hand, we have

(3 1 a t
a T(z, u) = Z[(l - TG, u))z % T(z, u)+ T (z, u)

— (1= u}T" "z, u) —(% T(z, u)]

which implies

;% T(z,u)|y=y = 2Tz, D[1 — z/(1 = T(z,1))*] "
Since T(z,1) = z/(1 — T(z,1)), we find T(z,1)=C _Jian
and further
D(2) = 2C T @)1 4z =172 C, 2).
Hence

;l—i—l d,(n)e(n) = (2"~ YC'(2).

The coefficient of z" in the expansion of C'(z) was already computed in
Example 4.1. Therefore, we obtain finally

d,(n)=r-1(n)(n—l)t“<z"“>C‘(z)="(2",,__t2_3>/(2:__12>
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fort > 1. It can be easily verified that this expression is also valid for t = 0.
Thus an ordered tree has n/2 nodes of in-degree 0 (leaves), about n/4 nodes
of in-degree 1, etc. on average.

It should be clear that further enumeration results depending on the in-
degrees of the nodes can be derived in a similar way; we have only to change
the homomorphism 6. For example, the homomorphism 6(g,) = 6(g,) =
0(g,) = z, B(g;) =0 for ie N\{1,2} leads to the generating function of the
number of all ordered binary trees with n nodes, and the homomorphism
6(go) = 0(g,) = z, 0(g;) =0 for ie N\{t} to the generating function of all
ordered t-ary trees with n nodes.

Unfortunately, the context-free unambiguous substitution scheme given in
Example 4.8 is not appropriate for determining enumeration results depending
on the height of the trees. For this purpose, we have to generalize this
substitution scheme.

ExampLe 49 Let €={S;|i>0} and X ={g;/li=0Aj=1} are two
countable sets and let Z be the set of all words w which can be derived from S|,
using the following context-free unambiguous substitution scheme:

Si — Gou+1 (rule fo,(i+1))

S;— gui+1)Si+1 v Si (rule f/l.(i+1))

e O —
A-times i=0,1,2,....

This scheme is similar to that given in Example 4.8. Fachwordwe Z N X"isa
coding of an ordered tree T with n nodes, but we have now put some more
information in the coding: each g;; appearing in w e & N X" corresponds to a
node at level j with in-degree i. For example, the tree drawn in Figure 20 is now
represented by the word

W = (g319229039139049129239349059059059049329139049139 049 03-

The above scheme induces the following formal equations:

Si =dgou+1y T+ Y GagsnSier -+ Siey
sl ~———
A-times

for i > 0. Let Sq = ) ,.e W be the solution in the ring of formal power series
over X*. The specification of the homomorphism 6 again leads to several
enumeration results. We will consider some cases.

(a) Let ke N and let 6 be defined by

8g.) = I fi=0Anje[l:k—1+0;,]
97 =30 otherwise '

Furthermore, let t(n, k) be the number of all ordered trees with n nodes and




107

height less than or equal to k. We find with
Xy = {gije Xle(gij) = Z}

0S)=3 Y 6w =Y Y 0w =Y zcard(& nX)

nzl wegnx" nzl we¥nNXj nxl

=Y z"t(n, k).

nzl

Thus, taking the image of the above equations, the generating function
A, (z) = 0(S,) is given by A,(z) = z and for k > 2 by

AR =z +z ) Fi(2) =z/(1- F,(2)),

Azl
where

Fi@)=z+2z ) Fli(@)=2/(1-Fi,1(2)), 1<i<k-2,

izl

Fi_1(z) =z

Hence A, (z) is the k-th approximant of the continued fraction

B DA Bt Bt
w,—'-lj+[1 +‘1 +[1 +
Choosing e = 0, ud = 1 in Example 4.6, we further obtain

U (k) = € 1. (k) = /z U,_, (227 Y2)U, (227172,

where U,(z) is the k-th Chebyshev polynomial of the second kind. In
section 4.2.2 we had found U,((2z)"!) = z7%Q,,,(z), where Q,(z) is the
polynomial

Q(2) =27M(1 + /1 - 4z22)* — (1 — /1 - 4z%)*]//1 — 42*.

Hence an explicit expression for 4, (z) is given by

) 22 (1+ /1= 4z — (1 = /1 — 4z)* .
¢ 1+ /1= 4z)*1 — (1= /1 — dz)<+V T

This function satisfies some nice properties (Exercise 4.12) which we shall
use in Chapter 5. The coefficients t(n, k) = {z")4,(z) were computed in
section 4.2.2; they correspond to the number of all closed non-negative
(1,0, 1)-random walks of length 2n — 2 and height less than or equal to
k—1.Takingp:=0,h=0,n:=2n—-2,k:=k —1,e:=0,u:=1,and d:=1
in the expression for I, ,, ,(v) derived by Cauchy’s formula, we find
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2
t(n+1,k—1)=n_1*_1(:>

" [(n - jk) ) 2<n 2—njk> " (n e f")}

(b) Let k € N and let 6 be defined by
uz fi=0nje[l:k]
O(gi)=(z ifizlanje[l:k—1].
0 otherwise

Furthermore, let A, (n, m) be the number of all ordered trees with n nodes, m
leaves, and height less than or equal to k. Choosing

X, = {gijEXle(gij)e{za uz}},

we obtain
0Se)=Y Y w=Y Y ow=Yz T ut™
nzl wegnX" nzl wefnX; n>1 we L NXg

where # o(w) is the number of g, ;, j > 1, appearing in w. Since each g, ;
corresponds to a leaf in the corresponding tree, we obtain

0(So) = > > hy(n, m)z"u™,
nzl m21

Thus, taking the image of the above equations, we see that the generating
function F,(z, u) = 0(S,) satisfies the relations F,(z, u) = zu and for k > 2

zH, (z, u)
F.(z,u) = zu + zg:l Hi(z,u) = zu + 1——;11(7,u_)’

where

zH; . ,(z,u
Hi(z,u)=zu +z Z H§+1(Z,u)=zu+ i+1(2,u)

, 1<i<k-2,
i1zl 1— Hi+1(2, u)

and H, _,(z, u) = zu. Hence F,(z, u) = zu + ¥, ,, where y, , is the (2k — 2)-
th approximant of the continued fraction

1

i P -1~z
lpz,u_'ll +|

zZu +|1

Zu

-

| . '
Solving the linear recurrences for the numerator and the denominator of
the k-th approximant of y, , (section 4.2.3), we find

W:,u(zk —2)=—2z + 2zP, _,(z,u)/Py (2, u),
where
Pizwy=01—-zu—z+W)[l—zu+z+ W]

—(l—zu—z—W)[l—zu+z— W]
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and W = [(1 + z — zu)® — 4z]"/2. Therefore,
Fr(z,u)=z(u—1) + 2zP,_,(z, u)/P, _,(z, u).

To obtain hy(n,m) = (z"u™)F,(z,u), we have to evaluate the function
F,(z,u). A lengthy, but elementary, computation (see [68]) leads to the
closed expression (Exercise 4.13)

hk(l’ m) = 6m,1’ hl (n’ m) = 6n,m6n,l

n\m/\m-—1
n>=2 k>2 where
n—sk—-1)—-2\/n+sk—-1)—2
R,(n,m, k) = .
a (. m, k) S§|<m+s+a—1)<m—s—a—1
(c) Let k € N and let 8 be defined by

|z lflEN\{t}/\jGN\{k}
G(Qij_{zu fi=tnanj=k

hk(n,m)zl(n)(n_2) [Ry(n,m, k) — 2Ro(n, m, k) + R_,(n, m, k)],

Furthermore, let d,(n, m, k) be the number of all ordered trees with n nodes
and m nodes of in-degree ¢t on level k. We find by the same procedure as in
the above cases that the generating function

H, (z,u)= ) Y d,(n,m, k)z"u"

nzl mz0

satisfies the equations
H, (z,u)=z(u—1)Gi(z,u) + z/(1 — G,(z, u))
Gi(z,u) = 2/(1 = Giyy(zw)),  i€N,
and for k > 2
H,(z,u) =z/(1 = G,(z,u))
Giz,u)=z/(1 — Gi,1(z,u)), ieN\{k—1}
Gy-1(z,u) = z(u — 1)Gi(z, u) + z/(1 — Gy (2, u)).
Let us first consider the case k > 2. Obviously,
Gz, u) = F—l + —z‘ + _ﬂ + —z‘ +
1t 1t

Thus G2(z,u) — G,(z,u) +z =0, that is G,(z,u) = C(z), where C(z) is
the generating function of the Catalan numbers given by C(z) =
(1—./1—4z)2. Hence G,_,(z,u)=z(u—1)C'(z) + C(z), because
1 — C(z) = z/C(z). Therefore,
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—z[
1

— Gk—l(z’ u)i
1 .

I O] | D { PO
Ht'k(z,u)—ﬁj'f‘l*l +[—1 +|*1 + +[ +|

(k — 1)-terms

Solving the linear recurrences for the numerator and the denominator of
the k-th approximant of this continued fraction (section 4.2.3), we find
H,,(z,u) = 2zR{" ,(z, u)/R{. (2, u), where

RY(z,u) = w(l + w)k — z(u — D[(1 + w)* — (1 — w)*]C'(2), w= /1 —4z.

It is easily checked that this solution is also valid for k = 1. Using the
substitution z = v/(1 + v)?, we obtain by a simple computation

) (1 _ U)(l +v)t+1 _ (u _ I)Ut+1[1 _ vk—2]
1+v (1 — v)(l +v)t+1 _ (u _ l)vt+l[1 _ vk_l]'

Let us discuss an application. Assuming that all ordered trees with n nodes
are equally likely, we will compute the average number of nodes of in-
degree t on level k. We have to compute the expected value

N, (n)=t"'(n) > md,(m,n,k).

For this purpose, let N, ,(z) = Y .5, t(n)N, ,(n)z" be the generating function
of the numbers N, (n)t(n). Since

Ht,k(za u) =

0
Z mdt(m’ h, k) = <zn> aHt,k(za u)|u=l’

mz1

we immediately obtain N, (z) = (6/0u)H,;(z, u)|,-,. On the other hand,
we have

0
aHt,k(za u)|u=1 = vt+k/(1 + v)t+2'

Therefore by Cauchy’s formula

1 (©9 dz
N, (n)t(n) = I ;,TITNt,k(z)
1 () dy .0
=5 v,.+1(1—v)(1+v)2" I%Ht,k(z’u)|u=l
1 (09 {
- (1= oyt (L 4 p)2 e,
T v

In other words, N, (n)t(n) is the coefficient (v") ((1 — v)o' **(1 + v)*" ¢ 7?).
An application of the binomial theorem leads directly to

2k +t—=22n—t -2 2n — 2
n—t—=k n—1)

Nl =122
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This result appears in [72]. Since there is only the root at level one, N ro(n)
is equal to the probability that an ordered tree with n nodes is a t-tree. This
fact has been proved in [64].

In this subsection we have discussed a general approach to the counting of
classes of ordered trees by several parameters. Choosing other substitution
schemes and other homomorphisms, further enumeration results can be
derived.

4.4.3 Derivation Trees of Context-free Grammars

We have seen in section 4.4.2 that context-free unambiguous substitution
schemes are appropriate for enumerating ordered trees. Let us briefly discuss
an application to the derivation trees of context-free grammars.

Let G; = (Vy, Vr, P, X;) be a context-free grammar in Chomsky-normal form
(see Appendix A, 2.1) with the set of non-terminals Vy = {X;|0 <j < N}, the
set of terminals V; = {a;|0 <j <t}, the start symbol X;eV, and the
production system P < V, x (Vy Vy Y V7). The set of derivaiion trees with root
X;€Vy and n leaves that are labelled by terminals is denoted by T;(n). Note
that the tree t arising from 7 € T;(n) by eliminating the leaves is a labelled
binary tree with labels X € V. The stack size S;(t), 7 € T;(n), is recursively
defined by

Si(t):=if |t| =2 then 1
else if S;(t,y) > S,(t,) then S,(t,)
else S,(t;) + 1;

where (X,, X,X,) € P and 1, € T;(m) (resp. 7, € T,(n — m)), me[1:n — 1], is the
left (resp. right) subtree of 7; || denotes the number of nodes of the tree 7. Here,
S;(7) is the maximum number of nodes stored in the stack during post-order
traversing of 7 e T;(n) (see Chapter 5) or, in other words, the height of the
ordered tree t’ corresponding to t according to the one-to-one correspondence
discussed in section 4.3.1. For example, consider the following context-free
grammers G, = (Vy, Vp, P, X;), 0 <i <6, with Vy={X,|0<i<6}, V;=
{a,b,c} and P={X,— X, X;, X, > X3X4 X;— X3Xq, X;— XsX,,
X,—¢, X3—a, Xo—b, Xs— ¢, Xg— X, X,}. A derivation tree 7 € Ty(10)
together with v and the corresponding ordered tree 7’ are drawn in Figure 21.
Obviously, S,(7) = 4.

The following theorem describes a general method for the enumeration of
derivation trees by the parameter S;(z) (see [59], [63]).

THEOREM 4.16 Let G,= (Vy, Vs, P, X;) be a context-free grammar in
Chomsky-normal formand let X, — X, X, , X; —a,, 1 <j <n;, 1 <j <m,are
all productions in P with the left-hand side X;. Furthermore, let H;(n,j) and
B;(n, k) be the set of all derivation trees 7 € T;(n) with S;(t) = and S;(t) <k,

|
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/Xo\ /o\
| /Xe\ A‘/s /XZ\ ) /Xe\ ) /XZ\
0 /A/‘I\ X4 c Tf) A|/2 /A/‘l\ Az A/5 XZ
X, X, b c c A
o b Tree t Tree T
Tree T’

FIGURE 21. The derivation tree t € T,(20).

respectively. The generating function

Gi(z,k) = ) z"card(B;(n, k))

nx1
is given by

G;(z,1) = n;z

Gz, ky=mz + ) G, (2,kG,(zk=1), k=2

1<jsm,

Proof Since teH;(n,A) if and only if X;,— X,X,eP, 1,€ H(n— m,j),
7, € H,(m,s) with j=4 and 1<s<A—-1or 1<j<A—-1 and s=4-1,
1 <m < n—1, for all productions with the left-hand side X;, we obtain all
derivation trees T with S;(r) < k by taking (a) all trees 7 e T;(1), giving the
contribution n,z, and (b) all trees T € H;(n, A), 2 < A < k, giving the contribution

Y ¥ [6,@4) -Gz i-1]G,(zi-1)

2<A<k Igi<m

+ Y Y G zA=-1[G,(z,A-1) =G, (2,4 - 2)].

2<igk 1<j<m;

The sum of these contributions yields our statement. M-
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Let F;(z) = Z,,>l card(T;(n))z" be the generating function of the number of all
derivation trees t € T;(n). Since F;(z) = lim,_, G;(z, k), we find by Theorem
4.16
Fi@)=nz+ Y F, @F, (@)
I<j<m

If the grammar G; is unambiguous, then F;(z) is also the generating function of
the number of all words of length n which can be derived from X, according to
the productions in P. In this case, F;(z) is the structure-generating function of
the language #(G;) defined by

= ) card(Z(G;) "V}
nzl1
For example, consider the above grammar G,. We immediately find the
following system of equations:

Go(z,1) =0

Golz, k) = G,(z, k)G, (z, k = 1), k=2

G,(z,1) =0

G,(z,k) = G4(z, k)Gy(z, k — 1) + G4(z, k)Gg(z, k — 1), k=2
G,(z,1) =z

G,(z,k) =z + Gs(z,k)G,(z, k — 1), k=2
3(2, k) =z, k>1
Gulz, k) = 2, k=1
Gs(z,k) =z, k=1
Gelz,1) =0
Gel(z,k) = G(z,k)G4(z, k — 1), k=2
Solving this system, we find for k > 1
Golz, k) = 23(1 — 2" 1)1 — z2*72)/[(1 + z)(1 — 2)*].

Computing the expansion of this function, we obtain

Q

(0 if k <i(n+2)
13k —n) —3(—1)"*k -3 if {n +3) <k <3(n+1)
card(B,(n, k)) = { .
Lk =1)—H-1-H-1)*"* ifn+2)<k<n
En—'z(—l)k—z ifk=n+1

Since Fy(z) = lim,_, , Go(z, k), we further obtain

Fo(z) = 23/[(1 + 2)(1 — 2)?]
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and therefore
card(Ty(n)) = 3n — 4(—1)" — 3.

Let us now assume that all derivation trees with n leaves are equally likely.
What is the average maximum stack size S;(n) of a tree t € T;(n)? To answer
this question we have to compute the expected value

Si(n):=1if T(n)= & then 0
else [card(T;(n))] ! kcard :(n, k)).

<k

Since B,(n,n) = T;(n) and card(B;(n, k)) = Zl<l<k card(H,(n, 1)), we find for
T;(n) # &

//\

S;(n) = (n + 1) — [card(T;(n))] ! card(B;(n, k))

l<k<n

= (n +1) - [cardGm)] (") ¥ Gilz, k).
1 <k<n
Let us determine Sy(n) for the above grammar G,. We obtain
z3 1=z 1=z 11—z
Golz, k) = — —_
lsgsn ol K) (1+2)(1—Z)2|:n 1-2z 1—22+1—23J

and therefore by an elementary computation

1 1 1
Se(n)=n+1- [card(To(n))]'1<z">F0(z)|:n TS T AT o 23:|

=13n + 3 +24(—1)" — %[1 + 2cos<2(n—;—§)l>i|/[2n —3—(=1"]

=1n+35+4(—1)"+0@n1).

Thus S,(n) is an oscillating function in n.

Restricting the above considerations to the subclass of linear context-free
grammars, an exact expression for S;(n) in terms of matrices associated with the
given grammar is derived in [59], [63] (see Exercise 4.14). The asymptotic
behaviour of S;(n) can be described by g(n):n + f(n), where g(n) and f(n) are
bounded periodic functions (see [ 78], [79], [80]). In these papers, a generaliza-
tion to context-free grammars with infinite parallel control languages in non-
cyclic form is also given.

4.4.4 Dynamic Data Structures

In section 4.3.2 we have discussed some one-to-one correspondences between
classes of data types and N,-weighted non-negative closed random walks. In
this section we will enumerate the number of histories of length n for each such
data type. We shall see that these data types can be characterized by a family of
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orthogonal polynomials. Most of the material of this subsection is taken
from [34].

Since the set of all closed histories of length n induced by a data type
corresponds to a uniform set consisting of N,-weighted non-negative closed
random walks, the generating function of the number of these histories is given
by a continued fraction (see section 4.2.3). Henceforth, let cpr(n) be the number
of all closed histories of length n induced by the data type DT, and cpy (1, k) the
number of these histories of size k. The corresponding ordinary generating
functions are denoted by Fpr(z) and F¥.(z), respectively. As we have seen in
section 4.2.3, Fpr(z) = lim,_ , F¥(z). The function F¥(z) is the (k + 1)-th
approximant of a continued fraction and can be expressed by AP (z)/BPT(z),
where APT(z) and BP"(z) are polynomials satisfying the recurrences given in
Theorem 4.7. We prove now the following theorem.

THEOREM 4.17 Let F&(z) = A7T(z)/BP"(z) and BP"(z) = z**'BP7(1/z) be the
reciprocal polynomial of BPT(z). Each data type DT introduced in section 4.3.2
can be characterized by the polynomial B (z) as follows:

DT Polynomial B (z) a, HY(z, 1)
Stack U,+,(2/2) 1 (1—tz+t*)7!
(Chebysheyv)
Deque 241U, 41 (2/4) 1 (1—tz+ 47!
(Chebyshev)
Linear M, ., (2) k!=1 (1 + t?)" Y2 exp(z arctg(t))
list (Meixner)
Priority ~ 2-%*V2H,_ (z//2) k1= exp(zt — t3/2)
queue (Hermite) :
Symbol Crsi(z+1) k!0 (1 4¢)*"!exp(—t)
table (Poisson—Charlier)
Dictionary (k +1)! (= D**1LO (z)  k!™' (1 + )7 exp(zt/(1 + 1))
(Laguerre)

HPT(z, t) is the generating function of the polynomials BYT(z) given by
HY'(z,t) = ) aBYL (2)-
k>0
Proof

(a) DT = stack. The one-to-one-correspondence between histories induced by
a stack and (1,0, 1)-random walks implies the recurrence

B®(z)=1, BY'(z)=1

B,]‘)T(Z) = BkDIl(Z) - ZszDzz(Z), k 2 1.
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Translating these relations into terms of BYT (z), we find
B (z)=1, BY(z)=z

BPT(z) = zBPT (z2) — BPT,(z), k>=>1.
Introducing the generating function HY'(z,t) =) ,.0BPT (z)!, this
recurrence implies HDT(z,t) = (I —tz + t?)"!. An inspection of (B76)
shows that HDT(2z, t) is equal to the generating function of the Chebyshev
polynomials of the second kind. Hence, BPT(z) = U, . ,(z/2). In view of the

general result discussed in Example 4.6, this relation does not surprise.
(b) DT = deque. In this case, we find

B (z) =1, BYT(z)=1
BPT(z) = BPT,(z) — 42°BT,(z), k=>=1.
A similar computation as in (a) leads to HY'(z,t) = (1 — tz + 4t2) ",
Hence HY"(4z,t/2) is equal to the generating function of the Chebyshev
polynomials of the second kind. Therefore, BT (z) = 2**!1U, ., (z/4).
(c) DT = linear list. Using the one-to-one correspondence between histories

induced by a linear list and weighted random walks with weights e; = 0,
u=i+1,d;,, =i+1,ieN, we get the following recurrence:

B (z)=1, BY'(z)=1
BPT(z) = BPT,(z) — k*z2BPT,(2), k>1,
or equivalently
B (z)=1, BY(z)=1z
BPT(z) = zBPT, (z) — k?BPT,(z), k>1.
Translating these equations into terms of the generating function Hy'(z, t),
we find the differential equation

(1+ tz)a%HBDT(z, t)=(z — t)HY (z,¢t)

whose solution is

HY(z,t) = (1 + t*)~ Y2 exp(z arctg(t)).

This is the generating function of the Meixner polynomials M, . ,(z) given in
(B99).
(d) DT = priority queue. In this case, we find the recurrence
B (:)=1, BY()=:
BPT(z) = zBPT,(z) — kBPT,(z), k=1
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These relations imply the differential equation

0
(;—tHBDT(z, t) = (z — OHS"(z, 1)

which has the solution
HY(z,t) = exp(zt — t2/2).

Hence HBDT(ﬁ z,\/f t) is the generating function of the Hermite
polynomials H,(z) given by (B83). Therefore,

B (2) = 27“*V2H, ., (2//2).
(¢) DT = symbol table. The recurrence for B (z) has the following form:
B (z) =1, BY'(z) =z
BPT(z) = [z — k]BYT,(z) — kBPT,(2), k>1.

Thus H}T(z) satisfies the differential equation
5
(L+0) - H5'(z,6) = ( = DH5'(,1)

whose solution is H5'(z,t) = (1 +¢)* ' exp(—t). HET(z—1) is the
generating function of the Poisson—Charlier polynomials C,(z) given by
(B103).

(f) DT = dictionary. We obtain

B°l(z)=1, BY'(z)=1-:
BPT(z) =[1— (2k + 1)z]BYT,(z) — k*2*BPT,(2), k>1.

This recurrence was extensively studied in Example 4.7. We find
HPT(z,t) = (1 + t) "' exp(zt/(1 + t)) and therefore BPT(z) =

k + 1)1 (=1L (z), where L{”(z) is the k-th Laguerre polynomial
given by (B87). W

An inspection of Theorem 4.7 shows that the recurrences for the polynomials
APT(z) = Z**1APT(1/2) and BP"(z) differ only in the initial conditions. As a
consequence of this observation, the generating function

HY'z,0) = ¥ aAPT, ()
k>0 _

of the polynomials APT(z) satisfies a non-homogeneous differential equation;
the corresponding homogeneous equation is identical to the differential
equation satisfied by the generating function HJ(z,t). Therefore, using the
technique discussed in Example 4.7, we can derive explicit expressions for the
polynomials AP" (z). The following theorem summarizes these results. It is left
for the exercises to prove these relations (Exercise 4.16).
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THEOREM 4.18 Let F&Nz) = APT(z)/BP" (z) and AP"(z) = 2**1AP7(1/z) be the
reciprocal polynomial of 477 (z). We have

(a) DT = stack: A" (z) = zU,(z/2).
(b) DT = deque: AP (z) = 22U, (z/4).
(c) DT = linear list:

k+1
APT(z)=¢ Osgg (# N 1)M“(—Z)Mk_“(z).

(d) DT = priority queue:
A’?T(z) = ) k2 Z (k ii)i“Hy(iz/\/i)Hk—u(z/\/i) (iz =—1)

© 0sus<k

(¢) DT = symbol table:
Adg)=z ¥ (k - 1) ¥ 21‘(;‘)@_1.(—2 —2)Cy_,(z +1).

ocaek \H +1) 055,
(f) DT = dictionary: |
Ay@)=z(k + DI (=1 ¥ 1 LP(-2)L2,(z). W

O<u<k u 1

Thus the generating functions F¥J(z) of the numbers cpr(n, k) of all closed
histories of length n and size k induced by each data type DT are determined
by the results stated in the preceding two theorems. Let us now compute the
number cpr(n) of all closed histories of length n for each data type DT. Since
the polynomials BT (z) together with their generating function HE'(z, t) are
known, we can use the scalar product introduced in Example 4.7 in order to
compute cpr(n) and the corresponding generating function Fpr(z).

THEOREM 4.19 The number cpr(n) of all closed histories of length n induced
by the data type DT and the corresponding generating function Fpg(z) =
Y a0 @nCpr (n)2" are given by

DT a, Fpr(z) cpr(n)

Stack 1 (1= J1— 422223 (1 + (- 1)")(n’/’2) / (n +2)
Deque 1 (1= J1—422)82%) (1 + (= 1y)2r (n'/’z) / (n +2)

Linear n!~ ! (cos(z))™! |E,,|
list

Priority  n!™' exp(z%/2) (L + (= 1))nt 27271 /(n/2)!
queue

Symbol n!'~! explexp(z) —z—1) (—1)"[1— > (—l)iw,]
table 0<isn—1

Dictionary n!™' (1—2z)7! n!
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Proof Using the linear form ¢ >cm(n) introduced in Example 4.7, we obtain for
all data types DT (omitting the index cpr(n))

CHPG.0) ('3 oppr, )

k>0

=Y a,*(B(2)BL,(2))

k>0

=Y a*(BY(2)|BYL,(2))

k>0

_ ks
=Y at*d Uy . U—1dy ... dy
k>0

= 1. .
On the other hand, we obtain by Theorem 4.17
(@) DT = stack.
(HRNz, )y = {(1 —zt + 3)71)
=1+ (1 —ze/(L+2)" Y

=1+t2“< nf ! ">
( ) ZZ(l+t2)

n>0
t n
= 1 tz -1 _—
( * ) ngo CDT(n)<1 + t2>

= (14 2)" ' Fpr /(1 + £)).
Thus Fp(t/(1 + t2)) =1 + 2. Choosing ¢t = (1 — /1 — 4z%)/(2z), we find

1
Fpr(z) = 77 (1— /1 - 42%)
L/2n =2\, _,
B nél h (n - 1 )Z

| n o
(72 (n/Z) if n=0mod (2)

cprin) = {0 if n = 1 mod (2
(b) DT = deque.
<HBDT(Za t)> = <(1 —tz + 4t2)—1>

t n
= (1 +4t2)—1 Z CDT(n)(W)

n>0

Hence

= (1 +4t*)" Fpr(e/(1 + 4t?)).




120

Hence Fpr(t/(1 + 4t%)) = 1 + 4¢* or equivalently

1
For(@) = g5 (1 - /1-162)
-y 1(2” - 2)(22)2"-2.

(c) DT = linear list.
(HR(z,1)) = {(1 + £*)~'/? exp(z arctg(t)))

= (14+%)712Y cpr(n)arctg"(t)/n!

n>0

= (1 + t2) " V2 Fg (arctg(t)).

Thus Fy(arctg(t)) = (1 + £)'/2. Choosing ¢t = tg(z), we find
Fpr(z) =cos™!(z) = Y. |E,,l2*"/(2n)!,
n>0

where E,, is the 2n-th Euler number (see Exercise 3.13(c)).
(d) DT = priority queue.

