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PREFACE

Thisintroduction to Group Theory, with its emphasison Lie Groups
and their application to the study of symmetries of the fundamental
constituents of matter, hasitsorigin in a one-semester course that | taught
at Yde University for morethan ten years. The course was developed for
Seniors, and advanced Juniors, magjoring in the Physcal Sciences. The
students had generally completed the core courses for their mgors, and
had tak en intermediate level courses in Linear Algebra, Real and Complex
Analyss, Ordinary Linear Differentid Equations, and some of the Specid
Functions of Physics. Group Theory was not a mathematica requirement
for a degree in the Phydcd Sciences. The maority of existing
undergraduate textbooks on Group Theory and its applications in Physcs
tend to be either highly qualitative or highly mathematical. The purpose of
thisintroduction is to steer a middle course that provides the student with
a sound mathematica basis for studying the symmetry properties of the
fundamental particles. It is not generally appreciated by Physcists that
continuous transformation groups (Lie Groups) originated in the Theory of
Differentid Equations. The infinitesma generators of Lie Groups
therefore have forms that involve differential operators and their
commutators, and these operators and their algebraic properties have found,
and continue to find, a natural place in the development of Quantum Physics.

Guilford, CT.
June, 2000.
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INTRODUCTION

The notion of geometricd symmetry in Art and in Nature is a
familiar one. In Modern Physdcs, this notion has evolved to include
symmetries of an abstract kind. These new symmetries play an essentia
part in the theoriesof the microstructure of matter. The basic symmetries
found in Nature seem to originate in the mathematica structure of the laws
themselves, laws that govern the motions of the galaxies on the one hand
and the motions of quarksin nucleons on the other.

In the Newtonian era, the laws of Nature were deduced from a small
number of imperfect observations by a small number of renowned
scientits and mathematicians. It was not until the Einsteinian era,
however, that the significance of the symmetries associated with the laws
was fully appreciated. The discovery of space-time symmetries has led to
the widdy-held belief that the laws of Nature can be derived from
symmetry, or invariance, principles. Our incomplete knowledge of the
fundamental interactions means that we are not yet in aposition to confirm
this belief. We therefore use arguments based on empirically established
laws and restricted symmetry principlesto guide us in our search for the
fundamental symmetries. Frequently, it is important to understand why
the symmetry of asystem is observed to be broken.

In Geometry, an object with a definite shape, size, location, and

orientation constitutes a state whose symmetry properties, or invariants,
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are to be studied. Any transformation that leaves the state unchanged in
form is called a symmetry transformation. The greater the number of
symmetry transformations that a state can undergo, the higher its
symmetry. If the number of conditions that define the state is reduced
then the symmetry of the state is increased. For example, an object
characterized by oblateness aone is symmetric under al transformations
except achange of shape.

In describing the symmetry of a state of the most general kind (not
simply geometric), the algebraic structure of the set of symmetry operators
must be given; it is not sufficient to give the number of operations, and
nothing else. The law of combination of the operators must be stated. It
Is the algebraic group that fully characterizesthe symmetry of the general
State.

The Theory of Groups came about unexpectedly. Galois showed
that an equation of degreen, wherenis an integer greater than or equd to
five cannot, in general, be solved by algebraic means. In the course of this
great work, he developed the ideas of Lagrange, Ruffini, and Abel and
introduced the concept of a group. Galois discussed the functiond
rel ationships among the roots of an equation, and showed that the
relationships have symmetries associated with them under permutations of

the roots.
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The operators that transform one functional relationship into
another are elements of a set that is characteristic of the equation; the set
of operatorsis called the Gal ois group of the equation.

In the 1850’'s, Cayley showed that every finite group is isomorphic
to a certain permutation group. The geometricd symmetries of crystals
are described in terms of finite groups. These symmetries are discussed in
many standard works (see bibliography) and therefore, they will not be
discussed in this book.

In the brief period between 1924 and 1928, Quantum Mechanics
was developed. Almost immediately, it was recognized by Weyl, and by
Wigner, that certain parts of Group Theory could be used as a powerful
analytical tool in Quantum Physics. Their ideas have been developed over
the decades in many areas that range from the Theory of Solids to Particle
Physics.

The essential role played by groups that are characterized by
parameters that vary continuoudy in a given range was first emphasized
by Wigner. These groups are known as Lie Groups. They have become
increasingly important in many branches of contemporary physcs,
particularly Nuclear and Particle Phydsics. Fifty years after Galois had
introduced the concept of agroup in the Theory of Equations, Lie
introduced the concept of acontinuous transformation group in the Theory
of Differentid Equations. Lie's theory unified many of the disconnected

methods of solving differentid equations that had evolved over a period of
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two hundred years. Infinitesmal unitary transformationsplay a key role in
discussions of the fundamental conservation laws of Physics.

In Classical Dynamics, the invariance of the equations of motion of a
particle, or system of particles, under the Galilean transformation is a basic
part of everyday relativity. The search for the transformation that leaves
Maxwell’s equations of Electromagnetism unchanged in form (invariant)
under a linear transformation of the space-time coordinates, led to the
discovery of the Lorentz transformation. The fundamental importance of
this transformation, and its rel ated invariants, cannot be overstated.

2
GALOIS GROUPS

In the early 19th - century, Abel proved that it is not possible to solve the
general polynomial equation of degree greater than four by algebraic means.
He attempted to characterize dl equations that can be solved by radicas.
Abel did not solve this fundamental problem. The problem was taken up and
solved by one of the greatest innovators in Mathematics, namely, Galois.
2.1. Solving cubic equations

The main ideas of the Galois procedure in the Theory of Equations,
and their relationship to later developments in Mathematics and Physics, can
be introduced in a plausible way by considering the standard problem of
solving a cubic equation.

Consider solutions of the general cubic equation

Ax® + 3Bx*+ 3Cx + D =0, where A - D arerationa constants.



If the substitution y = Ax + B is made, the equation becomes
y*+3Hy+G=0

where

H=AC- B?
and

G =A’D - 3ABC+2B®,
The cubic has three real rootsif G* + 4H® < 0 and two imaginary roots if G
+4H*> 0. (See any standard work on the Theory of Equations).

If al the roots are real, atrigonometrical method can be used to obtain
the solutions, asfollows:
the Fourier series of cos’u is
cos’u = (3/4)cosu + (1/4)cos3u.

Putting

y = scosu in the equation y* + 3Hy + G=0

(s>0),
gives
cos’u + (3H/s)cosu + G/s’ = 0.

Comparing the Fourier series with this equation leads to

s=2Q-H)
and

cos3u = - 4G/s’,

If v isany value of u satisfying cos3u = - 4G/s’, the general solution is



3u = 2np £ 3v, where nis an integer.

Three different values of cosu are given by

u=v,and 2p/3tv.
The three solutions of the given cubic equation are then
scosv, and scos(2p/3 £ V).
Consider solutions of the equation
x®- 3x+1=0.
In this case,
H=-1landG*+4H*=-3,
All theroots are therefore real, and they are given by solving
cos3u = - 4G/S’ = - 4(1/8) =- 1/2
or,
3u = cos'(- 1/2).
The values of u are therefore 2p/9, 4p/9, and 8p/9, and the roots are
X, = 2c08(2p/9), X, = 2cos(4p/9), and X, = 2cos(8p/9).
2.2. Symmetries of theroots
Theroots x,, X,, and x, exhibit a simple pattern. Relationships among
them can be readily found by writing them in the complex form 2cosg = € +
€'Y where q = 2p/9 so that
X, =€%+¢e",

X2 - e2iq + e—2iq ’



and
X, = e+ e,
Squaring these values gives
X2 =X, + 2,
XS = X;+ 2,
and
Xs® =X, + 2.
The relationships among the roots have the functional form f(x,,x,,%;) = O.
Other relationships exist; for example, by considering the sum of the roots we
find
X, + X +X%X,-2=0
X, + X7+ Xy - 2=0,
and
Xz + X+ X, - 2=0.
Transformations from one root to another can be made by doubling-the-
angle, 0.

The functiona reationships among the roots have an agebrac
symmetry associated with them under interchanges (substitutions) of the
roots. If Q isthe operator that changes f(x,,X,,X5) into f(X,,X;,X;) then

QF(X},X0,X5) ® T(Xp,X3,X)),
Q(X,, X5, X5) ® f(Xg,X1,Xy),

and



Q3 (X, X X5) ® F(Xy,X00Xs).
The operator Q° = |, istheidentity.
In the present case,
Q(X,* - X,- 2) = (X, - X5- 2) =0,
and
QX% - X,- 2)=(Xs" - X, - 2)=0.
2.3. The Galois group of an equation.

The set of operators {I, Q, Q% introduced above, is called the Galois
group of the equation x*> - 3x + 1 = 0. (It will be shown later that it is
iIsomorphic to the cyclic group, C,).

The elements of a Galois group are operators that interchange the
roots of an equation in such a way that the transformed functional
relationships are true relationships. For example, if the equation

X, + X, +X,- 2=0
isvalid, thensois
QX + X, + X, - 2) =X, + X"+ X5- 2=0.
True functional relationships are polynomials with rational coefficients.
2.4. Algebraicfields

We now consider the Galois procedure in amore general way. An

algebraic solution of the genera nth - degree polynomial
ax"+ax"™+..3=0
Isgiveninterms of the coefficients g using afinite number of operations (+,-

U ,.,0. The term "solution by radicals' is sometimes used because the
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operation of extracting a square root isincluded in the process. If an infinite
number of operationsis allowed, solutions of the general polynomial can be
obtained using transcendental functions. The coefficients a necessarily belong
to afield which is closed under the rational operations. If the field isthe set
of rational numbers, Q, we need to know whether or not the solutions of a
given equation belong to Q. For example, if
x*-3=0

we see that the coefficient -3 belongs to Q, whereas the roots of the equation,
x, = + (8, do not. It is therefore necessary to extend Q to Q', (say) by
adjoining numbers of the form aCBto Q, whereaisin Q.

In discussing the cubic equation x® - 3x + 1 = 0 in 2.2, we found
certain functions of the roots f(x;,X,,X;) = O that are symmetric under
permutations of the roots. The symmetry operators formed the Galois group
of the equation.

For ageneral polynomial:

X"+ ax"+ax"+.a =0,

functional relations of the roots are given in terms of the coefficients in the

standard way
X1+X2+X3.. e +Xn =_al
XXy + X X5+ 0 XoXg + XX, + .+ X1 X, =

X1X2X3 + X2X3X4 + . . + Xn_zxn_lxn = - %
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X XoXs . L XX, = %A,

Other symmetric functions of the roots can be written in terms of these
basic symmetric polynomials and, therefore, in terms of the coefficients.
Rational symmetric functions also can be constructed that involve the roots
and the coefficients of a given equation. For example, consider the quartic

x*+ax*+a,=0.
The roots of this equation satisfy the equations
X+ X, +X,+%X,=0
X Xy + X X5 + XX, + XoXg + XX, + XX, = &,
X X X5 + X XX, + XXX, + XXX, = 0
X XXX, = @,

We can form any rationa symmetric expression from these basic
equations (for example, (33,° - 2a,)/23,° = f(X,,X,,X5,X,)). In general, every
rational symmetric function that belongs to the field F of the coefficients, a, of
a general polynomia equation can be written rationally in terms of the
coefficients.

The Galois group, Ga, of an equation associated with afield F therefore
has the property that if arational function of the roots of the equation is
invariant under all permutations of Ga, then it is equal to aquantity in F.

Whether or not an algebraic equation can be broken down into simpler
equations isimportant in the theory of equations. Consider, for example, the

equation

X
o

1
w
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It can be solved by writing x® =y, y*= 3 or
x = (CB)"3,

To solve the equation, it is necessary to calculate square and cube roots
¥4 not sixth roots. The equation x® = 3 is said to be compound (it can be
broken down into simpler equations), whereas x* = 3 is said to be atomic.
The atomic properties of the Galois group of an equation revea
the atomic nature of the equation, itself. (In Chapter 5, it will be seen that a
group isatomic ("simple") if it contains no proper invariant subgroups).

The determination of the Galois groups associated with an arbitrary
polynomial with unknown rootsis far from straightforward. We can gain
some insght into the Gaois method, however, by studying the group
structure of the quartic

x*+ax*+a,=0
with known roots
X, = (- &+ W/2)", X, = - X,
Xs = ((- 8- W™, X, =X,
where
u=(a,” - 4a,)"

Thefield F of the quartic equation contains the rationals Q, and the
rational expressions formed from the coefficients a, and a,.

Therelations

X;+X,=X;+%X,=0
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areinthefiedF.

Only eight of the 4! possble permutations of the roots leave these

relationsinvariant in F; they are

1 X, X, XX, U I X, X, X5 X,U T X, X, XX, 1
{P1= , Py= » Ps :J ,
i x1x2x3x4|9 i x1x2x4x3p i x2x1x3x4|9
I X, X, X5 X, U | X, X, X3 X, U | X, X, X3 X, U
P4: ’P5: ’P6:J ,
| x2x1x4x3|_c? f x3x4xlxzp I X3 X, X, X, P
X1 X, X3 X, U | X; X, X3 X, U
P, = P, = }.
1X4X3X1X2b 'IX4X3X2X1|J '

The set {P,,...P;} isthe Galois group of the quarticin F. It isasubgroup of
the full set of twentyfour permutations. We can form an infinite number of
true relations among the rootsin F. If we extend the field F by adjoining
irrational expressions of the coefficients, other true relations among the roots
can be formed in the extended field, F. Consider, for example, the extended

field formed by adjoining 1 (= (a,” - 4a,)) to F so that the relation

X,> - XS =pisinF.

We have met the relations
X; =-X, and X; =-X,
so that
X,>= X, and X5’ = X,
Another relation in F' is therefore
2 2 _

Xz = X4 u-

The permutations that leave these relations truein F are then
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{P, P, P, P}.
This set is the Galois group of the quarticin F'. It isasubgroup of the set
{P,,..Ps}.
If we extend the field F' by adjoining the irrational expression
(- a - W/2)"*toformthefield F' then the relation
Xs- X, =2((-a, - W2)"isinF".
Thisrelation isinvariant under the two permutations
{P, P}.
This set isthe Galois group of the quarticin F". It isasubgroup of the set
{P, P, P;, P,}.

If, findly, we extend the fidd F" by adjoining the irrational

((- &, + W/2)* to form the field F" then the relation

X, - X, =2((-a, - W2)”isinF".
Thisrelation isinvariant under the identity transformation, P, , alone; it is
the Galois group of the quartic in F".

The full group, and the subgroups, associated with the quartic equation
are of order 24, 8, 4, 2, and 1. (The order of a group is the number of
distinct elements that it contains). In 5.4, we shall prove that the order of a
subgroup is always an integral divisor of the order of the full group. The
order of the full group divided by the order of a subgroup is called the index
of the subgroup.

Galois introduced the idea of a normal or invariant subgroup: if Hisa

normal subgroup of G then
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HG - GH =[H,G] = 0.

(H commutes with every element of G, see5.5).
Normal subgroups are also called either invariant or self-conjugate subgroups.
A normal subgroup H is maximal if no other subgroup of G contains H.
2.5. Solvability of polynomial equations

Galois defined the group of a given polynomial equation to be either
the symmetric group, S,, or a subgroup of S,, (see 5.6). The Galois method
therefore involves the following steps:
1. The determination of the Galois group, Ga, of the equation.

2. The choice of a maximal subgroup of H In the above case, {P,, ...Py}

max(1) *

isamaximal subgroup of Ga=S,.

3. The choice of amaximal subgroup of H from step 2.

max(1)
In the above case, {P,,.P,} = H, . isamaximal subgroup of H, .-
The processis continued until H,,,, = {P,} ={I}.

The groups Ga, H H =1, form a composition series. The

max(1)? **1" "'max(k)

composition indices are given by the ratios of the successive orders of the

groups:

9./Ny: ho/Ny, g/l
The composition indices of the symmetric groups S, for n = 2 to 7 are found
to be:
n Composition Indices

2 2
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2,3
2,3,2,2
2, 60

2, 360

N~ o o1 b~ W

2, 2520
We shall state, without proof, Galois theorem:
A polynomial equation can be solved algebraically if and only if its
group is solvable.
Galois defined a solvable group as one in which the composition indices are
al prime numbers. Furthermore, he showed that if n > 4, the sequence of
maximal normal subgroupsis S, A,, |, where A, isthe Alternating Group
with (n!)/2 elements. The composition indices are then 2 and (n!)/2. For n>
4, however, (n!)/2 is not prime, therefore the groups S, are not solvable for n
> 4, Using Galois Theorem, we see that it is therefore not possible to solve,
algebraically, agenera polynomial equation of degree n > 4.
3
SOME ALGEBRAIC INVARIANTS

Although algebraic invariants first appeared in the works of Lagrange and
Gaussin connection with the Theory of Numbers, the study of agebraic
Invariants as an independent branch of Mathematics did not begin until the
work of Boolein 1841. Before discussing thiswork, it will be convenient to

introduce matrix versions of real bilinear forms, B, defined by
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B=4&."a."axy,
where
X = [X4,Xo,.. %], @0 M-Vector,
Y = [Y1,Ya--Y,], @0 N-vector,
and g; are red coefficients. The square brackets denote a
column vector.

In matrix notation, the bilinear formis

B =x"Ay
where
Ta,. . .a,l
A=
fay . . aub

The scalar product of two n-vectorsis seen to be a special case of a
bilinear form in which A = 1.

If x =y, the bilinear form becomes a quadratic form, Q:

Q = x"Ax.

3.1. Invariants of binary quadratic forms

Boole began by considering the properties of the binary
quadratic form

Q(x,y) = ax® + 2hxy + by?

under alinear transformation of the coordinates



where

and
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The matrix M transforms an orthogonal coordinate system into an

oblique coordinate system in which the new x'- axis has a slope (k/i), and the

new y'- axis has adope (l/j), as shown:

[0,]

[0.,0]

1+, k+l]
Xl
1,1]
x¢
1,K]
(1,0] "%

The transformation of a unit square under M.
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The transformation is linear, therefore the new function Q'(x',y') isa
binary quadratic:
Q'(xy) = ax?+ 2h'x'y' + b'y?
The original function can be written
Q(x,y) = x'Dx

where

and the determinant of D is
detD = ab - h?, called the discriminant of Q.
The transformed function can be written

Q) =x"Dx

where
ah
D' = ,
h' b'
and
detD' = ab' - h'?, thediscriminant of Q'.
Now,

Q'(x.y") = (Mx)'D'Mx
= Xx'MD'MxX
and thisis equal to Q(x,y) if
M'D'M = D.
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The invariance of the form Q(x,y) under the coordinate transformation M
therefore leads to the relation
(detM Y°detD' = detD
because
detM" = detM.

