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Preface

Ten years ago I would not have dared to write a book like this: a non-rigorous
treatment of a mathematical theory. I admit that I would have been ashamed,
and I am afraid that most of my colleagues in mathematics still think like this.
However, my experience with students and practitioners convinced me that
there is a strong demand for popular mathematics.

I started writing this book as lecture notes in 1992 when I prepared a course
on stochastic calculus for the students of the Commerce Faculty at Victoria
University Wellington (New Zealand). Since I had failed in giving tutorials on
portfolio theory and investment analysis, I was expected to teach something
I knew better. At that time, staff members of economics and mathematics
departments already discussed the use of the Black and Scholes option pricing
formula; courses on stochastic finance were offered at leading institutions such
as ETH Ziirich, Columbia and Stanford; and there was a general agreement
that not only students and staff members of economics and mathematics de-
partments, but also practitioners in financial institutions should know more
about this new topic.

Soon I realized that there was not very much literature which could be
used for teaching stochastic calculus at a rather elementary level. I am fully
aware of the fact that a combination of “elementary” and “stochastic calculus”
is a contradiction in itself. Stochastic calculus requires advanced mathematical
techniques; this theory cannot be fully understood if one does not know about
the basics of measure theory, functional analysis and the theory of stochastic
processes. However, I strongly believe that an interested person who knows
about elementary probability theory and who can handle the rules of inte-
gration and differentiation is able to understand the main ideas of stochastic
calculus. This is supported by my experience which I gained in courses for
economics, statistics and mathematics students at VUW Wellington and the
Department of Mathematics in Groningen. I got the same impression as a
lecturer of crash courses on stochastic calculus at the Summer School of the
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Swiss Association of Actuaries in Lausanne 1994, the Workshop on Financial
Mathematics in Groningen 1997 and at the University of Leuven in May 1998.

Various colleagues, friends and students had read my lecture notes and
suggested that I extend them to a small book. Among those are Claudia
Kliippelberg and Paul Embrechts, my coauthors from a book about extremal
events, and David Vere-Jones, my former colleague at the Institute of Statis-
tics and Operations Research in Wellington. Claudia also proposed to get in
contact with Ole Barndorff-Nielsen who is the editor of the probability series
of World Scientific. I am indebted to him for encouraging me throughout the
long process of writing this book.

Many colleagues and students helped in proofreading parts of the book
at various stages. In particular, I would like to thank Leigh Roberts from
Wellington, Bojan Basrak and Diemer Salome from Groningen. Their criticism
was very helpful. I am most grateful to Carole Proctor from Sussex University.
She was a constant source of inspiration, both on stylistic and mathematical
issues. I also take pleasure in thanking the Department of Mathematics at the
University of Groningen, my colleagues and students for their much appreciated
support.

Thomas Mikosch Groningen, June 1, 1998
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Reader Guidelines

This book grew out of lecture notes for a course on stochastic calculus for eco-
nomics students. When I prepared the first lectures I realized that there was
no adequate textbook treatment for non-mathematicians. On the other hand,
there was and indeed is an increasing demand to learn about stochastic cal-
culus, in particular in economics, insurance, finance, econometrics. The main
reason for this interest originates from the fact that this mathematical theory
is the basis for pricing financial derivatives such as options and futures. The
fundamental idea of Black, Scholes and Merton from 1973 to use Ité stochas-
tic calculus for pricing and hedging of derivative instruments has conquered
the real world of finance; the Black-Scholes formula has been known to many
people in mathematics and economics long before Merton and Scholes were
awarded the Nobel prize for economics in 1997.

For whom is this book written?

In contrast to the increasing popularity of financial mathematics, its theoretical
basis is by no means trivial. Who ever tried to read the first few pages of a
book on stochastic calculus will certainly agree. Tools from measure theory
and functional analysis are usually required.

In this book I have tried to keep the mathematical level low. The reader
will not be burdened with measure theory, but it cannot be avoided altogether.
Then we will have to rely on heuristic arguments, stressing the underlying
ideas rather than technical details. Notions such as measurable function and
measurable set are not introduced, and therefore the formulation and proof
of various statements and results are necessarily incomplete or non-rigorous.
This may sometimes discourage the mathematically oriented reader, but for
those, excellent mathematical textbooks on stochastic calculus exist.

In discussions with economists and practitioners from banks and insur-
ance companies I frequently listened to the argument: “Itd calculus can be
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understood only by mathematicians.” It is the main objective of this book to
overcome this superstition.

Every mathematical theory has its roots in real life. Therefore the notions
of It6 integral, It6 lemma and stochastic differential equation can be explained
to anybody who ever attended courses on elementary calculus and probability
theory: physicists, chemists, biologists, actuaries, engineers, economists, . ... In
the course of this book the reader will learn about the basic rules of stochastic
calculus. Finally, you will be able to solve some simple stochastic differential
equations, to simulate these solutions on a computer and to understand the
mathematical ideology behind the modern theory of option pricing.

What are the prerequisites for this book?

You should be familiar with the rules of integration and differentiation. Ideally,
you also know about differential equations, but it is not essential. You must
know about elementary probability theory. Chapter 1 will help you to recall
some facts about probability, expectation, distribution, etc., but this will not
be a proper basis for the rest of the book. You would be advised to read one
of the recommended books on probability theory, if this is new to you, before
you attempt to read this book.

How should you read this book?

It depends on your knowledge of probability theory. I recomnmend that you
browse through the “boxes” of Chapter 1. If you know everything that is
written there, you can start with Chapter 2 on It6 stochastic calculus and
continue with Chapter 3 on stochastic differential equations.

You cannot proceed in this way if you are not familiar with the following
basic notions: stochastic process, Brownian motion, conditional expectation
and martingale. There is no doubt that you will struggle with the notion of
conditional expectation, unless you have some background on measure the-
ory. Conditional expectation is one of the key notions underlying stochastic
integration.

The ideal reader can handle simulations on a computer. Computer graphs
of Brownian motion and solutions to stochastic differential equations will help
you to experience the theory. The theoretical tools for these simulations will
be provided in Sections 1.3.3 and 3.4.

I have not included lists of exercises, but I will ask you various questions
in the course of this book. Try to answer them. They are not difficult, but
they aim at testing the level of your understanding.
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Besides Sections 1.3-1.5, the core material is contained in Chapter 2 and
the first sections of Chapter 3. Chapter 2 provides the construction of the It
integral and a heuristic derivation of the It6 lemma, the chain rule of stochastic
calculus. In Chapter 3 you will learn how to solve some simple stochastic
differential equations. Section 3.3 on linear stochastic differential equation is
mainly included in order to exercise the use of the It6 lemma. Section 3.4 will
be interesting to those who want to visualize solutions to stochastic differential
equations.

Chapter 4 is for those readers who want to see how stochastic calculus
enters financial applications. Prior knowledge of economic theory is not re-
quired, but we will introduce a minimum of economic terminology which can
be understood by everybody. If you can read through Section 4.1 on option
pricing without major difficulties as regards stochastic calculus, you will have
passed the examination on this course on elementary stochastic calculus.

At the end of this book you may want to know more about stochastic
calculus and its applications. References to more advanced literature are given
in the Notes and Comments at the end of each section. These references are
not exhaustive; they do not include the theoretically most advanced textbook
treatments, but they can be useful for the continuation of your studies.

You are now ready to start. Good luck!

T.M.
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Preliminaries

In this chapter we collect some basic facts needed for defining stochastic inte-
grals. At a first reading, most parts of this chapter can be skipped, provided
you have some basic knowledge of probability theory and stochastic processes.
You may then want to start with Chapter 2 on Ito stochastic calculus and
recall some facts from this chapter if necessary.

In Section 1.1 we recall elementary notions from probability theory such
as random variable, random wvector, distribution, distribution function, den-
sity, expectation, moment, variance and covariance. This small review cannot
replace a whole course on probability, and so you are well recommended to
consult your old lecture notes or a standard textbook. Section 1.2 is about
stochastic processes. A stochastic process is a natural model for describing
the evolution of real-life processes, objects and systems in time and space.
One particular stochastic process plays a central réle in this book: Brownian
motion. We introduce it in Section 1.3 and discuss some of its elementary
properties, in particular the non-differentiability and the unbounded variation
of its sample paths. These properties indicate that Brownian sample paths are
very irregular, and therefore a new, stochastic calculus has to be introduced
for integrals with respect to Brownian motion.

In Section 1.4 we shortly review conditional ezpectations. Their precise
definition is based on a deep mathematical theory, and therefore we only give
some intuition on this concept. The same remark applies to Section 1.5, where
we introduce an important class of stochastic processes: the martingales. It
includes Brownian motion and indefinite It6 integrals as particular examples.
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1.1 Basic Concepts from Probability Theory

1.1.1 Random Variables

The outcome of an experiment or game is random. A simple example is coin
tossing: the possible outcomes “head” or “tail” are not predictable in the sense
that they appear according to a random mechanism which is determined by the
physical properties of the coin. A more complicated experiment is the stock
market. There the random outcomes of the brokers’ activities (which actually
represent economic tendencies, political interests and their own instincts) are
for example share prices and exchange rates. Another game is called “com-
petition” and can be watched where products are on sale: the price of 1 kg
bananas, say, is the outcome of a game between the shop owners, on the one
hand, and between the shop owners and the customers, on the other hand.

The scientific treatment of an experiment requires that we assign a number
to each random outcome. When tossing a coin, we can write “1” for “head”
and “0” for “tail”. Thus we get a random variable X = X(w) € {0,1}, where
w belongs to the outcome space ? = {head,tail}. The value of a share price of
stock is already a random number, and so is the banana price in a greengrocers.
These numbers X (w) provide us with information about the experiment, even
if we do not know who plays the game or what drives it.

Mathematicians make a clear cut between reality and a mathematical
model: they define an abstract space §2 collecting all possible outcomes w of the
underlying experiment. It is an abstract space, i.e. it does not really matter
what the ws are. In mathematical language, the random variable X = X (w)
is nothing but a real-valued function defined on .

The next step in the process of abstraction from reality is the probabilistic
description of the random variable X:

Which are the most likely values X (w), what are they concentrated around,
what is their spread?

To approach these problems, one first collects “good” subsets of §2, the events,
in a class F, say. In advanced textbooks F is called a o-field or o-algebra; see
p- 62 for a precise definition. Such a class is supposed to contain all interesting
events. What could F be for coin tossing? Certainly, {w : X (w) = 0} = {tail}
and {w: X (w) = 1} = {head} must belong to F, but also the union, difference,
intersection of any events in F, the set @ = {head,tail} and its complement,
the empty set . This is a trivial example, but it shows what F should be like:
if A € F, sois its complement A¢, and if A,B € F, so are ANB, AU B,
AU B, BU A, AN B¢, BN A¢, etc.
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If we consider a share price X, not only the events {w : X (w) = ¢} should
belong to F, but also

{wra< X(w)<b}, {w:b<X(w)}, {w:X(w)<a},

and many more events which can be relevant in this or that situation. Asin the
case of coin tossing, we would like that elementary operations such as N, U,¢
on the events of F should not lead outside the class F. This is the intuitive
meaning of a o-field F.

Probability, Distribution and Distribution Function

Now, where do the probabilities come in? When flipping a coin, “head” or
“tail” occurs. Probabilities measure the likelihood that these events happen.
If the coin is “fair” we assign the probability 0.5 to both events, i.e. P({w :
X(w) =0}) = P{w : X(w) = 1}) = 0.5. This mathematical definition is
based on empirical evidence: if we flip a fair coin a large number of times, we
expect that about 50% of the outcomes are heads and about 50% are tails. In
probability theory, the law of large numbers gives the theoretical justification
for this empirical observation.

This elementary examnple explains what a probability measure on the class
F of the events is: to each event A € F it assigns a number P(A) € [0,1]. This
number is the expected fraction of occurrences of the event A in a long series
of experiments where A or A° are observed.

Some elementary properties of probability measures are easily summarized:

For events A, B € F,
P(AUB)=P(A)+ P(B) - P(ANn B),
and, if A and B are disjoint,
P(AUB) = P(A) + P(B).
Moreover, -

P(A°) =1-P(4), P(Q)=1 and P(®) =0.

The relationship between random variables and probability can be character-
ized by certain numerical quantities. In what follows, we consider some of
them.
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The collection of the probabilities

Fx(z) =P(X <z) = P({w: X(w) < 2}), z€R=(-00,00),

is the distribution function Fx of X.

It yields the probability that X belongs to the interval (a, b]. Indeed,
Pw:a < X(w) <b}) = Fx(b)— Fx(a), a<b.
Moreover, we also obtain the probability that X is equal to a number:
P(X =1x)
P({w: X(@) =¢}) = Pw: X <z}) - P({w: X <)

P({w: X(w) € 2}) ~ lim P({w: X(w) Sz = b))

= Fx(z) -l,g%Fx(T—h)-

With these probabilities one can approximate the probability of the event

{w: X (w) € B} for very complicated subsets B of R.

The collection of the probabilities
Px(B)=P(X € B) = P({w: X(w) € B})

for suitable subsets B C R is the distribution of X.

“Suitable” subsets of R are the so-called Borel sets. They are obtained by a
countable number of operations N, U or ¢ acting on the intervals; see p. 64 for

a precise definition.

The distribution Py and the distribution function Fx are equivalent no-
tions in the sense that both of them can be used to calculate the probability

of any event {X € B}.

A distribution function is continuous or it has jumps. We first consider

the special case when the distribution function Fx is a pure jump function:
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Fx(z)= ) pi, TER, (1.1)

k:z<z
where
o0
0<pr <1 forallk and Zpkzl-
k=1

The distribution function (1.1) and the corresponding distribution are
said to be discrete; a random variable with distribution function (1.1) is
a discrete random variable.

A discrete random variable only assumes a finite or countably infinite number
of values z;,zo,..., and p = P(X = z;). In particular, the distribution
function Fx has an upward jump of size p, at £ = z;. For example, the
random variable X related to coin tossing is discrete: it assumes the values 0
and 1. The price for any product on sale in a supermarket is a discrete random
variable: it may assume the values 0,0.01,0.02,... §, say.

Example 1.1.1 (Two important discrete distributions)
Important discrete distributions are the binomial distribution Bin(n,p) with
parametersn € N={0,1,2,...} and p € (0,1):

n

k) pP(l-p"*, k=0,1,...,n,

and the Poisson distribution Poi\)\) with parameter A > 0O:

k
P(X =k)=e> X

o k=012,

See Figure 1.1.2 for an illustration. O

In contrast to discrete distributions and random variables, the distribution
function of a continuous random variable does not have jumps, hence P(X =
z) = 0 for all z, or equivalently,

lim Fx(z + h) = Fx(z) for all z, (1.2)
h—0

i.e. such a random variable assumes any particular value with probability 0. A
continuous random variable gains its name from the continuity property (1.2)
of the distribution function Fy.
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Figure 1.1.2 Left: the probabilities P(X = k), k=0,1,2,..., of the Poisson distri-
bution with parameter A = 10. Right: the corresponding distribution function.

Q8

Gstnduton function
04

02

00

06

i
%
xo
~
-

Figure 1.1.3 Left: the density of the standard normal distribution (mean 0, variance
1). Right: the corresponding distribution function.
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Figure 1.1.4 Left: the density of the log-returns X; = InY; — InYi_1 of the daily
closing prices Y; of the S&P indez. The S&P is one of the basic US industrial in-
dices. Right: the corresponding distribution function. A comparison with Figure 1.1.3
indicates that the latter distribution is certainly not normal.
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Most continuous distributions of interest have a density fx:
r
Fe@= [ fxdy, e,
—0o0
where

fx(xz) >0 forevery z € R and / fx(y)dy=1.

Example 1.1.5 (The normal and uniform distributions)
An important continuous distribution is the normal or Gaussian distribution
N(u,o?) with parameters g € R, 02 > 0. It has density

1 (z = p)?
—_— -_—— R. 1.
N exp { 572 , TE (1.3)
If X is N(0,1) (standard normal) we write ¢ for the density fx and @ for the

distribution function Fx. For an illustration of the standard normal density
and the corresponding distribution function, see Figure 1.1.3.

The uniform distribution U(a,b) on (a,b) has density
1

fx(@)=4q b-a
0,  otherwise. o

fx(x) =

, if z € (a,b),

The value of an exchange rate or share price can, at least theoretically, assume
any positive real number. Clearly, there are technical limitations: a computer
or pocket calculator is not capable of saving the value of an exchange rate
with infinitely many digits, v/2 say; every number in the computer’s memory
is rounded off. Therefore any random variable of practical interest is actually
discrete. ... However, it is often convenient to think of such a variable as a
continuous one. There may be theoretical reasons. For example, the normal
distribution appears as a limit distribution via the central limit theorem; see
p- 45. Many functions of a sample are therefore approximately normal, hence
their limit distribution is continuous. But there are also practical reasons: it is
often less tedious to work with a well-studied continuous distribution (such as
the normal, exponential, gamma, uniform) because we can use standard knowl-
edge (in particular, standard software packages) about its density, moments,
quantiles, etc., and we can possibly obtain some nice explicit expressions for
these quantities.
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Expectation, Variance and Moments

Interesting characteristics of a random variable X are the ezpectation EX, the
variance var(X) and the moments E(X!).

The ezpectation or mean value of a random variable X with density fx
is given by

ux = EX =/ zfx(z)dzx.
The variance of X is defined as
oo
0% = var(X) = / (z — px)¥fx(z)dz.
The Ith moment of X for Il € N is defined as

o0

E(XY = / ! fx(z)dz .
—00

For a real-valued function g the expectation of g(X) is given by

Eo(x) = [ " o(@)fx () da.

- 00

The ezpectation or mean value of a discrete random variable X with
probabilities p = P(X = z;) is given by

o0
ux =EX = Zl‘kpk-
k=1
The variance of X is defined as
o0
ok =var(X) =) (zx — px)’ px-
k=1
The Ith moment of X for | € N is defined as

(o)
E(Xt) = Zzlkpk-

k=1




1.1. BASIC CONCEPTS FROM PROBABILITY THEORY 13

For a real-valued function g the expectation of g(X) is given by

Eg(X) =Y _ g(zx)ps-
k=1

We can regard the expectation py as the “center of gravity” of the random
variable X, i.e. the random values X (w) are concentrated around the non-
random number px. The expectation is quite often taken as a surrogate for
the size of the random variable. For example, it is a simple means for predicting
the future values in a time series.

The spread or dispersion of the random values X (w) around the expecta-
tion px is described by the variance

ok = var(X) = E(X — px)?
= E(X?-2ux X +u%) = BE(X?) - 2% + ik
= E(X?) -uk
and the standard deviation ox.
Recall the normal density from (1.3). The parameter p is the expectation
px and the parameter o? is the variance ag( of a random variable X with

density (1.3). It is a well-known fact (and easy to verify, for example with the
computer) that for an N(u,0?) random variable X,

P(p—1960 < X < pu+ 1.960)
= ®(p+1.960)— B(u—1.960) =0.95. (1.4)

So there is a 95% chance that the normal random variable X assumes values
in [u—1.960,u+ 1.960]. Analogously to (1.4) one can formulate a heuristic
20-rule (it is nothing but this: one can construct counterexamples) that for a
“nice” random variable X the probability

Plux —20x < X < px + 20x)
is close to 1. This rule is also supported by the Chebyshev inequality

P(X —px|>z)<z7%0%, z>0,

which provides us with a sufficiently accurate bound of the probability that
the absolute deviation of the random variable X from its expectation exceeds
some threshold z.
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1.1.2 Random Vectors

In what follows we frequently make use of finite-dimensional and infinite-di-
mensional random structures. We commence with finite-dimensional random
vectors as a first step toward the definition of a stochastic process.

X = (X,,...,X,) is an n-dimensional random vector if its components
X1,...,X, are one-dimensional real-valued random variables.

If we interpret ¢ = 1,...,n as equidistant instants of time, X; can stand
for the outcome of an experiment at time t. Such a time series may, for
example, consist of BMW share prices X; at n succeeding days. Clearly, t is
“mathematical time”, thus nothing but an index or a counting variable. For
example, a random vector can describe the state of the weather in Wellington
(NZ) at a given time: X, could be the temperature, X, the air pressure and
X3 the windspeed (the latter is usually close to infinity!).

Analogously to one-dimensional random variables one can introduce the
distribution function, the expectation, moments and the covariance matrix
of a random vector in order to describe its distribution and its dependence
structure. The latter aspect is a new one; dependence does not make sense
when we talk just about one random variable. '

Probability, Distribution and Distribution Function

Toss a fair coin twice. We consider the four pairs (H,H), (T,T), (H,T)
and (T, H) (H=head, T=tail) as outcomes of the experiment “flipping a coin
twice”. These four pairs constitute the outcome space 2. As before, we assign
1 to H and 0 to 7. In this way we obtain two random variables X; and X3,
and X = (X, X32) is a two-dimensional random vector. Notice that

X(H,H)=(1,1), X(T,T) =(0,0), X(T,H) =(0,1), X(H,T) = (1,0).

If the coin is indeed fair, we can assign the probability 0.25 to each of the four
outcomes, i.e.

P{{w: X(w) = (k,)}) =0.25, kL€ {0,1}.

As before, we consider a collection F of subsets of §2 and define a probability
measure on it, i.e. we assign a number P(A) € [0,1] to each A € F.
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The collection of the probabilities
FX(X) = P(‘Yl 5931,---,/\’1155%) (15)
= P{w:Xi(w) <z, ..., Xnw) Lz0}),

x=(z1,...,za) € R?,

is the distribution function Fx of X.

It provides us with the probability of the event that X assumes values in the
rectangle
(a,b]={x:a;<z;<b;, i=1,...,n}.

For example, if X is two-dimensional,
P(X € (a, b]) = Fx(bl, bg) + Fx.(a1 s (12) — Fx(al, bz) — Fx(bl, az) .

Check that this formula is correct; see also Figure 1.1.6. As in the case of
one-dimensional random variables, these probabilities approximate P(X € B)
for very general sets B.
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The collection of the probabilities

Px(B) = P(X € B) = P({w : X(w) € B})

for suitable subsets B C R™ constitutes the distribution of X.

“Suitable” subsets of R™ are the Borel sets which are obtained by a countable
number of operations U, N or ¢ acting on the intervals in R”; see p. 64 for a
precise definition. For example, point sets, balls and rectangles are Borel sets.
In a mathematical sense, the distribution and the distribution function of a
random vector X are equivalent notions. Both, Fx and Px, can be used to
calculate the probability of any event {X € B}.

Notice that the distribution of X = (X},...,X,) contains the whole in-
formation about the distribution of the components X;, pairs (Xj, X;), triples
(X4, Xj, Xk), etc. This is easily seen from (1.5): you get the distribution func-
tion of X; by formally setting z, = --: = 2, = 00, the distribution function of
(X1,X>) by setting z3 = --- = z,, = 00, etc.

Analogously to random variables one can introduce discrete and continu-
ous random vectors and distributions. For our purposes, continuous random
vectors with a density will be relevant, and so we mostly restrict our attention
to them.

If the distribution of a random vector X has density fx, one can represent
the distribution function Fx of X as

Fx(z1,...,25) =/ / fx@i,--- yn)dyr -+ dyn,

(z1,...,z,) € R™,
where the density is a function satisfying
fx(x) >0 for every x € R*

and

o0 o0
/ / fx(yl,~--a1/n)dyl"‘dyn=1-
—00 —00

If a vector X has density fx, all its components X, the vectors of the pairs
(Xi, X;), triples (X;, X, X), etc., have a density. They are called marginal
densities.
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Example 1.1.7 (Marginal densities: the case n = 3)
We consider the case n =3. Then the marginal densities are obtained as
follows:

fo(z) = /°° /_°° Fx(x) doadzs,  fxyxa(21,22) = / fx () dzs

fx,{(z2) is obtained by integrating fx (x) with respect to z, and z3, fx, x; by
integrating fx (x) with respect to z2, etc. a

One case is particularly simple: if the density fx (x) can be written as a product
of non-negative functions g;:

fx(x) =g1(z1) -+ gn(zn), x€R™.

In this case, f_°°°o gi(zi)dz; = 1fori =1,...,n, i.e. the functions g;(z;) are
one-dimensional probability densities, and then necessarily

fx.(zi) = gi(zi),  fx.x;(xi,x5) = gi(zi) gj(z;), ete.
Verify this!

Example 1.1.8 (Gaussian random vector)
A Gaussian or normal random vector has a Gaussian or normal distribution.
The n-dimensional normal or Gaussian distribution is given by its density

1 1 _ , .
Ixx) = (2m)"/2(det £)1/2 exD{—i(x —WET - w) } » x€R, (16)

with parameters u4 € R® and ¥. (Here and in what follows, y’ denotes the
transpose of the vector y; see p. 211.) The quantity ¥ is a symmetric positive-
definite n x n matrix, £~! is its inverse and det ¥ its determinant. See Fig-
ure 1.1.10 for an illustration in the case n = 2. O

Expectation, Variance and Covariance

The expectation of a random vector has a similar function as the mean value
of a random variable. The values X(w) are concentrated around it.

The expectation or mean value of a random vector X is given by

ux = EX = (EX1,...,EXy).
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The covariance matriz of X is defined as
Ix = (cov(X;, Xj)54,j=1,...,n),
where
cov(X;, Xj) = E[Xi — px)(X; — px;)]
= E(XiX;) — px; bx;

is the covariance of X; and X;. Notice that cov(X;, X;) = 0%, .

Example 1.1.9 (Continuation of Example 1.1.8)

Recall from (1.6) the density of a multivariate Gaussian random vector X. The
parameter g is the expectation ux of X, and ¥ is its covariance matrix Xx.
Thus the density of a Gaussian vector (hence its distribution) is completely
determined via its expectation and covariance matrix. In particular, if 4 = 0
and X is the n-dimensional identity matrix I,,, we have det I, = 1 and X! =
I,. The density fx is then simply the product of n standard normal densities:

x(@y,. .. z0) = (21) -+ @(Tn).

We write N(u,Y) for the distribution of an n-dimensional Gaussian vector X
with expectation g and covariance matrix ¥. Such a vector has the appealing
property that it remains Gaussian under linear transformations (recall that u'
and A’ denote the transposes of u and A, respectively):

Let X = (X,,...,X,) have an N(u,Y) distribution and A be an m x n
matrix. Then AX' has an N(Au',AX A’) distribution.

O

It is convenient to standardize covariances by dividing the corresponding ran-
dom variables by their standard deviations. The resulting quantity
COV(X] ) Xz)

0X,0X,

E[(X) — px,) (X2 — px,)]
0X,0X,

COI'I'(X].,X-_;)

is the correlation of X; and X,. As a result of this standardization, the corre-
lation of two random variables is always between —1 and +1. Check this fact
by an application of the Cauchy-Schwarz inequality; see p. 188.
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Figure 1.1.10 Density of the 2-dimensional standard normal density (u = 0 and
3 = I, s the identity matriz).

1.1.3 Independence and Dependence

Flip a fair coin twice and let the random numbers X, (w), Xa2(w) € {0,1} be

the corresponding outcomes of the first and second experiment. It is easy to
verify that

PX,=k,Xo=0)=P(X, =k)P(X,=1), k,1e{0,1}.

This property is called independence of the random variables X; and X,. In-
tuitively, independence means that the first experiment does not influence the
second one, and vice versa. For example, knowledge of X; does not allow one
to predict the value of X5, and vice versa.

Below we recall some of the essential definitions and properties of inde-
pendent events and independent random variables.

Two events A, and A, are independent if

P(A1 N Az) = P(Ay) P(42).
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Two random variables X, and X, are independent if
P(X, € By, Xz € By) = P(X, € By) P(X; € By)

for all suitable subsets B; and B, of R. This means that the events
{X, € B1} and {X; € B;} are independent.

Alternatively, one can define independence via distribution functions and den-
sities. The random variables X; and X, are independent if and only if

FX],X2(11132)=FX1(II)FX2(I2)1 I],I2€R.

Assume that (X, X2) has density fx, x, with marginal densities fx, and fx,;
see p. 16. Then the random variables X, and X, are independent if and only
if

fxl.Xz(zl,z'l)=fxl(zl)fX2(I2)v 1,72 €R.

The definition of independence can be extended to an arbitrary finite num-
ber of events and random vectors. Notice that independence of the components
of a random vector implies the independence of each pair of its components,
but the converse is in general not true.

The events Aj,..., A, are independent if, for every choice of indices
1<4; <---<ir <nandintegers 1 <k <mn,

PA4;,n---NA;,)=P(A;) - P(Asy).

The random variables X1, ..., X, are independent if, for every choice of
indices 1 <) < --- < i) <, integers 1 < k < n and all suitable subsets
Bl,...,Bn OfR,

P(X; € B;,,...,X;, € B;,) =P(X;, € B;;) --- P(X;, € By,).

This means that the events { X, € B;},...,{X, € B,} are independent.

The random variables X,..., X,, are independent if and only if their joint
distribution function can be written as follows:

Fx,. . .x.(z1,...,2p) = Fx,(z1) - Fx,(zn), (z1,...,2,) ER".



1.1. BASIC CONCEPTS FROM PROBABILITY THEORY 21

If the random vector X = (X,...,X,) has density fx, then X,,..., X, are
independent if and only if

')‘A'l"“‘_»(,I (11:1,...,.12,,) =fx1(:1:1) fxn(:L‘n), (;1,‘1,...,:1:") cR". (1.7)

Example 1.1.11 (Continuation of Example 1.1.9)

Recall from (1.6) the density of an n-dimensional Gaussian vector X. It is easily
seen from the form of the density that its components are independent if and
only if the covariance matrix ¥ is diagonal. This means that corr(X;, X;) =
cov(X;, X;) = 0 for i # j, and so we can write the density of X in the form
(1.7). Thus, in the Gaussian case, uncorrelatedness and independence are
equivalent notions. This statement is wrong for non-Gaussian random vectors;
see Example 1.1.12. ]

An important consequence of the independence of random variables is the
following property:

If X;,...,X, are independent, then for any real-valued functions
gi,---139n,

E[gl(Xl) gn(Xn)] = Eg (X)) --- Egu(Xy5),

provided the considered expectations are well defined.

In particular, we may conclude that the independent random variables X and
X, are uncorrelated, i.e. corr(X;,X2) = cov(X;, X2) = 0. The converse is in
general not true.

Example 1.1.12 (Uncorrelated random variables are not necessarily indepen-
dent.)

Let X be a standard normal random variable. Since X is symmetric (i.e. X
and —X have the same distribution), so is X3, and therefore both X and X3
have expectation zero. Thus

cov(X,X?) = E(X®) - EXE(X?) =0,

but X and X? are clearly dependent: since {X € [-1,1]} = {X? € [0,1]}, we
obtain

P(X € [-1,1], X2 €0,1)])
> P(X e[-1,1))P(X?€[0,1])

P(X €[~1,1))
[P(X € [-1,1])]. g
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Example 1.1.13 (Autocorrelations of a time series)

For a time series Xp, X1, X2,... the autocorrelation at lag h is defined by
corr(Xo,Xn), h = 0,1,.... A claim which can frequently be found in the
literature is that financial time series (derived from stock indices, share prices,
exchange rates, etc.) are nearly uncorrelated. This is supported by the sample
autocorrelations of the daily log-returns X; of the S&P index; see Figure 1.1.14.
In contrast to this observation, the estimated autocorrelations of the absolute
values | X;| are different from zero even for large lags h. This indicates that
there is dependence in this time series. [
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Figure 1.1.14 The estimated autocorrelations of the S&P index (left) and of its
absolute values (right); see Example 1.1.13; cf. the comments in Figure 1.1.4.

In what follows, we will often deal with infinite collections (X;,t € T) of
random variables X, i.e. T is an infinite index set. In this set-up, we may also
introduce independence:

The collection of random variables (X¢,t € T') is independent if for every
choice of distinct indices ¢;,...,t, € T and n > 1 the random variables
Xt,,-.., Xy, are independent. This collection is independent and iden-
tically distributed (iid) if it is independent and all random variables X;
have the same distribution.

Notes and Comments

In this section we recalled some elementary probability theory which can be
found in every textbook on the topic; see for instance Pitman (1993) for an



1.2. STOCHASTIC PROCESSES 23

elementary level and Gut (1995) for an intermediate course. Also many text-
books on statistics often begin with an introduction to probability theory; see
for example Mendenhall, Wackerly and Scheaffer (1990).

1.2 Stochastic Processes

We suppose that the exchange rate NZ$/USS$ at every fixed instant ¢ between
9 am. and 10 a.m. this morning is random. Therefore we can interpret it
as a realization X,;(w) of the random variable X;, and so we observe X;(w),
9 <t < 10. In order to make a guess at 10 a.m. about the exchange rate X, (w)
at 11 a.m. it is reasonable to look at the whole evolution of X;(w) between
9 am. and 10 a.m. This is also a demand of the high standard technical
devices which provide us with almost continuous information about the process
considered. A mathematical model for describing such a phenomenon is called
a stochastic process.

A stochastic process X is a collection of random variables
(Xt,tGT):(‘\’t(W),tGT,WGQ),

defined on some space 2.

For our purposes, T is often an interval, for example T = [a, b], [a, b) or [a, o)
for a < b. Then we call X a continuous-time process in contrast to discrete-
time processes. In the latter case, T is a finite or countably infinite set. For
obvious reasons, the index t of the random variable X, is frequently referred
to as timme, and we will follow this convention.

A stochastic process X is a function of two variables.
For a fixed instant of time ¢, it is a random variable:

Xt':Xt(u)), weN.
For a fixed random outcome w € €2, it is a function of time:
X,,:X,(w), teT.

This function is called a realization, a trajectory or a sample path of the
process X .

These two aspects of a stochastic process are illustrated in Figure 1.2.1.
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Figure 1.2.1 5 sample paths of a stochastic process (X:,t € [0,1]). Top: every path
corresponds to a different w € Q). Middle and bottom: the values on the vertical lines
at t = 0.1,...,0.9 visualize the random variables Xo.1,...,Xo0.9; they occur as the
projections of the sample paths on the vertical lines.
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Figure 1.2.2 The (scaled) daily values of the S&P indez over a period of 7,422
days. The graph suggests that we consider the S& P time series as the sample path
of a continuous-time process. If there are many values tn a time series such that the
instants of timet € T are “dense” in an interval, then one may want to interpret this
discrete-time process as a continuous-time process. The sample paths of a real-life
continuous-time process are always reported at discrete instants of time. Depending
on the situation, one has to make o decision which model (discrete- or continuous-
time) is more appropriate.

Example 1.2.3 A time series
X,, t=0+1,42,...,

is a discrete-time process with T'= Z = {0, £1,+2,...}. Time series constitute
an important class of stochastic processes. They are relevant models in many
applications, where one is interested in the evolution of a real-life process.
Such series represent, for example, the daily body temperature of a patient in
a hospital, the daily returns of a price or the monthly number of air traffic
passengers in the US. The most popular theoretical time series models are
the ARMA (AutoRegressive Moving Average) processes. They are given by
certain difference equations in which an iid sequence (Z;) (see p. 22), the so-
called noise, is involved. For example, a moving average of order ¢ > 1 is
defined as
Xg=Zt+91Z¢_1+"'+0th_q, tez,
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and an autoregressive process of order 1 is given by
Xi=¢X-1+ 2, t€Z.

Here 6;,...,0, and ¢ are given real parameters. Time series models can be
understood as discretizations of stochastic differential equations. We will see
this for the autoregressive process on p. 141.

Figure 1.2.4 shows two examples. o
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Figure 1.2.4 Two time series X, t = 1,...,100. Left: 100 successive daily log-
returns of the S& P indez; see Figure 1.1.4. Right: a simulated sample path of the
autoregressive process X; = 0.5X¢_1 + Z¢, where Z; are 11d N(0,1) random variables;
see Example 1.2.5.

We see that the concepts of a random variable X and of a stochastic process
(X¢,t € T) are not so much different. Both have random realizations, but the
realization X (w) of a random variable is a number, whereas the realization
Xi(w),t € T, of a stochastic process is a function on T'. So we are completely
correct if we understand a stochastic process to be a “random element” tak-
ing functions as values. Moreover, we can interpret a random variable and a
random vector as special stochastic processes with a finite index set 7.