(HY(z,t)) = {exp(zt — t*/2))

= exp(—t3/2) 3 cpr(n)e/n!

n=0

= exp(—t%/2)Fpr (1),

Therefore,
|
Fpr(z) = exp(z%/2) = z Fz "
n>0 't -
Thus ‘
!
2 —n/2 -(n—l;i—)—' if n =0 mod (2)
cpr(n) = 0 if n =1 mod (2)

(¢) DT = symbol table.
(HY (z,8)) = {(1 + t)** ' exp(—1))
= (1 + t) exp(—t){exp(z In(1 + t)))

= (1L +t)exp(—1t) ), cpr(n) In"(1 + t)/n!

n>0

= (1 + t) exp(—t)Fpr(In(l + 1)).
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Hence Fpr(z) = explexp(z) — z — 1). Using (B47), it is easily verified that

Cm(n)=(—1)"[1— 2 (—l)iwi],

0<ign—1

where o, is the n-th Bell number.

(f) DT = dictionary. The corresponding relations have been derived in
Example 47. R

In section 4.3.2 we have described further one-to-one correspondences between
weighted random walks and partitions, involutions in &(N,), etc. It stands to
reason that the same methods described in this section lead to enumeration
results for these mathematical objects.

Exercises

4.1 (a) Let M, = (m;;) be the n x n-matrix defined by m;; = ( j’+1)' Prove the
1=

1 /2
identity det(M,) = ————( n) forn >1.
n+1\n

n+1

(b) Let M, = (m;;) be the n x n-matrix defined by m;; = ( 1
t=J

). Prove the

2
identity det(M,) = " forn>1.
n

4.2 In section 4.2.1 we have derived a general result for the number of all simple (k, h)-
bounded (1, 0, 1)-random walks of length n from 0 to p. We had shown that this number
is equal to

<v">(v"(1 + 02" (1 — p2P+2) (1 — p2h 2P+ 2))(] — p2hit 2Rty

(a) Show that the number of all simple (k, 0)-bounded (1, 0, 1)-random walks of length n
from 0 to p is given by

PANE 5 in A in (p + i cos” A
k+2 1 <a<iE+nn2 k+2 k+2 k+2)

where (n + p)=0mod 2), 1 <p <k <n.
(b) Deduce from (a) the identity

) nA . [(p +Dmi A
Y sin sin cos”
1<ign+1)y2) n+2 n+2 n+2

5-n-1 (n+2)(p +1)< n )
n+p+2 \(n—p)2,

where (n + p)=0mod (2), 1 <p <n.
4.3 In section 4.2.1 we have computed the number of all simple (unweighted) random
walks of length n (from 0) having a maximal deviation less than or equal to h. We had
proved that this number is given by

O+ oA+ o)1 = " 121 = v)(1 + v?h*2)]).
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(a) Show that this coefficient is equal to

2" A (21 + )n (24 + D
h+10s;sh(_1) 8 ( 4(h 1)> cos (2(h+1)‘)

(b) Deduce from (a) the identity
VAot A+ Dm A+ D
Y (=D'tg <———4(h ) cos” 20 1)) h+1, h>zn

44 Leto =iy,i,,...,1, € S(N,) be a permutation in linear notation. Here, ¢ is called 2-
ordered if i;<i;,,, 1<j<n-—2

(@) Show that there is a one-to-one correspondence between the set of all 2-ordered
permutations in &(N,) and the set of all simple (unweighted) random walks of
length n from 0 to ((—1)" — 1)/2.

(b) Deduce from (a) that the number of all 2-ordered permutations in S(N,) is equal to

(ln/2l)’

(c) Assume that all 2-ordered permutations in S(N,) are equally likely. Show that the
average number of inversions appearing in a 2-ordered permutation ¢ € S(N,) is

equal to [n/212""2/<ln'/12J ~ /7/128 n3/2, Prove that the maximum number of
inversions in a 2-ordered permutation of S(N,) is equal to |n/2|(|n/2| + 1).

4.5 The generating function of the average length I, of the k-th run appearing in a

permutation ¢ € S(N,) is given by (1 — x)x/[exp(x — 1) — x] — x (see section 3.2.6).

Show that I, =2 + o(1) for k — co.

4.6 Consider the sum

1 2n — 24 — 2\/A\/A + 1
D"(m)=o<1;,. 1"_'{< n—4i-1 )(m)( " )

Note that D,(m) = (z")C(z)g,(z), where

Im(z) = D (:)(k * 1)2" and C(z) = (1+ /1 —4z)2.
K30

m

(a) Prove that

— “1 1 =
CD)an(c) = {(1 2)"1C(2) if m 0,

d
2m_1(1 - z)—m—Zch(z) a Pm(x)|(1+z)/(l -z) if m > 1

where P, (z) is the m-th Legendre polynomial. (Hint: Use the recurrences (B95) and
(B96) and Murphy’s formula.)
(b) Deduce from (a) that the asymptotic behaviour of D,(m) is given by

z<2")/(2n —1) + o(d") if m=0
3\ n

Da(m) = 16 __,.(2n\ _ ~
o3 (n)Pm<s)/<2n—1)+o<4.) ifm>1

for fixed m e N,
4.7 In [86] the notion of a simply generated family of trees is introduced. Let T be a
family of trees and let t(n) be the number of trees in T with n nodes. Here, T is called
‘simply generated’ if the generating function T(z) =) 5, a,t(n)z", a; € R, satisfies a
relation of the type T(z) = zF(T(z)), where F(y) is a power series in y with F(0) = 1.
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Examples of simply generated families of trees are ordered trees (a, =1 and F(y) =
(1—y)~"), binary trees (g, =1 and F(y) =1+ y?), t-ary ordered trees (a,=1 and
F(y) =1+ y') or unordered labelled trees with distinct labels (@, = n!~! and F(y) =
exp(y)).

(a) Show that the number t(n) of all trees in a simply generated family of trees is
asymptotically given by

{(5Cn_3/2 (ir)) if n =1 mod (§)
t(n) ~ f .
otherwise
where 7 is the smallest positive root of the equation F(t) = 7F'(z); furthermore, C =
[F(z)/2rF"(z)]}/* and 6 is the greatest common divisor of the numbers in
{n]<y"YE(y) # O}.

(b) Let ¢t;;(n) be the number of ordered trees with n nodes having in-degree i or j or zero.
Show that t; ,(n) ~ [3/(4n)]'/?n~ 323", t; 3(n) ~ 0214358 ... n"3/2(2.610 719 ...)".
Give an asymptotic expression for ¢; ,(n) and ¢, ,(n). (Note that ¢, ,(n) is equal to
the n-th Motzkin number.)

48 Let T be a simply generated family of trees and let T(z) =) ., t(n)z" be the

generating function of the number t(n) of all trees in T with n nodes satisfying the

functional equation T'(z) = F(T(z)), where F(y) is a power series in y with F(0) =1 (see

Exercise 4.7).

(@) Let t,(n) be the number of trees in T with n nodes and m leaves and let L(z,u) =
Ynsitms1tm(n)z"u™ be the generating function of the numbers ¢t,(n). Show that
L(z,u) = z(u — 1) + zF(L(z, u)).

(b) Let t(n) be the number of all n-node trees in T with exactly one leaf labelled, and let
T(z) = ) 45 t(n)z" be the generating function of these numbers. Show that T(z) =
z%(d/dz) In(T(2)).

(c) Let 1 e T be a tree with n nodes and '€ T be a tree with i interior nodes and [
leaves. The tree 1’ is an ‘occurrence’ in 7, if 7 can be split in (I + 2) subtrees 7, 7, 7,
..., 7, such that the root of 7' is a leaf in 7, and the roots of 7,, 1 <k <, are the
leaves of t". Figure 22 illustrates the general situation and shows two trees 7 and 7',
where the number of o¢currences of 7 in 7 is three (marked by *); the number of
occurrences of ¢’ in t” is zero. Let occ;,(n) be the number of all occurrences of a fixed
tree ' € T with i interior nodes and [ leaves in all trees t € T with n nodes and let

*
%
*
/(\ *
T2 %

(a) (b) _ (c) (d)
FIGURE 22. (a) The general situation; (b) the tree 7’; (c) the tree 7; (d) the tree ".

2
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O(z) = ) 45, 0cc; (n)z" be the generating function of the numbers occ;,(n). Show
that O(z) = 2 *1I71(d/dz) T'(z).

(d) Prove that occ;,(n) = (y*" " "'SF""(z).

(e) Prove the following explicit results:

Family T i ) n occ; ,(n)
2N =2 —-L —
Ordered trees I L N [=L-1
N-I-1
2N -1 +1
Extended binary ordered I I+1 2N +1 * )
N +1
trees
N-L3
Ordered trees whose I L N
. N-I-L
nodes have an

in-degree 0, 1, or 2

49 Let T be a simply generated family of trees and let T(z) =), t(n)z" be the
generating function of the number t(n) of trees in T with n nodes satisfying the
functional equation T(z) = zF(T(z)), where F(y) is a power series in y with F(0) = 1.

(@) The external path length of a tree 1€ T is defined to be the sum—taken over all
leaves—of the lengths of the paths from a leaf to the root. Let t.,(n, m, w) be the
number of all trees T € T with n nodes, m leaves and an external path length w and
let

P,(z,ut) = Z Z Z tep(n, m, w)z"u™t”
nzlmz1 w20
be the generating function of the numbers ¢.,(n, m, w). Show that P,(z, u, t) satisfies
the functional equation

P.(z,u,t) =z(u—1) + zF(P,(z, ut, t)).

(b) The internal path length|of a tree t € T is the sum—taken over all interior nodes—
of the lengths of the paths from an interior node to the root. Let t;,(n, m, w) be the
number of all trees t € T with n nodes, m leaves and an internal path length w and
let

Pz, u,t) = Z Z Z tip(n, m, w)z"umt”
nzlmz1l w20
be the generating function of the numbers t,,(n, m, w). Show that P;(z, u, 1) satisfies
the functional equation
Pi(z,u,t) =z(u—1) + zF(P(zt, ut ™1 1))

(c) The degree path length of a tree 7 € T is the sum—taken over all leaves—of the in-
degrees of the interior nodes on the path from a leaf to the root. Let ty,(n, m, w) be
the number of all trees 7 € T with n nodes and a degree path length w and let

Pizu,t) =) Y Y ty(n,mw)z"umt"

nzlmz1 w20

be the generating function of the numbers ty,(n, m, w). Show that P,(z, u, t) satisfies
the functional equation

Piz,ut) =zu—=1)+2 Y Piz,ut’,){y )F(y).

r=0
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(d) Let L(z,u) =Y 5| 2 ms1 tm(n)z"u™ be the generating function of the numbers of all
trees in T with n nodes and m leaves (Exercise 4.8(a)) and let ep(n, m) (ip(n, m),

dp(n, m)) be the sum of all external (internal, degree) path lengths of these trees,
respectively. Denote the corresponding generating function by EP(z,u) =

Yn>1 om>1€P(n,mM)Z"U", IP(z,u) = ¥, 5| Yoz iP(n,m)z"u™, and DP(z,u) =
n>1 2m>14dp(n,m)z"u™. Prove the following relations

(i) EP(z, u) = uz’L,(z, u)[zL,(z, u) — L(z, u)]L" %(z, u);
(i) IP(z,u) = zL (z, u)[zL,(z, u) — L(z, w)][L(z, u) — uz]L *(z, u);
(iii) DP(z, u) = uz[zL,(z, u) — 2L(z, w)][zL.(z, u) — L(z, u)]L"%(z, u)
+ uz?L,,(z,u)L;(z, u).

() Deduce from (d):

(1) The sum of all external (internal, degree) path lengths of all extended binary
ordered trees with (2n + 1) nodes is equal to

2 3 1/2
T )
n n+l\n n
respectively. |

(i) The sum of all external (internal, degree) path lengths of all ordered trees with n
(=2) nodes is equal to

4n—2 4n—-2_l 2n—2 . 3e4n-2 _ 2n -2
\ 2\ n—1 n—1)7
respectively.

(iii) The-sum of all external (internal, degree) path lengths of all ordered trees with n
nodes and m leaves is given by

ep(n, m) = 1 (2n - 2)

2n—2 1 n—m n—WN\/n—-1+k\/fn—1—k

s e A Uy (P (e S
1 2n 1/2n—-2

dp(""")=§(2m—1)_§(2m—3)

- n—N\/n—-1+k\/n—-1-k
Heb l120( k )( k )( m—1 >(_1)k>’

respectively. (Hint: Use the generating function of the Chebyshev and Legendre
polynomials and apply Murphy’s formula.)

4.10 Let B(n, k, r) be the number of all r-tuply rooted ordered trees with n nodes and
height less than or equal to k and let Q(n, k, r) be the number of all ordered trees with n
nodes and height k of order r.

(a) Prove that
Binkr)=Y 3 (—U*O(“Hp)
A20p>0 A
2n—r—3 B 2n—r—3
x[(n—r—l—;uk—u—pk) (n—r—2—/1(k—1)—pk>:|

forn=zr+12>22.
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(b) Show that for fixed k, re N

n! i n

B k — n—lk-r 2n—-2( 2r(

(nk,r)=4 (r_l)!cos (k)tg (k)
n~? T n
4n—2k—r 2n—4( 2r-2(
+ r—2)1 u, . Cos (k) tg (k)

r—-24n 2n E
+o<n cos (k))’

where u,, = 2kr — 3r — (2kr + 2r + 4) sin2<%>.
(c) Prove the identity
Qn,k,ry=Bn +1,k,r+1)— B(n +1,k,r) + B(n, k,r —1)
forn, k,r =21. ‘

4.11 Let T = (V, A) be an ordered tree and f: ¥V — N, be a function. Here, T is
monotonously labelled ([99], [100]) if whenever v is a son of v/, then f(v) > f(v'). Let t;(n)
be the number of all ordered trees with n nodes monotonously labelled by 1, 2 3,...,J
and let Tj(z) = ) ,, t;(n)z" be the generating function of the numbers ¢ j(n).

(@) Show Ty(z) =0and Ti(z) = T;-,(z) + z/(1 — Ty(z)) for j = 1

(b) Prove that T,(z) = C(z) + zC(C?*(z)/z)/C(z), where C(z) = (1 — /1 — 4z)/2 is the
generating function of the Catalan numbers. Deduce from this equation that

2n—2 2n—2
s (7 (27

1/2n-2
where t,(n) = —( "
n

) is a Catalan number.
n —

(c) Introduce Fj(z,y) = T;_,(z) + z/(1 — y) — y and let r;, s; be the numbers defined in
Theorem 4.13 (with respect to F;(z, y)). Prove the followmg relations: r; = (1 — s;)?,
jzland rj/(1—s;) + T,_y(r;) =s;,j 2 1.

(d) Deduce from (a) and (c) that T, (rk) =1— (1 — 5)x, -, P <k, where x,, satisfies the
recurrence xo =1, X, 1y = X, i x,. L. (Recurrences of this type are handled in [17];
in our case, we obtain x2 = 2m + ln(\/—) + C + O(In(m)/m).)

(e) Prove that t,(n) ~ @m)"Y2n7"%24" t,(n) ~ (157) 120 732(F2)" t4(n) ~
(125/(1827m)) 12~ 32(84L)" and generally

T (x7%) + x
tk(n>~\/ e

3
4nx;

for fixed k. Note that x2 ~ 2k for k — co.

4.12 Let Ak( ) be the function

(1+uwk—(1-—u*
A"(Z)=22(1+u)"“—(1—u)"“’ u=./1—-4z, k> 1.

(@) Prove that |
A2k+l(z)_Ak(Z)=[AZ(Z)_Ak( A ( ]/[1—2Ak )] k=1




127

(b) Prove that
A(i+l)(k+l)—l(z) - Ai(k+l)—1(z)

= [Ai(k+l)—l(z) - A(i—1)<k+1)—1(2)][Ai<k+1)"l(z) — A"(Z)]
[1— A4,(2) — Aig+1)-1(2)]

fork>1,i>2

4.13 In section 442 we have computed an explicit expression for the generating
function Fy(z,u) =Y ,5, Y.m>1 l(n, m)z"u™ of the number of all ordered trees with n
nodes, m leaves, and a height less than or equal to k. Show that h,(1,m)=¢
hl (na m) = 6n,m5n,l’ and

m,1»

o1 —2
el mi) = ~ (;)(:l B 1) — [R,(n,m, k) — 2Ry(n, m, k) + R_, (n, m, k)],

n>=2 k=2, where

R,(n,m k)= (" —stk—1) - 2)<n +sk—1)— 2).

sst\m+s+a+1 m—s—a-—1

414 Let G, = (Vy, Vo, P, X;) be a linear context-free grammar with Vy =
{X:[1<i< N}, Vp={a;|1 <j<t},and P = Vy x (VpVy YV Vy U Vy). The right (left)
transition matrix 4, = (r;;) (4, = (;;)) is a N x N-matrix defined by
Moreover, let A = A4, + A, and let

card(T,(n)) So(n)

tn) = : and Sm=| & |,
card(Ty (n)) Sy (n)

where card(T:(n)) is the number of all derivation trees with n leaves having a root

X;€ Vy, and S;(n) is the average maximum stack size of a tree T € T;(n). Obviously,
card(T(1)) = card{(X,,a)e P|a€ Vr}.

— —

(@) Show that t(n) = A"~ '¢(1) and
— — . . — —
S(n) = |:nA""lt(1) — Z A'A,A""'—zt(l)j|/A"*lt(1), nz=l,
0gign-3
where the quotient p/g of two vectors
D1 q
p=1] : and 4= | :
Pm dm
is defined by

With Ci =pi/qi’ ifql #0, and Ci =0, ifql= 0, 1 Sigm.

(b) Consider the grammar G, = (Vy, V¢, P, Xo) with Vy = {X,, X,, X,}, Vr = {a, b, c}
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and the productions Xo— Xic X,—cX,
Xo— Xoa X, —aX,

Xo—a X,—c
X, —akX,
X,—b
Show that
Fib(n) 1 9./5—19
= |Fib—1 |, n>1 and S =45-m|1 |+ | 100514 |,
Fib(n) I 0 /5_ 14

where Fib(n) is the (n + 1)-th Fibonacci number defined by Fib(k) = 0 for k < 0,
Fib(0) = Fib(1) = 1, Fib(n + 2) = Fib(n + 1) + Fib(n) for n > 0.

(c) Show that S;(n), i €[0:N], is either a linear function in n or a constant, if the matrix
A has only one dominant eigenvalue.

(d) Let F c Vi, d,(F) = card{we V¥|we F\W#V2*!}, and L < V;*. If the limit d(L) =
lim, ., , d,(L)/d,(V7*) exists, d (L) is called the density of the language L ([8]). Let G =
(Vx> V1, P, X) be alinear context-free grammar which generates the language L(G) and

assume that A possesses the dominant eigenvalue [; < card(Vy). Show that
d(L(G)) =0.

4.15 Let us define the domain of a data-type simple linear list by the set of all sequences
(=files) on a set of keys which are accessed by position. The operations are I and D,
where D can be performed without any restriction and I only at one end of the file.

(@) Characterize the weighted random walks corres¥ond1ng to this data type.

(b) Compute the generating functions Figk(z), HY'(z,t), and Fpr(z) introduction in
section 4.4.4 for this data type.

(c) Solve (b) for the data types queue, input-restricted deque, and output-restricted deque.
(A queue is a linear list for which all insertions are made at one end of the list, all
deletions at the other end. An input-restricted (output-restricted) deque is a linear
list in which keys may be inserted (deleted) at one end but deleted (inserted) at either
end.)

4.16 Prove Theorem 4.18.
4.17 Let NC?(h, k, n) be the uniform set (with respect to the specification ¢ given in
section 4.2.1) of all non-negative weighted random walks of length n from h to k and let

N, (2) = D50 WINC?(h, k, n))z" be the generating function of the total weights of the
~ sets NC?(h, k, n).

(a) Using the notation given in Theorem 4.7, show that
Nyu(z)=[uo. . tuy-1dy ... @]z "[Bp-1(2)¢. — Ap-1(2)]B,-1(2)
where ¢ = MIN(h, k) and m = MAX(h, k).
(b) Making use of the scalar product { ) introduced in Example 4.7, show that
wNC(h,k,n)) = [ug...up_1dy ... d J<{By_1(2) By 1(2)2") wincompcm)s

where B,(z) = z*!B,(1/z) is the reciprocal polynomial of B,(z) given in Theorem
4.7.

(¢) Let DT be a data type and CDT(" h,k) be the number of all induced histories of
length n starting with a file containing h elements and finishing with a file containing
k elements. Prove that the generating function




129

I°Mz,p,00=Y Y 3 cppln b, k)s, . 2"

n20h=20k>=0

satisfies the following relations:

DT Sn.h.k IDT(Za Vs t)

Linear list nt™! [(L — yt) cos(z) — (y + t)sin(z)] !
Priority queue k!=tpt™! exp(zy + zt + yt + z%/2)

Symbol table k!=tp1~t exp(l +y)(1+t)exp(z) —1—z—y—1t)

Dictionary nt!~1 [(L=z(1+y)(1+1t)—yt)]*
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Applications

5.1 Reduction of Binary Trees

The evaluation of expressions plays an important part in the compilers for
programming languages. An expression may be represented by an ordered
binary tree provided that it consists of brackets, binary operators, and
operands; the operators correspond to the interior nodes and the operands to
the leaves. For example, the arithmetical expression E = x,/((x, — x3) 1
((x4 + x5) * x¢)) corresponds to the binary tree (syntax tree) drawn in
Figure 23.

The evaluation of an expression is equivalent to the reduction of the
corresponding tree according to its structure. These reductions are closely
related to the process of code generation in compilers. For example, in order to
evaluate E for given values x,, x,, X3, X4, X5, Xg, W€ have to use registers R, j =

1,2,3,..., and produce codes such as

Ry «—x, Ry —x¢

Ry —Xx, R; —xs

Rj —x3 Ry —x,
R;—R; — R, R, —R;3 +Ry
Ry —x4 Ry —R, *R,
R4 — x5 or R, «x;
R;— R, + R;s Ry —x,

Ry —X¢ R, —R; — R,
R;—R;*R, Ry —R; TR,
R, —R; TR, R; «—x; |
R, — R /R, R, «— R,/R,

which leaves the desired result in registers R,, using the registers R,, R3, R,
and R,, R, respectively, for storing intermediate values. Obviously, the second
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FIGURE 23. The syntax tree of the expression E.

code is better than the previous one, since it uses one less register. There are
well-known strategies for the computation of expressions formed with binary
operators:

(a) ‘Left-to-right’ strategy based on a stack (see section 5.1.1).
(b) ‘Optimal’ (with respect to the number of registers) strategy (see section
5.1.2).

(c) ‘Left-to-right’ strategy based on an input-restricted deque (see section 5.1.3).

Before analysing the algorithms induced by these strategies, we will briefly
formalize the concept of the reduction of a binary tree T with the set of interior
nodes I, the set of leaves L, and the root r € I. An instruction Q is a string of
symbols of one of the following three types:

@ A«—w,welL;

(b) A—A'A"i,iel;

c) A—A. ‘ .

In these instructions, 4, A’, and A" are intermediate variables (possibly the
same). The value of an intermediate variable is always a string over (I VW L)*.
We assume that the variables are numbered A4,, 4,,... in some order for
identification. Instructions of type (a) replace the value of 4 by w, and in-
structions of type (b) replace the value of A by the concatenation of the values
of A’, A”, and node i. If A" or A” is undefined, then A is also undefined.
Instructions of type (c) replace the value of A by the value of A’. A program = is
a sequence of instructions 7 = Q,; Q,;...; Q,;. Here, n is called a k-program,
if there are k distinct variables appearing in n. The value of the variable A after
instruction Q,, denoted by v,(A), is recursively defined by:

(1) vo(A) is undefined for all variables A.

(2) If Q, is of type (a), then v,(4) = w.

(3) If Q, is of type (b), then v,(4) = v,_ (A ), (4")i.

(4) If Q, is of type (c), then v,(4) = v,_,(A").

(5) If v,(A) is not defined by (3)«4), but v, _,(A4) has been defined, then v,(4) =
v,_,(A). Otherwise, v,(4) is undefined.
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We say that a program = evaluates a binary tree T if after the last instruction of
7, the variable A, has the value PO(T). Furthermore, the tree T can be reduced
by a given algorithm ALG, if ALG with input PO(T) computes a program which
evaluates T. Obviously, if © is a program evaluating 7, then n describes the
reduction of T according to its structure. The relationship of the reduction of a
binary tree T with the evaluation of an expression formed with binary
operators should be evident: given an expression E, PO(T) corresponds to the
post-fix notation of E, T is the syntax tree of E, the algorithm ALG describes
the strategy for the computation of the value of E and the intermediate
variables of the program m produced by ALG correspond to the registers
appearing in the code for E.

5.1.1 The Reduction of Binary Trees by a Stack

A customary method for the reduction of a tree T with the set of interior nodes
I, the set of leaves L, and the root r e I 1s as follows.

ALGORITHM S

Input: PO(T)< (I VL)*.

Output: A program which evaluates T.
Method:

(1) A triple (j, y, p) will be used to denote a configuration of the algorithm:

(a) j &€ N represents the location of the input pointer; we assume that the
first ‘input symbol’ is the leftmost symbol in PO(T);

(b) y e (I WL)* represents the stack list; the ‘top’ is assumed to be at the
right of y;

(c) p is a sequence of instructions of types (a) and (b).

(2) If j is the location of the input pointer, then c(j) is the ‘current’ input
symbol.

(3) The initial configuration of the algorithm is C, = (1,¢,¢).

(4) There are two types of steps. These steps will be described in terms of their
effect on the configurations of the algorithm. The heart of the algorithm is
to compute successive configurations defined by a ‘goes to’ relation L. The
notation (j,y,p)1l (j',7,p’) means that if the current configuration is
(j, 7, p), then we are to go next into configuration (j’,y’, p'). The two types
of move are as follows:

(4.1) Let c(j) € L. Then
| s 7, P) L (G + 1,ye(j), pAigy 11 — (i)
(4.2) Let ¢(j) eI and y = y'ab. Then '
U v, p) L G+ 1,9¢(i), pAigy—1 — Ay—1Ainc(J)3)




FIGURE 24. An ordered binary tree T.

The execution of algorithm S is as follows:
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Step 1 Starting in the initial configuration, compute successive configurations
ColC,LC,1L...LC;L...until no further configuration can be computed.

Step 2 If the last configuration is (I/(PO(T)) + 1,r,n), emit = and halt; = is a

program which evaluates T.

Obviously, if we number the stack list cells by 1,2, 3,. .. from the bottom, then
the variable A, corresponds to the m-th cell.

Let us consider the binary tree T drawn in Figure 24. We have I =
{a,c,d,e,h}, L={b, f,g,j, k, p}, and PO(T) = bfgdjkhpeca. The algorithm S
computes the following 4-program which evaluates the tree T. For
typographical reasons, we omit the third component in the configurations and
give only the current instruction in each move.

Configuration

(1,¢) L (2, b)
1(3,bf)
1(4,bfg)
1 (5, bd)
1 (6, bdj)
1 (7, bdjk)
1 (8, bdh)
1 (9, bdhp)
1 (10, bde)
L {11, be)
1(12,a)

Current instruction

A, « b;
Ay — f;
Ay g,
A, — A,A5d;
Az —J;
Ay —k;
Ay — A3A4h;
Ay p;
Ay — Aj3Ae;
Az ‘—A2A3C;
A, — A Aa;

Move

4.1)
4.1)
4.1)
4.2)
4.1)
4.1)

Thus algorithm S reduces the tree T using a stack list of maximum length four.
Note that we obtain the first code given in section 5.1, if we replace each
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variable 4; by the register R;, each a € I U L by the corresponding operator or
operand, and each instruction A; «+ A,4,a by R, < R,aR..

Let us now consider the number of intermediate variables appearing in a
program 7 produced by algorithm S; in other words, we are interested in the
number of registers required for evaluating an arithmetical expression formed
with (n — 1) binary operators by the left-ro-right strategy induced by
algorithm S.

For this purpose, let t(n, k) be the number of all ordered binary trees with n
leaves (i.e. (n — 1) interior nodes) which can be reduced by algorithm S
requiring less than or equal to k variables. Using the one-to-one corre-
spondence between all binary trees with n leaves and all closed non-negative
(1,0, 1)-raﬁdom walks of length (2n — 2), we obtain immediately (see sections
4.3.1 and 44.2)

(L+/1—42) — (1 = /1 - 42)}
,k)zZ" =2 k
nél t(n )Z z (1 + F—"‘“l _ 4z)k+1 _ (1 _ \/T:Tz)kﬂ

R A [(n +21n—jk> ) 2<n z—njk)

2n
=2,
+<n—1—jk>]’ k

)=t +1,n+1)= L (2
th+1)=tn+1,n = +iln

\Y

and

where

is the number of all binary trees with (n + 1) leaves. Furthermore, the minimum
(maximum) number of variables appears in the program evaluating the tree
drawn in Figures 25(a) and (b), respectively; it is given by two and n for n > 2.

