W.I. Fushchych
Scientific Works

Volume 6
19962000

Editor
Vyacheslav Boyko

Kyiv 2004



W.I. Fushchych, Scientific Works 2004, Vol. 6, 1-4.

IIpo HoBUiT MeTO I TTOOY10BU PO3B’A3KIB
HeJIIHITHIIX XBUJILOBUX PIBHAHb

B.I. oy¥IIUY, A.®. BAPAHHUK

We proposed a new simple method of constructing some classes of exact solutions of
multidimensional nonlinear wave equations.

VY crarTi HPOIOHY€ETHCS KOHCTPYKTUBHMIA 1 IIPOCTHIA CIIOCIO 1TOOY/IOBM JIeSIKUX KJla-
ciB TOYHUX DPO3B’S3KiB He/iHIHUX piBHAHDb MaTeMaTudHOl (Bi3uKM, sKuil 6A3yeTbCS
Ha izel penyki [1, 2]. OCHOBHI MOJIOKEHHST HAIIIOTO TiXOMy MU BUKJIAJATHMEMO Ha
npukaagax pisagab lamam6epa i Ilpomgiarepa.

1. Posrustnemo Hesiniitae piBasinast asrambepa

Ou = F(u), u=u(xg,x1,x2,3), (1)

O — omneparop Hanambepa, F'(u) — ueminiiina riajgka ¢ynkiuis. [To6ynosi Tournx
po3B’sa3KiB pisHstHES (1) mpuCcBaUeHo Gararo pobit (mus. [2, 3] i nuToBaHY TaM JtiTe-
paTypy).

st 106y10BM po3s’si3kiB pieHsiHHS (1) BUKOpHCcTaEMO cuMeTpiiiHuil (6o yMOBHO-
cumerpiitanii) anzan [1, 2]. Hexait neii anzai, mae BUDJIsiI

u= f@)p(wr, - wn) + 9(x) (2)

abo

h(u) = f(x)e(wi, ... wi) + g(z),

ne wy = wi(xg, T1,T2,x3), - .., W = wi(To, T1, T2, x3) — HOBI He3amexkHi 3Mminni, h(u)
— neska 3anana Gyukiis. [izcranoska (2) mo3Bosise noOymyBaTu GLIbII 3arajbHU
am3all, a came: agzall (2) OymeMo BBayKaTH YACTUHHUM BHIIAKOM aH3AILy

u= f(z)p(wi,...,wk Wktt,-..,w)+ g(x) (3)

J1€ W41, ..,w; — HeBiIoMi 3MiHHI, dKi HEOOXITHO BU3HAYUTH. SMIHHI Wk41,...,w]
OyJeMO BU3HAYATH 3 YMOBH, II0 PEIyKOBaHE DIBHsIHHS, siKe Bianosimae amsaiy (3),
30iraeThCs 3 pelyKOBAHUM DIBHSIHHSM, IO Bifmnosigae anzaiy (2).
N, _ .2 2 2 2
Posrisinemo, HalIpuk/Ia, cuMeTpiiinmit ansarn v = o(wy), wy = § — 7 — 5 — 5.
VYzaranbrennit anzan u = @(w1,ws) Oyae peayKysaTu doTuBuMipHe piBHsHHS (1) 10
PiBHSTHHS

dwyp11 + 8p1 + 20124, B* + 020wz + p22(B,,)” + F(p) =0,
0wy B Ow; 0% _ Oy (4)

#:87%’ u:aa @kl:m’ @k:axk-

Haxksazemo Ha pisastaHS (4) YMOBY, 106 BOHO 36irasocst 3 pelyKOBaHUM DiBHSHHSIM

dwrp11 + 8p1 + F(p) = 0. (5)

Homnosini HAH VYkpainu, 1996, Ne 10, C. 48-51.
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Ipu upomy npuiryieni pisasans (4) po3ajaeThCs Ha JBa DIBHIHHSI
dwip1 + 81 + F(QO) =0, (6)
(By)%@22 + p20ws + 20124, B" = 0. )

Bazksmeo migkpecanTu, mo (6) € spuuaitanmM audepenianbauM pisastHEAM. OUeBn-
JIHO, TII0 SIKIIO 3HAHTH Take @, sike 3a]0BosbHsE cucteMy (6), (7), To Mu noGyryeMmo
po3B’a30k (1). Pisuannsg (7) Gyme BUKOHYTYBATHCH JJId JOBLIBHOI (DYHKIIT (0, AKIIO
Ha 3MIHHY Wy HAKJIACTH YMOBH

8&)1 &ug
\:\ = 2 = —— =
wr=0, (B =goal =0 ®)
(9(4)1 aWQ
= _"-""° —
A,B" = O, D" 0. (9)

OTxke, SKIIO HOBY 3MiHHY wo BUOpATH Tak, Mo0 3a10BosbHsnch ymosu (8), (9),
10 GararoBumipHe piBHsAHH: (1) pepyKyeThCsl 10 3BUYAHOrO AudepeHIiaabHOro pis-
usanug (6) 1 fioro po3s’sa3ku nayTh HaM po3B’sa3ku piBasHHd (1). IIpobiema pemykuil
3BeJIeHa JI0 MOOY/I0BU 3arajibHUX abo YaCTUHHUX PO3B’si3kiB cucremu (8), (9).

ITepeBusHauena cucreMa (8) JerajbHO BUBYeHA B poboTax [4-6]. Pisasuus (8) mae
VHIKaJbHI BJIACTUBOCTI:

a) 3araJbHUI po3B’s130K (8) 3amaernest dhopmyioro [5]

ay(wa)zt 4+ blwa) = 0, (10)

au(w2)a" (wa) = af — af — a3 — a3 = 0; (11)

6) noslibHa (yHKIsS Big pos3s’s3ky (8) € 3HOBY poss’sizkom [6]. Bukopucraemo

dopmymn (10), (11) pist moGy0BY y siBHOMY BUIIsiAl GYHKIGH wo. 3 (9)—(11) Bumu-
Bae, 1m0 b(wy) = 0. O1xe, piBHAHHSA

ay(w2)x" = ag(w2)rg — ar(we)z1 — ag(wa)re — az(wz)ws =0, (12)
ai —a} —a3 —a3 =0, (13)

3a/1a10Th YMOBH, KoJyiu piBHsitHs (1) peayKyeTbest 10 3BUYaiiHOro qudepeHniaabsHoro
piBusHHs (6). Poss’st3aBmmm cucremy (12), (13), 3HAX0AMMO SABHII BUIVIsLT 3MIHHOT Wa.

2. Tlobymyemo 3a HaBEAEHUM CIIOCODOM JesIKi KJIACH TOYHUX PO3B’sI3KiB PiBHAHHS
Hanambepa

Ou+ b =0, k+#1. (14)
ITyxaemo poss’sizku (14) y Buris
u = @(w17w2)7 w1 = ﬁuxua ﬁuﬁﬂ = _15 (15)

B,, — noBiNbHI HapaMeTpH.
VY upoMy BUIaJIKy cucTeMa Jjisi BUsHadeHHs wo Mae Buragay (10), (11) 3 mogarko-
BOIO YMOBOIO

0
Buger =0, BuB*=-1. (16)
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Pisusinas (14) penykyersbest 10

d?p(wiws)

—2oF =0. 17
dw? i (17)

Bararonapamerpudna cim’st po3s’a3kiB piBugnus (19) mae Buriis

AL = k)2(Buat +wy) | TF
u{ S+ ) } . k#£—1, (18)

Jie wo — JIOBIIbHUI PO3B’I30K cucTeMu (PyHKITIOHATLHUX PiBHAHD

ao(wg)l’o — Q1 (WQ)Il - GQ(WQ)I’Q - CL3(W2)SE3 = O7

2 2 2

19
a?—a?—a3—a3=0, a,(w2)p* = 0. (19)

Takum qunoM, popmyia (18) Busnauae po3s’s30k piBusgnus (14), AKio wy € Oyib-
kUM po3B’s3koM cuctemu (19). Poss’askn (14), axi ogeprkani B [2] MeTomoM cume-
TpifiHol penykuil, Hajgexkarh MHOXKUHI (18).

3. Iobymyemo poss’sizku (14) 3a m0mOMOro0 aH3aILy

u = p(w, ws,ws). (20)
Bagamo dyHKIIT wy 1wy y BurIs [7]
wy =28 — 27 — 23, wy =3 (21)

Amnzan (20), (21) peaykye (14) no piBusmnus

dwip11 + 61 — o + A" =0, (22)
AKIIIO
8&)3 2

O = 0, e = 0’ 23

e (axu) (23)
Owy Ows Owsg Ows
—— =0, ——=0. 24
Ox,, Oxt Ox,, OxH (24)

Posp’a30k pisagnns (14) 3amaersbest hopmylioo

_ A1 — k)2
k= ﬁ [0 — % — 3 — (25 + h(ws)?] (25)
A # 0, h(ws) — nosinbra dbyHKHisA B po3s’asky cucremu (22), (23).
Posp’a3ku pisasaas Jliysimisa
Ou + Aexp(u) = 0,

1o0y/T0BaHi 33 HABEJIEHUM CIIOCOOOM, 33JaI0THCA (POPMYJIOI0

4
Aag —af — 23 — (x5 + h(ws))?]
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4. Pozrisinemo Hejiniitae piBastaust [Iposinrepa

ov
iazxA\Il—i—F(hoD\Il, U = U(t, z1,x9,23). (26)

Popmyna

i(x] + 23 + 23)

U = exp { It

}‘P(leWZ)

€ aH3aleM Jyid piBHgHHA (25), AKII0 wy = ¢, & wy 38/(0BOJIbHSE PIBHIHHIM

i— = xAuws, (27)

80.)2 2 8&)2 2 ng 2
— _— o — = U. 2
(81‘1) + (8:@) + 6353 0 ( 8)

PenykoBane piBHsHHS Mae BUTJIS

dp 3i
I— — —p—@F =0. 29
S = e = PP (l¢) (29)
Takum uuHOM, Gopmyra (26) 3amae ciM’t0 po3B’si3KiB HesiHifiHOrO GaraToBUMip-
Horo piusinas IIposinrepa (25), sKio ¢ 3a10BoibHsIE (29), a wo € po3s’si3koM (27),
(28).

1. ®ymuu B., Cummerpus B 3amadax mareMarudeckoii dusuku, B ¢6. Teoperuko-anrebpandec-
KIWe HCCJIeIOBaHus B MaTeMaTndeckoit ¢pusuke, Kues, Uncturyr maremaruku, 1981, 6-28.

2. Fushchych W., Shtelen W., Serov N., Symmetry analysis and exact solutions of equations of
nonlinear mathematical physics, Dordrecht, Kluwer Academic Publishers, 1993, 436 p.

3. ®ymwuua B.U., CuMmMerpus U TOYHBIE PEIIEHUST MHOTOMEPHBIX HEJIMHEHHBIX BOJTHOBBIX ypaBHE-
Huit, Ykp. mam. orcypn., 1987, 39, Ne 1, 116-123.

4. Cwmupuos B.U., Cobones C.JI., HoBblit MeTO pemreHns MIOCKOM 3aJadu yIPyTuX KOJIebaHuii,
Tpyow. ceticmuneckozo uncmumyma AH CCCP, 1932, 20, 37-42.

5. Fushchych W.; Zhdanov R., Revenko I., On the general solution of the d’Alambert equa-
tion with nonlinear eikonal constraint, in Symmetry Analysis of Equations of Mathematical
Physics, Kiev, Institute of Mathematics, 1992, 68—90.

6. Ilysnbra M., CuMmMeTpusi 1 HEKOTOpbIE YaCTHbIE pelieHusl ypabHenusi Jlasambepa ¢ Heau-
HEWHBIM ycJioBHEM, B ¢6. TeopeTuko-rpynIoBbie UCCIEIOBaHNUS YyPABHEHUSI MATEMAaTUIECKON
duzuku, Kuis, Ia-T marem., 1985, 36-38.

7. ®ymuy B., Bapanuuk JI., Bapanauk A., IToarpynnosoit anamus rpynn Famumest, [Tyankape u
peaykius HeJluHeHbIX ypaBHeHuit, Kues, Haykosa mymka, 1991, 300 c.



W.I. Fushchych, Scientific Works 2004, Vol. 6, 5-9.

CumerpiiiHa peayKIlisgd IK MeTO/,
PO3MHOXKEHHSI PO3B’A3KiB cUCTEeM JIHINHIX
andpepeHIliaJJbHIX PIBHAHD

B.I. oylnu4, Ji.Jl. BAPAHHUK

We propose to use the symmetry reduction method to reproduce solutions for systems
of linear differential equations on their traces with respect to generators of invari-
ance algebra. By means of this approach, new exact solutions of the one-dimensional
Schrodinger equation with potential are constructed.

ITocranoBka 3amaqi. Hexait S — cucrema niniitHux gudepeHIiaibHuX PIBHSAHD 3

1 He3aJeKHUMA 3MIHHUMUA T1, . .., T, 1 M OIyKAaHAMA QYHKIIAME U1, . . . , Upy,. KOXKeH
niHifiHMA onepaTop cumerpil [1]
0
Y = &(x)iax» + B(x), z=(x1,...,2y,)
(]

KCax, [0 OBTOPIOIOTHCS, IPOBOJAUTHCH IiJICYMOBYBAHHS ).

VY miit poboti mMeTon peaykiii [2] Gyme BUKOPHCTAHO Jisl BIATBOPEHHST PO3B’A3KY
cucremn S 3a fioro obpazaMu BiJITHOCHO TeHEpAaTOPiB aaredpu cuMeTpil PO3IIISITYy BAHOT
cucreMu. 3a JIOIOMOI'OK IIBOIO X0y 3HAMIEHO HOBI TOYHI PO3B’si3KU JIHIAHOTO
piBuguuaga lposiarepa 3 moTeHiagoM.

Oo6rpyuryBaHHs migxony. Hamasi, roBopstan npo anredpy cumerpiit cucremu .S,
MH MaeMo Ha yBasi anrebpy cumerpiit B cenci JIi [1-3]. IIpumycrumo, mo agst S icaye
HeTpuBiaJibHa anredpa cumeTpiit. Hexait BoHa MOpOKy€eThCsT CKIHIEeHHOBUMIPHOIO aJI-
rebporo JIi K omeparopiB BUIIs LY

(0) 5+ by 1)

Li

i omepaTropamMu

0
X = fi(2)—
f]( )auj I
ae u = (fi(z),..., fm(x)) € noBinbHEIM pose’askom cucremu S. Jlasi npoBesieHHs!
cUMeTpiitHOl peayKIii HaM 1oTpibHI TimbKu Taki mizaaredpu JIi amredpu K, siki He
MmictsTh omeparopis Buxy (1) 3 ymosoto &;(z) = 0 aus Beix ¢ = 1,...,n. Hexait L —
O/lHa 3 X mmimaaredp i mexait Y1, Ys, ..., Y, — i 6asuc. Ilpumycrumo, 1o
[Yaayﬂ} :C;IﬁY’Y (04767'7:1727"'75)' (2)

Homnosini HAH VYkpainu, 1996, Ne 12, C. 44-49.
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Osnavennst. Caidom pose’snsxy (fi1(x),..., fm(x)) na onepamoposi Y, 6ydemo na-
3ueamu maxuti po3e’a3ox (fl(a)(x), A fy(f)(x)) cucmemu S, wo
0 () 0
Yo fi@) 5| = 7@ 5
Axmo
o 0 0
é- ( ) -'If'z +bkq( )uqaiuk7
TO
« f
1 = €@ 5 = b fy (3)

Cain ( 1( )( ), ,f,(,?)(x)) €, oueBnHO, o6pasoM posB’asky (f1(z),..., fm(z))
BIJIHOCHO omepaTopa

0
Hx — B%(x),
& (@)~ B°(@)
Jie
B (x) = (biy(x))-
Teepaxenns 1. Iocaidosnicmov po3s’askie (fia, .-, fma) (@ =1,...,8) cucmemu
S € nocaidosnicmio caidie dearozo po3s’azky cucmemu S Ha 2enepamopax Y, ..., Y

610n0610H0 aszebpu L miavku modi, xoau

Ya(f]ﬁ) - Yﬁ(fja) = CgﬁfJ’Y (J = 1) cee, My aaﬁf-y = 1) DR S)
CrpaBeyMBiCTh TBEPKEHHS 1 BUIUIMBAE 3 KOMYTAIIHHUX CIiBBiAHOmEHD (2).

TBepmxenus 2. Posg’asox cucmemu S e L-itnsapianmuum modi i misvku modi,
KOAU 020 CAIOU HA 2eHePamopax yiel nidaszebpu € HYAbOBUMU.

Teepaxkenusi 3. Pose’ssrku u = f(x) i u = f'(x) cucmemu S maromv 00HaKos:
cA10U Ha 8i0nosidHuT 2enepamopar nidanzebpu L modi i misvku modi, Koau po3e’a3ox
u= f(z)— f'(z) e L-insapiarnmnum.

Ha mizncrasi TBepKeHHST 3 PO3B’SI30K BiATBOPIOETHCS 3a CBOIMU CJIiIAMM Ha, TeHe-
paropax ajrebpu L He 0JHO3HAYHO, & 3 TOYHICTIO J0 JOMAHKIB, 110 € L-iHBapiaHTHUMEI
posp’sizkamu (Gy71eMO TOBOPHUTH: 3 TOUHICTIO j10 L-IHBapiaHTHAUX PO3B’SI3KiB).

Teopema. Jas mozo, wob po3s’sasok (fi,...,fm) cucmemu S mas caid (fia, .-,
fma) na 2enepamopi Y, (a = 1,...,5s) nidareebpu L, neobwiono i docmammnvo, w06
(f1,--., fm) 6ys L-insapianmmum po3s’asxom, de L — aneebpa JIi 3 basucom

~ 0
Ya:Ya—i_fjaa—uj (0421,...,8).
doBenennsi. Hexait

uj=fi(x) (G=1,...,m) (4)
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PEAYKIL 1 P

€ L-inBapianTHuUM po3B’sizkoM cucreMu S. Tomi

3 of; of;
Yaluy = £3) = bgua ¥ fio =850 | 4y = liafa T Fia =& 50 =0,
3BIJIKM BUILJIUBAE, 110
of; B (@
fia = 5387:132 - b?qfq = fja :
e osuauae, mo po3s’s30K (fia, ..., fma) € ciigom po3B’sasky (fi,..., fm) Ha Y,
(a=1,...,s). Anasoriuto J0BoAUTHCs 1 OOEpHEHE TBEPIZKEHHS TEOPEMU.

Hacaigok. Z-meapianmm' P036°A3KU cucmemy S i MIALKY 80HU MAIOMYH MY BAG-
cmugicmy, wo iz caid na Yy s6icaemoca 3 (fia, .-, fma) (@ =1,...,9).
Posmuoxxennsi po3s’s3kiB piBasaus IlIpoainrepa. SIk Bcranosieno B [4, 5],
onaoBuMipHe piBusnusa [IIpojinrepa 3 moTeniiaiom
L OY h? 9%y
ih— = ——— s + V(2)¢ ()
ot 2m Ox
Mag HeTpuBiajbHy asirebpy cumerpiit Tomi i Tiibku Tomi, xkomu V(z) 36iraerbes 3
OJTHIEIO 3 TaKWX (PYHKITIi:
¢ 2 2 ¢ 2. 2
ax + b, ﬁ+kx, ﬁka, (6)
a, b, ¢, k — nitcui yucna, npudomy k > 0, a £ 0 abo a = b = 0.
HomoBumocst po3s’sizkoM piBHsgHHg (5) HasuBaTu napy aificaux dbyskuii f(¢, ),
g(t, z), no’azanux 3 xBUILOBOW byHKIiEw (t, z) dopmynoo ¥(t,z) = f(t,z) +

ig(t, ).
Pisusians (5) pisrocuabne cucremi IIIpoziarepa
of 0%
Ly 2T aVi(z) =
ot a2 V@ =0, (7)
dg O*f
% o2 + fV(x)=0

BukopucroBytoun moBesieHy TeopeMmy Ta HACTIIOK 3 Hel, 3HAWAEMO JIesiKi pO3B’S3KU
cucremn (7) st noteHniamis (6).

1. Bunamok V(z) = 0. Ilpu niit ymosi cucrema (7) e imBapianrnoio BigHOCHO
OIIEpPaTOPiB
0 0 0 0
D=22 42", Z=FfL 142,
ot on Tar 9%

Biarsopumo poss’szok cucremu (7) 3a ioro cuimom f = 22 —2t, g = x2 + 2t Ha
onepatopi D + Z. JIjs nboro 3riJiHo HACTIIKY 3 TeopeMu MOTPIOHO 3HANTHU PO3B’I3KHN
cucremu (7), inBapianTHi BiJHOCHO omepaTopa

~ 0 0
_ 2 2
Y=D+Z+ (x 2t)8f+(x +2t)ag.

Omneparop Y Ma€ Taki OCHOBHI iHBapiaHTH:

w—2 1 w2 x?
— T, gr - —x, w=—.
w w t

fat
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Bignosijgauit im an3air

f=ro1(w) + (w=2)t, g=wp(w)+ (w+2)1 (8)
penykye cucremy (7) 10 cucremu

—wp1 + 62 + dwpy = 0,

wg + 61 + dwp = 0.

Cucrema (9) Mae po3B’s130K

Y1 = _’Y%COS% —5%sin% —V2r [VS <£> —0C (%)} )

@2:—7% Z+(5\/2_COS%+\/_|:’YC( )+5S(§)}7

ne C (%) .S (%) — BlanosigHO KocuHyc- 1 cunyc-inrerpan @peness [6]. [Tincrapasoan
BUDA3M s 1 1 @2 B dopMyin (8), ofepKyeMo BiTBOPeHUIT PO3B’sI30K PIBHSIHHSI
IMpesinrepa (5)

w={a? —2t}—2f<7005—+5sm_> \/_x{'yS( >_5C<4j>}

1o ) i e (5) (3]

SayBaxkuMo, 10 y DIrypHUX IyKKaX MOJAHO KOMIIOHEHTH BUXITHOIO pO3B’si3Ky. BHa~
coioK JiniftnocTi 1 opHopinnocti piBasHHg (5) mic/sl BUIydYeHHd 3 II0JAHUX BUPA3iB
X KOMIIOHEHT MU 3HOBY OJEDPXKUMO PO3B’si30K piBHAHHS (5).
_ : _ 0 ’
.2. Bunagok W(x) = ax +b (a # 0). dxmio na oneparopi T' = 5; po3B’s30K Mae
CJIiT

2 2
f = C1cos (—atw — %t?’ — bt + C’g) , g=Cqisin (—atx - %ts — bt + C’g) ,

ze

3v2 3 3v2
ClzT\/_a, Cy = Iﬁ+27rq abo C; = T\/_a, 02:—g+27rq, q€Z,

T0 3 TouHicTO 0 (T)-iHBapiaHTHUX PO3B’sA3KiB HOTO MOXKHA TIOJATH y BUIJIsII

3

2
+ (—az — )2 lZgl/)g (—3—@ (—az — b)3/2> +

1. /1 2\ & (—l)l( 30 (—az — 5)3/2)H21
OO

=0

t 2
f= C’l/ cos (—atm — a—t3 —bt+02) dt +
0
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LY KIT, 1 P

t a2
g= Cl/ sin <at:c — Et?’ — bt + Cg) dt +
0

3a

(e ()£ L CE )

27 \3 3) F(E+0)T(2+1)

2
+ (—az — b)*/? Z§2/)3 (—— (—ax — b)3/2> +

v
— muningpuana Gyuknig, J,(z), Y, (z) — byskuii Beccess nepioro ta apyroro poiy
BigmosinHO [7].
3. Bumagok V(z) = 5 (¢ # 0). Hasenemo npa poss’sasku, AKi 3aJami cBOiME
ctiamu Ha, orrepaTopi 1.
Akmio ¢ = —% 1 CIiIoM € PO3B’I30K

f=a2"2(A + Aylnz), g=a"?Bi+ ByInz),

TO BIITBOpEHUII PO3B’A30K Ma€ BUIJIS]

npu upomy < —2. B nasenennx dpopmyiax Z9)(2) = AV, (2)+BDY,(2), 29 (z)

B, - B B
f=2Y? (A + Aylnz)t + 2% (K| + KyInz) 4 2°/2 <%+flnx),

Ay —4 A
g=x"?(By+ Bylnx)t+ "% (Ly + Lylnz) + z°/2 <241421n:c)

dAxmo ¢ > —i, a CJIIOM € PO3B’SI30K
f=A12" + As2°, g= Biz" + Boa?,
_ 14VIF4c 5 _ 1-/Itdc
Jey = 5, 0= 5
MaEMO PO3B’sI30K

f=(A1z" 4+ Asx®)t + K7 + Kox® +

, TO TCJIs BiITBOPEHHS BiJIHOCHO omiepaTtopa 1 oTpu-

B Y42 By 542
T eIt TGra0rn "
g = (Blaj7 + BQZ‘(S)t + Lix7 + LQ.’L‘(S —
_ Ay v+2 Az 5+2
Y+2)(y+1)—c G+2)(6+1)—c¢
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lanineii-inBapiaHTHI PiBHSIHHS THUILY
Bioprepca ta KopreBera—ge-®Ppiza
BHCOKOI'O IIOPSAKY

B.I. ®YVIIIUY, B.M. BOUKO

We describe nonlinear Galilei-invariant higher-order equations of Burgers and Korte-
weg—de Vries types. We study symmetry properties of these equations and construct
new nonlinear extentions for the Galilei algebra AG(1,1).

Ornucani HesinifHI rasineii-inBapianTai piBasgHHa TUny Bioprepca ta Kopresera—me-
®piza Bucokoro mopsaky. Jlociimkeno cumeTpiitai BaacTuBOCTI ux piBHsSHB. [100y-
JoBaHi HOBI HeJiHIlHI po3mupenus nus anrebpu Lamines AG(1,1).

Posrnauemo neminiitHi omHOBUMIPH] DIBHSHHSA BUIISILY
ugo) +uuq) = F (u@), @), tm) » (1)
. _ Ou. _ 0"u. 3
meu = u(t, T); uey = 57 Un) = ggn; I (u(2), Uy, - u(")) — JoBlIbHA TyTaaKa GyH-
Kuisi, F' # const.

Ho kmacy piBusinb (1) HaJeXKaTh MUPOKO BIOMI DIBHSIHHS TigpojmHaMiKy, Taki
JK piBHaAHHS 1TpocTol XBmii, Bioprepca, Kopresera—me-Ppiza, Kopresera—me-Opiza—
Broprepca:

ou n Ju
2y u==
ot ox
ou ou 0u

o or T =0 )
ou ou O3y

Eﬂ-ua-‘rﬁ@—a (4)
ou ou 9%u A3u

PiBusinast (2)—(5) MUPOKO BUKOPHUCTOBYIOTHCS ISl ONUCY PEATbHAX XBUJIBOBHX
pOILIECiB B rijpoauHaming, 30Kpema Teopii MuIkol Boau, akycruni [1-4]. Jocuiazxentio
PIBHSIHb TAKOTO THUILY, 30KPEMa, IX CHMETPIHHUX BJIACTUBOCTE, IPUCB’ sII€HO s IIy0-
mikaniit [5-9).

Mu posrisiHeMo JiesiKi HOBI y3arajibHeHHs piBHsIHB Tuiy (2)—(5) BECOKOTO MODsi -
Ky 3 TeopeTuko-ajrebpaianol Touku 30py. [IpoBegemo ix cumeTpiiiny Kiaacudikariio,
o0y TyeMO JIesiKi KJIACH TOYHUX PO3B SI3KiB.

Cnouarky chOPMYITIOEMO TBEP/IZKEHHSI PO JIHIBCbKY CUMETPIIO JeKUX 3 PIBHSHB
(1). PosrasineMo piBHSIHHSI:

(o) +uuqy = F (ue) (6)

VYkp. mart. )kypH., 1996, 48, Ne 12, C. 1589-1601.
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u(o) +uuq) = F (u) (7)
Uy + U1y = F (U(4)) . (8)
Teopema 1. Makcumanvhoro asze6poio ineapianmmocmi pietuanna (6) 6 3anesrcrocmsi
610 F' (u(g)) e maxi aneedpu JIi:
1) (P, P, G), axwo F (u(z)) dosinvra;

(
2) (Py, P1,G, Y1), axwo F (u(g)) = )\(u(g)) ,k=const; k#£0; k#1; k # %;
3) (P, P1,G,Y3), axwo F (u(Q)) Inwu,
4) (Po, P1,G,D,1I), axwo F (u 2)) = /\u (2);

1/3
5) (Po, Pr, G, R, Ra, Rs, Ra), smuso F (ugz)) = Mugz)''*.
B ymosax meopemu A = const, X # 0, a das basucnux esemernmis anrzebp Jli
BUKOPUCTNOBYIOMBCA HACTYNHE NOZHALEHHA:

P0:3ta Plza:m G:tax+8ua
Yi=(k+1td + (2 —k)xd, + (1 — 2k)udy,
3
Yy = t0; + (23: - §t2> Op + (u — 3t)0y,
D = 2t0; + 20, — udy, I =t20, + txdy, + (z — tu) Oy,
Ry = 4t0y + 520, + ud,, Ro = udy,
Rs = (2tu — x) Oy + w0y, R4= (tu—2x) (0, + ).

JoBenenHsi. 3ayBaXXuMo, 1[0 B PiBHsSIHHI
u() +uuq) = F (um) +C,

koHCcTaHTy C' MOYXKHA 3aBXKIM [TOKJIACTHA PIBHOIO HYJIEBi, BUKOHABIIYM 3aMiHy 3MIHHUX
- 5 1.,
t=t, m:x—§Ct7 a4 =u+ Ct. (9)

Cumerpiiiny xiacudikaio (6) mpoBoguMo B Kjaci audepeHIjajbHuX OHepaTopiB
MIEPIIIOTO TOPSIJIKY

X =&t x,u)0 + £ (t, ,u)0p + n(t, z, u)d,. (10)

Suaiimosimu apyre npoaosxkenHs oneparopa (10), ymoBy iHBapianTHOCTI jJIst PiBHSI-
uHst (6), 3rigHo 3 mixxozom JIi [5, 6], 3amumenmo y Burssi

X (ugo) +uu) = F (u))

u(oy=F(u(z) ) —uuq) =0 )
e
X= X + {Na + nutia — ;i (&, + Eua)} Ou, +
+ {Nai + Nautti + Nintia + Nuulitla + Nulai — uji(&) + Elua) —
— (€, + ELytts + & ua + Elyttatts + Euas) — ey (& + Eui) 0o,
o,i,j=0;1.
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Posnucasmm ymosy (11), miciaa posimemieHHs 3a HOXIIHUMHA Ugi, %] OTPUMYEMO
cucTeMy BU3HaYaIbHUX piHaHb Ha £V, &1 1, F (d4epes mmkmi iHjeKcH mosHaueHo
nudepeHIiIoBaH s 110 BIIOBIAHIH 3MiHHI):

§=0, =0, &,=0, nu =2, (12)
n— 66 +u (58 - g%) - Fg}i - Fuu (2771u - f%l - 3”1155) = 07

13)
o + 0l — &F +uny — Fu,, (m1 + wai(ne — 261)) = 0. (
Posp’a30k (12) MoxkHa 3amucaT y BUIVIsLI

0 = p(t), L= q(t, z)u + b(t, x),

Q=plt), € =afta)utbit0) »

nN=a (ta x)u2 + C(tv 1‘)1& + d(ta Jf),

ze p(t), a(t,x), b(t,x), c(t,x), d(t,z) — rmauki GyHKOIT, MO HiYIAraloTh BUSHAYEHIO.
Mincrasusim (14) B (13), micss po3IIENIeHHsI 38 CTEIIEHHSIMA U, OJEPKYEMO CUCTEMY
PIBHSIHB JIJIsi BUSHAYEHHsI D, a, b, ¢, d, F:

c+po—ao—br=0, d—byg—aF —Fy,, (2c; — by — 3aui1) =0,
a1 =0, ap+c1=0, co+2mF +d —cnikFy, =0, (15)
do+cF —poF — Fy,, (du + ur1(c— le)) =0.

B zanexunocri Big Burigny F poss’szanus cucremu (15) 3BOIUTHCS JO OJHOIO 3 Ha-
CTYIIHUX BUIAJIKIB:

Bunadox I. F — nosinbua dyukuia. Posmenusmmu (15) no noxigaux dysKmil F,
OJIEPXKYEMO CHUCTEMY

a=0, ¢1=0, do=0, c+py—b =0,
d—by=0, ¢cg+di =0, ¢c—pg=0, c—2b =0,

PO3B’S30K sIKOI BH3HAYa€ BUIQIOK 1 Teopemu 1.
Bunadox II. F, =0 (F # const). Orzxke

U111
F = Auqp + Ao, Mo, A =const, A#0. (16)

Bracaimok 3amiam aminaux (9) moxkua moknactu A\g = 0. ITincrasusmm (16) B (15),
IiCJIsl PO3IIEIUIEHHS] 110 111 OZEPIKYEMO

GZO, 01:0, Co+d1:0, p0:2b1,

17
c+p0—b1:0, d—bozo, d():O. ( )

Posp’a30k cucremu (17) BusHauae BUrjisl 6a3UCHUX €JIEMEHTIB y BUIAJIKY 4 Teope-
M 1.

Bunadox III. Fy, vy, # 0. Judepenmioouan apyre pisasaHs cucremu (15) mo uyy,
IICJIS CIIPOITICHHST OJIEPKYEMO

QCLF‘U11 — Fu11u11(201 — b11 — 30/&11) =0. (18)

Ockimbku Fy, 4y, 7 0, Toxi posaimuemm (18) Ha F,, 4, | TpomudepeHIioBaBIm 1o
U11, OJEPIKYEMO

F,
2a | =—— 3a = 0. 19
a(F >u11+ a (19)

Ui1Ull
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HeobGxizno posrasuyTu Bunajgku ¢ = 0 i a # 0. dkmo a = 0, Toxi 3 cucremu (15),
oziepxkyeMo Bunagku 2 ta 3 teopemu. Bunajgok 5 reopemu omepxkyemo 3 (19), (15),
gakmo a # 0. Teopema moBeseHa.

Teopema 1 yrounioe pesysibrar orpumanuit B [8]. PiBuaunga Bioprepca (3), ax ua-
cTUHHUIT BUIa oK (6), BKIIOYAEThCS B BUNAIO0K 4 Teopemu 1.

Cui 3a3Ha9MTH, MO HARGLIBIT MUPOKY cuMeTpio B Kiaci pisHsaub (6) (7-BumipHa
anrebpa) Mae PiBHsIHHS

1/3
w(oy +uuy = Aug) (20)

Oueparopu (Py, P1,G, Ry, Ry, R3, R4), o Bu3Ha4a0Th ainrebpy inBapianraocti (20),
3a/I0BOJIbHAIOTH HACTYITHI KOMYTAI[IIiHI CITIBBiTHOIIIEHHSI:

Py 2 G | R R, Rs Ry
Pl 0 0 P, | 4P, 0 2R, | R
P 0 0 0 | 5P, 0 “P | -G
G | —p 0 0 G P G 0
R, | —4P, | 5P | -G | 0 | —4R, | 0 AR,
Ro | 0 0 | -P | 4R, 0 | —2R; | —Rs
Ry | 2R, | P | -G | O 2R, 0 | —2R,
Ri| —Rs | -G | 0 | —4Ry| R; | 2Ra 0

J1st 3py9HOCTi, MU BUKOPHCTOBYEMO TAOJIUIIL JIJIsT 38 IaHHsT KOMYTAIHAX CITiBBiI-
HOITIEHDb MiXK 6asucauMu ejgementamu aareop JIi. Tak, 3a momoMororo HaBe1eHOl BUIIE
TabJINI BU3HATAEMO

[Py, Ri] = 4P,.

Hapememo ckimuenni mepeTBopeHHs, 10 BiamosigaoTs omeparopam G, Ry, Ro, R3,
R4I

G: t—t=t, Ri: t—1t=texp(46),
x— I =ux+0t, x — & = x exp(bl),
u—au=u+0, u — 4 = uexp(d),

Ry: t—t=t Rs: t—t=t,
x — & =x+ 0u, x — & = xexp(—0) + tuexp(h),
u— U =u, u— @ = uexp(h),

Ry: t—t=t,
r—T=x+60t(ut—x),
u—t=u+0(ut —x),

6 — rpymoBuii mapamerp.

Hageznemo Tounnii po3s’s3ok (20) (HuK4ue BKa3yeThCs OIEPATOD, aH3all, PEILyKO-
BaHe DIBHAHHS Ta OTPUMaHUI BHACJIJIOK PEAYKINl Ta iHTerpyBaHHSI pPe/LyKOBAHOI'O
PIBHSIHHS PO3B’SI30K):

oneparop: Rs = (2tu — x) O, + ud,,

amzar; zu — tu? = (t),

peIyKOBaHe PIBHAHHSA: ' = )\(290)1/3,
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PO3B’S30K:

, 14 3/2
xu — tu =3 5)\15—1—0 . (21)

Dopmyna (21) 3ajae ciM’i0 TOYHUX PO3B’s13KiB piBHsIHHs (20) y HESIBHOMY BUIJISI.
Teopema 2. Makcumanrvhoro asze6poio insapianmmocmi pienuanna (7) 6 3aneorcrocmsi
610 F (U(g)) e maxi anzebpu JIi:

1) (Py, P1, G), axwo F (U(g)) — doginvha;

2) (Po, P1,G,Y3), axwo F (U(g)) = )\(U(g))k, k =const; k #£0; k # %;

3) (Po, P1,G,Yy), axwo F (U(g)) = Inwus);

4) (Py, P, G, D,1I), axwo F (U(g)) = /\(u(3))3/4.

B ymosax meopemu X\ = const, A # 0,

Y3 = (2k 4+ 1)t0; + (2 — k)z0, + (1 — 3k)ud,,

Yy = to; + (295 - ;ﬁ) Oz + (u — 5t)0,.

Hosemenns TeopeMn 2 TPOBOJUTHLCA AHAIOTIYHO JOBeAeHHIO Teopemu 1. PiBaan-
us1 Kopresera—ne-@pisza (4), sk gacTuHHNi BUIa 0K (7), BKIOUAETHCS Yy BUNAIOK 2
Teopemu 2 npu k = 1.

Teopema 3. Makcumarvhoro arzebpoio insapianmmuocmi pietanna (8) 6 aaneorcrocmi
6id F (u(4)) e maxi aneebpu JIi:
1) (Py, P1, G), axwo F (u(4)) — doginvha;
2) (Po, P1,G,Y5), axwo F (u(4)) = )\(u(4))k, k =const; k #£0; k # %;
3) (Po, P1,G,Ys), axwo F (u(4)) = Inuy;
3/5
4) (Py, Py, G, D, TI), amuso F (ugp) = Muga)™”
B ymosax meopemu A = const, A # 0,
Ys = (3k + )td + (2 — k)x0, + (1 — 4k)ud,,

Ys = to; + <2x - ;ﬁ) Oz + (u — Tt)0,,.

JoBenenns TeopeMu 3 TPOBOIUTHCS AHAJIOTIYHO JT0BeJIeHHIO Teopemu 1. Teopemu
1-3 maroTh OBHY cuMeTpiiiHy knacudikamnito pisasHb (6)—(8). Ha ocrosi Teopem 1-3
chOpPMYITIOEMO JIesTKi y3arajbHEHHSI CTOCOBHO cuMeTpii pisHsHHS (1).

BayBaxkenns: 1. Jlerko mepekonarucs, mo piBHsHH# (1) npu moBiabHIN (yHKIT
F (u(2)7 U(3)s - - - ,u(n)) inBapianTHe BimHOCHO aarebpu ['asimes, ska BUSHAUAETHCS OITe-
paropamu Py, Py, G

IIposememo Tenep cumeTpiiiHuii aHaJi3 HACTYIHOINO PiBHsAHHS 3 Kiacy (1)
u(o) +uuq) = F (u@)) - (22)

Teopema 4. /[as 006iAbH020 HAMYPAALHO20 N > 2 MAKCUMAAOHONW AA2E0DOI0 THEADI-
AHMHOCNE PIBHAHHA

Uy + (1) = In U(n) (23)
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e 4-eumipna anrzebpa (Py, P, G, Ay), de
2n —1

Ay = t0; + (Qx - t2) O + (u—(2n — 1)t)0y.

Teopema 5. /[aa 006iavH020 HAMYPAALHO20 T > 2 MAKCUMAADHONW GA2€0DPOI0 THEADI-
AHMHOCNE PIBHAHHA

k
ugo) + w1y = A(um) (24)
e 4-eumipna anreebpa (Py, Py, G, As), de
As = ((n—1Dk+ 1)t + (2 — k)x0s + (1 — nk)ud,,

k, X — Oditicni xoncmanwmu, k # 0, k #
k # % (Oue. 6unadox 5 meopemu 1).

ni“, A # 0, npu n = 2 dodamxosa ymosa

Teopema 6. /[is 006iAbH020 HAMYPAALHO20 N > 2 MAKCUMAAOHONW AA2E0DOI0 THEADI-
AHMHOCNE PIBHAHHA

Uy + uu(y = )\(u(n))3/(n+1), A=const, A\#0 (25)

€ J-eumipna anzebpa
(Py, P1,G, D,TI). (26)
SayBaxkeuns 2. dxkmo B (25) n = 1, T0 01epKyeEMO PIBHAHHS

32 (27)

Teopema 7. Makcumanrvroro anzebpoto ineapianmmocmi pisharns (27) € 4-eumipra
anzebpa (Py, P1,G, D).
HoBenenns TeopeM 4-7 TPOBOIUTHCH 32 JOIMOMOIOIO aJroputmy Jli.

(o) +uuqy = Aluq))

BayBaxkenns 3. Jocurs nikasum € Toil dakt, mo (26) Busnavae airebpy inBapian-
THOCTI piBHAHHS (25) 11t GyIb-IKOIO HATYDAJIBHOIO 1 > 2.

B Tabuuni naBegeno KomyTariiini criBsigHoIeHHs 1jisi onieparopis (26):

P, | P, |G| D |1
Pl 0 0 | P| 2R | D
P 0 0 0] P | G
G| =P | 0 |0 -G|oO
D | 2P | -P | G| 0 |20
M| -D | G| 0|21 0

3ayBaxkenuns 4. Oneparopu (26) Bu3HAYAIOTH 300paXKEHHS y3arajbHEHOI ajrebpu
Taninest AG2(1,1) [5].

CkinveHH] I'PYNOBI MEpeTBOPEHHs, MO BiamoBiga0Th oneparopam D, I1 B 300pa-
keni (26):

~ t
D: t—i=texp(20), i t—ot=5—p,

IHQZ‘::CGXP(H), xai‘:—x
u— U = uexp(—6), . 1—-6¢
u—u=u+ (xr—ut)b,

6 — rpymoBuii mapamerp.
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Hocainumo inBapianTHicTs pisasians (1) BiHOCHO 306pazkenHst (26). Bipue Hacry-
IIHE TBEPJIKCHHSL:

Teopema 8. Pignsannsa (1) insapianmmue 8idnocho ysazasvhenoi anzebpu Ianisesn
AG5(1,1) (26) modi i miavku modi, Koau 60H0 MaE u2AAD

Uy + UU(1) = u(g)fb(u}g, Way .- ,wn), (28)
de ® — dosinvHa enadka GyHKULA,

1 3/(k+1) 0Fu
wi = — (U Uy ==, k=3,...,n.
iy ) s Uk = G oo
Hosenennsi. IusapianTthicts piBHsiHHs (1) BigHOCHO rpynu Tamines: ouesnana. Bu-
SICHUMO, TIpA IKux F' (u(Q), .. ,u(n)) piBusinast (1) iHBapiaHTHE BIZHOCHO [IEPETBOPEHBD,
mo BU3HadaloTheda oneparopamu D, 1. Bukopucraemo anropurm Jli. [lomigsmmm n-m
upojoBKennsiM oneparopa II va pisusuns (1), ogepumMo

(r —tu) ug) + (—u — 3tug) — u(l)x) +
+ (1 - QtU(l)) u+ 3tu(2)F + 4tU(3)Fu

U(2)

+ (TL + 1)tU(n)Fu =0.

(3) (n)

Bpaxysasrmu (1), micist gesdkux CIIPOIIEHb OTpuMyeMo Ha F jiimifine meomHopiHe
PIBHSIHHA B YaCTHHHUX MOXIJHUX TEPIIOrO MOPSIKY
=3F. (29)

37.L(2) Uy + 4U(3)Fu —+ (Tl —+ 1)U(n)Fu

(3) (n)

Sarasibuuii po3s’a30K (29) MOXKHA 3aUCATH HACTYIIHUM IHHOM
F =u@)® (w3, ws, ..., wn), (30)
ne ¢ — moBinbHA TVIaaKa QYHKITIS,

L(u )3/(k+1) u o 8ku

=— k=3,...,n.
w2 (k) ’ (k) Ok’ ) 1

W —

Orxe, sxmo F (’U,(2)7 .. ,u(n)) BU3HAYAETHCA 3rifHo i3 cuiBBianomennavu (30), To-
i piBusung (1) 6yme imBapianTHEM BignocHo omeparopa II. A 3 cuiBBimHOIIEHHS
[Py, II] = D BunsmBae imBapianrtHicrs piBHaHH# (28) BigHocHo omeparopa D. Teo-
peMa JIoBeJIeHA.

Ho kmnacy pieusHb (28) Hasexkurh piBHsiHHs Broprepca (3) (npu ® = const) Ta
piBasiang (25). PiBuanus (28) Britouae, K 9aCTUHHUN BUNAJIOK, HACTYIIHE DIBHIHHS,
AKe MOXKHA TPAKTyBATH fK y3araJbHEHHsd PIBHAHHA Bioprepca Ta BUKOPHCTOBYBATH
JUIST OTIACY XBHJILOBUX ITPOIIECIB

n

3 k+1
U(o) T uu() = Z e, (31

A, — JOBiNbHI AilicHI KOHCTaHTH.
B a6 naBegeni oguoBuMipui niganrebpu s aarebpu (26) Ta Bignosigui an-
3aIm.
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aH3aI|
P u=p(t)
G u=(t)+at!

Py+aG, aeR u:go(x—%tz)—i—at

D u = t’1/2g0 (wt’1/2)

T " tx
(12 +1)1/2 241

Py +11 u:(t2+1)_1/2<p<

Posrasinemo 306pazkenHst y3araabHenol anrebpu Laminess AG2(1,1) (26). Mu onwm-
MEeMO BCi PIBHSHHS JPYTOro MOPSJIKY, IO iHBapiaHTHI BiJIHOCHO

anrebpu Lamines AG(1,1) = (P, P, G),

posmmuperol anrebpu Laminess AG1(1,1) = (P, P1,G, D),

y3arasbHeHol anrebpu Lanines AGs(1,1) = (P, P, G, D,1I).

CpaBe Bl HACTYITHI TBEPJIZKEHHST:

Teopema 9. Pisnanmsa dpyeozo nopadky ineapianmmue 6idnocho anzebpu lanines
AG(1,1) modi i miavku modi, KoAU 60HO MAE BULAAD

D (wy; u11; uo + wug; ugounr — (uo1)?; uor + uugy) =0, (32)

de @ — dosiavha GyHryia.

Teopema 10. PisHsarts dpy2020 nopadky tHeapianmHe 6i0H0CHO POSUUPEHOT an2ebDU
Tanines AG1(1,1) modi i miavku modi, Koau 60H0 MaE 6U2AAD

o <(U11)2_ Up + UUL U11U00 — (U01)2_ Up1 + Uull) —0, (33)

(wi)*’ w7 (u1)* T (w)?
de @ — dosiavha Pyrryia.

Teopema 11. Pisnannsa dpyz020 nopadky ineapianmme 6i0HOCHO Y3A2ANOHEHOT AN~
2ebpu Taniness AGo(1,1) modi i miavku modi, koiu 6010 mac uzamd

3

(uoour1 — (uo1)? + duoururr + 2uury (ur)? — 2ur (u1)? — (ur)?)
? () |
11

3
uo + uug (vor + wury + (u1)?) —0
uyp (u11)* ’

de ® — dosinvHa Pynryia.

Cuiesingnorrenss (32)—(34) maioTh MOBHUI ommc rajijeil-iHBapiaHTHUX DiBHSAHHS
ZIpyroro nopsiky (3o00pazkennst airebpu [astines Ta 1T po3mupenb BU3HAYAOTHCs Ga-
sucHUME oneparopamu (26)).

Ha 3aBepriennst HaBeeMo pe3y/IbTaT CUMETPIHHOI Kaacudikalil olHOro HesTiHii-
HOTO PiBHSIHHS TizposuHamMiuHoro Tuiy. B poborax [10, 11] 3anponoHoBaHO HACTYITHE
y3aranbHenus piBusuus Has’e—Crokca

M LT+ N L(LT) = F (52) 7+ A\ Vp, (35)
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e

L

o 0
— — 4+ 34, 1=1,2
at+v8$l+3 ) ;737

7= (v',v%,0?%), o' = 0!(t, &), p = p(t,T), V — rpagienr, A — oneparop Jlammnaca,
A1, A2, A3, Ay — IOBLIBHI Aificui mapamerpu, F (17 2) — JIOBLIbHA TJIAJIKA (PYHKITiS.
B omnoBuMipaoMy ckasspHOMy Bunaiaky (upu A3 = 0, \y = 0) piBugnng (35) mae
BUTJIs,

MLu+ Ao L(Lu) = F(u), (36)

e u=u(t,z), L =0; + ud,.
Y romy Bunagky, koau e = 0 ta F(u) = 0, piBasuHs (36) — piBHAHHS OPOCTOT
xBuil. fAKkio Ag # 0, Toxi piBHsiHHS (36) MOXKHA IEpenucaT y BUIIsI

L(Lu) + ALu = F(u), A\ = const, (37)

abo B PO3TOPHYTOMY BHUIVISI

——— 49 -
+2u + +u oz

0%u 0%u  Oudu ou\? L 0%u ou ou
ot? otdx Ot Ox
Ouesnno, 1o npn JoBinbHil F(u) piBasanas (37) iHBapiaHTHE BITHOCHO JBOBU-
MipHOI aJirebpu TPAHCJISIIIN, STKa BU3HAYAETHCST OMEPATOPAME

Py=08, P =0, (38)

Iposenemo cumerpiiiny kiacudikarnio pisasuas (37), T06TO onuimemMo QyHKIIT
F(u), upu saxux piBuguus (37) nomyckae 6iibmn mupoki aiarebpu JIi, Hixk 1BoBuMipHa
anrebpa tpaHcssniit (38). Hasenemo neski kiacu ToUHUX pO3B’si3KiB piBHsiHHS (37),
0 33J@AI0ThCsI HESIBHO. 3PO3YMLJIO, 10 JUIs JOCHiKeHHsT cuMerpil piBHstHHs (37)
NPUHIUIIOBO pisHuMu OyayTh Bunagku A = 0 ta A # 0. dkmo A\ # 0, To 3aBxjn
MOKHa BBazkaru A = 1 (icuye 3amina 3MIHHUX ), TOMY MU PO3LJIHEMO Bunagku A = 0
Ta A= 1.

I. Posruisimaemo piBusinnsg (37) y Bunagky A = 0, 70610 piBHAHHSI

L(Lu) = F(u). (39)

Bunadox 1.1. F(u) — noslibHa HenepepBHO-IudepenniiioBaa ¢ynkuis. Makcn-
MaJIbHOIO aJrebporo iHBapiaHTHOCTI piBHsAHHS (39) y IIBOMY BUIAJIKY € JBOBHMIpHA
asrebpa Tpancagii (38).

Bunadox 1.2. F(u) = aexp(bu), a,b = const, a # 0, b # 0. He obmexyroun
3araJbHOCTI MOXKHa BBaxkaTu, mo b = 1 (icuye 3amina 3minxux). MakcuMaabHOO
arebpoIo iHBapiaHTHOCTI PiBHSAHHS

L(Lu) = aexp (u) (40)
€ 3-BuMipHa ajrebpa 3 6a3UCHUME OIIEPATOPAMHU

Py, Py, Y =t8,+ (x—2t)d, — 20,. (41)



Tlanineii-inBapiantai piBasausa Tury Broprepca ta Kopresera—me-®piza 19

Cutig BigmiTury, mo Y B (41) MoxKkHA IIpescTaBUTH SIK JIHIKHY KOMOIHAIIIO onepa-
TopiB amaararii Ta Lamxines

Y = (t0 + x0,) — 2(t0, + 0u) = D — 2G.

Oneparopu D Tta G KOMyTyIOTh, TOMY II€PETBOPEHHS, 10 BIIIOBIAAIOTE Y, MOXKHA
IHTEPIPeTYBaTH fAK JAEAKY KOMIIO3UIIO JUIATAIIIHIX Ta raIiIeIBChKIX IePETBOPEHb,
TOOTO K KOMIIO3UIIIO PO3TATY 10 ¢t i x 1 meperBopensb [asises, xo4a po3nIupena aJ-
re6pa lastisiest He € anrebporo iHBapianTHOCT] piBHsHHS (40). AHaJOriYHI pe3yabraTu
MAaroTh Micre # Jist iHmmX BUnaskie pisHsaHHS (37).

Bunadox 1.3. F(u) = a(u+b)P, a,b,p = const, a # 0, p # 0, p # 1. MakcumanbHO©O
anrebporo iHBapiaHTHOCTI PiBHAHHS

L(Lu) = a(u + b)?

€ 3-BuMipHa aJyirebpa 3 6a3UCHUMH OIIEPATOPAMEI

-3 2b
Po, Pl, R:tat+<]3—$——t> 81;—
p—1 p—1

Bunadox 1.4. F(u) = au+ b, a,b = const, a # 0. Buacainok 3aminu 3MiHHEX,
3aBXKIM MOKHA TMOKJIacTH a = 1 abo a = —1. Posrisgremo 11i BumaKu.
a) Are6poro iHBapiaHTHOCT] PIBHSIHHS

L(Lu)=u+1b

€ 7-BuMmipHa ajrebpa 3 Oa3UCHIMEU OIEPATOPAMU
Py, P, Yi=(z+bt)0;+ (u+b)dy,
Y =chtd, +shtd,, Y3=shtd, + chtd,,

Yy = chtdy + (x4 bt)shtd, + ((z + bt) cht + bsht)d,,
Y5 = shtd; + (z + bt) chtd, + ((x + bt) sht + bcht)d,.

b) Asrebporio iHBapiaHTHOCTI DIBHSAHHS
L(Lu)=—-u+1b
€ 7-BuMipHa ajrebpa 3 OA3UCHUMHU OIEPATOPAME
Py, P, Ry=(x—0b)0,+ (u—0b)dy,
Ry = costd, —sintd,, Rz = sintd, + costd,,

Ry = —costd; + (x — bt) sintd, + ((x — bt) cost — bsint)d,,
R5 =sintdy + (z — bt) costdy — ((x — bt)sint + bcost)dy,.
Bunadox 1.5. F(u) = a, a = const. Y Bunaaxy a # 0 (icuye 3amina 3Minnux) me
06MeXKYIOUH 3arajbHOCTI MOXKHA HOKIACTH ¢ = 1. ToMy OKpeMo PO3IJIAHEMO BUIIAIKH

a=0Taa=1.
a) MakcuMaiibHOI aareGporo IHBApIaHTHOCT] PiBHSHHS

L(Lu) =0
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€ 10-BumipHa ajirebpa 3 6a3UCHUMHE OlEPATOPAMU
Po, Pl, G:t8x+8u, D:taerx@x, D1:x3x+u5u,
1 1 1
Ay = §t28t +t20y + 20y, A = §t28x + 10y, Az =ud+ 5“28z>

1 1
A4 = (tu — x)@t + Et'LLQam + §u28u7 (42)
1
As = (tzu — 2ta:) O + <§t2u2 _ 2x2> Oy + (tu2 _ qu) Oy.
b) MakcumasbHoo anrebporo iHBapiaHTHOCTI PiBHAHHSI
L(Lu) =1
e 10-BumipHa asrebpa 3 6a3UCHUMHU OllepaTOPaAMU
1
Py, P, G=1t0,+0,, A= 5t“'a%. +td,, By =10, + 320, + 2ud,,
1 1
BQ = ({E - Et?)) 693 + <U - §t2> au,
By= 10,4+ (tetr St ) o+ (a4 1600
= - T+ — T+ -
3 2 t 12 T 3 Uy
1 1 1 1
1. 1 1 1
B5 = (tu — r — Std) at + (Qtu2 — §t2$ — 24t5> (9T +
Lo, 1, 5 4
— —tu —tr — —t* | Oy,
+ (2“ ottty )
1 1 1 1
Bg = (t2u — ot — 6t4> 0y + <2t2u2 — 222 — gt?’x — 72t6> Oy +

2 13 2 L 5
—|—<tu 2xu+3tu t°x 12t>8u.

Cain 3asmaumtn, mo mimaarebpu (Py, Py, G), (A1, —As, G) ta (Py, P1,G), (B3,
—As, G) B 300paxkenHsix (42) i (43) BiANOBIHO BU3HAYAIOTH JIBa Pi3HI HEeKBiBaJIeH-
THUX 300paxkeHHst asjreGpu Lasmines AG(1,1).

I1. Posrasimaemo pisasiHs (37) y Bunajxy A # 0 (BBaxkaeMmo, mo A = 1).

Bunadox 2.1. MakcuMayibHOIO aJiredpoio iHBApiaHTHOCTI PiBHAHHS

L(Lu) 4+ Lu = F(u),

axmo F'(u) — mosuibHa dynkiis, € 2-sumipHa anarebpa (38).

Bunadox 2.2. F(u) = au® — 2u, a = const, a # 0. MakcumMaabHO©O anre6poro

9
IHBapIlaHTHOCT1 PiBHSIHHS
2
L(Lu) + Lu = au® — g¥

€ 3-BuMipHa ajrebpa 3 Oa3UCHUMEU OIEPATOPAMU

1 1
P(), P17 7 = exp (gt) (615 — §u8u> .
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Bunadox 2.3. F(u) = au + b, a,b = const, a # 0. Anrebporo inBapianTHOCTI
piBHSTHHS

L(Lu)+ Lu=au+b

€ b-BuMipHa ajrebpa 3 OaA3UCHUMU OIEPATOPAMU

b b
Po, Pl, le <£L’+at> 8m+ <U+a> 8u,

a JiBa iHII OIlepaToOpU B 3aJIEXKHOCTI BiJ| 3HAUEHHsI KOHCTAHTHU ¢ MAlOTb BUTJIS;:

a)a:f%

Zy = exp <;t> <8z - ;6‘u> , 3 =exp (;t) (t@m + <1 - ;t) c’)u> ;

b)a>-1a#0
Zy = exp(at)(0, + ady), Zs = exp(0t)(0, + BOu),

ze
—1—+V4da+1 -1+ +v4da+1
e B
ca<-—1%
Zg = exp(yt)(sin 6td, + (ysin 6t + 6 cos 6t)dy,),
Z7 = exp(yt)(cos 6t0, + (y cos 6t — 4 sin 6t)d,,),
ze
__ 1 5= V-(4a+1)
’Y - 2a - 2 .

Bunadox 2.4. F(u) = a, a = const. Anrebporo iHBapiaHTHOCT] piBHSIHHS
L(Lu)+ Lu=a
€ b-BuMipHa ajredbpa 3 OaA3UCHUMEU ONEPATOPAMU
P07 Pla G:taa:+au7
a
Qu= (= 512) 0o+ (u—at)du, Q2= exp(—1)(0s — D).

TakuMm 9uHOM, IPOBEJIEHA cuMeTpilina Kiacudikaris pisasauus (37) (onucani ma-
KCHUMaJIbHI ajrebpu iHBapiaHTHOCTI 38 BUKJIIOYeHHAM BUnaKiB 1.4, 2.3, 2.4). Orpuma-
Hi HOBI, cyTT’€BO HeJiHiitHi, 300parkenHs ayrebp JIi, 30KpeMa HeJliHI{HI PO3NIUPEHHS
anrebpu Taminess AG(1,1) (mus. (42), (43)). Binbin gerasbHine pesyabratun cuMe-

Tpifinol kinacudikanii pisuanng (37) vasemeni namu B [12, 13].
VY Bunajky, Koau piBugnas (37) Mae BULJIs,

L(Lu) + ALu=a, a,\ = const, (44)
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3aMiHa 3MIHHUX
t=7, TzT=w+t+ur, u=u (45)

JIa€ MOKJIUBICTH MOBY/IOBU 3arajbHOrO po3B’s3ky (44) (nmerasbrime mus. [14]). Bua-
catiiok 3aMinm 3MiHHEX (45)

0 0 ou ou Uy
LfaJru% — O, Lufa+u% — R

Pisugnns (44) micjisi BUKOHAHHS 3aMIHU MATUME BULJISI]I

Ur Ur .

Onun pas npoinrerpysasiiu piaganus (46), HeoOXiHO BPaXOBYBATH BUIIAJKU A, d =
0, abo # 0, orpumyeMo JiiHiitHE HEO[THOPI/IHE PIBHSIHHS B YACTUHHUX MOXITHUX I1€p-
IIOT0 TOPSIIKY. SHANIIOBINY eI IHTerpasin Bi/IOBIIHOT cuCcTeMHU PiBHSIHBL XapakTe-
PHCTVK 1 BUKOHABIIN 0OepHEHY 3aMiHy 3MIHHUX, 3HAXOIMMO pO3B’si3ku (44).
BayBaxkeuns 5. Poss’askom piBusnua 1+ 7u, = 0 B 3minaux (¢, z,u) € © = f(t),
ne f(t) — noBlibha dyukiis, Tomy (44) B 1bOMY OCOGJIMBOMY BUIIQJKY €KBiBaJIEHTHE
3BUYAHOMY A epeHIiaIbHOMy PiBHSIHHIO.

Hageiemo Jesiki kiacu nmoGymoBaHuX HaMU PO3B’si3KiB Jyist (44):
1) L(Lu) =0

1.1) =z —wut+ %tQ = ¢(u — Ct);
12) utln(z—utFt)=¢ (* - (z—ut)?);

1.3) u+t<xm)31¢<t2(1>;

t2(x — ut)? — x — ut)?
T —ut r —ut 2N 1.
14) u=¢ (exp (t2)> — oxp (12) /exp (t )dt,
2) L(Lu) =a

as, C, ( a,s )
—ut+ =3+ 242 = — =t = Ct);
x u+3 +2 plu 5 ;

3) L(Lu) + Lu=a

x—ut—C(t+1)exp(—t) + %tQ = (u+ Cexp(—t) — at)

C = const, ¢ — moBiibHA QYHKITIS.

3ayBakeHHs1 6. Buie HaBelleHi KJlaCu HEsIBHUX PO3B’SI3KiB 3 OJIHIE€I0 JIOBLIBHOIO
dyHKIie. B 3arajpHOMY BUIIQIKy PO3B’sI3KM MOXKHA 33/aBaTH B [MapaMeTPUIHii
dopwmi.

Orxke, B ctarTi OOy 10BaHI HOBI HEJiHIHI rasigeli-iHBapianTH] y3araabHEHHS PiB-
usub broprepca Ta Kopresera—ne-®piza Bucokoro nopsiky. Onmcani ofHOBUMIpHi
PIBHSIHHSI JIDYTOrO MTOPSIJIKY, sIKi iIHBapiaHTHI BiTHOCHO y3arajibHeHOI ajrebpu [aJiies.
Iposenena cumerpiitna kiacudikanis Heiniitaoro ogHosuMipaoro pisusuaag L(Lu)+
ALu = F(u), L = 8; + u0,, onepzkano HoBi Hejinifini posmupenus ajrebpu Lasisest.
s F'(u) = const no6ymoBaui Jeski KJacu HesBHUX PO3B’sA3KIB.



Tlanineii-inBapiantai piBasausa Tury Broprepca ta Kopresera—me-®piza 23

Yuzem /Ixk., JIuneitubie u Henuuelinble BosHbl, Mocksa, Mup, 1977, 624 c.

Kpacunbaukos B.A., Kpsuios B.A., Beenenne B dpusuyeckyio akyctuky, Mocksa, Hayka, 1984,
400 c.

. Pynenxko O.B., Conysn C.U., TeopeTnueckne oCHOBBI HeJMHeHOM akycTuku, Mocksa, Hayka,

1975, 320 c.

4. Sachdev P.L., Nonlinear diffusive waves, Cambridge, Cambridge Univ. Press, 1987, 246 p.

10.

11.

12.

13.

14.

Fushchych W., Shtelen W., Serov N., Symmetry analysis and exact solutions of equations of
nonlinear mathematical physics, Dordrecht, Kluwer Academic Publishers, 1993, 436 p.

Ouasep I1., Ipunoxkenue rpynn Jlu k nuddepennuanbabiv ypaBaenusam, Mocksa, Mup, 1989,
581 c.

@y B.1., Mupomniok LY., YmoBHa cumerpisi i Touni po3s’si3Ku piBHsAHHS HesiHifHOT aKy-
cruku, /lonosidi AH YPCP, 1991, Ne 6, 23—29.

. Serov N.I., Fushchych B.W., On the new nonlinear equation with unique symmetry, /[onosidi

AH YPCP, 1994, Ne 9, 49-50.

Sionoid P.N., Cates A.T., The generalized Burgers and Zabolotskaya—Khokhlov equations:
transformations, exact solutions and qualitative properties, Proc. the Royal Society, Math. and
Ph., 1994, 447, Ne 1930, 253-270.

Fushchych W.I., New nonlinear equation for electromagnetic field having the velocity different
from ¢, Jonosidi AH YPCP, 1992, Ne 1, 24-27.

Fushchych W.I., Symmetry analysis, in Symmetry Analysis of Equations of Mathematical Phy-
sics, Kiev, Inst. of Math., 1992, 5-6.

Fushchych W., Boyko V., Symmetry classification of the one-dimensional second order equation
of hydrodynamical type, Preprint LiITH-MAT-R-95-19, Linkoping University, Sweden, 11 p.
Boyko V., Symmetry classification of the one-dimensional second order equation of a hydrody-
namic type, J. Nonlinear Math. Phys., 1995, 2, Ne 3—4, 418-424.

®ymuu B.1., Boiiko B.M., [TonnKeHHsI MOPSIAKY Ta 3arajibHi PO3B’sI3KM JEsIKUX KJIACIB PIBHSHb
maremaTuanol dizuku, Jonosidi HAH Yxpainu, 1996, Ne 9, 43-48.



W.I. Fushchych, Scientific Works 2004, Vol. 6, 24-29.

Iloam>keHHS MOPSAKY Ta 3araJjbHi PO3B’d3KU
JedKnX KJIaciB pPiBHSIHbL MaTeMaTHIHOL
dizukn

B.I. ®YI[NUY, B.M. BOUKO

The procedure of lowering the order and construction of general solutions for some
classes of partial differential equations is proposed. A number of examples are
presented. The classes of general solutions of some linear and nonlinear equations
of mathematical physics are constructed.

B mamiit crarti mpornoHyeThCs Iporie iy pa IOHUKEHHS TOPSAIKY Ta IO0YI0BH 3aralib-
HUX PO3B’SI3KIB JESTKUX KJIACIB TU(EPEHIIATLHNX PIBHIHD B YACTHHHUX MOXiTHUIX.
Posrisgaemo nudepeniiiaibie piBHAHHS B YACTUHHUX TOXiTHIX

L(Dlul) + F(Dlu]) = 0, (1)

neuw = u(z), x = (xg,1,...,2); L — mudepeHnianbHuit orepaTop MepIIoro mopsiIKy
(nimiiiauit a6o HeiHifHMIA):

L=ad'(z,u)0,,, (2)

o ¢ cymyBanHs Big 0 110 k; ai(x, u) — 1oBiNbHI ryIaKi GYHKIT, 110 0JJHOYACHO He €
TOTOXKHUME HyJIsimu; Dlu] — nudepeHnjagpanil BUpas3 n-ro mopsiiky

Dlu] = D(a:,u,u(l),u(g),...,u(n)) , (3)

U(m) — HAOIp HOXIIHUX M-TO TOPAJKY, M = 1,n; F — nosinbna riangxa GyHKmis
Big Dlu]. 4k gacruunumii Bunajgok Du] Moxke 3ajexarn Jjuiie Big 1 u (B mpomy
BUIIaJIKy Oy/1eMO TOBOPHUTH, IO HOPSJIOK CHiBBigHOmIeHHs (3) — HysnboBuii). Takum
quHOM, (1) — piBHSIHHSI B YACTUHHUX TOXiTHUX (N + 1)-rO MOpPSIKY.

Hns piBusiae Tuny (1) IPOIOHYETHCsT MPOCTHH CIIOCIO MOHUZKEHHSI MOPSIKY Ta
mo0Oy/T0BU PO3B’SI3KiB, SKUil 0a3yeTbCs Ha JIOKAJIBHINA 3aMiHi 3MIHHUX, $Ka 3BOJIUTH
ornieparop (2) 1o omeparopa JudepeHIOBAHHS 38 OJHIEI0 3 HE3AJeKHUX 3MIHHUX,
TOOTO JiesgKa “aiaroHaJisaisa’.

BBoanmo 3aminy 3minHIX

T = fo(xau)a
wa = fa(x7u)7 a:L_k’ (4)
z=u,

ne z(7,d) — HoBa 3asmexkHa 3MminHa, & = (w!,. .., wk).

Dyuxnii 9, f* Bu3HAYAEMO 3 YMOB
L(f% =1, L(f*)=0, a=T1k, (5)

Homnosini HAH VYkpainu, 1996, Ne 9, C. 43-48.




Ilonukennst MOPsiIKY Ta 3arajibHi PO3B’HA3KU JIEAKUX KJIACIB PIBHAHD 25

npuaomy f1, ..., f¥, u nosunHi yrBOpoBaTy mOoBHMII HAGIP (BYHKIIOHAIEHO He3aIEK-
HuX imBapianTis omepartopa (2). A fO BuGupaemo fK JedKuit YACTUHHMI PO3B’A30K
piBusgnag Ly = 1.

Cuissignorenns (5) Bu3HA4aOTh 3aMiny 3minnux (4), npu skiit onepartop L 380-
JIATHCS JI0 orepaTropa iudepeH I IOBAHHST

L=0,. (6)

3uaiimosmu BuMIs criBBigHOMeHHs (3) B HOBUX 3MiHHUX (4), BuxinHe piBHSHHS
(1) MoKHaA TIeperncaTu y BUIVIsII

0- (INDZ) + F(f)z) =0, (7)

e Dz — nudepenrianbuuii Bupas Du B 3minHEX (4).

Pisusinns (7) — 3Buvafine jqudepeHniiagbHe PIBHSIHHS IIEPIIOrO MOPSIKY BiIHOC-
Ho 7 115t Dz. OJiuH pas IpoiHTerpyBaBIIm (7), sHaxomUMO Dz. TaKuM YHHOM, PO3Bsi-
saum (7), omepKyemo JudepeHIiiajbHe PIBHSIHHS B YACTHHHHUX NOXIJIHUX N-I'O I10-
psiiKy BimHOCHO z(T,d) (HMOHM3WIM NMODsIOK piBHstHHA (1) Ha OJMHUINO) 3 OJHIEO
JOBLIbHOIO (DYHKIEIO Bijl J — KOHCTAHTOIO iHTerpyBanus piBHHAHS (7).
BayBaxkennsi. Ayropurm Oyje TakoxK edeKTUBHUM 1 y BUnNaiKy, koju B (1) F =
F(Du, f°, f1,..., f¥), npn mpomy, inrerpyroun pismsamns (7), smimni w® Gymemo BBa-
JKATU TAPAMETDAMMA.

IIpoimocTpyeMo onrcanmii AJITOPUTM Ha MPUKJIAJIAX JJI KOHKPETHUX PIBHIHL Ma-
TEeMATHIHOI (Pi3UKH.

PosrnstaemMo ogHOBUMIpHE XBUILOBE PiBHSHHS

O Pu_

o2 o2V (8)

PiBusinus (8) mMoxkHa 3amucatyl y BUryIsAAi (1) HACTYIHEM YHHOM

(%—%) (%+%>=0. (9)

Samiza 3MiHHUX
T=1t w=x+1t, z=u,
Jla€ MOXKJIMBICTB IiepenucaTy piBHsaHHg (9) y BUIIsAl
0r (27 +22,) =0,
pa3 IPOIHTErPYyBAaBIIN SKE, OJEPXKYEMO
zr + 22, = g(w). (10)

Bracainok posinbHocTi g(w), mokmanemo g(w) = 2h/(w), Tozi cucTema piBHSIHB Xapa-
KrepucTrk jyist (10) MaTume BurIs

dr dw dz

1 2 2W(w)
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SHAaIIOBIIN [IepIi iHTerpaju CUCTEMH XapaKTePUCTUK, OJEePKYEMO PO3B 30K PiBHSI-
ung (10)

z—hw) = f(w—27), (11)

h, f — nosinbui yukuii csoro aprymenty. Ilepenucasmu (11) B 3minaux (¢, x,u),
BHAXOJUMO J00pe BioMuil 3arajibHuil po3B’si30K piBHsAHHA (8)

u=h(z+t)+ flx —1t).
Posruisinemo piBHsiiHs, ske Gysio 3arpomnonosano B [1, 2] njig onucy pyxy piaunu,
L(Lu) =0, L =0+ ud,. (12)

Jlane piBHSHHS MOXKHA PO3IVISJATH K y3araJbHEHHs OJJHOBUMipHOTO piBHAHHSA HbIO-
rona—Oiisiepa myist piguau (piBHAHHs npocTol xBuii). B posroporomy 3amnmci piBHs-
uas (12) maTuMe BUTJIAL

— —0.

@4_2 0%u +a_ua_u+ Ou 2+ 2@
o2 " “otor " otox " Y 92

3aMiHa 3MIHHUIX
T=1 w=x—ut, z=u,

JIa€ MOYKJIMBICTD 3anucaTy pisHstHHSA (12) y BUrIsiai

Zr .

IpoinTerpysasim (13), ofepKyemMo napaMeTpudHUN PO3B 30K

dw
z+ / ———— =¢(p)
V(W) +p
2
T = h(w) =b
e p — mapamerp, h, ¢ — T0BiabHI QYHKIII.

IMoBepHYBIIUCH 0 CTApUX 3MIHHUX, OJEPKYEMO PO3B’s30K pisHganua (12). Heaxi
UPUKJIQU HESBHUX DPO3B’43KIB 3 OJHIEI0 NOBLIbHOKW (byHKI€ 1is piBHstHHs (12)
HaBeJieHl Hamu B [3, 4].

Pisusgansa

S 0 (14)
MOzKHa 3anmcary y surianl (1) HacTynnuM duHOM

0 0 0 ou Ou Ou
(5 o0) (5t 3y) =© 19)

3a J0IOMOroio 3aMiHU 3MIHHHAX

r=t w=t+z wr=t-y, z=u, (16)
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BUKOPHUCTOBYIOUM OIMCAHUI AJrOPUTM, OJIEPXKUMO HACTYIHUN DPO3B’SI30K DPIBHSHHSI

(14)
u=fit+z,t—y)+g{t—zt+y).

SayBaxkeHHs1. [IpupojHe y3arajbHeHHs! onucaHoro ajropurmy Jjuisi (1) Ha Kiacu
JudepeHIiaJbHIX PIBHSIHDb B YACTUHHUX [MOXITHUX HACTYITHOI'O BUTJISIILY

L™(Du) + by 1 L™ (Du) + -+ + by L(Du) + by = 0, (17)
ne bj =bj(Du, fO, f', ... f¥),j=0,m —1; L™ = LLL--- LL; L, Du, f° f',... f*

BU3HAYAIOTHCS BiAMOBIIHO 3 criBeigaomennsmu (2)—(6).
Micas samian (4)—(6) 3a7a4a TOHMKEHHST NOPsKY PiBHsAHHS (17) 3BOIUTHCS 710
npobJeMy IHTerpyBaHHs 3BUYAfHOTO Ji(epeHIiaJbHOr0 PIBHSHHS M-I'0 HOPSIKY.
s piBHSHHS

D"(u) =0, D=2,0,,, p= 0, k,

BUKOPHCTABIITHN 3aMiHy 3MiHHUX

La
T = Inx, w“:x—, a=1,k, z=u,
0

O/Iep?KaHO HACTYITHUI PO3B’I30K
u = Cn,l(ln xo)”_l + Cnfg(h’l 1,())71—2 + 4 Cl In i) + 007

ne Cy=Cy (2.5 8),i=0n— 1,

Tz

Ojtepiani pe3ysIbTaTh JIETKO y3araJbHIOIOThCS HA BUIIAJ0K CHCTEM DIBHSIHD BHUIJIS-

Ay

L(Dla]) = F(°, ... 5, D),
ne i = (ut(z),...,u™(x)), = (zo,21,...,21); L, fO, f', ..., f* susnauarornca Biz-
nosino 3 cuissinpomenusvu (2), (4), (5), (6), ne uw = @; D[d] = (D',...,D™), ne
D' = D’ (:c, U, U1y, U2y, - - - ,ﬂ'(n)) , i=1,...,m, Uy — HabIp MOXiTHUX M-TO HOPSI-
Ky BiJl KO?KHOI 3 KOMIIOHEHT BEKTOpa U; F = (F' ..., F™). ¢k qacTUHHUI BUIAI0K

o
KoMroHeHTH D|@] MOXKyTh 3asmexkarn e Bin z 1 4. Huxve HaBegeMo npukiaan
peaJtizaliil 3alTpOIIOHOBAHOI'O AJITOPUTMY JIJIsl CUCTEM.
Posriisinemo cucremy piBastab Oityiepa pyXy HEBSI3KOI, HECTHCJIMBOI PiIuHI
ov v =
— +okF—— =0, (18)
8:50 8Ik

Ae U= (’121,1)2,1)3), vl = Ul(mo,x1,$2,$3)7 l= L,2,3.

Cucremy (18) MoXKHA 3aIIUCATH TaK:
(0 +vF0) vt =0, 1=1,2,3 (19)
[Ticos 3aminm 3MiHHIX

T=x0, wl=1x,—0v%, a=1,23 =, =123
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cucrema (19) maTuMe BULJIS

0,2l=0, 1=1,2,3. (20)
Iurerpyroun pisusanus (20) i BukoHasiu o6epHeHy 3aMiHy 3MIHHUX, OJIEPKYEMO PO3-
B’130K cucremu (18) y HesABHOMY BHIVIA

’Ul = gl (56'1 - Ul,’Bo, To — ’1}2{)30, Tr3 — ’USLL‘()) .

ne g¢ — noBinbHi raaaki Gyukii. Janmii po3s 30K cucTeMu (18) cuiBnaziae 3 po3s’siz-
KOM, OJIEP?KAHUM IHIIUM [LIIXOM B [5].
Posrisaemo cucremy piBHSHB ISl BEKTOP-IIOTEHIIALY
o
, 0A _
o0x,

Bsazkaemo, mo AY # 0. 3a 101moMOroio 3aMinu 3MiHHIX

A

0, u=0,...,3. (21)

AV
OZIEPKYEMO PO3B’s130K cueremn (21)

Al = g (mlAO — gAY, 29 A° — 20 A%, 25 AV — moAg) ,

T

Wt =1, A° —29A%, a=1,2,3, A*=A* 1 =0,1,2,3

Je gV — nmoBiIbHI ryIaaKi QpyHKITI.

Hexait Tenep maeMo JiesIKy cucteMy PiBHAHD B YACTHHHUX MOXITHUX, IO BU3HAYAE-
Thest Habopowm omepatopis L1, ..., L" surnany (2) (u = @), npudomy KiTbKicThb omepa-
TOpiB TTOBUHHA HE TEPEBUINLYBATU KIIbKICTh HE3AJIEKHUX 3MIHHUX. SKIMO omepaTopu
YTBOPIOIOTH KOMYyTaTHBHY ayrebpy JIi i panr marpur, ckiaieHol 3 KoedirieHTiB orre-
paropis L', ..., L", nopiBHIOE ', TOAi icHYe JIOKAIbHA 3aMiHA 3MiHHIX, IO IPUBOIUTE
Il OIepaToOpH JI0 T OMEPATOPIB AM(MEPEHIIOBAHHS BIIHOCHO 7 MEPIINX HE3AJEKHUX
3MiHHUX.

Posrisunemo oxmnoBuMipHy cucremy

(0 + v0;)u =0,

22
(Or + udy)v =0, (22)
ne u=u(t,x), v=uv(t,z), u # v. licna 3aminu 3MiHHUX
—ut — ot
r="2 u’ w=" U, U=u, V=v (23)
v—u u—v
cucrema (22) MaTUMe IPOCTHH BUIJIS
0.U =0,
24
8,V =0. (24)

Ipoiurerpysasmm (24) Ta Bukonasim obepHeny 10 (23) 3aMiiy 3MIHHUX, OIEPKYEMO
po3B’a30K cucremu (22)

xr— vt xr —ut
u:f b v:g b
U —v V—U

e f, g — moBuibHI raaki QyHKIT.

Po6ora Bukonana mpu ¢inancosiit miprpumii AMS, donugis Copoca ta INTAS.
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On unique symmetry of two nonlinear
generalizations of the Schrodinger equation

W.I. FUSHCHYCH, R.M. CHERNIHA, V.I. CHOPYK

We prove that two nonlinear generalizations of the nonlinear Schrédinger equation
are invariant with respect to a Lie algebra that coincides with the invariance algebra
of the Hamilton—Jacobi equation.

Nowadays many authors, who start from various physical considerations, have
suggested a wide spectrum of nonlinear equations which can be considered as some
nonlinear generalizations of the classical Schrédinger equation. It is necessary to note
that some of the suggested equations do not satisfy the Galilean relativistic principle.
As a rule this requirement is not used in construction of nonlinear generalizations.
Meantime it is well known that the linear Schrédinger equation is compatible with
the Galilean relativistic principle and, besides, is invariant with respect to scale and
projective symmetries (see, e.g. [1] and references cited therein).

In the [1-6] the construction of nonlinear generalizations of the Schrodinger equa-
tion was based on the idea of symmetry and the following problems were solved:

1. Nonlinear Schrédinger equations, which are compatible with the Galilean relati-
vistic principle, are described.

2. All nonlinear equations, which preserve nontrivial AG2(1,n)-symmetry of the
linear Schrodinger equation, are constructed.

Let us adduce some nonlinear generalizations of the Schrodinger equation that
have AG5(1, n)-symmetry, namely:

iUy + AU = )\ UM, 1, 2] (1)
Ula|Ula

ZUt + AU = Alw (]7 [3, 4] (2)

. AlUJ?

Q
S

>

If

where U = U(t,z) is an unknown differentiable complex function, Uy = %,
63—;% + -t %, x = (x1,...,2,), U = VUU*, U], = %Ual, and * is the sign of
complex conjugation.

Consider the generalization of the nonlinear Schrédinger equations (2)—(3) of the
following form
1. A|U)?

Ula|Ula
U

A1

1 U
+ 3% U*> U, (4)

where A\, = ap + ib, ax and by € R, k£ =0,1,2.

J. Nonlinear Math. Phys., 1996, 3, Ne 34, P. 296-301.
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It is easily seen that some nonlinear equations, which have been suggested by
many authors as mathematical models of quantum mechanical, are particular cases
of this nonlinear generalization of the Schrédinger equation. Indeed, we obtain from
equation (4) (for A\g = A1 and Ay = iby) the following equation

, (oA U\
iUy + AU = ()\1 U] + by In (U*) U, (5)

which was proposed in [7] for the stochastic interpretation of quantum mechanical
vacuum dissipative effects.
Equation (5) for bs = 0 reduces to the form

AU
U, 6

iU+ AU =\

which was studied in [7—11]. The term on the right hand side of (6) takes into consi-
deration the effect of quantum diffusion. In all these papers the authors, starting from
some physical models, assumed that the parameters Re A\; and by in (5) and (6) are
small (Al # O, b2 # O)

The main purpose of the present paper is to draw attention to equation (5). If we
reject the mentioned assumptions as it was done in all mentioned papers [7—11] and
put A\; = 1, then the equations

AU
im+AU:7%M (7)
and
_ AlU| U\Y?
WUy + AU = <|T|| +1by In (m> U (8)

have the unique symmetry, which is the same as symmetry as of the Hamilton—Jacobi
equation [1].

It means that the nonlinear second-order term A|U|/|U| changes and essentially
extends symmetry of the linear Schrodinger equation.

Let us note that equation (7) for n = 2 can be obtained from the nonlinear
hyperbolic equation [12]
] B¢ — O fy] =0,
9? 9? ) 9?

where ¥ = ¥(yo, ), y = (y1,¥2,93), O = 7S Tv- Al v Bl - £ by means of the
ansatz
Y = (t,z1,72) exp(aﬂy“), t=buYu, T1=cCulYu, T2=dy,,

where the parameters a,,, b, c,, d,, p = 0,1,2,3 satisfy the following conditions:

o
ab, =1, b,c,=cua,=a,d,=d,c,=0 a=d> =-1
pOu =4, OpCu = Culy = Qpay = apcy =Y, =0, =1L

Now let us formulate theorems which give the complete information about local
symmetry properties of equation (4).
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Statement 1. Equation (4) for arbitrary complex constants Ao, A1 and \g is invariant
with respect to the Lie algebra with the basic operators

0 0 0 0

PP=—, P=—1V I=U—+U" ,
T Dz ou TV U ©)
Jab =Py — 2, Py, a,b=1,...,n,

<2a21+Q>e bot, by #0

7 X ’ )

X = b2 pb2 2 (10)

2aotl + Q, by =0,

where () :i(U% — U*ag*).
Statement 2. Equation (4) for Ay = ibs is invariant with respect to the Lie algebra
with the basic operators (9) and

b 1
G, = exp(bat) P, + 5233@@1, Q1= 5 exp(bat) Q. (11)

Note that the algebra AG(1,n) with basic operators (9) (without I) and (11) is
essentially different from the well-known Galilei algebra AG(1,n) in that it contains
commutative relations [Py, Gy] = b2Ga, [P, Q1] = b1Q1, since in the AG(1,n) algebra
[P, G,) = Pa, [P, Q] = 0.

The operators G, generate the following transformations

t'=t, ), =x,+v.exp(bat), a=1,...,n,

12
U’ =Uexp {2%2 exp(bat) (xava + Ua;a exp(bgt)ﬂ , (12)

where v1, ..., v, are arbitrary real group parameters.
Some classes of equations with the AG(1, n)-symmetry were constructed and stu-
died in [4] (see the part II), [13].

Statement 3. Equation (4) for Ao = 0 is invariant with respect to the Lie algebra
with the basic operators (9) and
Tq n
Ga:tPa—f—?Q, Q, DZQtPt—f—J?aPa——I

jz/?
4

nt (13)
I =tP +tx,P, + Q- 51

It is clear that operators (9) and (13) generate the well known generalized Galilei
algebra AG5(1, n) with the additional unit operator I. The linear Schrodinger equation

iU, +AU =0 (14)
is invariant with respect to the (AG2(1,n),I) algebra, too. It is well known that
operators G, a = 1,...,n generate the Galilean transformations

t'=t, x, =x4+v4t, U =Uexp B (mava + Ua;a t)} (15)

which are essentially different from (12).
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So, equation (5) for arbitrary Ay and by # 0, which is a particular case of equa-
tion (4), is invariant with respect to the algebra (AG(1,n),I), but in the case by =0
(see equation (6)) it has the AG3(1, n)-symmetry with the additional unit operator I.

Statement 4. Equation (5) for Ay = 1 and by = 0 (see equation (7)) is invariant
with respect to the Lie algebra with the basic operators (9), (13) and

U U
Gé =—iln—P,+z,P, Di=—iln FQ + 2, P,,

U*
U\ u v,
le—(lnﬁ) Q_ZZIHU .’L‘aP +|x| Pt+znln U* (16)
|[2 U 1Zq
K, =tz P, — | & +itln— | P, B N
o =tx, Py ( 9 +ztnU + LTyl — 2 9 Q

If we make the substitution U = pexpiW, where p and W are real functions, then
operators (16) are simplified, and we can note that the algebra (9), (13) and (16) is
that of the Hamilton—Jacobi equation. So, equation (7) has the same algebra of Lie
symmetries as the classical Hamilton—Jacobi equation [1].

Statement 5. Equation (5) A\ = 1 and by # 0 (see equation (8)) is invariant with
respect to the Lie algebra with the basic operators (9) and

G = expltat) (P 20,Q) . D = expl-bat) (P + 1237 Q),

IT = exp(bat) [bl

b
P, + z,P, + (W+ 2|g:|2) Q- ;I] :

b

Gl = exp(—bat) [WP + :caPt + anQ} Dy =2WQ + z. Py, (17)

2
IT; = exp(—bot) [(W + —2|x2> WQ + WP, + %Pt - gWI] ,

2 2
Ko="ap o (2w p o+ 2w WQ — a1,
by ba 2
where W = —2 U*, the operators Q and I are defined in (9)-(10).

