A Practical

Approach

tﬁeal-ﬂms

Computer

avid H. Eberly

rap ics +-Q Node <Bone = Left T"s!.gn;
G h ' & Q Node <Bone = Right Tragh

-4 TiMesh <Skin = Head And I =
|
|
{
|
i

&

|-ef- SkinController [bones = Haad, Nech)
J- W5 MaterialState [amb = {0.1.0.7.0 1L dif = (0.7 574
]-- m TastureState [texture = Norlina.i=ud £rmpl

- TiMesh <Skin = Torso

G4 TriMesh <Skin = Left Body>

GLOSSARY OF NOTATION

R, R", [0, c0)
X, X7,0

M, M~ MT, M, [

det(M), trace(M)
diag(a, b, c}
(MIT)

(0 Vw)
skew(W)
p(M), IMIl
A-B,AxB
AF(X)/3x;
VFX)

X+

a.[L.f
<

€U, N, x

n, f.l,r bt
sin, cos, tan

sin~!

,cos~1, tan~!
log, exp

Lx), [x]

sign(x)

dist(A, B)
Bni(’)

C(n; i)
resultant(p, ¢, x)
C* function
979" ¢
w40

N(g), W(q)
slerp, squad
A:=B,B=:A

real numbers, n-tuples of real numbers, nonnegative real numbers
vector, vector transpose, zero vector

matrix, matrix inverse, matrix transpose, matrix adjoint, identity matrix
matrix determinant, matrix trace

3 x 3 diagonal matrix with diagonal terms listed

short notation for homogeneous matrix with last row (0, 0, 0, 1)

a 3 x 3 matrix whose columns are the specified 3 x 1 vectors
skew-symmetric matrix that represents cross product on the left by W
spectral norm of matrix, norm of matrix

dot product of vectors, cross product of vectors

first-order partial derivative of F with respect to the i component of X
gradient vector of function F, the n-tuple of first-order partial derivatives
represents some vector orthogonal to X

summation operator, product operator, integral operator

set inclusion operators

element of, union, intersection, Cartesian product

view frustum parameters (near, far, left, right, bottom, top)

sine, cosine, and tangent functions

inverse sine, inverse cosine, and inverse tangent functions

natural logarithm and exponential functions

floor function of x, ceiling function of x

sign of x, in (-1, 0, +1}

distance between two sets

Bernstein polynomial

combinations of n items choosingi at a time

resultant of two polynomials by eliminating variable x

function whose partial derivatives through order k are continuous
quaternion, quaternion inverse, quaternion conjugate, quaternion to power

quaternion as sum of real part and imaginary parts
norm of quaternion, selection of real part of quaterniog
interpolation functions for quaternions

indicates quantity A is defined by quantity B

GREEK ALPHABET

alpha a eta n nu

beta B theta 9, © xi
gamma y, T iota t omicron
delta 8 A kappa K pi
epsion € lambda A, A rho
zeta e mu I sigma

tau
upsilon
phi

chi

psi
omega

3D GAME ENGINE DESIGN

A Practical Approach to
Real-Time Computer Graphics

3D GAME ENGINE DESIGN

A Practical Approach to
Real-Time Computer Graphics

DAVID H. EBERLY
Magic Software, Inc.

M [C

This book is dedicated to all those folks
who participate in comp.graphics.algorithms
and have made my online life quite interesting and meaningful.
Enjoy!

CHAPTER

1

CHAPTER

2

CONTENTS

LiST OF FIGURES

XXi

LIST OF TABLES xxv
PREFACE Xxvii
INTRODUCTION 1
1.1 A BRIEF MOTIVATION 1
1.2 A SUMMARY OF THE CHAPTERS 3
13 TexT Is NOT ENOUGH 5
GEOMETRICAL METHODS 7
2.1 TRANSFORMATIONS 8
2.1.1 Scaling 8

2.1.2 Rotation 8

2.1.3 Translation 9

2.14 Homogeneous Transformations 9

2.2 COORDINATE SYSTEMS 10
2.3 AQUATERNIONS 11
2.3.1 Quaternion Algebra 11

2.3.2 Relationship of Quaternions to Rotations 13

2.3.3 Conversion between Angle-Axis and Rotation Matrix 15
Angle-Axis to Rotation Matrix 15

Rotation Matrix to Angle-Axis 16

2.3.4 Conversion between Quaternion and Angle-Axis 16
Angle-Axis to Quaternion 16

Quaternion to Angle-Axis 17

2.3.5 Conversion between Quaternion and Rotation Matrix 17
Quaternion to Rotation Matrix 17

Rotation Matrix to Quaternion 17

viii

Contents

2.4 EULER ANGLES

25

2.6

24.1

24.2

Factoring Rotation Matrices
Factor as Ry Ry R,
Factor as Ry R R,
Factor as RyRx R,
Factor as Ry R; R
Factor as R R, Ry
Factor as R, Ry R,
Factor Product of Two
Factor Py Py

Factor Py Py

Factor P, P,

Factor P, P,

Factor Py P;

Factor P, P,

STANDARD 3D OBJECTS

2.5.1

2.5.2

2.53

254

2.5.5

2.5.6

Spheres

Sphere Containing Axis-Aligned Box

Sphere Centered at Average of Points
Minimum-Volume Sphere

Oriented Boxes

Axis-Aligned Boxes

Fitting Points with a Gaussian Distribution
Minimum-Volume Box

Fitting Triangles with a Gaussian Distribution
Capsules

Least-Squares Fit

Minimum of Minimum-Area Projected Circles
Lozenges

Fit with a Gaussian Distribution
Minimization Method

Cylinders

Least-Squares Line Contains Axis
Least-Squares Line Moved to Minimum-Area Center
Ellipsoids

Axis-Aligned Ellipsoid

Fitting Points with a Gaussian Distribution
Minimum-Volume Ellipsoid

DiSTANCE METHODS

2.6.1
2.6.2

Point to Linear Component

Linear Component to Linear Component
Line to Line

Line to Ray or Segment

18

19
19
20
21
22
23
23
24
24
24
25
25
26
26

26

26
26
27
28
29
29
29
31
32
32
33
33

34
35
35
36
36
36
37
37
37

38
38
41
42
43

CHAPTER

3

ix

Ray to Ray or Segment, and Segment to Segment 43

2.6.3 Point to Triangle 49

2.6.4 Linear Component to Triangle 53

Line to Triangle 54

Ray to Triangle and Segment to Triangle 57

2.6.5 Point to Rectangle 57

2.6.6 Linear Component to Rectangle 58

Ray to Rectangle and Segment to Rectangle 60

2.6.7 Triangle to Triangle 61

2.6.8 Triangle to Rectangle 61

2.6.9 Rectangle to Rectangle 61
2.6.10 Point to Oriented Box 61
2.6.11 Miscellaneous 65
Point to Ellipse 65

Point to Ellipsoid 66

Point to Quadratic Curve or Quadric Surface 67

Point to Circle in 3D 68

Circle to Circle in 3D 69

Ellipse to Ellipse in 3D 73

THE GRAPHICS PIPELINE 79
3.1 MODEL AND WORLD COORDINATES 80
3.2 PERSPECTIVE PROJECTION 80
3.2.1 Lines Project to Lines 81

3.2.2 Triangles Project to Triangles 83

3.2.3 Conics Project to Conics 83

3.3 CAMERA MODELS 84
33.1 Standard Camera Model 85

3.3.2 General Camera Model 87

3.3.3 Model-to-View Transformation 87

3.34 Mapping to Screen Coordinates 89

3.3.5 Screen Space Distance Measurements 90

3.4 CULLING AND CLIPPING 91
3.4.1 Object Culling 92

34.2 Back Face Culling 92

3.4.3 Clipping 93

Clip World, Transform World to View 97

Clip Model, Transform Model to View 98

Transform Model to View, Clip View 98

X Contents

CHAPTER

4

3.5 SURFACE AND VERTEX ATTRIBUTES 99
3.5.1 Depth 99

3.5.2 Colors 99

3.5.3 Lighting and Materials 100
Lights 100

Materials 101

Lighting and Shading 101

3.54 Textures 105
Coordinate Modes 105

Filtering Modes 106
Mipmapping 106

Multitexture 108

3.5.5 Transparency and Opacity 108

35.6 Fog 109

3.5.7 Combining Attributes 110

3.6 RASTERIZING 113
3.6.1 Lines 113

3.6.2 Circles 117

3.6.3 Ellipses 119
Specifying the Ellipse 119

Axis-Aligned Ellipses 120

General Ellipses 122

3.64 Triangles 124

3.6.5 Interpolation during Rasterization 126
Linear Interpolation 126

Perspective Interpolation 129

3.7 AN EFFICIENT CLIPPING AND LIGHTING PIPELINE 132
3.7.1 Triangle Meshes 132

3.7.2 Clipping a Triangle Mesh 133

3.7.3 Computing Vertex Attributes 136

3.8 [ISSUES OF SOFTWARE, HARDWARE, AND APIs 138
HIERARCHICAL SCENE REPRESENTATIONS 141
4.1 TREE-BASED REPRESENTATION 143
4.1.1 Transforms 144
Local Transforms 144

World Transforms 145

4.1.2 Bounding Volumes 145

4.1.3 Renderer State

146

CHAPTER

S

CHAPTER

Contents

xi

4.14 Animation 147
4.2 UPDATING A SCENE GRAPH 147
4.2.1 Merging Two Spheres 148
4.2.2 Merging Two Oriented Boxes 149
4.2.3 Merging Two Capsules 151
4.2.4 Merging Two Lozenges 151
4.2.5 Merging Two Cylinders 152
4.2.6 Merging Two Ellipsoids 152
4.2.7 Algorithm for Scene Graph Updating 152
4.3 RENDERING A SCENE GRAPH 157
4.3.1 Culling by Spheres 157
4.3.2 Culling by Oriented Boxes 159
4.3.3 Culling by Capsules 160
4.3.4 Culling by Lozenges 161
4.3.5 Culling by Cylinders 163
4.3.6 Culling by Ellipsoids 164
4.3.7 Algorithm for Scene Graph Rendering 166
PICKING 169
5.1 INTERSECTION OF A LINEAR COMPONENT AND A SPHERE 171
5.2 INTERSECTION OF A LINEAR COMPONENT AND A BOX 172
5.2.1 Line Segment 176
5.2.2 Ray 177
5.2.3 Line 179
5.3 INTERSECTION OF A LINEAR COMPONENT AND A CAPSULE 179
5.4 INTERSECTION OF A LINEAR COMPONENT AND A LOZENGE 180
5.5 INTERSECTION OF A LINEAR COMPONENT AND A CYLINDER 181
5.6 INTERSECTION OF A LINEAR COMPONENT AND AN ELLIPSOID 182
5.7 INTERSECTION OF A LINEAR COMPONENT AND A TRIANGLE 182
COLLISION DETECTION 185
6.1 DESIGN ISSUES 186
6.2 INTERSECTION OF DYNAMIC OBJECTS AND LINES 188
6.2.1 Spheres 188

xii Contents

6.3

6.4

6.5

6.6
6.7

6.2.2 Oriented Boxes
6.2.3 Capsules

6.24 Lozenges

6.2.5 Cylinders

6.2.6 Ellipsoids

6.2.7 Triangles

INTERSECTION OF DYNAMIC OBJECTS AND PLANES
6.3.1 Spheres

6.3.2 Oriented Boxes

6.3.3 Capsules

6.3.4 Lozenges

6.3.5 Cylinders

6.3.6 Ellipsoids

6.3.7 Triangles

STATIC OBJECT-OBJECT INTERSECTION
6.4.1 Spheres, Capsules, and Lozenges
6.4.2 Oriented Boxes
6.4.3 Oriented Boxes and Triangles
Axis l-_\:l
Axeshy
Axes A; x E;
644 Triangles
Axes ISI or A:l
Axes E; x F;
Axes N x E,- or M x i",
DYNAMIC OBJECT-OBJECT INTERSECTION
6.5.1 Spheres, Capsules, and Lozenges
6.5.2 Oriented Boxes
Finding the First Time of Intersection
Finding a Point of Intersection
6.5.3 Oriented Boxes and Triangles
Finding the First Time of Intersection
Finding a Point of Intersection
6.5.4 Triangles
Finding the First Time of Intersection
Finding a Point of Intersection

ORIENTED BOUNDING BOX TREES

PROCESSING OF ROTATING AND MOVING OBJECTS

6.7.1 Equations of Motion
6.7.2 Closed-Form Algorithm

190
190
191
191
191
192

193
193
194
196
197
198
201
202

203
204
205
207
209
210
210
210
213
214
214

214
215
217
218
219
223
223
227
232
233
238

244

245

246
248

CHAPTER

-

CHAPTER

Contents

6.7.3 Algorithm Based on a Numerical Ordinary Differential

Equation Solver 249

6.8 CONSTRUCTING AN OBB TREE 250
6.9 A SIMPLE DYNAMIC COLLISION DETECTION SYSTEM 251
6.9.1 Testing for Collision 252

6.9.2 Finding Collision Points 253
CURVES 257
7.1 DEFINITIONS 258
7.2 REPARAMETERIZATION BY ARC LENGTH 260
7.3 SPECIAL CURVES 261
7.3.1 Bézier Curves 261
Definitions 261

Evaluation 262

Degree Elevation 263

Degree Reduction 263

7.3.2 Natural, Clamped, and Closed Cubic Splines 264
Natural Splines 266

Clamped Splines 266

Closed Splines 267

7.3.3 Nonparametric B-Spline Curves 267

7.3.4 Kochanek-Bartels Splines 271

7.4 SUBDIVISION 276
7.4.1 Subdivision by Uniform Sampling 276

7.4.2 Subdivision by Arc Length 276

7.4.3 Subdivision by Midpoint Distance 277

7.4.4 Subdivision by Variation 278

7.4.5 Subdivision by Minimizing Variation 282

7.4.6 Fast Subdivision for Cubic Curves 283

7.5 ORIENTATION OF OBJECTS ON CURVED PATHS 285
7.5.1 Orientation Using the Frenet Frame 285

7.5.2 Orientation Using a Fixed “Up” Vector 286
SURFACES 287

8.1 DEFINITIONS

288

xiv Contents

8.2 CURVATURE

8.3

8.4

8.2.1
8.2.2

8.23

Curvatures for Parametric Surfaces
Curvatures for Implicit Surfaces

Maxima of Quadratic Forms

Maxima of Restricted Quadratic Forms
Application to Finding Principal Curvatures
Curvatures for Graphs

SPECIAL SURFACES

8.3.1

8.3.2

8.3.3
8.3.4
8.3.5

8.3.6

Bézier Rectangle Patches
Definitions

Evaluation

Degree Elevation

Degree Reduction

Bézier Triangle Patches
Definitions

Evaluation

Degree Elevation

Degree Reduction

Bézier Cylinder Surfaces
Nonparametric B-Spline Rectangle Patches
Quadric Surfaces

Three Nonzero Eigenvalues
Two Nonzero Eigenvalues
One Nonzero Eigenvalue
Tube Surfaces

SUBDIVISION

8.4.1

8.4.2

8.4.3

8.4.4

8.45

Subdivision of Bézier Rectangle Patches
Uniform Subdivision

Nonuniform Subdivision

Adjustments for the Camera Model
Cracking

Subdivision of Bézier Triangle Patches
Uniform Subdivision

Nonuniform Subdivision

Subdivision of Bézier Cylinder Surfaces
Uniform Subdivision

Nonuniform Subdivision

Subdivision of Spheres and Ellipsoids
Data Structures for the Algorithm
Subdivision Algorithm

Subdivision of Tube Surfaces

289
289
290
290
291
292
293

293

293
294
294
295
295
297
297
297
298
298
301
302
304
304
305
305
306

306

306
306
313
316
316
321
322
323
328
328
328
328
329
331
339

Contents XV

CHAPTER
9 ANIMATION OF CHARACTERS 341
9.1 KEY FRAME ANIMATION 342
9.1.1 Quaternion Calculus 342
9.1.2 Spherical Linear Interpolation 343
9.1.3 Spherical Cubic Interpolation 345
9.1.4 Spline Interpolation of Quaternions 346
9.1.5 Updating a Key Frame Node 347
9.2 INVERSE KINEMATICS 348
9.2.1 Numerical Solution by Jacobian Methods 350
9.2.2 Numerical Solution by Nonlinear Optimization 351
9.2.3 Numerical Solution by Cyclic Coordinate Descent 351
List Manipulator with One End Effector 352
List Manipulator with Multiple End Effectors 354
Tree Manipulator 355
Other Variations 355
9.3 SKINNING 356
CHAPTER
1!
1@ GEOMETRIC LEVEL OF DETAIL 359
10.1 SPRITES AND BILLBOARDS 360
10.2 DISCRETE LEVEL OF DETAIL 361
10.3 CONTINUOUS LEVEL OF DETAIL 362
10.3.1 Simplification Using Quadric Error Metrics 362
10.3.2 The Algorithm 364
10.3.3 Construction of the Error Metric 365
10.3.4 Simplification at Run Time 365
10.3.5 Selecting Surface Attributes 366
CHAPTER
11 TERRAIN 369
11.1 TERRAIN TOPOLOGY 370
11.2 VERTEX-BASED SIMPLIFICATION 373
11.2.1 Distant Terrain Assumption 373
11.2.2 Close Terrain Assumption 374

11.2.3 No Assumption 375

xvi

Contents

CHAPTER

11.3 BLOCK-BASED SIMPLIFICATION 375
11.3.1 Distant Terrain Assumption 376
11.3.2 Close Terrain Assumption 378
11.3.3 No Assumption 379

11.4 VERTEX DEPENDENCIES 381

11.5 BLocK RENDERING 383

11.6 THE FULL ALGORITHM 385

11.7 OTHER ISSUES 392
11.7.1 Terrain Pages and Memory Management 392
11.7.2 Vertex Attributes 395
11.7.3 Height Calculations 397

11.8 HEIGHT FIELDS FROM POINT SETS OR TRIANGLE MESHES 398
11.8.1 Linearinterpolation 398
11.8.2 Quadratic Interpolation 399

Barycentric Coefficients as Areas 399
Inscribed Circles 400
Bézier Triangles 401
Derivatives 402
Derivative Continuity 403
The Algorithm 404

SPATIAL SORTING 411

12.1 QUADTREES AND OCTREES 412

12.2 PORTALS 413

12.3 BINARY SPACE PARTITIONING 417
12.3.1 BSP Tree Construction 418
12.3.2 Hidden Surface Removal 420

Back-to-Front Drawing 420
Front-to-Back Drawing 423
12,3.3 Visibility Determination 424
View Space Method 425
Screen Space Method 425
12.3.4 Picking and Collision Detection 425

CHAPTER

13

APPENDIX

A

Contents XVl

SPECIAL EFFECTS 427
13.1 LENS FLARE 427
13.2 ENVIRONMENT MAPPING 428
13.3 BUMP MAPPING 429
13.4 VOLUMETRIC FOGGING 430
13.5 PROJECTED LIGHTS 430
13.6 PROJECTED SHADOWS 431
13.7 PARTICLE SYSTEMS 432
13.8 MORPHING 433
OBJECT-ORIENTED INFRASTRUCTURE 435
A.l OBJECT-ORIENTED SOFTWARE CONSTRUCTION 435
A.l.1 Software Quality 436
A.1.2 Modularity 437

The Open-Closed Principle 438

A.1.3 Reusability 439
A.1.4 Functions and Data 440

A.1l.5 Object Orientation 441

A.2 StYLE, NAMING CONVENTIONS, AND NAMESPACES 442
A.3 RUN-TIME TYPE INFORMATION 444
A.3.1 Single-Inheritance Systems 444
A.3.2 Multiple-Inheritance Systems 47
A.3.3 Macro Support 450

A.4 TEMPLATES 451
A.5 SHARED OBJECTS AND REFERENCE COUNTING 453
A.6 STREAMING 459
A6.1 Saving Data 459
A.6.2 Loading Data 460
A.6.3 Streaming Support 461

A.7 STARTUP AND SHUTDOWN

xviii Contents

APPENDIX

B

NUMERICAL METHODS 469
B.1 SYSTEMS OF EQUATIONS 469
B.1.1 Linear Systems 469

B.1.2 Polynomial Systems 470

B.2 EIGENSYSTEMS 472
B.3 LEAST-SQUARES FITTING 472
B.3.1 Linear Fitting of Points (x, f(x)) 472

B.3.2 Linear Fitting of Points Using Orthogonal Regression 473

B.3.3 Planar Fitting of Points (x, ¥, f(x, ¥)) 474

B.3.4 Hyperplanar Fitting of Points Using Orthogonal Regression 475

B.3.5 Fitting a Circle to 2D Points 476

B.3.6 Fitting a Sphere to 3D Points 478

B.3.7 Fitting a Quadratic Curve to 2D Points 480

B.3.8 Fitting a Quadric Surface to 3D Points 481

B.4 MINIMIZATION 481
B.4.1 Methods in One Dimension 481
Brent’s Method 482

B.4.2 Methods in Many Dimensions 482
Steepest Descent Search 483

Conjugate Gradient Search 483

Powell’s Direction Set Method 484

B.5 ROOT FINDING 485
B.5.1 Methods in One Dimension 485
Bisection 486

Newton’s Method 486

Polynomial Roots 486

B.5.2 Methods in Many Dimensions 489
Bisection 490

Newton’s Method 490

B.6 INTEGRATION 491
B.6.1 Romberg Integration 491
Richardson Extrapolation 491

Trapezoid Rule 493

The Integration Method 494

B.6.2 Gaussian Quadrature 495

B.7 DIFFERENTIAL EQUATIONS 496
B.7.1 Ordinary Differential Equations 496

Euler’s Method

497

Contents

Midpoint Method
Runge-Kutta Fourth-Order Method
Runge-Kutta with Adaptive Step
B.7.2 Partial Differential Equations
Parabolic: Heat Transfer, Population Dynamics
Hyperbolic: Wave and Shock Phenomena
Elliptic: Steady-State Heat Flow, Potential Theory
Extension to Higher Dimensions

B.8 FAST FUNCTION EVALUATION

B.8.1 Square Root and Inverse Square Root
B.8.2 Sine, Cosine, and Tangent

B.8.3 Inverse Tangent

B.8.4 CORDIC Methods

GLOSSARY
BIBLIOGRAPHY
INDEX

ABOUT THE AUTHOR
ABOUT THE CD-ROM
TRADEMARKS

497
498
498
499

501
502
502

503

503
504
505
507

509
521
527
557
559
561

FIGURES

2.1 Thesix possibilities for I x J. 41
2.2 Various level curves Q(s, 1) = V. 44
2.3 Partitioning of the st-plane by triangle domain D. 50
2.4 Various level curves Q(s,1)=V. 51
3.1 Relationship between s and 5. 82
3.2 Thestandard camera model. 85
3.3 Object with front facing and back facing triangles indicated. 93
3.4 Four configurations for triangle splitting. 94
3.5 Various light sources. 101
3.6 Pixels that form the best line segment between two points. 113
3.7 Pixel selection based on slope. 114
3.8 Deciding which line pixel to draw next. 115
3.9 Deciding which circle pixel to draw next. 118
3.10 Three configurations for clipped triangle. 135
3.11 Three configurations for clipped triangle. 137
4.1 Asimple tree with one grouping node. 143
4.2 Examples of culled and unculled objects. 158
43 Examples of culled and unculled objects. 160
4.4 Projection of cylinder and frustum plane, no-cull case. 163
4.5 Projection of ellipsoid and frustum plane, no-cull case. 165
5.1 The three cases for clipping when dy > 0. 173
5.2 The three cases for clipping when dy < 0. 173
5.3 The two cases for clipping when dy = 0. 174
5.4 Typical separating axis for a line segment and a box. 176
5.5 Typical situations for a ray and a box. 178
5.6 Partitioning of a line by a capsule. 180
5.7 Partitioning of a line by a lozenge. 181

xxii Figures

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
7.11

8.1
8.2
8.3
8.4
85
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24

9.1

Parameters: 7 =0,y =0, =0.
Parameters:t =1,y =0, 8= 0.
Parameters: 1 =0,y =1, 8=0.
Parameters: 1 =0,y =0,8=1.
Parameters: 1 = —1,y=0,8=0.
Parameters: 7 =0,y =—1,=0.
Parameters: 1 =0,y =0, 8 = —1.
Uniform subdivision of a curve.
Subdivision of a curve by arc length.
Subdivision of a curve by midpoint distance.
Subdivision of a curve by variation.

Polynomial coefficients for n = 2.

Polynomial coefficients for n = 3.

Polynomial coefficients for n = 4.

Subdivisions of parameter space for a rectangle patch.
Subdivision that contains cracking.

Subdivision that has no cracking.

Subdivision that contains more complicated cracking.
Partial subdivision with three subdividing edges.

Partial subdivision illustrating the parent’s topological constraint.

Partial subdivision with two adjacent subdividing edges.

Partial subdivision illustrating the parent’s topological constraint.

Partial subdivision with two opposing subdividing edges.
Partial subdivision with one subdividing edge.

Subdivision based on calculating information in adjacent block.
Subdivisions of parameter space for a triangle patch.
Subdivision of a triangle and the corresponding binary tree.
H-adjacency for triangles A and B.

H-adjacency for triangles A and C.

H-adjacency for triangles A and D.

Pattern for subdivision of a triangle.

Working set of vertices, edges, and triangles.

Subdivided triangle.

Possible orientations of adjacent trianglc with central triangle.
‘lessellation of parameter space for a tube surface.

A general linearly linked manipulator.

273
273
274
274
275
275
276
277
277
279
283

297
298
299
307
316
317
318
318
319
319
320
320
320
321
322
324
325
326
326
327
332
332
336
339

349

10.1

1.1
11.2
11.3
11.4

11.5

11.6
11.7
11.8
1.9
11.10

1111
11.12
11.13
11.14
11.15
11.16
11.17

12.1
12.2
12.3
12.4
12.5
12.6

13.1

Al
A2

Figures

Edge contraction.

A5 x 5 height field and quadtree representation.
The topology for a single block.
The seven distinct triangle configurations.

The smallest simplification and highest resolution for four sibling
blocks.

A single block with nine vertices labeled and all eight triangles
drawn.

Special case for optimization when (Dy, D) = (1, 0).

Vertex dependencies for an even block (left) and an odd block (right).

Minimal triangulation after block-based simplification.
Triangulation after vertex dependencies are satisfied.

The upper-left block shows one set of dependents for the added
vertex.

The left block is the configuration after block simplification.
Binary tree for the right block in Figure 11.11.

Adjacent triangles forming a nonconvex quadrilateral.
Adjacent Bézier triangle patches,

Control points in triangle subdivision.

The required coaffine subtriangles are shaded in gray.
Illustration for geometric relationships between the vertices.

[Mustration of visibility through a portal.

Simple portal example.

L-shaped region in a portal system.

BSP tree partitioning R?.

Two polygons that cannot be sorted.

One-dimensional BSP tree representing drawn pixels on a scan line.

[lustration of environment mapping.

Single-inheritance hierarchy.
Multiple-inheritance hierarchy.

363

371
3n2
372

373

374
379
382
382
382

383
384
384
401
404
405
406
407

414
416
416
418
421
424

429

445
448

3.1
3.2

5.1

6.1

6.2
6.3
6.4

6.5
6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

TABLES

Combining a single texture and vertex colors.
Combining multitextures.

Separating axis tests for a line segment and a box.

Relationship between sphere-swept volumes and distance calculators
(pnt, point; seg, line segment; rct, rectangle).

Values for R, Ro, and R, for the separating axis tests.

Values for R, po, p1, and p; for the separating axis tests.

Values for p; and q; for the separating axis tests for noncoplanar
triangles.

Values for p; and g; for the separating axis tests for coplanar triangles.

Relationship between sphere-swept volumes and distance calculators
when the second object is moving (pnt, point; seg, line segment;

rct, rectangle; pgm, parallelogram; ppd, parallelepiped;

hex, hexagon).

Values for R, Rg, and R, for the separating axis test R > Ro + R for
two boxes in the direction of motion.

Coefficients for unique points of oriented bounding box-oriented
bounding box intersection.

Coefficients for unique points of triangle-OBB intersection for

X/ and Z,‘.

Coefficients for unique points of triangle-OBB intersection for

Zo X E j*

Coefficients for unique points of triangle-OBB intersection for

/-'il X E j-

Coefficients for unique points of triangle-OBB intersection for

Z 2 X E je

Coefficients for unique points of triangle-triangle intersection.

111
112

177

204

208
209

212
212

215

218

224

232

233

234

235
243

xxvi Tables

Al

B.1
B.2
B.3
B.4

Values for rmin and rmax based on eye point location.

Encoding for the various types to be used in identifier names.

Signs of the Sturm polynomials for 1> + 212 — 1 at various ¢ values.

Signs of the Sturm polynomials for (r — 1)? at various t values.
Coefficients for polynomial approximations to Tan™!(z).
Various parameters for the CORDIC scheme.

378

489
489
506
507

PREFACE

This book is the culmination of many years of reading and participating in the
Internet newsgroups on computer graphics and computer games, most notably
comp.graphics.algorithms and the hierarchy of groups comp.games.development. The
focus of my participation has been to provide free source code that solves common
problems that arise in computer graphics, image analysis, and numerical methods,
available through Magic Sofltware at www.magic-software.com. The book is also a tech-
nical summary of my experiences in helping to produce a commercial game engine,
NetImmerse, developed by Numerical Design Limited (NDL), www.ndl.com.

The focus of this book is on understanding that a game engine, or more generally
areal-time computer graphics engine, is a complex entity that consists of more than
simply a rendering layer that draws triangles. It is also more than just a collection
of unorganized technigues. A game engine must deal with issues of scene graph
management as a front end that efficiently provides the input to the back end renderer,
whether it be a software- or hardware-based renderer. The engine must also pravide
the ability to process complex and moving objects in a physically realistic way. The
engine must support collision detection, curved surfaces as well as polygonal models,
animation of characters, geometric level of detail, terrain management, and spatial
sorting. Moreover, the engine is large enough that the principles of object-oriented
design must be practiced with great care.

The chapters of this book tend to be fairly mathematical and geometrical. The
intended audience includes anyone who is interested in becoming involved in the de-
velopment of a real-time computer graphics engine. It is assumed that the reader’s
background includes a basic understanding of vector and matrix algebra, linear alge-
bra, multivariate calculus, and data structures.

Many people have directly or indirectly contributed to the book. Most notable are
the engincers at NDL: Lars Bishop, Jon McAllister, Chad Robertson, Rob Thillips,
Tim Preston, Scott Sherman, Ed Holzworth, and Andy Jones. Lars and I are the
primary architects for Netlmmerse. He is the renderer expert, especially with regards
to Direct3D, and has been instrumental in helping me to understand many of the
issues for rendering. Wealso have had many productive design sessions about how best
ta incorporate the ideas for scene graph management to properly feed the renderers
and to properly manage renderer state. Chad and Rob are the animation experts.
‘They did a lot of legwork on understanding how various modeling packages animate
characters and deciding how NetImmerse can best support the animation. Chad also
contributed many good ideas on how to structure the collision detection system to
work well with the hierarchical scene graph system. Jon is the expert on continuous
level of detail and has implemented some of the algorithms mentioned in this book
for NetImmerse. The implementations go well beyond what is discussed here and

xxvil

xxviil Preface

addressed practical concerns that some of the research papers did not cover. Jon also
worked with Chad and Rob on the integration of continuous level of detail with the
skin-and-bones system, a nontrivial task. Tim was helpful in reading Chapter 8 and
attempting to implement the top-down algorithm as I originally wrote it. He pointed
out what I had overlooked, leading to some fine discussions about how to properly
tessellate the surfaces without paying for a large memory overhead. The algorithm
as described in this book reflects these discussions. Finally, Bill Baxter was a summer
intern from the University of North Carolina, but in his time at NDL was able to
investigate the topic of inverse kinematicsand implement that system in NetImmerse.
Discussions with him led to my understanding of how inverse kinematics should work
in the game engine and is reflected in how I wrote the section on that topic.

I want to thank the reviewers for the book: Ian Ashdown (byHeart Consul-
tants Limited), John Laird (University of Michigan), Jeff Lander (Darwin 3D), Franz
Lanzinger (Actual Entertainment), Ming Lin (University of North Carolina), Peter
Lipson (Mindscape), Tomas Moller (Chalmers), Andrea Pessino (Blizzard Entertain-
ment), and Steve Woodcock (Raytheon). They spent a quite large amount of time
reading over the two drafts of the book and provided many helpful comments and
criticisms. [also want to thank my editor, Tim Cox, and his assistants, Brenda Mod-
liszewski and Stacie Pierce, for the time they have put into helping the book come to
completion.

CHAPTER

INTRODUCTION

I have no fault to find with those who teach geometry. That science 1s the only one which
has ot produced sects; it is founded on analysis and on synthesis and on the calculus;

it does not occupy itself with probable truth; moreover it has the same method in

every country.

—Frederick the Great

]..]. A BRIEF MOTIVATION

Computer graphics has been a popular area of computer science for the last few
decades. Much of the research has been focused on obtaining physical realism in
rendered images, but generating realistic images comes at a price. The algorithms
tend to be computationally expensive and must be implemented on high-end, special-
purpose graphics hardware affordable only by universities through research funding
or by companies whose focus is computer graphics. Although computer games have
also been popular for decades, for most of that time the personal computers available
to the general public have not been powerful enough to produce realistic images.
The game designers and programmers have had to be creative to produce immersive
environments that draw the attention of the player to the details of game play and yet
do not detract from the game by the low-quality graphics required for running on a
low-end machine.

Chapter opening image is from Prince of Persia All Prince of Persia images Copyngh1 « 1999, 2000 Mattel
Interactive and Jordan Mechner All Rights Reserved. Prince of Persia is a registered trademark of Mautel
Interactive.

1

2 Chapter 1 Introduction

Times are changing. As computer technology has improved, the demand for more
realistic computer games that support real-time interaction has increased. Moreover,
the group of computer gamers itself has evolved from a small number of, shall we say,
computer geeks to a very large segment of the population. One of the most popular,
successful, and best-selling games was Myst, created and produced by Cyan Produc-
tions and published through Broderbund. This game and others like it showed that
an entirely new market was possible—a market that included the general consumer,
not just computer-savvy people. The increased demand for games and the potential
size of the market has created an impetus for increased improvement in the computer
technology—a not-so-vicious circle.

One result of the increased demand has been the advent of hardware-accelerated
graphics cards that off-load a lot of the work a CPU normally does for software
rendering. The initial cards were add-ons that handled only the 3D acceleration
and ran only in full-screen mode. The 2D graphics cards were still used for the
standard graphics display interface (GDI) calls. Later-generation accelerators have
been designed to handle both 2D GDI and 3D acceleration within a window that is
not full screen. Since triangle rasterization has been the major bottleneck in software
rendering, the hardware-accelerated cards have acted as fast triangle rasterizers. As of
the time of this writing, the next-generation hardware cards are being designed to off-
load even more work. In particular, the cards will perform point transformations and
lighting calculations in hardware.

Another result of the increased demand for games has been the evolution of the
CPUs themselves to include support for operations that typically arise in game appli-
cations: fast division, fast inverse square roots (for normalizing vectors), and paral-
lelism to help with transforming points and computing dot products. The possibilities
for the evolutionary paths are endless. Many companies are now exploring new ways
to use the 3D technology in applications other than games, for example, in Web com-
merce and in plug-ins for business applications.

And yet one more result of the increased demand is that a lot of people now want
to write computer games. The Internet newsgroups related to computer graphics,
computer games, and rendering application programmer interfaces (APIs) are filled
with questions from eager people wanting to know how to program for games. At its
highest level, developing a computer game consists of a number of factors. First and
foremost (at least in my opinion) is having a good story line and good game play—
without this, everything else is irrelevant. Creation of the story line and deciding
what the game play should be can be categorized as game design. Once mapped out,
artists must build the game content, typically through modeling packages. Interaction
with the content during run time is controlled through game artificial intelligence,
more commonly called game Al. Finally, programmers must create the application to
load content when needed, integrate the Al to support the story line and game play,
and build the game engine that manages the data in the world and renders it on the
computer screen. The last topic is what this book is about—building a sophisticated
real-time game engine. Although games certainly benefit from real-time computer

1.2 A Summary of the Chapters 3

graphics, the ideas in this book are equally applicable to any other area with three-
dimensional data, such as scientific visualization, computer-aided design, and medical
image analysis.

]..2 A SUMMARY OF THE CHAPTERS

The classical view of what acomputer graphics engine does is the rendering of triangles
{or polygons). Certainly this is a necessary component, but it is only half the story.
Viewed as a black box, a renderer is a consumer-producer. It consumes triangles and
produces output on a graphics raster display. As a consumer it can be fed too much
data, too quickly, or it can be starved and sit idly while waiting for something to do. A
front-end system is required to control the input data to the renderer; this process is
called scene graph management. The main function of the scene graph management is
to provide triangles to the renderer, but how those triangles are obtained in the first
place is a key aspect of the front end. The more realistic the objects in the scene, the
more complex the process of deciding which triangles are sent to the renderer. Scene
graph management consists of various modules, each designed to handle a particular
type of object in the world or to handle a particular type of process. The common
theme in most of the modules is geometry.

Chapter 2 covers basic background material on geometrical methods, including
matrix transformations, coordinate systems, quaternions, Euler angles, the standard
three-dimensional objects that occur most frequently when dealing with bounding
volumes, and a collection of distance calculation methods.

The graphics pipeline, the subject of Chapter 3, is discussed in textbooks on
computer graphics to varying degrees. Some people would argue against the inclusion
of some parts of this chapter, most notably the sections on rasterization, contending
that hardware-accelerated graphics cards handle the rasterization for you, so why
bother expounding on the topic. My argument for including these sections is twofold.
First, the computer games industry has been evolving in a way that makes it difficult
for the “garage shop” companies to succeed. Companies that used to focus on creating
games in-house are now becoming publishers and distributors for other companies.
If you have enough programmers and resources, there is a chance you can convince a
publisher to support your effort. However, publishers tend to think about reaching the
largest possible market and often insist that games produced by their clients run on
low-end machines without accelerated graphics cards. And so the clients, interested in
purchasing a third-party game engine, request that software renderers and rasterizers
be included in the package. I hope this trend goes the other way, but the commercial
reality is that it will not, at least in the near future. Second, hardwarc-accelerated cards
do perform rasterization, but hardware requires drivers that implement the high-level
graphics algorithms on the hardware. The cards are evolving rapidly, and the quality
of the drivers is devolving at the same rate—no one wants to fix bugs in the drivers

4 Chapter | Introduction

for a card that will soon be obsolete. But another reason for poor driver quality is
that programming 3D hardware is a much more difficult task than programming
2D hardware. The driver writers need to understand the hardware and the graphics
pipeline. This chapter may be quite useful to that group of programmers.

Chapter 4 introduces scene graph management and provides the foundation
for a hierarchical organization designed to feed the renderer efficiently, whether a
software or hardware renderer. The basic concepts of local and world transforms,
bounding volumes for culling, render state management, and animation support are
covered.

Chapters 5 and 6 discuss aspects of the intersection of objects in the world. Picking
is the process of computing theintersection of a line, ray, or line segment with objects.
Collision detection refers to computing intersections between planar or volumetric
objects. Some people include picking as part of the definition of collision detection,
but the complexity of collision systems for nonlinear objects greatly exceeds that for
picking, so I have chosen to separate the two systems.

Chapters 7 through 12 cover various systems that are supported by the scene graph
management system. Chapters 7 and 8, on curves and surfaces, are somewhat general,
but the emphasis is on tessellation. The next-generation game consoles have power-
ful processors but are limited in memory and bandwidth between processors. The
dynamic tessellation of surfaces is desirable since the surfaces can be modeled with
a small number of control points (reducing memory usage and bandwidth require-
ments) and tessellated to as fine a level as the processors have cycles to spare. The
emphasis will start to shift from building polygonal models to building curved surface
models to support the trend in new hardware on game consoles. Chapter 9 discusses
the animation of geometric data, and in particular, key frame animation, inverse kine-
matics, and skin-and-bones systems. Level of detail is the subject of Chapter 10, with
a special focus on continuous level of detail, which supports dynamic change in the
number of triangles to render based on view frustum parameters.

Chapter 11 presents an algorithm for handling terrain. Although there are other
algorithms that are equally viable, I chose to focus on one in detail rather than briefly
talk about many algorithms. The key ideas in implementing this terrain algorithm are
applicable to implementing other algorithms. High-level sorting algorithms, includ-
ing portals and binary space partitioning trees, are the topic of Chapter 12.

Chapter 13 provides a brief survey of special effects that can be used in a game
engine. The list is not exhaustive, but it does give an idea of what effects are possible
with not much effort.

Building a commercial game engine certainly requires understanding a lot about
computer graphics, geometry, mathematics, and data structures. Just as important is
properly architecting the modules so that they all integrate in an efficient manner. A
game engine is a large library to which the principles of object-oriented design apply.
Appendix A provides a brief review of those principles and includes a discussion on
an object-oriented infrastructure that makes maintenance of the library easier down
the road. These aspects of building an engine are often ignored because it is faster
and easier to try to get the basic engine up and running right away. However, short-

1.3 TextIs Not Enough 5

term satisfaction will inevitably come at the price of long-term pain in maintenance.
Appendix B is a summary of various numerical methods that, in my experience, are
necessary to implement the modules described in Chapters 7 through 12.

1.3 TEXT IS NOT ENOUGH

This book is not like the academic textbooks you would find in the school bookstore
or the popular computer game programming books that you see at your favorite
bookseller. Academic texts on computer graphics tend to be tomes covering a large
number of general topics and are designed for learning the basic concepts, not for
implementing a full-blown system. Algorithmic details are modest in some books and
lacking in others. The popular programming books present the basic mathematics and
concepts, but in no way indicate how complex a process it is to build a good engine.
The technical level in those books is simply insufficient.

A good collection of books that address more of the algorithmic issues for com-
puter graphics is the Graphics Gems series (Glassner 1990; Aarvo 1991; Kirk 1992;
Heckbert 1994; Paeth 1995). Although providing a decent set of algorithms, the col-
lection consists of contributions from various people with no guidance as to how to
incorporate these into a larger integrated package such as a game engine. The first real
attempt at providing a comprehensive coverage of the topics required for real-time
rendering is Méller and Haines (1999), which provides much more in-depth cover-
age about the computer graphics topics relevant to a real-time graphics engine. The
excellent references provided in that book are a way to investigate the roots of many
of the concepts that current-generation game engines incorporate.

But there is one last gap to fill. Textual descriptions of graphics algorithms, no
matter how detailed, are difficult to translate into real working code, even for ex-
perienced programmers. Just try to implement some of the algorithms described in
the ACM SIGGRAPH proceedings! Many of those articles were written after the au-
thors had alieady worked out the details of the algorithms and implemented them.
That process is not linear. Ideas are formulated, algorithms are designed, then im-
plemented. When the results of the coding point out a problem with the algorithmic
formulation, the ideas and algorithms are reformulated. This natural process iterates
until the final results are acceptable. Written and published descriptions of the algo-
rithms are the final summary of the final algorithm. However, taken out of context
of the idea-to-code environment, they sometimes are just not enough. Because hav-
ing an actual implementation to look at while attempting to learn the ideas can only
accelerate the learning process, a CD-ROM containing an implementation of a game
engine accompanies this book. While neither as feature complete nor as optimized as
a commercial engine, the code should help in understanding the ideas and how they
are implemented. Pointers to the relevant source code files that implement the ideas
are given in the text.

CHAPTER

GEOMETRICAL METHODS

his chapter provides some basic mathematics, geometry, and algorithms that
will be used throughout the book. I am assuming that you are familiar with the
concepts of elementary vector and matrix algebra: vectors, matrices, dot product, cross
product, and length. I am also assuming that you are familiar with the basic concepts
in calculus: continuity, derivatives, and integrals. The set of real numbers is denoted R,
and the set of vectors with n components is R". In almost all cases in this book, n < 3.
Numerical methods that are referred to in the book are described in Appendix B.
Transformations (Section 2.1) and coordinate systems (Section 2.2) are pervasive
throughout a game engine. In particular, the graphics pipeline (Chapter 3) and scene
graph management (Chapter 4) require a thorough understanding of these topics.
Section 2.3 covers the topic of quaternions and describes what these entities are and
how they relate to rotations, which are fundamental in orienting objects. For key
frame animation, sequences of rotations must be interpolated in a way that produces
reasonable in-between orientations. Quaternions are quite useful for interpolation.
Section 2.4 covers the topic of Euler angles and shows how to work with rotations
viewed in this way. In particular, there is a discussion of how to factor rotations into
ones that represent rotation about coordinate axes, which many applications require.

7

8 Chapter 2 Geometrical Methods

Certain types of 3D objects are useful in a game engine, especially spheres and
oriented boxes. Other types that are less frequently seen but are nevertheless quite
useful are cylinders, ellipsoids, capsules, and lozenges. These objects are defined and
their properties listed in Section 2.5. Finally, Section 2.6 discusses computing distance
between various geometric entities. Computing distance accurately and efficiently is
absolutely essential for collision detection.

2.]. TRANSFORMATIONS

s

B s

£#¥0rce cone

Core

FILENAME

Vector3
Matrix3

A matrix M : R — R3 is called a linear transformation and maps vectors to vectors
by Y = MX. The linearity refers to the property that MU +V)y=cMU + MV
for any scalar c and any vectors U and V. The zero matrix is a matrix with all zero
entries. The identity matrix is the matrix I with 1 on the diagonal entries and 0 for
the other entries. A matrix is said to be invertible if there exists a matrix, denoted
M, such that MM~ = M~'M = I. The transpose of a matrix M = [m;;] is the
matrix MT = [m j;]. That is, the rows of M become the columns of MT. A matrix is
symmetric if MT = M or skew-symmetric if MT = ~M. Diagonal matrices D = [d;;]
have the property di; =0 for i # j and are typically denoted D = diag(a, b, c}.
Some special 3 x 3 matrices that appear regularly in computer graphics are described
below.

2.1.1 ScALING

If a diagonal matrix D = diag(d, d, d2} has all positive entries, it is a scaling matrix.
Each diagonal term represents how much stretching (d; > 1) or shrinking (d; <
1) occurs for the corresponding coordinate direction. Uniform scaling is D = sI =
diag(s, s, s} for s > 0.

2.1.2 ROTATION

A matrix R is a rotation matrix if its transpose and inverse are the same matrix; that
is, R™' = RT, in which case RRT = RTR = I. The matrix has a corresponding unit-
length axis of rotation U and angle of rotation 8. The choice is not unique since —U
is also an axis of rotation and 6 + 2k for any integer k is an angle of rotation. If
[= (uo, 4y, u3), define the skew-symmetric matrix S by

0 Uy —u,

2.1 Transformations 9

The rotation corresponding to axis I/ and angle 8 is

R=1+ (sin8)S + (1 — cos 8)S2.

2.1.3 TRANSLATION

Translation of vectors by a fixed vector T € R? is represented by the function ¥ =
X + T for X, ¥ € R, Itis not possible to represent this as a linear transformation of
the form ¥ = M X for some constant matrix M. However, if the problem is embedded
in a four-dimensional setting, it is possible to represent translation with a linear
transformation. The next section describes how to do this.

2.1.4 HOMOGENEOUS TRANSFORMATIONS

A vector (x, y, z) € R? can be mapped uniquely onto a vector (x, y, z, 1) € R%. Other
vectors (x, y, z, w) € R* can be projected onto the hyperplane w = 1 by (x, y, z, w) —
(x/w, y/w, z/w, 1). An entire line of points (with origin (0, 0, 0, 0)) is projected onto
the single point (x, y, z, 1). All of R* \ {0} is partitioned into equivalence classes,
each class having representative projection (x, y, z, 1). A 4-tuple in this setting is
called a homogeneous coordinate. Two homogeneous coordinates that are equivalent
are indicated to be so by (xo, Yo, 2o, Wo) ~ (X1, ¥1» 21> W).

Transformations can be applied to homogeneous coordinates to obtain other
homogeneous coordinates. Such a4 x 4 matrix H = [h;;],0<i <3and0 < j <3,
is called a homogeneous transformation as long as h33 = 1. Usually, homogeneous
matrices are written as a 2 x 2 block matrix,

M|T
H=_ ’
STt

where the M is 3 x 3, T is 3 x 1, §T is 1 x 3, and the lower-right entry is just the
scalar 1. The product of a homogenous coordinate and homogeneous transformation
in block format is

= - o = MV twT
w=| 2T [£]- MY+ | S5vew

Any 3 x 3 linear transformation M can be represented by the homogeneous
matrix

M|0
671 |

Chapter 2 Geometrical Methods

Moreover, translation by vector T can also be represented by a homogeneous trans-
formation,

1| T
ot 1|

The two can be composed to represent ¥ = MX + T as

BREA b

Assuming M is invertible, the equation can be solved for X=M ”(f’ — i'). Thus,
the inverse of a homogeneous matrix is

M|TT' M| -M'T
6|1 | | or 1|

Perspective prajection is discussed in Chapter 3, It too can be represented by a
homogenous matrix where the lower-left entry ST is not the zero vector. Most graph-
ics textbooks discuss the geometric pipeline in terms of products of homogeneous
transformations. That notation is a convenience and is not particularly useful in an
implementation unless the underlying hardware has native support for vector and
matrix operations in four dimensions.

2.2 COORDINATE SYSTEMS

A 3D coordinate system consists of an origin P and three coordinate axes Uo, Uy,and Uz
that are each unit length and mutually perpendicular. The axes can be written as the
columns of a matrix, R [Uo | Uy | U,]. This matrix is orthonormal; thatis, R~! =
RT and | det(R) |= 1. The coordinate system is said to be right-handed if det(R) = 1
or left-handed if det(R) = —1. The axes in a right-handed coordinate system satisfy
Uo = U, x Uz, Ul Uz x Lo, and Uz = Uo x U1 In a left-handed coordinate system,
Uo=U; x U,, U1 Up x L’z, and U; = Uy x Uo The standard Euclidean coordinate
system is right-handed and has origin P =(0,0,0), Uo =(1,0,0), Ul = (0, 1, 0),and
Uz =(0,0, 1).

Given a coordinate sysiein, any vector X can be written in terms of that system as
X P+ yoUo + lel + yzUz P + RY It is simple to solve this system to obtain

= RT(X — P). Specifically, y; = U; - (X — P) for0 <i < 2.

2.3 Quaternions 11

2.3 QUATERNIONS

This section provides a mathematical summary of quaternion algebra and calculus
and explains how they relate to rotations and interpolation of rotations. The ideas are
based on Shoemake (1987).

2.3.1 QUATERNION ALGEBRA

LIBRARY

Core

FILENAME

Quaternion

A quaternion is givenby g = w + xi + yj + zk, where w, x, y, and z are real numbers.
Defineg, = w, + xpi + ynj + 22k (n =0, 1). Addition and subtraction of quaternions
is defined by

qgo L q1 = (wo + xof + yoj + zok) (wy + x1i +y1j + 21k)
= (wo % wy) + (xo 2 x)i + (Yo 31)Jj + (20 = 21)k. (2.1)

Multiplication for the primitive elements /, j, and k is defined by i = j2 =k =
—1,ij=—ji =k, jk=—kj=i,and ki = —ik = j. Multiplication of quaternions is
defined by

qgogh = (wo + xof + yoj + zok)(wy + xyi + y1j + 21k)
= (wow; — XoX; — Yo¥1 — 20Z1) + (wox; + xowy + yoz1 — 203)i +

(woy1 — x0z1 + yow; + zox1)j + (woz1 + Xo¥1 — yox1 + zow)k. (2.2)

Multiplication is not commutative; that is, the products gog, and ¢, are not neces-
sarily equal, This is clearly evident for primitive elements since k = ij # ji = —k.
The conjugate of a quaternion is defined by

" =(w+xi+yj+zk)'=w—xi —yj—zk. (2.3)

The conjugate of a product of quaternions satisfies the properties (p*)* = p and
(pq)* =4q"p*.
The norm of a quaternion is defined by

N@=Nw+xi+yj+zh)=w? +x2 +y* + 7% (2.4)

The norm is a real-valued function, and the norm of a product of quaternions satisfies
the properties N(g*) = N(y) and N(py) = N(p)N(y).

The multiplicative inverse of a quaternion ¢ is denoted ¢ ~! and has the property
qq~' = ¢~ 'q = 1. It is constructed as

9 '=q*/N(q), (2.5)

12 Chapter 2 Geometrical Methods

where the division of a quaternion by a real-valued scalar is just componentwise
division. The inverse operation satisfies the properties (p~!)™! = p and (pg)~' =
—1,-1
q9 P .
A simple but useful function is the selection function

Wig=Ww+zxi+yj+zk)=w, (2.6)

which selects the real part of the quaternion. This function satisfies the property
W(g) = (g +4*)/2.

The quaternion ¢ = w + xi + yj + zk may also be viewed as ¢ = w + ¥, where
v=xi + yj + zk. If ¥ is identified with the 3D vector (x, y, z), then quaternion
multiplication can be written using vector dot product (-) and cross product (x) as

(wo + Vo) (w1 + 01) = (wow, — Vo - B)) + woty + wylp + Do X D1 (2.7)

In this form it is clear that gog: = 1499 if and only if %y x ¥) = 0 (these two vectors
are parallel).

A quaternion ¢ may also be viewed as a 4D vector (w, x, y, z). The dot product of
two quaternions is

4o q1 = wow) + xox1 + yoy1 + 2021 = W(qoqy)- (2.8)
A unit quaternion is a quaternion ¢ for which N(g) = 1. The inverse of a unit

quaternion and the product of unit quaternions are themselves unit quaternions. A
unit quaternion can be represented by

q =cos @ + usin b, (2.9)
where & = ugi + u,j + uzk and vector (uo, u), u2) has length 1. However, observe
that the quaternion product zit = ~1. Note the similarity to unit-length complex
numbers cos 0 + i sin 9. In fact, Euler’s identity for complex numbers generalizes
to quaternions,

exp(if) = cos 0 + i sin 6, (2.10)

where the exponential on the left-hand side is evaluated by symbolically substituting
#10 into the power series representation for exp(x) and replacing products uu by —1.
From this identity it is possible to define the power of a unit quaternion,

g’ = (cos @ + i sin)’ = exp(it6) = cos(16) + il sin(16). 2.11)

It is also possible to define the logarithm of a unit quaternion,

log(q) = log(cos @ + u sin) = log(exp(ii6)) = ub. (2.12)

2.3 Quaternions 13

Note that the noncommutativity of quaternion multiplication disallows the standard
identities for exponential and logarithm functions. The quaternions exp(p) exp(q)
and exp(p + g) are not necessarily equal. The quaternions log(pg) and log(p) +
log(g) are not necessarily equal.

2.3.2 RELATIONSHIP OF QUATERNIONS TO ROTATIONS

A unit quaternion ¢ = cos 8 + i sin 8 represents the rotation of the 3D vector © by
an angle 26 about the 3D axis 4. The rotated vector, represented as a quaternion, is
R(¥) = qg*. The proof requires showing that R () satisfies four conditions: it is a
3D vector, it is a length-preserving function of b, it is a linear transformation, and it
does not have a reflection component.

To see that R(v) is a 3D vector:

W(R(D)) = W(qiq™)
= [(gig™*) + (gig™)*]/2
=[gdq" +q0°¢"]/2
=q[(® + 0*)/2]¢*
=qW()g"
= W)
=0.

To see that R(D) is length preserving:

N(R(D)) = N(gig™)
= N(@)N@®)N(g")
=N(@@)N@)N(q)
= N(D).

To see that R () is a linear transformation, let a be a real-valued scalar and let v
and w be 3D vectors; then

R(ab + w)=glav + w)q"*
= (qadq™) + (qibg™)
=a(qiq*) + (qivg™)
=aR(®) + R(w),

14 Chapter2 Geometrical Methods

thereby showing that the transform of a linear combination of vectors is the linear
combination of the transforms.

The previous three properties show that R(v) is an orthonormal transformation,
a class that includes rotations and reflections. We need to show that reflections cannot
occur. For unit-length vector U, define the function M by & = M(¥), a function
from the unit sphere in R? to the unit quaternions with zero real part. Its inverse
isv = M~1(3). If w = M(®) and & = R(¥) = qiq*, then the composition

0 =M"'(b) = M~ (R(®)) = M~ (R(M()))

defines a matrix transformation w = Pv, where P is an orthonormal matrix since
R(v) is an orthonormal transformation. Thus, | det(P)| = 1, which implies that the
determinant canbe only +1 or—1. P is determined by the choice of unit quaternion g,
so it is a function of g, written as P(q) to show the functional dependence. Moreover,
P(q) is a continuous function, which in turn implies that §(g) = det(P(q)) is a
continuous function of ¢. By the definition of continuity, lim,_,, P(g) = P(1) =1,
theidentity matrix, and lim,_., 8(¢) = (1) = 1. Since §(¢) can onlybe +1 or ~1 and
since the limiting value is +1, 8(g) = 1 is true for all unit quaternions. Consequently,
P cannot contain reflections.

We now prove that the unit rotation axis is the 3D vector & and the rotation angle
is 26. To see that u is a unit rotation axis, we need only show that is unchanged by
the rotation. Recall that 5> = i = —1. This implies that 4> = —i. Now

R(l:) =ql‘4\q'l
= (cos @ + & sin @) (cos @ — 1 sin 0)
= (cos 6)%i ~ (sin 6)%3°

= (cos 0)%a ~ (sin 0)2(—i1)

>

To see that the rotation angle is 20, let &, v, and w be a right-handed set of
orthonormal vectors. That is, the vectors are all unitlength; 4 - v = - w=0-w =0,
anda x U =w, 0 x w =4, and w x & = v. The vector ¥ is rotated by an angle ¢
to the vector giig*, so ¥ - (gbg*) = cos(@). Using Equation (2.8) and ¢* = —0, and
p? = —1 for unit quaternions with zero real part,

cos(@) =0 - (qig*)
= W(d*qiq*)

= W][—0(cos @ + u sin 8)v(cos & — u sin 8)]

2.3 Quaternions 15

= W{(—v cos @ — vii sin 8)(V cos 6 — vu sin)]

= W[—%(cos 8)% + % sin 0 cos 6 — Diid sin @ cos @ + (91)*(sin)]

= W|(cos 8)® — (sin 8)® — (&t + Dizd) sin @ cos).
Nowdii=—-b-d+ixu=0xu=—wanddud=-wd=w-0—wxd=a.
Consequently,
cos(¢) = W|(cos 8)* — (sin 8)% — (&t + Diid) sin 6 cos 6]

= W|[(cos 8)* — (sin 6)> — (2 sin @ cos 6)]

= (cos 8)% — (sin 6)?

= cos(26),

and the rotation angle is ¢ = 26.

Note that the quaternions ¢ and —q represent the same rotation since (—g)v(—q)*
= gvg*. While either quaternion will do, the interpolation methods require choosing
one over the other.

2.3.3 CONVERSION BETWEEN ANGLE-AXIS AND ROTATION MATRIX

Applications represent rotations using either an angle-axis pair or a rotation matrix.
Sometimes it is necessary to convert from one representation to the other. The con-
versions are discussed here.

Angle-Axis to Rotation Matrix

Any standard computer graphics text discusses the relationship between an angle and
axis of rotation and the rotation matrix, although the constructions can be varied. A

useful one is given here. If @ is the angle of rotation and U is the unit-length axis of
rotation, then the corresponding rotation matrix is

R=1+ (sin6)S + (1 — cos 8)S?,
where [is the identity matrix and
0 —up up

—-U) Ug 0

a skew-symmetric matrix. For 8 > 0, the rotation represents a counterclockwise rota-
tion about the axis. The sense of clockwise or counterclockwise is based on looking at

16 Chapter 2 Geometrical Methods

the plane with normal U from the side of the plane to which the normal points. Note
that SV = U x V and

RV = V+(sin9)(7 X f’+(l —cosG)U X (U X V).

Rotation Matrix to Angle-Axis

The inverse problem is to start with the rotation matrix and extract an angle and
unit-length axis. There are multiple solutions since —U is a valid axis whenever
U is and 6 + 27k is a valid solution whenever 0 is. First, the trace of a matrix is
defined to be the sum of the diagonal terms. Some algebra will show that cos 6 =
(trace(R) — 1)/2 and R — RT = (25in6)S. The first formula can be solved for the
angle, @ = cos ! ((trace(R) — 1)/2) € [0, 7].If@ = 0, then any axis is valid since there
lS no rotation. If 6 € (0,), the second formula allows direct extraction of the axis,

= (ra1 — 12, Fo2 — a0, rio — ro1) and U= V/|V| If 6 = i, the second formula
does not help with the axis since R — RT = 0. In this case note that

1- 2(uf + u%) 2ugu) 2uous
R=1+28= 2uou) I —2(uZ +u3) 2uyu;
2ugus 2u u; 1- 2(14(2) + uf)

The idea now is to extract the maximum component of the axis from the di-
agonal entries of the rotation matrix. If rop is maximum, then uo must be the
largest component in magnitude. Compute 4u2 = rog — ry; — r22 + 1 and select ug =
Vreo —rii —r2 +1/2. Consequently, u = ro1/(Qug) and u; = ro;/(2up). If
ri is maximum, then compute du? =r|} —roo —rz + | and select u; =
VJrin —roo — ra2 + 1/2. Consequently, ug = ro;/(2u,) and u3 = ry3/(2u;). Final-
lly, if ry; is maximum, then compute 4u§ =ry —rop —ri1 + 1 and select u; =
ra —rop — riy + 1/2. Consequently, up = rop/(2u;) and uy = ry3/(2u3).

2.3.4 CONVERSION BETWEEN QUATERNION AND ANGLE-AXIS
Applicationsalso can represent rotations by quaternionsinaddition to angle-axis pairs

and rotation matrices. The conversions between quaternions and angle-axis pairs are
discussed here.

Angle-Axis to Quaternion

Recall from earlier in this section that the quaternion ¢ = w + xi + yj + zk =
cos(8/2) + sin(6/2)(ugi + u1j + uzk) represents the rotation by 6 radians about

2.3 Quaternions 17

the axis U = (uo, u1, u2). Given the angle and axis, the components of the quaternion
are w = c0s(0/2), x = ug sin(@/2), y = u) sin(6/2), and z = u; sin(6/2).

Quaternion to Angle-Axis

The inverse problem is also straightforward. If |w| = I, then the angle is @ = 0 and
any axis will ‘1°~ If Jw| < 1, the angle is obtained as @ = 2 cos™!(w) and the axis is
computed as U = (x, y, 2)//1 — w?.

2.3.5 CONVERSION BETWEEN QUATERNION AND ROTATION MATRIX

To complete the set of conversions between representations of rotations, this section
describes the conversions between quaternions and rotation matrices.

Quaternion to Rotation Matrix

The problem is to compute @ and U given w, x, y, and z. Using the identities
2 5in%(6/2) = 1 — cos(9) and sin(9) = 2 sin(8/2) cos(8/2), it is easily shown that
2wx = (sin @uo, 2wy = (sin Oy, 2wz = (sin uy, 2x* = (1 — cos B)uj, 2xy =
(1 — cos Nuou,,2xz2 = (1 — cos uouy, 2y2 =(1l—cos 0)u§,2yz = (1 — cos @)uuy,
and 2z? = (1 — cos G)ug. The right-hand sides of all these equations are terms in the
expression R = I + (sin 8)S + (1 — cos 6)S2. Replacing them yields

1—2y2—222 2xy—2wz 2xz + 2wy
R=| 22xy+2wz 1-2x2-2722 2yz—-2wx |. (2.13)
2xz— 2wy 2yz+2wx 1 —2x? —2y?

Rotation Matrix to Quaternion

Earlier it was mentioned that cos 8 = (trace(R) — 1)/2. Using the identity 2 cos®(6/2)
=1 + cos @ yields w? = cos?(8/2) = (trace(R) + 1)/4 or jw| = /trace(R) + 1/2.1f
trace(R) > 0, then |w| > 1/2, so without loss of generality choose w to be the positive
square root, w = /trace(R) + 1/2. The identity R — RT = (2 sin 6)$ also yielded
(r1i2 — ra1, rao — roz, rop — rio) =2 sin 6 (uog, u1, u3). Finally, identities derived earlier
were 2xw = ug sin A, 2ymw = u, sin A, and 2zw = u; sin 6. Combining these leads to
x = (riz — r21)/(4w), y — (r20 — ro2)/ (4w), and z = (ro; — r10)/(4w).

Iftrace(R) <0, then |w| < 1/2. The idea is to first extract the largest one of x, ¥,
or z from the diagonal terms of the rotation R in Equation (2.13). If rgg is the max-
imum diagonal term, then x is larger in magnitude than y or z. Some algebra shows

18 Chapter 2 Geometrical Methods

that 4x? = roo — ry; — rp2 + 1, from which is chosen x = \/rog — ri1 — raz + 1/2.
Consequently, w = (r12 — r21)/(4x), y = (ro1 + ri0) /(4x), and z = (ro2 + rao)/(4x).
If ry; is the maximum diagonal term, then compute 4y =r; —rop—rpz + 1 and
choose y = \/r|) — roo — r22 + 1/2. Consequently, w = (rz0 — ro2)/(4y), x = (ro1 +
ri0)/(4y), and z = (r12 + r21) /(4y). Finally, if 2 is the maximum diagonal term, then
compute 422 =ry —roo — ri1 + 1 and choose z = \/rzz — rog — r11 + 1/2. Conse-
quently, w = (roy — rio)/(4z), x = (roz + ra0)/(4z), and y = (ri2 + ra1) /(42).

2.4 EULER ANGLES

SOURCE CODE

LIBRARY

Core

FILENAME

Matrix3

Rotations about the coordinate axes are easy to define and work with. Rotation about
the x-axis by angle 8 is

1 0 0
R«@B)=]| 0 cos® —sin@ |,
0 sin9 cosf

where 6 > 0 indicates a counterclockwise rotation in the plane x = 0. The observer
is assumed to be positioned on the side of the plane with x > 0 and looking at the
origin. Rotation about the y-axis by angle 0 is

cos® 0 sinf
Ry (0) = 0 1 0 ,
—sin® 0 cos@

where 6 > 0 indicates a counterclockwise rotation in the plane y = 0. The observer
is assumed to bc positioncd on the side of the plane with y > 0 and looking at the
origin. Rotation about the z-axis by angle 8 is

cos@ —sinf@ O
R,(0)=] sinf® cos®@ O |,
0 0 1

where 8 > 0 indicates a counterclockwise rotation in the plane z = 0. The observer is
assumed to be positioned on the side of the plane with z > 0 and looking at the origin.
Rotation by an angle 8 about an arbitrary axis containing the origin and having unit-
length direction U= (Ux, Uy, U,) is given by

Ry =1 + (sin®)S + (1 — cos 8) S,

2.4 Euler Angles 19

where 7 is the identity matrix,

0 _Uz Uy
S= UZ 0 _Ux s
—U)- Ux 0

and 6 > 0 indicates a counterclockwise rotation in the plane U - (x, y, z) = 0. The

observer is assumed to be positioned on the side of the plane to which U points and
is looking at the origin.

2.4.1 FACTORING ROTATION MATRICES

A common problem is to factor a rotation matrix as a product of rotations about the
coordinate axes. The form of the factorization depends on the needs of the application
and what ordering is specified. For example, we might want to factor a rotation
as R = R.(0:)Ry(6y)R.(6;) for some angles Oy, 6, and 8;. The ordering is xyz.
Five other possibilities are xzy, yxz, yzx, zxy, and zyx. We might also envision
factorizations such as xyx—these are not discussed here. In the following discussion,
we use the notation ¢, = cos(8,) and s, = sin(g,) fora = x, y, z.

Factor as R, Ry R,

Setting R =[r;;] for0 <i < 2and0 < j <2, formally multiplyingR,(6;) R,(6,) R.(6,),

and equating yields
roo o1 roz CyC; —CyS¢ Sy
ro rm rz | = CeSxSy + CxSz CxCz — SxSyS; —CySy
r ra ra ~—CxCSy + SxSz CzSx +CxSyS; CxCy

From this we have sy = rgz, so 6y =Sin™'(rgy). If , € (=7 /2, 7/2), then ¢y 3 0 and
¢y(Sx» €x) = (—r12, r22), in which case 6, = Tan™!(—ry3, r2,). Similarly, ¢y (s, ¢;) =
(—ro1» roo)s in which case 8, = Tan~'(—rg, roo)-

If8y = /2, then s, = 1 and ¢, = 0. In this case

ro | _ CzSx + CxS7; CxC7z — 518, —_ sin(6, + 6x) cos(6; + 6)
rao ra —CxCy + 5257 €78 + Cx5; —cos(8; +6;) sin(6; +6x) |’

Therefore, 8, + 6 = Tan~"(r19, r1)). There is one degree of freedom, so the factoriza-
tion is not unique. One choice is @; = 0 and 8, = Tan"!(ryo, r1)). If 6, = —7 /2, then
sy = —1 and ¢, = 0. [n this case

rio rin | _ | —CiSx t xSz CcxCr+Sxsz | _ | sin(6; — 6;) cos(6; — 6y)
rao ra CxCy + SxS; Cz8¢ — CxSy cos(B; — 6,) —sin(B, —6;) |’

20 Chapter 2 Geometrical Methods

Therefore, 8, — 6, = Tan™! 2(ryg, r11). There is one degree of freedom, so the factor-
ization is not unique. One choice is §, = 0 and 8, = — Tan™"! 2(ryo, ry).
Pseudocode for the factorization is

thetaY = asin(r02);
if (thetaYy < PI1/2)

{
if (thetaYy > -PI1/2)
(
thetaX = atan2(-rl2,r22):
thetaZ = atan2(-r01,r00);
)
else
(
// not a unique solution
thetaX = -atan2(rl0,rll);
thetaZ = 0;
)
)
else
(
// not a unique solution
thetaX = atan2(rl0,rll);
thetaZ = 0;
)
Factor as Ry R, R,
Setting R =[r;;] for0 <i <2and0 < j <2, formally multiplyingR,(6x) R;(8;) Ry(6,),
and equating yields
roo ror o2 CyCz bl 73 czs_v
ro rin N2 | =) SxSytoxCySz CxCz —CySx + CxSyS;
ro r —CxSy +CySxSz €8x CxCy + Sx8yS;

Analysis similar to the xyz case leads to the pseudocode

thetaZ = asin(-r0l):
if (thetaZ < P1/2)
(
if (thetalZ > -PI/2)
{
thetaX = atan2(r2l,rll);

2.4 Euler Angles 21

theta¥Y = atan2(r02,r00);

}
else
{
// not a unique solution
thetaX = -atan2(-r20,r22);
thetaY = 0;
}
}
else
{
// not a unique solution
thetaX = atan2(-r20,r22);
thetaY = 0:
}

Factor as Ry R« R,

Setting R = [r;;] for0 <i <2and0 < j <2, formally multiplyingR, (6)) Rx(6x) R-(6,),
and equating yields

reo roy ro2 CyCz + SxSyS; CzSxSy — CySz CxSy
ro ny rn2 | = CxS; CxCz —S8x
ro ra r2 =CzSy + CySxSz CyCySx + SySz CxCy

Analysis similar to the xyz case leads to the pseudocode

thetaX = asin(-rl2);
if (thetaX < PI/2)

{

if (thetaX > -PI/2)

{
theta¥Y = atan2(r02,r22);
thetaZ = atan2(rl0,rll);

}

else

{
// not a unique solution
theta¥Y = -atan2(-r01,r00);
thetaZ = 0;

}

22 Chapter 2 Geometrical Methods

else

{
// not a unique solution
thetaY = atan2(-r01,r00);
thetaZ - 0;

}
Factor as Ry R, Ry
Setting R =[r;;]for0 <i <2and0 < j < 2,formally multiplying Ry(6y) R;(6;) Rx(6x),
and equating yields
roo ro1 ro2 CyCz SxSy — CxCySz CxSy + CySxSz
ro rm r2 | = LY CxCq —C¢Sx
ro raa ra2 —czsy cys,x + CXS)’SZ c,xcy - SxSysZ

Analysis similar to the xyz case leads to the pseudocode

thetaZ = asin(rl0);
if (thetaZ < PI/2)

{
if (thetaZ > -PI/2)
{
thetaY = atan2(-r20,r00):;
thetaX = atan2(-rl2,rll):
}
else
(
// not a unique solution
theta¥Y = -atan2(r21,r22);
thetaX = 0;
}
}
else
{

// not a unique solution
thetaY = atan2(r2l,r22);
thetaX = 0;

2.4 Euler Angles 23

Factor as R; R R,

Setting R =[r;;] for0 <i <2and0 < j <2, formallymultiplyingR,(6,) R (6x) R\(6),),
and equating yields

roo o1 roz CyCy — SxSyS; —CxS; C;Sy + CySxS,
rio rmn ri2 | = | C:SxSy + CySz CxC; —CyCySx + SyS7
ro ra r —CxSy Sx CxCy

Analysis similar to the xyz case leads to the pseudocode

thetaX = asin(r2l);
if (thetaX < PI/2)

{
if (thetaX > -P1/2)
{
thetaZ = atan2(-r0l,rl1l);
thetaY = atan2(-r20,r22);
}
else
{
// not a unique solution
thetaZ = -atan2(r02,r00);
thetaY = 0;
}
}
else
{
// not a unique solution
thetaZ = atan2(r02,r00);
theta¥Y = 0;
}

Factor as R;Ry R,

Setting R =r;j]for0 <i <2and0 < j <2, formallymultiplyingR,(6,) R;(8,) Ry (6x),
and equating yields

roo ro1 roz CyC; CSxSy — CxS; CxC;Sy + 838,
ro rm r2 | = | cyS; CxCrt SxSyS; —CiSx + CxSyS,
ro r23 ra =Sy CySx CxCy

24

Chapter 2 Geometrical Methods

Analysis similar to the xyz case leads to the pseudocode

theta¥Y = asin(-r20);
if (thetaY < P1/2)

(
if (thetaY > -PI/2)
(
thetaZ = atan2(rl0,r00);
thetaX = atan2(r2l1,r22);
}
else
(
// not a unique solution
thetaZ = -atan2(-r01,r02);
thetaX = 0;
}
}
else
(
// not a unique solution
thetaZ = atan2(-r01,r02);
thetaX = 0:
}

2.4.2 FACTOR PRODUCT OF TWO

Given a rotation R that is a product of two coordinate axis rotations, the problem is
to factor it into three coordinate axis rotations using the ordering xyz. Derivations
for the other orderings are similar. In the subsections the matrices are P, = R.(¢,),
Py = Ry(¢y)t and P, = R,(¢,). Define s, = sin(¢x), sp = 3in(¢y)t S¢ = sin(@,), €4 =
cos(¢x), cp = cos(¢y), and ¢ = cos(¢,).

Factor P, Py
Trivial. The factorization is R = R,(¢:)R,(@,) = R«(6x)Ry(0,) R,(F;). Therefore,
0.1’ = ¢X) 0}’ = ¢y, and 02 =0.

Factor Py Py

The factorization is R = Ry(¢,) Rx(¢x) = R:(6;) Ry(6)) R;(6,). Formal multiplica-
tion of the various terms leads to the equation

2.4 Euler Angles 25

Cb SaSb CaSh CyC; —Cy5: Sy
0 Ca —Sa | =| CoSuSy+CxS; CxCr — SkSys: —CySy
—Sb ChSa CaCh —CxCSy + Sx87 CpSy + Cx8y8; €0y

It is easy to see that 5, = c4sp, in which case 6, = Sin~!(cos 6, sin 6;). Adding the 10
and 21 terms yields

0 + cpSy = (C28xSy + CiSz) + (€8x + Ca8y8:) = (1 + 5,) (€8x + €452)s

which leads to sin(6y + 0.) = cb54/(1 + C45p). In the event that ¢, = —1, this leads
to a special case in the coding that is easy to solve. Subtracting the 10 term from the
21 term yields

ChSa — 0= (Cz5xSy + C€xS7) = (€255 + CxSy52) = (1 — 5y)(cz8x — Cxs:)s

which leads to sin(8, — 6,) = cpsa/(1 — cu5p). In the event that c,sp = 1, this also
leads to a special case in the coding that is easy to solve. The sine functions can be

inverted and the two resulting equations for 8, and 6. can be solved. For the case
cass| < 1,

l [. = ChSa . - CbSa
0, == |Sin™!' | —=—] 4+ Sin~! (
T2 | " (l +cbs,,) " | — cpsa

0y = Sin~(casp)
6, = 1 [sin~" (—c”s“) — Sin™! (—C"s“) :
2L 1 + cpsq 1 —cps,

Factor P, P,

Trivial. The factorization is R = R,(¢:)R.(¢,) = R, (6:)R,(6,)R.(6:). Therefore,
0y = ¢4, 0, =0,and 6, = ¢,.

Factor P, P,

A construction similar to the case P, P, leads to

1. _ 1 CaCc . =1 CaCc T
6, = - | Sin _— e
* 2] (l+sasr)+sul (l _sasr)-

Oy = Sin~!(s,5¢)

0, = -Sin_l (_cacc — Sin™! cace] .
z | 1 + 5,5 1 —s5q5./]

[SR

26 Chapter 2 Geometrical Methods

Factor P, P,

Trivial. The factorization is R = Ry(¢y) R;(¢;) = R:(6x)Ry(0y) R;(;). Therefore,
0, =0,0,=¢y,and 6, = ¢,.

Factor P, P,

A construction similar to the case Py, P; leads to

.. ChS¢ . =1 CbSc
Oy==|Sin7' | ——] -5 —_—
T2 [" (1 +Sbce) " (1 - Sbcc)]

6, = Sin~ ' (spc,)
1

9, == [sin™! | 2) +Sin™! (-—c"s‘) :
2 1 + spee 1 — spec

2.5 STANDARD 3D OBJECTS

The objects described here are useful as bounding regions for two purposes: rapid
culling in the rendering process and rapid determination that two objects are not
intersecting during the collision detection process.

2.5.1 SPHERES

A sphere is defined by the set of all points X equidistant from a center point € with
distance r > 0. The quadratic equation defining the set is X —CP=r2

For a geometric object that consists of a collection of points [‘7,-};'=0, a bounding
sphere can be computed in a number of ways.

Sphere Containing Axis-Aligned Box

A simple approach is to compute the minimum-volume axis-aligned bounding box
of the points, then select the smallest enclosing sphere of the box with sphere centered

at the box center. The algorithm is

Containment
Point min = V[0], max = min;

for (1m 13 1 ¢m nr 149

ContSphere {

Containment

FILENAME

ContSphere

2.5 Standard 3D Objects 27

if (V[1].x < min.x)
min.x = V[i].x;

else if ¢ V[i]l.x > max.x)
max.x = V[i].x;

if (V[il.y < min.y)
min.y = V[il.y:

else if (V[il.y > max.y)
max.y = V[i]l.y:

if ¢ V[1].z < min.z)
min.z = V[i].z;
else if ¢ V[1].z > max.z)
max.z = V[i].z;
1
Point center = (min+max)/2;
Point diagonal = (max-min)/2;
float radiusSqr = diagonal.SquaredlLength();

An advantage of this algorithm is the speed with which it is executed. The drawback
to this algorithm is that the bounding sphere is not as good a fit as it could be.

Sphere Centered at Average of Points

An alternative that takes longer to compute but provides a somewhat better fit is to
select the sphere center to be the average of the points and the sphere radius to be the
smallest value for which the sphere of the given center and that radius encloses the
points. The algorithm is

Point sum = V[0];
for (i = 1; 1 <= n; i++)
sum += V[i]:

Point center = sum/n;
float radiusSqr = 0;
for (i = 0; i <= n; i++)
{
Point diff = V[i] - center;
float temp = diff.SquaredLength();
if (temp > radiusSqr)
radiusSqr = temp:

28 Chapter 2 Geometrical Methods

S0URCE CODE

LIBRARY

Containment

FILENAME

MinSphere

Minimum-Volume Sphere

Computing the minimum-volume sphere that encloses the points requires a more
complicated algorithm based on work by Emo Welzl (1991). The problem uses a
randomized linear algorithm, so the order is expected to be linear. The worst case
is polynomial in the number of inputs, but the input data is randomly permuted so
that the probability of the worst case occurring is negligible.

The pseudocode for the algorithm given below computes the minimum-volume
sphere containing N points P[0] through P|N — 1]. The idea is to maintain a set of
supporting points for the sphere while processing the input point set one point at a
time. The supporting points lie on the sphere and no other points are necessary to
form the sphere.

Sphere ComputeMinimumSphere (int N, Point P[])

{
randomly permute the points P[0]..P[N-1];
Sphere sphere = ExactSpherel(P[0]);
PointSet support = { P[O] }:
i=1;
while (i < N)
{
if (P[i] not in support)
{
if (P[i] not in sphere)
{
add P[i] to support and (possibly) remove
unnecessary points;
compute sphere from current support;
i =0; // need to start over when support
// changes
continue;
}
}
4+
)
}

Internally, the algorithm requires computing spheres that contain exactly two
points, exactly three points, or exactly four points. Updating the support can be
modularized into a collection of update functions, each depending on the current
number of points in the support.

2.5 Standard 3D Objects 29

2.5.2 ORIENTED BOXES

LIBRARY

Containment

FILENAME

ContBox

LIBRARY

Containment

FILENAME

ContBox

Oriented boxes generally provide a better fit of the object than spheres. An oriented
box is defined by a center C, three orthonormal axes U; that form a right-handed
coordinate system, and three extents ¢; > 0 fori =0, 1,2. Let R = (U U, U3), an
orthonormal matrix with determinant one. Any point i’ = (xq, X1, X2) inside or on

the box can be represented as X=C+RY,where Y = (Yo, ¥1, ¥2) with |y;] < e; for
alli.

Axis-Aligned Boxes

There are various methods for generating bounding boxes that contain a set of points
{Vi}'_,- The simplest is to fit with an axis-aligned box. This type of box is simpler to

represent as two points, Pmin = (Xmin> Ymin» Zmin) and Pmax = (Xmax» Ymax> Zmax)- The
pseudocode is

Point min = V[0], max = min;
for (f = 1; 1 <= n; i++)

{
if (V[il.x < min.x) min.x = V[i].x;
if (V[1l.x > max.x) max.x = V[i].x;
if (V[il.y < min.y) min.y = V[i].y:
if (V[il.y > max.y) max.y = V[il.y:
if (V[1]l.z2 < min.z) min.z = V[i].z;
if (V[il.z > max.z) max.z = V[i].z:

1

Fitting Points with a Gaussian Distribution

A Gaussian distribution is a probability distribution of the form A exp((X—
C)M~1(X — C)), where A is an appropriate scaling factor, C is the mean of the
distribution, and M is the covariance matrix of the distribution. The distribution is
said to be anisotropic if the eigenvalues of M are not all the same value.

A more sophisticated method for building an oriented box that usually fits the
points better than an axis-aligned box is based on fitting the points with an anisotropic
Gaussian distribution. The center of the box is the mean of the points,

1
;ZVJ

30 Chapter 2 Geometrical Methods

The axes of the box are selected as unit-length eigenvectors of the covariance matrix

n—1
=23 - &V - .
n
j=0

If U; are unit-length eigenvectors, the extents along those axes are the extreme values
of the projections of the points onto those axes, e; = max; |U; - (V; — C)|. The
pseudocode is

// Box has center, axis[3], extent[3]
Box box;

// compute mean of points

Point3 sum = V[0]:

for (i = 1: 1 < n; i++)
sum += V[i];

box.center = sum/n:

// compute covariances of points

Matrix3 mat = 0;

for (i = 0; 1 < n; i++)

{
Point3 delta = V[i] - box.center:
mat += Tensor(delta,delta);

}

Matrix3 covariance = mat/n:

// eigenvectors for covariance matrix are the box axes
ExtractEigenvectors(covariance,box.axis[3]);

// compute extents as extreme values of projections onto axes
box.extent = 0;
for (i = 0; i < n; iH+)
{
Point3 delta = V[i] - box.center:
for (J = 0; J < 3; j++)

{
Real adot = |Dot(box.axis[j],delta)]|
if (adot > box.extent[j])
box.extent[j] = adot;
}

LIBRARY

Containment

FILENAME

MinBox3

2.5 Standard 3D Objects 31

For a vector W, Tensor(W, W) is the matrix WWT. The code does require an
eigensolver fora 3 x 3 matrix. The eigenvectors can be computed usinga closed-form
solution rather than an iterative scheme.

One variation of the algorithm is to compute the convex hull of the data points
first, then build an oriented box containing the hull. Another variation is to compute
the eigenvectors of the covariance matrix, project the points onto the lines C +1U;
in the direction of the eigenvectors Ui, then compute the intervals of projection
[min;, max;]. The point C is not the center of the box and must be replaced with
the correct center of the box implied by the projected intervals,

Minimum-Volume Box

The best-fitting box may be considered to be the box of minimum volume that con-
tains the points. Constructing this box requires an iterative scheme to solve a mini-
mization problem, so it is recommended that minimum-volume boxes be computed
off-line or during program initialization and not during program run time. The al-
gorithm is as follows. For any choice of coordinate axes A, i=0,1,2, the points
are projected onto the axes Vo +sA,, the values being p;; = A, . (V - Vo) for all
Jj. Define o; = minj(p;;), Bi = max;(p;;), and y; = (@; + Bi)/2. The center of the
smallest-volume oriented box with specified axes is

2
C=Vo+) v
i=0

The extents of the oriented box are a; = (8; — «;)/2.

Each set of coordinate axes can be represented as the columns of rotation matrices.
Each rotation matrix is generated by a unit-length vector U andan angle 8 € [0, 2xr).
The mapping from rotation matrices to coordinate axes is of course not one-to-one.
However, the volume of the oriented boxes can be viewed as a function v : §% x
[0, 22] — [0, 00), where $? is the unit sphere. The volume is v(U, 8) = [T2_,(8i —
;). This function is continuous on its compact domain, so from calculus it must
attain its mmlmum on that domain. Therefore, there exists an axis Up and an angle 6o
for which u(Uo, 6p) < wU, 6) for all axes I and all angles 8. The construction of o
and 8 can be implemented as a numerical minimization using techniques that do not
require derivatives. A good choice is Powell’s direction set method (Press et al. 1988).
The rate of convergence to the minimum depends on the initial guesses for axis and
angle.

32 Chapter 2 Geometrical Methods

Fitting Triangles with a Gaussian Distribution

This method was presented in Gottschalk, Lin, and Manocha (1996). If the data points
are the vertices of a triangle mesh, the triangles themselves may be used to generate an
oriented box containing the vertices. The fit of an oriented bounding box to the convex
hull of the vertices given previously has problems with sampling. The vertices on the
convex hull may be irregularly distributed so that a small, dense collection of points
can unfairly affect the orientation of the bounding box. This effect can be minimized
by using a continuous formulation of the covariance matrix.

Suppose there are ¢ triangles. If the ith triangle has vertices Vous V, J» and Vaus
then the tnangle and its interior are represented by X; (s, 1) = Vo. + S(Vl i Vo i)+
t(Vz, — Vo,)for0<s <1,0<t<l,ands +1 <1.Letm; —|(V,, - Vo,) X (Vz, —
Vo,.)l /2 be the area of the triangle. Define the weights w; =m;/ Ze—o m;. The mean
point of the convex hull is

= 1—t
% Z f f Xi(s, 1) ds dt
i=0

£-
Le Z Z Vi
i=0

and the covariance matrix of the convex hull is

1—t - - - -
M=%Zw,-ff (Xi(s,1) — O)(Xi(s,1) — C)T ds dt
= 0o Jo

-1 2

2
= 1—;8 Z w; Z Z(‘-’j,i - é)d’k.z‘ -0r

i=0 j=0 k=0

If /-i, are unit-length eigenvectors, the extents along those axes are a; = max; |A; -
(X; —C)|, where the X ; j are the vertices. As in the subsection on fitting points with a
Gaussian distribution, a variation allows adjustment of C once the axes A; are known.

2.5.3 CAPSULES

A capsule is a natural extension of a sphere based on equidistance. It is defined as the set
of all points that are distancer > 0 from a line segment with end point P and direction
D. The other end point is P + D. A capsule is a cylinder that has two hemispherical
caps attached at the end points.

LIBRARY

Containment

FLENAME

ContCapsule

2,5 Standard 3D Objects 33

In this section, we present two algorithms to bound the points (X; }ig» One
involving least-squares fitting and one based on a minimization that is solved using
an iterative algorithm.

Least-Squares Fit

Fit the points by a line using the least-squares algorithm described in Appendix B.
Let the line be A + tW, where W is unit length and A is the average of the data
points. The line will contain the capsule line segment. Compute r to be the maximum
distance from the data points to the line. Select unit vectors I/ and V so that the
matrix R = [U V W] is orthonormal and has determinant one. The data points can
be represented as X A+ RY,, where Y = (u;, vi, w;). In the (u, v, w) coordinate
system, the capsule axis is contained by the line £(0, 0, 1). We need to compute the
largest & so that all points lie above the hemisphere u? + v2 4+ (w — &)? = r2 with
w < &. The value is computed as

&= min(w; +/r2 - (u? + v})},
t

where 0 < i < n. Similarly, there is a smallest value &, so that all points lie below the
hemisphere u? + v? + (w — &,)? = r2 with w > &;. The value is computed as

£ = max(w — /r2 — @ + v})).

The end points of the capsule line segment are i’j =A+ E,-W for j=0,11If
instead the data points are fit by a least-squares plane W - (X — A) =0, the result is
the same since the unit-length plane normal W is exactly the line direction.

Minimum of Minimum-Area Projected Circles

For each unit-length direction W such that W . 0,0,1)=0 (W lies on the upper
unit hemisphere), select unit vectors U and V so that the matrix R = [U v W] is
orthonormal and has determinant one. The data points can be represented as X, =
A + RY;, where Y, = (4, vi, w;). The projections of the points onto the plane W.-X=
0 are (4;, v;). The minimum-area circle containing these points can be computed,
say, the radxus isr= r(W) and the center is C = C(W). Compute the vector W’ that
minimizes r(W). The capsule radius is r(W’) and let wamin and Wmax be the extreme
values for the > Wy The capsule line segment has end points By=C(W" + wmmW’
and Py=C(W') + w.-,axW

34 Chapter2 Geometrical Methods

2.5.4 LOZENGES

LIBRARY

Contalnment

FILENAME

Contlozenge

A lozenge is also a natural extension of a sphere based on equidistance. It is defined
as the set of all points that are distance r > 0 from a rectangle with origin P and
edge dll’eCthﬂS Ey and E I, where Eg - E; = 0. The four vertices of the rectangle are
P, P+ Eo, P+ El, and P + Eo + E; A lozenge is an oriented rectangle that has
attached four half-cylinder sides and four quarter-spherical corners.

In this section, we present two algorithms to bound the points [X,} o One
involving fitting with a Gaussian distribution and one based on a minimization that
is solved using an iterative algorithm.

Fit with a Gaussian Distribution

Compute the mean A of the points and compute the covariance matrix, just as in
the algorithm for fitting with an oriented box. Let unit-length eigenvectors of the
matrix be U, V, and W. Assume these are labeled so that U corresponds to the
largest eigenvalue and W corresponds to the smallest eigenvalue. The data points are
represented as i(i =A+ uil-J,' + v; ‘-/,- + w; ﬁ’,-. Let wmin and Wmax be th_e extreme
values for the w;. The data points are bounded by the two planes W - (X — A) = wmin
and W - (X A) = Wmax. Set the lozenge radlus to r = (Wmax — Wmin)/2 and adjust
themeanto A « A + ((Wmax + wmm)/Z)W

Analogous to the fitting of data by a three-dimensional capsule, construct a two-
dimensional capsule containing the pairs (v;, w;). We need to compute the largest 8o
so that all points lie above the hemicircle w? + (v — Bo)? =r? with v < aq. The value
is computed as

Bo = min [v,- +,/r2 - wf] ,

where 0 < i < n. Similarly, there is a smallest value 8, so that all points lie below the
hemicircle w? + (v — Bo)? = r? with v > B,. The value is computed as

B1 = max [v,- —-Jr:- w,zl

The end points of the projected capsuleline segment determine an edge of the lozenge,
Ey=(- Bo)V.

Repeat this process for the pairs (4;, w;) to obtain values

o9 = min [u,- + \/rz - w,z]
]

2.5 Standard 3D Objects 35

and

o) = max Iu; -/ —w,?] .
14

Although it appears that the other lozenge edge should be Eo = (a1 — ag)U, it might
not be. The hemicylinder ends that are attached by the above process form mitered
corners that enclose more space than the quarter spheres. It is possible for some data
points to be inside the hemicylinder overlap, but outside the quarter sphere. The
candidate edge Eo may need to be increased to enclose the outliers.

Let Ko =A+ aoU + ﬂoV be one of the corner pomts of the current lozenge
rectangle. Suppose that P=A+ a,,U + ﬂ,,V + y,,W is a point outside the quarter
sphere centered at K. For this to be true, |P Kol > r. The corner must be adjusted
to K, A+ o U + ﬂ,V so that IP K,| =r. There are two degrees of freedom
for the adjustment. One degree is eliminated by requiring (a1, £1) = 1 (o, fo) + (1 —
1)(ap, Bp)- Replacing in the previous distance equation yields a quadraticin r that can
be solved for

2_ .2
r—vy,

= ey —a0’ + By — B0

The adjustment on the corner point does not affect previous containment relation-
ships. Thus, the list of input points can be iterated and the corners adjusted as needed.

After the adjustment, the lozenge rectangle parameters are [ao, 0ry] X [ﬂo, Bil.
The lozenge origin is chosen to be A + ool + BoV, and the lozenge edges are Eg =
() — ao)U and E1 = (B1 — fo)V.

Minimization Method

The construction of a lozenge in the last subsection used eigenvectors from the co-
variance matrix. The same construction can be applied for any choice of orthonormal
vectors that form a right-handed system. The corresponding rotation matrices whose
columns are the selected vectors form a three-parameter family (the unit quaternions
form a three-dimensional manifold in 4-space). Let the parameters be labeled as the 3-
tuple 5. The volume for a given set of parameters, v(p), can be computed by adding
the volumes of the pieces forming the lozenge: the rectangular box, the four hemi-
cylinder sides, and the four quarter-sphere corners. A minimization algorithm can be
applied to v to obtain parameters §' so that v(p') is a global minimum.

2.5.5 CYLINDERS

An infinite cylinder is the set of all points a distance r fromaline P + 1 D, wherer € R
and D is unit length. A finite cylinder is a subset of an infinite cylinder, where || < h /2

36 Chapter 2 Geometrical Methods

LIBRARY

Containment

FILENAME

ContCylinder

for a specified height #. We will refer to finite cylinders simply as “cylinders.” If we need
to talk about infinite cylinders, we will refer to them explicitly as “infinite cylinders.”

Two algorithms to bound the points (X }7_g are as follows. Fit the points by aline
using the least-squares algorithm described in Appendix B. Let the line be A+1W,
where W is unit length and Ais the average of the data points. Select unit vectors U
and V so that the matrix R = [U V W] is orthonormal and has determinant one. The
data points can be represented as Xi=A+ RY,, where Y = (u;, Vi, W;).

Least-Squares Line Contains Axis

The cylinder radius is r = max; | uf + v,.z). The cylinder height is h = wax — Win,
where wnin and wnay are the extreme values of the w;. To conform to the finite cylinder
definition, the line must have its translation vector adjusted. The new translation is

= Whin + Wmax
—_— W

A’:A-{—
2

The line is A’ + t W and the cylinder is constrained by |t| < h/2.

Least-Squares Line Moved to Minimum-Area Center

The minimum-area circle containing the (i;, v;) values is computed and has center
(u’, v') and radius r. The least-squares line is shifted to contain the circle center,

A=A+dU+v'V

The cylinder radius is r and the algorithm in the last subsection is applied to compute
h. That algorithm also shifts the line in the direction of Wto A” + tW, where
<, . Wmin T Wmax

A”zA +—2_W

2.5.6 ELLIPSOIDS

An ellipsoid in standard axis-aligned form is

~
~
4

2

+ + =]

.|P\

3%
N
%0
~
N

with center (0, 0, 0) and semiaxis lengths a > 0, b > 0, and ¢ > 0. The axis directions
of the ellipse are (1, 0,0), (0, 1, 0}, and (0,0, I).

LIBRARY

Containment

FILENAME

ContEllipsoid

2.5 Standard 3D Objects 37

Given a coordinate system with center C and orthonormal axis directions U; for
0 < i < 2, the ellipsoid with that center and axes is

X—C)YRTDR(X -C)=1,

where R = [Ug U, U] is a rotation matrix, D = diag(1/d2, 1/d?, 1/d3} has positive
diagonal entries that are the squared semiaxis lengths, and X is the algebraic variable
for the equation. An equation (f{ -O)™ (I(—C)=1,where M isa positive definite
matrix, also represents an ellipsoid. The axes and semiaxis lengths are obtained by an
eigendecomposition M = RTDR (see Section B.2 in Appendix B).

The most general form for the ellipsoid is XTAX + bTX + ¢ = 0, where A is pos-
itive definite. Tt is possible to algebraically manipulate this, analogous to completing
the square for a quadratic polynomial of one variable, and obtain the other form. The
center is C = —A~15/2, and the matrixis M = A/(bTA™'b/4 —).

Axis-Aligned Ellipsoid

Given a set of points { V;}" I_o»a simple way to bound with an ellipsoid is to first generate
the axis-aligned box containing the points and establish the ratios of semiaxis lengths.
Let Pmin and Ppax be the vectors storing the minimum and maximum component
values. The center of the ellipsoid is C= (Pmax + Pmin)/2. The semiaxis lengths are
components of A(Pmax — Pmin)/2 = A(So, 81, 82), where A > 01is to be determlned

Let D = diag{1/(280)% 1 /(;us.)2 1/(A52)). Theellipsoid is (X — C)TE(X — C) =1,

where E=D/ max,{(V C) D(V C)]

Fitting Points with a Gaussian Distribution

This method is similar to the one used for fitting points with an oriented box. The
mean of the points is used for the center of the ellipsoid, and the eigenvectors of
the covariance matrix are used for the axes. The eigenvalues are used in the same
way as the vector (80, 81, 82) in the fit with an axis- a.hgned ellipsoid. The elhpsond is
(X = C)TE(X — C) =1, where E = (RTDR)/ max;{(V; — C)TRTDR(V; — C)).

Minimum-Volume Ellipsoid

While the theory of such a fit has been worked out using randomized linear techniques
(Welzl 1991), an implementation is extremely difficult because it requires special-
case handlers for bounding point sets with up to nine points (the minimum-volume
sphere algorithm requires special-case handlers with up to four points). An alternative
is to use a constrained numerical minimization, something that is challenging but

38 Chapter2 Geometrical Methods

not impossible to implement. In either case, rapidly computing minimum-volume
ellipsoids is not possible at the moment for real-time applications.

2.6 DISTANCE METHODS

Calculating distances between points, linear components (line, ray, or line segment),
triangles, and rectangles is based on minimizing a quadratic function on a compact
set. The solution can be computed using methods of calculus. Generally, if two ob-
jects are parameterized as X@E)and ¥(f) for§€ A CR" and T € B C R™, then the
squared distance between two points, one from each set, is G,) = | X (5) — Y ()|2
for (5,1) € A x B C R" x R™. This is a continuously differentiable function whose
minimum occurs either at an interior point of A x B, in which case V(Q) =0, or at
a boundary point of A x B, in which case the problem is reduced to minimizing a
quadratic function in spaces with dimension smaller than n + m. Thus, the algorithm
is recursive in dimension.

2.6.1 POINT TO LINEAR COMPONENT

RCE CODE

LIBRARY

Distance

FILENAME

DistVec3Lin3

The following construction applies in any dimension, not just in three dimensions.
Let the point be P. A line is parameterized as L(ty=B +tM, where B isa point
on the line, M is the line direction, and 7 € R. A ray is of the same form but with
restriction r > 0. A line segment is restricted even further with r € [0, 1].

The closest point on the line to P is the projection of P onto the line, O =
B + 1oM, where

M- (P-B

h=——=—=":

The distance from P to the line is
=|P — (B + uM)|. (2.14)

If g < 0, then the closest point on the ray to P is B. For fo > 0, the projection B — 1oM
is the closest point. The distance from P to the ray is

p=l1P-BL 1=0 {2.15)
|P=(B+1M)|, to>0

Finally, if 7o > 1, then the closest point on the line segment to Pis B + M. Thedistance
from P to the line segment is

2.6 Distance Methods 39

|P — B, 0<0
D={|P-(B+1M)|, O0<tg<1- (2.16)
IP—(B+ M), 1>1

The division by M - M is the most expensive algebraic operation. The implemen-
tation should defer the division as late as possible. The pseudocode is given below. The
returned quantity is squared distance and the segment parameter of the closest point
is also made available.

float SquaredDistancePointSegment (Point P, Segment segment,
float& t)

{
diff = P - segment.B;:
t = Dot(segment.M,diff);
if(t>0)
{
dotMM = Dot(segment.m,segment.m);
if (t < dotMM)
{
t = t/dotMM;
diff = diff - t*segment.M;
)
else
{
t=1;
diff = diff - segment.M;
}
}
else
{
t=0;
}
return Dot(diff,diff);
}

It is also possible Lo implement a point-to-scgment distance algorithm without
divisions, but it requires storing more information with the linear component. The
line segment can be represented in the style of oriented boxes, C +tU, where U
is a unit-length vector and ¢ € [—r, r]. The line segment data structure still stores
two vector quantities, but must additionally store r. Given two end points initially,

40 Chapter 2 Geometrical Methods

preprocessing time includes computing U, an operation that requires an inverse
square root. The pseudocode is

float SquaredDistancePointSegment (Point P, Segment segment,

floatd t)
{

diff = P - segment.C;
t = Dot(segment.U,diff);

if (t < -segment.r)
t = -segment.r;

else if (t > segment.r)
t = segment.r;

diff = diff - t*segment.U:
return Dot(diff,diff);

A further small speedup (on average) is possible by allowing the line segment to
store U in addition to 7 and U. The pseudocode is

float SquaredDistancePointSegment (Point P, Segment segment,

floatd t)
{

diff = P - segment.C:
t = Dot(segment.U,diff);

if (t < -segment.r)

{

t = -segment.r;
diff = diff + segment.

}

else if (t > segment.r)

{

t = segment.r;
diff = diff - segment.ry;

}
else
{

diff = diff - t*segment.U;

}

return Dot(diff.diff);

Figure 2.1

2.6 Distance Methods 41

The six possibilities for I x J.

2.6.2 LINEAR COMPONENT TO LINEAR COMPONENT

ancz Copk

LIBRARY

Distance

Fit FNAME

DistLin3Lin3

The two linear components are Zg(s) = Bo + sMo fors e I CRand Z.(t) = E. +
till for t €.J C R. The first component is a line if / =R, a ray if] = [0, 00), ora
segment if / = [0, 1]. The second component is similarly classified.

The squared-distance function for any two points on the linear components is
Q(s, 1) = |zo(s) - Z,(r)l2 for (s,t) € I x J. The function is quadraticin s and ¢,

Q(s, 1) = as® + 2bst + ct> + 2ds + 2et + f,

w_hereg: ilo-;lo, b_= —&Io-i!_,, c-—-_-_il. . 1|-;l|, d= ;lo-(ﬁo— §|), e=—1|:l| .
(Bo — By), and f = (Bg — Bj) - (By — B;). Quadratics are classified by the sign of
ac — b%. For function Q,

ac — b = (Mo - Mo) (M, - My) — (Mo - M))? = Mo x M\|>>0.

Ifac — b* > 0, then the two linear components are not parallel and the graph of Q is
a paraboloid. If ac — b* = 0, then the two line segments are parallel and the graph of
Q is a parabolic cylinder.

The goal is to minimize Q(s, t) over thedomain I x J. Since Q is a continuously
differentiable function, the minimum occurs either at an interior point of the domain
where the gradient eQ =2(as + bt + d, bs + ct + €) = (0,0) or at a point on the
boundary of the domain. Figure 2.1 shows the six possibilities for / x J. The planeis
partitioned into regions in which P can live, Each region is handled differently in the
distance calculations.

42 Chapter2 Geometrical Methods

Line to Line

If the lines are not parallel (ac — b? > 0), then the minimum distance must occur
when eQ = (0, 0). The two equations in two unknowns can be solved for s = (be —
cd)/(ac — b*)and 1 = (bd — ae)/(ac — b?).Ifthelines are parallel, only one equation
from V Q = (0, 0) is independent. Any choice of s and satisfying this equation will
produce a pair of closest points on the lines. The simplest choice is s = —d /a and
t = 0. The pseudocode is

float SquaredDistancelineline (Line 1ine0, Line linel, floatk s,
floatd t)
{
diff = 1ine0.8 - linel.B;
a = Dot(1ine0.M,1ineD.M);
b = -Dot(1ine0.M,1inel.M);
= Dot(1inel.M,1inel.M);
= Dot(1ine0.M,diff):
= Dot(diff,diff):
det = |a*c-b*b|; // = |Cross(1ine0.M,1inel.M)|*2 >= 0

““» o0

if (Positive(det))
{
// lines are not parallel
e = -Dot(1inel.M,diff);
invDet = 1/det:
s = (b*e-c*d)*invDet;
t = (b*d-a*e)*invDet;
return s*(a*s+b*t+2*d)+t*(b*s+c*t+2*e)+f;

else

// lines are parallel, select any closest pair of points
s = -d/a:

t=20;

return d*s+f;

_ The code Positive(det) is a tolerance test for parallelism. If § = |ac — b =
[Mg x M\|, a simple absolute error test such as § > € is possible, but assumes the
error tolerance is based on knowing the lengths of the direction vectors. It would be
better to use a relative error that takes into account the lengths of the line directions,
3> elilollih |. The lengths of the line directions can be stored with the lines to be
used for this test. If that is not desired, the squared lengths should be used and the test
becomes 8% > €?]ab|.

2.6 Distance Methods 43

Line to Ray or Segment

Similar algorithms can be written for line to ray and line to segment. The source code
on the CD-ROM contains implementations for them.

Ray to Ray or Segment, and Segment to Segment

These cases are slightly more complicated because of the presence of the corner
pointsin the st-domain. The description here is for segment-to-segment calculations.
Similar algorithms can be written for the other cases, and the source code on the CD-
ROM contains implementations for them.

When ac — b% > 0, the line segments are not parallel. The gradient of Q is zero
only when § = (be — cd)/(ac — b*) and I = (bd — ae)/(ac — b?).1f (5,7) € [0, 1],
then the minimum of Q is found. QOtherwise, the minimum must occur on the
boundary of the square. The eight regions referred to in the remaining discussion
are those shown in Figure 2.1.

Suppose (3, 7) is in region 1. The level curves of Q are those curves in the st-
plane for which Q is a constant. Since the graph of Q is a paraboloid, the level curves
are ellipses. At the point where VQ = (0, 0), the level curve degenerates to a single
point (5, 1). The global minimum of Q occurs there, call it Viyin. As the level values
V increase from Vpin, the corresponding ellipses are increasingly further away from
(5, 1). There is a smallest level value Vj for which the corresponding ellipse (implicitly
defined by Q = Vp) just touches the unit square edges = 1 atavaluer =t € [0, 1]. For
level values V < Vi, the corresponding ellipses do not intersect the unit square. For
level values V > Vj, portions of the unit square lie inside the corresponding ellipses. In
particular, any points of intersection of such an ellipse with the edge must have a level
value V > V;. Therefore, Q(1,t) > Q(1, to) for t € [0, 1] and 1 # 0. The point (1, 1p)
provides the minimum squared distance between two points on the 3D line segments.
The point on the first line segment is an end point, and the point on the second line
segment is interior to that segment. Figure 2.2 illustrates the idea by showing various
level curves.

An alternate way of visualizing where the minimum distance point occurs on the
boundary is to intersect the graph of Q with the plane s = 1. The curve of intersection
is a parabola and is the graph of F(r) = Q(1,t) for ¢ € [0, 1]. Now the problem has
been reduced by one dimension to minimizing a function F(r) for ¢ € [0, 1]. The
minimum of F(t) occurs either at an interior point of [0, 1], in which case F'(f) =0
at that point, or at an end point t = 0 or ¢ = 1. Figure (2.2) shows the case when the
minimum occurs at an interior point. At that point the ellipse is tangent to the line
s = 1. In the end point cases, the ellipse may just touch one of the corners of the unit
square but not necessarily tangentially.

To distinguish between the interior point and end point cases, the same partition-
ing idea applies in the one-dimensional case. The interval [0, 1] partitions the real
line into three intervals,t <0, € [0,1],and ¢t > 1. Let F'(f) = 0. If < 0, then F(r)
is an increasing function for r € [0, 1]. The minimum restricted to [0, 1] must occur

44 Chapter2 Geometrical Methods

Figure 2.2

=V, <V,
First contact
point (1, to) vo=0
2=V
» 5
g=V;>V

Various level curves Q(s,1) = V.

at 1 = 0, in which case Q attains its minimum at (s, #) = (1, 0). If f > 1, then F(r)
is a decreasing function for ¢ € [0, 1]. The minimum for F occurs at 1 = 1, and the
minimum for Q occursat (s, 1) = (1, 1). Otherwise, f € [0, 1], F attains its minimum
at 7, and Q attains its minimum at (s, t) = (1, 7).

The occurrence of (5, 7) in region 3, 5, or 7 is handled in the same way as when
the global minimum is in region 0. If (5, 1) is in region 3, then the minimum occurs at
(S0, 1) for some s € [0, 1]). If (5, 1) is in region 5, then the minimum occurs at (0, o)
for some 1 € [0, 1]. Finally, if 5, 7) is in region 7, then the minimum occurs at (o, 0)
for some s € [0, 1]. Determining if the first contact point is at an interior or end point
of the appropriate interval is handled the same as discussed earlier.

If (5, 1) is in region 2, it is possible the level curve of Q that provides first contact
with the unit square touches either edge s = 1 or edge 1 = 1. Because the global
minimum occurs in region 2, the gradient at the corner (1, 1) cannot point inside
the unit square. If eQ = (Qs, Qr), where Qg and Q, are the partial derivatives of Q,
it must be that the partial derivatives cannot both be negative. The choice of edge s = 1
ort = 1 can be made based onthe signs of Q;(1, 1) and Q,(1, 1). If Q;(1, 1) > 0, then
the minimum must occur on edge f = 1since Q(s, 1) < Q(1,1) fors < 1 butcloseto 1.

2.6 Distance Methods 45

Similarly, if Q,(1, 1) > 0, then the minimum must occur on edge s = 1. Determining
whether the minimum is interior to the edge or at an end point is handled as in the
case of region 1. The occurrence of (5, 1) in regions 4, 6, and 8 is handled similarly.

When ac — b* = 0, the gradient of Q is zero on an entire st-line, s = — (bt + d)/a
for all 1 € R. If any pair (s, 1) satisfying this equation is in [0, 1], then that pair leads
to two points on the 3D lines that are closest. Otherwise, the minimum must occur
on the boundary of the square. Rather than solving the problem using minimization,
we take advantage of the fact that the line segments lie on parallel lines.

The origin of the first line is assumed to be Bo and the line direction is A-:Io. The
first line segment is parameterized as f?o + slf'lo for s € [0, 1]. The second line segment
can be projected onto the first line. The end point B, can be represented as

By = By + ooMo + Uy,
where [/o is a vector orthogonal to)‘:!o. The coefficient of Mo is

#o-(By—Bo) _ _d

ay = -
Mo Mo a

where a and d are some coefficients of Q(s, 1) defined earlier. The other end point
B} + M) can be represented as

Bl + A"fl = §o+alﬂ-"lo + [/1,
where [/1 is a vector orthogonal to)‘:!o. The coefficient of ['Io is

o Mo - (M, + B, — Bo)__b+d
1= o Fo —

where b is also a coefficient of Q(s,). The problem now reduces to determining
the relative position of [min(oo, o), max(cy, 71)] with respect to [0, 1]. If the two
intervals are disjoint, then the minimum distance occurs at end points of the two 3D
line segments. If the two intervals overlap, then there are many pairs of points at which
the minimum distance is attained. In this case the implementation returns a pair of
points, an end point of one line and an interior point of the other line.

The implementation of the algorithm is designed so that at most one floating-
point division is used when computing the minimum distance and corresponding
closest points. Moreover, the division is deferred until it is needed. In some cases no
division is needed.

Quantities that are used throughout the code are computed first. In particular, the
values computed are D= Bo - Bl,a = Mo Mo, b= —Mo My c= Ml Ml, d=
Mo Dye= —Ml D, and f= D - D.1t must be determined immediately whether or
not the two line segments are parallel. The quadratic classifier is§ = ac — b and is also
computed initially. The code actually computes & = |ac — b?| since it is possible for

46 Chapter 2 Geometrical Methods

nearly parallel lines that some floating-point round-off errors lead to a small negative
quantity. Finally, § is compared to a floating-point tolerance value, If larger, the two
line segments are nonparallel and the code for that case is processed. If smaller, the
two line segments are assumed to be parallel and the code for that case is processed.

In the theoretical development, § = (be — c¢d)/§ and (bd — ae) /8 were computed
so that §Q(§, 1) = (0, 0). The location of the global minimum is then tested to see if
it is in the unit square [0, 1]. If 50, then all the information to compute the minimum
distance is known. If not, then the boundary of the unit square must be tested. To
defer the division by §, the code instead computes § = be — ¢d and f = bd — ae and
tests for containment in [0, §]2, If in that set, then the divisions are performed. If not,
then the boundary of the unit square is tested. The general outline of the conditionals
for determining which region contains (3, f) is

det = a*c-b*b; s = b*e-c*d; t = b*d-a*e;

if (s >=0)
{

1f (s <= det)

{

if (t> 0) { if (t <= det) { region 0) else {
region 3)})
else { region 7)

}

else

{

if(t>0){if (t<=det) { region 1l) else {
region 2 })
else { region 8)

}
}
else
{

1FCt>0) {1f (t <= det) { region 5) else {

region 4))

else { region 6 }

}

The block of code for handling region 0 is
invOet = 1/det;
s *= invDet;
t *= invDet:

and requires a single division. The block of code for handling region 1 is

/7 F(t) = Q(1,t) = (a+2*d+f)+2*(b+e)*t+(c)*t 2

2.6 Distance Methods 47

// F(t) = 2*((b+e)+c*t)

// F(T) = 0 when T = -(b+e)/c

s =1;

tmp = b+e:

if (tmp>0) // T <0, so minimum at t = 0
t =20; ’

else if (-tmp > ¢) // T > 1, so minimum at t = 1
t=1;

else // 0 <= T <=1, so minimum at t = T
t = -tmp/c;

Notice that at most one division occurs in this block during run time. Code blocks for
regions 3, 5, and 7 are similar.

The block of code for handling region 2 is

// Q_s(1,1)/2 = a+b+d, Q_t(1,1)/2 = bt+c+e

tmp = b+d;
if (-tmp < a) // Q_s(1.,1) > 0
{

// F(s) = Q(s,1) = (c+2*e+f)+2*(b+d)*s+(a)*s 2
/1 F'(s) = 2*((b+d)+a*s), F'(S) = 0 when S = -(b+d)/a < 1
t=1;
if (tmp>0) // S<O0, so minimum at s = 0
s =0;
else // 0 <= S <1, so minimum at s = S
s = -tmp/a;
}
else // Q_s(1,1) <=0
{
s =1;
tmp = b+e;
if (-tmp < c) // Q_t(1,1) >0
{
/7 F(t) = Q(1,t) = (a+2*d+f)+2*(b+e)*t+(c)*t 2
/] F'(t) = 2*%((b+e)+c*t). F(T) = 0 when T =
/! -(b+e)/c <1
if Ctmp>0) // T <0, sominimum at t = 0
t=20
else // 0 <=T <1, so minimum at t = T
t = -tmp/c:
}
else // Q_t(1,1) <= 0, gradient points to region 2, so
// minimum at t = 1
t=1;

48 Chapter 2 Geometrical Methods

Notice that at most one division occurs in this block during run time. Code blocks for
regions 4, 6, and 8 are similar.

For parallel line segments, the first information to be computed is the ordering
of o = —d /a and —(b + d)/a. Once the ordering is known, the two s-intervals can
be compared to determine minimum distance. Note that —d /a correspondstor =0
and —(b + d)/a correspondstot = 1.

if(b>0)
{
// compare intervals [-(b+d)/a,-d/al to [0,1]
if (d>0)
/!l -d/a <= 0, so mipimum is at s = 0, t = 0
else if (-d <= a)
// 0 < -d/a <= 1, so minimum is at s = -d/a, t = 0

else
// minimum occurs at s = 1, need to determine t (see
// below)
)
else
{
// compare intervals [-d/a,-(b+d)/a] to [0,1]
if (-d>=a)
// 1 <= -d/a, so minimum ijs at s = 1, t =0
else if (d <=0)
// 0 <= -d/a <1, so minimum is at s = -d/a, t = 0
else
// minimum occurs at s = 0, need to determine t (see
// below)
}

When b > 0, the remaining problem is to determine on which side of s =1 is
the quantity —(b + d)/a. This is done by first finding that value of ¢ for which
—(bt +d)/a € |[—(b+d)/a,—d/a] corresponds to s = 1. Simply set — (bt + d)/a =
1 and solve fort = —(a + d)/b. By the time this case is reached at run time, itis known
thata +d < 0,s0¢t > 0. If7 < 1, then the quantity can be used as is. But if r > 1, then
clip to t = 1. The block of code is

tmp = a+d;
if (-tmp >=b) t =1; else t = -tmp/b;

Again note that the division is deferred until actually nceded.
When b < 0, the remaining problem is to determine on which side of s = 0 is the
quantity —(b + d)/a. Set —(bt + d) /a = 0 and solve for t = —d /b. By the time this

2.6 Distance Methods 49

case is reached at run time, it is known thatd > 0,so7 > 0. [ft < 1, then the quantity
can be used as is. But if ¢ > 1, then clip to r = L. The block of code is

if (d> -b)t=1; else t = -d/b:

Just as in the algorithm for distance from point to line segment, the algorithm for
distance from line segment to line segment can be implemented without divisions as
long as the line segments are represented as C +1tU for unit-length U and r € | —r, r}.

2.6.3 POINT TO TRIANGLE

URCE CODE

LIBRARY

Distance

FILENAME

DistVec3Tri3

The problem is to compute the minimum distance between a point P and a triangle
T(syt) =B +sEog+tE for(s,) e D={(s,t):s€[0,1],r€[0,1],s +1 <1}. The
minimum distance is computed by locating the values (5, 1) € D corresponding to the
point on the triangle closest to P.The squared-distance function for any point on the
triangle to Pis (s, t) = |T(s - P|2 for (s,t) € D. The function is quadratic in s
and 1,

QO(s, 1) = as® + 2bst + ct? + 2ds + 2et + f,

wherea—Eo Eo,b Eo El,C—El El,d Eo (B P),e——El (B P),
and f = (B — P)-(B - P).
Quadratics are classified by the sign of ac — b2, For function Q,

ac — b = (Eo- Eq)(E, - Ey) — (Eo- E})* =Eo x E||* > 0.

The positivity is based on the assumption that the two edges Eq and E; of the
triangle are linearly independent, so their cross product is a nonzero vector. The goal
is to minimize Q(s, t) over D. Since Q is a continuously differentiable function,
the minimum occurs either at an interior point of D where the gradient VQ =
2(as + bt + d, bs + ct +) = (0, 0) or at a point on the boundary of D.

The gradient of Q is zero only when § = (be — cd)/(ac — B and 7 = (bd —
ae)/(ac — b*). If (5, 7) € D, then the minimum of Q is found. Otherwise, the min-
imum must occur on the boundary of the triangle. To find the correct boundary,
consider Figure 2.3, which shows a partitioning of the plane analogous to that shown
in Figure 2.1. The central triangle labeled region 0 is the domain of @, (s, 1) € D. If
(5,7) is in region 0, then the point on the triangle closest to P is interior to the triangle.

Suppose (5,7) is in region 1. The level curves of Q are those curves in the s¢-
plane for which Q is a constant. Since the graph of Q is a paraboloid, the level
curves are ellipses. At the point where VO = (0, 0), the level curve degenerates to
a single point (5, 7). The global minimum of Q occurs there, call it Vi, As the
level values V increase from Vi, the corresponding ellipses are increasingly further
away from (5, 7). There is a smallest level value V; for which the corresponding ellipse

50 Chapter 2 Geometrical Methods

Figure 2.3

Partitioning of the st-plane by triangle domain D.

(implicitly defined by Q = Vj) just touches the triangle domain edges +1=1ata
value s = sq € [0, 1], 1o = 1 — sq. For level values V < Vj, the corresponding ellipses
do not intersect D. For level values V > V4, portions of D lie inside the corresponding
ellipses. In particular, any points of intersection of such an ellipse with the edge must
have alevel value V > Vj,. Therefore, Q(s, 1 —s) > Q(so, to) for s e_[O, 1] and s # sq.
The point (so, #p) provides the minimum squared distance between P and the triangle.
The triangle point is an edge point. Figure 2.4 illustrates the idea by showing various
level curves.

An alternate way of visualizing where the minimum distance point occurs on the
boundary is to intersect the graph of Q with the plane s = 1. The curve of intersection
is a parabola and is the graph of F(s) = Q(s, 1 — s) for s € {0, 1]. Now the problem
has been reduced by one dimension to minimizing a function F (s) for s € [0, 1]. The
minimum of F (s) occurs either at an interior point of [0, 1], in which case F'(s) =0
at that point, or at an end point s = 0 or s = 1. Figure 2.4 shows the case when the
minimum occurs at an interior point of the edge. At that point the ellipse is tangent to
the line s + t = 1. In the end point cases, the ellipse may just touch one of the vertices
of D, but not necessarily tangentially.

To distinguish between the interior point and end point cases, the same partition-
ing idea applies in the one-dimensional case. The interval [0, 1] partitions the real line
into three intervals, s < 0,5 €[0,1],and s > 1. Let F'(s) = 0. If§ < 0, then F(s) is
an increasing function for s € [0, 1]. The minimum restricted to [0, 1] must occur
at s = 0, in which case Q attains its minimum at (s, 1) = (0, 1). If § > 1, then F(s)
is a decreasing function for s € [0, 1]. The minimum for F occurs at s = 1 and the
minimum for Q occurs at (s, t) = (1, 0). Otherwise, s € [0, 1}, F attains its minimum
at §, and Q attains its minimum at (s, ?) = (5, 1 — §).

The occurrence of (3, 7) in region 3 or 5 is handled in the same way as when the
global minimum is in region 0. If (5, 7) is in region 3, then the minimum occurs at
(0, o) for some # € [0, 1]. If (5, 1) is in region 5, then the minimum occurs at (sg, 0)
for some sg € [0, 1]. Determining if the first contact point is at an interior or end point
of the appropriate interval is handled the same as discussed earlier.

If (§, 1) is in region 2, it is possible the level curve of Q that provides first contact
with the unit square touches either edge s + ¢ = 1 or edge s = 0. Because the global
minimum occurs in region 2, the negative of the gradient at the corner (0, 1) cannot

Figure 2.4

2.6 Distance Methods 51

Q:Vl<V0

First contact
point (1, tg)

Various level curves Q(s, 1) =V

point inside D. IfVQ = (Q;, 0;), where Q and O are the partial derivatives of Q,
it must be that (0, —1) - VQ(O 1) and (1, -1) - VQ(O 1) cannot both be negative.
The two vectors (0, —1) and (1, —1) are directions for the edgess = 0and s +1 =1,
respectively. The choice of edge s + =1 or s = 0 can be made based on the signs
of (0, —1) - eQ(O, 1) and (1, —1) -eQ(O, 1). The same type of argument applies in
region 6. In region 4, the two quantities whose signs determine which edge contains
the minimum are (1, 0) - eQ(O, 0)and (0,1) - 6(0, 0).

The implementation of the algorithm is designed so that at most one floating-
point division is used when computing the minimum distance and corresponding
closest points. Moreover, the division is deferred until it is needed, and in some cases
no division is needed.

Quantities that are used throughout the code are computed first. In particular, the
values computed are D = B Pa= Eo Eo b= Eo El,c— E1 E;d=E,- D,
e=E, D, and f= D - D. The code actually computes & = |ac — b?| since it is
possible for small edge lengths that some floating-point round-off errors lead to a
small negative quantity.

In the theoretical development, § = (be — ¢d)/8 and (bd — ae) /8 were computed
so that eQ(E, 1) = (0, 0). The location of the global minimum is then tested to see if
it is in the triangle domain D. If so, then the information to compute the minimum
distance is known. If not, then the boundary of D must be tested. To defer the
division by 8, the code instead computes § = be — ¢d and t = bd — ae and tests for

52 Chapter 2 Gevmetrical Methods

containment in a scaled domain, s € [0,8],1 € [0, 8], and s + 1 < 8. If in that set, then
the divisions are performed. If not, then the boundary of the unit square is tested. The
general outline of the conditionals for determining which region contains (3, 7) is

det = a*c-b*b; s = b*e-c*d; t = b*d-a*e;
if (s+t <= det)

{
if (s<0) {1if (t<0) { region 4 } else { region3 } }
else if (t <0) { region 5}
else { region 0 }

}

else

{
if (s <0) { region 2}
else if (t <0) { region 6 }
else { region 1}

}

The block of code for handling region 0 is

invDet = 1/det;
s *= invDet;
t *= invDet;

and requires a single division.
The block of code for region 1 is

// F(s) = Q(s,1-s) = (a-2b+c)s”2 + 2(b-c+d-e)s + (c+2e+f)
// F'(s)/2 = (a-2b+c)s + (b-c+d-e)

// F'(S) = 0 when S = (c+e-b-d)/(a-2b+c)

// a-2b+c = |EG-E1|*2 > 0, so only sign of c+e-b-d need be
// considered

if (numer <= 0)

{
s =0;
}
else
{
denom = a-2*b+c; // positive quantity
$ = (numer >= denom ? 1 : numer/denom);
}

t=1-s;

2.6 Distance Methods 53

The block of code for region 3 is given below. The block of code for region 5 is
similar.

// F(t) = Q(0,t) = ct*"2 + et +

/1 F(t)/2 = ct+e

/! F'(T) = 0 when T.= -e/c

s = 0;
t=(e>0?20:(-ed>c?1l: -e/c));

The block of code for region 2 is given below. The blocks of code for regions 4 and
6 are similar.