// \

/ \
/ \
/ \

A A

(a) (b)

FIGURE 25. The two binary trees requiring a minimum ((a)) and maximum ((b)) number
of variables.
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Assuming that all binary trees with n leaves are equally likely, the quotient
p(n, k) = [t(n, k) — t(n,k — 1)]/t(n,n) is the probability that a program
evaluating such a tree requires k variables. Therefore, the s-th moment about
the origin is given by my(n) = Y ;<. k°p(n, k). Using the above definition of
p(n, k) and the fact t(n,0) =0 for n >1, this expression can be easily
transformed into

myn)=n"—t"tn) Y [(k+1)—kJen k)

I<k<n-1
Plugging the explicit expression for t(n, k) into this equation, we find
mn+1)=1+t"1n+1) ) [(k+15—K]n k),
k>1

where

Win, k) = 1, (1, k) — 2ol k) + Y 1 (n, k)
2
mmm=z( " )

sSi\n+a—jk+1)

and

Let us now consider the sum

BOn) = 5 [k +1)° — kK, (n, k).

k=1

We obtain
. . 2n
B (n) = k;[(k+1) k]j;(n+a—'(k+1)>

-y eemz ()2 (L)
—Z( 2 )Zw“4w4ﬂ—mmm,

Si\nt+a-—k) i

and therefore

myn +1)=1+1t"(n + D[P (n) — 285 (n) + 2, (n)]

) 2 2n
=1+t'n+ l)k; 65(k)[(n +1-— k) - 2(" - k>

)]

—t 7 n + D[Y1(n,0) — 2¥4(n,0) + ¥ _1(n,0)],

where

5,(n) =Y. [d* — (d —1)],

dln
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Since

Y1(n,0) — 2¢4(n,0) + ¢ _(n,0)
) )
()2

we have proved the following theorem.

THEOREM 5.1 Assume that all binary trees with (n 4+ 1) leaves are equally
likely and let p(n, k) be the probability that a program produced by algorithm S
requires k variables. The s-th moment about the origin of the random variable
which takes on the value k with probability p(n, k) is given by

o 2n 4 2n
my(n +1) =t (n+1)k§165(k)[(n+1_k> z(n_k>

+(n—?Lk)}

where §,(n) is the arithmetical function defined by

s =Y[d-(d—-17]. M

din

Choosing s =1, we obtain the following corollary as a special case.

CoroLLARY Assuming that all binary trees with (n + 1) leaves are equally
likely, the average number of variables appearing in a program produced by
algorithm S is given by

i 2n 2n 2n
mi(n+1) =17 +1) 3 d(k)[(n +1— k)‘ 2(n— k) " (n —1- k)]

where d(n) is the number of all positive divisors of the natural number
neN.

Let us first derive an asymptotic equivalent for m,(n). For this purpose, we
shall concentrate on evaluating the sum

0uln) = gjw( 2_0%”)

After we have computed an asymptotic expression for ¢,(n), a fixed, we shall
easily be able to deal with m;(n + 1) because

mi(n+1)=(n+ 1)[(P1(n) — 2¢4(n) + (P—l(n)]'
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Sums of the above type appear relatively frequently in combinatorial analysis
and the analysis of algorithms. They can be evaluated by the so-called gamma-
function method which is attributed to N. G. de Bruijn (e.g. [16]). We will
present this method in some detail.

The first step is to use Stirling’s approximation to express the quotient of the
binomial coefficients appearing in the above sum in terms of the exponential
function.

THEOREM 52 Let Re Q, ke Ny, and ae Z. We have for all ¢ >0 and all

0> (R + 6)¢
2
() E)-eol 252

where k < n'?*¢ + g and

B k) =143 (k—a)* > can~t+ 0(nRETS),

izl 1BA+1)/2)<i<A+2+R/2

Here the c;, are numbers independent of n, k, and a. If k> n'?** + q, the
X 2n 2n\ , .
quotient k " is exponentially small.

n+a-—

Proof Stirling’s approximation says that for fixed M > 0

In(1!) = (14 %) In(n) — n + Ln@m) + F  ——o2m

-2m+1 + O n—ZM—l ,
1<m<M 2m(2m_1) " ( )

where B,, is the m-th Bernoulli number (see Appendix B, 2.11). Applying this
approximation to the quotient of the two binomial coefficients we obtain

( . >/(2n>=exP[21“("!)"“(("+a—k)!)—1n((n—a+k)!)]
n+a—k n

=exp [Z(n +5H)Inn)—(n+%)

x {In(n+a—k)+In(n—a+k)}
— (k—a){In(n—a+k)—In(n+a—k)}

B, 2 t
+ L 2m(2m—1){n2"’_1 (n+a—k)*m!

l<msM |
}+O(n"2M")

(n—a+k)m!

+0((n+a—k)y" 1+ 0((n—a +k)‘2M"):|_




138

Let us now restrict the value of k. First we consider the case k < n'?** + a for
some small positive constant ¢ > 0. With this restriction, we can replace
O(n+a—k)y ™Y and O((n —a+ k)" by O(n=**-". Furthermore,
using the well-known expansions of In(1 + x), In(1 — x),and (1 + x)™, m > 1,
(see (Al4), (Al5), and (B2)), we obtain immediately by an elementary
computation for fixed R > 0

2n 2n (k—a)? 1
_ _ k—g)?d—— _ -2m-1
(’H'a—k)/(”) CXP[ h th-a) {2”2 l$m<zl:+R/4 Bamt }

|1 ) .
+ Z (k_a)ﬁ{ii_n—h 1 n—2:+1}

2<i<3+R/2 i(2i—1)

2 ¥ 3 (2m—2.+2i>

2<i<3+R/2 1<m<(R~2i+6)4 2i

B2m 2i,—2m-2i+1 —2-R/248
x2m(2m—1) (k—a)*'n +0(n )

where 6 > (R + 6)e. Therefore, we obtain with some numbers b;, independent

of n, k, and a
2n 2n (k — a)?
(oo ()= ome[ 5 m

W,,=tk—-a)? Y b n '+ (k—a)* Y b,nt

2<i<3+R2 iz2 20— 1<i<l+2+R2
—2-R/2+6 ‘
+0(n=2"R2+9),

Now a simple induction proof over p shows that the powers of W, , have for
p =1 the following form:

where

We= 3 (Kk-—a* > S

p<A<2p-1 p+igi<i+2+R/2

+ Z (k_a)zz Z f;.lypn—i+0(n—2—k/2+6)’

Az2p 2i—p<i<i+2+R/2

where the f;, , are independent of n, k, and a. Using this relation together with
the expansion of exp(x), we can compute an asymptotic equivalent of exp(W, ,).
We obtain

exp(We,)=1+ Y W&/pl+0n=27527)

1<p<2+RP2

=1+ z (k_a)u Z c,-yln"'+0(n‘2_R/2+5),

Azl p; Si<A+2+R/2
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where
p,=MINMIN{A +j[3A +1) <j <1 AleN},
MIN{24 —jlj <3 A AeN)})

and the c;,; are numbers independent of n, k, and a. An elementary computation
shows that p, = |(34 +1)/2|. Hence

2n 2n\ (k — a)? 24R72] |
(n+a—k>/(n>_eXp(_T>ﬁ'2 e, k)

PRk =1+ Y (k — a)* y cah 4+ O(n~2REEY),

iz1 [GA+1)2]<i<A+2+R)2
k—a<n'”and § > ¢R + 6).

where

Next let us consider the case k — a > n'?*¢. Obviously,

2n < 2n
n+a—k n — nl2+e

for k — a > n'2*¢, Therefore, the above approximation implies that

2n 2n .
( )/( >=exp(—n2€)|:1 + Z pl+204 Z cin!
n+a—k n i1 IGA +1)2]<i<A +2+R/2

+ O(n—Z—R/2+6):|

for k — a > n'2*¢ and this is exponentially small, being O(n~™) for all m > 0.

Using the procedure just described in the proof of Theorem 5.2, we obtain the
following explicit approximations:

2 2n = —k? [r]
(n+a—k>/(n>—e"p( k*/n) f37(n, k),

where
2 4 2 3 2 4 21a2+1
[25] _ a‘+a” a° (2a 2a°+a k 4a”+1 124"+ 12
Ja k) =T+ 2n? n + n n? + 2n? 6n3
4a® + 5a , 16a* + 60a® + 9 1 a
o _ k4 _ _kS
T +[ 2 6n |° 3
2
_Mkti + k8 + O(n—2.5+5) (F1)

60n° 72n°
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and
2 [2a 2ad°+a 4a% +1 4a® +5a
Y k) = 1 - 4| 22 2 ?
Jan. k) n +|: n? ]k+ 2n? Ko+ 3n* k
_Lk‘*_i kS —2+0
6n . 3nt +0ln ) (2
and
a’? 2a. 4a*+1 1
1Y, k) = 1 _7+7k+ 52 k2_6n3 k* +0(n=15+%) (F3)
and
fMn k) =1 +2—ak+0(n“‘+‘5) (F4)
a > - n
and
[0, k) = 1 + O(n=5+9). (F5)

The general result stated in Theorem 5.2 has been proved in [64]. The explicit
approximation given in (F1) has been given in [64]; (F2) is proved in [21] and
(FS) in [27].

Let us now return to the computation of an asymptotic expression for ¢, (n).
Applying the above approximation (F2), we immediately obtain

2n 2n
=g awf, /()

= Y d(k)exp(—k*/n)fI3(n, k).

k>1
The terms for which the approximation (F2) is not valid are exponentially
small, as is exp(— k?/n); therefore, it does not matter which we use for the terms
k> n'?*" +a.

Now the computation of an asymptotic equivalent of ¢,(n) is reduced to the
analogous problem for the sum

g,(n)y=Y exp(—k*/n)d(k)k?, p fixed,

k21

because
a*\’ 2a 2a%+a 4a0% +1
p,(n) = (1 - 7)90(’1) + (7 I >g1(n) + 792(’1)
4a3 + 5a | 1 - a ‘
ET gs(n) — Wg‘t(n) - F_gs(n) + 0(n=2*°g4(n)).

Since there is no precise equation for the number of divisors d(k) of the
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natural number k, we need to resort to more advanced techniques to get an
accurate estimate for g,(n) and ¢,(n). The idea is to express exp(—k?/n) as an
integral in the complex plane involving the gamma function (see Appendix B,
2.11), then interchange the order of integration and summation. Choosing this
procedure, we shall be able to express the resulting complex series involving'
d(k) in terms of classical analytic functions. An asymptotic equivalent is then
found by computing residues within an appropriate contour of integration. Let
us start with the identity
1 c+iw .
exp(—x)=—,f [(z)x " *dz, c>0,x>0,i2=—1,
27” c—iw

which is the so-called Mellin transform of exp(—x) (see [24], [54]), a special
case of Fourier inversion. It can also be easily proved (see [76]) by an
application of Cauchy’s residue theorem (see Appendix A, 6). Applying this
identity to our formula for g ,(n), we have

1 c+io k2 -z
g,(n) = D d(k)kPZ—TEJ . F(Z)( ) dz

h

k>1 c—iwo
1 c+iw

= Ten® ¥ dkk 2% 7dz, ¢ >4(p +1).
27” c—iw k>1

Note that the interchange of summation and integration is justified because of
absolute convergence which can be easily checked. In order to proceed further
we need to know the properties of the function ), d(k)k~2**?. This is a
Dirichlet series with coefficients d(k) (see Appendix A, 5). The Dirichlet series
with all coefficients equal to one, that is, {(z) = )5, k™% is called the Riemann
zeta function and plays an important part in analytic number theory. Using the
Dirichlet convolution theorem (see Appendix A, 5) with f(n) =1 and g(n) = n®,
we obtain

hin) =Y. f(d)gn/d) =}, (n/d)* =), d* =0c,(n)

d\n dln d\n
and

H(z) = ) o,(k)k™" = {(2){(z — o),

k=1

because

Y fUk™*=1{(z) and Y gk)k™* ={(z — ).

k>1 k>1
Since d (n) = g,(n), the above expression for g,(n) is equivalent to
1 c+ioo
g,(n) =5~ _[ C(n**Q2z —p)dz, ¢ >5p +1).

To evaluate this integral, we have to use Cauchy’s residue theorem (see
Appendix A, 6). For this purpose, we first approximate g,(n) by integrating
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Im(2)
A
“X LY o kc+t'y
T - » Re(2)
O (p+nr2f¢
-X-{y c-ty

FIGURE 26. Contour C,, of integration for g,(z).

around the contour C,, shown in Figure 26 and letting x and y go to infinity.
The value of the integral around the contour C,, is equal to the sum of the
residues of I'(z)n?¢?(2z — p) within C,, There is a double pole at z, = (p +1)/2
contributed by (%*(2z — p) and possibly simple poles at z,,, = —r, 0 < r < x,
contributed by I'(z) (see Appendix B, 2.11 and 2.13). Thus

2—% J C(z)n*?(2z —p)dz=- ) Res (T'@)n**(2z — p)).

Osm<x+1 2=z,

On the other hand, we have

i.j C(ent2(2z — p) dz
2mi .

=I(c —iy,c +iy) + I(c + iy, —x + iy)

+I(—x+iy,—x —iy)+ I(—x —iy,c — iy),
where
. 1 b
I(a,b) = — -[ [(z)n**Q2z — p) dz.
2ni ),

Considering the integrals I(c + iy, —x + iy) and I(—x — iy,c — iy) along the
top and bottom lines of C,,, we find with the bounds on the I" and { function
given in (B114) and (B130) that the values of these integrals are exponentially
small for x,y— oo, being O(n~°) for all s> 0. Similarly, the value of
I(—x + iy, —x — iy) along the left line of C,, vanishes exponentially as x and y
go to infinity. Therefore,

1 c+iwm

5 C(z)n*?(2z—p)dz= z Res (C(z)n*C*(2z—p))+0(n"%)
i

c—i® m>0 2= 2y
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for all s > 0. Thus we have to compute the residues appearing in the above sum
in order to obtain an asymptotic expression for g,(n).

Let us first consider the double pole z, = (p + 1)/2. An application of the
Laurent series expansions given in (B128) leads to (u =z — (p + 1)/2)

T2z — p) = [TG{(p + 1)) + T'G(p + D) + 0(u?)]n®+ 172

2
x[1+ uln(n) + O(uz)][—z% +y+ O(u)]

=au"?4+bu"! + 0(1),
where
a = 4n?* 2L ((p + 1)
and
b=n* 2[4 In(T((p + 1) + 4T + 1) + 7T + )]

Therefofe,

Res (T'(2)n*(* (22— p))=n"" 2T &(p + D)[§ In(n) + 3y Glp + D) +7],

where Y(z) = (d/dz) In(I"(z)) is the psi-function (see Appendix B, 2.12). Next we
consider the poles z,., = —r, r€ N,. Since these poles are simple, we obtain

with (B115)

Res ([(z)n*(*(2z — p)) = n7"(*(=2r — p) Res (['(2))

2= Zp4y Z= Zp4y
= (=1)'n""3(=2r — p)/r!.
Summarizing our results, we have proved that

gp(n) = n®?*V2CG(p + D)[FIn() + WGP +1) + 7]

+ Y (=)' (=2r — p)rt + 0(n™%)

r=0

for all s> 0. Substituting the equivalents of I'}(p + 1)), ¥(3(p + 1)), and
{*(—2r — p) given in (B109), (B112), (B118), (B119), and (B126), we finally
obtain forallp >0 and s >0

'
@p)t n? nn[ln(n)+3y—21n(2)+2 D (2,1+1)“1:l

1
pl4r ogigp—1

+40,0+0(n"°)

gZp(n)=

g2p+1(n)=3n"""p ![ln(n)+3v+ > 1”1]+%B§p+z/(p+ *+0(n™),
p

1A

where B, is the p-th Bernoulli number and y is Euler’s constant. For example,
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we have |
go(n) = 4 /mn[In(n) + 3y — 2In(2)] + 4 + O(n™*)
g,(n) = in/nn[In(n) + 3y — 2In(2) + 2] + O(n %)
; ga(n) = &n /an[In(n) + 3y — 2In(2) + £] + 0(n~*)
an

gi(n) = in[In(n) + 3y] + 14z + 0(n™1)
gs(n) = n*[In(n) + 3y + 1] + 17450 + O(n 1)
gs(n) = 3n°[In(n) + 3y + 3] + s3505 + O(n ™).

Table 1 shows that the above expressions are very good approximations, even
for small values of n.
We are now ready to prove the following theorem.

THEOREM 5.3 Assuming that all ordered binary trees with (n + 1) leaves are
equally likely, the average number of variables appearing in a program
produced by algorithm S is for all > 0 given by

m,(n +1) = /nn — 0.5 + O(In(n)/n**~?).

Proof Using the corollary following Theorem 5.2, the definition of the sum
¢,(n) and its approximation by g,(n), we find

mi(n+1)=(n+1[e,(n) — 20,0n) + ¢_,(n)]
= (n + 1)[4n"2g,(n) — 2n"'go(n) + O(n~2%g,(n))].

Inserting the derived approximations for g,(n) into this relation, we get

mn+1)=(0+n"1(/nn -5 + 0(n(n)/n">%) which is equivalent to our
stated result. W

In section 4.3.1 we have described a one-to-one correspondence between the set
of all ordered trees with n nodes and the set of all ordered binary trees with
(2n — 1) nodes. This observation shows that m,(n) is equal to the average
height of an ordered tree with n nodes. The result given in Theorem 5.3 was
first stated in these terms in [21]. Note that m,(n) may be also interpreted as
the average length of the stack required for computing a program for a binary
tree with n leaves by algorithm S. The derivation presented uses the explicit
approximation (F2) of the binomial coefficients; if we make the same
computation with the approximation (F1), we get

myn +1) = Jmn — % + 11 /n/n/24 + O(In(n)/n'~%) for all § > 0 ([61]).

Let us now compute the higher moments m (n + 1).

THEOREM 5.4 Assume that all ordered binary trees with (n + 1) leaves are




TABLE 1. Exact (first column) and asymptotic values (second column) for g,(n),0 <p<5n=246.

go(")
n Ex. As. g,(n) g2(n) gs(n) g4(n) gs(n)
2 09008 0.9004 1.2193  1.2186 1.9041 1.9044 3.4249 3.4371 69656  6.9993 156992 15.7213
4 1.7846 1.7847 3.1249 3.1248 66142 6.6130 164718 16.4658 46.7748  46.7697 147.7741 147.892
6 25696 2.5696 52920 5.2920 13.4713 13.4720 40.7107 40.7144 140.7788 140.7907 542.5279 542.464

Syl
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equally likely and let p(n, k) be the probability that a program produced by
algorithm S requires k variables. The s-th moment (s > 2) about the origin of
the random variable which takes on the value k with probability p(n, k) is
given by

my(n+1)=inn? —/nn +5+7gn* — 5/ n/n + 0(n~'7+%)
ms(n+1) =2(;> ()T (3s)n? =3 (;)as— DEGs—)ne~ 2 4+ 0(ne~272)
forall 6 >0 and s > 3.

Proof An inspection of Theorem 5.2 shows that

myin +1) = (n + H[DP(n) — 2(I>8)(n) + ®9, (n)],

where
ore-3 6w, o )|(7) et s00-3 e-w-1]
a S s n+a_k n ’ d|k .

Using the approximation (F1), we obtain by the same procedure as in the
derivation of m,(n + 1)

n? n: nd

2 2 4 11 19
<1>‘f’(n)—2<I>‘8’(n)+d>‘i’1(n)={——;]g‘3’(n)+[ }g§><n)+37955’(n>

2
—3?9%”02).+ O(n=**%$(n)),

where

gPn) = 3. exp(—k*/n)d(k)k".
k>1
Thus the computation of an asymptotic equivalent of m (n + 1) is reduced to
the analogous problem for the sum g% (n). Its asymptotic behaviour can be
determined by the gamma function method described above. An application of
the Mellin transform of exp(— x) yields

1 c+ix
g5 (n) = o J C(zn*DQ2z — p)dz, c¢>3(p +1),
T Je-icc
where D(z) is the Dirichlet series with the coefficients d,(n), that is,

D(z) =Y &,(k)k=.

k21

Since Y5, 6,(k)k ™% = {(z){(z — o), D(z) can be transformed as follows:

D)= Y Y [d*—(d—1°lk™"

k21 d|k
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= k== Z [ds _ (S>(_ 1).?—,ld,l:|
k=1 d|k 0<A<s l

=—lz) ¥ (j)(—l)s-*az—m.

0<i<s

Hence

S

g9m) =—- > (i>(—1)"‘1,,,1(n),
0<<Ags

where '

1 c+ico
I,(n) = >— _[ n’I'(z){(2z — p){(2z — p — A) dz.

2ﬂl c—ic

The evaluation of this integral is similar to that of g,(n) = I, o(n). We can shift
the line of integration to the left as far as we please if we only take the residues
into account. The case 4 = 0 leads to the approximation of g,(n) given before
Theorem 5.3. If A > 1, there are simple polesatz = (p + 1)/2,z = (p + 4 +1)/2
and possibly at z = —r, r e N, with the residues

Res  (n°T(2){(2z—p){(2z—p—A) =" V2T (G(p+ 1)1 - 1)

z=(p+1)/2

Res  ("T(2)((2z—p)i(2z—p—4)) =5n?***D* T {p + 1+ 1)1 + )

z=(p+A+1)/2

Res (n°T'(2){(2z—p)lQ2z—p—A)=(=1)'n""{(=2r—p){(=2r—p—A)/r!.

Therefore, for all m > 0
g9 m)= (=1 "[n"* V2 G(p+ D)k 1n(ﬂ)+%¢(%(p +1))+7}]

+H(=1* Y (= 2k—p)(—=D*n"¥/k!

k>0

+En @2 N (=1 (;)[F(%(p +1)(1-4)

1<d<s

+n 2T (p + A+ 1)1 +A)]

+ Y (—DH“G)Z {(— 2k —p)(—2k—p—A) (= 1)*n ™ */k!

1giA<s k=0
+0(n™m).

Choosing s = 2 and using some special values of I'(z), {(z), and y¥(z) (see
Appendix B, 2.11, 2.12, 2.13), we obtain our expressions for my(n + 1) by an
elementary computation. W

Since the variance is given by a*(n +1) = my(n +1) — mf(n + 1), we further
obtain the following corollary.
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TABLE 2. The variance ¢*(n) and the average number m, (n)
of variables appearing in a program produced by algorithm
S for a binary tree with n leaves. The numbers of the first
(second) column correspond to the exact (asymptotical)

values.
n m,(n) a%(n)
1 1.000 — 0.0000 —
2 2.000 2.0848 0.0000 0.0934
3 2.5000 2.5810 0.2500 0.2416
4 3.0000 3.0390 - 0.4000 0.3900
5 3.4286 3.4511 0.5306 0.5382
8 4.4849 4.4965 09817 0.9830
10 5.0802 5.0882 1.2782 1.2796
12 5.6176 5.6235 1.5743 1.5761
14 6.1114 6.1160 1.8712 1.8727

CoroLLArRY The variance of the random variable defined in Theorem 5.1 is
cin+1)= (g — 1>nn + 5 + 51 — Hr + O(In(n)/n'*7?%)
forall6>0. W

The results stated in Theorem 5.4 were proved in [61]. An inspection of the
above corollary shows that the variance is very large. The first few values of
m, (n) and ¢*(n) are summarized in Table 2.

Let us conclude this section by computing the cumulative distribution
“function V,(x) = t(n, x)/t(n, n); by definition, V,(x) is the probability that a
program produced by algorithm S has less than or equal to k variables, or in
other words, that a binary tree with n leaves can be reduced by algorithm §
with a stack of length less than or equal to k.

THEOREM 5.5 The cumulative distribution function V,(x) is given by

2 2
Vx)=1-% [4 ’f—(inﬂ)——z] exp(— k2(x +1)2/n) + O(n~2+9),

k=1

or alternatively by

3
Vn(X>=4ﬂ[; fﬂ S k? exp(— k2ntn/(x + 1)) + O(n™V2+%)
k>1

for all 6 > O.

Proof Using the explicit expression t(n, k) for the number of all ordered
binary trees with n leaves which can be reduced by algorithm S requiring less
than or equal to k variables, we find immediately that
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k2(x +1)* :l 2n 2n
Vix)=1— 4 _2
%) lsksé(xﬂn[ h (n—k(x+1)>/(n)'

Hence

L k2(x +1)? 2n 2n
hx=1-2, [4 n ‘ZJ(n—uxH))/(n)
k2(x +1)2 2n 2n
+k>n'/z;"/(x+l)|:4 n _2:|<n—k(x+1)>/(n> ,
k%(x + 1) :I( 2n )/<2n>
- PRl
n'/2+"/(x+l)§<$[n/(x+l)] [ h n—k(x+1) n

=1-[14+0(n" 2+ ¥ [4 M—z]

k=1 n
x exp(—k*(x +1)?/n)+0(n=™)
for all 6 > 0 and m > 0. Here we have used the approximation (F5) of the

_ 2 2 . Co .
quotient (n k (:lc N 1)> / ( :) and the fact that this quotient is exponentially

small for k > n'?*%/(x + 1). This implies the first part of our theorem. To obtain
the second part, let us introduce the function 6(z) = ), exp(— k*rz). A simple
computation shows that part (a) is equivalent to

Vo(x) =1+ 2[0(t) + 2t0'(¢)] + O(n~"2+%)

where t = (x + 1)?/(nn). Now, the function 0 satisfies a well-known relation, the
so-called theta-relation given by ([13])

1 1 1 1
o= Lo(l) L
Jz \&) 2/z 2
This relation implies that
2[0(z) + 220'(2)] = —4z7320(z7 ') - 1.
Thus _ :
V.(x)=—4t"320'(t 1) + O(n~'**%) forall 6 > 0.

This expression is identical to the expression stated in the second part. W

Some values of V,(x) with x = c\/;— 1, ¢ fixed, are given in Table 3. For
example, 74.35 per cent of all ordered binary trees with 100 leaves can be
reduced by algorithm S using a stack of length less than or equal to 19, and
99.62 per cent of all trees can be reduced with a stack of length less than or
equal to 29. In the asymptotic case, 74.36 percent of all trees with n leaves can

be reduced by algorithm S with a stack of maximum length 2\/; — 1 and 99.58

per cent with a stack of maximum length 3\/;1 — 1. Note that there is exactly
one tree which uses a stack of length n; its probability is exponentially small,
being ¢t ~1(n) = O(n*247").
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TABLE 3. Some values of V,,(c\/; — 1). The last row represents the asymptotic values for

n— oo.
c

n 0.5 1 1.5 2 25 3
9 0.0007 0.7650 0.9993
16 0.0000 0.0017 0.2467 0.7550 0.9653 0.9980
25 ‘ 0.0023 0.7507 0.9972
36 0.0000 0.0027 0.2532 0.7485 0.9598 0.9968
49 0.0029 0.7471 0.9966
100 0.0000 0.0033 0.2563 0.7453 0.9571 0.9962
o0 0.0000 0.0036 0.2580 0.7436 0.9556 0.9958

5.1.2 The Reduction of Binary Trees by an Optimal Algorithm

Another type of algorithm for evaluating a given ordered binary tree T is a
procedure consisting in the main of the following two steps:

(A) Attach additional labels to the nodes of the tree.
(B) Convert the labelled tree into a program = which evaluates T.

The following algorithm is of this type and represents an optimal strategy (with
respect to the number of variables appearing in #) for the reduction of ordered
binary trees ([90], [110]).

ALGORITHM OP
Input: A binary tree T with a set of interior nodes I, a set of leaves L, and a
root rel.

Output: An optimal program = which evaluates T.

Method:

(A) Attach additional labels to the nodes of T. The labels are integers which
can be recursively computed by the labelling function f: 1 VL — N
defined by -

f(x)=1if xe L then 1
| else MIN(MAX(f(y), f(z) + 1), MAX(f () + 1, f(2)));,

where y (z) is the root of the left (right) subtree of the node x.
(B) The computation of the program = is as follows:

(B1) One starts from the root of the labelled tree. Scanning is performed
from those nodes which have a larger integer label. If both have the
same label, one begins on the right node.