The algebra (9), (13), (16) and one (9), (17) contain the same numbers of basic
operators. Moreover, we found the following substitution

exp(bzt)
UI=1V], 5= (“;) CV=Virna), 7= el (18)
that reduces the algebra (9), (17) to one (9), (13), (16) for the variables V, 7, x1, ..., Zy.
It is easily proved that the substitution (18) reduces equation (8) to equation (7) for
the function V. So, equation (8) and equation (7) are locally equivalent equations,
and are invariant with respect to the algebra of the Hamilton—Jacobi equation.

Note that in [6] the coupled system of Hamilton—Jacobi equations was constructed,
which preserves the Lie symmetry of the single Hamilton—Jacobi equation. On the
other hand, in [14] generalizations of the Hamilton—Jacobi equations for a complex
function were constructed, which are invariant with respect to subalgebras of the
algebra of the Hamilton—Jacobi equation.
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Finally, we consider the last case, where equation (4) has the nontrivial Lie sym-
metry. In this case equation (4) has the form

: |U| U
Ui+ AU = )\ U. 19
U+ AU = (G + i g (19)

It is easily checked that equation (19) for Ay = as + iby can be reduced with the
help of substitution (18) to the same equation but with Ay = as. So, we assume that
by = 0 in equation (19).

Statement 6. Equation (19) for As = as € R is invariant with respect to the Lie
algebra with the basic operators (9), (10) at by =0, and

j U
Dy = 2P, + 24Py, Dy —=tP + ~In —
4 U~
Note. The substitution
U = pexpiW,

where p(t,x) and W (t,x) are real functions, reduces equation (7) to the following
system

op op OW
T L e
ow ,owow
Ot ' 0wy Oz4 ’

in which the second equation is the Hamilton—Jacobi one.

Our work was carried out under the financial support from INTAS and SCST of
Ukraine.
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ITpo HoBI HeJTiHIIIHI PIBHAHHS, IHBapiaHTHI
BiJiTHOCcHO rpynu Ilyankape B JIBOBUMIpDHOMY
IIPOCTOPi-daci

B.I. ®VIHY, B.I. IATHO

New representations of the Poincaré P(1,1) and extended Poincaré P(1,1) groups by
Lie vector fields are constructed. The result is used to obtain new second-order scalar
differential equations, invariant under these groups.

YV naHoMmy IOBIIOMJIEHHI IIPOBeJIeHO Kiracudikallito 306pakenb rpymnu [lyankape
P(1,1) ta posmupenoi rpymu [yankape P(1,1) B kiaci Bekropuux mouis JIi, mo6ymy-
BAHO 3arajbHUN BUJIsT JudepeHIiajbHuX PIBHAHDb B YaCTUHHUX HOXiTHUX JPYrOro
MOPSAJIKY, IHBAPIAHTHUX BiJTHOCHO IMX TPYII, & TaAKOXK PO3IVISHYTO CUMETPIfHY pejy-
KI[IO0 OJIEP?KAHNX PIBHAHb.

1. Hosi peaurizanii 306pakens anreép AP(1,1) ta A13(1, 1). dxk Bimomo [1-
3|, Bexkropui nosa JIi, ski renepyiors Jeaky rpymy JIi G, 3agators 6asuc anrebpu JIi
AG uiel rpynu. Tomy 3aa4ua BuBueHHst 300pakenb nanol rpynu G B KjIaci BEKTOPHUX
moutiB JIi ekBiBasieHTHA BUBYEHHIO peaJizariil Bekropaumu moJisivmu JIi anredopu JIi AG.

Posrisimarumemo peastizariito airebp JIi B TepMiHax BEKTOPHUX IOJIIB B IIPOCTOPI
X ® U nmBox He3aJle’KHUX Ta OfHIEl 3aiexkHol 3MiHHOI. B mHamomy Bumagky X —
aBoBuMipHuit poctip MinkoBchkoro 3 koopaumaaramu x, t, U — mpoctip mificHux
cransgpaux Gyukuiit u(t, x). BekropHi nosst MaoTs dopmy

14 =§(t,:c,u)8x —l—T(t,x,u)@t—l—n(t,m,u)au. (1)

Tyt i gani 0, = %7 O = %, Oy = 6%7 &, 7, n — rauki GyHKIT CBOIX apryMeHTIB.

Bynemo nosnavaru remeparopu TpaHCadIii, mooporis Jlopenma Ta auaTarii de-
pe3 Py, P, K, D, Binnosinno. Bkazani reaepatopu 3a10BOIBHSIOTH KOMYTAIIIHI CITiB-
BiIHOIIIEHH ST

[P07K]:P17 [PlaK]:POa [PM7D]:PH (:u:()’l)a

[Po,P1] =0, [K,D]=0. (2)

Baazkaemo, 1o reneparopu Py, Py, K, D zapators anrebpy Ilyankape AP(1,1) =
(Py, P1, K) Ta posmupeny anre6py [lyankape Ap(l, 1) = AP(1,1) b (D), sixmo

1) BoHU JiHIHO He3aIeXKHi;

2) BOHU 3aJI0BOJIbHSIIOTH KOMYTaIliiiHi criBBiguoenus (2).

Kiacudixarniio 306paxens amrebp AP(1,1) ta AP(1,1) B xaci BeKTOpHIX 10-
ais (1) nposogumo 3 TognicTio 10 gudeoMopdizmis, TOOTO 3 TOYHICTIO JO JOBLIBHOL
IJIaJIKOT B3a€MHO-OTHO3HAYHOI 3aMiHM 3MiHHUX

¥ = f(t,x,u), t =g(t,x,u), u =h(tzu). (3)

Homnosini HAH VYkpainu, 1996, Ne 11, C. 60-65.
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Ockinbku reseparopu Py, Py yTBOpPIOIOTE KOMyTaTuBHUI i1eas nist anrebpu AP(1, 1),
POBIJIsi TOYUHAEMO 3 HUX.

JIema. Icnyroms nepemesopenns (3), sxi 360dsmo 2enepamopu Py, Py do odwiei 3
dsox opm:

Py =0y, P1=04 (4)
PO = 8t7 P1 = x@t. (5)

JloBeieHHsT JIeMU BUILIMBAE 3 TAKUX MiPKYBaHb. 3TiHO 3 TeopeMoro JIi mpo cripsim-
JIIOBaHHS BEKTOPHUX LOJIB [2, 3|, Mu 3aBxKu MoxkeMo nokaactu Py = 0. 3 Bukonan-
Hg KoMyTaniitnoro cuissignorenns [Py, P1] = 0 ogepkyeMo, 1o Halb1IbII 3araibHuii
BUIJISA, ontepaTopa Py Oye

P = T(xv u)ﬁt + E(xvu)ax + U($7U)3u~

BgeiBmu B posriisg maTpuiio

M= (1 0 0 ) 7
T &
cKJIaJieny 3 KoedilieHTiB pu moxinHux B rereparopax Py, P 6a4mMo, 1o MOXKJIABI
sarre aBa Bunagakm: rank M = 2 abo rank M = 1. Jlaii HeBasKKO MepEKOHATHUCS, IO 3
ymosu rank M = 2 puruiuBae peasizaiis (4), a 3 ymosu rank M = 1 — peanizanis (5).
Peautizanis 306pazkens anrebp AP(1,1), AP(I, 1), AC(1,1) ana reneparopis Py,
Py dopmu (4) Busuena B [4]. ToMy TyT MM JeTaJIbHO 3yIMHIEMOCS HA BUNAIKOBI (5).

Orxe, Hexait Py = 0y, Py = £0;. 3 BUKOHAHHSI KOMYTaI[iiHUX CHiBBigHOIEHD (2),
OJIEPYKYEMO, 10

K = (2t 4+ 7(u))0; + (22 — 1)0y + n(u)d,.

3 rounicTiO 710 1IEpeTBOPEHDb (3) MaEMO OIUH KJAC peasizalil 300pakeHHs ajredpu
AP(1,1), akuil MOXKHA [IOJATH Y TAKOMY BUIJISII:

Py=0;, P=2x0;, K=uxtd+ (1‘2 — 1)81 (6)

Onepxana peaJIiBaLLiSI~306pa}KeHH${ asre6pu AP(1,1) momyckae posIIupeHHsl JI0 30-
Opaxkenns ajrebpu AP(1,1), axmo gogaru oneparop aunaranii D. 3 BUKOHAHHA KO-
MyTaliffHuX CHiBBiIHONIEHD (2) BUIIMBAE, 10

D = (t+ 7(u)\/|2? — 1]) 0 + n(u)d,.

HeBazkko moka3aTy, 10 iCHYIOTh IepeTBOpeHHs (3), ki 3aiaumaioTs Burs (6) ore-
paropiB Py, P, K me3minuum, a omepatop D 3BOAATH 10 BUIIIALY

D=t0y +eud,, €=0,1.
Tum camMmum Mu T0Oy/TyBaJii JIBi HOBI peaJtizariii agredpu AP (1,1):
Py=08, Pi=x0;, K=uat0+ (2>—1)0y, Di=10; (7)

Py=20,, P, =0, K=utd,+ (x>-1)0,, Dy=1td;+ ud,. (8)
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OT)KG, CIIpaBe/J/InBa TaKa TeopeMa.

Teopema. 3 mownicmio do nepemeopens (3) so6pasicenna arzebp AP(1,1), AP(1,1),
AC(1,1) sexmopnumu noasmu JIi (1) suuepnyromovces pearizayismu, nobydosarumu
6 pobomi [4], a maxootc s06pasicenmamu (6)—(8).

SayBaxkenns 1. Hepaxxko mepekonatucss B ToMmy, 1mo 300paxenss (7), (8) asrebp
A]3(1, 1) He JOIYCKAOTh POBIIUPEHHS J0 300pakeHb BeKTOpHUMHU TossiMu (1) KOH-
dopmuoi anreopu AC(1,1).

BayBaxkenuns 2. KopapiauThi 300pakeHHsI BEKTOPHUMU HOJIAME (300paKeHHsl, JJIst
akux panr marpuii M 36iraeTbes 3 po3MipHICTIO TPOCTOPY MIiHKOBCHKOIO) y3arajb-
senux rpyu Ilyankape P(n,m) ta Ix posmupeHb 10 KOHGOPMHOI I'DyIU BKIIOYHO B
(n + m)-BumipHoMy poctopi MiHKOBCHKOTO, jIst BUNAJKY OJHIET 3a51€KHOT DyHKIIT
u BUBYasucs B poborax [5-7]. Tam Gys10 mokasaHo, 0 B 3araJbHOMY BHUIAJKY Iii IPy-
M JIOIyCKAIOTD JIAIe cTangapTHi 300paxenns. Tinbku miug rpyn P(1,2), P(2,2) ta
iX pO3MHUpPEHb, 10 KOHGOPMHOI I'PyIu BKJIOYHO, Oysin mOOym0BaHI HOBI KOBapiaHTHI
300pakeHHsT BeKTOpHUMH Tostsimu JIi.

2. IudepennianbHi iHBapianTu Ta inBapianTHi piBusiHHs. [Iporeaypa mo-
Oy/1I0BM iHBapiaHTHUX PIBHSHDL B KJlacuaHoMy minxosi JIi € cranmapraoro. Tak Hexait
X, (@ =1,...,N) cruanaiors 6azuc anrebpu JIi AG rpynu cumerpii G, mio mie B
upocropi X ® U. B mamomy Bunagky X ® U e upocrip {z,t,u}, a Bci X, maorsb
Buriisy (1). Posrisimaemo piBusaHHS

F(x7t7u7uxaut7ux:c7utwvutt) :Oa (9)

ne F' — nosinbHa rnanka dbyukuis. Pieasaus (9) Oyue iHBapiaHTHUM BiJIHOCHO rpy-
mu G, sikmo byskiist F' 3a/10BOJIbHSIE CliBBigHOIIEHHS |2, 3]

X,F=0, VYa. (10)
2

Tyt X, — apyri npouoskenns oneparopis X,. Poss’szasmu cucremy (10), onepzxu-
2

MO MHOXKHHY eJIeMeHTapHuX nudepeHIiagsaux iHpapiantis Ji(x, t, u, wy, wpuy) (1, v =
x,t), a iHBaplaHTHE PIBHAHHS MATHME BULJIS

®(Jy,...,Js)=0.

Orxe, o6 onucaTn HAHOIIBIT 3arabHU BUTIISA PIBHAHHS IHBAPIAHTHOIO BiTHOCHO
rpynu G, OTpiOHO 3HAWTH MHOXKWHY BCIX €JIleMEHTApHUX IHBapiaHTIB JaHOI IPYIIH.
Ockinbku "ncsio 3minaMX y crnieigaomenusx (9), (10) nopisaioe 8, anre6pu AP(1,1)
Ta Als(l, 1) € posB’sI3HUMU, 3arajibHi OpPOITH NPOJIOBKEHUX I'PYI € TPHU- Ta YOTUPH-
BUMIDHUMU, BiINOBIIHO, TO MU OTPUMAaEMO 'arh mig rpynu P(1,1) ta gorupu s
rpynu P (1,1) dyHKioHANBHO HE3ANEKHUX eJIEMEHTAPHUX JudepeHiajlbuuX iHBapi-
aHTIB.
1. Bunadox aneebpu AP(1,1) 3 6asucrumu 2enepamopamu (6). Tyt

— U O,

Uz ta?

P():P(), P1:P1—2utx8
2 2
K = K — (tug + 22u,)0u, — 2uiOy, — 2(Usy + 22Uspy + tugt)O

2

— (ut + tutt =+ qum)&u” — 2$utt8u”7
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ToMy Gasuc dyHgamMeHTaIbHIX po3B a3KiB cucremu (10) ckiaagaoTh GyHKIT

Ji=u, Jy= uf(m2 -1), J3= utt(xg -1,
Jy = (2% — 1) (ugue — uguge) — (2 — 1)u?,
Js = (332 - 1)3(uttum — u?x) + 2x(x2 — 1)2(uxutt — Uplpy) — xQ(xQ - l)uf,

a Haiiblabim 3aranbHe P(1,1)-iHBapianTae piBHsHHS (9) Mae BUIVISAT
(I)(JlaJ27J37J47J5) = 0. (11)

2. Bunadox anzebpu 14]5(17 1) 3 6asucrumu zenepamopamu (7). Bpaxysapmm, 1o
HaliGinbm 3aransae P(1,1)-inBapianTre pisasHHs (9) Mae sursig (12) 1 mo

D21 = Dy — 40y, — 2u4t0u,;, — UtzOu,,

OJiepKasil TaKi YOTUDH eJeMeHTapHi JudbepeHIlianbhi iHBapianTu st aaredpu
AP(1,1) 3 reneparopamu (7):

Yi=Ji, Yo=Jy' s S3=Jy, Xy=Jy s, (12)

e sHadenns Jy, naseseni B (11).
3. Bunadox anzebpu AP(1,1) 3 6asuchumu 2enepamopamu (8). Tyt

D22 =Dy — Uacau, - uttau“ + u]‘tau»”«7

a ToMy aJirebpa AP (1,1) mae Taki worupu eseMeHTapHi JudepeHniaibHi iHBapianTH
JPYTOro MOPAIKY:

Y1=NJ3, Xao=Jy, Y3z=Ji, Xs=1Js, (13)

e smavenns J, Hasegeni B (11). HaiiGinbur saramsue P(1,1)-inBapianrie pisHsH-
Hs (9) Mae BUIIIS

(I)(Elv 227 237 Z4) =0.

ne ¥y, (k= 1,4) mabysaiors suagenns (13) y sunanky anre6pu AP(1,1) 3 remeparo-
panu (7) a6o (14) — y sumazky amreGpu AP(1,1) 3 reneparopamu (8).

SayBazkuMo, O Jist PO3MJIAHYTUX peaJsizariii aarebp AP(1,1), AP(L 1) iuBapi-
aHTHUMU € PIBHSIHHS, sIKi € y3arajbHEHHsIM BizoMux piBHsiHb MoHKa—AMiepa.

3. CumerpiitHa peaykilis iHBapiaHTHUX piBHSHBb. [HBapiaHTHICTH OfepIKa-
HUX piBHAHD BiguocHo rpynu Ilyankape P(1,1) abo ommiel 3 posmupenux rpyn Ily-
aHKape P (1,1) no3Bouisie IPOBECTH CUMETPIAHY PEAYKIIIO IUX PIBHIAHD /10 3BUYANHUX
nudepeHIiaabHUX piBHAHL. [Iporeaypa cuMeTpiitHOl peayKIlil BUMAarae momepeInbol
kiacudikamii migaaredp BiamoBigHOT anredpu cuMeTpil 3 TOUIHICTIO JO CIPSAXKEHOCTI,
JKy BU3HAYAE I'PYyNa iIHBAPIAHTHOCTI JTAHOTO PiBHAHHA. TyT MU BUKOPUCTOBYEMO BiJIO-
My kjacudikanio miganrebp amrebp AP(1, 1), AP (1,1) (nus., Hanpukaaz, [8]), moxa-
TKOBO BBIBIIIN Bi/THOIIIEHHsT €KBIBAJIEHTHOCTI Miaarebp aaredbpu cuMerpil Ha MHOXKIHI
po3B’a3KiB iHBapianTHOTrO piBHsAHAS [8]. KpiMm Toro, 06Mekyemocs miganreGpamu, nyist
JKUX aH3aIl MICTUTh BCl He3aJIeKHI 3MIHHI.

Bkaszani BUMOTHU 3a/I0BOJIbHSIE €JIMHA OJHOBUMIpHa minanrebpa aarebpu AP(1,1),
a came, L, = (K). Tit Bignosimzae anzarg

u=pw), (14)
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ne w = t?(x? — 1)1, Iligcranoska ansary (16) B piBuanna (12) IPUBOAUTE 10 3BU-
JaiffHOro AU EpPEeHIiaJIFHOTO DiBHIHHS

P (i, dwep, 2p,0,4wp) = 0.

Tyt i mami ¢ = 92, ¢ = dwg, p=¢+2wp.

V Bunanky amre6pu AP(1,1) 3 remeparopamu (7) kpim miganre6pu Li BKazami
BUMOT'H 33JI0BOJIBHAIOTH mifanrebpu Ly = (K + aD) ta Ly = (D + 1 K + 2 P),
ge a # 0, a € R, a €1, €2 He3aJEXKHO OJIHE BiJl 0JHOrO HabyBalOTh 3Ha4YeHH:A +1.
Kpim Toro, B manomy Bunagky D = Dp. Ansan (16) y sunajxy anreGpu Ly peaykye
piBusinHst (15) 10 piBHSIHHS

1
o (907 500—1,07 Oap> =0.

Anrebpam Lo, Lz Bimmosinae amszam (16), ge w = t2(z — 1) 1%z + 1)~ ! mua Lo

2t+e €1€ z+e
2@_;’1) - =2 In mns Ls. Pexaykosani piBugnnsg (15) MaoTh BiamosigHo

Ta W =
BUTJIST,

1., _ .
o (% 3¢ W p e (1= a®)g i - a2> =0,
D(p,pp 2 e1,61,62¢9 = 1) = 0.

Hapemri, y Bunaaxy aareopu A}5(17 1) 3 reneparopamu (8), kpim minanreSpu L,
Lo, L3, Bkazani Bumorn 3a10BosibHsIE miganrebpa Ly = (D). Tyr D = Dsy. Penyxkuist
piBasiang (15), mo Bianosigae anare6pi Lq, IPpUBOJUTH 10 PIBHSIHHS

P (2pp, 4w, 0,4wpp) = 0.
Ilinamrebpam Lo, L3, L4 Binmosimgae an3ait
u= f(z,t)pw),
£1

ne f = (%)75 w=t3(r+a)* Yz —1)"1"* — g anredpu Ly; f = (%)7 )

2t+es  _ e1€2 x+a
2(z—e1) T In

Penyxosani piBHaAHHA (15) MalOTh BiJIOBITHO BUIJIAL,

w = — nys anrebpu Lg; f = t, w = x — pyig anredbpu Ly.

<I>(2<pp, dw?, 20p, 2p, 2p(2w (1 —a?)p—a’p)) =0,
(¢, 9% e103, (o + 5152@@
D(0, (w? — 1)@?, —(w? = De[(w® — 1)@ + we], —(w? = D[(w® = 1)¢ + we]?) = 0.
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Symmetry classification of multi-component
scale-invariant wave equations

W.I. FUSHCHYCH, P.V. MARKO, R.Z. ZHDANOV

We describe systems of nonlinear wave equations of the form Ou; = Fj(u1,...,us),
j =1,...,4 invariant under the extended Poincaré group ]5(1, 3). As a result, we have
obtained twenty inequivalent classes of nonlinear 13(1, 3)-invariant systems of partial
differential equations.

It is well-known that the maximal symmetry group admitted by the nonlinear
wave equation

Ou = Ugya, — Dgu = F(u) (1)

with an arbitrary smooth function F(u) is the 10-parameter Poincaré group P(1,3)
having the following generators:

Pp, = a;m J;u/ = guaxaaz/ - guaxaa;u (2)

where 0, = 0/0z,, g, = diag(1,—1,—-1,—-1), u,v,a = 0,..., 3. Hereafter, the sum-
mation over the repeated indices from 0 to 3 is understood.
As established in [1], equation (1) admits the wider symmetry group in two cases

1. F(u) = M, k+#1, (3)
2. F(u) = Ae™, k#0, (4)

where A, k are arbitrary constants, only.
Equations (1) with nonlinearities (3), (4) admit the one-parameter groups of scale
transformations D(1) having the following generators:

2
1. D:xuﬁﬂ—kﬁu&“
- (5)
2. D= x,ﬁu - Eau

The Lie transformation group generated by the operators (2), (5) is called the
extended Poincaré group P(1,3) [2].

Let us note that in [3]| a partial symmetry classification of ]5(1, 3)-invariant partial
differential equations (PDEs) of the form

Ou = F(u,u™) (6)

have been performed and two classes of ]3(17 3)-invariant PDEs have been constructed.
A complete solution of the problem of classifying two-component wave equations (6)
admitting the extended Poincaré group has been obtained in [4].

Preprint ASI-TPA/8/96, Arnold-Sommerfeld-Institute for Mathematical Physics, Germany,
1996, 9 p.
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In the present paper following an approach suggested in [4] we classify systems of
four PDEs

Duj = Fj(ul,UQ,U3,U4), j= 1,...,4, (7)

for real-valued functions u; = w;(xg, 1,22, 23), i = 1,...,4 admitting the extended
Poincaré group P(1,3) and the conformal group C(1,3).

Before formulating the principal assertions we make an important remark. As a
direct check shows, the class of equations (7) is invariant under the linear transfor-
mations of dependent variables

ujeu;:Zajkuk—i—ﬁj, j=1,....4, (8)
k=1
where o, 85, j = 1,2,3,4 are arbitrary constants and what is more det ||a; || # 0.
That is why, we carry out symmetry classification of equations (7) within the
equivalence transformations (8).
Theorem 1. Let generators of the Poincaré group be of the form (2). Then system
of partial differential equations (7) is invariant under the extended Poincaré group

P(1,3) if and only if it is equivalent to one of the following systems (for all cases
Fj = Fj(Ql,QQ,Qg), ] = ]., e ,4)

A1—2 Ap—2 Az—2 Ag—2
1. Du; = Py, M Ouy = Fru, 2 Oyg = Fiu, A Oy = Fyu, Mo
A2 A3 A4
o= =" o=
1= )\1 2 = BV 3 — )\1
Ug Uz

2
2. Ou; = Fiexp (_Eul) , Oug =TIy exp{()\Q — 2)%1}7

Ous = Fgexp{()\g — 2)“—1)1}7 Ouy = F4exp{()\4 — 2)%1},

Ql = )\gul — blnug, QQ = >\3U1 — blnug, Q3 = )\4’(1,1 — blHU4;
3. DU,]_:{F1+2F2}€Xp{()\1—2)ﬂ}, DUQZFQQXP{()\l—Q)ﬂ}’
U9 U U2
Ul U1
DU3Fgexp{(A22)}, Du4F4exp{()\32)
(15 u

0, exp (/\1%) g exp ()\2%) g exp ()\3“1)

us U2 Uqg

2

2
4. DUl = (Fl + FQ'UQ) exp ——U2> s Du2 = bF2 exp (_BUQ

b
2
|:| = — - D = — _
us Fgexp{()\l 2) 2 }, Uy F4exp{()\2 2) 2 }7
Ql :2bu1 7’&%7 QQ :)\1'&27b1HU3, Qg :)\QUQ 71)111’&4;

Uu u
5. Dur = (B + Fyug)exp {(\ =2}, Ous = bFyexp { (1 —2) 22}

SR

b

Ql :b1HU27>\1U3, 92262711,3, ngbln’u;l*)\g’UJg;
Uz

2
Oug = F3exp (—u;;) , Ouy = Fyexp {()\2 - 2)%} ,
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10.

11.

U u U
Du1 = (Fl +F272 + Fgl) exp {()\1 — 2)2} ,
u3 u3 us

DUQ = (F2 +F3%> exp{()\l - 2)%},
us u3

Ous = Fgexp{()\l Q)ZE}, Oug = F4exp{()\2 Q)Zz},

2
Uz Uy U2 U2
91:)\1——an3, 92:2—— — s ng)\z——h’lU4;
us us us us

Du1 = (F1 + FQQO + Fgﬂ(z)) eXp(72Q()),
DUQ = (F2 + 2F390) exp(—QQo),

Oug = 2F3exp(—2Q), Oug = Fyexp {(A —2)Q},

2 3
us u3 U2U3 Uz
Qo=—, Q1 =2uy— -2, Qo=u;— =
0 b’ 1 U2 b’ 2 = U b 3p2°
Qg = )\Ug — ban4;

-2
Duy = (uf +u3) ™% (Frup + Fyuy) exp <a 5 arctan ﬂ) ,
Uz

-2
Ouy = (uf + u%)_%(Fgug — Fiup) exp (a 5 arctan 2) ,
U2

AL —2 Ao — 2
Dunggexp< 1b arctaunZ—i)7 Du4:F4exp< 2b arctanZ—i),

( 2 2)>\1 exp ()‘1 arctan ** ) exp (% arctan Z—;)

2 .
0 = 3 Q= ) Q3 = )
usz us Uy

b b -2

Ouy = (F1 cos <—U3) + F5sin (—u3>> exp (a Ug) ,
c c c
b b -2

Ouy = (F2 cos <U3> — Fsin <U3>> exp <a U3> ,
c c c

2
Oug = F3exp (——u;;) , DOug = Fyexp {()‘ - 2)%} )
C C

Q= In(u? +ud) — 2a—, Oy = arctan -+ — bE, Q3 = Aug — clnuy;
c U c

Ouy = (F1 + Fg) exp{()\l - 2)%}, Ous = Fyexp {(/\1 - 2)—1}
2 U2
Oug = (F3+ F4> exp{()\g—Q)Z—i}, DU4:F4eXp{()\2—2)—i}
Q ()\ ﬂ) q _EXP<)‘ZZ_2> 0 _ﬂ_%.
2 — Uy 9 3 — U ’U,4’

u
Ouy = (F1 +F2— +F3— +F4—> exp{()\— 2)u_3}’
Uy 4

Oup = B+&+&%m%A2ﬁﬂ,
4

DU3—(F3+F4—> exp{()\—Q)%}, Du4:F4exp{()\_2)%},
4 4
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0, — exp ()\Z—i)

2 3
, 92:2%_@), 93:32+<@> _ guats
Uy Uy Uy U

arctan —

arctan —)
Oug = (Fg + EF4> exp {()\ — 2)%} , DOuyg = F4exp{
Uy Uy

0, exp (AZ—Z)

12. Ouy = (u? + u%)_%(Flug + Fyuy) exp (

a
Ouy = (uf —|—u§)_%(FQu2 — Fiup)exp ( LI

0 = arctan b— = ,
U2 u4 Uy
0 = (i + i) exp (a2 )
21
2 2y~ 1 -2
13. Duy = (uf + u3)” 2 (Flus + Fyuy) exp 7 arctan — | ,
1 2
2 2\—1 a, — 2
Duy = (uy +u3) ™ ? (Faug — Fiug) exp p— arctan = ),
1 2
-2
Oug = (u;%, + ui)_% (F3uy + Fyus3) exp < Qb arctan —) ,
2 4
2 2y—1 as — 2
Oug = (ug + ug)~ 2 (Fyug — Fiug) exp arctan — | ,
b2 Uy
1UL

exp (arctan )

U U biu

)1 = by arctan e - by arctan —3, Oy = ,
U2 U4 (w3 +u3)?

azus
exp (arctan b2u4)

Q3 =

3

(uf +uj)?
14. Ouq = (Fl + FQE> Qo, Oug = F5Qy,
U2

Ousg = (Fg + F4U3> Qo, DOug = Fuy,
Ugq

b Qq exp (M)
O = exp{(a—Q)ﬂ}secﬂ, o =—"7

U2

Qg exp (‘““)
Q=——"7""=, U= ;
Uy u2 Uy

15. Ouy = (F1 +F2% +F3ﬂ) exp {(/\ - 2)%}a
us us us

Oug = (F2 +F3%> exp{()\ — 2)%} ,
us3 u3
Ouz = F3exp {()\ — Z)UQ} , Ouy = Fyexp <2u2> ,
us

31 us

u3

2
Uz Uy Uz Uz
Qli)\—fln’llg, 92:2—7 — s 9316—711,4;
us us us us
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16.

17.

18.

19.

20.

u u
Ouy = (Fy +F2u4)exp{()\— 2)?4}, Oug = bFQeXp{(/\ - 2)74}7

2 2
Ous = (F3 + Fyuq) exp <bU4> ,  DOuy = bFyexp <b’LL4) ,

U1 Uy
D= A— —lnuy, Qo=b— —uy, Q3=2busz—u’;
U2 U2

LR

Ouy; = | 1 + FoQo + F37 + F4F GXp(—QQo)7
a3

D’LLQ = F2 + Fggo + F47 exp(—2Qo),

Ous = (F5 + F4Qo) exp(—2Q), DOuy = Fyexp(—2Q),

o= m= 238 m -5
2 Ui

b2 b
Q 7E7’UJ2U4 U3U477
T b2 23 8b?’

2 2
Ouy = (F1 4+ Fous) exp <—Eu2) ,  DOug = bFyexp (_EW) ,

2 2
Ous = (Fg + F47.L4) exp <u4> , Ouy = cFyexp <U4) ,
¢ c

O = 2bu; — ug, Oy = 2cuz — ui, Q3 = buz + cuy — uguy;

b b -2

Ouy = {Fl cos (U4) + Fysin <u4) } exp (a u4> ,
c c c
b b -2

Oug = {Fg cos (—u4) — Fysin (—U4> } exp (a u4> ,
c c c

2
D’LL3 = (Fg =+ F4U4) exp <—EU4> s

2
Ouy = cFyexp (—Eu4> , b#£0, ¢c#£0,

u u u
Q) = In(u? +ud) — 20—, Q= arctan — — b—, Q3 = 2cug — u;
c U c
Ou; =0, j=1,...,4,

where Fy, Fy, F3, Fy are arbitrary smooth functions and a, b, ¢ are arbitrary constants.

Furthermore, the basis generators P,, J,,,, are given by formulae (2) and generators
of corresponding groups of scale transformations are given by the following formulae:

® NS

D = ,0, + Mu10u, + Aou20u, + A3uz0u, + MausOy,, A1 # 0;

D = z,0,, + b0y, + Aau20y, + A3uzOyu, + AuaOy,;

D = 2,0, + M (w104, +u20u,) + 120y, + A2uz0u, + A3uaOuy;

D = 2,0, + u20y, + b0y, + Mu30y, + AotsOy,;

D =2,0, + M (w104, + u20y,) + w20y, + b0y, + AouaOy,;

D =,0, + M (w104, + w20y, + u30y,) + 20y, + ug0u, + AousOy,;
D = 2,0, + u20y, + u30y, + b0y, + AusOy,;

D =2,0, + a1(u10y, +u20y,) + b1(u20u, — u10u,) + A1uz0u, + A2uaOu,;
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9. D=u2,0,+ a1(ui0u, +u20u,) + b1(u20y, — u10y,) + cOuy + AuaOu,;
10. D =x,0, + A\ (u10y, + u20u,) + w20y, + A2 (u30y, + a0y, ) + usOyy;
11. D =x,0, + Mu10y, + u20y, + ug0yu, + a0y,) + 120y, + u30y, + usOy,;
12. D =x,0, + a(u10u, + u20y,) + b(u20y, — w10y,) +
+ A (u30u; + ugOy,) + UaOys;
13. D =xz,0,a1(u10u, + u2dy,) + b1 (u20y, — u10y,) +
+ ag(u30yy + w0y, ) + ba(ugDyy — u30y,);
14. D =x,0, + a1(u10y, + u20y,) + b1(u20y, — u10y,) +
+ a2 (ug0uy + uaOy, ) + ba(ugOuy — u30y,) + U3y, + ug0u,;
15. D =x,0, + Mu10y, + w20y, + u30y,) + 20y, + 30y, + b0y,;
16. D = x,0, + w40y, + b0y, + AMu10y, + ©20y,) + u20y,, b#0;
17 D = 2,0, + u20u, + u30u, + 40y, + 00y,;
18. D =x,0, + u20y, + b0y, + 140y, + cOy,, b#0,c#0;
19. D =x,0, + a(u10u, + u20u,) + b(u20y, — w10u,) + a0y, + cOu,;
20. D =2z,0,.

Theorem 2. System of PDFEs (7) is invariant under the conformal group C(1,3) iff
it is equivalent to the following system:

Proofs of Theorems 1, 2 are carried out with the help of the infinitesimal Lie
algorithm (see, e.g. [2, 5, 6]). Here we present the scheme of the proof of Theorem 1
only.

Within the framework of the Lie method, a symmetry operator for system of PDEs
(7) is looked for in the form

X =&u(w,u)0y +nj(x,u)0y;, j=1,...,4, (10)

where £, (x,u), 1j(x,u) are some smooth functions.
The necessary and sufficient condition for system of PDEs (7) to be invariant under
the group having the infinitesimal operator (10) reads

X(DUj+Fj) :O, jzl,...,4, (11)

Du;—F;=0, i=1,...,4
where X stands for the second prolongation of the operator X.

Splitting relations (11) by independent variables, we get the Killing-type system
of PDEs for &, 7. Integrating it, we have:

& = 22,4908%aks — Kugas®ats + Cuagas®s +dx, +e,, p=0,...,3,
4
e = Zakjuj +bi () — 2gapkazpur, k=1,...,4.
j=1

(12)



48 W.I. Fushchych, P.V. Marko, R.Z. Zhdanov

Here ko, ¢y = —Cup, d, €y, aij are arbitrary constants, by (z) are arbitrary functi-
ons satisfying the following relations:

4 4
> (Z apuy + by () — 2ga5ka$ﬂuk> Fju, +0bj(2) +
k=1 \l=1
4 (13)
+2(d+ 3gapkarp)Fy — Y apFy =0, j=1,...,4,
=1

From (12), (13) it follows that system of PDEs (7) is invariant under the Poincaré
group P(1, 3) having the generators (2) with arbitrary Fy, F5. To describe all functions
Fy, F5 such that system (7) admits the extended Poincaré group }5(1, 3), one has to
solve two problems:

1) to describe all operators D of the form (10), (12) which together with opera-
tors (2) satisfy the commutation relations of the Lie algebra of the group ﬁ(l, 3) (see,

e.g. [2])
[Poupﬁ]zov [Pav‘]/B’Y]:gOKBP’Y_ga’YPm

[Jozﬁw],ul/] = gavJBu +gﬂu<]al/ - ga,uJBu - g,Bl/JOL[L)
[DaJaﬁ]:07 [PQ7D]:PQ7 a76777M7V:07"'73;

2) to solve system of PDEs (13) for each operator D obtained.
On solving the first problem, we establish that the operator D has the form

4 4
D= Zcuaﬂ + Z Aijuj + B; 87”, (14)
1

i=1 \j=

where A;;, B; are arbitrary constants.

As noted above, two operators D and D’ connected by the transformation (8)
(which does not alter the form of the operators P,, J,,,,) are considered as equivalent.
Using this fact we can simplify substantially the form of the operator (14).

On making in (14) the change of variables (8) with 3; = 0, we have

4 4
D' =uz,0,+ Z ZAijU;' + B; | Ou,
i=1 \ j=1
where
1 A1 = llev; 11 Asjll e |~
- (15)

B; = ZaikBk, i=1,23,4.
k=1

As an arbitrary (4 x 4)-matrix can be reduced to a Jordan form by transformation
(15), we may assume without loss of generality that the matrix || 4;;|| is in the Jordan
form. The further simplification of the form of operator (14) is achieved at the expense
of transformation (8) with a;, = 0.

As a result, the set of operators (14) is split into twenty equivalence classes, whose
representatives are adduced in (9).
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Next, integrating corresponding system of PDEs (13), we get P(1,3)-invariant
systems of equations given above.

Note that when proving Theorem 1, we solve a standard problem of the repre-
sentation theory, namely, we describe inequivalent representations of the extended
Poincaré group which are realized on the set of solutions of system of PDEs (7). But
the representation space (i.e., the set of solutions of system (7)) is not a linear vector
space, whereas in the standard representation theory it is always the case. This fact
makes impossible a direct application of the methods of the classical theory of linear
group representations [7].
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New scale-invariant nonlinear differential
equations for a complex scalar field

R.Z. ZHDANOV, W.I. FUSHCHYCH, P.V. MARKO

We describe all complex wave equations of the form Ou = F'(u,u”) invariant under
the extended Poincaré group. As a result, we have obtained the five new classes of

P(1, 3)-invariant nonlinear partial differential equations for the complex scalar field.

It is well-known that the maximal symmetry group admitted by the nonlinear
wave equation

Ou = gz — Dsu = F(u) (1)

with an arbitrary smooth function F(u) is the 10-parameter Poincaré group P(1,3)
having the following generators:

Pp, = a;u J/,Ll/ = guaxaaz/ - guaxaaua (2)

where 0, = 0/0.,, g = diag(l,—1,-1,-1), p,v,a = 0,1,2,3. Hereafter, the
summation over the repeated indices from 0 to 3 is understood.
As established in [1] Eq. (1) admits a wider symmetry group only in the two cases:

(1) Fu) = X¥, k#1, 3)
(2) F(u) = Xe*™,  k#0. (4)

where A, k are arbitrary constants.
Egs. (1) with nonlinearities (3) and (4) admit the one-parameter groups of scale
transformations D(1) having the following generators:

(1) D=2,0,+ %u@u,
) o)
(2) D = 2,0, — E(?u.

The 11-parameter transformation group with generators (2) and (5) is called the
extended Poincaré group P(1,3).

The above result admits the following group-theoretical interpretation: on the set
of solutions of the nonlinear wave equation (1) two inequivalent representations of
the extended Poincaré group are realized. Each representation gives rise to a ﬁ(l, 3)-
nonlinear wave equation with a very specific nonlinearity.

Surprisingly enough, there is no an analogous result for the complex nonlinear
wave equation

Ou = F(u,u™) (6)

Physica D, 1996, 95, P. 158-162.
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which is a more realistic model for describing a charged meson field in the modern
quantum field theory. Eq. (6) admits the Poincaré group with generators (2) under
arbitrary F(u,u*). It is natural to formulate the following problem: to describe all
functions F' such that the said equation admits wider symmetry groups. We are
interested in those equations of the form (6) which are invariant under the natural
extensions of the Poincaré group — the extended Poincaré and the conformal groups.

A wusual approach to the description of partial differential equations admitting
some Lie transformation group is to fix a representation of the group and then use
the infinitesimal Lie method (see, e.g. [2, 3]) to obtain an explicit form of the unknown
function F. In this way in the paper [4] two classes of P(1, 3)-invariant equations of the
form (6) were constructed. But this approach may result in loosing some subclasses
of invariant equations (which is the case for the paper mentioned). It means that one
should not fix a priori a representation of the group. The only thing to be fixed is the
commutational relations of the corresponding Lie algebra. This approach guarantees
that all equations admitting a given group will be obtained.

In the paper [5] Rideau and Winternitz study two-dimensional PDEs admitting
the extended Poincaré group ]3(1, 1) using the approach described above. They have
classified second-order ]3(1, 1)-invariant equations within the change of independent
and dependent variables.

In the present paper we will describe within the affine transformations all equa-
tions belonging to the class (6) which are invariant under the 11-parameter extended
Poincaré group.

Putting u = uy + tug, u* = u; — iuy we rewrite the complex equation (6) as a
system of two real equations

DU’J = Fj(Ul,Ug), ] = 172 (7)

Before formulating the principal assertions we make a remark. As a direct check
shows, the class of Egs. (7) is invariant under the linear transformations of dependent
variables

2
uj — u;- = Zajkuk + 6j7 (8)
k=1

where ajk, 8, j = 1,2 are arbitrary constants with det ||cz| # 0.
That is why we carry out symmetry classification of Eqgs. (7) within the equivalence
transformations (8).

Theorem 1. The system of partial differential equations (7) is invariant under the
extended Poincaré group P(1,3) iff it is equivalent to one of the following systems:

(1) Duy = uga—Z)/aﬁl(W)7

Dup = u{’ " Fy(w), w=ubu;";

(i) Oup = exp <(a - 2)“1> {E(w) + ulﬁg(w)} ,
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U2> Fy(w),

(ill) DOuy = exp (a

) -
Oug = exp (—51@) Fy(w), w=auz—>blnuy;

—9 ~ ~
(iv) Oup = (u? +u3)~Y?exp (a arctan u1> {uQFl(w) + ulFQ(w)} )

ug
-2

arctan ﬂ) {U2ﬁ2(‘*}) - “1ﬁ1(w)} ©(9)

a
Oy = (42 + u2) 2 exp (
(]

u
w = bln(u? + u?) — 2aarctan —;
U2

(v) Ouy =exp (—%w) {ﬁl (W) + u2ﬁ2(w)},

92 ~
Ous = bexp (—Eug) Fry(w), w=2bu — ug;
(vi) Oup =0, Oug=0;

where ﬁl, ﬁg are arbitrary smooth functions, a, b are arbitrary constants.

And what is more, the basis generators P, J,,, are given by the formulae (2) and
the generators of the corresponding groups of scale transformations are given by the
following formulae:

(i) D =x,0,+ au10y, + buzdy,, a #0;

(i) D ==x,0,+ a(u10y, + u20y,) + u20y,;

(ili) D =x,0, + au10y, + b0y,, b#0;

(iv) D =x,0,+ a(u10u, +u20y,) + b(u20y, — u10y,), b#0;

(v) D=x,0,+u20y, +00,,, b#0;

(vi) D =x,0,.
Theorem 2. The system of PDE (8) is invariant under the conformal group C(1,3)
iff it is equivalent to the following system:

Ou; = w3 (ﬂ) . j=12
U2

where Fy, Fy are arbitrary smooth functions.

Proofs of the Theorems 1, 2 are carried out with the use of infinitesimal algorithm
by Lie [2, 3]. Here we present the proof of the Theorem 1 only.

Within the framework of the Lie’s approach a symmetry operator for the system
of PDE (7) is looked for in the form

X = g#(xv u)a,u +m (1’7 u)au1 + 772(3:7 u)auQa (11)

where £, (z,u), n;(x,u) are some smooth functions.
Necessary and sufficient condition for the system of PDE (7) to be invariant under
the group having the infinitesimal operator (11) reads

X(D’LLj - FJ) Oup—F1=0 = 07 j = 1,2, (12)

Qup—Fy=0

where X stands for the second prolongation of the operator X.
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Splitting relations (12) by independent variables we get a Killing type system of
PDE for £, 1. Integrating it we have:

€u = Z-rugaﬁmakﬁ - kugaﬂmaxﬁ + Cuagap®s + dmu +eu, p= » 3,

13
e = Zakjuj + bi(2) — 2gapkazpur, k=1,2, (13)
j=1
where ko, ¢ = —Cup, d, €y, ayj are arbitrary constants, by (x) are arbitrary functions
satisfying the following relations:
Z <Z agiu; + bk — QQngal‘guk> Fyy,, + Dbj (I) +
k=1 = (14)

2
+2(d+ 3gapkazp)Fy — Y ayFy =0, j=12.
1=1

From (13) and (14) it follows that the system of PDE (7) is invariant under the
Poincaré group P(1,3) having the generators (2) with arbitrary Fi, F». To describe
all functions Fy, F5 such that system (7) admits the extended Poincaré group P(1,3)
one has to solve the following two problems:

e to describe all operators D of the form (11), (13) which together with the
operators (2) satisfy the commutational relations of the Lie algebra of the group
P(1,3):

[Po; Pl =0, [Pa, Jgy] = gapPy — gay Ps,
[ afs ,LLV] - gal/Jﬁ;L + gﬂ/_LJau ga/,LJﬁu - gﬁVJa;La
[D Jaﬁ]—o [PaaD]_Pou a757%M7V=07_3§
e to0 solve system of PDE (14) for each operator D obtained.
Substituting the operator D = X with ¢, nx of the form (11) and (13) into

the above commutational relations and computing the coefficients of the linearly-
independent operators d,, we arrive at the following relations:

ka=0, cuw=0, a pu v=0,...,3,
b
Obi(x) =0, k=1,2, pu=0,...,3.
Oox,,
Consequently, the generator of the one-parameter scale transformation group D
admitted by the PDE (7) necessarily takes the form

2 2
D = a:;ﬁu + Z ZAijUj + B; 81”, (15)

where A;;, B; are some constants.
Before integrating the determining Egs. (14) we simplify the operator D using
the equivalence relation (8). Making in (15) the change of variables (8) with §; = 0

(which does not alter the form of the operators P, J,,) we have

D' ==,8, +Z ZAU i + Bi | 0y,
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where

2 2
Aij = Z ik Al afjl, B, = Z o B, 1=1,2. (16)
k=1 =1

Here ozl_jl are elements of the (2 x 2)-matrix inverse to the matrix ||c;|.

Since an arbitrary (2 x 2)-matrix can be reduced to the Jordan form by the
transformation (16) we may assume, without loss of generality, that the matrix ||/~1” I
is in Jordan form. The further simplification of the form of operator (15) is achieved
at the expense of the transformation (8) with «;; = 0.

As a result, the set of operators (15) is divided into the six equivalence classes
whose representatives are adduced in (10).

Next, integrating corresponding system of PDE (14) we get P(1,3)-invariant sys-
tems of equations (9).

Note 1. When proving the Theorem 1 we solve the classical problem of representation
theory: the description of inequivalent representations of the extended Poincaré group
which are realized on the set of solutions of the system of nonlinear PDE (7). The
representation space (i.e. the set of solutions of system (7)) is not a linear vector
space, whereas in the standard representation theory it is always the case. This fact
makes impossible a direct application of the standard methods of linear representation
theory (for more detail, see [5, 6]).
Note 2. If one put in the formulae (1) and (3) from (6) a = k1, b = ko and a = kq,
b = 0 respectively, then we get ﬁ(l, 3)-invariant systems of PDE constructed in [4].
Further, if we make in (6) the change of variables
* 1 *
u1:§(u+u ), u2:2_i(u_u ),
then we get the six classes of inequivalent PDE for complex field invariant under the
extended Poincaré group.

Equations of the form (3) are widely used in the quantum field theory to describe
at the classical level spinless charged mesons [7|. But PDE (3) with arbitrary Fy, F» is
“two general” to be used as a reasonable mathematical model of a real physical process.
The nonlinearities Fy, F, should be restricted in some way. To our minds the symmetry
selection principle is the most natural way of achieving this target. Furthermore, the
wide symmetry of the equation under study makes it possible to apply the symmetry
reduction procedure to obtain its exact solutions. Since all connected subgroups of
the extended Poincaré group are known [8-10] one can apply the said procedure to
reduce and to construct particular solutions of the PDE (9). This problem is now
under consideration and will be a topic of our future paper.

Acknowledgments. One of the authors (R.Zh.) is supported by the Alexander
von Humboldt Foundation. The authors are thankful to the referee for useful sugges-
tions.
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Some exact solutions of a conformally
invariant nonlinear Schrodinger equation

P. BASARAB-HORWATH, L.L. BARANNYK, W.I. FUSHCHYCH

We consider a nonlinear Schrédinger equation whose symmetry algebra is the confor-
mal algebra. Using some of these symmetries, we construct some ansatzes for solutions
of the equation. This equation can be thought of as giving a wave-function description
of a classical particle.

1 Introduction

Many authors have proposed nonlinear generalisations of the linear equation of the
following type [1, 2, 3, 4, 5, 6, 7]:

AN
e + Au = [ M\ [ul + >\2|u|a|u\a + Xo lnE u, (1)
|ul |ul u*
where u; = %, lu|e = 58712’ lu| = wu*, a = 1,...,n, X\o, A1, A\g are constants, and

we sum over repeated indices. These types of equations were introduced to include
effects such as dissipation and diffusion.

The symmetry properties and classification of equations of type (1) are studied in
[6, 7]. An important property of all equations of the above type is their admit the
Galilei group G(1,n) as symmetries.

In this article we shall consider the following equation belonging to the class (1):

iug + Au = Mu (2)
|ul

which has remarkable symmetry properties. Indeed, it has the largest local symmetry
algebra of all known nonlinear Schriodinger equations, being invariant under the
conformal algebra AC(1,n+1) of n+2-dimensional Minkowski space. Thus, since this
algebra contains the Poincaré algebras AP(1,n+1), AP(1,n) and so on, equation (2)
obeys the principle of Lorentz—Poincaré-Einstein relativity as well as Galilei relativity
(see [8] for more details on this effect).

There are other reasons for considering equation (2). First, (2) can be obtained as
a reduction of the hyperbolic equation

[P0V — ¢O|¥| = —x V. (3)

Equation (3), with & = m?c?/h? was proposed by Vigier and Gueret [3] and by Guerra
and Pusterla [2] as an equation for de Broglie’s double solution [1]. Using the following
ansatz in (3)

U = W= (2)/ 2y (7, B, 6x),

Preprint LITH-MAT-R-97-11, Department of Mathematics, Link6ping University, Sweden, 1997,
12 p.
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where 7 = axr = a,x" and €, a, 3,  are constant 4-vectors with a? =¢e =0,

B =5=-1,af=ad=¢B=¢€l =0, ac = 1, we obtain the equation

A2|u\
Jul

’iUT +A2 =

with Ay = 8‘9—:%—# 88—?/25, y1 = Bz, yo = dx. This is just equation (2). The ansatz described
above is used in reducing nonlinear complex wave equations to nonlinear Schrédinger
equations (see [9] for more details).

A second reason for considering (2) is that it arises in connection with the so-called
classical limit of quantum mechanics (A — 0). Indeed, writing

,(/J — A(t,f)ew(t’f)/ﬁ
in the free Schrodinger equation

iy = — LAY

2m

we obtain the system

h? AA

1 2
Ot 5 (VO =5

. 0(A2)+V (AQW) —0

m
which, on taking the limit 7z — 0 gives

0, + i(ve)Q =0, O(AH+V (AQV—0> =0
2m m

which is the same system we obtain when we put u = Ae® into (2) (when m = 1/2).
It is thus possible to think of a classical particle having a wave-function u satisfying
(2), but we shall not pursue this interesting question here.

The main aim of our paper is to exploit the symmetry algebra AC(1,4) to construct
exact solutions of equation (2) for n = 3. It is not yet possible to give a physical
interpretation of the solutions we obtain, but we believe that nontrivial solutions
of nonlinear equations are always of interest and give useful information about the
possible flows (trajectories, evolutions, bifurcations, asymptotics) of the dynamical
system described by (2). Of course, initial and boundary conditions will pick out
some special solutions of the equation which can be given a physical interpretation.

In order to construct solutions of (2) in explicit form, it is necessary to know all
inequivalent subalgebras of the algebra AC(1,4), and then to construct corresponding
ansatzes which reduce (2) to equations in fewer independent variables, even ordinary
differential equations. It is not possible to realise this scheme (see [10] for details) in
full in this paper: we merely list those subalgebras of the extended Poincaré algebra
AP(1,4) = (AP(1,4), D) which reduce (2) to ordinary differential equations which
we are able to solve in general or find particular solutions for. The solutions of these
ordinary differential equations give us exact solutions of (2).
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2 Symmetry of (2) in terms of amplitude and phase

To simplify our work, it is convenient to go over to the amplitude-phase representation
of the function u:

u(t, @) = A(t, )e0hT) = RED+i0T)
in terms of which equation (2) becomes:

0 +V0o-Vo =0, @

Ry + A0 +2V0-VR = 0. 5

Using the standard algorithm for calculating Lie point symmetries (see, for examp-
le, [11, 13, 12, 8]) we find the following result:

Theorem 1. The mazimal point-symmetry algebra of the system of equations (4), (5)
is algebra with basis vector fields

1
22
1 1
J07n+1 = tﬁt — 0(99, J()a = ﬁ (Iﬂaat + (t + 20)87"@ + 233@(99) ,

Pt :8t7 Pa :aa; PnJrl = (281&_80)7 N:8R7 Jab :maab_l‘baaa

1 1
Ja,'n+l = ﬁ (—l‘aat + (t — 29)8$a + §xa8wo) s

D=— (tat + 200 + 005 — 363) ,
2

Ko = V2 ((t + ) By + (t + 20)3,0,, + (%

72 7?2 n
Kpp1=—V2 ((t - —) Oy +(t — 20)x,0,, + <I - 292> O — 5 (t— 29)05,,)7
K, =2x,D — (4t0 — 7%)0,, .

+ 292) 9 — g(t + 29)8R> ,

The above algebra is equivalent to the extended conformal algebra AC(1,n+1)®
(N). In fact, with new variables

1 1
E(t + 29)) Tn4+1 = ﬁ(t - 29) (6)

the operators in Theorem 1 can be written as

o =

Pa = 8,1, Jag = .’Eaag — .’L‘ﬁaa, N = 83,

D= 2400 + gN, Ko = —22oD — (2,,2")0,. Q
Remark 1. It follows from Theorem 1 that the nonlinear Schrodinger equation (2) is,
in 14 3 time-space, invariant with respect to the Poincaré group P(1,4) of 144 time-
space. The basis elements of the algebra AP(1,4) are (Py, P1, P2, P3, Py, Jog, Joa, Jaa)-
We also have that the new “time” xy and the new coordinate x4 in (6) depend linearly
on the phase function 6 and on ¢, the time.
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3 Subalgebras of AP(1,4) & (N):
ansatzes and solutions

In this section we exploit those subalgebras of the algebra AP(1,4)® () which reduce
the equation (2) in 143 time-space dimensions to ordinary differential equations which
we are able to solve. In fact, we use the system (4), (5), since we construct ansatzes for
the functions 6 and R which, when substituted into (4) and (5), yield exact solutions
of (2).

Using the methods exposed in [15, 10], we have made a detailed subalgebra analysis
of AP(1,4)® (N), and we have described all inequivalent subalgebras of rank 3. Here,
we give a list of these algebras, the ansatzes and the exact solutions obtained.

Ay = (Ji2+dN,P3 + N, Py) (d > 0)

Ansatz:

0= —%t—i—f(w), R = x3 — d arctan (1‘1) +9w), w=ai+al
Solution:

9:—%75—1—5 x%;xg + 0, e=41,

x
R = x3 — darctan (2

1
131) 1 In(f + 23) + Cs,

where C, C5 are constants. These solutions describe processes which have phase
linear in time and amplitude constant in time, linear in x3.

Ag = (Joa +dN, P + N, P)
Ansatz:

1
Hzgf(CU), R=Int+ +Q(W), w = x3.

Solution:

1 1
9 (I3+Cl) ; R:dlnt+l‘17 €1H|I’3+Cl|+02, €::|:1

4t

As = (Joa +diN, Jia +daoN, Py + d3N)
Ansatz:

1

0=¥f(w), w=a2t+25, R= dllnt—dgarctan< )+d3x3—|—g()

T

where dy, do, d3 are constants.
Solution:

o (Vi + a3+ Cy)?
4t

)

1
R =dyInt — dyarctan (“) + d3zs — 1 In (xf + x%) -

(d1—|— >ln o2+ 2+ C

+ Cs.
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Ay = (Joa +dN, Jo3, Py, P3)
Ansatz:

1
0= ;f(w), R=dh|t|+g(w), w=uz.

Solution:

(z1 + Cy)?
4t

As = <G'17 Jog +di N, P3 + d2N> with d; arbitrary and dy = 0,1
Ansatz:

1
0= ’ R:dln|t|_(d+§>1n|$1+01|+02~

sz—i—i—%f(w), R = d; In|t| 4 doz3 + g(w), w = 2.
Solution:

0 x? + (xjt—&- 01)2’ R=dyln|t| + dows — (di + 1) In |23 + Ci| + Cb.
Ag = (J12, J13, J23, Py + dN) (d = 0,1)

Ansatz:

1
=—st+flw), R=-dV2t+gw), w=ui+a]+ai.

Solution:

1 [[2 2. 2
9:—§t+€ W"’Cla g€ ==l1,
1
R:—d\/it—l—de\/:c%—kx%-kx%—§1H($%+9C%+9C§)+C2~

A7 = (G1,Ga, Joa + di N, Ji2 + daN)

Ansatz:
2423 1 To
0= pr —|—Zf(w), R:dln|t|—d2arctanm—1+g(w), w = 3.
Solution:
2 + a3 + (z3 + C1)?
9 _ 1 2 3 1

4t ’
X9 3
R=dyIn|t —Barctanx— — | dy + 2 In |z5 + C1| + Co.
1

Ag = (Ji2, Jo3, J14, Jo3, Jou, J34)
Ansatz:

1
9:—§t—|—f(w), R=gw), w=(t—20)>+2(z}+a3+23).

Solution (in implicit form):

0 =—1t+1\/(t—20)2+2(2? + 23 +23) + C1,
3
R= —Zln ((t—20)* + 2(27 + 23 + 23)) + Co.
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Ag = (Jo1, Jo2, Jos, Ji2, J13, J23)

Ansatz:
1 r? + 23 + 23
H_Ef(w)+T’ R=gw), w=0-—t
Solution:
72— ACt + 8C2 3|22 2(t —20,)?
0= R=——ln|l——————— |+ (Cs.
it —8C; 2 t— 20, e
Ao =(Ji2+ Po+diN,P3+ dyN, Py) (di >0, dy > 0)
Ansatz:

1 1
0 = f(w) — =t — — arctan ﬂ, R=g(w)—d; arctan —2 + doxs,

2 \/5 T X1

_ .2 2
w =7+ 5.

Solution:
9:_115— ! arctan—+ (y/xl—l—xg—l—arctan x1+x2—1>+01,
2" V2
R:—dlarctanﬁ+d2x3——ln|x1+x2—1|—
T 4

—edyarctan /23 + 23 — 1+ Cy, e ==+1.

A1 ={(G1+2T +dN,P, + N, Ps)

Ansatz:

tﬁ’z]”(cu)—%—i—%t7 R:g(w)—i—%t—i—xg, w=t*— 2.
Solution:

0:%(t2—2x1)3/2—§+%t+017

R= f%(tQ —221) — f/—é(t? —221)Y?% + %t+.’£2 +Cy, ==l
A12 = (G + 2T + dN, Jag, P2, Ps)
Ansatz:

9:]0((4})*%4’%, Rg(w)+\(/i§t, w=t?—2x,.
Solution:

= %(# —2a)%/% - % %” +C1,

R= —%(t2 —271) + f/—di(t2 —22)1% + %HOQ, £=+1.
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A13 = <G1+d1N,G2+P2+d2N,P3+d3N> (dl,dQ,dg ZO)

Ansatz:
x? x32
0= flw +_1+72,
e+ 2V2(V2t + 1)
dlml dgl‘g
9() V2t Va1l
Solution:
2 2
L7 L2
=—4+ ———— + (1,
i AVt
poBmy dewr g —lln|t|—1|\/§t+1|+0

4 The extended subalgebras of the extended
Poincaré algebra AP(1,4)

If we add the dilatation operator D to the algebra AP(1,4)® N, we obtain the algebra
AP(1,4) ® N = (P,,J,,, N, D). In this section we give a list of the subalgebras of
AP(1,4) ® N which are not equivalent to subalgebras of AP(1,4) @ N, as well as the
corresponding ansatzes and solutions of (4), (5).

A14 ={(Joa+a1N,D + aaN, P3) (a1 >0, ay arbitrary)

Ansatz:
x3 3 1
0=—f(w), R=gw)+alnlt|— (a1 +as+ = |In|z;|, w=—.
t 2 T2
Solution:
x? 1
0= e R=ajIn|t| + (az —a1 + 2) In|zq]| — 2(az + 1) In|zs| + C.
A15 = <J12 + a1J04 + GQN,D + 043]\[7 P3> (a1 > 0)
Ansatz:
2 2 3
g="1 +$2f(w)7 R=gw)+ |-+ %) In (23 +23) — as arctan@,
t 4 2 X1
w=2In|t| — In(z? + 22) + 2a; arctan 2
T
Solution:
0 — x% + x%j
4t
R=g (2 In|t| — In (xf + x3) + 2a; arctan ﬂ) —
T

T 1
— ag arctan 2 (x% + x%) ,
I 2

where ¢ is an arbitrary function of one variable.
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Aie = (Jog + a1 N, Jia + aaN, D + agN) (a1,a2 > 0; as arbitrary)
Ansatz:

x%—i—x%

"2 fw),

2 2 3

R = g(w) + a1 In|t| — ag arctan T2 _ 20 tda3t 9
T

9:

(¥ + 23),

4
_xi4al
=2
Solution:
0 — x% + x%’
4t
1 1+2
R = ay In[t| — ag arctan T2 _ Gt In(2? + 23) — +2 %1 |zs| + C.
T

A7 = <J04 4+ a1 D + asN, Jio + asD + a4 N, P3> (CL% + a% 7& O)
Ansatz:

% + x2
9 _ 1 ; 2.]0((‘())7
3 2 3 2
R=g(w)+ Mlnm B R N
2 2 1
3 2
7¥ln(ﬁ+x3)’

w=ayIn|0| — a1 In || + 2a3 arctan 2 (23 +23).
T

Solution:

0 — :E% —+ x%

4
2 2 2 2
R= # In |t| — % In(x3 + 23) — w arctan -2 + C.
T
Asg = (Joua + D +aN, Jos, P>, Ps3)
Ansatz:
3

0=23f(w), R=gw)— (a—l— 5) In|z], w=t.

Solution:
x? 3

0= TR R=(a+1)Inj4t+ C4| — a+§ In|zq| + Co.
Ai9 = (G1,Jos + a1 D + agN, P3) (a1 # 0, ag arbitrary)
Ansatz:

3 7 3a1 + 2as 1—a1)/a

0= 1@+ R=gl) - =5 e, w=taf

Solution:
2 2 2 2 2
6= %, R = wlnw — %1113324_0
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Azo = (Joa — D+ M + aN, Jo3, P>, Ps)

Ansatz:
1 3 x?
0= ——nlt|, R= -1 , w= 2L
F@)+ i R=g)+ (a3 )mlal, w=3
Solution:

\/ 23 — 42t — |14
o= 1 mp 4 (|x1|+5\/x1 W2t + -S| L2 +Cn,
2v2 \/Q \/ 23 — 42t + |14

1 1 2 Vot —4V2t — |z
R:a2 Int| - Injad - 4v2¢) + el +“)m - + Oy
\/ 22 — 42t + |14

Az1 = (J12, 13, J23, Jos — D+ M + aN)

Ansatz:
1 2a — 3 72
0= + ——Inlt|, R= + In 72, = .
fw)+ sl B =) N, w=t
Solution:
& ( V- i)+
0 = Inft|+ = (|Z] +¢ — 42t ) +
M i+ g (19
v il | PO R
Vi? +|96\
R:4a— alel — a+11 q2+71 Va2 —4v2t—|7]|
Va2 — 42t + | 7|

1
~1 In|7?% — 4\/§t| + Cs.

5 Structure of the solutions

Most of the solutions we have obtained can be put into six classes, as follows.
Class 1: The phase and amplitude depend linearly on ¢ and have the following
structure:

0 =011t +012(F), R = Riit+ Ri2(%)

with 61, and Rp; being constants.
Class 2: The phase and amplitude have the structure

0
0 = ﬂ 4 055(Z), R =Ry Inlt| + Roa(2)
with 691 and Rs1 being constants.
Class 3: The phase and amplitude depend logarithmically on t:
2

0 .
9:ﬁ+932( 7), wzg%

with 631 and R3; being constants.

R=R31n |t| + Rgg(w, f)
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Class 4: The phase depends on t inversely, and the amplitude depends on ¢
inversely and logarithmically

_ On(®) | Oa(@)

0 043(%

n 7 0 B 43(‘7;)3

R (% Rao (2 +
R 4175(55) t42(z) + Ra3(Z) In [t] + Rya (%) In [t] + a.

Class 5: The amplitude is an implicit function of the phase:
0 = 051t + 952(’(1)), w = (t — 29)2 + 252, R = Ry (w)

with 051 a constant.
Class 6: The amplitude and phase depend on two invariants w and #2:
0:061—(10), wz&—lt, RZR(ﬂ(’U})
t 2

Since equation (2) is invariant under the conformal group C(1,4), with the infi-
nitesimal operators of the conformal algebra given in Theorem 1, we can act on the
solutions we have obtained with group elements (see [8] for the formulas giving this
action explicitly) and obtain families of solutions of equation (2). These families of
solutions, or orbits of the group passing through a given exact solution, are what
Petiau called guided waves [16].

We leave open the question of the physical interpretation of equation (2) and
its solutions. However, we note that, in as much as the system (5), (6) does not
contain Planck’s constant 7, the nonlinear Schrédinger equation (2) does not describe
a quantal system in the standard sense of this term. The system (5), (6) is also
obtained when ¢ = Ae/" is substituted into (...).
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Implicit and parabolic ansatzes:
some new ansatzes for old equations

P. BASARAB-HORWATH, W.I. FUSHCHYCH

We give a survey of some results on new types of solutions for partial differential
equations. First, we describe the method of implicit ansatzes, which gives equations
for functions which define implicitly solutions of some partial differential equations.
In particular, we find that the family of eikonal equations (in different geometries) has
the special property that the equations for implicit ansatzes are also eikonal equations.
We also find that the eikonal equation defines implicitly solutions of the Hamilton—
Jacobi equation. Parabolic ansatzes are ansatzes which reduce hyperbolic equations
to parabolic ones (or to a Schrodinger equation). Their uses in obtaining new types
of solutions for equations invariant under AO(p, q) are described. We also give some
results on conformally invariant nonlinear wave equations and describe some exact
solutions of a conformally invariant nonlinear Schrédinger equation.

1 Introduction

In this talk, I would like to present some results obtained during the past few years in
my collaboration with Willy Fushchych and some of his students. The basic themes
here are ansatz and symmetry algebras for partial differential equations.

I wrote this talk after Wilhelm Fushchych’ untimely death, but the results I give
here were obtained jointly or as a direct result of our collaboration, so it is only right
that he appears as an author.

In 1993/1994 during his visits to Linkoping and my visits to Kyiv, we managed,
amongst other things, to do two things: use light-cone variables to construct new
solutions of some hyperbolic equations in terms of solutions of the Schrédinger or
heat equations; and to develop the germ of new variation on finding ansatzes. This
last piece is an indication of work in progress and it is published here for the first
time. I shall begin this talk with this topic first.

2 The method of implicit ansatzes

2.1 The wave and heat equations

Given an equation for one unknown real function (the dependent variable), u, say,
and several independent (“geometric”) variables, the usual approach, even in terms
of symmetries, is to attempt to find ansatzes for u explicitly. What we asked was
the following: why not try and give u implicitly? This means the following: look for
some function ¢(x,u) so that ¢(x,u) = C defines u implicitly, where x represents the
geometric variables and C' is a constant. This is evidently natural, especially if you

Proceedings of the Second International Conference “Symmetry in Nonlinear Mathematical
Physics. Memorial Prof. W. Fushchych Conference” (July 7-13, 1997, Kyiv), Editors M. Shkil, A. Ni-
kitin and V. Boyko, Kyiv, Institute Mathematics, 1997, 1, P. 34-47.



68 P. Basarab-Horwath, W.I. Fushchych

are used to calculating symmetry groups, because one then has to treat  on the same
footing as x. If we assume, at least locally, that ¢, (x,u) # 0, where ¢, = 9¢/0u,
then the implicit function theorem tells us that ¢(z,u) = C defines u implicitly
as a function of z, for some neighbourhood of (x,u) with ¢, (z,u) # 0, and that
Uy = —ﬁ—:, where ¢, = %. Higher derivatives of u are then obtained by applying
the correct amount of total derivatives.

The wave equation Ou = F'(u) becomes

Qsilj(b = 2¢u¢,u¢,uu - ¢u¢u¢uu - ¢2F(U)
or

Pudp
Pu

This is quite a nonlinear equation. It has exactly the same symmetry algebra as the
equation Ou = F(u), except that the parameters are now arbitrary functions of ¢.
Finding exact solutions of this equation will give u implicitly. Of course, one is entitled
to ask what advantages are of this way of thinking. Certainly, it has the disadvantage
of making linear equations into very nonlinear ones. The symmetry is not improved in
any dramatic way that is exploitable (such as giving a conformally-invariant equation
starting from a merely Poincaré invariant one). It can be advantageous when it comes
to adding certain conditions. For instance, if one investigates the system

D¢:%< )-@m@)

Ou=0, wuyu, =0,
we find that u,u, = 0 goes over into ¢,¢,, = 0 and the system then becomes

O¢ =0, ¢u¢u = 0.

In terms of ordinary Lie ansatzes, this is not an improvement. However, it is not
difficult to see that we can make certain non-Lie ansatzes of the anti-reduction type:
allow ¢ to be a polynomial in the variable u with coefficients being functions of z.
For instance, assume ¢ is a quintic in u: ¢ = Au® + Bu + C. Then we will have the
coupled system

DA=0, OB=0, 0OC=0,
A, A, = B,B, =C,C, = A,B, = A,C, = B,C, = 0.

Solutions of this system can be obtained using Lie symmetries. The exact solutions
of

Ou=0, wuyu,=0

are then obtained in an implicit form which is unobtainable by Lie symmetry analysis
alone.
Similarly, we have the system

Ou=0, wuyu,=1
which is transformed into

0¢ = duu, ¢/L¢/L = 12L



Implicit and parabolic ansatzes: some new ansatzes for old equations 69

or

D5¢ = Oa ¢A¢A = 07

where O5 = O — 92 and A is summed from 0 to 4.

It is evident, however, that the extension of this method to a system of equations
is complicated to say the least, and I only say that we have not contemplated going
beyond the present case of just one unknown function.

We can treat the heat equation u; = Awu in the same way: the equation for the
surface ¢ is

oo 2 (050

bu
If we now add the condition ¢, = V¢ - V¢, then we obtain the system

ot =00, ¢u=V¢-Vo

so that ¢ is a solution to both the heat equation and the Hamilton—Jacobi equation,
but with different propagation parameters.
If we, instead, add the condition ¢2 = V¢ - V¢, we obtain the system

¢t = Db = buu, 01, = V-V

The first of these is a new type of equation: it is a relativistic heat equation with
a very large symmetry algebra which contains the Lorentz group as well as Galilei
type boosts; the second equation is just the eikonal equation. The system is evidently
invariant under the Lorentz group acting in the space parametrized by (z1,..., 2", u),
and this is a great improvement in symmetry on the original heat equation.

It follows from this that we can obtain solutions to the heat equation using Lorentz-
invariant ansatzes, albeit through a modified equation.

2.2 Eikonal equations

Another use of this approach is seen in the following. First, let us note that there are
three types of the eikonal equation

Uy Uy, = A,

namely the time-like eikonal equation when A = 1, the space-like eikonal one when
A = —1, and the isotropic eikonal one when A = 0. Representing these implicitly, we
find that the time-like eikonal equation in 1 + n time-space

uyy, =1
goes over into the isotropic eikonal one in a space with the metric (1,—1,...,—1)
—_——
n+1
¢,u¢,u = dﬁ

The space-like eikonal equation

Uy, = —1
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goes over into the isotropic eikonal one in a space with the metric (1,1,-1,...,—1)
——
n
¢,u¢u = —¢3
whereas
uyt, =0

goes over into

¢/L¢/L =0.

Thus, we see that, from solutions of the isotropic eikonal equation, we can construct
solutions of time- and space-like eikonal ones in a space of one dimension less. We
also see the importance of studying equations in higher dimensions, in particular in
spaces with the relativity groups SO(1,4) and SO(2, 3).

It is also possible to use the isotropic eikonal to construct solutions of the Hamil-
ton—Jacobi equation in 1 + n dimensions

(7 —+ (VU)2 = O
which goes over into
budr = (V)

and this equation can be written as

(%—;@)2 _ (qsu;@)Q _ (Vo)

which, in turn, can be written as

9" Ppadp =0
with A, B=0,1,...,n+ 1, g*% =diag(1,—-1,...,—1) and
_ Out P _ Ou— Pt
$o = 5 s Pnt1 = 5

It is known that the isotropic eikonal and the Hamilton—Jacobi equations have the
conformal algebra as a symmetry algebra (see [15]), and here we see the reason why
this is so. It is not difficult to see that we can recover the Hamilton—Jacobi equation
from the isotropic eikonal equation on reversing this procedure.

This procedure of reversal is extremely useful for hyperbolic equations of second
order. As an elementary example, let us take the free wave equation for one real
function w in 3 + 1 space-time:

Oju = OFu + Oqu + d3u
and write it now as

(60 + (93)((90 — ag)u = 8fu + 8%11
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or
Dy Oru = O%u + D3u,
20—z 20423 o 1,2 : : :
where 0 = #5%, 7 = ¥3%. Now assume u = e’V (7, 2", 2%). With this assumption,
we find

0.0 = (92 + 02) W

which is the heat equation. Thus, we can obtain a class of solutions of the free wave
equation from solutions of the free heat equation. This was shown in [1]. The ansatz
taken here seems quite arbitrary, but we were able to construct it using Lie point
symmetries of the free wave equation. A similar ansatz gives a reduction of the free
complex wave equation to the free Schrodinger equation. We have not found a way
of reversing this procedure, to obtain the free wave equation from the free heat or
Schrédinger equations. The following section gives a brief description of this work.

3 Parabolic ansatzes for hyperbolic equations:
light-cone coordinates and reduction to the heat

and Schrodinger equations
Although it is possible to proceed directly with the ansatz just made to give a
reduction of the wave equation to the Schrodinger equation, it is useful to put it

into perspective using symmetries: this will show that the ansatz can be constructed
by the use of infinitesimal symmetry operators. To this end, we quote two results:

Theorem 1. The maximal Lie point symmetry algebra of the equation
Ou = m2u,

where u is a real function, has the basis
P,=0,, I=u0,, Ju=u2,0,—1,0,

when m # 0, and

P,=0,, [I=u0y, Ju=2x,0,—12,0,,
D =za"0,, K,=2x,D— ;v2(‘3u — 2z,u0,

when m = 0, where

0 0 »
Ou = %7 a;t = Ma Ty = gud ,
g =diag(1,-1,...,-1), pvr=0,1,2,...,n.

We notice that in both cases (m = 0, m # 0), the equation is invariant under the
operator I, and is consequently invariant under o*0, + kI for all real constants k
and real, constant four-vectors a.. We choose a hybrid tetradic basis of the Minkowski
space: a: ata, = 0; e e'e, = 0; B: B3, = —1; §: 00, = —1; and ate, = 1,

atB, = atd, = '3, = €6, = 0. We could take, for instance, o = %(1,0,0,1),
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€= %(1,0,0, -1), 6=1(0,1,0,0), § = (0,0,1,0). Then the invariance condition (the

so-called invariant-surface condition),
(a0, + kI)u=0,
gives the Lagrangian system

dxt B du

ot ku

which can be written as

d(ax) _ d(Br) d(éx) d(ex) du

0 0 0 1 ku
Integrating this gives us the general integral of motion of this system
u— ek(“)¢>(ax, Bz, )
and, on setting this equal to zero, this gives us the ansatz
u =MD d(ax, B, o).

Denoting 7 = ax, y1 = Bz, yo = dx, we obtain, on substituting into the equation

Ou = m2u,

2k0;® = AD + m?*d,

where A = 8822 + %. This is just the heat equation (we can gauge away the linear
vy v3

’77127' . . . . .
term by setting ® = e z= ¥). The solutions of the wave equation we obtain in this
way are given in [1].

The second result is the following:

Theorem 2. The Lie point symmetry algebra of the equation
OV 4+ AF(|P))T =0

has basis vector fields as follows:
(i) when F(|¥|) = const |¥|?:

Oy Juw =2,0, — 2,0, K,=2x,2"0, — anu — 2z, (‘l’@q, + @8@) ,
D =20, — (\Il(?q; —&—@8@), M:i(\II&I, —@5‘@),

where 2% = x,z".

i) when F(|¥]) = const |¥|F, k #0,2:
(ii)

2 —
aua J;Ll/ = xuau - xuauy D(k;) == xljay — E (\I’aqf —|— \11(93) s
M =i (¥0y — Tdy).
(iii) when F(|¥]) # const |W|* for any k, but F # 0:

Oy Juw =240y — 2,0, M =1i(V0y — Vo).
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(iv) when F(|¥|) = const # 0:

O, I =xu0y — 3,0, M =1i(Vdy —V0g), L= (Vdy+ Vg),
Ly =i(V0y — WOg), Lp=V0y+ Vdg, Boy,

where B is an arbitrary solution of OW = FW.
(v) when F(|¥]) =0:

Oy S = 2,0y — 2,0, K, =22,2"0, —2°0, — 2z, (Voy + VOg),
D=z"9,, M=i(V0y—V0y), L= (¥dy+¥dy),
Ly =i(V0y — VOg), Lp=T0y+ Vdg, By,

where B is an arbitrary solution of OW = 0.

In this result, we see that in all cases we have M =i (\I/&p — E@a) as a symmetry
operator. We can obtain the ansatz

v = eik(5$)<1>(ax, Bz, éx)

in the same way as for the real wave equation, using M in place of I. However, now
we have an improvement in that our complex wave equation may have a nonlinear
term which is invariant under M (this is not the case for I'). Putting the ansatz into
the equation gives us a nonlinear Schréodinger equation:

i0,® = —AD + \F(||)®

when k£ = —1/2. Solutions of the hyperbolic equation which this nonlinear Schrédinger
equation gives is described in [2] (but it does not give solutions of the free Schrodinger
equation).

The above two results show that one can obtain ansatzes (using symmetries) to
reduce some hyperbolic equations to the heat or Schrodinger equations. The more
interesting case is that of complex wave functions, as this allows some nonlinearities.
There is a useful way of characterizing those complex wave equations which admit
the symmetry M: if we use the amplitude-phase representation ¥ = Re? for the
wave function, then our operator M becomes dy, and we can then see that it is those
equations which, written in terms of R and 6, do not contain any pure 6 terms (they
are present as derivatives of §). To see this, we only need consider the nonlinear wave
equation again, in this representation:

OR — RO,0, + A\F(R)R = 0,
RO6 +2R,0, =0

when A and F are real functions. The second equation is easily recognized as the
continuity equation:

9, (R*0,) =0

(it is also a type of conservation of angular momentum). Clearly, the above system
does not contain @ other than in terms of its derivatives, and therefore it must admit
OJp as a symmetry operator.

Writing an equation in this form has another advantage: one sees that the impor-
tant part of the system is the continuity equation, and this allows us to consider other
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systems of equations which include the continuity equation, but have a different first
equation. It is a form which can make calculating easier.

Having found the above reduction procedure and an operator which gives us the
reducing ansatz, it is then natural to ask if there are other hyperbolic equations which
are reduced down to the Schrodinger or diffusion equation. Thus, one may look at
hyperbolic equations of the form

OU = H(U, %)

which admit the operator M. An elementary calculation gives us that H = F(|¥|)¥.
The next step is to allow H to depend upon derivatives:

OV = F(0, 0%, 0, U5)¥

and we make the assumption that F' is real. Now, it is convenient to do the calculations
in the amplitude-phase representation, so our functions will depend on R, 8, R,,, 8,,.
However, if we want the operator M to be a symmetry operator, the functions may
not depend on 6 although they may depend on its derivatives, so that F' must be a
function of |¥|, the amplitude. This leaves us with a large class of equations, which
in the amplitude-phase form are

OR = F(R,R,,,0,)R, (1)

ROO+2R,0,=0 (2)
and we easily find the solution

F=F(R,R,R,,0,0,,R,0,)

when we also require the invariance under the Poincaré algebra (we need translations
for the ansatz and Lorentz transformations for the invariance of the wave operator).

We can ask for the types of systems (1), (2) invariant under the algebras of
Theorem 2, and we find:

Theorem 3. (i) System (1), (2) is invariant under the algebra (P, J,.).
(ii) System (1), (2) is invariant under (P, J,,,, D) with D = 2°9, — 2RO, k # 0
if and only if

F = R*G (RuRu 0,0, euRu>

R2+k’ Rk’ Rl+k
where G is an arbitrary continuously differentiable function.
(i11) System (1), (2) is invariant under (P, J,., Do) with Dy = 20, if and only

0,0, O.R
FRRG(R, “”,“"),
it R,R, R,R,

where G is an arbitrary continuously differentiable function.
(iv) System (1), (2) is invariant under (P,,J,.,,D,K,) with D = £°0, — ROr
and K,, = 2x,D — 220, if and only
0,0
_p2 1Y

where G is an arbitrary continuously differentiable function of one variable.
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The last case contains, as expected, case (i) of Theorem 2 when we choose G(&) =
&€ — AR?. Each of the resulting equations in the above result is invariant under the
operator M and so one can use the ansatz defined by M to reduce the equation but
we do not always obtain a nice Schréodinger equation. If we ask now for invariance
under the operator L = ROg (it is the operator L of case (v), Theorem 2, expressed
in the amplitude-phase form), then we obtain some other types of restrictions:

Theorem 4. (i) System (1), (2) is invariant under (P,, J,., L) if and only if

F:G(R“R” 0.9 R”9“>.

Rz MR
(i1) System (1), (2) is invariant under (P,, J ., Do, L) with Dy = x°0, if and only

F

_ RuRu,, <R20#0# RGMR#) |
R R.R,  R.R,

(tii) System (1), (2) is invariant under (P, J,,, K,, L), where K, = 22,20, —
220, — 2z, ROR, if and only if

F=k8,0,,

where k is a constant.

The last case (iii) gives us the wave equation

JMJM
ov =(k—1 v,
where j, = 2% [\I/\I/ w— v u] , which is the current of the wave-function V. For k = 1,
we recover the free complex wave equation. This equation, being invariant under
both M and N, can be reduced by the ansatzes they give rise to. In fact, with the
ansatz (obtained with L)

v = e(“)ﬂ@(om, Bx,x)

with €, o isotropic 4-vectors with e = 1, and 3, § two space-like orthogonal 4-vectors,
the above equation reduces to the equation

- -

D, = AD— (1 — 1)=|7(I)|i<1>

where 7 = ax and A = 92 /9y? + 0% /0y3 with y; = B, y2 = dx, and we have
j== o [q>vq> OV ).

These results show what nonlinearities are possible when we require the invariance
under subalgebras of the conformal algebra in the given representation. The above
equations are all related to the Schrodinger or heat equation. There are good reasons
for looking at conformally invariant equations, not least physically. As mathematical
reasons, we would like to give the following examples. First, note that the equation

0,40 =0, 3)
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Where
p,q g AUB, ) IERRRY ¥ Y yees D q

with ¢48 = diag(1,...,1,—1,...,—1), is invariant under the algebra generated by
—— ——

the operators
(9,4, JAB:ang—a:Bé?A, KA:2an:BaB—x28A—2xA (‘118\1, —i—@%),
D =20, M=i(Voy—Vdg), L= (Vy+Vog),
Ly =i (T0y — Udy), Ly=Toy + oy,

namely the generalized conformal algebra AC(p,q) ® (M, L, Ly, Ly) which contains

the algebra ASO(p,q). Here, @ denotes the direct sum. Using the ansatz which the
operator M gives us, we can reduce equation (3) to the equation

i0,® =Ty 919. (4)

This equation (4) is known in the literature: it was proposed by Feynman [7] in
Minkowski space in the form

i0.® = (0, — A,) (0" — AM)®.

It was also proposed by Aghassi, Roman and Santilli [8] who studied the representation
theory behind the equation. Fushchych and Seheda [9] studied its symmetry properties
in the Minkowski space. The solutions of equation (4) give solutions of (3) [14]. We
have that equation (4) has a symmetry algebra generated by the following operators

T:GT, PAiaA, JAB7 GA:78A7xAM,

_9 i _ -
D =270, + 279, — p++L, M= %@8@ — 38p), L= (g + Ds),
2
—2
S =120, + 712494 — %M _rlpta=2) +2q )L

and this algebra has the structure [ASL(2,R) ® AO(p — 1,q — 1)] W (L, M, P4,G4),
where W denotes the semidirect sum of algebras. This algebra contains the subalgebra
AO(p—1,q—1)W (T, M, Ps,G4) with

[JaB,Jep] = gscJap — 9gacIBp + 9apJBc — gBpJAC,

[Pa,Pg] =0, [Ga,Gp]=0, [Pa,Gg]=—-gapM,

[Pa,JBc] = gapPc — gacPp, [Ga,Jpc]l = 9apGe — 9acGa,

[Pa,D] = Pa, [Ga;D]=Ga, [Jap,D]=0, [Ps,T]=0, [Ga,T]=0,
[Jap,T] =0, [M,T]=[M,Pa]=[M,Ga]=[M,Jag] =0,

It is possible to show that the algebra with these commutation relations is contained
in AO(p, q): define the basis by

T = (P—Pq), M =P, + F,, GA=J1A+JqA7
JAB (A,B:2,...,q—].),

l\')|P—‘
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and one obtains the above commutation relations. We see now that the algebra
AO(2,4) (the conformal algebra AC(1, 3)) contains the algebra AO(1, 3)W(M, Pa,G 4)
which contains the Poincaré algebra AP(1,3) = AO(1,3) W (P,) as well as the Galilei
algebra AG(1,3) = AO(3) W (M, P,,G,) (p runs from 0 to 3 and a from 1 to 3). This
is reflected in the possibility of reducing

24V =0
to
10,0 =04 3P
which in turn can be reduced to

Op3% = 0.

4 Two nonlinear equations

In this final section, I shall mention two equations in nonlinear quantum mechanics
which are related to each other by our ansatz. They are

0|0V — WO|¥| = —k|T|T (5)
and
A
iug + Au = %u (6)

We can obtain equation (6) from equation (5) with the ansatz

O = 72/ D)y (7 B, 81,

where 7 = ax = ou2* and €, a, 3, 0 are constant 4-vectors with a? =€ =0,

BP=2=-1,aB=ad=€e3=€/=0, ae=1.

Equation (5), with k = m?c?/h? was proposed by Vigier and Guéret [11] and by
Guerra and Pusterla [12] as an equation for de Broglie’s double solution. Equation (6)
was considered as a wave equation for a classical particle by Schiller [10] (see also [13]).

For equation (5), we have the following result:

Theorem 5 (Basarab-Horwath, Fushchych, Roman [3, 4]). Equation (5) with
k > 0 has the mazimal point-symmetry algebra AC(1,n+1)®Q generated by operators

P/,H J;un Pn—i—la Jun-{-lv D(l)a K/S,l)7 K',(Ll_tzla Q)

where

7] 0

P, = J;,w :-TMPV_qu;u Pn+1 = W :Z(U/au —u*@u*),

mT
Jun+1 =Ty Poy1 — Tpi1 Py, DU =alP, + 2" P, — g(\ya@ + U*Og-),
K =2,D" — (z,2" + 212" )Py,

K =22, DY — (20" + 2, 12" )Py, Q = Wy + Uiy,
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where the additional variable ™1 is defined as

W*

ntl _ _ :_i In —
RSNl T

T k> 0.

For k < 0 the mazimal symmetry algebra of (9) is AC(2,n) & Q generated by the
same operators above, but with the additional variable

i | P
=X = ———In -,
T ook U
In this result, we obtain new nonlinear representations of the conformal algebras

AC(1,n+1) and AC(2,n). It is easily shown (after some calculation) that equation
(5) is the only equation of the form

n+1

T r < 0.

Ou = F(V, T*, VI, VI*, V|T|V|T],0T|)T

invariant under the conformal algebra in the representation given in Theorem 5. This
raises the question whether there are equations of the same form conformally invariant
in the standard representation

0
T

—1
D=aP, — ”T(\pa@ + U 0y.), K, =22,D—2°P,.