Distribution

In analogy to random variables and random vectors we want to introduce
non-random characteristics of a stochastic process such as its distribution,
expectation, etc. and describe its dependence structure. This is a task much
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more complicated than the description of a random vector. Indeed, a non-
trivial stochastic process X = (X;,t € T) with infinite index set T is an
infinite-dimensional cbject; it can be understood as the infinite collection of
the random variables X, t € T. Since the values of X are functions on T, the
distribution of X should be defined on subsets of a certain “function space”,
ie.

P(Xe€eA), AeF, (1.8)
where F is a collection of suitable subsets of this space of functions. This
approach is possible, but requires advanced mathematics, and so we try to
find some simpler means.

The key observation is that a stochastic process can be interpreted as a
collection of random vectors.

The finite-dimensional distributions (fidis) of the stochastic process X
are the distributions of the finite-dimensional vectors

(th,...,Xt"), t1,...,.th, €T,

for all possible choices of times t;,...,t, € T and every n > 1.

We can imagine the fidis much easier than the complicated distribution (1.8) of
a stochastic process. It can be shown that the fidis determine the distribution
of X. In this sense, we refer to the collection of the fidis as the distribution of
the stochastic process.

Stochastic processes can be classified according to different criteria. One
of them is the kind of fidis.

Example 1.2.5 (Gaussian process)

Recall from (1.6) the definition of an n-dimensional Gaussian density. A
stochastic process is called Gaussian if all its fidis are multivariate Gaussian.
We learnt in Example 1.1.9 that the parameters  and ¥ of a Gaussian vector
are its expectation and covariance matrix, respectively. Hence the distribution
of a Gaussian stochastic process is determined only by the collection of the
expectations and covariance matrices of the fidis.

A simple Gaussian process on T = [0,1] consists of iid N (0, 1) random vari-
ables. In this case the fidis are characterized by the distribution functions

P(Xi, <z1,..., X, < 7p)
= P(Xy, <71) - P(Xy, <2p)
®(zy) - (z,)
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The sample paths of this process are very irregular. See Figure 1.2.6 for an
illustration. O

Figure 1.2.6 A sample path of the Gaussian process (Xi,t € [0,1]), where the Xes
are 1id N(0,1); see Ezample 1.2.5. The ezpectation function is ux(t) = 0 and the
dashed lines indicate the curves +20x(t) = +2; see Ezample 1.2.7.

Expectation and Covariance Function

For a random vector X = (X,,...,X,,) we defined the expectation ux =
(EXy,...,EX,) and the covariance matrix ¥x = (cov(X;, X;),t,7 =1,...,n).
A stochastic process X = (X;,t € T) can be considered as the collection of
the random vectors (X;,,...,X:,) for t1,...,¢t, € T and n > 1. For each of
them we can determine the expectation and covariance matrix. Alternatively,
we can consider these quantities as functions of t € T

The ezpectation function of X is given by
,th(t) =upux, =EXy, teT.
The covariance function of X is given by

cx(t,s) = cov(Xy, Xs) = E[(Xe — ux () (X5 — ux(s))], t,seT.
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The wvariance function of X is given by

0% (t) = cx(t,t) = var(X;), teT.

We learnt in Example 1.2.5 that Gaussian processes are determined only via
their expectation and covariance functions. This is not correct for a non-
Gaussian process.

As for a random vector, the expectation function px (t) is a deterministic
quantity around which the sample paths of X are concentrated. The covariance
function cx(t,s) is a measure of dependence in the process X. The variance
function 0% (¢) can be considered as a measure of spread of the sample paths
of X around ux(t). In contrast to the one-dimensional case, a statement
like “95% of all sample paths lie between the graphs of ux(t) — 20 x(t) and
ux(t) + 20x(t)” is very difficult to show (even for Gaussian processes), and
is in general not correct. We will sometimes consider computer graphs with
paths of certain stochastic processes and also indicate the curves ux(t) and
ux(t) £20x(t), t € T. The latter have to be interpreted for every fixed t, i.e.
for every individual random variable X;. Only in a heuristic sense, do they
give bounds for the paths of the process X. See Figure 1.2.6 for an illustration.

Example 1.2.7 (Continuation of Example 1.2.5)
Consider the Gaussian process (X;,t € [0,1]) of iid N(0, 1) random variables
X:. Its expectation and covariance functions are given by

1 if t=3s,

ux(t) =0 and cx(t,s)z{o ot O

Dependence Structure

We have already introduced Gaussian processes by specifying their fidis as
multivariate Gaussian. Another way of classifying stochastic processes consists
of imposing a special dependence structure.

- The process X = (X;,t € T), T C R, is strictly stationary if the fidis are
invariant under shifts of the index ¢:

d v -
(‘X'tl)""rth) = (‘\t1+h7"’1‘xtn+h) (19)

for all possible choices of indices t,...,t, € T, n > 1 and h such that t; +
h,....,tn + h € T. Here £ stands for the identity of the distributions; see
p. 211 for the definition. For the random vectors in (1.9) this means that their
distribution functions are identical.
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Example 1.2.8 (Stationary Gaussian processes)

Consider a process X = (X;,t € T) with T = [0,00) or T = Z. A trivial
example of a strictly stationary process is a sequence of iid random variables
X, t € Z. Since a Gaussian process X is determined by its expectation and
covariance functions, condition (1.9) reduces to

px(t+h)=px(t) and cx(t,s) =cx(t+h,s+h)

for all s,t € T such that s + h,t + h € T. But this means that ux(t) =
ux(0) for all ¢, whereas cx(t,s) = ¢x (|t — s|) for some function ¢x of one
variable. Hence, for a Gaussian process, strict stationarity means that the
expectation function is constant and the covariance function only depends on
the distance |t — s|. More generally, if a (possibly non-Gaussian) process X has
the two aforementioned properties, it is called a stationary (in the wide sense)
or (second-order) stationary process. m|

If we describe a real-life process by a (strictly or in the wide sense) stationary
stochastic process, then we believe that the characteristic properties of this
process do not change when time goes by. The dependence structure described
by the fidis or the covariance function is invariant under shifts of time. This
is a relatively strong restriction on the underlying process. However, it is a
standard assumption in many probability related fields such as statistics and
time series analysis.

Stationarity can also be imposed on the increments of a process. The
process itself is then not necessarily stationary.

Let X = (X,,t € T) be a stochastic process and T C R be an interval.
X is said to have stationary increments if

X=Xy £ Xyyn—Xoynforallt,s€ T and h with t + h,s + h € T.

X is said to have independent increments if for every choice of t; € T
witht; <--- <t andn > 1,

' r
X, = Xeys o Xo, — Xo

n

are independent random variables.

One of the prime examples of processes with independent, stationary incre-
ments is the homogeneous Poisson process. Homogeneity is here another word-
ing for stationarity of the increments.
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Figure 1.2.9 Sample paths of a homogeneous Poisson process (X:,t € [0,00)) with
intensity A = 1; see Ezample 1.2.10. The straight solid line stands for the ezpectation
Sfunction ux (t) =t.
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Example 1.2.10 (Homogeneous Poisson process)

A stochastic process (X¢,t € [0,00)) is called an homogeneous Poisson pro-
cess or simply a Poisson process with intensity or rate A > 0 if the following
conditions are satisfied:

e It starts at zero: Xg = 0.
o It has stationary, independent increments.

e For every t > 0, X; has a Poisson Poi(At) distribution; see Examrple 1.1.1
for the definition of the Poisson distribution.

Figure 1.2.9 shows several Poissonian sample paths.

Notice that, by stationarity of the increments, X; — X, with ¢ > s has the
same distribution as X;—_, — Xo = X;_s, i.e. a Poi(A(t — s)) distribution.

An alternative definition of the Poisson process is given by
Xe=#{n:T, <t}, t>0, (1.10)

where #A denotes the number of elements of any particular set A, Fr-=
Y1+---+Y, and (Y;) is a sequence of iid exponential Ezp(\) random variables
with common distribution function

PY,<z)=1-e**, £>0.

This definition shows nicely what kind of sample path a Poisson process has.
It is a pure jump function: it is constant on [Ty, Th4+1) and has upward jumps
of size 1 at the random times T,.

The role of the Poisson process and its modifications and ramifications is com-
parable with the role of Brownian motion. The Poisson process is a counting
process; see (1.10). It has a large variety of applications in the most different
fields. To name a few: for a given time interval [0,¢], X, is a model for the
number of

o telephone calls to be handled by an operator,
e customers waiting for service in a queue,

e claims arriving in an insurance portfolio. a
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Notes and Comments

Introductions to the theory of stochastic processes are based on non-elementary

facts from measure theory and functional analysis. Standard texts are Ash and

Gardner (1975), Gikhman and Skorokhod (1975), Karlin and Taylor (1975,1981)
and many others. An entertaining introduction to the theory of applied stochas-
tic processes is Resnick (1992). Grimett and Stirzaker (1994) is an introduction

“without burdening the reader with a great deal of measure theory”.

1.3 Brownian Motion

1.3.1 Defining Properties

Brownian motion plays a central rdle in probability theory, the theory of
stochastic processes, physics, finance,. .., and also in this book. We start with
the definition of this important process. Then we continue with some of its
elementary properties.

A stochastic process B = (B, t € [0,00)) is called (standard) Brownian
motion or a Wiener process if the following conditions are satisfied:

o It starts at zero: By = 0.

e It has stationary, independent increments; see p. 30 for the defini-
tion.

e For every ¢t > 0, B; has a normal N(0,t) distribution.

o It has continuous sample paths: “no jumps”.

See Figure 1.3.1 for a visualization of Brownian sample paths.

Brownian motion is named after the biologist Robert Brown whose research
dates to the 1820s. Early in this century, Louis Bachelier (1900), Albert Ein-
stein (1905) and Norbert Wiener (1923) began developing the mathematical
theory of Brownian motion. The construction of Bachelier (1900) was erro-
neous but it captured many of the essential properties of the process. Wiener
(1923) was the first to put Brownian motion on a firm mathematical basis.

Distribution, Expectation and Covariance Functions

The fidis of Brownian motion are multivariate Gaussian, hence B is a Gaus-
sian process. Check this statement by observing that Brownian motion has
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independent Gaussian increments and by using the formula for linear transfor-
mations of a Gaussian random vector; see p. 18.

The random variables B; — Bs; and B;_, have an N(0,t — s) distribution
for s < t.

This follows from the stationarity of the increments. Indeed, B; — B, has the
same distribution as B;_; — By = B;_s which is normal with mean zero and
variance ¢t — s. Thus the variance is proportional to the length of the interval
[s,t]. This means intuitively: the larger the interval, the larger the fluctuations
of Brownian motion on this interval. This observation is also supported by
simulated Brownian sample paths; see for example Figure 1.3.2.

Notice:
The distributional identity B, — B L B;_s does not imply pathwise identity:

in general,
Bi(w) — Bs(w) # Bi—s(w).

It is worthwhile to compare Brownian motion with the Poisson process; see
Example 1.2.10. Their definitions coincide insofar that they are processes
with stationary, independent increments. The crucial difference is the kind
of distribution of the increments. The requirement of the Poisson distribution
makes the sample paths pure jump functions, whereas the Gaussian assumption
makes the sample paths continuous.

It is immediate from the definition that Brownian motion has expectation
function

ﬂ‘B(t)=EBt:07 t>0,

and, since the increments By — Bg = B, and By — B are independent for ¢t > s,
it has covariance function (recall its definition from p. 28)

cg(t,s) = E[[(B.— Bs)+ Bs]B;] = E[(B; — B,) By] + EB?
= E(B;-By)EB;+s5s=0+s=s, 0<s<t.

Since a Gaussian process is characterized by its expectation and covariance
functions (see Example 1.2.5), we can give an alternative definition:

Brownian motion is a Gaussian process with

up(t) =0 and cp(t, s) = min(s,t). (1.11)
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Path Properties: Non-Differentiability and Unbounded Variation

In what follows, we fix one sample path By(w), t > 0, and consider its proper-
ties. We already know from the definition of Brownian motion that its sample
paths are continuous. However, a glance at simulated Brownian paths imme-
diately convinces us that these functions of ¢ are extremely irregular: they
oscillate wildly. The main reason is that the increments of B are independent.
In particular, increments of Brownian motion on adjacent intervals are inde-
pendent whatever the length of the intervals. Since we can imagine the sample
path as constructed from its independent increments on adjacent intervals, it
is rather surprising that continuity of the path results.

Thus:
How irregular is a Brownian sample path?

Before we answer this question we make a short excursion to a class of stochas-
tic processes which contains Brownian motion as a special case. All members
of this class have irregular sample paths.

A stochastic prdcess (X¢,t € [0,00)) is H-self-similar for some H > 0 if
its fidis satisfy the condition

(T¥By,,...,THB,) £ (Bri,, .., Bre,) (1.12)

for every T > 0, any choice of t; > 0,i=1,...,n,and n > 1.

Notice:

Self-similarity is a distributional, not a pathwise property. In (1.12), one must
not replace £ with =.

Roughly speaking, self-similarity means that the properly scaled patterns of a
sample path in any small or large time interval have a similar shape, but they
are not identical. See Figure 1.3.2 for an illustration.

The sample paths of a self-similar process are nowhere differentiable; see
Proposition A3.1 on p. 188. And here it comes:

Brownian motion is 0.5-self-similar, i.e.
(T‘/'th,. . ,Tl/'zB,“> 2 (Bry,,...,Bry,) (1.13)

for every T > 0, any choice of t; > 0,7 =1,...,n,and n > 1.

Hence its sample paths are nowhere differentiable.
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Figure 1.3.3 Left: a differentiable function. At every point its graph can be approz-
imated by a linear function which is the unique tangent at this point. Right: this
function is not differentiable at x = 1. There are infinitely many tangents to the
curve of the function at this point.

One can easily check the distributional identity (1.13). Indeed, the left- and
right-hand sides of (1.13) are Gaussian random vectors, and therefore it suffices
to verify that they have the same expectation and covariance matrix. Check
these properties by using (1.11).

Differentiability of a function f means that its graph is smooth. Indeed, if

the limit £ Az) — £(z0)
, o o + AZ) — f(Zo
fizo) = Jim Az

exists and is finite for some g € (0,t), say, then we may write for small Az
f(zo + Az) = f(z0) + f'(z0)Az + h(z0, AT)Az,

where h(zg, Az) — 0 as Az — 0. Hence, in a small neighborhood of zg, the
function f is roughly linear (as a function of Az). This explains its smoothness.
Alternatively, differentiability of f at zo implies that we have a unique tangent
to the curve of the function f at this point; see Figure 1.3.3 for an illustration.
In this figure you can also see a function which is not differentiable at one
point.

Now try to imagine a nowhere differentiable function: the graph of this
function changes its shape in the neighborhood of any point in a completely
non-predictable way. You will admit that you cannot really imagine such a
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function: it is physically impossible. Nevertheless, Brownian motion is consid-
ered as a very good approximation to many real-life phenomena. We will see in
Section 1.3.3 that Brownian motion is a limit process of certain sum processes.

The self-similarity property of Brownian motion has a nice consequence
for the simulation of its sample paths. In order to simulate a path on [0,T] it
suffices to simulate one path on [0, 1], then scale the time interval by the factor
T and the sample path by the factor 7!/2. Then we are done.

In some books one can find the claim that the limit

. Bto+Al - Bio
Al}r_r'lo var ( AL (1.14)

does not exist and therefore the sample paths of Brownian motion are non-dif-
ferentiable. It is easy to check (do it!) that the limit (1.14) does not exist, but
without further theory it would be wrong to conclude from this distributional
result that the paths of the process are non-differentiable.

The existence of a nowhere differentiable continuous function was discov-
ered in the 19th century. Such a function was constructed by Weierstrass. It
was considered as a curiosity, far away from any practical application. Brown-
ian motion is a process with nowhere differentiable sample paths. Currently it
is considered as one of those processes which have a multitude of applications
in very different fields. One of them is stochastic calculus; see Chapters 2
and 3.

A further indication of the irregularity of Brownian sample paths is given
by the following fact:

Brownian sample paths do not have bounded variation on any finite
interval [0,7]. This means that

n
Sl:p Z IBt.'(w) - By,_, (w)l =00,

i=1

where the supremum (see p. 211 for its definition) is taken over all pos-
sible partitions 7: 0 =tg < -+ < t, =T of [0,T].

A proof of this fact is provided by Proposition A3.2 on p. 189. We mention at
this point that the unbounded variation and non-differentiability of Brownian
sample paths are major reasons for the failure of classical integration methods,
when applied to these paths, and for the introduction of stochastic calculus.
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1.3.2 Processes Derived from Brownian Motion

The purpose of this section is to get some feeling for the distributional and
pathwise properties of Brownian motion. If you want to start with Chapter 2
on stochastic calculus as soon as possible, you can easily skip this section and
return to it whenever you need a reference to a property or definition.

Various Gaussian and non-Gaussian stochastic processes of practical rel-
evance can be derived from Brownian motion. Below we introduce some of
those processes which will find further applications in the course of this book.
As before, B = (B, t € [0,00)) denotes Brownian motion.

10

Brownian bridge
05

00

Figure 1.3.4 A sample path of the Brownian bridge.

Example 1.3.5 (Brownian bridge)
Consider the process

‘Yt=Bt'—tBl, 05t§1
Obviously,
‘X’Q:B()—OBl:O and X1=Bl—131=0.

For this simple reason, the process X bears the name (standard) Brownian
bridge or tied down Brownian motion. A glance at the sample paths of this
“bridge” (see Figure 1.3.4) may or may not convince you that this name is
justified.
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Using the formula for linear transformations of Gaussian random vectors (see
p. 18), one can show that the fidis of X are Gaussian. Verify this! Hence X is
a Gaussian process. You can easily calculate the expectation and covariance
functions of the Brownian bridge:

px(t)=0 and cx(t,s)=min(t,s)—ts, s,t€]0,1].

Since X is Gaussian, the Brownian bridge is characterized by these two func-
tions.

The Brownian bridge appears as the limit process of the normalized empirical
distribution function of a sample of iid uniform U (0, 1) random variables. This
is a fundamental result from non-parametric statistics; it is the basis for nu-
merous goodness-of-fit tests in statistics. See for example Shorack and Wellner
(1986). m]

1000

Brownian motion with drift
0 400 600 800

0

o 20 40 60 80 100

Figure 1.3.6 A sample path of Brownian motion with drift X, = 20 By + 10t on
[0,100]. The dashed line stands for the drift function pux(t) = 10¢.

Example 1.3.7 (Brownian motion with drift)
Consider the process
Xi=pt+0By, t>0,

for constants o > 0 and u € R. Clearly, it is a Gaussian process (why?) with
expectation and covariance functions

px(t)=pt and cx(t,s) =o® min(t,s), s,t>0.



42 CHAPTER 1.

The expectation function ux(t) = ut (the deterministic “drift” of the pro-
cess) essentially determines the characteristic shape of the sample paths; see
Figure 1.3.6 for an illustration. Therefore X is called Brownian motion with
(linear) drift. m|

With the fundamental discovery of Bachelier in 1900 that prices of risky assets
(stock indices, exchange rates, share prices, etc.) can be well described by
Brownian motion, a new area of applications of stochastic processes was born.
However, Brownian motion, as a Gaussian process, may assume negative val-
ues, which is not a very desirable property of a price. In their celebrated papers
from 1973, Black, Scholes and Merton suggested another stochastic process as
a model for speculative prices. In Section 4.1 we consider their approach to
the pricing of European call options in more detail. It is one of the promising
and motivating examples for the use of stochastic calculus.

Example 1.3.8 (Geometric Brownian motion)
The process suggested by Black, Scholes and Merton is given by

Xy =ettoB >0,
i.e. it is the exponential of Brownian motion with drift; see Example 1.3.7.

Clearly, X is not a Gaussian process (why?).

For the purpose of later use, we calculate the expectation and covariance func-
tions of geometric Brownian motion. For readers, familiar with probability
theory, you may recall that for an N(0,1) random variable Z,

Ee* =e¥/2 . AeR. (1.15)
It is easily derived as shown below:
EeM 1 /°° e)\ze—zz/Zd
e = _— ¥4
@n)'2 /o,

ap 1 % (a=N?2
= e @17 e dz
— 00

2
— N2

Here we used the fact that (2m)~'/2exp{—(z — A)?/2} is the density of an
N(A, 1) random variable.

From (1.15) and the self-similarity of Brownian motion it follows immediately
that

pix (t) = bt Ee?Bt = ent Eeot'/*Br — o(ut0.50%)t (1.16)
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geometric Brownian motion

1.00

Figure 1.3.9 Sample paths of geometric Brownian motion X; = exp{0.01¢+0.01B;}
on [0, 10], the ezpectation function px (t) (dashed line) and the graphs of the functions
px(t) £ 20x(t) (solid lines). The latter curves have to be interpreted with care since
the distributions of the X;s are not normal.

For s <'t, B — B; and B; are independent, and B; — B, 4 B,_,. Hence

cx(t,s) = EXiX,—-EX,EX, (1.17)
—  oH(t48) Boo(Be+B.) _ o(ut0.50%)(t+s)
—  Mt+9) Fool(Bi—Bs)+2B,] _ o(u+0.50%)(t+s)
= oHlt+3) (oo (Bi=B,) pa20Bs _ o(u+0.50%)(t+s)

—  olpt0.50%)(t+s) (eazs _ 1) )
In particular, geometric Brownian motion has variance function
o (t) = e2uto’)t (e"" - 1) . (1.18)

See Figure 1.3.9 for an illustration of various sample paths of geometric Brow-
nian motion. O
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Example 1.3.10 (Gaussian white and colored noise)

In statistics and time series analysis one often uses the name “white noise” for a
sequence of iid or uncorrelated random variables. This is in contrast to physics,
where white noise is understood as a certain derivative of Brownian sample
paths. This does not contradict our previous remarks since this derivative
is not obtained by ordinary differentiation. Since white noise is “physically
impossible”, one considers an approximation to it, called colored noise. It is a
Gaussian process defined as

Biin — By

h )
where h > 0 is some fixed constant. Its expectation and covariance functions
are given by

X; = t>0, (1.19)

px(t)=0 and cx(t,s) =h7%[(s+h)—min(s + h,t)], s<t.

Notice that cx(t,s) = 0if t — s > h, hence X; and X, are independent, but
if t —s < h,cx(t,s) = h~2[h — (t — s)]. Since X is Gaussian and cx(t,s) is a
function only of ¢t — s, it is stationary (see Example 1.2.8).

Clearly, if B was differentiable, we could let h in (1.19) go to zero, and in the
limit we would obtain the ordinary derivative of B at t. But, as we know,
this argument is not applicable. The variance function 0% (t) = h™! gives an
indication that the fluctuations of colored noise become larger as h decreases.
Simulated paths of colored noise look very much like the sample paths in
Figure 1.2.6. O

1.3.3 Simulation of Brownian Sample Paths

This section is not necessary for the understanding of stochastic calculus. How-
ever, it will characterize Brownian motion as a distributional limit of partial
sum processes (so-called functional central limit theorem). This observation
will help you to understand the Brownian path properties (non-differentiability,
unbounded variation) much better. A second objective of this section is to
show that Brownian sample paths can easily be simulated by using standard
software.

Using the almost unlimited power of modern computers, you can visualize
the paths of almost every stochastic process. This is desirable because we like
to see sample paths in order to understand the stochastic process better. On
the other hand, simulations of the paths of stochastic processes are sometimes
unavoidable if you want to say something about the distributional properties
of such a process. In most cases, we cannot determine the exact distribution
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of a stochastic process and its functionals (such as its maximum or minimum
on a given interval). Then simulations and numerical techniques offer some
alternative to calculate these distributions.

Simulation via the Functional Central Limit Theorem

From an elementary course in probability theory we know about the central
limit theorem (CLT). It is a fundamental result: it explains why the normal
distribution plays such an important réle in probability theory and statistics.
The CLT says that the properly normalized and centered partial sums of an
iid finite variance sequence converge in distribution to a normal distribution.
To be precise: let Y7,Y2,... be iid non-degenerate (i.e. non-constant) random
variables with mean uy = EY; and variance o2, = var(Y;). Define the partial
sums
Ry=0, R,=V14+-+Y,, n>1.

Recall that ® denotes the distribution function of a standard normal random
variable.

If Y1 has finite variance, then the sequence (Y;) obeys the CLT, i.e.

P(Rn—ERn

WS;-)—@(,;) - 0 as n— oo.

sup
T

Thus, for large n, the distribution of (R, — py n)/(c%n)!/? is approximately
standard normal. This is an amazing fact, since the CLT holds independently
of the distribution of the ¥;s; all one needs is a finite variance 0% .

The CLT has an analogue for stochastic processes. Consider the process
with continuous sample paths on [0, 1]:

ohn) VAR - pyi), i t=ifn,i=0,...,n,
Sn(t:{(Y) (Ri = py i) / (1.20)

linearly interpolated, elsewhere.
In Figures 1.3.11 and 1.3.12 you will find realizations of S, for various n.
Assume for the moment that the Y;s are iid N(0,1) and consider the

restriction of the process S, to the points i/n. We immediately see that the
following properties hold:

e S, starts at zero: Sp(0) = 0.
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Donsker

0.0 0.2 0.4 06 ) 10
t
Figure 1.3.11 Sample paths of the process S, for one sequence of realizations
Yi(w),...,Ys(w) andn=2,...,9.

SEER:
3: n= 1000 [ 5]
4. n=_10000
5 n=100000

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.3.12 Sample paths of the process S» for different n and the same sequence
of realizations Y1 (w), ..., Y100,000(w)-
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e S, has independent increments, i.e. for all integers 0 <i; < --- < iy,
n, the random variables

Sp(iz/n) — Sp(ia/n), ..., Su(im/n) — Sp(im=1/n)

IA

are independent.
e For every 0 < i < n, S,(i/n) has a normal N(0,i/n) distribution.

Thus, S, and Brownian motion B on [0, 1], when restricted to the points i/n,
have very much the same properties; cf. the definition of Brownian motion on
p. 33. Naturally, the third property above is not valid if we drop the assumption
that the Y;s are iid Gaussian. However, in an asymptotic sense the stochastic
process S, is close to Brownian motion:

If Y7 has finite variance, then the sequence (Y;) obeys the functional
CLT, also called Donsker’s invariance principle, i.e. the processes S,
converge in distribution to Brownian motion B on [0, 1].

Convergence in distribution of S, has a two-fold meaning. The first one is
quite intuitive:

o The fidis of S,, converge to the corresponding fidis of B, i.e.

P(Sn(tl) S xl,“-ssn(tm) S xm) - P(Bt1 S xl)"'thm S xm)
(1.21)
for all possible choices of ¢; € [0,1], z; € R, i = 1,...,m, and all integers
m>1,

But convergence of the fidis is not sufficient for the convergence in distribu-
tion of stochastic processes. Fidi convergence determines the Gaussian limit
distribution for every choice of finitely many fixed instants of time ¢;, but
stochastic processes are infinite-dimensional objects, and therefore unexpected
events may happen. For example, the sample paths of the converging processes
may fluctuate very wildly with increasing n, in contrast to the limiting process
of Brownian motion which has continuous sample paths. In order to avoid
such irregular behavior,

¢ a so-called tightness or stochastic compactness condition must be satis-
fied.

Fortunately, the partial sum processes S, are tight, but it is beyond the scope
of this book to show it.
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Figure 1.3.13 One sample path of the processes Sy (dotted line) and So (solid line)
for the same sequence of realizations Y1 (w),. .., Yo(w). See (1.20) and (1.22) for the
definitions of Sp, and S,.

What was said about the convergence of the processes S, remains valid
for the processes

Sa(t) = (03n) V3 (Rpny —py [nt]), 0<t<1, (1.22)

where [nt] denotes the integer part of the real number nt; see Figure 1.3.13 for
an illustration. In contrast to S, the process S, is constant on the intervals
[(i—1)/n,i/n) and has jumps at the points i/n. But S, and S,, coincide at the
points ¢/n, and the differences between these two processes are asymptotically
negligible: the normalization n!/2 makes the jumps of S, arbitrarily small for
large n. As for S,, we can formulate the following functional CLT:

If Y7 has finite variance, then the sequence (Y;) obeys the functional

CLT, i.e. the processes S, converge in distribution to Brownian motion
B on {0,1].

Since S, is a jump process, the notion of convergence in distribution becomes
even more complicated than for S,,. We refrain from discussing details.
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Thus we have a first simple tool for simulating Brownian sample paths in
our hands:

Plot the paths of the processes Sy, or S, for sufficiently large n, and you get a
reasonable approximation to Brownian sample paths.

Also notice:

Since Brownian motion appears as a distributional limit you will see completely
different graphs for different values of n, for the same sequence of realizations
Yi(w).

From the self-similarity property we also know how to obtain an approximation
to the sample paths of Brownian motion on any interval [0, T]:

Simulate one path of S,, or S, on [0,1], then scale the time interval by the
factor T and the sample path by the factor T'/2.

Standard software (such as Splus, Mathematica, Matlab, etc.) provides you
with quick and reliable algorithms for generating random numbers of standard
distributions. Random number generators are frequently based on natural
processes, for example radiation, or on algebraic methods. The generated
“random” numbers can be considered as “pseudo” realizations Y;(w) of iid
random variables Y;.

For practical purposes, you may want to choose the realizations Y;(w) (or,
as you like, the random numbers Y;(w)) from an appropriate distribution. If
you are interested in “good” approximations to the Gaussian distribution of
Brownian motion, you would generate the Y;(w)s from a Gaussian distribution.
If you are forced to simulate many sample paths of S,, or §n in a short period
of time, you would perhaps choose the Y;(w)s as realizations of iid Bernoulli
random variables, i.e. P(Y; = £1) = 0.5, or of iid uniform random variables.

Simulation via Series Representations

Recall from a course on calculus that every continuous 27-periodic function f
on R (i.e. f(xr+ 2n) = f(z) for all z € R) has a Fourier series representation,
i.e. it can be written as an infinite series of trigonometric functions.

Since Brownian sample paths are continuous functions, we can try to ex-
pand them in a Fourier series. However, the paths are random functions: for
different w we obtain different functions. This means that the coefficients of
this Fourier series are random variables, and since the process is Gaussian,
they must be Gaussian as well.

The following representation of Brownian motion on the interval [0,27]
is called Paley- Wiener representation: let (Zn,n > 0) be a sequence of iid
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Figure 1.3.14 Simulation of one Brownian sample path from the discretization
(1.24) of the Paley-Wiener representation with N = 1,000. Top left: all paths
for M = 2,...,40. Top right: the path only for M = 40. Bottom left: M = 100.
Bottom right: M = 800.
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N(0,1) random variables, then

Bi(w) = Zo(w) ——+= 7(12T Z Zn(u.’)iin(—:lf/—22 , tefo,2w]. (1.23)
n=1

(2 )1/2

This series converges for every fixed ¢, but also uniformly for ¢ € [0,27], i.e. the
rate of convergence is comparable for all ¢. For an application of this formula,
one has to decide about the number M of sine functions and the number N
of discretization points at which the sine functions will be evaluated. This
amounts to calculating the values

sm(nt1/2)
Zo(w)( e 7T1/2 E Zn( (1.24)
27j .
tj=7, ]:0,1,...,N.

The problem of choosing the “right” values for M and N is similar to the
choice of the sample size n in the functional CLT; it is difficult to give a simple
rule of thumb for the choices of M and N.

In Figure 1.3.14 you can see that the shape of the sample paths does not
change very much if one switches from M = 100 to M = 800 sine functions.
A visual inspection in the case M = 100 gives the impression that the sample
path is still too smooth. This is not completely surprising since a sum of M
sine functions is differentiable; only in the limit (as M — oo) do we gain a
non-differentiable sample path.

The Paley—Wiener representation is just one of infinitely many possible
series representations of Brownian motion. Another well-known such repre-
sentation is due to Lévy. In the Lévy representation, the sine functions are
replaced by certain polygonal functions (the Schauder functions).

To be precise, first define the Haar functions H,, on [0, 1] as follows:

Hl(t) = 1)

2 1
2 .
2m/, if te[l—m,l—m),

Hymui(t) = 2 1
—2m/ y if ¢t €|1- W, 1 5
0, elsewhere,
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k-1 k-1 1
/2
2m/ie . if te [ om  om +2m+l> ,

Homyi(t) =

—om/2  if te[%_l k),

om+1 ’om
0, elsewhere,
k=1,...,2"-1; m=0,1,....

From these functions define the system of the Schauder functions on [0,1] by
integrating the Haar functions:

t
Hn(t)z/ Ho(s)ds, n=1,2, ...
1)

Figures 1.3.15 and 1.3.16 show the graphs of H, and I-In for the first n. A
series representation for a Brownian sample path on [0,1] is then given by

Biw) = Y. Za@alt), te(0,1], (1.25)
n=1

where the convergence of this series is uniform for ¢ € [0,1] and the Z,(w)s
are realizations of an iid N(0,1) sequence (Z,). As for simulations of Brow-
nian motion via sine functions, one has to choose a truncation point M of
the infinite series (1.25). In Figure 1.3.17 we show how a Brownian sample
path is approximated by the superposition of the first M terms in the series
representation (1.25). In contrast to Figure 1.3.14, the polygonal shape of the
Schauder functions already anticipates the irregular behavior of a Brownian
path (its non-differentiability) for relatively small M.

The Paley—Wiener and Lévy representations are just two of infinitely many
possible series representations of Brownian motion. They are special cases of
the so-called Lévy-Ciesielski representation. Ciesielski showed that Brownian
motion on [0, 1] can be represented in the form

00 ¢
Bi(w)= Y Za(w) / n(z)dz, te[0,1],
n=1 0

where Z, are iid N (0, 1) random variables and (¢,,) is a complete orthonormal
function system on [0, 1].
Notes and Comments

Brownian motion is the best studied stochastic process. Various books are
devoted to it, for example Borodin and Salminen (1996), Hida (1980), Karatzas
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Figure 1.3.17 The first steps in the construction of one Brownian sample path from
the Lévy representation (1.25) via M Schauder functions, M =1,...,8.
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and Shreve (1988) and Revuz and Yor (1991). The reader of these books must
be familiar with the theory of stochastic processes, functional analysis, special
functions and measure theory. Every textbook on stochastic processes also
contains at least one chapter about Brownian motion; see the references on
p- 33.

In addition to the non-differentiability and unbounded variation, Brownian
motion has many more exciting path and distributional properties. Hida (1980)
is a good reference to read about them.

The functional CLT is to be found in advanced textbooks on stochastic pro-
cesses and the convergence of probability measures; see for example Billingsley
(1968) or Pollard (1984). The series representations of Brownian motion can
be found in Hida (1980); see also Ciesielski (1965).

1.4 Conditional Expectation

You cannot avoid this section; it contains material which is essential for the
understanding of martingales, and more generally, Itd stochastic integrals.

If you are not interested in details you may try to read from one box to
another. At the end of Section 1.4 you should know:

o the o-field generated by a random variable, a random vector or a stochas-
tic process; see Section 1.4.2,

e the conditional expectation of a random variable given a o-field; see
Section 1.4.3,

e the most common rules for calculating conditional expectations; seg Sec-
tion 1.4.4.

You should start with Section 1.4.1, where an example of a conditional expec-
tation is given. It will give you some motivation for the abstract notion of
conditional expectation given a o-field, and every time when you get lost in
this section, you should return to Section 1.4.1 and try to figure out what the
general theory says in this concrete case.

1.4.1 Conditional Expectation under Discrete Condition

From an elementary course on probability theory we know the conditional
probability of A given B, i.e.

P(AiB):%g)B)
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ANB

Figure 1.4.1 The classical conditional probability: if we know that B occurred, we
assign the new probability 1 to it. Events outside B cannot occur, hence they have
the new probability 0.

Clearly,
P(A|B) = P(A) if and only if A and B are independent.

For the definition of P(A|B) it is crucial that P(B) is positive. It is the
objective of Section 1.4.3 to relax this condition.

