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Preface

This expository text contains an elementary treatment of finite groups generated by
reflections. There are many good books on this subject; in particular, a book by
Humphreys [Hum] provides an excellent introduction to the theory, which is very
much alive and under active development; see, for example, the recent survey by
Dolgachev [Dol].

The main reason why we decided to write another text is not mathematical but
pedagogical: we wished to emphasize the intuitive elementary geometric aspects of
the theory of reflection groups. In the theory of reflection groups, the underlying
ideas of many proofs can be presented by simple drawings much better than by a dry
verbal exposition. Probably for the reason of their extreme simplicity these elementary
arguments are mentioned in most books only briefly and tangentially.

The second reason for the existence of this book is a remarkable feature of the
theory of reflection groups: its principal objects can be defined right on the spot in
the most intuitive way. We give first an informal description:

Imagine a few semitransparent mirrors in ordinary three-dimensional space.
Mirrors (more precisely, their images) multiply by reflecting in each other,
as in a kaleidoscope or a hall of mirrors. Of special interest are systems of
mirrors that generate only finitely many reflected images. Such finite systems
of mirrors happen to be one of the cornerstones of modern mathematics and
lie at the core of many mathematical theories.

As usual, the theory is actually concerned with the more general case of n-
dimensional Euclidean space, with mirrors being (n − 1)-dimensional hyperplanes
rather than two-dimensional planes. To that end, we give a formal definition:

A system of hyperplanes (mirrors) Σ in Euclidean space Rn is called closed
if for any two mirrors M1 and M2 in Σ, the mirror image of M2 in M1 also
belongs to Σ.

Thus, the principal objects of the theory are finite closed systems of mirrors. In more
general terms, the theory can be described as the geometry of multiple mirror images.
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Instead of a closed mirror system, one can operate with the group of transforma-
tions generated by all its reflections—and this is a more traditional approach to the
theory. We prefer to emphasize the role of mirrors, since we hope that this allows
us to fully engage the reader’s geometric intuition. This approach is well known and
exploited in Chapter 5, §3 of Bourbaki’s classical text [Bou]; see also Vinberg’s ex-
position [Vin]. We have combined it with Tits’s theory of chamber complexes [Tits]
and thus made the exposition of the theory almost entirely geometrical.

Finally, we cannot escape the fact that the theory of finite reflection groups leads to
their full classification. In the resulting list, two of the four infinite series of reflections
groups, the symmetric groups Symn+1 = An and hyperoctahedral groups BCn, are
groups of symmetries of two of the most common regular polytopes, the regular n-
dimensional simplex and the n-dimensional cube. The third series, Dn, is a slight
modification of BCn, while the fourth one, G2(n), is the group of symmetries of the
regular planar n-gon. Therefore the theory of reflection groups mostly deals with very
concrete objects; why should we avoid an equally concrete down-to-earth approach
to its development?

This is why we tried to include (frequently in the form of exercises) as many
elementary facts about concrete groups as possible. We feel that this is well justified
even if judged from the “global” viewpoint of mathematics as a whole. Indeed, finite
reflection groups form one of the cornerstones of modern algebra and geometry. Even
the simplest observations about particular groups have fundamental implications, for
example for the structure of Lie groups and representation theory. A mathematician
working in one such area normally maintains a whole menagerie of facts about re-
flection groups. We believe that students will find them interesting and amusing.

We hope that our approach allows the novice mathematician easy access to the
theory of reflection groups. This aspect of the book makes it close to Grove and Benson
[GB]. We realize, however, that, since classical geometry has almost completely
disappeared from schools and university curricula, we need to smuggle it back in
and provide the student reader with a modicum of Euclidean geometry and the theory
of convex polyhedra. We do not wish to appeal to the reader’s geometric intuition
without trying first to help him or her develop it.

In particular, we decided to saturate the book with visual material. Our sketches
and diagrams are intentionally left very unsophisticated; the book was tested in a
lecture course at the University of Manchester, and most pictures, in their even less
sophisticated versions, were first drawn on the blackboard. There was no point in
drawing pictures that could not be reproduced by students and reused in their home-
work. Pictures are not for decoration, they are indispensable (though perhaps greasy
and soiled) tools of the trade.

This is our conscious choice; indeed, what matters—and it is part of our teaching
philosophy—is that the pictures are reproducible. Even if the reader has very modest
drawing skills, he or she should be able to draw similar pictures as a way of facilitating
his or her mathematical work. Moreover, we even included in our book a short chapter
“The Forgotten Art of Blackboard Drawing.” Without attempting to reinvent descrip-
tive geometry, we give there some advice on making usable mathematical drawings;
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the crucial piece of advice is that you have to treat your sketch as a mathematical
object.

This book contains a number of exercises of different levels of difficulty; a star
* marks more difficult exercises. Some of the exercises may look irrelevant to the
subject of the book and are included for the sole purpose of developing the student’s
geometric intuition.

Outline of the Book and Dependencies between Chapters

Part I contains mostly standard material from linear algebra, with a brief discussion
of polyhedra and polyhedral cones, topics usually addressed in courses on linear
programming (Chapters 3 and 4). A more experienced reader can skip this material
and later return to it for reference.

The book as such starts in Part II. In Chapter 5, we introduce reflections and their
mirrors, and in Chapter 6, the main concept of the book: closed systems of mirrors.
Chapter 7 contains some very elementary group theory, namely discussion of the
structure of dihedral groups. Geometrically, they are finite systems of mirrors in the
Euclidean plane. Chapter 8 introduces dual objects, namely root systems. Following
our principles to put as much flesh on the theoretical bones as possible, Chapter 9
discusses, in great but elementary detail, the root and mirror systems An−1, BCn,
Dn.

Mirrors cut a space into chambers; the set of all such chambers, together with the
action of the reflection group on it, is known as a Coxeter complex. Part III of the
book studies Coxeter complexes. Chapter 14 deviates somewhat from the classical
treatment of reflection groups and can be skipped on first reading.

Part IV deals with the classification of reflection groups; Chapter 17 contains lists
of root systems and their detailed properties.

The novice reader may wish first to build some geometric intuition; in that case,
we advise him or her to read first Chapters 6 and 7 and then move to Part V. The
latter contains an independent and elementary treatment of 3-dimensional reflection
groups. To read it, one needs only some basic linear algebra and group theory, and
the more technical material from Part I can be temporarily skipped.

Prerequisites and Use as a Course Text

This book was carefully designed to be accessible to graduate and senior undergrad-
uate students; we tried to calibrate its level to be usable as a course text in third and
fourth year of master of mathematics degree courses in England. Hence the formal
prerequisites for reading the book are very modest.

We assume the reader’s solid knowledge of linear algebra, especially the theory
of orthogonal transformations in real Euclidean spaces.

We use a modicum of topological concepts: open and closed subsets in the Eu-
clidean space Rn.
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We also assume that the reader is familiar with the following basic notions of
group theory:

the order of a finite group; normal subgroups and factor groups; homomor-
phisms and isomorphisms; generators and relations; standard notation for
permutations and rules for their multiplication; cyclic groups; action of a
group on a set; the orbit-stabilizer theorem.

You can find this material in any introductory text on the subject. We highly
recommend a book by Armstrong [Arm] for a first reading.

If this book is used as a text for a lecture course, then Grove and Benson [GB] and
Humphreys [Hum] are obvious sources for auxiliary reading and extension of topics
touched on in this book. In a few cases, our book borrows mathematical ideas from
the other two, although our pedagogical approach is, as a rule, different.
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Geometric Background
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Affine Euclidean Space AR
n

How to Read this Chapter

Since we develop a geometric approach to reflection groups, we have to use some
geometry.

This chapter provides only a very sketchy description of affine geometry and can
be skipped if the reader is familiar with this standard topic of linear algebra; otherwise,
it would make a good exercise to reconstruct the proofs that are only outlined in our
text. Notice that the chapter contains nothing new in comparison with most standard
courses on linear algebra. Also, if the reader benefited from a traditional course in
analytic geometry, he or she should find the material very familiar: we simply transfer
to n dimensions familiar concepts of three-dimensional geometry.

The reader who wishes to understand the rest of the book can rely on his or her
three-dimensional geometric intuition. The theory of reflection groups and associ-
ated geometric objects, root systems, has the most fortunate property that almost all
computations and considerations can be reduced to two- and three-dimensional con-

of the theory. But as a warning to the novice reader, we wish to remind you that
your intuition will bear fruit only when supported by your ability to prove rigorously
“intuitively evident” facts.

For example, when you use the fact that

an (n−1)-dimensional linear subspaceH of then-dimensional vector space
V over the real numbers R divides V into two open half-spaces,

it usually helps to visualize the situation by thinking about a plane in the ordinary
three-dimensional real vector space R3, or, simplifying the situation further, about a
line in a plane, which obviously divides the space (correspondingly, plane) into two
halves.

A.V. Borovik and A. Borovik, Mirrors and Reflections: The Geometry of Finite Reflection
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4 1 Affine Euclidean Space AR
n

1.1 Euclidean Space Rn

Let Rn be the Euclideann-dimensional real vector space with canonical scalar product
“ · ”. We identify Rn with the set of all column vectors

α =

⎛⎜⎝ a1
...
an

⎞⎟⎠
of length n over R, with componentwise addition and multiplication by scalars, and
the scalar product

α · β = αtβ = (a1, . . . , an)

⎛⎜⎝ b1
...
an

⎞⎟⎠ = a1b1 + · · · + anbn;

here t denotes taking the transposed matrix. It looks a bit awkward that we arrange
the coordinates of points in rows, and the coordinates of vectors in columns. The row
notation is more convenient typographically, but since we use left notation for group
actions, we have to use column vectors: if A is a square matrix and α a vector, the
notation Aα for the product of A and α requires α to be a column vector.

This means that we fix the canonical orthonormal basis ε1, . . . , εn in Rn, where

εi =

⎛⎜⎜⎜⎜⎜⎜⎝
0
...
1
...
0

⎞⎟⎟⎟⎟⎟⎟⎠ (the entry 1 is in the ith row) .

The length |α| of a vector α is defined as |α| =
√
a · a. The angle C between two

vectors α and β is defined by the formula

cosC =
α · β
|α||β| , 0 � C � π.

The definition of C makes sense because of the Cauchy-Schwarz inequality:

|α · β| � |α||β|;

it ensures that the right-hand side of the equation above lies in the interval [−1, 1].
If α ∈ Rn, then

α⊥ = {β ∈ R
n | α · β = 0 }

is the linear subspace normal (or perpendicular, or orthogonal) to α. If α �= 0 then
dimα⊥ = n− 1.
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1.2 Affine Euclidean Space AR
n

The real affine Euclidean space AR
n is simply the set of all n-tuples a1, . . . , an of

real numbers; we call them points.
With any two points a and b we can associate a vector in Rn

−→
ab =

⎛⎜⎝ b1 − a1
...

bn − an

⎞⎟⎠ .

If a is a point and α a vector, a+α denotes the unique point b such that
−→
ab = α. The

point a will be called the initial point, and b the terminal point of the vector
−→
ab .

The real Euclidean space Rn models what physicists call the system of free vectors,
i.e., physical quantities characterized by their magnitude and direction, but whose
application point is of no consequence. The n-dimensional affine Euclidean space
AR

n is a mathematical model of the system of bound vectors, that is, vectors having
fixed points of application. For us, it will sometimes be convenient to make the
distinction between points and vectors; as a rule, we denote points by lowercase italic
letters a, b, . . . , y, z, while we use lowercase Greek letters α, β, . . . for vectors.

If a = (a1, . . . , an) and b = (b1, . . . , bn) are two points, the distance d(a, b)
between them is defined by the formula

d(a, b) =
√

(a1 − b1)2 + · · · + (an − bn)2.

Notice that
d(a, b) = |−→ab |.

One of the most basic and standard facts in mathematics is that this distance
satisfies the usual axioms for a metric: for all a, b, c ∈ AR

n,

• d(a, b) � 0;
• d(a, b) = 0 if and only if a = b;
• d(a, b) + d(b, c) � d(a, c) (the triangle inequality).

Hence AR
n is a metric space; from time to time we shall use various topological

properties of AR
n as a metric space. For example, if X is a subset of AR

n, a point
x ∈ X is said to be interior in X if some small ball centered at x,

B(x, δ) = { y ∈ AR
n | d(x, y) < δ }

belongs to X . The set of all interior points of X is denoted by X◦ and is called the
interior of X . The set X is open if X = X◦, and closed if its complement in AR

n

open. It is a standard fact of topology that the intersection of a family of closed subsets
is closed. In particular, there exists a unique smallest closed subset X̄ containing X;
it is called the closure of X . Finally, the set

∂X = X̄ �X◦

is called the boundary of X , and points in ∂X are called boundary points of X .
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1.3 Affine Subspaces

1.3.1 Subspaces

If U is a vector subspace in R
n and a is a point in AR

n then the set

a+ U = { a+ β | β ∈ U }
is called an affine subspace in AR

n. The dimension dimA of the affine subspace
A = a + U is the dimension of the vector space U . The codimension of an affine
subspace A is n− dimA.

If A is an affine subspace and a ∈ A a point, then the set of vectors

−→
A = { −→

ab | b ∈ A }
is a vector subspace in Rn; it coincides with the set

{ −→
bc | b, c ∈ A }

and thus does not depend on the choice of the point a ∈ A. We shall call
−→
A the vector

space ofA. Notice thatA = a+−→
A for any point a ∈ A. Two affine subspacesA and

B of the same dimension are parallel if
−→
A = −→

B .

1.3.2 Systems of Linear Equations

The standard theory of systems of simultaneous linear equations characterizes affine
subspaces as solution sets of systems of linear equations

a11x1 + · · · + a1nxn = c1,

a21x1 + · · · + a2nxn = c2,

...
...

am1x1 + · · · + amnxn = cm.

In particular, the intersection of affine subspaces is either an affine subspace or the
empty set. The codimension of the subspace given by the system of linear equations
is the maximal number of linearly independent equations in the system.

1.3.3 Points and Lines

Points in AR
n are 0-dimensional affine subspaces.

Affine subspaces of dimension 1 are called straight lines or lines. They have the
form

a+ Rα = { a+ tα | t ∈ R },
where a is a point and α a nonzero vector. For any two distinct points a, b ∈ AR

n

there is a unique line passing through them, that is, a + R
−→
ab . The segment [a, b] is

the set
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[a, b] = { a+ t
−→
ab | 0 � t � 1 };

the open interval (a, b) is the set

(a, b) = { a+ t
−→
ab | 0 < t < 1 }.

1.3.4 Planes

Two-dimensional affine subspaces are called planes. If three points a, b, c are not
collinear, i.e., do not belong to a line, then there is a unique plane containing them,
namely, the plane

a+ R
−→
ab + R−→ac = { a+ u

−→
ab + v−→ac | u, v,∈ R }.

A plane contains the entire line connecting any two of its two distinct points.

1.3.5 Hyperplanes

Hyperplanes are affine subspaces of codimension 1. They are given by equations

a1x1 + · · · + anxn = c, (1.1)

where not all the ai’s equal 0. If we represent the hyperplane in the vector form b+U ,
where U is an (n− 1)-dimensional vector subspace of Rn, then U = α⊥, where

α =

⎛⎜⎝ a1
...
an

⎞⎟⎠ .

Two hyperplanes are either parallel or intersect along an affine subspace of dimension
n− 2.

1.3.6 Orthogonal Projection

If A is an affine subspace in AR
n, we define

A⊥ = {β ∈ R
n | α · β = 0 for all α ∈ −→

A }
and call it the orthogonal complement to A. It is easy to see that A⊥ is a vector
subspace and that

dimA+ dimA⊥ = n.

Fix a point a inA; if x is a point in AR
n, the vector −→ax can be uniquely decomposed

as
−→ax = α+ β, α ∈ −→

A , β ∈ A⊥;

then the point a+ α is called the projection of the point x onto A, and the map

AR
n → A,

x �→ a+ α,

is called the orthogonal projection of AR
n onto A; it can be shown that it does not

depend on the choice of the point a ∈ A.
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1.4 Half-Spaces

If H is a hyperplane given by equation (1.1) and we denote by f the linear function

f(x) = a1x1 + · · · + anxn − c,

where x = (x1, . . . , xn), then the hyperplane divides the affine space AR
n into two

open half-spaces V + and V − defined by the inequalities f(x) > 0 and f(x) < 0.

The sets V
+

and V
−

defined by the inequalities f(x) � 0 and f(x) � 0 are called
closed half-spaces. The half-spaces are convex in the following sense: if two points
a and b belong to one half-space, say V +, then the restriction of f to the segment

[a, b] = { a+ t
−→
ab | 0 � t � 1 }

is a linear function of t that cannot take the value 0 on the segment 0 � t � 1. Hence,
if a half-space contains two points a and b, then it contains the segment [a, b]. Subsets
in AR

n with this property are called convex.
More generally, a curve is an image of the segment [0, 1] of the real line R under

a continuous map from [0, 1] to AR
n. In particular, a segment [a, b] is a curve, the

map being
t �→ a+ t

−→
ab .

Two points a and b of a subset X ⊆ AR
n are connected in X if there is a

curve in X containing both a and b. This is an equivalence relation, and its classes
are called connected components of X . A set X is path-connected if it consists of
just one connected component, that is, any two points in X can be connected by a
curve belonging to X . Notice that any convex set is path-connected; in particular,
half-spaces are path-connected.

If H is a hyperplane in AR
n then its two open half-spaces V − and V + are

connected components of AR
n

� H . Indeed, the half-spaces V + and V − are path-
connected. But if we take two points a ∈ V + and b ∈ V − and consider a curve

{x(t) | t ∈ [0, 1] } ⊂ AR
n

connecting a = x(0) and b = x(1), then the continuous function f(x(t)) takes values
of opposite signs at the ends of the segment [0, 1] and thus must take the value 0 at
some real number t0, 0 < t0 < 1. But then the point x(t0) of the curve belongs to
the hyperplane H .

1.5 Bases and Coordinates

Let A be an affine subspace in AR
n and dimA = k. If o ∈ A is an arbitrary point

and α1, . . . , αk is an orthonormal basis in
−→
A then we can assign to any point a ∈ A

the coordinates (a1, . . . , ak) defined by the rule

ai = −→oa · αi, i = 1, . . . , k.
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This turns A into an affine Euclidean space of dimension k that can be identified
with AR

k. Therefore everything that we said about AR
n can be applied to any affine

subspace of AR
n.

We shall use a change of coordinates in the proof of the following simple fact.

Proposition 1.1. Let a and b be two distinct points in AR
n. The set of all points x

equidistant from a and b, i.e., such that

d(a, x) = d(b, x),

is a hyperplane normal to the segment [a, b] and passing through its midpoint.

Proof. Take the midpoint o of the segment [a, b] for the origin of an orthonormal
coordinate system in AR

n. Then the points a and b are represented by the vectors
−→oa = α and

−→
ob = −α. If x is a point with d(a, x) = d(b, x), then we have, for the

vector χ = −→ox ,

|χ− α| = |χ+ α|,
(χ− α) · (χ− α) = (χ+ α) · (χ+ α),

χ · χ− 2χ · α+ α · α = χ · χ+ 2χ · α+ α · α,

which gives us
χ · α = 0.

But this is the equation of the hyperplane normal to the vector α directed along the
segment [a, b]. Obviously the hyperplane contains the midpoint o of the segment. �	

1.6 Convex Sets

Recall that a subset X ⊆ AR
n is convex if it contains for any points x, y ∈ X the

segment [x, y] (Figure 1.1).
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Fig. 1.1. Convex and nonconvex sets.
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Obviously the intersection of a collection of convex sets is convex. Every convex
set is path-connected. Affine subspaces (in particular, hyperplanes) and half spaces
in AR

n are convex. If a set X is convex then so are its closure X and interior X◦. If
Y ⊆ AR

n is a subset, its convex hull is defined as the intersection of all convex sets
containing it; it is the smallest convex set containing Y .

Exercises

1.1. Prove that the complement of a 1-dimensional linear subspace in the 2-dimensional com-
plex vector space C

2 is path-connected.

1.2.* In the well known geometry textbook by Berger [Ber] the affine Euclidean spaces are
defined as triples (A,−→A ,Φ), where

−→
A is a Euclidean vector space, A a set, and Φ a faithful

simply transitive action of the additive group of
−→
A on A [Ber, vol. 1, pp. 55 and 241]. Try to

understand why this is the same object as the one we discussed in this section.

1.3. Prove that affine subspaces in AR
n can be characterized as subsets A with the following

property: for any two distinct points a, b ∈ A, the line a+ R
−→
ab through a and b belongs toA.

1.4. Prove that an orthogonal projection of a convex set on an affine subspace is convex.

1.5 (Henderson and Taimina [HT]). When grinding a precision flat mirror, the following
method is sometimes used: Take three approximately flat pieces of glass and put pumice be-
tween the first and second pieces and grind them together. Then do the same for the second and
the third pieces and then for the third and first pieces. Repeat many times and all three pieces
of glass will become very accurately flat.

Why does it work? Why do we need three pieces of glass to achieve perfect flatness?
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Isometries of AR
n

In this chapter, we look at the properties of the affine Euclidean space AR
n as a metric

space with the distance
d(a, b) = |−→ab |.

An isometry of AR
n is a map s from AR

n onto AR
n that preserves distance,

d(sa, sb) = d(a, b) for all a, b ∈ AR
n.

We denote the group of all isometries of AR
n by Isom AR

n.
We warn the reader that in this chapter, we use some elementary notions from

group theory.

2.1 Fixed Points of Groups of Isometries

The following simple result will be used later in the case of finite groups of isometries.

Theorem 2.1. LetW < Isom AR
n be a group of isometries of AR

n. Assume that for
some point e ∈ AR

n, the orbit

W · e = {we | w ∈ W }
is finite. Then W fixes a point in AR

n.

Proof. We shall use a very elementary property of triangles stated in Figure 2.1; its
proof is left to the reader.

Set E = W · e. For any point x ∈ AR
n set

m(x) = max
f∈E

d(x, f).

Take the point a where m(x) reaches its minimum. We shall discuss the existence of
the minimum a bit later (it is intuitively evident anyway). Meanwhile, we claim that
the point a is unique, which would allow us to complete the proof of the theorem.

A.V. Borovik and A. Borovik, Mirrors and Reflections: The Geometry of Finite Reflection
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In the triangle abc the segment
cd is shorter than at least one
of the sides ac and bc.

Fig. 2.1. For the proof of Theorem 2.1.

Proof of the claim. Indeed, if b �= a is another minimal point, take an inner point
d of the segment [a, b] and after that a point c such that d(d, c) = m(d). We see from
Figure 2.1 that for one of the points a and b, say a,

m(d) = d(d, c) < d(a, c) � m(a),

which contradicts to the minimal choice of a.

So we can return to the proof of the theorem. Since the group W permutes the
points in E and preserves the distances in AR

n, it preserves the function m(x), i.e.,
m(wx) = m(x) for allw ∈ W and x ∈ AR

n, and thusW should fix a (unique) point
where the function m(x) attains its minimum. The theorem is proven. However, to
make the proof really watertight, we need to return to the issue of the existence of the
minimum.

The existence of the minimum is intuitively clear; an accurate proof consists of
the following two observations. Firstly, the function m(x), being the supremum of a
finite number of continuous functions d(x, f), is itself continuous. Secondly, we can
search for the minimum not over the entire space AR

n, but only over the set

{x | d(x, f) � m(a) for all f ∈ E },
for some a ∈ AR

n. This set is closed and bounded, hence compact. But a continuous
function on a compact set attains its extreme values. �	

Notice that the proof that we have just given is a modification of a fixed-point
theorem for a group acting on a space with a hyperbolic metric. J. Tits in one of his
talks has attributed the proof to J.-P. Serre. An alternative (and more traditional) proof
can be found in Exercise 2.2 on page 15.

2.2 Structure of Isom AR
n

2.2.1 Translations

For every vector α ∈ Rn one can define the map
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tα : AR
n −→ AR

n,

a �→ a+ α.

The map tα is an isometry of AR
n; it is called translation through the vector α.

Translations of AR
n form a commutative group that is obviously isomorphic to the

additive group of the vector space Rn; we shall denote it by the same symbol Rn as
the vector space.

2.2.2 Orthogonal Transformations

When we fix an orthonormal coordinate system in AR
n with the origin o, a point

a ∈ AR
n can be identified with its position vector α = −→oa . This allows us to identify

AR
n and Rn. Every orthogonal linear transformationw of the Euclidean vector space

Rn can be treated as a transformation of the affine space AR
n. Moreover, this trans-

formation is an isometry, because by the definition of an orthogonal transformation
w,

wα · wα = α · α;

hence |wα| = |α| for all α ∈ Rn. Therefore we have, for α = −→oa and β = −→
ob ,

d(wa,wb) = |wβ − wα| = |w(β − α)| = |β − α| = d(a, b).

The group of all orthogonal linear transformations of Rn is called the orthogonal
group and denoted by On.

Theorem 2.2. The group of all isometries of AR
n which fix the point o coincides with

the orthogonal group On.

Proof. Let s be an isometry of AR
n that fixes the origin o. We have to prove that

when we treat s as a map from Rn to Rn, the following conditions are satisfied: for
all α, β ∈ Rn,

• s(kα) = k · sα for any constant k ∈ R;
• s(α+ β) = sα+ sβ;
• sα · sβ = α · β.

If a and b are two points in AR
n, then by Exercise 2.3, the segment [a, b] can be

characterized as the set of all points x such that

d(a, b) = d(a, x) + d(x, b).

So the terminal point a′ of the vector cα for k > 1 is the only point satisfying the
conditions

d(o, a′) = k · d(0, a) and d(o, a) + d(a, a′) = d(o, a′).

If now sa = b, then since the isometry s preserves distances and fixes the origin o,
the point b′ = sa′ is the only point in AR

n satisfying
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d(o, b′) = k · d(0, b) and d(o, b) + d(b, b′) = d(o, b′).

Hence s ·kα =
−→
ob′ = kβ = k ·sα for k > 0. The cases k � 0 and 0 < k � 1 require

only minor adjustments in the above proof and are left to the reader as an exercise.
Thus s preserves multiplication by scalars.

The additivity of s, i.e., the property

s(α+ β) = sα+ sβ,

follows, in an analogous way, from the observation that the vector δ = α+ β can be
constructed in two steps: starting with the terminal points a and b of the vectors α
and β, we first find the midpoint of the segment [a, b] as the unique point c such that

d(a, c) = d(c, b) =
1
2
d(a, b),

and then set δ = 2−→oc . A detailed justification of this construction is left to the reader
as an exercise.

Since spreserves distances, it preserves lengths of the vectors. But from |sα| = |α|
it follows that

sα · sα = α · α
for all α ∈ Rn. Now we apply the additivity of s and observe that

(α+ β) · (α+ β) = s(α+ β) · s(α+ β)
= (sα+ sβ) · (sα+ sβ)
= sα · sα+ 2sα · sβ + sβ · sβ
= α · α+ 2sα · sβ + β · β.

On the other hand,

(α+ β) · (α+ β) = α · α+ 2α · β + β · β.
Comparing these two equations, we see that

2sα · sβ = 2α · β
and

sα · sβ = α · β.
�	

Theorem 2.3. Every isometry of a real affine Euclidean space AR
n is a composi-

tion of a translation and an orthogonal transformation. The group Isom AR
n of all

isometries of AR
n is a semidirect product of the group Rn of all translations and the

orthogonal group On,
Isom AR

n = R
n

� On.

This means that we have the following decomposition of Isom AR
n:

Isom AR
n = R

n · On, R
n � Isom AR

n, and R
n ∩ On = 1.
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Proof. The proof is an almost immediate corollary of the previous result. Indeed,
if w ∈ Isom AR

n is an arbitrary isometry, take the translation t = tα through the
position vector α = −−−→o, wo of the point wo. Then to = wo and o = t−1wo. Thus the
map s = t−1w is an isometry of AR

n that fixes the origin o and, by Theorem 2.2,
belongs to On. Hence w = ts and

Isom AR
n = R

n
On.

Obviously R
n ∩ On = 1, and we need to check only that Rn � Isom AR

n. But this
follows from the observation that for any orthogonal transformation s,

stαs
−1 = tsα

(Exercise 2.5), and consequently we have, for any isometry w = ts with t ∈ Rn and
s ∈ On,

wtαw
−1 = ts · tα · s−1t−1 = t · tsα · t−1 = tsα ∈ R

n.