Juw =2, P, — 2, P,

There are such equations [3] and [4], for instance:

0w = [§[¥/ -V (|x1/|<3+”>/(1—”>m|\1:|) U, n#£l,

Olul
Ou = D‘U|F W,|U| u, n = 1,
ol (©e)" :

40V = A v bit

{ 0] + TVEE , n arbitrary,

O|w

O|y| < A )
Ov=—— (14— |V,

V] | W[

sl A
07 = 1 .
V| ( +1+0|‘I’I4>

Again we see how the representation dictates the equation.
We now turn to equation (6). It is more convenient to represent it in the amplitude-
phase form u = Re®:

0, + V0V =0, (7)
Ry + A0 +2V60- VR = 0. (8)

Its symmetry properties are given in the following result:
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Theorem 6 (Basarab-Horwath, Fushchych, Lyudmyla Barannyk [5, 6]). The
mazimal point-symmetry algebra of the system of equations (7), (8) is the algebra with
basis vector fields

1
2v2
Jab - xaab - xbaay J0n+1 - tat - 08«97

1 1
J()a = ﬁ (xaat + (t + 20)8xa + ixa80> )

1 1
Jan+1 = E (-.Taat + (t - 29)8;1:& + 533(189) 5

D=-— <t6t + 2,0, + 00y — g&sg) )

Pt = 8t7 Pa = aa; P’I’L+1 = (2at - 69); N = 8R7

2 =2

Ko =2 ((t + %) O + (t +20)x,0,, + <% + 292) Op — g(t + 29)8R> ,
=2 =2

Kot = V2 ((t . “%) Oy + (t — 20200y, + (% - 292) By — g(t - 29)03),
K, =2x,D — (4t0 — )0, .

The above algebra is equivalent to the extended conformal algebra AC(1,n+1) &
(N). In fact,with new variables

1 1
to=5(+20), tns = (= 20) (9)

the operators in Theorem 1 can be written as
Pa = 8a, Jag = waﬁg — l’gaa, N = GR,

10
D =—2,0,+ gN, K, =—2oD — (z,2")04. (10)
Exact solutions of system (7), (8) using symmetries have been given in [5] and
in [6]. Some examples of solutions are the following (we give the subalgebra, ansatz,
and the solutions):
Ay = (Ji2 +dN,Ps+ N, Py) (d >0)

Ansatz:
1
0=—5t+ flw), R=uw3—darctan (ﬂ) +yw), w=ai+a3
Z2
Solution:
1 2. 2
O —taeyLET Lo g
2 2
Ty 1 2, .2
R =ux3+darctan [ — | — 1 In(zy + z3) + Cq,
T2

where Cy, Cy are constants.
Ay = (Joa +dN, Ja3 + daN, P, + Ps)
Ansatz:

1
0= gf(w), R=dhnlt|+g(w), w=um.
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Solution:
C1)? 1
0= W;Tl), R=dnlt| — (d—i— 5) Injz; + Ci| + Ca.
Ag = (Jo1, Joz, Jos, J12, J13, J23)
Ansatz:
1 r? + 23 + 23 1
G_E (w)+T, R = g(w), w—9—§t.
Solution:
72 — 4C1t + 8C% 3 @2 —2(t—-2C)?
g="L " T o 2| T T
it —8C, 2 T 2 e
A14 = (Joa+a1N,D + asN, P3), (a1, as arbitrary)
Ansatz:
x% 3 T
0= 7f(w), R=gw)+aln|t|— (a1 + a2+ 3 In|zy|, w= e
2

Solution:

Tt W N

2 1
0:%, R=a In|t|+ (ag—a1+§) In|z1| — 2(az + 1) In|x2| + C.
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Solutions of the relativistic nonlinear wave
equation by solutions of the nonlinear
Schrodinger equation

P. BASARAB-HORWATH, W.I. FUSHCHYCH, L.F. BARANNYK

Using an ansatz for nonlinear complex wave equations obtained by using Lie point
symmetries, we show how to construct new solutions of the relativistic nonlinear wave
equation from those of a nonlinear Schrédinger equation with the same nonlinearity.
This ansatz reduces the number of space-time variables by one, and is not related to a
contraction. We give some examples of other types of hyperbolic equations admitting
solutions based on nonlinear Schrédinger equations.

1 Introduction

That nonlinear equations should play a role in quantum theory is not a new idea.
This idea was propagated by de Broglie, Iwanenko and Heisenberg [1-3|. Nonlinear
wave mechanics was taken up again by Bialynicki-Birula and Mycielski [4]. This
theme has also been of interest more recently [5], and much work on exact solutions
and modelling of nonlinear equations in quantum theory has also been done [12, 21,
22, 6].

In this article we consider a new aspect of some types of nonlinear relativistic
equations, and we obtain a connection between solutions of nonlinear Schrédinger
equations and our nonlinear relativistic equations. Our starting point is the nonlinear
hyperbolic wave equation

OV + \F(|¥|)¥ = 0, (1)

where

with
zy = guwa’, p,v=0,...,3, g =g" =diag(l,-1,-1,-1), |¥|= (\Il\il)l/z,

and U = U(zg, 21, 29, 73) is a complex function, ¥ being the complex conjugate of ¥,
and we use summation over repeated indices (here and in the rest of the paper).
Using Lie point symmetries, exact solutions have been obtained for different choices
of the nonlinearity F' [7—12]. In this paper we obtain a new class of solutions to (1) by
using the symmetries of (1) to establish a connection between (1) and the nonlinear
Schrédinger equation

0

2L = —Av+ MF([u). 2)
or

Reports on Math. Phys., 1997, 39, Ne 3, P. 353-374.
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Equation (2) is invariant under point transformations generated by the Gali-
lei group. Therefore it seems at first surprising that a Poincaré-invariant equation
should be connected with a Galilei-invariant one. It is, however, known that the Poin-
caré algebra contains the Galilei algebra [20], and the conformal algebra contains the
Schrodinger algebra [13-16]. The invariance of a restricted class of solutions of the
generalized Bhabha equations (invariant under the 144 Poincaré group) with respect
to the Galilei group was remarked upon in [20]. However, it is important to note that
equation (1) is not invariant under the Galilei group.

The novelty of our result is that we use a hitherto unexploited symmetry of (1)
to construct an ansatz (called the Galilei or parabolic ansatz) reducing (1) to (2), for
arbitrary nonlinearities in the right-hand side of (1). Thus, we show how nonlinear
equations themselves give rise to this connection. The ansatz we construct is shown
to work in other cases where the nonlinearity contains derivatives. This is explained
by the fact that the equations in question admit the same symmetry operator which
is crucial to the construction of the ansatz. Furthermore, we do not establish the
connection in terms of contractions, as is done in [13, 14].

The article is organized as follows: first, we give a symmetry classification of equa-
tion (1) and show how to construct the ansatz connecting (1) to (2). We also give the
symmetry classification of (2), exhibiting the parallel with the symmetry classification
of (1). We list the subalgebra classification of the symmetry algebra of (2), together
with the corresponding ansatzes and reduced equations, in the appendix. Because of
the types of nonlinearity, we are able to solve only some of the reduced equations, in
Section 3. In Section 4, we give some examples of other equations for which our ansatz
works, and give solutions of the relativistic equations which are related to solitons of
the corresponding (using our reduction) Schrodinger equations in 141 space-time
dimensions. We do not list exact solutions based on the heat equation: these can be
obtained by using the results of [19].

2 Symmetry and Galilei ansatz for equation (1)

2.1. Symmetry classification. For the sake of completeness, we give the symmetry
classification of equations of type (1) in the following result.

Theorem 1. The Lie point symmetry algebra of equation (1) has basis vector fields
as follows:
(i) when F(|¥|) = const |W¥|?:

Oy Jyp = 2,0, —2,0,, K, =2x,2"0, — 220, — 22,(V0y + Viy),
D =2z%0, — (\I/aq/ + @8@), M = Z(\I’a\p — \i/ai,),

where 2% = x, 2" and 9, = 8/0z", Oy = 0/O¥;
(ii) when F(|¥|) = const [¥|*, k # 0,2:

a;u J/W = Iuau - il:ua;u
2 - -
D(k) =2z"0, — E(\Ifa\p + \I/a\j,), M= Z(\I/aq/ — \I/a\j,),
(i31) when F(|W]) = const |W|* for any k, but F # 0:
Opy  Juw = 2,0, — 2,0, M =i(Vdy — VOg);
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(iv) when F(|¥]) = const # 0:

Oy Sy = 2,0, — 2,0, M =i(Vdy — Vdy),
L=90y + 90y, L;=i(V0y— Vi), Ly=Vdy+Vdg, Boy,

where B is an arbitrary solution of OW = const ¥,
(v) when F(]T]) =0:

Oy Jup = 2,0, —2,0,, K, =2x,2"0, — 220, — 22,(V0y + Vig),
DZ%“@M, M = i(Voy —\T/aq,), L= \I/aq;—‘r\I/a@,
L= ’L(\ilaq, —Udg), Ls= Uiy + Yoy, Boy,

where B is an arbitrary solution of OW = 0.

The first case, F/(|¥]) = |¥|?, gives us the extended conformal algebra, the second
case gives the extended Poincaré algebra. In all five cases (which exhaust all possible
nonlinearities of the given type), the symmetry algebra contains the subalgebra (P,
J.w), which is the Poincaré algebra, and the operator M = i(¥dy — Vdg). It is
this operator which we combine with the generators of space-time translations J,,
in order to build an ansatz which reduces equation (1) to a nonlinear Schrodinger
equation. This gives a reduction of a hyperbolic equation to a parabolic equation,
and for this reason we call it a parabolic symmetry of the nonlinear wave equation.
In this fashion we are able to construct new solutions of (1), even making a contact
with the Zakharov—Shabat soliton solution [18] when F(|¥|) = |¥|?. The appearance
of the parabolic symmetry M is a feature of the fact that ¥ is a complex-valued
function and of the type of nonlinearity we consider. In our previous article [19] we
considered a similar reduction of a linear equation (corresponding to F' = const) to the
heat equation using the operator ud, which is the counterpart of the other parabolic
symmetry operator L. Using M, we improve upon our result in that we are able to
include nonlinearities and still obtain a reduction to a parabolic equation. If we were
to use L instead, then we would reduce (1) to the heat equation with a complex
function. This, however, may be done only in the cases F' = const # 0 and F' = 0, as
it is only then that L appears as a symmetry. On writing ¥ = ue®”, one finds that
L = u0d, whereas M = 0,,. Therefore, equations admitting the symmetry M involve
only the derivatives of the phase.

In [17] we investigated equation (1) from a slightly different point of view: taking
the phase-amplitude representation of ¥, we used results about the compatibility of
the system

Ov = Fi(v), O0"vd,v= Fy(v),

to obtain new solutions of non-Lie type (that is, not obtainable by reduction by Lie
symmetries). The same approach can be taken for the nonlinear Schrodinger equation,
and the methods of [17] can also be combined with those of this article.

2.2. The Galilei ansatz and reduction to the Schrédinger equation. Equa-
tion (1) is invariant under 0,, and M, and therefore under any constant linear combi-
nation of them:

e*0, + kM. (3)
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The operator (3) gives rise to the invariant surface conditions
"0,V =ik, E”@H\If = —ikU
for ¥ and ¥, where ¢ and k are real constants. These conditions give us the Lagran-
gian system

dr, dv ¥

= —_— = —, 4
e, kU —ikU )

It is straightforward to show that (4) is equivalent to

d(cz)  dV dV¥
ce k¥ —ikV

()

for any constant four-vector ¢, where cx = ¢z, ce = cte,. Then choose ¢ light-like,
so that €2 = 0 and, further, choose «, 3, § so that

a?=p32=-1, =0, af=ad=ac=p30=0Pc=0, de=1.

That is, a, 3, 6, € is a hybrid 2+2 basis of Minkowski space consisting of two space-like
vectors («, 8) and two light-like vectors (d, €). Then put ¢ in (5) successively equal to
a, B, 6, ¢, and we obtain the Lagrangian system

dlaz) d(Bz)  d(ex) d(éx) d¥  dV

0 0 0 1 kU kU

(6)
The system (6) then integrates to give
v = eik(‘;‘”)v(ex, az, Bx), U= e*ik(h)@(sx,ax,ﬁ:c), (7)

where v is a smooth function. Substituting equations (7) as ansatzes in (1), we obtain
(after some elementary manipulation) the equation

v 1 A

— = —Av— —F

Tt =t g fehe:
where we have used the notation t = ex, y; = az, yo = Sz and A = (96—:% + g—:%. For
convenience, we choose k = —%, and we then have the nonlinear Schrédinger equation
in 2+1 space-time dimensions

Ov

o = —Av + AF(|v|)v. (8)

This is a well-studied equation, at least in 1+1 space-time dimensions, exhibiting
soliton solutions and being completely integrable (possessing infinitely many commu-
ting flows) for F(|v]) = |v|? (see [18]). It has been studied in other dimensions in
[20-23, 27| in terms of symmetries and conditional symmetries.

The Cauchy problem for equation (8) is well-posed for ¢t > 0, and (8) has solutions
which are singular for ¢ = 0. This leads to similar problems for the wave equation
when ez = 0, which is a characteristic (¢2 = 0), and so the initial-value problem of (8)
is related to the initial-value problem of (1) on a characteristic, known as Goursat’s
problem. For the linear equation, this has been studied in [28].



Solutions of the relativistic nonlinear wave equation 85

It is an interesting question as to what quantum-mechanical implications (8) has
for (1), but we shall not pursue this in the present article.

We emphasise that the connection between the hyperbolic equation (1) and the
Schrodinger equation (8) is obtained by an ansatz which reduces the number of space-
time dimensions by one; it is not a contraction as in [13].

2.3. Symmetries of the Schrédinger equation (8). The symmetry algebra
of equation (8) is given by the following result: its classification according to the
type of nonlinearity is in a direct correspondence to that of the symmetry algebra of
equation (1).

Theorem 2. Equation (8) has mazimal point symmetry algebra (with the given vector
fields as basis) depending on the nonlinearity F(|v]):

(i) AGo(1,2), when F(|v|) = const |v|?:

T'=0y, FPo=—0a, Ji2=210s, —220;,,
=t0, + ;zma( Oy — 005), Do =2t0; + 1,0, — (VO + 005),
S =120, + tx,0, + iixaxa(v&, — 905) — t(v0, + v0y),
M= —%i(v@v — 50y);
(ii) AG1(1,2), when F(|v|) = const |v|*, k # 0,2:
T=0: P,=-04 Jia=210z, —220,,, Go=10,+ %ixa(vav — 005),
Dy = 20, + 40 — 2(00, +50,), M = —%i(v@v —50,);
(i17) AG(1,2), when F(|v|) # const |v|*, for any k but F # 0:
T =0, Pa =04, J12 =210z, — 2204,
G, =10, + QZIQ(UG —00y), M= —%i(u@v — 005);

(iv) AG2(1,2) ® (B), when F =0, where (B) infinite space of arbitrary solutions
of the free Schridinger equation:

T=0;,, P,=0, Jio :1]1812 —l‘gawl, G, =t0, + QZl‘a( V0, —1785),
S =t20; + tx,0, + 41%%(@6@ — 905) — t(v0, + VD),
M = —%Z(Uav - 77(91—)), D= 2t8t + xa&“ L= vf)v + 1785, B@v,

where B is an arbitrary solution of the free Schrédinger equation.

The algebra in Theorem 2i is the Schrodinger algebra [14], which is a subalgebra of
the conformal algebra. This is reflected in the fact that the nonlinearity in Theorem 2i
is the same as in Theorem 1i, for which the wave equation (1) is invariant under the
conformal group. Note that Theorems 2iv, v correspond to Theorem 1v, since for
equation (8) the case F' = const # 0 can be gauged to the case (iv) on putting
0 = ey, and then © satisfies the free (no potential) Schrédinger equation. The
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above is an exhaustive list of the types of symmetries for all the different types of
nonlinearities. Again, in each of the four cases, we find the operator M = i(v9, —v05),
and we can use this in a similar way to the reduction of the wave equation, in order to
reduce (8) to the corresponding Schrédinger equation in 141 space-time dimensions;
this time with the same nonlinearity and ‘coupling’ constant A. Thus we can think
of the linear and nonlinear Schrédinger equations as part of a chain of successive
reductions, beginning with a nonlinear (hyperbolic) wave equation in n + 1 space-
time dimensions, as in (1).

Theorem 2 now allows us to classify the reductions of equation (8), according to
the type of nonlinearity. If we exclude the case F' = 0, then there are only three types
of algebras: AG(1,2) = (T, P,,Gq, J12, M), AG1(1,2) = (T, P,,G,, J12, M, D), and
AG2(1,2) = (T, Py, Gq, J12, M, D, S). These are the maximal symmetry algebras of
the equations:

Ov

i = —avtAF(ul, with F(ol) £l 40 (9)
.0v &

i = —Av+ Av|"v, k#£0,2, (10)
v

i — _A 2 11
e v+ Alv|?v, (11)

respectively. The Lie algebra AG2(1,2) was considered in [19]. It is the semi-direct
sum

ASL(2,R) ® AO(2) + (M, P,,G,),

where ASL(2,R) is the Lie algebra of the group SL(2,R), and AO(2) is the Lie
algebra of the group O(2). The other two algebras are subalgebras of AG5(1,2).

3 Some exact solutions

In this section we obtain some exact solutions of the wave equation using results from
the tables in the appendix. The other reduced equations are difficult to solve, so we
leave them for future consideration, remarking only that they give exact solutions of
equation (1) when we use the ansatz in equation (7).

First, we take the case of the subalgebra (P>, T + 2aM) from Table 1 in the
appendix, with F(|¢|) = |¢|™ and n > 0. The reduced equation is then

¢+ ad = N¢|"¢.
On putting
$() = plw)e ")
into this equation, with p, § being real functions and p > 0, we obtain
p+ap—pb* = \p"t, (12)

pf +2p0 = 0. (13)
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Equation (13) readily integrates to give us
A

?7

0 = (14)
where A is a constant of integration. Put now equation (14) into equation (12) and
we find

A2
prap— = Ap"HL,

which is the Ermakov—Pinney [31] equation when A = 0. Multiplying this equation
by 2p and integrating, we obtain
A? 2

.2 2 A n+2 C 15

AR s LA (15)
where C' is another constant of integration. We now consider three cases of equa-
tion (15).

Case 1. A =0, C =0, a # 0. Since A = 0 here, we have § = const, and (15)

becomes

-2 2/\ n+2

_ 2
=l ap”,

from which we deduce

| e
n2_+)\2pn+2 _ ap2

On writing © = —p~"™/2, this integral reduces to
du n
/7 = L (+w+ O)
nQ—ié — au?

For A > 0, a < 0 we obtain (after some calculation)

2 A
a(n+2)[

::l:w+01.

1 — cosh (n —a(C1 £ W))]

or

L Ja(n+2) 1
P= A 1—cosh (ny=a(Cy +w))

Finally, noting that we have w = y; = ax, in the notation of Section 2.3, we find that

T — —ila(en)+(52)/2) , a(n +2) 1
A 1—cosh (nv/=a(C + ax))

is a solution of

OU = —A\|U|" 0,
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when A > 0, a < 0. If we take A > 0, a > 0, then we obtain, with similar calculations,
that

T — —ila(ex)+(52)/2) a(n +2) 1
A 1—cos (nya(Cy £ ax))

is a solution of
Ov = —\|Y|".

Case 2. A=0,n =2, a # 0. In this case we also have § = const, and (15) becomes

1
0° 4+ ap? — §Ap4 =C. (16)
Equation (16) can be solved using Jacobian elliptic functions. For the definitions, we
refer to [29]. Following [30], we take a, A and C as functions of a real parameter &,
with |k| < 1, and using the generic notation E(w, k) for solutions of (16), we have the
following table of exact solutions:

E(w, k) a(k) A(K) C(k)
sn 1+ K2 2K 1

cn 1—2k% | —2k? 1 —r2
dn K2 —2 k2 —1
ns = 1/sn 1+x% |2 K?
nc=1/cn | 1-2x% | 2(1 — K?) —K?
nd =1/dn [ k-2 |2(k?2-1) -1

sc =sn/en | k2 —2 | 2(1 —K?) 1

sd =sn/dn | 1—2k% | 26%(k%—1) | 1
cs=cn/sn | k2 —2 |2 1 — K2
cd =cn/dn | 1+ k% | 2K2 1

ds =dn/sn | 1—2x% | 2 K2(K% —1)
dc =dn/en | 14+ K2 |2 K2

Using this table and the notation of Section 2.3, we find that

U = i@ H00)/2) g, 1)

is an exact solution of
O = —A(k) [ ¥[20,

where a(x) and A\(k) are the appropriate functions of the parameter &, as given in the
above table. This gives us elliptic solutions of a nonlinear relativistic wave equation.
We note that solutions of nonlinear wave equations in terms of elliptic functions were
obtained by Petiau [35]. The solutions we present here are for a different nonlinearity.
Case 8. n=2,a=0.If we put n =2 and a =0 in (15), we obtain the equation

A%\
-2 4

—- == C.
p+p2 2p+
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On multiplying this equation by p?, and putting z = p?, we obtain the following
equation for z:

A 8C 8A2
2 A 3 _
2—2{4z+>\z )\},

which gives us the solution

1
z:p< 5)@),

where p(€) is the Weierstrass elliptic function (see [29]), provided that 27A4*+8C3/\ #
0 (the equation (d¢/ds)? = 4€3 — go€ — g3 has p(s) as solution provided g5 —27g3 # 0).
From this it is straightforward to deduce that

or 24 V3(a) do
755 m)]

is a solution of
Ov = —\|U|?T.

Next we turn to the case (G1 + aPy, G2) in Table 1. The reduced equation is

b5 (g + ) 0= —iaFliebe

2\w—a

Using the amplitude-phase representation ¢ = pe?¥ in this equation, as before, we find
the following system:

1 1 1
S - =0 17
p+2(wa+w>p ’ (17)
0 = —\F(p). (18)
Equation (17) integrates immediately to give
_ C
P ww—a)’

where C' is a constant of integration. Using this, (18) now yields

0=— /F(ﬁ)dw—k&.

Combining this with the corresponding ansatz for the solution v of (8), and using the
notation of Section 2.3, we obtain that

_; R o oz (am)? + (Bz)?
<A/ F< g(g_a))mﬁ )]
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is an exact solution of
O = —A\F(|9¢|)¥,
and when F(§) = ¢", with n > 2, we have

U = L X
(ex)? — a(ex)

_|_

X exp [—i <—>\(n — 1)[(&)26:”@(8%)](%1)/2 %I * Wﬂ

as an exact solution.

4 Special solutions of some nonlinear
complex wave equations

In this section we give some particular solutions of some multi-dimensional hyperbolic
(‘relativistic’) equations which can be reduced to Schrodinger equations with our
ansatz (7). In some cases, the nonlinear Schrédinger equation involved admits a soliton
solution in 141 space-time.

First we take the hyperbolic equation

Ov = A|0["0.
The ansatz (7) (with & = —1/2) reduces this to
v + Av + Mo|"v =0,

as we have already noted. It is a simple matter to verify that for A = a2b2% (% + 1)
we have
_exp(4ia®b*t/n?)
cosh? ™ (ba - y)
as a solution. Here @ = (a1, a2), y = (y1,y2), where a = (a1, as) is an arbitrary vector

and b an arbitrary real number. Applying the Galilean boosts (which are symmetries
of the above nonlinear Schrodinger equation)

1
Ga = t0a + 5ita (v, — 005) (19)

(where a = 1,2) to this solution, we obtain the solution

expli(4a®b*t/n? + V -y /2 — V?t/4)]
cosh?™(ba - (y — V1))

)

where V' = (V4,V3) is an arbitrary vector. For n = 2 and in 1+1 space-time, we have

expli(a®b’t + Vy/2 — V?t/4)]
cosh(ab(y — Vt)) ’
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which is the Zakharov—Shabat soliton. Finally, using (7), we obtain

expli(—6z/2 + 4a®b*(cx) /n? + (Vi(ax) 4+ Va(Bz))/2 — Vi (ex)/4))]

U —
cosh? ™ (blay (ax — Vit) + ag (B — Va(ex))])

as a solution of
2 (2
ov = a?h?= (— + 1) N2
n\n

in 143 space-time.

There are some other hyperbolic equations which can be reduced to nonlinear
Schrodinger equations, but with nonlinearities involving derivatives. The hyperbolic
equations of the form

DU = AF(|9], [¥],[¥],)¥ (20)

can also be reduced to nonlinear Schrédinger equations with derivative nonlinearities,
using the same ansatz (7) (which is not surprising as the same symmetry operator is
responsible for the ansatz). Indeed, ansatz (7) with kK = —1/2 gives us

ivg + Av + AF(Jv], —|v|alv|a)v = 0, (21)

where [v]q|v|s = [v]2, + [v]2,. Equations of the type (21) were discussed in [21] from
a group-theoretical point of view. One of this type of Schrédinger equations is

[v]a|v]a

vy + Av =2 BE v, (22)
v
with A = —2 and F (v, |[v]|a|v]a) = % Equation (22) admits the two solutions:
exp(—ia’t) _ exp(—ia’t)
cosh(a -y)’ ~ " sinh(a-y)’

where a = (a1, ag) is an arbitrary vector and A is an arbitrary number. Applying the
Galilei boosts (19) (they are symmetries of (22)) to these solutions, we find

expli(V - y/2 —tV?/4 — ta?)]

=A
v cosh(a-y—a-Vt)

b

and

o 4PV y/2 - tV?/4 — ta?)]
N sinh(a -y —a- Vi)

)

as solutions of (22), with V' = (V;,V,) an arbitrary vector. From this we find that
the hyperbolic equation

20T

ov =
w2

admits the solutions

expli(Vi(ax)/2 4+ Va(Bx)/2 — Vz(sx)/él —02/2 — a®(ex))]

=4 cosh(ai(ax) + az(fz) — (a-V)(ex))
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and

expli(Vi(ax)/2 + Va(Bz) /2 — V2(ex) /4 — d2/2 — a?(ex))]
sinh(a1 (ax) + a2(Bx) — (a - V)(ex))

Note that we have only used two Galilean boosts to obtain these two-parameter
families of solutions. We can introduce more parameters by using the other symmetries
of the hyperbolic equation and the corresponding Schrodinger equations.

A third example is the hyperbolic equation

v,0,
O = 2p|W*W — O~ (23)

v=A

with C' # 1. Using the ansatz
v = e_i(‘sx)/Q(HC)v(ax,ﬁx,sm)

is straightforward to show that (23) reduces to the equation

VaVq

v + Av + 2p|v|*v = —C (24)

In 1+1 space-time, equation (24) is the Malomed—Stenflo equation [32] in plasma
physics which admits solitons. Equation (24) admits the solution

v = Asech (n - y) exp(i(C + 1)n’t)

(which in 1+1 dimensions is the Malomed—Stenflo soliton), where A% = n?(C +2)/2p
and n = (n1,n9) is an arbitrary vector. We can now act on this solution with the
Galilean boosts

_ Ya 59
G, =td, + 51+ C) (v0, — V0y),

which are symmetries of (24), and we obtain

v=Asech(n-y—n-Vt)exp [@ ((C +1ntt + 2(‘1:%) - 4(1‘/?0))}

as a two-parameter family of solutions of (24). We are then able to construct the
following solution of (23):

. T Vi(ax Va(Bx V2 T
exp [z ((1 + C’)nQ(Ez) - 2(16+C) + 2(11(+c)) + 2(21(+c)) 4(14&60)))]
cosh(n (az) + na(fx) — (n - V)(ex))

U=A

5 Conclusions

These are just some examples of hyperbolic equations which reduce down to nonlinear
Schrodinger equations. There are of course more. For instance, the hyperbolic equation

0¥

ov =
0|

— g -\, (25)
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which arises in the context of de Broglie’s double solution [33, 1], reduces, with our
ansatz, to

10w = —Av + %v + Av; (26)
an equation which was considered by Guerra and Pusterla [34] in the context of
a nonlinear Schrédinger equation. The terms O|¥|/|¥| and A|v|/|v| are called the
quantum potentials [1]. Both equations (25) and (26) are conformally invariant, (25)
being invariant under the conformal algebra AC(1,n+2), and (26) under AC(1,n+1)
in n + 1 space-time dimensions (see [40]). These remarkable symmetry properties are
due to the quantum potential term. They share this symmetry with a wide class of
other equations [36, 37].

Despite this connection, we are as yet unable to give a clear physical meaning
to the reduction and the ansatz, other than the purely Lie-algebraic one. That we
should expect some sort of physical interpretation is suggested by the use of complex
hyperbolic equations by Grundland and Tuszynski in [10] in the context of superflui-
dity and liquid crystal theory.

It is also natural to ask if it is possible to obtain a nonlinear complex hyperbolic
wave equation from a Schrodinger equation. It is, of course, not possible from an
equation of the form

v + Av = F(|v])v.

However, if we consider
2 2

v, + % — (?)—yg = F(|v])v,
and put

v = ei(””ry)w(x — 2t,y + 2t),
then we find that w satisfies the equation

0¢2  on?
with £ =z — 2t, n = y + 2t. It thus seems of interest to investigate equations of the
type

= F(lw)w,

2 4 0w = F(u))w.

ot
This type of equation is also of interest in quantum physics: the equation
ov 1 9
i— =—(0—-m")V
ot 2m ( )

(with interaction terms involving the electromagnetic potential) was used by Fock as
an analogue of the Hamilton-Jacobi equation in quantum mechanics, where t was
interpreted as the proper time (see [38] for more details on parametrized relativistic
quantum theories). Feynman in [39] considered the equation

ovr 1
Y _ 2 i o AM
i 2(8# eA,)(0" —eAH)T.
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It has interesting symmetry properties, with its symmetry algebra containing both
the Poincaré and Galilei algebras. We intend to return to this equation in future
publications.

Finally, let us note that our ansatz relates the Schrédinger equation with any
equation related to the wave equation, such as the Dirac equation. Indeed, the Dirac
equation is

(iv*9, —m)¥ =0,
so that we may represent W as

U = (iv"9, + m)Q, (27)
where ® is a four-component vector of functions satisfying

ad +m?® = 0.

Clearly, each of the components can be related (independently) to the Schrédinger
equation by using our ansatz (7). In this way, we can use (27) to construct solutions of
the Dirac equation from the Schrédinger equation. Similarly, we can use the complex
heat equation

ov

— = Av

ot
to construct solutions of the Dirac equation. Instead of ansatz (6), which uses the
operator M, we have the ansatz

U= ek(&”)v(sx, ar,Bx), U= ek(‘s"’?)@(sx, az, fx),

which uses the operator L of Theorem 1. Exact solutions of the complex heat equation
in 142 space-time dimensions can be obtained from those of the real heat equation
given in [19]. Thus we see that solutions of the Dirac equation can be obtained from
the Schrédinger and heat equations, or a mixture of both.

6 Appendix

In the following tables we give inequivalent ansatzes for equations (9), (10) and (11)
constructed from one- and two-dimensional subalgebras of the corresponding algebras
of invariance. This is organized as follows: we consider subalgebras in the ascending
chain AG(1,2) C AG1(1,2) C AG2(1,2) (strictly speaking, this is incorrect, since the
dilatation operator D has a different representation in AG;(1,2) and AG4(1,2), but
but here we treat the inclusions as abstract Lie algebra inclusions up to isomorphism).
In Tables 1, 2 and 3, we give a list of inequivalent two-dimensional subalgebras, with
the corresponding ansatzes and reduced equations (these are ordinary differential
equations); in Tables 4, 5 and 6, we do the same for one-dimensional subalgebras of
the chain, the reduced equations being partial differential equations. The reductions
have been verified using MAPLE.

In order to avoid repetition in the reduced equations, we shall, in the following,
regard the function F in equation (9) as being arbitrary; in equation (10), k is an
arbitrary real number, so that with this convention equation (10) is a particular case
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of equation (9), and equation (11) is a particular case of equation (10). Further, in
performing the symmetry reductions of (9) for arbitrary F', we use the inequivalent
subalgebras (of dimensions 1 and 2) of AG;(1,2) the symmetry reduction of (10) is
done using those subalgebras of AG5(1,2) which are not equivalent to subalgebras
of AG(1,2); the reductions of (11) are done with respect to subalgebras of AG5(1,2)
which are not equivalent to subalgebras of AG;(1,2).
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On a new conformal symmetry
for a complex scalar field

P. BASARAB-HORWATH, W.I. FUSHCHYCH, O.V. ROMAN

We exhibit a new nonlinear representation of the conformal algebra which is the
symmetry algebra of a nonlinear hyperbolic wave equation. The equation is the only
one of its type invariant under the conformal algebra in this nonlinear representation.
We also give a list of some nonlinear hyperbolic equations which are invariant under
the conformal algebra in the standard representation.

In this note we examine a nonlinear wave equation for a complex field, having the
following structure

Ou = F(u,u*, Vu, Vu*, V|u|V|ul, Olu|)u, (1)
where v = u(z) = w(wo,21,...,2n), VU = (Uag,. .., Uz, ), VU = (uh ,...,u; ),
V0ulViul = |u|,|ul* = g“”%gm, g*” = diag(1l,—1,...,—1), and we use the usual

summation convention. Here, F' is an arbitrary real-valued function.
Examples of equations such as (1) can be found in the literature, the most common
being the nonlinear Klein—-Gordon type |2, 3],

Ou = F(lul, ulu|ul*)u. (2)

Another such equation is that proposed (independently of each other) by Guéret and
Vigier [9] and by Guerra and Pusterla [10],

O|ul m2c?
=T T (3)

Ou =

Jul
This equation arose in the modelling of an equation for de Broglie’s theory of the
double solution [1]. Guéret and Vigier were able to show that a solution to this
problem, obtained by Mackinnon [11] satisfied Eq. (3). Guerra and Pusterla obtained
(3) as a relativistic version of a nonlinear Schrodinger equation they had found by
applying stochastic methods to quantum mechanics.

Eq. (3) is from our point of view (namely, the symmetry view) a remarkable
nonlinear equation, since it is invariant under the conformal algebra AC(1,n + 1) in
an unusual representation.

It is well-known (see, for instance, Refs. [3, 7]) that the free wave equation Ou = 0
is invariant under the conformal group AC(1,n) with infinitesimal operators

0
MZ@W, Juy:.’EMPV—xUPM, (4)

—1
D=aP, — ”T(uau D), K, =21, — 2P, (5)

Physics Letters A, 1997, 226, P. 150-154.
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with 22 = z,z*. The wave equation is also invariant under the operators

I =i(udy — u*0yr), Q= udy + U Oyx,
Ly =u*0y + uy+, Lo =1i(u*0y — udy+),
which are important in reducing the wave equation to the Schrédinger and heat equa-

tions (see Refs. [4, 5, 6]).
The conformal operators K, generate the finite conformal transformations

2

;L x, —xc,
R 2Co,x% + 222’ (6)
u—u = (1-2cox*+ csz)(”*l)/Qu, (7)

where ¢, are parameters.

All equations of the form (2) invariant under the conformal group with infinitesimal
generators given in the representation (4), (5) were classified in Ref. [2]. In particular,
it was shown there that when the function F is independent of the derivatives of u,
then the equation is conformally invariant under (4), (5) if and only if

F(u) = Mul/" 70, (®)

where n > 2 and A is an arbitrary parameter. Thus, Eq. (1), when the right-hand
side does not depend on the derivatives of u, has the same conformal invariance as
the free wave equation if and only if F is given by (8).

An analysis of the proof of this statement shows that two things are fixed at the
outset: the independence of F' of the derivatives; and the representation of the algebra
AC(1,n). One then sees that the following natural question arises: does there exist
a representation of AC(1,n) different from (4), (5)? That is, are there operators K,
D which are not equivalent to those given in (5)? Our answer to this question is that
there exists such a representation.

To this end, we have calculated the Lie point symmetry algebra of the equation
(see, for instance, Ref. [12, 3])

Ou = %u + Au, (9)
|ul
with A an arbitrary parameter. It is evident that this equation is Poincaré invariant
with respect to the operators (4). On the other hand, it is definitely not invariant
under the conformal operators given in (5). However, this does not mean that it is
not at all conformally invariant, as we see from the following result.

Theorem 1. Eq. (9) with A < 0 has mazimal point-symmetry algebra AC(1,n+1)®Q
generated by operators

P/»“ JMV’ Pﬂ+1> JMTLJrlv D(1)7 Kﬁlk Kv(zl-gla Q>

where

0 0
PMZ%, JMV:xMPV_xVP;u Pn_H:W

= i(u0y — u* Oy~ ),



102 P. Basarab-Horwath, W.I. Fushchych, O.V. Roman

Juns1 = TuPot1 — tns1 Py, DV = 2P P, 4+ 2™ P, — g(uau Ut ye),
KI(LI) =22, DY — (z,2" + z, 12" TP,

Ky(Ll_zl = 2:1:n+1D(1) — (zz + T 2" Poy1, Q= udy +u 0y,

where the additional variable ™1 is defined as
= m Y A<
x Tpi1 2\/__)\ n 7’ < 0.
For X\ > 0 the mazimal symmetry algebra of (9) is AC(2,n) ® Q generated by the
same operators above, but with the additional variable

) U
! =Tp41=—=In—, A>0.

2V u

Remark 1. In this theorem we have introduced a new metric tensor
gap =diag (1, —1,..., =1, gny1nt1)

with ¢gp41n+1 =1 when A > 0 and gn4+1n+1 = —1 when A < 0.

Direct verification shows that the above operators satisfy the commutation relati-
ons of the conformal algebra AC(1,n+ 1) ® @ when A < 0 and AC(2,n) @ Q when
A> 0.

The meaning of the new operators P, 1, Junt1, Kﬁl), Kr(blll is best understood
when Eq. (9) is rewritten in the amplitude-phase representation, namely, on putting

u = Re' with R and 6 being real functions. Then equation (9) becomes the system
gmle,uau = 7)\7 (10)
ROO +2¢*" R0, = 0. (11)

The symmetry algebra of Eq. (9) is actually obtained by first calculating the symmetry
algebra of the system (10), (11). Then we have, in the amplitude-phase representation

0 0 0
Pn+1 = %a J;J,n+1 = <xp,%) - 91‘_'“’ (12)
0 O n_0
DM — p# —Z _“p= 1
o 9% 2 %ar (13)
0
Kl(tl) = 2%D(1) — (@ua" + gnt1 n+192)@7 (14)
0
KN = 20541 0410DWY — (22" + 9n+1n+192)@~ (15)

From the expressions (12)-(15), we see that the phase variable § has been added to
the n+ 1-dimensional geometric space of the z*. This is the same effect we see for the
eikonal equation [3], and it is not surprising, since the first equation of system (10),
(11) is indeed the eikonal equation for the phase function . What is novel here is that
equation (11), which is the equation of continuity, does not reduce the symmetry of
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equation (10). On using an appropriate ansatz (see Ref. [5]) for § and A one can reduce
system (10), (11) to another system consisting of the Hamilton-Jacobi equation and
the non-relativistic continuity equation. This second system also exhibits surprising
symmetry properties [8]: it is again conformally invariant.

Let us remark that the operators D), K ,(Ll), Kfll_gl are a nonlinear representation
of the dilatation and conformal translation operators. They generate the following
finite transformations:

DW:  z, — ), =exp(b)x,, 60— 0 =exp(b),
R — R’ = exp(—bn/2)R;
- a « n n 92
KOs a6t 4 g8

Bl = 2¢,2Y — 2410 + (202 + gni1ni102)’
0

0— 0 = ,
1—2¢c,a¥ — 2¢p410 + (02 + gnt1nt10?)
R— R = (1-2c,2" — 2¢p410 + (202" + gt n+192))n/2 R;
(1) / xu
K : =
A 2¢,x7 — 2¢p 410 + (2o + grny1n+1602)’
f— 0 = 0 — cn—H(xaxa + gn+1 n+192)
1—2c,2Y — 2¢p 410 + (202 + gni1ni10?)’
R— R = (1 —2c,2" — 2¢, 110 + (20T + gni1 n+192))n/2 R.
where b, ¢,, ¢,.1 are the group parameters and ¢? = c,c” + ¢, 11¢"! with the

usual lowering and raising of indices using the metric g4ag used in Theorem 1. The
expressions for these finite transformations can be compared with those given in (6),
(7). The form is exactly the same, but the new feature is that 6 is considered as
a geometrical variable on the same footing as the z*, and it is the amplitude R which
transforms as the dependent variable, just as u does in (7).

It should be added that Eq. (9) is the only equation of type (1) which is invariant
under AC(1,n + 1) ® @ in the representation given in Theorem 1. This is not the
standard representation. However, if we keep the standard representation (4), (5) of
the conformal algebra but allow dependence of the nonlinearity in (1) on the deri-
vatives, then we find that there are other equations of this type which are invariant
under the conformal algebra:

Tu = [u*/ =V F (Ju| /0], 0 A1,

O
Ou = OJu|F (—u|2’ |u|> u, n=1,

(Vlul)
O O n
40y = {M + )\( |:J‘r>4 }u, n arbitrary,
|ul |ul
O
Ou=(1+ /\)|UQ|L|U7

Olul A
Ou=——1{1+— )y
|ul |ul

- O|u - A
u = u.
|ul 1+ olul*
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Thus, we see that wave equations which have a nonlinear quantum potential term
O|ul/|u| have an unusually wide symmetry. This is in sharp contrast with nonli-
nearities not containing derivatives. Moreover, we see that the representation of
a given algebra plays a fundamental role in picking out certain equations which
are invariant. This remark leads us to asking how one can construct all possible
representations, linear and nonlinear. Linear representation theory is well-developed,
but nonlinear representations are not at all well understood. Certainly, the equation
dictates the symmetry and the representation of the symmetry, and both equation
and representation are intimately tied together. From the symmetry point of view,
we cannot truly distinguish between them as phenomena.

Finally, we remark that given an equation, its symmetry algebra can be exploi-
ted to construct ansatzes (see, for example, [3]) for the equation, which reduce the
problem of solving the equation to one of solving an equation of lower order, even
ordinary differential equations. We examine this question for some of the equations
we have given above in a future article, and we hope that some of them will find
some application in nonlinear quantum mechanics or optics, not least because of their
beautiful symmetry properties and relation to nonlinear Schrédinger equations.
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Cumerpis piBHSHD JIIHITHOI Ta HeJiHIAHOL
KBaHTOBOI MeXaHiKN

B.I. oYY

We describe local and nonlocal symmetries of linear and nonlinear wave equations
and present a classification of nonlinear multi-dimensional equations compatible with
the Galilei relativity principle. We propose new systems of nonlinear equations for
the description of physical phenomena in classical and quantum mechanics.

Ornucani JIOKAJIbHI 1 HEJIOKAJIbHI CUMETPIil JIHIMHUX Ta HEJIHIHHUX XBUJIHLOBUX DPiB-
HsHDb, KJacudikaril He/iHIAHUX GaraTOBUMIpHUX PIiBHSIHb, CYMICHUX 3 IPUHIMIIOM
BigHOCHOCTI [austisiesi. 3ampomoHOBaHO HOBI CHCTEMU HEJIIHINHUX PIBHSHB JJIsI OIHUCY
GiZUIHUX TPOIECIiB B KJIACHYHIN Ta KBAHTOBIM MeXaHIILi.

IIpobsiema mobOymoBY HEMHIFHIX MATEMATHIHUX MOJIEJEH /I OMUCY IPOIECIB B
MexaHiri ¢izurii, 6iosoril Oysa i € OfHIEI0 3 TOJOBHUX 33/1a9d MATEMATUIHOI (Di3uKu
[1-4]. Crorozmni Mu He MOXKEMO BBazKaTH, 0 KJiaacu4Hi pieHsiHHS HptoroHa—JIopenna,
Hamambepa, Has’e—Crokca, Makcsesurta, [IIpomiarepa, Jlipaka Ta i piBHSHHS pyXy
ITOCJTIJIOBHO 1 TTOBHO ONMHCYIOTHh peasibHi (izmuni mporecu. ¥ 3B’S3Ky 3 UM JOCUTh
CKa3aTH, M0 HUHI MU He 3HAEMO KOJIHOTO PIBHAHHSI PYXY B KBaHTOBiil MeXaHII s
JIBOX YACTUHOK, siKe Oysio 6 cywmicHe 3 mpuniumnoM Bimnocuocti Jlopenma—Ilyankape—
Aitamrraitaa. [upoknit criekTp piBHSIHB, sIKi 3aIIPOIIOHOBAHI 6araTbMa JTOCITHIKAMMA,
SIK TIPABHUJIO MAIOTh IIPUHIIMIIOBI HEJOJIKY 1 YACTO IPUBOIATE J0 aOCYpAHUX (DI3UIHUX
HACJIi IKIB.

XapakTepHa OCOOJIMBICTH CYyYaCHOTO MaTEMATHIHOTO OIKCY PEAJHHUX IIPOIECiB
[IOJIATaE y TOMY, IO PIBHSHHS PYXY JJIS YaCTHHOK, XBHUJIb, IIOJIIiB € CKJIAIHUMH HeJIi-
HIMHUMU CHCTeMaMu TudEpeHIlaIbHAX 1 iHTerpo-TudepeHIiaglbunx piBHIHL. K Oy-
JyBaru Taki piBHsHHsI? fK po3s’sizyBaTu i gocimpkysaru Taki cucremu?! QueBHJIHO,
o migxizn Jlarpamxka—Oiiiepa (Mexanigauil y ¢BOIil OCHOBI) 10 MOOYJOBU PIBHAHHS
pPyxy y bararpox BumIakax € oomexxkennm. JlocuTs HAramaTh, Mo B pAMKaX KJIACHIHO-
ro meroiy Jlarpamxka—Oiiepa HEMOXKIINBO OflepKaTh 06e3 mepexoiy JI0 MOTEHI[aiB
piBusiHEsa Makcsesia /s €JIeKTPOMArHiTHUX XBUJIb.

B mamux poborax [3-12] 3ampornoHoBaHO HesJArpaH:KeBUH MiAXin s 00yI0BH i
kJracudikarii piBHsIHb pyXy. B OCHOBI 1IOr0 MiJIXOMy JI€XKATh MPUHITUITN BiJTHOCHOCT1
Tanines Ta Jlopenna—Ilyankape—Aitamraiina. Koporkuit orisiy JeaKkux pe3ysibraTiB
y IIbOMY HAIPSIMKY ITOJAAETHCS JTAJIL.

1. Koporkuii komeHnTap npo Biamkputtsa Illpoainrepa. Ilepmn 3a Bce mara-
nayemo, 1mo 70 pokis Tomy Epsin Illpoainrep BiAkpuB piBHsAHHS pyXy 1 UM caMuM
3aKJaB MATEMATUIHY OCHOBY KBaHTOBOI Mexamiku. 21 depBua 1926 p. Illpominrep
pEeJICTaBUB JI0 JPYKY pobory [2], B gKiii 3anponoHyBaB PiBHIHHS

SU=0, S=py— 2% ~V(tx),

2m (1)
., 0 .ha 193

pO*Zhav Pa = —1 8790(1’ a=1,2,9,

ne U = U(xg =t,T) — KOMIUIEKCHO3HAYHA XBUJIbOBA (DYHKIdA, V — MOTEHIa.

VYkp. mart. )KypH., 1997, 49, Ne 1, C. 164-177.
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Il poboTa GyJsra OCTAHHBOIO 3 CEpil YOTUPHOX CTATEFO IIiJI OJIHIE0 HA3BOIO, B SIKUX
po3B’s3aHa pobJIeMa KBAaHTYBaHHS B aTOMHIN (i3urli.

Yu moxkua ckasaru, 1mo Epsin [llponiarep BuBiB cBO€ piBHSIHHSI?

3HAMOMCTBO 3 OPUIIHAJILHOIO POOOTOIO [2] JIa€ HaM OJTHO3HAYHY BIJIIOBi/Ib HA II€
nuranusd. [IIpoginrep ne Busis piBusians. PiBusuns (1) 6yiao nanucano 6e3 cTpororo
obrpynaryBanns, Oiabmre Toro, IIpoginrep BBakaB, IO MPABUIBHUM DiBHSIHHSM DY-
Xy y KBAHTOBIi# MEXaHIIl MOBUHHO OYTH PIBHSIHHA YETBEPTOTO TMOPSIKY JJIs TiACHOT
dynxii, a He piBrsHEs (1) Mg KoMrutekcHol dbyukil. IIposinrep posristysas pis-
HsaHHs (1), sIK Jlesike OTIOMiXKHe, POMIXKHE DIBHSIHHSI, sIK€ JIA€ 3MOTY CIIPOIILYBATH
obunCIeHHS .

B ocnoBi nonepesinix iftoro podiT Oy/u piBHAHHS

20E-V)0*V
AV 0 @)
8?2

ne U — mificHa QpyHKITIS.
Kosn norenrgan V' He 3anexurs Bix vacy, [lpoxiarep susoguts 3 (2), (3) xBu-
JIbOBE PIBHSIHHS IE€TBEPTOrO MOPSJIKY

872 \? 1672 9?0
<Ah2v> VT e =0 4)

ae U — mificHa QyHKITIS.

Ipo pisusinua (4) Ipomiarep nwmmme: “... piBusung (4) € €IuHUM 1 3arajbHUM
XBUJIBOBAM DIBHSIHHSIM JIJIsl TIOJIBOBOTO cKassipa ¥ ... XxBusboBe piBHsiHHs (4) 3a-
KJIIo4a€ B cobi 3aKOH jucriepcii i MoKe CIY?>KUTH OCHOBOIO PO3BHHYTOI MHOIO TeOpil
KOHCEPBATHBHIX CHCTeM. JIOro y3arajbHEHHs HA BHIIAJOK MOTEHINATy BIMAIA€ Je-
Ky OOEPEXKHICTD ... cupoba 1epeHecT piBHgAHHs (4) HA HEKOHCEPBATUBHI CUCTEMU
3yCTPIYaEThCs 3 CKJIAIHICTIO, KA BUHUKAE YEPe3 djIeH %—‘t/. Tomy mami g mixy mo im-
IOMY TILISAXY, O1TBIT TPOCTOMY 3 O0YUCIIOBAIBLHOI TOUKM 30py. Lle#t nuisax s BBaXkaro
OPUHIUIIOBO CAMUM TIPABUIBHUM. (4) € DIBHSIHHS KOJUBAHHS [IJIACTUHKA.”

VY sucri go Jlopentia (6 wepsus 1926 p., Ilopix) Ipoaiarep nurme: “. . . 3 piBHAHB
(2) i (3) Mu ozmepKyeMO 3arajibHe XBUJIbOBe DiBHsIHHS (4), sike HE 3aJIe’KUTh BiJ| KOH-
crauTH iHnTerpyBanus F. BoHo TOYHO cmiBnagae 3 piBHAHHSIM KOJTUBAHHS TIJIACTUHKH,
K€ MICTUTBb KBajpar omeparopa Jlammaca. Bigkpurrs nporo mpocroro dakry 3abpa-
JIO y MeHe baraTo Jacy.”

Y smeri no Ilnanka (14 gepsua 1926 p., Lopix) lpozinrep nuiie:
CITPABXKHIM XBHJILOBUM DIBHSIHHSM € PIBHAHHSI Y€TBEPTOTO MOPSIKY BiJIHOCHO KOOD-
auHAaT ...

I nani Mpoginrep Bunucye piusinbsg (1) ayis komiutekcuol dyukuii ¥. fxpas y
rpoMy Mmicmi crarti [2] Illpoxiarep pobuts renianbhmii (i amorivamii) KPoK, 3aMUCy0Tn
piBusinHst (1) Jyist KoMILIekcHOT yHKIIL.

Bignocro pisasiass (1) [poxiarep nume: “/lesika TpyHICTD, 6€3 CyMHIBY, BUHHKAE
B 3aCTOCYBaHHI KOMILJIEKCHUX XBUJIbOBUX (DYHKINH. ZIKIIO BOHU IIPUHIUIIOBO HEOOXI-
JIHi, & He € TUIbKY C1I0ci6 1moJierinenHst (CIpOIIeHHs ) 0GUUC/IeHb, TO 1ie Oyjie O3HaYaTH,
0 iCHYIOTh MPUHITAIIOBO JBI (PYHKIII, SKi TITbKK PA30M JAIOTH OIKMC CTAHY CHCTEMU

o

‘... oTKe
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... CrpaB:xHE XBUJIBOBE PIBHSIHHSI, HAWO1/IBII BUPOIiIHO, Ma€ OYTH PIBHSIHHSI Ye€TBEP-
TOro TOPSAKY. [l HeKOHCepBATUBHOI CUCTEMU (%—‘t/ #* O) Me€Hi, oJlHade, He BJAJIOCH
3HANTH Take PiBHAHHS .

3 HaBEJIEHOI0 MU MOXKEMO 3POOUTHU TaKi BUCHOBKHU.

BucnoBok 1. B 1926 poui Ilpodineep 68astcas, wo npasusvbHuM PIBHAHHAM PYLY 6
KBAHMOBI METAHIUT MAE OYMU DIGHAHHA Yemeepmozo nopadky. it eunadky, Koiu
NOMEHULAA HE 3AAEHCUMD 810 4aCY, UE PIBHAHHA MAE 8uAA0 (4).

BucHoBok 2. B wepsni 1926 poxy Illpodineep ssasicas, wo pishsanns (1), nepwozo
nopadKy 3a 4acom i 0py2020 NOPAIKY 3G NPOCMOPOSUMYU SMIHHUMU, OAA KOMNAEKCHOT
Pynruii € npomischum (He ochosHUM), AKe MPeba BUKOPUCTAMU MIALKY OAfL CIPO-
WEHHA 00YUCAEHD.

BucnoBok 3. [lIpodineep ssasicas, wo y momy eunadky, xosu nomenuian V 3aae-
AHCUMD 610 UaCY, PIBHAHHA PYTY MAE OYMU MAKONHC YEMEEPMO020 NOPAIKY 0Af JIUcHOT
Pynruii (Gomy Goz0 ne 8danroch odepocamu).

BucuoBok 4. IIlpodinzep wikoau niswiwe He 002060D106a6 PISHAHHA YEMEEPMO20
nopaoKy.

Croroui MOXKHA, OJHO3HAYHO cKa3aTh, o IIIpomiHrep moMUIsSBCs BiIHOCHO BarK-
musocti (bynnamenrtanbrocti) pisastab (1), (4). Hificro, piBastHHs (1) € OCHOBHUM
PIBHAHHSAM PyXy KBaHTOBOI MeXaHIKM, a piBHsAHHS (4) He MOKe OyTU PIBHAHHAM DYyXY,
OCKIJIbKU BOHO HE CyMicHe 3 MpWHITUIIOM BigHocHocTi [asties.

ITe TBep/zKEHHS € HACIIKOM CHMeTpiiiHoro anaui3y piBHsHHb (1) i (4) [3]: piBHSH-
ug (1) imBapianTae BimHocHo rpynu lasises. VY 3B’sa3Ky 3 HaBeIEHUM Y HACTYIHOMY
maparpadi JaHo BiAMOBiAb HA TaKi MATAHHI:

1. ki niniftai piBHAHHS IPYTOTO, Y€TBEPTOTO, N-TO TOPAJIKY CYMICHI 3 TPUHITAIIOM
Bignocuocti lasites?

2. Yu icuyioTs JiHiiiHI PIBHAHHS [IEPIIOrO MOPSIKY 33 YaCOBOIO 3MIHHOIO 1 YeTBep-
TOT'O TOPSAJIKY 3a ITPOCTOPOBUMHU 3MIHHUMU, SKi CYMICHI 3 IIPUHITUIIOM BiJTHOCHO-
cri Tamines?

ITix npuniunom sigaocHocti asiness Mu posymiemo iHBapianTHicTh (y cenci JIi)
PiBHSIHHS BiJIHOCHO ITepeTBOPEHb

t—t' =t -7 =7+t (5)
KOJTU XBUJIbOBA (PYHKITiSI IEPETBOPIOETHCS 38 JIHIMHUM 300ParKeHHSIM TPYIIN (5) [4]:
U — U =T,0. (6)

Ilepm mixk maTy BiamoBiabk Ha chOpMyIbOBaHI MUTAHHS HaBEIEMO 100pe Bimomi
dakTu npo sokaabHy cumerpiro JinifiHOro BimbHOrO (V' = 0) piBHstHHs IIIposmire-

pa (1).
Teopema 1 [3]. Maxcumanrvnoro (y cenci JIi) anzebporo insapianmuocmi (1) e 13-
sumipha aszebpa JIi

AG2(133) = <P05Pa7Jab7Ga7D7Ha Q>7
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3 0a3UCHUMU CAEMEHMAMU

0
P(J:ii:p()a Py =—i

= Da, Jab = TaPb — TbPa,

dzo 0xq
Ga tha—mxa, a = 172a37 DZQIopo—xapa, (7)
mn m ) b .0
H:J?(%po —woﬂ?apa—l-?xo — ?in, Q:Z (\I]a_\ll _ a\:[j*) .

Omueparopu G, OpoIKyIOTh (reHepyoTh) nepersopenns asmisnes (5) i Take nepe-
TBOPEHHSI JIJIsl XBUJILOBOI (DYHKITIT

0w —o fi (o 2) Woo],_ ). ®

Hetasi goBesennst mup. y [4] 1 nurosaniit Tam siteparypi.
Mun B:XMBa€MO HACTYIHI TO3HAYEHHS:

AG(1,3) = (Py, Py, Jap, Go) — 10-Bumipna asrebpa lamnines;
AG1(1,3) = (Py, Pa, Jab, Ga, D) — posmmpena anreGpa Tasines;
AG2(1,3) = (Py, Pa, Jab, Ga, D, IT) — noBua anrebpa Lasines;
AE(1,3) = (P, Pa, Jap) — anrebpa Epkiiga;

AFE1(1,3) = (Py, Py, Jap, D) — posmmupena anrebpa Eskiiza.

Teopema 2 [5]. Makxcumanvroro aszebporo ineapianmmocmi pieuanns (4 ) (V = 0)
e poswupena anzebpa Fexaida AE;(1,3).

3 HaBeJeHUX TEOPEM MAEMO TaKi HACJIIIKH.

Hacuainok 1. Pisuannsa (4) necymicne 3 npunyunom sidnocroemi Lanines (5). Le
03HaNAE, WO (4) He modice Po32AAdYBAMUCD, AK PIBHANNA DYTY HACMUNKY (N0As) 8
K6aHMo6il mexaniui. Bea muodcuna po3e’sskie pieHanna (4) ne ineapianmua 6i0-
Hocho nepemeopens Lanines (5), (6).

SBaysaxkumo, mo Oyab gkuii ragkuil po3s’s30k piBasHHs (1) € Po3B’sa3KOM piB-
uauud (4) (upu V = 0), o610 MHOXKHMHA PO3B’A3KiB (4) MicTuTE ¥ c06i po3s’sas3ku (2).

2. BuBeneuns piBusuusi IllpoaiHnrepa i piBHsiHHSI BUCOKOTO ITOPSIIKY.
Busenemo pisusunsg [Ipozginrepa 3 Bumorn iHBapiaHTHOCTI piBHAHHS BiHOCHO TIepe-
rBopenb asines (5), (8) i rpynu 4acoBUX i IPOCTOPOBHUX TPAHCJIALIA.

Posrnsgaemo moBinbHe JiHiliHe PIBHAHHS TEPIIOTO MOPSIKY 38 9acoOM i JPyroro
MTOPSIJIKY 38 MPOCTOPOBUMY 3MIHHUMHU

ov 0w ov

i— =a(t, ) ——— + b(t, %) =— + c(t, 2V, 9
o = (LT 5+ () S+ c(0.) )

ne ai(t, ), bi(t, &), c(t,Z) — nosinbHi riaaki GYyHKIGI.

Teopema 3 [5, 6]. Ceped mmoorcunu pisuans (9), ineapianmnux eidnocno epynu (5)
1 2pYnu MParcasuit, oas xomnaexchol Gynxuii ¥ e miavku 00ne pieHAHHSA, AKe N0-
KaavHo exsisasenmue pienannto Lpodineepa (1).

Otrxe, Kjac JHITHUX PIBHSAHB, IKi CyMIiCHI 3 KJIACUYIHUM IIPUHIMIIOM BiTHOCHOCTI
Tajisest, 3BoauTHCs 10 oHOrO piBHAHH (1).
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SayBaxkenns 1. dkmo B (9) ¥ — nificHa GyHKIis, TO €MHIM PIBHSHHIM CyMICHUM
3 mpuHIUIOM [asiyiest € piBHAHHS TEIJIOMPOBIIHOCTI
ou
— = Au 10
ot ’ (10)

A\ — JOBiMbHUIT TapaMeTp.

B [7] saupononoBane Take ysaranbHerHst pisasuHs (V = 0) IIIpoxiarepa (1)

()\15 F A0S 4t )\nS”)\If — AU,

2\ 2 2\ " (11)
4 p
5% = - ce, ST = -
(p() 2m> ) ) (pO 2m) 3
A A1, Ao, ..., Ay — JIOBIIBHI MapamMeTpu.

PiBuganns (11) cymicue 3 npunruinom sigaocuocri lastines i inBapianTHe BiTHOCHO
anre6pu Laminess AG(1,3), ase He iHBapianTHe BigHOCHO MamTabroro D i npoekTus-
Horo IT onepatopis (A1 # 0, Ag # 0).

Hosuy indopmario npo cumerpito piBasuug (11) gae HacrynHa Teopema.
Teopema 4 [13]. Ceped ainitinux pisrans 006iavH020 NOPAIKY € MINLKU DIGHAHHI
(11), axe insapianmue 6idnocro aneebpu AG(1,3). ¥V eunadky, xoau A = Ay = Ao =
<o = Apo1 = 0, pienanna (11) insapianmmue sionocno anseebpu AGo(1,3).

Takum quHOM, KJIac JIHITHIX TaJiiei-iHBapiaHTHUX PiBHAHD JTOBLIHLHOTO MOPSIKY
JIOCUTH BY3bKuil 1 3BoauThCs j10 piBHsHHs (11). Bei iHmi rasinefi-inBapianTai pisHs-
HHsl JIOKAJIbHO eKBiBasieHTHI piBHsHHIO (11).

3. Asrebpa Jlopenna nuns pisasinag Ilpoainrepa. Jliniiine piasaas [po-
ninrepa (koau V = 0 i npu gesakux crenudivaux Bujax norerniaais V (¢, z)) mae Kpim
nokasbHOI (Teopema 1) 1 HesokambHY cumerpil (muB. [4] 1 muToBaRy Tam miTepaTypy).
HagesieMo 071Hy 3 TaKUX HE3BUYHUX (HEJOKAJIBHUX) CUMETPIi.

Teopema 5 [8]. Pisnanna Illpodineepa (1) (koau V. = 0) insapianmue 6idnocro
anzebpu Jopernua AL(1,3) = (Jap, Joa), Oasuchi esemenmu axoi 3adaromocs onepa-
mopamu

1
Jab = TaPo — ToPa, Joa = %(pGa + Gap)7
p= i +p5+p3)"7 = (-4)"2
G, = LoPa — Mg, [J()m JOb} = —iJgp.

(12)

BazksmBo migkpecauru, mo ncesgogudepeniianbii oneparopu (Jo,) He TEHEPYIOTH
ui neperBopenns Jlopenra, ui meperBopenus laies:

Tq — 1) = exp{iJoaVa }Ta exp{—Jopvp} # JIOPEHII-TIEPETBOPEHHS, (13)
zo — x(, = exp{iJoava }To exp{—Jopvp} = To. (14)

Yac npu Takux HEJOKAJIHHUX [IEPETBOPEHHSIX HE MIHSETHCH.

4. HenokasbHa raJjijieifi-cuMeTpisi eBOJIIOIINHOTO PiBHSIHHS Y€TBEPTOTO
nopsaaKy. Po3ryisiHeMo PiBHsSIHHSI IIEPIIOrO MOPSJIKY 32 YaCOBOKO 3MIHHOKO 1 YeTBep-
TOrO HOPSIAKY 3& IMIPOCTOPOBUMU 3MIHHUMUI

4

po¥ = H(p*)¥, H(p?) = agmo + asp® + a4%, (15)
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p2 = pi = p% —l—p% —l—p% =—-A,ay = 2m , G0, A2, A4, My — JTOBLIbHI JiICHI KOHCTAHTH.
Tlamisnpronian (15), ko ag = 1, ag = fm03, SIBJIsIE CODOIO TIEPITi TPU TIEHU
poskaamgy B pam Teitsiopa pelsaTUBICTCHKOrO raMiJbTOHIaHA,

H(p?) = (p* +m3)

VY Tomy BUnajKy, Ko ag = a4 = 0, piBusinas (15) criBnajae 3 pisasuasM [IIpo-
qinrepa (1).

3 craHapTHOT (3aranbHO NpuitHsTOI) (bisnaHOl TOUKN 30py piBHsAHHS (15) He MOXK-
Ha PO3IVISAYBATU K PIBHIHHS PYXy B KBAHTOBi#l MeXaHiIl, OCKITbKN BOHO He iHBa-
pianTHe HI BimHocHo rpymu lamines, ui BimHocHo rpymu Jlopenma. Tobro Hi omun 3
Binomux npunimnis Bigaocuocri (Fasines abo Jlopenna—Ilyankape—Aiinimraiina) He
BUKOHY€THCS JijIs piBHAHHS (15).

3acrocoBytoun MeTos JIi, MOYKHA TOBECTH, 0 MAKCUMAJIHLHOIO aredporo iHBapian-
tHOCT] piBusHHEA (15) € anrebpa Eskniga AE(1,3) = (Py, Py, Jap, I), I — onurnanmit
onepatop. BusiBisieTbest, mo KpiM JoKagbHOT cuMeTpil piBHsHHs (15) Mae mmupoky
HeJIOKaJIbHY cuMerpito. 3okpema, pisHsHHs (15) inBapianTHe BigHOCHO anrebpu Lasi-
nes AG(1,3), 6asucui enementu (oneparopu G,) 9KOI 38JIaI0THCsI ONEPATOPAMU 3-T'0
IOPsAJIKY. BLIBINT TOYHO, Ma€ CIIPaBEJINBE HACTYITHE TBEPIZKEHHS.

Teopema 6 [9, 10]. Pisnanns (15) insapianmne idnocno 20-eumiprot anrzebpu JIi,
6a3ucHi enemenmu AKxoL 3a0a0Mvbea oNnepamopam

0 0
0 Zat’ a Zal'a’ Jab TaPb TyPa s ( 6)
Go = (tVa - xa)mOa (17)

1 P>
Vi=— (14 a1 ) pa. 18
mo < * 64 2m3) b (18)
1 2

Rab = a4 Pan + §5abp . (19)

Oueparopu (16)—(19) 3a10B0BHSIIOTH KOMYTAINHI CIIBBIIHOIIEHHS

[ abs } = Z‘((sacc;b - 5cha)> [Paa Gb] = i(sabja [Ga> Gb] = Oa
[P ] ZVa; [Va7 Gb] = i(Rab - a26ab1)7

[ aby cd] = Z(Csac]%bd + 0pdRac — OpcRaa — 5adec)a

[ abs ] = i(éac% - 5bcva)7 [Gaa Rbc} = ia4(5abpc + 6bcPa + 5ach)~

Minkpecamnmo, o oneparopu (17)—(19) € oneparopamm TPETHOrO 1 IPYTOrO MOPSII-
Ky, & IIe O3HAaYaE, 0 BOHU MOPOJIKYIOTh HEJIOKAJIbHI IIepeTBOpeHHs. Tak, onepaTopu
Tanines G, (17) remepyioTh cTaHIAPTHI JIOKAJIbHI IEPETBOPEHHS JJIsl YaCy 1 KOOP/IH-
HAT

t — t' = exp(iug,Gy)t exp(—iupGy) = t,

xq — xl, = exp(ivpGp)zq exp(—vGy) = x4 + V4,
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i HeJIOKAJIbHI [IepeTBOPEHHS JIJIsl XBUIbOBOI (yHKIIT [3]

U(z) — ¥'(z) = exp {imo (xaua + %t — §a4tuaPaP2> } v, (20)

Ak mobpe BioMo, MIBUIKICTh YaCTUHKHU B PEJISITUBICTCHKIM MeXaHiIll BUSHAYAETHCS
3a (OPMYJIO0
Pa s _
Vo ===, m=m(7?), m=me(l—v?)"2 (21)
m
VY mexanini, moGyoBaniii Ha 6a3i pisHstHES (15), BianosinHa dbopmysia Mae BUTIIST
2
Pa ayp
Vg = — +
mo 2

Pa- (22)

Skmo meurAKicTh YacTuHKE 3a7aTH Gopmyson (21) i BukopucraTu (22), To Mu
o/iepKyeMo (hOPMYILYy 3aJI€KHOCTI MacH, B HOBiif MeXaHiri, Bif mBuaKOCTI

m a4 3 2
- - — = 0. :2

Posp’sizapmy kyGivune piBHsHHS (23), MU omepKuMO (B 3aJ1€KHOCTI Bif 3HaKa Koedi-
nieHra ay) Taki dhopmym:

1
m mO%sin{garctanﬁ}, ay <0, w#1, (24)

3 1
m_m()ash{gln(w—i- 1+w2)}, aq > 0. (25)

3\ 3/2
o= (3) @i

Orxe, y KBaHTOBIN MexaHini, moOyjoBaniit Ha piBugaHl (15), BUKOHYETHCS He-
craHnapTHUil npuHnun BigHocHocti Nasmines (dbopmysta (20)) i maca yacTuHKY (1OJIS)
3aJIeXKUTh BiJL MBAAKOCTI 3rizHo dopmyi (24), (25).

5. IIpunurun BigHocuocti I'asises i wemniniiini pisBHauus tuny Ilpoxinre-
pa. 3a ocraHHi poKH 6araTo aBTOPiB, BUXOSTYH 3 PI3HUX MOTHUBIB i MipKyBaHb, 3aIIPO-
TIOHYBaJI IMUPOKUH CIIEKTP HeJHIfTHUX y3araiabHerb piBuaab [llpomgiarepa. Bararo 3
HEJIHIHUX PIBHSHB, 3IIPOIIOHOBAHUX JJIsI OIIUCY HEJIHIHHUX eEKTIB B IJIa3Mi, OITH-
11i, KBAHTOBIN MEXaHiIl, He 3aJ0BObHAIOTH MPUHITAITY BigHocHocTi [amiges. Y 3B’ a3-
Ky 3 IuM B cepil Hamux pobir [3, 4, 6, 7, 11] uposeneno cumerpiiiny kiacudikariio
Heminifinnx piBugob tumny Ilposginrepa, ski inBapianTui BiznocHo rpymnu lamines Ta
pi3HUX 1T PO3IINPEHD.

YV 1bOMYy IIyHKTI HaBEIEMO JiesiKi PE3Y/IbTATU PO KJacu(iKalio HeiHIfHIX piB-
uganb tuny Ipoxinrepa, ski MaorTh Taky K cuMmerpiio (abo mmwmpiny), sk 1 Jiiniiine
piBusuns [pozinrepa (1).

Posrisgaemo neniniitie piBHSIHHST IPYyTOro MOPSIIKY

ov 1 Ap(TT)
- == =)
ot 2 A
e o, F' — moBinbHi rmagki dyHKIIL

U=F (\I/\I/ (V(T*T))?, A(\If*\I!)) 7, (26)
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Teopema 7 [7, 11]. Pisnanns (26) y sunadky, xoau ¢ = 0, a Pynkyisa F(T*T) ne
sanedcums 6id noxidnux, ineapianmue 6idnocno noehoi anzebpu AGo(1,n) 3 6asu-
crumy eaemenmamy (7) modi i misvku modi, Koau

F(U*0) = N\ |¥™, (27)

n — "UCA0 NPoCcmoposuxr BMIHHUL.

Teopema 8 [12]. Pisuannsa (26) insapianmmue ionocno anzebpu AGs(1,n) i onepa-
mopa I modi i miavku modi, Kosu

F (\p*w,(ﬁ(\p*\p))iA(\y*\p)) - A\llf‘IIIN (L‘é@ﬂ) . p(T) = [T, (28)

de N — dosiavha 2nadka Gyrkuyis.
B romy Bunazxy, koau N = 1/2; ¢ = 0 piBusuns (26) nabysae BUIJIsiLy

: 1 1A
— 4+ AV = ——— U, 2
i— + 5 2 0] (29)

Pisustaas (29) sanpononosano y po6orax [14-18]. Boro Mae yHIKaJIbHY CHMeTpIfO.

Teopema 9 [19]. Pisnwanna (29) insapianmmue eionocno anrzebpu JIi 3 6a3ucrumu
onepamopamu

0 0 0 0
Py =i Pa:_‘—a-[:\:[j— v* ’
LT e av " aur
Jabzxan—.TbPa, a,b:1,2,...,n
Tq , 0 . 0 (30)
Ga—tpa—F?Q, Q_Z<\I/a\11_\ll a\I]*)’
T t
D=2tP0+$aPa—gI, H=t2Po+txaPa+%Q—%L

v v
G = —iln g+ Lot zalo, DW= ~igzQ+ Talu,

v . v L . v
H(l) = — (ln @) Q — 2'L <1n @) xapa + |SC|2P0 +n (ln @) 17 (31)
7?2 v n T v
K, =tx,Py— (% +itln @) Py + zqxp Py — §$al - 17(1 (hl@) Q.

Bunncana anreGpa exsiBasenTHa xordopwmHiit amrebpi AC(2,n) B (2 + n)-Bu-
mipHOMy mpocTopi MinkoBchbKoro. KMo Bix komiuiekcuol ¢dyukiii ¥ nepeiitu 10
aMIIiTy - da3u

U = A(t,z) exp{iO(t, z)},

To HaBegeni dhopMysu 3HAYHO cHpolLyoThed. Asrebpa cumerpii piBusauug (29) eksi-
BaJIeHTHA ajreOpi cumerpil kiaacuvanoro pisasinas [amiibrona [3]

ou Oou Ou

ot Owy, Oxp
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Orxe, Hesiniitae piBugnag (29) Mae 3HAYHO MUPITY CUMETPIIO, HiXK JiiHifiHe piBHs-
uns Ipoxiarepa (1). Auasoriunuii edexr mae micre 1 Jyist myaHkape-iHBapiaHTHOrO
HeJIIHITHOTO XBH/IBOBOrO piBHSHHSA [16, 17]

Bl (32)

ov = .
V]

6. HesokanpHa cuMetTpis JiHilfiHOro ImyaHkape—iHBapiaHTHOTO XBWJIbO-
Boro piBusiHHA. CiMmzecar pokiB Tomy, y 1926 p. maiizke 0JIHOYACHO CiM ydYeHUX:
MIponinrep, ne Bpoms, Hlounep Ban lynren, Kneitn, ®ox, ['opaon i Kynap Bigkpuin
PiBHSTHHS

(5 — p2)u(wo, &) = m*u (33)

JUTsl CKaJISIPHOT KOMILIeKCHOT DyHKIil u. Y Bunazky, koau m = 0 (33) cuisnazae 3
XBUJILOBUM piBHsiHHSM Jlarambepa.

Bigomo, mo pisasuusa (33) imBapiantae Bimuocuo anrebpu Ilyankape AP(1,3) 3
6a3UCHUIMU eJIeMEeHTaMu

P0:p0a Pk:pk7 k:172737

e b 34
uwv = TpPv — TuPu, v =0,1,2,3,
TOOTO BUKOHYIOTHCSA yMOBH:

[pg_pi_m2»<]uu]:07 [pg_pi_m2vpﬂ]:0' (35)

Aurebpa AP(1,3) = (P, J,.) saBnsieTbest MakcuMaiabHOoO (y cerci JIi) anrebporo
imBapianTHOCTI piBHsIHHS (33).
Oueparopu (Jo,) TeHEPYIOTH CTaHAApPTHI eperBopeHHst JIopeHna

x, — xil = exp(iJoqVa)x, exp(—iJopvy) = meperBopenns Jloperia.

B [20] ocTapsieHo i JaHO TO3UTUBHY BLIOBIIb HA TaKe IIUTAHHS: 91 Ma€ PIBHAHHS
(33) momarkoBy cumerpiio, Biaminay Big (34)7

ITo6 BusiBUTH HONATKOBY (HeJOKaJbHY) cuMmerpiio (33), nepenuinemMo Horo y Bu-
IVISJIl CUCTEMU JIBOX PIBHSHBb IEPIIOrO MOPSIKY 38 YACOBOIO 3MIHHOIO 1 JIDYTOro I0-
PSJIKY 38 TPOCTOPOBUMHM 3MiHHUMHU

0P
— = H®
“ot :
H= i{(E2 + k%o +i(E* — 52)02} (36)
2K ’
P Ou
E?=—-A+m? k#0, q>=<¢;>, K@I:ZE, ®y = u,

K — JIOBLIbHA KOHCTaHTA, 01 1 09 — (2 X 2) marpuni [Tayui.

Teopema 10 [20]. Pignanns (36) insapianmmue eidnocro aszebpu Hyankape, 6asuchi
onepamopu AKOT MaOMd 6U2AA0

PV =H, PV =pi, JG) = zapy — wpa = Jan, (37)

1
I = 0P, — 5 (HTa + 2aH) # Joa. (38)
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IIpsiMOrO 1IepeBiPKOI0 MOXKHA IIEPEKOHATHCH, o orepaTopu (37), (38) 3a10B0Jb-
HAIOTH YMOBH

.0 e
|:Za — _Iy7 J()a:| = 0, |:7,5 —H, Jab:| =0. (39)

. . 1) . 1
Icrorna pizauIg Mik omepaTopaMu J(()a) i Jyq mossirae y TOMy, II10: J(ga) — ollepaTopu

JPYTOro TOPSJIKY i TeHEPYIOTh HEJIOKAJIbHI TIepeTBOpeHHs; Jo, — OIepaToOpH MEPIIOTO
TIOPSIZIKY 1 TeHEepYIOTh CTaHIapPTHI JIOKAJIbHI ITepeTBOpeHHs JlopeHra.

. 1
Iligkpecsimmo, 110 omeparopu J(ga) reHepyIoTh TOTOXKHE IIePeTBOPEHHd JJjid dacy,

TOOTO Yac iHBapiaHTHUHN BiJIHOCHO OMEPATOPIB J(()(ll):

t—t = exp(ijé}l)va)t exp(fijé;)vb) =1t. (40)
IIpocTopoBi mepeTBOPEHHS 3MIHHUX X4, Ki T€HEPYIOTHCS OTIEPATOPAME Jé(ll), He CITiB-
aJaloTh 3 nepeTBopeHHAME JlopeHTa:

T — Tp = exp(iJé(ll)va)xk exp(—iJé;)vb) # muepersopenHst JIopenra. (41)

TakuM YUHOM MU BCTAHOBHJIM, [0 MHOXKMHA PO3B’si3KiB piBHsAHHA (33) Mae myasib-
HY CHUMETPIIO:

1. Jlopennosy (sokasbHy) cumerpio. Hac 3MIHIOETbCA UpU IEePexol Bii OfHiel
imepriitnol cucremu 1o iHmol 3a dopmyrtamu Jlopenra.

2. Hemopennosy (Henokasbhy) cumerpito (40), (41). Yac He 3MIHIOETBCSI TIpU 116~
pexosi Bij ojHi€l iHepIiiiHOl cucTeMu 0 1HITOI.

7. HesokasbHa rajijeii-cuMeTpisi pejiiTUBICTCHBKOTO TICEBI0U(EPEHITI-
aJIbHOTO XBUJILOBOT'O PiBHSIHHSI. PO3riIsiHeMO IceBI0ANQEPEHIaJIbHe PiBHSIHHS

pou=Fu, E=@>+m*)"Y? u=u(z, ). (42)

PiBHsiHHs (42) MOXKHA PO3IVISIYBATH $IK “KODPIHb KBAJPATHHUI 3 XBHJIBOBOI'O OIlE€pa-
Topa (33)” mig ckajaapHol KOMIIEKCHO! DyHKOil u. [IpgaMum 0GUUCIEHHAM MOMXKHA
[ePEKOHATHCH, 1110 piBHAHHs (42) iHBapiaHTHE BIIHOCHO CTAHJIAPTHOIO 300parKEeHHSs
asrebpu Ilyankape (34) i e iHBapianTHE BIJHOCHO CTaHIAPTHOIO 300parKEHHs ajire-
6pu Tamines (7).

Teopema 11 [9]. Pisnanna (42) insapianwmue sionocro 11-sumipnoi anzebpu Ianrines
3 MaKUMU OA3UCHUMU ONEPAMOPAMU:

2 A 0
P(gz):p_:__a P¢£2):pa:_—a J(lzj):xapb_xbpaEJabv
2m 2m Oz, * (43)
~ ~ m
G((z2) = 1Py — MZyq, Pa = Epav E= (pz + m2)1/2~

JoBemenHs TEOpEeME 3BOAUTHCS 0 MTEPEBIpKM yMOBU iHBAPIHTHOCTI

[Po — E,Qi]u =0, (44)

ne Q; — Oyap sxuit oneparop 3 Habopy (43).
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Oueparopu (43) 3a/10B0BHSIIOTE KOMyTaLifiH] cruiBBinHOmeHHs aarebpu Tasinest;
fo) — 1ceBI0 G EpPEHITIaIbHI OepATOPH, sIKi TeHEePYIOTh, Ha BiIMIiHY Bii cTaHmap-
THUX orepaTopiB (G, HEJOKAJIbHI MEPETBOPEHHS.

OrKe, MHOXKHMHA DO3B’a3KIB piBHAHHsA pyxy (42) Iyist cKajsgpHOl YacTuHKU (I10-
JIsl) 3 MO3UTHBHOIO €HEPri€l0 MAa€ HeJIOKAJIbHY rajiijieeBy cuMerpiro, asurebpa JIi sikol
3a/1a€ThCs onepaTopamu (43).

8. HenokanbHa rajisieii-cumerpisa piBHauus lipaka. Bigomo, 1mo piBagrms
Hipaxka
Po¥ = (Y0YaPa + Y072m)¥ = H(p)¥ (45)
imBapianTHe BigHOCHO anrebpu Ilyankape 3 GasucHumu oneparopaMu (JUB., HAIIDH-
ka3, 4])
9]

P=il p=—il
8950 8(Ek ) (46)

i
Juu = TuPv — TvPpu + Sul/a Suy = Z['}/ﬂy'}/u}-

Pisugnus /lipaka, sk Iie BCTAHOBJIEHO B HAIIMX POOOTax aBTOpa (JUB., HAIPUKJIAJ,

Jiteparypy B [3]) Mae MUPOKY HEJOKAJILHY CHMETDIIO.

Y 11b0My MYHKTI BCTAHOBHMO HEJOKAJIBHY Tajijeii-cumerpito piBuanus [lipaxa.
Hnst miel metn, Hacaigyroun MeTox [4], 3a 1OMOMOro0 iHTErpasbHOrO OIIEPATOpa

1 H
W=—(1+v=), E=@>+m>)Y? H=9v.pa+ m 47
\/5< Yo E) (p ) Y0YaPa + Y0V4 (47)

IIEPETBOPUMO CHCTEMY YOTUPHOX 3B’A3aHNX Inu(epeHIiajbHuX PiBHAHD IEPIIOro Io-
PAIKY HA CHCTEMY HE3B'SI3aHUX ICEBIOANMEPEHIIAILHAX PIBHIHD

10 0 0
0P 01 0 0
00 0 -1
=WV, ~rE=WHW ! (49)

BCTaHOBIIIOIOUY JIOJATKOBY CUMETDif0 piBHsIHHs (48), MU OJTHOYACHO BCTAHOBJIIOE-
MO cuMeTpito piBasHHs [ipaka 45).
Teopema 12 [9]. Pisnsanns (48) insapianmue sidnocro 11-eumiprot aneebpu Ianines
3 6a3UCHUMY ONEPAMOPAMU

2 . a
Po(g)ZLa Péd):paziia Iv
2m 0z, (50)
J® _ . _ S G®) = 5 — o= Y
ab = TaDPb — TbPa + Oabs o = UPa —MIg, Pa = 'YOEpa-
Omueparopu (50) 33/ 10BOJIbHSIIOTH KOMYTAIIHAM CIIiBBi(HOIIEHHIM aarebpu Tasi-
nest AG(1,3).

s noBemenHs TeopeMu Tpeda MEPEKOHATHUCH, IO YMOBA IHBAPIAaHTHOCTI

[Po — 0 E, Q¥ =0 (51)
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BUKOHYEThCS I JOBijbHOrO oneparopa @ 3 mabopy (50); G — IHTerpaIbLHU

OIIEPaTOP, IO FEeHEPYE HEJIOKAJIbHI TIEPETBOPEHHST, K1 HE CIIBIAIAI0TH 3 KIACHIHUMA
repeTBopeHnaMu Lastites.

Orxe, piBaanus (48), a romy i piusans Jlipaka (45), Mae HeJIOKAJIbHY CUMETPIIO,
siKa 33/1aeThes oneparopamu (50). SIBuuit Buryist oneparopis (50) i piBusHHS (45)
OOYHCTIOETHCA 32 (POPMYJIOIO

@l = WﬁlQlW (52)

9. Jlesiki HOBi piBHAHHSs HeJiHiliHOT MaTeMaTn4yHOl di3uKHu. ¥V HOMY IIyH-
KTi HaBEJIEHO Cepilo HOBUX HEJIHIHUX PIBHSHB, 9KI MOYXKHA PO3IJIAJIATH SK MaTeMa-
TUYHI MOJIEJI JIUI OIUCY HEJIHIWHUX IPOIECIiB Yy KJIACHMYHIN Ta KBAHTOBII MeXaHiIl,
€JIEKTPOIMHAMIIT, T1IPOIMHAMIII.

1. PiBusnns Herorona—Jlopenra s 3apsi/ipkeHO] 9acTKU IPUPOIHO y3araJbHUTH
TaK:

m =m(t2,E2, H2, EH,GE,TH) — Maca 9acTHHKH, 5IKa 3a/1€KUTh Bijl MBUIKOCTI 72
i (E JH ) — €JIEKTPOMArHITHOI'O HOJIsl, sIKEe CTBOPIOE CaMa 3apsi/ZKeHa YaCTUHKA; (5, B )
— BOBHIITHE €JIEKTPOMATrHITHE TIOJIE; A1, A3, ..., a1, 02, ... — JEdKi TapaMeTpH.

Y Buna Ky, KOJIX Maca 1m € KOHCTAHTOK 1 a1 = as = a3 = a4 = 0, Ay = A3 = 0,
piBasuug (53) cuiBuagae 3 KiaacuaauM piBHaHHAM HbioTona 3 cuioro Jlopenua.

SIBHA 3aJIESKHICTD MACH Bijl U2 i BJIACHOTO €eKTPOMATrHITHOTO TOJIst (E , H ) MoOXKe
GyTu BCTaHOBJIeHa 3 BuMord insapiantnocti (53) BiguocHo rpyuu lanises a6o rpymnn
IIyamkape.

Tinpo-enexkrpomuuamivuni yzaraipHenns piBasiHHst Oitstepa 11 3apsi/>KEHOI dac-
THUHKYW MalOTh BUTJIST

9 0 . . . . Lo

— vy — |m@E°,..) =MD+ XB+a(E x D)+

(at lazl) ( JT=MD+ 2B +a ) (54)
+ay(ExB)+---, 1=1,23.

Iyankape-iHBapianTHe PiBHAHHS /I 3apsI2KEHOl YACTUHKU MA€ BUTJISA
o L oay o )
vaa—a m(v, 0", E* — H*, EH)v, = AR,,v",
z

Ie R, — aHTHCHMeTpUYHHUIT T€H30p 30BHIMHBLOrO eleKTpoMaruitioro mois (D, B).
Hesokanbre (nceBnomudepeHiiaibae) y3aradbHeHHs piBHsiHHEsA HbroToHA U151 Ua-
CTUHKU MOXKHA ITOJIATU Y BUTJISIL

d 1/2 D
(mQW + /\> Z(t) = F(t, 7,7, 7). (55)
X

VY Bunazky, koau napamerp A = 0, (55) cuiBnajae 3 KJIACUYHUM DIBHAHHAM DYXY
Herorona.
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2. PiBHsIHHS 1JIsT CKAJISIPHOIO KOMILJIEKCHOI'O TIOJISI % 31 3MIHHOIO MIBUJKICTIO v
MOXKHA 3aJIaTH TaK:

2
(—hQ% + h?v2A — m2v4> u = F(lu])u, (56)
vy, vy, O|ul

WJFWTWZQ(‘UDT%a v? = o} + 03 + v, (57)

g(Ju|) — moBinbHa rnanka yHKIisL.

ITBuAKiCTH PO3MOBCIOMYKEHHsT TIOJIsT U 33/1a€Thest piBHsIHEAM (57). OTKe, XBUIBO-
Be pisasiaHs (56) (1 npu F(|u|) = 0) 3 ymosoro (57) e HexinifinuM piBusiHHsAM. [Tpn
craggapTHOMY miaxoni v? = ¢?, me ¢ — mocTiiiHa IBUAKICTH PO3IOBCIOMKEHHS CBIiTIA
y BakyyMi; y IbOMy BUNAJKY piBHsnH# (56) simifine. $IBHO myaHkape-iHBapianTHe
DIBHSIHHSI [IJIsI TIOJISI U MA€ BUIVISAL

0%u 9 4
(UHUVW —mv > u = O, (58)
v Olu|
va—axi = g(\u|)—8mu, vt = va — v} —v3 —vi>0. (59)

BaxknBoro BJIacTUBICTIO TIi€T crcTeMHU € Te, IO BOHA JIOPEHII-iHBapiaHTHA, TIIBUJIKICTD
HOJIA V), HE € CTAJIOK BeJMYMHOIO i 3aJeKUTh BiJl aMILLTYIU i IMBUAKOCTI 3MiHK aM-
IUIITYAW TOJIS.

