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Foreword

Geometric Symmetry in Patterns and Tilings results from one of a series of
exciting and innovative research projects emanating from the School of Textile
Industries at University of Leeds.

This particular project was conducted under my supervision, and was aided by
scholarship funding from the Worshipful Company of Clothworkers of the City
of London. It extends the Leeds tradition of research into pattern symmetry
initiated in the 1930s by H J Woods, a physicist (and mathematician), whose
contribution in laying the foundations for current thinking on the geometrical
characteristics of patterns is, today, widely acknowledged by scholars in the
field.

Whilst many symmetry concepts have their origin in the area of crystallogra-
phy, an appreciation of their usefulness has, in recent years, extended to many
disciplines and realms of study. Washburn and Crowe made a major contribution
in the area of anthropology in their largely pioneering work Symmetries of
Culture. The mathematical treatise Tilings and Patterns by Griinbaum and
Shephard stands as a major contribution to the conceptual development of the
subject. Visions of Symmetry, Schattschneider’s monumental study of the work
of M C Escher, has not only stimulated an insight into the periodic drawings and
patterns of the artist but has also encouraged an understanding of symmetry
concepts beyond a mathematically aware audience to inspire the creation of
original decorative patterns.

Recent research projects at Leeds have employed symmetry concepts in the
investigation of patterns produced in a range of historical and/or cultural con-
texts and as a systematic means of generating printed-textile designs. Layer sym-
metry principles have been employed in the analysis of woven-fabric structures,
and as a basis for developing a systematic means of designing woven fabrics.

The present book focuses principally on characteristics of surface-pattern
design, and presents a comprehensive means of classifying patterns and tilings.
A wide range of original illustrative material is included.

M A Hann,
Reader in International Textile Design
University of Leeds
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Introduction

The presence of symmetry in our surroundings may be perceived, on the one
hand, as a source of delight and intrigue or, on the other hand, as unattrac-
tively, constrained rigid order. Taking a psychological perspective of patterns,
Gombrich commented that it is our search for meaning, our effort to find order,
which determines the appearance of patterns, rather than the structure described
by mathematicians.!

Primitive art, decorating the surfaces of archaeological treasure dating from
before Christ, displays material evidence that people from different times and cul-
tures had a natural perception of the balance and configurations derived from
geometric shapes. Owen Jones,? in his classic work The Grammar of Ornament
comments on this as follows:

... the eye of the savage, accustomed only to look upon Nature’s harmonies, would
readily enter into the perception of the true balance both of form and colour; in point
of fact, we find that it is so, that in savage ornament the true balance of both is always
maintained.

Design and ornament throughout the ages appear to have been influenced by
the aesthetic effect of due proportion present in the striking features of natural
forms. The attraction of balance, harmony and complexity in nature, from micro-
scopic to immense structures, has appealed to and affected both scientist and
artist. For example, the biologist and philosopher, Frnst Heinrich Haeckel, was
particularly interested in, and made detailed studies of, microscopic life, some of
which displayed unusual and fascinating symmetrical characteristics.? D’Arcy
Thompson, a mathematically minded biologist, observed that the beauty of a
snow crystal depends on its mathematical regularity and symmetry and thought
that the number of variants of a single type, all related but no two the same, vastly
increased our pleasure and admiration of their form.*

In this context, the naturally formed attraction of the snowflake is dependent
on a specific, invariant regular hexagonal structure whose intricacy of design ele-
ments is unpredictable and infinitely variable. Such a relationship between a basic
formal structure and the individuality of stylistic approaches to its decoration
forms a framework for the construction of regularly repeating designs.

A designer may be presented with a suitable structure, in the form of a lattice,
along with a set of geometric rules, and from this, he or she may derive numerous
symmetric decorative effects. Although each set of rules is geometrically pre-
determined (owing to the laws of crystallography), like the form of a snowflake,
thereis infinite design variation within each set of geometric constraints which, in
the context of design construction, is dependent on the nature and artistic incli-
nation of the designer. As the designer, Day, discovered, the art of the pattern
designer is not merely to devise pretty combinations of form, but to work within
these rules to produce beautiful results however unpromising the conditions of
origin.’

An intuitive awareness of order may contribute to the way in which a designer
fills out and completes the details of his or her design to achieve a satisfying sense
of balance and harmony. However, as is recognised by all practising designers,
their initial art work must be adapted to fit together with regular repetition, in
other words the framework of their design must be contained within the math-
ematical constraints of geometry. With reference to printed textiles, Flower®



stated that even the most sensitive and personal piece of work must eventually
rely on geometry if it is to be printed in repeat. Some designers may not feel that it
is advantageous to explore the avenues of design geometry owing to the restric-
tion it imposes on the ‘free’ style of their artwork.® However, as illustrated by
William Morris, a high order of symmetry in a design need not necessarily
restrain its free-flowing nature. For example, his wallpaper designs ‘Net Ceiling’,
‘Spring Thicket’, “Triple Net’, ‘Borage’, ‘Sunflower’, ‘Ceiling’ and ‘Autumn
Flowers’ all display reflectional properties, but their floral arrangements still drift
freely and retain balance continuously throughout the designs.”

Another factor adding to the reluctance of the textile designer to penetrate the
theory of geometry is ‘mathematics’ itself. The term ‘mathematics’ is often per-
ceived in an unfavourable light by designers owing to its association with impen-
etrable theories and incomprehensible language and terminology. (This is not
surprising as, generally, mathematicians are reluctant to use any more words than
necessary and the substitution of letters from the Greek alphabet is infinitely
preferable). With this in mind, Oleg Grabar observed that while it is legitimate
enough at professional mathematical levels to see arbitrary signs and numbers
as language, that language is hardly accessible to most mortals.® Thus the com-
plicated terminology used in mathematical theories immediately hinders
any progress in its application in areas other than its own or those which are
very closely related. However, the two-dimensional theory relating to three-
dimensional crystallographic groups is becoming increasingly utilised by archae-
ologists and cultural anthropologists in ascertaining intercultural influences
manifested in the geometry of patterns on textiles, ceramics and other decorated
objects (e.g. Washburn and Crowe).? There is now a range of comprehensive lit-
erature which provides a full understanding of the symmetry group classification
system in the area of textile design (initiated by H J Woods in the 1930s) and 1
hope that this book will add to this understanding.

In general, surface-pattern designers have been aware of the importance
of geometry in the construction of regularly repeating designs. However, J
Kappraff, in his fascinating book Connections: The Geometric Bridge Between
Art and Science states that, more often than not, the designer is not conscious of
the geometric constraints of space, and that the success of a design depends to a
large degree on how well the artist is attuned to the problems and possibilities
presented by these constraints.!? He goes on to say that ‘nowhere is this tension
between artists and their art more evident than with regard to the issue of
symmetry’.

This book, therefore, develops and applies mathematical thinking from areas
such as geometry, graph theory and topology, to the context of regularly repeat-
ing surface-pattern design. The classification of designs is investigated and
explained in depth, and differences are demonstrated between the symmetrical
characteristics of individual elements within a design and the overall design
structure.

The constraints imposed on the pattern designer by geometric theory relate
to the different ways in which motifs may be organised in a pattern to produce
regularly repeating designs. Examples of such patterns, in the context of which
these geometric theories evolved, would be the arrangements of atoms within
crystalline structures.

The theories relating to crystalline structures were well developed by the
late nineteenth century. The discovery of X-ray diffraction by Max von Laue
in 1912 was applied to the analysis of crystal structures by William Henry and
William Laurence Bragg in 1915. As described in Senechal’s book!! Crystalline
Symmetries: An Informal Mathematical Introduction, Bragg showed that the
diffraction of X-rays by crystals could be interpreted as reflections by the lattice
planes of the crystal. When a beam of parallel monochromatic X-rays of
wavelength A is passed through a crystal, the reflected rays will emerge from the
crystal in phase if the wavelength A, the interplanar spacing d, and the angle of
reflection 0 satisfy Bragg’s condition: nA = 2d sin6, where # is an integer. If this
condition is satisfied, and the emerging waves strike a photographic plate, they
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Introduction

will create a pattern of bright spots. The X-ray crystallographer begins with
these spots and works backwards to deduce the geometry of the structure that
gave rise to them.!!

In the mid-1930s H J Woods, a physicist working in the University of Leeds,
published a remarkable series of papers in which he attempted to demystify the
mathematical rules pertaining to the geometrical structures of two-dimensional
patterns relating to three-dimensional crystal structures. His primary objective
was to encourage an understanding among textile designers of the principles of
geometric symmetry. He said that every designer should be familiar with the out-
lines, at least of the ‘science’ of design which was, in fact, only a simplified and
specialised part of that branch of physics devoted to the study of crystalline
forms. Crystallography, in turn, to the mathematician, was nothing but an appli-
cation of group theory.!2

Woods’ papers presented the concepts associated with two-dimensional
pattern structures in a simplified form suitable for textile designers. They
included the interpretation and explanation of the geometrical principles of
finite designs (referred to as ‘point groups’), monotranslational designs (referred
to as ‘borders’) and ditranslational designs (referred to as ‘plane groups’). This
theory formed a foundation of symmetry group classification for the textile
designer and gave insight into the rules of symmetry and thus, further access to
design analysis.

The symmetry group classification has been extensively explained and utilised
in archaeological and anthropological investigations, the results of which have
established pattern preference and/or change over specific periods of time, thus
suggesting intercultural influences in design creation (see Bier,!3 Grabar® and
Hann!4). However, there seems to be further scope available for the application of
this classification system to the construction of surface-pattern designs today.

From the geometrical viewpoint there are several different methods for divid-
ing designs into separate classes. For example, a design may be regarded as a
pattern comprised of motifs or as a tiling composed of tiles. (In general, the term
‘pattern’ is used to describe any type of surface design (including a tiling) which
contains, what Christie refers to as, a ‘device’ which is regularly repeated at unit
intervals by translational symmetry.!> However, throughout this book, pattern
and tiling designs are treated separately as described above.) Again, pattern and
tiling designs may be subdivided into, for example, patterns/tilings comprised of
one-shaped motifs/tiles and those comprised of motifs/tiles of two, three, four or
five and so on different shapes.

Chapter 2 discusses the broadest of these geometrical classification systems,
which may be applied to any regularly repeating design: the classification by
symmetry group. It begins by establishing the fundamental principles relating to
regularly repeating designs and then applies these principles to the construction
of design symmetry groups with particular emphasis, where appropriate, being
placed on the construction of designs by the flat screen-printing method. (In this
context the construction techniques may be applied to paper and textile printing,
for example.) The construction processes relate to a selection of design types such
as simple tiling designs, patterned tilings and patterns. The differentiation be-
tween design types by their symmetry groups then produces a basis from which
additional design categorisations may follow.

Designs with only translational symmetry in their structures are often
assumed to be constructed from or represented by patterns with asymmetric
motifs. However, this need not necessarily be the case. In Chapter 3 an idea is
explored which suggests that each symmetry group may be built up from symmet-
ric motifs without inducing further symmetries into its structure. This is followed
by the development of a classification system and construction methods for
finite, monotranslational and ditranslational designs which account for symmet-
ric motifs within fundamental regions.

Chapter 4 discusses the features of ‘discrete patterns’ and their classification
and construction by a method which may easily be adapted for screen printing.
Although in the field of mathematics the concept of a discrete pattern is not a




new development, in the context of surface-pattern design it illustrates an impor-
tant aspect of a design’s structure. Patterns which are classed in the same symme-
try group may either have asymmetric motifs, or symmetric motifs which may or
may not be positioned on axes or points of symmetry in the design structure. In
each case, the positioning and symmetries of the motifs will significantly alter the
appearance and geometric characteristics of the design. Construction techniques
are discussed for finite, monotranslational and ditranslational discrete pattern
types and the patterned tiling designs which may be derived from them.

Chapter 5 involves the description, classification and construction of isohe-
dral tilings. These are special forms of tilings which relate to the discrete patterns
discussed in Chapter 4. The concepts, terminology and properties used to cat-
egorise these types of design are comprehensively explained. Following this, finite
and monotranslational tiling types are derived and constructed from their associ-
ated discrete pattern types. (In general, tiling designs are perceived as covering an
entire surface with translational symmetry occurring in two non-parallel direc-
tions in their structures. However, when finite and monotranslational designs are
included in the tiling category, further options become available in the area of
surface design). The construction of the ditranslational isohedral tilings relates
to the ‘Laves’ tilings which possess the 11 different topological structures of the
93 ditranslational isohedral tiling types.

This book discusses theoretical concepts behind the geometry of regularly
repeating designs associated with and built upon the foundation of symmetry
group classification of crystalline structures. The aim throughout the following
chapters is to begin from elementary geometrical concepts involved in different
design structures and then to derive comprehensive construction techniques.
Consequently it is hoped to broaden the scope of the surface-pattern designer by
increasing their knowledge in the otherwise impenetrable theory of geometry
with the view of increasing their creativity and design potential. As Christie com-
mented in his book Pattern Design, geometric formulation has always resulted in
a permanent enlargement of the apparatus used by pattern designers, by intro-
ducing new ideas and fresh aspects of design. Furthermore, he added that con-
scious recognition and deliberate exploration of rhythmic expansion as the basic
principle in ornament designing is a fundamental event, not only in the history of
ornament, but also in the education of every designer.!5

Throughout this book, the momentous work Tilings and Patterns by
Griinbaum and Shephard has been of great inspiration and significant value
in presenting and suggesting avenues of research.!® Some of these avenues have
provided a foundation from which to extend the application of the mathematical
theory to a design context suitable for textiles and other forms of surface decora-
tion. The vast majority of the illustrative material used to represent and explain
these mathematical concepts is original and has been constructed using the
‘Harvard Graphics’ software package.
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Classification of designs by symmetry group

21

Introduction

2.2

In his epic book Pattern Design, Day suggested that success in designing depends
largely upon insight into how design works and it must be realised that the beauty
of pattern is not so much due to the nature of its elements as to the right use of
them as units in a rhythmic scheme.! There are a number of different possibilities
which may be used to arrange elements in the form of a rhythmic scheme (or
regularly repeating design). The geometric principles describing each different
arrangement may be defined and classed by means of a distinct system. This
system may then be used to compare the relationships between and properties of
any one type of regularly repeating design with another.

The system used to classify designs by symmetry group is based on the geo-
metric characteristics of the underlying structures of the designs rather than the
symmetrical properties of the individual design units from which they are com-
prised. The arrangement of the elements, or design units (whether they are sym-
metric or not), determines the geometric characteristics of the design’s
underlying structure. These characteristics may be analysed, defined and classed
in a particular group. The primary objective of this chapter is to define and
explain the range of concepts, terminology and geometric principles relevant to
the classification of designs by their symmetry groups. Following this an exten-
sive range of construction techniques is described and illustrated for each group.

Symmetry and its relevance to designs

2.3

The theoretical perspectives presented in this chapter, and those following on
throughout this book, are applicable to planar designs, that is, the geometric
analyses and categorisations apply to designs which lie on a flat surface rather
than those which occur in three dimensions. With regard to the symmetry of a
design, Washburn describes it as a type of order with specific geometric parame-
ters and that as a mathematical measure it proves useful for the classification and
comparison of patterns on cultural materials.2

Symmetric designs give both a pleasing visual effect of balance and order,
whilst also providing an element of intrigue and fascination through which the
geometrical properties and structural framework are successively analysed. Davis
and Hersh observed that, through intuition, the artist is often an unconscious
mathematician, discovering, rediscovering, and exploring ideas of spatial
arrangement, symmetry, periodicities, combinatorics and transformations and
discovering, in a visual sense, theorems of geometry.? Thus, although rules of
symmetry may be arrived at intuitively, and through artistic exploration, as stated
by Washburn and Crowe, systematic classificatory schemes rather than general
concepts like style can better support the process of hypothesis building.* Conse-
quently, a systematic approach enables all geometric combinations and symmet-
ric structures to be investigated and established and then used as a basis upon
which to build artistic exploration.

Symmetry operations

To analyse and classify designs by symmetry group requires examination of
the symmetries present in their structures. Griinbaum and Shephard give a



precise mathematical definition of a symmetry as follows: ‘By a symmetry of a
set S we mean any isometry ¢ which maps S onto itself, that is 6S =S’.7 Here
the set S refers to a figure or design and this type of isometry, ¢, is synonymous
to a rigid motion, symmetry operation or symmetry transformation.
Alternatively Washburn and Crowe describe a symmetry motion as the
specific configuration of parts for each design. They go on to say that symmetry
does not describe the parts, but how they are combined and arranged to
make a pattern and that it concerns only one aspect of a pattern’s design — its
structure.*

Each of the isometries or symmetry motions etc., may be categorised as one of
the following operations explained in Sections 2.3.1 t0 2.3.6.

2.3.1 Rotational symmetry

A design has n-fold rotational symmetry about a fixed point if, when rotated in its
own plane about that point through 360°/n and integral multiples of that angle, it
coincides with its original position. The fixed point is called the centre of rota-
tion, and # is an integer greater than or equal to one which corresponds to the
order of rotation. After n successive rotations of 360°/x, the figure will return to
its original position.

2.3.2 Translational symmetry

A design has translational symmetry if figures in it can be moved to congruent
figures by a glide in any direction, whilst still keeping the same orientation. All
parts of the figures move the same distance in the same direction.

2.3.3 Reflectional symmetry

A design has reflectional symmetry if it can be bisected by one or more ‘mirror’
axes. In this instance the portion on the left hand side of such an axis relates to the
portion on the right hand side by being its mirror image. All the points on the
mirror (reflection) axis remain fixed.

2.3.4 Glide-reflectional symmetry

The symmetry of glide—reflection is a motion combining a reflection and transla-
tion, along the direction of the reflection axis, consecutively. Two successive
glide—reflection operations along an axis are equivalent to one unit of translation
in the same direction.

In addition to these four symmetry operations, there are two other symmetries
which are characteristics of every design: identity and inverse symmetry.

2.3.5 Identity symmetry

This symmetry is equivalent to no movement at all. The figure, or design, is effec-
tively lifted up and put down in exactly the same position such that each point is
mapped onto itself. Alternatively it can be thought of as a 360° rotation about a
point.

2.3.6 Inverse symmetry

For every symmetry of a design there is another symmetry which is the reverse of
it, that is, a symmetry which will take the design back to its original position. This
isreferred to as the ‘inverse’ symmetry.

Figure 2.1 shows examples of the symmetry operations described in Sections
2.3.1t02.3.6.

With respect to the identity symmetry, Loeb comments that any figure may
be brought into self-coincidence by the operation of identification (or identity

Geometric symmetry in patterns and tilings




a A rotation

A rotational symmetry operation 90°
clockwise about O (which is equivalent to a
0 rotation of 270° anticlockwise about O).

b A translation

A franslational symmetry  operation
distance L in direction d.

C A reflection

A reflectional symmetry operation about
reflection axis M.
M _

d A glide-reflection

A glide-reflectional symmetry operation
5% - - - distance 1/2 L about glide-reflection axis G
in direction d.
—>d

Vel

1
e The identity symmetry
The identity symmefry operation is
represented by no movement at all and is
O equivalent to a 360° rotation about O,
f The inverse symmetry

The inverse symmetry of a is a rotation 80° anticlockwise about O.
The inverse symmetry of b is a translation distance L in the oppposite direction, — d.
The inverse symmetry of ¢ is a reflection operation about reflection axis M back to the original

position.
The inverse symmetry of d is a glide-reflection distance 1/2 L about glide-reflection axis G in

the opposite direction —d.

Initial position

Position after the application of a symmetry operation

Figure 2.1 The symmetry operations.
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2.4

symmetry) and that if this operation is the sole symmetric transformation of the
figure, then the figure is called asymmetric.6

Conversely, in Woods’ paper The Geometrical Basis of Pattern design, Part 1,
he describes a figure as being symmetrical when it is possible to find two or more
positions in which it can be exactly superimposed on itself and that the move-
ment necessary to bring the figure from one such equivalent position to another is
said to be a symmetry operation.” One of these positions refers to the identity
symmetry, where the position of the figure remains unchanged, and the other one
or more will correspond to one of the first four symmetry operations described
above (in Sections 2.3.1 to 2.3.4).

Symmetry group

2.5

The complete set of symmetry operations, or all equivalent positions of a figure,
form its symmetry group. A symmetry group, which is a collection of symmetry
operations, has the following characteristics:

1 Tt always contains the identity symmetry which leaves the position of the
figure unchanged.

2 Forevery symmetry operation which moves a figure from position A to posi-
tion B, there exists an inverse operation which is able to move the figure back
from position B to its original position A again.

3 Each symmetry operation in the group may be followed by another, and the
resulting operation of the combination of the two is, itself, a member of the
symmetry group. For example, if a design has translational symmetry and
reflectional symmetry in its symmetry group, then the resultant of the two,
which is a glide-reflectional symmetry, is also a member of the group. Simi-
larly, the two operations of a horizontal translation followed by a vertical
translation of a design are equivalent to the resultant which is a diagonal
translation. This translation would also be a symmetry in the group of sym-
metries of the whole design.

Loeb describes how any symmetry group consists of symmetrical operations
which themselves are elements of the group.® (Note that here the term ‘element’ is
used to describe a symmetry motion or movement rather than the unit of the
design itself that was described by Day at the beginning of this chapter.) Loeb
adds that the total number of elements for all distinct equivalent positions of the
figure is called the order of the group, for example an equilateral triangle has the
order six (see Fig. 2.2). The symmetry operations, or elements, form the basis of
the construction and generation of designs.

Throughout the previous definitions, the meanings of the terms ‘figure’ and
‘design’ have been taken for granted. There seems to be no distinct interpretation
of these terms but further comments on each are given below.

Figures and designs

More formally, a figure is defined as either a ‘superficial space enclosed by lines’,
an ‘image’, a ‘diagram’, an ‘illustrative drawing’, a ‘design’ or a ‘pattern’. Thus
the term figure has numerous meanings that could either refer to a single motif or
tile, or the entire pattern or tiling generated from these single units, respectively.

With regard to a design, Washburn and Crowe define it as a specific kind of
figure which admits at least one (non-trivial) isometry.# They therefore consider a
design to be a symmetrical figure which has at least two symmetries, one of which
is the identity symmetry. (In this case the identity symmetry is referred to as the
non-trivial isometry.) This description implies that asymmetric patterns and
irregular tilings are not designs. However, throughout this book, a design will be
used to describe any form of decoration on one plane, that is, an illustration on
a flat surface. (Of course, in many contexts a design may be used to represent
ornament or construction in three dimensions although here, as stated above, it
will be restricted to surface decoration.)

Geometric symmetry in patterns and tilings
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Identity 2
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B
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Reflection
(about reflection axis M) B
B

Reflection A
{(about reflection axis My) A o
C
Reflection A
(about reflection axis My} B A

The order of symmetry.

A design may decorate a surface in a number of ways. For example a design
may have no regular repetition in it at all; it may have elements in it which repeat
at regular intervals around a point; it may have elements in it which regularly
repeat by translational symmetry in one direction or by translational symmetry
in at least two non-parallel directions. Those designs which are irregular (and
therefore possess only the identity symmetry) and those which contain elements
which only repeat cyclically around a point are often referred to as ‘finite designs’.

Classification of finite designs

Classification of designs by symmetry group

Washburn and Crowe define finite designs as those which have a central point
axis around which elements can rotate or through which mirror axes can pass and
that other symmetries such as translation or glide-reflection are not possible in
this category.* Classifying finite designs by symmetry group divides them into
two classes: either the cyclic symmetry group, denoted by cn, or the dihedral sym-
metry group, denoted by dn. Here ‘#’ is used to represent a positive integer. (Note
that both ¢xn and dn designs have rotational or ‘cyclic’ symmetry, however, in this
instance the term ‘cyclic’ usually refers to those designs which have only rota-
tional symmetry.) Figures 2.3 and 2.4 show some examples of these types of
design.

2.6.1 Cyclicfinite designs

A cyclic design, in symmetry group cn, has only #-fold rotational symmetry about
a point at its centre. After n consecutive rotations of 360°/n in one direction
(either anticlockwise or clockwise) about this point, the design will return to its
original position. An asymmetric unit or figure has one-fold rotational symme-
try, in other words » =1 and a rotation by 360°/1 (i.e. a full turn) will return the
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figure back to its original position. For asymmetric designs the centre of rotation
need not necessarily be at the centre of the design (see Fig. 2.3).

2.6.2 Dihedral finite designs

A dihedral design, in symmetry group dn, has #-fold rotational symmetry about a
point at its centre and also # reflection axes passing through that point (see Fig.
2.4).

Finite designs, cn and dn, are also referred to by Schattsneider, in her article in
Symmetry: Unifving Human Understanding, as ‘rosette designs’® and Loeb
describes how these symmetry groups, formed only by operations which leave at
least one point fixed, are called point groups.® Woods adds that this type of sym-
metry, centred around a point, is sometimes referred to as point symmetry or
central symmetry.” The ‘point’ symmetry indicates that when symmetry groups
cn and dn are rotated about their centres of rotation precisely one point remains
fixed. When a design in symmetry group dn is reflected about a reflection axis
through its centre, a whole line of points remains fixed. If # is greater or equal to
two (n 2 2), the reflection axes of a dn design intersect at a point, that being the
centre of rotation.

Structure of translational designs

A design which decorates a surface by the regular repetition of a unit by transla-
tional symmetry will fall into one of two categories: (i) a monotranslational
design (otherwise known as a one-dimensional design,* a one-sided band,!0 a
strip or frieze group,’ a border,? or a periodic border design®) or (ii) a ditransla-
tional design (otherwise known as a two-dimensional design,* a wallpaper
group!! or wallpaper design,!2 a crystallographic group,! a periodic group,’ a
plane, a network or an all-over pattern,’-1%:14 a periodic planar design,® a plane
group!? or an n-dimensional space group (n = 2)16).

2.7.1 Minimum criteria of translational symmetry

A finite design has reflectional and/or rotational symmetry but no translational
symmetry in its symmetry group. Washburn and Crowe define a border pattern
(or in this context, a monotranslational design) as one which must satisfy the geo-
metrical condition of having at least one unit of translation in one direction, and
an all-over pattern (or in this context a ditranslational design) as one which must
satisfy the geometrical condition of having at least one unit of translation in two,
non-parallel, directions.* However, throughout this book (and in conjunction
with the definitions given by Schattsneider),® a monotranslational design will be
thought of as one which theoretically and conceptually extends to infinity in two
opposite directions along a straight line and a ditranslational design will be
thought of as one which extends infinitely throughout the whole plane.

2.7.2 Lattice

Every regularly repeating translational design is based on a structural frame-
work. This is represented in the form of an array of points called a net or lattice.
Woods!7 describes the construction of a ditranslational lattice as follows:

Start with a chain of points interval a in some straight line, and . . . ... make each of
these points a point of another chain, of interval b, making an angle 0 say with the first
chain. We thus obtain an array of points which is such that any translation equal to a
multiple of a in the direction of the first chain, or to a multiple of 4 in the direction of
the others moves the figure into an equivalent position. Such an array is called a net of
points, . ..

A monotranslational design is also constructed on a framework of points. In
this instance the initial chain of points, interval @, in some straight line, is trans-
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Figure 2.5 Lattice construction (a) and division of lattice points into unit cells (b

lated at an angle 6, say by one translation. This results in two parallel lines of
points upon which to base the structure of the design (see Fig. 2.5a).

2.7.3 Unitcell

Similarly, Woods describes how unit cells of a ditranslational design are con-
structed by drawing lines through each point of an a-chain parallel to b, and
through each point of a b-chain parallel to a. The plane is divided into parallelo-
grams, which have sides of lengths @ and b and of which one angle is 6. Any such
parallelogram is called a unit cell; it has a net point at each vertex but no others
either inside or on its sides.!”

Classification of designs by symmetry group 15
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Where monotranslational designs are concerned, parallelograms result from
the division of a strip or a band rather than the division of the plane as shown in
Fig. 2.5(b).

Note that a parallelogram has four straight sides: two parallel sides of length a
and two parallel sides of length & One of the angles, at which these two sets of
lines intersect each other, is 6°. The specific type of parallelogram is determined
by the conditions held by a, b and 6. The results of different combinations of
these variables are given:

1 If a=bandB=90° the parallelogramis a square.
If a = b, the parallelogram is a thombus.

3 If a=band 6 =60°, the parallelogram is a special kind if rhombus composed
of two equilateral triangles. (These types of parallelogram are associated
with the ‘hexagonal’ lattice.)

4 1Ifa+b,0=90°the parallelogram is a rectangle.

5 1If a#b and 6+ 90°, the parallelogram is a just an ordinary parallelogram
(which is also referred to by Kennon!® as a ‘general parallelogram’) (see Fig.
2.6).

Note that a square is a special form of a rhombus where 6 = 90°. A square is
also a special form of a rectangle where a = b However, with reference to lattice
structures, each of the terms square, rhombic, rectangular, hexagonal and paral-
lelogram is often associated with a particular type of lattice (given in Fig. 2.6)
without awareness of these specific cases. For example, it is important to recog-
nise that design types commonly associated with the thombic lattice may also be
based on square or hexagonal lattices; those associated with the rectangular
lattice may be based on the square lattice; and those commonly associated with
the parallelogram lattice may have any of the five types of lattice as their underly-
ing structure.

Each cell contains one net point (on combining each piece from the four
corners), hence the cell is called a unit cell (although Schattsneider® refers to it as
a ‘lattice unit’). The union of all the pieces of a figure enclosed within a unit cell,
when rearranged in their appropriate order, fit together to form a complete motif
or tile. Each unit cell of a design has the same shape and content and when suc-
cessively translated in one or two directions, for a monotranslational or ditransla-
tional design, respectively, will create the whole design. Each of the symmetry
groups of the translational designs can be represented by a unit cell according to
the symmetrical properties contained within it. Figure 2.7(a) and (b) shows the
unit cells for the symmetry groups of monotranslational and ditranslational
designs, respectively. The appropriate symmetry group is given under each unit
cell, the notation for which is explained later in this chapter.

2.7.4 Group diagram

Each of the symmetry groups may also be represented by what is referred to as a
‘group diagram’.> A group diagram shows all the symmetrical characteristics of a
design’s symmetry group (except translational symmetries which may be repre-
sented by vectors but which are usually omitted). In general, centres of two-,
three-, four- and six-fold rotation are represented by diamonds (or ellipses), equi-
lateral triangles, squares and regular hexagons, respectively, and glide—reflection
and reflection axes are represented by bold dashed and solid straight lines. (These
symbols represent the conventional notation for these symmetrical characteris-
tics and will be used, without additional explanation, throughout the remainder
of this book.) The group diagram may be incorporated into the design as shown
in Fig. 2.8(a(il)) and (b(i1)) or be separate as shown in Fig. 2.8(a(iil)) and (b(iii)).
For regularly repeating translational designs, a group diagram is equivalent to
filling each of the cells in a lattice with the symmetrical characteristics of its unit
cell. An example of a unit cell for the pattern in Fig. 2.8(b(1)) is represented by the
shaded region in Fig. 2.8(b(ii1)).
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parallelogram lattice

arb
6 # 9Q°

Five types of parallelogram lattice.

Finite designs may also be represented by a group diagram but they will only
include a minimal number of symmetries. Any centres of n-fold rotation, other
than those mentioned above, may be represented by regular n-sided figures or #-
pointed stars.

2.7.5 Translation unit

A translation unit is a minimum area of the plane which, when successively trans-
lated in one or two non-parallel directions (for a monotranslational or ditransla-
tional design, respectively) creates the whole design. A translation unit has
the same area as a unit cell but its shape may not necessarily be a parallelogram.
Thus a unit cell is a translation unit but a translation unit is not necessarily a
unit cell.

In a monotranslational design the size of the translation unit is sometimes
referred to as being independent in relation to the size of the unit cell. For
example, Schattsneider® describes a translation unit (for a border design consist-
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Figure 2.7

Unit cells of translational designs. @, 2-fold centre of rotation, A, 3-fold centre of rota-

tion; M, 4-fold centre of rotation; @, 6-fold centre of rotation; ,unit cell boun-
dary;......... , centred double cell; , reflection axis;————— , glide-reflection
axis

ing of non-interlocking motifs) as a smallest region which, when translated
repeatedly by 7' and -7, produces the whole border design. T refers to a transla-
tion and — T refers to the same translation but in the opposite direction. Similarly,
she describes a translation unit for a border tiling as a minimum block of tiles
which fills out the whole border by translations alone. The areas enclosed by these
translation units may not necessarily fill out the whole unit cell. In some
instances, it is difficult to categorise a monotranslational design as a pattern,
made up of motifs, or as a tiling, made up of tiles, that is, to differentiate between
a pattern and tiling. Therefore, to avoid the problem of having to categorise the
type of design unit(s) enclosed within the translation unit it is simpler to regard
the translation unit as having the same area as a unit cell for both ditranslational
and monotranslational designs.
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Classification of designs by symmetry group

With this understanding, a translation unit of a monotranslational (or border)
design has two sides coinciding with parts of the two parallel lines which enclose
the whole design. The remaining two sides, which are also parallel to each
other, may beirregular shapesinstead of straightlines (whichisthecase for the unit
cell).

The area of a translation unit of a ditranslational design is determined by
the positioning not only of the adjacent motifs or tiles to the left and right,
but also of those above and below it. Consequently, this area is always fixed
and equal to that of the unit cell. Alternative definitions, when differentiating
between the decorative components of the design, are therefore not required. The
opposite edges of a translation unit are always parallel to each other but are not
necessarily straight lines. Figure 2.9(a) and (b) shows examples of translation
units.

2.7.6 Fundamental region

A fundamental region is also referred to as a fundamental domain, an asym-
metric region!? or a generating region.® It may be defined as the smallest region
of the design which, when acted on repeatedly by the symmetries of its symmetry
group, creates the whole design. The shape of the region is not always unique for
any one design but its area is always the same. Throughout the following discus-
sions, the figure enclosed within a fundamental region will be referred to as a
‘design unit’ and the separate components of the design unit will be referred to as
‘design elements’.

The shape and contents of a fundamental region need not necessarily
be asymmetric (which therefore implies that ‘asymmetric region’ is not a very suit-
able term for such aregion). Forexample, see Fig. 2.10 where each shaded area rep-
resents afundamental region. In Fig. 2.10(a), a p111 monotranslational design has
been constructed on a thombic parallelogram lattice of points. A fundamental
region has been chosen to coincide with a unit cell in such a way that the long diag-
onal axis of the thombus forms aline of reflectional symmetry coinciding with one
through the motif. In Fig. 2.10(b), a p1 ditranslational design has been constructed
on a rectangular lattice but again, the fundamental region and design unit shown
both have coinciding reflectional symmetry. Thus these fundamental regions have
been chosen such that their shapes and contents are symmetric rather than asym-
metric. However, in cases such as these, the design unit will have no symmetries
coinciding with those of the design structure.

Figure 2.10(c) illustrates a symmetrically shaped fundamental region
reduced to a form with no symmetries in common with the design structure by
introducing five-fold rotationally symmetric design units whose symmetries
cannot possibly coincide with any regularly repeating translational design. (As
stated in Hauy’s theorem in 1822, it is impossible to construct a translational
design with n-fold rotational symmetry in its structure if # = 5 or is greater than 6,
because of the laws of crystallographic restriction. For example, a plane cannot
be covered with interlocking regular pentagons alone without there being gaps in
between them, or with regular heptagons, octagons or nonagons, etc.) Figure
2.10(d) shows another p1 ditranslational design constructed from the same sym-
metric design unit but in this instance it is contained within an asymmetric funda-
mental region. (Further analysis and discussion involving designs with
symmetric design units are continued in more detail in Chapter 3.)

2.7.6.1 Finite designs

Any finite design may be enclosed within a circlesuch thatitsareaisjust bigenough
to enclose the extremities of the design (see Fig. 2.11(a)). Suppose the centre of the
circleislabelled O. Schattsneider states that for cn designs a wedge (circular sector)
having angle 360°/n at O is a minimal area in which to place the motif.8 In this
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Figure 2.10
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Examples of (a), (b), (¢} symmetric and (d) asymmetric fundamental regions.
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Figure 2.11

Examples of fundamental regions of finite designs.

context, ‘a minimal area in which to place the motif’ represents a fundamental
region. For a finite tiling she describes this region as a smallest tile which, when
acted on repeatedly by the generating isometries, fills out the whole tiling. She goes
on to say that in designs which are obviously tilings due to the interlocking nature
of the tiles, it is not necessary to consider an (artificial) circle surrounding the
tiling; the edge of such a tiling provides its own well-defined encircling boundary.

However, because in some instances (as explained in the context of translation
units of monotranslational designs) it is difficult to differentiate between a motif
and a tile (see Fig. 2.11(a)), when referring to a finite design, whatever its form, a
fundamental region will be represented in the form of a circular segment. One
boundary edge will be on the circumference of the circle enclosing the design.
The other two edges are straight or irregular lines, which are rotations of each
other (about the centre O), and radiate outwards from the centre of the circle to
its circumference. For a design in symmetry group c¢n, the area of the fundamen-
tal region will be 1/ of the area of the enclosing circle and for a design in symme-
try group dr it will be 1/2n of the area of the enclosing circle and the two edges
radiating from the centre will be straight lines. Examples of fundamental regions
of finite designs are represented by the shaded areas in Fig. 2.11(b).

2.7.6.2 Monotranslational designs

Schattsneider comments that, with respect to monotranslational designs, each
can be imagined as being enclosed between two parallel lines (the edges of the
border). In other words, the border can be thought of as being enclosed within a
strip of finite width and infinite length, and having centreline 1. which is equidis-
tant from the edges.®
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Figure 2.12

2.8

translation unit

unit cell translation unit

Examples of fundamental regions of monotranslational designs. Symmetry groups are
(a) plal, (b) pma2, (c) pAm1 (see section 2.9).