// Grad(Q) = 2(as+bt+d,bs+ct+e)

/17 (0,-1)*Grad(Q(0,1)) = (0,-1)*(b+d,c+e) = -(c+e)

// (1,-1)*Grad(Q(0,1)) = (1,-1)*(b+d.c+e) = (b+d)-(c+e)
// min on edge s+t=1 if (1,-1)*Grad(Q(0,1)) > 0)

// min on edge s=0 otherwise

tmp0 = B+D;
tmpl = C+E;
if (tmpl > tmp0) // minimum on edge s+t=1

{
numer = tmpl - tmp0;
denom = A-2*B+C;
s = (numer >= denom ? 1 : numer/denom);
t=1-s;
}
else // minimum on edge s=0
{
s =0
t=(tmpl <=02?21:(CED>0?20: -E/C));
}

2.6.4 LINEAR COMPONENT TO TRIANGLE

Distance

FILENAME

DistLin3Tri3

The problem is to compute the minimum distance between a linear component
Z,(r) =B+rMforrelanda triangle 7‘(3‘, t) = A +sEo + tEl for(s,0) e D=
{(s,1):5 €[0,1],7 € [0, 1], s + 1 < 1}. The squared-distance function between a point
on the line and point on the triangle is Q(s, 1, r) = Ii‘(s, t) — Z,(r)l2 for (s,t,r) €
D x I,so

O(s,t,r)= aoosz + a”tz + azzr2 + 2a015t + 2ag;sr + 2ayztr + 2bgs + 2byt
+ 2byr + ¢,

54 Chapter 2 Geometrical Methods

-

where aoo Eo Eo, a“-E, El, azz—M- 0] . > : L
alz——El M bO—EO (A B), bl—El (B), b2= M(A—B), and
c= (A B)- (A B)

The partitioning of R? into regions is similar to that shown in Figure 2.3, except
that the regions are extruded along the r -axis and split based on whether / is R, [0, 00),
or [0, 1]. For example, region 0 is an infinite prism (line case), semi-infinite prism (ray
case), o finite prism (segment case). As in the other distance calculation algorithms, if
the solution (5,7, 7) to VQ = (0, 0, 0) lies in region 0, then the minimum occurs atan
interior point that is determined by the solution. Otherwise, the minimum occurs on
a face separating regions. The region that contains the zero gradient solution must
be determined and the correct faces between the regions must be analyzed to see
which one contains the global minimum. Also analogous to the other algorithms,
it is possible that the determinant of the system for ¥V Q = (0,0, 0) is zero. In this case
the linear component is parallel to the triangle and must be handled separately.

31
1)
2
II
ty
o

| bt
)
(5]
1l
|
ty
o
X

Line to Triangle

The partitioning of_‘lR3 yields eight regions The system of equations from Vo=
(0,0,0) is Ap = —b, where A = [a;;], b= {b;], and p = [s t r]T. The skeleton of
the pseudocode to handle the various regions is

bool SquaredDistancelineTriangle (Line line, Triangle triangle)
{
a00 = Dot(triangle.EO.triangle.ED):
a0l = Dot(triangle.EO0.triangle.E1l):
a02 = -Dot(triangle.E0,1ine.M);
all = Dot(triangle.El,triangle.E1l):
al2 = -Dot(triangle.El,line.M);
a22 = Dot(1ine.M,1ine.M);
diff = triangle.A - line.B;
b0 = Dot(triangle.ED,diff);
bl = Dot(triangle.El.diff);
b2 = -Dot(line.M,diff);
¢ = Dot(diff,diff);

/! cofactors to be used for determinant and inversion of
// matrix A

cof00 = all*a22 - al2*al2;
cof0l = a02*al2 - a0l*a22;
cof02 = a0l*al2 - a02*all;

det = a00*cof00 + a0l*cof0l + a02*cof02;
if (det < 0)
{
// avoids having to do dual cases for each region

2.6 Distance Methods 55

det = -det;
b0 = -b0;
bl = -bl;
b2 = -b2;
}
if (Positive(det))
{
cofll = a00*a22 - a02*a02;
cofl2 = a02*a0l - aO0*ale;
s = -(cof00*b0 + cofO0l*bl + cof02*b2);
t = -(cof01*b0 + cofll*bl + cofl2*b2);
if (s+t <= det)
{
if(s<0) {if (t<0) { region 4} else {
region 3 } }
else if (t <0) { region 5}
else { region 0 }
}
else
{
if (s <0) { region 2}
else if (t <0) { region 6}
else { region 1 }
}
}
else
{
// Line is parallel to triangle. A closest pair of
// points can be found by computing distance from line
// to triangle edges (at most three line-to-segment
// tests).
}

Thecode Positive(det) should be a relative error test on the determinant with
an application-specified tolerance. The code for the case when the minimum occurs
at an interior point (region 0) is

invDet = 1/det:
s = s*invDet;
t = t*invDet;

cof22 = a00*all - a0l*a0l;
r = -(cof02*b0 + cofl2*bl + cof22*b2)*invdet;

56 Chapter2 Geometrical Methods

The other regions involve the recursion in dimension. For example, in the case
of region 3, the minimum must occur when s = 0. The quadratic function to mini-
mize is Q(1,r) = ay1? + azr? + 2aytr + 2byt + 2byr +c for (¢, r) € [0,1] x R.
The zr-plane is partitioned into three pieces, an infinite strip and two half planes.
The solution (7, 7) to VQ, = (0, 0) is computed. If it lies in the infinite strip, then
the minimum of @, (and hence Q) is found. Otherwise it lies in one of the half
planes and the minimum must occur on the corresponding line boundary between
the half plane and the infinite strip. This is yet one more recursion in dimension.
Suppose that 1 < 0. The minimum must occur when 1 = 0. The quadratic func-
tion to minimize is Q2(r) = azr* + 2byr + ¢ for r € R. The solution occurs when
dQ,/dr =0,sor = —by/ay,. Similarly, if > 1, the quadratic function to minimize is
anr? + 2(ay; + ba)r + (ay + 2by + ¢), sor = —(a12 + by)/az. The pseudocode for
region 3 is

s =0;

t - al2*b2 - a22*bl:

if(t>0)

{
// det = all*a22-al2*al2 = cof00 =
/7 |Cross(triangle.E1l,1ine.M}| > O
if (t <= det)

{
invDet = 1/cof00;
t *= invDet;
r = (al2*bl - a22*b2)*invDet;
}
else
{
t=1;
r = -(b2+al2)/a22;
}
}
else
{
t=0;
r = -b2/a22;
}

The determinant is positive since it was already determined by this time that the
line is not parallel to the triangle, so it cannot be parallel to an edge of the triangle.
The code for the other regions is structured in a similar fashion.

2.6 Distance Methods 57

Ray to Triangle and Segment to Triangle

These are straightforward modifications of the line-to-triangle algorithm where the
domain of Q(s, ¢, r) is D x [0, 00) or D x [0, 1]. The partitioning of R* for a ray
now has 16 components, 8 for » > 0 and 8 for r < 0. The partitioning for a segment
has 24 components, 8 for r < 0, 8 for r € [0, 1], and 8 for r > 1. The source code on
the CD-ROM contains an implementation of this algorithm.

2.6.5 POINT TO RECTANGLE

LIBRARY

Distance

FILENAME

DistVec3Rct3

The distance algorithm for point to rectangle appears to be nearly the same as the
distance algorithm for point to triangle except that the parameter domain is (s, 1) €
[0, 112. The parameter plane is partitioned into nine regions by the lines s = 0,5 = 1,
t =0,and ¢ = 1. This partition is shown in Figure 2.1, the lower-right diagram. There
is, however, one main difference. If the zero of the gradient of Q occurred in regions
2, 4, or 6 in the partition of the plane by the triangle parameters, then the minimum
of Q could occur on one of two edges. For rectangles, this is not the case. If the zero
of the gradient of the quadratic is in region 2, then the minimum must occur at the
vertex. The same argument is made for regions 4, 6, and 8. Because the edges of the
rectangle meet at a right angle, the level sets of the squared-distance function are in
fact circles, not ellipses. The closest point on the rectangle to the specified point Pis
obtained by projecting P onto the plane of the rectangle; call this point Py. If Py is
inside the rectangle, then it is the closest point. If it is in regions 1, 3, 5, or 7, then
the closest point is obtained by projecting P onto the rectangle edge for that region.
Otherwise, Py is in one of region 2, 4, 6, or 8, and the closest point is the rectangle
vertex of that region.

Let the rectangle be B+ sEo+ tEl for (s,1) € (o, 1]2 Define D = P — B The
projection onto the plane of the rectangle is Po=P +sEq+tE|, wheres =D . E,
andt = D - E,. Determination ofthe correct region and closest point requires a simple
analysis of s and 7. The pseudocode is

float SquaredDistancePointRectangle (Rectangle rectangle,
Point P)
{
D =P - rectangle.B;

s = Dot(rectangle.EO0,D);
if (s >0)
{
dot0 = Dot(rectangle.EQ,rectangle.E0Q);
if (s < dot0)
D=0D - (s/dot0)*rectangle.EQ;

58 Chapter2 Geometrical Methods

else
D =D - rectangle.EO;
}
t = Dot(rectangle.E1,D);
if (t>0)
{

dotl = Dot(rectangle.El,rectangle.El);
if (t < dotl)
D=0D - (t/dotl)*rectangle.El;
else
D =D - rectangle.El;
}

return Dot(D,D):

2.6.6 LINEAR COMPONENT TO RECTANGLE

LIBRARY

Distance

FILENAME

DistLin3Rct3

The problem is to compute the minimum distance between a linear component L(r)
=B+rMforrel and a rectangle Ris,)=A4A +sEo + lEl for(s,t)e D={(s,1):
s€(0,1],r €10, 1],s + ¢t < 1}. The squared-distance function between a point on the
line and a point on the rectangle is Q(s, ¢, r) = IR(s, 1) — L(r)|2for (s, t,rye D x I,
0

QG t,r)y= aoo52 + aut2 + a22r2 + 2a0,5t + 2a0zsr + 2apatr + 2bgs + 2byt
+ 2byr +c,

where ag = Eo Eo, ay = El El, ay = M M agy = Eo E,, ag; = —Eo
ap = —El M bo = Eo (A B), b = (A B) by = -M . (A B), and
c=(A-B)-(A-B).

The partitioning of R* into regions is similar to that shown in Figure 2.1, the lower-
right diagram, except that the regions are extruded along the r-axis and split based on
whether / is R, [0, 00), or [0, 1]. For example, region 0 is an infinite square column
(line case), semi-infinite square column (ray case), or cube (segment case). As in the
other distance calculation algorithms, if the solution (5,7, 7) to V0 = (0,0, 0) lies
in region 0, then the minimum occurs at an intcrior point that is determined by the
solution. Otherwise, the minimum occurson a face separating regions. The region that
contains the zero gradient solution must be determined and the correct faces between
the regions must be analyzed to see which one contains the global minimum. Also
analogous to the other algorithms, it is possible that the determinant of the system for

2.6 Distance Methods 59

V0 = (0,0,0) is zero. In this case the linear component is parallel to the rectangle
and must be handled separately.

The partitioning of R? yields nine regions. The system of equations from VQ =
(0,0,0)is Ap = —b, where A = laij], b= [b;],and p = [s ¢ r]". The skeleton of the
pseudocode to handle the various regions is

bool SquaredDistancelLineRectangle (Line line, Rectangle
rectangle)
{
a00 = Dot(rectangle.EOQ,rectangle.E0);
a0l = Dot(rectangle.EOQ,rectangle.El);
a02 = -Dot(rectangle.E0,1ine.M);
all = Dot(rectangle.El,rectangle.El);
al2 = -Dot(rectangle.El,line.M);
a22 = Dot(line.M,line.M);
diff = rectangle.A - line.B;
b0 = Dot(rectangle.E0,diff);
bl = Dot(rectangle.El,diff);
b2z = -Dot(line.M,diff);
¢ = Dot(diff,diff);

// cofactors to be used for determinant and inversion of
// matrix A

cof00 = all*a22 - al2*al2;
cof0l = a02*al2 - a0l*a22:
cof02 = a0l*al2 - a02*all;

det = a00*cof00 + a0l*cofOl + a02*cof02;
if (det < 0)

{
// avoids having to do dual cases for each region
det = -det;
b0 = -b0:
bl - -bl:
b2 - -b2:
}

if (Positive(det))
{
cofll = a00*a22 - a02*al2;
cofl2 = a02*a0l - a00*al2;
s = -(cof00*b0 + cof0l*bl + cof02*b2);
t = -(cof01*b0 + cofll*bl + cofl2*b2);

60 Chapter 2 Geometrical Methods

if (s<0)

{
if (t <0) { region 6}
else if (t <= det) { region 5}
else { region 4 }

)

else if (s <= det)

{
if (£t <0) { region 7}
else if (t <= det) { region 0}
else { region 3}
}
else
{
if (t <0) { region 8}
else if (t <= det) { region 1)
else { region 2}
)
}
else
{

// Line is parallel to rectangle. A closest pair of
// points can be found by computing distance from 1ine
// to rectangle edges (at most four line-to-segment

// tests).

The code Positive(det) should be a relative error test on the determinant with
an application-specified tolerance. Code for the various regions is implemented in
exactly the way that the line-to-triangle code is built. That code is based on the same
recursive descent on dimension that was discussed earlier.

Ray to Rectangle and Segment to Rectangle

These are straightforward modifications of the line-to-rectangle algorithm where the
domain of Q(s, #,r) is D x [0, 00) or D x [0, 1]. The partitioning of R? for a ray
now has 18 components, 9 for r > 0 and 9 for r < 0. The partitioning for a segment
has 27 components, 9 for r <0, 9 for r € [0, 1], and 9 for r > 1. The source code on
the CD-ROM contains an implementation of this algorithm.

2.6 Distance Methods 61

2.6.7 TRIANGLE TO TRIANGLE

LIBRARY

Distance

FILENAME

DistTri3Tri3

The quadratic function for squared distance between two triangles is Q (sq, t, 51, 1) =
If'o(so, o) — f‘, (s1,11)|2, where (s;,5;) € Dfor0 <i < 1, the triangular domain defined
earlier. The domain of Q is the Cartesian product D x D C R*. The code structure
is straightforward, but there are a lot of cases. Since D partitions R? into 7 regions,
D x D partitions R? into 49 regions. That is the number of cases within the code. The
pseudocode is not presented here because it is quite lengthy. The implementation is
given in the source code on the CD-ROM.

2.6.8 TRIANGLE TO RECTANGLE

LIBRARY

Distance

FILENAME

DistTri3Rct3

The quadratic function for squared distance between a triangle and a rectangle is
Q(so» to, 51, 1) = |T(so. o) — R(sl, 1))|%, where (so, fo) € D, the triangular domain
defined earlier, and (s, ;) € [0, 1 2. The domain of Q is the Cartesian product D x
[0, 112 C R*. As in the triangle-to-triangle case, the code structure is straightforward,
but there are a lot of cases. Since D partitions R? into 7 regions and [0, 1] partitions
R? into 9 cases, D x [0, 1]? partitions R* into 63 regions, again the number of cases
within the code. The pseudocode is not presented here, but the implementation is
given in the source code on the CD-ROM.

2.6.9 RECTANGLE TO RECTANGLE

LIBRARY

Distance

FILENAME

DistRct3Rct3

The largest chunk of code occurs for this case. The quadratic function for squared
distance between two rectangles is Q (s, fo, 53, 1)) = Iko(xo, o) — k.(s,,)12, where
(si»1;) € [0, 1]2 for 0 < i < 1. The domain of Q is [0, 1}* C R*. Since [0, 1] partitions
R? into 9 regions, [0, 1]* partitions R? into 81 cases, the number of cases within the
code. The pseudocode is not presented here as it is quite lengthy. The implementation
is given in the source code on the CD-ROM.

2.6.10 POINT TO ORIENTED BOX

The first algorithm treats the box as a solid. Any point inside the box has distance zero
from the box. Let the box have center C, _orthonormal axes Ui, and extents ¢;. Let the
pomt be wntten asP=C+ soUo + o.U 1+ 52Uz Solving for the coefficients yields
si=U; (P C) forall i. Depending on the values of (3o, 51, 32) relative Lo parametet
domain [—ep, 9] x [—e), €)] x [—e2, 2], the closest point is either P itself, a face
point, an edge point, or a vertex. The pseudocode is

62 Chapter 2 Geometrical Methods

float SquaredDistancePointSolidBox (Box box, Point P)
{

D=-P - box.C;

s0 = Dot(box.U0,D);

sl = Dot(box.Ul,D):

s2 = Dot(box.U2,D);

if (s0 <= -box.e0)

D =D + box.e0*box.U0;
else if (s0 < box.e0)

D=D - sO*box.UO;
else

D=0 - box.e0*box.U0;

if (sl <= -box.el)

D =D + box.el*box.Ul;
else if (sl < box.el)

D=0D - sl*box.Ul;
else

D =D - box.el*box.U1;

if (s2 <= -box.e2)

D - D + box.e2*box.U2;
else if (s2 < box.e2)

D=D - s2*box.U2;
else

D=D - box.e2*box.U2;

return Dot(D.D):

For computing the distance from a point to a box treated just as a shell, the
algorithm is different for points inside the box. Points outside the box will have
the same distance whether we use the previous code or we use the code about to
be discussed. For a point P inside the box, it must be determined for each pair of
parallel faces which of the two faces the point is closest to. This determines to which
face the point must be projected in order to find the closest point on the shell. The
pseudocode is

float SquaredDistancePointHollowBox (Box box, Point P)
({

D=-P - box.C;

s0 = Dot(box.U0,D):

2.6 Distance Methods 63

sl = Dot(box.Ul,D);
s2 = Dot(box.U2,D):

if (sO <= -box.e0)
{
D=0 + box.e0*box.UO0;

if (sl <= -box.el)

D =D + box.el*box.Ul;
else if (sl < box.el)

D=1D - sl*box.Ul;
else

D =D - box.el*box.Ul;

if (s2 <= -box.e2)
D=0 + box.e2*box.U2;
else if (s2 < box.e2)
D=D - s2*box.U2;
else
D=D - box.e2*box.U2Z;
1
else if (sO < box.e0)
{
D=D - sO*box.UO;

if (s1 <= -box.el)
{
D=D + box.el*box.Ul;

if (s2 <= -box.e2)
D=0D + box.e2*box.U2:
else if (s2 < box.e2)
D=D - s2*box.U2;
else
D =D - box.e2*box.U2;
1
else if (sl < box.el)
{
D=0D - sl*box.Ul;

if (s2 <= -box.e2)
{

D =D + box.e2*box.U2:
}

64 Chapter 2 Geometrical Methods

else if (s2 < box.e2)

(
// P is inside the box
dist = min(box.e0-|s0|,box.el-|sl|,box.ez-|s2]);
return dist*dist;
}
else
(
D =D - box.e2*box.U2;
}
}
else
(
D =D - box.el*box.Ul;
if (s2 <= -box.e2)
D =D + box.e2*box.U2;
else if (s2 < box.e2)
D=0D - s2*box.U2;
else
D=D - box.e2*box.U2;
}
}
else
(
D=D - box.e0*box.UO;
if (sl <= -box.el)
D =D + box.el*box.Ul;
else if (sl < box.el)
D =D - sl*¥box.Ul;
else
D =D - box.el*box.Ul;
if (s2 <= -box.e2)
D =D + box.e2*box.U2;
else if (s2 < box.e2)
D=~D - s2*box.UZ;
else
D~D - box.e2*box.U2;
}

return Dot(D.D);

2.6 Distance Methods 65

2.6.11 MISCELLANEOUS

Distance

FILENAME

DistVec2€lp2

A library of distance calculation methods can be arbitrarily complex. There are many
other cases that can arise in an application. Chapter 6 discusses intersections of moving
spheres, capsules, or lozenges. Those routines require distance calculations not specif-
ically derived here: parallelogram to point, segment, rectangle, or parallelogram; and
parallelepiped to point, segment, rectangle, parallelogram, or parallelepiped. All of
these follow the pattern for setting up a quadratic function on a compact set and ana-
lyzing the regions obtained by partitioning the parameter space appropriately. Other
cases might involve distance from point to quadric surface, distance from point to
circle (in 3D) or disk, point to cvlinder, line segment to these same quadratic-style
objects, ad infinitum. At any rate, such a library is never complete and will continually
evolve.

Point to Ellipse

We only need to solve this problem when the ellipse is axis-aligned. Oriented ellipses
can be rotated and translated to an axis-aligned ellipse centered at the origin and the
distance can be measured in that system. The basic idea can be found in an article by
John Hart (on computing distance, but between point and ellipsoid) in Graphic Gems
IV (Heckbert 1994).

Let (u, v) be the point in question. Let the ellipse be (x/a)® + (y/b)* = 1. The
closest point (x, y) on the ellipse to («, v) must occur so that (x —u, ¥y —v) is
normal to the ellipse. Since an ellipse normal is V((x /a)? + (y/b)?) = (x fu?, y/b?),
the orthogonality condition implies that « — x =t * x/a’ and v — y = t * ¥ /b? for
somet. Solving yields x = au/(t + a®) and y = b*v/(t + b?). Replacing in the ellipse
equation yields

au 2+ bv 2—1
t +a? t+62)

Multiplying through by the denominators yields the quartic polynomial

F@t) = (t + a)2(t + b)? — a2 (t + b*)? — b2v(t +a?)2 =0.

The largest root f of the polynomial corresponds to the closest point on the ellipse.

A closed-form solution for the roots of a quartic polynomial exists and can be
used to compute the largest root. This root also can be found by a Newton's iteration
scheme. If (u, v) is inside the ellipse, then 7, = 0 is a good initial guess for the iteration.
If (4, v) is outside the ellipse, then fo = max{a, b} Vu? + v? isa good initial guess. The
iteration itself is

tisi=t— F@t)/F'(t), i>0.

66 Chapter 2 Geometrical Methods

SEOURCE CODE

LIBRARY

Distance

FILENAME

DistVec3Elp3

Some numerical issues need to be addressed. For (&, v) near the coordinate axes,
the algorithm is ill-conditioned because of the divisions of values near zero in the
equations relating (x, y) to (#, v). Those cases need to be handled separately. Also,
if @ and b are large, then F(1;) can be quite large. In these cases consider uniformly
scaling the data to O (1) as floating-point numbers first, computing the distance, then
rescaling to get the distance in the original coordinates.

Point to Ellipsoid

The method of measuring distance is a straightforward generalization of that for an
ellipse. Let (u, v, w) be the point in question. Let the ellipse be (x/a)? + (y/b)® +
(z/c)* = 1. The closest point (x, y, z) on the ellipsoid to (u, v, w) must occur so
that (x — u, y — v,z — w) is normal to the ellipsoid. Since an ellipsoid normal is
V((x/a)? + (y/b)* + (2/¢)?) = (x /a?, y/b%, z/c?), the orthogonality condition im-
pliesthatu —x =1 * xfa®, v — y =1 % y/b*, andw — z =1 » z/c? for some . Solving
yields x = a?u/(t + a?), y = b*v/(1 + b?), and z = 2w/ (1 + ¢?). Replacing in the
ellipsoid equation yields

(au)2+ bv)2+ cw)2_1
{ +al 1+ B t+c¢2)

Multiplying through by the denominators yields the sixth-degree polynomial

F(1) = (1 + a2 + b5 + cH)? — a®u? (¢ + b2 + c)?

- bzvz(! + az)z(! - cz)2 - czwz(t + az)z(l + bz)2 =0.

The largest root 7 of the polynomial corresponds to the closest point on the ellipse.

The largest root can be found by a Newton’s iteration scheme. If (u, v, w) is
inside the ellipse, then 7y =0 is a good initial guess for the iteration. If (4, v, w) is
outside the ellipse, then 75 = max{a, b, c}vu? + v2 + w? is a good initial guess. The
iteration method is the same as before, r;+; =1, — F(5;)/ F'(t;) for i > 0. The same
numerical issues that occur in the ellipse problem need to be addressed for ellipsoids.
For (u, v, w) near the coordinate planes, the algorithm is ill-conditioned because
of the divisions of values near zero in the equations relating (x, y, z) to (#, v, w).
These cases can be handled separately. Also, if 4, b, and ¢ are large, F (1;) can be quite
large. In these cases consider uniformly scaling the data to O(1) as floating-point
numbers first, computing the distance, then rescaling to get the distance in the original
coordinates.

LIBRARY

Distance

FILENAME

DistVec2Eip2
DistVec3Elp3

2.6 Distance Methods 67

Point to Quadratic Curve or Quadric Surface

This subsection describes an algorithm for computing the distance from a pointin 2D
to a general quadratic curve defined implicitly by a second-degree quadratic equation
in two variables or from a point in 3D to a general quadric surface defined implicitly
by a second-degree quadratic equation in three variables.

The general quadratic equation is

O(X)=XTAX +b"X +c =0,

where A is a symmetric N x N matrix (N =2 or N = 3 not necessarily invertible,
for example, in the case of a cylinder or paraboloid), bisan N x 1 vector, and c is a
scalar. The parameter is X,an N x 1 vector. Given the surface Q(X) = 0and a point
Y, find the distance from ¥ to the surface and compute a closest point X.

Geometrically, the closest point X on the surface to ¥ must satisfy the condition
that ¥ — X is normal to the surface. Since the surface gradlent VQ(X) is normal to
the surface, the algebraic condition for the closest point is

Y- X=1VQ(X)=t(2AX + b)
for some scalar ¢. Therefore,
X = +2tA)"NY —1b),

where / is the identity matrix. You could replace this equation for X into the general
quadratic equation to obtain a polynomial in ¢ of at most sixth degree.

Instead of immediately replacing X in the quadratic equation, the problem can be
reduced to something simpler to code. Factor A using an eigendecomposition to ob-
tain A = RDRT, where R is an orthonormal matrix whose columns are eigenvectors

of A and where D is a diagonal matrix whose diagonal entries are the eigenvalues of
A.Then

X =(+2A)""(Y —1b)
=(RRT +2tRDRT)"\(Y — tb)
=[R(I +2D)RT)"'(Y —1b)
=R +2tD)"'RT(Y — tb)

=R(I +2D)"\@ — tB),

68 Chapter 2 Geometrical Methods

SOURCE CODE

LIBRARY

Distance

FILENAME

DistVec3Cir3

where the last equation defines & and B. Replacing in the quadratic equation and
simplifying yields

0= —tB)"(I +2tD)™'D(I +2tD) Y@ —tB) + B(I +2tD) (@ —1B) +c.
The inverse diagonal matrix is

(I + 21 D)~ = diag{1/() + 2do), 1/(1 + 2tdy)}

for 2D or

(I + 2t D)~" = diag{1/(1 + 2tdo), 1/(1 + 2tdy), 1/(1 + 2t dy)}

for 3D. Multiplying through by ((1 + 2tdo)(1 + 2td,))? in 2D leads to a polynomial
of at most fourth degree. Multiplying through by ((1 + 2tdo)(1 + 2tdy)(1 + 2td>))?
in 3D leads to a polynomial equation of at most sixth degree.

The roots of the polynomial are computed and X = (I + 2rA)~Y(¥ — 1B) is
computed for each root ¢. The distances between X and ¥ are computed and the
minimum distance is selected from them,

Point to Circle in 3D

A circle in 3D is represented by a center C, a radius R, and a plane containing the
circle, N - (X — C) =0, where N is a unit length normal to the plane. If U and V
are also unit-length vectors so that U, V, and N form a right-handed orthonormal
coordinate system, then the circle is parameterized as

X = C + R(cos(8)U +sin(8)V) =:C + RW(6)

for angles 8 € [0 2m). Note that |X Cl= R so the X values are all equldlstant from
C. Moreover, N - (X — C) = Osince U and V are perpendicular to N, so the X liein
the plane.

For each angle 8 € [0, 21r), the squared distance from a specified point P to the
corresponding circle point is

F@)=|C+RW®) - P2=R*+|C—-P?+2R(C-P)-W.

The problem is to minimize F(8) by finding 6y such that F(6p) < F(8) for all 8 €
[0, 2m). Since F is a periodic and differentiable function, the minimum must occur
when F'(8) = 0. Also, note that ((-:‘ — P) - W should be negative and as large in
magnitude as possible to reduce the right-hand side in the definition of F. The
derivative is

LIBRARY

Distance

FILENAME

DistCir3Cir3

2.6 Distance Methods 69

F'(6) =2R(C — P)-W'(6),

where W W =0 since W.Ww=1 for all 6. The vector W' is unit length since
W”— ~Wando=W . W implies 0 = W-W W W' =—1+ W' W’ Finally,
"is _perpendicular to N since N-W=o0 implies 0 = N - W'. All conditions imply
that W is parallel to the projection of P — C onto the plane and points in the same
direction.
Let O be the projection of P onto the plane. Then

Q—E‘:P—E‘—(E/-(P—E‘))S/

The vector W(()) must be the normalized projection (0 - C) /| 0- C|. The closest
point on the circle to P is

- 0-C
=C+R? =
1@ —C|

assuming that 0 # C. The distance from point to circle is then |i’ -X |

If the projection of P is exactly the circle center C, then all points on the circle are
equidistant from C. The distance from point to circle is the length of the hypotenuse
of any right triangle whose vertices are G, P, and any circle point. The lengths of the
adjacent and opposite triangle sides are R and |P — C|, so the distance from point to

circle is / R2 + |P - C2

Circle to Circle in 3D

The previous subsection described the formulation for a circle in three dimensions.
Using this formulation, let the two circles be Co + RoWo(8) for 8 € [0, 27) and

E‘l + R Wl(¢) for ¢ € [0, 27). The squared distance between any two points on the
circles is

F(8,¢) =|Ci — Co + RiW; — RoWp|?

=|DI* + R} + R} + 2R\D - W) — 2RoR\ Wy - W — 2R D - W,

where D = C) — Co. Since F is doubly periodic and continuously differentiable, its
global minimum must occur when V F = (0, 0). The partial derivatives are

aF - L
35 = ~2RoD - Wi — 2RoR\ W, - W,

70 Chapter2 Geometrical Methods

and

aF - L
35 =2RD- W, — 2RoR W - W,

. De_[ine g = ¢0s(8), so = sin(8), c; = cos(@), and_gl = sin(¢). Then_Wo = col-)o +
soVo, Wy = iUy + 51y, Wy = —soUp + coVo, and Wll = —=51Uy + c1 V1. Setting the
partial derivatives equal to zero leads to

0 =1so(ao + aicy + azs1) + colas + aqcy + assy)
0 = s1(bo + birco + baso) + c1(b3 + baco + bsso),
where
ap = -D. Up,ay=—RyUp - Uy, a3 =—RyUs - Vya3= DV, as = R0, - Vo,
as = RIOO -V,
=—D- U1, by = Rolo- Uy, by = RolUy - Vo, b3 = D - Wy, by = —RolUo - W,
bs=—RoVp - V).

In matrix form,
moo Mol So [_ | g0 +arct+axs1 a3+ ascy +ass S0
mp my ||l basy + bscy bysy + bac) o

_[0 _ 0]
Tl —esi+bic) | [A]°

Let M denote the 2 x 2 matrix on the left-hand side of the equation. Multiplying
by the adjoint of M yields

so | _ my —moy 0| _| —maA
swan[2] [—r][0][o] -
Summing the squares of the vector components and using s¢ + ¢ = 1 yields

(moomyy — moimyg)® = A? ('"(?;o + ’”(Zn) .

The above equation can be reduced to a polynomial of degree 8 whose roots ¢, €
[—1, 1] are the candidates to provide the global minimum of F. Formally computing
the determinant and using sf = 1 — ¢} leads to

ooy — moymyo = po(cy) + sipr(cr),

2.6 Distance Methods

where po(z) = Y2, poiz’ and p1(z) = X!y p1iz. The coefficients are
Poo = az2by — asb

Por = aoby — asbs

Po2 = asbz — azby + arby — abs

P10 = aoby — asb:

P11 =a\by — asbs + axby — asb;.

Similarly,

"'czwo + '"(zn =qo(c1) + s1q1(c1)»

where go(2) = Z,-z=o q0i2' and q1(2) = Z::o q1:2. The coefficients are

¢Ioo=a¢2) +a§ +a§ +a§
qor = 2(aoa; + aay)
o2 =4} — a3 +a; — a3
q10 = 2(apa; + azas)
g1 = 2(a1a; + aqas).

Finally,
2 = ro(c1) + siri(ca)s

where ro(2) = Z?:o roiz and ry(2) = Z.!=o r1;2. The coefficients are

roo = b2

rop=0

roz="b3— b}

rio=0

ri = 2bgbs.
Combining these yields

0= [(P(zy —rogo) + (1 = &) (p? —~ "I‘Il)] + 51 [2pop1 — roq1 — r1qo)

= go(c1) + s181(c1)s

71

(2.18)

72 Chapter2 Geometrical Methods

where go(2) = X_{_g goiz’ and g1(2) = ¥_}_g g1i2’. The coefficients are

800 = Pgo + P.zo — qooroo

801 = 2(Poopo1 + ProPr1) — qerfoo — qror

g0z = pg) + 2PooPoz + Pty — Plo — Go2ro0 — Gooroz — g
803 = 2(po1 Po2 = proPn1) — quire2 + qrorn

804 = P(Z;z = Pf: = qoz2ro2 + 411

810 = 2Poo P10 — 410700

811 =2(po1pro + PooP11) — quroo = qoor1

812 =2(po2P10 + PorP11) — qroro2 — qoirn

813 =2po2P11 — q11ro2 = qo2r.

The sy term can be eliminated by solving go = —s;) and squaring to obtain
0=gj — (1 —cDgi = hicr),
where h(z) = 3% hiz'. The coefficients are

ho = g3 — &1

hy=2(googor — g10811)

hy = g5, + 8o — 811 + 2(800802 — £10812)

h3 =2(go1802 + 8oogo3 + £10811 — 811812 — 810813)

ha =gk, + &1, — 81> + 2(801803 + L0084 + 810812 — 811813)
hs = 2(go2803 + 801804 + g11812 + 810813 — 812813)

hs =853 + 812 — 813 + 2(802804 + 211813)

h7 = 2(g03804 + £12813)

hs = gy + 215

To find the minimum squared distance, all the real-valued roots of A(c;) =0
are computed. For each c|, compute s; = £,/1 — ¢ and choose either (or both)

2.6 Distance Methods 73

of these that satisfies Equation (2.18). For each pair (cy, s51), solve for (cg, so) in
Equation (2.17). The main numerical issue to deal with is how close to zero is
det(M).

Ellipse to Ellipse in 3D
An ellipse in 3D is represented by a center C, unit- -length axes U and V with corre-
sponding axis lengths a and b, and a plane containing the ellipse, N-(X-C)=0,

where N is a unit length normal to the plane. The vectors U, V, and N form a right-
handed orthonormal coordinate system. The ellipse is parameterized as

x=C +a cos(())U +b sin(())f’
for angles 6 € [0, 27r). The ellipse isalso defined by the two polynomial equations
N. (i - &) =0

oot vvT\ - -
(X - C)T(a 7)<x—0)=1,

where the last equation is written as a quadratic form. The first equation defines a
plane, and the second equation defines an ellipsoid. The intersection of plane and
ellipsoid is an ellipse.

Solution as Polynomial System

The two elllpses are Klo (5.(E‘o) 0 and (X Co)TAo(X Co) = 1, where Ag =
U(,U0 /a0 + VoVoT/bo, and Ny - (¥ = Cy) =0and (¥ — C))TA (Y — C)) = 1, where
= 0,0 /a} + WV /b3, L
The problem is to minimize the squared distance |X — Y|? subject to the four
constraints mentioned above. The problem can be solved with the method of Lagrange

multipliers (Thomas and Finney 1988). Introduce four new parameters, «, 8, y, and
8, and minimize

F(X,Via,8,7,8) =X — Y|* + a((X — Co)TAg(X — Co) — 1)
+ B(No- (X —Co) —0) + y((¥ —CYTANY —C1)— 1)

+8(Ny- (¥ = Cp) —0).

74 Chapter 2 Geometrical Methods

Taking derivatives yields

Fz =2(X — ¥) + 20 Ao(X — Co) + BNo
Fp==2X = ¥)+2yAi(¥ - C)) + 8N,
Fy=(X = Co)TAg(X ~ Cp) - 1
Fg=No- (X — Co)

Fy=(F - C)TAy¥ - Cy) -1
Fs=Ny- (Y - Cy).

Setting the last four equations to zero yields the four original constraints. Setting the
first equation to the zero vector and multiplying by (X — Co)7 yields

a=-2X - Co)T(X - 7).

Setting the first equation to the zero vector and multiplying by N yields
B=—2NJ(X-7).

Similar manipulations of the second equation yield

y=2Y -C)T(X - 7)

and

s§=2NT(X - Y).

The first two derivative equations become

Mo(X = P)= (RoNT + Ao(X - CoX = CT - 1) (X - Ty =

M(X ~-7)= (KI,KI,T+ AT - Cp(¥ -ET - I) X-7)=

Observe that MoNo = 0 Mvo(X Co) = 0 and Mo(No X (X Co)) = —No X
X - Co). Therefore, Mo = —WoW /|W0| where Wo = No x (X - (‘0) Similarly,
M, =-W, WT/ [W)|2, where W, = N, x (¥ — 5‘1) The previous displayed equations
are equivalent to WT(X Y) =0 and er (X Y) =

The points X = (x0, X1, x3) and ¥ = (yo, y1, ¥2) that attain minimum distance
between the two ellipses are solutions to six quadratic equations in six unknowns:

2.6 Distance Methods 75

Polxo, x1, x2) = N - (X = Co) =0

Pi(xo X1, x2) = (X = Co)TAo(X — Co) = 1
P2(X0, X1, X2, Yo Y1, ¥2) = (X = ¥) - No x (X = Co) =0

qo(yo Yy y2) =Ny - (¥ =€) =0

Q1o v) = (¥ — CTA (¥ - Cp =1
G2(x0r X1, X22 Yo Y1 Y2) = (X = V) - Ny x (¥ = Cp) = 0.

On a computer algebra system that supports the resultant operation for eliminating
polynomial variables, the following set of operations leads to a polynomial in one
variable. Let resultant[P, Q, z] denote the resultant of polynomials P and Q where
the variable z is eliminated (for information on resultants, see Wee and Goldman
1995a, 1995b):

ro(Xo» X1, Yo, Y1, ¥2) = resultant[po, p2, x2]
ri(xo, x1) = resultant| py, p2, x2]

r2(xo, x> Yo, y1) = resultant[ro, g2, y2]
So(X0» X1, X2, Yo, 1) = resultant[go, g2, y)
51(yo, y1) = resultant[q1, g2, y2|

52(Xo0, X15 Yo» Y1) = resultant[sg, p2, x2]
r3(xo, yo, x1) = resultant|[ra, ry, xy]

r4(xo, Yo) = resultant[rs, s1, y1]

s3(x0, X1, yo) = resultant[sz, sy, y1]

s4(x0, yo) = resultant(ss, ry, x|

¢ (xo) = resultant|ry, 54, yol-

For two circles, the degree of ¢ is 8. For a circle and an ellipse, the degree of ¢ is 12.
For two ellipses, the degree of ¢ is 16.

Trigonometric Solution
Let the two ellipses be
i = (}o + ap COS(9)(70 + bg Sin(@)f’o

Y = C1 + a1 cos(@)U1 + by sin(@)Vy

76 Chapter 2 Geometrical Methods

for @ € [0, 27r) and ¢ € [0, 27). The squared distance between any two points on the
ellipses is F(6, ¢) = | X (9) — ¥ (¢)|2. The problem is to minimize F (6, ¢).

Define Co= cos(B), So= sm(B), L= cos(¢), and s; = sm(¢) Compute deriva-
tives Fp = (X(8) — ¥ (¢)) - X'(8) and Fp= —(X©@) - Y (@) - Y(¢). Setting these
equal to zero leads to the two polynomial equations in co, So, €1, and s1. The two
polynomial constraints for the sines and cosines are also listed:

Po= (aé - b(z,)SoCo + ag (oo + o151 + ®o2¢1)50 + bo(Boo + Pors: + Porci)co =0
p1 = (@2 — bY)sicr + ay(eio + @150 + @12¢0)s1 + b1(Bro + Buise + Braca)er =
qo=st+ct—1=0

qr=st+ci-1=0.

This is a system of four quadratic polynomial equations in four unknowns and can
be solved with resultants:

ro(So» 51, €1) = resultant| po, go, ¢o)
ri(sos 51, co) = resultant| py, q1, ¢1]
ra(so, §;) = resultant|rg, g1, ¢1]
r3(so, 51) = resultant[ry, go, col

¢ (so) = resultant{ry, r3, 511,

Alternatively, we can use the simple nature of g and ¢, to do some of the elimi-
nation. Let po = oS + Boco + YoSoCo, where g and By are linear polynomials in s,
and c). Similarly, py = ay51 + Bic) + Wisic1, where @) and B, are linear polynomials
in 5o and ¢,. Solving for ¢g in pe = 0 and ¢, in p; = 0, squaring, and using the g;
constraints leads to

ro = (1 — s)(¥oso + Bo)? — “oso 0
n=(—s,z)()qs; +ﬂ1)2 —u,s, =0.
Using the g; constraints, write r; = rig + rijci—i, i =0, 1, where the r;; are polyno-

mials in s and 5. The terms r;g are degree 4 and the terms r;; are degree 3. Solving
for ¢g in r; = 0 and ¢, in rg =0, squaring, and using the g; constraints leads to

2.6 Distance Methods 77

8
22 2 '
wo = (1 — $y)rg, —roo=z:wo_,'s(‘,' =0
j=0
4
2,2 2 '
wy = (1 —sp)ry, "1o=zwu"6’ =0.
j=0

The coefficients w;; are polynomials in s,. The degrees of wg through wog, respec-
tively, are 4, 3, 4, 3, 4, 3, 2, 1, and 0. The degree of w; j is 8 — j. The total degree for
each of w; is 8.

The final elimination can be computed using a Bézout determinant, ¢(s;) =
det(e;;], where the underlying matrix is 8 x 8 and the entry is

min(8,17—i— j)

€jj = Z Vk 17 —i—j—k>
k=max(9—i,9-J)

where v;,j = woiw) j — wojwy;. If the i or j index is out of range in the w terms, then
the term is assumed to be zero. The solutions to ¢ = 0 are the candidate points for s;.
For each s,, two ¢, values are computed using sf + cf = 1. For each sy, the roots of
the polynomial w(so) are computed. For each sq, two c¢ values are computed using
s2 + c2 = 1. Out of all such candidates, [X — ¥ |? can be computed and the minimum
value is selected.

Numerical Solution

Neither algebraic method above seems reasonable. Each looks very slow to compute,
and the usual numerical problems with polynomials of large degree must be handled.
Aniterative alternative is to implement a distance calculator for point to ellipse in three
dimensions. This involves a function of a single parameter, say, F (@) for 8 € [0, 2x].
Use a numerical minimizer that does not require derivative calculation (Powell’s
method, for example) and minimize F on theinterval [0, 27]. The scheme is iterative
and should converge rapidly to the solution.

CHAPTER

THE GRAPHICS PIPELINE

G e

LIBRARY

Soft Renderer

FILENAME

Al Files

l na nutshell, a game engine is responsible for managing the data and artistic content
of the game and deciding what to draw on the computer screen and how to draw
it. The decisions are made at both a high and a low level. The high-level decisions
are handled by the game Al and by a scene graph management system. Game Al is
specific to the game itselfand is not discussed in this book. Scene graph management
is a general topic that applies to most games and is discussed in this book. Chapter 4
provides the foundations for scene graphs and their manipulation. Chapters 5 through
12 cover specific types of objectsand algorithms that are part of the scene graph system.

The low-level decisions on what and how to draw are the topic of this chapter.
Aspiring game programmers invariably want to implement a renderer whose job it
is to draw objects in the 3D world on a 2D computer screen. At first glance, build-
ing a renderer appears to be an easy task, but the frequency of questions occurring in
the graphics newsgroups about how to build a renderer is evidence that the task can
be quite formidable. The main goal of this chapter is to describe the three responsi-
bilities of a renderer; examining each responsibility in turn should make it easier to
understand how to implement a renderer.

The first responsibility of a renderer is to transform the 3D data in world space
into 3D data in view space, the latter specified by a camera model. View space provides

79

80 Chapter 3 The Graphics Pipeline

a convenient coordinate system that supports the decision on what to draw. A second
transformation converts the data in view space to 2D data in screen space, a process
called projection. In this form the data can be drawn as pixels on the computer screen.
Sections 3.1, 3.2, and 3.3 describe the various spaces and the transformations between
them.

The second responsibility of a renderer is to eliminate portions of the data that are
not visible to the observer whose location is specified as part of the camera model. This
involves the concepts of culling (a process that determines if an object is completely
out of view) and clipping (a process that splits an object into smaller pieces, some of
them visible; the invisible pieces are discarded by the renderer, and the visible pieces
are further processed). Section 3.4 describes culling and clipping in general terms.
Section 3.7 contains a specific algorithm for clipping that is quite efficient.

The third responsibility of a renderer is to draw the 2D data that has been trans-
formed to screen space. This process is called rasterization and the component of the
renderer that does the work is called a rasterizer. The majority of time for rendering
is spent in the rasterizer. Current-generation graphics cards are designed to accelerate
the rasterization, but it is possible to implement one that uses only the CPU. Sections
3.5 and 3.6 describe the ideas of rasterization, including how to compute the final
colors of the pixels based on various effects such as lighting, materials, textures, trans-
parency, and fogging. A discussion of higher-level special effects is found in Chapter
13, but the application of these effects is usually the responsibility of the scene graph
management system.

3.1 MODEL AND WORLD COORDINATES

Artists develop most game content in coordinate systems specific to each model, called
the model coordinate system. In a typical game, many objects are built. Each must be
placed relative to the other objects by applying transformations (translation, scaling,
orientation). Moreover, the transformations that position and orient an object might
be relative to another object, not to the final world coordinate system of the game. A
hierarchical organization of data, a topic described in Chapter 4, becomes essential at
this point. For each object to be drawn, the hierarchical organization provides a single
transformation that converts the model coordinate system of the object into the world
coordinate system. Once in world coordinates, the data can be further transformed
into view space coordinates and projected onto the viewing plane. Section 3.2 defines
and discusses perspective projection. View space and viewing planes are considered
in Section 3.3.

3.2 PERSPECTIVE PROJECTION

Consider a point E, called the eye point, and a plane N - X = d, called the view plane,
not containing the point. Without loss of generality, assume that E is on the positive

3.2 Perspective Projection 81

side of the plane; that is, N - E > d. The perspective projection of a point X onto
the view plane is the intersection of the ray starting at E that also contains X. The
projection exists as long as N-E>N-X.If¥ =01 —1E +tX is the projection,

then, since it lies on the plane, it must be that N - ¥ = d. This equation can be solved
for ¢ to obtain

—_—. (3. l)
N-E-N-X

Both the numerator and denominator are positive, so ¢t > 0 is necessary. A canoni-
cal model for perspective projection makes it somewhat easier to express the concepts.
Let the eye point be the origin E = (0, 0,0), and let the view plane be z=n > 0.
The plane normal is N = (0, 0, —1), and the plane constant is d = —n. Equation
(3.1) yields t = n/z. The perspective projection of (x, y, z) onto the view plane is
(nx/z, ny/z, n). Because the view plane remains fixed at z = n, the projected points
can be written as 2-tuples, (nx/z,ny/z). A convenient variable to define is w = z/n.
The view plane is w = 1, and the projected point is (x/w, y/w).

3.2.1 LINES PROJECT TO LINES

In perspective projections, line segments are projected to line segments. Consider
a line segment with end points Q,- = (x, yi» 2;) for i =0, 1. Let the corresponding
projected points be i’,- = (x;/wj, yi/w;) with w; = z;/n for i =0, 1. The 3D line
segment is O(s) = Qo + s(Q1 — Qo) for s € [0, 1]. For each s, let P(s) be the
projection of Q(s). Thus,

O(s) = (xo + s(x1 — Xo), Yo + s(¥1 — Yo)» Zo + 5(21 — 20))

and

Bs) = (Xo+ s(xy—x0) Yo+ s(y— yo))
wo + s(wy — wo)' wo + s(w; — wo)

_(ﬁ+$(ﬂ_ﬁ) b
we wo+ (w—ws \w; wp/ wo

o (3 22)
+— — — —
wo + (W) —wo)s \wy wo

- ws

=B+—2 (B By,
° wo+(w|—wo)s(-0

=Py +5(P, - By),

82 Chapter 3 The Graphics Pipeline

Figure 3.1

Relationship between s and 5.

where the last equality defines

wrs

F=— %
wo + (w1 — wp)s

(3.2)

a quantity that is also in the interval [0, 1]. We have obtained a parametric equation
for a 2D line segment with end points Py and Py, so in fact line segments are projected
to line segments. It is possible that the projected segment is a single point, a degen-
erate case. The inverse mapping s(5) is actually important for perspectively correct
rasterization, as we will see later:

w°§

= 33
s wy + (we — wy)$ (33)

Equation (3.2) has more to say about perspective projection. Assuming w,; > wy,
auniform change in s does not result in a uniform change in 5. The graph of 5 = F(s)
is shown in Figure 3.1. The first derivative is F’(s) = wow,/[wq + s(w, — wo)]? > 0,
and the second derivative is F”(s) = —2wqw, /[wo + s(w; — wp)]® < 0. The slopes of
the graph at the end points are F'(0) = w;/wp > 1 and F’(1) = wp/w, < 1. Since the
second derivative is always negative, the graph is concave. An intuitive interpretation
is to select a set of uniformly spaced points on the 3D line segment. The projections
of these points are not uniformly spaced. More specifically, the spacing between the
projccted points decrcascs as 5 increascs from 0 to 1. The rclationship between s and 5
and limited floating-point precision are what contribute to depth buffering artifacts,
to be discussed later.

3.2 Perspective Projection 83

3.2.2 TRIANGLES PROJECT TO TRIANGLES

Because line segments project to line segments, we can immediately assume that tri-
angles project to triangles, although possibly degenerating to a line segment. However,
let’s derive the parametric relationships that are analogous to those of Equations (3.2)
and (3.3) anyway.

Let Q; = (xi, yi, i) for i =0, 1, 2 be the vertices of a triangle. The triangle is
specified parametrically as O(s,1) = Qo+ (01 — Qo) + t(Qz — Qo) for0<s<l,
0<t<l,ands 41 <1 Let the projected points for the Qi be P = (x; Jwis yi/wi)
fori =0, 1, 2. For each s and 1, let P(s, 1) be the projection of Q(s, 1). Some algebra
will show that

i’(s,t)=(Xo + s(xy — xg) 4 t{x2 — Xxo) yo + s(y1 — yo) + £(¥2 — o))

wo + s (w1 — wo) + t(w2 — wo) wo + S(wy — wo) + (w2 — wp)

- (ﬁ + wis (ﬂ - ﬁ) »
wo wo+ (W —wp)s + (w2 —wo)t \wy wo/) wo

s
wo + (wy — we)s + (wy —wodt \wy, wo

- w)s - -

= P, P, — P
o+wo+(w1—'wo)S+(w2—wo)f(r = Fo)

wy! - -
P, — PBp).
wo + (w) — wo)s + (w2 — wo)t (P2 = o)

Define
(35,0, 7(s, 1) = (s, wah) (3.4)

wo + (W — wo)s + (w2 — wo)t

The inverse mapping can be used by the rasterizers for perspectively correct triangle
rasterization. The inverse is

(wow;5, wow 1)

(s6.0.16,1)) = wywy + wa(wo —)3 + wy(wo — w)f

(3.5)

3.2.3 CONIcS PROJECT TO CONICS

Showing that the pro]ectlon of a conic scction is itsclf a conic scction rcqulrcs a bit
more algebra Let Q, (xi, yi» %) for i =0, 1, 2 be points such that Q; Qo and
Q2 — Qo are unit length and orthogonal. The points in the plane containing the Qi
are represented by Q(s,1) = Qo+ s(Q1 — Qo) + (02 — Qo) fors e Rand 1 € R.

84 Chapter 3 The Graphics Pipeline

Within that plane a conic section is defined by
As’+ Bst+Ct* + Ds+ Et+ F =0. (3.6)

To show that the projection is also a conic, substitute the formulas in Equation (3.5)
into Equation (3.6) to obtain

As? 4+ BT+ Cr* 4+ D5 + Ef + F =0, (3.7)
where

A= wg (w(Z,A + wo(wo — w))D 4 (wg — wl)zF)

B = wiw; (w}B + wo(wo — w2) D + wo(wo — wi)E + 2(wo — wi)(wo — w2)F)
C= wf (wf,C 4+ wo(wg — W)E 4+ (wo — wz)zF)

D

w w3 (woD + 2(wo — wy)F)

E = wlw; (woE + 2(wo — w2)F)
F= wfng.

A special case |s D =E = F =0, in which case the conic is centered at Qo
and has axes 0, — Qo and Qz Qo. Consequently, A = wiwiA, B = wyw,w?B,
C = w?wlC, and B? — 4AC = B? — 4AC. The sign of B2 — 4AC is preserved, so
elhpses are mapped to ellipses, hyperbolas are mapped to hyperbolas, and parabolas
are mapped to parabolas.

3.3 CAMERA MODELS

The world is a very big place. And not all of it can be completely processed in a
reasonable amount of time to be displayed on a computer screen. We can make
things easier by limiting the processing to those objects in a region of space called
the view volume. All objects that are completely outside the view volume are not
processed. Such objects are said to be culled. All objects totally inside the view volume
are processed for display on the computer screen. Objects that intersect the boundary
of the view volume must be clipped against the boundary, then processed for display
on the computer screen.

The display process includes projection onto a view plane. Moreover, only a portion
of the view plane can be displayed on a computer screen at one time. A rectangular
region of interest, called a viewport, is selected for display. Although parallel projection

3.3 Camera Models 85

/ Far

Near

Figure 3.2 The standard camera model.

is possible, most 3D game engines use perspective projection, so we will restrict further
discussion to this case. An infinite pyramid is formed by the eye point as vertex and
four planar sides, each side containing the eye point and an edge of the viewport. If
additionally the pyramid is limited by two planes, both parallel to the view plane, the
resulting view volume is called the view frustum. The parallel plane closest to the eye
point is called the near plane and the plane farthest from the eye point is called the far
plane. The combination of an eye point, a view plane, a viewport, and view frustum
is called a camera model. In this book we will assume that the view plane is the same
as the near plane.

3.3.]1 STANDARD CAMERA MODEL

The simplest camera model for perspective projection occurs when the eye point is
the origin (0, 0, 0), the near plane is z = n > 0, the far plane is z = f > n, and the
viewport is the rectangle defined by | < x <r and b < y <. The view frustum is
limited on the sides by the left plane x = {z/n, the right plane x = rz/n, the top plane
y = tz/n, and the bottom plane y = bz/n. In nearly all applications, the viewport
is chosen with [= —r and b = —t so that the frustum is part of an orthogonal
pyramid. The camera is assumed to be located at the eye point and has a set of
coordinate axes associated with it, the left direction L= (1,0, 0), the up direction
U= (0, 1, 0), and the view direction D= (0, 0, 1). Figure 3.2 illustrates the camera
model. A typical point (x, y, z) inside the view frustum is shown together with its
projection (nx /z, ny/2, n) = (x/w, y/w, n) onto the view plane.

The axis of the view frustum is the ray that contains both the origin and the center
point of the viewport. This ray is parameterized as ((r + [)z/(2n), (t + b)z/(2n), 2)
for z € [n, f]. It is convenient to transform the (possibly) skewed view frustum into

86 Chapter 3 The Graphics Pipeline

an orthogonal frustum with viewport [—1, 1]%. We accomplish this by removing the
skew, then scaling the result:

Y= 2 (x_(r+1)z)
Tr=1l 2n

' 2 _(t+b)z
y‘_:_b(y -) (3.8)

The view frustum is now delimited by x’ € [—1, 1], ¥’ € [—1, 1],and z € [n, f]. The
projection is (x'/w, y’/w) with w = z/n.

It is also convenient to transform the z values in [n, f] so that the new range
is [0, 1]. This is somewhat tricky because the transformation should be consistent
with the perspective projection. The linear transformation ' = (z —n)/(f —n) is
not the correct one to use. Equation (3.2) saves the day. The z values in [n, f] can
be written as z = (1 — s)n + sf for s € [0, 1]. We can use z' = §(s) to rescale so that
Z €0, 1].Solvingfors = (z —n)/(f — n), usingwo = 1 and wy = f/n,and replacing
in Equation (3.2) yields

z’=f’:n (1—'2-'). (3.9)

The point (x', y’, 2’} is specified in a right-handed coordinate system. However,
the computer screen is treated as a left-handed system. The x-axis points to the
right, the y-axis points up, and the z-axis points into the screen. A simple way to
change handedness is to change sign on one of the coordinates. For an engine that
includes its own geometric pipeline (e.g., one built on top of Glide), any coordinate
is as good as another. For an engine that is built on top of an AP! (e.g., OpenGL or
Direct3D), the choice is determined since those APIs have a predetermined format for
the transformation specified as a 4 x 4 homogeneous matrix H. Typically, the entries
of the z-column of the matrix have their signs changed. The matrix specification of
the projection may lead to some confusion because of the properties of homogeneous
matrices and vectors. -

Let V be a 4 x 1 homogeneous vector. The projected values obtained from HV
and cH V forany ¢ # 0 are the same because of the division by the w-term. Even more
confusing is that OpenGL maps the z values into [—1, 1], but the above derivation
and Direct3D map the z values into [0, 1]. Homogeneous matrices representing the
projection are

A 0 r+l
r— ri
0 2 b
t-b 1-b

0
0

_7& (3.10)
0

v
S
|
o
o
|]
Lok

3.3 Camera Models 87

and
2 {
=B 0
2 +b
0 :—"b :Th 0
Pom=| o o _f | _am | (3.11)
f-n f—n
0 0 -1 l 0

In either case, let Hp,o; denote the homogeneous projection matrix.

3.3.2 GENERAL CAMERA MODEL

In the standard camera model, we assume that the eye point is at the origin and that
the camera looks in the direction of the z-axis. In general, the eye point can occur
anywhere in space and the camera can be arbitrarily oriented. Specifically, let E be
the eye point and let the camera have left direction L up vector U, and view direction
DsothatL, U and Dforma right-handed coordinate system. Consequently, the ma-
trixR= [L | U | D] whose columns are the specified vectors is orthonormal and has
determinant one. The view plane origin is P=E+nD,a point that is # units of dis-
tance from the eye point. Let the viewport be defined by the rectangle in the view plane
whose corners are P + rL +tU, P +rL +b0,P+IL +1tU,and P +IL + bU.
We can write any world point X in terms of the camera’s coordinate system as
X = E + RY and then solve to obtain ¥ = RT(X - E). This transformation is called
the view transformation. The camera model in the ¥ coordinate system is in standard
form. The homogeneous transformation representing the view transformation is

RT | -RYE
Hyew = — . (3.12)
0 1

The matrix that maps the view frustum into normalized projection coordinates is
HprojHviews where Hproj is either Equation (3.10) or (3.11). In the implementation of
a camera, the two matrices are stored separately and applied in sequence. The matrix
Hpyoj is typically constructed at the initialization of the application and remains static.
The matrix Hyiew is a dynamic quantity that changes every time the camera moves to
a new location or changes orientation.

3.3.3 MODEL-TO-VIEW TRANSFORMATION

The total transformation from the model space coordinates to the view space coordi-
nates of the object to be drawn is

Hioal = Hproj Hyiew Hwonds

88 Chapter 3 The Graphics Pipeline

where Hp, is given in Equation (3.10) or (3.11), Hyiew is given in Equatio'n (3.12),
and H,q is the transformation from the object’s model coordinates to its world
coordinates,

M, | T,
Hyona = | — .
or 11

Because the matrix Hpoj is based solely on the intrinsic properties of the camera, and
the matrix Hiiew changes whenever the camera changes position or orientation, an
implementation of a camera model should maintain these two matrices separately.
The matrix Hyoyd is dependent on each rendered object and can change any time the
application desires.

From the point of view of efficiency, and assuming there is no hardware support for
geometric transformations, the actual matrix product should be computed as follows.
(We will use the projection of Equation (3.10) for the following discussion, but a
similar one can be made for the other projection matrix.)

The goal is to compute Hioia so that it can be used in transforming a collection
of homogeneous points of the form (x, y, z, 1) to a collection of preprojected triples
of the form (x', ', w"). The third component really is the homogeneous term w’ and
not z’. As we shall see, depth information is not necessarily required for rasterization
depending on what the application knows about the objects it is rendering. The depth
values can be computed later in the pipeline when they are needed. This observation
allows us to use a slightly different projection matrix than Hpo;,

A1 0 —agp [0
2

0 — t+b 0
Hyor = = n(—h)
pro) 0 0 0 |o
1
0 o0 L o

The difference is that the z-value of the point to be transformed need not be carried
along since the term w = z/n already contains the information about z. The total
transformation is

Hulr = Hproj’ view flworld-

The presence of a row of zeros in the matrix allows us to skip formal calculations
that might otherwise be performed in a general routine to multiply matrices. The
order of calculation for H,,, that minimizes the number of operations is Hyoar =
(Hprojf Hyiew) Hwortd- The camera implementation maintains the product Hyrop Hview
as the camera model, position, or orientation changes. During a rendering pass, the
renderer need only take the current camera’s matrix product and multiply it times
the object’s model-to-world transform to produce a single matrix that is used to

3.3 Camera Models 89

transform vertices. [n this last product, the zero row in I/ I lview need not participate
in the actual computations. Effectively, the renderer has a 3 x 4 matrix, [M |7‘], for
transforming points rather than a full 4 x 4 homogeneous matrix. The matrix M is
3 x 3and the vector T is 3 x 1. The 3 x 4 matrix is obtained by removing the row of
zeros from the product Hyq,,y. The total transform applied to input points is

!

X
M|lyl+T=|y]. (3.13)
z w’

More precisely, the matrix M and vector T canbe generated by swapping the row
of zeros with the last row of H,,roy and computing products of 4 x 4 matrices. That is,

2 +/
r—1 0 —n(r—l) 0
C 6 0 ﬁ —n;lt';i) 0
Hproj’= - = !
of| o 0 0 .
0 0 o lo
and
M| T
Hour=| T
olal -OT 0
FC |07 RT|—RTE Mw‘fw
[67| 0[] o7 | o7 | 1
" CR™,, | CRT (T.,,.—i-:)
_ (3.14)
| T | 0

The quantity C R is maintained by the camera implementation. The difference T —
E is computed once the model-to-world transform for the object is known.

3.3.4 MAPPING TO SCREEN COORDINATES

The raster display has its own (X, y) coordinates called screen coordinates. This coor-
dinate system is right-handed with its origin in the lower-left corner of the display.
The x values increase from left to right and the y values increase from bottom to top.
The full screen has dimensions (S;, Sy) such that 0 <x < S, and 0 < ¥ < §,. The

90 Chapter 3 The Graphics Pipeline

mapping from normalized projection coordinates (x, y) € [—1, 1]? to screen coordi-
nates (X, y) is a straightforward transformation,

= (S —Dx+1) 5= (S, —Hly+1
2 ’ 2 ’

The subtractions by 1 from the screen dimensions are necessary since X < §x — | and

y < Sy — 1 are required for the final integer-based screen coordinates.

The transformation to screen coordinates can be applied before or after clipping.
In this chapter, clipping is implemented in view space using the viewport [—1, 1]2.
If the transformation to screen coordinates is performed first, then clipping must be
implemented against the viewport [0, S — 1] x [0, §, — 1].

Another issue for screen coordinates is the aspect ratio, p = S;/Sy. Typical display
hardware has square pixels and an aspect ratio of 4/3, although high-definition tele-
vision has an aspect ratio of 16/9. In order for the world to be rendered properly, the
view frustum should be constructed to maintain the aspect ratio of the screen. In this
case (r — 1)/ (¢t — b) = p should be enforced in the camera model.

3.3.5 SCREEN SPACE DISTANCE MEASUREMENTS

Consider a camera model with | = —r and b = —t. The upper-left matrix of the
homog_eneous matrix is C =diag(n/r,n/t, —1). Given a line segment with mid-
point V, unit direction A, and length L., we want to measure the length L of the
screen space projection of the line segment. The model to-world transform is as-
sumed to be the ldentlty The world end points are Vo =V - (L, /2)A (x0, Y0, 20)
and V| V + (L.L/Z)A (x5 ¥1» 21). From Equatlon (3 14), the normalized pro-
)ectlon coordinates of the end points are To=COT(V — E) — (Ly/2)CRTA and

CRT(V E) + (Lyw/2)CRTA. Define P = CRT(V — E) = {Po, P\, Py) and
B CRTA = (Bo, By, B;). The screen space transformatlon of To and T| yields
Qo = (ax(1 + x0/wo), 3y (1 + Yo/ wo)) = (Fo, Yo) and & = (a<(1 + x1/wy), ay(l+
»i/w))) = (x), ¥) forsome o, > 0 and oy > 0. The screen space coordinates are mea-
sured in pixels, so 0, measures the number of pixels per unit of distance along the
X -axis on the view plane at w = 1 and o, measures the number of pixels per unit of
distance along the y-axis on the view plane.

The squared length of the screen space segment is

2 2
- - - - X) X y y
= (X, — %0)? + (¥ —yo)2=0f (— - —0) +G)2. (——l - —0) ,
w) Wo
where

X1 xo _ xiwo—xow; _ Luw(PyBo— PyB;)

W wp wywo P} — L2 B}/4

3.4 Cullingand Clipping 91

and

Ny _nwo—ywr Lu(PB— PB)
w wo wiwo P} —L1B2/4

Using the definitions of P, B, defining A =V — E, and assuming that the view
frustum maintains the screen aspect ratio o /r = 0,/t, some algebra leads to

| MLl AT (3T 4+ $9T) A
Ls= — — , 3.15)
T (DAY - LL(D- A2/ 42 (

where A =0, /r, ®=(L-A)D—-(D-A)L, and ¥ = (U - A)D - (D - A)U. The
vectors L, U, and D are the coordinate frame for the camera. The numerator of the
right-hand side of Equation (3.15) is a quadratic function and the denominator is a
quartic function in A.

In the special case of A= (0, 0, 1), we can reduce Equation (3.15) to a more
amenable form. Since R = [L | U | D] is orthonormal and has determinant one, it
mustbethat L x U =D, U xD=L,and D xL = IfL—(L.,L,,L:),U—
(Us, Uy, Up),and D = (Dy, Dy, D;), then ® = (L. Dy — L, D;, L,Dy — L, D,,0) =
(=Uy, Uy, 0) and W = (U.Dy — U, D., » U:Dy = Uy Dy, 0) = (Lx, —Ly, 0). Conse-
quently, & - A=-UyAr+UsAyand W - A =LA, — LyAyand (®- A)? + (¥ -
Ay = (L2 + L2)A2 = 2ALyLy + UcUy)AcAy + (L2 + U2 AL, Because R is or-
thonormal, its rows are unit length and mutually perpendicular. This prov1des the
relationships L2 + U2 =1- D}=D2+ D% L2 + Ul=1- D= D!+ D?, and
LiLy + UyUy = —~D,D,. Thus, ($ - A)2 +(P. A)2 DA+ AY) + (DA +
DyA,)?, and the relationship between world height and screen space distance is

L An2LL[DXA2 + A2) + (D As + DyA)]
7 [(DsA¢ + DAy + D;A;) — L2 D?/4]?

(3.16)

3.4 CULLING AND CLIPPING

Culling and clipping of objects reduces the amount of data sent to the rasterizer for
drawing. Culling refers to eliminating portions of an object, possibly the entire object,
that are not visible to the eye point. For an object represented by a triangle mesh, the
typical culling opcrations amount to determining which triangles are outside the view
frustum and which tiiangles are facing away from the eye point. Clipping refers to
computing the intersection of an object with the view frustum, and with additional
planes provided by the application such as in a portal system (see Section 12.2), so that
only the visible portion of the object is sent to the rasterizer. For an object represented

92 Chapter 3 The Graphics Pipeline

by a triangle mesh, the typical clipping operations amount to splitting triangles by the
various view frustum planes and retaining only those triangles inside the frustum.

3.4.1 OBJECT CULLING

Object culling involves deciding whether or not an object as a whole is contained in
the view frustum. If an object is not in the frustum, there is no point in consuming
CPU cycles to process the object for the rasterizer. Typically, the application main-
tains a bounding volume for each object. The idea is to have an inexpensive test for
nonintersection between bounding volume and view frustum that can lead to quick
rejection of an object for further processing. If the bounding volume of an object
does intersect the view frustum, then the entire object is processed further even if that
object does not lie entirely inside the frustum. It is also possible that the bounding
volume and view frustum intersect, but the object is completely outside the frustum.
Chapter 4 discusses a variety of bounding volumes that can be used for object culling.
Regardless of choice of bounding volume, culling attempted on a plane-by-plane
basis has the problem that the bounding volume is not necessarily culled even though
it is outside the view frustum. This feature could be viewed as a flaw in a plane-by-
plane culling system, but it is in fact beneficial to use this system as an aid in reducing
clipping time. If a bounding volume for an object is tested against a frustum plane and
is found to be on the frustumsside of the plane, that plane need not be processed by the
clipping system if indeed the object is not culled and must be clipped against the view
frustum. Before handing the renderer the object to be processed, the application can
specify which frustum planes need to be clipped against. Moreover, in a portal system
where additional clipping planes are present, the application can likewise attempt to
cull against those planes and inform the renderer which ones need to be used when
clipping. In an implementation, the camera can maintain an array of clipping planes
and an array of Boolean flags that indicate whether or not each clipping plane is
enabled (renderer uses in clipping) or disabled (renderer ignores in clipping).

3.4.2 BACK FACE CULLING

Object culling is an attempt to eliminate the entire object from being processed by the
renderer. If an object is not culled based on its bounding volume, then the renderer has
the opportunity to reduce the amount of data it must draw. The next level of culling
is called back face culling. The triangles are oriented so that their normal vectors point
outside the object whose surface they comprise. If the triangle is oriented away from
the eye point, then that triangle is not visible and need not be drawn by the renderer.
For a perspective projection, the test for a back facing triangle is to determine if the
eye point is on the negative side of the plane of the triangle (the triangle is a “back
face” of the object to be rendered). If E is the world eye point and if the plane of the
triangleis N - X = d, then the triangle is back facing if N - E < d.Figure 3.3 shows the

3.4 Culling and Clipping 93

/

Figure 3.3 Object with front facing and back facing triangles indicated.

front view of an object. The front facing triangles are drawn with solid lines. The back
facing triangles are indicated with dotted lines (although they would not be drawn at
all by the renderer).

If the application stores a triangle as an array of three vertices, the renderer would
need to compute the normal vector for back face culling. This cost can be eliminated if
the application also stores a triangle normal vector, called a facet normal, in addition
to the vertices. Moreover, if the triangle is stored as model coordinates and the facet
normal is in model coordinates, the renderer still needs to know the vertices and
normal in world coordinates. Rather than transforming all vertices and normal, it
is cheaper to inverse-transform the camera to the model space coordinates of the
triangle, especially if this is done for a triangle mesh that contains many triangles in the
same model coordinate system. Let E be the world coordinates of the eye point for the
camera. If the model-to-world transform involves only translation T, rotation R, and
uniform scale s, then the coordinates of the eye point in the model space coordinates
for the triangle are

En=R'E -1
If the model space facet plane is Ny, - X = dy, then the triangle is back facing if

Kl,,, . E,‘,,, < dp.

3.4.3 CuIPPING

Clipping is the process by which the front facing triangles of an object in the world
are intersected with the view frustum planes. A triangle either is completely inside the
frustum (no clipping necessary), is completely outside the frustum (triangle is culled),
or intersects at least one frustum plane. In the last case the portion of the triangle that
lies on the frustum side of the clipping plane must be calculated. That portion s either
a triangle itself or a quadrilateral that is partitioned into two triangles. The triangles
in the intersection are then clipped against the remaining clipping planes. After all

94 Chapter 3 The Graphics Pipeline

Figure 3.4

Four configurations for triangle splitting. Only the triangles in the shaded region are
important, so the quadrilaterals outside are not split.

clipping planes are processed, the renderer has a list of triangles that are completely
inside the view frustum.

The splitting of a triangle by a frustum plane is accomplished by computing the
intersection of the triangle edges with the plane. The three vertices of the triangle are
tested for inclusion in the frustum. If the frustum plane s N.-X= - d and if the vertices
of thetriangle are V; fori =0, 1, 2, then the edge with end points V,o and V,I intersects
the plane if p;,p;, < 0, where p; = N. V d for i =0, 1, 2. This simply states that
one vertex is on the positive side of the plane and one vertex is on the negative side of
the plane. The point of intersection, called a clip vertex, is

Vaip = Vig + —22— (¥, = %) - (3.17)

Pip — Piy

Figure 3.4 illustrates the possible configurations for the triangle. The vertices V;,,
f’,', ,and f’,-z are assumed to be in counterclockwise order. The pseudocode for clipping
a single triangle against a plane is given below. After splitting, the new triangles have
vertices that are in counterclockwise order.

3.4 Culling and Clipping

ClipConfiguration (pioO,pil,pi2.Vi0o,Vil,Vi2)
{
// assert: pi0o*pil < 0
Vco = Vio+(pio/(pi0-pil))*(Vil-Vi0);
if (pio > 0)
{
if (pi2 > 0) // figure, top left
{
Vel = Vil+(pil/(pil-pi2))*(Vi2-vil):
add triangle <Vc0,Vcl,Vi0> to triangle list;
add triangle <V¥cl,Vi2,Vi0> to triangle list:
}
else // figure, top right
{
Vel = Vio+(pio/(pio-pi2))*(Vi2-Vio);
add triangle <Vc0,Vcl,Vi0> to triangle list;

}
else
{
if (pi2 > 0) // figure. bottom left
{
Vel = Vio+(pi0/(pio-pi2))*(Vi2-vio);
add triangle <VcO0,Vil,Vi2> to triangle list;
add triangle <Vco0,vVi2,Vcl> to triangle list:

)
else // figure, bottom right
{
Vel = Vil+(pil/(pil-pi2))*(Vi2-Vil);
add triangle <Vc0,Vil,Vcl> to triangle list;
}

}

ClipTriangle ()
{
remove triangle <VO0,V1,V2> from triangle list;

po = Dot(N,V0)-d:
pl = Dot(N,V1)-d;
p2 = Dot(N,v2)-d;

if ¢ po*pl < 0)
{

95

96 Chapter 3 The Graphics Pipeline

// triangle needs splitting along edge <V0,V1>
ClipConfiguration(p0,pl,p2,vV0,V1,V2);

}

else if (p0*p2 < 0)

{
// triangle needs splitting along edge <V0,V2>
ClipConfiguration(p2,p0.pl.vV2.V0,V1);

}

else if (pl*p2 < 0)

{
// triangle needs splitting along edge <V1,V2>
ClipConfiguration(pl,p2,p0,V1,V2,V0);

}

else if Cpo> 0 || pl>0|] P2>0)

{
// triangle is completely inside frustum
add triangle <V0,V1,V2> to triangle list;

}

To avoid copying vertices, the triangle representation can store pointers to vertices
in a vertex pool. However, the above pseudocode has a drawback in that information
about shared edges is not maintained. A shared edge will be clipped as many times as
there are triangles sharing the edge. For manifold geometry, the shared edge is typically
clipped twice when the edge has two triangles sharing it. Clipping pipelines also
typically interpolate vertex attributes at the same time the dip vertices are computed.
Multiple processing of shared edges and premature calculation of vertex attributes
is extremely inefficient. A better approach is to use a triangle mesh data structure
that supports single clipping of an edge. The same structure supports deferred vertex
attribute calculation and interpolation so that a minimal set of initial vertices need
to be lit and only visible clip vertices are interpolated. Details of how to do this are
discussed in Section 3.7.

Regardless of data structures used for triangle representation in the clipping
pipeline, a choice must be made about the order of clipping and transformation
to view space coordinates. The costs associated with each order vary. Let N,y be the
number of vertices of the object. Let Ng be the number of vertices remaining after
back face culling. Of course, Ny < N,y. Let N; be the number of vertices after clipping
against the ith frustum plane, 1 <i < 6. The N; may be larger or smaller than Ny
depending on the object and how it is positioned with respect to each frustum plane.
Various per-vertex costs arc associated with the stages of clipping:

% C,, the cost of transforming as M V + T. The cost includes nine multiplications
and nine additions.

3.4 Culling and Clipping 97

® Cwp, the cost of computing the world plane equation, N - V. The cost includes
three multiplications, two additions, and one comparision to the plane constant d.

® Cyp, the cost of computing the view plane equation. The view planes are x < w,
x>—-w,y<w y>—w, w>1,and w < K for a fixed constant K. For each
plane the cost is one comparison. The cost of the sign changes is considered to be
negligible.

The cost of back-face culling is the same regardless of choice of clipping pipeline, so
itis not included in the comparative costs of the pipelines.

Clip World, Transform World to View

The first choice is to clip in world space and transform the postclip vertices from world
space to view space. The sequence of operations is

1. If world coordinates of object vertices require updating, then transform the model
coordinates to world coordinates.

2. Back-face cull in world space.

3. Inverse transform the frustum planes from view space to world space (or let the
camera maintain world space frustum planes).

4. Clip against the world space frustum planes.

5. Transform the postclip vertices from world space to view space.

This style of clipping is possibly of use if the object maintains world coordinates
in addition to model coordinates for purposes other than rendering. For example, the
application might use a collision detection system that requires knowledge of world
coordinates of an object even if that object is not currently visible.

The cost of transforming from model coordinates to world coordinates for suchan
application may be considered a necessity, so it is not necessarily included in the cost
of rendering. For the record, the cost of the transform is Ci; Noy. The inverse transform
of the frustum planes is negligible as long as the object has a significant number of
vertices. The rendering costs are incurred mainly from the clipping and transforming
from world space to view space:

5

Ci=Cup)_ Ni + CNe.
i=0

The first part of the cost comes from computing on which side of the frustum planes
the vertices lie. The second part is from the world space to view space transformation.

98 Chapter 3 The Graphics Pipeline

Clip Model, Transform Model to View

The second choice is to clip in the model space of the object and transform the postclip
vertices from model space to view space. The sequence of operations is

. Inverse transform the camera from world space to the model space of the object.
. Back-face cull in the model space of the object.
. Inverse transform the frustum planes from view space to model space.

. Clip against the model space frustum planes.

19, B T)

. Transform the postclip vertices from model space to view space.

As in the first choice, the main rendering costs are incurred from the clipping
and transforming from model space to view space. The cost is effectively the same as
before:

5
Cy=Cup D_ Ni + CueNe.
i=0

Transform Model to View, Clip View

The third choice is to transform the vertices to view space and clip. The sequence of
operations is

1. Inverse transform the camera from world space to the model space of the object.
2. Back-face cull in the model space of the object.
3. Transform the vertices from model space to view space.

4. Clip against the view space frustum planes.

The main rendering costs are incurred from transforming from model space to
view space and clipping. The cost is

5
C3=CyuNo+Cyp)_ Ni.
i=0

The third choice is faster than the second whenever C3 < C3, in which case

Cup — Cop &
NofwPC—VPZNi+N6-
tr i=0

3.5 Surface and Vertex Attributes 99

On an Intel Pentium processor, floating-point multiplications and additions each
take 3 cycles. A floating-point comparison takes 4 cycles. Thus, Cy, is 54 cycles, Cup
is 19 cycles, and Cyp is 4 cycles. The third choice is faster than the second whenever

If the number of clip vertices increases with each frustum plane, then N; = N for
i > 1. In this case the inequality is clearly satisfied (replace N; by Np). If the number
of clip vertices is reduced by a fraction for each frustum plane, say, N; ;| = rN; for
i > 0and for some r € [0, 1], then the inequality reduces to a sixth-degree polynomial
inequalityin r thatistruefor r > 0.76. Therefore, if thereisa 3/4 (or greater) reduction
of vertices from each frustum plane, the third method is slower. This situation does not
typically happen because reasonable scenes tend to have the majority of the vertices
well inside the frustum. The values N; should be about equal to Ny or larger. Note
that the performance comparisons here are theoretical; in practice the costs are aiso
affected by availability of data in memory cache.

3.5 SURFACE AND VERTEX ATTRIBUTES

Triangles are drawn by the renderer as colored entities, the color of each pixel de-
termined by vertex attributes assigned to the vertices of the triangle. The pixels at
nonvertex locations are computed via interpolation by the rasterizer, the final values
in total called surface attributes. In screen space the projected vertices have locations
(%', ¥"), derived in Equation (3.8), that are used to control the interpolation process.
Each vertex is endowed with a list of attributes depending on how the application
wants the triangle to be drawn.

3.5.1 DerTH

The first vertex attribute that always exists is the depth value z or, equivalently,
the value w = z/n where z € [n, f] and w € [1, f/n]. The projected values were
derived earlier in Equation (3.9), 2’ = f(1 — 1/w)/(f — n) € [0, 1]. These quantities
are perspectively interpolated by the rasterizer to compute the depth values (more
appropriately, pseudodepth values) on a per-pixel basis that are used for sorting at
the pixel level.

3.5.2 cCoLoRrs

Each vertex can be assigned a vertex color ¢ = (r, g, b), where r is the red channel,
g is the green channel, and b is the blue channel. Channels from other color models

100 Chapter 3 The Graphics Pipeline

could be used instead, but standard renderers and graphics hardware support the RGB
model. A rasterized triangle whose vertices are assigned only colors is not that visually
appealing since interpolation of three color values over a triangle does not produce a
wide variation in color. However, using only vertex colors may be necessary either on
systems with a limited amount of memory, which prevents having a large number of
textures at hand, or on systems with slow processors that take many cycles to combine
multiple colors. Vertex colors are typically used in conjunction with textures to add
more realism to the rendering. Moreover, the vertex colors can be used in conjunction
with lights in the scene to generate dynamic effects, such as a flaming fireball traveling
down a corridor andlighting portions of the walls near its path. This is termed dynamic
lighting and is described in the next section.

3.5.3 LIGHTING AND MATERIALS

Dynamic lighting effects can be achieved by using light sources to illuminate portions
of the scene and by assigning material properties to various objects in the scene.

Lights
The standard light sources in a real-time engine are

® Directional lights. The light source is assumed to be infinitely far away so that
the directions of the light rays are all parallel. The sun is the classic example of a
directional light.

® Pointlights. Thelight source has a location in space and emits light in all directions.

® Spot lights. The light source has a location in space, but emits light only within a
cone.

Figure 3.5 illustrates the three possible sources. Real light sources emit light from an
area or volume source. Point light sources are a reasonable approximation in a real-
time setting but do not always produce visually correct information. For example,
shadows generated by a point source have hard edges, but shadows generated by a real
light source have soft edges.

Light sources have various attributes in addition to position and direction. Each
light can be monochrume or can have an RGB color associated with it. Instead of a
single color for the light, multiple colors can be used to represent the contribution
to ambient, diffuse, and specular lighting. The light can also maintain an intensity
parameter that applies to the various colors, and a Boolean parameter can be used to
indicate whether the light is on or off, a quick way to enable or disable lights in the
rendering system. Other attributes assigned to lights depend on type. Point lights and

Figure 3.5

3.5 Surface and Vertex Attributes 101

//

Directional light Point light Spot light

Various light sources.

spot lights can have their light atienuated with distance from the light source, with
the parameter usually specified as an inverse quadratic:

1
T a+blP—V|4clP -V

ddist

where P is the light position and Visa point to be illuminated. The physically
correct model is @ = b = 0 and produces the inverse square relationship that we
expect. However, the a and b parameters give an application more control over how
the attenuation is to occur. Moreover, choosing a > 0 guards against floating-point
overflow when |P ~ V| is nearly zero.

Materials

Associating a material with an object is an attempt to give the object surface character-
istics based on the material parameters and the light sources. The material parameters
include emissive, ambient, diffuse, and specular color components and can include
scalar parameters for shininess and alpha blending. The emissive color represents the
fact that a material itself can emit light rather than simply reflect it. The ambient, dif-
fuse, and specular colors are intended to be terms that interact with the light sources.
Shininess is used to control how sharp or diffuse a specular highlight is. The alpha
value is used to support transparent materials as an alternative to applying texture
images with an alpha channel.

Lighting and Shading

The term lighting refers to the process of computing colors based on light sources and
materials. The term shading refers to the process of computing pixel colors after any

102 Chapter 3 The Graphics Pipeline

lighting has been calculated. The three standard shading models are flat, Gouraud, and
Phong. Flat shading uses the same color for all pixels in a rendered triangle. Thus, a
color is assigned to the entire triangle rather than separate colors assigned to the three
vertices. Gouraud shading calculates the vertex colors of the triangle based on light
sources and materials, then interpolates those colors to fill out the remaining pixels in
the triangle. Phong shading takes the three vertex normals and interpolates them to
compute a normal vector per pixel. Each pixel is then lit according to the light sources
and materials that affect the triangle. Flat shading and Gouraud shading are supported
in hardware graphics cards, but Phong shading is more expensive and is not supported
on consumer machines. This is actually surprising because the discrete methods that
are used in line and circle drawing algorithms can be applied to interpolating normal
vectors. Specifically, ifthe three vertex normals are plotted ona unit sphere, the normal
at any triangle interior point corresponds to a point on the unit sphere contained in
the spherical triangle formed by the original three normals. A discretization of the
spherical triangle is quite possible and not expensive (Andres 1994; Andres and Jacob
1997), so it is conceivable that consumer graphics hardware could support normal
interpolation in this way.

The colors at the triangle vertices are computed via a lighting model. The models
used in real-time graphics involve decomposition into ambient, diffuse, and specular
components. The model described here assumes that each light has an ambient color
L ambi» a diffuse color Laigr, 2 specular color l:spec, and an intensity Ln, that is applied
equally to all three colors. Point and spot lights also have an attenuation value Laux.
Each material has an emissive color M emis, an ambient color Mamb,, a diffuse color
My, a specular color Mspec, a shininess parameter Mhine, and an alpha component
Malpha

Ambient Light

A light ray in the real world follows a path that has it reflecting off many surfaces and
decreasing in intensity along the way. The global effect from all the rays is termed
ambient lighting. The light model incorporates this effect by combining the light’s
ambient color with the material’s ambient color,

Cambi = A-‘"ambi o (Limnl:ambi)-

The operator o can represent componentwise multiplication (modulated color model)
or componentwise addition (additive color model). To support operations between
colors, it is necessary to represent the colors in a normalized way. The standard way
is to store all color channels (including alpha) as floating-point numbers in [0, 1]. If
o represents multiplication, then the product of two normalized colors is a normai-
ized color. However, multiplication produces a darkening effect since the product of
¢o < land ¢y < 1 yields a product cocy < min{cg, €1} < 1. One way to counteract the
darkening is to adjust the light intensity parameter. Another way to avoid darkening
is to choose o to represent addition. The pitfall here is that the sum of two colors can

3.5 Surface and Vertex Attributes 103

result in channel values being larger than 1. Clamping the sum per channel to 1 can
be used but might possibly change the perceived color value since the ratios between
pairs of red, green, and blue are not preserved. Instead, the maximum channel value
is determined and, if larger than 1, is used to scale all three channels to be within
{0, 1]. Rescaling comes at a price since two divisions are required per color, whereas
clamping does not require any divisions. Either clamping or rescaling is necessary
even when o represents multiplication since the final lighting equation will involve
sums of various color components in the lighting model.

For spot lights with a unit-length cone axis U and angle 6, the light direction
isD=(V - P)/ |V P| The ambient color is attenuated depending on the angle
formed by Dand U.1€ D = [, the attenuation coefficientis 1. IfD - U = cos(6), then
D is on the cone boundary and the attenuation coefficient is 0. The drop-off from cone
axis to cone boundary is generally chosen as (D - U)¢, where € > 0 is called the spot
exponent. The attenuation coefficient is therefore

- - - €
(M) » D-U=|D|cos@
dipor = (P-Uysin@

0,5-0<|b|c059

and the ambient component is written as

&amhi = dspol A-‘"ambi ° (Limniambi)-

For directional lights and point lights the value of dspo is simply set to 1, indicating
it has no effect on the final color.

Diffuse Light

Diffuse lighting is based on Lambert’s law, which says for a matte surface, the intensity
of the reflected light is determined by the cosine of the angle between the surface
normal N and the light direction vector D. Moreover, the intensity drops to zero when
the angle between Nand Disn /2 radians or larger. The light model incorporates
diffuse lighting by

Caiet = dspor max(N - D, 0}Mitr © (Linen Lairt),

where d;po is the spot angle attenuation factor described in the previous subsection.

The light direction depends on light type. Moreover, spot lights have an atten-
uation based on the angle between light direction and conc axis. For directional
lights, the light direction D is already known. For r point lights, the light direction
is D= (V P)/IV P| for light source location P and for each point V to be illu-
minated. For spot lights with a unit-length cone axis U and angle 8, the light direction
isD=(V-P)IV-P|

104 Chapter 3 The Graphics Pipeline

Specular Light

Diffuse lighting represents reflection of light on matte surfaces. Specular lighting
represents reflection of light on shiny surfaces. In particular, specular highlights can
show up on highly reflective surfaces. These are places where the surface normal and
light direction are parallel. The tightness of the region of brightness is something that
can be controlled by the material’s shininess parameter. Let E be the eye point. Let

= (E V)/IE V| be the view direction for a point V that is to be 1IIum|nated
Let D be the light direction, specified for directional lights but computed to be D=
(V - P)/|V = P|for point and spot lights. The reflection vector of the light direction
through the vertex normal N is R = 2(N D)N D. The specular coefficient is (R
D)Mshine, assuming that the dot product is nonnegative. The light model incorporates
specular lighting by

shine

- - - M. - -
Cspec = dspol (max‘R - D, 0}) Mpec o (LintnLspec)-

The attenuation coefficient dpor is the same one discussed in the subsection on
ambient lights.

The Light Equation

The final equation for lighting a vertex with a single material and using multiple light
sources, given below, includes the attenuation factors for distance as well as for spot
angles. The superscripts are indices for the array of active lights.

&ﬁnal = Memis +

amhl stpoll‘:mn ambi T
Mdlﬂ'oz Spolddlsl maxlN D O}Lmln dlﬂ'+

Mspcc ° Z dsPc"d:‘llsl maxlk . bi’ O} Mihine L' Ll

intn*“spec*

Note that if no lights are present and the material emits light, the final vertex color
is not black. 1t is also possible to include a global ambient light term Mmbi © Gambi»
where the global ambient color is specified by the application.

3.5 Surface and Vertex Attributes 105

3.5.4 TEXTURES

Textured images, or simply textures, provide the most realism in a model and can
be used effectively to hide the model’s polygonal aspects. A triangle is assigned a
textured image ¢(u, v) = (r (4, v), g(u, v), b(u, v), where (4, v) € [0, 1]% The tuple
(u, v, ¢(u, v)) is called a texture element, or texel for short. Each triangle vertex is as-
signed a texture coordinate t = (u, v) so that a color lookup can be done in the image.
The texture coordinates at the vertices are perspectively interpolated by the raster-
izer to obtain texture coordinates at other pixels in the triangle. Each interpolated
coordinate is also used to do a color lookup in the image.

Coordinate Modes

[t is not necessary that a texture coordinate at a vertex be in [0, 1]2. This allows for
efficient use of textures and for interesting effects. The two standard texture coordinate
modes are clamping and wrapping. A coordinate (u, v) is clamped by setting

', v') = (min(max(0, «), 1), min(max (0, v), 1).

One special effect obtained by clamping is to place a small detail in the interior of
a triangle. For example, a triangle that represents part of a glass window can have a
texture applied to make it appear as if the window has a bullet hole in it. The texture
image for the bullet hole can be quite small (to minimize memory usage), and the
texture coordinates for the vertices can be set to quantities well outside the range of
[0, 1]2 to control the size and placement of the bullet hole.

A coordinate (u, v) is wrapped by setting

W' v'y=(u—lu),v—Lv])

where |w] is the largest integer smaller or equal to w. The typical special effect
obtained by wrapping is to allow a texture to repeat, thereby producing a doubly
periodic effect. The texture in this case is said to be toroidal, and great care must be
taken so that the left/right edges and top/bottom edges of the texture match (otherwise
the texture boundaries are noticeable) in the replication. For example, a brick wall
can be built from a small number of triangles with a small texture representing a few
bricks.

The coordinates can be mixed in a texture, one coordinate being clamped and the
other being wrapped. The texture in this case is said to be cylindrical, and the edges
corresponding to the wrapped coordinate must match to hide the texture boundaries.
Some hardware drivers might not support mixed coordinate modes.

106 Chapter 3 The Graphics Pipeline

Filtering Modes

The texture image is defined on a discrete lattice of points, so it is not a continuous
quantity. A texture coordinate (4, v) computed at a pixel via interpolation usually is
not in the lattice. The method of computing a lattice point for the coordinate is called
texture filtering. There are two standard ways to select a lattice point. The first method
selects the nearest lattice point,

W'\ vy=(lu+1/2], v+ 1/2]).

This gives the textured triangles a blocky appearance, especially when the texture
image is high frequency in its data.

The second method uses bilinear interpolation as a way of smoothing the results
and avoiding the aliasing problem from selection of the nearest lattice point. Let the
texture image be N x M, and let the image lattice coordinates (i, j) correspond to
texture coordinates (u, v) = (8,i,8,j), where 8, =1/(N - 1)and 8, =1/(M - 1).
The lattice coordinates satisfy 0 <i < N and 0 < j < M. For a specified texture
coordinate (u, v) € [0, 1]2, the base lattice coordinate is (i, j) = (|[(N — Du], |(M ~
1)v]). The corresponding base texture coordinate is (&', v') = (8,i, 8, j). Setting s =
u — u' andt = v — v/, the texture value ¢’ to be used at the pixel is

=1 =) =06,)+ A —s)ue, j+ D) +s(1 —nei + 1, j)
+SIGE+Lj+ 1),

Mipmapping

Even bilinear filtering can have aliasing problems when a textured triangle is in the
distance. As the distance from the eye point increases, the perceived frequency in
the texture increases because the same range of texture coordinates is applied over
the smaller set of pixels covered by the iriangle. This produces a temporal aliasing
of the textures on objects close to the far plane. A method for reducing the aliasing
is mipmapping (Williams 1983). The prefix mip is an acronym for the Latin multum
in parvo, which means “many things in a small place.” The idea is that a pyramid of
textures is built from the original by downsampling via averaging or blurring. If the
original texture is a square of size 2" x 2", there are n downsampled textures of sizes
2/ x 2/ for0 < i < n,i = nrepresenting the original texture. For a nonsquare texture,
the recursive downsampling is applied until one of the dimensions is 1.

The selection of texture to use from the pyramid is based on determining the
number of texels that cover a pixel. As the number of texels per pixel increases,
the amount of averaging will increase. The relationship between screen space point
(x, ¥) and the texture coordinates (u, v) at that point is constructed as follows. Let
the triangle have vertices (x;, y;) and corresponding texture coordinates (u;, v;) for
0 <i < 2. As a function of world space triangle parameters (s, t),

3.5 Surface and Vertex Attributes 107

(u, v) = (uo, vo) + s(uy — uo, vy — vo) + t(u2 — uo, v2 — vo).
Recall from the section on perspective projection that
(x, ¥) = (X0, yo) + 5(x1 — X0, Y1 — yo) + (X2 — Xo» Y2 — Yo)s

where (5,) and (s, ¢) are related by Equations (3.4) and (3.5). The previous equation
can be inverted to obtain

[§]= 1 [y2— Yo —(xz—xo)]
t (1 —x0)(y2— Yo) — (2 —xp)(n —yo) L—On—y0) X1 —Xo

x [x — X0]
Y=Y
Replacing this in Equation (3.5) produces (s, t) as a function of (x, y). Finally, replac-
ing this in the equation for («, v) produces

uix)_aox+bo)’+t‘o
'y dx +ey+ f
axx +by+c
vix,y) = ——

dx+ey+ f

where the various coefficients depend on the (x;, y;) and (u;, v;) quantities. This
function is a mapping from [R? to R2. From standard multivariate calculus it is known
that the absolute value of the determinant of the first derivative matrix is a measure
of how the infinitesimal area at (x, y) is magnified to an infinitesimal area at (u, v).
The magnification factor is

and is an approximate measure of how many texels are required to cover the pixel
(%,). A mapping from d to the mipmap index i € {0, . .., n} must be selected. If
d < 1,theni = n (the original texture) is the obvious choice. As d increases, i decreases
to 0.

The final problem is to select a texel value given (x, y, d). The choices are many,
but the standard ones are the following:

® Select the nearest mipmap to d and select the nearest texel to (x, ¥).
® Select the nearest mipmap to d and bilinearly interpolate using the appropriate
four pixels for (x, y).

& Select the two bounding mipmaps for d, select the nearest texels to (x, y) on the
two mipmaps, then linearly interpolate using the relationship of 4 to the mipmap
d values.

108 Chapter 3 The Graphics Pipeline

® Select the two bounding mipmaps for d, bilinearly interpolate using the appro-
priate four pixels for (x, y) on each mipmap, then linearly interpolate using the
relationship of d to the mipmap d values. This choice is called trilinear interpola-
tion and is supported by most hardware cards.

The value d measures a change in infinitesimal area in an isotropic way. It does not
contain information about magnification in individual directions. The pixel covers a
square area, but the region of the texture image corresponding to it is a quadrilateral
that can be quite narrow. The end result in using d for mipmapping is that overblurring
occurs in the direction of the narrow width of the quadrilateral. An attempt to reduce
this effect is to use ripmaps (McReynolds et al. 1998). The averaging process to obtain
asequence of blurred images is applied independently in each dimension. The lookup
process now involves two parameters, one related to the length of the gradient of u
and one related to the length of the gradient of v.

Multitexture

The number of texture images associated with a triangle does not always have to be
one. Multiple textures, or multitextures, allow for a lot of special effects that enhance
the realism of the rendered scene. For example, multitextures can add variations in
lighting to textures on the walls in a room. This is a form of static multitexture—the
secondary texture corresponding to the lighting is combined with the primary texture
corresponding to the walls in a view-independent manner. Combining such textures
is a way to add visual variation in a scene without an exponential growth in texture
memory usage. N primary textures and M secondary textures can be combined in
NM ways, but only N + M textures are required in memory rather than storing
NM textures. Moreover, an artist can generate the smaller number of textures in
less time.

Here’s another example: A character moves along a textured floor in a scene with
alight and casts a shadow on the floor. The shadow can be dynamically computed as a
texture and is applied to the floor triangles. This is a form of dynamic multitexture—
the secondary texture is generated on the fly. The triangles on which the shadow is
cast must be selected by the application, and the corresponding texture coordinates
must also be computed on the fly.

In either case, the natural question is, How should the various texels be combined
to produce the final colors on the triangles? Combining colors and texels is discussed
in Section 3.5.7.

3.5.5 TRANSPARENCY AND OPACITY

A texture image can have an additional channel, called the alpha channel, used
to control transparency or apacity of the applied texture. The image is ¢(u, v) =

3.5.6 Foe

3.5 Surface and Vertex Attributes 109

(r(u, v), g(u, v), b(u, v), a(u, v)). A value of @ = 1 indicates the texel is completely
opaque. That is, any previous color drawn at a pixel is overwritten by the texture RGB
color. A value of @ = 0 indicates the texel is completely transparent. That is, any pre-
vious color drawn at a pixel is unaffected by the texture RGB color. For 0 < o < 1, the
texture RGB color Ciexture is combined with the current pixel color Cpix| to obtain the
final color,

Chinat = (1 — a)‘-}pixcl + aCrexture-

The addition of fog to an image adds to the realism of the image and also helps to
hide clipping artifacts at the far plane. Without fog, as the eye point moves away from
an object, the object approaches the far plane and is noticeably clipped when the far
plane intersects it. With fog, if the fog density increases with distance from the eye
point, the effect is to provide a depth cue for objects in the distance. And if the fog
density increases to full opacity at the far plane, clipping is substantially hidden and
the objects disappear in a more natural fashion. If Crog is the designated fog color,
Cpixet is the current pixel color, and ¢ € [0, 1] is the fog factor and is proportional to
distance from the eye point, then the final color Cgpa is

E:ﬁnal =(1- ¢)Z'pixel + ¢Z'fog-

There are a variety of ways to generate the fog factor. The standard way, called
linear fog, is based on the z value (or w value) of the pixel to be fogged. Moreover,
the fog can be applied to a subset (20, 2;] € [n, f] of the view frustum. The linear fog
factor is

0, 1<
o= =2, zelzal.
1, 2>

Since the z values or w values are computed by the renderer for other purposes, linear
fog is relatively inexpensive to compute compared to other fog methods.

Exponential fog is obtained by allowing the fog to increase exponentially with the
z value of the pixel to be fogged,

¢ = exp(Az),
where A > 0 is a parameter that controls the rate of increase with respect to z.

Range-based fog assigns the fog factor based on the distance r from eye point to
pixel. A subset of radial values [rg, r;] can be used, just as in linear fogging,

110 Chapter 3 The Graphics Pipeline

0, r<ro
¢=1 sz relrnl.
L, r>r

This type of fog is more expensive to compute than linear fog since the distance must
be calculated for each rendered pixel.

Another possibility for fog is to assign a factor per triangle vertex and let the ras-
terizer interpolate the factors over the entire triangle. This effect is used in volumetric
fogging (see Section 13.4). If the number of triangles to be fogged is small, noticeable
artifacts can occur with this type of fogging. Rather than interpolation, renderers can
allow fog tables to be used with lookup per pixel based either on z value or on depth.
The table lookup can be done with a nearest-neighbor selection or with linear inter-
polation between two bounding table values. Moreover, the table can be constructed
with values that do not necessarily increase with z or depth, which allows for some
interesting visual effects.

3.5.7 COMBINING ATTRIBUTES

The various attributes described in this section all contribute to the final pixel color.
An important observation to make is that the final color depends on the order of com-
bination. Unfortunately, not all graphics hardware cards perform the combination in
the same order. For a single texture rendering, the two possible orders are vertex colors
first and texture colors second or texture colors first and vertex colors second. The last
combination appears to be the the right choice since vertex colors tend to be used for
dynamic lighting and modulation, so they should be applied after the texture colors
are set up. The pixel color pipeline described here uses the vertex-colors-last scheme.
The order of application is

Texture |

Texture 2 through texture » (multitextures, if any)

Fog

1.
2.
3. Vertex colors
4.
5. Alpha blending

For a single texture and vertex colors, the colors are denoted C and the alpha
channel is denoted «. A subscript V corresponds to the vertex attributes, a subscript
T corresponds to the texture attributes, and a subscript F corresponds to the final
combined color. If a texture does not have an alpha channel. then the alpha values are
assumed to be 1 in the combinations. Table 3.1 shows the standard combinations.

Let Crog denote the RGB fog color and let ¢ be the fog factor for the given vertex.
The output of the texture-vertex blending is updated by the fog color using

3.5 Surface and Vertex Attributes 111

Table 3.1 Combining a single texture and vertex colors.

Mode Equations Uses

Replace C F= C T Texture colors only, no
QF =dar lighting.

Decal ér =(1- ar)f?v + ar(:"r Decal application such
aF =ay as bullet-hole texture on

vertex-colored surface.

Multiply Cr=CrxCy Modulate the texture by
- [ar, iftexture hasalpha vertex colors to support

F=1av, otherwise dynamic lighting effects.

Multiply Alpha Cr=CrxCy Modulate the texture by
aF =ar*ay vertex colors to support
dynamic lighting effects.

The vertex alpha values

allow more control over
transparency and can be
adjusted over time.

Inverse Multiply Cr=Cr* (1 — Cy) Same as Multiply Alpha,

Alpha OF =OT *¥Qy but the normalized
vertex colors are inverted
(T=(,1, D).

Cr=(1-¢)Cr + ¢Croq.

The source alpha values are not modified. The semantics of using both fog and
transparency is dependent on context. If an observer is looking through a partially
transparent window at a fogged landscape, the alpha blending should occur after the
fogging. However, if the landscape contains a lake with partially transparent ice, then
the alpha blending for the ice should occur before fogging. Moreover, if the observer
is looking through the window at the lake, the sorting of triangles for purposes of
transparency becomes an issue.

For multitextures, the textures are combined first before blending with vertex
colors. A subscript 0 indicates the first texture of the pair to be combined and in a two-
texture system is the primary texture. A subscript 1 indicates the second texture of the
pair and in a two-texture system is the secondary texture. A subscript F corresponds
to the final combined color of the pair. Table 3.2 shows some standard combinations.

112 Chapter 3 The Graphics Pipeline

Table 3.2 Combining multitextures.

Mode Equation Uses

Multiply Cr=CoxC, RGB light maps. Texture 0 is the
base texture, texture 1 is the light
map.

Multiply Inverse Cr=Cox(1=-C)) RGB dark maps.

Add Cr=GCy+C, Specular light maps. Texture 1
is used to whiten portions of
texture 0.

Primary Alpha Cr=0aeCo + (1 —) Cy Advanced environment maps.

Blend Texture 0 represents the surface
RGB colors; the alpha channel
represents the shininess of the
surface. Texture 1 represents
the environment colors that are

reflected by the object.
Secondary C F= a1Cy + (1 —a)Co Decal maps. Texture 0 is the base
Alpha Blend texture. Texture 1 contains the
decal.
Multiply Alpha Cr=o,Co Monochrome light maps. The

alpha channel of texture 1 is used
as an intensity on the colors of

texture 0.
Multiply Alpha ¢ F= aléo +C 1 Advanced light maps. The RGB
Add Color channels of texture 1 are used

for color specular highlights,
The alpha channel of texture 1 is
used for intensity adjustment of

texture 0.
Multiply Color Cr= &0& Loyl Advanced light maps. The RGB
Add Alpha channels of texture 1 are used for

modulating texture 0. The alpha
channel of texture 1 is used for

adding specular highlights.

3.6 Rasterizing 113

3.6 RASTERIZING

Rasterization is the process of taking a geometric entity in screen space and selecting
those pixels to be drawn that correspond to the entity. The standard objects that
most engines rasterize are line segments and triangles, but rasterization of circles and
ellipses is also discussed here. The constructions contained in this section all assume
integer arithmetic since the main goal is to rasterize as fast as possible—floating-point
arithmetic tends to be more expensive than integer arithmetic.

3.6.1 LINES

Given two screen points (xg, ¥o) and (xy, y1), a line segment must be drawn that
connects them. Since the pixels form a discrete set, decisions must be made about
which pixels to draw in order to obtain the “best” line segment. Figure 3.6 illustrates
this. If x; = xg (vertical segment) or y; = y, (horizontal segment), it is clear which
pixels to draw. And if |x; — xp| = |y — 0!, the segment is diagonal and it is clear
which pixels to draw. But for the other cases it is not immediately apparent which
pixels to draw. The algorithm should depend on the magnitude of the slope. If the
magnitude is larger than 1, each row that the segment intersects should have a pixel
drawn. If the magnitude is smaller than 1, each column that the segment intersects
should have a pixel drawn. Figure 3.7 illustrates the cases. The two blocks of pixels
on the left illustrate the possibilities for drawing pixels for a line with slope whose
magnitude is larger than 1. The left case draws one pixel per column. The right case
draws one pixel per row, the correct decision. The two blocks of pixels on the right
illustrate the possibilities for drawing pixels for a line with slope whose magnitude is
less than 1. The top case draws one pixel per row. The bottom case draws one pixel
per column, the correct decision.

The process of pixel selection, called Bresenham’s algorithm (Bresenham 1965),
uses an integer decision variable that is updated for each increment in the appropriate

00000000000
0000000000000

Figure 3.6 Pixels that form the best line segment between two points.

114 Chapter 3 The Graphics Pipeline

O O 00O
O O 000
O O
@) O
O O Q000
O O 00O

Figure 3.7 Pixel selection based on slope.

input variable. The sign of the decision variable is used to select the correct pixel to
draw at each step. Define dx = x| — xp and dy = y| — yo. For the sake of argument,
assume thatdx > 0and dy # 0. The decision variable is 4;, and its value is determined
by the pixel (x;, y;) that was drawn at the previous step. Figure 3.8 shows two values
s; and ¢;, the fractional lengths of the line segment connecting two vertical pixels.
The value of s; is determined by s; = yo + (dy/dx)(x; + 1 — xp) and 5; + t; = 1. The
decision variable is d; = dx (s; — t;). From the figure it can be seen that

= Ifd; >

0, then the line is closer to the pixel at (x; + 1, y; + 1), so draw that pixel.

® Ifd; <0, then the line is closer to the pixel at (x; -+ 1, y;), so draw that pixel.
Now consider

diy1 — di =dx(Si+1 — tiv1) —dx(si — ;)

=2dx(si+1 — i)

=2dy(xi+1 — Xi) — 2dx(Yi+1 — Yi)-

The initial decision value is dy = 2dy — dx. The figure indicates that the slope has
magnitude less than 1, so x isincremented in the drawing, x; +; = x; + 1. Thedecision
equation is therefore

diy1 =d; +2dy — 2dx(yi+1 — ¥i)

and the rules for setting the next pixel are

® Ifd; > 0,then y;+; = y; + 1 and the nextdecision valueisd; .; = d; + 2(dy — dx).
® Ifd; <0, then y;+; — y; and the next decision value is d;) = d; + 2dy.

A concise implementation is given below. The special cases of horizontal, vertical,
and diagonal lines can be factored out if desired.

Figure 3.8

3.6 Rasterizing

115

yi+2

y,'+|

x,-+l

x,-+2

Deciding which line pixel to draw next.

void DrawlLine (int x0, int y0, int x1, int yl)

{

// starting point of line

int x = x0, y = y0:

// direction of line
int dx = x1 - x0, dy = yl - y0;

// increment or decrement depending on direction of line

int sx, sy:

if (dx > 0)
{
sX = 1;
}
else if (dx < 0)
{
sXx = -1,
dx = -dx;
)
else
{
sx = 0;

}

116 Chapter 3 The Graphics Pipeline

if (dy > 0)
{
sy = 1;
}
else if (dy < 0)
{
sy = -1;
dy = -dy:
}
else
{
sy = 0;
}

int ax = 2*dx, ay = 2*dy;

if (dy <= dx)

{
// single-step in x-direction
for (int decy = ay-dx; /**/; x += sx, decy += ay)
{
DrawPixel(x,y):
// take Bresenham step
if (x == x1)
break:
if (decy >= 0)
{
decy -= ax;
y += sy:
}
}
}
else
{

// single-step in y-direction
for (int decx = ax-dy: /**/; y += sy, decx += ax)
{

DrawPixel(x,y):

// take Bresenham step
if(y=-—yl)
break;

3.6 Rasterizing 117

if (decx >= 0)
{
decx -= ay:
X += sX;

In the line drawing algorithm, the calls DrawLine(x0,y0,x1,y1) and Draw-
Line(x1,y1,x0,y0) can produce different sets of drawn pixels. It is possible to avoid
this by using a variation called the midpoint line algorithm; the midpoint (xn, ym) =
({x0 + x1)/2, (yo + ¥1)/2) is computed, then two line segments are drawn, Draw-
Line(xm,ym,.x0,y0) and DrawLine(xm,ym, x1,y1). This is particularly useful if
a line segment is drawn twice, something that happens when rasterizing triangles that
share an edge. If the original line drawer is used for the shared edge, but the line is
drawn the second time with the end points swapped, gaps (undrawn pixels) can oc-
cur because the two sets of drawn pixels cause an effect called cracking. Another way
to avoid cracking is to always draw the line starting with the vertex of the minimum
y-value. This guarantees that the shared edge is drawn in the same order each time.

3.6.2 CIRCLES

The Bresenham line drawing algorithm has a counterpart for drawing circles using
only integer arithmetic. Let the circle be x? + y? = r?, where r is a positive integer.
The algorithm will draw one-eighth of the circle for y > x > 0. The remaining parts
are drawn by symmetry.

Let (x0, yo) be the last drawn pixel. Let A= (x0 + 1, o) and B=(xo+1, yo—1).
A decision must be made about which of the two points should be drawn next. Figure
3.9 illustrates the various possibilities. The selected pixel will be the one closest to the
circle measured in terms of radial distance from the origin. The squared distance will
be calculated to avoid square roots. .

Define D(x, y) = x* + y% then D(A) = (xo + 1)* + y} and D(B) = (xo +)2 +
(yo —1)% Define f(x,y)=D(x,y) — r2If f(P) > 0, then Pis outside the circle.
If f(P) < 0, then P is inside the circle. Finally, if f(P) =0, then P is on the circle.
The rules for setting pixels are

s If|f (3)| > [f(B)|, then B is closer to the circle, so draw that pixel.
8 f| f(;i)| <|f (§)|, then A is closer to the circle, o draw that pixel.

s If|f (A)| =|f(§)|, the pixels are equidistant from the circle, so either one can be
drawn.,

118 Chapter 3 The Graphics Pipeline

Figure 3.9

yo-1 oB Bo \OB

Xg X0+| X9 X0+] X0 X0+]

Deciding which circle pixel to draw next.

The decision variableisd = f (A) + f (B). In the left part of Figure 3.9, f (A)and
f (5) are both negative, so d < 0. In the right part of the ﬁgure, f (A) and f (3) are
both positive, sod > 0. In the middle part of the ﬁgure, f (A) is positive and f (B) is
negative. IfA is closer to the circle than B, then |f(A)| < |f(B)| andsod <0.If B
is closer, then |f(A)| > |f(B)| and d > 0. In all cases,

® Ifd > 0, draw pixel B.
® Ifd <0, drawpixeli.

® Ifd =0, the pixels are equidistant from the circle, so draw pixel A.

The current decision variable is constructed based on its previous value. Let d; =
@i+ D +y =+ i+ D+ i - D= =20+ Dy + i - D -
Then

dins —di = 4x; + 6, Yir1 =Yi
i+l TG 4x; +6—4y; +4, Yin=yi—1"

The circle is centered at the origin. For a circle centered elsewhere, a simple translation

of each pixel will suffice before drawing. Concise code is

void DrawCircle (int xcenter, int ycenter, int radius)
{
for (int x = 0, y = radius, dec = 3-2*radius; x <= y; x++)
{
DrawPixel(xcenter+x,ycenter+y);
DrawPixel (xcenter+x,ycenter-y);
DrawPixel (xcenter-x,ycenter+y);
DrawPixel(xcenter-x,ycenter-y);
DrawPixel(xcenter+y,ycenter+x);
DrawPixel(xcenter+y,ycenter-x):

3.6 Rasterizing 119

DrawPixel (xcenter-y,ycenter+x);
DrawPixel(xcenter-y,ycenter-x):

if (dec >=10)
dec += -4%(y--)+4;
dec += 4*x+6;

3.6.3 ELLIPSES

Rasterizing an ellipse is conceptually like rasterizing a circle, but the anisotropy of
ellipses makes an implementation more challenging,. The following material discusses
how to conveniently specify the ellipse, how to draw an axis-aligned ellipse, and how
to draw general ellipses.

Specifying the Ellipse

The algorithm described here draws ellipses of any orientation on a 2D raster. The
simplest way for an application to specify the ellipse is by choosing an oriented
boundingbox with center (x., y.) and axes (x4, ¥,) and (xp, y»), where all components
are integers. The axes must be perpendicular, so x,xp + yayp = 0. It is assumed that
(X4» Ya) is in the first quadrant (not including the y-axis), so x, > 0 and y, > 0 are
required. It is also required that the other axis is in the second quadrant, so x; < 0 and
¥» > 0. There must be integers n, and nyp, such that np(xp, yp) = n,(— Y4, x4), but the
algorithm does not require knowledge of these. The ellipse axes are the box axes and
have the same orientation as the box.

All pixel computations are based on the ellipse with center (0, 0). These pixels are
translated by (x., y.) to obtain the ones for the original ellipse. A quadratic equation
for the ellipse centered at the origin is

(*aX + yay)? | (px + yp¥)?
(x2 + y? (2 +yP)?

In this form it is easy to see that (x,, ¥,) and (xp, ¥») are on the ellipse. Multiplying
the matrices and multiplying through by denominators yields the quadratic equation

Ax? +2Bxy 4+ Cy? =D,

120 Chapter 3 The Graphics Pipeline

where the integer coefficients are
A=xl(xp + D7 + xp(x2 + ¥2)?

2
B = x,ya(x} + yp)* + xpyp(x] + ¥2)
C =y2(x7 + 397 + ypx2 + 32
D = (x3 + y)*(x; + ¥p).

For standard-size rasters, since these integers can be quite large, an implementation
should use 64-bit integers.

Axis-Aligned Ellipses

The algorithm for an axis-aligned ellipse draws the arc of the ellipse in the first quad-
rant and uses reflections about the coordinate axes to draw the other arcs. The ellipse
centered at the origin is h2x> + a’y? = u?b?. Starting at (0, b), the arc is drawn in
clockwise order. The initial slope of the arc is 0. As long as the arc has a slope smaller
than 1 in absolute magnitude, the x value is incremented. The corresponding y value is
selected based on a decision variable, just as in Bresenham’s circle drawing algorithm.
The remaining part of the arcin the first quadrant has a slope larger than 1 in absolute
magnitude. That arc is drawn by starting at (a, 0) and incrementing y at each step.
The corresponding x value is selected based on a decision variable.

While drawing the arc starting at (0, b), let (x, y) be the current pixel that
has been drawn, A decision must be made to select the next pixel (x + 1,y +
8) to be drawn, where § is either 0 or —1. The ellipse is defined implicitly as
Q(x, y) =0, where Q(x, y) = b%x? + a?y? — a’b?. Each choice for the next pixel
lies on its own ellipse defined implicitly by Q(x, y) =4 for some constant A that
is not necessarily zero. The idea is to choose & so that the corresponding level
curve has A as close to zero as possible. This is the same idea that is used for
Bresenham’s circle algorithm. For the circle algorithm, the choice is based on se-
lecting the pixel that is closest to the true circle. For ellipses, the choice is based
on level set value and not on the distance between two ellipses (a much harder
problem).

Given current pixel (x, y), for the next step the ellipse must do one of three things:

I. Pass below (x + 1, ¥) and (x + 1, ¥y — 1), in which case Q(x + I, y) >0 and
Qx+1Ly—1=0.

2. Pass between (x + 1, ¥) and (x + I, y — 1), in which case @Q(x + 1, ¥) >0 and
Q(X + 1) .V - I) 50.

3. Pass above (x + 1, ¥) and (x + 1, v — 1), in which case Q(x + 1, y) <0 and
Qx+ 1L, y—=1)<0.

3.6 Rasterizing 121

In the first case the next pixel to draw is (x + 1, y). In the second case the pixel
with @ value closest to zero is chosen. In the third case the next pixel to draw is
Q(x + 1, y — 1). The decision in all three cases can be made by using the sign of
o=0Q(x+1y)+ Q(x+1,y—1).1fo <0,then the next pixelis (x + 1, y — 1).If
o > 0, then the next pixelis (x + 1, y). Fora =0, either choiceisallowed, so (x + 1,)
will be the one selected.

The decision variable o can be updated incrementally. The initial value is o9 =
QL b) + Q(1, b — 1) = 2b? + a%{1 — 2b). Given current pixel (x, y) and decision
variable g;, the next decision is

Q(x+2,)+ Q(x+2,y—-1), g, >0

gi+1 = .
Qx+2,y—-1)+Q(x+2,y—-2), 0i<0

The choice is based on whether or not the chosen pixel after (x, y) is (x + 1, y) [when
o; > 0] or (x + 1,y — 1) [when o; < 0]. Some algebra leads to

202(2x +3), ;>0

i1 =it I 2622x +3) + 4a2(1 — y), 0; <0

On this arc x is always incremented at each step. The processing stops when the
slope becomes 1 in absolute magnitude. The slope dy/dx of the ellipse can be com-
puted implicitly from Q(x, y) =0as Q; + Qydy/dx =0, where Q, and Q| are the
partial derivatives of @ with respect to x and y. Therefore, dy/dx = —Q,/0y =
—(2b%x)/(2a%y) = —(b*x)/(a’y). The iteration on x continues as long as —(b*x)/
(a%y) = —1. The termination condition of the iteration using only integer arithmetic
is b2x < a?y.

The code for the iteration is

int a2 = a*a, b2 = b*b, fa2 = 4*32;
int x, y, sigma;

for (x =0, y = b, sigma = 2*b2+a2*(1-2*b); b2*x <= a2*y; x++)
{

DrawPixel(xc+x,yc+y):

DrawPixel(xc-x,yc+y):

DrawPixel (xc+x,yc-y):;

DrawPixel(xc-x,yc-y):;

if (sigma >= 0)

{
sigma += fa2*(1l-y):
yooi

)}

sigma += b2*(4*x+6);

122 Chapter 3 The Graphics Pipeline

The code for the other half of the arc in the first quadrant is symmetric in x and
yandina and b:

int a2 = a*a, b2 = b*b, fb2 = 4*b2;
int x, y. sigma;

for (x = a, y =0, sigma = 2*a2+b2*(1-2*a); a2*y <= b2*x: y++)
{

DrawPixel(xc+x,yc+y):

DrawPixel(xc-x,yc+y):

DrawPixel(xc+x,yc-y):

DrawPixel(xc-x,yc-y):

if (sigma >= 0)

{
sigma += fb2*(1l-x):
X--3

)}

sigma += a2*(4*y+6);

General Ellipses

An attempt could be made tomimic the case of axis-aligned ellipses by drawing the arc
from (x5, y») to (xa, ya) and reflecting each pixel (x, y) through the appropriate lines.
For example, given pixel & = (x, y), the pixel reflected through v = (x;, y») given by

- u-vy. XpX + ¥b
=i (F5) =2 (B
b b

would also be drawn. The right-hand side requires a division. Moreover, even if
the division is performed (whether as float or integer), the resulting pixels are not
always contiguous and noticeable gaps occur. The general orientation of the ellipse
requires a better method for selecting the pixels. Instead, the arc is generated from
(—Xa» —¥a) to (X4, Ya), and pixels (x. + x, y. + ¥) and their reflections through the
origin (x. — x, y: — y) are plotted.

The algorithm is divided into two cases:

1. Slopeat (—x,, —y,) islarger than 1 in absolute magnitude. Five subarcs are drawn.

(a) Arc from (—xg, y4) to a point (xo, yp) whose slope is infinite. For all points
between, the ellipse has a slope larger than 1 in absolute magnitude, so y is
always incremented at each step.

3.6 Rasterizing 123

(b) Arc from (xo, yp) to a point (x3, y;) whose slope is I. For all points between,
the ellipse has a slope larger than 1 in absolute magnitude, so y is always
incremented at each step.

(c) Arcfrom (x;, y;) toapoint (x2, y2) whose slope is 0. For all points between, the
ellipse has a slope less than 1 in absolute magnitude, so x is alwaysincremented
at each step.

(d) Arcfrom (xz, y2) toa point (x3, y3) whose slope is — 1. For all points between,
the ellipse has a slope less than 1 in absolute magnitude, so x is always incre-
mented at each step.

(e) Arc from (x3, y3) to (xq, y4). For all points between, the ellipse has a slope
larger than 1 in absolute magnitude, so y is always decremented at each step.

2. Slope at (—xg, —y,) is smaller than 1 in absolute magnitude. Five subarcs are
drawn.

(a) Arc from (—x,, —Y,) to a point (xp, yo) whose slope is —I. For all points
between, the ellipse has a slope less than 1 in absolute magnitude, so x is always
decremented.

(b) Arc from (xp, yo) to a point (xj, y;) whose slope is infinite, For all points
between, the ellipse has a slope larger than 1, so y is always incremented.

(c) Arc from (x;, y;) to a point (x2, y2) whose slope is 1. For all points between,
the ellipse has a slope larger than 1 in absolute magnitude, so y is always
incremented at each step.

(d) Arcfrom (x2, y2) toa point (x3, y3) whose slope is 0. For all points between, the
ellipse has aslope less than [in absolute magnitude, so x is always incremented
at each step.

(e) Arcfrom (x3, y3) to (xa, Yu). For all points between, the ellipse has a slope less
than [in absolute magnitude, so x is always incremented at each step.

Each subarc is computed using a decision variable as in the case of an axis-aligned
ellipse. The decision to switch between the three subarcs is based on the slope of
the ellipse. The ellipse is implicitly defined by Q(x, y) = 0, where Q(x, y) = Ax? +
2Bxy + Cy* — D =0.Thederivativedy/dx = —(Ax + By)/(Bx + Cy) is obtained
by implicit differentiation. The numerator and denominator of the derivative can
be maintained incrementally. Initially, the current pixel (x, y) = (—x4, —¥,) and the
numerator and denominator of the slope are dy = Ax, + By, and dx = —(Bx, +
Cya).

The decision variable ¢ is handled slightly differently than in the case of an axis-
aligned ellipse. In the latter case, the decision was made to use the pixel whose own
level curve is closest to the zero level curve. In the current case, a general ellipse handled
in the same way can lead to gaps at the end points of the arc and the reflected arc. To
avoid the gaps, the decision is madeto always select the ellipse with the smallest positive

124 Chapter 3 The Graphics Pipeline

level curve value rather than the smallest magnitude level curve value. The selected
pixels are always outside the true ellipse. The decision variable is not incrementally
maintained because it is not expensive to compute, although it is possible to maintain
it so.

Each of the algorithms for the 10 subarcs are similar in structure. Case 1(a)
is described here. The initial values are x = —xg, y = — ¥, dx = Bx, + Cy,, and
dy = —(Ax, + By,). As y is incremented, eventually the leftmost point in the x-
direction is encountered where the slope of the ellipse is infinite. At each step the
two pixels to test are (x, y + 1) and (x — 1, y + 1). It is enough to test 0 = Ax? +
2Bx(y + 1) + C(y + 1)? — D < 0 to see if (x, y + 1) is inside the true ellipse. If it
is, then (x — 1, ¥y + 1) is the next pixel to draw. If & > 0, then (x, y + 1) is outside
the true ellipse and closer to it than (x — 1, y + 1), so the next pixel is (x, y + 1). The
code is

while (dx <=0) // loop until point with infinite slope occurs
{
DrawPixel(xc+x,yc+y);
DrawPixel(xc-x,yc-y):
y++:
sigma = a*x*x+2*b*x*y+c*y*y-d;
if (sigma < 0)
{
dx -= b;
dy + a;
X--3
}
dx += c;
dy -=- b:
}

The other nine cases are structured similarly.

3.6.4 TRIANGLES

Drawing a triangle as a white object on a black background is a simple process that
determines the pixels with minimum and maximum x values on each scan line
intersected by the triangle, then draws the pixels between. This is accomplished by
keeping two buffers for the minimum and maximum, with each buffer having a
number of elements equal to the height of the screen, and using the Bresenham line
drawing algorithm to draw the three edges of the triangle. The line drawer updates the
buffers when necessary. It is useful to sort the vertices on y so that the line drawer can
update only one of the buffers at a time, This also helps to trap degenerate triangles
that are passed to the rasterizer; the degeneracy is caused by triangles seen nearly edge
on by the eye point, with numerical round-off errors leading to the projection being

3.6 Rasterizing 125

a line segment. Pseudocode is given for a triangle with integer-valued vertices (x;, ;)
for 0 < i < 2 that are listed in counterclockwise order. There are 13 cases, 6 of the
form yi, < ¥i, < ¥i, 3 of the form y;, = yi, < Yi»» 3 of the form y;, < yi, = yi»and 1
of the form y;, = ¥;, = ¥i,. Only a couple of the cases are listed in the pseudocode. It
is assumed that there are two update routines, one that updates the minimum buffer
(UpdateMin) and one that updates the maximum buffer (UpdateMax). The return
value of false indicates a degenerate triangle, true otherwise.