Given an isometry w = ts of AR
n with t ∈ Rn and s ∈ On, we say that w

preserves orientation if det s = +1, and changes orientation if det s = −1.

Exercises

2.1. Prove the property of triangles in AR
2 stated in Figure 2.1.

2.2.* Barycenter. There is a more traditional approach to Theorem 2.1. If

F = { f1, . . . , fk }
is a finite set of points in AR

n, its barycenter b is a point defined by the condition

k∑
j=1

−−→
bfj = 0.

1. Prove that a finite set F has a unique barycenter.
2. Further, prove that the barycenter b is the point where the function

M(x) =
k∑

j=1

d(x, fj)2

takes its minimal value. In particular, if the set F is invariant under the action of a group
W of isometries, then W fixes the barycenter b.

2.3. If a and b are two points in AR
n, then the segment [a, b] can be characterized as the set

of all points x such that
d(a, b) = d(a, x) + d(x, b).

2.4. Draw a diagram illustrating the construction of α + β in the proof of Theorem 2.2, and
fill in the details of the proof.
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2.5. Prove that if tα is a translation through the vector α and s is an orthogonal transformation
then

stαs
−1 = tsα.

2.6. Prove the following generalization of Theorem 2.1: if a group W < Isom AR
n has a

bounded orbit on AR
n then W fixes a point.

Elations. A map f : AR
b −→ AR

n is called an elation if there is a constant k such that for
all a, b ∈ AR

n,
d(f(a), f(b)) = kd(a, b).

An isometry is a special case k = 1 of an elation. The constant k is called the coefficient of the
elation f .

2.7. An elation of AR
n with the coefficient k is the composition of a translation, an orthogonal

transformation, and a map of the form

R
n −→ R

n,

α �→ kα.

2.8.* Prove that an elation of AR
n preserves angles: if it sends points a, b, c to the points

a′, b′, c′, respectively, then ∠abc = ∠a′b′c′.

2.9.* Prove that elations can be characterized as maps from AR
n onto AR

n that send straight
lines to straight lines and preserveve perpendicularity.

2.10. The group of all elations of AR
n is isomorphic to R

n
� (On × R

>0), where R
>0 is the

group of positive real numbers with respect to multiplication.

Isometries of AR
3.

2.11.* Euler’s theorem is a classical observation: if an isometry of AR
3 has a fixed point

and preserves orientation then it is a rotation about an axis.



3

Hyperplane Arrangements

This chapter starts to deviate from the canonical stuff of undergraduate linear algebra;
we briefly discuss basic properties of an arrangement of several hyperplanes in affine
space—this is already a surprisingly rich structure with some beautiful and hard
mathematics.

Our exposition follows the classical treatment of the subject by Bourbaki [Bou],
with slight changes in terminology. All the results mentioned in this section are intu-
itively self-evident, at least after drawing a few simple pictures. We omit some of the
proofs, which can be found in [Bou, Chap. V, §1].

3.1 Faces of a Hyperplane Arrangement

A finite setΣ of hyperplanes in the affine space AR
n is called a hyperplane arrange-

ment. We shall call hyperplanes in Σ walls of Σ.
Given an arrangement Σ, the hyperplanes in Σ cut the space AR

n and each
other into pieces called faces; see the explicit definition below. We wish to develop a
terminology for the description of relative position of faces with respect to each other.

If H is a hyperplane in AR
n, we say that two points a and b of AR

n are on the
same side of H if both of them belong to the same of the two half-spaces V +, V −

determined by H; a and b are similarly positioned with respect to H if both of them
belong simultaneously to either V +, H , or V −.

LetΣ be a finite set of hyperplanes in AR
n. If a and b are points in AR

n, we shall
say that a and b are similarly positioned with respect to Σ and write a ∼ b if a and
b are similarly positioned with respect to every hyperplane H ∈ Σ. Obviously ∼
is an equivalence relation. Its equivalence classes are called faces of the hyperplane
arrangement Σ (Figure 3.1). Since Σ is finite, it has only finitely many faces. We
emphasize that faces are disjoint; distinct faces have no points in common.

It easily follows from the definition that if F is a face and a hyperplane H ∈ Σ
contains a point in F then H contains F . The intersection L of all hyperplanes in Σ
that contain F is an affine subspace. It is called the support of F . The dimension of
F is the dimension of its support L.

A.V. Borovik and A. Borovik, Mirrors and Reflections: The Geometry of Finite Reflection
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Fig. 3.1. Three lines in general position (i.e., no two lines are parallel and three lines do
not intersect in one point) divide the plane into seven open faces A, . . . , G (chambers), nine
1-dimensional faces (edges) (−∞, a), (a, b), . . . , (c,∞), and three 0-dimensional faces (ver-
tices) a, b, c. Notice that 1-dimensional faces are open intervals.

Topological properties of faces are described by the following result.

Proposition 3.1. In this notation,

• F is an open convex subset of the affine space L.
• The boundary of F is the union of some set of faces of strictly smaller dimension.
• If F and F ′ are faces with equal closures, F = F ′, then F = F ′.

3.2 Chambers

By definition, chambers are faces of Σ that are not contained in any hyperplane of
Σ. Also chambers can be defined, in an equivalent way, as connected components of

AR
n

�

⋃
H∈Σ

H.

Chambers are open convex subsets of AR
n. A panel or facet of a chamberC is a face

of dimension n− 1 on the boundary of C. It follows from the definition that a panel
P belongs to a unique hyperplane H ∈ Σ, called a wall of the chamber C.

Proposition 3.2. Let C and C ′ be two chambers. The following conditions are equiv-
alent:
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• C and C ′ are separated by just one hyperplane in Σ.
• C and C ′ have a panel in common.
• C and C ′ have a unique panel in common.

Lemma 3.3. Let C and C ′ be distinct chambers and P their common panel. Then

(a) the wall H that contains P is the only wall with a nontrivial intersection with the
set C ∪ P ∪ C ′, and

(b) C ∪ P ∪ C ′ is a convex open set.

Proof. The setC∪P ∪C ′ is a connected component of what is left after deleting from
V all hyperplanes from Σ but H . Therefore H is the only wall in Σ that intersects
C ∪P ∪C ′. Moreover, C ∪P ∪C ′ is the intersection of open half-spaces and hence
is convex. �	

3.3 Galleries

We say that chambers C and C ′ are adjacent if they have a panel in common. Notice
that a chamber is adjacent to itself. A gallery Γ is a sequence C0, C1, . . . , Cl of
chambers such that Ci and Ci−1 are adjacent, for all i = 1, . . . , l. The number l is
called the length of the gallery. We say that C0 and Cl are connected by the gallery Γ
and that C0 and Cl are the endpoints of Γ . A gallery is geodesic if it has the minimal
length among all galleries connecting its endpoints. The distance gd(C,D) between
the chambers C and D is the length of a geodesic gallery connecting them.

Proposition 3.4. Any two chambers of Σ can be connected by a gallery, and hence
by a geodesic gallery. The distance gd(D,C) between the chambersC andD equals
the number of hyperplanes in Σ that separate C from D.

Proof. Assume thatC andD are separated bym hyperplanes inΣ. Select two points
c ∈ C and d ∈ D such that the segment [c, d] does not intersect any (n − 2)-
dimensional face of Σ. Then the chambers that are intersected by the segment [c, d]
form a gallery connecting C andD, and it is easy to see that its length ism. To prove
that m = gd(C,D), consider an arbitrary gallery C0, . . . , Cl connecting C = C0
and D = Cl. We may assume without loss of generality that successive chambers
Ci−1 and Ci are distinct for all i = 1, . . . , l. For each i = 0, 1, . . . , l, choose a point
ci ∈ Ci. The union

[c0, c1] ∪ [c1, c2] ∪ · · · ∪ [cl−1, cl]

is connected, and by the connectedness argument each wall H that separates C and
D has to intersect one of the segments [ci−1, ci]. Let P be the common panel ofCi−1
andCi. By virtue of Lemma 3.3(a), [ci−1, ci] ⊂ Ci−1 ∪P ∪Ci andH has a nontrivial
intersection with Ci−1 ∪P ∪Ci. But then, in view of Lemma 3.3(b), H contains the
panel P . Therefore each ofmwalls separatingC fromD contains the common panel
of a different pair (Ci−1, Ci) of adjacent chambers. It is obvious now that l � m. �	

As a byproduct of this proof, we have another useful result.
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Lemma 3.5. Assume that the endpoints of the gallery C0, C1, . . . , Cl lie on opposite
sides of the wall H . Then, for some i = 1, . . . , l, the wall H contains the common
panel of consecutive chambers Ci−1 and Ci.

We shall say in this situation that the wall H intersects the gallery C0, . . . , Cl.
Another corollary of Proposition 3.4 is the following characterization of geodesic

galleries.

Proposition 3.6. A gallery is geodesic if and only if it intersects each wall at most
once.

Corollary 3.7. Let
C = C0, C1, . . . , Cl = D

be a geodesic gallery. Let Ci and Ci+1 be consecutive chambers and H the wall
separating them. Then the endpoints C and D of the gallery lie on opposite sides of
H .

The following elementary property of distance gd( , ) will be very useful in the
sequel.

Proposition 3.8. Let D and E be two distinct adjacent chambers and H the wall
separating them. Let C be a chamber, and assume that the chambers C and D lie on
the same side of H . Then

gd(C,E) = gd(C,D) + 1.

Proof. The proof is left to the reader as an exercise (Exercise 3.5). �	

3.4 Polyhedra

A polyhedral set, or polyhedron, in AR
n is the intersection of a finite number of closed

half-spaces. Since half-spaces are convex, every polyhedron is convex. Bounded poly-
hedra are called polytopes (Figure 3.2).

Let ∆ be a polyhedron represented as the intersection of closed half-spaces
X1, . . . , Xm bounded by the hyperplanesH1, . . . , Hm. Consider the hyperplane con-
figuration Σ = {H1, . . . , Hm }. If F is a face of Σ and has a point in common with
∆ then F is contained in ∆. Thus ∆ is a union of faces (Figure 3.3). Actually it can
be shown that ∆ is the closure of exactly one face of Σ.

0-dimensional faces of ∆ are called vertices, and the 1-dimensional faces are
called edges.

The following result is probably the most important theorem about polytopes.

Theorem 3.9. A polytope is the convex hull of its vertices. Conversely, given a finite
set E of points in AR

n, their convex hull is a polytope whose vertices belong to E.
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Fig. 3.2. Polyhedra can be unbounded (a) or without interior points (b). In some books the term
“polytope” is reserved for bounded polyhedra with interior points (c); we prefer to use it for
all bounded polyhedra, so that (b) is a polytope in our sense.

⋃ ⋃
=

� �

� �

Fig. 3.3. A polyhedron is the union of its faces.

As R. T. Rockafellar characterized it [Roc, p. 171],

This classical result is an outstanding example of a fact which is completely obvious
to geometric intuition, but which wields important algebraic content and is not trivial
to prove.

We hope this quotation is a sufficient justification for our decision not to include the
proof of the theorem in our book.

Exercises

Lines on the plane. Several lines on the plane already make a remarkably rich structure
with many beautiful properties. Any serious course in geometry should start with the detailed
study of this basic configuration. A few problems illustrate this point; they are included here
with the aim to help the novice reader to develop geometric intuition.

3.1. Prove that in the plane AR
2, n lines in general position (i.e., no lines are parallel and no

three intersect in one point) divide the plane into

1 + (1 + 2 + · · · + n) =
1
2
(n2 + n+ 2)
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chambers. How many of these chambers are unbounded? Also, find the numbers of 1- and
0-dimensional faces.

3.2. Given a line arrangement in the plane, prove that the chambers can be colored black and
white so that adjacent chambers have different colors.

3.3. Four straight lines in the plane are in general position (that is, no two lines are parallel
and no three lines meet at the same point). Four hikers walk along these lines with constant
speeds (but the speeds of different hikers may be different). It is known that the first hiker met
the second, third, and fourth ones, while the second hiker met the third and fourth ones. Prove
that the third hiker met the fourth one.

Galleries and distance.

3.4. Prove that distance gd( , ) on the set of chambers of a hyperplane arrangement satisfies
the triangle inequality:

gd(C,D) + gd(D,E) � gd(C,E).

3.5. Prove Proposition 3.8.

Tetrahedra and n-simplices.

3.6. Let ∆ be a tetrahedron in AR
3 and Σ the arrangement formed by the planes containing

facets of ∆. Make a sketch analogous to Figure 3.1. Find the number of chambers of Σ. Can
you see a natural correspondence between chambers of Σ and faces of ∆?
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The regular 2-simplex is the set of solutions
of the system of simultaneous inequalities
and equation

x1 + x2 + x3 = 0,

x1 � 0, x2 � 0, x3 � 0.

We see that it is an equilateral triangle.

Fig. 3.4. The regular 2-simplex.

3.7. The previous exercise can be generalized to the case of n dimensions in the following
way. By definition, the regular n-simplex is the set of solutions of the system of simultaneous
inequalities and equation

x1 + · · · + xn + xn+1 = 1,

x1 � 0,
...

xn+1 � 0
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(Figure 3.4). It is the polytope in the n-dimensional affine subspace A with the equation

x1 + · · · + xn+1 = 1

bounded by the coordinate hyperplanes xi = 0, i = 1, . . . , n+1 (Figure 3.4). Prove that these
hyperplanes cut A into 2n+1 − 1 chambers.

Groups of symmetries.

3.8. If ∆ ⊂ AR
n, the group of symmetries Sym∆ of the set ∆ consists of all isometries of

AR
n that map ∆ onto ∆. Give examples of polytopes ∆ in AR

3 such that

1. Sym∆ acts transitively on the set of vertices of ∆ but is intransitive on the set of faces;
2. Sym∆ acts transitively on the set of faces of ∆ but is intransitive on the set of vertices;
3. Sym∆ is transitive on the set of edges of ∆ but is intransitive on the set of faces.

3.9. Prove that the symmetry group of a polytope is finite.

3.10. Construct a polyhedron with an infinite symmetry group.
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Polyhedral Cones

In this book, we shall deal mostly with arrangements of hyperplanes in AR
n that pass

through a common point o. In that case, the hyperplanes cut the space into polyhedral
cones. The theory of polyhedral cones is closely related to the solution of systems
of linear inequalities in several variables and is traditionally treated as part of linear
programming. We list here only the most basic properties of polyhedral cones.

4.1 Finitely Generated Cones

4.1.1 Cones

A cone in R
n is a subset C closed under addition and positive scalar multiplication,

that is, α+ β ∈ Γ and kα ∈ C for any α, β ∈ C and scalar k > 0. Linear subspaces
and half-spaces of Rn are cones. Every cone is convex, since it contains, for any two
points of the cone α and β, the segment

[α, β] = { (1 − t)α+ tβ | 0 � t � 1 }.

A cone does not necessarily contain the zero vector 0; this is the case, for example,
for the positive quadrant C in R

2,

C =
{ (

x
y

)
∈ R

2
∣∣∣∣ x > 0, y > 0

}
.

However, we can always add to a cone the origin O of R
n: if C is a cone then so is

C ∪ {O }. It can be shown that if C is a cone then so are its topological closure C
and interiorC◦. The intersection of a collection of cones is either a cone or the empty
set.

The coneC spanned or generated by a set of vectorsΠ is the set of all nonnegative
linear combinations of vectors from Π ,

C = { a1α1 + · · · + amαm | m ∈ N, αi ∈ Π, ai � 0 }.
A.V. Borovik and A. Borovik, Mirrors and Reflections: The Geometry of Finite Reflection
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Notice that the zero vector 0 belongs to C. If the cone C is spanned by a finite set Π
then C is called finitely generated and the set Π is a system of generators for C. A
cone is polyhedral if it is a polyhedral set, i.e., the intersection of a finite number of
closed half spaces, with the origin O belonging to the bounding hyperplane of each
of these subspaces.

The following important result can be found in most books on linear programming.
In this book we shall prove only a very restricted special case, Proposition 4.6 below.

Theorem 4.1. A cone is finitely generated if and only if it is polyhedral.

4.1.2 Extreme Vectors and Edges

We shall call a set of vectors Π positive if for some linear function

f : R
n −→ R,

f(ρ) > 0 for all ρ ∈ Π � { 0 }. This is equivalent to saying that the set Π � { 0 } of
nonzero vectors in Π is contained in an open half-space. The following property of
positive sets of vectors is fairly obvious.

Lemma 4.2. If α1, . . . , αm are nonzero vectors in a positive set Π and

a1α1 + · · · + amαm = 0, where all ai � 0,

then ai = 0 for all i = 1, . . . ,m.
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a pointed finitely generated cone a nonpointed finitely generated cone

Fig. 4.1. Pointed and nonpointed cones.

Positive cones are usually called pointed cones (Figure 4.1).
Let C be a cone in Rn. We shall say that a vector ε ∈ C is extreme or simple in

C if it cannot be represented as a positive linear combination which involves vectors



4.2 Simple Systems of Generators 27

�
�
�
���

	
	
	�

�
�

�
��� 


�

��
�

���
���
���

������

�������

������

������

������������

α β1

β2

β3

β4

C

α is a nonextreme vector in the
cone C generated by extreme (or
simple) vectors β1, β2, β3, β4 di-
rected along the edges of C.

Fig. 4.2. Extreme and nonextreme vectors

in C noncolinear to ε, i.e., if it follows from ε = c1γ1 + · · · + cmγm, where γi ∈ C
and ci > 0, that m = 1 and ε = c1γ1. Notice that it immediately follows from the
definition that if ε is an extreme vector and Π a system of generators in C then Π
contains a vector kε collinear to ε.

Extreme vectors in a polyhedral cone C ⊂ R2 or R3 have the most natural
geometric interpretation: these are vectors directed along the edges of C. We prefer
to take this property for the definition of an edge: if ε is an extreme vector in a
polyhedral cone C then the cone C ∩ Rε is called an edge of C; see Figure 4.2.

4.2 Simple Systems of Generators

A finite systemΠ of generators in a coneC is said to be simple if it consists of simple
vectors and no two distinct vectors in Π are collinear. It follows from the definition
of an extreme vector that any two simple systems Π and Π ′ in C contain an equal
number of vectors; moreover, every vector in Π is collinear to some vector in Π ′,
and vice versa.

Proposition 4.3. Let Π be a finite positive set of vectors and C the cone it generates.
Assume also thatΠ contains no collinear vectors, that is, α = kβ for distinct vectors
α, β ∈ Π and k ∈ R implies k = 0. Then Π contains a (unique) simple system of
generators.

In geometric terms this means that a finitely generated pointed cone has finitely
many edges and is generated by a system of vectors directed along the edges, one
vector from each edge.

Proof. We shall prove the following claim, which makes the statement of the lemma
obvious.

A nonextreme vector can be removed from any generating set for a pointed
cone C. In more precise terms, if the vectors α, β1, . . . , βk of Π generate C
and α is not an extreme vector then the vectors β1, . . . , βk still generate C.
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Proof of the claim. Let

Π = {α, β1, . . . , βk, γ1, . . . , γl },

where no γj is collinear with α. Since α is not an extreme vector,

α =
k∑

i=1

biβi +
l∑

j=1

cjγj , bi � 0, cl � 0.

Also, since the vectors α, β1, . . . , βk generate the cone C,

γj = djα+
k∑

i=1

fjiβi, dj � 0, fji � 0.

Substituting γi from the latter equations into the former, we have, after a simple
rearrangement, ⎛⎝1 −

l∑
j=1

cjdj

⎞⎠α =
k∑

i=1

⎛⎝bi +
l∑

j=1

cjfji

⎞⎠βi.

The vector α and the vector on the right-hand side of this equation both lie in the
same open half-space; therefore, in view of Lemma 4.2,

1 −
l∑

j=1

cjdj > 0,

and

α =
1

1 −∑j cjdj

k∑
i=1

⎛⎝bi +
l∑

j=1

cjfji

⎞⎠βi

expresses α as a nonnegative linear combination of the βi’s. Since the vectors

α, β1, . . . , βk

generate C, the vectors β1, . . . , βk also generate C. �	
The following simple lemma has an even simpler geometric interpretation: the

plane passing through two edges of a cone cuts it in the cone spanned by these two
edges; see Figure 4.3.

Lemma 4.4. Let α and β be two distinct extreme vectors in a finitely generated cone
C. Let P be the plane (2-dimensional vector subspace) spanned by α and β. Then
C0 = C ∩ P is the cone in P spanned by α and β.
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Fig. 4.3. For the proof of Lemma 4.4.

Proof. Assume the contrary; let γ ∈ C0 be a vector that does not belong to the cone
spanned by α and β. Since α and β form a basis in the vector space P ,

γ = a′α+ b′β,

and by our assumption one of the coefficients a′ and b′ is negative. We can assume
without loss of generality that b′ < 0.

Let α, β, γ1, . . . , γm be the simple system in C. Since γ ∈ C,

γ = aα+ bβ + c1γ1 + · · · + cmγm,

where all the coefficients a, b, c1, . . . , cm are nonnegative. Comparing the two ex-
pressions for γ, we have

(a− a′)α+ (b− b′)β + c1γ1 + · · · + cmγm = 0.

Notice that b − b′ > 0; if a − a′ � 0 then we get a contradiction to the assumption
that the cone C is pointed. Therefore a− a′ < 0, and

α =
1

a′ − a
((b− b′)β + c1γ1 + · · · + cmγm)

expresses α as a nonnegative linear combination of the rest of the simple system. This
contradiction proves the lemma. �	

4.3 Duality

If C is a cone, the dual cone C∗ is the set

C∗ = {χ ∈ R
n | χ · γ � 0 for all γ ∈ C }.
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It immediately follows from this definition that the set C∗ is closed with respect to
addition and multiplication by positive scalars, so the name “cone” for it is justified.
Also, the dual cone C∗, being the intersection of closed half-spaces χ · γ � 0, is
closed in the topological sense.

The following theorem plays an extremely important role in several branches of
mathematics: linear programming, functional analysis, convex geometry. We shall
not use or prove it in its full generality, proving instead a simpler partial case, Propo-
sition 4.6.

Theorem 4.5. (The duality theorem for polyhedral cones) If C is a polyhedral cone,
then so is C∗. Moreover,

(C∗)∗ = C.

Recall that polyhedral cones are closed by definition.

4.4 Duality for Simplicial Cones

A finitely generated cone C ⊂ Rn is called simplicial if it is spanned by n linearly
independent vectors ρ1, . . . , ρn. Define

Π = { ρ1, . . . , ρn }.

We shall prove the duality theorem, Theorem 4.5, in the special case of simplicial
cones, and obtain, in the course of the proof, very detailed information about their
structure.

First of all, notice that if the coneC is generated by a finite setΠ = { ρ1, . . . , ρn }
then the inequalities

χ · γ � 0 for all γ ∈ C

are equivalent to
χ · ρi � 0, i = 1, . . . , n.

Hence the dual cone C∗ is the intersection of the closed subspaces given by the
inequalities

χ · ρi � 0, i = 1, . . . , n.

We know from linear algebra that the conditions

ρ∗
i · ρj =

{−1 if i = j,
0 if i �= j,

uniquely determine n linearly independent vectors ρ∗
1, . . . , ρ

∗
n (see Exercises 4.3 and

4.4). We shall say that the basis

Π∗ = { ρ∗
1, . . . , ρ

∗
n }
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is dual1 to the basis ρ1, . . . , ρn. If we write a vector χ ∈ Rn in the basis Π∗,

χ = y∗
1ρ

∗
1 + · · · + y∗

nρ
∗
n,

thenχ·ρi = −y∗
i andχ ∈ C∗ if and only if yi � 0 for all i, which means thatχ ∈ C∗.

So we have proved the following partial case of the duality theorem, illustrated by
Figure 4.4.
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The simplicial cones C and
C∗ are dual to each other:

oa ⊥ b′oc′, ob ⊥ c′oa′,

oc ⊥ a′ob′, oa′ ⊥ boc,

ob′ ⊥ coa, oc′ ⊥ aob.

Fig. 4.4. Dual simplicial cones.

Proposition 4.6. If C is the simplicial cone spanned by a basis Π of Rn then the
dual cone C∗ is also simplicial and spanned by the dual basis Π∗. Applying this
property to C∗, we see that C = (C∗)∗ is the dual cone to C∗ and coincides with the
intersection of the closed half-spaces

χ · ρ∗
i � 0, i = 1, . . . , n.

4.5 Faces of a Simplicial Cone

Denote by Hi the hyperplane χ · ρ∗
i = 0. Notice that the cone C lies in one closed

half-space determined by Hi. The intersection Ck = C ∩Hk consists of all vectors
of the form

χ = y1ρ1 + · · · + ynρn

1 We move a little bit away from the traditional terminology, since the dual basis is usually
defined by the conditions

ρ∗
i · ρj =

{
1 if i = j,
0 if i �= j.
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with nonnegative coordinates yi, i = 1, . . . , n, and zero kth coordinate, yk = 0.
ThereforeCk is the simplicial cone in the (n−1)-dimensional vector spaceχ ·ρ∗

k = 0
spanned by the vectorsρi, i �= k. The conesCk are called facets or (n−1)-dimensional
faces of C.

More generally, if we define I = { 1, . . . , n } and take a subset J ⊂ I of cardinal-
ity m, then the (n−m)-dimensional face CJ of C can be defined in two equivalent
ways:

• CJ is the cone spanned by the vectors ρi, i ∈ I � J .
• CJ = C ∩⋂j∈J Hj .

It follows from their definition that edges are 1-dimensional faces.
If we define the faces C∗

J in an analogous way then we have the formula

C∗
J = {χ ∈ C∗ | χ · γ = 0 for all γ ∈ CI�J }.

Abusing terminology, we shall say that the face C∗
J of C∗ is dual to the face CI�J

of C. This defines a one-to-one correspondence between the faces of the simplicial
cone C and its dual C∗.

In particular, the edges of C are dual to facets of C∗, and the facets of C are dual
to edges of C∗.

We shall use also the duality theorem for cones C spanned by m < n linearly
independent vectors in Rn. The description ofC∗ in this case is an easy generalization
of Proposition 4.6; see Exercise 4.5.

Exercises

4.1. A finite set Π of nonzero vectors in R
n generates a pointed cone if and only if the zero

vector cannot be represented as a positive linear combination of vectors from Π , that is, the
relation

a1α1 + · · · + amαm = 0, ai � 0 for all i = 1, . . . ,m,

implies ai = 0 for all i = 1, . . . ,m.

4.2. Let X be an arbitrary positive set of vectors in R
n. Prove that the set

X∗ = {α ∈ R
n | α · γ � 0 }

is a cone. Show next that X∗ contains a nonzero vector and that X is contained in the cone
(X∗)∗.

4.3. Dual basis. Let ε1, . . . , εn be an orthonormal basis and ρ1, . . . , ρn a basis in R
n. Form

the matrix R = (rij) by the rule rij = ρi · εj , so that

ρi =
n∑

j=1

rijεj .

Notice that R is a nondegenerate matrix. Let ρ = y1ε1 + · · · + ynεn. For each value of i,
express the system of simultaneous equations
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(ρ, ρj) =
{ −1 if i = j,

0 if i �= j,

in matrix form and prove that it has a unique solution. This will prove the existence of the basis
dual to ρ1, . . . , ρn.

4.4. A formula for the dual basis. In the notation of Exercise 4.3, prove that the dual basis
{ ρ∗

i } can be determined from the formula

ρ∗
j = − 1

detR

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r11 . . . r1,j−1 ε1 r1,j+1 . . . r1,n

r21 . . . r2,j−1 ε2 r2,j+1 . . . r2,n

...
...

...
...

...
ri,1 . . . ri,j−1 εi ri,j+1 . . . ri,n

...
...

...
...

...
rn,1 . . . rn,j−1 εn rn,j+1 . . . rn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Notice that in the case n = 3 we arrive at the formula

ρ∗
1 = − 1

(ρ1, ρ2, ρ3)
ρ2 × ρ3, ρ∗

2 = − 1
(ρ1, ρ2, ρ3)

ρ3 × ρ1, ρ∗
3 = − 1

(ρ1, ρ2, ρ3)
ρ1 × ρ2,

where ( , , ) denotes the scalar triple product

(ρ1, ρ2, ρ3) = ρ1 · (ρ2 × ρ3),

and × the cross (or vector) product of vectors.