For monotranslational designs, as with finite designs, it is sometimes difficult
to distinguish between a pattern and a tiling. To avoid this categorisation
problem, it is simpler, when determining the translation unit or fundamental
region, for every monotranslational design to be considered as being enclosed in
a parallel-sided strip. At least one edge of the fundamental region will coincide
with part of the boundary edge(s) of the strip enclosing the design, whetheritisa
pattern or a tiling. Each fundamental region, for both monotranslational and
ditranslational designs, is a fraction of the area of the unit cell or translation unit.
Examples of fundamental regions of monotranslational designs are represented
by the dark shaded areas in Fig. 2.12.

2.7.6.3 Ditranslational designs

Tllustrations of fundamental regions of ditranslational designs are represented
by the darker shaded areas in Fig. 2.13.

There is much ambiguity in the relevant literature with regard to the differenti-
ation between patterns and tilings for both finite and monotranslational designs.
This may be partly due to the fact that often these types of tiling design are not
considered since a tiling is usually thought of as a type of pattern and/or some-
thing which covers an entire surface rather than such a limited portion of space.
Similarly, ditranslational designs may be difficult to categorise strictly as a
pattern or tiling. In Chapters 4 and 5, which involve finer classification systems,
conditions are imposed on the characteristics of the designs in an attempt to
prevent this confusion arising.

Generating functions

Classification of designs by symmetry group

The symmetries which lie on the boundary of a fundamental region can be
applied to that region to create the whole design. Schattsneider refers to these
symmetry operations as ‘generating functions’, ‘generating symmetries’ or ‘gen-
erators’ of the design.® Although there could be many different symmetries
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Examples of fundamental regions of ditranslational designs. Symmetry groups are (a)
pmg, (b) pgg (see section 2.10).

within a design, only a selection of them may be required to generate it. The
smallest set of symmetries able to do this is called the ‘minimal set of
generators’.® For example, a design in the cyclic symmetry group cn is generated
by n— 1 consecutive applications, to the fundamental region, of the rotation by
360°/n about the centre of the design either clockwise or anticlockwise. This rota-
tion forms the minimal set of generators (even though there is only one of them).
An example illustrating the generation of a ¢3 finite design is given in Fig. 2.14(a).

On the boundary of a fundamental region of a finite design, group dn, there
are two different reflection axes and an n-fold centre of rotation. However,
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only two of these three symmetries are required to create the whole design: either
both reflection axes or one reflection axis and an #-fold rotation (e.g. see the con-
struction of a d4 finite design in Fig. 2.14b(1) and (ii)). On this point, Schattsnei-
der comments how, although the number of isometries in a minimal set of
generators for a design is unique, the choice of these isometries is not always
unique.® For finite designs, a design in symmetry group cn requires a minimum of
one generator to construct it, whereas a dihedral finite design, group dn, requires
two.

Each fundamental region in the ditranslational design, in Fig. 2.14(c), has one
centre of two-fold rotation, two centres of four-fold rotation, three different
reflection axes (i.e. at three different angles) and a glide—reflection axis passing
through its boundaries. (In addition, the design has translational symmetries
which may be used as generators). However, only a minimal set of three of these
symmetries are required to generate the whole design. For example, applying
either the three reflection axes surrounding the fundamental region or the two
four-fold centres of rotation and a reflection axis (as shown in Fig. 2.14c(ii) and
(ii1)) would complete the design, as may a number of other combinations of the
symmetries in the symmetry group.

Classification of monotranslational designs

There are seven distinct symmetry groups of monotranslational designs, each of
which is structured between two parallel lines of points. These points are divided
into unit cells, whose shape is determined by the geometrical characteristics of
the design. A p111 or p112 design may be structured on a lattice of any form of
parallelogram (recall that squares, rectangles and rhombi are just special forms
of parallelogram). The remaining five symmetry groups of monotranslational
designs are necessarily structured on rectangular or square lattices owing to the
reflectional symmetries about the transverse and longitudinal axes of the designs.
(Transverse axes lie perpendicular to the longitudinal axis of the strip. The longi-
tudinal axis coincides with the centre line L. along the length of the strip enclosing
the design.)

2.9.1 Notation

There is a range of different notation used by various authors to differentiate
between each class of design. The more commonly used international notation
takes the form of a four-term symbol, pxyz. However, in the context of surface-
pattern design, confusion could arise because the letters x and y are symbols
assigned according to symmetrical characteristics which relate to the transverse
and longitudinal axes of the strip which may, conversely, be more easily associ-
ated with y and x axes, respectively. The last term, z, in the pxyz notation may be
thought of (in a three-dimensional context) as being an axis perpendicular to the
flat surface about which rotational symmetry occurs. However in the context of
surface pattern z is always given a number in relation to rotational symmetry
about a point. For designers, and for design classification, a more logical four
term symbol, pyxn, seems more appropriate. The order of symbol allocation
remains the same but in this case, x represents a symmetrical characteristic in the
longitudinal x axis, y represents a symmetrical characteristic in the transverse y
axis and #n represents a number 1 or 2 depending upon whether or not there is
two-fold rotational symmetry present. Only two-fold rotation is applicable to
monotranslational designs owing to the nature of the ‘stripe-like’ structure of the
strip, of width W, enclosing the design, which obviously may only be rotated by
180° for it to superimpose onto itself.

For monotranslational designs, the initial letter, ‘p’, in the ‘pyxn’ nota-
tion, which is common to all seven symmetry groups, stands for ‘primitive’
which relates to the basic unit cell. The allocation of symbols to y, x and # is as
follows:
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* y =m if thereisa transverse reflection axis,
1 otherwise.
* x =m if thereisa longitudinal reflection axis,
a if thereis a glide—reflection axis,
1 otherwise.
* n =2 if thereistwo-fold rotation,
1 otherwise.

Figure 2.15 shows schematic illustrations of the seven monotranslational sym-
metry groups along with their unit cells and examples of fundamental regions.
Further examples are given in Fig. 2.16.

One method of determining the symmetry group of a monotranslational
design is to follow a sequence of steps of analysis, which successively investigate
the geometrical properties of the design. These eventually lead to the classifica-
tion by symmetry group.

Washburn and Crowe, in their book Symmetries of Culture: Theory and Prac-
tice of Plane Pattern Analysis, popularised the idea of flow diagrams to deduce
the symmetry group of translational designs.* An alternative flow diagram,
which uses a similar procedure of deduction, is given in Fig. 2.17 for the classifi-
cation of monotranslational designs.

Classification of ditranslational designs

Symmetry Area of

There are 17 distinct symmetry groups of ditranslational designs, each of which
may be represented by a unit cell. The shape of the unit cell is determined by the

Fundamental region

group fundamtecrglaill region and unit cell
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Figure 2.16 Further examples of symmetry groups of monotranslational designs.
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no yes
l l
Are there transverse reflection axes? Are there transverse reflection
axes?
no yes no yes
l l l
Is there a longitudinal reflection pm11 p112 Is there a longitudinal
axis? reflection axis?
no yes no yes
l l l l
Is there a glide- p1im1 pma2 pmm2
reflection axis?
no yes
l l
p111 plal
Figure 2.17 Flow diagram for symmetry group identification of monotranslational designs. Source:

Classification of designs by symmetry group

derived from Crowe D W and Washburn D K, Material Anthropology: Contemporary
Approaches to Material Culture, Lanham, Maryland, University Press of America, 1987
and Rose B | and Stafford R D, ‘An Elementary Course in Mathematical Symmetry’,
American Mathematical Monthly, 1981 88 59-64.

lattice structure of which there are five different types (as discussed in Sections
2.7.2 and 2.7.3 above).

The lattices form what are known as ‘primitive’ cells, containing just one net
point, the vertices of which fall on rotational centres of the highest order of the
design structure. However, for two particular symmetry groups, both of which
are based on the rhombic lattice, a ‘non-primitive’ double-cell is often chosen
which is twice the size and has sides parallel to the diagonals of the primitive unit
cell. The double cell is referred to as the centred cell and it contains two net
points, one at the centre and one divided up at the corners. These double-cells
have sides parallel to reflection axes in their design structures unlike their associ-
ated primitive cells.

2.10.1 Notation

Aswithmonotranslational designs, the universal notation will be used when classi-
fying the seventeen symmetry groups of ditranslational design. Similarly, this
takes the form of a four-term symbol which is usually denoted by pxyz or cxyz
where x, y and z are each allocated a symbol according to the design’s symmetrical
properties. However, since in the use of this notation and in the context of surface-
pattern design, confusion could arise because the letters y and z are symbols
assigned according to the symmetrical characteristics which relate to the x and y
axesand the first term ‘x’in the pxyzis always given a number, a new, less confusing
four-term symbol is proposed, namely ‘prx)y’ or ‘cuxy’. (Note that the ‘nxy’ of
ditranslational design notation is the reverse of the ‘yxn” of monotranslational
design notation.) The order of symbol allocation remains the same but in this case
‘n’ represents a number 2, 3, 4 or 6; ‘X’ represents a symmetrical characteristic in
relation to the x axis and ‘y’ a symmetrical characteristic in relation to the y axis.
The positioning of these axes for each unit cell type is given in Fig. 2.18.

The following system is used for the allocation of numbers or letters to #, x
and y in the pnxy/cnxy notation. For 15 of 17 of the groups, the initial symbol is
‘p’ which represents a primitive cell, as opposed to the remaining two cases
where ‘¢’ represents a centred cell. The symbol ‘%’ is assigned an integer #, where #
is the highest order of rotation in the design (only two-, three-, four- and six-fold
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lllustrations showing the positioning of x and y axes in relation to the unit cells of
ditranslational designs.

rotation are applicable to ditranslational designs.) The letter ‘x’ is assigned a
symbol which indicates a symmetry axis perpendicular to one side of the unit cell
(or double-cell for the two particular symmetry groups); this will be called the x
axis. Where there is reflectional symmetry, or glide-reflectional symmetry, this
axis lies parallel to a line of reflection/glide-reflection. Where there are both, a
reflection axis takes priority over a glide-reflection axis in assigning the correct
symbols. The letter ‘)’ is assigned a symbol which indicates a symmetry axis (i.e.
the y axis) at 90°, 45° or 30° to the x axis depending upon whether there is two-,
four-, three- or six-fold rotation present, respectively. The following system is
used for the allocation of symbols to the letters #, x and y:
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* n =1 if thereisno rotational symmetry,

2 if two-fold rotational symmetry is the highest order of rotational
symmetry,

3 if three-fold rotational symmetry is the highest order of rotational
symmetry,

4  if four-fold rotational symmetry is the highest order of rotational
symmetry,

6 if six-fold rotational symmetry is the highest order of rotational
symmetry.

* x =m if thereis a reflection axis perpendicular to one side of the unit cell,
i.e. if the x axis is parallel to a reflection axis in the unit cell (see Fig.
2.18),

g if thereisa glide-reflection axis perpendicular to one side of the unit
cell, i.e. if the x axis is parallel to a glide-reflection axis in the unit
cell,

1 otherwise.

» y =m if thereisareflection axis at:

— 90°tothexaxisifn=2,

— 45°tothexaxisif n=4,

— 30°tothexaxisif n=3or 6,1.e.if the y axis is parallel to a reflection
axisin the unit cell (see Fig. 2.18);

g if thereis a glide-reflection axis at:

— 90°tothexaxisifn=2,

— 45°tothexaxisif n=4,

— 30° to the x axis if #=3 or 6, i.e. if the y axis is parallel to a
glide—reflection axis in the unit cell;

1 otherwise.

Several of the symmetry groups are frequently represented by an abbreviated
form of this notation which is indicated underneath the international notation in
Fig. 2.18. This shorter form is used in subsequent references to symmetry group
classification.

Figure 2.19 shows schematic illustrations of the 17 symmetry groups with
their unit cells and examples of fundamental regions. Further illustrations of
ditranslational designs are given in Fig. 2.20.

By a procedure similar to that described for monotranslational designs, a step
by step analysis of the geometrical properties of a ditranslational design enables
it to be classed as one of the 17 symmetry groups. The flow diagram in Fig. 2.21
has been derived from the one given by Washburn and Crowe.*

Construction of finite designs

Classification of designs by symmetry group

An irregular design, classed in the finite symmetry group cl, possesses no
symmetrical properties other than the identity symmetry and so its construction
only has to conform to its overall asymmetric characteristic. A regularly
repeating design may be generated by the application of a minimal set of genera-
tors to the fundamental or generating region. Alternatively they may be produced
by applying the generating symmetries about a point or line through a motif
such that design elements overlap each other. In this instance it must be ensured
that the overlapped design elements are not obscured but form part of the
design.

Symmetric finite designs may be constructed in a variety of different ways. The
most suitable is dependent on the exact nature of the design type required. The
first method, discussed in this section (for both symmetry groups ¢z and dn), ini-
tially involves constructing a circle with radius R, where R is chosen such that the
resulting circle just encloses the extremities of the design. Any design unit added
to a fundamental region must extend to at least one point on the circumference of
this circle, otherwise the circle segment does not satisfy the definition given for a
fundamental region.
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Figure 2.21 Flow diagram for symmetry group identification of ditranslational designs. Source:
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derived from Schattsneider D, ‘The Plane Symmetry Groups: Their Recognition and
Notation’, American Mathematical Monthly, 1978 85 439-450.

2.11.1 Symmetry group cn

To construct a finite design, of symmetry group c#, the circle is divided into # fun-
damental regions asdescribed in Section 2.7.6.1 above. A design unit (which hasno
reflection axis passing through the centre of the circle)isadded to one fundamental
region and then mapped onto the remaining fundamental regions, to complete the
design, by applying rotational symmetry (as described in Section 2.8).
Alternatively a cn design may be constructed by n— 1 applications of the #n-
fold rotational symmetry about a point passing through or close to a motif. This
may result in overlapping design elements and a more intricate design. (Note
that, as stated above, each consecutive design unit must not conceal any parts of
the previous one(s) otherwise the final result will be asymmetric.) Illustrations of
these two methods of cn design construction are given in Fig. 2.22(a(i)) and

(a(ii)).

2.11.2 Symmetry group dn

To construct a finite design, symmetry group dn, the circle is divided into 2# fun-
damental regions as described in Section 2.7.6.1 above. A design unit (which has
no reflection axis passing through the centre of the circle) is added to one funda-
mental region and then mapped onto the remaining fundamental regions, to
complete the design, by applying the generating symmetries (as described in
Section 2.8). Examples are given in Fig. 2.22(b(i)) forn=3 and n=2.
Alternatively a dn design may be derived from a cu or dn/2 (where n is even)
design by superimposition. Applying a reflectional symmetry about an axis
passing through the centre of rotation of a ¢n design will produce a dn design as
shown in Fig. 2.22(b(i1)) for n = 4. Applying a rotation of 360°/n to a copy of dn/2
and then superimposing the two dn/2 designs such that their centres of rotation
coincide will produce a dn design. For example, in Fig. 2.22(b(iii)) a d4 design has
been constructed from a @2 design and its rotation by 360°/4 = 90°. Similarly, in
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Fig. 2.22(b(iv)) and (b(v)), d8 and d6 designs have been constructed from d4 and
d3 designs, respectively. (Again, by this method, superimposing one design onto
another must not conceal any parts of the one underneath.)

Construction of monotranslational designs

Classification of designs by symmetry group

The construction of a monotranslational design begins with a strip, width W,
which is based on the lattice of two parallel lines of points as described in Section
2.9 above. Each fundamental region will have at least one boundary edge coincid-
ing with a portion of one or both of the two parallel lines outlining this strip. The
initial design unit added to a fundamental region must touch at least one point on
one or both of these boundaries where possible, otherwise this area does not
satisfy the definition given for a fundamental region.

In this section, construction techniques are illustrated for six different design
types. These are denoted by type (i) to type (vi) and each is built upon the struc-
ture of the previous type. Type (i) forms the basis of the most simple form of con-
struction for each symmetry group. The design types fall into the categories
whose characteristics have been summarised below.

1 Design type (i): a strip is divided into parallelogram-shaped fundamental
regions. Design elements are added to one and then mapped onto all equiva-
lent positions in the strip by applying the generating symmetries of the sym-
metry group. In each case the boundaries of the fundamental region are
included as part of the design unit.

2 Design type (ii): this is derived from type (i) by removing the boundaries of
the parallelogram-shaped fundamental regions chosen for type (i).

3 Design type (iii): the initial division of a strip into parallelogram-shaped fun-
damental regions, as described for design type (i), is altered by exchanging a
straightedge of a fundamental region for an asymmetric one. Thisedgeis then
mapped to all equivalent positionsin the strip by applying the generating sym-
metries. The sides of the fundamental regions coinciding with the parallel
edges of the strip and those coinciding with reflection axes cannot be altered
and will be referred to as ‘“fixed’ edges. This gives a more interlocking type of
tiling design. For symmetry groups pm11 and pmm?2, where the boundaries of
the fundamental regions lie either on reflection axes and/or on the outside
edges of the strip, this alteration is not possible and therefore design type (iii),
and consequently types (iv) to (vi), are not constructable. Conversely, there
may be one, two or three ways of producing interlocking tiles from design type
(1) depending on the number of different ‘sets’ of fundamental region edges.
These are discussed in detail for each symmetry group.

4 Design type (iv): this is derived from type (iii) by adding design elements to
one fundamental region and then mapping them onto the remaining ones by
applying the generating symmetries of the symmetry group. This produces a
patterned interlocking tiling design.

5 Design type (v): this is derived by removing the boundaries of the fundamen-
tal regions chosen for type (iv). If the design elements are initially chosen to
extend towards the boundaries of the fundamental regions (for type (iv)),
each motif appears to interlock with its neighbouring ones, to a lesser or
greater degree, depending on the nature of the initial tiling design. This con-
struction often forms the most visually pleasing type of the six varieties dis-
cussed in this section owing to the resulting appearance of continuity in the
design structure.

6 Design type (vi): this is formed, where possible, by first dividing the strip into
symmetrical shaped fundamental regions (not coinciding with those of type
(1)). Design elements are added to one tile and then mapped onto all the
equivalent positions in the strip by applying the generating symmetries. The
design elements inside the initial fundamental region, if symmetric, must be
suitably positioned so as not to add any extra reflective or rotational symme-
try to the structure of the design.
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It should be noted that the initial fundamental region (including its design unit)
must not have any symmetries coinciding with those of the structure of the strip,
otherwise the symmetry group will be altered or the size of the fundamental region
reduced. The symmetries of the strip are two-fold centres of rotation and trans-
verse reflection axes at any point along its longitudinal axis, and longitudinal
reflectional symmetry with the reflection axis coincides with the centre line L.
However, this still allows the boundaries of each fundamental region to be paral-
lelogram shaped and be included as part of a design unit provided that, together
with the design elements inside them, they do not have any symmetries coinciding
with the strip (e.g. design types (i) and (vi)). Conversely, if the boundaries of the
fundamental regions are asymmetric and chosen to be part of the design unit,
the design elements inside them may have symmetries in common with the
strip because overall each fundamental region is asymmetric (e.g. specific forms of
type (iv)). This circumstance, although not discussed in further detail in this
chapter, may be observed in the p111 design shown in Fig. 2.24(iv(b)), where the
design elements inside the fundamental region have two-fold rotational symmetry.

The design descriptions for types (i) and (ii), for each symmetry group, are
clearly shown in the following illustrations without further explanation. Simi-
larly, types (iv) and (v) are simply derived from type (iii). For design type (v) the
design unit will be taken to be asymmetric to avoid further complication. Design
types (iii) and (vi) require additional definition, for each symmetry group, which
is given below.

Symmetrically shaped design units are discussed in detail in the classification
and construction methods in Chapter 3. For simplicity, in the majority of con-
struction methods discussed in this chapter, the design unit will be taken to be
asymmetric. In the following examples T, when referred to, represents a transla-
tion parallel to the longitudinal axis of the strip and distance equal to the length
of a side of a unit cell coinciding with the strip edges. G represents a glide—reflec-
tion in the same direction, about the longitudinal centre line 1., but of length
1/2T;. In the illustrations throughout this section, the dark shaded area repre-
sents a fundamental region and the figure section number represents the design
type, for example Fig. 2.25(vi) represents a design type (vi).

It is also assumed that no symmetries are induced into the structure by, for
example, the translation of what initially appears to be an asymmetric translation
unit (as shown in Fig. 2.23). Here, the fundamental region is chosen to contain an

S

toletalele

Figure 2.23 Example of an asymmetric fundamental region unsuitable for the construction of a
p111 monotranslational design.

unit cell of a p112 design
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asymmetric design unit but on its translation, for the construction of a p111
design, a p112 design is formed. However, to construct a different symmetry
group to the one planned by this method is a fairly unlikely occurrence.

2.12.1 Symmetry group p111

To construct design type (iii), for symmetry group p111, one of a fundamental
region’s edges, not coinciding with the boundaries of the strip, is replaced with an
asymmetric one which is then used to replace all the ‘unfixed’ edges by applying
consecutive translations of 7. To construct design type (vi), the parallelogram-
shaped fundamental regions of type (i) may be replaced by fundamental regions
having either two-fold rotational or longitudinal reflectional symmetry. A design
unit is then added to a fundamental region and mapped onto the remaining ones
by applying 7. Figure 2.24 shows some examples of design types (i) to (vi) for
symmetry group pl11.

2.12.2 Symmetry group plal

To construct design type (iii), one of the two ‘unfixed’ edges of a fundamental
region is replaced by an asymmetric one which is then used to replace all the
equivalent edges by applying glide-reflection G. To construct design type (vi) the
parallelogram-shaped fundamental regions of type (i) may be replaced by a strip
of fundamental regions that has longitudinal reflectional symmetry only. Alter-
natively the fundamental regions may form two strips inside the monotransla-
tional design, one of which is a glide—reflection of the other. In this case the shape
of each fundamental region may be two-fold rotationally, transversely and/or
longitudinally reflectively symmetric. A design unit is then added to a fundamen-
tal region and mapped onto the remaining ones by applying G. Figure 2.25 shows
some examples of design types (1) to (vi) for symmetry group plal.

2.12.3 Symmetry group pAml

To construct design type (iii) one of the two ‘unfixed’ edges of a fundamental
region is replaced by an asymmetric one which is then used to replace all the
equivalent edges by applying a reflection about the longitudinal axis and transla-
tions of 7. To construct design type (vi) the parallelogram-shaped fundamental
regions of type (i) may be replaced by fundamental regions that have either two-
fold rotational or longitudinal reflectional symmetry. A design unit is then added
to a fundamental region and mapped onto the remaining ones by applying the
generating symmetries. Figure 2.26 shows some examples of design types (i) to
(vi) for symmetry group plm]l.

2.12.4 Symmetry group pmi11

For symmetry group pml1, all four sides of the fundamental region are fixed
since they fall on reflection axes or the edges of the strip enclosing the design.
Therefore none of the design types (iil) to (vi) are constructable. Figure 2.27
shows some examples of design types (1) and (ii) for symmetry group pm11.

2.12.5 Symmetry group p112

There are two ways of constructing a type (iii) design, from type (i), for symmetry
group p112. Because there are two different centres of two-fold rotation in a unit
cell, R, and R,, the asymmetric replacement lines which meet at these points may
be different too. One case of design type (iil) occurs when one straight edge of a
fundamental region, passing through R, say, remains fixed and the one passing
through R, is altered (see the first two examples in Fig. 2.28(iii)). The replacement
edge need not necessarily have the same end points but it must retain the two-fold
rotational symmetry passing through its centre.
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Figure 2.24 Construction of symmetry group p111.
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Figure 2.25

Classification of designs by symmetry group

Construction of symmetry group plal.

The other case occurs when both edges joining or passing through R; and R,
are exchanged leaving the fundamental region having just one straight edge along
the outside edge of the strip (see the third example in Fig. 2.28(iii)). One of these
edges, through R, say, must meet the parallel boundaries of the strip whereas the
other through R, could meet the boundaries of the strip or join at a point on the
new edge through R,. (If both of the new edges meet the boundaries of the strip,
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Figure 2.27
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Construction of symmetry group pmi1.

the fundamental region will have two straight sections occurring on opposite
sides of the strip.) In each of these cases the new fundamental region edges
replace all equivalent ones by applying the generating symmetries. To construct
design type (vi) the fundamental regions may only have two-fold rotational sym-
metry or longitudinal reflectional symmetry as shown in Fig. 2.28(vi). A design
unit is then added to a fundamental region and mapped onto the remaining ones
by applying the rotational symmetries in the design structure. Some examples of
design types (i) to (v) for symmetry group p112 are given in Fig. 2.28(i) to (v),
respectively.

2.12.6 Symmetry group pma2

To construct design type (iii), three out of four of the edges of each fundamental
region remain fixed. The only alterable fundamental region boundary has a
centre of two-fold rotation at its centre. Thus, although the replacement for this
edge may have its end points positioned differently from the straight line it is
replacing, it must still have two-fold rotational symmetry about this point. To
construct design type (vi) the only symmetrical alternative to rectangular (or
square)-shaped fundamental regions for a pma2 design is isosceles triangle-
shaped ones. These may be constructed provided that the initial monotransla-
tional design is structured on a rectangular lattice where each rectangle is
composed of two squares (i.e. the unit cell has width W (coinciding with the
width of the strip) and length 2 ¥). Since the symmetries of these triangles do not
induce any additional symmetrical characteristics in the structure of the strip,
any symmetric or asymmetric design unit can be added to a triangle and mapped
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Figure 2.28 Construction of symmetry group p112.
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onto the remaining ones by applying a set of generators. Figure 2.29 shows some
examples of design types (i) to (vi) for symmetry group pma?2.

2.12.7 Symmetry group pmm?2

For symmetry group pmm?2, all four sides of the fundamental region are fixed
since they fall on reflection axes or the boundaries of the strip enclosing the
design. Therefore none of the remaining design types (iil) to (vi) are con-
structable. Figure 2.30 shows some examples of design types (i) and (ii) for sym-
metry group pmm?2.

Construction of ditranslational designs

Classification of designs by symmetry group

There are numerous different methods which may be used to decorate a plane
with a given design symmetry group, for example a tiling, a patterned tiling or a
pattern. A tiling/pattern may consist of equally or differently shaped tiles/motifs
and in addition the motifs of a pattern may either interlock, join or be separate
from each other. The following sections describe a selection of construction tech-
niques for different design types analogous to those described for monotransla-
tional designs. By initially dividing the plane into a tiling of fundamental regions
it is possible to produce numerous topologically differing design effects (which
relate to the interlocking nature of the design, the details of which are discussed
in Chapter 5). Only the simpler ones will be outlined in the following sections. For
example, in Fig. 2.31 there are two tilings of fundamental regions both of which
may be used in the construction of a pl design. However, the resulting appear-
ance of the design, when the ‘tile’/fundamental region boundaries are removed,
will differ owing to the interlocking relationship between each of the fundamen-
tal regions and its neighbours. For a p1 design there are only two topological ways
of forming a tiling of fundamental regions but for some of the other symmetry
groups the possibilities are numerous.

One method of producing a ditranslational design would be to apply, succes-
sively, a minimal set of generators to a suitably decorated fundamental region.
This would then gradually fill out the whole design. Alternatively, Stevens, in his
book A Handbook of Regular Patterns, describes a process whereby any asym-
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Figure 2.29 Construction of symmetry group pma2.
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Figure 2.30 Construction of symmetry group pmm2.

metrical motif can be stacked with itself to create seven linear bands (monotrans-
lational designs) and 17 planar patterns (ditranslational designs).20

In a similar vein, Bunce describes how panel or band patterns can be used
to build up a design.2! Following this construction method a monotransla-
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Figure 2.31

Examples of possible tiling structures for symmetry group p1.

tional design is translated at unit intervals in a direction of 6° to its longitudinal
axis. This technique is, effectively, equivalent to consecutively placing strips,
of width W, adjacent to each other to cover the plane. Bunce goes on to say
that since panel designs are usually based on the symmetrical division of a
defined area, when repeated, they exhibit a regular grid appearance. However,
although a formal, rigid-structured, grid-like appearance may result in
the overall design, this property may be reduced by altering the characteristics of
the initial ‘band pattern’ or monotranslational design from which it is
constructed.

This construction procedure enables all 17 symmetry groups of ditransla-
tional design to be constructed by a process which may be suitably adapted for
screen printing (e.g. for textile or paper printing). (For this application, the most
suitable value of 6 1s 90°.) In each construction method the top boundary edge of
the initial ‘tiled’ strip (or double strip, where stated) is removed before applying
the consecutive translational symmetries perpendicular to its longitudinal axis.
By employing this technique, ditranslational symmetry groups p1 to pmm may be
constructed from the seven monotranslational designs discussed in Section 2.12.
Symmetry groups with three-, four- and six-fold rotational symmetry may also be
formed by this method but the initial monotranslational design (which, though,
may be classified as one of the seven symmetry groups) requires specific addi-
tional geometrical characteristics in its structure before applying translational
symmetries perpendicular to its longitudinal axis.

In the construction techniques discussed below, reference is made to
three translational symmetry operations: 7 parallel to the longitudinal axis of
the initial monotranslational design and distance equal to the length of a unit
cell; 7, parallel to the side of a unit cell (not to the longitudinal axis) and distance
equal to the side’s length (for rectangular and square lattices, this length is ¥); T
perpendicular to the longitudinal axis and distance 21, twice the width of a
strip of unit cells. For some symmetry groups, a reflectional symmetry M is
applied to the initial monotranslational design about an axis coinciding with the
top edge of the strip (which produces a double strip), before consecutive applica-
tions of translation T5. For p3xy and p6xy designs, reflection M is applied to
a tiled strip of fundamental regions, before adding design elements, to establish
the correct structure upon which to build the design. Reference is also made
to a glide-reflection G' which is parallel to 7, and of a distance equal to half
its length.

Although, as described previously, symmetry groups pl and p2 may be based
on any form of parallelogram lattice, in this section their structures are restricted
to rectangular ones. Alternative structures will be described in more detail in
Chapter 5. Also, to avoid complication, when exchanging fundamental region
edges for asymmetric ones, as described for the type (iii) monotranslational
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designs, it is assumed that the end points of the edges remain fixed. Construction
methods of six different ditranslational design types (analogous to those for
monotranslational designs) are discussed for each symmetry group. A general
description of each is given below.

1

Design type (i): the first design type involves initially constructing a mono-
translational design type (i) that has triangular, parallelogram or, for symme-
try group p6, kite-shaped fundamental region boundaries, in other words the
fundamental region is chosen, where possible, to be a symmetrical portion of
the unit cell. Reflectional symmetry M may be applied to this design (which is
stated for each symmetry group where applicable) and then the top edge of
the strip is removed before applying consecutively the translational symme-
tries 7, or 7.

Design type (ii): this is derived from monotranslational design type (i) by
removing the boundaries of the fundamental regions/‘tiles’ before applying
reflection M and/or translational symmetries, 7, or 7. This reduces a pat-
terned tiling to a pattern which may appear to have a more ‘grid-like’ appear-
ance owing to the straight edges chosen for the fundamental region
boundaries.

Design type (iii): this is derived from monotranslational design type (iii).
Some or all of the edges of the fundamental regions are altered before
removing the top edge of the strip and then applying reflection M and/or the
translational symmetries 7, or 75. This gives a more interlocking type of
tiling design. As with monotranslational designs, the new edges must be posi-
tioned so as not to overlap with each other on application of the generating
symmetries. For symmetry groups where each of the edges of the fundamen-
tal regions lies on a reflection axis, this alteration is not possible and therefore
design type (iii), and consequently types (iv) to (vi), are not constructable.
Conversely, there may be one, two or three ways of producing interlocking
tiles from the initial monotranslational design depending on the number of
different ‘sets’ of fundamental region edges. These are discussed in detail
below for each symmetry group.

Design type (iv): this is derived from the monotranslational design used
to construct ditranslational design type (iii). Design elements are added to
one fundamental region and then mapped onto the remaining ones in the
strip before applying reflection M and/or consecutive translations of T, or
T, of the symmetry group. This produces a patterned interlocking tiling
design.

Design type (v): this is derived by initially removing the boundaries of the
fundamental regions chosen for the monotranslational design type (iv)
before applying reflection M and/or consecutive translations of 7, or 7. If
the design elements are initially chosen to extend towards the boundaries of
the fundamental regions (for type (iv)), each motif appears to interlock with
its neighbouring motifs resulting in a design with a more continuous and
therefore less disjointed appearance.

Design type (vi): this is formed, where possible, by dividing the initial strip
into symmetrical-shaped fundamental regions (not coinciding with those of
type (1)). This design construction method is only discussed for symmetry
groups plxy, p2xy and p4xy. Figure 2.32 shows examples of a selection (but
not all) of the possible tiling structures suitable for this design type. These
structures illustrate some of the simplest forms of tilings composed of tiles
with two- and four-fold rotational symmetry and longitudinal or transverse
reflectional symmetry in relation to the sides of the initial strip. Design ele-
ments are added to one tile and then mapped onto all the equivalent posi-
tions in the strip before applying reflectional and/or the translational
symmetries. A further version of design type (v) (interlocking motifs without
tile boundaries) may be derived from type (vi). However, the design elements
inside the fundamental regions must not induce any additional symmetries
into the design structure on removal of these ‘tile’ boundaries.
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Examples of possible tiling structures for type (vi) ditranslational designs.

This gives a general outline of the construction technique for design types (i)
to (vi) for each group of designs plxy, p2xy, p3xy, pdxy and p6xy. The position-
ing of symmetrical design units is critical therefore in the ditranslational design
construction methods in this chapter, for simplicity, the design unit is generally
taken to be asymmetric. It is also assumed that no additional symmetries are
induced into the design structure on translating the unit cell or translation unit,
such as those described in relation to monotranslational designs in Section 2.12
and illustrated in Fig. 2.23. For symmetry groups where design types (i), (ii) and
(iii) are simply derived from consecutive applications of translation T’ to an asso-
ciated monotranslational design, no further explanation is given. Illustrations of
all six design types are given for symmetry group p1 but only a selection of exam-
ples are shown for subsequent symmetry groups. Any additional versions of
design type (iii) are described for each symmetry group although the design types
(iv) and (v) which may be derived from type (iii) (by an analogous method for
monotranslational designs) are not. Design type (vi) (where reference is made to
the tilings in Fig. 2.32) is self-explanatory for each symmetry group, from the
description given above.

Geometric symmetry in patterns and tilings




In the examples throughout the remainder of this chapter, the light shaded
area represents the initial monotranslational design (or two adjacent monotrans-
lational designs) which is either translated at unit intervals of W (T,) or, where
stated, at unit intervals of 21 (T;) at 90° to the longitudinal axis of the strip. The
darker area in the strip represents a fundamental region. Note that although
tiling and patterned tiling designs may be constructed for screen printing it may
prove more difficult to register tile boundaries. As a result of this, for printing
purposes, design types (i) and (v) are most appropriate. In each of the illustra-
tions in the following figures the section number represents the design type, for
example Fig. 2.33(iii) represents design type (iii).

2.13.1 Symmetry groups plxy and clxy

There are four ditranslational symmetry groups of the form plxy and ¢1xy which
are abbreviated to p1, pg, pm and cm.

Figure 2.33

Classification of designs by symmetry group

Construction of symmetry group pl.
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Classification of designs by symmetry group

2.13.1.1 Symmetry group pl

Design types (1), (ii) and (iii) may be constructed by consecutive applications of
translation 7, to the corresponding monotranslational design types (i), (ii) and
(iii) of p111, as shown in Fig. 2.33(1), (ii) and (iii). A second version of type (iii)
may be constructed by replacing a straight edge of a fundamental region on the
bottom edge of the strip by an asymmetric one and then using it to replace each
adjacent edge, in the longitudinal direction, by repeatedly applying 7. The top
straight edge is removed and then 7, is applied at unit intervals. An illustration is
given in the second example of Fig. 2.33(iii). Design type (vi) may be constructed
from any of the tilings 1,2, 3 or 4.

2.13.1.2 Symmetry group pg

Design types (1), (ii) and (iii) may be constructed by consecutive applications of
translation 7, to the corresponding monotranslational design types (i), (ii) and
(iii) of plal. A second version of type (iii) may be constructed by replacing a
straight edge of a fundamental region on the bottom edge of the strip by an
asymmetric one and then using it to replace each adjacent edge, in the longitudi-
nal direction, by the repeated application of glide-reflection G. The top straight
edge is removed and then T, is applied at unit intervals (see Fig. 2.34(iii)). Design
type (vi) may be constructed from either of the tilings 4 and 5.

2.13.1.3 Symmetry group pm

Design types (i), (ii) and (iil)) may be constructed by consecutive applications
of translation 7, to the corresponding monotranslational design types (i), (ii)
and (iii) of p1lm]l. (A pmditranslational design may also be constructed by apply-
ing the same translations to a pmll monotranslational design which, in the
context of printing, results in reflection axes occurring parallel to the warp/length
of the fabric/paper as opposed to them being parallel to the weft/width if con-
structed from the initial monotranslational design plml). Symmetry group pm
has only one form of design type (iii) because two edges of each fundamental
region fall on reflection axes, occurring on the boundaries of the strip, which
cannot be altered (see Fig. 2.35). Design type (vi) may be constructed from tilings
6and 8.