(B2) One continues scanning until a leaf or a node with sons labelled zero
is reached. This node is ‘evaluated’ and is substituted by the resulting
variable name (zero is substituted for its label). Then one returns to the
father of this node and continues scanning. The evaluation of a node x
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FIGURE 27. Labelled binary tree. The number at node x represents f(x).

means that the instruction ‘A4 «— x; is emitted, if xe L, and the
instruction ‘4,, — A,A,x; with m = MIN(r, s), if x € I has the left son
A, and the right son A;. In each step, the result appears as the value of
the available variable with lowest index. ‘

For clarity, we have not described the algorithm in terms of operations on the
post-order PO(T). Let us consider the binary tree T drawn in Figure 24. The
corresponding labelled tree is given in Figure 27. Performing step (B), we have
first to evaluate node k € L. Thus the instruction ‘A, «— k; is emitted, the label
f(k) is replaced by 0 and the node k by the variable name 4,. We have to
return to node h and to continue scanning. Again performing step (B), we have
now to evaluate node j € L; the instruction ‘A, « j; is emitted, the label f(j) is
substituted by 0 and node j by 4,. Scanning is continued at node A itself. The
instruction ‘A4, «— A,A,h; is emitted, the label f(h) is substituted by 0 and
node h by the variable name A,. Returning to node ¢, we have next to evaluate
node p € L. Finally, after the evaluation of root a, the following 3-program is
computed:

A —k;
Ay —J;
Ay — AyAh;
A; < p;
Ay — A Aze;
A; —g;
Ay — f;
A, — A3A,d;
Ay —AyAc;
A, < b;
A, — A,A,a;

This program is optimal; that is, the tree cannot be evaluated by a k-program
n, where k < 2.

-
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A lower bound of the number of variables appearing in a program =
produced by algorithm OP for an ordered binary tree with n (>2) leaves is
equal to two; for example, a binary tree with n leaves and height n can always
be reduced by a 2-program. A simple induction argument suffices to prove that
an upper bound of the number of variables is given by |Id(2n) |; complete trees
- with n leaves can always be evaluated by a [1d(2n) |-program (Exercise 5.3). Let
us now assume that all ordered binary trees with n leaves are equally likely. We
shall compute the average number of variables appearing in a program
produced by algorithm OP, that is, the average minimum number of registers
required for evaluating a tree. We first prove the following theorem.

THEOREM 5.6 Let g(n, k) be the number of all binary trees with n leaves which
can be reduced by algorithm OP requiring less than or equal to k variables and
let Q,(z) = D451 q(n, k)z" be the generating function of these numbers. We have

Q,iz)=z
Q1) =[Qk () — 2]/[2Qk(z) —1], k=1

Proof Obviously, only the one-node tree can be reduced by a 1-program.
Thus Q,(z) = z. The labelling function f defined in algorithm OP can also be
written in the form

1 ifxeL
f@={f@+1 S =10,
MAX(f(y), f(z)) if f(y) # f(2)

where y (z) is the root of the left (right) subtree of x. Therefore, we obtain all
binary trees requiring less than or equal to (k + 1) variables by taking

(a) the one-node tree (giving the contribution z); or

(b) a tree with subtrees requiring less than or equal to k variables (giving the
contribution Q2(z)); or

(c) a tree, where one subtree requires (k + 1) variables and the other less than
or equal to k variables (giving the contribution 2Q,(z)[Qy +1(z) — Qx(2)]).

Hence

Qi +1(2) =2 + Qi(2) + 204(2)[Qy+1(2) — Qu(®)]. W

We have now to solve the recurrence given in Theorem 5.6. We obtain the
following theorem.

THeoreM 5.7 The generating function Q,(z) of the numbers g(n, k) is given by

0.(2) = 22 1+ /141 —(1-/1- 42)2*-1.
¢ 1+ JT—4z)* = (— /1 - 42)*
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Proof Naturally, this result can be easily proved by induction on k using the
recurrence for Q,(z). Another method consists of solving this recurrence

directly. Substituting Q,(z) = (1 + /1 — 4z H,(z))/2, the recurrence for Q,(z)
can be translated into

H,(z)=Q2z—-1)(1—4z)"172

Hi(z) +1
2H,(z)

Note that HZ(z) + 1 + 2H,(z) = (H,(z) + 1)* and H}(z) + 1 — 2H,(z) =
(H,(z) — 1)*. Thus replacing H,(z) by P,(z)/Q,(z) and splitting the resulting
expression into a recurrence for the numerator and denominator, we obtain

P(z)=2z-1, Q@2)=+/1—-4z
Py 1(2) + @ 11(2) = [Pi(2) + Qi(2)]?
| Py 1(2) = Qi 11(2) = [Pi(2) — Qul2)]*
These recurrences can easily be solved. We obtain
Pyar(2) + Q1 (@) = [Py(2) + Qu()]* = [22 — 1 + /1= 42]*
Pya1(z) = Qi (2) = [P1(2) = @, ()]* = [22 — 1 = /1 4z
Since (1 + \/1—4z)* = =202z — 1 — \/1—4z) and (1 - J1—4z)? =
—2(2z — 1 + /1 - 4z2), we find by addition and subtraction of these equations
2P, () =27 = J1—42)"" + (1 + /1 —42)*"]
20401(2) = 277[1 - /T— 42/ = (1 + /1 42)""'],

Using these explicit expressions, we obtain our result with H,(z) =

P(2)/Qu(z). W

The expansion of the function Q,(z) has been computed in section 4.2.2. We
have

qn+1,k)=(2""1)0Q,(2)

2n 2n 2n
s 3 [ () ()]

A comparison of this formula with t(n, k) given in section 5.1.1 leads
immediately to g(n +1,k) =t(n +1,2¥ —1). Hence we have the following
theorem.

Hy,(2) =

THeorem 5.8 The number of ordered binary trees with n leaves which can be
reduced by algorithm S requiring less than or equal to 2* — 1 variables is equal
to the number of binary trees with n leaves which can be reduced by the
optimal algorithm OP requiring less than or equal to k variables. W
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Note that this fact is only a connection between the cardinalities of the
corresponding classes of trees. In general, the corresponding sets are different.
It would be nice to have an explicit correspondence between the sets of these
trees. Translating the problem into terms of random walks, a one-to-one
correspondence between these random walks is given in [42].

Assuming that all ordered binary trees with n leaves are equally likely, the
quotient p(n, k) = [q(n, k) — q(n, k — 1)]/t(n) is the probability that a program
produced by algorithm OP has k variables. Therefore, the s-th moment about
the origin is given by

myn)= )  Kkp(nk)
L <k<[dCn)]

Using the above definition of p(n, k), the facts q(n,0)=0 for n >1 and
q(n, [1d(2n)|) = t(n), this expression can be transformed into

my(n) = 1d2n)[* — ¢ () Y [k +1)° — kIq(n, k).

1 <k < |ld(2n)|

Inserting the explicit expression for g(n, k) into this equation, we find

mn+)=1+t"'n+1)> [(k+1)7°—kYnk),

k=1

Win, k) = Wy (1, k) — 20on, k) + W _ 1 (m, k)
2
Vo, k) = Z( " .k).

51 n+a-—j2

where

with

Let us now consider the sum

By =Y [(k +1)° = K]y, (n, k).

k=1
We get
(s)(n} Z [(k + l)s _ ks] Z ( 2k>
k=1 j=z1 .]
2n
= k s

k;l (n +a-— k>a5( )

where

ak)= Y [G+17°—i"] with r(k)=card({d|dlk n d=2" A reN}).

1<igrk)

Note that r(n) is the number of all positive divisors of n € N which are a power
of two. Thus a (k) = 0 if k is odd.
Summarizing the above results, we have proved the following theorem.

THEOREM 5.9 Assume that all ordered binary trees with (n + 1) leaves are
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equally likely and let p(n, k) be the probability that a program produced by
algorithm OP requires k variables. The s-th moment about the origin of the
random variable which takes on the value k with probability p(n, k) is given by

=t 2o 3 -202)()]

where a (n) is the arithmetical function defined by

a(n)= Y [G+1)F—i]

1 <i<r(n)

and r(n) is the number of all positive divisors of n which are a power of two.

Choosing s =1, we obtain the following corollary as a special case.

COROLLARY Assuming that all ordered binary trees with (n + 1) leaves are
equally likely, the average number of variables appearing in a program
produced by algorithm OP is equal to

m+)=1+t""(n+1) 3. ’(")Kn+21n—k>_2(n2—nk>+<n—21n—kﬂ’

where r(n) is the number of all positive divisors of n of the form 2", re N. I

Let us now derive an asymptotic equivalent of m,(n + 1). This can be done by
the gamma function method presented in section 5.1.1. Using the approxima-
tion (F2) (see section 5.1.1), an analogous computation to that in section 5.1.1
leads to

m,(n+1) =1+ (n+ 1)[4n"2hy(n) — 2n" hy(n) + O(n™**°hy(n))]
for all 6 > 0, where
h,(n) = Y exp(—k*/n)r(k)k?.
k=1

If we are able to compute a closed expression for the Dirichlet series with
coefficients r(k), then the sum h,(n) can be transformed into an integral. Indeed,
we find

Y r(k)k~F =), r(2k)(2k)~*

k=1 k=1

=Y Y (2%k)*

jzl k21
={z)[2* - 1]7,

where ((z) is Riemann’s zeta function. Therefore, by Mellin’s transform of
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exp(—x)

c+im
h,(n) = 51;1 J [(z)n*((2z — p)[2*° 77 —1]7 ! dz, c>3(p +1).
Again, we can shift the line of integration to the left as far as we please if we
only take the residues into account. For p = 0, there is a double pole at z = 0
(contributed by I'(z)[22* — 1]~") and simple poles at z = mik/In(2), k e Z\{0},
(contributed by [2%? — 1]') and z = 3 (contributed by {(2z)). For p > 1, there
are only simple poles at z = p/2 + mik/In(2) (contributed by [22777 — 1]71), at
z=(p +1)/2 (contributed by {(2z — p)), and possibly at z=—r, reN,
(contributed by I'(z)). Let us first consider the case p = 0.

(@) Double pole at z = 0.
Since I'(z + 1) = zI'(z), we obtain

I'(z)n*{(2z) T'(z+1)n*C(2z)

222 -1 2% 1]
__,nT(z+1){(22)
B 2 In(2)F(2)
1 [T | d (nTz+1)R2) ,
_2221n(2)[ F(0) +Zdz( F(z) )Z=O+O(Z )J’
where

F)=Y 27 In/ =12~ Yj 1.

izl

Hence

R I(z)n*¢2z)\ 1 i n’I'(z + 1){(2z2)

253( 22°_1 ) 2InQ2)dz FG) o
_ FO)[In(n)[(1){(0) + T'(1){(0) +2I(1){"(0)] — T'(1){ (0) F'(0)
B 2 In(2)F3(0) ‘

Using the special values for I"'(1), {(0), and {'(0) given in (B113), (B126), and
(B127), we find

I'(z)n*((22)
5 (“(z“)“‘:T

(b) Simple pole at z = rik/In(2), k € Z\{0}.
We immediately obtain

FntQRz)\ 1 Lumo <m’k)( m'k)
zjﬁlsnm( 27 1 )_2ln(2)n N ) P i)

(c) Simple pole at z = 3.

I'(z)n*{(2z)
( 222 _ 1

) = —Lld(n) + 412(2) —11dQ2n) + L.

z=0

=T )n'? Res ({(2z)) = 5 /nn.

z=1/2

Res

z=1/2
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Thus forallm >0

v

ho(n) = L /nn — L 1d(4n%n) + I10)

+i+H(n) +0onm),
where

B 1 nik nik
H(n) = 2_—ln(2) _OO;(SOO exp(mik ld(n))l"(l (2)>C(2 M)

k#0

Let us now consider the case p > 1.

(a) Simple pole at z = p/2 + nrik/In(2), k € Z.

I'(z)n*{(2z — p) [ : nik mik
Res = Yo+ @ik ( L
z=p/2 +mik/In(2) ( 22z—p -1 2 ln(2) " P+ ln(2)>c<2 ln(2)>

(b) Simple pole at z = (p + 1)/2.

I'(z)n*¢(2z —
e ( (Zz)fff,z_l p))=%n"’“>/2r(%(p+1)).
z=(p+1)/2
(c) Simple pole at z = —r, re N,
I'(z)n*{(2z — p) i S 2 i}

Hence for all m > 0 and p > 1,

hy(n) =@ D2TG(p + 1) + 3 (=)'~ {(=2r — p)[2727F = 1] /r!

rz0

+ G,n) + O(n~™),
__ L e mik Tk
G,(n) = She) n _OO;(SOO exp(mik ld(n))l"(zp + ™ (2))(:(2 ln(2))'

We are now ready to prove the following theorem.

THEOREM 5.10 Assuming that all ordered binary trees with (n + 1) leaves are
equally likely, the average number of variables appearing in a program
produced by the optimal algorithm OP is given by

2
+ F(n) + O(n="2+9%)

my(n + 1) = $1d(8%n) — 2 1+(2)

for all 6 > 0, where

1 ik mik \ [ . ik
(n) 2) —oo<§< +ac |:2 m B 1:|F<M)g(2 In (2)) eXp(mk ld(n))

k#0
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Proof Using the above approximation for h,(n), we find with the expression
for m,(n + 1) given in the corollary following Theorem 5.9

my(n +1) =1+ (n + 1)[4n"2h,(n) — 2n""ho(n) + O(n=**°hy(n)]

y —_—
2In2)  InQ)

= }1d(4n?n) + § — + F(n) + O(n™'2+?%),

where

1 nik nik nik .
F=1e 2 [”‘(l *M)‘ F(M)JXC<2 1—@) xplnik 1d(m)

k#0

Since I'(z +1) = zI'(z), this expression is identical to that stated in our
theorem. M

This result has first been proved in [58], [60] and [28], [31]; the latter papers
give an alternative derivation. For further applications see [87], [111].

Since exp(nik 1d(4n)) = exp(nik 1d(n)), the above function F(n) satisfies the
relation F(n) = F(4n) for all ne N. A detailed examination of F(n) (see [ 58])
shows that

F(n) = |5 1d(=n)| — $1d(rn) + C + f(n),
where

1 1 @
C==+—— x Y2+ x )Y exp(—nxk?)dx =~ 0.53332...
2 ln(z)ﬁ( 2, o=k

and

8n 4 32 167
(o4 (5
72 36
+ 2(77r — 1) exp(—Tn)

— 42/ n[exp(—Am) + 12 exp(—44n) + 9 exp(—94n)] + C,

with 1 = nr/224W™1 and |C,| < 10~ '8, Table 4 summarizes the exact and the
asymptotical values of m;(n + 1).

The higher moments my(n + 1) defined in Theorem 5.9 can be computed in a.
similar way as m,(n + 1) (see Exercise 5.5). The variance and the cumulative
distribution function is derived in [32] and [87].

5.1.3 The Reduction of Binary Trees by an Input-restricted Deque

In this section we shall present an intermediate class of algorithms for the
reduction of ordered binary trees. The algorithms use only a restricted deque
and some auxiliary cells. ‘

Let T be an ordered binary tree with the set of interior nodes I, a set of
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TABLE 4. The values of m,(n)

for 1 < n <14. The numbers of

the first (second) column corre-

spond to the exact (asymp-
totical) values.

=

my(n+1)

1.0000 —

2.0000 1.2528
2.0000 1.8321
2.2000 2.0656
2.4286 2.2528
2.6191 2.4401
2.7576 2.6041
2.8531 2.7338
2.9203 2.8321
29716 29070
3.0157 2.9668
3.0585 3.0182
3.1020 3.0656
3.1474 3.1119

b gk d ok ok
PHPUWN—LOOVOONTAWUKEEAWN —

FIGURE 28. Two subtrees of the tree drawn in Figure 24.

leaves L and a root re I. If ie ] WL and w e L, the tree T;* is the binary tree
with a set of interior nodes I’ < I, a set of leaves I < L and a root i, where the
leftmost leaf of T;* is w. Obviously, a given tree T and iel VL define a
uniquely determined tree T;”. For example, Figure 28 shows two such trees for
the tree T given in Figure 24.

We shall now turn to the presentation of the algorithm D, for the reduction
of a binary tree T. The algorithm uses an auxiliary store H, an input-restricted
deque of length k € N, a counter containing the current position of the input
pointer, and an auxiliary cell Z. The deque list symbols are triples (a, b, t) € (I v
L x (I VL) x {0,1} representing the subtree T;". If the reduction of the subtree
T has required an auxiliary cell in H, then t = 1; otherwise t = 0. A triple may
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be put on to the top of the deque and may be removed from the bottom or the
top of the deque. The contents of an auxiliary cell in H is a tuple (a, b) € (I v
L) x (I v L) representing the subtree T;; the contents of the auxiliary cell Z are
always a node or the symbol $. Henceforth, we say that the algorithm D, is in
state x, if x is the contents of the cell Z. Here, D, will always be in a state
xel VL, if (a, x, t) was the last triple which was removed from the bottom of
the deque and was stored as the tuple (a, x) in an empty auxiliary cell in H,
provided that this cell was not cleared or no other triple was removed from the
deque after the deletion of (a, x, t). Otherwise, D, is in state $.

Since the algorithm D, is rather complex, we shall first give an informal
description. The algorithm reads the input PO(T) from left to right and works
as follows:

(1) If the current input symbol is a leaf w € L and there is a tuple (a, b) in an
auxiliary cell h € H with a = w, then we know that the tree 7" ought to be
reduced in the following steps. Since this reduction was made in earlier
steps, the input pointer moves right until the symbol following b, the triple
(a, b,1) is put on to the top of the deque, if the deque list has a length less
than k, and the auxiliary cell 4 is cleared. The state z is unchanged, if z # b;
otherwise, D, goes in state $. If the deque list has a length equal to k, then
the triple (q, b, 1) cannot be inserted at the top of the deque. In this case, we
have to consider the following two cases:

(1.1) The input symbol ¢ following b is an interior node. Then the triple
(x, y, t) at the top of the deque represents the left subtree T and (a, b)
the right subtree T;® of the tree T.*. In this case, the triple at the top of
the deque is replaced by (x, ¢, 1), the auxiliary cell h is cleared, and the
input pointer moves right. The state z is unchanged, if z # b;

~ otherwise, D, goes in state §.

(1.2) The input symbol c following b is a leaf. Let (x, y, t) be the triple at the
bottom of the deque. If t = 0, then the triple (x, y, 0) is removed from
the deque, (a, b,1) is inserted at the top of the deque, and the
algorithm goes in state $. If ¢ = 1, the triple (x, y, 1) is removed from
the deque, the tuple (x, y) is stored in an empty auxiliary cell, the triple
(a, b,1) is put on to the top of the deque, and D, goes in state y.

(2) If the current input symbol is a leaf w € L and there is no tuple (a, b) in an
auxiliary cell h € H with a = », then we know that we have to reduce a
subtree in the subsequent steps which was not reduced in earlier steps or
was reduced and then forgotten, because the corresponding triple was
removed from the bottom of the deque. In this case, the triple (w, w, 0) is
inserted at the top of the deque, if the length of the deque list is less than k,
the input pointer moves right and the state is unchanged. If the length of
the deque list is equal to k and the triple at the bottom of the deque is
(x, y, 1), then (x, y, t) is removed from the deque, (x, y) is stored in an empty
auxiliary cell, if ¢t = 1, the triple (w, w, 0) is put on to the top of the deque,
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the input pointer moves right, and the algorithm goes in state y. If ¢t =: 0, the
triple (x, y, 0) will be forgotten, that is, the tuple (x, y) is not stored in an
auxiliary cell and the algorithm goes in state $.

(3) If the current input symbol i is an interior node of T, then we have to
consider the following two cases:

(3.1) If the length of the deque list is de[2:k], then the string
(x,a, t1)(y, b, t;) at the top of the deque represents the left subtree T*
and the right subtree T} of the tree T*. At this stage, the input pointer
moves right, the string at the top of the deque is replaced by
(x,i,t; v t;), and the state is unchanged. Here, t; v t, is the
disjunction of ¢, and ¢,.

(3.2) Let the length of the deque list equal one. The triple (x, y, t) on the
deque represents a subtree T7. First let the algorithm in state ze J U
L. We know then that the last triple which was removed from the
bottom of the deque and was stored as a tuple in an empty auxiliary
cell h has the form (a, z, t'). This triple represents a tree T*. The node z
must be the left brother of y, because there is no other triple which
was removed from the bottom of the deque after the deletion of
(a,z,t). Thus the input pointer moves right, the triple (x, y,t) is
replaced by (a, i,1), the auxiliary cell & is cleared, and the algorithm
goes in state $. Next, if the algorithm is in state $, then we do not
know the left brother of y. In this case, the input pointer goes back to
the first position of PO(T), the triple (x, y, t) is removed from the
deque, (x, y) is stored in an empty auxiliary cell, and the algorithm
goes in state y.

To describe the algorithm D, precisely, we shall use the stylized notation
similar to algorithm S given in section 5.1.1.

ALGORITHM D,

Input: PO(T)< (I VL)~

Output: A program which evaluates T.

Method:

(1) A 5-tuple (z,j,y, H, p) will be used to denote a configuration of the
algorithm:

(@) zel VL U{$},$¢1 UL denotes the contents of a special auxiliary cell;
z is called the state of the algorithm. |

(b) je N represents the location of the input pointer. We assume that the
first ‘input symbol’ is the leftmost symbol in PO(T).

() ye( WL) x (I VL) x {0,1})* represents the input-restricted dequec list.
The ‘bottom’ (‘top’) is assumed to be at the left (right) of y. An item may
be put on to the top and may be removed from the top or the boltom.
The maximum length of the deque list is k e N. A deque list symbol
(a, b, t) represents the tree T
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(2)

3)

(4)
(5)

(d) H< {(a, b);|la,be I VL, se N} represents the contents of the non-
empty cells in the auxiliary store. We assume that the cells are
numbered 1,2,3,... in some order for identification. The element
(a, b); € H indicates that the tuple (a, b) representing the tree 7;* is stored
in cell s. A tuple is always stored in the empty auxiliary cell with the
lowest number.

(e) p is a sequence of instructions of types (a), (b), and (c). The statement
‘DO A,_, — A, s = A,n; stands for a sequence of instructions of type
(c), that is A,_, — A, for A <s <n. If 1 > 7, this statement is to be
interpreted as a dummy statement.

If (a,b,t) is a deque list symbol, then t =1 (¢t = 0) indicates that the
reduction of the tree T, has required at least one (no) auxiliary cell. If t = 0,
a triple (a, b, t) deleted at the bottom of the deque will be ‘forgotten’. If
t =1, the tuple (a, b) will be stored in an empty auxiliary cell and the
algorithm goes in state b. The algorithm will always be in state ze I VL, if
(x, z, t) was the last triple which was removed from the bottom of the deque
and was stored as the tuple (x, z) in an empty auxiliary cell h, provided that
h was not cleared or no other triple was removed from the deque after the
deletion of (x, z, t). Otherwise, the algorithm is in state $.

The contents of the first (second) component of an auxiliary cell with
number s is denoted by pr,(s) (pr,(s)); if j is the location of the input
pointer, then c(j) is the current input symbol. The notation ‘H\{s}’ means
that the auxiliary cell s is cleared; similarly, ‘H v {(x, y),}  indicates that the
tuple (x, y) is to be stored in the auxiliary cell #. Successive operations of
this kind are performed from left to right.

The initial configuration of the algorithm is C, = ($, 1,¢, &, €).

There are 10 types of steps. These steps will be described in terms of their
effect on the configurations of the algorithm. The algorithm computes
successive configurations defined by a ‘goes to™ relation L. The notation
(z,j,7v,H,p) L(z',j,y,H, p’) means that if the current configuration is
(z,j,7, H, p), then we are to go next into the configuration (z’,j',y", H', p’).
The 10 types of move are as follows:

(5.1) Let c(j)e L.
(5.1.1) There is an auxiliary cell s with pr,(s) = c(j). Let c(u) = pr,(s).
(5.1.1.1) If I(y) < k — 1, then

(z.j.v.H,p) L
(27 U + 17 '}’(C(]), C(ﬂ), 1)7 H\{S}a pAl()’)+1 — Ms’)

(If z = pr,(s), then z = §; otherwise, z = z.)

Comment: This move corresponds to (1) (with [ (y) <

k — 1) in the informal description of the algorithm D,.
(5.1.1.2) If I(y) = k with y = y'(x, y, t) and c(u + 1) € I, then
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(Z7j7 y’ H’ p) J_
(Z, 1+ 2,7(x, c(u + 1), 1), H\{s},
pAl(y) — Al(y)Msc(# +1);)

(If z = pry(s), then z =3§; otherwise, z = z.)
Comment: This move corresponds to (1.1) in the
informal description of the algorithm D,.

(5.1.1.3) If I(y) = k with y = (x, y,0)y" and c(u + 1) € L, then

(z,j,v,H,p) L
S, 1 + 1,y'(c(), c(w), 1), H\{s},
pDO A, ,— A A=2,k;A, —M,)

Comment: This move corresponds to (1.2) (with
t = 0) in the informal description of the algorithm D,.
(5.1.1.4) If I(y) = k with y = (x, y,1)y" and c(u + 1) € L, then

(z,j,y,H,p) L
(v 1t + 1,7 ) c(u), 1), H\{s} V{(x, y),},
pM,—A;DO A4, | —A;2=2k; A — M)

Comment: This move corresponds to (1.2) (with
t = 1) in the informal description of the algorithm D
(5.1.2) There is no auxiliary cell s with pr,(s) = c(j).
(5.1.2.1) If I(y) <k — 1, then

(.j,7.H,p) L

(Z,j + 1’ '})(C(]), CU), 0)7 Ha P Al(y)+l — C(]),)
Comment: This move corresponds to (2) (with
I(y) <k —1) in the informal description of the
algorithm D,. Note also that this move corresponds
to (4.1) in the definition of algorithm S given in
section 5.1.1.

(5.1.2.2) If I(y) = k with y = (x, y, 0)y’, then

(2,7, H, p) L (8,j + 1,7"(c (). c(j), 0), H,
pDO A, — A, A=2,k; A, —c(j);)

Comment: This move corresponds to (2) (with
I(y) = k and t = 0) in the informal description of the
algorithm D,.

(5.1.2.3) If I(y) = k with y = (x, y, 1)y’, then

(z,j,v.H,p) L
(y,j + L, y(c(), c(j), 0, HU{(x, y),},
p M, —A,;:DO A,_, — A, 4 =2,k; A —c(j);)

Comment: This move corresponds to (2) (with
I(y) = k and t = 1) in the informal description of the
algorithm D,.
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(5.2) Letc(j)el.
(5.2.1) If 2 < I(y) < k with y = y'(x, y,t,)(a, b, t;), then

zhvH,p)L(z,j+ 1Ly, c(j)t, vi,)H,
P Al(y)—l — Al(y)—lAl(y)c(j);)

Comment: This move corresponds to (3.1) in the informal
description of the algorithm D,. Note also that this move
corresponds to (4.2) in the definition of algorithm S given in
section 5.1.1.

(5.2.2) If I(y) =1 with y = (x, y, t) and there is an auxiliary cell s with
pr,(s) = z, then

(Z,j, ’}),H, p) -L ($7.] + 1:(pr1 (S),CU), 1)7
H\{(s}, p A, — M,A4,c(j))

Comment: This move corresponds to (3.2) (with ze I VL) in
the formal description of the algorithm D,.
(5.2.3) If I(y) =1 with y = (x, y, t) and z = §, then

(z,j,7, H,p) L (y,1, e, HOU{(x,y),}, p M, — A}})

Comment : This move corresponds to (3.2) (with z = $) in the
informal description of the algorithm D,.

The execution of the algorithm D, is as follows:

Step 1 Starting in the initial configuration, compute successive configurations
ColC,LCy1L:+-LC;L:-- until no further configuration can be computed.

Step 2 If the last computation is (S, [(PO(T)) + 1, (x,r, t), &, n), emit = and
halt; = is a program which evaluates T = T*.

Note that the algorithm D, is deterministic for each k € N, that is, D, has at
least one choice of move in any configuration. Obviously, if we number the
deque list cells by 1,2, 3, .. . from the bottom, then the variable 4,, corresponds
to the m-th cell; the variable M, corresponds to the auxiliary cell with
number s. .