3. CranmapTHa KJIACHYHA 1 KBAHTOBA €JIEKTPOIAMHAMIKA MOOY0OBAHA B TEPMiHAX
norennianiis A,. OJHaK J0 ILOr0 Yacy He BUKOPHUCTaHi iHII MOXKJIMBOCTI (Mopeui)
dopmyToBaHHS eJIeKTpouHaMiku. He BBOsM OTEHITIA B, MOYKHA 3AITPOIIOHYBATH
Taky IyaHKape-iHBapiaHTHY CHUCTEMY PiBHSHB JJIsT TEH30Pa €JIEKTPOMATHITHOTO TIOJIS
F,, i cninoproro nons U:

0F,, . ) - -

81‘#” = Jus Ju = QI\I/'Y;L\I/ + gQ\I/p#\I/,

OFu | 0Py | Oy _ (9US,¥  0US,a¥ | 9USy,W (60)
0z, 0z, dx, g 0z, oz, oz, ’

y o ) 0
'Yl (pu—V 'Fua)\II:m\Ila pM:ZgHVW7
Z. . z (61)
i (Ve = W)

Suv = 4[’}/,“’%/] =

FIS

Jlpyry Moesib eleKTpoAuHaMiKu, Oe3 MOTeHIa B, MOXKHa, OyayBaTu Ha OCHOBI
HEJIHITHUX PIBHSHB JPYTOTO MOPSJIKY

DF,U,V = g\ils;w\lja (62)
(Pu = Mo Fpu ) (p™ = AF#7,)¥ = m* . (63)

4. OjHe 3 MOXKJINBUX HEJIHIHUX y3arajbHeHb PiBHsSHBb MakcBesia s eJIeKTPO-
MAaTrHITHOI'O OJIst, SIKE PO3IOBCIOPKYETHCsI 31 3MIHHOIO MIBUAKICTIO v, Mae BUMIs [21]

dE . .

— =vrot H+j, divE =p,

o
E:—vrotﬁ, divH =0, v=(v}+0}+03)"2
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A1 8+va v+ A 8+U8 2v+>\v—
ot " o) P\ \ot T ox ) FTERT (65)
= a1 By + a2 Hy, + azepin By Hyy,  kylin=1,2,3,

d 0 0

— = b E by H, b

at = o TGy, TG, TG

)\1, )\2, A3, a1, a2, as, by, ba, bg — dyHKIII, gKi 3a7eKaTh BiJl iHBapiaHTiB E? - ﬁQ,
EH 72

BHHHcaHa cHCTeMa CHIBIIaJIa€ 3 KIACHIHUM piBHAHHAM MakcBesia Ipr yMoBi, IO
¥ € TTOCTIHOIO BEJIMYINHOIO 1 BCi A1, Ao, bs piBHi HysIeBi.

PiBugaua apyroro mopsaaky s €I€KTPOMATHITHOTO ITOJIsT (E, H ) 31 3MiHHOIO
MBUJIKICTIO MA€ BUTJIS],

0? . ~
(— —UQA)E—clE+02H+03(E><H)—|—C4( x E) +cs5(0x H),

2
(@ - ’UQA) H=dE+dyH +d3(E x H) + dy(7 x E) +ds(7 x H).
[IBukicTh U €IeKTPOMATHITHOTO TIOJIs (E, H ) BU3HAYA€ETHCsI 3 PiBHsHHSA (65)

5. Ilyankape-inBapianTHe y3araJibHeHHs KJIaCUIHOrO piBHsiHH# Oiljlepa Mae Bu-
DTS

oP v, \ 2
(ML + L), = riv, + "9z, e (va%> Uy

_ 0 9 0 0
L:'Uaaxia, L = (’Uaama> <'Uaaxa>,

71, T, T3 — TVIaJKi DYHKIT Bij iHBapianTiB v,vH, P.

3acTocyBaHHsI BUNMCAHUX HEJIMHUWHUX PIiBHSIHB JI0 ONMKMCY KOHKPETHUX (PISUYHUX
IIPOIIECIB JIa€ MOXKJIUBICTh YTOYHUTH JOBIIbHI (DYHKIII, siKi BXOAATH y piBHsiHHsI. Bu-
MOra iHBapiaHTHOCTI [0 3aIPONOHOBAHUX PIBHAHB BifHOCHO rpymm lasimes, rpymm
IIyamkape Ta IX pi3HUX PO3IIUPEHDL TO3BOJISE iCTOTHO 3BY3UTH KJIACH JIOMYCTUMHUX
MOJIeJIeit.
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I11o Take MBUIKICTh €JIEKTPOMATrHITHOI'O
moJisa?

B.I. oyIin4d

A new definition of the velocity of electromagnetic field is proposed. The velocity
depends on the physical fields.

ITuranns, BuHeceHe B 3aroJIOBOK, /IO CHOTOIHIITHBOTO THS, HA JUBO HE BUPINIEHO
HaBiTH Ha piBHI gedininii. 3riTHO 3 CyYacHUMU MTPUIIYIEHHIMHU CBITJIO € €JeKTPO-
MarHiTHUM 1oJieM (3 BiJIOBLIHMMU 4YacTOTAMMU), TOMY, OYEBUJHO, IO BIIIIOBIIb HA
rocrasJieHe (pyHIaMeHTaIbHE ITUTAHHSI He MOXKe OyTH ITPOCTHUM.

Crorojiai HAWGLIBIT YACTO KOPUCTYIOTHCS TAKUME BH3HAYCHHSIMU ITBUKOCTI CBi-
ma [1, 2]:

1) daszosa msuakicrs (the phase velocity);

2) rpynosa mBHIKICTH (the group velocity);

3) mBuxicTs nepenadi eneprii (the velocity of energy transport).

Busnauenns ¢pazoBol Ta rpynoBol mMBHIKOCTel 6a3yeThcsa Ha IPUILYIICHHSX, IO

eJIEKTPOMATHITHY XBIJIIO MOXKHA XapakrepusysaTn dyukiieo ¥ (¢, I), sika Mae crer-
anbHUit BurIs [1, 2]

U(t, Z) = A(Z) cos(wt — ¢(Z)), (1)
abo
/Aw ) cos(wt — g, (Z))dw, (2)

ne A(Z) — ammiityna xsui, g(€) — noslibha aificna ynkiis. Pa3oBa MBUAKICTD
BU3HATAETHCA 38 (POPMYJIOIO

v = w/|Vg(@)]. (3)

3 HaBegeHux HOPMYJI SICHO, IO BU3HAUYEHHsI $ha30Bol (rpynopoi) mseuakocti Ga-
3yE€TbCS Ha npnnymeHi o Oy/ib-sika eJ’IeKTpOMaFHiTHa XBIIA Ma€ CTPYKTYPY (1)
YHIOETHCHA SKOMY PIBHSHHIO 3a[0BOJIbHIE cbyHKms{ v. I_[e JIy2Ke Ba)KJIMBUIl MOMEHT,
ockimbku W MOXKe 3aI0BOJILHATH CTAHIAPTHOMY JIHIHHOMY XBHUJIBOBOMY PIiBHSIHHIO
HanambGepa abo, HAIpUKIIa, HeTiHIRHOMY XBUIbOBOMY piBHsIHHO [3]. LTi 1Ba Buma KN
iCTOTHO BiIPI3HSAIOTHCS OJUH BiJl OJTHOTO 1 MPUBOAATD JIO MPUHITAIIOBO PI3HUX PE3YJIb-
rariB. Cjin TakoxK 3ayBaxKkuTu, Mo (a3oBa i rpynoBa IMBUIKOCTI HE BU3HAYAIOTHCS
6e31ocepeIHbO B TEPMIiHAX €JIEKTPOMATHITHUX OB EiH.

Homnosini HAH VYkpaiau, 1997, Ne 1, C. 51-53.
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IIeuakicTs mepegadi eJleKTPOMATHITHOI eHepril BU3HAYAETHCS 38 (DOPMYJIO0

—

Vg =

%, g=c(ExH), W=E+H? (4)
ne § — Bekrop lloiituara—Xesicaiiga.

Dopmyna (4) mae Taky Bajy: SKIIO OPU Hepexoii Bij ojmiel imeprifinoi cucre-
MH J10 iHTIOL EiH EPeTBOPIOIOTHCS 3a (opMmysiaM JlopeHra, TO MIBUAKICTD Uy HE
IIEPETBOPIOETHCS TP IIOMY K BEKTOP BigHOCcHO rpymnu Jlopenra.

Mera 1i€l 3aMiTKE — maTH fAeKiabKa HOBUX BU3HAYEHD MIBUIKOCTI €JI€KTPOMATHI-
THOT'O TIOJISI.

AK10 eleKTpoOMartiTHe ToJe € JIesIKuil MOTIK eHepril, TO MBUIKICTh TAKOTO TTOTO-
Ky, 10 aHaJorii 3 rigpojuHaMikoro [4], 3a7aMo Takow GopMynow (piBHSHHSIIM)

ov ov o 2o oo = oo =
— +u-— =a(D* B* E*,H*,DE,...)D
at + (% allfl al( 5 ) 3 ) ) ) +
+ay(D? B?,..)B+as(D* B?,...)E + as(D? B%.. )H +
Lo . . 9D .
as(D% B oV x i) = G- —an | + (5)
= - - 0B
+ag(D* B?,..) [ c¢(V X E) + —
ot
Crpykrypa i sBHUIT BUIIsAT KOeDIIIETHIB a1, . ..,0¢ BAZHAYAIOTHCS 3 BUMOTH, II00

piBasuang (5) 6ys10 iHBapianTHUM BigHOCHO rpymu [Tyankape, sIKINO 110JIsl IIEPETBOPIO-
10ThCe 3a Biauosixaumu dopmynamu Jlopenma [5].

Ocnosua nepesara dopmysu (5), B nopisagnui 3 (1), (2), mossirag y HacTyIHOMY:

1) mBUAKICTD €IEKTPOMATHITHOTO MOJI BU3HAUAETHCs 0E3II0CEPEHBO Y€Pe3 CIIo-
CTepeKyBaHi BeJIMIMHI ﬁ, B , E, H , J ra ix IIepIi MoXiTHi;

2) piBugnus (5) upu BiguosixHux Koedimienrax inBapianTHe BimHOCHO rpynu Ily-
aHKape;

3) y Tomy BUnasky, Koau koedirientn a; = as = a3 = a4 = 0, a noss 5, ﬁ, E,
H 33JI0BOJIbHAIOTH PiBHAHHIO MakcBesna

o8 _
ot

. . 9D - .o
o(VxH)—— —4nJ =0, oV X E)+

ot 0,

HMIBUJIKICTD €JIEKTPOMArHITHOIO I10JIs ¥ € IOCTIMHOK BEJIUIUHOO
ov ov

— +uy=— =0.
ot +Ula.17[

OueBupno, mo Jyis 3acrocysants (opmyau (5) Tpeba KoHKpernsyBaTu Koedimi-
€HTH.

ABHO-KOBapiaHTHE BU3HAYEHHS IITBUIKOCTI €JIEKTPOMATHITHOTO TIOJIsT MOYKHA 3212~
i Takow dhopmyiown (5

Ovg,

Vp = a(E* H?, EH)F,5v". (6)
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BukopucroByoun piBusaasg MakcBesia y BaKyyMi MOXKHA, OJIepKATH TaKy pop-
MYJLy JJIsl IIBUJAKOCTI €JIEKTPOMAarHiTHOTO MOJIS

N\ 2 =\ 2

OE OH
. 1 (W) +(W)
17l = 9 5

2 (rot E)? + (rot H)?

1/2

(7)

3 dopmynu (7) BHIHO, 1O MIBUIKICTH 3aJ€KUTh TLIbKH Bix moximuux mostis. Corif
3ayBaykKUTH, MO |U] € yMOBHMM IHBapiaHTOM BIJHOCHO TepeTBOpeHb JlopeHmna, TOG-
TO SKIIIO EiH 3aJI0BOJIbHAIOTH MOBHIM cucTemi piBHIHbL Makcpesia y BakyyMi, TO
|0] 6yme imBapianTom rpynu Jlopenna. Iamumu cioBamu, ymoBHUl iHBapianT — Ie
Taka CKaJspHa KOMOiHallid 3 [oJiB, sKa 30epiraerbes (iHBapianTHA) OpU YMOBI, 10
TOJTsT 38/I0BOJIBHSIFOTD JIESIKUM PIBHSIHHSIM (K1 MAIOTh HeTpI/IBlaJ'Ile po3s’asku). 106-

pe Bizomi iHBapiaHTH It €JICKTPOMATHITHOTO TOJIS EH i E> — H? ¢ abcomoraumu
inBapiantamu rpymu JIopeHra.

1. Born M., Wolf E., Principle of Optics, New York, Mac Millan.
2. Brillonin L., Wave propagation and group velocity, New York, Academic, 1960.

3. Fushchych W., Shtelen W., Serov N., Symmetry analysis and exact solutions of equations of
nonlinear mathematical physics, Kluwer Academic Publishers, 1993, 436 p.

4. Fushchych W., New nonlinear equations for electromagnetic field having the velocity different
from ¢, Jlonosidi AH Ykpairnu, 1992, Ne 4, 24-27.

5. Fushchych W., Ansatz’95, J. Nonlinear Math. Phys., 1995, 2, Ne 3-4, 216-235.
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Symmetry of equations
of nonlinear quantum mechanics

W.I. FUSHCHYCH

The paper is devoted to description of nonlocal symmetries of linear and nonlinear
equations of quantum mechanics and to symmetry classification of nonlinear multi-
dimensional equations, compatible with Galilei relativity principle.t

The plan of the talk

e Discovery of the Schrédinger equation

e Derivation (uniqueness) of the Schrédinger equation
e High order equation of the Schrodinger type

e Nonlocal symmetry of the Schrédinger equation |2, 7]

e High-order evolution equations. Dependence of mass on velocity in the nonlocal
Galilei-invariant theory [6, 19]

o Galilei relativity principle and nonlinear Schrédinger-type equations [2, 5, 10-17]

e Nonlocal symmetry of the linear Schrédinger—de Broglie-Klein—Gordon—Fock—
Kudar-de Donder—Van Dunger [3, 18, 8]

e Nonlocal Galilei symmetry of a relativistic equation [8, 9]
e Nonlocal Galilei symmetry of the Dirac equation [7]

e Galilei symmetry of a relativistic equation.

1 Brief comment on discovery of the Schrodinger
equation of motion in quantum mechanics

First I would like to remind that 70 years ago Erwin Schrédinger discovered motion
equations and thus created the mathematical foundation for the quantum mecha-
nics. On 21 June, 1926 E. Schrodinger submitted the paper “Quantisierung als Ei-
genwertprobleme” to the journal “Annalen der Physik” (1926, Vol. 81, 109-139, [1])
where he suggested the equation
2
SU =0, S=po— 2—a =Vt z),
) "o (1)
=ih— o = —ih , =1,2,3,
Po =1 GIk b ? Oz, a

where ¥ = U(xq = t,Z) is a complex-valued wave function, V is a potential.

Proceedings on the XXI International Colloquium on Group Theoretical Methods in Physics,
Group21 “Physical Applications and Mathematical Aspects of Geometry, Groups, and Algebras”
(July 1520, 1996, Goslar, Germany), Editors: H.-H. Doebner, W. Scherer, P. Natterman, Singapore,
Word Scientific, 1997, V.1, P. 439-446.
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This paper was the last of the series of four papers with the same title where the
quantization problem in the atom physics was solved.

Can we say that E. Schrédinger had derived his equation?

Acquaintance with the original paper by E. Schrédinger gives us an ultimate answer
to this question. E. Schrodinger had not derived this equation. The equation (1) was
written without accurate substantiation. Moreover E. Schrédinger believed that the
correct motion equations in the quantum mechanics should be fourth-order equations
for the real function, and not the equation (1) for the complex function. E. Schrodinger
considered the equation (1) as some auxiliary (interim) equation which enables to
simplify calculations.

His previous papers were based on the equations

2AE—-V) PV
AV e 0 @
872

where ¥ is a real function, F is energy.
When the potential V' does not depend on time, Schrédinger derives from (2), (3)
the fourth-order wave equation

sr2 \?  167% 920
A-——V]| U — =0 4
< 72 > T e Y )
where ¥ is a real function.
Schrodinger write about the equation (4): “... the equation (4) is the unique
and general wave equation for the field scalar ¥ . ... the wave equation (4) contai-

ns the dispersion law and can serve as a foundation for the theory of conservati-
ve system which I had developed. Its generalization for the case of time-dependent
potential demands some caution ... an attempt to generalize the equation (4) for
non-conservative systems encounters the difficulty arising because of the term %—‘t/.
Therefore in the following I will go the other way which is simpler from the point of
view of calculations. I consider this way to be the most correct in principle.”

Further Schrodinger writes down the equation (1) for the complex function W. Just
in this place of the paper [1] Schrédinger makes a step of genius (and non-logical),
writing the equation (1) for a complex function.

As to the equation (1) Schrodinger writes: “There is certainly some difficulty in
application of complex wave functions. If they are necessary in principle, and not only
as a way to simplify calculations then it means that in principle two functions exist
which only together can give the description of the state of the system ... The fact that
in the pair of equations (1) we have only a substitute, which is extremal convenient at
least for calculations. The real wave equation most certainly must be a fourth-order
equation. Though I have not succeeded to find such equation for a non-conservative
system (%—‘Z =+ O) J

We can make following conclusions from the above:

Conclusion 1. In 1926 Schridinger thought that the correct equation in quantum

mechanics has to be a fourth-order equation. For the case when the potential does not
depend on time this equation has the form (4).
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Conclusion 2. In June, 1926 Schrédinger considered that the equation (1) which is
first order in time and second order in space variables for the complex function is
interim (not principal), which is to be used only to simplify calculations.

Conclusion 3. Schridinger considered that in the case when the potential V' depends
on time, the motion equation has to be also of the fourth order for the given function.
He could not derive such equation.

Now we can undoubtedly say that E. Schrodinger did a mistake in respect of
importance (fundamental role) of the equations (1), (4). Really, the equation (1) is
a principal equation of the quantum mechanics, and the equation (4) cannot be a
motion equation as it is not compatible with the Galilei relativity principle.

This statement follows from the symmetry analysis of the equations (1) and (4)
[2, 4]:

the equation (1) is invariant with respect to the Galilei group;

the equation (4) is not invariant with respect to the Galilei group.

With respect to the above we shall answer the following questions below:

1. Which linear equations of second, fourth, n-th order are compatible with the
Galilei relativity principle?

2. Does linear equations which are first-order in time variable, fourth order in space
variables and are compatible with the Galilei relativity principle exist?

Theorem 1 [4] [Fushchych, 1987|. The Euclid algebra AE1(1,3) is the mazimal
invariance algebra of the equation (4) (V =0).

We have the following corollaries of the adduced theorems.

Corollary 1. The equation (4) is not compatible with the Galilei relativity principle.
This means that (4) cannot be considered as an equation of particle motion in quantum
mechanics.

2 Derivation of the Schrodinger equation
and higher order equations

Let us derive Schrédinger equation out of the requirement of invariance of an equati-
on with respect to the Galilei transformations and to the group of space and time
translations.

In [6] is proposed the following generalisation (V' = 0) of the Schrodinger equation

(1)
(A1S +X28% +--- + A, 8") U = AT,

2\ 2 2\ " (5)
52:(p0_p_a> 7"'>Sn:(p0_p_a> ;

2m 2m

where A\, A1, A2, ..., A\, are arbitrary parameters.

The equation (5) is compatible with the Galilei relativity principle and is invariant
with respect to the Galilei algebra AG(1,3), but it is not invariant with respect to
the scale operator D and projective operator II (A\; # 0, Ao # 0).

The complete information on the symmetry of the equation (5) is given by the
following theorem.
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Theorem 2 [19] [Fushchych and Symenoh, 1997]. There is only one equation
among linear arbitrary order equations which is invariant with respect to the algebra
AG(1,3), and that is the equation (5). In the case when A=A =Xy =+ = p_1 =
0, the equation (5) is invariant with respect to the algebra AGy(1,3).

Thus the class of linear Galilei-invariant equations of arbitrary order is rather
narrow and reduced to the equation (5). All other Galilei-invariant equations are
locally invariant to the equation (5).

3 Nonlocal Galilei symmetry of the relativistic
pseudodifferential wave equation

Let us consider a pseudodifferential equation
pou=Fu, E=@>+m*)Y? u=u(z, ). (6)

We may consider the equation (6) as a “square root of the wave operator” for a scalar
complex function u.

We can check by direct calculation that the equation (6) is invariant with respect
to the standard representation of the Poincaré algebra and not invariant with respect
to the standard representation of the Galilei algebra.

Theorem 3 [8] [Fushchych, 1977]. The equation (6) is invariant with respect to
the 11-dimensional Galilei algebra with the following basis operators:

Péz) = % = —%, P® =p, = —aia, Jélz,) = TaPb — TpPa = Jab, o
G? =tp, — mza, po= %pa, E = (p2 +m?)Y/2.

The proof of the theorem is reduced to checking the invariance condition
[po — £, QiJu =0, (8)

where @) is any operator from the set (7).

The operators (7) satisfy the commutation relations of the Galilei algebra.

G((f) are pseudodifferential operators which generate, as distinct from the standard
operators (G,, nonlocal transformations.

So the set of solutions of the motion equation (6) for a scalar particle (field) with
positive energy has a nonlocal Galilei symmetry, whose Lie algebra is given by the
operators (7).

4 Nonlocal Galilei symmetry of the Dirac equation

It is well-known that the Dirac equation

Po¥ = (70YaPa + Y07am)¥ = H(p)¥ (9)
is invariant with respect to the Poincaré algebra with the basis operators (see [2])
i

.0 0
Py = Za—xoa P, = 716—1%7 J/U/ = TuPy — TyPu + S/LV7 S/w = 4 [fYIL?’YV}' (10)
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The Dirac equation, as it was established in our papers (see references in [2]) has wide
nonlocal symmetry.

In this paragraph we shall establish nonlocal Galilei symmetry of the Dirac equa-
tion. For this purpose, using the method described in [2], by means of the integral
operator

H
W= 1+ 70—) . E=@2+mH)Y2 H=90Yapa +v074m (11)

1 <

V2 E
we transform the system of four connected first-order differential equations to the
system of non-connected pseudodifferential equations

10 0 0
0P 01 0 O

00 0 -1
=WV, ~E=WHW L (13)

Having found additional symmetry of the equation (12), we simultaneously establi-
sh symmetry of the Dirac equation (9).
Theorem 4 [8] [Fushchych, 1977]. The equation (12) is invariant with respect to
the 11-dimensional Galilei algebra with the following basis operators:

52 0
PéB):p_7 Pa(,3):pa:_ ) Ia
2m 0z, (14)
_ ~ m
Jéi) = TqPb — ToPa + Sabs GEIS) = tpa — MZq, Pa = ’)’OEPa'
The operators (14) satisfy the commutation relations of the Galilei algebra
AG(1,3).
To prove the theorem is necessary to make sure that the invariance condition
[P0 — Y E, Q¥ =0 (15)

is satisfied for any operator @, from the set (14).

G((ZS) are integral operators which generate nonlocal transformations, which do not
coincide with the standard Galilei transformations.

Thus the equation (12), and also the Dirac equation (9), has the nonlocal sym-
metry, which is given by the operators (14). The explicit form of the operators (14)
for the equation (9) is calculated by means of the formula

Q=wtQw. (16)
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CumertpiiiHa peayKIrd mo migajredopax
aareopu Ilyankape omaniel HeaiHiAHOL
cucrtemMn audepeHIiaaIbHIX PIBHIHD
JJIsI BEKTOPHOT'O II0JISI

B.I. oyHin4, JI.JI. FAPAHHIUK

The procedure of constructing linear ansatzes is algorithmized. Invariant solutions are
found by means of linear ansatzes corresponding to three-dimensional subalgebras of
the Poincaré algebra AP(1,3).

Cucrema HesiHITHUX naudepeHIiaJbHIX PIBHIHD

OE OE OH, . OH
A H =0, SRt B

- —_— = kl1=1,2 1
ot ox; ot ox; 0 (& »2:3) (1)

Gysa 3anpornoHosana B [1] s onucy BekTopHEX modis. Ilfo cucreMy MOKHA pO3IIsi-
JaTh §K y3arajbHenHs piBHgHEA Ofiepa [Uist i1eaJbHOl piinHA, M0 TOCTIIKY BAIACs
B [2-6]. B [7] BcTanOBIIEHO, IO MAKCHMAJIBHOIO anreGporo inBapianTaocti cucremu (1)
€ adinna anrebpa AIGL(4,R). Bora 10po/Ky€eTbCsi BEKTOPHUMU [OJISIMIL:

0 0 0 0
Po=-2 (0=0,1,2,3), Too= 20— + E— + H— (1=1,2,3),

. ) Too = —woge gy, T Higg )
Foo = —2x ifEiin (memae cyMyBaHHS 110 a)
aa — H,ama (laEa (LaHa y y Y

0 0 0

loog = —2qg—+EEy—+H,H.—— (k=1,2,3), 2
0 x 8x0+ kaEk+ O, ( ) (2)
o N
0= 9z, 0B, 0H,
Fac:_xcﬂ_lzlci_]{ci (a#c; G,C:1,2,3)-

0z, oF, 0H,
Asrebpa ATIGL(4,R) mictuts anrebpy Ilyankape AP(1,3) 3 6a3ucHIMHU eJleMeHTaMu
Joa = —Toa —Taos Jab=Tba —Tap, Po (a,b=1,2,3; a=0,1,2,3).

Meroro HamMX JIOCIIKEHb € 1100y10Ba iHBapianTHUX PO3B’a3KiB cucremu (1) 3a
JIOTIOMOT'OI0 CUMETPIfiHOT peIyKIIil i€l CuCTeMu /10 CUCTEM 3BUYAMHUX AudepeHItia b-
Hux piasHb (3IP) mo minanrebpax anrebpu ITyankape AP(1,3).

Anrebpa AIGL(4,R) e nignpsivmoro cymoro abinnoi anrebpu AIGL(4,R)" 3 6asu-
CHUMU eJIeMeHTaMU

0] , 0

F;B:fxga, Pa:% (0[75:0,1,2,3)

Homnosini HAH VYkpaiau, 1997, Ne 8 C. 50-57.
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i nosroi JiHiiinol anrebpun AGL(4,R)” 3 6asucHuMu esleMeHTaMu
Teepaxxkeuns 1. Hexal L — nidanzebpa aneebpu AIGL(4,R), r — pane L, a 7' —
pane npoexuii L na AIGL(4,R)'. Sxwo r =1, mo dim L = r.

Ha mincraei TBepkernst 1 Ta HeOOXiTHOT YMOBU iCHYBaHHSI HEBUPOPKEHUX iHBa-
plaHTHUX PO3B’A3KiB [8] 70X0MMO BUCHOBKY, 110 i peayKiil cucremu (1) mo cucrem
3P nam norpibui rpuBuMmipHi ninanrebpu aarebpu AP(1,3), ski MAIOTh TLIBKY OIUH
OCHOBHUI iHBapiaHT Bij| 3MIHHUX X(, T1, L2, T3.

Hepazkko nepekoHaTucst, mo cucrema (1) € iHBapiaHTHOIO BiTHOCHO MEPETBOPEHHSI

xé) = Zo, xll = —Ty, x/Q = T2, 1{3 = 3,

E{=-E,, Ey=E, EFE,=Fs;, H{=-H;, H,=H, H,=Hs;.
Tomy minanre6pu anrebpu AP(1,3) MOXKHA PO3IJISIIATA 3 TOUHICTIO 10 adbiHHOI Cpsi-
ZKEHOCTI.

Hozuaunmo G, = Jog — Jus (a =1,2).

TBepmxkenust 2. 3 mounicmio do adinnoi cnpascenocmi mpusumipHi nidanzedpu
anzebpu AP(1,3), wo maromv miasvku odun ocroehull ineapianm, 3asedichull 610
BMIMHUZ T(, T1, Tg, T3, BUUEPNYIOMBCA MAKUMY NI0aA2€0DAMU:

(Pr, Po, Pg), (Ji2+ ados, Po, P3), (Jiz + ados, P1,P) (a#0),
Joz, P, P2),  (G1,Po+ P3, P +aPy), (G1,G2, Po+ P3), (G1,Joz, ),
Ji2, Joz, Po + Ps),  (G1,G2,Jo3), (G1,Ga2,J12 + ados) (o> 0),

Jiz + Po, P, Pa),  (Joz + P1, Po, P3),  (Jos +~vP1,Po+ P3,P) (v=0,1),
Gy —|—P2,PQ—|—P3,P1>, <G1+P0—P3,PQ+P3,P2>,

G1+Py— P, P+ P53, PL+abs), (G1,Ga+ P, Py + Ps),

G1,G2,J12+ Py + P3), (G1+ P2,Ga — P1+ 3P, Py + P3),

(G1, Joz + Py + 3P, Py + P3).

ITo6 oneprkaTu 1eit nepesik, norpibHo 70 nepesiky migaaredp aarebpu AP(1,3),
110 PO3VIAAIThCs 3 TouHicTIO 10 P(1, 3)-cupsizkenocri [9], 3acrocyBaru adinny cupsi-
JKEHICTh, IPU sKiil, 30KpeMa, MOXKHA OTOTOXKHIOBATH BCi OJHOBUMIpHI ITiITPOCTOPHU
npocTopy TpaHcaaniit (P, Py, Pa, Ps).

Higanre6py JIi anrebpu AIGL(4,R) yrBopioe yinilina 060/10HKa  CUCTEMU Onepa-
TopiB, ozepxkanol 3 Gazucy (2) B pesysnbrari Buiydenus oneparopis Lo, (a = 1,2,3).
Koxken onepatop Y € () MOxKHA TOHATH y BUIVIAII

0 0] 0 0 0
Y =ag(2)=— +bij | BEj=——= + Hj=— | +¢; | = + : 3
a( )Baca * ( JaEZ 38H2> ! <8Ez 8HZ> ( )

e xg =t; © = (2o, T1, T2, 23); bij, ¢; — aiiicni wmena; o =0,1,2,3; 4,5 =1,2,3.

{
{
{
{
{
{

OsHaueHHs1. [Heapiawm nidaszebpu Q, axull € AMHIUHOW GYHKUIEN 6I0HOCHO 3MiH-
nux B, Hy (a = 1,2,3), 6ydemo naszueamu AiHIGHUM.

Hexait

bir biz bis . €1
B=| b by by |, C=1| c
b31 b3a b33 c3
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uin(z)  wia(z) wiz(x) ~ v1 ()
U=| ua(z) un(r) wus(®) |, V= vz
usi(x) usa(z) wuss(x) v3(x)

Teopema. Cucmema Pynwuyii fo = ugi(z)E; +ve(x), ¢ =1,2,3, € cucmemoro ainit-
HUT iHeapianmie onepamopa Y ; GyHKUIOHAALHO HE3ANEHCHUL 8I0HOCHO 3MinHuL Fr,
FEs, E3, modi i miavku modi, xKoiu

ou ov

i1 detU # 0 6 deaxili obracmi npocmopy mouox .

TBepaxxxennsa 3. Hexail

. ) 0 d
o — ()
X; aa()aa—i-kzlblk (EkaE +HkaH>+

3
oo |0 -
+;Ci <6Ei+8Hi) (7 =1,2.3)

— onepamopu 6udy (3) i nexat 6idnosidni im mampuyi By, Ba, Bs € ainitino nesa-
AEHCHUMY T 300080ADHANOMD KOMYMAUITHT CNISEI0HOUEHHA

[Bs, Bj] = B; (j=1,2), [B1, B2] = 0.
3
Mampuus U = [] exp [fl (x)BJ 3a0080ABHAE CUCTNEMY DPIBHAND
i=1

all ()STU—i-UB =0 (i=1,2,3) (6)

modi i miavku modi, KoAu

of1 Ofs dfs

Oy ets f 120, o0 193 _

ay,’ (x) 5‘xae +1=0, (x )8xa , ay’(x) . ,
of _ o Of2 —ps 4 _ ofs _

a (x)axa 703 ( )8l'a +1 *Oa CL ( )axa *07
B B) dfs

W@ =0, a®@) =0, a®@ i r1=0

Teepmxenns 4. Hexatt X; (j = 1,2,3) — onepamopu (5) i nexati 6idnosioni im
mampuyi By, Ba, By = B + BY € ainitino nezasescnumu i 3a008046HAOMD KOMY-
MAYLiHL CNiesidHoOweHHA

[Biliij] = ij (.] = 172)7 [BZ/’,/’Bl] = —Bay, [BZ/’,/’BQ] = By,
(B4, B =0, [B1,Bs]=0.
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Mampuya U = ] exp|fi(z)B;] sadosonvnac cucmemy pisnanv (6) modi i minvku
i=1

modi, Koau
oD@ = —erfrcos fy, D) = efisings, o) 5l <o,
6f1 . 8f2 - 8f3
(2) — _pPfs @) (22— _pfs (2) —
( )8xa € Slnf37 Ay (x)axa e COng, Ay (x)axa 0,
af 0f2 af
(x)ﬁ =0, a®(x )M =0, a(3)(x)8x3 +1=0.
Hexait
. Er . Hy
FE = E2 5 H= H2
Es Hj

Jlerko GaunTu, 1o Ko st gesakol 3 X 3-marpuii U = U(2) KOMIOHEHTH BEKTOD-
dysKIiT UE + V e niniiitanvm inBapianTamu migaarebpu F C @, To JiHifiHnME iHBA-
piarTaMu i€l miganarebpu F € TaKOXK KOMIIOHEHTH BEKTOP-(YHKINT UH+V.

ITo mimasrebpax 3 TBEPJZKEHHS 2 KOHCTPYIOEMO aH3AIU BUIVISLY

UE+V =M(w), UH+V =N(w) (7)
abo
E=U"'"Mw)-U"YW, H=U'Nw)-U"'V, (8)

ne M (w), N (w) — Hesijomi TpuKOMIIOHEeHTHI byHKII, & Marpuri U, V e Bigomumu,
npu npomy det U # 0 B siesikiit 06s1acTi mpocTopy TOYOK .

Amnzanu surnsiny (7) abo (8) Ha3MBAEMO ATHITHUMU.

Ockinbku reneparopu Gi, Ga, Jos € HeqmiHiTHUME TudEpEHITIATBHIMA OIIepaTOo-
pamu, TO Ha migaaredpu, o X MiCTITh, MOIIEMO BHYTPIIIHIM aBTOMOPdi3MOM, AKMit
BIJIITOBi/Ia€ €JIEMEHTY g = exp (%X ), Jie

0 0 0 0 0

EsEp—— — HyHpeoo — —— — ——

X = Tys + Tap = 232 — 292 — .
03+ 130 =T35 —— Tog TN oH. 0B, 0MH,

Hoswaummo J),5 = gJapg™ ", P, = gPag™", G|, = 229Gag_1 (a,8=0,1,2,3; a =
1,2). Hesaxxko HepeKOHaTI/ICH o

Gl = T — Tl = r0 7 +xa£3 +

+EaaiE3 +Ha823 + aza + 818_]a (a=1,2),
Jhs = —xoaixo —1-33381$3 +§: (E 88E + H; 8?{ > +2E362‘ +2H38?-13
J12—J12—I2%*$1£+E282,1 ElaiEz+H28?{1 Hlang’

V2 V2
P(;:?(Po-i-P?,), Pl Pl, P2/:P2, Pé:—T(PO—P?,)
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Hexait E, = M,(z), H, = No(z) (¢ = 1,2,3) — po3s’si30K, iHBapianTHHl Bij-
nocHo migasre6pu anrebpu AP(1,3) = gAP(1,3)g! (anre6pu [lyankape AP(1,3) 3
mrpuxoBaHuMu oreparopamu). Toal po3s’a30K, iHBapiaHTHUI BiIHOCHO BimmoBinHol
uiganrebpu anrebpu AP(1,3) mae Burisyg

V2M,(2) B ~ Ms(z) -1
Be=an@y+1 =02 B

V2N, (a") B ~ Ni(z') -1
Hafm (a*172)7 HB*Ng(.’L‘/)—i-l’

e

/ / / / / /
xr = (.1‘0,331,582,3:‘3), xoz

S

(Jf() - .133),

SIS

Ty =1z, xh=uwm9, z4h=—(v0+ x3).

B naBenenomy y TBepKenHi 2 nepesiky migaareop anrebpu AP(1,3) € 10 nigas-
rebp, siKi MAlOTh JBOBUMIDHUIT mepeTuH 3 mpocTopoM Tpancisniil. Ile o3nagae, mo 3
TOYHICTIO 0 CIPS?KEHOCT] po3B’si3Kku cucremu (1), ski iHBapianTHI BiIHOCHO /esKOT 3
nux mizaaredbp, € GyHKIigMu TITBKA Bif OHIET IPOCTOPOBOI 3MiHHOI Z,. ToMy TacTo
3PYYHO IIPOBOJUTH DPEJYKI0 He BCiX mecTn piBHsHb cuctemu (1), a TUIbKH JBOX 3
Hux, mo mictars dyskuil E, i H,. Inmi xomuonentn poss’sasky Ey 1 Hy (k # a)
cucremu (1) GyayThb 3anucani y Buriagm aoslibuux Gynkuiit Big F, i H, Bignosiguo,
K1 madmpaeMo Tak, 1mob po3B’sa30K OyB iHBapiaHTHUM BiJHOCHO BCIX INeHEpaATOPIB
T 1a/Ire0pu.

ITpoimocrpyemo ckasane Ha upukiaazal maanrebpn F = (Jo + adls, P1, P2) (o #
0). ¥V upomy sunaaxy E;, H; (i = 1,2,3) e dbyHkuiamu Bix g, 23. AKmo posrisigatun
TIJIbKU CHCTEMY PiBHSIHBb

OFs3 I 0F3 OHj3 O0H3

—_— _— = —_— E _— =
61‘0 3 (933‘3 O’ 6330 + o (9:173 07 (9)

TO 710 yBaru Tpeda Oparu Jinie ornepaTop

0 0 0 0
—rog— 3— +2F3—— + 2H3——.
m08x0+$38z3+ 33E3+ 38H3

OCKiJIBKY TIOBHY CHCTEMY iHBapiaHTIB IIhOr0 olleparopa B KJiaci MYHKIA BiJ xg, T3,
FEs, Hs yTBOPIOIOTH W = XT3, E3x3, ng%, TO aH3all Ma€ BUIJIST

Heii anzar peaykye cucremy (9) 10 cucremu
—2M3 + (u) + Ng)Mg = O, —2N3 + (w + Mg)Ng =0. (10)

Ipunycrumo, mo Mu 3HafnumM po3s’si3ok (Ms, N3) miel cucremu, npudomy Ms # 0,
N3 # 0. Toni E; = Fy(y), H; = Ki(2) (i = 1,2), ne y = 5 Mz(w), 2z = ;zN3(w),
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a F;, K; — meBimomi yHKIHT, siKi MU 3HAieMO 3 yMOBH iHBapiaHTHOCTI PO3B’sI3KY
BitHOCHO Ji5 + Jj3. 3 piBHOCTEI

dF.
(Jis + adis) (Br — Fi(y)) = Es — ad—;zy +aFE; =0,

dF:
(V1o +ais) (B2 = Faly) = —Er + By —a-g 52y =0
BUILJINBAE
dF; , , o d2Fy

Posp’s3ytoun ocranue piBHsiHHS, 10 € piBHsAHHIM Oftiepa JIpyroro mopsiaKy BiTHOCHO
byukil Fy, i mijgcTaBisoan 3Haiiiennit po3s’ 30K y popmyity i Fp, oep:KuMo Taxi
dyHKIIT:

=0.

1 1
Fi = Clyl/2 sin 2y _ ng1/2 cos E,
2 2

1 1
Fy = Cly1/2 cos Yy + ng1/2 sin ﬂ.
2 2
Amnanoriyno 3HaxoauMo

1 1

Ky = C’gyl/2 sin Yy _ C’4y1/2 cos 2,
2c 2c
In

Y 12 . ny
C —.
2c +Cay s 2a

Cucrema (10) mae po3s’a30K

M3:N3:%[2w+0j:\/40w+02}.

Tomy po3s’si3ok cucremu (1), iHBapianTHUI BiHOCHO Hiflaarebpu F', MOXKHa 3aMcaTu
y BUIJIAI

Ky = ng1/2 cos

| 1
Ey = C1y*/?sin - Coy*/? cos ﬂ7
2 2

1 1
Ey = C’lyl/2 cos 2y + C’gyl/2 sin E, E; =y,
2c 2«

1 1
H; = ng1/2 sin ay_ C4y1/2 cos ﬁ,

2c 2c
1 1

Hs = ng1/2 cos Yy + C’4yl/2 sin ﬂ, Hs =y,
2a 2c

mey = # [onxg + C + V4Cxgx3 + Cz]; C, C; (i =1,4) — noBlibHi craui.
0
AHaJjorivHO J1ieMO 1 y BUIAJIKY, KOJU MiJaJIreOpu MatOTh OJHOBUMIDHUI IT€PETUH
3 IIPOCTOPOM TPAHCJISATIIA.

Tenep nHaBeseMo npuksas peaykuil cucremu (1) no miganrebpi, ska Mae HyJIbOBUI
[IEPETUH 3 MPOCTOPOM TPAHCJIATIIN:

< /1a I27J{2+P3>:
E, = i—l + My (w) cos f3 — Ma(w) sin f3,
0

E2 = % + Ml(w) Sinfg + Mg(w) COng,
0
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x% + :c%
2
2z

1
+ p ($1 sin f3 — x5 cos fg)Mg(W) + M3(w),
0

1
Es = +m_($1 cos f3 + xgsin f3) My (w) —
0

x .
H, = x_l + Ni(w) cos f3 — No(w) sin fs,
0

Hy = % + Ni(w) sin f3 + Na(w) cos f3,
0

2 2
1
Hz = x12:(2)$2 + x_o(ﬂa cos fs + w2 sin f3) N1 (w) —

1
+ x—(fﬁ sin f3 — @2 cos f3) Na(w) + N3(w),
0

2 2
xi+x
Je w =T, f3 = 5= — w3

PenykoBana cucrema Mae BULIIST
M; + %Nl + N3My =0, Mo+ éNQ — NsM; =0, M;=0,
Ny + %Ml + M3N, =0, No+ éMg — M3N; =0, N3=0.
I vacTuHHOMY PO3B’SI3KY
M, :Alw—i-%, M2:A2w+%, Ms =0,
Ny = —-Ajw+ %, Ny = —Agw—l—%, N3 =0

Bifmosinae takuit po3s’si3ok cucremu (1), iHBapianTHuit BigHOCHO Timanrebpu (G,
9 J1o + P3):
x1 By By .
Ei=—+ <A1£E0 + —) cos fz — <A2wo + —) sin f3,
0 Zo ny)

x

T B . B
Ey = =2 + (All‘o + —1) sin f3 + (AQJTO + —2> cos f3,
Zo Zo To

x2 + 23 B, i
E; = 12 “ (Al + ) [£1 cos f3 + x2sin f3] —
g
_ ( ) [z1sin f3 — 22 cos fa],
B B
H, = ( Az + 1) cos fs + (142930 — —2> sin fs,
SC() Zo Zo
2

Hy
Zo

B B
—= + (Alxo + 1) sin f3 + (Agzo + 2) cos f3,
Zo Zo

zi + 23 B i
Hy = 12 S 2 4 <A1 + —21) [z1 cos f3 + 22 sin f3] +
g Zo

B
+ <A2 — x_22> [z18in f35 — x5 cos f3] .
0

OTxke, aaropuTMU30BAHO IIPOIEC MOOYIOBU JIHINHAX aH3aIliB. 3a JOIOMOIOK JIi-
HINHAX aH3aIliB, IO BiAUOBimaOTH TpuBmMipHUM miganredpam anrebpu Ilyamkape
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AP(1,3), 3Haiiieno inBapiaHTHI po3B’si3KM ozHi€eT HeliHiitHOT cucremu nudepeHniaib-
HUX PIBHSHD JIJISI BEKTOPHOTO TOJIS.
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Continuity equation in nonlinear quantum
mechanics and the (alilei relativity principle

W.I. FUSHCHYCH, V.M. BOYKO

Classes of the nonlinear Schrédinger-type equations compatible with the Galilei relati-
vity principle are described. Solutions of these equations satisfy the continuity equa-
tion.

The continuity equation is one of the most fundamental equations of quantum
mechanics

op = =
+V-j= 1
ot J (1)
Depending on definition of p (density) and j = (5,..., ") (current), we can construct

essentially different quantum mechanics with different equations of motion, which are
distinct from classical linear Schrédinger, Klein—Gordon—Fock, and Dirac equations.
In this paper we describe wide classes of the nonlinear Schrodinger-type equations
compatible with the Galilei relativity principle and their solutions satisfy the conti-
nuity equation.
1. At the beginning we study a symmetry of the continuity equation considering
(p,7) as dependent variables related by (1).

Theorem 1. The invariance algebra of equation (1) is an infinite-dimensional algebra
with basis operators

0 0
— ¢h BV () iV
X =8 @) gt (@ (@) + V(@) 5o (2)
where j p; &4 (x) are arbitrary smooth functions; x = (xg = t,x1,Ta,...,Ty) €

R 0 (x) = 95

(E

") (g—fg: + C’) ; C = const, 0, is the Kronecker delta; ji,v,i =
0,1,...,n, (b°%x),b*(2),...,b"(x)) is an arbitrary solution of equation (1).
Here and below we imply summation over repeated indices.

Corollary 1. The generalized Galilei algebra [1]
AGo(1,n) = (P, Jap, Ga, DV, A) (3)

is a subalgebra of algebra (2).
Corollary 2. The conformal algebra [1]

APy(1,n) = AC(1,n) = (P, Jup, Joa; D, K,.) (4)

is a subalgebra of algebra (2).

J. Nonlinear Math. Phys., 1997, 4, Ne 1-2, P. 124-128.
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We use the following designations in (3) and (4)

P, =0,, Jaup=q0 — 104 + j O — §%0;a, (a <b)

Go = 2004 + pja, Joo = 2400 + 200, + j*0p + pdja,

DW =230y + 2,04 — npd, — (n +1)§%0ja, DP =1,0, —npd, —nj*dja,
A =220y + 102004 — nx0p0, + (Tap — (n + 1)20j*)0ja,

K, =22,D® — 2,2"9,:0; — 22" S,  Suw = 9uij’ 0 — Guij*0;s,

I, p=v=0,
Guw =141, p=v#0, wri=0,1...,n; a,b=12,... n.
0, p#v,

Corollary 3. The continuity equation satisfies the Galilei relativity principle as well
as the Lorentz—Poincaré—FEinstein relativity principle.

Thus, depending on the definition of p and j, we come to different quantum
mechanics.

2. Let us consider the scalar complex—valued wave functions and define p and 5 in
the following way

p = f(uu®),

. 1. ou ou* Ap(uu*) (5)
k __ _ = * * —

it = 2zg(uu ) <—8xku u(’?xk> +—3$k , k=1,2,...,n.

where f, g, ¢ are arbitrary smooth functions, f # const, g # 0. Without loss of
generality, we assume that f = uu*.

Let us describe all functions g(uu*), p(uu*) for continuity equation (1), (5) to be
compatible with the Galilei relativity principle, defined by the following transforma-
tions:

t—t' =t z4— 1, =24+ V4t

Here we do not fix transformation rules for the wave function w.

Theorem 2. If p andf are defined according to formula (5), then the continuity
equation (1) is Galilei-invariant iff

, 1. [ du ou* Op(uu*)
_ * k_ = * —
p=uu’, jU=-—gi <—8xku u6$k> +73xk , k=1,2,...,n. (6)

The corresponding generators of Galilei transformations have the form
Go = 2004 +1xg (U0y — U 0yx), a=1,2,... n.
If in (6)
© = Auu®*, )\ = const, (7)

then the continuity equation (1), (6), (7) coincides with the Fokker-Planck equation

8 - —
a—[z+v~j+/\Ap:0, ®)



Continuity equation in nonlinear quantum mechanics 139

where

" 1_<8u . ou*

= uu®, =—i| —u" —u—
p J axk 8xk

5t ), k=1,2,...,n. (9)

The continuity equation (1), (6), (7) was considered in [2, 6].
Let us investigate the symmetry of the nonlinear Schréodinger equation

iug + %Au + zmu = F(uu, (V(uu*))?, Auu®))u, (10)

2uu*

where F' is an arbitrary real smooth function.

For the solutions of equation (10), equation (1), (6) is satisfied and is compatible
with the Galilei relativity principle. Schrédinger equations in the form of (10), when
p(uu*) = duu* for fixed function F', were considered in [1-8].

In terms of the phase and amplitude (u = Rexp(i©)), equation (10) has the form

Ry + R0 + 1RA@ + iA(p =0,
1 % 2 . ) (11)
@w+;ﬁf§§AR+Fu#4vu#»,AR%:O

Theorem 3. The mazimal invariance algebras for system (11), if F = 0, are the
following:
1. <P/L7JabaQaGa7D> (12)
when ¢ is an arbitrary function;
2. <P,U.7J(lbaQaGa7D7]7A> (13)
when ¢ = AR?, A\ = const.
In (12) and (13) we use the following designations:

P, =0, Ju =240z, —2p0s,, a<b,
Go =200y, +12,00, Q =00, D =2x00y, +2,0:,, = ROg,
1 14
A= 95(2)310 + 2020z, — gxoRc‘?R + —2%0e, (14)
w=01,....n; a,b=12,... n.
Algebra (13) coincides with the invariance algebra of the linear Schrédinger equation.
Corollary 4. System (11), (7) is invariant with respect to algebra (13) if

F=R'ARN 3AR ,
(VR)?

where N is an arbitrary real smooth function.

3. Let us consider a more general system than (10)

1
tug + EAU = (F1 + iFQ)u, (15)
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where Fy, Fy are arbitrary real smooth functions,
Fo = Fp (uu”, (V(uu*))?, A(uu®))u, m=1,2. (16)

The structure of functions Fj, F» may be described in form (16) by virtue of
conditions for system (15) to be Galilei-invariant.
In terms of the phase and amplitude, equation (15) has the form

1 1 1
Ro + Ri®y + SRAO — RF, =0, 6 + 5@% - ﬁAR + F, =0, (17)

where Fy, = F,, (B2, (V(R2))?, AR?), m = 1,2.
Theorem 4. System (17) is invariant with respect to the generalized Galilei algebra
AGo(1,n) = (Py, Jap, Ga, Q, D, A) if it has the form

(VR)> AR \ _ 0
R2+4/n R1+4/n | —

1 VR)2 A
@o+§@i——AR+R4/" (LR) i >=0,

1
Ry + RO + 5RA@ — R4/ \p (

2R R2+4/n’ R1+4/n

where N, M are arbitrary real smooth functions. The basis operators of the algebra
AG2(1,n) are defined by (14) and D =D — 2

Theorem 5. System (17) is invariant with respect to algebra (13) if it has the form

A
R+ ROy + LRa0 - AR (M)

(VR)?
(18)
1, AR [ RAR\ _
@0 + 59 - ﬁAR'F ?N ((ﬁRP) == 07

where N, M are arbitrary real smooth functions.

System (18) written in terms of the wave function has the form

A A A
iug + - A Al (o (Al Gy (LulAlul) ), (19)
ul (V]ul)? (V]ul)?
Equation (19) is equivalent to the following equation
1 A * _ * A * _ * A *
g+ L= 200 (¢ (A} o (A
2 (uu*) (V(uu*))? (V(uu*))?
Thus, equation (18) admits an invariance algebra which coincides with the inva-
riance algebra of the linear Schrédinger equation with the arbitrary functions M, N.

Remark 1. With certain particular M and N the symmetry of system (18) can be
essentially extended. E.g., if in (18) N = 1, then the second equation of the system
(equation for the phase) will be the Hamilton—Jacobi equation [5].

Let us consider some forms of the continuity equation (1) for equation (18).
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Case 1. If M = 0, then for solutions of equation (18) equation (1) holds true,
where the density and current can be defined in the classical way (9).

(VR)?

Case 2. 1f AR M = —)\(AR T

continuity equation (1), (6), (7) (or the Fokker—Planck equation (8), (9)) is valid.
Case 3.1f M is arbitrary then for solutions of equation (18), the continuity equation
is valid, where the density and current can be defined by the conditions

- - 0 1. [ 0u ou* |u| Alul
=uwu*, V-j=—|[—i| —u* —u—o0 —2ulAlu| M | ———
p=uts I Dun ( 2! (axk“ u@a%)) [ulAlul (V|ul)2

), then for solutions of equation (18), the

Thus, we constructed wide classes of the nonlinear Schréodinger-type equations
which is invariant with respect to algebra (13) (maximal invariance algebra of the
linear Schrédinger equation) and for whose solutions the continuity equation (1) is
valid.
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Higher symmetries and exact solutions
of linear and nonlinear Schrodinger equation

W.I. FUSHCHYCH, A.G. NIKITIN

A new approach for the analysis of partial differential equations is developed which
is characterized by a simultaneous use of higher and conditional symmetries. Higher
symmetries of the Schrédinger equation with an arbitrary potential are investigated.
Nonlinear determining equations for potentials are solved using reductions to Wei-
erstrass, Painlevé, and Riccati forms. Algebraic properties of higher order symmetry
operators are analyzed. Combinations of higher and conditional symmetries are used
to generate families of exact solutions of linear and nonlinear Schrédinger equations.

1 Introduction

Higher order symmetry operators (SOs) have many important applications in modern
mathematical physics. These operators correspond to hidden symmetries of partial
differential equations, including Lie-Bécklund symmetries [1, 2|, as well as super- and
parasupersymmetries [3-7].

Higher order SOs can be used to construct new conservation laws which cannot
be found in the classical Lie approach [3, 8]. These operators are applied to separate
variables [9]. Moreover, one should use SOs whose order is higher than the order of
the equation whose variables are separated [10].

In the present paper we investigate higher order SOs of the Schrédinger equation,
which are “non-Lie symmetries” [8, 11]. The simplest non-Lie symmetries are consi-
dered in detail and all related SOs are explicitly calculated. The potentials admitting
these symmetries are found as solutions of the corresponding nonlinear compatibility
conditions. It is shown that the higher order SOs extend the class of potentials which
were previously obtained in the Lie symmetry analysis.

Algebraic properties of higher order SOs are investigated and used to construct
exact solutions of the linear and related nonlinear Schrédinger equations. We propose
a new method to generate extended families of exact solutions by using both the
conditional symmetries [8, 12-14] and higher order SOs.

The Schrédinger equation with a time-independent potential V' = V (z) is studied
mainly. Time-dependent potentials V' = V(¢,x) are discussed briefly in Section 6.
By this, we recover the old result [15] connected with the Lax representation for
the Boussinesq equation, and generate some other nonlinear equations admitting this
representation.

The distinguishing feature of our approach is that coefficients of symmetry opera-
tors and the corresponding potentials are defined as solutions of differential equations
which can be easily generalized to the case of multidimensional Schrédinger equation
contrary to the method of inverse scattering problem.

J. Math. Phys., 1997, 38, Ne 11, P. 5944-5959; Preprint ASI-TPA/9/96, Arnold-Sommerfeld-
Institute for Mathematical Physics, Germany, 1996, 23 p.
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This paper continues (and in some sense completes) our works [16-18] where non-
Lie symmetries of the Schrédinger equation were considered. A detailed analysis of
higher symmetries of multidimensional Schrédinger equations will be a subject of our
subsequent paper.

2 Symmetry operators of the Schrodinger equation

Let us formulate the concept of higher order SO for the Schrédinger equation

LY(t,z) =0, L=id, — H,

) (2.1)

1 0
H=-(-24U(2), 0==, 0n=—.
p (COHU@), d=g5n k=g
In every sense of the word, a SO of equation (2.1) is any (linear, nonlinear, di-
fferential, integro-differential, etc.) operator @ transforming solutions into solutions.
Restricting ourselves to linear differential operators of finite order n we represent
in the form

Q= Z(hz p)i,  (hi-p)i ={(hi pli-1,p}, (hi-plo = hi, (22)
i=0

where h; are unknown functions of (¢,z), {A, B} = AB+ BA, p = —i0,.
Operator (2.2) includes no derivatives w.r.t. ¢ which can be expressed as 1 (p? + U)
on the set of solutions of equation (2.1).

Definition [8]. Operator (2.2) is a SO of order n of equation (2.1) if
[@,L] =0. (2.3)

Remark. The more general invariance condition [3] [Q,L] = agL, where ag is
a linear operator, reduces to relation (2.3) if L and @ are operators defined in (2.1),
(2.2). Terms proportional to i% cannot appear as a result of commutation of () and L;
hence, without loss of generality, ag = 0.

For n = 1,2 SOs (2.2) reduce to differential operators of the first order and can
be interpreted as generators of the invariance group of the equation in question. For
n > 2 these operators (which we call higher order SO) correspond to non-Lie [8, 11]
symmetries.

The Lie symmetries of equation (2.1) were described in Refs. [19-21]. The general
form of potentials admitting nontrivial (i.e., distinct from time displacements) sym-
metries is as follows
as

U=ao+az+agz® + ——,
ap a1 x agx (1‘ n a4)2

(2.4)
where ag, ..., a4 are arbitrary constants. No other potentials admitting local invari-
ance groups exist.

Group properties of equation (2.1) with potentials (2.4) were used to solve the
equation exactly, to establish connections between equations with different potentials,
to separate variables, etc. [9]. Unfortunately, all these applications are valid for a very
restricted class of potentials given by formula (2.4).
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The class of admissible potentials can be essentially extended if we require that
equation (2.1) admits higher order SOs [17]. The problem of describing such potentials
(and the corresponding SOs) reduces to solving operator equations (2.2), (2.3). Eva-
luating the commutators and equating the coefficients for linearly independent diffe-
rentials we arrive at the following system of determining equations (which is valid for
arbitrary n) [5]:

azhn = 0» 8xhnfl + 2athn =
awhn m + Qathn m+1 —
(=5

2(n —m+ 2+ 2k)!
)k 2k+177 _
§ B ok 20261 = 0,
Pt 2k + 1)!(n —m +1)! 2kt (2.5)
deho + § —1)PT by, 1 02PTIU = 0,
where m = 2,3,...,n, and [y] is the entire part of y.

Formulae (2.5) define a system of nonlinear equations in h; and U. For n = 2 the
general solution for U is given by formula (2.4).

Let us consider the case n = 3, which corresponds to the simplest non-Lie sym-
metry, in more detail. The corresponding system (2.5) reduces to

By =0, hby+2h3=0, 2hy+h)—6hsU" =0, (2.6a)
2hy 4 hly — 4hoU' =0,  ho — U’ + haU" =0, (2.6b)

where the dots and primes denote derivatives w.r.t. ¢t and x respectively.
Excluding hg from (2.6b) and using (2.6a) we arrive at the following equation:

F(a,b,c;U,z) = aU"" — (2ax* + 6aU + ¢ — 2bz)U" — (27)
— 6(2dz + aU’ — b)U’ — 124U — 2(20faz® —2 b x + &) = 0, '

where a, b, ¢ are arbitrary functions of ¢.
Equation (2.7) is nothing but the compatibility condition for system (2.6). If the
potential U satisfies (2.7) then the corresponding coeflicients of the SO have the form

hs =a, ho=—-2ax+b, hy =g +6al,
Ao g oy . (2.8)
ho = —gaz + 2bx” — 2¢x — 4ap + 4(b — 2ax)U + d,

where

g =2a2® —2bx4¢, p= /Uda:, u=¢', d=d(t). (2.9)

3 Equations for potential

Equation (2.7) was obtained earlier [17] (see Ref. [22]) and, moreover, particular
solutions for U were found [17]. Here we analyze this equation in detail.
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First of all, let us reduce the order of equation (2.7). Integrating it twice w.r.t. x
and choosing the new dependent variable ¢ defined in (2.9) we obtain

1 2.
al” —3(¢)? = (1) = gafax4 3 b 2® 4+ éx? +dr +e. (3.1)

Using the fact that ¢ depends on x only while a, b, ¢, d, e are functions of ¢, it is
possible to separate variables in (3.1). Indeed, dividing any term of (3.1) by a # 0,
differentiating w.r.t. ¢ and integrating over x we obtain the following consequence

Jia — gia

1 /1 1.. 1, 1
pra 8,55 (1—55‘fax5 ~ & bt + Zéx? + ide +ex+ f> . (3.2)

3

Consider equation (3.2) separately in two following cases:
gra—g1a # 0, (3.3a)
g1a — gld =0. (33b)

Let condition (3.3a) be valid. Then dividing the Lh.s. and r.h.s. of (3.2) by 9:(¢g1/a)
we come to the following general expression for ¢

ay Bz + B2
r+as x4 fzz+ Gy

o = azz® + apr® + onz + g + (3.4)

where «g,...,as, B1,..., B4 are constants.

It is possible to verify by a straightforward but cumbersome calculation that relati-
on (3.4) is compatible with (3.1) only for 51 = B2 = 0. We will not analyze solutions
(3.4) inasmuch as they correspond to potentials (2.4) and to SOs which are products
of the usual Lie symmetries [19-21].

If condition (3.3a) is valid, we obtain from equation (3.2)

i=aky, b=kea, c=ksa, (3.5)
where ki, ko, k3 are arbitrary constants. The corresponding equation (3.1) reduces to

@ —3()? = (G"p) = 2k1G + kg + ks, (3.6)
where

1 1 1
G = 6k1$4 — gkglﬂ?) —+ Ekglﬂz, G/I =4g1 = 2k1$2 - ngl' + kg, (37)

k4 and ks are constants.
Let us prove that, up to equivalence, equation (3.6) can be reduced to one of the
following forms:

U" —3U% + 3w, =0, (3.8a)

U" —3U? — 8wz = 0, (3.8b)

(U" = 3U%) — 2ws(zU’" +2U) =0, (3.8¢)
1

0" = 3(¢)? = 2wa(2®p) = Zwir +ws, U=¢, (3.8d)

3
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where wq, . ..ws are arbitrary constants. Indeed, by using invertible transformations

p—op+Cix+Cy, z—x+Cs,

(3.9)

where C, (k = 1,2,3) are constants, it is possible to simplify the r.h.s. of (3.6). These
transformations cannot change the order of polynomial GG, and so there exist four

nonequivalent possibilities:

ky =0, ky=0, k=0,
k1 =0, ko=0, ks#0,
k=0, ky#0,
ey # 0.
Setting in (3.9)
1 2
01——6/637 Cy=C3=0, ks—ﬁk‘g—wh
1 ks k2
Cr=—=ksy, Cy=0, Cy=——+—2 ky=_8w,,
1 6 3 2 3 ks + 12ks 4 w2
ks ks 3k2 ksky ks 3k
Tk 2T ok, 3ok TR T ok, a2 2T YW
1 k2 ki koks K3
Cir=——hst—2, Ch=——t_ 2
TS T ok T Tk ok 24k
ko k2 koky  k3ks ki
Cy= -2 ky=uwy ky—-2 - = ws
3T 9k, T 127 2k | 3k 16K

for cases (3.10a)—(3.10d) correspondingly, we reduce (3.6) to one of the forms
(3.8d) respectively.

(3.11d)

(3.8a)—

From (2.2), (2.8), (3.4), (3.9)—(3.11) we find the corresponding symmetry operators

3 1 '
Q=1+ {U.p} = 2pH + SUp+ -,
4 2 4
5 3
Q :p‘3 + Z{Uap} 7W2ta

Q=1+ 310} a0 - o)),

1 i 1
Qs = = |1 £ qulloho) + 13 - o p)

- 2
+ %w ((p + 2z — %mg)] exp(fiwt), w=+/—wy,

where U and ¢ are solutions of (3.2) and H is the related Hamiltonian (2.1).

(3.12a)

(3.12b)

(3.12¢)

(3.12d)

Thus, the Schrddinger equation (2.1) admits a third-order SO if potential U satis-
fies one of the equations (3.8). The explicit form of the corresponding SOs is present

in (3.12).
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4 Algebraic properties of SOs

Let us investigate algebraic properties of SOs defined by relations (3.12). We shall see
that these properties are predetermined by the type of equations (3.8) satisfied by U.
By direct calculations, using (2.3), (2.1) and (3.12), we find the following relations

[Qa H] = Oa (41&)

Q* =8H? - §w1H _¢ (4.1)
2 8
if the potential satisfies equation (3.8a) (C is the first integral of equation (3.8a), refer
to (5.1));

(Q, H] = iwpI, [Q,1] =[H,I]=0 (4.2)
if the potential satisfies equation (3.8b);

(Q, H] = —iws H (4.3)
if the potential satisfies equation (3.8¢), and

[H,Q+] = twQx, (4.4a)

@401 = (74 (22 +n)) (4.4b)
if the potential satisfies (3.8d).

It follows from (4.1)—(4.3) that non-Lie SOs @ and Hamiltonians H form consistent
Lie algebras which can have rather nontrivial applications.

Formula (4.1b) presents an example of the general theorem [23, 24] stating that
commuting ordinary differential operators are connected by a polynomial algebraic
relation with constant coefficients. In Section 7 we use relations (4.1) to integrate the
related equations (2.1).

Relations (4.2) define the Heisenberg algebra. The linear combinations ai =
%(H +14Q) realize the unusual representation of creation and annihilation operators
in terms of third-order differential operators.

In accordance with (4.3), @ plays a role of dilatation operator which continuously
changes eigenvalues of H. Indeed, let

HUp = EVy, (4.5)

then the function ¥ = exp(iAQ)V g (where )\ is a real parameter) is also an eigen-
vector of the Hamiltonian H with the eigenvalue \E.

It follows from (4.4) that for wy < 0 the operators @+ and @)_ are raising and
lowering operators for the corresponding Hamiltonian. In other words, if Uy sati-
sfies (4.5) then Q1 Vg are also eigenfunctions of the Hamiltonian which, however,
correspond to the eigenvalues E + w:

H(Q+VE) = (E+w)(Q+VE). (4.6)
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Relations (4.6) are typical for creation and annihilation operators of the quantum
oscillator. This observation shows a way for constructing exact solutions of the Schro-
dinger equation whose potential satisfies relation (3.8d). Moreover, relations (4.4a)
allow @ to be interpreted as a conditional symmetry [8, 12]; such symmetries are of
particular interest in the analysis of partial differential equations [14, 25, 26]. Thus,
third-order SOs of equation (2.1) generate algebras of certain interest. Moreover,
algebraic properties of these SOs are the same for wide classes of potentials described
by one of equations (3.8).

5 Reduction of equations for potentials

Let us consider equations (3.8) in detail and describe the corresponding classes of
potentials. A solution of some of these nonlinear equations is a complicated problem
which, however, can be simplified by using reductions to other well-studied equations.

5.a. The Weierstrass equation. Formula (3.8a) defines the Weierstrass equation
whose solutions are expressed via either elementary functions or via the Weierstrass
function, depending on values of the parameter w; and the integration constant.
Here we represent these well-known solutions (refer, e.g. to the classic monograph
of E.T. Whittaker and G.N. Watson [28]) in the form convenient for our purposes.

Multiplying the Lh.s. of (3.8a) by U’ and integrating we obtain

%(U’)2 — U3+ 3w U =C, (5.1)

where C' is an integration constant which appeared above in (4.1b). Then by changing
roles of dependent and independent variables it becomes possible to integrate (5.1) and
to find U as an implicit function of z. We will distinguish five qualitatively different
cases:

C?* 4w} =0 C>0, (5.2a)
C* -4} =0 C<0, (5.2b)
C=uw =0, (5.2¢)
C? — 4w? < 0. (5.3a)
C? — 4w > 0. (5.3b)

For (5.2a)—(5.2c), solutions of (5.1) can be expressed via elementary functions,
while (5.3a,b) generate solutions in elliptic functions.

For our purposes, it is convenient to transform (5.1) to another equivalent form.
Using the substitution

U=V—g, (5.4)

where p is a real root of the cubic equation

p3 = 3wip+C =0, (5.5)
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we obtain

1 .
5(v')2 — V3 — V2 + 4V 4 8@oiw; = 0, (5.6)
where @o = 3 and @1 = 3(wy — p?) are arbitrary real numbers.

The substitution (5.4), (5.5) transforms conditions (5.2), (5.3) to the following

form:

wy (@1 — w§)2 =0, @ <0, (5.7a)
o (@ —@2)?=0, @ >0, (5.7b)
o (@ —@2)* =0, @ =0, (5.7¢)
@y (01 —@f) #0, @1 >0, (5.8a)
w1 (01 —@f) #0, @1 <0. (5.8b)

If relations (5.7a) are satisfied, then @; = &3 or @; = 0. Moreover, the correspon-
ding solutions for V' differ by a constant shift: V- — V + 2@y, @y — @o/2. Without
loss of generality we restrict ourselves to the former case, then solutions of equation
(5.6) corresponding to conditions (5.7a-c) have the following forms:

vV =1u? [Qtanh2 (v(z—k)—1], @ = 7%1/2’ W = iV‘l, (5.9a)
2 2 - Lo L4 /
V =1v?[2coth® (v(z — k)) — 1], @ = 5V = (5.9a’)
2 2 - Lo Ly
V =v*[2tan® (v(z — k) —1)], @ = Qv BL= v (5.9b)
2

Here, k and v are arbitrary real numbers.
For the cases (5.8) the general solution of (5.1) has the form

1
V =2p(x—k)+ ol (5.10)
where @ is a two-periodic Weierstrass function, which is meromorphic on all the
complex plane. The invariants of this function are go = —% ((D% + 3@1) and g3 =

— =@ (w3 — 9w1). Moreover, if condition (5.8a) holds, the corresponding solutions

are bounded and can be expressed via the elliptic Jacobi functions

V = Ben?(Dz + k) + F, (5.11a)
where

B=(es—e3), D=+/(e1—e3)/2, F =eq, (5.11b)

e1 > ez > eg are real solutions of the cubic equation from the r.h.s. of (5.6).
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We note that formulae (5.9) present the set of well-known potentials which cor-
respond to the exactly solvable Schrodinger equations [27]. In accordance with the
above, these equations admit extended Lie symmetries.

5.b. Painlevé and Riccati equations. Relation (3.8b) defines the first Painlevé
transcendent. Its solutions are meromorphic on all the complex plane but cannot be
expressed via elementary or special functions.

Equation (3.8c) is more complicated. However, by using the special change of
variables and applying the Miura [29] ansatz, we shall reduce it to the Painlevé form
also. Indeed, making the following change of variables

2
3 (U3 3 ].
U=—y/23Vv = = A2
6 ) x 60.)3y7 (5 )

we obtain

V"4 vV — %xV’ - %V =0, V' =0V/oy. (5.13)
The ansatz

VoW - lw? (5.14)

6
reduces (5.13) to

1 1 1 1
(ay - §W) (W’” — EWQW’ - gyW’ - §W> =0.

Equating the expression in the second brackets to zero and integrating it we come
to the second Painlevé transcendent

1 1
"= W34 ZyW + K, 5.15
iz T3t (5.15)
where K is an arbitrary constant.
To make one more reduction of equation (3.8¢) we take U = ¢’. Then, integrating
the resultant equation, we obtain

w

¢ —3(¢)? = 2ws (zp) = C. (5.16)
Then, defining

1 C
=2V2ws + 2P + 5—, Y= V2w,
4 20)3

5.17)
. 1 o (
! _ 2 _ !/ — >
W=g -y €=5
we represent (5.16) as
W —48'W 4 26W' — yW = 0. (5.18)

The trivial solutions of (5.18) correspond to the following Riccati equation for &:

g - - %y = 0. (5.19)
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It follows from the above that any solution of equations (5.15) or (5.19) generates
a potential U defined by relations (5.12), (5.14) or (5.17). The corresponding Schré-
dinger equation admits a third-order SO.

The last of the equations considered, i.e., equation (3.8d), is the most complicated.
The change

1
©=2f — §w4x3 (5.20)
reduces it to the following form:
1
"= 6(f)? + dws(f'a® —af) = wy + W5 (5.21)
Multiplying (5.21) by f” and integrating we obtain the first integral
1
5(f”)2 —2(f")? + 2wa(f —af')? = <w4 - w5> = (5.22)

which is still a very complicated nonlinear equation.
Let us demonstrate that (5.21) can be reduced to the Riccati equation. To realize
this we rewrite (5.21) as follows

F" 4+ 2fF —4f'F = %w5—w4, (5.23)
where
F=f —f?—w?
Choosing ws = 2w, we conclude that any solution of the Riccati equation
f'=1*+ wya? (5.24)

generates a solution of equation (3.8d), given by relation (5.20).
One more possibility in solving of equation (3.8d) consists in its reduction to

the Painlevé form. Making the change of variables ¢ = /—wyx,z = \/_1—“)4;1/ and
differentiating equation (3.8d) w.r.t. y, we obtain
- AN - - .
(U” - 3U2) n (GU + 620" + +2U”) = 422, (5.25)
where U = = —WLU
Using the followmg generalized Miura ansatz
U=-V'+V2+2Vy+y* -1, (5.26)

we reduce equation (5.25) to the form
Oy (0y —2V —2y —2) x
x (V" = 6V2V' — 4V, — 12yVV/ — dyV — 4V'y? —2V') =

Equating the expression in the right brackets to zero, integrating and dividing it
by 2V, we come to the fourth Painlevé transcendent

Vv? 3 b

V"= 57 s v3 +8yV2+ (27 — 1)V + v (5.27)
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We note that the double differentiation and consequent change of variables

’ Wy 1, 1
= — —_ (b — =
¥ \/3( +6y>’ T Ve,

transform equation (3.8d) to the form

1
'+ 0"+ PP — s 82+ 2?®" +729’) =0

which coincides with the reduced Boussinesq equation [3, 12]. The procedures outlined
above reduces the equation either to the fourth Painlevé transcendent (5.27) or to the
Riccati equation (5.24).

Thus, the third-order SO are admitted by a very extended class of potentials descri-
bed above. We should like to emphasize that in general the corresponding Schrédinger
equation does not possesses any nontrivial (distinct from time displacements) Lie
Symietry.

6 Equations for time-dependent potentials

Consider briefly the case of time-dependent potentials U = U(z,t). The determining
equations (2.6) are valid in this case also. Moreover, the compatibility condition for
system (2.6) takes the form

Fla,b,c;x,U) + 12aU — 4(b — 2az)U’ = 0, (6.1)

where F(a,b,c;z,U) is defined in (2.7).

Equation (6.1) is much more complicated than (2.7) due to the time dependence
of U, which makes it impossible to separate variables. For any fixed set of functions
a(t), b(t), and ¢(t), formula (6.1) defines a nonlinear equation for potential. Moreover,
any of these equations admits the Lax representation

[H,Q] = i%—?, (6.2)

cf. (2.3). Refer to Refs. [30, 31| for the general results connected with arbitrary ordi-
nary differential operators satisfying (6.2).

We will not analyze equations (6.1) here, but present a few simple examples
concerning particular choices of arbitrary functions a, b, and c.

a = const, b=c=0:

—120 + U™ — 6(UU') =0, (6.3)
a, b are constants, ¢ = 0:

120 — (4bU — U + 6UU") = 0; (6.4)
a=c=0,b=uwsa

120 — 4(wst — 22)U" + (U" = 3U%)" + 2w3(aU” + 2U)' = 0; (6.5)
a =exp(t), b=c=0:

120 + 82U + (U” = U?)" = 12(Uz)' — 22°U" — 4a® = 0. (6.6)
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Formula (6.3) defines the Boussinesq equation. The Lax representation (6.2) for
this equation is well known [15]. Formulae (6.4)-(6.6) present other examples of non-
linear equations admitting this representation and arise naturally under the analysis
of third-order SOs of the Schrédinger equation.

7 Exact solutions

Let us regard the case of potentials satisfying (3.8a) or (5.4), (5.6). Taking into account
commutativity of the corresponding SO (3.12a) with Hamiltonian (2.1) it is convenient
to search for solutions of the Schrédinger equation in the form

U(t,z) = exp(—iEt)yY(x), (7.1)

where w(a:) are eigenfunctions of the commuting operators H and Q

Hi(z) = Ep(z), (7.2a)

Qip(x) = (). (7.2b)
Using (7.2a), (3.12a), and (5.4) we reduce (7.2b) to the first-order equation
<2E + g + wo> P = <411V, + z‘/\) {0 (7.3)

whose general solution has the form

¥ = AV + 4E + 200 exp (m/ V+4d7m_> , (7.4)

E+2WQ

where A is an arbitrary constant. Then, expressing v’ via 1) in accordance with (7.3)
and using (5.6), we reduce (7.2a) to the following algebraic relation for E and A
(compare with (4.1b)):

N2 =8E*(E + @). (7.5)

Thus there exists a remarkably simple way to integrate the Schrodinger equation
which admits a third order SO. The integration reduces to the problem of solving the
first-order ordinary differential equation (7.3) and algebraic equation (7.5).

Let us show that the existence of a third-order SO for the linear Schrodinger
equation enables one to find exact solutions for the following nonlinear equation:

0,0 = %pz\if + @(qf ). (7.6)
Indeed, if A? > 0, solutions (7.1), (7.4) satisfy the following relations

U0 = A*(V + 4E + 2@y). (7.7)
Using (7.2a) and (7.7) we make sure that the functions

U = exp(iet)(z), &= —3F — (7.8)

(where ¢(z) are functions defined in (7.4)) are exact solutions of (7.6).

Thus, we obtain a wide class of exact solutions of the nonlinear Schrédinger equati-
on, which depend on arbitrary parameters ¢, &g, @1, k (see (7.8), (7.4), (5.6), (5.8)).
Properties of these (and some more general) solutions are discussed in the following
section.
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8 Lie symmetries and generation of solutions

It is well known that equation (7.6) is invariant under the Galilei transformations
(refer, e.g., to Refs. [2, 3])

x—x =x—t,

U(t,z) — ' (t,2') = exp {z (vx -— 4 <p0>} Ut (8.1)

where v and ¢ are real parameters. Using (8.1) it is possible to generate a more
)
U =A\/V(zx —k—vt) +4E + 2wg x
dy

extended family of solutions starting with (7.8
xexp{ [(QEU)tJrvargaoJrQ)\/wkm } (82)
2 0 V(y)+4E +20 | [

Here, V is an arbitrary solution of equation (5.6), v, @, w1, k, ¢o and E are real
parameters, A and ¢ are defined in (7.5), (7.8).

In order for A to be real we require € > 0, other parameters are arbitrary.

Solutions (8.2) are qualitatively different for different values of free parameters
enumerated in (5.7). If &y and @, satisfy (5.7a) or (5.7c), possible V' are given by
formulae (5.9a), (5.9a’) or (5.9¢). Solutions (8.2), (5.9a) are bounded for any = and ¢,
whereas solutions (8.2), (5.9a") and (8.2), (5.9¢) are singular at z — k — vt = 0.
For @y and @; satisfying (5.7b) the modulus of the complex function (8.2), (5.9b)
is periodic and singular at © — k — vt = (2n + 1)7/2v. All the above mentioned
singularities are simple poles. If @y and @, satisfy relations (5.8a), the solutions (8.2)
are expressed via the two-periodic Weierstrass function p (refer to (5.10)) and are,
generally speaking, unbounded. But if we restrict ourselves to solutions (5.11) for
potential, the corresponding solutions (8.2) are periodic and bounded.

To inquire into a physical content of the obtained solutions let us consider in more
detail the cases (8.2), (5.9a) and (8.2), (5.11).

For potentials (5.9a) the corresponding relation (7.5) reduces to

N =4FE%, e=2F -1 (8.3)

and the integral in (8.2) can be easily calculated. This enables us to represent solutions
(8.2), (5.9a) as follows

b= Cosh[y(fok — O {z K”Q ;”2> t+ vz + @0} } . E=0; (84)

¥ = A{vtanh[v(z — k — vt)] £ iv/e} x

2 _ .2 8.5
xexp{i[(y 2U —3E>t+(v$\/g)x+goo]}7 E #0, 620.( )

For potentials (5.11) we obtain from (8.2)
U = AVBen [D(z — vt) + k| explifi(t,z)], E =0; (8.6)

U =y = A\/Ben?[D(xz — vt) + k] + Fexp(ifa(t,x)], E+a =0, (8.7)
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where
2

3
fi(t, ) =f2(t7$)+§Ft= (F— %)t—i—vx—i—%,

B, D and F are parameters defined in (5.11b).

For another values of E solutions (8.2), (5.11) are also reduced to the form (8.7)
where the phase fa(¢, x) is expressed via elliptic integrals.

Formula (8.4) presents a fast decreasing one-soliton solution [31]. Relation (8.5)
defines a soliton solution whose behavior at x — oo is typical of solitons with a finite
density. Formulae (8.6), (8.7) describe “cnoidal” solutions for the nonlinear Schrodinger
equation.

9 Conditional symmetry and generation of solutions

Let us return to the linear Schrodinger equation (2.1) with the potential U satisfying
(3.8a). Generally speaking it possesses no non-trivial (distinct from time displace-
ments) Lie symmetry. Nevertheless, its solutions can be generated within the frame-
work of the concept of conditional symmetry [2, 3, 12, 14, 32]. Indeed, these solutions
satisfy (7.7), and equation (2.1) with the additional condition (7.7) is invariant under
the Galilei transformations (8.1) (i.e., condition (7.7) extends the symmetry of equa-
tion (2.1)).

This conditional symmetry enables us to generate new solutions. Starting with
(7.1), (7.4) and using (8.1) we obtain

U = A\/V(zx — k —vt) + 4F + 2@y X

rx—k—uvt
t dy (9.1)
i | —(2E + v?) = 2
xexpqi|—( +v)2+vx+<po+ / Vy) T 4E + 250
0

Functions (9.1) satisfy the Schrédinger equation with a potential V(x — k — vt)
where V() is a solution of equation (5.6). In the particular case E = —< these
functions are reduced to solutions (8.2) of the nonlinear equation (7.6).

One more generation of solutions can be made using a third-order SO. Inasmuch
as V(z) satisfies (5.6), then V(x — vt) satisfies the Boussinesq equation (6.3). It
means that the corresponding linear Schrédinger equation admits a third-order SO.
In accordance with (2.2), (2.6) this SO can be represented in the form

1 3
Q=p+ Z{3V+2(u0 +6v%,p} + §’UV =

! & @2
= 2pH + §(V + 2@ + 6v?)p + §vV + Zv’.
Formula (9.2) generalizes (3.12a) to the case of time-dependent potential.
Acting by operator (9.2) on ¥ in (9.1) we obtain a new family of solutions
U = QU = arp + iv? Ty, (9.3)
where a = A\ + 4Fv + @gv — 403, ¥ is the initial solution (9.1),
V' + 4iX
¥, R (9.4)

T 2(4E + V + 2@)
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We note that if ¥ is a soliton solution
vA v?
V= —""——+— | ——=1 9.5
cosh[v[z — vt)] P [l ( 2 et 900)] (9:5)
(the corresponding potential is present in (5.9a)), then (9.4) is a soliton solution too:

U, = ”ifi?i[(”;”i_vg?] exp {z (—”;t oz + 900)} . (9.6)

Starting with the potential (5.11) we obtain from (9.1) a particular solution

2

U = Av/Bcn2z + Fexp [z <v2t + vz + cpg)] , z=D(xz—uvt). (9.7)
The corresponding generated solution (9.4) reads

ABDcnzsnzdnz 02
U =— | ——1 9.8
1 Bonts 12k P [z( 5 +vx+s00>} (9.8)

and is also bounded.

Acting by SO (9.2) on solutions (9.3), (9.8) we again obtain new solutions. Mo-
reover, this procedure can be repeated. In particular, in this way it is possible to
construct multisoliton solutions of the linear Schrédinger equation.

We see that higher order SOs present efficient possibilities for solving equations of
motion and generating new solutions starting with known ones.

10 Conclusion

Higher order SOs present a powerful tool for analyzing and solving the Schrodinger
equation. The concept of higher symmetries enables us to extend the class of privileged
potentials (2.4) and to investigate invariance algebras of the equations whose poten-
tials satisfy one of relations (3.8).

We note that potentials (5.9) can be represented in the form V = W?2 + W’ where
W = vtanh[v(x — k)] for solution (5.9a) (superpotentials W for solutions (5.9a)—
(5.9¢) can be also easily calculated). Moreover, the corresponding superpartners V=
W?2—W' reduce to constants, therefore it is possible to integrate easily the Schrédinger
equation with potentials (5.9) using the Darboux transformation [33].

It is worth to note that invariance condition (2.3) for operators (2.1), (3.12) can
be treated as a zero curvature condition for equations associated with the eigenvalue
problem for operator @, or as the Lax condition where a role of the Lax operator L
is played by a SO, refer to (6.2). The reasons stimulating our research of such a well-
studied subject and distinguishing features of our approach are the following:

(1) The main goal of our paper is to present a constructive description of potentials
for the Schréodinger equation which admit higher symmetries. In this way we extend
the fundamental results [19-21] connected with the search for potentials admitting
usual Lie symmetries.

To solve the deduced determining equations for potentials we use direct reductions
to the Painlevé or Riccati forms. The obtained results can be used for analysis and
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solution of the Schrédinger equation as well as for construction of exact solutions of
the Boussinesq equation, see item 5 in the following.

In the method of inverse problem, description of pairs of operators (2.1), (2.8) sati-
sfying the Lax condition (6.2) is reduced to the Gelfand-Marchenko-Levitan equati-
ons [34] or to the Riemann problem [15, 31] which can be solved explicitly for a
restricted class of potentials.

(2) We use non-Lie symmetries of the Schrodinger equation for construction and
generation of exact solutions. Moreover, we are interested not so much in finding
new solutions as in developing a new method of their derivation, which consists in
simultaneous using of higher order and conditional symmetries. Nevertheless, the
cnoidal solutions (9.7), (9.8) and (8.6), (8.7) for the linear and nonlinear Schrédinger
equations can be of interest for physicists as well as infinite series of soliton and cnoidal
solutions generated by a repeated application of the procedure described in Section 9.

We believe that the combination “higher order symmetries + conditional symmet-
ries” may be used effectively in the investigations and analysis of other equations of
mathematical physics.

(3) Our approach admits a direct generalization to multidimensional Schrodinger
equations. Note that higher symmetries of the three-dimension Schrédinger equation
were investigated in [18, 35| for particular potentials.

(4) Algebraic relations (4.1)—(4.4) are valid for extended classes of potentials. They
open additional possibilities in the application of algebraic methods to investigate the
Schrodinger equation, in particular, the use of raising and lowering operators for this
equation with potentials satisfying (3.8d). We note that relations (3.8d) are valid also
for time-independent operators Q4 = exp(Fiwt)@Q+ where Q4 are given by relations
(3.124d).

(5) Equations (3.8) which describe potentials that admit third-order symmetries
are equivalent to the reduced versions of the Boussinesq equation, which appear under
the similarity reduction [36] (this is the case for (3.8a,d)) and the reduction with using
symmetries [14, 25, 26] (the last is valid for (3.8b,c)). Thus, the results obtained in
Section V can be used to construct exact solutions of the Boussinesq equation.

A systematic study of higher symmetries of multidimensional Schréodinger equa-
tions is planned to be carried out elsewhere.
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YmMmoBHa cumerpis piBHsaHb Hap’e—CtoKca
B.I. oyH[H4Y, M.I. CEPOB, JI.O. TYJIVIIOBA

The conditional symmetry of the Navier—Stokes equations is studied. The multipara-
meter families of exact solutions of the Navier—Stokes equations are constructed.

Busuena ymosna cumerpis piBasias Has’e—Crokca. [To6ymoBani 6araromnapamerputsi
ciM’T Tounux po3B’a3kiB piBasgHbL Has’e-Crokca.

Posrsinemo cucremy piBasiab Has’e—Crokca

. 1.
o + (AV)T + MNAT = —=Vp,
0+ (aV) P 1)
po +div (pi) =0, p= f(p),

ne i = ﬁ(x) eR™ p= p(l‘) €ER,p= p((ﬂ) €ER,z= (‘TOaf) € R

JliiBcbka cuMerpisa piBuanb (1) no6pe BuBuena (aus., Haupukaag, [1]). Pesynbrarn
[IUX JOCJi/PKeHb MOXKHA COOPMYJIIOBATH Y BUIVISL HACTYIIHOIO TBEP/2KEHHS.
Teopema 1. Maxcumasvna anzebpa ineapianmmocmi piehans (1) craadaemoves 3
onepamopie:

0 0
:3—%a aa:a—ma» Ga:x08a+aua7
Jab = a0y, — Tp0s, + uOyp — ulya,

1) 9

axwo F(p) — dosimvna zaadka dyrxuia, de F(p) = f(p)/p:

2) 0o, 0Oa, Ga, Jap, D1=p0,, Ds=2x00)+ 1,04 — u*Oye,
o F(p) = 0;

3) 9, 0Oa, Ga, Ja,

D3 = 2200y + £,0, — p0p — u®Oye, k — dosinvhe,

2
E+1
awwo F(p) = Ap";
4) 0y, 0Oay Ga, Jap, Di=2x000+ 2404 —np0, — uOye,
I = 2200 + 107,04 — nxopd, + (Tq — xou®)0ye,

axwo F(p) = \p2=m/n,

B wiit po6oti gociimkeno ymosny cumerpito cucremu (1). JToxknazgnime mpo noHs-
TTs YMOBHOI cuMeTpii aus. poboru [1-4].