// global quantities

xmin[0..H-1] = minimum x-values for scan lines 0 <= y <= H-1;
xmax[0..H-1] = maximum x-values for scan lines 0 <= y <= H-1;
ymin = last minimum y-value for scan lines;

ymax = last maximum y-value for scan lines;

pixel[0..H-1][0..W-1] = frame buffer:

bool ComputetEdgeBuffers ()
{
//*** case: y0 < yl < y2
dx0 = x1-x0; dy0 = yl-y0; dxl = x2-x0; dyl = y2-y0;
det = dx0*dyl-dx1l*dy0;
// assert: det <= 0 since vertices are counterclockwise and
// screen space has left-handed coordinates
if (det < 0)
{
UpdateMin(x0,y0,.x1,yl);
UpdateMin(xl,yl,x2,y2);
UpdateMax(x0,y0,x2,y2);
return true;
}
else
{
// degenerate triangle
return false;
}

//*** case: y0 < yl = y2
// assert: x1 <= x2 since vertices are counterclockwise and
// screen space has left-handed coordinates
if (x1 < x2)
{
UpdateMax(x0,y0,x2,y2);
UpdateMin(x0,y0,x1,y1):
return true;

126 Chapter 3 The Graphics Pipeline

else

{
// degenerate triangle
return false:

Lines are always drawn starting from the vertex with the smaller y-value. This
avoids the cracking between triangles that was mentioned in Section 3.6.1. The tri-
angle rasterizer is

void DrawWhiteTriangle ()

{
clear xmin[ymin..ymax];
clear xmax[ymin..ymax];
if (ComputeEdgeBuffers())
{
for (y = ymin; y <= ymax; y++)
{
for (x = xmin[y]; x <= xmax[yl; x++)
pixel[yl[x] = WHITE;
}
}
}

3.6.5 INTERPOLATION DURING RASTERIZATION

Obviously, we don’t usually draw solid colored triangles in rendering. The vertex at-
tributes must be interpolated to obtain the final colors of the pixels. In the context of
perspective projection, all the vertex attributes should be interpolated in a perspec-
tive way. This is an expensive operation for a software renderer, so usually only the
texture coordinates are perspectively interpolated. Vertex colors and other attributes
are linearly interpolated, under the assumption that the visual differences between
the two types of interpolation are not significant. In the discussion, let (xq, yo, o)
and (x}, y), &) be end points of a line that are endowed with vertex attribute ¢. The
edge buffers that stored the extreme x values per scan line are extended to store the
interpolated attributes at those extremes.

Linear Interpolation

The edge buffer updates can be set up to iterate over the y-value of the triangle edges.
Floating-point operations are used to compute the x-values and «-values, so the

3.6 Rasterizing 127

Bresenham line drawing method is not used here. The idea is to avoid interpolation
over long horizontal runs of pixels that are generated by edges with a slope of nearly
zero.

The x-value of the line can be viewed as an interpolated value,

X1 — X0 (xoy1 — x1y0) + (X1 — X0)y
(y—yo) = ,
yi—Yo 1= Yo

x =x9+

and applies to the minimum or maximum buffer calculations. The pseudocode for
computing this is

dx = x1 - x0;
dy = yl - y0; // dy > 0 is guaranteed by sorting in
// ComputeEdgeBuffers
inv = 1.0/dy; // floating-point division
det = x0*yl - x1*yO:
¢0 = det*inv:
¢l = dx*inv;
for (y = y0+l; y < yl; y++)
x[y] = ¢c0 + cl*y;

The attribute a is linearly interpolated in the same way,

o= (aoy) — a1yo) + (a1 — ao)y
n-—>Xx ’

and the pseudocode is

da = al - a0;
dy = yl - y0; // dy > 0 is guaranteed by sorting in
// ComputeEdgeBuffers
inv = 1.0/dy; // floating-point division
det = a0*yl - al*y0;
¢0 = det*inv;
¢l = dx*inv;
for (y = yO+1; y < yl; y++)
aly] = ¢0 + cl*y:

Although division is usually an expensive operation, there are only n + 1 divisions per
triangle edge, one for the x-value and n for the list of attributes to be interpolated, so
the cost is acceptable. The computations also involve conversions from floating-point
numbers to integers. The conversions can come at some expense if left to a compiler to
decide which method to use, but there may be methods using hand-coded assembly
that provide for a faster conversion.

128 Chapter 3 The Graphics Pipeline

When all three edges of the triangle are processed, the edge buffers contain the
extreme x-values and the corresponding interpolated attributes. An iteration over
the relevant scan lines is performed, and the attributes for the vertical run of pixels
between the extreme x-values are themselves computed by linear interpolation of the
edge buffer attributes. In order to make the inner loop as fast as possible, integer
arithmetic is possible (in the style of Bresenham’s line drawing algorithm) as long as
the attributes are mapped to an appropriate range of integer values. The pseudocode
for rasterizing a triangle with a single vertex attribute is

<packing of vertex attributes for the edge buffer algorithm
goes here>;

ComputeEdgeBuffers();

for (y = ymin; y <= ymax; y++)

{
x0 = xmin[y]:
x1l = xmax[y];
a0 = amin[y):
al = amax[yl:;

<map a0 and al to integer range, use the same names a0
and al>;

dx = x1 - x0;
if (dx > 1)
{
if (al > a0)
{
sx = 1;
tx = 2*(al - a0):
}
else if (al < a0)
{
sx = -1;
tx = 2*(a0 - al):
}
else
{
sx = 0;
tx = 0;
}

dec = tx - dx:

3.6 Rasterizing 129

for (x = x0, ax = 2*dx; x <= xl; x++)

{
pixel[yl[x] = a0;
if (dec >=0)
{
dec -= ax;
a0 += sx;
}
dec += tx;
}
}
else if (dx == 1)
{
pixel[yl[x0) = a0;
pixel[yl[x1]) = al:
}
else
{
pixel[yl[x0]) = a0;
}

Perspective Interpolation

As before, the x-values of the triangle edges are computed using linear interpolation.
A vertex attribute a is computed using perspective interpolation. Let (xo, yo, @0) and
(x1» y1, @1) be end points of a line that are endowed with vertex attribute a. The
edge buffers that stored the extreme x-values per scan line are extended to store the
interpolated attributes at those extremes.

Equation (3.3) provides the relationship between the parameter s € [0, 1] of aline
segment in the world and the parameter 5 € [0, 1] of the perspective projection of the
line segment on the screen. The attribute « is linearly interpolated in world space, so

a —agp
S§=—-.
ay — ap

The value y is linearly interpolated in screen space, so

130 Chapter 3 The Graphics Pipeline

Replacing this in Equation (3.3) and performing some algebra manipulation yield the
perspective interpolation

o = (owiy1 — ciwoyo) + (a1wp — apwn)y
(wiy) — woyo) + (wo — wy)y

The perspective aspect is clear since the right-hand side is a ratio of two linear func-
tions of y. The vertex attribute that is always perspectively interpolated is the depth
value z or, equivalently, w = z/n. Replacing a by z or w in the interpolation equation
yields

.= Zo21(y1 — Yo)
(i1 — 20y0) + (2o — 21)y

or

_ wowy(y1 — yo)
(wyyr — woyo) + (wo — wy)y’

This interpolator is used to compute the depth values per pixel that are used for depth
buffer sorting. The calculated value at each pixel is compared to the corresponding
value in the depth buffer to control whether or not the pixel is written.

The pseudocode for the edge buffer setup is

b0 = wl*yl - wO*y0;

bl = w0 - wil;

t0 = wO*al;

tl = wi*a0Q;

¢c0 = tl*yl - tO*y0;

¢l = t0 - ti;

for (y = yO+1; y < yl; y++)
aly] = (cO+cl*y)/(bO+bl*y);

Linear interpolation involves one division per edge per attribute. Perspective interpo-
lation involves one division per pixel per attribute, so a greater cost is incurred.

When all three edges of the triangle are processed, the edge buffers contain the
extreme x-values and the corresponding interpolated attributes. An iteration over
the relevant scan lines is performed, and the attributes for the vertical run of pixels
between the extreme x-values are themselves computed by perspective interpolation
of the edge buffer attributes. The pseudacode for rasterizing a triangle with a single
vertex attribute is

3.6 Rasterizing 131

for (int y = ymin; y <= ymax; y++)

{

x0 = xmin[y];

x1 = xmax[y]l:

a0 = amin[yl:

al = amax[y]:

dx = x1 - x0;

if (dx > 1)

{
bl = w0 - wl;
b0 = wl*xl - wO*x0;
t0 = wO*al;
tl = wl*a0;
cl = t0 - tl;
c0 = tO0*x1l - t0*x0;
pixel[yl[x0] = a0;
for (x = x0+1; x < x1; x++)

pixel[yl[x] = (cO+cl*x)/(b0+bl*x);

pixel[yl[x1] = al;

}

else if (dx == 1)

{
pixel[y1[x0] = a0;
pixel[yl[x1] = al;

}

else

{
pixel[yl[x0] = a0;

}

}

As implemented, rasterization of a triangle with an attribute that must be per-
spectively interpolated requires a division per pixel—an expense clearly noticed in
software renderers. But there are a couple of ways to avoid this expense. One way is
to replace the floating-point division by an algorithm that approximates division but
uses less cycles. Current-generation CPUs have division-approximation instructions
that typically require just a few cycles more than a multiplication or addition. A sec-
ond way has been the standard approach for CPUs that allow the floating-point unit

132 Chapter 3 The Graphics Pipeline

and integer unit to work in parallel. The division is performed at every Nth pixel (typ-
ically, N = 4 or 8 or 16), and the other pixels are linearly interpolated using integer
arithmetic. The first pixel and last pixel in a run have their divisions calculated. The
last pixel of the current run becomes the first pixel of the next run. The last pixel of
the next run is started. While the floating-point unit stalls to complete the division,
the intermediate pixels of the current run are linearly interpolated from the known
values of the first and last pixels of that run. This is done using integer arithmetic, so
the integer unit and floating-point unit are executing in parallel.

There isa very nicely written set of articles on the topic of perspective interpolation
that includes source code for a PC (Hecker 1995a, 1995b, 1995¢, 1995d, 1996).

3.7 AN EFFICIENT CLIPPING AND LIGHTING PIPELINE

The graphics pipeline illustrated here is built with the goal of saving as much infor-
mation as possible to minimize execution time. The object is represented as a triangle
mesh with manifold geometry. Object culling can be performed as indicated earlier,
whether with bounding spheres, oriented bounding boxes, or any other preferred
bounding volume. The clipping pipeline used is the one that transforms vertices to
view space, then clips in view space. The workhorse of the pipeline is the clipping
of the triangle mesh, a process described here in detail. Only clipping of vertices is
performed. Lighting of vertices and interpolation of vertex attributes is deferred until
after the completion of clipping. The triangle mesh retains enough information to
allow us to light the minimum number of vertices and to interpolate the minimum
number of clip vertices. Projection into screen space is straightforward.

3.7.1 TRIANGLE MESHES

An object representation that is well suited for efficient clipping is a triangle mesh.
The meshes considered here have manifold geometry; that is, each edge is shared
by at most two triangles and there are no degenerate vertex junctions. Triangle fans,
triangle strips, and triangle soups fall into this category.

The triangle mesh stores an array of vertices that are contained in the mesh.
Other quantities are stored but not shown here, for example, facet plane normals
(for back face culling) and vertex attributes (color, alpha, texture coordinates, fog).
The minimum connectivity structure for supporting the geometric clipping is

Vertex : point in 3-space

Edge Record :
indices for vertex end points of edge (VO, V1)
indices for triangles sharing the edge (T0, T1)

3.7 An Efficient Clipping and Lighting Pipeline 133

Triangle Record :
indices for vertices of triangle (V0, V1, Vv2)
indices for edges of triangle (EQ0 = <VO0O,V1>, E1 = <V1,V2>,
E2 = <v2,.VO>)

Triangle Mesh :
number of Vertices, NV
number of Edges, NE
number of Triangles, NT
array[0..NV-1] of Vertex
array[0..NE-1] of Edge Record
array[0..NT-1] of Triangle Record

The renderer appends to this data structure additional information that supports
minimum execution time for clipping and deferred lighting calculations:

Per Vertex:
visibility flags
pseudodistance to current clip plane
old edge index for clip vertex
new edge index for clip vertex
clip parameters

Per Edge:
visibility flags
index of clip vertex on edge (if any)

Per Triangle:
visibility flags

The reasons for the design of Edge Record and Triangle Record and for the
additional information in the renderer will become clear shortly.

The renderer maintains a single extended triangle mesh that can contain any
application triangle mesh to be rendered. Initially, the extended mesh dynamically
resizes itself as the scene graph is rendered piece by piece. Eventually, a steady state is
reached, at which time the resizing is no longer necessary.

3.7.2 CLIPPING A TRIANGLE MESH

Each frustum plane in view space is of the form Ax + By + Cw + D = 0. A point
(x, y, w) is said to be on the frustum side of the plane when Ax + By + Cw +

134 Chapter 3 The Graphics Pipeline

D > 0. The quantity Ax + By + Cw + D is referred to as a pseudodistance. The
actual distance of point to planeis {Ax + By + Cw + D|/+/ A2 + B? + C2. The only
important thing to determine is on which side of a plane the point lives. The distance
to plane is not needed, so the expensive square root evaluation is avoided. The near
plane is w = 1, the far plane is —w + f/n, the left plane is x 4+ w = 0, the right plane
is —x + w =0, the bottom plane is y + w = 0, and the top plane is —y + w = 0. The
frustum side conditions use > instead of = in the plane equations.

The vertex visibility flags are used to determine which vertices need to be processed
by the clipper. If a vertex is tagged as visible and is outside the currently processed
frustum plane, it is tagged as not visible and the next frustum plane test ignores the
vertex. A pass is made over the visible vertices, and the pseudodistances are computed
and saved.

The edge visibility flags are used to determine which edges need to be tested for
clipping. Ifboth pseudodistances are nonpositive, then the edge is culled and is tagged
as invisible, If both pseudodistances are nonnegative, then the edge is on the frustum
side of the plane and remains visible for the next plane test. If an edge is currently
visible and the product of the pseudodistances is negative, then the edge is split by the
frustum plane. The clip vertex is computed according to Equation (3.17). To support
deferred lighting calculations, the parameter p;o/(p;, — p;1) is saved in an array of
clip parameters that is stored by the renderer. The new vertex is appended to the vertex
array of the mesh and is tagged as visible. The old vertex that is outside the frustum is
tagged as invisible. The new edge is the portion of the old edge that is on the frustum
side of the plane. It is appended to the edge array of the mesh and tagged as visible.
The old edge is tagged as invisible so that it will not be tested against the next frustum
plane.

The technical challenge is in updating the triangle and edge connectivity infor-
mation. The edges themselves were clipped against the frustum plane. If two edges
in a single triangle are clipped, the corresponding clip vertices must be connected
by adding a new edge to the mesh. The old triangle must also be subdivided into
one or two triangles. The old triangle is then tagged as invisible and the new trian-
gles are tagged as visible. Figure 3.10 shows the three possible configurations. The
original triangle Ty consists of vertices {Vp, Vi, V2} and edges (Eo, E|, E2}, where
Eo = {Vo, V1; To, 00}, E\ = |V}, V33 To, 0}, and E; = (Vs Vi To, oc}. The edge for-
mat contains the two vertices that form its end points (stored in the actual data
structure as indices into the vertex array) and the two triangles that share the edge
(stored in the actual data structure as indices into the triangle array, an oo indicating
no adjacent triangle). The triangle format is To = (Vy, V1, Va5 Eo, E\, E2} (stored in
the actual data structure as indices into the appropriate arrays).

In case 1, the vertex array is expanded to (Vo, Vi, Va, V3, Vu}, the edge array is
expanded to (Ey, E\, E3, Es, Ea, Es), and the triangle array is expanded to {7y, 7} }.
The bars over the vertices, edges, and triangles indicate that those objects have been
tagged as invisible. The new edges are Ez = {V;, V|3 T, o0}, Eg = (V4, V13 T, 0},
and E5 = [V}, Va; T1, 00}. The new triangle is Ty ={V3, Vg, V5 Es, E,, Es}.

3.7 An Efficient Clipping and Lighting Pipeline 135

Case |
Vs
E Ey
Case 2 1 E,
1%
Ey Vy Yo
Ey
Case 3

Figure 3.10 Three configurations for clipped triangle.

Incase 2, the vertex array is expanded to { Vy, V1, V3, V3}, the edge array is expanded
to {Eq, E\, E2, E3, Es), and the triangle array is expanded to (7o, T1}. The new edges
are E; = {V3, V}; T}, oc} and E4 = { V3, V3; T, o0}, The new triangle is Ty = { V3, V3,
Vi; Ey, Ey, Es). _

In case 3, the vertex array is expanded to { Vo, V1, Va2, V3, V4}, the edge array is
expanded to {Eqy, E\, Ey, E3, E4, Es, Eg}, and the triangle array is expanded to {To
T, T5}. The new edges are E; = { V3, V|3 T\, 00}, E4 = {Vy, Va; T3, 0}, Es = { V3, Vi3

136 Chapter 3 The Graphics Pipeline

T\, Th}, and Eg = {V3, V4; Tz, 00). The new triangles are T) = { V3, Va, V)3 Es, £, E3)
and T, = (V3, Vy, Va3 Eg, Eg, Es).

Figure 3.10 is slightly misleading about the complexity of the algorithm. First, Ty
consists of vertices {U;,, Ui, U;,} and edges {Fj,, Fj,, Fj,}. These must be mapped
onto the V and E terms so that the ordering of the U and F values is consistent with
what is shown in the figure. The old edge indices that are stored by the renderer are
used to assist in calculating the ordering. Second, if 7y happened to share edge E,
with another triangle Sy, then both 7y and Sy must be subdivided. The new edge is
E; =1{V3, Vi3 T, S}, where T| and S are the appropriate subtriangles. The problem
is that Ty is the first of the two triangles to be processed. Sy has not yet been subdivided,
and S does not exist in the triangle array at the time that E; is constructed. In this
situation the algorithm sets E3 = { V3, V|; T}, Sp}. So is immediately processed after T
because when Ej is processed, both of its adjacent triangles are analyzed for splitting.
Once Sp is processed, the triangle index for Sy in the edge record for Ej; is updated
t0 S).

3.7.3 COMPUTING VERTEX ATTRIBUTES

Vertex lighting and interpolation is performed in four steps. The first step is to make
a pass over the visible original vertices and mark them as needing to be lit. The sec-
ond step is to make a pass over the visible clip vertices and determine which of the
original vertices (at most three) contributed to it. The edge clipping algorithm and
data structures implicitly contain a directed acyclic graph of related vertices. The
algorithm amounts to a traversal of the graph and tagging the appropriate origi-
nal vertices. Note that an invisible original vertex can contribute to a visible clip
vertex, so this pass may tag additional vertices as needing to be lit, even though
those vertices are invisible. In particular, this is the case when an edge just strad-
dles the frustum. One vertex is inside and one vertex is outside. The outside ver-
tex is invisible, but its attributes need to be computed so that the clip vertex at-
tributes can also be computed. The third step is to make a pass over the original
vertices that need to be lit and actually do the lighting calculations. The process
of lighting was described earlier. The fourth step is to make a pass over the visi-
ble clipped vertices and interpolate their attributes. This pass also uses the directed
acyclic graph of vertices and uses the clip parameters that have been stored by the
renderer.

The directed acyclic graphs of vertices corresponding to the three cases in Figure
3.10 are shown in Figure 3.11. The graphs consisting solely of vertices are weighted.
The arcs counecting vertices contain the appropriate clip parameter values that pro-
duced the clip vertex. The graphs can become more complicated it a triangle is split
by more than one frustum plane.

3.7 An Efficient Clipping and Lighting Pipeline 137

Figure 3.11 Three configurations for clipped triangle.

138 Chapter 3 The Graphics Pipeline

3.8 Issues oF SOFTWARE, HARDWARE, AND APIs

In summary, this chapter describes the relevant issues in building a renderer without
regard to whether the work is done by a general-purpose CPU, in part by a hardware-
accelerated graphics card, or totally by specialized graphics hardware. Independent
of software or hardware, the rendering pipeline was also described without regard to
integration with existing software that provides an application programmer interface
(API). The reality of building a real-time computer graphics engine requires an un-
derstanding of what platforms are to be supported and what other existing systems
can be used rather than implemented from scratch.

APIs such as Direct3D, OpenGL, or Glide for consumer graphics accelerators can
be viewed as providing a boundary between the scene graph management and the
rendering system. Direct3D and OpenGL are fairly high-level rendering APIs, and
both attempt to hide the underlying hardware to allow an application to be portable
across multiple hardware cards. Glide is a low-level rasterizing API specifically for 3dfx
cards. Writing to this API clearly makes the application nonportable, but if the only
intended platform is one that uses a 3dfx card (an arcade machine, for example), then
there is a lot to be gained by using the specific features of the low-level API.

Heated debates arise in the computer graphics and games newsgroups about
whether Direct3D or OpenGL is the “best” system to build on. This is an unanswer-
able question—and in fact is not the question to ask. Each system has its advantages
and disadvantages. As with most of computer science, the issue is more about un-
derstanding the trade-offs between using one system or another. OpenGL is clearly
superior with respect to portability simply by its design. An application can be written
to run on a high-end SGI machine or on a consumer machine such as a PC or Mac-
intosh. Direct3D was intended only to provide portability among cards in a PC. On
the other hand, OpenGL insists on handling many details that an application might
like to control but cannot. Direct3D provides much more fine-grained control over
the rendering process. Both APIs are constantly evolving based on what the end pro-
grammers want, but evolution takes time. Moreover, the consumer hardware cards
are evolving at a fast enough rate that the drivers that ship with them are buggy but
are not always corrected because the next-generation card is almost ready to ship.
This requires patching the laver on top of the APIs with work-arounds for specific
cards. Evolution is good, but fast evolution is painful, especially for a company pro-
ducing a commercial product that runs on top of those cards and drivers.

As hardware evolves and begins doing the higher-level work that the scene graph
management system has been doing, the APIs should become easier to work with.
However, there will always be work necessary on the scene graph side to feed data
through the API. The next-generation cards that are shipping as of the time of this
writing will be providing support for hardware transforming and lighting. The model
data is expected to be in some compacted format and may require conversion from
the natural format for the application to the required format of the graphics card. If
two hardware cards require different formats and the APIs do not hide this difference

3.8 Issues of Software, Hardware, and APIs 139

from the application, then portability among cards becomes a difficult issue again.
Repackaging of data does incur some cost.

Another part of the evolution of graphics on a consumer machine involves the
CPUs themselves. Both Intel’s Pentium 111 and AMD’s K6 chipsets have new instruc-
tions to support a small amount of parallelism (SIMD: single instruction, multiple
data) and to provide for faster operations such as inverse square roots (for normal-
izing vectors). To make the most of the new instructions, the registers of the CPUs
must be loaded quickly. For the Pentium IlI, the natural format for storing an ar-
ray of points to support fast register loading is to have three arrays, one for x-values,
one for y-values, and one for z-values. However, most applications have tended to
store points as an array of structures, not as a structure of arrays. Repackaging points
to feed the registers quickly invariably offsets most of the speedup for using SIMD.
Again, portability between platforms becomes a significant issue simply because of
data formats. The new CPUs also tend to have data alignment requirements that are
not necessarily guaranteed by current-generation compilers, so either a memory man-
ager must be written to handle the alignment or the chip companies must supply a
compiler. In fact, current compilers have to catch up and provide support for the new
machine instructions, so it is essential to have additional compiler support from the
chip companies.

Finally, one of the most important low-level aspects of building a renderer is
cache coherence. Experience has shown that even with the best-designed high-level
algorithms, the performance can be significantly reduced if the data is organized in
such a way as to cause many cache misses. Unless those implementing the system are
experts for the particular CPU’ instruction set, the most reliable way to determine
cache problems or floating-point unit stalls is to use performance tools. Intel provides
a profiler, called VTune, that does give a lot of information, showing if cache misses
or floating-point stalls have occurred. At a high level, a rearrangement of statements
can help eliminate some of these problems; the necessity of rearranging is the result
of the optimizing compiler not being powerful enough to recognize the problems and
rearrange transparently. But in many cases, a low-level solution is required, namely,
writing parts of the code in assembly language. And once again portability becomes
a problem.

All of these issues must be weighed and the trade-offs made when building a
renderer. This is where the art of renderer construction really kicks in. Someone
who does not understand all the issues will be unlikely to succeed in building a good
renderer.

CHAPTER

HIERARCHICAL SCENE

LIBRARY

Engine

FILENAME

All Files

REPRESENTATIONS

he graphics pipeline discussed in Chapter 3 requires that each drawable object

be tested for culling against the view frustum and, if not culled, be passed to the
renderer for clipping, lighting, and rasterizing. Given a 3D world with a large number
of objects, the simplest method for processing the objects is to group them into a list
and iterate over the items in the list for culling and rendering. Although this approach
may be simple, it is not efficient since each drawable object in the world must be tested
for culling.

A better method for processing the objects is to group them hierarchically ac-
cording to spatial location. The grouping structure discussed in this chapter is a tree.
The tree has leaf nodes that contain geometric data and internal nodes that provide a
grouping mechanism. Each node has one parent (except for the root node, which has
none) and any number of child nodes. It is possible to use a directed acyclic graph as
an attempt to support high-level sharing of objects. Each node in the graph can have
multiple parents, each parent sharing the object represented by the subgraph rooted at
the node. However, the memory costs and code complexity to maintain such a graph
do not justify using it. Sharing should occur at a lower level so that leaf nodes can

141

142 Chapter4 Hierarchical Scene Representations

share vertices, texture images, and other data that tends to use a lot of memory. The
implied links from sharing are not part of the parent-child relationships in the hier-
archy. Regardless of whether trees or directed acyclic graphs are used, the resulting set
of grouped objects is called a scene graph.

The organization of content in a scene graph is quite important for games in many
ways, of which four are listed here. First, the amount of content to manage is typi-
cally large and is built in small pieces by the artists. The level editor can assemble the
content for a single level as a hierarchy by concentrating on the local items of inter-
est. The global ramifications are effectively the responsibility of the hierarchy itself.
For example, a light in the world can be chosen to illuminate only a subtree of the
graph. The level editor’s responsibility is to assign that light to a node in the graph.
The effect of the light on the subtree rooted at that node is automatically handled by
the scene graph management system. Second, hierarchical organization provides a
form of locality of reference, a common concept in memory management by a com-
puter system. Objects that are of current interest in the game tend to occur in the same
spatial region. The scene graph allows the game program to quickly eliminate other
regions from consideration for further processing. Although minimizing the data sent
to the renderer is an obvious goal to keep the game running fast, focusing on a small
amount of data is particularly important in the context of collision detection. The col-
lision system can become quite slow when the number of potentially colliding objects
is large. A hierarchical scene graph supports grouping only a small number of po-
tentially colliding objects, those objects occurring only in the local region of interest
in the game. Third, many objects are naturally modeled with a hierarchy, most no-
tably humanoid characters. The location and orientation of the hand of a character is
naturally dependent on the locations and orientations of the wrist, elbow, and shoul-
der. Fourth, invariably the game must deal with persistence issues. A player wants to
save the current game, and the game is to be continued at a later time. Hierarchical
organization makes it quite simple to save the state of the world by asking the root
node of the scene graph to save itself, the descendants saving themselves in a naturally
recursive fashion.

Section 4.1 provides the basic concepts for management of atree-based representa-
tion of ascene, including specification and composition of local and world transforms,
construction of bounding volumes for use both in rapid view frustum culling and fast
determination of nonintersection of objects managed by a collision system, selection
and scope of renderer state at internal or leaf nodes, and control of animated quanti-
ties.

Changes in the world environment of the game are handled by changing various
attributes at the nodes of the tree. A change at a single node affects the subtree for
which that node is the root. Therefore, all nodes in the subtree must be notified of
the change so that appropriate action can be taken. One typical action that requires
an update of the scene graph is moving an object by changing its local transform.
The world transforms of the object’s descendants in the tree must be recalculated.
Additionally, the object’s bounding volume has changed, in turn affecting all the
bounding volumes of its ancestors in the tree. The new bounding volume at a node

4.1 Tree-Based Representation 143

involves computing a single bounding volume that contains all the bounding volumes
of its children, a process called merging. Another typical action that requires an update
of the scene graph is changing renderer state at a node. The renderer state at all the
leaf nodes in the affected tree must be updated. The update process is the topic of
Section 4.2.

After a scene graph is updated, it is ready for processing by the renderer. The
drawing pass uses the bounding volumes to cull entire subtrees a1 once, thereby
reducing the amount of time the renderer has to spend on low-level processing of
objects that ultimately will not appear on the computer screen. Section 4.3 presents
culling algorithms for various bounding volumes compared to a plane at a time in the
view frustum. The general drawing algorithm for a hierarchy is also discussed.

4. 1 TREE-BASED REPRESENTATION

Figure 4.1

A simple grouping structure for objects in the world is a tree. Each node in the tree has
exactly one parent, except for the root node, which has none. The root is the first node
to be processed when attempting to render objects in the tree. The simplest example
of atree s illustrated in Figure 4.1. The top-level node is a grouping node (bicycle) and
acts as a parent for the two child nodes (wheels). The children are grouped because
they are part of the same object both spatially and semantically.

To take advantage of this structure, the nodes must maintain spatial and semantic
information about the objects they represent. The main categories of information are
transforms, bounding volumes, render state, and animation state. Transforms are used
to position, orient, and size the objects in the hierarchy. Bounding volumes are used
for hierarchical culling purposes and intersection testing. Render state is used to set
up the renderer to properly draw the objects. Animation state is used to represent any
time-varying node dala.

@ Back wheel

A simple tree with one grouping node.

144 Chapter 4 Hierarchical Scene Representations

4.1.1 TRANSFORMS

In Figure 4.1, it is not enough to know the semantic information that the two wheels
are part of the bicycle. The spatial information, the location of the wheels, must also
be specified. Moreover, it is necessary to know a coordinate system in which to specify
that information. The parent node has its own coordinate system, and the location of
a child is given relative to its parent’s coordinates.

Local Transforms

The location of a node relative to its parent is represented abstractly as a homoge-
neous matrix with no perspective component. The matrix, called a local transform,
represents any translation, rotation, scaling, and shearing of the node within the par-
ent’s coordinate system. While an implementation of scene graph nodes could directly
store the homogeneous matrix as a4 x 4 array, it is not recommended. The last row of
the matrix is always [0 0 O 1]. Less memory is used if the homogeneous matrix is stored
asa3 x 3 matrix representing the upper-left block and a3 x 1 vector representing the
translation component of the matrix. This also avoids the inefficient general multipli-
cation of homogeneous matrices and vectors since in that multiplication, there would
be three multiplies by 0 and one multiply by 1. Given a homogeneous matrix with no
perspective component, the matrix is denoted by

. M|T
T):=|:6Ti’1:|. (4.1)

Using this compressed notation, the product of two homogeneous matrices is

(m

(|) o)=

M, 712 + 711) (4.2)
and the product of a homogeneous matrix with a homogeneous vector [f’| 11T is
(M|T) V=MV +T. (4.3)

To keep the update time to a minimum and to avoid using numerical inversion of
matrices in various settings, it is better to require that the local transform have only
translation, rotation, and uniform scaling components. The general form of such a
mattix is

(sR | i) (4.4)

4.1 Tree-Based Representation 145

and is called an SRT-transform. The uniform scaling factor is s > 0, the rotational
component is the orthogonal matrix R whose determinant is one, and the transla-
tional component is T. The product of two SRT -transforms is

(s,R, ‘ 7',) (ssz | 7'1) = (s,sleRz |s,R,i’z + i',) , (4.5)
the product of an SRT-transform and a vector Vis

(sR | T) V=sRV+T, (4.6)
and the inverse of an SRT -transform is

77 =2

World Transforms

—1RTT). 4.7)
Y

The local transform at a node specifies how the node is positioned with respect to
its parent. The entire scene graph represents the world itself. The world location of
the node depends on all the local transforms of the node and its predecessors in the
scene graph. Given a parent node P with child node C, the world transform of C is
the product of P’s world transform with C’s local transform,

(M‘C’ FO) =(M“”

world world world

7(P) (€) | 3+(C)
Tworld) (M local Tlocal)

= (AP ag(C) Py o(P) F(C) | FA(P)

- (worldMlocal M worldTlocal + Tworld) :
The world transform of the root node in the scene graph is just its local transform,
The world position of a node Ny in a path Ny - - - Ni, where Nj is the root node, is
generated recursively by the above definition as

(M(Nk)

world

i‘”") = (M(No) flugl)}_ . (M(Nn
O

world local local

7-(Ni)

4.1.2 BOUNDING VOLUMES

Objcct-based culling within a scene graph is very efficient whenever the bounding
volumes of the nodes arc properly nested. If the bounding volume of the parent node
encloses the bounding volumes of the child nodes, culling of entire subtrees is sup-
ported. If the bounding volume of the parent node is outside the view frustum, then

146 Chapter4 Hierarchical Scene Representations

the child nodes must be outside the view frustum and no culling tests need be done
on the children. Hierarchical culling provides a fast way for eliminating large portions
of the world from being processed by the renderer. The same nested bounding vol-
umes support collision detection. If the bounding volume of the parent node does not
intersect an object of interest, then neither do the child nodes. Hierarchical collision
detection provides a fast way for determining that two objects do not intersect. The
bounding volumes that are discussed in this chapter include spheres, oriented boxes,
capsules, lozenges, cylinders, and ellipsoids.

A leaf node containing geometric data will also contain a bounding volume based
on the model space coordinates of the data. However, the leaf node has a world space
representation based on the product of local transforms from scene graph root to that
leaf. That means the leaf node must also contain a world bounding volume, obtained
by applying the world transform to the model bounding volume.

To support the efficiencies of a hierarchical organization of the world, an internal
node requires a world bounding volume that contains the world bounding volumes of
all its children. It is not necessary to maintain a model bounding volume at an internal
node since such a node does not contain its own geometric data. While transforms
are propagated from the root of the scene graph toward the leaf nodes, the bounding
sphere calculations must occur from leaf node to root. A parent bounding volume
cannot be known until its child bounding volumes are known. A recursive traversal
downward allows computation of the world transforms. The upward return from the
traversal allows computation of the world bounding volumes.

4.1.3 RENDERER STATE

Renderer state can also be maintained in a hierarchical fashion. For example, if a
subtree rooted at a node has all leaf nodes that want their textures to be alpha blended,
the node can be tagged with state information that indicates alpha blending should be
enabled for the entire subtree. Alternatively, tagging all the leaf nodes with the same
renderer state information is an efficient use of memory. A traversal along a single
path in the tree from root to leaf node accumulates the renderer state necessary to
draw the geometry of the leaf node. Just before a leaf node is about to be drawn, the
renderer processes the state information at that node and decides whether or not it
needs to change its own internal state. As changes in rendering state can be expensive,
the number of changes should be minimal. A typical expensive change involves using
different textures. If a texture is in system memory but not in video memory, the
texture must be copied to video memory, and that takes time. For sorting purposes,
it is convenient to allow cach lcaf node to store a copy of the renderer state. A sorter
can select a renderer state for which it wants to minimize changes, then sort the leaf
nodes accordingly.

4.2 Updating a Scene Graph 147

4.1.4 ANIMATION

Animation in the classic sense is the motion of articulated characters and objects in
the scene. If a character is represented hierarchically, each node might represent a
joint (neck, shoulder, elbow, wrist, knee, etc.) whose local transformations change
over time. Moreover, the values of the transformations are usually controlled by
procedural means (see Chapter 9) as compared to the application manually adjusting
the transforms. This can be accomplished by allowing each node to store controllers,
with each controller managing some quantity that changes over time. In the case of
classic animation, a controller might represent the local transform as a matrix function
of time. For each specified time in the application, the matrix is computed by the
controller and the world transform is computed using this matrix.

It is possible to allow any quantity at a node to change over time. For example, a
node might be tagged to indicate that fogging is to be used in its subtree. The fog depth
can be made to vary with time. A controller can be used to procedurally compute the
depth based on current time. In this way animation is controlling any time-varying
quantity in a scene graph.

4.2 UPDATING A SCENE GRAPH

The scene graph represents the state of the world at a given time. If the state changes for
whatever reason, the scene graph must be updated to represent the new state. Typical
state changes include model data changing at a node, local transforms changing at
a node, the topological structure of the tree changing, renderer state changing, or
some animated quantity changing. Updating the scene graph is only necessary in those
subtrees affected by the changes. For example, if a local transform is changed at a single
node, then only the subtree rooted at that node is affected. The world transforms of
descendants must be recalculated to reflect the new position and orientation of the
subtree’s root node. It is possible that more than one change has been made at different
locations in the scene graph. An implementation of a scene graph manager can attempt
to maintain the minimum number of subtree root nodes that need to be updated. For
example, if the local transforms are changed at nodes A and B, and if B is a descendant
of A, the update of the subtree rooted at node A will automatically update the subtree
rooted at B. It would be inefficient to first update the subtree at B, then update the
subtree at A.

The updating is done in a recursive pass. Transforms are updated on the downward
pass; bounding volumes are updated on the upward pass that is initiated as a return
from the recursive calls. Note that the upward pass should not terminate at the node
at which the initial update call was made. If the bounding volume of this node has
changed as a result of changes in bounding volumes of the descendants, then the
parent’s bounding volume might also change. Thus, the upward pass must proceed

148 Chapter 4 Hierarchical Scene Representations

all the way to the root of the scene graph. If transforms are animated, the update
pass is responsible for asking the controllers to make the necessary adjustments to the
quantities they manage before the world transform is computed. Finally, if renderer
state has changed, that information must be propagated to the leaf nodes (to support
sorting as mentioned earlier). A single update call can be implemented to handle all
changes in the scene graph, but since renderer state tends to change independently of
geometry and transform changes, it might be desirable to have separate update passes.

The computation of model bounding volumes for geometric data was already dis-
cussed in Chapter 2. The main focus in the remainder of this section is on computing
the parent’s bounding volume from the child bounding volumes. The expense and
algorithmic complexity depends on the type of volume used. It is possible to consider
all child bounds simultaneously, but practice has shown that it is easier and faster to
incrementally bound the children. For a node with three or more children, a bound
is found for the first two children. That bound is increased in size to include the third
child bound, and so on.

4.2.1 MERGING TWO SPHERES

{ S6Urce copE

LIBRARY

Containment

ContSphere

The algorithm described here computes the smallest sphere containing two spheres.
Let the spheres S; be|X — Ci|*= rifori =0,1.DefineL = ICy — Col and unit-length
vector U = (C; — Co)/L.The problem canbe reduced to one dimension by projecting
the spheres onto the line Co+tU.The projected intervals in terms of parameter ¢ are
[—ro, ro] for Spand [L — r;, L + ry] for ;.

If [—ro,rol S [L — ri, L + ry], then S € S; and the two spheres merge into
S1. The test for this case is ro < L + ry and L — r; < —rq. A single test covers both
conditions, ry — rp > L. To avoid the square root in computing L, compare instead
ry > roand (r; — ro)® > L2

If [L —r, L+ ri] S [—rorol, then S S Sp and the two spheres merge into
So. The test for this case is L + ry < rp and —rg < L — r;. A single test covers both
conditions, r; — ro < —L. Again to avoid the square root, compare instead r; < rg and
(ri—ro)* > L2

Otherwise, the intervals either have partial overlap or are disjoint. The interval
containing the two projected intervals is [—rg, L + r;]. The corresponding merged
sphere whose projection is the containing interval has radius

_L+r|+ro
= 3 .

The center ¢-value is (L + ry — ro)/2 and corresponds to the point

- = L+ry—ro~- = L4+ry—ro /= -
C=C — U= —_— - .
0+ ———0=Co+ —— (C, co)

4.2 Updating a Scene Graph 149

The pseudocode is

Input: Sphere(C0.r0) and Sphere(Cl,rl)
centerDiff = C1 - CO:

radiusDiff = rl1 - r0;

radiusDiffSqr = radiusDiff*radiusDiff;
Lsqr = centerDiff.SquaredLength():

if (radiusDiffSqr >= LSqr)

(
if (radiusDiff >= 0.0f)
return Sphere(Cl,rl);
else
return Sphere(C0,r0):;
)
else
{
L = sqrt(Lsqr):
t = (L+rl-r0)/(2*L);
return Sphere(CO+t*centerDiff,(L+rl+r0)/2);
)

4.2.2 MERGING TWO ORIENTED BOXES

Iftwo oriented boxes were built to contain two separate sets of data points, it is possible
to build a single oriented bounding box that contains the union of the sets. That box
might not contain the two original oriented boxes—something that is not desired ina

CE CODE hjerarchical decomposition of an object. Moreover, the time it takes to build the single
oriented box could be expensive.

An alternative approach is to construct an oriented box from only the original
Containment boxes and that contains the original boxes. This can be done by interpolation of the

box centers and axes, then growing the box to contain the originals. Let the original two
boxes have centers C; for i =0, 1. Let the box axes be stored as columns of a rotation
ContBox matrix R;. Now represent the rotation matrices by unit quaternions ¢; such that the

dot product of the quaternions is nonnegative, go - g1 > 0. The final box is assigned
center C = (Co + C1)/2. The axes are obtained by interpolating the quaternions.
The unit quaternion representing the final box is ¢ = (9o + 91)/|90 + ¢1|, where
the absolute value signs indicate length of the quaternion as a four-dimensional
vector. The final box axes can be extracted from the quaternion using the methods
described in Section 2.3. The extents of the final box are computed by projecting the
vertices of the two original boxes onto the final box axes and computing the extreme
values.

150 Chapter 4 Hierarchical Scene Representations

The pseudocode is

// Box has center, axis[3], extent[3]
Input: Box box0, Box boxl
Output: Box box

// compute center
box.center = (box0.center + boxl.center)/2;

// compute axes

Quaternion q0 = ConvertAxesToQuaternion(box0.axis);
Quaternion ql = ConvertAxesToQuaternion(boxl.axis);
Quaternion q = qO0+ql;

Real length = Length(q):

q /= Length(q):

box.axis = ConvertQuaternionToAxes(q):

// compute extents
box.extent[0] = box.extent[1] = box.extent[2] = 0;
for each vertex V of box0 do
{
Point3 delta = V - box.center;
for (j = 0; j < 3: j++)
{
Real adot = |Dot(box0.axis[j].delta)]
if (adot > box.extent[j])
box.extent[j] = adot;:
}
}
for each vertex V of boxl do
{
Point3 delta = V - box.center;
for (j = 0; j < 3; j++)

{
Real adot = |Dot(boxl.axis[jl.delta)]|
if (adot > box.extent[j])
box.extent[j] = adot:
}

The function ConvertAxesToQuaternion stores the axes as columns of a rotation
matrix, then uses the algorithm to convert a rotation matrix to a quaternion. The
function ConvertQuaternionToAxes converts the quaternion to a rotation matrix,
then extracts the axes as columns of the matrix.

4.2 Updating a Scene Graph 151

4.2.3 MERGING TWO CAPSULES

SOURCE CODE

LIBRARY

Containment

FILENAME

ContCapsule

Two capsules may be merged intoa single capsule with the following algorithm. If one
capsule contains the other, just use the containing capsule. Otherwise, let the capsules
have radii r; > 0, end pomts P,, and directions D for i =0, 1. The center points of
the line segments are Ci = P; + D;/2. Unit- length directions are U; = D/|D|.

The line L containing the final capsule axis is computed below. The origin of
the line is the average of the centers of the original capsules, C C =(Co+ C1)/2. The
direction vector of the line is oblained by averaging the unit direction vectors of the
input capsules. Before doing so, the condition Up-Uy >0) should be satisfied. If it is
not, replace U, by — U| The direction vector for the line is U = Uy + U|)/|Uo + U,l

The final capsule radius r must be chosen sufficiently large so that the final capsule
contains the original capsules. It is enough to consider the spherical ends of the
original capsules. The final radius is

r= max{dist(i’o, L)+ro, diSI(iJo + bo) +ro» dist(i’,, Ly+nr, dist(i’l + 51. L)+n}.

Observe thatr > r; fori =0, 1.

The final capsule direction D will be a scalar multiple of line direction U. Let Eq
and E, be the end points for the final capsule, so P = Eg and D = E, — Eq. The
end points must be chosen so that the final capsule contains the end spheres of the
original capsules. Let the projeciions of Iso, i’o + bo, i’l, and 131 + [), onto C +1U
have parameters 19, 7, 72, and 13, respectively. Let the corresponding capsule radii
be denoted p; for 0 < i < 3.Let Ej = C + T;D for j =0, 1. The T; are determined
by “supporting” spheres that are selected from the end point spheres of the original
capsules. If Q is the center of such a supporting sphere of radius p for end point E,,
then T is the smallest root of the equation IC +TU — Q| + p=r. Sincer > p, the
equation can be written as a quadratic

T 420 - (C- QT +IC - Q0P - (r—p) =0.

This equation must have only real-valued solutions. Similarly, if the Q is the center of
the supporting sphere corresponding to end point Eg, then Ty is the largest root of the
quadratic. The quadratics are solved for all four end points of the original capsules,
and the appropriate minimum and maximum roots are chosen for the final Toand 7).

424 MERGING TWO LOZENGES

Two lozenges may be merged into a single lozenge that contains them with the fol-
lowing algorithm. Let the lozenges have radii r; > 0, origins P;, and edges E ; ji for
i =0,1and j =0, 1. The center points of the rectangles of the lozenge are Ci=
P+ (Eo, + El,)/2 Unit- Iength edge vectors are U,, = E,,/IE,,l Unit-length nor-
mal vectors are N, = Uo, X U,,

152 Chapter 4 Hierarchical Scene Representations

SOURCE CODE

LIBRARY
Containment

FILENAME

ContLozenge

The center point of the final lozenge is the average of the centers of the original
lozenges, C= (5'0 + 5’1)/2.

The edge vectors are obtained by averaging the coordinate frames of the origi-
nal lozenges using a quaternion representation. Let ¢; be the unit quaternion that
represents the rotation matrix [Um Uu K/,-]. If go - g1 < O, replace ¢y by —¢q,. The
final lozenge coordinate frame is extracted from the rotation matrix |l7n 171 N] cor-
responding to the unit quaternion ¢ = (g0 + ¢1)/|go + q1l.

The problem now is to compute r sufficiently large so that the final lozenge
contains the original lozenges. Project the original lozenges onto the line containing
P and having direction N. Each projection has extreme points determined by the
corners of the projected rectangle and the radius of the original lozenge. The radius
r of the final lozenge is selected to be the length of the smallest interval that contains
all the extreme points of projection. QObserve that » > #; is necessary.

Project the rectangle vertices of original lozenges onto the plane containing P and
having normal N. Compute the oriented bounding rectangle in that plane where the
axes correspond to 0,- This rectangle is associated with the final lozenge and produces
the edges l', =1L; U, for some scalars L; > 0. The origin point for the final lozenge is
P=C - Ey/2-E\/2.

4.2.5 MERGING TWO CYLINDERS

SOURCE CODE

LIBRARY

Containment

FILENAME

ContCylinder

To keep the merging algorithm simple, the original two cylinders are treated as cap-
sules: their representations are converted to those for capsules, end points are Pi.
directions are D;, and radii are r;. The capsule merging algorithm is applied to ob-
tain the cylinder radius r. Rather than fitting a capsule to the points P, ;U and
P, + D; £ r;U. the points are projected onto the line P + 1D, where P is suitably
chosen from one of the fitting algorithms. I'he smallest interval containing the pro-
jected points determines cylinder height #1.

426 MERGING TWO ELLIPSOIDS

SOURCE CODE

LIBRARY

Containment

FILENAME

ContEltipsoid

Computingaboundingellipsoid for two other ellipsoids is done in a way similar to that
of oriented boxes. The ellipsoid centers are averaged, and the quaternions representing
the ellipsoid axes are averaged and then the average is normalized. The original
ellipsoids are projected onto the newly constructed axes. On cach axis, the smallest
interval of the form [—a, o] is computed to contain the intervals of projection. The
o -values determine the minor axis lengths for the final cllipsoid.

4.2.7 ALGORITHM FOR SCENE GRAPH UPDATING

The pseudocode for updating the spatial information in a scene graph is given below.
Three abstract classifications are used: Spatial, Geometry, and Node. In an object-

4.2 Updating a Scene Graph 153

oriented implementation, the last two classes are both derived from Spatial. The
Spatial class manages a link to a parent, local transforms, and a world transform. It
represents leaf nodes in a tree. The Node class manages links to children. It represents

internal nodes in the tree. The Geometry class represents leaf nodes that contain
geometric data. It manages a model bounding volume.

Engine The entry point into the update system for geometric state (GS) is
void Spatial::UpdateGS (float time, bool initiator)
Spatial {

Geometry UpdateWorldData(time);

Node UpdateWor1dBound();

if (initiator)
PropagateBoundToRoot ();

The input parameter to the call is set to true by the node at which the update is
initiated. This allows the calling node to propagate the world bounding volume update
to the root of the scene graph.

The function UpdateWor1dData is virtual and controls the downward pass that
computes world transforms and updates time-varying quantities:

virtual void Spatial::UpdateWorldData (float time)
{
// update dynamically changing render state
for each render state controller rcontroller do
rcontroller.Update(time);

// update local transforms if managed by controllers
for each transform controller tcontroller do
tcontroller.Update(time);

// Compute product of parent’'s world transform with this object’s
// local transform. If no parent exists, the child’s world
// transform is just its local transform.

if (world transform not computed by a transform controller)
{
if (parent exists)
{
worldScale = parent.worldScale*localScale;
worldRotate = parent.woridRotate*1ocalRotate;
worldTranslate = parent.worldTranslate +
parent.worldScale*(parent.worldRotate*localTranslate);

154

Chapter

else

4 Hierarchical Scene Representations

// node is the root of the scene graph
worldScale = localScale;

worldRotate = JocalRotate:
worldT¥ranslate = localTranslate;

The function UpdateWor1dBound is also virtual and controls the upward pass and
allows each node object to update its world bounding volume. Base class Spatial
has no knowledge of geometric data and in particular does not manage a model
bounding sphere, so the function is pure virtual and must be implemented both by
Geometry, which knows how to transform a model bounding volume to a world
bounding volume, and by Node, which knows how to merge world bounding volumes
of its children.

Finally, the propagation of world bounding volumes is not virtual and is a simple
recursive call:

void Spatial::PropagateBoundToRoot ()

{
if (parent exists)
{
parent.UpdateWorldBound():
parent.PropagateBoundToRoot();
}
)

The derived classes override the virtual functions. Class Geometry has nothing
more to say about updating world data, but it must update the world bound,

virtual void Geometry::UpdateWorldBound ()
{
worldBound = modelBound.¥ransformBy(worldRotate,
worldTranslate,worldScale);
}

The model bound is assumed to be correct. If model data is changed, the application
is required to update the model bound.
Class Node updates are as shown:

virtual void Node::UpdateWorldData (float time)
{
Spatial::UpdateWorldData(time);

4.2 Updating a Scene Graph 155

for each child do
child.UpdateGS(false); // child not initiator of
// original UpdateGS call

)
virtual void Node::UpdateWoridBound ()
{
worldBound = firstChild.GetWor1dBound();
for each additional child do
worldBound = Merge(worldBound,child.worldBound);
}

The downward pass is controlled by UpdateWor1dData. The node first updates its
world transforms by a call to the base class update of world transforms. The children of
the node are each given a chance to update themselves, thus yielding a recursive chain
of calls involving UpdateGS and UpdateWor1dData. The update of world bounds is
done incrementally. The world bound is set to the first child’s world bound. As each
remaining child is visited, the current world bound and the child world bound are
merged into a single bound that contains both. Although this approach usually does
not produce the tightest bound, it is much faster than methods that do attempt the
tightest bound. For example, if bounding spheres are used, it is possible to compute
the parent world bound as the minimum volume sphere containing any geometric
data of the descendants. Such a computation is expensive and will severely affect the
frame rate of the application. The trade-off is to obtain a reasonable world bounding
volume for the parent that is inexpensive to compute.

Updating the set of current renderer states at the leaf nodes is also a recursive
system just as UpdateGsS is. Class Geometry maintains a set of such states; call that
member stateSet. Each state can be attached to or detached from an object of this
class. A state object itself has information that can be modified at run time. If the
information is changed, then an update must occur starting at that node. The global
renderer state set is maintained by the renderer, so any changes to renderer state by the
objects must be communicated to the renderer. Class Spatial provides the virtual
function foundation for the renderer state (RS) update:

void Spatial::UpdateRS (RenderState parentState)
{
// update render states
if (parentState exists)
{
// parentState muSt remain intact to restore state after
// recursion
currentState = parentState;
modify currentState with thisState;

156 Chapter 4 Hierarchical Scene Representations

else

// this object is initiator of UpdateRS, use default
// renderer states
currentState = defaultRenderState;
PropagateStatefFromRoot(currentState);

}

UpdateRenderState(currentState);

The initial call to UpdateRS is typically applied to a node in the tree that is not
the root node. Any renderer state from predecessors of the initiating node must be
accumulated before the downward recursive pass. The function PropagateState-
FromRoot does this work:

void Spatial::PropagateStateFromRoot (RenderState
currentState)
{
// traverse to root to allow downward state propagation
if (parent exists)
parent.PropagateStatefFromRoot(currentState);

// update parent state by current state

modify currentState with thisState:;

The call UpdateRenderState is pure virtual. Class Geometry implements this
to update its renderer state at leaf nodes. Class Node implements this to perform the
recursive traversal of the call on its children.

void Geometry::UpdateRenderState (RenderState currentState)

{

modify thisState with currentState;
}
void Node::UpdateRenderState (RenderState currentState)
{

for each child do

child.UpdateRS(currentState);

}

}

Notice that UpdateRS and UpdateRenderState form a recursive chain just as
UpdateGS and UpdateWor1dData form a recursive chain.

4.3 Renderinga Scene Graph 157

4.3 RENDERING A SCENE GRAPH

The renderer manages a camera whose job it is to define the view frustum, the portion

of the world to be viewed. The process of rendering the scene graph in the frustum

at a given instant is typically referred to as the camera click. This process involves a

traversal of the scene graph, and the graph is assumed to be current (as established by
the necessary UpdateGd() and UpdateR30) calls at the relevant nodes).

Scene graph traversal includes object level culling as described earlicr. 1f the world
bounding volume for a node is outside the view frustum, then the subtree rooted at
that node need not be traversed. If asubtree is not culled, then the traversal is recursive.
The renderer states are collected during traversal until a leaf node of the scene graph
is reached. At this point the renderer has all the state information it requires to be
able to properly draw the geometry represented by the leaf node. The leaf node has
the responsibility of providing the renderer with its geometric data such as vertices,
triangle connectivity information, triangle normals (for back face culling), and surface
attributes including vertex normals, colors, and texture coordinates.

Before the actual rendering of the leaf node object, it is useful to allow the object to
perform any preparations that are necessary for proper display. For example, culling is
based on world bounding volumes. The classes derived from Geometry have the lib-
erty of keeping current the world bounding sphere via the UpdateWor1dBound call.
ifan object is to be culled, then computing any expensive world data in the call 1o Up -
dateWorlidData is wasteful. Instead, the Geometry classes could provide a Boolean
flag indicating whether or not the world data is current. The call to UpdateWor1d-
Data updates world transforms, but additionally sets only the Boolean flag indicating
the world data is not current. A prerendering function called after it is determined
that an object is not to be culled can test the Boolean flag, find out the world data is
not current, make the data current, then set the flag to indicate the data is current.

Another use of a prerendering function involves dynamic tessellation of an object.
Chapter 10 discusses objects represented by a triangular mesh whose triangles are
increased or reduced based on a continuous level-of-detail algorithm involving a
preprocessed set of incremental mesh changes. The prerendering function can select
the appropriate level of detail based on the current camera and view frustum. Chapter
8 discusses objects represented by curved surfaces. The prerendering function can
dynamically tessellate the surfaces to the appropriate level of detail.

The complement of a prerendering function is a postrendering function that
gives the ohject a chance to do any cleanup associated with prerendering and actual
rendering.

4.3.1 CULLING BY SPHERES

The test for intersection of bounding volume with view frustum is performed in
world space since the world bounding information is kept current by the object and
the world view frustum information is kept current by the camera. Let the world

158 Chapter 4 Hierarchical Scene Representations

Figure 4.2

S0URCE CODE

LIBRARY

Intersection

FILENAME

IntrPInSphr

Not culled

Not culled

Examples of culled and unculled objects.

bounding sphere have center C and radius r. Let a view frustum plane be specified by
N - X =d, where N is a unit-length vector that points to the interior of the frustum.
The bounding sphere does not intersect the frustum when the distance from C to the
plane is larger than the sphere radius. An object is completely culled if its bounding
sphere satisfies

N.C—d<-r (4.8)

for one of the frustum planes. The left-hand side of the inequality is the signed distance
from C to the plane. The right-hand side is negative and indicates that to be culled,
C must be on the outside of the frustum plane and must be at least the sphere radius
units away from the plane. The test requires 3 multiplications and 3 additions. The
pseudocode is

bool CuliSpherePlane (Sphere sphere, Plane plane)
{
return Dot(plane.N,sphere.C) - plane.d < -sphere.r;

Itis possible for a bounding sphere 1o be outside the frustum even if all six culling
tests fail. Figure 4.2 shows examples of an object that is culled by the tests. It also
shows examples of objects that are not culled, one object whose hounding sphere
intersects the frustumn and one object whose bounding sphere does not intersect the
frustum. In either case, the object must be further processed in the clipping pipeline.
Alternatively, the exact distance from bounding sphere to frustum can be computed
at greater expense than the distances from sphere to planes.

Better-fitting bounding volumes can lead to rejection of an object when the
bounding sphere does not, thereby leading to savings in CPU cycles. However, the

4.3 Rendering a Scene Graph 159

application must keep the bounding volume current as the object moves about the
world. For each change in a rigid object’s orientation, the bounding volume must be
rotated accordingly. This leads to a trade-off between more time to update bounding
volume and less time to process objects because they are more accurately culled.

The followingsections describe the culling algorithms for oriented boxes, capsules,
lozenges, cylinders, and ellipsoids. In each section the frustum plane is N - X =d with
unit-length normal pointing to frustum interior.

4.3.2 CULLING BY ORIENTED BOXES

L IBRARY

Intersection

FILENAME

IntrPInBox3

An oriented bounding box is outside the frustum plane if all its vertices are outside
the plane. The obvious algorithm of testing if all eight vertices are on the “negative
side” of the plane requires eight comparisons of the form N - ¥ < d. The vertices are
of the form

V =C + ooaoAo + Glﬂnil + Gzazﬁz,

where |g;| = | for all i (eight possible choices, two for each a;). Each test requires
computing signed distances

N~f/—d=(f/-f,'—d)+aoa.)i:/‘ﬂo+a|a,i\'/-2,+azazi\'/-ﬂz.

The 4 dot products are computed once, each dot product using 3 multiplications
and 2 additions. Each test requires an additional 3 multiplications and 4 additions
(the multiplications by a; are not counted). The eight tests therefore require 36
multiplications and 40 additions.

A faster test is to project the box and plane onto the line C + sN. The symmetry
provided by the box definition yields an interval of projection [C — rN, C + rN].
The interval is centered at C and has radius

r=ag|N - Aol + a1IN - Ay| + @ N - A).

The frustum plane projects to a single point

P=C+@d-N-ON.

The box is outside the plane as long as the projected interval is outside, in which case
N . € — d < —r. The test is identical to that of sphere-versus-plane, except that r is
known for the sphere but must be calculated for each test of an oriented bounding
box. The test requires 4 dot products, 3 multiplications, and 3 additions for a total
operation count of 15 multiplications and 11 additions. The pseudocode is

160 Chapter 4 Hierarchical Scene Representations

Figure 4.3

Not culled Not culled

. Culled

Examples of culled and unculled objects.

bool Culi1BoxPlane (Box box, Plane plane)

{

r = box.a0*|Dot(plane.N,box.A0)| +
box.al*|Dot(plane.N,box.Al)| +
box.a2*|Dot(plane.N,box.A2)]:

return Dot(plane.N,box.C) - plane.d < -r;

}

As with the sphere, it is possible for an oriented bounding box not to be culled
when tested against each frustum plane one at a time, even though the box is outside
the view frustum. Figure 4.3 illustrates such a situation.

4.3.3 CULLING BY CAPSULES

{_ SOURCE CoODE

LIBRARY

Intersection

FILENAME

IntrPInCap

A capsule consists of a radius r > 0 and a parameterized line segment P+ tD where
D # Oandr e [0 1]. The signed distances from plane to end points are o = P—d
and§ =N - (P + D) — d. If either 80 > 0 or §; = 0, then the capsule is not culled
since it is either intersecting the frustum plane or on the frustum side of the plane.
Otherwise, both signed distances are negative. If N - D <0, then end _point P is
closer in signed distance to the frustum plane than is the other end point P + D. The
distance between P and the plane is computed and compared to the capsule radius.
If N-P —d < —r, then the capsule is outside the frustum plane and it is culled;
otherwise it is not culled. If N - D > 0, then P + D is closer in signed distance to
the frustum plane than is P. If N - (P + D) —d < —r, then the capsule is culled;
otherwise it is not culled. The pseudocode for the culling algorithm is given below.
The Boolean result is true if and only if the capsule is culled.

4.3 Rendering a Scene Graph

bool CullCapsulePlane (Capsule capsule, Plane plane)

{
sd0 = Dot(plane.N,capsule.P) - plane.d;
if (sd0 < 0)
{
sdl = sd0 + Dot(plane.N,capsule.D);
if (sdl < 0)
{
if (sd0 <= sdl)
{
// PO closest to plane
return sd0 <= -capsule.r;
}
else
{
// Pl closest to plane
return sdl <= -capsule.r;
}
}
}
return false;
}

4.3.4 CULLING BY LOZENGES

161

A lozenge consists of a radius 7 > 0 and a parameterized rectangle P +sEo+tE,,
where Eg # 0, E, #0, Eo E, =0, and (s, 1) € [0, 12 The four rectangle corners

are Poo = P, Pm—P+Eo, Poy=P + E), and Py = P + Eg + E. The signed
CE CODE (ijstances are §;; = N-P; j — d. If any of the signed distances are nonnegative, then

the lozenge either intersects the plane or is on the frustum side of the plane and it

is not culled. Otherwise, all four signed distances are negative. The rectangle corner
Intersection closest to the frustum plane is determined, and its distance to the plane is compared

to the lozenge radius to determine if there is an intersection. The pseudocode for the

culling algorithm is

IntrPInLoz
bool CullLozengePlane (Lozenge 1ozenge, Plane P)
{
sd00 = Dot(plane.N,lozenge.P) - plane.d:
if (sd00 < 0)
{
dotNEO = Dot(plane.N,lozenge.E0);
sd10 = sd00 + dotNEQ;

162 Chapter 4 Hierarchical Scene Representations

if (sdlo < 0)

{
dotNE1 = Dot(plane.N,lozenge.El);
sd01 = sd00 + dotNEl:;
if (sdol1 < 0)
{
sdll = sd10 + dotNE1l;
if (sdll < 0)
{
// 811 rectangle corners on negative side
// of plane
if (sd00 <= sdl0)
{
if (sd00 <= sdoOl)
{
// P00 closest to plane
return sd00 <= -lozenge.r:
)
else
{
// POl closest to plane
return sd0l <= -lozenge.r:
}
}
else
{
if (sdlo <= sdll)
{
// P10 closest to plane
return sd10 <= -lozenge.r;
1
else
{
/! P11 closest to plane
return sdll <= -lozenge.r:
}
}
1
}
}

}

return false;

Figure 4.4

4.3 Renderinga Scene Graph 163

)

Projection of cylinder and frustum plane, no-cull case.

4.3.5 CULLING BY CYLINDERS

LIBRARY

Intersection

IntrPInCyln

A cyhnder cons:sts ofa rad:us r > 0, a height # € [0, 00], and a parameterized line
segment C + tW, where |W| =1 and t € [—h/2, h/2]. Figure 4.4 shows a typical
no-cull situation. Let the plane be N - X = d, where |N| =1 Let U, V, and W
form an orthonormal set of vectors. Any cyhnder point X can be written as X =
c +y0U +y,V + yzW wherey0 +yl =r?and |y;| <=h/2.Let yo = r cos(A) and
y1 = r sin(A). Substitute X in the plane equation to get

—(N-W)y;=(N-C —d) + (N -U)r cos(A) + (N - V)rsin(A).

If N - W =0, then the plane is parallel to the axis of the cylinder. The two intersect if
and only if the distance from C to the plane satisfies

-

IN.-C—d|<r.

In this situation the cylinder is culled when N.C—-d <-—r.
If N - W # 0, then y; is a function of A. The minimum and maximum values can
be found by the methods of calculus. The extreme values are

d—N.Cx,1—(N.-W)?

= =

N.W

The plane and cylinder intersect ifand only if

min(y;) <h/2 and max(y;) > —h/2.

164 Chapter 4 Hierarchical Scene Representations

In this s:tuation the cylinder is culled when the previous tests show no intersection
and N - C — d < —r. The pseudocode is

bool CuliCylinderPlane (Cylinder cylinder, Plane plane)

{
sd0 = Dot(plane.N,cylinder.P) - plane.d;
if (sd0 < 0)
{
dotND = Dot(plane.N,cylinder.D)
sdl = sd0 + dotND;
if (sdl < 0)
{
dotDD = Dot(cylinder.D,cylinder.D);
r2 = cylinder.r*cylinder.r;
if (sd0 <= sdl)
{
// PO closest to plane
return dotDD*sd0*sd0 >= r2*(dotDD-dotND*dotND);
}
else
{
// Pl closest to plane
return dotDD*sdl*sdl >= r2*(dotDD-dotND*dotND);
}
}
}
return false;
}

The quantities D - D and r? can be precomputed and stored by the cylinder as a way
of reducing execution time for the intersection test.

4.3.6 CULLING BY ELLIPSOIDS

An ellipsoid is represented bythe quadratic equation 0X)=(X-CO™X -C)=
1, where C is the center of the ellipsoid, where M is a positive definite matrix, and

where X isany point on the ellipsoid. An ellipsoid is outside a frustum plane whenever
Intersection the projection of the ellipsoid anto the line C + sN is outside the frustum plane. The

projected interval is [—r, r]. Figure 4.5 shows a typical no-cull situation. The ellipsoid
is culled whenever

IntrPInElp3

4.3 Renderinga Scene Graph 165

Frustum side

NeC—-d-r NeC-d 0 NeC-d+r

Figure 4.5 Projection of ellipsoid and frustum plane, no-cull case.

N.C—-d=-r.

The construction of r is as follows. The points X that project to the end points
of the interval must occur where the normals to the ellipsoid are parallel to N. The
gradient of Q(X)isa normal direction for the point, V0 =2M(X — C). Thus, X
must be a solunon to M(X C) AN for some scalar A. Inverting M and mui-
tiplying yields X -C=AM"'N. Replacing this in the quadratic equation yields
1=22(M'N)TM(M~'N)=A2NTM~IN.Finally,r =N - (X —C) =ANTM"!N,
sor =+ NTM-1N. The pseudocode is

bool CullEllipsoidPlane (E1lipsoid ellipsoid, Plane plane)
{
sd0 = Dot(plane.N,ellipsoid.C) - plane.d;
if (sd0 < 0)
{
r2 = Dot(plane.N,ellipsoid.Minverse*plane.N):
return sd0*sd0 >= r2;
}

return false;

166 Chapter 4 Hierarchical Scene Representations

4.3.7 ALGORITHM FOR SCENE GRAPH RENDERING

- ©5URCE CODE

LIBRARY

Engine

FILENAME

Renderer
Spatial
Geometry
Node
TriMesh

An abstract class Renderer has a method that is the entry point for drawing a scene
graph:

void Renderer::Draw (Spatial scene)
{

scene.OnDraw(thisRenderer);
}

Its sole job is to start the scene graph traversal and pass the renderer for camera access
and for accumulating render state. The method is virtual so that any derived class
renderer can perform any setup before, and any cleanup after, the scene graph is
drawn.

The class Spatial implements

void Spatial::0nDraw (Renderer renderer)
{
if (forceCulling)
return;

savePlaneState = renderer.planeState:

if (!renderer.Cull(woridBound))
Draw(renderer):

renderer.planeState = savePlaneState;

The class Spatial provides a Boolean flag to allow the application to force culling of
an object. If the object is not forced to be culled, then comparison of the world bound-
ing volume to the camera frustum planes is done next. As mentioned in Section 3.4, if
the bounding volumes are properly nested, once a bounding volume is inside a frus-
tum plane there is no need totest bounding volumes of descendants against that plane.
In this case the plane is said to be inactive. The renderer keeps track of which planes are
active and inactive (the plane state). The current object must save the current plane
state since the state might change during the recursive pass and the old state must be
restored.

The member function Draw of class Spatial is also a pure virtual function. Class
Geometry manages the leaf node renderer state and uses the Draw function to tell the
renderer about the state it should use for drawing that leaf node. Class Node again
provides for the recursive propagation to its children.

4.3 Rendering a Scene Graph 167

void Geometry::Draw (Renderer renderer)

{
renderer.SetState(thisState);
}
void Node::Draw (Renderer renderer)
{
for each child do
child.OnDraw(renderer);
1

Notice the pattern of recursive chains provided by classes Spatial and Node. In this
case Draw and OnDraw form the recursive chain,

Finally, for a specific class derived from Geometry that has actual data, the ren-
derer must implement how to draw that data. For example, if TriMesh is derived from
Geometry and manages a triangle mesh with vertices, normals, colors, and texture
coordinates, the class must implement the virtual function as

void TriMesh::Draw (Renderer renderer)
{
Geometry::Draw(renderer);
renderer.Draw(this);
1

The call to the base class Draw tells the renderer to use the current rendering state at
the leaf node. The next call allows the renderer to do its specific work with the triangle
mesh. The Draw call in the renderer is a pure virtual function. If class SoftRender is
derived from Renderer and represents software rendering, then the entire geometric
pipeline of transformation, clipping, projection, and rasterizing is encapsulated in
Draw for SoftRender. On the other hand, if class HardRender is derived from
Renderer and represents a hardware-accelerated renderer, then Draw probably does
very little work and can feed the hardware card directly.

CHAPTER

PICKING

he term picking typically refers to the process of selecting a 3D object from its 2D
projection on the screen by pointing and clicking with a mouse. For a perspective
camera model, the idea is to build a ray whose origin is the eye point and whose
direction is from the eye point to a world point that projects onto the screen at the
selected location. The ray is converted to world coordinates and a search is made
to find those objects that are intersected by the ray. This chapter considers a more
general picking process where the ray can have any origin, not just the eye point. The
general picking operation supports collision detection where linear probing is used
to determine if the camera or an object can move unimpeded in various directions.
It also supports various special effects—for example, determining if a projectile or
laser beam fired from a character’s gun hits an intended target. Other uses for general
picking include determining height of objects above a terrain, establishing visibility of
objects from current eyc point, and avoiding collisions with obstacles while an object
attempts to follow a desired path. In these examples the common theme is estimation
of distance from objects to obstacles.
Support for picking in a hierarchical scene graph amounts to recursively traversing
the graph until each leaf node is reached. The triangles represented by a leaf node are
tested one by one to see if the ray intersects them. All sorts of information can be

169

170 Chapter 5 Picking

reported about an intersection, including the point of intersection, normal vector at
the intersection, surface attributes at the point such as color or texture coordinate,
or other information that an object might have been tagged with by the application.
Given a list of triangles intersected by the ray, additional processing might be required
such as sorting the [ist or computing the closest triangle to the ray’s origin.

An exhaustive test of intersection by ray with triangles can be expensive, especially
if the ray does not intersect any of the triangles at a leaf node. To avoid this, the
hierarchical structure of the graph can be exploited. The picking operation at a node
is propagated to the children of the node only if the ray intersects a bounding volume
associated with the original node. A test for intersection of ray with bounding volume
is usually inexpensive. If the ray does not intersect the volume, then a small amount
of time is required to show this, and time is not wasted on searching that portion of
the scene graph contained in the bounding volume. The pseudocode for the process is

void DoPick (Node node, Ray ray, PickResults results)

{
if ray intersects node.boundingVolume
{
if node is a leaf
{
for each triangle of node do
{
if (ray intersects triangle)
add intersection information to results;
}
}
else
{
for each child of node do
DoPick(child,ray,results):
}
}
}

// application code

Node root = <root of scene graph to be tested>:

Ray ray = <origin and direction of ray to be tested>;
PickResults results;

DoPick(root,ray,results);

The key tests here involve the intersection of a ray with bounding volumes or with
triangles. It is possible that an application requires information about the intersec-
tion of objects with lines or with line segments. Although the intersection tests are
algorithmically similar, the implementations might take advantage of the knowledge

5.1 Intersection of a Linear Component and a Sphere 171

that a line, ray, or line segment is involved and avoid some unnecessary calculations.
The remainder of the chapter deals with the mathematical algorithms and their im-
plementations for intersection of linear components (lines, rays, or line segments)
with bounding volumes and triangles. In all sections, the line is parameterized as
L(t) = P + 1D, where P is the line origin and D is a unit-length direction vector.
For a line, there is no restriction on ¢. For a ray, ¢ > 0 is required. For a line segment,
t € |0, T] is required for some specified value T > 0.

5.1 INTERSECTION OF A LINEAR COMPONENT AND
A SPHERE

RCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Sphr

A sphere with center C and radius R is specified by | X — CJ2 — R2 = 0. Replacing X
by L(t) leads to the quadratic equation

0=}D+P-CP-R=t*+2uD-(P-C)+|P~-C?- R~

The quadratic formula may be used to solve the cquation. The discriminant is
- - = \2 - -
=4(D-(B-0) -4(1P-¢P-R)
=4 (R = (P- &)U - DDTP - &)).

The projection matrix / — DD7 is nonnegative definite, so the discriminant is pos-
sibly negative. If A < 0, then the line does not intersect the sphere. If A =0, the
line is tangential to the sphere. The parameter at the point of intersection is ¢ =
—D- (P —C).Ift <0,thenthelineis tangent to the sphere but neither the ray nor line
segment intersect the sphere. [f > T, then the line and ray are tangent to the sphere
but the line segment does not intersect the sphere. If A > 0, then the line intersects
the sphere in two locations. The parameters at the points of intersection are

t=-D.(P-C) % \R2= (P - &)U - DDT)(P - C).

Analysis of the r-values (comparison to 0 and T') determines whether or not the ray
or the line segment intersect the sphere.

In the recursive traversal of the hierarchical scene graph, it may not be necessary
to determine where a linear component intersects a bounding volume, only if the
linear component intersects the bounding volume. Existence of an intersection may
be determined more cheaply for some situations. For example, the quadratic equation
forarayintersectinga sphere has constant term | P — C|2 ~ RZ. Ifthis term is negative,
then P is inside the sphereand the ray must necessarily intersect the sphere. This leads
to a quick return from the intersection routine, and the propagation of the test to node

172 Chapter 5 Picking

children commences. The pseudocode for determining the existence of an intersection
of a ray with a sphere is

bool TestIntersection (Ray ray, Sphere sphere)

{
// quadratic is t*2 + 2*al*t + a0 = 0
Q = ray.P - sphere.C:
a0 = Q.Dot(Q) - sphere.R*sphere.R;
if (a0 <=0)
{
// ray.P is inside the sphere
return true;
}
// else ray.P is outside the sphere
al = ray.D.Dot(Q);
if (al >= D)
{
/] acute angle between P-C and D, C is "behind” ray
return false;
}
// quadratic has a real root if discriminant is nonnegative
return (al*al >- a0);
}

Similarly structured code can be written for comparison of a line or a line segment to
a sphere. Actual points of intersection may also be computed by solving the quadratic
equation for its roots.

5.2 INTERSECTION OF A LINEAR COMPONENT AND
A BoOXx

LIBRARY

Intersection

FILENAME

IntrLin3Box3

Finding the points of intersection between a linear component and a box is the classic
clipping problem. For parametric lines, an effective method is Liang-Barsky clipping
(Liang and Barsky 1984; Foley et al. 1990). We first describe the algorithm for an axis-
aligned box. The adaptation to an oriented box requires a change in coordinate system.
Although we describe the method for line segments, it can easily be extended to rays
and lines,

Consider the axis-aligned box centered at the origin with extents ¢; for 0 <i < 2.
The region of space filled by the box is [—ep, eg] x [—e), e1] x [—ey, €2]. The idea
is to clip the line segment (pg, py, p2) + t(do, dy, d3) for t € [0, 1] against the three

Figure 5.1

Figure 5.2

5.2 Intersection of a Linear Component anda Box 173

< i< n<

" he three cases for clipping whendp > 0.

S,

< i< nst

The three cases for clipping when dp < 0.

sets of parallel faces, one pair at a time. The initial interval for the line segment is
[#0, 11] = [0, 1], and the values of #; and 1, are updated appropriately for the clipping
against the faces.

The intersection of a line with the face xo = —eg is determined by po + tdg = —ep.
If do # 0, then the line is not parallel to the face and the point of intersection occurs
when £; = —(ep + po)/dp. Moreover, if dy > 0, then the line parameter ¢ increases
as xg increases. If #; > #;, then the line segment is outside the face and is completely
clipped. If ; < 1o, then the line segment is inside the face and no adjustments are
needed on #g. Otherwise, 1; € (#, 1] and the minimum parameter value is updated to
to = t;. In the event that 7; = ¢,, the line segment intersects the face in a single point.
For geometric intersection testing, this point m2y be of interest. For clipping against
a view frustum, this point may be ignored by using the test ; > 1, instead. Figure 5.1
illustrates the three cases when dy > 0. If dy < 0, the line parameter # decreases as xg
increases. If 4 < 1o, then the line segment is outside the face and is completely clipped.
Ift; > t,, then the line segment is inside the face and no adjustments are needed on ¢).
Otherwise, #; € (fg, 1)) and the maximum parameter value is updated to 1, = 1;. Figure
5.2 illustrates the three cases when dy < 0. Finally, if dp = 0, the line is parallel to the
face. A sign test must be made on —eg — pg to determine if the line segment is inside

174

Chapter 5 Picking

Figure 5.3

Py <—€o PS¢

The two cases for clipping when dy = 0.

the face (—ep — po > 0) or outside the face (—ep — po < 0). In the latter case the line
segment is completely clipped. Figure 5.3 illustrates the two cases when dp = 0.
Similar tests can be made for all six faces. A single clipping function can be derived
that handles the tests. The pseudocode as shown in most graphics texts is given below.
A return value of false means the line segment is completely clipped (culled). A
return value of t rue means the line segment was clipped or needed no adjustments.

bool Clip (float denom, float numer, float& t0, float& tl)
{
if (denom > 0)

{
ti = numer/denom;
if (ti > tl)
return false;
if (t1 > t0)
t0 = ti;
return true;
}
else if (denom < 0)
{
ti = numer/denom;
if (t1 < t0)
return false;
if (ti < tl)
tl = ti;
return true;
}
else
{
return numer > 0;
}

5.2 Intersection of a Linear Component and a Box 175

For hardware with fast multiplication and slow division, a version that defers
the divisions until absolutely needed will have on average a smaller execution time.
The worst case for a single call is the use of two additional multiplications. The
pseudocode is

bool Clip (float denom, float numer, float& tO0, floath tl)
{
if (denom > 0)

{
if (numer > denom*tl)
return false;
if (numer > denom*t0)
t0 = numer/denom;
return true;
}
else if (denom < 0)
{
ti = numer/denom;
if (numer > denom*t0)
return false;
if (numer > denom*tl)
tl = numer/denom;
return true;
}
else
{
return numer > 0;
}

The clipper itself is given by the following pseudocode. A return value of false
indicates the line segment is outside the box. A return value of true indicates the
line segment has been clipped or is completely inside the box. On return, the end
points of the clipped segment are P + 1D and P + #, D. To maintain the format for
line segments, the new segment is P’ + s D’ for s € (0, 1], where P’ = P + 1, D and
bl = - to)b.

bool C1ip3D (Point E, Point P, Point D, float& tO0, float& tl)
{

// extents E = (e0,el,e2), all positive components

// line point P = (p0.pl,p2)

// line direction D = (d0,d1,d2)

t0 = 0:
tl - 1;

176

Chapter 5 Picking

Figure 5.4

m
U
m
(3 ¥}
v

Typical separating axis for a line segment and a box.

return C1ip(+d0,-p0-e0,t0,t1) and Clip(-do,+p0-e0,t0,t1l) and
Clip(+dl,-pl-el,t0,tl) and Clip(-dl,+pl-el,t0,tl) and
Clip(+d2,-p2-e2,t0,t1) and Clip(-d2,+p2-e2,t0,tl);

Clipping against an oriented box requires some transformatnons Let the box have
center C, axes U,, and extents ¢; for 0 < i < 2. The line point P and direction vector D
must be represented in terms of the coordinate system of the box. The p; and d; used
in the axis- ahgned case are now defined by P=C+ i piUiand D= Z: _odiUi.
Thus, p; = (P C) and d; = U, .

Testing whether or nota line, ray, or line segment intersects a box can be done more
cheaply than with a dlipping algorithm by separating axes. It can be determined if the
linear component does not intersect the box by analyzing the projections of the linear
component and the box onto a small number of lines and testing if the projections
are disjoint. This approach for comparing line segment and box is used in Gregory
et al. (1998). In the following sections, the oriented box has center C, axes f/,-, and
corresponding extents ¢; for i =0, 1, 2. Although they are not necessary to compute
in the algorithm, the vertices of the box are C + Z,L,, a;e;l-l,-. where |o;] = 1 (eight
possible choices, two per).

5.2.1 LINE SEGMENT

Let the line segment have midpoint M and end points M % V. The six potential
separating axes have directions U; and V x U; for i =0, 1, 2. Figure 5.4 shows the
general situation of projecting onto an axis with direction W, with the direction not

necessarily unit length. Let D = M — C. The radius of the interval corresponding to
the projected line segment is

sls»

R\Ml

5.2 Intersection of a Linear Component and a Box

Table 5.1 Separating axis tests for a line segment and a box.

5.2.2 RaY

Ry

R,

W
Uo
Ui
0,
V x Up
V x U
V x U

€o
€]

€2

eV - Ual + eal V- U]
eol V - Ua| + eV - Up /IVI
eolV - Uil + ealV - Ugl) /17|

|W - Dol
W - 0y
[W - U

The radius of the interval corresponding to the projected box is

2
Rp = Ze,' U;
i=0

The distance between the projected centers is the length of the projection of D,

Rs=|D-

=

The axis separates the line segment and box if

Ry> Ry + R.

|€'

177

Table 5.1 shows the potential separating axes and the corresponding quantities re-
quired for showing the projected intervals are disjoint. The divisions in the last three

cases can be avoided by multiplying the test inequality by W]

Let the ray have origin P and direction V. The six potential separating axes are the
same as for a line compared to a box. Figure 5.5 shows two typical situations for
projection of a ray and a box onto a potential separating axis with direction W. Let

D = P — C. The radius of the interval corresponding to the projected box is

Rb—zel -.

178 Chapter5 Picking

U, Uo
P
\V
f= +— W

Figure 5.5 Typical situations for a ray and a box.

The distance between the projected box center and projected ray origin is the length

of the projection of D,
- W
Ry=|D - —]|.
Wl

The axis separates the line segment and box if the projection of the ray origin is outside
the projection of the box and if the ray direction forces the projected ray to point away
from the box. The tests are

Ri>R, and (W-V)W.D)=o0.
For the first three potential separating axes, the tests are
|0o- DI >eo, (Do-D)To-V)20

|l71-b|>e1, (l}]b)(i]]'c’)zo
|0 - DI > €2, (Uz- D)(U2-V) 2 0.

For the last three potential separating axis tests the secondary test is always true. The
tests are

1Uo- V x D| >)|V - Uzl + €2l V - T
|l-]| ¥V x b| > eolf’-l-}zl-i-ezlf’-l}ol

|l72- V x Z)l >eo|f’-l7||+e||f’-l-10|.

5.2.3 LINE

5.3 Intersection of a Linear Component and a Capsule 179

Let the line have origin P and direction V. The projection of the line onto at least one
of the axes with direction U, will intersect the projection of the box. The only potential
separating axes are V x U fori =0, 1, 2. The tests are

10o- V x DI > ey|V - Ul + ealV - Uy
|01 -V x D| > eo|V - Usl + e2|V - Uyl
Uz V x D| > eo|V - Us| + eV - Dol

5.3 INTERSECTION OF A LINEAR COMPONENT AND
A CAPSULE

RCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Cap

Testing for the existence of an intersection between a linear component and a capsule
is relatively inexpensive compared to finding the actual points of intersection. The
test involves computing the distance between the capsule line segment and the linear
component and comparing it to the capsule radius. Section 2.6.2 gives algorithms for
computing the distance between linear components.

Finding the points of intersection is more expensive. Let the capsule line segment
be Po + sDo for s € [0, 1] and let the capsule radius be R. Let the line be P+
tDy. If Dy - D, # 0, then the line must intersect the planes on Wthh the capsule
hemispheres connect to the cylindrical body. The planes are Do - (X — Py) =0 and
Do (X Po - Do) 0. The intersections of the line with the planes occur at 1o =
Do (Po - Pl)/Do D| andtj =15+ Do Do/Do 01 For the sake of argument, let
Do Dl > 0 so that 1; > £p. Similar arguments can be made when the dot product is
negative and 1} < #o. The points of intersection (if any) are computed

® between the ray with ¢ < 1, and the capsule hemisphere with origin P,
® between the ray with ¢ > 1) and the capsule hemisphere with origin Py + Dy, and
= between the line segment with ¢ € [#, #;] and the capsule cylindrical wall.

Each of these requires finding the roots of a quadratic equation. In the first case, the
points of intersection are at adistance R from Po. The squared distance between the ray
and end point s |¢ D+ P — Po|2 for t < 15, a quadratic polynomlal int. In the second
case, the squared distance between the ray and end point is |tD| + P - Py— D()l2
for £ > 1,. In the third case, the distance between any point) (lying between the
two planes) and the capsule line segment is |Do x (@ — Py)l/ |Do| The squared
distance between the line segment with 7 € [f, 1] and the capsule line segment is
|Do x (¢tD) + P, — Po)/ |D()|2 Each of the squared-distance quadratic polynomials

180 Chapter 5 Picking

Figure 5.6

Partitioning of a line by a capsule.

is set to r2, and the real roots (if any) of the polynomial are computed. Once two roots
are found, other cases do not have to be processed because there are at most two points
of intersection between the linear component and the capsule.

If Dy - D) = 0, then the line is contained between the two planes mentioned earlier.
In this case only a single quadratic equation must be processed (the third case in the
previous paragraph but with no restriction on t).

Figure 5.6 illustrates in two dimensions the partitioning of the line by the capsule,
including points of intersection.

5.4 INTERSECTION OF A LINEAR COMPONENT AND
A LOZENGE

{ 8OURCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Loz

Testing for the existence of an intersection between a linear component and a lozenge
is similar to that for capsules. The test involves computing the distance between the
lozenge rectangle and the linear component and comparing it to the lozenge radius.
Section 2.6.6 gives algorithms for computing the distance between linear components
and rectangles.

Finding points of intersection is also similar to that of capsules. The algorithm
uses partitions of the line and analyzes each partition separately. The lozenge is By +
uEq + vEl, where Eo- E; =0, (4, v) € [0, 1], and has radius r. The line is P+ tD

IfD. Eo x E| # 0, the line is partitioned by the planes Eo- (X = Py)=0, Eq-
(X Po - Eo) 0, E| (X Po) 0, and E[(X Po — El) = 0. Two of the
clipped components are rays. There are at most three clipped components that are
line segments. In the plane of the lozenge rectangle, the partition planes split that
plane into nine pieces: the lozenge rectangle itself, four edge regions, and four corner
regions. Figure 5.7 illustrates in two-dimensions the partitioning of a line by the
lozenge. The number of clipped components in this example is five, as shown by
the projection of the line onto the horizontal axis with tick marks at the points of
intersection with the partition lines. If a clipped component corresponds to a corner
region, a squared-distance function is computed between the component and the
corner point for that region. If a component corresponds to an edge region, the
squared distance between that component and the edge line segment is computed.

Figure 5.7

5.5 Intersection of a Linear Component and a Cylinder 181

—H—H—

Partitioning of a line by a lozenge.

This process is exactly the one that occurs in the case of intersections between lines
and capsules. If a component corresponds to the lozenge rectangle region, then the
squared-distance function is computed. The squared distance between any point 0
in the rectangle region and the lozenge rectangle is

[Eo- (@ - PO)® _ [E1-(Q~ Py

1Q — Pol - = =
| Eol? |E [?

Point Q is replaced by Py + 1D to obtain the quadratic polynomial. Any of the
computed polynomials s set to r2 and solved. The corresponding values of ¢ provide
the points of intersection between the line and the lozenge.

IfD- E.'o x E 1 =0, the line is perpendicular to the lozenge rectangle. The ap-
propriate region of the nine possible ones is determined, and the squared-distance
polynomial is computed between the line and the corresponding lozenge component
(quar.er sphere, half cylinder, or rectangle slab).

5.5 INTERSECTION OF A LINEAR COMPONENT AND
A CYLINDER

RCE CODE

Intersection

Intrlin3Cytn

In the case of capsules, testing for intersections involves measuring the distance be-
tween the linear component and the capsule line segment. For cylinders the test is
more complicated since there are no hemispherical caps. The portion of the linear
component between the two planes of the cylinder ends must be computed. The dis-
tance between the clipped linear componentand the cylinder line segment is measured
and compared to the cylinder radius.

Finding the intersections with the cylinder is similar to that with capsules, but
again the clipped linear component is used. The same quadratic equation arises when
measuring the distance between the clipped linear component and the cylinder line
segment. However, the linear component might also intersect the circular disks at the
ends of the cylinder. If the clipped component has an end point on a plane containing

182 Chapter 5 Picking

a circular disk, there must be a test to see if that end point is inside the circle. If so, the
end point is a point of intersection.

5.6 INTERSECTION OF A LINEAR COMPONENT AND
AN ELLIPSOID

{ BBURCE CODE

LIBRARY

Intersection

FILENAME

InteLin3EIp3

An ellipsoid is represented by the quadratic equation (X — C)"M (X — C) = 1, where
C is the center of the ellipsoid and where M is a positive definite matrix. The matrix
canbe factoredas M = RTD R, where R isarotation matrixand D isa diagonal matrix
whose diagonal entries are positive. The rows of R are the axes of the ellipsoid, and
the diagonal entries of D are the axis lengths. If the line is P + ¢ V, then substitution
into the ellipsoid equation produces a quadratic equation

VTMV)Y 24+ QVIMP -CHt + (P-C)YTM(P-C)-1=0.

The points of intersection are determined by the real roots of this equation. If there
are no real roots, the line does not intersect the ellipsoid. If there is one real root, the
line is tangent to the ellipsoid. If there are two real roots, then the line penetrates the
ellipsoid at two distinct locations.

5.7 INTERSECTION OF A LINEAR COMPONENT AND
A TRIANGLE

(Sﬂuncs CODE

LIBRARY

Intersection

FILENAME

IntrLin3Tri3

An excellent article for computing ray-triangle intersections is Méller and Trumbore
(1997). The general strategy for lines, rays, or segments is described below.

Let the triangle have vertices Vo, Vl Vo + Eo, and Vz Vo + El The plane
of the triangle is given by N-(X - Vo) = 0, where N = Eo x Ej. Let the line be
L(t) = P + t D, where the direction vector is not necessarily unit length. The ray
satisfies 1 > 0, and the line segment satisfies r € [0, 1].

The first problem is to determine if the linear component intersects the plane of
the triangle. If D is not perpendicular to ¥, then theline must intersect the plane. The
corresponding r value is computed by substitution of L(r) into the plane equation,
r N =P

N-D

The point of intersection is L(T). If the linear component is a ray, then the point of
intersection is valid if T > 0. If the linear component is a line segment, then the point
of intersection is valid if T € [0, 1].

For a valid point of intersection, the second problem is to determine if the point is
inside the triangle. Writing L(T) = Vo + soEo + 5, E,, the coefficients are determined

5.7 Intersection of a Linear Component and a Triangle 183

by the linear system shown below, where @ = L(T) —

5 BEE-1E 8

Eo-Ey Ev-E ||s1] [E-Q)

Define ¢;; = IE‘,— . E‘j, qi = E, Q and A = ey, — eOl lEo X Ii‘,l2 |N|2 then
5o = (e1190 — €0141)/ A and 51 = (egoq1 — €0190)/ A. The point is inside the triangle
if so = 0,5, > 0, and sp + s1 < 1. The division can be avoided by setting og = €140 —
€0191, 01 = €p0g1 — €010, and testing 0 > 0,01 > 0,and 0p + 01 < A.

If the line is parallel to, but not contained in the plane, then the linear component
does not intersect the triangle. This condition occurs when N.-D=0and N - (Vo —
P) # 0. Otherwise, the line is contained in the plane of the triangle. A 3D application
could consider this case as not meaningful (transverse intersections are the only
important cases). If not, more work must be done to decide if the linear component
actually intersects the triangle.

First consider the case of a line. The line intersects the triangle if at least one of
the vertices is on the line or if at least two vertices straddle the line. These conditions
can be tested by projecting the vertices onto a line in the plane of the triangle that
is perpendicular to the test line, P + sN x D. In fact, this has the same flavor as
separating axes. It is enough to consider the signs of the numerators of the projection
components, V; - N x D. Define mg = min;{V; - N x D} and m; = max;{V; - N x
D]. The line intersects the triangle if and only if 0 € [mo, m,].

Segments and rays are handled using the method of separating axes (see Sec-
tions 5.2.1 and 5.2.2). In addition to the triangle edges already defined, set E; =
Vi — Vo

For rays the potential separating axes have directions N x E;for0<i<2and
N x D. In this case, though, let the potential separating axis contain the ray origin
P. Assuming the potential separating axis direction W is not perpendicular to the ray
direction D, the ray projects toa semi-infinite interval [0, +00) or (—00, 0] depending
onthesignof W - D.If W - D=0, then the ray projects to the singleton point set {0}.
The vertices of the triangle project to W (V, P) for0 <{ <2.Letmgand m, bethe
minimum and maximum values of these projections. If W-D >0, the ray does not
intersect the triangle if [mg, m] N [0, 00) = Q) If W .D <0,the ray does not intersect
the triangle if [mg, m1] N (—00, 0] =&. If W.D=0,the ray does not intersect the
triangle if O & [mgq, m,].

For line segments the potential separating axes are the same as for rays. The
midpoint representation should be used, M P +0.5D,and U = 0.5D, so the line
segment has midpoint M and end points M + U. The potential separating axis with
direction W is required to contain M, in which case the line segment projects to an
interval of the form [—pu, 1], where u = W .. The triangle vertices project to an
interval [mg, m,]. The line segment and triangle do not intersect when [—u, u] N
[mo,m]1=0

CHAPTER

COLLISION DETECTION

C ollision detection is a very broad topic, relevant to computer games and to other
applications such as navigation and robotics. The classic example for collision
detection in a third-person perspective, indoor game is having the main character
move around in a set of rooms that contain obstacles. The character is controlled by
an input device, typically a joystick, keyboard, or mouse, and must not be allowed to
walk through the walls or obstacles. Moreover, if the character walks into a wall, he
might be allowed to slide along the wall in a direction that is oblique to the one implied
by the event from the input device. A standard technique for preventing the character
from walking through a wall is to enclose the character with a tight-fitting bounding
volume and testing if it intersects the plane of the wall. The collision detection system
must provide support for this test even when the character (and hounding volume)
are moving. Preventing the character from walking through an obstacle is as simple
as enclosing the obstacle with its own bounding volume and testing for intersection
between the character and obstacle bounding volumes. Other typical situations in
a game that require collision detection are keeping vehicles moving over a terrain
without dropping through it, monitoring racing cars on a track and detecting when
two cars hit or when a car hits a wall, determining when a projectile hits an intended

185

186 Chapter 6 Collision Detection

target, bouncing objects off other objects, providing feedback about character control
when two characters are fighting, and determining if an object can pass through an
opening, such as when a character attempts to walk through a doorway that may or
may not be tall enough.

Implementing a robust collision detection system is a difficult and elusive task, as
many game programmers have found. The algorithms for dynamic (moving) objects
tend to be somewhat more difficult to implement than for static (nonmoving) objects,
particularly because of the implied increase in dimension (four dimensions, three in
space and one in time).

Collision detection is determining if, when, and where two objects intersect. De-
termining if two objects intersect is referred to in this chapter as testing intersec-
tion—typically easy to implement and inexpensive in CPU time. However, testing
intersection only provides a Boolean result—the objects either do or do not intersect.
Determining when two moving objects intersect involves computing the first time
of contact. This is slightly more expensive to compute than the Boolean result from
testing for intersection, but conceptually still doable. Determining where two objects
intersect is referred to in this chapter as finding intersection. This is the most difficult
part of collision detection, both conceptually and in terms of the use of CPU time,
and involves finding first point(s) of contact. For strictly convex objects such as ellip-
soids that are initially separated, the first time of contact results in a single first point
of contact. Finding isolated contact points is relatively easy. However, for other con-
vex objects such as oriented boxes or capsules, the first time of contact might result
in a continuum of first contact points (two boxes can collide edge-to-edge, edge-to-
face, or face-to-face). A collision system must deal with these pathological cases.In a
typical system, most of the code deals with the pathologies.

The types of objects that are handled in this chapter are the same ones found dis-
cussed in Chapter 2: linear components, planes, triangles, rectangles, oriented boxes,
spheres, capsules, lozenges, cylinders, and ellipsoids. Complex objects can be arbitrary
unions of these, but for game engine purposes, the only complex objects to consider
are those that are unions of triangles. Later in the chapter is a discussion on the use of
bounding volume trees to assist in collision detection between two complex objects.

The types of iniersections considered fall into three categories: linear component
versus object (picking), object versus plane (navigation or culling), and object versus
object (general collision). For static objects, Chapter 5 already described intersec-
tion testing and finding. Chapter 4 described intersection testing between objects and
planes for culling purposes. Later in this chapter, picking moving objects and moving
object navigation among a collection of planes are discussed. Object-object intersec-
tions, whether static or dynamic, are discussed separately.

6.]. DESIGN ISSUES

One of the most important concepts in designing a collision system is how to organize
the data. Because the world might contain a large number of interacting objects,
an exhaustive comparison of the objects is too expensive. The objects should be

6.1 Design Issues 187

organized into collision groups. For example, in an indoor environment, rooms are
natural candidates for partitioning dynamic objects into groups. Each room can act
as a collision group. Only objects moving within a room are compared to each other.
However, if an object moves from one room into another, then the object must switch
groups, but not before possibly comparing it to objects within the group of the current
room followed by comparing it to objects within the group of the adjacent room.
Given a single complex object, it is also important how the object is structured.
Using a scene graph representation and bounding volumes at the nodes of the graph,
quick rejection testing is supported for determining that two objects do not intersect.
While the rejection testing is done at a coarse level, the geometric data at the leaf nodes
of the graph can be further decomposed using bounding volume trees. Comparison of
these trees can lead to further rejections or might eventually result in computing the
intersections of triangles represented by the leaf nodes of those trees. The following
issues come up in using a hierarchical representation of objects for collision purposes:

Should the hierarchy be built top-down or bottom-up?
Should the bounding volumes be built manually or automatically?
How should intersection information be reported?

How should the propagation of the test/find collision calls be controlled?

How much information should be retained about the current collision state to
support future test/find collision calls?

Bottom-up construction of hierarchies is natural for building the world from small
models. Bounding volumes at the leaf nodes are based on geometric data. Bounding
volumes at interior nodes contain child bounding volumes, as described in Section 4.3.
Top-down construction is good for a decomposition of complex objects, in particular,
triangle meshes. The bounding volumes can be built using recursive subdivision
methods.

The automatic generation of bounding volumes is desirable to minimize the work
of artists and programmers, but it does not always generate a good set of volumes.
Manual generation gives better control for fitting the data and using a minimum
number of bounding volumes for maximum coverage of space in which the object
lives. But manual generation can be time-consuming and perhaps is not a good use
of artist/programmer resources. The best approach appears to be a mixture of the
two. An automatic generation algorithm can be applied, but the output is subject to
manual inspection and tweaking. Tools that support this process are highly desirable.

A reasonable mechanism for reporting intersection information is to use callbacks.
Each object involved in the collision test has a callback tha:z is executed when an inter-
scction is predicted or detected. Relevant information about the intersection (location,
time, normal vectors, surface attributes, ctc.) is passed to the callback. The applica-
tion has the responsibility for deciding what to do with the information. The callback
mechanism provides for collision response and maintains an abstract separation be-
tween the response and the detection. ln particular, this scheme integrates nicely with

188 Chapter 6 Collision Detection

physics systems: any collision detection back end can be fit with any physics system
front end.

Hierarchical organization of data allows the application to tag each node with a
set of flags indicating how the collision test should propagate. The simplest choice
is whether or not to recurse on the call or to terminate immediately. Other choices
involve specifying what types of calculations should occur (test only, first time only,
first point of contact, do only bounding volume comparisons but not triangle-triangle
tests, go all the way to triangle-triangle tests, etc.).

Remembering information about a previous intersection may help in localizing
the search for the next call of the collision system. The usual space-time trade-off
applies: more memory is used to retain state information in exchange for a faster
execution. Whether space or time is important depends on the application and its
data. For example, retaining state information is a key feature in the GJK and extended
GJK algorithms (Gilbert, Johnson, and Keerthi 1988; Cameron 1996; van den Bergen
1999), but bounding volume trees typically do not retain state information and are
designed to localize the search by fast intersection tests between the bounding volumes
(Gottschalk, Lin, and Manocha 1991; Gregory et al. 1998). Both approachesare viable,
but in this chapter we will discuss only the bounding volume tree ideas.

6.2 INTERSECTION OF DYNAMIC OBJECTS AND LINES

In the following sections, the line is stationary and defined by P +5sD fors €R.
The other objects are moving with constant linear velocity W over a time interval
1 € [0, fmax). If D x W =0, then the object is moving parallel to the line. The static
test for intersection is sufficient for this case.

The algorithms presented here determine only if the line and object will intersect
on the time interval. Computation of the first time of contact is typically more ex-
pensive. For the sphere, capsule, and lozenge, finding the first time of contact involves
solving a quadratic equation, which requires taking a square root.

6.2.1 SPHERES

{ SOURCE CoDE

LIBRARY

Intersection

FILENAME

IntrLin3Sphr

The moving sphere has center C +tW fort € [0, tmax] and radius r > 0. The distance
between a point and a line is given by Equation 2. 14. Replacing the time-varying center
in this equation leads to a quadratic function in r that represents the squared distance,

- D-W- - . D-(C— P) -
(w___‘:fo)w((c_p)-MD)
D.-D

2

o) = =:at® + 2bt +c.

D.-D

The coefficient a is positive because of the assumption that the direction of motion is
not parallel to the line. If Q(t) < r? for some t € [0, 7yax], then the line intersects the
sphere during the specified time interval. The problem is now one of determining the

6.2 Intersection of Dynamic Objects and Lines 189

minimum of Q on the interval. Solve Q'(T) =0 for T = —b/a. If T € [0, tmax], then
the minimum is Q(T). If T < 0, the minimum is Q(0). If T > tax, the minimum is
Q(tmax). The minimum value is then compared to r2. The coefficients each snmphfy
to a fraction whose denominator is D - D. To avoid the division, Q and r? can be
multiplied through and the minimization is performed using those quantities. The
pseudocode is

bool TestSphereLine (Sphere sphere, Line line, Velocity W,
float tmax)

{
E = sphere.C - line.P;

dotDW = Dot(1ine.D,W);
dotDD = Dot(line.D,line.D);

dotWW = Dot(W.W):;
dotWE = Dot(W,E):
dotDE = Dot(line.D,E):
dotEE = Dot(E,E):

ddr2 = dotDD*sphere.r*sphere.r;
a = dotDD*dotWW - dotDW*dotDW: // = |[Cross(1ine.D,W)|*2 >= 0
b = dotDD*dotWE - dotDE*dotDW;
¢ = dotDD*dotEE - dotDE*dotDE; // = |Cross(line.D,E)|*2 >= 0

if(a>o0)

{
t = -b/a:
if(t<0)
{

// minimum occurs at t = 0
return ¢ <= ddr2:

}
else if (t > tmax)
(
// minimum occurs at t = tmax
return tmax*{a*tmax+2*b)+c <= ddr2;
1
else
// minimum occurs at t
return t*(a*t+2*b)+c <= ddr2;
}
)
else
(

// a = 0, sphere moving parallel to line, just need to
// test t -0
return ¢ <= ddr2:

190 Chapter 6 Collision Detection

6.2.2 ORIENTED BOXES

SOBURCE CODE

Intersection

FILENAME

IntrLin3Box3

In Section 5.2 it was shown that the three separating axis tests for a line versus a static
oriented box are

|Up- D x (C — P)| > e|D-Usl +e2) D - U
|0y D x (€ = P)| > eo| D+ Ua| + e2 D - Uyl
|l72- D x (E‘— l_’)| > eoll_)- l7|| +e||l_)-l_/o|.

If any of these tests are true, then the line and box do not intersect. For the motion
case, C is replaced by C + tW for t € [0, tmax|. Squaring the terms in the inequalities,
the three tests are of the form Q;(t) := a;t? + 2b;t + ¢; > d; for 0 <i < 2. The line
and box intersect on the given interval if all three tests fail. That is, if there is a time
T € |0, tmax] for which Q;(T) < d; foralli, then an intersection must occur. If I; is the
interval (possibly empty) for which Q;(¢) < ¢, then the line and box must intersect
ifloN Iy N I3 N[0, tmax] #*4.

6.2.3 CAPSULES

SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Cap

The moving capsule is C + uE + t W, where the capsule origin is C and the capsule
axis hasdirection E. The parameter domain is (4, t) € [0, 1] x [0, fmax]. Replacing this
in Equation 2.14 leads to a quadratic equation in 4 and ¢ that represents the squared
distance,

O(u, 1) = |au + Bt + 7%,

where
- D.E.
a=E———=D
D-D
. - D-W-
B=W—-——=D
D.-D
. - = D-(C-E)-
p=(€C-P)—- ———""D.

D-D

If Qu, t) < r? for some (u,t) € {0, 1] x {0, tmax], then the line and capsule must
intersect during the given time interval. Just as for the line-sphere test, the division
can be avoided by multiplying through by D - D and comparing the minimum of the
modified quadratic to 72D - D, The minimization problem is solved in the same way
as for measuring the distance from a point to a rectangle.

6.2 Intersection of Dynamic Objects and Lines 191

6.2.4 LOZENGES

The moving lozenge is C +ukq + vE, + tW, where the lozenge origin is C and
the lozenge edge directions are Eo and E,. The parameter domain is (u, v, ¢) €
[0, 112 x [0, tmax]. Replacing this in Equation 2.14 leads to a quadratic equation in
u, v, and ¢ that represents the squared distance,

GURCE CODE

— 1 p: e 512
Qs v,0) = loru + v +yt + 91,

Intersection

where
ILENAME . E D ED
Lin3L a= = =
IntrLin3Loz 0~ DD
. - D-E=
=E|—..—..ID
D-D
. - D-w.
}/=W—..—..—D
D-D
= + - D(C-E)a
§=(C-P) - .(. =)D.
D-D

If Q(u, v, t) < r’ forsome (u, v, 1) € [0, 1]? x [0, tmax], then the lineand lozenge must
intersect during the given time interval. Just as for the line-sphere test, the division
can be avoided by multiplying through by D - D and comparing the minimum of the
modified quadratic to r2D - D. The minimization problem is solved in the same way
as for measuring the distance from a point to an oriented box.

6.2.5 CYLINDERS

Testing for the intersection of 2 line with a moving cylinder is an extremely com-
plicated and somewhat expensive process. For that reason, cylinders are not recom-
mended for use as bounding volumes. Capsules are a better choice. The algorithm for
picking a moving cylinder is not presented here.

Intersection

FILENAME

IntrLin3Cyin
6.2.6 ELLIPSOIDS

Given theline P + s D and static ellipsoid ()-(- E‘)TM()? — E‘) = |, theline intersects
the ellipsoid whenever the quadratic equation as? — 2bs + ¢ = 0 has a real-valued

192 Chapter 6 Collision Detection

i BOURCE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Elp3

root; t_he coefficients are a = (bTM D), b= 2D"™MA with A=C — P,and c =
ATM A — 1. The condition for having a real-valued root is b* — ac > 0.

For a moving ellipsoid, the center is C+tWiforte |0, tmax]. The b and ¢ co-
efficients of the quadratic in 5 now become functions of ¢, b=bit + by and c =
c2t? + 2¢1t + co, Where bg = DT™MA,by= DTMW,co=ATMA — 1,c, = ATMW,
and c; = WTMW. The condition for having a real-valued root is

Q(t) = (bat + bo)? — a(cat® + 2¢yt +c) > 0.

The minimum of Q(¢) can be computed on [0, x| and compared to zero.

6.2.7 TRIANGLES

{ 8bUrRcE CODE

LIBRARY

Intersection

FILENAME

IntrLin3Tri3

The moving triangle has vertloes Vo + tW V. = Vo + Eo, and Vo + Ez The plane of
the triangle at time ¢ is N.(X- Vo) =tN - W, where N = Eq x E,. Let the line be
P +sDfors € R.IfN - D, then the line must intersect each plane regardless of ¢. In
this case the point of intersection occurs when

- —

IN-WH+N.(Vp— P)

N.
sS= = -.
N.

The intersection point can be represented as Z(s_) = ‘70 + ‘W + uof:'o + ulé 1 for
some choice of ug and u,. Defining 0 =1L(s)— Vpand using the same notation as
in the intersection test for a line and a static triangle, the coefficients are computed as
uo = (enqo — €0141)/ A and u; = (egoqy — €0190)/ A. The point is inside the triangle
ifug>0,u;>0,andug+ u; < 1.

However, for the moving case, u; = u;(¢) = (a;t + b;)/ A for some coefficients
a; and b;. The test for a point inside a triangle is aot + bp = 0, ayt + b; > 0, and
(ao + ay)t + (bo + b)) < A. To show an intersection of a line and a moving triangle,
itis enough to show that thereisat € [0, fpax] for which these three inequalities are all
true. If I is the set of ¢ for which aot 4- bg > 0, I; is the set of ¢t for whicha ¢t + b, > 0,
and I is the set of ¢ for which (ap + a))t + (by + by) < A, then the line and moving
triangle intersect whenever Io N I} N I3 N [0, tax] # B

For the case of N - f), if there is no ¢ € [0, tmax] for which the corresponding plane
of the triangle contains the line, then there is no intersection. If there is such a ¢, it is
computed and the problem reduces to determining if the line intersects the triangle
within that plane, a two-dimensional problem. However, note that the triangle may
very well be moving in that planc. The two-dimcnsional problem itself has a time
component, and the algorithm shown earlier for the static case needs to be slightly
modified to handle time.

6.3 Intersection of Dynamic Objects and Planes 193

6.3 INTERSECTION OF DYNAMIC OBJECTS AND PLANES

In the following sections, the plane is stationary and defined by N - X =d. The other
objects are moving with constant linear velocity W over a time interval 1 € [0, tmax |-
The problem is to determine if the moving object intersects the plane within the
specified interval of time. Typically, in a game environment, the objects start out in
nonintersecting positions. The algorithms presented here only report an intersection
time of r = 0 when the object and plane are initially intersecting. The intersection set
is usually a continuum of points, and the time necessary to calculate the full set is
sometimes expensive.

The following sections use notations that were introduced, and formulas that were
derived, in Section 4.3. They are not redefined or rederived here.

6.3.1 SPHERES

LIBRARY

Intersection

FILENAME

IntrPInSphr

Consider a sphere of radius r with moving center E‘(l) = E‘o + tW. The distance
between center and plane is |Kl -E‘(l) —d|. If |Kl - E‘o — d| < r, then the sphere is
already intersecting the plane. The first time of contact is 1 = 0, and the intersection
set is a point (distance is exactly r) or a circle. If not initially intersecting, then the
intersection testing depends on the motion of the sphere relative to the plane. That
is, the sign of N-Wis important. The first time of contact T of the sphere with the
plane isa solutionto |N - C(T) —d| =r,

_d—ﬁ-éo—sign(ﬁ-éo)r
N-W '

T

(6.1)

If T > 0, then the sphere will intersect the plane. If T < 0, the sphere is moving away
from the plane.

In an implementation, the division does not have to be performed first. The
numerator and denominator are computed, and if they have different signs, then
there is no intersection. If the signs are the same, then there is an intersection and
the division is performed to obtain T. The first point of contact, if required by the
application, is computed by evaluating C(T). The pseudocode for test intersection is
given below. A return value of true indicates the intersection will occur. In this case
the T value is set to the first time of contact. If no intersection occurs, the return value
is false and the T parameter is invalid.

bool TestSpherePlane (Sphere sphere, Plane plane, Velocity W,
float& T)
{

sdist = Dot(plane.N,sphere.C) - plane.d;

194

Chapter 6 Collision Detection

if (sdist > sphere.r)

{
dotNW = Dot(plane.N,W);
if (dotNW < D)
{
T = (sphere.r - sdist)/dotNu;
return true;
}
else
{
return false;
}
}
else if (sdist < -sphere.r)
{
dotNW = Dot(plane.N,W);
if (dotNW > D)
{
T « -(sphere.r + sdist)/dotNW;
return true;
}
else
{
return false;
}
}
else
{
T=0;
return true;
}

An implementation can also provide the maximum time allowed, f;,ax, with the
obvious changes to the code to compare T to that time. An implementation for
FindSphereP1ane will have additional code to compute the first point of contact.

6.3.2 ORIENTED BOXES

Consider an oriented box with center Co and fixed coordinate axes A; and extents
a; for D < i < 2. The quantity r = Z:,-z=o a;|N - A;| is the radius of the interval of
the projected box onto a normal line to the plane. Computation of the first time of
contact T (if any) is identical to that of a sphere versus a plane; see Equation (6.1).
The pseudocode is

6.3 Intersection of Dynamic Objects and Planes 195

bool TestBoxPlane (Box box, Plane plane, Velocity W, float& T)
{

r = box.a0*|Dot(plane.N,box.A0)| +
box.al*|Dot(plane.N,box.Al)| +

box.a2*|Dot(plane.N,box.A2)|;

Intersection

sdist = Dot(plane.N,box.C) - plane.d;

if (sdist > r)

IntrPInBox3 {
dotNW = Dot(plane.N,NW);
if (dotNW < D)
{
T=(r - sdist)/dotNu;
return true;
}
else
{
return false;
}
}
else if (sdist < -r)
{
dotNW = Dot(plane.N,W);
if (dotNW > 0)
{
T = -(r + sdist)/dotNKW;
return true;
}
else
{
return false;
}
}
else
{
T=20;
return true;
1
}

Determining the first point of contact is more difficult for boxes. If there is a
first time of contact, then the intersection set depends on the orientation of N to
the box axes. If N is aligned with a box axis (it is perpendicular to two box axes),
then the intersection set is an entire face of the box. If N is not aligned with a single

196 Chapter 6 Collision Detection

axis, but is perpendicular to one axis, then the intersection set is an entire edge of
the box. Otherwise, the intersection set is a vertex of the box. How you implement
FindBoxP1ane depends on theapplication’s requirements. Choices on what to return
from the function include (1) the entire set of intersection; (2) arepresentative pointin
the intersection; or (3) a flag indicating that there are multiple contact points, probably
with information about type such as vertex, edge, or face.

6.3.3 CAPSULES

S0URCE CODE

LIBRARY

Intersection

FILENAME

IntrPInCap

Consnder a capsule whose axis is the line segment P(t) + sDfors e [0, l] and where
P(t) = Po + tW. Define the signed distances 8 = N - Po —dand §, = N - Pl d,
where P = Py + D. If 8081 <0, then the capsule is already intersecting the plane.
Otherwise, the sign of N - D is analyzed to decide which of Py and P, is closer to the
plane. Once that is known, it is enough to apply the intersection testing algorithm
between a sphere and a plane. The pseudocode is

bool TestCapsulePlane (Capsule capsule, Plane plane, Velocity W,
floatd& T)
{
sd0 = Dot(plane.N,capsule.P) - plane.d;
sdl = sd0 + Dot(plane.N,capsule.D);
if (sdD*sdl > capsule.r*capsule.r)

{
// Both end points of capsule on same side of plane and
// the capsule is not initially intersecting the plane.
if (|sd0| <= |sdl]
{
// P is closer to plane than P+D
Sphere sphere(capsule.P,capsule.r);
return TestSpherePlane(sphere,plane,.W,T);
1
else
{
// P+D is closer to plane than P
Sphere sphere(capsule.P+capsule.D,capsule.r);
return TestSpherePlane(sphere,plane,W,T);
}
}

// capsule already intersecting plane
T~0;
return true;

6.3 Intersection of Dynamic Objects and Planes 197

An implementation should inline the sphere-plane tests since the signed distances
to Py and Py have already been computed, yet TestSpherePlane computes them
again. An implementation for FindCapsuleP1ane must deal with the fact that the
intersection set at first contact time is either a point or, if N-D= 0, a line segment.

6.3.4 LOZENGES

URCE CODE Consideralozengei’+u1-:'o+vél,whereﬁo;é5 12'1965 Eo- El,and(u,v)e [0, 1].
TMhmmmawﬁMhumumm@nmﬂw PPm—P+Em%1 P+ Ey,

and Py = P + Eg + E). The signed distances to the plane are §j=N-Pj—d.If
Intersection the signed distances are not all positive or not all negative, then the lozenge is already

intersecting the plane. Otherwise, the corner closest to the plane is determined and
the test intersection algorithm is applied to the sphere corresponding to that corner.
IntrPInLoz The pseudocode is

bool TestLozengePlane (Lozenge lozenge, Plane plane, Velocity W,
float& T)
{
r2 = lozenge.r*lozenge.r;
sd00 = Dot(plane.N,1ozenge.P) - plane.d;
sd10 = sd00 + Dot(plane.N,lozenge.E0);
if (sd00*sdl0 > r2)
{
// P00 and P10 on same side of plane and the capsule
// connecting them is not intersecting the plane.
dotNE1l = Dot(plane.N,lozenge.El);
sd01l = sd00 + dotNE1l;
if (sd00*sd0l > r2)
{
// P00 and POl on same side of plane and the capsule
// connecting them is not intersecting the plane.
sdll = sdl0 + dotNEl;
if (sdll*sdl0 > r2)
{
// A1l rectangle corners on same side of plane and the
// lozenge containing them is not intersecting the plane.
if (|sd00| <= {sd10]|
{
if (|sd00| <= |sd01])
{
// P00 closest to plane
Sphere sphere(lozenge.P,lozenge.r);

198 Chapter 6 Collision Detection

return TestSpherePlane(sphere.plane.W.T):;

}
else
{
// POl closest to plane
Sphere sphere(lozenge.P+10zenge.El,10zenge.r);
return TestSpherePlane(sphere,plane,W,T);
}
}
else
{
if (|sd10| <= |sdll1])
{
// P10 closest to plane
Sphere sphere(lozenge.P+lozenge.E0,10zenge.r);
return TestSpherePlane(sphere,plane,W,T);
}
else
{
// P11 closest to plane
Sphere sphere(lozenge.P+lozenge.EO+10zenge.E1l,10zenge.r);
return TestSpherePlane(sphere,plane,W,T);
}
}

}

// l1ozenge already intersecting plane
T=0;
return true;

An implementation should inline the sphere-plane tests since the signed distances
to f’,-,- have already been computed, yet TestSphereP1ane computes them again. An
implementation for FindLozengeP1ane must deal with the fact that the intersection
set at first contact time is either a point, a line segment, or a rectangle.

6.3.5 CYLINDERS

This algorithm is similar to the one discussed for the culling of cylinders. If 6, and 6,
are the signed distances for the end points, then the four important cases are where

6.3 Intersection of Dynamic Objects and Planes 199

both are positive (two cases based on order of the distances) or both are negative (again
two cases). The pseudocode is

bool TestCylinderPlane (Cylinder cylinder, Plane plane,

Velocity W, floatd T)

Intersection {

dotND = Dot(plane.N,capsule.D};

sd0 = Dot(plane.N,capsule.P) - plane.d;

IntrPInCyin sdl = sd0 + dotND;
if (sdO*sdl > 0)
{

// both end points of cylinder on same side of plane
lenD = Length(cylinder.D);

lenNxD = Length(Cross(plane.N,cylinder.D));

ratio = lenNxD/1enD:

if (sd0 > 0)

{
if (sd0 <= sdl)
{
// P is closest to plane
sdq = sd0 - cylinder.r*ratio;
1
else
{
// P+D 1s closest to plane
sdq = sdl - cylinder.r*ratio;
1

if (sdq > 0)

{
// cylinder not initially intersecting plane
dotNW = Dot(plane.N,W);
if (dotNW < 0)

{
// cylinder moving towards plane
T = -sdq/dotNWk;
return true;

}

else

{

// cylinder moving away from plane
return false;

200 Chapter 6 Collision Detection

}
}
else
{
if (sdl <= sd0)
{
/1 P is closest to plane
sdq = sd0 + cylinder.r*ratio;
}
else
{
/1 P+D is closest to plane
sdq = sdl + cylinder.r*ratio;
}
if (sdg < 0)
{
// cylinder not initially intersecting plane
dotNW = Dot(plane.N,W);
if (dotNW > 0)
{
// cylinder moving toward plane
T = -sdq/dotNW;
return true;
}
else
{
// cylinder moving away from plane
return false;
}
}
}

}

// cylinder already intersecting plane
T=0;
return true;

Here is where the first snag with cylinders shows up. In order to find the first time of
contact, a square root must be taken, an expensive operation. Even if the length of Dis
precomputed and stored with the cylinder, the length of N x D must be computed at
run time. For this reason, capsules are better bounding volumes to use than cylinders.

6.3 Intersection of NDynamic Objects and Planes 201

6.3.6 ELLIPSOIDS

The algorithm for ellipsoids is similar to that for spheres and oriented boxes. One

difference is in the computation of the radius of the interval of projection; here the
square root is avoided. The pseudocode is

bool TestEllipsoidPlane (Ellipsoid ellipsoid, Plane plane,
Velocity W, flcat& T)
Intersection {
sdist = Dot(plane.N,sphere.C) - plane.d:
IntrPInElp3 if (sdist > 0)
{

r2 = Dot(plane.N,ellipsoid.Minverse*plane.N);
if (sdist*sdist > r2)

{
dotNW = Dot(plane.N.W):
if (dotNW < 0)
{
// ellipsoid moving toward plane
r = sqrt(r2):
T=1(r - sdist)/dotNW;
return true;
}
else
{
/! ellipsoid moving away from plane
return false;
}
}
}
else if (sdist < D)
{

r2 = Dot(plane.N.ellipsoid.Minverse*plane.N);
if (sdist*sdist > r2)
{
dotNW = Dot(plane.N,¥W);
if (dotNW > 0)
{
/! ellipsoid moving toward plane
r = sqrt(r2);
T= -(r + sdist)/dotNW:
return true;

202 Chapter 6 Collision Detection

else

{
// ellipsoid moving away from plane
return false;

}

T=0;
return true;

6.3.7 TRIANGLES

! SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrPInTri3

Let the three vertices be V; and three signed distances be §; = N-Vi—dfor0<i<2.
If the signed distances are not all positive or not all negative, the triangle is already
intersecting the plane. Otherwise, the closest vertex to the plane is determined and an
intersection test is applied to it. The pseudocode is

bool TestTrianglePlane (Triangle triangle, Plane plane,
Velocity W, floatk T)
{
sd0 = Dot(plane.N,triangle.V0):
if (sd0 > 0)
{
sdl = Dot(plane.N,triangle.V1l);
if (sdl > 0)
{
sd2 = Dot(plane.N,triangle.V2);
if (sd2 > 0)
{
// vertices all on same side of plane
GetMinimumDistanceAndVertex(sdMin, VMin);
dotNW = Dot(plane.N,W);
if (dotNW < 0)

{
// triangle moving toward plane
T = -sdMin/dotNW;
return true;

1

else

{

// triangle moving away from plane

6.4 Static Object-Object Intersection 203

return false;

1
1
1
1
else if (sd0 < 0)
{
sdl = Dot(plane.N,triangle.V1);
if (sdl < 0)
{
sd2 = Dot(plane.N,triangle.V2);
if (sd2 < 0)
{
/1 vertices all on same side of plane
GetMinimumDistanceAndVertex(sdMin,VMin);
dotNW = Dot(plane.N,W):
if (dotNW < 0)
{
// triangle moving toward plane
T = -sdMin/dothW;
return true:;
1
else
{
// triangle moving away from plane
return false:
1
1
1
1

// triangle already intersecting plane
T=0;
return true;

}

The function GetMinimumbistanceAndVertex finds the minimum value of {8y, 4,
8,) and the corresponding vertex.

6.4 STATIC OBJECT-OBJECT INTERSECTION

The algorithms in this section determine if two of the same type or stationary objects
intersect, but it is also possible to develop intersection testing algorithms for mixed

204 Chapter 6 Collision Detection

‘Table 6.1 Relationship between sphere-swept volumes and distance calculators (pnt, point; seg,

line segment; rct, rectangle).

Sphere Capsule Lozenge

Sphere dist(pnt,pnt) dist(pnt,seg) dist(pnt,rct)
Capsule dist(seg,pnt) dist(seg,seg) dist(seg,rct)
Lozenge dist(rct,pnt) dist(rct,seg) dist(rct,rct)

types. In the case of spheres, capsules, and lozenges, this is not a difficult process, and
the details are presented here. For a case such as an oriented box and an ellipsoid,
the details are sufficiently complex and beyond what was intended for the scope of
this book. When analyzing intersections between objects there is a difference between
treating the objects as three-dimensional solids and treating them as two-dimensional
shells. The testing here assumes that the objects are solids since that is the natural
setting for bounding volumes. Finally, the return value of any “test” pseudocode
functions is true if there is an intersection, false otherwise.

The objects for which intersection testing is relatively inexpensive are considered
here and include spheres, capsules, lozenges, oriented boxes, and triangles. Testing
for the intersection of two ellipsoids can be solved by a constrained minimization
that leads to three polynomial equations in three unknowns. The methods in Wee
and Goldman (1995a, 1995b) can be used to solve the system, but they are too
expensive for a real-time application on current hardware. Testing for the intersection
of two cylinders requires a lot of special-case handling based on how the cylinders are
oriented with respect to each other and is also too expensive for real time.