4.5. LetC be a cone in R
n spanned by a setΠ ofm linearly independent vectors ρ1, . . . , ρm,

with m < n. Let U be the vector subspace spanned by Π .
Then C is a simplicial cone in U ; we denote its dual in U by C′, and set C∗ to be the dual

cone for C in V . Let alsoΠ ′ = { ρ′
1, . . . , ρ

′
m } be the basis in U dual to the basisΠ . We shall

use in the sequel the following properties of the cone C∗:

1. For any set A ∈ R
n, define

A⊥ = {χ ∈ R
n | χ · α = 0 for all γ ∈ A }.

Check that A⊥ is a linear subspace of R
n. Prove that dimC⊥ = n−m.

Hint: C⊥ = U⊥.
2. C∗ is the intersection of the closed half-spaces defined by the inequalities χ · ρi � 0,
i = 1, . . . ,m.

3. C∗ = C′ + C⊥; this set is, by definition,

C′ + C⊥ = {κ+ χ | κ ∈ C′, χ ∈ C⊥ }.
4. (C∗)∗ = C. (This extends Proposition 4.6.)
5. Let Hi and H∗

i be hyperplanes in V given by the equations χ · ρ′
i = 0 and χ · ρi = 0,

respectively. Define I = { 1, . . . ,m } and set, for J ⊆ I ,

CJ = C ∩
⋂
j∈J

Hj , C∗
J = C∗ ∩

⋂
j∈J

H∗
j , and C′

J = C′ ∩
⋂
j∈J

H∗
j .

Prove that C∗
J = C′

J + C⊥.
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6. The cones CJ and C∗
J are called faces of the cones C and C∗, respectively. Prove that

there is a one-to-one correspondence between the set of k-dimensional faces of C, k =
1, . . . ,m− 1, and (n− k)-dimensional faces of C∗, defined by the rule

C∗
J = C ∩ C⊥

I�J .

If we treat C as its own m-dimensional face C∅, then it corresponds to C∗
I = C⊥.



Part II

Mirrors, Reflections, Roots



5

Mirrors and Reflections

This chapter bears the same title as the book; this is where its main characters first
appear on the scene.

We define reflection in an affine real Euclidean space AR
n to be a nonidentity

isometry s that fixes all points of some affine hyperplane H of AR
n. The hyperplane

H is called the mirror of the reflection s and denoted byHs. Conversely, the reflection
s will be sometimes denoted by s = sH . This notation and terminology are justified,
since we shall soon see that a reflection is uniquely determined by its mirror.

Lemma 5.1. If s is a reflection with the mirror H , then for any point α ∈ AR
n,

• the segment [sα, α] is normal to H and H intersects the segment in its midpoint;
• H is the set of points fixed by s;
• s is an involutary transformation, that is, s2 = 1.

In particular, the reflection s is uniquely determined by its mirror H , and vice versa.

Note that a nonidentity element g of a group G is called an involution if it has
order 2. Hence s is an involution. In particular, s−1 = s.

Proof. Choose some point ofH for the originO of an orthonormal coordinate system,
and identify the affine space AR

n with the underlying real Euclidean vector space
Rn. Then, by Theorem 2.2, s can be identified with an orthogonal transformation of
Rn. Since s fixes all points inH , it has at least n− 1 eigenvalues 1, and since s is not
the identity, the only possibility for the remaining eigenvalue is −1. In particular, s
is diagonalizable and has order 2, that is, s2 = 1 and s �= 1. It also follows from here
that H is the set of all points fixed by s.

If now we consider the vector sα− α directed along the segment [sα, α], then

s(sα− α) = s2α− sα = α− sα,

which means that the vector sα − α is an eigenvector of s for the eigenvalue −1.
Hence the segment [sα, α] is normal to H . Its midpoint 1

2 (sα + α) is s-invariant,
since
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38 5 Mirrors and Reflections

s
1
2
(sα+ α) =

1
2
(s2α+ sα) =

1
2
(sα+ α),

hence belongs to H . �	

In the course of the proof of the previous lemma we have also shown the following

Lemma 5.2. Reflections in AR
n that fix the origin o are exactly the orthogonal trans-

formations of Rn with n− 1 eigenvalues 1 and one eigenvalue −1; their mirrors are
eigenspaces for the eigenvalue 1.

We say that the points sα and α are symmetric in H . If X ⊂ A then the set sX
is called the reflection or the mirror image of the set X in the mirror H .

Lemma 5.3. If t is an isometry of AR
n, s the reflection in the mirror H , and s′ the

reflection in tH , then
s′ = tst−1.
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H

sα

tH

t

t

t

s′tα = tsα

Fig. 5.1. For the proof of Lemma 5.3: If s is the reflection in the mirror H and t is an isometry
then the reflection s′ in the mirror tH can be found from the condition s′t = ts, hence
s′ = tst−1

Proof. See Figure 5.1. Alternatively, we may argue as follows.
We need only show that tst−1 is a nonidentity isometry that fixes tH . Since tst−1

is a composition of isometries, it is clearly an isometry. If α ∈ tH , then t−1α ∈ H;
hence s fixes t−1α, and hence tst−1α = α. If α �∈ tH , then t−1α �∈ H; hence s does
not fix t−1α, and hence tst−1α �= α. �	
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Exercises

Reflections and rotations in R2.

5.1. Prove that every 2 × 2 orthogonal matrix A over R can be written in one of the forms(
cos θ − sin θ
sin θ cos θ

)
,

(
cos θ sin θ
sin θ − cos θ

)
,

depending on whether A has determinant 1 or −1.

5.2. Prove that if, in the notation of the previous Exercise, detA = 1, then A is the matrix of
the rotation through the angle θ about the origin, counterclockwise.

5.3. Prove that if, in the notation of Exercise 5.1, detA = −1, then A is the matrix of a
reflection.

5.4. Check that

u =
(

cosφ/2
sinφ/2

)
and v =

(− sinφ/2
cosφ/2

)
are eigenvectors with the eigenvalues 1 and −1 for the matrix(

cosφ sinφ
sinφ − cosφ

)
.

5.5. Use trigonometric identities to prove that(
cosφ − sinφ
sinφ cosφ

)
·
(

cosψ − sinψ
sinψ cosψ

)
=

(
cos(φ+ ψ) − sin(φ+ ψ)
sin(φ+ ψ) cos(φ+ ψ)

)
.

Give a geometric interpretation of this fact.

Finite groups of orthogonal transformations in 2 dimensions.

5.6. Prove that any finite group of rotations of the Euclidean plane R
2 about the origin is

cyclic.

5.7. Prove that if r is a rotation of R
2 and s a reflection then sr is a reflection; in particular,

|sr| = 2. Deduce from this the fact that s inverts r, i.e., srs−1 = r−1.

5.8. IfG is a finite group of orthogonal transformations of the 2-dimensional Euclidean space
R

2 then the map

det : G −→ { 1,−1 },
A �→ detA,

is a homomorphism with kernel R consisting of all rotations contained in G. If R �= G then
|G : R| = 2 and all elements in G�R are reflections.

5.9. Prove that the product of two reflections in R
2 (with a common fixed point at the origin)

is a rotation through twice the angle between their mirrors.
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Involutary orthogonal transformations in three dimensions.

5.10. In R
3 there are three involutive orthogonal transformations, up to conjugacy of matri-

ces, with the eigenvalues 1, 1,−1 (reflections), 1,−1,−1, and −1,−1,−1. Give a geometric
interpretation of the last two transformations.

5.11. An involution in O3 with the eigenvalues 1,−1,−1 is called a half-turn: it is a rotation
through 180◦ around the axis spanned by an eigenvector for the eigenvalue 1. Obviously,
there is a one-to-one correspondence between one-dimensional subspaces in R

3 and half-turns
around them.

1. Prove that the product uvw of three half-turns u, v, w is an involution (and therefore a
half-turn) if and only if their axes are coplanar, that is, belong to a 2-dimensional subspace.

2. Furthermore, prove that if t = uvw is an involution then it is a half-turn and its axis is
orthogonal to the plane spanned by the axes of u, v, and w.
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Systems of Mirrors

The philosophy of this book is to use, by all means possible, geometry instead of
group theory; this chapter is crucial for the development of our approach. Informally
speaking, we introduce systems of mirrors by reflecting a mirror in a mirror, as in a
kaleidoscope. We shall soon see that this is a very powerful and useful metaphor.

6.1 Systems of Mirrors

Assume now that we are given a solid ∆ ⊂ AR
n.

Consider the setΣ of all mirrors of symmetry of∆, i.e., the mirrors of reflections
that send∆ to∆. The reader can easily check (Exercise 6.2) thatΣ is a closed system
of mirrors in the sense of the following definition: a system of hyperplanes (mirrors)
in AR

n is called closed if for any two mirrors H1 and H2 in Σ, the mirror image of
H2 in H1 also belongs to Σ (see Figure 6.1).

Slightly abusing language, we shall call a finite closed systemΣ of mirrors simply
a system of mirrors.

Systems of mirrors are the most natural objects. The reader most likely has seen
them when looking into a kaleidoscope; and of course, everybody has seen a mirror.
We are interested in the study of finite closed systems of mirrors and other closely
related objects—root systems and finite groups generated by reflections.

IfΣ is a system of mirrors, the set of all reflections in mirrors ofΣ will be referred
to as a closed system of reflections. In view of Lemma 5.3, a set S of reflections forms
a closed system of reflections if and only if st ∈ S for all reflections s, t ∈ S. Here
st is the standard abbreviation, in group theory, for conjugation:

st = t−1st.

Recall that conjugation by any element t is an automorphism of any group containing
t:

(xy)t = xtyt.
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Σ
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The system Σ of mirrors of symmetry
of a geometric body ∆ is closed: the re-
flection of a mirror in another mirror is
a mirror again. Notice that if ∆ is com-
pact then all mirrors intersect in a com-
mon point.

Fig. 6.1. A closed system of mirrors.

Lemma 6.1. A finite closed system of reflections generates a finite group of isometries.

Proof. This result is a special case of the following elementary group-theoretic prop-
erty.

Let W be a group generated by a finite set S of involutions such that st ∈ S
for all s, t ∈ S. Then W is finite.

Indeed, since s ∈ S are involutions, s−1 = s. Let w ∈ W and find the shortest
expression w = s1 · · · sk of w as a product of elements from S. If the word s1 · · · sk

contains two occurrences of the same involution s ∈ S then

w = s1 · · · sissi+1 · · · sjssj+1 · · · sk

= s1 · · · si(si+1 · · · sj)ssj+1 · · · sk

= s1 · · · sis
s
i+1 · · · ss

jsj+1 · · · sk

= s1 · · · sis
′
i+1 · · · s′

jsj+1 · · · sk,

where all s′
l = ss

l belong to S and the resulting expression is shorter than the original.
Therefore all shortest expressions of elements from W in terms of generators s ∈ S
contain no repetition of symbols. Therefore the length of any such expression is at
most |S|, and counting the numbers of expressions of length 0, 1, . . . , |S|, we find
that their total number is at most

1 + |S| + |S|2 + · · · + |S||S|.

Hence W is finite. �	
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Fig. 6.2. Examples of infinite closed mirror systems in AR
2 with their traditional notation:

tesselations of the plane by congruent equilateral triangles (Ã2), isosceles right triangles (B̃C2),
rectangles (Ã1 ⊕ Ã1), triangles with the angles π/2, π/3, π/6 (G̃2), infinite half-stripes
(A1 ⊕ Ã1).
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6.2 Finite Reflection Groups

A group-theoretic interpretation of closed systems of mirrors comes in the form of
a finite reflection group, i.e., a finite group W of isometries of an affine Euclidean
space A generated by reflections.

Let s be a reflection in W and

sW = {wsw−1 | w ∈ W }
its conjugacy class. Form the set of mirrors

Σ = {Ht | t ∈ sW }.
Then it follows from Lemma 5.3 that Σ is a mirror system: if Hr, Ht ∈ Σ then the
reflection of Hr in Ht is the mirror Hrt . Thus the conjugacy class sW is a closed
system of reflections. The same observation is valid for any normal setS of reflections
in W , i.e., a set S such that sw ∈ S for all s ∈ S and w ∈ W . We shall show later
that if the reflection group W arises from a closed system of mirrors Σ then every
reflection in W is actually the reflection in one of the mirrors in Σ.

Since W is finite, all its orbits are finite and W fixes a point by virtue of Theo-
rem 2.1.We can take this fixed point for the origin of an orthonormal coordinate system
and, in view of Theorem 2.2, treatW as a group of linear orthogonal transformations.

IfW is the group generated by the reflections in the finite closed system of mirrors
Σ then the fixed points of W are fixed by every reflection in a mirror from Σ and
hence belong to each mirror in Σ. Thus we have proved the following theorem.

Theorem 6.2.

(1) A finite reflection group in AR
n has a fixed point.

(2) All the mirrors in a finite closed system of mirrors in AR
n have a point in common.

Since we are interested in finite closed systems of mirrors and finite groups gen-
erated by reflections, this result allows us to assume without loss of generality that all
mirrors pass through the origin of Rn. So we can forget about the affine space AR

n

and work entirely in the Euclidean vector space V = Rn.
Note in passing that there is a beautiful theory of infinite locally finite closed

system of mirrors in AR
n (see Figure 6.2); locally finite means that every sphere in

AR
n intersects only finitely many mirrors. A classical exposition of that theory can

be found in [Bou].

Exercises

Systems of mirrors.

6.1. We cannot resist temptation and recall an old puzzle: why is it that a mirror changes left
and right but does not change up and down?
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Fig. 6.3. Billiards, for Exercise 6.3.

6.2. Prove that if∆ is a subset in AR
n then the systemΣ of its mirrors of symmetry is closed.

6.3. Two balls, white and black, are placed on a billiard table (Figure 6.3). The white ball must
bounce off two cushions of the table and then strike the black one. Find its trajectory.
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Fig. 6.4. For Exercise 6.4.

6.4. Prove that a ray of light reflecting from two mirrors forming a corner will eventually get
out of the corner (Figure 6.4). If the angle formed by the mirrors is α, what is the maximal
possible number of times the ray would bounce off the sides of the corner?

6.5. Two big floor-to-ceiling mirrors form the angle α. Inside the angle, a man holds a candle.
How many reflections of the candle can the man see?

6.6. Prove that the angular reflector made of three pairwise perpendicular mirrors in R
3 sends

a ray of light back in the direction exactly opposite to the one it came from (Figure 6.5).

6.7. How many mirrors of symmetry has a regular tetrahedron? A cube?

6.8. Figure 6.6 shows an icosahedron, one of the five Platonic solids. Assuming that it is as
symmetric as it appears to be, count the number of its mirrors of symmetry.
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Fig. 6.5. Angular reflector (for Exercise 6.6).

�
�
�
�
��

���

�
�
�
���

�
�
�
�
��

Fig. 6.6. Icosahedron.

Reflections and linear algebra.

6.9. We say that a subspace U of the real Euclidean space V is perpendicular to the subspace
W and write U ⊥ W if U = (U ∩W ) ⊕U ′, where U ′ is orthogonal toW , i.e., u ·w = 0 for
all u ∈ U ′ and w ∈ W . Prove that this relation is symmetric: U ⊥ W if and only if W ⊥ U .

6.10. Prove that if a reflection s leaves a subspace U < V invariant then U is perpendicular
to the mirror Hs of the reflection s.

6.11. Prove that two reflections s and t commute, that is, st = ts, if and only if their mirrors
are perpendicular to each other.
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Planar geometry.

6.12. Prove that the product of two reflections in AR
2 with parallel mirrors is a parallel

translation. What is the translation vector?

6.13. If a bounded figure in the Euclidean plane AR
2 has a center of symmetry and a mirror

of symmetry then it has two perpendicular mirrors of symmetry. Is the same true in AR
3?



7

Dihedral Groups

In this chapter we shall study finite groups generated by two involutions. In subsequent
applications, it is usually the group generated by two reflections; the corresponding
mirror system is very simple and is of fundamental importance.

7.1 Groups Generated by Two Involutions

Theorem 7.1. There is a unique, up to isomorphism, group W generated by two
involutions s and t such that their product st has order n. Furthermore,

(1) W is finite and |W | = 2n.
(2) If r = st then the cyclic group R = 〈r〉 generated by r is a normal subgroup of

W of index 2.
(3) Every element in W �R is an involution.

We shall denote the group W by Dih2n, call it the dihedral group of order 2n,
and write

Dih2n = 〈 s, t | s2 = t2 = (st)n = 1 〉.
This standard group-theoretic notation means that the group Dih2n is generated by
two elements s and t such that any identity relating them to each other is a consequence
of the defining relations

s2 = 1, t2 = 1, (st)n = 1.

The words “consequence of the defining relations” are given precise meaning in the
theory of groups given by generators and relations, a very well developed chapter of
the general theory of groups. We prefer to use them in an informal way that will be
always clear from context. The concept of generators and relations will be made more
specific in Theorem 15.1. Notice that Theorem 7.1 is a special case of Theorem 15.1.
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7.2 Proof of Theorem 7.1

First of all, notice that since s2 = t2 = 1, we have

s−1 = s and t−1 = t.

In particular, (st)−1 = t−1s−1 = ts. Set r = st. Then

rt = trt = t · st · t = ts = r−1

and analogously rs = r−1.
Since s = rt, the group W is generated by r and t, and therefore every element

w in W has the form
w = rm1tk1 · · · rmltkl ,

where mi takes the values 0, 1, . . . , n − 1 and ki is 0 or 1. But one can check that
since trt = r−1, we have

tr = r−1t,

trm = r−mt,

and
tkrm = r(−1)kmtk.

Hence
(rm1tk1)(rm2tk2) = rmtk, (7.1)

where
k = k1 + k2, m = m1 + (−1)k1m2.

Therefore every element in W can be written in the form

w = rmtk, m = 0, . . . , n− 1, k = 0, 1.

Furthermore, this presentation is unique. Indeed, assume that

rm1tk1 = rm2tk2 ,

where m1,m2 ∈ { 0, . . . , n − 1 } and k1, k2 ∈ { 0, 1 }. If k1 = k2 then rm1 = rm2

and m1 = m2. But if k1 �= k2 then

rm1−m2 = t.

Set m = m1 −m2. Then m < n and rm = (st)m = t. If m = 0 then t = 1, which
contradicts our assumption that |t| = 2. Now we can easily get a final contradiction:

st · st · · · st = t

implies
s · ts · · · ts · · · ts = 1.
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The word on the left contains an odd number of elements s and t. Consider the element
r in the very center of the word; r is either s or t. Hence the previous equation can be
rewritten as

sts · · · r · · · sts = [sts · · · ] · r · [sts · · · ]−1 = 1,

which implies r = 1, a contradiction.
Since elements of w can be represented by expressions rmtk, and in a unique

way, we conclude that |W | = 2n and

W = { rmtk | m = 0, 1, . . . , n− 1, k = 0, 1 },
with the multiplication defined by equation (7.1). This proves existence and unique-
ness of Dih2n.

Since |r| = n, the subgroup R = 〈r〉 has index 2 in W and hence is normal in
W . If w ∈ W �R then w = rmt for some m, and a direct computation shows, that

w2 = rmt · rmt = r−m+mt2 = 1.

Since w �= 1, w is an involution. �	

7.3 Dihedral Groups: Geometric Interpretation

Theorem 7.2. The group of symmetries Sym∆ of the regular n-gon∆ is isomorphic
to the dihedral group Dih2n.
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-
tA

BC The group of symmetries of the
regular n-gon ∆ is generated by
two reflections s and t in the
mirrors passing through the mid-
point and a vertex of a side of∆.

Fig. 7.1. For the proof of Theorem 7.2.

Proof. Set W = Sym∆. The mirrors of symmetry of the polygon ∆ cut it into 2n
triangular slices (chambers in the terminology of Section 3.2); see Figure 7.1. Notice
that any two adjacent slices are interchanged by the reflection in their common side.
Therefore W acts transitively on the set S of all slices. Also, observe that only the
identity symmetry of ∆ maps a slice onto itself. By the well-known formula for the
length of a group orbit,
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|W | =
(

number
of slices

)
·
⎛⎝ number of

elements
fixing a slice

⎞⎠ = 2n · 1 = 2n.

Next, if s and t are reflections in the side mirrors of a slice, then their product st is
a rotation through the angle 2π/n, which can be immediately seen from the picture:
st maps the vertex A to B and B to C. (Notice that we use the “left” notation for
action, so when we apply the composition st of two transformations s and t to a point,
we apply t first and then s: (st)A = s(tA).) By Theorem 7.1, |〈s, t〉| = 2n; hence
W = 〈s, t〉 is the dihedral group of order 2n. �	

The system of mirrors of symmetry of the regular n-gon is traditionally denoted
by G2(n) (some books use different, no less traditional notation: I2(n)). It contains
n mirrors; the reflections in the mirrors make n involutions in the reflection group
Dih2n.

Exercises

7.1. Prove that the dihedral group Dih6 is isomorphic to the symmetric group Sym3.

7.2. The center of a dihedral group. If n > 2 then

Z(Dih2n) =
{ { 1 } if n is odd,

{ 1, r
n
2 } = 〈r n

2 〉 if n is even.

Here, Z(X) is the standard notation for the center of the group X , that is, the set of elements
in X that commute with every element in X .

7.3. Klein Four-Group. Prove that Dih4 is an abelian group,

Dih4 = { 1, s, t, st }.
(It is traditionally called the Klein Four-Group.)

7.4. Prove that the dihedral group Dih2n, n > 2, has one class of conjugate involutions, if n
is odd, and three classes, if n is even. In the latter case, one of the classes contains just one
involution z and Z(Dih2n) = { 1, z }.

7.5. Prove that there exists a group, unique up to isomorphism, generated by two involutions
such that their product has infinite order. (The group is called the infinite dihedral group.)

7.6. Prove that a finite group of orthogonal transformations of R
2 is either cyclic or a dihedral

group Dih2n.

7.7. If W = Dih2n is a dihedral group of orthogonal transformations of R
2, then W has one

conjugacy class of reflections if n is odd, and two conjugacy classes of reflections if n is even.
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7.8. Check that the complex numbers

e2kπi/n = cos 2kπ/n+ i sin 2kπ/n, k = 0, 1, . . . , n− 1,

in the complex plane C are vertices of a regular n-gon ∆. Prove that the maps

r : z �→ z · e2πi/n,

t : z �→ z̄,

where ¯ denotes complex conjugation, generate the group of symmetries of ∆.

7.9. Use the idea of the proof of Theorem 7.2 to find the orders of the groups of symmetries
of the regular tetrahedron, cube, dodecahedron.
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Root Systems

In this chapter we introduce objects that are in a sense “dual” to mirror systems: given
a mirror system, we take, for each mirror, a pair of normal vectors. If lengths of these
normal vectors are chosen in a coordinated way, the resulting system of vectors is
preserved by all reflections; in that case we say that we have a root system.

Root systems provide a more traditional approach to finite reflection groups—and
have exceptionally important applications on their own. In our approach, we freely
use both mirrors and roots with the aim of maximizing the intuitive geometric aspect
of the theory.

8.1 Mirrors and Their Normal Vectors

Consider a reflection s with the mirror H . If we choose the orthogonal system of
coordinates in V with the origin O belonging to H , then s fixes O and thus can be
treated as a linear orthogonal transformation of V . Let us take a nonzero vector α
perpendicular to H . Then obviously, Rα = H⊥ is the orthogonal complement of H
in V , and s preserves H⊥ and therefore sends α to −α. Then we can easily check
that s can be written in the form

sαβ = β − 2β · α
α · α α,

where α ·β denotes the scalar product of α and β. Indeed, a direct computation shows
that the formula holds when β ∈ H and when β = α. By the obvious linearity of the
right side of the formula with respect to β, it is also true for all β ∈ H + Rα = V .

Also we can check by a direct computation (left to the reader as an exercise) that
given the nonzero vector α, the linear transformation sα is orthogonal, i.e.,

sαβ · sαγ = β · γ

for all vectors β and γ. Finally,
sα = scα

A.V. Borovik and A. Borovik, Mirrors and Reflections: The Geometry of Finite Reflection
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for any nonzero scalar c.
We know that reflections can be characterized as linear orthogonal transformations

of Rn with one eigenvalue −1 and (n− 1) eigenvalues 1 (Lemma 5.2); the vector α
in this case is an eigenvector corresponding to the eigenvalue −1.

Thus we have a one-to-one correspondence between the following three classes
of objects:

• hyperplanes (i.e., vector subspaces of codimension 1) in the Euclidean vector
space V ;

• nonzero vectors defined up to multiplication by a nonzero scalar;
• reflections in the group of orthogonal transformations of V .

The mirror H of the reflection sα will be denoted by Hα. Notice that Hα = Hcα

for any nonzero scalar c.
Notice, finally, that orthogonal linear transformations of the Euclidean vector

space V (with the originO fixed) preserve the relations between mirrors, vectors, and
reflections.

8.2 Root Systems

Traditionally, closed systems of reflections were studied in the disguise of root sys-
tems. By definition, a finite set Φ of vectors in V is called a root system if it satisfies
the following two conditions:

(1) Φ ∩ Rρ = { ρ,−ρ } for all ρ ∈ Φ;
(2) sρΦ = Φ for all ρ ∈ Φ.

The following lemma is an immediate corollary of Lemma 5.3.

Lemma 8.1. Let Σ be a finite closed system of mirrors. For every mirror H inΣ take
two vectors ±ρ of length 1 perpendicular to H . Then the collection Φ of all these
vectors is a root system. Conversely, if Φ is a root system then {Hρ | ρ ∈ Φ } is a
system of mirrors.

Proof. We need only recall that a reflection s, being an orthogonal transformation,
preserves orthogonality of vectors and hyperplanes: if ρ is a vector and H is a hyper-
plane then ρ ⊥ H if and only if sρ ⊥ sH . �	

Notice that if Φ is a root system then the vectors ρ/|ρ| with ρ ∈ Φ form the root
system Φ′ with the same mirror system and the same reflection group (Figure 8.1).
In this book, we are not much interested in lengths of roots and in most cases can
assume that all roots have length 1. However, in vast areas of application of reflection
groups it makes sense to work with root systems with different root lengths; see, for
example, the beautiful root system in Figure 8.4.

We can also restate Lemma 6.1 in terms of root systems.

Lemma 8.2. Let Φ be a root system. Then the group W generated by reflections sρ

for ρ ∈ Φ is finite.
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Fig. 8.1. If Φ is a root system then the vectors ρ/|ρ| with ρ ∈ Φ form the root system Φ′ with
the same reflection group. We are not much interested in lengths of roots and in most cases can
assume that all roots have length 1.

8.3 Planar Root Systems

We wish to begin the development of the theory of root systems by appealing to the
reader’s geometric intuition.

Lemma 8.3. If Φ is a root system in R2 then the angles formed by pairs of neighboring
roots are all equal. (See Figure 8.2.)
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The fundamental property of planar root
systems: the angles ψ formed by pairs
of neighboring roots are all equal. If
the root system contains 2n vectors then
ψ = π/n and the reflection group is the
dihedral group Dih2n of order 2n.

Fig. 8.2. A planar root system (Lemma 8.3).
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Proof. The proof of this simple result becomes self-evident if we consider, instead of
roots, the corresponding system Σ of mirrors; see Figure 8.3. The mirrors in Σ cut
the plane into corners (we call them chambers), and adjacent corners, with the angles
φ and ψ, are congruent because they are mirror images of each other. Therefore all
corners are congruent. But the angle between neighboring mirrors is exactly the angle
between the corresponding roots. �	
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β

The fact that the angles formed by pairs
of neighboring roots are all equal be-
comes obvious if we consider the cor-
responding system of mirrors: α = β
because the adjacent angles are mirror
images of each other.

Fig. 8.3. A planar mirror system (for the proof of Lemma 8.3).

Corollary 8.4. In a planar mirror system, the angles between neighboring mirrors
are all equal.

Lemma 8.5. If a planar root system Φ contains 2n vectors, n � 1, then the reflection
group W (Φ) is the dihedral group Dih2n of order 2n.

Proof. The proof is left to the reader as an exercise. �	

We see that a planar root system consisting of 2n vectors of equal length is
uniquely defined, up to elation of R2. We shall denote it by G2(n). Later we shall
introduced planar root systems A2 (which coincides with G2(3)) as a part of series
of n-dimensional root systems An. In many applications of the theory of reflection
groups the lengths of roots are of importance; in particular, the root system G2(4)
associated with the system of mirrors of symmetry of the square comes in two versions,
named B2 and C2, which contain eight roots of two different lengths; see Figure 9.5
in Section 9.2. Finally, the regular hexagon gives rise to the root system of typeG2(6)
(which is traditionally notated just G2); see Figure 8.4.
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Fig. 8.4. The root system G2.