Posruisiremo criouarky ogmoBumipumii Bunanok. [pu @ = (zg,21) ta v = u(x)
cucrema (1) Mae BATIIsI

Ug + uul + >\U11 + F(p)pl = 0,

2
po +upy + puy =0, @)

VYkp. mart. )kypH., 1997, 49, Ne 6, C. 806-813.
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1e F(p) = f(p)/p. Oneparop ymoBHOI iHBApIiaHTHOCTI GyIeMO IIyKATH y BHIUISI]
Q= A(:Ca P u)@o + B($, P u)al + O(I, Ps u)ap + D({E, P u)aua (3)

ne A, B, C, D — riajiki dyskiil. Jdudepentiaabauil onmeparop neporo mopsjaky
nie na mMuorosui (z, p,u) € R
CupaBeyinBa HACTYIIHA TEOPEMA.

Teopema 2. Pisnanna (2) Q-ymosno ineapiarnmui eidnocho onepamopa (3), akuyo
Ppynruii A, B, C i D 3adogoavraroms cucmemy OuPepeHuiaNoHUT DI6HAHD 8 00HOMY
3 maKuxr sunadxis:

I A #0 (ne smpavarowu 3azarvrocmi mosicra nokaacmu A =1):

1) B # u:
1
(0= B) {21005 — ) - (B + 1]+ Cph — By~ BB + D+
+ (BDy — BuD) + (Dpp — Dyu) =0,

—2B,C C 1 A AC
[D +2(B- u)} + ———(B,C + D,p) (—01 - 20, - D) +
p p —u p p

A A C
+ ¢ 5By C? + 5C*(Dyy — 2B1y) + —[Biu— D + By + FC,, +
p p p
+ >\Bll — 2)\D1u + 2B1(B - u)] + Do + D1U - FCl + >\D11 + 2BlD} = 0,
B—-u)-C(B,+1)|+Cy+Cy,D+ Ciu+ Dip+C(B1+C,— D,)=0,

%,
o
{ 5 (B. 2)+20}

AC CF
+ [20( W)+ 5——(C, = B) - /\Cl} 3D+ﬂ} +

2 2C
+/—)Bu{ [7(B—u)+D} (B—u)—i—FC’} +

A 1 Fp
+5—Dp {;[CU(B —u)=C2~-B,)]+C,—B1 + 7} -
— %[Fp—i—(B—u)(QB—u)]—i-/\{p BuuC?*(u— B) +
+ QP—S[(B —u)(2B1y — Dyu) — CBpy) +

1
+ ;[QC(Blp — Dpu) + (B — ’U,)(2D1u — Bll)} —|— 2D1P}Bp —

B—u

(By— D+ FC,) =0

1
Byop® + (2Bpup)(B = ) + Buu(B = w)* + Byp(2 = By) = B2 =0,
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B-w? A

1
5 . —(2C[2 — By) — Cyu[B — u]) +

p

Bp{—ZF—Q
1 2(B — B —u)?
+Bl—cp—B—_u(ch+Dpp)H—%Bu {F+%} +

a {%D +3R(B 0D, + (2= BID,]+ Dy | + ()

+ A

p? p
+ p[2CB,, — 2B1,(B — u)]} = 0;

2) B =u:
D, =0,
C C? 2C
Dy + Dyu— FCy + ;(FGH — 3D) + A (/)QDuu — 7D1u + D11> =0,
2C?
Co+C,D-CD,—-CC,+Ciu+ Dip— 7 =0,
2C .
F(——i—Du—Cp) —CF =0.
p
II. A =0 (ne empanarowu 3a2aabH0cmi Modtcha nokaacmu B =1):
Do+ FCD,, + Dyu— C?*F — DD,p+ (\D, — F)(Cy + C,D + CC,) +
+ A[D11 + D(2D1y + DDy, +2CD,,) + C(2D1, + CD,,)] + D* = 0,
Fcc, - XC.(Dy+ DD, +C,D,)+ D(2C + D,p) + Cy + Cru+ D1p = 0.
Hosenennsi. Bunayok I.1. IIpu A = 1 oneparop (3) mae Burusy
Q:80+B(xapvu)al+C(xap7u)ap+D($7p>u)auv (5)
TOMI
Qp=po+Bp1—C=0,
Qu =1ug+ Bu; — D = 0.

Banmmmemo ymoBy iHBapianTHOCTI cucremu (2) BigHOCHO Oneparopa (5):
08, =n + Lty + At 4 Duy — CFPI —Flp® =0,
QSQ=0770+1770u+1771p+Dp1+Cu1 —0,

ze

S1 = up +uuy + s + F(p)p1, Sz = po+ upr + pua,
=1, & =B(pu), n°=Clz,p,u), 0" =Dz pu),
i =Dpn™ —usDpe®, P = D, n* — uspD,E%,

D, — omeparop moBHOrO mudepenmioBanHs; a «, (3, v, [ HabyBawTh 3Hadens 0 1 1.
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Iepexoasian HA MHOTOBHL (X, p, U), MAEMO

poo + Bpor = L1, por + Bpi1 = L2, wugo + Buor = Ls,

uo1 + Buir = La,  poo + upor + puor = Ls,  po1 + up11 + puin = L,
L, =DoC — p1DyB, Ly =D.C —p DB, Ls=DyD—uDyB,
Ly=D1D —uD1B, Ls=—piup— pour, Lg=—2pju;.

(®)

Ckiazemo cucremy Jinifinux piBusiHb (8) BiIHOCHO ApPYrux Hoximaux OYHKIH p
Ta u. llg cucrema Oyze cymicHa, KOJIU BUKOHYBATAMETHCS yMOBA

L5 — L1 — ’LLLQ + BLG — pL4 = 0 (9)
Bubepemo Bisbay 3minny pi11. Toai

poo = L1 — BLy + B?p11,  por = L2 — Bpa,
B2
ugg = L3 — BL4y + 7[[/6 —Ly+ (B - u)pll]a (10)

B 1
ugy = Ly — ;[Le — Lo+ (B—u)pn1], w1 = ;[LG — Lo+ (B —u)p11].

106 BusHauwmTn neprm noximni GYHKIH p Ta U, CKIAIEMO CHCTEMY 3 IPYTroro pis-
HsiHHS cucTemu (2) ta cucremu (6). OCKIIBKI paHr 0JIep:KaHOl CUCTeMU 3, & KIIbKICTh
3minHuX — 4, Oy1e ofHa BijibHA 3MiHHA, 33 Ky BBakaTUMeMO pi. OTKe, MaeMO

1
po=C—Bpy, up= ;[(B—U)Pl - Cl,

(11)
u =D — %[(B —u)p1 — C.

Po3B’a3y101u1 0JJHOYACHO TiepIie PiBHSIHHA cucTeMu (2) Ta OCTAHHE DIBHSIHHS CH-
cremu (10), 3HAXOAUMO

__ bt m Nt Y D 2011 Ny
puB_u{ [Fp-+(B =)’ + § (Cu~Dp— BC) + L1 [(B ~u)py O

A
(12)

+ —(Cu — Bup1)[(B —u)pr — C] + C1 + Cpp1 — Bip1 — Bppf}-

SR

Mincrasastoun p1; 3 (12) B (10), omepkyeMo BUpa3 JJist BeixX IHIMMUX APYTUX TMOXITHAX
qepes pp. [oTimM, mijcTaBisoun Bupasu Jyis BCiX HOXigHUX uepes3 p1 B (7) Ta yMOBY
cymicHocri (9) 1 posmienunooun i PiBHAHHS 32 CTEIEHAMU P1, OJEPKYEMO DIBHAH-
ua (4).

Bumagkwu 1.2 ta II noBomsarhes anasmorigro. Teopemy moBeaeHo.

g Toro mo6 BunmcaTu oneparop (3), HeobxigHo 3HaliTu po3s’s30k cucremu (4),
IO, OYEBUOHO, B 3arajIbHOMY BHIIAAKY 3POOHTH HEMOZKJIABO.
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Ipu pesikux 3nadenusx GyHkiii F(p) Bragocs 3HANTH Y9aCTUHHI PO3B’A3KH [UX

cucreM i 3a HUMU TOOY/IyBaTH TaKi OMEPATOPHU:

F=X Q=0 +ud + kp®d,,

F=X Q=100+ iaﬁ&m

F=X\p, Q3=x00— 3 + Ou,

F=-kp, Qi= (xo +m )a1 + 20, + 20, (13)
F=X?, Qs=3x00; + a + Oy,

F=f(p), Q¢=mz101+ uauv

F=f(p), Qr=F(p)o+0,,

ae A, m, k — moBijbHI cTaJi.

Oneparopu (Q; BUKOPUCTAHI JIJIsl IOOYIOBU AII3AIlIB, PEILYKIIil Ta 3HAXOIXKEHHSI TO-
gHuX po3B’a3kiB cucremu (2). Huxkue naseseni anzaim, ski no0yI0BaHO 3a OlEPaTO-
pamu (13) 1 gxi no3BOsIAIOTH pepyKyBaTu cucreMy (2) 1o cucreM 3BudaiiHux gudepen-
[iaJIbHUX PIBHSHB, Ta TOYHI pO3B’sa3Ku cucremu piBHsaHb Has’e—Crokca, 1o omepxkami
TMicJIst PO3B’sI3aHHs Bi/IOBIIHUX PEIyKOBAHUX PiBHSIHD:

1. xou—x1 = @ (u),

C
20+ — = " (u);
p

2. p= 2 +¢%(0),

ma?
—z—o—i-gal( )

3 éz—%ﬂa( 0);
uzx—(l]+801($0),

4 p:k(xg%—ilmQ)—i_(Po( )
u:xﬁjﬁ+¢@@

R A
u= g+ )

6. p=¢"x0), u=z19" (20);

7. /F(p)dp =z1 + ¢ (20),

U= 501(I0)a

Yepesz ¢ noznageno moBinbny rianky dyskiio; M, ¢, c1, co, k, m —

xou — x1 = P(u),
1

xo+ — = D(u);
P
x

M k
p=—z5 |r1— —(lnzo+1)+c| +—,
TH m Lo

u=—|c+x1— —Inzxg|;
To m

p° mxy (Mm?  may
N = — P} 5 +CQ 9
2 x§ 2z z
1 ( Mm)
Uu=—121— ;
Zo Zo
m2x1 — C1X9
p= (22— m2)
m(zg +m?)
- C1 +l‘0131.
x4+ m?’
4 2
Po_m2am o
T~ o Tz T¥ o)
L1 C2
u = + —7=
4/37
31‘0 xO/
C2 I
p= y U= ;
o+ C1 ZTo + C1
a
/F(P)dl) =1+ — Ao,

U = Cy — Xp.

IOBLJIbHI cTaJIi.
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VY BunaJKy HOBLIBHOI KiIbKOCTI 3MIHHUX B piBHsAHHSX (1) 1OCI/Ii/ZKEHHST yMOBHOL
crMeTpil TOB’si3aHe 3 TPOMI3AKAME TIEPETBOPEHHSME 1 B IIilf CTATTI HE HABOJUTLCH.
Oznak fiesiki 3 oneparopiB yMOBHOI cuMeTpii n-BuMipHux piBHgAHb (1) MOXKyTH GyTH
ozeprkati GesnocepeHiv y3araiabHeHHsM oneparopis (13). Taki ysarajibHeHHsT HaBe-
JIeH1 HI2K4e pa30M 3 aH3aramMu, o0yI0BAHNMU 33 IIUMH OIIEPATOPAMH, i BiITOBI MHUMK
TOYHUMU PO3B’A3KAMU CI/ICTeMI/I Hap’e—Crokca (1).

Omneparop Q, = 2¢O, —|— 8 + Oya, F = p

GE L o) GT+k _ M(nao+1) A
= — w = — A
P mw? P p ma? m2z3 xo’
. alax - _  a(dxr) Malnx ka
u=g+¢<w)7 o=y 7= 30D Mahs,  kd
w Zo mxo i)

2 m(ax 2 m(az) +k  Mm? k
p_:* (3)+900(w)7 p_:* ( ;3 1 + PR
2 w 2 T T T
L alar . L alar+k Mma
U= ( )+Lp(w), w=umxp; U= ( ) _ 5

w i) IEO

Oneparop Q, = (23 +m?)d, + %({% + 200u0, F = —k2p:

. _%4_@0@)’ = [m*(ax + 02)_611'0]%7

"= % tow), w=w0 d= xO&(&%1622+ ad
Oueparop Q. = (2n + 1)z¢d, + 7; D, + Oue, F — o

P m @@ o @ P

Z:2n—|—lﬁ n+1 w (), Z:2n+1x_g x_g+

2n @ kx—4n/(2n+1)’

2n + 1 z2 0
B T 5w) B 7 X
b= —— W), w=xo; = ——— + —
(2n + 1w it 0 (2n+1)zg 0
Oueparop Q. = (2n + 1)zgd, + z x; Dp + Oye, F = p?
ZTop
A T W . Y N N N S
4 2n+lw? 2n+1w T4 (2n+1)223  4n
. 1 @ kx—4n/(2n+1)
2n + 1 x? 0
T T -
L 3 _ i h
U= Gng e TPW, w=a; St Do ¢
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Oneparop Q, = 3z00, + %auap + Oye, F = p:
P

4 272\ 2 22\ (7S 4 22\ 2 = 2
p azr 2(az)(ag) 0 p oz 2k(ax) k —4/3
7o == ) _ 2\ 7o == i Sateds v b
4 ( 3w ) 3w W), 4 3z + 3z * z3 AT
alaz aar)  kaz
7= M0 aw), wmy a= 0D KA
3w 3o 7o
Omneparop Q, = 3x00, + xa;3 (@F — xoAW)0, + Oy, F = p*:
0
4 a2\ 2 N AE 4 32\2 (aX)2
ot _ (az\"_ (az)(a )+¢o(w)7 P (GEN (@7
4 3w 3w 4 3xo 3xg
(@)(@N) |, —as
— k
3.730 + o ’
L alar) L ala@r) -
= = N = )\
U o +J(w), w = xp; U 320 +

Oneparop Q, = AT, + cu’dye, F = F(p):
k

— 0 — I
p=¢ (), P= o
a@ar) -
S oo o o X
U= arf(w), w=uwxg; U PP +

Omneparop Q, = f0, + G0, F = F(p):

U=¢gw), w=x; = X— dxo.

B mux dbopmynax @& — JI0OBiIbHEIT BEKTOD, /s SKOTO BEHKOHYEThCs yMoBa (@)% = 1;
X noBinbHEII BekTOp; M, K, m, ¢1, co — MOBiAbHI cTadi; N — PO3MIPHICTEH MPOCTOPY.
SayBakKuMo, 10 N-BUMIpHE y3arajbHEHHsI oreparopa ()1 3HAWTH He BIAJIOCH, a
orepaTrop ()5 y3arajJbHEHO YOTUPMA PIZHUMHU CIIOCOOAMHU.
Takum ynHOM, HaBe/IeHI pe3yJibTaT BKa3yOTh Ha Te, 1m0 piBHsaHHS Hap’e—Crokca
MAaIOTh IIPUXOBaHI CUMETPil, gKi He MOXKHA OJIEPYKATH 3a JOTOoMOororo ajropurmy JIi. i
cuMeTpil MO2KHA BUKOPUCTATH I 3HAXOKEHHSI TOYHUX PO3B’A3KIB JIAHNX DIiBHAHD.

1. ®ymuu B.U., HIresnens B.M., Cepos H.U., CumMeTpuifHbI! aHAJIN3 U TOYHbBIE PEIIEHUS yPaB-
HEHUI HeJIMHeWHOU MaremaTundeckoil dpusuku, Kues, Hayk. qymka, 1989, 336 c.

2. @ymuya B.U., YcaoBHas cuMMeTpusi ypaBHEHUN HEJIHMHEHHON MaTeMaTHIeCKol Gpusuxu, Yrp.
mam. orcypr., 1991, 43, Ne 11, 1456-1470.

3. Cepos H.U., YcnoBHast ”HBAPpUAHTHOCTDH M TOYHBIE PELIECHUsI HEJIMHEHHOTO yPABHEHUS TEILIO-
MIPOBOJIHOCTH, YKp. mam. otcypr., 1990, 42, Ne 10, 1370-1376.

4. Fushchych W.I., Serov N.I., Tulupova L.A., The conditional invariance and exact solutions of
the nonlinear diffusion equation, Dopovidi Ukr. Acad. Nauk, 1993, Ne 4, 37—40.
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High-order equations of motion in quantum
mechanics and Galilean relativity

W.I. FUSHCHYCH, Z.1. SYMENOH

Linear partial differential equations of arbitrary order invariant under the Galilei
transformations are described. Symmetry classification of potentials for these equa-
tions in two-dimensional space is carried out. High-order nonlinear partial differential
equations invariant under the Galilei, extended Galilei and full Galilei algebras are
studied.

Non-relativistic quantum mechanics is based on the equation
LY =(S+V)¥ =0, (1)

where S = pg — p2/2m, py = i0/0xg = i0/0t, po = —i0/Ox,, V = V(z, ¥* V). In the
case where V is a function only of @, equation (1) coincides with the standard linear
Schrédinger equation.

The fundamental property of (1) (in the case V' = 0) is the fact that this equa-
tion is compatible with the Galilean relativity principle. In other words, equation (1)
(V = 0) is invariant under the Galilei group G(1,3). The Lie algebra AG(1,3) =
(Po, Pay Jab, Gao) of the Galilei group is generated (see, e.g., [1, 2]) by the operators

POZPO’ Pa:paa Jab:xapb_xbpaa a#ba avb:1a273>

(2)

Go = tpg — ma,.
The operators (G,) generate the standard Galilei transformations
t—t' =t z,— 1, =124+ vat.
Definition 1. We say that the equation of type (1) is compatible with the Galilei
principle of relativity if it is invariant under the operators (Py, Py, Jab, Ga)-

Let X be one of the operators (Py, Py, Jab, Ga)-

Definition 2. Equation (1) is invariant under the operator X if the following condi-
tion s true:

X LW =0, 3)
) LY=0

where X is the second Lie prolongation of the operator X [1-4].
)

The equation of type (3) is a Lie condition of invariance of the equation under the
Lie algebra. In our case, it is the condition of invariance under the algebra AG(1,3).

Theorem 1 [1, 2, 5]. Among linear equations of the first order in t and of the second
order in the space variables x there exists the unique equation (1) (V = A = const)
invariant under the algebra AG(1,3) with the basic elements (2).

J. Phys. A: Math. Gen., 1997, 30, Ne 6, L131-L135.
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Conclusion. We can regard the theorem formulated above as a method of deriving
the Schrédinger equation from the Galilei principle of relativity [5, 6].

In the present paper, we give the answer on the following question: Do there exist
equations not equivalent to the Schrodinger equation for which the Galilei principle
of relativity is true?

In [6, 7], the following generalization of the Schédinger equation was proposed

(MS + XS + -+ X, 8" + V)T =0, (4)

52 =25S,...,8" =818 A, \a,..., A\, are arbitrary parameters.

If V= 0, equation (4), as well as equation (1), is invariant under the algebra
AG(1,3), i.e. this equation is compatible with the Galilei principle of relativity. Is
this equation unique among high-order linear equations? In what follows, we get the
positive answer for this question.

More precisely, we solve the following problems:

(i) We describe all linear equations of arbitrary order invariant under the algebra
AG(1,3).

(ii) We describe the maximal (in Lie sense) symmetry of equation (4) in the two-
dimensional space (¢, x).

(iii) We describe nonlinear equations of type (4) invariant under the algebra
AG(1,3), the extended Galilei algebra AG1(1,3) = (AG(1,3), D), and the full Galilei
algebra AG3(1,3) = (AG1(1,3), A). D and A are the dilation and projective operators,
respectively.

(i) For solving the above problems we use the method described in [1, 2, 5, 6, 7].

Theorem 2. A: Among linear partial differential equations (PDE) of arbitrary even
order 2n

LU =0,

2n
L = A + B“@M + Cl“’a[uy + Dﬂygaul/a + T + E#VU”.Ka;uja...H;
——

2n

(5)

there exists the unique equation
(AMLS + X282+ + N, S")U = AP (6)

invariant under the algebra AG(1,3).
B: There are no linear PDE of arbitrary odd order 2n + 1
LY =0,
L=A+B"0,+C"0u + D" 0upe + -
2n 2n+1 (7)

uvo...K uvo...kp
et E aﬂuo’.../{ + G auucr...npa
——

2n 2n41

with one mon-zero coefficient of the highest derivatives at least, invariant under
AG(1,3).
2n 2n+41
Here, A, B*,CH*¥ Do .  EW7K GH-FP qre arbitrary functions of t and x;
A1, A2y ..oy A, A are arbitrary constants, A, # 0; 0, = 0/0x,, Oy = 0%/02,0z,, ...
(.u“al/w"ap: 033)
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Proof. The scheme and idea of the proof of the theorem is very simple but the
concrete realization is not simple. We describe in more details the proof of part A.
Part B is proved in the same way as the first part of the theorem.

According to the Lie method [1, 3, 4], we find the 2nth prolongations of the
operators (2) and consider the system of determining equations

X LV =0, VXeAG(1,3). (8)
(2n) LU=0

Writing equations (8) in the explicit form and equating coefficients for equal deri-
vatives, we solve the system of partial differential equations to obtain functions A,
2n

A~
BH, Crv Dhve | Ehroes

Invariance of equation (5) under the operators Py, P, results in the fact that functi-
2n

ons A, B, C* DHve . EFY?% donot depend on t and x, i.e. these coeflicients are
arbitrary constants. In other words, our PDE has the form LV = Q(l)(po,pa)\ll =0,
where Q) is a polynomial in (pg, p,) with constant coefficients.

After taking into account the invariance under the operators J,;, we find that the
equation has the form LU = Q) (pg, p2)¥ = 0, where Q) is a polynomial in (pg, p2).
After considering the invariance under the Galilei operators G,, we obtain that the
equation has the form LV = Q® (py — 5;1-p2)¥ = 0, where Q® is a polynomial in
(po — ﬁpg) In other words, the equation has the form (6). The theorem is proved.
Consequence. Among fourth-order linear PDE there exists the unique equation in-
variant under the algebra AG(1,3) with basic operators (2). This equation has the
form

(A1S + X2 SH)W = AT,
where Ao # 0.

(ii) Now, we consider equation (4) in two dimensions ¢, x and carry out symmetry
classification of potentials V' = V(z) of this equation, i.e., we find all functions V =
V(x) admitting an extension of symmetry of (4). The following statement is true.

Theorem 3. Two-dimensional equation (4) with A\, # 0, n # 1 is invariant under
the following algebras:

(1) (Po, I), iff V(x) is an arbitrary differentiable function;

(2) AG(1,1) = (Py, P, G, I), iff V = const;

(3) AG»2(1,1) = (ﬁo,Pl,G,D,A,D, iff V.= Vi = const the following equalities
are true:

/\k _(n ‘/1 (n—k)/n B .

(4) (ﬁO,D,A,D, iff V.="Vi+ C/x®", Vi, C are constants and (9) are true; (Z)
are the binomial coefficients.
The operators in Theorem 3 have the following representation:

Py=py, Pi=pi, G=tpi—ma, Py=po=DPLy+ VYVi/\,
D = 2tpy — xpy — (i/2)(2n — 3), A= t*py —tD — (1/2)ma?,

I is the unit operator.

(10)
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Consequence. The 2nth-order PDE
(S"+V(z)¥ =0

is tnvariant under the following algebras:

(1) (Po, I), iff V(x) is an arbitrary differentiable function;

(2) AG(1,1) = (Py, P, G, I), iff V = const;

(3) AGQ(L 1) = <P0,P17 G, l)7 A,I>, Zﬁ V= 0,‘

(4) (Py, D, A, I), iff V.= C/x®", where C is an arbitrary constant.

The above operators have representation (10) with Vi = 0.

Note that symmetry classification of potentials for the fourth-order PDE of the
form

(MS + X2S8? + V(2)¥ =0

was carried out in [8]. In this case, symmetry operators have representation (10) with
2

_ M —
‘/i—mandn—2.

(iii) Now, let us consider nonlinear PDE of type (4) in (r + 1)-dimensional space:
S"U 4+ F(Te)¥ =0, (11)

where U* is complex conjugated function, n is an arbitrary integer power, F' is an
arbitrary complex function of WW*.

We study symmetry classification of (11), i.e. we find all functions F(¥W¥*) which
admit an extension of symmetry of equation (11).
Theorem 4. Equation (11) is invariant under the following algebras:

(1) (Py, Pa, Jap, Ga, Q1), iff F is an arbitrary differentiable function;

(2) <P07Pa7 Jaba Ga, Qla Q2>; ZﬁF = const 7é 0;

(3) (Po, Pas Jab; Ga, Q1, D), iff F' = C(\IJ\II*)IC; k #0;

(4) (P, Pa, Jap, Ga, Q1 D, A), iff F = C(¥*)Em)/r+2=2m);

(5) (Po, P, Jap, Gay, Q1,Q2, D, A), iff F = 0.

Here, indices a, b are from 1 to r, a # b, k is an arbitrary number (k # 0), and
the above operators have the following representation:

Py=po, FPo=0a, Jap=TaDb — TpPa, Gq = taxa +imxaQ17
Q1 =V0y — VU 0g-, Q2= Voy+ ¥V Oy,

- 2—2

D = 2t9, + 1°0,, — (n/k)Qa, D = 2t0; + 2°0,, — “L%Qg,
2—2

A= 120, + 120, + (i/2)ma‘z,Q1 — anth,

where summation from 1 to r over the repeated indices ¢ is understood.

Thus, in the present paper, we have described the unique linear PDE of arbit-
rary even order which is invariant under the Galilei group. We have investigated the
exhaustive symmetry classification of potentials V' (z) of (4) and functions F(¥T*)
of the nonlinear equation (11), i.e. we have pointed out all functions admitting an
extension of the invariance algebra.

The authors would like to thank an anonymous reviewer for kindness and helpful
suggestions. The paper is partly supported by INTAS, Royal Society, and the Inter-
national Soros Science Education Program (grant No PSU061097).
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Symmetry of equations
with convection terms

W.I. FUSHCHYCH, Z.1. SYMENOH

We study symmetry properties of the heat equation with convection term (the equa-
tion of convection diffusion) and the Schrédinger equation with convection term. We
also investigate the symmetry of systems of these equations with additional conditions
for potentials. The obtained results are applied to construction of exact solutions of
the system of the Schrédinger equation with convection term and the Euler equations
for potentials.

Study of symmetry properties of evolution equations is an important problem in
mathematical physics. These equations are thoroughly investigated by a number of
authors (see, e.g., [1, 2, 3]). The fundamental property of these equations is the fact
that they are invariant under the Galilei transformations.

It is known [4] that the nonlinear heat equation

% — AAu = F(u) (1)
is not invariant under the Galilei transformations if F'(u) # 0. It is Galilei-invariant
only in the case of linear equation, i.e., in the case where F'(u) = 0 (up to equivalence
transformations). Therefore, it is important to consider nonlinear evolution equations
which admit the Galilei operator.

In the present paper, we study symmetry properties of equations with convection
terms, namely, the heat equation with convection term (the equation of convection
diffusion) and the Schrédinger equation with convection term. We also investigate the
symmetry of systems of these equations with additional conditions for potentials V.
The results of symmetry classification are applied to constructing exact solutions of
the system of the Schrédinger equation with convection term and the Euler equations
for potentials.

1 Symmetry of the equation of convection diffusion

The equation of convection diffusion has the form

ou ou
— =AM u=V— 2
ot k 6$k7 ( )
where u = u(t, ¥) is a real function, A is a real parameter, the index k varies from 1
to n.
To extend the symmetry of equation (2), we apply the idea proposed in [4, 5, 6].
Namely, we assume that the functions Vj, = Vi (¢, Z) are new dependent variables on
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equal conditions with the function w. In other words, we seek for symmetry operators
of equation (2) in the form

X = fua’ru + 773u + pkaVka (3)

where &, 1, p* are real functions of t, Z, u, V. Applying the Lie algorithm [7, 8, 9],
we find that the unknown functions £#, 7, p* have the form
0 =2A(t), &= A(t)xy, + B¥(t)x 4+ Uk(t),

pF = B (t)V; — A(t)zy — B¥ (), — UR(t) — A(t) Ve, 1 = Cru+ Cs, W

where A, B* (k,1 =1,n, k # 1), B¥ = —B'_ U* (k = 1,n) are arbitrary smooth
real functions of ¢; Cy, Cs are arbitrary constants. Thus, the following assertion is
true:

Theorem 1. The equation of convection diffusion (2) in the class of operators (3) is
invariant under the infinite-dimensional Lie algebra with infinitesimal operators

Qa = 2A()0; + A(t)z,0,, — [A(t)z, + A(t)V,]0v.,

Qri = B (t) [£10n, — 210, + ViOy, — Vidy;] — B¥(t) (210, — z10v;),
Qo =Ut)0y, — U“(t)ava, a=1,n,

Z1 = u0y, Zo = 0y,

()

where we mean summation from 1 to n over the repeated index r and no summation
over indices k, I, and a.

Remark 1. Infinite-dimensional algebra (5) includes the Galilei operator Q,. This
operator generates the following transformations:
t—t=t,
Ty — b = Ty + Oszb(t)(Sab,
u— U= u,

| VA ‘7b =V, — abUb(t)5ab,

(6)

where «; is an arbitrary real parameter of transformations, d,, is the Kronecker
symbol, there is summation from 1 to n over the repeated index b and no summation
over the repeated index a. We see that the function u is not changed under the action
of this operator. This fact is essentially different from the Galilei transformations for
the standard free heat equation

ou
— —A\u=0 7
ot w="u (7)
where the Galilei operator has the form
1
Gy = t0y, — ﬁzauau. (8)

For operator (8), the function w is changed as follows:

TaQlg t(aa)z)

2 4N

u—>ﬂ:uexp<—
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Thus, the operators @), and G, are essentially different representations of the Galilei
operator.

Let us now investigate the symmetry of systems including equation (2) and addi-
tional conditions for the potentials. Note that in [3]|, the authors find a nontrivial
symmetry of the nonlinear Fokker—Planck equation by imposing the additional condi-
tions for coefficient functions.

Let the additional conditions for the potentials V} be the Euler equations. In other
words, consider the following system:

O Nou=vi 2w

at axk (10)
Vi Vi

G MV =0 k=Tu

Symmetry of the nonlinear system (10) essentially depends on the value of the
parameter \;. There are two different cases.
The first case. Ay = 1. In this case, system (10) in the class of operators (3) is
invariant under the Lie algebra with the basis operators
PO = 8t7 Pa = awa; Jab = xaa:vb - mbaxa + VaaVb - W)ava,
Gy =tdy, — v,, D =2t0, + 2304, — Vi, (11)
A=1t%0, + txy 0z, — (zx + th)avk, Z1 = u0y, Zy = 0.
The Galilei operator éa generates the following finite transformations:
t—t=t,
zy, — ¥ =z + tapdap,
Vi — VP =V} — apdap,

U — U= u,

where we mean summation from 1 to n over the repeated index b.

Conclusion 1. Thus, the scalar function u, unlike the heat equation, is not changed
under the Galilei transformations.

The second case. Ay # 1. In this case, the invariance algebra of system (10) is
essentially more restricted and does not include the Galilei operator and the projective
one. In other words, for A\; # 1 in the class of operators (3), system (10) is invariant
under the Lie algebra with basis elements Py, Py, Jap, D, Z1, Z> of the form (11).

The first case is essentially more interesting and important that the second one.
Therefore, in what follows, we consider system (10) in the case where A; = 1.

Consider now system (10), where the Euler equations have the right-hand sides of

the form F(u ) , i.e., the following nonlinear system:
O pu=1 2
ot oxy’ (13)
8Vk 3Vk ou
— —Vim—=F k=1
ot ! 8xl ( ) 8(Ek Ak

where F'(u) is a smooth function of u. Let us carry out symmetry classification of
system (13), i.e., determine all classes of functions F(u), which admit a nontrivial
symmetry of system (13). We consider the following six cases:
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Case 1. F(u) is an arbitrary smooth function. System (13) is invariant under the
Galilei algebra

AG(1,n) = (Po, Pas Jab, Ga), (14)
where the basis operators have the form (11).
Case 2. F' = Cexp(ku) (k and C are arbitrary constants, k # 0, C' # 0). In this
case, the symmetry of system (13) is more extended and includes algebra (14) and
the dilation operator

2
DW = 2t0, 4+ x48,, — Vidy, — ~Ou-
Case 3. F = Cu" (k and C are arbitrary constants, k # 0, k # 1, C # 0). In
this case, system (13) is invariant under the extended Galilei algebra (14) with the
dilation operator

2
D(2) = 2t0; + xkazk — Vkavk — muau
Case 4. F = % (C is an arbitrary constant, C' # 0). The maximal invariance

algebra is
<P0; Pa, Jab7 éaa Z1>7

where Z7 = u0,.
Case 5. F = C (C is an arbitrary constant, C' # 0). The maximal invariance
algebra is

<PO; Paa Jab7 éav D(Z)a Z2>7
where Z, = 0,,. In this case, the dilation operator D(® has the form
DB — 2t0; + xkazk — Vkavk — 2u0y,.

Case 6. F = 0. In this case, system (13) admits the widest invariance algebra,
namely,

<P0;Pa7Jabvéa7D7Aa Z17Z2>a

where the dilation operator D and the projective operator A have the form (11).

Conclusion 2. It is important that system (13) is invariant under the Galilei transfor-
mations for an arbitrary smooth function F(u). It should be stressed once more that,
unlike the standard heat equation, the function w is not changed under the Galilei
transformations.

Consider other examples of systems of the equation of convection diffusion and
additional conditions for the potentials V.

Let the functions Vj satisfy the heat equation, i.e., we investigate the following
system:

O s pu =1, 2
oV,

Tk NMAV, =0, k=1
ot 1 Vk Oa 1,

where A1 # 0 is an arbitrary real parameter.
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Theorem 2. System (14) in the class of operators (3) is invariant under the Lie
algebra with the basis operators

Py, Py, Ja, D, Z1, Z5
of the form (11).

The case where the functions Vj satisfy the Laplace equation is more important:

ou ou
— = AM\u=V—
at T (16)
AV, =0, k=1,n.
Theorem 3. System of equations (16) in the class of operators (38) is invariant under
the infinite-dimensional Lie algebra with the basis operators

Qa, Qrt, Qa, Z1, 2>
of the form (5).
Note that the symmetry of system (16) is the same as the symmetry of equa-

tion (2). In other words, the conditions AVj = 0 do not contract the symmetry of the
equation of convection diffusion.

2 The Schrodinger equation with convection term

Consider the Schrédinger equation with convection term

0y o OY

where v = (t,%) and Vi, = Vi(t,Z) (k = 1,n) are complex functions. For exten-
sion of symmetry, we regard the functions Vj as dependent variables. Note that the
requirement that the functions Vj, are complex is essential for the symmetry of (17).

Let us investigate the symmetry of (17) in the class of first-order differential
operators

X =10y, + 10y + 10" 0y- + p"0y, + p O, (18)

where &, 1, n*, p*, p** are functions of ¢, Z, 1, 1", ‘7, V*.
Theorem 4. FEquation (17) is invariant under the infinite-dimensional Lie algebra
with the infinitesimal operators
Qa = 240, + Az,0,, — iAx,(Ov, — Ov:) — A(V,0v, + V;*Ov~),
Qri = Bri(210z), — 210z, + ViOy, — ViOy, + V"0 — Vi Oyr) —
— iBg(210v;, — 20y, — 210y + T 0v;r ), (19)
Qa = Uaa:va - iUCL(aVa - aVa");
Zy =0y, Zy = 0y, Z3=0y, Zy=O0y~,
where A, B¥ (k <1, k,1 =1,n) , U® (a = 1,n) are arbitrary smooth functions of t,

B* = —B"%  we mean summation over the index r and no summation over indices
a, k, and .
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This theorem is proved by the standard Lie algorithm in the class of operators (18).
Note that algebra (19) includes as a particular case the Galilei operator of the
form:

Gy = t0,, — idy, +idy-. (20)
This operator generates the following finite transformations:

Ty — Ty = Tp + BotOab,
t—t=t,
Y=, Pt P =y,
Vi — Vi = Vi — iBp0ap, vy — ‘7;,* =V 4+ i6p0ap,
where (3 is an arbitrary real parameter and we mean summation from 1 to n over the

repeated index b. Note that the wave function ¢ is not changed for these transforma-
tions. Operator (2()) is essentially different from the standard Galilei operator

=10z, + 5y Ta(P0y — ™0y~ ). (21)

of the free Schrédinger equation (Vi = 0). Note that we cannot derive operator (21)
from algebra (19). Thus, we have two essentially different representations of the Galilei
operator: (20) for the Schrédinger equation with convection term and (21) for the free
Schrédinger equation.

Remark 2. If we assume that the functions Vj, are real in equation (17) and study
symmetry in the class of operators

X = g“&r“ + 77(91/, + n*&w* + p“@va, (22)

where the unknown functions £, n, n*, p® depend on t, Z, ¥, ¥*, ‘7, then the maxi-
mal invariance algebra of equation (17) is sufficiently restricted. Namely, in the class
of operators (22), equation (17) is invariant under the Lie algebra with the basis
operators

P07 Paa Jab = l‘aawb - xbaxa + Vaavb - %6Vaa

D =2t0; + :L‘Tamr — V}@VT, Z1 = 1,[)811,, Zy = 1/1*811,*, Z3 = 6¢, Zy = aw*.
Thus, in the case of real functions Vi, equation (17) is not invariant under the Galilei
transformations.

Consider now the system of equation (17) with the additional condition for the
potentials Vi, namely, the complex Euler equations:

Zw +AAY = ngw

Vi O Y (23)
k ko o

i —-V— o F(|¢|)axk

Here, 1 and Vj are complex dependent variables of ¢t and &, F is a smooth function
of |¢|. The coefficients of the second equation of (23) provide the broad symmetry of
this system.
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Let us investigate symmetry classification of system (23). Consider the following
five cases.

Case 1. F is an arbitrary smooth function. The maximal invariance algebra is
(Po, Py, Jap, Ga), where

Jab = 40z, — xp0y, + VaOv, — ViOv, + V;@Vb* - Vb*ava*,

G, = taza — iaVa + iava* .

Case 2. ' = C|¢|* (C is an arbitrary complex constant, C' # 0, k is an arbitrary

real number, k # 0 and k # —1). The maximal invariance algebra is (Py, Py, Jab, Ga,
DW) | where

2
DW = 2t9, + 2,0, — V,dy, — Vioy: — H—k(zb&p + P Oy

Case 3. F = \_CI (C is an arbitrary complex constant, C' # 0). The maximal
invariance algebra is (Py, P,, Jap, C~¥a, Z =7y + Zs), where

Z = ¢a¢ + ’L/J*aw*, 71 = ’lﬂaw, oy = ’(ﬁ*aw*.
Case 4. F = C # 0 (C is an arbitrary complex constant). The maximal invariance
algebra is (Py, Py, Jap, G, DV, Z3, Z,), where
Zgzaw, Z4:8¢*.

Case 5. F = 0. The maximal invariance algebra is (Py, P,, Jup, éa, D, A 71,75, Zs,
Z4), where

D= 2t8t —+ Iramr — ‘/ravr - V;’*avf’
A= t28t + th(?IT — (Z.’L'r + t‘/r)aVT + (’LLL’T — tVr*)avr*.
Thus, system (23) is invariant under the Galilei transformations generated by
operator (20) for an arbitrary function F(|#)|).

Let us now apply these results to obtain invariant solutions of system (23) with
A =1 in two-dimensional space-time in the case where F(|¢]) = 0:

gy 9 9y 9V 9V

The invariance algebra of system (24) includes the translation operators, Galilei,
dilation, and projective operators:

Py=0,, Pi=08, G=td,—idy +idy-,
D =2t0; + 29, — VIy — V* Oy,
A =120, + tzd, — (i +tV )0y + (ix — tV*)dy-.

1) The one-dimensional subalgebra G +a Py is associated with the symmetry ansatz

b= oz —12), V= —ét—&—U(an—tZ). (25)
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Ansatz (25) reduces system (24) to the following system of ordinary differential equa-
tions:

1
200" =Uy', — —2aUU' =0, (26)
et
w = 2ax — t2. The general solution of system (26) has the form

/ 1 « 1
U = Cl+?w, 90:Cg/exp{g(Cl—i—Ew)S/z}dw—i—C& (27)

where Cy, Cy, C3 are arbitrary constants. Thus, we obtain the partial solution of
system (24), where 9 has the form (27), and

: I
V=—lt44/C+ Sw.
[0} (@]

2) The subalgebra

where ¢’ = g—f,

G+ a(Zs + Zy) = 0, — iy + 10y + a(By + Dy-)

is associated with the symmetry ansatz

z/;za%—kg@(t), V= —i% FU®). (28)

Ansatz (28) reduces system (24) to the following system of ordinary differential equa-
tions:

v
t

with the general solution of the form

igb:%u U+==0

C C
U= wzi%%rcg,

where C1, Co are arbitrary constants. Thus, we get the partial solution of system (24):

_x G oz Ca
V__Z?—i_T’ 1/J—at+z n + Cs.

3) The subalgebra

G+ a(Zy + Za) = 18, — idy + idy+ + Dy + 1 Dy-)

is associated with the symmetry ansatz

P = exp (a%) o(t), V= —i% +U(t). (29)
Ansatz (29) reduces system (24) to the following system of ordinary differential equa-
tions:

a? o U
o+ —p=U— U+-—=0
ip+zo=Usp, U+t
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with the general solution

Cl 7 iOéQ
U=— =C -Cha — —
¢ ) ® 2 €Xp (t 10 n > )
where C1, Co are arbitrary constants. Thus, we get the partial solution of system (24):
x Ch axr 1 ia?
V=-i-—+— =C —+-Cia— — | .
st ¥ QGXP(f+t1a t)

4) The subalgebra
A+ Oéi(Zl — ZQ) = t2at +tzd, — (Z:L‘ + tV)@V + (Z:Z? + tV*)aV* +
+ia(pdy — ¢ Oy-)
is associated with the symmetry ansatz
Q T x 1 z
veew(=ig)e(3). V=g (3): (30)

Ansatz (30 reduces system (24) to the following system of ordinary differential equa-
tions:

where ¢’ = g—w‘é, w = 7. Consider the following two cases:

4a) a > 0. In this case, system (24) has the following solution:

V= —i%, 1 = exp (—i%) {Cl exp (\/a%) + Cyexp (—\/E%)} )

where C7, Cs are arbitrary constants.
4b) a: < 0. In this case, system (24) has the following solution:

V= *i% ¥ = exp (—i%) {Cl cos (\/Ta %) + Cysin (F %)} ;

where C7, C5 are arbitrary constants.
5) The one-dimensional algebra

A+ a(Zs + Zy) = 120, + tx0, — (ix + tV)0y + (iz + tV*)Iy« + a0y + Oy~ )

is associated with the symmetry ansatz

« T z 1 T
- _= Z), v=—i= —U(—), 31
v=ogte (t) LAY (31
which reduces system (24) to the following one:

U=0, ¢ "+ia=0.

where ¢’ = %, w = ¥. Solving this system, we obtain the exact solution of
system (24):
2
x a oz x
V=i, =—— —i——+C1— + (s,
g VT Ty g Ty T

where C7, Cs are arbitrary constants.

The paper is partly supported by the International Soros Science Education Prog-
ram (grant No. PSU061097).
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On new Galilei- and Poincaré-invariant
nonlinear equations for electromagnetic field
W.I. FUSHCHYCH, I.M. TSYFRA

Nonlinear systems of differential equations for E and H which are compatible wi-
th the Galilei relativity principle are proposed. It is proved that the Schrédinger
equation together with the nonlinear equation of hydrodynamic type for E and H
are invariant with respect to the Galilei algebra. New Poincaré-invariant equations
for electromagnetic field are constructed.

1. It is usually accepted to think that the classical Galilei relativity principle does
not take place in electrodynamics. This postulate was accepted more then 100 years
ago and it is even difficult to state the following problems:

1. Do systems of differential equations for vector-functions (E, H) or (D, B) which
are invariant under the Galilei algebra exist?

2. Is it possible to construct a successive Galilei-invariant electrodynamics?

3. Do the new relativity principles different from Galilei or Poincaré—Lorentz—
Einstein ones exist?

The positive answers to this questions are given in [1-6]. But from the physical
and mathematical points of view this fundamental problems still require detailed
investigations. In the paper we continue these investigations. Further we give theorems
on local symmetries of the following systems of differential equations

oD 0B -
E—I‘OtH, E—-I‘OTA.E‘7

divD=0, divB=0;

(1)

a1D + ax0D = Fy (E?, B2, BE)E + F»(E?, B?, BE) B, )
biH +b,0H = R, (E?, B%, BE)E + R (E?, B?, BE) B;
OE = - oH . -
—:rotH+N1VP1, _:_rOtE+N2VP2, (3)
ot ot

q oP, - oP.
divE:Nla—tl, divH:Nga—;, (4)

where Ny, No, P, P, are functions of wy = E2 — H2, wy = EH;
OE OB,  OF (VD)

k
H, =
875 + laxl axk (5)
OH,  OH, OFy(UiD)
g, 2k _ —1.9.3:
a T on 0z, 0 L3

J. Nonlinear Math. Phys., 1997, 4, Ne 1-2, P. 44-48.
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ov 1 -~ = (O0F OH
. (6)
-~ o (O0FE OH e . = =

¢ are the Pauli matrices, ¥ is a wave function;

Bt e (v e T |

A A E H
den [+ 22 ) w86 [ A+ M | | O,
vV E2 \ H?2 2m E2 H2
where A\, A1, A2, Az, \q, O are functions of 572, ﬁ2, EH.
a 3 2\ = =4 — T —
8t+vl8 m(0°)0=a1(E4+ U x H) +ax(H — 7 x E), (8)
x

where ¥ = (v, v2,v3), a1, as are smooth functions of & 2 E? H? GE,vH, E(7 x ﬁ),
H(7x E).

Equation (8) can be considered as a hydrodynamics generalization of the classical
Newton-Lorentz equation of motion.

2. To study symmetries of the above equations (1)—(4), we use in principle the
standard Lie scheme and therefore all statements are given without proofs. But it
should be noted that the proofs of theorems require nonstandard steps and long
cumbersome calculations which are omitted here.

As proved in [9], system (1) of undetermined equations for D, B, E, H is invariant
with respect to the infinite-dimensional algebra which contains the Poincaré, Galilei
and conformal algebras as subalgebras. This fact allows us to impose some conditions

on functional dependence of 5, B , E , H and to select equations invariant under the
Galilei algebra AG(1,3).

Theorem 1. System (1) is invariant with respect to the Galilei algebra AG(1,3) with
basis operators

0 0
Py = = A P,=0,, = )
h=0= g %. = b,
Jap = xaawb - xbawu + EaaEb - EbaEa + HaaHb - HbaHa +
+ Daan — DbaDa + BaaBb — BbaBa,

Ga = ta:ca + Eabe (-BbaEC - DbaHC)

— —

D= N(B? BE)B, H=-N(B?BE)E + M(B* BE)B, (9)

where M, N are arbitrary functions of their variables.
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Choosing concrete form of M and N, we obtain families of Galilei-invariant equa-
tions (1) with conditions (9). So, when N = BE, M = 1, then (9) takes the form
EH)? - EH
(EH)" & i

D= q + _
(1-E2)2  1- E?

)

Corollary 1. The transformation rule for E and H has the form

E—E=E+@xB, H—H =H-uxD,

D—D =D, B—B =8
under Galilei transformations, where U is a velocity of an inertial system with respect
to another inertial system.
Theorem 2. System (1), (2) is invariant with respect to the Poincaré algebra AP(1,3)
with basis elements

Py =0y, Po=0,,,

Jab = TaOx, — T60x, + EuOp, — EpOg, + HuOn, — HyOn, +

+ D.0p, — DyOp, + BaOp, — Byop,,
Joa = 200z, + 240z, + €abe (DyOn, + Epdp, — HyOp, — ByOE,)

if and only if
Fy = Ry = M(B? — E? BE), F,=—R, = N(B?-E? BE),
a1 = by = a(B® — E?, BE), ay=by, = b(B*> — E* BE).

Theorem 3. System (3) is invariant with respect to the Poincaré algebra AP(1,3)
with basis elements

Pozat, Pa:a:raa
Jab = xaa;cb - xbawa + EaaEb - EbaEa + HaaHb - HbaHaa
Joa = 10z, + €abe (EpOn, — HyOE,)

if and only sz and H satisfy system (4).

System (5) was proposed in [4] and its symmetry has been studied in [10], when
Fi =0, F, =0.
Corollary 2. System (5), (6) can be considered as a system of equations describing
the interaction of electromagnetic field with a Schriodinger field of spin s = 1/2.

Theorem 4. System (5), (6) is invariant with respect to the Galilei algebra AG(1,3)
whose basis elements are given by formulas
P0=3t, Pazawaa

Jab = maaxb - xbama + EaaEb - EbaEa +
1 (10)
+ HoOn, — HyOm, + 1 ([0a,0b]¥),, O, ,

G, = t(r“)wa + 6Ea + 6Ha + imxallfk&yk.

if X is a function of W = (E_'f ﬁ)2
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Theorem 5. Equation (7) is invariant with respect to the Galilei algebra AG(1,3)
with the basis elements P,, Ju» (10) and

Gy =10z, — E.ExOr, — HoH,0n, + imaz, V0w, . (11)

if A, A2, A3, A\q, B are functions of W = (Eggi

Corollary 3. Operators G, (11) give the nonlinear representation of the Galilei
algebra. Thus, one can consider system (5), (7) as a basis of the classical Galilei-
invariant electrodynamics. The fields E, H, ¥ are transformed in the following way

L E
BEof=—— _
- 1+ 0.
- H
H— H = Tra g "o sumovera,
' . 02
U — U =expqimx.b, + zm;t

under transition from one inertial system to another, 8, is group parameter.

Theorem 6. System (8) is invariant with respect to the Poincaré algebra AP(1,3)
with basis elements

R]:atu Pa:a:raa
Jap = xa&gb — xba% =+ EaﬁEb — Eb(‘)Ea =+ HaaHb — HbaHa =+ ’Uaavb — vb&}a, (12)
JOa = taza + €abe (E‘baHC - HbaEc) + ava — VUq (Ukavk)

mo

and a1, az are functwns of Wl, Wo, Wg, where W1 = Eﬁ, Wy = E? — ﬁz, W3 =
= v2 [(vE) + (UH) #2H? — E% — 2E(v X H)]
Corollary 4. From this theorem we obtain the dependence of a particle mass from

@2, as a consequence of Poincaré-invariance of system (8).

Theorem 7. System (8) is invariant with respect to the Galilei algebra AG(1,3) with
Jap from (12) and

Go = t0y, + Oy,

only if m = mg = const, a; = as = 0.
Corollary 5. Operators (12) give a linear representation for E and H [8] and a

nonlinear representation for velocity v. The explicit form of transformations for U
generated by Gy is

v + 01 v U3

!/ !/ /
VG =0V = ———— Vg — Vg = —— Vg — Vg = ———.
! 1+01’U17 2 1+91’U1’ 3 1+917)1

Remark 1. In conclusion we note that there exists the nonlinear representation of
the Galilei algebra AG(1,3), generated by the operators P, Jq from (12) and

Ggl) = tama - EaEkGEk — HaHkaHk - Uavkavk.
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Reduction of self-dual Yang—Mills equations
with respect to subgroups of the extended
Poincaré group

V.I. LAHNO, W.I. FUSHCHYCH

For the vector potential of the Yang—Mills field in the Minkowski space R(l,3), we
construct the ansatze that are invariant under three-parameter subgroups of the
extended Poincaré group F’(l,?)). We perform the symmetry reduction of self-dual
Yang—Mills equations to systems of ordinary differential equations.

1 Introduction

Classical SU(2)-invariant Yang-Mills equations (YME) comprise a system of twelve
nonlinear partial differential equations (PDE) of the second order in the Minkowski
space R(1,3). On the other hand, once the Yang-Mills potentials satisfy the self-
duality conditions, the YME are automatically satisfied. This allows one to construct
a broad subclass of solutions to the YME using the condition of self-duality, which
amounts to a system of nine first-order PDE,

Fu = %5uw5F767 (1)
where F),, = 6“/?,, — 8”[fu + e/fu X ff,, is the Yang-Mills strength-tensor, €5
is the rank-four antisymmetric tensor, and e is the gauge coupling constant, with
u,v,7,8,= 0, 3. Equations (1) are called the self-dual Yang—Mills equations (SDYME).

Self-duality properties have allowed exact solutions to YME to be explicitly con-
structed, starting with the ansatze for the Yang—Mills fields proposed by Wu and
Yang, Rosen, 't Hooft, Corrigan and Fairlie, Wilczek, and Witten. One should also
note the Atiyah—Drinfeld—Hitchin—-Manin construction that has been applied in the
construction of instanton solutions to YME (see reviews [1, 2] and the bibliographies
cited therein).

Recently, increasing interest has been given to SDYME and the corresponding Lax
pairs in the Euclidean space R(4) in view of the possibility of reducing them to classical
integrable equations (Euler—Arnold, Burgers, Kadomtsev—Petviashvili, Liouville, and
others). This problem was considered, in particular, in [3-5], where reduction with
respect to translations was performed. In [6], SDYME were reduced with respect to all
subgroups of the Euclidean group E(4), while in [7, 8], SDYME and the corresponding
Lax pairs in four- dimensional Minkowski space with the signature (+ + ——) were
reduced with respect to Abelian subgroups of the Poincaré group P(2,2).

In this paper, we continue our investigation of the problem of the symmetry
reduction of YME and SDYME in the Minkowski space R(1, 3). It is known [9] that the
maximal symmetry group (according to Lie) of the YME is the group C(1, 3)®SU(2);

Theor. and Math. Phys., 1997, 110, Ne 3, P. 329-342.
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this group also preserves SDYME (1). The presence of high symmetry allows one to
apply the method of symmetry reduction [10, 11] to the equations and, further, to
obtain exact solutions. Several conformally invariant solutions of YME were found
in [12] (see, also, [13]). A systematic investigation of conformally invariant reductions
of YME and SDYME was initiated in [14, 15], where YME and SDYME (1) were
reduced, with respect to three-parameter subgroups of the Poincaré group P(1,3), to
systems of ordinary differential equations (ODE) and new solutions to the YME were
constructed. The unified form of the P(1, 3)-invariant ansatze made it possible [16] to
perform a direct reduction of the YME to systems of ODE and to obtain conditionally
invariant solutions of the YME. In this paper, we consider the symmetry reduction
of SDYME (1) to systems of ODE that correspond to three-parameter subgroups of
the extended Poincaré group P(1,3).

The paper is organized as follows. In Section 2, we consider the general procedure
for constructing linear ansatze. Section 3 is devoted to the derivation of the unified
form of P(1,3)-invariant ansatze and to the reduction of SDYME (1) to systems of
ODE. In the last section, we consider some of the reduced systems and obtain exact
real solutions of (1).

2 Linear form of P(1,3)-invariant ansatze

As noted above, SDYME (1) are invariant under the conformal group C(1,3), in which
the generators
0 0

Pu= 0 Sy =20, = 20+ AT — A
v i

P (2)
D= 2,0, — A7 5.
ow

span a subgroup isomorphic to the extended Poincaré group ]5(1,3). Here, 0, =
52—, with p,v = 0,3 and m,n = 0,3. Here and henceforth, we sum over repeated
u

indices (from 0 to 3 for the indices p,v,v,d,0 = 0,3, and from 1 to 3 for m,n =
1,3). The indices p,v,7,d, and o are raised and lowered by the metric tensor g, =
diag (1,—1,-1,-1).

Let AP(1,3) be the extended Poincaré algebra whose basis is given by genera-
tors (2) and let AP(1,3) be the extended Poincaré algebra generated by the vector
fields

Pﬁl) =0, JO = grg, — "0y, D =uz,0,.

nv

In the classical approach, due to Lie [10, 11|, symmetry reduction of SDYME (1)
to systems of ODE is associated with those subalgebras L of A15(1,3) that satisfy
the condition r = r() = 3, where r is the rank of L and r(!) is the rank of the
projection of L onto AP (1,3). As can be easily seen, we have dim L = r = 3, which
means that in order to perform the reduction, we need to know the three-dimensional
subalgebras of AP(1,3) satisfying the above condition. Taking into account that
SDYME (1) are invariant under the conformal group C(1,3), we can restrict ourselves
to the three-dimensional subalgebras of AP(1,3) determined up to conformal conjuga-
tion. Such subalgebras of the AP(1,3) algebra are known [17, 18]. Since the case of
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the Poincaré algebra AP(1,3) has been considered in [14, 15], we limit ourselves to
those subalgebras of AP(1,3) that are not C(1,3)-conjugates to the subalgebras of
AP(1,3). We use the results and notation of [18], in particular, the fact that the
list of three-dimensional subalgebras of AP (1,3) that are not conjugate to the three-
dimensional subalgebras of AP(1,3) is exhausted, up to C(1, 3)-conjugation, by the
following algebras:

L, = (D, Py, P3), = (Ji2 + aD, Py, Ps),
L3 = (J12, D, Py), L4 = (J12, D, Ps3),

= (Jo3s + aD, Py, Ps), = 2(Joz +aD, P\, P),

= (Jos + aD, M, P;) (a #0), = (Jos + D + 2T, Py, P»),
L9—<J02+D+2T M, Py), L10:<J03,D,P1>,

Lyy = (Jos, D, M), Ly = (Ji2 + aJoz + 8D, Py, Ps3),
L3 = (Ji2 + aJo3 + 8D, P1, ), 3)
Ly = {Jio+a(Jos+ D +2T), P, P»), Lis = (Ji12 + aJdos, D, M),

Lig = (Jos +aD, Jio+ D, M), (0<|a|<1,82>0,|a|+|8]#0),

Liz ={(Jos+ D+ 2T, J1o+ T, M) (a>0),

Lig = <J03 + D, Jio + 2T, M> Lig = <J03,J12,D>,

Loo = (G1,Jos +aD, Py} (0<|a| <1), Lot = (Jos + D,C1 + Py, M),
Loy = (Jos — D + M, Gy, Py, Lo = (Jos + 2D, Gy + 2T, M),
Loy = <J03 +2D,G + 2T, P2>.

Here, M = Py+P3, Gy = Jo1—Jiz,and T = %(Po P3); also, a, > 0 unless explicitly
stated otherwise. In what follows, o and [ take on the values given in list (3).
Note that all of the subalgebras L; (j = 1, 24) satisfy the condition r = r(!) = 3.
Let us demonstrate that, similar to [14, 15, 19|, the ansatz for the ffu fields can
be taken, without any loss of generality, in the linear form

A, (x) = Az) B, (w), (4)

where A(z) is a known square nondegenerate order-12 matrix and B'M(w) are new
unknown vector-functions of the independent variable w = w(z), with = (xg, 21, 2,
x3) € R(1,3).

Obviously, the fact that the sought for ansatz is linear requires that the algebra
L; contain an invariant w(z) independent of A us as well as twenty linear invariants
of the form

10 (D) AG + [t (@) AT + f15 () A5 + fiiz () A3,

which are functionally dependent as functions of Ay, AT, A%, and A%*. These invari-

ants can be considered as components of a vector FA, where F = ( (), while

Ay

S A,
A= o
Az

—

As
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Here, the matrix F' is nondegenerate in some domain in R(1,3). According to the
theorem on the conditional existence of invariant solutions [11], the ansatz FA = B(w)
results in a reduction of system (1) to a system of ODE that relates the independent
variable w, the sought for functions Bj’, and the first derivatives thereof. Setting
A = F~1(x), we arrive at ansatz (4).

Let L = (X1, X3, X3) be one of the subalgebras of AP(1,3) from list (3), with X,
being an operator of form (2), i.e.,

0
Xt = Eem ()0 + pmox () AY' (k=1,2,3).

A 9Am
The function fgiy(x)AZ is an invariant of the operator X if and only if
8]“” (:L‘> n n en
k() g; AZ + proa(w) AN f5,(z) =0
”w
or
ofs,(x)
Sba(2) =5+ 3 (2)prr () = 0 (5)
o

for all values of . Let F(z) = (ff (z)) and I'x(2) = (pro~(z)) be square matrices
of order 12. Then the second term on the left-hand side of (5) is an element of the
matrix F(z)[g(x).
These observations lead us to the following theorem.
Theorem 1. The system of functions fg‘v(x)ATYL s a system of functional invariants of
a subalgebra L if and only if F' = (f§, (x)) is a nondegenerate matriz in some domain
of R(1,3) and satisfies the system of equations
OF (z
fku(x)% + F(x)Tk(z)=0 (k=1,2,3). (6)
Tp

Similarly, the function w(x) is an invariant of the operator Xy, if and only if Xpw = 0,
i.e.,

Oow

gk“(z)% =0. (7)

Since all of the algebras L; satisfy the condition
rank [|€x, ()] = 3,

systems (6) and (7) are compatible.

Theorem 1 assigns a matrix 'y to every generator Xy of the subalgebra L of
AP(1,3). Let us indicate the explicit form of these matrices for all generators (2) of
the algebra AP(1,3).

Since the operator P, is independent of B%L”’ the corresponding I' is a zero matrix.

Denote by —95,,, the I'-matrix that corresponds to the operator J,, . It is easy to verify
that

0 -1 00 0 0 —I 0
-I 0 0 0 0 0 0 0

Sor = 0 0 00 | 2= _7 09 o o]
0 0 00 0 0 0 0



190 V.I. Lahno, W.I. Fushchych

0 0 0 -1 00 0 0
0 00 0 0 0 —I 0
Sos = 0 0 0 0 , S12= oI o 0|
-1 0 0 0 00 0 0
00 0 O 00 0 O
00 0 —I 00 0 O
Ss=1000 0 |" =000 -1 |
01 0 0 00 I 0

where 0 is the zero and I is the unit matrix of order 3.

The D operator corresponds to the matrix —F, where E is the unit order-12
matrix.

The above matrices determine a matrix representation of the algebra AQ(1,3) =
AQ(1,3) & (D), because

[Sum S&y} = gu'ySué + ngSm - g,uésu’y - gy'ySp(S, [E7 S;u/] =0.
Let a = (1,0,0,0)7 b= (0,1,0,0), c = (0,0,1,0), d= (0,0,0,1)7 and Kk = a +d.

Denote by a,, by, c., and d,, the puth component of the vectors a, b, ¢, and d,
respectively. Then,

zg = ar = a2, w1 = —br = —b,a",

Ty = —cx = —c, 7V, T3 = —dr = —d "

Theorem 2. For every subalgebra L; (j = 1,...,24) from list (3), there exists a linear
ansatz (4), in which w is a solution to system (7) and

A71 = exp{f log QE} exp{QOSog} exp{—&lsm} exp{7202(S01 — 513)}.
Moreover, the functions 0, 0y, 01, 62 and w can be represented as follows:
Li: 0=bzx|™, 6p=0,=0,=0, w=cx(bx)™},
L21 9:\11;%, 90:92207 012(1), wzlogllfl—l—Zfb,
Ly: O=lde|™, Op=0,=0, 6,=9, w=T(dx)?
Ly: O=lazx|™, 6y=0,=0, 6,=9, w=U(ax)?
Ls: O=|bx|™", 6y=a tloglbz|, 61 =0,=0, w=cx(bx) ",
1 1
Lg: 0=|Uy| 2, 90:§log|(aw—dx)(lm)*l|, 0, =65 =0,
w=(1—-a)log|ax — dz| + (1 + ) log |kz|,

Ly: O=lcx|™, 6y=a 'log|cx|, 0, =0,=0, w=|kx|*|cx|'",

1
Lg: 6= |ax—dx\7%, 6o = 510g|aa:—da:|, 01 =62 =0,
w = kx — log |ax — dx|,
Lo: 0=lcx|™, 6p=loglcx|, 61 =0,=0, w=ks—2logl|cz|,
Lig: 0=lcx|™, 6y =log|(ax —dx)(cx)"!|, 61 =0,=0,
w = Wy(cx)~2,

Liy: 0=lcx|™, 6p=—log|(kx(cx)™ ], 61 =0,=0, w=ca(br)?,
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L24 :

=07 fy=—ad, 6,=0, 6,=0, w=Ilog¥; + 2030,

0 =1Wsl %, G = 5 log|(ar — du)(ke) "],

0, = —%logK(zx —dz)(ka)Y], 6s =0,

w = (a—p)loglax — dz| + (a + B) log |k,

0 =|ax —dz|"%, 6 = %log|az —dz|, 6, = —%log|a:c—dx\,

0> =0, w=kx—loglax — dz|,

=072 Gy=—ad, 6,=0, 6,=0, w=Ilog[V(kr) ]+ 220,
0=V,2 0= %10g|\lfl(kzx)_2], 6, =®, 6y=0,

w = log[U1~%(kx)?®] 4 26®,
1 1

=07t ¢, 0=5logWi, 61=®, =0, w=ks—logVy+ 200,
_1 1

6= ?, inlog\lll, 0=, 6,—0, w=ke+20,

=07, = —ilog\kx(ax—d:c)*lh 6, =®, 6,=0,
w = \I/1|\I’2|71,

1 ]- 1 —1
9:|\I/3| 2, 00: —10g|\113|, 91 :0, 92: §b1'(kx) s

!
W= |k$|2a|\1/3|17a,
1

0 = |cxkx —bx|™', Oy = log |cxkx —bx|™!, 6, =0, 6= 562
w = kz,

1 1 1 1
0 =|kx|"2, 6y= —510g|ka:|, 0, =0, 6= ibx(ka:) ,
w = ar — dx + log |kx| — (bx)*(kx) !,

1 1
9:|C:C‘71’ 00: 510g|cx|, 91 :0, 02:—114;1'7
w = [4bx + (kx)?](cz) ",
1 1
0 = |4bx + (kx)2\_1, 0o = - 10g |4bx + (kx)2|, 60, =0, 6= _ka’

2
w= |ax — dz + bxkx + G(kx) [4bx + (kx)?] 3

Here, ® = arctan ¢, ¥y = (bz)? + (cx)?, ¥y = (ax)? — (dz)?, and V3 = (ax)® —
(bx)? — (dx)?.
Proof. All of the cases are analyzed similarly, so we can limit ourselves to the
subalgebra Lo = (J12 + aD, Py, Ps).

According to Theorem 1, the entries of column A~1A are invariants of the subal-
gebra Lo if and only if

P P —A(S12 +aE) =0, 2 _y %20(8)
x "om,

3%0 ’ 8$3
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The last two equations in (8) demonstrate that A = A(x1, x2), while the first equation
implies that one can set 6y = 03 = 0 in the expression for A. By the Campbell-
Hausdorff formula, we have, in this case,

OA 00 00
fu _Afu ( + —1> .

v o, 02,

Hence, the common factor of A can be canceled from the left on the left-hand side
of the first equation in (8), which gives an equation whose left-hand side can be
represented as a combination of the matrices ' and S15. Equating the coefficients in
these combinations to zero, we arrive at the system of equations below:

1,00 00 (.90 . 9\ _,_q
0 1(‘3x2 28x1 163:1 23332 -

a2 n ) 1

X1 — T2
0xo 0x1 o0x1 0xo

9)

which is equivalent to (8). It is not difficult to verify that system (9) is satisfied by
the functions

= (a2 +22)7% = [(b2)* + (cx)?] "2, 6 = arctan % = arctan %
1

Equations (7) for w(z) are of the form

e 00 (e 2Ny e v
L or, 201y "o, ) oxy = Or1
This implies that
2 2 Z2 2 2 cr
w = log(x{ + x3) + 2arctan —= = log[(bz)” + (cz)”] + 2 arctan o
T xr

which proves the theorem.

3 Covariant form of the linear ansatz
and symmetry reduction of SDYME

By Theorem 2, the ansatze that correspond to the subalgebras L; (j = 1,...,24), are
of the linear form (4), where

A(J?) = exp{202(501 — Slg)} exp{@lSlg} eXp{—e()Sog} exp{log QE}
Thus, it follows that

[cosh By + 202e=%]  2[—0ycos0;] 2[fasinf;] [sinh By + 203e~%]
2[—fae=%) [cos 6] [— sin 0] 2[0ae= %)
[0] [sin 6] [cos 6] [0] '
[sinh @y + 262¢=%] 2[—fycos6;] 2[fasinby] [coshfy — 202e= %]

where [f] denotes [f] = f - I and I is a unit matrix of order 3.
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In view of the above, ansatz (4) can be represented in the following form:

6[cosh By By + sinh Bz + 202¢% (By — Bs) + 205 (sin 61 By — cos 01 B4 )],
f[cos 0, B, — sin 0, By — 205e~% (EO - Eg)],
O[sin 0, B, + cos 9132],

f[sinh 0o By + cosh 0y B3 + 2926’00(50 — B:;) + 05 (sin 0, By — cos Hlél)],

(10)

Ay
Ay
A’

and, as is not difficult to verify,

A’IJ‘ = a,u,A’O + bugl + Cugg + dﬂg?”

g@ = augy7 gl = _bygyv 52 = _cyéu’ §3 = _dugy;
where a, b, cu, and d,, are the pth components of the vectors a, b, ¢, and d, respec-
tively, given in Section 2.

In these notations, the linear ansatz (10), as well as the linear ansatz (4) can be
represented as

/Tu(x) = Hauy(x)é”(w) = 0{(aya, — d,d,) cosh 6y + (d,a, — dya,)sinh 6y +
+ 2(a,, + d,)[0a2 cos 01, — Oy sinbyc, + 02¢ % (a, +d,)] + a1)
+ (buew — byey)sindy — (cuc +byby) cos by —
—2¢7%05b,(a, +d,)}BY)} BY (w).
The values taken by the functions 6, 0y, 6, 62, and w in (11) are given in Theorem 2
for each of the subalgebras L; (j =1,...,24).
Thus, we have written the P(1,3)-invariant ansatz for the Eu(x) fields in a mani-
festly covariant form.
Let us note that ansatz (11) can be obtained from (10) by applying the proliferation
formulas that correspond to the Lorentz group AO(1,3) to the functions /Tu from (10)
with the generators (2) (see, for instance, [14, 15]). Therefore, the vectors a, b, ¢, and

d can be viewed as a general system of orthonormalized vectors in the Minkowski
space R(1,3), which can be expressed as

ayat = —b,b* = —c,ct = —d,d" =1,

a, b =a,ct =a,d* = byt =b,d" = c,d* = 0.
The unified form of the P(1, 3)-invariant ansatze derived in (11) allows us to perform
the reduction of SDYME (1) in the general form.
Lemma. The ansatz (11) allows one to reduce SDYME (1) to the system

T;w = %guVU5T067 (12)
where
TMV = Gu(w) dB(;uEw) - Gy(w)d%y + HN(M)EV(W) - (13)
— Hy (@) Bu(@) + S () BY(0) + eB,(w) x By (w)
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In (13), the functions G, (w), H,(w), and S, (w) are determined from

Ow 00
HG’Y = GHVM7 HA,HQ = au»\/a—x‘u, 9550-7 = agaTayU —a

To prove the lemma, it suffices to substitute ansatz (11) into SDYME (1) and to
contract the resulting expression with the tensor a/af, using the fact that a,, satisfies
abauy = G-

According to the lemma, the construction of the reduced systems associated with
subalgebras L; is tantamount to finding the functions G, (w), H,(w), and Sse(w)
for every such subalgebra. We skip the cumbersome calculations and give only the
explicit form of these functions for each of the subalgebras L; in the following list:

Ll : G’Y = 61(67 - b’Yw)’ H’Y = 7€1b’ya S&o'y = 07
Ly: Gy=20by+cy), Hy=-by, Ssoy=(bscs—bsCs)cy,
1
Ly: G, =2yw(b, —evwd,), H,=—ed,, Ssmy= T(cgbg —bocs)ey,

Ly: Gy=2yw(by, —esv/way), Hy,=—esay, Ssoy=
L5 : G7:61(C»Y—b,YW), H = —€ b,y,

Ssoy = 6104_1[1),,(d(;wY — dyas) — bs(dyay — dyas)],
L6 . G’Y 164(170[)(03.Y 7d7)+65(1+01)k7,

1
Hy = _566[65(av — dy) + €4ky ],

(Cab5 - bacﬁ)c’ya

%‘“E

1
Ssoy = 5[54(‘17 —dy) — esky](aods — asdy),
L;: Gy= (4)[65,04/@(*)_é +e7(l —a)ey], Hy=—e€rcy,

Ssoy = 6705_1[60(a7d5 — dyas) — cs(aydy — dyas)],
1
Ly: Gy=ky—es(ay—dy), Hy= _564(% —dy),

Seal(ay — ) (apds — asd,)].
Ly: G,=k,—2€cy, H,=—€rc,,
S50~y = €7]Co(ayds — dyas) — cs(ayds — dyae)],
Lio: Gy=el(ay —dy)w+ k] —2ercow, Hy= —e€7¢y,
Ssory = €a(ay — dy)(asds) — asdy) — e7co(ayds — dyas) +
+ ercs(aydy — dyae),

Li1: Gy=¢cw(cy —bw), Hy=—ercy,

S&T'y =

Ssoy = €7]co(ayds — dyas) — cs(ayde — dyas)] — esky(asds — dyas),
Liz: Gy=2(by+ Pcy), H,=-b,,

Ssoy = cy(Cobs — csbo) — afeq(dsay — asdy) — cs(doay — acdy)],
Lis: Gy =ela—p)(ay —dy) +es(a Py

1
H, = —566[64]4;7 + €es5(ay — dy)],
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L14 :

L24 .

1 1
Ssoy = 5[54(‘17 —dy) = esky)(acds — asds) — %[(54(6% —do) =

— €5k ) (bscy — csby) — (ea(as — ds) — esks)(bocy — coby)],
1
Gy =ky—ealay —dy), Hy= _564@7 — dy),

1
Ssoy = 564[(% —dy)(aeds — asds) — (as — dy)(bscy — c5by) +

+ (as — ds)(bocy — coby)],
Gy =2(by + acy — kye?®), H,=—b,,
S50~y = Cy(Cobs — c5bs) — afco(dsay — asdy) — cs(doay — agdy)],
Gy =2[(1 — )by + aky + Bey],  Hy = —b,,
Ssoy = Cy(Cobs — C5bs) — ky(aods — asds) + bs(dsay — asdy) —
—bs(doay — apdy),
Gy =ky—2by+2ac,, H,=-by,
Ssoy = bo(dsay — asdy) — by (deay — andy) + cy(cobs — c5bs),
Gy =ky+2, H,=—b,
S50~y = bo(dsay — asdy) — bs(dyay — axdy) + cy(cobs — cs5bs),
G, =2byw — eswv/w(esky + es(ay — d)), Hy = —b,,

1
Sgav = 5\/(;[64((17 — d“/) — 65k7](d5a0 —asdy) + Cy(bgcg — ¢sby)

Gv = ESW[(I + Ol)k‘vw_% + 58(1 _ a)(av _ dv)w%],

1 1 1
H, = —565[]%“7% + es(ay — dy)w],
1 1 1
Ssoy = 65[%(&@_% + es(ay — dy)w?e ) (apds — dyas) +

+ by (ksby — kobs)w™ 2],

Gy =k,, H,=—elc,w—0b,],

Ssoy = €9[(cow — by )(ayds — dyas) — (csw — bs)(aydy — dyas)] +
+ o (ksby — kabs) — c5(kaby — kaby),

1
G,y = Q~ — d,y + 65]€.y, H’Y = —565k77

1
S(;J.Y = 65[b7(k§bg - kgb(s) - §k7(a5dg — dgag)],

Gy = e7(4by —wey), Hy, = —e7cy,

1 1
S(sgv = —67[Cg(a,yd5 — dwa(;) — Cg(a,ydg — dvag)] — 5]67(]651)0 — kgbg),

2
1
Gy = VIl | gy + 26100y — )| 12ergiwhy,  H, = —derghs,

1
5507 = 2610[bg(a7d5 - d(sag) - b(;(a,ydg - dvao)] — 5]4:7(]{:51)0 — k'gb(;).

Here, ¢, = 1 for ¢ > 0 and ¢, = —1 for ¢ < 0. The values of the functions ¢ for every
k are given in Table 1.
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Table 1
k @ k @
1 bx 6 (az)? — (dz)?
2 dx 7 cr
3 ax 8 | (ax)? — (bx)? — (dz)?
4 | ax—dx | 9 cxkx — bx
5 kx 10 4bz + (kx)?

4 On the exact real solutions of SDYME

Before we proceed to analyzing the reduced systems and constructing their exact
solutions, let us make the following remark. Whereas the YME and SDYME are real
in four-dimensional Euclidean space, in Minkowski space, the YME are a system of
real second-order PDE, while SDYME (1) are a system of complex first-order PDE.
Therefore, self-dual solutions to YME in Minkowski space are, in general, complex,
which is an undesirable property.

On the other hand, the systems of PDE that represent SDYME (1) (and, hence,
the reduced systems (12) and (13), as well) are not completely defined. Moreover, the
symmetry reduction of SDYME preserves their symmetric form, which allows one to
address the problem of finding real solutions of these equations. Clearly, the necessary
condition for building real solutions of the systems of equations (12) and (13) is given
by the equations

Ty =0, (14)

which lead us to another system of first-order ODE, this time an overdetermined one.
By imposing additional conditions on the functions B'H, we have succeeded, in some
cases, in reducing system (14) to an integrable form and in obtaining nontrivial real
non-Abelian solutions of SDYME (1). In what follows, we describe these cases in some
detail.

We use the notation & = (1,0,0), &5 = (0,1,0) and €3 = (0,0,
restore the explicit form of systems (13) and (14), we choose a =
(0,1,0,0), ¢c=(0,0,1,0), and d = (0,0,0,1).

The case of the L; algebra. Let us set Bo = )\OE and §3 = )\3§, where \g and
A3 are arbitrary real constants such that A3 + A% # 0. Equations (13) and (14) take
the following form:

1). In order to
(1,0,0,0), b

dB - -
€ei— +eBy x B=0,

dw
dB dB;
€W d 2 +€e1— dw + ElBQ — €B1 X BQ = O (15)

dB L. L
cqw— + 6B+ eB x B; =0.
dw

Further, let us assume that, in (15), B = g (W)€, B1 = hu (W), and B2 = f(w)és,
m = 1,2,3. Then the first two equations of (15) yield the following system for the
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functions g, by, and f:

d dh d
a2 befgs=0, =L tefhs=0, ¢-2=0,
d dh d dh
e1w—f+61—2 taf=0, a2 _egf=0, aF°—ehf=0.
dw dw dw dw

We set f = Cw~! in (16), with C' being an arbitrary constant. Then, g» = C; and
ho = C9, where C; and C5 are arbitrary constants, while the functions g1, g3, h1,
and hg are to be determined from two similar systems of equations, which amounts
to solving the Euler equations. In particular, the system of equations for g;, g3 reads

d d
elﬂ +eCw gy =0, elﬂ —eCw g =0,
dw dw

from which we have the equation

d?g d
20793 93 202, _
w 72 +wdw+eC’ggf0,

whose general solution is given by
g3 = Cssin(eC'log |w| + C4),
and, thus,
g1 = €1C5 cos(eC'log |w| + Cy).
Similarly, we obtain
h1 = €1C5 cos(eClog |w| + Cg).  h3 = Cysin(eC log |w| + C).

where C3, Cy, Cs, and Cg are arbitrary integration constants.
Finally, having checked the last of the equations in (15), we obtain the following
solution:

Bo=XB, Bs=XB, B=gn(w)én, Bi=hnw)én B=f(w)e,
where

g1 = Fe1Cs cos(eCy log |w| + C), g2 = Cs,
g3 = FCssin(eCy log [w| + Ca), hy = £ere ! sin(eC log |w| + C2), (17)
ho =—-C1, h3z= :Fe_l COS(BCl log \w| + 02)7 f = C’lw_l,

and C4, C9, and C3 are arbitrary constants.

The case of the Lg algebra. Let éo = ég = B and §1 = (. Then the systems
of equations (13) and (14) reduce to the equation

dB dB Lo
Q67— + —2 + 2e;B + eB x By = 0. (18)
dw dw

Let us set By = f(w)& and B = g(w)é) 4 h(w)és. Then it follows from (18) that

d dh
2er> +2erg—efh =0, - =0, 2 +2eh+efg=0,
dw w dw
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which is solved by the functions
eC eC
f=0C, g=e“Cysin (21w + Cg), h = eze”“Cs cos (;w + C’3>, (19)
where C7, Cs, and Cj are arbitrary integration constants.

The case of the Li7 algebra. Setting By = B; = E, we obtain the following
reduction of the system of equations (14):

dB dB L oL
L 92 4 9B +eB x B, =0,
dw dw
dB dB L
20— — —22 4 eByx B =0, (20)
dw dw
dB dB _ L
2772 4 90" 1 9B, —eB, x By = 0.
dw dw

In (20), we set By = M\é1, B = f(w)@ + g(w)és, and By = h(w)é + u(w)és, where
A1 # 0 is an arbitrary constant. Then the functions f, g, h, and u can be determined
from the system of equations

d dh d
2@ op v eng=0, 2™ Lonvenu=0, 2% 425 enf=0,
o if  dh dg du
27 4 2u— = —uf=0, 20-%—-==0, 20-=— - =
dw F2u—eMh =0, hg—uf =0, Ydw  dw 0. Ydw  dw

The general solution of the first four equations is given by the functions

f=Cie “cos (%w + Cg) , g=Cie “sin <¥w + Cg) ,
h = Cze™ cos (/\;ew + 04) , u=Cse “sin ()\;w + 04) ,

where C7, Cs, C3, and Cy are arbitrary constants. Having checked the last three
equations of the system, we arrive at the following solution of (20):

EQ:§3=§:f€2+g€3, §2=h€2+u€3, él = (Csey,

C:- C:-
f=Ci1e ¥ cos (erw + C’g) , g=Cie “sin (erw + C’g) ,

h =2aCie” cos <%w + C’g) , u=2aCie “sin <%w + 02) ,

and C1, Cy, and C3 are arbitrary constants, with C5 # 0.
The case of the Lig algebra. In this case, we set By = %BQ = B3 = B. Then
Egs. (14) reduce to the equation

é — — —
d—+ZB+eB><31:O. (22)
dw
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In (22), let B =\, By = gm(W)€m, m =1,2,3, and A # 0 be an arbitrary constant.
Then we have the equations

d d
£—6A92:O7 £+€/\91:07
dw dw

dgs
—— +22=0
dw + ’

whose general solution is given by the functions
g1 = Cysin(edw + Cs), g2 = Creos(edw + Cs), g3 = =2 w + Cs,

with C1, Cs, and C3 being arbitrary integration constants. Thus, we have constructed
the following solution to (22):

_ 1= _.

Bo = =By = Bs = Cyés,
_)0 512 3 4€3 (23)
B, =0C, sin(eC’4w + 02)51 + 1 COS(€O4LU + Cg)gg + (03 — 204&))53,

where C7, Cs, C3, and C4 are arbitrary integration constants, with C4 # 0.
Inserting the solutions of the reduced equations found in (17), (19), (21), and
(23) into ansatz (10), we obtain, respectively, the following exact real solutions of
SDYME (1):
(1) Ay = Aolbz| H[Te1Cs cos(eCy log |cx(bx) ™| + C)éy + Caéy T
F C3sin(eCy log |cx(ba) ™t + Co)es),
Ay = |bz| Eere  sin(eCy log |cx(bz) "t + Cy)E, — Chés T
F e ! cos(eC log |cx(ba) ™t + Cy)és],
Ay = €101 (cx)~téy,
Ay = A3 |bz| " [Fe1 Cs cos(eCh log |cx(bx) ™t + Cp)éy + Csés F
F Cssin(eCy log |ca(br) ™| + Cy)és),

(2) Ay = Az = (cx)?e **C, [sin (%eCl(kx —2log|cx|) + C3> €1+
+ €7 cos (%eCl(kx —2log |cac|)|03> 6'3] ,

1 =0, Ay =Cilez| e,
(3) Ap=A5=evCy {cos (;eogw + 02> € + sin (;ecgw + 02> é},} ,
1= [(bx)? + (cz)?] 7" [(bz)C3é1 — 2aC) (ca)e™ x

e (e (100 +2) 55 (Yo 2) )]
5 = [(bz)? + (cz)?] 7! [(cx)C561 + 2aC (br)e™ X

X (cos %ngw + Cg) €5 + sin (%ngw + C’g) e?;)] ,
w = kx — log[(bx)? + (cz)?] + 2 arctan cx(bx) !,
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sin(eCyw + C2)é7 + cos(eCyw + Cz)é +
+2C4(bz)és), w = kx4 2arctan(cz(bz) ).

The values of €; and €7 are given in Table 1, « is given in the list of subalgebras, and
Ao, Az, C1, Cy, C3, and Cy are arbitrary real constants.

Conclusions

In this paper, we have investigated the structure of P(1,3)-invariant ansatze for the
vector potential of the Yang—Mills field. The linear form we obtained for the ansatze
is reduced to a covariant form, which allows us to simplify considerably the procedure
for the symmetry reduction of SDYME (1) to systems of ODE. We have demonstrated
the possibility of constructing real solutions of SDYME (1).

Let us note that ansatz (11) can also be used for symmetry reduction in the
Minkowski space R(1,3).
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Time-dependent symmetries
of variable-coefficient evolution equations
and graded Lie algebras

W.X. MA, R.K. BULLOUGH, P.J. CAUDREY, W.I. FUSHCHYCH

Polynomial-in-time dependent symmetries are analysed for polynomial-in-time de-
pendent evolution equations. Graded Lie algebras, especially Virasoro algebras, are
used to construct nonlinear variable-coefficient evolution equations, both in 1 + 1
dimensions and in 2 4+ 1 dimensions, which possess higher-degree polynomial-in-time
dependent symmetries. The theory also provides a kind of new realisation of graded
Lie algebras. Some illustrative examples are given.

It is well known that the usual family of KdV equations has polynomial-in-time
dependent symmetries (ptd-symmetries) which are only of the first-degree. This is
because only master symmetries of first degree are so far found. Moreover there are
usually! no higher-degree ptd-symmetries for time-independent integrable equations
in 1 + 1 dimensions; but this may not be so in 2 + 1 dimensions.

However a form of special graded Lie algebras, namely centreless Virasoro sym-
metry algebras is apparently common to all time-independent integrable equations
in whatever dimensions both in the continuous case and in the discrete case. This
feature would therefore seem to be an important one in the discussion of integrability
and integrable nonlinear equations. For the higher dimensional integrable equations,
there may also exist still more general graded symmetry Lie algebras.

The purpose of the present paper is to discuss ptd-symmetries for evolution equa-
tions with polynomial-in-time dependent coefficients (conveniently expressed in terms
of monomials in ¢ as in equation (4) below). We provide a purely algebraic structure for
constructing such integrable equations with these forms of symmetries. This way we
show there do exist integrable equations in 1+ 1 dimensions which possess these forms
of symmetries and we construct actual examples. Graded Lie algebras, and especially
centreless Virasoro algebras, are used for these constructions. In consequence new
features are extracted from the graded Lie algebras which provide new realisations of
these algebras and most particularly of the centreless Virasoro algebras.

We first define a symmetry for an evolution equation, linear and nonlinear [1-5].
For a given evolution equation u; = K (u), a vector field o(u) is called its symmetry
if o(u) satisfies its linearized equation

do(u) , ) oo
—— =K e —=[K 1
U~ K], e S =[K,d], 1)
where the prime and [-, -] denote the Gateaux derivative and the Lie product
0
K'[S] = gK(U—F&‘SNE:o, [K,o] = K'[0] — 0'[K], (2)

J. Phys. A: Math. Gen., 1997, 30, Ne 14, P. 5141-5149.
IThe Benjamin-Ono equation is a counter-example.
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respectively. Of course, a symmetry ¢ may also depend explicitly on the time variab-
le t. For example, 0 may be of polynomial type in ¢, i.e.

t
O'(t,u): ij(u):S0+t,5’1+...+

! Sn, 3)

n!
j=0

where the vector fields Sj(u), 0 < j < n, do not depend explicitly on the time

variable ¢.