The probability P(A| B) can be interpreted as follows. Assume the event
B occurred. This is additional information which substantially changes the
underlying probability measure. In particular, we assign the new probabilities
0 to B¢ (we know that B¢ will not happen) and 1 to B. The event B becomes
our new probability space ', say. All events of interest are now- subsets of
Q: An B C . In order to get a new probability measure on )’ we have to
normalize the old probabilities P(A N B) by P(B). In sum, the occurrence of
B makes our original space €2 shrink to €, and the original probabilities P(A)
have to be replaced with P(A| B).

Given that P(B) > 0, we can define the conditional distribution function
of a random variable X given B

P(X <z, B)

F‘X(-TIB):-—PZB—), z € R,
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and also the conditional expectation of X given B

E(XIB)

= 1.26
BX|B) = =572, (1.26)
where
I5(w) 1 f weB,
w) =
? 0 if wg B,

denotes the indicator function of the event B. In order to discuss the definition
(1.26), we assume for the moment that & = R If X is a discrete random
variable with values z,z, ..., then (1.26) becomes

E(X|B) = Zxk P({w: Xg;.’()Bz) zx} N B)

k=1

> 2 P(X =z | B).

k=1

If X has density fx, then (1.26) becomes

E(X|B) = %B) /_ooxlg(x)fx(r)dz

1

=: m/gmfx(x)dx.

It is common usage to write fB g(z)dz for ffooo g(x)Ig(z)dz.

Example 1.4.2 (The conditional expectation of a uniform random variable)
We consider the random variable X (w) = w on the space = (0, 1], endowed
with the probability measure P such that

P((a,b)) =b—-a, (a,b]C(0,1].

Clearly, X has a uniform distribution on (0,1]: its distribution function is
given by

Fx(z) = P({w: X(w)=w<z})

P(0) =0 if <0,
P((0,z])) ==z if z€(0,1],
P(0,1]) =1 if z>1.
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Figure 1.4.3 Left: a uniform random variable X on (0,1] (dotted line) and its ez-
pectation (solid line); see Ezample 1.4.2. Right: the random variable X (dotted line)
and the conditional ezpectations E(X|A;) (solid lines), where A; = ((i — 1)/5,/5],
i = 1,...,5. These conditional ezpectations can be interpreted as the vaelues of a
discrete random variable E(X|Y) with distinct constant values on the sets A,; see
Ezample 1.4.4.

Both, the random variable X and its expectation EX = 0.5, are represented
in Figure 1.4.3.

Now assume that one of the events
Ai=(GE-1)/n,i/n], i=1,...,n,

occurred. Recall that fx(z) =1 on (0,1] and notice that P(A;) = 1/n. Then
1 i/n

i 121
E(X]A4) _W/Ai rfx(z)dz—n/(i_l)/nzdz— 5

(1.27)

The conditional expectations E(X | A;) are illustrated in Figure 1.4.3. The
value E(X | A;) is the updated expectation on the new space A;, given the
information that A; occurred. o

Now we consider a discrete random variable Y on 2 that assumes the
distinct values y; on the sets A;, i.e.

Ai={w: YWw) =y}, i=12,....
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Clearly, (A;) is a disjoint partition of €2, i.e.
AinA;=0 for i#j and |JAi=9. (1.28)

i=1

We also assume for convenience that P(A;) > 0 for all i.

For a random variable X on  with E|X| < oo we define the conditional
expectation of X given Y as the discrete random variable

EX|YV)w) = E(X|A)=EX|Y =y;) forwe4;,

i=1,2.... (1.29)

If we know that A; occurred, we may restrict ourselves to ws in A;. For those
ws, E(X |Y)(w) coincides with the classical conditional expectation E(X | A;);
see (1.26).

Example 1.4.4 (Continuation of Example 1.4.2)

We interpret the E(X | A;)s in (1.27) as the values of a discrete random variable
E(X|Y), where Y is constant on the sets A; = ((i—1)/n,i/n]. See Figure 1.4.3
for an illustration of this random variable. In this sense, F(X |Y) is nothing
but a coarser version of the original random variable X, i.e. an approximation
to X, given the information that any of the A;s occurred. O

In what follows we give some elementary properties of the random variable
E(X |Y). The first property can be easily checked. (Do it!)

The conditional expectation is linear : for random variables X;, X, and
constants cp, Ca,

E([01X1 + CzXz] |Y)=Cl E(XIIY) + CgE(XQIY)

The expectations of X and E(X |Y) are the same: EX = E[E(X |Y)].

This follows by a direct application of the defining properties (1.29), (1.26)
and by the observation that E(X |Y) is a discrete random variable:

E(E(X|Y)) = Y E(X|A)P(A) =) E(XIa,)

i=1 i=1
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o0
= E (XZIA,,) =EX.
i=1

Here we also used (1.28) so that

[s.]
DIy =Iy=,a=Ia=1.
i=1

If X and Y are independent, then E(X |Y) = EX. (1.30)

Recall from p. 20 that independence of X and Y implies
PXeA, Y=y)=PXeAPY =y)=P(Xe€APA). (1.31)
Consider the random variable I4, and notice that
{w: Ij,(w)=1}=A;={w: Y(w) =y:}.
Thus we can rewrite (1.31) as follows
P(X€A Iy =1)=P(X € A)P(ls, =1).

The analogous relation, where {I4, = 1} is replaced with {I4, = 0}, also holds.
Hence the random variables X and 4, are independent and for w € 4;,
_ E(XI) _ EXE(la) _

E(X|Y)w) = E(X|4;) = P = P = B

where we used that
El4, =0P(A7) + 1P(A;)) = P(A4).
This proves (1.30).

Up to this point, we have learnt:

o The conditional expectation E(X |Y") of X given a discrete random
variable Y is a discrete random variable.

e It coincides with the classical conditional expectation E(X |} =
y;) on the sets A; = {w:Y(w) = y;}.

e In this sense, it is a coarser version of X; see again Figure 1.4.3.
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e The fewer values Y has, the coarser the random variable E(X |Y).
In particular, if Y = const, then E(X |Y) = EX; if ¥ assues
two distinct values, so does E(X |Y), etc.

e The conditional expectation E(X |Y) is not a function of X, but
merely a function of Y. The random variable X only determines
the kind of function. Indeed, we can write

o]

E(X|Y)=g(Y), where g(y) =Y E(X|Y =y)Iy,(y).

=1

1.4.2 About o-Fields

In the previous section we introduced the conditional expectation E(X |Y)
of a random variable X under the discrete condition (i.e. discrete random
variable) Y. Recall from (1.29) that the values of ¥ did not really matter for
the definition of E(X |Y'), but it was crucial that Y assumed the distinct values
y: on the w-sets A;. Thus the conditional expectation E(X |Y) can actually
be understood as a random variable constructed from a collection o(Y"), say,
of subsets of 2. So we may, in a symbolic way, write

E(X|Y)=E(X|o(Y)).

Obviously, the collection a(Y) provides us with the information about the
structure of the random variable Y (w) as a function of w € Q.

In what follows, we want to make precise what “collection o(Y") of subsets
of " means. We will call it a o-field or a o-algebra. Its definition follows:

A o-field F (on Q) is a collection of subsets of §2 satisfying the following
conditions:

e It is not empty: @ € F and € F.
e If A€ F, then A° € F.
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o If A}, A,,... € F, then

GA,‘G]T and ﬁAin.

i=1 =1

Example 1.4.5 (Some elementary o-fields)
Check that the following collections of subsets of §2 are o-fields:

]:l = {0yQ}1
Fo = {0,0,4,A°} for some A # 0 and A #Q,
Fs = PY)y={A:ACQ}.

JF1 is the smallest o-field on 2, and F3, the power set of (2, is the biggest one,
as it contains all possible subsets of 2. a

Now suppose that C is a collection of subsets of €2, but not necessarily a o-field.
By adding more sets to C, one can always obtain a o-field, for example the
power set P(2). However, there are mathematical reasons showing that P({2)
is in general too big. But one can also prove that,

for a given collection C of subsets of 2, there exists a smallest o-field o(C) on
Q containing C.

We call ¢(C) the o-field generated by C.

Example 1.4.6 (Generating o-fields from collections of subsets of 2)
Recall the o-fields from Example 1.4.5. Prove that F; = o(C;), where

C1:{(0}, C2:{A}, C3:.7:3.

Using the definition of a o-field, you have to check which sets necessarily belong
to the o-field o(C;).

Now consider
C4 = {A,B} and C5 = {A,B,C},

where A, B,C C ) and determine o(C4) and ¢(Cs). Before you start: first
think about the structure of the elements in 0(C4) and ¢(Cs). Notice that you
can get every element of 0(C4) by taking all possible unions of the sets

0, AnB, A°NB, ANB¢, A°NB°.

For ¢(Cs) you can proceed in a similar way. O
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In general, it is difficult, if not impossible, to give a constructive description
of the elements in ¢(C). The o-field o(}’) generated by a discrete random
variable " is an exception.

Example 1.4.7 (The o-field generated by a discrete random variable)
Recall the set-up of Section 1.4.1. We considered a discrete random variable
Y with distinct values y; and defined the subsets A; = {w : Y (w) = y;}, which
constitute a disjoint partition of 2. Choose

C= {A],AQ,...}.

Since o(C) is a o-field it must contain all sets of the form

A= 4, (1.32)

i€l
where I is any subset of N = {1,2,...}, including I = § (giving A = 0) and
I = N (giving A = Q). Verify that the sets (1.32) constitute a o-field o(Y').
Since the sets (1.32) necessarily belong to o(C), the smallest o-field containing

C, we also have o(Y) = ¢(C). Later we will call 6(Y) the o-field generated
by Y.

Notice that (Y’) contains all sets of the form
Asp={Ye(ab}={w:ia<Yw)<b}, —-o<a<b< .

Indeed, the set I = {i : a < y; < b} is a subset of N, hence

Agp = U {w:Y(w) =y} € a(Y). ]
i€l

Example 1.4.8 (The Borel sets)
Take 2 = R and
CM = {(a,b]: —0 < a < b< oo}.
The o-field B; = o(C'!) contains very general subsets of R. It is called the
Borel o-field, its elements are the Borel sets. A normal human being cannot

imagine the large variety of Borel sets. For example, it is a true fact, but not
easy to verify, that B; is a genuine subset of the power set P(R).

One can also introduce the o-field of the n-dimensional Borel sets B, = o(C'™),
where ! = R" and

C™ ={(a,b]: —c0<a; <b;< o0, i=1,...,n}.
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The sets (a, b] are called rectangles. Any “reasonable” subset of R" is a Borel
set. For example, balls, spheres, smooth curves, surfaces, etc., are Borel sets,
and so are the open and the closed sets. In order to show that a given subset
C C R" is a Borel set, it is necessary to obtain C by a countable number of
operations N,U,° acting on the rectangles.

For example, show for n = 1 that every point set {a}, a € R, is a Borel set.
Also check that the intervals (a,b), [a,b) ,a), (b,00) are Borel sets. O

Now recall Example 1.4.7, where we generated the o-field o(Y') from the sets
A; = {w:Y(w) = y;} for a discrete random variable Y with values y;. If YV is
a random variable assuming a continuum of values, the o-field generated from
the sets {w : Y(w) = y}, y € R, is, from a mathematical point of view, not
rich enough. For example, sets of the form {w:a < Y(w) < b} do not belong
to such a o-field, but it is desirable to have them in o(Y").

We saw in Example 1.4.7 that, for a discrete random variable Y, the sets
{w:a < Y(w) < b} belong to ¢(Y). Therefore we will require as a minimal
assumption that these sets belong to o(Y) when Y is any random variable.
Since we are also interested in random vectors Y, we immediately define the
o-fields o(Y) for the multivariate case:

Let Y = (Y1,...,Y,) be an n-dimensional random vector, i.e. Y;,...,Y,
are random variables. The o-field o(Y) is the smallest o-field containing
all sets of the form

{YE(a,b]} = {w:ai<Yi(w)§bi, . i=1,...,n},

-0 <a;<bj<oo, j=1,...,n

We call o(Y) the o-field generated by the random vector Y.

An element of o(Y) tells us for which w € € the random vector Y assumes
values in a rectangle (a,b] or in a more general Borel set.

The o-field o(Y) generated by Y contains the essential information
about the structure of the random vector Y as a function of w € Q.
It contains all sets of the form {w : Y(w) € C} for all Borel sets C C R".

You will admit that it is difficult to imagine the o-field o(Y), and it is even
more complicated for a stochastic process.
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For a stochastic process Y = (Y;,t € T,w € ), the o-field o(Y") is the
smallest o-field containing all sets of the form

{w : the sample path (Y;(w),t € T) belongs to C}

for all suitable sets C of functions on T. Then o(Y) is called the o-field
generated by Y.

In view of our restricted tools, we cannot make this definition more precise,
but we will support our imagination about the o-field 6(Y) by considering an
example:

Example 1.4.9 Let B = (B,,s < t) be Brownian motion on [0, t], see Sec-
tion 1.3.1, and
Fi=0(B)=0(Bs,s<1t).

This is the smallest o-field containing the essential information about the struc-
ture of the process B on [0,t]. One can show that this o-field is generated by
all sets of the form

Aty it (O) = {w: (B, (W), -, By, (w)) € C}
for any n-dimensional Borel set C, any choices of t; € [0,t], n > 1. a

We learnt that the o-field o(Y") is a non-trivial object. In what follows, we
want to use the following rule of thumb in order to be able to imagine o(Y):

For a random variable, a random vector or a stochastic process Y on
2, the o-field o(Y') generated by Y contains the essential information
about the structure of Y as a function of w € Q2. It consists of all subsets
{w: Y(w) € C} for suitable sets C.

Because Y generates a o-field, we also say that Y contains information
represented by o(Y) or Y carries the information o(Y').

We conclude with a useful remark. Let f be a function acting on Y, and
consider the set

{w: f(Y(w)) € C}

for suitable sets C. For “nice” functions f, this set belongs to a(Y), i.e.

o(f(Y)) Ca(Y).

This means that a function f acting on Y does not provide new information
about the structure of Y. We say that the information carried by f(Y) is
contained in the information a(Y). We give a simple example:
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Example 1.4.10 As before, let B be Brownian motion and define the o-fields
Fi=0(Bs,s<t), t>0.

Consider the function f(B) = B; for a fixed ¢. Given that we know the
structure of the whole process (Bs, s < t) on 2, then we also know the structure
of the random variable By, thus o(B;) C F;. The converse is clearly not true.
If we know the random variable B; we cannot reconstruct the whole process
(Bs,s < t) from it. O

1.4.3 The General Conditional Expectation

In Section 1.4.1 we defined the conditional expectation E(X |Y) of a random
variable X given the discrete random variable Y. This definition does not
make explicit use of the values y; of Y, but it depends on the subsets A; =
{w : Y(w) = yi} of Q. We learnt in Example 1.4.7 that the collection of
the sets A; generates the o-field o(Y). This is the starting point for the
definition of the general conditional expectation E(X | F) given a o-field F on
2. In applications we will always choose F = o(Y’) for appropriate random
variables, random vectors or stochastic processes Y. In the previous section
we tried to convince you that the essential information about the structure of
Y is contained in the o-field o(Y'), generated by Y. In this sense, we say that
Y carries the information o(Y).

Let Y, Y1, Y: be random variables, random vectors or stochastic processes
on 2 and F be a o-field on Q.

We say that

e the information of Y is contained in F or Y does not contain more
information than that contained in F if o(Y) C F, and

e Y contains more information than Y; if (Y1) C o(Y2).

Now we are prepared to give a rigorous definition of the conditional expectation
E(X | ) under an abstract o-field F:
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A random variable Z is called the conditional expectation of X given the
o-field F (we write Z = E(X | F)) if

e 7 does not contain more information than that contained in F:
o(Z)C F. :

e 7 satisfies the relation

E(XI4)=E(ZI,) forall AeF. (1.33)

In Appendix A6 we show the existence and uniqueness of E(X | F) by measure-
theoretic means.

Property (1.33) shows that the random variables X and E(X |F) are
“close” to each other, not in the sense that they coincide for any w, but aver-
ages (expectations) of X and E(X | F) on suitable sets A are the same. This
supports our imagination about the random variable E(X | F) which we gained
in Section 1.4.1:

The conditional expectation E(X | F) is a coarser version of the original
random variable X.

We mention that the defining property (1.33) leaves us some freedom for the
construction of the random variable Z = E(X | F). This means that there can
exist versions Z' of E(X | F) which can differ from Z on sets of probability 0.
For this reason, all relations involving E(X | F) should actually be interpreted
in an almost sure sense, and we should also indicate this uncertainty in all
relevant formulae with the label “a.s.”. However, once having pointed out this
fact, we will find it convenient to suppress this label everywhere.

Example 1.4.11 (Conditional expectation under discrete condition)

We want to show that the definition of E(X |Y) in Section 1.4.1 yields a
special case of the above definition of E(X | F) when F = ¢(Y). Recall from
Example 1.4.7 that every element A of ¢(Y') is of the form

A=JA=J{w:YWw) =w}, ICN. (1.34)
i€l i€l

In (1.29) we defined E(X |Y) as the random variable Z such that

Z(w) = E(X|A;) forweA;.
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We learnt on p. 62 that Z is merely a function of Y, not of X, hence o(Z) C
o(Y"); see the discussion at the end of Section 1.4.2. Moreover, for A given by

(1.34),
E(XI14)=E (XZIA,) =Y E(XI4,).
i€l el
On the other hand, we see that ZI4 is a discrete random variable with expec-
tation
E(ZIx) =) E(X|A)P(A) =) E(XI4,).
iel el

Thus Z satisfies the defining relation (1.33) and it does not contain more
information than V" (it is a function of Y'). Therefore it is indeed the conditional
expectation of X given the o-field o(Y'). mi

In the case of a discrete random variable Y we have just learnt that E(X |Y)
and E(X |o(Y)) represent the same random variable. This suggests the fol-
lowing definition:

Let Y be a random variable, a random vector or a stochastic process on
Q and o{Y") the'o-field generated by Y.
The condlitional expectation of a random variable X given Y is defined
by

E(X|Y)=EX|o(Y)).

Example 1.4.12 (The classical conditional probability and conditional ex-
pectation)

The classical conditional probability and conditional expectation are special
cases of the general notion of conditional expectation defined on p. 68. Indeed,
let B be such that P(B) > 0, P(B¢) > 0 and define Fp = o({B}). We know
from Example 1.4.6 that Fg = {§,Q, B, B°}. An appeal to Example 1.4.11
yields that

E(X|FB)(w)=E(X|B) forwe B.

This is the classical notion of conditional expectation. If we specify X = I4
for some event A, we obtain for w € B,
P(ANB)

E(Ia|FB)(w) = E(1a|B) = B(B)

The right-hand side is the classical conditional probability of A given B. O
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1.4.4 Rules for the Calculation of Conditional Expecta-
tions

The defining property (1.33) of E(X | F) is not a constructive one. Therefore
it is in general difficult, if not impossible, to calculate E(X |F). The case
F =o(Y) for a discrete random variable Y, which was discussed in Exam-
ple 1.4.11, is an exception. For this reason, it is important to be able to work
with conditional expectations without knowing their particular forms. This
means we have to know a few rules in order to deal with conditional expecta-
tions in standard situations.

In what follows, we collect the most common rules. In some cases we will
give reasons for these rules, in the other situations we have to rely on intuitive
arguments. We start with an existence and uniqueness result.

If E|X| < oo, the conditional expectation E(X | F) ezists and is unique
in the sense as discussed in Appendix A6.

In Section 1.4.1 we encountered rules for the calculation of conditional expec-
tations under a discrete condition. They remain valid in the general case.

Rule 1

The conditional expectation is linear : for random variables X;, X» and
constants ¢, ¢o,

E( [C].Y] + CzXz]IJ:) =0 E(.X] ]f) + c2 E(le]:) (135)

This follows by an application of the defining property (1.33) to the right- and
left-hand sides of (1.35) (try to prove it!).
Now take A = Q in property (1.33). You immediately obtain:

Rule 2
The expectations of X and E(X | F) are the same:

EX = E[E(X | F)].

Also the third claim (see (1.30)) carries over from the discrete case:
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Rule 3

If X and the o-field F are independent, then E(X | F) = EX.
In particular, if X and Y are independent, then E(X |Y) = EX.

This statement needs some discussion: what does independence between X
and F mean? It means that we do not gain any information about X, if we
know F, and vice versa. More formally: the random variables X and I4 are
independent for all A € F. Now, by independence,

E(XI4) =EXEI4 =EXP(A) = E[(EX)14], A€F.

A comparison with (1.33) yields that the constant random variable Z = EX
is the conditional expectation E(X | F). This proves Rule 3.

Rule 4

If the o-field o(X), generated by the random variable X, is contained in
F, then

E(X|F)=X.

In particular, if X is a function of Y, o(X) C o(Y), thus E(X |Y) = X.

This means that the information contained in F provides us with the whole
information about the random variable X. If we know everything about the
structure of X, we can deal with it as if it was non-random and write the value
X (w) in front of the conditional expectation E(1|F) = 1:

EX|F)w) = BE(X(W)|F) = X(w) E(1[ F) = X().

This rule can be extended to more general situations:

Rule 5

If the o-field ¢(X), generated by the random variable X, is contained in
F, then for any random variable G,

E(XG|F)=XE(G|F).

In particular, if X is a function of Y, o(X)Co(Y), thus
E(XG|Y)=XE(G|Y).
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Indeed, given F, we can deal with X as if it was a constant, hence we can pull
X (w) out of the updated expectation and write it in front of E(G | F).

Rule 6
If F and F' are two o-fields with F C F', then

E(X|F) E(EX|FYF), (1.36)

E(X|F) E(E(X|F)|F). (1.37)

For obvious reasons, Rule 6 is sometimes called the tower property of condi-
tional expectations.

Rule (1.37) can be justified by Rule 4: since F C F', E(X | F) does not
contain more information than F', i.e. given F', we can deal with E(X | F)
like a constant:

E(E(X|F)|F) = E(X|F)EQ1|F) = E(X|F).

Rule (1.36) can formally be derived from the defining property (1.33) which
says that for A € F and Z = E(X | F),

E(XI4)=E(ZI4). (1.38)
On the other hand, by Rule 5 and since A € F C F',
E(E(X|F)|F) Ia = E(E(X | F)14|F) = E(E(XI4| F)| F).
Now take expectations and apply Rule 2 to the right-hand side:
E[E(E(X|F')|F)Ia] = E[X14].

Thus Z' = E(E(X | F') | F) also satisfies (1.38), but since E(X | F) is unique,
we must have Z = Z', which proves (1.36).
We finish with a generalization of Rule 3.

Rule 7

If X is independent of F, and the information carried by the random
variable, the random vector or the stochastic process G is contained in
F, then for any function h(z,y),

E(h(X,G)|F) = E(Ex[M(X,G)]| F),

where Ex[h(X,G)] means that we fix G and take the expectation with
respect to X.
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We illustrate Rule 7 by an example.

Example 1.4.13 Let X and Y be independent random variables. Then Rules
7 and 5 give

E(XY|Y) = E(Ex(XY)|Y)=E(YEX|Y)=YEX,

EX+Y|Y)=EEx(X+Y)|Y)=EEX+Y|Y)=EX+Y. q

In the following two examples we want to exercise the rules for calculating
conditional expectations.

Example 1.4.14 (Brownian motion)
Recall the definition of Brownian motion B = (B;,t > 0) from p. 33. We
associate with B an increasing stream of information about the structure of
the process which is represented by the o-fields F; = o(B;,z < s). We want
to calculate

E(B¢|Fs) = E(B¢|Bz,z <s) for s>0.

Clearly, if s > t, s D Ft, and so Rule 4 gives
E(Bt|Fs) = By
Now assume s < ¢t. Then, by linearity of the conditional expectation (Rule 1),
E(B/|Fs) = E[(By— Bs)+ Bs|F]
= E(Bi - Bs|Fs) + E(Bs | ) -
Since B; — Bj; is independent of F,, Rule 3 applies:
E(B; — Bs; | Fs) = E(B; — B;) = 0.
Moreover, o(B;) C 0(B;,z < 8) = Fs, hence E(B, | F;) = B,. Finally,
E(Bit|Fs) = Bumin(s.t) - O

Example 1.4.15 (Squared Brownian motion)

As in Example 1.4.14, B denotes Brownian motion and Fs = o(B;,r < s).
We consider the stochastic process X; = B? —t, t > 0. The same arguments
as in Example 1.4.14 yield

E(X(|Fs)=X, for s>t.
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For s < t, we write

B? -t

(B = Bs) + Bs]* —
= (By—-Bs)*+B2+2B,(B, - B;) —t.
Taking conditional expectations, we obtain
E(X{|Fs) = E|[(Bi— Bs)?|Fs|+ E(B?|Fs) +2E[B,(B; — Bs) | Fs] — t.

Notice that B; — B, and (B; — B;)? are independent of F, and that o(B?) C
o(Bs) C Fs. Applying Rules 3-5, we obtain

E(X:|Fs) = E(B,-B,)?+B?+2B,E(B;, - B;)—t
= (t-s)+B2+0-t=X,.

Finally,
E(Xt | ]:S) = Xmin(s,t) .

Later we will take this relation as the defining property for a martingale; see
(1.41). )

1.4.5 The Projection Property of Conditional Expecta-
tions

In what follows, F is a o-field and L2(F) is the collection of random variables
Z on ), satisfying the following conditions:

e Z has a finite second moment: EZ? < oo,

¢ The information carried by Z is contained in F: 0(Z) CF. f F =o(Y)
this means that Z is a function of Y.

The random variable E(X | F) can be understood as an updated version of the
expectation of X, given the information F. The conditional expectation has a
certain optimality property in the class L?(F):

The Projection Property

Let X be a random variable with EX? < oo. The conditional expecta-
tion E(X | F) is that random variable in L?(F) which is closest to X in
the mean square sense. This means that

EX —EX|F)? = Emg(lf E(X - Z)%. (1.39)
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—

X X — E(X|F)

E(X|F) L)

Figure 1.4.16 An illustration of the projection property of the conditional ezpecta-
tion E(X |F). We mention that < Z,Y >= E(ZY) for Z, Y with EZ? < 0o and
EY? < 0o defines an inner product and ||Z - Y| = V< Z-Y,Z =Y > a distance
between Z and Y. As in Euclidean space, we say that Z and Y are orthogonal if
< Z,Y >=0. In this sense, E(X | F) is the orthogonal projection of X on L?(F):
<X—-—EX|F),Z>=0forall Z€ L*(F), and < X —Z,X — Z > is minimal for
Z=E(X|F).

In this sense, E(X | F) is the projection of the random variable X on the space
L2(F) of the random variables Z carrying part of the information F; also see
the comments to Figure 1.4.16.

If F =o0(Y), E(X|Y) is that function of ¥ which has a finite second
moment and which is closest to X in the mean square sense.

In what follows, we sometimes refer to E(X | F) as the best prediction of X
given F. This means that relation (1.39) holds. To give some meaning to the
word “prediction”, we reconsider Examples 1.4.14 and 1.4.15. We proved that
for s <t,

E(B{|B;,z<s)=B; and E(B?-t|B;, = <s)=B?-5s.

Thus the best predictions of the future values B; and B? — t, given the in-
formation about Brownian motion until the present time s, are the present
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values B, and B? — s, respectively. This property characterizes the whole class
of martingales with a finite second moment: the best prediction of the future
values of the stochastic process is the present value; see Section 1.5.1.

In what follows, we indicate the steps for the proof of the projection prop-
erty (1.39). We only make use of the rules for calculating conditional expecta-
tions. First notice that the random variable Z' 2 E(X | F) belongs to L%(F):
it carries information only about F and has a finite second moment. The latter
property follows by an application of Jensen’s inequality (see (A.2) on p. 188)
in combination with Rule 2:

E[(E(X | F))’] < E[E(X®|F)] = EX2.

Now we are going to check the projection property (1.39). Let Z be any random
variable in L%(F). Then

EX-2)? = E(X-2Z)+(Z' - 2))*
= E(X-Z'V+EZ -2*+2E[(X-2')2 - Z).

We treat the terms on the right-hand side separately. First consider E[(X —
Z"\(Z' - Z)]. Since both, Z and Z’, belong to L?(F), so does Z — Z'. In
particular, by Rule 5, =

E(X-2'V(Z2'-Z)|F] = (Z-Z"YE(X-Z'|F).
But by Rules 1 and 4,
EX-Z'|\F)=EX|F)-EZ'|F)=2'-7Z"=0.
Thus we proved
EX-Z2=EX -2 +E(Z' -2)*.

Hence,

E(X - Z)?> E(X —2')? for all random variables Z in L*(F).  (1.40)
We also see that equality in (1.40) is achieved if Z = Z', s0 Z' = E(X|F)

really represents that element of L?(F), for which the minimdm of E(X — Z)?
is attained. This proves (1.39).
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Notes a;id Comments

The notion .of conditional expectation is one of the most difficult ones in prob-
ability theory, but it is also one of the most powerful tools. Its definition as a
random variable given a o-field goes back to Kolmogorov. For its complete the-
oretical understanding, measure-theoretic probability theory is unavoidable.

The conditional expectation is treated in every advanced textbook on prob-
ability theory, see for example Billingsley (1995) or Williams (1991).

1.5 Martingales

1.5.1 Defining Properties

The notion of a martingale is crucial for the understanding of the It stochas-
tic integral. Indefinite Ito stochastic integrals are constructed in such a way
that they constitute martingales. The idea underlying a martingale is a fair
game where the net winnings are evaluated via conditional expectations. For-
tunately, we now have this powerful instrument in our tool box; see Section 1.4.

Assume that (Fy,t > 0) is a collection of o-fields on the same space 2 and
that all Fs are subsets of a larger o-field F on Q, say.

The collection (F,t > 0) of o-fields on § is called a filtration if
FsCF, forall0<s<t.

Thus a filtration is an increasing stream of information.

If (Fn,n =0,1,...) is a sequence of o-fields on Q2 and F, C Fp4: for all
n, we call () a filtration as well.

For our applications, a filtration is usually linked up with a stochastic process:

The stochastic process Y = (Y;,t > 0) is said to be adapted to the filtra-
tion (Fi,t > 0) if
oY) )cF forallt>0.

The stochastic process Y is always adapted to the natural filtration gen-
erated by Y:
ftZU(YS’SSt)'

Thus adaptedness of a stochastic process Y means that the Y;s do not carry
more information than F;.



78 CHAPTER 1.

IfY = (Y,,n=0,1,...) is a discrete-time process we define adaptedness
in an analogous way: for a filtration (F,,n = 0,1,...) we require that
o(Y,) C Fn.

Example 1.5.1 (Examples of adapted processes)
Let (B:,t > 0) be Brownian motion and (F;,t > 0) be the corresponding
natural filtration. Stochastic processes of the form

Xt=f(t,Bg), tZO,

where f is a function of two variables, are adapted to {F;,¢ > 0). This includes
the processes

xM=B, xP=8, x®P=p-t, xV=B3 x®=p8!.

But also processes, which may depend on the whole past of Brownian motion,
can be adapted. For example,

6 7 .
Xt()zmast or Xt()zmm B2,
0<s<t 0<s<t

If the stochastic process Y is adapted to the natural Brownian filtration
(Fi,t > 0), we will say that Y is adapted to Brownian motion. This
means that Y; is a function of B,, s < t.

The following processes are not adapted to Brownian motion:
X® =By, X =Br-B,, X”=B+B5r,

where T > 0 is a fixed number. Indeed, these processes require the knowledge

of Brownian motion at future instants of time. For example, consider Xt(g).
For its definition you have to know Br at times t < T. |

Clearly, one can enlarge the natural filtration and obtain another filtration to
which the stochastic process is adapted.

Example 1.5.2 (Enlarging a filtration)

Consider Brownian motion B = (B;,t > 0) and the corresponding natural
filtration F; = 0(Bs,s < t), t > 0. The stochastic process X; = B? generates
the natural filtration

Fi=0(B?, s<t), t>0,
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which is smaller than (F;). Indeed, for every t, F; C F, since we can only
reconstruct the whole information about | B;| from BZ, but not about B;: we
can say nothing about the sign of B;. Then (F;) is also a filtration for (B?).

Thus we can work with different filtrations for the same process. To illus-
trate this aspect from an applied point of view, we consider an example from
stochastic finance. In this field, it is believed that share prices, exchange rates,
interest rates, etc., can be modelled by solutions of stochastic differential equa-
tions which are driven by Brownian motion; see Chapter 4. These solutions
are then functions of Brownian motion. This process models the fluctuations
of the financial market (independent movements up and down on disjoint time
intervals). These fluctuations actually represent the information about the
market. This relevant knowledge is contained in the natural filtration. It does
not take information from outside into account. However, in firance there are
always people who know more than the others. For example, they might know
that an essential political decision will be taken in the very near future which
will completely change the financial landscape. This enables the informed per-
sons to act with more competence than the others. Thus they have their own
filtrations which can be bigger than the natural filtration. a

Now consider a stochastic process X = (X;,¢ > 0) on Q2 and suppose you have
the information F; at the present time s.

How does this information influence our knowledge about the behavior of the
process X in the future?

If 75 and X are dependent, we can expect that our information reduces the
uncertainty about the values of X; at a future instant of time t. If we know
that certain events happened in the past, we may include this knowledge in
our calculations. Thus X; can be better predicted with the information F;
than without it. A mathematical tool to describe this gain of information is
the conditional expectation of X; given Fj:

E(Xi|Fs) for 0<s<t.

We learnt in Section 1.4.5 that E(X;|F;) is the best prediction of X; given
the information F,. Also recall from Examples 1.4.14 and 1.4.15 that the
stochastic processes X; = B; and X; = B — t (B is Brownian motion) satisfy
the condition E(X;|F;) = X, for s < t. For these processes X, the best
prediction of the future value X; given F; is the present value X,. Clearly,
this may change if we consider another filtration, and therefore we must always
say which filtration we consider.
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The stochastic process X = (X;,t > 0) is called a continuous-time mar-
tingale with respect to the filtration (F;,t > 0), we write (X, (F;)), if

e E{X/| <ooforallt>0.
e X is adapted to (F;); see p. 77 for the definition.

E(X;|Fs)=X; forall0<s<t, (1.41)
i.e. X, is the best prediction of X; given Fj.

It is also possible to define a discrete-time martingale X = (X,,n =0,1,...).
In this case, we adapt the defining property (1.41) as follows:

E(Xpsi | Fn) = Xn, k>0. (1.42)

We show that it suffices to require (1.42) for k = 1. Indeed, recalling Rule 6
from p. 72,

E(XTH—I |-7:n) = E[E(Xn+'l lfn+l) |]:n] = E(Xn+2 |-7'-n)
= E[E(Xn+3 |]:n+2) I-Fn] = E(Xn+3 l}-n.)
= = E(Xn+k|]:n)-

Now we define a martingale in the discrete-time case. o

The stochastic process X = (X,,,n=0,1,...) is called a discrete-time
martingale with respect to the filtration (F,,n = 0,1,...), we write
(X, (Fn)), if

e E|X,|<ooforalln=01,....
e X is adapted to (Fy).

E(Xp41|Fn) =X, foralln=0,1,..., (1.43)

i.e. X, is the best prediction of X, given F,.

It is not difficult to see that the defining property (1.43) can be rewritten in
the form

E(Yny1|Fn) =0, where Yp41 =Xpp1—Xn, n=0,1,.... (1.44)
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The sequence (Y,) is then called a martingale difference sequence with respect
to the filtration (F,). '

In what follows, we often say that “(X;,t > 0), respectively (X,,n =
0,1,...), is a martingale” without pointing out which filtration we use. This
will be clear from the context.

A martingale has the remarkable property that its expectation function
is constant.

Indeed, using the déﬁning property E(X;|F;) = X; for s < t and Rule 2 on
p. 70, we obtain

EX, =E[E(X;|F;)]=EX: forallsandt.

This provides an easy way of proving that a stochastic process is not a mar-
tingale. For example, if B is: Brownian motion, EB? =t for all t. Hence (B?)
cannot be a martingale. However, we cannot use this means to prove that a
stochastic process is a martingale, since a process that has a constant expec-
tation function need not be a martingale as the following example shows: we
have EB} = 0 for all ¢, but (B}) is also not a martingale; see Example 1.5.5.

1.5.2 Examples

In this section we collect some simple examples of stochastic processes which
have the martingale property.