Let us consider the binary tree T drawn in Figure 24. We have [ =
{a,c,d,e, h}, L= b, f.g.j, k,p}, and PO(T) = bfgdjkhpeca. The algorithm D,
computes the following sequence of configurations. For typographical reasons,
we omit the fifth component in the configurations and give only the current
instruction in each move.
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(@) Algorithm D,

Configuration Current instruction Move
($’1’8’ Q)J-($,2’ (ba b’ 0)’ Q) A1 *—b, (5121)
1@,3,(f £0), D) A —f; (5.1.2.2)
1$,4,(9,9,0), @) A —g; (5.1.2.2)

J_(g,l,&, {(g’g)l}) Ml "_Al; (523)
L($,3,(£.£,0),{(g,9}) Ay —f; (5.1.2.2)
L1@,5(f/4,1), F) A, — A M.d, (5.1.1.2)
1d,6,3,j, 0, {(f,d):}) M — A4, —j; (5.1.23)
L(S$,7,(k,k,0), {(f, d)l}) A, —k; (5.1.2.2)

Lk, 1,6 {(fd), (k, k)}) M;—Ay; (5.2.3)
L (k,2,(b,b,0), {(f,d),, (k, k)z}) A, «—b; (5.1.2.1)
L(S,5,(f,d,1), {(k, k)z}) A —M,; (5.1.1.3)
J—(d, 6’ (jaj9 0)9 {(f’d)l’(k’k)Z}) Ml <'_AI;AI ‘_J, (5123)
1,8, (,h1), {(f,d)l}) A, — A M,h; (5.1.1.2)
L (h,9,(p, p,0), {(f, )1, (, h)2}) M, —A;;A; —p; (5.12.3)

- J—($’10’ (J’ e’l)’ {(f;d)l}) Al 1__MZ"lle; (522)

—L(e,l’& {(f’d)la(]’ 9)2}) Mz“_A1§ (523)
L(e,2,(b,b,0),{(fd)y, (J. e)2}) Ay« b; (5.1.2.1)
J—($’59(f9d,1)’ {(]9 8)2}) Al 1__Ml; (5113)
1$,11,(f,c,1), &) A, — A M,c; (5.1.1.2)

J_(c,l,s,{(f,c)l}) M, —Ay; (5.2.3)
1(c,2,(b,b,0),{(f c)‘l}) A, «— b; (5.1.2.1)
1($,12, (b, a,1), &) Ay — A M,a, (5.1.1.2)

(b) Algorithm D,

Configuration Current instruction Move

($.1,6, &) LS,2,(b,b,0), &) A, «b; (5.1.2.1)
L8, 4,(/, £.0)(g.9,0), &) A —Ay; Ay —g; (5.122)
1(8,5,(£.4,0), &) A, — A, A d; (5.2.1)
1(8,6,(/.d,0)(j.J,0), D) Ay —j; (5.1.2.1)
1@,7,3,J, 0)k, k,0), &) A, — Ay A, —k; (5.1.2.2)
J—($9 89 (Ja ha 0)9 Q) Al «— A1A2h, (521)
J—($’99(j9 h9 0)(1’9 p; 0)9 Q) ' Az «—PD,; (5121)
1 ($,10,(j, e, 0), &) Ay — A Aye; (5.2.1)
Le1,e{(j.e)}) M, — Ay; (5.23)
1 (e,2,(b, b,0),{(j, e)1}) A, « b; (5.1.2.1)
J_(€,3,(b, b’ 0)(f;f90)’ {(J’ e)l}) A2 “—f, (5121)
J—($’ 4, (f,f,O)(g,g,O), {(J, e)l}) A1 "_AZ;AZ —d, (5122)
18,5,(f.d,0),{(, en}) A, — A, A,d; (5.2.1)

1(8,10,(f,d,0)(j, e, 1), &) Ay —M,; (5.1.1.1)
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1($,11,(f,c, 1), &) Ay — A A,c; (5.2.1)
L, e {(f,c)}) M, —A;; (5.2.3)
1(c,2,(b,b,0),{(f,c)}) A, « b; (5.1.2.1)
1(8,12,(b,a,1), &) A, — A Ma; (5.1.1.2)

(c) Algorithm D,

Configuration Current instruction Move

8, 1,e, X)L(S,2,(b, b,0), &) A, « b; (5.1.2.1)
1($,3,(b,b,0)(, 1, 0), &) A, —f; (5.1.2.1)
1(8,5,(b,b,0)(f,d,0), &) A, — A A,d; (5.2.1)
18,6, (b, b,0)(f, d,0)(j,],0), &) Ay —j; (5.1.2.1)
1@8,7,(f.d,0)(j,J, 0)k, k, 0), &) A —Ay; A, — A5;(5.1.2.2)

- Ay +—k;

1($,8,(f,d,0)(J, h,0), &) A, — A,A5h; (5.2.1)
1 (8,9,(£.d,0)(j, h,0)(p, p, 0), &) Az —p; (5.1.2.1)
1($,10,(f, d, 0)(j, e, 0), &) A, — A,Ase; (5.2.1)
1@G8,11,(f,¢c,0), &) A, — A A,c; (5.2.1)
L, 1,6 {(fic)}) M, — Ay; (5.2.3)
1(c,2,(b,b,0), {(f,c),}) A, « b; (5.1.2.1)
1($,11,(b, b,0)(f,c,1), &) Ay —M,; (5.1.1.1)
1$,12,(b,a,1), &) A, — A, Aya; (5.2.1)

Thus the reduction of the tree T by algorithm D, requires a deque list of
length one and two auxiliary cells; therefore, D, emits a 3-program which
evaluates 7. Similarly, algorithm D, (D,) requires a deque list of length two
(three) and one auxiliary cell; D, produces a 3-program, D, a 4-program for T.
Obviously, D, is a possible generalization of algorithm § given in section 5.1.1:
D, with no auxiliary cell always reduces a given tree T, if the algorithm §
produces a program with A < k variables, because in this case algorithm D, is
identical to algorithm S; in other words, the deque can be interpreted as a
stack. Thus D, with k > 4 reduces the above tree T with a deque list of length
four and no auxiliary cell; the program for T produced by these algorithms is
identical to that produced by algorithm § in section 5.1.1. Note that the tree
cannot be reduced by D; with one auxiliary cell, because D; stops in
configuration ($,7,(k,k,0), {(f,d),}). Generally, D, with i auxiliary cells
reduces trees which cannot be reduced by D,.; and no auxiliary cell
Considering the execution of D,, it is easy to see that a tree T = T is reduced if
the left subtree T, = T? and the right subtree T, = T is already reduced. The
correctness of algorithm D, should be obvious; the formal proof consists in the
main of an induction proof on the length of PO(T), because in general
PO(T) = PO(T,)PO(T,)r. Finally, we will note that the use of the auxiliary cell
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Z representing the state of D, is not really necessary; D, also works correctly if
we eliminate the first component of the configurations and all references to this
component. However, on doing this, the following results become rather
complicated.

Henceforth, we shall say that a binary tree T is a (k,i)-tree, if T can be
reduced by algorithm D, with exactly i auxiliary cells. The set of all (k, i)-trees is
denoted by T(k,i). The following lemma gives a characterization of the set
T(k,i). The simple proof is left to the reader (Exercise 5.6).

Lemma 5.1 Let T be an ordered binary tree with the left-hand subtree T, and
the right-hand subtree T,. We have

TeTk, 0« T, eTkO0) A 3je[l:k—1])(T, e T(j,0)
v({dje[l:k—1I(T, e T(,0) A T, e Tk —1,0). (a)
TeTk 1)< T, e Tk1) A 3je[l:k])(T, € T(j, 0)
v (@je[1:k])(T, e T(j,0) A T e T(k, 1)

v (@je[l:k])(T, e T(j,0)) A T, € T(k,0). (b)
Leti>2.

TeTk,i)< T, e Tk,i) A Gje[l:k — 1])@m e [0:i — 1](T; € TG, 0) U T(k, m))
v 3je[l:k])(T, e T(,0)) A T, € T(k, i)
v (Bme[l:i—1](T, e Tk,m)) A T, eTk,i—1). B (c)

We are now ready to prove the following theorem.

THeEOREM 5.11 Let T(n, k, i) be the set of all (k, i)-trees with n leaves and let
t(n, k,i) = card(T (n, k, i)). We have

t(n, k,i) = 3 tn,j,00— Y t(nj,0)

I1<j<i+)k+1)-1 I1<j<itk+1)—1
fori>1and k > L.
Proof Let H,(k,i) =) ¢« tnj,i) and let Fi(k,z)=),,, H,(k, i)z" be the
generating function of the numbers H,(k, i). We have to prove
tin,k,i)=H,(( + 1)k +1)—1,0) — H,(i(k +1) — 1,0).
For this purpose, set A;(k, z) = F;(k,z) — F;(k — 1, z). Thus
Ak, z) = t(n, k,i)z"
nxl

Translating the recurrences given in Lemma 5.1 into terms of these
generating functions, we immediately find
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Aglk, 2) = Folk — 1, 2)[Aglk, 2) + Aglk — 1, 2)]. @)
A, (k, z) = 2A(k, 2)F o (k, ) + Fo(k, 2)Ao(k, 2). (b)

Aik, z) = 2A(k, z)F o (k, z) + [A;(k, z) + A; 1 (k, 2)] Z A, (k, z),

I<r<i

i=22. (c)
Using the definition of Ay(k, z), relation (a) is equivalent to
Folk,z) — Folk,z)Fok —1,2) = Folk — 1,2z) — Folk — 1, 2)Fo(k — 2, 2).

Hence the sequence F,(k, z) — Fo(k, z)Fo(k — 1, z) is a constant sequence. Since
Fo(l,z) = z, we find the recurrence F(k,z) =z/[1 — Fy(k — 1,z)] which we
have already studied in sections 4.3.1 and 4.4.2; as expected, F,(k, z) is the
generating function of the number of all ordered binary trees with n leaves
which can be reduced by algorithm S given in section 5.1.1 requiring less than
or equal to k variables. Hence

Fokz)=2s U140 = (1= /1- 42
o\, (1+\/1—:_4—.;)k+1—(1—\/_1_—‘4z)k+1’

Inserting the definition of A,(k, z) into equations (b) and (c), we obtain with
Exercise 4.12

Ak, z) = [F%)(k, z) — Fo(k, 2)Fo(k — 1, 2)]/[1 — 2F o(k, z)]
= Fo2k +1,z) — Fylk, 2)

\%

and
[Folitk +1) —1,z) = Fo((G = 1)(k +1) — 1, 2)]
[Folitk +1) —1,z) — Fy(k, )]
Ak, z) = :
1 — Folk,z)— Folitk +1)—1,2)
=Fo((+1)k+1)—1,z)— Fylitk +1) —1,z2)
fori > 2.

These relations imply the result stated in the theorem. W

CoroLLARY The number of all ordered binary trees with n leaves which can
be reduced by algorithm D, requiring a deque list of length k and exactly i (=>1)
auxiliary cells is equal to the number of all ordered binary trees with n leaves
which can be reduced by algorithm S requiring a stack list of length m, where
mel[k+i:k+1)i+1)—-1]. W

It is not hard to see that this fact is only a connection between the cardinalities
of the corresponding classes of trees. In general, the corresponding sets are
different. Since Y, <;, t(n, j, 0) is the number of binary trees with n leaves which
can be reduced by D, without any auxiliary cell, that is, the number t(n, k) of
trees which can be reduced by algorithm S with a stack of length less than or
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equal to k, we can use the expression for t(n, k) given in section 5.1.1 in order to
obtain an explicit expression for t(n, k,i). With Theorem 5.11, we obtain the
following theorem.

THEOREM 5.12 The number t(n, k, i) of all (k, i)-trees with n leaves is given by

tin, ki) =oln, k, i) — 24, (n, k, i) + Y,(n k, i),

i 2n — 2 | 2n—2
Vln ,l)_zgl (n'—a—li(k-i-l) —<n—a—l(i+1)(k+1)

and n,k,ieN. W

where

Generally, the algorithm D, with i auxiliary cells does not only reduce all
ordered binary trees with n leaves. We shall now derive a condition for n, k, i
such that D, with i auxiliary cells reduces all trees with n leaves. The algorithm
D, with i auxiliary cells reduces the trees in T'(k, i) and all trees which require a
deque list of length less than k or a deque list of length k and less than or equal
to i auxiliary cells. Thus D, reduces all trees T € | ), ;< T(, 00 Y U <r; T(k, 7).

Now let RED(n, k, i) be the number of these trees with n leaves. Since the sets
T(n,1,0), T(n,2,0), ..., T(nk,0), T(n k1), Tnk,2), ..., T(nk,i) are
mutually disjoint, we immediately obtain

RED(n, k,i)= Y tmj,0)+ Y t(nk, 1)

1<j<k 1<i<i

N

or with Theorem 5.11

RED(n, k,i)= Y t(n,j,0)

Igj<k

+ Z [ Z t(n,j,())— Z t(naj’o):l

1<A<i LISj<@A+Dk+1)—1 1<jgitk+1)~1

= Y t(n,j,0).

I1<j<i+Dk+1)-1

Hence we have proved the following theorem.

THEOREM 5.13 The number of ordered binary trees with n leaves which can be
reduced by algorithm D, requiring less than or equal to i auxiliary cells is equal
to the number of all ordered binary trees with n leaves which can be reduced by
algorithm S requiring a stack of maximum length (( + 1)k +1)—1. W

Since t(n, j, 0) is equal to the number t(n, j) of trees which can be reduced by
algorithm S with a stack list of length less than or equal to j, we can usc the
explicit expression for t(n, k), given in section 5.1.1, in order to obtain an
explicit expression for RED(n, k, i).
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CoroLLARY We have

RED(n, k, i) = t(n) — [Eo(n, k, i) — 2&,(n k, i) + &a(n, k,0)]

1/2n—2 2n =2

If kK > n, the sum Z,' <j<k t(n, j, 0) is the number t(n) of all ordered binary trees
with n leaves. Since

RED(n, k, i) = Y t(n, j,0),

I1<j<i+)k+1)-1

we further obtain the following theorem.

THEOREM 5.14 For each k > 1, algorithm D, reduces all ordered binary trees
with n leaves if and only if D, has at least |n/(k +1)| auxiliary cells. The
computed programs have at most k + [n/(k + 1)| variables. W

Note that D, requires no auxiliary cell; in this case, D, is identical to algorithm
S given in section 5.1.1. Since the function f(k) = k + [n/(k + 1) has surely a

minimum at k = [\/r_lj, we further obtain the corollary.

CoroLLARY Among all algorithms D,, D s, with [n/( [\/r_lj + 1)| auxiliary
cells reduces all ordered binary trees with n leaves and requires a minimum
number of deque list and auxiliary cells. The programs have at most [\/r_l |+

In/([/n] + 1) variables. W

Let us now briefly discuss the average case behaviour of algorithm D,. Since
t(n, k,0) is equal to t(n, k), we can apply Theorems 5.5 and 5.13 in order to
obtain an expression for the cumulative distribution function.

THEOREM 5.15 Assuming that all ordered binary trees with n leaves are
equally likely, the probability V,(k, i) that a tree can be reduced by algorithm
D, with i auxiliary cells is asymptotically given by

. . 2
Viki)=1— Y [4/12 k +1)%G + 1) _2}

1>1 n

x exp(—A%(k + 1)%( + 1)2/n) + O(n~"*+?%)
forall6 >0. W

For example, using the numerical values given in Table 3, we see that, in the
average case, 99.58 per cent of all trees can be reduced by algorithm D, with i

auxiliary cells provided that (i + 1)(k +1) = 3\/r_1. Thus 99.58 per cent of all
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trees with n leaves can be reduced by D, with approximately %\/r_z — 1 auxilary

cells, or by D, with approximately \/r_z—_l auxiliary cells etc. Let us now
assume that the algorithm D, has |n/(k + 1)| auxiliary cells, that is, D, can
reduce all ordered binary trees with n leaves. We now tum to the average
number of auxiliary cells required by D, during the reduction of a tree with n
leaves. Assuming that all these trees are equally likely, the quotient p,(n,i) =
t(n, k,i)/t(n) is the probability that the reduction of a n-node tree by D, uses
exactly i auxiliary cells. Therefore, the average number of auxiliary cells
required by D, during the reduction of a tree with n leaves is given by h,(n),
where

)= Y ip(ni)

I1<ign/k+ 1]

Using the definition of p,(n, i) and Theorem 5.11, this expression can be easily
transformed into

hm)=|n/k + D] =t m) > tnj,0)

I<ig|n/k+ D] 1 gj<itk+1)

_ jRAk +1)° 2n 2n
"ZZ[“ n _2}(n—fi(k+1)>/(n>’

because t(n, j, 0) = t(n, j), where t(n, j) is given in section 5.1.1. An application of

. M 2 2
the approximation (F5) (section 5.1.1) to the quotient (n —ji(’llc + 1))/ ( "n)

leads immediately to the following theorem (Exercise 5.8).

TueoREM 5.16 Assuming that all ordered binary trees with n leaves are
equally likely, the average number h,(n) of auxiliary cells used by algorithm D,
during the reduction of a binary tree with n leaves is asymptotically given by

( :
O (exp(—n?f)) if k>n!/te

hn)={ Y d(R)[4R**—2] exp(—R%c})+0(n~"**%) if k=c./n,c>0

R>1

Jan/k+1)—5+0n""2*%/(k+1)) if k<n'?7¢ 0<e<}

for all fixed ¢ > 0, 8 > 0, B > 0. The arithmetical function d (n) is the number of
all positive divisors of the natural number n. W

Let us now turn to the average number of auxiliary cells and deque list cells
required by algorithm D, during the reduction of a binary tree with n leaves.
There are t(n,j,0), 1 <j <k, trees using exactly j deque list cells and no
auxiliary cell; there are t(n, k,i), 1 <i < |n/(k +1)[, trees requiring exactly k
deque list cells and exactly i auxiliary cells. Thus considering all binary trees
with n leaves to be equally likely, the average number of auxiliary cells and
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deque list cells required by D, during the reduction of a tree with n leaves is
given by

e, (n) = t“‘(n)|: Y jt(n,j,0) + Y (k +i)(n, k, i):l.

1<j<k I1<ign/tk+ 1)

Using the above formulas for t(n, j, 0) and t(n, k, i), this expression can be easily
transformed into ¢,(n) = h,(n) + q,(n), where

qk(n) =k — t_l(n) Z Z t(n’j’ O)

I1<ig<k-11<j<4

=25 L))

A similar proof to that of Theorem 5.17 leads to (Exercise 5.9) the following
lemma.

LemMA 5.2 The numbers g, (n) have the following asymptotic behaviour:

Jrn =14+ 0n ') if k > nl2te
a(n)= 1 b/n+0m""*%)  ifk=c/nc>0
k + O(kn='*°%) ifk<n'”t0<e<?

for all fixed ¢ > 0 and 6 > 0. Here,

¢ (4R** —2)exp(—R**)<b<c. M

R=1

Theorem 5.16 and Lemma 5.2 iniply the following theorem.

THEOREM 5.17 Assuming that all ordered binary trees with n leaves are
equally likely, the average number ¢,(n) of auxiliary cells and deque list cells
required by algorithm D, during the reduction of a tree with n leaves is
asymptotically given by

Jan =+ 0(n™') if k > '+
ex(n) = b\/’_l + Z d(R)[4R%c? — 2] exp(— R*c?) + O(n~"*?)

R21
if k=cy/nc>0
k + Jmn/(k +1) + O(n="2+9) ifk<n'?*0<e<?

for all fixed ¢ > 0 and 6 > 0. Here,

¢ Y (4R*c* —2)exp(—R**)<b<c. W

R>1
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Since the function f(k)=k + (k+1)"'/nn — L has a minimum at k =
(mn)!/* — 1, Theorem 5.17 implies the following corollary.

CoroLLARY Assume that all ordered binary trees with n leaves are equally
likely. Among all algorithms D,, D,, with k¥’ = (zn)'/* — 1 requires a minimum
number of deque list and auxiliary cells, on average. The programs produced
by D, have 2(nn)"/* — 3 variables, on average. M

In this chapter we have discussed three different strategies for the reduction of
ordered binary trees. These reductions are closely related to the process of code
generation in compilers and, in general, to the evaluation of a tree according to
its structure. Although we have given a detailed analysis of the space
complexity of these algorithms in the worst and average case, several questions
are still waiting to be resolved (see Exercises). We have seen that the analysis of
these algorithms has provided excellent examples of the application of the
gamma function method of asymptotic analysis.

5.2 Two Algorithms for the Recognition of Dycklanguages

Let B,, B, be two finite sets with cardinality ke N and let : B, — B, be a
bijection. The Dycklanguage DY, with k types of brackets is the formal language
DY, < (B, YB,)* recursively defined by

(@) ee DY;

(b) (Vbe B,)(we DY, = bwy(b) e DY,);
(c) (VYu,v e DY,)(uv € DY);

(d) DY, is minimal with (a), (b), (c).

Here, w € DY, is called a Dyckword. The set of all Dyckwords w € DY, of length
2N is denoted by DY,(2N), the cardinality of DY, (2N) by d,(2N). Given
w € DY,, the tuple (b, b) € B, x By is a pair of brackets in w if and only if w has
the form w = xbybz with b = (b) and y e DY,. Obviously, each Dyckword
w € DY, (2N) consists of N pairs of brackets. Dycklanguages play an important
part in the theory of formal languages ([53]). _

Now let 9B be an algorithm which needs Tj; (w) units of time and Ly (w) units
of space in order to scan w € DY,. We define the maximum time Ty;(2N) and the
maximum space Ly(2N) for the recognition of a Dyckword w e DY, (2N) by
Ty(2N) = MAX, cpyon (Ty(w)) and Lg(2N) = MAX, . pyon (Lg (W) Assuming
that all Dyckwords of length 2N are equally likely, the average time Ty(2N)
and the average space Ly(2N) for the recognition of a Dyckword w e DY, (2N)
by algorithm P is defined by

T,2N)=d;'2N) T Tyw)

we DY, (2N)

Ly2N)=d;'2N) Y Ly

we DY, (2N)

and
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5.2.1 The Recognition by a Stack

A customary method for the recognition of the Dycklanguage DY, is the
following algorithm DS using a stack.

ALGORITHM DS

Input: we (B, VB,)*.
Output: we DY, or w ¢ DY,.
Method: -

(1) A triple (q, j,y) will be used to denote a configuration of the algorithm:

(@) g is a state of the algorithm.

(b) j e N represents the location of the input pointer. We assume that the
first ‘input symbol’ is the leftmost symbol in w. The current input
symbol is denoted by c(j).

(c) y e(B, VB,)* represents the stack list. The ‘top’ is assumed to be at the
right of 7.

(2) The initial configuration of the algorithm is C, = (g, 1, €).

(3) There are three types of steps. These steps will be described in terms of their
effect on the configurations of the algorithm. The algorithm computes
successive configurations defined by a ‘goes to’ relation 1. The notation
(q,j,v) L (¢’,j’,7) means that if the current configuration is (g, j, 7), then we
are to go next into the configuration (g, j*, y’). The three types of move are
as follows:

(31) Let C(_]) € Bk Then (quja ’})) 1 (q'Oaj + ]-a }’C(J))
(3.2) Let c(j) € B,. Then (qo,J,7) L (q1,) + 1, ye(j)).
(3.3) Let y = y'byy(b) with b e B,. Then (q,,j,7) L o, J, )

The execution of the algorithm DS is as follows:

Step 1 Starting in the initial configuration, compute successive configurations
ColC,L---1C; L until no further configuration can be computed.

Step 2 If the last configuration is (gq, 2N + 1,¢), then w e DY,; otherwise,
w ¢ DY,.

For example, let N=4, B,={[,(}, B,={],)}, (D =] and ¢(()=).
Choosing w = [{)]()[ ], we find

(go,1,¢) L (610,2,[) 1 (610,3’[0 1 (611,4’[<>) 1 (610,4,[)
(3.1) (3.1 (3.2) (3.3)

L (q,5[]) L (g0.5€ L (0,6, L (,,7,{))
(3.3) (3.1) 3.2)

(3,2)

1 (qu 7a8) —L (qu 8a [) 1 (qla 9,[]) 1 (qu 9a 8)'
3.1) 3.2) 3

3.3) .3)
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Hence w € DY,(8). For w' = [{]){J[ ], we obtain

(q(),l,S) J— (407 2’ [) J— (qO’ 3’ [<) J— (41’4’ [<])
3.1) 3.1 3.2)

Thus w' ¢ DY,(8).

An appropriate measure for the time T,5(w), w € DY, (2N), of algorithm DS is
the number of moves of the input pointer during the recognition of w. We find
immediately that T,g(w) = 2N for all w € DY, (2N). Thus the maximum time is
given by Tps(2N) = 2N for an input of length 2N.

The space Lyg(w), w € DY, (2N), of the algorithm DS is the length of the stack
required for recognizing the Dyckword w. In the worst case, we have Lpg(w) =
N +1 satisfied by we BYBY. Hence L,5(2N) = N + 1. Using Exercise 5.10,

1 2
each Dyckword w € DY, (2N) corresponds to one of the N1 <1€[> binary

trees with (N + 1) leaves and vice versa. Each replacement of a pair of brackets
in we DY;(2N) by one of the k possibilities (b, (b)) € B, x B, generates a
Dyckword w € DY, (2N). These facts imply immediately

1 (2N
_ LN
d,(2N) =k N——+1(N>.

Furthermore, the above one-to-one correspondence between the Dyckwords of
length 2N and the binary trees with (N + 1) leaves shows that the number
d, (2N, p) of all Dyckwords w € DY, (2N) requiring a stack length less than or
equal to k during the recognition of w by algorithm DS is equal to the product
of k¥ and the number ¢t(N + 1, p) of ordered binary trees with (N + 1) leaves
which can be reduced by algorithm S given in section 5.1.1 using a stack of
maximum length p. Thus d, (2N, p) = k"t(N + 1, p). Therefore,

Lps@N)=d;'2N) Y p[d.2N,p) — d,(2N,p —1)]

1<pEN+1

=k M7'2N) Y pKM[t(N +1,p)— t(N +1,p — 1)]

1<psN+1

=t"'N+1) Y p[tN+1,p)—t(N+1,p—1)]

I<p<N+I
=m;(N +1),

where m,(N + 1) is the expected value computed in section 5.1.1. Summarizing
" our results, we have, with Theorem 5.3, the following theorem.

THEOREM 5.18 Assuming that all Dyckwords w € DY, (2N) are equally likely,
the average space L,s(2N) required for the recognition of w e DY,(2N) by
algorithm DS is asymptotically given by

Lys(2N) = /nN — 5 + O(In(N)/N'/27?)
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for all 6 > 0. The maximum space is L,s(2N) = N + 1. The time required for
recognizing w € DY, (2N) by algorithm DS is Tpg(w) = Tp,sN)=2N. W

Note that all results derived in section 5.1.1 can directly be translated into fhe
corresponding quantities of algorithm DS.

5.2.2 The Recognition by a Two-Way-One-Counter Automaton

In [56] there is given the following algorithm for the recognition of
Dycklanguages by a two-way-one-counter automaton.

ALGORITHM D2WIC

Input: we (B, VB)*, N >1.

Output: we DY, or w ¢ DY,.

Method:

(1) A S-tuple (g,j,Z,H,t) will be used to denote a configuration of the
algorithm.

(@) q is the state of the algorithm;

(b) j e N represents the location of the input pointer. We assume that the
first ‘input symbol’ is the leftmost symbol in w. The current input
symbol is denoted by c(j). _

(c) Z is a binary counter. The allowed operations are Z — Z + 1 (addition
of one) and Z «— Z — 1 (subtraction of one).

(d) H is an auxiliary cell; its contents is always a symbol in B, UB,.

(e) tis a control variable. Its values are 0 or 1.

(2) The initial configuration of the algorithm is C, = (g4, 1,1, ¢(1), 1):

(3) There are eight types of steps. These steps will be described in terms of their
effect on the configurations of the algorithm. The algorithm computes
successive configurations defined by a ‘goes to’ relation 1. The notation
(q.j,Z,H,t) L (¢',j,Z',H',t') means that if the current configuration is
(q,),Z, H,t), then we are to go next into the configuration (¢',j’,Z’, H', t').
The eight types of move are as follows:

(3.1) Let ¢(j) € B,. Then
Go.J, Z,H,t) L (q,,j,Z,H,1).
(3.2) Let ¢(j) € B,. Then
o.J, Z,H,t) L (q5.),Z,H,0).
(3.3) Let Z # 0 and ¢(j + 1) € B;. Then
(q.,Z,H,t) L (q,j +1.Z +1,H,1t).
(3.4) Let Z # 0 and c¢(j + 1) € B,. Then
q,j.Z,H,t)L(q,,j+1,Z~1,H,t)
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(3.5) Let Yy(H) = c(j). Then
(qu’ 07 H7 t) 1 (anj + 1 — t,l,C(j +1-— t), t).
(3.6) Let Z # 0 and ¢(j — 1) € B,. Then

(42,j, H7 Z7 t) 1 (42,j - 17 VA + 1, H, t).
(3.7) Let Z # 0 and ¢(j — 1) € B,. Then

(qZ7j7 Z7 H7 t) -L (qZ7j - 17 Z - 1, H, t).
(3.8) Let y(c(j)) = H. Then

(qZ7j7 07 H7 t) -L (ql —t7j + t’ 1’ C(j + t)7 t)-

The execution of the algorithm D2WIC is as follows:

Step I Starting in the initial configuration, compute successive configurations
ColCy;Ll---1LC; L until no further configuration can be computed.