8.4 Positive and Simple Systems

Let f : Rn −→ R be a linear function. Assume that f does not vanish on roots in
Φ, i.e., f(α) �= 0 for all α ∈ Φ. Then every root ρ in Φ is called positive or negative
according to whether f(ρ) > 0 or f(ρ) < 0. We shall write, abusing notation, α > β
if f(α) > f(β). The system of all positive roots will be denoted byΦ+ and called the
positive system. Correspondingly, the negative system is denoted by Φ−. Obviously

Φ = Φ+ 	 Φ−.

Let Γ denote the convex polyhedral cone spanned by the positive system Φ+. We
follow the notation of Section 4 and call the positive roots directed along the edges
of Γ simple roots. The set of all simple roots is called the simple system of roots and
denoted byΠ; roots inΠ are called simple roots. It is intuitively evident that the cone
Γ is generated by simple roots; see also Lemma 4.3. In particular, every root φ in Φ+

can be written as a nonnegative combination of roots in Π:

φ = c1ρ1 + · · · + cmρm, ci � 0, ρi ∈ Π.

Notice that the definition of positive, negative, and simple systems depends on
the choice of the linear function f . We shall call a set of roots positive, negative, or
simple if it is so for some linear function f .

Lemma 8.6. In a simple system Π , the angle between two distinct roots is nonacute:

α · β � 0

for all α �= β in Π .

Proof. Let P be a two-dimensional plane spanned by α and β. Define Φ0 = Φ ∩ P .
If γ, δ ∈ Φ0 then the reflection sγ maps δ to the vector
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Plane P
spanned by
α and β

Positive
cone Γ

Planar root system Φ0 generated
by two simple roots α and β.

Fig. 8.5. For the proof of Lemma 8.6

sγδ = δ − 2γ · δ
γ · γ γ,

which obviously belongs toP andΦ0. Hence every reflection sγ for γ ∈ Φ0 obviously
maps P to P and Φ0 to Φ0. This means that Φ0 is a root system in P and Φ+ ∩ P is
a positive system in Φ0.

Moreover, the convex polyhedral cone Γ0 spanned by Φ+
0 = Φ+ ∩P is contained

in Γ ∩ P . Since α and β are obviously directed along the edges of Γ ∩ P (see also
Lemma 4.4) and belong to Γ0, it follows that Γ0 = Γ ∩ P and α and β belong
to a simple system in Φ0; see Figure 8.5. Therefore the lemma is reduced to the
2-dimensional case, where it is self-evident; see Figure 8.6. �	

Notice that our proof of Lemma 8.6 is a manifestation of a general principle:
surprisingly many considerations in root systems can be reduced to computations
with pairs of roots.

Our proof of the following result, Theorem 8.7, follows [Hum, Theorem 1.3], but
deviates from the latter by emphasizing the reduction to the two-dimensional case.

Theorem 8.7. Every simple system Π is linearly independent. In particular, every
root β in Φ can be written, and in a unique way, in the form

∑
cαα, where α ∈ Π

and all coefficients cα are either nonnegative (when β ∈ Φ+) or nonpositive (when
β ∈ Φ−).

Proof. Assume, by way of contradiction, that Π is linearly dependent and∑
α∈Π

aαα = 0,

where some coefficient aα is nonzero. Separate positive and negative coefficients aα

and rewrite this equality as ∑
bββ =

∑
cγγ,
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half-plane, f(γ) > 0

negative
half-plane, f(γ) < 0

positive
cone Γ

Fig. 8.6. For the proof of Lemma 8.6. In the 2-dimensional case the nonacuteness of the simple
system is obvious: the roots α and β are directed along the edges of the convex cone spanned
by Φ+, and the angle between α and β is at least π/2.

where the coefficients bβ and cγ are strictly positive and the sums are taken over
disjoint subsets of Π . Set

σ =
∑

bββ.

Since all roots β are positive, σ �= 0. But

0 � σ · σ =
∑

β

bββ ·
∑

γ

cγγ =
∑

β

∑
γ

bβcγβ · γ � 0,

because all individual scalar products β · γ are nonpositive by Lemma 8.6. Therefore
σ = 0, a contradiction. �	
Corollary 8.8. All simple systems in Φ contain an equal number of roots.

Proof. Indeed, it follows from Theorem 8.7 that a simple system is a maximal linearly
independent subset of Φ. �	

The number of roots in a simple system of the root system Φ is called the rank of
Φ and denoted by rkΦ. The subscript n in the standard notation for root systems An,
Bn, etc. (which will be introduced later) refers to their ranks.

Exercises

8.1. Prove, by direct computation, that the linear transformation sα given by the formula

sαβ = β − 2β · α
α · α α
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is orthogonal, that is,
sαβ · sαγ = β · γ

for all β, γ ∈ V .

8.2. Let Φ be a root system in the Euclidean space V and U < V a vector subspace of V .
Prove that Φ ∩ U is a (possibly empty) root system in U .

8.3. Let V1 and V2 be two subspaces orthogonal to each other in the real Euclidean vector
space V and let Φi be a root system in Vi, i = 1, 2. Prove that Φ = Φ1 ∪ Φ2 is a root system
in V1 ⊕ V2; it is called the direct sum of Φ1 and Φ2 and denoted by

Φ = Φ1 ⊕ Φ2.

8.4. We say that a group W of orthogonal transformations of V is essential if it acts on V
without nonzero fixed points. LetΦ be a root system in V ,Φ andW the corresponding systems
of mirrors and reflection groups. Prove that the following conditions are equivalent:

• Φ spans V .
• The intersection of all mirrors in Σ consists of one point.
• W is essential on V .

8.5. Prove Lemma 8.5.

8.6. Prove that in a root system in R
2, the lengths of roots can take at most two values.

8.7. In a root system of a two-dimensional reflection group Dih2n with odd n, all roots have
the same length.

8.8. Describe planar root systems with two and four roots and the corresponding reflection
groups.

8.9. Use the observation that the root systemG2 contains two subsystems of typeA2 to show
that the dihedral group Dih12 contains two different subgroups isomorphic to the dihedral
group Dih6.

8.10. Prove that in a planar root system Φ ⊂ R
2, all positive systems are conjugate under the

action of the reflection group W = W (Φ). Prove the same for simple systems.
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Root Systems An−1, BCn, Dn

This chapter contains an ad hoc construction of the most important classes of mirror
and root systems, together with a detailed discussion of their properties. The reader
will encounter many familiar geometric objects.

9.1 Root System An−1

The root system An−1 is arguably the most important and ubiquitous. This is not
surprising; for as we shall soon see, it is intimately related to the mother of all finite
groups, the symmetric group Symn of all permutations of the set { 1, 2, . . . , n }.

9.1.1 A Few Words about Permutations

We shall use both “two row” and cycle notation for permutations. For example, if

w =
(

1 2 3 4 5
2 1 4 5 3

)
,

then the same permutation can also be written as

w = (12)(345);

in both cases it is the map

w : 1 �→ 2, 2 �→ 1, 3 �→ 4, 4 �→ 3, 5 �→ 3.

We will write the action of permutations on the left, so that

w · 1 = 2, w · 3 = 4.

Notie that this means that st is the permutation t followed by s if s and t are permu-
tations. Perhaps some readers are used to the opposite convention.

A.V. Borovik and A. Borovik, Mirrors and Reflections: The Geometry of Finite Reflection
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9.1.2 Permutation Representation of Symn

Let V be the real vector space Rn with the standard orthonormal basis ε1, . . . , εn and
the corresponding coordinates x1, . . . , xn.

The group W = Symn acts on V in the natural way, by permuting the n vectors
ε1, . . . , εn:

wεi = εwi,

which obviously induces an action of W on Φ. The action of the group W = Symn

on V = Rn preserves the standard scalar product associated with the orthonormal
basis ε1, . . . , εn. Therefore W acts on V by orthogonal transformations.

In its action on V the transposition r = (ij) acts as the reflection in the mirror of
symmetry given by the equation xi = xj .

Lemma 9.1. Every reflection in W is a transposition.

Proof. The cycle (i1 . . . ik) has exactly one eigenvalue 1 when restricted to the sub-
space

Rεi1 ⊕ · · · ⊕ Rεik
,

with the eigenvector
εi1 + · · · + εik

.

It follows from this observation that the multiplicity of the eigenvalue 1 of the permu-
tation w ∈ Symn equals the number of cycles in the cycle decomposition of w (we
have also to count the trivial one-element cycles of the form (i)). If w is a reflection,
then the number of cycles is n− 1; hence w is a transposition. �	

9.1.3 Regular Simplices

The convex hull ∆ of the points ε1, . . . , εn is the convex polytope defined by the
equation and inequalities

x1 + · · · + xn = 1, x1 � 0, . . . , xn � 0.

Since the group W = Symn permutes the vertices of ∆, it acts as a group of sym-
metries of ∆. We shall denote the full group of symmetries of ∆ by Sym∆, so that
W � Sym∆. We wish to prove that actually W = Sym∆. Indeed, any symmetry s
of∆ acts on the set of vertices as some permutation w ∈ Symn; hence the symmetry
s−1w fixes all the vertices ε1, . . . , εn of ∆ and therefore is the identity symmetry.

The polytope ∆ is called the regular (n − 1)-simplex. When n = 3, ∆ is an
equilateral triangle lying in the plane x1 + x2 + x3 = 1 (see Figure 9.1), and when
n = 4, ∆ is a regular tetrahedron lying in the 3-dimensional affine Euclidean space

x1 + x2 + x3 + x4 = 1.
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The transposition (12) acts on
R

3 as the reflection in the mirror
x1 = x2 and as a symmetry of
the equilateral triangle with the
vertices

(1, 0, 0), (0, 1, 0), (0, 0, 1).

Fig. 9.1. Symn is the group of symmetries of the regular simplex
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The root system

{ εi − εj | i �= j }
of typeA2 lies in the hyperplane

x1 + x2 + x3 = 0,

which cuts a regular hexagon in
the unit cube [−1, 1]3.

Fig. 9.2. Root system of type A2

9.1.4 The Root System An−1

We shall introduce the root systemΦ of typeAn−1 as the system of vectors inV = Rn

of the form εi − εj , where i, j = 1, 2, . . . , n and i �= j (Figure 9.2). Notice that Φ is
invariant under the action of W = Symn on V .

In its action on V the transposition r = (ij) acts as the reflection in the mirror of
symmetry perpendicular to the root ρ = εi − εj . Hence Φ is a root system. Since the
symmetric group is generated by transpositions, W = W (Φ) is the corresponding
reflection group, and the mirror systemΣ consists of all hyperplanes xi = xj , i �= j,
i, j = 1, . . . , n.
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Notice that the group W is not essential for V ; indeed, it fixes all points in the
1-dimensional subspace R(ε1+· · ·+εn) and leaves invariant the (n−1)-dimensional
linear subspace U defined by the equation

x1 + · · · + xn = 0.

It is easy to see that Φ ⊂ U spans U . In particular, the rank of the root system Φ is n,
which justifies the use, in accordance with our convention, of the index n− 1 in the
notation An−1 for it.

9.1.5 The Standard Simple System

Take the linear function

f(x) = x1 + 2x2 + · · · + nxn.

Obviously f does not vanish on roots, and the corresponding positive system has the
form

Φ+ = { εi − εj | j < i }.
The set of positive roots

Π = { ε2 − ε1, ε3 − ε2, . . . , εn − εn−1 }

is linearly independent, and every positive root is obviously a linear combination of
roots in Π with nonnegative coefficients: for i > j,

εi − εj = (εi − εi−1) + · · · + (εj+1 − εj).

Therefore Π is a simple system. It is called the standard simple system of the root
system An−1.

9.1.6 Action of Symn on the Set of all Simple Systems

The following result is a partial case of Theorem 11.6. But the elementary proof given
here is instructive on its own.

Lemma 9.2. The group W = Symn acts simply transitively on the set of all positive
(respectively simple) systems in Φ.

Proof. Since there is a natural one-to-one correspondence between simple and posi-
tive systems, it is enough to prove thatW acts simply transitively on the set of positive
systems in Φ.

Let f be an arbitrary linear function that does not vanish on Φ, that is,
f(εi − εj) �= 0 for all i �= j. Then all the values

f(ε1), . . . , f(εn)
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are different, and we can list them in strictly increasing order:

f(εi1) < f(εi2) < · · · < f(εin).

Now consider the permutation w given, in column notation, as

w =
(

1 2 · · · n− 1 n
i1 i2 · · · in−1 in

)
.

Thus the function f defines a new ordering, which we shall denote by �w, on the set
[n]:

j �w i if and only if f(εj) � f(εi).

If we look again at the table for w, we see that above any element i in the bottom row
lies the element w−1i in the upper row. Thus

i �w j if and only if w−1i � w−1j.

Notice also that the permutation w and the associated ordering �w of [n] uniquely
determine each other.1

Now consider the positive system Φ+
0 defined by the linear function f ,

Φ+
0 = { εi − εj | f(εi − εj) > 0 }.

We have the following chain of equivalences:

εi − εj ∈ Φ+
0 iff f(εj) < f(εi)

iff j <w i

iff w−1j < w−1i

iff εw−1i − εw−1j ∈ Φ+

iff w−1(εi − εj) ∈ Φ+

iff εi − εj ∈ wΦ+.

This proves that Φ+
0 = wΦ+ and also that the permutation w is uniquely determined

by the positive system Φ+
0 . Since Φ+, by its construction from an arbitrary linear

function, represents an arbitrary positive system in Φ, the group W acts on the set of
positive systems in Φ simply transitively. �	
1 In the nineteenth century the orderings, or rearrangements, of [n] were called permutations,

and the permutations in the modern sense, i.e., maps from [n] to [n], were called substitutions.
These are two aspects, “passive” and “active,” of the same object. We shall see later that
they correspond to treating a permutation as an element of a reflection group Symn or an
element of the Coxeter complex for Symn.
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9.2 Root Systems of Types Cn and Bn

9.2.1 Hyperoctahedral Group

The hyperoctahedral group is the group of symmetries of the n-cube [−1, 1]n (Fig-
ure 9.3) in the n-dimensional real Euclidean space Rn. However, it will be convenient
to describe it first in purely combinatorial terms.

Let
[n] = {1, 2, . . . , n} and [n]∗ = {1∗, 2∗, . . . , n∗}.

Define the map
∗ : [n] −→ [n]∗

by
i �→ i∗

and the map
∗ : [n]∗ −→ [n]

by
(i∗)∗ = i.

Then ∗ is an involutive permutation2 of the set [n] 	 [n]∗.
Let W be the group of all permutations of the set [n] 	 [n]∗ that commute with

the involution ∗, i.e., a permutation w belongs to W if and only if

w(i∗) = w(i)∗
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Fig. 9.3. A 2-dimensional projection of the 4-dimensional cube

2 That is, a permutation of order 2.
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for all i ∈ [n] 	 [n]∗. We shall call permutations with this property admissible. The
groupW is known as the hyperoctahedral groupBCn. It is easy to see thatW is indeed
isomorphic to the group of symmetries of the n-cube [−1, 1]n in the n-dimensional
real Euclidean space Rn. Indeed, if ε1, ε2, . . . , εn is the standard orthonormal basis
in Rn, we set, for i ∈ [n],

εi∗ = −εi.
Then we can define the action of W on Rn by the following rule:

wεi = εwi.

Since w is an admissible permutation of [n] 	 [n]∗, the linear transformation is well
defined and orthogonal. Also it can be easily seen that W is exactly the group of all
orthogonal transformations of Rn preserving the set of vectors {±ε1,±ε2, . . . ,±εn}
and thus preserving the cube [−1, 1]n. Indeed, the vectors ±εi, i ∈ [n], are exactly the
unit vectors normal to the (n − 1)-dimensional faces of the cube (given, obviously,
by the linear equations xi = ±1, i = 1, 2, . . . , n).

The name “hyperoctahedral” for the group W is justified by the fact that the
group of symmetries of the n-cube coincides with the group of symmetries of its dual
polytope, whose vertices are the centers of the faces of the cube. The dual polytope
for the n-cube is known as the n-cross polytope or n-dimensional hyperoctahedron;
see Figure 9.4.

9.2.2 Admissible Orderings

We shall order the set [n] 	 [n]∗ in the following way:

n∗ < n− 1∗ < · · · < 2∗ < 1∗ < 1 < 2 < · · · < n− 1 < n.

If now w ∈ W , then we define a new ordering �w of the set [n] 	 [n]∗ by the rule

(a) (b)

−ε2 ε2

−ε3

ε3

−ε1

ε1
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Fig. 9.4. Hyperoctahedron (“octahedron” in dimension n = 3), or n-cross polytope, is the
convex hull of the points ±εi, i = 1, . . . , n, in R

n (picture (a)). Obviously the hyperoctahedron
is the dual polytope to the unit cube (picture (b)).
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i �w j if and only if w−1i � w−1j.

Orderings of the form �w, w ∈ W , are called admissible orderings of the set
[n] 	 [n]∗. They can be characterized by the following property:

an ordering ≺ on [n] 	 [n]∗ is admissible if and only if from i ≺ j it follows
that j∗ ≺ i∗.

Conversely, if ≺ is an admissible ordering, then the permutation

w =
(
n∗ (n− 1)∗ . . . 1∗ 1 . . . n− 1 n
j1 j2 . . . jn jn+1 . . . j2n−1 j2n

)
,

where
j1 ≺ j2 ≺ · · · ≺ j2n−1 ≺ j2n,

is admissible and the ordering ≺ coincides with �w.

9.2.3 Root Systems Cn and Bn

Let εi, i ∈ [n], be the standard orthonormal basis in Rn, and set

εi∗ = −εi
for i∗ ∈ [n]∗. This defines the vectors εj for all j ∈ [n] 	 [n]∗. Now the root system
Φ of type Cn is formed by the vectors 2εj , j ∈ [n]	 [n]∗ (called long roots), together
with the vectors εj1 −εj2 , where j1, j2 ∈ [n]	 [n]∗, j1 �= j2 or j∗

2 (called short roots).
Written in the standard basis ε1, ε2, . . . , εn, the roots take the form ±2εi or ±εi ± εj ,
i, j = 1, 2, . . . , n, i �= j. Notice that both short and long roots can be written as εj −εi
for some i, j ∈ [n] 	 [n]∗.

It is easy to see that when ρ is one of the long roots ±2εi, i ∈ [n], then sρ is
the linear transformation corresponding to the element (i, i∗) of W in its canonical
representation. Analogously, if ρ = εi − εj is a short root (recall that we use the
convention εi∗ = −εi for i ∈ [n]), then the reflection sρ corresponds to the admissible
permutation (i, j)(i∗, j∗). Moreover, one can easily check (for example, by computing
the eigenvalues of admissible permutations from W in their action on Rn) that every
reflection in the group of symmetries of the unit cube [−1, 1]n is of one of these two
types.

Now we see that the use of the name “root system” in regard to the setΦ is justified.
The root system

Bn = { ±εi ± εj , ±εi | i, j = 1, 2, . . . , n, i �= j }

differs from Cn only in lengths of roots (see Figures 9.5 and 9.6) and has the same
reflection groupBCn. Therefore in the sequel we shall deal only with the root system
Cn.
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Fig. 9.5. Root systems B2 and C2.
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Fig. 9.6. The root system B3 inscribed in the unit cube [−1, 1]3.

9.2.4 Action of W on Φ

Now consider the linear functional

f(x) = x1 + 2x2 + 3x3 + · · · + nxn.

It is easy to see that a root εi − εj is positive with respect to f if in the ordering

n∗ < n− 1∗ < · · · < 1∗ < 1 < 2 < · · · < n

of the set [n] 	 [n]∗, we have i > j. The system of positive roots Φ+ associated with
f is called the standard positive system of roots. The set
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Π = { 2ε1, ε2 − ε1, . . . , εn − εn−1 }
is obviously the simple system of roots contained in Φ+.

If now
j1 <

w j2 <
w · · · <w j2n−1 <

w j2n

is an admissible ordering of [n] 	 [n]∗, then the vectors

εjn+1 , εjn+2 , . . . , εj2n

form a basis in Rn. Let y1, y2, . . . , yn be the coordinates with respect to this basis
and

f(y) = y1 + 2y2 + 3y3 + · · · + nyn.

Then obviously, f does not vanish on roots in Φ, and for a root εj − εi in Φ, the
inequality f(εj − εi) > 0 is equivalent to i �w j. Thus the system of positive roots
associated with f coincides with the system

wΦ+ = {εj − εi | i �w j}
obtained from the standard system Φ+ of positive roots by the action of the element
w. Obviously, the simple system of roots contained in Φ+ is exactly wΠ .

If now Π ′ is an arbitrary simple system of roots arising from an arbitrary linear
function f : Rn −→ R not vanishing on roots in Φ, then the following objects are
uniquely determined by our choice of Π ′:

• the system of positive roots Φ+′, which can be defined in two equivalent ways:
as the set of all roots that are nonnegative linear combinations of roots from Π ′,
and as the set {r ∈ Φ | f(r) > 0};

• the (obviously admissible) ordering ≺ on J defined by the rule i ≺ j if and only
if f(εi) � f(εj).

In particular, we immediately have the following observation (which is a partial case
of a more general result about conjugacy of simple system of roots for arbitrary finite
reflection groups, Theorem 11.10).

Proposition 9.3. Any two simple systems in the root system Φ of type Bn or Cn

are conjugate under the action of W . Moreover, the reflection group W is simply
transitive in its action on the set of simple systems in Φ.

9.3 The Root System Dn

By definition,
Dn = { ±εi ± εj | i, j = 1, 2, . . . , n, i �= j };

thus Dn is a subsystem of the root system Cn.
The system

Π = { ε1 + ε2, ε2 − ε1, ε3 − ε2, . . . , εn − εn−1 }
is a simple system in Φ.

A fact worth special mentioning is that the root systemD3 coincides with the root
system A3; see Figure 9.7.
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Fig. 9.7. Shown are the root system D3 inscribed in the unit cube [−1, 1]3 (on the left) and
the corresponding mirror system (shown in the middle by intersections with the surface of the
cube and the tetrahedron inscribed in the cube). Comparing the last two pictures, we see that
the mirror system of type D3 is isometric to the mirror system of type A3.

Exercises
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Fig. 9.8. 2-dimensional projection of a 4-dimensional cross polytope.

9.1. Can you convince yourself that Figure 9.8 indeed represents a 2-dimensional projection
of a 4-dimensional cross polytope?

9.2. Make a sketch of the root systems A1 ⊕A1 in R
2 and A1 ⊕A1 ⊕A1 in R

3.

9.3. Check that when we take the intersections of the mirrors of reflections in W = Symn to
the subspace x1 + · · · + xn = 0 of R

n, the resulting system of mirrors can be geometrically
described as the system of mirrors of symmetry of the regular (n−1)-simplex with the vertices

δi = εi − 1
n

(ε1 + · · · + εn), i = 1, . . . , n.

9.4. An orthogonal transformation of the Euclidean space R
n is called a rotation if its determi-

nant is 1. For a polytope ∆, denote by Rot∆ the subgroup of Sym∆ formed by all rotations.
We know that the group of symmetries Sym∆ of the regular tetrahedron∆ in R

3 is isomorphic
to Sym4; prove that Rot∆ is the alternating group Alt4.
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9.5. Prove that every reflection in BCn has the form (ii∗) or (ij)(i∗j∗).

9.6. Prove that the reflection group of type BC2 is isomorphic to the dihedral group Dih8.

9.7. The group of symmetries of the cube. Observe that the group W = BC3 of symme-
tries of the cube ∆ = [−1, 1]3 contains the involution z that sends every vertex of the cube to
its opposite.

1. Check that det z = −1, so that z does not belong to the group R = Rot∆ of rotations
of the cube.

2. Prove that z ∈ Z(W ). (Here, Z(X) is the standard notation for the center of the group
X , that is, the set of elements in X that commute with every element in X .)

3. Prove that the group R acts faithfully on the set D of 4 diagonals of the cube ∆, that is,
the segments connecting the opposite vertices of the cube. Moreover, every permutation
of diagonals is the result of the action of a rotation of the cube. Hence R � Sym4.

4. Prove that W = 〈z〉 ×R.
5. Prove that 〈z〉 = Z(W ).
6. Prove that the symmetries of the cube that send every 2-dimensional face of the cube into

itself or the opposite face form a normal abelian subgroup E < W of order 8. Prove
further thatW/E � Sym3 and that actuallyW = E�T for some subgroup T � Sym3.

9.8. Important root subsystems.
Prove that

1. the set Θ of roots { ±εi | i = 1, . . . , n } is a root system of type A1 ⊕ · · · ⊕ A1 (n
summands);

2. the intersection Ψ of Φ with the hyperplane x1 + · · · + xn = 0 is a root system of type
An−1.

9.9. Prove that the group of symmetries of the n-cube [−1, 1]n is indeed BCn.

9.10. (R. Sandling) Prove that

Sym [−1, 1]n = {w ∈ GLn(Rn) | w([−1, 1]n) = [−1, 1]n },
i.e., linear transformations preserving the cube are in fact orthogonal.

9.11. The structure of the hyperoctahedral group. Use Exercise 9.8 to show that if E
and T are the reflection groups corresponding to the systems of roots Θ and Ψ then

1. E � Z2 × · · · × Z2 (n factors);
2. E �W ;
3. T � Symn;
4. W = E � T .

9.12. The standard cross polytope in R
n is the convex hull of the 2n points

(±1, 0, . . . , 0), (0,±1, 0, . . . , 0), . . . , (0, . . . , 0,±1).

Let ∆ be its orthogonal projection on the hyperplane

x1 + · · · + xn = 1.

Find Sym(∆). Identify (that is, find the name of) ∆ when n = 2, 3, 4.
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Fig. 9.9. Cuboctahedron (left) and stella octangula (right).

9.13. Describe explicitly an isometry between the root systems

D3 = { ±εi ± εj | i, j = 1, 2, 3, i �= j }
and

A3 = { εi − εj | i, j = 1, 2, 3, 4, i �= j }
(see Figure 9.7).

9.14. Sketch the root systemD2; you will see that it consists of two orthogonal pairs of vectors,
each forming the 1-dimensional system A1. Thus D2 = A1 ⊕A1.

9.15. Find the groups of symmetries of the cubooctahedron and stella octangula (Figure 9.9).
Are they BC3 or D3?

9.16. Find a natural homomorhism from the group BC3 of symmetries of the cube onto the
symmetric group Sym4. What is the kernel of this homomorphism?



Part III

Coxeter Complexes
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Chambers

In this chapter we finally start a systematic development of the general theory of
reflection groups.

Consider the system Σ of all mirrors of reflections sρ for ρ ∈ Φ. Of course,
this is a hyperplane arrangement in the sense of Chapter 3, and we shall freely use
the relevant terminology. In particular, chambers of Σ are open polyhedral cones—
connected components of

V �

⋃
H∈Σ

H.

The closures of these cones are called closed chambers. Facets of chambers (i.e., faces
of maximal dimension) are panels and have mirrors in Σ as walls. Notice that every
panel belongs to a unique wall. To fully appreciate this architectural terminology
(introduced by J. Tits), imagine a building built out of walls of double-sided mirrors.
Two chambers are adjacent if they have a panel in common. Notice that every chamber
is adjacent to itself.

Theorem 10.1. Every chamber C has the form

C =
⋂

ρ∈Π

V −
ρ

for some simple system Π . Every panel of C belongs to one of the walls Hρ for a
root ρ ∈ Π . Conversely, if ρ ∈ Π then Hρ ∩ C is a panel of C.

Proof. Take any vector γ in the chamber C and consider the linear function

f(λ) = −γ · λ.

Since γ does not belong to any mirror Hα in Σ, the function f does not vanish
on roots in Φ. Therefore the condition f(α) > 0 determines a positive system Φ+

and the corresponding simple system Π . Now consider the cone C ′ defined by the

A.V. Borovik and A. Borovik, Mirrors and Reflections: The Geometry of Finite Reflection

© Springer Science+Business Media, LLC 2010

79
Groups, Universitext, DOI 10.1007/978-0-387-79066-4_10, 
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Positive cone Γ

Fundamental
chamber C

The fundamental chamber C is
defined as the interior of the
cone dual to the positive cone Γ ,
i.e., as the set of vectors λ such
that λ · γ < 0 for all γ ∈ Γ .