2.13.1.4 Symmetry group cm

Design type (1), for symmetry group cm, is constructed by first applying reflection
M to a plal monotranslational design to give a strip with width 2 . Consecutive
translations of 7’ are then applied to this double strip to complete the patterned
tiling design. Design types (ii) and (iii) are constructed by applying the same oper-
ations to types (i) and (iii) of monotranslational design plal. Symmetry group
¢m has only one form of design type (iii) because two edges of each fundamental
region fall on reflection axes, occurring on the boundary and longitudinal axis of
the strip, which cannot be altered (see Fig. 2.36). Design type (vi) may be con-
structed from either of the tilings 7 and 8.

2.13.2 Symmetry groups p2xy and c2xy

There are five ditranslational symmetry groups of the form p2xy or ¢2xy which
are abbreviated to p2, pgg, pmg, pmm and cmm.

2.13.2.1 Symmetry group p2

Design types (1), (ii) and (iii) may be constructed by consecutive applications of
translation 7, to the corresponding monotranslational design types (i), (ii) and

55




56

Figure 2.34

Construction of symmetry group pg.
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Figure 2.35

Classification of designs by symmetry group

Construction of symmetry group pm.

Derived from Tiling 8
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Figure 2.36

Derived from Tiling 7

Construction of symmetry group cm.

(iii) of p112. An additional version of type (iii) may be constructed by replacing a
straight edge of a unit cell on the bottom edge of the strip by one having two-fold
rotational symmetry. It is then used to replace each adjacent edge, in the longitu-
dinal direction, by repeatedly applying 7. The top straight edge is removed and
then 7, is applied at unit intervals as shown in Fig. 2.37(iii). Design type (vi) may
be constructed from any of the tilings 1, 2, 3 or 5. A p2 design may also be con-
structed from tiling 7 or tiling 9 although in these cases, the single p112 or p111
strip is two-fold rotated about the midpoint of a top edge or top corner of a fun-
damental region, respectively, to form a double strip, width 217, before consecu-
tive applications of T (see Fig. 2.37).

2.13.2.2 Symmetry group pgg

A pgg ditranslational design may be constructed by repeatedly applying the
translation, T3, to either two p112 monotranslational designs, one of which is a
glide-reflection of the other, or to two plal monotranslational designs, one of

Geometric symmetry in patterns and tilings
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Classification of designs by symmetry group

Construction of symmetry group p2.
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Figure 2.37

(cont.)

which is a two-fold rotation of the other. The first of these two possibilities is dis-
cussed for each design type below. Design types (1), (i1) and (iii) may each be con-
structed by consecutive applications of translation 75 to a double strip, width
2 W, which has been derived from the corresponding monotranslational design
types (1), (i) and (iii) of p112, respectively. In each case, the double strip consists
of two p112 monotranslational designs, one of which is a glide—reflection of the
other. The glide—reflection axis coincides with a straight edge of the strip and its
distance is equal to half the length of translation 7 (see Fig. 2.38). An additional
version of type (iil) may be constructed by replacing a straight edge of a funda-
mental region, on the bottom edge of the double strip, by an asymmetric one. It is
then used to replace each adjacent edge, in the longitudinal direction, by repeat-
edly applying glide—reflection G. The central straight longitudinal axis of the
double strip is exchanged for one which is a two-fold rotation, of the new bottom
edge of the strip, about a centre of rotation occurring on the boundary of a fun-
damental region (as shown in Fig. 2.38(iii)). The top straight edge is removed and
then 77 is applied at unit intervals. Design type (vi) may be constructed from
either a double strip of tiling 5 or tiling 6.

Geometric symmetry in patterns and tilings
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Classification of designs by symmetry group

Construction of symmetry group pgg.

61




62

Figure 2.38

ISISIIST

Y

(cont.)

2.13.2.3 Symmetry group pmg

Design types (1), (ii) and (iil)) may be constructed by consecutive applications of
translation 7, to the corresponding monotranslational design types (i), (ii) and
(iii) of pma2. (This results in the reflection axes occurring parallel to the
warp/length of the fabric/paper.) An additional version of type (iii) may be con-
structed by replacing a straight edge of a fundamental region, on the bottom
edge of the strip, by an asymmetric one. It is then used to replace each adjacent
edge, in the longitudinal direction, by the repeated application of alternating
two-fold rotation and transverse reflection passing through the corners of each
fundamental region (see Fig. 2.39(iii)). (The axes about which it is reflected coin-
cide with those in the monotranslational pma2 structure.) The top straight edge is
removed and then 7, is applied at unit intervals. Design type (vi) cannot be con-
structed from any of the tilings 1 to 9 owing to the limitations caused by the
reflection axes occurring in the structure of the design.

2.13.2.4 Symmetry group pmm

Design types (1) and (ii) may be constructed by consecutive applications of trans-
lation T}, to the corresponding monotranslational design types (i) and (ii) of
pmm2. Types (iil) to (vi) cannot be constructed owing to the limitations caused by
the reflection axes occurring in the structure of the design. Figure 2.40 shows
some examples of design types (1) and (ii) for pmm.

2.13.2.5 Symmetry group cmm

A cmm ditranslational design may be constructed by repeatedly applying the
translation T, to either two pma2 monotranslational designs, one of which is a
reflection of the other, or to two pmm?2 monotranslational designs, one of which
is a glide-reflection of the other. The first of these two possibilities is discussed
for each design type below. Design types (i), (i) and (iii) may be constructed by
consecutive applications of translation 75 to a double strip, width 21, of the cor-
responding monotranslational design types (i), (i) and (iii) of pma?2, respectively.
The double strip is constructed by applying reflection M to a pma2 monotransla-
tional design (see Fig. 2.41(ii1)). Ditranslational symmetry group c¢mm has only
one form of design type (iii) which is derived by altering the fundamental region
edges which pass through a centre of rotation. This is because two edges of each
fundamental region fall on reflection axes, occurring on the boundary and longi-
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Classification of designs by symmetry group

Construction of symmetry group pmg.
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Construction of symmetry group pmm.

tudinal axis of the strip, which cannot be altered. Two examples of this form are
illustrated in Fig. 2.41(iii). Design type (vi) cannot be constructed from any of the
tilings 1 to 9 owing to the limitations caused by the reflection axes occurring in the
structure of the design.

2.13.3 Symmetry groups paxy

There are three ditranslational symmetry groups of the form p4xy which
are abbreviated to p4, p4g and pd4m. Each of these symmetry groups is based
on a square lattice, therefore the initial strip used to construct these designs
is divided into square parallelograms each of which represents a unit cell. These
are then divided into fundamental regions which, as a strip of a ditransla-
tional design, have reflectional and/or four-fold rotational symmetries occurring
on their boundaries. These symmetries are not a property of a monotransla-
tional design, however they are referred to when filling out the initial strip
pattern. On applying these symmetries, design elements which are mapped onto
positions outside the structure of the initial monotranslational design are not
included.
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2.13.3.1 Symmetry group p4

The construction of a design of type (1) requires the division of each unit cell in
the strip into four square fundamental regions. This strip, if associated with a p4
design, will have alternating centres of two- and four-fold rotational symmetry
occurring through the longitudinal axis of the strip at corners of fundamental
regions (see Fig. 2.42). Applying one of these four-fold rotational symmetries to
design elements inside a square fundamental region will complete a unit cell
which, on repeated application of 7 will form a monotranslational design type
(1). If the top straight edge of the strip is removed and then T, is applied at unit
intervals, a ditranslational design type (i) is formed and if the boundaries of the
tiles are removed, this gives a type (ii) p4 design. Design type (iii) may be pro-
duced by replacing one of the boundaries of a square fundamental region,
joining a centre of four-fold rotation with the straight edge of the strip, by an
asymmetric one and then mapping it onto all equivalent positions in a unit cell
and the remainder of the strip as described above (see the first example in Fig.
2.42(iii)). Then T, is applied at unit intervals. An alternative version of type (iii)
may be constructed by replacing an edge joining a two-fold centre of rotation to
the boundary of the strip in addition to the previous alteration. This edge is
mapped onto all equivalent positions down the centre of the strip and is used to
replace the bottom edge (as shown in the second example of Fig. 2.42(iii)). The
top straight edge is removed and then T, is applied at unit intervals. Design type
(vi) may be constructed from a double strip of tiling 2 which is based in a square
lattice.

2.13.3.2 Symmetry group pag

Design type (1) is constructed by dividing each unit cell in the strip into eight
isosceles triangle fundamental regions as shown in Fig. 2.43(1). For a p4g design,
the diagonals represent axes of reflectional symmetry and so are fixed. At their
points of intersection are centres of two-fold rotation and, in each case, half way
between adjacent two-fold centres of rotation, in the longitudinal direction, is a
centre of four-fold rotational symmetry. Applying a reflection and one of these
four-fold rotational symmetries to design elements inside an isosceles triangle-
shaped fundamental region will decorate a unit cell which, on repeated applica-
tion of T} will complete a monotranslational design type (i). If the top straight
edge of the strip is removed and then 7, is applied at unit intervals, this forms
ditranslational design type (1) and if the boundaries of the tiles are removed, this
gives a type (ii) p4g design. Design type (iii) may be produced by replacing one of
the boundaries of an isosceles triangle fundamental region, joining a centre of
four-fold rotation with the straight edge of the strip, by an asymmetric one and
then mapping it onto equivalent positions as shown in Fig. 2.43(iii). The top
straight edge is removed and then T, is applied at unit intervals. An alternative
version of type (iii) cannot be constructed owing to the limitations caused by the
reflection axes occurring in the structure of the design. Design type (vi) cannot be
constructed from any of the tilingsin Fig. 2.32.

2.13.3.3  Symmetry group pAm

Design type (1) is constructed by dividing each unit cell in the strip into eight
isosceles triangle fundamental regions by the method described for p4g. For a
p4m design, each of these diagonal, transverse and longitudinal lines represents
an axis of reflectional symmetry and so is fixed. Applying a diagonal reflectional
symmetry and a four-fold rotation to design elements inside an isosceles triangle-
shaped fundamental region completes a unit cell. Consecutive applications of T
will then generate a monotranslational design type (i). If the top straight edge of
the strip is removed and then T, is applied at unit intervals, this forms ditransla-
tional design type (i) and if the boundaries of the tiles are removed, this gives a
type (i) p4m design (see Fig. 2.44). Types (iii) to (vi) cannot be constructed owing
to the limitations caused by the reflection axes occurring in the structure of the
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Figure 2.43

Construction of symmetry group p4g.

design. Although, as shown in the first two examples of Fig. 2.44, a straight-sided
strip may be used to construct this type of pattern, in the context of screen print-
ing it is inappropriate to dissect a motif. In the third and fourth examples of Fig.
2.44 a more suitable translation area is represented which may be consecutively
translated by 7.

2.13.4 Symmetry groups p3xy

There are three ditranslational symmetry groups of the form p3xy which are abbre-
viated to p3, p31m and p3m]1. The translations used in the construction methods
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Construction of symmetry group p4m.

for p3xy (and p6xy) are T} and T;. A p3xy ditranslational design may be con-
structed by repeated application of the translation, 75, to two strips of unit cells or
translation units. In cases where unit cell boundaries do not coincide with funda-
mental region boundaries, two strips of translation units are consecutively trans-
lated by T73. In each of the design types discussed below, the initial mono-
translational design is based on a strip of unitcells of a hexagonal lattice, width .
This is initially divided into thombi and isosceles triangles before applying reflec-
tion M to produce a double strip, width 2 ¥, with the correct structure upon which
to build the design. Again, as for p4xy designs, symmetries occurring in the
ditranslational design are used to fill out the double strip although they may not
occur in the monotranslational design structure. Design elements which are map-
ped onto positions outside the structure of the initial ‘double-strip’ monotransla-
tional design are notincluded since these are accounted for by translation 75.

2.13.4.1 Symmetry group p3

Design type (1) is constructed by first dividing a strip into rhombic fundamental
regions whose vertices fall on centres of three-fold rotation (as shown in
Fig. 2.45). After removing the straight edges of this strip and applying reflection
M to this design a new monotranslational tiling design is formed, width 2.
Design elements are added to one thombus which may then be mapped onto the
remaining complete ones in the shaded area by applying the three-fold rotational
symmetries which occur within the edges of the double strip. By applying one set
of three-fold rotational symmetries which occurs at a perpendicular distance
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Figure 2.45 Construction of symmetry group p3.

and tilings
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Classification of designs by symmetry group

(cont.)

2/3W from the longitudinal axis of the double strip, adds a line of design
units not contained within the straight-edged double strip. The double strip of
hexagonal translational units is then consecutively translated by 7, to form
design type (1) (as shown in the first example in Fig. 2.45). Design type (ii) is
constructed by removing the rhombic fundamental region boundaries. There
are two possibilities for tiling design type (iii). If one edge of a fundamental
region is replaced by an asymmetric one and then mapped onto all equivalent
positions in the double strip, there still remains another set of edges forming a
hexagonal structure (see Fig. 2.45iii(a)). One of these edges may also be
exchanged for an asymmetric one and mapped onto all equivalent positions as
shown in Fig. 2.45(iii(b)) and (iii(c)). The strip is then translated by consecutive
applications of 7. Design type (vi) cannot be constructed from any of the tilings
in Fig. 2.32.

2.13.4.2  Symmetry group p31m

Design type (i) is constructed by first dividing a strip into thombi as described
above and then bisecting them into fundamental regions by adding a long
diagonal to each one (as shown in the first example in Fig. 2.46). These diagonals
form a tiling of equilateral triangles all of whose edges fall on axes of reflectional

71




72

9/ P\\ RGN

T ‘-!,):_: :’Vé
; 7
P e &
N AR

Figure 2.46
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Classification of designs by symmetry group

symmetry and so are fixed. By applying reflection M to this strip, a new mono-
translational tiling design is formed, width 2. Design elements inside one
triangle may be mapped onto the remaining ones in the double strip by first
applying a three-fold rotation and a reflectional symmetry to complete a unit
cell; then by applying 7 at unit intervals to complete a single strip; finally by
applying a reflection M. One outside edge of the double strip is removed before
consecutively translating it by 75 to form design type (i). Design type (ii) is con-
structed by removing the triangular fundamental region boundaries as shown in
Fig. 2.46(ii).

Construction of design type (iii), where only a selection of the edges of the
fundamental regions interlock, is possible for a p31m design since although some
edges fall on reflection axes and so are fixed, others do not. Type (iii) may be con-
structed by replacing an edge, joining two centres of three-fold rotation posi-
tioned at the centre and vertex of an equilateral triangle, by an asymmetric one;
mapping it to all equivalent positions in the double strip; removing one exterior
edge of the double strip and then translating the strip by consecutive applications
of T (see Fig. 2.46(iii)). Design type (vi) cannot be constructed from any of the
tilings in Fig. 2.32. The second example given in Fig. 2.46(iii) illustrates a more
suitable translation strip, for that particular design shown, which avoids dissect-
ing motifs.

2.13.4.3 Symmetry group p3ml

Design type (1) is constructed by first dividing a strip into rhombi as described
above and then bisecting them into fundamental regions by adding a short diago-
nal to each one. This divides the strip into equilateral triangles whose sides all fall
on axes of reflectional symmetry and so are fixed (see Fig. 2.47). Removing the
straight edges of the strip and applying reflection M to this design forms a mono-
translational tiling design, width 217, Design elements inside one triangle may be
mapped onto the remaining ones inside a double strip of hexagonal translation
units as shown in the second example in Fig. 2.47. Consecutive applications of
translation 75 are then applied to it to form design type (i). Types (iii) to (vi)
cannot be constructed owing to the limitations caused by the reflection axes
occurring in the structure of the design.
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Construction of symmetry group p3m1.

2.13.5 Symmetry groups péxy

There are two ditranslational symmetry groups of the form p6xy which are
abbreviated to p6 and p6m. A p6xy ditranslational design may be constructed by
repeated application of the translation, 77, to two strips of unit cells or transla-
tion units. In each of the design types discussed below, like p3xy designs, the
initial monotranslational design is based on a strip of unit cells of a hexagonal
lattice, width W.

2.13.5.1 Symmetry group p6

Design type (i) is constructed by first dividing a strip, width W, into kite-shaped
fundamental regions whose vertices fall on centres of two-, three- and six-fold
rotation (as shown in the first example in Fig. 2.48). A reflection M applied to this
design forms a new monotranslational tiling design of width 2. Design ele-
ments inside one kite shape may be mapped onto the remaining ones by applying
the two-, three- and six-fold rotational symmetries which occur within the double
strips outside edges. After removing one outside edge of the double strip it is then
consecutively translated by 7’5 to form design type (1). There are two methods of
constructing design type (iii), where only a selection of the edges of the funda-
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Construction of symmetry group p6.
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mental regions interlock. Either the straight lines joining centres of two- and six-
fold rotation remain fixed (which forms an equilateral triangular tiling) and lines
joining centres of two- and three-fold rotation are exchanged or vice versa (which
forms a hexagonal tiling). Examples of tiling designs resulting from these alter-
ations are given in Fig. 2.48(iii(a)) and (iii(b)). Alternatively both of these two
sets of edges may be replaced (see Fig. 2.48iii(c)). Design type (vi) cannot be con-
structed from any of the tilings in Fig. 2.32.

2.13.5.2 Symmetry group pbm

Design type (1) is constructed by first dividing a strip into kite-shaped p6 funda-
mental regions, as described above, and then bisecting each by adding a long
diagonal. This divides the strip into right-angled triangles whose sides all fall on
axes of reflectional symmetry and so are fixed. A reflection M is applied to this
design to form a new monotranslational tiling design, width 2 ¥ (see Fig. 2.49,
construction of type (ii) in two stages). Design elements inside one triangle may
be mapped onto the remaining ones by applying reflectional symmetries which
occur within the edges of the double strip. One outside edge of the double strip is
removed before consecutively translating it by 7’5 to form design type (i). Types
(iii) to (vi) cannot be constructed owing to the limitations caused by the reflection
axes occurring in the structure of the design.

Summary

The classification system discussed in this chapter is applicable to all forms of
regularly repeating finite, monotranslational and ditranslational designs. It
begins with explanations of the fundamental concepts which form the basis of
subsequent classification systems throughout the remainder of this book. Finite,
monotranslational and ditranslational designs are classified and constructed by
symmetry group and extensively illustrated by schematic and more decorative
forms of illustrations.

Because there are such a vast number of possible design characteristics in one
symmetry group, only a selection of construction methods have been explained
in detail. For example, throughout each of the ditranslational construction tech-
niques discussed in the previous sections, the emphasis has been placed on the
initial structure being based upon a tiling of specific fundamental region bound-
aries. This criteria restricts, to a certain extent, the interlocking relationship of
the design units. No particular attention has been paid to the symmetrical prop-
erties of the individual design units or motifs within the design structure either.
These characteristics are discussed in more detail in Chapters 3, 4 and 5. The for-
mation of a tiling of fundamental regions, as shown in design type (iii), will be
used as a basis for some of the construction methods discussed in these following
chapters.

Throughout the descriptions of ditranslational design construction methods,
reference has been made to screen printing. The initial monotranslational design,
width W, or width 2# where specified (or an integral number of these widths)
may be treated as the translation strip which is incorporated onto the length of
the screen. (To print the design the screen is then translated at unit intervals per-
pendicular to the strip.) Where motifs are split along fundamental region edges,
as shown for symmetry group pd4m, a more suitable translation strip may be
devised. For some symmetry groups, such as pm, the construction techniques
have been discussed with the reflection axes having a particular orientation in
relation to the warp or weft (or length and width) of the fabric (or paper) in con-
nection with screen printing. However, should these axes be required to be per-
pendicular to the ones discussed it is only necessary to take a translation strip
with longitudinal axis perpendicular to the ones illustrated in the construction
examples.

Geometric symmetry in patterns and tilings
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Classification of designs by symmetry group and

3.1

design unit

Introduction

As described in Chapter 2, the variety of design types contained within one sym-
metry group is quite extensive. Consequently, to differentiate between these types
requires further processes of investigation and categorisation. Bunce! also
observed that there are restrictions in the symmetry group classification system
and so developed a pattern analysis scheme of her own. In comparing the two
systems with reference to her own scheme, she stated that it differs from that of
symmetrical pattern classification which defines 17 classes of all-over pattern, but
takes no account of the orientation of the design unit. In symmetrical classifica-
tion, patterns constructed from the same basic unit and having the same notation
may look very different according to the positions of reflection and rotation.!
This point is briefly illustrated in the examples in Fig. 3.1 in which each of the six
patterns may be classed in symmetry group p2. However, as may be observed,
since a p2 design may be constructed on any of the five types of parallelogram
lattice, the positioning of two-fold centres of rotation will vary according to each
structure and thus so will the resulting design effect. The positioning and orienta-
tion of the motifs in relation to the points of symmetry also affect the appearance
of the design as can be seen from the illustrations in Fig. 3.1.

The classification system devised in this chapter does concern lattice structures
but the primary focus is on the symmetrical properties of the design unit inside a
fundamental region. With respect to design analysis and classification, this par-
ticular aspect of a design’s characteristics is generally disregarded. It is often
assumed that the design unit inside each fundamental region (particularly for
monotranslational symmetry groups pl111 and plal and ditranslational symme-
try groups pl and pg) is asymmetric. For example, this suggestion is made by
Hann and Thomson? in their publication The Geometry of Regularly Repeating
Patterns in which they comment that the most elementary border class is transla-
tion class p111 which is generated by translation of an asymmetrical (class c1)
motif by a specified distance along an imaginary line known as the translation
axis. Also, in a similar vein, they discuss the generation of symmetry groups plal,
p1 and pg by applying the relevant symmetry operations to ¢1 motifs.2 However,
the motif (or in this context the ‘design unit’) need not necessarily be classed in
this symmetry group, that is, it need not be asymmetric. The possible symmetrical
properties of the design unit, which are discussed in detail later, are dependent on
their positioning in relation to the unit cell and on the symmetries of the underly-
ing design structure.

Recall that a fundamental region is any smallest area of the plane to which the
generating symmetries may be applied to complete the design. In cases where the
region is not bounded entirely by reflection axes and/or the exterior boundaries
of the whole design, this region may be represented by a variety of different
shapes. However, in the following analysis it is chosen to fit the additional criteria
of containing a design unit with the highest possible order of symmetry. For
example, Fig. 3.2(a) illustrates a ditranslational design, in symmetry group pl,
based on a rectangular lattice. (Four identical points nearest to each other are
chosen to establish the lattice structure.) In this pattern both A and B represent
fundamental regions but A contains a design unit with the highest order of
symmetry.
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Figure 3.1 lllustrations of the effects of different structures on a symmetry group.

Although this illustrates that the construction of a pl design composed of
symmetric design units is possible, the initial orientation of the design unit inside
a fundamental region is critical. In the case of translational designs the potential
symmetrical characteristics of the design unit are dependent not only on the
lattice structure of the design but also the positioning of the design units relative
to the symmetries and boundaries of the unit cell. For example, reorientating the
design unit and constructing the previous design on a hexagonal, rhombic, rec-
tangular or square lattice could quite easily produce a design of a different sym-
metry group altogether (as shown in Fig. 3.2b(i-iv)). In these cases, had the
design unit been positioned appropriately, a pl design could still have been pro-
duced. Similarly, a reflectionally symmetric design unit contained within a funda-
mental region of a finite design must also be carefully positioned so as not to
induce additional symmetries into the design structure, as shown in Fig. 3.2(c).

From one aspect, the types of design in this chapter are more intriguing than
those obtained from more conventional symmetry group construction proce-
dures. This may be due to the eye initially perceiving symmetries in the design
which are normally associated with its underlying structure but which on closer
observation do not influence the symmetry group classification of the design. For
example, designs comprised of snowflake motifs would normally be found in
patterns with a high order of symmetry and most probably of symmetry group
p6m. This is due to the fact that this arrangement produces the most balanced
and ordered appearance and the most intuitive and simple method of locking
together motifs of this shape. However, with a slight tilt and adjustment of the
snowflake motifs type of pattern within this, the order of a ‘perfectly symmetri-
cal’ p6m pattern may be reduced. Bier comments on this by saying that patterns
with imperfections continually fascinate us because they confound and perplex
us as they delight.3

The construction methods given later in this chapter account for these varia-
tions in design unit orientation by discussing the lattice types (for translational
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Table 3.1

3.2

Notation for symmetry groups of design structure and design unit

Symmetry group of design structure
and design unit

Symmetry group of Dihedral design
Design class design structure Cyclic design unit  unit
Finite symetry group cn cn(cN) cn(dN)

dn dn(cN) dn(dN)
Monotranslational pyxn pyxn(cN) pyxn(dN)
symmetry group
Ditranslational symmetry  pnxy pnxy(cN) pnxy(dN)
group

N represents the number of reflection axes and/or order of rotational symmetry of the
design unit.

designs), design units’ symmetrical characteristics and their positioning in rela-
tion to the unit cell or fundamental region boundaries for each of the three finite,
seven monotranslational and 17 ditranslational symmetry groups.

Notation

3.3

The notation for this new classification scheme has been devised by refining the
symmetry group notation by including an additional bracketed finite symmetry
group. Theinitial symbolindicates the symmetry group of the design structure and
the bracketed group indicates the finite symmetry group of a design unit with the
highest order of symmetry inside a fundamental region. For example,in Fig. 3.2(a)
the symmetry group of the overall structure is p1 which gives the initial symbol. A
fundamental region containing a design unit with the highest order of symmetry is
marked A and the finite symmetry group of this design unit is d1. This gives the
second symbol which is then enclosed in brackets. Amalgamating the two gives
the symmetry group of the design structure and design unit p1(d1). Following this
analogy, each of the symmetry groups of finite, monotranslational and ditransla-
tional design structures may be divided into two subgroups according to the
highest order of symmetry of the cyclic or dihedral group of a design unit inside a
fundamental region. The form of notation for each subgroupis givenin Table 3.1.

Finite designs

3.4

In Chapter 2 finite designs were divided into the two symmetry groups ¢z and dn
depending on their dihedral and/or cyclic properties. By the previous analogy,
each of these groups may be subdivided into two subgroups: cn(cN), cn(dN),
dn(cN) and dn(dN). Figures 3.3 and 3.4 show schematic illustrations of these
designs for n=1 to 4 and N=1 to 6. Further examples for a selection of these
subgroups are given in Fig. 3.5.

Monotranslational designs

3.5

Monotranslational designs are divided into seven symmetry groups, each of the
form pyxn. Again these may be subdivided into two subgroups: pyxn(cN) and
pyxn(dN). Schematic illustrations (with N taking the three lowest possible values)
are given for each symmetry group subgroup pyxn(cN) in Fig. 3.6 and for
pyxn(dN)in Fig. 3.7. Further examples are given in Fig. 3.8.

Ditranslational designs

Ditranslational designs are divided into 17 symmetry groups, each of the form
pnxy. These may also be subdivided into two subgroups: puxy(cN) and
puxy(dN). Schematic illustrations of prxy(cN) and pnxy(dN) subgroups are
given for each symmetry group in Fig. 3.9 and 3.10, respectively. Further exam-
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Symmetry subgroup ¢n(cN)

Aet)
c3(e1) g % % ¢2(c5) c2(cB)
R
c3(c1) c3(c2) % c3(cd) c3(ch) c3(cB)
R
c4(ct) cd(c2) c4(c3) c4(c4) c4(c5) c4(cB)

Symmetry subgroup ¢n(dN)

c2(d4) c2{d5) c2{d6)
€3(d1) c3(d2) c3{d3) €3(d4) ¢3(d5) c3(d6)
c4(d1) c4(d2) c4(d3) c4{d4) (d5) c4(d6)

Figure 3.3 Schematic illustrations of finite design symmetry subgroups cn(cN) and cn(dN).

Classification of designs by symmetry group and design unit




84

Symmetry subgroup dn{cN)

d1(c) d1(c2)

d2(c1) 2(c2) d2(c3) d2(c4) d2(c5) d2(cB)
d3(c d3(c2) d3(c3) d3(c4) d3(c5) d3(c6)
d4(c) d4(c2) dd(c3) d4(c4) d4(c5) d4(cB)

d3(d5) d3(d6)

dd(d1) d4(d2) d4(d3) d4(d4) d4(d5) d4(d6)

Figure 3.4 Schematic illustrations of finite design symmetry subgroups dn(cN) and dn(dN).
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Figure 3.5 Further examples of finite design symmetry subgroups.
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Symmetry Symmetry group of Fundamental region
group design structure
and design unit

p111 p111(d1)

p111(d3)

p111(d5)

pla1 plat(d1)

plal(d2)

p1al1(d3)

pim1 p1m1(d1)

p1m1(d2)

p1m1(d3)

pm11 pm11(d1)

pm11(d2)

Figure 3.7 Schematic illustrations of monotranslational design symmetry subgroups pyxn(dN).
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Figure 3.8 Further examples of monotranslational design symmetry subgroups.
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Figure 3.8 (cont.)
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Figure 3.9

3.6

[
pB(c3)

ples are shown in Fig. 3.11. Another interesting example which illustrates an
application of this classification system is given in Fig. 3.12(b) where a projection
of the structure C¢(CH,), displays the same symmetries as the pattern with sym-
metry subgroup p2(d1) given in Fig. 3.12(a).

Construction of finite designs

The methods for constructing finite designs, in this classification system, are
similar to the first techniques described in Chapter 2, Sections 2.11.1 and 2.11.2
for symmetry groups cn and dn, respectively. In each of the four subgroups:
ct(cN), cn(dN), dn(cN) and dn(dN ), the initial design unit must extend to at least
one point on the circumference of the circle enclosing the design. It will also be
assumed that no additional symmetries are induced into the design structure, on
application of the generating symmetries to what appears to be an asymmetric
design unit, such as those described in relation to a monotranslational design in
Section 2.12 (and illustrated in Fig. 2.23).

In each case, a design unit having specific rotational and/or reflectional char-
acteristics is added to a fundamental region of the finite cyclic group before
applying the generating symmetries to complete the design.

3.6.1 Construction of symmetry subgroups cn(cN) and cn(dN)

To construct a finite cn(c/N) design, the design unit has N-fold rotational symme-
try only. Its positioning inside the fundamental region is not critical. There are
no limitations on the value of N except when n=1, then N=1 to retain the
asymmetric characteristic of a cl-structured design. Figure 3.13(a(i)) shows an
example of cn(¢N) design construction forn =3 and N =3.

To construct a cn(dN) design, the design unit has N reflection axes and N-fold
rotational symmetry. Its positioning inside the fundamental region is critical in
that none of the N reflection axes must pass through the centre of the finite
design. If this condition is not satisfied the size of the fundamental region would
be reduced by half and what was originally intended to be a cn(dN) design would
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Table 3.2

Table 3.3

Table 3.4

Construction of symmetry subgroups cn(cN)

Symmetry group of Symmetry group of design unit

design structure cl c2 c3 c4 c5 c6

cl ¢l(cl) — — — — —

c2 c2(cl) c2(c2) c2(c3) c2(c4) c2(ch) c2(cB)
c3 c3(cl) c3(c2) c3(c3) c3(c4) c3(ch) c3(cB)
c4 c4(cl) c4(c2) c4(c3) c4(c4) c4(c5) c4(cB)
¢ ch(cl) ch(c2) ¢ch(c3) ch(cd) cH(ch) cH(cB)
c6 c6(cl) c6(c2) c6(c3) c6(c4) c6(ch) c6(cB)
cn(cN) is constructable for all N (where N is a positive integer) if n> 1. If n=1 then
N=1.

Construction of symmetry subgroups cn(dN)

Symmetry group of  Symmetry group of design unit

design structure a1 a2 a3 a4 as a6

cl — — — — — —

c2 c2(dlyx  ¢2(d2)* c2(d3)* c2(dd)y*  c2(db)*  ¢2(dB)*
c3 c3(dl)y*  c3(d2)*  ¢3(d3)*  c3(dd)y*  c3(ddD)*  c3(dB)*
c4 cA(dl)y*  cA(d2)* cA(d3)* c4A(ddy*r  cA(dD)*  cA(dB)*
c5 cS(dL)y*  cB(d2)*  cH(d3)*  cB(ddy*  cH(ddD)* cH(dB)*
c6 cB(dl)y*  c6(d2)*  cB(d3)*  cB(ddy*  cB(dd)*  cB(dB)*

cn(dN) is constructable for all N (where N is a positive integer) if n> 1. None of the N
reflection axes may intersect the centre of overall design structure.
* =restrictions are imposed on the positioning and orientation of the design unit.

Construction of symmetry subgroups dn(cN)

Symmetry group of Symmetry group of design unit

design structure cl c2 c3 c4 c5 c6

dl dl(cl) di(c2) d1(c3) dl(c4) d1(ch) d1(cB)
a2 a2(cl) a2(c2) a2(c3) a2(c4) d2(cb) d2(c6)
a3 a3(cl) d3(c2) a3(c3) d3(c4) d3(cb) d3(c6)
d4 d4(cl) da(c2) d4(c3) da(c4) da(ch) d4(cB)
a5 ds(cl) ds(c2) ds(c3) ds(c4) ds(cb) d>(c6)
a6 das(cl) as(c2) ds(c3) das(c4) as(cb) do(c6)

dn(cN)is constructable forall N> 1, foralln> 1.

be transformed into a dn(c1) design as illustrated for n =4 and n = 5 in Fig. 3.2(¢).
The four examples in Fig. 3.2(c) show c4(dl), d4(c1), ¢5(dl) and d5(c1) designs,
respectively. An example showing the construction of a cn(dN) design is given in
Fig. 3.13(a(i))forn=4and N =2.

3.6.2 Construction of symmetry subgroups dn(cN) and dn(dN)

To construct a dn(cN) design, the design unit has N-fold rotational symmetry
only. Its positioning inside the fundamental region, as for cn(cN) designs, is not
critical. Figure 3.13(b(i)) shows an example of dn(cN) design construction forn =
2and N =4,

To construct a dn(dN) design, the design unit has N reflection axes and N-fold
rotational symmetry. Its positioning inside the fundamental region is critical in
that although one of the N reflection axes may pass through the centre of the
overall finite design, this axis must not bisect the fundamental region since this
would reduce the size of the fundamental region by half and transform what was
originally intended to be a dn(dN) design into a d2n(d1) design. Figure 3.13(b(i1))
shows an example of dn(dN ) design constructionforn=6and N=1.

Tables 3.2 to 3.5 summarise the information given above by indicating, for n=
1to 6 and N =1 to 6, whether a particular symmetry subgroup is constructable

Classification of designs by symmetry group and design unit
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Figure 3.10 Schematic illustrations of ditranslational design symmetry subgroups pnxy(dN).
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Figure 3.10

Table 3.5

3.7

5:-;‘\' z

96d4} psmM{d1)

(cont.)

Construction of symmetry subgroups dn(dN)

Symmetry group of  Symmetry group of design unit

design structure a1 a2 a3 a4 as a6

dl di(dl)* di(d2)* dL(d3)* dl(dd)* di(dd)* di(d6)*
a2 d2(d1)*  d2(d2)* d2(d3y* d2(dd)* d2(dd)* d2(d6)*
a3 d3(dl)*  d3(d2)* d3(d3)* d3(d4)* d3(dd)*  d3(d6)*
d4 dA(dl)* d4(d2)* d4(d3)* dA(dd)* da(dd)*  dd(de)*
fois} ds(dl)*  d5(d2)*  d5(d3)*  db(dd)*  dS(db)*  do(dB)*
a6 de(dl)*  de(d2)* d6(d3)* do(dd)* de(dd)*  db(dB)*

dn(dN) is constructable for all N> 1, for all n> 1 provided that none of the N reflection
axes bisect a fundamental regjon.

and if restrictions on the symmetric characteristics of the design unit are
required. A dash indicates that, using the given symmetry group of design unit,
the construction of that particular symmetry subgroup is not possible. An aster-
isk indicates that although the symmetry subgroup is constructable, restrictions
are imposed on the positioning and orientation of the design unit.

Construction of monotranslational designs

The methods for constructing monotranslational designs, in this classification
system, are similar to those discussed in Section 2.12. In each of the 14 pyxn(c¢N)
and pyxn(dN) subgroups, the design unit must extend at some point to at least
one, and where possible both of the outside straight edges of the strip enclosing
the overall design. It will also be assumed that no additional symmetries of the
form discussed in Chapter 2, Section 2.12, are induced into the design structure
on applying the generating symmetries.

The boundaries of the fundamental regions may remain as part of the design
units after being used in the construction process to give a form of patterned
tiling as described for design types (i) and (iv) in Chapter 2. However, this limits
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the possible symmetrical characteristics of the design units. Therefore, to
produce a larger range of design symmetry subgroups it is more suitable to
produce a design of type (ii) or (v) (see Chapter 2, Section 2.12).

Construction methods are given which may be derived by simply following the
methods described previously in Chapter 2. The only extra conditions concern
the symmetry of the design unit and its positioning and orientation relative to the
symmetries in the underlying structure of the design. These are described in
detail for each symmetry group subgroup along with a selection of examples to
illustrate these restrictions.

3.7.1 Construction of symmetry subgroups pyxn(cN)

A strip is divided either into parallelogram-shaped or into alternatively shaped
fundamental regions as described in Chapter 2 for monotranslational design
types (1) and (iii). A design unit having specific N-fold rotational symmetry only is
added to one of these regions and then mapped onto the remaining ones by
applying the generating symmetries. In some instances an even-fold rotationally
symmetric design unit would induce extra symmetries into the structure of the
design thus increasing its order of symmetry. Consequently this would alter the
symmetry group under construction. The following criteria given below, for each
symmetry subgroup, relate to the conditions imposed on the initial design unit
added to the strip.

3.7.1.1 Symmetry subgroup p111(cN)

A pl111(cN) design may be constructed from any N-fold rotationally symmetric
design unit provided that N is an odd number. Any design unit with even-fold
rotational symmetry would induce two-fold rotational symmetry into the design
structure thus altering the symmetry group. An illustration showing the construc-
tion of symmetry subgroup p111(¢N) is given in Fig. 3.14(a) using a ¢3 design
unit.