The explicit form of this equation involving determinantsis

(il - jk)*(@b' - h?)=(ab- h?.
The discriminant (ab - i) of Q issaid to be aninvariant
of the transformation because it is equal to the discriminant (ab' - h'?) of Q,
apart from afactor (il - jk)* that depends on the transformation itself, and not
on the arguments a,b,h of the function Q.
3.2. General algebraic invariants

The study of general agebraic invariants is an important branch of
Mathematics.

A binary formintwo variablesis

f(X.,X,) = ax," + aX,"" X, + ...aXx,"
=a ax,"'x,

If there are three or four variables, we speak of ternary forms or quaternary
forms.

A binary form is transformed under the linear transformation M as
follows

f(x, %) => f'(X,''%,) = a,'x;" + a,'%,"™"'x,’ + ..

The coefficients
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a, a, &, a,a,a .

and the roots of the equation
f(X,%) =0

differ from the roots of the equation

f'(x,'x,) =0.

Any function I(a,,a,...8,) of the coefficients of f that satisfies
M@ a,--a) = 1(a,a,--a)

Is said to be an invariant of f if the quantity r depends only on the
transformation matrix M, and not on the coefficients g of the function being
transformed. The degree of the invariant is the degree of the coefficients, and
the exponent w is called the weight. In the example discussed above, the
degreeistwo, and the weight istwo.

Any function, C, of the coefficients and the variables of aform f that is
invariant under the transformation M, except for amultiplicative factor that is
apower of the discriminant of M, is said to be a covariant of f. For binary
forms, C therefore satisfies

r"c(@,’,a',...a,; X;',X,) = C(a,,a,..-a, X;,X,).

It isfound that the Jacobian of two binary quadratic forms, f(x,,x,) and

9(X;,X,), namely the determinant
A, 9T,
‘ To/Mix, fg/x,

where {[fx, is the partid derivative of f with respect to x, €tc., is a

simultaneous covariant of weight one of the two forms.
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The determinant
TiMx,>  THMIX, T,
TPy Ix, Tomx |

called the Hessian of the binary form f, is found to be a covariant of weight
two. A full discussion of the genera problem of algebraic invariantsis outside
the scope of this book. The following example will, however, illustrate the
method of finding an invariant in a particular case.
Example:
To show that
@a - a’)@a- &) - (8- )4
Isan invariant of the binary cubic
f(x,y) = ax> + 3a,xy + 3axy’ + ayy’
under alinear transformation of the coordinates.
The cubic may be written
f(x,y) = (@X*+2axy+ay° )X + (ax*+2axy+ay°)y

= X'Dx

where

x =[xyl

and

ax+ay ax+ay
D= .
axtay ax+ay
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Let x be transformed to x": X' = M X, where

i

f(x,y) =f(x\y)

then

D=M'D'M.

Taking determinants, we obtain

detD = (detM )’detD",
an invariant of f(x,y) under the transformation M.

Inthiscase, D isafunction of x andy. To emphasize this point, put

detD = f (x,y)
and

detD'=f'(x"y")
so that

f(xy) = (detM)f'(xy’

= (aX +ay)@ax +agy) - (ax+ azy)2
= (a3 - &)X + (8,3 - ad)Xy + (aa - a)y’
= X"EX,

where
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- _((aoaz- a’)  (aa- aa))
\@a- aa)2 (aa-a’) |

Also, we have
f'(x\y) = xTE'X
= X'M'E'MX
therefore

X'Ex = (detM)*>x"M "E'M X
so that
E = (detM "M E'M.
Taking determinants, we obtain
detE = (detM)*detE'
= (@& - a)@a - a)- (a3 - aa)/4

= invariant of the binary cubic f(x,y) under the transformation

4
SOM E INVARIANTS OF PHYSICS
4.1. Galilean invariance.

Events of finite extension and duration are part of the physca
world. It will be convenient to introduce the notion of ideal events that
have neither extenson nor duration. Ided events may be represented as
mathematica points in a space-time geometry. A particular event, E, is

described by the four components [t,X,y,z] wheret is the time of the event,
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and x,y,z, are its three spatid coordinates. The time and space coordinates
are referred to arbitrarily chosen origins. The spatid mesh need not be
Cartesian.

Let an event E[t,x], recorded by an observer O at the origin of an x-
axis, be recorded as the event E'[t',x'] by a second observer O', moving at
constant speed V along the x-axis. We suppose that their clocks are
synchronized at t =t' = 0 when they coincideat acommon origin, X = X' =
0.

At timet, we write the plausible equations
t' =t
and
X' =X - Vi,
where V1t is the distance travelled by O' in atimet. These equations can
be written

E' =GE

=[]

G is the operator of the Galilean transformation.

where

Theinverse equations are
t =t
and

X =X +Vt
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or
E =G'E
where G is the inverse Galilean operator. (It undoesthe effect of G).

If we multiply t and t' by the constants k and k', respectively, where
k and k' have dimensions of velocity then dl terms have dimensions of
length.

In space-space, we have the Pythagorean form x* + y* = r? an
invariant under rotations. We are therefore led to ask the question: is
(kt)> + x* invariant under the operator G in space-time? Calculation gives

(kt)> + x* = (K't')* + x? + 2VX't' + V4*?
= (k't)*+ x> onlyif V =0.
We see, therefore, that Galilean space-time is not Pythagorean in its
algebraic form. We note, however, the key role played by acceleration in
Galilean-Newtonian phy Scs:
The velocities of the events according to O and O' are obtained by
differentiating the equation X' = - Vt + x with respect to time, giving
Vi =-V+y,
aplausible result, based upon our experience.
Differentiating v' with respect to time gives
dv'/dt' =a =dv/dt=a
where aand & are the accelerations in the two frames of reference. The
classical acceleration is invariant under the Galilean transformation. If the

relationship v' = v - V is used to describe the motion of a pulse of light,
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moving in empty spaceat v = ¢ @3 x 10° m/s, it does not fit the facts. All
studies of very high speed particles that emit electromagnetic radiation
show that v' = c for all values of the relative speed, V.
4.2.Lorentz invariance and Einstein's space-time

symmetry.

It was Einstein, above al others, who advanced our understanding of
the true nature of space-time and relative motion. We shall see that he
made use of asymmetry argument to find the changes that must be made
to the Galilean transformation if it is to account for the relative motion of
rapidy moving objects and of beams of light. He recognized an
inconsistency in the Galilean-Newtonian equations, based as they are, on
everyday experience. Here, we shall restrict the discusson to non-
accelerating, or so called inertia, frames

We have seen that the classical equations relating the events E and

E' are E' = GE, and the inverse E = G'FE'

10 1 0Y
G = and G* = J
V1 Vo1

These equations are connected by the substitution V « -V, this is an

where

algebraic statement of the Newtonian principle of relatvity. Einstein
incorporated this principle in his theory. He dso retained the linearity of

the classical equationsin the absence of any evidence to the contrary.
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(Equispaced intervals of time and distance in one inertid frame reman
equispaced in any other inertial frame). He therefore symmetrized the

space-time equations as follows:

t' 1- t

RN
Note, however, the inconsistency in the dimensions of the time-equation
that has now been introduced:

t=1- VX

The term Vx has dimensions of [L]%[T], and not [T]. This can be
corrected by introducing the invariant speed of light, c % a postulate in
Einstein'stheory that is consistent with experiment:

ct' =ct - Vx/c
so that all terms now have dimensions of length.

Einstein went further, and introduced a dimensonless quantity ¢
ingead of the scaling factor of unity that appears in the Galilean equations
of space-time. This factor must be consistent with al observations. The
eguations then become

ct' = gct - bgx
X' =-bgct + gx, where b=V/c.
These can be written

E' = LE,
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where
g-b
L = , and E = [ct,X]
- bg
\
L is the operator of the Lorentz transformation.
Theinverse equation is

E =LFE

bg

This is the inverse Lorentz transformation, obtained from L by changing

where

b® -b (or V® -V); it has the effect of undoing the transformation L.

We can therefore write

LLt =1

g-bg (g bj 10
-bg ¢ bg ) 0 1)
Equating elements gives

g-bg=1

or

therefore,

g= U1 - b (taking the positive root).
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4.3. The invariant interval.
Previoudy, it was shown that the space-time of Galileo and Newton
Is not Pythagorean in form. We now ask the question: is Einsteinian space-
time Pythagorean in form? Direct calculation leadsto
(ct)* + (X)* = gf(1 + b (ct')? + 4bg’x'ct'
+g'(1 + b)x*
1 (ct')? + (X')if b>0.
Note, however, that the difference of squaresis an
invariant under L:
(cty - (x)°=(ct)’ - (X)
because
gq@- b)) =1
Space-timeis said to be pseudo-Euclidean.
The negative sign that characterizes Lorentz invariance can be
included in the theory in agenera way as follows.
We introduce two kinds of 4-vectors
x* = [x° x*, X%, x7], acontravariant vector,
and
X, = [Xo X14 X5, X4], @ COvVariant vector, where
X, = [x°- x'- x%- X7.
The scalar product of the vectors is defined as

XuTXlJ - (XO, Xl, X2, XS)[XO’_ Xl,' XZ,' XS]
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= (X7 - ()" + () + (<))
The event 4-vector is
E" =[ct, X, y, Z] and the covariant formis
E, =[ct-X,-y,-Z]
so that the Lorentz invariant scalar product is
EXE, = (ct)’ - (% +y*+ 7).

The 4-vector x* transforms as follows:

X" =Lx"
where
g-bg 0 O
-bg g 0 O
L =
O 01 O
O 0 0 1

This is the operator of the Lorentz transformation if the motion of O' is
along the x-axisof O's frame of reference.

Important consequences of the Lorentz transformation are that
intervals of time measured in two different inertial frames are not the same
but are related by the equation

Dt' = gDt
where Dt is an interval measured on a clock at rest in O's frame, and
distances are given by

DI' = Dl/g

where Dl is alength measured on aruler at rest in O's frame.
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4.4. The energy-momentum invariant.

A differentid time interval, dt, cannot be used in a Lorentz-invariant
way in kinematics. We must use the proper time differentid interval, dt,
defined by

(cdt)’ - dx?=(cdt’)*- dx'*° (cdt)?.
The Newtonian 3-vdocity is
v = [dx/dt, dy/dt, dz/dt],
and this must be replaced by the 4-veocity
V* = [d(ct)/dt, dx/dt, dy/dt, dz/dt]
= [d(ct)/dt, dx/dt, dy/dt, dz/dt]dt/dt
= [gegvi] -
The scalar product is then
VIV, = (90) - (av)’
= (90)°(1 - (v/0))
= ¢
(In forming the scalar product, the transposeis understood).
The magnitude of the 4-velocity is ¢V'¢c= ¢, the invariant speed of light.

In Classical Mechanics, the concept of momentum is important because
of itsrole as an invariant in an isolated system. We therefore introduce the
concept of 4-momentum in Relativisic Mechanicsin order to find
possible Lorentz invariantsinvolving this new quantity. The contravariant

4-momentum is defined as;
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P =mv*
where m is the mass of the particle. (It is a Lorentz scalar, the mass
measured in the framein which the particleis at rest).

The scalar product is

PP, = (mc)>.
Now,
P* = [mgc, mgv,]
therefore,
PP, = (mge)’ - (mgv,,)*.
Writing

M = gm, the relaivistic mass, we obtan
PP, = (Mcy - (Mvy)* = (mc)-.
Multiplying throughout by ¢ gives
MZc* - M, ¢ = m’c’,
The quantity Mc® has dimensions of energy; we therefore write
E =Mc?
the total energy of afreely moving particle.
Thisleads to the fundamental invariant of dynamics
c’P'P, = E*- (pcy = E*
where
° = mc’ is the rest energy of the particle, and

p is its relativi stic 3-momentum.
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The total energy can be written:
E=gE°=E°+T,
where
T=E(@- 1),
the rel ativigtic kinetic energy.
The magnitude of the 4-momentum is a Lorentz invariant
¢P'c=mc.
The 4- momentum transforms as follows:
P = P,
For relative motion along the x-axis, this equation is equivadent to the
equations
E'= oE- bgcp
and
cp* =-bgE + ocp*.
Using the Planck-Einstein equations E = hn and
E = p*c for photons, the energy equation becomes
n"=gn- bon
on(1 - b)
n(1- b)/(1- b)"

n[(1 - b)/(1+ b)]*2.
This is the relativisic Doppler shift for the frequency n', measured in an
inertial frame (primed) in terms of the frequency n measured in another

inertial frame (unprimed).
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4.5. The frequency-wavenumber invariant
Particle-Wave duality, one of the most profound

discoveries in Physics, has its origins in Lorentz invariance. It was
proposed by deBroglie in the early 1920's. He used the following
argument.

The displacement of awave can be written

y(t,r) = Acogwt - k-r)
where w = 2pn (the angular frequency), ¢k¢ = 2p/l (the wavenumber),
and r = [X, vy, z] (the position vector). The phase (wt - k-r) can be
written ((w/c)ct - k-r), and this has the form of a Lorentz invariant
obtained from the 4-vectors
E"[ct, r], and K¥[w/c, K]

where E" is the event 4-vector, and K" is the "frequency-wavenumber" 4-
vector.

deBroglie noted that the 4-momentum P is connected to the event 4-
vector E" through the 4-velocity V¥, and the frequency-wavenumber 4-
vector K" is connected to the event 4-vector E" through the Lorentz
invariant phase of a wave ((w/c)ct - ker). He therefore proposed that a
direct connection must exist between P* and KV; it isillustrated

in the following diagram:
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E"[ct,r]

(Einstein) P“Pfiﬂ\/ \E”‘Kfinv. (deBroglie)

P'E/CcP] < » KM[w/cK]

(deBroglie)
The coupling between P* and K" via E".
deBroglie proposed that the connection is the simplest possble,
namely, P* and K" are proportiona to each other. He realized that there
could be only one value for the constant of proportionality if the Planck-
Einstein result for photons E = hw/2p is but a specid case of a general
result, it must be h/2p, where his Planck’s constant. Therefore, deBroglie
proposed that
P K™
or
P* = (h/2p)K*.
Equating the elements of the 4-vectors gives
E =(h/2p)w
and
p =(h/2p)k .
In these remarkable equations, our notions of particles and waves are

forever merged. The smallness of the value of Planck's constant prevents
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us from observing the duality directly; however, it is clearly observed at
the mol ecular, atomic, nuclear, and particlelevd.
4.6. deBrogli€' sinvariant.

The invariant formed from the frequency-wavenumber 4-vector is

K*K, = (w/c, kK)[wic,- k]
= (w/c)* - k* = (W°c)?, where w° is the proper

angular frequency.

Thisinvariant is the wave version of Einstein's
energy-momentum invariant; it gives the dispersion rel ation

w = w? - (kc).
The ratio w/k is the phase velocity of the wave, v;.
For a wave-packet, the group velocity v is dw/dk; it can be obtained by
differentiating the dispersion equation as follows:
wdw - kc*dk =0
therefore,
Vi = dw/dk = kc?Aw.

The deBroglie invariant involving the product of the phase and group

velocity is therefore
VVg = (W/K).(kw) = ¢2.
Thisis the wave-equivalent of Einstein's famous
E=Mc%

We see that



37
V,Vg =Cc*=E/M
or,
Vs = E/Mv; = EK/Mw = p/M = v, the particle
velocity.
This result played an important part in the development of Wave
Mechanics.

We shall find in later chapters, that Lorentz transformations form a
group, and that invariance principles are related directly to symmetry
transformations and their associated groups.

5
GROUPS — CONCRETE AND ABSTRACT

5.1 Some concrete examples

The elements of the set {+1, i}, wherei = O 1, are the roots of the
equation X* = 1, the “fourth roots of unity”. They have the following special
properties.

1. The product of any two elements of the set (including the same two
elements) isalways an element of the set. (The elements obey closure).

2. The order of combining pairsin the triple product of any elements
of the set does not matter. (The elements obey associativity).

3. A unique element of the set exists such that the product of any
element of the set and the unique element (called the identity) is equal to the

element itself. (Anidentity element exists).
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4. For each element of the set, a corresponding element exists such
that the product of the element and its corresponding element (cdled the
inverse) isequal to theidentity. (An inverse eement exists).

The set of elements{£1, £i} with these four propertiesis said to form
a GROUP.

In this example, the law of composition of the group is multiplication; this
need not be the case. For example, the set of integersZ={..,-2,-1,0, 1, 2,
...} formsagroup if the law of composition is addition. In this group, the
identity element is zero, and the inverse of each integer isthe integer with the

same magnitude but with opposite sign.

In adifferent vein, we consider the set of 4 4 matrices:
1000 (000N (001 0100
{M}=10100{,(21000]|,|0001,(0010.
0010| |0100 1000| |0001
0001} (0010 0O100Q (2000
If the law of composition is matrix multiplication , then {M} isfound to obey:
1 --closure
and
2 --associdivity,
and to contain:
3--anidentity, diag(1, 1, 1, 1),
and

4 --inverses.

The set {M} forms a group under matrix multilication.
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5.2. Abstract groups

The examples given above illustrate the generality of the group
concept. Inthefirst example, the group elements are real and imaginary
numbers, in the second, they are positive and negative integers, and in the
third, they are matrices that represent linear operators (see later discussion).
Cayley, in the mid-19th century, first emphasized this generdity, and he

introduced the concept of an abstract group, G, which is acollection of n

distinct elements (...g;...) for which alaw of compositionisgiven. If nisfinite,

the group is said to be a group of order n. The collection of elements must

obey the four rules:

1 Ifg, g1 Gtheng,=g-g1 G" g, g1 G(closure)

2. gk(gjgi) = (gkgj)gi [leaving out the composition symbol - | (associativity)
3. $el Gsuchthatge=eg,=g " g1 G (anidentity exists)

4. 1fg1 Gthen$ g™l Gsuchthat g'g; = gigi* = e (an inverse exists).