6.4.1 SPHERES, CAPSULES, AND LOZENGES

SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrSphrSphr
IntrSphrCap
IntrSphrlLoz
IntrCapCap
IntrCaploz
IntrLozLoz

Spheres, capsules, and lozenges are examples of sphere-swept volumes. Intersection
testing between pairs of objects is equivalent to measuring distances between the me-
dial structures and comparing to the sum of the radii. Table 6.1 shows the relationship
between the volumes and the corresponding distance calculators.

The pseudocode for the six distinct cases is

bool TestSphereSphere (Sphere sphere0, Sphere spherel)
{

diff - sphere0.C - spherel.C;

rsum = sphere0.r + spherel.r;

return Dot(diff,diff) <= rsum*rsum;

6.4 Static Object-Object Intersection 205

bool TestSphereCapsule (Sphere sphere, Capsule capsule)

{
rsum = sphere.r + capsule.r;
Segment seg(capsule.P,capsule.D);
return SquaredDistancePointSegment(sphere.C,seg) <= rsum*rsum;
}
bool TestSphereLozenge (Sphere sphere, Lozenge lozenge)
{
rsum = sphere.r + lozenge.r;
Rectangle rct(lozenge.P,lozenge.E0,l0zenge.E1l);
return SquaredDistancePointRectangle(sphere.C,rct) <= rsum*rsum:
}
bool TestCapsuleCapsule (Capsule capsule0O, Capsule capsulel)
{
rsum = capsule0.r + capsulel.r;
Segment segO(capsule0.P,capsule0.D);
Segment segl(capsulel.P,capsulel.D);
return SquaredDistanceSegmentSegment(seg0,segl) <= rsum*rsum;
}
bool TestCapsuleLozenge (Capsule capsule, Lozenge lozenge)
{
rsum = capsule.r + lozenge.r;
Segment seg(capsule.P,capsule.D);
Rectangle rct(lozenge.P,lozenge.E0,10zenge.E1);
return SquaredDistanceSegmentRectangle(seg,rct) <= rsum*rsum;
}
bool TestLozengelozenge (Lozenge lozengeO, Lozenge lozengel)
{
rsum = lozenge0.r + lozengel.r;
Rectangle rect0(lozenge0.P,10zenge0.E0,10zenge0.E1);
Rectangle rectl(lozengel.P,10zengel.E0,10zengel .E1);
return SquaredDistanceRectangleRectangle(rectO,rectl) <= rsum*rsum;
}

The functions for computing the various distances can be found in Chapter 2.

6.4.2 ORIENTED BOXES

The method of separating axes is used to determine whether or not two boxes intersect.
Let the first box have center Co, axes Ao, A I Az, and extents dg, @y, @;. Let the second

206 Chapter 6 Collision Detection

| SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrBox3Box3

box have center Cl, axes Bo, Bl, Bz, and extents bo, b, bz The potentlal separating
axes are of the form Co + sL, where L is one of A;, B,,or A; x BJ for0<i<2and
0<j=<2

The projections of the vertices of the first box onto the line Co + sL relative to
origin Cy are

2 L-A
Za,-a,- C——
i=0 L

The interval of projection is [—rg, ro] and contains all the vertex projections. The
radius is obtained by making the summation as large as possible by choosing o; to be
the sign of L. A Thus,

where D = C‘. — Co. The interval of projection is [r — ry, r + r], where
Z Bil

rn= b; =
n Z ~

and

t~
[e]]

The two projected intervals do not intersect whenever the distance between in-
terval centers is larger than the sum of the radii of the intervals: |r| > ry + r. Each
of the quantities involved has in its denominator L - L. The division is therefore not
necessary, Define R = |r|Z . Z, Ry = roL - L,and R, = r.i . L. The nonintersection
test is

2 2
IL-Dl=R>Ro+ R =Zai|i-3i|+zbi|L' Bil.
=0 i=0

That is, the line with direction L is a separating axis if R > Ro + R).

6.4 Static Object-Object Intersection 207

The axes of the second box can be written as combinations of axes of the first,
B; = ciAg + €1;A1 + 2i A2

for0 < i < 2. Let A be the matrix whose columns are the A;, let B be the matrix whose
columns are the B;, and let C be the matrix whose entries are <ijs then B = AC, in
which case C = ATB. The components of C are just ¢;; = A; - B Similarly, the axes
of the first box can be written as linear combinations of axes of the second box,

Zi = Cioéo + Cilél + CiZEZ

for 0 < i < 2. These relationships allow computation of the various dot products
between the separating axis directions and the box axes in terms of the ¢;; and extents.
In particular, the nonintersection tests involve various triple scalar products involving
the box axes:

/-i,'o - Aj, x Bj =sign(ig, i1)¢;; and Ejo . /-i,' x EJ.I = sign(j1, jo)cijy (6.2)

where sign (0, 1) = sign(l, 2) = sign(2, 0) = +1 and sign(1, 0) = sign(2, 1) = sign(0,
2) = —1. For two boxes there are 15 potential separating axes, which include 6box axes
(3 per box) and 9 axes obtained as cross products of box axes, one chosen, from each
box. Table 6.2 summarizes the quantities that must be computed for th? separating
axes tests.

Testing for intersection amounts to processing each axis of the 15 potential sep-
arating axes. If a separating axis is found, the remaining ones of course are not pro-
cessed. The various entries ¢;; and [c;;| are computed only when needed, avoiding
unnecessary calculations in the event that a separating axis is found quickly and some
of the ¢ij do not need to be computed. The basic separating axis test involves comput-
ing Ro, Ry, and R and then testing for nonintersection by comparing R > Ro + R).

6.4.3 ORIENTED BOXES AND TRIANGLES

Intersection

IntrBox3Tri3

Let the trlangle have vertices U, for 0 <i < 2. The edges of the trlangle are Eg=
Uy — Uy, Ey = U, — Ug,and Ez = E. — Eg. A normal for the trlangle isN =Egx E,
and is not necessarily unit length. The triangle and its interior are given by

[Uo+siio+rl§.:osssl, 0<t<l, s+1<1

Let the box have center C, axes A;, and extents gifor0<ic< 2._Deﬁne D =_Uo_— C.
The potential separating axes are of the form C + sL, where L is one of N, A;, or
Aix Ejfor0<i<2and0<j<2.

208 Chapter 6 Collision Detection

Table 6.2 Values for R, Ro, and R, for the separating axis tests.

L Ro R, R

Ao a0 bolcool + b lcor| + bzlcoz Ao - D

Ay a bolerol + bilen| + b2lcial |A, - DI

A, a bolezol + brleail + balez| |A; - D|

B, ag|cool + arlciol + azlczol bo |Bo - DI

B, aglco| + ajleni + azlea| b |B, - D|

B, ag|coz| + ailcrz| + azlcza| bz |B; - DI

Ao x By ailczol + azlcrol bi|coz2l + bzlcarl lcioAz - D — cxA, - D
Ao x By alcal + azlenl bolcozl + b2lcool lendz- D — caAy - D|
Ao x B, ajlcz| + azleral bolcor| + b1lcool leizAz - D — 224, - D|
Ay x Bo aglc2ol + az|cool blcrz| + b2lcnl lczoAo - D — cooAz - D)
A x B aolcai| + azlcon bolciz| + bzlcrol lcz1Ao - D — co1A; - D
A x B, aglc22| + azlcazl bolcul + &1lciol lc22Ao - D — co2Az - DI
Az x By aglerol + ailcool bilczz] + baleanl lcooAy - D = cr0Ao - D
A x B aolen| + ajlcal bolc22| + b2|czol lcorAy - D —cnAg - D|
A; x B aglcrz2l + arlcoz| bolcail + brlczol lcozA1 - D — ¢12A0 - D

The interval of projection for the box is [, r], where

The projections of the triangle’s vertices relative to the line origin are

L.@W;-C

L-L

for 0 < i < 2. The projection of the triangle does not have a natural center or radius
as does the box. Nonintersection now amounts to showing that the minimal interval
containing the three projected triangle vertices is separated from the projected box
interval, As before, the division by L-Lis not necessary, Define R = rL.Land pi=
L. (U, C)forO <i=x<2 Notcthatpo— L- (Uo C)= L D,p. L- (U. C) =
L-D+E)=po+L-Eqyandp,=L-(U;—C)=L-(D+E)=po+L-E,.
Table 6.3 summarizes the quantities that must be computed for the separating axis
tests.

6.4 Static Object-Object Intersection 209

Table 6.3 Values for R, po, p1,and p; for the separating axis tests.

L Po P p2 R

N N-D Po Po aolN - Aol + ay|N - Ayl + a2l N - A,
Ao Ao-D po+ Ao - Eo Po+740'él ag

A A -D po+Ai-Eo po+ A -E a

A, A;-D Po+:—42-1—50 Po+;‘iz-1§1 a

Ao x Eo Aox Eq-D Po po+ Ao-N ailAz - Eol + a)A, - Eo|
Ao x E, Aox E,-D po— Ao+ N Po ailAz- E)| + a2lA, - Ey|
Ao x Ea Aox E;-D po—Ap- N po—Ao-N a)|Az- Ea] + a3l A, - Es)
A, x Eq A x Ey- D Po po+A;-N aglA; - Eql + a21Ao - Eol
A, x E) Al xE-D po—A,-N Po aolA; - E\| + azlAg - E||
Ay x E; A x Ey. D po—A - N po— A, - N alA; - Ea2| + a2lAo - Ey
Az x Eg Ay x Ey-D Po po+Az- N aolAy - Eo| + a1|Ao - Eol
Ay x E| Ayx E|- D po—A2-N Po aolA; - Ey| + ay| Ao - E)
A; x Ey Ay xE,. D po—Ay- N po—Az-N ao|3|'i"72|+a|\20'i:72|

For axis direction N, the projected triangle vertices are identical, so the nonin-
tersection test amounts to showing N - D is not in the interval [— R, R]. For axis
directions A;, the projected triangle vertices may all be distinct. For axis directions
Aix E j» at most two of the projected vertices are distinct. If the triangle interval is
[min(po, p1, P2), max(po, P1» p2)] and the box interval is [— R, R}, then the triangle
and box do not intersect whenever min(pyg, p), p2) > R or max(po, p1. p2) < —R.

Testing for intersection amounts to processing each axis of the 13 potential sep-
arating axes, If a separating axis is found, the remaining ones are not processed. Any
quantities that are needed multiple times are calculated only once and only when
needed. Pseudocode that shows how to minimize the calculations is given below for
each type of axis test.

Axis N

The nonintersection test is |N - D] > R. The pseudocode for testing if p is not in
[-R,R]is

if ¢ |p| > R)
return no_intersection;

210 Chapter 6 Collision Detection

IkxcsAZk

The nonintersection test is min(pg, p1, p2) > R or max(pg, p1, p2) < —R. The
pseudocode is

if (p0 > R)
{
if (¢ pl >R and p2 > R)
return no_intersection;

}
}
else if (p0 < -R)
{
if (pl < -R and p2 < -R)
return no_intersection;
}

Axes A; x Ej

The triangle projects to at most two values 4o and ;. The nonintersection test is
min(ug, #1) > R or max(ug, #;) < —R. The pseudocode is

if ((u0 > R and ul > R) or (ud < -R and ul < -R))
return no_intersection:

6.4.4 TRIANGLES

¢ BUURCE CODE

Intersection

FILENAME

IntrTri3Tri3

Two fast tests for the intersection of triangles are the interval overlap test (Méller 1997)
and an algorithm in the ERIT package (Held 1997). The underlying idea is effectively
the same for both methods. If the two triangles intersect, the set of intersection must
occur on the line of intersection of the two planes containing the triangles, and it
must be an interval. Each method attempts to find that interval in its own way. Both
methods are discussed in detail in Méller and Haines (1999). The method presented
here uses separating axes. Thisapproach easily extends to the case of moving triangles;
the interval overlap test and the ERIT algorithm do not have a simple extension.

Let the ﬁrst triangle have vertnces Ao, A,, Az, edges Eo = A| Ao, Ei= Az - Ao,
Ez =E 1 — Eo, and normal N= Eo x E 1 (not necessanly umtlength) Let the second
triangle have vertices Bo, B|, B, edges Fo= Bl Bo, F1 = B, — Bo, Fa=F — Fy,
and normal M = Fy x F, (not necessarily unit length). Define D= Bo - Ao

Triangles in three dimensions present an interesting problem for nonintersection
by the separating axis approach. The set of potential separating axes depends on
whether or not the triangles are parallel. If the two triangles are parallel but not

6.4 Static Object-Object Intersection 211

coplanar, then the triangle normals will provide separating axes. However, if the
triangles are coplanar, then neither normal provides a separating axis. Moreovet, cross
products of pairs of edges from the triangles are all normal vectors, so they do not yield
separating axes. It turns out that for the coplanar case, cross products of a triangle
normal with the edges of the other triangle provide the potential separating axes. As
a two-dimensional problem, the potential separating axis directions are just normal
vectors to the edges.

For nonparallel triangles, the potential separating axes are of the form Ag + 5L,
where L is one of N, M, or E; x F for 0 <i <2and 0 < j <2, For parallel or
coplanar triangles, L is one of I‘\'I, N x E’,—, or N x f‘, fori =0, 1,__2.

The projection distances of the triangle vertices scaled by L - L are

po=L-(Ay—Ag) =0
pr=L (A —Ag)=L-E
pr=L-(A&;—Ap=L-E,
and

.D

Fl

go=L-(By— Ap) =
@=L -(By—A)=L - (D+Fp)=qo+L-Fo
qz=z-(§z—;‘o)=z-(D+F|)=qo+1:'i}|.

The tests for separation are min;(p;) > max (g;) or max;(p;) < min;(q;). Table 6.4
summarizes the quantities that must be computed for the separating axis tests for
noncoplanar triangles.

Table 6.5 summarizes the quantities that must be computed for the separating axis
tests for coplanar triangles. The quantntes in that table are € = |N l; E; x F; = A JN
fori =0,1and j =0, 1;and Fy x F; = uN.

Testing for intersection amounts to processing the various potential separating
axes. Any quantities that are needed multiple times are calculated only once and only
when needed. The basic separating axis test involves computing the triangle intervals
[min;(p;), max;(p;)] and (min j(g;), max j(g;)] and then testing for nonintersection
by comparing the two intervals. The pseudocode for the outer-level structure is

bool TestTriangleTriangle (Triangle tri0, Triangle tril)
{

if (triQ.N is separating) return false;

if (tril.N is separating) return false;

cross0l ~ Cross(tri0.N,tril.N);

212 Chapter 6 Collision Detection

Table 6.4 Values for p; and g; for the separating axis tests for noncoplanar triangles.

L PP P2 o g 92
N 0 0 0 N.-D go+N-Fy q+N-F
M 0 MEO ME| M-D g0 g0
EsxFob 0 0 —N.Fy, EyxF-D 4o g0+ M - Eo
E’oxi'l 0 —N-f‘l E‘oxﬁ-b qo—fl~i'o qo
EgxF 0 0 -N.-F, EyxF-D g-M-E q—M-E
E]XF‘O 0 Ni“o Elxio-b 4o qo+M-E|
E’.xﬁ} 0 l-\'/-l-.'l E’,xi’l-b qo—A:!-E\ q0
E’,xﬁ'z 0 l-\./i"z Elxiz-b qo—ﬂ_l-él qo—ﬂ-l-E'|
E;_xl?o 0 l-\-/i"o f\-/i'o E;_xi'o-b qo qo+ﬂ-l-é7_
E’zxf] 0 N 7"1 l-\'/-f} E’zxﬁ-l_) qo—ﬁ:!-i'z qo
E;_xl?z 0 NF‘;_ Ni‘z E;_xi“z-b qO—Ifl-E2 qQ—ﬂ_l-El

Table 6.5 Values for p; and g; for the separating axis tests for coplanar triangles.

L Po n P2) o g

N 0 0 0 N-D % 0
NxEy, 0 0 22 NxEy-D go + Agol? o + Ao1£2
NxE, o —g? 0 NxE.D Qo + Aol? go+ Ay l?
NxE o ~¢2 —g2 NxEy; D qo+(hio—2o0)? go+ Ay — hop)e?
N x Fg 0 —Agpt? —Aygf2 N x Fo D qo go+ }Llfz
NxF o0 —hg1 2 —App 82 NxF-D qo — pe? 7
NxF, 0 Guw-id (po—an? NxF-D qo — pt? go — put?

if (Dot(cross0l,crossQl) > 0)

{

// triangles are not parallel

if (Cross(tri0.EQ,tril.E0) is separating)

return false;

if (Cross{tri0.EQ,tril.E1l) 15 separating) return false:

if (Cross(tri0.EO0,tril.E2) is separating)
if (Cross(tri0.E1l,tril.EQ) is separating)

return false;
return false;

if
if
if
if
if
}
else
{
r/
//
if
if
if
if
if
if
}

(Cross(tri0.EI,tril.E1)
(Cross(tri0.E1l,tril.E2)
(Cross(tri0.EZ,tril.EQ)
(Cross(tri0Q.E2,tril.E1)
(Cross(tri0.EZ,tril.E2)

6.4 Static Object-Object Intersection

is
is
is
is
is

separating
separating
separating
separating
separating

)
)
)
)
)

return
return
return
return
return

213

false;
false;
false;
false;
false;

Triangies are parallel and must be coplanar since the
did not cause

L N N N N

separating

Cross(tri0Q.
Cross(tri0.
Cross(trid.
Cross(tril.
Cross(tril.
Cross(tril.

return true;

axis tests
N,tri0.£0)
N.tri0.E1)
N,tri0.E2)
N.tril.E0)
N.tril.E1)
N,tril.E2)

is
is
is
is
is
is

separating
separating
separating
separating
separating
separating

an exit.

)

)
)
)
)
)

return
return
return
return
return
return

false;
false;
false;
false;
faise;
false;

The pseudocode for the individual separating axis tests requires searching for the
minima and maxima of sets. The various tests depend on how many points are in

each set.

Axes N or M

One triangle projects to a single point 4 and the other projects to three points v, vy,
and v3. The nonintersection test is min(vg, 171, vz) > u or max(ve, V), ¥2) < u. The
pseudocode is

if (vO > u }

{

if (vl > uand v2 > u }
return no_intersection;

}

else if (v0 < u)

{

if (vl < u and v2 < u)
return no_intersection;

214 Chapter 6 Collision Detection

Axes E; x F;
The triangles each project to exactly two points, the first to ug and u and the second
to vg and v. The nonintersection test is min(vg, v1) > max(ug, #1) or max(vp,) <

min(ug,). The pseudocode is

if (ul >= ul)

{
if ((vO < u0 and v1 < u0) or (v0 > ul and vl > ul))
return no_intersection;
}
else
{
if ((vO > u0 and v1 > u0) or (v0 < ul and vl < ul))
return no_intersection;
]

Axesi/xE,—oeri’,-

One triangle projects to two points ugand 1, and the other projects to three points vy,
vy, and vz. The nonintersection test is min (vg, vy, V2) > max{ug, #1) or max(vp, vy, V2)
< min(up, #4). The pseudocode is

if (ul >= ul)
{
if ((v0 < u0 and vl < u0 and v2 < ul) or (v0 > ul and v1 >
ul and v2 > ul))
return no_intersection;

}
else
{
if ((vO > u0 and v1 > u0 and v2 > u0) or (v0 < ul and
vl < ul and v2 < ul))
return no_intersection;
]

65 DYNAMIC OBJECT-OBJECT INTERSECTION

The algorithms in this section determine if two of the same type of dynamic objects
intersect. In some of the dynamic cases the algorithms are also presented for deter-

6.5 Dynamic Object-Object Intersection 215

Table 6.6 Relationship between sphere-swept volumes and distance calculators when the second

object is moving (pnt, point; seg, line segment; rct, rectangle; pgm, parallelogram; ppd,
parallelepiped; hex, hexagon).

Dynamic

Sphere Capsule Lozenge

Static
Sphere dist(pnt,ipnt,seg}) dist(pnt,{seg,pgm}) dist(pnt,{rct,hex,ppd})
Capsule dist(seg,{pnt,seg}} dist(seg,{seg,pgml}) dist(seg,{rct,hex,ppd})
Lozenge dist(rct,{pnt,segl) dist(rct,{seg,pgm}) dist(rct,{rct,hex,ppd})

mining a first point of contact. Both objects can have nonzero velocities, but without
any loss of generality one of the objects can be assumed to be stationary and the other
moving by subtracting the velocity of one from the other. If a point of intersection is
computed, it needs to be adjusted by adding back in the velocity of the first object.
The velocity vector in all the dynamic sections is named W, and the time interval of
consideration is [0, fmax). The objects are treated as solids, just as in the static case.
The return value of any “test” pseudocode functionsis t rue if there is an intersection,
false otherwise.

6.5.1 SPHERES, CAPSULES, AND LOZENGES

!

 8PURCE CoDE

LIBRARY

Intersection

IntrSphrSphe
IntrSphrCap
IntrSphrioz
IntrCapCap
IntrCaploz
Intralozloz

As mentioned in Section 6.5, intersection testing on sphere-swept volumes of this type
is equivalent to computing distances between the medial structures and comparing to
the sum of the radii. In this case, the first object is assumed to be static and the second
object is assumed to be dynamic. The medial structure of the moving object spans part
of space to form yet another sphere-swept volume, so intersection testing is the same
process as for the static cases, Table 6.6 shows the relationship between the volumes
and the corresponding distance calculators. The left column objects are static and the
top row objects are dynamic. For a single entry in the table, the choice of distance
calculator depends on how the object is moving (if at all). For example, comparing
static sphere to moving capsule, it is possible that the direction of motion is in the
direction of the capsule axis, in which case the swept volume is another capsule. But
if the direction of motion is not along the capsule axis, then the swept volume has a
medial structure that is a parallelogram (not a lozenge by this book’s definition since
the medial structure might not be a rectangle).
An example of pseudocode for one of the table entries is

216 Chapter 6 Collision Detection

bool TestCapsuleCapsule (Capsule cap0, Capsule capl, Velocity W,
float tmax)
{
dotWW = Dot(W,W);
rsum = cap0.r + capl.r;
Segment segO(cap0.P,cap0.D);

if (dotWW > 0)
{
crsWD = Cross(W,D);
dotWxD = Dot(crsWD,crsWD);
if (dotWxD > 0)
{
// moving capsule axis spans a parallelogram (parameters [0,1]%2)
Parallelogram pgm(capl.P,capl.D,tmax*W);
sqrDist = SquaredDistanceSegmentParallelogram(seg0,pgm);

}
else
{
// moving capsule axis spans a line segment
dotWD = Dot(W,capl.D):
if (dotWd > 0)
{
Segment segl(capl.P,capl.D+tmax*W);
sqrDist = SquaredDistanceSegmentSegment(seg0,segl);
}
else
{
Segment segl(capl.P-tmax*W,capl.D);
sqrDist = SquaredDistanceSegmentSegment(seg0,segl);
}
}
}
else
{
// both capsules are static
Segment segl(capl.P,capl.D);
sqrDist = SquaredDistanceSegmentSegment(seg0,segl);
}

return sqrDist <= rsum*rsum;

However, if the distance calculator for a segment to a parallelogram is already set
up to handle the degenerate case when an edge vector of the parallelogram is zero,
then the code simplifies to

6.5 Dynamic Object-Object Intersection 217

bool TestCapsuleCapsule (Capsule cap0, Capsule capl, Velocity W,
float tmax)

(
dotWW = Dot(W,W);
rsum = cap0.r + capl.r;
Segment seg0(cap0.P,cap0.D):

if (dotWw > 0)
(

// moving capsule axis spans a parallelogram (parameters
[0,1]42)

Parallelogram pgm(capl.P,capl.D,tmax*W);
sqrDist = SquaredDistanceSegmentParallelogram(seg0Q,pgm);

}
else
{
// both capsules are static
Segment segl(capl.P,capl.D);
sqrDist = SquaredDistanceSegmentSegment(seg0.segl):
}

return sqrDist <= rsum¥rsum;

Additionally, if the distance calculator is really robust and handles the degenerate
case when both parallelogram edges are zero, then the code greatly simplifies to

bool TestCapsuleCapsule (Capsule cap0, Capsule capl, Velocity W,
float tmax)
{
dotWW = Dot(W,W);
rsum = cap0.r + capl.r;
Segment seg(cap0.P,cap0.D);
Parallelogram pgm(capl.P,capl.D,tmax*W);
return SquaredDistanceSegmentParallelogram(seg,pgm) <= rsum*rsum;

6.5.2 ORIENTED BOXES

The method of separating axes still applies for moving boxes. However, there are six
additional axes that must be considered due to the motion of the boxes. Assuming
the first box is static and the second box is dynamic with velocity W, the two boxes

218 Chapter 6 Collision Detection

Table 6.7 Values for R, Ry, and R, for the separating axis test R > Ry + R) for two boxes in the

SOURCE CODE

LIBRARY

Intersection

FILENAME

IntrBox3Box3

direction of motion.

L Ro R R

W x Ag aaz| + azlar| Yo bilcviaz — caen| Ao+ W x D
W x A apleez| + azlogl Y2, bilcoierz — caiato |A) - W x D
W xAa, aplay| + arag| Y 2o bilcoies — cricol 1Az- W x D)
Wx By Yl,ailciB:—cifil bi1B2| + b2l Bl |Bo- W x D)
Wx B YljailcoB—ciobol bolBal +balBol By W x D|
Wx By Yl_gailcioBr — cinBol bolB1| + b1 Bol |B,- W x DI

appear to be stationary when viewed along the direction of motion. It is possible that
the boxes are separated within a plane orthogonal to the motion. The additional axes
to test are W x A; and W x B; for 0 < i < 2. Geometrically, the projections of the
boxes can be at worst hexagons but with parallel opposing edges. The separation of
such hexagons in a two-dimensional setting requires six separating axis tests, one for
each pair of parallel opposing edges. Defineq; = W /-i,' and g; = W - B; for0 <i<2
Table 6.2 is extended by Table 6.7 to handle the cases with motion.

Testing for intersection is a Boolean operation. The algorithm returns true if
there is an intersection, false if not. No information is provided about where an in-
tersection occurs, and there may be many such points. In the case of two intersecting
stationary objects, the region of intersection can be computed with great pain. This
is the realm of computational solid geometry. For a dynamic system, the more inter-
esting case is to have two moving objects that are initjally not intersecting, but then
do intersect during the specified time interval. Of interest to an application is the first
time of intersection and a point (or points) of intersection at that time. The following
construction provides a point of intersection. In the cases of vertex-to-vertex, vertex-
to-edge, vertex-to-face, or edge-to-edge (transversely), the intersection point (at first
time) is unique. In the other cases of edge-to-face or face-to-face, the intersection is
not unique, but the construction provides one of the intersection points.

Finding the First Time of Intersection

Given that the two objects do not intersect at time r = 0, but do intersect at some later
time, a simple modification of the algorithm for testing for an intersection provides
the first time of intersection. The first time is computed as the maximum time T > 0
for which there is at least one separating axis for any ¢ € [0, T'), but for which no
separating axis exists at time 7. The idea is to test each potential separating axis from

6.5 Dynamic Object-Object Intersection 219

the original 15 and keep track of the time at which the intervals of projection intersect
for the first time. The additional 6 axes due to motion have no effect on determining
the time of intersection. The largest such time is the first time at which the boxe$
intersect. Also, it is important to keep track of which side of [— Ry, Ro] the other
interval intersects. Finally, knowing the separating axis associated with the maximum
time T allows reconstruction of a point of intersection.

The code for stationary boxes needs to be modified only slightly to handle the case
of constant velocities. If the two boxes are moving wnth velocmes Vo and Vl, subtract
the velacities so that only the second box is moving, W = V; — Vp. The time interval
is [0, fmax]. Define D(1) = C, — Co + tW fort € [0, fmax].

Consider the separating axis Co + sL. The interval values Ro and R, are indepen-
dent of r and can be calculated as in the stationary case. The quantity R is dependent
on time. The nonintersection test is to show R(r) > Ry + R for nonintersection for all
1 € [0, tinax]. One potential problem is that the moving projected interval may start out
on one side of the stationary interval, then pass through it to the other side during the
time period. However, because of the linear velocity it is enough for nonintersection to
show that R(0) > Ry + Ry, R(tmax) > Ro + Ry, andsign(L - D)) = sngn(L D).
Abstractly, the problem amounts to showing that [p + rw| > r > 0forallt € (0, tyax].
The pseudocode is

ifip>r)
{
if (p+ tmax*w > r)
return no_intersection;

}
else if (p < -r)
{
if (p+ tmax*w < -r)
return no_intersection;
}

Finding a Point of Intersection

If 7 is the first time of intersection, the probleni is now to find a point in the intersec-
tion of the two boxes at that time, The equation to solve is

2 2
Z:xiA,'=D+Zijj, (6.3)
i=0 =0

where D = (C; + TV}) — (Co + T Vp), and for x; with |x;| < a;, 0 <i <2, and for
y; with |y;| <b;,0< j <2.

220 Chapter 6 Collision Detection

Last Separating Axis Aj

If the separating axis at time T is A;, then the intersection must occur on one of the
two faces perpendicular to A;. Dotting Equation (6.3) with A; yields

2
xi=A;-D+ Z Cijyj-
Jj=0

If A, D > 0, then A, D= Ro + R smce the two intervals intersect at the right end
point of [~ Rq, Rgl. IfA; - D < 0, then A. D= —(Ro -+ R)) since the two intervals
intersect at the left end point of [~ Ro, Ro). Thus, A; - D=0(Ro+ R)), where|a| =1
and

2
i =0(Ro+ Ry + Z Cijyj
j=0

2 2
=a(ai+ Y _bjlaj) + Y cijyj
2
0= Z leij|(bj + o sign{ci;)y;) + (ai — ox;). (6.4)
j=0

Since |y;| < bjand |o sign(ci;)| < 1, it mustbe that b; + o sign(c;;)y; > 0. Similarly,
a; — ox; > 0, in which case x; = oq;. If c;j # 0, then y; = —o sign(c;;)b; is required
to make the sum in Equation (6.4) zero.

If any c;jj = 0, then the sum in Equation (6.4) places no restriction on y;. For
example, this happens when the intersection is edge-to-face or face-to-face. Instead,
take the dot product of Equation (6.3) with B j to obtain

2
\’j=-—3j . I_)+Zxkck].
k=0

Using |xx| < a leads to

min(y;) =—8; - D — Z!ck,iak<v,< ~B; D+Zicmak—max(y,)
k=0

Additionally, it is known that |y;| < b;. A value y; € [min(y;), max(y;)] N
{~bj, b;] must be chosen. Since it is known an intersection must occur, min(y;) < b;
and —b; < max(y;).If b; < max(y;), then y; = b; is an intersection point. If —b; >

6.5 Dynamic Object-Object Intersection 221

min(y;), then y; = —b; is an intersection point. Otherwise, choose y; = min(y;) as
an intersection point.
Last Separating Axis B;

If the separating axis at time 7 is B;, then the intersection must occur on one of the
two faces perpendicular to B;. Dotting Equation (6.3) with B; yields’

k]
Zc,-,-xj =B;i-D+y;.
j=0

As in the last section it can be shown that B; - D = o(Rp + Ry), where |o| = 1.
Moreover,

2
ZCjin =0o(Ro+ R)) + i

j=0
2
=a()_ ajlcjil +bi) + y;
j=0
2
0=Z cjiltaj — o sign(e;i)x;) + (bo + o w). (6.5)
j=0

Sincelx;t <ajand{o sign(c;;}| < 1, it must be thata; — o sign(cj;)x; = 0. Similarly,
b; + oy; > 0, in which case y; = —ab;. If ¢ j; # 0, then x ; = o sign(c j;)a; is required
to make the sum in Equation (6.5) zero.

If any ¢;; =0, then the sum in Equation (6.5) places no restriction on .x;. For
example, this happens when the intersection is edge-to-face or face-to-face. Instead,
take the dot product of Equation (6.3) with A ; to obtain

2
X;=Aj- D+Z)‘k(’jk-
k=0

Using |vi| < b, we have
- _ 2 - - 2
min(xj)=A;- D= lepthy < xj < Aj- D+) lcjibe = max(x)).
k=0 k=0

Additionally, it is known that |x;| < aj. A value x; € [min(x;), max(x;)| N
[—aj, a;] must be chosen. Since it is known an intersection must occur, min(x;) <a;

222 Chapter 6 Collision Detection

and ~a; < max(x;). Ifa, max(x;), then xj=a, is an intersection point. If —a; >
min(x;), then x; = —a; is an intersection point. Otherwise, choose x; = min(x;) as
an intersection point.

Last Separating Axis A x B I

Let (iq, i, i) and (jg, j1, j2) be permutatxons of (0, 1, 2) in the set {(D, 1, 2), (1, 0, 2),
(2, 1,0)}. Dot Equation (6.3) with A,o X B,o to obtain

(Ai, - Ay X Bp)xi, + (Ar, - Ay x Bp)xiy= Ai, x Bj,- D + (Bj, <Ay x Ejo))'jl +(Bj, - Aig X Bjp)yj,
sign(i1, fo)ciy jpXiy + SigN(i2, f0)CijoXiy = O (ICiyjylai, + |¢i jplai, + Iigp by + ICiyjy D)
+ sign(jo, J1)Cio oY)i + SIgRGos J2)Cioj1 Yo
where || = 1. Grouping terms and factoring yields
0 = |c, jpl(ay, — o sign(iy, ig) sign(ciyjy)Xi,) + Ici, jul (@i, — o sign(iy, io) sign(cy, jo)xi,)+
Icioss| (b, — o sign(jy, jo) sign(ciop)¥j) + |cigjy (B, — o sign(ja jo) sign(ciyjy)¥ja)-

As in the previous subsection, the quantities multiplying the |¢;| terms must be zero
when the c;; term is not zero.
The first case to consider is ¢;, j, # 0, ¢i, j, # 0, Cipj # 0, and ¢ j, # 0. Then

xi, = o sign(i1, fo) sign(ci,j,)4,

Xp, = o sign(ia, ig) sign(cy, j,)ai,

¥ji = o sign(j1. jo) sign(ciyjn)bj,

¥j» = o sign(j2, jo) sign(ciyjy)b,

To solve for x;, and y,, dot Equation (6.3) with Aj,and B jo to obtain
Xig = Zln D+ CivjoYjo + Cioj1¥jiy + Cioj2¥ia

CigjoXio + Ciy joXiy + CipjoXi; = Ejo D+ Yjor

Replacing each equation in the other yields

Xio= T [;\e‘o - D + Ciyjy (—i?fo - D+ ciyjoxiy + Cizjoxiz) + Ciojpvir + %jz)’jz]
fojo
1 - . . -
Yi = — [_Bjo * D+ ciygy (Af'o D+ oepyin+ Cloiz-"l’z) + CiyjoXiy + inu”z] .

6.5 Dynamic Object-Object Intersection 223

The denominator of the fraction is not zero since 1 — c‘.O o =¢ ,.I ot c? irjo 7 0 since
Cirjo # 0 and ciyj, # 0.

Geometrically, the four c;; numbers must be zero since this case represents either
(1) anedge-to-edge collision and the intersection point must be unique or (2) an edge-
to-edge collision where the edges are perfectly aligned. In the latter case, a face axis
should separate the two boxes. Just in case the face axis separation does not happen due
to numerical round-off errors, the code has cases to handle whenever any of the ¢;j =
0. The handlers are similar to what was discussed earlier. The intersection equation is
dotted with the appropriate vector to solve explicitly for the to-be-determined variable
(an x; ora y; term). Inequalitites are obtained for that variable, and the minimum and
maximum values are used as before to find a point in the intersection of two intervals
for that variable.

The coefficients needed to produce the unique points of intersection are summa-
rized in Table 6.8.

6.5.3 ORIENTED BOXES AND TRIANGLES

t

SOURCE CODE

LIBRARY

Intersection

IntrBox3Trl3

The method of separating axes still applies for moving boxes and triangles. As with
moving boxes, there are (up to) six additional axes that must be considered due to the
motion. Assuming the box is static and the triangle is dynamic with velocity W, the
two objects appear to be stationary when viewed along the direction of motion. It is
possible that the objects are separated within a plane orthogonal to the motion. The
addmonal axes to test are W x A; (normals to the edges of the projected box) and
W x (N x E;) (normals to the edges of the projected triangle) for 0 < i < 2. Table
6.3 can be extended to add the six new tests, the values being R = Z] |L A,|,

po=L-D,p1=po+L-Eoand p,=py+L-Ey.

Finding the First Time of Intersection

Given that the two objects do not intersect at time r = 0, but do intersect at some later
time, a simple modification of the algorithm for testing for an intersection provides
the first time of intersection. The first time is computed as the maximum time T > 0
for which there is at least one separating axis for any ¢ € [0, T'), but for which no
separating axis exists at time T. The idea is to test each potential separating axis and
keep track of the time at which the intervals of projection intersect for the first time.
The largest such time is the first time at which the triangle and box intersect. Also,
it is important to keep track of which side of [— R, R] the other interval intersects.
Finally, knowing the separating axis associated with the maximum time T allows us
to reconstruct a point of intersection.

The code for a stationary triangle and a box needs to be modified to handle the
case of constant velocities. The velocity of the box is subtracted from the velocity of the
triangle so that all calculations are done relative to a stationary box. If the box velocity

224 Chapter 6 Collision Detection

Table 6.8 Coefficients for unique points of oriented bounding box-oriented bounding box intersection.

L Coefficients

A; yj = —0 sign(cij)bj, j=0,1,2

iij =40 sign(cij)a;, 1=0,1,2

20 X i?o x| = -0 sign(czo)al, x3 = +0 sign(ciodaz, y1 = —o sign(ce2)by, ¥2 = 40 sign{co)by,
Xo= 1T (Ao D + coo(—By - D+me1+czoxz)+cmw+tozvz)

Ag x B, X = -0 sngn(czl)a,, x; = 40 sign{c11)az, vo = 4o sign(ce2)ba, V2 = —0 sign(coo)bas

o Xo= :;I' (Ao - D +co1(—By - D + cuxy + ca1x2) + cooyo + "oz.VZ)

Ag x B> x| = —0 sign(cz)a), X3 =40 sign(ci2)a, yo= —o sign(co1)bo, ¥1=—+0 sign(coo)bis
xXp = ﬁ; (;\o D+ Coz(“éz + D+ craxy + cpxa) + Coovo + ‘-'Olyl)

A; x By xg = +0 sign(czo)ap, X2 = —o sign(cpo)dz, ¥y = —o sign(c;2)by, ¥2 =40 sign(c))bz,

o X1 = 1o ‘” (Al D + c1o(—Bo - D + cooxo + c20x2) + cuy +L'12.Vz)

Ay x By Xo=+o0o S\gn(cz,)ao, x3 = —0 sign{coy a2, Yo = +0 sign{cizdbe, Y2 = —a sign(cyo)hy,
X1 =0T (Ax D+ ci1(~By - D + corxo + caix) + cu)o + L'lz.\'z)

A x B Xg = +a sngn(czz)ao, X3 = —0 sign(co2)az, yo = —a sign(c;)bo, Y1 =0 sign{cio)bs
Xy =17 (Al D + ¢12(— Bz - D + coz%o + c22x2) + cagyo + C‘n)‘l)

A; x By Xg=-—0 sngn(c 10)dg, x; = +0 sign(coo)ar, y, = —o sign(cp)by, y2 = +o sign(ca;)bz,
Xy = T (Az D + c20(—Bo - D + cooxo + c10x1) + cauyy + Lszz)

A, x B Xg= —0 sngn(c 11)dg, Xx; = —+0 sign(co1)ay, yo= +o sign(ca2)be, y2 = —0 sign(czo)ba,
=T (Az D+ c(— B - D+L01xo+cux1)+6‘20Vo+6‘22)'z)

;4'2 x Bz Xg= —0C sngn(clz)ao, x) = +o0 sign(cez2)d1, yo= —0o sign(cay)ba, Y1 = +0 sign(cag)bis

=T (AZ D +cu(-Br - D+002xo+01zx1)+Czovo+szv|)

is Vp and the triangle velocity is V,, define the relative velocnty tobe W = Vl Vo. Let
the time interval be [0, fmax]. Define Dy = Uo —~Cand D, = Do + tmaxW

The projected box interval [~R, R] is stationary. The projected triangle in-
terval is dependent on time, [min(p)(t), max(p)(t)]. The test for nonintersec-
tion during the time interval [0, fmax] is min(p)(t) > R for all t € [0, tmax] or
max(p)(t) < —R for all t € [0, tmax]. Because the linear velocity is constant, it is
enough to show nonintersection by verifying that min{(min(p)(0), min(pX(7T)) > R
or max(max(p)(0), max{p)(T)) < —R.

6.5 Dynamic Object-Object Intersection 225

Axis N

The nonintersection test amounts to showing p + tw is not in [—R, R] for t €
[0, tmax]. Moreover, the point p + tw must not pass through [—R, R] during the
given time period, so the algorithm keeps track of which side of |— R, R) the point
starts on. The pseudocode is

if (p>R)
{
if (p + tmax*w > R)
return no_intersection;

}
else if (p < -R)
{
if (p + tmax*w < -R)
return no_intersection;
}
/b«s,zk

The problem is to make sure that the minimum interval containing { po + tmaxw, p1 +
tmax®W, P2 + tmaxW)} does not intersect [~ R, R}]. The pseudocode is

if (p0 > R)
{
if (pl >=p0)
{
if (p2 >= p0)
{
min = p0;
if (min + tmax*w > R)
return no_intersection;
}
else
{
min = p2;
if (min > R and min + tmax*w > R)
return no_intersection;
}
}
else if (pl >= p2)
{

min = p2;

226 Chapter 6 Collision Detection

if (min > R and min + tmax*w > R)
return no_intersection;

}
else
{
min = pl;
if (min > R and min + tmax*w > R)
return no_intersection;
}
}

}
else if (p0 < -R)
{

if (pl <= p0)

{
if (p2 <= p0)
{
max = pO;
if (max + tmax*w < -R)
return no_intersection;
}
else
{
max = p2;
if (max < -R and max + tmax*w < -R)
return no_intersection;
}
}

else if (pl <= p2)
{
max = p2;
if (max < -R and max + tmax*w < -R)
return no_intersection;

}
else
{
max = pl;
if (max < -R and max + tmax*w < -R)
return no_intersection;
}

}
AxesZ,- X Ej

The problem is to make sure that the minimum interval containing {uo + tmaxw, 4| +
tmax W) does not intersect [— R, R]. The pseudocode is

6.5 Dynamic Object-Object Intersection 227

if (ud > R)
{
if (ul >=u0)
{
min = u;
if (min + tmax*w > R)
return no_intersection;
}
else
{
min = ul;
if (min > R and min + tmax*w > R)
return no_intersection;
}
1
else if { uD < -R)
{

if (ul <= ud)
(
max = ud;
if (max + tmax*w < -R)
return no_intersection;
1
else
{
max = ul;
if (max < -R and max + tmax*w < -R)
return no_intersection;

Finding a Point of Intersection

If T is the first time of intersection, the problem is now to find a point in the intersec-
tion of the triangle and box at that time. The equation to be solved is

2
in;\i =D+ yEo+ynE), {6.6)

=0

where D=(C +TV;) ~ (Uo + Tf’o), and for x; with |x;} < a;,i =0, 1,2,and for y;
with0<w<1l0<yi<landy+y <1

228 Chapter 6 Collision Detection

Equation (6.6) can be solved for each variable individually. The solutions are

xXi= Z,- D+ (A - Eo)yo + (A; - El))’l

2
1-2j (- - - oo
y,-=—-w—lzi (—N-D x E_j+ 3 xiN - A x E._,) (6.7)
i=0

fori =0, 1,2and j =0, 1. The equations define the left-hand side as a linear function
of the variables in the right-hand side. The extreme x-values occur at the vertices of
the triangular domain of the function: (0, 0), (1, 0), and (0, 1). The extreme values of
the equations define intervals bounding each variable, x; € [min(x;), max(x;)]. The
interval end points are

min(x;) = Z,‘ .D + min(0, Z; . Eo, Z.‘ . E|)
max(x;) = A; - D + max(0, 4; - Eq, A; - Ey).

The extreme y-values occur at the vertices of the rectoidal domain of the function
(all |x;| = a;). The extreme values of the equations define intervals bounding each
variable, y; € [min(y;), max(y;)]. The interval end points are

2j - DN - D x E|_j - Z,-Zz_oa,'ll-\./ . 2; X E|-j|
INI2

2j—ON -DxE_j+ Y oaIN-A; x Ei_j|

T (6.8)

max(y;) =

In the following constructions of the first point of intersection, if any of the
variables is not uniquely constrained by the derived equations, then such a variable can
be selected from the intervals [min(x;), max(x;)] or [min(y;), max(y;)] and subject
to the other domain constraints for that variable.

The following are a few useful functions in the constructions. Define &, 8, y, and

8 by
0, k=0
ak)=11, k=1
1, k=2

™

—_

o~

St

]
—e—,
-—-9—1
R R
Il
N -0

6.5 Dynamic Object-Object Intersection 229

yk)=4{0,

sky=11,

Some useful identitiesare § =20 — 1,82 = 1,08 =, and y§ = .

Last Separating Axis N

If the separating axis at time T is ﬁ:then the intersection must occur on the triangle
itself. Dotting Equation (6.6) with N yields

2
Zx,ﬁﬁ,:ﬁl-)

i=0

Note that N - D = o R for |o| = 1. Thus,

2
Zx.'ﬁl'- Z,‘ =aR
i=0

2 2
Zx,-ﬁ . Z,‘ =0 Za;lﬁ . Z,l
=0 i=0

2
0= |N-Aila; — o sign(N - A)xi). (6.9)
i=0

Since |x;| < gq; and |o sign(l-\'l . 2,)] < 1,it mustbe thatq; — o sign(ﬁ . Z;)x; >0.1f
N - A; # 0, thenx; =0 sign(ﬁ . Aja;is required to make the sum in Equation (6.9)
zero. Ifany N - A; =0, then the sum in Equation (6.9) places no restriction on x;. For
example, this happens when the intersection is edge-to-triangle or face-to-triangle.
Any x; € [min(x;), max(x;)] N [—a;, a;] can be selected for a point of intersection.

Last Separating Axis A;

If the separating axis at time T is A;, then the intersection must occur on one of the
two oriented bounding box (OBB) faces perpendicular to A; and R = a;. The formula
for x; from Equation (6.7) has three cases to be considered.

230 Chapter 6 Collision Detection

The first case is po = min;(p;) = aj, in which case g = L, or pg = max;(p;) =
—aj, mwhnch casec = —1. Thenc A; - Eg = 0, GA;- E,>0,andx; =0q; +yoA
Eo + v A, E 1. The intersection accurs on a face of the OBB perpendicular to A;,
it must be that x; = ca; and

0=(0A;- Eo)yo+ (0A; - Epyi. (6.10)

If A, Ey ;é 0and A, - E; # 0, then vo =0 and y; = 0 are required. If A Ey=
and A, E, #0, Equation (6.10) requires y; = 0 but does nat constrain yp. In thxs
case yo € [min(y), max(¥)] N [0, 1], where min(yo) and max(y,) are defined in
Equation (6.8).IfA; - Eg # Oand A; - E| =0, Equation (6.10) requires yp = 0 but daes
not constrain y;. In this case y; € [min(y), max{y)] n 1o, 1], where min(y;) and
max(vy) are defined in Equation (6.8). IfA Eo =0and A, - El = 0, Equation (6.10)
constrains neither yp nor y,. The OBB intersects the triangle face-to-face, a case
handled by the separating axis test for N.

The second case is py = min;{p;) ._a,,mwhxchcaseo = l or p1 max;(pj)=
—a;, in which case 0 = —1. Then —aA, Eo >0, (A - Eo) >0, and
X; =qaa; —- A Eq+ voA. Eq+ v‘A, E, Once again, x;j = da, and

0=(-0A; - E)1 — yo— w) + lo(Ai - Ey — A; - Eg)nt. (6.11)

If:l,- . Eo % 0 and ;4',- . Ey s ;i,- . Eg, then 1 — Yo — ¥1 =0 and y) = 0 are required.
Therefore, yo=1and y; =0. If;i Eg=0and Z El #* }i, E‘o, Equation (6.11)
requires y) = 0 but does not constrain yg. In this case yp € [mm(¥o)> max(yo)] N [0 1],
where min(yp) and max(yp) are defined in Equation (6.8). If A Eo #0and A E = 1=
A Eo, Equation (6.11) requires yp + ¥y = 1 but does not constrain y;. In this
case y, € [min(y), max(y1)] N [0, 1], where min(y1) and max(y|) are defined in
Equation (6.8). Given a chaice of y), then yo = 1 — y;. IfA, Eo=A; - E; =0, then
neither yp nor y) is constrained. In this event, N and A; are parallel, a case handled
by the separating axis test for N.

The third case is p2 = min;(p;) =daj in which case g =1, or p2= maxj(pj) =
—~a;, in whnch case 0 = —1. Then -—aA E1 >0, a(A .Ey - A; E,) >0, and
si=cai—Ai-E + voA - Eg+ »A, - E;. Once again, x; = ca; and

0={0(A;- Eo— A; - EDlyo+ (=0 A; - ED(— yo — 0. (6.12)

If4; - E, #0and A; - Eo# A; -‘E‘, then 1 — ¥p — ¥y = 0 and y = Q are required.
Therefore, yp=0and yy = 1. If A; - E‘l =0and 4; - Eg # A; - Ey, Equation (6.12)
requires yq = 0 but does not constrain vy. In this case yy € [min(y1), max(y1)] N[0, 1],
where min(y,) and max(vn) are deﬁned in Ec_luanon (6.8). Given a chaice of y,
then yg=1— y). If A; - E, # 0 and A, .Ey=A;-E, Equation (6.12) requires 1 —
¥o — y1 = 0 but does not constrain yy. In this case yg € [min(yo), max(ye)] N [0, 1],

6.5 Dynamic Object-Object Intersection 231

where min(yp) {nd r{lax(yg) are defined in Equation (6.8). Given a choice of yp, then
n=1—yo.If A; - Ey = A; - Eg =0, then neither yp nor y, is constrained. In this
event, N and A; are parallel, a case handled by the separating axis test for N.

Last Separating Axis A x E j

Let (ip, i1, £2) and (jp, j1, j2) be permutations of (0, 1,2) in the set {(0, 1,2), (1,0, 2),
(2, 1,0)}. Dot Equation (6.6) with A,0 x E_,u to obtain

(Au Alu x E.Iu)xu + (A - Alu x E.Io)xrz = Alu x E.lo D+(Ey-A ip X EJO)VO

+(Ey - Ay x Ejp)y1.
Using various identities, the equation reduces to

(sign(iy, io) Ay, + Ej)x;, + (sign(ins io) Ay, - Ejo)xiy = po — @(jo)N - Ajodo
—yUoIN - Ay (6.13)
where py = Z,-o x E o * D. The projection of the triangle’s vertices leads to (possi-

bly) two distinct p values, {po, po — 5(jp N - Z,-o). There are two cases to consider
depending on which of the p values are minima or maxima, In all cases,

R =a,-,|Z,-2 . Ejul +a,~2|:‘i,-, . Ej0|.

The first case is pp = mink(px) = R, in which case ¢ = 1, or po = maxi(pi) =
—R, in which case 0 = —1. Then py = o Rand —c8(jo)A;, - N > 0. Equation (6.13)
is equivalent to

0 =|4;, - Ejyl(ai, — o sign(ir, o) sign(A;, - Ej)xi,) +

I;l,', . Z’jul(alz — o sign(iz, ip) sign(}i;, . Eju)x,-z) +

(=o8(in)Aiy - NY(@(jo)yo + Blio)y).
IfA; - Ejo # 0, then x;, = & sign(iy, ip) sign(A;, - Z’ju)a,-,. IfA;, - Eju #0, thenx;, =
a sign(iy, ip) sign(A;, - Ejlap. If A; - N 0, then a(jp)yo + B(jo)y1 =0. These

provide three equations in five unknowns. Two additional equations to form an
invertible system can be selected from Equation (6.7).

232 Chapter 6 Collision Detection

Table 6.9 Coefficients for unique paints of triangle-OBB intersection for N and A;.

L Coefficients
N = +o sign(N - Aai, i=0,1,2
Ai y=0, y1=0, opy=ming(op)

=1 y=0, op=min(opk)
Yo=0, y1=1, op;=ming(opi)

The second case is pp — 8(jo)ﬁl }i,o = ming(px) = R, in which case 0 =1,
or pg — 8(10)N A,0 = maxy(px) = —R, in which case 6 = —1. Then py=0R +
8(]0)N A,0 and aa(,o)A,u N > 0. Equation (6.13) is equivalent to

0= |;1,-Z . I-Ejol(a,-, — o sign(iy, fg) sign(f-l,-2 . I-Ejo)x,-,) +
|;1,-I . I-Ej,,|(a,-Z — o sign(ia, ip) sign(}i,-, . E‘jo)x,-z) +
(©@8(jo)Ai, - NYA — a(jo)yo — BUio)yn)-

IfA,2 E,0 # 0, then x;, = o sign(i), i) sngn(A,2 E,,,)a,I IfA;, - E,0 #0,thenx;, =

o sign(iz, fp) s:gn(A,, E',o)a,2 If A,o N # 0, then a(jo)yo + BUo)y = 1. These
pravide three equations in five unknowns. Two additional equations to form an
invertible system can be selected from Equation (6.7).

Ifany of the x; or y; arenot constrained because their coefficients are zero, a similar
construction can be used as before where intervals are abtained on each of the variables
and the intersection of those intervals with their natural restrictions produces a point
of intersection.

The coefficients needed to praoduce the unique points of intersection are summa-
rized in Tables 6.9 through 6.12.

6.5.4 TRIANGLES

The method of separating axes still applies for moving triangles. As before there are
(up to) six additional axes that must be considered due to the motion. Asiuming the
first triangle is static and the second triangle is dynamic with velacity W, the twa

triangles appear to be stationary when viewed along the direction of motion. It is
Intersection possible that the triangles are separated within a plane orthogonal ta the motian. The

additional axes to test are W x (N x E i) (narmals to the edges of the static projected
triangle) and W x (M X F) (normals to the edges of the dynamic projected triangle)

IntrTri3Tri3 for 0 < i < 2. Table 6.4 can be extended to add the six new tests.

6.5 Dynamic Object-Object Intersection 233

Table 6.10 Coefficients for unique points of triangle-OBB intersection for Ag x E .

-

L Coefficients

;10 X Eo xX|=—0 sign(Zz . Eo)al, x2=+0 sign(Zl . l-'.‘o)az
_ [0, opo=ming(opx)
"I otpe+ N - Ag) = ming(ope)
lv-bxz'o-Lh—’lzyl—_A—l_-Z.>_<I-Sox|—h-l-32xl-fo~tz
N-Apx Ey

X0 =

;10 x l-:‘l x| =—0 sign(Zz . El)al, X3 = 40 sign(Z1 . El)az
y I 0, opo=min(cpg)
0 — - - .
1, o(po— N - Ag) =mim(opx)

N DxE1+INI2yo-N A|XE|X| —N-A2xEx;
N AoXE]

X0 =

Zo x l-:‘z X|=—0 sign(;lz . Ez)al, X3 =+0 sign(;h . l-'.’z)az
0, opy = ming(cpr)
1, o(po— N - Ag) = ming(opr)

N-Dx E2+IN|2(yo+n) N- A.sz.n-N Ayx Eaxy
N. onEz

.Vo+)’l=l

Xp =

Finding the First Time of Intersection

Given that the two triangles do nat intersect at time z = 0, but do intersect at some later
time, asimple modification of the algarithm for testing for an intersection pravides the
first time of intersection. The first time is computed as the maximum time T > 0 for
which there is at least one separating axis for any ¢ € [0, T), but for which no separating
axis exists at time T'. The idea is to test each potential separating axis and keep track of
the time at which the intervals of projection intersect for the first time. The largest such
time is the first time at which the triangles intersect. Also, it is important to keep track
of which side each of the intervals is relative to the other interval. Finally, knowing the
separating axis associated with the maximum time 7" allows us to reconstruct a point
of intersection.

The code for stationary triangles needs to be madified to handle the case of
constant velocities. The velocity of the first triangle is subtracted from the velocity of
the second triangle so thatall calculations are done relative to a stationary first triange.
If the triangle velacities are Vo and V), define the relative velacity ta be W=V, — Vo
Let the time interval be [0, f;nax]-

234 Chapter 6 Collision Detection

Table 6.11 Coefficients for unique points of triangle-OBB intersection for A; x E.

L Coefficients

7\1 X Eo Xg=+0 sign(Zz . E'o)ao, Xy = —0 sign(Zo . Eo)az
_ I 0, opo = ming(px)
M= 1 olpo+ N - Ay = mink(ope)
X = A-I-bxEQ—IA-ILzyl-:A-L-ﬁoTonofﬂl-ﬁzxi'mz
N-AyxEg

Z. X E‘l xo = +0 sign(Zz . El)ao, X)=—0 sign(f!o . El)az
_ l 0, o(po= mink(ps))
”"l,ﬁm—ﬁio=mem)
xn= ﬁ-b@-ﬁ-imz)n-:ﬁ:aofElxo—»FJ-szﬁuz
N-A1xE,

21 X Ez Xo=+C sign(iz . Ez)ag, X1 =—0C sign(zg . Ez)az

0, opo=ming(ps)
Yo+n= o 3 .
1, o(pa— N-A)=mink(op;)
__ N-DxEy4|NP(yoty))~N-Agx Exxg—N-Ayx Ezx;
X = o
N-A|>(Ez
Axes N or M

The problem is to make sure the minimum interval containing max{vp + tmaxw, vy +
Imax W, V2 + Imaxw) does not intersect {#}. The pseudocode is

if (vO > u)
{
if (vl >= v0)
{
if (v2 >= v0)
{
min = vO;
if (min + tmax*w > u)
return no_intersection;
}
else
{

min = v2;
if (min > u and min + tmax*w > u)
return no_intersection;

6.5 Dynamic Object-Object Intersection

Table 6.12 Coefficients for unique points of triangle-OBB intersection for Az x E ;.

L

Coefficients

Zz bt Eo Xp=—0 sign(zl . Eo)ao, Xy =+4a sign(;lo . Eo)al

yi= 0, opo=min(opx)
I o(po-+ N - Ag) = ming(o pe)
— ﬁ'bxio—lﬁliyr-ﬁ-;oxioxo—ﬁ-;i|xon|
N.A;xEy

X2

Zz x E‘l Xg=-—0 sign(zl . E’;)ao, x=+a sign(ﬁo- E'l)al

o= 0, opo=mink(opr)
1, a(po— N - Az) =ming(opx)
- N-Dx Ej+{N 50~ N-Agx Epso—N-A x Ey

X .= =
2 N.A2xE,

Zz X Ez X0 = —a sign(}il . Ez)ao, x| =+0 sign(}io . E‘z)al

+ 0, opy=ming(opy)
Yo+ n= - = .
1, a(po— N - Az) = ming(opy)
= NeBxEy+|NP(yo+y))—N-Aox Eyxo—N-Ay x Epxy
ITI-Z;xE;

X2

)
1
else if (vl >= v2)
{
min = v2;
if (min > u and min + tmax*w > u)
return no_intersection;
1
else
{
min = vl;
if (min > u and min + tmax*w > u)
return no_intersection;
1
1
else if (vO < u)
{
if (vl <= v0)
{

235

236 Chapter 6 Collision Detection

if (v2 <= v0)

{
max = v0;
if (max + tmax*w < u)
return no_intersection;
]
else
{
max = v2;
if (max < u and max + tmax*w < u)
return no_intersection;
}
}
else if (vl <= v2)
{
max = v2;
if (max < u and max + tmax*w < u)
return no_intersection;
}
else
{
max = vl;
if (max < u and max + tmax*w < u)
return no_intersection;
}
}
}
Axes E; X F;

The problem is to make sure the minimum interval containing max(ug + finax @, 4y +
ImaxW) does not intersect {vg, v} }. The pseudocode is

if (ul >= u0)
{
if (vO < u0)
{
if (vl <= v0)
{
max = v0;
if (max + tmax*w < u0)
return no_intersection:

6.5 Dynamic Object-Object Intersection

else
{
max = vl;
if (max < 0 and max + tmax*w < 0)
return no_intersection;

}
1
else if (v0O > ul)
{
if (vl >= v0)
{
min = v0;
if (min + tmax*w > ul)
return no_intersection;
1
else
{
min = vl;
if (min > ul and min + tmax*w > ul)
return no_intersection;
}
}
1
else
{
if (vO > u0)
{
if (vl >= v0)
{
min = v0;
if (min + tmax*w > u0)
return no_intersection;
}
else
{
min = vl;
if (min > u0 and min + tmax*w > u0)
return no_intersection;
}
}
else if (vO < ul)
{

if (vl <= v0)

237

238 Chapter 6 Collision Detection

{
max = v0;
if (max + tmax*w < ul)
return no_intersection;
}
else
{
max = vl;
if (max < ul and max + tmax*w < ul)
return no_intersection;
}

Finding a Point of Intersection

If T is the first time of intersection, the problem is to find a point in the intersection
of the two triangles. Since the triangles are not coplanar, the only possibilities for the
set of intersections is a single point or a line segment. The equation to be solved is

x0Eo + x1Ey = D + yoFo + 0 F, (6.14)

where D = (Bo + TV)) — (Ag + TVO); forx;withD<xp<1,0<x;<Lxg4+x1<];
andfor yjwith0 < o< 1,0y <L yo+n <1l

Equation (6.14) can be solved for each variable individually by crossing and then
dotting the equation with the proper vectors. The solutions are

1-2 f2 = = L. .
xi= AP (N D xEj_j+ (N -Fyx Ex_j)yo+ (N - F1 x El-—i)}’l)
=== (it B x Py (- Bo x Fipma+ (1 - By x By
Yi= IMIZ 1 0 1-j)X0 1 1-j)X1

for i =0,1 and j =0, 1. Each of these equations defines the left-hand side as a
linear function of the variables in the right-hand side. The extreme values occur
at the vertices of the triangular domain of the function: (0, 0), (1, 0), and (0, 1).
The extreme values of the equations define intervals bounding each variable, x; €
[min(x;), max(x;)] and y; € [min(y;), max(y;)]. The interval end points are

6.5 Dynamic Object-Object Intersection 239

1
min(x;) = l—Kl—lz min ((1 = 2i)@o(i), (1 = 21 (i), (1 — 20)¢a(F))

1
max{x;) = ng max ((1 — 2i)pali), (1 = 2Dd(i), (1 — 20)2(i))

1 (6.15)
min(y;) = TJI—F min ((1 — 2)¥o(j) (1 = 2)¥n(j), (1 ~ 2))¥2())

)| : .
max(y;) = m max ((1 = 2j)¥o()), (1 ~2j0¥n(j), (1 ~ 2j)¥2()))

where ¢o(i) = N - D x Ey—j, ¢y = ¢oli) + N - Fo x Ey_i $2(i) = do(i) + N - Fy x
E, Vfo(J)——M D x Fi_j, ¥1(j) = ¥o(j) + M - Eg x Fi_;, and ¥(j) =
Vo) + M E) x Fn~,

In the following constructions of the first point of intersection, if any of the
variables is not uniquely constrained by the derived equations, then the variable can
be selected from the intervals | min(x;), max(x;)] or [min(y;), max(y;)] and subject
to triangular domain constraints for that variable.

Last Separating Axis N

Dot Equation (6.14) with N to obtain
0=N. l—?-f-yol-’\./- F‘O'f')'ll’v . i’l.

The projection of the first triangle’s vertices leads to a single p value of 0. The projec-
tion of the second triangle’s vertices leads to (possibly) distinct ¢ values, {gq, 91, ¢2}.
There are three cases to consider.

The first case is q6= = min; (q,), in which case o =1, or g0 = max; (4;), in which
casec =—1.ThenN -D =0,0N - Fo>0,0N- Fl >0, and

=(oN - Fo)va+(aN - F)w. (6.16)

IfN - F() # 0 and N- F; # 0, then yy = 0 and y; = 0 are required. N -Fp=0and
N.F 1 # 0, Equation (6.16) requires y) = 0, but does not constrain yp. A point of
intersection is provided by any yy € [min(yo), max(yo}{ M [0, 1], where min(yo) and
max(yp) are defined in Equation (6.15). IfEN - Fy # 0and N- f-”l =0, Equation (6.16)
requires yo = 0, but does not constrain y;. A point of intersection is provided by
any y; € [min(y;), max(y,)] n o, 1}, where min(y;) and max(y,) are defined in
Equation (6.15). If both N - Fo Oand N - Fy = 1 =0, then N and M must be parallel
and the triangles must be coplanar. While the assumption of this section is that the
two vectors are not parallel, numerical error might generate this case.

240 Chapter 6 Collision Detection

The second case lsq; min;(q;), in Wthh caseo =1l,0rq; = max,(q.),mwhlch
cased =—1.ThenN-D=~N- Fo,oN Fo<0 o(N Fl N. Fo)>0 and

0=(—oN-Fo)(1 = yo— y1) + [o(N - Fy — N - F)]1. (6.17)

IfN - Fo # 0and N.F 1 :,é N. Fo, then 1 vo+ =1 and y; = Oarerequired. Therefore,
yo=1land y;=0.1If N . Fy=0and N- F # N- Fo, Equation (6.17) requires y; =
0, but does not constrain yo. In this case yo € [min(yo), max(yo)] N [0, 1], where
min(yo) and max(yo) are defined in Equation (6.15). If N . Fo # 0 and N.F=
N. i‘o, Equation (6.17) requires yp 4 y1 = 1, but does not constrain y;. In this
case y; € [min(y;), max(y;)] N [0, 1], where min(y;) and max(y;) are deﬁned in
Equatlon (6. 15) Gwenachonce for y;,setyp=1—y. Ifboth N - Fo=0and N- Fi=
N - Fo, then N and M must be parallel and the triangles must be coplanar.

The third case is 2= min; (q,), in whlch case o = lLiorg:= max; (q,), in which
casec =—1.Then N -D=~N". F,,o(N Fo—N Fl)>0 oN - Fl < 0,and

=[o(N-Fo— N - F)lyg+ (=N - F)(1 — yo— 1) (6.18)

IfN - Fy # N-F yand N - Fy #* 0, then yo = 0 and Yo + y1 = 1 arerequired. Therefore,
yo=0and y; =1. IfN - Fo=N - Fyand N.F # 0, Equation (6.18) requires yo +
y1 = 1, but does not constrain yy. In this case yg € [min(yo), max(yo)] N [0, 1], where
min(yg) and max(yo) are defined in Equation (6. 15). Given a choice for yp, set
yi=1—yo.fN-Fy#N - F, and N - F; =0, Equation (6.18) requires yo = 0, but
does not constrain y;. In this case y; € [min(y;), mix()g)] ﬂ_.[O, l], where min(y;)
and max(y,) are defined in Equation (6.15). Ifboth N - Fo=N - Fiand N - F; =0,
then N and M must be parallel and the triangles must be coplanar.

Last Separating Axis M
Dot Equation (6.14) with M to obtain
XOM-E()+X[M-E[=M-D.
The projection of the first triangle’s vertices leads to (possibly) distinct p values
{po, p1> p2}- The projection of the second triangle’s vertices leads to a single ¢ value,
qo. There are three cases to consider.

The first case is po = min; (pi)»in which case o = —1, or po = max;(p;), in which
cased =1.Then M -D=0,0M - Eg<0,6M - E; <0,and
(@M - Eg)xo+ (0 M - Ey)x; =0. (6.19)

Ifl-fl_-.l-::o_;éo and M - E; #0, then xo =0 and x, = 0 are required. IfM-Ep=0
and M . E; # 0, Equation (6.19) requires x; = 0, but does not constrain xo. A point

6.5 Dynamic Object-Object Intersection 241

of intersection is provided by any xg € [mm(xo), max(xo)] n [0, I] where min(xp)
and max(xo} are defined in Equation (6.15). If M. Ey # @and M-E =0, Equation
(6.19) requires xo = 0, but does not constrain x,. A point of intersection is provided
by any x, € [min(x,), max(x;)] 1 {0, 1}, where min(x1) and max(+,) are defined in
Equation (6.15). If both M-Eg=0and M - E; =0, then N and M must be parallel
and the triangles must be coplanar. While the assumption of this section is that the
two vectors are not parallel, numerical error might generate this case.

The second case is py = min;(p;), in whicll case 0 = —1, or py = max;(pi), in
which casec =1.ThenM - D= M - Eo,o M - Eo > 0,0(M - E, — M - Eq) < 0,and

0=(—aM - Eg)(1 — xo—x1) + [0(M - E, — M - Eg)]x1. (6.20)

IfM-Eyg#0and M - E, # M - Eg, then X +x=1 _and x; = 0 are required. There-
fore,xo=1andx; =0.1fM - Eg=0and M - E, # M - Eo, Equation (6.20) requires
= 0, but does not constrain xo. In this case xo € [min(xo), max(xo)] N [0, 1], where
mif(xo) and max(x) are defined in Equation (6.15). U M - Ep#0and M- E| =
M. Ey, Equation (6.20) requires xo + x1 = 1, but does not constrain x;. In this
case X € [min(x;), max(x;)] N [0, 1], where min(x;) and max(x) are_ defined in
Equatlon (6 15) leen a choxce for x1, set xo = 1 — x;. If both M. Eo =0 and
M . Ey= M - Eo, then N and M must be parallel and the triangles must be coplanar.
The third case ls p2= n’un, (p,), in Wthh caseg = —1,0r p = max; (pi), inwhich
casec =1.ThenM-D=M- Eno(M - Eo— M- El) <0,oM E1>0,and

=[o(M - Ey— M - Eo)]xo + (oM - E)(1 — x — x}). (6.21)

M. Eo #* M.Eyand M - El ;é 0, thenxo = Oandxo + x1 = 1 are required. There-
fore, xp =0and x; = 1. If M- Eo =M. Ejand M - E; # 0, Equation (6.20) requires
Xo + x; = 1, but does not constrain xg. In this case xo € [min(xe), max(xg)] N [0, 1],
where min(xg) and ‘max(xo) are deﬁned in Equation (6. 15). Given a choice for xg, set
x1=1—x0.1fM - Ey #* M- El and M - El 0, Equation (6.20) requires xo = 0, but
does not constrain x;. In this case xy € [min(x1), max(x;)] N [0, 1], where min(x;)
and max (x;) are defined in Equation (6.15). Ifboth M . Ey=M - Ejand M - E, =
then N and M must be parallel and the triangles must be coplanar.

Last Separating Axis EixF)i

Let (Jg, i1, #2) and (o, j1, j2) be permutations of (0, 1, 2) in the set [(0, 1, 2), (1,0, 2),
(2, 1, 0)}. The functions «, 8, Ys and |5 are the same used in Section 6.6.3.
Dot Equation (6.14) with E;; x F,o to obtain

(E‘o- Eio X Fjo)xo-f- (E’I . Eio X F'j,,)xl =D. Eio X i'jo-f- (1-':'0- E;o X i'jo}yo

+(Fy - By x Finn.

242 Chapter 6 Collision Detection

Using the various identities mentioned earlier, the equation reduces to

(o) (N - Fjo)xo+y (i0)(N - Fjp)x1 =D - Eiy x Fjy — a(jo)(M - Eyp)yo
—y (oM - Eiy. (6.22)

The projection of the first triangle’s vertices leads to two distinct p values, po = 0 and
p=38Gg)N - F o The projection of the second tna.ngle s vertices leads to two distinct
g values, go =D - Ejy x Fj, and g1 = g9 — 8(jo) M - E,o} There are four cases to
consider depending on which of the projection values are minima or maxima. In each
case the solutions are derived when the intersection point is unique. Nonuniqueness
is discussed after the four cases.
The four cases each require two additional constraints on the variables. Dotting

Equation (6.14) with Mand N yields equations

M-EoX0+M'E|X|=M'b

. . - . . . (6.23)
N.-Foyo+ N-Fisyw=—-N.D.

The first case is min(q) = go and max(p) = 0, in which case o = 1, or max(q) =
go and min(p) = 0, in which case o = —1. Then gy = 0, a8(ig)N - Fm <0, and
08(jo)M - E;, < 0. Equation (6.22) is equivalent to

0=[—08(ig)N - Fjylle(io)xo + Blio)x1] + [—a8(io) M - Ejolle(o)yo + Blio)wi]-

IfN - Fj,#0and M - E;, # 0, thena(io)xo + Blio)x1 = 0and a(jo)yo + BUjo)n =
are required. These two constraints and Equation (6.23) uniquely determine xy, x),
Yo, and y;.

The second case is min(q) = go and max(p) 8(:0)N Fjo, in whichcaseo =1,
ormax(q) = oand min(p) = 8(:0)N Fjo, inwhichcaseo = —1.Thengq —S(IO)N
F,o, 08(10)N » > 0, and 0'8(_]0)M E,0 < 0. Equation (6.22) is equivalent to

= [o8(io)N - Fj][1 — alio)xo — Blio)x1] + [—08(jo)M - Eiy][@(jo)yo + BLjo)n).

IfN - Fj, #0and M - Ej, # 0, then a(io)xo + Bio)x1 = 1 and a(jo)yo + Bljo)y1 =
are required. These two constraints and Equation (6.23) uniquely determine x, x1,

Yo, and »n.
The third case is min(g) = - qo — 8(10)M E,o and max(p) = 0, in which case

o=1,or max(q) =qo— 8(jo)M E,o and min(p) =0, i in which case o0 = —1. Then
qo = 8(jo)M E,o, 0'8(10)N » <0, and 08(10)M E,,, > 0. Equation (6.22) is
equivalent to

6.5 Dynamic Object-Object Intersection 243

Table 6.13 Coefficients for unique points of triangle-triangle intersection.

L Coefficients

N yo=0, vy=0, ogp = ming(ogy)
yvo=1 y1=0, oq; = ming(oqx)
=0 n=1 aq; = ming(oqy)

M X=0 x1=0, opy = ming(opy)
X=1, x1=0, op; = ming(opy)
X=0 xn=1, op2 = ming (o pi)

Eo X i"j x1=0, Xo= M. D/M . E'o, 0 = max;(opk)
xp=1 xg=0, 0 = ming(ope)

E]ij Xo=0, m:;’-b/&f-él, 0 = maxi(opt)
xo=1 x1=0, 0 = ming (o pi)

Ez X i‘j X0=0, x; =0, 0 = max(opi)

x=1, xo=(M-E,— M- b)/i" - E2, 0=ming(opx)

0=[—ad(ig)N - Fjyllatio)xo+ Blio)xi] + [68(io) M - E;][1 — e jo)yo — B(jo)n].

IfN - Fjy#0and M - E;, # 0, thena(ig)xo + B(io)x1 = 0and & (jo)vo + Blio)y1 =1
are required. These two constraints and Equation (6.23) uniquely determine xy, x1,
o, and vy.

The fourth case is min{g) =g — 8(10)M E,o and max(p) = 8(!0)N F .
in which case 0 = 1, or max(q) =qo — 8(10)M E,,, and mm(p) = 8(10)N Fjy»
in which case 0 = —1. Then ¢9 = é(zo)N Fjo +§(10)M E,o, 05(10)!\' Fj,, >0,
and o§(jo)li:l - E‘;,, > 0. Equation (6.22) is equivalent to

= [08(ig)N - Fjy][1 — a(ig)xo — Blio)x1]

+ [68(joM - Ejp][1 — ajo)yo — BLjo)yil-

IfN - F,o # 0and M- E,o # 0, then a(ig)xg + Blig)xy = 1 and a(jo) yo + Bjo) 1 =
are required. These two constraints and Equation (6.23) uniquely determine xp, x1,
Yo and yi.

The coefficients needed to produce the unique points of intersection are summa-
rized in Table 6.13.

244 Chapter 6 Collision Detection

66 ORIENTED BOUNDING BOX TREES

£0OURCE CODE

Containment

FILENAME

BoundingVolumeTree
BoxTree

SphereTree
CapsuleTree
LozengeTree

In this section, oriented bounding box (OBB) trees are used to provide a hierarchical
way of deciding if two objects intersect (Gottschalk, Lin, and Manocha 1996). The
computational goal is to minimize the time spent determining if two objects do not
intersect. Although the emphasis here is on using boxes as the bounding volumes,
the same ideas apply for any type of bounding volume, for example, sphere-swept
volumes (see Larsen et al. 1999 and www.ndl.com).

An OBB tree essentially provides a multiscale representation of the object. The root
of the tree corresponds to an approximation of the object by a single OBB. The boxes
corresponding to the middle levels of the tree represent smaller pieces of the object,
thus providing a somewhat better approximation to the object than the root. The leaf
nodes of the tree represent theactual geometry ofthe object. For all practical purposes,
the object is a triangular mesh, and each leaf node of the OBB tree corresponds to a
single triangle in the mesh.

Although Gottschalk, Lin, and Manocha (1996) formulated their ideas for in-
tersection testing of stationary objects, the construction also applies when the ob-
jects are moving, In particular, when each object has a constant velocity during the
specified time interval, the extension is mathematically straightforward. When ob-
ject motion is constrained generally by the system of ordinary differential equations
di/dt = V (1, %), where V is the velocity vector field that is (possibly) dependent on
both current time and current position, a numerical integration of the differential
equations can be applied during the specified time interval. The simplest method to
apply is Euler’s method. For each time step, the object is assumed to have constant
velocity during that step. The methods for handling collision of objects with constant
velocities can then be applied during that time step. 1f more positional accuracy is de-
sired, a higher-order numerical integrator can be used to determine various positions
during the time interval. The difference between consecutive positions can be used as
the constant velocity vector for that time step.

Of particular interest is the case when the objects have constant linear velocities
and constant angular velocities. The differential equations are dx/dt = V+Wx
x-K) where V is the constant linear velocity, and the axis of rotation is K +1W,
where W is the constant angular velocity and whose length is the angular speed. The
motion is X(t) = K + vV + R(t, W)(%o — K), where R(t, W) is a rotation matrix
about the axis K + W. While it is possible to perform intersection testing using the
closed-form solution for position, it is not recommended. The closed form leads to a
test equivalent to showing that the minimum of a function containing sinusoidals and
polynomials is positive for the specified time interval. Since minimization algorithms
are iterative and since the trigonometric function evaluations are expensive, it is
better to numerically solve the differential equation (also iterative) and avoid the
trigonometric function calls.

Of additional interest for moving objects is the ability to determine the first
time and first point of intersection for the objects during a specified time interval.

6.7 Processing of Rotating and Moving Objects 245

These quantities can be determined by processing all the potential separating axes and
computing the last time that a separating axis exists. At this time the two objects are just
touching (no interpenetration). The various quantities computed for the separation
tests provide enough information to reconstruct a first point of intersection (if this
point is unique) or to reconstruct one of the points of intersection (if not unique). It
is also possible to extract all points of intersection, but this comes with an additional
computational cost.

Section 6.9 illustrates one method for automatically generating oriented bounding
box trees. The algorithm fits a mesh of triangles with an OBB using either an analysis of
a covariance matrix of the vertices and triangles in that mesh or a minimum-volume
bounding box fit. Once the OBB is computed, a basic splitting algorithm is used to
partition the mesh into two submeshes. The tree generation is recursive in that the
algorithm is applied to each of the two submeshes. The result is a binary tree of OBBs.
The application has the option of limiting how deep a tree is built by specifying how
many triangles are to occur at a leaf node. The default is one triangle. If the leaf nodes
have multiple triangles, then only the representing OBB is stored in the tree. The idea
is to reduce computation time at the expense of accuracy.

Section 6.10 presents an implementation of a simple dynamic collision detection
system. Given two OBB trees, the problem is to traverse them simultaneously and
test/find intersections. The application can specify how deep in the tree to traverse,
again to reduce computation time at the expense of accuracy. Once an intersection is
predicted, the first time and first point of intersection as well as other information is
given to the application via callbacks associated with the objects. This scheme makes
the collision detection effectively transparent to the application. The application can
concentrate solely on the physics of the response, for example, arranging for objects
to bounce off walls with the proper angle and angular momentum.

6.7 PROCESSING OF ROTATING AND MOVING OBJECTS

This section shows how to extend the ideas of nonintersection to oriented bounding
boxes that have both linear and angular velocities. The algorithm is first presented in a
closed-form fashion. Determination of nonintersection is equivalent to showing that
at least one function of time (from a set of 15 nonnegative functions} is positive on the
specified time interval. The functions contain sine and cosine terms of two different
frequencies. Evaluation of these is expensive unless lookup tables are used. Moreover,
to show that the function is positive requires a numerical method for constructing the
minimum of the function. The iterative schemes can be expensive, too. Alternatively,
we may select a fixed number of samples on the specified time interval and evaluate the
functions and those samples. Since the trigonometric values are handled by lookup
tables, there is an additional problem in that the function values at the samples are all
positive, yet the minimum function value is zero.

246 Chapter 6 Collision Detection

A better alternative is to formulate the problem in terms of differential equations.
In this form no trigonometric function evaluations are required, A numerical method
must be used for solving the equations, but it can be as simple as using Euler’s method.
The same problem exists as in the last paragraph—the numerical method effectively
generates a sequence of function values that might all be positive, yet the function
minimum is zero. For better accuracy and stability, a Runge-Kutta method can be
used (see Appendix B, Section B.7). Regardless of the differential equation solver, the
alternative algorithm creates a sequence of oriented bounding boxes for each initial
box and uses the linear velocity algorithm to determine the intersection of two boxes
between two consecutive elements of the sequence.

6.7.1 EQUATIONS OF MOTION

The high-level abstraction is to have an object that is tagged with a center point C,
an origin for a frame of reference, and a coordinate frame I-]o. 171, and > (three
mutually orthonormal vectors forming a right-handed system). The coordinate axes
are represented as the three columns of a rotation matrix R [Uo U 1 UZ] The object
is assigned a linear velocnty V and an angular velocity W. The axis of rotation has
origin C and direction W, and the speed of rotation is [W .

The object is associated with an oriented bounding box tree. Each box in the OBB
tree is offset from the object center and has a frame that is typically not oriented the
same as the object frame. The motion of each box is determined by the motion of the
object.

Coordinates of a point X can be measured relative to the object coordinate system
as X = C + RY. The relative coordinates are represented by Y. For-time varying
center C (1) and frame R(?), the initial point ¥ follows the path

X(1,¥)=C() + R@)Y,

where the dependency on Y is emphasized by the explicit mention of ¥ in the func-
tional form of X. For constant linear and angular velocities, the center and frame
are

é(l) = éo + v
R =exp(skew(ﬁ’)2)Ro,

where Cy is the initial center and Ry is the initial frame. If W = (wo, wy, wy), then
[Sij] = skew(W) is the skew-symmetric matrix whose diagonal entries are Soo =
Sn = Sz = 0 and whose other entries ate Sp) = —S10 = w2, Spz = — Sz = —wy, and
S12 = —S2; = wo. The matrix exp(skew(W)1) is the rotation matrix that represents
the rotation whose axis is in the direction of W and whose angle of rotation is Iﬁ’lt.

6.7 Processing of Rotating and Moving Objects 247

The motion for constant linear and angular velocities is therefore
5.((:, Y)= Co+ tV + exp(skew(ﬁ’)t)Ro?

for t > 0. The differential equation governing the motion of the object is

i—)f =V +skew(ﬁ’) exp(skew(ﬁ’)t)Rof’
=V + skew(ﬂ.’) ()? - (6‘0 +If/))
=V+Wx (f(-(f‘o+tf’)).

Since the motion is rigid, the OBBs in the OBB tree are governed by the same
differential equation. However, the center and frame for an OBB can be derived from
basic principles. If C} is the OBB initial center and R, is the OBB initial frame for the
oriented bounding box, then in terms of the object coordinate system, C) = Co + Ro€
for some relative coordinate vector £. The time-varying path of the OBB center is

K =X@t§)
=C(1) + R(t)E
= Co + 1V + [exp(skew(W)1) Ro) [R} (Cy — Co)]
= Co + tV + exp(skew(W)t)(C; — Co).

The time-varying OBB frame is simply the application of the object’s relative
rotation to the box’s frame,

P@)= exp(skew(W)t)Rl.
KX ¥)=K(t) + P(O)Y, then

dX _dR(@t) dP(t)
Z - @ Tat
= V + skew(W) exp(skew(W)1)(C) — Co) + skew(W) exp(skew(W)N) R, ¥

=V + skew(ﬁ’) ()? - (C‘o + tf;))

=0+Wx(i—(€‘o+xf’)).

248 Chapter 6 Collision Detection

This verifies that in fact the OBB is governed by the equations of motion of the
object.

6.7.2 CLOSED-FORM ALGORITHM

The closed-form approach is illustrated with one of the separating axis tests. The other
axes are processed in a similar fashion. For two stationary OBBs (one from each OBB
tree for the two interacting objects), the nonintersection test based on the axis with
direction }io is

|Ag - D| > ag + [bocool + |brcor] + 1b2¢02s

where the ¢;; are the entries of matrix C = AT B with columns of A being the axes of
the first box and columns of B being the axes of the second box. The values a; and b;
are the extents of the boxes. Finally, D is the difference between the second and first
box centers.

Let K;(t) and P;(t), i =0, 1 represent the time-varying centers and coordinate
frames for the two boxes. Let Zo(t) be the first column of Py(t). The nonintersection
test is now time-varying:

|Ao(r) - (K1(t) — Ko(1))] > a0 + |Bocoolt)] + [Brcor(t)] + [Bacoa(t)]s

where C (1) = Po(1)T Py(1).

Each object has (possibly) different angular velocities. Generally, the sinusoidal
terms in Po(r) and Py(r) have different frequencies. The nonintersection test there-
fore contains sinusoidals of two frequencies. The centers K;(t) themselves include
sinusoidal terms whenever the box centers are not the same as the object centers.
Verifying the inequality in the test for all t in a specified interval is not a simple
problem. The verification of £(t) > r(1) for ¢ € [0, T] is equivalent to showing that
3(1) = €(t) — r(¢t) has a positive minimum for t € [0, T]. Although this can be done
by applying a numerical minimizer to 8(z), probably using an inverse parabolic in-
terpolator such as Brent’s method, it is expensive because each function evaluation
requires computing sinusoidal functions. The cost can be reduced by using table
lookups, but the iteration itself might not always converge to an acceptable value
in the same number of steps per nonintersection test. Better control of the process
would be to select a fixed number of evaluations per test, say, N > 0, and compute
8; =8(Ti/N)for 0 <i < N. The minimum of the §; is computed and, if sufficiently
larger than zero (the application must select a threshold), the boxes are determined
not to intersect.

6.7 Processing of Rotating and Moving Objects 249

6.7.3 ALGORITHM BASED ON A NUMERICAL ORDINARY DIFFERENTIAL
EQUATION SOLVER

JOURCE CODE

Intersection

FILENAME

IntrBox3Box3

Rather than evaluating the §; per potential separating axis, a better approach is to
numerically solve the equations of motion for t € [0, T']. For the first box, solve

X _ 74 x (R= Got1P)

for t > 0 with initial condition X(0) = Ko. The simplest approach is to use Euler’s
method and iterate N times on the given interval. The time steps are s = T'i/N for
0 <i < N.Define X to be the numerical approximation to X (1:); then Xo =K oand

XH.; X + = [‘7+WX()};—&0+I;‘7)];

where the first object has center Cy, linear velocity V, and angular velocity W. The
iteration scheme is evaluated for 0 <i < N. This produces a sequence of centers for
the first box, Xo through X y. The coordinate frame is also integrated using

—_—= skew(W)P

for ¢ > 0 with initial condition P(0) = R;. Using Euler’s method, the values P; are
approximations to P(t;) and the iterations are

Puau=P+ skew(W)P,- = (1 + %skew(ﬁ’)) P

The numerical scheme does not preserve the orthonormality of the matrix. That s,
Py = R is orthonormal, but P; is not necessarily orthonormal. For very small T/N,
P, isnearly orthonormal and can be used as is. However, it might be desirable to renor-
malize P; at each step. This can be done by using Gram-Schmidt orthonormalization
on the three columns of P;.

After the center and frame iterates have been generated, the sequence of centers
and frames for the first moving OBB is X; and P;. The second moving OBB has
similar sequences ¥; and Q. For each i, the linear velocity of the first OBB over the
corresponding time submterval is set to Vo= X,+| — X;, and the linear velocity of
the second OBB is set to V; = Y,+ { = ¥;. On the time subinterva), the two boxes are
compared as if they have only linear velocities. The first OBB has center X;, coordinate
frame #;, and velocity V. The second OBB has center ¥;, coordinate frame Qi, and

250 Chapter 6 Collision Detection

velocity V). The algorithm is applied to each of the N pairs of OBBs. For a given
potential separating axis, if the N tests all show nonintersection, then the axis is
separating and the two OBBs do not intersect on the given time interval.

6.8 CONSTRUCTING AN OBB TREE

Given a triangular mesh consisting of a collection of vertices and a connectivity list,
the basic approach to constructing an OBB tree is recursive. An OBB is computed
to contain the initial triangular mesh. The mesh is split ino two submeshes, with the
algorithm possibly using information about the OBB to determine how to split the
mesh. If a submesh contains at least two triangles, then the process is repeated on
that submesh. If a submesh has exactly one triangle, no OBB is constructed, but the
triangle is considered to be at a leaf node of the tree.

The OBB nodes themselves must store various information to aid in collision
detection. It is assumed that the triangle mesh represents a rigid body. Dynamically
morphed objects are problematic in that OBB trees would need to be recomputed
during run time, an expensive operation. Although there are many ways to organize
the data, the simplest is to require each OBB node to store a pointer to the rigid body
object, an OBB pointers to the two child OBB nodes, and an index to a triangle.

The pointer to the object is used to query the object about motion information.
For example, if the object velocity is a function of time, an OBB node may need to
query the object to determine at a specific time what the velocity is. The pointers to
the children are both not null for interior OBB nodes and both null for leaf OBB
nodes. The index to a triangle is only used at OBB leaf nodes. This index is used in
querying the object to get the actual triangle vertex data that is needed to compute
triangle-triangle intersections.

The tree generation algorithm also allows for building less than a full tree. An
application can specify a threshold on the number of triangles for an OBB leaf node.
The full tree has a single triangle per leaf node. However, if an application specifies
at least two triangles per leaf node, the splitting algorithm will be applied during
construction of an OBB node only if that node has more than two triangles in its mesh.
The number is heuristic: an OBB node with three triangles is allowed to be split. The
child with two triangles is no longer subdivided. The other child has a single triangle.

A variety of methods can be used for computing an OBB for a triangular mesh.
In real-time applications, these methods are applied in a preprocessing phase, so
their execution times are not typically an issue. We will discuss three algorithms:
minimum-volume OBB, OBB based on distribution of mesh points, and OBB based
on distribution of mesh triangles (described in Gottschalk, Lin, and Manocha 1996).
Various bounding algorithms are discussed in Chapter 2 (box from points, box from
triangles, minimum-volume box).

Given a triangular mesh with corresponding oriented bounding box, the mesh can
be split into two submeshes. The idea is to split the OBB by a plane orthogonal to the

6.9 A Simple Dynamic Collision Detection System 251

longest axis of the box, then partition the triangles based on which side of the splitting
plane their centers lie. There are many heuristics for the location of the splitting plane,
but only two are presented here.

The first algorithm uses the splitting plane orthogonal to the longest axis and
passing through the center of the OBB. Because of variations in triangle size, this
algorithm may not produce a balanced tree. Worse is that it may not provide a
subdivision if all the triangle centers occur on the same side of the plane. If the longest
axis does not partition the triangles, the next longest axis can be used. If in turn this
does not partition the triangles, then the last axis is used. If all three axes fail to partition
the triangles, then some other criterion for splitting must be used.

The second algorithm uses the splitting plane orthogonal to the longest axis and
passing through that point corresponding to the median value of the projection of
the triangle centers onto the longest axis. This guarantees that the tree is balanced, a
desirable trait since it keeps the height of the tree small compared to the number of
triangles represented by the tree.

69 A SIMPLE DYNAMIC COLLISION DETECTION
SYSTEM

There are many choices for testing for collisions between two OBB trees. Here we will
present one simple method that implements a dual recursion on the two OBB treesand
compares OBB and triangles for collisions. Effectively an OBB of one tree is compared
against an OBB of the other tree. If the two OBBs intersect, then the children of the
second OBB are compared against the current OBB of the first tree.

The algorithms assume a function boo! HasGbb (ObbTree node) that returns
true if and only if the node has an associated OBB. It also assumes a function

bool HasChildren (ObbTree node, int depth)
{
return (Exists(node.Lchild) && Exists(node.Rchild) &&
depth != 0);

Having children is necessary but not sufficient for this function to return true, The
test on depth supports limiting the depth of traversal. The application specifies a
positive depth to limit the traversal, To get a full traversal, the application specifies the
depth to be a negative number. The depth is decremented for each recursive call of
TestCol11sions,sointhecaseofan initial positive depth, any visited node for which
current depth value is zero is considered a leaf node. For an initial negative depth,
the test for children is unaffected by the subsequent depth values. The semantics of
HasChildren precludes the calls to Has0bb being replaced by callstoHasChi1dren.

252 Chapter 6 Collision Detection

6.9.1 TESTING FOR COLLISION

The method TestIntersection calls the appropriate intersection routine based on
whether or not the tree node is interior or leaf. The returned value is true if and only
if the corresponding OBB or triangles intersect during the specified time interval.
Motion parameters are maintained by the object whose pointer is stored in the OBB
nodes and can be accessed within the intersection calls.

bool TestIntersection (float dt, ObbTree node0, ObbTree nodel)

{
if (HasObb(node0))
{
if (HasObb(nodel))
return ObbObbIntersect(dt,node0.0bb,nodel.0bb);
else
return ObbTrilntersect(dt,node0.0bb,nodel.Tri);
]
else
{
if (HasObb(nodel))
return TriObbIntersect(dt,node0.Tri,nodel.0bb);
else
return TriTrilntersect(dt,node0.Tri,nodel.Tri);
]
}

The values depthQ and depth1l, when passed to the TestCo111 s on for the root
nodes of the OBB trees, are the application-specified maximum depths of traversal for
the OBB trees. The returned value for TestCol1ision is true if and only if the two
subtrees that are rooted at the input nodes do intersect.

bool TestCollision (float dt, ObbTree node0, int depth0, ObbTree nodel,
int depthl)

{
if (!TestIntersection(dt,node0,.nodel))

return false;

if (HasChildren(node0,depthQ))
{
if (TestCollision(dt.node0.Lchild.depth0-1.nodel,depthl))
return true:;
if (TestCollision(dt,node0.Rchild,depth0-1,nodel,depthl))
return true;
if (HasChildren(nodel,depthl))
{

if (

if (

}

6.9 A Simple Dynamic Collision Detection System 253

TestCollision(dt,node0,depthO,nodel.Lchild,depthl-1))
return true;
TestCollision(dt.node0,depthO,nodel.Rchild,depthl-1))
return true;

return false;

}

if (HasChil
{

dren(nodel,depthl))

if (TestCollision{(dt,node0,depthO,nodel.Lchild.depthl-1))
return true;

if (TestCollision(dt.node0,depthO,nodel.Rchild,depthl-1))
return true;

return false;

}

return true;

The last line of the function returns true since both node0 and nodel are at the
end of the recursive calls and the call to TestIntersection already has shown that
the corresponding OBBs or triangles are intersecting. Also note that the semantics
of this routine say that if the traversal is limited by an application-specified depth,
an intersection between two OBBs or between an OBB and a triangle is counted as a
collision, even if the underlying trimesh geometry does not intersect, illustrating once
again the trade-off between accuracy and compute time.

6.9.2 FINDING COLLISION POINTS

The method FindIntersection calls the appropriate intersection routine based on
whether the tree node s interior or leaf. A returned value is t rue if the collision system
is to continue searching other collisions. The value does not indicate that there is an
intersection point between the OBB, OBB and triangle, or triangles.

Any intersection points found by FindIntersection when applied to OBBs or
triangles are passed onto the application via a callback mechanism that is associated
with the object whose pointer is stored by the OBB node. Normal vectors are also
passed to the callback. A normal for an OBB is computed as if the OBB were an
ellipsoid, thus providing a smoothed normal vector field for the box. The return
value of the callback is Boolean and indicates whether or not the collision system
should continue searching for collisions. This gives the application the opportunity
to terminate the search after one or more collisions rather than processing all possible
collision points.

254 Chapter 6 Collision Detection

bool FindIntersection (float dt. ObbTree node0, ObbTree nodel)
{

// first time, location, and normals of intersection

float time;

Point3 intersect, normal0, normall;

if (HasObb(node0))

{
if (HasObb(nodel))

{
findObbObb{dt.noded.0bb.nodel.Obb,time,intersect);
nodel,Obb.GetNormal(intersect);

}

else

{
FindObbTri(dt,node0.0bb,nodel.Tri,time,intersect);
nodel.Tri.GetNormal(intersect):

1

normal0 = node0.0bb.GetNormal(intersect);
]
else
{
if (HasObb(nodel))
{
FindTriObb(dt,node0.Tri,nodel.0bb,time,intersect);
nodel.Obb.GetNormal(intersect);
}
else
{
FindTriTri(dt,noded.Tri,nodel.Tri,time,intersect);
nodel.Tri.GetNormal(intersect);
]

normal0 = node0.Tr{.GetNormal(intersect);
}

// provide the application with the collision information
bool bContinuel;
if (node0.0bject.Callback)
{
bContinue0 = node0,0bject.Callback(nodel.0Object,time,intersect,
normal0,normall):

6.9 A Simple Dynamic Collision Detection System 235

}
else
{
bContinued = true;
]

bool bContinuel;
if (nodel.Object.Callback)

{
bContinuel = nodel.Object.Callback(node0.0bject.time,intersect,
normall,normal0);
]
else
{
bContinuel = true;
]

return bContinueQ® && bContinuel;

The pseudocode for finding a point of intersection is given below. The return value
is true if and only if the collision system should continue searching for collisions.

bool FindCollision (float dt, ObbTree node0, int depthQ, ObbTree nodel,
int depthl)
{
if (ITestIntersection(dt,node0,nodel))
return true;

if (HasChildren(node0,depth0))
{
if (!FindCollision(dt,node0.Lchild,depth0-1,nodel,depthl))
return false;
if (IFindCollision(dt,nodeQ.Rchild,depth0-1,nodel,depthl))
return false;
if (HasChildren(nodel,depthl))

{
if (!FindCollision(dt.node0,depthQ,nodel.Lchiid,depthl-1))
return false;
if (IFindCollision(dt,nodeD,depth0,nodel.Rchild,depthl-~1))
return false;
]

return true;

256 Chapter 6 Collision Detection

if (HasChildren(nodel,depthl))

{
if (IFindCollision(dt.nodeQ,depth0,nodel.Lchild,depthl-1))
return false;
if (IFindCollision(dt,node0,depth0,nodel.Rchild,depthl-1))
return false;
return true;
}

// At this point we know there is an intersection. Compute the
// intersection and make this information available to the application
// via the object callback mechanism.

return FindIntersection(dt,pkTreel);

CHAPTER

CURVES

tfirst glance, curves do not appear to be a central topic in building a game engine.
Many game engines concentrate on taking polygonal models and processing
them for display by the renderer. If objects must change position or orientation during
game play, the standard approach has been just to move the objects in a simple
fashion, using translation by constant vector offset and rotation by a constant angle—
something that requires only vector and matrix algebra (i.e., linear algebra, emphasis
on [ine). But curves are actually quite useful when you think about it. For example,
if a flight simulator wishes to support realistic flight dynamics, such as the correct
banking of a plane as it makes a tight turn, curves can be of assistance. The bank angle
is related to how much “bending” there is in the curve that represents the flight path
(requiring the concept of “curvature of a curve”). Moreover, if the plane is required
to travel at a constant speed along the curved path, the calculations involve knowing
something about arc length and the concept of “reparameterization by arc length.”
Another popular example is in the construction of a game that requires tunnels.
Many developers are interested in specifying the central curve of a tunnel and the
width of the tunnel along that curve. From this information the tunnel walls can be
built as a polygon mesh. An understanding of the theory of curves is essential in this
construction.

257

258 Chapter 7 Curves

Finally, curved surfaces have become quite popular, if not essential, for building
content in a game that is more realistic looking than the siandard polygonal content.
The content is typically dynamically tessellated during game play. An understanding of
the theory of curves will be quite useful because the same ideas extend to surfaces—the
ideas in tessellating curves apply equally well to tessellating surfaces. Understanding
curves is a prerequisite to understanding surfaces.

The topic of curves is quite extensive, and only a brief summary is given in this
chapter. The basic concepts that are covered in Sections 7.1 and 7.2 are arc length, repa-
rameterization by arc length, curvature, torsion, tangents, normals, and binormals.
Special classes of curves are considered in Section 7.3: Bézier curves; natural, clamped,
and closed cubic splines; nonparametric B-spline curves; and tension-continuity-bias
curves (including Catmull-Rom and Kochanek-Bartels splines). Nonuniform rational
B-splines (NURBS) are not discussed here, but more detailed discussions can be found
in Farin (1990) and Foley et al. (1990). Topics discussed here that are less frequently
found in the standard references are subdivision of a curve by various methods (by
uniform sampling in curve parameter, by arc length, by midpoint distance, by varia-
tion, and by minimum variation) and fast recursive subdivision for cubic curves, all
considered in Section 7.4. Finally, orientation of moving objects along a curved path is
discussed in Section 7.5. This is useful for applications such as flight simulators where
the orientation must be physically realistic.

7. 1 DEFINITIONS

SOURCE CODE

LIBRARY

Curve

FILENAME

Curve
SingleCurve
SingleCurve2
SingleCurve3
MultipleCurve
MultipleCurve2
MultipleCurve3

A parametric curve is a function X : [fmin, fmax] C R — R”. The curve end points
are X (min) and X (!may). Tangent vectors to the curve are ¥'(¢), the derivative with
respect to . The forward (backward) direction of traversal is that direction implied
by increasing (decreasing) t. The speed of traversal is |¥'(¢)|. A curve X(s) is said to be
parameterized by arc length s if T(s) = ¥'(s) is unit length. The relationship between
sandtis

t
s@) =/ |¥(7)] d.
Imin

The length of the curve is L = s(fmax)-

A planar curve X(t) = (xo(£), x1 (1)) has associated with it an orthonormal coor-
dinate frame given by the tangent vector T (s) and a normal vector N (s). The frame
relationships are

T'(s) =k (s)N (s)
N'(s) = —x(s)T (s).

7.1 Definitions 259

The quantity «(s) is called curvature. A curve is uniquely determined (modulo rigid
motions) by specifying a curvature function.

If f'(s) = (cos 8(s), sin 8(s)), then the normal can be chosen as fl(s) =
(— sin 8(s), cos O(s)). In this case, « = d8/ds. In terms of the t-components of the
curve, curvature is

XoX| — Xgxy
((x)? + (x)?)

=

32"

A space curve X(t) = (xo(t), x3(1), x2(t)) has associated with it an orthonormal
coordinate frame called the Frenet frame given by the tangent vector T(s), a normal
vector N(s), and a binormal vector B(s). The frame relationships are called the
Frenet-Serret equations,

T'(s) = x(s)N (s)

N'(s) = —.()T(s) + T()B(s)

B'(s) = —t(s)N(s).

The quantity x(s) is the curvature and the quantity r(s) is called torsion. A curve is
uniquely determined (modulo rigid motions) by specifying both a curvature function

and a torsion function.
Setting

T = (cos @ sin @, sin 9 sin ¢, cos P)

- 1 T
= (— si 91 3 == oy
u = (—sin 8, cos 8, 0) Sing 96
. : : oT
U = (cos 8 cos ¢, sin 8 cos ¢, — sin @) = 57,

it can be shown that T =¥ x &i, N = (cos (g)ii + (sigw)ii, and B = (sin w)id -
(cos w)v for some angle function w(s), and B =T x N. Substituting these in the
Frenet-Serret formulas yields

(dB do d_w)_ K €OS W sinw_r_'_xcoswcosd))
ds'ds’ds)” \sing '© ’ sin ¢)

260 Chapter 7 Curves

In terms of the t-components of the curve, curvature is
+]x x x|
.
where the choice of sign depends on the orientation of the normal to tangent. The
torsion is

.'x'l . (.‘x‘ll x .'x'lll)
5 x ¥

One way to handle the sign problem for normal vector and curvature is the
following. Assuming that 6(s) and ¢ (s) are smoothly varying functions, the vectors T,
u, and v are smoothly varying. Choose N to be the vector that forms an acute angle
with #. In this way the curvature has a consistent sign related to the normal vector
orientation. It can be shown that
. (F R - @ ENE

| %1% x X

where |o| = 1. A choice for sign is o = sign(i - X”). Curvature is then computed as
k =al|¥ x ¥'|/1¥].

7.2 REPARAMETERIZATION BY ARC LENGTH

Given a curve X(t) for t € [tin, tmax]» it may be desirable to evaluate curve quan-
tities (position, coordinate frame, curvature, torsion) by specifying an arc length
5 € [0, L], where L is the total length of the curve. The algorithm requires computing
t € [tmin, tmax) that corresponds to the specified s. This is accomplished by a numer-
ical inversion of the integral equation relating s to t. Define Speed(t) = |x'(t)| and
Length(r) = f,:nin |x'(t)] dz. The problem is now to solve Length(r) — 5 = 0 for the
specifed s, a root-finding task. From the definition of arc length, the root must be
unique. An application of Newton’s method will suffice (see Appendix B, Section B.5).
Evaluation of Length(r) does require numerical integration. Romberg integration or
Gaussian quadrature work fine in this setting (see Appendix B, Section B.6). The pseu-
docode for the algorithm is

Input: tmin, tmax, L, s in [0,L]
OQutput: t in [tmin,tmax] corresponding to s

// Choose an initial guess based on relative location of s
// in [0,L].
ratio = s/L;

7.3 Special Curves 261

t = (1-ratio)*tmin + ratio*tmax;

for (1 = 0; i < IMAX; i++)

{
diff = Length(t)-s;
if (|diff| < EPSILON)
return t;
t -= diff/Speed(t);
}

// Newton’s method failed to converge. Return your best guess.
return t;

An application must choose the maximum number of iterations IMAX and a tolerance
EPSILON for how close to zero the root is. Reasonable choices appear to be IMAX = 32
and EPSILON = 1e-06.

7.3 SPECIAL CURVES

The following subsections describe various special curves in three dimensions.

7.3.1 BEZIER CURVES

RCE CODE

LIBRARY

Curve

FILENAME

BezierCurve2
BezierCurve3

Bézier curves are popular with game programmers for their mathematical simplicity
and ease of use.

Definitions
Given an ordered list of three-dimensional control points p; for 0 <i < n, the Bézier
curve for the points is
n
)= Bpi(t)pi
i=0

fort € [0, 1] and where the coefficients of the control points are the Bernstein poly-
nomials

Bri()=C)r'(1 —)" (7.1)

262 Chapter 7 Curves

with combinatorial values C(n; i) = n!/(i!(n — i)!). The barycentric form of the
curve is

uv)= Y Coi, puvi,
i+j=n

whereu € [0,1],v€[0,1),u+v=1,i >0, j > 0,andg; ; = p;. Theformulaappears
to be bivariate, but the condition v = 1 — u shows that it is in fact univariate. The
derivative of a Bézier curve is

n—1
FO=n) By ri(t)(Piv1 — Pi).
i=0

Evaluation

In evaluating a Bézier curve, a decision must be made about whether speed oraccuracy
is more important. For real-time applications, speed is usually the important criterion.
Inaccuracies in the computed positions are not noticeable in the sampled curve.

Using the Bernstein form of a Bézier curve, the Bernstein polynomials are evalu-
ated first. The polynomials are computed for the selected r and for all values0 < i < n.
The control points are then multiplied by the coefficients and summed. Assuming a
fixed degree n and assuming that the combinatorial values C (n; i) are precomputed,
the number of multiplications required to compute each polynomial coefficient is n.
For small degree n, the number of multiplications can be reduced by computing in-
termediate products of powers of t and 1 — ¢, but this optimization is not considered
at the moment in the operation count. Multiplying a polynomial coefficient times
control point requires 3 multiplications. Given n + 1 terms, the number of required
multiplications is (n + 1)(n + 3). Thereare n + 1 three-dimensional terms to sum for
a total of 3n additions. The total operation count for a single Bézier curve evaluation
is n2 + 7n + 3 operations.

Using the barycentric form of a Bézier curve, evaluation is possible by using the
de Casteljau algorithm (a good reference on the topic is Farin 1990). Define Ejg = Gi.j
to be the original control points. The algorithm is
g;,j(4, v) = ua:;ll.j + vziir.;:-l
for1 <r <nandi + j =n — r.For each r there are 6 multiplications and 3 additions
on the right-hand side of the equation. The number of terms to compute for each r is
n — r. Total operation count for a single evaluation is 9n(n — 1)/2 operations. This is
quadratic order, just as for the Bernstein evaluation, but the constant is 9 rather than 1.
However, the de Casteljau algorithm is numerically stable, whereas the Bernstein form
is not, particularly for large n. The amount of numerical error in the Bernstein form
is visually insignificant for rendering purposes for small degree n < 4. The savings in
time is clearly worth using Bernstein form.

7.3 Special Curves 263

Degree Elevation

A Bézier curve with n + 1 control points is a polynomial of degree n. An equivalent
Bézier curve with n + 2 control points and that is a polynomial of degree n + 1 can
be constructed. The process, called degree elevation, is useful in smoothly piecing
together Bézier curves. The degree-elevated Bézier curve is obtained by multiplying
the Bernstein form of the curveby 1 = (1 + (1 — 1)). Themultiplication by 1 does not
intrinsically change the curve, but the polynomial coefficients are changed because of
the multiplication by (1 4+ (1 — 1)). The degree-elevated curve is

n+l . .
- i - i .
x(1) = Z Byy1,i(D) [(l - n_-i-l) pi + mpi—l] .

=0

Degree Reduction

If the original Bézier curve is quadratic, the degree-elevated curve is cubic, showing
that there are some cubic curves that can be represented by quadratic curves. However,
not all cubic curves are representable by quadratic curves. For example, a cubic curve
that is s-shaped cannot be represented by a quadratic curve. It may be desirable to
reduce the degree on a Bézier curve so that the curve evaluations are less expensive to
compute. Although it is not always possible to get an exact degree-reduced representa-
tion, it is possible to build one that approximately fits the curve. A least-squares fit can
be used to obtain the degree-reduced curve. If the original curve has a lot of variation,
the least-squares fit may not be as good a fit as is desired. For example, if the original
curve is cubic and has control points (-2, 0, 0), (-1, 1,0), (1, -1, 0), and (2,0, 0),
the curve is s-shaped. The least-squares fit will produce a quadratic curve with control
points (—2, 0, 0), (0, 0, 0), and (2, 0, 0). This curve is a straight line segment.

Let the original curve be X(1) = 3"]_ By,i(1) p; and let the degree-reduced curve
be Y(1) = 3"/Lo Bm,i(1)§i, where m < n. The end control points are required to be
the same, §o = po and g, = Pp. The remaining control points g;, 1 <i <m — 1, are
chosen to minimize the integral of the squared differences of the two curves,

I
E(&;,....ém_;)=[) %(1) = 50| de.

The values of the interior control points are determined by setting all the partial
derivatives of E to zero, dE/3g; =0 for 1 < j <m — 1. This leads to the m — 1
equations in the m — 1 unknown control points,

Z(Zm-i-l)C(m,l)_ Z(m+n+l)c(n;i)_
C2m;i+ J) Cim+n;i+j)

i

The system always has a solution.

264 Chapter 7 Curves

The equations can be solved symbolically for some cases of interest. For n = 3 and
m = 2, the solution is

i

o
il

0

LN B~ 1

(=Po+3p1+3P2 — p3)

o
[

O

N
]

!

3.

For n = 4 and m = 3, the solution is

4o = Po

- i - 2 > B p
Gi= (—11po + 44P1 + 18P — 123 + 3p4)
- 1 - It I D D

G2 = 4_2 (3,,0 —12p1 + 18p2 +44p3 — 11P4)
gy= P4

4o = Po

.1 q - 4 - -
G1=15g (—11Po + 16p; + 182 + 16p3 — 11p4)
42 = Pa.

7.3.2 NATURAL, CLAMPED, AND CLOSED CUBIC SPLINES

LIBRARY

Curve

FILENAME

NaturalSpline2
NaturalSpline3

These curve types have the property of exact interpolation—the curves pass through
all of the sample points. The motivation is based on interpolation of a univariate
function. A good discussion of the topic for natural and clamped splines is Burden
and Faires (1985). The closed spline algorithm is not mentioned in Burden and Faires
(1985), but can be developed in a similar manner as the natural and clamped versions.
A brief discussion is given here.

A list of points (;, f;) for 0 <i < n is specified. On each interval [1;, £; 1] with
0 <i < n—1, acubic function S;(t) =a; + bi(t — ;) +ci(t — 1) +dit — ;)% is
required so that the following conditions are met. The first set of conditions are for
exact interpolation,

Si(ti) = ﬁ) 0 Si <n-1, Sn—l(tn) = fm (7-2)

7.3 Special Curves 265

for a total of n + 1 constraints. The second set requires that the polynomial values at
the interior control points must match,

Siv1(tiv1) = Silti+r), 0<i<n-2, (7.3)

for a total of n — 1 constraints. The third set of conditions requires that the first
derivatives at the interior control points must match,

Sip1(tiv) =Si(tiq1), 0<i<n-2, (7.4)

for a total of n — 1 constraints. The fourth set of conditions requires that the second
derivatives at the interior control points must match,

Sitiv) =8 (tie), 0<is<n-2, (7.5)

for a total of n — 1 constraints. All conditions together yield 4n — 2 constraints. The
unknown quantities are the coefficients g;, b;, ¢;, and d; for0 < i < n — 1. Thenumber
of unknowns is 4n. Two additional constraints must be posed in hopes of obtaining a
linear system of 4n equations in 4n unknowns. The three cases considered here are

® Natural splines: S(fo) = 0and §,_,(t,) =0.
® Clamped splines: Sy(1o) and S;,_,(1,) are specified by the application.

® Closed splines: So(tg) = Sy—1(tn) Splto) = S, _;(ta), and Sy(t0) = §,_,(t), in
which case it is necessary that fy = f,. Although these appear to be a set of
three additional constraints, not two, the requirement that the input data satisfy
So = fn automatically guarantees that Sy(19) = S,—1(f,) whenever the original
exact interpolation constraints are satisfied.

Define h; =t;4) — 1; for 0 < i < n — 1. Equation (7.2) implies
a=fi, 0<is<n-—1
an—t +bn—thn1 + caihy_y + dpthy_ = fo. (7.6)
Equation (7.3) implies
aiy1=a; +bihi + c;h? +dik}, 0<i<n-2. (7.7)
Equation (7.4) implies
bi+1 = bi +2cihi + 3d;ih?, 0<i<n-2. (7.8)
And Equation (7.5) implies

civ1=¢ +3dih;, 0<i<n-—2 (7.9)

266 Chapter 7 Curves

Equation (7.9) can be solved for d;,

Cint — Ci .
d'.:%il’ 0<i<n-—1. (7.10)

Replacing Equation (7.10) in Equation (7.7) and solving for b; yields

p=Giizai Qeteaydh o, o (7.11)
n; 3

Replacing Equation (7.11) in Equation (7.8) yields

3@iy1 —a) 3ai—ai-1)

h; hi— (7.12)

hi—ici—y + 2(hi + hi—)ei + hiciy1 =

I<i<n-1.

Natural Splines

Definec, = S,_,(t,)/2. The boundary condition Sg (o) = 0 yields

co=0. (7.13)
The other condition S;,_, (,) = 0 yields

¢ =0. (7.14)

Equations (7.12), (7.13), and (7.14) form a tridiagonal system of linear equations that
can be solved by standard methods in O (n) time.

Clamped Splines

Let the boundary conditions be Sy(tp) = f; and S,_,(#,) = f,, where f; and f, are
specified by the application. These lead to two equations,

2hoco + hocy = 3’(“‘h—;“°) ~3f (7.15)
and
3(a, — ap-
hp_1Cn—1 + 2hp—1cp = 3]‘;: - ("h—al"l): (7.16)
n—

where we define a, = f, = S;—1(fs). Equations (7.12), (7.15), and (7.16) form a
tridiagonal system of linear equations that can be solved by standard methods in O(n)
time.

7.3 Special Curves 267

Closed Splines

It is necessary that f, = fy to obtain a well-posed system of equations defining the
polynomial coefficients. In this case @y = a,, where we define a, = fr = Sp—1(ta).
The boundary condition Sg(fp) = S,,_, (t,) and defined value ¢, = S),_,(,)/2 imply
a constraint

Cp = Cp- (7.17)
The boundary condition Sy() = S,,_, (#,) implies

bo =bp—) + 2cp—1hp-1 + 3d, —lhi-l-

We also know that
by = a—ay (Qco+c1dhy
ho 3
b __ Gp—ay- (2¢n—1 + Cr)Bn—)
n—1 = -
hp—, 3
Cn — Cp—1}
dpy = —————
n—1 3kn—[

Substituting these quantities in the last constraint yields

a)—ap _ao-an—l) (7.18)

ha—1Cav) + 2(hy—) + ho)co + hocy =3 (
hO hn-—l
Equations (7.12), (7.17), and (7.18) form a linear system of equations, but it is not
tridiagonal and requires a general linear system solver.
The natural, clamped, and closed spline interpolations were defined for fitting a
sequence of scalar values, but they can be simply extended to curves by fitting each
coordinate component of the curve separately.

7.3.3 NONPARAMETRIC B-SPLINE CURVES

The splines of the previous section are exact interpolating and require solving systems
of equations whose size is the number of control points. If one of the control points is
changed, the system of equations must be solved again and the entire curve is affected
by the change. This might be an expensive operation in an interactive application
or when the number of control points is very large. An alternative is to obtain local
control in exchange for a nonexact interpolation. In this setting, changing a control
point affects the curve only locally and any recalculations for the curve are minimal.

268 Chapter 7 Curves

SOURCE CODE

LIBRARY

Curve

FILENAME

BSplineCurve2
BSplineCurve3

One way to obtain local control is to use B-spline curves. Generally, a parameterized
B-spline curve can be built from an ordered list of parameters {t;} and points { p;} for
0 <i < n. A detailed discussion of the theory of B-spline curves is found in Farin
(1990). The discussion in this section is restricted to nonparametric B-spline curves,
where the parameter value for each control point is the index of the point, that is,
t;=iforalli.

1t is sufficient to understand nonparametric B-spline interpolation-of tabulated
scalar data. The interpolation for vector data is done per coordinate of the data.
Given function values { f;}7_, where the time parameters are assumed to be #; =1,
we want to build a B-spline of degree 4 that approximates the function values. Let
B(t) be the spline function, defined piecewise on intervals of the form [i, i + 1] for
l(d — 1)/2] <i < |n — (d — 1)/2]. For each interval, the interpolating polynomial
is labeled B;(t). For example, if d = 3 and n = 4, then the five control points will be
interpolated by two cubic polynomials, By(¢) forr € [1, 2] and B,(¢) for ¢ € (2, 3]. To
obtain an interpolation for ¢ € [0, [(d — 1)/2]] ort € [|n — (d — 1)/2], n] requires
specifying additional information at the boundaries of the control points, typically
through repetition of the end control points.

Fort € [i,i + 1], the B-spline polynomial is defined as

d d
Bi(t) = Z Z Sicd—n2)4 M Xi(2).

j=0 k=0

The polynomial components are X (t) = (t — iYfor0 <k <d.The(d +1) x (d +
1) blending matrix M = [M ;] is constructed in the next paragraph. The evaluation
of the B-spline for a given ¢ involves nested summation over the appropriate indices.
Derivatives of B(t) are evaluated accordingly:

d d
d”B(x) dP X (1)
217 jZ_:OkZ_;fi—Hijk T

where 1 < p < d. For p > d, the derivatives are identically zero since B(t) is of
degree d.
The blending matrix M is now constructed. Given values {#;}7_,, define

1, tel. 6
B,-“”(t)=[(4 .n+l] _
0, otherwise

Recursively define

d L=t td—1 ligd+1 —1 -
B0 = (—*) B + (‘—~~ BIL®
tigad — & Lidd+1 — lit1

ford > 1. Fort; =i, B,-(i’j(t) = B,.(‘“(t — Jj), so there is essentially one B-spline basis
function to compute for each d, call it B;(t). Thus,

7.3 Special Curves 269

1, te[0,1]
By(t) =
o?) [0, otherwise
and

t d+2-1t

By ()= —— - -1,
d+1(2) d+le(t)+ a1 B4t ~ 1)
where

(k)
Bd(t)=l (), telk,k+1)for0<k=<d
y otherwise

and where the P,;k)(t) are polynomials of degree d to be determined. The recursion
implies

PP =1

and

d+2—

Lpe-D_ 1 o<k<d+1.
o E=Di—1), 0< +

P =~ P;"’(70+

Setting

d
1 ko), i
P, ""Ez a "t
i=0

we obtain

(k) (k.d)
P =3 Z a; "t~

=dl.—o (Z(1)"'(') "‘"’)

1 & kd
= (kyd) oi
I E bt

i=0

The recursion for the polynomials yields

a;_}

kod+1 k -1d -1,
a! d+1) _ (kd) — LD (4 4 yplktd)

270 Chapter 7 Curves

for0<i <d+1and 0 <k <d + 1. By convention, if an index is out of range, the
term containing that index is 0. The initial data is aéo’o) =1 (so b((,o‘o) =1).

Define
0Py = POt +kx;

then

d
k 1 (k,d) i
0w == & +k

i=0
1 d d) .)
=EZ ij—l (J)a'(k,d) l’
i=0 \ j=i
1 (k) i
= — ¢ !
d! =

The basis matrix M = [M;;] is therefore
d—j,d)
Mij =",

Basis matrices for 1 <d < 5 are

1 -3 3 -1
1 -1 zi-i_; 1|4 0 -6 3
L N e L e e a
0 0 0 1
1 -5 10 —=10 5 1
1 -4 6 -4 1
H —12 -6 12 —4 26 =50 20 20 -20 5

N e |66 o -0 o 30 -10

w11 12 -6 -12 61, 1] 50 20 —20 —20 10
1 4 6 4 -4

6 o o o 1 5 10 10 5 -5

6 0 0 o0 o0 1

The pseudocode for nonparameteric B-spline evaluation is given below. It
is assumed that the blending matrix has already been computed. The quantity
Sur1-td—-1/21+jM i is referred to in the code as the intermediate tensor.

const int D; // degree D > D

const int Dpl = D+1;

const int offset = floor((D-1)/2);

const float M[Dpl]l[Dpll;: // blending matrix
const int N; // last data index, N >= D
float fIN+1]; // data to be interpolated

7.3 Special Curves 271

float t; // floor((D-1)/2) <= t < floor(N-(D-1)/2)

// determine base index of interval for evaluation
int b = floor(t) - offset;

// compute intermediate tensor (nonpolynomial part of B(t))
float intermediate[Dpl]:
for (k = 0;: k <= D; k++)

{
intermediate[k] = O;
for (J =0, i =b; J ¢= D; j++, i++)
intermediate[k] += data[il*M[j)[k]:
}

// compute polynomial (1,t,t*2.....t*D)
float X[Dpll:
float dt =t - b;
X[o] - 1;
for (k = 1; k <= D; k++)
X[k] = X[k-1]*dt;

// compute final result
float result = 0;
for (k = 0; k <= D; k++)
result += intermediate[k]*X[k]:

7.3.4 KOCHANEK-BARTELS SPLINES

BOURCE CODE

Curve

FILENAME

TCBSpline2
TCBSpline3

Given an ordered list of points { p;}!_,, the Kochanek-Bartels splines provide a cubic
interpolation between each pair p; and p;;, with varying properties specified at
the end points (Kochanek and Bartels 1996). These properties are tension T, which
controls how sharply the curve bends at a control point; continuity y, which provides
a smooth visual variation in the continuity at a control point (y = 0 yields derivative
continuity, but y # 0 gives discontinuities); and bias 8, which controls the direction of
the path at a control point by taking a weighted combination of one-sided derivatives
at that control point.

Using a Hermite interpolation basis Hy(t) = 21> — 3t + 1, H,(t) = —2¢> + 312,
Hyt)=1t> -2t +t,and Hy(t) =1> — 12,2 parametric cubic curve passing through
points p; and p;+; with tangent vectors 7; and Ty, ,, respectively, is

%) = HoO i + Hy(0) i1 + HxOT; + Hy(D T 4y, (7.19)

where 0 <t < 1. Catmull-Rom interpolation is a special case where T; = (Pit1 —
Pi-1)/2, a centered finite difference.

272 Chapter 7 Curves

Equation (7.19) may be modified to allow specification of an outgoing tangent T;?
att =0 and an incoming tangent T, at1 =1,

%i(1) = Ho(O)pi + Hi Pist + AT + Hs(O T (7.20)
Tension t € [—1, 1] can be introduced by using

= _(1—=1)
i i 2

~
o
[
>
|

((Pis1 — Bi) + (Pi — Pi-1)) -

The Catmull-Rom spline occurs when t = 0. For 7 near 1 the curve is tightened at the
control point; T near —1 produces slack at the control point. Varying t changes the
length of the tangent at the control point; a smaller tangent leads to a tightening, and
a larger tangent leads to a slackening.

Continuity y € [—1, 1] can be introduced by using

- -y . - 1 - =
T.'O = (—y(p,-+| - pi)+ %(Pi - P:‘—l))

2
and
- 1+y . - l—y . .
T!= (Ty(pm -p)+ Ty(m - P.'-n)) .

When y =0, the curve has a continuous tangent vector at the control point. As |y|
increases, the resulting curve has a corner at the control point, the direction of the
corner depending on the sign of y.

Bias B € [—1, 1] can be introduced by using

1-— 1
T,?:T,:=(Tﬂ(Pn+l_Pn)+ -;ﬂ(Pn-Pn—l))-

When g =0, the left and right one-sided tangents are equally weighted, producing the

Catmull-Rom spline. For 8 near ~1, the outgoing tangent dominates the direction of

the path of the curve through the control point—an effect referred to as undershooting.

For B near 1, the incoming tangent dominates—an effect referred to as overshooting.
The three effects may be combined into a single set of equations

= 1—1)(1—y)1l - - - I-1)(1 1+ - o
T.-0= (I1—1)(2}’)(B) (Bist— Bi) + (I—1t)("2'}’)(B) (Bi = pie1) (7.21)
and

-1 -y)1+8)
2

F1_ =004y -p)
P 2

(Pisr— pi)+ (Pi ~ Pin). (7.22)

7.3 Special Curves 273

Figure 7.1 Parameters: t =0,y =0, 8 =0.

Figure 7.2 Parametersst =1,y =0, 8= 0.

These formulas assume a uniform spacing in time of the position samples. An ad-
justment can be made for nonuniform spacing. For Equation (7.21) the multiplier
is 2A;/(A;-1 + A}), and for Equation (7.22) the multiplier is 2A;_;/(A;—1 + A;),
where A; = 5iy — 5; and s; is the sample time for position p;.