Example 1.5.3 (Partial sums of independent random variables constitute a
martingale)

Let (Z,) be a sequence of independent random variables with finite expecta-
tions and Zy = 0. Consider the partial sums

Rn=2Zo+ +2Zn, n>0,

and the corresponding natural filtration F,, = o(Ry, ..., Ry) for n > 0. Notice
that '
Fn=0(Zo,...,Zn), n>0.

Indeed, the random vectors (Zy,...,Z,) and (Rqg,..., R,) contain the same
information since R; = Z; +---+Z;and Z; = R; — R;—, fori=1,...,n.

An application of Rules 1, 3 and 4 in Section 1.4.4 yields
E(Rpt1|Frn) = E(Ro | Fr) + E(Zp41 | Fo) = R+ EZpy

Hence, if EZ, = 0 for all n, then (R,,n =0, 1,...) is a martingale with respect
to (Fp,m=0,1,...). O
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Example 1.5.4 (Collecting information about a random variable)
Let Z be a random variable on Q with E|Z| < oo and (F¢,t > 0) be a filtration
on €. Define the stochastic process X as follows:

X, =E(Z|F), t>0.

Since F; increases when time goes by, X, gives us more and more information
about the random variable Z. In particular, if ¢(Z) C F; for some t, then
Xt = Z. We show that X is a martingale.

An appeal to Jensen’s inequality (A.2) on p. 188 and to Rule 2 on p. 70 yields
E|X\| = E|E(Z|F)| < E[E(|Z]| Ft)] = E|Z]| < .

Moreover, X, is obtained by conditioning on the information F;. Hence it
does not contain more information than F;, so o(X;) C F;. It remains to
check (1.41). Let s < t. Then an application of Rule 6 on p. 72 yields

E(X.|Fs) = E[E(Z| F1)| Fs]l = E(Z | Fs) = X, .

Thus X obeys the defining properties of a continuous-time martingale; see
p- 80. .. O

Example 1.5.5 (Brownian motion is a martingale)

Let B = (B;,t > 0) be Brownian motion. We conclude from Examples 1.4.14
and 1.4.15 that both, (B¢, t > 0) and (BZ — t, t > 0), are martingales with
respect to the natural filtration F; = o(Bs,s < t).

In the same way, you can show (do it!) that ((B} —3tB;), (F;)) is a martingale.

Try to find a stochastic process (A4;) such that ((B} + 4;), (F;)) is a martingale.
Hint: first calculate E[((B; — B;) + B,)*| F;] for s < t. m]

The following example of a martingale transform is a first step toward the defi-
nition of the It6 stochastic integral. Indeed, such a transform can be considered
as a discrete analogue of a stochastic integral.

Example 1.5.6 (Martingale transform)

Let Y = (Y,,n = 0,1,...) be a martingale difference sequence with respect
to the filtration (F,,n = 0,1,...); see (1.44) for the definition. Consider a
stochastic process C = (Cp,,n = 1,2,...) and assume that, for every n, the
information carried by C,, is contained in F,_1, i.e.

0(Cr) C Fu-1. (1.45)

This means that, given F,,_;, we completely know C,, at time n — 1.
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If the sequence (Cp,n = 1,2,...) satisfies (1.45), we call it previsible or
predictable with respect to (Fp).

Now define the stochastic process

Xo=0, Xo=) GiY, n2x1. (1.46)
i=1

For obvious reasons, the process X is denoted by C e Y. It is called the
martingale transform of Y by C.

The martingale transform C e Y is a martingale if EC2 < 0o and EY;? < oo
for all n. We check the three defining properties on p. 80:

E|Xa| < E|CY| < Y [BC? EYP]? < oo,

i=1 i=1

where we made use of the Cauchy-Schwarz inequality E|C;Y;| < [EC?EY?]}/?
(see p. 188). Clearly, X, is adapted to F, since Yi,...,Y; do not carry more
information than F,, and C, ..., Cy, is predictable. Hence o(X,) C F,,. More-
over, applying Rule 5 on p. 71 and recalling that (C,) is predictable, we obtain

E(Xp = Xn_1|Fno1) = E(Co Yo | Faei) = Cr E(Yn | Fao1) = 0.

In the last step we used the defining property (1.44) of the martingale difference
sequence (Y,). Hence (X, — X,,—1) is a martingale difference sequence, and
(X,) is a martingale with respect to (F,). m|

Example 1.5.7 (A Brownian martingale transform)
Consider Brownian motion B = (B,,s < t) and a partition

O=tg<t1 < - <th1 <tp=t.

Using the independent increment property of B, it is not difficult to see (check
it!) that the sequence

AB : A()B—_—O, AiB:Bt.'_Bt.'_ly i:l,...,n,
forms a martingale difference sequence A B with respect to the filtration given

by
Fo=1{0,Q}, Fi=o0(B;,1<j<i), i=1,...,n.
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Now consider the transforming sequence
B=(B;_, ,i=1,...,n).

It is predictable with respect to (F,) (why?). The martingale transform
B ¢ AB is then a martingale:

k k
B AB Z =ZBt,_1 (Bti_Bt.'_l), kZl,...,n.

The sums on the right-hand side have the typical form of Riemann-Stieltjes
sums Wthh would be used for the definition of the Riemann-Stieltjes inte-
gral fo B, dBj;; see Section 2.1.2. However, this integral does not exist in the
Riemann-Stieltjes sense since the sample paths of Brownian motion are too
irregular. We will see in Section 2.2.1 that B e AB is a discrete-time analogue
of the Itd stochastic integral fo B,dB,. ]

1.5.3 The Interpretation of a Martingale as a Fair Game

At the beginning of this section we mentioned that martingales are consid-
ered as models for fair games. This interpretation comes from the defining
properties of a martingale; see p. 80.

Suppose you play a game in continuous time; i.e. at every instant of time
t you have a random variable X; as the value of the game. Suppose that (X;)
is adapted to the filtration (F;). Think of Xy — X as the net winnings of the
game per unit stake in the time frame (s,t]. Then the best prediction (in the
sense of Section 1.4.5) of the net winnings given the information F, at time
s < t has value

EXy — X, |Fs) = BE(X¢ | Fs) — X

If (X, (F)) is a martingale, the right-hand side vanishes. This means:

The best prediction of the future net winnings per unit stake in the
interval (s, t] is zero.

This is exzactly what you would expect to be a fair game.

People in finance do certainly gamble (although they would not admit this
in public), and they even believe that they play fair. This is why they have
become attracted by the world of martingales and stochastic integrals.
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We know that the martingale transform C e Y of a martingale difference
sequence Y is a martingale: see Example 1.5.6. It has an interesting interpre-
tation in the context of fair games: think of Y}, as your net winnings per unit
stake at the nth game which are adapted to a filtration (F,). Your stakes
C, constitute a predictable sequence with respect to (F,), i.e. at the nth
game your stake C, does not contain more information than F,,_; does. At
time n — 1 this is the best information we have about the game. The mar-
tingale transform C e Y gives you the net winnings per game. In particular,
(CeY), = Z:;l C;Y; are the net winnings up to time n, and C,Y,, are the
net winnings per stake C, at the nth game. It is fair since the best prediction
of the net winnings C,Y;, of the nth game, just before the nth game starts, is
zero: E(C,Y, | Fno1) = 0.

In Chapter 2 we will learn about the continuous-time analogue to martin-
gale transforms: the It6 stochastic integral.

Notes and Comments

Martingales constitute an important class of stochastic processes. The theory
of martingales is considered in all modern textbooks on stochastic processes.
See Karatzas and Shreve (1988) and Revuz and Yor (1991) for the advanced
theory of continuous-time martingales. The book by Williams (1991) contains
an introduction to conditional expectations and discrete-time martingales.



2
The Stochastic Integral

In this chapter we introduce the important notion of It6 stochastic integral. We
know from Section 1.3.1 that the sample paths of Brownian motion are nowhere
differentiable and have unbounded variation. This has major consequences for
the definition of a stochastic integral with respect to Brownian sample paths.

We discuss the notion of ordinary integral in Section 2.1 and also consider
an extension, the Riemann-Stieltjes integral. The latter can be applied to
Brownian sample paths if the integrand process is sufficiently smooth. How-
ever, we will see in Section 2.1.2 that Brownian sample paths cannot be in-
tegrated with respect to themselves, which is a major handicap. Therefore we
are forced to consider an integral which is not defined path by path. This will
be done in Section 2.2. There we define the Ité stochastic integral as a mean
square limit of certain Riemann-Stieltjes sums. This has the disadvantage
that we lose the intuitive interpretation of such an integral which is naturally
provided by a pathwise integral. However, it will be convenient to think of the
stochastic integral in terms of an approximating Riemann-Stieltjes sum.

In Section 2.3 we will learn about another important tool: the Ité lemma.
It is the stochastic analogue of the ordinary chain rule of differentiation. The
It6 lemma will be crucial in Chapter 3, where we intend to solve It6 stochastic
differential equations.

In Section 2.4 we will learn about one more stochastic integral whose value
usually differs from the It6 stochastic integral. It is called the Stratonovich
stochastic integral and can be useful as an auxiliary tool for the solution of It
stochastic differential equations.
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2.1 The Riemann and Riemann—Stieltjes Inte-
grals

This section is not needed for the understanding of the It stochastic integral,
but it gives some information about the history of integration and explains why
classical integrals may fail when the integrand or the integrator are Brownian
sample paths.

We discuss some approaches to pathwise integration. In particular, we are
interested in integrals of the form f(f f(s)dBs(w), where (Bi(w),t > 0) is a
given Brownian sample path and f is a deterministic function or the sample
path of a stochastic process. In particular, we recall the Riemann integral
fol f(t) dt as the classical integral, and some of its properties. Then we discuss
Riemann-Stieltjes integrals which are close in spirit to the pathwise integral
fol f(t) dBy(w). We will see that, under some smoothness conditions on f, the
latter integral is well defined, and we will also point out that, for example, the
Riemann-Stieltjes integral fol B;(w)dB;(w) cannot be defined.

2.1.1 The Ordinary Riemann Integral

We want to recall the notion of ordinary integral, which is also called the
Riemann integral. You should be familiar with this integral from a course on
elementary calculus.

Suppose, for simplicity only, that f is a real-valued function defined on
(0,1], but instead we could consider any interval [a, b].

Consider a partition of the interval [0, 1]:

Th: O=ti<ti < - <th_1<th =1,
and define
Aj=t;—tiy, 1=1,...,n.

An intermediate partition o, of T, is given by any values y; satisfying ¢;,_; <
y; < t; fori = 1,...,n. For given partitions 7, and o, we can define the
Riemann sum

Sn = Sn(tn,on) = Y fly:) (ts —tim1) = Y Fys) A (2.1)

=1 i=1

Thus a Riemann sum is nothing but a weighted average of the values f(y;),
where the weights are the corresponding lengths A; of the intervals [t;_1,¢;].
We also know that S, is an approximation to the area between the graph of
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Figure 2.1.1 An dlustration of a Riemann sum with partition (¢;) and intermediate
partition (yi). The sum of the rectangular areas approzimates the area between the
graph of f(t) and the t-azis, i.e. fo"" f(t)dt.

the function f and the t-axis, provided f only assumes non-negative values.
See Figure 2.1.1 for an illustration.
Now let the mesh of the partition 7, go to zero, i.e.

yeery =1,...,

If we proceed in this way, the points t; = tS") clearly have to depend on n, but
we suppress this dependence in our notation.

If the limit n
S= lim S, = lim X;f(yi) A
1=
exists as mesh(r,) = 0 and S is independent of the choice of the parti-

tions 7, and their intermediate partitions o, then S is called the ordi-
nary or Riemann integral of f on [0, 1].
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We write

1
S=/0 f(t)dt.

We know that fol f(t) dt exists if f is sufficiently smooth, for example, contin-
uous or piecewise continuous on [0, 1].
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Figure 2.1.2 Two Riemann sums for the integral fol tdt; see Ezample 2.1.3. The
partition is given by t; = /5, i = 0,...,5. The left (left figure) and the right
(right figure) end points of the intervals [(i — 1)/5,i/5] are taken as points y; of the
intermediate partition.

Example 2.1.3 We want to calculate the integral f01 tdt as the limit of certain
Riemann sums. See Figure 2.1.2 for an illustration. We already know that
fol tdt = 0.5; it represents the triangular area between the graph of f(t) =t
and the t-axis. For numerical approximations it is convenient to choose an
equidistant partition of [0, 1]:

First take the left end points of the intervals [(i—1)/n,i/n] for the intermediate

partition:
n . n .
1 _ i—1 o l 1—1
S’ = Z n Ai = n Z n

i=1 i=1
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Using the well-known sumn formula

n

. on(n+1)
Y i= (T , (2.2)
i=1
we conclude that 1 0 .
- mn=2 L
S, = 3 > = 5= S.

Analogously, take the right end points of the intervals [(i — 1)/n,i/n]:

n . n .
LI o U S « i
Sn —ZnA’_nZn’
i=1 i=1
and conclude, again using (2.2), that

1 n(n+1)

sn=—""T00 L, S =5,

1

T n2 2 2

Now choose the y;s as the middle points of the intervals [(¢ — 1)/n,i/n] and
denote the corresponding Riemann sums by S{™. Since S < 5™ < s{
we may conclude that szm) — S =0.5. g

The Riemann integral is taken as a model for the definition of any type of
integral. The new kind of integral should have as many properties in common
with the Riemann integral as possible. Such properties are given below.

For Riemann integrable functions f, fi and f; on [0,1] the following
properties hold:

e The Riemann integral is linear, i.e. for any constants ¢; and ¢y :
1 1 1
/ [Cl fl(t)-k-c-zfz(t)]dt:cl / fl(t)dt + Co / f-z(t)dt.
o 0 0
e The Riemann integral is linear on adjacent intervals:

1 a 1
dt = d dt f 1.
/Of(t) t /0 f(t) t+/a f()dt for 0<a<




92 CHAPTER 2.

e One can define the indefinite Riemann integral as a function of the
upper limit:

/sf(t)dt=/1 f®) Ipq(t)dt, 0<s<1.
0 0

2.1.2 The Riemann-Stieltjes Integral

In probability theory it is usual to denote the expectation of a random variable
X by

EX =/ tdFx(t),

where Fx denotes the distribution function of X. This notation refers to the
fact that EX is defined as a Riemann-Stieltjes integral, or as a Lebesgue-
Stieltjes integral. This means, roughly speaking, that

o0
| tdFx(® = S Fx(t) - Fx(tio)
oo ;
for a partition (¢;) of R and a corresponding intermediate partition (y;). Also
recall from a course on elementary calculus that you can define the integral
fc’l f(t)dg(t) as fol f(®)g'(t) dt, provided the derivative ¢g'(t) exists.

Both, f_°°oo tdFx(t) and fol f(t) dg(t), are examples of how one could ap-
proach the problem of integrating one function f with respect to another func-
tion g. It is the aim of the present chapter to suggest some methods. In
particular, we would like to obtain an integral of type fol f(t) dBy(w), where f
is a function or a stochastic process on [0,1] and B;(w) is a Brownian sample
path. We have a major difficulty in defining such an integral since the path
B;(w) does not have a derivative; see Section 1.3.1. However, one can find
some kind of pathwise integral which sometimes allows one to evaluate the
integral fol f(t)dB:(w). This kind of integral is called the Riemann-Stieltjes
integral. It is a classical tool in many fields of mathematics.

In what follows we give a precise definition of the Riemann-Stieltjes inte-
gral. As for the Riemann integral, we consider a partition of the interval [0, 1]:

Tm: O=ti<ti<---<th_1 <th =1,
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and an intermediate partition o, of T,:
on: i <y <t; for i=1,...,n.
Let f and g be two real-valued functions on [0, 1] and define
Ajg=g(t;) —g(tich), i=1,...,n.

The Riemann-Stieltjes sum corresponding to 7, and o, is given by
Sn = Sn(Tn,0n) = Z flyi) Aig = Z f(yi) [9(t:) — g(ti-1)] -
i=1 i=1

Notice the similarity with a Riemann sum; see (2.1). In that case, g(t) = ¢.
Thus, a Riemann-Stieltjes sum is obtained by weighing the values f(y;) with
the increments A;g of g in the intervals [t;_;,¢;].

If the limit

n—0c n—

S = lim S, = lim Zf(yi)Aig
i=1

exists as mesh(r,) — 0 and S is independent of the choice of the par-
titions 7, and their intermediate partitions o,, then S is called the
Riemann-Stieltjes integral of f with respect to g on [0,1].

We write

1
5= /0 f(t)dg(t).

It raises the question:

When does the Riemann-Stieltjes integral fol f(t)dg(t) exist, and is it
possible to take g = B for Brownian motion B on [0,1]?

This question does not have a simple answer and needs some more sophistica-
tion. In some textbooks one can find the following partial answers:

e The functions f and g must not have discontinuities at the same point
te(0,1].

e Assume that f is continuous and g has bounded variation, i.e.

sup Z lg(t:) — g(ti-1)] < o0,
=1
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where the supremum (cf. its definition on p. 211) is taken over all possible
partitions 7 of [0, 1].

Then the Riemann-Stieltjes integral fo t) dg(t) exists.

Notice that the latter result is not applicable to the integral fol f(t) dB(w).
Indeed, we learnt in Section 1.3.1 that Brownian sample paths B;(w) do not
have bounded variation. However,

bounded variation of g is not necessary for the existence of the
Riemann-Stieltjes integral fol f(t)dg(t),

although the contrary claim can be found in some books. Weaker conditions
for the existence of fol f(t) dg(t) are not very well known, but they were already
found by L.C. Young in 1936; see the recent papers by Dudley and Norvaisa
(1998a,b) for an extensive discussion.

Without going into detail, we give a sufficient condition for Riemann-
Stieltjes integrability which is close to necessity. First we give a definition:

The real-valued function h on [0, 1] is said to have bounded p-variation
for some p > 0 if

sup Z|h h(t;—1)|P < o0,

where the supremum is taken over all partitions 7 of [0, 1].

Notice that h has bounded variation if p= 1.

The Riemann-Stieltjes integral fol f(t) dg(t) exists if the following con-
ditions are satisfied:

o The functions f and g do not have discontinuities at the same point
te[0,1].

e The function f has bounded p-variation and the function g
has bounded g¢-variation for some p >0 and ¢ > 0 such that
pl+qg >l

In some cases these conditions can be verified. We give an example for the
integral [ f(t)dBy(w).
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Example 2.1.4 As before, B = (B;.t > 0) denotes Brownian motion. It is
well known that sample paths of Brownian motion have bounded p-variation
on any fixed finite interval, provided that p > 2, and unbounded p-variation
for p < 2. See Taylor (1972).

Now consider a deterministic function f(t) on [0,1] or a sample path of a
stochastic process f(t,w). According to the above theory, we can define the

Riemann-Stieltjes integral fol f(t)dB(w) with respect to the sample path
By(w), provided f has bounded g-variation for some ¢ < 2. This is satis-
fied if f has bounded variation, i.e. ¢ = 1.

Assume that f is a differentiable function with bounded derivative f'(t). Then
it follows by an application of the mean value theorem that

f®) - fI <K (t-s), s<t,

where K > 0 is a constant depending on f. Then
n n
sup ) |f(t:) = fti-t)| S K Y (i —tim1) = K < o0.
=1 i=1

Hence f has bounded variation, and so the following statement holds:

Assume f is a deterministic function or the sainple path of a stochastic
process. If f is differentiable with a bounded derivative on [0, 1], then
the Riemann-Stieltjes integral

1
/ £(t) dBy(w)
0

exists for every Brownian sample path B;(w).

In particular, you can define the following integrals as Riemann-Stieltjes inte-
grals:

1 1 1
/Oe‘dBt(w), /Osin(t)dBt(w), /Ot”dBt(w), p>0. (2.3)

This does not mean that you can evaluate these integrals explicitly in terms
of Brownian motion. a

The above discussion may be slightly misleading since it suggests that one can
define the integral fol f(t) dBy(w) for very general integrands f as a Riemann-
Stieltjes integral with respect to a Brownian sample path. However, this is not
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the case. A famous example, which is also one of the motivating examples for
the introduction of the It6 stochastic integral, is the integral

1
I(B)(w) = /0 By(w) dBy(w).

Brownian motion has bounded p-variation for p > 2, not for p < 2, and so
the sufficient condition 2p~* > 1 for the existence of I(B) (see p. 94) is not
satisfied. Furthermore, it can be shown that this simple integral does not exist
as a Riemann-Stieltjes integral.

Moreover, one can show the following: if fol f(t) dg(t) exists as a Riemann-
Stieltjes integral for all continuous functions f on [0, 1], then g necessarily has
bounded variation; see Protter (1992), Theorem 52. Since one of our aims is
to define the integrals fol f(t) dB¢(w) for all continuous deterministic functions
f on [0,1], the Riemann-Stieltjes integral approach must fail since Brownian
sample paths do not have bounded variation on any finite interval.

It is the objective of the following sections to find another approach to
the stochastic integral. Since pathwise integration with respect to a Brownian
sample path, as suggested by the Riemann-Stieltjes integral, does not lead to
a sufficiently large class of integrable functions f, we will try to define the
integral as a probabilistic average. This approach has the disadvantage in that
it is less intuitive than the Riemann-Stieltjes integral, regarding the form of
the integrals.

Notes and Comments

The Riemann and Riemann-Stieltjes integrals are treated in textbooks on
calculus. However, it is not easy to find a comprehensive treatment of the
Riemann-Stieltjes integral. Young (1936) is still one of the best references
on the topic. Extensions of the Riemann-Stieltjes integral are treated in the
recent work by Dudley and Norvaisa (1998a,b).

2.2 The Itd Integral

2.2.1 A Motivating Example

At the end of the previous section we learnt that it is impossible to define the
integral fol B;(w)dB,;(w) path by path as a Riemann-Stieltjes integral. Here
and in what follows, B = (By,t > 0) denotes Brownian motion. In order to
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understand what is going on, we consider the Riemann-Stieltjes sums
n
Sn=9 B:_, AB,
i=1

where
™m: O=th<h < <th_1<th =t,
is a partition of [0,¢] and, for any function f on [0, 1],
Af: Af=F() - fltie), i=1,...,n,

are the corresponding increments of f and

A=t —t;—q, i=1,...,n.

97

(24)

(2.5)

Thus the Riemann-Stieltjes sum S, corresponds to the partition 7, and the
intermediate partition (y;) with y; = ¢;_;, i.e. y; is the left end point of the
interval [t;—1,t;]. This choice is typical for the definition of the Itd stochastic
integral. We will also see that another choice of intermediate partition (y;)

gives rise to the definition of another type of stochastic integral.
Notice that S, can be written in the following form:

1 « 1 1
Sn=—Bf—§ > (AiB)? =:§Bf—§Qn(t).
i=1

(Check it by using the binomial formula

(B, — Bi,_,)* =B + Bf._, —2B,B;,_, )

Recall that Brownian motion has independent and stationary increments (see

p- 33). Hence

E(A:BA;B) = var{A;B) =t; —t;.1 = Ay, if i=7j.

Then it is immediate that

EQn(t) = ﬁ: E(A;B)? :Xn: A =t
i=1 i=1
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and, again by the independent increments of Brownian motion and since the
relation var(X) = E(X?) — (EX)? holds,

var(Qu(t)) = Y var([A:B)?) = [E(A;B)' - A},
i=1

i=1
It is a well-known fact that for the N(0,1) random variable B,, EB} = 3.
Hence,
4
E(AB) = EB}_,_, = E[(A)'/?B)] =34A¢,
which implies that

n

var(Qa(t)) = 2 ) Al
=1
Thus, if
mesh(r,) = max A; — 0,

i=1,...,
we obtain that

var(Qn(t)) < 2 mesh(r,) i: A; = 2t mesh(m,) — 0.

i=1

Since var(Q,(t)) = E(Q,(t) — t)? we showed:

Qn(t) converges to t in mean square, hence in probability; see Ap-
pendix Al for the different modes of convergence.

The limiting function f(t) = t is characteristic only for Brownian motion.
It is called the quadratic variation of Brownian motion on [0,¢].

One can show that @, (t) does not converge for a given Brownian sample path
and suitable choices of partitions 7,,. This fact clearly indicates that we cannot
define f0' B;(w) dBs(w) as a Riemann-Stieltjes integral. However,

we could define fot B dBg as a mean square limit .

Indeed, since S, = 0.5[B? — Q,(t)] converges in mean square to 0.5 (B} — t),
we could take this limit as the value of the integral fot B, dB;. Later it will
turn out that this is the value of the It6 stochastic integral:

t
1,
/ BsdB, = - (B} —1t). (2.6)
o 2
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From this evaluation we have learnt various facts which will be useful in what
follows:

Integrals with respect to Brownian sample paths, which cannot be de-
fined in the Riemann-Stieltjes sense, can hopefully be defined in the
mean square sense.

The increment A;B = By, — By,_, on the interval [t;_),t;] satisfles EA;B =0
and E(A;B)? = A; =t; — t;i_;. The mean square limit of Q,(t) is t. These
properties suggest that (A;B)? is of the order A;.

In terms of differentials, we write
(dB)? = (Biyar — B)* = dt, (2.7)

and in terms of integrals,

/()'(st)-z = /: ds=t. (2.8)

The right-hand side is the quadratic variation of Brownian motion on
[0,1].

At the moment, relations (2.7) and (2.8) are nothing but heuristic rules. They
can be made mathematically correct (in the mean square sense). In this book
we do not have the mathematical means to prove them. In what follows, we
will use (2.7) and (2.8) as given rules; they will help us to understand the
results of Itd calculus, in particular the It6 lemma in Section 2.3.

Next we try to understand why we chose the Riemann-Stieltjes sums Sy, in
(2.4) in such a specific way: the values of Brownian motion were evaluated at
the left end points of the intervals [t;_1,%;]. Assume that we have a partition 7,
of [0,] as in (2.5). We learnt in Example 1.5.7 that the martingale transform
BeAB given by

k k
> BiAiB=) By (B, -Bi_,), k=1,...,n,
i=1 i=1

1s a martingale with respect to the filtration o(B¢,,i = 1,...,k), k=1,...,n.
As a result, the mean square limit 0.5 (B? —t) of the approximating Riemann-
Stieltjes sums is a martingale with respect to the natural Brownian filtration.
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Another definition of the Riemann-Stieltjes sums makes them lose the
martingale property. As a matter of fact we mention that, for partitions =, =
(t;) of [0,t] with mesh(r,) — 0, the Riemann-Stieltjes sums

Sn = zn:By,. A;B
i=1

with ]
E(ti—l+ti)a t1=1,...,n,

have the mean square limit 0.5 B? (you can check this by the same arguments
and tools as given for S,). This quantity can be interpreted as the value
of another stochastic integral, f(; B; o dB; say. The Riemann-Stieltjes sums

Yi =

ZLI By, A;B, k=1,...,n, do not constitute a martingale, and neither does
the limit process 0.5B? (check it!). However, the latter process enjoys another
nice property. The relation

t
/ Bs;odB, = 1 B} (2.9)
0 2

indicates that the classical chain rule holds.
To be precise, let b(t) be a deterministic differentiable function with 5(0) =

0. We know that 1 dk(s)
s
7 ds = = b(s)

Integrating both sides, we obtain by the classmal rules of calculus,

1oftdb(s) , 1., . db(s) ¢
: | ds—ib(t)—/b() o= [ o) dots).

If we formally replace the function b(t) with Brownian motion B;, we obtain
the same value as for the stochastic integral (2.9). However, it is only a formal
replacement, since this chain rule is applicable to differentiable functions, not
to Brownian sample paths.

The stochastic integral, which is obtained as the mean square limit of
the Riemann-Stieltjes sums, evaluated at the middle points of the intervals
[ti-1,t], is called a Stratonovich integral. We will consider it in Section 2.4. It
will turn out to be a useful tool for solving Itd stochastic differential equations.

Thus we have learnt one more useful fact:

db(s)
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The formula f(; B, dB; = 0.5(B? —t) suggests that the classical chain
rule of integration does not hold for It6 stochastic integrals. In Sec-
tion 2.3 we will find a chain rule which is well suited for It6 integration:
the Ité lemma.

2.2.2 The It6 Stochastic Integral for Simple Processes

We start the investigation of the It6 stochastic integral for a class of processes
whose paths assume only a finite number of values. As usual, B = (B, t > 0)
denotes Brownian motion, and

ftZU(BsaSSt)a t>0,

is the corresponding natural filtration. Recall that a stochastic process X =
(Xt, t > 0) is adapted to Brownian motion if X is adapted to (F;,t > 0). This
means that, for every ¢, X, is a function of the past and present of Brownian
motion. .

In what follows, we consider all processes on a fized interval [0, T].

First we introduce an appropriate class of It6 integrable processes.

The stochastic process C = (Cy,t € [0,T]) is said to be simple if it sat-
isfies the following properties:

There exists a partition
Th: O=t<ti<--<th1<t,=T,
and a sequence (Z;,7 = 1,...,n) of random variables such that
Zn, if t=T,
Ct = .
Zi if ;i <t<t;, i=1,...,n.

The sequence (Z;) is adapted to (Fy,_,,i = 1,...,n), i.e. Z;is a function
of Brownian motion up to time ¢;_;, and satisfies EZ? < oo for all i.

Example 2.2.1 (Some simple processes)
The deterministic function

n—1

=9 " i—1
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Figure 2.2.2 Two approzimations of a Brownian sample path by simple processes
C (dashed lines), given by (2.10).

is a step function, hence it is a simple process.

Now define the process

Zn=B,_,, if t=T,
Ct:

| . (2.10)
Zi:Bt.'_ly if i <t<t;, i1=1,...,n,

for a given partition 7, of [0,T]. It is a simple process: the paths are piece-

wise constant, and C; is a function of Brownian motion until time ¢. For an

illustration of the process C for two different partitions, see Figure 2.2.2. O

The Ité stochastic integral of a simple process C on [0,T] is given by

T n n
/ CsdBy:=Y Ci_, (B, —Bi,_,)=)_ Z:A:B.
Y i=1 i=1
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The Ité stochastic integral of a simple process C on [0,t], tx—1 < t < ty,
is given by

t
/ Cs;dB; :=
0
k-1

T
/ Coloy(s)dBy = S Z:AB + Zu (Bu — By,_,), (211)
0

i=1

where Z(i):l Zi AlB =0.

Thus the value of the It6 stochastic integral fot C, dB; is the Riemann-Stieltjes
sum of the path of C, evaluated at the left end points of the intervals [t;_1,t;],
with respect to Brownian motion. If ¢ < ¢,,, the point ¢ can formally be inter-
preted as the last point of the partition of [0, ¢].

00
00

-01
-01

ito integral
02
-02

03
Ito integral

-0.4
-03

04

-05
05

0o 0.2 04 06 08 1.0 00 02 04 06 08 10
1 1

Figure 2.2.3 The Ité stochastic integral fot Cs dB;s corresponding to the paths of C
and B given in Figure 2.2.2.

Example 2.2.4 (Continuation of Example 2.2.1)
Recall the simple processes f,, and C from Example 2.2.1. The corresponding
It6 stochastic integrals are then given by

k—1 .

t -1 k-1
/0 fu(s)dBy = Z L - (Bi/n — Bi—1y/n) + — (Bt = Bk—1)/n)
im1
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for t € [(k — 1)/n, k/n], and by

t k—1
/ CsdB, =Y Bi_,AB+B,_, (Bi—By,_,), (2.12)
0

i=1
for t € [ty—1,tk]. See Figures 2.2.2 and 2.2.3 for a visualization of the sample
paths of B, C and the corresponding It6 stochastic integrals.

We know from Example 2.1.4 that

t t
lim [ fa(s)dBy(w) = / sdBy(w),
n—o0 0 0

where the right-hand side is a Riemann-Stieltjes integral with respect to a
given Brownian sample path. We also learnt in Section 2.1.2 that the Riemann-
Stieltjes sums (2.12) do not in general converge, as mesh(r,) — 0, for a given
sample path of Brownian motion. . a

The form of the It6 stochastic integral for simple processes very much reminds
us of a martingale transform. On p. 83 we introduced the martingale transform
C oY, where

n
(CoY)o=0, (CeY),=) CiY;, n=12,....
i=1
Here Y = (Y,) is a martingale difference sequence with respect to a given

filtration and C = (Cy,) is a previsible sequence. In this sense, the sequence of
It6 stochastic integrals

173
( CsdB;, k=0,...,n>
0

of a simple process (Cs,s < t) is a martingale transform with respect to the
filtration (F;,,k =0,...,n).
But even more is true:

The stochastic process It (C) = fot C;s dBs, t € [0,T]), is a martingale with
respect to the natural Brownian filtration (F;, t € [0,T]).

We check the defining properties of a martingale; see p. 80. For convenience
we recall them in terms of I(C):

o E|L(C)| < oo for all t € [0,T].
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e [(C) is adapted to (F;).

E(I(C)| Fs) = I,(C) for s<t. (2.13)

The first property follows, for example, from the isometry property (2.14) given
below.

Adaptedness of I(C) to Brownian motion is easily seen: at time ¢, the
random variables Z,,...,Z; and A B,...,Ax_1B, By — By, _,, occurring in
the defining relation (2.11), are all functions of Brownian motion up to time .

It remains to show the crucial relation (2.13). This is a good exercise
in using the rules of conditional expectation, which we suggest you try for
yourself. We have not indicated which rules to use as we assume that you
know them by now.

First assume that s < t and s,t € [tx_1,¢x]. Notice that

L(C) = I,_,(C)+Zy(Bs— By,_,) + Zr (B — By)
= I(C)+ Z (B, - By),

where I;(C) and Z;, are functions of Brownian motion up to time s, and B; — B;
is independent of ;. Hence,

E(I(C)| Fs) = I;(C) + Zi, E(By — Bs) = I,(C) .

This proves (2.13) in this case.
The case, when s € [t;—1,t] and t € [t4—1,x] for some [ < k, can be han-
dled analogously. Check (2.13); make use of the decomposition

It(C) = [Itl—l(c) + Zl (BS - Btl—l)]
k—1
+|Z(By —Bs)+ Y ZiAiB+ Zy (B, - By, _,)
i=l+1

= I(C)+ R(s,1),
and show that E(R(s,t)|Fs) = 0.

Properties of the It6 Stochastic Integral for Simple Processes

It is easy to see that EI,(C) = 0 since Z; and A;B in the definition (2.11) are
independent, and E(Z; A;B) = EZ; EA;B = 0. Thus:
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The Itd stochastic integral has expectation zero.

Alternatively, we can argue as follows: since I(C) is a martingale, it has a
constant expectation function. Moreover, by definition, Io(C) = 0. and so
EL(C) = EL)(C) =0.

Another property of the Itd stochastic integral for simple processes will
turn out to be crucial for the definition of the general Ito stochastic integral.

The It6 stochastic integral satisfies the isometry property :

t 2 t
E(/ C,dB,) =/ EC%ds, te0,T). (2.14)
0

0

We show this property. For the ease of presentation, we assume that ¢t = ¢ for
some k. Indeed, if t,_; <t < i, observe that 0 =1ty < --- < tp—1 <t} :=tis
a partition of [0,¢], so you can formally consider ¢ as a point of the partition.
We have, for W; = Z; A;B,

k k
E[L(Cf =) Y EW:W,;). (2.15)

i=1 j=1

You can check that, for ¢ > j, the random variables W; and W; are uncor-
related: notice that W; and Z; are functions of Brownian motion up to time
t;—1, hence they are independent of A;B. We conclude that

E(W;W;) = E(W;Z;) E(A:;B) = 0.

Thus the terms E(W;W;) in (2.15) vanish for i # j, and so we obtain

k k k
E[L(C)? =) E(ZiAB) =) EZ}E(A:B)’ = S EZ(ti —tiy).
) i=1

i=1 i=1

The right-hand side is nothing but the Riemann integral fot f(s) ds of the step
function f(s) = EC?, which coincides with EZ? for t;_; <t < t; (check this!).
Thus we have proved the isometry property of the It stochastic integral.