For finite groups, the group structure is given by lising 4l

compositions of pairs of elementsin agroup table, asfollows:

€ .0 0 .- (1st symbol, or operation, in pair)

S
gi| -99 9g -
g| -99 99 -

O -99 99 -
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If 9% = 99 " 9i 9 I G, then Gis said to be a commutative or abelian
group. The group table of an abelian group is symmetric under reflection in
the diagonal.

A group of elements that has the same structure as an abstract group is
arealization of the group.

5.3 Thedihedral group, D,

The set of operations that leaves an equilateral triangle invariant under
rotations in the plane about its center, and under reflections in the three
planes through the vertices, perpendicular to the opposite sdes, forms a
group of six elements. A study of the structure of this group (called the
dihedral group, D,) illustrates the typical group-theoretical approach.

The geometric operations that leave the triangle invariant are:

Rotations about the z-axis (anticlockwise rotations are positive)

R,(0) (123) ® (123) =€, the identity

R,(2p/3)(123) ® (312) =a

R,(4p/3)(123) ® (231) =&
and reflectionsin the planes|, I, and I11:

R, (123) ® (123)=b
R, (123)® (321)=c
R, (123)® (213)=d

This set of operatorsisD, ={e, a, &, b, c, d}.

Positive rotations are in an anticlockwise sense and the inverse rotations are in

aclockwise sense., so that theinverse of e, a, & are
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el=ga'=a’,and (@' =a
The inverses of the reflection operators are the operators themselves:
t=b,ct=c,andd’ =d.
We therefore see that the set D, forms a group. The group

multiplication tableis:

o0 o
1
1
1
I
:
1
N

In reading the table, we follow the rule that the first operation is written on
theright: for example, ca” = b. A feature of the group D, is that it can be
subdivided into sets of either rotations involving {e, a, &} or reflections
involving {b, c, d}. Theset {e, a &} forms agroup called the cyclic group

of order three, C,. A group iscyclicif al the elements of the group are

powers of asingle element. The cyclic group of order n, C,,, is

aninverse "™ exigts. All cyclic groups are abelian.

The group D, can be broken down into a part that isa group C,, and a
part that is the product of one of the remaining elements and the elements of

C,. For example, we can write
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D,=C,+bC,,b1 C,

={e, a, &} +{b, ba, ba’}

={e a &} +{b, c, d}

=cC, =dC..
This decomposition is a special case of an important theorem known as
Lagrange' stheorem. (Lagrange had considered permutations of roots of
equations before Cauchy and Galois).
5.4 Lagrange stheorem

The order m of a subgroup H,, of a finite group G, of order nis a

factor (anintegral divisor) of n.

Let

G,={9,=€ 0, 0, ...0,+ beagroup of order n, and let

H, = {h=e h, h;, ..h,} beasubgroup of G, of order m.
If wetake any element g, of G,, whichisnotin H,,, we can form the set of
elements

19w, 9, Gdhs, -G} © gHp,.
Thisiscalled the left coset of H,,, with respect to g,. We note the important
facts that all the elements of g hy, j=1 to m are distinct, and that none of the
elements g h; belongsto Hy,.

Every element g, that belongs to G,, but does not belong to H,,

belongs to some coset g H,,, so that G, forms the union of H,, and a number
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of distinct (non-overlapping) cosets. (There are (n - m) such distinct cosets).
Each coset has m different elements and therefore the order n of G, is

divisible by m, hence n = Km, where the integer K is called the index of the

subgroup H,,, under the group G,,. We therefore write

Gn = ngm + ngHm + gk3Hm + ""gnKHm
where

gjo G, Hp,

Ok3 [ Gn | I_Im’ ngHm

Onk 1 G, I |_Im’ ngHm’ gk3Hm1 "'gn-l,K-le'
The subscripts 2, 3, 4, ..K are the indices of the group.

As an example, consider the permutations of three objects 1, 2, 3 ( the

group S;) and let H,, = C5 = {123, 312, 231}, the cyclic group of order
three. The elements of S; that are not in H; are { 132, 213, 321}. Choosing
Ok = 132, we obtain
g Hs = {132, 321, 213},
and therefore
S3=Cg+ o3 K=2.
Thisisthe result obtained in the decomposition of the group D5, if we make

the substitutionse = 123, a= 312, & = 231, b= 132, ¢ = 321, and d = 213.
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The groups D5 and S; are said to be isomorphic. Isomorphic groups have

the same group multiplication table. Isomorphism is a specid case of
homomorphism that involves a many-to-one correspondence.

5.5 Conjugate classes and invariant subgroups

If there existsan element v G, such that two elementsa, b1 G, are

related by vav™ = b, then b is said to be conjugateto a. A finite group can

be separated into sets that are conjugate to each other.

The classof G, is defined as the set of conjugates of an element a 1

G,. The element itself belongs to this set. If ais conjugate to b, the class

conjugate to a and the class conjugate to b are the same. If aisnot conjugate

to b, these classes have no common elements. G,, can be decomposed into
classes because each element of G, belongsto aclass.

An element of G;, that commutes with all elements of G, forms a class
by itself.
The elements of an abelian group are such that
bab*=aforalabl G,
so that
ba = ab.
If H isasubgroup of G,, we can form the set

{aed’, ahat, ...ah,a'} =aH,a" whereal G,.
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Now, aH,a" is another subgroup of H, in G,,. Different subgroups may be
found by choosing different elementsaof G,. If, for dl valuesof al G,
aHa' =H_
(all conjugate subgroups of H,, in G, areidentical to H,,),
then H,,, issaid to be an invariant subgroup in G,
Alternatively, H,, is an invariant in G, if the left- and right-cosets
formed withany al G, areequd, i. e ah, = h.a
An invariant subgroup H,,, of G, commutes with all elements of G,,.
Furthermore, if h, T H_, then all elementsaha® T H,, so that H, is an
invariant subgroup of G, if it contains elements of G, in complete classes.
Every group G, contains two trivial invariant subgroups, H,,, = G, and
H,, =e. A group with no proper (non-trivail) invariant subgroupsis said to

be simple (atomic). If none of the proper invariant subgroups of agroup is
abelian, the group is said to be semisimple.

An invariant subgroup H,, and its cosets form a group under

multiplication called the factor group (written G,/H,;,) of H,, in G,,.

These formal aspects of Group Theory can beillustrated by considering

the following example:
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Thegroup D3 ={e, a &, b, c, d} ~S3={123, 312, 231, 132, 321, 213}.
Cyisasubgroup of S3: C;=Hjy ={e, a a7} ={123, 312, 231}.
Now,
bH, = {132, 321, 213} = H,b
cH, = {321, 213, 132} =H.
and
dH, = {213,132, 321} = H.d.
Since H, isaproper invariant subgroup of S,, we see that S, is not simple.
H, isabelian therefore S, is not semismple.
The decomposition of S, is
S;=H;+DbH,=H;+H,b.
and, in this case we have
H,b=H.c=H.d.
(Since theindex of H, is 2, H, must be invariant).
The conjugate classes are
e=e
eae’ =ea=a
asd'=ae=a
Ayt =dad=a
bab™ = bab = &
cact=cac=&

dad® = dad = &
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The class conjugate to aistherefore { a, &}.
The class conjugate to b isfound to be {b, ¢, d}. The group S; can be
decomposed by classes:
S,={e} +{a &} +{b,c, d}.
S, contains three conjugate classes.

If we now consider H,,, = {e, b} an abelian subgroup, we find
aH,,={ad}, H,a={ac},
aH., = {a&c}, H,& = {&, d}, etc.
All left and right cosets are not equal: H,, = {e, b} is therefore not an

invariant subgroup of S,. We can therefore write
S;={e b} +{a d} +{a c}

=H, + aH, +aH,
Applying Lagrange’s theorem to S; gives the orders of the possible

subgroups: they are
order 1: { e}
order 2: {e, d}; {e, c}: {e d}
order 3: { e, a, &} (abelian and invariant)
order 6: S;.
5.6 Permutations

A permutation of the set {1, 2, 3, ....,n} of ndistinct elementsis an

ordered arrangement of the n elements. If the order is changed then the
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permutation is changed. The number of permutations of n distinct elementsis
n!

We begin with afamiliar example: the permutations of three distinct
objectslabelled 1, 2, 3. There are six possible arrangements; they are

123, 312, 231, 132, 321, 213.

These arrangements can be written conveniently in matrix form:

(12 3) 12 3) 123
p1: 1p2: ’p3: ’
123 S12) 23 1)
(123 12 3) 123

Ps= » Ps = » Ps =
132 321 213

The product of two permutations is the result of performing one arrangement

after another. We then find

P2P3 = Py
and

P3Pz = Py
whereas

PaPs = Ps
and

PsP4 = Pa-

The permutations p,, p, P, commute in pairs (they correspond to the
rotations of the dihedral group) whereas the permutations do not commute
(they correspond to the reflections).

A genera product of permutations can be written
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$;S...51112..n 12 ..n
[{ltz...tn]slsz..sj ) Eltz..tn'
The permutations are found to have the following properties:
1. The product of two permutations of the set {1, 2, 3, ...} isitsf a
permutation of the set. (Closure)
2. The product obeys associativity:
(P«P))P; = Pi(P;Py), (not generally commutative).

3. Anidentity permutation exists.

4. Aninverse permutation exists:

. $ S .. 5
p:
1 2...n

such that pp™ = p™'p = identity permutation.
The set of permutations therefore forms a group
5.7 Cayley’ stheorem:
Every finite group isisomorphic to a certain permutation group.
Let G, ={0,,0,0s . . .0.} beafinite group of order n. We choose any
element g in G, and we form the products that belong to G,;:
391 992 90z - - - 90,
These products are the n-elements of G, rearranged. The permutation p;,

associated with g istherefore

gl gz ' ' gn
g90:. 099 - - 9i0,
If the permutation p; associated with g is

Pi =
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N

gl gz ' ' gn
P, = ,
0,0: g9, . - 0,9,
J
whereg; * g, then
gl gz . ' gn
PP =
(99)g (99)g, - . (gjgi)gn_/

Thisis the permutation that corresponds to the element g,g; of G,..

There is a direct correspondence between the elements of G, and the n-
permutations{p,, P», - - -p}. The group of permutationsis a subgroup of
the full symmetric group of order n! that contains all the permutations of the
elementsg,, g,, - . 9,

Cayley’s theorem is important not only in the theory of finite groups
but also in those quantum systems in which the indistinguishability of the
fundamental particles means that certain quantities must be invariant under
the exchange or permutation of the particles.

6
LIE’'SDIFFERENTIAL EQUATION, INFINITESIMAL ROTATIONS
AND ANGULAR MOMENTUM OPERATORS

Although the field of continuous transformation groups (Lie groups)

has its origin in the theory of differential equations, we shall introduce the

subject using geometrical ideas.
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6.1 Coordinate and vector rotations
A 3-vector v = [v,, v,, V,] transformsinto v" = [v,’, v,”, v,’] under a

general coordinate rotation R about the origin of an orthogonal coordinate

system asfollows:

vV =RV,
where
Lkl
R=1[ij jj kj
ik j.k kk
CoSq; - :
= | cosg; . :
COS(y . COSC
wherei, j, k,i’,j", k™ are orthogonal unit vectors, along the axes, before and

after the transformation, and the cosg;,’ s are direction cosines.

The simplest case involves rotations in the x-y plane:

(vx} = | cosg; cosq,
Vy COSQ; COSQ-

= cosf sinf v, | =R (f)v
-gnf  cosf | | v,
/

where R (f) is the coordinate rotation operator. If the vector isrotated in a

fixed coordinate system, we havef ® -f sothat
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vV = R,(f)v,

R,() = |cosf -dgnf].
sinf  cosf

6.2 Lie sdifferential equation

where

The main features of Lie's Theory of Continuous Transformation
Groups can best be introduced by discussing the properties of the rotation

operator R, (f) when the angle of rotation is an infinitesma. In generd,
R, (f) transforms apoint P[x, y] in the plane into a“new” point P'[X", y]:
P" = R,(f)P. Letthe angle of rotation be sufficiently small for us to put

cog(f) @1 and sin(f) @df , in which case, we have

R@)= [1 -df
d 1

X =x.1- ydf =x- ydf

and

y =xdf +y.1=xdf +y

L et the corresponding changesx ® x” andy ® Yy~ be written
X =x+dxandy =y +dy

so that
dx = - ydf and dy = xdf .

R(df)= (1 0] + {0 -1]df
01 1 0

We note that
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=1 +idf

i= {0 -1 = R(p/).
1 0

Lie introduced another important way to interpret the operator

where

I = R,(p/2), that involves the derivativeof R, (f) evaluated at the identity

value of the parameter, f = 0:

dR (f)df Y2 = Esinf -cosfjl

f=0 cosf -dnf

S0 that

R,(df) = | + dR(f )idf Y ,
f=0

a quantity that differs from the identity | by a term that involves the
infinitesmal, df : thisis an infinitessimal transformation.
Lie was concerned with Differential Equations and not Geometry. He

was therefore motivated to discover the key equation

dR,(f)df = {0 -1] (cos -sinf]
1 0 sinf  cosf
=iR(f).
ThisisLie sdifferential equation.
Integrating betweenf = 0and f =f, we obtain
R, (f) f

C)de(f YR,(F) =i O

I 0
S0 that



IN(R () = if |
or _
R,(f)=1€", the solution of Lie's equation.

Previoudly, we obtained
R,(f)=Icod +ignf.

We have, therefore _
1" = Icos +isinf .

Thisis an independent proof of the famous Cotes-Euler equation.
We introduce an operator of the form
O =g(x,y, TAx, 1My),
and ask the question: does
dx = Of(x,y; df ) ?
Lie answered the question in the affirmative; he found
dx = O(xdf ) = (xTMly - yIMX)xdf = - ydf
and
dy = O(ydf ) = (xTMly - yTMx)yff = xdf .
Putting X = x, and y = X,, we obtain
dx, = Xxdf ,i=1,2
where
X =0 = (X 94%, - x,7/x,), the “generator of rotations’ in the plane.
6.3 Exponentiation of infinitesimal rotations

We have seen that

R,(f)=¢"



55
and therefore

R, (df) =1 + idf , for aninfinitesmal rotation, df

Performing two infinitesmal rotations in succession, we have

RAdf) = (I +idf ¥

| + 2idf tofirst order,

R, (2df).
Applying R, (df ) n-times gives
R,(df) = R,(ndf) ="" =¢"
= R,/(f)(asn® ¥ and df ® O, the

product ndf ® f).
Thisresult agrees, as it should, with the exact solution of Lie's differentia
equation.
A finite rotation can be built up by exponentiation of infinitesmal
rotations, each one being close to the identity. In general, this approach has
the advantage that the infinitesimal form of a transformation can often be

found in a straightforward way, whereas the finite form is often intractable.

6.4 Infinitesimal rotations and angular momentum operators
In Classical Mechanics, the angular momentum of a mass m, moving in
the plane about the origin of a cartesian reference frame with a momentum p

1S
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L,=r  p=rpsinfn,
where n, is aunit vector normal to the plane, and f is the angle between r
and p. In component form, we have
L% = xp, - yp,, Where p, and p, are the cartesian
components of p.
The transition between Classical and Quantum Mechanics is made by
replacing
p, by - i(V2p)TAx (adifferential operator)
and p, by - i(W2p)TMy (adifferential operator),where h
Is Planck’ s constant.
We can therefore write the quantum operator as
L0 = - i(h2p)(xTMly - YTAX) = - i(H2p)X
and therefore
X =iL,%(W2p),
and
dx, = Xx, df = (2piL,Yh)x df ,i=1,2.
Let an arbitrary, continuous, differentiable function f(x, y) be
transformed under the infinitesmal changes
X" =x- ydf
y =y +xdf .
Using Taylor’s theorem, we can write

fx',y") =f(x +dx, y + dy)



=f(x - ydf,y + xdf)

=f(x, y) + ((TFAx)dx + ((TFATy)dy)

= f(x, y) + df (- y(TAx) + x(1y))f(x, y)
= | + 2pidf L /h)f(x, y)

= R,(2pL,df /h) f(x, y).

The invatriance of length under rotations follows at once from this resuilt:

If f(x, y) =x*+ y? then
Nf/9Ix = 2x and [ffly = 2y, and therefore
f(x",y) =1(x,y) + 2xdx + 2ydy
=f(x,y) - 2x(ydf ) + 2y(xdf)

=f(x, y) = x* + y* = invariant.

Thisisthe only form that leads to the invariance of length under rotations.

57
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6.5 3-dimensional rotations
Consider three successive counterclockwise rotations about the x, y”,

and z'~ axesthrough anglesm q, and f , respectively:

Z
mabout x
—_—
y
X
z¢ y¢
g about ¥
x¢
y4 (%
ya&
f about z”~
—_—
Xa

Thetota transformation is

R.maqf)=R(R(DR(M

= |-dnfcosy - dnf Sngsnm+ cosf cosm sinf sngcosm+ sinf Snm

cosfcosy  cosf sngsnm+ sinfcosm - cod sngcosm+ sinf Sn
sing - cogsnm cosgcosm

For infinitesmal rotations, the total rotation matrix is, to 1st-order inthed'’s:

1 df - dg
R (dmdqg,df)= |-df 1 dm|.
dg -dm 1

Theinfinitessmal form can be written as follows:
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1df 0 O-dq 10 0
R (dmdgdf)= |-df 1 0O 100 1d
00 1 dq 0 1) |0-dm1
= Bl + Ydf\éuvqu%HYldn?/z
- AN J
where

To 1st-order inthed’s, we have

R, (dmdqg,df) =1 + Y,dn + Y,dq + Y.df .
6.6 Algebra of the angular momentum operators

The algebraic properties of the Y’ s are important. For example, we find

that their commutators are:

O 0 0|0 0-1 0 0-110 0O
[Y,Y,] = [0 0 2dloo0- |0o0dloo
0-1 01 0O 1 0 0110-10
:_Y3’
[Yl’Y3]:Y21
and
[Yo Y = -Y;.