Figures 7.1 through 7.7 show a curve with six control points and various choices
for tension, continuity, and bias at one of the control points.

274 Chapter 7 Curves

Figure 7.3 Parameters:t =0,y =1,8=0.

Figure 7.4 Parameters: 1 =0,y =0, = 1.

7.3 Special Curves 275

Figure 7.5 Parameters:t=-1,y =0, 8=0.

Figure 7.6 Parameters:t =0,y =—1,8=0.

276 Chapter 7 Curves

Figure 7.7

Parameters: 1 =0,y =0, 8 = —1.

_ 7.4 SUBDIVISION

ZOURCE CODE

LIBRARY

Curve

FILENAME

Curve

For drawing purposes, it is sometimes necessary to produce a piecewise linear approx-
imation to a curve with n + 1 curve points that will be the line segment end points.
If ; are the selected curve parameters for 0 < i < n, then the set of points x; = X(t;)
for 0 < i < nis referred to as a subdivision of the curve. Five methods are discussed.

7.4.1 SuBDIVISION BY UNIFORM SAMPLING

The simplest way to subdivide is to uniformly sample [#min, fmax] 25 & = tmin + (fmax —
tmin)i/n for 0 < i < n. Although easy to compute, the resulting polyline is not always
a good approximation because places of large variation in the curve might be skipped.
Figure 7.8 illustrates a uniform subdivision.

7.4.2 SUBDIVISION BY ARC LENGTH

This subdivision scheme selects a set of points that are equidistant from each other
(measured with respect to arc length). Given s; = Li/n, where L is the total curve
lengthand 0 </ < n, the algorithm for reparameterization by arc length can be applied
to produce the corresponding #; value. The subdivision points x ;) are then calculated.
This method has the same problem as uniform sampling, namely, large variations of
the curve over a small arc length may not be captured unless n is quite large. Figure
7.9 illustrates a subdivision by arc length.

7.4 Subdivision 277

1

Figure 7.8 Uniform subdivision of a curve.

| O — | L [l [l L 1 L L1l
L 1] LR L) LI Lf LB

Figure 7.9 Subdivision of a curve by arc length.

7.4.3 SuUBDIVISION BY MIDPOINT DISTANCE

This scheme produces a nonuniform sampling by recursively bisecting the parameter
space. The bisection is actually performed, and the resulting curve point correspond-
ing to the midpoint parameter is analyzed. If 4 and b are the end points of the segment

278 Chapter 7 Curves

and if ¢ is the computed point il_} the bisection step, then the distance Dy from ¢ to the
segment is computed. If D, = |b — aj, then ¢ is added to the tessellation if Do/ D) > ¢
for an application-specified maximum relative error of ¢ > 0. The pseudocode is given
below. Rather than maintaining a doubly linked list to handle the insertion of points
on subdivision, the code maintains a singly linked list of ordered points.

Input: Curve x(t) with t in [tmin,tmax]
m, the maximum level of subdivision
epsilon, the maximum relative error
subdivision {}, an empty 1ist

Output: n >= 1 and subdivision {p[0]....,p[nl}

bool Bisect (int level, float t0, Point x0, float tl., Point xI1)
{
if (level > 0)
{
tm = (t0+t1)/2:
Xm = x(tm);
do length of segment <x0,x1>
dl distance from xm to segment <x0,xl1>;

if (d1/d0 > epsilon)

{
Bisect(level-1,t0,x0,tm,xm);
Bisect(level-1l,tm,xm,tl1,x1);
return;

}

add x1 to end of list;
}

Initial call:
subdivision = [x(tmin) };
Bisect(m,tmin,x(tmin),tmax,x(tmax));

Figure 7.10 illustrates a subdivision using this method.

7.4.4 SUBDIVISION BY VARIATION

The midpoint distance subdivision used a bisection criterion based on performing
the bisection, then deciding on how much the midpoint varies from the original line
segment. There are many other criteria to choose from for deciding whether or not to

7.4 Subdivision 279

-+

Figure 7.10 Subdivision of a curve by midpoint distance.

bisect. One criterion is to measure on a subinterval the variation between the curve
and the line segment connecting the end points of the subinterval. If the subinterval
is [t;, t; 1], then the variation is

fi4y
V=
L]

where e(”:),- is the line segment connecting the points x(1;) and x(# +1),

- - 2
x(1) —e,-(t)l de,

t—t

L) =3) +

o =g G %) (7.23)

The integration is shown fori = 0 to illustrate some optimizations that can be made in
computing variation. Define X; = X(¢;) for j =0, 1. The integral can be decomposed
as

e oo h, . h, . L.t-n
V=f e-ed:—zf x-xodl—Zf X - (x1 — Xp) dt
& I/

0 0 I l] _10

dt=V, -2V, —~2V3+ Vs,

+
T

kl-

o

280 Chapter 7 Curves

The first integral is

T P Y A U
V1=f Xo - Xg + 2Xg - (X1 — Xo) + (x; — xp) - (%) —xo)(dt
1 h—1b h—b

- - - - - Hh—1, . - - -
= () — 1e)Xp - Xg + (1] — to)Xo - (X) — Xo) + (xX) — xp) - (X1 — Xp)

h—1Ilo . . & = . = =
= (xo-xo+xoux1+x1-x1).

The second integral is

n"n

n ho. .
Vi = ZC(n,t)t (1=0""p;- iodt=ZC(n;i)ﬁ,--io/’; ‘Q-0""dr
s

o =0

n
=Z C(n;i)ﬁ; - %ol

i=0

where J; = [! (1 — 1)"~1 dt. An integration by parts with u =1’ and dv = (1 -

t)"~tdt leads to the recursion formula

(1 —)" — (1 —)" ik,

Ii= -
n—i+1

for i > 0 with initial value /_; = 0 (any value will suffice).
Similarly, the third integral is

Vi= ZC(n, ixlt)(i—’oli):

where J; = f,:" ti+1(1 — £)"~ dr. Integration by parts leads to the recursion formula

(1= 1)+ — (1L —)" 4+ 1)y

Ji = -
n—i+1

for i > 0. An initial value for J_) can be computed from the same recursion formula
with i = —1 (any value for J_; will suffice). An application can precompute 1/(n —
i + 1) for the appropriate i so that at run time the calculation of variation avoids the

expensive divisions.

7.4 Subdivision 281

The fourth integral is somewhat more complicated. Consider

n n . .
v,,=f ZC(n;j)t’(l—t)""’ij }:C(n KL =0 kg | ar
0]

=0

= Z Z C(n; HYC(n; k) pj - .Uk/ k(1 — pn—i-k gy

Jj=0 k=0

2n
=2 | 22 sik] ki
=0 \Jj+k=/

where Sjx = C(n; j)C(n; k)p; - By is symmetric in its indices and the indices are
restrictedto 0 < j <nand0 <k <n.Also, K; = f,;' ti(1 —)2~ dy, an integral the
same as I; but with n replaced by 2n. The recursion formula is

Ié(l _ tD)Zn—i+l _ t{(l _ tl)ZM—i+l + iK;_j
2n—i+1

Ki=

for i > 0. The summation -, ;_; Sjk with the noted restrictions on j and k and
with 0 <i < 2n can be viewed as a summation over diagonals of the original (n +
1) % (n -+ 1) lattice of points. The diagonals start ati = 0 (1 entry on diagonal), grow
in quantity to i = n (n entries on diagonal), then shrink in quantity toi = 2n (1 entry
on diagonal). As such, the summation is

min{i,n)

Z_ Sei-ts 0<i<n
Z Sik= S = Z Sei-e-

. < i
Jk=i t—x~n Sti-ey m+1<i<2n _ i-n

Moreover, since S;x is symmetric the summation can be further simplified into

if2~1 .

Sif2if2 +2 E't/___mmo,,-_,,) Sei-e, @even
1)/2- . ’

2 E“+ “ !__") Sg,,'_[, i odd

€=max(0,i

oi =

soVy= }:,ao 0; K;. An application can precompute the o; values so that calculation
of variation at run time is fast.

Anapplication-specified tolerance ¢ > 0 is used to compare variations. The subin-
terval is bisected if and only if V > . However, to avoid deep recursions, a limit is
placed on the number of recursive subdivisions. The pseudocode below illustrates the
algorithm. Rather than maintaining a doubly linked list to handle the insertion of
points on subdivision, the code maintains a singly linked list of ordered points.

282 Chapter 7 Curves

Input: Curve x(t) with t in [tmin,tmax]
m, the maximum level of subdivision
epsilon, the maximum relative error
subdivision {}, an empty list

Output: n >= 1 and subdivision {p[0].....p[n]}

void Bisect (int level, float t0, Point x0, float t1l, Point x1)

{
if (level > 0)
{
if (Variation(t0,x0,t1,x1) > epsilon)
{
tm = (t0+tl)/2:
compute xmid = x(tm);
Bisect(level-1,t0,x0,tm,xm);
Bisect(level-1.tm,xm,t1,x1):
return;
}
}
add x1 to end of list:
}

Initial call:
subdivision = { x(tmin) };
Bisect(m,tmin,x(tmin),tmax,x(tmax));

Figure 7.11 illustrates a subdivision using this method.

7.4.5 SuBDIVISION BY MINIMIZING VARIATION

The most desirable subdivision algorithm should allow the application to specify n
ahead of time—a sample point budget, so to speak. The samples are selected so that
large curvature portions of the curve have assigned to them a larger number of samples
than do small curvature portions of the curve. This problem can be solved by using a
minimization approach. Set fg = timin and tpy4+1 = tmax. Define T = (fo, 81, . . - » tm+1)
and define the energy function

. m tit
E(T)= Z /
i=q Vi

- -~ 2
x(r) — e;(z)l dt,

where Z;(t) is the line segment connecting Ehe points X () and X (#; 4+1) and is defined
by Equation (7.23). The domain variable T lives in the simplex defined by 0 < #o <

Figure 7.11

7.4 Subdivision 283

H+—+—+—+—t— -+

Subdivision of a curve by variation.

f -+ <ty <1, The function E is continuous and its domain is a2 compact set, so
E must attain a global minimum on its domain. The minimum can be computed with
standard numerical minimizers (see Appendix B, Section B.4). The minimum value
of E can even be used by the application as a measure of how well the polyline fits the
curve. If minimum E is sufficiently large, the application might want to increase # to
obtain a better fit. Most likely, the end points of the curve are required to be in the
subdivision, so 2o = 0 and t,,4; = 1 are required and the remaining #; for 1 <i <m
are computed by the minimization.

7.4.6 FAST SUBDIVISION FOR CUBIC CURVES

{WURCE CODE

LIBRARY

Curve

FILENAME

CubicPolynomial-
Curve2
CubicPolynomial-
Curve3

Cubic polynomial curves can be subdivided by variation as described earlier. A sug-
gested criterion for subdivision is to measure on a subinterval the variation between
the curve and the line segment connecting the end points of the subinterval. This can
be an expensive operation in a real-time game engine, but the criterion provides an
accurate representation of how flat the curve is on the subinterval. To speed things
up, it is possible to use a heuristic that estimates the flatness, but sometimes may
be inaccurate depending on the curve data. The method described in this section
uses the magnitude of the second-derivative vector of the curve multiplied by the
squared length of a subinterval as an estimate of how flat (or curved) the curve is
on that subinterval. If the magnitude is smaller than the application-specified toler-
ance, the subdivision step is not executed. The classic case where the heuristic fails
is an s-shaped curve whose point of inflection is the midpoint of the given interval.

284 Chapter7 Curves

The second derivative is zero at the midpoint, so the subdivision step is not executed.
However, the curve can have significant variation from the line segment connecting
the end points of the interval.

The subdivision-by-variation method is naturally recursive. We take advantage of
this fact and use a central differencing scheme to compute the curve points (Watt and
Watt 1992).

Let the cubic curve be X (1) = Z.?=o ¢it' for t € [tmin» tmax]- Using a Taylor series
to represent the curve, the following equations can be derived:

=

- - -t 1 b4 1
Xt £8)=X(1) £ 83'(t) + Eszx OFS gs& (0.

There are no additional terms in the Taylor series since the curve is already a polyno-
mial. Taking the average of the two equations and solving for ¥ (r) yields

- 1 /. - ~r

HOEE: (R +8) + 3¢ - 8) - 82" - (7.24)
Expanding the second derivative term as a Taylor series, we obtain

Xt £8)=X"(t) £ X" (1).

Adding these and solving for ¥”(r) yields
= 1 = =/
()= 5 (F"t+8+3"¢-8). (7.25)

Equation (7.25) allows us to compute the second derivative of the curve at the mid-
point ¢ of the interval [z — &, t + §]. This can be substituted in Equation (7.24) to
compute the curve at the midpoint.

The pseudocode for the recursive subdivision is

Input: Cubic curve x(t) with t in [tmin,tmax]
epsilon, the maximum relative error (units of squared
Tength)
subdivision {}, an empty list

Output: n >= 1 and subdivision {p[0].....p[n]}

void Subdivide (float t0, float tl, Point x0, Point xI1,
Point sd0, Point sdl)
(
// x0 and x1 are end points
// sd0 and sdl are second derivatives at the end points

sdmid = 0.5*(sd0+sdl);

7.5 Orientation of Objects on Curved Paths 285

d = t1-t0:

dsqr = d*d;

nonlinearity = dsqr*sdmid;

if (SquaredLength(nonlinearity) > epsilon)

{
tmid = 0.5*(t0+t1);
xmid = 0.5%(x0+x1-nonlinearity):
insert xmid in subdivision between x0 and x1;
Subdivide(t0,tmid,x0,xmid, sd0,sdmid);
Subdivide(tmid,tl,xmid,x1,sdmid,sdl);

}

}

Initial call:
x0 = x(tmin);
X1 = x(tmax);
sd0 = x"(tmin);
sdl = x"(tmax);
subdivision = { x0, x1 };
Subdivide(tmin,tmax,x0,x1,sd0,sdl);

7.5 ORIENTATION OF OBJECTS ON CURVED PATHS

Specifying a path of motion for an object, including the orientation of the object at
each point along the path, is called path controlling. For example, if a model airplane
is given a path to follow, the orientation of the model airplane along the path should
be representative of the real thing. If the path takes the airplane to the right, the plane
should change orientation and bank to the right.

Let the specified path of the object be a curve ¥(¢) for some domain of ¢ values.
The orientation can be specified as a rotation matrix R(t), where the columns of R
are the coordinate axes at each point on the path. The columns are ordered in the
following sense. The first column represents a direction vector, but is not required by
the theory to be the tangent to the curve. The second column is an up vector, and the
third column is a right vector. There are many ways to specify orientation, but the two
most common are to use either the Frenet frame of the curve or a coordinate system
with a fixed “up” vector where the upward direction is specific to an application.

7.5.1 ORIENTATION USING THE FRENET FRAME

This method requires that X(¢) be twice differentiable so that the normal vector is
well defined. Recall from the curve definitions that the Frenet frame consists of a
tangent vector T(t), a normal vector N (1), and a binormal vector B(t) =T x N.

286 Chapter 7 Curves

The tangent vector is a unit-length vector with direction X'(). The normal vector
represents a force parallel to the acceleration of the object. The orientation matrix is
R(t)=[T @) N(r) B(1)].

7.5.2 ORIENTATION USING A FIXED “UP” VECTOR

This method requires that X (t) be once differen_tiable so that the tangent vector is well
defined. An application must specify a vector U that points in the upward direction.
The tangent vector is T (t), the unit-length vector with direction X'(r),

X'()
12

T() =

The first column of R(t) is chosen to be T. The third column of R(1), B(), is
computed as the unit-length cross product between T and U,

T)yxU

B(t): — —.
IT () x Ul

The second column of R(¢), N(t), is chosen as
N@ty=B@) x T@).

The only item of concern in usin_g this m‘ethod for orientation is that T'(t) should
never be parallel to U, otherwise B(t) =0 and the coordinate system cannot be

constructed. For numerical reasons, it is better to constrain the curve so that the angle
between T and U is larger than a predefined positive minimum angle.

CHAPTER

SURFACES

he need for curved surfaces in a game engine js becoming ever more important.
Polygonal models have been used in the past for their simplicity in construction
and efficiency in rendering, two aspects that surface models tend not to have. However,
as personal computers and hardware-accelerated graphics cards increase int processing
power, it is less essential to have simple polygonal models and more important for
physical realism to have surface-based content. Also consider that the next-generation
game consoles (Sega Dreamcast, Sony Playstation2, Nintendo Dolphin, and Microsoft
X-Box) are extremely powerful—even more so than the current generation of CPUs—
but they are typically limited in memory. For example, Sony Playstation2 has 32 MB
of system memory and 4 MB of video memory. Large detailed polygonal models
require a lot of memory for storage, so they are not good candidates for the content for
consoles. However, curved surfaces have a very compact representation that requires
a minimum of memory for storage, but can be dynamically tessellated during game
play. The game consoles have the processing power to tessellate very rapidly, so curved
surfaces should {(and must) be the content of choice for those platforms. In addition,
modeling packages will evolve to make surface modeling easier.
The topic of surfaces is even more extensive than that of curves, and again
only a brief summary is given in this chapter. Sections 8.1 and 8.2 cover the basics:

287

288 Chapter 8 Surfaces

tangents, normals, metric and curvature tensors (the analog to arc length and cur-
vature for curves), and methods for constructing the various quantities. Special
types of surfaces are discussed in Section 8.3: Bézier rectangle and triangle patches,
Bézier cylinder surfaces (formed by linearly interpolating between two Bézier curve
boundaries), nonparametric B-spline rectangle patches, quadric surfaces (spheres,
ellipsoids, paraboloids, etc.), and tube surfaces (generated from a central curve with
width information). Section 8.4 is an in-depth discussion of ways to subdivide the
special types of surfaces found in the chapter. In particular, recursive subdivision
of bicubic patches provides a rapid way for dynamically tessellating Bézier rectangle
meshes. Just as for curves, nonuniform rational B-spline surfaces are not discussed
here, but more detailed discussions can be found in Farin (1990) and Foley et al.
(1990).

8. 1 DEFINITIONS

A parametric surface patch is a function X : [Umin> #max] X [Umin> Vmax] C R? = R3,
The surface boundary curves are X (4min» V), X(#max» V)5 X{¥, Umin)> and X (¥, Vmax).
Tangent vectors to the surface are the partial derivatives X, = X /du and X, = 9% /9v.
A normal vector at each point on the surface is the cross product of the partial
derivatives, N = X, X X,. If unit-length normals are required, the cross product can
be normalized. The patch is actually called a rectangular patch because the domain is a
rectangular set in the parameter space. The standard domain for rectangular patches
is [0, 1]2. Another common type of patch is a triangular patch, where the domain
is a triangular set. The standard domain for a triangular patch is ¥ > 0, v > 0, and
u + v < 1. Generally, the parametric domain can be a set D C R?. The surface area
corresponding to subdomain Dy € D is

A =f % x %] du dv.
Dy

An implicit surface is defined by level sets F(X) = c for a function F : R*> — R.
A normal vector at each point is the gradient, N = VF. If unit-length normals are
required, the gradient can be normalized. Two linearly independent tangent vectors
U and V can be constructed from N. A reasonable algorithm for constructing the
tangents is

Point3 N = (Xx,y.z): // unit-length normal
Point3 U, V; // unit-length tangents
if (|x] > [y| and |x] >= |z|)

U= (y.-x,0)/sqrt(x*x+y*y);

8.2 Curvature 289

else
U= (0,y,-2)/sqrt(y*y+z*z);
V = Cross(N,U):

A surface that is the graph of a function f can be described either paramet-
rically as (x, y, f(x, y)) or implicitly as F(x, y,z) =2z — f(x. y) =0. In the first
case, two tangents are U=(1,0, df/dx) and V=(,1, 3f/8y), and a normal is the
cross product N = (-3f/dx, =3f /3y, 1) = (— V £, 1). In the second case, note that
VF=N.

8.2 CURVATURE

Curvature at a point P on a surface is a generalization of the concept of curvature at
a point on a curve. Let N be a unit-length normal at P, and let 7 be any unit-length
tangent vector. The intersection of the surface and the plane passing through point P
and containing vectors N and T is a curve (at least in a small neighborhood of P). The
curvature of that curve at P can be computed, call it k3. Thus, for each tangent T at
P, a curvature can be measured. The minimum and maximum curvatures are called
the principal curvatures. The corresponding tangent vectors are called the principal
directions at the point.

The following discussion is a summary of what can be found in standard texts on
differential geometry of surfaces (for example, Thorpe 1979).

8.2.1 CURVATURES FOR PARAMETRIC SURFACES

Surface

FILENAME

ParametricSurface

Consider a parametric surface X(u, v). Let N=3, % Xy/) %4 X Xul, a unit-length
normal to the surface. The metric tensor is the 2 x 2 matrix

-x.n - -iu -iu b -x.u
G=|_, . . .|
Xy Xy Xy-Xy
and the curvature tensor is
B__[—N'-xuu "N'xuu]
=N iuu -N- Xyy
The principal curvatures Kmiy and kmay are the generalized eigenvalues of the

system of equations B = x Gw. The principal directions are determined by the
corresponding 2D generalized eigenvectors. If ¥ is a principal curvature and

290 Chapter 8 Surfaces

W = (wp, w;) is a 2D generalized eigenvector, then a corresponding principal di-
rection as a 3D vector is T = woX, + w1%,. The mean curvature is the average
Kmean = (Kmin + Kmax) /2. The Gaussian curvature is the product K Gaussian = KminKmas
which actually has units of squared curvature.

Setting B = [b;;] and G = [gi;], the generalized eigenvalues of B = xGib are
solutions to the quadratic equation

0 =det(B — «G)
= (boo — £ 800) (b11 — k&11) — (bor — kgo1)(b1o — K&10)
= (det G)x? + (Boigio + brogor — b1180o0 — boog11)k + (det B).

For each root «,) % 0 is constructed by solving (B — kG)w) = 0. This system is not
invertible and has infinitely many solutions.

8.2.2 CURVATURES FOR IMPLICIT SURFACES

SOURCE CODE

Surface

ImplicitSurface

Consider an implicit surface F(x, y, z) = ¢. The gradient is the vector of first deriva-
tives,

F,

The Hessian is the matrix of second derivatives,
Fyy Fry Fyy

D’F = Fyx Fyy Fy
Fox F:,v Fz

The curvature at a point corresponding 1o unit rangent Tis

-, D*F -
K«T = _T'~—T. (8.1)
IVF|

The right-hand side is an example of a restricted quadratic form. The principal
curvatures are the minimum and maximum of the form.

Maxima of Quadratic Forms

Let A be an 1 x n symmetric matrix. The function Q : R” — R defined by Q(¥) =
¥' A% for |9] = 1 is called a quadratic form. Since Q is defined on the unit sphere in R”,

8.2 Curvature 291

a compact set, and since Q is continuous, it must have a maximum and a minimum
on this set.

Lettv = Z;’___l C,'i'),', where A?),‘ = A.,"f),', Ap <. <Ay and Z?:l L‘iz = 1, Thatis, the
A; are the eigenvalues of A, and the ; are the corresponding eigenvectors. Expanding
the quadratic yields

n

n
Q) = Zciﬁ,f A Zc,-?)j =ZZc,c,vAv, ZAALk
i=l

j=l i=l J_

The rightmost summation is a convex combination of the eigenvalues of 4, so its max-
imum is A, and occurs when ¢, = 1 and all other ¢; = 0. Consequently, max Q(v) =

Ag = Q(in)

Maxima of Restricted Quadratic Forms

In some applications it is desirable to find the maximum of a quadratic form defined
on the unit hypersphere $7~!, but restricted to the intersection of this hypersphere
with a hyperplane N - % = 0 for some special normal vector N. Let A be an n x n
symmetric matrix, Let N € R” be aunit-length vector. Let {N }- denote the orthogonal
complement of N. Define Q : {N}+ — R by Q() = ¥ AD, where || = 1. Now Q is
defined on the unit sphere in the (n — 1)-dimensional space {N}+, so it must have a
maximum and a minimum.

Let v vl through 9, be an orthonormal basns for { N .oletb= p ,’ ¢;U;, where
it =1.Let AV; = ZI_, a,,v, + otyi N, where oji —v AY; for l<i<n-1
and1 < j <n — 1,and where ap; =N! Aviforl<i<n-—1. Expandmgthequadratlc
form yields

n-1 n~1 u—1 u=—1

QM) = Z (.'ii'); Z c,v = Z Z Cicjtj = dAC=: P(¢),
i=1

i=1 j=

where quadratic form P : R"~! — R satisfies the conditions for the maximization in
the last subsection. Thus, max Q(v) = max P(¢), which occurs for ¢ and X such that
AC = \Z and A is the maximum eigenvalue of A. The following calculations lead to a
matrix formulation for determining the maximum value:

292 Chapter 8 Surfaces

n—1

Z aijCj = Acy
j=1

n—1

Z Cjﬁ; = AciV;
j=1

n—1n-~1

ZZ“'!‘!U' =A Zc,v,

i=} f=i

n—1
Z (Z a;j'ﬁi) cj =AU

=1 \i=1
n—1

(Avj - a,,jN) cj=MAv
Jj=l

n—1 n—1 .
A ZCjﬁj - OpjCj N =¥
j=1 j=1

(I — NN')AD = Ab.

Therefore, max Q(9) = A, = Q{Un-1), where A,u—1 isthe maximum eigenvalue cor-
responding to the eigenvector v,y of (/ — NN"A. Note thatn — 1 of the eigenvectors
are in iN H. The remaining eigenvector is v, = A N, where AA* = (det A)} and
An=0.

Application to Finding Principal Curvatures

The right-hand side of Equation (8.1) is 2 restricted quadratic form. According to the
construction in the last subsection, the minimum and maximum values «min and Kmayx
are selected from the eigenvalues of

YF 9 T\ DF_
- |71 -—= = — VU =KV
IVF||IVF| | |VF]

that are in {N}.

8.3 Special Surfaces 293

The mean curvature can be computed as the average of the extreme curvature
values, and the Gaussian curvature can be computed as the product. However, these
two values can be computed without solving the eigensystem,

|VFP trace (D?F) — VFTD2FVF

Kmean =

2IVFP
and
o _SFT(DF)IF
Gaussian = le Fl "
where

adj Fy,sz: - F,\':F,\': ["y:Fx.-': - nyF:: EryFyz - szFy_\'
(DZF) = Fyzsz_‘ nyF:: FxxF::_Fx:E\'z Fx_\'sz"FxxEvz
nyFyz - F.\':F,ry Fx.\'Fx: - Fx.\'Fyz Fxx Fyy - Fx_\'ny

8.2.3 CURVATURES FOR GRAPHS

The parametric fgrm foragraph s (x, ¥, f(x, yj). The metric tensor can be shown to
be G=1+ VfVfT, where I isthe 2 x 2 identity matrix. The curvature tensor can

be shown to be H = D2f/\/1 + |V f|. The eigensystem that defines the principal
curvatures is

D
VI+IVIE

This system can be solved just as in Section 8.2.1.

b=k +VFVFNH.

8.3 SPECIAL SURFACES

The following sections describe various special surfaces in three dimensions.

8.3.1 BEZIER RECTANGLE PATCHES

Bézier rectangle patches are popular with game programmers for their mathematical
simplicity and ease of use.

294 Chapter 8 Surfaces

S£OURCE CODE

LIBRARY

Surface

FILENAME

BezierRectangte
BezierRectangle2
BezierRectangle3

Definitions

Given a rectangular lattice of three-dimensional control points p;y;, for 0 <ip < ng
and 0 < iy < ny, the Bézier rectangle patch for the points is

o m

;\"(S, 1= Z Z Bllo.io(S)Blu.l](t) i’lo.i]

io=0 ij=0

for (s, 1) € [0, 1] and where the coefficients are products of the Bernstein polynomials
defined in Equation (7.1). The first-order partial derivatives of the patch are

ng—-1 n

;S(s: t) =ng Z Z Bllo—l.io(S)Blu.l](t) (i’io+l.i| - i’io,h)
ig=0 ;=0

and
ng n—1

-;I(s) ty=n Z Z Bllo.io(s)Bln-l.h (t) (i’io,i|+l - i’io,l]) .
io=0 i1=0

Evaluation

As for Bézier curves, the same trade-off of speed versus accuracy must be made for
Bézier rectangles. The choice here is for speed. Each Bernstein polynomial is com-
puted, then the product of the polynomials for each term is computed. There are
no + 1 evaluations of By,iy(s), ny + 1 evaluations of By, (), and non; multiplica-
tions for pairs of the evaluated polynomials.

The de Casteljau algorithm repeatedly computes convex combinations and is
generally more stable, but it uses more floating-point operations. For example, let’s
compare it to the Bernstein form of evaluation for bilinear interpolation, the case
where ng = 1 and ny = 1. The Bernstein form for evaluation is

(1=$X1—1)poo+ (1 —5)tPo, +5(1 = 1)Ppro + 5Py

and requires 2 subtractions, 9 additions, and 16 multiplications. The de Casteljau form
for evaluation is

(1=5) (1 =0 poo+1Pos) +s (1 =)P1o + tP11)

and requires 2 subtractions, 9 additions, and 18 multiplications.

8.3 Special Surfaces 295

Degree Elevation

A Bézier rectangie patch of degree (ng, n;) can be written as a patch of degree (1o +
1, n3). The process is similar to that of a Bézier curve where the equation is multiplied
by 1 =(1 — 5) + s and formally expanded. The degree-elevated patch is

netl my , ,
i) = 2 ; Buo+1,io(3) Buyiy (1) [(1 - H@ﬁ) Pioir + K"jr—li)io_n..-.] :
The patch can be similarly degree-elevated to one of degree (ng, ny + 1),
- TR i) - T
X(s,1) =m§0 ugo By io($)Bny w1,y (1) [(l - n—l-+—l) Pisiy + mpio,x‘p-]] .

The patch can be degree-elevated in both components to one of degree (1o + 1,
ny+ 1),

no+) ny+1
X(s,1) = Z Z By io(5)Bny i\ (1) Gigiys
jo=0 I)=0
where
p 5 i
‘7-1—[1“_&_ __{q_][l’io,i, Pioi)—1] 1- i
i) = . R . .
0s) no+l np+l Pig—14, Pig—Li—1 "’l+|]

The right-hand side is evaluated symbolically as a product of the three matrices.

Degree Reduction

A Bézier rectangle patch can be reduced in degree with similar constraints as in the
Bézier curve case. The reduced patch in almost all cases is an approximation to the
original patch. A least-squares fit is used to obtain the reduced patch.

Let the original surface be X(s,) = :.:’=0 Z:".Lo Bryg,io(8) Buy iy (1) Pigy» and let
the degree-reduced surface be y(s, t) = ;:‘":0 Z,"."=0 Brioio(5) Busy is (£ Gi.iy» where
mqy < ngandm, < n,.For degree reduction of Bézier curves we imposed the constraint
that the end points of the two curves be the same. The extension to rectangle patches
is to require that the four carner points match between the two patches. Although
it is possible to apply a least-squares fit to construct the remaining control points,
a better approach looks ahead to the situations where two patches have a common
boundary curve. The reduction scheme when applied to the two adjacent patches

should guarantee that the patches match on the common reduced boundary curve.

296 Chapter 8 Surfaces

The algorithm for a single patch should therefore degree-reduce the four boundary
curves first, then compute the remaining interior control points using the least-
squares fit. The to-be-determined interior points are gj,,i, for 1 <ip < mp — 1 and
1 <iy <m; — 1. These are chosen to minimize the integral of the squared differences
of the two surfaces,

1 p1
E(l'il.n,...,ano—l.m.—l)=/ / |Z(s, 1) — (s, 1)| dsdr.
0o Jo

The values of the interior control points are determined by setting all the partial
derivatives of E to zero, 3E /3Gy, =0for1 <ip <mp—1and 1 <i; <m, — 1. This
leads to (mp — 1)(m,; — 1) equations in the same number of unknown control points,
i i (2mo + 1)(2m, + 1)C(mg; ig)C(mys iy) -
CQ2my; iy + jo)CQ2my; iy + ji)

iy =
io=0 =0

g

> i (fo + mo + 1) + m + DC(res l)CnH) 5
C(n0+m(); io+jo)c(nl +ml;il +jl) 101

io=0 iy=0

The system always has a solution.
For example, solving the equations symbolically for degree reduction of a bicubic
patch to a biquadratic patch, ng =n; =3and mp=m; = 2:

oo = Poo
o2 = Po3
G20 = P30
422 = P33

- 1, - - -
Qoi =7 (—Poo + 3poy + 3Po2 — Po3)
- 1 - - - -
Do=7 (=Poo + 3P10 + 3P20 — P3o)
- 1, - - - -
N2=7 (—Pos +3P13 + 3p23 — P33)
- 1, - - -
9= (=P30+ 3P + 3P32 — P3a)

. 1. B - .
G =1¢ (Poo — 3Po. — 3Po2 + Pos — 3P10 + 9P11 +9P12 — 3P13

—3P2,0 + 9P2,1 + 9P22 — 3P23 + P3o — 331 — 3P32 + P33) -

Figure 8.1

8.3 Special Surfaces 297

v2 0 2v

2vw [2uv =2v | 2v 2(=v+w) |2u

w2 2uw | u? 2w | 2(-u+w} |2u 2w 2u |0
Coefficients of X Coefficients of Coefficients of x;,

Polynomial coefficients for n = 2.

8.3.2 BEzier TRIANGLE PATCHES

SOURCE CODE

LIBRARY

Surface

FILENAME

BezierTriangle
BezierTriangle2
BezierTriangle3

Bézier triangle patches are slightly more complicated to use than Bézier rectangle
patches, but they are useful for creating models of arbitrary complexity.

Definitions

Given a triangle lattice of three-dimensional control points pj,i,.i, for ip > 0, i} > 0,
iz = 0, and iy + i} + i3 = n, the Bézier triangle patch for the points is

;(ua v, w) = Z Bn.f(ul Y, w) bh

li=n

where I = (ig, iy, i2), || =ip+ i1+ i u=0,v>0,w>0,andu + v+ w=1.The
summation involves (n + 1)(n + 2)/2 terms, The Bernstein polynomial coefficients
are

u®v'lw'?,

By 1 (u, v, W) =C(n; ig, iy, iz)uiovi'wi2 =—
’ lo.’l 1 I 2!

The first-order partial derivatives X, and X, can be computed with respect to u or v,
where w =1 — # — v. While the symbolic formula can be computed from the equation
for X(u, v, w), it is simpler to visualize the coefficients for ¥, %,, and %, as triangles of
terms. The multi-index J = (ig, {1, i) varies as follows. The index iy increases from left
to right, the index #, varies from bottom to top, and i; = n — ip — i}. Figure 8.1 shows
the coefficient triangles for the case n = 2. Figure 8.2 shows the coefficient triangles
for the case n = 3. Figure 8.3 shows the coefficient triangles for the case n = 4.

Evaluation
Evaluation of X or its derivatives is a matter of computing the coefficients, illustrated in

Figures 8.1 through 8.3, and multiplying them times the control points and summing.
In an implementation, the triangle coefficients are stored in a one-dimensional array.

298 Chapter 8 Surfaces

Figure 8.2

v 0
3viw | 3uv2 =32 |32
3vw? | 6uvw|3u2v —bvw | 6v(—u+w) | 6uy
w3 | 3uw?[3u2w |u3| [~3w2 | 3w(=2u+w) | u(-u+2w) [3u?
Coefficients of X Coefficients of &,
32

3v(~v+2w) | 6uv
3w(=2v+w)| bu(—v+w)|3u2
—3u2 —6uw ~3u2| 0

Coefficients of £,

Polynomial coefficients for n = 3.

The rows of the coefficient tables are stored bottom first (n + 1 items, scanned left to
right) through top last (1 item). The coefficients themselves are computed to minimize
arithmetic operations by saving intermediate products and sums.

Degree Elevation

A Bézier triangle patch of degree n can be written as a patch of degree n + 1. The idea
is to formally multiply the original patch by 1 = u + v + w so that the surface does
not change, but the degree does. The degree-elevated patch is defined by

v,wy=@+v+w) Y Buv,w)pr= 9 Buprs(u, v, w) g,
Hi=n Hi=n+1

where the degree-elevated control points are

- 1 - -
qr= m (lopio—l.il.iz + O Pigir—1i2 + lzpio,i,,iz-l) .

Degree Reduction

A Bézier triangle patch can be reduced in degree with the same constraints as for Bézier
curves. The reduced patch in almost all cases is an approximation to the original patch.
A least-squares fit can be used to obtain the reduction.

Let the original surface be X(u, v, w) = 2|l|=n Bp.itu, v, w) p;, and let the

degree-reduced surface be y(u, v, w) = lel:m By 1 (u, v, w) g1, where m < n. For

8.3 Special Surfaces 299

v4
43w | 4uv3
6viu2| 12uviw | Gulvd
4vw? | 12uvn? | 1202vw | 403y
wd Jduwd | 6uPw? | 4udw)
Coefficients of X

0
-4\3 4v¥
—12viw [12v2(-u+w) |22
=12vw? |1 21mv(=2u+w) 12uv(—u+2w) | 12u2v
~4wd _ |4wd(=3u+w) [2uw(~u+w) |4u(<u+3w)ldu’

Cocfficients of £,

4y3

4v2(—v+3w) |12uv2

12vw(~v+w) |1 20p(~v+2w) [12u3y

Awl(=3v+w) |1 2uw(-2v+w) [120d(—v+w) | 413

~4ud ~12pn2 1202w ~dudw |-dad
Coefficients of X,

Figure 8.3 Polynomial coefficients for n = 4.

Bézier curves, we imposed the constraint that the end points of the two curves must
match. The extension to triangle patches is to require that the three corner points
match between the two patches. Just as with rectangle patches, the boundary curves
of the patch are reduced separately, and the interior points of the patch are determined
from a surface least-squares fit. This guarantees that applying a reduction in degree
across multiple patches with shared boundaries will maintain continuity across those
boundaries. The interior points are chosen to minimize the integral of the squared
differences of the two patches,

1 f=p
E() =/ / |, 0,1 — 1 — vy — F, 0, 1 —u — v)f2 du dv.
o Jo

The arguments for E(-) are the interior control points for the approximating patch.

The values of the interior control points are determined by setting all the partial
derivatives of E to zero, dE/dg, for those indices J = (Jo, ji, j2) with jojjja # 0.
This leads to the equations

> andi=Y_ bupi,

| |=m {l=n

300 Chapter8 Surfaces

where
_ C(m; J)C(m; 1)
W= om+2@m+ 1)C2m; 1+ J)
and
Cim; J)C(n; 1)
by

Tmtm+dn+m+DCn+miI+J)

The system always has a solution.
The equations can be solved symbolically for some cases of interest. For n = 4 and
m = 3, the solution is

G300 = P400
Go30 = Podo
Goo3 = Poo4

Go12 = é (—117004 + 44P013 + 18P0z22 — 12031 + 3 Poso)
qoa1 = é (3P00s — 12po13 + 18 po22 + 44Pe31 — 11 Pogo)
qio2 = é (—11Poo0s + 44P103 + 18B202 — 12301 + 3Paoo)
G201 = é (3Poos — 12P103 + 18202 + 44P301 — 11vecpan)
G210 = 41—2 (—115400 + 44P310 + 18220 — 125130 + 3Podo)

- | S - - - -
Q0= (3P400 — 12P310 + 18220 + 44P130 — 11 Po40)

- 1 - - - - - - - - -
qin = 5058 (5(Poos + Poso + Paoo) + 8(B1es + P01 + Pors + P3ro + Pos1 + Pio)

+9(P202 + Po2z + P2z0) + 12(P112 + P21t + Pi21))

2

- - - 3 - - - - -
- + +Ga10) -
560 (300 + Go30 + Goos) 560 (Go12 + Goz21 + G102 + G201 + G120 + G210)

8.3 Special Surfaces 301

For n = 4 and m = 2, the solution is
G200 = P400
Goz0 = Poso
goo2 = Poos

- 1 - - - - -
o1 = 72 (~11Poos + 16P103 + 18202 + 16 30y — 11P400)

Go11 = m (~11Poos + 16Po13 + 18Po22 + 16031 — 11Pos0)

quo=— (~11p400 + 16p310 + 18220 + 16130 — 11 Poso) -
For n = 3 and m = 2, the solution is

G200 = P300

Go20 = Poso

qoo2 = Poo3

- 1, . - - -
Qo1 =7 (—=Poos + 3102 + 3P201 — P3on)
- 1 - - - -
qon =7 (—~Poos + 3Po12 + 3Po21 — Pox)

(~Poso + 3P210 + 3B120 — Poso) -

-

8.3.3 BEZIER CYLINDER SURFACES

LiBRARY

Surface

BezierCylinder

Bézier rectangle or triangle patches may provide more curvature variation than is
needed for a particular model. For example, a curved archway is curved in one
dimension and flat in another. Such surfaces are said to be developable surfaces or
cylinder surfaces. The surface is generated by taking a curve and linearly translating it
ina sweeping operation. Equivalently, the surface is generated by taking a line segment
and moving it so that one end point is constrained to the originally specified curve.
If the Bézier curve is ¥(u) = Y 7., Bn,s(u) i and if the linear translation is D, then
the cylinder surface is x(u, vy =01 —v)yu)+ vD for (u, v} € [0, 1]. The first-order
partial derivatives are X, = (1 — v)y, and X, = D — J.

More generally, a generalized cylinder sut:face is one obtained by specifying two
Bézier curves with the same number of control points and blending between the two

302 Chapter 8 Surfaces

curves, If p; and §; are the control points for 0 </ < n, then the generalized cylinder
surface is

n n n
-i'(lh v)=(1-v) Z Bu,i(“) i’i +v Z Bu,l(“) ‘74' = Z Bu.l(u)[(l - v)i’i + v‘-ii]-
i=0 i=0 i=0
The first-order partial derivatives are
n—!
To=nY_ By_1il)l(1 = vXpis1 — pi) + v(Gi+1 — G)]
i:o
and
n
Xo=Y Bos(u) (G — Bi) -
i=0

The methods for evaluation, degree elevation, and degree reduction can beapplied
to the initial curve for cylinder surfaces or to the boundary curves for generalized
cylinder surfaces.

8.3.4 NONPARAMETRIC B-SPLINE RECTANGLE PATCHES

S0OURCE CODE

LIBRARY

Surface

FILENAME

BSplineRectangle

Our discussion here parallels that for Section 7.3.3 (nonparametric B-spline curves).
Understanding how to interpolate a rectangular lattice of scalars (ig, i}, figi,) for
0 <ip <ngand0 <, < n| issufficient. The interpolation for a lattice of control points
is performed componentwise.

The blending matrices M = [M ;| computed for B-spline curves apply as well for
surfaces. For (s, 1) € [ig, ig + 1] X [£1, i1 + 1], the B-spline polynomial of degree d is
defined as

d d d d

Bigiks: V=" Y D" D" fio-td=1121+iois-Ud—1/2)+ i MiokaMisky Xio8) Xy 1)
Jo=0 j)=0 ko=0 k;=0

The polynomial components are Xy (s) = (s — io)*® for 0 < ko <d and Xp, ()=
(t—ipk for0 <k <d.

The pseudocode for nonparametric B-spline evaluation is given below. It is
assumed that the blending matrix has already been computed. The quantity
f,‘“_ Wd— l\/Zj+jo.i\—L(d-l\/Zl+j\Mjoanj\k\ in the B-spline polynomial formula is re-
ferred to as the intermediate tensor.

const int D; // degrees DO > 0, D1 > 0
const int Dpl = D+1;

8.3 Special Surfaces 303

const int offset = floor((D-1)/2);

const float M[Dpll[Dpll; // blending matrix

const int ND, N1; // last data indices. NO >= D and N1 >= D
float f[N1+11[N0+1]: // data to be interpolated

float s; // floor{(D-1)/2) <=~ s <= floor(N0-~(D-1)/2)

float t; // floor((D-1)/2) <=~ t <=~ floor(N1-(D-1)/2)

// determine base indices of intervals for evaluation
int b0 = floor(s) - offset;
int bl = fioor(t) - offset;

// compute intermediate tensor (nonpolynomial part of B(s.t))
float intermediate[Dpll[Dpl];

for (k1 = 0; k1 <= D; kl++)

for (k0O = 0: kO <=~ D; kO++)

{
intermediate[k1][k0] = 0:
for (j1 = 0, rl = bl-1; jl <= D; jl++, ris++)
for (jO = 0, r0 = b0-1; jO <= D; jO++, rO++)
{
intermediatefkIJ{k0] += f(rIJ{rol*M(jOICKOI*M[j1I(KI];
}
1

// compute polynomial (1,s,5*2,...,5"D)
float Xs[Dpll;
float ds = s - b0;
Xs[0] = 1;
for (kK = 1; Kk <= D; k++)
Xs[k]l = Xs[k-1]*ds;

// compute polynomial (1,t,t*2,...,t*D)
float Xt[Dpll:
float dt = t - bO:
Xt[0] = 1;
for (k = 1; k <= D; k++)
Xt[k] = Xt[k-1]*dt;

// compute final result
float result = 0;
for (kI = 0; k1 <= D; kl++)
for (kO = 0; kO <= D: KO++)
{
result += intermediate[k1J[k0J*Xs[k0J*Xt[kl];
}

304 Chapter8 Surfaces

For applications that must evaluate the B-spline many times in a region for which
the base interval [io, io + 1] x [i}, {; + 1] does not change, the intermediate tensor
can be cached. The polynomial terms are evaluated each time and the final result is
computed. The intermediate tensor itself can be optimized for speed. (See Eberly 1996,
Chapter 7.2, for optimizations for nonparametric B-spline evaluation in arbitrary
dimensions.)

8.3.5 QUADRIC SURFACES

SBURCE CODE

LiBRARY

Surface

FILENAME

QuadricSurface

The discussion of quadric surfaces in Thomas and Finney (1988) is excellent, but
considers all equations in axis-aligned form. The discussion here involves the general
quadratic equation and relies on an eigendecomposition of a matrix to characterize
the surfaces.

The general quadratic equation is *TAX +b7% +c=0,where Aisa3 x 3 nonzero
symmetric matrix, bisa3 x 1vector, andcisascalar. The 3 x 1vector ¥ representsthe
variable quantities. Since A is symmetric, it can be factoredas A = RTDR,where Dis
adiagonal matrix whose diagonal entries are the eigenvalues of A, and R is arotational
matrix whose rows are corresponding eigenvectors. Setting ¥ = RX and ¢ = Rb, the
quadratic equation is 5T DY + €7y + ¢ = 0. The quadratic equation can be factored
by completing the square on terms. This allows us to characterize the surface type or
determine that the solution is degenerate { point, line, plane). Let D = diag(dy, d), d)
and € = (e, €, €3).

Three Nonzero Eigenvalues

The factored equation is

2 2 2 2 2 2

€ € € € e €

d — d — d — c———————=0
o(yo+2do) + l()’l+2dl) + z(yz+2d2) +

Define y; = —e;/(2d;) fori =0, 1, 2, and define f = e§/4do + e?/4d, + €2 /4d; - c.
The equation is do(yo — ¥0)> + di(y1 — 1) + da(y2 — v2)* = f.

Suppose f = 0. Ifall eigenvalues are positive or all are negative, then the equation
represents a point (Yo, 1, ¥2). If at least one eigenvalue is positive and one eigenvalue
is negative, reorder the terms and possibly multiply by —1 so thatdp > 0, d; > 0, and
d; < 0. The equation is (y2 — y2)? = (—do/d>) (o — Y0)? + (=d1/d2)(y) — y1)? and
represents an elliptic cone (circular cone if dy = d).

Suppose f > 0 (if f < 0, multiply the equation by —1 so that f is positive). If
all eigenvalues are negative, then the equation has no solutions. If all the eigenvalues
are positive, the equation represents an ellipsoid. The center is (yo, 1, ¥2)» and the

8.3 Special Surfaces 305

semiaxis lengths are \/f7d; fori =0, 1, 2. If at least one eigenvalue is positive and one
eigenvalue is negative, then the equation represents a hyperboloid (one or two sheets
depending on the number of positive eigenvalues).

Two Nonzero Eigenvalues

Without loss of generality, assume that d; = 0. The factored equation is

2 2 2
d L0 d 2 Lo _ 1.
0(y0+2!0) + 1(y1+“l) +ew+c adg 2

Define y; = ~e;/(2d) fori =0, 1,and define f = e}/4dy + €} /4d| — c. The equation
is do(yo —)2 + di(y1 — n1)2 + e2y2 = f.

Suppose e; =0 and f =0. If dy and d are both positive or both negative, then
the equation represents a line containing (y, 1, 0) and having direction (0, 0, 1).
Otherwise, the eigenvalues have oppaosite signs, and the equation represents the union
of two planes, y; — y1 = £/~dy]d|(yo — ¥0)-

Suppose e; =0 and f > 0 (if f < 0, multiply the equation by —1). If dp and d,
are both negative, then the equation has no solution. If both are positive, then the
equation represents an elliptic cylinder (a circular cylinder if dy = d). Otherwise, dy
and d| have opposite signs, and the equation represents a hyperbolic cylinder.

Suppose e; # 0. Define y, = f/e,. The equation is dy(yo ~ y)? +d (y1 — v1)* +
e2(y2 — 1) =0. If dp and d) have the same sign, the equation represents an elliptic
paraboloid (circular paraboloid if dy = d). Otherwise, dy and d; have opposite signs,
and the equation represents a hyperbolic paraboloid.

One Nonzero Eigenvalue

The factored equation is

2 2
do (yo+§2;) +ey+ey2+c— %=0-
1fe; = e; = 0, then the equation is degenerate (either no solution or yo is constant, in
which case the solution is a plane). Otherwise, define L = \/e? + €2 # 0 and divide the
equation by L. Define & = dp/L, B = (c — e3/(4dp))/L, and make the rigid change
of variables 2o = yo + eo/(2dp), 21 = — (e, y + €2y2)/L,and z; = (—eyy, +e1y2) /L.
The equation in the new coordinate systemis g = az2 + B, so the surface is a parabolic
cylinder.

306 Chapter8 Surfaces

8.3.6 TUBE SURFACES

SoURCE CODE

Surface

FILENAME

TubeSurface

A swept surface is generated by sweeping a region of space by a planar object along a
specified central curve X (t). The planar object itself may change shape as ¢ varies. The
most common shape is a circle whose radius is constant, but more generally is allowed
to vary with time, say, r(¢). The resulting surface is called a tube surface. A special case
is a surface of revolution, where the central curve is a straight line.

Given an orientation matrix R(t) with columns T, N, and B, a tube surface is
parameterized by

5(1,6) = ¥(1) + r(0) (cos ON +sin 973) (8.2)

for curve parameter ¢ and for 6 € [0, 2;7). The columns of R may be chosen according
to the discussion in Section 7.5.

8.4 SUBDIVISION

Subdivision is an important process for converting surface patches to a set of trian-
gles that the game engine can use. This section describes subdivision algorithms for
rectangle patches, triangle patches, cylinder patches, and spheres or ellipsoids. Two
variations of subdivision are considered—uniform and nenuniform subdivision.

8.4.1 SuBDIVISION OF BEZIER RECTANGLE PATCHES

SOURCE CODE

LIBRARY

Surface

FILENAME

BezierRectangle
BezierRectangle2
BezierRectangle3

The ideas of subdivision are best illustrated when the surface patch is a rectangle patch,
whether the subdivision is uniform or nonuniform.

Uniform Subdivision

A rectangle patch can be subdivided by uniformly tessellating the parameter space to
a specified level L > 0. Figure 8.4 illustrates the subdivisions for L =0and L = 1. The
vertices occur at (s;, t;), where s; = i /2L for0 <i <2 andt; = j/2" for0 < j <2
The number of vertices in the tessellation is V = (2% + 1)2, and the number of
triangles is T = 2 - 4-.

The obvious way to compute the vertices is iteration of a double loop:

L = levels of subdivision:

P = pow(2,L); // maximum index per row or column

M = pow(2,L)+1;: // number of vertices per row or column
vertex[M][M] = array of vertices;

Figure 8.4

8.4 Subdivision 307

L=0 L=1

Subdivisions of parameter space for a rectangle patch.

for (i = 0; i < M; i++)

{
s = i/P;
for (j = 0; § < M; j++)
{
t - j/P;
vertex[i][j] = X(s,t): // evaluation of patch
}
}

However, this does not minimize the number of floating-point operations for Bézier
rectangle patches of odd degree. Let's consider an example for bicubic patches. Ig-
noring loop overhead and the divisions for computing s and (these can be replaced
by incrementing by a precomputed delta), the floating-point operations occur in the
evaluation of the Bézier patch X(s, t). Define

3
} A i oy it ot
Gi=Y By j()pij=ry +17] +157 + 07" =70 1) + 1Y +175)
j=0

for0 <i <3.The F;-” are precomputed. Evaluation of this vector-valued polynomial
requires 9 multiplications and 9 additions. Doing so for each i requires 72 operations.
The next evaluation is for

3
X(s, 1) = Z B3i(5)gi = o + 5¢, + 53¢y + §2¢3 =G + 5(€1 + 5(C2 + 5¢3)).
=0

This requires an additional 18 operations. The total operation count is 90V = 90(2L
+1)%

A recursive subdivision using central differences may be used just as was done
for Bézier cubic curves. Tensor notation is used to simplify the expressions. Rather

308 Chapter 8 Surfaces

than explicitly writing summation signs, if an expression contains a repeated index,
the assumption is that the index is summed over the appropriate range of values. For
example, if A = [A;;] isan n x n matrix and X = [x;] is an n x 1 vector, then the
expression AX is written as):f;;", Ajjx; in the standard notation, but as A;;x ; using
the summation convention. The index j is repeated, so an implied summation occurs
over j. The second part of tensor notation specifies derivatives using indices. If X (p)
isan n x 1 vector-valued function of the m x 1 vector p, then the derivative of the
ith component of X with respect to the jth component of p is denoted x; ;. In tensor
notation, indices before the subscripted comma refer to components and indices after
the comma refer to derivatives. Second derivatives have two indices after the comma,
third derivatives have three, and so on.

Let x;(P) denote the ith component of X(p), where p = (s,1) = [p;]. The com-
ponents can be expanded using the Taylor series just as for cubic curves. Define the
2 x 1 vector 8 = [8;]; then

- .= - - 1 - 1 .
xi(p£8) =xi(p) £ x;,;(P)é; + Exi,jk(P)ajak + g«&.ju(p)%&:&-

There are no additional terms since the patch is bicubic (all fourth derivative terms
are zero). Taking the average of the equations and solving for x; (p) yields

- 1 - = -~ = -
xi(By=5 (%i(p+8) + 55— §) — x ()8 (83)

Compare this to Equation (7.24). Expanding the second derivatives as Taylor series
yields

x;jk(P £ 8) = xi,jx (P) % xi,jxe(P)o¢.

Adding these and solving for x;, jx(p) yields
-~ 1 - = -~ =
X, jk(p) = 2 (X.',jk(p +8) + x;,j1(p — 3)) . (8.4)

Compare this to Equation (7.25). The vector for a rectangle patch will be either (¢, 0)
or (0, €) since the subdivision will occur on horizontal or vertical edges in parameter
space.

Now we will describe the algorithm for the block with parameter values s € [sp, 5]
and ¢t € [1g, 1;]. Define 5,7 = (5g + 51)/2: tmy = (o + 1) /2, and d = 5, — 59 =ty — Ip.
At each of the four corner points it is assumed that the following quantities are
precomputed: X, Xgs, Xyy» and X¢s,,. The subscripts indicate partial derivatives with
respect to the listed variables. The formulas shown below are valid since in each
parameter ¥ is a cubic polynomial.

For midpoints (s,,, #), where o is either ¢ or £):
Xss(Sm» @) = 0.5 (¥s(S0, @) + Xss(51, @)
Xyste(Sn>) = 0.5 (X550 (50,) + Xssre (51, @)
Frr(sms ®) = 0.5 (},,(so, @) + Fur (51, @) — AR50 (Sms .))
F(Smy #) = 0.5 (i’(so, o) + Z(51, 0) — d¥Fss(5ms 9))
For midpoints (e, 1,,), where o is either sp or s):
Z1e (@, tm) = 0.5 (Xpe (o, 10) + Xre(0, 1))
Zssrr (4 twe) = 0.5 (Zssrr (@, 1) + Fagur (9, 1))
Fos(0, tm) =05 (Zes(0, 10) + Zes(0, 1) = dEeqrr (@1 1))
X(® tm) =05 (,'t'(o, to) + X(8, 1) — d%y (e, t,,.)) .
At the center point (S Iy):

}ss(sm: Im) = 0.5 (-is:(sO; tm) + Xs5(51 tm))
Xt (Sms tm) = 0.5 (Zee(Spm» 20) + Xre (Sm> 11))

Xsspr(Sms tm) = 0.5 (fssn(so: tm) + Xsstr (51 ?m))

E(mstm) = 0.5 (¥(50, tm) + F(s51, tm) — A5 (5ms tm)) -

8.4 Subdivision

309

If L full subdivisions are performed, then M, = 2¢(2¢~! + 1) new midpoints and
Ce = 4"~ new centers are generated at subdivision £. The total number of midpoints

1s

L
M= Z 222+ = §(4L ~1D+2t-1),
=]

and the total number of center points is

L
c=) 4"'= %(4L - 1.
=1

310 Chapter 8 Surfaces

For L subdivisions, the total number of vertices is (2~ + 1)2. The four initial corners
and the additional midpoints and centers yields

2 1
4+ 3(4L—1)+2(2L—1)+3(4L—1)==4+4L—1+z(zL—1)
=4t +2.2" +1=0+ 1)}

a verification that the counts on the midpoints and centers are correct.

Calculation of ¢ requires 1 subtraction and 1 maltiplication per level and is not
counted in the operation count because the number is insignificant compared to the
number of subdivision vertices. Calculation of X, X, X, and Fuuvy at each midpoint
takes 4 additions, 2 subtractions, and 6 multiplications per vector component. Add
these and multiply by 3 (for the three components) to obtain 36 operations per mid-
point. The center calculations take 4 additions, 1 subtraction, and 5 multiplications
per vector component, times 3 components, yields 30 operations per center. The total
operation count for the full subdivision is

36 (§(4’- -1 +20F- 1)) +30 (%(4L - 1)) =344t — 1)+ 72025 - 1).

The high-order term in the loop iteration algorithm is 90 - 4%. For the recursive
subdivision, it is 34 - 4-. Therefore, the recursive algorithm is about 2.64 times faster.
The pseudacode for the algorithm is shown below.

void Subdivide (s0, sl, t0, t1, x[21[2]1. xssl21[2], xttl21[2].
xssttf21[2])
{
// Parameter block is [s0,sl1x[t0,t1].
/7 xLIIL§] = x(si,tj)
/7 xss[iJ[j]l = x_{ss)}(si.tj)
/7 xttLi1lj] = x_{tt}(si.tj)
/7 xsstt[i1[j] = x_{sstt)(si,tj)

d=sl-s0; //=1tl- t0 since blocks are square
dsqr = d*d;

xss_m0 = 0.5%(xss[0][0]+xss[1][01);

xss_ml = 0.5%(xss[0][1]+xss[11[1]);

xsstt_m0 = 0.5%(xsstt[0]1[0]+xsstt[11[0]);
xsstt_ml = 0.5*%(xsstt[0]J[1]+xsstt[11[1]);

xtt_m0 = 0.5*(xtt[0]1[0]+xtt[1][0]1-dsqr*xsstt_m0);
xtt_ml = 0.5*%(xtt[01[1]+xtt[1][1]-dsqr*xsstt_ml);
X_m0 = 0.5*%(x[0J[0]+x[1][0]-dsqr*xss_m0);

8.4 Subdivision

x_ml = 0.6%(x{OJ[1]J+x[1](1]-dsqr*xss_ml);
insert x_m0 and x_ml in subdivision;

xtt_Om = 0.5%(xtt{01{01+xtt[01{1]1);

xtt_1m = 0.5*(xtt[1][0]+xtt[1][1]);

xsstt_Om = 0.5%(xsstt[01[01+xsstt[0][1]);
xsstt_1m = 0.5*(xsstt[1][0]+xsstt[11[11);

xss_0m = 0.5*%(xss[0Y[0]+xss[0]J[1]-dsqr*xsstt_Om);
xss_1lm = 0.5*(xss[1J[0)+xss[1][1])-dsqr*xsstt 1m);
X_0m = 0.5%(x[01[0]+x[0][1])-dsqr*xtt_Om);

x_1lm = 0.5*(x[1][0]+x[1][1]-dsqr*xtt_1m):

insert x_Om and x_Im in subdivision;

xss_mm = 0.5%(xss_Om+xss_1m);
xtt_mm = @.5+(xtt_mO+xtt_ml);
xsstt_mm = 0.5*%(xsstt_Om+xsstt_1m);
x_mm = 0.5*%(x_Om+x1lm-dsqr*xss_mm);
insert x_mm in subdivision;

sm = 0.5%(s0+sl);
tm = 0.5*(10+t1);

// subblock [sO,sm]x[t0,tm]
y[01[0] = x[01[0];

y[11[0] = x_mO;

y(01(1] = x_Om;

YI11[1] = x_mm;

yss[01[0] = xss[01[0]:
¥ss[13[0] = xss_m0;
yss[0][1] = xss_Om;
yss[11[1] = xss_mm;
ytt[01[0] = xtt[0][0];
ytt[11[0] = xtt_moO;
ytt[01[1] = xtt_Om;
ytt{11[1] = xtt_mm;
yss[OI[0] = xss[0][0]:
yss{13{0} ~ xss_m0;
yss[OJ[1] =~ xss_Om;
yss[1][1] ~ xss_m;
ysstt[01[0] = xsstt[0][0];
ysstt[11[0) = xsstt_m0:
ysstt[0][1] = xsstt_Om;
ysstt[1][1) = xsstt_mm:
Subdivide(s0,.sm,tD,tm,y,yss.ytt,ysstt);

311

312 Chapter 8 Surfaces

// subblock [sO,sm]x[tm,tl1]
y[01[0] = x_Om;

y[11[0] = x_mm;

y[01[1] - x[01[1]:

y[11[1] = x_ml;

yss[01[0] = xss_Om;
yss[1]1[0] = xss_mm;
yss[01[1] = xss[01[1]:
yss[1][1] = xss_ml;
ytt[01[0] = xtt_Om;
ytt[1][0] = xtt_mm;
ytt[0][1] = xtt[01[1];
ytt[11[1] = xtt_ml;
ysstt[0][0] = xsstt_Om;
ysstt[1][0] = Xxsstt_mm;
ysstt[0][1] = xsstt[01[1];
ysstt[1][1] = xsstt_ml;
Subdivide(s0,sm,tm,tl,y.yss.ytt,ysstt);

// subblock [sm,s1Ix[t0,tm]
y[01[0] = x_m0;

y[11[0] = x[11[0];

y[01[1] = x_mm;

y[11[1] = x_1m;

yss[0][0] = xss_mO;
yss[11[0] = xss[1][0]:
yss[0J[1] = xss_mm;
yss[11[1] = xss_1m;
ytt[0]1[0] = xtt_m0;
ytt[11[0] = xtt[1][0]:
ytt[01[1] = xtt_mm;
ytt[11[1] = xtt_1im;
ysstt[0][0] = xsstt_mO;
ysstt[1]110] xsstt[11[01];
ysstt[0][1] = xsstt_mm;
ysstt[1][1] = xsstt_1m;
Subdivide(sm,sl,t0.tm,y,yss,ytt,ysstt):

// subblock [sm,s1]x[tm,t]1]
y[01[0] = x_mm;

y[11[0] = x_1m;

y[01[1] = x_ml;

y[11[1]1 = x[11[11:
yss[01[0] = xss_mm;

8.4 Subdivision 313

yss[11[0] = xss_1m;
yss[0][1] = xss_ml;
yss[1]111] = xss[11011:
yttf{0]1L[0] = xtt_mm;
ytt[11[0] = xtt_1m;
ytt{01{1] = xtt_mi;

yttl1J[1) = xtt[1][1];

ysstt[0][0] = xsstt_mm;

ysstt[1][0] = xsstt_1m;

ysstt[01[1] = xsstt_mi;

ysstt[1][1]) = xsstt[11[1]:
Subdivide(sm,s1,tm,tl,y.yss,ytt,ysstt);

Warning: The code does not show how to memoize the various quantities so that
terms are not computed multiple times. If the initial block is subdivided into four
subblocks, the code as shown will twice compute the quantities at the midpoint of the
shared edge (s, % {fo, tm], once for subblock {so, 5] x {t0, 1.n] and once for subblock
Lsms 511 X [#0, &4]. One possibility for avoiding the repetitive calculations is to assign
responsibility for the various midpoint quantities to specific subblocks and to pass
an additional parameter to Subdiv1ide that indicates which of the four subblocks is
being recursed on. Block [sq, $p,] % [fo, 2] is responsible for four midpoints, blocks
[56, Sm} X [tws 21} anQ [$py $1) % {20, 10} are each responsible for three midpoints, and
block [sy, 53] % [, £1) is responsible for two midpoints.

Plate 1 illustrates subdivision of an object containing rectangle and triangle
patches using uniform tessellation in parameter space,

Nonuniform Subdivision

The recursive uniform subdivision ignores two important aspects of rendering sur-
faces. The first aspect is that the patch may be relatively flat in some subblocks. There
is no point in further subdividing those subblocks because no additional variation is
to be found in the surface. The second aspect is that the surface might be far away
from the eye point. A fixed level of subdivision could produce a suitable number of
triangles to accurately represent the surface when near the eye point, but the same
level might produce a large number of small triangles that are expensive to render yet
do not contribute much to the perceived shape of the patch. A smarter subdivision
scheme wili handle both aspects appropriately.

The recursive subdivision can be modified to terminate at a block if the measured
variation within the block is insignificant. This modification is done much inthe same
way as the recursive algorithm for curves. If any of the second derivatives at the four
midpoints of a block’s edges is significantly large, then the block is subdivided. If the
second derivatives at the four midpoints are all significantly small, then the block is

314 Chapter 8 Surfaces

not subdivided. For recursive uniform subdivision, the algorithm essentially builds a
complete quadtree of the specified level. The modified recursive algorithm builds a
partial quadtree.

Theterm in Equation (8.3) that measures variation from the line segment connect-
ing the end points of the interval is x;,jx(p)8 j8k, with the factor of one-half omitted.
According to the summation convention, there is a double summation over indices j
and k. The remaining index i is a free index, so this quantity is a vector, call it V. Fora
midpoint calculation on a horizontal edge [so, 51], let A = 51 — 50; then 5= A(1,0)
and V = A% ((so + 51)/2, 1). For a midpoint calculation on a vertical edge [fo, nl,
let A =t, —to; thend = A(0, 1) and V = A%, (s, (fo + 1)/2).

The pseudocode for the unconstrained recursion can be modified to add the tests
on the size of V.

void Subdivide (s0, sl, t0, tl, x[2][2], xss[2][2]. xtt[2][2],
xsstt[21(2])
{
// Parameter block is [s0,s1]x[t0,t1].
/7 x[i1[3] = x(si.tj)
/1 xss[i11[j] = x_{ss}(si,tj)
/7 xtt[i103] = x_(tt}(si,tj)
/7 xsstt[i1[j] = x_{ssttl(si,t]j)

d =sl -s0; // =1tl - t0 since blocks are square
dsqr = d*d;

xss_m0 = 0.5%(xss[0]1[0]1+xss[11[01);
xss_ml = 0.5*%(xss[0J[1]+xss[11[1]);
xtt_Om = 0.5*%(xtt[0J[0]+xtt[0][1]):
xtt_1lm = 0.5*%(xtt[11[0]+xtt[1][1]);

vm0 = dsqr*xss_m0:
vml = dsqr*xss_ml;
vOm = dsqr*xtt_Om;
vim = dsqr*xtt_1m;

if (SquaredLength(vm0) > epsilon or
SquaredLength(vml) > epsilon or
SquaredLength(vOm) > epsilon or
SquaredLength(vim) > epsilon)
// subdivide the block

xsstt_m0 = 0.5*%(xsstt[01[0]+xsstt[11[0]);

8.4 Subdivision 315

xsstt_ml = 0.5%(xsstt{01[21+xssttl111]);

xtt_m0 = 0.5*(xtt[01[0]+xtt[1]1[0]-dsqr*xsstt_m0);
xtt_ml = 0.5%(xtt[DI[1])+xtt[1][1]-dsgr*xsstt_ml);
x_m0 = 0.5%(x[01[0]+x[1]1[0]-dsqr*xss_m0O);

x_ml = 0.5%(x[0]J[1]+x[1]1[1]-dsqr*xss_ml);

insert x_m0 and x_ml in subdivision;

xsstt_Om = 0.5%(xsstt[0]1[0]+xsstt[0][1]);
xsstt_1m = 0.5*%(xsstt[1][0]+xsstt[1][1]);

xss_0m = 0.5%(xss[01[0)+xss[0]1[1]-dsqr*xsstt_Om);
xss_1m = 0.5%(xss[11[0)+xss[11[1])-dsqr*xsstt_1m);
x_0m = 0.5%(xf0J(0]+x{0I[1]-dsqr*xtt_Om);

x_1lm = 0.5*(x[1][0]+x[1]1[1]-dsqr*xtt_1m);

insert x_0Om and x_lm in subdivision;

Xxss_mp = D.5%(xss_Om+xss_1lm);
xtt_mm = 0.5*%(xtt_mO+xtt_ml);
xsstt_mm = 0.5*(xsstt_Om+xsstt_1m);
x_mm = 0.5*%(x_Om+x1m-dsqr*xss_mm);
insert x_mm in subdivision;

sm = 0.5%(s0+sl);
tm = 0.5%(t0+tl);

// The pseudocode from the unconstrained algorithm
// for the four subblocks goes here...

This pseudocode has the same warning as for the unconstrained case. The various
midpoint quantities could be computed twice. Note that assigning responsibility for
computing the various midpoint quantities to specific subblocks does not work in this
case. The problem is that one subblock decides not to recurse on its children, thereby
not calculating some of the midpoint quantities (the ones that occur in the “subdivide
the block” chunk of code), but a neighboring subblock relies on these values being
computed, A modification that takes care of this is to provide a set of Boolean flags
indicating which of the midpoint quantities still requires computation. By using these,
we effectively have a classic table of memoized values. Another possibility is to allow
the multiple computations to occur. The worst case is that all midpoints are calculated
twice. The number of midpoints to compute at level ¢ is My = 4%, The total number
of midpoints for L levels of subdivision is M = Zf;, My = 4(4% — 1)/3. The total
number of center pointsis C = (4% —~ 1)/3. The tota) operation count (see the formula
for the unconstrained case) is 36M + 30C = 58(4% — 1). The high-order term for the
loop iteration algorithm was 90 - 4, for the unconstrained algorithm was 34 - 4,

316 Chapter8 Surfaces

Figure 8.5 Subdivision that contains cracking.

and for the current algorithm is 58 - 4%, The approximate speedup over the loop
iteration is 1.55—still faster, but not as fast as the algorithm that avoids the repetitious
calculations.

Adjustments for the Camera Model

The nonuniform subdivision tests the lengths of the nonlinear terms V to decide
whether or not to subdivide. For a surface with a lot of variation in it, the subdi-
visions will occur. In the presence of a camera model and perspective projection, the
subdivision is acceptable when the surface is near the eye point. However, if the sur-
face is far away from the eye point, the subdivision may not add much to the visual
quality of the rendered surface because each already existent triangle maps only to a
handful of pixels on the screen.

One heuristic for the subdivision step is provided in Sharp (1999). The idea is to
get an estimate of the length (in pixels) of the projection of V into screen space. Sharp
(1999) estimates a slice, perpendicular to the camera direction, in the view frustum
in which V lives, computes the width (in pixels) of that slice, then computes the ratio
of the length of V to the slice width and compares that ratio to a tolerance. If smaller,
the subdivision step is performed.

Another possibility is to compute the midpoint M of the line segment connecting
the two known end points and compute the length of the projected line segment (in
pixels) from M to M — V /2, the last point being the actual midpoint if the edge were
to be subdivided. This can be done using Equation (3.15). If that distance is larger
than an application-specified number of pixels, then the subdivision is performed.

Cracking

The story is not yet finished. Nonuniform subdivision allows for neighboring blocks to
be subdivided to different resolutions, which creates cracking in the final mesh. Figure
8.5 shows two adjacent blocks in a subdivision that has cracking. The crack occurs at

Figure 8.6

8.4 Subdivision 317

Subdivision that has no cracking.

the T-junction marked with a solid dot. The left block wants to be subdivided, but
the right block does not. It appears as if one of two choices can be made, and the
consequences of either are undesirable. The first choice is to subdivide those blocks
that want to be subdivided and force adjacent blocks to follow suit. Applied recursively
in the quadtree, this will force a uniform tessellation to the level of the most detailed
block. The second choice is to disallow subdivision of blocks that have an adjacent
block that does not want to subdivide. This will also force a uniform tessellation, but
to the level of the least detailed block. The problem here is subdivision performed
strictly as a quadtree process. To accommodate adjacent blocks that do not jointly
subdivide (in the quadtree sense), we need to allow for a form of partial subdivision.
Even with a suitable definition for partial subdivision, the same two choices remain
about whether to force the least detailed block to partially subdivide or to prevent the
most detailed block from partially subdividing.

A quadtree approach to tessellating a height field surface that uses partial sub-
division based on the concept of vertex dependencies is discussed in Chapter 11 and
is based on Lindstrom et al. (1996). The method is quite sophisticated and takes the
stance that a lesser-detailed block must partially subdivide to accommodate a more
detailed adjacent block.

An approach that prevents the quadtree subdivision of a more detailed block is
mentioned in Sharp (1999). That article illustrates how to resolve the cracking shown
in Figure 8.5. The idea is to collapse the midpoint vertex to a corner vertex, as shownin
Figure 8.6. The general algorithm can be stated as follows. For each block, if all of the
edges are at the same level of detail, then no collapsing is required. Otherwise, collapse
the midpoints to the corners at those edges. Recurse on the four subblocks. The
nonuniform subdivision requires two passes: one to generate the vertices of the final
mesh and one to fix the cracking. While the second pass may not be that expensive, it
must handle the type of subdivision shown in Figure 8.7.

Now let’s consider a single-pass algorithm that prevents the quadtree subdivision
of a more detailed block. The main idea is to do a depth-first traversal of the quadtree,
but to use topological information about neighboring blocks to decide if the traversal
can continue at the current block. Since neighboring blocks might not have been
visited yet, the topological information is obtained by allowing a block to compute

318 Chapter 8 Surfaces

Figure 8.7 Subdivision that contains more complicated cracking.

Figure 8.8

Partial subdivision with three subdividing edges.

quantities that the neighbor would have computed if it had been visited first in the
traversal. To avoid recalculating that information, a temporary buffer is used to store
computed vertices. The buffer is shared by all patches in the system, so the per-object
memory costs are avoided. Consider first the block corresponding to the root of the
quadtree. If all four edges want to subdivide, then the block is subdivided into four
subblocks and the subdivision process is applied to those subblocks.

Suppose that the right edge of the root block does not want to be subdivided.
The partial subdivision is illustrated in Figure 8.8. The upper right and lower right
subblocks are no longer considered for subdivision as the tessellation of that part of
the parameter space is already determined to be the three triangles that are shown in
the figure. The partial subdivision allows the upper-left and lower-left subblocks to
continue subdividing, but with constraints. The right edges of those subblocks cannot
subdivide because of the final tessellation in the two neighboring subblocks. At best,
the topology of the partial subdivision for either subblock can look only like that of
the parent block. Figure 8.9 illustrates this for the upper-left subblock. The topological
constraints for the subdivision of the child blocks is actually quite natural. The right
half of the original block is relatively flat since the right edge did not want to subdivide.
Theleft half of the original block is less flat and wants to subdivide to show off its detail.
The constraints lead to a tessellation that conforms to the demands of both halves with
a gradual increase in tessellation from right to left.

Figure 8.9

Figure 8.10

8.4 Subdivision 319

Partial subdivision illustrating the parent’s topological constraint.

Partial subdivision with two adjacent subdividing edges.

Suppose that both the right and bottom edges of the root block do not want
to be subdivided. The partial subdivision is illustrated in Figure 8.10. The upper-
right, lower-right, and lower-left subblocks are no longer considered for subdivision.
The tessellation for that part of the parameter space is determined to be the four
triangles shown in the figure. The partial subdivision allows the upper-left subblock to
continue subdividing, but again with constraints. The right and bottom edges cannot
be subdivided, just as the parent’s edges cannot be subdivided. At best, the topology of
the partial subdivision can look only like that of the parent block. Figure 8.11 illustrates
this for the subblock. The constraint allows a gradual increase in detail from lower
right to upper left.

Suppose that both the top and bottom edges of the root block do not want to be
subdivided. None of the subblocks are considered for subdivision. However, the left
and right triangles in the partial subdivision can be split in half. Figure 8.12 illustrates
the partial subdivision with the two additional triangle splits. The surface appears to
have saddlelike behavior in the block. No further subdivision is necessary to explore
this feature.

Finally, suppose that only the top edge wants to be subdivided. None of the
subblocks are considered for subdivision and the top triangle can be split in half. Figure
8.13 illustrates the subdivision with the additional triangle split.

320 Chapter 8 Surfaces

Figure 8.11

Figure 8.12

Figure 8.13

Partial subdivision illustrating the parent’s topological constraint.

Partial subdivision with two opposing subdividing edges.

Partial subdivision with one subdividing edge.

Figure 8.14 illustrates how a block can subdivide by calculating information in an
adjacent block. The left block L is visited first in the quadtree traversal. If L determines
that its right edge can be subdivided, then point A is computed. Block R shares that
edge and would have agreed to split and compute A also. Because A occurs in the
subdivision, point B must occur in the subdivision of R, so L computes it for R. The
children of block L are traversed next. The upper-right child might want to subdivide
its right edge and compute point C, but this split is only allowed by block R if point D
occurs in the subdivision of R. Since R has not yet been visited in the traversal, L can

Figure 8.14

8.4 Subdivision 321

i D
.............. a
A B

Subdivision based on calculating information in adjacent block.

go ahead and determine if the top edge of R can be split. If so, D is computed and the
recursion on the upper-right child of L isallowed. A shared array of subdivision points
is used by all patches for temporary storage, and a shared array of Boolean flags is used
to indicate whether or not a subdivision point has been computed. Before subdivision
of a patch, the Boolean array has all its entries set to false.

In an application, typically an object is composed of many surface patches. The
crack-free algorithm still applies. The quadtree decomposition for a patch is a conve-
nience for subdividing the parameter space. For cross-patch tessellation, two adjacent
patches act like two adjacent blocks. The only information they both need is whether
or not to subdivide the common edge. Of course this does assume some continuity
between adjacent patches.

One final note: The subdivision algorithm can be made more like the algorithm
in Lindstrom et al. (1996)—force lesser-detail blocks to partially subdivide—but re-
quires the concept of vertex dependencies. The challenge is to design a set of data
structures that avoids having to store information whose size is of the order of the
uniform tessellation at the highest level of detail. If such storage is used in an imple-
mentation, then there is no advantage to using a top-down subdivision for surfaces
over a bottom-up method such as the one used for terrain tessellation. The top-down
method is very desirable for platforms such as game consoles that have large pro-
cessing power but small memory. For platforms with large memory such as PCs, the
choice of algorithm is less important. This particular variation on subdivision will be
discussed in the next section.

Plate 2 illustrates subdivision of an object containing rectangle and triangle
patches using tesseifation based on the continuous level-of-detail algorithm described
in this section.

8.4.2 SuBDIVISION OF BEZIER TRIANGLE PATCHES

Bézier triangle patches are more difficult to subdivide than Bézier rectangle patches
because of the more complicated indexing. However, the concepts are still the same
at a high level.

322 Chapter 8 Surfaces

Figure 8.15

S0OURCE CODE

LIBRARY

Surface

FILENAME

BezierTriangle
BezierTriangle2
BezierTriangle3

L=0 L=1

Subdivisions of parameter space for a triangle patch.

Uniform Subdivision

A triangle patch can be subdivided by uniformly tessellating the parameter spaceto a
specified level L > 0. Figure 8.15 illustrates the subdivisions for L =0and L = 1.

For general level L > 0, the number of vertices in the tessellation is V =
2L + 1)(2L~! + 1), and the number of trianglesis 7 = 4L The vertices are packed in
a one-dimensional array, the bottom row first (containing 2- + 1 vertices) through
the top row last (containing 1 vertex). The mapping from the integer lattice point
(x, y), where x and y are nonnegative integers with x + y < 2L, to one-dimensional
array index / is

2L+l 3 —
g X ;— »

The straightforward way to compute the vertices is iteration of a double loop.
The vertices are stored in a one-dimensional array as mentioned previously. The
pseudocode below also shows how to generate an array of indices that represents the
triangle connectivity. Each group of three indices corresponds to those vertices that
make up a triangle in the tessellation.

N = pow(2,L):

// compute the vertices

k = 0;
for (y = 0; y <= N; y++)
{

v =y/N;

for (x = 0; x +y <= N; x++)

8.4 Subdivision 323

{
u = x/N;:
vertex[k++] = X{(u,v); // evaluation of triangle patch
)
}
// compute the triangle connectivity
t=0;
ystart = 0;
for (y = 0; y < N; y++)
{
kO = ystart;
kl = k0 + 1;

ystart = (y+1)*(2*(N+1)-y)/2;

k2 = ystart:

for (x = 0; X+ y < N; x++)

{
connectivity[t++] = kO;
connectivity[t++] = ki;
connectivity[t++] = k2;

IF(x+y+1<N)

{
connectivity[t++] = kl;
connectivity[t++] = k2+1;
connectivity[t++] = k2;

}

kO-H-;
kl++;
k2++;

Plate 1 illustrates subdivision of an object containing rectangle and triangle
patches using uniform tessellation in parameter space.

Nonuniform Subdivision
Like the algorithm of Lindstrom et al. (1996), the following algorithm uses the equiv-

alent of a symmetric triangulation for quadtree blocks and has a vertex dependency
structure.

324 Chapter 8 Surfaces

Figure 8.16

N
AN AN

Subdivision of a triangle and the corresponding binary tree.

Consider a single triangle whose vertices are labeled as top 7', left L, and right
R. If the angle at T is a right angle, the edge from L to R is called the hypotenuse of
the triangle. Taking liberty with the terminology, even if the angle at T is not a right
angle, the edge opposite that vertex will be called the “hypotenuse.” The subdivision
algorithm involves deciding if the hypotenuse of a triangle can be subdivided based
on the same heuristic as is used for rectangle patch subdivision. If so, the triangle
is split into two triangles. The midpoint of the original hypotenuse becomes the
top vertex for the two new triangles. The left and right vertices are labeled so that
T, L, and R occur in counterclockwise order. The subdivision process is applied
to each of the two new subtriangles. For an unconstrained subdivision of a single
triangle, the result is a complete binary tree whose leaf nodes represent the final
triangles in the subdivision. Figure 8.16 illustrates the subdivision step applied three
times.

The labeling of the subdivided triangles is important in the remainder of this
section. The triangle for the root node of the tree is labeled Aq. If A; is the current
triangle to be subdivided and has top vertex T, left vertex L, and right vertex R, and
if M is the midpoint of the hypotenuse, then the two children of A; are Aj;4+ and
Azi42. The top, left, and right vertices of Ay; | are M, T, and L, respectively. The
top, left, and right vertices of Aj; 4, are M, R, and T. The level in the tree at which A;
occurs is £ = [log,(i + 1)], where |x] is the floor function that computes the largest
integer smaller or equal to x.

8.4 Subdivision 325

A;
Adiel Asiv3 | Agive Adivz
Adirg Agiss
Byj,s Bajea
Byie \ Byjes
Byjsa Byjui

B,

Figure 8.17 H-adjacency for triangles A and B.

The subdivision is more complicated for a triangle mesh. Two adjacent triangles
are said to be H-adjacent if they share the same hypotenuse. If one of the triangles
wants to subdivide its hypotenuse, the other one must also. For a single triangle, this
leads to a vertex dependency structure based on the following relationships:

® If A; and A;4 are siblings, then Aj; 41 and Aj;44 are H-adjacent.

» If A; and A are H-adjacent, then A4;+4 and A4j+5 are H-adjacent. By symmetry,
Asiss and Ayjy4 are also H-adjacent.

For two triangles Ao and By that are H-adjacent, the last relationship is also valid. If
Aj and B; are H-adjacent, then A4 and B4 5 are H-adjacent and A4;5and 844
are H-adjacent. Figure 8.17 illustrates the relationships.

The relationships between two triangles that are adjacent on an edge that is not
the hypotenuse affects the indexing in the H-adjacency. If Ag has vertices T, Ly, and
Ry, and if Cy is a triangle that has top vertex T, left vertex L), and right vertex Ly,
then Aq and Cy are not H-adjacent. If My is the midpoint of the edge from L to
Ly, then C; has top, left, and right vertices My, Lo, and T, respectively. If M| is the
midpoint of the edge from Lo to Ry, then A, has top, left, and right vertices M1, T, and
Ly, respectively. It is the case that A| and C, are H-adjacent. Generally, if A2; ¢ and
C»j+2are H-adjacent, then so are Ag;j9and Cg; 12 and Ag;,gand Cg; 3. Figure 8.18
illustrates the relationships. The same constructions apply for an adjacent triangle Dg

326 Chapter8 Surfaces

Azis A2is2

Figure 8.19 H-adjacency for triangles A and D.

whose top, left, and right verticesare T, Ro, and R, respectively. The triangles A; and
D, are H-adjacent. Generally, if As; 4> and D, are H-adjacent, then so are Ag; 13
and Dg; .5 and A; 412 and Dgj 9. Figure 8.19 illustrates the relationships.

For a single triangle to be subdivided, given 2 maximum level L for subdivision,
the storage requirements for vertices are easily computed. Figure 8.20 illustrates the
pattern for subdivision for levels 0 < L < 4. The number of vertices for maximum
subdivision at level L is

y Y2y Leven [(21241) (221 +1), Leven

HL-1)/2

ek -1, Lodd (@22 41)?, Lodd

The number of triangles for maximum subdivision at level L is T = 2. Vertex storage
isas a regular triangular array with row-major indexing, hypotenuse row first through
top vertex last. Indexing will depend on the parity of L.

8.4 Subdivision 327

L=3 L=4

Figure 8.20 Pattern for subdivision of a triangle.

The storage for the worst case can be allocated for a single triangle. Each subdi-
vided triangle uses the same storage and, once subdivided, the renderer must draw
the triangles to free the storage for the next triangle to use. This approach leads to
some redundant calculations of vertices, those that lie on shared edges of the original
mesh triangles. If size of storage is not an issue, then vertex storage can be allocated
per triangle, and the vertex dependencies for H-adjacent triangles can be used in sup-
port for calculating each subdivision vertex exactly once. If size of storage is an issue,
but speed of vertex calculations is not, then each leaf triangle in the binary tree can
be drawn when visited with effectively no storage requirements. The binary tree is
virtually traversed simply by the recursive function calls:

void Subdivide (Point T, Point L, Point R)

{
M=R-L:
compute second derivative vector D:
if (D is sufficiently large)
{
Subdivide(M,T,L);
Subdivide(M,R,T);
J
else
{
DrawTriangle(T.L,R);
}
}

Finally, given a triangle mesh it is necessary to select those edges that will be
hypotenuses. It appears that this should always be possible with the mesh, but a
guaranteed way of doing this that does not require a preprocessing pass is to subdivide
each triangle into three triangles by adding the centroid and edges connecting the

328 Chapter8 Surfaces

centroid to the original vertices. In this way all the edges of the origina! mesh are the
hypotenuses of the tripled mesh. Moreover, if a rectangle mesh is processed in the
same way by adding the centroids and connecting to the four corners, the resulting
triangle mesh can be subdivided with the algorithm mentioned in this section. This
subdivision is the symmetric triangulation discussed in Lindstrom et al. (1996) for
terrains,

Plate 2 illustrates subdivision of an object containing rectangle and triangle
patches using tessellation based on the continuous level-of-detail algorithm described
in this section.

8.4.3 SuBDIVISION OF BEZIER CYLINDER SURFACES

SOURCE CODE

LIBRARY

Surface

FILENAME

BezierCylinder
BezierCylinder2
BezierCylinder3

Bézier cylinder surfaces are easier to subdivide than rectangle or triangle patches
because only the curve boundaries need to be subdivided.

Uniform Subdivision

A cylinder surface can be subdivided by uniformly tessellating the parameter space to
specified levels L in the curve direction and M in the extruded direction. The defaults
are L =0 and M =0, in which case the tessellation consists of two triangles. The
tessellation is similar to that for Bézier rectangle patches with the exception that the
number of rows and number of columns of vertices do not have to be the same. The
number of vertices in the tessellation is V = (2L + 1)(M + 2), and the number of
triangles is T = 24 *1(M + 1).

Nonuniform Subdivision

For a cylinder surface whose two boundary curves are rigid translations of each
other, a nonuniform subdivision of the boundary curve and a uniform subdivision in
the extruded direction produce a nonuniform subdivision of the surface. If the two
boundary curves are not related by a rigid translation, then the curves can be jointly
subdivided. We can choose to subdivide if at feast one of the curves wants to subdivide
(higher level of tessellation) or not subdivide if at least one of the curves does not want
to subdivide (lower level of tessellation). A uniform subdivision s still performed in
the extruded direction.

8.4.4 SUBDIVISION OF SPHERES AND ELLIPSOIDS

This section describes how to tessellate a unit radius sphere starting with an inscribed
convex triangular mesh. A typical starting mesh is an inscribed octahedron with
equilateral triangular faces, but the algorithm applies equally well to any inscribed
convex triangular mesh. The choice of initial mesh affects the final distribution of

SE0URCE CODE

LIBRARY

Surface

FILENAME

QuadricSurface

8.4 Subdivision 329

triangles. Each triangle in the initial mesh is assumed to have its vertices ordered in
a counterclockwise fashion as you look at the triangle from the outside of the initial
convex mesh.

Each triangle is subdivided into four triangles by computing the midpoints of
the triangle edges and connecting them together. The midpoints are not on the
unit sphere, but must be moved onto the sphere. Normalizing the points does not
necessarily yield a convex polyhedron, especially when the sphere center is not in the
initial convex polyhedron. Instead, the centroid of the polyhedron (guaranteed to be
inside the polyhedron) is computed, then the edge midpoints are projected onto the
sphere along the rays conpecting the centroid and midpoints. If an ellipsoid is being
tessellated instead, the projection of midpoints onto the ellipsoid is similar to that for
the sphere.

Subdividing the polyhedron is simple to implement if all you keep track of is
a list of triangles and the three vertex locations per triangle. However, if you need
more connectivity relationships among the vertices, edges, and triangles of the mesh,
the implementation becomes more difficult. While simple to describe, the difficult
problem is maintaining data structures.

Data Structures for the Algorithm

The following data types are used. The implementation uses pointers for efficiency by
avoiding full copying of the data members.

typedef struct

{

float x, y. z:
}
Point3;

typedef struct

{
Point3* point;
int numkEdges; // number of edges sharing the vertex
struct Edge** edge; // array of numbEdges edge pointers
}
Vertex;

typedef struct
{
struct vertex* vertex{2]: // end points of edge
struct Triangle* triangle[2]; // t[0) and t[1] share
// the edge
}
Edge:

330 Chapter 8 Surfaces

typedef struct

{
struct Vertex* vertex[3]; // vertices of triangle
struct Edge* edge[3]; // eQ = <v0,vl>, el = <vl,v2>,

/] e2 = <v2,v0>
struct Triangle* adjacent[3]: // adj[i] shares e[i]
// with triangie
}
Triangle;

typedef struct

{
int numVertices:
Vertex* vertex;

int numEdges:
Edge* edge;

int numTriangles;
Triangle* triangle;

Point3 centroid;

]
ConvexPolyhedron;

Although other variations on the data types may be required for an application,
this one suffices in the algorithm for computing the terminator and silhouette of
a convex polyhedron. Our goals in the construction are to have no reallocation of
memory (avoiding fragmentation of the heap) and to update the data structures in
place (efficiently using memory).

Let the initial mesh have vg vertices, €y edges, and 7o triangles. Let v;, €;, and 7; be
the number of vertices, edges, and triangles, respectively, after the ith subdivision step.
The number of vertices increases by the number of edges. The number of edges is first
doubled by the edge splitting, then increased by three times the number of triangles
due to connecting the midpoints of the edges. The number of triangles quadruples.
The recurrence relations are

Vigp =V; + €, €1 =2¢ + 31, Ti41 =415, i=0.

While these can be solved in closed form, the code just iterates the equations for the
desired number of subdivision steps n to compute the total number of vertices, edges,
and triangles required for the final convex polyhedron. The required memory for
vertices, edges, and triangles can be allocated all at once for the polyhedron.

8.4 Subdivision 331

The other dynamically allocated quantities are the arrays of edge pointers in the
Vertex structure. The arrays for the initial vertices never change size. For each added
vertex, the number of edges is always six. Because of the edge splitting, the actual edge
pointers may change during a subdivision step.

Subdivision Algorithm

Initially, and after each subdivision step, the centroid of the convex polyhedron is
computed to be used in the midpoint projection phase of the subdivision. This point
is computed as the average of the current vertices in the polyhedron. The centroid at
step s is

e=3"%

j=0

where the vertex locations are Py through i’ps_l.

A new vertex is added per edge by computing the midpoint M of the edge, then
projecting that point along the ray starting at the centroid C and passing through
M. If edge £ has _end points Po and P1, then M = (B + P,)/2. The ray is given
parametnca]ly as X(t) = C+ (M - C), where t > 0. Since both C and M are inside
the sphere, X (t) must be inside the sphere for any ! € [0, 1]. The new vertex location
occurs where the ray and sphere intersect. If7 is the parameter value at the intersection,
thenf > 1 and the squared length of X (7) is 1. This condition is a quadratic equation

M- X
[C+T(M—=C)]-[C+iM—-0C))

1
el

1

C-C+2C-(M—C)t+(M—-Cy- (M- C)y?.

il

fD=M— C, the quadratlc equation is aat?* + ayt + ap =0, where a; = D- D
=2C.D,and a=0C- C-1As argued earlier, the equation has one root larger
thanl namely,

—-a, + ‘/ai" — 4aoay

202

=

The location for the new vertex is therefore P = C + 7 D.

The total amount of memory required for the vertex, edge, and triangle arrays in
the final polyhedron is computed, and the corresponding memory is allocated. The
vertex array has v, elements, the edge array has €, elements, and the triangle array has
7, elements. The initial items are stored at the beginning of each of the arrays. For a

332

Chapter 8 Surfaces

Figure 8.21

Figure 8.22

V|Currem vertices | New venices|
0 v=1 v v+€-]

E|Current edges | New edges (edge split) | New edges (midpoint connec|)|
0 -1 € e~1 2¢ 2€+3t-1

TlCurrenl triangles (7) [New triangles (7) 'New triangles (73) [New triangles (T3)f
-1 =t 2t-1 2t 3t-1 3t 3t-2

Working set of vertices, edges, and triangles.

V2

E2 EI’
A2 T3 Al

E2 El

Vo Vi

Subdivided triangle.

single subdivision step, the working set in memory is shown in Figure 8.21. The values
v, €, and 1 are the current numbers of vertices, edges, and triangles, respectively. The
partitioning of the triangle subarray into four sections corresponds to splitting the
triangle into four pieces as shown in Figure 8.22. If the figure represents the triangle
stored at the rth location in the array, then the subtriangle T} is stored at location
t + kt for k = 1, 2, 3. The subtriangle Tj is stored at the same location as the original
triangle. This in-place storage requires careful bookkeeping to avoid overwriting old
triangle information with new information before the old information is no longer
needed for other parts of the algorithm.

As the data structures are updated, it is important to retain old vertex, edge, or
triangle information that is necessary for use at a later stage of the update. In the
pseudocode, variables vmax, emax, and tmax correspond to v, ¢, and 7, the current

8.4 Subdivision 333

number of vertices, edges, and triangles. The variables vertex, edge, and triangle
refer to the arrays V, E, and T shown in Figure 8.21. The variable centroid is the
centroid of the current polyhedron.

The first two safe operations are to add the new vertex locations and to split the
edges.

for (e = 0; e < emax; e++)
{
// generate new vertex M from edge[e]
EQ located at edgelel:
P0 = £0.vertex[0].point;
Pl = EO.vertex[0].point;
mid = (PO+P1)/2;
M located at vertex[vmax+el:
M.point = RaySpherelntersection(centroid,mid);
M.numberOftdges = 6;
M.edge = allocate 6 edge pointers;

// split edge EQ = <V0,V1> into EQ0 = <VO,M> and E1l = <V1,M>
£1 Tocated at edge[emax+e];

El.vertex[0]) = EO.vertex[1):

EQ.vertex[1] = M;

El.vertex[1l] = M;

The edge pointers for the new vertices are set later to point to the subdivided edges.
The triangle pointers for the split edges are the old ones and are updated later to point
to the subdivided triangles. Once the new vertex Jocations are known, the centroid of
the old and new vertices can be precomputed for the next subdivision pass.

An iteration can now be made over the current triangles to update various fields
in the data structures. The function VertexIndex(V) returns the index of vertex V
in the array of vertices. Similarly, Edgelndex(E) returns the index of edge E in the
array of edges, and TriangleIndex(T) returns the index of triangle T in the array
of triangles.

The code uses four indices into the triangle array: t 0 for the current triangles (then
later to represent the middle triangle in the subdivision) and t1, t2, and 3 for the
other subdivided triangles. Initially,

t0 = 0;

tl -~ tmax;
t2 = 2*tmax;
t3 = 3*tmax;

334 Chapter 8 Surfaces

In the following discussion, each displayed block of code is contained in a loop
where t0 varies from 0 to tmax - 1. All four counters are incremented each pass of the
loop. The first displayed block of code indicates the relationships that are immediately
discernable from Figure 8.22.

/! get triangles to process

Tj located at triangle[tj] for j - 0,1,2,3;

Vi = TO.vertex[i] for i = 0,1,2; // vertices

Ei = TO0.edge[i] for i = 0,1,2; // original edges

Ei' is other half of original edge formed by split:

Ai = TO.adjacent[i] for i = 0,1,2; // adjacent triangles

Mi located at vertex[vmax+EdgeIndex(Ei)] for i = 0.1,2;
/{ widpoints

// edges corresponding to connections of midpoints
Ei” located at edge[2*emax+3*tD+i] for i = 0,1,2;

/! set vertices and triangles for edges
EO”.vertex[0] = M2;
E0".vertex(1] = MO;
EO".triangle{0] = TO:
EO”.triangle[1] =~ T1:
E1".vertex[0] = MD;
E1".vertex[1] = Ml;
El1”.triangle[0] = TO:
E1”.triangle[1] = T2:
E2”.vertex[0] = M1;
E2”".vertex[1] = M2;
E2".triangle[0] = TO:
E2".triangle[1] = T3:

// set some members of triangle Tl
Tl.vertex[0] = VO;

Tl.vertex[1] = MOD;

Tl.vertex[2] = M2;

Tl.edge[0] =~ EO;

Tl.edge[1] = ED”;

Tl.edge[2] = E2';

Tl.adjacent{1] = TO:

// set some members of triangle T2
T2.vertex[0] = MD;
T2.vertex[1] = V1;
T2.vertex[2] = M1;

8.4 Subdivision 335

T2.edge[0] = EO';
T2.edgefl1] = E1;
T2.edge[2] -~ E1";
T2.adjacent[2] = T0;

// set some members of triangle T2
T3.vertex[0] = M2;

T3.vertex[1] = M1;

T3.vertex[2] =~ V2;

T3.edge[0] = E2";

T3.edge[1l] = E1';

T3.edge[2] = E2:

T3.adjacent[0] = TO;

The subdivided triangles T1, T2, and T3 have some adjacent triangles that are
themselves subdivided triangles of adjacent triangles of the original triangle T0. At
this point in the algorithm we know the index of each original adjacent triangle in the
triangle array for the polyhedron. We can use this index to locate the triangle array
elements for the subdivided triangle of the adjacent triangle. However, there is one
complication. Figure 8.22 shows a triangle in a standard configuration based on how
the vertices and edges were labeled (vertices start at lower-left corner of triangle, others
labeled in counterclockwise order). An adjacent triangle can have one of three possible
orientations in its relationship to the central triangle. The code must determine which
edge of the adjacent triangle is shared with the central triangle. This information
allows proper labeling of the adjacency relationship between subdivided triangles and
adjacent original triangles.

Figure 8.23 shows the nine cases to consider, three choices for adjacent triangle
and three orientations for that triangle. The pseudocode for handling the adjacent
triangle AQ is

/7 get the indices for the subdivided triangies of AQ
i0 = Trianglelndex(A0);

il = i0+tmax;
i2 = {l+tmax;
i3 = i2+tmax;

orient = shared ege of A0 and TO is AO.edgel[orient];
if (orient =— 0)
{
Tl.adjacent[0] is triangle(i2];
T2.adjacent[0] is trianglel[il]:
triangle[i2].adjacent[0] is T1:
triangle[ill.adjacent[0] is T2;

336 Chapter 8 Surfaces

RETR
IANAVERVAVA

Shared edge at index 1 of adjacent

R 50
M

i A
AAVA

Figure 8.23 Possible orientations of adjacent triangle with central triangle.

else if (orient = 1)

{
Tl.adjacent[0] is triangle[i3];
T2.adjacent[0] is triangle[i2];
triangle[i3].adjacent[1] is T1:
triangle[i2].adjacent[1] is T2;

}

else

{

Tl.adjacent[0] is triangle[il];
T2.adjacent[0] is triangle[i3];
triangle[il].adjacent[2] is T1;
triangle[i3].adjacent[2] is T2;

8.4 Subdivision 337

Similar blocks of code are in the source file on the CD-ROM for adjacent triangles Al
and A2.

Finally, in this loop, the edge pointers for the new vertices can be set. The real code
initializes the number of edges of each new vertex to zero as a flag. The first time a
new vertex is encountered, it is processed as a midpoint of an edge of a triangle. At this
time four of the edges sharing the vertex are known. At later pass through the loop,
the adjacent triangle is encountered that shares the edge whose midpoint generated
the new vertex. At this time the remaining two edge pointers can be set. For example:

// add edge links to midpoint vertices
if (MO.numEdges == 0)

{
// add four edges (first time edges are added for this vertex)
M0.numEdges = 4;
M0.edge[0] is T1.edge[0];
MO.edge[1] is Tl.edge[1]:
M0.edgel[2] is T2.edge[2]:
M0.edge[3] is T2.edge[0]:
}
else if (MO.numEdges — 4)
{

// add two edges (last time edges are added for this vertex)
MO.numEdges = 6;
MO.edge[4] is Tl.edge[1]:
M0.edgef5] is T2.edgef2];
}

Similar blocks of code are in the source file on the CD-ROM for new vertices M1 and M2.

A second iteration over the current triangles is made. This step requires infor-
mation produced by the first iteration over all triangles. The following blocks of
pseudocode are contained in a loop over the four triangle counters, just as before.
The initial values of the counters are

t0 - 0;

tl - tmax;
t2 2*tmax;
t3 = 3*tmax;

The first part of the loop is

// get triangles to process

Tj located at triangle[tj] for j = 0,1,2,3:

Ei = T0.edge[i] for i = 0,1,2;

Mi = vertex[vmax+Edgelndex(Ei)] for i - 0,1,2;

338 Chapter 8 Surfaces

// set vertices, edges, adjacencies for middle triangle
TO.vertex{0] is M2:

TO0.vertex{1] is MO;

TO.vertex{2] is Ml;

T0.edge(0] is Tl.edgel[l]:

T0.edge(1] is T2.edgel[2]:

T0.edgel2] is T3.edgel0]:

T0.adjacent{0] is T1;

TO.adjacent[1] is T2;

TO.adjacent(2] is T3:

The subdivided triangle edge pointers can be set at this time. For example, at T1,

Tl.edge[0].triangle{0] is TI:
Tl.edge{0].triangle{1] is Tl.adjacent[0];
Tl.edge{2].triangle(0] is T1;
Tl.edge{2].triangle{1] is Tl.adjacent{2]:

The actual code initializes the triangle pointers to zero and tests before the pointers
are set. Otherwise, each triangle pointer is written twice (simply an efficiency gain).
Similar blocks of code exist on the CD-ROM for T2 and T3.

The last step is to adjust the edge pointers of the original vertices to account for
the edge splitting. The main concern is to select the correct half edge to store a pointer
to. This can be determined by comparing the vertex pointer values of the half edges
to the testing vertex.

for (v = 0; v < vmax; v++)
{
V is vertex{v]:
for (e = 0; e < V.numEdges; e++)
{
E is V.edge{e]:
if (E.vertex[0] not equal V and E.vertex[1] not equal V)

{
// V.edge{el currently points to wrong half edge,
// switch it
V.edge[e] = edge[emax+Edgelndex(E)];

}

Figure 8.24

8.4 Subdivision 339

v

Tessellation of parameter space for a tube surface.

8.4.5 SuBDIVISION OF TUBE SURFACES

SOURCE CODE

LIBRARY

Surface

FILENAME

TubeSurface

Tessellation of a tube surface is a straightforward process. The surface is defined para-
metrically by Equation (8.2). The parameter space is [fmin fmax] % {0, 277} and can be
uniformly subdivided into triangles as shown in Figure 8.24. Let #; = tin + i (fmax ~
Imin)/n for 0 <i < n and ;= jQm)/m for 0 < j < m. The vertices participating
in the tessellation are S, J= St 6;). Since the surface is a tube, S, m= S, oforalli.
Addmonally. if the tube is requlred to be closed (that is, X(¢) is a closed curve), then
Su. j= Se /- The following pseudocode shows the generation of a connectivity list, an
array of indices into a vertex array with each set of three consecutive indices corre-
sponding to a triangle. The vertices in the parameter space tessellation are stored in
row-major order with the t = 1, row occurring first and are ordered with increas-
ing#.

tmax = maximum index on time T samples:
amax = maximum index on angle A samples;
numVertices = 2*(tmax+1)*(amax+1);
numTriangles = 2*tmax*amax;
triList[3*numTriangles]: // array of vertex indices
for (t = 0, k = 0, start = 0; t < tmax; t++)
{
jO0 = start;
jl = jo + 1;
start += amax+1;
j2 = start;
for (a = 0; a < amax; a++, jO++, jl++, j2++)
{
trilist{k++] = jO;
trilist[k++] = j2;

340 Chapter 8 Surfaces

triList[k++] = j1;
trilist[k++] = j1;
triLlist[k++] = j2;
triList[k++] = j2+1;

}

Additional work is required if relationships must be maintained between vertices,
edges, and triangles.

CHAPTER

ANIMATION OF
CHARACTERS

l n Chapter 4, the concept of animation was presented as the process of controlling
any time-varying quantity in a scene graph. The classic setting is character ani-
mation, where an articulated figure changes position and orientation over time. The
quantities to be controlied are just the focal transformations at the joints of the fig-
ure. Two standard approaches to animating a character are key frame animation and
inverse kinematics.

Key frame animation requires an artist to build a character in various poses; each
pose is called a key frame. Each key frame changes the local positions and local orien-
tations of the nodes in the hierarchy. When it comes time to animate the character, the
poses at the times between key frames are computed using interpolation. A flexible
method for interpolating the local translations uses Kochanek-Bartels splines, dis-
cussed in Section 7.3.4. The interpolation of local rotations is more complex and is
discussed in this chapter. The idea is to represent the rotations as quaternjons and
then interpolate the quaternions. The smooth interpolation of quaternions is a some-
what technical concept. The focus in this chapter is on the quaternion calculus and
interpolation concepts.

341

342 Chapter9 Animation of Characters

One potential problem with key frame animation is that the local transformations
at the nodes are interpolated in a relatively independent way. Interpolation at one node
is performed independently from interpolation at another node, which can lead to
artifacts, such as the stretching of character components that normally are considered
to be rigid. For example, the [ocal translations of a shoulder node and elbow node are
interpolated independently, but the length of the arm from shoulder to elbow should
be constant. The interpolations do not guarantee that this constraint wili be satisfied.

An alternative method for animation is to use inverse kinematics. Constraints
are placed at the various nodes—constraints such as fixed lengths between nodes
or rotations restricted to planes and/or with restricted ranges of angles. The only
interpolation that needs to occur is at those nodes with any degree of freedom. For
example, an elbow node and wrist node have a fixed length between them, and both
nodes have rotations restricted to planes with a fixed range of angles. A hand node
is attached to the wrist and has three degrees of freedom (the components of local
translation). The hand can be moved to some location in space; the wrist and elbow
must follow accordingly, but with the mentioned constraints. In this chapter, we wil
restrict our discussion of inverse kinematics to a tree of nodes.

Animating the nodes corresponding to the joints of a character is one thing, getting
the surface of the character to move properly with the joints is another. The last section
in this chapter talks about skinning—establishing a set of bones connecting the joints
and assigning the vertices of the mesh representing skin, clothing, and other quantities
to various bones for weighting purposes. As the bones move, the vertices will change
according to their weights.

Now a brief mention of what this chapter is #ot about. Nothing is discussed in
this chapter about how to actually build physically realistic animations. That topic is
quite complex and could fill a farge book by itseif. Recently, a few companies have
ventured into producing physics engines to provide for realistic motions and realistic
interactions between objects in the world. Although correct physics is a very important
topic, this chapter describes only how to process the animation data that was already
constructed by an artist through a modeling package, by motion capture, or by other
procedural means.

9.]. KEY FRAME ANIMATION

Key frame animation is effectively an interpolation of translational and rotational
information over time. Interpolation of translational information is conceptuaily easy.
Interpolation of rotational information is conceptually difficult. This section focuses
on interpolation of rotations that are represented as quaternions.

9.1.1 QUATERNION CALCULUS

The only support needed for quaternion interpolation is to differentiate unit quater-
nion functions raised to a real-valued power. These formulas are identical to those

SOURCE CODE

LIBRARY

Animation

FILENAME

Controller
KeyframeController

9.1 Key Frame Animation 343

derived in a standard calculus course, but the order of multiplication must be ob-
served. The ideas in this discussion are taken from Shoemake {(1987). The derivative
of the function g', where ¢ is a constant unit quaternion, is

d

| B |
79 =4 log(q), (9.1

where log is the function defined earlier by log(cos 8 + it sin #) = itf. The power can
be a function itself,

d .
24" = '10)g"" log(q). (9.2

9.1.2 SPHERICAL LINEAR INTERPOLATION

HOURCE CODE

LIBRARY

Core

FILENAME

Quaternion

Given two distinct points on a unit sphere in three-dimensional space, it is possible to
interpolate between them by sampling along a great arc containing the two points. In
particular, the idea may be extended to quaternions as points on the unit hypersphere
in four-dimensional space.

To construct the formula, let gq and g be distinct unit vectors on the hypersphere.
An interpolation is required of the form

gty =coll)go + c1(t)gy;, 0=<r=1,

where cp(t) and ¢y (1) are real-valued functions and where ¢ (1) is always a unit vector.
Moreover, ¢5(0) = 1, ¢;(0) =0, co(1) =0, and ¢;(1) = 1. Thus,

L=gq(1) - qt) = colt)? + 2co()er(t)(go - 41) + ey (1)?

d’ .
=[co ¢]T [‘]1 I J [:?] =c¢'Mc,

where d = qp - g1 = cos 6 and 0 is the angle between the two unit quaternions. The
matrix M is positive definite since |d| < L. It can be factored as M = R' DR, where
D = diag(1 + d, 1 — d) and R is orthogonal with first column (1, —1)/ V2 and second
column (1, 1)/v2 (see Appendix B, Section B.2). Defining 4 = v/D R, the previous
equation becomes u” u = 1. Therefore, u is a unit-length vector and can be written as
u = (cos{wt)), sin(wt)). Solving for ¢q yields

cos{wt) sin{ewt) _ sin{w? + ¥p) _ sin{wt + YY)

S 20Tdh V- d Si—&# | sing

for some phase angle . Similarly,

(&)

= sin(wt + ¥y)
1= sin#

344 Chapter9 Animation of Characters

for some phase angle y,. The boundary conditions for cg are used to obtain 1 =
sin(¥o)/ sin @ and 0 = sin(w +)/ sin 6, which are satisfied when =6 and
w = —0. Thus,

sin((1 — 1)6)

colt) =
o®) sin@

The boundary conditions for ¢, are used to obtain 0 = sin(y,)/sin 8, and | =sin(w +
Y1)/ sin @, which are satisfied when ¥y =0 and @ = 6. Thus,

sin(10)
sinf *

a(t)=

The spherical linear interpolation, abbreviated as slerp, is defined by

go sin{(1 — 1)8) + g, sin(t8)

prow (%.3)

slerp(t; g0, ¢1) =

for0<r<]l.

Although g; and —g, represent the same rotation, the values of slerp(t; ¢o, 41)
and slerp(t; go, —q1) are not the same. It is customary to choose the sign o on g, so
that go - (0¢,) = 0 (the angle between g and o g, is acute). This choice avoids extra
spinning caused by the interpolated rotations.

For unit quaternions, slerp can be written as

1
slerp(t; g0, 91) = go (qo' 'q:) , (%5.4)

in which case slerp(0; go, ¢1) = go and slerp(1; go, ¢y) = qo(qo_'(“) = ¢;. The term
45 'q1 = cos 0 + i sin 6, where @ is the angle between g and g,. The time parameter
can be introduced into the angle so that the adjustment of gg varies uniformly with
time over the great arc between ¢g and g,. That is, ¢ (#) = go[cos(t8) + u sin{t6)] =
golcos 0 + i sin 6]' = qo(gq ‘q1)'-

The derivative of slerp in the form of Equation (9.4} is a simple application of
Equation (9.1):

slerp’(£3 go» 1) = go(g; 'q1)" log(gg 'qn)- (9.5)

It is possible to add extra spins to the interpolation. Rather than interpolating the
shortest great arc between the two quaternions, it is possible to wrap around the great
circle n times before stopping at the destination quaternion. The formula in Equation
(8.3) requires addition of a phase angle to 6,

go sin{(1 — 1)(6 + 27 n) + ¢, sin(t (0 + 2mn))
sin@ ’

SlerpExtra(t; o, 1) =

9.1 Key Frame Animation 345

9.1.3 SPHERICAL CUBIC INTERPOLATION

SOGURCE CODE

LIBRARY

Core

Quaternion

The cubic interpolation of quaternions can be achieved using a method described by
Boehm (1982), which has the flavor of bilinear interpolation on a quadrilateral. The
evaluation uses an iteration of three slerps and is similar to the de Casteljau algorithm
(Farin 1990). Imagine four quaternions p, a, b, and g as the ordered vertices of a
quadrilateral lying on the unit hypersphere. Interpolate ¢ along the great circle arc
from p to ¢ using slerp. Interpolate d along the great circle arc from a to b. Now
interpolate the interpolations ¢ and d to get the final result e. The end result is denoted
squad and is given by

squad(t; p, a, b, q) = slerp(2t(1 — 1); slexp(t; p,), slerp(t; a, b)). (9.6)

The derivative of squad in Equation (9.6} is computed as follows. Let u(t) =
co(t)p + ¢1{t)g, v(t) = co(t)a + ¢ 1(t)b, and S(¢) = squad(t; p,a, b, q) = cof2t (1 —
() + e 2t (1 — 1))v(?). The derivative is

S'(t) = co(2t (F ~ 1))’ (1) + cp(2t (1 — 1))(2 — 4t)ult) +
12t (Y — V(1) + 1 2r {1 = 1))(2 — 4n)vl2).

Evaluating at ¢ = 0 yields

5'(0) = co(0)u'(0) + 2¢)(0)u(0) + c1(0)V'(0) + 2¢1(0)2(0)
= u’(0) + 2[c;(0)u(0) + ¢} (0)v(0)]

= plog(p~'q) + 2p log(p~'a).
Similarly,

5'(1) = co(0)u'(1) = 2c5(0)u(1) + €1 (0)'(1) — 2¢1(0)w(1)
=u'(1) = 2[ch0)u(1) + c(0)v(1)]

=qlog(p~'q) — 2q log(q™'H).

The derivatives of squad at the end points are

squad'(0; p, a, b, q) = pllog(p~'q) + 2 log(p~'a)]
squad'(1; p, a, b, q) = qllog(p~"'q) — 2log(g~'b)]. (9.7)

346 Chapter 9 Animation of Characters

9.1.4 SPLINE INTERPOLATION OF QUATERNIONS

SOURCE CODE

LIBRARY

Core

FILENAME

Quaternion

Given a sequence of N unit quaternions [q,,},’,v='ol, a spline is built that interpolates

those quaternions subject to the conditions that the spline pass through the control
points and that the derivatives are continuous. The idea is to choose intermediate
quaternions a, and b, to allow control of the derivatives at the end points of the
spline segments. More precisely, let S,(t) = squad(t; gn, @n» Pn+1» gnt1) be the spline
segments. By the definition of squad it is easy to show that

Sn=1(1) =qn = Sp(0).

To obtain continuous derivatives at the end points, the derivatives of two consecutive
spline segments must be matched,

Sp_1 (1) = 5;(0).

It can be shown from Equation (9.7) that

S, _1(1) = gullog(g;,gn) — 2 log(q; ' ba)]

and

52(0) = 4ullog(g; 'gn+1) + 2 log(g, "an))-

The derivative continuity equation provides one equation in the two unknowns a,
and by, so there is one degree of freedom. As suggested in Shoemake (1987), a good

choice for the derivative at the control point uses an average T, of “tangents,” so
Sp_1(1) = qaT, = 5,,(0), where

log(g; 'gn+1) + log(q; " 1gn)

1;I= 2

(9.8)

There are now two equations to determine a, and b,,. Some algebra will show that

(9.9)

ty = by = gy exp (_ log(g'gn+1) : log(g, 'q,.-n)) :
Thus, S, (f) = squad(t; ¢, @n> An+1> Gny1)-

To illustrate the cubic nature of the interpolation, consider a sequence of quater-
nions whose general term is ¢, = exp(i6,). This is a sequence of complex numbers
whose products do commute and for which the usual properties of exponents and
logarithms do apply. The intermediate terms are a,, = exp(—i(6p 41 — 66, + 6,-1)/4).
Also,

slerp(t, qus @n+1) = exp(i (1 —)6, + t6441))

9.1 Key Frame Animation 347

and
slerp(t, an, an+1) = exp(—i ((1 — 1)(On+1 — 66 + On—1) + 1 (Bp42 — 60n1 +6,))/4).
Finally,
squad(t, gn» ns np1y Gns1) = exp([1 — 20(1 — D] [(1 —)8, + 16,41]
—[2t(1 = 1) /4][(1 — 1)(Bpr — 68 + 6,—1)
+ t(6n+2 = 6041 + 6)]).

The angular cubic interpolation is
1,] 2
()= —3! (1=~1)6n42+ 51(2 +2(1 = 1) = 3(1 = 1)")bn1

1 1 ,
+ 5(1 — 1242t — 3126, — 5xu = 1)%0p-,.

It can be shown that ¢ (0) = 6,,, ¢(1) = 6,41, §'(0) = Bng1 — On-1)/2, and¢'(1) =
{(6n+2 — 0,) /2. The derivatives at the end points are centralized differences, the average
of left and right derivatives as expected.

9.1.5 UPDATING A KEY FRAME NODE

SOURCE CODE

LIBRARY

Animation

FILENAME

KeyframeController

A node to be used for key framing has a local translation and local rotation, just like
any other node in the system. The transformations are procedurally updated using
a key frame controller. The controller is a straightforward implementation of linear
interpolation or Kochanek-Bartels splines for the translations and slerp or squad for
the rotations. A key frame node also stores the sequences of keys. Note that it is not
a requirement that the number of position keys and number of orientation keys be
the same. Each key frame keeps track of the time at which it is valid. The pseudocode
for the key frame controller update is given below. Recall from Chapter 4 the update
mechanism for class Spatial. A check was made for the existence of a controller
that manages transforms. The update method of that controller is called before the
calculation of world transforms.

void KeyFrameController::Update (float time)

{
InterpolateTranslation(time,localTranslate);
InterpolateRotation(time,localRotate):

)

Each interpolation routine takes the specified time and finds the two keys whose
time bound it. These keys are then interpolated according to the methods mentioned
earlier.

348 Chapter 9 Animation of Characters

9.2 INVERSE KINEMATICS

S0URCE CODE

LIBRARY

Animation

FILENAME

Controller
{KControlfer

Kinematics is the study of motion without considerations of mass or forces. We will
illustrate the ideas first in two dimensions. Given a planar polyline consisting of a
sequence of line segments (or bones, so to speak), with each segment starting at B,
having unit-length direction U;, and length L; for 0 < { < n, and with the last segment
terminating at P,, the forward kinematics problem is to compute P, in terms of the
known direction vectors and lengths. The structure is called a manipulator, and the
final point is called an end effector. Figure 9.1 illustrates the general setting, The final
point of each segment is related to its starting point by P, = P +L;Uifor0<i <n.
Summing over all i and canceling the common terms leads to the end effector formula

n—1

+ZLU

Each direction vector can be viewed as an incremental rotation of the previous direc-
tion,

o (efe) ~(27)

The angles 6; are called the joinz angles of the manipulator. Using notation 6 =
By, . . ., 6,-1), the end effector can be written as a function

n—1 i i
PG)y=P+) L (cos (Z e,-) , sin (Z e,-)) . (9.10)
i=0 j=0 j=0

The inverse kinematics problem is to select the position ¢ G for the end effector
and determine joint angles 6 so that P,(6) = G. The point G is called the goal and
might not always be attainable. This is definitely the case when the distance of the
goal to the initial point of the manipulator is larger than the sum of the lengths of
the segments. Even if the goal is attainable, there may be multiple solutions. Thus, the
inverse problem is generally ill-posed.

Obtaining a closed-form representation of the joint angles in terms of G, Py, and
the L; is a hard problem. To show the complexity, consider the case of two segments.
The equatlon to be inverted is G = Po + LOUO + L,U;, where Uo = (cos Gy, sin Bp)
and U, = (cos(fp + 61), sin(@p + 6)). Define (a, b)* = (—b, a). Using the double

Figure 9.1

9.2 Inverse Kinematics 349

A general linearly linked manipulator.

angle identities from trigonometry, (7, = (cos 6,)(70 + (sin 6;)(76". The equation to
be solved is therefore

G= f’o +(Lg+ L, cos B;)ﬁo + (L sin 9;)(76" = i’o +Ro‘7h

where Ry = [(70 | (76L] is a rotation matrix and V, = (L¢ + L, cos 8y, L, sin 6,).

Note that G - i’o = Ro\7,, so ..the differ-
ence between the goal and the initial point is just a rotation of V;. Since rotation
preserves length,

(G — Pol? = (VP = L3+ L} + 2LoL, cos By,
in which case

|G — Byl2 - L2 — L2
2LoL,

cos @ =

There are two possible choices for the sine, sin #, = +/1 — cos? 8. The other angle
is determined by

Vil cos8o=V; - ReVi = V; - (G — By)
and
[Vil*sin By = Vi* - RoVy = Vit - (G - Py).

Aslongas |G — Py| < Lo + L, there are two solutions, as indicated by the sign choice
for sin 8. This is clear geometrically since one manipulator configuration is obtained
from the other by reflection through the line containing the initial point and goal.
The inverse kinematics problem can be complicated even more so by allowing
quite a few variations. The example above was two-dimensional. The real problems
are three-dimensional. Each joint has six degrees of freedom, three for position and

350 Chapter9 Animation of Characters

three for orientation. The degrees of freedom can be additionally constrained within
their parameter space. The typical constraints are to restrict rotation about a single
axis, in which case the joint is called a revolute joint, and/or to restrict translation
along the direction of the previous segment, in which case the joint is called a pris-
matic joint. Moreover, within the restrictions the parameters might themselves be
constrained. At a revolute joint, the angle of rotation might be limited to a subset
of [0, 2]. At a prismatic joint, the translation might be constrained to be a small
interval [—e, €]. Finally, manipulators can be trees of segments rather than [ists of
segments. The leaves of the trees represent the end effectors, so there are multiple
goals that can be specified. Some attempt must be made to simultaneously satisfy the
goals, or at least to get close to the goals. Yet another variation is to specify goals that
are lines or planes. The end effector is considered to be in its best position when the
distance from the end effector to the goal is minimized. At any rate, closed-form solu-
tions are usually not possible—or even desirable—because they involve evaluation of
trigonometric functions. Numerical methods are a better choice for attempting to find
solutions.

One of the best discussions for inverse kinematics is Welman (1993). Landers
(1998b) provides a well-written summary of the topic.

9.2.1 NUMERICAL SOLUTION BY JACOBIAN METHODS

Considera manipulator that isa polyline with a single end, effector. Let the end effector
be written as P = F(6), a function of the joint angles 6. The derivative of the end
effector position with respect to each joint parameter 6; can be used to determine an
incremental step in joint space that will (hopefully) move the end effector closer to
the goal. If the position of the end effector is thought of as moving, hence a function
of time ¢, the derivatives are

dP - dé
o =P

where DF is the Jacobian of F, the matrix of first-order partial derivatives,

DF = [ﬁ] ;
a;
where F; is the ith component of F and 6; is the jth component of 8. The time
derivative equation relates the end effector velocity to the joint velocities.
If G is the goal and if d P /d1 is replaced by G- P G- F(G) as an approxi-
mation, then the numerical method is to use G — F(6) = DF (§)d6/d1 to update 6

from its current value. The Jacobian matrix is (usually) not square, so its inverse is
not defined. However, given a nonsquare matrix M, its pseudoinverse is defined to be

9.2 Inverse Kinematics 351

M* =MT(MMT)~!, where M*M = I, the identity matrix. Applying the pseudo-
inverse of the Jacobian yields

dé . -

— = DF*(@XG — F(6)).

dt

Given a current value of 8, this equation allows an update by usinga forward difference
operator to approximate the time derivative of the joint angles. The scheme is applied
iteratively until some stopping criterion is met.

This approach is not always the best one since computing the pseudoinverse is
expensive (a square matrix inverse is required). Moreover, sometimes the Jacobian
is singular on its domain or is ill-conditioned, so numerical problems arise in the
inversion. A different approach is to avoid the inversion and apply the transpose of
the Jacobian to obtain

de
dr’

- ~rdP
T=DFT—
dt

= (PF'DF) =
The value ¥ measures the amount of torque at the joints induced by a force d P/dr.
If the torque is computed for the current joint angles and using G — F (@) instead
of d P /d1, the unknown vector is ¥ = d@ /d1. The displayed equation is of the form
AX=b and might not always have a solution. However, minimization methods
can be applied to £(%) = |A¥ — b|? to obtain a solution ¥. Again using a forward
difference approximation, this allows an update of the current joint angles. (For more
on Jacobian methods, see Das, Slotine, and Sheridan 1988; Novakovi¢ and Nemec
1990; Sciavicco and Siciliano 1987.)