Fig. 10.1. The fundamental chamber.

inequalities (λ, ρ) < 0 for all ρ ∈ Π . Obviously γ ∈ C ′ and therefore C ⊆ C ′. If
C �= C ′ then some hyperplane Hα, α ∈ Φ, bounds C and intersects C ′ nontrivially.
But α =

∑
cρρ, where all cρ are all nonnegative or all nonpositive, and

γ · α =
∑

cργ · ρ

cannot be equal to 0. This contradiction shows that C = C ′. The closure C of C is
defined by the inequalities λ · ρ � 0 for ρ ∈ Π , which is equivalent to λ · α � 0 for
α ∈ Γ . Therefore the cone C is dual to the positive cone Γ (see Figure 10.1), and
every facet of C is perpendicular to some edge of Γ , and vice versa. In particular,
every panel of C belongs to the wall Hρ for some simple root ρ ∈ Π .

The same argument works in the reverse direction: if Π is any simple system,
then since Π is linearly independent, we can find a vector γ such that γ · ρ < 0 for
all ρ ∈ Π . Then γ · α �= 0 for all roots α ∈ Φ, and the chamber C containing γ has
the form

C =
⋂

ρ∈Π

V −
ρ .

�	
IfΠ is a simple system then the corresponding chamber is called the fundamental

chamber of C (Figure 10.1).
The set of all chambers associated with the root system Φ is called the Coxeter

complex and will be denoted by C. See, for example, Figures 10.2, 10.3 and 10.4.
The following lemma is an immediate consequence of Lemma 3.3.

Lemma 10.2. The union of two distinct adjacent closed chambers is convex.
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The Coxeter complex of typeBC3 is formed
by all the mirrors of symmetry of the cube;
here they are shown by their lines of inter-
section with the faces of the cube.

Fig. 10.2. The Coxeter complex BC3.
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Fig. 10.3. A chamber in the Coxeter complex BC3.

Exercises

10.1. Show that there is a one-to-one correspondence between the chambers of the mirror
system An−1 and the elements in the symmetric group W = Symn: associate with the
permutation (

1 2 . . . n− 1 n
i1 i2 . . . in−1 in

)
the open cone in the hyperplane x1 + · · · + xn = 0 given in R

n by the system of inequalities

xi1 < xi2 < · · · < xin .

Prove that this cone is a chamber of the mirror system associated with the standard root system
for Symn.

10.2. Analogously, prove that the set of all admissible orderings on the set [n] � [n]∗ can be
put in one-to-one correspondence with the set of chambers for the group W = BCn if we
associate with each admissible ordering

i∗n < · · · < i∗1 < i1 < · · · < in
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In the case that Σ is the system of
mirrors of symmetry of a regular
polytope ∆, the Coxeter complex is
basically the subdivision of the faces
of∆ by the mirrors of symmetries of
faces (here shown only on one face
of the dodecahedron ∆).

Fig. 10.4. Chambers for the system of mirrors of a regular polytope.

the open cone in R
n given by the system of inequalities

0 < x̃i1 < · · · < x̃in ;

we use here the convention that

x̃i =
{
xi if i ∈ [n],
−xi∗ if i ∈ [n]∗.
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Generation

It is time to build closer links between geometry (mirror systems) and group theory
(the corresponding reflection group).

11.1 Simple Reflections

Let Π = { ρ1, . . . , ρn } be a simple system of roots. The corresponding reflections
ri = sρi

are called simple reflections. (Figure 11.1.)
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The symmetry group of the tetrahedron acts
on its four vertices as the symmetric group
Sym4. The reflections in the walls of the
fundamental chamber are the transpositions
(12), (23), and (34). Therefore they gener-
ate Sym4.

Fig. 11.1. Generation by simple reflections (Theorem 11.1).

Theorem 11.1. The group W is generated by a simple system of reflections.

Proof. Set W ′ = 〈 r1, . . . , rn 〉. We shall prove first that

the group W ′ is transitive in its action on C.

Proof of the claim. The fundamental chamber C is bounded by panels lying on the
mirrors of the simple reflections r1, . . . , rn. Therefore the neighboring chambers (i.e.,
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the chambers sharing a common mirror withC) can be obtained fromC by reflections
in these mirrors; they are r1C, . . . , rnC. Now let w ∈ W ′. Then the panels of the
chamber wC belong to the mirrors of reflections wr1w−1, . . . , wrnw

−1. If D is a
chamber adjacent to wC then it can be obtained from wC by reflecting wC in the
common mirror; hence D = wriw

−1 · wC = wriC for some i = 1, . . . , n. Notice
that wri ∈ W ′. We can proceed to move from a chamber to an adjacent one until we
present all chambers in C in the form wC for appropriate elements w ∈ W . �	

We can now complete the proof. If α ∈ Φ is any root and sα the corresponding
reflection, then the wall Hα bounds some chamber D. We know that D = wC for
some w ∈ W ′. The fundamental chamber C is bounded by the walls Hρi for simple
roots ρi (Theorem 10.1), and therefore the wallHα equalswHρi for some simple root
ρi. Thus sα = wriw

−1 belongs toW ′. Since the groupW is generated by reflections
sα we have W = W ′. �	

In the course of the proof we have obtained one more important result:

Corollary 11.2. The action of W on C is transitive.

This observation will be later incorporated into Theorem 11.6.

11.2 Foldings
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In the 2-dimensional case, a
folding is exactly what its name
suggests: the plane is being
folded on itself like a sheet of
paper.

Fig. 11.2. Folding.

Given a nonzero vector α ∈ V , the hyperplane

Hα = { γ ∈ V | γ · α = 0 }
cuts V into two subspaces

V +
α = { γ | γ · α � 0 } and V −

α = { γ | γ · α � 0 }
intersecting along the common hyperplane Hα. The folding in the direction of α is
the map fα defined by the formula
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fα(β) =
{

β if β · α � 0,
sαβ if β · α < 0.

Thus fα fixes all points inV +
α and mapsV −

α ontoV +
α symmetrically (see Figure 11.2).

Notice that fα is an idempotent map, i.e., fαfα = fα. The folding f−α is called the
opposite to fα. The reflection sα is made up of two foldings fα and f−α:

sα = fα |V +
α

∪ f−α |V −
α
.

We say that a folding f covers a subset X ⊂ V if X ⊆ f(V ).
By definition, a folding of the chamber complex C is a folding along one of its

walls.

Proposition 11.3. A folding f of C sends chambers to chambers and preserves adja-
cency: if C and D are two adjacent chambers then their images f(C) and f(D) are
also adjacent. (Remember that by definition of adjacency, this includes the possibility
that f(C) = f(D).)

11.3 Galleries and Paths

Given two chambers C and D, we can always find a sequence G of chambers

C = C0, C1, . . . , Cl−1, Cl = D

such that every two consecutive chambers Ci−1 and Ci are adjacent. We shall call G
a gallery connecting the chambers C and D. Notice that our definition of adjacency
allows two adjacent chambers to coincide. This means that we also allow repetition of
chambers in a gallery: it could happen that Ci−1 = Ci. We shall say in this situation
that the gallery stutters at chamber Ci. The number l will be called the length of the
gallery G.

Notice that if si is the reflection in a common wall of two adjacent chambersCi−1
and Ci, then either Ci = siCi−1 or Ci = Ci−1.

Givenw ∈ W , we wish to describe a canonical way of connecting the fundamental
chamber C and the chamber D = wC by a gallery. We know that W is generated
by the fundamental reflections r1, . . . , rn, i.e., the reflections in the walls of the
fundamental chamber C. The minimal number l such that w is the product of some l
fundamental reflections is called the length of w and denoted by l(w).

Let w = ri1 · · · ril
. We leave to the reader to check the following group-theoretic

identity: since all ri are involutions,

ri1 · · · ril
= r

ril−1 ···ri1
il

· rril−2 ···ri1
il−1

· · · rri1
i2

· ri1 .

Define
sj = r

rj−1···ri1
ij

.

Then w = sl · · · s1, and moreover,
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sj · · · s1 = ri1 · · · rij
for j = 1, . . . , l.

Define by induction C0 = C and for i = 1, . . . , l, Cj = sjCi−1, so that

Cj = sj · · · s1C0 = ri1 · · · rij
C0 for j > 0,

Cl = ri1 · · · ril
C0 = wC = D.

Notice that s1 = r1 is the reflection in the common wall of the chambers C0 and
C1. Next, sj for j > 1 is written as

sj = r
rij−1 ···ri1
ij

= (ri1 · · · rij−1)rij (ri1 · · · rij−1)
−1.

By Lemma 5.3, since rij is a reflection in a panel, say H , of the fundamental
chamber C = C0, sj is the reflection in the panel ri1 · · · rij−1H of the chamber
ri1 · · · rij−1C0 = Cj−1. Since sjCj−1 = Cj ,

sj is the reflection in the common panel of the chambers Cj−1 and Cj .

Summarizing this procedure, we obtain the following result; it will show us the
correct path through the labyrinth of mirrors.

Theorem 11.4. Let w = ri1 · · · ril
be an expression of w ∈ W in terms of simple

reflections ri. Let C be the fundamental chamber and D a chamber in C such that
D = wC. Then there exists a unique gallery C0, C1, . . . , Cl connecting C = C0 and
D = Cl with the following property:

sj = r
rj−1···ri1
ij

is the reflection in the common wall of Cj−1 and Cj for j = 1, . . . , l, and

w = sl · · · s1.

The gallery C0, . . . , Cl constructed in Theorem 11.4 will be called the canonical
w-gallery starting at C = C0.

We can reverse the above arguments and obtain also the following result.

Theorem 11.5. Let C0, . . . , Cl be a gallery connecting the fundamental chamber
C = C0 and a chamber D = Cl. Assume that the gallery does not stutter at any
chamber, that is, no two successive chambers Ci and Ci+1 coincide. Let si be the
reflection in the common wall of Ci−1 and Ci, i = 1, . . . , l.

Then D = wC for w = sl · · · s1,

Cj = sj · · · s1C0 for all j = 1, . . . , l,

and there exists an expression w = ri1 · · · ril
of w in terms of simple reflections ri

such that for all j = 1, . . . , l,
sj = r

rj−1···ri1
ij

.
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11.4 Action of W on C
In this section we shall prove arguably the most important property of the Coxeter
complex.

Theorem 11.6. The group W is simply transitive on C, i.e., for any two chambers C
and D in C there exists a unique element w ∈ W such that D = wC.

Paths.

We shall call a sequence of points γ0, . . . , γl a path if

• the consecutive points γi−1 and γi are contained in adjacent chambers Ci−1 and
Ci;

• if Ci−1 = Ci then γi−1 = γi;
• if Ci−1 �= Ci and si is the reflection in the common panel of Ci−1 and Ci then

γi = siγi−1.

The number l is called the length of the path. Set w = sl · · · s0. Since

γl = sl · · · s1γ0 = wγ0,

the sequence of chambers C0, C1, . . . , Cl is the canonical w-gallery, and by Theo-
rem 11.5, w can be expressed as a product of l simple reflections. So we have the
following useful lemma.

Lemma 11.7. Given a path γ0, γ1, . . . , γl, there exists w ∈ W such that γl = wγ0
and l(w) � l.

Notice the important property of paths: since we know that the union of two
distinct adjacent closed chambers is convex (Lemma 10.2), the wall Hsi

is the only
wall intersecting the segment [γi−1γi]. Therefore the following lemma holds.

Lemma 11.8. If γ0, . . . , γl is a path connecting the points γ0 and γl lying on oppo-
site sides of the wall H , then the path intersects H in the sense that for some two
consecutive points γi−1 and γi, the wall H intersects the segment [γi−1, γi] and

• the common panel of the chambers Ci−1 and Ci containing γi−1 and γi, respec-
tively, belongs to H;

• γi−1 and γi are symmetric in H .

11.5 Paths and Foldings

As often happens in the theory of reflection groups, an important technical result we
wish to state now can be best justified by referring to a picture (Figure 11.3).
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Fig. 11.3. For the proof of Lemma 11.9: the folding in a wall that intersects a path converts the
path to a shorter one.

Lemma 11.9. Assume that the starting point α = γ0 and the end point ω = γl of
a path γ0, . . . , γl lie on one side of a wall H . If the wall H intersects the path, that
is, one of the points γi lies on the opposite side of H from α, then the path can be
replaced by a shorter path with the same starting and end points, and such that it
does not intersect the wall H .

Proof. See the quite self-explanatory Figure 11.3.A rigorous proof follows. However,
it can be skipped on first reading.

Assume that the path intersects the wall H at the segment [γp1−1γp1 ]. Then, in
view of Lemma 11.8, the path should intersect the wall at least once more, say at the
segments

[γp2−1γp2 ], . . . , [γpk−1γpk ].

Let C0, . . . , Cl be the gallery corresponding to our path, so that γi ∈ Ci. Take
the folding f in H onto the half-space containing α and β and consider the
path f(γ0), f(γ1), . . . , f(γl) and the gallery f(C0), f(C1), . . . , f(Cl). In this new
gallery and new path we have repeated chambers, namely

f(Cp1−1) = f(Cp1), . . . , f(Cpk−1) = f(Cpk ),

and points
f(γp1−1) = f(γp1), . . . , f(γpk−1) = f(γpk ).

After deleting the duplicate chambers and points and changing the numeration we
obtain a shorter galleryC′

0, C
′
1, . . . , C

′
m and a pathγ′

0, γ
′
1, . . . , γ

′
m such thatγ′

0 = γ0,
γ′

m = γl and for all i = 1, . . . ,m,
• γ′

i ∈ C′
i;

• C′
i−1 and Ci are adjacent;

• if s′
i is the reflection in the common wall of C′

i−1 and C′
i then γ′

i = siγ
′
i−1.

But then = γ′
0, . . . , γ

′
m is a shorter path connecting α and ω. ��
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11.6 Simple Transitivity of W on C: Proof of Theorem 11.6

In view of Corollary 11.2, we need to prove only the uniqueness of w. If D = w1C
and D = w2C for two elements w1, w2 ∈ W and w1 �= w2, then w−1

2 w1C = C.
Set w = w−1

2 w1; we wish to prove w = 1. Assume, by way of contradiction, that
w �= 1. Of all expressions ofw in terms of the generators r1, . . . , rn we take a shortest,
w = ri1 · · · ril

, where l = l(w) is the length of w. Since w �= 1, l �= 0. Now of all
w ∈ W with the property that wC �= C choose the one with smallest length l.

We can assume without loss of generality that C is the fundamental chamber. Let
now C0, C1, . . . , Cl be the canonical w-gallery connecting C with C.

The vectors from the open cone C obviously span the vector space V , so the
nontrivial linear transformation w cannot fix them all. Take γ ∈ C such that wγ �= γ
and consider the sequence of points γi, i = 0, 1, . . . , l, defined by γ0 = γ and
γi = siγi+1 for i > 0. Then γi ∈ Ci. The sequence γ0, γ1, . . . , γl is a path and links
the endpoints γ0 = γ and γl = wγ. Now consider the wall H = Hs1 . Since γ0 and
γl both lie in C, they lie on the same side of H . But the point γ1 = s1γ0 lies on the
opposite side ofH from γ. Hence, by Lemma 11.9, there is a shorter path connecting
γ andwγ and, by Lemma 11.7, an elementw′ ∈ W withw′α = ω and smaller length
l(w′) < l than that of w. This contradiction completes the proof of the theorem. �	

Since we have a one-to-one correspondence between positive systems, simple
systems, and fundamental chambers, we arrive at the following result.

Theorem 11.10. The group W acts simply transitively on the set of all positive
(simple) systems in Φ.

Another important result is the following observation: for every root α ∈ Φ the
mirror Hα bounds one of the chambers in C. Since every chamber corresponds to
some simple system in Φ and all simple systems are conjugate by Theorem 11.10, we
arrive to the following result.

Theorem 11.11. Let Φ be a root system, Π a simple system in Φ, and W the reflec-
tion group of Φ. Every root α ∈ Φ is conjugate, under the action of W , to a root
in Π .

Exercises

11.1. Use Theorem 11.1 to prove the (well-known) fact that the symmetric group Symn is
generated by transpositions

(12), (23), . . . , (n− 1, n)

(see Figure 11.1).

11.2. Prove that the reflections

r1 = (12)(1∗2∗), . . . , rn−1 = (n− 1, n)(n− 1∗, n∗), rn = (n, n∗)

generate the hyperoctahedral group BCn.
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11.3. Prove that the reflections

r1 = (12)(1∗2∗), . . . , rn−1 = (n− 1, n)(n− 1∗, n∗), rn = (12∗)(1∗2)

generate the reflection group Dn viewed as a subgroup of the hyperoctahedral group BCn.

11.4.* Let T be an arbitrary set of transpositions in the symmetric group Symn. We shall
associate with T the graphΓ = Γ (T ) constructed as follows. Vertices ofΓ are elements in [n],
and two vertices a and b are connected by a (nonoriented) edge if and only if the transposition
(a, b) belongs to T .

Prove that the set of transpositions T generate the symmetric group Symn if and only if
the graph Γ is connected.

11.5.* Formulate and prove, by analogy with Exercise 11.4, a reasonably simple criterion
for a set of permutations of the form (ij)(i∗j∗), i, j ∈ [n] � [n]∗, to generate the group Dn.

11.6. When you fold a sheet of paper, why is the line along which it is folded straight?

11.7. There are three foldings of the chamber complexBC2 such that their composition maps
the chamber complex onto one of its chambers. What is the minimal number of foldings needed
for folding the chamber complex BC3 onto one chamber?

11.8. Prove, for involutions r1, . . . , rl in a group G, the identity

r1 · · · rl = r
rl−1···r1
l · rrl−2···r1

l−1 · · · rr1
2 · r1.
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Coxeter Complex

12.1 Labeling of the Coxeter Complex

We shall use the simple transitivity of the action of the reflection group W on its
Coxeter complex C to label each panel of the Coxeter complex C with one of the
simple reflections r1, . . . , rn; the procedure for labeling is as follows.
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Fig. 12.1. Labeling of panels and chambers in the Coxeter complex C3.

First we label the panels of the fundamental chamber C by the corresponding
simple reflections (see Figure 12.1). If D is a chamber in C, then there is a unique
element w ∈ W that sends C to D = wC. If Q is a panel of D, we assign to the
panel Q of D the same label as that of the panel P = w−1Q of C.
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92 12 Coxeter Complex

However, we need to take care of consistency of labeling: the panel Q belongs to
two adjacent chambers D and D′. If we label the panels of D′ by the same rule, will
the label assigned to Q be the same? Let r be the simple reflection in the panel P
and C ′ = rC the chamber adjacent to C and sharing the panel P with C. Since the
action ofW on C preserves adjacency of chambers,D′ = wC ′ = wrC. Hence wr is
the unique element of W that sends C to D′, and we assign to the panel Q the label
of the panel (wr)−1Q of C. But rP = P ; hence (wr)−1Qrw−1Q = rP = P , and
Q gets the same label as before.

If a common panel of two chambers D and E is labeled ri, we shall say that
D and E are ri-adjacent. This includes the case D = E, so that every chamber is
ri-adjacent to itself.

The following observation is immediate.

Proposition 12.1. The action of W preserves the labeling of panels in the Coxeter
complex C.

Moreover, we can now start to develop a vocabulary for translation of the geo-
metric properties of the Coxeter complex C into the language of the corresponding
reflection group W .

Theorem 12.2. Let C be a fundamental chamber in the Coxeter complex C of a
reflection group W . The map

w �→ wC

is a one-to-one correspondence between the elements in W and chambers in C. Two
distinct chambersC and C ′ are ri-adjacent if and only if the corresponding elements
w and w′ are related as w′ = wri.

Now the description of canonical galleries given in Theorems 11.4 and 11.5 can
be put in a much more convenient form.

Let Γ = {C0, . . . , Cl } be a gallery and let rik
be the label of the common panel

of the successive chambers Ck−1 and Ck, k = 1, . . . , l. Then we say that Γ has type
ri1 , . . . , ril

.

Theorem 12.3. Let Γ = {C0, . . . , Cl } be a gallery of type ri1 , . . . , ril
connecting

the fundamental chamber C = C0 and a chamber D = Cl. Set

r̂ik
=
{
rik

if Ck−1 �= Ck,
1 if Ck−1 = Ck.

Then
D = r̂i1 · · · r̂il

C.

For all k = 1, . . . , l, the element of W corresponding to the chamberCk is r̂i1 · · · r̂ik
.

In particular, if the gallery Γ does not stutter, then we have r̂ik
= rik

for all k and Γ
is a canonical gallery for the word

w = ri1 · · · ril
.

Proof. The proof is obvious. �	
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12.2 Length of Elements in W

If r1, . . . , rm are simple reflections in the finite reflection group W , the length of
w ∈ W is defined as the length l of the shortest expression of w in terms of ri:

w = ri1 · · · ril
.

The one-to-one correspondence between the elements of the reflection group W
and chambers of its Coxeter complex C as described in Theorem 12.2 allows us to
give a geometric interpretation of the length function on W .

Theorem 12.4. If C is the fundamental chamber in C then

l(w) = gd(C,wC).

12.3 Opposite Chamber

For every chamber D in C we have a unique opposite chamber

−D = { −γ | γ ∈ D }.

It is a chamber indeed, since it can be described as the intersection of those half-spaces
in Σ that do not contain dD. Alternatively, −D and its panels can be described as
follows. Let P1, . . . , Pm be the panels of D. If H1, . . . , Hm are walls containing
the respective panels P1, . . . , Pm, then −D is the intersection of those half-spaces
bounded by Hi that do not contain D. Since the length of a geodesic gallery equals
the number of walls it intersects (Proposition 3.4), it is easy to see that −D can be
characterized as the chamber in C that is farthest away from D.

For many applications, it is useful to reformulate this observation in terms of
group elements and their lengths.

SinceW acts on C simply transitively (Theorem 11.10), there is a unique element
that sendsD to −D. Assume now thatC is the fundamental chamber. Ifw ∈ W , then
the distance from C to wC is the length of w (Theorem 12.4). Hence the element w0
that sends C to −C is the unique element of greatest length in W . It is natural to call
it the longest element in W . We summarize our observations:

Theorem 12.5. There is a unique element w0 ∈ W that satisfies the following two
equivalent conditions:

• The element w0 has the maximal length in W .
• If C is the fundamental chamber then w0C = −C.
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12.4 Isotropy Groups

We remain in the standard setting of our study: Φ is a root system in Rn, Σ is the
corresponding mirror system, and W is the reflection group.

If α is a vector in Rn, its isotropy group, or stabilizer, or centralizer (all these
terms are used in the literature) CW (α) is the group

CW (α) = {w ∈ W | wα = α };

if X ⊆ Rn is a set of vectors, then its isotropy group or pointwise centralizer in W
is the group

CW (X) = {w ∈ W | wα = α for all α ∈ X }.
Theorem 12.6. In this notation,

(1) The isotropy group CW (X) of a set X ⊂ Rn is generated by those reflections
in W that it contains. In other words, CW (X) is generated by reflections sH ,
H ∈ Σ, whose mirrors contain the set X .

(2) IfX belongs to the closureC of the fundamental chamber then the isotropy group
CW (X) is generated by the simple reflections it contains.

Proof. Consider first the case in which X = {α } consists of one vector. Write
W ′ = CW (α). If the vector α does not belong to any mirror in Σ then it lies in one
of the open chambers in C, sayD, and wD = D for any w ∈ W ′. It follows from the
simple transitivity ofW on the Coxeter complex C (Theorem 11.6) thatW ′ = 1, and
the theorem is true since W ′ contains no reflections.

Now denote by Σ′ the set of all mirrors in Σ that contain α. Obviously, Σ′ is a
closed mirror system and is invariant under the action of W ′.

Consider the set C′ of all chambersD such that α ∈ D. Notice that C′ is invariant
under the action of W ′.

IfD ∈ C′ and P is a panel ofD containing α, then the wallH of P belongs toΣ′,
and the chamberD′ adjacent toD via the panelP belongs to C′.Also, if two chambers
D,D′ ∈ C′ are adjacent in C and have the panel P in common, then P = D ∩ D′
contains α, and the wall H containing the panel P and its closure P belongs to Σ′.

These observations allow us to prove that any two chambers D and D′ in C′ can
be connected by a gallery that belongs to C′. Indeed, let

D = D0, D1, . . . , Dl = D′

be a geodesic gallery connectingD andD′. If one of the chambers in the gallery, say
Dk, does not belong to C′, then select the minimal k with this property and look at the
wall H separating Dk−1 and Dk. The chambers D, Dk−1, D′ lie on the same side
of the wall H as the point α. But a geodesic gallery intersects each wall only once.
Hence the entire gallery belongs to C′.

Now take an arbitraryw ∈ W ′ and consider a galleryD0, . . . , Dl in C′ connecting
the chambers D = D0 and Dl = wD. If si is the reflection in the common panel of



12.5 Parabolic Subgroups 95

the consecutive chambers Di−1 and Di, i = 1, . . . , l, then D′ = sl · · · s1D. Since
W acts on C simply transitively, w = sl · · · s1. But, for each i, si ∈ W ′, the group
W ′ is therefore generated by the reflections it contains. This proves (1) in our special
case. The statement (2) for X = {α} follows from the observation that if D = C is
the fundamental chamber, then the proof of Theorem 11.1 can be repeated word for
word for W ′ and C′, showing that W ′ is generated by reflections in the walls of the
fundamental chamber C, i.e., by simple reflections.

Now consider the general case. If every point in X belongs to every mirror in
Σ then CW (X) = W and the theorem is trivially true. Otherwise, take any α in
X such that the system Σ′ of mirrors containing α is strictly smaller than Σ. Then
CW (X) � CW (α), andW ′ = CW (α) is itself the reflection group ofΣ′. We can use
induction on the number of mirrors inΣ, and application of the inductive assumption
to Σ′ completes the proof. �	

12.5 Parabolic Subgroups

Let Π be a simple system in the root system Φ and r1, . . . , rm the corresponding
system of simple reflections. Set I = { 1, 2, . . . ,m, }. For a subset J ⊆ I define

WJ = 〈ri | i ∈ J〉;
subgroups WJ are called standard parabolic subgroups of W . Notice that WI = W
and W∅ = 1.

For each i = 1, . . . ,m, denote by P i the (closed) panel of the closed fundamental
chamber C corresponding to the reflection ri, and set

P J =
⋂
i∈J

Pi.

By virtue of Theorem 12.6,
WJ = CW (P J).

We are now in a position to obtain a very easy proof of the following beautiful
properties of standard parabolic subgroups.

Theorem 12.7. If J and K are subsets of I then

WJ∪K = 〈WJ ,WK〉
and

WJ∩K = WJ ∩WK .

Proof. The first equality is obvious, while the second one follows from the observation
that

WJ ∩WK = CW (P J) ∩ CW (PK) = CW (P J ∪ PK).
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By Theorem 12.6, the latter group is generated by those simple reflections whose
mirrors contain the both sets P J and PK , that is, by reflections ri with i ∈ J ∩K.
Therefore

WJ∩K = WJ ∩WK .

�	
As an obvious corollary, Theorem 12.7 gives a list of simple reflections containing

in the given standard parabolic subgroup WJ :

{ r1, . . . , rn } ∩WJ = { ri | i ∈ J }.

We have an important geometric interpretation of this result.

Proposition 12.8. Let D andE be the chambers corresponding to the elements u and
v of a standard parabolic subgroup PJ . If D and E are rj-adjacent then j ∈ J .

Proof. Since D and E are rj-adjacent, then by Theorem 12.2, we have urj = v and
rj ∈ PJ . Therefore j ∈ J . �	

Exercises

Length of elements.

12.1. Prove that the length of the permutation

w =
(

1 2 · · · n− 1 n
i1 i2 · · · in−1 in

)
with respect to the system of standard generators

(12), (23), . . . , (n− 1, n)

of Symn is the number of inversions in w, that is, the number of pairs (j, k) such that j < k
and ij > ik.

12.2. Prove that the longest element in Symn with respect to the system of standard generators

(12), (23), . . . , (n− 1, n)

is the permutation (
1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
.

12.3. Observe that the longest element w0 ∈ W is an involution.

12.4. Find the longest elements in the groups G2(n), BCn, Dn.
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12.5. Let I be the identity transformation of R
n and −I the transformation that sends every

vector α to −α. Prove that the transformation

−w0 = −I · w0

sends simple vectors to simple vectors and therefore acts as a permutation (possibly the identity
permutation) of the system Π of simple roots. Find this permutation for reflection groups
W = An, BCn, Dn.