These relations define the algebra of the Y’s. In general, we have
[Yj! Y ] =Y, = S
where g, is the anti-symmetric Levi-Civitasymbol. Itisequa to +1if jkl is

an even permutation, - 1 if jkl is an odd permutation, and it is equal to zero if
two indices are the same.
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Motivated by the relationship between L, and X in 2-dimensions, we
introduce the operators
J.=-i(2p/h)Y,,k=1,2,3.
Their commutators are obtained from those of the Y's, for example
[Y,Y,] =-Y,® [2pid,/h, 2pid,/h] = - 2pid./h
or
- [3,, J](2p/hy* = - 2pidy/h
and therefore
[J., J,] =ihd)/2p .
These operators obey the general commutation relation
[J,, 3] =ihe, J,/2p .
The angular momentum operators form a“Lie Algebra’.
The basic algebraic properties of the angular momentum operatorsin
Quantum Mechanics stem directly from thisrelation.
Another approach involves the use of the differential operatorsin 3-
dimensions. A point P[X, Yy, z] transforms under an infinitesimal rotation of
the coordinates as follows

P [x,y,Z] = R.(dmdq, df ]P[x, Y, 7]
Substituting the infinitesimal form of R in this equation gives

dx=x" - x= ydf - zdq
dy=y - y= -xdf + zdm
dz=7Z - z= xdqg- ydm.



Introducing the classical angular momentum operators: L%, we find that
these small changes can be written
dx, = 5513: 1olak XX
For example, if i = 1
dx,=dx = dn{ZIfly - yTMz)x
+ dg(-zT1Mx + xYMz)x
+ df (yfIix - xTAly)x = -zdg + ydf .
Extending Lie's method to three dimensions, the infinitessmal form

of the rotation operator is readily shown to be

3
R, (dmdg, df) = | + & (TR/Ta,)| xda; .
i=1 Allai's=0
7

LIE'SCONTINUOUSTRANSFORMATION GROUPS
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In the previous chapter, we discussed the properties of infinitesmal

rotations in 2- and 3-dimensons, and we found that they are related

directly to the angular momentum operators of Quantum Mechanics.

Important  algebraic properties of the matrix representations of the

operators also were introduced. In this chapter, we shall consider the

subject in general terms.

Let x,,i =1to nbe aset of n variables. They may be considered to

be the coordinates of a point in an n-dimensonal vector space, V,. A set

of equationsinvolving the x;’s is obtained by the transformations
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X = fi(Xp Xy, o X &y B, ..n8), 1 =110 N
in which the set a, a, ... contains r-independent parameters. The set T,
of transformationsmapsx ® x". We shall write
X" = f(x;a or x = TX
for the set of functions.

It is assumed that the functions f, are differentiable with respect to
the x’s and the a's to any required order. These functions necessarily
depend on the essentid parameters, a.  This means that no two
transformations with different numbers of parameters are the same. r is
the smallex number required to characterize the transformation,
completely.

The set of functionsf, for ms a finite continuous group if:

1. The result of two successive transformationsx ® x” ® X" is equivdent
to asingletransformationx ® X"":

X" = f(x";b) = f(f(x; a); b)

= f(x; ¢
= f(x; c(a b))
where c is the set of parameters
¢ =¢ (&b, =1tor,

and
2. To every transformation there corresponds a unique inverse that

belongs to the set:
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$asuchthatx =f(x";d) =(x"; a
We have
T.T,' = T,'T, = |, the identity.
We shall seethat 1) is ahighly restrictive requirement.

The transformation x = f(x; a) is the identity. Without loss of
generdity, we can take a, = 0. The essential point of Lie's theory of
continuous transformation groupsis to consider that part of the group that
Is close to the identity, and not to consider the group as a whole
Successive infinitesmal changes can be used to build up the finite change.
7.1 One-parameter groups

Consider the transformation x ® x” under afinite change in a single
parameter a, and then achangex” + dx”. There are two paths from x ®
X" +dx’; they are as shown:

an “infinitesmal”
~da

a, afinite parameter change
X +dx
a+da
a “ differential””~
We have
X" +dx =f(x; a+ da)
=f(f(x; @); da) =f(x"; da)

The 1st-order Taylor expansionis



dx” = §f(X’; a)/‘ﬂa|da° u(x") da
a=0
The Lie group conditions then demand

a+ da=c(a da).

But
c(@0)=a (b=0)
therefore
a+tda=a+ fc(a b)/‘ﬂb| bd=aO
so that
da ="1c(a b)/ﬂbl S:ao
or
da=A(a)da
Therefore
dx” = u(x)A(a)da,
leading to
dx /ux’) = A(a)da
so that
(\)dx’/u(x') = d(a)da °s, (s=0® the identity).
x 0
We therefore obtain

Ux’)- UX) =s.
A transformation of coordinates (new variables) therefore transfers dl
elements of the group by the same transformation: a one-parameter group

Is equivalent to a group of trandlations.
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Two continuous transformation groups are said to be similar when
they can be obtained from one another by a change of variable. For

example, consider the group defined by

) -5 2|3

The identity coprresponds to a = 1. The infinitesma transformation is

(xl’] El + da) 0 ][xl]
X, | =] 0 (1+day]||x,|.

To 1st-order in dawe have

therefore

X, = X, +x,da

and

X, = X,+ 2x,da
or

dx, = x,da
and

dx, = 2x.da

In the limit, these equations give

dx,/x; = dx,/2x, = da
These are the differentia equations that correspond to the infinitesmal
equations above.

Integrating, we have
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\xl’ ! \x2’
Qixllx1 = QWa and Q}Ix2/2x2 = f da,
x1 0 X2 0

so that
Inx,” - Inx; = a = In(x,"/x,)
and
In(x, /x,) = 2a = 2In(x,"/x,)
or

U = (X, X = U = (X% .
PuttingV = Inx,, we obtain
V' =V + a and U = U, the trandation group.
7.2 Determination of the finite equationsfrom the infinitesimal
forms
Let the finite equations of aone-parameter group G,, be
X, = f(x, X,; a
and
X, =Y (XX ),
and let the identity correspond to a=0.
We consider the transformation of f(x,, x,) to f(x,’, x,’). We expand
f(x,", X,)) in aMaclaurin seriesin the parameter a (at definite values of x,
and x,):
f(x,, x,) = f(0) + f(O)a + f"(Q)a/2! + ...

where



f0) = f(xs, X ) w0 = F(X1, Xy,

and
f(0) = (df(x,", X, )da] .,
={ (TfMIx,)(dx, /da) + (TfMIx,)(dx, /da)}| .
={ (X Hu(x,, X,7) + (TEAIX )V s X5 )} o
therefore

F(0) ={(uAixy) + V(T =

= Xf(Xy, X,).
Continuing in thisway, we have

f7(0) ={d*(x,", x,)da} |, = X*(x, X,), €tc....
The function f(x,", x,)) can be expanded in the series
f(x,, X, ) = f(0) + af"(0) + (a/2)f"(0) +...
=f(x, X,) + aXf + (@/2)X* + ..
X"f is the symbol for operating n-times in succession of f with X.
The finite equations of the group are therefore
X,” = X, + aXx, + (@/2)X%, + ...

and
X, = X, + aXx, + (@2)Xx, + = ..
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If x, and x, are definite values to which x,"and x,” reduce for the identity

a=0, then these equations are the series solutions of the differentid

equations
dx, u(x, x,) = dx,’iv(x;, x,) = da.
The group is referred to as the group Xf.

For example, let
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Xt = (X IM%, + xJ9Mx,)f
then
X, = X, + aXx, + (@¥2)X* ...
=X, + alx, Mx; + xMMx)%x, + ...
=x, +ax, + (@2 JMx, + XJM%x)%, +
=x, + ax, + (&2)x, + ..
=x,(1 + a + a/2! + ..)
= x,€"
Also, we find
X, = X,
Putting b = €%, we have
X, = bx,, and x,” = bx..
The finite group is the group of magnifications.
If X = XxNAy - yf/1x) we find, for example, that the finite group is the
group of 2-dimensional rotations.
7.3 Invariant functionsof agroup
Let
Xf = (ufix, + vI/Mx,)f define a one-parameter
group, and let a=0 give the identity. A function F(x,, X,) is termed an
invariant under the transformation group G, if
F(X,, X)) = F(Xq, X,)

for al values of the parameter, a.
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The function F(x,", X,") can be expanded as aseriesin a

F(X,, X,) = F(Xy, X,) + aXF + (&2)X(XF) + ...

F(X,, X,) = F(x,, X,) = invariant for al values of a,

it is necessary for

and this means that
{u(xy, X)X, + v(x,, X)X} F = 0.
Consequently,
F(x,, X,) = constant
is a solution of
dx,/u(X,, X,) = dX./V(Xy, X,) .
This equation has one solution that depends on one arbitrary constant, and
therefore G, has only one basic invariant, and dl other possible invariants
can be given in termsof the basic invariant.
For example, we now reconsider the the invariants of rotations
The infinitesmal transformations are given by
Xt = (X M1%, - x,9M%),
and the differentid equation that gives the invariant function F of the
group is obtained by solving the characteristic differentid equations
dx,/x, = df,and dx,/x, = -df,

S0 that

I
o

dx,/x, + dx,/x;
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The solution of thisequationis

> + x,7 = constant,

X1
and therefore the invariant functionis
F(Xy, X,) = X° + XA

All functions of x> + x,° are therefore invariants of the 2-dimensiona
rotation group.

This method can be generdized. A group G, in n-variables defined
by the equation

X = (X}, X Xg . X, @), 1 = 1tonN,
Is equivaent to aunique infinitesmal transformation
Xt = uy(Xy, X, Xgy o X)TEMIX, + LU (Xgy Xy, X, - X)TEMIX,

If ais the group parameter then the infinitesma transformation is

X

D= X+ u(X, X, X)da (i = 1to n),

then, if E(x,, X,, ...X,) is afunction that can be differentiated n-times with
respect to its arguments, we have

E(X,, Xy, .X,) = E(Xy, Xy, .X,) + aXE + (&/2)X°E +.

Let (X, X, ..X,) be the coordinates of a point in n-space and let a be a
parameter, independent of the x;’s. As a varies, the point (X, X,, ...X,) Will
describe a trajectory, starting from the initid point (x;, X, ..X,). A
necessary and sufficient condition that F(x,, X, ..x, be an invariant
function is that XF = 0. A curve F = 0 is a trajectory and therefore an

invariant curveif

XF(Xq, Xpy X, ..X,) = O.
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8
PROPERTIES OF n-VARIABLE, r-PARAMETER LIE GROUPS
The change of an n-variable function F(x) produced by the
infinitesimal transformations associated with r-essential parametersis:
dF = a (TPl
where
dx, = & u, (x)da , the Lie form.

=1

The parameters are independent of the x.’ s therefore we can write

dF = Tf‘;{: daf % Ui ()T F}

Ié da X, F
=1
where the infinitesimal generators of the group are
X, ° & u,()(TAx),l=1tor.
i=1

The operator

differsinfinitesmally from the identity.
The generators X, have algebraic properties of basic importance in the
Theory of Lie Groups. The X,’sare differential operators. The problemis
therefore one of obtaining the agebraic structure of differential operators.
This problem hasits origin in the work of Poisson (1807); he
introduced the following ideas.

The two expressions

Xof = (U TAIX, + U A1)
and
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Xf = (U, MIX, + U, T/, )f
where the coefficients u, are functions of the variables x,, x,, and f(x,, X,)
isan arbitrary differentiable function of the two variables, are termed
linear differential operators.
The “product” in the order X, followed by X isdefined as
XX f = (UM%, + u M) (W, TTFAIX, + u,LNTMIX,)
The product in the reverse order is defined as
XX = (UM%, + U 1M,) (U TFATIX, + uLNTMIX,).
The differenceis
XX f - XXf = Xu, X, + X, u,9fA1x,
- Xuy NI, - Xou, TIEAIX,.
= (XU, - Xou )X, + (XU, - Xoup,)TIEAIX,
° [X,, X,)f.
This quantity is called the Poisson operator or the commutator of the
operators X,f and Xf.
The method can be generalized to include| = 1tor essential parameters
andi =1tonvariables. The ath-linear operator is then
X, = uJfMx,
= é 1uia‘ﬂf/ﬂxi , (asum over repeated indices).

Lie sdifferential equations have the form
xMa = u (X)A,@,i=1lton, | =1tor.

Lie showed that
(TeasMa)u, = 0
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inwhich
U Tu X - U TUMIX = G (AU (X),
so that the c,,,’sare constants Furthermore, the commutators can be
written
[X0, X] = (G sy TAIX,
= C s Xy
The commutators are linear combinations of the X,’'s. (Recall the earlier
discussion of the angular momentum operators and their commutators).
The ¢, .’ sare called the structure constants of the group. They have the
properties
Cus = -Cr >
CorsCt + CostCur + CrirComs = O.
Lie made the remarkable discovery that, given these structure constants,
the functions that satisfy
™*xMa = u,A, (@ can befound.
(Proofs of al the above important statements, together with proofs of
Lie sthree fundamental theorems, are given in Eisenhart’s
standard work Continuous Groups of Transformations, Dover Publications,

1961).
8.1 Therank of agroup

Let A be an operator that isalinear combination of the generators
of agroup, X::

A = aX;, (sumoveri),
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and let
X = ijj.

The rank of the group is defined as the minimum number of commuting,
linearly independent operators of the form A.

We therefore require all solutions of

[A, X] =0.
For example, consider the orthogonal group, O'(3); here
A =aX i=1to3,
and
X =xX;j=1to3
so that

[A, X] =ax[X,X]i,j=1t0o3
= aX;gyXy -
The elements of the sets of generators are linearly independent, therefore
axe, =0(sumoveri,j, k=12, 3)
This equation represents the equations
-a, a, 0 X, 0
a, 0-a, X,| = |0[.
0 -a; a, X3 0
The determinant of a. is zero, therefore a non-trivia solution of the x's
exists. The solution isgiven by
X =2a; (=127

S0 that

O'(3) isagroup of rank one.

8.2 The Casimir operator of O*(3)
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The generators of the rotation group O*(3) are the operators. Y,’'s,
discussed previously. They are directly related to the angular momentum
operators, J,:

J = -i(h2p)Y, (k=1,2, 3).

The matrix representations of theY,’s are

000 0 0- 010
Y,= |00 1|, Y,=|000, Y,=1]10 o
0-10 100 000

The square of the total angular momentum, Jis
2 =3
1
= (h2pY (Y 2+ Y, + YD)
= (h/2p)*(-21).
Schur’ s lemma states that an operator that is a constant multiple of |
commutes with all matrix irreps of a group, so that
[J,J] =0 ,k=1,2,3.
The operator J* with this property is called the Casimir operator of the
group O*(3).

In general, the set of operators{C,} in which the elements commute
with the elements of the set of irreps of a given group, forms the set of
Casimir operators of the group. All Casimir operators are constant multiples
of the unit matrix:

C, = ajl; the constants a are characteristic of a

particular representation of a group.
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9
MATRIX REPRESENTATIONS OF GROUPS

Matrix representations of linear operators are important in Linear
Algebra; we shall seethat they are equdly important in Group Theory.

If agroup of m”~ m matrices

D, = {D,"(g),--D™(g), --D," (&)}

can be found in which each element is associated with the corresponding
element g, of agroup of order n

G, = {91--G0---GQ} s

and the matrices obey

D™ (9)D"(g)

D, (gg),

and

D,™ (a)

then the matrices D,™(g) are sid to form an m-dimensond

[, the identity,

representation of G,. If the association is one-to-one we have an
Isomorphism and the representation is said to be fai thful .

The subject of Group Representations forms a very large branch of
Group Theory. There are many standard works on this topic (see the
bibliography), each one containing numerous definitions, lemmas and
theorems. Here, a rather brief account is given of some of the more
important results. The reader should delve into the deeper aspects of the

subject as the need arises. The subject will be introduced by considering
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representations of the rotation groups, and their corresponding cyclic
groups.
9.1 The 3-dimensional representation of rotationsin the plane
The rotation of a vector through an angle f in the plane is
characterized by the 2 x 2 matrix
cosf -sinf

R,(f) =
sinf  cosf

The group of symmetry transformations that leaves an equilateral
triangle invariant under rotations in the plane is of order three, and each
element of the groupis of dimension two

G, ~ R,? ={R(0), R(2p/3), R(4p/3)}

=1 o, [v2 -G/ ,|-12 CB2
0 1 |82 -12] |-GB8/2 -1/2

» {123,312,231} = C,
These matricesform a 2-dimensonal representation of C, .

A 3-dimensiona representation of C, can be obtained as follows:
Consider an equilateral triangle located in the plane and let the
coordinates of the three vertices P,[Xx, y], P,[X", Y], and P,[x"", y'] be
written as a 3-vector P,, = [Py, P,, Ps], in normal order. We introduce
3” 3 matrix operators D, that change the order of the elements of P,

cyclicdly. Theidentity is
P, = D,®P,, where D,® = diag(l, 1, 1).
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The rearrangement
P,® P,[P; Py, P, isgiven by
P,, = D,PP,,

where
001)
D, =[10 0],
010
and the rearrangement
P, ® P[P, P;, P,] is given by

Py = DOPy

where

D3(3) —

OO
oo
OoORr o
—

The set of matrices {D®} = {D,®, D,¥, D,®} is sdd to form a 3-
dimensional representation of the origina 2-dimensona representation

{R.,P}. The elements D2 have the same group multiplication table as

that associated with C,.