3.7.1.2 Symmetry subgroup plal(cN)

To construct a plal(cN) design, if N is an odd number, the positioning of
the design unit inside the fundamental region is not critical. If N is even, its centre
of rotation must not intersect the longitudinal axis of the strip. Figure 3.14(b)
shows an illustration of the construction of symmetry subgroup plal(c¢N) using
a ¢2 design unit. In this instance (as in the second example in Fig. 2.25(vi)
showing the construction of plal) the design is based on two strips, one of which
is a glide—reflection of the other. The left and right hand edges of the shaded fun-
damental region are translations of each other and the bottom edge is composed
of two parts, the right hand side of which is a glide-reflection of the left hand
side.

3.7.1.3  Symmetry subgroup plml(¢N)

There are no limitations on the value of N or the positioning of the centre of
rotation of the design unit within the fundamental region for the construction of
a plml1(cN) design. An illustration showing the construction of symmetry sub-
group plml(cN)is givenin Fig. 3.14(c) using a ¢2 design unit.

3.7.1.4 Symmetry subgroup pml11(cN)

To construct a pm11(cN) design, if N is an odd number, the positioning of the
design unit inside the fundamental region is not critical. If N is even, its centre of
rotation must not lie half way between transverse axes of reflectional symmetry
of the design structure. An illustration showing the construction of symmetry
subgroup pm11(cN)1s given in Fig. 3.14(d) using a ¢2 design unit.
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Figure 3.12 Example of symmetry subgroup p2(dl)in (a) a pattern and (b) projection of
the structure C4(CHy),- (b) Source: Hammond C, ‘Introduction to Crystallography’,
Microscopy Handbooks 19, Oxford University Press, 1990. Reproduced by permission
of McGraw Hill from an original publication 1970.
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Figure 3.13 Construction of finite design symmetry groups cn(cN), cn(dN), dn(cN) and dn(dN).
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3.7.1.5 Symmetry subgroup pl12(¢cN)

To construct a p112(¢N) design, if N is an odd number, the positioning of the
design unit inside the fundamental region is not critical. If N is even, its centre of
rotation must not lie on the longitudinal axis of the strip half way between
centres of two-fold rotation of the design structure. An illustration showing the
construction of symmetry subgroup pl12(cN) is given in Fig. 3.14(e) using a c4
design unit.

3.7.1.6 Symmetry subgroup pma2(cN)

To construct a pma2(cN) design, the positioning of the design unit inside the
fundamental region, for any N, is not critical. An illustration showing the con-
struction of symmetry subgroup pma2(cN) is given in Fig. 3.14(f) using a ¢5
design unit.

3.7.1.7 Symmetry subgroup pmm2(cN)

To construct a pmm2(cN) design, the positioning of the design unit inside the
fundamental region, for any N, is not critical. Figure 3.14(g) shows an illustration
of the construction of symmetry subgroup pmm?2(cN ) using a ¢4 design unit.

3.7.2 The construction of symmetry subgroups pyxn(dN)

A strip is divided either into parallelogram-shaped or into alternatively shaped
fundamental regions and a design unit having N reflection axes and hence N-fold
rotational symmetry is added to one of these regions and then mapped onto the
remaining ones by applying the generating symmetries. The following criteria
given below, for each symmetry subgroup, relate to the conditions imposed on the
initial design unit added to the strip.

3.7.2.1 Symmetry subgroup pl11(dN)

A pl11(dN) design may be constructed provided that N is an odd number. None
of the reflection axes may coincide with the longitudinal axis or any transverse
axis of the strip. An even number of reflection axes automatically results in a
centre of even-fold rotational symmetry at their point of intersection. This would
induce two-fold rotational symmetry into the design structure thus altering its
symmetry group. An illustration showing the construction of symmetry sub-
grouppl11(dN)is given in Fig. 3.15(a) using a d1 design unit.

3.7.2.2 Symmetry subgroup plal(dN)

To construct a plal(dN) design N may be any number provided that none of the
reflection axes coincides with the longitudinal axis or any transverse axis of
the strip. If N is even the point of intersection of the reflection axes must not
coincide with the longitudinal axis of the strip. Figure 3.15(b) shows an illustra-
tion of the construction of symmetry subgroup plal(dN) using a d1 design unit.

3.7.2.3 Symmetry subgroup plml(dN)

To construct a plm1(dN) design N may be any number provided that none of the
reflection axes lies parallel to any transverse axis of the strip. An illustration
showing the construction of symmetry subgroup plml(dN) is given in Fig.
3.15(c) using a d1 design unit.

3.7.2.4 Symmetry subgroup pm11(dN)

To construct a pm11(dN) design N may be any number provided that none of the
reflection axes coincides with the longitudinal axis or lies parallel to and half way
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Table 3.6 Construction of symmetry subgroups pyxn(cN)

Symmetry group of Symmetry group of design unit

design structure cl c2 c3 c4 c5 c6

pl11l plli(cl) — pl111(c3) — pl111(c5) —

plal plal(cl) plal(c2)* plal(c3) plal(cd)* plal(ch) plal(cey*
plmi plmi(cl) plmi(c2) plmi(c3) plmi(c4d) plml(ch) p1lml(cB)
pmll pmli(cl) pmll(c2)* pm11(c3) pmli(cd)* pm11(ch) pm1l(c6)*
pl12 pl12(cl) pl12(c2)* p112(c3) pl12(c4y* p112(ch) pl12(ce)*
pma2 pma2(cl) pma2(c2) pma2(c3) pma2(c4) pma2(ch) pma2(c6)
pmm?2 pmm2(cl) pmm2(c2) pmm2(c3) pmm2(c4) pmm2(c5) pmm2(c6)

Table 3.7 Construction of symmetry subgroups pyxn(dN)

Symmetry group of Symmetry group of design unit

design structure a1 a2 d3 a4 fois} a6

pl11 pl11(dl)* — p111(d3)* — pl11(d5)* —

plal plal(dl)* plal(d2y* plal(d3y* plal(day* plal(dsy* plal(dey*
plml plmi(dl)* plmi(d2)* pLlmi(d3)* plmi(day* plmi(ds)* plmi(de)*
pmll pmll(dl)* pmli(d2)* pml1(d3)* pmll(day* pm11(ds5)* pmli(de)*
pl12 pl12(d1)* pl12(d2)* p112(d3)* pl12(da)* pl12(d5)* pl12(de)*
pma2 pma2(dily* pma2(d2)* pma2(d3)* pma2(day* pma2(ds)* pma2(de)*
pmm?2 pmm2(dly* pmm2(d2)* pmm2(d3)* pmm2(day* pmm2(dsy* pmm2(de)*

between the transverse reflection axes of the design structure. Figure 3.15(d)
shows an illustration of the construction of symmetry subgroup pm11(dN) using
a d2 design unit.

3.7.2.5 Symmetry subgroup p112(dN)

To construct a p112(dN) design N may be any number provided that none of the
reflection axes coincides with the longitudinal axis. Neither must any of them lie
parallel to a transverse axis and half way between or through the two-fold centres
of rotation of the design stucture. An illustration showing the construction of
symmetry subgroup p112(dN) is given in Fig. 3.15(e) using a d3 design unit.

3.7.2.6 Symmetry subgroup pma2(dN)

To construct a pma2(dN) design N may be any number provided that none of the
reflection axes coincides with the longitudinal axis. Neither must any transverse
reflection axis of the design unit pass through a centre of two-fold rotation of the
design structure. Figure 3.15(f) shows an illustration of the construction of sym-
metry subgroup pma2(dN) using a d4 design unit.

3.7.2.7 Symmetry subgroup pmm2(dN )

To construct a pmm2(dN) design, N may be any number provided that none of
the reflection axes lies parallel to and half way between the transverse reflection
axes of the design structure. An illustration showing the construction of symme-
try subgroup pmm2(dN)is given in Fig. 3.15(g) using a d3 design unit.

Tables 3.6 and 3.7 summarise the information given above by indicating, for
n=1to 6 and N=1 to 6, whether a particular symmetry subgroup is con-
structable and if restrictions on the symmetric characteristics of the design unit
are required. A dash indicates that, using the given symmetry group of design
unit, the construction of that particular symmetry subgroup is not possible.
An asterisk indicates that the symmetrical characteristics, positioning and
orientation of the design unit inside a fundamental region are critical. In this
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Figure 3.15 Construction of monotranslational design symmetry subgroups pyxn(dN).
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3.8

instance the relevant conditions, for each symmetry subgroup, have been
explained above.

Construction of ditranslational designs

The methods for constructing ditranslational designs, in this classification
system, are similar to those discussed in Section 2.13. Again, in each of the 34
puxy(cN) and puxy(dN) subgroups it is assumed that no additional symmetries,
of the form described for monotranslational designs in Section 2.12, are induced
into the design structure on applying the generating symmetries.

The extra conditions concerning the symmetry of the initial design unit and
its positioning and orientation in relation to the symmetries in the underlying
structure of the design are described in detail for each symmetry subgroup. When
the positioning of the design unit is not critical, no further explanation is given.
For symmetry groups pl and p2, extensions have been made to include designs
based on any of the five lattice structures. However, for these two cases, using a
rhombic, hexagonal or ordinary parallelogram structure as a basis would require
an adaptation to the construction processes if used in the context of screen print-
ing (as described in Chapter 2). This is due to the non-perpendicular translation
directions of the unit cell in these lattices. In these instances translation 7, would
be taken to be the length and direction of an oblique side of unit cell (i.e. a side
which is not parallel to the longitudinal axis of the strip).

3.8.1 Construction of symmetry subgroups pnxy(cN)

The initial design unit, having specific N-fold rotational symmetry, is added to a
symmetrically or asymmetrically-shaped fundamental region in a strip or double
strip of unit cells. The strip and remainder of the design is completed by follow-
ing the methods described in Chapter 2. In some cases (those marked with an
asterisk in Table 3.8) conditions are imposed on the positioning of the centre of
N-fold rotation and in others (those marked with a dash) a pnxy(cN) subgroup is
not constructable without altering the underlying symmetry group of the design
structure. Table 3.8 is given after Section 3.8. The details of the process of con-
struction for each pnxy(cN) subgroup are discussed in the following subsections
with a selection of illustrations.

3.8.1.1 Symmetry subgroupsplxy(cN)and clxy(cN)

Symmetry subgroup p1(¢N)

A pl(cN)design may be constructed on any of the five types of lattice however, its
choice is significant in relation to the limitations on the possible values that N can
take. If N is even, whatever the underlying lattice structure, there is no p1(cN)
subgroup. If N is an odd number which is a multiple of three, there is no
pl(cN) subgroup on a hexagonal lattice. For each of the four remaining lattices, a
pl(cN) subgroup is constructable for any odd number from a p111(¢N) mono-
translational design. An illustration showing the construction of symmetry sub-
group pl(c7)is given in Fig. 3.16(a).

Symmetry subgroup pg(¢N)

A pg(cN) design may be constructed on either a rectangular or square lattice.
If N is even, the N-fold centre of rotation of the design unit must not lie on
the glide—reflection axis or at a point, perpendicular distance 1/41 from the
glide—reflection axis of the initial plal monotranslational design. An illustration
showing the construction of symmetry subgroup pg(c2)is given in Fig. 3.16(b).

Symmetry subgroup pm(cN)
A pm(cN) design may be constructed on either a rectangular or square lattice. If
N is even, the N-fold centre of rotation of the design unit must not lie at a point,
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perpendicular distance 1/4 W from the reflection axis of the initial plm1 mono-
translational design. An illustration showing the construction of symmetry sub-
group pm(c2)is given in Fig. 3.16(c).

Symmetry subgroup cm(cN)

A cm(cN) design may be constructed on either a square, rhombic or hexagonal
lattice. Following a similar method of construction to that of symmetry group
¢m described in Section 2.13.1 (and illustrated in Fig. 2.36), if N is even, the N-
fold centre of rotation of the design unit must not lie at a point, on the
glide—reflection axis of the initial plal monotranslational design. Furthermore,
if N is a multiple of three and the design is constructed on a hexagonal lattice,
the N-fold centre of rotation of the design unit must not lie at a point, 1/6 W from
the glide-reflection axis of the initial plal monotranslational design. An illustra-
tion showing the construction of symmetry subgroup cm(c3) is given in Fig.
3.16(d).

3.8.1.2 Symmetry subgroups p2xy(cN) and 2xy(cN)

Symmetry subgroups p2(cN)

A p2(cN) design may be constructed on any of the five types of lattice. If Nisan
even number, the N-fold centre of rotation of the design unit must not lie at a
point half way along a straight line joining adjacent centres of two-fold rotation
of the underlying structure. If N is an odd number which is a multiple of three,
there is no p2(cN) subgroup on a hexagonal lattice if the N-fold centre of rotation
is positioned at the centre of one of the two equilateral triangles of the unit cell.
For each of the four remaining lattices, a p2(¢N) subgroup is constructable for
any odd number. An illustration showing the construction of symmetry sub-
group p2(c3)is given in Fig. 3.17(a).

Symmetry subgroup pgg(cN)

A pgg(cN) design may be constructed on either a rectangular or square lattice. If
N is even, the N-fold centre of rotation of the design unit must not lie at a point
half way along a straight line joining adjacent centres of two-fold rotation of the
underlying structure of the initial p112 monotranslational design. An illustration
showing the construction of symmetry subgroup pgg(c2) is given in Fig. 3.17(b)
on a rectangular lattice.

Symmetry subgroup pmg(cN)

A pmg(cN) design may be constructed on either a rectangular or square lattice.
There are no limitations imposed on the value or positioning of the N-fold centre
of rotation of the design unit in the initial pma2 monotranslational design. An
illustration showing the construction of symmetry subgroup pmg(c5) is given in
Fig. 3.17(c).

Symmetry subgroup pmm(cN)

A pmm(cN) design may be constructed on either a rectangular or square lattice. If
Niseven, the N-fold centre of rotation of the design unit must not lie at a point at
the centre of a fundamental region in the initial pmm2 monotranslational design.
An illustration showing the construction of symmetry subgroup pmm(c4) is given
in Fig. 3.17(d).

Symmetry subgroup cmm(cN)

A cmm(cN) design may be constructed on either a square, thombic or hexagonal
lattice. There are no limitations imposed on the value of N or the positioning of
the N-fold centre of rotation of the design unit in the initial pma2 monotransla-
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tional design. An illustration showing the construction of symmetry subgroup
cmm(c2)is given in Fig. 3.17(e).

3.8.1.3 Symmetry subgroups p3xy(cN)

Symmetry subgroup p3xy(cN)

A p3(cN) design may be constructed on a hexagonal lattice only. If N is even, the
centre of rotation of the design unit must not lie on the point of intersection of
the two diagonals of the unit cell (which is equivalent to the centre of a rhombic
fundamental). An illustration showing the construction of symmetry subgroup
p3(c2)is givenin Fig. 3.18(a).

Symmetry subgroup p31m(cN)

A p31m(cN) design may be constructed on a hexagonal lattice only. There are no
limitations imposed on the value of N or the positioning of the N-fold centre of
rotation of the design unit. An illustration showing the construction of symme-
try subgroup p31m(c2) is given in Fig. 3.18(b).

Symmetry subgroup p3m1(cN)

A p3m1(cN) design may be constructed on a hexagonal lattice only. If N is a mul-
tiple of three, the centre of rotation of the design unit must not lie at the centre of
the equilateral triangular shaped fundamental region. An illustration showing
the construction of symmetry subgroup p3m1(c4)is givenin Fig. 3.18(c).

3.8.1.4 Symmetry subgroups pdxy(cN)

Symmetry subgroups p4(c¢N)

A p4(cN) design may be constructed on a square lattice only. If N is even, the
centre of rotation of the design unit must not lie at the centre of a square funda-
mental region (which is equivalent to the mid-point of a straight line joining adja-
cent centres of four-fold rotation). An illustration showing the construction of
symmetry subgroup p4(c4) is given in Fig. 3.19(a).

Symmetry subgroup pdg(cN)

A p4g(cN) design may be constructed on a square lattice only. There are no limi-
tations imposed on the value of N or the positioning of the N-fold centre of rota-
tion of the design unit. An illustration showing the construction of symmetry
subgroup p4g(c2) is given in Fig. 3.19(b).

Symmetry subgroup pdm(cN)

A pdm(cN) design may be constructed on a square lattice only. There are no limi-
tations imposed on the value of N or the positioning of the N-fold centre of rota-
tion of the design unit. An illustration showing the construction of symmetry
subgroup p4m(c3) is given in Fig. 3.19(c).

3.8.1.5 Symmetry subgroups p6xy(cN)

Symmetry subgroup p6(cN)

A p6(¢N) design may be constructed on a hexagonal lattice only. There are no
limitations imposed on the value of & or the positioning of the N-fold centre of
rotation of the design unit. An illustration showing the construction of symme-
try subgroup p6(c5) is given in Fig. 3.20(a).

Symmetry subgroup p6m(cN)
A p6m(cN) design may be constructed on a hexagonal lattice only. There are no
limitations imposed on the value of & or the positioning of the N-fold centre of
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Figure 3.17 (cont.)

rotation of the design unit. An illustration showing the construction of symme-
try subgroup p6m(c2) is given in Fig. 3.20(b).

3.8.2 Construction of symmetry subgroups pnxy(dN)

The initial design unit, having N reflection axes and N-fold rotational symmetry,
is added to a symmetrically or asymmetrically-shaped fundamental region in a
strip or double strip of unit cells. The strip and remainder of the design is com-
pleted by following the methods described in Chapter 2. In some cases (those
marked with an asterisk in Table 3.9) conditions are imposed on the positioning
of the N reflection axes and in others (those marked with a dash) a prxy(dN) sub-
group is not constructable without altering the underlying symmetry group of
the design structure. Table 3.9 is given after Section 3.8. The details of the process
of construction for each pnxy(dN) subgroup are discussed in the following sub-
sections with a selection of illustrations.

3.8.2.1 Symmetry subgroupsplxy(dN) and clxy(dN)

Symmetry subgroup p1(dN)

A p1(dN) design may be constructed on any of the five types of lattice. However,
the choice of lattice is significant in relation to the limitations on the possible
values that N can take. If N is even, whatever the underlying lattice structure,
there is no pl(dN) subgroup. If N is an odd number which is a multiple of
three, there is no p1(dN) subgroup on a hexagonal lattice. For any other odd
number, the design unit must have no reflection axes either parallel or perpendic-
ular to the sides or diagonals of the unit cell of a hexagonal lattice. For each
of the four remaining lattices, a pl(dN) subgroup is constructable for any
odd number provided that the following conditions are satisfied: on a rectangular
lattice, the design unit must have no reflection axes parallel to the sides of the
unit cell; on a square lattice it must have no reflection axes parallel to the sides
or diagonals of the unit cell; on a rthombic lattice it must have no reflection
axes parallel to the diagonals of the unit cell; on an ordinary parallelogram
lattice there are no further limitations beyond N being odd. An illustration
showing the construction of symmetry subgroup p1(dN) is given in Fig. 3.21(a)
for N=3.
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Figure 3.20 Construction of ditranslational design symmetry subgroups p6xy (cN).

Symmetry subgroup pg(dN )

A pg(dN) design may be constructed on either a rectangular or square lattice.
Any reflection axis of the design unit must not be perpendicular to, nor be paral-
lel to and coincide with nor be at perpendicular distance 1/4W from the
glide—reflection axis of the initial plal monotranslational design. Nor must the
centre of rotation of a dN design unit lie at a point of perpendicular distance
1/4W from the glide—reflection axis. An illustration showing the construction of
symmetry subgroup pg(dN)is given in Fig. 3.21(b) for N=1.

Symmetry subgroup pm(dN )

A pm(dN) design may be constructed on either a rectangular or square lattice.
Any reflection axis of the design unit must not be perpendicular to, nor be paral-
lel to and at perpendicular distance 1/41 from the reflection axis of the initial
plm] monotranslational design. Nor must the centre of rotation of a dN design
unit lie at a point of perpendicular distance 1/4 W from the reflection axis if N is
even. An illustration showing the construction of symmetry subgroup pm(dN) is
given in Fig. 3.21(c) for N = 3.
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Symmetry subgroup cm(dN )

A cm(dN) design is based on either a square, thombic or hexagonal lattice.
However the following method of construction is similar to that described for
symmetry group c¢m in Section 2.13.1 (and illustrated in Fig. 2.36) where the
initial strip is a plal design based on a square or rectangular lattice. If N is even,
none of the N reflection axes of the design unit must lie parallel to, nor must their
point of intersection lie at a point on, the glide-reflection axis of the initial mono-
translational design of unit cells. Nor must a reflection axis, for any N, lie perpen-
dicular to the glide—reflection axis of the initial plal monotranslational design.
An illustration showing the construction of symmetry subgroup cm(dN) is given
in Fig. 3.21(d) for N=1.

3.8.2.2 Symmetry subgroups p2xy(dN) and ¢2xy(dN)

Symmetry subgroups p2(dN)

A p2(dN) design may be constructed on any of the five types of lattice. For a
design structured on an ordinary parallelogram lattice there are no restrictive
conditions imposed on a design unit having one reflection axis, provided that the
unit cell is not comprised of two rhombic parallelograms (in which case a reflec-
tion axis must not coincide with a diagonal of a rhombic-shaped fundamental
region). If the design unit has more than one reflection axis the intersection of the
reflection axes forms a centre of rotation which must not be positioned half way
along a straight line joining adjacent centres of two-fold rotation.

For a rectangular lattice, any reflection axes may not be positioned parallel to
the longitudinal axis of the original monotranslational design or perpendicular
to this axis and pass through a point half way along a straight line joining adja-
cent centres of two-fold rotation. These conditions must also hold for a design
structured on a square lattice with the additional requirements that the design
unit may have no reflection axes coinciding with the diagonals of the unit cell.

For the rhombic lattice the design unit must have no reflection axes coinciding
with the diagonals of the unit cell. This condition must also hold for the hexago-
nal lattice together with the design unit having no reflection axes bisecting one of
the two equilateral triangles which make up a unit cell of the initial »112 mono-
translational design. An illustration showing the construction of symmetry sub-
group p2(dN)is given in Fig. 3.22(a) for N = 3.

Symmetry subgroup pgg(dN)

A pgg(dN) design may be constructed on either a rectangular or square lattice.
For a rectangular fundamental region or one based on a rectangle, if N =1 the
reflection axis of the design unit must not pass through a point positioned half
way along a straight line joining adjacent centres of two-fold rotation and be par-
allel to the sides of a unit cell. If N =2 no reflection axes may be parallel to the
sides of a unit cell. For a square fundamental region or one based on a square, the
design unit must satisfy these same conditions as well as having no reflection axes
passing through a point positioned half way along a straight line joining adjacent
centres of two-fold rotation and parallel to the diagonals of a fundamental
region in the initial p112 monotranslational design. An illustration showing the
construction of symmetry subgroup pgg(dN)is given in Fig. 3.22(b) for N =2.

Symmetry subgroup pmg(dN)

A pmg(dN) design may be constructed on either a rectangular or square lattice. In
either case, with a rectangular fundamental region or one based on a rectangle
(or a square fundamental region or one based on a square), any of the reflection
axes of the design unit must not liec on the glide-reflection axis nor parallel to it
and at a distance 1/4W from it in the initial pma2 monotranslational design.
Neither must any lie perpendicular to the glide-reflection axis and be positioned
half way between adjacent reflection axes in the initial strip (in which case a
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reflection axis would pass through a centre of two-fold rotation). An illustration
showing the construction of symmetry subgroup pmg(dN) is given in Fig. 3.22(c)
forN=1.

Symmetry subgroup pmm(dN )

A pmm(dN) design may be constructed on either a rectangular or square lattice.
For a rectangular lattice, the design unit must have no reflection axes half way
between and parallel to lines of reflectional symmetry of the underlying struc-
ture. For a square lattice the design unit must satisfy these same conditions and
have no reflection axes coinciding with the diagonals of the square fundamental
region. For both lattice structures, the point of intersection of the reflection axes
(for N = 2) forms a centre of rotation which, for even N, must not be positioned at
the centre of the fundamental region. An illustration showing the construction of
symmetry subgroup pmm(dN)is givenin Fig, 3.22(d)for N=1.

Symmetry subgroup cmm(dN)

A cmm(dN) design may be constructed on either a square, thombic or hexagonal
lattice. However, the pma2 monotranslational design from which a cmm(dN)
design may be constructed is based on a square or rectangular lattice. If the
fundamental region is rectangular, the initial design unit may have no reflection
axes either coinciding with the glide-reflection axis or perpendicular to it and
half way between adjacent reflection axes in the monotranslational design struc-
ture. If the fundamental region is square (or the fundamental region is derived
from a square) the design unit must satisfy these same conditions, and if N is
even, there must be no reflection axes coinciding with the diagonals of the square
fundamental region in the initial pma2 monotranslational design. An illustration
showing the construction of symmetry subgroup cmm(dN) is given in Fig. 3.22(e)
for N=2.

3.8.2.3 Symmetry subgroups p3xy(dN)

Symmetry subgroup p3(dN)

A p3(dN) design may be constructed on a hexagonal lattice only. The design unit
must have no reflection axes coinciding with the diagonals of the unit cell. If N is
even, the point of intersection of the reflection axes must not coincide with the
point of intersection of the diagonals of the unit cell. An illustration showing the
construction of symmetry subgroup p3(dN) is given in Fig. 3.23(a) for N=1.

Symmetry subgroup p31m(dN)

A p31m(dN) design may be constructed on a hexagonal lattice only. The design
unit must have no reflection axes which bisect the isosceles triangle-shaped fun-
damental region. An illustration showing the construction of symmetry sub-
group p31m(dN)is given in Fig. 3.23(b) for N =1.

Symmetry subgroup p3m1(dN)

A p3m1(dN) design may be constructed on a hexagonal lattice only. The design
unit must have no reflection axes which bisect an equilateral triangle-shaped fun-
damental region or a centre of n-fold rotation, where # is a multiple of three,
passing through the centre of this triangle. An illustration showing the construc-
tion of symmetry subgroup p3m1(dN)is givenin Fig. 3.23(c) for N =4.

3.8.2.4 Symmetry subgroups pdxy(dN)

Symmetry subgroup p4(dN)
A p4(dN) design may be constructed on a square lattice only. The design unit
inside the fundamental region must have no reflection axes coinciding with the
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Figure 3.22 Construction of ditranslational design symmetry subgroups p2xy(dN)and c2xy(dN).

diagonals of the unit cell. Also, if Nis even, the intersection of the reflection axes
must not coincide with the centre of the square fundamental region (or the equiv-
alent position for a fundamental region derived from a square). An illustration
showing the construction of symmetry subgroup p4(dN) is given in Fig. 3.24(a)
for N=3.

Symmetry subgroup pdg(dN)
A p4g(dN) design may be constructed on a square lattice only. The design unit
must have no reflection axes coinciding with the diagonals of the unit cell. An
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illustration showing the construction of symmetry subgroup p4g(dN) is given in
Fig.3.24(b) for N =2.

Symmetry subgroup pdm(dN)

A p4m(dN) design may be constructed on a square lattice only. The design unit
must have no reflection axes which bisect the fundamental region. An illustration
showing the construction of symmetry subgroup pdm(dN) is given in Fig. 3.24(c)
forN=1.

3.8.2.5 Symmetry subgroups poxy(dN)

Symmetry subgroup p6(dN)

A p6(dN) design may be constructed on a hexagonal lattice only. The design unit
must have no reflection axes coinciding with the long diagonal of the unit cell. An
illustration showing the construction of symmetry subgroup p6(dN) is given in
Fig.3.25(a)for N=3.

Symmetry subgroup p6m(dN)
A p6m(dN) design may be constructed on a hexagonal lattice only. The design
unit may have reflection axes at any position within the fundamental region. An
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Figure 3.25 Construction of ditranslational design symmetry subgroups p6xy{dN).

illustration showing the construction of symmetry subgroup p6m(dN) is given in
Fig. 3.25(b)for N=1.

The construction of a design symmetry subgroup, as explained previously, is
dependent on a variety of factors. Tables 3.8 and 3.9 indicate, for N=1 to 6,
whether a particular symmetry subgroup is constructable and if there are restric-
tions on the positioning and symmetric characteristics of the design unit.

3.9 Summary

The classification by symmetry group of design structure and design unit pro-
vides a new approach to design analysis. Some of the designs constructed from
this classification system seem to exhibit a more ‘chaotic’ or ‘random’ appearance
depending on the symmetry group and subgroup. (For example p2(c3) in Fig.
3.17, pg(dl) in Fig. 3.21 and pgg(d2), p2(d3), cmm(d2) in Fig. 3.22 all seem to
display what could be described as ‘organised chaos’.) However, this hypothesis
needs to be clarified with further investigation and illustration.
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Table 3.8 Construction of symmetry subgroups pnxy{(cN)

Symmetry

group of

design Symmetry group of design unit

structure Lattice type cl c2 c3 c4 cb c6

pl parallelogram pl(cl) — pl(c3) — pl(c5) —
rectangular pl(cl) — pl(c3) — pl(c5) —
square pl(cl) — pl(c3) — pl(c5) —
rhombic pl(cl) — pl(c3) — pl(c5) —
hexagonal pl(cl) — — — pl(c5) —

pg rectangular pglcl) pglc2y* pg(c3) pglcay* pg(cd) pg(cB)*
square pgicl) pg(c2)* pg(c3) pg(ca)* pg(c5) pg(cB)*

pm rectangular pm(cl) pm(c2)* pm(c3) pm(cd)* pm(cD) pm(cB)*
square pm(cl) pm(c2)* pm(c3) pm(cd)* pm(cD) pm(cB)*

cm square cm(cl) cm(c2)* cm(c3) cm(cd)* cm(ch) cm(cB)*
rhombic cm(cl) cm(c2)* cm(c3) cm(cd)* cm(ch) cm(cB)*
hexagonal cm(cl) cm(c2)* cm(c3) cm(cd)* cm(ch) cm(cB)*

p2 parallelogram p2(cl) p2(c2)* p2(c3) p2(ca)* p2(c5) p2(ce)*
rectangular p2(cl) p2(c2)* p2(c3) p2(ca)* p2(c5) p2(ce)*
square p2(cl) p2(c2)* p2(c3) p2(ca)* p2(c5) p2(ce)*
rhombic p2(cl) p2(c2)* p2(c3) p2(ca)* p2(c5) p2(ce)*
hexagonal p2(cl) p2(c2)* p2(c3y* p2(ca)* p2(c5) p2(ce)*

pgg rectangular pgg(cl) pgg(c2)* pgg(c3) pgg(ca)* pgg(cS) pgg(ce)*
square pgg(cl) pgg(c2)* pgg(c3) pgg(ca)* pgg(cS) pgg(ce)*

pmg rectangular pmg(cl) pmg(c2) pmg(c3) pmg(c4) pmg(c5) pmg(c6)
square pmg(cl) pmg(c2) pmg(c3) pmg(c4) pmg(c5) pmg(cB)

pmm rectangular pmmicl) pmm(c2)* pmm(c3) pmmicdy* pmm(c5) pmm(cBy*
square pmmicl) pmm(c2)* pmm(c3) pmmicdy* pmm(c5) pmm(cBy*

cmm square cmmicl) cmm(c2) cmm(c3) cmm(c4) cmmi(ch) cmm(co)
rhombic cmmicl) cmm(c2) cmm(c3) cmm(c4) cmm(ch) cmm(cB)
hexagonal cmmicl) cmm(c2) cmm(c3) cmm(c4) cmm(ch) cmm(co)

p3 hexagonal p3(cl) p3(c2)* p3(c3) p3(ca)* p3(c5) p3(cB)*

p31m hexagonal p31mi(cl) p31m(c2) p31m(c3) p31mi(c4d) p31m(ch) p31m(c6)

p3mi hexagonal p3mi(cl) p3mi(c2) p3ml(c3)* p3mi(c4d) p3m1(ch) p3ml(c6)*

p4 square p4(cl) pa(c2)* p4(c3) pa(ca)* p4(c5) pa(cB)*

pag square p4g(cl) pag(c2) pag(c3) pag(ca) pag(cS) pag(cB)

p4m square pdm(cl) padm(c2) p4m(c3) pdm(ca) pa4m(cd) p4m(c6)

p6 hexagonal pé(cl) pB(c2) pB(c3) pB(c4) pB(c5) pB(cB)

pem hexagonal pém(cl) pem(c2) pem(c3) pem(cd) pem(ch) pem(co)

Throughout this chapter a classification system has been developed with
the primary aim of encouraging awareness amongst designers of the possible
symmetrical characteristics a motif may have within the fundamental region of
a symmetry group. Notation has been devised to account for the categories
of design under discussion. Explanations and illustrations have been given
to promote understanding of the concepts involved. Schematic and additional
illustrations have been shown for a wide range of the designs which may be
categorised in this classification system. Construction techniques have been
discussed for finite, monotranslational and ditranslational designs for all values
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Table 3.9 Construction of symmetry subgroups pnxy(dN)

Symmetry

group of

design Symmetry group of design unit

structure Lattice type dl a2 d3 da fols} 10.5)

pl parallelogram pl(dl) — p1(d3) — pl(dd) —
rectangular pl(dl)* — pl(d3)* — plL(dd)* —
square pl(dl)* — pl(d3)* — plL(dd)* —
rhombic pl(dl)* — pl(d3)* — plL(dd)* —
hexagonal pl(dl)* — — — plL(dd)* —

pg rectangular pgld1)* pgld2)* pg(d3)* pglday* pg(do)* pg(dB)*
square pgld1)* pgld2)* pg(d3)* pglday* pg(do)* pg(dB)*

pm rectangular pm(dly* pm(d2)* pm(d3y* pm(day* pm(do)* pm(dey*
square pm(dly* pm(d2)* pm(d3y* pm(day* pm(do)* pm(dey*

cm square cm(dly* cm(d2y* cm(d3y* cm(day* cm(dsy* cm(dey*
rhombic cm(dly* cm(d2y* cm(d3y* cm(day* cm(dsy* cm(dey*
hexagonal cm(dly* cm(d2y* cm(d3y* cm(day* cm(dsy* cm(dey*

p2 parallelogram p2(d1)* p2(d2)* p2(d3)* p2(day* p2(ds)* p2(de)*
rectangular p2(d1)* p2(d2)* p2(d3)* p2(day* p2(ds)* p2(de)*
square p2(d1)* p2(d2)* p2(d3)* p2(day* p2(ds)* p2(de)*
rhombic p2(d1)* p2(d2)* p2(d3)* p2(day* p2(ds)* p2(de)*
hexagonal p2(d1)* p2(d2)* p2(d3)* p2(day* p2(ds)* p2(de)*

pgg rectangular pgg(d1)* pgg(d2)* pgg(d3)* pgg(da)* pgg(do)* pgg(de)*
square pgg(d1)* pgg(d2)* pgg(d3)* pgg(da)* pgg(do)* pgg(de)*

pmg rectangular pmg(dl)* pmg(d2)* pmg(d3)* pmg(da)* pmg(dd)* pmg(de)*
square pmgldl)*  pmgld2)*  pmgdd)*  pmglad)*  pmglds)*  pmg(de)*

pmm rectangular pmm(dl)* pmm(d2)* pmm(d3)* pmm(day* pmm(dd)* pmm(de)*
square pmm(dl)* pmm(d2)* pmm(d3)* pmm(day* pmm(dd)* pmm(de)*

cmm square cmm(dly* cmm(d2y* cmm(d3)* cmm(day* cmm(dby* cmm(de)*
rhombic cmm(dly* cmm(d2y* cmm(d3)* cmm(day* cmm(dby* cmm(de)*
hexagonal cmm(dly* cmm(d2y* cmm(d3)* cmm(day* cmm(dby* cmm(de)*

p3 hexagonal p3(d1)* p3(d2)* p3(d3)* p3(day* p3(dd)* p3(de)*

p31m hexagonal p31m(dl)* p31m(d2)* p31m(d3)* p31m(day* p31m(d5)* p31m(de)*

p3mi hexagonal p3mi(dl)* p3mi(d2)* p3mi(d3)* p3mi(day* p3m1(d5)* p3mi(de)*

p4 square pa(dLy* pA(d2)* pa(d3)* pa(day* pA(do)* pa(dB)*

pag square pag(dly* pag(d2y* pag(d3)* pag(day* pag(doy* pag(de)*

p4m square pdm(dl)* pam(d2)* p4m(d3)* pdm(day* pam(dd)* pa4m(de)*

p6 hexagonal pB(d1)* pe(d2)* pB(d3)* pB(day* pB(do)* pB(dB)*

pem hexagonal pem(dl) pém(d2) pem(d3) pem(da) pem(ds) pBm(de)

of N, the number of reflection axes and/or order of rotation of the design
unit.

The disordered or chaotic appearance of particular designs within this classifi-
cation system may occur because the symmetries of the design unit do not coin-
cide with ones in the design structure. (However, the proof of this suggestion is
beyond the realms of discussion of this book.) Conversely, if their symmetries do
pass through ones in the structure, this presents yet another view of possible
design characteristics from which a further classification system may be derived.
This classification is discussed in detail in Chapter 4.
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4.1

Classification of discrete patterns

Introduction

4.2

As explained previously, there are numerous different ways of classifying designs.
The methods in Chapters 2 and 3 identify a tiling or pattern class by the symme-
try group of its design unit and/or design structure. The following classification
of monomotif, discrete patterns involves the recognition not only of the symme-
tries of the pattern structure but also the group of symmetries in the structure
which pass through a motif. This classification system (as Griinbaum and
Shephard comment)! does have its limitations in that it is only applicable to a
particular range of patterns in which there are restrictions imposed on both the
characteristics of the motif and, with its repetition, the pattern it produces. These
designs therefore generally exhibit a more rigid and ordered appearance com-
pared to those of the previous two chapters, because adjacent motifs may not
touch, overlap or intertwine with adjacent motifs.