The It6 stochastic integral has several properties in common with the
Riemann and Riemann-Stieltjes integrals.
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The It6 stochastic integral is linear:
For constants c;, ¢z and simple processes C'!) and C® on [0, T,

t t t
/ e ¢ 4+ ] dB, = / cWdB, + c2/ c® 4B, .
0 0

0

The It6 stochastic integral is linear on adjacent intervals:
For0<t<T,

T t T
/ CsdB;s = / CsdB;s; + / CsdB;.
0 0 t

The proof of the linearity is not difficult; try it yourself. Before you start you
have to define C{") and C'?) on the same partition. This is always possible: if

" is the partition corresponding to C!) and T,(n) the partition corresponding
to C®)| you get a joint partition 7 with at most n+m distinct points by taking
the union of (l) and r( ). Clearly, this is a refinement of the two original
partitions. The values of the I(C¥)s remain the same with this new partition.
Linearity follows from the linearity of the underlying Riemann-Stieltjes sums.

The linearity on adjacent intervals follows from linearity since

T T
[ cuas,= [ e+ c] as,,
0 0

where C,gl) = CsIjp ¢ (s) and c¥? = CsIi¢1)(s) are two simple processes.
Finally, we state the following property:

The process I(C) has continuous sample paths.

This follows from the definition of I(C): the relation
It(C)=1t5_1(0)+Zi (Bt_Bl.'_l)v tia Ststly

holds and the sample paths of Brownian motion are continuous.

2.2.3 The General It6 Stochastic Integral

In the previous section we introduced the It stochastic integral for simple
processes C, i.e. for stochastlc processes whose sample paths are step functions.
The It6 stochastic integral fo Cs dB; is then simply the Riemann-Stieltjes sum
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of C, evaluated at the left end points of the intervals [¢;—1,;], with respect to
Brownian motion. We learnt in Section 2.1.2 that, in general, we cannot define
the It6 stochastic integral as a pathwise limit of Riemann-Stieltjes sums. In
Section 2.2.1 we suggested that we define the Itd stochastic integral as the mean
square limit of suitable Riemann-Stieltjes sums. This idea works under quite
general conditions, and it is the aim of this section to advocate this approach.
At a certain point we will need some tools from Hilbert space theory, which we
do not require as common knowledge. Then we will depend on some heuristic
arguments. However, the interested reader can find a proof of the existence
of the general It stochastic integral, using tools from measure theory and
functional analysis, in Appendix A4.

In what follows, the process C = (C},t € [0,T]) serves as the integrand
of the It6 stochastic integral. We suppose that the following conditions are
satisfied:

Assumptions on the Integrand Process C:

e C is adapted to Brownian motion on [0,T], i.e. Cy is a function of
B,,s<t.

e The integral foT EC?ds is finite.

Notice that the Assumptions are trivially satisfied for a simple process; cf.
p. 101. (Verify them!) Another class of admissible integrands consists of the
deterministic functions c¢(t) on [0,7] with fOT c2(t)dt < oo. It includes the
continuous functions on [0, T].

In what follows, we give a heuristic approach to the It6 stochastic integral.
First recall how we proceeded for the definition of the integral fot B dB; in
Section 2.2.1:

¢ For fixed t and a given partition (¢;) of [0, t] we introduced the Riemann-
Stieltjes sums Y. | By, _, (By; — B, _,)-

o Notice: in Section 2.2.2 we defined exactly these Riemann-Stieltjes sums
as the Itd stochastic integrals I(C("V) = fot ™ 4B, of the simple func-
tions C™ which assume the value B;,_, on the interval [t;—,t;).

e Then we considered the mean square limit of the Riemann-Stieltjes sums
I(C™) and obtained the value 0.5 (BZ — t).

This approach can be made to work for processes C satisfying the Assumnptions.
We commence with an interesting observation:
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Let C be a process satisfying the Assumptions. Then one can find a
sequence (C(™) of simple processes such that

T
/ E[Cs — C{")?ds — 0.
0

The proof of this property is beyond the scope of this book; see Appendix A4
for a reference.

Thus the simple processes C{™ converge in a certain mean square sense to
the integrand process C. Since C(™ is simple we can evaluate the Ité stochastic
integrals I,(C(M) = fot C{™ dB, for every n and t.

The next step is to show that the sequence (I(C(™)) of It6 stochastic
integrals converges in a certain mean square sense to a unique limit process.
Indeed, one can show the existence of a process I(C) on [0, T] such that

E sup [1,(0) - It(c<">)]2 - 0.

0<t<T

See Appendix A4 for a proof.

The mean square limit I(C) is called the Ité stochastic integral of C. It
is denoted by

t
1,(0):/ C,dB,, te[0,T].
0

For a simple process C, the Itd stochastic integral has the Riemann-
Stieltjes sum representation (2.11).

After this general definition we do not feel very comfortable with the notion of
It stochastic integral. We have lost the intuition because we are not able to
write the integral fot Cs dB; in simple terms of Brownian motion. In particular
cases we will be able to obtain explicit formulae for Itd stochastic integrals,
but this requires knowledge of the It lemma; see Section 2.3. For our general
intuition, and for practical purposes, the following rule of thumb is helpful:
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Figure 2.2.5 1st and 3rd rows: approzimations to a Brownian sample path by simple
processes C'™ (dashed lines) assuming n = 4,10,20,40 distinct values. Below every
figure you find the path of the corresponding Ité stochastic integral I(C™). The latter
processes approzimate the process It(B) = fot B, dB, = 0.5 (B} —t). Compare with
Figure 2.3.1, where the corresponding sample path of I(B) is drawn.
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The Itd stochastic integrals I,(C) = fot CsdBs, t € [0,T), constitute a
stochastic process. For a given partition

Th: O=ti<ti< - <th1<tp, =T,

and t € [tx—1,tx], the random variable I;(C) is “close” to the Riemann-
Stieltjes sum

k—1
Z Ciioy (B, — Bt._1) +Ct, (Bt — Btk—l) ’
i=1

and this approximation is the closer (in the mean square sense) to the
value of I;(C) the more dense the partition 7, in [0, T).

Properties of the General Ité6 Stochastic Integral

The general It6 stochastic integral inherits the properties of the Itd stochastic
integral for simple processes, see Section 2.2.2. In general, we will not be able
to prove these properties. However, some proofs can be found in Appendix A4.

The stochastic process I;(C) = fot CsdBs, t € [0,T], is a martingale with
respect to the natural Brownian filtration (F, t € [0, T)).

This results from the particular choice of the approximating Riemann-Stieltjes
sums of C, which are evaluated at the left end points of the intervals [t;—1,;].

The It6 stochastic integral has expectation zero.

For the proof of the existence of the Itd stochastic integral the isometry prop-
erty (2.14) for simple processes is essential. It remains valid in the general
case.

The It6 stochastic integral satisfies the isometry property :

t 2 t
E(/ Csst) :/ EC?ds, te€0,T].
0 0

The It6 stochastic integral also has some properties in common with the Rie-
mann and Riemann-Stieltjes integrals.
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The It6 stochastic integral is linear:

For constants ¢, ¢z and processes C'!) and C® on [0, T, satisfying the
Assumptions,

t t t
/ [01 C’gl) + ¢ C§2)] dBs = ¢, / Cﬁl) dB; + c¢» / C§2) dB; .
0 0 0

The It6 stochastic integral is linear on adjacent intervals:
For0<t<T,

T t T
/ Cs dB; :/ CsdBs + / CsdB;.
0 0 t

Finally, we state the following property:

The process I(C) has continuous sample paths.

Notes and Comments

The definition of the Itd stochastic integral goes back to It6 (1942,1944) who
introduced the stochastic integral with a random integrand. Doob (1953) re-
alized the connection of It integration and martingale theory. It6 integration
is by now part of advanced textbooks on probability theory and stochastic
processes. Standard references are Chung and Williams (1990), Ikeda and
Watanabe (1989), Karatzas and Shreve (1988), @ksendahl (1985) and Prot-
ter (1992). Nowadays, some texts on finance also contain a survival kit on
stochastic integration; see for example Lamberton and Lapeyre (1996).

Some of the aforementioned books define the stochastic integral with re-
spect to processes more general than Brownian motion, including processes
with jumps. Moreover, the assumption fOT EC2ds < oo for the existence of

fot C, dB; can be substantially relaxed.

2.3 The Ito Lemma

In the last two sections we learnt about the Itd stochastic integral. Now we
know how the integral fot C, dB; is defined, but with the exception of simple
processes C we do not have the tools to calculate It6 stochastic integrals and
to proceed with some simple operations on them. It is the objective of this
section to provide such a tool, the It6 lemma.
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2.3.1 The Classical Chain Rule of Differentiation

The It6 lemma is the stochastic analogue of the classical chain rule of differ-
entiation. We mentioned the chain rule on p. 100 in a particular case. There
we recalled that, for a differentiable function b(s),

1 db*(s)
2 ds

db(s)

= b(s) ds

This relation implies that, with 5(0) = 0,

Loftdb(s) 1, [t db(s) [t
5/0 75 ds—ibz(t)—/o b(s) s ds_/o b(s) db(s) . (2.16)

We cannot simply replace in (2.16) the deterministic function b(s) with a sam-
ple path Bs(w) of Brownian motion. Indeed, such a path is nowhere differen-
tiable. Using some elementary means, we discovered in Section 2.2.1 that the
It stochastic integral [, Bs dBs has value 0.5 (B} — t). This is in contrast to
(2.16). Notice that the integral value 0.5 (B —t) is the value 0.5 B?, which is to
be expected from the classical chain rule of differentiation, corrected by —0.5 .
This suggests that we have to find a correction term to the classical chain rule.
Another appeal to the discussion in Section 2.2.1 tells us that this term comes
from the mean square limit of the quadratic functional }_._, (By, — By,_,)%.

In order to understand the stochastic chain rule, we first recall the deter-
ministic chain rule. For simplicity, we write h'(t), h"(t), etc., for the ordinary
derivatives of the function h at t.

Let f and g be differentiable functions. Then the classical chain rule of
differentiation holds:

[f(a(s)) = f'(g(s)) 9'(s)- (2.17)

Because we are interested in integrals, we rewrite (2.17) in integral form, i.e.
we integrate both sides of (2.17) on [0, t].

The chain rule in integral form :

flot) - / F'(g(s)) g (s) ds = / f(g(s)dgs).  (2.18)
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We give a heuristic argument for the validity of the chain rule, which we will
take as a motivation for the Itd lemma. In the language of differentials, (2.17)
becomes df(g) = f'dg. This differential can be interpreted as the first order
term in a Taylor expansion:

flg(®) +dg(t)) — f(g(t)) = f'(9(t)) dg(t) + f" ) [dg(®)]* + - . (2.19)

Here dg(t) = g(t + dt) — g(t) is the increment of g on [t,# + dt]. Under suitable
conditions, the second and higher order terms in this expansion are negligible
for small dt.

2.3.2 A Simple Version of the It6 Lemma

Now assume that f is a twice differentiable function, but replace g(¢) in (2.19)
with a sample path Bi(w) of Brownian motion. Write dBy = B4 — B; for
the increment of B on [t, t+dt]. Using the same arguments as above, we obtain

1 H
f(Be +dBy) — f(By) = f'(B) dBy + 5 [(B) (dB)? + ---.  (2:20)
On p. 99 we gave some motivation that the squared differential (dB;)? can be

interpreted as dt. Thus,

in contrast to the deterministic case, the contribution of the second order
term in the Taylor expansion (2.20) is not negligible.

This fact is the reason for the deviation from the classical chain rule.
Integrating both sides of (2.20) in a formal sense and neglecting terms of
order higher than 3 on the right-hand side, we obtain for s < ¢,

t
/ df(B:) = f(B) - f(B.) (2.21)

/f YdB, + = /f” (2.22)

The following question naturally arises:
How do we have to interpret the integrals in (2.21) and (2.22)?

The first integral in (2.22) is the Itd stochastic integral of f'(B), and the second
integral has to be interpreted as the Riemann integral of f”(B). Relation (2.21)
defines the quantity f: df (B;) which is an analogue of a telescoping sum, and
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therefore it is natural to assign the value f(B;) — f(B;) to it. In what follows,
we always give the value V; — V; to the symbolic integral f: dV,, whatever the

stochastic process V.

Let f be twice continuously differentiable.
The formula

is a simple form of the Ité lemma or of the Ito formula.

t t
f(Bt)—f(Bs)z/ f'(B;)dB, +%/f”(BI)d1:, s<t, (223)

Using sophisticated methods, which are beyond the scope of this book, one

can show that (2.23) is mathematically correct.
Now we want to see the Ité lemma at work.

A |
| h
g \‘“‘\w h k‘l'; I p‘ A
s g
il \‘
. L1
¥ \

Figure 2.3.1 One sample path of the process fot Bs;dB; = 0.5(B? —t). See also

Figure 2.2.5.

Example 2.3.2 Choose f(t) = t>. Then f'(t) = 2t and f"(t) = 2. Hence the

It6 lemma yields for s < ¢,

8

t t
B - B? = 2/ B, dB, +/ dz .
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For s = 0 we obtain the formula
t
/ BedB, = > (B2 — 1),
0 2

which is already familiar to us; cf. (2.6) or the discussion in Section 2.3.1.

We try to get a similar formula for B3 — B3. In this case, f(t) = t3, f'(t) = 3t
and f"(t) = 6¢t. The [t6 lemma immediately yields

t t
B}-B® = 3 | B2dB, +3/B1dx.
s S

We cannot express |, : B; dr in simpler terms of Brownian motion. In order
to get an impression of the kind of sample paths of the processes f: B, dx or
f: B2 dB, one has to rely on simulations.

Now exercise the Itd6 lemma yourself: calculate f(B;)— f(Bs) for a power
function f(t) = t™ for some integer n > 3. O

Example 2.3.3 (The exponential function is not the Ité exponential)
In classical calculus, the exponential function f(t) = exp{t} has the spectacular
property that f'(t) = f(t). Equivalently,

£(6) - f(s) = / f(z)dz.

Is there a stochastic process X such that
t
Xt—Xs:/XIdB,, s<t, (2.24)
8

in the Ito sense? This would be a candidate for the It exponential. Since the
classical rules of integration fail in general when Brownian motion is involved,
we may also expect that f(B;) = exp{B,} ishot the Itd exponential. This can
be checked quite easily: since f(t) = f'(t) = f"(t) the It6 lemma yields for

s <t
eBi —eBs = /eB=dBI + —/eBldz.
s 2 S

Obviously, the second, Riemann, integral yields a positive value, and so (2.24)
cannot be satisfied.

At the moment we cannot give an answer to the above question. We will
return to this problem when we have a more advanced form of the It6 lemma;
see Example 2.3.5., O
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2.3.3 Extended Versions of the It6 Lemma

In this section we extend the simple It6 lemma, given in (2.21)-(2.22), in
various ways.

We start with an Ité lemma for the stochastic process f(t, By). Assume
that f(t,z) has continuous partial derivatives of at least second order. A
modification of the Taylor expansion argument used in Section 2.3.2 is also
successful in this more general case.

Recall that a second order Taylor expansion yields that

f(t+ dt,Birar) — f(t,By) = (2.25)
f1 (t, Bt) dt + fg(t, Bg) dB;

+ %[fu(t,Bt)(dt)'z + 2 fi2(t, B;)dtdB; + fa2(t, By) (dB:)?]

+

Here, and in what follows, we use the following notation for the partial deriva-
tives of f:

0

fi(t,z) B (91‘,‘ f($1’$2) z1=t,z2=T ' ' 1’2 '
g 0

fl‘j(tiz) - a_zl éz_jf(zl,zZ) rimteacs y L= 172

As in classical calculus, higher order terms in (2.25) are negligible, and so are
the terms with factors dtdB; and (dt)2. However, since we interpret (dB;)?
as dt, the term with (dB;)? cannot be neglected. Arguing in the same way as
in Section 2.3.2, i.e. formally integrating the left-hand and right-hand sides in
(2.25) and collecting all terms with dt and dB; separately, we end up with the
following formula:

Extension I of the It6 Lemma:

Let f(t,z) be a function whose second order partial derivatives are con-
tinuous. Then

f(@t,B:) — f(s,Bs) = (2.26)

t 1 t
/,[fl(x,BI)+§f22(z,BI)] dz + / foz.B.)dB,, s<t.
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Figure 2.3.4 One sample path of the ezponential of Brownian motion exp{B.} (left)
and of the Ité ezponential exp{B; — 0.5t} (right) for the same path of B; cf. Ezam-
ples 2.3.3 and 2.3.5.

We apply this formula to find the It6 exponential:

Example 2.3.5 (The It exponential)
We learnt in Example 2.3.3 that the stochastic process exp{B;} is not the It6
exponential in the sense of (2.24). Now we choose the function

ft,z) =705t
Then direct calculation shows that
1
fi(t,z) = —3 f(t,z), fo(t,x) = f(t,z), falt,z)=f(t,1).

An application of the above It6 lemma gives

f(t,B)) — £(s,By) = / f(z,B,)dB, .

In the sense of (2.24), f(t, B;) is the Ité exponential. See Figure 2.3.4 for a
comparison of the paths of the processes exp{B;} and exp{B; — 0.5¢}. m]

Example 2.3.6 (Geometric Brownian motion)
Consider a particular form of geometric Brownian motion (cf. Example 1.3.8):

X, = f(t,By) = elc085") t+ o Be (2.27)
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where ¢ and o > 0 are constants. Notice that
flt,z) = elem08e)thor - f(p 3y = (c—0.50%) f(t,z),
Ltz = o f(tz), fa(t, z) o? f(t,z).

An application of the It6 lemma (2.26) yields that the process X satisfies the
linear stochastic differential equation

t t

X — Xo =c/ Xods + 0/ X,dB;. (2.28)
0 0

O

For later use we will need an even more general version of the It6 lemma. We
will consider processes of the form f(t, X;), where X is given by

t t
X, =X, + / A ds + / A? dB,, (2.29)
0 0

and both, A!) and A®) are adapted to Brownian motion. Here it is assumed
that the above integrals are well defined in the Riemann and It6 senses, re-
spectively.

A process X, which has representation (2.29), is called an It6 process.
One can show that the processes A') and A®) are uniquely determined
in the sense that, if X has a representation (2.29), where the A(!s are
replaced with adapted processes D', then A!) and D) necessarily
coincide.

Recall that the geometric Brownian motion (2.27) satisfies (2.28). Hence it is
an Ité process with A1) = ¢X and A®? = ¢ X.

Now, using a similar argument with a Taylor expansion as above. one can
show the following formula.
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Extension II of the It6 Lemma:

Let X be an It6 process with representation (2.29) and f(t,z) be a
function whose second order partial derivatives are continuous. Then

f6.Xe) - f(s.Xy) = (2.30)

t
. R T ]
[ 5050+ AP 20,304 AP x| a

t
+ / AP fo(y, X,)dB,, s<t.
s

Give a justification of this formula. Use a Taylor expansion for f{t+dt, X;4q4:)—
f(t. X:) as in (2.25), where B is replaced with X, and X has representation
(2.29). Neglect higher order terms. starting with terms involving (dt)? and
dt dB;, and make use of (dB;)> = dt.

Formula (2.30) is frequently given in the following form:

[t Xe) = f(s,Xy) (2.31)

t ' t
= [ e+ 3PP )| @+ [ pxax,,

where
dX, = AMdy + AP dB,.

The latter identity is a symbolic way of writing the Itd representation (2.29).
The integral with respect to X in (2.31) has to be interpreted as follows:

t t t

[ rwxax, = [ 40 e xds + [ 4P B.X) 6B, (@232
s S s
Finally, we consider the It6 lemma for stochastic processes of the form

Fit, XM X)), where both, X1 and X (), are Itd processes with respect to
the same Brownian motion:

X,‘”:X(ﬂ”+/ .4(51'”ds+/ A2VdB,, i=12. (2.33)
0 0
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"A Téylor series expansion argument similar to the one above yields the follow-
‘ing formula:

Extension III of the It6 Lemma:

Let X and X(?) be two It6 processes given by (2.33) and f(t,z1,z5) be
a function whose second order partial derivatives are continuous. Then
for s < ¢,

&, XM, X2 - f(s, X, X®) (2.34)
t
- / fr(w, X, X2 dy
8
3 t ]
+ 3 [ A, X axg
i=2 Y3

3.t
1 ‘ .
322 / iy, XD, XY AR AR gy
=274

=2 j=

Here fi(t,z1,x2), fij(t,T1,22) are the partial derivatives of f(t,z1,z2)
with respect to the ith, the ith and jth variables, respectively; cf. p. 117.

The integrals with respect to X,(,’) have to be interpreted in the same way
as in (2.32). Formula (2.34) can be extended in the straightforward way to
functions f(t,Xt(l), e ,Xt("')), where the X ()s are Itd processes with respect
to the same Brownian -motion. We mention that one can also consider such a
formula for Ité processes with respect to different Brownian motions. However,
this requires that we define the Itd stochastic integral for such a setting.

The following example is an application of the Ité lemma (2.34).

Example 2.3.7 (Integration by parts)
Consider the function f(t,z1,z2) = x1z2. Then we obtain (we suppress the
arguments of the functions)

fi=0, fa=z2, fa=z1, fro=f33=0 and faz=fap=1.

Now apply formula (2.34) to obtain:
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The Integration by Parts Formula:
Let X and X(® be two Itd processes given by (2.33). Then

dxVXP) = XP dx®P + xMNdx® + APV AP . (2.35)

Using the It6 representation (2.33), we obtain an alternative expression for the
differentials:

HOXP) = KDALY ¢ XOAD 1 APDAED)
+(XWAPD ¢ xP 424, .

As particular examples we consider
. t ¢
Xt()=et—1:/esds and Xt(2)=Bt=/1st.
0 0

Obviously,
Agm) —et, Agz,l) =0, A£1,2) —0, Agz,z) -1

Hence, integration by parts yields

¢ ¢
/ e*dB; = ¢'B; — / Bsefds.
0 0

More generally, show that for any continuously differentiable function f on
[0, T] the following relation holds:

t t
/ f(s)dBs = F()B, - / F(s) Bods. o
0 0

Notes and Comments

The Itd lemma is the most important tool in Itd calculus. We will use it very
often in the following sections. A first version of this fundamental result was
proved by It6 (1951). Various versions of the Itd lemma and their proofs can be
found in textbooks on stochastic calculus, for example, in Chung and Williams
(1990), Ikeda and Watanabe (1989), Karatzas and Shreve (1988), @ksendahl
(1985) or Protter (1992).
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2.4 The Stratonovich and Other Integrals

In this section we discuss some other stochastic integrals and their relation with
the It6 stochastic integral. It is certainly useful for you to realize that there
is a large variety of other integrals, the Ito integral being just one member
of this family. On the other hand, you do not need the information of this
section (which is also slightly technical) unless you are interested in solving Itd
stochastic differential equations by the so-called Stratonovich calculus.

In the previous sections we studied the It6 stochastic integrals

t
[t(C)z/ C,dB,, te[0,T].
0

Here and in what follows, B = (B, t > 0) is Brownian motion and C = (C;,t €
[0,T7]) is a process adapted to the natural Brownian filtration F; = (B, s <
t), t € [0,T]. The main point in the definition of the Ité stochastic integral
was the approximation of I;(C) by Riemann-Stieltjes sums of the form

k-1
> Ctily, AiB+Cy_, (B, - By,_,) for iy <t<t, (2.36)

i=1

for partitions
Tn: O0=to<t1 < - <th1<tp=T

such that
mesh(r,) = i_rrllaxn (ti—tiz1) = 0.
As usual, we write A;B = By, — By,_, .

In the Riemann-Stieltjes sums (2.36) we chose the values of C at the left
end points of the subintervals [t;_1, ¢;]. This choice was made for mathematical
convenience. Our gain was that the stochastic process (I;(C),t € [0,T]) has
a rich mathematical structure. It inherits the martingale property from the
approximating Riemann-Stieltjes sums (2.36). Thus a high level of the theory
of stochastic processes can be applied. As subsidiary properties we get that the
expectation of the It6 stochastic integral is always zero and its variance can be
expressed by an application of the isometry property. The price one has to pay
for the nice mathematical structure is that the chain rule of classical calculus
is not valid anymore. In It6 calculus, the Itd lemma replaces the classical chain
rule.

In this section we consider another type of stochastic integral, the Stra-
tonovich stochastic integral. We start with its definition in the case that the
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integrand process C is given by
Ci=f(By), telo,T],

for a twice differentiable function f on [0,T]. Define the Riemann-Stieltjes
sums

n
Sn=>_ f(By,)A:B, (2.37)
i=1
where
i+t
yi = — t=1,...,n.

One can show that the mean square limit of the Riemann-Stieltjes sums Sy
exists if mesh(r,) — 0.

The unique mean square limit St(f(B)) of the Riemann-Stieltjes sums
S, exists if fOT Ef?(B;)dt < oo. The limit is called the Stratonovich
stochastic integral of f(B). It is denoted by

T
Sr(f(B)) = /O f(B.) o dB, .

Clearly, as for the Itd stochastic integral, we can define the stochastic process
of the Stratonovich stochastic integrals

t
S/(f(B)) = /0 f(Bs)odB,, te[0,T],

as the mean square limit of the corresponding Riemann-Stieltjes sums.
Example 2.4.1 On p. 100 we considered the Riemann—Stieltjes sums
- n
Sn = Z By.- AtB
=1

for a given partition 7, of [0,T]. We also mentioned that it is not difficult to
verify that the sequence (S,) has the mean square limit 0.5 BZ. This is the
value of the corresponding Stratonovich stochastic integral:

T
Sr(B) = / B, odB, = %B%. (2.38)
0
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stochastic integrals

o 20 40 60 80 100
t

Figure 2.4.2 One sample path of the process fot B?dB, (lower curve) and of the
process fot B? o dB, (upper curve) for the same Brownian sample path.

Obviously, the stochastic process ‘(0.5 BZ,t €[0,T)) is not a martingale. How-
ever, we see that the Stratondvich stochastic integral (2.38) formally satisfies
the classical chain rule; see p. 100 for a discussion. a

The formal validity of the classical chain rule is the reason for the use of Strato-
novich stochastic integrals. Thus, despite the “poor” mathematical structure
of the Stratonovich stochastic integral, it has this “nice” property. We will
exploit it when we solve It6 stochastic differential equations.

To get some feeling for the Stratonovich stochastic integral, we consider a
transformation formula which links the It6 and the corresponding Stratonovich
stochastic integrals with the samne integrand process f(B). We assume

T T
/ E[f(B))*dt < o0 and / E[f'(B))Pdt < . (2.39)
0 0

The first condition is needed for the definition of the Stratonovich stochastic
integral St(f(B)) and the Itd stochastic integral IT{f(B)).
First observe that the Taylor expansion

f(By,) = f(Bt._l) +f/(Bt;_|)(By.‘ - Bl._l) + -

holds, where we neglect higher order terms. Thus an appoximating Riemann-
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Stieltjes sum for St(f(B)) can be written as follows:

= Zf(Bti—l)AiB+Zf’(Bti-l)(Byi —By,_,)AB +---
i=1 i=1

= Zf(Bti—l)AiB+Zfl(Bt.'-l)(By: —Bti-x)z
i=1 =1

+ Zfl(Bt.'-x)(By. - Bti—1)(Bti - Byi) + -
i=1

S 4 52 +80 4 ... (2.40)

where we again neglected higher order terms. By definition of the Ito integral,
S has the mean square limit fOT f(Bs)dBs. An application of condition

(2.39) shows that §,(13) has the mean square limit zero, and some calculations
give that
~ 1 (T
S® o - / f(By)dt
2 Jo

in mean square. Combining the mean square convergences of S',(,“ ,1=1,2,3,
we finally obtain the following result from (2.40):

Assume the function f satisfies (2.39). Then the transformation formula
holds:

T T 1 T .
/0 F(Bi) o dB, = /0 f(Bo By + /0 f(Bydt.  (241)

From this formula it is immediate that (S;(f(B)),t € [0, T]) does not constitute
a martingale. Check this by taking expectations in (2.41).

Now take the particular function f(t) = ¢'(t). An application of the Itd
lemma (2.23) to Y; = g(B;) yields

T T
o(Br)-g(Bo) = [ g(Bya +3 [ B
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T 1 T ,
= /Of(Bs)st+§/0 f'(Bs)ds,

and the right-hand side is equal to fOT 9'(B;) o dB;. And so we have:

The Stratonovich stochastic integral satisfies the chain rule of classical
calculus:

T
/0 ¢(B.) o dB, = g(Br) - g(Bo). (2.42)

Notice: this statement does not mean that the Stratonovich stochastic integral
is a classical (i.e. Riemann) integral. We only claim that the corresponding
chain rules have a similar structure.

Example 2.4.3 a) Take g(t) = ¢>. Then g¢'(t) = 2t. We obtain from (2.42)
that

/TBodB—1B2 132—132
o L Tt T T T o T v T

This is in agreement with our previous observations about the value of St(B).
b) Take g(t) = exp{t}. Then g¢'(t) = g(t). We obtain from (2.42) that

T
/ eB'odB,=eBT—eB° =ePr_1.
0

We conclude from the latter relation that the process X; = exp{B}, t € [0, T},
is the Stratonovich exponential. Also recall from Example 2.3.5 that the It
exponential is a totally different process. m]

In what follows, we want to give a transformation formula for the Stratonovich
stochastic integral which is more general than (2.41). There we only addressed
integrand processes C = f(B). Now we assume that the integrand is of the
form

Cy=f(t,Xy), telo,T], (2.43)

where f(t,z) is a function with continuous partial derivatives of order two. The
process X is supposed to be an It6 process (see p. 119) given by the stochastic
differential equation:

t t
Xi =Xy + / a(s,Xs)ds + / b(s, Xs)dBs,
0 o
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where the continuous functions a(t,z) and b(t,z) satisfy the existence and
uniqueness conditions on p. 138. For integrands (2.43) it is not straightforward
how to get an extension of the integral with C = f(B). One possible way
to define the Stratonovich stochastic integral is via approximating Riemann-
Stieltjes sums

§n = Zf(ti_1,0-5 ()(t.-_x + Xl.')) AIB

i=1
The mean square limit fOT f(t, X;)odB; of these Riemann-Stieltjes sums exists
if
T
/ E[f(t,X¢)]*dt < 00.
0

One can show that this definition is consistent with the previous one (with
f(t,z) = f(z), X = B and the approximating Riemann-Stieltjes sums (2.37)).
For later use, we give here another identity:

Under the assumptions on f and X given above, the following transfor-
mation formula holds:

T
/ £(t,X,) o dB, (2.44)
0

- / £t X B+ / b(t, X) folt, X0) dt
0 0

where, as usual, f2(t, z) is the partial derivative of f with respect to z.

From the above discussion it might have become clear that we can define
very different stochastic integrals. For every p € [0, 1], a given partition 7, =
(t;) of [0,T] and a process C adapted to Brownian motion, we can define the
Riemann-Stieltjes sums

n
SV =2 Cup AiB,

i=1

where
yi(p) =tic1 +p(ti —ticy), i=1,...,n.
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If mesh(r,) — 0, the mean square limit of the Riemann-Stieltjes sums S
exists, provided C satisfies some further assumptions. The limit can be con-
sidered as the (p)-stochastic integral of C:

T
1) = o) [ c.am,.

We studied two particular cases: p = 0 (the Itd case) and p = 0.5 (the Strato-
novich case). For non-trivial integrands C the values I(Tp )(C) differ for distinct
ps. For example, using arguments similar to the Ité6 and Stratonovich cases,
one can show that

T 1, 1
(p)—/ Bsstz—BT+(p——> T,

It is also possible to get a transformation formula such as (2.44) in order to
relate the (p)-integrals, p € [0,1], to the corresponding It or Stratonovich
integrals. For applications, the Itd6 and the Stratonovich integrals are most
relevant. The reasons were explained above. See also Chapter 3 on stochastic
differential equations.

Notes and Comments

The Stratonovich stochastic integral was introduced by Fisk, and indepen-
dently by Stratonovich (1966). The mathematical theory of the Stratonovich
integral can be found in Stratonovich (1966); see also Arnold (1973).

Both, the It6 and Stratonovich integrals, are defined in a mathematically
correct way. In applications one has to make a decision about which stochastic
integral is appropriate. This is then a question of modelling; see also the
discussion on p. 150.

In Section 3.2.3 we will use the rules of Stratonovich calculus (i.e. the rules
of classical calculus) for the solution of It6 stochastic differential equations.



3

Stochastic Differential
Equations

This chapter is devoted to stochastic differential equations and their solution.
In Section 3.1 we start with a short introduction to ordinary differential equa-
tions. Stochastic differential equations can be understood as deterministic
differential equations which are perturbed by random noise.

In Section 3.2.1 we introduce It6 stochastic differential equations and ex-
plain what a solution is. It will turn out that stochastic differential equa-
tions are actually stochastic integral equations which involve ordinary and Ito
stochastic integrals. Therefore the notion of “differential equation” might be
slightly misleading, but since it is the general custom to use this term, we
will follow it. In Section 3.2.1 we formulate conditions for the existence and
uniqueness of solutions to Itd stochastic differential equations. In Section 3.2.2
we give a simple method for solving It6 stochastic differential equations. It
is based on the It6 lemma. We continue in Section 3.2.3 with the solution
of Itd stochastic differential equations which are derived from an equivalent
Stratonovich stochastic differential equation.

In Section 3.3 we consider the general linear stochastic differential equa-
tion. It is a special class of stochastic differential equations which have an
explicit solution in terms of the coefficient functions and of the underlying
Brownian motion. Linear stochastic differential equations are relevant in many
applications. We also provide a method for calculating the expectation and
variance functions in this case.

As for deterministic differential equations, it is very exceptional to obtain
an explicit solution to a stochastic differential equation. In general, one has to
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rely on numerical methods; see Section 3.4 for an introduction to this topic.

3.1 Deterministic Differential Equations

The theory of differential equations is the cradle of classical calculus. Such
equations were the motivating examples for the creation of the differential and
integral calculus. The idea underlying a differential equation is simple: we are
given a functional relationship

f(t,z(),2'(t),z"(t),...) = 0, 0<t<T, (3.1)

involving the time ¢, an unknown function z(t) and its derivatives. It is the
aim to find a function z(t) which satisfies (3.1). It is called a solution of the
differential equation (3.1). Hopefully, this solution is unique for a given initial
condition z(0) = zo, say.

The simplest differential equations are those of order 1. They involve only
t, z(t) and the first derivative z’(t). Ideally, such a differential equation is
given in the form

= a(t,z(t)), .’L’(O) = 2o, (3.2)

for a known function a(¢, z). It is standard to write (3.2) in the more intuitive
form
dz(t) = a(t,z(t)) dt, z(0) ==zo. (3.3)

If you interpret z(t) as the location of a one-dimensional particle in space at
time t, (3.3) describes the change of location of the particle in a small time
interval [t,t+ dt], say. Relation (3.3) then tells us that dz(t) = z(t + dt) — z(t)
is proportional to the time increment dt with factor a(t, z(t)). Alternatively,
(3.2) tells us that the velocity z'(t) of the particle is a given function of time
t and location z(t).

Example 3.1.1 (Some simple differential equations)
Assume that the velocity is only a function of ¢:

z'(t) = a(t).

Integration on both sides yields the solution

z(t) = z(0) + /‘ a(s)ds.



3.1. DETERMINISTIC DIFFERENTIAL EQUATIONS 133

This is the simplest form of a differential equation, but it is also a trivial one
because the right-hand side does not depend on the unknown function z(t).

Now assume that the velocity z'(t) is proportional to the location x(t):
z'(t) = cxz(t)

for some constant c¢. Here simple integration does not help. But we know
the solution to this differential equation: it is the exponential function z(t) =
z(0) exp{ct}. o

With an elementary trick one can sometimes solve the differential equation

(3.2).

Example 3.1.2 (Separation of variables)
Suppose that the right-hand side of (3.2) can be separated into a product of
two functions:
z'(t) = a1 (t) ax(z(t)) -
Symbolically, we rewrite this differential equation as

dx

Now integrate both sides:

z(t) dr t
/z(o) &m:/() ai(s)ds. (3.9)

On the left-hand side we obtain a function of z(t), on the right-hand side a
function of t. Hopefully, we obtain an explicit form of the function ().

This approach is justified by differentiating both sides of (3.5) as integrals of
the upper limits. Then we obtain

o)
G~

which is another form of writing (3.4).