12.6. Show that the length of the longest element in the finite reflection group W equals the
number of mirrors in its mirror system Σ.

12.7. LetΦ+ be the system of positive roots andR = { r1, . . . , rm } the corresponding system
of simple reflections inW . Prove that the length ofw ∈ W with respect toR can be expressed
as the number of positive roots sent by w to negative roots:

l(w) =
∣∣wΦ+ ∩ Φ−∣∣ .

Isotropy Groups.

12.8. For the symmetry group of the cube ∆ = [−1, 1]3, find the isotropy groups
(a) of a vertex of the cube,
(b) of the midpoint of an edge,
(c) of the center of a 2-dimensional face.

12.9. Let Φ be the root system of the finite reflection group W and α ∈ Φ. Prove that the
isotropy group CW (α) is generated by the reflections sβ for all roots β ∈ Φ orthogonal to α.

12.10. The centralizer CW (u) of an element u ∈ W is the set of all elements in W that
commute with u:

CW (u) = { v ∈ W | vu = uv }.
Let sα be the reflection corresponding to the root α ∈ Φ. Prove that

CW (sα) = 〈sα〉 × 〈 sβ | β ∈ Φ and β orthogonal to α 〉.
12.11. Let W = Symn and r = (12). Prove that

CW (r) = 〈(12)〉 × 〈(34), (45), . . . , (n− 1, n)〉
and that CW (r) is isomorphic to Sym2 × Symn−2.

12.12. Let∆be a convex polytope and assume that its group of symmetries contains a subgroup
W generated by reflections. If Γ is a face of ∆, prove that the setwise stabilizer of Γ in W ,

StabW (Γ ) = {w ∈ W | wΓ = Γ },
is generated by reflections.

12.13. Involutions in reflection groups. Prove that if t is an involution in a finite reflection
group W then t is a product of pairwise commuting reflections.

12.14. Let W = An−1 and let us view W as the symmetric group Symn of the set [n], so
that the simple reflections in W are

r1 = (12), r2 = (23), . . . , rn−1 = (n− 1, n).

Prove that the standard parabolic subgroup

P = 〈r1, . . . , rk−1, rk+1, . . . , rn−1〉
is the stabilizer in Symn of the set { 1, . . . , k } and thus is isomorphic to Symk × Symn−k.
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Residues

Residues are parabolic subgroups in geometric disguise. In this chapter, the reader
will see that the systematic use of geometric language for the description of properties
of parabolic subgroups and their cosets is both natural and efficient.

13.1 Residues

LetWJ = 〈 ri | i ∈ J 〉 be a standard parabolic subgroup inW . By Proposition 12.8,
if C and D are the chambers corresponding to two elements of a parabolic subgroup
WJ and C and D are rj-adjacent, then j ∈ J .

We now introduce on C an equivalence relation ∼J by settingC ∼J D ifC andD
can be connected by a gallery C = C0, C1, . . . , Cl = D such that consecutive cham-
bersCi andCi+1 are rj-adjacent for some j ∈ J . Then Proposition 12.8 immediately
yields that the set CJ of chambers corresponding to elements in WJ constitutes an
equivalence class.

We shall call equivalence classes of ∼J J-residues, or residues if we do not wish
to specify the set of indices J . The residue CJ of the fundamental chamber will be
called the standard J-residue. Since the action of W on C preserves adjacency, the
setswCJ for arbitraryw ∈ W are also J-residues; since they cover C, every J-residue
has form wCJ for some w ∈ W . Of course, the residue wCJ is the set of chambers
corresponding to elements in the left coset wWJ of WJ . Hence its setwise stabilizer
in W is the parabolic subgroup wWJw

−1. (Recall that a parabolic subgroup is a
conjugate of a standard parabolic subgroup.)

Let F be a face of Σ, the hyperplane arrangement of C. We will say the F is a
J-face if

F =
l⋂

k=1

Hik
,

where Hik
is a hyperplane in Σ labeled ik, and J = { i1, i2, . . . , il }.

We shall identify the residue wCJ and the coset wWJ .
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Hence we have natural one-to-one correspondences between the four classes of
objects, for J a subset of I:

• J-faces of Σ;
• parabolic subgroups conjugate to the standard parabolic subgroup WJ ;
• J-residues;
• left cosets of W with respect to WJ .

13.2 Example

All of the nontrivial residues of C3 are shown in Figure 13.1. The face of a residue
is the unique largest face of Σ that is common to all the chambers that constitute the
residue.
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{1}-residues
cosets of 〈r1〉

{2}-residues
cosets of 〈r2〉

{3}-residues
cosets of 〈r3〉

{1, 2}-residues
cosets of 〈r1, r2〉

{1, 3}-residues
cosets of 〈r1, r3〉

{2, 3}-residues
cosets of 〈r2, r3〉

Fig. 13.1. The residues of C3. The residues in each case are separated by heavy lines, and are
to be interpreted as equivalence classes of chambers from Figure 12.1.
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13.3 The Mirror System of a Residue

Let A be a residue with the setwise stabilizer WA. We call a panel P internal in A
if P is a common panel of two distinct adjacent chambers C and D in A. A wall H
containing an internal panel P is also called internal. If s is a reflection in H , then
D = sC, and since A is a left coset of a parabolic subgroup, sA = A.

Lemma 13.1. If chambers C and D of a residue A lie on opposite sides of a wall H ,
then H is an internal wall of A.

Proof. The chambers C and D can be connected by a gallery

C = C0, . . . , Cl = D

that lies in A. The wall H intersects the gallery in the sense made explicit in
Lemma 3.5: H contains a common panel of two consecutive distinct chambers Ci

and Ci+1, hence is internal in A. �	

Lemma 13.2. If s is a reflection in a wallH such that sA = A, thenH is an internal
wall of A.

Proof. Indeed, A cannot lie on one side of H; hence the result follows from the
previous lemma. �	
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Fig. 13.2. The mirror system of a residue (Theorem 13.3). Shaded is a {2, 3}-residue (a coset
of 〈r2, r3〉) in the notation of Figure 13.1.

The following statement is now obvious (Figure 13.2).

Theorem 13.3. Internal walls of a residue A form a mirror system ΣA. Its reflection
group is the parabolic subgroup WA.
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13.4 Residues are Convex

Theorem 13.4. Residues are convex.

Proof. Let C and D be two chambers in a residue A and C = C0, . . . , Cl = D
a geodesic gallery that connects C and D. Then every panel between consecutive
chambers Ci and Ci+1 in the gallery belongs to a wall that separates C and D
(Corollary 3.6), that is, to an internal wall. Now we can prove by induction, starting
from the chamber C0, that every chamber Ci+1 is obtained from a chamber Ci ∈ A
by reflecting in an internal wall of A and hence also belongs to A. �	

13.5 Residues: the Gate Property

Theorem 13.5. Let C be a chamber and A a residue in C. Then A contains a unique
chamber G (called a gate or C-gate) such that for any other chamber D ∈ A, there
is a geodesic gallery connecting C and D and passing through G.

Proof. IfC belongs to A, thenC is obviously aC-gate in A. Therefore we can assume
that C does not belong to A.

Let G be a chamber in A with the shortest distance to C. First we want to prove
thatG is uniquely determined by this requirement. For that purpose we wish to check
first thatC andG lie on the same side with respect to any internal wall of A.Assuming
the contrary, let H be an internal wall that separates C and G. Then by Lemma 3.5,
H intersects a geodesic gallery C = C0, . . . , Cl = G in the sense that the common
panel of two consecutive chambers Ci and Ci+1 belongs to H . If s = sH is the
reflection in H , then sCi+1 = Ci and sG ∈ A. Hence the gallery

C = C0, C1, . . . , Ci = sCi+1, sCi+2, . . . , sCl = sG

connectsC and sG and, after deletion of one of the repeated chambersCi and sCi+1,
has smaller length. Therefore gd(C,G) > gd(C, sG), contrary to our choice of G.

Now consider the system Σ∗ of internal walls of A. It is a subsystem of Σ in the
sense that every mirror in Σ∗ is a mirror in Σ. Every chamber B of Σ is a subset of
a chamber B of Σ∗. Notice that distinct chambers of the residue A belong to distinct
chambers of Σ∗. Since C and G are not separated by internal walls of A, they lie in
the same chamber of Σ∗. Hence the chamber G is uniquely determined.

Now let D be an arbitrary chamber in A. Consider the geodesic gallery

C = C0, C1, . . . , Ck = G

connecting C and G and a geodesic gallery

G = Ck+1, . . . , Cl = D

connecting G and D. We want to prove that together they form a geodesic gallery
connecting C and D. To show this, it is enough to prove that every wall H that
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separates C and D intersects the gallery C0, . . . , Ck only once. If H is internal in
A, it cannot separate C and G. Since the gallery C = C0, . . . , Ck = G is geodesic,
we conclude that H does not intersect it. Hence H intersects, and only once, the
geodesic gallery G = Ck, . . . , Cl = D. If H is not an internal wall of A, then H
cannot intersect the geodesic gallery G = Ck, . . . , Cl = D. Therefore it intersects,
at most once, the geodesic gallery C = C0, . . . , ck = D. Now by Proposition 3.6,
the gallery C0, . . . , Ck, . . . , Cl is geodesic. �	

As a corollary of the proof of Theorem 13.5, we have the following result.

Theorem 13.6. If A is a residue in C,ΣA its mirror system, and C∗ the set of chambers
of the hyperplane arrangement ΣA, then every chamber C∗ in C∗ contains a unique
chamber C of A, and conversely, every chamber C ∈ A is contained in a chamber
C∗ in C∗

13.6 The Opposite Chamber

Theorem 13.6 allows us, slightly abusing language, to treat a residue A as a Coxeter
complex for its reflection groupWA. In particular, for every chamberD in A we have
a unique opposite chamber −D; it can be defined as follows. LetP1, . . . , Pm be those
panels of D that are internal in A. If H1, . . . , Hm are walls containing the respective
panels P1, . . . , Pm, then the intersection of those half spaces bounded by Hi that
do not contain d is a chamber in ΣA. By Theorem 13.6 this intersection contains a
chamber −D ∈ A. Since A is convex (Theorem 13.4), a geodesic gallery connecting
D and −D belongs to A and intersects every internal wall in A. Since the length of a
geodesic gallery equals the number of walls it intersects (Proposition 3.4), it is easy
to see that −D can be characterized as the chamber in A that is farthest away from
D.

Theorem 13.7. Let C be a chamber and A a residue in C. Let G be a C-gate in A
and −G the chamber in A opposite to G.

(a) If D is an arbitrary chamber in A, then there is a geodesic gallery that connects
C and −G and passes through G and D.

(b) The chamber −G can be characterized by the following property: it is the only
chamber in A such that all chambersD in A adjacent to it have smaller distance
to C: gd(C,D) < gd(C,−G).

Proof. (b) is an immediate corollary of (a). To prove (a), one needs only to observe
that the concatenation of a geodesic gallery from C to D via G (which exists by the
gate property, Theorem 13.5) and a geodesic gallery from D to −G is the required
geodesic gallery. �	
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Exercises

The aim of these exercises is to translate Theorem 13.5 into the language of parabolic subgroups
and the length function.

Let W be a finite reflection group generated by a simple system of reflections R =
{ r1, . . . , rm } and P a standard parabolic subgroup. Let w ∈ W .

13.1. Prove that the coset wP contains a unique element w′ of minimal length.

13.2. Furthermore, every element v ∈ wP can be written as v = w′v′, where v′ ∈ P and

l(w) = l(w′) + l(v′).

13.3. Prove that the coset wP contains a unique element w′′ of maximal length.

13.4. Show that (w′)−1w′′ is the longest element in P (with respect to the system of simple
reflections P ∩R).

13.5. Let W = An−1; we view W as the symmetric group Symn of the set [n], so that the
simple reflections in W are

r1 = (12), r2 = (23), . . . , rn−1 = (n− 1, n).

Consider the parabolic subgroup

P = 〈r1, . . . , rk−1, rk+1, . . . , rn−1〉.
We know (Exercise 12.14) thatP is the stabilizer inSymn of the set{ 1, . . . , k }. Letw ∈ Symn

be an arbitrary permutation. Prove that the element of minimal length in the coset wP is

w′ =
(

1 2 · · · n− 1 n
i1 i2 · · · in−1 in

)
,

where i1 < i2 < · · · < ik are the numbers w(1), . . . , w(k) written in increasing order and
ik+1 < · · · < in are the numbers w(k + 1), . . . , w(n) also written in increasing order.
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Generalized Permutahedra

Let Σ be a closed mirror system in the real Euclidean space V . We say that a point
α ∈ V is in general position if α does not belong to any mirror from Σ.
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[1243]

[2143]

[2134]

[1423]

[1432]

[4132]

[4123]

[1324]

[3124]

[3142]

[1342]

[2413]

[4213]

[4231]

[2431]

[4321]

[4312]

[3412]

[3421]

[2314]

[2341]

[3241]

[3214]

Fig. 14.1. A permutahedron for the group A3 = Sym4. Its vertices form one orbit under the
permutation action of Sym4 in R

3 and can be labeled by elements of Sym4. Here [i1i2i3i4]
denotes the permutation 1 �→ i1, . . . , 4 �→ i4.

Let δ be any point in general position, W · δ its orbit under the reflection group
W associated with Σ, and ∆ the convex hull of W · δ. We shall call ∆ a generalized
permutahedron (Figure 14.1) and study it in some detail.
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Theorem 14.1. In the notation above, the following statements hold.

(1) Vertices of ∆ are exactly all points in the orbit W · δ, and each chamber in C
contains exactly one vertex of ∆.

(2) Every edge of ∆ is parallel to some vector in Φ and intersects exactly one wall of
the Coxeter complex C.

(3) The edges emanating from the given vertex are directed along roots forming a
simple system.

(4) If α is the vertex of ∆ contained in a chamber C then the vertices adjacent to α
are exactly all the mirror images siα of α in walls of C.

Proof. Notice, first of all, that since all points in the orbitW ·δ lie at the same distance
from the origin, they belong to some sphere centered at the origin. Therefore points in
W · δ are the vertices of the convex hull ofW · δ. Next, because of simple transitivity
of W on the Coxeter complex C, every chamber in C contains exactly one vertex of
∆. This proves (1).

Let now α and β be two adjacent, i.e., connected by an edge, vertices of ∆. Then
β belongs to a chamber distinct from α, and therefore the edge [α, β] intersects some
mirror Hρ. If the edge [α, β] is not perpendicular to Hρ, we immediately have a
contradiction to the following simple geometric argument (see Figure 14.2).
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α′

�
β′

�
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Hρ

The segment [α, β] not normal to a mirror Hρ

that it crosses cannot be an edge of the permuta-
hedron∆; indeed, if α′ and β′ are reflections of
α and β in Hρ then α′ and β′ are also vertices
of ∆, and [α, β] belongs to the convex hull of
α, β, α′, β′.

Fig. 14.2. For the proof of Theorem 14.1.

In Figure 14.2, the points α′ and β′ are symmetric to α, β, respectively, and the
convex quadrangle αα′ββ′ lies in a 2-dimensional plane perpendicular to the mirror
of symmetryHρ. Therefore the segment [α, β] belongs to the interior of the quadrangle
and cannot be an edge of ∆.

Hence [α, β] is perpendicular to Hρ, and hence β − α = cρ for some c and the
mirror Hρ is uniquely determined, which proves (2).

Now select a linear function f that attains its minimum on ∆ at the point α and
does not vanish at roots in Φ. Let Φ+ and Π be the positive and simple systems in
Φ associated with f . If s±ρ = sρ = s−ρ is the reflection in W for the roots ±ρ,
then s±ρα is a vertex of ∆ and f(s±ρα − α) > 0. But s±ρα − α = cρ for some
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c. After swapping notation for +ρ and −ρ we can assume without loss of generality
that f(ρ) > 0, i.e., ρ ∈ Φ+ and c > 0. Let β1, . . . , βm be all vertices of ∆ adjacent
to α. Then βi − α = ciρi for some ρi ∈ Φ+ and ci > 0.
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One of the simple principles of linear program-
ming that is extremely useful in the study of
Coxeter groups: a convex polytope is contained
in the convex polyhedral cone spanned by the
edges emanating from the given vertex.

Fig. 14.3. For the proof of Theorem 14.1.

And here comes the punch line: notice that the convex polytope∆ is contained in
the convex cone Γ spanned by the edges emanating from α (Figure 14.3). Since every
positive root ρ ∈ Φ+ points from the vertex α to the vertex sρα of ∆, all positive
roots lie in the convex cone spanned by the roots ρi ∈ Φ+ pointing from α to vertices
βi adjacent to α. But this means exactly that the ρi form the simple system Π in Φ+,
which proves (3). Also, the fact that βi − α = cρi for c > 0 means that α ∈ V −

ρi
.

Since this holds for all simple roots, α belongs to the fundamental chamber

C =
⋂
V −

ρi

(Theorem 10.1). But by the same theorem, C is bounded by the mirrors of simple
reflections and βi = sρiα is the mirror image of α in the wallHρi containing a panel
of C. Thus (4) is also proven. �	

Exercises

14.1. Sketch permutahedra for the reflection groups

A1 ⊕A1, A2, BC2, A1 ⊕A1 ⊕A1, A2 ⊕A1, BC2 ⊕A1.
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Fig. 14.4. A permutahedron for BC3 (Exercise 14.2).

14.2. Label, in a way analogous to Figure 14.1, the vertices of a permutahedron for the hyper-
octahedral group BC3 (Figure 14.4) by elements of the group.

14.3. Let ∆ be a permutahedron for a reflection group W . Prove that there is a one-to-one
correspondence between faces of ∆ and residues in the Coxeter complex C ofW . Namely, the
set of chambers containing vertices of a given face is a residue.
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Fig. 14.5. Regular hexagon as a cross section of the cube.
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14.4. As you can see in Figure 14.5, there is a cross section of the cube that has the shape of
a regular hexagon. Show that there is a cross section of the 4-dimensional cube [0, 1]4 by a
3-dimensional hyperplane that has the shape of a permutahedron for the reflection group A3.

�
�
�

��

�
�
�

��

�
�
�

�
�
�

Fig. 14.6. Truncated cube.

14.5. Describe the truncated cube (Figure 14.6) as the closure of an orbit under the action of
the appropriate reflection group.



Part IV

Classification
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Generators and Relations

15.1 Reflection Groups are Coxeter Groups

LetW be a finite reflection group andR = {r1, . . . , rm} the set of simple reflections
in W . Denote by mij the orders of pairwise products of simple reflections:

mij = |rirj |.

Notice that mii = 1 for all i. We shall soon see that the numbers mij play a crucial
role in our theory.

Theorem 15.1. The group W is given by the following generators and relations:

W = 〈 r1, . . . , rm | (rirj)mij = 1 〉.

Our proof closely follows ideas from Grove and Benson [GB, Chapter 6].
But first we need to explain the meaning of the terminology used in the statement

of the theorem. Notice that the relations (rirj)mij = 1 are obviously satisfied in
W . What we claim is that any other relation ri1ri2 · · · ril

= 1 is a corollary of the
relations (rirj)mij = 1 in the following sense:

Given a word w = ri1ri2 · · · ril
that equals 1 in W , this word can be trans-

formed in the empty word by the successive application, when appropriate,
of the following two operations:

(∗) We delete from w an occurrence of a twice repeated generator riri. In
other words, we apply the relation riri = 1.

(∗∗) We replace a subword rirj by (rjri)mij−1. In other words, we apply
the relation

rirj = (rjri)mij−1,

which is, of course, a consequence of (rirj)mij = 1.
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Removing a chamber D from a circular gallery. Here we use the relation r3r2 =
r2r3r2r3r2r3, which is a consequence of (r2r3)4 = 1.

Removing dead end and repeated chambers from a circular gallery. We use the relations
r22 = r23 = 1.

Fig. 15.1. For the proof of Theorem 15.1.

In general, a Coxeter group is a group given by generators and relations

W = 〈 r1, . . . , rm | (rirj)mij = 1 〉
withmii = 1 (so that the generators ri are involutions). It is convenient to allow some
values mij to be ∞, which is a shorthand way of saying that there are no relations
between ri and rj . Theorem 15.1 says that

every finite reflection group is a Coxeter group.

The converse is also true, although we do not prove it in this book.

Theorem 15.2. If
W = 〈 r1, . . . , rm | (rirj)mij = 1 〉

is a finite Coxeter group then it is isomorphic to a finite reflection group; moreover,
in this isomorphism the generators ri are represented by reflections.
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15.2 Proof of Theorem 15.1

The idea of the proof is best illustrated by Figure 15.1. Let

w = ri1ri2 · · · ril
= 1

and let
Γ = (C0, C1, . . . , Cl)

be a canonical w-gallery that starts and ends at the fundamental chamber C = C0 =
Cl. By applying the relations (∗), we can assume that the gallery Γ has no repeated
chambers Ci = Ci+1. Now let D = Cm be one of the chambers in the gallery that
lies at the greatest distance from C. Since

gd(C,Cm−1) = gd(C,D) ± 1

by Proposition 3.8, we obviously have

gd(C,Cm−1) = gd(C,D) − 1,

and analogously,
gd(C,Cm+1) = gd(C,D) − 1.

Assume that the chambers Cm−1 and D are ri-adjacent and the chambers Cm+1 and
D are rj-adjacent. If we now consider the (ri, rj)-residue R of D, we see that D is
farther away from the fundamental chamber C than the chambers Cm−1 and Cm+1,
its two neighbors in the residue. Hence, by Theorem 13.7, D is the chamber of the
residue R most distant from the fundamental chamber. If we replace the chambers
Cm−1, D,Cm in Γ by the sequence

Cm−1, Cm−1rj , Cm−1rjri, . . . , Cm−1(rjri)mij−1 = Cm+1,

of chambers in R we get another gallery Γ ′ with the following properties:

• Γ ′ starts and ends at C,
• the maximum distance from C to a chamber in Γ ′ is at most gd(C,D), and
• the number of chambers inΓ ′ lying at distance gd(C,D) fromC is strictly smaller

than the analogous number for Γ .

Notice that the described transformation is nothing more than an application of (∗∗).
Obviously, a successive application of these transformations to our gallery contracts
the gallery to a gallery that consists of just one chamber C and corresponds to the
empty word in the generators r1, . . . , rn. �	

Exercises

15.1. Apply the contraction procedure of the proof of Theorem 15.1 to the word

r1r2r3r2r3r2r1r2r3r2r3r2r3r1r3r2r3r2r3r2

in BC3.
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15.2. Theorem 15.1 can be generalized to affine reflection groups, that is, reflection groups
of infinite but locally finite mirror systems. Here, a mirror system Σ in AR

n is called locally
finite if every ball

B(a, r) = {x ∈ AR
n | d(x, a) < r }

intersects only finitely many mirrors in Σ.

1. Check that the proof of Theorem 15.1 can be transferred to reflection groups of Figure 6.2
on page 43.

2. Find generators and relations of these groups.
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Classification of Finite Reflection Groups

Our treatment of the classification of finite reflection groups closely follows the clas-
sical exposition of the theory in Humphreys [Hum, Chapter 2].

16.1 Coxeter Graph

By Theorem 15.1, a finite reflection group W is given by the following generators
and relations:

W = 〈 r1, . . . , rm | (rirj)mij = 1 〉,
where R = { r1, . . . , rm } is the set of simple reflections in W and mij = |rirj |.
Notice that mii = 1 for all i.

Now we wish to associate with W and a system of simple reflections R a graph
G, called a Coxeter graph, whose nodes are in one-to-one correspondence with the
simple reflections r1, . . . , rn in R. If ri and rj are two distinct reflections, then if
mij = |rirj | > 2, the nodes ri and rj are connected by an edge with mark mij on it.
If mij = 2, that is, if ri and rj commute, then there is no edge connecting ri and rj .

Since the Coxeter graph G encodes the information about the generators and
relations of the finite reflection group W , it determines W as an abstract group.

For example, the graph of the symmetric group An−1 = Symn with respect to
the generators

(12), (23), . . . , (n− 1, n)

is

� � � � � �� � �
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118 16 Classification of Finite Reflection Groups

16.2 Decomposable Reflection Groups

We say that the reflection group W is indecomposable or irreducible if the graph G
is connected; otherwise, W is said to be decomposable.

Theorem 16.1. Assume thatW is decomposable and letG1, . . . , Gk be the connected
components of G. Let Rj be the set of reflections corresponding to nodes in the
connected componentGj , j = 1, . . . , k. Let W j be the parabolic subgroup generated
by the set Rj . Then

W = W 1 × · · · ×W k.

Proof. If i �= j then any two reflections r′ ∈ Ri and r′′ ∈ Rj commute; hence

• the subgroups W i = 〈Ri〉 and W j = 〈Rj〉 commute elementwise.

By Theorem 12.7, the intersection of W j with the group generated by all W i with
i �= j is the subgroup generated by Rj ∩⋃i	=j Ri = ∅, that is, the identity subgroup:

• W j ∩ 〈W 1, . . . , Ŵ j , . . . ,W k〉 = 1.

Finally, the subgroups W i generate W ,

• W = 〈W 1, . . . ,W k〉.
But these properties of the subgroups W i mean exactly that

W = W 1 × · · · ×W k.

�	

16.3 Labeled Graphs and Associated Bilinear Forms

We will now classify the finite reflection groups by listing all of their Coxeter graphs.
Define a labeled graph to be a finite (undirected) graph whose edges are labeled

with integers � 3. If s and t are distinct vertices, let mst denote the label on the
edge joining st. It is a convention to omit the label 3 when drawing diagrams: in
most important examples, it occurs too frequently. We also make the convention that
mst = 2 for vertices s �= t not joined by an edge. Finally, we set mss = 1.

We associate to a labeled graph Γ with vertex set S of cardinality n a symmetric
n× n matrix G by setting

gst := − cos
π

mst
.

With every symmetric n × n matrix G = Gt one can associate a bilinear form
xtGy (x, y ∈ Rn) and a quadratic form xtGx. The matrixG is called positive definite
if

xtGx > 0

for all x �= 0. We call the graph Γ positive definite when the associated quadratic
form is positive definite.
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Recall a well-known result from linear algebra: G is positive definite if and only
if all its principal minors are positive. Here, the principal minors of G are the deter-
minants of the submatrices formed by the first k rows and columns (0 < k � n).

We easily see that when Γ comes from a finite reflection group W , then the
associated bilinear form is, in fact, the standard scalar multiplication in Euclidean
space; hence the matrix G is positive definite. Our strategy for classifying finite
reflection groups is to assemble the list of all possible connected positive definite
labeled graphs.

16.4 Classification of Positive Definite Graphs

Our study has reached the point where the classification of finite reflection groups
becomes a matter of relatively simple matrix computations. Indeed, the Coxeter graph
of W is positive definite. Hence the desired classification of finite reflection groups
is an immediate consequence of the following result.

Theorem 16.2. The connected positive definite labeled graphs are exactly those listed
in Figure 16.1.

Proof. A proof of the theorem is based on the following observation about subgraphs
of positive definite graphs. We say that a labeled graph ∆ is a subgraph of Γ if it can
be obtained from Γ by any combination of the following two operations:

• deleting some vertices (with adjacent edges), and
• decreasing some edge labels.

We also say in this situation that Γ contains ∆.

Lemma 16.3. A subgraph Γ ′ of a positive definite graph Γ is positive definite.

Proof. We enumerate vertices 1, . . . , n of Γ so that 1, . . . , k are vertices of the sub-
graph Γ ′. The edge labels of Γ ′ satisfy the inequality m′

ij � mij ; therefore

g′
ij = − cos

π

m′
ij

� − cos
π

mij
= gij .