If we consider a variable-coeflicient evolution equation u; = K (¢, ) of the form

m

|F¢~
<.

t
Ti(u)=T0+tT1+~--+%

ut:K(t,u):Z S

m
=0

Ton, (4)

~

where the vector fields T;(u), 0 < i < m, do not depend explicitly on the time
variable ¢, either, then a precise result may be obtained which states (3) is a symmetry
of (4). At this stage, we can have

do S il gk
o Z(i_l)!Sz(U) Zk!5k+1(u)a
1=0 k=0
moo; n i m+n L
t t t k
Kool = L ST S| =Y 5 X (Z.)m,sjy
=0 5=0 k=0 " itji=k
0<i<m
0<j<n

Skri= Y (k>m,5j], 0<k<n-—1, (5)

> (gﬂ;@yza n<k<m+n. (6)

These equalities in (5) and (6) constitute a necessary and sufficient condition to state
that (3) is a symmetry of (4). If we look at them a little more, it may be seen that

S1 = [To, So),
Sy = [To, S1] + [T1, Sol,

Sn= (") [To, Sn—1] + ("7, Sna] + -+ (77) [Tn=1, Sol,

n—1

where T; = 0,4 > m+1, and so a higher-degree ptd-symmetry o(t, u) defined by (3) is
determined completely by a vector field Sy. However this vector field Sy needs to satis-
fy (6). This kind of vector field Sy is a generalisation of the master symmetries defined
in [2] which here we still call a master symmetry of degree n for the more general
evolution equation, equation (4). We conclude the discussion above as a theorem.
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Theorem 1. Let p be a vector field not depending explicitly on the time variable t.
Define

k

S0 = Sl = (5) 550 k>0, )

Jj=0

where we assume T; = 0, ¢ > m+1. If there existsn € N so that S;(p) =0, j > n+1,
then

alp) = =5i(p) ®)

is a polynomial-in-time dependent symmetry of the evolution equation (4).

We shall go on to construct variable-coefficient integrable equations which possess
higher-degree ptd-symmetries as defined by (3). We need to start from the centreless
Virasoro algebra

[KII’KZQ] = 07 l17l2 > 07
[Klnplz} = (ll +’Y)Kll+12? llaZQ > 07 (9)
[pl17pl2] = (ll - ZQ)pthlgv llal2 2 0

in which the vector fields K;, = K, (u), pi, = pi,(u), l1,lo > 0, do not depend
explicitly on the time variable ¢ and -y is a fixed constant. Although the vector fields p;,
Il > 0, are not symmetries of any equations that we want to discuss, an algebra
isomorphic to this kind of Lie algebra commonly arises as a symmetry algebra for
many well-known continuous and discrete integrable equations [3-5]. In equation (9),
the vector fields p;, I > 0, may provide the generators of Galilean invariance [6] and
invariance under scale transformations for any standard equation u; = Kj(u). Let us
choose a set of specific vector fields

T;=Ki,, 0<j<m, (10)

which yields the following variable-coefficient evolution equation

tm

K; (11)

m*

£2
This equation still has a hierarchy of time-independent symmetries K;, [ > 0, and
therefore it is integrable in the sense of symmetries [7]. What is more, it will inherit
many integrable properties of u; = Kj, I > 0. For example, if u; = Kj, [ > 0, have
Hamiltonian structures of the form

utzKl:J@, >0,
ou
where J is a symplectic operator and H;, | > 0, do not depend explicitly on ¢,
then the H; are still conserved densities of equation (11) and equation (11) is then
completely integrable in the commonly used sense for pdes. In what follows, we need
to prove that p; is a master symmetry (as explained above) of degree m + 1 of equa-
tion (11). In fact, according to (7), we have

So(pt) = pi;  Skr1(p) = [Tk, So(pr)] = [Kiy, pi] = (ix +7)Kipv1, 0<k<m,
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and further we can prove that S;(p;) = 0 when j > m + 2, which shows that p; is a
master symmetry of degree m + 1 of equation (11). Therefore we obtain a hierarchy
of ptd-symmetries of the form

m+1 m—+1 .

1i—1 + .
Z S Pl Z J-—mthij71+l + Pl =
=07 = 12
o (12)
Z thKin +p, 120,
]:0

for the variable-coefficient and integrable equation (11). Moreover these higher-degree
ptd-symmetries together with time-independent symmetries K;, [ > 0, constitute the
same centreless Virasoro algebra as (9), namely

[Kanlz] =0, I1,l2>0,
(Kiy,01] = (b + MKty 1,12 20, (13)
[0117012] = (ll - 12)011+l27 li,lo > 0.

For example, we can calculate that

[01,,01,] = Z s tﬁleﬁzHrPllaZ J K 1, + o, | =

< (j+ 1) = (+1)!
= Z tj+1K2 i+l Pla + pluz j_"_ 1 tJ+1Kij+lg + [pllvplz] =
Jj= 0 j=0 j
(ll lg Zj + ’7) P

- th+lKij+l1+lz + (= 2)pr 11, = (I = 12) 0w, 115
7=0

The algebra (13) also gives us a new realisation of centreless Virasoro algebras. By
now we may very much see that there exist higher-degree ptd-symmetries for some
evolution equations in 1 4+ 1 dimensions. Moreover our derivation does not refer to
any particular choices of dimensions and space variables. Hence the evolution equa-
tion (11) may be not only both continuous and discrete, but also both 14+ 1 and 2+ 1
dimensional.

Actually there are many integrable equations which possess a centreless Virasoro
algebra (9) (see [3-5, 8, 9] for example). Among the most famous examples are the
KdV hierarchy in the continuous case and the Toda lattice hierarchy in the discrete
case. Through the theory above, we can say that a KdV-type equation

up = tKo + K1 = tuy + Uppe + 6utly (14)

possesses a hierarchy of second-degree time-polynomial-dependent symmetries
3 1,
o= EtKl-i—l + Zt Ki+p, 120, (15)
where the vector fields Kj, o;, | > 0, are defined by

1
K, = dlu,, pl:i)l(u—l—§xuw), d =92+ du+2u, 07, 1>0.
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They constitute a centreless Virasoro algebra (9) with v = 3 [8, 10] and thus so do
the symmetries K;, o7, [ > 0. We can also conclude that a Toda-type lattice equation

12 n) —v(n—1)
(” ><npn p(n—1>>>+ o)
n)(o

< (n) —v(n—1)) +o(n)(p(n+ 1) = p(n - 1)) )
v(n)(v(n = 1) —v(n+1)) +v(n)(p(n)* - p(n - 1)%)

possesses a hierarchy of third-degree time-polynomial-dependent symmetries

1
o =tK; + t2Kl+1 + gtSKl +p1, >0, (17)

where the corresponding vector fields are defined by

K = 0K, K oot 1>0
= 0, 0 — 3 = Y,
v(p—p=Y)

:(I)lpOa p0<p >7 120,
2v

in which the hereditary operator ® is defined by

©— D (WE? —v)(E —1)"'v !
C\w(E41) w@pE-ptOY)(E-1)"te ! )

Here we have used a normal shift operator E: (Eu)(n) = u(n + 1) and u(™ = E™u.
These discrete vector fields Kj, [ > 0, (see [11] for more information) together with
the discrete vector fields p;, I > 0, constitute a centreless Virasoro algebra (9) with
v = 1 [4] and the symmetry Lie algebra of o;, I > 0 and Kj, I > 0, has the same
commutation relations as that Virasoro algebra.

More generally, we can consider further algebraic structures by starting from
a more general graded Lie algebra. In keeping with the notation in [12], let us write
a graded Lie algebra consisting of vector fields not depending explicitly on the time
variable ¢ as follows:

:ZE(R», [E(R;), E(R;)] € E(Ritj—1), i,j >0, (18)

where F(R_1) = 0. Note that such a graded Lie algebra is called a master Lie algebra
in [12] since it is actually not a graded Lie algebra as defined in [13]. However we still
call it a graded Lie algebra because it is very similar. Choose

T, =K; € E(Ry), 0<i<m, (19)

and consider a variable-coefficient evolution equation
= Y tiT—K tK t2K th 20
Ut—ZEi— oty 4 Kot + Ko (20)

=0
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Before we state the main result, we derive two properties of the generating vector
fields S5, 7 > 0.

Lemma 1. Assume that T;, 0 < i < m, are defined by (19), and let | > 0 and
p1 € E(R;). Then the vector fields S;(p;), 7 > 0, defined by (7) satisfy the following

property

l—

Sa-1)min+p(p) €Y _E(Ry), 1<a<l, 1<B<m+1, (21)
=0

Si(p) =0, j>lm+1)+1. (22)

Proof. Note the definition (7) of Sj(p;), j > 0, and T; = K;, 0 < i < m. We can
calculate that

" fa(m+1)+p
5a(m+1)+ﬁ+1(,0l) = Z ( ( ~y ) [Kvasa(mﬂ)ww(m)] =
v=0
B—1
=§:((
v=0

~ (a(m+1)+5
+> ( ) (K, Sta—1)(mt1)+(m+1)—(+—8) (P1)] €
I=(a+

)
am+1)+0

. ) (K~ Sama)+a—(p0)] +

gl
a+2) l—(a+1) I—(a+1)

€ E(R)+ Y ER)= > E(R),
=0 1=0 1=0

where in the last but one step we have used the induction assumption. This result
shows that (21) is true by mathematical induction. The proof of (22) is the same so
that the proof of the Lemma is complete. [ |

Lemma 2. Assume that T;, 0 < i < m, are defined by (19), and let l1,ls > 0 and
pi, € E(Ry,), pi, € E(Ry,). Then we have

k
Sillon ) = 3 (5)isito. 8,600, 20, (23)
i+j=k
where the S;(p), j >0, are defined by (7).

Proof. We use mathematical induction to prove the required result. Noting that
T, = K;, 0 <1 <m, we can calculate that

Skr1(lpn, p1,]) = Z (I:) |:Ki7Sj([pII7p12])

i+j=hk

k j (by the induction
Z (z) K, Z (a) [Sa(p1), S5(p12)] assumption)

i+j=k a+pB=j
k J
= . [Kiy[soé(p 1)7S (P 2)” =
Z0) 2 (0w s
|
=Y L Sa (). Salen)]) =

113!
Moy ilalf!
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S U Saon)] SaCo)] + S ), [ S )]} =

i+a+p=k
:Hﬂ k( ) o ]<> (K3, Sa(pi)], Se(pi) | +
airt k( ) o), Z%j (Z) (K, Sp(pi)] | =
P ( Si1(p1y)s Sp(p1,)] + a;:k <];) [Salpr,), Siv1(p1,)] =
= (k )[5 (p,), S (o)), k>0,
i+j=k+1

and this yields the key step in the mathematical induction. On the other hand, we
easily see that

So(lpty» pis]) = [piy s pr,] = [So(pry )5 Solpr,)]-

Therefore mathematical induction gives the proof of the equality (23). [ |
Theorem 2. Assume that T;, 0 < i < m, are defined by (19), and let | > 0 and
o € E(Ry). Then the vector field
I(m+1) 4
alp)= —55(p1), (24)
il
7=0
where the S;(p1), 0 < j < l(m+1), are defined by (7), is a time-independent symmetry

of (20) when |l =0 and a polynomial-in-time dependent symmetry of (20) when 1 > 0.
Furthermore we have

[J(pll)vg(pZQ)] = J([pll’pll})7 pu € E(R11)7 Py € E(Rlz)7 l1,l2 >0, (25)
and thus all symmetries o(p;) with pp € E(R;), | > 0, constitute the same graded
Lie algebra as (18) and the map o : p; — o(p;) is a Lie homomorphism between two
graded Lie algebras E(R) and o(E(R)).

Proof. By Lemma 1, we can observe that o(p;) defined by (24) is a symmetry of
(20). We go on to prove (25). Assume that p;, € E(Ry,), pi, € E(Ry,), l1,12 > 0. By
Lemmas 1 and 2, we can make the following calculation

l1(m—+1) 4 la(m—+1) 4
[U(ph)a U(ﬂb)] = Z Esi(pll)v Z ﬁSj(pIQ)
i=0 j=0

(li+l2— 1)(m+1)

- Z kl Z () i(p1,),Si(p1,)]  (by Lemma 1) =

k=0 i+j=k
(li+1l2—1)(m+1) "

- Z Hsk([f@luplg]) (by Lemma 2) =
k=0 :

= o([p1,s pia])-
The rest is then obvious and the required result is obtained. [ |
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A graded Lie algebra has been exhibited for the time-independent KP hierar-
chy [14] in [2, 12], and it includes a centreless Virasoro algebra [5, 15]. The ordinary
time-independent KP equation being considered here is the following

up = 8;1uyy — Ugppw — OUU. (26)

From this we may now go on to generate the corresponding graded Lie algebra of ptd-
symmetries for a resulting new set of variable-coefficient KP equations, but in this
connection the reader must be referred to the comparable analysis in [16] mentioned
below.

The idea of using graded Lie algebras as described in this paper is rather similar
to the thinking used to extend the inverse scattering transform from 1+ 1 to higher
dimensions [17]. Moreover the resulting symmetry algebra consisting of the o(p;),
[ > 0, provides a new realisation of a graded Lie algebra (18). The theory also shows us
that more information can be extracted from graded Lie algebras, which is itself very
interesting. What is more, we have shown here that there do exist various integrable
equations in 1 + 1 dimensions, such as KdV-type equations, possessing higher-degree
polynomial-in-time dependent symmetries. We report a graded Lie algebra of ptd
symmetries for a corresponding new set of variable coefficient modified KP equations
in a second article [16]. In [16] we display this modified KP hierarchy explicitly, the
time independent modified KP equation being, in comparison with (26), the equation

1 3 3 - 3.
Ut = JYazz = 5“2“1' B Zuxa” y + 183: K 0

In [16] we show also that this hierarchy actually has two Virasoro algebras and two
graded Lie algebras.

We also hope to show elsewhere the connections between the rather general al-
gebraic structure established in this paper and the specific representation of the W,
and Wi, algebras developed in connection with two-dimensional quantum gravity
as described in in Refs. [18, 19]. (In [18, 19], these two infinite dimensional algebras
were developed for the ordinary KP hierarchy and included the algebra, containing
the centreless Virasoro algebra, of Ref. [5].) In this connection, we note already that
if, for example, F(R;) = span{A4;,,|m > 1}, ¢ > 0, and we impose

i+j—2
[Aim, Al = Y ali—1,j—1Lm—1,n~1)A1min1,
l=min(i—1,j—1)

where the coefficients a; are defined by

Ji+1 g+l itj ) i1
+m-+1 Jj+n+1 . E .. +m+n+1
x deiJ’_l 7:17 d$j+1:| - al(l,j,m,n)x de’l+17

l=min(¢,5)

then the E(R) = Y E(R;) is a sub-algebra of the Wi, algebra of Refs. [18, 19|
i=0

by the identiﬁcation_Aim = T,_1,m—1; here the 7;_; ,,_; are the elements forming the
i+m—1_d"
dzt*
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On new representations of Galilei groups

R.Z. ZHDANOV, W.I. FUSHCHYCH

We have constructed new realizations of the Galilei group and its natural extensions
by Lie vector fields. These realizations together with the ones obtained by Fushchych
& Cherniha (Ukr. Math. J., 1989, 41, Ne 10, 1161; Ne 12, 1456) and Rideau & Win-
ternitz (J. Math. Phys., 1993, 34, 558) give a complete description of inequivalent
representations of the Galilei, extended Galilei, and generalized Galilei groups in the
class of Lie vector fields with two independent and two dependent variables.

1. Introduction

As is well known, the problem of classification of linear and nonlinear partial differen-
tial equations (PDEs) admitting a given Lie transformation group G is closely con-
nected to the one of describing inequivalent representations of its Lie algebra AG in
the class of Lie vector fields (LVFs) [1-3]. Given a representation of the Lie algebra
AG, one can, in principle, construct all PDEs admitting the group G by means of the
infinitesimal Lie method [1, 2, 4].

In the present paper we study representations of the Lie algebra of the Galilei
group G(1,1) (which will be called in the sequel the Galilei algebra AG(1,1)) and its
natural extensions in the class of LVFs

Q= fl(t, x,u,v)0 + 52(t7 x,u,v)0; + nl(t, x,u,v)0y + 172(t7 X, U, )0y, (1)

where t, x and u,v are considered as independent and dependent variables, corres-
pondingly, and &£, ..., n? are some sufficiently smooth real-valued functions.

Representations of the Galilei group with basis generators (1) are realized on the
set of solutions of the linear and nonlinear (1 + 1)-dimensional heat, Schrédinger,
Hamilton—Jacobi, Burgers and KdV equations to mention only a few PDEs (for more
details, see [4]).

We say that operators Py, Pi, M, G, D, A of the form (1) realize a representati-
on of the generalized Galilei algebra AG2(1,1) (called also the Schrodinger algebra
ASch(1,1)) if

e they are linearly independent,

e they satisfy the following commutation relations:

[P07P1]_0v [P07M] 0, [Pl, M] 0,

[Py, Gl = P, [P1,G]= 1M, [Py, D]=2P,

[P, D] =P, [P,A =D, [P,A]=G, -
M,G] =0, [M,D]=0, [M,A]=0,

[M,G]=0, [M,D]=0, [M,Al =0,

[G,D] = —G, [G,Al=0, [D,A=24

J. Nonlinear Math. Phys., 1997, 4, Ne 3-4, P. 426-435.
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In the above formulae, [Q1, Q2] = Q1Q2 — Q2Q is the commutator.

The subalgebra of the above algebra spanned by the operators Py, P, M, G, is
the Galilei algebra. The Lie algebra having the basis elements Py, P, M, G, D is
called the extended Galilei algebra AG;(1,1).

It is straightforward to verify that relations (2) are not altered by an arbitrary
invertible transformation of the independent and dependent variables

t—)t/:fl(t7$7u7v)7 x_)x/:fQ(t’xﬂu’v)V

3)

u—u' =gt u,v), v—v =gt T, u,0),

where f1,...,go are sufficiently smooth functions. Invertible transformations of the
form (3) form a group (called diffeomorphism group) which establishes a natural
equivalence relation on the set of all possible representations of the algebra AG(1,1).
Two representations of the Galilei algebra are called equivalent if the corresponding
basis operators can be transformed one into another by a change of variables (3).

In the papers by Fushchych and Cherniha [5, 6] different linear representations
of the Galilei group and of its generalizations were used to classify Galilei-invariant
nonlinear PDEs in n dimensions with an arbitrary N € N (see also [7]). The next
paper in this direction was the one by Rideau and Winternitz [8]. It gives a description
of inequivalent representations of the algebras AG(1,1), AG1(1,1), AG2(1,1) under
supposition that commuting operators Py, P;, M can be reduced to the form

sz@t, Plza:m M:('?u (4)

by transformation (3).

The results of [8] can be summarized as follows. The basis elements Py, Py, M are
given formulae (4) and the remaining basis elements are adduced below

1. Inequivalent representations of the Galilei algebra

(a) G=1t0, + %x@u + f(v)0y,
(b) G=to,+ %z@u + v0,.

2. Inequivalent representations of the extended Galilei algebra

(a) G=1td,+ %x@u, D = 2t0; + 20, + f(v)0y,

(b) G=to,+ %x@u, D = 2t0; + 20, — %v&,,

(¢) G=td,+ %x@u +v0;, D =2t + 20, + 3v0,,

(d) G=1t9,+ 120, +0,, D =210+ 0, + 0y — v,.

3. Inequivalent representations of the generalized Galilei algebra

(a) G=t0, + %z@u, D = 2t0; + 20, + f(v)0y,
A =120, + txdy + (22 + f(v)t) Ou,

(b) G=to,+ %x@u, D = 2t0; + x0, + 200,
A =120, + tzdy + (2% + ev) Oy + (2t + av)vd,,

(c) G =10, + 120, + 08y, D =2t0;+ 20, + 0, — v0,,
A =120, + txd, + (32 + t) 0, + (z — tv)0,.
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Here

« is an arbitrary constant and € =0, 1.

Remark 1. Representation (7b) with (¢ = 0, & = 0) were obtained for the first time
in [5, 6].

Remark 2. The forms of basis operators of the extended Galilei and generalized
Galilei algebras are slightly simplified as compared to those given in [8]. For example,
the operators D, A from (7c) read as

- 1

D =210, + 20, + <0, — (1 +2In®)id;,

- 1 1

A =120, + txd, + (ZxQ + et) Ou + (ac - 5t(l + 211117)) 05.

It is readily seen that the operators {D, A} and {D, A} are related to each other
by the transformation v = In(ve?).

Generally speaking, basis elements Py, P;, M have not to be reducible to the
form (4). The requirement of reducibility imposes an additional constraint on the
choice of basis elements of the algebras AG(1,1), AG1(1,1), AG5(1,1), thus narrowing
the set of all possible inequivalent representations. This is the reason why formulae
(5)—(7) give no complete description of representations of the Galilei, extended Galilei,
and generalized Galilei algebras. As established in the present paper, there are five
more classes of representations of AG(1,1), six more classes of representations of
AG1(1,1) and one new representation of the generalized Galilei algebra AG5(1,1).

2. Principal results

Before formulating the principal assertion we prove an auxiliary lemma.

Lemma 1. Let Py, Py, M be mutually commuting linearly independent operators of
the form (1). Then there exists transformation (3) reducing these operators to one of
the forms

Py=0;, Pr=0,, M=0y, (8)
Py=0, PI=0,, M =a(u,v)0+ 0(u,v)0; (9)
Po=08,, P\=xzd, M =28, (10)
Py=0y, P=z0;,, M =~(x)0; (11)
Py=08;,, P, =8, M =2ud,, (12)

where a, B, v are arbitrary smooth functions of the corresponding arguments.

Proof. Let R be a 2 x 4 matrix whose entries are coefficients of the operators Py, P;.
Case 1. rank R = 2. It is a common knowledge that any nonzero operator @ of
the form (1) having smooth coefficients can be transformed by the change of variables
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(3) to become Q' = 9y (see, e.g. [1]). Consequently, without loosing generality, we
can suppose that the relation Py = 9; holds (hereafter we skip the primes). As the
operator P; commutes with Py, its coefficients do not depend on ¢, i.e.,

Pl = 51('1:’“7 U)at + 52(‘1“7u7v)a:8 + 771('1:’ u, ’U)@u + 772(1"71147’0)811-

By assumption, one of the coefficients £2, n', n? is not equal to zero. Without loss
of generality, we can suppose that £2 # 0 (if this is not the case, we make a change
T —u,u — xorx— v, v— x). Performing the transformation

t' =t+4+ Fl(z,u,v), 2 =F%*(x,u,v), u =G (z,u,v), v =G*(x,u,0),
where the functions F'*, F? are solutions of PDEs
PF?+¢t=0, PF?=1

and G', G? are functionally independent first integrals of the PDE P/ F = 0, we
reduce the operators Py, P; to become Py = 0y, P, = 0.

Next, as the operator M commutes with Py, Py, its coefficients do not depend on
t, . Consequently, it has the form

M = & (u,v)0 + &% (u,v)0 + n*(u, v)0y + 1*(u,v)0,.
Suppose first that ()% + (n?)? # 0. Then, the change of variables
t'=t+ Fl(u,v), o' =z+F*(u,v), u =G (u,v), v =G*u,v),
where F!, F2, G' are solutions of PDEs
MF'+¢' =0, MF?+¢* =0, MG'=1

and G? is a first integral of the PDE MF = 0, reduces the operators Py, Py, M to
the form (8).

If nt = 0, n? = 0, then formulae (9) are obtained.

Case 2. rank R = 1. If we make transformation (3) reducing the operator Py to
the form Py = ¢, then the operator P; becomes P; = &(x, u, v)0; (the function & does
not depend on t because Py and P; commute). As £ # const (otherwise the operators
Py and P are linearly dependent), making the change of variables

t'=t, 2 =¢&@,uv), u=u v=v

transforms the operator P; to be P, = x0;.
It follows from the commutation relations [Py, M] =0, [Py, M] = 0 that

M = g(x, u,v)0 + ﬁl(am U, )0y + ﬁQ(m, Uy )0y

Subcase 2.1. 7! = 02 = 0. Provided the equalities ENU = &, = 0 hold, formulae
(11) are obtained. If (£,)% + (£,)? # 0, then making the transformation

=t 2=z u=¢&uv), V=

we arrive at formulae (12).
Subcase 2.2. (7')? + (7%)? # 0. Performing the change of variables

t' =t+ F(z,u,v), 2=z u =G (z,u,v), v =G*z,u,v),
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where F, G', G? satisfy PDEs
MF+£=0, MG'=2 MG*=0,

we rewrite the operators Py, P;, M in the form (10). The lemma is proved.
Theorem 1. Inequivalent representations of the Galilei algebra by LVFs (1) are ex-
hausted by those given in (6) and by the following ones:

1. Pozat, P1:8$, M:2u8$,

13
G = (t + zu)0; + u?dy; (13)
2. Py=0;, P =0, M:Q(uﬁt:tx\/)\ﬁf?uam), (14)
G = zud; + (t:tw\/)\UQ — 2u) O0p EuvIu? — 2udy;
3. P() = 8,5, P1 = 8$, M = 2(u8t +an), (15)
G = zud; + (t + 20)0p + uvdy + (u + v?)dy;
4 Py=0, Pi=20, M=-2 (lj: 1+)\x2)8t,
(16)
G =tzb; + (xQ—i—% (1i 1—1—)\372))89;—&—5&;
5. Py=08, P, —x0, M =2ud,,
0 t 1= T0¢ uoy (17)

G = tzd; + (2% — u)0, + zud,,

where \ is an arbitrary real parameter, € = 0, 1.

Proof. To prove the theorem it suffices to solve the commutation relations for the
basis operators Py, Py, M, G of the Galilei algebra in the class of LVF (1) within
diffeomorphisms (3). All inequivalent realizations of the three-dimensional commuta-
tive algebra having the basis operators Py, Py, M are given by formulae (8)—(12). What
is left is to solve the commutation relations for the generator of Galilei transformations
G =& (t,z,u,v)0 + E2(t, x,u, )0y + 0t (t, 2, u,v)0y + (L, 7, u,v)0,

[P()vG]:Plv [PlvG]:%M7 [M’G]:O (18)
for each set of operators Py, Py, M listed in (8)—(12). Since case (8) has been studied
in detail in [8] and shown to yield representations (5), we will restrict ourselves to
considering cases (9)—(12).

Case 1. Operators Py, Py, M have the form (9). It is easy to establish that, using
transformations (3), it is possible to reduce the operator M from (9) to one of the
forms

M =2(N\0y +ud,), M =2(ud+ B(u)d;), M =2(ud+ vdy,),

where 3 is an arbitrary smooth function and A is an arbitrary real constant.
Subcase 1.1. M = 2(A\9; + u0;). Inserting the formulae for Py, P;, M into (18)

and equating the coefficients of linearly independent operators 0y, 0., Oy, O, yield the

following over-determined system of PDEs for coefficients of the operator G:

5151207 51&2:17 77,512()’ 771522()’ f;:)‘v 522%
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As a compatibility condition of the above system, we get A = 0 and what is more
€= Fl(uv), & =t+outFuv), n'=u n?=Fuuv),

where F', F2, F3 are arbitrary smooth functions.
Making the change of variables

t'=t+T(u,v), =x+X(u,v), v =u, v =V(uv), (19)
where t, X, V are solutions of the system of PDEs

wT, + F?T, + F* =0, u*T, + F*T, +F' =0, u*V,+FV,=0.
we transform the operator G to become

G = (t + zu)0, + u?0,,

thus getting formulae (13).

Subcase 1.2. M = 2(ud; + B(u)d;). Substituting the expressions for Py, P,
M into (18) and equating the coefficients of the linearly-independent operators O,
Oy, Oy, O, give the following over-determined system of PDEs for coefficients of the
operator G:

&=0 &=1 n/=0 n=0, L=u &=0{),
me=0, ni=0, ug+puE —n' =0, ugf+pu)d - flu)n! =0.
The general solution of the above system reads
& =zu+ Fl(u,v), & =t+a6(u)+ F?(u,v),
nt=ubu), n*=F(u,v),
where
B(u) = £V Au? — 2u,

F', F? F? are arbitrary smooth functions and X is an arbitrary real parameter.
Performing, if necessary, the change of variables (19), we can put the functions
F'  F? I3 equal to zero. Thus, the operator G is of the form

G = zu0; + (t + v \u? — 2u) Oy EuvV 2 — 2u 0,

and we arrive at representation (14).
Subcase 1.3 M = 2(ud; +vd,). With this choice of M, the commutation relations
(18) give the following system of PDEs for coefficients of the operator G:

=0, &=1, nt=0, n}=0, &=u &&=v, =0, n=0,
ull +vgl —nt =0, u€? +ve2 —n? =0,

which general solution reads
& =aut Fllu,v), € =t+av+ F3(u,v), n'=ww, n®=u+°

Here F!, F? are arbitrary smooth functions.
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Making the transformation (19) with V' = v, we reduce the operator G to the form
G = zuld; + (t + 2v)0y + uvdy, + (u + 02)(%,

thus getting representation (15).

Case 2. Operators Py, P;, M have the form (10). An easy check shows that
the system of PDEs obtained by substitution of Py, Pi, M from (10) into (18) is
incompatible.

Case 3. Operators Py, P, M have the form (11). In this case, the commutation
relations (18) give rise to the following system of PDEs for the coefficients of the
operator G:

G=x =0 7 =0 n7=0 2§ -&=7) @) +5@)¢ =0
Solving it, we have

& =qzu+ Fl(z,u,v), & =22—~), n'=F(z,u,v), n*=F3z,u,v),
where

~(x) =—§ (1:i: 1+)\x2),

F' F? I3 are arbitrary smooth functions and X is an arbitrary real constant.
Making the change of variables

t'=t+T(z,u,v), 2=z v =U(x,uv), v=V(zuov) (20)

transforms the operator G as follows
G = tx0; + <x2+§ (I:I: 1—|—)\x2)) +€0,, e€=0,1.

Consequently, representation (16) is obtained.
Case 4. Operators Py, Py, M have the form (12). Inserting these into commutation
relations (18) we get the system of PDEs for coefficients of the operator G

gtlzxa €t2:07 77t1:0, 77t2:07 ‘Tgtl*éa:ua Uft1+771:0
having the following general solution:
letI+F1($,u7v)7 52:332—1&7 771:35“’ 172=F2(x,u,11),

where F', F? are arbitrary smooth functions.

The change of variables (20) with U = w reduces the operator G to the form
G = tzd; + (2% — u)9d, + wud,, which yields representation (17). The theorem has
been proved.

Below we give without proof the assertions describing extensions of the Galilei
algebra in the class of LVFs (1).
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Theorem 2. Inequivalent representations of the extended Galilei algebra AG1(1,1)
by LVFs (1) are exhausted by those given in (7) and by the following ones:

1. Ph=0;,, P,=0,, M=2ud,,
G = (t+2u)d, + u?0y, D =2td; + 10, + ud, + £0y;
2. Po=0, Pi=0, M=2(—ud+V2u0,),
G = —zud; + (t :I:x\/ﬁ) Dy + V21320,
D = 2t0; + 0, + 2u0, + €0y;
3. Ph=0, Pr=0,, M=2ud+vd,),
G = 2ud; + (t + 2v)0; + uvdy + (u + v?)d,,
D = 2t0; + 20y + 2u0y + v0y;
4. Py=0,, Pi=2x0;, M =29,
G =tady + 520, D =2t0;, + 10, + £0y;
5. Py=0,, P =20, M =230,
G =txo; + %aﬂaw + 0y, D =2t0; + 20, — udy;
6. Py=0,, PL=20;,, M =2ud,
G = txd; + (22 —u)0, + 2udy, D = 2t0; + 20y + 2ud,,

where € =0, 1.

Theorem 3. Inequivalent representations of the generalized Galilei algebra AG2(1,1)
by LVFs (1) are exhausted by those given in (8) and by the following one:

Py=0, Pi=0, M=2(—ud+v2ud,),
G = —zud; + (t £xv2u) 0, £V2u%?9,, D =2t0; + 20, + 2ud.,,
A= (t2 - %uxz) Oy + (ta: + %xQ\/ﬂ) Oy + (Ztu + m\/iu?’/Q) Oy.-

Proof of Theorems 2, 3 is analogous to that of Theorem 1 but computations are
much more involved.

Let us note that the list of inequivalent representations of the Lie algebra of
the Poincaré group P(1,1) and its natural extensions in the class of LVF with two
independent and one dependent variables given in [9] is also not complete. The reason
is that these representations are constructed under assumption that the generators of
time and space translations can be reduced to the form Py = 0,,, P1 = 0,, which is
not always possible. If we skip the above constraint, one more representation of the
Lie algebra of the Poincaré group is obtained

P() = 6$0, P1 = 3:18900, JOl = l‘o.rlawo + (J)% — 1)8351. (21)

And what is more, there is one new representation of the Lie algebra of the
extended Poincaré group AP(1,1), where the basis operators Py, P;, Jo1 are of the
form (21) and the generator of dilations reads D = x0,, + €0y, € =0, 1.

In [10], we have studied realizations of the Poincaré algebras AP(n,m) with n +
m > 2 by LVFs in the space with n + m independent and one dependent variables.
It was established, in particular, that, provided the generators of translations P,
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w=0,1,...,n+m—1 can be reduced to the form P[L = 8%, each representation of the
algebra AP(n,m) with n 4+ m > 2 is equivalent to the standard linear representation

P/J = a:rw J;w = guaxaaxy - guaxaaxuy
where
1, p=v=1...,n,
Juv = -1, p=v=n+1,...,m,
0, w#E v

and the summation over the repeated indices from 0 to n + m is understood. In view
of the results obtained in the present paper, it is not but natural to assume that if
there will be no additional constraints on basis elements P,, then new representations
will be obtained. Investigation of this problem is in progress now and will be reported
elsewhere.

3. Conclusions

Our search for new representations of the Galilei algebra and its extensions was moti-
vated not only by an aspiration to a completeness (which is very important) but also
by a necessity to have new Galilei-invariant equations. Since the representations of
the groups G(1,1), G1(1,1), G2(1,1) obtained in the present paper are in most cases
nonlinear in the field variables u, v, PDEs admitting these will be principally different
from the standard Galilei-invariant models used in quantum theory. Nevertheless, bei-
ng invariant under the Galilei group and, consequently, obeying the Galilei relativistic
principle, they fit into the general scheme of selecting admissible quantum mechanics
models.

Furthermore, (141)-dimensional PDEs having extensive symmetries are the most
probable candidates to the role of integrable models. A peculiar example is the seven-
parameter family of the nonlinear Schrédinger equations suggested by Doebner and
Goldin [11]. As established in [12] in the case when the number of space variables
is equal to one, all subfamilies with exceptional symmetry are either linearizable
or integrable by quadratures. Another example is the Eckhaus equation which is
invariant under the generalized Galilei group (see, e.g., [8]) and is linearizable by a
contact transformation [13].

But even in the case where a Galilei-invariant equation can not be linearized or
integrated in some way, one can always utilize the symmetry reduction procedure
[1, 2, 4] to obtain its exact solutions. And the wider is a symmetry group admitted by
the PDE considered, the more efficient is an application of the mentioned procedure
(for more details see [4]).

Thus, PDEs invariant under the Galilei group G(1,1) and its extensions possess
a number of attractive properties and certainly deserve a detailed study. We intend
to devote one of our future publications to construction and investigation of PDEs
invariant under the groups G(1,1), G1(1,1), G2(1,1) having the generators given in
Theorems 1-3.
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On the classification of subalgebras
of the conformal algebra with respect
to inner automorphisms

L.F. BARANNYK, P. BASARAB-HORWATH, W.I. FUSHCHYCH

We give a complete justification of the classification of inequivalent subalgebras of the
conformal algebra with respect to the inner automorphisms of the conformal group,
and we perform the classification of the subalgebras of the conformal algebra AC(1, 3).

1 Introduction

The necessity of classifying the subalgebras of the conformal algebra is motivated by
many problems in mathematics and mathematical physics [1, 2|. The conformal algeb-
ra AC(1,n) of Minkowski space Ry ,, contains the extended Poincaré algebra AP(1,n)
and the full Galilei algebra AG4(n — 1) (also known as the optical algebra). The
classification of the subalgebras of the conformal algebra AC(l,n) is almost reducible
to the classification of the subalgebras of the algebras AP(1,n) and AG4(n — 1),

Patera, Winternitz and Zassenhaus [1] have given a general method for the classi-
fication of the subalgebras of inhomogeneous transformations. Using this method, the
classification of the subalgebras AP(1,n), AP(1,n), and AG4(n — 1) was carried out
in Refs. [1-9] for n = 2,3, 4. In Refs. [7—11], this general method was supplemented by
many structural results which made possible the algorithmization of the classification
of the subalgebras of the Euclidean, Galilean, and Poincaré algebras for spaces of arbi-
trary dimensions. Indeed, this was done in Refs. [9] and [10], where the subalgebras
of AC(1,n) were classified up to conjugation under the conformal group C(1,n) for
n=2,3,4.

In order to perform the symmetry reduction of differential equations, it is necessary
to identify the subalgebras of the symmetry algebra (of the equation) which give
the same systems of basic invariants. This observation has led to the introduction
in Ref. [12] of the concept of I-maximal subalgebras: a subalgebra F' is said to be
I-maximal if it contains every subalgebra of the symmetry algebra with the same
invariants as F. In Ref. [13], all [-maximal subalgebras of AC(1,4), classified up to
C(1, 4)-conjugation, were found in the representation defined on the solutions of the
eikonal equation. Using these subalgebras, reductions of the eikonal and Hamilton—
Jacobi equations to differential equations of lower order were obtained in Refs. [9]
and [12]. We note that the list of I-maximal subalgebras for a given algebra can differ
according to the equation being investigated.

In the above works, the question of the connection between conjugation of the
subalgebras of the algebra AP(1,n) under the group P(1,n) (or the group Ad AP(1,n)
of inner automorphisms of the algebra Ap(l,n)) and the conjugacy of these subal-
gebras under the group C(1,n) was not dealt with. This, and the same problem for

J. Math. Phys., 1998, 39, Ne 9, P. 4899-4922.
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subalgebras of the Galilei algebra AG4(n—1), is the problem we address in the present
article.

Since the group analysis of differential equations is of a local nature, we concentrate
on conjugacy of the subalgebras under the group of inner automorphisms of the
algebra AC(1,n). Going over to conjugacy under C(1,n) is not complicated, and
requires only a further identification of the subalgebras under the action of at most
three discrete symmetries. The results of this paper allow us to obtain a full classifi-
cation of the subalgebras of AC(1,n) for low values of n. On the basis of these results,
we give at the end of this paper a classification of the algebra AC(1,3) with respect
to its group of inner automorphisms. The list of subalgebras obtained in this way can
be used for the symmetry reduction of any system of differential equations which are
invariant under AC(1, 3).

2 Maximal subalgebras of the conformal algebra

We denote by Ad L the group of inner automorphisms of the Lie algebra L. Unless
otherwise stated, conjugacy of subalgebras of L means conjugacy with respect to the
group Ad L. We consider Ad L; as a subgroup of Ad Ly whenever L; is a subalgebra
of Ly. The connected identity component of a Lie group H is denoted by Hj.

Let Ry, (n > 2), be Minkowski space with metric g5, where (gog) = diag[1, -1,
...,—1]and o, =0,1,...,n. The transformation defined by the equations

To = Ta(Y0,Y1s---3Un), a=0,1,....n
of a domain U C R, ,, into Ry ,, is said to be conformal if

Oz, Oz, u
239" = M) gas,
aye 977 (#)gap

where A\(z) # 0 and © = (xo,21,...,2,). The conformal transformations of Ry
form a Lie group, the conformal group C(1,n). The Lie algebra AC(1,n) of the group
C(1,n) has as its basis the generators of pseudorotations J, g, the translations P,, the
nonlinear conformal translations K, and the dilatations D, where o, 6 =0,1,...,n.
These generators satisfy the following commutation relations:

[Jags J~s] = GasIpy + 9y Jas — GarJps — 9psJars

[Paajﬂ’y] :gaﬁp'y*ga’ypﬂa [Ponpﬁ} :07 [KomJﬂ’y] :ga,@K'y*ga’yKﬂv
[KOMKB] :07 [D7Pa] :Pou [DaKOé] :_Ka7 [DvJOt,@] 207

[Ka, PB] = 2(gaﬁD — Jaﬁ)-

(1)

The pseudo-orthogonal group O(2,n+1) is the multiplicative group of all (n+3) x
(n+3) real matrices C satisfying C*Fs ,,41C = Es 11, where Fs 11 = diag[1,1, —1,
., —1]. We denote by I,; the (n+3) x (n+ 3) matrix whose entries are zero except
for 1 in the (a,b) position, with a,b =1,2,...,n+ 3. The Lie algebra AO(2,n+ 1) of
O(2,n + 1) has as its basis the following operators:

Mo =Ty -1z, Qay=—Iap+1Ipe (@a<b;a,b=3,...,n+3),
Qig = —Lig — Ia; (7':172a a:37"'7n+3)7
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which satisfy the commutation relations
[Qaba ch] = padec + pchad - pachd - pbanc (a7 b, c, d= 1,2,...,n+ 3)7

where (pap) = E2.n+1. Let us denote by Rg 11 the pseudo-Euclidean space of n + 3
dimensions with metric p,,. The matrices of the group O(2,n + 1) and the algebra
AO(2,n+1) will be identified with operators acting on the left on Ry ,,11. Then, with
this convention, O(2,n + 1) is the group of isometries of Rg 1.

It is known (see for instance Ref. [9]) that there is a homomorphism ¥ : O(2,n +
1) — C(1,n) with kernel {£FE,, 13}, where {E, 43} is the unit (n+3) x (n+3) matrix.
Thus we are able to identify O(2,n + 1) with C(1,n). This homomorphism of groups
induces an isomorphism f of the corresponding Lie algebras, f : AO((2,n + 1) —
AC(1,n), which is given by

fQar2,5+2) = Jap,  f(Qat2 — Qat2nrs) = Pa,
F(Qat2+ Qagonys) = Ka, [(Qins)=-D (o,6=0,1,...,n).

We shall in this article identify the two algebras, using this isomorphism, so that we
can write the previous equations as

Qa+2,[3+2 = Jaﬁa Ql,a+2 - Qoz+2,n+3 = Pom
Ql,a+2+Qa+2,n+3 = Ko, Ql,n+3 =-D (a < ﬁ; 047/620713-“7”)'

We shall use the matrix realization of the conformal algebra.

Each matrix C' which belongs to the identity component O;(2,n + 1) of the group
O(2,n + 1) is a product of matrices which are rotations in the 129 and x,x; planes
(a < b; a,b = 3,...,n+ 3) and hyperbolic rotations in the z;x, planes (i = 1,2;
a = 3,...,n + 3). Thus each such matrix C' can be given as a finite product of
matrices of the form exp X, where X € AO(2,n + 1). From this, it follows that each
inner automorphism of the algebra AO(2,n + 1) is a mapping

wc:Y - CYC™L, (2)

where Y € AO(2,n+ 1) and C' € O1(2,n + 1), and conversely each mapping of this
type is an inner automorphism of the algebra AO(2,n + 1).

In the process of our investigation mappings of the above type (2) will occur for
certain matrices C' € O(2,n + 1), so we call these types of mappings O(2,n + 1)-
automorphisms of the algebra AO(2,n + 1) corresponding to the matrix C.

If G is the group of O(2,n 4 1)-automorphisms of the algebra AO(2,n + 1), and
H is the subgroup of G consisting of its inner automorphisms, then H is normal in
G and [G : H| < 4. Representatives of the cosets of G/H different from the identity
will be

C, =diag[~1,1,...,1,—1], Cy =diag[l,1,—1,1...,1], )
Cy =diag[-1,1,-1,1,...,1,—1],

or

Cy =diag[-1,1,...,1,-1,1], Cy=diag[l,1,—-1,1...,1],
Cs = diag[1, -1,-1,1,...,1,—1,1].
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Given a subspace V of Ry 41, there is a maximal subalgebra of AO(2,n + 1)
which leaves V' invariant. We call this algebra the normalizer in AO(2,n + 1) of the
subspace V.

Let Q1,...,Qn+3 be a system of unit vectors in Ry ,,11. Then the normalizer in
AO(2,n + 1) of the isotropic subspace (Q1 + Qn+3) is the extended Poincaré algebra

AP(1,n) = (Py, Py,...,P,) W (AO(1,n) & (D)),

where W denotes semidirect sum, and @ denotes direct sum of algebras; AO(1,n) =
(Ja,p:o,8=0,1,...,n). The normalizer in AO(2,n + 1) of the completely isotropic
subspace (Q1 + Qn+3, Q2 + Qni2) is the full Galilei algebra

AGa(n—1) = (M, P1,..., Pa1,G1,...,Gp1) W (AO(n — )& (R, S, T)®(2)),
where

M=P+P,, Gi,=Jdou—Jdan (a=1,...,.n—1), R=—(Jon+ D),

5:%(K0+Kn), T:%(PO—P,,), Z = Jou - D.

The generators of the algebra AG4(n — 1) satisfy the following commutation rela-
tions:

Jabs Jed] = Gadve + Gvedad — Gacvd — Gvadac;  [Ga, Joc] = gavGe — GacGr,
Py, Joe] = gavPe = Gac Py [Ga, Gol =0, [Po, Go] = M, [Ga, M] =0,
P, M) =0, [Jw,M]=0, [R,S]=2S, [RT]=-2T, [T,S]=R,

zZ R] = [Z,S] = [ZvT]: [Zvjab] =0, [RvGa} = Gq, [Rvpa} =P,
R,M] =0, [R,Jw)=0, [S,Gs=0, [S,P]=-G, [S,M]=0,

S, Ju) =0, [T,G.) =P, [T,P,)=0, [T,M]=0, [T,Juw=0,
Z,Gy)=—-Gq, [Z,P)=—-P,, [Z,M]=-2M,

with a,b,c,d=1,...,n— 1.
From these commutation relations we find that

(R,S,T) = ASL(2,R), (R,S,T) & (Z) = AGL(2,R),

where R denotes the field of real numbers.

Let F be a reducible subalgebra of AO(2,n + 1). That is, there exists in Rg 41
a nontrivial subspace W which is invariant under F'. If W is isotropic, then there
exists a totally isotropic subspace Wy C W which is invariant under F'. Since dim W
is 1 or 2, then, by Witt’s theorem [14] there exists an isometry C' € O(2,n + 1) such
that CW, is either (Q1 + Qni3) or (Q1 + Qni3, Q2 + Qni2). Taking into account
that the matrices (3) do not change these subspaces and represent all the components
of the group O(2,n + 1) different from the identity component O;(2,n + 1), then
we may assume that the above C lies in O1(2,n + 1), the identity component. Thus
there exists an inner automorphism ¢ of the algebra AO(2,n + 1) such that either
o(F) C AP(1,n) or p(F) C AG4(n —1).

If W is a nondegenerate subspace, then, by Witt’s theorem, it is isometric with
one of the following subspaces: Ry 5 (k > 2), Ry i (K > 1), Ry (k > 1). Each of the
isometrics (3) leaves invariant each of these subspaces, so that we may assume that the
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isometry which maps W onto one of these subspaces belongs to O (2, n+1). From this,
it follows that a subalgebra F' is conjugate under the group of inner automorphisms
of the algebra AO(2,n + 1) to a subalgebra of one of the following algebras:

(1) AO0'(L,k)® AO"(1,n—k+1),
where AO'(1,k) = (Qup 1 a,b=1,3,...,k+2) and
AO"(I,n—k+1)=Qw:a,b=2k+3,...,n+3) with n>3
and k=2,...,[(n+1)/2];

(2) AO(2,k)® AO(n —k+1), where
AOn—k+1)={(Qup:a,b=k+3,...,n+3) with £k=0,1,...,n.

In order to classify the subalgebras of these direct sums it is necessary to know
the irreducible subalgebras of algebras of the type AO(1,m) (m > 2) and AO(2,m)
(m > 3). It has been shown in Ref. [15] that AO(1,m) has no irreducible subalgebras
different from AO(1,m). In Refs. [16] and [17] it has been shown that every semisimple

irreducible subalgebra of AO(2,m) (m > 3) can be mapped by an automorphism of
this algebra onto one of the following algebras:

(1) AO(2,m);
(2) ASU(1,(m/2)] when m is even;
(3) (2 + V313 + Qos, — Qs + Qog — V323, Q12 — 2Q5) when m = 3.

It follows then that when m > 3 is odd, the algebra AO(2,m) has no irreducible
subalgebras other than AO(2,m). If m = 2k and k > 2, then, up to inner automor-
phisms, AO(2,m) has two nontrivial maximal irreducible subalgebras: ASU(I, k) @
(YY), and ASU(l, k) @ (Y'), where

Y =diaglJ,...,J], Y'=diag[J,~J,J...,J]
with
0 -1
=(17%):
We note that a subalgebra L of AG4(n—1) is conjugate under Ad AO(2,n+1) with
a subalgebra the algebra AP(1,n) if and only if the projection of L onto AGL(2,R) =

(R,S,T) ® (Z) is conjugate under Ad AGL(2,R) with a subalgebra of the algebra
(R,T, 7).

3 Conjugacy under Ad AP(1,n) of subalgebras
of the Poincaré algebra AP(1,n)

The Poincaré group P(1,n) is the multiplicative group of matrices

(0 7)
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where A € O(1,n) andY € R,,1. Let I, a,b=0,1,...,n+1 be the (n+2) x (n+2)
matrix whose entries are all zero except for the ab-entry, which is unity. Then a basis
for AP(1,n) is given by the matrices

! ! / ! ! !
JOll = _IOa - IOa7 Jab = —1gp + Iba7 PO = IOA,n+17 Pa = Ia,n+17

with @ < b; a,b=1,...,n. These basis elements obey the commutation relations (1).
It is sometimes useful in calculations to identify elements of AO(1,n) with matrices
of the form

0 Bor  Boz - Pon
Bor 0 Bz - Bin
X=| Bo2 P2 0 - By
ﬁOn 7ﬁ1n *6277, e 0
and elements of the space U = (Py,...,P,) are represented by n + 1-dimensional

columns Y. In this case, we take

1 0 0

0 1 0
POZ . ) P1: . ) 7P’I’L:

0 0 1

and with this notation it is easy to see that [X,Y] = XY. We endow the space U
with the metric of the pseudo-Euclidean space R; ,,, so that the inner product of two
vectors

Lo Yo

L1 Y1

Tn Yn
is Zoyo — 1Y1 — -+ — Tnyn. The projection of AP(1,n) onto AO(1,n) is denoted
by &. We also note that AO(n), contained in AO(1,n), is generated by Jup (a < b;
a,b=1,...,n).

Let B be a Lie subalgebra of the algebra AO(1,n) which has no invariant isotropic
subspaces in Ry ,,. Then B is conjugate under Ad AO(1,n) to a subalgebra of AO(n)
or to AO(1,k) ® C, where k > 2 and C' is a subalgebra of the orthogonal algebra
AO'(n — k) generated by the matrices Jyp (a,b =k +1,...,n). In the first case, B is
not conjugate to any subalgebra of AO(n — 1).

Proposition 1. Let B be a subalgebra of AO(n) which is not conjugate to a subalgebra
of AO(n —1). If L is a subalgebra of AP(1,n) and é(L) = B, then L is conjugate to
an algebra W W C, where W is a subalgebra of (Py,..., P,), and C is a subalgebra of
B ® (Py). Two subalgebras W1 W C1 and Wo W Cy of this type are conjugate to each
other under Ad AP(1,n) if and only if they are conjugate under Ad AO(n).

Proof. The algebra B is a completely reducible algebra of linear transformations of
the space U and annuls only the subspace (Py) (other than the null subspace itself).
Thus, by Theorem 1.5.3 [9], the algebra L is conjugate to an algebra of the form
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WwWC where W C (Py,...P,) and C C B® (F). Now let W1 W, and Wo W Cy be of
this form, conjugate under Ad AP(1,n). Then there exists a matrix I' € P;(1,n) such
that opr (W7 W Cq) = Wo W Co, and from this it follows that ¢, (B;) = By for some
A € 01(1,n). Let V = (P1,..., P,). Since [B1,V] = V, then [Ba, pa(V)] = wa(V)
and o (V) = V. Thus we can assume that A = diag[1,A;] where A; € SO(n), so
that the given algebras are conjugate under Ad AO(n). The converse is obvious.
Proposition 2. Let B = AO(1,k) @ C, where k > 2 and C C AO'(n — k). If L
is a subalgebra of AP(1,n) and é(L) = B then L is conjugate to Ly @ Lo where
Ly = AO(1,k) or Ly = AP(1,k), and Lo is a subalgebra of the Fuclidean algebra
AFE'(n — k) with basis Py, Jop (a,b = k+1,...,n). Two subalgebras of this form,
Ly ® Ly and L & LY are conjugate under Ad AP(1,n) if and only if Ly = L} and Ly
is conjugate to LY under the group of E'(n — k)-automorphisms.

Proof. The proof is as in the proof of Proposition 1.

Lemma 1. If C € O(1,n) and C(Py + P,)) = A(Po + P,,) then A # 0 and

1+ 2231 +v?) i 1+ A%2(1—0?)
2\ Av'B 2
C= v B —v , (5)
_ 2 2 201 _ .2
1+ X1 +v%) \o' B 1+ X1 —v%)
2\ 2\

where B € B(n—1), v is an (n—1)-dimensional column vector, v* is the scalar square
of v and vt is the transpose of v. Conversely, every matriz C of this form satisfies
C(Py+ P,) =Py + P,).

Proof. Proof is by direct calculation.
Lemma 2. Let C € O(1,n) have the form (5), with A > 0. Then

C= dlag [17 Ba 1] exp[(i In )\)JO’IL] exp(fﬂlGl - ﬂn—lGn—l)a
where G = Joq — Jan and

B
=B lw.
ﬁnfl

Proof. Direct calculation gives us

cosh 0 0 sinh 6
exp(—0Jon) = 0 E,_1 0
sinh 6 0 cosh 6

and
1+— b —
+ 2 2
exp(—01G1 — -+ — Bp_1Gn_1) = b E,.1. —b ;
2 2
b_ bt 1— b_
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where b= (831, ...,8,_1)". On putting Aexp 6 we have

A+1 A2 -1
coshf = o sinh 6 = o
Since we have
A2 41 A2 -1 b? . b’
14— Z
2A 0 22X * 2 b 2
0 E, 4 0 b E, 1 -b =
A2 -1 2 1 2 2
o 2t v Bo1- 2
22X 2 2 2
1+ X\2(1+b?) N —1+ 221 -b?)
2\ 2\
= b Enfl _b ’
—1+X\2(1 4 b%) N 14+ A%(1 - b?)
2\ 2\
then
exp(—0Jon) exp(—B1G1 — -+ — fr_1Gn_1) = diag[1,371,1]C
from which it follows directly that
C= dla‘g [17 B7 1] eXp[(_ In )‘)JOn] eXp(_ﬁlGl - 671—1Gn—1)

and the lemma is proved.
The set of F' of matrices of the form (5) with A > 0 is a group under multiplication.
The mapping

AB v

c— ( b )
is an isomorphism of the group F' onto the extended Euclidean group E(n —1). Thus
we shall mean the group F' when talking of the extended Euclidean group, and the
connected identity component Fi(n — 1) will be identified with the group of matrices
of the form (5) with A > 0 and Bsin SO(n — 1). From Lemma 2 it follows that the
Lie algebra AF of the group F is generated by the basis elements J,p, Ga, Jon (@ < b;
a,b=1,...,n—1).
Lemma 3. If C € O:(1,n) and C(Py + P,) = APy + P,) then X > 0 and B €
SO(n—1) in (5).
Proof. Since

1+ 2%(1 +v?)

2

then we have A > 0. From Lemma 2, diag[1, B, 1] € O1(1,n), so that det B > 0. Thus
B € SO(n — 1) and the lemma is proved.

Lemma 4. If C € O(1,n) and +C ¢ E(n —1) then C = £A;C" Ay where Ay, As €

E(n—1) and ¢’ = diag|l,...,1,—1].

>0,
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Proof. We can choose a matrix A € O(n—1) so that AC(Py+P,) = aPy+ 6P ++vP,
where a2 — 32 — 42 = 0. If B # 0 then a — v # 0. Let § = 3/(ac — 7). Then,
a—7
exp(GGl)(aPo + ﬁpl + ’)/Pn) = T(PO — Pn)

and so there exists a matrix ' € E(n — 1) such that TC(Py + P,) = A(Py + P,) or
IC(Py + P,) = AM(Py — P,). In the first case, £I'C' € E(n — 1), so that then we have
+C ¢ E(n— 1), which is impossible. In the second case, C'T'C(Py+ P,,) = A(Po+ Py).
For A > 0 we find C'I'C' € E(n — 1). Put C'TC = Ay, T = A7, Then C = A;C’ As.
If A < 0 then we put —C'T'C' = A, in which case C = —A;C’ As, and the lemma is
proved.

Lemma 5. If C € O1(1,n) and C & El(n — 1), then C = D1QDs, where Dy, Ds €
Ey(n—1), and Q = diag[1,—-1,1,...,1,—1].
Proof. If +C € E(n — 1), then C(Py + P,) = v(Py + P,). By Lemma 3, v > 0 and
C € Ey(n—1), which contradicts the assumption. Thus, +C ¢ E(n—1). By Lemma 4,
C = +A,C’ Ay. From this it follows that C = D;I'Dy, where Dy, Dy € F; (n—1), and
F is one of the matrices +C”, Q. However, I' € O;(1,n), since I' = D;'C Dy, find
from this it follows that I' = @). The Lemma is proved.

Direct calculation shows that the normalizer of the space (Py + P,) in AO(1,n)
is generated by the matrices Go, Jap, Jon (a,b = 1,...,n — 1), which satisfy the
commutation relations

[Gau ch} = gach - gacha [Ga7 Gb] = 07 [le J()n] = Ga'

This means that the normalizer of the space (Py + P,) in the algebra AO(1,n) is the
extended Euclidean algebra

AE(TL — 1) = <G1, e ,Gn_1> (] (AO(TL - 1) D <J0n>)

in an (n—1)-dimensional space, where the generators of translations are G1,...,Gp_1
and the generator of dilatations is the matrix Jy,.

Let K be a subalgebra of AP(1,n) such that its projection onto AO(1,n) has an
invariant isotropic subspace in Minkowski space R; ,,. The subalgebra K is conjugate
under Ad AP(1,n) with a subalgebra of the algebra A = AG1(n — 1) W (Jp,,) where
AG1(n—1) is the usual Galilei algebra with basis M, T, P,, G4, Jap (a,b=1,...,n—
1),and M =Py+ P,, T =1(Py— P,).

Proposition 3. Let Ly and Ly be subalgebras of A, with L1 not conjugate under
Ad A to any subalgebra having zero projection onto (Gi,...,Gn_1). If o(L1) = La
for some ¢ € Ad AP(1,n), then there exists an inner automorphism 1 of the algebra

Proof. Since Ad A contains automorphisms which correspond to matrices of the form

exp <Z a7P7> (6)

and since P(1,n) is a semidirect product of the group of matrices of the form (6)
and the group O(1,n) of matrices of the form diag[A, 1], then we may assume that
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¢ = pc with C € O1(1,n). If C & Ey(n —1), then by Lemma 5, C' = D;QD,. In that
case we find that

(D1QD2)é(L1)(D3 ' QDY) = £(La),
whence

Q(D2(L1)D5")Q = Dy é(La) Dy (7)
However,

Joa + Jan, when a # 1,

QG.Q = Q(Jog — Jun)Q = { —(Jo1 + J1n), whena=1.

This means that QG,Q & A. Because of this, the left-hand side of (7) does not belong
to A, whereas the right-hand side of (7) is a subalgebra of .A. This then implies that
we must have C' € Fj(n — 1) and thus we have ¢(L;) = Ly for some ¢ € Ad A.

Proposition 4. Let A be a Lie algebra with basis Py, P,, Pn, Jap, Jon (a,b =
1,...,n—1) and let Ly, Ly be subalgebras ofA such that at least one of them has a
nonzero projection onto {Jon). If ¢(L1) = Lo for some ¢ € Ad AP(1,n), then there
exists an inner automorphism ¢ € A so that either ¥(L1) = Ly or ¢(L1) = po(Ls)
where @ = diag[1,—-1,1,...,1, —1].
Proof. As in the proof of Proposition 3, we may assume that ¢ = ¢ where C' €
O1(1,n). We shall also assume that the projection of Ly onto (Jy,) is nonzero. If
C € FEy(n—1) and C ¢ O1(n — 1) then the projection of the algebra o(L;) onto
(G1,...,Gpn—1) is nonzero, and hence the projection of Lo onto (Gi,...,Gp_1) is
nonzero, which contradicts the assumptions of the proposition. Thus, if C' € F; (n—1)
then p € Ad A.

Let C & E4 (n —1). By Lemma 5, C' = D1QD2 where Dy, D5 € El(n —1). Then
©(L1) = Lo can be written as

vQ(op,(L1)] = ¢p-1(L2).

If Dy & O;(n — 1) then the projection of pp, (L) onto (Gy,...,Gy_1) is nonzero and
hence ¢g[¢p,(L1)] does not belong to A. But then Pp-1 (Lo) is also not in A. This is
a contradiction. Thus Dy, Dy € O1(n — 1). From this it follows that ¢ (¥(L1)) = Lo
where ¥ = @pp is an inner automorphism of the algebra A. This proves the proposition.
Proposition 5. Suppose 2 < m <n—1. Let F be a subalgebra of the algebra AO(m)
which is not conjugate under Ad AO(m) to a subalgebra of AO(m — 1), and let L be
a subalgebra of (Py, Py,..., P,) W F such that &(L) = F. Then L is conjugate to an
algebra WW K, where W is a subalgebra of (P, ..., Pp) and K is a subalgebra of F @
(Po, Prt1y - - -, Py). Two subalgebras Wi W Ky and Wo W Ko of this type are conjugate
under Ad AP(1,n) if and only if there exists an automorphism ¢ € Ad AO(m) X
Ad AO(1,n —m) such that YW1 W K1) = Wa W Ky or (W1 W K1) = Q(Wa W K2)Q
where

AO(L,n—m) = (Jap:0a,F=0,m+1,...,n)
and Q = diag[1,-1,1,...,1,—1].
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4 Conjugacy of subalgebras of the extended Poincaré
algebra AP(1,n) under Ad AC(1,n)

Lemma 6. If C € O(2,n+ 1) and C(Q1 + Qny3) = MQ1 + Qny3) then X # 0 and

14+ A2(1 —v?) . —1 4+ A2(1 +v?)
STANVTY ) ZotE,.B S TAVTE )
2 A B 2\
C= v B —v , (8)
-1+ 22(1 —v?) . 14+ A2(1 +v?)
AV TY ) wiE B A TY)
2 AV B 2
where B € O(1,n), By, = diag[l,—1,...,—1], v is an (n + 1) x 1 matriz and v*

is its scalar square in Ry ,. Conversely, every matriz C' of the form (8) satisfies the
condition C(Q1 + Qn43) = MQ1 + Qn43).

Proof. Direct calculation.

Lemma 7. Let C € O(2,n+ 1) have the form (8), with A > 0. Then

C = diag[1, B, 1] exp[(In \) D] exp(—Bo Py — 1Py — -+ — BuPy),
where
Bo
B

Proof. The proof of Lemma 7 is similar to that of Lemma 2.

The mapping

AB v
f:C’—><O 1)

is a homomorphism of the group of matrices (8) onto the extended Poincaré group
]5(1, n). The kernel of this homomorphism is the group of order two, {—Fy, 13, Ent3}.
Let us denote by H the set of matrices of the form (8) with A > 0. Then f is an
isomorphism of H onto P(1,n). For this reason we shall, in the remainder of this
article, mean the group H when referring to ]5(1, n). Its Lie algebra is the extended
Poincaré algebra AP(I, n) given in Section 2.

Lemma 8. Let C € O1(2,n + 1) and let it be of the form (8) with X\ > 0. Then
B € Bi(1,n).

Remark 1. Note that when A < 0 it is possible that B does not belong to O1(2,n+1).

Lemma 9. If C € O1(2,n+ 1) and £C ¢ P(1,n) then either C = £A,QA; or C =
A1 F(0)As, where A1, A € P(1,n), Q =diag[l,...,1-1] and F(0) = exp[(6/2)(Ko+
Py + K, — P,)].

Proof. There exists a matrix AP(1,7) such that

AC(Q1 + Qnis3) = a1 Q1 + a2Q2 + a3Qryo + aQnys,
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where of + a3 — a3 — a? = 0 and azaz > 0. If a; # ay4 then, as in the proof of
Lemma 4, we obtain that

exp(Bo Lo + BnPn)AC(Q1 + Qny3) = v(Q1 £ Qny3)

for some real numbers 3y, 3,, 7. From this it follows that

Lexp(BoLo + BnPn)AC(Q1 + Qnt3) = MQ1 + Qn+3),
where A > 0 and I' = +FE, ;3 or I' = £@Q). By Lemma 6 and Lemma 7, we obtain
Texp(BoPo + BnPn)AC = A, Ae I:’(l, n).

Since +C' ¢ P(1~, n), then I' = +Q, and so C' = +A4;QA,, where A; = A~ exp(—Bo P
_677/Pn)7 A2 = A
If @1 = ay, then also ay = ag3. It is easy to verify that

F(O)AC(Q1 + Qnys) = (o cosf + azsin0)(Q1 + Qnis) +
+ (OLQ cosf — a1 sin 0)(@2 + Qn+2)-

If @1 = 0 then we put 6§ = (7/2), when a2 > 0 and 0 = —(7/2), when as < 0. If
ay # 0 then we let as cosd — apsinf = 0. In that case,
Qs

tanf = —, «ajcosf + assinf = aj cosf(1 + tan?0).
a1

‘We choose the value of 6 so that «; cos6 > 0. With this choice of 8 we have

F(O)AC(Q1 + Qnis) = A(Q1 + Qnys),
where A > 0. But then, as a result of Lemma 6 and Lemma 7, F(0)AC = A A e

P(1,n), and so C = A F(—0)As, where A; = A=, Ay = A. The result is proved.

Lemma 10. Let L; and Lo be subalgebras of AP(I, n) which are not conjugate under
AP(1,n) to subalgebras of AO(1,n) = AO(1,n) @ (D). Then L1, Lo are conjugate
under Ad AC(1,n) if and only if they are conjugate under Ad AP(Ln) or if one of
the following conditions holds:

(1) n is an odd number and there exists an automorphism ¢ € Ad AP(1,n) with
Y(Ly) = CoLoCyt (see Eq. (3) for notation);

(2) there exist automorphisms 1,1, € AP(1,n) with

Y1(L1) = F(0)[t2(L2)] F(=0).

Proof. Let CL;C~! = Ly for some C € O1(2,n + 1). By Lemma 9, we may assume
that £C € P(l,n) or that C' is one of the matrices +A41Q Az, A1 F(0)As (we use the
notation of Lemma 9) . If C' € P(1,n) then, by Lemma 8, C belongs to the identity
component of the group P(1,n) and thus ¢¢ is an inner automorphism of the algebra
A]s(l,n). Now suppose —C € p(l,n). Then by Lemma 7, C = —diag|[1, B, 1], where
B € O(1,n) and A € Pi(1,n). Thus we may assume that C' = —diag[1, B, 1]. From
this it follows that B € O1(1,n) for odd n and we have

diag[1,1,-1,1,...,1,1]B € O1(1,n)
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For even n this means that the algebras L,, Lo are conjugate to each other under
Ad AP(1,n) or that there exists an automorphism ¢» € Ad AP(1,n) such that 1 (L;) =
Oy LsCy

Let C' = £A4,QA,. Then C = T'; ATy with ', T’y € P(1,n) and A = +diag 1,1, 1,
..., 1,e9,—1] with 1,69 € {—1,1}. Clearly, A € 01(2,n+ 1). When C = 4,Q2 we
have ey =1, &5 = —1 and when C = —A1QAs, ¢1 =1, e = (—1)™. Since

AP,A"' =+K,, AP, A"'=4K,

with @ < n, then from I‘fngI‘l = A(I‘ngf‘gl)A*1 it follows that the algebra
FfngFl has a nonzero projection onto (Ko, K1,..., K,), which is impossible. Thus
the matrix C' is different from +A;QAs.

Now let C' = A1 F(0)As. If T is one of the matrices (4), then TF(0)I'~! = F(+0),
so that

C = A\ F(0)A)A,

where A}, A, € P(1,n) and A = E or A is one of the matrices (4). Since A can be
represented as a product of matrices in O1(2,n), then the last case is impossible, and
we have proved the Lemma.

Theorem 1. Let L1 and Lo be subalgebras of AIB(I, n) which are not conjugate under
AP(1,n) to subalgebras of AO(1,n) and such that their projections onto AO(1,n)
have no invariant isotropic subspace in Ry ,,. The subalgebras L1 and Ly are conjugate
under AdAC(1,n) if and only if they are conjugate under Ad AP(1,n) or when there
exists an automorphism ¥ € Ad AJB(I,n) such that (L1) = CyLoCyt, where Co =
diag[1,1,-1,1,...,1].

Proof. By Lemma 10 we may assume that ¢1(L;) = F(0)[t2(L2)]F(—0) for some
Y1,y € AP(l,n). Under the given assumptions, the projection of 1)s(L2) onto
AO(1,n) contains an element of the form

n—1 n—1
X = Z(OleOb + o) + Z Tve e,
b=1 b,c=1

where oy # —, for some ¢ (1 < g <n—1). Since
F(0)JogF(—0) = Jogcos 0 + %(Kq + P,)sin@
and
F(0)JynF(—0) = Jpqcosf + %(Kq — P,)sinf
we have that F'(6) X F'(—6) contains the term
F(0)[agdog + Yqdgn) F(—0) = (agJog + Vg Jgn) cos 0 +
+ %[O‘q(Kq + Py) +7q(Kq — Py)]sin

and from this it follows that (og + 74)sin€ = 0 so that sin# = 0. But then 6 = mx.
When m = 2d we have F(0) = E,,+3. When m = 2d + 1 then F(0) = diag[-1,—1,
E,_1,—1,—1]. However,

F(0)[42(L2)]F(=0) = (=F(0))[2(La2)) (- F(=0))
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from which it follows that we may assume that ¢ (L;) = C[p2(L2)]C~t where C =
diag[1,1,—FE,_1,1,1]. If n is odd, then ¢¢ is an inner automorphism of AP(1,n).
If n is even, then ¢, pc is an inner automorphism of the algebra Ap(l,n). In the
first case, 13(L1) = Lo where 13 = w;lwalwl is an inner automorphism of the
algebra AP(1,n). In the second case, (L) = ¢, (L2) for some 1) € Ad AP(1,n).
The theorem is proved.

Theorem 2. Let Ly and Lo be subalgebras of AO(l,n) having no invariant isotropic
subspaces in Ry ,. The subalgebras Ly, Lo are conjugate under Ad AC(1,n) if and

only if they are conjugate under Ad AO(l,n) or when there exists an automorphism
Y € Ad AO(1,n) such that ¢(Ly) = CLyC~! where C is one of the (n+3) x (n + 3)

matrices
diag[1,1,-1,1,...,1], diag[l,...,1,-1], diag[l,...,1,—1,-1].

We note that AO(1,n) C AO(2,n+ 1) and that the matrix C'is (n +3) x (n + 3).

5 Subalgebras of the full Galilei algebra
Lemma 11. Let C € O(2,n+ 1) and W = (Q1 + Qn13,Q2 + Quni2). If CW =W,
then

C =expl0(S +T)]diag[1,¢, K, ¢, 1] exp(aR + BZ) x

n—1 n—1

9

X exp (Z %-GZ) <5M + AT+ ZMH’) ) )
i=1 i=1

where e = £1, K € O(n —1).
Proof. We have

C(Q1 + Quysz) = a1(Q1 + Qny3) + a2(Q2 + Qny2)
and so

F(—=0)C(Q1 + Qn+3) = (a1 cosf — azsin0)(Q1 + Qn+3) +
+ (azcos0 + a1 sin0)(Q2 + Qn2).

If a3 = 0 then we put § = (37/2) when ay > 0 and 6 = (7/2) when as < 0. If a3 # 0
then we put a;q sinf + s cos @ = 0 and then tand = —as /@y and aq cosf — s sinf =
ay cosf(1 + tan? §). We choose 6 so that oy cosf > 0. For this choice of § we have
F(-0)C(Q1 4+ Qnis) = &(Q1 + Qnys), where £ > 0. Using Lemma 7, we obtain

F(-0)C = A =diag|[l, B, 1]exp([ln&]D exp( Z/Bz z> € P(1,n),

where B € O(1,n). Then C = F(0)A. The matrix A has the form (8). Direct calcula-
tion gives

n+1

A(Q2+ Qi) = a(Q1 + Quys) + BQ2 +1Qniz + Y 5iQ.

=3
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From this it follows that

F(0)A(Q2 + Qni2) = (acosf + Bsinf)Qq + (—asind + Scos§)Qa +
n+1

+ (ycosl — asin®)Q,i2 + (ysin€ + acos0)Qpy3 + Z 0;Q;.
i=3

Now we have F(0)A(Q2 + Qnt2) € W, from which we have
acos+ Bsinf = ysinf + acosf, —asinf + fcosf =ycosf — asinb
and so we conclude that 8 = and §; =0, j =3,...,n+ 1. But in that case we have

diag [1, B, 1](Q2 + Qn+2) = B(Q2 + Qni2).

By Lemma 2, we have

n—1
+B =diag[1, K, 1] exp[(— In|3]) Jon] exp (Z ’inZ) )

i=1

where K € O(n — 1). We note that

1 1
Ko+Py—K,—P,=2(S+T), JOn:§(Z—R), D=—§(Z+R),
1
)

The lemma is proved.
Lemma 12. Let C € 01(2,77, + 1) and W = <Q1 + Qn+3,Q2 + Qn+2>. Ifcw=w
then the matriz C has the form (9) withe =1 and K € SO(n —1).

Proof. From the conditions of Lemma 1 1 and the fact that we ask for C € O1(2,n+1),
it follows that diag[l,e, K,e,1] € O1(2,n + 1). It follows now that £ > 0 and that

1
Py (M+2T), P,= §(M —2T), [D,G,) =0, [D,Jo]=0.

K 0

OE>O

and thus we have € = 1 and | K| > 0, whence K € SO(n — 1). This proves the lemma.

The matrices of the form (9) with e =1 and K € SO(n — 1) form a group under
multiplication, which we denote by G4(n — 1) since its Lie algebra is the full Galilei
algebra AG4(n — 1). It is easy to see that G4(n — 1) C O1(2,n + 1).

Lemma 13. If C € O1(2,n + 1) but C &€ Gy4(n — 1), then C = AT Ay, where
A1, As € G4(n— 1) and T is one of the matrices

ry =diag[l,...,1,-1], Ty =diag[l,1,-1,1,...,1,-1,1]. (10)
Proof. Let
n+3
C(Q1+Qnis) = ) i@, af+aj—af—---—ajh,3=0.
=1

There exists a matrix A = diag[1,1, A, 1,1] with A € SO(n — 1) such that AC(Q1 +
Qn+3) does not contain Q4, . .., Qn+1. Hence we may assume ai+af—a2, ,—a2, 3 =
0.
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Since
1
S+T: §(KO+PO+Kn_Pn) :Ql2+Qn+2,n+37

then, up to a factor exp[f(S+T')], we may suppose that aq # 0, ag = 0. If af = a2 4
then ag = 0, a2 = 0. Assume a; # a,,43. As in the proof of Lemma 4, we find that

exp(B1P1 + B2 P2)(a1Q1 + a3Q3 + any2Qni2 + ani3Qnis) =
= O/lQl + O‘;L+3Qn+35

where of — /2, 3 = 0. Thus there exists a matrix A; € G4(n — 1) such that

ATTC(Q1 + Quys) = ¥(Q1 £ Quya),
AT'O(Q2 4 Qni2) = 61Q1 + 62Q2 + 33Q5 + 04Q 2 + 05Qn 3.

Since the pseudo-orthogonal transformations preserve the scalar product, it follows
that the right-hand sides in (11) are also orthogonal, which implies that v(6; Fd5) = 0
so that 05 = £4d;. If d3 # 04 then multiplying the left- and right-hand sides in (11) by
exp(6G1) does not change the right-hand side of the first equality, and allows us to
eliminate d3 by transforming it into 0. If 65 = d4, then one easily deduces that 3 = 0.
Thus we may assume that d3 = 0. But then we have §, = £d5 because d; = £4; and
5% 462 — 52— 62 = 0.

Let W = (Q1 + Qni3, @2 + Qni2). The above reasoning implies that for some
matrix A; € G4(n—1) we have TAT'CW = W where T is one of the matrices (10). The
fact that TA;'C € O1(2,n 4 1) implies, using Lemma 12, TA;'C = Ay € G4(n —1).
Thus C = A;T"A5 and the lemma is proved.

Lemma 14. The subalgebras Ly and Ly of AG4(n—1) are conjugate under AAAC(1,n)
if and only if they are conjugate under Ad AG(n — 1) or if there exist automorphisms
1, o in Ad AG4(n — 1) with 1(L1) = T[tha(L2)]T L, where T is one of the matri-
ces (10).

Proof. The result follows immediately from Lemma 13.

(1)

In the following table we give the action on the full Galilei algebra AG4(n — 1) of
the automorphisms where

Cy = exp (g(S —|—T)) , Cs=exp(n(S+T))

(see (3) and (10) for the notation).

Theorem 3. Let L1 and Lo be subalgebras of AG4(n — 1) which are not conjugate
under Ad AG4(n — 1) with subalgebras of

<M7T7P17"'3Pn71>®(AO(n_ 1)®<D7J0n>
and
AO(n —1)® (S +T,Z).

Then the subalgebras L1 and Lo are conjugate under Ad AC(1,n) if and only if they
are conjugate under Ad AG4(n — 1).
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Table 1. Action of automorphisms on elements of AG4(n — 1) for n > 2.

Element of

AGa(n —1) or, pr, wc, wey pcs Restrictions
Py K —Py -Pr -Gy -P
P, K, P, -P, -G, -P, a=2,...,n—1
M Ko — K, 2T —M M M
G Jor + Jin  —(Jor +Jin) Gi P —-G1
Ga Joa + Jan Joa + Jan G P, -G, a=2,...,n—1
J1a J1a —J1a J1a J1a Jia a=2,....,n—1
Jab Jab Jab Jab Jab Jab a,b=2,...,n—1
R —R Z R —-R R
S T 1(Ko—Kn) -8 T S
T S M -r S T
Z -7 R Z Z Z

Proof. If the subalgebras L; and Ly are conjugate under Ad AG4(n—1) then they are
conjugate under AdAC(1,n). Now suppose that they are conjugate under AdAC(1,n).
In order to prove their conjugacy under Ad AG4(n — 1) it is sufficient (by Lemma 14)
to show that for an arbitrary ¢ € Ad AG4(n — 1) and for each matrix I of the form
(10), the subalgebra I'y)(L1)['~* either equals ¢)(L1) or is not contained in AG4(n—1),
for then the only possibility is that they are conjugate under Ad AG4(n — 1).

If the projection of ¥(L;) onto (Gy,...,Gr—1) is nonzero, then, using Table 1, the
subalgebra I'y(L1)[' ™! contains an element Y whose projection for some a, 1 < a <
n—1 onto (Joa, Jan) is of the form A(Joq+Jan) with A # 0. If T (L1)T ! € AG4(n—1),
then the projection of Y onto (Joa, Jurn) would have the form p(Joq — Jarn) which would
imply A = 4 = —pu = 0, an obvious contradiction.

Now let the projection of ¥(L1) onto (G1,...,Gp_1) be zero. Denote by 7¢(L1)
the projection of ¢(Ly) onto (R, S,T). If 7¢)(L1) = (R, S, T), then (R, S, T) C ¢(L1).
From this it follows that T'29»(L;)T'; " is not a subset of AG(n—1). If we assume that
Ty9(L1)TT! ©€ AG4(n — 1), we obtain, from Table 1, that the projection of (L)
onto (Py,...,P,, M) is zero, and consequently we have either ¢/(L;) = (R, S,T) or
Y(Ly) = (R,S,T) @ (Z). In this case, T'19(L1)T7" = (Ly). If 7p(Ly) = (R +
aS, T+ B3S), with o # 0, then T'oth(L1)T5 ! is not contained in AGy(n —1). If we had
Ty9(L1)TT! € AG4(n — 1), then the projection of ¥)(L;) onto (Py, ..., Py, M) would
be zero. But then ¢(L;) would be conjugate under Ad AG4(n — 1) with a subalgebra
of AO(n — 1) ® (R,T,Z), which contradicts the assumptions of the theorem. The
theorem is proved.

Theorem 4. Let L1 and Lo be subalgebras of the algebra
L=(M,T,P,...,P,_1)W (A0(n — 1) ® (D, Jon))

having nonzero projection on (Jo,) and (D) and are not conjugate under Ad L with
subalgebras of the algebra (M, T) W (AO(n — 1) & (D, Jon)). Then Ly and Lo are
congugate under Ad AC(1,n) if and only if they are conjugate under Ad L or if there
exists an automorphism 1 € Ad L such that 1)(L1) = ALoA~! where A is one of the
matrices s, Cs, T'2C5 (see Table 1).

Proof. If 1) € Ad AG4(n — 1), then ¥ = ¢ where C is a matrix of the form (9). By
theorem IV.3.4 of Ref. [9], the subalgebra L; is, up to an automorphism of Ad AG4(n—
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1), one of the following algebras:

(1) (U1 +Uz+Us)WF, where Uy C (M), Us C(T), U3 C(Py,...,Pn_1)
and F C AO(n—1) @ (D, Jon);

(2) (U 4+ U)W F, where Uy C(T), Uz C(P1,...,Pn_1)
and F is a subalgebra of AO(n —1) ® (R, M);

(3) (Uh +Uz)WF, where Uy C (M), Uy C(Py,...,Py_1)
and F is a subalgebra of AO(n—1)® (Z,T).

By assumption, the projection of L; onto (Py,..., P,_1) is nonzero.

If ¢(Ly) = Lo, then in formula (9) # = 0 or # = 7 because for other values
of 6 the projection of (L1) onto (Gy,...,G,—1) is nonzero. For this reason, v; =
«vo =1 = 0and so ¢ € AdL or pc,%0 € AdL. Let there be automorphisms
1,12 € Ad AG4(n— 1) with T'y1 (L1)T" = 12(L2) where I is one of the matrices (10).
If Ad L did not contain 11 and ¢c, 11, then the projection of ¢4 (L) on (G, ..., Gp_1)
would be nonzero, and so, by Table 1, ¢2(L2) would not be in AG4(n—1). Thus 9; or
e, belongs to Ad L for each j = 1,2. For I' = T'y the projection of I'y (L1 )" onto
(K1,...,K,_1) is nonzero, so we have I' = T's. In this case T'to(Lo)T' = ¢4 (T'LoT).
Using Lemma 14, the theorem is proved.

In a similar way, one proves the following results.

Theorem 5. Let B be a subalgebra of the algebra
N = <M7P17~'-3Pn—1> L‘!‘J(AO(TL— 1) D <D7T>)

and let B have nonzero projection onto (D). Then B is conjugate under Ad AC(1,n)
to the algebra

F=W, &W,) s E, (12)

where E is a subalgebra of the algebra AO(n—1)& (D), Wi C (Py,...,Py_1) and Wy
is one of the algebras 0, (Py), (Prn), (Pn), (Po, Pn). If Wo = (P,,), or Wy = (Py, Py,)
then the subalgebra W1 W E is not conjugate under Ad AO(n — 1) with any subalgebra
of (P1,...,Ph_2) W (AO(n — 2) @ (D)). Subalgebras Fy, Fy of the type (12) of the
algebra N with nonzero projection onto (D), which are not conjugate under AdN to
subalgebras of (M, T) W (AO(n — 1) & (D)), will be conjugate under AC(1,n) if and
only if they are conjugate under Ad L or when there exists an automorphism ) € Ad L
with (Fy) = ToFyT'y ! (see (10)), where L = AO(n — 1) (we consider Ad AO(n — 1)
to be a subgroup of Ad AC(1,n)).

Theorem 6. Let B be a subalgebra of the algebra
N = <M7P1,...,Pn,1> (] (AO(’H,— 1) D <J0n,T>)

and let B have nonzero projection onto (Jo,). Then B is conjugate under Ad AC(1,n)
with the algebra

F=WWE, (13)

where E is a subalgebra of the algebra (P, ..., Py_1) W (AO(n — 1) ® (Jon)) and W
is one of the algebras 0, (M), (Py, P,). Let L = N W (D). Subalgebras Fy, F» of the
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type (13) of the algebra N which are not conjugate under Ad N with subalgebras of
the algebra (M)W (AO(n —1) ® (Jon, T), will be conjugate under Ad AC(1,n) if and
only if they are conjugate under Ad L or if there exists an automorphism ¢ € Ad L
with (F1) = AFo A= where A is one of the matrices I'a, Cs, T'9Cs5 (see Table 1).

Theorem 7. Let L1, Lo be subalgebras of the algebra L = (M,S+T,Z) ® AO(n—1)
which have nonzero projection onto (S + T). The algebras L1 and Lo are conjugate

under Ad AC(1,n) if and only if they are conjugate under Ad L or if there exists an
automorphism 1) € Ad L such that (L1) = T'1LyI'7* (see Table 1).

6 Subalgebras of AC(1, 3)

We recall that in this article the conformal algebra AC(1, 3) is realized as the pseudo-
orthogonal algebra AO(2,4). It turns out that it is convenient to divide the subalgeb-
ras of AO(2,4) into seven classes:

(1) subalgebras not having invariant isotropic subspaces in Ry 4;

(2) subalgebras conjugate to subalgebras of AG1(2);

(3) subalgebras conjugate to subalgebras of AG1(2) W (Jys) and having nonzero
projection onto (Jy3);

(4) subalgebras conjugate to subalgebras of AP(1,3) but not conjugate to subalgeb-
ras of AG1(2) W (Jos);

(5) subalgebras conjugate to subalgebras of AG1(2)W (Jys, D) but not conjugate to
subalgebras of AG1(2) W (Jo3);

(6) subalgebras conjugate to subalgebras of AP(1, 3) but not conjugate to subalgeb-
ras of AG1(2) W (Jos, D);

(7) subalgebras conjugate to subalgebras of AG4(2) but not conjugate to subalgeb-
ras of AP(1,3).

Since subalgebras conjugate under Ad AC(1,3) are identified, we omit mentioning
conjugacy when referring to classes. So, for instance, we shall consider the second class
as consisting of subalgebras of AG1(2). In order to have a better survey of subalgebras
it is convenient to split the classes into subclasses corresponding to certain properties
of the projections of the subalgebras of a class onto the homogeneous part of the
algebra.

The division of the set of subalgebras of AC(1,3) into the classes (1)—(7) allows
us easily to construct the set of subalgebras of each of the algebras AG1(2), AP(1,3),
AP(1,3), AG4(2). Up to conjugacy under Ad AC(1,3) we have

(a) the set of subalgebras of AG1(2) coincides with class (2);

(b) the set of subalgebras of AP(1,3) is the union of classes (2), (3) and (4);

(c) the set of subalgebras of AP(1,3) coincides with the union of classes (2)(6);
(d) the set of subalgebras of AG4(2) is the union of classes (2), (3), (5), and (7).

We use the notation F' : Uy,...,U,, for Uy W F,... U, W F.
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A. Subalgebras not possessing invariant isotropic subspaces
in R2,4
This class is divided into subclasses by the existence for the subalgebras of invariant

irreducible subspaces of a particular kind in the space Ry 4.
1. Irreducible subalgebras of AO(2,4)

AC(1,3);
ASU(1,2) =(Py+ Ko+ 2J12, Py + Ko + K3 — P3, Py + K1 + 2Jo2,
Py + K3+ Ko — Po, Ko — Po + 2J13, P> + Ko — 2Jp1,
D + Joz, K1 — P1 — 2J23);
ASU'(1,2) = (Py+ Ko — 2J12, Py + Ko + K5 — P5, Py + K1 — 2J2,
Py + K3+ Ko — Py, Ko — Py — 2J13, P2 + Ko + 2Jp1,
D + Jo3, K1 — Py + 2J23);
ASU(1,2) ® (Po+ Ko — 2J12 — K3 + P3);
ASU'(1,2) ® (Py + Ko + 2J12 — K3 + P3);
(Po+ Ko —2J12 — K3+ P3) © (P + K1 + 2Jo2, P3 + K3 + Ko — o,
Ky — Py +2J13);
(Po+ Ko +2J12 — K3+ P3) @ (P + Ky — 2Jo2, P3 + K3 + Ko — Po,
Ky — Py — 2J13).
2. Irreducible subalgebras AO(1,4)
AC(3).
3. Irreducible subalgebras of AO(2, 3)
AC(1,2);
(Py+ K> +V3(Py + K1) + Ko — Py, D+ Jo2 —V3Jo1, Py + Ko — 2(K2 — P»));
(Py+ Ky —V/3(Py + K1) + Ko — Py, D + Jo2 +V3Jo1, Py + Ko — 2(Ka — Py)).
4. Subalgebras of AO(2,2) & AO(2) with irreducible projection onto
AO(2,2)
(Joo =D, Ko—Py— P —Ky,Pp+ Ko — K1+ P1) ®
P(Py+ Ko+ K —P))®F, where F=0 or F = (Jo3);
(Joo + D, Ko — Py +Pi+ Ki,Po+ Ko+ Ky — P1) @

O(Ph+Ko— K1+ P)DF, where F =0 or F = (Jo3);
AC(1,1), AC(1,1)® (Jo3), where AC(1,1) = (P, P1, Ko, K1, Jo1, D);
(Joo—D,Ko—Py— P, — K1, Py + Ko — K1+ P1) ®

©(Po+ Ko+ K1 — P1 + aJos) (o #0);
(Joo+D,Kog—Py+ P+ K,Ph+ Ko+ K, — P)®

©(Po+ Ko — K1 + P+ aJys) (a#0).