9.2.2 NUMERICAL SOLUTION BY NONLINEAR OPTIMIZATION

This is a general approach that can take advantage of already existing algorithms for
optimization, The idea is to minimize the squared error E 8) = IG F («9)|2 with
respect to 8. While the goal indicator here is a point, the same type of error function
applies for goals that are lines or planes. Secondary goals are easily incorporated into
the error function. The results using general optimization are generally good, but the
algorithm tends to be expensive. (For more on nonlinear optimization methods, see
Phillips, Zhao, and Badler 1990; Zhao and Badler 1994.)

9.2.3 NUMERICAL SOLUTION BY CYCLIC COORDINATE DESCENT

The cyclic coordinate descent approach was introduced in Wang and Chen (1991). The
idea is conceptually simple, and the algorithm is fast. The joints of the manipulator

352 Chapter 9 Animation of Characters

are optimized one at a time, and several passes are made over the manipulator to
(hopefully) arrive at the global minimum of | P — F(8)|. As with most minimization
schemes, local minima can attract the iterates. In terms of manipulators, this can
happen if the polyline has a kink in it that cannot be undone by successive iterations.
For the purposes of animation, secondary goals or restrictions on joint angles can be
added to avoid such behavior.

List Manipulator with One End Effector

Consider a list manipulator with initial point 7 and lengths L; for 0 <i < n. The
update at a single joint is discussed for goals that are points, lines, or planes. The joint
can be revolute or prismatic.

Rotate to Point

Let the goal be G. If the rotation is unconstrained, then the end effector position Eis
chosen so that it lies on the line containing 1 and G. Thepositionis E=1 + (G — 1),
wherer =(G —1)-(E - 1)/|G — |~

If the rotation is constrained to the plane N. X - i) =0, where N is unit length,
then the end effector position is chosen so that it lies on the line containing I and the
projection of G onto the plane. The previous case applies using the projection. The
projectionis # =G — [N - (G — D)]N.

Rotate to Line

Let the goal be G(s) = Go + sé. for s € R and where |61| = 1. If the rotation is
unconstrained, there are two cases to consider. The closest point on the lineto / is

.7 = 60 - [61 . (60 - i)lél

and the distance from 7 to the line is D =|J = 1|. If D> |E — 1|, then the end
effector is chosen so that it lies on the line_containing 1 and J. The position is
E=1+1t(J—1),wherer=(J = 1)-(E — J)/|J — 12.1f D < |E — 1|, then there
are two solutions that lie on the line itself, 7 + RG . The quantity R is determined
from the Pythagorean theorem applied to the right triangle containing vertices T and
J and having hypotenuse |E — f|. Thus, R? = |[E — | — |7 — 1|2 In an iterative
scheme, the end effector will be updated to the nearest of the two points.

If the rotation is constrained to the plane N - (X — T) =0, where N is unit length,
then the line is projected onto that plane and the previous case applies using the
pro;ected line. The pmJected line is Hop + s H,, where Ho =Go— [N (Go - l)]N
and Hl Gl—(N Gl)N

9.2 Inverse Kinematics 353

Rotate to Plane

Let the goal be M - X = ¢, where M is unit length, If the rotation is unconstrained,
then there are two cases to consider. The closest point on the plane to I is

J=i-M.T-oM

and the distance from 7 to the plane is D=/ — I{={M -] —c|. If D > |E - T,
then the end effector s chosen so that it lies on the line containing 1 and J The
positionis E =1 + t(J —), wheret =(F = T) - (E = J)/|] = 1|21 D < |E - 1|,
then there are infinitely many solutions that lie on a circle in the goal plane that is
centered at J and has s radius R. The radius is determined in a way similar to when the
goal is a line, R2 = |E — 7|2 — |J — T/2 In an iterative scheme, the end effector will
be updated to the nearest of the circle points. Finding the nearest point on a circle in
three dimensions was discussed in Section 2.6.11. .

Let the rotation be constrained to the plane N - (X — 1) =0, where N is unit
length. If N and M are parallel, then the circle of poss1ble end effector positions
is parallel to the goal plane, in which case no motion is necessary. If the two plane
normals are not parallel then the circle of positions is F ©)=1+ (cosO)(E — 1) +
(sin 0)N x (E 1)> where E is the current end effector position. The signed distance
from any circle point to the plane is

s(O)=M-F(@)—c=(M-T—c)+ ppcos6 + p; sin 6,

where ug = M. (E DHandp, = M-N x (E 1) Inthe case under consideration,
the circle is not parallel to the plane, so ,uo + 42 =|M — (M - N)NJ? #0. The range
of 5(8) is [Smins Smax), Where Smin =M - 1 — ¢ — ”'o + u? and Smax = M-T—c+
v+l

If 0 € [Smins Smax] then the circle intersects the goal plane for two values of 0.
Deﬁnek c—M-. I,xo = co0s 0, x; = sin 0, and set s (#) = Oto obtain u,oxo + ulxl
A and x3 + x? = 1. These form a polynomial system, one linear and one quadratic

equation, that can be solved by resultants (see Appendix B). The resultant is r(xp) =
(13 + pud)x — 2Apoxo + A% — u? = 0. The solutions are

Mo £ iy pud + uf ~ 22

s+ i

cosf@ =

If 0 & [Smin» Smax], then observe @y cos 6 + py sin 6 = \/u3 + p? cos(6 — ¢),
where tan ¢ =)/ to. If Smin > 0, then the closest point occurs when 6 — ¢ = 7.
If smax < 0, then the closest point occurs when 6 — ¢ = 0.

354 Chapter9 Animation of Characters

Slide to Point

Sliding refers to the linear motion of an end point of a segment in the manipulator.
If 7 is the initial point of a segment and the direction of the segment is the unit-
length vector ¥, unconstrained motion allows the final point to be F =7 + tU
for 1 € [0, 00). Constrained motion requires 7 € [Imin, fmax], Where the interval is
application-specific. The path traveled by the end effector position relative to the
sliding motion is E + 1U for 1 in the appropriate interval.

_ Let the goal be G.The projection onto the ray containing E with direction U is
H=E+TU,whereT=0U . (G E) If the sliding is unconstrained, then the end
effector position E is updated to F = E+ max{0, T)U.If the sliding is constrained,
then the end effector position is updated to F=E+ clamp(T, tmins fmax)» where

Imax» T > I'max
clamp{T, tminy Imax} =1 T, T € [tmins Imax] -
Imin» T <Imin

Slide to Line

Let the goal be G(s) = Go+ sG, for s € R and where |&1| = 1. If the goal line is
parallel to the direction of sliding, U x G, =0, then no updating of E is necessary.
Otherwise, the {ines are not parallel and the closest point on the ray containing E with
directionU is H = E + T(7, where T > 0 (see Section 2.6.2). The update of Einthe
previous subsection on sliding to a point can now be applied using H.

Slide to Plane

Let the goal be M - X = ¢, where M is unit length. If the goal plane is parallel to the
direction of sliding, M - U =0, then no 0 updating of Eis necessary. Otherwise, let
on the ray containing E with direction U be the closest point to the plane. The update
of E is the same as for that shown in sliding to a point.

List Manipulator with Multiple End Effectors

Consider the example of a two-segment manipulator whose initial point corresponds
to a shoulder, whose midpoint corresponds to an elbow, and whose final point cor-
responds to a hand. If a point goal is specified for the hand end effector, it is possible
that obtaining the goal requires bending the elbow joint in an unnatural way. The
algorithm for rotation to a point described earlier could be modified to include a re-
striction on the angles for the elbow to prevent the unnatural bending. Alternatively,
the elbow itself can be tagged as an end effector, and a secondary goal can be specified
that affects the elbow location.

Plate |

The images are screen shots from
the Surface Sample, courtesy of
Numerical Design, Ltd. The top
image is a rendering of a creature
built as a mesh of Bézier triangle
and rectangle patches. The tesscl-
lation is based on uniform sam-
pling in parameter space. The
bottom image is a wireframe
view to show that the tessellation
is independen of the mesh cur-
vature.

The images are screen shots from
the Surface Sample, courtesy of
Numerical Design, Ltd. The top
image is a rendering of a creature
built as a mesh of Bézier triangle
and rectangle patches. The tessel-
lation is based on a continuous
level of detail algorithm that
depends on mesh curvature and
view frustum parameters. The
boitom image is a wireframe
view to show that the tessellation
1s dependent on the mesh curva-
ture {low tessellation in flat
regions, high tesscllation in
curved regions).

" v

Plate 3 The images are screen shots from the Dancer Demo, courtesy of Numerical Design, 1.td.
See page 357 for detailed comments.

Plate 4 The images are screen shots from the Eclipse Demo, courtesy of Random Games. See
page 358 for detailed comments.

Plate 5 The images are screen shots from the Terrain Flyer Demo, courtesy of Numerical Design,
Ltd. See page 392 for detailed comments.

Plate 6 The images are screen shots from the Priority 12 Demo, courtesy of Numerical Design,
Ltd. The images are taken at two separate times and show how the direction of the flare
changes. The flare was generated by using five alpha-blended grayscale textures.

The words “EMBOSSED TEXT” were generated as white letters on a black background.
To generate a derivative-style bump map, the directional derivative of the white-on-black
image was computed in the direction (2,1) and added back to the original image, a
process called image sharpening. The values of the sharpened image were used to control
the color that was applied to the text.

The image is a screen shot from the Explosion Demo, courtesy of Numerical Design, Ltd.
The volumetric fog layer is generated by the intersections of rays from the eye point to
terrain vertices with a slab of finite thickness but infinite extent.

Plate 9 The image is a screen shot from the Advanced Multitexture Sample, courtesy of Numeri:
cal Design, Ltd. See page 432 for detailed comments.

Plate 10 The image is a screen shot from the Eclipse Demo, courlesy of Random Games. See page
433 for detailed comments.

Plate 11 The images are screen shots from the Eclipse Demo, courtesy of Random Games. See
page 433 for detailed comments.

Plate 12

The images show various time samples of a morphed face. The data set consists of five
targets, each having [330 vertices, leading to 1330 sets of five vertices. At a selected time
each set of vertices is blended using a set of convex weights to generate an output vertex
for that time. Initially, the first few targets have the most weight in the morph. Later, the
last few targets have the most weight.

9.2 Inverse Kinematics 355

Let S be the shoulder location, E be the elbow location, and H be the hand
location. Let G i be the goal for the hand and let G £ be the goal for the elbow. Consider
adjusting the joint angles at the shoulder. If only the hand goal is required, the rotate
to point algorithm minimized the distance from H to G . To handle multiple end
effectors, the minimization algorithm applies to a weighted sum of squared distances,
D =wy|H — Gy|* + wg|E — G g |?, where the weights are application-specific. The
number of independent parameters for D depends on whether or not the shoulder
joint is unconstrained.

To illustrate how the minimization applies, consider a constrained rotation with
the plane N - (X — §) = 0. The circle spanned by H is

h(8) = § + (cos 6)(H — 5) + (sin)N x (H - 5),
and the circle spanned by E is
20) =S + (cos H)(E — 5) + (sin AN x (E —).
The weighted distance as a function of the single joint angle is
D®) = walh(©®) — Gul* + welé©®) - Gel”
The minimum occurs when the derivative is zero,
D'®) = wu(h(8) — Gu) - K19) + wp@®) — Gg) - €(6) =
If xg = cos § and x1 = sin 8, the equation D'(#) = 0 is clearly a quadratic polynomial
in xp and x;. Moreover, .xg +.x,2 =], another quadratic polynomial. The common
solutions can be obtained by computing the resultant polynomial (see Appendix B)
in xg, a quartic polynomial. This can be solved by using closed-form equations or by
using iterative polynomial root finders.

Similar algorithms can be developed for line or plane goals and for sliding joints.
Tree Manipulator
The situation can be even more complicated. The manipulator can be a tree of line
segments. The leaf nodes are typically end effectors, with each leaf having a primary
goal. Interior nodes can also be tagged as end effectors with secondary goals. The
method of solution is similar to that of list manipulators with multiple end effectors.

Other Variations

Manipulator joints can have their parameters restricted (limited rotation or sliding).
The algorithms mentioned earlier must be modified to support this. A joint can be set

356 Chapter9 Animation of Characters

up to be springlike so that it tends to move toward a specified resting point. A joint
can be damped to resist motion, either in a constant fashion or in a limiting fashion
where the damping increases with the number of iterations of the joint optimizers.

The implementation must also decide on the order of processing joints, A general
implementation will allow the application to select the order. For a list the two basic
orderings are initial joint to final joint or final joint to initial joint. For a tree the basic
orderings are depth-first traversal, breadth-first traversal, or iteration over the leaves
and a traversal from each leaf to the root.

Finally, it is possible to specify that a joint cannot change. The initial point of the
manipulator always has this property. If an interior joint of a list is tacked down, then
the two sublists are in effect separate manipulators, but the first one that connects the
two tacked-down joints does not change. Thus, the interior joint acts as the initial
point for a smaller manipulator.

9.3 SKINNING

S 0OURCE CODE

LIBRARY

Animation

FILENAME

Controller
SkinControlier

Skinning is the process of attaching a deformable mesh to a skeletal structure for
animation purposes. The skeleton consists of a hierarchy of bones. The skin consists
of a mesh of vertices, each vertex assigned to one or more bones so that those bones
influence how the vertex is moved whenever the bones are moved. The end result is
a deformable mesh that changes in a way natural to the underlying skeleton. (For an
easy-to-read article on skinning, see Landers 1998.)

Although these ideas have emerged only recently in games, they have been around
for quite some time in graphics and in image analysis. In particular, the idea of a
skeletal structure to represent a solid shape is what medial axes (Blum and Nagel
1978) and medial surfaces (Nackman 1982) are about. For a tubular object in three
dimensions, the medial axis provides a central curve through the object, and each
point on the curve stores a radius to the tube boundary. In effect, the boundary (or
skin) is determined by the central curve and radius information, thus providing a
compact representation of the object. If the central curve is instead thought of as
containing cross-sectional information, then nontubular objects can be generated
without a need for medial surfaces. For example, a forearm can be represented as
a central curve with cross sections given by ellipses. Skins in a2 game environment are
usually built by artists with some GUI that allows one to create vertices and bones and
to attach the vertices to relevant bones with user-selected weights. It might be possible
instead to procedurally generate skins using the ideas of medial axes that store cross-
sectional information. Such a representation would clearly be useful on a machine
with a small amount of memory but a lot of processing power (the next-generation
game consoles, for example). The skins themselves could be generated and tessellated
on the fly from only the medial axis and its stored information, much like what was
shown in Section 8.4.5.

The hierarchical organization suggested in Chapter 4 easily supports a skin-and-
bones system. Each node in the scene graph can represent the bone itself, so bones are

9.3 Skinning 357

objects in the Node class. The vertices of the mesh can be stored as a triangle mesh of
type TriMesh that is derived from the Geomet ry class so that the skin can be attached
as a leaf node in the scene graph and rendered when necessary. Each bone maintains
a list of vertices that it influences. Moreover, for each vertex the bone stores its local
offset to the vertex and the weight of the vertex relative to the bone. Since the vertices
of the skin are calculated from the bones, it is essential in the scene graph that the
bone tree occur before the skin mesh in the depth-first traversal UpdateGS that was
described in Chapter 4. Moreover, the skin and bones must be in the same coordinate
system, so it is natural to create a common parent node whose first child is the root
of the bone tree and whose second child is the skin mesh. The calculation of the final
skin vertex positions can be performed by a controller, SkinController, that keeps
a reference to the bone tree and manages the skin mesh.
The natural progression of events is

1. Move the bones by changing their local transforms.

2. Update the scene graph to propagate transforms down the hierarchy. The bones
are updated first and have the correct world transforms. The skin mesh is visited
next.

3. When the skin mesh is visited in the update, the skin controller attached to the
mesh updates the vertex locations. The list of bones are iterated. For each bone
the vertices are incrementally updated by the offset from the bone and using the
appropriate weight.

4. Pass the updated mesh to the renderer for drawing,

Take note that the values are already in world coordinates. The base class Spatial
whose update implicitly called the skin controller’s update is already set up, as de-
scribed in Chapter 4, to ignore computing the world transforms. To support this the
controller class Update routine can return a Boolean flag indicating whether or not
it calculated the world transforms for the data.

Plate 3 shows an animated character formed from skin and bones. The data
itself was obtained by motion capture, and sequences of key frames were generated
for the bones. The dancer consists of an animated skin-and-bones system with skin
containing 18,000 triangles. The images in thetop row show a number of special effects
and features.

1. The reflection of the legs is generated by duplicating only the leg geometry of the
dancer, reflecting it through the plane of the floor, and drawing both dancer and
reflected legs. The floor is necessarily transparent and the background color is
black.

2. The wall backdrop consists of planar geometry with the first texture in the second
row as the base texture. The second texture in the second row is applied as a dark
map in the muftitexturing system to get the color tint.

358 Chapter9 Animation of Characters

3. The disco ball is a tessellated sphere with base texture given by the third texture
in the second row. The fourth texture in the second row is applied as an environ-
ment map in the multitexturing system. The environment map was generated by
capturing a rendered image of only the dance floor and walls, then distorted so
that the application of the environment map is spherical.

4. Thedisco ballis rotating at a slow rate. The light dots on the walls and floor are gen-
erated by a projected light system using parallel projection. The dots themselves
rotate at the same rate as the disco ball.

5. The dancer’s dress has an environment map applied, the first texture in the third
row. The idea is to make it appear as if there are quite a few lights nearby and gives
the dress the metallic appearance.

6. The floor consists of tiles with the second texture in the third row. The floor has
transparency so that the legs can be reflected. Also, the floor vertices have assigned
vertex colors that change over time so that the tiles appear to be floor lights that
dynamically change color.

7. The third texture in the third row is used for particles that simulate the smoke on
the dance floor. The particles also use vertex colors that correspond to the floor
colors, thus giving the smoke a colored tint that dynamically changes.

8. The laser beams are alpha-blended billboards that use the last texture in the Jast
row and use vertex colors. The laser beams are also moving as the dancer moves.
Thebeams are reflected in the floor using the same technique as the dancer’s legs—
duplicated and reflected geometry.

Plate 4 shows two animal characters, a squirrel and a bird, both of which are skin-
and-bones based with key-framed bones. The top image is of the Norlina character
(shown on the front cover of the book). The fire is a billboard with a texture sequence
to animate the flame. The squirrel is a skin-and-bones animated animal. The trees
consist of multiple crossing alpha-blended polygons. The shadows are secondary
textures that were prerendered and applied as a decal texture in the multitexturing
system. Some of the tree polygons have vertex normals and are dynamically lit tomatch
the flickering of the fire. The middle image shows more trees, a bridge, and a skin-and-
bones animated bird. The water appears to be flowing based on animation of texture
coordinates. The water is alpha-blended so that you can partly see the riverbed. The
bottom image is of the same hut (more recent data set) and has smoke spewing from
the chimney. The smoke is moving.

GEOMETRIC LEVEL OF
DETAIL

he rendering of a detailed and complex model that consists of thousands of

triangles looks quite good when the model is near the eye point. The time it takes
to render the large number of triangles is well worth the gain in visual quality. However,
when the same model is far from the eye point, the detail provided by thousands of
triangles is not that noticeable because the screen space coverage of the rendered model
might only be a handful of pixels. In this situation, the trade-off in time versus visual
quality is not worth it. If the final rendering covers only a handful of pixels, the number
of triangles processed should be proportional. This chapter introduces the concept of
level of detail (LOD). The amount of work done by the renderer per model per pixel
should be as independent as possible of the number of triangles that make np the
model.

Although rendering time and potential loss of visual quality factor into decisions
about level of detail, geometric level of detail can also be important for nonvisual
aspects of the game engine, most notably in collision detection. A character in the
game might consist of some 10,000 triangles so that the rendered version is visually

359

360 Chapter 10 Geometric Level of Detail

appealing. If that character is to interact with his environment for purposes of colli-
sion, it would be quite expensive to process most (or all) of the 10,000 triangles in an
intersection test with a wall of a room. An alternative is t3 provide one or more coarse
resolution representations of the character to be used by the collision system. The idea
is that the coarse-level representation allows for sufficient accuracy and speed in the
collision system but is not detailed enough for visual purposes. The automatic gener-
ation of levels of detail in many of the current algorithms allows us to create the coarse
resolution representations for collision detection purposes.

The chapter is by no means a detailed description of all the various ideas and
algorithms that have been developed over the past few years. It is intended to give you
a flavor of the concepts that any game program must handle when incorporating level
of detail. The simplest form of level of detail involves two-dimensional representations
of three-dimensional objects, called sprites or billboards, and is discussed in Section
10.1. Switching between models of varying degrees of resolution, a process called
discrete level of detail, is a step up in quality from two-dimensional representations.
The switching is usually associated with distance from eye point to object. Section 10.2
covers the basic concepts for this topic. Currently the most popular form of geometric
control for visual quality, continuous level of detail, is discussed in Section 10.3.
Although a single continuous level-of-detail algorithm is explained in that section,
the ideas apply to other continuous level-of-detail algorithms that both researchers
and games programmers use, Most notable are the automatic generation of the levels
of detail from a single high-resolution model and the automatic switching between
levels at run time.

].O.]. SPRITES AND BILLBOARDS

S0OURCE CODE

LLIBRARY

Detall

FILENAME

BillboardNode

The simple form of level of detail uses sprites, sometimes called impostors. These are
prerendered images of three-dimensional objects. The idea is that the time it takes to
draw the image as a texture is much less than the time to render the object. In a three-
dimensional environment, sprites are useful for software rendering simply because of
the reduction in the time to draw. However, sprites are usually easy to spot in a ren-
dering if they represent objects that are close to the eye point or if the eye point moves.
The image gives the impression that the object is not changing correctly with eye point
location or orientation. The visual anomaly due to closeness to eye point is softened
if sprites are only used for distant objects, for example, trees drawn in the distance.

The visual anomaly associated with a moving eye point can be rectified in two
ways. The first way is to have a set of prerendered images of the object calculated
from a set of predefined eye points and orientations. During application execution, a
function is used to select the appropriate image to draw based on the current location
of the eye point. The second way is to allow a single prerendered image to change
orientation depending on eye point location and orientation. 1n this setting the sprite
is called a billboard.

Billboards can change orientation based on a few schemes. All calculations are as-
sumed to be in the model space of the billboard. During application execution, the eye

10.2 Discrete Level of Detail 361

point and orientation vectors are transformed from world space to the model space
of the billboard, and the billboard’s new alignment is calculated. The basic billboard
consists of a rectangle (two triangles) and a textured image. A coordinate system is
assigned to the billboard; the origin is the center point of the rectangle, the edge di-
rections are two coordinate axes, and the normal to the plane of the rectangle is the
third coordinate axis. A billboard can be screen aligned. The billboard is first rotated
so that its normal vector is aligned with the view direction, Within this new plane the
billboard is rotated so that its model space up vector is aligned with the view up vector.
Screen alignment is good for isotropic textures such as smoke clouds. If the texture is
anisotropic, for example, a tree texture, then screen alignment does not make sense
in the case when the viewer rotates about the current view direction. The tree should
remain upright even though the viewer is tilting his or her head. For these types of
billboards, axial aligrment is used. The billboard is allowed to rotate only about its
model space up vector. For a given eye point, the billboard is rotated so its normal vec-
tor is aligned with the vector from the eye point to its projection onto the up axis of the
billboard.

Note that the alignment of a billboard relative to an eye point requires identifying
a coordinate frame for the billboard and changing its coordinate frame with respect
to the eye point’s coordinate frame. The idea of alignment can therefore be extended
to a fully three-dimensional object as long as a coordinate frame is assigned to that
object. In this sense, a billboard class can be defined for a special type of node in a scene
graph, and the children of that node can be atbitrary abjects, not just flat polygons
and images.

102 DISCRETE LEVEL OF DETAIL

RCE CODE

LIBRARY

Detail

FILENAME

SwitchNode
DLOONode

The simplest LOD solution is to construct a sequence of models whose triangle count
diminishes over the sequence. The sequence is assigned a center point that is used as
a representative of the centers for all the models. The model with the largest number
of triangles is drawn when the LOD center for that model is close to the camera. As
the center point moves farther away from the camera, at some preselected distance
the current model is replaced by the next model in the sequence. To support this, the
hierarchical scene graph has a node type designated as a switch node. This type node
provides an interface that allows the application to select which child of the node
should be processed in any recursive traversals of the scene graph. Only one child may
be active at a time. The scene graph can then support specialized switch nodes, one of
those being an LOD nrode. The children of an LOD node are the models in the sequence.
The node itself maintains the center point. During a rendering pass when the LOD
node is visited, its prerender function computes the distance from the center point to
the eye point and sets the appropriate active child to propagate the rendering call.
The word discrete refers to the fact that the number of models is a small finite num-
ber. The advantage of discrete level of detail is the simplicity of the implementation.
The disadvantage is that an artist must build all those models. Moreover, whenever a

362

Chapter 10 Geometric Level of Detail

switch occurs during rendering it is usually noticeable and not very natural—the pop-
ping effect. One approach that has been taken to reduce the popping is to morph be-
tween two consecutive models in the LOD sequence. This requires establishing a corre-
spondence between the vertices of the models and is problematic when the number of
vertices is different between the two. The morphing is implemented as convex combi-
nations of paired vertices, with the weighting factors dependent on the switching dis-
tances for the models. That is, if 4, is the distance at which model 1 switches to model
2, and if d> is the distance at which model 2 switches to model 3, while the LOD center
is a distance 4 € [d), d;] from the eye point, the weight (d — d,)/(d2 — d,) is applied
to vertices in model | and the weight (ds — d)/(d> — d) isapplied to vertices in model
2. The results might be acceptable, but the price to be paid each frame is the expensive
interpolations. However, the results might not be visually appealing since the morph-
ing is not based on preserving geometric information about the models. The quality
of the end result depends a lot on the quality and differences in the original models.

10.3 CONTINUOUS LEVEL OF DETAIL

10.3.1

An alternative to discrete level of detail is continuous level of detail (CLOD). One major
category of CLOD algorithms includes progressive meshes that simplify already exist-
ing triangle meshes (Hoppe 1996a, 1996b; Garland and Heckbert 1997, 1998; Cohen
et al. 1996; Cohen, Olano, and Manocha 1998; Luebke and Erikson 1997; Lindstrom
and Turk 1998). Some of the later papers realized the importance of also simplifying
the surface attributes (for example, vertex colors and texture coordinates) in a visually
appealing way. The basic concept is one of triangle reduction. The Garland-Heckbert
algorithm (Garland and Heckbert 1997) is particularly well suited for a game engine
and is discussed in this section. This algorithm effectively builds a large sequence of
models from the highest-resolution model, so in a sense it is like discrete LOD, but it
does not require an artist to build the additional models. The change in the number of
triangles between consecutive models is typically one (or a small number), so popping
is not as noticeable, particularly when a screen space error metric is used to control
the triangle changes rather than the distance of the model center from the eye point.

Another major category of CLOD algorithms includes the dynamic tessellation
of surfaces that are defined functionally. Because there is no theoretical bound on
the number or size of triangles that can be created in the tessellation, this type of al-
gorithm provides infinite level of detail. Of course, there is a practical bound based
on the number of triangles an engine can process to maintain a high frame rate and
the amount of memory available. The benefit, though, is compactness of representa-
tion of the model. See Chapter 8 for a discussion of dynamic tessellation.

SIMPLIFICATION USING QUADRIC ERROR METRICS

The Garland-Heckbert algorithm (Garland and Heckbert 1997) creates a sequence
of incremental changes to the triangle mesh of the original model by contracting

Figure 10.1

f&@hncz CoDE

LIBRARY

Detail

FILENAME

CLODMesh

10.3 Continuous Level of Detail 363

S
fa

Edge contraction.

pairs of vertices in a way that attempts to preserve geometric information about the
model rather than topological information. Other researchers have used methods
that typically require manifold topology and do not necessarily handle shape in a
reasonable way. Vertex decimation involves removing a vertex and all triangles sharing
it, then retriangulating the hole that was produced by removal (Schroeder, Zarge,
and Lorensen 1992). Vertex clustering involves placing the mesh in a bounding box,
partitioning that box into a lattice of small boxes, collapsing all vertices in each small
box into a single vertex, and removing and adjusting the triangles of the original mesh
accordingly (Rossignac and Borrel 1993). Iterative edge contraction involves replacing
an edge and its two vertices by a single vertex, removing the triangles sharing that
edge, and adjusting the connectivity information for the triangles adjacent to the ones
removed (Hoppe 1996a).

The current algorithm is based on iterative vertex contraction and is not restricted
to a manifold topology. Moreover, two disjoint components of a triangle mesh might
very well be joined by this algorithm, so mesh topology is not necessarily preserved.
This is not a drawback to the algorithm because a mesh that appears as two distinct
objects while close to the eye point might look like a single object while in the
distance. Merging of components by the simplification algorithm supports this. The
baSlC contraction involves a vertex pair (Vl, Vz) that is replaced by a smgle vertex
V The original vertices are in a sense moved to the new vertex, V; becomes ¥, and
V; is removed. The edges that shared ¥, are now connected to V, and any edges or
faces that becomne degenerate are removed. Figure 10.1 illustrates the contraction of
a pair of vertices. In fact, the contraction process can be applied to an entire set of
vertices { V; > V if desired. Simplification amounts to taking the original mesh
My and creating a sequence of n vertex contractions to produce a sequence of meshes
Mo M\, ..., M,.

The algorithm requires identification of those pairs of vertices in the original mesh
that can be contracted. A pair (V1, Vz) issaid tobe a valxd pair for contraction if the
two points are end points of the same edge or if [V, — V3| < t for some threshold
parameter T > § specified by the application. If T = G, then the vertex contraction
is really an edge contraction. Positive thresholds allow nonconnected vertices to be
paired.

364 Chapter 10 Geometric Level of Detail

The algorithm also requires taking the set of valid pairs and associating with each
pair a metric that is used to prioritize the pairs. The smaller the metric, the more likely
the pair should be contracted. This is accomplished by associating with each vertex
V =(X, 1), treated as a homogeneous vector, a symmetric 4 x 4 matrix O(V), and
choosing the metric to be the quadratic form

O ALBITRT svio oore
EX)=VTQv=|XT|1] - [1]=X1AX+2bTX+c,
b'| ¢

where A is a 3 x 3 symmetric matrix, b is a 3 x 1 vector, and c is a scalar. Note that
E(X) = d fora constant d defines a quadric surface. A specific matrix Q is constructed
in the next section, but for the purposes of the simplification it could be one of many

choices.
Given a valid pair (V1, Va). there are two things to do. The first thmg to do

is to compute the target V of the contraction. While simple choices are Vi or Vz
(replacement) or (V1 + Vz) /2(averagmg) a better choice is to choose V so that E (X)
is minimized. This occurs when VE(X) =0, which leads to solving AX = —I; IfAis
invertible, then the solution X is used to generate the contracted vertex V= (X 1).
However, if A is not invertible, then the minimization problem is restricted to the
line segment X’(t) = X’o + t(i’l — i’o) for ¢ € [0, 1]. The function to minimize is
the quadratic in one variable, ¢ (1) = E(.;((t)). The minimum occurs either where
¢'(r) =0 with ¢ € |0, 1] or at an end point ¢ =0 or ¢ = 1. The second thing to do is
associate a metric with V. A simple choice is Q = Q) + @5, where Q; is the metric
for Vi,i=1,2.

10.3.2 THE ALGORITHM

The model is represented using a vertex-edge-face table to store the connectivity
information. Each vertex keeps track of a list of other vertices to which it is adjacent.
The algorithm is

1. Compute Q for all vertices.

2. Compute all valid pairs based on a selected T > 0.

3. Compute V for each pair (V}, V3), Q = @\ + 02, and VTQV.

4. Place all pairs in a heap whose first element is that pair with minimum vTQV for
the vertex V that is contracted from the pair.

5. The first pair in the list is contracted to form the new mesh and is removed from
the heap. The valid pairs affected by the removal have their metrics recalculated.
The pair with the minimum error term is moved to the front of the heap, and this
step is repeated until the heap is empty.

10.3 Continuous Level of Detail 365

A couple of potential problems need to be dealt with. The first problem is that the
algorithm does not handle open boundaries in any special way. For some models (such
as terrain) it might be important to tack down the boundary edges of the mesh. One
way to do this is to generate a plane through each boundary edge that is perpendicular
to the triangle containing that edge. The quadric matrix is calculated, weighted by a
large penalty factor, and added into the quadric matrices for the end points of the
edge. It is still possible for boundary edge vertices to move, but it is highly unlikely.
Another way is never to allow a boundary edge vertex to be moved or replaced in the
simplification.

The second problem is that pair contractions might not preserve the orientation
of the faces near the contraction, so a folding over of the mesh accurs, A method to
prevent this is to compare the normal vector of each neighboring face before and after
the contraction. If the normal vector changes too much, the contraction is disallowed.

10.3.3 CONSTRUCTION OF THE ERROR METRIC

A heuristic is chosen for the quadric error metric. Each vertex in the mesh is in the in-
tersection of the planes containing the triangles that share that point. Ifaplaneisrepre-
sentedas PTV =0, where V = (X, 1) and P = (N, d) with || = 1, define S(V) tobe
the set of vectors P representing the planes containing the triangles that share V. The
error of V with respect to S(V') is the sum of squared distances from V to its planes,

EWVy=) (PTVy=VT| 3 PAT|Vv=VTQ)V,
Pes(V) Pestv)

where the last equality defines Q(f/) for a given vertex. The matrix PPTiscalled a
fundamental error quadric and, when apptied to any point W, measures the squared
distance from that point to the plane.

The initial vertices have matrix Q(V) # 0, but the ipitial error estimates are
VTQ(V)V = 0. On the first iteration of the algorithm, the sum of two guadric error
matrices will generate another nonzero quadric error matrix whose quadratic form
usually has a positive minimum.,

10.3.4 SIMPLIFICATION AT RUN TIME

A class ClodMesh can be derived from Spatial and added to the collection of
geometric-type leaf nodes that can be placed in a scene graph and rendered. A
ClodMesh object represents the mesh sequence Mg through M,,, where My is highest
resolution. The original mesh is assumed to have manifold topology and the simpli-
fication is assumed fo do edge contractions. While neither of these is a requirement
of the algorithm as published, they do make the implementation a bit more manage-
able. A consequence of the two assuniptions is that two consecutive meshes in the

366 Chapter 10 Geometric Level of Detail

simplification differ by one or two triangles. Moreover, the sequence is assumed to be
precomputed, thereby gaining execution speed at the cost of memory usage.

An automated selection can be made each frame to display mesh M; for some
appropriate index i by using the prerendering virtual function. Although there are
many possibilities for selection, a simple one uses screen space coverage by the world
bounding volume containing mesh My. If A is the screen space area covered by the
bounding volume and if 7 is an application-specified number of triangles per pixel,
then the number of requested triangles in the mesh to be drawn is Ar. This number
is clamped to [Ty, T,], where T; is the number of triangles in mesh M;. The index j
is chosen so that T; = | At], and the mesh M is identified as the one to be drawn in
the rendering virtual function.

10.3.5 SELECTING SURFACE ATTRIBUTES

Ifthe original mesh has surface attributes at the vertices such as normal vectors, texture
coordinates, and colors, then new surface attributes must be selected for a contracted
vertex. For a single edge contraction, it is reasonable to select texture coordinates and
colors based on the values at the vertices of the two triangles sharing that edge. If the
two triangles are not coplanar, then the four vertices form a tetrahedron. A simple
scheme to compute a new scalar value based on four old ones is to compute the
barycentric coordinates of the new vertex with respect to the tetrahedron and use
them in a weighted average of the scalar values. Some care must be taken if the new
vertex is not inside the tetrahedron so that at least one of the barycentric coordinates
is outside the interval [0, 1]. To remedy this, any negative barycentric coordinates are
clamped to 0 and the coordinates are rescaled to sum to . The resulting coordinates
are used to compute a convex combination of the four scalar values.

Normal vectors at contracted vertices can be computed using the barycentric
cootdinate scheme or by computing a weighted average of the normals of the triangles
sharing the new vertex. However, weighted averages of normals is not geometrically
appealing. An alternative is to view the unit-length normals as points on a sphere.
The minimal angle cone containing those points is computed and the axis of the
cone is used as the new normal. The axis can be thought of as a median of vectors.
The only pathological problem with this method is if the cone angle is larger than &
radians. Although the cone axis is still well defined, it is difficult to detect this case in
an algorithm. Computation of the minimal cone can be done using an algorithm that
is effectively the one used for computing the minimum circle containing a set of points
in the plane (Welzl 1991). In that algorithm the test for point-in-circle is replaced by
vector-in-cone.

A cone with vertex at the origin, unit-length axis A, and angle 8 is represented as
A - X = cos 6. The solid cone is A - X > cos 8. The essential heart of the algorithm
is to compute the minimal cone containing either one point, two points, or three
points. For two distinct points, the cone axis is the unit-length bisector of the two
points. For three points not all lying on a great circle arc, the cone axis must form the
same angle with the three points. Let U; for 0 < i < 2 be the three points. Let A be the

10.3 Continuous Level of Detail 367

axis that needs to be determined. The requirement is that Do CA= I-]] CA= f]z . A.
Let A represent this common value (to be determined). Represent A= Z,’2=o ;Ui
Define d;; = U; - Uj, D = [d;], a 3 x 3 matrix, ¢ = (cy, ¢), €2), and 1=(,1,1).
The system of equations to be solved is D¢ = A1 with constraint |A| = 1. Rather
than directly use the quadratic constraint on length of A, compute B = (det D)A
and extract A = B/| B|. Applying the adjoint matrix of D to the linear system yields
(det D)& = A D*VT. Therefore,

2 1 — dy) — doz + d\2(dy) + do2 — dy2)
B =Z(t‘1 det DyU; = ZKDad” =i| 1 —dy —diz+ doaldy, + cha — dy2)
i=0 i=0 1 — dy2 — dy2 + doi(doz + d\2 — dyy)

The value of 1 is irrelevant since B is to be normalized.

The pseudocode is given below and assumes that the input points lie in a cone with
angle 8 € [0, /2). This algorithm is essentially the one that is used for computing
the minimum-area circle containing a set of points and is related to the algorithm in
Section 2.5.1 for computing the minimum-volume sphere containing a set of points.
Since in most cases the number of points is not large, the random permutation is not
applied. This should not affect the performance of the algorithm.

void MinimalCone (int N, Point3 V[1)
{
Cone cone = ExactConel(P[0]);
PointSet support = { P[0] }:

i=1;
while (i < N)
{
if (P[i] not in support)
{
if (P[i] not in cone)
{
add P[i1] to support and (possibly) remove
unnecessary points:
compute cone from current support;
i =0: // need to start over when support
// changes
continue;
1
}
i++;

368 Chapter 10 Geometric Level of Detail

Internally, the algorithm requires computing cones that contain exactly two points
or exactly three points. Updating the support can be modularized into a collection of
update functions, each depending on the current number of points in the support.

SOURCE CODE

LIBRARY

Terrain

FILENAME

All Flles

CHAPTER

TERRAIN

any games are based in an outdoor environment. For example, flight simulators
test your skills at flying airplanes or jets. The missions are based on accomplish-
ing goals such as destroying other planes or bombing various targets. During each
mission your plane is flying over terrain, whether land or sea, and it is important that
the terrain look realistic. Another exampie is a massively muitiplayer networked game
where the world is necessarily large and might even grow as new players enter the game
and add their own environments for other players to wander through. In either case
the extent of the world can be quite large and requires a significant amount of model-
ing. Moreover, at run time this data needs to be efficiently managed. A terrain system
has the job of supporting both the modeling process and run-time management.
Terrain data is typically represented as height values sampled on either a rectan-
gular lattice or a network of triangles. In either case the data sets tend to be quite large
and make it difficult to render at real-time rates for two reasons. First, the terrain data
cannot fit entirely in memory, so it needs to be loaded from disk. Second, the renderer
must process a large number of small triangles corresponding to distant terrain.
A standard approach to triangle reduction is to construct multiresolution models
representing the terrain. One possibility is to use discrete level of detail: the entire
current fesolution model is switched to a different resolution model based on the

369

370 Chapter 11 Terrain

distance from the eye point, but the switching is very noticeable. is better to reduce
triangles in a way to minimize visual impact. This is done by continuous level of detail:
the model is changed by a small number of triangles at a time. Moreover, the change
in the number of triangles is based on error measurements in screen space. The idea is
that two triangles are reduced to one triangle if the height variation between the two
triangles is smaller than an application-specified number of pixels. Michael Garland
and Paul Heckbert (1997) developed one such algorithm for triangulated manifold
meshes, but it is view independent. Peter Lindstrom et al. (1996) developed a view-
dependent algorithm for square lattices with symmetric triangulation.

The algorithm by Lindstrom et al. (1996) is the one discussed in this chapter. It
consists of three phases: a coarse-level simplification based on square blocks of the
terrain, a fine-level simplification at the vertices within each block, and a rendering
of each block. The original paper makes a distant terrain assumption: the camera does
a flyover of the terrain so that the distance from the eye point to any terrain vertex is
significantly large, which allows some approximations that simplify the mathematics
in computing screen space errors. However, the assumption is invalid when the camera
corresponds to a character walking about the terrain. Also discussed in this chapter
is the close terrain assumption, where the approximations are made based on the
camera being close to terrain vertices. A different mathematical approximation is
made for computing screen space errors. Finally, similar analysis is applied when no
assumption is made about the camera and the exact screen space error metric is used.
Some variations from the original paper are included: simpler dependency handling
is used to reduce memory usage (parent dependencies are maintained but not child
dependencies), visibility testing for block culling is done before simplification (blocks
are not simplified if they are not in the view frustum), and a connectivity array is
constructed for the full mesh in preparation for rendering {rather than rendering each
triangle as it is known).

1 11 TERRAIN TOPOLOGY

The height field is a 2D square array of size 2¥ + | for N > 1. Each entry is a point of
theform (i, j, H(i, j)), where0 <i < 2N o< j=< 2V, and H(i, J)isthe height value.
In the implementation, the height values are stored as unsigned short rather than
float to reduce memory usage. The range for unsigned short allows for enough
variation in typical terrain data sets. The height field can be viewed as a 2V=1 x 2¥—!
array of primitive blocks; each block is a 3 x 3 array of points that are immediately
adjacent in the field.

The height field can also be viewed as a quadtree of blocks, each block representing
a3 x 3 array of points that are unifornly spaced by a stride that depends on where the
block occurs in the quadtree. The leaf nodes of the quadtree are primitive blocks with
a stride of 1. If the corner of a leaf block is locared in the plane at (i, j), then the other

Figure 11.1

11.1 Terrain Topology 371

gO,
UR

9
0 ®

|
A

13 14 1 17 18 @ ®

A5 x 5 height field and quadtree representation.

eight points represented by theblockare (¢ + 1, /), ((+ 2, L {6, j+ 1), G+ L j+ 1),
G+2,j+0G,j+2),G+1,j+2),and (i +2,j+ 2). The root node of the
quadtree is a block with stride 2¥ ~!. The nine points represented by the root block are
located in the plane at (0, 0), (0, 2¥ 1), (0, 2V), (2¥—1, 0), (2N 1,28 1), 2N -1, 2M),
(2N, 0), 2%, 2¥ -1y, and (2%, 2¥). If a block has stride S and a corner value of (i, f),
then the four children of the block have a stride of §/2 and corner points (i, j),
(i+S8,jnt,j+S)»and (i + S, j+). The total number of levels in the quadtree is
N, and the total number of blocks is (4" — 1)/3. Figure 11.1 shows the planar points
of a 5 x 5 height field, points occurring at the intersections of the various lines, and
shows the corresponding quadtree. Since the quadtree is a complete tree, the nodes
can be indexed so that the root node has index 0. Given parent index P, the upper-lett
child index is Cyyy, = 4P + 1, the upper-right child indexis Cyy g = 4F + 2, the lower-
left child index is C1. == 4P + 3, and the lower-right child index is C,g = 4P + 4.
Given a child index C, the parent index is P = [(C — 1)/4], where |n] is the floor
function that returns the largest integer less than or equal to .

A block represents 8 triangles (9 vertices, 16 edges), all sharing the center point of
the block. Figure 11.2 shows the topology of a block. The primitive blocks contain to-
tally (2¥ + 1) vertices, (2¥ + 1)|3(2¥ + 1) — 1] edges, and 2[(2¥ + 1) — 1] triangles.
The simplification of the vertices in a block tefers to reducing the number of triangles

372 Chapter 11 Terrain

Figure 11.2 The topology for a single block.

Figure 11.3 The seven distinct triangle configurations.

in the block by removing vertices that are deemed unnecessary based on measure-
ments of screen space heights. The maximum number of triangles in a block is 8; the
minimum number is 2. The candidate vertices to be removed are the midpoints of
the edges of the block and the center of the block. The distinct triangle configurations
(modulo rotations) are shown in Figure 11.3. The numbers refer to how many of the
5 candidate vertices occur in the final mesh. Configuration 0 has two orientations.
The one shown is labeled as even, the other is odd. The simplification of a block to
configuration 0 depends on where the block occurs in the quadtree. The root block
is an even block. The parity of any other block depends on which child it is. Child
blocks Cyy;. and Cy g are even blocks, and child blocks Cy; p and Cy;. are odd blocks.
Figure 11.4 shows the highest resolution and the smallest set of triangles to which four
sibling blocks can be simplified.

11.2 Vertex-Based Simplification 373

Figure 11.4 The smallest simplification and highest resolution for four sibling blocks.

1 1.2 VERTEX~-BASED SIMPLIFICATION

Consider a single (even) block in the quadtree as illustrated in Figure 11.5. The
block is conveniently shown in rendered form in screen space. The midpoint of edge
(Voz, sz) is M;z = (Voz + sz)/z The segment (M| 2 V, 2) is vertical in world space
and has world height L,, =]M;z - Vu] Let L; denote the length of the correspond-
ing segment in screen space. This length is determined by Equation (3.16). If L; is
sufficiently small (as determined by the application), then the vertex V may as well
be removed from the tessellation of the block and the two triangles (1722, l-}lz, l71|)
and (Voz, Vlz, f’n) collapsed into a single triangle (sz, Vn, Voz) he same analysls
can be applied to the screen space lengths at the other edge points Vm, Vm, and V21
For an even block, the vertex V,, is considered for removal by analyzing the screen
space height of the vertical segment (Vn, (Voo + Voz)/Z) For an odd block, Vu is
considered for removal by analyzing the screen space height of the vertical segment
{(Vii, (Voo + V22)/2).

The specification of how small L should be for collapsing is left to the application.
If no visual artifacts are desired, then L; < 1 pixel is sufficient. This prevents popping
of the triangles as the camera is moved closer to or farther from the terrain. However,
some popping might be allowed by an application that wishes to maintain a constant
frame rate. The threshold on L, can vary over time to maintain the desired rate.

11.2.1 DISTANT TERRAIN ASSUMPTION

Although Equation (3.16) can be evaluated directly for candidate vertices, the cost
may be significant enough to warrant approximations. The same approximations are
used when doing block-based simplification, a topic discussed later.

The assumption made in Lindstrom et al. (1996) is that the eye point is far away
from the terrain. This is a valid assumption when doing a flyover of the terrain,

374 Chapter 11 Terrain

Figure 11.5

A single block with nine vertices labeled and all eight triangles drawn. The candidate
vertex is V|3 and the candidate vertical line segment is (M ,,, V)2). The midpoint of the
segment is V and the world height is L, (V). The corresponding screen space height
is Ly(V).

but if an application allows the camera to get close to ground level, the approxi-
mation is not a good one. The distant terrain assumption has three consequences.
The first is that the view direction D is approximately the unit-length vector A /|4,
where A = (A,, Ay, Ay = V —E, E is the eye point, and Vis any vertex in the
terrain. The second is that the world space height L, of each V is much smaller
than the distance lz-il from the eye point to that vertex. The third is that the actual
vertex may be used in computing A rather than the midpoint of the Yine segment.
In Figure 11.5 this amounts to using V), instead of V in the screen space distance
formula. The mathematical approximations in Equation (3.16) are D = A/|A|and
L,/IAl =0, do L2,D2/4 = L2(A,)*/|A|* = 0. Replacing these in Equation (3.15)
yields L2 = A2n2L2 (A2 + A2) /(A2 + A+ A?)2. Ifthe screen space distance thresh-
old is selected to be 7, then a vertex is removed from the mesh as long as L2 <12 The
simplification constraint is

2,272 (A2 2

Flu(a:+ 4y <7 (11.1)
(A% + A} + AD?

11.2.2 CLOSE TERRAIN ASSUMPTION

The assumption is that the camera is oriented so that its direction vector D is ap-
proximately horizontal. This is typical for third-person views where a character is

11.3 Block-Based Simplification 375

moving along the terrain and the camera follows closely. Assuming height is mea-
sured in the z-direction, the mathematical approximation is D, = 0. Replacing this in
Equation (3.16) and canceling the common factors in numerator and denominator
yields the simplification constraint

2,272
Mn?12, 2

(DxAx + DyAy)? = (11.2)

11.2.3 NoO ASSUMPTION

There is no approximation made in this case. The screen space distance is used as
specified in Equation (3.16). Given a screen space distance threshold of z, a vertex is
removed from the mesh when its world space height L, satisfies the simplification
constraint

A2n2LL | DUAL + A2) + (DxAx + Dyd)] g2 (11.3)
DAy + DyAy+ DA — LED2/4)? — '

The value V in computing A is the midpoint of the line segment connecting the
height field vertex and the midpoint of the line segment connecting the neighboring
two vertifes. For example, in Figure 11.5 if the candidate vertex is f’,z, then V =
(Voz + 2V3 + Vi) /4.

].]..3 BLOCK-BASED SIMPLIFICATION

Typical terrain data sets have a large number of vertices. Performing vertex simpli-
fication on all vertices each frame is very expensive and will prevent real-time frame
rates. Instead, groups of vertices can be simplified at once by analyzing the screen space
heights of the bounding boxes of blocks that contain those vertices. Block-based sim-
plification allows you to quickly get to approximately the correct resolution for the
entire terrain. The blocks that are selected to be included in the mesh are called ac-
tive blocks. Vertex-based simplfification can then be performed on the five candidate
vertices of each active block treated as a collection of nine vertices to get the final
refinement,

Each block in the quadtree covers an area containing numerous vertices. An axis-
aligned bounding box B can be computed for each block. If the vertices represented
by the block are organized in a spatial array as B= {‘7,, fo<i<iy, jo<j<h)
then B = l-xmlm Xmax) X [Ymins Ymax] X [Zmin> Zmax], where € (Xmin, Ymin) is the spatial
coordinate of V,o Jjo» (Xmax» Ymax) is the spatial coordinate of V,l ji» Zmin is the minimum
z-value of the V, j» and Zmay is the maximum z-value of the V, j- Note that BcCB.

376 Chapter 11 Terrain

Define 8o = maxy.p L,,;__(f’) to be the largest world space height of the vertical
segment centered at V, where V is determined as illustrated in Figure 11.5. If 8,4 is
sufficiently small as determined by the screen space threshold , then all vertices in the
block meet the threshold condition and the block can be simplified into two triangles,
its lowest resolution. Moreover, if the three siblings of the block also have sufficiently
small may values, then the four blocks together can be simplified by replacing them
by their common parent.

Similarly, define 8min = ming 5 Lu(V). If Smin is sufficiently large as determined
by 7, then all vertices in the block fail the threshold condition, and the block must be
triangulated to its highest resolution of eight triangles. While this test does not help
to simplify blocks, it is used in vertex simplification.

The terms “sufficiently small” and “sufficiently large” need to be made more
precise. Abstractly, there is an interval 7, = [8p, ;] C [0, 00) such that (1) if 5pax < 8o,
then the block is tessellated to its lowest resolution, and (2) if 6,51y > 81, then the block
is tessellated to its highest resolution. If neither condition holds, then the vertices in
the block must be analyzed individually for simplification. For this reason the interval
1, is called the interval of uncertainty for the block. The block-based simplification
algorithm amounts to making a slice through the quadtree of blocks so that the blocks
in the slice are all uncertain about how their vertices should be simplified.

11.3.1 DISTANT TERRAIN ASSUMPTION

In Inequality (11.1), define F(V — E) = F(A) = /A + A2/(A2 + A2 + A2). The
inequality is rewritten as L,\-(V) = ML.,,(V)F(V - E) <t for V € B. Observe that

max Ly(V) = max (AnLu(VIF(V — E))
VeB VeB

= Aan(Vo)F(Vo — E’) for some Vo cB

<An (rpax Lu,(l-})) (I]Iax F(V - E))

VeB Ve

= An8ax Finax (E),

where Fmax(l—'f)=maxy g F(V — E). A conservative estimate can be made to con-

strain Ly for the block by requiring And .,y Finax(E) < 1. The condition for Smax being
“sufficiently small” is

T

— = 8y(E). 11.4
A Fonn(E) 8o(E) (11.4)

Smay <

11.3 Block-Based Simplification 377

Similarly,

min Ly(V) = min (ALL(V)F(V — E))
veB VeB

=lnL,L.(‘7|)F({/1 ~ E) for some {/1 R

> Anmin L,(V) min F(V - E)
VeB VeB

= ASmin Fnin(E),

where Fmin(E') =minj_p F (V - E). A conservative estimate can also be made to
constrain L for the block by requiring An8 i Fnin(E) > t. The condition for 8myin
being “sufficiently large” is

t . 8,(E). (11.5)

> — =
AnFuin(E)

‘smin =

The remaining problem is to compute Fpin(E) and Fraax(E). To make F(A) as
large as possible, it is clear that for a given (Ay, A)), A should be made as small as
possible. Given the bounding box B = [Xmin, Xmax] X [Ymin> Ymax] X [Zmin> Zmax] and
E = (E,, E,, E;), we have

(Zmin — E)* if E; < Zmin (eye below box)
Ai =40 ifZmin < E; < Zmax (eye at box level) .
(Zmax — Ez)z if Zmax < E: (eye above box)

Now F may be treated as a functionof r = /A2 + A2, F(r) =r/(r* + h%,), where
Amin is the fixed value of A; given in the previous displayed equation. The minimum
and maximum distances from (£, Ey} to the solid box {Xmin> Xmax] X {¥mins Ymax!
are computed as Fryjn and rmax. The global maximum of F(r) occurs at r’ = Amjy and
is F(r') = 1/(2hmy,). Therefore,

2;,:"i“ Rmin € [Fmins Fmax|

Frax(E) = p—r’:‘,':}"; Fmin > Amin

min

Iy

Fmax < Ami
Py +h max min

min

If the eye point is inside the box, then the box should be fully simplified, so set
Finax(E) = 0 and 8y(E) = oo.

378 Chapter 11 Terrain

Table 11.1 Values for rpin and rpax based on eye point location.

2 2

Region ren T
Ey < Xmin A Ymax < Ey dx} +dy? dx? + dy?
E; < Xmin A Ymin < Ey < Ymax dx} dx? + max{dy3, dy})
Ey <Xmin A Ey < Ymin dx} +dy¢ dx? + dy?
Xmin < Ex < Xenax A Ymax < Ey dy? max{dxZ, dx?} + dy}
Xmin < Ex < Xmax A Ymin < Ey < Ymax 0 max{dxo, dx)}? + max{dyo, dy;}*
Xmin < Ex < Xmax A Ey < Ymin dy; max{dxg, dx)* + dy?
Xmax < Ex A Ymax < Ey dx? +dy? dx} +dy}
Xmax < Ex A ymin < Ey < Ymax dx? dxg + max{dy$, dy})
Xmax < Ex A Ey < Ymin dx? +dy§ dx} +dy?

To make F (z-i) as small as possible, it is clear that for a given (Ay, A,), A% should
be made as large as possible:

Ag = max{(Zmin — £2)% (Zmax — Ey?).
As before, F is treated as a function of r, F(r) =r/(r* + h2_,), where hpax is the
fixed value of A; given in the displayed equation. The minimum of F on [rpyin, Fmax]

is

Ymin Fmax

2 2)2 2 :
rmin+hmax rmax+h‘max

Fmin(E) =min

Fina].ly, and r2,. are computed in the following way. Let dxo = |xmin — Ex|,dx1 =
[%Xmax — Exl, dyo = | ymin — Ey|, and dy) = | ymax — Eylz. The values are specified in
Table 11.1.

11.3.2 CLOSE TERRAIN ASSUMPTION

In Inequality (11.2), define F(V — E) by F(V — E) = F(3)=1/ID:Ax + Dyd,|.
The inequality is rewritten as Ly(V)= kan(V)F(V E) <t for V € B. The same
construction that was used for the distant terrain assumption can be applied here, but

11.3 Block-Based Simplification 379

—max|V, - E,l
L)

—

'~ minlV, - E,|

Figure 11.6 Specia] case for optimization when (D, D,) = (1, 0).

11.3.3

for the current function F. The conditions in Equations (11.4) and (11.5) apply. The
problem now is to compute Fq (E) and Fypu(E). Note that

1
i VelﬂlD (Vx — Ex) + Dy(Vy — Ey)| Veal x(Ve = Ex) + Dy(Vy — E))|
and
1
Fmax(E) = max =min | D,(Vy — E;) + Dy(Vy — Ey)|.

veB |Dx(Vy — Ex) + Dy(Vy — E,)| Ves

The z-components of the vectors do not matter in the optimization, so the prob-
lem is two-dimensional. Figure 11.6 illustrates the case when (Dy, Dy) = (1,0). In
this special setting, the optimum values to compute are those of |V, — E|. Clearly,
these occur at the extreme values of the two-dimensional box in the x-direction, and
the occurrences are at two of the corners of the box. For general (D, D,), the opti-
mization process consists of computing | D (V, — E;) + Dy(V, — E,)| at the four
xy-corners of box B and selecting the minimum and maximum values.

NO ASSUMPTION

In Inequality (11.3), define

Luy/DUAL + A3) + (DyAs + DyAy)?
(DeAy + D.VA.V + DlAz)z - leszz/4 -

G(Ly, Ay =

For a fixed A, define gEY=G(E, 5) In short format, g(&) =a&/(b — c£?) for
positive constants a, b, and ¢. The derivative is g'(§) = a(b + ck?) /(b — ci;‘z)2 >0.
Thus, g is an increasing function. Consequently, G(L,,) < G(8maxs A], where

380 Chapter 11 Terrain

8max =maxyp Luy(V),and G(Ly, B) > G (min, A), where dnyin = ming _p Lu(V).
The extreme values for L, over the set B are

max L_‘.(f/) < in max G(6mux, V- E)
VeB VinB

and

min Ly(V) > An min G(8pn, V ~ E).
VeB VinB

Let Vmax and Vi be those vectors in B that optimize the G function. The
constraints on 8y, and 8, that are equivalent to those in Equations (11.4) and

(11.5) are

AnG (Smaxs Vimax — E) <1 (11.6)
and

AnG (mins Vimin — E) > 1. (11.7)

Both equations are implicit constraints, but they are quadratic. Using the short format
G (Bmax> Vmax — E) = @8max /(b — ¢82,,), the implicit maximum constraint is

Anad
max S r
b— C‘srznax

The denominator of the fraction is positive, so multiplying by it and collecting terms
on the left-hand side yields

QBmax) i= cr&fm + Anabn, — br.

Note that Q(0) < 0 and Q'(0) = Ana > 0, so the unique positive value 8 for which
Q(80) = 0 provides the upper bound test, max < 8p. Computing the root for Q is
expensive and is in fact not necessary. The quadratic inequality itself may be evaluated
in the implementation. Similarly, a quadratic function can be established for §min, and
the threshold test is 8min > §;, where 5, is the unique positive root of the quadratic
function.

The problem now is to compute Vinax and Viin so that the coefficients in the
quadratic inequality constraints can be evaluated. As in the distant terrain assumption,
G is a decreasing function of A,. The vector Viax must occur at a point for which
A, = Zimin, the minimum z-value for the box. Similarly, Vipi, must occur at a point
for which A; = zmay. This limits the search for the optimum points to eight edges
of the box. On one such edge where A, is fixed, G is a rational function in A,
whose numerator is quadratic and whose denominator is quartic. The minimum

11.4 Vertex Dependencies 381

and maximum of the rational function must be computed. The derivative is also a
rational function whose numerator is a cubic polynomial and whose denominator
is positive. The search for extreme points along the edge amounts to computing the
roots of the cubic polynomial, evaluating the rational function at those points, and
comparing among themselves and the rational function at the end po'mts (up to
five points to test). This is done for all eight edges to find the global minimum and
maximum. The construction also yields the points Vinax and me at which the extrema
occur.

114 VERTEX DEPENDENCIES

After block-based simplification, the five candidate vertices of each block are analyzed
for simplification. At this stage adjacent blocks may have cracks that need to be
removed. The problem is that one higher-resolution block contains a vertex in its
mesh and the adjacent lower-resolution block does not contain the same vertex. The
vertex forms a T-junction, and a crack occurs in the mesh. The cracks are removed by
keeping track of vertex dependencies. If a vertex is determined to be in the final mesh,
then any dependent vertices must also be in the final mesh. For a block treated as a
3 x 3 atray of vertices, the dependencies are shown in Figure 11.7. The four corners
of each active block must occur in the mesh.

Asan example, considera 5 x 5 height field. The corresponding quadtree has three
levels: 1 root block, 4 interior blocks, and 16 leaf blocks. Figure 11.8 illustrates there
was enough variation in the screen space vertex heights for the vertices represented
by the root block that its four children needed to be analyzed for further simplifi-
cation. The figure also illustrates that the lower-left child block itself needed to be
analyzed for further simplification. There are 7 active blocks. The minimal triangu-
fation for each active block is shown. If only the triangles shown are drawn, there
are two cracks in the mesh, one between the upper-left and lower-left children of
the root block and one between the [ower-right and lower-left children of the root
block.

The left half of Figure 11.9 illustrates the vertex dependencies (large solid dots)
generated by the midpoint (small solid dot) of the edge shared by the lower-left and
lower-right children of the root block. The right half of Figure 1.9 shows the addi-
tional vertices (large solid dots), edges (bold lines), and triangles that are generated
because of the vertex dependencies of the two midpoints (small sofid dots).

Finally, suppose that a vertex in the lower-right child of the lower-left child of the
root bfock was added to the mesh because its screen space height was large enough.
The presence of the vertex and its dependencies force the mesh to be further refined.
The upper-left part of Figure 11.10 shows the added vertex (small solid dot) and the
dependencies (large solid dots) generated by its left dependent. The upper-right part
of Figure 11.10 shows the dependencies generated by the right dependent. The lower
part of Figure 11.10 shows the additional edges and triangles that are generated by the

382 Chapter 11 Terrain

Figure 11.7 Vertex dependencies for an even block (left) and an odd block (right).

Figure 11.8 Minimal triangulation after block-based simplification.

XN,
%

Figure 11.9 Triangulation after vertex dependencies are satisfied.

11.5 Block Rendering 383

h

Y
A
w/

Figure 11.10 The upper-left block shows one set of dependents for the added vertex. The upper-
right block shows the other set of dependents. The lower block is the triangulation
based on all dependents.

full set of dependencies. The dependencies for a vertex form a binary tree since each
vertex has two immediate dependents. However, the nodes of the binary tree are not
necessarily distinct, as is clear from Figure 11.10.

].]..5 BLOCK RENDERING

After simplification, the triangles in each active block must be rendered. Computing
the triangles is straightforward because the triangles form a binary tree that can be
recursively traversed. For example, consider the lower-right child of the root block
shown in Figure 11.10. After block simplification, the block consisted of two triangles.
After vertex simplification, the block was subdivided into smaller triangles. Figure
11.11 shows the original configuration and the subdivided configuration.

Figure 11.12 shows the corresponding binary tree for the block. The root node of
the binary tree corresponds to the block itself and is not a triangle. All other nodes
represent isosceles right triangles. The dotted lines indicate where a parent node is split
1o form the two child nodes. The triangle of a node is split only when the midpoint
of its hypotenuse is a vertex that is required to be in the final mesh, as determined by

384 Chapter 11 Terrain

Figure 11.11 The left block is the configuration after block simplification. The right block is the
configuration after vertex simplification.

X

v A

\
N

4\
v A

rd

S

S

/
N

v\ﬂ

QA’

¢
AN

Figure 11.12 Binary tree for the right block in Figure 11.11.

the screen space height calculations during vertex simplification. Thus, a leaf node of
the binary tree is one whose triangles cannot be split because either the hypotenuse
does not contain an enabled vertex from simplification or is a triangle in the highest-
resolution mesh for the height field, in which case the length of a leg of the triangle is
the spacing between consecutive samples in the height field.

The binary tree is traversed in depth-first order. When a leaf node is encountered,
either the corresponding triangle can be rendered immediately or information about
it can be saved for deferred rendering. The choice depends on how the renderer itself
is structured.

11.6 The Full Algorithm 385

].]..6 THE FULL ALGORITHM

This section provides a detailed description of an algorithm for the simplification
and rendering of a height field. The height field itself is characterized by a size of
2V + 1 for N > 1 and a two-dimensional array of height values, H;; for 0 <i <2V
and0 < j < 2".Inanimplementation, a height value is usually stored as a 1-byte or 2-
byte unsigned integer type to minimize memory usage. The application must then also
supply parameters to relate the height array to world coordinates. In particular, the
following parameters should be specified: minimum elevation zpyin and maximum
elevation Zmax (corresponding to zero and the maximum representable value M of
the unsigned integer type), the spacing between spatial samples o (assumed to be
uniform in both spatial dimensions), and the spatial location (xXmin, Ymin) of the point
with height Hyo. The world coordinates of the sample corresponding to height H;; are
(Xi> ¥j» 2ij) = (Xmin + (0, Ymin + jO» Zmin + ((Zmax — Zmin)/ M) Hij) for 0 <i <2V
and0 < j <2V,

A quadtree of blocks is maintained. For a size of 2V + 1, the quadtree has (4V —
1)/3 nodes. Since the quadtree is complete, it can be stored in memory as an array
of structures, each structure containing information relative to a block. The array is
assumed to have zero-based indexing. Given a parent node with index p, the four
child nodes have indices c = 4p + i for 1 < i < 4. Given a child node with index c,
the parent node has index p = | (¢ — 1)/4].

A queue of blocks is maintained to keep track of the current blocks that are at the
correct level of detail (based on the block simplification algorithm) and are potentially
in the view frustum. Theoretically, the queue must be large enough to hold the entire
set of blocks from the quadtree, so an implementation needs to provide enough space
for this case, however improbable.

Finally, a two-dimensional array of vertex information is maintained, one vertex
per height sample. Each item has a Boolean flag storing whether or not the vertex
is currently in the mesh that is to be rendered (based on the vertex simplification
algorithm). The item also stores information about who are its two dependent vertices.

The choice of data structures is of course dependent on implementation. The usual
space-time trade-offs come into play, and each implementor has to decide what is the
best trade-off for his application. The vertex information structure is the simplest
one. It contains two pointers to its dependent vertices and a Boolean flag indicating
whether or not the vertex is currently in the mesh to be rendered.

The block structure contains information to index into various arrays, such as the
height array or related surface attribute arrays including normals and vertex colors.
Minimally, it contains an index into the global arrays, the index corresponding to
the origin point of the block. This is typically the upper-left point when viewing the
block in row-major order with row indices increasing from top to bottom. The block
must also contain the stride information so that it can be manipulated as an entity
representing a 3 x 3 array of points. To distinguish between even and odd blocks, the
block stores a Boolean flag. Since the vertex simplification occurs more often than

386 Chapter 11 Terrain

most other processes in the system, it is too expensive to constantly be calculating the
world space heights of the line segments corresponding to the five candidate vertices.
Therefore, the block structure saves the world space heights for those five points. The
calculations of the heights are done during program initialization. The maximum
of the five heights is also saved at leaf blocks. At interior blocks, the maximum of
the five heights and of the maximum heights for the four child blocks is saved. The
minimum and maximum heights 5o and 8, that change with eye point are computed
and stored whenever necessary. Finally, the block stores the axis-aligned bounding
box that contains all the highest-resolution vertices covered by the spatial extent of
the block.

The queue is implemented in bounded memory as a circular queue. The queue
items contain the block indices and two flags, one to indicate whether or not the block
has already been processed during the current simplification phase and one to indicate
whether or not the block is potentially visible. It is possible to implement the flags
using the two high-order bits of the block indices as long as the total number of blocks
is representable by an integer with two less bits than the total number of bits for the
integer type of the index.

The processing of the height field is in three stages: initialization of the blocks,
vertices, and queue; simplification based on current eye point; and rendering of the
active blocks. The camera represents both the eye point and view frustum.

InitBV():
InitQ();
for (each frame) do
{
if (camera.eye point has changed since last frame) then
{
ResetBlocks();
SimplifyBlocks(camera);
SimplifyVertices(camera);
}
RenderBlocks();

Block initialization involves a recursive traversal of the quadtree. The interval
values for all blocks are initialized to o = 0 and 8, = 0. The origin indices for
the root block are (0, 0), the upper-left corner of the height field, and the stride
is 21, The root block is an even block, and its quadtree index is 0. Generally,
if a block has quadtree index ¢, origin indices (x, y), stride s, and Boolean ¢
indicating whether or not the block is even, then InitBVv(block,q,x,y.s,e),
shown below, provides a recursive initialization of all blocks. The initial call is
InitBV(rootBlock,0,0,0,2V-! true).

11.6 The Full Algorithm 387

InitBV (block,q,X,y,.s.e)

{

block.x0rigin = x;
block.yOrigin = y;
block.stride = s;
block.even = e;
block.delta0 = 0;
block.deltal = infinity;

// delta values for five candidate vertices
block.deltal[0] = (P(X,y).z + P(x+2s,y))/2 - P(x+s,y):
block.deltall] = (P(x+2s,y).Z + P(x+2s,y+2s))/2 - P(x+2s,y+s);
block.deltal2] = (P(X,y+2s).Z + P(x+2s,y+2s))/2 - P(x+s,y+2s);
block.deltal3] = (P(Xx,y).z + P(Xx,y+2s5))/2 - P(X,y+s);
if (block.even)

block.deital4] = (P(X,y+2s).z + P(x+2s,y).2)/2 - P(x+s,y+s);
else

block.deltal4] = (P(X,y).Z + P(x+2s,y+2s).2)/2 - P(x+s,y+s):

block.deltaMax = maximum of block.deltali]:

// vertex dependencies
V(x+s,y).dependent0 = V(x+s,y+s);
V(x,y+s).dependentl = V(x+s,y+s);
V(x+2s,y+s).dependent0 = V(x+s,y+s):
V(x+s,y+2s).dependentl = V(x+s,y+s);
if (block.even)

{
V(x+s,y+s).dependent0 = V(X,y+2s);
V(x+s,y+s).dependentl = V(x+2s,y):
}
else
{
V(x+s,y+s).dependent0 = V(X,y):
V(x+s,y+s).dependentl = V(x+2s,y+2s);
}

// recursively handle remaining blocks

if (block is interior)

{
InitBV(block.childUL,4*quadIndex+l,x,y,s/2,even);
InitBV(block.childUR,4*quadIndex+2,x+s,y,s/2,leven);
InitBv(block.childLL,4*quadIndex+3,x,y+s,s/2,!even);

388 Chapter 11 Terrain

InitBV(block.childLR,4*quadIndex+4,x+s,y+s,s/2,even);

block.min = minimum of block.childIJ.min;
block.max = maximum of block.childIJ.max;
block.deltaMax = max(block.deltaMax,block.childlJ.deltaMax);

}
else
(
// leaf block, stride =1
block.min = minimum of nine world vertices with indices (i,])
With x <= 1 <= x+2, y <= J <= y+2;
block.max = maximum of nine world vertices with indices (i,])
With X <= {1 <= x+2, y <= j <= y+2;
}

The function In1tQ() creates a circular queue stored as an array of unsigned
short indices. The queue represents those currently active blocks for which vertex
simplification must occur. The number of elements is the number of leaf nodes in the
quadtree, the maximum possible number of active blocks at any one time. The queue
is initially empty.

After each frame the vertices of an active block are tagged as either enabled or
disabled for the final tessellation. Function ResetBlocks iterates over the active
blocks and resets the vertices to be disabled. If a vertex is currently enabled and must
be disabled, the dependents of that vertex must be informed to disable themselves,
too. Thus, a call to ResetB1ocks requires traversing the vertex dependency trees, an
operation that typically is not inexpensive. A more complicated scheme for updating
vertex dependencies by Lindstrom et al. (1996) attempts to maintain the correct
current state for each vertex.

Function Simp11ifyBlocks does the block simplification as described earlier. The
blocks in the queue are considered to be unprocessed and may need to be replaced by
four child blocks (nced more detail) or, together with its three siblings, may need to
be replaced by a parent block (need less detail).

while (queue.ExistUnprocessedBlocks() ?

{

block = queue.GetFrontAndRemove();
if (not block.Processed())

{

queue.DecrementUnprocessedCount();

if (block.IsFirstChild())
(
// test if block and siblings need to be replaced by parent

}

11.6 The Full Algorithm 389

if (queue.ContainsSiblings(block))
{
for (each child of block)
child.ComputeDeltalnterval(eyepoint,tolerance);

if (child.deltaMax <= child.delta0 for all children)
{
// need to replace by parent, first remove children
// blocks
for (each child of block)
{
queue.RemoveFront();
if (not child.Processed())
queue.DecrementUnprocessedCount();
}

// add parent (may need further reductions later)
parent = block.GetParent();
parent.SetProcessed(false);
queue.AddRear(parent);

queue. IncrementUnprocessedCount();

continue with while loop;

if (not block.VisibilityTested())

block.TestForIntersectionWithFrustum();

if ¢ block.IsInteriorNode())

{

// subdivide only if block intersects view frustum
if (block.Isvisible())
{
for (each child of block)
child.ComputeDeltalnterval(eyepoint,tolerance);

if (child.deltaMax > child.deltaD for some child)
{
// subdivide if at least one child requires it
for (each child of block)
{
// add child (may need further processing)
child.SetProcessed(false);

390 Chapter1l Termain

queue.AddRear(child);
queue.IncrementUnprocessedCount();
}

continue with while loop:

}

block.SetProcessed(true);
1

// place processed blocks at rear of queue
queue.AddRear(block):

The function ComputeDeltalnterval implements the simplification constraint
based on which type of constraint is desired: distant terrain assumption, close terrain
assumption, or no assumptions.

Function Simp11ifyVertices does the vertex simplification as described earlier.
The pseudocode is

for (each block in gueue)
{
if (block.IsVisible())
block.SimplifyVertices();

Each visible block attempts to simplify its five noncorner vertices and automati-
cally enables two of its four corner points depending on the parity of the block. The
pseudocode is

for (each noncorner vertex)
{
if (vertex.IsEnabled())
{
if (block.delta0 <= vertex.delta0)
{
if (vertex.delta0 <= block.deltal)
{
// not sure vertex 1S needed, test
// s'mplification constraint
if (not vertex.SatisfiesConstraint(tolerance))
vertex.SetEnabled(true);

11.6 The Full Algorithm 391

else

{
// absolutely certain vertex is needed in
// tessellation
vertex.SetEnabled(true);

)

if (block.IsEvenParity())

{
vertex[lowerLeft].Enable(true);
vertex[upperRight].Enable(true);
}
else
{
vertex[upperLeft].Enable(true);
vertex[TowerRight].Enable(true);
}

Finally, the function RenderBlocks traverses the binary tree of triangles for the
block, as illustrated in Figure 11.12. Let the corner vertices be V;; for 0 <i <1 and
0 < j < 1. The pseudocode is

if (block.IsEven())

{
RenderTriangle(Vv0o0,Vv10,V01);
RenderTriangle(V11l,V01,V10);
}
else
{

RenderTriangle(V10,V11,vV00);
RenderTriangle(V01l,v00,V11);

The function RenderTriang1e does the recursive traversal of the binary tree. The
pseudocode is

void RenderTriangle (T,L,R)

{
// T = top vertex, L = left vertex, R = right vertex
if (triangle is interior node of tree)
{

392 Chapter 11 Terrain

// compute midpoint, recurse only if it 1s enabled
M = (L+R)/2;
1f (M.IsEnabled())

{
// split the triangle and recurse
RenderTriangle(M,T,L);
RenderTriangle(M,R,T);
return;

}

)

// Code for adding triangle <T,L,R> to tessellation goes
// here. Alternatively, the triangle can be sent directly
// to the rendering engine to be drawn now.

An implementation must have structures that keep track of the vertices and their
state (enabled/disabled). Rather than passing vertex locations, it is possible to pass
indices into vertex arrays and perform arithmetic on them to do the splitting and
state lookup.

Plate 5 illustrates subdivision of a height field terrain using tessellation based on
the continuous level-of-detail algorithm described in this chapter. The terrain system
is an implementation of a continuous level-of-detail algorithm. The top-left image is
the rendering at a particular level of detail for a small screen space error tolerance.
The bottom-left image is a wireframe view of that image. The top-right image is the
rendering at a level of detail with a larger screen space error tolerance. The bottom-
right image is a wireframe view of that image. While the top two images look the same,
the wireframe images show the difference in tessellation. In the demo, there is some
noticeable popping of triangles as you move about the terrain with the larger error
tolerance.

].]..7 OTHER ISSUES

Although the tessellation algorithm itself is the core of the terrain system, other
issues must be handled in a real game environment. This section describes the most
important of these: paging and memory management, use and construction of vertex
colors and normals, and height calculations.

11.7.1 TERRAIN PAGES AND MEMORY MANAGEMENT

The terrain algorithm was described for a single-height Y+ x @Y+ 1D height
field. To keep the memory usage at 2 minimum (unsigned short for heights and
queue indices), the restriction is N < 7. A height field of size 129 x 129 is not really

11.7 Other Issues 393

large enough to represent an expansive terrain in a game. Thus, a rectangular lattice
of height fields can be used, with each height field in the lattice called a terrain page.
There are two problems with this. The first problem is that if two adjacent pages are
dynamically tessellated independently, each page has no cracking, but the common
boundary will. The second problem is that the memory usage is still a concern for a
single page, especially if additional per-vertex information needs to be stored, such as
texture coordinates, vertex colors, or vertex normals.

The first problem is straightforward to handle. Recall in the pseudocode for block
initialization the lines of code where the vertex dependencies are established. For a
single page this code only initializes one of the two dependents for any vertex on
the boundary of the page. In an implementation using pointers to dependents, the
uninitialized pointer will be set to null, and any vertex dependency tree traversing will
test to make sure that a dependent pointer is not null before traversing a branch of the
tree. If two terrain pages are adjacent, then in fact the null dependent pointers of one
page can be set to point to vertices in the other page by a stitching process. Ifan adjacent
page is unloaded from memory, then the dependent pointers for the page remaining in
memory must be reset to null by an unstitching process. The pseudocode for stitching
is given below. The vertex information is assumed to be stored as a two-dimensional
array in row-major order. The dependents are indexed by 0 and 1, just as in the block
initialization pseudocode, and are consistently named to work with that code.

// for two pages that are adjacent on a left-right edge

void StitchLeftRight (TerrainPage pagelL, TerrainPage pageR)
{
for (row = 1; row < 2*N; rowt++)
{
pageR.vertex[row][0].dependent0 = pagel.vertex[row][2~N];
pagelL.vertex[row][2~N].dependentl =pageR.vertex[rowl[0];

}

void UnstitchLeftRight (TerrainPage pagel, TerrainPage pageR)
{
for (row = 1; row < 2*N; row++)
{
pageR.vertex[row][0].dependent0=null;
pagelL.vertex[row][2~N].dependentl =null;

)
// for two pages that are adjacent on a top-bottom edge

void StitchTopBottom (TerrainPage pageT, TerrainPage pageB)
{

394 Chapter 11 Terrain

for (col=1; col < 2AN; col++)

{
pageT.vertex[2*~N][co1]).dependent0 = pageB.vertex[0][col];
pageB.vertex[0][col].dependentl = pageT.vertex[2*N][co1]:
}
}
void UnstitchTopBottom (TerrainPage pageT, TerrainPage pageB)
{
for (col = 1; col < 2*N; col++)
{
pageT.vertex[2~N][col]).dependent0 = null;
pageB.vertex[0][col].dependentl = null;
}
}

The memory usage problem is a more complicated one. Given a set of terrain pages
that are required to be coexistent in memory, one way to minimize the use of memory
istoshare as much as possible between pages. While the height information is typically
unique to each page, it can be shared if the application wishes to repeat height fields,
much like texture coordinates are allowed to repeat to conserve texture memory usage.
The texture images themselves can be shared between pages, but at the cost of having
some parts of the world looking the same as other parts. Some of this effect can be
lessened by applying small, yet different, secondary textures that contain noise or light
maps to the terrain pages. If the tessellation of a page is stored in memory so that the
renderer can be fed all the triangles at once, as compared to sending one triangle at a
time when it is known it will be in the tessellation, the storage used by the tessellation
algorithm can be shared among all pages. While this does keep memory usage to a
minimum, the tessellation data is not persistent. If a picking operation is initiated
for a set of terrain pages, the pages have to be retessellated for that operation rather
than having the tessellation available from the previous rendering pass. However an
application decides to share memory, there are always trade-offs like these to consider.

Given an expansive terrain, not all pages can fit into memory at once, even with
an optimum amount of sharing. This requires what is effectively a virtual memory
manager whose job it is to load and unload terrain pages on demand or based on a
predictive system. If the terrain pages are organized as a rectangular lattice, a subset
of the pages called the working set (the same concept found in operating systems) is
maintained in memory. As the camera moves about the world, pages must be unloaded
and new pages must be loaded. Before unloading an old page, the unstitching process
is applied to all its adjacent pages. After loading the new page, the stitching process
is applied to all its adjacent pages. The loading process will be affected by any design
choices, such as which pages will share a single texture. In such a case, the texture
image will not be reloaded when the new height field is streamed in.

A recommended system for predictive loading is to use a multiresolution ap-
proach. Suppose the working setisa (2P + 1) x (2P + 1) lattice of pages. The center

11.7 OtherIssues 395

page, and possibly some set of immediate neighbors, is stored in memory in its high-
est resolution. That is, the height field and texture image are fully loaded in memory.
However, pages more distant from the center can be only partially loaded in mem-
ory. Consider that even if a distant page were fully loaded in memory, it is sufficiently
far from the camera that the tessellation algorithm would produce a small number of
large triangles. The active blocks in the quadtree are nearer to the root of the tree than
they are to the leaf nodes of the iree. The quadtree is effectively truncated and repre-
sents a height field of smaller resolution than the original. Thus, it is sufficient to load
only a small portion of the height field to support a coarse tessellation. As the camera
gets closer to that page, more height field data is loaded to allow a finer tessellation. If
the camera moves farther from the page, then the coarse-level data can be unloaded
to make room for data in pages that the camera is getting closer to. This scheme re-
quires that the height field not be stored as an array in row-major order. The height
data must be arranged to support the coarse-to-fine requirements. The coarsest level
of detail corresponds to the root block and uses the four corner points, the midpoints
of the edges, and the center point, a 3 x 3 array of values. The next level of detail fills
in the heights to form a 5 x 5 array, and so on. The implementation of a working
set manager includes tagging cach entry in the (2P + 1) x (2P + 1) lattice with the
desired level of detail that must occur for the height fields that are stored there. Each
time the camera moves, the system must decide to load/unload the height field data
at the specified levels.

11.7.2 VERTEX ATTRIBUTES

A terrain has to look good to be effective in a game. That means an application will
require textures, multitexture, and lighting (prelit with vertex colors or dynamicaily
lit using vertex normals). Each of these increases the memory usage for the terrain
system. Whether prelighting or dynamic lighting is used, the lighting requires knowing
or computing normals at the vertices of the height field. From a modeling point of
view, it is better to automatically generate normals rather than require an artist to
generate them. The normals can be computed using central differences. If (x;, v}, 2i ;)
is a height sample at an interior point (0 < i <2 and 0 < j < 2"), then an estimate
of the normal vector is obtained by using the fact that (—dH /dx, —aH /3y, 1) is a
(not necessarily unit-length) normal to the graph of z = H (x,),

Y i-bj T Zi4hj Zij-1 T i+l
Nij={= - 1
2y 25X ’ 204\, ’ 1)

where 8, and 8, are the sample spacings in world coordinates. T'he height samples z;;
are also measured in world units. If the heights are stored as unsigned short, thena
conversion to world coordinates is necessary, so each page must store such conversion
factors. The normal vector in the previous equation is then normalized, a requirement
by the lighting system.

396 Chapter 11 Terrain

Normals at points on edges or corner points of the height field must be calculated
differently. If an edge is shared between two adjacent terrain pages, then central
differences again can be used for normal vector estimates. In this case both pages
contribute to that estimate. For example, if 2 point (x;, yo, Zi,0) is on the top edge of
a page, but not a corner (0 < i < 2V), and there is an adjacent page, then a normal is

(C) (C) (T (C)
- 2 O—Z' 0 2. N _z..l
Ni.o = i—1, 41 i,2" —1 i .

28, ’ 28,

where the superscript (C) indicates height data from the current page and (7) in-
dicates height data from the adjacent top page. The normal is also then normalized.
Similar formulas can be derived for edge points on left, right, or bottom edges when
there are adjacent pages. At a corner point, information is required from two adjacent
pages, the ones adjacent to the edges forming the corner. For example, consider the
point (xg, Yo, 20,0). A normal is

w O D _ O
20— 2 %o2v—1 ~ %o

28, 25, 1

NO.O =

where the superscript (C) indicates height data from the current page, (7') indicates
height data from the top page,and (L) indicates height data from the left page. Similar
formulas can be derived for the other corner points when the adjacent pages exist.

At edges or corners when adjacent pages do not exist, the application can assign a
zero vector to the normals since typically such a page will not occur in the view frustum
(unless fogging is used to hide the end of the world). Another possibility is to use one-
sided differences for derivative estimation. For example, at (x;, yo, 2i,0) on the top edge
of a page, but not a corner, a normal that uses only the current page data is

Iy Zi-10 — Zi+10 Zi0 — Zi}
Nio= : —, — —,1]).
i,0 (25, 5y)

The x-derivative estimate is centralized, whereas the y-derivative estimate is one-
sided. The one-sided estimates are not recommended on an edge shared by two pages.
The problem is that a triangle is computed, one per page, and the triangle shares
an edge along the common page boundary. Because the two pages might duplicate
vertices along the shared edge (if that is how the pages are implemented), the one-
sided estimates will produce different normal vectors for the duplicated vertices, so a
discontinuity in lighting will most likely occur.

The normals as calculated here can be used for prelighting to generate vertex
colors. In a terrain-based game that has the concept of long-term time (that is, the
sun may vary its position in the sky during game play), dynamic lighting may be too
expensive since it is calculated each frame even when the position of the sun has not
changed. A better choice would be to use vertex colors that are recalculated only when
the position of the sun has changed.

11.7 Other Issues 397

11.7.3 HEIGHT CALCULATIONS

The height field provides information at points on a lattice. However, if the game
requires sublattice calculations to support picking, collision detection, or simply to
have smooth motion of a vehicle over the terrain, then there is a need to calculate
heights at points other than those of the lattice. A simple method for continuous
height is to use linear interpolation. If (x, y) is the world spatial location at which
an estimate is required for height z, it is necessary to find the three bounding samples
in the height field. The column index is ¢ = |x /3,], and the row indexis r = |y/é,],
where 8, and §, are the world values for the sample spacing. The row and column
indices determine the square that contains the test sample. A further check must be
made to determine in which of two triangles forming the block the point lives. The
pseudocode for the height estimate is given below.

float Height (float world_x, float world_y)

{

// world_delta_x is world spacing in x-direction;
// world_delta_y is world spacing in y-direction;:
¢ = floor(world_x/world_delta_x):

r = floor(world_y/world_delta_y);

dx = world_x - c;

dy = world_y - r;

if (parity(c) == parity(r))

{
if (dx > dy)
Z=(1-dx)*H[r][c]+(dx-dy)*H[r+1][c]+dy*H[r+1][c+1]:
else
Z=(1-dy)*H[r][c]+(dy-dx)*H[r][c+1]+dx*fH[r+1][c+1];
}
else
{
if (dx +dy <= 1)
Z=(1-dx-dy)*H[r][c]l+dx*H[r+1][c]+dy*H[r][c+1];
else
Z= (dx+dy-1)*H[r+1][c+1]+(1-dy)*H[r+1][c]+(1-dx)
*H[r]llc+l]:
1
return z;

For a smoother interpolation, it is also possible to use bilinear interpolation or

some higher-order scheme.

398 Chapter 11 Terrain

11.8 HEIGHT FIELDS FROM POINT SETS OR TRIANGLE
MESHES

Although it is easy enough to model the terrain for a game by building the height
fields directly on a rectangular lattice, it is also possible to construct the fields from
unordered point sets or from already constructed triangle meshes. In the case of point
sets, each element must be of the form (x, y, f(x, ¥)). The spatial locations (x, y) can
be triangulated, typically with a Delaunay triangulation (see O’Rourke 1994; Watson
1981). This reduces the problem of generating height fields from triangle meshes, a
process that can be done using interpolation.

11.8.1 LINEAR INTERPOLATION

URCE CODE

LIBRARY

Terrain

FILENAME

TriangleNetwork
LinearNetwork

Given a triangular mesh {(xi, y;, 2;)) that represents the graph of a function, an axis-
aligned bounding rectangle can be constructed to contain the spatial locations of
the vertices: Xpin = min; X;, Xmax = MaX; Xi, Ymin = MiN; ¥i, Ymax = Max; y;, and
Zmin = MiN; Zj, Zmax = MAX; z;. It is assumed that outside the planar extent of the mesh
the heights are provided procedurally, the simplest method being the assignment of
zero to the heights. The bounding rectangle can be partitioned into an R x C array
of terrain pages, where each page is to be sampled as a (2V + 1) x 2¥ + 1) array of
vertices. Adjacent pages overlap by one row or one column.

If (x, y) is the spatial location for one of the vertices in a page, a corresponding
height z must be computed for it. Simply locate a triangle in the original mesh that
contains (x, y). This is accomplished by using barycentric coordinates. If the three
vertices of a triangle are (x}, y;, z;) for 0 < j < 2, then any point P=(, y) can be
written as a barycentric combination of the f’j =&Xj ¥

i'; = Coi’o + ¢ C’l + 02‘—’2,
where co + ¢1 + ¢ = 1. If ¢; € [0, 1] for all j, then P is contained by the triangle,
either at an interior point (all ¢; € (0, 1)), at an edge (c; = 0 for exactly one j), or at
a vertex (c; = 0 for exactly two j values). Usingcog =1 — ¢g — ¢2,
P =Vo+cr(Vy — Vo) + ca(Va — Vo) = Vo + 1 Ey + 2 Ea.
The coefficients ¢, and ¢; can be computed by solving a linear system,

(2 2alle]-[52]

E, E, E;-E; €2 P-E]
Defining e;j = E,- . Ej, d=ene2— efz, and p; = P. E,-, the solutionisc; = (ea2p) —
e12p2)/8, c2 = (enp2 — en2p1)/é,andcg=1—c¢; — ca.

11.8 Height Fields from Point Sets or Triangle Meshes 399

If the solution satisfies the conditionsc; € [0, 1] forall j, then P is contained by the
projected triangle in the plane. The barycentric coefficients are used to compute the z-
value of P so that P is in the plane of the unprojected triangle, z = cozg + €12) + c222.

11.8.2 QUADRATIC INTERPOLATION

LIBRARY

Terrain

TriangleNetwork
QuadraticNetwork

The height fields generated by linear resampling of the triangle mesh are piecewise
planar. Such a mesh is not visually appealing. Instead, it is possible to create a smooth
mesh by local quadraticinterpolation (Cendes and Wong 1987). This method requires
specifying first-order partial derivatives at the original samples. These can be estimated
from the original mesh itself. Let’s look closer at the algorithm.

The input points are of the form (x;, y;, f(xi, ¥i) fe(Xi, ¥i)s fy(xis i), and a
triangulation of the spatial locations is assumed. The algorithm consists of two parts;

® Subdivison. Each triangle is subdivided into six triangles. The subdivision requires
knowledge of the inscribed centers of the triangle and its three adjacent triangles.

® Bézier net construction. Each subtriangle is further partitioned into four triangles.
This subdivision is affine, and the partition is used to build a quadratic function
(via the Bézier triangle method described in Chapter 18 of Farin 1990).

The quadratics are of course C! functions, but additionally the interpolation is C*
at any interface with other triangles, whether they are part of the current subdivision
or part of the subdivision of an adjacent triangle. Thus, the interpolation is globally
C'. Moreover, the interpolation has local control. If the function or derivative values
are modified at a single data point, then the affine subdivision of the triangles sharing
the data point does not change, but the function values at the additional control points
must be recalculated. If the spatial component of a single data point is modified, then
the affine subdivisions of the triangles sharing the data point change. These changes
are propagated to any immediately adjacent triangles of those that share the data point,
but no further.

Barycentric Coefficients as Areas

The algorithm makes use of barycentric coordinates, as described in the last section.
The coefficients have a geometric interpretation,

c Area(i’, V,, ‘72) c Area(f’o, 7’, f’z) c Area(vo, f’., 7’)
0 =—— = = O=F————= OQF————=—.
Area(Vy, Vi, V3) Area(Vo, Vi, V) Area(Vp, V;, V3)
The center of the inscribed circle for the triangle can be written in barycentric form.

The triangle formed by P, V), and V; has base length I_VI — i’_gl and height given by
the radius r of the inscribed circle. Thus, Area(P, V;, V3) =|V| — V3|r/2. Similarly,

400 Chapter 11 Terrain

Area(Vo, P, V3) = |Vp — Vo|r/2 and Area(Vy, Vi, P) = |Vo — Vir/2. The total area
is the sum of these three values,

r - - - - - -
A= (17— Vol +1Vo - Val + ¥ - 7).
The barycentric coordinates of the inscribed center are therefore

Vi — V3l Vo — V2l

Co = — s - = = ot C} = —2 - - = oy prannt'y
Vi = Vo + [Vo — Vo + [Vo — Wi [Vi— Vil + Vo = Vo + Vo — Vi

_ Vo - Vil
V1 = Vil + |V — Vol + 1V — W)

€2

These are just ratios of the lengths of the triangle sides to the triangle perimeter.

Inscribed Circles

One of the properties of the inscribed center is that each line from a vertex to the
center bisects the angle corresponding to that vertex. This property may be used to
prove the following result, which is needed in the subdivision algorithm: The line
segment connecting the inscribed centers of two adjacent triangles must intersect the
common edge of the triangles at an interior point.

Iftwo adjacent triangles form a convex quadrilateral, then clearly the line segment
connecting the inscribed centers has the desired property. If the triangles do not form
a convex quadrilateral, as is shown in Figure 11.13, some work must be done to prove
the result. The inscribed centers are Ko and K. Set up the intersection equations as

(1 —s)Ko +sK; = (1 —)¢ + th.

Note that K, and K| lie on different sides of the common edge (b, &), so the line
segment connecting the centers must intersect the line containing the common edge,
implying 0 < 5 < 1. The geometry of the setting also implies that the intersection must
occur on the & side of b, which implies t < 1. Ifit can additionally be shown that t > 0,
then the line segment connecting the inscribed centers must intersect the interior of
the common triangle edge.

Subtracting ¢, rearranging terms, and dotting with b — ¢ yields

1 —&=(1-5[(Ko =7 (B — O] +S[(K, =) - (b -]
= (1 = 5)[|1Ko — €lIb — &| cos(8o/2) + s[1Ky — ElIb — & cos(6/2),

Figure 11.13

11.8 Height Fields from Point Sets or Triangle Meshes 401

Adjacent triangles forming a nonconvex quadrilateral.

where 6 is the angle formed by edges @ — ¢ and b — &, and 6, is the angle formed by
edgesd — & and b — &. The half-angles in the formula occur because of the bisection
property mentioned earlier. Since 0 < 6; < 7 for interior angles in a triangle, it follows
that0 < 6;/2 < 7 /2 and cos(6;/2) > 0. The convex combination in the above formula
is therefore positive, which implies that ¢ > 0.

Bézier Triangles

Define a multi-index on three indices as I = (ig, i1, i2), where 0 <i; < |I| and |I| =
ig + iy + i5. Define Eq = (1,0,0), E; = (0, 1,0), and E; = (0, 0, 1). Given a tri-
angular array of points b; € R, where |/| = n, and given a barycentric coordinate
it = (ug, u1, U3), recursively define

b9ty = by

and

2
B =Y wb g, (),

k=0

where 1 <r <nand |J| =n — r. The point l;"(ﬁ) = l;{,' (#) is a point on the Bézier
triangle determined by the original array. The iterative algorithm is called the de
Casteljau algorithm.

When 1 = 1, this states that the poini on the Bézier triangle is just the barycen-
tric combination of the three vertices b(,, 0.0)> b(o 0y, and b(o o,n)- The interpolation

402 Chapter 11 Terrain

algorithm is concerned with the case n = 2. The triangle array is organized as

b.0.2)
baon b1y
beo0y ba,e bo20

The barycentric coordinates are listed as (u, v, w). Forr =1,

- - - -
b(1,00) = ub200) + vb1,1,0) + wha0.1)
- . - -
bo.1,0) = Ub(1.1.0) + vbeo.2.0y + wheo.1,1)
- - - -
bi.0.1) = ub(1,0,1) + vb(o,1,1; + who0,2).

Forr=2,

52 S | il |
bio00) = ub(100) F Vbg,1.0, + Whig 0,1y

baooy bae baon u
=[u v wl| bare bo20 b1y v |,
bapy boLy boo2 w

so the triangular Bézier patch is a quadratic function. This formula is a nice general-
ization of tensor products for rectangular grids.

Derivatives

Given a surface vector X (it), where it = (u, u1, u3) are barycentric coordinates (uo +
uy + u3 = 1), and a barycentric direction d = (dy, d\, d3) with dg + dy + d2 =0, the
derivative in the given direction is the tangent vector

2
D; i) =) di%y;
i=0

where X,, denotes the partial derivative of ¥ with respect to barycentric component
u;. The second-order directional derivative is

-x.llouo iuom xugu; dO
2 - - - - -
Da xw)=[dy d\ d2] Xuyug Xujuy Xujuy d |.

Xuyug Xuauwy Xuauy d2

11.8 Height Fields from Point Sets or Triangle Meshes 403

A general formulation can be made by using Bernstein polynomials,

itjlk!

w vl wk,

Bf jay @) =
where i + j + k = n. The rth-order directional derivative is

Dy R = Y a'3@)Bj(d),
\l\=r

where I = (ig, i1, i2) and 8'% = 8% /0ul®3u' 9u’}. For a Bézier triangle, the rth-
order directional derivative is given in terms of de Casteljau iterates and Bernstein
polynosmials:

rRR oy n! TR—F =\ nrey
D@ = oy IE, b~ (i) B} (d).

For the quadratic case n = 2, the first and second directional derivatives of
b2(u, v, w) are

boooy buasm baon d
D('d,_f,bz(u, vww)=2[u v w|| buLoy beo20 boun e
baony boiy boo2 f

and

5(2.0.0) Bu.l.o) Bu.o.l) d
D(zd.e.f)bz("'”' wy=2[d e f]| baroy be20 bory e
baon bowy beond LS

Note that the second derivative is constant with respect to u, v, and w, as expected for
a quadratic function.

Derivative Continuity

Farin (1990) provides a comprehensive development of derivative continuity on the
common boundary between two adjacent triangular patches. The main result is that
derivatives up through order s of b" depend only on the s + 1 rows of control points
“parallel” to the boundary in question. The cases discussed are those relevant to the
quadratic interpolation, s = 0 and s = 1. Figure 11.14 illustrates iwo adjacent trian-
gular patches (n = 2). The patches define two functions b?(u, v, w) and &2(u, v, w).

404 Chapter 11 Terrain

Figure 11.14

bo,0.2)

€(0,0.2)

Adjacent Bézier triangle patches.

Continuity of the functions is guaranteed if

boo) =001 baae =Cau0n b0 = Co20)

Continuity of the derivatives is guaranteed if

capy = ubge,1y + vbop) + wh(,1,0)
.1, = ubg,1,1y + vbu,1,0 + wbpe,20)-

Each pair of shaded triangles in the figure is coplanar. Moreover, the two pairs
have the same barycentric coordinates. The two continuity conditions are referred to
as coplanarity and coaffinity. Note that coaffinity implies coplanarity.

The Algorithm

In this section we will describe the Cendes-Wong algorithm. The input is a set of
points of the form (xi, yi, f(xi> ¥i)» fe(xis ¥0)» fy(xi> ¥i)) for 0 < i < N. The input
also includes a triangle mesh of the spatial locations of the samples. The output is a
globally C! quadratic interpolating function that takes as input spatial points (x, y)
and produces as output function values f (x, y) and derivatives f(x, y) and fy(x, y).

The idea is to subdivide the triangles and fit the subtriangles as quadratic Bézier
triangles so that derivative continuity is achieved on cach shared triangle edge. The
Cendes-Wong paper (Cendes and Wong 1987) provides a construction that stresses
the coplanarity condition for derivative continuity. The coaffinity condition is a con-
sequence of the affine subdivision of the planar triangles. Consider one of the triangles

Figure 11.15

11.8 Height Fields from Point Sets or Triangle Meshes 405

Control points in triangle subdivision.

shown in Figure 11.15. The points by, bs, and bg are the vertices of the triangle (sPatial
components in the xy-plane). The point by is the inscribed center. The points A; are
the inscribed centers for the adjacent triangles. The points by, b3, and bs are the inter-
sections of the triangle edges with the line segments connecting the inscribed center
with those of its adjacent triangles. In the case that the triangle does not have an adja-
cent triangle for one of its edges (the edge is on the boundary of the mesh), then the
midpoint of the edge is used in lieu of an intersection. The spatial relationships for
the subdivision points are as follows:

EO =8052 + 8154 + 8256, So+8,+6=1, 53 =aol;2 + all;4, ap+ay=1,

bs = Brbs + Pabe BL + B2 =1, bi=rV:+nVent+trn=1,
bs = (52 + b3)/2, by = (b4 + b3) /2,

bio = (ba + bs)/2, by = (b6 + bs)/2,

by = (b + b1)/2, brz = (bs + b1)/2,

bua = (B2 + bo) /2, bis = (bs t bo)/2,

bis = (bs + bo) /2, bis = aobis + a1bie,

bi7 = Bibis + Babus, bi3 = yobua + v2bus.

406 Chapter 11 Terrain

Figure 11.16

The required coaffine subtriangles are shaded in gray.

The 3D mesh points are denoted (bi» #1). The indices are convenient for identifying
the six Bézier control points for each of the six subdivision triangles. If i is the index
for a triangle, 1 < i < 6, then the indices of the control points for that triangle are 0,
12+ 4,13 + imod6, /, 6 + i, and 1 + imod6.

The goal now is to specify functions and derivatives at the three vertices and to
choose function values at the remaining 16 so that the coplanarity and coaffinity
conditions are satisfied in the Bézier triangle constuction. Figures 11.16 and 11.17 are
from Cendes and Wong (1987). The shaded regions must be coplanar for derivative
continuity to occur. The shaded quadrilateral straddling the interface of two triangles
must be planar. To see this let A, B, C, and D be any four points in R>. Let ¢, f, g,
and h be points along the line segments A B, BC, C D, and DA, respectively. If

length Ae _ length Dg and length Bf _ length Ah
length AB _ length DC _ °' length BC _ length AD

’

then the four points e, f, g, and h are coplanar.

The proof involves showing eg = (01/02)ef + ((1 — p1)/p2)eh, in which case
¢g, ¢f , and eh are linearly dependent vectors and must be coplanar. The quadrilateral
ABCD is constructed so that the desired length ratios hold and the result applies.

Now for the construction of the function values at the control points. Let ¢; denote
the function values at the 19 control points, 0 < i < 18. The vertex values ¢, ¢4, and

11.8 Height Fields from Point Sets or Triangle Meshes 407

Figure 11.17 Illustration for geometric relationships between the vertices.

¢s are already specified. The derivative values at the vertices are also specified, call
them V¢,,i =2,4,6. .
To satisfy coplanarity at vertex V:

¢1= b2+ Vo - (b7 — bo)
$s =2+ Yoz (bs — b)
b4 =2+ Vo2 - (b4 — b2).
To satisfy coplanarity at vertex V:
¢9 = s+ Vs - (by — by)
$10= b4 + Vo4 - (1o — bs)
16 =04+ Ve - (brs — ba).
To satisfy coplanarity at vertex Va:
¢11= ¢ + V5 - (b1 — be)
$12 = g6 + Vs - (Br2 — be)

¢18 = ¢ + Vs - (brs — b).

408 Chapter 11 Terrain

To satisfy coplanarity of the quadrilaterals containing Eo, E 1, and Ez:

¢ =apd2 + a1
= P1da + B2
&1 = rod2 + yaibs.

To satisfy coplanarity of the large triangle containing C:

®15 = coPr4 + 1016
17 = Bidis + Badis
¢13 = vod1a + Y2018
o = 8014 + 31916 + 82018

Verifying coaffinity in the spatial components is straightforward. The triangle
vertlces are related by a ag = ubo + vb; + wbs The midpoints are bl = (bo + b;)/Z
by = (bo + bs)/2, by = (b3 + bs)/2, @ = (do + b3)/2, anda; = (¢ + bs)/2. Consider

d) = (do + b3)/2
= (u/2)bo + ((v + 1)/2)bs + (w/2)bs
= (u/2)bo + ((v + u + v+ w)/2)b3 + (w/2)bs
= u(bo + b3)/2 + vbs + w(bs + bs)/2
= uby + vbs + wh,.

Similarly,

a; = (o + bs)/2
= (u/2)bo + (v/2)b3 + ((w + 1)/2)bs
= (u/2)bo + (v/2)b3 + ((w + u + v + w)/2)bs
= u(bo + bs)/2 + v(bs + bs)/2 + whs
= ub; + vby + whs.

Therefore, the midpoint subdivision satisfies the coaffinity conditions. It must be
verified that the function values assigned to the control points also satisfy the coaffinity
conditions. This turns out to be a consequence of the midpoint subdivision and the
coplanarity of certain triangles in the Bézier net.

11.8 Height Fields from Point Sets or Triangle Meshes 409

For example, let l;, = ubs + vby + why f_(_)r some baryc_entric cq_ordinates (u, v, w).
The mi_dpoint subdivision guarantees_that b7 = ubg + vby4 + wbh,. The plane at the
vertex b is of the form ¢ = K + N - b. Therefore,

¢7 — uds — vh1a — why= (K + N -b7) —u(K + N - bg) — v(K + N - bra)
—w(K + N -by)
=K(l—u—v—w)+1-\'/-(57—ul;s—vl;l4—wi)2)
=K@Q) +N-0
=0,
SO @7 = u¢s + v¢14 + we¢,. The midpoint subdivision also guarantees that bl3 =
ubys + vby + whyy. The plane contammg control points bifori=0and13<i <18
isalso of the form ¢ = K + N - b. A similar argument shows that @3 = u¢ 15 + vehp +
we 4. Thus, the two subtriangles satisfy the coaffinity condition. The same argument

holds for any pair of subtriangles, both within a single triangle and across a triangle
boundary.

4HBURCE CODE

LIBRARY

Sorting

FILENAME

All Files

CHAPTER

SPATIAL SORTING

he process of rendering a hierarchically structured scene is discussed in Chapter
4. The objects in the scene are drawn in the order determined by the depth-first
traversal of the scene. In almost all cases the rendered scene will be incorrectly drawn
using this approach. For example, if two disjoint objects along the line of sight of the
eye point are 10 be drawn, the object that is most distant should be drawn first. If
that object occurs after the closest object in a depth-first traversal, the scene will be
incorrectly drawn. Therefore, correct drawing of a scene can only be accomplished
through sorting. The example just given illustrates why sorting is needed. In a real
game it might be possible to simply sort the objects as they are modeled, for example,
in a cityscape that contains a lot of buildings. The actual sorting mechanism might
need to be more complex, especially if the objects are not disjoint and are intertwined
to some deg ce. In fact, if a scene contains transparent objects, the correct order for
drawing can be difficult to determine and might even require splitting the objects.
This is definitely the case for outdoor environments containing trees that are each
modeled by two intersecting alpha-blended polygons.
The basic idea behind spatial sorting is to avoid drawing a pixel on the screen
multiple times. The term depth complexity refers to how many times a pixel is written.

411

412 Chapter 12 Spatial Sorting

Since the entire screen is drawn each frame, the desired depth complexity is 1; that is,
each pixel is drawn once. The higher the depth complexity, the slower the frame rate.

The typical sorting method used is depth buffering, as discussed in Chapter 3. This
method is on a per-pixel basis. The depth, measured between near and far planes, is
stored in a z-buffer. The color of each pixel is stored in the frame buffer. Assuming the
z-buffer is enabled for both testing and writing, «. pixel is drawn in the frame buffer
only if its depth indicates it is in front of the pixel previously drawn. This is a slow
process for a software renderer, but with hardware-accelerated support, z-buffers are
a good general solution for sorting by depth.

Depth buffering requires a triangle to be processed, even if most or all of the
enclosed pixels are not drawn. It would be better to avoid sending triangles to the
renderer at all if they are not going to be drawn. Determination of this information
is on a per-object rather than a per-pixel basis. The methods discussed in this chapter
are for higher-level sorting. Section 12.1 is a summary of quadtrees and octrees, two
tree-based structures that provide a regular decomposition of the world. A quadtree
is used for subdivision of a planar rectangle, and an octree is used for subdivision of a
rectangular solid. However, many game environments require sorting that is naturally
related to the world data. For an indoor environment, a natural sorting method
relies on the use of portals, the topic of Section 12.2. For outdoor environments
and for correct drawing of scenes that contain alpha-blended polygons, binary space
partitioning trees are quite useful. Section 12.3 gives a description of such trees,
including how to construct them and how they are used for hidden surface removal,
visibility determination, and picking or collision detection.

].2.]. QUADTREES AND OCTREES

The scene graph provides a basic mechanism for culling objects. A comparison of
the bounding volume of a node to the view frustum can eliminate many objects
from being sent to the renderers. If the bounding volume does intersect the frustum,
then the subtree rooted at that node is further processed, but the processing is done
based solely on bounding volume information. The application may have higher-level
information about the structure of the world that can be exploited. For example, in a
terrain-based system it is possible to build a visibility graph to help eliminate entire
terrain pages that cannot be seen from the current camera location. Specifically, if one
terrain page has high mountains that hide the terrain behind them, then the hidden
pages do not have to be processed, even if their bounding boxes intersect the view
frustum.

Quadtrees or octrees can be used to partition the world into cells. The visibility
graph is also cell based. Since the camera is situated in one cell, a list of potcntially
visible cells can be made that relate to that ccll. At best this is a crude way of handling
visibility, but it can be quite effective if the world environment is carefully designed
to support it.

12.2 Portals 413

Construction of a scene graph to support cell-based visibility can be based either
on planar locations, in which case the plane can be decomposed into a quadtree, or
on full spatial locations, in which case space can be decomposed into an octree. The
scene graph nodes represent the particular quadtree blocks or octree blocks. If a node
represents a quadtree block, then it has four child nodes. If it represents an octree
block, then it has eight child nodes. Additional child nodes are used to represent the
actual objects that live in those cells. If the objects move about over time, the scene
graph needs to be reconfigured on the fly by attaching and detaching the additional
children. However, the basic quadtree or octree structure remains constant over the
application lifetime.

The pseudocode for the processing of a quadtree or octree scene graph is given
below. The visible list for a quadtree block stores pointers to all the nodes whose blocks
are potentially visible from the current block.

cameraBliock = GetBlockOf(renderer.camera);

visibleList = GetVisibleCellsFrom(cameraBlock):

for (each node in visibleList)
renderer.Draw(node);

As mentioned in Chapter 4, the Draw call recursively traverses the specified subtree
and attempts to cull based on bounding volumes before drawing. It is quite possible
that portions of the subtree corresponding to the quadtree structure are culled away
based on the bounding volume comparisons.

Of course the difficult part of the process is establishing the visibility lists. An
excellent reference for visibility determination is the doctoral dissertation by Seth
Teller (1992). The two-volume set by Hanan Samet (1989, 1990) provides everything
you ever wanted to know about quadtrees and octrees.

12.2 PORTALS

The quadtree and octree sorting attempts to set up a visibility graph based on meta-
knowledge that the application has about the structure of the world and the objects
in it. The game writers have tke responsibility for setting up the visibility graph by
hand or by some automatic method. An approach that requires less interaction is
a portal-based system. In this system, rather than using an explicitly built visibility
graph, the game writers can specify additional planes that trim down the view frus-
tum into smaller pieces. The classic situation is where the camera is positioned outside
a room, but looking into it. The doorway is a portal that allows you to see inside the
room, but the walls surrounding the doorway occlude the view of much of the room’s
contents. When drawing the room, objects hidden by the walls about the doorway can
be culled. Moreover, if objects are partially hidden, the planes formed by the frame
of the doorway and the camera location can be used to establish planes that can be
used for clipping in addition to culling. Portals are particularly useful for indoor-style

414 Chapter 12 Spatial Sorting

Figure 12.1

Iustration of visibility through a portal.

games because there are many walls and other objects that obstruct the view enough
so that a sufficient amount of culling can be performed. However, the use of portals is
not restricted to an indoor environment. For example, a character visible to the cam-
era might walk behind a building. Assuming the building is tall enough, it is known
that the top of the character will never be visible above the rooftops. The plane formed
by the camera location and the edge of the side of the buildingthat the character passes
by before disappearing from view can be used in a portal system. Once the character
is completely behind the building (that is, the character is on the invisible side of the
plane), it can be culled completely and not sent to the renderer for processing.

Figure 12.1 illustrates the classic situation for a portal. The gray area in the diagram
on the left shows what the renderer attempts to process in the standard view frustum.
The gray area in the diagram on the right shows how the portal planes restrict what
must be considered. Support for additional planes for culling is trivial using the
hierarchical scheme mentioned in Chapter 4. The culling mechanism kept track of
a flag of six bits, with each bit indicating whether or not the object is culled against
the corresponding frustum plane. The flag can be extended tohave any number of bits,
and the camera can store additional planes for culling purposes. The same planes can
be used for clipping, but in a hardware-accelerated system APIs such as OpenGL and
Direct3D tend to allow only a small number of additional clipping planes. A portal
system wanting to take advantage of the API must restrict its number of additional
planes accordingly.

An indoor level for which portals are used must be partitioned into convex regions.
By doing so, the order in which the components of the region are rendered is unim-
portant. The portals themselves are convex polygons that live in a plane separating
two convex regions. The portal provides a connection between the regions through
which one region can be seen from the other. In this sense a portal is bidirectional,
although for interesting effects, it is not necessary to be so. It is possible to construct
two adjacent regions such that one region is viewed from the other, but once in the
other region, the first is not visible. In fact, the second region may not even have a
portal connecting it to the first. This represents the notion of one-way teleportation.
In this chapter, we will assume that portals are unidirectional. If two adjacent regions

12.2 Portals 415

are to be viewable through a common geometric portal, then both regions must have a
portal associated with them, and the two portals coexist in space in identical locations.

The regions and portals together can form an arbitrarily complex scene. For
example, it is possible to stand in one region, look through a portal into an adjacent
region, and see another portal from that region into yet another region. The rendering
algorithm must draw the regions in a back-to-front order to guarantee the correct
visual results. This is accomplished by constructing an abstract directed graph for
which the regions are the graph nodes and the portals are directed graph edges.
This graph is not the parent-child scene graph, but represents relationships about
adjacency of the regions. Each region is represented as a scene graph node that contains
enough state information to support traversal of the adjacency graph. The portalsare
represented by scene graph nodes but are not drawable objects. Moreover, the portal
nodesareattached as children tothe region nodes to allow culling of portals. Ifa region
is currently being visited by the adjacency graph traversal, it is possible that not all
portals of that region are in the view frustum (or part of the current set defined by the
intersection of the frustum and additional portal planes). The continued traversal of
the adjacency graph can ignore such portals, effectively producing yet another type of
culling. Finally, the region nodes can have additional child nodes that represent the
bounding planes of the regions {the walls, so to speak, if the region is a room) and the
objects that are in the regions and that need to be drawn if visible. The pseudocode for
rendering a convex region in the portal system is given below. The object p1aneSet is
the current set of planes that the renderer uses for culling and (possibly) clipping. The
planes maintained by the portal are those formed by the edges of the convex polygon
of the portal and the current camera location.

void Render (Region region)
{
if (not region.beingVisited)
{
region.beingVisited = true:
for (each portal in region)
{
if (portal.IsVisibleWithRespectTo(planeSet))
{
planeSet.Add(portal.planes);
Render(portal.adjacentRegion);
planeSet.Remove(portal.planes);
}
}
Render(region.boundingPlanes):
Render(region.containedObjects):
region.beingVisited = false;

416 Chapter 12 Spatial Sorting

Figure 12.2

Figure 12.3

Region B

Portal BA i

Portal AB] Portal ABZ

Region A

Simple portal example.

Region B

Region A

L-shaped region in a portal system.

The visitation flag is required in case aregion hasabidirectional portal into an adjacent
region or if the region has a unidirectional portal into, and a unidirectional portal out
of, an adjacent room. This avoids traversing cycles in the abstract graph. Figure 12.2
shows a simple set of convex regions, portals, and the corresponding adjacency graph.

Although the regions must be convex, a nonconvex region can be processed in a
portal system by decomposing it as a union of convex regions with portals acting
as “invisible walls” This use of a portal deviates from the classic setting whereby
the portal represents a cutout (door, window) in a wall. Figure 12.3 shows how an
L-shaped region can be represented in the portal system.

As mentioned earlier, the portal planes can be used for both culling and clipping;
however, the renderer performance must be considered. If a scene has a lot of portals,
there is the potential for having a large number of additional planes active at one time.
The time spent culling and clipping can quite possibly be large enough that a better
alternative is to just allow the renderer to use a few planes to reduce its clipping load
and rely on its depth buffer.

12.3 Binary Space Partitioning 417

The same problem can occur if a single portal is a many-sided convex polygon that
forces the addition of a lot of planes to the system. Two alternatives come to mind. One
is to just use the planes for culling. The second is to approximate a complex portal by
constructing a bounding convex polygon with fewer edges and use the approximation
instead. If an object is culled by the approximating portal, then it would have been
culled by the original portal. However, there is the chance that an object is not culled
by the approximating portal when in fact the original portal would have culled it. The
trade-off is the time spent culling against a large number of planes versus the time
spent culling against a smaller number and drawing an object (with the aid of the
depth buffer) that is mostly occluded.

12.3 BINARY SPACE PARTITIONING

An extremely popular sorting method is binary space partitioning, in which n-
dimensional space is recursively partitioned into convex subsets by hyperplanes. For
n = 2 the partitioning structure is a line, and for n = 3 the partitioning structure
is a plane. A binary space partitioning tree, or BSP tree, is the data structure used
to represent the partitioning. For n = 3, the root node represents all of space and
contains the partitioning plane that divides space into two subsets. The first child,
or front child, represents the subset corresponding to that portlon of space on the
positive side of the plane. That is, if the partitioning plane is N-X —d=0, then
the left child represents those points for which N - X —d > 0. The use of the term
front is relevant when sorting for reasons of visibility. If the partitioning plane is
generated by a face of an object, and if the eye point is on the positive side of the
plane, then the face is visible and is called front facing. The second child, or back
child, represents the subset corresponding to the negative side of the plane. Either
of the subsets can be further subdivided by other planes, in which case those nodes
store the partitioning plane and their children represent yet smaller convex subsets
of space. The leaf nodes represent the final convex sets in the partition. These sets
can be bounded or unbounded. Figure 12.4 illustrates a BSP tree in two dimen-
sions. The square is intended to represent all of R2. The interior nodes indicate which
planes they represent, and the leaf nodes indicate which convex regions of space they
represent.

BSP trees are more general than quadtrees and octrees because there is no con-
straint on the orientation of the planes. Moreover, quadtrees and octrees can be imple-
mented as BSP trees. Given a parent node and four sibling nodes in a quadtree, a new
parent node is added for the first two siblings, making the old parent a grandparent.
A new parent node is similarly added to the other two parents. The new parent of the
first two siblings represents the left half of the quad, and the siblings represent a par-
titioning of that half into quarters. The same idea applies to an octree, where a parem
and eight siblings are replaced by a tree that makes the old parent a great-grandparent
and adds two grandparents and four parents.

418 Chapter 12 Spatial Sorting

Figure 12.4 BSP tree partitioning R2.

The first formal papers on this topic were Fuchs, Kedem, and Naylor (1979, 1980).
The BSP FAQ (reality.sgi.com/bspfag/) provides a good summary of the topic and has
links to Web sites containing other information or source code.

12.3.1 BSP TREE CONSTRUCTION

Although a BSP tree is a partitioning of space, it may also be used to partition objects
in space. If an object is on the positive side of a partition plane, then that object is
associated with the front child of the node representing the plane. Similarly, if an
object is on the negative side of the plane, it is associated with the back child. The
difficulty in classification occurs when the object straddles the plane. In this case the
object can be split into two subobjects, each associated with a child node. If the objects
are polytopes, then the subobjects are also polytopes that share a common face on the
partition plane. An implementation of BSP trees that treats the objects in the world
as a polygon soup may store the common face with the node of the partition plane.
Because of the potential to do a lot of splitting, this saves memory since the common
face data is stored once and shared by the polytopes. The pseudocode for construction
is given below. A precondition is that the initial polygon list is not empty.

void ConstructTree (BspTree tree, PolygonList list)
{

PolygonList posList, neglList;

EdgeList sharedList:

tree.plane = SelectPartitionPlane(iist); // Dot(N,X)-c =0
for (each polygon in list) do
{

type = Classify(polygon,tree.piane);

if (type =— POSITIVE) then

12.3 Binary Space Partitioning 419

{
// Dot(N,X)-c >= 0 for all vertices with at least
// one positive
posList.Add(polygon);
}
else if (type == NEGATIVE) then
{
// Dot(N,X)-c <= 0 for all vertices with at least
// one negative
negList.Add(polygon);
}
else if (type == TRANSVERSE) then
{
// Dot(N,X)-c is positive for at least one vertex
// and negative for at least one vertex.
Polygon posPoly. negPoly;
Edge sharedEdge:;
Split(polygon,tree.plane,posPoly,negPoly,
sharedEdge):
positiveList.Add(posPoly);
negativeList.Add(negPoly);
sharedList.Add(sharedEdge);
}
else // type = COINCIDENT
{
// Dot(N,X)-c = 0 for all vertices
tree.coincident.Add(polygon);
}
}
if (sharedList is not empty)
{
// Find all disjoint polygons in the intersection of
// partition plane with polygon list.
PolygonList component;
ComputeConnectedComponents(sharedList,component);
tree.coincident.Append(component);
}

if (posList is not empty)

(
tree.positive = new BspTree;
ConstructTree(tree.positive,posList);

420 Chapter 12 Spatial Sorting

if (neglist is not empty)

{
tree.negative = new BspTree:
ConstructTree(tree.negative,neglist);

The function SelectPartitionPlane chooses a partition plane based on what
theapplication wants. The input is the polygon list because typically a plane containing
one of the polygons is used, but it is possible to select other planes based on the list
data. For example, the ideas in building oriented bounding box trees (see Chapter 2)
may be applied. An oriented bounding box can be fit to the polygons in the list, and
the selected partition plane is the one whose normal vector corresponds to the axis
with greatest extent. This latter choice is an attempt to create a balanced BSP tree.
Other choices can be designed to meet a criterion such as minimizing the number of
polygon splits.

The function Split for triangle lists is essentially the first clipping algorithm
mentioned in Chapter 3. More generally, the loop over the polygon list represents
the general Boolean operation of splitting a polygonal object by a plane. This allows a
BSP tree to be used for computational solid geometry operations. The pseudocode is
structured to indicate that the positive and negative polygons in a split share vertices.
The shared edges are processed later to compute the polygons of intersection in
the partition plane. For many applications, having access to these polygons is not
necessary, so the shared edge code can be safely removed.

Finally, note that the recursive call of Const ruct Tree terminates when the corre-
sponding tree node contains only coincident polygons. Other criteria for stopping can
be used, such as termination (1) when the number of polygons in a positive or nega-
tive list is smaller than an application-specified threshold or (2) when the tree reaches
a maximum depth. Both of these criteria were mentioned in oriented bounding box
tree construction.

12.3.2 HIDDEN SURFACE REMOVAL

BSP trees provide an efficient method for sorting polygons by way of a depth-first
traversal of the tree. The price for sorting is that polygons have to be split in the process.
For static geometry, the trees can be built as a preprocessing step, so the expense of
sorting is not incurred at run time.

Back-to-Front Drawing

Drawing objects farthest from the eye point first, followed by drawing those closer to
the eye point, is the essence of the painter’s algorithm. The objects are drawn in an

Figure 12.5

12.3 Binary Space Partitioning 421

Two polygons that cannot be sorted.

order much like a painter draws on canvas, background first and foreground last. The
condition for this method to be correct is that any two visible polygons in the scene
must be separated by a plane. Figure 12.5 shows a situation where the separation is not
possible. However, the BSP tree construction will partition the overlapping polygons
into disjoint subpolygons. The polygons represented by the leaf nodes of the tree
are correctly ordered to be drawn back-to-front. The pseudocode for the traversal
is shown below and assumes the BSP tree construction does not use the shared list
scheme mentioned earlier. The test against view direction eliminates portions of space
that are approximately behind the view frustum and are not visible.

void DrawBackTofFront (BspTree tree, Camera camera)

{
// compute signed distance from eye point E to plane
/! Dot(N,X)-c = 0
float sd = Dot(tree.plane.N,camera.E) - tree.plane.c;

if (sd>0)
{ if (-Dot(tree.plane.N,camera.D) >= camera.cos(A))
{ if (tree.negative is not empty)
DrawBackToFront(tree.negative,camera.E);
DrawPolygons(tree.coincident);
}

if (tree.positive is not empty)
DrawBackToFront(tree.positive,camera.E);
}
else if (sd < 0)
{
if (Dot(tree.piane.N,camera.D) >= camera.cos(A))
{

422 Chapter 12 Spatial Sorting
if (tree.positive is not empty)
DrawBackToFront(tree.positive,camera.E);

DrawPolygons(tree.coincident);
}

if (tree.negative is not empty)
DrawBackToFront(tree.negative,camera.E);

}
else
{
if (Dot(tree.plane.N,camera.D) >= 0)
{
if (-Dot(tree.plane.N,camera.D) >= camera.coS(A))
{
if (tree.negative is not empty)
DrawBackToFront(tree.negative,camera.E);
DrawPolygons(tree.coincident);
}
if (tree.positive is not empty)
DrawBackToFront(tree.positive,camera.E):
}
else
{
if (Dot(tree.plane.N,camera.D) >= camera.coS(A))
{
if (tree.positive is not empty)
DrawBackToFront(tree.positive,camera.E);
DrawPolygons(tree.coincident);
}
if (tree.negative is not empty)
DrawBackToFront(tree.negative,camera.E);
}
}

}

The view direction of the camera is D and the field of view for the frustum is angle 2A.
The cosine of A is precomputed and stored in the camera object for culling purposes.
When sd < 0, the comparison of dot products is used to determine if N is in the
cone of the view frustum. If it is, then the partition plane is oriented in a way that it

12.3 Binary Space Partitioning 423

possibly intersects the view frustum, and the subtree must be processed. If it is not,
then the negative side of the plane does not intersect the frustum and is invisible, so it
is not drawn. A more accurate culling could be implemented by testing for separation
between view frustum and partition plane. In this case the sign of the dot product
between plane normal and view direction is important, not the field of view of the
frustum.