If Γ ′ is not positive definite, then there exists a nonzero vector x ∈ Rk such that
xtG′x � 0. Form the vector

y = (|x1|, |x2|, . . . , |xk|, 0, . . . , 0)

in Rn. Since ytGy > 0, we have

0 <
∑

1�i,j�n

gijyiyj

=
∑

1�i,j�k

gij |xi||xj |



120 16 Classification of Finite Reflection Groups

�
∑

1�i,j�k

g′
ij |xi||xj |

=
∑

1�i,j�k

g′
ij |xixj |

�
∑

1�i,j�k

g′
ijxixj (since g′

ij � 0 for i �= j)

� 0,

a contradiction. �	
We leave it to the reader as an exercise (Exercise 16.1) to check that all graphs in

Figure 16.1 are positive definite, while the graphs in Figure 16.2 are not. It is easier
than one might think because the associated matrices consist mostly of zeros. Here
are some hints: number the vertices of Γ so that the last vertex, n, is connected only
to one vertex, n − 1. Then the last row of the matrix G contains only two nonzero
entries, and detG can be expanded with respect to the last row, allowing for the
inductive argument. To get rid of awkward denominators, it is convenient to carry
out the actual computation for the matrix 2G. The resulting values of det 2G for the
graphs in Figure 16.1 are given in the following table:

An BCn Dn E6 E7 E8 F4 G2(m) H3 H4

n+ 1 2 4 3 2 1 1 4 sin2(π/m) 3 − √
5 1

2 (7 − 3
√

5)

In Figure 16.2, the matrices for graphs Ãn– G̃2 have zero determinants, while the
determinants for H̃3 and H̃4 are negative.

The rest of Exercise 16.1 completes the proof of the theorem: a very straight-
forward argument shows that the only connected labeled graphs Γ that contain no
subgraphs listed in Figure 16.2 are those listed in Figure 16.1. For example, since Ãn

is not a subgraph of Γ , the latter contains no cycle. �	
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H4 � � � �
5

H3 � � �
5

G2(m), m � 5 � �
m

F4 � � � �
4

E8 � � � � � � �

�

E7 � � � � � �

�

E6 � � � � �

�

Dn, n � 4 � � � . . . � �����

�

�

BCn, n � 2 � � � . . . � � �
4

An, n � 1 � � � . . . � � �

Fig. 16.1. Positive definite graphs.

Exercises

16.1. Check some of the graphs in Figure 16.1, page 121 and Figure 16.2, page 122, for being
positive definite or not (resp.). Assuming they all can be checked correctly, complete the proof
of Theorem 16.2.
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H̃4 � � � � �
5

H̃3 � � � �
5

G̃2 � � �
6

F̃4 � � � � �
4

Ẽ8 � � � � � � � �

�

Ẽ7 � � � � � � �

�

Ẽ6 � � � � �

�

�

D̃n, n � 5
�

���
�� � � . . . � �����

�

�

D̃4 �

���

��
�

��
�

�� �

C̃n, n � 3 � � � . . . � � �
4 4

B̃n, n � 3
�

���
�� � � . . . � � �

4

˜BC2 � � �
44

Ãn, n � 2 � � � . . . � � �

�

Fig. 16.2. These graphs are not positive definite.
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Construction of Root Systems

Arguably, this is the dullest chapter of the book. We construct, for each Coxeter graph
of type

An, Bn, Cn, Dn, E6, E7, E8, F4, G2,

a root system and briefly list their key properties. As a rule, we do not give any proofs;
all the properties mentioned can be checked by direct, although sometimes tedious,
calculations. Our exposition follows the classical treatise ny Bourbaki [Bou].

The systems An, Bn, Cn, Dn have already been treated in previous chapters.
Here, we give a brief summary and fill in the missing details.

The systemsE6,E7,E8, F4,G2 are exceptionally beautiful; their importance can
be fully appreciated in their applications. However, any discussion of these applica-
tions is beyond the scope of the present book.

We do not consider the root systems of type H3 and H4. The interested reader
may wish to consult the books by Grove and Benson [GB] and Humphreys [Hum],
which contain a detailed discussion of these root systems. We mention only that the
mirror system associated with the root system of type H3 is the system of mirrors
of symmetry of the regular icosahedron (or its dual polytope, the dodecahedron; see
Figure 10.4). A rigorous construction of the icosahedron is given in Chapter 20.

17.1 Root System An

Let ε1, . . . , εn+1 be the standard basis in Rn+1,

Φ = { εi − εj | i, j = 1, . . . , n+ 1, i �= j },
Π = { ε2 − ε1, . . . , εn+1 − εn }.

Then Φ contains n(n+1) vectors, all of which are of equal length. Denote the simple
vectors by

ρ1 = ε2 − ε1, ρ2 = ε3 − ε2, . . . , ρn = εn+1 − εn,

and take the root
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ρ0 = εn+1 − ε1 = ρ1 + ρ2 + · · · + ρn.

The root ρ0 is called the highest root because it has, of all positive roots, the longest
expression in terms of the simple roots. The highest root plays an exceptionally
important role in many applications of the theory of root systems, for example, in
the representation theory of simple Lie algebras and simple algebraic groups. In the
context of our approach to finite reflection groups via systems of mirrors it will act as
the marker for synchronizing the mirror system and root system: in every root system
that we consider, the highest root ρ0 is chosen in such way that −ρ0 belongs to the
closure C of the fundamental chamber C.

In the following diagram the black nodes form the Coxeter graph forAn; an extra
white node demonstrates the relations of the root −ρ0 to the simple roots. We use the
following convention: if α and β are two roots, then their nodes are not connected if
α · β = 0 (and the reflections sα and sβ commute), and the nodes are connected by
an edge if

α · β
|α||β| = − cos

π

m

and m � 3. In fact, m is the order of the product sαsβ , and m � 3 if and only if the
reflections sα and sβ do not commute. Ifm > 3 we write the value ofm on the edge.

� �. . . � �

�

ρ1 ρ2 ρnρn−1

−ρ0

We know that the reflection group W for our root system is the symmetric group
Symn+1, which acts by permuting the vectors εi.

17.2 Root System Bn, n � 2

Let ε1, . . . , εn be the standard basis in Rn,

Φ = { ±εi, ±εi ± ej | i, j = 1, . . . , n, i < j },
Π = { ε1, ε2 − ε1, . . . , εn − εn−1 },

Then Φ contains 2n short roots ±εi and 2n(n− 1) long roots ±εi ± εj , i < j.
It is convenient to enumerate the simple roots as

ρ1 = ε1, ρ2 = ε2 − ε1, . . . , ρn = εn − εn−1.

The highest root is
ρ0 = εn−1 + εn.

The extended Coxeter diagrams for the system of roots B2 and Bn with n � 3
are different.
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4 4

�
−ρ0ρ1 ρ2

Extended Coxeter diagram for B2.

	 	 	. . . 	

	
���

4
�

ρ3ρ1 ρ2

ρn

ρn−1

−ρ0

Extended Coxeter diagram for Bn, n � 3.

17.3 Root System Cn, n � 2

Let ε1, . . . , εn be the standard basis in Rn,

Φ = { ±2εi, ±εi ± ej | i, j = 1, . . . , n, i < j },
Π = { 2ε1, ε2 − ε1, . . . , εn − εn−1 }.

Then Φ contains 2n long roots ±2εi and 2n(n− 1) short roots ±εi ± εj , i < j. We
enumerate the simple roots as

ρ1 = 2ε1, ρ2 = ε2 − ε1, . . . , ρn = εn − εn−1.

The highest root is
ρ0 = 2εn.

		
4 4

�
−ρ0 ρ1 ρ2

Extended Coxeter diagram for C2
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	 	 	. . . 	 	
4

�
ρ3ρ1 ρ2 ρnρn−1

4

−ρ0

Extended Coxeter diagram for Cn, n � 3.

17.4 Root System Dn, n � 4

Let ε1, . . . , εn be the standard basis in Rn,

Φ = { ±εi ± εj | i, j = 1, 2, . . . , n, i �= j };

thus Dn is a subsystem of the root system Cn. All roots have the same length. The
total number of roots is 2n(n− 1).

The simple system Π is

ρ1 = ε1 + ε2, ρ2 = ε2 − ε1, ρ3 = ε3 − ε2, . . . , ρn = εn − εn−1.

The highest root is
ρ0 = εn−1 + εn.

������	

	

	 	. . . 	 	���

�

	

−ρ0ρ1

ρ2

ρ3 ρn−2 ρn−1

ρn

Extended Coxeter diagram for Dn, n � 4.

17.5 Root System E8

Let ε1, . . . , ε8 be the standard basis in R8,

Φ =

{
±εi ± ej (i < j),

1
2

8∑
i=1

±εi (even number of + signs)

}
,

and for Π take
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ρ1 =
1
2
(ε1 − ε2 − ε3 − ε4 − ε5 − ε6 − ε7 + ε8),

ρ2 = ε1 + ε2,

ρi = εi−1 − εi−2 (3 � i � 8).

All roots have the same length; the total number of roots is 240.
The highest root is

ρ0 = ε7 + ε8.

	 	 	 	 	 	 	

	

�
−ρ0ρ1

ρ2

ρ3 ρ4 ρ5 ρ6 ρ7 ρ8

Extended Coxeter diagram for E8.

17.6 Root System E7

Take the root system of type E8 in R8 just constructed and consider the span V of
the roots ρ1, . . . , ρ7. Let Φ be the set of 126 roots of E8 belonging to V :

±εi ± εj (1 � i < j � 6), ±(ε7 − ε8), ±1
2

(
ε7 − ε8 +

6∑
i=1

±εi
)
,

where the number of minus signs in the sum is odd.
All roots have the same length. The roots

ρ1, . . . , ρ7

form a simple system, and the highest root is

ρ0 = ε8 − ε7.

� 	 	 	 	 	 	

	

−ρ0 ρ1

ρ2

ρ3 ρ4 ρ5 ρ6 ρ7

Extended Coxeter diagram for E7.
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17.7 Root System E6

Again we start with the root system of type E8 in R8. Denote by V the span of the
roots ρ1, . . . , ρ6, and take for Φ the 72 roots of E8 belonging to V :

±εi ± εj (1 � i < j � 5), ±1
2

(
ε8 − ε7 − ε6 +

5∑
i=1

±εi
)
,

where the number of minus signs in the sum is odd.
All roots have the same length. The roots

ρ1, . . . , ρ6

form a simple system, and the highest root is

ρ0 =
1
2
(ε1 + ε2 + ε3 + ε4 + ε5 − ε6 − ε7 + ε8).

	 	 	 	 	

	

�
−ρ0

ρ1

ρ2

ρ3 ρ4 ρ5 ρ6

Extended Coxeter diagram for E6.

17.8 Root System F4

Let ε1, . . . , ε4 be the standard basis in R4; Φ consists of 24 long roots

±εi ± εj (i < j)

and 24 short roots

±εi, 1
2
(±ε1 ± ε2 ± ε3 ± ε4).

For a simple system Π take

ρ1 = ε2 − ε3, ρ2 = ε3 − ε4, ρ3 = ε4, ρ4 =
1
2
(ε1 − ε2 − ε3 − ε4).

The highest root is
ρ0 = ε1 + ε2.
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� 	 	 	 	
4

ρ0 ρ1 ρ2 ρ3 ρ4

Extended Coxeter diagram for F4.

17.9 Root System G2

Let V be the hyperplane x1 + x2 + x3 = 0 in R3, Φ consists of six short roots

±(εi − εj), i < j,

and six long roots
±(2εi − εj − εk),

where i, j, k are all different. For a simple system Π take

ρ1 = ε1 − ε2, ρ2 = −2ε1 + ε2 + ε3.

The highest root is
ρ0 = ε1 + ε2.

	 	
6

�
−ρ0ρ1 ρ2

Extended Coxeter diagram for G2.

17.10 Crystallographic Condition

A root system Φ is called crystallographic if for all α, β ∈ Φ,

2α · β
β · β is an integer. (17.1)

If you look at the formula for the reflection,

sαβ = β − 2β · α
α · α α,

you can immediately observe that it means that if reflections are represented by
matrices in the basis of simple vectors, then all matrix coefficients in these matrices
are integers. Since W is generated by reflections, this property holds for all elements
in W . Moreover, it is easy to see that the converse is also true:
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Proposition 17.1. Assume that the real vector space V is spanned by a root system
Φ for the finite reflection group W . Then Φ is crystallographic if and only if every
element of W is represented in the basis of simple roots by a matrix with integer
coefficients.

Theorem 17.2. The root systems An, Bn, Cn, Dn, E6, E7, E8, F4, G2 are crystal-
lographic.

Proof. The proof is a straightforward calculation and is left to the reader as an exercise.

Exercises

For each of the root systems An, Bn, Cn, Dn, E6, E7, E8, F4, G2:

17.1. Check the crystallographic condition.

17.2. Find the decomposition of the highest root with respect to the simple roots.

17.3. Check, by a direct computation, that the extended Coxeter diagrams are drawn correctly.

17.4. The sets Φlong and Φshort of all long (respectively, short) roots in a root system Φ are
root systems on their own. Identify their types when Φ is of type Bn, Cn, or F4.

Crystallographic root systems.

17.5. Prove that in a crystallographic root system, every root can be written as a linear com-
bination of simple roots with integer coefficients.

17.6. For the root systems Φ of types A2, B2, C2, G2, sketch the sets Λ = ZΦ of points in
R

2 that are linear combinations of roots in Φ with integer coefficients,

Λ =

{ ∑
α∈Φ

aαα | aα ∈ Z

}
.

Observe that Λ is a discrete subgroup of R
2, that is, there is a real number d > 0 such that for

any λ ∈ Λ, the circle {α ∈ R
2 | d(α, λ) < d } contains no points from Λ other than λ.

17.7. Prove that if Φ is a crystallographic root system then

Λ =

{ ∑
α∈Φ

aαα | aα ∈ Z

}

is a discrete subgroup of the vector space spanned by Φ.

17.8. Check that root systems of type G2(5) are not crystallographic. Also, show that root
systems of type G2(m) are not crystallographic when m � 7.

17.9. Prove also that the additive group ZΦ generated in R
2 by a root system Φ of typeG2(5)

is everywhere dense in R
2.
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17.10. Groups H3 and H5.
We have not constructed root systems corresponding to the Coxeter diagramsH3 and H4.

Observe, however, that

1. The mirror systems of mirrors of symmetries of the dodecahedron (equivalently, of the
icosahedron) have type H3 (see Figure 10.4); a construction of the icosahedron will be
given in Chapter 20.

2. Root systems H3 and H4 contain a subsystem of type G2(5) and therefore are noncrys-
tallographic (use Exercise 17.8).

3. In any root systems of type H3 or H4 all roots are conjugate and therefore have the same
length.

Project

The next problem is quite serious; its solution requires a systematic approach; we would
recommend it as a long-term research project.

17.11 (Felder and Veselov; Pfeiffer and Roehrle). In finite irreducible reflection groups W ,
find all involutions t such that CW (t) is generated by reflections.
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Orders of Reflection Groups

In this chapter we shall use information about the root systems accumulated in Chap-
ter 17 to determine the orders of the finite reflection groups

An, BCn, Dn, E6, E7, E8, F4, G2.

Our exposition follows Humphreys [Hum, Theorem 2.11].
First of all, start by observing that the groupA1 obviously has order 2. The groups

A2, BC2, G2 are the dihedral groups of orders 6, 8, 12, respectively.
Let Φ be one of the root systems listed above andW its reflection group. To work

out the order of W we need first to study the action of W on Φ.

Lemma 18.1. The long (respectively, short) roots inΦ are conjugate under the action
of W .

Proof. We know from Theorem 11.11 that every root is conjugate to a simple root.
Therefore it will be enough to prove that the simple long (respectively, short) roots
are conjugate. Direct observation of Coxeter graphs shows that the nodes for any two
simple roots of the same length can be connected by a sequence of edges with marks
3. Hence it will be enough to prove that if ρi and ρj are distinct simple roots so that
mij = 3, then ρi and ρj are conjugate; but this follows from Exercise 8.7 applied to
the planar root system

Φ′ = Φ ∩ (Zρi + Zρj).

�	
Theorem 18.2. The orders of the indecomposable reflection groups are given in the
following list:

|An| = n!
|BCn| = 2n · n!

|Dn| = 2n−1 · n!
|E6| = 27 · 34 · 5
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134 18 Orders of Reflection Groups

|E7| = 210 · 34 · 5 · 7
|E8| = 214 · 35 · 52 · 7
|F4| = 27 · 32

|G2| = 12

Proof. In all cases the highest root ρ0 is a long root. Since all long roots are conjugate,

|W | =

⎛⎝ number
of long
roots

⎞⎠ · |CW (ρ0)|.

On the other hand, CW (ρ0) = CW (−ρ0). One can easily check, using the formulas
of Chapter 17, that ρ0 · ρi � 0 for all simple roots ρi; hence −ρ0 · ρi � 0 and
the root −ρ0 belongs to the closed fundamental chamber C. By Theorem 12.6, the
isotropy group CW (−ρ0) is generated by the simple reflections that fix the root −ρ0.
These simple reflections are exactly the reflections for the black nodes on the extended
Coxeter graphs in Chapter 17 that are not connected by an edge to the white node −ρ0.
Therefore the extended Coxeter graph, with the node −ρ0 and the nodes adjacent to
−ρ0 deleted, is the Coxeter graph for W ′ = CW (ρ0), which allows us to determine
the isomorphism type and the order of W ′.

The rest is a case-by-case analysis.

An. We know that |A1| = 2 = 2! and |A2| = 6 = 3!. We want to prove by
induction that |An| = (n + 1)!. Φ contains n(n + 1) roots (all of them of the same
length), and W ′ is of type An−2. By the inductive hypothesis,

|W ′| = [(n− 2) + 1]! = (n− 1)!

and
|W | = n(n+ 1) · (n− 1)! = (n+ 1)!.

Of course, we know that W = Symn+1, and there was not much need for a new
proof of the fact that |Symn| = n!. But we wished to use an opportunity to show
how much information about a reflection group is contained in its extended Coxeter
graph.

BCn. We know that the root systems Bn and Cn have the same mirror system
and reflection group. It will be more convenient for us to compute with the root system
Cn. It contains 2n long roots, and the Coxeter graph for W ′ is of type Cn−1. Thus

|W | = 2n · 2n−1(n− 1)! = 2nn!.

Dn. All roots are long, and their number is 2n(n − 1). The group W ′ has dis-
connected Coxeter graph with connected components of types Dn−2 and A1; hence
W ′ = W ′′ × W ′′′, where W ′′ is of type Dn−2, has, by the inductive hypothesis,
order 2n−3(n− 2)!, and |W ′′′| = 2. Therefore
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|W | = 2n(n− 1) · (2n−3(n− 2)! · 2) = 2n−1n!.

E6. There are 72 roots in Φ, all of them long; the isotropy group W ′ is of type
A5. Therefore

|W | = 72 · (5 + 1)! = 72 · 6! = 27 · 34 · 5.

E7. There are 126 roots in Φ, all of them long; the isotropy group W ′ is of type
D6 and has order 25 · 6!. Therefore

|W | = 126 · 25 · 6! = 210 · 34 · 5 · 7.

E8. There are 240 roots in Φ, all of them long; the isotropy group W ′ is of type
E7 and has order 210 · 34 · 5 · 7 (just computed). Therefore

|W | = 240 · 210 · 34 · 5 · 7 = 214 · 35 · 52 · 7.

F4. There are 24 long roots; the isotropy group W ′ is of type C3 and has order
23 · 3!. Therefore

|W | = 24 · 23 · 3! = 27 · 32.

�	

Exercises

18.1. Prove that the roots in the root systems H3 and H4 form a single orbit under the action
of the corresponding reflection groups.

18.2. Lemma 18.1 is not true when the root systemΦ is not indecomposable. Give an example.

18.3. Give an example of a root system of type A1 ⊕ A1 ⊕ A1 with roots of three different
lengths.

18.4. For root systems Bn, Cn, and F4, find the number of short roots.

18.5. Using the information about the total number of roots in the standard root systems, find,
for every irreducible finite reflection group W , the length of the longest element in the group.
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Three-Dimensional Reflection Groups
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Reflection Groups in Three Dimensions

We give a quick and easy classification of finite systems of mirrors in three dimensions.
Our approach is based on some elementary spherical geometry.

This chapter can be read independently from the rest of the book if you start with
Chapters 5, 6, and 7 and then jump directly here.

19.1 Planar Mirror Systems

We start with the observation that the classification of planar mirror systems is self-
evident. (Compare with Section 8.3.)

Theorem 19.1. Every finite closed system of mirrors in R
2 is the mirror system of a

regular polygon.

In particular, by Theorem 7.2, the corresponding reflection group is the dihedral
group Dih2n.

19.2 From Mirror Systems to Tessellations of the Sphere

Let Σ be a finite closed system of mirrors in the three-dimensional Euclidean space
AR

3, and let W be the corresponding reflection group. We know that all mirrors in
Σ intersect in a common point o. We consider the sphere S of radius 1 centered at o
and trace on S the intersections of S with mirrors in Σ; we obtain a tessellation of S
by spherical polygons, something similar to Figure 19.1.

A few words about spherical geometry are necessary. It is a sister theory to Eu-
clidean geometry, and, because of applications in astronomy, has a long and proud
history.

The existence of antipodal points is one of the crucial differences from Euclidean
plane geometry. Recall that two points a and a′ on the sphere are called antipodal to
each other if the straight line aa′ passes through the center of the sphere, or, in an
equivalent form, if the segment [a, a′] is a diameter of the sphere.
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140 19 Reflection Groups in Three Dimensions

Fig. 19.1. A tessellation of the sphere made from the system of mirrors of the icosahedron.

Great circles, that is, circles cut in the sphere by planes that pass through the
center of the sphere, play in spherical geometry a role similar to that of straight lines
in Euclidean plane geometry. In particular, if two points a and b are not antipodal,
then there is only one great circle that passes through them; this is, of course, the trace
in the sphere of the (unique) plane through a, b and the center o of the sphere. On
the surface of the sphere, the smaller of the two arcs of the great circle is the shortest
path from a to b; but we will not use this property.

For our purpose, of great importance is the angle between two great circles, which
is, by definition, the angle between the planes containing the circles.

The triangle is the simplest geometric figure in the Euclidean plane; on the sphere,
this role is passed to the digon, the part of the sphere bounded by two great circles;
obviously, the vertices of a digon are antipodal to each other, and the size and shape
of the digon is described by just one parameter, its angle; see Figure 19.2.

Fig. 19.2. Digon.
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Lemma 19.2. On the sphere of radius 1, the area of the digon with angle α is 2α.

Proof. We start the proof by recalling that the area of the sphere of radius 1 is 4π; the
full angle around the point is 2π, and therefore the area of the digon formed by two
arcs of great circles with angle α between them is

α

2π
· 4π = 2α.

�

19.3 The Area of a Spherical Triangle

Theorem 19.3. On a sphere of radius 1, the area of a spherical triangle with angles
α, β, γ is

α+ β + γ − π.

Proof. Letα, β, γ be the angles of the triangle T . LetH be the hemisphere containing
the triangle determined by the great circle through the vertices of the triangle with
angles β and γ (Figure 19.3).

Fig. 19.3. The area of a spherical triangle, Theorem 19.3.

The great circles that continue the sides of the triangle T cut the hemisphere H
into our triangle T and spherical polygons A, B, C so that B ∪ T and C ∪ T are
digons of angles β and γ, whileA and the triangle T ′ antipodal to T form the digon of
angle α. By Lemma 19.2, the areas σ(B ∪T ), σ(C ∪T ) and σ(A∪T ′) = σ(A∪T )
of the three digons are 2β, 2γ, and 2α, respectively. Since the area of the hemisphere
is 2π, we have
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2π = σ(T ) + σ(A) + σ(B) + σ(C)
= σ(T ) + (2α− σ(T )) + (2β − σ(T )) + (2γ − σ(T ))
= 2(α+ β + γ) − 2σ(T ),

whence the result. �

Corollary 19.4. The area of a spherical n-gon N is expressed as

σ (N) =
∑

(angles of N) − (n− 2)π.

Proof. For digons and triangles (n = 2 or 3) the statement of the corollary follows
from Lemma 19.2 and Theorem 19.3. If n � 4, cut the polygon into triangles and
apply Theorem 19.3. �

Corollary 19.5. If all angles of a spherical n-gon N do not exceed π/2 then n � 3.

Proof. We apply Corollary 19.4:

σ (N) =
∑

(angles of N) − (n− 2)π � n · π
2

− (n− 2)π

has to be positive; hence
n

2
− (n− 2) > 0

and n < 4. �

19.4 Classification of Finite Reflection Groups in Three
Dimensions

Assume that we have a finite closed mirror system Σ in the 3-dimensional Euclidean
space R3, with all mirrors passing through the origin o; we take intersections of the
mirrors with the sphere S of radius 1 centered at o. Have a look at Figure 19.1; the
key idea of the classification is to look at possible shapes of spherical polygons cut
in the sphere by the great circles (mirrors). We shall slightly abuse the terminology
developed in this book and call these polygons chambers. Two chambers are adjacent
if they share a common edge. Obviously, adjacent chambers are mirror images of each
other, and as a result, all chambers have the same shape.

Notice further that all great circles meeting at the same vertex are traces on S
of mirrors forming a mirror system on its own, say Σ′. All mirrors in Σ′ intersect
in a common straight line l; looking at the intersections of mirrors with a plane P
perpendicular to l, we get a closed mirror system Σ′′ in P . By Lemma 8.4, the
angles between neighboring mirrors in Σ′′, hence in Σ′, are all equal and therefore
do not exceed π/2. This means, of course, that chambers are digons or triangles; see
Corollary 19.5.
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Fig. 19.4. Mirror system of type G2(m).

If the chambers are digons, then they all share two vertices, which can be conve-
niently called the north and the south pole. In that case, all mirrors in Σ contain the
axis through the poles, and Σ is the mirror system of a dihedral group (Figure 19.4).
If Σ contains m mirrors, its reflection group is the dihedral group Dih2m of order
2m, and the traditional notation for the mirror system is I2(m) or G2(m) (in this
book, we use the latter).

Fig. 19.5. Mirror system of type G2(m) +A1.
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The principal and most interesting case is, of course, that of chambers being
triangles. Fix some chamber C; let a, b, c be its vertices, and denote by m1, m2, m3
the number of mirrors meeting at a, b, c, respectively. Then the angles at the vertices
are equal, respectively, to π/m1, π/m2, π/m3, and the area of the triangle is given
by

σ(C) =
π

m1
+

π

m2
+

π

m3
− π.

LetN be the number of chambers; then S(C) = 4π/N and we arrive at the equation

4π
N

=
π

m1
+

π

m2
+

π

m3
− π,

which simplifies to

1 +
4
N

=
1
m1

+
1
m2

+
1
m3

.

In particular,
1
m1

+
1
m2

+
1
m3

> 1;

this inequality has only finitely many solutions in positive integers m1 � 2, m2 �
2, m3 � 2, and all solutions can be easily listed by direct inspection. Notice that
every triple (m1,m2,m3) immediately yields the corresponding value of N . We
have freedom of notation and can assume that m1 � m2 � m3. After that, the list of
all solutions becomes very compact. The first solution is

1 +
4

4m
=

1
2

+
1
2

+
1
m
. (19.1)

The corresponding mirror system is G2(m) with the added “equatorial” mirror; see
Figure 19.5. The corresponding reflection group is the direct product of the dihedral
group Dih2m (it corresponds to the “meridional” mirrors) and the group of order 2
(generated by the reflection in the “equatorial” mirror).

The next solution leads to the system of mirrors of the regular tetrahedron:

1 +
4
24

=
1
2

+
1
3

+
1
3
. (19.2)

Moving further, we have the system of mirrors of the cube:

1 +
4
48

=
1
2

+
1
3

+
1
4
. (19.3)

Our final solution leads to the mirror system presented in Figure 19.1:

1 +
4

120
=

1
2

+
1
3

+
1
5
. (19.4)

This is the mirror system of the icosahedron; we discuss its construction in Chapter 20.
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Exercises

19.1. Mark takes under m hours to do a job, Nick takes under n hours for the same job, and
Len takes under l hours for the job. Ifm, n, l are integers, what are the possible values ofm, n,
and l that ensure that Len, Mark, and Nick, working together, complete the job in well under
one hour?
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Fig. 19.6. A rhombic polyhedron.

19.2. Find the group of symmetries of the rhombic polyhedron in Figure 19.6.

19.3. Find all (convex) polytopes ∆ in R
3 whose vertices can be cyclically permuted, that

is, for which there is a cyclic group C in Sym(∆) such that C acts transitively on the set of
vertices of ∆.
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�
��

Fig. 19.7. A truncated cube is an example of a vertex-transitive polytope.
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Projects

Here, we have collected a few more serious problems; some of them are much harder than they
appear. Their solutions require a systematic approach; we recommend using the problems as
long term group projects.

19.4. A half-turn is a rotation through 180◦ about an axis; obviously, half-turns can be alter-
natively characterized as orthogonal transformations with eigenvalues 1,−1,−1. Classify the
finite groups of orthogonal transformations of R

3 that are generated by half-turns.