As discussed in Chapter 2, a motif may possess a variety of different features.
One type of pattern, resulting from the regular repetition of a motif with particu-
lar limitations on its characteristics, is referred to as a monomotif pattern.

Monomotif pattemn

Griinbaum and Shephard,! in their classic work Tilings and Patterns, formally
define a monomotif pattern as follows:

A monomotif pattern P with motif M is a non-empty family {M, i| i€ I} of sets in the

plane, labelled by an index-set I, such that the following conditions hold:

P1  Thesets M, are pairwise disjoint.

P2 Each M;is congruent to M and called acopy of M.

P.3  For each pair M, ]W] of copies of the motif there is an isometry of the plane that
maps P onto itself and M ;onto ]W]

Less formally, a monomotif pattern may be thought of as one in which:

* P.1’ Each motif does not intersect or connect to (i.e. overlap or touch) any
other motif.

* P.2" Each motif is congruent to every other motif in the pattern. (Here, by
congruent, as well as implying ‘direct’ congruence where the motifs are
the same size and shape, a mapping from one motif to any other by
reflection or glide-reflection is included in the definition. Strictly
speaking, ‘congruence’ by reflection is given the term ‘indirect congru-
ence’. It is important to note that certain authors do not include this
reflective mapping in their definition of congruence, for example Shub-
nikov and Koptsik, when discussing whether an object is symmetric or
not, define ‘geometric equality’ as either compatible equality (congru-
ence) or mirror equality.2)

* P33 Each motif can be mapped onto any other motif by a symmetry of the
pattern.

Figure 4.1 shows some examples of monomotif and non-monomotif patterns.
The explanations below discuss whether the conditions: P.1” to P.3" hold for each
design and consequently whether each one is monomotif or not.
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4.3

In Fig. 4.1(a(1)):

* P11’ none of the motifs overlap or touch any other motif

* P2" eachmotif iscongruent to every other motif and

* P.3" the only symmetry of the pattern other than translational symmetry
is glide-reflectional symmetry which, by itself, will generate the whole
design.

The easiest way to test if condition P.3” holds is to examine a translation unit.
Figure 4.1(a(il)) illustrates one way of dividing the pattern into translation units
and Fig. 4.1(a(iil)) shows the symmetries of the design passing through one of
these translation units. Consider the translation unit in Fig. 4.1(a(iii)). If each
motif can be mapped onto any other motif inside it by an isometry of the pattern
(in this case a glide—reflection about axis () then by subsequent unit translations
of this translation unit, any motif can be mapped onto any other. In thisinstance,
condition P.3" is satisfied, so together with P.1’ and P.2’, this implies that the
pattern is monomotif.

In Fig. 4.1(b),

* P.1’ none of the motifs overlap or touch any other motif

* P2" eachmotif iscongruent to every other motif and

* P.3" the only symmetry of the pattern other than translational symmetry is
reflectional symmmetry. However, applying this symmetry to any one
motif will not generate the whole design as explained below.

Consider the translation unit in Fig. 4.1(b(iii)). If each motif can be mapped
onto any other motif inside it by an isometry of the pattern then condition P.3" is
satisfied. Let the motifs inside this translation unit be labelled M, M,, M and
M, as shown. M can be mapped onto M, by reflectional symmetry about reflec-
tion axis M but not to either M, or M. This implies that each motif cannot be
mapped onto any other one by a symmetry of the pattern therefore, condition
P.3’ is not satisfied and so the pattern in Fig. 4.1(b(i)) is not monomotif.

Figures 4.1(c) and (d) show some further illustrations of monomotif patterns
with examples of translation units. In Fig. 4.1(c) a motif is taken to be a con-
tinuous vertical strip comprising a two-fold rotationally symmetric, wavy line. In
Fig. 4.1(d) the motif is one quarter of the translation unit and consists of flowers,
stalks and leaves. In each case the pattern satisfies all three conditions, P.1” to P.3%;
therefore they are both monomotif.

In addition to the monomotif conditions, further restrictions may be imposed
on the motif characteristics which result in the pattern being discrete.

Discrete pattern

Classification of discrete patterns

A formal definition given by Griinbaum and Shephard! stated that:

... apattern is discrete if the following conditions hold:

DP.1  Themotif M is a bounded and connected set.

DP.2  For some i there is an open set E; which contains the copy M of the motif but does
not meet any other copy of the motif; that is, ]ij E;=Cforallje Isuchthatj#i.

In a more accessible context for designers, these conditions may be thought of as
follows:

+ DPI” (i) the motif is bounded, i.e. it is finite and does not continue end-
lessly in any direction.
(i) the motif is a connected set, i.e. all parts of the motif are joined
together to form one piece only.

+ DP2 eachmotif may becontained within a tile such that no other adjacent
motif intersects that tile or its boundaries.

Figure 4.2 illustrates some discrete and non-discrete patterns and explanations
follow which discuss whether the conditions DP.1” and DP.2’ hold for each
design. First though, it is important to note that the definition of a discrete
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4.4

pattern is only applicable to those patterns which are known to be monomotif.
On checking the monomotif conditions for the patterns in Fig. 4.2(a), (b), (¢) and
(d), itis found that:

* P11’ none of the motifs overlap or touch any other motif

* P2 eachmotifiscongruent to every other motif and

*+ P3 each motif can be mapped onto any other motif by a symmetry of the
pattern.

Thus, since all three conditions hold for each example, they are all monomotif.
Each pattern may now be analysed in turn to test whether its characteristics fit the
criteria for a discrete pattern.

In both Fig.4.2(a) and Fig. 4.2(b):

DP.1” (i) each motif is finite and so bounded

DP.1” (ii) each motif does consist of one piece only

DP.2’ the motifs are separate from each other and so, since all three condi-
tions are satisfied, the pattern is discrete.

In Fig. 4.2(c):
DP.1” the motif, of which there is only one, continues endlessly and so is
not bounded, hence this pattern is not discrete.
In Fig. 4.2(d):
DP.1” (i) each motif is finite and so bounded

DP.1” (ii) each motif consists of more than one piece (separate flowers,
leaves and stalks), hence this pattern is not discrete.

These examples clearly illustrate that only a proportion of the group of
monomotif patterns is also discrete. This proportion of monomotif discrete pat-
terns forms the subgroup of designs which are classified later in this chapter.

4.3.1 Non-trivial discrete pattern

An additional condition imposed on the subgroup of monomotif, discrete pat-
terns is that they are also non-trivial. This simply means that there is more than
one copy of the motif in each pattern. Examples of trivial and non-trivial,
monomotif discrete patterns are given in Fig. 4.3. The following explanations
discuss whether the non-trivial condition holds for each design.

Figure 4.3(a) illustrates a finite pattern, with a d1 motif, which satisfies all the
criteria for a monomotif discrete pattern. It also has more than one copy of the
motif therefore it is non-trivial. Figure 4.3(b) shows a finite pattern with two
joined, reflectionally symmetric elements as the motif. It satisfies all the criteria
for a monomotif discrete pattern but there is only one copy of the motif, so it is
trivial. If the motif was regarded as being a single element (symmetry group d1),
with the pattern consisting of two copies of the motif, the condition of non-
triviality is not even considered because, in this case, the finite pattern is not
monomotif as condition P.1° is not satisfied. In Fig. 4.3(c) the finite pattern is
monomotif and discrete but, as there is only one copy of the motif, it is trivial.

Another feature of a subgroup of the group of non-trivial monomotif discrete
patternsis the characteristic of being ‘primitive’.

Primitive pattern

Classification of discrete patterns

A pattern is described as being primitive if the only symmetry of each motif,
which coincides with one of the structures of the whole pattern, is the identity
symmetry. A motif may be symmetrical, but if none of its symmetries coincide
(by superimposition) with those of the pattern structure then it is primitive.

The following examples, in Fig. 4.4, illustrate primitive and non-primitive, dis-
crete patterns. (Note that throughout the remainder of this book, to reduce
unnecessary complication, when referring to a discrete pattern, it will be assumed
that it is also monomotif and non-trivial).
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Figure 4.3

pattern motif

$

Examples of (b) and (c) trivial and (a) non-trivial monomotif discrete patterns.

Lk

Figure 4.4(a(i)) (which is represented schematically in Fig. 4.4a(ii)) illustrates a
ditranslational discrete pattern composed of individual motifs, each of finite
symmetry group dl. However, none of the vertical reflection axes passing
through the motifs coincide with ones in the design structure. In fact, the only
symmetries of the design structure are translational symmetries and the identity
symmetry. Hence, since there is only the identity symmetry in common with both
the pattern structure and each motif, the pattern is primitive.

Figure 4.4(b) illustrates a monotranslational pattern, symmetry group p112.
Again each motif has bilateral symmetry but since their symmetry axes do not
coincide with any symmetries in the design structure, the pattern is primitive.

Figure 4.4(c) illustrates a ditranslational discrete pattern composed of individ-
ual motifs, each of finite symmetry group c4. However, in this instance each
centre of rotation passing through a motif coincides with one in the design struc-
ture. Hence, since the identity symmetry and centres of four-fold rotational sym-
metry coincide with both the pattern structure and each motif, the pattern is
non-primitive.

The monotranslational pattern in Fig. 4.4(e) has been derived from
the primitive pattern in Fig. 4.4(d) by joining adjacent asymmetric motifs
(half butterflies), in other words each pair of motifs has been transformed
to make one motif (a whole butterfly). Therefore, since in Fig. 4.4(e) reflection
axes of the design structure now pass through each motif, the pattern is
non-primitive.

The finite patterns in Fig. 4.4(f(1), (ii) and (iil)) illustrate non-primitive, non-
primitive and primitive patterns, respectively.

Note that for symmetry groups plal and p111 the only symmetries in the pat-
terns’ structures, other than the identity symmetry, are glide-reflectional and/or
translational symmetries respectively, neither of which can coincide with one
individual motif of a discrete pattern. Thus, in these two cases and the two
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equivalent cases for ditranslational discrete patterns (symmetry groups pl and
pg) the primitive condition always holds. However, as described in Chapter 3, this
does not imply that each inividual motif is necessarily asymmetric (for example
see Fig. 4.4(a)).

The previous illustrations show that although a pattern may be discrete,
it is not necessarily primitive. Only a proportion of the discrete patterns are
primitive, which leaves the remaining non-primitive discrete patterns to be
differentiated from each other by their ‘induced motif groups’ or ‘induced
groups’.

Induced motif groups

Classification of discrete patterns

The induced (motif) group (or induced group) of a discrete pattern relates to the
symmetry of each motif which coincides with one or more of the symmetries in
structure of the whole pattern. It is taken to be the finite symmetry group of the
motif, the symmetries of which coincide with those of the structure. For example,
if each of the motifs of a discrete pattern fall on centres of two-fold rotation of
the pattern structure but do not intersect any reflectional axes, the motifs will
each have at least two-fold rotational symmetry and therefore, the induced group
of the discrete pattern will be ¢2. All primitive discrete patterns have induced
group c1 since each motif has only the identity symmetry coinciding with the
design structure. Figure 4.5 shows some examples which illustrate the concept
of induced groups for finite, monotranslational and ditranslational discrete
patterns.

Figure 4.5(a(i)) shows a finite discrete pattern whose symmetry group is
d3. Each motif has no symmetries which coincide with the reflection axes of the
underlying structure. Therefore, the pattern is primitive and hence has induced
group cl. Figure 4.5(a(i1)) illustrates a finite, discrete pattern whose symmetry
group is d4. Each motif has two reflection axes but only one which coincides with
one in the underlying structure. Therefore, the induced group is d1 as this is the
symmetry group corresponding to a finite design with one reflection axis. Simi-
larly, Fig. 4.5(a(iil)) shows a finite design with symmetry group d4 and induced
groupdl.

Figure 4.5(b) shows a monotranslational discrete pattern whose symmetry
group is pma2. Each motif has one reflection axis which coincides with that of the
underlying structure; therefore the induced group is d1 as this is the symmetry
group corresponding to a finite design with one reflection axis.

Figure 4.5(c) illustrates a monotranslational discrete pattern whose symmetry
group is pma?2. Although each motif has two reflection axes, only their centres of
two-fold rotation coincide with ones in the underlying structure. Therefore, the
induced group is ¢2 as this is the symmetry group corresponding to a finite design
with two-fold rotational symmetry only.

Figure 4.5(d(i) to (vi)) illustrates six ditranslational discrete patterns whose
symmetry groups are p31m, cmm, pdg, pom, p6m and p3m]1, respectively. Their
corresponding induced groups are ¢3, ¢2, ¢4, d6, d2 and d3.

Figure 4.5(e) shows a ditranslational discrete pattern whose symmetry group
is p4m. Each motif has two reflection axes which coincide with ones in the under-
lying structure; therefore, the induced group is d2.

In Fig. 4.5(f) a pmm?2 monotranslational discrete pattern has been constructed
from d4 motifs. Each of these motifs has a centre of two-fold rotation and two
perpendicular reflection axes which coincide with ones in the underlying struc-
ture; therefore the induced group is 42.

Figure 4.5(g) illustrates a ditranslational discrete pattern whose symmetry
group is p4m. Each motif has four reflection axes which coincide with those of
the underlying structure; therefore the induced group is d4. Further examples of
induced groups may be derived from referring back to the illustrations in Fig.
4.4(a), (b), (c), (d), (e), (f(1)), (f(i1)) and (f(iil)). These patterns have induced groups
cl,cl,c4,cl,dl,dl,dl and cl, respectively.
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Figure 4.4 Examples of (a), (b), (d) and (f(iii)) primitive and (¢}, (e), (f(i)) and (f(ii}) non-primitive dis-
crete patterns.
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4.6

Motif-transitive subgroups

Each of the finite, monotranslational and ditranslational symmetry groups may
be divided into ‘pattern types’ by their induced groups. However, there are three
exceptions where these criteria do not provide sufficient information for dis-
crete pattern classification. For example, the monotranslational symmetry group
pmm2 is divided into three pattern types, two of which have the same induced
group, d1 (as shown in Fig. 4.6(a)). Similarly, the ditranslational symmetry group
pdm is divided into three pattern types, two of which have the same induced
group d1 (these are shown in Fig. 4.6(b)). Also, two of the six pattern types of
symmetry group p6 have the same induced group d1 (see Fig. 4.6(c)). Unlike the
remaining discrete pattern types, the structures and relationships between adja-
cent motifs in these patterns, with the same symmetry group and induced group,
appear to be different. To differentiate between them requires further geometrical
analysis. The mathematical theory for this process requires that a distinction be
made between their ‘motif-transitive subgroups’.

A subgroup of symmetries of a symmetry group may be thought of as a pro-
portion of the symmetries contained within the symmetry group. The proportion
may include the identity, all the symmetries or a selection of the symmetries in the
symmetry group. A subgroup of symmetries in the symmetry group is defined
as being ‘motif transitive’ if it satisfies the following condition according to
Griinbaum and Shephard!:

Let T(P) be a subgroup of the symmetry group S(P) of a given discrete pattern P.
Then T(P) is called motif transitive if it contains isometries that map any copy M, of
the motif of P onto any other copy M]

In other words, a subgroup of the symmetries in a symmetry group is motif
transitive if symmetries in it are able to map any one motif onto any of the others
in the pattern.

An alternative way of explaining this theory is to imagine generating the design
by mapping a single motif onto its equivalent positions. For example (as shown in
Fig.4.7(a)) a pm11 monotranslational design, with induced group d1, may be gen-
erated in two different ways: either by translating a d1 motif at unit intervals in the
direction of the longitudinal axis or by continually reflecting a motif about reflec-
tion axes positioned at unit intervals, between adjacent motifs, perpendicular to
thelongitudinal axis of the strip. These two sets of symmetries used to generate the
design in this way form subgroups of the symmetry group pm11 and since each can
map one motif onto the remaining ones, they are both motif transitive. In the first
instance, translational symmetry alone, besides the identity, is also used to repre-
sent the monotranslational design symmetry group p111, and second, the parallel
axes of reflectional symmetry described above represent the group pml11. Thus,
these two symmetry groups form motif-transitive subgroups of the discrete
pattern with symmetry group pm11 and induced group d1.

Similarly, one individual motif in the monotranslational discrete pattern type,
with symmetry group plm] and induced group d1 (Fig. 4.7(b)), may be mapped
onto the remaining ones either by translational symmetry or glide-reflectional
symmetry about an axis coinciding with the longitudinal axis of the strip.
Thus, these two symmetries form the motif-transitive subgroups p111 and plal,
respectively.

By analysing the geometry of the pattern type in Fig. 4.7(c), with symmetry
group pmm?2 and induced group 41, it will be noticed that one motif cannot be
mapped onto the remaining ones by translational symmetry alone, therefore
pl11 is not a motif-transitive subgroup of this design. However, one motif can
be mapped onto the remaining ones by two-fold rotational symmetries only; by
reflection about the longitudinal axis and translations; by alternating two-fold
rotations and transverse reflections; and/or by transverse and longitudinal reflec-
tional symmetries. These different sets of symmetries represent the symmetry
groups pl112, pml1, pma2 and pmm?2, respectively and form motif-transitive sub-
groups of this monotranslational discrete pattern.
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4.7

By analysing the geometry of the pattern type in Fig. 4.7(d), with symmetry
group pmm?2 and induced group d1, again it will be noticed that one motif cannot
be mapped onto the remaining ones by translational symmetry alone, therefore
pl111isnot a motif-transitive subgroup of this design. However, one motif can be
mapped onto the remaining ones by two-fold rotational symmetries only; by
reflections about transverse axes; by alternating two-fold rotations and trans-
verse reflections. These different sets of symmetries represent the symmetry
groups pl12, plm]1, and pma2, respectively and form motif-transitive subgroups
of this discrete pattern.

From the analysis of the two pattern types in Fig. 4.7(c) and (d), it is noticed
that although they have the same symmetry group and induced group, they
have different motif-transitive subgroups which, therefore, characterises them
differently. Thus, in order to class two patterns as the same type, as described by
Griinbaum and Shephard they must have the same symmetry group, induced
group and the same set of motif-transitive subgroups.!

To generate a primitive discrete pattern, all the symmetries in the pattern
structure are required. This implies that only the whole symmetry group itself
forms a motif-transitive subgroup.

In some cases there is more than one form of a motif-transitive subgroup.
For example, Fig. 4.8(a) illustrates the 16 different motif-transitive subgroups
of the discrete pattern with symmetry group pmm and induced group d2. Note
that there are at least two inequivalent motif-transitive subgroups of pm, p2,
pmg and cmm. For each of these motif-transitive subgroups, the number or
fraction of motifs contained within a unit cell is different, for example for
motif-transitive subgroup cmm, there are two, four and eight motifs contained
within a ¢mm unit cell. This implies that these subgroups are inequivalent
and must be regarded as being different from each other. Where the symmetries
of the same subgroup are represented in different positions but may be super-
imposed on each other by a translation (e.g. for subgroup p2 in Fig. 4.8(b)) the
motif-transitive subgroups are considered to be equivalent and not counted
separately.

The motif-transitive subgroups represented by an asterisk in Tables 4.2 and 4.3
(see Sections 4.8 and 4.9, respectively) indicate a subgroup equivalent to the sym-
metry group of the overall design. Again, in these cases, the motif-transitive sub-
group contains equivalent symmetries as the overall symmetry group but a unit
cell contains a larger number or fraction of motifs because not all the symmetries
of the symmetry group are included (for example see Fig. 4.7a(ii)). Where a
motif-transitive subgroup is followed by a number in parentheses, the number
indicates how many inequivalent motif-transitive subgroups there are for that
particular subgroup.

This theoretical perspective resolves the problem of distinguishing between
the three cases where symmetry groups and induced groups coincide. However,
on further analysis it is found that there are two ditranslational pattern types
in which symmetry groups, induced groups and motif-transitive subgroups
coincide and yet the structures and relationships between motifs still appear to be
different. The theory for distinguishing between these two pattern structures will
not be described here because there is only one possible pattern type bearing
these characteristics. The analytic differentiation between these patterns is
described in detail by Griinbaum and Shephard! but in the context of this book
they are merely represented by pattern types Dt(P)48A and Dt(P)48B (see
Section 4.12).

Classification of finite discrete pattern types

Classification of discrete patterns

The two finite symmetry groups may be divided into three discrete pattern types
as shown in Table 4.1. Symmetry group ¢z has one associated discrete pattern
type with induced group c1 (i.e. primitive) and symmetry group dn has two asso-
ciated discrete pattern types with induced groups ¢1 and d1, respectively. Figure
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Table 4.1

F(P)32

Figure 4.9

Classification of discrete patterns

The three finite discrete pattern types

Motif-

transitive
Pattern type Symmetry group Induced group subgroups
F(P)1,, cn cl primitive
F(P)2,, an cl primitive
F(P)3 dn dl cnforalln

dn/2foreven n

Source: derived from Grinbaum B and Shephard G C, Tilings and Patterns, New York,
Freeman and Company, 1987.
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Schematic illustrations of the three finite discrete pattern types. Source: derived from
Grunbaum B and Shephard G C, Tilings and Patterns, New York, Freeman and Company,
1987.
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F(P)3s F(P)34

4.9 shows schematic illustrations of these pattern types and further illustrations
are given in Fig. 4.10.

4.7.1 Notation

The notation used to represent the finite discrete pattern types has been derived
from that given by Griinbaum and Shephard who denote the three types by PF1,_,
PF2, and PF 3n.1 However, in the context of this book, the analogous notation
F(P)1,, F(P)2, and F(P)3, is used where n represents the number of reflection
axes and/or order of rotation of the overall design structure.

The definition of a non-trivial discrete pattern, given in Section 4.3.1, states
that each pattern must have more than one motif. For F(P)1_, this implies that
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Table 4.2

4.8

The 15 monotranslational discrete pattern types

Pattern type Symmetry Induced
group group Motif-transitive subgroups
Mt(P)1 pl11l cl primitive
Mt(P)2 plal cl primitive
Mt(P)3 plmi cl primitive
Mt(P)4 plmi dl pll1l, plal
Mt(P)S pmll cl primitive
Mt(P)6 pmll dl pll1l, *
Mt(P)7 pl12 cl primitive
Mt(P)8 pl12 c2 pll1l, *
Mt(P)9 pma2 cl primitive
Mt(P)10 pma2 c2 pmil
Mt(P)11 pma2 dl pl12, plal
Mt(P)12 pmm?2 cl primitive
Mt(P)13 pmm?2 dl pl12, pAml, pma2, *
Mt(P)14 pmm?2 a1l pl12, pmll, pma2(2)
Mt(P)15 pmm?2 az plil, p112(2), plal, p1mi,

pm11(2), pma2(3), *

Source: derived from Grinbaum B and Shephard G C, Tilings and Patterns, New York,
Freeman and Company, 1987.

must be greater or equal to 2 (i.e. # > 2), since if #=1 the design consists of one
asymmetric motif of symmetry group c1. For finite pattern type F(P)2,, n 2> 1
since for the minim condition, when n = 1, there are two motifs. However if n=1
for finite pattern type F(P)3,, there is just one motif as the one reflection axis
passes through the centre of the motif; therefore n>2.

Classification of monotranslational discrete pattern types

4.9

The seven monotranslational symmetry groups are divided into 15 discrete
pattern types. These are listed in Table 4.2 together with their symmetry groups,
induced groups and motif-transitive subgroups. Schematic illustrations of the
fifteen monotranslational pattern types and further illustrations are given in
Figs.4.11 and 4.12.

4.8.1 Notation

The notation used to represent these pattern types has been derived from that
given by Grilnbaum and Shephard who denote the 15 monotranslational pattern
types by PS1 to PS15 (where PS stands for ‘strip pattern’). However, in this book,
the analogous notation Mt(P)1 to Mt(P)15 is used where Mt(P) stands for
‘monotranslational pattern type’.

Classification of ditranslational discrete pattem types

Classification of discrete patterns

The 17 ditranslational symmetry groups are divided into 51 discrete pat-
tern types. These are listed in Table 4.3 together with their symmetry groups,
induced groups and motif-transitive subgroups. Schematic illustrations of the 51
ditranslational pattern types and further illustrations are given in Figs. 4.13 and
4.14,

4.9.1 Notation

The notation used to represent these pattern types has been derived from that
given by Grilnbaum and Shephard who denote the 51 monotranslational pattern
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4.10

types by PP1 to PP51. Here ‘PP’ stands for ‘periodic pattern’.! However Senechal
states that the points of a lattice are related by shifts called translations. She goes
on to say that a pattern whose symmetry includes translation is said to be
periodic.3 This suggests the inclusion of monotranslational patterns in the group
of ‘periodic patterns’ which may cause confusion if the ‘PP’ notation is adopted.
Therefore, in the context of this book, the PP1 to PP51 notation is replaced by
Dt(P)1 to Dt(P)51, where Dt(P) stands for ‘ditranslational pattern type’.

Construction of finite discrete pattern types

411

The techniques used to construct finite pattern types F(P)1, to F(P)3, are similar
to those described in Section 2.11 but with additional restrictions imposed on the
initial motif. In each case, the structure is based on the division of a circle into n
or 2n equal sectors depending on the symmetries in the symmetry group, as
described in Chapter 2, Section 2.11. However, in this instance the shaded area (in
the illustrations given in Fig. 4.15) represents a fundamental region or group of
fundamental regions containing the motif.

4.10.1 Finite pattern types, induced group c1

Symmetry groups ¢z and dn each have one associated primitive pattern type (i.e.
with induced group c1): F(P)1, and F(P)2,, respectively.

To construct F(P)1, and F(P)2, pattern types, the same rules are followed as
those described for the first methods in Sections 2.11.1 and 2.11.2, respectively.
However, the initial design unit added to a fundamental region must be made of
one piece (condition DP’.1(ii)) and, on application of the generating symmetries,
be separate from the others (condition DP’.2). This second condition is satisfied
by ensuring that the initial design unit only touches the boundary of the funda-
mental region which coincides with the circumference of the circle and not those
radiating from the circle centre. After applying the generating symmetries to map
this design unit to all equivalent positions in the design, the boundaries of the
fundamental regions are removed to give F(P)1, and F(P)2, pattern types. Exam-
ples are given for n=8 and n=41n Fig. 4.15(a) and (b), respectively.

4.10.2 Finite pattern types, induced group dl1

Symmetry group dn is the only finite symmetry group with an associated pattern
type having induced group d1. To construct this finite pattern type, F(P)3,, a dn
motif (made of one piece) is placed in two sectors of a circle, divided into 2n
equal sectors, such that one of its reflection axes bisects the two sectors. The motif
must not touch the circle centre or any other boundary of this ‘double sector’
except the portion on the circle circumference. As described in Section 4.6, a dis-
crete pattern may be generated by applying a motif-transitive subgroup of sym-
metries, of the symmetry group, to a motif. An F(P)3, pattern has motif-transitive
subgroups cn, if nis odd, and c¢n and dn/2, if nis even (see Table 4.1), that is, if nis
odd, n-fold rotational symmetry may be applied to the dn motif about the circle
centre to complete the design. If # is even, the same rotation may be applied or
reflectional symmetry about axes coinciding with sector boundaries, unoccupied
by the initial motif, and intersecting at angles of 360°/n at the circle centre. The
sector boundaries, dividing the circle into fundamental regions, are then removed
to give an F(P)3, discrete pattern as shown in Fig. 4.15(c) forn=4.

Construction of monotranslational discrete pattern types

Classification of discrete patterns

The construction of monotranslational pattern types Mt(P)1 to Mt(P)15 employs
similar techniques to those discussed in Section 2.12. The structure of each pattern
type is based on the division of a strip into fundamental regions as described in
Chapter 2 (design type (iii)). As described previously, the initial design unit added
to a fundamental region must have no symmetries in common with the strip. The
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Table 4.3 The 51 ditranslational discrete pattern types

Pattern type Symmetry group Induced group Motif-transitive subgroups

Dt(P)1 pl cl primitive

Dt(P)2 pg cl primitive

Dt(P)3 pm cl primitive

Dt(P)4 pm dl pl, pg, cm, *

Dt(P)5 cm cl primitive

Dt(P)6 cm a1l pl, pg

Dt(P)7 p2 cl primitive

Dt(P)8 p2 c2 pl, *

Dt(P)9 peg cl primitive

Dt(P)10 pgg c2 pg

Dt(P)11 pmg cl primitive

Dt(P)12 pmg c2 pg, pm, pgg, *

Dt(P)13 pmg di pg, P2, pgg

Dt(P)14 pmm cl primitive

Dt(P)15 pmm a1l pm, p2, pmg(2), cmm

Dt(P)16 pmm a2 p1, pg, pm(2), cm, p2(3), pgg, Pmg(2), cmm(3),
*(2)

Dt(P)17 cmm cl primitive

Dt(P)18 cmm c2 cm, pgg, pmm

Dt(P)19 cmm a1l cm, p2, pgg, pmg

Dt(P)20 cmm a2 pl, pg, cm, p2(2), pgg(2), Pmg

Dt(P)21 p3 cl primitive

Dt(P)22 p3 c3 pl, *

Dt(P)23 p31m cl primitive

Dt(P)24 p31m c3 cm, p3mil

Dt(P)25 p31m dl p3

Dt(P)26 p31m d3 pl, pg, cm, p3(2)

Dt(P)27 p3ml cl primitive

Dt(P)28 p3mi dl p3

Dt(P)29 p3ml d3 pl, pg, cm, p3(2), p31m

Dt(P)30 p4 cl primitive

Dt(P)31 p4 c2 *

Dt(P)32 p4 o4 pl, p2(3), *(2)

Dt(P)33 pag cl primitive

Dt(P)34 pag c4 pg, cm, pgg(2), pmm, cmm

Dt(P)35 pag di pgg, p4

Dt(P)36 pag a2 pg, pgg, PA(2)

Dt(P)37 pam cl primitive

Dt(P)38 p4m dl cmm, p4, pag, *

Dt(P)39 p4m dl pmm, p4, pdg

Dt(P)40 p4m a2 cm, pgg, pmm, cmm, p4(2), p4g(2), *

Dt(P)41 p4am a4 pL, pg(2), pm(2), cm(2), p2(3), pgE(3), Pmg3),
pmm(3), cmm(4), pA(3), pAg3), *(2)

Dt(P)42 p6 cl primitive

Dt(P)43 p6 c2 p3

Dt(P)44 p6 c3 p2,*

Dt(P)45 p6 c6 pl, p2(2), p3(2)

Dt(P)46 pém cl primitive

Dt(P)47 pém dl p3mil, p6

Dt(P)48 pém dl p31m, p6

Dt(P)49 péem az p3, p31m, p3m1l, p6

Dt(P)50 pom d3 cm, pgg, pmg, cmm, p2, p31m, p3m1, p6(2)

Dt(P)51 pem a6 pl, pg(2), cm(2), p2(2), pgg(3), pmg2), cmm,

p3(2), p31m(2), p3m1, p6

Source: derived from Grinbaum B and Shephard G C, Tilings and Patterns, New York, Freeman and Company, 1987.
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Classification of discrete patterns

simplest way of illustrating this condition is to use an asymmetric design unit
although, as described in Chapter 3, this is not the only possibility. In each case
fundamental region boundaries are used as a guide for incorporating the design
units. They are not included in the overall design and must be removed after the
initial motif has been mapped to all its equivalent positions in the strip. Again, in
the illustrations in Fig. 4.16, each shaded area represents a fundamental region or
group of fundamental regions containing the motif.

Only a limited number of illustrations are given showing the construction of
monotranslational discrete pattern types since they may be derived simply by fol-
lowing the construction techniques discussed in Chapter 2 together with the addi-
tional criteria given above.

4.11.1 Monotransiational pattern types, induced group cl

Each of the seven symmetry groups of monotranslational designs has one associ-
ated primitive discrete pattern type. These are constructed by dividing a strip into
fundamental regions of the required symmetry group. A design unit, with no
symmetries in common with the strip, is then added to one region such that the
only point at which it meets a boundary is at the exterior straight edge(s) of
the strip. It is then mapped onto all the remaining regions, by applying the sym-
metries of the design structure, to complete the pattern type. Figure 4.16(a)
shows an example of this construction for pattern type Mt(P)2 (symmetry

group plal).

4,11.2 Monotranslational pattern types, induced group c2

Symmetry groups p112 and pma2 each have one associated discrete pattern type
with induced group ¢2. To construct these types of design, a strip is divided into
appropriately shaped fundamental regions. A ¢n motif (where 7 is even) is added
to the strip such that it is contained within two fundamental regions and its centre
of rotation coincides with one featured in the design structure. It only intersects
the edges of the fundamental regions which join at the centre of rotation and it
also touches the edges of the fundamental regions which coincide with the edges
of the strip. To map this motif to all its equivalent positions, a motif-transitive
subgroup of pattern type Mt(P)8 or Mt(P)10 may be applied to complete each of
the pattern types, respectively. Figure 4.16(b) shows an example for the construc-
tion of pattern type Mt(P)8, symmetry group p112.

4,11.3 Monotranslational pattern types, induced group d1

Symmetry groups plml, pmll and pma2 each have one associated discrete
pattern type with induced group d1, and pmm2 has two. Again, for each symme-
try group, a strip is divided into fundamental regions and the symmetries of the
group may be incorporated into the design structure. A dn motif (where 7 is odd)
is added to the strip such that it falls into two fundamental regions and one of its
reflection axes coincides with one featured in the monotranslational design struc-
ture. It does not intersect any boundaries of the two fundamental regions other
than the one which bisects it and the ones which coincide with the boundaries of
the strip. In the case of pmm2, there are two possibilities for the position of the
motif for these characteristics to be satisfied. A motif-transitive subgroup of the
required pattern type is applied to complete the Mt(P)4, Mt(P)6, Mt(P)11,
Mt(P)13 or Mt(P)14 monotranslational design. An example is given in Fig.
4.16(c), for pattern type Mt(P)11, symmetry group pma?2.

4,11.4 Monotranslational pattern types, induced group d2

Group pmm?2 is the only monotranslational symmetry group with an associated
pattern type having induced group d2. A strip is divided into fundamental regions
and the symmetries of pmm2 may be incorporated into its structure. A dn motif
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(where n is even) is added to the strip such that it falls into four fundamental
regions and two of its perpendicular reflection axes coincide with ones featured in
the monotranslational design structure. It does not intersect any fundamental
region boundaries other than the ones which meet at its centre of rotation and the
edges which coincide with the boundaries of the strip. A motif-transitive sub-
group of Mt(P)15 is applied to complete the monotranslational design. An

example is given in Fig. 4.16(d).

412 Construction of ditranslational discrete pattern types

The construction of ditranslational pattern types Dt(P)1 to Dt(P)51 follows
similar techniques to those discussed in Section 2.13. Again, in each case, the
boundaries of the fundamental regions are used as a guide for incorporating the
design units. They are not included in the overall design and must be removed
after the initial motif has been mapped to all its equivalent positions in the strip.
The motif is incorporated in one, two, three, four or six fundamental regions for
cyclic induced groups cl, ¢2, ¢3, ¢4 or ¢6 and two, four, six, eight or twelve funda-
mental regions for induced dihedral groups d1, d2, d3, d4 or d6, respectively. In
each case, the cn (n > 2) or dn motif only intersects the boundaries of the funda-
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mental regions which meet at the centre of the group of fundamental regions.
The motif does not join, at any point, the boundary enclosing the group of fun-
damental regions containing the motif (except when fundamental region bound-
aries meet at a centre of rotation). Thus, when constructing ditranslational
pattern types by methods described in Chapter 2 (i.e. by placing strips of width W
next to each other) the initial design unit must not touch the edges of the strip.
For some non-primitive pattern types it is not always possible to construct the
same strip of fundamental regions described for the associated symmetry groups
in Chapter 2 without splitting the motifs. In these cases, it is more suitable to con-
struct a strip or double strip of whole motifs before consecutively applying the
translations 7, or T;, respectively. These situations may be observed in the illus-
trations in the following sections.

As described previously, the design unit added to the fundamental region must
have no symmetries in common with the design structure. For simplicity, this con-
dition is most easily satisfied by ensuring that the design unit is asymmetric, as in
the schematic illustrations in Fig. 4.13. As described in Chapter 3, additional
symmetries are possible as characteristics of the design unit. However, to take all
the values of N (in connection with the order of symmetry of the design unit) and
induced symmetries into consideration for each pattern type would add further
complication. Hence for simplicity, in the following construction methods the
symmetry of design unit is taken to be asymmetric and consequently the induced
group is the same symmetry group as that of the motif.

Only a limited number of illustrations are given showing the construction of
ditranslational discrete pattern types because they may be derived simply by fol-
lowing the construction techniques discussed in Chapter 2 together with the addi-
tional criteria given above. In the first illustration in each of the Figs. 4.17 to 4.26
the dark shaded area represents a fundamental region or group of fundamental
regions containing the motif and the light shaded area represents an appropriate
strip to which translations 7, or 7; may be applied.

4.12.1 Ditranslational pattern types, induced group c1

Each of the 17 symmetry groups of ditranslational design has one associated
primitive discrete pattern type. These are derived by following exactly the same
construction methods as those described for each symmetry group in Section
2.13 design types (i1) and (v) with the only difference being that the design unit
consists of one piece and must not touch any fundamental region boundaries. An
example is given for Dt(P)2, symmetry group pg, in Fig. 4.17.