We apply this method to the differential equation z'(t) = cz(t) for some

z(0) # 0. Then
z(t) t
/ (—1£ :c/ ds,
z(0) T 0

giving z(t) = z(0) exp{ct}. This is the solution we guessed in Example 3.1.1. O
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From the above discussion we learnt about some of the important aspects of
ordinary differential equations:

o Solutions of differential equations are functions. They describe the
evolution or dynamics of a real-life process over a given period of
time.

e In order to obtain a unique solution, one has to know the initial
condition (0) = zo. If this unique solution z(t) starts from a
point g at the present t = 0, say, the function z(t) is completely
determined in the future, i.e. for ¢t > 0.

e Explicit solutions of differential equations are the exception from
the rule. In general, one has to rely on numerical solutions to
differential equations.

e Integrating both sides of the differential equation (3.2), one obtains
an equivalent integral equation:

z(t) = z(0) +/0 a(s,z(s))ds.

Although this transformed equation is in general not of great use
for finding the solution of (3.4), it gives an idea of how we could
define a stochastic differential equation: as a stochastic integral
equation.

3.2 1Ito6 Stochastic Differential Equations

3.2.1 What is a Stochastic Differential Equation?

Consider the deterministic differential equation
dz(t) = a(t,z(t))dt, z(0)=xo.

The easiest way to introduce randomness in this equation is to randomize
the initial condition. The solution z(t) then becomes a stochastic process
(X, t €[0,T)):

d‘\’t = (I(t, Xt) dt s )(o(u)) = Y(w) .
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Figure 3.2.1 10 solutions X; = Xoe' of the random differential equation dX; =
X dt with initial condition Xo = exp{N}, where N has an N(0,0?) distribution.
Left: 0 = 0.01. Right: ¢ = 0.0001.

Such an equation is called a random differential equation. Its solution does
not require stochastic calculus; we can use the classical methods and adjust
the solution to the corresponding outcome of the initial condition. Random
differential equations can be considered as deterministic differential equations
with a perturbed initial condition. Their investigation can be of interest if one
wants to study the robustness of the solution to a differential equation under
a small change of the initial condition. For example, Figure 3.2.1 shows that
the solution of a differential equation can change quite drastically, even if the
change of the initial condition is small.

For our purposes, the randomness in the differential equation is introduced
via an additional random noise term:

ng = a(t, ){t) dt + b(t, Xt) dBt ’ Xo(UJ) = Y(U.)) . (36)

Here, as usual, B = (B¢,t > 0) denotes Brownian motion, and a(t,z) and
b(t,xz) are deterministic functions. The solution X, if it exists, is then a
stochastic process. The randomness of X = (X;,t € [0,T]) results, on the
one hand, from the initial condition, and on the other hand, from the noise
generated by Brownian motion.

A naive interpretation of (3.6) tells us that the change dX; = X414 — X
is caused by a change dt of time, with factor a(t, X;), in combination with
a change dB; = Byyqt — B: of Brownian motion, with factor b(t, X;). Since
Brownian motion does not have differentiable sample paths (see Section 1.3.1),
the following question naturally arises:
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In which sense can we interpret (3.6) ¢

Clearly, there is no unique answer to this question. But since we know about
It6 calculus, we can propose the following:

Interpret (3.6) as the stochastic integral equation

t t
Xt=x0+/ a(s,Xs)ds+/ b(s,X.)dBs, 0<t<T, (3.7)
0 0

where the first integral on the right-hand side is a Riemann integral, and
the second one is an Ito stochastic integral.

Equation (3.7) is called an Ité stochastic differential equation.

To call equation (3.7) a differential equation is counterintuitive. Its name
originates from the symbolic equation (3.6), but the latter is meaningless unless
one says what the differentials are. We follow the general custom and call (3.7)
an It6 stochastic differential equation.

Brownian motion B is called the driving process of the It6 stochastic
differential equation (3.7).

It is possible to replace Brownian motion by other driving processes, but this
requires to define more general stochastic integrals. This is not a topic of this
book. We refer to the monographs by Chung and Williams (1990) or Protter
(1992) who introduce the stochastic integral with respect to semimartingales.
The latter class of processes contains Brownian motion, but also a large variety
of jump processes. They are useful tools when one is interested in modelling
the jump character of real-life processes, for example, the strong oscillations of
foreign exchange rates or crashes of the stock market.

It is a priori not clear whether the integrals in (3.7) are well defined. For
example, can we ensure that b(s, X;) is adapted to Brownian motion and is
fOT E[b(s, X;)]? ds finite? These are the crucial conditions for the definition of
an It6 stochastic integral; see p. 108. But can one check these conditions if we
do not know the solution X? Soon we will see that there exist simple condi-
tions for the existence and uniqueness of solutions to Itd stochastic differential
equations.

We first attempt the question:

What is a solution of the Ité stochastic differential equation (3.7)?
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Surprisingly, there is no unique answer. We will find two kinds of solutions to
a stochastic differential equation. These are called strong and weak solutions.

A strong solution to the Ité stochastic differential equation (3.7) is a
stochastic process X = (X;,t € [0,7]) which satisfies the following con-
ditions:

e X is adapted to Brownian motion, i.e. at time ¢ it is a function of
B, s<t. °

e The integrals occurring in (3.7) are well defined as Riemann or It6
stochastic integrals, respectively.

e X is a function of the underlying Brownian sample path and of the
coefficient functions a(t,z) and b(t, ).

Thus a strong solution to (3.7) is based on the path of the underlying Brownian
motion. If we were to change the Brownian motion by another Brownian
motion we would get another strong solution which would be given by the
same functional relationship, but with the new Brownian motion in it.

But what is now a weak solution ?

For these solutions the path behavior is not essential, we are only interested
in the distribution of X. The initial condition Xy and the coefficient functions
a(t,z) and b(t,z) are given, and we have to find a Brownian motion such that
(3.7) holds. We mention that there exist Ito stochastic differential equations
which have only weak solutions; see Chung and Williams (1990), p. 248, for
an example.

Weak solutions X are sufficient in order to determine the distributional
characteristics of X, such as the expectation, variance and covariance functions
of the process. In this case, we do not have to know the sample paths of X.

A strong or weak solution X of the Itd stochastic differential equation
(3.7) is called a diffusion. In particular, taking a(t,z) = 0 and b(t,z) =1
in (3.7), we see that Brownian motion is a diffusion process.

In what follows, we only consider strong solutions of Ito stochastic differential
equations.

First we give sufficient conditions for the existence and uniqueness of such
solutions. A proof of the following result can be found, for example, in Kloeden
and Platen (1992), Section 4.5, or in Pksendahl (1985), Theorem 5.5.
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Assume the initial condition Xy has a finite second moment: EXg < 00,
and is independent of (B;,t > 0).

Assume that, for all t € [0,T] and z,y € R, the coefficient functions
a(t,z) and b(t,z) satisfy the following conditions:

e They are continuous.

e They satisfy a Lipschitz condition with respect to the second vari-
able:

la(t, 2) —alt,y)| + [b(t,2) —b(t,y)| < K|z -yl

Then the It stochastic differential equation (3.7) has a unique strong
solution X on [0, T].

Example 3.2.2 (Linear stochastic differential equation)
Consider the Ité stochastic differential equation

t t
X =Xo + / (er Xs+co)ds + / (o) Xs+02) dB;, tE€ [O,T] , (38)
0 0

for constants ¢; and 0,1 = 1,2.

The above conditions are satisfied (check them!) for
a(t,z) =ciz+cy and b(t,z) =012 +o02. (3.9)

An It6 stochastic differential equation (3.8) with linear (in z) coefficient func-
tions a(t,z) and b(t, ) is called a linear Ité stochastic differential equation. In
Section 3.3 we will give the solution of the general linear stochastic differential
equation. By virtue of the above theory, linear stochastic differential equations
have a unique strong solution on every interval [0, T], whatever the choice of
the constants ¢; and o;. m]

3.2.2 Solving It6 Stochastic Differential Equations by the
It6 Lemma

In this section we solve some elementary It stochastic differential equations
by using the Itd lemma. Clearly, the first candidates are linear stochastic
differential equations. They are “simple” and have unique strong solutions on
every finite interval [0, T]; see Example 3.2.2.
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Figure 3.2.3 Sample paths of geometric Brownian motion e(¢™0 o*) e Be yyith ¢ =
0.01. Left: o = 0.01. Right: 0 =0.1.

Example 3.2.4 (Geometric Brownian motion as the solution of a linear It6
stochastic differential equation with multiplicative noise)
Consider the linear Ité stochastic differential equation

¢ ¢
X,:X0+c/ Xsds+o / XsdBs;, te€|[0,7T], (3.10)
0 0

for given constants ¢ and o > 0.

In the second, It6, integral, Brownian motion and the process X are linked in
a multiplicative way. Therefore the It6 stochastic differential equation (3.10) is
also referred to as a linear It6 stochastic differential equation with multiplicative
noise.

From (2.28) we know:

The particular geometric Brownian motion
Xt :XOe(c—0.507)1+aB¢ , t€ [O,T], (3.11)

solves (3.10), and from Example 3.2.2 we conclude that X is the unique
solution of (3.10).

Figure 3.2.3 shows two paths of this process.

Recall how we verified that X satisfies (3.10): we applied the It6 lemma. Now
we are faced with the inverse problem:
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use the Ité lemma to find the solution (3.11) from (3.10).

Suppose X; = f(t, B;) for some smooth function f(¢,z) and recall the It
lemma from (2.26):

t 1 t
X=X+ [ 1080+ 5 pae 8| ds + [ pasBdB.. @12)

The process X is an Itd process, and therefore we may identify the integrands
in the Riemann and It6 integrals, respectively, of (3.10) and (3.12) (see p. 119
for the necessary argument). This together with the continuity of the sample
paths of Brownian motion yields the following system of two partial differential
equations for f (because the partial derivatives of f(t,z) are involved):

eI(62) = filt)+ 5 falta), (3.1

o f(t,z)
From (3.14) we obtain

fa(t,z). (3.14)

o f(t,2) = faa(t, ) .
Thus the two differential equations (3.13) and (3.14) can be simplified:
(c=0.502) f(t,z) = fi(t,z), o f(t,z)= faolt,z). (3.15)
Try to write f(t,z) as a product of two functions:
ft,z) = g(t) h(z).

Then (3.15) becomes

(c—050%)g(t) =g'(t), oh(z)=H(z).
Both of them can be solved by separation of variables (see Example 3.1.2):

9(t) = 9(0)el0%7t h(z) = h(0)e”*.

Thus we obtain 2
£(t,z) = g(0) h(0) elc—0-50 )40z

Now recall that
Xo = f(0,Bo) = £(0,0) = g(0) h(0) .

This finally gives

Xe = f(t,B,) = Xoel« 0370 t+7B ¢ ¢ [0,T],
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which agrees with (3.11).

Thus the solution to an It6 stochastic differential equation can sometimes be
derived as the solution of a (deterministic) partial differential equation. m]

Example 3.2.5 (The Ornstein-Uhlenbeck process)
We consider another linear stochastic differential equation:

t t
Xt=Xo+c/Xsds+a/ dB,, te0,T]. (3.16)
0 0

Equation (3.16) is usually referred to as Langevin equation.

Langevin (1908) studied this kind of stochastic differential equation to model
the velocity of a Brownian particle. This was long before a general theory for
stochastic differential equations existed.
In contrast to (3.10), Brownian motion and the process X are not directly
linked in the It6 integral part of (3.16). In the physics literature, the random
forcing in (3.16) is called additive noise which is an adequate description of
this phenomenon.
Model (3.16) is related to the world of time series analysis. Write (3.16) in the
intuitive form

dXt = CXtdt + O’dBt )

and formally set dt = 1. Then we have
X1 —Xe=cXy + 0(By1 — By)

or
Xiy1 = 0Xy + Z4,

where ¢ = c + 1 is a constant and the random variables Z; = o (B¢y1 — B:)
constitute an iid sequence of N(0,0?) random variables. This is an autore-
gressive process of order 1; cf. Example 1.2.3. This time series model can
be considered as a discrete analogue of the solution to the Langevin equation
(3.16).

To solve (3.16) the following transformation of X is convenient:
Yt = e_“ Xt .
Note that both processes X and Y satisfy the same initial condition:

X():Yo.
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OU process
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Figure 3.2.6 Five sample paths of the Ornstein-Uhlenbeck process (3.17).
Left: Xo =1, ¢=0.1, o = 1. Right: X =10,¢c=-1,0 =1.

Applying the It lemma (2.30) with
ftr)=e"z, fit,2)=—cf(t,z), folt,z) =, faolt,z) =0,

and
AN =cX and A® =g,

we obtain

Vi -Yo

t
/ [fl(syxs) +cX, f'Z(s’ Xs) + %0’2 fZZ(Sst) ds
]

+/ lo f2(s, X5)] dBs

t t
/ [-cYs; +cY; +0]ds + / [ce ¢%]dB,
0 0

t
/ [ce™*]dB;.
0

We conclude:

The process
t
X, =e“Xy + ae“/ e “*dB;. (3.17)
0

solves the Langevin stochastic differential equation (3.16).
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For a constant initial condition Xg, this process is called an Ornstein-
Uhlenbeck process.

Figure 3.2.6 shows several paths of this process.

In order to verify that the process X, given by (3.17), is actually a solution to
(3.16), apply the It6 lemma (2.30) to the process X; = u(t, Z;), where

t
Z, =/ e **dB, and u(t,z)=e"X, + ogez.
0

Moreover, since the Langevin equation is a linear Itd stochastic differential
equation, we may conclude from Example 3.2.2 that X is the unique strong
solution to (3.16).

We verify that the Ornstein-Uhlenbeck process is a Gaussian process. Assume
for simplicity that Xo = 0. Recall from the definition of the It6 stochastic

integral that
t
[ eean,
0

is the mean square limit of approximating Riemann-Stieltjes sums

Sp=)_ e % (B, - Bi,_,)

i=1

for partitions 7, = (¢;) of [0, ¢] with mesh(7,,) — 0. The latter sum has a normal
distribution with mean zero and variance

n
Z e—'lcl.—l (tl - ti—l) . (318)
i=1

(Check this!) Notice that (3.18) is a Riemann sum approximation to the inte-
gral

t
/ e—2cs ds = L (1_6—201) )
0 2

C

Since mean square convergence implies convergence in distribution (see Ap-
pendix Al) we may conclude that the mean square limit X; of the normally
distributed Riemann-Stieltjes sums S,, is normally distributed. This follows
from the argument given in Example Al.1 on p. 186. We have for Xy = 0:

2
EX;=0 and var(X,) = % (e —1) .
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a0
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Figure 3.2.7 Two paths of the two-dimensional process (Bt(l),Bf'n), t € [0,7],
where B and B® are two independent Brownian motions. See Ezample 3.2.8.

Using the same Riemann-Stieltjes sum approach, you can also calculate the
covariance function of an Ornstein-Uhlenbeck process with Xg = 0:

- a? c(t+s) c(t—s)
cov(xs,A,)=2—c(e —e ) s<t. (3.19)

Since X is a mean-zero Gaussian process, this covariance function is charac-
teristic for the Ornstein-Uhlenbeck process. m|

Example 3.2.8 (A stochastic differential equation with two independent driv-

ing Brownian motions)

Let B = (B!" ¢ > 0) be two independent Brownian motions and o, i = 1,2,

real numbers. See Figure 3.2.7 for an illustration of the two-dimensional pro-
(1) p(2)

cess (B, B;™').

Define the process

Et = (af + 0’%)—1/2 (UlBt(l) + U2Bt(2)) .
Using the independence of BY) and B(?, it is not difficult to see that
EE, =0 and cov(1§t,1§s) = min(s, t},

i.e. B has exactly the same expectation and covariance functions as standard
Brownian motion; see p. 35. Hence B is a Brownian motion.

Now consider the integral equation
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t t t
Xt:XU-i-c/ X;ds + o / X,dBM + 02/ X,dB{?
0 0 0

for constants ¢ and ;.

We interpret the latter equation as

t t
Xt _XO = C/ Xsds + / Xsd[O'lBgl) + 02 B§2)]
0 0

t t -
= c/ X,ds + (af+a§)l/2/ X, dB,, (3.20)
0 0

which is an It6 stochastic differential equation with driving Brownian motion
B. From Example 3.2.4 we can read off the solution:

X, = Xpele08(ei+od)lt+(ol+o3)!/?B,

= Xgelem05(ci+od)t+(or B 402 B
In the above definition (3.20) of the stochastic integral we were quite lucky
because X appears as a multiplier in both integrals. Following similar patterns
as for the definition of the It6 stochastic integral, it is also possible to introduce
the stochastic integral

t t
1 1 2 2
/ A gBM) 4 / A® gB?
0 0
for more general processes A{*). Moreover, the Brownian motions B(*) can be
dependent, and it is also possible to consider more than two driving Brownian
motions. O

3.2.3 Solving Ité Differential Equations via Stratonovich
Calculus

In Section 2.4 we introduced the notion of Stratonovich stochastic integral.
We also explained that some of the basic rules of classical calculus formally
remain valid, in particular one can use the classical chain rule. We will exploit
this property to solve some It6 stochastic differential equations.

Analogously to an Ité stochastic differential equation, a Stratonovich sto-
chastic differential equation is a stochastic integral equation

t t
X=X + / a(s, X,)ds + / Bs, Xs)odB,, te[0,T],  (3.21)
0 0
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for given coefficient functions a(¢, z) and b(¢, ). The first integral is a Riemann
integral, and the second one is a Stratonovich stochastic integral. As usual,
B = (B;,t > 0) denotes Brownian motion. A stochastic process X is called
a solution if it obeys (3.21). It is common to write (3.21) in the language of

differentials: _
dX; =a(t, X;)dt + b(t,X;)odB,.

Now assume that X is the solution of the It6 stochastic differential equation
t t
X: = Xo + / a(s, X;)ds + / b(s,Xs)dBs, te€0,T],
0 0
(3.22)

where the coefficient functions a(¢,z) and b(t,z) satisfy the existence and
uniqueness conditions on p. 138.

Recall the transformation formula (2.44) for Stratonovich integrals in terms
of Ité and Riemann integrals:

t t 1 t
/o f(s,Xs)odBy; = /0 f(s,Xs)dBs + 5/0 b(s, Xs) fa(s, Xs) ds.
(3.23)

For f = b we obtain

t 1 t t
/b(s,Xs)stz—E/b(s,Xs)bz(s,Xs)ds + / b(s, Xs) o dB;.
0 0 0
(3.24)

Plugging this relation into (3.22), we arrive at the Stratonovich stochastic
differential equation:

X: = Xo + /Ot'é(s,Xs)ds + /Otb(s,Xs)ost, (3.25)
where
a(t,z) = a(t,z) — %b(t,x) ba(t, ).
The It6 stochastic differential equation (3.22) is equivalent to the Strato-

novich stochastic differential equation (3.25) in the sense that both have
the same strong solution provided it exists for one of them.
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Consider the stochastic process Y; = u(t, X;), where X is the solution to (3.22)
(equivalently, to (3.25)) and u(t,z) is a smooth function. An application of

the Ito lemma (2.30) with A{") = a(t, X;) and A®) = b(t, X,) yields

t 1 t
Y. = Y, + / [U] +aus + 5 b2 UQQ] ds + / bus dB; . (326)
0 0

The functions a, b, v and their derivatives are clearly functions of s and X§,
but we suppress this dependence, in the notation, in order to make the above
formula more compact. An application of the transformation formula (3.23)
for f = bus and fy = bous + bugs yields

t t t
/ b’u,g st = / bu2 (o] st - 1 / [b2u2 + b’u,gg] bds.
0 0 2 [}

Combining this relation with (3.26), we finally obtain:

t t
Y, = Yy + / [u1 + (a - 0.5bb2) ’LLQ] ds + / bug o st
0 0

t t
Yo + / [U1 + 'duz] ds + / bus 0o dBy. (327)
0 0

This formula is the exact analogue of the classical chain rule for a twice
differentiable function u(t, ).

Indeed, assume for the moment that z(t) satisfies the deterministic differential

equation
dz(t) = a(t, z(t)) dt + b(t, z(t)) de(t) ,

where ¢(t) is a differentiable function. Then the classical rules of differentiation
give the following formula:

u(t + dt,z + dx) — u(t, )
= u(t,z)dt + ua(t,z) dz

= [w(t,z) +a(t, z) us(t, z)] dt + b(t, z) ua(t,z) de.

This formal analogy with (3.27) allows one to solve Stratonovich stochas-
tic differential equations by using the rules of classical calculus.




148 CHAPTER 3.

In what follows, we give some examples.

Example 3.2.9 (Solving an It6 stochastic differential equation by solving an
equivalent Stratonovich stochastic differential equation)
Let f be a differentiable function.

A) Consider the It6 stochastic differential equation

1 t , t
Xe = Xo + 3 /0 F(Xs) F(Xs)ds + /O f(Xs)dB,.  (3.28)

Thus )
alt,z) = 5 f(2) f'(z) and b(t,2) = f(2).

The corresponding Stratonovich stochastic differential equation (see (3.25))
with coefficient functions a(t,z) = 0 and b(t, z) is then given by

t
X, = Xo +/ £(X,)odB, .
0

It corresponds to the deterministic differential equation

dz(t) = f(x(t)) de(t) ,

where c(t) is a differentiable function. Using classical separation of variables
(see Example 3.1.2), we obtain

z(t) t

L, e = =) -9 = [ dels) = o) = 00

for some function g(z). Then replace z(t) with X; and c(t) with B,:
9(Xt) — 9(Xo) = Bt

Hopefully, you can solve this equation for X to get an explicit solution of
(3.28).
Now solve the Itd stochastic differential equation

t t
XL=X0+1n/ in-lds + / X?st
2 0 0
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for a positive integer n > 1.
B) A slightly more complicated It6 stochastic differential equation is given by

X, — Xo (3.29)

t 1 . t
= [ara+ gro o) as + [ scxae,

for constant gq.

Notice that

a(t,2) = 4@+ 3 7(@) f1(z) and b(t,7) = f(a).

A3 f

The equivalent Stratonovich stochastic differential equation is

t t
Xo= %o+ [lafx)ds + [ fX)edn.  (330)

This corresponds to the deterministic differential equation

dz(t) = ¢ f(z(t)) dt + f(z(t))de(t), (3.31)

where c(t) is a differentiable function. You can use the principle of separation
of variables to solve this equation:

=(®) I t t
/Z(O) % = g(z(t)) — 9(z(0)) ='/0 qds +/O de(s) = gt + c(t) — c(0)

for some function g(z). You can check the validity of this approach by dif-
ferentiating the integrals on the right- and left-hand sides: you obtain (3.31).
An appeal to the Stratonovich chain rule (3.27) gives us the solution to (3.30),
hence to (3.29), by replacing z(t) with X, and c(t) with By:

9(Xt) — 9(Xo) = qt + B;.

Now consider the following example f(z) =z + 1 for z > 0 and Xo = 0. Then
g(z) =In{l +z) and In(1 + X,) = qt + By, i.e.

X, =-1 +eqt+B¢ ) O
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Notes and Comments

The solution of stochastic differential equations is treated in all textbooks
which are related to Itd calculus; see for example the references on p. 112.

In applications of stochastic differential equations one has to make a de-
cision as to which kind of integral, It6 or Stratonovich, is more appropriate.
There is no clear answer as to which type of differential equation should be
used. Both kinds of equations are mathematically meaningful. The answer
depends on how precisely we intend the noise process in the differential equa-
tion to model the real nojse. Classical calculus is based on classes of smooth
functions, in particular on differentiable functions. Real processes are often
smooth with at least a srhall degree of correlation. This means that the noise
is “sufficiently regular”. In this case it seems reasonable to model the process
by a Stratonovich stochastic differential equation because the rules of classical
calculus remain valid.

3.3 The General Linear Differential Equation

Consider

The General Linear Stochastic Differential Equation:

t t
X, = Xo+/0 [e1(8)Xs+c2(s)] ds+/ [o1(s)Xs+02(s)]dBs, te€[0,T].
0

(3.32)
The (deterministic) coeficient functions ¢; and o; are continuous, hence
bounded on [0,7T], and so it is not difficult to see that the existence
and uniqueness conditions on p. 138 guarantee that (3.32) has a unique
strong solution.

This equation is important for many applications. It is particularly attractive
because it has an explicit solution in terms of the coefficient functions and of
the underlying Brownian sample path. In what follows, we derive this solution
by multiple use of different variants of the Itd lemma.

3.3.1 Linear Equations with Additive Noise
Setting o1 (t) = 0 in (3.32), we obtain
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The Linear Equation with Additive Noise:

t t
X =Xo+ / [l (8)Xs + ca(s))ds + /0 o2(s)dBs, t€]0,T]. (3.33)
0

In terms of differentials it can be written as

dxX; = [Cl(t)Xt + Cz(t)] dt + Ug(t) dB;, te [0, T] .

The process X is not directly involved in the stochastic integral, and therefore
(3.33) gained its name. The solution of (3.33) is particularly simple.

One way to solve a differential equation is to guess its form from some
particular examples. This is perhaps not the most satisfactory approach since
one certainly needs a lot of experience for such a guess. Anyway, let us assume
that

Xt = [y(t)]—ly't ]
where

y(t)=exp{—/0tc1(s)ds} and Y; = f(t,X,),

for some smooth function f(¢,z). An application of the It6 lemma (2.30) on
p. 120 yields

dY; = d(y(t)X:) = co(t)y(t) dt + o2(t)y(t) dBy .

Integrating both sides and noticing that y(0) = 1, hence X, = Y, we obtain

The Solution of (3.33):

t

X, = [y (Xo+ / ex(s)y(s) ds + / 02(S)y(5)d3s)- (3.34)

If Xo is a constant, this defines a Gaussian process. (You can check this
by observing that the stochastic integral is the mean square limit, hence the
limit in distribution, of Riemann-Stieltjes sums which are Gaussian random
variables since the integrand o2 (s)y(s) is deterministic; cf. Example Al.1 on
p. 186.)
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Example 3.3.1 (The Langevin equation)

In Example 3.2.5 we already considered the Langevin equation. This is equa-
tion (3.33) with ¢, (f) = ¢, c2(t) = 0 and o3(t) = o for constants ¢ and ¢. The
solution is given by

t
.\’( = eCt4\'0 + ae“ / e_“ st y te [O,T] .
0

We learnt in Example 3.2.5 that X is called an Ornstein—-Uhlenbeck process
provided X is constant. The covariance function of this Gaussian process is

given in (3.19). O
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Figure 3.3.2 Two sample paths of the Vasicek interest rate model dry = c[p—r¢]dt+
o dB; with o =0.5, o =5.05, . = 5. Left: ¢ =0.2. Right: ¢ = 1. Both graphs show
that r¢ reverts from the initial value ro = 5.05 to the mean value u = 5. The speed
at whach this happens is determined by c.

Example 3.3.3 (The Vasicek interest rate model)

This is one of the standard models for describing the interest rate for borrowing
and lending money when this rate is not assumed to be a constant, but a
random function r; of time ¢. Since 7 may change at every instant of time, r,
is also called the instantaneous interest rate. In the Vasicek model, it is given
by the linear stochastic differential equation

t t
7't:r0+c/[u—rs]ds+or/ dB,, te[0,71], (3.35)
0 0

or in the language of differentials:

dry =clpu-r]dt+odB;, te€l0,T],
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where ¢, 4 and o are positive constants. The rationale of this model is that r;
fluctuates around the value . When r; deviates from p it will immediately be
drawn back to u; one says that r; reverts to the mean u. The speed at which
this happens is adjusted by the parameter ¢. This point is illustrated well
in Figure 3.3.2. This can also be seen from the form of the expectation and
variance functions; see (3.36) and (3.37). The third parameter ¢ is a measure
for the order of the magnitude of the fluctuations of r; around u; see (3.37).
It is called wolatility.

From the general solution (3.34) we can read off the solution to (3.35):
t
re=ree 4 p(l—e") +oe / e°®dB, .
0

We assume that rg is a constant. Then r is a Gaussian process. For u =0 we
obtain an Ornstein—Uhlenbeck process. It is not difficult to calculate

Ery=roe ™ + p(1 —e™ ) (3.36)

and
2

var(ry) = ;—C (1 —e™2¢ty, (3.37)

You can check these formulae by using the results for the Ornstein-Uhlenbeck
process; see Example 3.2.5. Alternatively, you can use the results in Sec-
tion 3.3.4.

Ast — 0o, the random variable r; converges in distribution to an N(u, 02/(2c))
variable. Since r; is Gaussian, it assumes negative values with positive prob-
ability. This property is not very desirable for an interest rate. Nevertheless,
if ¢ is large and 0%/(2c) is small compared with u, r; is unlikely to be pega-
tive; see Figure 3.3.2 for an illustration of sample paths of the Vasicek process.
There are various other models for interest rates which overcome this patholog-
ical property of the Vasicek process; see for example Lamberton and Lapeyre
(1996). |

3.3.2 Homogeneous Equations with Multiplicative Noise

Another special case of the general linear stochastic differential equation (3.32)
is given by
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The Homogeneous Linear Equation:

t t
X =X0+/ Cl(S) Xsd3+/ 01(3)Xsst, t e [O,T], (338)
0 0

or in the language of differentials,
dX, :Cl(t).Xtdt-i—O'l(t)Xt ng, t e [O,T]

Since X; appears as a factor of the increments of Brownian motion, (3.38)
is called a stochastic differential equation with multiplicative noise. It is
called homogeneous because c3(t) = o2(t) = 0 for all t.

Since we may divide both sides of (3.38) by X, then we may assume that
Xo = 1. (The case Xo = 0 corresponds to the trivial case X; = 0 for all ¢
which is not of interest.) Since we expect an exponential form of the solution,
we assume X; > O for all ¢. This allows one to consider ¥; = In X; = f(X;)
and to apply the Ité lemma (2.30) on p. 120 with

fit,r)=lnz, fi(t,x)=0, folt,z)=2z"", foolt,x)=—-z"2.

We obtain
dY; = [c1(t) — 0.507(t)) dt + 01(t) dB; . (3.39)

First integrate both sides of this equation, then take exponentials and finally
correct for the initial value if Xy # 1:

The Solution of the Homogeneous Equation (3.38):

X: = Xoexp {/Ot[cl(s) - 0.50%(s)]ds + /Ot o1(s) st} ,

te(o,7]. (3.40)

You can check that X is a solution (do it!) by applying the Ité lemma to
f(Y:) = Xoexp{Y:}, where dY; is given by (3.39).

Example 3.3.4 (Geometric Brownian motion)
The most prominent example of a homogeneous stochastic differential equation
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with multiplicative noise was treated in Example 3.2.4: ¢;(t) = ¢, 01(t) = o for
constants ¢ and o. We discovered that the geometric Brownian motion

X, = Xoele=05e)theBe 4 0 T],

is the unique strong solution in this case. This agrees with the solution (3.40)
of the general homogeneous stochastic differential equation (3.38). Geomet-
ric Brownian motion is of major importance for applications in finance; see
Chapter 4. O

3.3.3 The General Case

Now we are well prepared to solve the general linear stochastic differential
equation (3.32). We achieve this by embedding (3.32) in a system of twc
stochastic differential equations.

Recall the solution Y of the homogeneous stochastic differential equation
(3.38) with Yy =1. It is given by formula (3.40) (with X replaced by Y).
Consider the two processes

xP =y and XV =X,.

Apply the It6 lemma (2.30) on p. 120 to Y;~! (with f(t,z) = z~!). After some
calculations we obtain

dXV = [—er(t) + o2(8)] XM dt — oy (¢) XV dB, .
An appeal to the integration by parts formula (2.35) yields
d( X XP) = [ea(t) — 01 (D)o ()] XV dt + oo(t) X dBy .

Now integrate both sides and recall that Y5 = 1. Having in mind the particular
forms of Xt(l) and Xtm, we finally arrive at

The Solution of the General Linear Equation (3.32):

X = Y <X0+ /O t[Cz(t) - 01(t)oa(t)]Y, " ds + /0 t az(s)Y;‘st) ;

tel0,T). (3.41)
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Here the process Y is the solution (3.40) of the homogeneous equation
(3.38) (where X has to be replaced with Y) with the initial condition
Yo=1.

As a matter of fact, we also derived the solution of the corresponding deter-
ministic differential equation

dz(t) = [ (t)z(t) + co(t)]dt, te€]0,T].
Simply set 0y (t) = 02(t) = 0 for all t. We will use this fact for calculating the

expectation and second moment functions of X in Section 3.3.4.

3.3.4 The Expectation and Variance Functions of the So-
lution

If we have the explicit solution of a stochastic differential equation we can in
principle determine its expectation, covariance and variance functions. We
were able to proceed in this way for the Ornstein-Uhlenbeck process (see
(3.19) on p. 144) and for geometric Brownian motion (see (1.16) and (1.17)
on p. 42).

In what follows we go another way to calculate

px(t) = EX, and gqx(t) = EX*(t), te€0,7].

Clearly, then we can also calculate 0% (t) = var(X,).
Recall the general linear stochastic differential equation:

t t
X:=Xo +/ [e1(8) X5 + ca(s)] ds +/ [01(s)Xs + 02(s)]dBs, te€0,T].
0 0

Take expectations on both sides and notice that the stochastic integral has
expectation zero; see p. 111. Hence

t
i (®) = ux(©) + [ ler(9) x(s) +cals)] ds.
0
This corresponds to the general linear differential equation for px (t)

Py (t) = c1(t) px (t) + ca(t) .

Bearing in mind the remark at the end of the previous section, we can write
down the solution px of this differential equation in terms of ¢; and ¢;. Derive
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px for the Ornstein-Uhlenbeck process and for geometric Brownian motion
and compare with the known formulae.

Similarly one’can proceed for gx(t). To obtain a stochastic differential
equation for X2, first apply the Itd lemma (2.30) on p. 120:

X? = X(f + /t[sz(Cl(S)Xs +c2(8)) + [01(8) X + 02(s)]*] ds

+ /0 [2X5(01(s)Xs + 02(s))]dBs ,

then take expectations:
t
ax(t) = qx(0)+ /0 [[2c1(s) + 07 (s)] ax () + 2[ea(s) + o1(s)o2(8)] pex (5)

+ a;l(s)] ds.

This is a general linear differential equation for gx(¢) (notice that ux(t) is
known):

gx () = [2c1(t) + 07 (D)]gx (1) + 2fe2(t) + o1 (o2 (t)] ux (¢) + 03 (8)

whose solution can be derived as a special case of (3.41); see the remark at
the end of the previous section. No doubt: the solutions ux and gx look in
general quite messy, but in the case of constant coefficient functions ¢; and o;
you might try to obtain the expectation and variance functions of X.

3.4 Numerical Solution

Stochastic differential equations which admit an explicit solution are the ex-
ception from the rule. Therefore numerical techniques for the approximation
of the solution to a stochastic differential equation are called for. In what
follows, such an approximation is called a numerical solution.

Numerical solutions are needed for different aims. One purpose is to vi-
sualize a variety of sample paths of the solution. A collection of such paths is
sometimes called a scenario. It gives an impression of the possible sample path
behavior. In this sense, we can get some kind of “prediction” of the stochastic
process at future instants of time. But a scenario has to be interpreted with
care. In real life we never know the Brownian sample path driving the stochas-
tic differential equation, and the simulation of a couple of such paths is not
representative for the general picture.
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A second objective (perhaps the most important one) is to achieve reason-
able approximations to the distributional characteristics of the solution to a
stochastic differential equation. They include expectations, variances, covari-
ances and higher-order moments. This is indeed an important matter since only
in a few cases one is able to give explicit formulae for these quantities, and even
then they frequently involve special functions which have to be approximated
numerically. Numerical solutions allow us to simulate as many sample paths
as we want; they constitute the basis for Monte-Carlo techniques to obtain
the distributional characteristics.

For the purpose of illustration we restrict ourselves to the numerical solu-
tion of the stochastic differential equation

dXt = a(Xg) dt + b(Xt) ng , t € [O,T] s (342)

where, as usual, B denotes Brownian motion, and the “differential equation”
is actually a stochastic integral equation. We also assume that the coefficient
functions a(z) and b(z) are Lipschitz continuous. If in addition EX? < oo,
these assumptions guarantee the existence and uniqueness of a strong solution;
see p. 138.