19.5. Classify and sketch convex vertex-transitive polytopes in R
3 (Figure 19.7).

19.6. Classify and sketch edge-transitive polytopes in R
3.

19.7. Classify and sketch face-transitive polytopes in R
3.
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Icosahedron

In this chapter we give a construction of the icosahedron that is both self-evident and
rigorous. This is a surprisingly neglected topic. Pictures of icosahedra are abundant in
books on geometry, and they create in the reader the false impression that a beautiful
picture proves the existence of the object.

Moreover, we separate clearly the issues of existence of the icosahedron and its
uniqueness. As we shall see, the uniqueness is intimately related to the fact that the
icosahedron has a rich set of symmetries that only a polytope can admit.

20.1 Construction

For the construction of an icosahedron, we follow, with some modifications, the
method of H. M. Taylor1 [Hea, pp. 491–492].

The attractive feature of Taylor’s method is that it gives the most effective way of
drawing an icosahedron, so simple that it is accessible to the reader with very modest
drawing skills. As shown in Figure 20.1, first we mark symmetrically positioned
segments in an alternating fashion on the faces of the cube (left), and then connect
the endpoints (right).2

The drawing actually provides a proof of the existence of the icosahedron: varying
the lengths of segments on the left cube, it is easy to see from continuity principles
(Figure 20.2) that at a certain length of the segments, all edges of the inscribed polytope
on the right become equal. Therefore we get a convex polytope ∆ with the following
properties:

(a) all faces of ∆ are equilateral triangles, and
(b) five faces meet at each vertex.

1 A referee kindly commented that this method actually goes back to Piero della Francesca
(1416–1492).

2 In this chapter, we reserve the term “face” for 2-dimensional faces of polytopes, deviating
from the general terminology of Section 3.1.
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Fig. 20.1. A self-evident construction of an icosahedron
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Fig. 20.2. The continuity principle says that the distance between two points is a continuous
function of the coordinates of the points and therefore assumes all intermediate values (compare
with Figure 20.3).

This is what is called an icosahedron. However, the difficulties start as soon as
we think about what we have constructed.

Is the icosahedron unique? More precisely, if we fix the length of the edge,
do properties (a) and (b) define the icosahedron uniquely up to isometry?

For example, why does Taylor’s method produce the same result as another well-
known method, due to Kepler (see Figure 20.4)?

Until we have clarified this issue, we shall call the icosahedron obtained by in-
scription in the cube Taylor’s polytope and denote it by∆; similarly, Kepler’s polytope
will be denoted by Γ .

What are the groups of symmetries of ∆ and Γ?

It is easy to see that Sym(∆) acts transitively on the set of vertices of∆; moreover,
the group of symmetries of the ambient cube contains a subgroup of order 24 that
preserves ∆ and acts transitively on the set of vertices of ∆.
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�

�� �

a bx0

f(a)

f(b)

g(a)

g(b)

Fig. 20.3. The intermediate value theorem: if f and g are continuous functions on [a, b] and
f(a) > g(a), f(b) < g(b), then there exists a point x0 ∈ [a, b] such that f(x0) = g(x0).

But is Sym(∆) transitive on the set of edges? On the set of faces?

Similarly, we see that in Kepler’s construction, Sym(Γ ) admits a rotation of order
5 about the north pole – south pole axis.

But is Sym(Γ ) transitive on the set of vertices? On the set of edges? On the
set of faces?

20.2 Uniqueness and Rigidity

We have already stated, without proof, some important and self-evident geometric
theorems that are, however, very hard to prove; see, for example, Theorem 3.9. Here
is another classical example, due to the famous French mathematician Cauchy. When
you make a convex polytope out of cardboard, one of the useful (or annoying, de-
pending on circumstances) properties of an unfinished model is that a polyhedral cone
formed by four or more faces sharing a common vertex is flexible around the edges;
however, the completed cardboard model is rigid. This observation can be expressed
by saying that a convex polytope is uniquely determined, up to isometry, by its faces
and how they are joined together. An accurate mathematical statement is a bit more
technical.

Theorem 20.1. (Cauchy’s rigidity theorem, [Ber, Theorem 12.8.1]) Let∆ and∆′ be
two convex polytopes and F ,F ′ the sets of their faces. Assume that there is a map
α : F −→ F ′ such that

• α takes vertices into vertices, edges into edges, and faces into faces;
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Fig. 20.4. Kepler’s construction of the icosahedron: you first make a pentagonal antiprism with
all edges equal—it obviously exists by the continuity principle, compare with Figures 20.1
and 20.2—and add two pentagonal pyramids, again with all edges equal. Why does Kepler’s
method produce the same result as Taylor’s?

• α preserves the adjacency of faces: the common edge of two neighboring faces is
mapped to the common edge of the images of the faces;

• finally, for every face F of∆, there is an isometry ιF : F −→ α(F ) which agrees
with the map α on all edges of F : if E is an edge then the image ιF (E) of E
coincides with α(E).

Then there is an isometry ι : ∆ −→ ∆′ that agrees with α, that is, if F is an
arbitrary face of ∆ then the image ι(F ) of F coincides with α(F ).

If you accept Cauchy’s theorem, then it should be obvious that if Taylor’s polytope
and Kepler’s polytope have equal edge lengths then the polytopes are isometric,
because the way they are assembled from equilateral triangles is the same for both
polytopes.
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We can claim even more: any two convex polytopes with 20 equilateral triangular
faces and 12 vertices arranged in such way that exactly 5 facts meet at each vertex,
are isometric if they have equal edge lengths. Therefore we indeed have the right to
apply the term icosahedron to all such polytopes.

In a twist typical for mathematics, we can apply Cauchy’s theorem to a single
icosahedron∆: if [V,E, F ] is a flag of faces in∆, that is, the vertex V is an endpoint
of the edge E that is a side of the face F , and [V ′, E′, F ′] is another flag, then it is
intuitively clear that there is a map α that satisfies the conditions of Cauchy’s theorem
and sends V to V ′,E toE′, and F to F ′. Moreover, it is easy to see that such a map is
unique. Therefore, by Cauchy’s theorem, there is a unique isometry of ∆ that sends
the flag [V,E, F ] to [V ′, E′, F ′]. In group-theoretic terminology, Sym∆ acts simply
transitively on the set of flags and hence the order of Sym∆ equals the number of
flags. The latter, obviously, is 12 (the number of vertices) times 5 (the number of
edges coming out of the vertex) times 2 (the choice of two faces meeting at the edge),
which gives us 120.

Furthermore, Cauchy’s theorem allows us to check that Sym∆ is generated by
reflections—we leave checking the details to the reader.

20.3 The Symmetry Group of the Icosahedron

In this section we will show, by a direct calculation, that Taylor’s construction and
Kepler’s construction lead to the same result. To that end, we compute the length of
the edge of the icosahedron inscribed in the cube with edge of length 2.

It will convenient for us to work with the cube [−1, 1]3 formed by the planes
x = ±1, y = ±1, z = ±1; in Figure 20.5, the cube is turned to the viewer showing
its faces x = 1, y = 1, z = 1.

If now we mark symmetrically positioned segments of length 2α on the faces
of the cube, then the coordinates of their points will be as shown in Figure 20.5. To
ensure that all edges of the inscribed polytope have equal length, it will suffice to
check that |AB′| = |BB′|, or in coordinate form,√

(1 − 0)2 + (α− 1)2 + (0 + α)2 = 2α,

which after simplification gives us

α2 + α− 1 = 0,

the latter equation having only one positive root,

α =
−1 +

√
5

2
.

Now a miracle happens: if O is the origin of the coordinate system, then we see
that the scalar products

−−−→
OC ′ · −−→

OB = −−→
OC · −−→

OB = −−→
OA · −−→

OB =
−−−→
OB′ · −−→

OB = α
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A′(1, −α, 0)




A(1, α, 0)
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C(α, 0, 1)


C′(−α, 0, 1)




B′(0, 1, −α)



B(0, 1, α)

x = 1

y = 1

z = 1

�

O

Fig. 20.5. Calculating the icosahedron inscribed into the cube [−1, 1]3: if the length of the
segments marked on the faces of the cube is 2α then the coordinates of their endpoints on the
faces x = 1, y = 1, z = 1 are as shown in the diagram.

are all equal. Hence the pointsC ′,C,A,B′ all belong to the same plane perpendicular
to the vector

−−−→
OB′ . The fifth vertex of the inscribed polytope adjacent to B (it is not

shown in the diagram) has coordinates (−1, α, 0) and obviously belongs to the same
plane.

Now it is obvious that B and five adjacent vertices of Taylor’s polytope form a
pentagonal pyramid with equal edges; if we remove from Taylor’s polytope vertexB
and its opposite, we get Kepler’s pentagonal antiprism; see Figure 20.6.

Hence Taylor’s polytope is also Kepler’s! Even if we are not using Cauchy’s
rigidity theorem, we have right to call our polytope an icosahedron.

Now we have no difficulty in determining the symmetry group of the icosahedron
∆. We have already observed that Taylor’s construction ensures that Sym(∆) contains
a subgroup of order 24 that acts transitively on the set of vertices of ∆. We have also
observed that Kepler’s construction obviously has rotational symmetry: five faces
of the icosahedron meeting at its “north pole” (Figure 20.4) can be moved one to
the other by a rotation around the pole. Combining these two observations, we see
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Fig. 20.6. Pentagonal antiprism inscribed in the cube.

that Sym∆ acts transitively not only on vertices, but also on edges and faces of the
icosahedron.

The concept of a flag (vertex–edge–face) introduced in the previous section is
again quite useful. Indeed, combining the symmetries we get from Taylor’s and from
Kepler’s constructions, we can further observe that Sym∆ acts simply transitively
on the set of flags of the icosahedron and therefore has order 120.

Exercises

20.1 (Armstrong). Glue two dodecahedra together along a pentagonal face and find the rota-
tional symmetry group of this new solid. What is its full symmetry group?



Part VI

Appendices



A

The Forgotten Art of Blackboard Drawing

As the reader has possibly noticed, numerous drawings in this book are very simple,
almost primitive. This is a conscious choice on the part of the authors; indeed, what
matters—and it is part of our teaching philosophy—is that the pictures are repro-
ducible.

We probably have to emphasize the difference between drawings or sketches,
which are supposed to be reproduced by the reader or student, and more techni-
cally sophisticated illustrative material (which we shall call illustrations), especially
computer-generated images designed for visualization of complex mathematical ob-
jects. It would be foolish to impose restrictions on the technical perfection of illustra-
tions. However, we believe that drawings should be intentionally made very simple,
almost primitive. They should not instill an inferiority complex in the reader who has
not attempted to draw anything since the halcyon days of elementary school. Even if
the reader has very modest drawing skills, he or she should be able to draw similar
pictures as a way of facilitating study.

In this appendix, we give some advice on making usable mathematical drawings.
First of all,

Treat your sketch as a mathematical object.

Indeed, most pictures in this book are parallel projections of three-dimensional
polytopes on a plane; if you specify the polytope, the plane, and the direction of
projection, then the projection is a well-defined mathematical figure.

However, we have to take into account some peculiarities of human visual per-
ception, as well as cultural traditions. Therefore our next advice is very general and
entirely nonmathematical.

If you a right-hander, then in your drawings, show a three-dimensional body
as if you are holding it in your left hand: slightly lower than your viewpoint
and slightly to the left.

The rationale behind this advice is obvious: this is how right-handed people see
an apple when they pare it with a knife held, naturally, in the right hand.
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Fig. A.1. Various ways to emphasise the depth of a picture: (a) wireframe model, (b) semitrans-
parent filling, (c) shading.

We do not know what say to left-handed readers; like most things in this world,
the pictures in this book are designed for right-handers. Perhaps you should simply
adopt our advice with the obvious change of left and right. Of course, a lot depends
on whether you draw pictures for your own personal use, or, say, for your students.
Also, even if you are left-handed, it might be that you have already been conditioned
by the thousands of images you have seen in books and magazines, and are more
comfortable when looking at the world from a right-hander’s point of view.
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Fig. A.2. As a sketch on a blackboard, a semitransparent polytope (left) is more convincing
than a filled one (right).

Emphasize the depth of a picture by some simple method (Figure A.1):
• Wireframe model: polytopes (or, more precisely, their edges) made of

wire, with breaks showing where one piece of wire passes behind another.
• Semitransparent filling: edges obscured by faces of the polytope shown

by dotted lines; see Figure A.2.
• Shading. Illustrators usually recommend placing the brightest spot on

the front of the object.
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Notice that the shading of faces of the stella octangula in Figure A.3 does not
follow the last rule: we sacrificed it for the sake of simplicity of the picture.
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Fig. A.3. Shading the faces of stella octangula.

Inscribe more complicated polytopes within simpler ones; again, mathemat-
ical relations between various polytopes could be very helpful for under-
standing more complex polytopes.

Taylor’s construction of the icosahedron is our favorite application of this prin-
ciple; see Figure 20.1. Another illustration is a construction of the stella octangula,
Figure A.4.
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Fig. A.4. Drawing stella octangula.
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As you can see, there is nothing really difficult here; just dare to believe that you
can draw.

Exercises
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Fig. A.5. For Exercise A.1: make a wireframe model of a 4-dimensional cube.

A.1. In Figure A.5, the picture on the left is a wireframe model of a 4-dimensional simplex;
notice that the line breaks, which indicate which edge of the simplex is farther away from the
2-dimensional plane of projection. Which lines have to be broken in the picture on the right in
order to make it a realistic wireframe model of a 4-dimensional cube?



B

Hints and Solutions to Selected Exercises

1.1 Hint: Consider C
2 as a vector space V over R. Then it is a 4-dimensional vector space

over R, and a 1-dimensional subspace U over C becomes a 2-dimensional subspace over
R. Choose a basis ε1, . . . , ε4 in V in such a way that ε1, ε2 is a basis of U . If now
α = (a1, a2, a3, a4)T and β = (b1, b2, b3, b4)T are two points in V � U , then at least
one of the coordinates a1, a2 and at least one of b1, b2 are different from 0. What remains is
to find a path connectingα andβ; for example, take a point γ = (c1, c2, c3, c4) sufficiently
far away from U (which simply means that one of |c3|, |c4| is sufficiently big). Then such
a path is formed by two segments [α, γ] ∪ [γ, β].

1.3 Solution: We can assume without loss of generality that the origin belongs to A o ∈ A.
If A is an affine subspace, then A is a vector subspace of R

n, and in that case, of course,
for any two distinct points a, b ∈ A, the line a + R �ab through a and b belongs to A. On
the other hand, if α, β are vectors in A with endpoints a and b, then every vector kα for
k ∈ R belongs to a line trough o and the endpoint a of α. Furthermore, A is closed under
taking sums of vectors for the following reason:

α+ β = 2 ·
(

1
2
(α+ β)

)
,

and the endpoint of 1
2 (α + β) is the midpoint of segment [a, b] and therefore belongs to

A.
1.4 Solution: Let π be an orthogonal projection of R

n onto A. If a, b ∈ π[X], take their
preimages x, y ∈ X . Then a segment [x, y] belongs to X by definition of a convex set.
The imageπ[[x, y]] of [x, y] is a segment connecting a and b (prove!); obviously, it belongs
to π[X]. Therefore π[X] is connected.

1.5 Solution: Assume that we fix the first mirror to a workbench and polish it with the second
one. Then the fixed mirror will tend to take a convex shape, while the moving mirror will
develop a complimentary concave shape. Rotating three mirrors in this process, we change
their roles and make them both concave and convex, that is, flat.

2.1 Hint: Drop a perpendicular from the vertex c to the side [a, b].
2.2 Hint: Introduce orthonormal coordinatesx1, . . . , xn and show that the system of equations

∂M(x)
∂xi

= 0, i = 1, . . . , n,

is equivalent to the equation
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k∑
j=1

−−→
xfj = 0,

where x = (x1, . . . , xk).
2.7 Hint: This is an immediate consequence of Theorem 2.3.

2.11 Hint: If an orthogonal transformation of R
3 has determinant +1 then it has eigenvalues

+1, cos θ + i sin θ, cos θ − i sin θ,

and therefore is a rotation through the angle θ about the 1-dimensional eigenspace for
eigenvalue +1.

3.1 Hint: Use induction on n.
3.2 Hint: Use induction on the number n of lines. The basis of induction (n = 1) is obvious.

After the next line is drawn, change the color of all chambers on one side of it.
3.4 Hint: An immediate application of the definition of the gallery distance.
3.5 Hint: Use Proposition 3.4 and Lemma 3.3.
3.6 Hint: When answering the second question, consider first the 2-dimensional case, Fig-

ure 3.1.
Answer: Let C be a chamber in Σ. Then C ∩∆ is the closure of a face of ∆, and every
chamber in Σ is uniquely defined by the (non-empty!) set of vertices of ∆ that belong to
C. There are 24 − 1 = 15 nonempty subsets of the set of four points.

3.7 Hint: For a point x = (x1, . . . , xn+1) inA that does not belong to any of the hyperplanes
xi = 0, look at all possible combinations of the signs + and − of the coordinates xi of
x, i = 1, . . . , n+ 1.

3.8 Answers: 1. For example, a rectangular box with nonsquare faces.
2. Glue two congruent regular tetrahedra over a common face.
3. For example, the cuboctahedron of Figure 9.9.

3.9 Solution: If a symmetry of a polytope∆ fixes every vertex of∆ then it fixes every point of
∆ (because ∆ is the convex hull of its vertices ). Therefore nonidentity symmetries of ∆
act as nonidentity permutations of vertices of∆, and different symmetries act as different
permutations (why?). But there are at most n! permutations of n points.

3.10 Answer (one of many possible): In AR
2, with Cartesian coordinates (x, y), the stripe

{ (x, y) : 0 ≤ x ≤ 1 }
is the intersection of two closed half-spaces

{ (x, y) : 0 ≤ x }
and

{ (x, y) : x ≤ 1 }
and therefore is a polyhedron. It is invariant under (infinitely many) translations along the
x-axis.

5.6 Hint: It is generated by a rotation through the smallest angle.
5.7 Solution: By Exercises 5.2 and 5.3,

det sr = det s · det r = −1;

hence sr is a reflection and (sr)2 = 1. But then srs · r = 1 and rs · r = 1. Hence
rs = r−1.
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5.9 Hint: Use Exercise 5.3 and multiply the matrices of the two reflections(
cosφ sinφ
sinφ − cosφ

)
and

(
cos θ sin θ
sin θ − cos θ

)
.

6.1 Answer: It does not change left and right, it changes front and back.
6.2 Hint: If M and N are two mirrors in Σ with the reflections s and t, then in view of

Lemma 5.3, the mirror image of M in N is the mirror of the reflection st. If reflections s
and t map ∆ onto ∆ then so does st.

6.5 Hint: the case of α/π irrational requires some special care.
6.6 Solution: Each reflection changes the sign of one of the components of the direction vector

of the ray of light; after three reflections, the direction changes to exactly the opposite one.
6.7 Answers: 6 and 9.
6.8 Answer: 15. Each mirror of symmetry passes through a unique pair of opposite edges.

6.12 Hint: Choose Cartesian coordinates in AR
2 in such a way that parallel mirrors H1 and

H2 have coordinates x = 1 and x = 2.
Solution: Then a direct calculation shows that the product s1s2 of the corresponding
reflections is the translation through a vector perpendicular to H1 and H2, directed from
H1 to H2 and of length equal to twice the distance between H1 and H2.

6.13 Hint: Check first that in a bounded figure, the center of symmetry lies on a mirror of
symmetry. Then select an orthonormal coordinate system with the origin at that center of
symmetry, and represent both central symmetry and mirror symmetry by matrices. What
are their eigenvalues? What are the eigenvalues of their product?
Hint for AR

3: It is no longer true, but we can claim that the body has an axis of a half-turn,
rotation through 180◦.

7.1 Hint: Make Sym3 act on the three vertices of an equilateral triangle (regular 3-gon).
8.1 Solution:

sαβ · sαγ =
(
β − 2β · α

α · α α

)
·
(
γ − 2γ · α

α · α α

)
= β · γ − 2γ · α

α · α (β · α) − 2β · α
α · α (α · γ) +

2β · α
α · α × 2γ · α

α · α (α · α)

= β · γ.
8.5 Hint: Find a regular n-gon such that W (Φ) coincides with its symmetry group.
8.6 Hint: Use Exercise 7.7.
8.7 Hint: Use Exercise 7.7.
8.9 Hint: The two groups Dih6 correspond to the short root subsystem and long root subsystem

of the root system G2, see Figure 8.4.
9.1 Hint: Consider a figure formed by neighboring vertices (and edges connecting them) of

any of the vertices (Figure B.1).
9.2 Solution: Figures B.2 and B.3.
9.5 Hint: Notice that a reflection is an involution; hence every cycle in its cycle decomposition

on [n] � [n]∗ is of length 1 or 2.
9.6 Solution: Indeed, it is the group of symmetries of a square (regular 4-gon).

9.15 Answer: BC3.
10.1 Hint: Notice that the cone

xi1 < xi2 < · · · < xin

is bound by n− 1 walls

xi1 = xi2 , xi2 = xi3 , . . . , xin−1 = xin
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Fig. B.1. 2-dimensional projection of a 3-dimensional cross polytope.
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Fig. B.2. Root systems A1 ⊕A1.
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Fig. B.3. The root system A1 ⊕A1 ⊕A1 inscribed in the unit cube [−1, 1]3.

and can be described as

C = { γ | γ · (εij − εij+1), j = 1, 2, . . . , n− 1 },
where

{ εij − εij+1 , j = 1, 2, . . . , n− 1 }
is a simple system of vectors.
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11.1 Hint: We already know that the roots

ε2 − ε1, ε3 − ε2, . . . , εn − εn−1

form a simple system of roots in the root system An−1.
11.2 Hint: Similarly to the previous exercise, check that these reflections correspond to roots

in the simple root system of type BCn.
11.3 Hint: Similar to the two previous exercises.
11.8 Hint: Use induction on l.
12.2 Solution: Indeed this is a permutation with the maximal possible number of inversions.
12.3 Hint: We know that w0 sends the fundamental chamber to the opposite chamber, w0C =

−C. Where does w0 send −C?
12.8 Answers: Dihedral groups of orders 6, 4, 8 respectively.

12.13 Hint: Decompose the space V into the direct sum of eigenspaces for t: V = V+1 ⊕
V−1. Observe that t ∈ CW (V+1) and that this group is generated by reflections by
Theorem 12.6. Observe further that CW (V+1) leaves the subspace V−1 = V ⊥

+1 invariant,
and apply induction on dimV .

13.5 Hint: Use Exercise 12.1.
15.1 Hint: this is where your paper models come in most handy. Use them to trace consecutive

contractions. Make your own examples of similar calculations in D3.
17.1 Hint: Notice that W is generated by simple reflections; therefore in view of Proposi-

tion 17.1, it suffices to check (17.1) only for simple roots α, β, hence only for planar root
systems of types A2, B2, C2, G2, and A1 ⊕A1.

17.4 Answer: By direct comparison of root systems, if Φ is of type Bn, then Φlong is Dn.
The system of short roots Φshort in Bn consists of pairwise orthogonal pairs of roots ±εi
and is therefore

A1 ⊕ · · · ⊕A1.

In Cn, conversely: Φshort is Dn and Φlong is A1 ⊕ · · · ⊕A1.
The root system F4 consists of 24 long roots

±εi ± εj (i < j)

forming a system D4, just by definition of the root system D4.
Also, 24 short roots

±εi, 1
2
(±ε1 ± ε2 ± ε3 ± ε4),

form a system of type D4, although it is harder to see. However, observe:

• all roots in Φshort are of the same length;
• dot products of noncollinear roots take values 0 or ±1/2 (direct computation);
• there are 24 short roots.

A direct comparison with lists of the root systems in Chapter 17 shows that the only
possibility is D4.

17.6 Hint: Observe that the set of values of scalar squares λ · λ for λ ∈ Λ is a discrete subset
of R; hence the lengths of nonzero vectors in Λ are bounded from below.

17.8 Hint: Observe that the corresponding reflection group contains a rotation through the angle
2π/m, which cannot be written by a matrix with integer entries. The latter can be seen
from the values of the roots of the characteristic polynomials of integer 2 × 2 matrices of
determinant 1.

18.1 Solution: All edges in the Coxeter diagram have label 3 (“single” edges). The result now
follows from Lemma 18.1.
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18.2 Solution: See the next exercise.
18.3 Solution: For example, take in R

3 a root system

Φ = { ±ε1,±2ε2,±3ε3}.
18.4 Solution: Short roots inBn are ±εi; therefore there are 2n of them. Notice that short roots

of Cn are long roots of Bn and therefore have the form ±εi ± εj for i �= j, which makes
2n(n− 1) roots.
Let ε1, . . . , ε4 be the standard basis in R

4. The root system of type F4i consists of 24 long
roots

±εi ± εj (i < j)

and 24 short roots

±εi, 1
2
(±ε1 ± ε2 ± ε3 ± ε4).

18.5 Hint: The length sought equals the number of walls separating the fundamental chamber
from its opposite, that is, the total number of mirrors.
Solution: The longest element in W corresponds to the opposite chamber −C in the
chamber system of W . The opposite chamber −C is separated from the fundamental
chamber C by every wall in the mirror systemΣ ofW . The length of the longest element
is the number of walls intersected by a geodesic gallery Γ from the fundamental chamber
to the opposite chamber. Since a geodesic gallery intersects every wall only once, Γ
intersects, and only once, every mirror in Σ. Hence its length is the number of mirrors in
Σ, that is, half the number of roots in the mirror system Φ of W .
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labeled, 118
positive definite, 118

group
hyperoctahedral, 68
affine reflection, 116
Coxeter, 114
dihedral, 49
dihedral infinite, 52
essential, 62
finite reflection, 44
hyperoctahedral, 69
isotropy, 94
Klein four-, 52
of symmetries, 23
of translations, 13
orthogonal, 13
reflection indecomposable, 118
reflection irreducible, 118
semidirect product of, 14
symmetric, 63

half-space, 8
closed, 8
open, 8

half-turn, 40, 146
hull

convex, 10
hyperoctahedron, 69
hyperplane, 7

icosahedron, 144, 147, 148
image

mirror, 38
inequality

Cauchy-Schwarz, 4
triangle, 5

interior, 5
interval

open, 7

involution, 37
isometry, 11

orientation-preserving, 15

length
of a vector, 4

line, 6

matrix
positive definite, 119

metric, 5
mirror, 37
mirror system, V

locally finite, 116
locally finite, 44

octahedron, 69
ordering

admissible, 70
orthogonal projection, 7

panel, 18, 79
internal, 101

path, 87
length of, 87

permutahedron
generalized, 105

permutation, 67
admissible, 69

plane, 7
point, 5

antipodal, 139
boundary, 5
in general position, 105
interior, 5
similarly positioned, 17
symmetric, 38

points
collinear, 7

polygon
spherical, 139

polyhedron, 20
polytope, 20
n-cross, 69

positive definite
matrix, 119

projection, 7
orthogonal, 7

reflection, 37
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simple, 83
relation

defining, 49
residue, 99
J-, 99
standard J-, 99

root
highest, 124
long, 70
negative, 59
positive, 59
short, 70
simple, 59

root system, 55
crystallographic, 129
direct sum of, 62
rank of, 61
simple, 59

rotation, 73

segment, 6
set

closed, 5
convex, 8, 9
normal, 44
of vectors, positive, 26
open, 5
path-connected, 8
polyhedral, 20, 26

simplex
regular, 22, 64

solid
Platonic, 45

space
affine Euclidean, 5
vector space of an affine space, 6

stabilizer, 94
stella octangula, 159
stutter, 85
subgraph

of labeled graph, 119

subgroup
discrete, 130
parabolic, 95
standard parabolic, 95

subpace
affine parallel, 6

subspace
affine, 6
normal, 4
orthogonal, 4
perpendicular, 4, 46

substitution, 67
support, 17
system

negative, 59
of mirrors, 41
of mirrors, closed, 41
of reflections, closed, 41
positive, 59
root, 56
simple, 27, 59

tessellation, 139
transformation

orthogonal, 13
translation, 13
transposition, 64

vector, 5
bound, 5
extreme, 26
free, 5
initial point of, 5
position, 13
simple, 26
terminal of, 5

vertex, 20

wall, 17, 18, 79
internal, 101