5. Subalgebras of the type AO(2,1) @ F with FF C AO(3)
AC(1)® L, where AC(1) = (D, Py, Ko),
and L is one of the algebras: 0, (Ji2), (Ji2, J13, Ja3)-
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6. Subalgebras of AO(2) & AO(4) having an irreducible projection

(Po+ Ko); (Po+ Ko) ®(2J12 + (K3 — P3)) (Jaf <1);
(Po+ Ko) @ (J12, K3 — P3); (Po+ Ko) ® (J12 + J13, J23);
(Po+ Ko) @ (2015 + (K3 — P3), 2015 — e(Ks — Py),
2 + (K1 — P) (e = +1):
(Po+ Ko) @ (2015 + (K3 — P3),2J15 — (K5 — Po), 25 + e(K1 — P)) &
@ (2J12 — (K3 — P3)) (e ==+1);
Py + Ko) & (K1 — P1, Ko — Py, K3 — P3, J12, J13, Ja3);
Po+ Ko+ 2aJi2) (a#0, |af #1);
Py + Ko+ 2aJ12 4+ 8(Ks — P3)) (a#0, |a|#1, 8>a, 8#1);
2715 + Py + Ko), K3 — Py + B(Py + Ko))
(a 40, f >0, with || # 1 when 8 = 0);
((Py + Ko) + 2615 — K3 + P3) @ (2e.J10 + K3 — Py, 2015 — Ko + Py,
2oy + K1 — P) (a > 0);
(2eJ1a + K3 — P3,2eJ15 — Ko + Py, 2eJo3 + K1 — Py) (e = £1);
(2eJ1a + K3 — Py, 2615 — Ko + Py, 26Jos + K1 — P1) @
® (2610 — K3 + P3) (e = +1);
(K1 — P1,Ky — Py, K3 — P3,J12,J13, J23).

7. Subalgebras of AO(1,2) & AO(1,2)

(P + K1, Py + Ko, Ji2) ® (Ko — Py, K3 — Ps3, Jo3);
(P14 Ky +2eJoz, Py + Ko + Ko — Py, 2eJ12 + K3 — P3) (¢ = £1);
(P + K1, P+ Ks, Ji12) ® (K3 — P3).

(
(
(
(

B. Subalgebras of AG1(2)

The classical Galilei algebra AG1(2) is the semidirect sum of a solvable ideal, generated
by (P, P2, M,T), and the Euclidean algebra AE(2) = (G1, G2, J12). The projection
of AG1(2) onto AO(1,3) coincides with AFE(2), which has, up to inner automorphi-
sms, the subalgebras 0, (J12), (G1), (G1,Gs2), (G1, G2, J12). The first two subalgebras
are completely reducible algebras of linear transformations of Minkowski space Ry 3,
whereas the others are not of this type. Thus we divide this class into two subclasses A
and B.
1. Subalgebras with completely reducible projection onto AO(1, 3)

0, (Po), (P1), (M), (Po,Ps), (M, Pr), (P1, %), (M, P1,P), (P, P1,P,),
<P1,P2,P3>, <P0,P1,P2,P3>;

(Ji2) : 0, (Py), (P3), (M), (Py, P3), (P1,P), (Po,P1,Ps), (M, Py, Ps),
(Py, Py, P3), (Py, Py, Py, P3);

(Ji2+ Po) : 0, (Ps), (P, Py), (P, P2, Ps);

(J12 £ P3) : 0, (Py), (P, P), (Po, P1, P2);

(J12 £2T) : 0, (M), (P1,Ps), (M, Py, Py).
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2. Subalgebras whose projection onto AO(1,3) is not completely redu-
cible

(Gy) : (Py), (M, Py), (M,Py), (M,P, +aP2), (M, Py, P,),
(Po, P1, Ps), (Py, Py, Pa, P5) (a # 0);

(Gh £ Po): 0, (M), (M, Py, (Py, P1,Ps);

(G1+2T): 0, (P), (M), (M, Pr1), (M,P), (M,P,+aP),
(M, P, Ps) (o # 0);

(G1,G2) : (M, P, P), (Py, P, Pa, Ps);

(G1+eP2,Gy — P, M), (G1 +eP2,Gys — Py + aPe, M) (¢ = 1, a # 0);

(G114 aPy,Ga + 2T, M, Py) (o € R);

(G1 £ P2, Goy M, Pr), (G1,G2+ 2T, M, Py, Py);

(G1,G2,J12) : (M, Py, Py), (Po, P1, Py, Ps);

(G1,Ga, J12 £ 2T, M, P, Py), (G +ePy,Gy — Py, J1o, M) (e = £1).

C. Subalgebras of AG;(2) W (Jp3) with nonzero projection
onto (Jo3)

We divide also this class into two subclasses which are distinguished by whether or
not they have a completely reducible projection onto AO(1, 3).
1. Subalgebras with completely reducible projection onto AO(1, 3)

(Jos) : 0, (P1), (M), (P, Ps), (M, Py), (P1,Ps), (Py, P1,P3), (M, Py, Ps),
(Po, Py, Py, Ps);

(Jos+ P1): 0, (P2), (M), (Py,Ps), (M, P), (P, Py, Ps);

(Ji2 + ados) = 0, (M), (Py, P3), (P1,P), (M, Py, Ps),
(Po, P1, P2, P3), (a #0);

<J12,J03>: 0, <M>, <P0,P3>, <P1,P2>7 <M7P1,P2>, <P0,P17P2,P3>.

2. Subalgebras with projections onto AO(1, 3) which are not completely
reducible

(G1,Joz) + 0, (M), (P2), (M, P1), (M, P), (M,P1+aPs), (M,P1,P),
(Po, P1, P3), (Py, P, Py, P3) (o # 0);

(Gy,Jos + Po) : 0, (M), (M, Py), (M, P, + aPs), (Py, P, P3), (a+#0);

(G1,Jos + P1y: (M), (M, P);

(G1, Joz + Py + aPy, M) (a # 0);

(G1,G2,Jo3) : 0, (M), (M,Py), (M, Py, Ps), (Py, Py, Py, Ps);

(G1,Ga, Jos + P1, M), (G1,Ga,Jos+ Pa, M, P1);

(G1,Ga, J1a + ados) : 0, (M), (M, Py, Py), (Py, P1, P2, P3) (a # 0);

(G1,Ga, J12,Jos) = 0, (M), (M, Py, Ps), (Py, P1, Ps, Ps).
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D. Subalgebras of AP(1,3) which are not conjugate
to subalgebras of AG;(2) W (Jos3)

This class consists of those subalgebras of the Poincaré algebra AP(1, 3) whose projec-
tion onto AO(1,3) do not possess isotropic invariant subspaces in Ry 3. Since the
projections are simple algebras, then each subalgebra of the fourth class splits. The
full list of such algebras is

AO(]-v?) Oa <P3>a <P07P1,P2>7 <P03P17P2,P3>;
AO(S) 07 <P0>7 <P17P25P3>7 <P07P17P2;P3>;
AO(1,3) 1 0, (Po, Pr, Py, P3).

E. Subalgebras of AG1(2) W (Jo3, D) which are not conjugate
to subalgebras of AG1(2) W (Jp3)

Let K be a subalgebra of AG1(2) ¥ (Jos, D) with nonzero projection onto (D), and
let # be the projection of K onto (Jps, D). By Propositions I1V.2.3 ;}nd IV.2.5 in
Ref. [9], the algebra K, as a subalgebra of AP(1,3), is split whenever (K) is one of
the subalgebras 1) (D); 2) (yD — Jog) (v # £1,0,2); 3) (D, Jos). This leads us to
dividing this class of subalgebras into two subclasses of nonsplittable subalgebras K of
AP(1,3), (}enoted by D and E, for which the projection onto (G, G2) is non-zero, and
for which §(K) is (Jos £ D) and (Jos —2D) respectively. It is also useful to distinguish
the subclass A of subalgebras having zero projection onto (G, G2). The subalgebras in
this subclass differ from the other subalgebras in that their projections onto AO(1,3)
are completely reducible algebras of linear transformations of Minkowski space Ry 3.
All the other subalgebras are split, and we divide them formally into subclasses B
and C, depending on the dimension of their projection onto (D, Jys).
1. Subalgebras with zero projection on (G1,Gz2)
<D> N <PQ>7 <P0, P3>, <P0, P17 P2>, <P1, PQ, P3>7 <PQ, Pl, PQ, P3>,
<J12 + OZD> . <P0>, <P3> . <P0,P3>, <P07P1,P2>, <P1,P27P3>,
<R),P1,P27P3> (a > 0),

(Ji2, D)+ (Po), (Ps): (Po, P3), (Po, P1, Pa), (P1, P, Ps), (Po, P1, P2, P3);

(Joz + aD) (0 < a < 1);

(Jos +aD, M) (0 < |a| < 1);

<J03 + OlD> <P1>, <P0, P3>, <P1,P2>, <P0, P, f:’3>7 <P0,P1, P, P3> (Oé > 0),

<J03+OZD> <M P1>, <M,P1,P2>, (0[750)

(Jos — D =+ 2T> 0, (Pr), (M), (P1,P2), (M, Pr), (M, Py, P);

<J0?n > . <P1>a <M>7 <P07P3>a <P1aP2>7 <M7P1>7 <M7P15P2>a

<PO,P1,P3>7 <P(),P1,P2,P3>;

<€J12 + aJos + ﬁD) (0 <a<p, e= il);

<J12 + ados + 6D, M> (0 < |a| < |ﬂ|),

<EJ12 +CYJ()3 +ﬁD> : <P07P3>7 <P17P2>7 <P0’P17P27P3> (5 = :tla Oé,ﬁ > O)a

<J12 + OZJ()?, +5D,M,P1,P2> (a 75 O, 6 7’5 O),

<J12 + Ol(J()g —D+ 2T)> : 0, <M>, <P1,P2>, <M, Pl,P2> (Oé 7& 0),
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(Ji2 + ados, D) : 0, (M), (P, Ps), (Py, Ps), (M, Py, Py),
(Py, P1, Py, P3) (e # 0);
(Jos + aD, Jia + 8D) : (Py, Ps), (P, P), (M, Py, P),
(Py, P1, P2, Ps) (a*+ 3% #0);
(Jos +aD,Jis+ 8D): (la] <1, B3>0, |a|+ 8 #0);
(Jos +aD,Jia+ D, M): (la| <1, 8>0, |a|+ 8 #0);
(Joz +aD, Jia +BD, M, P, Ps) : (o, B€R, o+ 3% #0);
(Jog — D £ 2T, Jia + 2aT) : 0, (M), (P1, Ps), (M, Py, Py);
(Jos =D, Ji2xT): 0, (M), (P, P, (M, Py, P5);
(Joz, J12, D) : 0, (M), (Py, P3), (P1,P), (M, Py, P, (Po, P1, Py, Ps).
2. Subalgebras with two-dimensional projection onto (Jo3, D) and non-
zero projection onto (G1,G2)
(G1,Jos3, D) : (Pe), (M, Py), (M, P}, (M,P, + aPs), (M,P,P,),
<P0,P1,P3>, <P0,P1,P2,P3>;
(G1,G2, Jo3, D) = (M, P, P), (P, P1, P, Ps);
(G1,Ga, J1a + ados, D) : (M, Py, Ps), (Py, P1, Py, P3) (o #0);
(G1,Ga,Jo3 + aD,Jia+ 8D, P, P) (Jo| <1, >0, |a|+ 8 #0);
(G1,G2,Joz +aD, Jia + 3D, Py, Py, Py, P3) (a? + 3% #0);
(G1, Ga, Jos, J12, D) : (M, Py, Py), (Py, P, P, Ps).
3. Split subalgebras with one-dimensional projection onto (Jop3, D) and
nonzero projection onto (G1, G2)
(G1+ D) : (Py, P1, P3), (Po, P1, P, Ps);
(G1,D) : (Py, P, Ps3), (Py, P, P, Ps);
(G1 + D,Gs, Py, P, Py, P3), (G1,Ga,D, Py, Py, P2, Ps);
(G1, Jos +aD) : (Py), (M,Py), (M,Py), (M,P, + 3PF,)
(lof <1, a#0, B#0);
G1,Jos +aD) : (M, Py, Py), (Py, Py, Ps), (Py,Pr,Ps, P3) (a % 0);
G1,Ga,Jos +aD, M, P, Py) (0 < |a] <1);
G1,Go, Joz + OZD,Po,Pl,Pg,P3> (a #0);
G1,Gs, J12+ aD, Py, Py, P2, P3) (a # 0);
G1,Ga, 12, D, Py, Py, Py, P3);
G1,Ga, Jig + adoz + 6D, M, P, Ps) (0 < |a| < |B]);
(G1,Ga, J12 + ados + BD, Py, P1, P2, Ps) (B # 0).
4. Nonsplit subalgebras of AG;(2) W (Jos F D) with nonzero projection
onto (G1,G>) and (Jpsz F D)
(Jos = D,Gy1 £ Py): 0, (M), (M,Py), (P, Py, P3);
(Jos — D £2T,G1 + aPs, M, Py);
(Jos — D £2T,G1, M, P, P, (Jos — D + M,G1, Py);

{
{
{
{
{
{
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(Jos — D,Gy +eP2,Go —ePy + aPo, M) (e = +1, a € R);
(Jos — D,G1 £ Py, G, M, P1), (Joz — D £ 2T, G4, Ga, P1, Py, M);
(J1i2 + a(Jos — D),G1 + Py, Go — P, M) (e = 1, a # 0);
(Jiz + a(Jos — D £2T),G1,G2, M, P1, Py) (o # 0);
(J12 £ 2T, Jos — D, G1,Go, M, Py, Py);
(J12 + 20T, Jos — D £ 2T, G1,Ga, M, Py, P) (o € R);
(Ji2,Jo3 — D,G1 +ePy,Go — Py, M) (e = £1).
5. Nonsplit subalgebras of AG1(2) W (Jp3 — 2D) with nonzero projection
onto (G1,G>) and (Jo3 — 2D)
(Jos — 2D, Gy +2T) = 0, (M), (Py), (M, Py), (M,Py), (M, P, +aP),
(M, P, P2} (a #0);
(Jos — 2D, G, Ga + 2T : (M, Py), (M, Py, P5).

F. Subalgebras of Aﬁ(l, 3) not conjugate to subalgebras
of AP(1,3) and of AG+(2) W (Jos, D)

This class consists of those subalgebras of AP(1,3) whose projection onto AO(1,3)
do not have invariant isotropic subspaces in R; 3 and with a nonzero projection onto
(D). We have

AO(172)@<D> 07 <P3>7 <P05P1aP2>’ <P07P1,P2,P3>;
AO@B) @ (D) : 0, (Ro), (P, P2, Ps), (Po, P, Ps, Ps);
AO(173)®<D> 0, <P0,P1,P27P3>.

G. Subalgebras of AG4(2) which are not conjugate

to subalgebras of AP(1,3)
Let K be a subalgebra of AG4(2) and 7(K) its projection onto AGL(2,R). By Proposi-
tions V.2.1 and V.2.2 of Ref. [9], the algebra K belongs to this class if and only if
7(K) is conjugate to one of the following algebras: (S + 1), (S+T) + (Z) (subdirect
sum), ASL(2,R) = (R, S,T), AGL(2,R) = (R, S,T, Z). Because of this, we divide
this seventh class into three subclasses, each of which consists of subalgebras having
a corresponding projection onto AGL(2,R); those sub-algebras whose projections are
either ASL(2,R) or AGL(2,R) are put into the same subclass.

1. Subalgebras whose projection onto AGL(2,R) is (S + T

(S+T): 0, (M), (G1,P1,M), (Gi —a ' Py,Gy + Py, M),
(G1,Go, P, Py, M) (0 < |a] <1);

(S+TE£M), (S+T+aJizat M) (a#0);

(S+T+adiz): 0, (M), (G1 +eP2,Gy —eP1, M), (G1,G2, P, Py, M)
(e ==x1,a #0);

(S+T+eJig): (Gr+ePa), (Gi+ePy, M), (G1+¢ePy,Gy — P,
Go +¢ePy, M) (e = £1);

(S+T+eJiot M,Gy +¢ePy) (e =£1);
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(S4+T+eJia+eGr+ P): 0, (M), (Gy —ePy, M),
(G1 —eP2,Go + P, M), (G —eP1,G1 —ePy,Ga+eP, M) (e = £1);
(Ji2,8+T): 0, (M), (G1 +eP5,Gy —eP1, M),
(G1,Ga, P1, Py, M) (e = +1);
(Jiz £ M, S+ T+ aM) (« € R);
(Ji2,S+T £ M).

2. Subalgebras whose projection onto AGL(2,R) is the subdirect sum
(§+T)+(2)
(S+T+aZ)y: 0, (M), (G1,P1,M), (G1 — 371P,,Gy + 3P, M),
(G1,Go, P, Py, M) (0< |B] <1, a#0);
(S+T,Z): 0, (M), (G1,P1,M), (G1 —a 'Py,Gy + aP, M),
(G1,G2, P1, Py, M) (0 < || <1);
(S+T+ a1+ 8Z): 0, (M), (G1 +ePy,Gy —ePy, M),
(G1,G2, Py, Py, M) (e =£1,a0 /-0, 5> 0);
(S+T+adiz,Z): 0, (M), (Gy + Py, Gy — ePy, M),
(G1,Ga, P1, Py, M) (e = £1, a # 0);
(S+T+eia+aZ): (Gy+eP), (G1+ePy, M),
(G14+ePy, Gy —ePa,Go+ P, M) (e = £1, a #0);
(S+T +eh2,Z): (G1+ePy), (G1+ePo, M),
(G1 +eP2,Gy —ePy,Go+ Py, M) (e = £1);
(Jio+aZ,S+T+pZ): 0, (M), (G1 +eP,Gy —ePy, M),
(G1,Ga, P1, P2, M) (e = %1, |a| + |B] # 0);
(Ji2,8+T,Z)y: 0, (M), (G1 +¢eP2,Go — P, M),
(G1,Go, Py, Py, M) (e = £1).
3. Subalgebras whose projection onto AGL(2,R) contains ASL(2,R)
R,S,T): 0, (M), (Gy,P1,M), (G1,Ga, Py, Pa, M);
Ji2) ®(R,S,T): 0, (M), (G1,Ga, P1, Py, M);
Jig £ M) @ (R, S, T);
R,S,T,Z): 0, (M), (G1,P1,M), (G1,Gs2, Py, Py, M);
R,ST)® (Jis+aZ): 0, (M), (G1,Ga, P1,Pa, M) (a # 0);
R, S, T)® (J12,Z) : 0, (M), (G1,G2, Py, P2, M).

o~ o~ o~ o~~~
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Lowering of order and general solutions
of some classes of partial differential
equations

V.M. BOYKO, W.I. FUSHCHYCH

A procedure of lowering the order and construction of general solutions for some clas-
ses of partial differential equations (PDEs) are proposed. Some classes of general
solutions of some linear and nonlinear equations of mathematical physics are
constructed and a series of examples is presented.

The construction of the general solution of a definite partial differential equation
is in a number cases an unsolved problem. In what follows, we propose an algorithm
of lowering the order and constructing general solutions of specific partial differential
equations.

Consider the following partial differential equation

L(D[u]) + F(D[u]) = 0, (1)
where v = u(z), * = (zg,21,...,xx); L is a first-order differential operator of the
form

L=ad'(z,u)0,,, i=0,1,...k, (2)

and a'(z,u) are arbitrary smooth functions which are not identically equal to zero
simultaneously. D[u] is an n-order differential expression

D[U] :D(Iauvu(l)au@)v'"au(n)) ) (3)

where w,,) is the collection of m-th order derivatives, m = 1,...,n, and F is an
arbitrary smooth function of D[u]. As a particular case, D[u] may depend only on x
and u. In this case we say that D[u] is of order zero. In general, (1) is an (n + 1)-th
order partial diffrential equation.

For equations of the type (1), we propose a method of lowering the order and
construction of solutions based on the local change of variables which reduces opera-
tors (2) to the operator of differentiation with respect to one of independent variables.

We introduce the change of variables

T:fo(fﬂ,’u), w“:fa(x,u),azl,...,k, Z=1u, (4)
where z(7,&) is a new dependent variable, & = (w', ..., w").
We determine functions f°, f* from the conditions

L(f9 =1, L(f“)=0, a=1,...,k, (5)

Reports on Math. Phys., 1998, 41, Ne 3, P. 311-318.
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and functions f!,..., f¥ and uw must form a complete collection of functionally-in-
dependent invariant of operator (2). We choose f° as a particular solution of the
equation Ly = 1.

Relations (5) determine the change of variables (4) such that operator L is reduced
to the operator of differentiation with respect to the variable 7, i.e.,

L= 0,. (6)

We obtain a new form of (3) in new variables (4) and rewrite the initial equation
(1) in the form

0-(D[z]) + F(D[z]) =0, (7)

where D|z] is D[u] in the new variables (4).
Relation (7) is the first order ordinary differential equation with respect to the

variable 7. We integrate it and obtain D[z]. Thus, when we solve (7), we obtain
an n-th order partial differential equation with respect to z(7,d) with one arbitrary
function depending on & which is a “constant” of integration of Eq. (7).

Remark. This algorithm is also effective in the case where Eq. (1) has the form
L(D[u]) + F(D[u), f°, f*,..., f*) =0. (8)

Here, functions f°,..., f¥ must satisfy relations (5). In this case, integrating the
corresponding ordinary differential equation (an analog of equation (7)) we regard
variables w® as parameters.

Example 1. Consider the one-dimensional wave equation

Pu  *u
M dx? ©)
Equation (9) can be written in the form (1), namely:
o 0 Ou  Ou
(5i-2) (G o) -0 (10)

After the change of variables

T=%t w=x+1t, z=u,

Eq. (10) can be rewritten in the form
0r (27 +22,) = 0.
We integrate this equation and obtain
zr + 22, = g(w), (11)

Since g(w) is arbitrary, we set g(w) = 2h/(w). Then characteristic system of for the
inhomogeneous quasi-linear Eq. (11) has the form

dr_dv__d

1 2 2h/(w)’
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We find the first integrals of the characteristic system and we get the following solution
of Eq. (11),

z—h(w) = f(w—27), (12)

where h and f are arbitrary functions. Then we rewrite (12) in variables (¢, z,u) and
get the following well-known general solutions of Eq. (9)

u=h(z+t)+ f(x —1t).

Example 2. Consider the following equation proposed in [3] for description of motion
of a liquid,

L(Lu) + AMLu =0, L =0+ ud,. (13)

This equation can be regards as a generalization of the one-dimensional Newton—FEuler
equation (the equation of simple wave). In the explicit form, Eq. (13) has the form

0?u 0?u  Oudu <8u>2 5 0%u <8u 8u>
+ —0.

oz +2 toras T an ) T M o Y,

Yoo " ot ox 027 ot " " ou
Since Eq. (13) belongs to the class of (1), the change of variables
T=1 w=x—ut, z=u,

allows us to write it as

z z
0, [ ——— A T =0 14
<1+Tzw>+ 1+ 72, (14)

Having integrated (14), e.g., for A = 0, we obtain the parametric solution

dw
z+ / ———=(p), T —h(w)=p, (15)
Vh(w)+p
where p is a parameter, h and ¢ are arbitrary functions.
Then we return to the initial variables and obtain a solution of Eq. (13). Below, we
give several classes of solutions of Eq. (13) with one arbitrary function [1] (The fact
that we have only one arbitrary function associated with the problem of integration

of system of type (15)).
1. L(Lu) = 0:

11 utn(z —ut ¥t) = ¢ (2 — (z — ut)?),

t(x — ut)? 1

13 uw(m—ut) T —ut

o) e ] P

2. L(Lu) = a:

a C a
—ut+ -3+ =% = ( ——t2—0t>.
x u—|—3 +2 elu 5
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3. L(Lu)+ Lu=a
x—ut—C(t+1)exp(—t) + %tQ = (u+ Cexp(—t) —at).

Here, C' = const, ¢ is arbitrary function.

Example 3. The equation
Pu  0%u  O%u 0%u

o2 02 02 lomay (16)

can be written in the form (1) as follows:

00 0N (u, 0w ouy_
ot Oxr 0Oy ot o0z 0oy)

Using the change of variables
T =1, w! =t+ux, w2:t—y, Z=u,

and applying the algorithm described earlier, we obtain the following solution of
Eq. (16)

where f and g are arbitrary functions.

It is natural to generalize the described algorithm for equations of the form (1) to
the classes of partial differential equations of the form

L™(D[u]) + by 1 L™ (Du) + - - - + by L(D[u]) + by = 0, (17)
where

. 0 r1 k i=0.m — 1: mo_ .
b.] bJ(Duﬂf 7f 7"'7f )7 J O,m 1, L LLL LL,

m

L, D[u], f°, f*,..., f*¥ are determined according to the relations (2)—(6).
After the change of variables (4)—(6), the problem lowering the order of Eq. (17) is
reduced to the problem of integrating the m-th order ordinary differential equation.

Example 4. For
D"(u) =0, D=x,0,,, u=0,...k,

we use the change of variables

T=Inzy, w'=—,a=1k z=u,

and we obtain the solution

u=Cp_1(In xo)”*l + Cp—2(ln xo)"*2 4+ -+ Cilnxg + C,

x x
where C; = C; (—1;-~-;—k), i=0,n—1.
Zo To
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The obtained results can be easily generalized to the case of system of equations

L(D[a]) = F(f°, f",.... f*, Dla),

where @ = (u!(z),...,u™(x)), * = (v, z1,...,2); L, f°, f1,..., f* are determined
according to relations (2), (4), (5) and (6). Here, u = @ ; D[i@] = (D, ..., D™), where
D! = D? (:L‘/II, ﬁ(1)7ﬁ(2),...,ﬁ(n)), i = 1,...,m, 1) is a collection of i-th order
derivatives for each component of the vector «; and F= (F',...,F™). In particular,

the components of the vector 5[12’] can dependent only on z and .
Example 5. Consider the system of Euler equations

ov p OU

— +v

O0xg oxy,

where 7 = (v!,02,0?), v! = vl (20, 21,22, 23), | = 1,2, 3.

The system (18) can be written as follows:
(0o +v"0k) v =0, 1=1,2,3. (19)
After the change of variables
T = Xo,
w* =2, —v%0, a=1,2,3,
=0l 1=1,2,3
the system (19) takes the form
9;2l=0, 1=1,2,3. (20)

Then we integrate Eq. (20), apply the inverse change of variables, and obtain a solution
of system (18) in an implicit form (compare this solutions with one from [2])

1 1 1 2 3
v =g'(x1 — v xo, T2 — VX0, T3 — V7 T0).

where ¢! are arbitrary functions.

Example 6. Consider the following system of equation for vector-potential A*,

AY— =0, =0,...,3. 21
o0z, H (21)
Assume that A° # 0. By the change of variables

T = E,

W = 2,A° —29A*, a=1,2,3,
AF = A" 14=0,1,2,3
we obtain the following solutions of system (21)
AP = gh (21 A® — 20 AL, 20 AY — 29 A2 23 A0 — 20 A3),

where g* are arbitrary functions.

Consider a system of partial differential equations determined by the collection
of operators L', ..., L" of the form (2) (u = ), and the number of operators must
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not exceed the number of independent variables, i.e., »r < k + 1. In other words,
consider the system of partial differential equations which consists of m equations of
the form (8), where L is one of the operators L, ..., L" and D[u] = D[i]. If these
operators form a commutative algebra Lie and the rank of the matrix consisting of the
coefficients of the operators L',..., L" is equal to 7, then there exists a local change
of variables which transforms these operators to r operators of differentiation with
respect to r first independent variables. Thus, if the above conditions are satisfied for
a system, we can lower its order and in some cases construct its solutions (at least in
principle).

Example 7. Consider the system

(6t + U@m)u =0,

(22)
(&g + u(’“)w)v =0,
where u = u(t,x),v = v(t, z),u # v.
After the change of variables
—ut — vt
r=2"00 =20 U=u, V=v (23)
v—u u—v
the system (22) takes the simple form
0;U =0,
B,V =0, (24)

Integrating (24) and performing the change of variable inverse to (23), we obtain
a solution of (22) in the form

xr— vt xr — ut
U:f , V=g 3
uU—v V—U

where f and g are arbitrary functions.
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What is the velocity

of the electromagnetic field?
W.I. FUSHCHYCH

A new definition for the electromagnetic field velocity is proposed. The velocity de-
pends on the physical fields.

The question posed by the title of this paper is, surprisingly, not yet answered
uniquely today; not even by way of definition. According to modern assumptions the
light is the electromagnetic field (with corresponding frequencies) and therefore it is
obvious that the answer to the posed fundamental question is not obvious.

Today the following definitions of the velocity of light are used [1, 2]:

1) phase velocity,
2) group velocity,

3) velocity of energy transport.

The definition of phase- and group velocity is based on assumptions that the
electromagnetic wave can be characterized by the function W(t,Z), which has the
following form [1, 2]

U(t, F) = A(F) cos(wt — g(7)) (1)

U(t,Z) = /000 A (Z) cos(wt — g, (Z))dw, (2)

where A(Z) is the wave amplitude and g(Z) is an arbitrary real function. The phase-
velocity is defined by the following formula

n = w/|Vg(@)]- (3)

By the above formulas it is clear that the definition of the phase- and group-velocity is
based on the assumption that the electromagnetic wave has the structure (1) (or (2))
and its velocity does not depend on the amplitude A. Moreover, the equation which is
to be satisfied by W, has never been clearly stated. This is, in fact, a very important
point since ¥ can satisfy the standard linear wave equation (d’Alembert equation) or,
for example a nonlinear wave equation [3]. These two cases are essentially different
and lead to principly different results. One should mention that the phase- and group-
velocities cannot directly be defined in terms of the electromagnetic fields E and H.
The velocity of electromagnetic energy transport is defined by the formula

¥ =1 §=c(E x H), W=FE+H?, (4)

where § is the Poyting—Heaviside vector.

J. Nonlinear Math. Phys., 1998, 5, Ne 2, P. 159-161 (translated by Marianna Euler and reprinted
from Dopovidi of the Academy of Sciences of Ukraine, 1997, Ne 4, P. 51-53).
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Formula (4) has the following disadvantage: Both E and H are invariant under
the Lorentz transformation, whereas v does not have this property.

The aim of the present paper is to give some new definitions of the electromagnetic
field velocity.

If the electromagnetic field is some energy flow, then we define the velocity of such
flow, in analogy with hydrodynamics [4], by the following equation

ov ov = Ty ~
a—“+ a—v—al(D B2, E? H? DE,..)D + as(D, B% E*, H? DE,..)B +
+as(D. B2, B, fi%, BE, .. )F + au(D, B%, B i*. BE.. )If +
= —, 2o = e — 6D —
+as(D, B2, B2, H?, DE, .. ( (v x H) = 55 47TJ> (5)
S o oy 2o = - o B
+a¢(D,B? E? H* DE,...) (c(v H) + %t)
The structure and explicit form of the coefficients a4, . .., ag is defined by the demand

that equation (5) should be invariant with respect to the Poincaré group if the fields
are transformed according to the Lorentz transformation [5].
The main advantage of (5), in comparison with (1), (2), lies in the following:

1. The velocity of the electromagnetic field is directly defined by the observables
D, B, E, H, J, and their first derivatives.
2. For particular coefficients, eq. (5) is invariant under the Poincaré group.

3. In the case where a; = ay = a3 = a4 = 0 and the fields 5, é, E, H satisfy
Maxwell’s equation

- - D =
c(va)faa—t—szfO o(v x E)+

OB

=0 ©)

then the velocity of the electromagnetic field is of constant value, with

ov ov

— — =0. 7

8t + K axl ( )
In order to use eq. (5) one should concretely define the coefficients ay, .. ., as.

The explicitly-covariant definition of electromagnetic field velocity can be given
the following equation [5]

O0vgy
Uroan dxh

Using Maxwell’s equation in vacuum, one can obtain the following formula for the
velocity of the electromagnetic field

a(E? H? EH)F,z0°. (8)

) 2 7 2112
= { %(BE/at) + (0H /0t) } -

(rot E)2 + (rot H)?
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From (7) it is clear that the velocity depends only on derivatives of the fields. |v] is
a conditional invariant with respect to the Lorentz transformation, i.e., if E and H
satisfy the full system of Maxwell’s equations in vacuum, then |#] would be an invariant
of the Lorentz group. In other words, the conditional invariant is a particular scalar
combination of the fields, for which the fields satisfy some equations with nontrivial
solutions. Well known invariants for the electromagnetic field EH and E? — H? are
absolute invariants with respect to the Lorentz group.

1. Born M., Wolf E., Principles of optics, MacMillan, New York.
2. Brillouin L., Wave propagation and group velocity, New York, Academic Press, 1960.

3. Fushchych W., Shtelen W., Serov N., Symmetry analysis and exact solution of equations of
nonlinear mathematical physics, Kluwer Academic Press, 1993.

4. Fushchych W., Dopovidi of the Ukrainian Academy of Sciences, 1992, Ne 4, 24-27.
5. Fushchych W., J. Nonlinear Math. Phys., 1995, 2, 216-235.
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JIiHIiTHI Ta HeJIiHiTHI 300pakeHHsd Tpyn
l'asizies B 1BOBUMipHOMY IIPOCTOpi-daci

B.I. OVIIHY, B.I. JIATHO

We study the Galilei groups represented as groups of the Lie transformations in the
space of two independent and one dependent variables. We classify the representations
of groups AG1(1,1), AG2(1,1), AG3(1,1), AG1(1,1), AG2(1,1), and AG5(1,1) in the
class of Lie vector fields.

Hocnimkyrorbes 306paskenss rpy asisiest ik rpyn nepersopens J1i y mpocTopi J1Box
He3aJIeXKHUX Ta ojiHieT 3as1exknol sminnux. [Iposenena kiacudikarisa 306pakens rpyn
AG1(1,1), AG2(1,1), AG3(1,1), AG1(1,1), AG2(1,1) ta AGs(1, 1) y kmaci BekTopHIX
nosis JIi.

VYV cy4uacHOMY TEOPETHKO-IPYIIOBOMY aHaJIi31 JudepeHiiajbHuX PIBHIHD 3 YACTHH-
HAMHW TIOXITHAMU aKTyaJbHOIO € 3aJa9a ONUCY HANOLIBIN 3araJlbHOTO BUIJISIITY DiB-
HIHB, 10 JOIyCKAIOTh NaHy rpyiy nepersopenb JIi [1, 2|. Cepen takux rpym mes-
TpaJibHe Miciie mocizaoTs rpynu Ilyankape ta 'aminest, ki € rpynamu cumeTpil psiay
dbyHIaMEHTAIBHUX DPIBHAHB BiJIOBIIHO DPEJIATHBICTCHKOI Ta HepeJsaTHBICTCHKOI i-
sukn [3-5]. 30okpema, MUPOKI KiIacH piBHSAHB €BOJIOIIRHOIO THILY, SIKi JIONYCKAIOTh
rpyuy lasines, 6yso orpumano B poborax [6-8]. Ase nuranng npo nobymoBy Beix
TaKAX PIBHSHD 3aJIUITAETHCS BIIKPUTHM.

VYV 3B’s3Ky 3 IIUM BHHHKA€E MPOOJIEMa ONUCY MOXKJIUBHUX 300paKeHb NUX TPy Y
KkJtaci Bekropuux mosis JIi. Binguadumo, 1o meski kimacu 306pazkens rpyn [lyankape
ra Tasisess mus BUnaaky ojHiel 3asexxHol QyHKIHT Gy70 oTpuMaHo B poborax [9—
12], posmmpenux rpyn Iasisest B 1BOBUMIPHOMY IPOCTOpPI-daci JyIsi JIBOX 3aJI€?KHIX
dyukuiit — y pobori [13].

V mamiit craTTi ME PO3B’A3yeMO POOJIEMY OIKACY BCIX MOXKJIMBUX 300parkKeHb I'PYII
Tamimess B 1BOBUMIpHOMY TPOCTOPi-Yaci /it BUNAIKY OHIET 3a/1eKHO01 (DyHKITIT.

Bingnaguumo, 1o icHyBaHHS PO3B’A3KiB cucTeM JHHIHHUX JudepeHIiaabHuX piB-
HAHb 3 YaCTUHHUMHU TTOXITHUMU TEPIITOTO TOPSJIKY, Ha SKEe MU CIUPAEMOCH IIiJI Jac
JIOBEJIEHHSI TBEP/2KEHDb, BUILINBAE 3 3arajbHOI Teopil audepeHIliajlbHuX PIBHAHB 3
YaCTHHHUME NOXigmHuMu [14], B paMKax HpUIlyIIeHb HOA0 IIaiAKocTi (yHKIii, sKi
BXOJISITh Y TaKi PiBHAHHS.

1. T'oBopsaun npo rpymy lasises B aBoBMMipHOMY mpoci opi-daci, MH MaeMo Ha
yBasi JIoKabHy T'PyIly mepeTBopenb y npoctopi V = R2®@ U, ne R? = (t,x) — npo-
CTip JBOX He3aJIeKHUX AificHUX 3MiHHEX, & U = (u) — npocrip mificHUX CKaJsipHUX
dynkuiit u = u(t, z). Ak Bimomo [1-3], Bekropui noss JIi, o rerepyoTh JEAKyY rpyILy
JIi G, criayators 6asuc anrebpu JIi AG niel rpynu. Tomy 3ajada BuBueHHS 300pa-
»KeHb JaHol rpynu Gy Kiiaci BeKTopHEX 110J1iB JIi eKBiBajleHTHA BUBYEHHIO 300parKeHb
asrebpu JIi AG y kiaci qudepeHIiagbHIX ONepaTopiB MEPIIOro HOPsJIKY, SIKi B Ha-
IOMY BUITAJIKy MAIOTh BUTJISIT

Q = T(taxau)at —|—£(t,x,u)8x +77(t7l'7u)8u7 (1)

VYkp. mart. )kypH., 1998, 50, Ne 3, C. 414-423.
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ne 7, & n — medaki giiicai riaaxi dysxuil y npocropi V, 8 = 9/0t, 0, = 0/0x,

0y = 0/0u.
Hexait AG = (X1, Xs, ..., Xn) — anrebpa JIi, 6asucui reneparopu Kol 3a/10BOJIb-
HSIOTHh KOMYTAIIHI CITiBBITHOIIIEHH
[Xka Xm] = C]ZLana (2)
ne Cp — niiicHi cTaji BeJMYUHU, IO HA3UBAIOTHCS CTPYKTYPHUMH KOHCTQHTaMH i
BHU3HAYAIOTH caMy ajredbpy AG, k,m,n=1,2,..., N.
Osunauenns. Onepamopu X;, 1 =1,2,..., N, sueaady (1) pearizyroms y npocmopi V.

3o06pasicenna sexmoprumy noasmu JIi aneeopu JIi AG, axuo eonu
1) winitino nesanestcni;
2) 3a00804bHAIOMY KOMYMAYITHG cnissionowenms (2).

Orxke, mpobyieMa onucy Beix 300paxkenb jgaHoi anredpu JIi AG 3BoguThCst 110
po3B’a3aHHs cuiBBigHOmIEHb (2) v Kiacl BeKTOpHUX 1ouiiB Jli, mo B 3arajbHOMY BU-
NaJIKy BUKJIMKAE icroTHi TpyaHON. 3 iHImoro 60ky, KoMyTariitai cruissigHomeHHst (2)
He 3MIHIOIOThCA P JIOBIIbHIN B3a€MHO OJIHO3HAYHIHN 3aMiHi 3MiHHIX

1= h(tvxau)v Ty = g(t,x7u), up = f(t,x,u), (3)

ne h, g, f — rmanki y npocropi V' ¢dyskmil. 3Bincu BumnBae, M0 Ha MHOXKUHI 30-
OpaxkeHb BeKTOpHUX 1oJ1iB JIi ajgrebpu AG MOKHA BBECTH TaKe CITiBBIIHOIIEHHS: TBA
sobpaxkenus (X1, Xo, ..., Xn), (X1, X}, ..., X)), gkl oqHOIACHO BU3HAYEH] y LIPO-
cropi V, OyayTh eKBiBaJIEHTHUMH, SIKIIIO BOHU TPaHCHOPMYIOThCS OJHE B iHINE B pe-
3yJbTaTi BUKOHAHHs y TpocTopi V' nesikoro nepersopenHs (3). Takum umHOM, mepe-
TBOpenHs (3) yTBOPIOOTE y 11pocTopi V rpyny (Hazsemo ii rpynoro jqudeomopdismis),
AKe 33J1a€ MMPUPOJIHE CIIBBITHOINIEHHS €KBIBAJEHTHOCTI HA MHOXKHWHI BCIX MOYKJIMBUX
y mpoctopi V' 306paxkens anrebpu AG. g rpyna po3buBae Taky MHOXKUHY Ha KJjla-

cu Aq, As, ..., As exkBiBaJIEGHTHUX 300parkeHb. TOMy Il OIMCY BCIX MOKJIMBHUX 30-
OpazkeHb JIOCUTH IMOOY/yBaTH 110 OJHOMY IPEJICTABHUKY BiJl KOXKHOI'O KJIacy €KBiBa-
nenrnocti Aj, j = 1,2,...,s. Came Bukopucranns rpynu gudeomopdizmis poburs

3aJiady onmcy 300pakeHb BeKTOpHuUMHE mosismu JIi rpymnu JIi KOHCTPYKTHBHOIO.

V noasbIIoMy po3riisiii 300parkeHb MU BUKOPUCTOBYEMO HACTYIIHY KJIacHpiKaIio
anre6p lamines (nus., manpukaasm, [15]).

Kaacuunoro anrebporo Taninest Hasusaersest anredpa AGy(1,1) = (T, P, G), 6a3u-
CHI OTIEpPaTOPH SKOI 33JI0BOJIbHAIOTH KOMYTAIlliHI CITiBBITHOITEHHST

[T,P]=-0, [T,G]=-P, (4)
P.G] = 0. (5)
Chneuiaavror anrebporo Lasisiest HasuBaeTbes anrebpa AGs(1,1) = AG1(1,1) B

(D), 6asucHi omepaTopu sIKOI 3a/I0BOJBHSIIOTH KOMyTaniiini crissigHomenss (4), (5)
Ta CIIiBBiJIHOIITEHHST

[D,P]=-P, [D,G]=G, [D,T]=-2T. (6)

Iosnoto anrebporo Taines nazuBaerbes anrebpa AGs(1,1) = (T, P,G, D, S), 6a-
3WCHI onepaTopu fKOI 33JJ0BOJILHAIOTH KOMyTaniiini crnissinuomenns (4)—(6) Ta cmis-
BITHOIITEHHST

[S,G]=0, [S,Pl=G, [T,S]=D, [D,S]=2S. (7)
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Hexait M — omnepartop, 1o 3aJ0BO/IbHSIE TaKi KOMYTAIliliHI CITiBBiTHOIIIEHHST:

(G, P] = M. (9)
Anrebpu

AG, = (T, P,M,G),
AGy = (T, P,M,G, D),
AGs = (T,P,M,G,D,S),

6a3ucHI orepaTopu SKHUX 3aJI0BOJIBHSIIOTH KOMyTaIliiH] cnissigHomenHs (4), (6)—(9),
Ha3WBAIOTHCS PO3WUPEHOI0 KAACU¥HOI0 amrebporo Laminest, poswuperoro cneuiasvroro
asrebporo Lastinest Ta poswupenoro nosworo anrebporo Laines (aarebporo Hpbomin-
repa) BiJIIOBiTHO.

2. Croyarky pO3IyIsiHeMO Kiacubikariio 300parkeHb KJIaCHIHOI, CIeniaJbHOl Ta
moBHOI asre6p [astistest. OckiibKu creniajbHa ajarebpa [ajijess orpuMyeTbes 3 Kia-
CHUYHOT 3a JIOTIOMOTOIO JIOMOBHEHHS OCTAHHBOI omeparopoM D, a moBHa ajredopa [aiii-
Jiesi — JOTIOBHEHHSIM CIIEIiaIbHOI OIIepaTopoM S, TO PO3IJIsi PO3MOYNHAEMO 3 aJIredpu
AG1(1,1) = (T, P) b (G), sixa micrurs Komyrarusnuii inean I = (T, P).

Jlema 1. Hexat T, P — ainitino nesanesichi onepamopu sueasdy (1). Ienyromo ne-
pemsopenna (3), awi 3600amv ui onepamopu do odniet 3 dopm:

T=0, P=-0, (10)
T = 8,5, P = —x@t. (11)

HoBenennsi. 3rifHo 3 T€OPEMOIO PO MOMIOHICTH BEKTOPHUX MOJIB (IUB., HAIDPU-
kia, posain 1, § 3 [1]), Mu 3aBxkau moxkemo nokiaactu T = J;. Ocklibku onepaTopu
T, P yTBOPIOIOTH KOMYTATUBHHUIA iseas, To onepaTop P Mae Takuil HaftOIIbIT 3araib-
HUU BUTJISI:

P = T(SE, u)at + f(CC, u)aﬁt + 77(% u)au
BBeﬂel\JO B PO3IJVIdAa MaTPUITIO
1 0 0
A= :
( T & )

sIKa CKJIaJIeHa 3 KoedillieHTiB Mpu Hoxiauux B omneparopax 1, P. O4ueBuano, 1mo Mo-
2KJMBI jmire asa punagku: rank A = 2 a6o rank A = 1.

Hexait rank A = 2. Toxi 3aBxk 11 MoxkeMo BBaxkatu, mo B A £ # 0. Crnpasi, Ko
e He Tak, To6To £ = 0, 1 # 0, 3acTOCYBaBINY 3aMiHy 3MIHHUX 38 MTPABUJIOM

th=t, x1=u, UL=2= (12)

Ta IOBEPHYBIIHUCH JI0 IIOYATKOBUX II03HAYEHb, OEP:KUMO IIYKAHU pe3y/IbTraT. 3aMiHa
3MIHHIX

tp=1t+ h(‘rvu)7 Ty = g(m,u), Uy = f(x,u) (13)
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saJsiuniae BUIsiy oneparopa T imsapiantaum: T — Oy, . Beaxaroun B (13) dyHKuil
h(z,u), g(x,u), f(z,u) po3s’a3kamu cucremu

Ehy +nhy +7=0, &g9e+ngu=-1, Efe+nfu=0,
omrepaTop P 3BoguMo 1o Burisaay P = —0;,, TOOTO 3 TOYHICTIO [0 ITO3HAYEHD OJIEDP-
xkyemo (10).

Hexait Tenep rank A = 1. Toxi £ =71 =0, 7 # 0 i, KpiM TOro, T HE € CTAJIOIO BEJIH-

qunoio. Tomy 3 TounicTio 70 3aminu (12) mMoxkemo BBaxkaru, mo 7, 7 0. [loknasimu

ty=t, xz=-7(z,u), u3=u,
onepxkyemo (11). HeexsiBasentricTs 306pakens (10) Ta (11) ouesunna. Jlemy mose-
JIEHO.

Teopema 1. Heexgigarenmmi 306pasicenns 6EKMopHuMU noaamu JIi xaacuwnoi an-
eebpu Tanines AG1(1,1) sunepnyromocesa 306pasicernamu

AGI(1,1): T=0;, P=-0, G=10,;
AG3(1,1): T =08, P=-0, G=ud;+10,;
AG3(1,1): T =20, P=-0, G=1t0,+udy;
AG‘{(l,l) . T=9, P=-z0, G=uztd,+z%0,.

Hosenenns. 3ailicaumo posmupenns ijgeasy I oneparopom G. Jljis nobyaosu npe-
CTaBHUKIB KJIACIB €KBIBAJEHTHUX 300paKeHb Oy1eMO BUKOPUCTOBYBATHU Ti 3 EPETBO-
penb (3), gki 3amumaTs dopmy oneparopis T, P He3MIHHOIO.

Hexaii oneparopu T', P mators Buriisz (10), a oueparop G — surian (1). Ilepesi-
PSIFOIH BUKOHAHHSI KOMYyTaIlifiHUX criBBigHOmens (4), (5), mepekoHyeMocs, mo

G =71(w)0: + (t + &(w)0s + n(w)y. (14)

Haitbinpin 3araspHa 3aMina 3MIiHHUX, BiJHOCHO sikoi BurJsid omeparopis 1, P €
IHBapiaHTHUM, MA€ BUIJISA,

t1 =t+h(uw), z1=z+g(u), u = f(u). (15)

Axmo B (14) n = 0, To, nokmazaroun B (15) h = &, 3BoguMo onepaTop G 110 BUTIISATLY
G = 71(u1)0%, +t10,,. dxmo 7(u1) = 0, To Mae micre 306paxkenns AGT(1,1). dkmo
71(u1) # 0, Ty, # 0, T0, nokaBum B (15) f = 7, omepxumo 306paxenns AGF(1,1).
Hapemrri, sxmmo 7 = k = const, To G = kJ, +t10,,, To6TO G € MiHiftHOIO KOMGIHAIIEO
onepatopis T Ta t10,,, Mo Binmnosizae s06paxennio AG}(1,1).

dxmo B (14) n # 0, To BBaXKaroun B (15) GyHKUT A, ¢,f PO3B’sA3KaMu cuCTEME

nhu+T:07 §+ngu =0, hfu:L

onepkyemo 3o6paxenns AG3(1,1). Hepaxko mepekonaTucs, mo cepes samin (15)
He icHye Taxoi, mo mepesoauTh 306pazkenna AG1(1,1), AG3(1,1), AG3(1,1) onme B
inmre.

Hexait Tenep oneparopu T, P marorh Buriisy (11). 3 BUKOHAHHS KOMYTAIHHIX
crisBinHOMEHD (4), (5) oTpuMyeMO

G = [t + 1(2,u)]|0; + 220, + n(zx,u)0y.
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Haiibinbin 3arajibHe IepeTBOPEHHsI, sIKe 3aJIMINAE He3MIHHOKW (opmy oneparopis T,
P, mae Burisz

t1=t+h(z,u), 1=z, u=f(z,u). (16)
Bsaxatoun B (16) dyukuii h Ta f poss’siskamu cucremu
T+ 2%hy +nhy = zh, x2fy +nf. =0,

onepxkyemo 306paxkennsa AG{(1,1). OueBuano, 1o 1e 306paskeHHs He € eKBiBaJeH-
THUM >KOJHOMY 3 OTPHMAaHUX BUIIE. TeopemMy TOBEICHO.

Hacainok 1.1. Heexsisarenmmni 306pasicennsa 8eKmMopHuUmMy noasmu JIi cneuiasvroi
anzebpu Lanines AGo(1,1) sunepnyromoes 306pasicennamu

AGY1,1): T=08, P=-0, G=td,,

17

D =2t0; + 20, + eud,, de €¢=0,1; (17)

AG3(1,1): T=08,, P=-0,, G=1t0,+ud,, (18)
D =2t0 + 20, + u(A — In|u|)0y, X ER;

AG%(L 1) T = 875, P = —x@t, G = xto”!t + .Tan, (19)

D = 2t0; + 20, + cud,, de €=0,1;

AGi(1,1): T=08,, P=-0,, G=ud;+to,,
D = 2t0; + x0,, + 3u0,.

Hacainok 1.2. Heexesiganenmni 306pasicerms 6eKmophumu noasmu JIi noenoi an-
2ebpu Tanines AGs(1,1) suuepnyromovcea 306pastcernimu

AGY(1,1): T, P, G, D euzaady (17), de ¢ =0, S =120, + txdy;
AG3(1,1): T, P, G, D eueaady (17), de € =1,

S =120, + (tx + e1u®)dy + u(t + Mu?)d,,

de e1 =41, XeéR abo c¢=0, A=0,=1;
AG3(1,1): T, P, G, D eueaady (18),

S =120, + tx0, + [ux + (A — In [u|t)]0,, )€ R;
AGA(1,1): T, P, G, D eueandy (19), de € =0, S =120, + xtd,.

g noBenenns nacainky 1.1 morpibHo KoXKHE 3 OTpUMAaHUX B TeopeMi 1 300parkeHb
kyacuaHol anre6bpu [asines: posmmpuTn oneparopom D urisay (1) mo 306parkensst
crieniasibHOT asreGpu Lastisest, BUMararoun BUKOHAHHS CIiBBiqHOIIEHD (6). AHAmKOriu-
HO, JIjIsI JIOBEJIEHHsI HACIIIKY 1.2 JOMOBHIOEMO OTpUMAaHI 300paskeHHs CIIeliaIbHOI aJl-
re6pu astines oneparopom S Burigny (1), BuMaraiodn BUKOHAHHS CIiBBiHOMEHD (7).
Bigsrauamvo, mo 3o6pazkenna AG3(1,1), e = 1, ta AG3(1, 1) He I0MyCKalOTh PO3IIH-
peHHs 10 300pakeHb moBHOI aarebpu [asimest.

3. Posrismaemo knacudikariio 306pakeHpb po3mupenux ajaredp [asimes, Bukopu-
CTOBYIOUHU TOIl K€ aJIFOPUTM, IO 1 JiJist onucy 300paxkenb ajredop [asisest. OckijbKu
amrebpa AG1(1,1) = (T, P, M) B (G) micrurs xomyrarusuuit ineax [ = (T, P, M),
PO3IJIS PO3MOYNHAEMO 13 Kiaacudikariil 300paxens 1.
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Jlema 2. Hexati T, P, M — ainitino nesaneorchi onepamopu euzasdy (1). Ienyromo
nepemeopenhs (8), axi 3600smo ui onepamopu do odwiei 3 dopm:

T=0, P=-0,, M=ud,, (20)
T=0, P=-0;, M=o +00(u)d,, (21)
T=0, P=-x0, M =~(x)o, % # const, (22)
T=8, P=-28, M =2ud, (23)
T—=08, P=—z8, M=20,. (24)

Tym a(u), B(u) — dosinvni diticni Pynryii, Wo 0OHONACHO HE € CTNANUMU.

Hosenennsi. 3rimno 3 emoro oneparopu 1" i P spogsarhes jio surysty (10) abo (11).
Hexait mae micie (10). Toni sHacaimok komyrarusHOCTi imeasny I omeparop M mae
BUTJISIT,

M = 7(u)d + &£(u)0r + n(u)dy,

KUt jonyckae 3Beenns 10 Buriisiay (20) mepersopenusivu (15) smiie y Bunajaky
1 # 0. dxmo n = 0, To oneparop M 3BomUTHCs 110 oneparopa u10y, + [(t1)0,, upn
g—z # 0, Ta 10 omeparopa w10y, IPH % = 0. O6uznpa Bunajaku BignosizaoTs (21).

Hexait reniep mae micue (11). Topmi
M = 7(x,u)0¢ + n(x, u)dy,

i Mmarpuns A, ckiajieHa 3 KoedilienTis npu noxiguux B oneparopax 1, P, M, nabysae
BUTJISITY

} 1 0
A= —x 0
0

T

I © O

O4eBUIHO, O MOXKJIUBI JBa BUITAIKN: rank A = 2 a6o rank A = 1.
Ao rank A = 2, ro n # 0. Baxkatouu B 3amini (16) dynkuii b ta f po3s’askamu
CUCTEMU

nhy +7=0, nfu.=2,

3BozuMO ouneparop M mo oneparopa M = 20,,. Orxe, Mae Micie 300pakenns (24).
dkmo rank A = 1, To n =0, 7 # 0. Ilpu 7, = 0 maemo Bunajok (22) . fkuo

Tu # 0, To noknapum B (16) h = 0, f = 7/2, 3Bogumo oneparopu T, P, M 1o

surigry (23). HeeksiBajeHTHICTD yCiX BUNAKIB BUILIMBAE 3 MOIEPEIHIX MIPKyBaHb.

Jlemy moBejieHO.

Teopema 2. Heexsigarenmmi 300pascerma SEKMOPHUMUY NOAAMY JIT po3wuperoi

KAacuunol anrzebpu Ianines Aél(l, 1) suuepnyromves 300paAHCEHHAMU

AGE(1,1): T =08, P=-0,, M=ud, G=1t0,+zudy;
Aé%(la 1)  T= ata P= _Bx, M = 908t —|—u8£,
G = 2p0; + (t + 2u)0y + (u? + )0y,
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de p =0, abo ¢ = p(u) 3adosorvnae cnissionowenns 2¢0(Co—1)=u?, C=const € R;

AG3(1,1): T=08,, P=—xd, M =n~(x)d,
G = xt0; + (22 — ¥(2)) 0y,
de pynxuis v = y(z) (dy/dx # 0) sadosoavnae cnissionowenna Cy? + 2y = 2,
C = const € R;
AGI(1,1): T =8, P=—xd,, M =2ud,,
G = 2ty + (22 — 2u)0, + uxd,.
Hosenennsi. s 10BeJIeHHHsT TeOpeMH NOTPIOHO KoxkHe i3 300paxkenn (20)—(24)
posmmpuTi ornepatopom G BurasLy (1) 10 300paskeHb PO3MIMPEHOI KIacHYHOI al-
re6pu lamines AG(1,1). Yei BUDAQIKU PO3IVIAIAIOTHCS AHAJIOTIYHO, TOMY JIE€TAJILHO
3YNUHUMOCS JIWIE Ha JEAKUX 13 HUX.
Hexait oneparopu T, P, M mators surussiy (22). IlepeBipuBni BUKOHAHHST KOMY-
ranifiaux cuissinHomens (4), (8), (9), nepekonyemocst, o

G = (tz + 7(z,u))d; + (2% = 7(x))z + 1z, u)du,
ne dyukuis y(z) 3a/10BOJIbHAE PIBHIHHS

d’}/

2

- - -0 = 0
zy — (2 ’Y)d )

3araJbHUN PO3B’A30K JKOIO MA€ BULJISI,
Cy?>+2y—22=0, C =consteR.

Samina 3MiHHUX
t1 =t+h(z,u), 1=z u = f(z,u),

Je dyHKIIl h Ta f € po3B’s3KaMu cucreMu
(2% = Nhe +nhy + 7 =2h, (2" =) fo +nfu =0,

IPUBOIMTE Hac 10 306pakenns AG3(1,1).

Hexait oneparopu T, P, M mators suruisiy (24). Bukonanus komyTaniffHux cris-
Biguomens (4), (8), (9) mst oneparopa G npuBojuTh j10 piBHOCTI 2 = 0. OTpHMana
CylepedHicTh MoKa3ye, mo 300paxenns (24) imeasry I ne JIOITYCKA€ PO3IIUPEHHS IO
306pazkenns aaredpu AG(1,1).

HeeksiBasenTHicTh OTprMaHnx 300pakeHb ajarebpu Aél(l, 1) BunMBaE 3 HeekBi-
BasteHTHOCTI 306pazkens (20)—(24) izeamy I. Teopemy soBejeHo.

Hacaigok 2.1. Heexsisairenmmi 306pasicerns GEKMOPpHUMY noaamu JIi poswupenoi
cneyianvrol aneebpu Lanines AGo(1,1) suuepnyromocea so6pasicermnimu

AGY(1,1): T =08, P=-0,, M=ud,, G=1td,+zud,,

(25)
D =2t0; + 20, + Aud,, X E R;
AG3(1,1): T =8, P=-0,, M=pd+ud,,
G = 200 + (t + 2u)0y + (u* + )0y, (26)

1
D =2t0; + 20, +ud,, me =0 abo <p=—§u2;
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~ 1 1
AG%(l, ].) T = at, P= —x@t, M = §$28t, G= xt(“)t + 5272817
D = 2t0; + 20, + cud,, de €=0,1;

AGA(1,1): T=8, P=-28, M =2ud,
G =txd;, + (x2 —2u)0; + uxdy, D = 2t0; + 20, + 2u0,.

Hacaimok 2.2. Heexesisarenmmi 306pasicerns 6eKmMopHumy noaamu JIi poswupenoi
noenoi anzebpu Tanrines AG3(1,1) suuepnyromves 306pastceHtamu

AG‘%(l,l) . T, P, G, D sueaady (25),
S =20, + txd, + (%xQ + At) udy, M€ R;

AG3(1,1): T, P, G, D sueandy (26), de o= —%uQ,

1 1 1
S = (t2 - 1x2u2> O + <xt + §x2u> Oy + <t + Exu) U0,

s noemenns Hacaiakis 2.1, 2.2, gk 1 y Bunagky macaiakis 1.1, 1.2, morpibro
CITOYATKY POSIIUPUTH OTPUMAHI B TeopeMi 2 300parKeHHsT PO3IMMUPEHO] KIACHIHOT aJl-
rebpu lastijiest 10 300parkeHb PO3IIUPEHOI creriaabHol ajrebpu lasrisest, a orpuMmani
300paskeHHsI OCTAHHBOI — JI0 300parkeHb pO3IMupeHol 1moBHOI ajrebpu [asines. 3a-
yBazkuMo, 1o 306paxenns AGS(1,1), AG4(1,1) posmmpenoi crenjaibuoi anre6pu
Tlamines me momycKarOTh PO3MIUPEHHS 10 300pakeHb pO3MmupenHol moBHOI anrebpu [a-
JIjest.

4. PesynpraToM mpoBesieHol Kiaacudikaril € po30uTTs Bciel MHOKUHE 300paKeHb
BekTopHUMHE ToJsiMu JIi rpymn Tasines na neekBiBasienTHI Kitacu. OUeBHIHO, O JJTsT
JIOBLIbHOTO 306parkeHHst rpynn Lasinest icHye 3aMina (3), sika 3BOUTH Hi0ro J10 Bigno-
BiJTHOTO TIpecTaBHUKA €IUHOTO KJacy ekBiBajeHTHOCTi. HaBememo ps imocTparriii-
HUX TPUKJIAIIB.

1. PiBuauusa Kopresera—mae @piza

Up + Ugge + ULy =0

iHBapiaHTHE BiJTHOCHO YOTHPHUIIAPDAMETPUYHOI I'PYIU, AK& MICTUTh SK HiJIIPYIy KJIa-
cruany rpymy lasiies 3 6a3ucHUME reHepaTOpaMU

T=0, P=-0, G=10,+0,.

Bukopucrasimu 3aMiny 3MiHHUX 3a OpaBujoMm t1 = ¢, x1 = &, u1 = £e", mepeKoHy-
€MOCsI, IO JTaHi TeHePaTOpH 3a/1al0Th 300parkeHHs KjaacudHol aiareOpu [asires:, sike
micTurhes B kimaci AG3(1,1).

2. PiBugarusa Broprepca

Up — 2UUE — Ugy = 0
inBapianTHe BigiHOCHO OBHOI rpynu [asines 3 6a3ucHUMEU TeHepaTOpaMu

T—08, Pe-0, G=10,—0, D =210+ a0y—udy,
S =120, + tx0, — (z + tu)dy,
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sIK1 3aMIiHOIO 3MIiHHUX t1 = t, 1 = T, u; = e~ " 3BOIATHCS J0 300ParKeHHs MOBHOT

asre6pu Laines AAG3(1,1) npu A = 0, naBesenoro B Hacyigky 1.2.
3. PiBusnus Broprepca (Momudikosamne)

2
Up = Ugg + Uy

iHBapiaHTHE BiJTHOCHO HECKIHYeHHOBUMIPHOI I'PYIIH, K& MICTUTH K ITJTCPYILY PO3IIU-
peny moBHy rpyny lasiies 3 6a3ucHUMU TeHEPATOPAMHI

1 1
T=0, P=-0,, M=--0,, G=t0;— =x0,,
2 2
1 1 (27)
D = 2t3t + x@z - 587“ S = t23t + tx(‘?z — 1(1'2 + 2t)8u
Samina 3minHux t; = t, 11 =z, u = e IIOKa3ye€, 10 TYT Ma€ MicCIle KJiac
300pazkeHb 3 mpejcrapaukom AGA(1,1), ne A = 1.
3ayBaskKnMo, 110 J0 IHOr0 K KJIACY HAJEXKUTh PO3IINpEHa NoBHA rpyna Lajines 3
0a3MCHUMU TeHEePATOPAMK

T=0, P=-0,, M= Juau, G =1t0, — 1xu&‘u,
) 2 L2 (28)
D = 2t0; + x0, — iuau, S =20, + txd, — 5(:172 + 2t)udy,.

Bamina t; = t, x1 = x, u3 = e* 3BoAUTL omeparopu (27) 10 BiAnoBigHUX OIe-
paropis (28), a mopudikosane piBusaHHa Bioprepca — 10 106pe BioMOro piBHsHHs
TEIUIONPOBIIHOCTI U = Ugy, JJIsl SIKOTO pO3IIMpeHa IoBHA ajrebpa [asines (28) e
anarebporo iHBapiaHTHOCTI.

Binzuaunmo, mo Bimomi 300paxkentsi rpyn lajisies BUHUKAIOTH TOi, KOJIM DPAHT
MaTpUIl, siKa CKJIaJeHa 3 KoediieHTis npu moxinuux B omeparopax 1, P, mopiBHioe
Z1BoM (y BUIIAJIKY KJIACUIHOL, CIeliabHOl uu oBHOI rpyu [asines), abo panr MaTpuri,
dKa CKJIaJeHa 3 KoedilienTiB mpu noxizuux B oneparopax 1, P, M, 1opiBHIOE TPHOM
(y Bunajaxy posmmpenux rpyn Lasinest). Came Taki 300parkeHHsI PO3IIA PEHUX TPYI
Tasisiest mjis ABOX 3aseKHuX DYHKIIH BuBdaucs B poboti [13]. Bunaaku, ko paurun
BKa3aHUX MaTpuilk piBHi 1 abo 2, HACKIIBPKI HAM BiIOMO, IT[e HE PO3IJISIAINCH.

_SynmHUMOCS Ha BHTIA/IKAaX 300pakKeHb AG3(1,1) Ta AG3(1,1) ipu A0, AG’%(L 1),
AG3(1,1) ta AG3(1,1) pu ¢ = —%uQ. Baszucui oneparopu B nux 300pazKeHHsIX Mi-
craTh u HetiHilino. Taki 300paxkenns, gk 1 B poborax [9-11], HasuBaemo neainitinu-
Mu. 3ayBaxKumMo, 1o npu A = () 3aekHa 3MiHHA % BXOJUTH y BHOpaHi IPeICTABHUKA
kiacie AG3(1,1), AG3(1,1) meniniitno, asne, K MoKazano Buie (NIPUKJIAJ DiBHSAH-
us1 Broprepca), icHyroors nepersopenns (3), ki JiHeapusyooTh 1l 306paskeHHs. Biz-
3HAYNMO, IO IPOBejeHa Kjacudikallis Moyke OyTH BUKOPHUCTAHA JJIs JHeAPW3aIll
raJijiefi-igBapiaHTHUX PIBHAHD, IO IIPOLIIOCTPOBAHO BUIIE Ha MPUKJIAL MOTU(IKOBa-
Horo piBHaHHS Bioprepca.
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KondopmHua cumeTpisa HeiHiiTHOTO
MITIHAPUYHO CUMETPUIHOTO XBUJIHOBOI'O
pPIBHAHHS

B.1. oyHiu4, M.1. CEPOB, 10.I'. [IOJIOLIBEJIEB

Conformal symmetry of the nonlinear cylindrically symmetric wave equation Ou —
Z%un =X N=1—-n+ ﬁ, is studied. The symmetry of this equation is used to
construct its exact solutions for n = 2. An isomorphism of the algebras AC(1,1) and
AO(2,2) is used to obtain conformal algebra invariants. Formulas multiplicating the

solutions found are presented.

Bimomo, mo makcumasbaoo B posyminai C. JIi anrebporo iHBapiaHTHOCTI XBUJIBO-
BOT'O PIBHAHHS

Ou = F(z,u), (1)
upu F(z,u) = 0 ¢ xoudopmua anrebpa AC(1,n), 6a3ucHi eseMeHTH KOl MAIOTh
BUTJISAT

0 u y

Op=—5—, Juw=2"0,—12"0,,

1
D=z,0,+ Tnuﬁu, K, =22"D — xzﬁu,

Je p, v = 0,n; upu F(x,u) # 0 pisasuns (1) 36epirae kondbopmuy cumerpito AC(1,n)
JIIIE y BATIAJIKY

F(m,u)zAu%, n#1

e A — nosiimpHa crasa. Ilpu omnmcy peasbHHX (PI3UYHUX IPOIECIB 3aCTOCOBYETHCS
piBusnHs (1) npu n = 3, To6TO

Ugo — u11 — Ugz — uzz = F(u). (2)

Hexaii nporec, mo onucyerbcs piBasaaaam (2), numinapuano cumerpuynunii. Ile o3na-
4ae, 1o

u(xo, ¥1, T2, 3) = u(To, 1, p), 3)
ne p = +/z3 + 3. Hincrasmsmoun (3) B (2), ogep:kumo
1

Ugo — U1 — Upp — — U, = F'(u).
p
Ilepenmmenmo cKazaHe BHINE HA BHIAIOK JOBLILHOI KIMTLKOCTI HE3AJEXKHUX 3MIHHUX

u = u(y07y15"'7yn+N)-

Homnosini HAH VYkpainu, 1998, Ne 4, C. 64-68.
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Bsaxkaroun, 1mo mnporiec, sikuil OIuCyeThCsi PIBHSIHHSIM
Ugo — L1 — ** — Upt NN = F(u),
Ma€ y3arajibHeHy C(EpPUIHy CHMETPiio, TOOTO

U= u(yanla"'ayn—lap)’

nep=,/y2+...+ ny N AHAJIOTTYHO OTPUMAEMO PIBHAHHS

Uppo —ULIL — *** — Un—1,n—1 — Upp — ;U‘P :F(U) (4)
fKimo moknacTu Yo = To, Y1 = L1, -+ -, Yn—1 = Tn—1, Yp = Tpn, TO PIBHAHHI (4) marume
BUTJISA]T

U — a1 = = Upn — — 1 = F(u), (5)

n

e u = u(x),x = (xo,z) € Ryyy,. [epenumenmo pisHsHHs (5) HACTYIHAM YHHOM:

Ou — Eun = F(u). (6)

Tn
Hociinnmo, au BOJI0Ii€ BOHO KOH(OPMHOIO CUMETPIEI0.

Teopema. Pisnanus (6) npu N # 0 insapianmue 6i0HOCHO KoHPopmHOL ar2ebpu
AC(1,n—1):

n

1—-n—N
<8a7 Jops D = 2404 + £5,0p + fuau, K, =2z“D — (:c,gajﬁ — xi)(“)a> ,

a,B=1,n—1, modi i misvku modi, Kosu

4

de X ik #1 — dogiavni Koncmanmau.
Teopema soBojurhbea merogom C. JIi [1].
Y Bunagky n = 2 i 3a ymoBu (7) piBusaHS (6) Mae BUIVIsLT
5—k
-1

1 N#AO kL (8)

Ugp — ULl — Uge — —Ug = Ay, N =
Z2
3acrocyemo cumMerpiro piBHsAHHS (8) 1715 3HAXO/KEHHsI HOro PO3B’s13KiB, KOTPi Gy1emMo
MIyKATU Y BUTJISIL

u(@) = f(z)pw), 9)

(muB., manp., [2]). ¥V dopmyiai (9) ¢(w) — HeBimoma dyHKIlis, Ky HOTPIGHO BU3HA-
guTH, a iHBapianTHi 3MiHHl w = w(X) Ta dyskUia f(T) BU3HAYAIOTHCS SIK DPO3B’S3KU
cucremnu Jlarpamxxa-Eiinepa

drg drp dxs du

o g ey
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Posp’szytoun piBHAHHSA % = %“, ozepKyeMo Buriisiz anzana (9) ta dysxuii f(z),

a HeJHifHY cucTeMy nudepeHIiaJbHIX PIBHAHD

dl’o dml d.’l?g

5_0 = 5—1 = 5—2
3a JIOIOMOrom i3oMopdiszmy mix anrebporo AC(1,1) i anrebporo Jlopenna AO(2,2)
[3] 3BeaeMO g0 miHifHOL. Tauuil i3oMopdisM 3ifiCHIOETBCS IEPETBOPEHHSIM 3MIHHIAX

- 22 - Z3 - 25
o = ) xr1 = ) To = )
24 — 21 Z4 — 21 24 — 21
2 2
24+ 21 ¢ —x5—1
2 2 2 2 2 2
T I = A A AT o AT T 4, (10)
Z4 — 21 T2
To X1 x? — m% +1
22 = —R5, X3 = ——R5, 24— 25
2 2 2x9

i fie na Komyci 27 + 23 — 25 — 23 — 22 = 0 Touno. 3’30k Mixk onepaTopamu KoHMOPM-
noi anre6pu AC(1,1) ra anre6pu Jlopenna AO(2,2) = {J/,}, a,b = 1,4 3anaerbcs
dopmymamu 0y = Jig — Joy, 01 = Ji5 — J4y, Jby = Jhs, D = —J1,, Ko = Jio + Jby,
Ky = Ji{3 + J},. Bignosinua cucrema Jlarpamka—Eiinepa miniitna, onaopinna i mae
BUILSL

dz1 dzo dzs
—C2122 + C3123 + C4124  C2121 + C3223 + C4224  C3121 + C3222 + C4324 (11)
dZ4 dZ5 dt
C4171 + Ca222 — €4323 0

Cucrema (11) posnajaerbes Ha Bl IijcucTeMu: nepuia 3 HUX
5 =0, (12)

a Jipyra B MaTpUIHii hopMi Mae BUTTIA

7= AZ, (13)
e
z1 0 —co1 e can
R E _lea 0 C32  Ca2
Z = . A=
23 €31 €32 0 ca3
24 €41 c42  —c43 O

Posp’azkom (12) € z5 = const. Burusiy poss’si3kie cucremu (13) BU3HAUAETHCST BUTISI-
JIOM KODEHIB XapaKTEePUCTUIHOI'O PiBHSIHHS

det[A — A\E] =0, (14)
(E — omunnuna marpuis). ¥ ganomy sunaiaky (14) mae Bursi
MW+ M) +G=0,

e M = c3; + 3 — 3 — 3y — ¢}, G = (c31¢42 — 32041 — C21043)°. B 3amexnocti Bin
suadenb M, G Tta panry marpuni (A — A\E) Moxuusi 9 pisHUX BUNAJKIB PO3B’d3KY
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cucremu (13). It KOXKHOTO 3 IIUX BUIIAJIKIB, CKOPHCTABIINCH [IEPETBOPEHHSIME 3aMiH-
Hux (10), 3naiigemo mykani imBapianTn w Ta Burasay byukuil f(z). He npusomsun
rPOMI3IKNX 0OPaxyHKIB, KiHIIEBUI pe3yJsibTaT HABEIECHO 3a JIOIOMOTOK0 Tabi. 1.

B Taba. 1 BBedeHi Taki MO3HAYEHHS: AT = GgZo — a121, bx = boxo — bix1, 22 =
23 — 2%, a, b, a, 3 — NOBiNBHI cTaTi BEKTOPH, MO 33JI0BOMbHAIOTH yMOBH a2 = —b?
ab=0,a=a+b, B =a—b, m = const.

Ta6ummuga 1. Iusapianrai 3minni rpymun C(1,1).

Ne  f(x) w1 w2
1 1 T2 ax
2 1 x9 22
2 _ 2_ 2
1—k e —x54+1
3 =z ba 2iowptl
T 2
_2 2_ .2
— e —z5+1
4 o7 se zl-ahtl
z2 z2
2
5 @y " o5 Bz +mlnxzs
2
2
T—&
6 x4 % ro B
2
2
% ﬁz(zz—zg)+&z (zz—zg+1)2+4(bz)2
@3 3
_2 22 2_ 2 2 2
— z°—x) 22—z +1 z“—x5+1)°+4(bx
8 mx, " arctg — 2arctg =52 (@7 —mptl)” +abs)”
3
_2 2_.2\2 2 2_ .2
11—k z(x®—x5)—ax x—x +(ax -
9 oz, 7B ( 1;22) % In &T=w2) H(aw)” 23:2 (e2)” _ arctg ——2
2 2

Posrugnaysmun dopmyny (9) cymicho 3 Tabu. 1, ge BKazaHo BiALOBiAHI 3HAYEHHS
iHBapiaHTHUX 3MIHHUX W1, wo Ta QYHKIGT f(2), OTPUMAEMO JIeB’ITh HEEKBIBAJIEHTHAX
ansanis. [TigcraBusim iX B piBHsHH (8), OTPIMAEMO HACTYIHI PeyKOBaHi PiBHSIHHSI
I Bu3HaueHHs DyHKIGT o(w):

P11+ p1+ )\QOk =

5—k
(k—l)wl
5—k E+1

P N P W
S T L

P11 — 2wip12 — dwapaa + .

(W2 +1) 11 Fwiwapia+ (W3 +4)poa+3wip1 +3wapa+4 P+ APk = 0,(15)

k—2
(k—1)

2
WPl + wiwapie + (Wi + 4) P22 + 3wipr + Bwaps + 4 E © 4+ Ao* =0,(16)

k=2
k-1

k—2
4w13011 —2(1 4+ mw1)p12 + m? P22 + 8wipr — 2mps + 47)2g0 + )\go =0,

(k
9 9 k—2
P11 — (2 + wiwa) P12 + wipaa + 15w1p1 — waws + 4(k 12 @+ Ak =

(Wi 4+ 1)11 — wi(wa + 2)@12 + wa(wa + 4)pas + 2wi 1 +

2
2<p+)\cp =0,

k—
+2(w2+2)902+4(k )
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>\ k
1
A =0,(18)

4 1 k—2
— 4 2 2 4——
<w2 +w2+4> P11+ w2 (w2 +4)p22 +2(w2 +2)¢2 + —12? "t

k—2
4w + 1)pr1 4 2(w1 — 1)@12 + paz + 8wipr — 202 + 4(k 2% + A =0.

IIpoananizyBaBim oTpuMani peLyKOBaHI PiBHAHHSI, BKaXKEMO JACTKOBI PO3B’SI3KU
Jeskux 3 HuX. SIkimo B piBuanni (15) a6o (16) nokmacrtu ¢ = 0, orpEMaeMo

2
(wh + 4)p22 + Bwapz + 4 )2<p +AF =0, k#1,

k—
(k-1
YaCTKOBUM PO3B’SI3KOM SIKOTO € (DYHKITist
Ak —1)2

, =
—_— k#1
8(1€+1) w2:| ) 7é )

p(w2) = [—

II0 IPUBOJIUTH JI0 PO3B’sI3KY piBHsIHHSA (8)

1
1—-k

A(]“1)( x§+1)2] . k#1

“”Zﬂﬁﬁﬁ

Pisuguus (17) upu po = 0 nabyBae BUIIIsILY
A k

k—2
241 2 4—-
(Wi + D11 + 2wiep1 + 1) Pt 79 =0

Woro gacTKOBUil pO3B’SI30K BIAAETHCS 3HANTH mpu k = 4:

a, OTKe, PO3B’sI3KOM piBHsiHHA (8) mpu k = 4 € dyHKIis

o= [ (e

Hoknasmu B (18) ¢1 = 0, oTpuMaemo 3Budaiine qudepeHiaabHe PIBHAHHI

o=

k—2 A o
wa(wa +4) @22 + 2(w2 + 2) @2 +4(k¢ 1)2@4— 1 =0,
YaCTKOBUM PO3B’SI30K SIKOTO €
A , |7F
plwn) = |~ (1= FPen| (19)

Anzan (9) i dyskuis (19) ma0Th MOXKIUBICTE 3HANTH PO3B’sI30K piBHsHHS (8)

u(z) = {—%(1 — k)*{(2® — 23 4+ 1) + 4(bx)?} r )
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ITpu 2 = 0 B (17) omepKuMO PiBHSAHHSI

A

k
¥ =0

-2
(Wi + 1)e11 + 2wi¢p1 +4(k )2<P +

YacTKoBHUil PO3B’I30K 3HAXOAUMO IIpHu k = %:

7
9\ 3
o(w) = [—@W%]

a, OTIKe, 1 YaCTKOBUI PO3B’sI30K piBHsHHS (8)

ulw) = 616{696( sz)w}g ;

OjtepkaHi BUINE Pe3yJIBTATH MOXKHA PO3MHOXKHUTH 38, JIOIIOMOTOI0 [TI€PETBOPEHD 1H-
BapianTHoCcTi piBHsHHS (8). Ili mepeTBOpeHHsT MAOTh BUTJIS/L:

)

2

emcop(rs — Op(x? — 23)) eMxy em|T-F

Ty 3 x2 ’ U u )
o o

g

ne o =1—20,2% + 0,0%x* — 13), an, Cap, 0o, M — NOBLIBHI HAPAMETDH.
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JIiIBcbKa Ta yMOBHA CHUMETPisl CUCTEMMU
piBHaHb 'amijibToHa—Z KOOI

B.1. oyHiu4, M.1. CEPOB, M.M. CEPOBA, A.B. I'/IEGA

Lie and conditional symmetries of the Hamilton—Jacobi system of equations are in-
vestigated.

B po6ori [1] BcraHOBIIEHO, 1110 MaKCUMAaJIBHOW B Kiaci oneparopis C. JIi anre6poro
imBapianTHocTi piBHgHES [amigprona—AK0obi

1 = 5
0 2m( ) 0 (1)

€ anreOpa, Oa3UCHI eJIeMEHTH SKOI MAIOTh BUTJIS,
0o, Ouy, Ou, Jab = 240y — T40a,
1 1
G, = 2004 + mx,0y, G, = ud, +mzx,0,

1 1
I _ - 7 _ -
D = 1‘080 + 2.%‘@8@, D Uau + 2.’1?aaaa (2)

1 1
Il = x%@o + 20x,04 + §m£'280, ' = w28, + uz,d, + §m£’280,

K, = 2x,D + s%0,.
B dopmynax (1), (2) Beeneni Taki nmosHaueHHs:

0 7]

Oxy’ T Oz,

2 .
D = D! +DH7 s? = —xou—x2, m = const,
m

u=u(z) €Ry, x=(z0,Z) €Rpy1, ug = Ogut,

3a immekcamu a, b siKi TIOBTOPIOIOTHCS, CJIiT po3yMiTu cymy Bim 1 1o n.

B pobori [2] pocaimKkeno, Mo B Kaaci CKaasgpHuX qudepeHIiaJbHuX PiBHsIHD 1-T0
nopsizky pisusgung (1) € exunum, iHBapianTHEM BigHocHO ajarebpu (2).

B po6ori [3] mokazamo, 1o asirebpa (2) jgokajibHO i3oMopdHa KoropMHiil anredpi
AC(1,n+ 1), ne poub x,41 Bigirpae QyHKIIA .

Vzaranpanmo pisasaag (1) ma sumnagok msox dymkmii u!, u? Taxoo cucremoro
PiBHSIHB:
w4 = (Fu') =0 3)
0 2m )
2, Lo 1g 2
ug + EVU Vu® = 0. (4)

Cucrema piBasanb (3), (4) B 6inbm posmupenoMy Bapianti qociipkena B pobori [4].

Homnosini HAH VYkpaiuu, 1998, Ne 12, C. 49-52.
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Hocniaumo JiTBCbKy Ta YMOBHY CUMeTPIifo siK piBHsIHHs (4), Tax 1 cucTeMu piBHSIHB
(3), (4).

Teopema 1. Makcumarvrolo Aii6cokoro anzebpoto iH8apiaHMHOCE piehsanhs (4) €
HECKIHYEHHOBUMIPHA ar2ebpa 3 THEIHIME3UMANDHUM ONEPATMODOM

1
X =ady + [Q(d + b)(ﬂa + CapTp + da] 0, +

+ Oyt + KOy2,

. i) .
bu' +m (%:ﬁ +df> +h

de Capy = —Cpq — Odosinvri cmani; a(xg), b(zo), da(ro), K(u?) — dosiavii enadki
Pymryii.
Teopema 2. Ba3ucHi esemMenmu MAKCUMANOHOT ATBCHKOT a.A2ebDU THEADIGHMHOCTIV

cucmemu pienans (3), (4) sadaromvca popmyramu (2), 6 axur u = u', ma neckin-
YEHHUM ONEPATNOPOM
B = K(u?)0,,
de K(u?) — dosinvna enadka dynxuis.
Teopemu 1, 2 nosogsThes crangapTauM Merogom C. JIi [5].
Teopema 3. Cucmema pishans (3), (4) npu dodamrosit ymosi
(Vu?)2—1=0 (5)

Heapianmma 8i0HOCHO anzebpu
_ _ .2
80, (3'(1, (3'“1, Jap = 1,0p — Ibaa, Jn+1a = u?0y + l’aauz,
Gl = 200, + M0, GTIhLl = 200y2 — muld,,
Gl =u'd, + mzydo, GIL, =u'dy2 — mu2dy,

D! = 248y + %(xaﬁa +u%0,2), DM =ulo, + %(zaaa +u20,2),
Y = 2200 + 20(240q + u20y2) + %m(f — (u*)?)0y1,
n”:@%%w+¢u¢%+ﬁ@a+%mﬁ—@ﬁ%%,
Ko, =2x,D + 5%0,, Kpi1 =2u>D — 5%0,2,

de D = D'+ D %= Zgpu! — (i — (u?)?).

Hdosenennsi. Kpurepiit ymosHOI iHBapianTHOCTi cucremu (3), (4) srigso 3 [3] mae
BUIIST

Q~Sl = A1S1 + X259 + N353, QSQ = M S1 + A552 + XgS3,
QS5 = ArS1 + AsS2 + A\gSs.

PosristHeMo, Hanpukaas, omepatop @ = o (u?0, + 1,0,2), 1€ o, — JIoBimbHI
KOHCTaHTH. SIKINO 3HANTH IpyTe IIPOJOBXKEHHsI IIBOrO OIEPATOPA 1 IOAIsITH HUM Ha
KOXHe 3 piBHsHB (3), (4), (5), To MOXKHa OzepKaTH:

~ ~ 1 ~
QSl = —Oéau}zSQa QSQ = _aaui‘SQ + Eaaués?ﬂ QS3 = 2aau<2153’
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ne S1, Sa, S3 — xiBi yactunu piBHsiHb (3), (4), (5) BiAUOBHO. AHANOTIYHO BCTAHOB-
JIFOETHCS yMOBHA iHBapiaHTHICTH cuctemu (3), (4) BigHOCHO iHIIMX onepaTopiB aares-
pu (6). Teopema JoBe/ieHA.

Teopema 4. Anzebpa (6) sokarvho isomopdna xongopmnit anzebpi AC(1+1,n+1).
Hosenennsi. [lepeitiemo Bin aminnux (o, Z,u',u?) no sminaux (Yo, ¥, Ynt1,t) 32
dopmystamu

L (o4 ), goz = L B (7)
= — €T _— =X = — xro — — = u-.
Yo \/5 0 m ; Yy ) Yn+1 \/§ 0 m )
Y mpocropi (Yo, t, 7, Yns1) 3 MeTpuuanmmM TerzopoM ¢4 8 curnarypu (+, +, —, ..., —, —)

6asucui oneparopu KoHdopmMHuOl anrebpu AC(2,n + 1) MaoTh BUrIs

o - 0 - 9 -
Py = h=2 B=2 Po-= ,
O dyyt Tt ot e T Oy
Jot = yoPr —tPo,  Joa = yoPu +YaPo, Jont1 = YoPus1 + Yni1 P,
Jta *tP +yaPta Jt n+1 *tpn+1+yn+1pt> Jab :yan*ybPa, (8)

Jant1 = YaPot1 — Yns1Pa, D =yoPo + 1P, + Yo Py + Yni1 o1,
Ky =2yoD — s*Py, K, =2tD — $*P,,
Ka = 2yaD + szpav KnJrl = QynJrlD + Szpn+17

me s®=yg +t2— i —y2 .

Dopmysn (7) BCTAHOBIIOIOTH B3aEMHOOIHO3HAUHUN 3B 30K MIXK OIIEpATOPAMU aJl-
rebpu (6) Ta (8). A came:

1 - - 1 - - .
O=—4=Fo+ P, ’ au:_P_Pn ) 8a:Paa au :Pa
0 \/5( 0 +1) 1 m\/i( 0 +1) 2 t
- = 1, - ~ 1
Jn—i—la = Jta7 Jap = Jaba DI = i(D + JO,n+1)a DII = i(D JO n+1)
1 - - - -
Gn+1 \/i(JOt + Jint1)s Gn+1 \/E(JOt — Jin+1),
1 - ~ m , ~ ~
GI:—JG—Jan 5 GII:_Ja+Jan )
a \/5( 0 s +1) a \/—( 0 , +1)
1 - . . -
HI = —(KO + Kn+1)1 HII (KO - Kn+1)7 Ka = Ka7 Kt = KnJrl

2V2 2\/

Ieit dpakT i JOBOAUTH TBEPIZKEHHS] TEOPEMHU.
Hocnianmo Tenep miiBebky cumerpito cucreM (3), (5); (4), (5). fk i Teopemu 1, 2,
3a JIOIMOMOTOI0 MeToy JIi IOBOASTHCSA TaKi TBEPIZKEHHSI.