Step 2 If the last configuration is (q,, 2N, 0, ¥ “!(c(2N)), 0), then w € DY, (2N);
otherwise w ¢ DY, (2N).

The algorithm D2WIC reads the word w € (B, UB,)* from left to right (right
to left) and searches for each b appearing in w the corresponding bracket y/(b)
to be B, (Y ~(b) to b e B,) as follows:

(a)

(b)

Let b=c(j)e B, and assume that the algorithm is in configuration -
(qo,J, 1, c(j), t). Since c(j) € B,, we obtain the configuration (q,,J,1, c(j),1)
(step (3.1)). Now the input pointer moves to the right until the counter is
zero the first time; in each move the counter is increased by one if the
current input symbol x is in B, (step (3.3)), and is decreased by one if x is in
B, (step (3.4)). Thus we obtain a configuration (g, &, 0, c(j),1). Now the
algorithm checks the condition y(c(j)) = c(u) (step (3.5)). If this condition is
satisfied—that is, (c(j), c(u)) is a pair of brackets—the algorithm goes into
the configuration (gq,, u, 1, c(u),1). Next it has to recover the old position j
of the input pointer, in order to start with the next input symbol ¢(j + 1).
For this purpose, the input pointer moves to the left until the counter is
zero the first time; in each move, the counter is increased by one if the
current input symbol x is in B, (step (3.6)), and it is decreased by one if x is
in B, (step (3.7)). Thus we reach the configuration (g,,j, 0, c(u),1). Since
(c(j), c(u)) is a pair of brackets, the condition y(c(j)) = H (step (3.8)) is
satisfied and the algorithm gocs into the configuration
(go,J +1,1,¢(j +1),1). '

Let b=c(j)eB, and assume that the algorithm is in configuration
(@0-J>1,¢(j), t). In this case, the algorithm gocs first in state g, and the input
pointer is moved to the left until the countcr is zero the first time (step (3.6)
and step (3.7)). Then it goes to state q; and moves the input pointer to the
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right until the old position j is reached (step (3.3) and step (3.4)). Since t = 0,
we finally obtain the configuration (g,,j + 1,1, ¢(j + 1), 0) by step (3.5).

For example, let N =4, B, ={[,{}, B, ={], )}, ¥([) =1, and ¥({) = ).
Choosing w = [{ >]{)[], we find the following configurations:

(q07 1’1’ [’ 1) J— (‘]1, 17 17 [’ 1) J— (41, 2, 27 [7 1) J— (‘]1, 37 17 [7 1)
3.1) (3.3) 3.4)

J— (41747 07 [’ 1) J— (q27 47 17 ]7 1) J— (42, 3, 27 ], 1)
3.4) (3.5) (3.6)

J— (q27 2’ 1’ ]’ 1) J‘ (q27 1’07 ]7 1) J— (40, 27 17 <7 1)
3.7) 3.7) 3.8)

J— (41727 17 <7 1) J— (4173,07 <7 1) J— (42, 37 17 >7 1)
3.1) 3.4) 3.5)
1 422,0,)1) L (g0,3,1,)1) L (q5,3,1,),0)
3.7 (3.8) (3.2)

1 422,0,5,0 L (g,2,1,(,0) L ............
3.7) 3.8)

3.4)

........... 1 (q5,7,0,7,0) L (q,,7,1,[,0)
3.7 3.8)
J— (41787'07 [70)
3.4)

Hence w € DY,(8). For w' =[{]){ D[], the last configuration is (¢,,4,0,[,1),
because Y([)=1] # c(4) = ). Therefore, w' ¢ DY,(8). The space Lp,y,c(W),
w € DY, (2N) required by algorithm D2WIC is the length of the binary counter
Z during the recognition of w. In the worst case, we have Ly, (W) = |Id(2N)]|,
a fact satisfied by Dyckwords of the form w € By BY. Therefore, the maximum
space is Ly, ,;c(2N) = |Id(2N)|. It is well known that the algorithm D2WIC is
optimal, that is, each algorithm recognizing the Dycklanguage DY, requires at
least O(I1d(N)) space for an input of length 2N.

Let us now consider the average space L,y (2N) of the algorithm D2W IC.
For this purpose, let z, (2N, p) be the number of all Dyckwords w € DY, (2N)
which can be recognized by the above algorithm, where the maximum value of
Z 18 less than or equal to p. It is not hard to see that z, (2N, p) is equal to the
number d,(2N,p + 1) of all Dyckwords w e DY, (2N) requiring a maximum
stack length (p + 1) during the recognition of w by algorithm DS given in
section 5.2.1 (Exercise 5.11). Hence z, (2N, p) = k"t(N + 1, p + 1), where t(N, p)
is the number of all ordered binary trees with N leaves which can be reduced by
algorithm S requiring less than or equal to p variables. Since z,(2N,p) —
z,(2N,p — 1) is the number of all Dyckwords we DY, (2N) which can be
recognized by algorithm D2WIC, where the maximum value of Z is equal to
p—that is, Z consists of exactly [Id(2p)| bits—we obtain

Lpawic CN)=d; ! (2N) Z Lpswic(w)

we DY, (2N)
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—d7'2N) T 11d@p)I[22N, p)— 22N, p—1)]

1<psN

="M N+1) Y (AR ([t(N+1,p+1)—t(N +1,p)]

1<psN
=t‘1(N+1)[ Y Yo A(N+1,j+1)—t(N+1,j)}
1A RN 241 gjg2d -1

+{1+dN) ]} Y {t(N+1,p+1)—t(N+1,p)}}

2l p <N

mowen 22y

1<A<|ld(N))

+{1+ [AN) [} {t(N+1, N+ 1) — (N +1, 2uawu)}}

=t YN+ 1)[{1 + dN) [ (N+L,N+1)— Y t(N+1, 2‘)].
1<A<|Id(N)]
Since t(N +1,N +1) = t(N + 1), we further obtain by the definition of the
cumulative distribution function ¥, (x) defined at the end of section 5.1.1 and by
an application of Exercise 5.2

’ L02W1C(2N) =1+ lld(N)J - Z VN+|(2A)

1 <A< [N)]

=1+ dN)[— T Vo (2*=1) + O1d(N)/N?)

1 <A< |Id(N)]

for some « > 0. In section 5.1.2 we have given an expression for the average
number m, (N) of variables appearing in a program produced by the optimal
algorithm OP. We have found

m;(N +1)= [Id2N +2)| —t (N +1) Y g(N +1,k),

1<k < IEN +2)]—1

where q(n, k) is the number of all ordered binary trees with N leaves which can
be reduced by algorithm OP requiring less than or equal to k variables. Using
Theorem 5.8 and the definition of V,(x), we further obtain

m(N +1)= IdRN +2)[ -t !N +1) ¥ N +1,20-1)

1<k< [ld2N +2)]

= [[d2N +2)| - Z VN+1(2/l —1).
1 AN +1)}
Therefore,

Lpwic@N) =1+ |Ild(N)] — [Id2N + 2)| + m,(N + 1)
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+ ) Vu+1(2* = 1) + O(d(N)/N*)

[1d(N)] <A < ldN + 1)

=m(N +1) + O(d(N)/N*),

because
1+ [Id(N)| — [ld2N +2)| + Y V(28— 1)
Ud(N) | <A< AWV + 1))
_ o ifN #2r—1
=72y fN=2 -1
where

1/2n—-2
re N and t(n)=—<n )
n\n-—1

Now an application of Theorem 5.10 leads to the following result.
THEOREM 5.19 Assuming that all Dyckwords w € DY, (2N) are equally likely,

the average space Lp,y,c(2N) required for recognizing we DY, (2N) by
algorithm D2W IC is asymptotically given by

y +2
21n(2)

Lpwic(2N) = $1d(87%N) — + F(N) + O(ld(N)/N*)

for some o > 0, where

1 . nik nik nik\ .
F(N) = o) _wzz_;(sw [2 o 1}1‘(111(2)){(2 ln(2)) exp(rnik 1d(N)).
k#0

F(N) is a bounded oscillating function with F(N) = F(@N). The maximum
space is Lp,y;,c(2N) = |Id2N)|. W

This result shows that the average space required by algorithm D2W IC for the
recognition of we DY, (2N) is equal to the average number of variables
appearing in a program produced by the optimal algorithm OP with a n-node
binary tree as input.

An appropriate measure for the time Tp,y,c(w), we DY, (2N), of the
algorithm D2WIC is the number of moves of the input pointer during the
recognition of w. We assume that in one unit of time the input pointer is moved
one position to the right or left and that the counter Z is increased or decreased
by one. Obviously, each move of the pointer corresponds to a change of Z and
vice versa.

LeMMa 53 Let weDY,(2N) with w=buy(bly, beB, y(b)eB,,
ueDY, (24 — 2),and ve DY, (2N — 24), 1 <41 < N. We have

Toawic W) = Toowic (W) + Tpowic(W) + 84 —1—6,, — O, n-
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Proof Evidently, each w € DY, (2N) has a uniquely determined representation
of the form w = buy (b)v with u, v € DY,. The number of moves Tpowic(w) of the
input pointer consists of:

(@) The number of moves required for recognizing u € DY, (24 — 2) (giving the
contribution T,y ,c (1))

(b) The number of moves required for recognizing v € DY, (2N — 24) (giving the
contribution Tp,y,c (V).

(c) The number of moves required for checking the pair of brackets (b, y (b)) €
B, x B, (giving the contribution 424 — 1)).
(d) the moves
(i) from b to the first symbol of u, if A #1;
(i) from the last symbol of u to (b), if A # 1;
(iii) from y(b) to the first symbol of v, if 1 # N;
(iv) from b to Y(b),if A =1
(giving the contribution 3 — §, y — 9,,).

The sum of these contributions yields our statement. W
Using Lemma 5.3, a simple induction on N leads to Lemma 5.4.

LeEMMA 5.4 Let w,,w,,w e DY,(2N), w, € BYBY and w, e (B,B,)". We have
6N — 1= Thwic W) < ToowicW) < Tppwicwy) =4N? +2N —1. W

Hence the maximum time of algorithm D2WIC is Tpuwic(2N) = 4N% +
2N — 1. Let us now consider the average time T p,,,c(2N). For this purpose, let

MQ2N) = Z Tnzmc (w)
weDY,(2N)

be the sum of all moves of the input pointer required for recognizing all
Dyckwords w € DY, (2N). We shall first derive a recurrence for M (2N).

LeEMMA 5.5

M@©0)=0

M@2N) =k [2M (24— 2) + (84 — 1)d, (24— 2)]d, 2N — 24) — 2kd, (2N —2).

1<ASN

Proof Obviously, we have M(0) = 0. Now let N > 1. We obtain by Lemma 5.3

M(2N) = Z Tpowic(w)

we DY, (2N)

= 3, 3. Y Tpowic(W)

1 SASN ueDY, (2A—-2) ve DY, (2N-24)
buy(blve DY, (2N)
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=k d 2N —2AMQ2A —2) + k d,(24 — 2)M(2N — 2})

I<AEN I1<AgN

N

+k [84 — 1 —3,, — 8,5 ]d (24 — 2)d, 2N — 24).

I1<AgN

This expression is equivalent to our statement. [l

Since d,(2N) = kMt(N + 1), Lemma 5.5 implies

M(0) =0
M@N) = 2kN+! M@Qi— 2k~ (N — 1 +1)
1<AEN
+kY Y @A— (AN — A +1) = 2kM(N), N =1

I<ASN

Now let M(z) = ¥ y50k™"M(2N)z" be the generating function of the numbers
k™M (2N). Translating the above recurrence into terms of M(z), we
immediately find

M(z) = 2zC(z2)M(z) + 82z%C(z)C'(z) + 7zC?(z) — 2zC(2),

where C(z) = ) yso t(N + 1)z is the generating function of the Catalan
numbers given by C(z) = (2z) (1 — /1 — 4z). Therefore,

M(z) = [82%2C(2)C'(z) + 72C*(z) — 2zC(2)]/[1 — 22C(2)]

3 1 1 4 2
=|l——-12|—/—m—m=+_—F+——=- /1 -4z +1
(2.2 ) 1 —4z 2z+1—4z z 2t

6n +5 (2n
— 4n+1_ n
}gl[ h +.1 (’l)]z

MQ@N) = kN(2¥YM(z) = kN[4¥*' — (6N + S)t(N + 1)].

Hence

Since the average time T,y ,c(2N) is given by
ToowicRN)=d '2N)MQ2N) = k™"t(N + 1)M(2N),

we obtain by Stirling’s formula
2N\ 1
Tpowic(2N) = 4N+1(N+1)<N) — 6N -5

== 4N. /7N — 6N + 4.5 /7N — 5 + O(N~1/?),

Hence we have proved the following theorem.

THEOREM 5.20 Assuming that all Dyckwords w € DY, (2N) are equally likely,
the average time Tp,w,c(2N) required for recognizing we DY, (2N) by
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algorithm D2WIC is asymptotically given by
Tpwic(@N) = 4N /N — 6N + 4.5 /aN — 5 + O(N~1/2),
The maximum time is Tp,y,c(2N) =4N2 +2N —1. W

In this section we have analysed the two algorithms DS and D2WIC. In
particular, we have proved for an input we DY,(2N), N > 1:

Time Space
Best Worst Best Worst
Algorithm  case case Average case case case Average case
DS 2N 2N 2N 2 N+l JaN+o)
bD2wiIC 6N —1 4N?42N -1 4N\/rcN+O(N) 1 - [I[d@N)|  %1d8=*N)+F(N)

(F(N)=F(4N))

For a simulation of algorithm D2WIC by a two-tape Turing machine see
Exercise 5.13.

5.3 Batcher’s Algorithm

5.3.1 Networks for Sorting

A comparator module C(x, y) is a device such as that shown schematically in
Figure 29; it consumes two input numbers x and y at a time, and produces two
output numbers MIN(x, y) and MAX(x, y). In other words, a module
exchanges its inputs, if necessary, to make the larger number appear on the
lower line after passing. A sorting network for sequences of length n is an
arrangement of cormnparator modules such as that drawn in Figure 30; moving
the n input numbers x,, x,,. .. ; x, from left to right, the comparator modules
exchange their inputs, if necessary, such that the output sequence y,, y5,. .., J,
is xq, Xs,..., X, in increasing order from top to bottom. Figure 31 illustrates
the transformation of a sequence of length 5 into a sorted sequence by the
above network. The modules which actually perform exchanges are marked *.

A sequence X, X,,. .., Xy, is called 2-ordered (see Exercise 4.4) if x; < x; .,
1<A<2n—-2. An odd-even merge is a sorting network for 2-ordered

Input QOutput
X —> MIN (x, y)
y > MAX {x, y)

FIGURE 29. A comparator module C(x, y).




184

Input Output

xg —e I A

FIGURE 30. A sorting network for five elements.

4 :::]:::: 3 —— 3 —o— 3 3 2 2 2
* ’-x-
3 4 —-—T—Z —_— 2 I 2 3 3 3
8 3 3 3 3 3
DO
3 8§ —t— 8 —&- 8 8
S
2 —e— 4 4 4 8 8 8

FIGURE 31. Transformation of 4, 3, 8, 3, 2 into the sorted sequence 2, 3, 3, 4, 8.

' ) ) ) )
H 1 ) ) )
£ ! £ ! £ ) £ )
E 0 ! 1 ! 2 ; latall] )
X @ ! 1 e ————- I
2n-2
Xan-1 === EE— —
X, S, S I—

FIGURE 32. Odd-even merge OEM (2n).

sequences. The odd-even merge OEM(2n) for sequences of length 2n drawn in
Figure 32 has been presented in [4].
The components Eg, E,, ..., Eqqq are defined as follows:

(a) E, consists of the comparator modules C(x;;_;,x,;), L <j <n.

(b) Let my = 2j + 2MM¥®I=i+! 1 E, ie[1:[ld(n)]] consists of the comparator
modules C(x,j, X, ) j =1,2,3,..., n— 2M™1=in this order from left to
right.

For example, let n=6. The odd-even merge OEM(12) is illustrated in
Figure 33
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i i

T 14

1 —I
X12'—l
£ £ £ £

o] 1 2 3

FIGURE 33. Odd-even merge OEM(12).

Now let C,, be the number of comparator modules appearing in OEM(2n).
Obviously, the component E, consists of n modules and E; i>1, of
(n — 2M4™-% modules. Hence

Copo=n+ Y (n—=20"1"") = p([Id(n)] + 1) — 211 4,

1<i<idin)] _
Since any merging method which can be represented as a network must use at
least 3n Id(n) + O(n) comparator modules to sort 2-ordered sequences of length
2n ([76]), the above odd-even merge OEM(2n) is, in this sense, optimal. Let us
turn to the number of exchanges required for a 2-ordered input sequence
consisting of 2n distinct elements. This number does depend on the input
distribution.

A representation of a 2-ordered sequence of length 2n as a path in a lattice
diagram (illustrated in Figure 34 for n = 6) is given in [76]. Starting at the
upper left corner (0,0), form a path whose k-th segment goes down (to the
right) if the k-th smallest element of the sequence has an odd (even) position.
For example, the 2-ordered sequence 2, 1, 4, 3, 7, 5, 8, 6, 9, 10, 12, 11
corresponds to the heavy line in Figure 34. The point reached after i steps
down and j steps to the right is denoted by (i,j). Thus the number of all 2-
ordered sequences of length 2n is equal to the number of all paths from (0, 0) to
(n, n). It is not hard to see that the sorted sequence corresponds to the ‘diagonal
path’ whose first segment is vertical (dotted line in Figure 34). Thus the merging
process consists of transformations from an arbitrary path to the diagonal
path.

Now some reflection shows that the components E;, 0 < s < [Id(n)], of the
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0,011
' 2
..... A 3;
4
Y O | 6
T } (0,0) .
- 4 /
5 8 I :
. J ’ {
H ]
¥ . 10| 11
’ 12
I
(6,6)
FIGURE 34. Representation of the 2-ordered sequence 2, 1,4, 3,7, 5,8, 6,9, 10, 12, 11 as
a path. :

odd—-even merge OEM(2n) transform the path corresponding to the input
sequence as follows:

(a) E, corresponds to ‘folding’ the path about the main diagonal i = j so that it
never goes above this diagonal.

(b) E, corresponds to ‘folding’ the path generated by E,, E,, ..., E,_, about
the diagonal i = j + 2M™1=s 5o that it never goes below this diagonal,
1 <s < [ld@m)].

Figure 35 illustrates this process for the sequence 2,1,4,3,7,5,8,6, 9, 10, 12,
11. '

This folding process yields an easy way of counting the number of exchanges
used to sort any particular 2-ordered sequence consisting of 2n distinct
elements. We assign a weight to each segment in the lattice which counts the
number of exchanges in which the corresponding element will be involved, if
the path includes that segment. Let f(i, j) be the weight of the vertical segment
from (i, j) to (i + 1,j). We shall derive a recursive definition of f(i,j):

(a) Since the folding is done along parallel diagonals, weights along diagonals
are constant. Hence

f(l’j)_{f(o,j—i) ifi <)

(b) The folding induced by the component E, transforms a vertical segment
from (0,j + 1) to (1,j + 1) into the horizontal segment from (j +1,0) to
(j +1,1) which has the same weight as the vertical segment from (j,0) to
(j +1,0). Hence f(0,j + 1)= f(3,0) +1,j = 0.

(c) The folding induced by the component E,,;; transforms a vertical
segment from (2 +j, 0) to (2' +j+ 1, 0), je|0:2' — 1], into the hori-
zontal segment from (2, j) to (2/, j + 1) which has the same weight as the
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N 2DLDONL P UWN =

1
2
j 3
4
D
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—
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12
N
NI
N1
BN
0

3

FIGURE 35. Sorting of the sequence 2, 1, 4, 3,7, 5,8, 6,9, 10, 12, 11. Modules which
actually perform exchanges are marked by ‘¢’; the heavy lines in the lattice diagrams
correspond to the paths after folding, the dotted lines before folding.

vertical segment from 2°—j—1, 0) to 2' —j, 0). Thus f(2i +j, 0) =
f@Q —j—1,00+1for0<i<[ldn)]and 0 <j <2/ 1.
(d) Since the sorted sequence requires no exchange, we have the initial

condition f(0,0) = 0.

This recursive definition of (i, j) shows that all weights are known if we know
the values f(j, 0),j = 0. In other words, knowledge of the values of the function

g defined by

g0)=0

g2t +j)=9g2' -j -1 +1,

i=200<j<2' -1,

suffices to compute all values f(i,j). Table 5 shows that this function has an

erratic behaviour.

However, there are two suitable interpretations of g(n):

(i) The binary representation of 2! —j — 1 (0 <j < 2Y) is obtained by invert-
ing the binary representation of 2' + j, that is, by changing 0 to 1, 1 to
0, and ignoring leading zeros. Thus g(n) is the number of times

TABLE 5. The first few values of g(n).

g(n)

0
0

1
1

2
2

3 4
1 2

5 6
3 2

.
1 .

9 1
3

0
4

11
3

12
2
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the binary representation of n changes parity. For example, g(363) =
g((101101011),) = 7, because .1.0.11.0.1.0.11 changes parity at ..

(i) The binary reflected code (standard Gray code) is an encoding of the
integers as sequences of bits with the property that the representations of
adjacent integers differ in exactly one binary position. For example, the
Gray code representations of the integers 0,1,2,3,...are 0, 1, 11, 10, 110,
111, 101, 100, 1100, 1101, . ... It is easy to see that an integer n is encoded
by the Gray code as the binary representation of h(n), where h(0) = O and
h(2? + A) =27 + h(2? — A — 1) for 0 < A < 27. Hence f(n) is the number of
ones appearing in the Gray code representation of n. For example, the
Gray code representation of 363 is 111011110 which implies again
g(363) =1.

Now, for any path through the lattice diagram, if we sum the weights of its
segments and divide by two (each exchange involves two elements), we get the
total number of exchanges used to sort the 2-ordered sequence corresponding
to that path. Since the sum of the weights of a path’s vertical segments is equal
to the sum of the weights of its horizontal segments, both sums count the
number of exchanges. Henceforth, we shall consider only the sum of weights of
vertical segments. The number of exchanges in the worst and average case was
first derived in [109]. We shall briefly discuss both cases in the subsequent
sections.

5.3.2 The Number of Exchanges in the Worst Case

We have to find the maximal possible weight of a path in the lattice diagram,

where the weight of a path is the sum of the weights of its vertical segments.
The k-th major diagonal A,, k=1,2,3,..., is a path defined as follows:
proceed right along the top line of the lattice diagram until encountering the
first horizontal segment with weight k. Then proceed down and to the right
along the diagonal segments with weight k. After reaching the right-hand
vertical line of the lattice diagram, proceed down to (n, n). Figure 36 illustrates
all major diagonals together with their weights for n = 7.

12323473 1232343 1232343 1232343
1 3 2 3 3 3 4 (3
11 4 212 4 313 4 414

111 3 2|2 3 313 3 3
1h 2 212 2 313 |2 2
K 3 2213 313 3
1 ]2 212 2 2
" 1 1 1
A, A, A, A,
(weight 7) (weight 13) (weight 18) (weight 19)

FIGURE 36. The major diagonals A, forn = 7.
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Exercise 5.14 shows that the path of highest weight through the lattice
diagram is one of the major diagonals. Therefore, our problem is reduced to
finding the weights of all major diagonals, and the maximum of these. For this
purpose, let w, be the weight of A, ., ke Ny, and g 1 (k) = MIN{j|g(j) = k},
where g(n) is the arithmetical function defined in section 5.3.1. Moreover, let
G(k) = ZOSK,( g(j). With these notations, A,., has n— g !(k) vertical
segments along the diagonal with weights k + 1, and g ™! (k) vertical segments
along the right-hand vertical line of the lattice diagram with the total weight
G(g~'(k)) + g~ '(k). Thus

w, = (k +n + G(g™" (k) — kg™ " (k).

Using the first interpretation of g(k) given in section 5.3.1, we see that the
numbers whose binary representation alternate between 0 and 1, change parity
most often. Thus the first numbers j with g(j) =k =0,1,2,3,4,5,... are j =
0,1,2,5,10,21,..., whose binary representations are 0, 1, 10, 101, 1010,
10101,. .., respectively; it is easily shown that these numbers are given by
(2¥*2 — (=1)* — 3)/6. Hence g ~*(k) = (2**? — (—1)* — 3)/6. An application of
Exercise 5.15 leads to the explicit expression

G(g (k) = F5[ Bk — 1)2* 1 — 9k — (= 1)*(3k — 2)].

Inserting these expressions for g ! (k) and G(g ~!(k)) into the above relation for
w,, we find

w, = n(k + 1) — 5[Bk + 1)2* — (= 1)¥].

Thus the weights of the major diagonals A, A,, A3, Ay, As,... are wy =n,
w,=2n—1,w,=3n—-3, wy=4n -9, w, =5n— 123, ..., respectively. We
have now to find EM* = MAX, ., (w,), where k, is the index of the last
major diagonal, that is, the largest integer satisfying g(k,) < n. EM*X is the
number of exchanges in the worst case. Since w, is increasing for small k£ and
decreasing for large k, the index k with w, = E/™* is the largest integer for
which the difference w, — w, _, is positive. Thus

k = MAX{j|53j + 42771 — -1y <n},
because
Wk - Wk—l =n— %2k—1(3k + 4) +%(_ l)k-
Since
n =ik + 425 — H—1)k

=23k + 42 — 4] 2427~ (- = 3] =g (),

the maximum at k is realizable. Starting with the inequalities which define k,
that is,

13k + 4)2¢ ' — H—1)* <n < Bk + 72" + H- D),
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we find by taking the logarithm
k<ld@Bn +3(—-D" -1k +% +1 (i)
k > Id(3n — 3(— 1)) — ld(k + D). (ii)
Iterating these inequalities leads to
k<Ild@n+3#-1D)Y-1dE+1dBn —2-DYY —1dk + D +1 ()
= 1d(3n) — 1d(1d(3n)) + O(1)
k>1d3n —3(— )" - A& +1d@3n + (- —1dk +3) (i)
= 1d(3n) — 1d(1d(3n)) + O(1).
Hence
k = 1d(3n) - 1d(1d(3n)) + O(1) = Id(n) — 1d(Id(n)) + O(1).
Substituting this into the formula for EM*X = w, , we obtain
EM™ = n1d(n) — nld(d(n)) + O(n).
Summarizing our results, we have proved the following theorem.
THeorReM 521 The maximum number EM** of exchanges required by the

odd-even merge OEM(2n) for sorting a 2-ordered sequence consisting of 2n
distinct elements is

EMA = (k + )n — 3[(3k + 1)2* — (= D*],

where k = MAX{j|5(3j + 92/~ — {—1)) < n}. Asymptotically, we have
EM™ = nld(n) — nld(d(n)) + O(n). A

The percentage of comparator modules that perform exchangeé in the worst

case is the ratio EM*X/C,,, where C,, is explicitly computed in section 5.3.1. We
find immediately that

EMAX/C, =1 — 1d(d(n))/Id(n) + O(d~1(n)).

Thus the ratio tends to 1 very slowly for n — 0. Theorem 5.21 was first proved
in [109].

5.3.3 The Number of Exchanges in the Average Case

The number s(n) of all 2-ordered sequences consisting of 2n distinct elements is
equal to the number of paths from (0, 0) to (n, n) in the corresponding lattice

2
diagram. Therefore, s(n) = (:) (see Example 4.3 with n:= 2n and p := 0). Now

the number of paths from (0, 0) to (i, j) is clearly (l j]>’ and the number of
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2n—i—j—1
n—j

=i+j, p=i—j,and ni=2n—i—j—1, p:=j—i—1). Thus the total
number of paths which pass through the vertical segment from (i, ) to (i + 1, )

. i+j\(2n—i—j—1Y\ _. : .
is equal to ( j J)( N _jj ) Since the weight of this segment is f(i, j)

defined in section 5.3.1, we obtain for the average number E, of exchanges
required by the odd-even merge OEM(2n) for sorting a 2-ordered sequence
consisting of 2n distinct elements

E, = o§<,.o§<,. fG, J)(l +J><2n _ni—_jj i 1>/<2"n>'

Splitting the sum on j, we further obtain by elementary manipulations

_ oo fi+iN[2n—i—j—1 2n
E"_os;qogsif(ld)< J >< n—j >/<n>
i+j\(2n—i—j—1 2n
+0§<nl<jz<" f( ( )( n_j >/<n>

=Y Y [fGi-j)+fn—i-1, n—z+1)]<2’_’><2"_2i.+j_1)/(2").