9.2 The m-dimensional representation of symmetry
transfor mationsin d-dimensions
Consider the case in which agroup of order n

G, = {91 % - -G}
IS represented by
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R™={RM™ R,™, . ..R™

where

R,™~ G

and R,™ isan m” m matrix representation of g,. Let P,, be a vector in

d-dimensiona space, written in normal order:
Py = [Py Poy ..Py,
and let

P = [P Pogs Pl

be an m-vector, written in normal order, in which the components are each

d-vectors. Introducethe m”~ m matrix operator D, "™ (g,) such that

P Im Dl(m) (gl) P 1m

P 2m Dz(m) (gz) P im

P. = D™(g)P,, ,k=1to m, the number of

symmetry operations,

where P, is the kth (cydlic) permutation of P, , and D, (g,) is called

the “m-dimensional representation of g,”.
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Infinitely many representations of a given representation can be
found, for, if S is a matrix representation, and M is any definite matrix
with an inverse, we can form T(x) = MSX)M*," x1 G. Since

T(xy) = MS(xyM™ = MSX)Sy)M* = MSX)M*MS(y)M™

= TT(Y),

T is a representation of G. The new representation simply involves a
change of variable in the corresponding substitutions. Representations
related in the manner of S and T are equivalent , and are not regarded as
different representations. All representations that are equivalent to S are
equivaent to each other, and they form an infinite class. Two equivaent
representationswill be written S~ T.

9.3 Direct sums

If Sisarepresentation of dimension s, and T is arepresentation of

dimensiont of agroup G, the matrix

S99 O .
P = , (g1 G)
0 T(9)

of dimension s+ tis called the direct sum of the matrices S(g) and T(g),
written P = SA T. Therefore, given two representations (they can be the
same), we can obtain athird by adding them directly. Alternatively, let P
be arepresentation of dimension s + t; we suppose that, for al x T G, the
matrix P(x) is of the form

Ax) O

0 B(X)
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where A(X) and B(x) are s~ sand t © t matrices, respectively. (The O's
ares” tandt” szeromatrices). Definethe matricesSand T as follows:
S(x) © A(X)and T(x) © B(x)," x1 G.

Since, by the group property, P(xy) = P(X)P(y),

A(xy) O (A) 0 ){A@y) O
0 B(xy) i 0 B(x)|| O B(y)
 fA®AY) 0
| o B(X)BY)|

|

Therefore, S(xy) = S(X)S(y) and T(xy) = T(X)T(y), sothat Sand T are
representations. The representation P is sad to be decomposable, with
components S and T. A representation is indecomposable if it cannot be
decomposed.

If a component of a decomposable representation is itsdf
decomposable, we can continue in this manner to decompose any
representation into a finite number of indecomposable components. (It
should be noted that the property of indecomposablity depends on the field
of the representation; the real field must sometimes be extended to the
complex field to check for indecomposability).

A weaker form of decomposability ari ses when we consider a
matrix of the form

A(x) O

P(x) =
E(x) B(x)
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where A(x), and B(x) are matrices of dimensons s~ s and t = t
respectively and E(x) isamatrix that dependson x, and O isthe s” t zero
matrix. The matrix P, and any equivaent form, is said to be reducible.
An irreducible representation is one that cannot be reduced. Every
decomposable matrix is reducible (E(x) = 0), whereas a reducible
representation need not be decomposable.

If Sand T are reducible, we can continuein this way to obtan a set
of irreducible components. The components are determined uniquely, up
to an equivalence. The set of distinct irreducible representations of a finite
groupis (inagiven fidd) an invariant of the group. The components form
the building blocksof arepresentation of a group.

In Physics, decomposable representations are generdly referred to as
reducibl e representations (reps).

94 Similarity and unitary transformations and matrix
diagonalization

Before discussing the question of the possbility of reducing the
dimension of a given representation, it will be useful to consider some
important results in theTheory of Matrices. The proofsof these statements
are given in the standard works on Matrix Theory. (See bibliography).

If there existsamatrix Q such that

Q'AQ = B,

then the matrices A and B are related by a similarity transformation.
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If Q isunitary (QQ" = I: Q" = (Q*)", the hermitian conjugate)
then A and B are related by a unitary transformation.

If A~ = Q'AQ; B” = Q'BQ; C" = Q'CQ..then any algebraic
relation among A, B, C...isdso satisfiedby A", B", C ...

If a similarity transformation produces a diagonal matrix then the
process is called diagonal i zati on.

If A and B can be diagonalized by the same matrix then A and B
commute.

If V is formed from the eigenvectors of A then the similarity
transformation VAV will produce a diagonal matrix whose elements are
the eigenvalues of A.

If A is hermitian then V will be unitary and therefore an hermitian
matrix can always be diagonalized by a unitary transformation. A real
symmetric matrix can aways be diagonalized by an orthogond
transformation.

9.5 The Schur-Auerbach theorem

Thistheorem states

Every matrix representation of a finite group is equivalent to a
unitary matrix representation

Let G,={D,, D, ...D,} be amatrix group, and let D be the matrix
formed by taking the sum of pairs of elements

D = §:1DiDJ

where D" is the hermitian conjugate of D..
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Since D, is non-singular, each term in the sum is positive definite.
Therefore D itsdf is positive definite. Let L, be a diagonal matrix that is
equivalent to D, and let L ,/** be the positive definite matrix formed by
replacing the elements of L, by their positive square roots. Let U be a
unitary matrix with the property that

L, = UDU™
Introduce the matrix

S = LY,

then SD.S* is unitary. (This property can be demonstrated by considering
(SD.S")(SD,SY)', and showing that it is equa to the identity.). S will
transform the origina matrix representation G, into diagonal form. Every
unitary matrix is diagonalizable, and therefore every matrix in every finite
matrix representation can be diagonalized.
9.6 Schur’slemmas

A matrix representation is reducible if every eement of the
representation can be put in block-diagonal form by a single similarity
transformation. Invoking the result of the previous section, we need only
discuss unitary representations.

If G, = {D™(R)} is an irreducible representation of dimension n of
agroup G,, and {D™(R)} is an irreducible representation of dimension m
of the same group, G,, and if there existsamatrix A such that

DO(R)A = ADPR) " RT G,

then either
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DA=0
or
i) A isasguare non-singular matrix (sothat n=nj
Let the mcolumns of A be written ¢, c,, ...C,, then, for any matrices
D™ and D™ we have

DPA = (D", D™, ..D™c)

AD™ = (Em [1)<”’klck,é::[2<”’kzck, '"g[k)infkmck)'
therefore m

D = & D",c,
and therefore the m c-vectors span a space that is invariant under the
irreducible set of n-dimensiona matrices {D™}. The c-vectors are
therefore the null-vector or they span a n-dimensiona vector space. The
first case correspondsto A = 0, and the secondto m3 nand At 0.

In the second case, the hermitian conjugates D™,", ..D™ " and D™,
..D™ Talso are irreducible. Furthermore, since D™ (R)A = AD™(R)
DMIAT = ATDOT

and therefore, following the method above, we find that n 3 m We must
therefore have n = m so that A is square.. Since the n-columns of A span
an-dimensional space, the matrix A is necessarily non-singular. O
As a corollary, a matrix D that commutes with an irreducible set of

matrices must be a scalar matrix.
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9.7 Characters
If D(R) and D™(R) are related by a similarity transformation then
D™(R) gives arepresentation of G that is equivalent to D™(R). These two
sets of matricesare generdly different, whereas their structure is the same.
We widh, therefore, to answer the question: what intrinsc properties of the
matrix representations are invariant under coordinate transformations?
Consider

4 [CDRIC,

él C:ikaI(IQ)C:Ii_l

ékl deDkI(R)

= é:l( D..(R) , the trace of D(R).
We see that the trace, or character, is an invariant under a change of
coordinate axes. We write the character as
¢c(R) = & DR
Equivaent representations have the same set of characters. The
character of R in the representation mis written
c™(R) or [mR].
Now, the conjugate elements of G have the form S= URU™, and then
D(R) = D(U)D(RIDR)]"
therefore
c(S) =c(R).
We can describe G by giving its charactersin a particular representation;

dl eementsin aclass have the ssmec.
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10
SOME LIE GROUPS OF TRANSFORM ATIONS
We shall consider those Lie groups that can be described by a finite
set of continuoudy varying essentia parametersa,,...a.:
X, = f.(Xp.. X &,..8) = f(X; ).
A set of parameters a exists that is associated with the inverse
transformations:
x =f(x";3).
These equations must be solvableto givethe x;’s in terms of the x;”’s.
10.1 Linear groups
The general linear group GL(n) in n-dimendons is given by the set
of equations
X = jé:tnlagjxj ,i=1ton,
in which det [a,| * O.
The group contains n* parameters that have values covering an infinite
range. The group GL(n)is said to be not closed.

All linear groups with n > 1 are non-abelian. The group GL(n) is
isomorphic to the group of n = n matrices, the law of composition is
therefore matrix multiplication.

The special linear group of transformations SL(n) in n-dimengions is
obtained from GL(n) by imposing the condition det| g, | = 1. A functiond
relation therefore exists among the n? - parameters so that the number of

required parametersis reduced to (° - 1).
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10.2 Orthogonal groups

If the transformations of the genera linear group GL(n) are such
that

i?ale@ invariant
then the restricted group is called the orthogonal group, O(n), in n-
dimensions. There are [n + n(n - 1)/2] conditions imposed on the n’
parameters of GL(n), and therefore there are n(n - 1)/2 essentia
parameters of O(n).

For example, in three dimensions

X = 0x;0°{0,;00"=1,detO=1, 31 R}

where
a11 a12 a13
O =|ay a, ay|.
a31 a32 a33
/
We have

X, 2 4+X,7 + X, 7 = X2 4+X,” +X,° ® invariant under O(3).
This invariance imposes six conditions on the origina nine parameters, and
therefore O(3) is a three-parameter group.
10.3 Unitary groups
If the x/'s and the g's of the genera linear group GL(n) are
complex, and the transformations are required to leave xx' invariant in the
complex space, then we obtain the unitary group U(n) in n-dimensions.

Un) ° { U, ;UU"=1,detU O, u;1 €}.
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There are 2n” independent real parameters (the real and imaginary parts of
the g;'s), and the unitary condition imposes n + n(n- 1) conditions on them
so the group has n® real parameters. The unitary condition means that
alayl = 1,
and therefore
la* £ 1forali,j.

The parameters are limited to a finite range of values, and therefore the
group U(n) is said to be closed.
10.4 Special unitary groups

If we impose the restriction detU = +1 on the unitary group U(n),
we obtain the special unitary group SU(n) in n-dimensions.

SU(n) © {Uy,;UU" =1,detU=+1,u;1 C}.

The determinantal condition reduces the number of required real
parametersto (17 - 1). SU(2) and SU(3) are important in Modern Physics.
10.5 The group SU(2), the infinitessmal form of SU(2), and the
Pauli spin matrices

The specid unitary group in 2-dimensions, SU(2), is defined as

SU(2) © {U,,;UU"=1,detU=+1,u;1 C}.

It is athree-parameter group.

The defining conditions can be used to obtan the matrix
representation in its ssimplest form; let

ab

U =
c d
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wherea, b, c,d1 C.
The hermitian conjugateis
a* c*

Ut =
b* d*

|al®>+ |b]* ac* + bd*
uu' = :
acc +b*d  [c]*+ |d|?
The unitary condition gives  \ /

lal® + [ol* = [c|* +|dI” = 1,

and therefore

and the determinantal condition gives
ad - bc = 1.
Solving these equations , we obtain
c=-b*,and d = a*.

The general form of SU(2) is therefore

a b
U= .
_b* a*

We now study the infinitesmal form of SU(2); it must hav e the

10 da db l+da db
U = + = :
01 -db* da -db* 1+ da*

The determinantal condition therefore gives

structure

detU., = (1 +da)(1 + da*) +dbdb* = 1.
To first order in the d's, we obtan

1+da* +da = 1,



or
da = -da*.
S0 that
l1+da db
Uy = .
-db* 1-d

The matrix elements can be written in their complex forms:
da=ida/2,db=db/2 +idg2.
(The factor of two has been introduced for later convenience).
1+ida/2 db/2 +idg2
Hoe = [ do/2 +idg2 1- idalz] '

Now, any 2" 2 matrix can be written as alinear combination of the

matrices
1 0o 1) {o-1) {1 0
o1/t ol |i ol |0-1|
as follows
a b 1 0 0 1 0-i 1 0
= A +B +C +D ,
c d 01 1 0 i 0 0-1
where

a=A+D,b=B-iC,c=B+iC,andd=A -D.

We then have

a bl(@a+df{1 0 b+o{01] ib-0o0-i1) (a-df1 0
=_ + + + — _
cd| 2 Lo 1 2 10J 2 |i o 2 |0-1

The infinitesma form of SU(2) can therefore be written

91
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Uy, = | + (idg2o, + (idb/2)o, + (ida/2)o,,
or
U, = | + (i/2a dtj Y .j=1to 3.
Thisis the Lie form.

The ¢'s are the Pauli spin-matrices; they are the generators of the group

-
01 0-i 10
o, = O = | , O3 = :
10 i 0 0-1

They play afundamental rolein the description of spin-1/2 particlesin

SU(2):

Quantum Mechanics. (See later discussions).
10.6 Commutatorsof the spin matrices and str uctur e constants

We have previoudy introduced the commutators of the infinitesma
generators of a Lie group in connection with their Lie Algebra. In this
section, we consider the commutators of the generators of SU(2); they are

found to have the symmetric forms

[0,0,] = 2o, [0, 0] =-2ic,,
[0, 04 = -2i0, [05,0/] = 2io,,
[0, 0 = 2i0, [05 0] = -2i0,.

We see that the commutator of any pair of the three matricesgivesa
constant multiplied by the value of the remaining matrix, thus

[0, 6] = g0, .
where the quantity e,, = +1, depending on the permutations of the indices.

(e(xy)z = +1, €yx)z = '1..etC...).
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The quantities 2ig,, are the structure constants associated with the group.

Other properties of the spin matricesare found to be

2 - 2 - 2 — - — i — — i

10.7 Homomorphism of SU(2) and O*(3)

We can form the matrix

P=x'o=x0,j=123
from the matrices

X = [X, X, X] and o = [0, 0,, 0] :

therefore
X3 X, - 1%,
P =
X, +iX, X3
We see that
X3 X, - 1%,
P' = (P*) = = P,
X, + X, - X3
s0 that P is hermitian.
Furthermore,
TrP = 0,
and
detP = - (x,°+ X,” + X5).

Another matrix, P’, can be formed by carrying out a similarity
transformation, thus

P° = UPU', (UT SU(2).

A similarity transformation leaves both the trace and the determinant
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unchanged, therefore

TrP = TrP’,

and
detP = detP".

However, the condition detP = detP” means that

xx' = XX,

> X2+ XS+ XS = XX+ X

The transformation P* = UPU" is therefore equivaent to athree-
dimensional orthogonal transformation that leaves xx" invariant.
10.8 Irreduciblerepresentationsof SU(2)

We have seen that the basic form of the 2" 2 matrix representation
of

the group SU(2) is
a b R
U = ,a, bl C;la* + |b|*=1.
-b* a

L et the basis vectors of this space be

1 0
X, = and x, =| |.
0 1
We then have
(a
X, = Ux, = = ax, - b*x,,
- b*
and ;b
X, = Ux,= = bx, + a*x,,
a*
and therefore ~
X = UX.

If we write a2-dimensona vector in thiscomplex spaceas ¢ = [u, V]
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then the components transform under SU(2) as
u = au + bv
and
v’ = b*u + a‘v,
and therefore
¢ = Uc.

We see that the components of the vector c transform differently
from those of the basis vector x — the transformation matrices are the
transposes of each other. The vector ¢ =[u, v] in thiscomplex spaceis
called a spinor (Cartan, 1913).

To find an irreducible representation of SU(2) in a 3-dimensiona
space, we need a set of threelinearly independent basis functions.
Following Wigner (see bibliography), we can choose the polynomias

u?, uv, and v?,

and introduce the polynomials defined by

1+m 1-m

o1 u v
" O rm) @+ m)}
where
j = n/2 (thedimension of the spaceisn+ 1) .
and

m=j,j-1,..-j.
In the present case,n=2, j =1, and m=0, £1.

(The factor /O{ (1 +m)! (1 - m)!} is chosen to make the representative
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matrix unitary).
We have, therefore
F=uwee , fl=uv, and fF = ViICR.
A 3" 3 representation of an element UT SU(2) in this space can be found
by defining the transformation

Uf_Y(u, v) =f YU, v).
We then obtan

Uf Y(u,v) = (au +bv)**"(-b*u+a*v)'™ ,m=0, 1,
O Fm(T- M)}

so that
Uf,(u, v) = (au + bv)?/O 2
= (&’U® + 2abuv + bAHI02
Uf,'(u, v) = (au + bv) (- b*u + a*v)
= -ab*u* + (Ja]’ - |b]?)uv + a*bv?,
and

Uf,(u,v) = (- b*u + a*v)/0 2
= (b* 2 - 2a* b*uv + a*vA)IO2.
We then have

@ Gab b (t] (6¥)
-pab* |a]?- |b]? CRa*bl| f,l|=|f"
. | f,Y

1

b*2 -QRa*b* a*?

-1
or
UF =F.

We find that UU " = | and therefore U is, indeed, unitary.
This procedure can be generdlized to an (n + 1)-dimensional space as

follows
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Let

f i(u,v) = utmym m=j,j- 1, .-

QU +m)rg- M)}
(Notethatj =n/2 =1/2, 1/1, 3/2, 2/1, ..).

For a given value of j, there are 2 + 1 linearly independent polynomials,
and thereforewe can forma(2j +1) * (2j + 1) representative matrix of an
element U of SU(2):
Uf J(u,v) = f ", v).

The detals of this general case are given in Wigner's classc text. He
demonstrates the irreducibility of the (2 + 1)-dimensional representation
by showing that any matrix M which commutes with U’ for dl a, b such
that |a]> + [b]* = 1 must necessarily be a constant matrix, and therefore, by
Schur's lemma, U' is an irreducible representation.
10.9 Representationsof rotationsand the concept of tensors

We have discussed 2- and 3-dimensona representations of the
orthogond group O(3) and their connection to angular momentum
operators. Higher-dimensona representations of the orthogonal group can
be obtained by considering a 2-index quantity , T, — a tensor — that
conssts of a set of 9 elements that transform under a rotation of the
coordinates as follows:

T,® Ty = R,R,,T,, (sumover repeated indices 1, 2, 3).