Front-to-Back Drawing

Back-to-front drawing with BSP tree support accurately draws the scene, but pixel
overdraw can be significant. The depth complexity is sufficient that such an algorithm
is not fast enough for real-time rendering. It is better to first draw the polygons closest
to the eye point. Now once a pixel is written, it should not be overwritten by any other
polygon because of the correctness of the sorting. This requires some type of pixel
mask that indicates whether or not a pixel has been drawn. Note that the mask is not
the same as a depth buffer. The depth buffer is used when it is not known what order
the polygons are in. Depth values are compared before an attempt to write a pixel.
Moreover, a pixel can be written more than once using a depth buffer approach.

Scan Line Masks

There are a couple of ways that BSP trees can be used to assist in maintaining the
pixel mask. One way is to keep track of each scan line separately. When a triangle is
rasterized, each scan line that intersects the triangle has an interval of pixels that are
written (interval length is one or larger). A one-dimensional BSP tree can be used to
keep track of the written intervals. Each node represents an interval [xo, x1), where
the left end point is included and the right end point is not. The half-open interval
supports the idea that each triangle is responsible for its left and vertical edges, thereby
guaranteeing that shared edges and shared vertices of triangles do not have their pixels
drawn more than once. Initially, an empty scan line is represented by a single-node
BSP tree. If the screen width is W pixels, then the interval for the node is [0, W). Now
if a triangle is rasterized on that scan line in the interval [xg, x;), the value xg causes
a splitinto [0, x¢) and [xo, W). The left interval is associated with the left child of the
root node and the right interval is associated with the right child. The value x) causes
a split of the node for [xo, W) into a left child representing [xg, x1) and a right child
representing |.x1, W). Figure 12.6 illustrates the BSP tree representing rasterization of
a single interval of points. The figure shows the split intervals and the x-value that
caused the split. Consider a new interval [x3, x3) to be rasterized on that scan line. For
the sake of argument, suppose that 0 < xo < x2 < x; < x3 < W. Value x; is processed
first. Comparing it against xo at the root node, x; is larger so the right child is the
next node to visit. Comparing x; against x, shows it is smaller. Since the left child is
an interval of drawn pixels, no splitting occurs. Value x3 is now processed. The tree
is traversed and the comparisons cause the leaf node for [x), W) to be reached. That

424 Chapter 12 Spatial Sorting

Figure 12.6

IO‘|W)
/5 O\
10.xp) (X0, W)
VN
Ixox) [x W

One-dimensional BSP tree representing drawn pixels on a scan line.

interval has undrawn pixels, so a split occurs into [x, x3) and [x3, W). The left interval
is tagged as drawn and the right interval is tagged as undrawn.

This method of masking is very well suited for software renderers that need to
conserve as many cycles as possible. Keep in mind that the triangle edge setup for
interpolation of vertex attributes must still be performed. Moreover, if a prepared
interval is additionally clipped by the scan line BSP tree, the vertex attributes for the
end points of the clipped interval must also be interpolated.

Region Masks

The scan line mask concepts can be extended to two dimensions. A BSP tree represents
the current drawn state of pixels on the screen. When a triangle is to be rasterized,
each line containing a triangle edge is processed by the tree. The line normal is chosen
to point to the triangle side, the side on which pixels will be drawn. After the three
lines are processed, the BSP tree has at most seven leaf nodes, with one of them
corresponding to the triangle to be rasterized. The next triangle to be rasterized has
its edges processed by the BSP tree, but overlap is possible. The technical challenge is
tagging the nodes appropriately so that the leaf nodes are correctly tagged as drawn
or undrawn. In effect the region mask algorithm produces a BSP tree whose drawn
leaf nodes form a disjoint union of all pixels that will be drawn on the screen for the
given frame.

12.3.3 ViISIBILITY DETERMINATION

Given the eye point, visibility determination refers to the process of deciding what
parts of the world are visible from that location. In a world populated with polygonal
objects, knowing what is visible helps to minimize the data that is sent to the renderer.
The concept of occlusion is related. Objects that are occluded in the scene do not have
tobe processed by the renderer. Visibility information can be used for occlusion culling,
the process of determining those objects that are not visible from the current eye point.
For a static scene where the eye point cannot move, the visibility information can
be computed as a preprocessing step. However, if the eye point can move, what is

12.3 Binary Space Partitioning 425

visible changes over time. Determining exactly what is visible dynamically is usually
an expensive process. Most systems attempt to get an approximation and minimize
the number of objects that are sent to the renderer but are unknowingly invisible.

The portal system described earlier is a reasonable way to deal with dynamic
visibility as long as the number of portals is small. BSP trees can also be used for
visibility determination. Two methods are described here, one that works in view space
(3D) and one that works in screen space (2D). In both cases, a BSP tree already exists
that represents the partitioned world and is used for front-to-back sorting, Call this
tree the world tree. A second BSP tree is used to store the visibility information. Call
this the visibility tree.

View Space Method

The visibility tree lives in three dimensions and initially represents the view frustum.
The partitioning planes in the tree are the six forming the frustum. Given the current
eye point, the world tree is traversed. Each polygon encountered in the traversal
is processed by the visibility tree and factored into subpolygons, each of which is
totally visible or totally invisible. Each visible subpolygon is used to define a new
set of partitioning planes that are formed by the eye point and the edges of the
subpolygon (compare with portal systems). The eye point and corresponding planes
form a pyramid. Any portions of the world in the pyramid but behind the subpolygon
are invisible to the eye. The visibility tree now stores that pyramid and uses it for
further clipping of polygons that are visited in the world tree traversal.

Screen Space Method

The visibility tree lives in two dimensions and initially represents the rectangle corre-
sponding to the drawable pixels on the screen. Given the current eye point, the world
treeis traversed. Each polygon encountered in the traversal is projected to screen space,
then is processed by the visibility tree and factored into subpolygons, each of which is
totally visible or totally invisible. Because the world tree sorts the polygons from front
to back, any visible subpolygon obtained in the clipping will remain visible throughout
the visibility tree calculations. These subpolygons can be stored in a list for whatever
purposes the application requires.

12.3.4 PICKING AND COLLISION DETECTION

Given a BSP tree representing the wotld, a picking operation involves determining if
a linear component (line, ray, or segment) intersects any objects in the world. The
idea is to traverse the BSP tree and recursively split the linear component. If any linear
subcomponent exists once a leaf node representing a world polygon is reached, then

426 Chapter 12 Spatial Sorting

the original linear component does intersect an object in the world. The exact point of
intersection can becomputed when the intersected leaf nodeis reached in the traversal.

Collision detection between two polygonal objects is a more complicated problem
to solve. If two BSP trees are used to represent the objects, and if the objects are not
moving, the BSP trees can be used to compute the intersection of the objects. If the
intersection is not empty, then the objects are currently in a colliding state. Although
Boolean operations between BSP trees can be implemented to provide general support
for computational solid geometry, they can be somewhat expensive because they
involve splitting each polygonal face in one tree against all the polygonal faces of the
other tree. Moreover, if the objects are moving but not changing shape, the BSP trees
represent model space information, and the partitioning planes must be transformed
into world space coordinates each time the objects move. The intersection testing is
much more complicated by the motion, and Boolean operations between the trees are
generally very expensive. The methods for bounding volume trees are much cheaper
to use since they are based on separating axis testing or distance calculations that take
advantage of geometric information about the bounding volumes to localize polygon-
polygon intersection testing rather than doing an exhaustive comparison of pairs of
triangles.

CHAPTER

SPECIAL EFFECTS

his chapter describes some special effects that can be used to provide a more

realistic rendering of a scene. So far this book has discussed only the mechanisms
that a game engine provides for drawing whatever content the game designers can
dream up. But generating the content for special effects and combining them in just
the right way is essentiallyan art. In this chapter we will give onlya high-level summary
of the ideas, with examples presented in the color plates that accompany the book. For
a more detailed description of special effects and references. see Moller and Haines
(1999) and many of the articles that appear in Game Developer Magazine.

13.1 Lens FLARE

Lens flare occurs when the lens of a camera is pointed near a bright light source. The
flare typically consists of a set of annular regions of brightness that occur approxi-
mately along a line and a set of various length line segments emanating from the light
source. The effects are due to refraction of light in the lens and to variation of density
of material in the lens. Adding lens flare to a rendered scene is quite popular. The basic
method is to create textures for the flare components, then place them in the scene

427

428 Chapter 13 Special Effects

along a ray emanating from the light source with direction dependent on the view
direction. The textures are placed as billboards that are required to be screen aligned.
The starlike texture can also be animated as the eye point moves to give a more realistic
effect. Plate 6 provides an illustration of the concept.

13.2 ENVIRONMENT MAPPING

Environment mapping is a method that allows surfaces to be drawn with a reflection
of the environment in which the surface lives. Blinn and Newell (1976) introduced the
concept. A ray is drawn from the eye point to each point on the surface and reflected
through the outward pointing unit-length normal at that point. The direction of the
reflection vector is used as a lookup into a texture map that represents the surrounding
environment. Figure 13.1 illustrates the idea. If E is the eye point and P is the surface
point with normal 1-\./ the unit-length view vector is V= (i’ E)/If’ EI The unit-
length reflection vector R must be computed. Observe that the projections of } % and R
onto the tangent plane must be the same vector; therefore, R — (N - R)N V- (N
V)N. The angle between N and R and the angle between N and — v are the same, in
which case N - R = —N . V. The reflection vector is therefore R = V — 2(N V)N
In spherical coordinates it is

R =(R., Ry, R;) = (cos 8 sin @, sin 6 sin ¢, cos $),

where @ € [0, 2] and ¢ € [0, x]. The texture coordinates are chosen as u = 6/(2r)
andv=¢/n,so

atan2(Rn Ry, Ri=20 1
= d = - R,).
“ 1 + atan2(R\,, Ry), Ry <0 and v T acos(Rz)

Applying environment mapping on a per-pixel basis is an expensive operation
because it requires calculating an inverse square root (to create unit vector V), an
inverse tangent, and an inverse cosine for each point P on the surface. The cost can
be significantly reduced in three ways by using approximations. First, in a real-time
system the objects are polygonal models or dynamically tessellated surfaces that result
in polygonal models. Assuming each vertex in the model has been assigned a surface
normal, only the vertices need to be assigned texture coordinates using the reflection
vector. The texture coordinates for other points in the polygons are computed via in-
terpolation by the rasterizer. This reduces the number of points for which (u, v) must
be computed. Second, if the object is approximately convex and the eye point some-
what distant from the object, a central point C can be selected to represent the object.
For example, the central point can be chosen as the average of the model vertices or
as the center of a bounding sphere for the object. The view direction is computed
tobe V=(C - E‘)/lé — E| and is used for all model vertices. Thus, the inverse

13.3 Bump Mapping 429

Texture
map

(u,v)

Figure 13.1 Illustration of environment mapping.

square root that was required per vertex is replaced by a single inverse square root.
Third, the inverse trigonometric functions can be approximated by linear functions
v=(1+4+R.)/2andu= (1 + R,)/4for R, >00ru=(3— R;)/4for R, <0.

The function from (u, v) > R is a map from the unit square onto the sphere.
One problem with such a mapping is that if the texture is not cylindrical in u, then
the seam is visible in the environment mapping. A more serious problem is that the
metrics of the plane and the sphere are not the same, so there must be distortion near
the poles of the sphere. This problem is mathematically unavoidable. Other methods
have been developed to circumvent the problem: cubic environment mapping, where
the target surface is a cube rather than a sphere (Greene 1986); sphere mapping, where
the texture image itself is defined on a sphere and the environment mapping does not
lead to distortion (Williams 1978); and parabolic mapping, where two parabolic halves
are used instead of a sphere and two textures are reflected off the halves (Heidrich
and Seidel 1998). Plate 3 provides an illustration of environment mapping in the
character’s dress.

13.3 BumP MaPPING

Bump mapping is a method for changing the visual appearance of a surface by using
a different set of normals for lighting than the surface normals (Blinn 1978). The
classical method is to vary the normal per pixel, but this is not suitable for real-time
graphics. An approach involving derivatives of the texture image requires multiple
rendering passes to an offscreen buffer and the ability to do multitexturing. The effect
in this method is to provide an embossed surface. The original texture is a gray-scale
image. The triangle mesh is rendered to an offscreen buffer with this texture and with
diffuse lighting. The texture coordinates at the vertices are then offset by a differential
vector (i, v) whose length is small (on the order of a pixel or two), and the mesh is
rendered to a second offscreen buffer. The difference of the values in the two offscreen
buffers produces an image with an embossed effect. The mesh is rendered to the screen
in the usual way, and the difference texture is combined as a secondary texture. Other

430 Chapter 13 Special Effects

more sophisticated methods have been proposed for bump mapping, but a standard
across current hardware-accelerated cards is not yet agreed upon. A good survey of
the various techniques is found in Mdller and Haines (1999). Plate 7 provides an
illustration of derivative-based bump mapping.

13.4 VOLUMETRIC FOGGING

Depth-based fogging was described in Chapter 3. The general use of such fogging is to
hide clipping artifacts at the far plane when new objects enter the view frustum at that
plane. The fog also helps add to the perception of depth of faraway objects. Depth-
based fogging cannot help an application generate dense fog that occurs close to the
eye point. Instead, the method of volumetric fogging can be used. The idea is to select
a region of space that is to contain fog. For each visible vertex in the scene, calculate
the length of intersection with the region and the segment from the eye point to the
vertex. A fog value proportional to the length of intersection and in the range [0, 1]
is assigned to the vertex as an attribute that will be interpolated during rasterization.
This provides fog values for the other points of the triangles sharing that vertex. Color
combination is the same as for depth-based fogging, inal = (1 — f)Cvertex + fCrog-

One example is to create alayer of fog over a terrain. The fog region is chosen as
the region of space between two parallel planes. If E is the eye point, Vis the vertex,
and N - X =¢; are the planes for i =0, 1, then the segment is E+t(V—E) for
t € [0, 1], and the intersection of the line of the segment and the planes occurs when
at i =(ci — N - E)/N - (V — E). Let [t0, 1] = [0, 1] N [to,]. The length of the
intersection is

L(V)=|(E + (V- E)— (E+ 10V - E)|= (11 —)|V ~ E|.

Assuming that the fog range is [0, 1], the values L(\?) € [0, 50) must be mapped
to the range. There are many choices, but a simple one is to use a rational function
f(LYy=cL/(L 41) for constant ¢ > 0. The choice of ¢ allows control over how large
L must be before f(L) is sufficiently close to 1. Plate 8 provides an illustration of
volumetric fogging.

13.5 PROJECTED LIGHTS

Projected lighting is a dynamic multitexturing technique that can be used to create a
wide variety of interesting special effects. The idea is to select a location in space that
corresponds to the projector. a projection frustum that is much like the view frustum
but allows for skewing (the pyramid is not necessarily orthogonal), a texture to project
into the environment, and a set of triangles in the environment that are to receive that
image as a secondary texture. A classic example is to set up a projected light that casts
light through astained glass window. While there is technically no light source present,

13.6 Projected Shadows 431

the stained glass texture is projected onto the walls and floor of the room that contains
the window. Moreover, the projector can be moved over time so that the projected
texture itself moves, thus giving the appearance that the sun is slowly moving across
the sky. Other examples include creating the effects of a vehicle’s headlamps shining
onto a road, a flashlight shining onto portions of a room, or even projecting cloud
shadow textures onto the ground.

The secondary texture coordinates of the triangles that are to receive the projected
texture must be computed on the fly. For each triangle vertex, a ray is cast from the
projector location to that vertex. The intersection of the ray with the near plane of
the projection frustum generates a relative coordinate (x, y) € [0, 1]2 that is used as a
lookup into the projected texture image. Thus, the projection is as if a light shines onto
a texture that is coincident with the near plane of the frustum, with the corresponding
color projected onto the receiving triangle. Once the secondary texture coordinates
are known for the triangle, the projected image is combined with the base texture of
the triangle just as in the multitexturing system. The application has the choice of
how to combine the textures, whether as an additive process (brightening effect), a
multiplicative process (darkening effect), or some other combination mode that is
supported by the system.

While the projection process is much like that of the camera and view frustum,
there are some differences that must be considered. First, the projection frustum
should not usually have a far plane since that might abruptly terminate the light effect
in an unnatural way. The other planes can be used for clipping the receiving triangles,
but depending on the application that might also cause strange artifacts. If only one
or two vertices of a triangle are influenced by the projector, the third can be assigned
some texture coordinate so that the entire triangle is multitextured in a way to cause
some type of gradual attenuation of the projected texture. Finally, back facing triangles
do not have to receive the projected texture. If back facing triangles are omitted, there
can be noticeable artifacts along the terminator, the polyline that separates the front
facing triangles from the back facing ones. An alternative to eliminate the artifact is to
use culling based on vertex normals rather than triangle normals. The triangles that
share the terminator will have some front facing and some back facing normals. An
interpolation can split the triangle into two halves, one half that receives the projection
and one half that does not. For a tessellated sphere, this method will project the texture
onto exactly the front facing hemisphere. Plate 3 provides an illustration of projected
light in the disco ball dots.

13.6 ProsEcTED SHADOWS

Projected shadows are very much related to projected lights. Rather than projecting a
texture onto the environment, a projected shadow system consists of a projector that
corresponds to a dark source rather than a light source. The system has a set of objects
that are used to occlude the projector as a light source or enhance the projector as a
dark source. The occluding objects will cast shadows on a receiving set of triangles.

432 Chapter 13 Special Effects

The associated projected texture is actually generated on the fly rather than se-
lected a priori as for projected lights. The idea is to treat the projector as another
camera and render the occluding objects to an offscreen texture. This is necessary
since the occluding objects can be arbitrarily complex, such as a moving character in
the scene. The background color of the rendering is white, and the triangles of the oc-
cluders are rendered with only black vertex colors. The resulting texture appears as a
shadow with hard edges. Support by some hardware cards for this process uses a block
of memory called a stencil buffer. Blending the shadow texture as a secondary texture
is done with any of the usual combination modes in the multitexturing system.

For an occluder that is a convex triangular mesh, the general rendering of the
mesh is not necessary to obtain the shadow edge. The terminator of the mesh can
be computed very rapidly. The idea is to treat the triangle mesh as an abstract graph
whose nodes correspond to the triangles and whose arcs connect nodes corresponding
to adjacent triangles. Each node has an associated value that is the signed distance
of the projector location to the plane of the triangle (with outward facing normal).
The arcs that connect two nodes with opposite signs correspond to the edges on the
terminator. Starting with a single triangle, a linear walk of the graph is started to
find an arc connecting opposite-signed nodes. Once found we have an edge of the
terminator. A second linear walk occurs along the remaining edges of the terminator.
This requires a vertex-edge-triangle data structure for which the vertices store all
adjacent edges. Abstractly, the determination of all node pairs with opposite-signed
distances is similar to a zero contour extraction of a planar image. The graph nodes
are the pixels, and the signed distances are the pixel values. However, the image is
defined on a closed surface rather than on a plane. The terminator extraction for a
convex mesh can be extended to general meshes using the analogy to zero contour
extraction in an image. The terminator now consists of a union of polylines, each
polyline representing a connected component of the zero contour of signed distances.

Once the terminator is computed for the convex occluder, it can be projected onto
the offscreen buffer. The projection of the terminator is a convex polygon in the pro-
jection plane, so it can be fanned into a set of triangles and processed by the rasterizer.
Or the convex polygon itself can be rasterized without the partitioning into triangles
as long as the rendering system has support for it. Plate 9 provides an illustration of
projected shadows. The harlequin is an animated skin-and-bones character that per-
forms a tumble roll into a kneeling position. The image shows the first part of the
sequence. A projected shadow system is used to render the harlequin with a second
camera and renderer to an offscreen texture that is black at a pixel whenever that pixel
is occluded by the harlequin. That texture is rendered as a secondary texture by the
multitexturing system.

13.7 PARTICLE SYSTEMS

In its simplest form, a particle system consists of a set of points, each having an
associated color. The point locations are time-dependent and can change based on

Animation

FILENAME

ParticleController

13.8 Morphing 433

just about any algorithm the user can think of. Usually, a physically based model is
applied. For example, the particles might represent smoke and move randomly to
simulate Brownian motion. Another example is to use particles to represent water
droplets spewing from a fountain. The path of each particle is parabolic and depends
on the initial velocity of the particle and the acceleration due to gravity. Although such
particle systems are easy to render, they can be limited in visual effect.

An extension is to allow the elements of the particle system to be short line
segments with vertex colors assigned to the end points. These can be used to simulate
effects such as sparks shooting from a fire. The leading point of the spark is colored red
or orange and the trailing point is a darker hue. The vertex colors themselves change
over time to represent that the spark is cooling. Although line segments allow more
significant effects than points, they can also be limiting in visual effect.

One of the best ways to represent a particle is as a square with center point
C and half-wndth r. The square is always screen aligned, and the four corners are
C £ rU £ rR, where U is the view frustum up vector and R is the view frustum
right vector. Moreover, the particle has assigned to it a color, a normal vector, and
a textured image. In this sense the particle is rendered as a two-triangle square with
the same surface attributes that any rendered triangle mesh can have. The textured
image is mapped fully onto the square and in almost all cases has an alpha channel.
The idea is that a spherical particle can be drawn with a textured image that contains
a sphere in its center and is fully transparent outside that part of the image. Because
the particle now has a size, the distance from the eye point makes a difference in the
rendering. The color and normal vector can be used for modulation of the texture,
usually via dynamic lighting. One nice use of particles in this form is as leaves of a tree.
The particle can represent a single leaf or a collection of leaves. Multiple systems can be
used, each system having its own leaf texture, so that some variation of leaves occurs in
the final rendering. Plates 10 and 11 provide illustrations of particle systems. In Plate
10, the pond has fireflies swarming over it, generated as a particle system. The light
shafts are alpha-blended polygons with an additive effect to produce the brightness.
The view is taken with the observer just slightly under a downed tree trunk with moss
hanging from it.

In Plate 11, the renderings are from the same part of the data set, but with lighting
that conforms to day, dusk, and night (top to bottom images). There isa wind blowing
from top left to bottom right in the images and the trees are animated to display the
effect of the wind. The dust clouds are also moving and are built as a particle system.
The waterfall is built with static geometry, but animated texture coordinates to give
the effect of flow.

13.8 MORPHING

Morphing is the process of deforming an object over time. Ina graphics setting only the
surface of the object is deformed. In particular, the vertices of a mesh are allowed to
change with time, and in many applications the topology of the mesh is preserved,

434 Chapter 13 Special Effects

. SOURCE CODE

Animation

FILENAME

MorphController

although this constraint is not essential. Because morphing involves time-varying
quantities, it can be implemented as a controller, as discussed in Chapter 4.

While there are infinitely many ways to control a morph, two standard ones
are useful in a real-time setting. The first way is to control the individual vertices
while preserving the mesh topology. A vertex location can be controlled through user
interaction with some input device. For example, a vertex can be selected with the
mouse (by a three-dimensional picking operation) and dragged. In this sense the
vertex location is a function of time, but 1s indeterminate. Vertex locations can also
be controlled procedurally, in which case the locations are determinate functions of
time. For example, a pool of water might have a triangle mesh representing the surface
of the water. The mesh is rigidly attached to the pool walls, but the interior vertices
are allowed to move. To give the impression that the surface is slightly moving, each
interior vertex can be slightly perturbed in the normal direction to the plane of the
original mesh and perturbed with a somewhat greater amplitude within the plane of
the original mesh.

The second way for defining a morph is to blend between two objects. This is
what most people tend to think of as morphing. A correspondence must be defined
between the surfaces of the two objects, and a blending function is selected that uses
the correspondence. The simplest morph for two triangular meshes with the same
number of vertices involves choosing a one-to-one correspondence between vertices
and applyinga linear blend. If V; is a vertex in the first mesh and Vi is its corresponding
vertex in the second mesh, then the morphis V (1) = (1 — 1) Vo + 1 V) for a normalized
time ¢ € [0, 1]. If the two objects are not significantly different in shape, the objects
obtained by blending will have a natural look about them. Attempts to linearly blend
two somewhat different-shaped objects will produce in-between objects that usually
are not what you expect. It is morc difficult to establish a reasonable correspondence
between vertices if the two meshes have different topologies. 1t is even more difficult to
control the blending so that the in-between objects look reasonable. Morphing based
on shape information is possible, but gets heavily into differential geometric concepts
and is not covered in this book.

Morphing can be implemented using the controller system described in Chapter
4. Modeling packages that allow morphing by providing the pairing between two sets
of vertices can have their data exported as objects in a class MorphControlter. The
update routine of this controller performs the linear interpolation for the specified
time between the paired vertices. Plate 12 provides an illustration of morphing.

APPENDIX

OBJECT-ORIENTED

b8mex cone INFRASTRUCTURE

Engine

Object

RTTI A game engine is a large and complicated software system. The principles of
SmartPointer object-oriented software engineering and large library design apply just as they
Stream would to any other large system. This appendix presents a review of some basic
TArray issues of object-oriented infrastructure. In addition, specific issues related directly
TMap to implementation of object-oriented support in the game engine are also addressed,
TClassArray including naming conventions and namespaces, run-time type information, single
TClassMap and multiple inheritance, templates (parameterized data types), shared objects and

reference counting, streaming, and startup and shutdown mechanisms.

A.l OBJECT-ORIENTED SOFTWARE CONSTRUCTION

A good reference on object-oriented software engineering is Meyer (1988). Extensive
in-depth coverage of abstract data types including stacks, lists, strings, queues, maps,
sets, trees, and graphs can be found in Booch (1987).

435

436 Appendix A Object-Oriented Infrastructure

A.l.1

SOFTWARE QUALITY

The goal of software engineering is to help produce quality software, both from the
point of view of the end users and of the software writers. The desired qualities in
software fall into two categories:

External: Software is fast, reliable, and easy to use. The end users care about these
qualities. End users also include team members who will use the code, so ease of
use is important.

Internal: Software is readable, modular, and structured. The programmers care
about these qualities.

The external qualities are the more important since the goal of software construc-

tion is building what a client wants. However, the internal qualities are key to attaining
the external qualities. Object-oriented design is intended to deal with the internal, but
the end result should be to satisfy the following external qualities:

Correctness: the ability of software to exactly perform tasks, as defined by the
requirements and specification

Robustness: the ability of software to function even in abnormal conditions

Extendability: the ease with which software may be adapted to changes of specifi-
cations

Reusability: the ability of software to be reused, in whole or in part, from new
applications

Compatibility: the ease with which software products may be combined with
others

Efficiency: the good use of hardware resources such as processor, memory, and
storage, both in space and time

Portability: the ease with which software may be transferred to various hardware
and software platforms

Verifiability: the ease of preparing test data and procedures for detecting and
locating failures of the software

Integrity: the ability of software systems to protect their various components
against unauthorized access and modification, whether or not the access or mod-
ification is intentional

Ease of use: the ease of learning how to use software, including executing the
programs, preparing input data, interpreting output data, and recovering from
exceptions

Software maintenance is the process of modifying already existing code either to

correct deficiencies, enhance efficiency, or extend the code to handle new or modi-

A.1 Object-Oriented Software Construction 437

fied specifications. The following is a representative breakdown of maintenance time
(Meyer 1988):

Changes in user requirements (41.8%). Inevitable, but is the large percentage due
to a lack of extendability?

Changes in data formats (17.4%). Also inevitable since initial design may have
lacked insight into how data might evolve.

Emergency fixes (12.4%).

Routine debugging (9.0%). For example, fixes need to be made, but the software
can still run without them.

Hardware changes (6.2%). Also inevitable, but isolation of hardware-dependent
code can minimize these changes by encapsulation of the dependent code into
device drivers.

Documentation (5.5%). All of us are taught to do this as code is developed, but
the reality is the client always wants the code yesterday.

Efficiency improvements (4.0%).

A.1.2 MODULARITY

Modules are autonomous, coherent, robust, and organized packages. Not that this
really defines what a module is, butall of us have an idea of what a module should be.
The following criteria should help in deciding what it means for a software construc-
tion method to be modular:

Decomposability. The design method helps decompose a problem into several
subproblems whose solution may be pursued separately.

— Example: Top-down design.

— Counterexample: Initialization modules.

Composability. The design method supports production of software elements that
may be freely combined to produce new systems.

- Example: Math libraries.

- Counterexample: Combined GUI and database libraries.

Understandability. The design method helps produce modules that can be sepa-

rately understood by a human reader or can be understood together with a few
other modules.

- Example: A math library with exported functions clearly specified and for
which no other libraries are required for linking.

- Counterexample: Sequentially dependent modules, module A depends on
module B, module B depends on module C, and so on.

438 Appendix A Object-Oriented Infrastructure

® Continuity. A small change in the problem specification results in a change of just
one (or a few) modules. Changes should not affect the architecture of the system.,

— Examples: Symbolic constants (do not hard-code numbers), the Principle of
Uniform Reference (services of a module should be available through a uniform
notation; in C++ this becomes a design question about public versus private
members).

— Counterexample: Failing to hide the data representation from the user when
that representation may change later.

® Protection. The design method yields an architecture in which the effect of ab-
normal conditions at run time in a module remains confined to that module (or
a few modules).

— Example: Validation of input and output at their sources. This is the notion of
preconditions and postconditions in abstract data types.

— Counterexample: Undisciplined exceptions. An exception is a signal that is
raised by one code block and handled in another, possibly remote part of
the system. This separates algorithms for normal cases from error processing
in abnormal cases, but the mechanism violates the criterion of confining the
abnormal conditions to the module. This also violates the continuity criterion.

The five criteria lead to five principles that should be followed to ensure modu-
larity. The criteria that lead to each principle are listed in parentheses.

® Linguistic modular units. Modules must correspond to syntactic units in the
language used. (decomposability, composability, protection)

® Few interfaces. Every module should communicate with as few others as possible.
(continuity, protection)

= Small interfaces. If two modules must communicate, they should exchange as little
information as possible. This is termed weak coupling. (continuity, protection)

® Explicit interfaces. Whenever two modules communicate, this must be obvious
from the text of the modules. This is termed direct coupling. (decomposability,
composability, continuity, understandability)

® Information hiding. All information about the module should be private unless
it is declared public. (continuity, not necessarily protection)

The Open-Closed Principle

This is one final requirement for a good modular decomposition. It states that a
module must be both open and closed.

A.l Object-Oriented Software Construction 439

® Open module: The module is still available for extension. For example, it is still
possible to add fields to data structures or to add new functions that operate on
the structures,

® Closed module: The module is available for use by other modules. This assumes
that the module has a well-defined, stable interface, with the emphasis being on
“stable.” For example, such a module would be compiled into a library.

At first glance, being both open and closed appears to be contradictory. If the public
interface to a module remains constant, but the internal implementations are changed,
the module may be considered open and closed (it has been modified, but dependent
code does not need to be changed or recompiled). However, most modifications of
modules are to add new functionality. The concept of inheritance allows for open-
closed modules.

A.1.3 REUSABILITY

Reusability is a basic issue in software engineering. Why spend time designing and
coding an algorithm when it probably already exists elsewhere? But this question does
not have a simple answer. It is easy to find already-written code for searching and
sorting lists, handling stacks, and other basic data structure manipulations. However,
other factors may compound the issue. Some companies provide libraries that have
capabilities you need, but to use the libraries you need to purchase a license and
possibly pay royalties. If the acquired components have bugs in them, you must rely
on the provider to fix them, and that will probably not occur in the time frame in
which you need the repairs.

At least in your local environment, you can attempt to maximize reuse of your
own components, Here are some issues for module structures that must be resolved
to yield reusable components:

® Variation in types. The module should be applicable to structures of different
types. Templates or parameterized data types can help here.

® Variation in data structures and algorithms. The actions performed during an
algorithm might depend on the underlying structure of the data. The module
should allow for handling variations of the underlying structures. Overloading
can help here.

m Related routines. The module must have access to routines for manipulating the
underlying data structure.

® Representation independence. The module should allow a user to specify an oper-
ation without knowing how it is implemented or what underlying data structures
have been used. For example,

x_is_in_table_t = search(x,t);

440

Appendix A Object-Oriented Infrastructure

is a call to search for item x in a table t and return the (Boolean) result. If many
types of tables are to be searched (lists, trees, files, etc.), it is desirable not to have
massive control structures such as

if (t is of type A)
apply search algorithm A
else if (t is of type B)
apply search algorithm B
else if ...

whether it be in the module code or in the client code. Overloading and polymor-
phism can help here.

® Commonality within subgroups. Extract commonality, extract commonality, ex-
tract commonality! Avoid the repetition of similar blocks of code because if a
change is required in one block, it is probably also required in the other similar
blocks, which will require a lot of time spent on maintenance. Build an abstract
interface that doesn’t expose the underlying data structures.

A.1.4 FUNCTIONS AND DATA

Which comes first, functions or data? The key element in answering this question is
the problem of extendability, and in particular, the principle of continuity. During the
full life cycle, functions tend to change quite a bit since requirements on the system
also tend to change regularly. However, the data on which the functions operate tend
to be persistent and change very little. The object-oriented approach is to concentrate
on building modules based on objects.

A classical design method is the top-down functional approach—specifying the
system’s abstract function, then applying stepwise refinement to smaller, more man-
ageable functions. The approach is logical, well-organized, and encourages orderly
development. The drawbacks are as follows:

® The method ignores the evolutionary nature of software systems. The problem
is continuity. The top-down approach yields short-term convenience, but as the
system changes, there will be constant redesigning, with a large potential for long-
term disaster.

® The notion of a system being characterized by one function is questionable. An
operating system is the classic case of a system not characterized by a single “main”
function. Real systems have no top.

& The method does not promote reusability. The designers tend to decompose the
functiuns based on current specifications. The subroutines are reflections of the
initial design. As the system evolves, the subroutines may no longer be relevant to
the new requirements.

A.1 Object-Oriented Software Construction 441

A.1.5 OBJECT ORIENTATION

Object-oriented design leads to software architectures based on the objects every
system or subsystem manipulates rather than “the function” it is meant to ensure.
Issues are

How to find the objects. A well-organized software system may be viewed as an
operational model of some aspect of the world. The software objects will simply
reflect the real-world objects,

How to describe the objects. The standard approach to describing objects is
through abstract data types. Specification for an abstract data type involves types
(type becomes a parameter of the abstraction), functions (what operations are
applied), preconditions (these must be satisfied before operations are applied),
postconditions (these must be satisfied after operations are applied), and axioms
{how compositions of the functions behave).

Object-oriented design is also the construction of software systems as structured

collections of abstract data type implementations. Issues are

Object-based modular structure. Systems are modularized on the basis of their
data structures.

Data abstraction. Objects should be described as implementations of abstract data
types.

Automatic memory management. Unused objects should be deallocated by the
underlying language system, without programmer intervention.

Classes. Every nonsimple type is a module, and every high-level module is a type.
This is implemented as the one-class-per-module paradigm.

Inheritance. A class may be defined as an extension or restriction of another.

Polymorphism and dynamic binding. Program entities should be permitted to
refer to objects of more than one class, and operations should be permitted
to have different realizations in different classes.

Multiple and repeated inheritance. It should be possible to declare a class as heir
to more than one class, and more than once to the same class.

Whether or not a language can support all the various features mentioned in

this section is questionable. Certainly, SmallTalk and Ada make claims that they are
fully featured. However, fully featured languages come at a price in performance. The
object-oriented code that accompanies this book is written in C++. While not a
“pure” object-oriented language, C++ supports the paradigm fairly well, yet allows
flexibility in dealing with situations where performance is important. One of the
common fallacies about C++ is that its performance is unacceptable compared to that

442 Appendix A Object-Oriented Infrastructure

of C. Keep in mind that a compiler is a large software system itself and is susceptible,
justas any other large system, to being poorly implemented. Current-generation C++
compilers produce code that is quite compact and fast. (For a reference book on
C++, see Ellis and Stroustrup (1994). For an extensive set of examples illustrating
the features of C++, see Lippman (1991).)

A.2 STYLE, NAMING CONVENTIONS, AND NAMESPACES

One of the software engineering goals mentioned previously is that code should be
readable. In an environment with many programmers developing small pieces of a
system, each programmer tends to have his or her own style, including choice of
identifier names, use of white space, alignment and indentation of code, placement
of matching braces, and internal comments. If a team of programmers develops
code that will be read both internally (by other team members) and externally (by
paying clients), ideally the code should have as consistent a style as possible purely
from the point of view of readability. Inconsistent style distracts from the client’s
main purpose—to understand and use the code for his or her own applications.
A management-imposed style certainly is a possibility, but beware of the potential
religious wars. Many of today’s C++ programmers learned C first and learned their
programming style at that time. Although a lot of the conventions in that language are
not consistent with an object-oriented philosophy, the programmers are set in their
ways and will still use what they originally learned.

Naming conventions are particularly important so that a reader of the code knows
what to expect across multiple files that were written by multiple programmers.
One of the most useful naming conventions used in the code on the CD-ROM that
accompanies this book allows the reader to distinguish between class members, local
variables, and global variables, including whether they are nonstatic or static. This
makes it easy to determine where to look for definitions of variables and to understand
their scope. Moreover, the identifier names have type information encoded in them.
The embedded information is not as verbose as Microsoft’s Hungarian notation, but
it is sufficient for purposes of readability and understandability of the code.

Because a game engine, like any other large library, will most likely be integrated
with software libraries produced by other teams, whether internal or external, there
is the possibility of clashes of class names and other global symbols. Chances are that
you have named your matrix class Mat ri x and so has someone else who has produced
header files and libraries for your use. Someone has to make a name change to avoid
the clash. C++ provides the concept of namespace to support avoiding the clashes,
but a method that is popular among many library producers is to use a prefix on class
names and global symbols in hopes that the prefix is unique among all packages that
will be integrated into the final product. The namespace construct implicitly mangles
the class names, whereas the manual selection of prefix makes the mangling explicit.

A.2 Style, Naming Conventions, and Namespaces 443

The conventions used for the accompanying code are the following. The class
names and global symbols are prefixed by Mgc. Function names are capitalized; if
multiple words make up the name, each distinct word is capitalized. For example,
given a class that represents a string, a class member function to access the length
of the string would be named GetLength. ldentifier names are capitalized in the
same way that function names are, but with prefixes. Nonstatic class data members
are prefixed with m_, and static class data members are prefixed with ms_. The m refers
to “member” and the s indicates “static.” A static local variable is prefixed with s_. A
global variable is prefixed with g_, and a static global variable is prefixed with gs_. The
type of the variable is encoded and is a prefix to the identifier name, but follows the
underscore (if any) for member or global variables. Table A.1 lists the various encoding
rules. Identifier names do not use underscores, except for the prefixes as described
earlier. Class constants are capitalized and may include underscores for readability.
Combinations of the encodings are also allowed, for example,

unsigned int* auiArray = new int[16];
void ReallocArray (int iQuantity, unsigned int*& rauiArray)
{
delete[] rauiArray;
rauiArray = new unsigned int[iQuantity];
}

short sValue:
short& rsvValue = sValue;
short* psValue = &sValue;

class MgcSomeClass
{
public:
MgcSomeClass ();
MgcSomeClass (const MgcSomeClass& rkObject);

protected:
enum { NOTHING, SOMETHING., SOMETHING_ELSE };
unsigned int m_eSomeFlag;

typedef enum { ZERO, ONE, TWO } Counter;
Counter m_eCounter;

The rules of style in the code are not listed here and can be inferred from reading
any of the source files.

444 Appendix A Object-Oriented Infrastructure

Table A.1 Encoding for the various types to be used in identifier names.

Type Encoding Type Encoding
char c unsigned char uc
short s unsigned short us
int i unsigned int uf
long 1 unsigned long ul
float f double d
pointer p smart pointer sp
reference r array

enumerated type e class variable k
template t function pointer o
void v

A.3 RUN-TIME TYPE INFORMATION

Polymorphism provides abstraction of functionality. A polymorphic function call can
be made regardless of the true type of the calling object. But there are times when you
need to know the type of the polymorphic object, or you need to determine if the
object’s type is derived from a specified type—for example, to safely typecase a base
class pointer to a derived class one, a process called dynamic typecasting. Run-time type
information (RTTI) provides a way to determine this information while the program
is executing.

A.3.1 SINGLE-INHERITANCE SYSTEMS

A single-inheritance object-oriented system consists of a collection of directed trees
where the vertices represent classes and the edges represent inheritance. Suppose
vertex Vo represents class Co and vertex V) represents class C,. If C; inherits from Co,
then the directed edge from V) to Vj represents the inheritance relationship between
C1and Co. The directed edges indicate an is-a relationshiop. Figure A.1 shows a simple
single-inheritance hierarchy.

The root of the tree is PolyGoN. RECTANGLE is a PoLYGoN, and SQUARE is a
RecTANGLE. Moreover, SQUARE is a Porvcon indirectly. TRi1aANGLE is a PoLYGoN,
EQUILATERALTRIANGLE is @ TRIANGLE, and RIGHTTRIANGLE is a triangle. However,
SQUARE is not a TRIANGLE, and RIGHTTRIANGLE is not an EQUILATERALTRIANGLE.

An RTTI system is a realization of the directed trees. The basic RTTI data type
stores any class-specific information an application might require at run time. It also

Figure A.1

A.3 Run-Time Type Information 445

EQUILATERAL-
TRIANGLE

Single-inheritance hierarchy.

stores a link to the base class (if any) to allow an application to determine if a class is
inherited from another class. The simplest representation stores no class information
and only the link to the base class. However, it is useful to store a string encoding the
name of the class. In particular, the string will be used in the streaming system that
is described later. The string may also be useful for debugging purposes in quickly
identifying the class type.

class MgcRTTI
{
public:
MgcRTTI (const char* acName, const MgCRTTI* pkBaseRTTI) :
m_kName (acName)

{
m_pkBaseRTTI = pkBaseRTTI;
}
const MgcRTTI* GetBaseRTTI () const
{
return m_pkBaseRTTI;
}

const MgcString& GetName () const
{

return m_kName;
}

446 Appendix A Object-Oriented Infrastructure

private:
const MgcRTTI* m_pkBaseRTTI;
const MgcString& m_kName;

s

The root class MgcObject in an inheritance tree must contain basic support for
the RTTI system. Minimally, the class is structured as

class MgcObject
{
public:
static const MgcRTTI ms_kRTTI;

virtual const MgcRTTI* GetRTTI () const

{

return &ms_kRTTI;
}
bool IsExactlyClass (const MgcRTTI* pkQueryRTTI) const
{

return (GetRTTI() = pkQueryRTTI);
}
bool IsDerivedFromClass (const MgcRTTI* pkQueryRTTI) const
{

const MgcRtti* pkRTTI = GetRTTI():

while (pkRTTI)

{

if (pkRTTI == pkQueryRTTI)}
return true;
PkRTTI = pkRTTI->GetBaseRTTI();

}

return false;
}
void* DynamicCast (const MgcRTTI* pkQueryRTTI)
{

return (IsDerivedfromClass{pkQueryRTTI) 2 this : 0);
}

}:

A.3 Run-Time Type Information 447

Each derived class in the inheritance tree has a staticMgcRTT1 and must minimally
be structured as

class MgcDerivedClass : public MgcBaseClass

{
public:
static const MgcRTTI ms_kRTTI:
virtual const MgcRTTI* GetRTTI () const
{
return &ms_kRTTI;
}
}:

where MgcBaseClass is, or is derived from, MgcDbject. Note that the unique iden-
tification is possible since the static MgcRTTI members all have distinct addresses in
memory at run time. The source file for the derived class must contain

const MgcRTTI MgcDerivedClass::ms_kRTTI("MgcDerivedClass"”,
&MgcBaseClass::ms_kRTTI);

A.3.2 MULTIPLE-INHERITANCE SYSTEMS

A multiple-inheritance object-oriented system consists of a collection of directed
acyclic graphs where the vertices represent classes and the edges represent inheritance.
Suppose vertices V; represent classes C; for i =0, 1, 2. If C; inherits from both Co
and C), then V; has directed edges to both Vp and V) that represent the multiple
inheritance. Figure A.2 showsa multiple-inheritance hierarchy. An RTTI system in the
context of multiple inheritance is a realization of the directed acyclic graphs. While the
RTTI data type for a singly inherited system has a single link to a base class, the RTTI
data type for a multiply inherited system requires a list of links to the base classes
(if any). The simplest representation stores no class information and only the links
to the base classes. To support a to-be-determined number of base classes, the C-
style ellipses are used in the constructor, thus requiring standard argument support.
For most compilers, including stdarg.h gives access to the macros for parameter

parsing,.

class MgCRTTI

{

public:

MgcRTTI (const char* acName, unsigned int uiNumBaseClasses,...) :

m_kName(acName)

448 Appendix A Object-Oriented Infrastructure

Class AB

Figure A.2 Multiple-inheritance hierarchy. Class AB inherits from both class A and class B and
indirectly inherits from the root class.

{
if (uiNumBaseClasses == 0)
{
m_uiNumBaseClasses = 0:
m_apkBaseRTTI = 0O;
)
else
{
m_uiNumBaseClasses = uiNumBaseClasses;:
m_apkBaseRTTI = new const MgcRTTI*[uiNumBaseClasses];
va_list list;
va_start(list,uiNumBaseClasses):
for (unsigned int i = 0; i < uiNumBaseClasses; i++)
m_apkBaseRTTI[1] = va_arg(list, const MgcRTTI*);
va_end(list);
}
}
~MgcRTTI ()
{
delete[] m_apkBaseRTTI;
}

unsigned int GetNumBaseClasses () const
{

A.3 Run-Time Type Information 449

return m_uiNumBaseClasses;
}

const MgcRTTI* GetBaseRTTI (unsigned int uilndex) const
{

return m_apkBaseRTTI[uilndex];
}

private:
unsigned int m_uiNumBaseClasses:
const MgcRTTI** m_apkBaseRTTI;
const MgcString m_kName;

}:

The root class in a single-inheritance tree provided the member functions for
searching the directed tree to determine if one class is the same or derived from another
class. A technical problem with a multiple-inheritance directed graph is that there may
be more than one vertex with no edges; that is, the hierarchy may have multiple root
classes. To avoid this situation, always provide a single root class whose sole job is to
provide an interface for any systems used by the entire inheritance graph.

The root class in the multiple-inheritance graph is structured exactly as in
the single-inheritance tree, except that the implementation of member function
IsDerivedFromClass must handle the list of base class RTTI pointers.

bool MgcObject::IsDerivedFromClass (const MgcRTTI* pkQueryRTTI) const
{
const MgcRTTI* pkRTTI = GetRTTI();
if (pkRTTI == pkQueryRTTI)
return true;

for (unsigned int i = 0; i < pkRTTI->GetNumBaseClasses(); 1++)
{
if (IsDerivedFromClass(pkRTTI->GetBaseRTTI(i)))
return true:
}

return false;
The derived classes still provide the same static RTTI member and a virtual func-
tion to access its address. For example, consider

class MgcDerived : public MgcBaseO, MgcBasel
{

450 Appendix A Object-Oriented Infrastructure

public:
static const MgcRTTI ms_kRTTI;

virtual const MgcRTTI* GetRTTI () const
{
return &ms_KkRTTI;
}
};

where both MgcBase0 and MgcBasel are either MgcObject or are derived from
MgcObject. The source file for this derived class must contain

const MgcRtti MgcDerived::ms_kRTTI("MgcDerived”,2,
&MgcBase0: :ms_kRTTI,&MgcBasel::ms_kRTTI);
A.3.3 MACRO SUPPORT
Macros can be used to simplify use by an application and to hide the verbosity of the
code. The following macros apply to both single-inheritanceand multiple-inheritance
systems:
// macros in MgcRTTI.h
fidefine MgcDeclareRTTI \
public: \
static const MgcRTTI ms_KkRTTI; \
virtual const MgcRTTI* GetRTTI () const { return &ms_kRTTI; }

f#define MgcImplementRootRTTI(rootclassname) \
const MgCRTTI rootclassname::ms_kRTTI(#rootclassname,0)

// macros in MgcObject.h and MgcObjectM.h

fidefine MgclsExactliyClass(classname,pObject) \
(pObject ? pObject->IsExactlyClass(&classname::ms_kRTTI) : false)

fidefine MgclsDerivedFromClass(classname,pObject) \
(pObject ? pObject->IsDerivedFromClass(&classname::ms_KkRTTI) : false)

#define MgcStaticCast(classname.pObject) \
((classname*)pObject)

fidefine MgcDynamicCast{(classname,pObject) \
(pObject ? (classname*)pObject->DynamicCast(&classname::ms_kRTTI) : 0)

A.4 Templates 451

The macroMgcDeclareRTTI is placed in the class declaration in the header file. Note
that the scope is pub11c, so any other class declarations following the macro call will
need to declare other scopes if needed.

The following macro applies to the single-inheritance case:

fidefine MgcImplementRTTI(classname,baseclassname) \
const MgcRTTI classname::ms_kRTTI(f#classname,&baseclassname::ms_kRTTI);

and should be called in the source file for the class definition. A similar macro for
multiple-inheritance systems is not possible because C-style macros do not allow for
a variable number of arguments.

A.4 TEMPLATES

Templates, sometimes called parameterized data types, are used to share code among
classes that all require the same structure. The classic example is a stack of objects.
The operations for a bounded stack are Push, Pop, IsEmpty, Isfull, and GetTop
(read top element without popping the stack). The operations are independent of the
type of object stored on the stack. A stack could be implemented for both int and
f1oat, each using array storage for the stack elements. The only difference between
the two implementations is that the integer stack code uses an array of int and the
float stack code uses an array of f1oat. A template can be used instead so that the
compiler generates object code for each type requested by an application.

template <class T> class Stack

{

public:
Stack (int iStackSize)
{

m_iStackSize = iStackSize;

m_iTop = -1;

m_akStack = new T[iStackSize]l:
}

~Stack () { delete[] m_akStack: }

bool Push (const T& rkElement)

{
if (m_iTop < m_iStackSize)
{
m_akStack[++m_iTop]l] = rkElement;
return true:
}

return false:

452 Appendix A Object-Oriented Infrastructure

bool Pop (T& rkElement)

{
if (m_iTop >=0)
{
rkElement = m_akStack[m_iTop--1;
return true;
}
return false;
}
bool GetTop (T& rkElement) const
{
if (m_iTop >=0)
{
rkElement = m_akStack[m_iTop]:
return true;
}
return false;
}

bool Iskmpty () const { return m_iTop = -1; }
bool IsFull () const (return m_iTop — m_iStackSize-1; }

protected:
int m_iStackSize:
int m_{iTop:
T* m_akStack:

}:

Macros could be used to generate code for different types, but the macros are not
typesafe and are susceptible to side effects. Although it is possible to implement the
stack code for both int and float, this poses a problem for code maintenance. If
one file changes, the other must be changed accordingly. The maintenance issue is
magnified even more so when there are a large number of types sharing the same
code. Templates provide a way of localizing those changes to a single file.

Templates are a good choice for container classes for various data structures such
as stacks, arrays, lists, and so on. Standard template libraries are available that can
be integrated into a game engine. One problem to be aware of when dealing with a
container of objects (in this case, objects of type MgcObject) is that certain side effects
of the class are necessary, especially in construction and destruction, If a standard
template library container class has a need to resize itself, it might do so by creating an
array of the new size, placing a memory copy of the old array into the new array, then
deleting the old array. This scheme has the implicit assumption that the underlying
data is native. If the data consists of class objects where the constructor allocates

A.5 Shared Objects and Reference Counting 453

memory and the destructor deallocates memory, the memory copy causes memory
leaks and misses side effects that occur because of object construction or destruction.
This will definitely be the case for shared objects and reference counting, the topic
of the next section. If the standard template library does not support side effects, the
game engine code will need to implement its own template container classes.

A5 SHARED OBJECTS AND REFERENCE COUNTING

public:

Sharing of objects is natural in a game engine. Models that contain a lot of data might
be shared to minimize memory use. Renderer state can also be shared, particularly
when texture images are shared aniong objects. It is unlikely that a game engine can
be implemented in a way to manually manage shared objects without losing some
along the way (object leaking) or destroying some while still in use by other objects
(premature destruction). Therefore, a more automated system is required to assist in
the bookkeeping of sharing. The most popular system is to add a reference counter to
the root class object. Each time an object is shared (referenced) by another object, the
reference counter is incremented. Each time an object is finished sharing with another,
the reference counter is decremented. Once the reference counter decreases to zero,
the object is no longer referenced within the system, and it is deleted.

The details of reference counting can be exposed so that the application is respon-
sible for adjusting the reference counter, but this mechanism places great faith in the
programmer to properly manage the objects. Another possibility is to implement a
smart pointer system that adjusts the reference counter internally while still allowing
the application to intervene in cases that require special handling. Thus, the burden
of proper management of shared objects is mostly taken from the programmer.

[n addition to run-time type information, the root classMgcObject now includes
the following code to support reference counting:

MgcObject () { m_uiReferences = 0; ms_uiTotalObjects++; }

~MgcObject () { ms_uiTotalObjects--; 1

void IncrementReferences () { m_uiReferences++; }

void DecrementReferences () { if (--m_uiReferences == 0) delete this;

unsigned int GetReferences () { return m_uiReferences: }
static unsigned int GetTotalObjects () [return ms_uiTotalObjects:)

private:

unsigned int m_uiReferences;
static unsigned int ms_uiTotalObjects;

The static counter keeps track of the total number of objects currently in the system.
The initial value at program execution time is zero.

454 Appendix A Object-Oriented Infrastructure

The smart pointer system is now built on top of this and uses templates:

template <class T> class MgcPointer
{
public:
// construction and destruction
MgcPointer (T* pkObject = 0)

{
m_pkObject = pkQObject:
if (m_pkObject)
m_pkObject->IncrementReferences():
}
MgcPointer (const MgcPointer& rkPointer)
{
m_pkObject = rkPointer.m_pkObject:
if (m_pkObject)
m_pkObject->IncrementReferences():
}

~MgcPointer ()
{
if (m_pkObject)
m_pkObject->DecrementReferences();
1

// implicit conversions

operator T* () const { return m_pkObject: }
T& operator* () const { return *m_pkObject; }
T* operator-> () const { return m_pkObject; 1}

// assignment
MgcPointer& operator= (const MgcPointer& rkPointer)

{
if (m_pkObject != rkPointer.m_pkObject)
{
if (m_pkObject)
m_pkObject->DecrementReferences();
m_pkObject = rkPointer.m_pkObject;
if (m_pkObject)
m_pkObject->IncrementReferences();
}

return *this;

A.5 Shared Objects and Reference Counting 455

MgcPointer& operator= (T* pkObject)
{
if (m_pkObject != pkObject)
{
if (m_pkObject)
m_pkObject->DecrementReferences():
m_pkObject = pkObject:;
if (m_pkObject)
m_pkObject->IncrementReferences():
}
return *this;
}

// comparisons
bool operator== (T* pkObject) const { return m_pkObject ==
pkObject; }
bool operator!= (T* pkObject) const { return m_pkObject !=
pkObject: 1}
bool operator== (const MgcPointer& rkPointer) const
{
return m_pkObject == rkPointer.m_pkObject:
}
bool operatori= (const MgcPointer& rkPointer) const
{
return m_pkObject != rkPointer.m_pkObject;
}

private:
// the shared object
T* m_pkObject:

};

The assignment operator must compare the pointer values first before adjusting
reference counting to guard against assignments:

MgcPointer<MgcObject> spPointer = new MgcObject;
spPointer = spPointer;

The constructor for MgcObject sets the references to zero. The constructor
for MgcPointer increments the references to one. If the initial comparison were
not present in the assignment operator, the call to DecrementReferences would
decrement the references to zero, then destroy the object. Consequently, the pointer
rkPointer.m_pkObject points toa memory block no longer owned by the applica-
tion, and the pointer m_pkObject, the target of the assignment, will point to the same

456 Appendix A Object-Oriented Infrastructure

invalid block. The call to IncrementReferences will write to the invalid block—an
error. Although such a statement is unlikely in a program, the situation might arise
unexpectedly due to pointer aliasing.

For convenience, MgcObject or any class derived from it can use a type definition
toavoid the verbosity of the template notation. Macro support to declare smart pointer

types is

{idefine MgcSmartPointer(classname) \
class classname; \
typedef MgcPointer<classname> classnamefHtPtr

Each class can place the declaration in its header file for the convenience of client code.
For example, file MgcObject . h will contain the class definition for MgcObject and
the statement

MgcSmartPointer(MgcObject);

This defines the type MgcObjectPtr. The forward declaration of the class name in
the macro supports providing a forward declaration of a smart pointer type.

There might be a need to typecast a smart pointer to a pointer or smart pointer. For
example, class MgcNode, the internal node representation for scene graphs, is derived
from MgcSpatial, the leaf node representation for scene graphs. Polymorphism
allows the assignment

MgcNode* pkNode = <some node in scene graphd>:
MgcSpatial* pkObject = pkNode:

Abstractly, asmart pointer of type MgcNodePtr is derived from MgcSpatialPtr, but
the language does not support this. The use of implicit operator conversions in the
smart pointer class guarantees a side effect that makes it appear as if the derivation
really does occur. For example,

// This code is valid.
MgcNodePtr spNede = <some node in scene graph>;
MgcSpatialPtr spObject = spNode;

// This code is not valid when class A is not derived from
// class B.

MgcAPtr spAObject = new A;

MgcBPtr spBObject = spAObject;

The implicit conversions also support comparison of smart pointers to null, just like
regular pointers:

A.5 Shared Objects and Reference Counting 457

MgcNodePtr spNode = <{some node in scene graph>;
MgcSpatialPtr spChild = spNode->GetChildAt(2);
if (spChild)
{

<do something with spChild>;
}

A simple example illustrating the use and cleanup of smart pointers is the follow-
ing. The class MgcNode stores an array of smart pointers for its children.

MgcNodePtr spNode = <some node in scene graph>;

MgcNode* pkNode = new MgcNode; // pkNode references = 0
MacNodePtr spChild = new MgcNode; // pkNode references =1
spNode->AttachChild(spChild); // pkNode references = 2
spNode->DetachChild(spChild); // pkNode references =1
spChild = 0; // pkNode references = 0,

// destroy it

This illustrates how to properly terminate use of a smart pointer. In this code the call
delete spChild would work just fine. However, if the object that spChi 1d points to
has a positive reference count, explicitly calling the destructor forces the deletion, and
the other objects that were pointing to the same object now have dangling pointers.
If instead the smart pointer is assigned 0, the reference count is decremented and the
object pointed to is not destroyed if there are other objects referencing it. Thus, code
like the following is safe:

MgcNodePtr spNode = <some node in scene graph>;

MgcNode* pkNode = new MgcNode; // pkNode references = 0
MgcNodePtr spChild = new MgcNode; // pkNode references = 1
spNode->AttachChild(spChild); // pkNode references = 2
spChild = 0; // pkNode references = 1,

// no destruction

Also note that if the assignment of 0 to the smart pointer is omitted in this code, the
destructor for the smart pointer is called and the reference count for pkNode still is
decremented to one.

Some other guidelines that must be adhered to when using smart pointers are the
following. Smart pointers apply only to dynamically allocated objects, not to objects
on the stack. For example,

void MyFunction ()
{

MgcNode kNode: // kNode references = 0
MgcNodePtr spNode = &kNode; // kNode references = 1
spNode = 0; // kNode references = 0,

// kNode is deleted

458 Appendix A Object-Oriented Infrastructure

is doomed to failure. Since kNode is on the stack, the deletion implied in the last
statement will attempt to deallocate stack memory, not heap memory.

Using smart pointers as function parameters or returning them as the result of a
function call also has its pitfalls. The following example illustrates the dangers:

void MyFunction (MgcNodePtr spNode)
{

<do nothing>;
}

MgcNode* pkNode = new MgcNode:
MyFunction(pkNode);
// pkNode now points to invalid memory

On allocation pkNode has zero references. The call to My Funct i on creates an instance
of an MgcNodePtr on the stack via the copy constructor for that class. That call
increments the reference count of pkNode to one. On return from the function, the
instance of MgcNodePtr is destroyed, and in the process, pkNode has zero references
and it too is destroyed. However, the following code is safe:

MgcNode* pkNode = new MgcNode; // pkNode references = 0

MgcNodePtr spNode = pkNode; // pkNode references = 1;

MyFunction(spNode); // pkNode references increase to 2,
/! then decrease to 1

// pkNode references = 1 at this point

A related problem is the following:

MgcNodePtr MyFunction ()

{
MgcNode* pkReturnNode = new MgcNode; // references = 0;
return pkReturnNode;

}

MgcNode* pkNode = MyFunction();
// pkNode now points to invalid memory

Atemporary instance ofanMgcNodePt r is implicitly generated by the compiler for the
return value of the function. The copy constructor is called to generate that instance,
so the reference count of pkNode is one. The temporary instance is no longer needed
and is implicitly destroyed, and in the process, pkNode has zero references and it too
is destroyed. The following code s safe:

MgcNodePtr spNode = MyFunction();
// spNode.m_pkObject has one reference

A.6 Streaming 459

The temporary instance increases the reference count of pkReturnNode to one. The
copy coustructor is used to create spNode, 50 the reference count increases to two.
The temporary instance is destroyed, and the reference count decreases to one.

A.6 STREAMING

Persistence of storage is a requirement for a game engine. Game content is typically
generated by a modeling tool and must be exported to a format that the game applica-
tion can import. The game application itself might have a need to save its data so that
it can be reloaded at a later time. Streaming of data refers to the process of mapping
data between two media, typically disk storage and memory. In this section, we will
discuss transfers between disk and memory, but the ideas directly apply to transfers
between memory blocks (which support transfers across a network). A class that exists
to manage the streaming process is MgcStream.

A.6.1 SAVING DATA

The usual object that is to be saved to disk is a scene graph. Although it is possible to
traverse a scene graph and save each object when visited, there are two complications.
The first complication is that objects can be shared in a scene graph. In this case an
object might be saved to disk twice. The second complication is that objects tend
to contain pointers to other objects. The primary occurrence is in the parent-child
relationships of the nodes in the scene graph. At some point a saved scene graph must
be reloaded into memory, and all the various relationships between the objects should
be readily available in the file.

The abstract view of the problem is that a scene graph is an abstract directed graph
of objects (of type MgcObject). The nodes of the graph are the objects, and the arcs
of the graph are pointers between objects. Each object has nonobject members, in
particular, any members of native data type (integer, float, string, etc.). The abstract
graph must be saved to disk so that it can be re-created later, which means that both
the graph nodes and graph arcs must be saved in some reasonable form. Moreover,
each graph node should be saved exactly once. The process of saving a scene graph
to disk is therefore equivalent to creating a list of the unique objects in the graph,
saving them to disk, and in the process saving any connections between them. If the
graph has multiple connected components, then each component must be traversed
and saved. Support for saving multiple abstract objects is easy to implement. The class
MgcStream provides the ability to assemble a list of top-level objects to save. Typically,
these are the roots of scene graphs, but they can be other objects whose state needs to
be saved. To support loading the file and obtaining the same list of top-level objects,
an identifying piece of information must be written to disk before each abstract graph
corresponding to a top-level object. A simple choice is to write a string to disk.

460 Appendix A Object-Oriented Infrastructure

Identifying the unique objects amounts to traversing the graph and inserting each
unvisited object into a list of visited objects. An ideal data structure for this is a hash
table for an O(1) lookup for speed. After the graph is traversed and the hash table
built, the hash table can be traversed as if it were a list, and each object’s data is saved
to disk. To support loading, the run-time type information of the object is written
first. To support fast loading of file chunks, the number of bytes to be stored is written
next. Any native data is written with standard C++ streaming operators, although
not all data must be written. Object members that are not native data and not of type
MgcObject have their own streaming operators and can write themselves to disk.
Some data members are derivable from other data members, thereby implying a graph
of dependencies between the members. Only the root items in this graph need to be
written. Once reloaded, the dependent members are constructed appropriately.

Data members that are pointers to objects can be saved as unsigned integer mem-
ory addresses since a memory address serves as a unique identifier for each arc in the
abstract graph. However, when the saved file is loaded later, the pointer values on disk
are no longer valid memory addresses. The method for handling this is discussed in
the next subsection.

A.6.2 LOADING DATA

Loading is a more complicated process than saving. Since the pointer values on disk
are invalid, each object must be created in memory first, then filled in with data
loaded from disk. Links between objects such as parent-child relationships must
be established later. Despite the invalidity of the disk pointer values, they do store
information about the abstract graph that is being loaded. The address of each object
in memory is associated with a disk pointer value, so the same hash table that was used
for storing the unique objects for saving can be reused for tracking the correspondence
between the disk pointer values, called link IDs, and the actual memory address of
the object. Once all objects are in memory and the hash table is complete with the
correspondences, the table is iterated as if it were a list, and the link IDs in each object
are replaced by the actual memory addresses. This is exactly the concept of resolving
addresses that a linker uses when combining object files created by a compiler.

The steps in loading an object from the stream are the following. The run-time
type information is read first so that the object type is known. The chunk size is read
and that quantity of bytes is read. All the information to create the object is now
known. An appropriate constructor call and any set methods must occur to reproduce
the object that has been loaded. Switching on the run-time type information to
determine which constructor to call is inefficient. Instead, a static factory function
must be provided by each class, and the MgcStream object maintains a hash table
of factories; the hash key is the run-time type information. The factory acts as a
constructor, takes the already-loaded memory block corresponding to the object, and
creates an object of the correct type and initializes it according to the information in
the memory block.

A.6 Streaming 461

A.6.3 STREAMING SUPPORT

At a high level the MgcStream class supports the following interface:

class MgcStream

{
// construction and destruction
MgcStream ();
~MgcStream ();

// The objects to process., each object representing an entry
// into a connected component of the abstract graph.

void Insert (MgcObject* pkObject);

void Remove (MgcObject* pkObject);

void RemoveAl10bjects ();

unsigned int GetObjectCount () const;

MgcObject* GetObjectAt (unsigned int uilndex) const;

// file loads and saves
bool Load (const char* acFilename):
bool Save (const char* acFilename);

// memory loads and saves
bool Load (char* acBuffer, int iSize);
bool Save (char*& racBuffer, int& riSize);

// linking support
class Link
{
public:
MgcTStorage<MgcObject*> m_tObject:
}
}:

MgcTStorage represents a templated resizeable array storage class. In an applica-
tion, saving a file to disk requires

MgcStream kStream;

for (each pkObject worth saving)
kStream.Insert(pkObject);

kStream.Save("myfile.mff");

kStream.RemoveAlT0bjects();

462 Appendix A Object-Oriented Infrastructure

In an application, loading a file to memory requires

MgcStream kStream;
kStream.Load("myfile.mff");
for (unsigned int uilndex = 0; uilndex < kStream.GetObjectCount();: uilndex++)

{

}

MgcObject* pkObject = kStream.GetObjectAt(uilIndex);
<application-specific handling of the object goes here>;

kStream.RemoveAl10bjects();

The calls to RemoveA110bjects free up the stream to be ready to save or load at a
later time.

The base class MgcObject provides the fundamental support for an object to
stream itself.

public:

// support for loading

static MgcObject* Factory (MgcStream& rkStream);

virtual void Load (MgcStream& rkStream, MgcStream::Link* pkLink):
virtual void Link (MgcStream& rkStream, MgcStream::Link* pkLink);

// support for saving
virtual bool Register (MgcStream& rkStream):
virtual void Save (MgcStream& rkStream);

The stream’s Save method iterates over the top-level objects and calls each object’s
Register method. This routine starts the traversal of the abstract graph and adds
all the unique objects to the hash table maintained by the stream. After traversal, the
stream object iterates over the hash table and calls each object’s Save method.

The stream’s Load method reads the file and loads one object at a time by reading
the run-time type information and chunk size. The static factory function is looked up
and called. The factory then creates an object and calls its Load function. The object
pointer and its link IDs are inserted in the stream object’s hash table. After all objects
are loaded, the stream iterates over the hash table and calls each object’s L1nk function
to replace the link IDs by memory addresses. Any top-level objects encountered during
loading are placed in the stream object’s list of such objects so that the application has
access to them.

One complication to deal with is the persistence of link IDs between the time they
are loaded and the time an object is linked. At first glance it appears that the link IDs
can be stored in the object’s MgcOb ject pointer members as is, but this approach will
not work in the presence of sharing and smart pointers. Ifan object hasa smart pointer
member, an assignment of a link 1D to it will implicitly force calls to the reference
count accessors. Since the link 1D is not a valid memory address, any calls to member
functions are incorrect and will fail. For this reason, link IDs must be stored separately

A.6 Streaming 463

as regular pointers. The MgcStream class defines a nested class to support an array of
MgcObject links with an index to keep track of the current object being processed.
When the factory function is called for an object, an array of type MgcStream: : Link
is created and passed to the load function. Any link IDs are stored in this array. When
the base class load function is reached, the link ID array is associated with the object
in the stream’s hash table. When the link phase takes place, the link ID array is passed
to all the link calls and used as a lookup for replacement of the link IDs by the actual
memory addresses.

The pseudocode to illustrate the streaming support function is given below. The
assumption is that MgcDerived is derived directly from MgcBase.

MgcObject* MgcDerived::Factory (MgcStream& rkStream)
{
MgcDerived* pkDerived = new MgcDerived:
MgcStream::Link* pLink = new MgcStream::Link;
pkDerived->Load{(rkStream,plink);
return pkDerived:
)

void MgcDerived::Load (MgcStream& rkStream, MgcStream::Link* pklLink)

{
MgcBase::Load(rkStream,pktink);

// Load the member data for °'this' here. Any MgcObject* members
// are loaded into pklLink.m_tObject for use as link IDs.
}

void MgcDerived::Link (MgcStream& rkStream, MgcStream::Link* pkLink)

{
MgcBase::Link(rkStream,pkLink);

// Link the MgcObject* members for ‘'this’ here. This is
// generally the complicated part of the process since link
// resolution could require calling member functions of
// 'this' to establish the connections between the loaded
// objects and ‘this’.

}

bool MgcDerived::Register (MgcStream& rkStream)
{
if (!MgcBase::Register({rkStream))
{
// ‘this® is shared and was already registered by another
// owner
return false;

464

Appendix A Object-Oriented Infrastructure

for each MgcDbject pointer 'member®' of ‘this' do
member.Register(rkStream);

}
void MgcDerived::Save (MgcStream& rkStream)
{
MgcBase::Save(rkStream);
// Save the member data for "this' here. Any MgcObject* members
// have their pointer values written. The values are used as
// 1ink IDs when the file is loaded at a later date.
}

A.7 STARTUP AND SHUTDOWN

Many of the classes in the system have requirements for initialization before the appli-
cation main function starts and for termination after the application main function
ends. For example, a matrix class might store a constant static member that represents
the identity matrix. The following code will guarantee that the static data member is
created pre-main.

// in matrix.h
class Matrix

{

public:

Matrix (float fMOD, float fMD1, float fMQ2,
float fM1D, float fM1l, float fM12,
float fM2D, float fM21, float fM22)

{

// initialization of m_aafM[][] goes here

}

static const Matrix IDENTITY;
protected:

float m_aafM[3][3];
}:

/7 in matrix.cpp
#include "matrix.h"
const Matrix Matrix::IDENTITY(1,0,0,0,1,D0.D0.0,1);

A compiler will generate code that executes the constructor for the matrix class
before the application main starts, thereby guaranteeing that the identity matrix is

A.7 Startup and Shutdown 465

ready for use in the application. If there is a need to initialize dynamic memory pre-
main, then the allocated memory should be freed post-main. An automatic way of
doing this in C++ is illustrated. This mechanism may also be used to initialize any
static data.

// in point.h
class Point

{
public:
Paint (float fX, float fY, fleat f2);
{
m_fX ~ £X; m_fY = fY; m_fZ - fZ;
}
static void Initialize ()
{
ms_uiQuantity = DEFAULT_QUANTITY;
ms_akHandyBuffer = new Point[ms_uiQuantity];
ZERO.m_fX = 0;
ZERO.m_fY = 0:
2ERO.m_fZ = 0:
}
static void Terminate ()
{
delete[] ms_akHandyBuffer;
}

static const Point ZERO;
protected:
float m_fX, m_fY, m_fZ;

enum { DEFAULT_QUANTITY = 32 };
static unsigned int ms_uiQuantity:
static Point* ms_akHandyBuffer;

friend class _PointInitTerm;
}:

// in point.cpp

f#include “"point.h"

const Point Point::ZERQ: // just declare storage,
// no injtialization

class _PointInitTerm

466 Appendix A Object-Oriented Infrastructure

{
public:
_PointInitTerm () { Point::Initialize(); }
~_PointInitTerm () { Point::Terminate():)
}s

static _PointInitTerm _forcelnitTerm;

The compiler generates a constructor call for _forceInitTermthat occurs pre-main
and a destructor call that occurs post-main.

While the startup and shutdown mechanism is automatic, there is the problem of
dependencies between objects that require such assistance. For example, suppose class
A has a static member that is initialized pre-main, and class B has a static member that
must be initialized to the value from class A. The initialization code is contained in
the source file for that class. The compiler and linker process both source files, but the
generated pre-main calls are not guaranteed to be in any particular order.

// in A.h

class A

{

public:
static void Initialize () { <initfalize OBJECT here>; }
static void Terminate () { <any cleanup goes hered>; 1}
static A OBJECT;

private:
friend class _AlnitTerm;

)

!/ in A.cpp

f##include "A.h"

A A::0BJECT;

class _AlInitTerm

{

public:
_AInitTerm () { A::Initialize():)
~_AInitTerm () (A::Terminate();)

};

static _AInitTerm _forcelnitTerm;

// in B.h

#finclude "A.h"

class B

{

public:
static void Initialize () { DEPENDENT_OBJECT = A::0BJECT; }
static void Terminate () { <any cleanup goes here>; }

A.7 Startup and Shutdown 467

static A DEPENDENT_OBJECT;
private:

friend class _BInitTerm;
}:

/7 in B.cpp

finclude "B.h"

A B::DEPENDENT_OBJECT:

class _BlnitTerm

{

public:
_BInitTerm () { B::Initialize(); }
~_BInitTerm () { B::Terminate(): }

}:

static _BInitTerm _forcelnitTerm:

if the pre-main initialization of A: : 0BJECT occurs before the pre-main call initializa-
tion of B: : DEPENDENT_OBJECT, then all is well. However, if the calls are in reverse
order, B: : DEPENDENT_OBJECT will use whatever is currently stored in memory for
A::0BJECT and should be zeroed memory since the object is static.

Dependencies can be handled in a localized way by requiring each pre-main ini-
tializer to call the pre-main initializers for any classes that it depends on for proper
setup, but this approach leads to yet another problem: a pre-main initializer for a
class should only be called once. The solution is to include a static Boolean flag that
indicates whether or not the initialization has already occurred. When the initializa-
tion function is called the second (or later) time, the flag is checked and the function
returns immediately. The previous example is now

// in Ah
class A
f
public:
static void Initialize ()
{
static s_bInitialized = false;
if (s_bInitialized) return;
s_blnitialized = true:
<initialize OBJECT here>;
}
static void Terminate () { <any cleanup goes here>; }
static A OBJECT;
private:
friend class _AlnitTerm;
1N

468 Appendix A Object-Oriented Infrastructure

/7 in A.cpp

ffinclude "A.h"

A A::0BJECT;

class _AlInitTerm

{

public:
_AInitTerm () { A::Initialize(); }
~_AInitTerm () { A::Terminate(): }

IH

static _AInitTerm _forcelnitTerm;

// in B.h
f#include "A.h"
class B
{
public:
static void Initialize ()
{
static s_bInitialized = false;
if (s_bInitialized) return;
s_bInitialized = true;
A::Initialize();
DEPENDENT_OBJECT = A::0BJECT;
}
static void Terminate () { <any cleanup goes here>: }
static A DEPENDENT_OBJECT;
private:
friend class _BInitTerm;
}s

// in B.cpp

ffinclude "B.h"

A B::DEPENDENT_OBJECT;

class _BInitTerm

{

public:
_BInitTerm () { B::Initialize(): }
~ BInitTerm () { B::Terminate(): }

};

static _BInitTerm _forcelnitTerm;

APPENDIX

NUMERICAL METHODS

his appendix describes various numerical methods that are generally useful
in computer graphics. Many of these are specifically useful in real-time game
engines.

B.l SYSTEMS OF EQUATIONS

The two types of systems that arise often in graphics applications are linear systems
and polynomial systems. Linear systems are written in the form AX=bfornxn
matrix A and n x 1 vectors X and b. Both A and b are known. The unknowns are the
components of X. Polynomial systems are written in the form p; (X)=0for0<i<n
for n x 1 vector X and where pi is a polynomial function.

B.1.1 LINEAR SYSTEMS

The standard approach to solving linear systems is Gaussian elimination with some
type of pivoting. Standard numerical methods textbooks cover this topic in detail

469

470 Appendix B

SOURCE CODE

LIBRARY

Numerics

FILENAME

LinearSystem

Numerical Methods

(Burden and Faires 1985). Numerical Recipes in C (Press et al. 1988) also has good
coverage. For more advanced topics on matrix systems, see Matrix Computations
(Golub and Van Loan 1993).

For a 3 x 3 system, one symbolic method that is typically taught for solving
the system uses the method of cofactors to invert A. If A is invertible, then A~! =
A*di/det(A), where A*Y is the adjoint matrix, the transpose of the matrix of cofactors
for A. The solution to the system is

Xo0 1 aya —ajdz doxdz) — doid22 doidi2 — dody bo
x| = det(A) d)2az0 — dyoaz2 Apedzx — do2A@zp do2do — doodi2 b |,
d10821 — Ay @0 Goydo — Apodz) doodly — doidio by
where

det(A) = ago(ay1ax2 — ay2a2)) + aoy(@y2a20 — ayoa22) + doz(arodz; — apazo).

For n x n systems, the method of cofactors to invert A is O(n!). Gaussian elimi-
nation is (%), so it is not difficult to see that Gaussian elimination is faster as n gets
large. Moreover, the numerical stability of elimination algorithms is greatly desired.
However, for n = 3, the asymptotic analysis is not particularly relevant. On most plat-
forms, inversion of a 3 x 3 matrix is faster using cofactors than Gaussian elimination
because a generic Gaussian elimination package requires some overhead, in partic-
ular loop iterations, which costs cycles. The speedup by using cofactors can be quite
significant.

B.1.2 POLYNOMIAL SYSTEMS

SOURCE CODE

LIBRARY

Numerics

FILENAME

PolynomialSystem

Consider first the example of determining where two circles intersect in the plane. The
equations for the circles are (x — xg)2 + (v — yo)2 =ri and (x — x;)2 + (v — »)* =
r]2. The intersections (if any) are those (x, ¥) that solve both equations simultaneously.
From the geometry there is either no solution (circles are disjoint), one solution
(circles are tangent to each other), two solutions (circles interpenetrate), or infinitely
many solutions (the circles are identical). If the circles are concentric, xo = x} and
¥o = ¥, then there is no intersection when rg # r; or infinitely many intersections
when rg =). Otherwise, suppose that either xo # x; or yp # ¥1. The two quadratic
equations can be solved by eliminating one of the variables. The second equation is
subtracted from the first to obtain the linear equation

2(xy — x)x + x5 —x{ + 20y — vo)y + ¥, —yi=ri —ri.

If {v; — vo| = |x; — xol, solve for

rg —rl+ (xi — x0)* + (Yo — 11)* — 2(x) — xo)(x —x0) _ a(x —x0) + b

2(vy — yo) T 2w-—¥)

y—Y=

B.1 Systems of Equations 471

Replace this in the first equation to obtain
(4(y1 ~ yo)* + a*Wx — x0)? + 2ab(x — xg) + b* = 403y —)’ rg =0.

This is a quadratic equation in the single variable x and can be solved accordingly for
up to two real-valued solutions. For each solution, the corresponding value of y is
computed. The final pairs (x, ¥) must be tested for validity since extraneous solutions
might have been generated because of handling both signs on the square root in the
quadratic formula,

The general problem of solving two quadratic equations in two unknowns is pre-
sented here. Given Py(x, y) = agx? + boxy + coy? + dox + egy + foand Py(x, v) =
ayx2 +bixy + c1y? + dix + ey y + fi, find all solutions to Po(x, v) = 0and P;(x, ¥)
= 0. The solutions to Py(x, y) = 0and P(x, y) = 0 are found by elimination.

The two polynomials f(x) = ag + a1x + a;x? and g(x) = Bo + Bix + Bx? have
a common root if and only if the Bézout determinant is zero,

(@281 — a1 Ba)(@1 Bo — @ofr) — (@280 — €0 f2)? =0,

and in which case the common root is

X = (a0 — anBr)/ (a1 B2 — az81).

The common root to f(x) =0 and g(x) = @ is obtained from the linear equation
Baf (x) — ag(x) = 0. If the coefficient of x is zero, then f and g either have no
common root or are the same polynomial (modulo a constant multiplier). Replacing
the common root into f(x) = 0 yields the Bézout determinant.

The simuitaneous quadratic equations are P;(x, ¥) = (a;)x? + (biy + di)x +
(ciy* + ¢y + fi) fori =0, 1. The Bézout determinant is a quartic polynomial

R(Y) = uo + 1y + uz¥? + usy® + ugy?,

where
_ 2
Ug =VVy0 — Uy
uy = vouyo + v2(v7 + v9) — 2U3v4
Uz = (V7 + V9) + va(vs — Vg) — v — 2uu4
u3 = vy(ve — Ug) + vavs — Zv,v3
_ 2
U4 = YgUs — U]

with v = aoby — arbo, v1 = agct — aico, v2 = aody — a1ds, V3 =ager — ajeq, V4=
aofi ~ ay fo, Us = bocy — bico, vg = boey — byen, v7 = bofi — by fo, Us = cody —
c\do, v9 = doey — dyeg, and vy = do fi — d) fo. For each ¥ solving R(¥) = 0, solve
Py(x, ¥) =0 for up to two values x. Eliminate any extraneous solution (X, ¥) by
verifying that P;(%, §) =0fori =0, 1.

472 Appendix B Numerical Methods

Wee and Goldman (1995a, 1995b) discuss the general handling of polynomial
systems using elimination and resultants in detail. For three or more variables, the
constructions can be quite complex.

B.2 EIGENSYSTEMS

SOURCE CODE

LIBRARY

Numerics

FILENAME

Eigen

Given an n X n matrix A, an eigensystem is of the form AX = AX or (A — A)X =0.
It is required that there be solutions X # 0. For this to happen, the matrix A — A/
must be noninvertible. This is the case when det(A — Af) =0, a polynomial in A
of degree n called the characteristic polynomial for A. For each root A, the matrix
A — Al is computed, and the system (A — A/)X = 0 is solved for nonzero solutions.
Although standard linear algebra textbooks show numerous examples for doing this
symbolically, most applications require a robust numerical method for doing so. In
particular, ifn > 5, there are no closed formulas for roots to polynomials, so numerical
methods must be applied. A good reference on solving eigensystems is Press et al.
(1988). An excellent reference for numerical methods relating to matrices is Golub
and Van Loan (1993). An excellent reference for matrix analysis is Horn and Johnson
(1985).

Most of the applications in graphics that require eigensystems have symmetric ma-
trices. The numerical methods are quite good for these sincea full basis of eigenvectors
is guaranteed. The standard approach is to apply orthogonal transformations, called
Householder transformations, to reduce A to a tridiagonal matrix. The QR algorithm
is applied iteratively to reduce the tridiagonal matrix to a diagonal one. Press et al.
(1988) advise using a QL algorithm with implicit shifting to be as robust as possible.

For n = 3, the problem can be solved by simply computing the roots of det(A —
Al) = 0. Often the numerical issues can be avoided since the end result is some visual
presentation of data where the numerical error is not as important as for applications
that require high precision.

B.3 LEAST-SQUARES FITTING

Least-squares fitting is the process of selecting a parameterized equation that repre-
sents a discrete set of points in a continuous manner. The parameters are estimated by
minimizing a nonnegative function of the parameters. This section discusses fitting
by lines, planes, quadratic curves, and quadric surfaces.

B.3.1 LINEAR FITTING OF POINTS (x, f(x))

This is the usual introduction to least squares fit by a line when the data represents
measurements where the y-component is assumed to be functionally dependent on
the x-component. Given a set of samples {(x;, y;)}L,, determine A and B so that

B.3 Least-Squares Fitting 473

the line y = Ax + B best fits the samples in the sense that the sum of the squared
errors between the y; and the line values Ax; + B is minimized. Note that the error
is measured only in the y-direction.

Define E(A, B) = Y_/L,[(Ax; + B) ~ y;]%. This function is nonnegative, and its
graph is a paraboloid whose vertex occurs when the gradient satisfies VE = (0, 0).
This leads to a system of two linear equations in A and B that can be easily solved:

m
(0,0)=VE =2) [(Ax; + B) — 3i](xi, 1)

i=l

and so

m 2 m . m .

[i=1%; i=1Xi [A] _ iy Xivi
m m - m ‘

Dinin XiL14lB i=1 ¥i

The solution provides the least-squares solution y = Ax + B.

B.3.2 LINEAR FITTING OF POINTS USING ORTHOGONAL REGRESSION

SOURCE CODE

LIBRARY

Approximation

FILENAME

LineFit

It is also possible to fit a line using least squares where the errors are measured
orthogonally to the proposed line rather than measured vertically. The following
argument holds for sample points and hnes in n dimensions. Let the line be L(f) =
tD + A, where D is unit length. Define X; to be the sample points; then

=A+d;D+ p;DH

whered; = D - (X; — A) and D-’- is some unit- Iength vector perpendncular to D with

appropriate coefficient p;. Deﬁne ¥; = X; — A. The vector from X; to its projection
onto the line is

i;i —d,b = p,'b,"L.

The squared length of this vector is p? = (¥ — d; [))2_ The energy function for the
least-squares minimization is E(A, D) = Y7, p?. Two alternative forms for this
function are

m

E@&,Dy=Y (¥ [1-bD]F)

i=1

m
EA D)=D (Z [()7,- AV A]) D= D'M(A)D.

474 Appendix B Numerical Methods

Using the first form of E in the previous equation, take the derivative with respect

to A to get

("E ——’ m -

ﬁ=—2[1—1)D]2|:y,~.
i=

This partial derivative is zero whenever 3 /., i-’,- =0, in which case A = (1/m)
7., X;, the average of the sample points.

Given A, the matrix M(A) is determined in the second form of the energy func-
tion. The quantity D'M(A)D is a quadratic form whose minimum is the smallest
eigenvalue of M(A). This can be found by standard eigensystem solvers. A corre-
sponding unit-length eigenvector D completes our construction of the least-squares
line.

Forn=2,ifA= (a, b), then matrix M (A) is given by

i=1 i=1

m n l 0
M(A) = (Z(x.-—a)2+2(y.-—b)2) [0 1]

Yiti(xi—a)? Y —a)yi — b)
X —a)y; — b) Sy —b)? .

Forn =3,if A = (a, b, ¢), then matrix M(A) is given by

100
M(A)=8|01 0
00 1
S —a) ki —a)yi —b) Y (xi —a)zi —c)
- | XiLixi —a)tyi — b) i (vi — b)? YIGi—bci—o |,
Yixi —a)zi —¢) 2L —)z — o) Tz — o)

where

m n n
§= Z(x,- —a)* + Z()’l —-b)Y? + Z(Zi —)

B.3.3 PLANAR FITTING OF POINTS (x, y, f(x, ¥))

Here we assume that the z-component of the data is functionally dependent on the
x-and y-components. Given a set of samples [(x;, vi, 7;)}7_,, determine A, B,and C

B.3 Least-Squares Fitting 475

so that the plane z = Ax + By + C best fits the samples in the sense that the sum of
the squared errors between the z; and the plane values Ax; + By; + C is minimized.
Note that the error is measured only in the z-direction.

Define E(A, B, C) =Y {L,[(Ax; + By; + C) — z;]%. This function is nonnega-
tive, and its graph is a hyperparaboloid whose vertex occurs when the gradient satisfies
VE = (0, 0, 0). This leads to a system of three linear equations in A, B, and C that
can be easily solved:

m
(0,0,0)=VE =27 [(Ax; + By; + C) — zi](xj, yin 1)

i=1

and so
" 2 " m
i=1 % i Xy Xin x| A Y XiZi
m cv: m 2 L s —_ mo -
Dot Xii =1 Y Doy ¥ B | =130 wa
m n m oo,

The solution provides the least-squares solution 2 = Ax + By + C.

B.3.4 HYPERPLANAR FITTING OF POINTS USING ORTHOGONAL REGRESSION

SOURCE CODE

Approximation

PlaneFit

It is also possible to fit a plane using least squares where the errors are measured
orthogonally to the proposed plane rather than measured vertically. The following
argument holds for sample points and hyperplanes in n dimensions. Let the hyper-
planebe N - (X — A) =0, where N i is a unit-fength normal to the hyperplane and A
is a point on the hyperplane. Define X to be the sample points; then

5.(,' =A +)\,‘I.\-/ + pil.\-/':l',

whereA; =N - (X; — A} and N L issome umt-length vector perpendxcular to N with
appropriate coefficient p;. Deﬁne Y, Xi— A. The vector from X; to its pro;ectlon
onto the hyperplane is A;N. The squared length of this vector is A? = (N - ¥,

The energy function for the least-squares minimization is E(A, N) = Z‘:"_, A2 Two
alternative forms for this function are

B M= (7 [FF] 7)
i=l

and

476 Appendix B Numerical Methods

Using the first form of E in the previous equation, take the derivative with respect to
A to get

This partial derivative is zero whenever S™, ¥ =0, in which case A = (1/m)
YL X (the average of the sample points).

Given A, the matrix M (A) is determined in the second form of the energy func-
tion. The quantity N' M(A)N is a quadratic form whose minimum is the smallest
eigenvalue of M(A). This can be found by standard eigensystem solvers. A corre-
sponding unit-length eigenvector N completes our construction of the least-squares
hyperplane.

For n =3,if A = (a, b, c), then matrix M(A) is given by

X —a) S —a)y; — by it (xi —a)z —c)
MA)=| 37 (xi —a)(yi — b) i —by? e (i — bz —)
Yl —aXzi—c) Z~.-.|<yi—b)<zf - Xiifa—coP

B.3.5 FITTING A CIRCLE TO 2D POINTS

SOURCE CODE

LIBRARY

Approximation

FILENAME

CircleFit

Given a set of points {(x;, ¥;)}",, m > 3, fit them with a circle (x — a)? + (y — b)* =
r%, where (a, b) is the circle center and r is the circle radius. An assumption of this
algorithm is that not all the points are collinear. The energy function to be minimized
is

m
E(a)h)r) =Z(LI _r)z)

i=1

where L; = /(x; — a)? + (v; — b)2. Take the partial derivative with respect to r to
obtain

m

oE
W =-2 Z(L,‘ —r).
i=

B.3 Least-Squares Fitting

Setting equal to zero yields

1
r=;i§Li.

Take the partial derivative with respect to 4 to obtain

aE 2 aL;
— =2 Li—-r)—=2 . — —
E (r) i§=l ((x, a)+r aa)

i=1

and take the partial derivative with respect to b to obtain

———ZZ(L —ZZ((V,—b)+r%)

Setting these two derivatives equal to zero yields

it

and

m m

Zy +r— 21;'

r—-l

477

Replacing r by its equivalent from 9 E/dr = 0 and using 4L;/3a = (a — x;)/L; and

aL;/ab = (b — y;)/L; leads to two nonlinear equations in a and b:

=£ +I-‘I-‘(I = F(a)b)
+ 1-.1-.1, =:G(a, b),

b

478 Appendix B Numerical Methods

where
l m
x=— Xxi
m =
"y
I
v=—) ¥
i=1
l m
L=— L;
Mo
m
I = 1 a— xj
=—
e Li
m
s 1 —_ v,
- .

-

Fixed-point iteration can be applied to solving these equations: ap = X, by = ¥, and

a;j+) = F(a;, b;) and b; 4| = G(a;, b;) fori > 0.

B.3.6 FITTING A SPHERE TO 3D POINTS

S0OURCE CODE

LIBRARY

Approximation

FILENAME

SphereFit

Given a set of points {(xis yir 2)}L,, m 2 4, fit them with a sphere (x — ay +(y—
b)? + (z — ¢)* = r?, where (a, b, c) is the sphere center and r is the sphere radius.
An assumption of this algorithm is that not all the points are coplanar. The energy
function to be minimized is

m
E(,b,c,r)= Z(Ll -
i=1

where L; = /(x; —a)? + (¥ — b)2 + (zi ~ ¢). Take the partial derivative with re-
spect to r to obtain

n

—=—ZZ(L —-r).

Setting equal to zero yields

1
r=;i=ZlL,'.

B.3 Least-Squares Fitting 479

Take the partial derivative with respect to a to obtain

———ZZ(L 22((x,—a)+rﬁ)

take the partial derivative with respect to b to obtain

IE
= —ZZ(L —r}——ZZ((V, ab)

and take the partial derivative with respect to ¢ to obtain

—“"—ZZ(LI_")‘_‘—ZZ((Z: —t)+r—)

Setting these three derivatives equal to zero yields

and
1 m 1 m 3L,‘
c=— itr— —_—
m m 4 dc

Replacing r by its equivalent from dE/3r = 0 and using aL;/da = (a — x;)/L;,
aL;/3b= (b~ y;)/L;;anddL;/3c = (¢ — z;)/L; leads to three nonlinear equations
ina, b, and c:

(NI
II

+ : Fla, b, c)
b=;+1z =1 G(a, b, ¢)
+ L = H(a’ b» <)

480 Appendix B Numerical Methods

Fixed-point iteration can be applied to solving these equations: ap = X, hp = ¥, co = 3,
and ¢; 41 = F(a;, by, ¢i), bi+1 = Gla;, bj, ¢i), and ¢iy = H(a;, b;, ¢;) fori > 0.

B.3.7 FITTING A QUADRATIC CURVE TO 2D POINTS

S0OURCE CODE

LIBRARY

Approximation

FILENAME

QuadraticFit2
EllipseFit

Given a set of points {(x;, ¥;)}!_,» a quadratic curve of the form Q(x, y) =co +
e + 27 + ¢3x? + ¢4y + csxy = 0 is sought to fit the points. Given values ¢; that
provide the fit, any scalar multiple provides the same fit. To eliminate this degree of
freedom, require that C= (co - - . » €5) have unit length. Define the vector variable
V=(,x v, X2, ¥2, xy). The quadratic equation is restated as o) = C-V=0
and is a linear equation in the space of V. Define V; = (1, x;, v;> x2, ¥, xi i) for the
ith data point. While generally Q(f/,-) is not zero, the idea is to minimize the sum of
squares

2
u

EC)=|>.C.V} =C™MC,
(=0

B.4 Minimization 481

where M =3 7, ‘7,‘7,7 and subject to the constraint IE' | = 1. Now the problem is
in the standard format for minimizing a quadratic form (see Section 8.2.2). The
minimum value is the smallest eigenvalue of M, and C is a corresponding unit-length
eigenvector. The minimum itself can be used as a measure of how good the fit is
(0 means the fit is exact).

If there is reason to believe the input points are nearly circular, a minor mod-
ification can be used in the construction. The circle is of the form Q(x, y) = ¢+
ax + ey + oa(x® + yz) = 0. The same construcnon can be applied where V=
(1, x, y, X2 + y?) and E(C) = CTMC subject to |C| = 1.

B.3.8 FITTING A QUADRIC SURFACE TO 3D POINTS

SOURCE CODE

Approximation

FILENAME

QuadraticFit3
EllipsoidFit
ParaboloidFit

Given a set of points {(x;, yi> 2i))j—,, a quadric surface of the form Q(x, y,2) =
o + C1X + c2y + €32 + c4x? + csy? + ce2? + c7xy + €8x + coyz = 0 is sought to
fit the points, Just like in the previous section, C = (¢;) is required to be unit length
and i;' =(1,x,y,2, %% y z xy, Xz, yz). The quadratic form to minimize is EWC)=
CTMC,where M = z,—o Vi V . The minimum value is the smallest eigenvalue of M,
and C is a corresponding unit-length eigenvector, The minimum itself can be used as
a measure of how good the fit is (0 means the fit is exact).

If there is reason to believe the input points are nearly spherical, a minor mod-
ification can be used in the construction The sphere is of the form Q(x, y,2) =
co+eix +ey+ez+t c4(x + v+ = 0 The same construction can be applied
where V = (1, x, y, 2, x2 + y2 + z%) and E(C) = CTMC subject to |C| = 1.

B4 MINIMIZATION

The generic problem is to find a global minimum for a function f : D C R" — R. The
functionis constrained to be at least continuous, and D is assumed to be a compact set.
Ifthe function is continuously differentiable, this fact can help in locating a minimum,
but there are methods that do not require derivatives in finding one.

B.4.1 METHODS IN ONE DIMENSION

SoURCE CODE

Numerics

MinimizelD

Consider f : [tmin, fmax] = R. If f is differentiable, then the global minimum must
occur either at a point where f' = @ oratone of the end points, This standard approach
is the one used to compute the distance between a point and a line segment (see
Section 2.6). The squared-distance function is quadratic and is defined on a compact
interval. The minimum of that function occurs at an interior point of the interval, in
which case the closest point is interior to the line segment or at an end point. Solving
the problem f'(f) =0 may be complicated in itself. (This root-finding problem is
described in Section B.5.1.)

482 Appendix B Numerical Methods

Brent’s Method

Continuous functions that are not necessarily differentiable must attain a minimum
on a compact interval. A method to find the minimum that does not require deriva-
tives or determining where the derivative is zero when the function is differentiable is
very desirable. One such method, Brent’s method, uses inverse parabolic interpolation
in an iterative fashion.

The idea is to bracket the minimum by three points (fo, f (7)), (1w, f{tm)), and
(11, f(11)) for tmin <t <1, <11 < Imax, where [) < fltp) and f(t,) < f(t1). This
means the function must decrease for some values of 7 € [1, 1,,,] and must increase for
some values of 7 € [1,,, #|], which guarantees that f has a local minimum somewhere
in [#o, 1;]. Brent’s method attempts to narrow in on the local minimum, much like the
bisection method narrows in on the root of a function (see Section B.5).

The following is a varjation of the description of Brent’s method by Press et
al. (1988). The three bracketing points are fit with a parabola, p(r). The vertex of
the parabola is guaranteed to lie within (t, 7)). Let fo = f(%), f,x = f(ty), and
f1 = f(11). The vertex of the parabola occurs at 1, € (1p, #|) and can be shown to be

l (tl - fo)z(fo - fm) - ('() - tm)z(fl - fm)
2 (r — rm)(.f() - fm) — (1o~ tm)(fl - f;n))

fp =1ty —

The function is evaluated there, f, = f{1,). 1f1, < 1, then the new bracket is (0, fo),
(tv, fo)rand (ty, fi). Ift, > 1, then the new bracket is (1,5, fin), {1y f2), and (1, f1).
Ift,, = t,, the bracket cannot be updated in a simple way. Moreover, it is not sufficient
to terminate the iteration here because it is simple to construct an example where the
three samples form an isosceles triangle whose vertex on the axis of symmetry is the
parabola vertex, but the global minimum is far away from that vertex. One simple
heuristic is to use the midpoint of one of the half-intervals, say, 1, = (o + #,)/2,
evaluate fj, = f(15), and compare to f,,. If fp > f,;, then the new bracket is (1, f5),
(s S and K1y, £33 fp < finr then the new bracketis (19, fo), (15, i), and (2, for).
If fp = fi» the other half-interval can be bisected and the same tests repeated. If that
also produces the pathological equality case, try a random sample from [z, #1]. Once
the new bracket is known, the method can be repeated until some stopping criterion
is met.

Brent’s method can also be modified to support derivative information (Press et
al. 1988).

B.4.2 METHODS IN MANY DIMENSIONS

Consider f: D C R" — R, where D is a compact set. Typically in graphics applica-
tions, D is a polyhedron or even a Cartesian product of intervals. If f is differentiable,
then the global minimum must occur either at a point where V f =0 or on the bound-
ary of D. In the latter case if D is a polyhedron, then the restriction of f to each face
of D produces the same type of minimization problem, but in one less dimension.

B.4 Minimization 483

For example, thls happens for many of the distance methods described in Chapter 2.
Solving V f = 0 is a root-finding problem and itself may be a difficult problem to
solve.

Steepest Descent Search

Steepest descent search is a simple approach to searching for a minimum of a differen-
tiable function. From calculus it is known that the direction in which f has its greatest
rate of decrease is — V f. Given an initial guess X for the minimum point, the function
oit)=f (X =1V f (5'(}) is minimized using a one-dimensional algorithm. If ¢’ is the
parameter at which the minimum occurs, then X « X — 1’V f(X), and the algorithm
is repeated until a stopping condition is met, The condition is typically a measure of
how different the last starting position is from the newly computed position.

The problem with this method is that it can be very slow. The pathological case
is the minimization of a paraboloid f(x, y) = (x/a)* + ¥2, where a is a very large
number. The level sets are ellipses that are very elongated in the x-direction. For points
not on the x-axis, the negative of the gradient vector tends to be nearly parallel to the
y-axis. The search path will zig-zag back and forth across the x-axis, taking its time
getting to the origin, where the global minimum occurs. A better approach is not to
use the gradient vector, but to use something called the conjugate direction. For the
paraboloid, no matter where the initial guess is, only two iterations using conjugate
directions will always end up at the origin. These directions in a sense encode shape
information about the level curves of the function.

Conjugate Gradient Search

This method attempts to choose a better set of directions than steepest descent for a
minimization search. Only a brief summary is given here (for more details, see Press
et al. 1988). Two sequences of directions are built, a sequence of gradient directions
8i and a sequence of conjugate directions k;. The one-dimensional minimizations are
along lines corresponding to the conjugate directions. The following pseudocode uses
the Polak and Ribiere formulation as mentioned in Press et al. (1988). The function
to be minimized is E(X). The function MinimizeOn minimizes the function along
the line using a one-dimensional minimizer. It returns the location x of the minimum
and the function value fval at that minimum.

X = jnitial guess;

g = -gradient(E)(x);

h =g;

while (not done)

{
line.origin = x;
line.direction = h;

484 Appendix B Numerical Methods

SOURCE CODE

LIBRARY

Numerics

FILENAME

MinimizeND

MinimizeOn(line,x,fval);
if (stopping condition met)
return <x,fval>;

gNext = -gradient(E)(x);
¢ = Dot(gNext-g.gNext)/Dot(g,qg):
g = gNext;
h =g + c*h;
]

The stopping condition can be based on consecutive values of fval and/or on consec-
utive values of x. The condition in Press et al. (1988) is based on consecutive function
values, fp and fj, and a small tolerance value t > 0,

21fi = fol < (L fol + | fil +€),

for a small value € > 0 that supports the case when the function minimum is zero.

Powell’s Direction Set Method

If f is continuous but not differentiable, then it attains a minimum on D. The
search for the minimum simply cannot use derivative information. A method to find
a minimum that does not require derivatives is Powell’s direction set method. This
method solves minimization problems along linear paths in the domain. The current
candidate for the point at which the minimum occurs is updated to the minimum
point on the current line under consideration. The next line is chosen to contain the
current point and has a direction selected from a maintained set of direction vectors.
Once all the directions have been processed, a new set of directions is computed. This
is typically all but one of the previous set, but with the first direction removed and
a new direction set to the current position minus the old position before the line
minimizations were processed. The minimizations along the lines use something such
as Brent’s method since f restricted to the line is a one-dimensional function, The fact
that D is compact guarantees that the intersection of a line with D is a compact set.
Moreover, if D is convex (which in most applications it is), then the intersection isa
connected interval so that Brent’s method can be applied to that interval (rather than
applying it to each connected component of the intersection of a line with D). The
pseudocode for Powell’s method is

// F(x) is the function to be minimized

n = dimension of domain;

directionSet = {d[0],..., d[n-11}; // usually the standard axis
// directions

x = xInitial = initial guess for minimum point;

B.5 Root Finding 485

while (not done)

{
for (each direction d)
{
line.origin = x;
line.direction = d;
MinimizeOn(line,x,fval);
}
conjugateDirection = x - xInitial;
if (Length(conjugateDirection) is small)
return <x,fval>; // minimum found
for (i = 0; 1 <= n-2; i++)
dli] = d[i+1]:
d{n-1] = conjugateDirection;
1

The function MinimizeOn is the same one mentioned in the previous subsection on
the conjugate gradient search.

B.S RoOT FINDING

Given a continuous functign_f‘ : D C R" — R, the problem is to find an X (or find
a set of points) for which F(X) =0.

B.5.1 METHODS IN ONE DIMENSION

Given a continuous function f : [a, b] — R, the first question is whether or not
fr)y=0forsomer € |a, b].If f(a) f(b) < 0, then there s at least one root. However,
there may be multiple roots. If a root r is computed, other analyses are required
to locate others. For example, if f is a polynomial and r is a root, the function
can be factored as f(t) = (t — r)”g(t), where p > 1 and g is a polynomial with
degree(g) = degree(f) — p. The root-finding process is now continued with function
gonla,b).

If f(a) f(b) > 0, there is no guarantee that f has a root on [g, b]. For problems of
this type, a root-bounding preprocessing step can be used. The interval is partitioned
intoti =a+i(b—a)/nfor 0 <i <n. If f(t;) f(ti41) <O for some i, then that
subinterval is bisected to locate a root. A reasonable choice of n will be related to
what information the application knows about its function f.

Finally, it might be necessary to find roots of f : R — R, where the domain of
f is not a bounded interval. In this case, roots of f can be sought in the interval

486 Appendix B Numerical Methods

S0OURCE CODE

LIBRARY

Numerics

FILENAME

Bisect1

SOURCE CODE

LIBRARY

Core

FILENAME

Polynomial

[—1, 1]. For [t] = 1, the function g(t) = f(1/1) is defined for t € [—1, 1]. Roots for
g aresoughton [—1, 1]. If g(r) =0, then f(1/r) = 0.

Bisection

Bisection is the process of finding a root to a continuous function f : [a, b] - R by
bracketing a root with an interval, then successively bisecting the interval to narrow
in on the root. Suppose that initially f(a) f (b) < 0. Since f is continuous, there must
be a root r € (a, b). The midpoint of the interval is m = (a 4 b)/2. The function
value f(m) is computed and compared to the function values at the end points, If
f(a) f(m) <0, then the subinterval (a, m) brackets a root and the bisection process
is repeated on that subinterval. If f(m) f(b) < 0, the subinterval (m, b) brackets a
root and the bisection process is repeated instead on that subinterval. If f(m) =10
or is zero within a specified tolerance, the process terminates. A stopping condition
might also be based on the length of the current subinterval—that is, if the length
becomes small enough, terminate the algorithm. If a root exists on [a, b], bisection is
guaranteed to find it. However, the rate of convergence is slow.

Newton’s Method

Given a differentiable function f: R — R, an initial guess is chosen about where f
is zero, (Xo, f(xo)). The tangent line to the graph at this point is used to update the
estimate to a (hopefully) better one. The tangent line is y — f(xo) = f'(x0)(x — xp)
and intersects the x-axis at (0, x}), 50 — f (x0) = f'(x0)(x] — Xo). Assuming f'(xo) #
0, solving for x yields

The next point in the iteration is (x;, f(x))) and the process is repeated until a
stopping condition is met, typically one based on closeness of the function value to
zero. Unlike bisection, the iterations are not guaranteed to converge, but if there is
convergence, it is at a faster rate. Success depends a lot on the initial guess for xo.

Polynomial Roots

A polynomial of degree n is f(1) = Y [_, a;1", where a, # 0. While standard root
finders may be applied to polynomials, a better approach takes advantage of the
nature of such functions. For 2 < n < 4, there are closed-form equations for the
roots of the polynomial. Direct application of the formulas is possible, but numer-
ical problems tend to occur, particularly when the polynomial has a root of mul-
tiplicity larger than 1. For example, the roots of a quadratic f(1) = at®> + b' +¢

B.5 Root Finding 487

are t = (—=b £ vb? — 4ac)/(2a). If b* — 4ac = 0, the quadratic has a double root
t = —b/(2a). However, numerical round-off errors might cause % — 4ac = —€ < 0
for very small €. Another condition that leads to numerical problems is if a is nearly
zero. If so, it is possible to solve g(t) = 1> f(1/t) =ct> + bt + a =0 and get t =
(—b £ +/b% — 4ac)/(2c). But the problem still exists if ¢ is also nearly zero. Similar
problems occur with the formulas for cubic and quartic polynomials.

An approach based on iteration schemes is to attempt to bracket the roots in a
way that each bracketing interval contains exactly one root. For each such interval,
bisection can be applied to find the root. A hybrid scheme is also possible that mixes
bisection steps with Newton steps; the bisection step is used only when the Newton
step generates an iterate outside the current bracketing interval. The hope is that the
Newton iterates converge quickly to the root, but if they appear not to, bisection
attempts to generate better initial guesses for the Newton iteration.

Bounding Roots by Derivative Sequences

A simple approach to the bracketing problem is to partition R into intervals, with
the polynomial f(r) monotone on each interval. If it can be determined where the
derivative of the polynomial is zero, this set provides the partition. If d; and d;
are consecutive values for which f'(d;) = f'(di+1) = 0, then either () > 0 on
(diydiy1) or f'(1) < 0on(d;,d;41). Ineither case, f can have at most one root on the
interval. The existence of this root is guaranteed by the condition f(d;) f(di+1) <0
or f(d;) =0or f(di4+1) =0.

Solving f'(¢) = 0 requires the same techniques as solving f(¢) = 0. The difference
is that degree(f') = degree(f) — 1. A recursive implementation is warranted for this
problem; the base case is the constant polynomial that is either never zero or identically
zero on the real line.

If f'(1) # O for t € (—o0, dp), it is possible that f has a root on the semi-infinite
interval (—o00, dp]. Bisection does not help locate a root because the interval is un-
bounded. However, it is possible to determine the fargest bounded interval that con-
tains the roots of a polynomial. The construction relies on the concepts of spectral
radius and norm of a matrix (Horn and Johnson 1985). Given a square matrix A,
the spectral radius, denoted p(A), is the maximum of the absolute values of the
eigenvalues for the matrix. A matrix norm of A, denoted || A[, is a scalar-valued func-
tion that must satisfy the five conditions: ||A[| = 0, ||All =0 if and only if A =0,
llcAll = Il A]| for any scalar c, [|A + B < [|All + ||Bl, and |[AB]|| < ||A[l[|BI|. The
relationship between the spectral radius and any matrix norm is p(A) < ||A|l. Given

F@)y =3[ait', where a, = 1, the companion matrix is
—Qn-) —ap-2 " A —dy
1 0 - 0 0
A= 0 1 -+ 0 0

488 Appendix B Numerical Methods

The characteristic polynomial is f(r) = det(A — t1), so the roots of f are the
eigenvalues of A. The spectral norm therefore provides a bound for the roots. Since
there are lots of matrix norms to choose from, there are many possible baunds. One
such bound is Cauchy’s bound,

[t] < max{|ao|, 1 + |a1]s. .., 1 4+ a1} =1 + max{lag|, ..., |an-1]}-

Another bound that can be obtained is the Carmichael and Mason bound,

n—i
< |1+ Jail2
i=0

[fag # 0, then £(0) # 0, so the roots of f are bounded away from zero. It is possible
to construct lower bounds by using g(1) = [1" f(1/1)]/ap. The roots of g(r) are the
reciprocal roots of f(t). Cauchy’s bound applied to g(z), then taking reciprocals is

|aol

Irl = :
1 + max({1, lail. . ., lan—1]}

The Carmichael and Mason bound is

lao|
Y1+ 0o el

These bounds are used in the recursive call to determine where f(7) is monotone.
The polynomial can be factored f(r) =1Pg(t), where p > 0 and g is a polynomial
for which g(0) # 0. If p =0, then f =g, and f is processed for 0 <a < |1| < b,
where a and b are bounds computed from the previously mentioned inequalities. If
p > 0, then g is processed on the intervals obtained by using the bounds from the
same inequalities.

[t] >

Bounding Roots by Sturm Sequences

Consider a polynomial f(r) defined on interval [a, b]. A Sturm sequence for f is
a set of polynomials f;(1), 0 <i <m, such that degree(f;+,) > degree(f;) and the
number of distinct real roots for f in [a, b] is N = s(a) — s(b), where s(a) is the
number of sign changes of fo(a), . . ., fin(a) and s(b) is the number of sign changes of
fi(b), . . ., fu(b). Thetotal number of real-valued roots of f onR is s(—o0) — 5(00).
It is not always the case that m = degree(f).

The classic Sturm sequence is fo(r) = f(t), fi(r) = f'(t), and fi(r) =
— remainder(f;_»/f;~) fori = 2. The polynomials are generated by this method un-
til the remainder term is a constant. An instructive example from the article by D.G.
Hook and P.R. McAree in Graphics Gems I (Glassner 1990) is f(1) = 1> 4 312 — 1.

B.5 Root Finding 489

Table B.[Signs of the Sturm polynomials for £? + 27 — 1 at various ¢ values.

t Sign fo(t) Sign f1(t) Sign fo(t) Sign fi(r) Sign changes

—00 - + - + 3
-3 - + —~ + 3
-2 + 0 ~ + 2
-1 + - - + 2
0 - 0 + + 1
+1 + + + + 0
+00 + + + + 0

Table B.2 Signs of the Sturm polynomials for (1 — 1)* at various t values.

t Sign fo(t) Sign fi(¢) Sign fo(t) Sign changes

—00 - + 0 1
0 - + 0
+00 + + 0 0

The Sturm sequence is fo(t) = 1> + 31> — 1, fi(t) =32+ 61, fo(t) =2t + 1, and
Jf3 =9/4. Table B.1 lists the signs of the Sturm polynomials for various £ values. Letting
N (a, b) denote the number of real-valued roots on the interval (a, b), the table shows
that N(—o00, —=3) =0, N(-3,-2) =1, N(-2,—-1)=0,N(—-1,00 =1, N(0, 1) =1,
and N (1, co) = 0. Moreover, the number of negative real roots is N (—o0, 0) = 2, the
number of positive real roots is N(0, 00) = 1, and the total number of real roots is
N(—o00,00) =3.

The next example shows that the number of polynomials in the Sturm sequence is
not necessarily the degree(f) + 1. The function f(1) = {r — 1)% has a Sturm sequence
foh=@¢ =13 fitt) =30 — 1), and f2(t) = 0since fj exactly divides fp with no
remainder. Table B.2 lists sign changes for f at various 7 values. The total number of
real roots is N(—00, 00) = |.

B.5.2 METHODS IN MANY DIMENSIONS

Root finding in many dimensions is a more difficult problem than it is in one dimen-
sion. Two simple algorithms are summarized here: bisection and Newton’s method.

490 Appendix B Numerical Methods

S0OURCE CODE

LIBRARY

Numerics

FILENAME

Bisect2
Bisect3

Bisection

The bisection method for one dimension can be extended to multiple dimensions. Let
(f, 2): [a, b] x [c,d] = R The problem is to find a point (x, y) € [a, b] x [c,d]
for which (f (x, y), g(x, ¥)) = (0, 0). A quadtree decomposition of [a, b] x [¢, d] can
be used for the root search. Starting with the initial rectangle, f and g are evaluated
at the four vertices:

u Ifeither f or g has the same sign at the four vertices, the algorithm stops processing
that region.

s Ifboth f and g have a sign change at the vertices, they are evaluated at the center
point of the region. If the values at the center are close enough to zero, that point
is returned as a root and the search is terminated in that region.

u [f the center value is not close enough to zero, the region is subdivided into four
subregions by using the original four vertices, the midpoints of the four edges, and
the center point. The algorithm is recursively applied to those four subregions.

It is possible that when a region is not processed further because f or g has the
same sign at all four vertices, the region really does contain a root. The issue is the
same as for one dimension—the initial rectangle needs to be partitioned to locate
subrectangles on which a root is bound. The bisection method can be applied to each
subrectangle that contains at least one root.

For three dimensions, an octree decomposition is applied in a similar way. For n
dimensions, a 2"-tree decomposition is used.

Newton’s Method

Given differentiable F : R" — R", the equation F (5'() =0 can be solved by the ex-
tension of Newton’s method in one dimension. The iteration scheme that directly
generalizes the method is to select an initial guess (5'(0 F(X o)) and generate the next
iterate by

X\ = Xo — (DF (X)) ' F(Xo).

The quantity DF(X) is the matrix of partial derivatives of F, called the Jacobian
matrix, and has entries @ F; /dx;, where F; is the ith component of F and x j is the
Jth component of X. Each iterate requires a matrix inversion. Although the obvious
extension, it is not always the best to use. There are variations on the method that
work much better in practice, some of which use splitting methods that avoid having
to invert a matrix and usually have better convergence behavior.

B.6 Integration 491

B. 6 INTEGRATION

Two standard methods are presented here for numerical integration, Romberg inte-
gration and Gaussian quadrature (Burden and Faires 1985). Either one is useful for
graphics applications, for example, in computing the inverse arc length integral when
reparameterizing by arc length.

B.6.1 ROMBERG INTEGRATION

SOURCE CODE

LIBRARY

Numerics

FILENAME

Integrate

Romberg integration is an excellent choice for numerical integration that is based on
extrapolation methods and the trapezoid rule.

Richardson Extrapolation

The Richardson extrapolation method is very powerful. The key idea is to get high-
order accuracy by using low-order formulas. Not only is it used in Romberg integra-
tion, but it is also used in the adaptive Runge-Kutta differential equation solvers.

Let O be an unknown quantity approximated by A (h) with approximation error
of order O(h?). That is,

Q=AM +Cih:+ 0oty =AU + OHY) (B.1)

for some constant C. This formula can be used to produce a {possibly) more accurate
approximation. Replacing h by /2 in the formula yields

J
0=A (5’) + %hl + O™, (B.2)

Taking four times Equation (B.2) and subtracting Equation (B.1), then dividing by
three yields

44 (4) - 4o

0= ; + ot (8.3)

The goal is for the O(h*) terms in Equations (B.1) and (B.3) to be about the same
size. If so, Equation (B.3) is more accurate since it does not have the 4 term in it.

492 Appendix B Numerical Methods

Define A (h) = A(h) and Ay(h) = (4A(h/2) — A1(h))/3.Otherapproximations
can be written in an extrapolation table:

Ay(h)

A (g) Ay(h)
()2
()2

(B ()

The approximation A|(h/2") is order O(h?), and the approximation Az(h/Z") is
order O(h*).
If the original approximation is written as

Q = A(h) + C1k* + Coh* + O (h®),
then the extrapolation table has an additional column:

Ai(h)

()
WE)m(E) v
WEnE) A

(B () (o)

B.6 Integration 493

where

1642 (4) - Aath)
15)

Aslh)=

The approximation A3(k/2*) is order O (h®).
In general, the extrapolation table is an n x m lower triangular matrix T = [T}|,
where

h
Tre= A, (_)
r—1

and
4V A, (g) — Ao_1(h)
At(h) = 1 .
qe—F — |
Trapezoid Rule

An approximation for f: f(x) dx can be computed by first approximating f (x) by
the linear function

x—b xX—a
L(x)=a_bf(a)+b_af(b)

and usingh[f(b)+f(a)]/2=f: L{x)dx =fub f(x) dx. Some calculus shows that

b
f Flx)dx = fi”j—ﬂ“—)h + O(h).
a

When f(x) > 0, the approximation is the area of a trapezoid with vertices at (g, 0),
(a, f(a)), (b,0),and (b, f(b)).

The integration interval [a, b] can be divided into N subintervals over which the
integration can be composited. Defineh = (b —a)/N andx; =a + jhfor0< j< N.
It can be shown that

j=1

b N-1
fa F(x) dx =g [f(a) +2) flxp)+ f(b)] +O(h?).

Note that the order of the approximation decreases by a power of one.

494 Appendix B Numerical Methods

The Integration Method

Romberg integration uses the trapezoid rule to obtain preliminary approximations to
the integral followed by Richardson extrapolation to obtain improvements.

Define hy = (b — a)/2*! for k > 1. The trapezoidal approximations correspond-
ing to the interval partitions are

A1
hi
Tk.|=—2‘- fla)+2 (P f(a+jm-)) +fb |,

j=1
and so
b

flx)dx =Ty, + O(h})

o
for all k > 1. The following recursion formula can be shown to hold:

2k-2

2Tk = Thmr + iy Y fla+ (j — 0.5)hk=1) (B.4)
j=1

fork > 2.
Richardson extrapolation can be applied; that is, generate the table

T = Ty
aa 41—

for2 < j <i. It can be shown that

h h
lim Tk"=f fx)dx ifand onlyif lim Tk,k=f flx)dx.
k—00 a k—oc o

The second limit typically converges much faster than the first. The idea now is to
choose a value n and use T;,, as an approximation to the integral. The code is

float RombergIntegral (float a, float b, float (*F)(float))
{
const int order = 5;

float rom[2][order];
float h = b-a;

// initialize T_{1.1} entry
rom[0][0] = h*(F(a)+F(b))/2;

B.6 Integration 495

for (int i = 2, ipower = 1; i <= order; i++, ipower *= 2,
h /=2)
{
// calculate summation in recursion formula for T_{k,1}
float sum = 0;
for (int j = 1; j <= ipower; j++)
sum += F(a+h*(j-0.5));

// trapezoidal approximations
rom[11[0] = (rom[0][0]+h*sum)/2;

// Richardson extrapolation
for (int k = 1, kpower = 4; k < i; k++, kpower *= 4)
rom[1][k] = (kpower*rom[1][k-1]
- rom[0][k-11)/(kpower-1);

// save extrapolated values for next pass
for (j = 0; j<i;: i+
rom[01[3j] = rom[1][j1;
)

return rom[0][order-1];
}

The value order is arbitrarily chosen to be 5. Increasing the order will generally
give better estimates, but at increased execution time. The values of T; ; are stored
in rom[2][order]. Note that not all the values must be saved to build the next ones
(so the first dimension of rom does not have to be order). This follows from the
recursion given in Equation (B.4).

B.6.2 GAUSSIAN QUADRATURE

Gaussian quadrature approximates a definite integral,

b "
f fx dx =Y e fix),
a i=1

for some choice of constants ¢; and values x; € [a, b] regardless of what f is. Ifa = —1
and b = 1, the optimal choices for ¢; and x; are related to the Legendre polynomial of
degree n. The x; are the roots of that polynomial on (~1, 1), and the ¢; are given by

1

X—dex
i —Xj

496 Appendix B Numerical Methods

The original problem can be transformed so that the quadrature formula applies. Let
t = (2x —a — bh)/(h—a), then

—_ —- _ 1
ff(x)dt—f f((b ‘”'+b+")b @ gt "f g(n) dr.
-1

2 2 2

The implementation of Gaussian quadrature amounts to selecting n, storing the tab-
ulated values for ¢; and x; statically, and simply evaluating ((b —a)/2) Y i, cig(f;).

B.7 DIFFERENTIAL EQUATIONS

Differential equations are used to model physical systems that depend on rates of
change of various quantities in the system. Ordinary differential equations have a
single independent variable, usually time. Partial differential equations have multiple
independent variables, usually including time and spatial variables. This section gives
a brief overview of each type of equation.

B.7.1 ORDINARY DIFFERENTIAL EQUATIONS

SOURCE CODE

LLIBRARY

Numerics

FILENAME

ODE
Euler
Midpoint
RK4
RK4Adapt

A first-order system of ordinary differential equations is of the form

axw _ F(t, X(1)),

where F:R x R" - R. The system is said to be autonomous if F does not depend
explicitly on 1, F = F(X). An initial value problem supplies an initial condition
¢ (r0) = Xo and time interval t > 19. Under reasonable conditions on F, the initial
value problem has a unique solution for some range of t values near the initial time fq.
The system of equations is explicit in that the first-derivative term occurs explncntly in
the equation (the left-hand side). An implicit equation is of the form G (1, X, X') =

A second-order system of ordinary differential equations is of the form

d*X (1)
dr?

= F(t, X (1), dX(1)/d1).

An initial value problem supplies the initial conditions X (o) = Xo and d X (f0)/dt =
Dy and a time interval 1 > fo. A \ two-point boundary value problem supplies an initial
condition and final condition, X (f5) = Xo and X)= X 1 fort € [1g, 11]. The system
of equations is explicit in that the second-derivative term occurs explicitly in the
equation. An implicit equation is of the form G(r, X, X', X") = 0. It is possible to
reduce a second-order system to a first-order system that has more variables. Setting

B.7 Differential Equations 497

¥ = X', the explicit system with n equations, the number of components of X, is
converted to a system with 2n equations, the number of components of the vector

Z=(X,1),

) =(Y,F(1,X,) =G, 2).

dr— dr \dr'dr

dZ _d(X.V) _ (di(d¥
The solution Z(r) has 2n components, but only the first n matter for the original
problem. The last n just list the derivatives of the first n.

Second-order equations arise in physics problems, a topic that is gaining a lot of
popularity in games. Realistic collision response will require solving second-order ini-
tial value differential equations, so it is necessary to understand what these equations
are and how to solve them. The rest of this section presents a few standard methods
for solving initial value systems. A problem such as minimum weight path finding,
for example, the shortest distance between two points on a surface, requires solving
second-order boundary value differential equations. This is a more difficult problem
to solve and requires either shooting methods or relaxation methods, which are not
discussed here (see Burden and Faires 1985).

Euler’s Method

The easiest differential equation solver is Euler’s method. The initial value is (2, Xo).
Successive approximations (t;, X;) for i > 0 are generated by using a first-order for-
ward difference to approximate the first derivative,

X1 =X+ hFEWi, X;)
lisi=t+h,

where h > 0 is a sufficiently small step size.

Midpoint Method

The midpoint method is a second-order Runge-Kutta algorithm. The initial value is
(9, X o). Successive approximations (#, X;) for i > 0 are generated by

Al i"(!i, ii)

N

Ar=F(t; +h/2, X; +hA)2)
Xiv1=X; +hA;

tis1 =1t +h.