0<i<n 0<j<i n—i—1 n

paths from (i + 1,j) to (n, n) is ( ) (see again Example 4.3 with

From section 5.3.1, we know that f(i,i — j) = f(j,0) = g(j) because i =i — j,
and that fm—i—1,n—i+j)=f0,j+1)=f(,0) +1=g(j)+1 because
n—i—1<n—i-—j Therefore,

- % ot +135,, (7))

0gj<n

2i +j\(2n—2i—j—1
S, ;= .
" i;)( i ><n_i_j_1>
Generally, we have the identity (see [ 76])
r+tk\[(s—tk r+s—k
= £,
Eo( k )("‘k> k§0< n—k >
Using this relation with k:=i,t:=2,r:=j,n:=n—j—1,and s:==2n—j— 1,

we obtain the alternate
2n—i—1 .
S .= 2!
" i;(n—i—j—l)

where

A simple computation shows that S, ; satisfies the recurrence

2n
S’l,j = Sn,j-'l - (n —J>,
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which has the solution

2n
S’l,j = S"’O - z ( >.

ocac; \B—Jj+ 4
By definition of S, ;,

L (2n—i—1)\_. i\[2n—i—1
S o= 2= .
"o i;)(n_i_l) i§)0§<i(i><n_i_1>

An application of Exercise 1.3 with s:=0, k:=i, u:=j, r:=2n—1, and
w:= n leads to
2n
S, o= .
0 j;)<n +j+1>
Theretore,

2n' 2n 2n
S .= ' — ' = _
’] i;) (n +J +1> qu' (n_f +)“> osig—j—l <)“>

Inserting this expression into the above formula for E,, we find

2 2
E,= Y [eG)+1] 3 <1>/<>

Changing 4 to n — 1 and interchanging the order of summation, we get the
equivalent expression

g 2 ()

_ k; [2G(k) + k] (,, 2—nk>/ (2:) ’

where G(k) = Y o¢; i 9(j), defined in section 5.3.2. Since

2n n(2n
k -
k; ("’k> 2(">’

we have proved the following theorem.

THEOREM 5.23 Assuming that all 2-ordered sequences consisting of 2n distinct
elements are equally likely, the average number E, of exchanges required by the
odd-even merge OEM(2n) for sorting such a sequence is given by

. 1 2n 2n
E, =3in+ 2k§l G(k)<n ~ k)/(n >,

where G(k) is the total number of ones appearing in the Gray code representa-
tions of the integers 0,1,2,...,k—1. W
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This theorem, which was first proved in [109], shows that we have again to
evaluate a sum which is similar to those presented in Theorems 5.1 and 5.9: the
terms consist of a quotient of binomial coefficients times an arithmetical
function.

Since

(2 )ee, -1

2
—2:4" Y G(k)<n_"k>

k>1
2n—-2 2n—-2 2n-2
=2-47" G(k
k; ()[(n—k>+2(n—k—1>+(n—k—2>]
2n—2
=2-47" Glk+1
|:k22:0 et )("_k_1>
2n—-2 2n—-2
2N Gk Glk—1
L ()<n—k—1>+,§2 ( )<n—k—1>J

-2 _2
=4-"“( " )[E"_l—%<n—1>]+2-4-" » [g(k)—g(k—n]( -2 )

n—1 k=1 n—k—1

2
we obtain a simple recurrence for 4""<nn>[E,, — n/2]. Solving leads to the
alternate
(2) 2
E,=jn+4 ¥ 4<’>Y/< ">,
lgj<n J n
where

2 N 1/
Y=Y [g(k)—g(k—l)](,. ’k>/<,’>.
k>1 - J

Thus, if we are able to derive a closed expression for the Dirichlet series with
coefficients [g(k) — g(k — 1)], the gamma function method can be applied in
order to obtain an asymptotic equivalent for Y;,. Using Exercise 5.15, we find

2. [gk) — gk — D]k™*

k=1

=) > [9@@+ 1) — 9@ +1) - D)[2°Q + VI™*

520,20

=¥ ¥ (~127 =+ )
52020

=y 2=y (-2 +D7E
520 j=0

= 2°2)/[2* — 1],
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where f(z) = )50 (— 1)/(2j + 1) 7. Since

B(z) =2 Z 4k + 1) — Z k™7 + Z k)~ *

k>0 k>1 k=1
=2:47{(z,9) — 2° = 1)27%(2),

where {(z, a) is the Hurwitz zeta function (Appendix B, 2.13), we finally obtain

kzl [g(k) — gk — )]k =272712" = 1) {(z, 3) — {(2).
The existence of this simple formula makes the gamma function method
applicable to Y;,. The further computation is left to the reader (Exercise 5.16).
We will conclude this section by presenting an alternative method for the
evaluation of sums of the above type. This method has first been used in [28],
in order to prove Theorem 5.10 (see also [33]).

Recall that
E=n+2Y 6l 2 )/[(*
" s 2 k?l n - k n

where G(k) = Y o<« 9(j) is the total number of ones appearing in the Gray
code representations of the integers 0,1,2,...,k—1. The Gray code
representations of the first 16 integers together with the values of g and G are
presented in Table 6. Note that the k-th column consists of an infinite

TABLE 6. The Gray code represen-
tations of 0,1,...,15 together with the
values g(n) and G(n).

k

n 3210 g(n) G(n)
0 0 0 0
1 1 1 0
2 1 1 2 1
3 1 O 1 3
4 1 1 0 2 4
5 1 1 1 3 6
6 1 0 1 2 9
7 1 00 1 11
g8 1 1 00 2 12
9 1 1 01 3 14
0 1 1 11 4 17
1M 1 1 10 3 20
12 1 01 0 2 23
13 1 0 1 1 3 25
14 1 0 0 1 2 28
15 1 0 0 0 1 30




195

repetition of the block of bits 02°12*"'0%". In some sense, we can say that each
position in the table has an expected value ;. Let A,(n) denote the difference
between the number of ones actually present in the first n positions of column k
and the numbers of ones which we would expect to find there, that is,

An)y= =+ 3 p(),
0gj<n

where p,(j) denotes the k-th bit in the Gray code representation of j. As
mgntkio‘neg above, the k-th column consists of an infinite repetition of the block
0%'12 " 0?%. Therefore,

0 if A=0mod (4) v 1 =2mod @)
A (A2 = { =2k"1 if 1 =1 mod (4) ;
2k-1 if =3 mod (4)
moreover, between these special values of n, the graph A, (n) consists of linear
segments. Hence A, (n) = 2X*2A(n2 7%~ 2), where A(x + 1) = A(x) for x >1 and
—3x fog<x<i
Ax)={Ix -1 iflgx<i
-Ix+3% fi<x<l

Note that A(x) = 0 for x € N,; moreover, it is easy to verify the alternative
form

A(x)=J (t+21—1t+31-Hde.
0

Since all the columns in Table 6 of index k > |ld(n)| begin with at least n
zeros, we further obtain

Gm= 3 gi)= 2 X nli)

0gj<n 0<j<n k=0

= Z [Ac(n) + 3n]

0<k< [1d(n)]

=n(ldm)| + 1)+ Y 27Am277Y)

0<k < [ld(n)
— %n([ld(n)] + 1) + Z 2[ld(n)|—k+2A(n2—[ld(n)]+k—2)
k>0
= Ln(ld(n)| + 1) + 2W@I*2p(p2 MmI=2)
where h(x) = Y502 JA(2/x). Since this series converges uniformly on R, the

function h(x) is continuous. Denoting the fractional part x — |x| of x by {x},
this expression for G(n) can be easily transformed into
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G(n) = inld(n) + nF(d(n)),
where
F(x) = 3(1 = {x}) + 22~™p2M-2),

Obviously, F(x) is periodic and continuous on [0,1) by continuity of h.
Moreover,
FO =3+4n@)=3+4) 277A2" ) =1 +4-5+0)=
j=0

Since F(x) approaches 0 as x approaches 1 from below, F is continuous on R.
Let us now compute the Fourier series of F given by

Fx)= )  fiexp(2kmix),

—w<gk<w

where

1
fi = f F(u) exp(— 2kniu) du.

0

By definition of F(u), we find f, = a, + b, where

f (1 — u) exp(— 2kmiu) du
: l—fu)|0 ifk=0

1
_ - _ . 1 .
yy 2km 1+ u) exp(—2kmni)|, ifk#0

ifk=0
lL ifk+#0
k

f 227 up(24~2) exp(— 2kmiu) du.

and

Since h(x) = Y50 2 /A(2x), b, can be transformed into

1
be=7Y. 2274 IA(2¥ 7 2) exp(— 2kmiu) du.

jz0 Jo

The interchange of summation and integration is justified because h(x) is a
uniformly convergent series. Substituting u = 2 — j + ld(v), we further obtain

y oo | 7T A )
* T InQ) 5 Jy-2 v? + 2kni/In(2)

1
m M(1 + 2mik/In(2)),
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where

M(z) = J‘w A()/v**! do.
1

/4

Using the above integral representation of A(v) and integrating M(z) by
parts, we find

M(z)='[oo [fv([t+%1— [t+%]—%)dtj|/vz“dv.
1/4 L.JO

o]

=—fwﬂMmm+r*f(w+%—w+ﬂ—wa
1/4

=—3z7 471 4 71 f (lo+3]—lv+% - Hrdz
1/4

Thus we have to evaluate this integral. Since for Re(z) > 2, a € {0, 1],

1 (*d
—J S =Yz -1

and

(z—=1) J‘w l[v+1—alp™dv=1lim (z —1) J‘n+a lv+1—afv™*dv

n— o a

a+A
= lim ) ij (z—1p *dv

n—w | <i<n a+i-1

=Y Afla+4—1)""*" — (@ +4)"=*"]

Azl

'= Z (i +a)—z+1

Azl

= C(Z - 17 a)7
where ((z, a) is the Hurwitz zeta function, we further obtain

1 e 1 PN
2(2 - 1) 4+ Z(Z _ 1) [C(Z 1 4) C(Z 1, 4)]

M(z)=—

for Re(z) > 2. By analytic continuation, this equation also holds for Re(z) > 0
with z # 1. Finally, an application of (B132) with /| =2 and /=4 leads to
Uz, 2) = (4 — 29¢z) — Uz, L); hence

1
- [20z - 1,9 — @' = 2271z - D]

42"1 +

M) = - 2z —1) z(z
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Therefore, by, = M(1)/In(2), and for k # 0

b, M(1 + 2mik/In(2))

~ Q@

_ 1 + In(2) ¢ nik 1
4nik  mik[2nik + In(2)] In2)’4)
An application of (B126), (B127), and (B73) yields immediately

M(z)=2In(T'&) — $In(2) — In(n) — £ + O(z — 1);
hence

1
bo=2 ld(l"(%)) - % — ld(n) — m

Summarizing our results, we obtain the following theorem ([33]).
THEOREM 5.24 Let G(n) be the total number of ones appearing in the Gray

code representation of the integers 0,1,2,3,...,n—1. There exists a
continuous function F: R— R, periodic with period 1, such that

G(n) = inld(n) + nF(d(n)).

The Fourier series F(x) = Y _ 4 << Sk €XP(2kmix) of F converges absolutely,
and its coefficients are given by

1 5
fo=2 ld(l"(%)) —Id(n) — ZT(Z) - Z’
____h ik 1
Je= kni[ 2kni + In(2)] ‘:(2 In(2)’ 4)’ k#0

where {(z, a) is the Hurwitz zeta function. W

For similar results concerning such sums, see [22], [33], [84].

We will now use Theorem 524 in order to compute the asymptotic
behaviour of the average number E, of exchanges required by the odd-even
merge OEM(2n) for sorting 2-ordered sequences consisting of 2n distinct
elements. Applying the approximation (F4) (section 5.1.1) to the result given in
Theorem 5.23, we find

E,=in+2 Y  G(k)exp(—k*/n)[1+ O(n~'*%)],
1gkgnl/3+e
because the terms for k > n'/2*¢ are exponentially small. Taking advantage of
the information on the structure of G(k) presented in Theorem 5.24, we further
obtain

E,=in+2 3 [bkId(k) + kF(d(k)] exp(—k¥m)[L + O(n~'**)].

lsksnlﬂ‘#u
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Splitting this sum into two parts, we find

E, =i+ [S,(n) + 2S,(n)][1 + O(n~'*%)],
where

Simy= 3  kld(k) exp(—k?/n)
lSkSn”z+"

and

S,(n)= Y  kF(ld(k)) exp(—k?/n).

lskSn”“"

For §,(n), we can use Euler's summation formula (Appendix A, 7) and obtain by
an elementary computation

S,(n)= f ‘x Id(x) exp(—x2/n) + O(n'/2*%)
1

- r x 1d(x) exp(—x?/n) + O(1) + O(n'/2**)
1 .

Qo e o}

= Inld(n) t exp(—t3)dt + _n t In(t) exp(—t2) dt + O(n'/2+?)
o In(2) o
=i1d _ _ v O(nt/2+¢
an 1d(n) 710Q) + O(n'/2*9),

* because the first integral is equal to 1 and the second integral is equal to —y/4.
Let us now consider the sum S,(n). Since the function F(x) is not
differentiable, Euler’s summation formula is not applicable. However, the sum
S,(n) can be handled as follows:
Recall that
F(x) = $(1 — {x}) + 22" Wh(2¥-2),
where

h(x) =Y 27/A(2'x).
jz0
The definition of A(x) implies that this function has maximum slope ; hence
A(x) satisfies the Lipschitz condition |[A(b) — A(a)| < 3|b — a|. Now let I, be an
interval of length 1/k. Splitting up the sum for h(x) at the |Id(k)|-term, we find
that

hix)= Y  27IA(2x) + 27 MWIpQM@Ix),
0<j< lld(k)|
Since 2-LdWIp(2MKWIxy = O(1/k) and the summation involves |Id(k)| terms,
each of which satisfies the above Lipschitz condition, we get osc(h(x), I,) =
O(k~! 1d(k)), where osc(f(x), I) denotes the oscillation of the function f on the
interval I defined by osc(f(x), I) = sup,, f(x) — inf,., f(x). Returning to F(x),
we may conclude that osc(F(x), [ld(k), ld(k + 1)]) = O(k~' Id(k)), because the
length of [1d(k),1d(k + 1)] is essentially 1/k. Thus
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osc(xF(ld(x)) exp(—x?/n), [k, k + 1]) = O(d(k))
and

< Y 0(d(k)) = O(n'***1d(n)).

I <k<n'/2*

S,(n) — J‘" | xF(ld(x)) exp(—x2/n) dx

1

This relation follows from the well-known result that

b
Jf(x)dx_ Z (x; — X2 )f (%)

a O<ign

< (b — a) sup osc(f, [x;, x;+1]),

O<ign

where f is continuous on [q, b] and x;, 0 <i < n, is an increasing sequence of
points of [a, b] with a = x, < x; < x; < - < x, = b. Changing the limits of
integration to 0 and oo, only an additional 0(1) term is introduced. Therefore,

S,(n) = fw xF(Id(x)) exp(— x%/n) dx + O(n'/2*¢1d(n)).

0

Substituting the Fourier series of F (which converges absolutely), we may
interchange summation and integration and obtain with Theorem 5.24 and
(B106)

S,(n) = f f x!+ 2k exn(—x2/n) dx + O(n'/2*¢1d(n))
— 1y £, explkni 1d(n)) f peritnd ex o £y dt + O(n"/2**1d(n))
© 0

, ik
= 1n foexplhmi [dE)C[ 1+ | + O@Y2**1d(n)).
- k<o ln(2)

Summarizing our results, we have proved the following theorem.

THEOREM 5.25 Assuming that all 2-ordered sequences consisting of 2n distinct
elements are equally likely, the average number E, of exchanges required by the
odd-even merge OEM(2n) for sorting such a sequence is asymptotically
given by

y+2 3

E,=inld(n) + n[ld(l‘z(};)/n) ~ 4o 4 + H(n)] + 0(n'**¢1d(n))

for all ¢ > 0, where

~ nik k1 )
H(n) = _w; [k + In(2)] xr<m)c<z % Z) exp(ki 1d (n))

k#0

is an oscillating function with H(n) = H(4n). W

Theorem 5.25 has first been proved in [109] by an application of the gamma
function method; there is shown that the error term can be reduced to
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O(\/;z 1d(n)). On the other hand, the method that we have just described seems
somewhat more straightforward and direct than the gamma function method.

Exercises

5.1 Use the functional equation I'(z +1)=:zI(z) in order to show that
Res,. ., T(@)=(-1)"/r!, reN,.
5.2 Let V,(x) be the cumulative distribution function given in Theorem 5.5.

(a) Show that V,(x) is strictly increasing for x > 0.
(b) Show that V,(x) -~ V,(x —1) = O(n~") for some « > 0.

5.3 Show that complete ordered binary trees with n leaves can always be reduced by a
(1d(2n) |-program.

5.4 (Open) Give an explicit one-to-one correspondence between the classes of trees
defined in Theorem 5.8.

55 (a) Compute the higher moments defined in Theorem 5.9.

(b) Let ¥,(x) be the probability that an ordered binary tree with n leaves can be
reduced by algorithm OP using less than or equal to k variables. Derive an
expression for V,(x).

5.6 Prove Lemma S5.1.

5.7 (Open) Give an explicit one-to-one correspondence between the classes of trees

defined in Theorem 5.13.

5.8 Prove Theorem 5.16.

59 Prove Lemma 5.2. _ _

5.10 Let B, = {b}, B, = {b}, and PO(T) be the post-order of the nodes of an ordered

binary tree T with a set of leaves L and a set of interior I; moreover, define the

monoidhomomorphism ¢: (I VL)* — (B, WB,)* by ¢(x):=if x € L then b else b;.

(a) Show that @(PO(T))b € DY,, where DY, is the Dycklanguage with one type of
bracket.

(b) Give a one-to-one correspondence between the set of Dyckwords of length 2n and
the set of ordered binary trees with (n + 1) leaves.

5.11 Show that the number z, (2N, p) of all Dyckwords we DY, (2N) which can be
recognized by algorithm D2WIC using a maximum value p of Z is equal to the number
d,2N,p + 1) of all we DY,(2N) requiring a maximum stack length (p + 1) during the
recognition of w by algorithm DS. '

5.12 Prove Lemma 5.4.

5.13 Consider the following implementation of algorithm D2WIC on a two-tape off-
line Turing machine T': the moves on the input tape are identical to the moves of the
input pointer in the description of D2WIC; the binary counter Z is simulated by the
second tape of T as follows: performing the operation Z «— Z + 1 (Z «— Z — 1), the head
moves from the rightmost position in (Z), to the left and replaces all ones by zeros (all
zeros by ones) until it has found the rightmost zero (one) in (Z),; after replacing this
symbol by one (zero), it starts back until the rightmost position in the new inscription is
reached. Thus the average number 7(2n) of moves required by T for recognizing
we DY, (2n) is given by ©(2n) = Tpw,c(2n) + T,(2n), where T,(2n) is the average
number of moves on the second tape.

(a) Show that for all 6 >0

4 8
T,(2n) = (8n + 9)/nn — 8(n + 1) ld(4n/n) + n[l—(% 24 s Fo(n)]

12y—4 4 4 8 5
12+ e+ T ) = 3y Fal) + gy Fol) (%),
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where
, nik nik )
Fs(n) = _wkgtgw F(S + m)((z E](T)) eXp(TElk ld(n))
#0

is an oscillating function with F (n) = F (4n).
(b) Show that, for large n, one move on the input tape corresponds to two moves on the
second tape, on average.

5.14 Consider the lattice diagram introduced in section 5.3.2. Show that the path from
(0, 0) to (n, n) of highest weight must be one of the major diagonals.

5.15 Let g(k) be the number of ones in the Gray code representation of ke No,
g~ (k) = MIN{j|g(j) = k}, and G(n) = 3 o<, <, g(k).

(a) Show that
g2+ 1) = (-1 + g(2°Q2j + 1) = 1) fors,je N,

(b) Show that
G@2") =n2""1,

(c) Letn >0 and 2""! < k < 2" Show that

Gk)=(n-=22""'+k - GQ2" - k).
(d) Show that
g 'k)=2*-1—-g 'k—=1) fork>1.
(¢) Show that '

Glg7' k) =g k) + k—22*"' —(k—1)— G(g™"(k—1)), k=>1.
(f) Deduce from (b), (c), (d), and (e)
G(g~'(k)) = 5[ (3k — 1)2¥*! — 9k — (3k — 2)(—1F].

5.16 Prove Theorem 5.25 by the gamma function method.

5.17 Prove Theorem 5.10 by the method presented at the end of section 5.3.3.
(Hint: Show the following result ([22]) which is quite similar to that given in Theorem
5.24:

Let § 2(k) be the number of ones appearing in the binary representation of k € N, and let
F(n) =Y gck<n S2(k). There exists a continuous function M: R - R, periodic with
period 1, such that for n >1: F(n) = 4n1d(n) + nM (d(n)). The Fourier series M(x) =
Y w<k<oo Ji €Xp(2knix) of M converges absolutely, and its coefficients are given by
fo=3%1d(n) 1
02 2InQ2) 4
In(2) (2 kni
2kni[In(2) + 2kmi ] In(2)

5.18 (Open) Give a detailed average case analysis of the time required by algorithm D,
for reducing ordered binary trees with n leaves.

5.19 Reducing an ordered binary tree T with n leaves by algorithm S, in one unit of
time, zero or two nodes are removed from the top of the stack and one node is stored in
the stack.

fe= )k#%

(a) Assume that all ordered binary trees with n leaves are equally likely and show that
the average number R(n,t) of nodes stored in the stack after ¢ units of time is
given by

2n—1

B _ 3 (2t +b\(2n—2t—b\ [(2n
Riln 20+ 0)=2 5 ) on—2i—b) k§0(2k+b) (t—k)< n—t+k )/(")
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where b € {0,1}.
(b) Prove the identities

. . 2n 2m \ m2n? 2m\ [2n
@ k§0(2k) (n - k><m+k>—4(m+n)(m+n—1)(m)(n)
. 32 +1\/2m —1 _ 2m — 2\ /2n

(i) k§0(2k+1) (n—k><m+k)—w(n’m)<m—1 )(n)’

where

_ 2n+1)2m -1)
win,m) = ey wa— [@n +1)2m —1) — (n + m)].

(c) Deduce from (a) and (b)
Ri(n,t) = 4/np(1 — p)/n + O(n~11?)

where p = t/(2n) is a constant.

2t + b\2n — 2t - b\ [/2
(d) Find an approximation for " " and deduce from (a) by
t—»b n—t+k n

the gamma function method

Ry (n,t) = 4/np(1 — p)/n — [5p* — Sp +1]/[2/np(1 — p)n] + O(n~'*?)

for all & > 0, where p = t/(2n) is a constant.
(e) Show that the variance is for all ¢ > 0 given by

o’(n, 1) = <6 - 1;?)0(1 —pn + (9 - 1—0),0(1 —-p)— (2 - %) +0(n~"2*9),

5.20 Let DY, be the Dycklanguage with one type of bracket. The level of a bracket
appearing in w € DY, is the number of preceding opening brackets minus the number of
preceding closing brackets. Assuming that all Dyckwords w € DY, (2n) are equally likely,
compute the average maximum level of a bracket appearing in w.

5.21 Assume that all n-node ordered trees with m leaves are equally likely and show
that the average height h(n, m) is asymptotically given for all § > 0 and fixed p = m/n,

0<p<l, by
hin,m) = /17 T /o + 3= 1/p + Olln(an"*~%)




Appendix A

1. Basic Definitions of Probability Theory
1.1 Real Valued Function

A real valued function F(x) is called a (univariate) cumulative distribution
function if (i) F(x,) < F(x,) for x; < x,, (i) F(x) =lim,,,, F(x + ¢), and (iii)
lim,,__ F(x)=0,lim__ F(x)=1.

The function F(x) signifies the probability Pr(X < x) of the event ‘X < x’,
where X is a random variable, i.e. Pr(X < x) = F(x). Discrete distribution is
characterized by the random variable X taking on an enumerable number of
values ..., x_,, X, X1, ... with point probabilities p, = Pr(X = x,) > 0, where
Z—oosksoo P = L.

1.2 Characteristics

E(X") =) Xipx (n-th moment about the origin of X) (Al)
k
E(X) =) x:Px (mean or expected value of X) (A2)
k
o2 = E((X — E(X))*)
= E(X?) - E(X)? (variance) (A3)
o = [E(X?) — E(X)*]'*  (standard deviation) (A4)

1.3 Relations

Let X be a random variable which takes on non-negative integer values. The
function P(z) = Y ,,0 pa2" is called the probability generating function.

E(X) = P'(1) (AS)
E(X?) = P'(1) + P(1) (A6)
o*(X) = P'(1) + P"(1) - [P (1)]? (A7)
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d n
E(X") = (Z a) P(z)|,=4 (AB)
Pr(X — E(X)| > ko) <k~* (Chebyshev inequality) (A9)

2. Grammars—Formal Power Series
2.1 Context-free Substitution Scheme

A context-free substitution scheme is a 4-tuple G = (Vy, Vr, P, S), where (i) V, is
a countable set of non-terminals, (ii) V; is a countable set of terminals, (iii) P <

Vi x (Vy Y Vp)* is a countable set of rules or productions and S € Vj, is the start
symbol. A context-free substitution scheme is called a context-free grammar if
the sets Vy, Vr, and P are finite. Here, G is said to be linear if P = V,, x (Vy, V; Y
ViVy Y Vy U {e}), where ‘¢’ is the empty word (unit element) in the free
monoid (Vy Y Vy)* generated by V, UV, that is, the set of all strings (words)
obtained by juxtaposition of the elements of V U V;. Here, G is proper if there is
no production in (4, w)e P with w = ¢ or we V.

The relation —, = (Vy Y V3)* x (Vy YVp)* is defined as follows: for any
a,fe(VyVVr)*, a—, B if and only if a =a,da,, f=a,ya,, a, € V¥ and
(A,7) e Pforsome A € V,, and «,, a, € (Vy Y V;)* The string B is derivable from
o by G if a ¥, B, where %, is the reflexive—transitive closure of —,. The set
Z,(G) = {w e V¥| A, w} consists of all derivable words from the non-terminal
A; %(G) is called the language generated by G. A context-free substitution
scheme is unambiguous if there is exactly one derivation S %, w forallw e %5(G).

2.2 Formal Power Series

A formal power series over the free monoid X* is a mapping r: X* — N,
written symbolically as r = ) .y r(w)w, where r(w) is called the coefficient of
w. Defining r, + r, and r, ‘- r, as the formal power series having the coefficients

(ry +r2)(w) =ri(w) +r,(w) and (r;-r;)(w) = Z riwy)ra(wy),

wiwae X w=ww,

respectively, the set of formal power series forms a semi-ring. This semi-ring
also has an operation of scalar multiplication by elements of N,,.

2.3 Relations

Let G= (Vy, Vy, P, S) be a context-free proper substitution scheme. The
formal power series car(Z,(G)) = Y .cp-car(Z4(G))w)w, AeV,, where
car(Z,(G)w)=1 if we £,(G), and car(ZL,(G))(w)=0 if w¢ Z,(G), is the
characteristic power series of %, (G).
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The set of formal equations
{A = ) wlde VN}
we{ul|(A,u)eP)

is the set of equations induced by G.

Fact: Let G be a context-free, proper, unambiguous substitution scheme. If we
substitute car(.#,(G)) for each occurrence of 4 €V, in the set of
equations induced by G we get a true set of identities in the corre-
sponding semi-ring of formal power series.

This relation does not hold for ambiguous schemes.

3. Generating Functions
3.1 Ordinary Generating Function

The ordinary generating function for a sequence a,, a,, a,, ... of numbers is the
power series  A(z) = Y ,.0a;z. The exponential generating function for
ao, Ay, ay, . .. is given by A(z) = >0 a,2Y/il.

1 4" d"
= — A , = Al
all n ! dzn (Z) i=0 an dz" A(z) 220 ( 0)
a, = (2Qni)~! J z " 1A(z)dz (A11)
C

(A(z) is analytic for |z| < r and continuous for |z| < r, r > 0; C is the contour
|z| = r and the integration is counterclockwise.)