3.4.1 The Euler Approximation

A numerical solution X" = (X,t € [0,T]) of the stochastic differential
equation (3.42) is a stochastic process that approximates the solution X =
(Xt,t € [0,T]) of (3.42) in a sense to be made precise later. Such a solution is
characterized by a partition 7,, of [0, T]:

Th: O=to<ti < - <th 1 <t,=T,
with mesh

8, = mesh(r,) = max (¢ —t;i_1) = max A;.
i=1,...,n i=1,...,n
The process X" is calculated only at the points ¢; of the partition 1,,, and
so one has some freedom to choose X‘™ on the intervals [t;_),#;]. Since we
are interested in solutions X with continuous sample paths we will assume
that X,(") on (t;—1,t;) is obtained by simple linear interpolation of the points
(ti-1, X{",) and (t:, X{").

A numerical approximation scheme determines X (™) at the points ¢;. A
naive way to obtain a numerical solution is to replace the differentials in the
stochastic differential equation (3.42) with differences. This leads to the fol-
lowing iterative scheme:
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The Euler Approximation Scheme:
Denote, as usual,
Aizti—ti_l and AiBth.'_Bt,'_ly i:l,...,n.
Then
Xc(pn) = XOa
X(") — X(n) X(") A bx(") A B
ty - 0 + a‘( 0 ) 1 + ( 0 ) 12,
xM = x4+ ax{Ma, o+ b(XM)AgB,
XM= XM+ ax{M) A+ b(X,) A8,
xM o= xM o axMya. o+ b(X™)AlB.

In practice one usually chooses equidistant points ¢; such that
8, = mesh(r,) =T/n,
and

Xirpn = Xy +a(X(y0) b0+ 6X(20) B,
i=1,...,n. (3.43)
Figures 3.4.1 and 3.4.2 show how the Euler approximation works in practice.
Several questions naturally arise:
(a) In which sense is the numerical solution X" close to the solution X ?
(b) How can we measure the quality of the approzimation of X by X(™ 2

(¢) Is there an approrimation to X which is better than the Euler scheme?

The third question has a positive answer; see Section 3.4.2. The first and
second questions have several answers. If we are interested in the pathwise
approximation of X, we would like that X (™) (w) is “close” to the sample path
X (w) for a given Brownian path B(w). In practice we never know the latter
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Figure 3.4.1 The equidistant Euler scheme (3.43) at work: numerical solutions
(dashed lines) and ezact solution to the stochastic differential equation dX: =
0.01X, dt + 0.01X, dBy, t € [0,1], with Xo = 1.
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path, but we can easily simulate Brownian paths on the computer; see Sec-
tion 1:3.3 for a brief introduction to this topic. As a measure of the quality of
pathwise approximation one can choose the quantity

es(6n) = E|X7(w) - X5 ()] .

Notice that es indeed describes the w-wise (i.e. pathwise) comparison of X and
X at t =T. The index “s” in e, stands for “strong”; a pathwise approx-
imation of X is usually called a strong numerical solution; see below. There
are certainly more appropriate criteria to describe the pathwise closeness of
X and X™; one of them could be Esup,¢jo 1y | X¢(w) — X™(w)|. However,
the latter quantity is more difficult to deal with theoretically. So let us believe
that the paths X(")(w) and X (w) are close whenever they are close at the end
of the interval [0, T].

L

We say that X (") is a strong numerical solution of the stochastic differ-
ential equation (3.42) if

es(d,) - 0 as &, =mesh(r,) > 0.

In contrast to a strong numerical solution, a weak numerical solution aims at
the approximation of the moments of the solution X. In this case it is not
essential how close X;(w) and Xt(”)(w) really are. What matters is that the
difference of moments

ew(0n) = |Ef(XT) — EF(XM)

is small. Here f is chosen from a class of smooth functions, for example certain
polynomials or functions with a specific polynomial growth. We refrain from
discussing these classes of functions because their definitions are technical, and
they also differ in the literature. The “«” in e,, stands for “weak”. As before,
we may wonder why we compare the moments E f(Xr) and Ef(X(T")) only for
t = T, but again, this is for theoretical simplicity.

We say that X(™ is a weak numerical solution of the stochastic differ-
ential equation (3.42) if

ew(6,) >0 as d, =mesh(r,) - 0.
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In order to measure the quality of the approximation of X by X (™ one intro-
duces the order of convergence:

The numerical solution X () converges strongly to X with order v > 0 if
there exists a constant ¢ > 0 such that

es(6,) <cé) for 4, <dg.

The numerical solution X () converges weakly to X with order v > 0 if
there exists a constant ¢ > 0 such that

‘ew(0n) <cb) for 4, <do.

The equidistant Euler approximation (see (3.43)) converges strongly with
order 0.5 and weakly with order 1.0 (for a class of functions with appro-
priate polynomial growth).

3.4.2 The Milstein Approximation

The Euler approximation can be further improved. We illustrate this by in-
troducing the Milstein approrimation. As before, we consider the stochastic
differential equation

t t
xt=x0+/ a(X,,)ds+/ b(Xs)dB,, te[0,T].
[} 0

For the points ¢; of the partition 7, we can consider the difference X;, — X, ,
and obtain:

Xe, =X, +/

tia

t; t;

a(X,)ds + / bB(Xs)dB,, i=1,....n. (3.44)
ti-a

The Euler approximation is based on a discretization of the integrals in (3.44).

To see this, first consider the approximations

t; t;
/ a(X;) ds ~ a(Xy;_,) A, / b(Xs)dB;s = b(X,,_,) AsB,

ti—1 ti—1

and then replace X;, with X\™:

Xy = Xy + (X)) B +5(xM)AB, i=1,...,n.

t ti—y
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The Milstein approximation exploits a so-called Taylor-Ité expansion of
relation (3.44). The idea consists of applying the Itd6 lemma on p. 120 to
the integrands a(X;) and b(X;) in (3.44). To make the formulae below more
compact we write a,b,a’,... instead of a(X,), b(X,),a'(Xy),....

Xe, - Xe, .,
1.‘ s 1 s
= / a(Xy,_,) + / (aa' + —bza"> dy + / ba'dB, | ds
ti—1 ti-1 2 ti—1
t; E] 1 s
+/¢ [b(X,,._l) +/t (ab' + ibzb”) dy +/t bb'dB, | dBs
i—1 i—1 i—-1
= a(Xy_,) A +b(Xy,_,) AiB+ R;, (3.45)
where the remainder term is given by
t; s
Ri=R" + R? = / [ / b'dB, | dB, + R®. (3.46)
tioa ti—a
The double stochastic integral Rz(.l) is then approximated by
t; K]
R~ b(Xy,_, )b (Xei_,) ( / dBy) dB; . (3.47)
ti—a tia

Denote the double integral on the right-hand side by I. The evaluation of I is
quite delicate. Recall from p. 99 that (dB,)? = ds, and therefore

t; t;
/ (st)Z = ds = Ai .
ti—1

ti—1
Consider the double integral

(A;B)? (3.48)

- ([ ) ([ am)= [ ([ ) an.

Alternatively, we interpret the latter integral in a heuristic sense as

t; s t; t; ti
/ < / dBy> dB, + / ( / dBy> dB;, + / (dBy)?
ti—a ti—1 tioa s ti—1
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ti s
= 2 / (/ dBy> dBs + O; = 21 + A;. (3.49)
ti—1 ti-a

Combining (3.47) with (3.48) and (3.49), we have
1
RY 2 b(Xe )V (Xei) [(AB) - A (3.50)

Under mild assumptions on the coefficient functions a(z) and b(z) one can show
that R§2) is small in comparison with Rgl). Thus the latter term determines the
order of magnitude of R;. Relations (3.45) and (3.50) give the motivation for
the definition of the Milstein approximation scheme. Notice that this scheme
is the Euler approximation with an additional correction term containing the
squared increments of Brownian motion.

The Milstein Approximation Scheme:
XM =Xpandfori=1,...,n,

x™M o= xM rax{M)ya+6(x™) B

3BV XD [(AB)? - A

ti—1

The Milstein approximation leads to a substantial improvement of the quality
of the numerical solution:

The equidistant Milstein approximation converges strongly with or-
der 1.0.

This improvement is illustrated well in Figure 3.4.2.

Notes and Comments

The Milstein approximation can be further improved by applying the Itd lemma
to the integrands in the remainder term R;; see (3.46). The form of the nu-
merical solutions then becomes more and more complicated. However, in view
of the power of modern computers, this is not an issue one has to worry about.

Taylor-It6 expansions such as (3.45) involve multiple stochastic integrals.
Their rigorous treatment requires a more advanced level of the theory. This
also concerns the derivation of (3.50); the latter relation was obtained by some
heuristic arguments.
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Figure 3.4.2 A comparison of the equidistant Euler (left column) &nd Milstein
(right column) schemes. In every figure a numerical solution (dashed lines) and
the ezact solution to the stochastic differential equation dX; = 0.01X,dt + 2X,:dB,,
t € [0,1], with Xo = 1 are given. Notice the significant improvement of the approzi-
mation by the Milstein scheme for large n, in particular at the end of the interval.
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The numerical solution of stochastic differential equations is a relatively
new area of applied probability theory. An overview of the existing numerical
techniques is given in Kloeden and Platen (1992) and the companion book by
Kloeden, Platen and Schurz (1994). The latter book aims at the introduction
to stochastic differential equations and their numerical solution via computer
experiments.



4

Applications of Stochastic
Calculus in Finance

Since the celebrated papers by Black and Scholes (1973) and Merton (1973)
the idea of using stochastic calculus for modelling prices of risky assets (share
prices of stock, stock indices such as the Dow Jones, Nikkei or DAX, foreign
exchange rates, interest rates, etc.) has been generally accepted. This led to
a new branch of applied probability theory, the field of mathematical finance.
It is a symbiosis of stochastic modelling, economic reasoning and practical
financial engineering.

In this chapter we consider the Black—Scholes model for pricing a Euro-
pean call option. Do not worry if you do not have much prior knowledge about
economic and financial processes. As a minimum, you will need some words of
economic language, and as a maximum, the Ité lemma. In Section 4.1 we will
explain the basic terminology of finance: bond, stock, option, portfolio, volatil-
ity, trading strategy, hedging, maturity of a contract, self-financing, arbitrage
will be the catchy words. The Black-Scholes formula for pricing a European
call option will be obtained as the solution of a particular partial differential
equation.

Since notions like equivalent martingale measure and change of measure
have become predominant in the financial literature, we give in Section 4.2
a short introduction to this area. This requires some knowledge of measure-
theoretic tools, but, as usual, we will keep the theory on a low level. We hope
that the key ideas will become transparent, and we give a second derivation of
the Black-Scholes formula by using the change of measure ideology.
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4.1 The Black—Scholes Option Pricing Formula

4.1.1 A Short Excursion into Finance

We assume that the price X; of a risky asset (called stock) at time ¢ is given
by geometric Brownian motion of the form

X, = f(t,B;) = Xoelc™03oMt + 0Bt (4.1)

where, as usual, B = (By,t > 0) is Brownian motion, and X is assumed to be
independent of B. The motivation for this assumption on X comes from the
fact that X is the unique strong solution of the linear stochastic differential
equation

t t
X,:X0+C/X,ds+a/XsdB,, (4.2)
0 0
which we can formally write as
dX; =cX;dt + 0 X,dB;.

This was proved in Example 3.2.4. If we interpret this equation in a naive way,
we have on [t,t + dt]:

‘\’H—dt - Xi=cX;dt + o X;dB;.

Equivalently,
Xevar — Xt

Xt

The quantity on the left-hand side is the relative return from the asset in the
period of time [¢,¢ + dt]. It tells us that there is a linear trend cdt which is
disturbed by a stochastic noise term o dB;. The constant ¢ > 0 is the so-called
mean rate of return, and o > 0 is the volatility. A glance at formula (4.1) tells
us that, the larger o, the larger the fluctuations of X;. You can also check
this with the formula for the variance function of geometric Brownian motion,
which is provided in (1.18). Thus o is a measure of the riskiness of the asset.

It is believed that the model (4.2) is a reasonable, though crude, first
approximation to a real price process. If you forget for the moment the term
with o, i.e. assume o = 0, then (4.2) is a deterministic differential equation
which has the well-known solution X; = X exp{ct}. Thus, if ¢ > 0, we should
expect to obtain a randomly perturbed exponential function, and this is the
geometric Brownian motion (4.1). People in economics believe in exponential
growth, and therefore they are quite satisfied with this model.

=cdt + odB;.
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Now assume that you have a non-risky asset such as a bank account. In
financial theory, it is called a bond. We assume that an investment of 3y in
bond yields an amount of

i Bt = Boe™
at time ¢. Thus your initial capital gp has been continuously compounded
with a constant interest rate r > 0. This is an idealization since the interest
rate changes with time as well. Note that 3 satisfies the deterministic integral
equation

t
B =fo + r/o 8,ds. (4.3)

In general, you want to hold certain amounts of shares: a; in stock and
b; in bond. They constitute your portfolio. We assume that a; and b, are
stochastic processes adapted to Brownian motion and call the pair

(a‘tabt), te [OvT]’

a trading strategy. Clearly, you want to choose a strategy, where you do not
lose. How to choose (ay, b¢) in a reasonable way, will be discussed below. Notice
that your wealth V; (or the value of your portfolio) at time t is now given by

Vi=a: X+ b0

We allow both, a; and b, to assume any positive or negative values. A negative
value of a; means short sale of stock, i.e. you sell the stock at time ¢. A negative
value of b; means that you borrow money at the bond’s riskless interest rate r.
In reality, you would have to pay transaction costs for operations on stock and
sale, but we neglect them here for simplicity. Moreover, we do not assume that
a; and b; are bounded. So, in principle, you should have a potentially infinite
amount of capital, and you should allow for unbounded debts as well. Clearly,
this is a simplification, which makes our mathematical problems easier. And
finally, we assume that you spend no money on other purposes, i.e. you do not
make your portfolio smaller by consumption.

We assume that your trading strategy (at, b;) is self-financing. This means
that the increments of your wealth V; result only from changes of the prices
X: and B; of your assets. We formulate the self-financing condition in terms
of differentials:

dVy = d(as Xt + 0 3) = ac dXy + by dBy

which we interpret in the It sense as the relation

t t t
Vt—Vo=/ d(asxa+bsﬂs)=/ 0, dX, + / by dB, .
0 0 0
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The integrals on the right-hand side clearly make sense if you replace d X s with
cXsds+0X,dBs, see (4.2), and dfs with 73, ds, see (4.3). Hence the value V;
of your portfolio at time ¢ is precisely equal to the initial investment Vp plus
capital gains from stock and bond up to time t.

4.1.2 What is an Option?

Now suppose you purchase a ticket, called an option, at time { =0 which
entitles you to buy one share of stock until or at time T, the time of maturity
or time of expiration of the option. If you can exercise this option at a fixed
price K, called the ezxercise price or strike price of the option, only at time of
maturity T, this is called a Furopean call option. If you can exercise it until
or at time T, it is called an American call option. Note that there are many
more different kinds of options in the real world of finance but we will not be
able to include them in this book.

The holder of a call option is not obliged to exercise it. Thus, if at time T'
the price X7 is less than K, the holder of the ticket would be silly to exercise
it (you could buy one share for X7$ on the market!), and so the ticket expires
as a worthless contract. If the price X7 exceeds K, it is worthwhile to exercise
the call, i.e. one buys the share at the price K, then turns around and sells it
at the price X for a net profit X7 — K.

In sum, the purchaser of a European call option is entitled to a payment

of
Xr—-K, if Xr>K,

(XT—K)+ =max(0,XT—K) =
0, if Xr<K.

See Figure 4.1.1 for an illustration.

A put is an option to sell stock at a given price K on or until a particular
date of maturity . A European put option is exercised only at time of maturity,
an American put can be exercised until or at time T. The purchaser of a
European put makes profit

K-Xr, if Xr<K,

K - Xg)* =
(= Xo) {0, if Xr>K.

In our theoretical considerations we restrict ourselves to European calls. This
has a simple reason: in this case we can derive explicit solutions and compact
formulae for our pricing problems. Thus,

from now on, an option is a European call option.
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Figure 4.1.1 The value of a European call option with ezercise price K at time of
maturity T.

As an aside, it is interesting to note that the situation can be imagined col-
orfully as a game where the reward is the payoff of the option and the option
holder pays a fee (the option price) for playing the game.

Since you do not know the price X7 at time ¢t = 0, when you purchase the
call, a natural question arises:

How much would you be willing to pay for such a ticket, i.e. what is a
rational price for this option at time t =0 7

Black, Scholes and Merton defined such .a value as follows:

e An individual, after investing this rational value of money in stock
and bond at time ¢ = 0, can manage his/her portfolio according to
a self-financing strategy (see p. 169) so as to yield the same payoff
(Xt — K)* as if the option had been purchased.

o If the option were offered at any price other than this rational value,
there would be an opportunity of arbitrage, i.e. for unbounded
profits without an accompanying risk of loss.
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4.1.3 A Mathematical Formulation of the Option Pricing
Problem

Now suppose we want to find a self-financing strategy (a:, b¢) and an associated
value process V; such that

Vi=a X +b B =u(T -t X)), te€[0,T],

for some smooth deterministic function u(t,z). Clearly, this is a restriction:
you assume that the value V; of your portfolio depends in a smooth way on
t and X;. It is our aim to find this function u(t,z). Since the value Vr of
the portfolio at time of maturity T shall be (X7 — K)*, we get the terminal
condition

VT = ’U.(O, XT) = (XT - K)+ . (44)

In the financial literature, the process of building a self-financing strategy such
that (4.4) holds is called hedging against the contingent claim (X1 — K)*.

We intend to apply the It6 lemma to the value process V; = u(T — t, X;).
Write f(t,z) = u(T — t,z) and notice that

Htz) = -u(T -t,z), fot,z) =w(T -t,z), [l z)=1un(T-tz).
Also recall that X satisfies the It6 integral equation

t t
Xt=X0+c/Xsds+a/XsdB,-.
0 0

Now an application of the Ito lemma (2.30) with A1) = ¢ X and A® =¢ X
yields that

Vi-Vo = f(t,X:) — f(0, Xo)

¢
/ [f1(s, Xs) 4 ¢ X5 fa(s, Xs) +0.50% X2 fa2(s, Xs)] ds
0

t
+ / [0 X, fa(s, X5)] dB,
0

t
/ [~ui(T = 5, X;) + ¢ X5 ua(T — 5, Xs)
0
+0.50% X2 upo(T — 5, X;)]ds

+ /t [0 Xsuy(T — s, X,)] dB, . (4.5)
0
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On the other hand, (a¢,b;) is self-financing:
t t
Vt—V():/ asdXs + / bs dBs . (4.6)
0 0
Since B; = foe™,
dﬂt = rﬂge’"t dt = T‘ﬂt dt. (47)
Moreover, ‘/t = Xt + bt ,Bt, thus
_ Vi—a Xy
B

Combining (4.6)-(4.8), we obtain another expression for

t t
—a, X
/asts + / Mrﬂsds
0 0 ﬂs

¢ t
/a,dXs +/7'(Vs—asXs)ds
0

0

b, (4.8)

Vi—Vo

t

t t
= / casXsds+/ oas XsdBg +/ (Ve —as; Xs)ds
0 0 0

/t[(c—r)asXs+er]ds+ /t[aasXs]st. (4.9)
0 . 0

Now compare formulae (4.5) and (4.9). We learnt on p. 119 that coefficient
functions of It processes coincide. Thus we may formally identify the inte-
grands of the Riemann and It6 integrals, respectively, in (4.5) and (4.9):

a = u(T—-tXt), (4.10)
(e—maXi+ru(T —-t, X)) = (c—r)w(T-t,X) Xs +ru(T —t,X;)
= —uy (T -1, X)) +cXeu(T —-t,Xy)
+0.50% X} upa(T — t, X) .

Since X; may assume any positive value, we can write the last identity as a’
partial differential equation (“partial” refers to the use of the partial derivatives
of u):

ui(t,z) = 0.50°7%us(t,z) +rzus(t,z) —ru(t,z), (4.11)

z>0,t€[0,T].
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Recalling the terminal condition (4.4), we also require that
Vr =u(0,Xr) = (X7 - K)*.
This yields the deterministic terminal condition

u(0,z) =(z - K)*, z>0.

4.1.4 The Black and Scholes Formula

CHAPTER 4.

(4.12)

In general, it is hard to solve a partial differential equation explicitly, and so
one has to rely on numerical solutions. So it is somewhat surprising that the
partial differential equation (4.11) has an explicit solution. (This is perhaps
one of the reasons for the popularity of the Black—Scholes—Merton approach.)
The partial differential equation (4.11) with terminal condition (4.12) has been
well-studied; see for example Zauderer (1989). It has the explicit solution

u(t,z) =z ®(g(t,z)) — Ke "™ ®(h(t, 1)),

where
In(z/K)+ (r +0.50?%)¢t
slto) = oti/? ’
h(t,z) = g(t,z) -at'/?,
and

1 T
&(z) = (27,.)1/2/ e”¥/?dy, zeR,

is the standard normal distribution function.
After all these calculations,

— 00

what did we actually gain?

Recalling our starting point on p. 171, we see that

price K.

portfolio at time ¢ € [0, T7].

Vo = u(T, Xo) = Xo ®(9(T, Xo)) — K e™"" &(h(T, Xo)) (4.13)

is a rational price at time ¢t = 0 for a European call option with exercise

The stochastic process V; = u(T" —t, X;) is the value of your self-financing
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The self-financing strategy (at, b¢) is given by

(T —1t,X¢) —ar X,

ar = us(T —t,X,) and b = = 3 ,
t

(4.14)

see (4.10) and (4.8).

At time of maturity T, the formula (4.13) yields the net portfolio value of
(X1 — K)*. Moreover, one can show that a; > 0 for all t € [0,T], but b < 0
is not excluded. Thus short sales of stock do not occur, but borrowing money
at the bond’s constant interest rate r > 0 may become necessary.

Equation (4.13) is the celebrated Black-Scholes option pricing formula.
We see that it is independent of the mean rate of return ¢ for the price
X¢, but it depends on the volatility o.

If we want to understand ¢ = u(T, Xp) as a rational value in terms of arbi-
trage, suppose that the initial option price p # ¢. If p > ¢, apply the following
strategy: at timet =0

o sell the option to someone else at the price p, and

¢ invest g in stock and bond according to the self-financing strategy (4.14).

Thus you gain an initial net profit of p — ¢ > 0. At time of maturity T, the
portfolio has value ar X7 + by 8r = (X7 — K)™, and you have the obligation
to pay the value (X7 — K)* to the purchaser of the option. This means: if
Xt > K, you must buy the stock for X7, and sell it to the option holder at
the exercise price K, for a net loss of X7 — K. If X7 < K, you do not have to
pay anything, since the option will not be exercised. Thus the total terminal
profit is zero, and the net profit is p — q.

The scale of this game can be increased arbitrarily, by selling n options
for np at time zero and by investing ng in stock and bond according to the
self-financing strategy (na;,nb;). The net profit will be n (p — ¢). Thus the
opportunity for arbitrarily large profits exists without an accompanying risk
of loss. This means arbitrage. Similar arguments apply if ¢ > p; now the pur-
chaser of the option will make arbitrarily big net profits without accompanying
risks.

Notes and Comments

The idea of using Brownian motion in finance goes back to Bachelier (1900),
but only after 1973, when Black, Scholes and Merton published their papers,



176 CHAPTER 4.

did the theory reach a more advanced level. Since then, options, futures and
many other financial derivatives have conquered the international world of
finance. This led to a new, applied, dimension of an advanced mathematical
theory: stochastic calculus. As we have learnt in this book, this theory requires
some non-trivial mathematical tools.

In 1997, Merton and Scholes were awarded the Nobel prize for economics.

Most books, which are devoted to mathematical finance, require the knowl-
edge of measure theory and functional analysis. For this reason they can be
read only after several years of university education! Here are a few references:
Duffie (1996), Musiela and Rutkowski (1997) and Karatzas and Shreve (1998),
and also the chapter about finance in Karatzas and Shreve (1988).

By now, there also exist a few texts on mathematical finance which address
an elementary or intermediate level. Baxter and Rennie (1996) is an easy
introduction with a minimum of mathematics, but still precise and with a good
explanation of the economic background. The book by Willmot, Howison and
Dewynne (1995) focuses on partial differential equations and avoids stochastic
calculus whenever possible. A course on finance and stochastic calculus is given
by Lamberton and Lapeyre (1996) who address an intermediate level based on
some knowledge of measure theory. Pliska (1997) is an introduction to finance
using only discrete-time models.

4.2 A Useful Technique: Change of Measure

In this section we consider a very powerful technique of stochastic calculus: the
change of the underlying probability measure. In the literature it often appears
under the synonym Girsanov’s theorem or Cameron-Martin formula.

In what follows, we cannot completely avoid measure-theoretic arguments.
If you do not have the necessary background on measure theory, you should
at least try to understand the main idea by considering the applications in
Section 4.2.2.

4.2.1 What is a Change of the Underlying Measure?

The main idea of the change of measure technique consists of introducing
a new probability measure via a so-called density function which is in
general not a probability density function.

We start with a simple example of two distributions on the real line. Recall
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the probability density of a normal N(u,0?) random variable:

exp{—M} , T€R,

202

1
Pu,o2 (I) = \/ﬂo
and write .
(pu.az (1) = / Pu,o? (y) dy, S R)
—00

for the corresponding distribution function. Consider two pairs (u;,0?) and
(u2,03) of parameters and define

= Ly o) = R
Obviously, .
b0t@ = [ W)@y, (4.15)
and ”
B, 03(2) = / £2(4) @ 02 dy - (4.16)

The function f, is called the density function of ®,,, o2 with respect to @, ,2,
and f, is the density function of &, 02 With respect to & p1.0? . Clearly, f; and
f2 are not probability densities; they are positive functions, but the integrals
[%2, fi(z) dz, i = 1,2, are not equal to 1.

Now we consider a more general context:

Let P and @ be two probability measures on the o-field F. If there
exists a non-negative function f, such that

Q(A) = /A filw)dP(w), A€F, (4.17)

we say that f, is the density of Q with respect to P and we also say that
Q is absolutely continuous with respect to P.

The integrals in (4.17) have to be interpreted in the measure-theoretic sense.
In a similar way, changing the roles of P and @, we can introduce the
density fo of P with respect to @), given such a non-negative function exists.

If P is absolutely continuous with respect to @, and @ is absolutely con-
tinuous with respect to P, we say that P and Q are equivalent probability
measures.
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From (4.15) and (4.16) we may conclude that two Gaussian probability mea-
sures on the real line are equivalent.

For a characterization of absolute continuity via the Radon-Nikodym the-
orem, see Appendix A5.

As usual, B = (B;,t € [0,T]) denotes standard Brownian motion. The
definition of Brownian motion on p. 33 heavily depends on the underlying
probability measure P. Indeed, for the definition of the independent, sta-
tionary increments of B and for its Gaussian distribution we must know the
probability measure P on the o-field F. Usually, we do not pay attention to
this fact, P is simply given, but in what follows, it will be a crucial aspect.
For example, consider the one-dimensional distribution function P(B; < ),
z € R It is the distribution function of an N(0,t) random variable, but if we
were to change P for another probability measure ), this function could differ
from a normal distribution function. At the moment, this remark may sound a
little abstract, but we will see soon that the change of measure is a very useful
technique.

We are interested in processes of the form

Elth+qt7 tE[O,T], (418)

for some constant q. With the only exception when ¢ = 0, B is not standard
Brownian motion. However, if we change the underlying probability measure
P for an appropriate probability measure (), B can be shown to be a standard
Brownian motion under the new probability measure (). This simply means
that B satisfies the defining properties of a standard Brownian motion on
p. 33, when you replace P with Q. This is the content of the following famous
result; see for example Karatzas and Shreve (1988) for a proof. As usual,

-Tt = U(BS)S S t) ’ te [OvT] ’ (419)

is the Brownian filtration.

Girsanov’s Theorem:

The following statements hold:

e The stochastic process
1
Mt =exp{—qB¢ - 5 q2t} , te [O,T], (420)

is a martingale with respect to the natural Brownian filtration
(4-19) under the probability measure P.
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e The relation
Q(A) = / Mr(w)dP(w), A€eF, (4.21)
A

defines a probability measure @@ on F which is equivalent to P.

e Under the probability measure ), the process B defined by (4.18)
is a standard Brownian motion.

e The process B is adapted to the filtration (4.19).

The probability measure () is called an equivalent martingale measure.

The change of measure serves the purpose of eliminating the drift term in a
stochastic differential equation. This will be seen in the applications below.
We illustrate this fact by the following simple example.

Example 4.2.1 (Elimination of the drift in a linear stochastic differential
equation)
Consider the linear stochastic differential equation

dX; =cX;dt+0X,dB,, te[0,T], (4.22)

with constant coefficients ¢ and ¢ > 0. We know from Example 3.2.4 that this
equation has solution

X, = Xoele05M4eBe 4 e [0,T]. (4.23)

Introduce _
B, = By + (¢/o)t, t€]0,T],

and rewrite (4.22) as follows:
dX; = oX,d[(c/o)t + 0 B] =0X,dB,, te[0,T]. (4.24)

By Girsanov’s theorem, B is a standard Brownian motion under the equivalent
martingale measure given by (4.21) with ¢ = ¢/o. The linear stochastic differ-
ential equation (4.24) does not have a drift term; its solution X is a martingale
under @, but it is not a martingale under P. You can read off the solution X
of (4.24) from (4.23) (choose ¢ = 0 and replace B with B):

—_ 2 B
Xt — Xoe 0.50°t+a B,

= X, elc=0.50%)t+0B, , te[0,T].
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This is the solution to the original stochastic differential equation (4.22) driven
by B.
It seems that we did not gain much. However, if we had known the solution
(4.23) only for ¢ = 0, we could have derived the solution of (4.23) for general ¢
from the solution in the case ¢ = 0. Moreover, since X is a martingale under @,
one can make use of the martingale property for proving various results about
X. We will use this trick for pricing a European call option in Section 4.2.2.
)

4.2.2 An Interpretation of the Black—Scholes Formula by
Change of Measure

In this section we review the Black-Scholes option pricing formula. We will
show that it can be interpreted as the conditional expectation of the discounted
overshoot (X7 — K)* at maturity.

First recall:

The Black—Scholes Model

e The price of one share of the risky asset (stock) is described by the
stochastic differential equation

dX; =cX;dt + 0 X;dB, , te€ [0, T] s (425)

where ¢ is the mean rate of return, o the volatility, B is standard Brow-
nian motion (under P) and T is the time of maturity of the option,

e The price of the riskless asset (bond) is described by the deterministic
differential equation

dﬂtz‘l‘ﬂgdt, tE[O,T],
where r > 0 is the interest rate of the bond.

e Your portfolio at time t consists of a; shares of stock and b; shares of
bond. Thus its value at time ¢ is given by

Vt=atXt+bt,3g, tE[O,T].
e The portfolio is self-financing, i.e.

th:atht+b¢d[3¢, tG[O,T]
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e At time of maturity, V7 is equal to the contingent claim h(Xt) for a
given function h. For a European call option, h(x) = (x — K)*, where K
is the strike price of the option, and for a European put option, h(z) =
(K —x)t.

In Section 4.1.4 we derived a rational price for a European call option
and showed that there exists a self-financing strategy (as, b:) such that Vr =
(Xt — K)*. In what follows, we give an intuitive interpretation of this pricing
formula by applying the Girsanov theorem.

If we were naive we could argue as follows. Your gain from the option at
time of maturity is (X7 — K)*. In order to determine the value of this amount
of money at time zero, you have to discount it with given interest rate r:

e " T( Xt —K)*. (4.26)

We do not know X7 in advance, so let’s assume that X satisfies the linear
stochastic differential equation (4.25), and simply take the expectation of (4.26)
as the price for the option at time zero.

This sounds convincing, although we did not use any theory. And because
we did not apply any theory we will see that we are slightly wrong with our
arguments, i.e. we do not get the Black—Scholes price in this way. It will turn
out that the rational Black-Scholes price is the expected value of (4.26), but
we will have to adjust our expectation by changing the underlying probability
measure; see (4.29) for the correct formula.

This change of the probability measure P will be provided in such a way
that the discounted price of one share of stock

X,=e X, te[0,T],
will become a martingale under the new probability measure ). Write
flt,z) =e "z
and apply the It lemma (2.31) on p. 120 (notice that f»(t,z) = 0) to obtain
dX; = -—re "X;dt+e " dX, (4.27)
= —re”"'X;dt +e "' X{[cdt + 0 dB,]
= X/[(c—r)dt +0dB]

= oX,dB,, (4.28)
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where 5

By =B;+[(c—1)/o]t, te[0,T].
From Girsanov’s theorem we know that there exists an equivalent martingale
measure ¢} which turns B into standard Brownian motion. The solution of
(4.28), given by _

Xg = Xvo 8_0'502t+aB' , tE [O,T] N

turns under () into a martingale with respect to the natural Brownian filtration.
The existence of the equivalent martingale measure allows for an intuitive
interpretation of the Black—Scholes formula:

Assume in the Black-Scholes model that there exists a self-financing
strategy (a¢, b;) such that the value V; of your portfolio at time t is given
by

Vi ='a¢X¢ +btﬂt, t e [O,T],
and that Vr is equal to the contingent claim A(X7).
Then the value of the portfolio at time ¢ is given by

Vi = Eo [e—f<T-” h(X1) |f,} , telo,T], (4.29)

where Eg(A| F;) denotes the conditional expectation of the random vari-
able A, given F; = 0(B;, s < t), under the new probability measure Q.

Until now, the conditional expectation E(A|F;) = Ep(A|F:) was always
defined under the original probability measure P, and so we did not indicate
this dependence in our notation.

First we want to show that (4.29) is correct, and then we will use (4.29)
to evaluate the price of a European call option.

Consider the discounted value process

Vi=e ™V, =e ™ (ayXs + bfy) .
The It6 lemma (2.31) yields
dVy = —rVydt +e ™ dV;.
Now we use the fact that (a;, b;) is self-financing together with (4.27):
dV, = —re " (a; Xy + bB)dt +e " (ar d X, + by dBy)
= ay(—re "X, dt +e T dX;)

= qdX;. (4.30)
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Notice that Vy = Vp. From (4.30) and (4.28) we have

¢
i\ = Vo+/ast,
0

t
Vo +a/ asX,dB,. (4.31)
0

Under the equivalent martingale measure Q, B is standard Brownian motion
and the process (a;X¢,t € [0,T]) is adapted to (F3,t € [0,T]). Hence (4.31)
constitutes a martingale with respect to (F;). This is one of the basic properties
of the Itd integral; see p. 111. In particular, the martingale property implies
that - -

‘/t:EQ(VTI‘Tt), te[O’T]’

but

-~

Vr=e T Vpr=e T h(X7).
Hence
e Y, = Eq [e_’Th(XT) | ]—}] R

or, equivalently, the value of the portfolio is given by (4.29).
Now we want to calculate the value V; of our portfolio and the Black-
Scholes price in the case of a European option.

Example 4.2.2 (The value of a European option)
Write
6=T-t for te[0,T].
By (4.29), the value V; of the portfolio at time ¢ corresponding to the contingent
claimm Vr = h(Xr) is given by

Vi = Eq[e™h(Xr)| F]
= Eo [e-rah (Xt e(r—0.502)0+a(ér—§.)> ‘ }-t] )

At time ¢, X; is a function of B¢, hence o(X;) C F¢, and so we can treat it
under F; as if it was a constant. Moreover, under Q, Br — B is independent
of F; and has an N(0,8) distribution. An application of Rule 7 on p. 72 yields
that

‘/t = f(ta Xt) »
where

— *° r— 02 oyf?!
f(t,z)=e re/ h(a:e( 0.50%)0+0y0 /2) o(y)dy
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and ¢(y) denotes the standard normal density. For a European call option,
h(z) = (z — K)* = max(0,z - K),

and so

f(t,z) / [xe—0.5029+ay9‘/2 _ K—e—rﬁ] So(y)dy

—a
= z®(z) - Ke ™®(z2y),
where ®(z) is the standard normal distribution function,

In(z/K) + (r + 0.502)8
0-91/'2

2= and 2z = 2; — 08'/?.
This is exactly the formula (for t = 0) that we derived on p. 174 for the rational
price of a European call option.