4,12.2 Ditranslational pattern types, induced group c2

Symmetry groups p2, pgg, pmg, cmm, p4 and p6 each have one associated discrete
pattern type with induced group ¢2. To construct these types of design, similar
methods to those described for design types (ii) or (v) in Chapter 2 are followed
but instead of the initial design unit being a ¢1 motif added to one fundamental
region, a ¢2 motif is added to two fundamental regions. Its centre of rotation
must coincide with one featured in the initial monotranslational design structure.
The motif must not touch any other edges of the fundamental regions other than
the ones joining at the point of its centre of two-fold rotation. Although the motif
may touch these edges which join at this point, it must not meet any other adja-
cent centres of rotation. This motif is mapped to all its equivalent positions, by
methods described previously, to complete the discrete pattern type with induced
group ¢2. Examples are given in Fig. 4.18 for pattern types Dt(P)31 (symmetry
group p4) and Dt(P)8 (symmetry group p2). In the first example, the strip of
translation units (derived from Fig. 2.42(iii)) has been altered to accommodate
the ¢2 motifs. In the second example the lattice strucure is not rectangular and so
the strip would have to be modified if it was used as the initial band for flat screen
printing.
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Figure 4.15

F(P)3,4

Construction of finite pattern types (a) F(P)1,, (b) F(P)2,and (c) F(P)3

n

4,12.3 Ditranslational pattern types, induced group ¢3

Symmetry groups p3, p31m and p6 each have one associated discrete pattern type
with induced group ¢3. To construct these types of design, similar methods are
followed to those described in Chapter 2 for design types (ii) and (v). However,
instead of the initial design unit being a ¢l motif added to one fundamental
region, a ¢3 motif is added to three fundamental regions. Its centre of rotation
must coincide with one featured in the initial monotranslational design structure
and it must not touch any other boundaries of the fundamental regions other
than the three edges joined to the centre of three-fold rotation. This motif is
mapped to all its equivalent positions, by methods described previously, to com-
plete the discrete pattern type with induced group ¢3. An example is given for
Dt(P)22, symmetry group p3,in Fig. 4.19.

4.12.4 Ditransliational pattern types, induced group c4

Symmetry groups p4 and p4g each have one associated discrete pattern type with
induced group c4. The initial ¢4 motif is added to four fundamental regions. Its
centre of rotation must coincide with one featured in the initial monotransla-
tional design structure and it must not touch any other boundaries of the funda-
mental regions other than the four edges joined to the centre of four-fold
rotation. This motif is mapped to all its equivalent positions, by methods
described previously, to complete the discrete pattern type with induced group c4.
Examples are given for discrete pattern types Dt(P)32 and Dt(P)34 (symmetry
groups p4 and pdg, respectively) in Fig. 4.20.

4,12.5 Ditranslational pattern types, induced group ¢6

Symmetry group p6 has one associated discrete pattern type with induced group
¢6. The initial ¢6 motif is added to six fundamental regions. Its centre of rotation
must coincide with one featured in the initial monotranslational design structure
and it must not touch any other boundaries of the fundamental regions other
than the six edges joined to the centre of six-fold rotation. This motif is mapped
to all its equivalent positions, by methods described previously, to complete the
discrete pattern type with induced group ¢6. An example is given for Dt(P)45,
symmetry group p6, in Fig. 4.21.
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Figure 4.16 Construction of monotranslational pattern types.
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Figure 4.17 Construction of ditranslational pattern types, induced group c1.
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Figure 4.18 Construction of ditranslational pattern types, induced group ¢2.
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Figure 4.19 Construction of ditranslational pattern types, induced group ¢3.
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Figure 4.20 Construction of ditranslational pattern types, induced group c4.
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Figure 4.21

Dt(P}45

Construction of ditranslational pattern types, induced group c6.

4.12.6 Ditranslational pattern types, induced group d1

Symmetry groups pm, cm, pmg, pmm, cmm, p31m, p3m1, pdg each have one asso-
ciated discrete pattern type with induced group d1 and p4m and p6m each have
two. The initial d1 motif is added to two fundamental regions. Its reflection axis
must coincide with one featured in the initial monotranslational design structure.
The motif must not touch any other boundaries of the fundamental regions
other than the one edge bisecting it. This motif is mapped to all its equivalent
positions to complete the discrete pattern type with induced group d1. In the case
of p4m and p6m designs there are two inequivalent discrete patterns with induced
group dl. To construct the two different types of pd4m pattern either the initial
motif is placed with its reflection axis perpendicular to a side of the unit cell or its
reflection is placed such that it coincides with a diagonal of the unit cell. These
two cases are illustrated in the second and third examples of Figure 4.22, respec-
tively. Similarly, the two cases of pattern type p6m, with induced group d1, are
produced by placing the reflection axis of the initial motif either parallel to or at
30° to a side of a unit cell. An illustration for the construction of Dt(P)6 (symme-
try group ¢m) is given in the first example of Fig. 4.22.

4.12.7 Ditranslational pattern types, induced group d2

Symmetry groups pmm, cmm, p4g, pdm and p6m each have one associated dis-
crete pattern type with induced group d2. The initial 42 motif is added to four
fundamental regions. Its reflection axes must coincide with ones featured in the
initial monotranslational design structure. The motif must not touch any other
boundaries of the fundamental regions other than the ones, joined to the point of
two-fold rotation, through its centre. This motif is mapped to all its equivalent
positions to complete the discrete pattern type with induced group d2. Examples
are given for Dt(P)20 and Dt(P)40 (symmetry groups cmm and p4m, respectively)
in Fig. 4.23.

4.12.8 Ditranslational pattern types, induced group d3

Symmetry groups p31m, p3m] and p6m each have one associated discrete pattern
type with induced group d3. The initial d3 motif is added to six fundamental
regions. Its reflection axes must coincide with ones featured in the initial mono-
translational design structure. The motif must not touch any other boundaries of
the fundamental regions other than the ones, joined to the point of three-fold
rotation, through its centre. This motif is mapped to all its equivalent positions to
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Figure 4.22 Construction of ditranslational pattern types, induced group d1.
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Figure 4.23

Dt(F’)4

Construction of ditranslational pattern types, induced group d2.

complete the discrete pattern type with induced group d3. An example is given for
Dt(P)29, symmetry group p3m]1,in Fig. 4.24.

4,12.9 Ditranslational pattern types, induced group d4

Symmetry group p4m has one associated discrete pattern type with induced
group d4. The initial 44 motif is added to eight fundamental regions. Its reflection
axes must coincide with ones featured in the initial monotranslational design
structure. The motif must not touch any other boundaries of the fundamental
regions other than the ones, joined to the point of four-fold rotation, through its
centre. This motif is mapped to all its equivalent positions to complete the dis-
crete pattern type with induced group d4. An example is given for Dt(P)41, sym-
metry group p4m, in Fig. 4.25.

4,12.10 Ditranslational pattern types, induced group d6

Symmetry group p6m has one associated discrete pattern type with induced group
d6. The inital d6 motif is added to twelve fundamental regions. Its reflection axes
must coincide with ones featured in the initial monotranslational design structure.
The motif must not touch any other boundaries of the fundamental regions other
than the ones, joined to the point of six-fold rotation, through its centre. This motif
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Figure 4.24 Construction of ditranslational pattern types, induced group d3.

Di(P)41

Figure 4.25 Construction of ditranslational pattern types, induced group d4.

Figure 4.26 Construction of ditranslational pattern types, induced group d6.
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is mapped to all its equivalent positions to complete the discrete pattern type
with induced group d6. An example is given for Dt(P)51, symmetry group p6m, in
Fig.4.26.

Summary

This chapter builds on the concepts and perspectives used by Griinbaum and
Shephard in their classification of discrete patterns.! The characteristics of dis-
crete patterns and principles involved in categorising these types of designs are
discussed in detail. The classification and construction of the three finite, 15
monotranslational and 51 ditranslational discrete pattern types have been
described and illustrated with numerous examples.

The designs constructed from this classification system may have a more dis-
jointed appearance owing to the requirement for a discrete pattern to be com-
posed of motifs which are separate from each other. In some of the examples
given in the construction of discrete patterns, although the motifs are ‘pairwise
disjoint’ (see Section 4.2) it is sometimes difficult to visualise a motif as being able
to be contained within a tile without this tile overlapping an adjacent motif (as
stated in DP.2 for a discrete pattern, Section 4.3). Because, in some cases, the
motifs are very close together and the scale of the patterns is small in order to
exhibit a sufficient proportion of repeat, the motifs appear to be touching each
other. This may contravene the precise mathematical definition given for a dis-
crete pattern. However, with regard to the classification and construction of dis-
crete patterns in the context of creative surface-pattern design, the less formal
definitions given after the formal statements provide sufficient regulation.

As a consequence of the distinctive ‘separation’ characteristic of the motifs of
a discrete pattern it is possible to construct a type of patterned tiling by incorpo-
rating a tiling in between, or surrounding, the motifs. A similar type of design
was mentioned in Chapter 2 (as shown in the construction of design type (iv))
where the edges of the tiles corresponded to the boundaries of the fundamental
regions. In this instance the design units were permitted to touch the boundaries
of the tiles. Conversely, a tiling design may be derived from a discrete pattern, as
described above, such that each motif is contained within one tile and the bound-
aries of the tiles do not touch the motifs. For ditranslational designs, the tiling
may be thought of as a covering of the plane with tiles having shapes correspond-
ing to the dark shaded areas given in the previous construction techniques for
ditranslational designs (Section 4.12). However, in some of these examples the
dark regions could not be regarded as tiles because each is divided into portions
which meet at a point (e.g. see the first example Figure 4.18). Nevertheless, there
are numerous other ways of dividing a plane into fundamental regions or sur-
rounding a pattern by tiles, other than those discussed in Chapter 2. One particu-
lar type of tiling design which relates to a specific method of enclosing a discrete
pattern is referred to as an isohedral tiling. The analysis, classification and con-
struction of these types of tiling design are discussed in detail in Chapter 5.
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5.1

Classification of isohedral tilings

Introduction

The concepts involved in classifying discrete patterns described in the previous
chapter may be adapted and developed to form a classification system for tilings.
So far, as discussed in Chapter 2, both pattern and tiling structures have been
analysed in the same way and subsequently divided into symmetry groups. Fol-
lowing this, in Chapters 3 and 4 greater attention was paid to the finer detail of
the symmetrical properties of the motifs. The tiling designs and classification
system discussed in this chapter are closely related to the discrete patterns in
Chapter 4. For example, because the motifs in a discrete pattern are separate from
each other, a tiling design may be incorporated around them to form a patterned
tiling. By doing this in a particular way (described in Section 5.3) a special form
of tiling is produced which is referred to as a ‘Dirichlet tiling’ or ‘Dirichlet
domain’. The discrete pattern may be removed from the design and then the
structure of the remaining tiling may be analysed and classified as a particular
class of ‘isohedral’ tiling. (Dirichlet domains/tilings were named after the mathe-
matician Peter Gustav Lejeune Dirichlet.! They are also referred to as ‘Voronoi
cells’ or “Voronoi regions’, ‘Brillouin zones’ or ‘Wigner-Seitz cells’® and also
‘domain of influence’ or ‘plesiohedron’!.)

In connection with ditranslational designs, since there are 51 different discrete
pattern types, it would be assumed that each of these may be enclosed within one
Dirichlet tiling, implying that there are 51 different ditranslational isohedral
tiling types. However, this is not the case. The motifs in a discrete pattern type
may be surrounded by more than one form of isohedral tiling and conversely, an
isohedral tiling may form a Dirichlet domain for more than one type of discrete
pattern. For finite and monotranslational discrete patterns, an associated Dirich-
let tiling would be unbounded (i.e. each tile would extend infinitely) thus not sat-
isfying the conditions of a ‘normal’ tiling (see Section 5.2.1). Consequently, in the
following discussions, restrictions will be imposed on the extremities of the tiles
for these types of design.

With reference to finite and monotranslational tilings, as stated in Chapter 2
(Sections 2.7.5 and 2.7.6), it may be difficult to categorise a design as either a
pattern or tiling. A tiling is usually thought of as a type of design made up of
shapes that interlock or neatly join to each other, leaving no gaps, and which
covers an entire plane. However, in the context of this book (where finite and
monotranslational tilings are considered), an appropriate definition for a tiling T
is given by Lenart as a set of m-dimensional entities, called tiles, T = {t1,t2 ...}
that covers an area of an m-dimensional space without gaps or overlaps. This
area can be the entire space.® In the context of surface design, the ‘space’ to be
covered is two-dimensional, that is m = 2, as the design will initially be covering
a flat surface. If the decorated area covers the entire space (with translational
symmetry in at least two non-parallel directions) then the resulting design
will be referred to as a ditranslational tiling design. If the area is enclosed within
a strip (with translational symmetry in one direction) then it becomes a mono-
translational tiling design. If it is enclosed within a circle (with no translational
symmetry) it will be referred to as a finite tiling design.

This definition appears to be straightforward but ambiguities may still arise at
limiting cases. For example, each tile has a boundary and when placed next to
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each other these boundaries form lines which, depending on their thickness, may
be regarded as merely a source for division of the plane or, when thicker, as a
background for a pattern. Similarly, designs with many different shaped and/or
complicated tiles may appear more pattern-like than tiling-like and, for example,
some two-coloured designs may either be regarded as a two-coloured tiling or as
a black pattern on a white background or vice versa. Additionally, for finite and
monotranslational tiling designs, their outside boundaries may veer towards
their centres or longitudinal axes, respectively, thus making it difficult to deter-
mine whether it is a pattern or tiling design (see Fig. 5.1).

There is often a grey area within which pattern and tilings may coexist, and it is
difficult (particularly in the context of finite and monotranslational tiling
designs) to arrive at a precise definition which is appropriate in every context.
Consequently, to avoid any ambiguities, the illustrative examples presented in
this chapter have obvious tiling characteristics.

Compared to the classification of finite and monotranslational tilings, the
classification of ditranslational isohedral tilings is more complicated, and
requires further geometrical parameters such as the topology and the relation-
ships between the edges and adjacent tiles to be taken into account. Considering
topological variation, in comparison to the limited variety discussed in Chapter 2
(as described in Section 2.13 and illustrated in Fig. 2.31), provides further scope
for the interlocking nature of fundamental regions and consequently allows
greater freedom in design construction. Thus through these tiling designs a wide
variety of patterned tilings and interlocking patterns may be produced by a
similar method to one of those described for design types (iv) and (v) in Chapter
2. Although the classification and construction methods discussed in this chapter
are, in general, illustrated with tiles and motifs which have very formal and rigid
graphic qualities these are merely to present a clear insight into design structure
upon which surface-pattern designers may build or use as a basis for more free-
flowing creative designs.

Isohedral tiling

The classification system in this chapter is only applicable to a particular range
of tilings which have the characteristics of being ‘normal’, ‘monohedral’ and
‘isohedral’.

5.2.1 Normal tiling

Griinbaum and Shephard? define a tiling 7 as ‘normal’ if it satisfies the condi-
tions N.1, N.2 and N.3 below:

N.1 Every tile of T'is a topological disk. . .

N.2 The intersection of every two tiles of 7 is a connected set, that is, it does not
consist of two (or more) distinct and disjoint parts . . .

N.3 Thetiles of T are uniformly bounded.

These conditions N.1 to N.3 may be thought of as follows:

* N.I” Every tile has a boundary edge which joins up with itself and has no
breaksinit.

+ N.2’ If one tile is adjacent to another, they have line segment(s) in common
in the form of one edge only.

+ N.3’ A tile is uniformly bounded if it is small enough to have a circle
drawn round it and yet large enough to have a circle drawn inside it,
i.e. this condition prevents tiles being either too long or too thin.
The exact, permissible conditions are hard to define but the dimen-
sions of each tile, in this context, will be taken to be of ‘sensible’
proportions.

Examples of tilings which do not satisfy these characteristics, N.1, N.2" and N.3’,
are given in Figure 5.2(a), (b) and (¢), respectively.
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Figure 5.2 Examples of tilings which are not ‘normal’.
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Examples of (a) and (b) isohedral and (¢} non-isohedral tilings.

A monohedral tiling has a similar description to that of condition P2’ of a
monomotif pattern in Section 4.2 in that one tile is congruent to all the others,
that is, all the tiles are the same size and shape. An isohedral tiling, which is a
special form of monohedral tiling, is formally defined by Griinbaum and Shep-
hard* as follows:

Two tiles Ty, T, of atiling T are said to be equivalent if the symmetry group S(7) con-
tains a transformation that maps T, onto T,; the collection of all tiles of T that are
equivalent to T, is called the transitivity class of T . If all tiles of T form one transitiv-
ity class we say that T'is tile transitive or isohedral.

This definition is comparable to condition P.3" of a monomotif pattern, that is,
if each tile can be mapped onto any other tile by a symmetry of the tiling then the
tiling is isohedral. Lenart defines an isohedral tiling more simply by saying that a
monohedral tiling T'is called isohedral if, given two tiles t;and t, there is a symme-
try transformation of the entire tiling which maps t; onto tj.3

Again, the simplest way to assess whether a translational tiling is isohedral is
to look at a translation unit. If, inside one translation unit, each tile can be
mapped onto any other by an isometry of the tiling, then by subsequent unit
translations, any tile can be mapped onto any other in the whole tiling. Illustra-
tions of monohedral tilings, which are either isohedral or non-isohedral, are
given in Fig. 5.3 with finer details of their characteristics shown in Fig. 5.4.

Figure 5.4(a(i)) shows the incorporation of the group diagram into the first
design (Fig. 5.3(a)) displaying the symmetries present in its structure. Figure
5.4(a(ii)) illustrates one way of dividing the design into translation units. By
analysing the tiles and symmetries which occur in just one translation unit — (Fig.
5.4a(iil)) — note that one tile, for example T1, can be mapped onto the other, T2,
by either horizontal or vertical glide-reflectional symmetry. This implies that,
since tile T1 may be mapped onto the other tile in the translation unit, it is possi-
ble to map it onto any other tile in the remainder of the tiling by applying
glide-reflectional and translational symmetries. Hence, the tiling is isohedral.

Similarly, Fig. 5.4(b(1)), (b(i1)) and (b(iii)) represents equivalent characteristics
for the tiling in Fig. 5.3(b). In this example, each translation unit contains four
tiles: T1, T2, T3 and T4. Tile T1 may be mapped onto tile T2 by two-fold rota-
tional symmetry about a centre of rotation half way along one edge. It may be
mapped onto tile T3 by vertical glide—reflectional symmetry and T4 by horizontal
glide—reflectional symmetry. Therefore, since T1 may be mapped onto each of the
other tiles in the translation unit, it is possible to map it onto any other tile in the
whole tiling and consequently the tiling in Fig. 5.3(b) isisohedral.

Figure 5.4(c) represents equivalent characteristics for the tiling in Fig. 5.3(c).
Each translation unit contains six tiles: T1 to T6. Tile T1 may be mapped onto T3
by two-fold rotational symmetry; onto T4 by vertical glide-reflectional symme-
try; and onto T6 by horizontal glide-reflectional symmetry. However, there is no
symmetry in the tiling which will allow tile T1 to be mapped onto either T2 or T4.
Therefore the tiling in Fig. 5.3(c) is non-isohedral.

Although a finite tiling design does obviously not have translational symme-
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Figure 5.4 Analysis of the tilings in Fig. 5.3.

try, it may be analysed in a similar way to determine whether it is isohedral. Pro-
vided that any tile in the design can be mapped onto every other one then the
tiling is isohedral.

5.2.2 Kk-isohedral

A tiling may be non-isohedral but if T is a tiling with precisely &k transitivity
classes then T'is called k-isohedral 4

In the previous example, illustrated in Fig. 5.4(c), tiles T1, T3, T4 and T6 are in
equivalent positions since each one can be mapped onto any of the others in this
set of tiles. Thus, if one of these tiles was labelled A, and then copies of this letter
were mapped to all equivalent positions in the tiling, then four out of six of all the
tiles would be labelled A. If one of the remaining unlabelled tiles in the transla-
tion unit was labelled B and then mapped onto all the other possible equivalent
positions, first in the translation unit and then in the remainder of the tiling, then
all the other tiles would be labelled B. Hence, each of the tiles would have had a
tile mapped onto itself (since none of them would be left unlabelled). Conse-
quently, the tiles would have been divided into two sets: those labelled A and
those labelled B, in other words there are two sets of tiles (two transitivity classes)

Geometric symmetry in patterns and tilings
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Figure 5.5

Classification of isohedral tilings

Examples of k-isohedral tilings.

in this tiling: those equivalent to the position of tile T1 and those equivalent to
the position of tile T2. Therefore the tiling in Fig. 5.3(c) is two-isohedral.

Griinbaum and Shephard® state that generally if the tiles of a tiling are of n
different shapes then there will be at least # transitivity classes. They go on to say
that in the case of a tiling which is not symmetric, every tile is a transitivity class
on its own. For example, if a tiling consists of, say, two different shaped tiles, there
will be at least two transitivity classes, that is, it will be at least two-isohedral
since, obviously, only tiles of the same size and shape could possibly be mapped
onto each other. The tiling in Fig. 5.5(a) is composed of square and rectangular
tiles. In this case, all the squares form one transitivity class and the rectangles
form another; hence this tiling is two-isohedral.

If a tiling is not symmetric, the only symmetry it possesses is the identity sym-
metry (e.g. see the tiling in Fig. 5.5b). No tile can be mapped onto any other even
if they are congruent. Thus each of the # tiles has to be put in a different set
forming # different transitivity classes, that is an n-isohedral tiling.

However, since the classification system used in this chapter only deals with
tilings which are isohedral and hence monohedral, situations where tilings have
characteristics such as those illustrated in Fig. 5.5 do not arise.

5.2.3 Induced tile groups

An additional distinguishing feature of an isohedral tiling is its ‘induced tile
group’. This is analogous to the induced motif group of a discrete pattern type.
For an isohedral tiling, the induced (tile) group or induced group is taken to be
the finite symmetry group of the tile whose symmetries coincide with that of the
design structure. For example, the isohedral tilings in Fig. 5.6(a), (b), (c) and (d)
have induced groups c1, d2, d1 and d1, respectively.

In some cases, there may be more than one possibility for the positioning of
reflection axes of an induced group. This can only occur when each tile has an
even number of edges. Adopting the notation given by Griinbaum and Shephard,
d1(1) and d1(s) for instance, are used to denote the different positions of reflection
axes of induced group d1.* Here the ‘(1)’ stands for ‘long’ and indicates that the
reflection axis of the induced group passes through opposite vertices of a tile. ‘(s)’
stands for ‘short’ and indicates that the reflection axis of the induced group
passes through opposite edges (sides) of a tile (see Fig. 5.6(c) and (d)). (The basic
features of tilings are discussed in detail in Section 5.3.) A similar analogy is used
to differentiate between the positioning of reflection axes for tilings with induced
groups d2 and d3. The only exception is tiling Dt(T)35 where the induced tile
group dl(s) represents a reflection axis coinciding with the short bisector as
opposed to the long bisector of each tile.

As mentioned in the introduction Section 5.1, isohedral tiling classification is
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closely related to the classification of discrete patterns. As stated by Griinbaum
and Shephard ‘To every discrete periodic pattern P corresponds an isohedral
tiling D(P) . . . Here, ‘periodic pattern’ is analogous to a regularly repeating
ditranslational pattern and the corresponding tiling, ‘D(P)’, is an isohedral
‘Dirichlet’ tiling. In a similar way, in subsequent discussions and illustrations in
this chapter, this analogy has been applied and adapted to incorporate the analy-
sis and classification of monotranslational and finite tilings.

Dirichlet tiling

178

Griinbaum and Shephard? formally define a Dirichlet tiling as follows:

Let F={I; | (i € I} be any non-empty family of pair-wise disjoint sets in the plane;
with each I; we associate a tile T(F,) consisting of all the points P of the plane for
which the distance from P to I is less than or equal to the distance from P to each
with j#1i. Then {T(F)) | i€ 1} is a tiling called the Dirichlet tiling associated with F,
which we denote by D(F).

Alternatively, the theory of Dirichlet domains is explained by Kappraff with ref-
erence to schools and the districts to which they are allocated. He explains this by

Geometric symmetry in patterns and tilings




Figure 5.7

Classification of isohedral tilings

DOMAINS OF
RANDOM POINTS
(CAMBRIDGE SCHOOLS)

An example of a Dirichlet domain. Source: derived from Kappraff J, Connections:
The Geometric Bridge Between Art and Science, New York, McGraw-Hill Inc., 1991, with
permission.

saying that each point of a school district is nearer to the school in that district
than to any other school (see Fig. 5.7). In this context, each school district repre-
sents a tile and each school represents a motif. In connection with isohedral
tilings, when such a tiling is placed over a discrete pattern, if every point within a
tile is closer to the motif contained within it than any other motif in the pattern,
then the tiling is a Dirichlet tiling for that pattern type. Notice that in the example
in Fig. 5.7 the extremities of the outside districts are unbounded. Similarly for
finite and monotranslational pattern types the associated Dirichlet tilings would,
strictly speaking, be unbounded. However, in this book adaptations will be made
to form more practical solutions by insisting on bounded tiles for these classes of
tilings.

Figure 5.8 shows some examples of discrete patterns, their enclosure within
Dirichlet tilings and the resulting associated isohedral tilings.

An isohedral Dirichlet tiling achieves a sense of ‘fitting” with the discrete
pattern enclosed within it. This does not necessarily imply that both the tiling and
pattern have the same symmetry group. However, if they do, the Dirichlet tiling
may still not be unique. For example, the discrete pattern in Fig. 5.9(a) may be
associated with both the isohedral tilings in Fig. 5.9(b) and (c) by the Dirichlet
relationship. Yet, these tilings appear, conceptually, to be very different despite
the pattern and both tilings having the same symmetry group and induced group.
This is due to the interlocking and joining relationship of adjacent tiles, the struc-
ture of which is described by the topology of the tiling.

Before introducing elements of topology, the following descriptions and dia-
grams (in Fig. 5.10) illustrate the main concepts and terminology used to define
the basic features of a tiling.

* Cornersof T: A,B,D, F,G,H,1,J,K and Lin tiling 4 and A, B, Cand D in
tiling B. A corner is a point at which two lines join at an angle (=180°).

*  Verticesof T: A, C,E, G,Iand K in tiling 4 and A, B, C and D in tiling B. A
vertex is a point at which at least three line segments join together.

* Linesegments of T: AB, BD, DF, FG, GH, HI, 1J, JK, KI. and LA in tiling 4
and AB, BC, CD and DA in tiling B. The line segments correspond to the
sidesof a tile T.

* Edgesof T: AC, CE, EG, GI, IK and KA and all equivalent lengths in tiling
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Figure 5.8 Further examples illustrating the Dirichlet relationship.

Dirichlet tiling

[sohedral tiling

5.4

A and AB, BC, CD and DA and all equivalent positionsin tiling B. The edges
are the line segments or combination of line segments between each vertex.
Valency: The valency of each vertex of tiling 4 is three and of each vertex of
tiling B is four. The valency of a vertex is the number of edges that meet at
that point.

Adjacents of T: In tiling 4, T, T, T3, T4, T5 and T, are adjacents of tile T
and in tiling B, T,, T,, Ts and Ty are all adjacents of tile T. Two tiles must
have an edge in common to be adjacent to each other.

Neighbours of T: In tiling 4, T;, T, T3, T4, T5 and T are neighbours of tile
Tandintiling B, T, T,, T3, T4, Ts, T¢, T, and Tg are all neighbours of tile T.
Two tiles are neighbours if they have at least one point in common.

Topology of tilings

The two tilings in Fig. 5.9 illustrate that the derivation of Dirichlet tilings from a
discrete pattern type does not necessarily give a one-to-one correspondence and
hence, does not provide sufficient information for the classification of isohedral
tilings. This is observed by Griinbaum and Shephard who state that the classifica-
tion of isohedral tilings by pattern type is deficient in that it takes no account of

Geometric symmetry in patterns and tilings
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one of the most important features of the tiling, namely its topological type.* In
other words, since in most cases (as in Fig. 5.9) more than one Dirichlet tiling may
be associated with each ditranslational discrete pattern type, additional features
involved in their topology, such as their vertices and valencies, must be taken into
consideration to enable one form of Dirichlet tiling to be distinguished from
another. Alternatively, Bergamini described topology as a special kind of geome-
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Tiling A
Corners of T: ABDFGHIJKL
Vertices of T: A CEGIK
Line Segments of T: AB, BD, DF, FG, GH, HI, IJ, JK, KL, LA
Edges of T: AC, CE, EG, GI, IK, KA
Valencies of vertices A, C,E, G, |, K: 3,3,3,3,3,3
Adjacents of T: T, T, T5 T, Ts, Ts
Neighbours of T: T, T, Ty, Ty, Ts, T

Corners of T: A B CD

Vertices of T: A B CD

Line Segments of T: AB, BC, CD, DA

Edges of T: AB, BC, CD, DA
Valencies of vertices A,B,Cand D: 4,4,4 4

Adjacents of T: To Ty, To, Te

Neighbours of T: T T To Ty T, Te, T7, T

Figure 5.10 Examples illustrating the basic features of a tiling.
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Classification of isohedral tilings

try concerned with the ways in which surfaces can be twisted, bent, pulled
stretched or otherwise deformed from one shape into another.®

5.4.1 Topological equivalence

To deduce whether Dirichlet tilings, associated with a particular pattern type, are
topologically equivalent (i.e. are classed as the same ‘topological type’) involves a
special kind of transformation or mapping referred to as a ‘homeomorphism’.
Griinbaum and Shephard describe two tilings to be of the same topological type
(or to be topologically equivalent) if there is a homeomorphism which maps one
onto the other. They go on to define a homeomorphism as follows?:

A mapping ®: E2 — E2 of the plane onto itself is called a homeomorphism or topologi-
cal transformation if it is one-to-one and bicontinuous. One-to-one (or bijective) means
that for any two points P, Q in the plane, ®(P) = ®(Q) if and only if P = Q; this implies
that there exists an inverse transformation ®~! such that ®1(R) = Pif and only if ®(P)
=R. ... Bicontinuity means that both ® and ®~! are continuous.

In a context more suitable for surface designers, topologically equivalent tilings
may be thought of more simply as follows: if one tiling can be transformed into
another by applying a special kind of mapping or transformation called a
homeomorphism, which squashes, stretches or deforms tiles of the first tiling
without removing or adding any edges, and hence tiles, then the two tilings are
topologically equivalent.

For each of the examples (a) to (d), in Fig. 5.11, tiling A4 is topologically equiv-
alent to tiling B. In the first example it is easy to see how a form of horizontal
stretch produces tiling B. The homeomorphic transformation in the second, third
and fourth examples is more difficult to visualise. The metamorphosis, for each
example, is given in Fig. 5.12. In the third example, some edges, initially com-
posed of one line segment, have been transformed to those made of two. This
does not alter the topology of the tiling since the number of edges, and hence
tiles, has not increased or decreased.

Similarly, the six tilings in Fig. 5.13(a) to (f) are all topologically equivalent to
each other despite their tiles edges being composed of one, one, two, three, three
and four line segment(s), respectively. The number of edges remains the same in
each example although their differences in appearance are quite distinct.

The presence of topological equivalence is sometimes difficult to visualise
through a homeomorphic transformation. An alternative method of establishing
whether two tilings are topologically equivalent is to test for ‘combinatorial
equivalence’ because, as stated by Griinbaum and Shephard, for normal tilings
the concepts of topological and combinatorial equivalence coincide.*

5.4.2 Combinatorial equivalence
Two tilings are combinatorially equivalent if the following condition holds*:

Let &(T)denote the set of all elements of a tiling T, that is, the set whose members are
the vertices, edges and tiles of 7. A map @ of &(7) onto &(T’,) is said to be inclusion-
preserving if, whenever e[, e, € e(T)), then ®(e;) includes ®(e,) if and only if ¢;
includes e,. If there exists an inclusion-preserving map between T’} and T, then T} and
T, are said to be combinatorially isomorphic or combinatorially equivalent. If Vis any
n-valent vertex of T, then ®(}") will be an n-valent vertex of the combinatorially
equivalent tiling T,. Similarly, if a tile T of T’ has n adjacents, then so does the corre-
sponding tile ®(T") of T,.

In other words, given two tilings A and B, if each tile in A can be mapped onto a
tile in B such that, for example, a tile a, in A corresponds to a tile b in B, and the
number of edges, vertices and valencies of a; are the same as those of b; and they
have the same number of adjacents, then they are combinatorially equivalent.
These conditions must apply to every single tile in A and their corresponding tiles
in B. The relationship between the tiles in A and the tiles in B is one-to-one, that is
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one tile in A is mapped onto only one tile in B and that same tile in B may only be
mapped back onto the same particular tile in A.

The conditions of combinatorial equivalence may be applied to the tilings in
Fig. 5.11 to confirm their topological equivalence. Examples illustrating their
combinatorial equivalence are given in Fig. 5.14.

For example, in Fig. 5.14(a(1)) each tile has four edges, four vertices (each with
valency four) and four adjacents. Although the shapes of the tiles have been
altered for the tiling in Fig. 5.14(a(ii)), each still retains these characteristics. For
example, tile a;; may be mapped onto b;;,a;, onto b;,,a;30ntob;3,a;, ontob,
...a;,ontob,,. Similarly a,; may be mapped onto b,,, a,, onto b,,, a,; onto b,y
...ay,0ntob,, ...a, ontob, andso on untileach of the tiles of tiling (a(i))
has been mapped onto one in tiling (a(ii)). Throughout the mapping there has
been no alteration of the tilings’ elements or number of adjacents; therefore they
are combinatorially and hence topologically equivalent.

The tilings in Fig. 5.11(c) are not monohedral. However, since both designs are
periodic, that is, regularly repeating, the combinatorial condition may be
assessed for a translation unit of each tiling. A translation unit for tiling A is com-
posed of six tiles (see Fig. 5.14¢(1)). Four tiles each has four edges and four ver-
tices with valencies 3, 3, 4 and 4 (ordered by following the boundary of the tile
starting with the lowest numbered). Each of these tiles also has four adjacents.
One of the square tiles in the translation unit has eight edges and vertices with
valencies 3,4, 3,4, 3,4, 3 and 4 and eight adjacents. The other square tile has ver-
tices with valencies 4, 4, 4 and 4 and four adjacents. These conditions coincide
with the characteristics of the tiles in the translation unit of tiling B (see Fig.
5.14c¢(ii)). Therefore these two tilings are combinatorially and hence topologically
equivalent.

A translation unit of tiling A, in Fig. 5.11(d), is composed of six tiles (see Fig.
5.14 d(i)). Two tiles each has four edges and four vertices each with valencies 3, 3,
3, 3 and four adjacents; and four tiles each of which has seven edges and seven
vertices each with valencies 3, 3, 3, 3, 3, 3, 3 and seven adjacents. These character-
istics coincide with those of a translation unit of tiling B in Fig. 5.11(d) (see Fig.
5.14d(i1)) therefore these tilings A and B are combinatorially and hence topologi-
cally equivalent.

Both the tilings in Fig. 5.11(b) are isohedral (unlike the other three examples).
Therefore, instead of analysing the characteristics of a translation unit, it is only
necessary to look at one tile of each tiling (since each tile is equivalent to any
other). Figure 5.14(b) shows that each of the tiles in tilings A and B, in Fig.
5.11(b), has the same number of edges and vertices with the same valencies. Also,
they each have the same number of adjacents. Therefore the two corresponding
tilings are combinatorially and hence topologically equivalent.

The principle of combinatorial equivalence is evident in a number of meta-
morphic drawings by M.C. Escher. For example in his XXXIV Emblata, Padlock
design, a chequered black and white parallelogram tiling is transformed into tiles
shaped as bird-like images. Throughout the metamorphic transformation the ele-
men‘;s, valencies and adjacents of each tile remain the same from beginning to
end.

5.4.2.1 Notation

The notation used to classify tilings by topological type involves vertex valencies.
Since this chapter is concerned with the classification of isohedral tilings, the
classification by topological type will also be limited to this group of tilings.
Consequently, as one tile, in an isohedral tiling, is equivalent to each of the
others, it is only necessary to look at the characteristics of a single tile. Figure
5.15 gives some examples to show how the topological type of an isohedral tiling
is derived.

A single tile, in the first example (Fig. 5.15(a)), has three vertices with valencies
4, 8 and 8. To find the topological type, the smallest vertex valency is noted, and
then the valencies of the other vertices, whilst following the boundary of a tile in
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one direction. The direction in which to follow the boundary of the tile is deter-
mined by numerical order, that is, by the next lowest valency of an adjacent
vertex. The sides of the tile are then followed by continuing in that same direction
until one circuit of the boundary is completed. Consequently, for the tiling in Fig.
5.15(a), this gives topological type [4. 8. 8] which is reduced to [4.8%] in shorthand.
The topological types of the tilings in Fig. 5.15(b), (¢) and (d) are derived in the
same way.

Incldence symbols

Classification of isohedral tilings

Amalgamating the topological classification system with an isohedral tiling’s
associated discrete pattern type still does not result in differentiation between all
possible classes of isohedral tiling. Two tilings may be classed in the same symme-
try group, be of the same topological type and even be associated with the same
discrete pattern type but still appear to be quite different. This is due to the rela-
tionship between a tile and its adjacents.

For example, the two tilings illustrated in Fig. 5.16(a(i)) and (b(1)) (which are
schematically illustrated in Fig. 5.16a(ii) and b(ii), respectively) are both in the
same symmetry group, pg, are of the same topological type, 4%, and are associ-
ated with the same discrete pattern type, Dt(P)2, but are classed as different iso-
hedral tiling types.