Teopema 5. Basuchi esemenmu MaKCUMaAbHOT Aii6CHKOT an2ebpu, tHEAPIGHMHOCTI
cucmemu pieuans (3)—(5) sadaromoca dopmysamu euzandy

807 acw Jab = xaab - xbaa; Ga = -7;08(1 + ml‘aaup
1
D! = 208y + i(xaﬁa +u%d,2), DU =ulo, + 2(93(15 +u?0,2),

1= x%@o + 20(240, + u?0y2) + - "28u2
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ma neckinuenrum onepamopom R = K(x¢)0,z, de K(xg) — dosiavha eaadxa ¢dym-
KULA.

Teopema 6. Makcumarbroro Aii6cvKo10 an2ebpoto THEAPIAHMHOCTE CUCTNEMU DIGHAND
(4), (5) e neckinuenno eumipna areebpa 3 IHEIHIMEZUMAALHUM ONEPATIOPOM

X =ady + [(d + B)2a + CapTh + Cani1u® + da] 0q +
1 . . .
+ [ﬁul +m (Z(ozﬂ)(:?2 — (u2)2) +dora — dn+1u2> + 'y] O +

1
- 2
+ |:§(05 + 6)“ + Cant1Ta + dny1 D2,
de o), B(z0), do(x0), dnt1(z0), v(x0) — dosineni enadki Gyrryii, Co nt1=—Cn+1,q
cmant.

3 HaBEJICHUX DE3YJIbTATIB BHUILUIUBAE, MO NPUPOJHAM y3araJbHEHHSIM DIiBHIHHS
laminbrona—$Iko6i € cucrema (3), (4), (5) ama asox dbynxmiit u! i u?. Bracmimox
MIMPOKUX CUMETPIHHUX BJIACTUBOCTEl BOHA € IPETEHIEHTOM JIJIsl OIUCY PeabHuX (hi-
3UYHUX IIPOIIECIB.

1. Boyer C.P., Penafiel M.N., Conformal symmetry of the Hamilton—Jacobi equation and quan-
tization, Nuovo Cim. B, 1976, 31, Ne 2, 195-210.

2. Ceposa M.M., O HeJIMHEHHBIX yPABHEHHUAX TEILUIONPOBOJHOCTH, HHBAPUAHTHBIX OTHOCUTEIHLHO
rpynnel [anuitesi, B ¢6. TeopeTuKo-rpynmnoBble UCCIEIOBaHUsSI YPABHEHUI MaTeMaTHUYeCKON
busuku, Kuep, n-t maremaruku AH Ykpaunsr, 1985, 119-123.

3. Fushchych W., Shtelen W., Serov N., Symmetry analysis and exact solutions of equations of
nonlinear mathematical physics, Dordrech, Kluwer Acadamic Publishers, 1993, 436 p.

4. Fushchych W., Chemiha R., Galilei-invariant nonlinear systems of evolution equations, J.
Phys. A: Math. Gen., 1995, 28, 5569-5579.

5. Oscannukos JI.B., I'pynmnosoit ananns guddepennmansubix ypasaennii, M., Hayka, 1978,
400 c.
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The Schrodinger equation
with variable potential

W.I. FUSHCHYCH, Z.1. SYMENOH, I.M. TSYFRA

We study symmetry properties of the Schrédinger equation with the potential as
a new dependent variable, i.e., the transformations which do not change the form of
the class of equations. We also consider systems of the Schrédinger equations with
certain conditions on the potential. In addition we investigate symmetry properties of
the equation with convection term. The contact transformations of the Schrédinger
equation with potential are obtained.

1 Introduction

Let us consider the following generalization of the Schrédinger equation

o 9 _

i~ + A t i (t, 7 , 1
iy TAY W T, W)Y+ Va( ff)agcc1 0 (1)

32
where A = Err a=1,n, v = ¢¥(t,Z) is an unknown complex function, W =

W(t, 2, || and Vaa: Va(t, &) are potentials of interaction.

When V, = 0 in (1), the standard Schrodinger equation is obtained. Symmetry
properties of this equation were thoroughly investigated (see, e.g., [1-4]). For arbitrary
W (t, &), equation (1) admits only the trivial group of identical transformations & —
=T t—t=t¢y— =113

In [5-7], a method for extending the symmetry group of equation (1) was suggested.
The idea lies in the fact that, in equation (1), we assume that W (¢, Z, [¢]) is a new
dependent variable on equal conditions with . This means that equation (1) is
regarded as a nonlinear equation even in the case where the potential W does not
depend on . Indeed, equation (1) is a set of equations when V is a certain set of
arbitrary smooth functions.

2 2. Symmetry of the Schrodinger equation
with potential

Using this idea, we obtain the invariance algebra of the Schrédinger equation with
potential, i.e.,

0Y
“ot

J. Nonlinear Math. Phys., 1998, 5, Ne 1, P. 13—22; Preprint, Department of Mathematics, Li-
nkoping University, Sweden, 1996, 15 p.

+ A+ WL, &, [¢])y = 0. (2)
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Theorem 1. Equation (2) is invariant under the infinite-dimensional Lie algebra
with infinitesimal operators of the form

Jab = xaazb - xbaxa,
Qo = U0, + %Ux (YO — * Oy ) + %Uaxaaw,
A 1 .. .
_ % (Y0y + ™ Oy ) + (Z A XoTe — 2WA) Ow,
Qp =iB 0y — 1 0y-) + Bow, Zy =10y, Za =1 0y,

where Uy (t), A(t), B(t) are arbitrary smooth functions of t, over the index ¢ we
mean summation from 1 to n, a,b = 1,n, and over the repeated index a there is no
summation. The upper dot stands for the derivative with respect to time.

Note that the invariance algebra (3) includes the operators of space (U, = 1) and
time (A = 1/2) translations, the Galilei operator (U, = t), the dilation (A = t) and
projective (A = t?/2) operators.

Proof of Theorem 1. We seek the symmetry operators of equation (2) in the class
of first-order differential operators of the form:

X =Mt &,4,9") 0, +n(t, 7,0, 07)0y +
+ n*(tv f7 IZ” ¢*)aw* + p(ty f7 ¢7 1/1*7 W)aw
Using the invariance condition [1, 8, 9] of equation (2) under operator (4) and the

fact that W = W (¢, &, [¢|), i.e., 1/)%3)/ =* gq‘;‘i, we obtain the system of determining
equations:

g=¢.=0, £=0,8=¢, &+&=0, =2,

My =0, Ny =0, nya = (1/2)&5,

My =0, My =0, e, = —(/2)&5, 5)
0 + Nee — Ny Wb + 2WEMp + Wi + pih = 0,

—ing + Nae — Ny W™ + 2WERD™ + W™ + pip™ = 0,

Py = py- =0,

(4)

where an index j varies from 0 to n, a,b = 1,n, over the repeated index ¢ we mean
the summation from 1 to n, and over the indices a, b there is no summation.
We solve system (5) and obtain the following result:

=24, € =Ax,+C%+U,, a=1,n,

o (1 . i (1 - .
= z (514.130370 + chc + B) ¢7 77* = _i (514.130370 + chc + E) w*v

=5 2
1/1 .. . A .
pzi §Axcxc—|—chc+B —§ZA—2WA,

where A, U,, B are arbitrary functions of ¢, E = B — 2inA + C;, C% = —C%* and
C are arbitrary constants. The theorem is proved.
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The operators Qg generate the finite transformations:
=t I =47,
W =pexp(iB(t)a), o =" exp(—iB(t)a), (6)
W' =W + B(t)a,

where « is a group parameter, B(t) is an arbitrary smooth function.
Using the Lie equations, we obtain that the following transformations correspond
to the operators Q:

t'=t, x,=U,({t)Bs+xa, z, = (b#a),
w/ = weXP (%UaUaﬁi + %Uaxaﬁa) )
*! * i 2 i
1/1 = /¢ €xXp _ZUaUaﬂa - §Uaxaﬂa )
1. 1.
W' =W + SUatafa + UaUal,

where 3, (a = 1,n) are group parameters, U, = U,(t) are arbitrary smooth functions,
there is no summation over the index a. In particular, if U,(¢) = ¢, then the opera-
tors @, are the standard Galilei operators

G =10y, + %x (VD — "Dy . (8)

For the operators @ 4, it is difficult to write out the finite transformations in the

general form. We consider several particular cases:
(a) A(t) =t. Then

Qua = 2t0; + 7,0, — g(waw )t Oye) — 2W Oy
is a dilation operator generating the transformations
t' =texp(2)), a. =2x.exp(N),
W =exp (—50)w. v =exp (—5A) v, (9)
W' =W exp(—2)\),

where A is a group parameter.
(b) A(t) = t2/2. Then

Qu = 120, + twedy, + ix:c (B — 1" Dy ) — gt (VDy + 1" Dye) — 2W Ay

is the operator of projective transformations:

t’*—t :c'*—xc

Cl—pt’ T 1 —put’

(L 2 ey [ EeTelt

P =1 — pt)™* exp - (10)

—1Z Xl

ZZ’*, =" (1 - /Lt)n/Q exXp <m

) ) W/ = W(l - Ht)27

w1 is an arbitrary parameter.



The Schrodinger equation with variable potential 279

Consider the example. Let

N (11)

We describe how new potentials are generated from potential (11) under transforma-
tions (6), (7), (9), (10).
(i) Qs

W=t W=l i BWa—W = LB ata) -,

Lele Lele Lcele

where B(t) is an arbitrary smooth function, o and o’ are arbitrary real parameters.

(ii) Qa:

W = — W,
Tele
W' = ! +10Uﬁ2+105(:¢ —U.f,)
B (xa_Ua(t)ﬁa)2+xbxb 4 “rala 2 araia aran
Wl — W//
W' = L + anUa(ﬁz +62)+
(2o = Ua(t)(Ba + B))? +xpy, 4 ©o

+ %Ua(ﬁa + 6;)(xa - Ua(ﬁa + 5:1)) + %UaUaﬁaﬁ; oy,

where U, are arbitrary smooth functions, 3, and 3/, are real parameters, there is no
summation over a but there is summation over b (b # a). In particular, if U, (t) = t,
then we have the standard Galilei operator (8) and

W = L — W' = ! —
TeTe (4 — tB8a)? + xpayp
W' = 1

(:Ca - t(ﬂa + 6:1))2 + TpTp -
(iii) Qa4 for A(t) =t or A(t) = t2/2 do not change the potential, i.e.,

1 —>le 1 —)W//:LH--~
Lele Tele Lele

W =

3 The Schrodinger equation and conditions
for the potential
Consider several examples of the systems in which one of the equations is equation (2)

with potential W = W (¢, Z), and the second equations is a certain condition for the
potential W. We find the invariance algebras of these systems in the class of operators

X =Mt T, 0", W) 0y, +n(t, T, 1b, 0™, W)y +
+77*(t7f,1/1,1/1*aw)5w* +P(tafa¢,¢*aw)aw
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(1) Consider equation (2) with the additional condition for the potential, namely
the Laplace equation.

z’aa—f + AP+ W (t,E ) =0,

AW =0.

(12)

System (12) admits the infinite-dimensional Lie algebra with the infinitesimal opera-
tors

PO :6ta Pa :aza; Jab :xaaxb _xba;vaa

- 1.
Qo = Updy, + %Uaxa (60 =" 9y-) + FUazady, a =T,
D = 2,0, + 2t0; — g (Y0 + 1% Dy ) — 2W oy, (13)

A =120, + tw.dy, + imw (VD — "Dy ) — gt (VD + 1 By — 2Wtdyy,

Qp = iB(Wdy — "0y ) + Bow, Zy =10y, Zo = Oy,

where U,(t) (a = 1,n) and B(t) are arbitrary smooth functions. In particular,
algebra (13) includes the Galilei operator (8).
(ii) The condition for the potential is the heat equation.

0 o
za—kAw—FW(t,xﬁ/}—O, (14)
Wo + AAW = 0.
The maximal invariance algebra of system (14) is
POZata Pazaa:ay Jab:xaawb _xbaai(“
D = 210, + 2oy, — 5 (Vg + 1" 0y) = 2W oy,
1= d)aw, Ly = 1/)*31/}*, Z3 =1t (1/)81/, — 1/)*31/}*) + Ow .
(iii) The condition for the potential is the wave equation.
0 o
2E+A1/)+W(t,x)¢—0, (15)
aow = 0.
The maximal invariance algebra of system (15) is
PO :6ta Pa :aa:a; Jab :xaaxb _xbaivaa Zl :¢8¢7 Z2 =¢*8w*7
Zy =it (Y0y — Y 0p) + Ow, Zy = it? (0y — Y Oy ) + 2tOw .
(iv) The condition for the potential is the Hamilton—Jacobi equation.
z%—d} +AY+W(t, @) =0,
Y (16)

ow A6W8W —0

ot 0x, O,
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The maximal invariance algebra is

PO :aty Pa :awa; Jab :xaawb _J;ba;raa
Zy = Y0y, Zo=1Y*0p-, Zz=1it(Ydy —1V*0yp-) + Ow.

(v) Consider very important and interesting case in (14 1)-dimensional space-time
where the condition for the potential is the KdV equation.
81/1 0%
— +— +WI(t 0,
n + 022 + Wit ) =
ow ow PW
MW — 4+ A
o T e T
For an arbitrary F'(|¢|), system (17) is invariant under the Galilei operator and
the maximal invariance algebra is the following:

Py :375, Py =0, Z=i(¢5w—¢*3w*),

G:taﬁ%(wizs) (6B — 0" Dye) + Aiaw.
1

(17)
= F(l¢]), M #0.

(18)

For F' = C = const, system (17) admits the extension, namely, it is invariant under
the algebra (Py, P1,G, Z1, Z2), where Py, P1,G have the form (18) and Z; = 10y,

= "0y
The Galilei operator G generates the following transformations:
1
t=t, z =zx+06t, W/:W+)\—9,
1

W' =P exp (2995 + Lﬁt + 19215) ,

v =y exp (Gx T 792 )
A1

where 6 is a group parameter. Here, it is important that A\; # 0, since otherwise,
system (17) does not admit the Galilei operator.

4  Finite-dimensional subalgebras

Algebra (3) is infinite-dimensional. We select certain finite-dimensional subalgebras
from it. In particular, we give the examples of functions U, (t) and B(t), for which the
subalgebra generated by the operators

R]; Pa; Jaba Qaa QB7 Zla ZQ (19)

is finite-dimensional.
(a) Uy(t) = exp(t). In this case, subalgebra (19) has the form

Py, Po, Jap, Z1, Za,

Qo =¢" (‘9% + Sy ($Oy — 7 ye) +

2
Qp = " (i1hy — * Dyx + vOw) .

1
5’72:[:(16“/) , a=1mn,
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(b) Uy(t) = Cy cos(vt) + Cysin(vt). Then subalgebra (19) has the form:
PO) Pa; Jab) Zl7 ZQ)

QWM = cos(vt)d,, — %Vsin(yt)xa (YO — Y™ Oy ) — %1/2 cos(vt)x, 0w,

QY = sin(vt)d,, + %Vcos(yt)xa (YO — Y™ Oy ) — %V2 sin(vt)xq, 0w,
X1 =isin(vt) (Y0, — ¥ Oy~ ) + v cos(vt)Ow,
Xy =icos(vt) (POy — ™ Oy=) — vsin(vt)dw .
(c) Ua(t) = C1t* + Cot* =1 4. .. 4 Oxt + Cy11. Then subalgebra (19) has the form:
Fo, Pa, Jab, Z1, Zo,
QU = 1404, + LR g (60, — 0 0,0) + Sh(k — 1 a0,
i

2

Q((Ik:) _ tam,,, + %ma (1/}8111 — w*aw*) )
Qg) =1t (l/l&p - w*aw*) + Ow,

QB = it (pay — ¥ Oy-) + (2k — 2)t2E 20y

1
Q) =710, + 5 (k= V" 2wq (V0 — " Oy) + S (k = 1) (k — 2" za0w,

5 The Schrodinger equation with convection term

Consider equation (1) for W =0, i.e., the Schrdodinger equation with convection term

Oy oY

a Ay = a ) 2

i T + Ay =V, oz, (20)
where ¢ and V, (a = 1,n) are complex functions of ¢+ and #. For extension of

symmetry, we again regard the functions V, as dependent variables. Note that the
requirement that the functions V,, are complex is essential for symmetry of (20).
Let us investigate symmetry properties of (20) in the class of first-order differential
operators
X = &10y, + 10y + "0y + p"0v, + p v,

where &%, n, n*, p%, p*® are functions of ¢, T, ¥, ¥*, V,, V5.
Theorem 2. Equation (20) is invariant under the infinite-dimensional Lie algebra
with the infinitesimal operators

Qa = 2A0; + Ax,0,, — iAx. (Ov, — dv+) — A (VeOy, + V7 0vs),

Qap = Eup (xaazb — 240z, + VaOy, — Vv, + V, 0y — Vb*avg) -

— iEap (2a0v;, — 240V, — 240y, + 20+ ) , (21)
Qa = UaOs, — iU, (Ov, — Ovs) ,
Zy =0y, Zy =00+, Z3=20yp, Zs=O0y~,
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where A, Eq, Uy are arbitrary smooth functions of t. We mean summation over the
index ¢ and no summation over indices a and b.

This theorem is proved by analogy with the previous one.
Note that algebra (21) includes, as a particular case, the Galilei operator of the
form:

G, = t(?xa — iava + iava*. (22)
This operator generates the following finite transformations:

t/:tv x:z:xa+ﬂata :L';;:xb (b#a)a

o=, Y =0t V=V —ife, VY =Vi +iba,
where 3, is an arbitrary real parameter. Operator (22) is essentially different from
the standard Galilei operator (8) of the Schrodinger equation, and we cannot derive
operator (8) from algebra (21).

Consider now the system of equation (20) with the additional condition for the
potentials V,, namely, the complex Euler equation:

Za_w + Ay =1V, 8¢ ,

ot 0z, (23)
OV, Vo o
"ot _%(‘)xb 7F(W)D8xa'

Here, 9 and V, are complex dependent variables of ¢ and &, F' is an arbitrary functi-
on of |¢|. The coeflicients of the second equation of the system provide the broad
symmetry of this system.

Let us investigate the symmetry classification of system (23). Consider the followi-
ng five cases.

1. F is an arbitrary smooth function. The maximal invariance algebra is (Py, P,
Jab, Ga), where

POZata Pazaazaa
Jab = ma&% — l‘bawa + Vaavb - ‘/bava + Va*avb* — ‘/vl)*a\/;,
Gy =10, — 10y, + iava* .
2. F = CJ|¥, where C is an arbitrary complex constant, C' # 0, k is an arbitrary

real number, k # 0 and k # —1. The maximal invariance algebra is (Py, Py, Jap, Ga,
D), where

2
DW =2t + 2.0, — V.0y, — V. Oy — H—k(ﬂ@p + Y 0y-).

3. I = where C' is an arbitrary complex constant, C' # 0. The maximal

c

Y|’

invariance algebra is (Py, Py, Jup, G, Z = Z1 + Zs), where
Z =0y + ¢ Op+, Z1 =10y, Zy=1"0yp~.

4. F = C # 0, where C is an arbitrary complex constant. The maximal invariance
algebra is (Py, Py, Jap, G, DV, Z3, Z,), where

Zs =0y, Zy = Oy
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5. F = 0. The maximal invariance algebra is (Py, Py, Jab, Ga, D, A, Z1, Z2, Z3, Z4),
where

D = 2t0; + 2.0, — Vedy, — V Oy=,
A =120, + tw.0,, — (ie +tVe)Ov, + (ime — tV))Ovs.

6 Contact transformations

Consider the two-dimensional Schrédinger equation

i/(/)t + ql)rz = V(ta 30,1/1,%/117%) (24)

We seek the infinitesimal operators of contact transformations in the class of the
first-order differential operators of the form [1, 9]

X = fu(tvﬂfﬂ/)ﬂ/)tﬂ//x)ﬁxu +77(t7xa1/)7¢ta1/}3?)6¢ +

25
+(”(t,x,1/1,1/1t,¢z)6%—i—u(t,x,zpﬂ/zt,z/}z,‘/)aw ( )
where
L, OW _ ow v
& =-go n=W-w Sl =T ru o (26)

for a function W = W(t, x, v, ¥, ;). The condition of invariance of equation (24)
under operators (25), (26) implies that the unknown function W has the form

W - Fl(t)q/}t + Fz(taxa/lz[}aw-’b)v

where F'! and F? are arbitrary functions of their arguments.
Then

0 =-Fl'(t), & =-F; (t,z,9,%),
n=F>—,F; , ("=Fl+F+ 0. F), (" =F; +¢.F;,
po=1(Wy + W) + Wag + 2Woythy —

— (i = V) (Wa, + Wy + Wy, ) + ($2)* Wy —

— (e = V) Wap, + Wy, — (i) = V)W, ).

Thus, equation (24) is invariant under the infinite-dimensional group of contact trans-
formations with the infinitesimal operators:

Qpr = —F'0, + F/ 0y, + iF 4,0y,
Qr2 = —F} 0y + (F? — o F}, )0y + (F7 + 1 F) 0y, +
(B2 49, F2)0y, + {iF? + 06 FS + F2, + 282,00 + ()2 F2, -
— (it — V)(2F2,, + 20, F2,, + F3) + (ity - V)*F2,,, bov,
where F! = F1(t) and F? = F?(t,z,1,,) are arbitrary functions.

Consider the special case. Let F1(t) = 1, F2(t,x,9,1;) = —(;)%. Then W =
Py — (dzz)z. The operators of the contact transformations have the form

Qrr =0, Qp2 = 20,0, + (12)20p — 2(i — V)?0v. (27)
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The operator (27) generate the finite transformations:
¥ =2,0+x, t =t
1// = (qu)ge + 9, ’(/};;; = 1y, wilf = 1y, (28)
o 20V — i)+ V
200V —infe) + 1

Transformations (28) can be used for generating exact solutions of equation (24) from
the known solution and for constructing nonlocal ansatzes reducing the given equation
to the system of ordinary differential equations.
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Stationary mKdV hierarchy and integrability
of the Dirac equations by quadratures

R.Z. ZHDANOV, I.V. REVENKO, W.I. FUSHCHYCH

Using the Lie’s infinitesimal method we establish that the Dirac equation in one
variable is integrable by quadratures if the potential V' (z) is a solution of one of the
equations of the stationary mKdV hierarchy.

Consider the eigenvalue problem for the Dirac operator £ = ioy d/dx — V(x)os,

(L—Nu= iolj—z — (V(z)oa + Nu =0, (1)

where oy, 0y are 2 x 2 Pauli matrices, u = (uy(z),u2(2))T, V(z) is a real-valued
function and X is a real parameter. We remind that Eq. (1) is one of two equations
composing the Lax pair for the mKdV equation,

Vg + Vgpa — 6020, = 0, (2)

integrable by the inverse scattering method (see, e.g., Refs. [1, 2]). Next, as the identity

d? 9 av 9
(ﬁ—)\)(ﬁ—‘v‘)\)——@—FV —0'3%—/\7
holds, components of the vector-function w fulfill the stationary Schrédinger equation,
d?u; AV
: 1) — V24 A% )y =0, i=1,2. 3
dx? + << ) dx + Y > ! ’ (3)

The aim of the present Letter is to show that there exists an initimate connection
between integrability of system (1) (in what follows we will call it the Dirac equation)
by quadratures and solutions of the stationary mKdV hierarchy.

Integrability of system (1) will be studied with the use of its Lie symmetries. As
usual, we call a first-order differential operator

X =) (e,

where £ is a real-valued function and 7 is a 2 X 2 matrix complex-valued function,
a Lie symmetry of system (1) if commutation relation

holds with some 2 x 2 matrix function R(z) (for details, see, e.g., Ref. [3]).

A simple computation shows that if X is a Lie symmetry of system (1), then an
operator X + r(z)L with a smooth function r(z) is its Lie symmetry as well. Hence
we conclude that without loss of generality we can look for Lie symmetries within the

Physics Letters A, 1998, 241, P. 155-158.
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class of matrix operators X = n(z). Furthermore, inserting X = n(x) into Eq. (4)
and computing the commutator yield that the matrix n(z) is necessarily of the form

flx)  g(z)
hz) —f(x)
where f(x), g(z), h(z) are arbitrary solutions of the following system of ordinary
differential equations,

df dh

— =iXg—h), —=2Af+2 — = —2\f — 2hV.

T _ing—nm. 2 —aingrogv. P = airng—onv (6)
With a solution of system (6) in hand we can integrate the initial equations (1) by

quadratures using the classical results by Elie Cartan [4]. Since these results are well-
known we will give them without derivation in the form of the following lemma.

: (5)

dg

Lemma 1. Let the functions f(x), g(x), h(x) satisfy system (6). Then the general
solution of the Dirac equation is given by the formulae

ui(z) = C1(R(2) + f(2) (b)) 2 (R (2) — 8)7H2,

un() = Ca(h()V2(R2(x) — A) 112, @

where A = f2(x) + g(x)h(x) is constant on the solution variety of system (6),

VA tanh (CQZ‘A\/Z/%), A >0,

R(z) = (Cg—i)\/%>l7 A =0,

V—Atan (CQ—FZ'/\\/I/%), A <0,

and C1, Cy are arbitrary complex constants.

However, solving system of ordinary differential equations (6) is by no means
easier than solving the initial Dirac equation. This is a common problem in applying
Lie symmetries to integration of ordinary differential equations. The key idea of our
approach is to restrict a priori the class within which Lie symmetries are looked for
and suppose that they are polynomials in A with variable matrix coefficients.

Introducing the new dependent variables ¢y (), ¥o(z),

flx) = 42—/\ (—% +2V¢2> ;

9(2) = (W) + a(@), hla) = 5 (r(2) — Yale)),

we rewrite Eq. (6) in the following equivalent form,

>y 9 dip A% dig
= —4\ 4+ 2V ——= + 2¢po— — =2V.
dzx? V1 dx V2 dz’ dz ¥ )

As mentioned above solutions of system (9) are looked for as polynomials in A,
namely

die) =Y pe(@) (2N, pa(a) =) ri(@)(20)*. (10)
k=1 h=1
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Inserting the expressions (10) into (9) and equating the coefficients by the powers
of A yield p, = 0 and

d?“k
— =2V k=1,... 11
dx pk? ) 7n ( )
d2pk di av

=2V— 42— — pi— k=1,...,n—1 12
de dl‘ + d.’,E Tk Pk—1, ) , T ) ( )

where we set by definition p_; (z) = 0. Eliminating from Eqs. (11), (12) the functions
ri(x), we get recurrent relations for the functions py(z),

2 dv )
pk_l(ﬂj): —@ +4%D1 V+4V pk(x), k:n,n—l,...,O. (13)
Q

Here D, ! denotes integration by z.

A reader familiar with the theory of solitons will immediately recognize the opera-
tor Q as the recursion operator for the mKdV equation (2) (see, e.g., Refs. [5, 6]).
Acting repeatedly with this operator on the trivial symmetry Sy = 0 yields an infinite
number of higher symmetries Sy, Sa, ... admitted by the mKdV equation [5]. Hence it

is not difficult to derive that the functions pi, &k = 0,...,n—1 are linear combinations
of the higher symmetries S1,...,.5, with arbitrary constant coefficients C;,
k
Po—k(@) = CiSerii, k=1,...n, (14)
i=1

where S; are determined by the recurrent relations

Sit1(x) = — dmg ) + 4% V(y)Si(y)dy +4V3S;(x), i=1,...,n—1,

Zo

with S < dv/dx.

The above formulae (14) give the general solution of the first n equations from
Eq. (13). Inserting these into the last equation yields equation for the function V (z)
of the form

n+1

> CiSnia—i =0. (15)

k=1

As S; = dV/dz, Eq. (15) is nothing else than an equation of the stationary mKdV
hierarchy, which is obtained from the higher mKdV equations by setting v(¢,z) =
v(x + Ct), C = const.

Integrating Eqs. (11) yields

k x
T (T) = QZCi/V(y)Skai(y)dy +Cr, k=1,...,n, (16)
=1 g

where C; are arbitrary complex constants.
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Thus, the formulae (10), (14), (15), (16) give the general solution of the system of
determining equations (11), (12) within the class of functions of the form (10). This
means, in particular, that provided the function V(z) is a solution of Eq. (15) with
some fixed n and C, ..., C,, the Dirac equation possesses a Lie symmetry. Hence we
conclude that it is integrable by quadratures due to Lemma 1. Consequently, we have
proved the following remarkable fact.

Theorem 1. Let V(z) be a solution of an equation of the mKdV hierarchy of the
form (15). Then the Dirac equation (1) is integrable by quadratures.

Note that the equations of the stationary mKdV hierarchy are transformed to the
equations of the stationary KdV hierarchy with the help of the Miura transformation
and the latter are integrated in f-functions with any n € N [7].

There is a deep relationship of the above results with those obtained by Novikov
in Ref. [8], where it was established, in particular, that periodical solutions of the
stationary KdV hierarchy give rise to the integrable stationary Schrodinger equa-
tions (3). This relationship is established via the Lax representation for higher KdV
equations. Since we consider the stationary KdV equations, the Lax representation
reduces to the condition that there exists an Nth-order differential operator

N di
Q=2 al@)
=0

commuting with the Schrédinger operator d? /dz? —W (z), provided W (x) is a solution
of the corresponding higher stationary KdV equation. Consequently, ) is the higher
symmetry of the Schridinger equation in a sense of [3].

On the set of solutions of the Schrédinger equation (3) we can reduce the opera-
tor @ to a first-order Lie symmetry of the form (for more details, see Ref. [9])

G = €w N7+ ),
where £, 1 are polynomials in A. This gives us the ansatz for a Lie symmetry used at
the beginning of this Letter.

Thus, the approach to integrating ordinary differential equations suggested here is
based on their high-order Lie symmetry. To the best of our knowledge, the high-order
Lie symmetries were not used until now for integrating ordinary differential equations.

It is important to note that within the framework of the Lie approach one always
deals with the set of solutions as a whole. This means that specific properties of subsets
of solutions (like periodicity) are not taken into account. To study these one needs
more subtle analytic methods. On the other hand, the Lie approach has the merit
of being a universal tool applicable to a wide range of ordinary differential equations
having the same algebraic-theoretical properties. For example, it is not difficult to
generalize the technique developed for integrating the Dirac equation (1) in order to
integrate an arbitrary system of ordinary differential equations of the form

’LQIE — (V(.’l?)Qg + )\)’U, =0, (17)

where 21, ()5 are arbitrary finite- or infinite-dimensional constant matrices forming,
together with the matrix Q3 = —i[Q1, o], a basis of the Lie algebra su(2). The result
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will be the same, namely, if V' = V(z) is a solution of an equation of the stationary
mKdV hierarchy, then the system of ordinary differential equations (17) is integrable
by quadratures.

In conclusion let us demonstrate how the above procedure works for the simplest
case n = 1. With this choice of n, Eq. (15) reads

CodV &V dV

Cy dz  dad dr 0, (18)

which is exactly the stationary mKdV equation and is obtained from Eq. (2) via the
ansatz v(t,x) = V(Caox — Cyt).
A simple computation yield the form of the coefficients of the Lie symmetry (5),

fz) = 43 (01 v 201V3 — Oy — 401)\2)> 7
d 1
g(x) = (01 V. cv?— 502 - 2(]1/\2> , (19)

1
h(z) = (01 v +C V2 + 502+ 201)\2)

which satisfy the determining equations (6) inasmuch as the function V() is a solution
of the stationary mKdV equation.

Thus, the Dirac equation with potential V(x) satisfying the stationary mKdV
equation (18) is integrable by quadratures and its general solution is given by formu-
lae (7) and (19).

Note that due to the remark made at the very beginning of the paper components
of the function w fulfill the stationary Schrodinger equation (3). This is in a good
accordance with results of Ref. papers [9].

One of the authors (R.Zh.) is supported by the Ukrainain DFFD Foundation
(project 1.4/356).
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KondopmHua iHBapiaHTHICTH CUCTEMN
PiBHSIHb €MKOHAJLY

B.I. oyHin4d, M.I. CEPOB, IO.I. IIOJIOIIIBEJIEB

The conformal symmetry of the system of eikonal equations uﬁuﬁ = goB, ufjuﬁ B =
—0apg, where g®? is the metric tensor with the signature (4,—) and 0.5 is the
Kronecker symbol, is studied. The symmetry of the above system is used for finding
its exact solutions at n = 1. The isomorphism of the algebras AC(2,2) and AO(3,3)
is used to construct invariants of the conformal algebra. Formulas concerning the
multiplication of solutions are presented.

OpmHUM 3 OCHOBHUX PiBHSIHb N€OMETPUYHOI ONTUKU € PIBHSIHHS €HKOHAJY
o
uy ut =m, (1)

ne uy, = (,;97‘:, u=u(z), z = (20,7) € Ry, p = 0,n; m — nosinbua crana. B dop-
mysi (1) 1 ckpi3p HuzKYe miJ IHIEKCaMu, siKi IOBTOPIOIOTHLCS, CJIiJl PO3YMITH CyMYy.
B po6orax [1-6] meranpro BuBYEH] CUMETPIHHI BJACTUBOCTI IIHOrO PIBHAHHS, IIPOBE-
JleHa peyKiig Ta nobyjoBaHi Kjacu Horo TogHux po3s’askis. 3okpema B [5] Bera-
HOBJIEHO, 10 1pu m = 1 piBusguHg (1) imBapianTHE BiAHOCHO KOH(MOPMHOI anrebpu
AC(1,n+1), ampu m = —1 — sigaocuo anrebpu AC(2,n). His mux aarebp BusHade-
Ha B n+ l-BumMipHOoMy npoctopi ITyankape-Minkoscbkoro R(1, n+ 1) 3 koopaunaTamMu
= (20, L1, Ty Tnt1 = U).

IocraBumo 3ajiady y3arajbHuTy PiBHaHHA (1) HA BUIIAJOK CUCTEMU PIBHSHD JJIst
bynxmiit u! i u?, axa 6yna 6 imBapianTHO© BigHOCHO amrebpun AC(1 4+ 1,n + 1), abo
AC(1 + 2,n) B upocropi R(1,n + 2) 3 xoopuunaramu & = (Zo,T1,...,Tn, Tnt1 =
ut, Tnta = u2). Posp’si3k0oM 110cTaBII€HOT 3aa4i € TaKe TBEepP2KEHHSI.

Teopema. 1. Maxcumarvroro arzebpoo tHBAPIAHMHOCTE CUCTNEMU PIGHAHD
a, Bp _ jof
WS = gof, (2)

e kongopmna anrzebpa AC(1+1,n+1), de g*P — mempuurulG meH3op 3 cuenamypor
(+7 _)'
2. MaxcumarvHoro as2ebpor tHEaAPIAHIMHOCTIE CUCTNEMU DIBHAHD

uﬁu’g’“ = —6ag,

e xongopmna anrzebpa AC(1+2,n), de 0q3 — cumeon Kponexepa, o, 3 = 1,2.

Teopema 10BosuThCst crasgapTauM Metogom C. JIi [§].
Y Bunagky n = 1 cucrema piBHSIHDb MA€ BUIJIS,

(up)? — (u})? =1,
(ug)? — (u3)* = -1, (3)
upug — uiu? = 0.

Homnosini HAH VYkpaiau, 1999, Ne 1, C. 43-47.
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BukopucragMo cumerpiio cucreMu PiBHAHD (3) I8 3HAXOIKEHHS 11 TOYHUX PO3B A3~
KiB, sIKi Oy/1IeMO IIyKaTH y BUIVISII

v=0p'(Ww), w=¢*(w) (4)

(nuB., manpuxian, [5]), ae ! (w) i p?(w) — Hewizomi byHKIii, ki TOTPIGHO BUBHAYMM-
™, a w = w(r,ul,u?), v = (z,u!,u?) Ta w = w(x,u',u?) — imBapianTu KondbOpPMHOT
airedpu. Jlns 3HaxokeHHs iHBapiaHTiB KOH(MOPMHOI aaredbpu HeoOXiIHO TPOIHTErpy-
BaTH HEJIHIWHY CHCTEMY 3BUYAWHUX JudepeHIiaapbHnxX piBHsHb. OCHOBHA CKJIATHICTD
[OJISITA€ B TOMY, IO HE iCHY€ 3araJibHUX METOJIB PO3B’sI3yBaHHs TakKuxX cucrem. Ajre
JIAHYy CHCTEMYy MOXKHA 3BECTH J0 JHHINHOI, BUKOPUCTOBYIOUN i30MOPdi3M MixK KOH-
dbopmuoO anrebporo AC(m, k) ta amrebporo Jlopennia AO(m + 1,k + 1). Y Bunaaky
m =k = 2 nauwmii i3oMopdizM 3AiHCHIOETHCA 3a JOIOMOroI0 3aMinu (6LIbII JIeTaIbHO
po Iie JuB., Hanpukiaaz, [7]):

zZ2 Z5 24 Z3
ZTo = ) xry = ) To = ) xr3 = )
26 — 21 Z6 — 21 26 — 21 26 — 21
2
26+ 2 v —1
2 2 2 2 2 6 1
Tt =ap -] —Ty T3 = ———, 21 = 572, (5)
26 — 21 x4+ 1
21‘0 21‘3 21‘2 21‘1
22 = —5 %6 23 = —5 %6 24 = —5 %6 25 = —5 %6
224177 24177 22417 224177

i mie ma KomyCi 22 + 22 + 22 — 22 — 22 — 22 = 0 TouHO. 3B’SI30K MiXK OIEPATOPAMU
1 ot 23 — 2 — 25 — 24

kondopmuoi anrebpu AC(2,2) ta amrebpu Jlopenna AO(3,3) = {J/,}, a,b = 1,6,
3aJa€ThCs (popMyTaMu

P, = f(‘]{a+2 - ‘](/Jc+2n+3)7 D= _f(‘]{n-‘r?))’ Jaﬁ = f(,];+2ﬁ+2),
Ka = f(‘]{a-&-Q + (l1+2n+3)'

Binnosinna cucrema Jlarpamxa—FEirepa e jiinifina, ogaopinHa i B MmarpuvHiit dhopmi
Ma€ BUIJIAT

7 =AZ,

ne A — gucsoBa MaTpuig po3mipHocri 6 X 6. Buriisiz po3s’s3kis cucremu (6) BusHa-
YaEThCs BUIVISIIOM KOPEHIB XapaKTEPUCTUIHOIO DiBHSHHS

det(A — \E) =0, (6)

(E — omuanaHa MaTpuIs). PO3KpUBAIOYN BU3HATHAK MIOCTOTO TIOPSIKY | BUKOHYIOMH
ejieMeHTapH] neperBopenHs, (7) MaTUMe BUIJISL

MMM +TN+P=0

ne M, T, P — dncia, siKi BU3HAYaIOThCS Yepe3 eJeMeHTH MaTpuili A. 3ajeskHO Bif
suagenn M, T, P ta paury marpuni (A—AE) 3uaiineno 15 pisHux BUNAIKIB PO3B’A3KY
cucremn (6). s KOKHOTO 3 IMX BUIAJIKIB M BUKOPUCTAHHI 3aMin (5) 3HaiieHO my-
KaHi imBapianTn w, v i w. He HaBoAsTIM rpoMisakux 00YUMC/IeHb, KiHIIEBUT PE3YIbTAT
300pa3uMo 3a JOMOMOro0 Tab. 1.

B rtabu. 1 BBememni mosHadeHHs:: ar = asr?, x> = zaz?d, a, b, ¢, d, o, V, c, d
— IOBiNLbHI cTAN BeKTOpH, AKi 3370BOIBHAIOTL yMOBH a’ = —b? = —c2 = d% = 1,

ab=ac=ad=bc=bd=cd=0,A=0,3.
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Tabsmusa 1. lusapiantai sminni rpymm C(2, 2).

Ne w v w

1 ax cx dx

2 b'x cx z?

3 % Z_; zZ;Ll

4 oz IQ(der(z;ngszz (12+1();§24(bz)2
5 oz In 222l _ gretg il (el glen)
6 241 £t e
7 =t e (e
8 migl arctg 5022;;1 — 2arctg 4 7@1)(23(2“)2
9 ggiﬂ 2t 4 (w4 2) arctg 94X 7((12;4:5?;)2
10 7”2+3ZI’1 2z 4y arcth“”;jzl 7(382“();;);1(@)2
11 o?—2drtl 2arctg 22 — arcth 3, (Z=Lidlen)?®
R = T
13 7’”2(;27‘15;1 arcthg—z — arcthricfl 7(2(2(;%%2:(:53?2
14  arctg I;bil +arcth-3*%.  arctg %2 — 2arctg I;lle —(x?a;;f:(jsg)z
15 (12726?;1155);2”“) arcthis — Zarcth;‘%fl 7@(2;1))22:(232)2

Iigcrausim anzar (4) B cucreMy piBHSAHB (3), OIEpKUMO

Vv — 2wavApl + wAwA(<,b1)2 =0,

waw? — 2wawA et + waw($?)? =0,

VAW

A A'1'270

—wAwAgbl —wAvAng—i-wAw PPt =

(7)

Posruisaysin cucremy (8) pasom 3 Tabut. 1, ne Bkasani BiAuoBinHi 3HaYeHHs iHBApi-
AHTHUX 3MIHHUX w, ¥ Ta W, OJEPKAMO PEJIyKOBaHI CUCTEMU PIBHSIHB JIJIS BUSHAYEHHSI
bynxmiit ¢ (w) i ¢?(w). Hasegemo jiekinbka TaKuX CHCTEM:

)

(CI)2 _ 2a/c/¢1 + (a/)2(¢1)2 — 0’
(d)? = 20'd'¢? + ()2 ()2 =0,
dd — a/d/gbl _ a/c/¢2 + (a/)2¢1¢2 — 0;
14 (1) = 2wl + (W +1)(¢1)? =0
—4+(9%)? = 2wp?P? + (W + 1)($*)? = 0
Ple? —wppl —wpl? + (W +1)¢1¢* = 0;

)
)

@7+ (1= CE) ottt + 04 270 <0,

) w+2)2
P21 -7 + w22 - CE e g,
207 0% = 2(w + 2)9%¢" — (w +2)9'¢% + (w +2)%p'$* = 0;
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4
11) (1 + 2) — Lc_)()bl = O,
¥
4+ @ —wp? =0,
207 + ot + ¢ =0.
Howmep cucremu Bignosizae mHomepy inBapianTis B Tadm. 1.

K10 po3B’sA3aTH peayKOBaHi PIBHSIHHS I BUKOPUCTATU BiAmOBimHI M iHBapiaHTH
i amsar (4), To omepxkuMo po3s’si3ku cucremu (3). HaBegemo gesiki 3 mux:

1_ 2 _ )
u = a,x”, u°=b,rt;
1_ 2 _ 2 .
u' =auat,  u?=/(auxt)? —zah
1_ 2 _ )
ut =zt + (byzt)?,  u® =byat
u' —azx = my(u? —bx), zar? =mo(u® - bx),
Jie a,, b, — craii sektopw; ayat = —b,bt =1, a, bt =0, p = 0,1; mq, mo — moBiTLHI

cTaJi.
Ounepxkani inBapianTu anre6pu AC(2,2) Ta po3s’si3ku cucreMu (3) MOXKHA PO3MHO-
JKUTH 38 JIOINIOMOTOI0 TIepeTBOpPeHb iHBapianTHOCTI. 1li mepeTBOpeHHsT MalOTh BUTJIAT
A
cap(xp — Opxaz?)
1 —20424 + HAQAZ‘AJSA ’

TA —
e xo = u', 23 = u?, cap, 04 — JOOBiIBHI cTasi mapamMeTpH.
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On covariant realizations of the Euclid group
R.Z. ZHDANOV, V.I. LAHNO, W.I. FUSHCHYCH

We classify realizations of the Lie algebras of the rotation O(3) and Euclid E(3) groups
within the class of first-order differential operators in arbitrary finite dimensions. It
is established that there are only two distinct realizations of the Lie algebra of the
group O(3) which are inequivalent within the action of a diffeomorphism group. Using
this result we describe a special subclass of realizations of the Euclid algebra which
are called covariant ones by analogy to similar objects considered in the classical
representation theory. Furthermore, we give an exhaustive description of realizations
of the Lie algebra of the group O(4) and construct covariant realizations of the Lie
algebra of the generalized Euclid group E(4).

1 Introduction

The standard approach to constructing linear relativistic motion equations contains
as a subproblem the one of describing inequivalent matrix representations of the
Poincaré group P(1,3). So that if one succeeds in obtaining an exhaustive (in some
sense) description of all inequivalent representations of the latter, then it is possible to
construct all possible Poincaré-invariant linear wave equations (for more details see,
e.g. [1-3]). It would be only natural to apply the same approach to describing nonli-
near relativistically-invariant models with the help of the Lie’s infinitesimal technique.
However, in the overwhelming majority of the papers devoted to symmetry classifi-
cation of nonlinear differential equations admitting some Lie transformation group G
the realization of the group was fixed a priory. As a result, only particular classes
of partial differential equations invariant with respect to a prescribed group G were
obtained. One of the possible reasons for this is that the problem of describing inequi-
valent realizations of a given Lie transformation group reduces to constructing general
solution of some over-determined system of nonlinear partial differential equations (in
contrast to the case of the classical matrix representation theory where one has to
solve nonlinear matriz equations).

We recall that given a fixed realization of a Lie transformation group G, the
problem of describing partial differential equations invariant under the group G is
reduced with the help of the infinitesimal Lie method to integrating some over-
determined linear system of partial differential equations (called determining equa-
tions) [4-7]. However, to solve the problem of constructing all differential equations
admitting the transformation group G whose realization is not fixed a priori one has

o to construct all inequivalent (in some sense) realizations of the Lie transforma-
tion group G,
e to solve the determining equations for each realization obtained.
And what is more, the first problem, in contrast to the second one, reduces to solving

nonlinear systems of partial differential equations. In this respect one should men-
tion the Lie’s classification of integrable ordinary differential equations based on his

Commun. Math. Phys., 2000, 212, P. 535-556.
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classification of complex Lie algebras of first-order differential operators in one and
two variables [8]. However, it seems impossible to give an exhaustive description of
all Lie algebras of first-order differential operators. Till now there is no complete
classification of them even for the case of first-order differential operators in three
variables, though a partial classification was obtained by Lie a century ago [§].

The classification problem is substantially simplified if we are looking for inequi-
valent realizations of a specific Lie algebra. It has been completely solved by Ri-
deau and Winternitz [9], Zhdanov and Fushchych [10] for the generalized Galilei
(Schrodinger) group Ga(1,1) acting in the space of two dependent and two inde-
pendent variables.

Yehorchenko [11] and Fushchych, Tsyfra and Boyko [12] have constructed new
(nonlinear) realizations of the Poincaré groups P(1,2) and P(1,3), correspondingly
(see also [13, 14]). Some new realizations of the Galilei group G(1, 3) were suggested in
[15]. A complete description of covariant realizations of the conformal group C'(n,m)
in the space of n + m independent and one dependent variables was obtained by
Fushchych, Zhdanov and Lahno [16, 17] (see, also [18]). It has been established,
in particular, that any covariant realization of the Poincaré group P(n,m) with
max{n,m} > 3 in the case of one dependent variable is equivalent to the standard
realization. But given the condition max{n, m} < 3, there exist essentially new reali-
zations of the corresponding Poincaré groups.

The present paper is devoted mainly to classification of inequivalent realizations of
the Euclid group F(3), which is a semi-direct product of the three-parameter rotation
group O(3) and of the three-parameter Abelian translation group 7'(3), acting in the
space of three independent (x1,x2,23) and n € N dependent (uq,...,u,) variables.
Being a subgroup of such fundamental groups as the Poincaré and Galilei groups, the
Euclid group plays an exceptional role in modern mathematical and theoretical physi-
cs, since it is admitted both by equations of relativistic and non-relativistic theories.
In particular, group F(3) is an invariance group of the Klein—-Gordon—Fock, Maxwell,
heat, Schréodinger, Dirac, Weyl, Navier—Stokes, Lamé and Yang—Mills equations.

The paper is organized as follows. The second section contains the necessary notati-
ons, conventions and definitions used throughout the paper. In the third section we
give an exhaustive classification of inequivalent realizations of the Lie algebra of the
rotation group O(3) within the class of first-order differential operators. The fourth
section is devoted to description of covariant realizations of the Euclid algebra AE(3).
We give a complete classification of them and, furthermore, demonstrate how to reduce
the realizations of AE(3) realized on the sets of solutions of the Navier—Stokes, Lame,
Weyl, Maxwell and Dirac equations to one of the two canonical forms. In the forth
section the results obtained are applied to describe covariant realizations of the Lie
algebra of the generalized Euclid group AE(4).

2 Basic notations and definitions
It is a common knowledge that investigation of realizations of a Lie transformation

group G is reduced to study of realizations of its Lie algebra AG whose basis elements
are the first-order differential operators (Lie vector fields) of the form

Q = Ea(xvu)a’ﬂa + ni(xau)auw (1)
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where £,, n; are some real-valued smooth functions of x = (21,29, ..., z;,) € R™
and u = (uy,ug, ...,up) € R", 0, = %, Oy, = %, a=1,2,....m,i=1,2,...,n.
Hereafter, a summation over the repeated indices is understood.

In the above formulae we have two “sorts” of variables. The variables z1, s, ..., Zm
and w1, uo, . .., u, will be referred to as independent and dependent variables, respecti-
vely. The difference between these becomes essential when we consider AG as an
invariance algebra of some system of partial differential equations for uy (), ..., un ().

Due to properties of the corresponding Lie transformation group G basis operators
Qa,a=1,...,N of a Lie algebra AG satisfy commutation relations

[QaaQb]:CngCa a’ab:17"'aNa (2)

where [Qq, Qp] = QuQp — Qb Q. is the commutator.

In (2) C¢, = const € R are structure constants which determine uniquely the
Lie algebra AG. A fixed set of Lie vector fields (LVFs) Q, satisfying (2) is called
a realization of the Lie algebra AG.

Thus the problem of description of all realizations of a given Lie algebra AG
reduces to solving the relations (2) with some fixed structure constants C¢, within
the class of LVFs (1).

It is easy to check that the relations (2) are not altered with an arbitrary invertible
transformation of variables x, u

ya:foz(xvu)’ a=1,...,m,
_ . 3)
v; = gi(z,u), i=1,...,n,

where f,, g; are smooth functions. That is why we can introduce on the set of reali-
zations of a Lie algebra AG the following relation: two realizations (Q1,..., @Qn)
and (Qf,...,Q) are called equivalent if they are transformed one into another by
means of an invertible transformation (3). As invertible transformations of the form
(3) form a group (called diffeomorphism group), the relation above is an equivalence
relation. It divides the set of all realizations of a Lie algebra AG into equivalence
classes Aj, ..., A,. Consequently, to describe all possible realizations of AG it suffices
to construct one representative of each equivalence class A;, j =1,...,7.

Definition 1. First-order linearly-independent differential operators

P, = &) (2, 0)0,, + 1Y (@, 1),

a

(4)
Ja = g((z?)) (l‘, u)a’vb + 771(3)(157 u)aula

where the indices a, b take the values 1, 2, 3 and the index i takes the values 1,2,...,n,
form a realization of the Euclid algebra AE(3) provided the following commutation
relations are fulfilled:

[Paypb] :Ov (5)
[Jaypb] = sabcPw (6)

[J(ly Jb] = Eabede, (7)
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where

—_

, (abe) = cycle (123),
Eabe = —1, (abc) = cycle (213),
0, in the remaining cases.

Definition 2. Realization of the Fuclid algebra within the class of LVFs (1) is called
covariant if coefficients of the basis elements P, satisfy the following condition:

1 1 1 1 1
a0 & 4p -
rank || &) &5 &3 My e Moy, || T3 (8)
(1) (1) (1) (1) (1)
31 32 33 M1 N3n

3 Realizations of the Lie algebra
of the rotation group O(3)

It is well-known from the classical representation theory that there are infinitely many
inequivalent matrix representations of the Lie algebra of the rotation group O(3) [1].
A natural equivalence relation on the set of matrix representations of AO(3) is defined
as follows

J, > VJ, V!

with an arbitrary constant nonsingular matrix V. If we represent the matrices J, as
the first-order differential operators (see, e.g. [7])

ja = _{Jau}aauay (9)

where u is a vector-column of the corresponding dimension, then the above equivalence
relation means that the representations of the algebra AO(3) are looked within the
class of LVFs (9) up to invertible linear transformations

u—v="Vu.

It is proved below that provided realizations of AO(3) are classified within arbitrary
invertible transformations of variables

v =Fi(u), i=1,...,n, (10)

there are only two inequivalent realizations.

Theorem 1. Let first-order differential operators
Ja :nai(u)aum a = 17273 (11)

satisfy the commutation relations of the Lie algebra of the rotation group O(3) (7).
Then either all of them are equal to zero, i.e.

Ta :Oa a = 1a253 (12)
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or there exists a transformation (10) reducing these operators to one of the following
forms:

1. J1 = —sinu; tanus0y, — €08 U1 0y,,
J2 = — cosuy tan g0y, + sinuqdy,, (13)
T3 = auﬁ

2. J1 = —sinug tanugdy, — coSu1 0y, + sinug sec ua0y,,
Ja2 = —cosuy tan ugdy, + sinugdy, + cosug sec ugdy,, (14)
T3 = Oy, -

Proof. If at least one of the operators J, (say J3) is equal to zero, then due to the
commutation relations (7) two other operators Ja, J3 are also equal to zero and we
arrive at the formulae (12).

Let J3 be a non-zero operator. Then, using a transformation (10) we can always
reduce the operator J3 to the form J3 = 9,, (we should write J5 but to simplify
the notations we omit hereafter the primes). Next, from the commutation relations
(T3, 1] = Jo, [ T3, To] = —J1 it follows that coefficients of the operators [J;, Ja satisfy
the system of ordinary differential equations with respect to vy,

N2ivy = M3iy  M3iv, = —Ti- t=1,...,m.
Solving the above system yields
No; = ficosvy + g;sinvy, N3 = g;cosvy — fisinwvy, (15)

where f;, g; are arbitrary smooth functions of vsy,...,v,, i =1,...,n.
Case 1. fj = g; = 0, j > 2. In this case operators [J;, J2 read

Ji = fcosv10y,, Jo=—fsinv0,,

with an arbitrary smooth function f = f(va,...,v,).

Inserting the above expressions into the remaining commutation relation [J1, Jo| =
Js and computing the commutator on the left-hand side we arrive at the equality
f% = —1 which can not be satisfied by a real-valued function.

Case 2. Not all f;, g;, j > 2 are equal to 0. Making a change of variables

wi =v1 +V(ve,...,v,), wj=v;, j=2,...,n

we transform operators J,, a = 1,2,3 with coefficients (15) as follows

n
Jr = fsinwi0y, + Z(fj coswy + g; sinwi )0y,
j=2

. n - 16
T2 = fcoswi0y, + Z(gj coswy — fjsinwi)0uy,;, (16)

j=2

jS = awl-

Here f, f;, g; are some functions of wa, ..., wy,.



300 R.Z. Zhdanov, V.I. Lahno, W.I. Fushchych

Subcase 2.1. Not all fj are equal to 0. Making a transformation
zn=wi, zj=Wiws,...,wn), j=2,...,n,

where W5 is a particular solution of partial differential equation

> fi0w,We =1

j=2
and Ws,..., W, are functionally-independent first integrals of partial differential
equation

n ~

> Fi0uw,W =0

j=2

we reduce the operators (16) to be

n
J1 = F'sin 2’1821 + cos Z1322 + Z Gj sin 221827.7

j=2
n 17
J2 = Fcos z10,, — sinz10,, —l—ZGj €08 210w, , (7)
j=2

j3 = az
Substituting operators (17) into the commutation relation [J1,J2] = J5 and
equating coefficients of the linearly-independent operators 9., ,...,0,, we arrive at
the following system of partial differential equations for the functions F, Gy, ..., Gy:

F,-F*=1, Gj,—-FG;=0, j=2,...,n

Integrating the above equations yields
s
F=tan(z +c1), Gj=—r-"1—v,
(2 +er)s G cos(zo + ¢1)

where ¢y, ..., c, are arbitrary smooth functions of z3,...,2,, 7 =2,...,n
Changing, if necessary, z2 by 2o+ c¢1(2s, ..., 2,) we may put ¢; equal to zero. Next,
making a transformation

ya/ :za’ a: 1’273,
yr = Zi(2s3,...,2n), k=4,....n

where Zj, are functionally-independent first integrals of partial differential equation

zn: G;0.,7 =0,
j=3

we can put G, =0, k=4,...,n
With these remarks the operators (17) take the form

l
sz e 00+ 90,0),

RO (18)

Ji = siny; tany20,, + cosy10y, +

cos
J2 = cosyi tanys0y, — siny; 0y, + yl

\73 = ayu

where f, g are arbitrary smooth functions of ys, ..., yn-
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If g = 0, then making a transformation

sin Yo .
T — Uk = Yk,
\/cos2yo + f2

where k = 3,...,n, we reduce the operators (18) to the form (13).

u1 = y1 — arctan Uy = — arctan

cos o’

If in (18) g # 0, then changing ys to 93 = [¢ 'dys and y2 to o = —ys we
transform the above operators to become

Ji = —sing; tan 205, — (cos J1 — asm yl) O, + St

cosgo) P2 cosgy U
. . L cos Y1 cos Y1 (19)
Jo = —cos gy tan ygﬁgl + | siny; + « = agjz + —~83]37
COS Yo COS 7o
Tz = 0y, -
Here « is an arbitrary smooth function of g3, ..., 7.

Finally, making the transformation

=g+ f a3=g, az=h, W= g
where k = 3,...,n and f(§2,...,9n), 9(F2y---sTn), R(J2,...,Tn) satisfy the compa-
tible over-determined system of nonlinear partial differential equations

fy, =sin ftang, fz, =sinys — asin ftan g — cos g2 cos f tan g,
9§, = cos f, gz, =sin fcosfo — acos f,

hg, = —sin fsecg, hg, = (cos f cosfa + asin f)secy,

reduces operators (19) to the form (14).

Subcase 2.2. f; =0, j = 2,...,n. Substituting the operators (16) under f; = 0
into the commutation relation [J;, J2] = J5 and equating coefficients of the linearly-
independent operators 9,,,...,0,, yield system of algebraic equations

—fQ:l7 fg; =0, j=2,...,n.

As the function f is a real-valued one, the system obtained is inconsistent.

Thus we have proved that the formulae (13)—(12) give all possible inequivalent
realizations of the Lie algebra (7) within the class of first-order differential opera-
tors (11). The theorem is proved. [ |

If we realize the rotation group as the group of transformations of the space of
spherical functions, then the basis elements of its Lie algebra are exactly of the form
(13) [1]. Hence it follows that the realization space V of the Lie algebra (13) is a di-
rect sum of subspaces V11 of spherical functions of the order [. Furthermore, if we
consider O(3) as the group of transformations of the space of generalized spherical
functions [1], then the operators (14) are the basis elements of the corresponding Lie
algebra.
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4 Realizations of the algebra AFE(3)

First we will prove an auxiliary assertion giving inequivalent realizations of Lie algeb-
ras of the translation T'(3) group within the class of LVFs.

Lemma 1. Let mutually commuting LVFs
P = &5 (2,00, + 0 (2.0)0,,,
where a,b=1,..., N, satisfy the relation

1 1 1 1
i ST
rank : : : : : : = N. (20)
(1) CONNEY! (1)
N1 -+ SNN TIn1 -+ TINn

Then there exists a transformation of the form (3) reducing operators P, to become
P/ =0,,a=1,...,N.
Proof. To avoid unessential technicalities we will give the detailed proof of the lemma
for the case N = 3.

Given a condition N = 3, relation (20) reduces to the form (8). Due to the latter
P, #0 for all a = 1,2, 3. It is well-known that a non-zero operator

Py =€) (x,u)y, + 0t (2, u)d,,

can always be reduced to the form P| = 9,, by a transformation (3) with m = 3.
If we denote by Pj, P§ the operators P», P; written in the new variables y, v, then
owing to the commutation relations (5) they commute with the operator P| = 0y, .
Hence, we conclude that their coefficients are independent of vy .

Furthermore due to the condition (8) at least one of the coefficients 55(21)7 é(?)l),

ng(ll), cen 77/2(;) of the operator Pj is not equal to zero.

Summing up, we conclude that the operator Py is of the form

1 1
Py = €53 (2,05, 0)0y, + 5 (02,93, 0)00, # 0,
not all the functions §;(21), 55(31)7 n;(ll), oy 77;(;) being identically equal to zero.
Making a transformation
z1 =1+ F(y2,y3,0),
z22 = G(y27 Y3, 7}),
z3 = wo(y27 Ys, U)a
wi:wi(y%y&v)a izl,“';na

where the functions F', G are particular solutions of differential equations

f;(Ql) (yQa Y3, U)Fy2 + g;(;)(y27 Y3, U)Fyg + ’r]/2(11) (yQa Y3, ’U)Ful + 55(11)@27 Y3, U) = Oa
55(21) (yQa Y3, U)Gyz + g;(21) (2/27 Y3, U)Gyg + T]/Q(zl) (yQa Y3, ’U)Gul =1

and wop, w1, ...,w, are functionally-independent first integrals of the Euler—Lagrange
System
dyo dys  dv; dvy,

DT T oy
w6y T’
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which has exactly n+ 1 functionally-independent integrals, we reduce the operator P}
to the form Py = 0,,. It is easy to check that the transformation (21) does not alter
form of the operator P;. Being rewritten in the new variables z, w it reads P}’ = 9., .

As the right-hand sides of (21) are functionally-independent by construction, the
transformation (21) is invertible. Consequently, operators P, are equivalent to opera-
tors P, where P{' = 9,,, Py = 0., and

By = " (25, w)3, + il (23, w)00, # 0.
(Coefficients of the above operator are independent of z1, zo because of the fact that

it commutes with the operators P;’, Py'.) And what is more, due to (8) at least one
of the coefficients fgél), ngl(l), R ngi(l) of the operator Py is not identically equal to
Zero.
Making a transformation
Zl =z1+ F(Z3,’LU),
Zy = 2z + G(23,w),
Zg = H(Zd, w),
Wi:Qi(Z?nw)) izla"w”a
where F', G, H are particular solutions of partial differential equations
35 (g 0) Fay + i (25, 0) Fu, = =€51 (20, w),
35 (23, 0) Gy + 51 (23, 0) G, = 53" (23, 0),

g:gl)(z&w)HZs + n;,/i(l)('zS,w)Hwi = 17

and Q1,...,Q, are functionally-independent first integrals of the Euler—Lagrange
system

dzg  dwy _dw,

nny — (T @)

33 31 N3n

we reduce the operators P/, a = 1,2,3 to the form P! = 0z,, a = 1,2, 3, the same

a’
as what was to be proved.

Note 1. In the papers [9, 17] mentioned above a classification of realizations of the
groups G2(1,1), C(n,m) was carried out under assumption that mutually commuting
LVFs

Qazfaa(x)aza, a=1,...,N
can be simultaneously reduced by the map
Yo = fa(z), a=1,...,n (22)

to the form Q) = J,,.
It is not difficult to become convinced of the fact that this is possible if and only
if the condition

rank ||§aaH<11V:1an:1 =N (23)
holds.
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The sufficiency of the above statement is a consequence of Lemma 1. The necessi-
ty follows from the fact that function-rows of coefficients of operators @Qf,..., Q%
transformed according to formulae (22) are obtained by multiplying function-rows of
coefficients of the operators Q1,...,Qn by a Jacobi matrix of the map (22), i.e.

ffla:faﬁfaxg, a=1,....,N, a=1,...,n

which leaves the relation (23) invariant.

Consequently, in [9, 17] only covariant realizations of the corresponding Lie algeb-
ras were considered, which, generally speaking, do not exhaust a set of all possible
realizations.

Now we can prove a principal theorem giving a description of all inequivalent
covariant realizations of the Euclid algebra AE(3).

Theorem 2. Any covariant realization of the algebra AE(3) within the class of first-
order differential operators is equivalent to one of the following realizations:

1. Pa = 8wa7 Ja = _Eabcxbawcy a = la 2; 37 (24)
9. P,=08,, a=1,2,3,

Jl = _x28x3 + m?}axz + fawl - fuz Sinulaasg -

— sinug tan ug0y, — €S U10y,,

(25)
Jo = =230z, + 21055 + fOr, — fu, cOSU10z, —
— cosuy tan ugdy, + sinuy0,,,
J3 = *1’18952 -+ xgaml + 8ul;
3. P,=0,,, a=123,
J1 = =290, + 1305, + g0z, — (Sin U1 gy, + COS Uy SEC USG5 ) Duy
— sin ug tan uady, — cosu10y, + sinuy sec u20y,,
. 26
Jy = =230y, + 105, + g0z, — (COS UL Gy, — SIN Uy SEC UG5 ) Oy (26)
— cos ug tan ug0y, + sinuq0,, + cosu sec u20y,,
J3 = —Z‘laI? + $26x1 + 8u1.
Here f = f(ua,...,uy,) is given by the formula
sinu 1
fozsinu2+,6’(sinu21n12+1>, (27)
COS Us
«, B are arbitrary smooth functions of us, ..., u, and g = g(ug, ..., u,) is a solution
of the following linear partial differential equation:
cos? U2 Juous T Gugus — SIN U2 COS UL Gy, + 2 cos? us g = 0. (28)

Proof. Due to Lemma 1 operators P, can always be reduced to the form P, = 0.,
by means of a properly chosen transformation (3). Inserting the operators

Py =02,, Ja= fab(xa u>aﬂ?b + nai(xvu)aui
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into the commutation relations (6) and equating the coefficients of the linearly-
independent operators 0;,, Ozy; Ops, Ouys-- -, 04, We arrive at the system of partial
differential equations for the functions &qp(x, u), 14 (2, u),

€acwb = —C€abcs; MNaiz, = Oa a,b,c: 17233a 1= 17”
Integrating the above system we conclude that the operators J, have the form
Ja = _&—abcxbaﬂcC +jab(u)axb + ﬁai(u)auiu a = 1a 27 37 (29)

where jqp, 7qp are arbitrary smooth functions.

Inserting (29) into the commutation relations (7) and equating coefficients of
Ouyy- -+, 0y, show that the operators J, = 74;0y,, @ = 1,2,3 have to fulfill (7) with
Jo — J,. Hence, taking into account Theorem 1 we conclude that any covariant
realization of the algebra AFE(3) is equivalent to the following one:

Pa - amaa Ja = _5abcxbamc +jab(u)amb + ja; a = 1; 2; 37 (30)

operators J, being given by one of the formulae (12)—(14).
Making a transformation

Yo =Ta + Fo(u), vi=w;, a=1,2,3 i=1,...,n,
we reduce operators J, from (30) to be
J1= _yQayS + y3ay2 + Aayl + Bayz + Caye, + 1,

Jo = —y30y, + Y10y, + FOy, + GOy, + Jo, (31)
J3 = —y18y2 + ygayl + H8y3 + Js,

where A, B, C, F', G, H are arbitrary smooth functions of vy,...,v,.

Substituting the operators (31) into (7) and equating coefficients of linearly-inde-
pendent operators 0y, , Oy,, Oy, Oy, ..., 0, result in the following system of partial
differential equations:

1) Bod = —C, 6) 50 — JH =G,

9) JoF = —B, TG —FC=H—A—F,

3) J3A = B, 8) sB=F — A—H, (32)
4) JF — 5B =G, NA-F-H=0

5) JoH — J3G =C

Case 1. All operators [Jy, J2, J3 are equal to zero. Then, (32) reduces to the
system of linear algebraic equations

B=C=G=0, H-A-F=0, F-A-H=0, A-F-H=0,

whence it follows immediately that A = F' = G = 0. Substituting the above results
into formulae (31) we arrive at the realization (24).

Case 2. Suppose now that not all operators [J1, J2, J3 vanish. Then, they are given
either by formulae (13) or (14), where one should replace uy, ..., u, by v1,...,v,. As
for the both cases J5 = 0,,, a subsystem of equations 2, 3, 8, 9 forms a system of
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linear ordinary differential equations for functions A, B, F, H with respect to v;.
Integrating it we have

A= BO + Bl sin 21}1 — Bg COS 21}1, B = 2B1 COS 21)1 + 232 sin 2’01, (33)
F = By + Bycos2vy — Bysin2vy, H = 2Bjsin2v; — 2B5 cos 2vy,

where By, B, By are arbitrary smooth functions of v, ..., v,.
Subcase 2.1. Let the operators Ji, Ja, J3 be of the form (13). Then, making
a transformation

21 =y1 + Rq1cosvy + Ry sinvy,

22 = Y2 +RQCOS’U1 —R1 Sinvl,

1 1
z3=1y3+ §(R2v2 + tan va Rs) cos 2uq — §(RM2 + tan vo Ry) sin 2vy +
1
+ §(tan vaRy — Ray,),
where the functions Ry, Ry are solutions of the system of partial differential equations

1 1
R1U2 + 5 tan UQRl = —232, R2U2 + 5 tan ’UQRQ = 2Bl7

we reduce the operators (31) with A, B, F', H given by (33) to the form

Jl = _22823 + ZSaZ2 + A/azl + 5023 + \717
JQ = 723821 + 21823 + Z@m + éaz:; + an (34)
J3z = —Zlaz2 + 2:2(921 + J3.
Here g, 5, G are arbitrary smooth functions of vy, ..., v,, and what is more, A does
not depend on v .

Given such a form of operators J,, system (32) reduces to three differential equa-
tions

JoA=-C, J1A=G, G- TC = —2A. (35)

Inserting expressions for the operators Ji, Jo from (13) into the first two equations
we have

C =—sinnA,,, G=—cosviA,,.

Substituting the above formulae into the third equation of the system (35) we
conclude that it is equivalent to the differential equation

Z@QW — tan 021&,2 + 24 = 0,

whose general solution is given by (27). At last, inserting the results obtained into
(34) we get the formulae (25).
Subcase 2.2. Let the operators Ji, J2, J3 be of the form (14). Then, making
a transformation
z1 = y1 + Ry cosv; + Rosinwy,

29 = Yo + Ro cosvy — Ry sinvy,
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z3=1Ys+ = (Rgv2 sec vy Ry, + tan vgRy) cos 2v1 —
~3 (R1v2 + sec v Ray, + tanve Ry) sin2v1 +

1
+ §(tan va Ry — secvaR1yy — Ray, ),

where the functions Ry, Ry are solutions of the system of partial differential equations

2By = Ry, —secvaRy,, + tanva Ry,
2By = — Ry, — secvaRg,, — tanva Ry,

we reduce the operators (31) with A, B, F', H given by (33) to the form (34), where
A C G are arbitrary smooth functions, and what is more, A does not depend on v;.

Given such a form of the operators J,, system (32) reduces to three differential
equations (35). Inserting expressions for the operators Ji, J2 from (13) into the first
two equations of (35) we have

C = —coswv1 Ay, + sinv; secvaA,,, (36)
G = —sinv1 Ay, — cos vy secvad,,.

Substituting the above formulae into the third equation of (35) after some algebra
we arrive at the conclusion that it is equivalent to equation (28). Inserting (36) into
(34) yields formulae (26).

Thus we have proved that if LVFs P,, J, realize a covariant realization of the
Euclid algebra AF(3), then they can be reduced to one of the forms (24)—(26) by
means of an invertible transformation (3). The theorem is proved. [ |

While proving Theorem 1, we have established, in particular, that any realization
of the Euclid algebra satisfying the condition (8) can be transformed to become

P, =0,,, Jo=—€abcTpOs, + Jab(t)O0p, + Mai(w)Dy,, a=1,2,3.
If we choose in the above formulae
Jap(u) =0, nei(uw) = —Agijuy, a,b=1,2,3, i=1,...,n,
where Ay;; = const, then the following realization
P, =0:,, Jo=—¢abctpOs, + Tu, a=1,2,3 (37)

with Jq = —Aqiu;0,, is obtained.

A realization of the Euclid algebra with generators of the form (37) is called in the
classical linear representation theory a covariant realization. That is why it is natural
to preserve for a realization of the algebra AFE/(3) within the class of LVFs obeying
(8) the same terminology.

As an illustration to Theorem 2 we will demonstrate how to reduce realizations of
the Euclid algebras realized on sets of solutions of the heat, wave, Laplace, Navier—
Stokes, Lame, Weyl, Dirac and Maxwell equations to one of the three canonical forms
(24)—(26). First of all, we note that the realization (24) is exactly the one realized
on the sets of solutions of the linear and nonlinear heat (Schrodinger), wave, Laplace
equations.
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Symmetry algebras of the Navier—Stokes and Lame equations contain as a subal-
gebra the Euclid algebra having basis elements (37), where (see, e.g. [6])

Jo = —€abe Vp0p,, a=1,2,3. (38)
The change of variables
V1 = ugSinuq COSuU2, Vg = U3COSUL COSUs, V3 = U3 SinUg

reduce these LVFEs to the form (25) with f = 0.
Next, if we consider the Weyl equation as the system of four real equations for

four real-valued functions vy, ve, wy, we, then on the set of its solutions realization
(37) of the algebra AF(3) is realized, where [3, 7]

1

= §(w25v1 = 010w, + w10y, = V20u,),
1

Jo = 5 (0200, — 0100, + w2duy —w10u,), (39)
1

j3 = 5(’1}}181}1 - Ulawl + U28w2 - 1U26U2)~

Making the change of variables

( LUl L U2 us + Ui Uz . US)
V1 = U4 | SIn — sin — cos — + cOs — €O0S — sin —
2 2 2 2 2 2/’
( 51 U2 us LU oL U2 . US)
Vo = Uy | COS — €cOS — cOS — — Sin — sin — sin —
2 2 2 2 2 2/’
( up . U2 us .Uz Uz . U3 )
Wy = U4 | COS — Sin — cos — — sin — cos — sin —
2 2 2 2 2 2/’
( .w U2 us + Uy . U2 . U3 )
Wo = U4 | SIN — cOS — CcOS — + cOoS — sin — sin —
2 2 2 2 2 2

reduces the above LVFs to the form (26) with g = 0.

On the solution set of the Maxwell equations the realization of the Euclid algebra
(37), where

Jo = —€abe (EvOp, + HyOm,), a=1,2,3,

is realized [19].

This realization is reduced to the form (26) under ¢ = 0 with the help of the
change of variables

F1 = ug sinuq cos us,

FEy = ug cosuy cosug,

E3 = Up sin Uz,

Hy = uyg(cosuy sinug + sin ug sinug cos ug) + us sin ug cos us,
Hs = uy(cos uy sinug cosuz — sinug sinugz) + us €os ug cos usg,

H3 = —u4 cosug cosuz + us sin us.

Taking the Dirac matrices v, in the Majorana representation we can represent the
Dirac equation as the system of eight real equations for eight real-valued functions
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PO 3, Y, abS (for details, see e.g. [7]). With this choice of y-matrices, on the
set of solutions of the Dirac equation realization of the Euclid algebra (37) with

1
T = 3 (%@pﬂ + 1/’1aw1 %f/%auﬂ - ¢15¢3 + 1/@@/;“ + 7/%@@; - %/J%awg - 1/133@),
(= Wiyg+ §10y1 + Y10y — 10y — $0yg+ 30y + Va0yz — ¥0yg),
1

T = —2( 10y — YROyy + iy — U705+ Yadyg — v¥ydyy + Vadyz — ¥30y9)

l\:>|>—A

is realized on the set of solutions of the Dirac equation.
Making the change of variables

P =u (cos U cos U2 sin us + sin e sin e cos u3)
= Uy — — sin -2 — sin — =
! 2 2 2 2 2 2/’
Pl =u (sin “ cos e sin us cos b sin e cos u3)
= Uy — —gin —=2 — — sin —= —=
! 2 2 2 2 2 2/’
2 = —u (cos “ cos e cos us sin “ sin Y2 sin u3)
= —uy — = — — gin — sin —= sin —
! 2 2 2 2 2 2/’
P = —u (sin “ cos e cos us + cos “ sin e sin u3)
= —uy — —= - — sin —= sin —
! 2 2 2 2 2 2/’

0 LUl . Uz . U3+ Ug (25 Uz uz + Ug
5 = Us | SIn — sIn — sin — COS — COS — COS +
2 2 2 2 2 2

.oup U . U3+ Ug up . U uz + us
4wy | sin > cos — sin — cos — sin — cos ,

2 2 2 2 2
1 .Uy U2 Uz + Ug up . Uz . U3+ Ug
1y = —us | sin — cos — cos ———— + cos — sin — sin —
2 2 2 2 2 2
uy | sin al sin v2 cos us 1 us cos al cos 42 sin Us + Us
—uy el 2 _ 21 2
2 2 2 2 2 2 ’
V3 = —us (cos 5 cos 2 sin 7“3;“6 + sin - sin % cos L;““)
up . Uz . U3+ ug .u1 U2 Uz + ug
“+ u7 | COS — SIn — SIn ———— —+ SIN — COS — COS s
2 2 2 2 2 2
¢3 (751 (75 us + Ug U1 U . U3+ Ug
= us | cos — sin — cos — sin — cos — sin —
2 2 2 2 2 2 2
uy | cos il cos 2 cos us +us sin il sin 2 sin Us + us
— up 21 22 _ 21 22
2 2 2 2 2 2

reduces the above realization to the form (26) with g = 0.

5 Covariant realizations of the Lie algebra
of the group E(4)

We recall that the basis elements of the Lie algebra of the Euclid group E(4) fulfill
the following commutation relations:

[Pa, Pp] =0, (40)

[J,uu; Pa] = 5/LOLPD - 6ua13,u7 (41)
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[Jag, J}W] = 5(1;“]@,, + 55VJO¢M — 5aUJ,3M — 5@“]04,,, (42)

where «, 8, p,v =1,2,3,4.

Using the results of the previous sections and the fact that the Lie algebra of
the rotation group O(4) is the direct sum of two algebras AO(3) we will obtain
a description of covariant realizations of the Lie algebra (40)—(42) within the class of
LVFs

Pp = f,uu(xa u)ar,, + 77;“‘(337 u)@u”
J;u/ = guua (:E7 u)awa + Nuvi ($7 u)aul

with J,,, = —J,,. Here the indices u, v, a take the values 1,2,3,4 and the index 7
takes the values 1,...,n.

As we consider covariant realizations, mutually commuting operators P, satisfy
(20) with N = 4. Hence due to Lemma 1 it follows that they can be reduced to the
form P, = 0,,, p = 1,2, 3,4. Next, using the commutation relations (41) we establish
that the operators J,,, have the following structure:

Sy = 200z, — 2,0u, + fuva(w)Os, + guvi(u)Oy, (43)

with arbitrary sufficiently smooth f,.a, guvi-

In what follows we will restrict our considerations to the case when in (43) fu.qo =
0. This means geometrically that the transformation groups generated by the opera-
tors J,, in the space of independent variables are standard rotations in the planes
(x, ). With this restriction LVFEs J,,,, take the form

Jw = 2,0z, — 20z, + T, (44)
where

T = guui(u)aui (45)
and, furthermore, g,.:(v) = —guui(u).

Inserting LVFs (44) into (42) we come to conclusion that the operators J,, satisfy
the commutation relations of the Lie algebra of the rotation group O(4)

[ja[)’y jpl/] = 6(1,11,;751/ + 5ﬁyx7au - 6&1/\75” - 6ﬁu;7a1/- (46)

An exhaustive description of inequivalent realizations of the above Lie algebra
within the class of LVFs (45) is given below. It is based on results of Section 2 and
on the well-known fact that the algebra AO(4) is decomposed into the direct sum of
two algebras AO(3). This is achieved by choosing the basis of AO(4) in the following
way:

1

1
*-70,i = 5 (§5abcs7bc + ja4) ) (47)

where the indices a, b, ¢ take the values 1, 2, 3. Due to (46) LVFs 7., J," fulfill the
following commutation relations:

[‘.7;_7 j[f] = 5abcc75+7 (48)
[T Jy 1 =0, (49)



On covariant realizations of the Euclid group 311

[ja_y jb_] = Eabcjc_a (50)

which is the same as what was required. Now we are ready to formulate an assertion
giving an exhaustive description of LVFs (45) satisfying commutation relations (46)
or, equivalently, (48)—(50).

Theorem 3. Any realization of the Lie algebra AO(4) within the class of LVFs (45)
is given by the formulae (47) and by one of the formulae 1-6 presented below.

1. J" = —sinuy tanugdy, — cosu;d,,,
j;r = — cosuy tan uady, + sinuy0y,,
+ _
j3 - 8u15
J; = —sinuztanus0y, — cosus0y,,
Jy = —cosuztanuyOy, + sinusgdy, ,
\.737 = a’11,37
2. J" = —sinuy tanuz0,, — cosu10y,,
j;r = — cosuy tan uady, + sinuyOy,,
+ _
j3 - 8u15
J; = —sinugtanusd,, — cosuzdy, — sinugsecusOy,;,
Jy = —cosugtanuyOy, + sinusdy,, — cosusz sec g0y,
\.737 - a’u,s?
3. J;" = —sinuy tanugd,, — cosuy0,, — sinu sec ugd,,,
j;r = —cos uj tanug0y, + sinu10y, — COS Uy SeC U0y,
+ _
j3 - 8u15
J; =secugcosusly, + sinuzdy, — tan ug cos uzdy,,
Jy = —secugsinugdy,, + cosugdy, + tan ug sin ugdy,,
\.737 - a’u,s?
4. J;" = —sinuy tanugd,, — cosuy 0y, — sinu sec ugdy,,
j;r = —cosuj tanug0y, + sinu10y, — COS Uy SeC U0y,
+ _
j3 - 8u15
J; = —sinugtanusd,, — cosusly, — sinuy secus0y,,

J5 = —cosugtanus0y, + sinugdy, — cosuy sec us0y,,
‘-737 = am;

5. J;" = —sinuy tanug0,, — cosui0y, — sinu; secuz0y,,
j;r = —cosuj tanug0y, + sinu10y, — COS Uy SeC U0y,
‘73+ = 8u1a

J; = ksinuy secus0,, — sinug tanus0y,, — €os a0y, ,
J5 = ksinuy sec us0y, — €OS ug tan us0y, + sin ugdy,,
‘-737 = am;

6. J," = —sinu; tanugd,, — cosuydy, — sinu sec ugd,,,

j;r = —cos uj tanug0y, + sinu10y, — COS U1 SeC U0y,
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+ _
\73 - 611,1)
J| = ugsinug sec us0y, — sinug tan usd,, — cos usOy,,
J5 = ug sin ug sec us0y, — COS Uy tan us0y, + sin ua0y, ,

‘73_ = auu
where k = const, k # 0.

Proof. We will give the principal steps of the proof omitting intermediate computa-
tions.

According to Theorem 1, there are two inequivalent realizations of the algebra
AO(3) with basis elements J;", J5", J5"

1. J" = —sinuy tanugdy, — cosud,,,

J;r = — cosuy tan uady, + sinuiOy,,

j3+ = au1§ (51)
2. Jfr = —sinwu tanugdy, — coS U0y, — SiN U; S€C U0y,

J5F = —cosuy tan ugdy, + sinuydy, — cosu; sec uz0y,,

Ti = 0u,.

To complete a classification of inequivalent realization of AO(4) we have to find all
triplets of operators J;, J5 ,J5 which together with the operators (51) satisfy (49),
(50).

Analyzing the commutation relations (49) we arrive at the following expressions
for operators J; , Jy , Js :

1. jai :Zfai(llg,...,un)aui,
=3

3 n
2. Ty = far(uay. . un)Qp+ Y fai(ta,. ., tn)0u,,
b=1

i=4
where f;; are arbitrary smooth functions and
Q1 = secug cos uzgOy, + sinugd,, — tan us cos ugdy,,
Qs = —secug sinuzdy, + cosuz0y, + tan ug sin uzdy,,
Q3 = aug'
Note that the operators Q, fulfill the commutation relations of the algebra AO(3).
Hence, we conclude that for the case 1 from (51) the operators J, are given by
the formulae (51), where one should replace u; by u;42, correspondingly.
Let us turn now to the second realization of the algebra AO(3) from (51).

Case 1. foi =0, a =1,2,3, 7 =4,...,n. In this case we can reduce J; to the
form

._717 = ’F(U4, ey n)Q1
with the help of equivalence transformation

3
X > X=vXxXy 1 V:exp{ZFaQa}, (52)

a=1
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where F,, are some functions of ug,...,u,. Note that transformation (52) does not
change the form of the operators 7., since [J,", Qp] =0, a,b=1,2,3.
From commutation relations (50) it follows that # = 1 and furthermore J, = Qa,

Js = Qz. Thus we get the following forms of the operators J :

J| = secugcosusly, + sinuzdy,, — tan ug cos uzdy,,
Jy = —secugsinugdy,, + cosugOy, + tan ug sin ugdy,,
T3 = Oy,.

Case 2. Not all f,; vanish. Then the operators J; , J5 , J3 can be transformed
to become

T = fa(tay ... un) Q1+ ga(ta, ..., tn) Qo + ha(ta, ..., un) Q3 + 24,

where a = 1,2, 3, and

Z, = —sinug tan us0,, — €08 ug0y; — € Sin Uy SeC Us Dy s
Zy = —cos ug tanuz 0y, + sin ua0y,; — € cos uy sec us0y,,
Z3 = 871,4?

and € =0, 1.

Now using the transformation (52) we reduce the operator J; to the form Z5 =
Oy, Next, from commutation relations

[\737)\.717] = jzia [j37a«727] = _\717

we get
3
J = Z (Gucosug + Hysinug)Q, + 21,
a=1
3
Iy = Z (Hgcosuy — Gy sinug)Q, + 2o,
a=1
where G,, H, are arbitrary smooth functions of us, ..., uy,.
Making use of the equivalence transformation (52) with F, being functions of
Us, . . ., Up We can cancel coefficients G,,. The remaining commutation relation [J;", J5 |

= J; yields equations for Hy, Hy, H3
Hyyy —tanusH, =0,
whence

H,=H, secus, a=1,2,3,

H, being arbitrary functions of we, . .., u,. Consequently, the operators J, read
3
J = Z sin uy sec U5}~Ia Q.+ 21,
a=1
3
Iy = Z cosug secus Hy Qq + 2o,
a=1

J5 = Zs.
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Ife =1, the~n using the transformation (52) with F, being functions of ug, ..., u,
we can cancel H,, thus getting J,” = Z,, a = 1,2,3. If ¢ = 0, then making use of the
transformation (52) with F, being functions of ug, ..., u, we can put H; = Hy = 0.

Provided H; = 0, we get the realization which is reduced to that given by the
formulae 2 from the statement of the theorem.

Provided Hs = const # 0, we get the formulae 5. At last, if H3 # const, then
performing a proper change of variables we arrive at the realization given by the
formulae 6 from the statement of the theorem. The theorem is proved. [ |

It follows from the above theorem that formulae (47) and 1-6 of the statement of
Theorem 3 give six inequivalent realizations of the Lie algebra of the Euclid group
E(4) having the basis elements P, = d,,, and (44), (45). To get all possible realizations
of the algebra in question belonging to the above class it is necessary to add to the
list of realizations of the algebra AO(4) obtained in Theorem 3 the following three
realizations of the operators J,, J.':

1. jfr = —sinuy tan ugdy, — COS U1 Oy,
J;r = — cosuy tan ug0y, + sinui0y,,
‘73+:au1’ \7(;:0;

2. jfr = —sinwu tanugdy, — coS U1 0y, — Sin U seC uz0y,,
j2+ = —cos uy tanug0y, + sin w10y, — COS U1 S€C U0y,

\.73+ = 8u17 ja_ = 0;
3. Jr=0, J;7 =0,

where a = 1,2, 3. This yields nine inequivalent realizations of the Lie algebra of the
group E(4).

In particular, the basis generators of the Euclid groups realized on the sets of
solutions of the Dirac and self-dual Yang-Mills equations in the Euclidean space R*
are reduced to such a form that the generators of the rotation groups are given by
(44), (45), J. being adduced in the formulae 4 of the statement of Theorem 3.

6 Concluding remarks

Summarizing the results of Sections 3 and 4 yields the following structure of realizati-
ons of the Lie algebra of rotation group by LVFs in n variables:

e If n=1, then there are no realizations.

o As there is no realization of AO(3) by real non-zero 2 x 2 matrices, the only
realization for the case n = 2 is given by (13). Furthermore, this realization is
essentially nonlinear (i.e., it is not equivalent to a realization of the form (9)).

e In the case n = 3 there are two more realizations (38) (which is equivalent to
(13)) and by formula (14). The latter realization is essentially nonlinear.

e Provided n > 3, there is no new realizations of AO(3) and, furthermore, any
realization can be reduced to a linear one (say, to (39)).

An evident (and very important) consequence of Theorem 1 is that there are only
two inequivalent classes of O(3)-invariant partial differential equations of order r.
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They are obtained via differential invariants of the order not higher than r of the Lie
algebras having the basis elements (13), (14). In particular, the Weyl, Maxwell, Dirac
equations are the special cases of the general system of first-order partial differential
equations in n > 8 dependent variables invariant with respect to the algebra (14). We
intend to devote one of our future publications to description of first-order differential
invariants of the Lie algebra of the Euclid group E(3) having the basis elements (13),
(14) and (37). Let us note that this problem has been completely solved provided
basis elements of AE(3) are given by formulae (12) [20].
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