If T, = T, (T; is symmetric), then this symmetry is an invariant under

rotations;, we have
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Tji, = RyRiTm = RuR, T = RR T, = Tij,'
If TrT;, = 0O, thenso is TrT;, for
Tii, = RifRimTZm = (RTR)émTém = dfmTZm = TM = 0

The components of a symmetric traceless 2-index tensor contains 5

members so that the transformation T, ® T, = R; R, T,, defines a new

representation of them of dimension 5.
Any tensor T, can be written
T, = (Ty+ T2+ (T, - T2,
and we have

:rij = (Tij + -T-ji)lz = (-T_ij - (diszQ/S) + (dijT,M)IB -

The decomposition of the tensor '_Fij gives any 2-index tensor in terms of a
sum of a single component, proportiona to the identity, a set of 3
independent quantities combined in an anti-symmetric tensor (T i - 'i'ji)/2,
and a set of 5 independent components of a symmetric traceless tensor.
We write the dimensional equation
9=1A3A5.

Thisis as far as it is possble to go in the process of decomposition: no
other subsets of 2-index tensors can be found that preserve their identities
under the defining transformation of the coordinates. Representationswith
no subsets of tensors that preserve their identities under the defining

rotations of tensors are irreducibl e representations.
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We shall see that the decomposition of tensor products into
symmetric and anti-symmetric parts is important in the Quark Modd of
elementary particles.

The representations of the orthogond group O(3) are found to be
important in defining the intrinsic spin of a particle. The dynamics of a
particle of finite mass can always be descibed in its rest frame (al inertial
frames are equivalent!), and therefore the particle can be characterized by
rotations. All known particles have dynamical states that can be described
in terms of the tensors of some irreducible representation of O(3). If the
dimension of the irrep is (2 + 1) then the particle spin is found to be
proportiona to j. In Particle Physcs, irrepswith valuesof j =0, 1, 2,... and
with j = 1/2, 3/2, ... are found that correspond to the fundamental bosons
and fermions, respectively.

The three dimensiona orthogond group SO(3) (det = +1) and the
two dimensiona group SU(2) have the same Lie algebra. In the case of
the group SU(2), the (2] + 1)-dimensional representations are alowed for
both integer and half -integer values of j, whereas, the representations of
the group SO(3) are limited to integer values of . Since dl the
representations are dlowed in SU(2), it is called the covering group. We
note that rotationsthrough f and f + 2p have different effects on the 1/2-
integer representations, and therefore they are (spinor) transfomations

associated with SU(2).
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11

THE GROUP STRUCTURE OF LORENTZ TRANSFORMATIONS

The square of the invariant interval s, between the origin [0, O, O, O]
of a spacetime coordinate system and an arbitrary event x™ = [x°, x', X5,
x% is, in index notation

s =x"%,=X"X ., (sumover m=0, 1, 2, 3).
The lower indices can be raised using the metric tensor
h., =diag(1, -1, -1, 1),
so that
s =h, xXX"=h_ x"%", (sum over mand n).

The vectors now have contravariant forms,

In matrix notation, the invariant is

F=xMx=xnx".
(The transpose must be written explicitly).
The primed and unprimed column matrices (contravariant vectors) are
related by the Lorentz matrix operator, L
X =LX.
We therefore have
xx = (LX)(LX)
=X'"LmLx .

The x’s are arbitrary, therefore

L™L =n.
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Thisis the defining property of the Lorentz transformations.
The set of dl Lorentz transformations is the set L of dl 4 = 4
matricesthat satisfies the defining property
L={L:L™L =n;L:al 4" 4real matrices,
n =dag(l, -1, -1, -1}.
(Note that each L has 16 (independent) real matrix elements, and therefore
belongs to the 16-dimensional space, R™).
11.1 Thegroup structureof L
Consider the result of two successve Lorentz transformations L,

and L ,that transform a 4-vector x as follows

X® X ® x”
where
X =L,
and
X" =LX.

The resultant vector X is given by
X" = L,(L,X)
=L,L,X
=LX
where
L.=L,L, (L, followedby L.,).
If the combined operation L. is always a Lorentz transformation then it

must satisfy
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L.mL.=n.
We must therefore have

(LoL)™m(L,L)=n

or
L,"(L, L)L, =m
so that
L,mL,=m, (L,L,T L)
therefore

L.=L,L,T L.
Any number of successve Lorentz transformations may be carried out to
give aresultant that is itself aLorentz transformation.
If we take the determinant of the defining equation of L,
det(L™mL) = detn
we obtain
(detL)>=1 (detL = detL")
so that
detL = +1.
Since the determinant of L is not zero, an inverse transformation L™
exists, and the equation L™'L = I, the identity, is always valid.
Consider the inverse of the defining equation
(LML) =n",

or
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L™ (L) =n".
Using 1 =, and rearranging, gives
L (L™ =n.

Thisresult shows that the inverse L™ is always a member of the set L.

We therefore see that

1. 1fLyand L,T L,thenl,L,T L

2.1fLT L,thenL™T L

3. Theidentity | =diag(1, 1, 1, )T L
and

4. The matrix operators L obey associativity.
The set of dl Lorentz transformations therefore forms a group.
11.2 Therotation group, revisited

Spatid rotations in two and three dimensons are Lorentz
transformations in which the time-component remains unchanged.

Let R be areal 3" 3 matrix that is part of a Lorentz transformation

with a constant time-component. In this case, the defining property of the
L orentz transformations leads to

R'R = |, the identity matrix, diag(1,1,1).

Thisis the defining property of athree-dimensiona orthogonal matrix

If x = [X4, X5, Xg] Is & three-vector that is transformed under R to

give X" then
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XX =xX"R"TRX
= XX =X+ X+ XS
= invariant under R.

The action of R on any three-vector preserves length. The set of dl 3" 3

orthogonal matricesis denoted by O(3),

OR)={R:R'R=1I,r;T R}.

The elements of this set satisfy the four group axioms.
The group O(3) can be split into two parts that are said to be

disconnected:: one with detR = +1 and the other with detR = -1. The

two parts are written
0'(3) = {R: detR = +1}
and

03 = {R:detR =-1} .

If we define the parity operator , P, to be the operator that reflects

dl pointsin a3-dimensona cartesian system through the origin then

o)
1
oNaN )
1
OR O
OO0

Thetwo partsof O(3) are related by the operator P:

if RT O'(3)thenPRT O(3),
and
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if R"T O(3)thenPR" T O'(3).
We can therefore consider only that part of O(3) that is a group, namely
O*(3), together with the operator P.
11.3 Connected and disconnected partsof the Lorentz group
We have shown, previoudy, that every Lorentz transformation, L,
has a determinant equd to +1. The matrix elements of L change
continuoudy as the relative velocity changes continuoudy. It is not
possible, however, to move continuoudy in such a way that we can go
from the set of transformationswith detL = +1 to those with detL =-1; we
say that the set { L: detL = +1} is disconnected from the set {L: detL = -
1}.
If we write the Lorentz transformation in its component form
L® L™
where m=0,1,2,3 labels the rows, and n = 0,1,2,3 labds the columns then
the time component L°, has the values
L%3 +1or L% £ - 1.
The set of transformations can therefore be split into four
disconnected parts, labelled as follows:
{L,} ={L:detL =+1,L%3 +1}
{L }={L:detL =-1,L%3 +1}
{L.}={L:detL =+1,L° £ -1},

and
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{L'}={L:detL =-1,L%£-1}.
Theidentity isin{L",}.
11.4 Parity, time-reversal and orthochr onous transfor mations
Two discrete Lorentz transformations are
1) the parity transformation
P={P:r® -r,t® t}
=diag(1, -1, -1,-1),
and
i) the time-reversal transfprmation
T={T:r® r,t® -t}
=diag(- 1, 1, 1, 1}.
The disconnected parts of {L} are related by the transformations

that involve P, T, and PT, as shown:

Croo——C D

Connections between the disconnected parts of Lorentz transformations
The proper orthochronous transformations are in the group L™,. We

see that it is not necessary to consider the complete set {L} of Lorentz
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transformations — we need consider only that subset {L",} that forms a
group by itsdf, and either P, T, or PT combined. Experiments have
shown clear violations under the parity transformation, P and violations
under T have been inferred from experiment and theory, combined.
However, not a single experiment has been carried out that shows a
violation of the proper orthochronous transformations, {L".}.
12
ISOSPIN

Particles can be distinguished from one another by their intrinsic
properties mass, charge, spin, parity, and their electric and magnetic
moments. In our on-going quest for an understanding of the true nature of
the fundamental particles, and their interactions, other intrinsc properties,
with names such as “isospin” and “strangeness’, have been discovered.
Theintringc properties are defined by quantum numbers; for example, the
quantum number ais defined by the eigenvalue equation

Af = af

where A is a linear operator, f is the wavefunction of the system in the
zero-momentum frame, and a is an eigenvalue of A.

In this chapter, we shall discuss the first of these new properties to
be introduced, namely, isospin.

The building blocks of nucle are protons (positively charged) and
neutrons (neutral). Numerous experiments on the scattering of protons by

protons, and protons by neutrons, have shown that the nuclear forces
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between pairs have the same strength, provided the angular momentum
and spin states are the same. These observations form the basis of an
important concept — the charge-independence of the nucleon-nucleon
force. (Corrections for the coulomb effects in proton-proton scattering
must be made). The origin of this concept is found in a new symmetry
principle. In 1932, Chadwick not only identified the neutron in studying
the interaction of alpha-particles on beryllium nucle but aso showed that
itsmassis almost equal to the mass of the proton. (Recent measurements
give
mass of proton = 938>27231(28) MeV/c?
and
mass of neutron = 93966563(28) MeV/c)

Within a few months of Chadwick’s discovery, Heisenberg introduced a
theory of nuclear forcesin which he considered the neutron and the proton
to be two “states’ of the same object — the nucleon. He introduced an
intrinsic variable, later called isospin, that permits the charge states (+, 0) of
the nucleonsto be diginguished. This new variable is needed (in addition
to the traditiond space-spin variables) in the description of nucleon-
nucleon scattering.

In nucle, protons and neutrons behave in a remarkably symmetrica
way: the binding energy of anucleus is closdy proportiona to the number
of neutrons and protons, and in light nucle (mass number <40), the

number of neutrons can be equal to the number of protons.
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Before discussing the isospin of particles and nucle, it is necessary to
introduce an extended Pauli Excluson Principle. In its origind form, the
Pauli Exclusion Principle was introduced to account for features in the
observed spectra of atoms that could not be understood using the then
current modelsof atomic structure:

no two electronsin an atomcan exist in the same quantum state defined

by the quantum numbers n, ¢, m,, mg where n is the principal quantum

number, / is the orbital angular momentum quantum number, m, is the

magnetic quantum number, and mis the spin quantum number.

For asystem of N particles, the complete wavefunction is written as

aproduct of single-particle wavefunctions
Y12 ..N) = y@Qy 2.y N).
Consider this form in the simplest case — for two identical particles. Let
one be in a state labelled Y, and the other in a state Y,. For identical
particles, it makes no difference to the probability density [Y|* of the 2-
particle system if the particles are exchanged:
Y (1,2 = |Y(2, 1), (theY’s are not measurable)
so that, either
Y(2,1) = Y(1,2) (symmetric)

or

Y(2,1) =-Y(1,2) (anti-symmetric).
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Let
Y,

YDyu2) (1 ana 2inb)
and
Y, =V.y (1) (2ina 1inb).

The two particles are indiginguishable, therefore we have no way of
knowing whether Y, or Y, describes the system; we postulate that the
system spends 50% of itstimein Y, and 50% of itstimein Y,. The two-
particle systemis considered to be alinear combinationof Y, and Y ,:
We have, therefore, either

Yomm = (VCHyY (DY (2) +Y .2y 1)} (BOSONS)
or

Y axigmm = (VAN 1)y (2) - Y 22y (1)} (FERMIONS) .
(The coefficient (1/O2) nor malizes the sum of the squares to be 1).
Exchanging 1« 2 leaves Y ,,,, unchanged, whereas exchanging particles
1« 2reversesthe signof Y, iqmm -
If two particles are in Y, both particles can exist in the same state with
a=Db. If two particlesareinY ,;,and a= Db, we have Y ,; = 0 — they

cannot exist in the same quantum state. Electrons (fermions, spin = (1/2)#)

are described by anti-symmetric wavefunctions.
We can now introduce a more general Pauli Excluson Principle.

Write the nucleon wavefunction as a product:

Y(,q = yC)y@,
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where
c = c(r,9
in which r is the space vector, sis the spin, and g is a charge or isospin
labdl.
For two nucleons, we write
Y (C1, Oy; €2 O),
for two protons:
Yo =Y a(Co G n(PIf (R,
for two neutrons:
Yo = Y o(Ca Cf p(m)f (),
and for an n-p pair:
Y =Y a(Cy Cf y(PIF N (1)
or
=Y 4i(Cyy CIF N (MF ()
If we regard the proton and neutron as different states of the same object,
labelled by the “charge or isospin coordinate”, g, we must extend the Pauli
principle to cover the new coordinate: the total wavefunction is then
Y(C1, 015 C2 Gp) = - Y (Cz Gpi €y, Q) -
It must be anti-symmetric under the full exchange.
For a2p- or a2n-pair, the exchange g,« @, is symmetricd, and therefore
the space-spin part must be anti-symmetricdl.
For an n-p par, the symmetric (S) and anti-symmetric (AS)

“isospin” wav efunctions are
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) Fs = (U{f(pf u(n) + f(nf y(p2)}
(symmetric under g, « Q,),
and therefore the space-spin part is anti-symmetricd,
) Fas = (MO u(p)fu(r) - fr(mf u(p)}
(anti-symmetric under q, « Q,),
and therefore the space-spin part is symmetricd.
We shall need these results in later discussions of the symmetric and anti-
symmetric properties of quark systems.
12.1 Nuclear p-decay
Nucle are bound states of neutrons and protons. If the number of
protons in a nucleus is Z and the number of neutrons is N then the mass
number of the nucleusis A = N + Z. Some nucld are naturally unstable.
A possible mode of decay is by the emission of an electron (this is b-decay
— aprocess that typifiesthe fundamental “weak interaction”).
We write the decay as
"Xy ® "Xy +e7 + 1, (b-decay)
or, we can have
AXV® A X, e +n, (b - decay).
A related process is that of electron capture of an orbitd electron that is
sufficiently close to the positively charged nucleus:
e +4X, ® A Xy + N,

Other rel ated processes are
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n,+ Xy ® A, X, +e
and
n,+ Xy ® A, X, +e.

The decay of the free proton has not been observed at the present time.
The experimental limit on the half-life of the proton is > 10™ years! Many
current theories of the microstructure of matter predict that the proton
decays. If, however, the lifetime is > 10* - 10® years then there is no
realistic posshility of observing the decay directly (The limit is set by
Avogadro’s number and the finite number of protons that can be
assembled in a suitable experimental apparatus).

The fundamental b-decay is that of the free neutron, first observed in
1946. The process is

n’® p"+e +n.,t, =1087 + 049 minutes.

This measured life-time is of fundamental importance in Particle Physcs
and in Cosmology.
Let us set up an algebraic description of the b-decay process, recognizing
that we have a 2-state system in which the transformation p « noccurs:

In the b™-decay of afree neutron

n® p"+e +n,

and in the b*-decay of a proton, bound in a nucleus,

+
p® n+e +n, .
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12.2 Isospin of the nucleon
The spontaneous transformations p« n observed in b-decay lead us
to introduce the operators, that transform p « n:

., = f,, ©.f, = 0, (diminates a proton)

t,f
and

of = f

tf 0, (eliminates a neutron).

n? n

Since we are dealing with a two-state system, we choose the “isospin”
parts of the proton and neutron wavefunctionsto be
1 0
f(p) =| |and f(n) =| |,
0 1
in which case the operators must hav e the forms
01 00
T, = and t = .
00 10
J
They are singular and non-hermitian.

We have, for example

0 1{]|0 1
tf, = = ., ® 1,
00 1} 0

0 1||1 0
vf, = = (t, removes a proton).

and

0 0f|0 0
To make the present algebraic description analogous to the two-state

system of the intrinsc spin of the electron, we introduce linear
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combinations of the t,:

0 1
T, =T, +t 1T = = oy, aPauli matrix,
10
and
0 -i
T, =it - 1,)= = 0,, aPauli matrix.
I 0

A third operator that is diagonal is, as expected
10
T, = = 03, aPauli matrix.
01
The three operators {t,, t,, t;} therefore obey the commutation
relations

[t/2, /2] =igt/2,

where the factor of(1/2) is introduced because of the 2:1 homomorphism
between SU(2) and O'(3): the vector operator

= 1/2
Is called the isospin operator of the nucleon.

To classfy the isospin states of the nucleon we may use the
projection of t on the 3rd axis, t;, The eigenvalues, t,, of t, correspond to
the proton (t; = +1/2) and neutron (t, = - 1/2) states. The nucleon is said to
be an isospin doublet with isospin quantum number t = /2. (The number

of statesin the multipletis2t + 1 =2 for t = 1/2).
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The charge, Q, of the nucleon can be written in terms of the isospin

quantum numbers:

Quv = d(t; +(1/2)) = qor 0,
where q is the proton charge. (It is one of the great unsolved problems of
Particle Physcs to understand why the charge on the protonis equal to the
charge on the electron).
12.3 Isospin in nuclel.

The concept of isospin, and of rotations in isospin space, associated
with individud nucleons can be applied to nucld — systems of many
nucleons in abound state.

Let the isospin of the ith-nucleon be t, and let t, = t, /2. The
operator of asystem of A nucleonsis defined as

T=4a"_,t = a*_ v/2.
The eigenvalue of T, of the isogpin operator T, isthe sum of the individua
components
T, = &%ty = &%, t,/2
=(Z —-N)/2.
The charge, Q, of anucleus can be written
Qu = qd’, (tz;+1)/2
=q(T,+A/2).
For a given eigenvalue T of the operator T, the state is (2T + 1)-fold

degenerate. The eigenvalues T, of T, are
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T, =-T,-T+1,..0..T+1T.
If the Hamiltonian H of the nucleus is charge-independent then
[H,T] = O.

and T is said to be a good quantum number. In light nucle, where the
Isospin-violating coulomb interaction between pairs of protons is a small
effect, the concept of isospin is particularly useful. The study of isospin
effects in nucle was first applied to the observed properties of the lowest-
lying states in the three nuclei with mass number A = 14: *C, “N, and “O.