3.2 Principal Generating Functions

l—z)" 1= (" * k)z" (A12)
o\ Kk
exp(z) = ), Z¥/k! (A13)
k>0
In(l 4+ z) = Z (= 1)k 1zkk (A14)
K>
In(l—2z)=— Z ¢k (A15)
k> 1
l—2z)"12=3% (2k>4""z" (A16)
Kso \ K

| B L (2k\, |
(J[_‘/1_42)/(22)_k20k—+_1—(k>z' (A17)
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For further generating functions see (B1), (BS), (B11), (B12), (B33), (B38), (B42),
(B47), (B50), (B54), (B61), (B69), (B76), (B83), (B88), (B94), (B99), (B102).

4. Linear Recurrences

A homogeneous linear recurrence with constant coefficients has the form
Y ocick @iXq—; = 0, where each q, is a constant. The characteristic equation of the
recurrence is given by > o, a;”" 7' = 0.

Fact: Let the roots of the characteristic equation be r;, i =1, 2,...,m, and let
their respective multiplicities be w;, i =1,2,..., m. Any solution x, of the
linear recurrence is of the form

Xp = Z r:l Z Cijnja

1<ism  0<j<w,

where the C;; are constants determined by the initial conditions of the
recurrence.

5. Dirichlet Series
The series Y., a,n " is called the Dirichlet series with coefficients a,.

Fact: Assuming that the Dirichlet series Y w51 azn "7 does not converge for all z
or diverge for all z, then there is a real number ¢, such that the series
Y .1 a,n~ 7 converges absolutely if Re(z) > g, but does not converge
absolutely if Re(z) < a,.

5.1 Convolution Theorem

Given two functions F(z) and G(z) represented by the Dirichlet series, F(z) =
Y st fn ™% Re(z) >a, and G(z) =), 9,n % Re(z) > b. Then in the half-
plane where both series converge absolutely we have F(z)G(z) = Z,‘;l h,n™%,
where h, is the Dirichlet convolution of f, and g, defined by h, = > 4» fagna-

6. Laurent Series—Residues—Cauchy Integral Formula

Let z, be a complex number, let 0 < a < f < o, and let f be analytic in the
annulus 4 = {z|a < |z — zo| < B}. Here, f can be uniquely represented by
f(2) =Y g encw @nlz — 2o)" for all z€ A (Laurent series), where

1 S

= — de;
" 27i c, (t - Zo)n+1

a

C, denotes the circle z = z, + p-exp(ia), 0 < a <2n. The coefficient a_ is
called the residue of f at z, and is denoted by Res,_. f(z).
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6.1 Residue Theorem

Let f be analytic up to isolated singularities at the points z;, 1 <i < m, in the
simply connected domain R and let C be a positively oriented Jordan curve,
where the points z;, 1 <i < m, lie in the interior of C. Then

%mj;f(z)dz= Y Res f(2).

I<ksm z=2,

6.2 Cauchy Integral Formula

Let R be a simply connected domain, let f be analytic everywhere in R, and let
z, be a point of R. If C is a positively oriented Jordan curve that contains the
point z, in its interior, then
1 (2)
f(zo) = / dz.

27tl CZ_ZO

7. Euler’s Summation Formula

2 Sflk)= r fx)dx =3[ fm)=f(D)]+ 1L f'(m)—f (D] + O(f Lf x| dx)-

I <k<m




Appendix B

1. Numbers in Combinatorial Analysis

X,
1.1 g-Nomial Coefficients ( n")

Y <x, q)z" = [ Y z‘]x, g e N, (B1)
n20 n O<i<gq
¥ <x, 2) "= (1 +z)* (binomial coefficients, (x, 2) = (x>)- (B2)
n>=0 n h n
(x;l3>z" = (1 +z+ 2% (trinomial coefficients). (B3)
nz=0
n,q\ _2 (™ (sin(gp)\" N
(k)‘nJ:(am@)°“W@ 1) — 2k)p) dp (B4)
SL;p (n;(q) ~ ¢'\/6/[(g* —)mn], n— oo. - (BS)
n n—1 n—1
)=(c )+ G o
n3\ (n—1,3) (n—1,3\ (n—1,3
()02 ()= () =)

4 1 4 6 4 1 (binomial coeficients)
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n|O1 2 3 4 S5 6 7 8 9 10 11 12

1 1

2 3 2 1

3 6 7 6 3 1

4 10 16 19 16 10 4 1

5 15 30 45 51 45 30 15 5 1

6 21 50 90 126 141 126 90 50 21 6 1

[« WV, TN SN VS T OO B
p— e ek e

(trinomial coefficients)

1.2 Stirling Numbers S!™ of the First Kind

X 1 Lo
=— SO,
(r) r! Ogsr s
Sfuo) = 5n,0a Sgn) = 5m,o
SM =8§m-D_pS™  n>m>1.
SV = (=1""'n-1!, S®=1, S,‘,"‘”=—(;>,
S¢-2 = Lpmn —1)(n —2)3n —1).

1+ ) Wt S®/mt = (1 + u)'.
nxl 1<k<n

n

Y S®/nt =Ink(1 + z)k!, |zl < 1.

n=0

S = (—yrtm y kiky ...k, ..

O<k; < <k,_pn<n

SEFD o (=1l In*(n)k!,  k fixed, n— co.

SkrD ~ (=1 "n! [y + In(n + 1)]*/k !, k = o(In(n)), n — co.

24 -50 35 —-10 1
—120 274 =225 8 —15 1

AN bW —
I
(@)
[SY
[SY
I
(@)
[SY

(B3)

(B9)

(B10)

(B11)

(B12)

(B13)

(B14) -

(B15)

(B16)




1.3 Stirling Numbers ™ of the Second Kind

X
x*=m! > Fm™ .
0<m<n m

0
SO = On,00 S = Om,0
g;(r)l — m,Sf,’,("‘) + g’zl(m~1), n

A\

1.

m 2
PO 1, W= = Pu-D_ ")
n > n Y n 2

VOERS

S = Lnin — 1)(n — 2)(3n - 5).

Y, "M = (exp(z) — 1)"/m!.

n=0

> kmz*/k! = exp(z) Z*F®  m=1.
K> :

1g<k<m

S = ¥ kiky .. ky_

0k, < <ky_py<m

SO~ K"k, kfixed, n — 0.
S8~ kP27 "n!, n= o(\/IZ), n— oo.

u, = }'* Sy, <>, = Z S®y, (Stirling inversion).

ad

0gk<gn 0<k<n
k

nl!l 2 3 4 5 6

1 |1

2 |1 1

371 3 1

4 11 7 6 1

5 (1 15 25 10 1

6 (1 31 90 65 15 1

1.4 Generalized Harmonic Numbers HY

HY = 5 k™"
" I1gk<gn
HM = (=1)"*183) /n! (harmonic number).

1 1 1
(1) - — il
H)=Inn)+7y+ o o + 0(n4>.
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(B17)

(B18)

(B19)

(B20)

(B21)

(B22)

(B23)
(B24)

(B25)

(B26)

(B27)
(B28)

(B29)
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2 2r
HEZY ~ ;(;r:)g |B,,, r=>=1,rfixed,n— co.
(_1)r+1(2n)2r+1 1 ~
HErD o B t) tan~!(mt) dt,
r>1,rfixed, n — co.
n 012 3 4 5 6 17 8 9 10
HVI0 1 3 ¥ 8 7 %5 18 %% 5% 3%
1.5 Eulerian Numbers A(n, k)
(1—2)
1+ A(n, k)z*"/n! = .
ngl lszklsn / 1 —zexp(t(l — z))
A(n, 0) = 60,,', A(O, k) = 60,1‘

Anky=n—k+10)An—1,k—1)+ kA(n — 1,k).

An k)= > (—1y

0<j<k

1 |1

2 |1 1

3|1 4 1

4 |1 11 11 1

511 26 66 26 1
6 |1 57 302 302 57 1

1.6 Euler Numbers E,
1 2

+1
(" ) )(k —jy, mk>o0.

k —
A(n,k)<x+n 1), n=l.

cos(ix) - exp(x) — exp(—x)

E,=2"E,}).

= > E,x"/nl,

n>0

|x| < m/2.

(B30)

(B31)

(B32)

(B33)
(B34)

(B35)

(B36)

(B37)

(B38)

(B39)
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E2n+1 = 0’ nz= 0
(B40)
E2n — (—1)"(271)' n—2n—14n+1 Z (_1)k(2k + 1)—2n—1, n 20
k>0
n |0 1 2 3 45 6 7 8 9 10
(B41)
E,)1t 0 -1 0 5 0 —-61 0O 1385 0 —50521
1.7 Bernoulli Numbers B,
X
——= ) B,x"/n!, .
P ";0 2X"/n x| <2n (B42)
B, = B,(0) = (—1)"B,(1). (B43)
an+1 = 0, n 21
(B44)
By, =2(=1)""'@n)!a 47" Y k™ n>=l.
k=1
B, = (— D)*%! W/ (k +1). (B45)
0<k<n
n |0 1 2 3 4 5 6 7 8 9 10
4
Bl ~1 50 % 0 & 0 % 0 3 (559
1.8 Bell Numbers w,
explexp(t) — 1) = ). w,t"/n!. (B47)
n>=0
w,= Y AW, (B48)
0<k<gn
w,=e 'Y A, n=l
4> (B49)
n |l 23 4 5 6 7 8 9 10

w, |1 2 5 15 52 203 877 4140 21147 115975
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2. Special Functions

2.1 Bell Polynomials 2%,(x)

0<k<n
By +1(x) = xB,(x) + xRB,(x).
By(x) =1
B (x)=x

By(x) = x* + x

By(x) = x> +3x2 + x

By(x) = x* + 6x3 + 7x? + x.
Bx)=x"+0x""1), x>1.

2.2 Eulerian Polynomials A,(x)

Ayx)=1; A,(x)= A(n, k)x*.

A,(x) = x k! LB (x — 1)k n>l1.

Z ls‘xi = As(x)/(l —_ x)s+1, $>0.
420
A
g 40| =2 = DL
A
An(-x)=(1—X)n+1 Z 1 i/{n l—[ (l—p_")
Azl — X PU.
p prime
Agnsr(=1) = (=1)"4"(@d" — 1By, 5/ (2n).
Aj(x) =
Ay(x)=x + x*
As(x) = x + 4x* + x°
Aa(x) = x + 11x? + 11x3 + x*.

2.3 Euler Polynomials E,(x)

2 exp(xt)
—_— = E (x)t"/n !, <.

(B50)

(B51)

(B52)

(B53)

(B54)

(B55)

(B56)

(B57)

(B58) |

(B59)

(B60)

(Bé1)



E,(x) =nE,_,(x), n=l.
E,(x +1) + E,(x) = 2x", n=0.

E,,(X) = Z (n>2_kEk(x - %)n—k, nz0.

0<k<n k

En(%) = 2_nEn’ nz 0

E,0) = —E,(1) = =22""" = DB, +,/(n +1), n>1.

B,(x)=2" ¥ (n)B,,_kEk(zx), n >0,

0<k<n k

(=) k" = 4[E,(m + 1) + (- 1)™E,(0)].

0<k<m
Ey x)=1
E\(x)=x-3
E,(x)=x%—x
Ey(x)=x*—3x* + 3

E (x) = x* - 2x® + x.

2.4 Bernoulli Polynomials B,(x)

t exp(xt)
P Y B (x)tY/n !, 2.
expll) — 1 EO L (x)t"/n lt] < 27

B,(x) = nB, _(x), n=1

B,(x +1)— B,(x) = nx""1, n=0.
B,(})=-(1-2'"""B,, n>=0
B,(0) = (—1)"B,(1) = B,.

K" = [Bys1(m +1) = B, )/(n +1).

0<k

N

By(x) =1
Bi(x)=x—-1%
By(x)=x*—x+1}
By(x) = x* — 3x* + ix

By(x) = x* —2x3 + x* — .

215

(B62)
(B63)

(B64)

(B65)

(B66)

(B67)

(B68)

(B69)

(B70)

(B71)

(B72)

(B73)
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2.5 Chebyshev Polynomials U,(x) of the Second Kind

__sin[(n + 1) arc cos(x)]
Un(x) = sin[arc cos(x)]

= (=) P T = (e i T 2P 1]

V)= ¥ (—m— " oyyeam

0<m< |n/2] m! (n - 2m)'

1
— = ), U,(x)
1 —2tx +¢2 ,,;0 n(x)

Upi1(x)=2xU,(x) — U,-,(x), n>=l1.
Uz@ar1(00=0, n=0
U,,0) =(-1)", n=0.

sin((n + 1)a)
sin(a)

Up(=x) = (= 1)"U,(x).

U,,(cos(—nm ))zO, I1<m<n
n+1

Uylx)=1

U,(x)=2x

U,(x) =4x* —1

U,(x) = 8x® — 4x

Uu(x) = 16x* — 12x% + 1.

U,(cos(a)) =

2.6 Hermite Polynomials H,(x)

H)= ¥ (1" — 2x)" 2,

n!
0<m< /2] (n —2m)!

exp(ix — 2) = ¥ H,(x)"/n.

n=0

H,,,(x)=2xH,(x) — 2nH, _,(x), n=1.
Hy11(00=0,  H, 0 =(-1"2n)!/n!, n=0
H,(—x) = (—1)'H,(x).

(B74)

(B75)

(B76)

(B77)

(B78)

(B79)

(B80)

(B81)

(B82)

(B83)
(B34)

(B8S)
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Hy(x) =1
H,(x)=2x
H,(x) =4x%* -2 (B86)

Hi(x) = 8x3 — 12x
H,(x) = 16x* — 48x2 + 12.

2.7 Generalized Laguerre Polynomial L (x)

LOx)= Y (- 1)’“(" + a)x"‘/m 3 (B87)
0<m<n n—m
—a—1 Xz _ (a) n
(1-2) exp| — | = Y LP(x)", |zl <1 (B88)
- nz0
LY(x) =1, LYPxX)=a+1—x
5 ) (B89)
+a+1—Xx n+a
L@ = n L® _ (a) > 1.
,,+1(X) n+1 n (X) n+1Ln-—1(x)’ n/l
+
L®(0) = (" ’ “). (B90)
LO(x) =1
LOx)==1-x
LP(x) =1—2x + ix? (B91)

LP(x)=1-3x 4+ 3x? — &3

L&O)(X) =1—-4x + 3x% — ‘32‘X3 + 2—14‘X4.

2.8 Legendre Polynomials P,(x)

Pw=27 3 () e

0<m<|n/2] h

P,(x)= ) (n)(n ;m>2""(x —1)™ (Murphy’s formula).

0<m<n m

(B92)
P,(x) = 71? jn [x + /x* — 1 cos()]" da, zeR,z 2 1. (B93)
0

1 .
=Y P,(x)", |l < MINJx £ /x? — 1. (B94)
\/1—2tx+t2 n>0
2n +1 n
P, (x)= —— xP,,(x)—n—_HP,,_l(x), n=l1. (B95)
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(x? = 1)P,(x) = nxP,(x) — nP,_,(x), n>=1.
_(2n
P2n+1(0)=07 P2n(0):(_1)n4 "(n), n=0

P,(—x) = (=1)"P,(x), n>0.
Py(x)=1
Pi(x)=x
P,(x) = %xz -3
Py(x) = 3x* — 3x

Py(x) = %x* — 12x* + 3.

2.9 Meixner Polynomials M,(x)

1
exp(x arc tan(t)) = ). M, (x)*/k!.
1 + tz nz0

M,,+1(x)=xM,,(x)—n2M,,_1(x), nzl.

My(x) =1
M,(x)=x

M,(x) = x* — 1

M,(x) = x> — 5x

M (x) = x* —14x? + 9.

2.10 Poisson—Charlier Polynomials C,(x)

Cx)= Y (—1)"—'"(:1)(;);11!.

(1 + t)*exp(—t) = ) C,(z)t"/n!.

nz0
C,+1(x)=[x—n—-1]C,(x) — nC,_,(x), n>=1.
Colx) =1
Cilx)=x-1
C,(x)=x*—-3x+1
Cy(x) = x> — 6x? +8x — 1
Cy(x) = x* —10x> + 29x? — 24x + 1.

(B96)

(B97)

(B98)

(B99)

(B100)

(B101)

(B102)
(B103)

(B104)

(B105)
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2.11 Gamma Function I'(z)

I'iz)= j " exp(—1t) dt, Re(z) > 0. (B106)

0
I'(z) = J (t — z)t* ' In(e) exp(—t) dt, Re(z) > 0. (B107)

0
I'z+1)=:zI(z). . (B108)
I'z+1)==z!, ze N, (B109)

1 N 1 139 571
2z ' 288272 51480z 24883204

['(z) = 22~ V2 exp(—z)/2n [1 +1

+ 0(2'5)}, z— o0, arg(z)l <m

(Stirling’s formula). (B110)
(For z real and positive, the remainder of this series is less than the last term
that is retained.)

B
In(F(2)) ~ & = In(z) = z + $In(2m) + 3, 5 G _2';)22,,,_1 ,
m=1

z— o0 In |arg(z) < n. (B111)

Cin+4) = @14 /a/nl,  Tn—4)=(=1ntd/n/2n),
neNo (B112)

I'l)=—y=05772156649 ... (Euler’s constant). (B113)
lim |T(x + iy)||y|Y? ~* exp(n|y|/2) = /2~ x,yeR (B114)
 yl—
I'(z) is a fractional analytic function with simple poles at the points z = —k,
k € N, to which correspond the residues (—1)*/k!. (B115)

2.12 Psi Function y(z2)

Y(z) = —d—ln(l"(z)). . (B116)

dz
Yz + 1) =y(z) +2z7" (B117)
Yyn)=—y+ HY,, neN. (B118)
Yin+3)=—-y-2I@2)+2 Y @k+D7', neN. (B119)

0<k<n




220

2 2

T =T
\//(1)—6, Y'(3) > (B120)

Yy(z) ~ In(z) — Z?; - Bz,, , z— o0 In |arg(z)| < =. (B121)
" n>1

2.13 Hurwitz (Riemann) Zeta Function ((z, a) ({(z))

1
{(z,q) = 5 I'(l-2z) j t*~ 1 exp(qt)/(1 — exp(r)) dt
1 C

(Hurwitz zeta function). (B122)

(The contour C starts at infinity on the negative real axis, circles the origin once
in a positive direction excluding the points +2nni, n € N, and returns to the
starting-point.)

{(z,1) = {(z) (Riemann zeta function). (B123)
{z,q)= ) (@+n)77 Re(z) > 1. (B124)
nz0
() (1—=279)=) @2n+1)7= (B125)
nz0
{(—=n.q)= _mBn+1(4)’ g€ N,. (B126)
{'(0, 9) = In(I'(q)) — ¥ In(2n). (B127)
1
{z,q9) = —= —¥lg) + Oz - 1). (B128)
{(z, q) is regular for all values of z except for the simple pole at z =1 with
residue 1. (B129)
0@2)l = 0(z"""),  Re(z) = —gq. (B130)
S + iy, @)l =0(Hy' ™), x=-1 (B131)

Y C(z i) = 17{(z). (B132)

1<i<l
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line integral along the curve C
integral from a to b

limit of x, for n— oo

large O notation (f(n)/g(n) is bounded as
n— )

small o notation (f(n)/g(n) tends to zero as
n— oo)
asymptotic equality (f(n) = g(n)[1 + o(1)])

residue of f at z,
g-nomial coefficient

binomial coefficient

Pochhammer’s symbol ((z)o = 1,
(@ =Tz +n)/T(2))

Stirling numbers of the first kind
Stirling numbers of the second kind
generalized harmonic number
Eulerian number

Euler number

Bernoulli number

Bell number

Ludolph’s number (3.141 5926...)
Euler’s number base of natural logarithms
O isol/k! =2.718 2818...)
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Adjacent vertices, 12
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Balanced 2, 3-tree, 100

Batcher, Kenneth Edward, 183

Bell number, 121, 213 A

Bell polynomial, 26, 214 A

Bernoulli number, 30, 49, 137, 143, 212,
213 A

Bernoulli polynomial, 30, 212, 215 A

Binary reflected code, 188

see Standard Gray code

Binomial coefficient, 209 A

Bounded random walk, 50, 75, 86-91,
121

Brother of a node, 81

Canonical cycle notation of a
permutation, 28

Catalan number, 48, 76, 77, 92, 93, 99,
103, 109, 121, 126, 182

Cauchy’s formula, 62, 63, 110, 208 A

Cauchy’s residue theorem, 141

Characteristic equation, 60, 207 A

Characteristic power series, 55, 205 A

Chebyshev inequality, 4, 205 A

Chebyshev polynomial of the second
kind, 61, 76, 107, 115-118, 125,
216 A

Chomsky-normal form, 111

Closed history, 86-91, 114, 115, 118

Closed path, 12
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Complete tree, 81, 152, 201
Configuration, 132, 161
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Connected graph, 12
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205 A
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Extended binary tree, 81, 125

External path length, 124

Fall of a permutation, 34

Fall of a sequence, 47

Father of a node, 81

Feasible history, 86-91

Fibonacci number, 128

Final node, 13

Formal power series, 32, 55, 205 A
Fourier series, 9, 196, 198, 200, 202
Fundamental matrix, 16

Gamma-function, 96, 141-143, 156-158,
180, 200-202, 219 A
Gamma-function method, 137, 146, 155,
193, 194, 202, 203
Generalized harmonic number, 25, 29,
30, 211 A
Generalized Laguerre polynomial, 47,
217 A
Generated language, 205 A
Generating function, 206 A
exponential, 92-100, 206 A
ordinary, 32, 92-100, 206 A
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Generating function, continued
probability, 23, 204 A
structure, 113
Graph, 12
acyclic, 12
connected, 12
directed, 13
simple, 12
Graph notation of a permutation, 26

Harmonic number, 211 A
Height of a tree, 81, 101, 106, 107, 125,
144, 203
of order r, 81, 83, 125
Height of a random walk, 50, 107
Hermite polynomial, 115, 117, 118, 216 A
History, 86-91, 114-116, 118, 128
closed, 86-91, 114, 115, 118
feasible, 86-91
Hurwitz zeta function, 194, 197, 198,
220 A

Identity permutation, 26

Increasing subsequence of a permutation,
47

In-degree of a node, 13

Initial node, 13

Input-restricted deque, 87, 128, 131,
158-160

Instruction, 131

Interior node, 81

Intermediate variables, 131-134

Internal path length, 124 .

Inversion of a permutation, 42, 122

Inversion table, 43

Involution, 49, 91

Key, 86

K-permutation, 47
2-permutation, 96

(K, i)-tree, 167, 169

Labelled tree, 82, 98, 100, 111, 123, 151

Lagrange-Biirmann formula, 67, 104

Laguerre polynomial, 47, 78, 79, 115118,
217 A

Laurent series, 143, 207 A

Leaf of a tree, 81

Left-to-right maxima of a permutation,
28

Legendre polynomial, 122, 125, 217 A

Length of a cycle, 29, 47, 96

Length of a random walk, 50

Length of a run, 34, 122
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Level of a node, 81, 83

Level of a segment, 50

Level-order of nodes, 82

L’Hospital’s rule, 61

Linear context-free grammar, 114, 127,
128, 205 A

Linear list, 88, 115-118, 120, 129

Linear notation of a permutation, 27

Linear recurrence, 56, 60, 207 A

Lipschitz condition, 199

Major diagonal, 188, 202

Matrix notation of a permutation, 27

Maximal deviation of a random walk,
50, 69, 70, 83, 86-91, 121

Maximal span of a random walk, 50

Maximum size of a stack, 83, 111, 127,
149, 178

Mean (see Expected value), 3, 7, 29, 30,
37, 41, 42, 45, 105, 110, 136, 144,
155, 175, 178, 179, 182, 191-200,
204 A

Meixner polynomial, 115, 116, 118,
218 A

Mellin transform, 141, 146, 155

Moment about the origin, 3, 7, 24-26, 29,
30, 35-37, 40, 45, 135, 136, 144, 146,

154, 155,204 A
Monotonously labelled tree, 98, 126
Motzkin number, 77, 123
Multiset, 12, 51
Murphy’s formula, 122, 125, 217 A

Negative peak of a permutation, 48
Network for sorting, 183
Non-negative random walk, 50, 72-80,
86-91, 107, 114, 115, 128, 134
Nonterminal, 111, 205 A

Odd-even merge, 183186, 190-192, 198,

200
Ordered tree, 81-85, 98-111, 123, 157,
159
Oriented cycle, 14
Oriented path, 13
Oscillation of a function, 199
Out-degree of a node, 13

Pair of brackets, 173

Partial fraction expansion, 61
Path, 12

Pattern of a permutation, 48

Permutation, 26, 91, 122
alternating, 48,91
k-permutation, 47
2-ordered permutation, 122, 183, 185,
188, 190, 191, 198, 200
2-permutation, 96
Permutation group, 26, 31-34
Permutation matrix, 27
Plane tree, 82
Poisson—Charlier polynomial, 115, 117,
118,218 A
Positive peak of a permutation, 48
Post-order of nodes, 82, 111, 132, 160
Prefix of the Dycklanguage, 70
Pre-order of nodes, 82
Priority queue, 89, 115, 116, 118, 120,
129
Probability generating function, 23,
204 A
Probability distribution, 14
Production system, 56, 111, 205 A
Program, 131
k-program, 131
Proper context-free grammar, 205 A
Psi-function, 143, 219 A

Q-nomial coefficient, 209 A
Queue, 87, 128

Random algorithm, 14
Random path, 15
Random walk (see (d, e, u)-random walk),
50, 122, 154
bounded, 50, 75, 86-91, 121
closed, 72-80, 83, 86-91, 107, 114, 115,
134
non-negative, 50, 83, 86-91, 107, 114,
115, 128, 134
simple, 50, 121, 122
weighted, 51, 86-91, 114-117, 128
Reduction of a tree, 131, 148-150, 158,
159, 202
Register, 130, 132, 134, 152
Residue, 95, 156, 157, 207 A
Riemann zeta function, 141-143,
155-158, 180, 201-202, 220 A
Rise of a permutation, 34
Root of a tree, 81
Rooted digraph, 14
R-tree (R-tuply rooted tree), 81, 125
Run of a permutation, 34, 122

Secant number, 49
Segment of a random walk, 50



Simple graph, 12

Simple digraph, 13

Simple linear list, 128

Simple oriented path, 14

Simple path, 12

Simple random algorithm, 14-19

Simple random walk, 50, 121, 122

Simply generated family of trees, 122-124

Size of a history, 86-91, 115-118

Son of a node, 81

Stack, 86, 115, 118, 119, 131, 132, 148,
149, 168, 169, 174

Stack size, 111

Standard deviation, 204 A

Standard Gray code, 188, 192, 194, 202

Standard notation of a permutation, 26

Stirling inversion, 211 A

Stirling number of the first kind, 23, 29,
210 A

Stirling number of the second kind, 24,
36, 40,211 A

Stirling’s formula, 93, 96, 100, 137, 219 A

Strongly connected digraph, 14

Structure generating function, 113

Substitution scheme, 55, 102, 106, 205 A

Subtree, 81

Succession of a permutation, 47

Symbol table, 90, 115, 117, 118, 120, 129

Symmetric group, 26, 32-38, 4245, 122

Syntax tree, 130, 132

Tangent number, 49
Terminating continued fraction, 74
Terminal, 111, 205 A
Theta-relation, 149
Tree, 81

balanced 2, 3-, 100
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Tree, continued
complete, 81, 152, 201
derivation, 111, 127
extended binary, 81, 125
extended binary, 81, 125
(k,i)-, 167, 169
labelled, 82, 98, 100, 111, 123, 151
monotonously labelled, 98, 126
ordered, 82-85, 98-111, 123, 157, 159
plane, 82
r-tree, 81, 125
syntax, 130, 132
t-ary, 81, 98, 106, 123
unlabelled, 82
unordered, 81, 100, 123

Trinomial coefficient, 63, 68-71, 209 A

Turing machine, 2-9, 201

Two-way-one-counter automaton,
176-183

Type of a permutation, 31

Type of a segment, 50

Unambiguous scheme, 55, 102, 106,
205 A
Uniform set of random walks, 52, 73, 128
Unlabelled tree, 82
Unordered tree, 81, 100, 123

Variance, 295, 29, 30, 37, 45, 147, 148,
204 A
Value of a variable, 131

Weighted random walk, 51, 86-91,
114-117, 128

Weight of a set of random walks, 52,
86-91