498 Appendix B Numerical Methods

Runge-Kutta Fourth-Order Method

The Runge-Kutta fourth-order method has good accuracy. The initial value is (fg, Xo).
Successive approximations (fj, X;) for i > 0 are generated by

Ar=F(, X;)
Az = i’(!,' +h/2, ii +/1A1/2)
As=FU; +h/2, Xi +hAs/2)
Ay=F(ti +h, X; + hAs)
- . h - - . .
Xinn=X; + g(Al +2A; +2A3+ Ay)

liy1=t+h

Runge-Kutta with Adaptive Step

For some data sets, it is possible to dynamically adjust the step size # to reduce the
total number of steps to get to a desired final time. The following algorithm is fifth
order and adjusts the step size accordingly:

1. Take two half-steps:
Ar=F@, Xi)
Ay=F; +h/4 Xi+hA/4)
Ay=F(t; +h/4, X; + hA>/4)
Ag=Fti +h/2, X; + hA3/2)
Xinter = X + —lhi(zl +24; 4245 + Ay)
and
By = F(t; + 1/2 Xinter)
By=Ft; + 3h/4, Xiwer + hBy/4)
B3 = F(t; + 3h/4, Ximer + hB2/4)

E4 = F‘(!,‘ +h, iimcr + h§3/2)

- - h - - o
Xtatf = Xinter + E(Bl + 2B+ 2B3 + By).

B.7 Differential Equations 499

2. Take a full step:
Ci = Fti, X»)
Cy=F(tj + h/2, Xi + hC1/2)
Cy=Ft; + h/2, Xi + hC2/2)
Cy=Fti +h, X; + hC3)
Xt = X; + %(51 +2C; +2C3 + Cy).
3. Compute the fractional error term A, where £ > 0 is a constant specified by the

user:

1
A = - max
£

(Xnatf)i — (Xfu)i
hFi(ty, xn) + €9

where ¢ is a very small positive number that protects against the case Fi(ty, X,) =
0, in which case A becomes a very large positive number. The choice of is crucial.
Its value can be selected by experimentation in a specific application.

4. If A < 1, thentheiteration is successful. The step size 1 is used and the next iterates
are

- - 1 /- -
Xiv1= Xnaif + s (Xhalf - Xfull)
i =1+ h

The successful iteration suggests trying a larger step size for the next iteration. The
step size is adjusted as follows. Let § < 1 be a number close to 1 (typical is § = 0.9).
If A > (5/4), thena conservative increase is made: & < ShA™'/5 If A < (5/4)°,
a more aggressive increase is made: i < 4h.

5. If A > 1, then the iteration fails. The step size must be reduced and the iteration
is repeated starting with the initial jterate x,. The adjustment is h < ShAA~Y4,
Repeat step | with this new step size. A check must be made for the low-probability
case where h — 0.

B.7.2 PARTIAL DIFFERENTIAL EQUATIONS

Ordinary differential equations involve specifying changes to a function of one inde-
pendent variable, X (t). Partial differential equations are a natural extension to handle
functions of many independent variables. Although this topic is immense, it is rele-
vant to games because second-order linear partial differential equations arise naturally
in modeling physical phenomena. On a hardware platform with a lot of processing

500 Appendix B Numerical Methods

power, it is possible to procedurally morph geometric data based on the physics. For
example, the flapping of a flag in the wind can be modeled as a wavelike behavior.
A partial differential equation can be used to model the motion, and a numerical
solution can be computed at run time.

The second-order partial differential equations are characterized as parabolic,
hyperbolic, orelliptic. Letx € R,t > 0,and u = u(x, 1) € Rinthe following examples.

Parabolic: Heat Transfer, Population Dynamics

Diffusion of heat u(x, 1) in a rod of length L and with heat source f(x) is modeled by

U (x, 1)y =ue(x, 1) + f(x), xe(0, L), t>0 (from conservation laws)
u(x,0)=g(x), x €0, L] (initial heat distribution)
w0, 1) =a(t), u(L,ty=»ht), >0 (temperature known at boundaries)
or

u(0,1) =u(L,t) =0, t>0 (insulated boundaries).

Numerical solution for the case of no heat source, f =0, and insulated boundaries
uses finite differences to approximate the partial derivatives. Select m + 1 spatial
locations uniformly sampled as x; =iAx for 0 <i <m with Ax = L/m. Select
temporal samplesast; = j At for j > 0 with Ar > 0. The estimates of temperature are
u,(.” =u(xj,tj) for0 <i <mand j > 0. The sampled initial temperature is g; = g(x;)
for 0 <i < m. Approximate the time derivative by a forward difference,

u(x,t + At) —u(x,t)
At ’

u,(x. f) =

and approximate the spatial derivatives by central differences,

u(x + Ax,t) — 2u(x, t) + u(x — Ax, t)
(Ax)?)

Uge(X, 1) =

Replace these in the heat equation to obtain

(j+1) () G _ 5) (¥2)
wp o —uy u — 207+ U

At (Ax)?

B.7 Differential Equations 501

The boundary conditions are u” V= uf,{ "= 0for j = 0. The numerical algorithm is
implemented as

u” = gi, 0<i<m
u((,‘”—u,‘,f’ 0, j=0

u;”” =u:“ + (A_x)_z (u;f,_’l - Zuf.“ +uf~’_’,)) 1<i<m-1, j=0.

For this to be numerically stable, Ar < (Ax)/2is required. An alternative scheme is
the Crank-Nicholson method:

(n (_n u) G+ U+ Jj+h
WO i Ar w20y sy w2 s,
i i (Ax)l

+ {
2 2

(j+1)

This method is stable for all At > 0, but is harder to solve since u; is implicitly

defined.

Hyperbolic: Wave and Shock Phenomena

Displacement u(x, 1) of an elastic string is modeled by

Upp(X, 1) = Ugx (X, 1), x€(0,L), t >0 (from conservation laws)
u(x,0) = f(x), u(x,0)=g(x), xe&[0,L] (initial displacement and speed)
u0,1) =a(r), u(L,ty=0b(), t>0 (location of string ends).

Numerical solution for the case of clamped ends, a = 0 and b = 0, uses finite
differences to approximate the partial derivatives. Centralized differences are used for
both the time and spatial derivatives,

0 ,
(-)~f,, 0<i<m
1 .
ul” = ul® + (Ang;, 0<i<m
uu')_u(j)_o >0
0 T,y =W]z
uf-‘“’” 2u u)+uu §] (.I)l 2u (J)+u:nl

, 1<i<m-—1 j=>1L

(Ar)? - (Ax)?

The method is stable when Ar < Ah. Ifthe right-hand side is modified asin the Crank-
Nicholson method for the heat equation, then the method is stable for all Ar > 0.

502 Appendix B Numerical Methods

Elliptic: Steady-State Heat Flow, Potential Theory

Steady-state distribution of heat #(x) in a bar of length L with heat source f(x) is
modeled by

Uelx)=—f(x), x€(0,L) (f— ooin the heat equation)

u(0)=A, u(L)=8B (boundary conditions).
The numerical method for the constant temperature boundary, A = B =0, is

=0, uy,=0

Hig) — 2u; +1;
(Ax)?

=—fi 1<i<m-1.

Define the (m — 1) x 1 vectors # = [u;], where 1 <i <m — 1 andb = [—(Ax)*fi].
This vector is the unknown in a linear system A#i = b, where A is tridiagonal with
main diagonal —2 and sub- and superdiagonals 1. Such systems are solved robustly in
O(m) time.

Extension to Higher Dimensions

Consider u(x, y, t) for two-dimensional problems. The heat equation is u, = u,, +
uyy, the wave equation is #y, = . + uyy, and the potential equation is uyy +uy =
f(x, y). If the domain for (x, y) is a rectangle, then finite difference methods such
as the ones used in the one-dimensional problems extend fairly easily. 1f the domain
is not rectangular, then finite elements must be used—approximating the boundary
of the domain by a polygon, then decomposing the polygon into triangles. A good
method for the decomposition is by Narkhede and Manocha (Paeth 1995).

For example, consider u., + u,, = 0, where domain R is not rectangular. Let
u{x, y) be specified on the boundary of R. Decompose region R into triangles. On
each triangle approximate the true solution «(x, y) by a linear function v(x, v) that
interpolates the triangle vertices. If the vertices are l-’,- = (Xis ¥i> Vi) f_(_)r 0<i=<2 and
where the v; estimate u(x;, y;), then a triangle normalis N = (P, — Pp) x (P - l-’o).
and v(x, ¥) is the linear function determined by N - ((x, ¥, v(x, y)) — Vo) =0. The
boundary v; are known, but the interior v; must be determined.

Solving the potential equation on R is equivalent to finding a function « that
minimizes the integral

l=ffui+uf.dxdy
R)

B.8 Fast Function Evaluation 503

subject to the boundary conditions. Define J to be the approximate integral where
u(x, v) is replaced by v(x, v). For triangle T, let the linear approximation for « on
that triangle be denoted vr (v, ¥) = ar.t + 81y + yr;then the approximating integral
to/is

I= Z (a'-zr + ﬁ%) area(T).
T

Since a7 and Br are linear functions of the interior values v;, 7 is quadratic in v;.
Minimizinga quadratic function can be done by solvinga linear system (set derivatives
equal to zero) or by the conjugate gradient method (equivalent to solving the linear
system, but uses root-finding techniques).

B.8 FAST FUNCTION EVALUATION

S0URCE CODE

Numerics

FILENAME

FastFunction

A handful of functions that are typically expensive to compute occur frequently in
computer graphics and games applications: computing the length of a vector requires
a square root, resizing a vector to be unit length requires a reciprocal square root, com-
puting angles from spatial information requires inverse tangent (or another inverse
trigonometric function), and computing sine or cosine. Even division by a floating-
point number is somewhat expensive compared to additions and multiplications.
Current-generation CPUs are adding fast hardware support for many of these op-
erations, most notably inverse square root and fast (but less accurate) division.

The algorithms described in this section are designed for fast evaluation of various
functions. Some of them can be implemented in hardware, but they can be imple-
mented easily in software and might provide an alternative to the operations provided
by a floating-point coprocessor whose function calls still take a significant amount of
cycles.

A wonderful source for tricks and techniques for mathematical functions is the
Handbook of Mathematical Functions (Abramowitz and Stegun 1965). In particular,
there are lots of formulas for approximating functions by polynomials of small degree.
The formulas are always accompanied by a domain on which the approximation is
intended and a global error estimate for that domain.

B.8.1 SQUARE ROOT AND INVERSE SQUARE ROOT

Many of the fast square root methods provide a low-accuracy result, but for many
graphics applications, this is an acceptable trade-off. Graphics Gems I (Glassner 1990)
has a number of articles on these methods.

A method by Paul Lalonde and Robert Dawson represents a nonnegative floating-
point number as x = n - 227, where p isan integerand m € [1, 4) isthe mantissa. Thus,

504 Appendix B Numerical Methods

VX =vm.22r = /m - 27, where /m € [, 2). Using an n-bit mantissa, a table of
values for ./m can be computed and stored for lookup. The pseudocode is

float SquareRoot (float x)
{
SplitFloat(x.p.,m); // p = power, m = mantissa
p = p/2:
m = Lookup[m];
return MakeFloat(p,m);
}

Steve Hill in Graphics Gems II (Arvo 1991) provides code to implement this using
IEEE double-precision floating-point numbers. At the expense of one division, this
routine can be used to compute inverse square root of y by 1/./¥ = /17y = /x,
wherex = 1/y.

Graphics Gems V (Paeth 1995) has an algorithm by Ken Turkowski that uses
Newton’s method for computing the inverse square root. Only a few iterations are
used, and an initial point is provided by table lookup just as in the method for square
root calculation. If y = 1//x, then 1/y? — x = 0. Define f(y) =1/y* — x for the
selected x. A positive root ¥ to f(y) = 0 will be the inverse square root of x. The
equation can be solved by Newton iteration. An initial guess v > 0 is selected. The
iterates are generated by

fi) i3 —xy})
£ 2)

The initial guess is chosen just as for the square root algorithm mentioned earlier. The
mantissa is used to index into a table of inverse square root quantities. The value looked
up is polished further by the iteration mentioned above. The smaller the lookup table,
the larger the number of iterations to get to the desired accuracy. Once the inverse
square root r = 1//x is computed, the square root may be obtained by an extra
multiplication, /x = x * r.

i1 =Y —

B.8.2 SINE, COSINE, AND TANGENT

Because sine and cosine are bounded functions with not much variation, the simplest
method for fast evaluation of sine and cosine is to use range reduction followed by a
table lookup. Both tables store values in the range [0, 7 /2].

Polynomial approximations can also be used (Abramowitz and Stegun 1965).
Approximations to sine on the interval [0, 7 /2] are

2
sin(x) = Z aix¥t 4 ey,
i=0

B.8 Fast Function Evaluation 505

whereap = 1,a) = —1.6605¢ — 01, a2 = 7.61e — 03, and |e(x)| < 1.6415¢ — 04; and

5
sin{x) = Z aix¥ ! 4 e(x),

i=0

where ap = 1, a) = —1.666666664¢ — 01, a3 = 8.3333315¢ — 03, a3 = —1.984090¢ —
04, a4 = 2.7526e — 06, as = —2.39¢ — 08, and [e(x)] < 2.3279¢ — 09.
Approximations to cosine on the interval [0, 7 /2] are

2
cos(x) = Z aix¥ + e(x),
i=0

where ap = 1, a) = —4.9670¢e — 01, az = 3.705¢ — 02, and [€(x)| < 1.188¢ — 03; and

5
cos(x) = Z a,-xzi + €(x),
i=0

where ap = 1, a; = —4.999999963¢ — 01, a; = 4.16666418¢ — 02, a: = —1.3888397¢
—03, a4 = 2.47609¢ — 05, as = —2.605¢ — 07, and |e(x) < 2.3082¢ — 09.
Approximations to tangent on the interval [0, 77 /4] are

2
tan(x) = Z aix® ! 4 e(x),
i=0

where ap = 1, a1 = 3.1755¢ — 0}, a2 = 2.0330e¢ — 01, and |e(x) < 8.0613¢ — 04; and

6
tan(x) = Z aix®t! + e(x),
i=0

whereag =1, a) = 3.333314036¢ — 01, g> = 1.333923995¢ — 01,43 = 5.33740603¢ —
02, ay = 2.45650893¢ — 02, g5 = 2.9005250¢ — 03, a5 = 9.5168091¢ — 03, and je{x))
< 1.8897e — 08.

B.8.3 INVERSE TANGENT

A family of polynomials that approximate the inverse tangent function can be built
using a least-squares algorithm based on integrals (as compared to the summations
that occur in Section B.3). The approximations are computed to Tan™!(z) for z €
[—1, 1]. For z > 1, the trigonometric identity Tan~l(z) = w2 — Tan"(l/z) reduces
the problem to evaluating the inverse tangent for = 1/z € (—1, 1). Similarly, for
z <=1, Tan"!(z) = —pi /2 — Tan"}(1/2).

506 Appendix B Numerical Methods

Table B.3 Coefficients for polynomial approximations to Tan~!(z).

Coefficients

Maximum error

ap = +0.995987 ap = —0.292298 a; = +0.0830353
ap = +0.999337 a; = —0.322456 a2 = +0.149384
az = —0.0410731

4 ao = +1.000000 ay = —0.332244 a; = +0.187557
a3 = —0.0956074 a4 = +0.0257527

5 ap=+1.000700 ap = —0.347418 a; = +0.278742
a3 = —0.317300 dg = +0.259954 as = —0.0894795

1.32603¢ — 03
2.05811e — 04
6.53509¢ — 05
1.95831e¢ — 04

The function Tan~!(z) is an odd function on [—1, 1]. An approximating poly-

nomial p(z) = Y1 aiz?*!

is desired; this is also an odd function. Ideally, n can

be chosen to be a small number so that only a few polynomial terms have to be com-
puted using additions and multiplications. The size of n, of course, will depend on how
much error an application can tolerate. The idea is to select the coefficients a = [4;]

to minimize the squared integral error
|

E(a) =/ [p(z; @) — Tan™!(2)]1? dz.
-1

The minimum must occur when VE = 0. The ith derivative is

JE ! : -
it =/ 232‘+'[p(z;a —Tan"}(2)] dz
da; J_y

| 2
=2[ZZI-HP(Z;&‘) dZ—Z/ z21+|Tan—l(z) dZ
-1 -1

n

j=0

- G 2 fmoL oy W
_4Zzi+2j+3 i+l(4(l+() j§)2i

The n + 1 equations obtained from VE =0 provide a linear system in the 7 + |
unknowns, the components of d. This system can be solved by standard solvers.
It is also possible to obtain global error bounds from the theory of Taylor series
(estimating error when a series is truncated). The coefficients and global error bounds

are summarized for 2 < n < 5 in Table B.3.

B.8 Fast Function Evaluation 507

Table B.4 Various parameters for the CORDIC scheme.

5=t =0 8k=[l, Y <0
-1 <0 -1, =0
m=0 Xo given, yo = 0, zg given Xxo given, yq given, 20 =0
€@ =27* Y41 = X020 Zn+1 = Yo/Xo
m=1 x0o=K,y0=0,20=86 Xo given, vq given, 2o =0

& =Tan"'(27%)
K= nf;=o COS(E_,')
m=-—\

€ = Tanh~'(27%)

K’ =1 cosh(e;)

Xn41 = €0S(8), yn41 = sin(@) Zns1 = Tan " (vo/X0), Xny1 = K,/xg + 32

xx=K',w=0,20=6 Xo given, yg given, 2o =0
Xn41 = cosh(8), ype1 =sinh(0) zp41 = Tanh~!(yo/x0), Xpyl = KI\/ x& - y&
or

o=w+ly=w-1
Zn+1 =05logw

or
Xo=w+0.25 yg=u —0.25
Xn41 = K' V.

B.8.4 CORDIC METHODS

CORDIC (coordinate rotation digital computer) methods were first used in 1959 to
solve trigonometric relationships that arose in navigation problems (Volder 1959). In
the early 1980s, the methods were used by Hewlett-Packard for trigonometric func-
tion evaluation on the HP-35 calculator. Schelin (1983) provides a good discussion of
the topic.

The functions that can be evaluated using CORDIC methods are sine, cosine, tan-
gent, inverse tangent, hyperbolic sine, hyperbolic cosine, hyperbolic tangent, inverse
hyperbolic tangent, natural logarithm, natural exponential, square root, multiplica-
tion, and division. In binary form the scheme consists of the iterative equations

X1 = Xk — my2
Va1 = Vi + Sexg2 7%
g4l = U — By,

where m € {—1, 0, 1} is a mode indicator, {€x};_, is a sequence of precomputed con-
stants depending on m, and §; € [—1, 1} are appropriately chosen. The initial values
Xo, Yo, and Zg must also be appropriately chosen. Table B.4 provides the necessary
values to obtain the aforementioned functions.

GLOSSARY

ALIASING The visual artifacts generated by drawing on a discrete raster. Aliased
lines on the screen are affectionately known to have “jaggies.” Antialiasing is the
process of drawing objects with some amount of blurring to hide the “jaggies.”

ALPHA BLENDING The process of blending colors already in the frame buffer
with a new set of colors; used for transparency effects.

ALPHA CHANNEL An opacity value that is assigned to a color. An alpha value of
1 corresponds to a completely opaque value. An alpha value of 0 corresponds to a
completely transparent value.

ANIMATION As used in this book, the fact that a quantity in the scene graph can
be time varying. In the more classic sense, animation refers to geometric values that
are time varying. Key frame animation refers to the transformations in a hierarchical
scene being time varying. Morphing refers to the model points themselves being time
varying. However, quantities such as render state can also vary with time.

ANTIALIASING See Aliasing.

ASPECT RATIO The ratio of rectangle width and height. The term is typically used
in referenceto screen dimensions (4/3 for standard monitors, 16/9 for high-definition
monitors).

AXI1S-ALIGNED BOX A box whose axes are parallel to the standard coordinate axes.
A standard acronym for such a box is AABB (axis-aligned bounding box).

BAck BUFFER Theblock of memory to which the application writes the pixels for
the currently rendered scene. A typical rendering system will write to the back buffer
and then copy it into the frame buffer once the scene is completely rendered.

BACK FACE CULLING See Culling,

BARYCENTRIC COORDINATES Given a triangle with vertices Vo, V},and V3, the
barycentric coordinates of a point X with respect to the triangle are (co, ¢y, ¢;), where
X=cVot+taVi+aaVawithcg+cr+c2=1.

BEZOUT DETERMINANT A construct that is useful in solving systems of polyno-
mial equations.

BILLBOARD One of the simplest forms used for level of detail consisting of a
prerendered image of a three-dimensional object that is applied to a two-dimensionai
geometric mesh, usually a rectangle. The orientation of the mesh is chosen to be
related to the orientation of the camera.

509

510 Glossary

BOUNDING VOLUME A regularly shaped object that encloses a region of space
and is used for purposes of culling and collision detection. Typical bounding volumes
are boxes, capsules, cylinders, ellipsoids, lozenges, and spheres.

BSP TREE A binary tree structure that is used to partition space using planar
splitting. The acronym BSP means binary space partition. The root node represents
all of space and has assigned to it some plane (relevant to the application). The two
children of the root node represent the two half-spaces that share the specified plane.
Each child node itself can split the space it represents using yet another plane. The
standard uses for BSP trees have been for sorting algorithms.

BUMP MAPPING A special effect that gives the appearance of small-scale geometric
variation by using a texture map rather than actually perturbing the geometry.

CAMERA MODEL A system consisting of an eye point (location of the camera), a set
of coordinate axes, and a view volume. For perspective projections, the view volume
is a frustum that is delimited by six planes: the near plane, far plane, left plane, right
plane, bottom plane, and top plane. The system also has a viewing plane on which the
projections occur. For perspective projections this is usually selected as the near plane.
Within the viewing plane the region that contains all the possible projected points is
called a view port.

CAPSULE An object that consists of all points that are equidistant from a line
segment. Algorithms for culling and intersection testing are simpler for a capsule than
a cylinder because of the equidistance condition.

CARTESIAN PRODUCT OF SETS Given two sets A and B, the Cartesian product
is the set A x B consisting of pairs (a, b) wherea € Aand b € B.

cLiPPING Computing the intersection of objects with the view frustum planes.
The portion of the object inside the frustum is drawn by the rasterizer. The portion
outside the frustum is not drawn.

CoLLISION DETECTION The process of determining if two stationary objects
are intersecting is called static collision detection. If either or both of the objects are
moving, dynamic collision detection refers to predicting if, when, and where the two
objects will intersect.

CoLLISION RESPONSE Given that two objects will intersect, how the objects
will behave after the intersection has occurred. Such behavior is determined by the
application and usually handled by a general component called the physics engine.

COMPACT SET A setis compact if it is bounded and closed. The concept of interval
on the real axis provides the motivation. The interval [a, b] is bounded and closed
(both a and b are in the set), so it is compact. The intervals [a,) and (a, b] are
bounded, but not closed since each interval does not contain an end point; therefore
they are not compact. The interval [0, oo} is closed, but not bounded, so it is not
compact.

CONTINUOUS LEVEL OF DETAIL See Level of detail.

Glossary 511

CONVEX SET A set is convex if, given two points in the set, the line segment
connecting them is also in the set. The convex hull of a set of points is the smallest
convex set containing the points.

COORDINATES The algebraic abstraction for locating points in space as tuples of
numbers. The numbers are measurements relative to a set of axes called coordinate
axes. The axes themselves form either a right-handed system or a left-handed system,
the conversion from one system to the other involving a single transposition of two
components of the tuple. Model coordinates refer to the 3-tuples that are used in
constructing an object, say, with a modeling package. World coordinates refer to the
3-tuples that represent the object in the global coordinate system of the application
(see Transformation). View coordinates refer to the coordinates of a point using
the camera model. The origin of the model is the eye point and the coordinate axis
directions are specified by the application. Screen coordinates refer to the 2-tuples
that represent the object after it has been sent through the geometric pipeline of the
renderer (transformations followed by perspective projection).

CRACKING Gaps that occur between two rasterized triangles. This usually happens
in one of two cases. The first case is when the adjacent triangles share the same
edge, but the integer-based edge setup traverses the edge in two different orders and
produces different sets of pixels for the edge. The second case is when one triangle is
adjacent to two or more triangles, but the edge of the first triangle does not match the
combined edges of the other triangles.

CuLLING The process by which an object is determined not to be visible and
therefore does not have 1o be drawn by the renderer. The standard culling methods
compare bounding volumes of objects to the view frustum. However, portal culling
allows for additional view-dependent tests based on occlusion by various planar
objects in the scene. Back face culling allows triangles within a single object to be
discarded from rendering when those triangles are not visible to the current eye point.

CYLINDER An object that consists of all points that are equidistant from a line,
but truncated by two planes perpendicular to the line. Algorithms for culling and
intersection testing are more complicated for a cylinder than a capsule because of the
need to handle a cylinder as a volume determined by three conditions (equidistance
from line, truncation by two planes).

DEPTH-BASED FOGGING See Fogging.

DEPTH BUFFER The block of memory that keeps track of screen depth for written
pixels. It is used for sorted drawing on a per-pixel basis.

DEPTH COMPLEXITY How many times a pixel is written to during rendering of
the scene for one frame. Given that the entire screen is to be written, the desired depth
complexity is 1. As the depth complexity increases, the frame rate tends to decrease.

DETERMINANT A scalar quantity derived from a square matrix M. If M is a
2 x 2 matrix, M transforms the unit cube into a parallelogram or line segment. The
determinant of M is the signed area of that parallelogram, zero in the degenerate case

512 Glossary

of a line segment. The idea that a determinant represents area generalizes to higher
dimensions, in which case the determinant represents a signed volume.

DISCRETE LEVEL OF DETAIL See Level of detail.

EIGENVALUES, EIGENVECTORS, EIGENSOLVERS, AND EIGENDECOMPO-
sITIoNs Given a square matrix A, a nonzero vector X, ,and a scalar A, X is said to
be an eigenvector of A corresponding to eigenvalue A if AX = AX. An algorithm that
computes the eigenvalues and eigenvectors is called an eigensolver. If A isa symmetric
matrix, then the eigenvectors can be stored as the columns of an orthonormal matrix
R and the eigenvalues can be stored as the diagonal entries of a diagonal matrix D.
An eigendecomposition of the matrix is A = RDRT. Eigenvalues and eigenvectors are
useful in conjuction with Gaussian distributions for determining approximations to,
or containment of, point sets.

ENVIRONMENT MAPPING A special effect that allows surfaces to be drawn with
a reflection of the environment in which the surface lives. This is useful for mirror
effects or for giving the effect of multiple light sources when no real light sources exist
in a scene.

EYE PoINT The location of the observer in a camera model for a renderer.
FLAT SHADING See Shading.

FOGGING Depth-based fogging is a mechanism to help hide clipping artifacts at
the far plane. A fogging color is blended with vertex colors such that the final color of
pixels close to the far plane are nearly the fogging color. Pixels in the foreground have
almost no contribution from the fogging color. Volumetric fogging is a mechanism
to add fog that is not based on depth. This type of fogging is useful for special effects
rather than hiding deficiencies in a frustum-based viewing system.

FORWARD KINEMATICS See Kinematics.

FRAME BUFFER The block of memory that keeps track of the current color for
written pixels. Usually the block resides in video memory for hardware acceleration,
but it can reside in system memory for a software renderer. A typical rendering system
will write to a back buffer that is copied into the frame buffer once the scene is
completely rendered.

GAUSSIAN DISTRIBUTION A probability distribution of the form A exp(()? -
U)TCY(X — U)) where Aisan appropriate scaling factor, U is the mean, and C is the
covariance matrix. The distribution is isotropic if C is a multiple of the identity matrix,
but anisotropic otherwise. This distribution is useful for constructing approximations
to point sets by lines or planes and for constructing bounding volumes of points.
The algorithms involve constructing U and C from the point sets and using the
eigenvectors of C in various ways.

GAUSSIAN ELIMINATION The standard method for solving systems of linear
equations. The algorithm is discussed in all standard texts on linear algebra.

GOURAUD SHADING See Shading.

Glossary 513

GRADIENT VECTOR Given a function that maps n-tuples to real numbers, the
gradient is the vector whose components are the first-order partial derivatives of the
function with respect to the components of the n-tuple.

GRAM-SCHMIDT ORTHONORMALIZATION The process that takes three lin-
early independent vectors and creates three unit-length vectors that are mutually
orthogonal. This is a useful way to adjust matrices that are obtained as products of
rotations, but numerical errors are propagated in the products. At periodic intervals
the columns of the current matrix can be orthonormalized to correct for numerical
errors.

HARDWARE RENDERER See Renderer.

HARDWARE TRANSFORM AND LIGHTING Sometimes referred to as hardware
T & L. Some of the current generation graphics processing units handle the entire
geometric pipeline, including transforming, lighting, culling, clipping, and raster-
izing, The application need only provide model space data, the camera model, and
model-to-world transforms to the hardware API.

HIDDEN SURFACE REMOVAL An occlusion culling method to identify portions
of the scene that are invisible because they are behind other opaque objects in the
scene.

HOMOGENEOUS COORDINATES AND TRANSFORMS Homogeneous coordi-
nates are of the form (x, y, 2, w) with w 3 0 and are used in the camera model for
perspective projection. Any homogeneous point of the given form is considered to
be equivalent to (x/w, y/w, z/w, 1) and is naturally related to perspective projec-
tion. Homogeneous transforms are operations applied to homogeneous coordinates
to obtain other such coordinates. The use of homogeneous coordinates and trans-
forms is a mathematical convenience for motivating the transformation pipeline in
a renderer, but unless there is hardware support for 4 x 4 matrices and 4 x | vec-
tors, an implementation of the transformation pipeline does not need to handle these
quantities and can work with 3 x 3 matrices and 3 x 1 vectors instead.

IMposTOR See Billboard.
INVERSE KINEMATICS See Kinematics.
KEY FRAME ANIMATION See Animation.

KiNEMATICS The study of motion without consideration of mass or forces. The
simplest structures to study are objects that are linked in a linear chain. Forward
kinematics refers to specifying the transforms for the objects and computing the new
positions and orientations of each object, one at a time, starting with the first in the
chain. Inverse kinematics refers to specifying the (desired) position and orientation
of the last object in the chain and determining the positions and orientations of the
other objects in the chain.

LAGRANGE MULTIPLIERS A method of calculus that allows the calculation of
an extreme value of a function when there are additional equality constraints. The

514 Glossary

method introduces new variables to formulate the optimization in higher dimensions
in a way that can be solved by the standard techniques that determine where the
gradient vector is zero.

LEAST-SQUARES FIT The process of estimating the parameters of a parameter-
ized object that is used to approximate a discrete point set. The estimates are based on
minimizing the sum of the squared errors between the discrete points and the param-
eterized object. The least-squares algorithms involve fitting a line or plane to point
sets.

LENS FLARE A special effect that attempts to reproduce the visual effects of
interaction between a light source and the lens of a camera.

LEVEL OF DETAIL The concept of providing to the renderer a representation of an
object, with the complexity of the representation being dependent on various param-
eters in the system including geometry of the object and camera model information.
The essential idea is to draw a high-resolution representation when the object is close
to the eye point and to draw lower-resolution representations as the object is moved
away from the eye point. An acronym used for this term is LOD. The term discrete
level of detail is used when there is a small number of representations for the ob-
ject and the selection of representation is based on a simple criterion such as distance
from eye point. The term continuous level of detail (CLOD) is used when the number
of representations is potentially quite large and the selection itself can be a complex
process.

LIGHT A representation in a graphics system of a real light source. For compu-
tational efficiency in a real-time system, light sources are assumed to be ambient,
directional, point, or spot lights. An ambient light affects all objects in the same way
in that all vertices receive the same contribution from the light. A directional light is
assumed to be located infinitely far from the objects, but the light rays all have the
same direction, Contributions to the vertex values depend on normal vectors defined
at the vertices. A point light has a specified location and emits light in all directions.
Contributions to the vertices also depend on normal vectors defined at the vertices. A
spot light has a specified location, but light is emitted only with a specified cone. Once
again, contributions to the vertices depend on normal vectors defined at the vertices.

LIGHTING The process of computing the final color at each vertex in the scene.
Calculations depend on the light sources, and contributions are classified as ambient,
diffuse, specular, or emissive. The light sources can be attenuated in that the final
contribution depends on the distance from light source to object. Static lighting
refers to calculating the final contributions of stationary light sources to stationary
geometry. These calculations can be done off-line, and the vertices can simply store
the final colors for use by the renderer. Dynamic lighting refers to calculating the final
contributions of light sources to the vertices at run time. In this case, vertex normals
must be stored since calculations involving directional, point, or spot lights require
this information.

LINEAR COMPONENT A general term that refers to lines, rays, or line segments.

Glossary 515

LOZENGE An object that consists of all points that are equidistant from a rectangle.

MATERIALS An objectinascene can have materials associated with it. The material
attributes are used in conjunction with lighting to obtain a more realistic appearance
of the object.

MATRIX An R x C table of values with a specified number of rows R and columns
C. In graphics typically the matrices are 3 x 3 or 4 x 4. Various operations can
be applied to matrices including transpose, inverse, adjoint, and computation of
determinant. The definitions for these can be found in standard texts on matrix
algebra.

MiPMAPPING Interpolation of images in a multiresolution pyramid. See Textures.

MORPHING The process of animating an object by either procedurally changing
its vertices or by blending between two objects over time.

MULTITEXTURING Many special effects can be implemented by using two or more
textures on an object. Static multitexturing refers to the two textures and texture
coordinates being known before the program run. Thetexture interpolation is done by
the rasterizer and the colors are combined in the usual way. For example, a decal canbe
applied as a secondary texture. Dynamic multitexturing refers to a secondary texture
or secondary texture coordinates being calculated on the fly. For example, projected
shadows are computed dynamically.

NEWTON’S ITERATION METHOD FOR ROOT FINDING Given a function
f(x), roots of the function are those values x for which f(x) = 0. A simple iterative
method for constructing the roots is to choose an initial guess xo and compute
Xngt = Xu — f(x3)/f"(xp) forn > 0.

OCCLUSION CULLING Objects in the view frustum can still be invisible if they
are completely hidden by other objects. Occlusion cufling refers to a class of methods
whose goal is to rapidly determine such hidden objects so that the renderer does not
have to process them.

OCTREE A data structure that represents a node in a tree that has eight children.
An octree is usually used for partitioning space. It is a special case of a BSP tree.

ORIENTED BOX A box whose axes can occur in any orientation, not just in the
orientation of the standard coordinate axes. A standard acronym for such a box is
OBB (oriented bounding box).

PARTICLE SYSTEM A collection of small objects, usually points (zero area) or
rectangles (positive area), that can be colored in the usual way that vertices in atriangle
mesh are colored (vertex colors, textures). Various special effects can be simulated
such as smoke, fog, or water fountains. The rectangular particles are usually treated
as billboards so that they always face the camera. Moreover, they usually have alpha-
blended textures to give the rectangles the appearance of arbitrarily shaped geometry.
The behavior of particles can be governed by any physics imaginable.

516

Glossary

PERSPECTIVE PROJECTION The operation of mapping 3D objects onto a 2D
plane using an eye point not located on the plane. All points along a ray from the eye
point whose direction is not perpendicular to the plane are mapped to the same point
on the plane.

PHONG SHADING See Shading.
PHYsSICS ENGINE See Collision response.

PICKING The classic definition refers to using an input device such as a mouse
to select a 3D object or point on the 2D computer screen. This process requires
constructing a ray in world coordinates whose origin is the eye point and whose
direction is determined from the camera model and the selected screen pixel. That
ray is then tested for intersection with the objects in the scene. In this book, picking
refers to the more general process of computing the intersection of a linear component
with an object.

POLYTOPE AND POLYHEDRON Three-dimensional objects that are made up of
planar facets,

POPPING Noticeable changes in a triangle mesh during a change in level of detail.
For discrete level of detail the noticeable changes have to do with switching the entire
object resolution. For continuous level of detail the noticeable changes have to do with
two triangles collapsing into one or one triangle expanding into two.

PoRTAL Visibility determination in an indoor environment can be done using
portals. The typical example occurs when an observer is outside a room and looking
into the room through a doorway (the portal). The observer only sees what is visible
through the doorway. The wall of the doorway occludes everything else. A portal
system will construct culling/clipping planes formed by the eye point and each edge
of the doorway, assuming the doorway is a convex polygon.

PORTAL CULLING See Culling.

POWELL’S DIRECTION SET METHOD A method for computing the minimum
of a multivariate function by solving for minima along various lines in the domain of
the function. The method is iterative and avoids derivative calculations, so it is useful
when the derivative is unknown or expensive to compute numerically.

PROJECTED LIGHT Anexample of dynamic multitexturing where a light source is
chosen and a texture map is associated with it. Triangles that are to receive the texture
map require their texture coordinates to be computed on the fly if the light position
or direction change.

PROJECTED sHADOW An example of dynamic multitexturing where a light
source is chosen and a texture map representing a shadow affected by the light is
constructed on the fly. The triangles that are to receive the texture map require their
texture coordinates to be computed on the fly if the light position or direction changes.

QUADTREE A data structure that represents a node in a tree that has four children.
A quadtree is usually used for partitioning the plane. It is a special case of a BSP tree.

Glossary 517

QUATERNIONS A set of 4-tuples that form an algebraic system in which multi-
plication is not a commutative operation. The unit-length quaternions are used as a
compact representation of rotations. This representation is also convenient for use in
key frame animation.

RASTERIZER As used in this book, the component of the computer graphics sys-
tem that has the responsibility for calculating and drawing the screen pixels corre-
sponding to each triangle that it is given by the renderer.

RENDERER As used in this book, the component of the computer graphics system
that has the responsibility for drawing the triangles of a model using the current draw-
ing state information, called render state. A software renderer is an implementation
that uses only the central processing unit for computations. A hardware rendereris an
implementation that relies on a graphics processing unit to handle the computations.

ScENE GRAPH The data structure that represents all the data in a scene. The
geometric relationships are represented as a tree where the leaf nodes contain the
drawable data. Sharing of data leads to additional linking that requires a graph data
structure.

SCENE GRAPH MANAGEMENT The process of maintaining a scene graph. This
includes various systems such as hierarchical culling and transformations, accumu-
lation and updating of geometric and renderer state, automatic selection of level of
detail, picking and collision detection, and so on.

ScREEN SPACE The coordinate system for the computer screen or raster image.

SEPARATING Axis A line such that the projection of two objects onto that line
are disjoint. In this case the two objects cannot intersect since there exists a plane
perpendicular to the line such that the two objects are separated by the plane.

SHADING The process of computing pixel colors. Flat shading uses the same color
for all pixels in a renderer triangle. Gouraud shading applies the lighting equations to
the vertices of the triangle to get the final vertex colors and then interpolates them to
obtain the remaining pixel colors. Phong shading interpolates the vertex normals at
each pixel and applies the lighting equations per pixel. This method is expensive and
is not typically used in a real-time system.

SIMPLIFICATION The process of dynamically calculating the new triangle mesh
in a continuous level-of-detail algorithm. See also Tessellation.

SKIN AND BONES A skeletal system for which the bones are represented as
nodes in a scene graph and the skin is a triangle mesh whose vertex positions are
determined by predefined relationships between each vertex and various bones. The
typical representation assigns to each vertex a list of bones and a list of weights
corresponding to those bones.

SOFTWARE RENDERER See Renderer.

SPRITE See Billboard.

518 Glossary

STREAMING The process of converting one form of data to another where the
two data sets reside on different media. One example is reading data from disk into
memory or writing data from memory to disk. Another example is sending data
from one computer to another, which typically involves repackaging the data for the
transfer.

SusDivisioN The process of taking a curve or surface and computing a set of
points that are in some sense representative of the original object. See also Tessellation.

TESSELLATION The process by which an object in whatever form is approximated
by triangles. For example, for the purpose of drawing, a sphere can be approximated
by a collection of triangles. The sphere is said to be tessellated by the triangles. Static
tessellation refers to the construction of triangles being performed once on an object,
with that representation used for the lifetime of a program run. Dynamic tessellation
refers to the construction being performed on an as-needed basis, for example, in
schemes involving continuous level of detail.

TEXTURES Images applied to the models in a scene to provide realism. The images
can be generated by an artist or obtained from digital photographs. Each pixel of the
image together with its color value is called a texture element or texel. In order for a
rasterizer to draw a model with texture, the vertices of the triangles need to be assigned
texture cootdinates that represent pixel locations in the image. During interpolation
the coordinates can be clamped or wrapped. Whep wrapped, the texture image is
usually cylindrical (image is periodic in one direction) or toroidal (image is periodic
in both directions). Also during interpolation the pixel locations might not exactly
be a texel location and the resulting rasterized triangle is aliased. The texel selection
is called nearest neighbor filtering. Qther types of filtering can be applied to remove
the aliasing. Examples are bilinear filtering and trilinear filtering. The latter involves
calculation of a pyramid of textures from the initial one. The construction is called
mipmapping. Interpolation can occur both within and across images in the pyramid.

TOPOLOGY OF A MESH In computer graphics, the characteristics of a mesh
relating to its boundaries and how many holes are in the mesh. For example, the
triangle meshes that tessellate a cube and a sphere have the same topology in that
neither has a boundary polyline and neither has holes. A triangle mesh that tessellates
a torus does not have the same topology as a sphere mesh since it has no boundary yet
has one hole. A triangle mesh that tessellates a planar square does not have the same
topology as a sphere mesh since it has a boundary and no holes.

TRANSFORMATION An operation that converts points in one coordinate system
into points in another coordinate system. In a hierarchical system, local transforms
are used to represent the positioning of objects relative to a parent coordinate sys-
tem. World transforms are used to represent the positioning of objects in a glabal
coordinate system that is natural to the application,

TREE A data structure that represents a hierarchical relationship among nodes.
Each node has at most one predecessor (a parent node) and any number of successors
(child nodes). A binary tree is a tree for which each node has at most two children.

Glossary 519

A quadstree is a tree for which each node has exactly four children and is used for
partitioning a plane. An octree is a tree for which each node has exactly eight children
and is used for partitioning space.

TRIANGLE FAN The tessellation of a convex polygon where one vertex is common
to all triangles. If the vertices are ordered as Vy through V,,, then the triangles in the
tessellation are (Vo, Vi Vz) (Vo, V7, V3) . (Vo. = 1» V .-

TRIANGLE MESH A collection of triangles that share a set of vertices but whose
connectivity must also be specified. A manifold triangle mesh is one such that an edge
is shared by at most two triangles. A nonmanifold triangle mesh can have an arbitrary
number of triangles sharing an edge.

TRIANGLE STRIP A list of triangles, each triangle sharing two vertices from the
previous triangle. This data structure is useful when there is hardware support: once
the vertices of the first triangle are transformed, each additional triangle requires only
one more vertex transformation. If the vertices are ordered as Vo through V,,. then
the triangles in the tessellation are {VD, V-;, V,), {V;, Vs, V;) {V-:, V4, V3) {V;, V4, Vs,
and so on,

VECTOR An R x 1 table of values with a specified number of rows R and 1 column.
In graphics typically the vectors are 3 x 1 or 4 x 1. Various operations can be applied
to vectors including dot product, cross product, and normalization. The definitions
for these can be found in standard texts on vector algebra.

VERTEX A vector that is associated with a triangle mesh that represents an object
in the graphics system. A vertex can have various attributes, called vertex attributes,
associated with it such as texture coordinates, color, or normal vector. These attributes
are used to calculate final vertex colors that are used by the rasterizer for interpolation
and drawing of a triangle. The interpolated attributes are called surface attributes.

View FRUSTUM That portion of view space that is considered to be visibile to
the eye point. It is formed by six view planes called the near, far, left, right, top, and
bottom planes.

VIEW PORT See Camera model.

VIEW sPAcE Thecoordinate system of the camera model for a renderer. The origin
is the eye point, and the directions of the coordinate axes correspond to the direction,
up, and left vectors of the camera.

VisiBiLiTy Which objects are visible from the current eye point. Knowing what
objects are visible (or potentially visible) is helpful because only those objects need to
be processed by the renderer. The topic is related to occlusion culling.

VOLUMETRIC FOGGING See Fogging.
Z-BUFFER See Depth buffer.

BIBLIOGRAPHY

Abramowitz, M., and L.A. Stegun. 1965. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover, New York.

Andres, E. 1994. Discrete circles, rings and spheres. Computer and Graphics, vol. 18,
no. 5, pp. 695-706.

Andres, E., and M.A. Jacob. 1997. The discrete analytical hyperspheres. [EEE Trans-
actions on Visualization and Computer Graphics, vol. 3, no. 1.

Arvo, |., ed. 1991, Graphics Gems II. Academic Press, San Diego, CA.

Blinn, J.E 1978, Simulation of wrinkled surfaces. Proceedings of SIGGRAPH 1978, pp.
192-198.

Blinn, I.E. 1996. Jim Blinn's Corner: A Trip Down the Graphics Pipeline, Morgan Kaut-
mann, San Francisco, CA.

Blinn, J.E, and M.E. Newell. 1976. Texture and reflection in computer generated
images. Communications of the ACM, vol. 19, no, 10, pp. 542-547.

Blum, H., and R.N. Nagel. Shape description using weighted symmetric axis features.
Pattern Recognition, vol. 10, pp. 167-180.

Boehm, W. 1982, On cubics: a survey. Computer Graphics and hmage Processing, vol.
19, pp. 201-226.

Booch, G. 1987, Software Components with Ada: Struchwres, Tools, and Subsystems.
Benjamin/Cummings, Menlo Park, CA.

Bresenham, J.E. 1965. Algorithm for computer control of a digital plotter. IBM Systems
Journal, vol. 4, no. 1, pp. 25-30.

Burden, R.L., and].D. Faires. 1985. Nwmerical Analysis, 3rd edition. Prindle, Weber &
Schmidt, Boston.

Cameron, S. 1996. A comparison of two fast algorithms for computing the distance
between convex polyhedra. IEEE Transactions on Robotics and Automation, vol. 13,
no. 6, pp. 915-920.

Cendes, Z.]., and S.H. Wong. [987. C! quadratic interpolation over arbitrary point
sets. IEEE Computer Graphics and Applications, pp. 8-16.

Cohen, J.D., M. Olano, and D. Manocha. 1998. Appearance-preserving simplifica-
tions. Proceedings of SIGGRAPH 1998, pp. 115-122.

Cohen,).D., A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks, and
W. Wright. 1996. Simplification envelopes. Proceedings of SIGGRAPH 1996, pp.
119-128.

521

Bibliography

Das, H., J.-].E. Slotine, and T.B. Sheridan. 1988. Inverse kinematic algorithms for
redundant systems. IEEE International Conference on Robotics and Automation,
pp- 43-48.

Eberly, D. 1996. Ridges in Image and Data Analysis. Series on Computational Imaging
and Vision, Max A. Viergever, ed. Kluwer, Dordrecht, Netherlands.

Ellis, M.A., and B. Stroustrup. 1994. The Annotated C++ Reference Manual, Addison-
Wesley, Reading, MA.

Farin, G. 1990. Curves and Surfaces for Computer Aided Geometric Design. Academic
Press, San Diego, CA.

Foley, |.D., A. van Dam, S.K. Feiner, and J.E. Hughes. 1990. Computer Graphics:
Principles and Practice, 2nd edition. Addison-Wesley, Reading, MA.

Fuchs, H., Z. Kedem, and B. Naylor. 1979. Predetermining visibility priority in 3-D
scenes. Proceedings of SIGGRAPH 1979, pp. 175-181.

Fuchs, H., Z. Kedem, and B. Naylor. 1980. On visible surface generation by a priori
tree structures. Proceedings of SSIGGRAPH 1980, pp. 124-133.

Garland, M., and P. Heckbert. 1997. Surface simplification using quadric error met-
rics. Proceedings of SIGGRAPH 1997, pp. 209-216.

Garland, M., and P. Heckbert. 1998. Simplifying surfaces with color and texture using
quadric error metrics. IEEE Visualization 1998, pp. 263-269.

Gilbert, E.G., D.W. Johnson, and S.S. Keerthi. 1988. A fast procedure for computing
the distance between objects in three-dimensional space. IEEE J. Robotics and
Automation, vol. RA-4, pp. 193-203,

Glassner, A.S., ed. 1990. Graphics Gems I. Academic Press, San Diego, CA.

Golub, G.H., and C.F. Van Loan. 1993. Matrix Computations, 2nd edition. Johns
Hopkins University Press, Baltimore, MD.

Gottschalk, S., M. Lin, and D, Manocha. 1996. OBBTree: A hierarchical structure for
rapid interference detection. Proceedings of SIGGRAPH 1996, pp. 171-180.

Greene, N. 1986. Environment mapping and other applications of world projections.
IEEE Computer Graphics and Applications, vol. 6, no. 11, pp. 21-29.

Gregory, A., M. Lin, S. Gottschalk, and R. Taylor. 1998. A framework for fast and
accurate collision detection for haptic interaction. Technical Report TR98-032,
Department of Computer Science, University of North Carolina at Chapel Hill.

Heckbert, P, ed. 1994. Graphics Gems IV. Academic Press, San Diego, CA.

Hecker, C. 1995a. Perspective texture mapping, part I: Foundations. Game Developer
Magazine, Miller Freeman, pp. 16-25, April/May.

Hecker, C. 1995b. Perspective texture mapping, part II: Rasterization. Game Developer
Magazine, Miller Freeman, pp. 1826, June/July.

Hecker, C. 1995c. Perspective texture mapping, part 1il: Endpoints and mapping.
Game Developer Magazine, Miller Freeman, pp. 17-24, August/September.

Bibliography 523

Hecker, C. 1995d. Perspective texture mapping, part 1V: Approximations. Game De-
veloper Magazine, Miller Freeman, pp. 19-25, December/January.

Hecker, C. 1996. Perspective texture mapping, part V: It’s about time. Game Developer
Magazine, Miller Freeman, pp. 25-33, April/May.

Heidrich, W., and H.-P. Seidel. 1998. View-independent environment maps. Proceed-
ings of the 1998 Eurographics/SIGGRAPH Workshop on Graphics Hardware, pp.
39-43.

Held, M. 1997. A collection of efficient and reliable intersection tests. Journal of Graph-
ics Tools, vol. 2, no. 4, pp. 25-44, A K. Peters Ltd., Natick, MA.

Hoppe, H. 1996a. Progressive meshes. Proceedings of SIGGRAPH 1996, pp. 99-108.

Hoppe, H. 1996b. View-dependent refinement of progressive meshes. Proceedings of
SIGGRAPH 1996, pp. 189-198.

Horn, R.A., and C.R. Johnson. 1985. Matrix Analysis. Cambridge University Press,
Cambridge, England.

Kirk, D., ed. 1992. Graphics Gems III. Academic Press, San Diego, CA.

Kochanek, D.H.U., and R.H. Bartels. 1986. Interpolating splines with local tension,

continuity, and bias control. ACM SIGGRAPH 1986, Course Notes 22, Advanced
Computer Animation.

Landers, J. 1998a. Skin them bones: Game programming for the Web generation.
Game Developer Magazine, Miller Freeman, pp. 11-16, May.

Landers, J. 1998b. Oh my God, I inverted kine. Game Developer Magazine, Miller
Freeman, pp. 9~14, September.

Larsen, E., S. Gottschalk, M.C. Lin, and D. Manocha. 1999. Fast proximity queries with
sphere-swept volumes. Technical Report TR99-018, Department of Computer
Science, University of North Carolina at Chapel Hill.

Liang, Y.-D., and B.A. Barsky. 1984. A new concept and method for line clipping. ACM
Transactions on Graphics, vol. 3, no. 1, pp. 1-22.

Lindstrom, P., D. Koller, W. Ribarsky, L.E. Hodges, N. Faust, and G.A. Turner. 1996.
Real-time, continuous level of detail rendering of height fields. Proceedings of
SIGGRAPH 1996, pp. 109-118.

Lindstrom, P, and G. Turk. 1998. Fast and memory efficient polygonal simplification.
IEEE Visualization 1998, pp. 279-286.

Lippman, S.B. 1991. C++ Primser, 2nd edition. Addison-Wesley, Reading, MA.

Luebke, D., and C. Erikson. 1997. View-dependent simplification of arbitrary polyg-
onal environments. Proceedings of SIGGRAPH 1997, pp. 199-208.

McReynolds, T., D. Blythe, B. Grantham, and S. Nelson. 1998. Programming with
OpenGL: Advanced techniques. ACM SIGGRAPH 1998, Course Notes 17.

Meyer, B. 1988. Object-Oriented Software Construction. International Series in Com-
puter Science, C.A.R. Hoare, ed. Prentice Hall, New York.

524 Bibliography

Moaller, T. 1997. A fast triangle-triangle intersection test. Journal of Graphics Tools, vol.
2, no. 2, pp. 25-30, A.K. Peters Ltd., Natick, MA.

Moller, T., and E. Haines. 1999, Real-Time Rendering, A.K. Peters Ltd., Natick, MA.

Moller, T., and B. Trumbore. 1997. Fast, minimum storage ray-triangle intersection.
Journal of Graphics Tools, vol. 2, no. 1, pp. 21-28, A.K. Peters Ltd,, Natick, MA.

Nackman, L. 1982. Three-dimensional shape description using the symmetric axis
transform. Ph.D. Thesis, Department of Computer Science, University of North
Carolina at Chapel Hill.

Novakovi¢, Z.R., and B. Nemec. 1990. A solution of the inverse kinematics problem
using the sliding mode. IEEE Transactions on Robotics and Automation, vol. 6, no.
2, pp. 247-252.

O’Rourke, J. 1994. Computational Geometry in C. Cambridge University Press, Cam-
bridge, England.

Paeth, A, ed. 1995. Graphic Gems V. Academic Press, San Diego, CA.

Phillips, C., J. Zhao, and N. Badler. 1990. Interactive real-time articulated figure
manipulation using multiple kinematic constraints. SSIGGRAPH I3D Symposium,
vol. 24, no. 2, pp. 245-250.

Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. 1988. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cam-
bridge, England.

Rossignac, J., and P. Borrel. 1993. Multiresolution 3D approximations for rendering
complex scenes. In Modeling in Computer Graphics: Methods and Applications, B.
Falcidieno and T. Kunii, eds., pp. 455—463.

Samet, H. 1989. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, MA.

Samet, H. 1990. Applications of Spatial Data Structures. Addison-Wesley, Reading,
MA.

Schelin, C.W. 1983. Calculator function approximation. AMS Monthly, pp. 317-325,
May.

Schroeder, W.}., |.A. Zarge, and W.E. Lorensen. 1992. Decimation of triangle meshes.
Proceedings of SSIGGRAPH 1992, pp. 65-70.

Sciavicco, L., and B. Siciliano. 1987. A dynamic solution to the inverse kinematic
problem for redundant manipulators. IEEE International Conference on Robotics
and Automation, pp. 1081-1086.

Sharp, B. 1999. Optimizing curved surface geometry. Game Developer Magazine, pp.
4048, Miller Freeman, July.

Shoemake, K. 1987. Animating rotation with quaternion calculus. ACM SIGGRAPH
1987, Course Notes 10, Computer Animation: 3-D Motion, Specification, and
Control.

Bibliography 525

Teller, S. 1992. Visibility computations in densely occluded polyhedral environments.
Doctoral Dissertation in Computer Science, University of California, Berkeley.

Thomas, G., and R. Finney. 1988. Calculus and Analytic Geometry, 7th edition.
Addison-Wesley, Reading, MA.

Thorpe, |.A. 1979. Elementary Topics in Differential Geometry, Undergraduate Texts
in Mathematics. Springer-Verlag, New York.

van den Bergen, G. 1999. Solid 2.0 Collision Library. www.win.tue.nl/cs/tt/gino/solid.

Volder, J. 1959. The CORDIC computing technique. IRE Transactions on Computers,
vol. EC-8, pp. 330-334,

Wang, L.-C., and C.C. Chen. 1991. A combined optimization method for solving
the inverse kinematics problem of mechanical manipulators. IEEE Transactions
on Robotics and Applications, vol. 7, no. 4, pp. 489-499,

Watson, D.F. 1981. Computing the n-dimensional Delaunay tessellation with appli-
cation to Voronoi polytopes. Computer Journal, vol. 24, no. 2, pp. 167-172.

Watt, A., and M. Watt. 1992. Animation and Rendering Techniques: Theory and Practice.
ACM Press, New York.

Wee, C.E., and R.N. Goldman. 1995a. Elimination and resultants part 1: Elimination
and bivariate resultants. IEEE Computer Graphics and Applications, pp. 69-77,
January.

Wee, C.E., and R.N. Goldman. 1995b. Elimination and resultants part 2: Multivariate
resultants. IEEE Computer Graphics and Applications, pp. 6069, March.

Welman, C. 1993. Inverse kinematics and geometric constraints for articulated
figures. Master’s Thesis, Simon Frasier University. fas.sfu.ca/pub/cs/theses/1993
/ChrisWelmanMSc.ps.gz.

Welzl, E. 1991. Smallest enclosing disks (balls and ellipsoids). Lecture Notes in Com-
puter Science, New Results and New Trends in Computer Science. H. Maurer, ed.,
vol. 555, pp. 359-370. Springer-Verlag, New York.

Williams, L. 1978. Casting curved shadows on curved surfaces. Proceedings of SIG-
GRAPH 1978, pp. 270-274.

Williams, L. 1983, Pyramidial parametrics. Computer Graphics, vol. 7, no. 3, pp. 1-11.

Zhao, J., and N.I. Badler. 1994. Inverse kinematics positioning using nonlinear pro-

gramming for highly articulated figures. ACM Transactions on Graphics, vol. 13,
no. 4, pp. 313-336.

3D acceleration, 2

3D coordinate system, 10

3D objects, 8, 26-38
capsules, 32-33
cylinders, 35-36
ellipsoids, 36-38
lozenges, 34-35
oriented boxes, 29-32
picking, 169183
spheres, 26-28

A

abstract data types, 441
active blocks, 375, 381
maximum possible number of, 388
in quadtree, 395
See also blocks
Ada, 441
addition, quaternions, 1]
adjacent triangles, 335~-337
Bézier patches, 404
forming nonconvex quadrilateral, 401
See also triangles
algorithmic issues, 5
alpha channel, 108
ambient color, 102, 103, 104
ambient light, 102-103
AMD K6 CPU, 139
angle-axis
conversion (quaternion), 16-17
conversion (rotation matrix), 15-16
to quaternion, 16-17
quaternion to, 17
to rotation matrix, 15-16
rotation matrix to, 16
angular cubic interpolation, 347
animation, 147
of characters, 341-358
defined, 143, 147
key frame, 341-347
updating, 148

INDEX

application programmer interfaces
(APIs), 138
arc length
parameterization by, 258
reparameterization by, 260-261
subdivision by, 276-277
aspect ratio, 90
assignment operator, 455
attributes, 99-112
colors, 99-100
combining, 110-112
computing, 136-137
fog, 109-110
interpolation, 126
lighting, 100-104, 101-104
materials, 101
order of application, 110
surface, 99
textures, 105-108
transparency/opacity, 108-109
vertex, 99
axis-aligned boxes, 29
intersection with line, 179
intersection with line segment,
176-177
intersection with linear component,
172-173
intersection with ray, 177-178
represented at two points, 29
spheres containing, 26-27
axis-aligned ellipses, 120-122
axis-aligned ellipsoid, 37

back child, 417
back face culling, 92-93

cost, 97

defined, 92

illustrated, 93

See also culling
back-to-front drawing, 420423

527

528 Index

barycentric coordinates, 399—400, 401, degree elevation, 298

402 degree reduction, 298-301
Bernstein polynomials, 261, 403 source code, 297
Bézier curves, 258, 261-264 using, 297

barycentric form of, 262
benefits, 261

definitions, 261-262

degree elevation, 263

degree reduction, 263-264, 295
derivative of, 262

evaluation, 262

source code, 261

See also curves

Bézier cylinder surfaces, 288, 301302

defined, 301

degree elevation, 302
degree reduction, 302
evaluation, 302
source code, 301
subdivision, 328

See also surfaces

Bézier net construction, 399
Bézier rectangle patches, 293~297

definitions, 294

degree elevation, 295

degree reduction, 295-297
evaluation, 294

popularity, 293

source code, 294

speed vs. accuracy tradeoff, 294
Sec also surfaces

Bézier rectangle patches subdivision,

306-321
adjustments for camera model, 316
for center point, 309, 315
cracking, 316-321
for midpeints, 309, 315
nonuniform, 313-316
recursive algorithm, 310-313
source code, 306
total number of vertices, 310
uniform, 306313
See also Bézier rectangle patches;
subdivision

See also surfaces
Bézier triangle patches subdivision,
321-328
nonuniform, 323-328
source code, 322
uniform, 322-323

Bézier triangles, 401402, 404

Bézout determinant, 77, 471

bilinear interpolation, 397

defined, 106
billboards, 360-361
alignment relative to eye point, 361
axial alignment, 361
coordinate system, 361
defined, 360
elements, 361
orientation, 360-361
screen aligned, 361
binary space partitioning (BSP) trees,
417-426
back-to-front drawing, 420423
Boolean operators between, 426
collision detection, 425-426
construction of, 418-420
current down state representation,
424
defined, 417
FAQ, 418
front-to-back drawing, 423-424
hidden surface removal, 420-424
illustrated, 418
implementation of, 418
picking, 425426
quadtrees/octrees vs., 417
for sorting polygons, 420
visibility determination, 424425
binary trees
nodes, 383
recursive traversal of, 391
for right block, 384
traversed in depth-first order, 384

Bézier rectangles, 288
Bézier triangle patches, 297-301
definitions, 297

bisection, 486, 490
defined, 486

in many dimensions, 490
in one dimension, 486
source code, 486, 490
blending matrices, 268, 302
block culling, visibility testing, 370
block-based simplification, 375-381
close terrain assumption, 378-379
defined, 375
distant terrain assumption, 376-378
minimal triangulation after, 382
no assumption, 379-381
See also simplification
blocks
active, 375, 381, 388, 395
Boolean flag, 385
child, 372, 388
even, 382, 385, 386
initialization of, 386
interval of uncertainty, 376
Jeft, 384
odd, 382, 385
parity, 390
primitive, 370
quadtree, 370, 375, 385, 413
quette of, 385
rendering, 383384
right, 384
root, 381, 386
sibling, 372-373
stride information, 385
structure information, 385
topology, 372
unprocessed, 388
vertex dependencies, 382
See also terrain
bounding roots, 487489
by derivative sequences, 487488
by Sturm sequences, 488-489
See also polynomial roots
bounding sphere, 158
bounding volumes, 92, 142, 145-146
automatic generation of, 187
comparisons, 188
cylinders and, 191
defined, 143
inside frustum plane, 166
intersection tests between, 188

Index 529

intersection with view frustum, 92,
157
model, computing, 148
at nodes, 142—143
object orientation changes and, 159
of parent node, 145, 146
ray intersection, 170
trees, 426
updating, 147
world, 155
Brent’s method, 482
Bresenham’s algorithm, 113, 117, 120,
124
B-spline curves
nonparametric, 258, 267~271
parameterized, 268
B-spline polynomial, 268, 302
bump mapping, 429430
defined, 429
derivative-based, 430
See also special effects

C

C++, 441442
callbacks, 245
Boolean return value, 253
defined, 187
camera click, 157
camera models, 79, 84-91
Bézier rectangle patches subdivision
adjustments for, 316
defined, 85
general, 87
implementation of, 87, 88
left direction, 85
matrix product, 88
standard, 85-87
up direction, 85
view direction, 85
capsules, 32-33
axis, 196
capsule intersection with (dynamic
object-object), 216, 217
capsule intersection with (static
object-object), 205
defined, 32

capsules (continued)
dynamic, 190, 196-197
end points, 33, 34
intersection of linear components
with, 179-180
least-squares fit, 33
line intersection with, 190
line segment, 179, 196
lozenge intersection with, 205
merging, 151
minimum of minimum-area
projected circles, 33
origin, 190
plane intersection with, 196-197
radius, 160, 179
sphere intersection with, 205
See also 3D objects
Casteljau algorithm, 262
Catmull-Rom interpolation, 271
Catmull-Rom splines, 272
CD-ROM, this book, 5
Cendes-Wong algorithm, 404
characteristic polynomial, 472
child nodes, 143
defined, 141
updating, 155
See also nodes; parent nodes
circles
to circles in 3D, 6973
fitting, to 2D points, 476—478
inscribed, 400—401
minimum-area projected, 33
points to, in 3D, 68—-69
rasterizing, 117-119
squared distance between points on,
69
circular queues, 386, 388
clamped splines, 266
dip vertices
copying, avoiding, 96
costs, 9697
defined, 94
increased number with each frustum
plane, 99
clipped objects, 84
clipped triangles, 135, 137

clipping, 93-99
defined, 80, 91, 93
geometric, 132-133
minimum execution time, 133
in model space, 98
pipeline, 96
planes, 92, 414
pseudocode, 94~96
triangle mesh, 133-136
of vertices, 132
in view space, 98-99
in world space, 97
See also culling
close terrain assumption, 370
block-based simplification, 378-379
vertex-based simplification, 374-375
See also distant terrain assumption
closed splines, 267
closed-form algorithm, 248
closest points, 45
to line segment, 38
on ellipse, 65
on ellipsoid, 66
to rectangle, 57
segment parameter of, 39
See also points
coaffinity, 404
midpoint subdivision and, 408
two subtriangles and, 409
verifying, 408
coefficient triangles, 297
colliding objects, 142
collision detection, 185-256
back end, 188
BSP tree, 425-426
data organization and, 186187
defined, 4
design issues, 186188
dynamic, implementation of, 245
dynamic system, 251-256
hierarchical, 146
implementation, 186
rejection testing, 187
situations, 185-186
testing, 252-253
transparent, 245
collision groups, 186-187

collision points
all possible, 253
finding, 253~256
collision response, 187
colors
ambient, 102, 103
diffuse, 102
specular, 102
vertex, 99-100
See also attributes
commonality, 440
companion matrix, 487
conics
project to conics, 83-84
section definition, 84
conjugate gradient search, 483484
constant temperature boundary, 502
contact points, 186
first, 186
multiple, 196
See also points
continuous height, 397
continuous level of detail {(CLOD), 360,
362-368, 370
algorithm, 360, 364-365
categories, 362
error metric construction, 365
progressive meshes, 362
simplification at run time, 365-366
simplification using quadric error
metrics, 362—-364
source code, 363
surface attribute selection, 366-368
See also level of detail (LOD)
control points
Bézier, 406
degree-elevated, 298
interior, 296, 299
lattice of, 302
unknown, 296
See also points
controllers, 147
convex hull, 32
coordinate axes
in minimum-volume box, 31
product of rotations about, 19
rotation about, 18

Index 531

coordinate systems, 7, 10
3D, 10
billboard, 361
left-handed, 10, 86
model, 80
right-handed, 10, 68, 86
world, 80
coplanarity, 404, 407-408
of quadrilaterals, 408
at vertex, 407
CORDIC methods, 507
cosine approximations, 505
covariance matrix
of canvex hull, 32
eigenvectors of, 30, 31, 32,37
of Gaussian distribution, 29
cracking
Bézier rectangle patches subdivision,
316-321
complicated, 318
defined, 316
illustrated, 316
partial subdivision and, 317~320
Crank-Nichoison method, 501
cube, 58
cubic curves
closed, 258
fast subdivision for, 283-285
cubic environment mapping, 429
culled abjects
bounding sphere, 158
defined, 84
examples, 158, 160
culling, 92-93, 157-167
back face, 92-93
block, 370
bounding volume and, 92
by cylinders, 163-164
by ellipsoids, 164-165
by lozenges, 161-162
by oriented boxes, 159-160
by spheres, 157-159
defined, 80, 91
hierarchical, 146
object, 91, 92
occlusion, 424
plane-by-plane system, 92

532

Index

culling (continued)
See also clipping
curvatures, 289-293
defined, 259
Gaussian, 290, 293
for graphs, 293
for implicit surfaces, 290-293
mean, 290, 293
for parametric surfaces, 289-290
principal, 289-290
tensor, 289
curved paths
moving objects along, 258
orientation of objects on, 285-286
curved surfaces, 258, 287
curves, 257-286
arc length, 260-261
Bézier, 258, 261-264
Catmuli-Rom splines, 272
clamped splines, 266
closed splines, 267
cubic, 258, 283-285
curvature, 259
definitions, 258260
exact interpolation, 264
example uses, 257-258
Kochanek-Bartels splines, 271-276
natural splines, 266
nonparametric B-splines, 258,
267-271
parametric, 258
planar, 258-259
quantities, evaluating, 260
space, 259~260
special, 261-276
subdivision, 276-285
tortion, 259
understanding, 258
cyclic coordinate descent, 351-356
defined, 351-352
list manipulator with multiple end
effector, 354-355
list manipulator with one end effector,
352-354
tree manipulator, 355
cylinder surfaces, 301

cylinders, 35-36
bounding volumes with, 191
culling by, 163-164
defined, 35-36
dynamic, 191, 198-200
finite, 3536
height, 163
infinite, 35
intersection of linear component and
181-182
least-squares line contains axis, 36
least-squares line moved to minimum-
area center, 36
line intersection with, 191
line segment, 181
merging, 152
parabolic, 305
parameterized line segment, 163
plane intersection with, 198~200
projection of, 163
radius, 36, 163
See also 3D objects

D

de Casteljau algorithm, 401
degree elevation

Bézier curves, 263

Bézier cylinder surfaces, 302

Bézier rectangle patches, 295

Bézier triangle patches, 298
degree reduction

Bézier curves, 263264

Bézier cylinder surfaces, 302

Bézier rectangle patches, 295-297
depth, 99

buffering, 412

complexity, 411412

perspective interpolation, 130

See also attributes
developable surfaces, 301
diagonal matrix, 8, 67, 68
differential equations, 496—503

elliptic: steady-state heat flow,

potential theory, 502
Euler’s method, 249, 497
first-order form, 496

hyperbalic: wave and shock
phenomena, 501
midpoint method, 497
ordinary, 496499
parabolic: heat transfer, population
dynamics, 500-501
partial, 499~503
Runge-Kutta fourth-order method,
498
Runge-Kutta with adaptive step,
498499
second-order form, 496497
source code, 496
See also numerical methods
diffuse color, 102
diffuse light, 103, 429
diffusion of heat, 500
Direct3D, 138, 414
direction vectors, 285
directional lights, 100
discrete level of detail, 360, 361-362
defined, 361
morphing, 362
for multiresolution models, 369-370
popping effect, 362
source code, 361
See also level of detail (LOD)
distance methods, 38-77
calculation, 38
circle to circle in 3D, 69-73
ellipse to ellipse in 3D, 73-77
linear component to linear
component, 41-49
linear component to rectangle, 58—60
linear component to triangle, 53-57
point to circlein 3D, 68-69
point to ellipse, 6566
point to ellipsoid, 66
point to Jinear component, 38—41
point to oriented box, 61-64
point to quadratic curve/surface,
67-68
point to rectangle, 57-58
point to segment, 39
point to triangle, 49-53
rectangle to rectangle, 61
triangle to rectangle, 61

Index 533

triangle to triangle, 61
distant terrain assumption, 370
block-based simplification, 376-378
vertex-based simplification, 373-374
See also close terrain assumption
division
approximation instructions, 131
floating-point, 45
slow, 175
dynamic collision detection, 251-256
collision points, finding, 253-256
collision testing, 252-253
See also collision detection; oriented
bounding box (OBB) trees
dynamic lighting, 100, 395
defined, 100
expense, 396
Sev also lighting
dynamic object-object intersections,
214-243
capsules and capsules, 216, 217
defined, 214-215
oriented boxes and triangles, 223-232
triangles and triangles, 232-243
See also intersections
dynamic objects, 186
capsules, 190, 196~197
cylinders, 191, 198-200
ellipsoids, 191-192, 201-202
intersection of lines with, 188-192
intersection of planes with, 193~203
lozenges, 191, 197-198
oriented boxes, 190, 194~196
spheres, 188189, 193-194
triangles, 192, 202-203
See also objects

E

edge buffer setup, 130
eigensystems, 472
ellipse rasterization, 119-124
axis-aligned ellipses, 120-122
defined, 119
ellipse specification, 119-120
general ellipses, 122-124
See also rasterization

534

Index

ellipse to ellipse in 3D, 73-77

defined, 73

numeric solution, 77

solution as polynomial system, 73-75
trigonometric solution, 75-77

See also distance methods

ellipses

axes, 119

axis-aligned, 65, 120-122

centered at origin equation, 119

closest point on, 65

mapped to ellipses, 84

oriented, 65

parameterized, 73

plane/ellipsoid intersection, 73

points to, 65-66

polynomial equations, 73

with smallest positive level curve,
123-124

specifying, 119-120

ellipsoid subdivision, 328-338

algorithm data structures, 329-331

initial mesh, 329, 330

midpoint projection phase, 331

subdivision algorithm, 331-338

working set of vertices, edges,
triangles, 332

ellipsoids, 36-38

axis directions, 36

axis-aligned, 37

bounding, computing, 152

center, 164, 192

with center and axes, 37

closest point on, 66

culling by, 164-165

defined, 36

dynamic, 191, 201-202

fitting points with Gaussian
distribution, 37

general form, 37

intersection of linear component and,
182

line intersection with, 191-192

merging, 152

minimum-volume, 37-38

outside frustum plane, 164

plane intersection, 73, 201-202

points to, 66
projection of, 165
quadratic equation, 164, 182
See also 3D objects
elliptic paraboloid, 305
end effector
best position, 350
defined, 348
formula, 348
position selection for, 348
environment mapping, 428-429
applying on per-pixel basis, 428
cubic, 429
defined, 428
illustrated, 429
See also special effects
Euler angles, 18-26
factor product of two, 24-26
factoring rotation matrices, 19-24
source code, 18
Euler’s identity, 12
Euler’s method, 249, 497
exponential fog, 109
eye point, 85
defined, 80
parallel plane closest to, 85
in standard camera model, 85

F

facet normal, 93
far plane, 85
fast function evaluation, 503-507
CORDIC methods, 507
cosine, 505
inverse square root, 503-504
inverse tangent, 505-506
sine, 504-505
source code, 503
square root, 503-504
tangent, 505
See also numerical methods
fast subdivision
for cubic curves, 283-285
source code, 283
See also subdivision
finding intersection, 186

finite cylinders, 35~36
first point(s) of contact, 186
for boxes, 195
for spheres, 193
flat shading, 102
floating-point
comparison, 99
division, 45
multiplication, 99
number conversion, 127
averflow, 101
precision, 82
round-off errors, 46, 51
fog, 109-110
density, 109
exponential, 109
factor, 109
linear, 109
range-based, 109-110
transparency and, 111
volumetric, [10
See also attributes
frame buffer, 412
Frenet frame
defined, 259
orientation using, 285~-286
Frenet-Serret formulas, 259
front-to-back drawing, 423424
region masks, 424
scan line marks, 423424
See also hidden surface removal
frustum planes, 94
bounding volume inside, 166
clip vertices increase and, 99
ellipsoid outside of, 164
inactive, 166
inverse transform of, 97
projection of, 163, 165

G

game Al, 2
game design, 2
Garland-Heckbert algorithm, 362
Gaussian curvature

computing, 293

defined, 290

Index 535

Gaussian distribution
covariance matrix, 29
defined, 29
fitting points with (ellipsoid), 37
fitting points with (oriented boxes),
29-31
fitting triangles with, 32
lozenge fit with, 34-35
mean, 29
Gaussian quadrature, 260, 495-496
general camera model, 87
generalized cylinder surface, 301-302
geographical methods, 7-77
geometric clipping, 132-133
geometric level of detail, 359-368
Glide, 138
global maximum, 377
global minimum, 49, 50, 54, 58, 69, 381
Gouraud shading, 102
Gram-Schmidt orthonormalization, 249
Graphics Gems, 5, 65, 488, 503, 504
graphics pipeline, 3, 7, 79-139
clipping and lighting, 132~-137
renderer responsibilities, 79-80
grouping node, 143

H

H-adjacent triangles, 325, 326
defined, 325
vertex dependencies for, 327
Handbook of Mathematical Functions,
503
height fields, 370, 386
linear interpolation and, 398-399
from point sets, 398-409
quadratic interpofation and, 399409
single-height, 392
subdivision, 382
from triangle meshes, 398-409
See also terrain
Hermite interpolation basis, 271
hidden surface removal, 420-424
back-to-front drawing, 420423
front-to-back drawing, 423424
one-dimensional, 424

536

Index

hidden surface removal (continued)

See also binary space partitioning

(BSP) trees

homogeneous coordinates, 9
homogeneous matrices, 9, 86

with no perspective component, 144

product of, 144

of projection, 86—87
homogeneous transformations, 9-10

product of, 9

representation, 10, 87

See also transformations
Householder transformations, 472
hyperbolas mapped to hyperbolas, 84
hyperbolic paraboloid, 305
hypotenuse, 324

identity matrix, 8, 19
implicit surface
application to finding principal
curvatures, 292-293
curvatures for, 290-293
defined, 288
maxima of quadratic forms, 290-291
maxima of restricted quadratic forms,
291-292
See also surfaces
imposters. See sprites
infinite cylinders, 35
infinite pyramid formation, 85
infinite square column, 58
inscribed circles, 400401
integration, 491-496
Gaussian quadrature, 260, 495496
Romberg, 260, 491-495
See also numerical methods
intermediate tensor, 270, 302, 304
interpolation
angular cubic, 347
bilinear, 106, 397
Catmull-Rom, 271
during rasterization, 126-132
exact, 264
Hermite, 271
for lattice of control points, 302

linear, 126-129, 398-399

of location rotations, 341

perspective, 129-132

quadratic, 399409

of quaternions, 149

spherical cubic, 345

spherical linear, 343344

spline, 346-347

intersections

capsule and capsule (dynamic), 216,
217

capsule and capsule (static), 205

capsule and line, 190

capsule and lozenge, 205

capsule and plane, 196-197

collision detection and, 186

cylinder and line, 191

cylinder and plane, 198-200

dynamic object and line, 188-192

dynamic object and plane, 193-203

dynamic object-object, 214-243

ellipsoid and line, 191-192

ellipsoid and plane, 201-202

finding, 186

geometric, testing, 173

information about, 169-170

line segment with box, 176-177

line segment with triangle, 182-183

line with box, 179

line with triangle, 183

linear component, 171

linear component and box, 172-179

linear component and capsule,
179-180

linear component and cylinder,
181-182

linear component and ellipsoid, 182

linear component and lozenge,
180-181

linear component and triangle,
182-183

lozenge and line, 191

lozenge and lozenge, 205

lozenge and plane, 197-198

normal vector at, 170

OBB, 253

object-object, 186, 203-243

oriented box and line, 190

oriented box and oriented box
(dynamic), 217-223

oriented box and oriented box (static),
205-207

oriented box and plane, 194-196

oriented box and triangle (dynamic),
223-232

oriented box and triangle (static),
207-210

point of, 170

ray and bounding volume, 170

ray and box, 177178

ray and triangle, 182-183

sphere and capsule, 205

sphere and line, 188-189

sphere and lozenge, 205

sphere and plane, 193-194

sphere and sphere, 204

sphere, capsule, lozenge (dynamic),
215-217

sphere, capsule, lozenge (static),
204-205

static object-object, 203-214

surface attributes at, 170

testing, 170, 186

tests between bounding volumes, 188

triangle and line, 192

triangle and plane, 202-203

triangle and triangle (dynamic),
232-243

triangle and triangle (static), 210-214

types of, 186

interval

end points, 228
overlap test, 210
of uncertainty, 376

inverse kinematics, 348-356

defined, 342

numerical solution by cyclic
coordinate descent, 351-356

numerical solution by Jacobian
methods, 350-35!

numerical solution by nonlinear
optimization, 351

prismatic joint, 350

problem, 348, 349

Index 537

revolute joint, 350
source code, 348
See also animation
inverse mapping, 82
inverse tangent approximations, 505-506

J

Jacobian matrix, 350

K

key frame animation, 342-347
defined, 341, 342
key frame node update, 347
quaternion calculus, 342-343
spherical cubic interpolation, 345
spherical linear interpolation,
343-344
spline interpolation of quaternions,
346-347
See also animation
key frames
defined, 341
nodes, updating, 347
kinematics
defined, 348
inverse, 348-356
Kochanek-Bartels splines, 271-276
bias, 271
continuity, 271
defined, 271
implementation of, 347
parameter examples, 273276
source code, 271
tension, 271
See also curves

L

leaf nodes, 141, 157
OBB, 250
quadtree, 370
triangle representation by, 169
See also nodes
least-squares fit, 33, 295, 298

least-squares fitting, 472—481
circle to 2D points, 476478
defined, 472
hyperplanar fitting of points using
orthogonal regression, 475476
linear fitting of points, 472-473
linear fitting of points using
orthogonal regression, 473474
planar fitting of points, 474475
quadratic curve to 2D points, 480481
quadric surface to 3D points, 481
sphere to 3D points, 478480
See also numerical methods
least-squares line, 36
left-handed coordinate system, 10, 86
lens flare, 427428
level editor, 142
level of detail (LOD), 359
continuous, 360, 362-368
discrete, 360, 361-362
geometric, 359-368
nodes, 361
light equation, 104
lighting
ambient, 102-103
defined, 101
diffuse, 103, 429
dynamic, 100, 395, 396
intensity, 102
model, 102
prelighting, 395
projected, 430431
specular, 104
of vertices, 132
See also attributes
lights
attenuated with distance, 101
directional, 100
intensity parameter, 100
point, 100
sources, 100, 101
spot, 100
line segments
3D, 43
axis tests, 177
closed point to, 38
distance to, 38

end points, 176
inside/outside face determination,
173174
intersection with box, 176-177
intersection with triangle, 182-183
line to, 43
midpoint, 176
parallel, 48
project to line segments, 83
rays to, 4349
to rectangles, 60
represented as oriented boxes, 39
to segments, 43-49
separating axes, 183
to triangles, 57
uniformly spaced points on, 82
linear component to linear component,
41-49
defined, 41
goal, 41
line to line, 42
line to ray, 43
line to segment, 43
ray to ray, 43-49
ray to segment, 43—49
segment to segment, 43—49
See also distance methods
linear component to rectangle, 58—60
defined, 58
ray to rectangle, 60
region partitioning, 58
segment to rectangle, 60
squared-distance function, 58
See also distance methods
linear component to triangle, 53—57
defined, 53
line to triangle, 54-56
ray to triangle, 57
region partitioning, 54
segment to triangle, 57
squared-distance function, 53
See also distance methods
linear components
intersection with box, 172-179
intersection with capsule, 179-180
intersection with cylinder, 181-182
intersection with ellipsoid, 182

intersection with lozenge, 180181
intersection with sphere, 171-172
intersection with triangle, 182-183
intersections, 171
parallel to rectangle, 59
point to, 3841
linear fitting of points, 472474
with orthogonal regression, 473-474
source code, 473
See also least-squares fitting
linear fog, 109
linear interpolation, 126-129
for continuous height, 397
height fields and, 398-399
implementation of, 347
one division per edge per attribute,
130
See also interpolation
linear polynomials, 76
linear systems, 469—470
linear transformations, 8, 13-14
lines
direction lengths, 42
intersection of capsules and, 190
intersection of cylinders and, 191
intersection of dynamic objects and,
188-192
intersection of ellipsoids and, 191-192
intersection of lozenges and, 191
intersection of oriented boxes and,
179, 190
intersection of spheres and, 188-189
intersection of triangles and, 183, 192
to lines, 42
partitioning, by capsule, 180
partitioning, by lozenge, 181
project to, 81-82
rasterizing, 113-117
to ray, 43
to segment, 43
to triangle, 54-56
link IDs, 460, 462—463
defined, 460
persistence of, 462
storage of, 462, 463
list manipulator, 352-355
initial point, 352

Index 539

lengths, 352
with multiple end effectors, 354-355
with one end effector, 352-354
rotate to line, 352
rotate to plane, 353
rotate to point, 352
slide to line, 354
slide to plane, 354
slide to point, 354
two-segment, 354-355
See also manipulators

loading data, 460

local control, 267

local transforms, 144-145
defined, 144
SRT-transform, 145
See also transforms

lozenges, 34-35
capsule intersection with, 205
centers, 152
culling by, 161-162
defined, 34
dynamic, 191, 197-198
edge directions, 191
edges, 35
fit with Gaussian distribution, 34-35
intersection of linear comnponent and,

180-181

line intersection with, 191
lozenge intersection with, 205
minimization method, 35
origin, 191
parameterized rectangle, 161
partitioning line by, 181
plane intersection with, 197—-198
radius, 161
rectangle corners, 197
rectangle parameters, 35
rectangle vertices, 152
sphere intersection with, 205
See also 3D objects

macros, 450451, 452
manipulators
defined, 348

540

Index

manipulators (continued)
joints, optimized, 351-352
joints, parameter restricted, 355
linearly linked, 349
list, 352-355
tree, 355
as trees of segments, 350
mapping
bump, 429430
environment, 428429
parabolic, 429
to screen coordinates, 89-90
sphere, 429
masks
region, 424
scan line, 423424
matrices
2x2,70, 289
adjoint, 367
blending, 268, 302
companion, 487
covariance, 29
diagonal, 8, 67, 68
homogeneous, 9, 86
identity, 8, 19
Jacobian, 350
norm of, 487
orientation, 286, 306
orthonormality, 149
quadric, 365
rotation, 8, 15-16, 17-18, 19-24
scaling, 8
skew-symmetric, 8, 15
symmetric, 8
trace of, 16
transpose of, 8
zero, 8
mean curvature
computing, 293
defined, 290
merging
capsules, 151
cylinders, 152
ellipsoids, 152
lozenges, 151-152
oriented boxes, 149~150
spheres, 148-149

mesh triangles, 250
OBB based on distribution of, 250
submeshes, 250-251
metric tensors, 289
midpoint
line algorithm, 117
method, 497
subdivision, 408-409
minimization, 35, 481-485
Brent’s method, 482
conjugate gradient search, 483-484
methods in many dimensions,
482485
methods in one dimension, 481-482
Powell's direction set method, 31,
484485
source code, 481, 484
steepest descent search, 483
See also numerical methods
minimum-volume box, 31
minimum-volume OBB, 250
minimum-volume sphere, 28
mipmapping, 106-108
defined, 106
index, 107
magnification factor, 107
model coordinate system, 80
model space
clipping in, 98
coordinate transformation to view
space, 87-88
coordinates, 93
facet plane, 93
transforming, to view space, 98
model-to-view transformation, 87-89
modularity, 437-439
criteria, 437438
defined, 437
open-closed principle, 438439
morphing, 362, 433434
control, 434
defined, 433
defining, 434
implementation, 434
source code, 434
motion equations, 246248

moving objects
along a curved path, 258
closed-form algorithm, 248
equations, 246-248
motion equations, 246-248
processing, 245-250
multiple-inheritance systems, 447-
450
elements, 447
hierarchy illustration, 448
macros, 450451
multiple root classes, 449
RTTI, 447
multiplication
fast, 175
floating-point, 99
quaternions, 11, 12, 13
multitextures, 108
combining, 111-112
defined, 108
See also textures

N

naming conventions, 442-443
natural splines, 266
Newton's iteration scheme, 65, 66
Newton's method, 486, 490
nodes

binary tree, 383

bounding volume at, 142-143

child, 141, 143

controllers, 147

defined, 141

grouping, 143

key frame, 347-348

leaf, 141, 157

level of detail (LOD), 361

OBB, 250, 252

parent, 141, 143, 417

portal, 415

region, 415

root, 141, 142, 145

switch, 361

See also scene graphs; tree
nonlinear optimization, 351

Index 541

nonparametric B-spline curves, 258,
267-271
defined, 268
evaluation pseudocode, 270271
soutce code, 268
See also curves
nonparametric B-spline rectangle
patches, 288, 302-304
blending matrices, 302
evaluation pseudocode, 302
intermediate tensor, 302, 304
nonuniform rational B-splines (NURBS),
258
nonuniform subdivision
Bézier cylinder surfaces, 328
Bézier rectangle patches, 313-316
Bézier triangle patches, 323-328
See also subdivision
normals
at points on edges, 396
for prelighting, 396
weighted averages of, 366
numerical methods, 469-507
differential equations, 496-503
eigensystems, 472
fast function evaluation, 503-507
integration, 491-496
least-squares fitting, 472-481
minimization, 481-485
root finding, 485-490
systems of equations, 469-472

o

object culling, 91, 92

object-object intersections, 186
dynamic, 214-243
static, 203-214

object-oriented design, 441442

object-oriented infrastructure, 435468
run-time type information, 444451
shared objects and reference counting,

453459

software construction, 435-442
source code, 435
startup and shutdown, 464-468
streaming, 459-464

object-oriented infrastructure (contin-
ued)
style, naming conventions,
namespaces, 442-444
templates, 451-453
object-oriented software construction,
435-442
functions and data, 440
modularity, 437-439
object orientation, 441442
reusability, 439440
software quality, 436437
objects
bounding volume, 92, 142
clipped, 84
colliding, 142
culled, 84, 158, 160
dynamic, 186, 188-203
moving, 245-250, 258

orientation on curved paths, 285-286

rotating, processing, 245-250
shared, 453459
static, 186
top-level, 459
unculled, 158, 160
occlusion culling, 424
octrees, 412-413
BSP trees vs., 417
for partitioning into cells, 412
processing pseudocode, 413
sorting, 413
See also quadtree(s)
opacity, 108-109
OpenGL, 138, 414
operational model, 441
optimization, nonlinear, 351
orientation
adjacent triangle, 335
with fixed “up” vector, 286
with Frenet frame, 285-286
matrix, 286, 306
objects, on curved paths, 285-286
oriented bounding box (OBB) trees,
244-245
application-specified maximum
depths of traversal for, 252
automatic generation of, 245

collision testing between, 251

constant linear/angular velocities and,
244

constructing, 250251

defined, 244

dual recursion on, 251

function, 244

nodes, 250, 252

root, 244

oriented bounding boxes (OBBs), 420

algorithm based on numerical
ordinary differential equation
solver, 249-250

based on distribution of mesh points,
250

based on distribution of mesh
triangles, 250

centet, 247, 249

comparison, 251

computing, for triangle mesh, 250

coordinate frame, 249

equations of motion, 247-248

intersection between, 253

linear velocity, 249

minimum-volume, 250

time-varying, 247

velocity, 250

oriented boxes, 8, 29-32

axes, 30

axis-aligned, 29

center, 29, 194

coordinate axes, 194

culling by, 159-160

defined, 29

dynamic, 190, 194-196

finding first time of intersection,
218-219

finding point of intersection, 219-223

first point of contact, 195

fitting to convex hull of vertices, 32

fitting triangles with Gaussian
distribution, 32

fixed points with Gaussian
distribution, 29-31

line intersection with, 190

line segment representation as, 39

merging, 149-150

minimum-volume, 31
nonintersection test, 206, 207
oriented boxes intersection with
{dynamic object-object), 217-223
oriented boxes intersection with
(static object-object), 205-207
plane intersection with, 194-196
points to, 61-64
separating axes, 217-218
as shell, 62
as solid, 61
See also 3D objects
oriented boxes and triangles intersection
additional axes, 223
coefficients for unique points, 232,
233, 234, 235
constant velocities, 223
dynamic object-object, 223-232
finding first time intersection,
223-227
finding point of intersection, 227-232
nonintersection test, 224, 225
projected box interval, 224
separating axes, 223
static-object-object, 207-210
See also intersections
orthogonal regression
hyperplanar fitting of points using,
475-476
linear fitting of points using, 473—474
orthonormal transformations, 14
overshooting, 272

P

painter’s algorithm, 420—421
parabolas mapped to parabolas, 84
parabolic cylinder, 305
parabolic mapping, 429
parallel plane, 85
parallel projection, 84-85
parameterized data types. See templates
parametric curves

defined, 258

for graphs, 293
parametric surfaces

curvatures for, 289—290

Index 543

patches, 288
parent nodes, 143, 417
bounding volume of, 145
defined, 141
multiple, 141
See also nodes
partial subdivision, 317-320
defined, 318
illustrated, 318, 319, 320
with one subdividing edge, 320
with parent’s topological constraint,
319,320
with three subdividing edges, 318
with two adjacent subdividing edges,
319
with two opposing subdividing edges,
320
See also subdivision
particle systems, 432-433
patches
Bézier rectangle, 293-297
Bézier triangle, 297-301
nonparametric B-spline rectangle,
302-304
parametric surface, 288
rectangular, 288
triangular, 288
See also surfaces
path controlling, 285
Pentium III CPU, 139
perspective interpolation, 129-132
defined, 130
depth value, 130
one division per pixel per attribute,
130
See also interpolation
perspective projection, 10, 80-84
canonical model, 81
conics project to conics, 83-84
defined, 81
lines project to lines, 81-82
on view plane, 81
triangles project to triangles, 83
Phong shading, 102
physics engines, 342
picking, 169-183
BSP tree, 425

544 Index

picking (continued)

defined, 4, 169
general, 169

support for, 169-170
uses, 169

pixels

circle, draw decision, 118

decision equation, 114

ellipse, selection, 122123

forming best line segment between
two points, 113

level of detail (LOD), 359

line drawing algorithm, 113, 117

selection based on slope, 114

selection of, 113

setting, rules for, 117

planar curves, 258-259

coordinate frame, 258
curvature, 259
defined, 258

See also curves

planar fitting of points, 474476

with orthogonal regression, 475476
source code, 475
See also least-squares fitting

planes

clipping, 92, 414

facet, 93

far, 85

frustum, 94,97

intersection of capsules with, 196-197

intersection of cylinders with,
198-200

intersection of dynamic objects with,
193-203

intersection of ellipsoids with,
201-202

intersection of lozenges with, 197-198

intersection of oriented boxes with,
194-196

intersection of spheres with, 193-194

intersection of triangles with, 202-203

normal, 81

parallel, 85

union of, 305

view, 80

point lights, 100

points
2D, fitting circles to, 476478
2D, fitting quadratic curves to,
480481
3D, fitting quadric surface to, 481
3D, fitting spheres to, 478480
to circle in 3D, 68—69
closest, 38, 39, 45
collision, 253-256
contact, 44, 50, 186
control, 296, 298
to ellipses, 6566
to ellipsoids, 66
end, 43, 44, 176, 228, 238-239
eye, 80, 85
input, 89
interior, 43, 44, 50
to linear component, 38—41
minimum distance, 43, 50
on frustum side of the plane, 133-134
to oriented boxes, 61-64
to rectangles, 57-58
squared distance between, on circle,
69
subdivision, 276
to triangles, 49-53
polygonal models, 287
polygons
bounding convex, 417
coincident, 420
many-sided convex, 417
sorting, 420
subpolygons, 425
tree, 358
polymorphism, 456
polynomial roots, 486—489
bounding, by derivative sequences,
487488
bounding, by Sturm sequences,
488489
of multiplicity larger than 1, 486
source code, 486
See also root finding
polynomial systems, 470472
general handling of, 472
source code, 470

portals, 413417
connection between regions, 414
defined, 413
example illustration, 416
L-shaped region, 416
nodes, 415
plane restriction, 414
planes maintained by, 415
regions, 414—416
uses, 413—414
visibility through, 414
Powell’s direction set method, 31,
484485
prelighting, 395, 396
prerendering function, 157
principal curvatures, 289
application to finding, 292-293
defined, 289
is 2D generalized eigenvector, 290
principal directions, 289
prismatic joint, 350
progressive meshes, 362
projected lighting, 430431
defined, 430
projection process, 431
texture coordinates, 431
See also special effects
projected shadows, 431-432
defined, 431
occluder, 432
projected texture, 432
See also special effects
projection
defined, 80
frustum, 430
homogeneous matrices projection,
86-87
matrix specification, 86
onto view plane, 84
parallel, 84-85
perspective, 10, 8084
projectors, 430
pseudodistance, 134

Q
quadratic classifier, 45, 49

Index 545

quadratic equations
ellipsoid, 164, 182
general, 67
polynomial, 76
quaderic surfaces, 304
second-degree, 67
simultaneous, 471
sphere, 171
two, solving for, 471
quadratic forms
defined, 290
expanding, 291
maxima of, 290-291
restricted, maxima of, 291-292
quadratic function, 56
quadratic interpolation, 399-409
algorithm, 404—409
algorithm parts, 399
barycentric coefficients as areas,
399400
Bézier net construction, 399
Bézier triangles, 401—402
derivative continuity, 403404
derivatives, 402-403
inscribed circles, 400—401
local control, 399
subdivision, 399
See also height fields; terrain
quadric error metrics, 362-364
quadric matrices, 365
quadric surfaces, 304-305
defined, 288
one nonzero eigenvalue, 305
quadratic equation, 304
source code, 304
three nonzero eigenvalues, 304-305
two nonzero eigenvalues, 305
See also surfaces
quadtree(s), 412-413
blocks, 370, 375, 385, 413
BSP trees vs., 417
defined, 370
leaf nodes, 370
for partitioning into cells, 412
processing pseudocode, 413
recursive traversal, 386
representation illustration, 371

quadtree(s) (continued)
sorting, 413
subdivision, 317
quaternion calculus, 342-343
quaternions, 11-18
addition of, 11
algebra, 11-13
angle axis to, 16-17
to angle-axis, 17
conjugate of, 11
conversion (angle-axis), 16-17
conversion (rotation matrix), 17-18
cubic interpolation of, 345
defined, 11
dot product of, 12
intermediate, 346
interpolating, 149
log, 13
multiplication of, 11, 12, 13
multiplicative inverse of, 11
norm of, 11
relationship to rotations, 13-15
to rotation matrix, 17
rotation matrix to, 17-18, 150
source code, 11
spline interpolation of, 346-347
subtraction of, 11
unit, logarithm of, 12
unit, power of, 12
queues
circular, 386, 388
empty, 388
unprocessed blocks in, 388

range-based fog, 109110
rasterization, 113-132
acceleration, 80
circle, 117-119
defined, 80, 113
ellipse, 119-124
interpolation during, 126132
line, 113-117
perspectively correct, 82
triangle, 83, 124-126, 130~131

rasterizers
defined, 80
inverse mapping, 83
rays
dircction, 177
intersection with bounding volume,
170
intersection with box, 177-178
intersection with sphere, 172
intersection with triangle, 182-183
lines to, 43
origin, 177
to rays, 4349
to rectangles, 60
to segments, 43
to triangles, 57
rectangle mesh, 328
rectangles
Bézier, 288
closest point on, 57
linear components to, 58—60
points to, 57-58
rays to, 60
rectangles to, 61
segments to, 60
triangles to, 61
rectangular patches
Bézier, 293-297
defined, 288
nonparametric B-spline, 302-304
subdivisions of parameter space for,
307
See also surfaces
recursion formula, 281
recursive subdivision, 284-285
reference counting, 453459
reflection vector, 428
region masks, 424
regions, 414416
adjacent, 414
bounding planes of, 415
convex, 416
nonconvex, 414, 416
See also portals
rejection testing, 187
render state, 146
defined, 143

global, 155
hierarchical maintenance of, 146
updating, 148, 155-156
renderers
building, 79
defined, 79
responsibilities, 79-80
rendering
block, 383-384
costs, 97, 98
time, 80
rendering scene graph, 157-167
algorithm, 166167
camera click, 157
culling by capsules, 160~161
culling by cylinders, 163—164
culling by ellipsoids, 164-165
culling by lozenges, 161-162
culling by oriented boxes, 159-160
culling by spheres, 157-159
See also scene graphs
reusability, 439440
revolute joint, 350
Richardson extrapolation, 491-493
right-handed coordinate system, 10, 68,
86
ripmaps, 108
Romberg integration, 260, 491-495
method, 494495
Richardson extrapolation, 491493
source code, 491
trapezoid rule, 493
See also integration
root finding, 485490
bisection, 486, 490
methods in many dimensions,
489490
methods in one dimension, 485489
Newton’s method, 486, 490
polynomial roots, 486489
See also numerical methods
root node, 141, 142
defined, 141
world transform of, 145
See also nodes
rotating objects
closed-form algorithm, 248

Index 547

motion equations, 246-248
processing, 245-250
rotation, 8-9
about x-axis, 18
about y-axis, 18
about z-axis, 18
angle, 8, 14
quaternions relationship to, 13-15
unit length axis, 8
See also transformations
rotation matrix, 8, 246
about x-axis, 18
to angle-axis, 16
angle-axis to, 15-16
axes storage as columns of, 150
conversion (angle-axis), 15-16
conversion (quaternion), 17-18, 150
factoring, 19-24
in minimum-volume box, 31
to quaternion, 17-18
quaternion to, 17
Runge-Kutta fourth-order method, 498
Runge-Kutta with adaptive step, 498499
run-time type information, 444451
macro support, 450-451
multiple-inheritance systems,
447-450
single-inheritance systems, 444-447
See also object-oriented infrastructure

saving data, 459-460

scaling, 8

scan line masks, 423424

scene graphs
colliding objects and, 142
constructing, 413
content organization, 142
defined, 142
hierarchical organization, 142
implementation, 147
management, 3, 4, 7, 79, 141-167
rendering, 157-167
subtree, 142
traversal of, 157
updating, 147-156

548

Index

screen coordinates
aspect ratio, 90
defined, 89
mapping to, 8990
transformation to, 90
screen dimensions, 89
screen space
coordinates, 90
data conversion to, 80
distance measurements, 90-91
distance threshold, 375
linear polarization in, 129
projected vertices in, 99
segments, squared length of, 90-91
transformation, 90
visibility determination method, 425
semi-infinite square column, 58
shading, 101-102
defined, 101-102
flat, 102
Gouraud, 102
models, 102
Phong, 102
shared objects, 453459
simplification
block-based, 375-381
defined, 371-372
fine-level, 370
vertex-based, 373-375, 385-386
sine approximations, 504-505
single-inheritance systems, 444447
derived classes, 447
elements, 444
hierarchy illustration, 445
macros, 450451
root class, 449
skew-symmetric matrix, 8, 15
skin, 356-357
controller, 357
defined, 356
skinning, 356-358
bone hierarchy, 356
defined, 342, 356
progression of events, 357
source code, 356
SmaliTalk, 441

smart pointers, 453
as function parameters, 458
reference count and, 457
templates, 454455
software
commonality, 440
maintenance, 436437
modularity, 437439
naming conventions, 442-443
quality, 436437
reusability, 439440
sorting
defined, 411
octree, 413
polygons, 420
quadtree, 413
spatial, 411426
source code
axis-aligned boxes, 29
Bézier curves, 261
Bézier cylinder surfaces, 301
Bézier cylinder surfaces subdivision,
328
Bézier rectangle patches, 294
Bézier rectangle patches subdivision,
306
Bézier triangle patches, 297
Bézier triangle patches subdivision,
322
billboards, 360
bisection, 486, 490
capsules, 33
circle to circle in 3D, 69
continuous level of detail (CLOD),
363
culling by capsules, 160
culling by cylinders, 163
culling by ellipsoids, 164
culling by lozenges, 161
culling by oriented boxes, 159
culling by spheres, 158
curvatures for implicit surfaces, 290
curvatures for parametric surfaces,
289
cylinders, 36
differential equations, 496
discrete level of detail, 361

eigensystems, 472
ellipsoids, 37
Euler angles, 18
fast function evaluation, 503
fitting circles to 2D points, 476
fitting points with Gaussian
distribution, 29
fitting quadratic curves to 2D points,
480
fitting quadric surface to 3D points,
481
fitting spheres to 3D points, 478
intersection of capsules and lines, 190
intersection of capsules and planes,
196
intersection of cylinders and lines, 191
intersection of cylinders and planes,
199
intersection of ellipsoids and lines,
192
intersection of ellipsoids and planes,
201
intersection of linear component and
box, 172
intersection of linear component and
capsule, 179
intersection of linear component and
cylinder, 181
intersection of linear component and
ellipsoid, 182
intersection of linear component and
lozenge, 180
intersection of linear component and
sphere, 171
intersection of linear component and
triangle, 182
intersection of lozenges and planes,
197
intersection of oriented boxes and
lines, 190
intersection of oriented boxes and
planes, 195
intersection of oriented boxes and
triangles (dynamic object-object),
223
intersection of oriented boxes and
triangles (static object-object), 207

Index 549

intersection of oriented boxes
(dynamic object-object), 218
intersection of oriented boxes (static
object-object), 206
intersection of spheres and lines, 188
intersection of spheres and planes,
193
intersection of spheres, capsules and
lozenges (static object-object), 204
intersection of spheres, capsules,
lozenges (dynamic object-object),
215
intersection of triangles and lines, 192
intersection of triangles and planes,
202
intersection of triangles (dynamic
object-object), 232
intersection of triangles (static
object-object), 210
inverse kinematics, 348
key frame node update, 347
Kochanek-Bartels splines, 271
linear component to linear
component, 41
linear component to rectangle, 58
linear component to triangle, 53
linear fitting of points, 473
linear resampling of triangle mesh,
398
linear systems, 470
lozenges, 34
merging capsules, 151
merging cylinders, 152
merging ellipsoids, 152
merging lozenges, 152
merging oriented boxes, 149
merging spheres, 148
minimum-volume box, 31
minimum-volume sphere, 28
morphing, 434
natural splines, 264
nonparametric B-spline curves, 268
numerical ordinary differential
equation solver, 249
ohject-oriented infrastructure, 435
particle systems, 433
planar fitting of points, 475

source code (continued)

point to circle in 3D, 68

point to ellipse, 65

point to ellipsoid, 66

point to linear component, 38

point to quadratic curve/surface, 67

point to rectangle, 57

point to triangle, 49

polynomial roots, 486

polynomial systems, 470

quadratic resampling of triangle
mesh, 399

quadric surfaces, 304

quaternion calculus, 343

qQuaternions, 11

rectangle to rectangle, 61

Romberg integration, 491

scene graph rendering algorithm, 166

scene graph updating, 153

skinning, 356

sphere centered at average of points,
27

sphere containing axis-aligned box,
26

spherical cubic interpolation, 345

spherical linear interpolation, 343

spline interpolation of quaternions,
346

subdivision, 276

subdivision of spheres and ellipsoids,
329

terrain, 369

transformations, 8

triangle to rectangle, 61

triangle to triangle, 61

tube surfaces subdivision, 339

space curve, 259-260

defined, 259
Frenet frame, 259
torsion, 259

See also curves

spatial sorting, 411-426
special effects, 427-434

bump mapping, 429-430
environment mapping, 428—429
lens flare, 427428

morphing, 433434

particle systems, 432-433
projected lights, 430-431
projected shadows, 431-432
volumetric fogging, 430
spectral radius, 487
specular color, 102
specular light, 104
sphere mapping, 429
sphere subdivision, 328-338
algorithm, 331-339
algorithm data structures, 329-331
initial mesh, 329, 330
midpoint projection phase, 331
working set of vertices, edges,
triangles, 332
See also subdivision
spheres, 8, 26-28
bounding, computation, 26
center, 171, 188, 193
centered at average of points, 27
containing axis-aligned box, 26-27
culling by, 157-159
defined, 26
dynamic, 188-189, 193194
exactly two, three, and four points, 28
first point of contact, 193
intersection of capsules with, 205
intersection of linear component
with, 171-172
intersection of lines with, 188189
intersection of lozenges with, 205
intersection of planes with, 193~194
intersection of spheres with, 204
merging, 148-149
minimum-volume, 28
quadratic equation, 171
radius, 171, 188, 193
See also 3D objects
sphere-swept volumes
distance calculators relationship, 204
distance calculators relationship
(when second abject moving), 215
examples of, 204
intersection of, 204-205
spherical cubic interpolation, 345
spherical linear interpolation, 343-344
boundary conditions, 344

defined, 344
derivative, 344
extra spins, 344
formula construction, 343
source code, 343
for unit quaternions, 344
spline interpolation, of quaternions,
346-347
splitting methods, 490
spot lights, 100
sprites, 360
square root/inverse square root, 503—-504
squared-distance function, 49, 53, 58
SRT-transforms, 145
standard camera model, 85-87
eye point, 85
illustrated, 85
view frustum, 85-86
viewport, 85
See also camera models
startup/shutdown, 464468
static object-object intersections,
203-214
defined, 203-204
oriented boxes, 205-207
oriented boxes and triangles, 207-210
spheres, capsules, lozenges, 204-205
triangles, 210-214
See also intersections
steady-state distribution of heat, 502
steepest descent search, 483
stencil buffer, 432
stitching process, 393
streaming, 459464
defined, 459
loading data, 460
saving data, 459460
support, 461464
See also object-oriented infrastructure
Sturm sequences, 488489
subdivision, 276-285
by arc length, 276-277
of Bézier cylinder surfaces, 328
of Bézier rectangle patches, 306-321
of Bézier triangle patches, 321-328
of child biocks, 318
with cracking, 316, 318

Index 551

defined, 276
of ellipsoids, 328-338
fast, for cubic curves, 283~285
height fields, 382
by midpoint distance, 277-278
by minimizing variation, 282-283
nonuniform, 313-316
partial, 317-320
points, 276
of polyhedron, 329
quadtree, 317
recursive, 284-285
source code, 276
of spheres, 328-338
triangle, 405
of tube surfaces, 339-340
by uniform sampling, 276, 277
uniform, 306-313
by variation, 278-282, 284
See also curves
sublattice calculations, 397
subtraction, quaternions, 11
subtrees, 142
subtriangles, 406, 409
surface area, 288
surface attributes, 99-112
defined, 99
at intersection, 170
selecting, 366-368
See also attributes
surfaces, 287-340
Bézier cylinder, 288, 301-302
Bézier rectangle patches, 293-297
Bézier triangle patches, 297-301
curved, 258, 287
cylinder, 301
definitions, 288289
developable, 301
generalized cylinder, 301-302
implicit, 288, 290-293
parametric, 289-290
quadric, 288, 304-305
rectangular patches, 288
of revolution, 306
special, 293-306
swept, 306
triangular patches, 288

552

Index

surfaces (continued)
tube, 288, 306

swept surfaces, 306

switch node, 361

systems of equations, 469472
linear systems, 469470
polynomial systems, 470—472
See also numerical methods

T

tangent approximations, 505
Taylor series, 284
templates, 451453
defined, 451
example, 451
smart pointer system, 454—455
uses, 452453
using, 451-452

See also object-oriented infrastructure

temporary instances, 458—459
terrain, 369409
algorithm, 385-392
block rendering, 383-384
continuous height, 397
data, 369
height calculations, 397
height field, 370, 386, 392
issues, 392-397

memory usage problem, 394-395

primitive blocks, 370
source code, 369
systems, 369, 392
topology, 370-373
vertex attributes, 395-396
vertex dependencies, 381-383
See also blocks

terrain pages
defined, 393
memory usage, 394-395
predictive loading, 394
problems, 393
stitching process, 393
unstitching process, 393, 394
working set, 394

tessellation, 392

texels
defined, 105
value selection, 107-108
texture coordinates, 105
defined, 105
lattice point, computing, 106
mixed, 105
modes, 105
wrapped, 105
textures, 105-108
boundaries, hiding, 105
cylindrical, 105
defined, 105
filtering, 106
mipmapping, 106-108
multitexture, 108, 111-112
toroidal, 105
vertex colors combination, 111
See also attributes
top-level objects, 459
torsion, 259
transformations, 7, 810
homogeneous, 9-10, 87
Householder, 472
linear, 8, 13-14
model-to-view, 87-89
orthonormal, 14
rotation, 8-9
scaling, 8
to screen coordinates, 90
screen space, 90
source code, 8
translation, 9
view, 87
transforms, 144—145
defined, 143
local, 144-145
SRT, 145
updating, 147
world, 145
translation, 9
transparency, 108—-109
controlling, 108
fogand, 111
trapezoid rule, 493
tree generation algorithm, 250-251
tree manipulator, 355

tree polygons, 358
trees, 143-147

binary, 383

bounding volume, 426
BSP, 417-426

defined, 141
illustration, 143
nodes, 141

OBB, 244-245
subtrees, 142

vertex dependency, 388
visibility, 425

world, 245

triangle meshes, 132-133, 250251

clipping with, 133-136

defined, 132

height fields from, 398—409
linear resampling of, 398-399
quadratic resampling of, 399-409
vertices storage, 132

triangle patches

Bézier, 297-301

defined, 288

parameter space subdivision, 322
See also surfaces

triangles

adjacent, 335-337, 401

back facing, 93

Bézier, 401-402

clipped, configurations, 135

coefficient, 297

coplanar, 211

domain edges, 50

dynamic, 192, 202-203

fitting, with Gaussian distribution, 32

front facing, 93

H-adjacency for, 325, 326

hypotenuse, 324

inside/outside of frustum, 93

intersection of line and, 183

intersection of line segment and,
182-183

intersection of linear component and,
182-183

interscction of ray and, 182-183

interval overlap test, 210

leaf node representation, 169

Index 553

line intersection with, 192

linear components to, 53-57

lines to, 54-56

mesh, 250

nonintersection test, 208, 209-210,
213-214

nonparallel, 211

normal vector, 93

normals, 21 |

oriented boxes intersection of oriented
boxes and, 207-210

plane intersection with, 202-203

points to, 49-53

project to triangles, 83

projections of vertices relative to line
origin, 208

rasterization, 83, 124-126, 130131

rasterized, 100

rays to, 57

to rectangles, 61

segments to, 57

separating axes, 207-209, 211-212

splitting configurations, 94

subdivision, 324, 405

subdivision pattern, 327

subtriangles, 406, 409

in three dimensions, 210

to triangles, 61

vertices, 192

vertices, projection distances, 211, 231

as white object on black background,
124

triangles and triangles intersection

additional axes, 232

coefficients for unique points, 243

constant velocities, 233

dynamic object-object, 232243

finding a point of intersection,
238-243

finding first time of intersection,
233-238

interval end points, 238-239

relative velocities, 233

separating axes, 232

static object-object, 210 214

vertices projection, 239, 240, 242

See also intersections

554

Index

tube surfaces, 306
defined, 288, 306
parameter space, 339
subdivision, 339-340
tessellation of, 339
See also surfaces

u

unconstrained recursion, 314-315
undershooting, 272
uniform scaling, 8
uniform subdivision, 276, 277
Bézier cylinder surfaces, 328
Bézier rectangle patches, 306-313
Bézier triangle patches, 322-323
recursive, 310-313
See also subdivision
unstitching process, 393, 394
updating
animation, 148
bounding volumes, 147
child nodes, 155
key frame nodes, 347
render state, 148, 155-156
scene graphs, 147-156
transforms, 147
vertex dependencies, 388
world transforms, 155
updating scene graph, 147-156
algorithm, 152-156
animation state, 148
bounding volumes, 147
downward pass, 147, 155
merging two capsules, 151
merging two cylinders, 152
merging two ellipsoids, 152
merging two lozenges, 151-152
merging two oriented boxes, 149-
150
merging two spheres, 148—-149
recursive pass, 147
render state, 148
transforms, 147
upward pass, 147-148
See also scene graphs

v

vertex attributes, 99-112
computing, 136-137
defined, 99
terrain, 395-396
See also attributes
vertex clustering, 363
vertex color, 99-100
defined, 99
texture combination, 111
use of, 100
See also attributes
vertex dependencies, 317, 381-383
binary tree, 383
for even/odd blocks, 382
for H-adjacent triangles, 327
triangulation after, 382
updating, 388
vertex-based simplification, 373375,
385-386
close terrain assumption, 374-375
defined, 373
distant terrain assumption, 373-374
no assumption, 375
See also simplification
view frustum
bounding volume intersection with,
92, 157
clipping against, 173
defined, 85
defining, 157
skewed, 85-86
standard camera model, 85-86
world, 157
view plane
computation cost, 97
defined, 80
display, 84
fixed, 81
perspective projection on, 81
projection onto, 84
view space, 79-80
clipping in, 98-99
data conversion from, 80
model space coordinate
transformation to, 87-88
transforming model space to, 98

transforming world space to, 97

visibility determination method, 425

view transformation, 87
view volume, 84
viewport, 85
defined, 84
standard camera model, 85
visibility
flags, 134
graphs, 412
lists, 413
through portals, 414
tree, 425
visibility determination, 424-425
defined, 424
screen space method, 425
view space method, 425
See also binary space partitioning
(BSP) trees
visitation flag, 416
volumetric fogging, 110, 430
VTune, 139

Index 555

w

world coordinate system, 80
world plane, 97
world space

clipping in, 97

transforming, to view space, 97
world transforms, 145

defined, 145

downward recursive transversal and,

146

of root node, 145

updating, 155

See also transforms
world tree, 425

z

z-buffers, 412
Zero matrix, 8

ABOUT THE AUTHOR

David Eberly is the President of Magic Software, Inc. (www.magic-software.com), a
company known for its Web site that offers free source code and documentation for
computer graphics, image analysis, and numerical methods. Previously he was the
Director of Engineering at Numerical Design Limited, the company responsible for
the real-time 3D game engine, Netimmerse. His background includes a B.A. degree
in mathematics from Bloomsburg University, M.S. and Ph.D. degrees in mathematics
from the University of Colorado at Boulder, and M.S. and Ph.D. degrees in computer
science from the University of North Carolina at Chapel Hill. He is co-author with
Philip Schneider of the forthcoming Geometry Tools for Computer Graphics, to be
published by Morgan Kaufmann.

As a mathematician, Dave did research in the mathematics of combustion, signal
and image processing, and length-biased distributions in statistics. He was a research
associate professor at the University of Texas at San Antonio with an adjunct appoint-
ment in radiology at the U.T. Health Science Center at San Antonio. In 1991 he gave
up his tenured position to retrain in computer science at the University of North Car-
olina. During his stay at U.N.C., MAGIC (My Alternate Graphics and Image Code) was
born as an attempt to provide an easy-to-use set of libraries for image analysis. Since
its beginnings in 1991, MAGIC has continually evolved into the “net library” that it
currently is, now managed by the company Magic Software, Inc. After graduating in
1994, he remained for one year as a research associate professor in computer science
with a joint appointment in the Department of Neurosurgery working in medical im-
age analysis. His next stop was the SAS Institute working for a year on SAS/Insight,
a statistical graphics package. Finally, deciding that computer graphics and geometry
were his real calling, Dave went to work for Numerical Design Limited, then later to
Magic Software, Inc. Dave’s participation in the newsgroup comp.graphics.algorithms
and his desire to make 3D graphics technology available to all are what has led to
the creation of this book. The evolution of Magic will continue and the technology
transfer is not yet over.

357

ABoUT THE CD-ROM

Contents of the CD-ROM

The accompanying CD-ROM contains source code that illustrates the ideas in the
book. A partial listing of the directory structure is

/Wild Magic 0.4
LinuxReadMe.txt
WindowsReadMe.txt
/Linux

/WildMagic
/Applications
/Include
/Library
/Licenses
/0bject
/SourceFree
/SourceGameEngine

/Windows

/MildMagic
/Applications
/Include
/Library
/Licenses
/Sourcefree
/SourceGameEngine
/Tools

The read-me files contain the installation instructions and other notes. The path Win-
dows/WildMagic contains the distribution for use on a computer whose operating
systemn is one of Windows 95, Windows 98, Windows NT, or Windows 2000. The path
Linux/Wi1dMagic contains the distribution for use on a computer whose operating
system is Linux. Compiled source code is already on the CD-ROM. The application
directories, located in App1ications, contain compiled executables that are ready to
run.

The distributions are nearly identical. The Windows text files have lines that are
terminated by carriage return and line feed pairs whereas the Linux text files are ter-
minated by line feeds. The Windows distribution contains an OpenGL renderer and
a Win32 application layer, both dependent on the operating system. The Windows
distribution also has a rudimentary software renderer and it has a tool for convert-
ing bitmap (*.bmp) files to Magic image files (*.mif). Both the Windows and Linux
distributions contain an OpenGL renderer and an application layer that is dependent
on GLUT. The Windows code is supplied with Microsoft Developer Studio Projects

359

560 About the CD-ROM

(*.dsp) and Microsoft Developer Studio Workspaces (*.dsw). The Linux code is sup-
plied with make files. The other portions of the distributions are the same.

License Agreements

Each sourece file has a preamble stating which of two license agreements governs the
use of that file. The license agreements are located in the directory Licenses. The
source code in the path SourceGameEngine is governed by the license agreement
Licenses/3DGameEngine.pdf. The remaining source code is governed by the li-
cense agreement Licenses/free.pdf. All source code may be used for commercial
or noncommercial purposes subject to the constraints given in the license agreements.

Installation on a Windows Sytem

These directions assume that the CD-ROM drive is drive D and the disk drive to
which the contents are to be copied is drive C. Of course you will need to substi-
tute the drive letters that your system is using. Copy the CD-ROM subtree D: \Wi1d
Magic 0.4\Windows\WildMagic to C:\SomePath\WildMagic. Since the files are
copied as read-only, execute the following two commands, in order, from a com-
mand window: cd C:\SomePath\WildMagic and attrib -r * . * /s, The dis-
tribution comes precompiled, but if you want to rebuild it, open the workspace
C:\SomePath\WildMagic\BuildA11.dsw and select the Bui1dA11 project (the
default one that shows up in the project list box is BezierSurface). Build
both the Debug and Release configurations. This builds the Sourcefree,
SourceGameEngine, and Application source trees, in that order. Each of the
directories Sourcefree, SourceGameEngine, and Applications has a top level
workspace to build only those pieces.

Installation on a Linux System

Mount the CD-ROM drive by: mount -t 1509660 /dev/cdrom /mnt. If your de-
sired top level directory is /HomeDirectory/SomePath (substitute the actual path
to your home directory), and if your current working directory is /HomeDijrec-
tory/SomePath then use cp "/mnt/Wild Magic 0.4/Linux/WildMagic” -r .
to generate the source tree /HomeDirectory/SomePath/WildMagic. Note that“.”
is the last argument of “cp” Since the files are copied as read-only, execute the fol-
lowing two commands, in order, (assumes your current working directory is still
/HomeDirectory/SomePath): cd WildMagic and chmod a+rw -R *. The distri-
bution comes precompiled, butif you want to rebuild it, run make on the makefile in
theWi1dMagi c subdirectory. Build the Debug configuration by make CONFIG=Debug
and the Release configuration by make CONFIG=Release. Each of the directories
Sourcefree, SourceGameEngine, and Applications has a top-level makefile to
build only those pieces.

You need some form of OpenGL and GLUT on your machinc. I downloaded
Mcsa packages from the Red Hat site,Mesa-3.2-2.1686.rpm, Mesa-devel-3.202
.1686.rpm, and Mesa-glut-3.1-1.1686.rpm, and used the Gnome RPM tool
to install them. I told the tool to ignore the fact that GLUT is 3.1 and Mesa is
3.2. The installation puts the libraries in /usr/X11R6/1ib and the headers in
/usr/X11R6/1include. The makefiles for applications use the libraries 1ibGL. 1a,
1ibGLU.1a,and 1ibglut.la.

TRADEMARKS

The following trademarks, mentioned in this book and the accompanying CD-ROM,
are the property of the following organizations.

K6 is a trademark of Advanced Micro Devices, Inc.

Macintosh is a trademark of Apple Corporation.

Myst is a trademark of Cyan, Inc.

Pentium II, Pentium 111, and VTune are trademarks of Intel Corporation.

DirectX, Direct3D, Visual C++, Windows, and X-Box are trademarks of Microsoft
Corporation.

Prince of Persia 3D is a trademark of Brederbund Software, Inc.
Dolphin is a trademark of Nintendo Corporation.
BoundsChecker is a trademark of NuMega Technologies, Inc.
NetImmerse is a trademark of Numerical Design, Ltd.

GeForce, TNT, and TNT2 are trademarks of nVidia Corporation.
Eclipse is a trademark of Random Games,

Dreamcast is a trademark of Sega Enterprise, Ltd.

OpenGL is a trademark of Silicon Graphics, Inc.

Playstation2 is a trademark of Sony Computer Entertainment, Inc.
Glide is a trademark of 3Dfx Interactive, Inc.

All other product names are trademarks or registered trademarks of their respective
companies. Where trademarks appear in this book and Morgan Kaufmann Publishers
was aware of a trademark claim, the trademarks have been printed in initial caps or
all caps.

561

LIBRARIES ON THE CD-ROM
(alphabetical order, related chapters and sections)

Animation (9): Key frame animation, inverse kinematics, skin and bones.

Application: Application layer that hides the underlying operating system, command line parsing, binding
of keyboard to changing a transformation.

Approximation (15.3): Fitting of point sets with circles, ellipses, ellipsoids, Gaussian distributions, lines,
planes, paraboloids, quadratic curves, quadratic surfaces, spheres.

Containment (2.4, 6.7): Bounding volume trees (box, capsule, lozenge, sphere), containment by circles,
boxes, capsules, cylinders, ellipsoids, lozenges, spheres.

Core (2.1, 2.2, 2.3, 2.4): Geometric objects (box, capsule, circle, cylinder, disk, ellipse, ellipsoid, line,
lozenge, parallelogram, plane, ray, rectangle, segment, sphere), vector and matrix algebra, quater-
nions, polynomials, colors, strings, template container classes.

Curve (7): Abstract curve class (position, derivatives, tangents, speed, arc length, reparameterization by
arc length, subdivision algorithms), 2D curves (curvature, normals), 3D curves (curvature, torsion,
normals, binormals), polynomial curves, Bézier curves, B-spline curves, cubic spline curves, tension-
bias-continuity curves.

Detail (10): Discrete level of detail, continuous level of detail.

Distance (2.5): Distance between pairs of objects of type point, segment, ray, line, triangle, rectangle,
parallelogram, ellipse, ellipsoid, quadratic curve, quadratic surface.

Engine (3.1, 3.2, 3.3, 3.4.1,4, Appendix A): Scene graph management (tree structures, internal nodes, ab-
stract leaf node, abstract geometric leaf node, point primitives [particles], line primitives [polylines],
triangle primitives [meshes], bounding spheres), render state (alpha blending, dithering, fog, light-
ing, material, shading, texturing, multitexturing, wireframe, z-buffering), abstract renderer layer,
camera and view frustum, object-oriented infrastructure (abstract object base class, run-time type
information, streaming, smart pointers for reference counting, cloning for mixed shallow-deep copy-
ing of objects, controllers for time-varying quantities).

Intersection (4.3, 5,6): Picking (segment, ray, line versus box, capsule, cylinder, ellipsoid, lozenge, sphere,
triangle), culling (plane versus box, capsule, cylinder, ellipsoid, lozenge, plane, sphere), collision (box,
capsule, lozenge, sphere, triangle).

Numerics (Appendix B): root finding via bisection, eigensolver for symmetric matrices, fast function
evaluation, integration, linear system solving, systems of ordinary differential equations (Euler,
midpoint, Runge-Kutta), minimization without derivative calculations, special functions.

OglRenderer (3): OpenGL-based renderer (supports hardware acceleration).

SoftRenderer (3): Software renderer.

Sorting (12): Portals, BSP trees.

Surface (8): Abstract surface class (metric tensor, curvature tensor, principal curvatures and directions),
parametric surfaces (position, derivatives, tangents, normals), implicit surfaces, polynomial surfaces.

Terrain (11): Continuous level of detail for height fields.

LIBRARY DEPENDENCIES

Numerics

Surface

Containment

Animation OglRenderer | Soft Renderer Terrain
Engine Intersection
Application » Core - Distance

Approxiation