In Fig. 5.16(a(i1)), a tile T is mapped onto its adjacents t1, t2, t3 and t4
by either glide-reflection or translation, whereas in Fig. 5.16(b(ii)), a tile P is
mapped onto its adjacents, p1, p2, p3 and p4 by glide-reflectional symmetry only.
This difference in the relationship a tile has with its adjacents, may be analysed
and incorporated into a term referred to as the tiling’s ‘incidence symbol’. The
incidence symbol, together with the topological type, distinguishes one isohedral
tiling type from another. Two tilings may be topologically equivalent but have dif-
ferent incidence symbols (for example, the tilings in Fig. 5.16) or conversely they
may have the same incidence symbol and be unlike topologically. Either way, they
would differ under the classification by isohedral tiling type.

Griinbaum and Shephard stated that two tilings are the same isohedral tiling
type if and only if they are of the same topological type and their incidence
symbols [L;A] differ trivially.> Here the two letters, L and A, in the incidence
symbol, [L;A], represent the tile symbol and the adjacency symbol, respectively.

5.5.1 Tile symbol

The tile symbol, L, consists of a sequence of letters with superscripts which labels
the edges of each tile in a particular order. Figure 5.17 gives some examples to
show how the tile symbol is derived.

An edge of a single tile, in Fig. 5.17(a), is allocated the letter ‘a’ and is orien-
tated by adding an arrow to it to indicate the direction which will be followed
around the boundary of the tile (Fig. 5.17a(1)). (The direction of the first labelled
edge does not matter.) This letter and arrow are then mapped onto equivalent
‘inside’ edges of the tile by using an isometry of the tiling (which in this case is
reflectional symmetry) (see Fig. 5.17a(ii)). The letter ‘b’ and an arrow is then
assigned to an edge following on from an edge labelled ‘a’ (Fig. 5.17a(iii)) which,
again, is mapped onto any other equivalent positions inside the tile. The tile
symbol, L, is determined by following the boundary of the tile in one direction
and noting down the letters in order and adding a superscript ‘+ if the arrows
point in the same direction as that which is being followed or ‘- if the arrow
points in the opposite direction to that being followed. This gives tile symbol a*
b* b~ a~ for the tiling in Fig. 5.17(a). (It is conventional and simplest to begin by
labelling consecutive edges alphabetically and to start with the letter ‘a’ when
deriving the tile symbol.)

The same edge-labelling procedure, for the second example, gives the result in
Fig. 5.17(b). As the top and bottom edges of the tile can be mapped onto them-
selves by reflectional symmetry of the tiling, these two are assigned double-
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headed arrows. In these cases, there is no superscript added to the letters in the tile
symbol which, for this example, is written at bt c b~ a~d.

The tile symbol, for the example in Fig. 5.17(c), is derived in the same way as
for the tiling in Fig. 5.17(d). These two tilings are of the same topological type but
have different tile symbols: a b a b and at a* at a* respectively. In Fig. 5.17(d),
each edge can be mapped onto every other by four-fold rotational symmetry of
the tiling which is why they are all assigned the same letter.

In Fig. 5.17(e), no edge can be mapped onto any other so therefore each edge is
allocated a different letter.

In Fig. 5.17(f), two-fold rotational symmetry allows some edges to be allo-
cated the same letter resulting in the tile symbol at bt ¢™ a* bt ¢*. By similar
analysis, but involving reflectional symmetry, the tiling in Fig. 5.17(g) is assigned
the tile symbola btctdc b,

The tile symbol of a tiling contributes to only half of the incidence symbol.
The remaining component is referred to as the ‘adjacency symbol’.

5.5.2 Adjacency symbol

The adjacency symbol, A, is also a sequence of letters with superscripts. It relates
to the letters contained within the tile symbol. It is derived by first mapping the
labelled inside edges of a tile, used to determine the tile symbol, onto every other
tile in the tiling by using symmetries of the tiling structure. This results in each
edge being allocated two letters and two arrows. The examples in Fig. 5.18 illus-
trate the results of this operation with respect to one tile in each of the tilings in
Fig. 5.17(a) to (g) and the derivation of the resulting adjacency and incidence
symbols.

Figure 5.18(b(i1)) shows a tile which has had its edges labelled with letters and
arrows by the procedure described above. The adjacency symbol is determined by
beginning at the same point as that for the tile symbol and continuing in the same
direction along the same edges whilst noting the edge labels of adjacent tiles in
order. If the parallel arrow of an adjacent tile points in the same direction, a neg-
ative superscript is added to the adjacent letter. If the arrow points in the opposite
direction, a positive superscript is attached. However, in the adjacency symbol
(unlike the tile symbol) if a letter has been noted down once, and whilst following
the boundary of the tile the same letter appears again, it is not repeated a second
time, that is, if the tile symbol consists of four distinct letters (ignoring their
superscripts and repetitions) then the adjacency symbol will consist of four
letters only with their appropriate superscripts. Thus, following this system of
letter allocation, the tiling in Fig. 5.18(b), with tile symbol at b* ¢ b~a™d, is given
the adjacency symbol b~ a™ d ¢ implying that all tile edges labelled ‘a’ abut edges
labelled ‘b’ with equally orientated arrows; and all edges labelled ‘¢’ abut edges
labelled ‘d’ neither of which is orientated, that is, they have double-headed
arrows. The combination of the tile symbol, L, and adjacency symbol, A, gives
the incidence symbol, [L;A], of the tiling which, for the example in Fig. 5.18(b) is
[atbTcb a~d;b a"dc].

The adjacency symbol, for the tiling in Fig. 5.18(a), is found by following the
boundary of a tile from the same starting point that was used to derive the tile
symbol and in the same direction as described above. The initial letter of the adja-
cency symbol is ‘b’ as this lies next to the first edge in the tile symbol. The super-
script is negative as the arrows are equally orientated. The next letter is ‘a’ as this
lies next to the second letter in the tile symbol. Again, the superscript is negative.
The third letter in the adjacency symbol would be ‘a’ but since this letter has been
used previously in the adjacency symbol, it is not repeated a second time. Thus,
the tile symbol at bt b~ a~ leads to the adjacency symbol b~ a~ which gives the
incidence symbol[atbtb a™; b a7

The same principle has been used to determine the adjacency and incidence
symbols for the remaining tilings in Fig. 5.18(¢c) to (g).

Of course, the incidence symbol may vary according to how the letters and
arrows were initially allocated to the tiling when first deriving the tile symbol. For
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Figure 5.18 Derivation of the adjacency and incidence symbols.

Classification of isohedral tilings

iii
Tile symbol: a'b*ba’
Adjacency symbol: ba
Incidence symbol:
[a'b*ba’; bal

iii

Tile symbol: a*b*c bad

Adjacency symbol: badc

Incidence symbol:
[a’b*c bad; bad c]

iii

Tile symbol: abab
Adjacency symbol: ba
Incidence symbol:
[abab; bal

iii
Tile symbol: a*a*a*a’
Adjacency symbol: a*
Incidence symbol:

++++,a+]

[@"a"a™a™;

i

Tile symbol: a*b*c*d*e’f”
Adjacency symbol:
db*eacf

Incidence symbol:
[a'bc’d*e’f’; db'ea cf']

iii
Tile symbol:
a+b+c+a+b+c+
Adjacency symbol: bac”
Incidence symbol:
[a’b'c*a’b*c’; bac’]

iii

Tile symbol: a b'c*d cb
Adjacency symbol:d b*c*a
Incidence symbol:
[ab’c’d cb’; d b'c*a]
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Tile symbol: a‘b*c bad
Adjacency symbol: badc

Incidence symbol: [a*b'c bad; bad ¢]
b

Tile symbol: ab'c'dchb
Adjacency symbol: dcb a

Incidence symbol; [abc'dcb;dcb a]
c

Tile symbol: a‘bacdc
Adjacency symbol: c'da'b
Incidence symbol: [a'bac'dc; c'd a'b]

Figure 5.19 Examples of isohedral tilings with equivalent incidence symbols.

example, referring to the tiling in Fig. 5.19(a), the tile symbol could have been
derived from a different lettering system, shown in Fig. 5.19(b) or 5.19(c), to give
the corresponding tile, adjacency and incidence symbols. These incidence
symbols must be equivalent since they are taken from the same isohedral tiling. In
essence, they differ ‘trivially’.

The symbols contained within two different, but equivalent, incidence

Geometric symmetry in patterns and tilings




Classification of isohedral tilings

symbols may be made to coincide by the reallocation of letters to one of the
tilings. After all, each letter represents a particular edge but its name is not signifi-
cant as long as it is allocated correctly. For simplicity, though, it is most logical to
label the edges in alphabetical order.

The incidence symbols, derived from the labelled tilings in Fig. 5.19(a) to (c)
are listed below.

* Figure5.19(a) [atbtcb a d;b a"dc] ()
* Figure5.19(b) [abTctdc b7;dc b a] (i)
* Figure5.19(c) [atba c¢tdc;ctdatb] (iii)

Suppose, in (i), the letters were cyclically permuted one step, that is, ‘a’is replaced
by ‘b, ‘b’ by °¢’, ‘¢’ by ‘d’ and °d’ by ‘a’. Then the incidence symbol becomes [b* ¢*
d ¢™ b~ a; ¢ b~ a d] which coincides with (ii) except that the starting point for the
tile symbol is p2 instead of pl (see Fig. 5.19(b)). This confirms that the first and
second incidence symbols differ trivially and so are equivalent.

Alternatively, differences in equivalent incidence symbols may occur due to
arrow orientation instead of, or as well as, edge lettering.

For incidence symbols (ii) and (iii), unorientated edges in these tile symbols
must coincide if the incidence symbols differ trivially. If the edges labelled ‘d’ in
the tile symbols of (ii) and (iii) coincide, then adjacent edges labelled ‘c’ do
also since ‘c’ occurs next in the sequence in the tile symbol of (ii) and (iii). The
other unorientated edges are labelled ‘a’ in (ii), and ‘b’ in (iii). Suppose, in (iii),
letters a and b are interchanged (remembering that the edge letter does not
matter, but the order and occurrence of superscripts and equally labelled edges
do matter). Then this transforms (iii) to incidence symbol [bta b~ ¢t d ¢7;ctd b*
a]. By cyclically permuting the terms in this symbol by one step, which is equiva-
lent to starting the tile symbol at an adjacent vertex (p4 instead of p3), then this
symbol becomes [a b~ ¢t d ¢~ b*; d bt a ¢']. This is the same as (i) except for the
orientation of the edge labelled ‘b’ (see Fig. 5.19(b)). If this arrow is reorientated,
all the superscripts of the edges labelled ‘b’ in the tile symbol will be reversed as
will the superscripts in the edges labelled ‘c’ in the associated adjacency symbol.
This results in the transformation of the incidence symbol such that it coincides
exactly with that of Fig. 5.19(a). Thus, with some simple reallocation and manip-
ulation of letters, it has been shown that the incidence symbols, in Fig. 5.19(a) to
(c), differ trivially.

This may prove to be a time-consuming procedure when determining an isohe-
dral tiling type. However, after initially deducing the topological type, the group
of possible incidence symbols may be reduced to a minimum by checking certain
characteristics of the tiling. For example, the number of different letters in the tile
symbol restricts the range of possible incidence symbols. Then, by checking the
symmetry group and induced tile group of the tiling the range is reduced further
and, in most cases, enables a ditranslational isohedral tiling to be classified.
However, for some tilings with topological types [3] or [4%], the number of differ-
ent letters in the symbol, the symmetry group and tile induced group coincide.
These are listed in Table 5.1.

If the adjacency symbol contains superscripts which are all the same, the clas-
sification is straightforward because, if they are all negative, each edge is a reflec-
tion or glide-reflection of another edge and if they are all positive, each edgeis a
two-fold rotation or translation of another edge. If, in addition, each letter in the
tile symbol corresponds to the same one in the adjacency symbol, then every edge
is mapped onto itself by two-fold rotation.

If there is still doubt with regard to classifying the type of an isohedral tiling,
edge lettering reallocation may be necessary and/or more detailed investigation
of edge characteristics. A visual comparison with the uncomplicated illustrations
of the 81 distinct isohedral tilings in Fig. 5.25 may also aid classification. These
examples clearly show the properties of the edges in the tilings and the relation-
ships between them. A tiling which may be classed as one listed in Table 5.1 (and
whose type may be difficult to distinguish) may be more easily identified by
observing its visual characteristics in comparison with those tilings in Fig. 5.25.
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Table 5.1

5.6

Isohedral tilings with the same topological type and similar incidence symbols

Topological Isohedral Induced
type tilingtype  Incidence symbol Symmetry group  group
[39] DY(T)2 [a"btctdtetft; b~ a ft pg cl
e d ct]
Dt(T)3 [atbTctdtetft;cceta - pg cl
bt d]
DY(T)5 [atbtctdtetft;atetd” pegg cl
¢ b~ f*]
Dt(T)6 [atbtctdtetft;ate ¢t pgg cl
f-b=d7]
[44] DY(T)43 [a"btctdt;c dta b*] pg cl
DyT)44 [a*bTctdt;b~a d ¢7] pg cl
Dt(T)46 [a* bt ctdt; at bt ctd*] p2 cl
Dy(T)47 [a"btctdt;ctbtatdt] p2 cl
DYy(T)49 [a"btctdt;a btc d*] pmg cl
DY(T)50 [a* bt ctdt; ctb~atd*] pmg cl
Dt(T)51 [a"btctdt; ¢ bta d*] pgg cl
Dt(T)52 [a*bTctdt; ¢ d a b7] pgg cl
Dt(T)53 [a*bTctdt; b~ a ¢t d*] pgg cl

Marked isohedral tilings

In the previous discussion in Section 5.4, it was noted that a Dirichlet tiling, asso-
ciated with a discrete pattern, may not necessarily be unique, in other words more
than one type of isohedral tiling may be derived from a ditranslational discrete
pattern (see Fig. 5.9). This results in 39 of the 51 ditranslational discrete pattern
types forming a basis for 81 different types of isohedral tiling by the Dirichlet
relationship, that is, as stated by Griinbaum and Shephard there exist precisely 81
distinct types of isohedral tilings.*

Conversely, one isohedral tiling may be associated with more than one discrete
pattern type. For example, each of the pattern types Dt(P)24, Dt(P)27 and
Dt(P)47 is associated with the same Dirichlet tiling — an equilateral triangle tiling
(as shown in Fig. 5.20(a)). Similarly, pattern types Dt(P)14, Dt(P)18 and Dt(P)15
may only be enclosed in either a rectangular or square tiling (depending in the
lattice structure of the pattern) and pattern types Dt(P)39, Dt(P)34 and Dt(P)40
may only be enclosed in a square Dirichlet tiling (see Fig. 5.20(b) and (c)). Like-
wise, pattern types Dt(P)28, Dt(P)29 and Dt(P)37 are associated with the tilings
shown in Fig. 5.20(d). Yet, each of these tilings is already a Dirichlet tiling for an
associated discrete pattern of its own where the pattern and tiling have the same
symmetry group and induced group and the tiling forms one of the distinct isohe-
dral tiling types (see Fig. 5.21). To differentiate between the distinct isohedral
tilings and the ones associated with a pattern type with a different symmetry
group and induced motif group, the pattern type is incorporated into the isohe-
dral Dirichlet tiling to form a ‘marked isohedral tiling’ (as shown in Fig. 5.20). A
marked tiling is defined as one in which there is a marking or motif on each tile
where a symmetry of the marked tiling is an isometry which not only maps the
tiles of T onto tiles of 7, but also maps each marking on a tile of 7 onto a
marking on the image tile.# In other words the symmetries of the marked isohe-
dral tiling must not only map the tiles onto each other but also the motifs posi-
tioned on the tiles onto each other.

Unlike the unmarked tilings, where the symmetries of the discrete pattern
and Dirichlet tiling coincide, the symmetries of a pattern of a marked tiling
form a subgroup of the symmetries of the tiling enclosing them, that is, by incor-
porating a pattern into an unmarked tiling the order of symmetry of the tiling
is reduced. The 12 marked isohedral tilings, combined with the 81 distinct
ones, form the 93 different types of ditranslational isohedral tiling. The identifi-
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Table 5.2

Three finite isohedral tiling types

Isohedral tiling type Symmetry group Induced tile group Pattern type
F(T)1, cn(n=2) cl F(P)1,
FT)2, dn(n=1) cl F(P)2,
FMN3, dn(n=2) dl F(P)3,

Table 5.3 The 15 monotranslational isohedral tiling types
Isohedral tiling type Symmetry group Induced tile group Pattern type
My(T)1 pl11l cl My(T)1
My(T)2 plal cl My(T)2
MY(T)3 plml cl MY(T)3
MyT)4 plml a1 Mt(T)4
My(T)5 pmil cl My(T)5
My(T)e pmil a1 My(T)e
My(T)7 pl12 cl My(T)7
MyT)8 pl12 c2 MyT)8
MY(T)9 pma2 cl MY(T)9
Mt(T)10 pma2 c2 Mt(T)10
My(T)11 pma2 a1 My(T)11
My(T)12 pmm?2 cl My(T)12
My(T)13 pmm?2 a1 My(T)13
My(T)14 pmm?2 a1 My(T)14
My(T)15 pmm?2 a2 My(T)15
cation and classification of the marked isohedral tilings is determined in the same
way as the distinct isohedral tilings, whilst accounting for the reduction in the
order of symmetry of each tiling caused by marking the superimposed discrete
pattern.

The identification and classification of finite and monotranslational isohedral
tilings involves a much simpler process since they form a one-to-one correspon-
dence with their associated discrete pattern types.

5.7 Classification of finite isohedral tiling types
Each of the three finite discrete pattern types is associated with one isohedral
tiling type. These tilings are listed in Table 5.2 together with their symmetry
groups, induced tile groups and associated discrete pattern types. Illustrations of
each type are given in Fig. 5.22(a), (b) and (¢).
5.7.1 Notation
The notation used for finite isohedral tilings has been derived from that of
the finite discrete pattern types. The three types are denoted by F(T)1 , F(T)2,
and F(T)3, where n represents the number of reflection axes and/or the order
of rotation of the overall design structure. Because each of these tilings is
associated with a discrete pattern type, which must satisfy the non-trivial
condition, the same restrictions apply to the limitations on the values of »
(see Table 5.2).

5.8 Classification of monotranslational isohedral tiling types

Classification of isohedral tilings

Each of the 15 monotranslational discrete pattern types is associated with one
isohedral tiling type. These tilings are listed in Table 5.3 together with their sym-
metry groups, induced tile groups and associated discrete pattern types. Figure
5.23 shows an illustration of each type.
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tiling type Dt(T)35

199




200

MPAVAYAY
ININSNIN
NININ/ NS
FAYAYAYAN
VAT ATAY

Discrete pattern type
Dt(P)50

Discrete pattern type
Dt(P)41

IXEXXXX
IXEXXXX
EXXXXXX
EXXXXXX
IXEXXXX

Discrete pattern type
Dt(P)16

\VAVAVAVA
NN/
\VAVAVAV

ININN/N
\WAYAYAY
Dt(T)83

2

ans
$ads

|screte pattern type
Dt(P)51

Isohedral tiling type
D(T)20

Figure 5.21 Distinct isohedral tilings (a

Isohedral tiling type
DYT)76

O
i
AF")(\AF'%

EEAEES

Discrete pattern type
Dt(P)49

Isohedral tiling type
Dt(T)37

the marked isohedral tilings.

Isohedral tiling type
DH(T)72

Pala Tl Tl ey
LA LA L
A A
Ao 2 2
3 2
2 2
oo o T

Discrete pattern type
Dt(P)38

Isohedral tiling type
Di(T)82

nd their associated pattern types) which are used to form

Geometric symmetry in patterns and tilings




i

F(THs

2
<
&

F(T)1s F(THe

-
=
&

F(T)24 F(T)2 F(T)2s F(T)2,

3
&)
3
)

(M2, F(T)2

we
S
e

F(T)3, F(T)3, F(T)3s

AN
ég
G

(T)3e F(T)3s F(T)3s
Figure 5.22 lllustrations of finite isohedral tiling types.

Classification of isohedral tilings 201




202

Mt(T)1

Mt(T)2

wm A PRCHRTHRTIR MR IR RIS

Mt(T)4

Mt(T)5

Mt(T)6

Mt(T)7

Mt(T)8

Mt(T)9

Mt(T)10

Mt(T)11

Figure 5.23 Illustrations of the 15 monotranslational isohedral tiling types.
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Mt(T)13

Mt(T)14

Mt(T)15

Figure 5.23

5.9

(cont.)

5.8.1 Notation

The notation used for monotranslational isohedral tilings has been derived from
that of the monotranslational discrete pattern types. The 15 types are denoted by
Mt(T)1 to Mt(T)15.

Classification of ditranslational isohedral tiling types

5.10

Each of the 51 ditranslational discrete pattern types is associated with one or
more isohedral tiling types which results in 12 marked and 81 distinct isohedral
tiling types. These tilings are listed in Table 5.4 together with their topological
types, incidence symbols, symmetry groups, induced tile groups and associated
discrete pattern types. Figure 5.24 shows an illustration of each marked type and
Fig. 5.25 shows an example of each distinct type.

5.9.1 Notation

The notation used for ditranslational isohedral tilings has been derived from that
of the ditranslational discrete pattern types. The 93 types are denoted by Dt(T)1
to D1(T)93.

Construction of finite isohedral tiling types

Classification of isohedral tilings

The techniques used to construct finite isohedral tilings F(T)1, to F(T)3,, are
adapted from those described in Section 2.11. The circular area enclosing the
design will be divided into fundamental regions (some or all of whose boundaries
are retained) and then the circumference of the circle may be suitably adapted to
produce a finite tiling design.

5.10.1 Finite isohedral tilings, induced group c1

There are two types of finite isohedral tiling design with induced group c1: F(T)1,,
(symmetry group cx) and F(T)2, (symmetry group dn).

The simplest method of constructing an F(T)1, design is to begin with a circle,
radius R, and add a line (which is not straight) joining its centre to the boundary.
This line is then rotated, » — 1 times, at consecutive intervals of 360°/n after, if
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lllustrations of the 12 marked isohedral tiling types. Source: derived from Griinbaum B
and Shephard G C, Tilings and Patterns, New York, Freeman and Company, 1987.

necessary, adapting the initial line to ensure that it does not overlap with adjacent
copies of itself (see Fig. 5.26a(i) and a(ii)). The circle may be incorporated as part
of the finished design or the design may be enhanced by joining the point at which
one of these lines touches the circular boundary to an adjacent line segment at
distance r from the circle centre (where r is a proportion of R) (see Fig. 5.26a(ii1)).
This line (the shape of which, in this instance, is not important) is also rotated
n — 1 times through 360°/n. The circular boundary may then be removed to com-
plete the tiling design (Fig. 5.26a(iv)). The initial line may be chosen to be
straight, in which case the secondary joining line must not have both end points
on the circular boundary and have reflectional symmetry passing through the
centre of the circle. The same procedure as above is used to complete the remain-
der of the design (see Fig. 5.26b).

To construct an F(T)2, tiling design, a circle of radius R is divided into 2n
equal sectors. A line (which does not have reflectional symmetry passing through
the circle centre) is used to join one straight edge of a sector to an adjacent one. It
must touch at least one point on the circumference of the circle. This line is then
reflected about axes coinciding with the sector boundaries. The straight sector
edges inside these resulting lines are incorporated in the design whilst the propor-
tions outside them, and the circular boundary are removed (Fig. 5.26(c)).
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5.10.2 Finite isohedral tilings, induced group d1

There is one type of finite isohedral tiling design with induced group d1: F(T)3,,
in symmetry group dn. It is constructed by the same method as that for group
F(T)2, but in the final stages only alternate straight sector edges inside the
boundary of the tiling are incorporated in the design (see Fig. 5.26(d)). Different
design effects may be created depending upon which of the two sets of alternate
straight sector edges is removed.

Construction of monotranslational isohedral tiling types

Classification of isohedral tilings

The technique used to construct the majority of the monotranslational tiling
types will initially follow the stages described in Section 2.12 for design type (iii),
of dividing a strip, width W, into interlocking fundamental regions. (For symme-
try groups pm11 and pmm?2 recall that design type (iii) was not constructable so
the initial design structures for tiling types in these symmetry groups will be based
on rectangular (or square) fundamental regions described for design type (i).)

The design may then be further improved by replacing the straight edges of the
strip with irregular ones. This may be achieved by adding a line (or two lines
where the two opposite edges of a fundamental region coincide with the edges of
the strip) which joins a vertex on the edge of the strip to an adjacent fundamental
region edge in the longitudinal direction. It is then mapped onto all equivalent
positions in the strip by applying the generating symmetries. In some cases more
than one edge of a fundamental region may initially be replaced by a new edge (as
shown for Mt(T)9, symmetry group pma2, in Fig. 5.271(ii)). However, this/these
new edge(s) must reach at least one point on the edge of the strip. The initial
straight edges of the strip and any boundaries of the fundamental regions
exceeding the tiles in the tiling are then removed to complete the design. This pro-
cedure is illustrated in the examples given throughout the remainder of this
section. The non-primitive tiling types are derived from the primitive tilings by
removing some of the boundaries of the fundamental regions at the end of the
construction procedure.

The symmetric tiles used for the construction of design type (vi) may also be
used as a basis for the construction of monotranslational tilings. However, when
replacing the straight edges of the strip, the new lines added to complete the tiling
must reduce the order of symmetry to the correct tiling type. These forms of
tiling are not discussed in any further detail in this chapter.

5.11.1 Monotranslational isohedral tilings, induced group c1

Each of the seven primitive pattern types has one associated isohedral tiling type
with induced group cl. A strip is divided into fundamental regions by the
methods described for design type (iii) (or type (i) for Mt(T)S and Mt(T)12) in
Section 2.12. The procedure described above is carried out to produce the tilings
given in Fig. 5.27(a)—(g). These show the isohedral tilings associated with the
primitive pattern types of symmetry groups pl11, plal, plml, pmll, pl112,
pma?2 and pmm?2, respectively. For Mt(T)2, symmetry group plal, there are two
methods of construction. In one case the right hand side of a fundamental region
is a glide—reflection of the left hand side and in the other case it is a translation of
the left hand side. In the second case the straight longitudinal axis of the strip
may also be replaced by an alternative one which has glide—reflectional symmetry
(as shown in Fig. 5.27b(ii)). Three methods are given for the construction of
tiling type Mt(T)7, symmetry group p112, which are illustrated in Fig. 5.27(e(1)),

(e(ii)) and (e(ii)).

5.11.2 Monotranslational isohedral tilings, induced group c2

Each of the pattern types Mt(P)8 and Mt(P)10 (in symmetry groups p112 and
pma2, respectively) has one associated isohedral tiling type, Mt(T)8 and
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Table 5.4 The 93 ditranslational isohedral tiling types

Isohedral Topological Symmetry Induced Pattern
tiling type type Incidence symbol group tile group type
Dy(T)1 (39] [atbtctdtet ft; dtet fratbtct] pl cl Dt(P)1
Dy(T)2 [atbtctdtetft;b~a fre dc'] peg cl Dt(P)2
Dt(T)3 [atbtctdtetft;c et a fbtd] peg cl Dt(P)2
Di(T)4 [atbtctdtet ft;atetct dt btft] p2 cl Dt(P)7
DY(T)5 [atbtctdtetft;atetd ¢ bt peg cl Dt(P)9
DY(T)6 [atbtctdtetft;ate ¢t f b d] peg cl Dt(P)9
Dy(T)7 [atbtctdtet ft; bt atdt ¢t ftet] p3 cl Dt(P)21
Dy(T)8 [atbtctatbtct; at bt ct] p2 c2 Dt(P)8
DY(T)9 [atbtctatbtct; atc bT] pgg c2 Dt(P)10
Dy(T)10 [aTbT a* bt at bt; bt a*] p3 c3 Dt(P)22
DY(T)11 [atat atat ata’; a’] p6 c6 Dt(P)45
Dy(T)12 [abtctdc b™;dc b a) cm di(s) Dt(P)6
Dy(T)13 [ab*ctdc b™;dbtctal pmg di(s) Dt(P)13
Dy(T)14 [atbtctc b~ a;¢c"b™a7] cm d1(1) Dt(P)6
Dy(T)15 [atbtctc b~ as; atb c] pmg d1(1) Dt(P)13
Dy(T)16 [atbtctc b~ a7 a ctb] p31m d1(1) Dt(P)25
Di(T)17 [ab*b~ab*b™; ab?] cmm a2 Dt(P)20
DY(T)18 [ababab;bal p31m d3(s) Dt(P)26
DY(T)19 [ata~ata ata;a’] p3mli d3(1) Dt(P)29*
Dt(T)20 [aaaaaa;a] pem a6 Dt(P)51
DY(T)21 [34.6] [atbTctdtet; et ¢t bt dta’] p6 cl Dt(P)42
DY(T)22 [33.42] [atbtctdtet;a” et d™ ¢ b?] cm cl Dt(P)5
Dy(T)23 [atbTctdtet;atetct dt bf] p2 cl Dt(P)7
Dy(T)24 [atbTctdtet;a et ctdtb'] pmg cl Dt(P)11
DY(T)25 [atbtctdtet; atetd ¢ dt] pgg cl Dt(P)9
D(T)26 [ab*ctc b ab™ ¢t cmm dl Dt(P)19
DY(T)27 [32.4.3.4] [atbTctdtet;atd e b ¢7] pgg cl Dt(P)9
Dy(T)28 [atbtctdtet; atctbt et dt] p4 cl Dt(P)30
DY(T)29 [ab*ctc b actbt] pag dl Dt(P)35
DY(T)30 [3.4.6.4] [atbTctdt; a b~ dtct] p31m cl Dt(P)23
DY(T)31 [atbtctdf; bt atdtct] p6 cl Dt(P)42
DY(T)32 [ata b*b™;a b7] pem dl Dt(P)48
DY(T)33 [3.6.3.6] [atbT ¢t dt; d" ¢t bt at] p3 cl Dt(P)21
DY(T)34 [a*bT a" b*; bt at] p6 c2 Dt(P)43
DY(T)35 [atbtb~a;a b7] p3mi di(s) Dt(P)28*
DY(T)36 [ata b*b~; b~ a’] p31m d1(1) Dt(P)25
Dt(T)37 [ata~ata; a7] pem a2 Dt(P)49
DY(T)38 [3.122] [atbtct; a ¢t bt] p31m cl Dt(P)23
DY(T)39 [atbtct; at ¢t bt] p6 cl Dt(P)42
Dy(T)40 [abtb~;ab] pem dl Dt(P)48
DY(T)41 [44] [atbtctdf; ¢t dt atbt] pl cl Dt(P)1
DY(T)42 [atbtctdt;ctb™atdT] pm cl Dt(P)3
DY(T)43 [atbtctdt; ¢ dt a bt] peg cl Dt(P)2
Dy(T)44 [atbtctdt; b a"d ¢7] peg cl Dt(P)2
Dy(T)45 [atbtctdt; ¢ b~ a d7] cm cl Dt(P)5
Dy(T)46 [atbtctdf; atbtctd] p2 cl Dt(P)7
DYT)47 [atbtctdf; ¢t bt at d] p2 cl Dt(P)7
Dy(T)48 [a*btctdt;a b~ ¢ d7] pmm cl Dt(P)14*
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Table 5.4  (cont.)

Isohedral Topological Symmetry Induced Pattern
tiling type type Incidence symbol group tile group type
Dt(T)49 [a*b* ¢t dt; a~ bt ¢ df] pmg cl Dt(P)11
DY(T)50 (44 [atbtctdt; ¢t b atdf] pmg cl Dt(P)11
DY(T)51 [atbtctdt; ¢ bt a d] pgg cl Dt(P)9
Dt(T)52 [a*btctdt; ¢ d a b7] pgg cl Dt(P)9
DY(T)53 [a*b* ¢t dt; b~ a ¢t df] pgg cl Dt(P)9
DY(T)54 [a*b*ctdt; a~ b~ ¢ df] cmm cl Dt(P)17
DY(T)55 [atb* ¢t dt; bt at dtct] pé cl Dt(P)30
DY(T)56 [atbtctdt; btatc dT] pag cl Dt(P)33
DY(T)57 [atbtatb®; at bt p2 c2 Dt(P)8
DY(T)58 [at bt atb*; a~b'] pmg c2 Dt(P)12
DY(T)59 [at bt atb*; b~ a7] pgg c2 Dt(P)10
DY(T)60 [at bt atb*; a b] cmm c2 Dt(P)18*
Dt(T)61 [a*t bt atb*; bt at] pé c2 Dt(P)31
Dt(T)62 [atatatat; a’] pé c4 Dt(P)32
DY(T)63 [atatatat;a’] pag c4 Dt(P)34*
Di(T)64 [abtctcb™;cb™al pm di(s) Dt(P)4
Dt(T)65 [abtctcb™;ab¢] pmm di(s) Dt(P)15*
Dt(T)66 [abtctcb;cbtal pmg di(s) Dt(P)13
DY(T)67 [abtctcb™;ab*c] cmm di(s) Dt(P)19
DY(T)68 [atbtb~a;b~a7] cm d1(1) Dt(P)6
Dt(T)69 [atbtb~a™; a"b*] pmg d1(1) Dt(P)13
DY(T)70 [atbtb~a™;a b] p4m d1(1) Dt(P)39*
DYT)71 [a* bt b~ a; bt at] pag d1(1) Dt(P)35
DYT)72 [abab;ab] pmm di(s) Dt(P)16
DYT)73 [abab;ba]l pag di(s) Dt(P)36
DYT)74 [ata ata;a’] cmm d1(1) Dt(P)20
DY(T)75 [ata ata;a’] p4m d1(1) Dt(P)40*
Dt(T)76 [aaaa;a] p4m a4 Dt(P)41
DYT)77 [4.6.12] [atbtct;a b ¢ pem cl Dt(P)46
DY(T)78 [4.82] [a*b*ct; atb™¢] cmm cl Dt(P)17
DY(T)79 [at bt ct; at ¢t bt] pé cl Dt(P)30
DY(T)80 [atbtct;a b ¢ p4m cl Dt(P)37*
DY(T)81 [atbtct;a ¢t bt] pag cl Dt(P)33
DY(T)82 [abtb~; ab] p4m dl Dt(P)38
DY(T)83 [63] [atbtct;b a ¢7] cm cl Dt(P)5
DY(T)84 [atbtct; at bt ct] p2 cl Dt(P)7
DY(T)85 [a*b*ct; a~ bt ct] pmg cl Dt(P)11
DY(T)86 [a*b*ct; b~ a c¢t] pgg cl Dt(P)9
DYyT)87 [a*b*tct;a b~ ¢ p3mil cl Dt(P)27*
DY(T)88 [atb*ct; bt at ¢ct] poe cl Dt(P)42
DY(T)89 [atatat;aT] p31m c3 Dt(P)24*
DY(T)20 [at atat; at] poe c3 Dt(P)44
Dt(T)o1 [abtb~; abt] cmm dl Dt(P)19
Dt(T)92 [abtb~; ab] pem dl Dt(P)47*
DY(T)93 [aaa;a] pem a3 Dt(P)50

* Indicates that the tiling is one of the marked isohedral tiling types.
Source: derived from Griinbaum B and Shephard G C, Tilings and Patterns, New York, Freeman and Company, 1987.
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Mt(T)10, with induced group ¢2. These may be derived from the primitive isohe-
dral tiling types Mt(T)7 and Mt(T)9, respectively.

Tiling type Mt(T)8 is constructed from Mt(T)7 by removing each edge in
common with two tiles that passes through alternate centres of two-fold rotation
which occur along the longitudinal axis of the strip. Tiling type Mt(T)10 is con-
structed from Mt(T)9 by removing every edge in common with two tiles that
passes through a centre of two-fold rotation along the longitudinal axis of the
strip. Examples showing the construction of Mt(T)8 and Mt(T)10 are given in
Fig. 5.28(a) and (b), respectively.

5.11.3 Monotranslational isohedral tilings, induced group di1

Each of the pattern types Mt(P)4, Mt(P)6, Mt(P)11, Mt(P)13 and Mt(P)14 (in
symmetry groups plml, pmll, pma2, pmm?2 and pmm2, respectively) has one
associated isohedral tiling type: Mt(T)4, Mt(T)6, Mt(T)11, My(T)I13 and
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5.12

Mt(T)14 with induced group d1. These may be derived from the primitive isohe-
dral tiling types Mt(T)3, Mt(T)5, Mt(T)9, Mt(T)12 and Mt(T)12, respectively.

Mt(T)4 is constructed from Mt(T)3 by removing each edge in common with
two tiles that coincides with the longitudinal reflection axis of the strip (see
Fig. 5.29(a)). Mt(T)6 is constructed from Mt(T)5 by removing each edge in
common with two tiles that coincides with each alternate transverse reflection
axis (see Fig. 5.29(b)). Mt(T)11 is constructed from Mt(T)9 by removing each
edge in common with two tiles that coincides with a transverse reflection axis (see
Fig. 5.29(c)). Mt(T)13 is constructed from Mt(T)12 type by removing each edge
in common with two tiles that coincides with each alternate transverse reflection
axis (see Fig. 5.29(d)). Mt(T)14 is constructed from Mt(T)12 by removing each
edge in common with two tiles that coincides with the longitudinal axis of the
strip (see Fig. 5.29(¢)).

5.11.4 Monotranslational isohedral tilings, induced group d2

There is one pattern type Mt(P)15 (in symmetry group pmm?2) which has one
associated isohedral tiling type Mt(T)15 with induced group d2. It is constructed
from Mt(T)12 by removing each edge in common with two tiles that coincides
with the longitudinal reflection axis of the strip and each edge in common with
two tiles that coincides with each alternate transverse reflection axis. Examples
are given in Fig. 5.30.