The price of the European put option (with A(z) = (K — z)*) can be
calculated in the same way with

fit,z) = Ke "®(—z5) —z®(—2,).

Verify this formula! O

Notes and Comments

The derivation of the Black—Scholes price via a change of the underlying mea-
sure (also called change of numeraire) was initiated by the fundamental paper
by Harrison and Pliska (1981). Since then this technique belongs to the stan-
dard repertoir of mathematical finance; see for example Karatzas and Shreve
(1998), Lamberton and Lapeyre (1996) or Musiela and Rutkowski (1997). The
interpretation of the Black-Scholes formula as a conditional expectation and
related results can be found in any of these books.

A proof of Girsanov’s theorem can be found in advanced textbooks on
probability theory and stochastic processes; see for example Kallenberg (1997)
or Karatzas and Shreve (1988).



Appendix

A1l Modes of Convergence

The following theory can be found for instance in Feller (1968), Karr (1993)
or Loeve (1978).

We introduce the main modes of convergence for a sequence of random
variables A, A;, Ao, .. ..

Convergence in Distribution

The sequence (A,) converges in distribution or converges weakly to the

random variable A (A, 4, A) if for all bounded, continuous functions f
the relation
Ef(A,) - Ef(A), n— oo,

holds.

Notice: A, 2, A holds if and only if for all continuity points z of the distri-
bution function F4 the relation

Fa,(z) = Fa(z), n— o0, (A1)

is satisfied. If F4 is continuous then (A.1) can even be strenghtened to uniform
convergence:
sup |Fa,(z) — Fa(z)| -0, n—o0.
T
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It is also well known that convergence in distribution is equivalent to pointwise
convergence of the corresponding characteristic functions:

An -5 A ifand only if Ee'A~ — Eei*4 for all t.

Example Al.1 (Convergence in distribution of Gaussian random variables)

Assume that (A,) is a sequence of normal N(up,02) random variables.

First suppose that y, — p and 02 — o2, where x and o2 are finite numbers.
Then the corresponding characteristic functions converge for every ¢t € R:

EeitAn — gitiin —0.502¢2 itp—0.502t2 )

- e
The right-hand side is the characteristic function of an N(u,0?) random vari-

able A. Hence A, 4 A
Also the converse is2 true. If we know that A, 4, A, then the characteristic
functions e?t#n —0-50.t" necessarily converge for every t. From this fact we con-

clude that there exist real numbers p and ¢ such that pp, — p and 02 — o2.
This implies that A is necessarily a normal N (g, 0?) random variable. 0O

Convergence in Probability

The sequence (A,) converges in probability to the random variable A
(A, ity A) if for all positive € the relation

P(|[A, —A|>€)—=0, n— oo,

holds.

Convergence in probability implies convergence in distribution. The converse
is true if and only if A = a for some constant a.

Almost Sure Convergence

The sequence (A,) converges almost surely (a.s.) or with probability 1 to
the random variable A (A, 22 A) if the set of ws with

An(w) = Alw), n — o0,

has probability 1.
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This means that

P(An = A) = P({w: Apn(w) = Aw)}) =1.

Convergence with probability 1 implies convergence in probability, hence con-
vergence in distribution. Convergence in probability does not imply conver-

gence a.s. However, A, Py 4 implies that A,, 22 A for a suitable subse-
quence (ng).

LP-Convergence

Let p > 0. The sequence (A,) converges in LP or in pth mean to A
(An £ A) if E[|An|P + |A|P] < oo for all n and

E|A, - AP >0, n— .

By Markov’s inequality, P(|A, — A| > €) < e"PE|A,, — A|P for positive p and €.

Thus A4, 4 implies that A, £, A. The converse is in general not true.

For p = 2, we say that (A,) converges in mean square to A. This notion
can be extended to stochastic processes; see for example Appendix A4. Mean
square convergence is convergence in the Hilbert space

L2 =L, F,Pl={X: EX? < 0}

endowed with the inner product < X,Y >= E(XY) and the norm || X|| =
V (X, X). The symbol X stands for the equivalence class of random variables

Y satisfying X 4y,
A2 Inequalities

In this section we give some standard inequalities which are frequently used in
this book.

The Chebyshev inequality:

P(|X -EX|>z) < z7%var(X), z>0.
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The Cauchy—Schwarz inequality:

E|XY| < (EX%)Y? (EY?)!/2.

The Jensen inequality:
Let f be a convex function on R. If E|X| and E|f(X)| are finite, then

f(EX) < Ef(X).

In particular,
(E|X|)Y? < (E|X[))/P for 0<g<p.

This is Lyapunov’s inequality.
Jensen’s inequality remains valid for conditional expectations: let F be a
o-field on Q. Then
fEX|F)) £ E(f(X)|F). (A.2)

In particular,

|E(X | F)| < E(X||F) and [E(X|F) < B(X?|F).

A3 Non-Differentiability and Unbounded Va-
riation of Brownian Sample Paths

Let B = (B;,t > 0) be Brownian motion. Recall the definitions of an H-self-
similar process from (1.12) on p. 36 and of a process with stationary increments
from p. 30. We also know that Brownian motion is a 0.5-self-similar process
with stationary, independent increments; see Section 1.3.1. We show the non-
differentiability of Brownian sample paths in the more general context of self-
similar processes.

Proposition A3.1 (Non-differentiability of self-similar processes)
Suppose (Xy) is H-self-similar with stationary increments for some H € (0,1).
Then for every fized to,
X:— X
lim sup M =00,

tito t—to
i.e. sample paths of H-self-similar processes.are nowhere differentiable with
probability 1. '
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Proof. Without loss of generality we choose ¢o = 0. Let (¢,) be a sequence
such that ¢, | 0. Then, by H-self-similarity, Xo = 0 a.s., and hence

P<lim sup | = >z) = IimP<sup >z
N0 g<s<t, | S n—0oo 0<s<tn | $
. X
> limsup P < LR a:)
n—00 n

= limsup P (tJ7'| X1 > z)
n—o0

= 1, z>0.
Hence, with probability 1, limsup,,_, . | X:, /tn| = 0o for any sequence ¢, | 0.
a
Proposition A3.2 (Unbounded variation of Brownian sample paths)
For almost all Brownian sample paths,
n
v(B(w)) = sup ZIBH(“") - By, (w)| = o0 as.,
T =1
where the supremum is taken over all possible partitions 7 : 0 = t9 < -+ <

tn = T of [0,T).

Proof. For convenience, assume T = 1. Suppose that v(B(w)) < oo for a given
w. Let (7,) be a sequence of partitions 7, : 0 =ty < t; < - < tp_y <tp =1,
such that mesh(7;,) = 0. Recall that A;B = By, — By,_,. The following chain
of inequalities holds:

Qn(w) = ) (ABw))?
i=1
< max |AB(W) ;miB(w)l
< v max |ABW)| v(Bw)- (A.3)

Since B has continuous sample paths with probability 1, we may assume that
By(w) is a continuous function of t. It is also uniformly continuous on [0, 1]
which, in combination with mesh(r,) — 0, implies that max;—;, n»|A;B(w)| =
0. Hence the right-hand side of (A.3) converges to zero, implying that

Qn(w) — 0. (A.4)
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On the other hand, we know from p. 98 that @, i 1, hence Qn, (w) 2%
for a suitable subsequence (ny); see p. 187. Thus (A.4) is only possible on a

null-set, and so
P({w: v(B(w)) = 00}) = 1. a

A4 Proof of the Existence of the General Ito
Stochastic Integral

In this section we give a proof of the existence of the It6 stochastic integral.
This requires some knowledge of the spaces L? of square integrable functions
and of measure-theoretic arguments. If you think this is too much for you, you
should avoid this section, but a short glance at the proof would be useful. We
do not give all the details; sometimes we refer to some other books.

As usual, B = (B;,t > 0) is Brownian motion, and (F;,t > 0) is the cor-
responding natural filtration. Let C = (Ci,t € [0,T]) be a stochastic process
satisfying the Assumptions on p. 108, which we recall here for convenience:

e (C is a function of By, s <'t.
. fOT EC? <.

All stochastic processes are supposed to live on the same probability space
[Q, F, P] (P is a probability measure on the o-field F).

Lemma A4.1 If C satisfies the Assumptions, then there erists a sequence
(C™) of simple processes (see p. 101 for the definition) such that

T
/ E[C, —C{™]%ds — 0. (A.5)
0

A proof can be found, for example, in Kloeden and Platen (1992), Lemma 3.2.1.
Thus simple processes C(™ are dense in the space L?[Q x [0,T],dP x
dt]. Relation (A.5) means exactly this: in the norm of this space, C can be
approximated arbitrarily well by simple processes C(™).
As usual, denote by

t
I,(C<ﬂ>)=/ c{™dB,, tel0,T],
0

the Itd stochastic integral of the simple process C(™. It is well defined as a
Riemann-Stieltjes sum; cf. (2.11).
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Lemma A4.2 Under the Assumptions, the following relation holds for all
n,k € N:

T
E sup [L(C™®) - (C"2 <4 E / [C"P —cM2ae. (A6)
0<t<T 0

Proof. Both, I(C(™) and I(C{"+¥)) are martingales with respect to Brownian
motion, hence I(C(*+k)) — [(C(W) = [(C("+k) — C(") is a martingale with
respect to (Fy).

For a general martingale (M, (*;)) on [0,T], Doob’s squared maximal in-
equality (see for example Dellacherie and Meyer (1982), Theorem 99 on p. 164)
tells us that

E sup M? < 4 EM}.
0<t<T

In particular,

E sup [L(C™R — Cc)2 < 4 E[Ip(CR) — c(™))2. (A7)
0<t<T

By the isometry property (2.14), applied to the simple process I(C(*+*) —C(n)),
the right-hand side becomes

T
4E / [Cinth) _ o™z gt
0

which, together with (A.7), proves (A.6). a

Since (A.5) holds, (C(™) is a Cauchy sequence in L?[Q2 x [0, T}, dP x dt]. This
implies, in particular, that the right-hand side in (A.6) converges to zero. Thus
we can find a subsequence (k,), say, such that

1
E sup [L(C*+) —COP < —
0<t<T 2

This and the Chebyshev inequality on p. 187 imply that, for every € > 0,

P ( sup |I,(Ckn+1)) — [,(Ck)y| > e)

el 0<t<T

1 o0
< 6_2 ZE sup [It(c(k..u)_c(k,.))]z < co.

=1 OSt<T
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An appeal to the Borel-Cantelli lemma (see for example Karr (1993)) yields
that the processes I(C¥»)) converge uniformly on [0, T} to a stochastic process
I(C), say, with probability 1. Since the (uniformly) converging processes have
continuous sample paths, so has the limiting process I(C).

Now, letting k in (A.6) go to infinity, we conclude that

T
E sup [L(C) - L(C™)] <4 E/ [Cr—C™M2at.
0

0<t<T

By Lemma A4.1, the right-hand side converges to zero as n — 00, and so we
have proved that the limit I(C) does not depend on the particular choice of
the approximating sequence (C(™) of simple processes.

The limit process I(C) is the desired Itd stochastic integral process,
denoted by

t
I,(C):/ CsdB;, te€[0,T].
0

Its sample paths are continuous with probability 1.

Lemma A4.3 The pair (I(C),(F:)) constitutes a martingale.

Proof. We know that (I(C™), (F;)) is a martingale (see p. 104) for all n. In
particular, it is adapted to (F;). This does not change in the limit. Moreover,
for all n,

E(I,(C"™) | F,) = I,(C™) for s<t.

Using Lebesgue dominated convergence and, if necessary, passing to a sub-
sequence (k,) such that I,(C*»)) converges to I;(C) uniformly for ¢, with
probability 1, we obtain

lim E(L(C*™)|F,) = E(lim L(C*)|F)=E(C)|F)

lim I,(C*)) = I,(C).

n—00
Hence I(C) is a martingale. |

Lemma A4.4 The Ité stochastic integral I(C) satisfies the isometry property

t 2 t
E (/ Cs st> = / EC’,2 ds, te€[0,T]. (A.8)
0 0
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Proof. We know that I(C'™) satisfies this property; see (2.14). By (A.6),
(A.5) and since the L2-norm is continuous,

E[L(C™)P = E[L(C™ -C)+ L(C) = E[L(C) +o(1),
fy E[CiPds = [ E[(C™ = Cs) + Cs?ds = [, EC2ds +o(1).

Since the two left-hand sides coincide, by the isometry property for I(C(™),
we obtain as n — oo the desired isometry relation (A.8). )

Lemma A4.5 For a simple process C, the particular Riemann-Stieltjes sums
in the definition (2.11) coincide with the It stochastic integral I(C).

The proof makes use of the fact that simple processes C(™ are dense in the
underlying L2-space.

A5 The Radon—Nikodym Theorem

Let [, F'] be a measurable space, i.e. F' is a o-field on Q. Consider two
measures u and v on F'. We say that u is absolutely continuous with respect
tov (ugv)if

forall A€ F': v(A) =0 implies that u(A4) = 0.

We say that u and v are equivalent measures if u € v and v < p.

The Radon—Nikodym Theorem:

Assume p and v are two o-finite measures. (This is in particular satisfied
if they are probability measures.) Then p < v holds if and only if there
exists a non-negative measurable function f such that

u(A) = /A fwydvw), AeF.

If this relation holds with f replaced by another non-negative function
g, then

v(f#9)=0.

The v-almost everywhere unique function f is called the density of u
with respect to v.

For a proof of this result, see Billingsley (1995) or Dudley (1989), Section 5.5.
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A6 Proof of the Existence and Uniqueness of
the Conditional Expectation

Let [, F, P] be a probability space, i.e. F is a o-field on  and P is a
probability measure on F. Consider the o-field ' C F and denote by P’ the
restriction of P to F'. Let X be a random variable on (2.

Theorem A6.1 If E|X| < oo, then there ezists a random variable Z such
that

(a) 0(Z2) C F' and
(b) for all A€ F',

/AZ(w)dP(w):/AX(w)dP, AeF.

If (a) and (b) hold with Z replaced by another random variable Z' then
P(Z#2')=0. (A.9)

We call Z the conditional ezpectation of X given the o-field F', and we write
Z=EX|F).

Proof. A) Assume that X > 0 P-a.s. Consider the (smaller) probability space
[, F', P'] and define the measure

:/X(w)dP(w), AeF.
A

If P(A) =0, then XI4 =0 P-as., and so v(A) = E(XI4) = 0. Hence v K P’,
where both measures, P’ and v, are defined on F'. By virtue of the Radon-
Nikodym theorem on p. 193, there exists a non-negative random variable Z on
[Q, F'] such that

v(A) = /AZ(w)dP'(w), Ae F,

and the random variable Z is unique in the sense of (A.9). Moreover, recalling
the definition of the integral and using that ¢(Z) C F', one can show that
J4 Z2(w)dP'(w) = [, Z(w) dP(w).

B) Assume that E|X| < 0o. Write X = X+ — X~ where Xt = max(0, X)
and X~ = —min(0,X). Apply the first part of the theorem to X* and X~
separately. It yields two non-negative random variables Z* and Z~ such that
(a) and (b) hold if we replace Z by them. Moreover, EX* = EZ* < 0o since
E|X| = EX* 4+ EX~ < co. Hence Z* < oo P-as., and so we can define
Z = Z* — Z~ which is the desired random variable. O
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of two measures 177, 193
- density function 177, 193
- equivalent measures 177, 193
- Radon-Nikodym theorem
193
Adapted stochastic process 77
— with respect to the Brownian
filtration 78
Adapted to Brownian motion 78
Additive noise
in a stochastic differential
equation 141, 150
Almost sure (a.s.) convergence 186
American call
— see option
Arbitrage 171, 175
ARMA process
(autoregressive moving avera-
ge) 25
a.s. (almost sure, almost surely)
Autocorrelation 22
Autoregressive process 26

Binomial distribution 9
Black and Scholes model 168, 180
— arbitrage 171, 175
- bond 169
- consumption 169
— contingent claim 172, 181
- and geometric Brownian mo-
tion 168
— hedging 172
- mean rate of return 168
— option
— — American call 170
— — European call 170

— — European put 170
- - exercise (strike) price
170
- — rational price of an op-
tion 171
- — time of maturity (expi-
ration) 170
— portfolio 169
- trading strategy 169
- self-financing strategy 169
— short sale 169
- stock 168
- transaction costs 169
- volatility 168
Black and Scholes option pricing
formula 174
- as conditional expectation of
the discounted contingent
claim 182,183
- rational price of an option
171
Bond 169
Borel set
— see Borel o-field
Borel o-field 64
Borel-Cantelli lemma 192
Bounded variation 39
- and Brownian motion 39
- p-variation 94
- and Riemann-Stieltjes inte-
gral 92
Brownian bridge 40
Brownian filtration 78
Brownian motion 33
— Brownian bridge 40
— covariance function 35
— distribution 35
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— and Donsker invariance prin-
ciple (FCLT) 47

— with drift 41

- expectation function 35

- functional central limit the-
orem 47

- geometric Brownian motion
42

— as a martingale 82

- non-differentiable sample
paths 36, 188

— path properties 36

- — non-differentiability 36
— — unbounded variation 39

— and p-variation 95

— quadratic variation 98

— self-similarity 36

- simulation 44

— unbounded variation 39, 189

Brownian motion with drift 41

Call option
- see option
Cameron-Martin formula
- see Girsanov’s theorem
Cauchy-Schwarz’s inequality 188
Chain rule
— classical 113
— It6 lemma 114, 117
- transformation formula for
Stratonovich integral
126, 128
Change of measure 176
- absolute continuity of mea-
sures 177, 193
— and the Black—Scholes for-
mula 182
— density function 177, 193
- equivalent martingale mea-
sure 179
- equivalent measures 177, 193
— Girsanov’s theorem 178
— Radon-Nikodym theorem
193
Central limit theorem (CLT) 45
- FCLT 47
Chebyshev’s inequality 13, 187
CLT (central limit theorem) 45

INDEX

Colored noise 44
Conditional distribution function
a7
Conditional expectation 56, 67
— classical 58
— conditional distribution
function 57
— conditional probability 56
— under discrete condition
56, 68
— existence and uniqueness 194
- and martingales 80
— projection property 74
— rules for calculation 70
- given a o-field 68
Conditional probability 56
Consumption 169
Contingent claim 172, 181
Continuous distribution 9
- density 11
Continuous random variable 9
Continuous-time stochastic process
23
Convergence modes 185
- almost sure (a.s.) convergen-
ce 186
— convergence in distribution
185
- convergence in,LP 187
— - mean square convergence
187
— convergence in probability
186
- convergence with probability
one 186
- weak convergence 185
Correlation 18
- and dependence 21
— — and Gaussianity 21
Covariance 18
Covariance function
of a stochastic process 28
Covariance matrix
of a random vector 18

Density (probability density)
~ Gaussian (normal)
— — multivariate 17
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— — one-dimensional 11
— of a random variable 11
— of a random vector 16
- — marginal density 16
Density function
- and absolute continuity
177, 193
— equivalent measures 177, 193
- Radon-Nikodym theorem
193
Differential equation
— deterministic 132
- initial condition 134
- It6 stochastic differential
equation 134
- random differential equation
135
- solution 132
- — strong 137
- — weak 137
- Stratonovich stochastic dif-
ferential equation 145
Diffusion 137
Discounted price 181
Discrete distribution 9
Discrete random variable 9
- conditional expectation
given a discrete random
variable 56
- o-field generated by a dis-
crete random variable 64
Discrete-time stochastic process 23
- time series 25
Distribution
- binomial 9
- continuous 9
— — density 11, 16
— discrete 9
— exponential 32
- Gaussian, normal
— — multivariate 17
— — one-dimensional 11
— Poisson 9
- of a random variable 8
- of a random vector 16
— of a stochastic process 27
- - fidis 27
- symmetric 21
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— uniform 11
Distribution function
- of a random variable 8
- of a random vector 15
Donsker invariance principle 47
Doob’s inequality 191
Drift
— Brownian motion with drift
42
Driving process of a SDE 136
— SDE with two driving pro-
cesses 144

Equivalent measures 177, 193
— and the Black-Scholes for-
mula 182 ’
- equivalent martingale mea-
sures 179
- — Girsanov’s theorem 178
Euler approximation 158
European call/put option
- see option, Black—Scholes
Exercise price
— see option
Expectation
— of a random variable 12
- of a random vector 17
Expectation function
- of a stochastic process 28
Exponential distribution 32

Fair game
- and martingales 84
FCLT (functional central limit the-
orem) 47
Fidis (finite-dimensional distributi-
ons) 27
Filtration 77
- adapted stochastic process
77
— Brownian 78
- natural 77
Finance
— see Black and Scholes
Finite-dimensional distributions
(fidis) of a stochastic process
27
— of a Gaussian process 27
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Functional central limit theorem
(FCLT) 47
— Donsker invariance principle
47

Gaussian (normal) distribution
— multivariate
- — density 17
— — with independent com-
ponents 21
— — under linear transforma-
tions 18
— one-dimensional
— — density 11
— standard normal 11
Gaussian process 27
— Brownian bridge 40
— Brownian motion 33
—~ Brownian motion with drift
41
- colored noise 44
- fidis 27
— Ornstein—-Uhlenbeck process
142, 152
— self-similar 36
— stationary 30
— Vasicek interest model 152
— white noise 44
Gaussian random variable, randem
vector
- see Gaussian distribution
General linear stochastic differen-
tial equation 150
— with additive noise 151
- expectation and covariance
functions 156
- homogeneous 153
— with multiplicative noise 153
- solution 155
Generation of o-fields
from a collection of sets 63
Geometric Brownian motion 42
— and the Black—Scholes for-
mula 168
- covariance function 43
- expectation function 42
- and It6 stochastic differential
equation with multiplica-

INDEX

tive noise 118, 139
Girsanov’s theorem 178
- equivalent martingale mea-
sure 179

Haar functions 51
— Lévy representation of Brow-
nian motion 51
Hedging 172
Homogeneous linear stochastic dif-
ferential equation 153
Homogeneous Poisson process
- see Poisson process

iid (independent and identically
distributed) 22
Increment of a stochastic process
- process with independent in-
crements 30
— process with stationary in-
crements 30
— process with stationary, in-
dependent increments
— — Brownian motion 33
— — Poisson process 32
Independence
- of events 20
- of Gaussian variables 21
— — and uncorrelatedness 21
— of random variables 20
- of a sequence of random vari-
ables 22
- —1iid 22
Inequalities 187
— Cauchy-Schwarz 188
— Chebyshev 187
— Doob 191
— Jensen 188
Information
— carried by arandom variable,
a random vector or a sto-
chastic process 66
Initial condition
- of a differential equation 134
- of a random differential equa-
tion or a SDE 135
Integral equation 134
Integrals



INDEX

- ordinary (Riemann) 88
- Riemann-Stieltjes 92
- stochastic 87
- - 1t6 96
— — Stratonovich 123
Integration by parts formula 122
— extended It lemma 121
Intensity of a Poisson process 32
Interest rate
— Vasicek model 152
Intermediate partition 88
Isometry property
of the It6 integral
— for general processes 111
— for simple processes 106
It6 exponential 116, 118
It6 formula
— see It6 lemma
It6 integral
~ see Itd stochastic integral
It6 lemma
(Itd chain rule, It6 formula)
— and classical chain rule 113
— extended versions
117, 120, 121
- and integration by parts 122
- and It6 stochastic differential
equations 138
— simple version 114
It6 process 119
It6 stochastic differential equation
136
— driving process 136
- equivalent Stratonovich dif-
ferential equation 146
— initial condition 135
- and It6 integral equation 136
— linear 138
— — with additive noise
141, 150
— — geometric Brownian mo-
tion 139
— — homogeneous 153
— — with multiplicative noise
139, 153
— — Ornstein—-Uhlenbeck pro-
cess 142, 152
- solution
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— —existence and uniqueness
138
- — strong 137
- — weak 137
~ with two independent driv-
ing processes 144
It6 stochastic integral 96
— existence 190
— for general processes 107
- — assumptions on the inte-
grand process 108
— — properties 111, 190
— isometry 106, 111
- It6 lemma 114, 117
- as a martingale 104, 111
— relation to Stratonovich sto-
chastic integral
- — transformation formula
126, 128
— for simple processes 101
— — properties 105

Jensen’s inequality 188

Langevin equation 141, 152
Law of large numbers 7
Lévy representation
of Brownian motion 51
— Haar functions 51
— Schauder functions 52
Lévy-Ciesielski representation
of Brownian motion 52
Linear stochastic differential
equation 138
— with additive noise 141, 150
— general 150
- — with additive noise 150
— — expectation and covari-
ance functions 156
— — homogeneous 153
— — with multiplicative noise
153
— — solution 155
- geometric Brownian motion
139
- Langevin equation 141
- with multiplicative noise
139, 153
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— Ornstein—Uhlenbeck process
142, 152
- Vasicek model 152
Lipschitz condition 138
Log-return 10

Marginal density 16
Martingale 77
- adapted stochastic process 77
- continuous-time 80
- discrete-time 80
— equivalent martingale measu-
re 179
— - Girsanov’s theorem 178
- examples
- — partial sums of indepen-
dent random variables 81
— — Brownian motion 82
- — Ité stochastic integral
104, 111
- — martingale transform 82
— as a fair game 84
- filtration 77
- — Brownian 78
- — natural 77
Martingale difference sequence 80
Martingale transform 82
— Brownian 83
— predictable (previsible)
sequence 83
Maturity
- time of maturity (expiration)
of an option 170
Mean, mean value
- see expectation
Mean rate of return 168
Mean reversion
— see Vasicek interest model
Mean square convergence 187
Measure
— see probability measure
Mesh of a partition 89
Milstein approximation 162
— Taylor-It6 expansion 163
Modes of convergence
- see convergence modes
Moment
of a random variable 12

INDEX

Moving average process 25
Multiplicative noise
of a linear stochastic differen-
tial equation 139, 153

Natural filtration 77
Normal distribution
— see Gaussian distribution
Numerical solution of a stochastic
differential equation 157
— Euler approximation 158
— Milstein approximation 162
- order of convergence 162
— strong 161
- Taylor-It6 expansion 163
- weak 161

Option
— American call 170
— Black and Scholes formula
174, 182, 183
- contingent claim 172, 181
— European call 170
- European put 170
— exercise (strike) price 170
- time of maturity (expiration)
170
Order of convergence
of a numerical solution to a
SDE
- strong solution 162
— weak solution 162
Ornstein—Uhlenbeck process
142, 152
- covariance function 144
- as a Gaussian process 143
Outcome space 6

Paley—Wiener representation
of Brownian motion 51
Partition of an interval 88
- intermediate partition 88
— mesh of a partition 89
Poisson distribution 9
Poisson process 32
- intensity (rate) 32
Portfolio 169
Power set 63
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Predictable (previsible) sequence 83
- martingale transform 82
Previsible
— see predictable
Probability, probability measure 7
- change of measure 176
Projection property
of the conditional expectation
74
— best prediction 74
Put option
- see option
p-variation of a function 94
— of Brownian motion 95

Quadratic variation
of Brownian motion 98

Radon-Nikodym theorem 193

— absolute continuity of two

measures 177, 193

- density function 193

- equivalent measures 177, 193
Random differential equation 135
Random variable 6

— continuous 9

- density 11

— discrete 9

- distribution 8

— distribution function 8

- expectation 12

- moment, 12

— standard deviation 13

- variance 12
Random vector 14

— correlation 18

— covariance matrix 18

- density 16

- distribution 16

— distribution function 15

— expectation 17

- Gaussian 17
Rate of return 168
Rational price of an option

— see Black-Scholes
Realization of a stochastic process

~ see sample path
Rectangle in R™ 65
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Return
- log-return 10
- mean rate of return 168
- relative 168
- volatility 168
Riemann (ordinary) integral 88
— properties 91
- Riemann sum 88
Riemann-Stieltjes integral 92
- and bounded variation 93
- Riemann-Stieltjes sum 93
Riemann-Stieltjes sum 93
Riemann sum 88
Rules for the calculation
of conditional expectations 70

Sample path
of a stochastic process
(trajectory) 23
Schauder functions 52
- Lévy representation of Brow-
nian motion 51
SDE (stochastic differential equati-
on) 131
Self-financing strategy 169
Self-similar process 36
- Brownian motion 36
- non-differentiable sample
paths 188
Separation of variables 133
Series representations
of Brownian motion
- Lévy 51
- Lévy-Ciesielski 52
- Paley-Wiener 51
Short sale 169
o-algebra
- see o-field
o-field 6, 62
~ Borel o-field 64
- conditional expectation
given a o-field 67, 68
- filtration 77
- generated from a collection
of sets 63
- generated by a
— — discrete variable Y 64
- — random vector Y 65



206

— — stochastic process Y 66
— information contained in a o-
field 66
Simple process 101
Simulation
of Brownian motion 33
— via the FCLT 47
— via the Lévy representation
51
— via the Lévy—-Ciesielski rep-
resentation 52
- via the Paley-Wiener repre-
sentation 51
Solution
of a differential equation 132
Solution
of a stochastic differential
equation
- existence and uniqueness 138
— numerical 157
- — strong 161
- - weak 161
— - strong 137
- — weak 137
S&P index 10, 22, 26, 25
Standard Brownian motion 33
Standard deviation 13
Standard normal distribution 11
Stationary increment process 30
- process with independent in-
crements 30
— — Brownian motion 33
— — Poisson process 32
Stationary stochastic process
— Gaussian 30
- strictly stationary 29
- in the wide sense
(second order stationary)
30
Stochastic chain rule
— see It6 lemma
Stochastic differential equation
(SDE)
— see It6 SDE
— see Stratonovich SDE
Stochastic integral 87
— 1t 96
— Stratonovich 123

INDEX

Stochastic integral equation
— see stochastic differential
equation
Stochastic process 23
- continuous-time 23
— covariance function 28
— discrete-time 23
— distribution 27
— expectation function 28
— finite-dimensional distributi-
ons (fidis) 27
- Gaussian 27
— — Brownian bridge 40
— — Brownian motion 33
— — Brownian motion with
drift 41
— — Ornstein—Uhlenbeck
process 142, 152
— geometric Brownian motion
42
— with independent increments
30
— Poisson process 32
— realization 23
— sample path 23
— self-similar 36
— stationary
— — Gaussian 30
— — strictly stationary 29
— — in the wide sense
(second order stationary)
30
— with stationary increments
30
- with stationary, independent
increments
— - Brownian motion 33
— — Poisson process 32
— time series 25
- - ARMA process 25
— — autoregressive process 26
— - moving average process
25
— trajectory 23
~ variance function 29
Stock 168
Stratonovich exponential 127
Stratonovich integral 123
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- and chain rule 126
- relation to It stochastic in-
tegral
- - transformation formula
126, 128
Stratonovich stochastic differential
equation 145
— equivalent It6 stochastic dif-
ferential equation 146
Strictly stationary stochastic pro-
cess 29
Strike price
— see option
Strong numerical solution
of a stochastic differential
equation 161
- order of convergence 162
Strong solution
of a stochastic differential
equation 137
Symmetric distribution 21

Taylor-It6 expansion 163
Tied down Brownian motion

- see Brownian bridge
Time of maturity

— see option
Time series 25

- ARMA process 25

- autoregressive process 26

- moving average process 25
Trading strategy 169

- self-financing strategy 169
Trajectory of a stochastic process

— see sample path
Transaction costs 169
Transformation formula

for It6 and Stratonovich inte-

grals 126, 128

Uniform distribution 11

Variance

of a random variable 12
Variance function

of a stochastic process 29
Variation
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— see bounded variation, p-va-
riation, quadratic variati-
on

Vasicek interest rate model 152

- expectation and covariance

functions 153
Volatility 168

Weak convergence 185
Weak solution
of a stochastic differential
equation 137
Weak numerical solution
of a stochastic differential
equation 161
— order of convergence 162
Wealth
- see portfolio
White noise 44
Wiener process
— see Brownian motion



List of Abbreviations and
Symbols

I have tried as much as possible to use uniquely defined abbreviations and
symbols. In various cases, however, symbols can have different meanings in
different sections. The list below gives the most typical usage. Commonly
used mathematical symbols are not explained.

Symbol Explanation P-
B, B, Brownian motion 33
Bin(n,p) binomial distribution with parameters n and p 9
CLT central limit theorem 45
corr{X,Y) correlation of the random variables X and Y 18
cov(X,Y) covariance of the random variables X and Y 18
ex(t, s) covariance function of the process X 28
A; length t; — t;_y of the interval [ti—l7 ti]
A f increment of the function f on [t;_1,#]:

Aif = f(t:) — flti-1)
EX expectation of the random variable X 12
EX expectation of the random vector X 17

E(X|Y) conditional expectation of the random variable X, given
the random variable, the random vector or the stochastic

process Y 69
E(X|F)  conditional expectation of the random variable X given

the o-field F 68
Ezp()) exponential distribution with parameter A 32
FCLT functional central limit theorem 47
fidis finite-dimensional distributions of a stochastic process 27

fi.fij: fijr  partial derivatives of f with respect to the ith, 7, jth,
t, j, kth variables



Inx
L

L*(F)
mesh(7)
Hx
px(t)
HX
N(p,0?)
N(p, %)

N(0,1)

[Q,F, P]

P(A)
Px

Px
P(Q)

SYMBOLS

o-fields

density of the random variable X

density of the random vector X

distribution function of a random variable

distribution function of the random variable X
distribution function of the random vector X

indicator function of the set (event) A

1t6 stochastic integral of the process C

independent, identically distributed

for a sequence of real numbers a,, infa, = —sup,(—a,).
The supremum is defined below. For a finite index set I,
infpes an = mingey, an.

logarithm with basis e

space of (equivalence classes of) random variables Z with
E|ZP < 00

space of (equivalence classes of) random variables Z with
EZ? < 0o and 0(Z) C F for a given o-field F on Q.
mesh of the partition 7

expectation of the random variable X

expectation function of the stochastic process X
expectation of the random vector X

set of the positive integers

set of the non-negative integers

Gaussian (normal) distribution with mean p and
variance o?

multivariate Gaussian (normal) distribution with mean p
and covariance matrix ¥

standard normal distribution

w € ) outcome of the space Q

outcome space

empty set

probability space

probability measure

probability of the event A

distribution of the random variable X

or the stochastic process X

distribution of the random vector X

power set of Q2

density of the standard normal distribution

standard normal distribution function

62
11
16

8
15
58

109
22

187

74
89
12
28
17

11

17

(=

190

27
16
63
11
11
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Poi())

< Ul(a, b)
var(X)

QN M
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Poisson distribution with parameter A 9
real line
n-dimensional Euclidean space
Stratonovich integral of the process C 124
variance of the random variable X 12
variance function of the process X 28
covariance matrix of the random vector X 17
o-field generated by the collection of sets C 63
o-field generated by a random variable, a random vector
or a stochastic process Y 66
a = sup,, a,: the supremum of a sequence of real numbers
an. fa € R, a > a, for all n and for every € > 0 there
exists a k such that a — € < ag. If a = o0, then for every
M > 0 there exists a k such that ar > M. For a finite
index set I, sup, ¢ an = MaXpes Gn.
uniform random variable on (a, b) 11
variance of the random variable X 12
random variable or stochastic process
random vector
set of integers
a(z) = b(z) means that a(r) is approximately (roughly) of
the same order as b(z). It is only used in a heuristic sense.
integer part of
fractional part of x
zt = max(0, z)
z~ = — min(0, z)
transpose of the vector x
complement of the set A
An 255 A: as. convergence 186
Ap 4 A convergence in distribution 185
A, o4 convergence in LP, pth mean convergence 187
Ap —I—“i) A: convergence in L?, mean square convergence 187
A, £ a4 convergence in probability 186

A £ B: the random elements (random variables, random
vectors, stochastic processes) A and B have the same
distribution, i.e. P(4 € C) = P(B € C) for all suitable
sets C. For random variables and random vectors A, B this
means that their distribution functions are the same.
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#A the number of elements in the set A
. C ¢ B: martingale transform 83