The relative energies of the states are shown in the following diagram:

Energy (MeV)

[
6 |-

0" T=1T,=1

4 |-

- 0" T=1,T,=0
2 —

0" T=1,T,=-1 1" T=0,T,=0

0 — —= e

An isospin singlet (T = 0) and an isospin triplet (T = 1) in
the A = 14 system. In the absence of the coulomb interaction, the three
T = 1 stateswould be degenerate.
The spin and parity of the ground state of **C, the first excited state of “N
and the ground state of **O are measured to be 0'; these three states are
characterized by T = 1. The ground state of **N has spin and parity 1°; it

Is an isospin singlet (T = 0).
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12.4 1sospin and mesons

We have seen that it is possble to classfy the charge states of
nucleons and nuclear isobars using the concept of isospin, and the algebra
of SU(2). It will be useful to classfy other particles, including field
particles (quanta) in terms of their isospin.

Y ukawa (1935), first proposed that the strong nuclear force between
apair of nucleonsis carried by massivefield particles called mesons.
Yukawa's method was a masterful development of the theory of the
electromagnetic field to include the case of amassive field particle. If y , is
the “meson wavefunction” then the Y ukawa differentid equation for the
meson is

10"y, + (E%c)y, = 0.

where

10" = (UATMt* - N>,
The r-dependent (spatial) form of N?is

NZ® (1/r?)d/dr(r’d/dr)

The static (time-independent) solution of thisequation is readily checked to
be

Y(r) = (- g’Inexp(- riry)
where

ry = hlmc = hc/mc® = helE,,
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30 that

1ry? = (ESIhc)

The “range of the nuclear force” is defined by the condition

r =ry = almec»2"10% cm.

This gives the mass of the meson to be close to the measured value. It is
Important to note that the “range of the force” yu 1/(mass of the field
quantum). In the case of the electromagnetic field, the mass of the field
quantum (the photon) is zero, and therefore the force has an infinite range.

The mesons come in three charge states. +, -, and 0. The mesons
have intrinsic spins equal to zero (they are field particles and therefore they
are bosons), and their rest energies are measured to be

E,’ = 1395MeV,and E,° = 135% MeV.
They are therefore considered to be members of an isospin triplet:
t =1,t, =+1,0.

In Particle Phydcs, it is the custom to designate the isospin quantum
number by |, we shall follow this convention from now on.

The third component of the isospin is an additive quantum number.
The combined values of the isospin projections of the two particles, one
with isospin projection I, , and the other with 1, is

152 = | O 4 1@

Their isospins combine to give states with different numbers in each

multiplet. For example, in pion (meson)-nucleon scattering
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p + N® stateswith I,"*? =(3/2) or (1/2).
These values are obtained by noting that
1Y =1, and 1,¥ = 1/2, so that
1,0 + 1@ = (£1,0) + (x1/2)
= (3/2), an isospin quartet, or (1/2), an isospin
doublet.
Symbolicdly , we write
3A2 =4A2
(Thisis the rule for forming the product (21.% + 1)A(21,@ + 1).
13
GROUPSAND THE STRUCTURE OF MATTER
13.1 Strangeness
In the early 1950's, our understanding of the ultimate structure of
matter seemed to be complete. We required neutrons, protons, electrons
and neutrinos, and mesons and photons. Our optimism was short-lived.
By 1953, excited states of the nucleons, and more massive mesons, had
been discovered. Some of the new particles had completely unexpected
properties, for example, in the interaction between protons and p-mesons

(pions) the following decay mode was observed:
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Proton (p")
/Si gma(a’) 'cgn
(P°)
—Kaon(K*) --- —[]
“pion
()
Pion (p*) . .
Y Y
Initid interaction Final decay
lasts ~10 seconds takes ~10™"° seconds
(Strong force acting) (Weak force acting)

Gell-Mann, and independently Nishijima, proposed that the kaons (heavy
mesons) were endowed with a new intrinsic property not affected by the
strong force. Gell-Mann called this property “strangeness’. Strangeness
Is conserved in the strong interactions but changes in the weak
interactions. The Gell-Mann - Nishijima interpretation of the strangeness-

changing involved in the proton-pion interactionis

p*(S=0) ar(s=-1
\ / /pO(S:O)

[J— k (s=+) —[]

TSp(s=0)
p"(S=0)

Y Y
DS=0 DS=1

In the strong part of the interaction, there is no change in the number
defining the strangeness, whereas in the weak part, the strangeness changes

by one unit. Having defined the values of S for the particles in this
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interaction, they are defined forever. All subsequent experimentsinvolving
these objects have been consistent with the original assignments.
13.2 Particle patterns

In 1961, Gell-Mann, and independently Ne eman, introduced a
scheme that classfied the strongly interacting particles into family groups.
They were concerned with the incluson of “strangeness’ in their theory,
and therefore they studied the arrangements of particles in an abstract
space defined by their electric charge and strangeness. The common
feature of each family was chosen to be their intrinsic spin; the family of
spin-1/2 baryons (strongly interacting particles) has eight members: n°, p*
a* 4% X X°,and L°. Their strangeness quantum numbers are: S = O:
n°,p ;S=-1:4%,4°% and L°; and S= -2: X . If the positions of these
eight particles are given in charge-strangeness space, a remarkable pattern

emerges.
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There are two particles at the center, each with zero charge and zero
strangeness, they are the 4° and the L% (They have different rest masses).

They studied the structure of other families A particularly
important set of particles conssts of all baryons with spin 3/2. At the time,
there were nine known particles in this category: D° D*, D*?, &*°, &**,

X° and X*. They have the following pattern in charge-strangeness space:

Charge -1 0 +1 +2 Str anger&&ss
o R B m- 04
D \ DO \ D+ \‘ D++’ R

The symmetry pattern of the family of spin-3/2 baryons, shown by the
known nine objects was sufficiently compedling for Gell-Mann, in 1962, to
suggest that a tenth member of the family should exist. Furthermore, if
the symmetry has a physcal basis, the tenth member should have spin-3/2,
charge —1, strangeness —3, and its mass should be about 150MeV greater
than the mass of the X° particle. Two years after this suggestion, the tenth

member of the family was identified in high energy particle collisons; it
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decayed via weak interactions, and possessed the predicted properties.
This could not have been by chance. The discovery of the W particle was
crucid in helping to establish the concept of the Gell-Mann — Ne eman
symmetry mode.

In addition to the symmetries of baryons, grouped by their spins, the
modd was used to obtain symmetries of mesons, also grouped by their
spins.

13.3 The special unitary group SU(3) and par ticle structur e

Severa years before the work of Gell-Mann and Ne' eman, Sakata
had attempted to build-up the known particles from {neutron- proton-
lambda’} triplets. The lambda particle was required to “carry the
strangeness’. Although the model was shown not to be valid, Ikeda et al.
(1959) introduced an important mathematicd analyss of the three-state
system that involved the group SU(3). The notion that an underlying
group structure of elementary particles might exist was popular in the
early 1960's. (Specid Unitary Groups were used by J. P. Elliott in the
late1950’ sto describe symmetry properties of light nucle).

The problem facing Particle Physcigts, at the time, was to find the
appropriate group and its fundamental representation, and to construct
higher-dimensiona representations that would account for the wide variety
of symmetries observed in charge-strangeness space. We have seen that
the charge of aparticle can be written in terms of itsisospin, a concept that

has its origin in the charge-independence of the nucleon-nucleon force.
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When appropriate, we shall discuss the symmetry properties of particlesin
ISOSpIiN-strangeness space.

Previoudy, we discussed the properties of the Lie group SU(2). It is
a group characterized by its three generators, the Pauli spin matrices.
Two-state systems, such as the electron with its quantized spin-up and spin-
down, and the isospin states of nucleons and nucle, can be treated
quantitatively using this group. The symmetries of nucleon and meson
families discovered by Gell-Mann and Ne eman, implied an underlying
structure of nucleons and mesons. It could not be a structure smply
associated with a two-state system because the observed particles were
endowed not only with positive, negative, and zero charge but aso with
strangeness. A three-state system was therefore considered necessary, at
the very leadt; the most promising candidate was the group SU(3). We
shall discuss the infinitesma form of this group, and we shall find a
suitable set of generators.
13.3.1 The algebra of SU(3)

The group of specid unitary transformations in a 3-dimensiona
complex spaceis defined as

SU(3)° {Uy;: UU" =1, detU=+1, u; 1 C}.
The infinitesmal form of SU(3) is
SU(3),y = | +ida)/2,j=1to 8.

(There are n” - 1 = 8 generators).
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The quantities da; are real and infinitesmal, and the 3" 3 matrices A; are
the linearly independent generators of the group. The repeated index, j,
means that a sum over j is taken.
The defining properties of the group restrict the form of the
generators. For example, the unitary conditionis
UU"= (I +ida\/2)(1 —idarA"/2)
= | —ida,\,'/12 + ida\/2 to 1st-order,
=1if A, = A"
The generators must be hermitian.
The determinantal condition is
det = +1; and therefore TrA, = 0.
The generators must be traceless.
Thefiniteform of U is obtained by exponentiation:
U = exp{ia)/2}.
We can find a suitable set of 8 generators by extending the method
used in our discussion of isospin, thus
Let three fundamental states of the system be chosen in the simplest

way, namdy:

u=|0|,v= (1], andw=(0

0 0 1

. 7/ . / < /
If we wishto transformv ® u, we can do so by defining the operator A,:




A,.v=u,[{0 0 O

|\
We can introduce other

- A

0 0O

B, = 01
00O

s $
00O
C,=(000
1 00

(0 1 0

00O

,

J N J

0
1
0

-

1\
0

0

\\ /
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operators that transform the statesin pairs, thus

)
=11 0
0 0
2~
0 0
00
01
\
0 0
0 0
0 0

~

0

J
S

0
0
0
0
0
{
1
0
0

J

These matrices are singular and non-hermitian. In the discussion of isospin

and the group SU(2), the non-singular, traceless, hermitian matrices t,, and

T, are formed from the raising and lowering operators T, matrices by

introducing the complex linear combinations

The generators of SU(3) are formed from the operators A,, B,, C, by

constructing complex linear combinations. For example:

the isospin operator T, = o, = T, + T, agenerator of SU(2) becomes
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00

|

Continuing in thisway, we obtain

O\
o O0f=A,+A_°\,agenerator of SU(3).
0

A, = M2 + A2,

where
s O\
O,
A, = 0|,
00O
\\§ J
and

C,+C_=1%, C,—C_= -k,

B,+B.= A, andB,-B_ = i),.

The remaining generators, A, and A4 are traceless, diagonal, 3° 3 matrices.

- 3\

0 1 0 0)
A =| o, O, ,=|0 1 0

00O 0 0 -2

J

The set of matrices {A,, ... At are caled the Gell-Mann matrices,

introduced in 1961. They are normalized so that
Tr(A\Ay) = 2d,.

The normalized form of A, is therefore

r ~N

1 00

Ae = (UGB)|O0O 1 0

0 0-2
-
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If we put F, = A/2. we find
A, =F, +iF,,
B,=F +iF,
and
C.=F,+iF;.
Let A,=F, B,=—F, 2+ (08/)F,, and C, = (-1/2)F, - (CBT)F,., so that
A,+B,+C,=0.
The last condition means that only eight of the nine operators are
Independent.
The generators of the group are readily shown to obey the Lie
commutation relations
[F, F] =ifyF,ijk=1to0 8.
where the quantities f;, are the non-zero structure constants of the group;
they are found to obey
fix = o
and the Jacobi identity.
The commutation relations [F;, F;] can be written in terms of the operators
A,, ..Some typicd results are
[A,, A]l=2A,[A, A]=-A,, [A,A]=+A,
[A,B] =0, [A,,CJ =0, [B,,Cj=0
[B,,B] =2B,, [B.,B] =-B, [B,B;] = +B, etc.

The two diagonal operators commute:
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[Fs, Fg =0.
Now, F,, F,, and F, contain the 2" 2 isospin operators (Pauli matrices),
each with zeros in the third row and column; they obey the commutation
relations of isospin. We therefore make the identifications
F.=1,F,=l,,and F, =1,
where the |;'s are the components of the isospin.

Particles that experience the strong nuclear interaction are called
hadrons they are separated into two sets the baryons with half-integer
spins, and the mesons with zero or integer spins. Particles that do not
experience the strong interaction are called leptons. In order to quantify
the difference between baryons and leptons, it has been found necessary to
introduce the baryon number B = +1 to denote a baryon, B = -1 to
denote an anti-baryon and B = O for al other particles. Leptons are
characterized by the lepton number L = +1, anti-leptons are assigned L =
-1, and dl other particles are assigned L = 0. It is a present-day fact,
based upon numerous observations, that the totd baryon and lepton
number in any interaction is conserved. For example, in the decay of the
free neutron we find

n=p +e +n
B=+1=+1+0 +0
L=0=0+1+(-1).
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The fundamental symmetries in Nature responsible for these conservation
laws are not known at this time. These conservation laws may, in al
likelihood, be broken.

In discussing the patterns of baryon families in charge-strangeness
space, we wish to incorporate the fact that we are dealing with baryons
that interact via the strong nuclear force in which isospin and strangeness
are conserved. We therefore choose to describe their patterns in isospin-
hypercharge space, where the hypercharge Y is defined to include both the
strangeness and the baryon attribute of the particle in an additive way :

Y=B+S.
The diagonal operator F, is therefore assumed to be directly associated
with the hypercharge operator,

Fe = (CB/2)Y.

Because |, and Y commute, states can be chosen that are
simultaneous eigenstates of the operators F, and F;. Since no other SU(3)
operators commute with I, and Y, no other additive quantum numbers are
associated with the SU(3) symmetry. The operators F,,...F,; are considered

to be new constants-of-the-motion of the strong interaction hamiltonian.

13.4 Irreduciblerepresentations of SU(3)
In an earlier discussion of the irreducible representations of SU(2),
we found that the commutation relations of the generators of the group

were satisfied not only by the fundamental 2° 2 matrices but aso by
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matrices of higher dimension [(2J+ 1) A (2J + 1)], where J can have the
vaues 1/2, 1, 3/2, 2, ... The Jvaues correspond to the spin of the particle
whose state is given by a spinor (a column vector with specd
transformation properties). In the 2° 2 representation, both covariant and
contravariant spinors are allowed:

) covariant spinors (with lower indices) are written as 2-component

columns that transform under U1 SU(2) as

o = U,
where
P
al\
a:[ |
a
2)
and

i)  contravariant spinors (with upper indices) are written as
2-component rows that transform as:
B=
where
B = (b b))
The co- and contra-variant spinors are transformed with the aid of the anti-

symmetric tensors ¢; and €'. For example,

B = g Bj

transforms as a covariant spinor with the form
(52
Bi =| _
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The higher-dimensiona representations are built up from the fundamental
form by taking tensor products of the fundamental spinors o, , p', or B,
and by symmetrizing and anti-symmetrizing the result. We state, without
proof, the theorem that is used in this method:

when a tensor product of spinors has been broken down into its symmetric
and anti-symmetric parts, it has been decomposed into irreducible
representations of the SU(n). (See Wigner's standard work for the
original discusson of the method, and de Swart in Rev. Mod. Phys. 35,
(1963) for adetailed discussion of tensor analysis in the study of the irreps
of SU(n))

As an example, we write the tensor product of two covariant spinors
w; and v; in the following way

WAV, = wyv, = (wy, + wv)/i2 + (wv, - wv)/2
There are four elements associated with the product (i,j can have values 1
and 2).

The symmetric part of the product has three independent elements,
and transforms as an object that has spin J=1. (There are 2J + 1 members
of the symmetric set). The anti-symmetric part has one element, and
therefore transforms as an object with spin J = 0. This result is familiar in
the theory of angular momentum in Quantum Mechanics. The explicit

forms of the four e ements are:
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[J=+1 wyv,
J=1 {Js =0 : (VD)(uyv, + wyvy)
J=-1:uwv,
and
J=0 J,=0:(V®)(uv,— uv,) .
Higher-dimensional representations are built up from the tensor products
of covariant and contravariant 3-spinors, o and fﬁ respectively. The
products are then written in terms of their symmetric and anti-symmetric
parts in order to obtain the irreducible representations. For example, the
product oci[gj, ij =1,2,3, can be written
oaf’ = (uf’ - (UIdouB") + (U3 B,

in which the trace has been separated out. The trace is a zero-rank tensor
with a single component. The other tensor is a traceless, symmetric tensor
with eight independent components. The decomposition is written
symbolicdly as:

3A3=8AL1

We can form the tensor product of two covariant 3-spinors, wyv; as
follows:
wv; = (V2)(wy; + wv) + (V2 (wv, — wv), ij = 1,2,3.

Symbolicaly, we have

3A3=6A3,
in which the symmetric tensor has six components and the anti-symmetric

tensor has three components.
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Other tensor products that will be of interest are
3A3A3=10A8A8A 1,
and
8A8=27A 10A 10A8A 8 A L.

The appearance of the octet “8” inthe 3 A 3 decomposition (recdl
the observed octet of spin-1/2 baryons), and the decuplet “10” in the triple
product 3 A 3 A 3 decomposition (recdl the observed decuplet of spin-3/2
baryons), was of prime importance in the development of the group theory
of “elementary” particles.

13.4.1 Weight diagrams
Two of the Gell-Mann matrices, A, and A, are diagonal. We can
write the eigenvalue equations
AU =au,\v=ayv,andAw=a,w,
and
AU =bu, Av =b,v, and A,w = b, w
where a; and b, are the eigenvalues.
Let aand b be normalization factors associated with the operators A,

and A, repectively, so that

a 00 b 00
A=/ 0-a O and2A"={0 b 0 |.
0 00 0 0 —2b

u=[1,00],v=]0, 1,0], and w=[0, O, 1] (columns), we find

A U= au, Ag'U=bhu,



136

A V=—av, AgV=hv,
and
AW =0w, Ag"w=-2bw.
The weight vectorsare formed from the pairs of eigenvalues.
[a,, b =[a b],
[a,,b] =[-a b,

and
[an bw] = [01 - 2b] .
A weight diagram is obtained by plotting these vectors in the a—b

space, thus.

b 4

2b +

© | J ‘ ‘ | J >
—2a —a a 2a a
—2b

Thisweight diagram for the fundamental “3” representation of SU(3) was
well-known to Mathematicians at the time of the first use of SU(3)
symmetry in Particle Physics. It wasto play akey rolein the development
of the quark modd.