Construction of ditranslational isohedral tiling types

Classification of isohedral tilings

The techniques used to construct ditranslational isohedral tiling designs will
differ from those described in Section 2.13 because the primary concern in this
classification and construction involves establishing and building upon the topo-
logical characteristics of the design. Hence, the following methods will be divided
into 11 sections to coincide with the 11 different topological types of ditransla-
tional isohedral tiling: [3], [3%.6], [33.47, [32.4.3.4], [3.4.6.4], [3.6.3.6], [3.12%],
[4%],[4.6.12], [4.8%] and [67].

Having chosen which particular tiling type to construct and established its
topological type (from Table 5.4), a framework is required upon which to build it.
Since its topology is most important, the clearest possible representation of its
topological form seems the most logical basis. A tiling with this characteristic
may not be of the desired symmetry group, induced tile group or have the correct
incidence symbol. However, the required isohedral tiling type may be derived
from its gradual metamorphosis, by the application of topological and geometric
transformations interpreted from the analysis of the incidence symbol.

5.12.1 Regulartiling

The clearest way to illustrate each of the 11 topological types is through a ‘regular
tiling’. A regular tiling is defined by the properties at its vertices as follows: if v
edges meet at a vertex of a tiling (that is, if the valence of the vertex is v) then the
vertex is called regular if the angle between each consecutive pair of edges is 2n/y
(Griinbaum and Shephard).# In other words, if the angle between each adjacent
pair of edges joining at a vertex is the same (and this is a characteristic of every
vertex in the tiling) then the tiling is regular.

It has been proved that, for monohedral tilings, the number of possible tiling
structures satisfying this criteria is 11. They may be represented by what are
referred to as the ‘Laves tilings’ which are illustrated in Fig. 5.31 (and named after
the crystallographer Fritz Laves (see Griinbaum and Shephard,* and Engell).
There are two ‘enantiomorphic’ forms of [3%.6], that is one is a reflection of the
other in which, consequently, centres of rotation appear to be left and right orien-
tated. In this context, and in general, they are regarded as being equivalent. This
phenomenon does not occur in the other ten tilings because reflectional symme-
try is present in their structures.
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To aid the initial stages of metamorphosis of a Laves tiling into one of the
required isohedral tiling types, the group diagram of the isohedral tiling under
construction may be incorporated into its associated Laves tiling structure. In
some instances there may be a number of options for the initial positioning of the
group diagram since the symmetry group of the isohedral tiling being con-
structed usually forms a subgroup of the symmetry group of the Laves tiling
upon which it is being superimposed. However, after analysing the incidence
symbol, as shown in the examples below, it becomes evident how the edges relate
to each other and consequently where the symmetries are positioned in the tiling
structure. The induced group may also help to give an insight into the appearance
of the final design.

This leaves the analysis and interpretation of the incidence symbol to deter-
mine the precise characteristics of the tiling. Some significant features of the inci-
dence symbol were noted in Section 5.5.2 in connection with the classification of
isohedral tilings. In the context of this book, it has been found that the most
logical steps to follow in constructing these tilings are: first to establish the
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Table 5.5 Implications of tile and adjacency letters and superscripts

Tile symbol letter Adjacency symbol letter and superscript and
and superscript relationship to tile symbol entry Implication
xtorx” xt Same letter, positive The edge is mapped onto itself by two-fold
superscript rotational symmetry
xtorx- X~ Same letter, negative The edge is mapped onto itself by reflectional
superscript symmetry
xtorx” y* Different letter, The edge x is mapped onto an edge y by
positive superscript rotational symmetry if x is nexttoy in the
adjacency symbol and by translational
symmetryitis not
xtorx” y~ Different letter, The edge x is mapped onto edge y by glide—
negative superscript reflectional symmetry
x (no superscript) x(no Same letter, no The edge x is mapped onto itself by two different
superscript superscript perpendicular reflection axes (i.e. itis a
straight line)
x (no superscript) y(no Different letter, no The edge x is mapped onto itself by reflectional
superscript) superscript symmetry and onto edge y by translational

symmetry

Classification of isohedral tilings

number of possible different shaped edges by finding the number of different dis-
tinct mappings between tile and adjacency symbol; then to transform and label
an edge of the Laves tiling which is mapped onto itself or a copy of itself, either
by rotation or reflection, respectively (a letter in the tile symbol corresponding to
the same letter, with a positive or negative superscript, in the adjacency symbol,
respectively). This edge is then superimposed on the Laves tiling in all equivalent
positions in the tiling by applying symmetries in the group diagram. (Of course,
an edge may remain a straight line provided that it can only be mapped onto
itself, or other edges inside a tile, by the symmetries implied by the incidence
symbol and does not induce any extra symmetries into the design structure.)
From this point, the relationships between edges adjacent to these edges, which
are not mapped onto themselves, will result. For example, an edge in the tile
symbol mapped onto a letter with a positive superscript in the adjacency symbol
implies that either one edge is a translation of another or at one end of this edge
there is a centre of n-fold rotation, depending on the symmetry group of the tiling
structure. The value of # can be deduced from a unit cell incorporated into the
Laves tiling. An edge in the tile symbol mapped onto a letter with a negative
superscript in the adjacency symbol implies that this edge is a glide-reflection of
another edge. Unless an edge is mapped onto itself by either rotation or reflec-
tion, the new edge, superimposed onto the Laves tiling, will be represented by an
asymmetric line.

This analysis of incidence symbols, in association with the following tech-
niques used to construct isohedral tilings, is summarised in Table 5.5. Construc-
tion methods and illustrations are described in detail for one example of each
topological type. In each case, the incidence symbol has been displayed in a verti-
cal format to aid the recognition of the relationships between edges.

5.12.2 Topological type [3%]

There are 20 isohedral tiling types with topological type [3¢]: Dt(T)1 to Dt(T)20.
The last of these gives the classification of the corresponding Laves tiling. Its
edges may not be exchanged for alternative ones because each one in a tile is
mapped onto itself by reflectional symmetry only. The discussion below gives an
explanation of the construction of Dt(T)8 which has the following properties:

*  Symmetry group: p2 bt — bt
* Induced group: ¢2 cr—ocf
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(cont.)
» Incidence symbol: [at bt ¢t at bt ct; at bt ¢t]is written at —>at
vertically as: at
b+
C+

From the three distinct mappings in the incidence symbol (a — a, b — bandc —
¢) it is deduced that there may be up to three different shaped edges in the tiling.
Since each of the edges ‘a’, ‘b’ and ‘c’ is mapped onto the same letter with a posi-
tive superscript, this implies that each one is mapped onto itself by two-fold rota-
tional symmetry. Also, because each tile has six edges and the first and fourth,
second and fifth, and third and sixth edges have the same labels, this implies that
opposite edges have the same shape. By superimposing a group diagram of p2
onto the Laves tiling [39], it is obvious where centres of two-fold rotational sym-
metry coincide with points on the hexagonal lattice of edges (see Fig. 5.32). (Note
that the symmetries of group diagram p2 form a subgroup of the symmetries of
the Laves tiling [3¢] (symmetry group p6), so centres of three-fold rotation are not
applicable and centres of six-fold rotation positioned at the centres of the hexa-
gons are reduced to points of two-fold rotation.) One edge may be replaced by an
alternative edge, having two-fold rotational symmetry, which is then mapped
onto all equivalent positions in the tiling. One edge of a tile has this edge orien-
tated and labelled ‘a’.

The edges adjacent to the edge labelled ‘a’ are mapped onto themselves by two-
fold rotational symmetry. One of them is replaced by another different line with
two-fold rotational symmetry which is mapped to all its equivalent positions. The
same operation is carried out for the remaining edge as shown in Fig. 5.32.

To confirm that the tiling has been constructed correctly, the remaining edge
labels may be allocated to the labelled tile and its adjacents to verify the validity
of the incidence symbol.

5.12.3 Topological type [34.6]

Dt(T)21 is the only isohedral tiling type with topological type [3*.6]. This implies
that the Laves tiling with this topological type is already, in fact, Dt(T)21.
However, it may still be transformed into one of the same type but having a less
rigid appearance. Dt(T)21 has the following properties:

*  Symmetry group: p6 bt — ¢t
* Induced group: cl ct—> bt
» Incidence symbol: [at bt ¢t dtet; et ¢t bt dt at]is written at —»et
vertically as: dt—»dt

et —af

From the three distinct mappings in the incidence symbol (a > e,b > cand d —
d) it is deduced that there may be up to three different shaped edges in the tiling.
Since edge ‘d’ is mapped onto the same letter with a positive superscript, this
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Figure 5.31 The 11 Laves tilings and their topological types. Source: derived from Griinbaum B and
Shephard G C, Tilings and Patterns, New York, Freeman and Company, 1987.

220 Geometric symmetry in patterns and tilings




Topological type [3°] Topologic;I structure and

Dt(T)20 group diagram of D{(T)8

Figure 5.32

Classification of isohedral tilings

Isohedral tiling type
DY(T)8

Construction of a ditranslational isohedral tiling, topological type [3°].

implies that there is one edge which is mapped onto itself by two-fold rotational
symmetry in common with the design structure. By superimposing a group
diagram of p6 onto the Laves tiling [3%.6], it is obvious which edge satisfies this
criteria because there is only one edge passing through a centre of two-fold rota-
tional symmetry of the unit cell (see Fig. 5.33). (The positioning of the symme-
tries of the group diagram are easily deduced by associating its six-fold centres of
rotation with those occurring in the Laves tiling.) This edge may be replaced by
an alternative edge, having two-fold rotational symmetry, which is then mapped
onto all equivalent positions in the tiling. One edge of a tile has this edge orien-
tated and labelled ‘d’.

The pairs of adjacent edges on either side of the edge labelled ‘d’ are mapped
onto each other by rotational symmetry which may be deduced from the fact that
¢t and b*, in the tile symbol, are mapped onto b* and c¢* in the adjacency symbol,
and similarly for edges a* and e*. Thus, the edges adjacent to the ones labelled ‘d’
may be exchanged for alternative ones which, again, are mapped onto the remain-
der of the tiling.

To confirm that the tiling has been constructed correctly, the remaining edge
labels may be allocated to the labelled tile and its adjacents to verify the validity
of the incidence symbol.

5.12.4 Topological type [33.42]

There are five isohedral tiling types with topological type [33.4%]: Dt(T)22 to
Dt(T)26. The last of these gives the classification of the corresponding Laves
tiling, although some of its edges may be exchanged. The discussion below
gives an explanation of the construction of Dt(T)25 which has the following
properties:
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Figure 5.33 Construction of a ditranslational isohedral tiling, topological type [34.6].

*  Symmetry group: pgg bt - et
*  Induced group: cl ct—>d
» Incidence symbol: [at bt ¢t dtet; at et d~ ¢ bt]is written at—at
vertically as: dt->c¢

et - bt

The three distinct mappings in the incidence symbol (a > a, b — e and ¢ > d)
indicate that there may be up to three different shaped edges in the tiling. From
letter associations and Table 5.5, it is deduced that one edge is mapped onto itself
by two-fold rotational symmetry (edge ‘a’), two adjacent edges are mapped onto
each other by glide-reflectional symmetry (edges ‘c’ and ‘d’) and edges labelled
‘b’ and ‘e’ must be mapped onto each other by translational symmetry (rather
than rotational symmetry) because they have positive superscripts in the adja-
cency symbol but do not follow consecutively. Illustration of the process of con-
struction from this information is given in Fig. 5.34.

Adding the group diagram of pgg to the Laves tiling [33.4%] establishes which
edge is positioned on a centre of two-fold rotation. (Note that the symmetries of
group diagram pgg form a subgroup of the symmetries of the Laves tiling [33.4%]
(symmetry group cmm), so centres of two-fold rotation positioned at the intersec-
tion of glide-reflection axes and reflection axes occurring in a cmm structure are
not applicable in a pgg group diagram.) This edge may be exchanged for an alter-
native two-fold rotationally symmetric line and then mapped to all equivalent
positions in the tiling. One of them is labelled ‘a’ and orientated. Similarly, after
these mappings, the positioning of edges ‘c’ and ‘d’ becomes evident since, apart
from the information displayed by the group diagram, these glide-reflectional
symmetries occur on the second and third edges away from edge ‘a’. This
leaves the two remaining edges ‘b’ and ‘e’ which are translated onto each other
(see Fig. 5.34).

To confirm that the tiling has been constructed correctly, the remaining edge

Geometric symmetry in patterns and tilings
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Construction of a ditranslational isohedral tiling, topological type [33.42].

labels may be allocated to the labelled tile and its adjacents to verify the validity
of the incidence symbol.

5.12.5 Topological type[32.4.3.4]

There are three isohedral tiling types with topological type [32.4.3.4]: Dt(T)27
to Dt(T)29. The last of these gives the classification of the corresponding
Laves tiling, although some of its edges may be exchanged. The discussion below
gives an explanation of the construction of Dt(T)27 which has the following
properties:

*  Symmetry group: pgg bt —d-
*  Induced group: cl cr—oe
» Incidence symbol: [a* bT ¢t d*et; atd~ e~ b~ ¢7]is written at—at
vertically as: dt—> b

et >

The three distinct mappings in the incidence symbol (a > a, b—d and c — e)
indicate that there may be up to three different shaped edges in the tiling. From
letter associations and Table 5.5, it is deduced that one edge is mapped onto
itself by two-fold rotational symmetry (edge ‘a’), two sets of alternate edges
are mapped onto themselves by glide-reflectional symmetry (edges ‘b’ and ‘d’
are mapped onto each other and edges ‘c’ and ‘e’ are mapped onto each other).
Illustration of the process of construction from this information is given in
Fig. 5.35.

Adding the group diagram of pgg to the Laves tiling [32.4.3.4] establishes
which edge is positioned on a centre of two-fold rotation. This edge may be
exchanged for an alternative two-fold rotationally symmetric line and then
mapped to all equivalent positions in the tiling. One of them is labelled ‘a’ and
orientated. Similarly, after these mappings, the positioning of edges ‘b’ and ‘d’
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Construction of a ditranslational isohedral tiling, topological type [32.4.3.4].

becomes evident because, apart from the information displayed by the group
diagram, these glide—reflectional symmetries occur on the first and third edges
away from edge ‘a’. This leaves two remaining edges which must be glide reflected
onto each other and labelled ‘c’ and ‘e’ in cyclic order (see Fig. 5.35).

To confirm that the tiling has been constructed correctly, the remaining edge
labels may be allocated to the labelled tile and its adjacents to verify the validity
of the incidence symbol.

5.12.6 Topological type[3.4.6.4]

There are three isohedral tiling types with topological type [3.4.6.4]: Dt(T)30 to
Dt(T)32. The last of these gives the classification of the corresponding Laves
tiling. Its edges may not be exchanged because each one in a tile is mapped onto
itself by reflectional symmetry only. The discussion below gives an explanation of
the construction of Dt(T)30 which has the following properties:

*  Symmetry group: p31m bt — b~
* Induced group: cl ct—dt
» Incidence symbol: [at bt ¢t d*t; a~ b~ d* ¢']is written verticallyas: at — a~

dt—>ct

The three distinct mappings in the incidence symbol (a > a, b— b and ¢ > d)
indicate that there may be up to three different shaped edges in the tiling. From
letter associations and Table 5.5, it is deduced that there are two adjacent edges
which are mapped onto themselves by reflectional symmetry (edges ‘a’ and ‘b’).
The other two adjacent edges are mapped onto each other by rotational symme-
try (edges ‘c’ and ‘d’). Illustration of the process of construction from this infor-
mation is given in Fig. 5.36.
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Construction of a ditranslational isohedral tiling, topological type [3.4.6.4].

5.12.7 Topological type [3.6.3.6]

There are five isohedral tiling types with topological type [3.6.3.6]: Dt(T)33 to
Dt(T)37. The last of these gives the classification of the corresponding Laves
tiling. Its edges may not be exchanged because each one in a tile is mapped onto
itself by reflectional symmetry only. The discussion below gives an explanation of
the construction of Dt(T)33 which has the following properties:

*  Symmetry group: p3 bt — ¢t
*  Induced group: cl ct—> bt
* Incidence symbol: [at bt ¢t d*; dT ¢t bt a']is written verticallyas: at — d*

dt— at

The two distinct mappings in the incidence symbol (a — d and b — ¢) indicate
that there may be up to two different shaped edges in the tiling. From letter asso-
ciations and Table 5.5, it is deduced that there are two adjacent edges, ‘a’ and ‘d’,
which are mapped onto each other by rotational symmetry followed by adjacent
edges, ‘b’ and ‘c’, which are also mapped onto each other by rotational symmetry.
The illustration of the process of construction, from this information, is given in
Fig. 5.37.

5.12.8 Topological type [3.122]

There are three isohedral tiling types with topological type [3.122]: Dt(T)38 to
Dt(T)40. The last of these gives the classification of the corresponding Laves
tiling. Its edges may not be exchanged because each one in a tile is mapped onto
itself by reflectional symmetry only. The discussion below gives an explanation of
the construction of Dt(T)38 which has the following properties:
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Construction of a ditranslational isohedral tiling, topological type [3.6.3.6].

*  Symmetry group: p31m bt —cf
* Induced group: ¢l ct—> bt
* Incidence symbol: [a* bt ct; a~ ¢t b*] is written vertically as: at—a-

The two distinct mappings in the incidence symbol (a — a and b — ¢) indicate
that there may be up to two different shaped edges in the tiling. From letter asso-
ciations and Table 5.5, it is deduced that there is one edge, ‘a’, which is mapped
onto itself by reflectional symmetry followed by adjacent edges, ‘b’ and ‘c’, which
are mapped onto each other by rotational symmetry. The illustration of the
process of construction, from this information, is given in Fig. 5.38.

5.12.9 Topological type [4%]

There are 36 isohedral tiling types with topological type [44]: Dt(T)41 to Dt(T)76.
The last of these gives the classification of the corresponding Laves tiling. Its
edges may not be exchanged for alternative ones because each one in a tile is
mapped onto itself by reflectional symmetry only. The discussion below gives an
explanation of the construction of Dt(T)71 which has the following properties:

*  Symmetry group: p4g bt — at

*  Induced group: dl b~

* Incidence symbol: [a* b* b~ a™; bT at] is written vertically as: at — bt
-

From the one distinct mapping in the incidence symbol (a — b) it is deduced that
each edge has the same shape. Since each edge ‘a’ is mapped onto edge ‘b’ with a
positive superscript (and vice versa), this implies that one is mapped onto the
other by rotational symmetry about a centre of rotation at a mutual end point of
these edges. By superimposing a group diagram of p4g onto the Laves tiling 44, it
is obvious where centres of four-fold rotational symmetry coincide with points, at
the ends of edges, on the square lattice (see Fig. 5.39). One edge may be replaced
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Figure 5.40

Topological type [4.6.12]
DyT)77

Construction of a ditranslational isohedral tiling, topological type [4.6.12].

by an alternative edge which is then mapped onto all equivalent positions in the
tiling by applying the symmetries of the group diagram. One edge of a tile has
this edge orientated and labelled ‘a’. To confirm that the tiling has been con-
structed correctly, the remaining edge labels may be allocated to the labelled tile
and its adjacents to verify the validity of the incidence symbol.

5.12.10 Topological type[4.6.12]

Dt(T)77 is the only isohedral tiling type with topological type [4.6.12]. This
implies that the Laves tiling with this topological type is already, in fact, Dt(T)77.
Its edges may not be exchanged for alternative ones because each one in a tile is
mapped onto itself by reflectional symmetry only. The properties and illustration
of this tiling are given in Table 5.4 and Fig. 5.40, respectively.

5.12.11 Topological type [4.82]

There are five isohedral tiling types with topological type [4.82]: Dt(T)78 to
Dt(T)82. The last of these gives the classification of the corresponding Laves
tiling. Its edges may not be exchanged because each one in a tile is mapped onto
itself by reflectional symmetry only. The discussion below gives an explanation of
the construction of Dt(T)81 which has the following properties:

*  Symmetry group: pdg bt —c¢*
* Induced group: cl ct - bt
» Incidence symbol: [at bt ¢t; a~ ¢t b'], written vertically as: at—a”

The two distinct mappings in the incidence symbol (a — a and b — ¢) indicate
that there may be up to two different shaped edges in the tiling. From letter asso-
ciations and Table 5.5, it is deduced that there is one edge, ‘a’, which is mapped
onto itself by reflectional symmetry followed by adjacent edges, ‘b’ and ‘c’, which
are mapped onto each other by rotational symmetry. Illustration of the process of
construction from this information is given in Fig. 5.41.

5.12.12 Topological type [63]

There are 11 isohedral tiling types with topological type [6°]: Dt(T)83 to Dt(T)93.
The last of these gives the classification of the corresponding Laves tiling. Its
edges may not be exchanged because each one in a tile is mapped onto itself by
reflectional symmetry only. The discussion below gives an explanation of the
construction of Dt(T)88 which has the following properties:

*  Symmetry group: p6 bt —at
* Induced group: cl ct—>ct
» Incidence symbol: [at bt ¢t; b at ¢t]is written vertically as: at - bt

Geometric symmetry in patterns and tilings
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The two distinct mappings in the incidence symbol (a — b and ¢ — ¢) indicate
that there may be up to two different shaped edges in the tiling. From letter asso-
ciations and Table 5.5, it is deduced that there is one edge, ‘c’, which is mapped
onto itself by two-fold rotational symmetry followed by adjacent edges, ‘a’ and
‘b’, which are mapped onto each other by rotational symmetry. Illustration of the
process of construction from this information is given in Fig. 5.42.

5.12.13 Marked isohedral tiling types

The techniques used to construct marked ditranslational isohedral tiling designs
are similar to those for the unmarked tilings but less involved. Each of these types
of tiling consists of a discrete pattern enclosed within a tiling. The construction
of the tiling is straightforward because each one is an unmodified Laves tiling.
The marking involves incorporating the appropriate discrete pattern into the
tiling (listed in Table 5.4) such that each tile contains one motif. The positioning
of the motifs within the tiling should be fairly obvious. However, if not, it may be
derived by the following technique: one motif is placed within a tile such that the
tile induced group is satisfied (see Table 5.4 to evaluate the tiling’s induced group).
All the edges of the tiles, enclosing the discrete pattern, fall on reflection axes.
Provided that the initial motif is positioned correctly, it may be mapped to all its
equivalent positions by applying these reflectional symmetries which coincide
with the tile boundaries. For example, consider isohedral tiling type Dt(T)70
which has the following properties:

+  Topological type: [4]

*  Symmetry group: p4m bt—> b~

*  Induced group: d1(1) b~

» Incidence symbol: [at bt b~ a™;a~ b7]is written vertically as: at —>a”
-
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The unmarked isohedral tiling associated with Dt(T)70 is Dt(T)76, the square
tiling (or Laves tiling with topological type [47]). A motif may be added to one tile
such that it reduces the tile induced group from @4 to d1. In this instance, the
reflection axes of the motif must coincide with the ‘longest’ reflection axes inside
a square tile (as opposed to the ‘short’ ones parallel to the sides). This motif may
then be mapped onto the remaining tiles in the tiling by applying the reflectional
symmetries occurring on the boundaries of the tiles (see Fig. 5.43).

Summary

Throughout this chapter a classification system has been developed which incor-
porates finite and monotranslational tiling designs. Notation has been devised
to represent these different categories of tiling, and construction techniques
have been described and illustrated. The characteristics and classification of
ditranslational isohedral tilings have also been defined, explained and extensively
illustrated.

The methods described for the construction of ditranslational isohedral
tilings give a simple comprehensive procedure in which to create each of the 93
tiling types. However, they do not provide a generalised technique for the con-
struction of all forms of isohedral tiling because the method has been based upon
the operation of edge replacement where the vertices of the derived isohedral
tiling remain in the same positions as those of the corresponding I.aves tiling.

In the majority of cases, the positioning of the vertices is dictated by the sym-
metries of the design structure, topological type and incidence symbol. However,
in some instances certain features of the associated Laves tiling may be altered to
accommodate a wider variety of isohedral tilings within one isohedral tiling type.
For example, Fig. 5.44(a(iil)) illustrates a ditranslational tiling, topological type
[36], constructed by methods described previously. Figure 5.44(b(iii)) also illus-
trates a ditranslational tiling of exactly the same isohedral tiling type but the
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underlying simplified representation of its topological structure (derived by
replacing each edge with a straight line whilst retaining the same positions for the
vertices) does not correspond to a Laves tiling. Thus, the range of tilings which
may be constructed within one isohedral tiling type extends beyond the methods
discussed in this chapter. This extension would require further analysis and
explanation of the properties of tilings. As a consequence, because there is
already a vast range of tilings which may be constructed within each tiling type
(owing to the variety of choice of lines used to replace the edges of the Laves
tilings) further construction techniques will not be discussed in this book.
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Summary and conclusions

There still seems to be further scope for geometrical frameworks as a means and
basis of textile design construction today. As stated by Kappraff,! there are infi-
nite possibilities offered by the application of geometrical symmetry:

Symmetry is a concept that has inspired the creative work of artists and scientists; it is
the common root of artistic and scientific endeavour. To an artist or architect symme-
try conjures up feelings of order, balance, harmony and an organic relation between
the whole and its parts. On the other hand, making these notions useful to a mathe-
matician or scientist requires a precise definition. Although such a definition may
make the idea of symmetry less flexible than the artists’ intuitive feeling for it, that pre-
cision can actually help designers unravel the complexities of design and see greater
possibilities for symmetry in their own work. It can also lead to practical techniques
for generating patterns.

In sympathy with these considerations, in this book I have attempted to
unlock the complexities of patterns and tilings and associated concepts in order
greatly to enhance the creative scope of the designer.

Throughout Chapter 2 a comprehensive explanation has been given of funda-
mental concepts involved in the classification of finite, monotranslational and
ditranslational symmetry groups. Group diagrams have been introduced as a
means of representing a design’s symmetry group and these act as a basis for
understanding further geometrical concepts and classification systems in the
ensuing chapters. The commonly accepted international notation has been used.
However, because the allocation of letters and numbers to the ‘pxyz’ notation, for
both monotranslational and ditranslational designs, can appear quite compli-
cated, a simplified version has been adopted. The ‘pyxn’ and ‘pnxy’ notations
have been derived to denote monotranslational and ditranslational symmetry
groups, respectively. The letter ‘#” has been used to represent a number and ‘x’and
‘y’ to represent symmetrical characteristics in relation to x and y axes. For mono-
translational designs the x axis has been taken to coincide with the longitudinal
axis. Since monotranslational designs (or borders) are usually positioned as hori-
zontal strips, this also seems a logical step forward from the school mathematics
with which most textile designers are acquainted. (Adopting the convention of
placing x and y axes horizontally and vertically (respectively) would appear
therefore to be a useful step towards avoiding unnecessary confusion in the
context of design.)

At the end of Chapter 2 a wide range of construction techniques has been dis-
cussed for finite, monotranslational and ditranslational designs. Simple methods
of construction have been derived to construct intricate dn finite designs from
cn and dn/2 designs. Six different types of design have been described and con-
structed for each of the seven monotranslational symmetry groups. These include
one tiling design, three patterned tiling designs (with parallelogram-shaped tiles,
asymmetric tiles and symmetric non-parallelogram-shaped tiles) and one simple
and one interlocking pattern design. These monotranslational designs form the
basis for the construction of the 17 symmetry groups of ditranslational design.
Again analogously, patterns, patterned tilings and tiling designs have been dis-
cussed for each of the symmetry groups. Although construction techniques could
be used for a variety of applications, particular emphasis was placed on their
application to the construction of flat screen-printed textiles. This approach
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seems highly favourable for the application of symmetry groups to a specific
branch of textiles. This simple method of symmetry group construction could be
used as a technique for the production of screen printed textiles in both the teach-
ing environment and commercially.

Chapter 3 was also based on the symmetry group classification system. It was
recognised that, contrary to much popular thought, the motif contained within
the fundamental region of a symmetry group need not necessarily be asymmet-
ric. In fact, in certain cases, the motif within the fundamental region could be
symmetrical although its orientation may be critical. This hypothesis gave some
interesting and intriguing results. A new notation was developed to represent
each of the finite, monotranslational and ditranslational design symmetry group
subgroups. A range of schematic illustrations was given and a selection of further
examples. Construction techniques were described and tabulated for all forms of
these symmetry group subgroups for finite, monotranslational and ditransla-
tional designs. It was particularly interesting to note that the projection of the
crystal structure C¢(CHj), exhibited the p2(d1) symmetry subgroup characteris-
tics. Obviously it would be intriguing to find out if other crystallographic projec-
tions could also be categorised under this classification system.

Chapter 4 built on a classification system described by Griilnbaum and Shep-
hard in their monumental work Tilings and Patterns.2 This work, which contains
a vast array of information relating to the geometry of tilings and patterns, and is
more penetrable than is conventionally the case with publications dealing with
abstract algebra and group theory, is still regarded as being unapproachable to
the average textile designer. In the interests of clarity, I have provided extensive
illustrative material and, where appropriate, presented explanations of the char-
acteristics of discrete patterns within the context of textile design. The notation
used to represent these types of design has been adapted from that given by
Griinbaum and Shephard. Finite pattern types have been denoted by F(P)1,,
F(P)2, and F(P)3, instead of PF1,, PF2 and PF3,, respectively. This is to
account for the notation which had to be derived for finite tiling designs discussed
in Chapter 5. Grilnbaum and Shephard do not discuss finite or monotransla-
tional tiling designs because, in a mathematical context, tiling designs cover the
plane without gaps or overlaps of tiles rather than a finite portion of the plane.
They represent monotranslational pattern types by PS1 to PS15 (pattern of the
‘strip’ variety). Since the ‘border’ designs in this book are described as ‘mono-
translational designs’ rather than ‘strips’ it seems logical, in this context, to
denote these types of pattern as Mt(P)1 to Mt(P)15. This notation was then easily
adapted in Chapter 5 to represent monotranslational tiling designs which again
are not considered in a mathematical sense, for the same reasons as described
above. Grilnbaum and Shephard denote the ditranslational discrete patterns by
PP1 to PP51, but to avoid any confusion which may arise due to ‘periodic’ being
associated with regular repetition by translational symmetry in one direction
only (e.g. a sine wave) these pattern types, in this book, have been denoted by
Dt(P)1 to Dt(P)51.

I hope I have developed an awareness of the different patterning effects that
can occur within each symmetry group due to the symmetrical characteristics of
the motif. This possibility does not appear to have been discussed in any detail in
the context of textile design. Schematic illustrations of the translational symme-
try groups are frequently represented in the literature by arrangements of asym-
metric motifs, that is the primitive pattern types (although finite dn designs are
quite often represented by a mixture of asymmetric and symmetric motifs).
Explanation of the possibilities and potential patterning characteristics within
each group is rarely presented. Further consideration of such possibilities may
well offer a useful basis for design construction.

The construction techniques at the end of Chapter 4 have been derived from
those described in Chapter 2. Tllustrations of design construction have been given
for each finite pattern type together with a selection of examples for each induced
motif group for monotranslational and ditranslational pattern types. They illus-
trate the conditions held by discrete patterns although, in the context of textile
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Summary and conclusions

design, these forms of pattern could be enhanced by the addition of detail par-
ticularly in the area of texture and background decoration. Patterned tiling
designs, as described in Chapter 2, could also be derived from the construction
techniques illustrated for discrete patterns, thus giving another method of
surface decoration.

Chapter 5 built on the concepts discussed in Chapter 4, because isohedral
tilings may be derived from discrete patterns by the ‘Dirichlet relationship’.
Again, these concepts are not new in the field of mathematics; however, they are
yet to be exploited in the context of surface decoration. In Chapter 5 it was neces-
sary to develop awareness of non-linear transformations. This was achieved
through providing examples of ‘Escher-like’ metamorphoses including reference
to one by M C Escher himself (Ernst).3 Several examples were given to illustrate
concepts relating to graph theory (which are areas normally inaccessible to the
surface-pattern designer). With these extensive illustrations and explanations it is
hoped that the designer will become aware of the vast range of possible tiling
structures which may be used in imaginative design and decoration. It would cer-
tainly extend the application of mathematical concepts of isohedral tilings if they
were used as a basis for design construction in textile, wallpaper or wrapping
paper design, for example.

As stated previously, in a mathematical context, finite and monotranslational
tiling designs do not exist owing to the fact that formally (and intuitively) tiling
designs extend infinitely across the plane. However, because in the context of
surface design these types of decoration can be used, it seemed appropriate to
extend and associate the theory of finite and monotranslational pattern types
with some forms of tiling design. Thus, a one-to-one relationship was used to
develop the three finite and 15 monotranslational tiling types. These do not
satisfy the Dirichlet relationship with their associated discrete patterns because
this would have resulted in finite and monotranslational tiling designs extending
to infinity which hardly seems appropriate in the context of surface design even if
it is strictly correct in the mathematical sense. Construction techniques have been
described and illustrated for all these types of finite and monotranslational tiling
designs. Those with induced groups other than ¢1 have been derived from the
associated primitive pattern types.

Construction techniques for ditranslational isohedral tilings have been devel-
oped which are based on the 11 topological structures. Processes have been
described to evaluate the properties of a tiling by its incidence symbol and then
consequently derive its method of construction. Illustrations and descriptions
have been given for one example of each of the 11 topological structures. Any of
the 93 isohedral tiling types may be constructed by these methods although the
initial structures have been limited to ones with vertex positions corresponding to
those of the associated Laves tiling. Thus, these construction methods could
obviously be developed further to include all possible homeomorphic transfor-
mations of the initial underlying structures and hence a wider variety of forms of
isohedral tiling within one type.

Finite, monotranslational and ditranslational tilings also extend the basis
from which patterned tiling designs may be produced. (A motif may be added to
a tile and mapped to all equivalent positions as described in Chapter 2.) Ditrans-
lational isohedral tilings also increase the variety of topological structures and
consequently the choice of shape of the fundamental region. This would then
give further choice in the interlocking relationship between fundamental regions
and hence adjacent motifs when constructing patterned tilings or patterns. This
area of design, in the patterning of isohedral tilings (rather than just the marked
variety described in Chapter 5), could lead to some effective and interesting
results particularly in marking tilings composed of symmetric tiles.

Further design characteristics could also lead on from the monotranslational
and particularly finite tilings developed in Chapter 5. Consecutive unit trans-
lations of monotranslational tilings in one direction (not parallel to the lon-
gitudinal axis) and finite tilings in two non-parallel directions may produce
ditranslational non-monohedral tiling designs. Again with the addition of a
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pattern these could form patterned tilings or, with the removal of the boundaries
of the tiles, an interesting form of interlocking pattern. Consequently, there is
obviously scope for discovering new tiling and patterning effects by these
methods.

The types of pattern and tiling designs discussed in this book only amount to a
small portion of all possible forms of regularly repeating surface decoration. A
pattern of motifs may form a design in itself or be a component of a patterned
tiling design. The tiling in which a pattern is incorporated may not only be mono-
hedral or isohedral but may be composed of two or three or more different
shaped tiles. Geometric tilings comprising different shaped tiles were widely used
by the Moors, for example, but rarely seem to be exploited as a basis of pattern
design today.

An avenue of research which may prove useful in the area of surface design is
the study of ‘non-periodic’ or ‘aperiodic’ tilings. These types of design are not
regularly repeating but exhibit an intriguing mixture of a structured but disor-
dered appearance. Although these types of design could not be translated, owing
to their irregularity, some of their characteristics could be adapted and incorpo-
rated within a regularly repeating design. Elements of five-fold rotational sym-
metry, as exhibited in Penrose tilings, may be a worthwhile example.

Theories involved in the mathematics of design are fairly well developed.
However, topics such as ‘non-periodic tilings’, ‘isogonal tilings’, ‘Archimedian
colourings’, ‘n-omino tilings’, ‘fractal patterns’ and ‘chaotic symmetry’ are yet to
be fully developed in contexts of art or surface decoration.

Another aspect of design technology which is yet to be fully exploited is the
use of computer-aided design. Computer technology is developing rapidly but,
as yet, its application to the construction of surface-pattern design is limited
despite the time-saving value, efficiency and accuracy which it presents. Although
software packages have been developed which enable the immediate production
of the 17 symmetry groups of ditranslational designs (e.g. through ‘Photoshop’)
they do not always result in an aesthetically pleasing, continuous flowing design.
This is due to the fixed shape of the fundamental region area, often in its most
rigid form, which does not allow blending or interlocking of adjacent motifs
and/or design elements. Thus, the designs, although appealing, appear more
rigidly geometric unless subtly modified after construction.

Advances in designer-friendly software packages will transform the methods
of design production in academic institutions, colleges and industrial contexts by
increasing the design scope, time-saving value, efficiency and accuracy. However,
to appreciate their full implication it is beneficial to have a comprehensive under-
standing of the fundamental principles involved in the structure of design, and
potential avenues through which creative ideas may be explored. Furthermore, to
explore beyond symmetry group classification with respect to design construc-
tion can only enhance and extend the interests and creative limitations of surface-
pattern designers. Consequently, an appreciation of the mathematical concepts
may undoubtedly prove enriching. By using design, complex and intriguing
aspects of geometry and crystallography can be displayed by means of eye catch-
ing, artistic interpretations. Thus, I hope that through this book I have brought
an awareness to surface-pattern designers of the potential reward that may be
gained from learning to appreciate principles of design geometry. Conversely in a
mathematical context, because this book contains hundreds of original illustra-
tions, I would like to think that they may prove useful in demonstrating geometric
theories and principles and present an appealing method for representing their
interpretation and application.
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