13.5 The 3-quark model of matter
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Although the octet and decuplet patterns of hadrons of a given spin
and parity emerge as irreducible representations of the group SU(3),
major problems remained that resulted in a great deal of scepticism
concerning the validity of the SU(3) moded of fundamental particles. The
most pressing problem was: why are there no known particles associated
with the fundamental triplets 3, 3 of SU(3) that exhibit the symmetry of
the weight diagram discussed in the last section? In 1964, Gell-Mann, and
independently, Zweig, proposed that three fundamental entities do exist
that correspond to the base states of SU(3), and that they form bound
states of the hadrons. That such entities have not been observed in the
free state is related to their enormous binding energy. The three entities
were called quarks by Gell-Mann, and aces by Zweig. The Gell-Mann
term has survived. The anti-quarks are associated with the conjugate 3
representation. The three quarks, denoted by u, d, and s (u and d for the
up- and down-isospin states, and s for strangeness) have highly unusua

properties; they are

Label B Y I l5 Q=1,+Y/2 S=Y - B
u /3 13 12 +1/2 +2/3 0
d 3 13 12 -12 -13 0
S 13 -2/3 0 0 -1/3 -1
S -1/3 2/3 O 0 +1/3 +1
d -1/3 -3 12 +1/2 +1/3 0

U -1/3 =13 12 -1/2 —2/3 0
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The quarks occupy the following positionsin I,- Y space

Y Y

wnl

S _
These diagrams have the same relative forms as the 3 and 3 weight

diagrams of SU(3).

The baryons are made up of quark triplets, and the mesons are made
up of the simplest possible structures, namely quark—anti-quark pairs. The
covariant and contravariant 3-spinors introduced in the previous section
are now given physca significance:

u =[u, d, s], acovariant column 3-spinor,
and

v = (U, d, ), acontravariant row 3-spinor.
whereu =1, 0, 0], d=[0, 1, 0], and s= [0, O, 1] represent the unitary
symmetry part of the total wavefunctionsof the three quarks.

The formal operators A,, B,, and C,, introduced in section 13.3.1,
are now viewed as operatorsthat transform one flavor (type)of quark into
another flavor (they are shift operators):

A°1() ®I,+1,
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B.° U (U;) ® U, £ 1, called the U-spin operator,
and
C.° V.V, ® V, 1, cdledtheV-spin operator.
Explicitly, we have
,1/2)® 1/2:d® u
| (+1/2)® -1/2:u® d
U,(-1/2)® 1/2:s® d
U(H1/2® -1/2:d® s
V.12 ® 12:u® s
and
V (+1/2)® -1/2:s® u.
The quarks can be characterized by the three qguantum numbers 1, U,, V..

Their positions in the [,-U,;-V, - space again show the underlying
symmetry:
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The members of the octet of mesonswith = 0~ are formed from qg-pairs
that belong to the fundamental 3, 3 representation of the quarks. The p°

and h® mesons are linear combinations of the qqg states, thus

K° ds

The nonet formed from the tensor product 3 A 3 is split into an octet
that is even under the labe exchange of two particles, and a singlet that is
odd under label exchange:
3A3=8A1

wherethe “1” is

h® = (U/EB)(uu + dd + s9),
and the two members of the octet at the center are:

p°= (1/C2)(uu — dd) and h° = (1/O6)(uu + dd - 2ss).

The action of I_on p*isto transformit into a p°. This operation has the

following meaning in terms of I_acting on the tensor product, u A d:
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lL(uAd° (uAd+uA (d) (cf.derivativerule)
|.(p")=d A d+uAdQ

® p°
Omitting the tensor product sign, normalizing the amplitudes, and choosing

the phasesin the generdly accepted way, we have
p° = (1/C2)(uu — dd).
The singlet h? is said to be orthogonal to p° and h° at the origin.

If the symmetry of the octet were exact, the eight members of the
octet would have the same mass. This is not quite the case; the symmetry
Is broken by the difference in effective mass between the u- and d-quark
(essentidly the same effective massess ~ 300 MeV/c®) and the s-quark
(effective mass ~ 500 MeV/c®). (It should be noted that the effective
masses of the quarks, derived from the mass differences of hadron-pairs, is
not the same as the “current-quark” masses that appear in the
fundamental theory. The discrepancy between the effective masses and the
fundamental massesis not fully understood at this time).

The decomposition of 3 A 3 A 3is

3A3A3=(6A3)A3
= 10A8A8 A1
in which the states of the 10 are symmetric, the 1 is antisymmetric, and the
8, 8 states are of mixed symmetry. The decuplet that appears in this
decomposition is associated with the observed decuplet of spin-3/2 baryons.

In terms of the three fundamental quarks — u, d, and s, the make -up of
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the individud members of the decuplet is shown schematicaly in the

following diagram:

ddd ~ dud ~ uud uuu
O O O O

~dds|:I ~dus|:| ~ uus

~sdsHd  ~susO

SSSI:I

The precise make-up of each state, labelled by (Y, I, 1) is given in the

following table

(1,3/2,+32) = uuu®)
(1,3/2,+1/2) = (1/OB)(udu + duu + uud)
(1,3/2,-1/2) = (1/CB)(ddu + udd + dud)
(1,3/2,-3/2) = ddd®
(0,1, +1) = (1/GB)(usu+ suu + uus)
(0,1, 0) = (UCB)(uds+ dsu + sud + dus + sdu + usd)
(0,1,-1) = (1/CGB)(dsd + sdd + dds)
(-1, 1/2,+1/2) = (L/CB)(SSu + Uss + SUS)
(-1, 1/2,-1/2) = (1/CB)(ssd + dss + sds)
(-2,0,00 = sss )

The general theory of the permutation group of n entities, and its
representations, is outside the scope of this introduction. The use of the
Young tableaux in obtaining the mixed symmetry states is treated in
Hamermesh (1962).

The charges of the D", D", and W™ particles fix the fractiond values

of the quarks, namey
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quark flavor  charge (in units of the electron charge)

u +2/3
d -1/3
S -1/3

The charges of the anti-quarks are oppositein signto these values.

Extensive reviews of the 3-quark mode and its application to the
phydcs of the low-energy part of the hadron spectrum can be found in
Gasiorowicz (1966) and Gibson and Pollard (1976).
13.6 The need for a new quantum number: hidden color

Immediately after the introduction of the 3-quark mode by

Gell-Mann and Zweig, it was recognized that the modd was not consistent
with the extended Pauli principle when applied to bound states of three
quarks. For example, the structure of the spin-3/2 D" state is such that, if
each quark is assigned aspin s, = 1/2, the three spins must be digned - - -
to give anet spin of 3/2. (It is assumed that the relative orbita angular
momentum of the quarks in the D' is zero (a symmetric s-state) — a
reasonable assumption to make, as it corresponds to minimum Kkinetic
energy, and therefore to a state of lowest totd energy). The quarks are
fermions, and therefore they must obey the generdlized Pauli Principle
they cannot exist in a completely digned spin state when they are in an s
state that is symmetric under particle (quark) exchange. The unitary spin
component of the tota wavefunction must be anti-symmetric. Greenberg

(1964) proposed that a new degree of freedom must be assigned to the
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quarks if the Pauli Principle is not to be violated. The new property was
later called “color”, a property with profound consequences. A quark
with a certain flavor possesses color (red, blue, green, say) that
corresponds to the triplet representation of another form of SU(3) —
namey SU(3)., where the subscript C differentiates the group from that
introduced by Gell-Mann and Zweig — the flavor group SU(3).. The anti-
quarks (that possess anti-color) have a triplet representation in SU(3). that
Is the conjugate representation (the _3). Although the SU(3). symmetry is
known not to be exact, we have evidence that the SU(3). symmetry is an
exact symmetry of Nature. Baryons and mesons are found to be colorless
the color singlet of abaryon occursin the decomposition
SU(3).,=3A3A3=10+8+8 +1.
The meson singlets consst of linear combinations of the form
1=(RR + BB + GG)/(B.

Although the hadrons are colorless, certain observable quantities are
directly related to the number of colors in the modd. For example, the
purely electromagnetic decay of the neutral pion, p°, into two photons

P’=g+g
has a lifetime that is found to be closdy proportionl to the square of the

number of colors. (Adler (1970) gives G= Aft = 1(eV) (number of colors)’

The measurements of the lifetimegiveavaueof G~8 eV, consstent with

N = 3. Since these early measurements, refined experiments have

col s
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demonstrated that there are three, and only three, colors associated with
the quarks.

In studies of electron-positron interactions in the GeV-region, the
ratio of cross sections:

R =s(€'e ® hadrons)/s(e€'e ® nim)
is found to depend linearly on the number of colors. Good agreement
between the theoreticad model and the measured value of R, over a wide
range of energy, is obtained for three colors.

The color attribute of the quarks has been responsible for the
development of atheory of the strongly interacting particles, called
quantum chromodynamics. It is a field theory in which the quarks are
generators of a new type of field — the color field. The mediators of the
field are called gluons, they possess col or, the attribute of the source of the
field. Consequently, they can interact with each other through the color
field. This is a field quite unlike the electrodynamic field of classica
electromagnetism, in which the field quanta do not carry the attribute of
the source of the field, namely electric charge. The photons, therefore, do
not interact with each other.

The gluons transform a quark of a particular color into a quark of a
different color. For example, in the interaction between ared quark and a
blue quark, the colors are exchanged. This requires that the exchanged

gluon carry color and anti-color, as shown:
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Ob Oy
/

gluon, g, carries red and anti-blue;
the color lines are continuous.

ot Ob
Three different colors permit nine different ways of coupling quarks
and gluons. Three of these are red-red, blue-blue, and green-green that do
not change the colors. A linear combination ~(R® R + B® B + G® G) is
symmetric in the color labes, and this combination is the singlet state of
the group SU(3).. Eight gluons, each with two color indices, are therefore
required in the 3-color theory of quarks.
13.7 Moremassive quarks
In 1974, the results of two independent experiments, one a study of
the reaction p + Be ® € + e .. (Ting et d.) and the other a study of
e + € ® hadrons ..(Richter et d) — showed the presence of a sharp
resonance at a center-of-mass energy of 3.1 GeV. The lifetime of the
resonant state was found to be ~10° seconds — more than 10° seconds
longer than expected for a state formed in the strong interaction. The
resonant state is called the Jy. It was quickly realized that the state
corresponds to the ground state of a new quark—anti-quark system, a

bound state cC, where c is afourth, massive, quark endowed with one unit
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of a new quantum number c, called “charm”. The quantum numbers
assigned to the c-quark are
F=12%c=1, Qe=+2/3,and B = 1/3.

Sound theoreticd arguments for a fourth quark, carrying a new
quantum number, had been put forward severa years before the
experimental observation of the Jy state. Since 1974, a complex set of
states of the “charmonium” system has been observed, and their decay
properties studied. Detailed comparisons have been made with
sophisticated theoretical modelsof the system.

Theincluson of acharmed quark in the set of quarks means that the
group SU(4). must be used in place of the origina Gell-Mann-Zweig group
SU(3).. Although the SU(4)-. symmetry is badly broken because the
effective mass of the charmed quark is ~ 1.8 GeV/c’, some useful
applications have been made using the modd. The fundamenta
representations are

[u, d, s, ¢], acovariant column spinor,
and

(u, d, s, €), acontravariant row spinor.
The irreps are constructed in a way that is analogous to that used in
SU(3),, namey, by finding the symmetric and anti-symmetric
decompositions of the various tensor products. The most useful are:

4A 4=15A 1,

4A 4=10A 6,
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4A4A4=20, A 20, A20, A%,

and
15A15=1A 15, A 15,,A 20, A 45A 45 A 84
The “15” includes the non-charmed (¥ = 0" ) mesons and the following
charmed mesons:
D°= cu, D°= cu, mass = 1863MeV/c
D* =cd, D™ = cd, mass = 1868 MeV/c,
F*=cs, F ="cs, mass=2.04 MeV/c.
In order to discuss the baryons, it is necessary to include the quark spin,
and therefore the group must be extended to SU(8).. Relatively few
baryons have been studied in detal in this extended framework.
In 1977, well-defined resonant states were observed at energies of
9.4, 10.01, and 10.4 GeV, and were interpreted as bound states of another
quark, the “bottom” quark, b, and its anti-partner, the b. Mesons can be
formed that include the b-quark, thus
B.=bu, B =bd, B®=Dbs, and B, = bc .
The study of the weak decay modes of these statesis currently fashionable.
In 1994, definitive evidence was obtained for the existence of a sixth
quark, called the “top” quark, t. It is a massive entity with a mass almost
200 times the mass of the proton!

We have seen that the quarks interact strongly via gluon exchange.

They dso take part in the weak interaction. In an earlier discusson of
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Isospin, the group generators were introduced by considering the b-decay
of the free neutron:

e p-+e+n.
We now know that, at the microscopic levd, this process involves the
transformation of a d-quark into a u-quark, and the production of the
carrier of the weak force, the massve W particle. The W boson (spin 1)

decays ingantly into an electron—anti-neutrino pair, as shown:

'no\
W—l ‘,\‘ e—

/
/

neutron n° / \ d(-1/3) ® u(+2/3) / \ proton pt+
.l IR

V

The carriers of the Weak Force, W* , Z° were first identified in p-p
collisons a high center-of-mass energy. The processes involve
guark—anti-quark interactions, and the detection of the decay electrons and

positrons.
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Zoe/,L?_

u(+2/3) > '0' . u (=213
n

W*,./\\e+ _
u(+2/3) e d(+1/3)

™

wo _
d(- 1/3) ‘ . u(- 2/3)

The chargeis conserved at each vertex.
The carriers have very large measured masses.
massW* ~ 81 GeV/c?, and mass Z° ~ 93 GeV/c.
(Recdl that the range of aforce p 1/(mass of carrier); the W and Z masses
correspond to avery short range,~10"® m, for the Weak Force).

Any quantitative discussion of current work using Group Theory to
tackle Grand Unified Theories, requires a knowledge of Quantum Field
Theory that is not expected of readers of thisintroductory book.

14
LIE GROUPSAND THE CONSERVATION LAWSOF THE
PHY SICAL UNIVERSE
14.1 Poisson and Dir ac Brackets
The Poisson Bracket of two differentiable functions

APy P2y Py Gs Oy ---0])

and

B(Py, P2 --Prs Oy Ay ---01n)
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of two setsof variables (p,, p., ...p,) ad (q,, 9., ...q,) is defined as
{A, B} © &," (TAMq)(TBAIp) — (TAMp)(TBAq) -
If A° Q(p, q), adynamicd variable, and
B ° H(p, g), the hamiltonian of adynamica system,

where p; is the (canonicd) momentum and g, is a (generalized) coordinate,

then
{Q, H} = &," (1QMa)(THAp) — (TRAMP)(THAQ) .
(n is the” number of degrees of freedom” of the system).
Hamilton’s equations are
THAp, = dg/dt and H/AIq, = — dp/dt ,
and therefore
{Q,H} =4&," (T9Mq;)(dg/dt) + (12/q))(dp/dt) .
The totd differentid of Q(p, q) is
dQ = &," (1Q/q)dg; + (12Ap,)dp,
and itstime derivativeis
(dQ/dt) = &," (1QMq,)(dg/dt) + (1QAp,)(dp/dt)
={Q H =Q.
If the Poisson Bracket is zero, the physical quantity Q2 is a constant
of the motion.

In Quantum Mechanics, the rel ation

(dQ/dt) = {Q, H}
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IS replaced by
(dQ/dt) = - (i/h))[2, H],

Heisenberg's equation of motion. It is the custom to refer to the
commutator [€2, H] as the Dirac Bracket.

If the Dirac Bracket is zero, the quantum mechanical quantity Q is
a constant of the motion..

(Dirac proved that the classca Poisson Bracket {Q, H} can be

identified with the Heisenberg commutator —i/7)[2, H] by making a

suitable choice of the order of the g's and p’s in the Poisson Bracket).
14.2 Infinitesimal unitary transfor mationsin Quantum Mechanics
TheLie formof an infinitesma unitary transformation is

U=I+idaX/h,

where da ia real infinitesma parameter, and X is an hermitian operator.
(Itis straightforward to show that thisform of U is, indeed, unitary).
Let a dynamica operator Q change under an infinitesmal unitary
transformation:
Q® Q =UQU™

= (I +idaX/h)Q(l —idaX/h)
= Q —idaQX/h + idaXQ/h to 1st-order

= Q +i(daxQ — Qdax)/h
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= Q +i(FQ — QF)/.

where
F = daX.
The infinitesmal changein Q is therefore
dQ=Q - Q

= i[F, Q]/n

If we identify F with —Hdt (the classical form for a purey temporal change
in the system) then
dQ =i[- Hdt, Q]/A,

or

—dQ =i[H, Q]dtA,

S0 that

—dQ/dt = i[H, Q)/h.

For atempora changein the system, dQ2/dt = — dQ/dt.
The fundamental Heisenberg equation of motion

dQ/dt = i[H,Q]/n

Is therefore deduced from the unitary infinitessimal transformation of the
operator €.
This approach was taken by Schwinger in his formulation of Quantum

Mechanics.
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|F| = Hdt is directly related to the generator, X, of a Quantum
Mechanicd infinitesma transformation, and therefore we can associate
with every symmetry transformation of the system an hermitian operator
F that is a constant of the motion - its eigenvalues do not change with
time. Thisis an example of Noether’ s Theorem

A conservation law is associated with every symmetry of the
equations of motion. If the equations of motion are unchanged by the
transformations of a Group then a property of the system will reman
constant as the system evolves with time. As awell-known example, if the
equations of motion of an object are invariant under tranglations in space,

the linear momentum of the system is conserved.
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